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Introduction

When studying a category of objects (in algebraic or analytic geometry), an important aim is
to achieve a better understanding of the objects under consideration by trying to classify them.
In singularity theory, a tremendous effort has been undertaken by V. I. Arnol’d and many
others which lead to lists of normal forms for some classes of singularities – for a survey,
see [AGZV85] or [AGLV98], for instance. In general, when the classes of objects become
more complicated, one cannot hope to find complete classification lists anymore. A different
approach is to fix certain invariants and try to construct a moduli space for singularities of
the given type, so in particular one tries to find a universal family containing as fibres over
the base space all objects under investigation. For some recent works in that direction see
[GHP97], [FK00], for example.

Nevertheless, one major obstacle that one encounters when trying to construct moduli
spaces for geometric objects is that, in general, such universal families do not exist: The best
one can get is a semi-universal deformation, which usually is not universal – in the language
of Schlessinger’s classical paper [Sch68]: the corresponding deformation functors admit a hull
but are not representable. One possible approach is thus to single out some sort of maximal
universal locus in the base space of a given semi-universal deformation. This idea had first
been introduced by V. P. Palamodov in [Pal78] in the framework of deformations of compact
complex spaces, following him we call such a subspace the modular stratum of the object we
started with. The similar notion of prorepresenting substratum was investigated in the context
of formal deformations of affine schemes by Laudal and Pfister in [LP88].

The existence of maximal modular subspaces has been established for a number of defor-
mation problems in analytic geometry. A very general existence statement can be found in
[KS90], [Pal02] contains a recent, more geometric treatment. Nevertheless, very few concrete
examples of modular strata are known: A. G. Aleksandrov has shown in [Ale85] that isolated
quasihomogeneous complete intersections in positive dimension have reduced and smooth
modular stratum, and there are several examples of singularities where the modular stratum
is non-reduced and Artinian. The aim of the present thesis is to describe an algorithmic
method for determining modular strata by means of a computer, and to use its implemen-
tation for the computation of a series of non-trivial examples. This is built on recent work
of B. Martin: By showing that the modular stratum of an isolated singularity X0 can be
computed as the flattening stratum of a suitable module over the local ring of the base space
of a semi-universal deformation of X0, we can use his algorithm to compute local flattenings
presented in [Mar02a].

In particular, first examples had shown that the singular locus of the original singularity
may split along the modular stratum, so one is led to the question of whether such a phe-
nomenon still can happen when considering deformations with section instead. Therefore we
include in our treatment not only the ’usual’ deformation functor of a singularity but also the
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functor of deformations with section.

In chapter one, we begin by summarizing the technical background. In the study of
deformation theory, the most important algebraic tool is provided by cotangent cohomology,
so we start by reviewing the main constructions and properties of the cotangent cohomology
of analytic algebras and their morphisms, as it had been developed by Palamodov [Pal76] and
Flenner [Fle78] as an analogue of the so-called André-Quillen homology of commutative rings
(cf. [Qui70], [And74]). Having introduced them, we recall the basic notions of deformation
theory, in particular treating the functors of deformations with section and singular section
that go back to Buchweitz’ thesis [Buc81] in some more detail.

The second chapter then introduces the main concept of this thesis: Modular subspaces.
After summing up the basic definitions and properties, we give a proof of the existence of
maximal modular subspaces in the base space of a semi-universal deformation of an isolated
singularity, mainly using the constructions of [Pal78] and [KS90]. In particular we show
(Theorem 2.2.4): If X → S is a semi-universal deformation of the singularity X0, then
M ⊆ S is modular if and only if one of the following two equivalent criteria is fulfilled:

(1) The relative Kodaira-Spencer map T 0(S,OM ) → T 1(X|M/M) is injective.

(2) The evaluation map T 0(X|M/M) → T 0(X0) of relative vector fields of the restricted
deformation to vector fields of the special fibre is surjective,

and an analogous criterion is derived for deformations with section (Theorem 2.2.4). As a
first application we show that Aleksandrov’s smoothness result for the modular stratum of
quasihomogeneous complete intersections can be carried over to the functor of deformations
with section, in particular we obtain that the modular strata of both functors coincide for
such singularities.

The latter of the above characterizations of modular subspaces admits an interpretation
as flatness of the OM -module T̃ 1(X|M/M) := (Ok

X/J(F )) ⊗OS
OM , where F = F1, . . . , Fk

are equations defining X ⊆ S ×Cn and J(F ) stands for the Jacobian matrix with respect to
coordinates on Cn. In particular we show that for unobstructed singularities, i. e. T 2(X0) = 0,
this is actually equivalent to OM -flatness of the module of infinitesimal relative deformations
T 1(X|M/M). This agrees with the fact that the modular stratum coincides with the τ -
constant stratum in the base space of a semi-universal deformation, i. e., for suitably chosen
representatives of the germs, M ⊆ S coincides (as set) with those points s ∈ S for which the
deformation is still a semi-universal deformation of the fibre over s.

Having all these theoretical criteria at our disposal, we can then describe an algorithm to
compute the modular stratum in chapter three. Its starting point is the description of the
tangent space to the modular stratum MX0 of the singularity X0 as

T (MX0) = {t ∈ T (S) : [δ, θξ(t)] = 0 for all δ ∈ T 0(X0)},

where ξ : X → S is a semi-universal deformation of X0, θξ : T (S) → T 1(X0) denotes the
Kodaira-Spencer map and [−,−] : T 0(X0)×T 1(X0) → T 1(X0) is the Lie bracket in cotangent
cohomology. Having computed the tangent space, i. e. a first-order approximation of MX0 ,
we try to find the maximal extension in the next order that preserves flatness of T̃ 1(X/S).
This is done by methods similarly to those described in [Mar02a]. This approach makes it
possible to compute d-jets of equations defining the ideal of the modular stratum inside OS .
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To a certain extent this approach can be seen as an analogue to the algorithmic construction
of a semi-universal deformation, cf. [Mar99] – in this case one has to kill obstructions in
T 2(X0), whereas in our situation the obstruction space is given by T 1(X0).

The resulting algorithm has been implemented (for both deformation functors) in the
computer algebra system Singular [GPS02] as library modular.lib [HM04]. This algorithm
and its implementation generalize first versions described in [Mar02a], [Nik03].

After describing the implementation by means of some first examples, we exhibit in the
closing chapter four a series of phenomena that can occur in the modular stratum and have
been found using Singular: First of all, the answer to the question raised above is negative:
The singular locus may split along a modular family even when restricting to deformations
with section. – In fact, the same singularity where this happens for the ordinary deformation
functor provides an example for the other functor, too. Besides further concrete examples,
we also present a complete description of the modular strata of all unimodal hypersurface
singularities, in particular showing that the singularities of the Tp,q,r-series possess an Artinian
modular stratum in general, with exceptions only those singularities that are adjacent to the
so-called parabolic unimodal hypersurfaces.

Further examples investigate quasihomogeneous and semi-quasihomogeneous singularities:
Taking Aleksandrov’s above cited result as a starting point (the fact that quasihomogeneous
complete intersections of positive dimension have reduced and smooth modular stratum), we
show that the converse of this assertion is wrong: There are non-quasihomogeneous hyper-
surfaces whose modular stratum is smooth as well. In addition, we present examples which
demonstrate that it also becomes wrong as soon as one of its assumptions (quasihomogeneity,
positive dimension, complete intersection) is no longer fulfilled. We close this discussion by
formulating several conjectures concerning the modular stratum of semi-quasihomogeneous
hypersurface singularities, which are justified by their verification in certain special cases.
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Zusammenfassung

Bei der Untersuchung von Objekten in der (algebraischen bzw. analytischen) Geometrie gehört
es zu den wichtigsten Zielen, durch die Klassifikation der betrachteten Objekte ein besseres
Verständnis ihrer Struktur zu erlangen. In der Singularitätentheorie wurden von V. I. Ar-
nol’d und vielen anderen eine Reihe solcher Klassifikationsresultate erzielt – eine Übersicht
findet sich zum Beispiel in den Monographien [AGZV85] und [AGLV98]. Der Versuch, durch
Angabe von Normalformen vollständige Typisierungen zu erhalten, ist jedoch nicht mehr er-
folgversprechend, wenn die betrachteten Objekte komplizierter werden. In dieser Situation ist
es sinnvoll, stattdessen gewisse Invarianten zu fixieren und zu versuchen, Modulräume für die
Singularitäten des gegebenen Typs zu konstruieren. Insbesondere beinhaltet dieser Zugang
die Bestimmung einer universellen Familie, deren Fasern über dem Basisraum gerade Re-
präsentanten der Isomorphieklassen der betrachteten Objekte sind. Als Beispiele für jüngere
Arbeiten in dieser Richtung seien [GHP97], [FK00] genannt.

Im allgemeinen existieren solche universellen Familien von Singularitäten jedoch nicht – in
der Sprache der Deformationstheorie ausgedrückt: Zu jeder isolierten Singularität X0 existiert
nach einem grundlegenden Resultat von H. Grauert [Gra72] zwar eine semi-universelle Defor-
mation, es ist aber im allgemeinen nicht möglich, eine universelle Deformation zu erhalten.
Ein möglicher Ansatz, der sich erstmals in V. P. Palamodovs Arbeit [Pal78] im Zusammen-
hang mit der Untersuchung von Deformationen kompakter komplexer Räume findet, ist nun,
den Basisraum einer semi-universellen Deformation X → S auf einen maximalen Unterkeim
M ⊆ S einzuschränken, so daß die universelle Eigenschaft zumindest für alle aus M induzier-
ten Familien erfüllt ist. M ⊆ S wird dann das Modularstratum der ursprünglichen Singularität
X0 genannt.

Die Existenz maximaler modularer Unterkeime ist für eine Reihe von Deformationspro-
blemen in der analytischen Geometrie gesichert, vgl. zum Beispiel [KS90] oder [Pal02]. Ande-
rerseits ist, von einer Charakterisierung im Falle quasihomogener vollständiger Durchschnit-
te durch A. G. Aleksandrov [Ale85] abgesehen, bislang nur das Modularstratum von we-
nigen Singularitäten bekannt. Ziel der vorliegenden Arbeit ist es daher, einen Algorithmus
zu seiner Berechnung zu beschreiben und eine darauf beruhende Implementierung in dem
Computeralgebra-System Singular [GPS02] zur Berechnung einer Reihe nicht-trivialer Bei-
spiele zu nutzen.

In [Mar02a] wurde ein Beispiel vorgestellt, in dem der singuläre Ort der ursprünglichen
Singularität entlang einer modularen Familie in mehrere singuläre Punkte zerfällt. Dies führt
auf die Frage, ob ein solches Phänomen auch auftreten kann, wenn anstelle des üblichen De-
formationsfunktors der Funktor von Deformationen mit Schnitt betrachtet wird. Aus diesem
Grund werden beide Funktoren in dieser Arbeit weitgehend parallel behandelt.

Im ersten Kapitel werden die benötigten technischen Hilfsmittel bereitgestellt: Das alge-
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braische Hilfsmittel zur Untersuchung von Deformationen analytischer Mengenkeime liefern
der Kotangentenkomplex und die daraus berechnete Kotangentialkohomologie lokaler ana-
lytischer Algebren und ihrer Morphismen. Die notwendigen und später verwendeten dies-
bezüglichen Begriffe und Resultate werden hier zusammengestellt. Weiterhin werden die
Grundlagen aus der Deformationstheorie zusammengetragen – einerseits, damit sie in den
Folgekapiteln zur Verfügung stehen, andererseits werden insbesondere Deformationen mit
(singulärem) Schnitt auf Grundlage der Arbeit von R. O. Buchweitz [Buc81] ausführlicher
behandelt.

Im zweiten Kapitel wird zunächst der Begriff eines modularen Unterkeimes M in der Ba-
sis S einer Deformation ξ : X → S der Singularität X0 eingeführt. Nach der Formulierung
grundlegender Eigenschaften werden eine Reihe von äquivalenten Bedingungen bewiesen, un-
ter denen M ⊆ S modular ist. Insbesondere wird gezeigt, daß dies für semi-universelles ξ
genau dann der Fall ist, wenn

(1) die relative Kodaira-Spencer-Abbildung T 0(X/S,OM ) → T 1(X/S)|M injektiv oder

(2) die Auswertungsabbildung T 0(X/S)|M → T 0(X0) surjektiv ist.

Weiter wird daraus folgendes Kriterium abgeleitet, das die Grundlage für den im Folgekapi-
tel vorgestellten Algorithmus zur Berechnung des Modularstratums darstellt: Wird der To-
talraum X einer semi-universellen Deformation X → S von X0 durch F1, . . . , Fk ∈ OS ⊗
C{x1, . . . , xn} definiert, dann ist M ⊆ S genau dann modular, wenn

T̃ 1(X/S)|M := (Ok
X/J(F ))⊗OS

OM

ein flacher OM -Modul ist, wobei J(F ) die relative Jacobi-Matrix bezüglich x1, . . . , xn bezeich-
net.

Ferner wird gezeigt, daß für unobstruiertes X0 diese Bedingungen dazu äquivalent sind,
daß der relative Tjurina-Modul T 1(X/S)|M ein flacher und damit freierOM -Modul (vom Rang
τ := dimC T

1(X0)) ist. Dies stimmt mit dem Resultat überein, daß das Modularstratum sol-
cher Singularitäten dem Stratum τ = const entspricht. Analoge Charakterisierungen werden
für Deformationen mit Schnitt hergeleitet. Auf dieser Grundlage kann im dritten Kapitel ein
Algorithmus beschrieben werden, der die Berechnung des Modularstratums MX0 von X0 (zu-
mindest bis zu einer gewissen Ordnung) ermöglicht: Ausgangspunkt ist die Charakterisierung
seines Tangentialraumes als

T (MX0) = {t ∈ T (S) : [δ, θξ(t)] = 0 für alle δ ∈ T 0(X0)},

wobei θξ : T (S) → T 1(X0) die Kodaira-Spencer-Abbildung der semi-universellen Deformation
ξ : X → S bezeichnet, und [−,−] : T 0(X0) × T 1(X0) → T 1(X0) die Lie-Klammer der Ko-
tangentialkohomologie. Der erste Schritt besteht also in der Berechnung dieser Daten, womit
man relativ einfach den Tangentialraum des Modularstratums erhält. Hat man es nun bis
zu einer gewissen Ordnung bestimmt, dann erhält man induktiv die Approximation nächster
Ordnung durch Berechnung der maximalen Erweiterung, so daß die Flachheit von T̃ 1(X/S)
erhalten bleibt. Die algorithmische Umsetzung dieses Ansatzes läßt sich nun weitgehend mit
den in [Mar02a] beschriebenen Methoden erreichen. Schließlich wird die Implementierung
dieses Algorithmus’ als Singular-Bibliothek modular.lib [HM04] beschrieben.

Im letzten Kapitel werden nun unter Verwendung dieser Bibliothek eine Reihe von nicht-
trivialen Beispielen für Modularstraten berechnet. Zunächst wird die oben aufgeworfene Frage
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(negativ) beantwortet: Ein Beispiel zeigt, daß ein Zerfallen des singulären Ortes auch möglich
ist, wenn Deformationen mit Schnitt betrachtet werden. Des weiteren wird eine vollständige
Beschreibung des Modularstratums aller null- und unimodalen Hyperflächensingularitäten
gegeben. Dabei wird insbesondere bewiesen, daß dieses bei den Singularitäten der Tp,q,r-Serie
bis auf Ausnahmen stets nulldimensional ist.

Weitere Beispiele untersuchen quasihomogene und semi-quasihomogene Singularitäten,
hier wird Aleksandrovs oben zitierte Beschreibung des Modularstratums quasihomogener
vollständiger Durchschnitte (positiver Dimension) als Ausgangspunkt genommen: Für solche
Singularitäten ergibt sich stets ein glatter, reduzierter Keim. Es wird gezeigt, daß die Um-
kehrung dieser Aussage nicht gilt (es gibt zum Beispiel nicht-quasihomogene Hyperflächen
mit glattem Modularstratum), und daß sie auch falsch wird, wenn eine der Voraussetzungen
(Quasihomogenität, positive Dimension, vollständiger Durchschnitt) nicht mehr erfüllt ist.
Die Arbeit schließt mit der Formulierung mehrerer Vermutungen, die sich aus der Berechnung
einer Reihe von Beispielen semi-quasihomogener Hyperflächensingularitäten ergeben haben.
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Chapter 1

Cotangent complex and
deformations

The aim of this introductory chapter is to lay out the groundwork for the subsequent chapter
two, where we will need the basic notions and results of the deformation theory of complex
analytic germs and, in particular, their cotangent cohomology as the main technical tool
in this context. The results presented below are mostly standard, but appear somewhat
scattered through the literature. Therefore we give an account of these facts which we will
refer to in the following chapters two and three.

In section 1.3, where we study the functors of deformations with section and with singular
section of a singularity, we will recall the basic constructions of Buchweitz’ thesis [Buc81],
where the correct cotangent cohomology modules controlling deformations with section are
determined and semi-universal deformations for both functors are constructed. Our contribu-
tion is to give a somewhat more detailed treatment of the corresponding cohomology modules,
in particular in terms of defining equations, which will become important later on when we
want to do explicit computations.

1.1 Cotangent cohomology

In this section we recall the construction of the cotangent (co-)homology modules of an
analytic algebra and summarize of their properties. In the category of commutative algebras,
this goes back to the work by Lichtenbaum and Schlessinger who defined the cotangent
complex of a morphism in degrees 0, 1 and 2 in [LS67], this has then been extended by
Quillen in [Qui70]. A different approach by André [And74], based on so-called simplicial
resolvents, yields the same result, and the corresponding homology theory is called André-
Quillen homology. A gentle introduction to this homology theory and its application to the
deformation theory of affine singularities can be found in [Man01], for example.

The complex-analytic version of this theory is an analogue of André-Quillen homology –
not just a special case since one has to take into account the topology of analytic algebras
and the distinction between the analytic tensor product (cf. [GR71]) and the usual one, see
e. g. the first two sections of [Pal82] for a detailed discussion. The cotangent complex and
cotangent cohomology of analytic algebras and complex spaces are introduced by Palamodov
in [Pal76], based on earlier unpublished work of Tjurina. It is studied further by Flenner
and Bingener in [Fle78] resp. [Bin80]. It is this theory that we are now going to review.
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Kramm and Schuster have given a different construction in [KS77], using a variant of André’s
simplicial methods. A proof of the equivalence of both approaches can be found in [Pal82].

One third construction is worth being mentioned: If B is a flat (analytic) A-algebra, then
cotangent cohomology is (up to a degree shift by one) a direct summand of Hochschild coho-
mology, see [Lod98] or [Wei94] for a proof in the affine and [Pal82] in the analytic case.

To this end, we start by defining the cotangent complex of a morphism A→ B of analytic
algebras – or, equivalently, a morphism X → S of germs of complex spaces∗. We do not
include proofs for most of the following statements but only give references where they can
be found.

1.1.1 Differential graded algebras

Definition 1.1.1.
(1) A graded anti-commutative analytic algebra is an associative graded ring R =

⊕
i≤0R

i

with unit such that

i) xy = (−1)ijyx ∈ Ri+j for all x ∈ Ri and y ∈ Rj ,
ii) R0 is an analytic algebra and

iii) for all i, Ri is a finite R0-module.

A homomorphism ϕ : R → S between such algebras is defined as a homomorphism of
rings such that ϕ(Ri) ⊂ Si for all i and ϕ|R0 : R0 → S0 is a homomorphism of analytic
algebras.

(2) If R is a graded anti-commutative analytic algebra, a graded R-module is an R-bimodule
M with a grading M =

⊕
i∈ZM

i, such that

xm = (−1)ijmx ∈M i+j

for all x ∈ Ri and m ∈M j .

A homomorphism ϕ : M → N of graded R-modules of degree p is a homomorphism of
right-modules such that ϕ(Mn) ⊆ Nn+p for all n ∈ Z.

Remark 1.1.2. Let us mention some standard constructions:

(1) If M and N are graded R-modules, then M ⊗RN inherits a graded bimodule structure
in a natural way.

(2) If HomR(M,N)p denotes the set of homomorphisms M → N of degree p, then the direct
sum HomR(M,N) :=

⊕
p∈Z HomR(M,N)p again forms a graded R-module.

(3) For any homomorphism R→ S of graded anti-commutative analytic algebras, there ex-
ists a universal finite graded S-module ΩS/R of differentials satisfying the usual universal
property, i. e.

DerR(S,M) ' HomS(ΩS/R,M)

∗Since we are dealing almost exclusively with germs, we will usually omit the distinguished point of a germ
and simply write X := (X, 0) etc.
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for any graded S-module M which is separated as an S0-module, and Ωi
S/R is a finite

S0-module for all i. Here a derivation δ ∈ DerR(S,M) is an R-linear map S →M such
that

δ(xy) = δ(x) · y + (−1)ijδ(y) · x

for homogeneous x ∈ Si and y ∈ Sj (cf. [Fle78, § 1 A.], where also further examples
and properties of modules over such algebras are studied).

Definition 1.1.3.
(1) A differential graded algebra (DG-algebra) is a graded anti-commutative analytic algebra

R, together with an R0-derivation s : R→ R of degree 1 satisfying s2 = 0.

A homomorphism of DG-algebras is a homomorphism of graded anti-commutative ana-
lytic algebras which is compatible with the respective differentials.

(2) A differential graded module (DG-module) over a DG-algebra R with differential s is a
graded R-module M together with a differential M →M of degree 1 (which, by abuse
of notation, is also denoted s) satisfying

s(xm) = s(x)m+ (−1)ijs(m)x

for homogeneous elements x ∈ Ri and m ∈M j .

In particular, if M and N are DG-modules, then M ⊗R N and HomR(M,N) carry a
DG-module structure as well.

For further use we finally state the following definition:

Definition 1.1.4. A differential graded Lie algebra (DG-Lie algebra) over a DG-algebra R
is a DG-module L together with a homogeneous bilinear operation [−,−] : L×L→ L, called
the graded Lie bracket, such that for homogeneous elements x ∈ Li, y ∈ Lj and z ∈ Lk the
following identities are satisfied:

i) [x, y] + (−1)ij [y, x] = 0,

ii) [x, [y, z]] + (−1)i(j+k)[y, [z, x]] + (−1)k(i+j)[z, [x, y]] = 0 (Jacobi identity),

iii) s([x, y]) = [s(x), y] + (−1)i[x, s(y)].

1.1.2 The cotangent complex

We need the above notions in order to be able to define what a resolvent of a morphism of
analytic algebras should be:

Definition 1.1.5. Let A→ B be a morphism of analytic algebras. A resolvent for B over A
is a DG-algebra R together with a surjective homomorphism p : R�B over A, such that

i) R is a free A-algebra and

ii) p is a quasi-isomorphism of complexes, i. e. Hn(R) = 0 for n < 0 and H0(R) ' B, and
this isomorphism is induced by p.

Theorem 1.1.6. Any morphism of analytic algebras has a resolvent.
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Proof. [Pal76, Proposition 1.1] or [Fle78, 1.4].

Definition 1.1.7. Let A → B be a morphism of analytic algebras and R a resolvent for B
over A.

(1) The complex
L•
B/A := ΩR/A ⊗R B

(in the derived category of the category of B-modules) is called the cotangent complex
of B over A.

(2) For any B-module M we define the cotangent cohomology modules of B over A with
values in M as

T i(B/A,M) := ExtiB(L•
B/A,M), i ≥ 0,

which defines the covariant cotangent cohomology functors.

This definition is justified by the following

Proposition 1.1.8. Up to homotopy the cotangent complex of an analytic algebra does not
depend on the choice of the resolvent.

In particular, the cotangent cohomology modules are well-defined.

Proof. [Pal82, Proposition 3.4].

Notation. In order to simplify statements we adopt to the conventions

T i(B/A) := T i(B/A,B), T i(B,M) := T i(B/C,M).

In addition, if X → S is a morphism of germs of complex spaces and M is an OX -module,
we also write

T i(X/S,M) := T i(OX/OS ,M).

Remark 1.1.9. Similarly, one can define tangent homology functors by setting

Ti(B/A,M) := TorB−i(L•
B/A,M)

for an analytic A-algebra B and any B-module M , and most of the statements in cohomology
below have their homological counterpart. But since we will not use these functors we do not
discuss them further.

Proposition 1.1.10. The functors T i have the following properties:

(1) T 0(B/A,M) ' DerA(B,M).

(2) If A→ B turns B into a regular A-algebra, then T i(B/A,M) = 0 for i > 0.

(3) If B ' A{x}/(f1, . . . , fk), where f1, . . . , fk form a regular sequence in A{x}, then
T i(B/A,M) = 0 for i > 1.

(4) If A�B is a surjection with kernel I then T 1(B/A,M) ' HomB(I/I2,M).

(5) If T 1(B/A,C) = 0, then B is a regular A-algebra.
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(6) If T 2(B/A,C) = 0, then B ' A{x}/(f1, . . . , fk) with a regular sequence f1, . . . , fk ∈
A{x}.

Proof. [Fle78, 1.15].

Remark 1.1.11. Note that (5) and (6) do not give the converse statements to (2) and (3),
since coefficients are taken in different modules. In fact, T 1(B/A) = 0 does not imply that B
is a regular A-algebra. For example, if A = C and B = C{x}/(f1, . . . , fk), then B may be a
non-regular analytic algebra but still T 1(B) = 0. In this case, the germ defined by f1, . . . , fk
is called a rigid singularity – see e. g. [Sch73] for a discussion.

Similarly B may be a non-complete intersection but still T 2(B) = 0. This is, for instance,
the case for Cohen-Macaulay germs of codimension 2 (see [Sch77] or [FK00], for example).

The functorial properties of cotangent cohomology are expressed in the following exact
sequence which is immediate from the definition:

Proposition 1.1.12. Let 0 →M ′ →M →M ′′ → 0 be a short exact sequence of B-modules.
Then there is a long exact sequence in cohomology

0 → T 0(B/A,M ′) → T 0(B/A,M) → T 0(B/A,M ′′) → T 1(B/A,M ′) → . . .

Now suppose we are additionally given a morphism B → C, then we obtain an exact
sequence

0 → L•
B/A ⊗B C → L•

C/A → L•
C/B → 0,

from which one derives:

Proposition 1.1.13. If A → B → C are homomorphisms of analytic algebras and M is a
C-module, then there is a long exact sequence in cohomology

0 → T 0(C/B,M) → T 0(C/A,M) → T 0(B/A,M) → T 1(C/B,M) → . . .

In particular, its beginning coincides with the canonical sequence

0 → DerB(C,M) → DerA(C,M) → DerA(B,M).

Proof. [Fle78, 1.14].

In particular, combining Proposition 1.1.10 and Proposition 1.1.13 we end up with the
following sequence connecting T 0 and T 1:

Proposition 1.1.14. Let B ' A{x}/I be a quotient of a regular analytic A-algebra A{x},
and let M be a B-module. Then there is an exact sequence

0 → DerA(B,M) → DerA(A{x},M) → HomB(I/I2,M) → T 1(B/A,M) → 0.

Proof. Applying Proposition 1.1.13 to the homomorphisms A ↪→ A{x}�B we get the exact
sequence

0 → T 0(B/A,M) → T 0(A{x}/A,M) → T 1(B/A{x},M) → T 1(B/A,M) → 0,

using property (2) in Proposition 1.1.10 and the fact that T 0(B/A{x},M) ' DerA{x}(B,M)
= 0. Now the statement follows from the identities (1) and (4) in Proposition 1.1.10.
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Remark 1.1.15.
• In fact, the sequence above results from applying HomB(−,M) to the so-called conormal

sequence
I/I2 → ΩA{x}/A ⊗A{x} B → ΩB/A → 0,

cf. [Eis95, ch. 16], for instance.

• The above description of the first cotangent cohomology module as cokernel of the map

DerA(A{x},M) → HomB(I/I2,M)

δ 7→ (f mod I2 7→ δ(f))

shows how to calculate it explicitly; in [Mar99] it is explained how the computation of
T 1(C{x}/(f1, . . . , fk)) is performed in Singular (procedure T_1 in the standard library
sing.lib [GM02]). In particular, if f1, . . . , fk form a regular sequence in C{x1, . . . , xn},
then

T 1(C{x}/(f)) ' C{x}k/(fi · ej)1≤i,j≤k + (


∂f1
∂x1

...
∂fk
∂x1

 , . . . ,


∂f1
∂xn

...
∂fk
∂xn

).

• A similar explicit description can be given for the second cotangent cohomology module,
cf. [dJP00, section 10.3]: Let B = A{x}/I and I = (f1, . . . , fk). Denote by R the
syzygy module of f1, . . . , fk, i. e. the kernel of A{x}k → A{x}, ei 7→ fi, and by R0 the
submodule of R generated by the Koszul relations fiej − fjei. Then

T 2(B/A,M) ' HomA{x}(R/R0,M)/HomA{x}(A{x}k,M),

and this can be computed in Singular using the command T_2.

Finally, the following proposition describes the behavior of the T i-functors under base
change:

Proposition 1.1.16. Let be given homomorphisms A→ B and A→ A′ of analytic algebras,
and set B′ := B ⊗A A′, i. e. we have a cocartesian diagram

B // B′ = B ⊗A A′

A

OO

// A′.

OO

If A→ A′ or A→ B is flat, then there is a natural isomorphism

T i(B/A,M) ' T i(B′/A′,M)

for any B′-module M and i ≥ 0.

Proof. This follows from the fact that under these assumptions we have L•
B′/A′ ' L•

B/A⊗BB
′

[Fle78, 1.16].
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Remark 1.1.17. If, in the situation above, both A → A′ and A → B are flat, then there
is also the identity T i(B/A,M) ⊗A A′ ' T i(B′/A′,M ⊗A A′) for any B-module M . If only
A→ A′ is flat, still there is a map between these two B′-modules, which, however, in general
needs not be an isomorphism.

We finish this section by noting how one can introduce a graded Lie algebra structure on
T •(B/A) :=

⊕
i≥0 T

i(B/A):

Proposition 1.1.18. Let R be a resolvent of B over A. Then DerA(R) becomes a DG-Lie
algebra by setting

[δ1, δ2] := δ1δ2 − (−1)(i+j)δ2δ1

for homogeneous elements δ1 and δ2 of degrees i, j, respectively, and the differential in
DerA(R) is defined as δ 7→ [s, δ], where s stands for the differential in R. This bracket
lifts to the cohomology H•(DerA(R)), which is isomorphic to T •(B/A), hence inducing on
T •(B/A) the structure of a DG-Lie algebra.

Proof. cf. [Pal76, Proposition 1.10] or [Fle78, 1.21, 1.22].

Remark 1.1.19. If B := A{x}/(f1, . . . , fk) it is possible to describe the Lie bracket of
T •(B/A) in more concrete terms:

(1) [−,−] : T 0(B/A) × T 0(B/A) → T 0(B/A) is just the ordinary commutator bracket of
derivations in DerA(B).

(2) Let δ̃ ∈ DerA(A{x}) induce an element δ ∈ T 0(B/A), so δ̃(fi) =
∑

j hijfj for i = 1 . . . k.
In addition, let (g1, . . . , gk) ∈ A{x}k represent a class g in T 1(B/A) (i. e. the class of
the morphism (f)/(f)2 → B defined by f̄i 7→ ḡi). Then [δ, g] ∈ T 1(B/A) is the class in
T 1(B/A) of the morphism given byδ̃(g1)...

δ̃(gk)

−

h11 · · · h1k
...

...
hk1 · · · hkk

 ·

g1...
gk

 .

(3) Finally, let us describe the bracket T 1 × T 1 → T 2: If g(1) and g(2) are elements of
T 1(B/A) represented as above and r1, . . . , rk form a relation of f1, . . . , fk, then we can
find r

(1)
1 , . . . , r

(1)
k such that

∑
i r

(1)
i fi +

∑
i rig

(1)
i = 0, and similarly we find r

(2)
i such

that
∑

i r
(2)
i fi +

∑
i rig

(2)
i = 0. We obtain the element [g(1), g(2)] ∈ T 2(B/A) as class of

the morphism defined by r̄ 7→
∑

i(r
(2)
i g

(1)
i + r

(1)
i g

(2)
i ).

1.1.3 Cotangent cohomology of a mapping

Aside from associating cotangent cohomology modules to an analytic A-algebra B, i. e.
being given an A-module structure on the analytic algebra B by means of some morphism
f : A→ B, one can also define cohomology functors T i(f,−) corresponding to the morphism
itself. In particular, this gives rise to the so-called Kodaira-Spencer sequence which will be
of central importance in the next chapter. In this section we mainly follow the treatment in
[Fle78] and [Pal90b].
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Definition 1.1.20. Let A,B and C be analytic algebras such that B and C are A-algebras,
and let f : B → C be an A-algebra homomorphism. Choose resolvents R (resp. S) of B
(resp. C) over A that are compatible with f , i. e. there is a commutative diagram

R //

��

S

��
B

f // C

of DG-algebras over A.

(1) Define
L•
f := (L•

B/A,L
•
C/A).

Formally, this is a complex in the derived category D−(Cf :B→C) of the following abelian
category Cf :B→C :

i) Its objects are triples (M1,M2, h) of a B-module M1, a C-module M2 and a ho-
momorphism h : M1 →M2 over f : B → C;

ii) HomCf :B→C
((M1,M2, h), (M ′

1,M
′
2, h

′)) consists of all pairs (g1, g2) of a B-module
homomorphism g1 : M1 → M ′

1 and a C-module homomorphism g2 : M2 → M ′
2

such that g2 ◦ h = h′ ◦ g1.

(2) For a B-module M we set

T i(f/A,M) := ExtiCf :B→C
(L•

f , (M,M ⊗B C)), i ≥ 0.∗

As before, we simply write T i(f,M) if A = C and T i(f/A) := T i(f/A,B).

(3) More generally, we write

T i(f/A, (M1,M2)) := ExtiCf :B→C
(L•

f , (M1,M2)), i ≥ 0,

for any object (M1,M2, h) in Cf :B→C .

Remark 1.1.21. Again, one can describe T 0(f/A,−) more explicitly in terms of deriva-
tions: Let f : B → C be as above and let (M1,M2, h) be an object in Cf :B→C . Then
T 0(f/A, (M1,M2)) consists of all pairs of compatible derivations (δ, δ̃) ∈ DerA(B,M1) ×
DerA(C,M2), i. e. pairs (δ, δ̃) such that

M1
h //M2

B

δ

OO

f // C

δ̃

OO

commutes [Fle78, 1.19].

Remark 1.1.22. Note that, using the construction of 1.1.18, one can induce on T •(f/A) the
structure of a DG-Lie algebra [Fle78, 1.21, 1.22].

∗This definition makes sense since the category Cf :B→C has enough projective objects by [Fle78, § 1 D.].
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For our purposes, the most important property of these functors is the following fact
addressing the interplay between T i(f,−) and the cotangent cohomology functors introduced
in the previous section:

Proposition 1.1.23. Let f : B → C be a morphism of analytic A-algebras and (M1,M2, h)
an object in Cf :B→C . Then there is a long exact sequence in cohomology

0 → T 0(C/B,M2) → T 0(f/A, (M1,M2)) → T 0(B/A,M1) → T 1(C/B,M2) → . . . .

Proof. This is a (slight) generalization of [Fle78, 1.18]. Choose resolvents R and S of B resp.
C over A as above. S can be chosen to be a freeR-algebra so that L•

f = (ΩR/A⊗RB,ΩS/A⊗SC)
is a complex of projective objects in Cf :B→C and thus T i(f/A, (M1,M2)) can be computed as i-
th cohomology module of the complex HomCf :B→C

(L•
f , (M1,M2)). The sequence of complexes

0 → HomC(ΩS/R ⊗S C,M2) → HomCf :B→C
(L•

f , (M1,M2)) → HomB(ΩR/A ⊗R B,M1) → 0

is exact. Hence, we are done by passing to its associated long exact cohomology sequence: We
can compute T i(C/B,M2) out of the first term, the one in the middle gives T i(f/A, (M1,M2)),
and the last one yields T i(B/A,M1).

1.1.4 The cotangent complex of complex spaces

Having defined cotangent cohomology of analytic algebras and their morphisms (or, what
amounts to the same, of germs of complex spaces and maps between germs), one can also
define their global counterparts, associated to complex spaces and holomorphic mappings be-
tween complex spaces. We only sketch the notions and results briefly because we will only
occasionally make use of them later on. For a thorough discussion we refer to [Pal76] and
[Fle78].

So let f : (X,OX) → (S,OS) be a morphism between complex spaces. Each such mor-
phism admits a resolvent R, giving rise to the so-called cotangent complex L•

X/S of X over S
– see [Fle78, § 2 B.-C.] for a definition and a proof of its existence. This complex does not
depend on the chosen resolvent and, as in the local case discussed above, the derived functors
of Hom resp. Hom induce the cotangent cohomology modules of X over S:

Definition 1.1.24. Let f : X → S be a morphism of complex spaces and L•
X/S the cotangent

complex of X over S. The cotangent cohomology functors of X over S are defined as

(1) T i(X/S,M) := ExtiOX
(L•

X/S ,M) resp.

(2) T i(X/S,M) := Ext iOX
(L•

X/S ,M)

for any OX -module M.

These functors have properties analogous to those stated in Proposition 1.1.10, Proposition
1.1.12 and Proposition 1.1.13. Furthermore one has the following statement, showing that this
cohomology is the correct ’globalized’ version of cotangent cohomology for analytic algebras
and germs:

Proposition 1.1.25.
(1) For any OX-module M, the sheaves T i(X/S,M) are coherent OX-modules.
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(2) The stalk of L•
X/S at any point x ∈ X is a cotangent complex for OS,f(x) → OX,x.

Proof. [Fle78, 2.21].

Finally, one can also define a cotangent complex for a morphism f : X → S over a base
space Z. This gives rise to functors T i(f/Z,−), and we end up with a cohomology sequence
analogous to the one in Proposition 1.1.23:

Proposition 1.1.26. If f : X → S is a morphism of complex spaces over the complex space
Z and N is an OS-module, there is a long exact sequence

0 → T 0(X/S, f∗(N )) → T 0(f/Z,N ) → T 0(S/Z,N ) → T 1(X/S, f∗(N )) → . . . .

Proof. [Fle78, 3.4].

We omit a precise definition of T i(f/Z,−) and just note that for i = 0 one obtains, as
before, the set of all compatible derivations in

DerOZ
(OX , f∗(N ))×DerOZ

(OS ,N ),

and T i(f/Z,−) coincides with T i(X/Z) in case X = S and f = idX .

1.2 Deformation theory

The second part of this first chapter is intended to give a review of the concepts and results
of general deformation theory that we will rely upon later on. After introducing the abstract
formalisms, we summarize the main results on deformations of singularities. In the subsequent
section we will then discuss the functors of deformations with section and singular section in
some more detail.

Let us fix some more notations: By (Gan) we denote the category of germs of complex
spaces and by (Analg) the (equivalent) category of analytic algebras.

1.2.1 Deformation functors

Definition 1.2.1. Let f : Y0 → X0 be a morphism of germs of complex spaces.

(1) A deformation of X0 over the base space S consists of a flat morphism ξ : X → S in
(Gan), together with an isomorphism iX0 : X0

∼−→ ξ−1(0).

If ξ′ : X ′ → S′ is another deformation of X0, with i′X0
: X0 ' ξ′−1(0), then a morphism

of deformations is given by a morphism ϕ : S′ → S of the base germs together with an
isomorphism X ′ ' X ×S S′, such that the induced diagram

X0
i′X0

∼{{wwwwwwww iX0

∼ ##F
FFFFFFF

ξ′−1(0) // ξ−1(0)

commutes. In particular, for any morphism ϕ : S′ → S the pull-back of ξ by ϕ is defined
by X ×S S′ → S′ and denoted as ϕ∗(ξ).
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(2) A deformation of the morphism f : Y0 → X0 with base S consists of deformations
ξ : X → S and η : Y → S of X0 and Y0, respectively, and a morphism F : Y → X, such
that the induced diagram

Y0
� � iY0 //

f

��

Y

F

��

η

��?
??

??
??

?

S

X0
� � iX0 // X

ξ

??��������

commutes. If F ′ : X ′ → Y ′ (and a whole diagram with primes as above) defines another
deformation of f , then a morphism of deformations of f consists of morphisms X ′ → X
and Y ′ → Y of deformations of X0 and Y0, respectively, such that the diagram

Y ′ //

��

Y

��
X ′ // X

commutes. In particular, X ′ → X and Y ′ → Y are both isomorphisms.

(3) If, in the definition above, we only allow X := X0×S, we obtain relative deformations of
Y0 over X0 with base S; and similarly, taking Y := Y0×S we get a relative deformation
of X0 under Y0.

(4) An unfolding of f is a deformation of f , where X0 and Y0 are both only deformed
trivially, i. e. X ' X0 × S and Y ' Y0 × S, so only f varies and X0, Y0 are both kept
fixed. In this situation, the flatness condition is of course empty.

Remark 1.2.2. Any morphism of deformations over the identity map S → S is an isomor-
phism, as follows easily from the Inverse Function Theorem (cf. [dJP00, Theorem 10.2.10],
for instance).

These notions give rise to the following contravariant deformation functors (Gan) →
(Sets) associated to the morphism f : Y0 → X0, see [Buc81]:

Definition 1.2.3. Let f : Y0 → X0 be a morphism of germs of complex space, and S a
further germ. We define five contravariant deformation functors as follows:

(1) DefX0(S) is the set of isomorphism classes of deformations of X0 with base S,

(2) DefY0/X0
(S) is the set of isomorphism classes of relative deformations of Y0 over X0

with base S,

(3) DefY0\X0
(S) is the set of isomorphism classes of relative deformations of X0 under Y0

with base S,

(4) Deff (S) is the set of isomorphism classes of deformations of the morphism f with base
S,
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(5) Unff (S) is the set of isomorphism classes of unfoldings of f with base S.

Analogously, one obtains covariant functors (Analg) → (Sets), which, by abuse of notation,
we will denote by the same symbols.

For each of these functors, Def•(D) is called its tangent space, where D := ({0},C[ε])
stands for the double point with local algebra C[ε] := C{x}/(x2).

There are a lot of natural transformations between these functors given by the ’inclusion’
and ’forgetting data’ – according to [Buc81], their interplay is understood best by putting
them all into an octahedron! All deformation functors defined give rise to examples of cofibred
groupoids over the category (Analg), a concept that we are now going to recall, following
[Bin80], [Sti88], [Ste96]:

Definition 1.2.4. A cofibred groupoid over a category C is a pair (F, p), consisting of a
category F and a covariant functor p : F → C, such that the following lifting conditions are
satisfied:

i) Existence: For every morphism Φ : R → S in C and every object r in F such that
p(r) = R, there exists an object s in F and a morphism ϕ : r → s such that p(s) = S
and p(ϕ) = Φ:

r
ϕ //

p

��

s

p

��
R

Φ // S.

ii) Uniqueness: If R // ++
S // T is a commutative diagram in C and r → s, r → t are

lifts of the morphisms R→ S and R→ T in F , then there is a unique lift s→ t of the
morphism S → T such that the whole diagram commutes:

r // ++

��

s

��

∃!
// t

��
R // 33S // T

For any object R in C, the fibre F (R) is the subcategory of F with ob(F (R)) := {r ∈ F :
p(r) = R} and HomF (R)(r, r′) := {ϕ ∈ HomF (r, r′) : p(ϕ) = idR}.

It is obvious that all deformation functors (Analg) → (Sets) from above yield examples of
cofibred groupoids over the category (Analg). For instance, ifX0 is a germ of a complex space,
we obtain a groupoid by starting with the category (DefX0) whose objects are isomorphism
classes of deformations of X0, together with the functor p : (DefX0) → (Analg) that assigns
to each isomorphism class of a deformation the local ring of its base space.

In particular, these groupoids all have the property that their fibres over C consist of only
one single element.

Definition 1.2.5. Let F be a cofibred groupoid over (Analg) such that F (C) consists of one
single element. s ∈ ob(F (S)) is called

(1) versal, if the following lifting property is satisfied: If r′ → r is a morphism in F such
that the corresponding morphism R′ → R in (Analg) is surjective, then every morphism
s→ r can be lifted to a morphism s→ r′ such that the composition s→ r′ → r equals
s→ r;
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(2) formally versal, if this lifting property is satisfied for any Artinian R′;

(3) (formally) semi-universal, if it is (formally) versal and, in addition, the induced mor-
phism mS/m

2
S → mR′/m2

R′ is uniquely defined by r′ → r and s→ r.

(4) universal if it is versal and any lifting morphism s→ r′ is unique.

Remark 1.2.6. Quite customary is also a slightly different definition of versality, which only
requires that the lifting property is satisfied for r = s ⊗ C – i. e. in terms of deformation
functors: every deformation is isomorphic to the pull-back of a versal one. However, this
somewhat stronger formulation will guarantee that every versal deformation is the product
of a semi-universal one with a trivial factor (see [Ste96]).

1.2.2 Cotangent cohomology and semi-universal deformations

When studying these deformation problems, there are three associated sets of particular
importance:

• the respective infinitesimal automorphisms,

• the infinitesimal deformations, i. e. the tangent space of the functor under considera-
tion, and

• the set of obstructions for lifting infinitesimal deformations to deformations of higher
order.

It turns out that the cotangent cohomology modules introduced in the previous section
contain all these information:

Theorem 1.2.7. Let f : Y0 → X0 be a morphism of germs of complex spaces.

(1) Let ξ : X → D be a deformation of X0 over the double point D.

• The group of automorphisms of X that induce the identity on D is isomorphic to
T 0(X0),

• T 1(X0) is isomorphic to DefX0(D), the set of isomorphism classes of deformations
over the double point,

• If 0 → J → OD′ → OD → 0 is a simple extension∗, then there exists a so-called
obstruction element in T 2(X0) that vanishes if and only if the deformation ξ can
be lifted to a deformation over D′.

(2) The analogue objects for the functor DefY0/X0
are T i(Y0/X0) for i = 0, 1, 2.

(3) If Y0 ↪→ X0 is a closed subspace such that OY0 ' OX0/I, then the correct objects for
DefY0\X0

are given by T i(X0, I).

(4) For Deff , the corresponding objects are T i(f), i = 0, 1, 2.

Proof. [Buc81, section 2.4] resp. [Ill71].
∗i. e., mD′J = 0 and dimC J = 1.
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A first answer to the question whether semi-universal deformations of singularities exist is
given by the classical treatment [Sch68] of Schlessinger, where some relatively weak conditions
are formulated that imply the existence of a formally versal object for a given functor as above.
In particular, they are satisfied for the deformation functor of any isolated singularity X0.
The next step then consists in approximating the formally versal deformation by an analytic
one and showing that it is in fact versal itself. This is much harder and has first been proved
by Grauert in [Gra72]:

Theorem 1.2.8. Let X0 be a singularity such that dimC T
1(X0) <∞, e. g. X0 is an isolated

singularity. Then there exists a semi-universal deformation of X0.

The main technical tool in its proof is the Grauert Approximation Theorem – for a detailed
discussion and a proof of this statement we refer to [dJP00], where it is also shown how one
uses it to deduce the above theorem.

Remark 1.2.9.
(1) General conditions which ensure that formally versal objects are already versal them-

selves are formulated in [Bin80]. Aside from deformations of isolated singularities, they
are satisfied for deformations of compact complex spaces, of coherent module sheaves
and of principal bundles on compact complex spaces, to name some examples.

(2) Its is proved in [Fle81, section 5] that, using the definition of versality from above, the
existence of a versal deformation also implies the existence of a semi-universal one, and
the base ring OT of any versal deformation is isomorphic to a free convergent power
series ring OS{z1, . . . , zr}, where OS is the base ring of a semi-universal deformation.

Remark 1.2.10. These constructions guaranteeing the existence of semi-universal deforma-
tions of isolated singularities can actually be turned into an algorithm. Let X0 be an isolated
singularity, defined by f = (f1, . . . , fk) ⊆ On. First of all one needs the modules T 1(X0) and
T 2(X0), which can be computed as described in Remark 1.1.15. So suppose g(1), . . . , g(τ) ∈ Ok

n

represent a C-vector space basis of T 1(X0). Then

f +
τ∑
i=1

sig
(i)

defines a deformation of X0 over C{s1, . . . , sτ}/(s)2. Now suppose we are given a deformation
XA → A over an Artinian space A with OA = C{s}/J . To the small extension

0 → J/(s)J → C{s}/(s)J → OA → 0

one associates an obstruction element in

T 2(X0)⊗C J/(s)J ' HomC(T 2(X0)∗, J/(s)J).

If I mod (s)J denotes the image of the corresponding map, then I is the minimal ideal such
that one can extend the deformation XA → A to a deformation XA′ → A′, where OA′ =
C{s}/I. Iterating this procedure one obtains k-jets of a semi-universal deformation of X0. A
detailed account of this method, together with a description of the resulting implementation in
the Singular-library deform.lib [Mar02b] is contained in [Mar99]. Of course, this process
needs not terminate, but nevertheless for a lot of interesting examples it actually does. In
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particular, if X0 is unobstructed, i. e. T 2(X0) = 0, then a semi-universal deformation of X0

is defined by

f +
τ∑
i=1

sig
(i) ∈ C{x, s}k.

A different approach computes a local flattener inside a semi-universal unfolding of the map
germ (Cn, 0) → (Ck, 0) defined by f1, . . . , fk, cf. [Tei77], [Hau83]. The problem with this
construction is that it involves the vector space K1

f := (C{x}/(f))k/J(f) which, in general, is
not finite-dimensional (here J(f) denotes the module generated by the classes of the partial
derivatives of f1, . . . , fk).

1.3 Deformations with section and singular section

We now investigate one important special case of deformations of a morphism Y0 → X0:
namely, the case where Y0 is trivial, i. e. only consists of the reduced point 0. Deformations
of the embedding 0 ↪→ X0 give rise to a diagram

0 � � //

��

S

σ

��

idS

��@
@@

@@
@@

@

S

X0
� � i // X

ξ

??��������

Thus, deformations of 0 ↪→ X0 are deformations of X0, together with a section σ of the
morphism ξ : X → S. This gives rise to the next definition:

Definition 1.3.1. Let X0 be a germ of a complex space. A deformation with section of X0

over a germ S is a deformation ξ : X → S of the embedding morphism 0 ↪→ X0. We write
shortly DefsX0

for the functor Def0↪→X0 and denote the deformation by (ξ, σ) if we want to
mention the given section σ of ξ explicitly.

By abuse of notation, we denote by DefsX0
the (covariant) functor (Analg) → (Sets) of

deformations with section of the analytic algebra OX0 , too.

Of course, since the simple point {0} can only be deformed trivially, we could consider
this deformation functor as the functor of relative deformations of X0 under 0 as well. In
particular this would give the same results concerning its cotangent cohomology which will
be formulated next.

1.3.1 Cotangent cohomology of Def sX0

The interpretation of deformations with section of X0 as deformations of the morphism 0 ↪→
X0, which in turn corresponds to the residue map OX0�C, gives rise to the fact that the
corresponding cotangent cohomology coincides with the cotangent cohomology of (X0, 0) with
values in mX0 , the maximal ideal of OX0 :
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Proposition 1.3.2. Let X0 be a germ of a complex space, minimally embedded in (Cn, 0)
and defined by an ideal I = (f1, . . . , fk) ⊆ m2

On
. Then

T i(0 ↪→ X0) = T i(X0,mX0), i ≥ 0.

In particular we have:

(1) T 0(X0,mX0) ' DerC(OX0 ,mX0).

(2) T 1(X0,mX0) is the cokernel of the map

DerC(On,mX0) → HomOX0
(I/I2,mX0)

δ 7→ (g mod I2 7→ δ(g)).

If (X0, 0) is a complete intersection and f1, . . . , fk form a regular sequence, then

T 1(X0,mX0) ' m⊕k
X0
/(mX0J(f)),

where J(f) is the module generated by the columns of the Jacobian matrix
∂f1
x1

··· ∂f1
xn

...
...

∂fk
x1

··· ∂fk
xn


of (f1, . . . , fk) modulo I.

(3) Complete intersections are unobstructed for DefsX0
, i. e. T 2(X0,mX0) = 0.

Proof. Let r denote the residue map OX0�C. The cotangent complex of C being trivial we
get

HomC0↪→X0
(L•

r , (C,OX0)) ' HomOX0
(L•

OX0/C
,mX0),

where C0↪→X0 denotes the category described in section 1.1.3. Thus

T i(0 ↪→ X0) = ExtiC0↪→X0
(L•

r ,C)

' ExtiOX0
(L•

OX0/C
,mX0) = T i(X0,mX0).

Note that, alternatively, one can derive this computation from statement (3) in Theorem
1.2.7.

(1) and (3) are now a direct consequence of Proposition 1.1.10. Property (2) follows from
Proposition 1.1.14, noting that DerC(On,mX0) is generated by the classes of

{
xi

∂
∂xj

}
i,j

and

that HomOX0
((f)/(f2),mX0) ' m⊕k

X0
for complete intersections.

Remark 1.3.3. In particular, as embedded deformation, every infinitesimal deformation of
X0 ⊆ (Cn, 0) given by f1, . . . , fk ∈ On is defined by fi + εgi ∈ On ⊗ C[ε]/(ε2), i = 1, . . . , k,
where the gi are elements of the maximal ideal of On. More generally, by a suitable coordinate
change we may assume that (up to isomorphism) every deformation with section of X0 over
the base S is given by F1, . . . , Fk ∈ (x)OS{x}, and σ is the zero section.
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The following basic facts relating the cotangent cohomology of DefX0 and DefsX0
for

isolated singularities will be very useful later on:

Proposition 1.3.4. Let X0 be an isolated singularity. Then

(1) T 0(X0,mX0) ' T 0(X0).

(2) If, in addition, X0 is a complete intersection, then

τ s(X0) := dimC T
1(X0,mX0) = τ(X0) + dim(X0).

We call τ s(X0) the Tjurina number with section of the germ X0, in analogy to the usual
Tjurina number τ(X0) = dimC T

1(X0) of a singularity.

Proof. By [SW77, (1.1)] we have that Im(δ) ⊆ mX0 for any δ ∈ DerC(X0), hence

T 0(X0,mX0) ' DerC(OX0 ,mX0) = DerC(OX0) ' T 0(X0),

proving (1). Now, using Proposition 1.3.2, we obtain the long exact cohomology sequence

0 → T 0(X0,mX0) → T 0(X0) → T 0(X0,C) → T 1(X0,mX0) → T 1(X0) → T 1(X0,C) → 0

derived from the short exact sequence 0 → mX0 → OX0 → C → 0 and using the fact that
T 2(X0,mX0) = 0. By part (1) its right hand part gives the exact sequence of C-vector spaces

0 → T 0(X0,C) → T 1(X0,mX0) → T 1(X0) → T 1(X0,C) → 0. (∗)

Now let
n := e.dim(X0) = dimC(mX0/m

2
X0

)∗ = dimC T
0(X0,C),

and let f1, . . . , fk ∈ On be a regular sequence generating the ideal I defining X0, so dim(X0) =
n − k. We may assume that fi ∈ (x)2 for all i. Then HomOX0

(I/I2,C) ' Ck since X0 is
a complete intersection, and T 1(X0,C) ' HomOX0

(I/I2,C) because it is the cokernel of
DerC(On,C) → HomOX0

(I/I2,C), which is the zero map. Altogether we obtain from (∗):

dimC T
1(X0,mX0) = dimC T

1(X0) + dimC T
0(X0,C)− dimC T

1(X0,C)
= τ(X0) + n− k

= τ(X0) + dim(X0),

completing the proof.

In particular, suppose f ∈ C{x1, . . . , xn} defines an isolated hypersurface singularity X0.
Then there is a short exact sequence of finite-dimensional C-vector spaces

0 → (f, J(f))/(f,mJ(f)) → C{x}/(f,mJ(f)) → C{x}/(f, J(f)) → 0,

which implies that the first of these three vector spaces has dimension

(τ s(X0) + 1)− τ(X0) = n,

so the partial derivatives not only generate but actually form a basis of this vector space, i.
e.:

Corollary 1.3.5. Let f ∈ C{x1, . . . , xn} define an isolated hypersurface singularity. Then
∂f
∂x1

, . . . , ∂f∂xn
are linearly independent modulo (f,mJ(f)) and thus also modulo mJ(f).
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1.3.2 Construction of a versal deformation with section

We now turn to the construction of a versal deformation with section of an isolated singularity
X0, which goes back to [Buc81].

Theorem 1.3.6. Suppose ξ : X → S is a versal deformation of X0. Then π1 : X ×SX → X
together with the diagonal embedding d : X → X×SX gives a versal deformation with section
of X0.

Proof (following [Buc81], see also [MvS01]). We verify the definition of versality, as given in
Definition 1.2.5. So let T ′ ↪→ T be an injective morphism of germs and ν : X̃ → T and
ν ′ : X ′ → T ′ deformations of X0 with sections τ , τ ′:

T ′

τ ′

��

� � // T

τ
��

X ′

ν′

��

� � // X̃

ν

��
T ′

� � // T

Suppose ν ′ is induced (as element of DefX0(T
′), i. e. forgetting the section) from ξ by some

morphism ϕ′ : T ′ → S. Versality of ξ implies the existence of some ϕ : T → S such that ν is
isomorphic to the pull-back of ξ via ϕ, so we may assume X̃ = X ×S T . Denoting by Φ the
projection X̃ → X we obtain, by pulling back X ×S X → X over Φ ◦ τ :

X ×S X
π2 //

π1

��

X

ξ

��

(X ×S X)×X T

66nnnnnnnnnnnn

��

X
ξ // S

T

Φ◦τ
66mmmmmmmmmmmmmmmmm τ // X̃

ν //

Φ

OO

T

ϕ

OO

From X̃ = X ×S T we deduce that (up to isomorphism):

(X ×S X)×X T ' X ×S (X ×X T ) ' X ×S T = X̃.

Under these identifications, we can identify d◦(Φ◦τ) with τ . Altogether this proves that (ν, τ)
is isomorphic to the pull-back of (π1, d) via Φ ◦ τ , and so we end up with the commutative
diagram

T ′

τ ′

��

� � //
ϕ′

,,
T

τ
��

Φ◦τ
// X

d
��

X ′

ν′

��

// X̃

ν

��

// X ×S X
π1

��
T ′

� � //

ϕ′

22T
Φ◦τ // X,
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proving the DefsX0
-versality of X ×S X → X.

From the theorem we immediately deduce, by splitting of a superfluous factor, if necessary:

Corollary 1.3.7. For every isolated singularity X0, there exists a semi-universal deformation
with section of X0.

Furthermore, combining this result with the calculation of τ s(X0) in Proposition 1.3.4,
we obtain:

Corollary 1.3.8. If X0 is an isolated complete intersection singularity, then the construction
of Theorem 1.3.6 yields a semi-universal deformation with section of X0, when starting with
a semi-universal deformation of X0.

Example 1.3.9 (Complete intersections). We give an explicit construction of a semi-
universal deformation with section of an isolated complete intersection singularity (ICIS)
in terms of a defining regular sequence f = (f1, . . . , fk) ∈ C{x1, . . . , xn}k: Take a family
{g(1), . . . , g(τ)} of monomials (i. e. g(i) = xαiek(i), where ej denotes the j-th unit vector)
representing a C-vector space basis of T 1(X0). We may assume that g(i) = ei for i = 1, . . . , k.
Then

OS := C{u, s}/(F1(u, s), . . . , Fk(u, s))
→ C{x, u, s}/(F1(x, s), . . . , Fk(x, s), F1(u, s), . . . , Fk(u, s)) =: OX

defines a semi-universal deformation with section of X0, where(
F1(x,s)

...
Fk(x,s)

)
:=

(
f1(x)

...
fk(x)

)
+

τ∑
i=1

sig
(i)(x)

and the section is given by

OX → OS , si 7→ si, ui 7→ ui, xi 7→ ui.

OS is regular, using the relation( s1
...
sk

)
= −

(
f1(u)

...
fk(u)

)
−

τ∑
i=k+1

sig
(i)(u)

over OS resp. OX we can eliminate s1, . . . , sk from the equations and end up with

C{u, sk+1, . . . , sτ} → C{x, u, sk+1, . . . , sτ}/(F̃1(x, u, s), . . . , F̃k(x, u, s)),

where  F̃1(x,u,s)

...
F̃k(x,u,s)

 :=

(
f1(x)−f1(u)

...
fk(x)−fk(u)

)
+

τ∑
i=k+1

si(g(i)(x)− g(i)(u)).
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Remark 1.3.10. For arbitrary isolated singularities X0 defined by f1, . . . , fk ∈ On one may
take a different approach to determine (at least k-jets of) a semi-universal deformation with
section, adapting the procedure described in Remark 1.2.10: First compute g(1), . . . , g(τs) ∈
Ok
n representing a C-vector space basis of T 1(X0,mX0). We obtain a semi-universal family of

first order deformations

F (1) := f +
τs∑
i=1

sig
(i) ∈

(
On ⊗ C{s}/(s)2

)k
over C{s}/(s)2. Then one lifts this family order by order (in s), killing the obstructions which
this time lie in T 2(X0,mX0).

Since complete intersections are unobstructed, it follows that in particular a semi-universal
deformation with section of an isolated complete intersection singularity X0 is given by

F := f +
τs∑
i=1

sig
(i) ∈ Ok

n+τs .

1.3.3 Deformations with singular section

Having discussed the functor of deformations with section associated to a germ X0 of a com-
plex space, we can also define, at least for equidimensional germs, the functor of deformations
with singular section:

Definition 1.3.11. Let X0 be an equidimensional germ of a complex space of dimension d
and ξ : X → S a flat map of germs which is equidimensional of relative dimension d. The
critical locus of ξ is the germ Cξ := V (F d(ΩX/S)) ⊆ X, where ΩX/S is the module of Kähler
differentials of the OS-module OX and F d(. . .) denotes the d-th Fitting ideal (see [Tei77], for
instance).

A deformation with singular section of a germ X0 of a complex space is a deformation
ξ : X → S with section σ : S → X, such that there is a factorization

S
σ //

%%

X

V (F d(ΩX/S))
+ �

99rrrrrrrrrr

Proposition 1.3.12. Let X0 be equidimensional of dimension d. Setting

DefssX0
(S) :=

{
isomorphism classes of deformations with singular

section of X0 over the base S

}
defines a subfunctor of DefsX0

.

Proof. This follows from the fact that formation of the critical space is compatible with base
change, cf. [Tei77, §§ 1–2]. I. e., if ξ : X → S is a deformation with section of X0 and
ξ′ : X ′ → S′ induced via ϕ : S′ → S, then

Cξ′ = V (F d(ΩX′/S′)) = V (F d(ΩX/S))×S S′ = Cξ ×S S′.
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Proposition 1.3.13. Let X0 be equidimensional of dimension d.

(1) A versal deformation of X0 with respect to DefssX0
is obtained as follows: Let ξ : X → S

be a versal deformation of X0 (with respect to DefX0) and X ×S X → X the versal
deformation for DefsX0

obtained in Theorem 1.3.6. Then the deformation induced by
the base change

Cξ ↪→ X

is a versal deformation with singular section of X0.

(2) If X factors (formally) as X ′ × Spec C[[t1, . . . , te]] for some e, then a semi-universal
deformation with singular section is obtained by the base change

V (F d−e(ΩX′/S′)) ↪→ X ′.

In particular, every isolated equidimensional singularity admits a semi-universal deformation
with singular section.

Proof. [Buc81, 2.5.1].

Remark 1.3.14. If f ∈ On is a power series defining a reduced isolated hypersurface sin-
gularity, then one can easily construct a semi-universal deformation with singular section of
X0 := (V (f), 0) by setting F := f +

∑
i sigi ∈ On ⊗ C{s}, where {gi}i represent a C-basis of

mX0 · T 1(X0,mX0). This is a straightforward consequence of Remark 1.3.10.

21



Chapter 2

Modular deformations

Roughly speaking, a geometric moduli problem can be formulated as follows (for a precise
definition and a thorough discussion, see e. g. [Pop77] or [New78]): Suppose we are given
a collection A of objects (in algebraic or analytic geometry), together with an equivalence
relation on A and a notion of a family of objects in A parametrized by objects S from an
appropriate category S, satisfying suitable compatibility conditions. We thus can define a
functor FA : S → (Sets) by associating to S ∈ S the set of equivalence classes of families
parametrized by S. A (fine) moduli space is then defined as a pair (M,Φ), where M is an
object in S and Φ : FA → HomS(−,M) is a natural transformation representing FA. Hence
(in case the objects of S are actually sets) we can think of the elements of M as representatives
of the equivalence classes of objects in A, and every family in A parametrized by S ∈ S is
induced by a unique morphism S →M .

Now let us turn to the geometric objects that we study in this work: germs of complex
spaces (with isolated singular point 0). It is well-known that fine moduli spaces in the above
sense do not exist, which is a consequence of the fact that, in general, semi-universal defor-
mations are not universal, i. e. DefX0 is not representable. The simplest example of this fact
is already given by the singularity defined by f := x2 ∈ C{x}: We obtain a semi-universal
deformation of (V (f), 0) ⊆ (C, 0) from F := x2 + t ∈ C{x, t}. The homomorphisms

ϕ,ψ : C{t} → C{z}
ϕ(t) := z

ψ(t) := z + z2

define distinct morphisms (C, 0) → (C, 0), but the induced deformations, given by Fϕ = x2+z
and Fψ = x2 + z + z2, respectively, are isomorphic. To see this, just define Ξ : C{x, z} →
C{x, z} by z 7→ z and x 7→ x

√
1 + z, then Ξ(x2 + z + z2) = (1 + z)(x2 + z).

In general, any isolated complete intersection singularity gives an example of a semi-
universal deformation where different inducing morphisms can produce isomorphic deforma-
tions. One feasible approach to avoid this problem is to look out for a coarse moduli space
instead of a fine one and restricting the particular problem by fixing invariants of the singu-
larities under consideration, e. g. fixing the Milnor number – see [GP94], [GHP97] or [FK00],
for example.

A different idea goes back to V. P. Palamodov’s work [Pal78]: Inside the base space of
a semi-universal deformation, single out a maximal subspace M such that uniqueness of the
inducing morphisms is satisfied at least for all families induced by M . He calls such a subspace
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the modular stratum and proves its existence for the functor of deformations of a compact
complex space. He extends this result to analytic polyhedra in [Pal94]. Other generalizations,
e. g. to deformations of graded spaces, have been obtained by S. Kosarew and H. Stieber, cf.
[KS90], [Sti90], [Kos91]. For a recent overview of the results on modular spaces in complex
analytic geometry we refer to [Pal02]. The similar notion of prorepresenting substratum has
been introduced and investigated by O. A. Laudal and G. Pfister in [LP88], mainly focusing
on the formal deformation theory of affine schemes.

In this chapter, we study the modular stratum inside the base space of a semi-universal
deformation of an isolated singularity. We formulate and prove several equivalent criteria
that guarantee the existence of the modular stratum of any isolated singularity. For the
functor DefX0 they are more or less known, our contribution is to derive them in a mostly
self-contained presentation and to give a generalization to the functor of deformations with
section. Having done this, we explain an interpretation in terms of flatness of a variant of the
first relative cotangent cohomology module, which can then be turned into an algorithm to
compute the modular stratum of a singularity. This will then be the content of chapter three.
Besides, we show that that the modular stratum of an unobstructed singularity (with respect
to the functor DefX0 resp. DefsX0

) coincides with the flattening stratum of its relative T 1

itself, hence for a semi-universal-deformation X → S of such a singularity M ⊆ S is modular
if and only if its restriction to M is OM -free. This has been proved for complete intersections
and reduced space curves in [Mar02a] and [Mar03], here we can give a generalization to
arbitrary unobstructed singularities.

2.1 Modular subspaces and the Kodaira-Spencer sequence

2.1.1 The Kodaira-Spencer sequence of a deformation

We begin this section by introducing the so-called Kodaira-Spencer sequence of a deformation.
In this form, it first appeared in [Pal90b], including the sequence of Proposition 1.1.23 obtained
in [Fle78]. We present it here in a slightly generalized version, adapted to deformations with
sections as well.

Proposition 2.1.1.
(1) Let X0 be a germ of a complex space and ξ : X → S a deformation of X0. Then there

is a commutative diagram with exact rows

0 // T 0(X/S) //

ev

��

T 0(ξ) //

ev′

��

T 0(S)
Θξ //

��

T 1(X/S) //

��

. . .

0 // T 0(X0) // T 0(ξ, (C,OX0)) // T 0(S,C)
θξ // T 1(X0) // . . . .

(2.1.1)

(2) If ξ : X → S is a deformation of X0 with section σ, then we obtain the following
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diagram, again with exact rows:

0 // T 0(X/S, Jσ)

ev

��

// T 0(ξ, (OS , Jσ))

ev′

��

// T 0(S)

��

Θs
ξ // T 1(X/S, Jσ)

��

// . . .

0 // T 0(X0,mX0) // T 0(ξ, (C,mX0)) // T 0(S,C)
θs
ξ // T 1(X0,mX0) // . . . ,

(2.1.2)

where mX0 denotes the maximal ideal of OX0 and Jσ := Ker(σ∗) ⊆ OX .

Proof. By Proposition 1.1.23, there is a long exact sequence in cohomology

0 → T 0(X/S,M2) → T 0(ξ, (M1,M2)) → T 0(S,M1) → T 1(X/S,M2) → . . . ,

for every triple (M1,M2, h), where M1 is an OS-module, M2 is an OX -module and h : M1 →
M2 a morphism (of OS-modules) over ξ∗ : OS → OX .

The rows of (1) are obtained by taking M1 := OS and M2 := OX for the upper row
and M1 := C = OS ⊗OS

OS/mS , M2 := OX0 = OX ⊗OS
OS/mS for the lower row, and the

commutative squares then result from the functoriality of cotangent cohomology.
For part (2), note that the zero map OS → Jσ gives a morphism over ξ∗, hence we obtain

the diagram (2.1.2) by taking coefficients in (OS , Jσ) and (C,mX0) = (OS⊗OS
OS/mS , Jσ⊗OS

OS/mS), respectively.

Definition 2.1.2. Let ξ : X → S be a deformation of X0 (with section σ). The sequence
(2.1.1) resp. (2.1.2) is called the Kodaira-Spencer sequence of the deformation ξ. θξ (resp.
θsξ) is called its Kodaira-Spencer map and Θξ (resp. Θs

ξ) is the relative Kodaira-Spencer map.

Remark 2.1.3.
(1) The first two maps in the Kodaira-Spencer sequence have an obvious interpretation:

T 0(X/S) → T 0(ξ) is the inclusion δ 7→ (0, δ) (considering an OS-derivation on OX now
only as a C-derivation), and T 0(ξ) → T 0(S) is the projection to the first factor. θξ and
Θξ have the following explicit description: T 0(S,C) can be identified with Hom(D,S),
where D is the double point with OD = C[ε]. Then, for δ ∈ T 0(S,C), θξ(δ) is the
isomorphism class of the deformation δ∗(ξ) in T 1(X0) ' DefX0(D). Similarly, the
elements of T 0(S) correspond to morphisms S ×D → S, and Θξ(δ) is the isomorphism
class of the relative deformation of X over S with base space D:

X̃

{{xxxxxxxxx
//

δ∗(ξ)

��

X

ξ

��

D

S ×D

ccGGGGGGGGG
δ // S.

Analogously, via θsξ any element of T 0(S,C) induces a deformation with section over
the double point, and Θs

ξ associates to a derivation δ ∈ T 0(S) the induced relative
infinitesimal deformation.
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(2) Injectivity of the Kodaira-Spencer map θξ (resp. θsξ) is equivalent to the fact that,
for any deformation (with section) induced from ξ, the inducing map is unique on the
tangent level. Following [Pal90b], we call a deformation with injective Kodaira-Spencer
map a monodeformation. So, in particular, a semi-universal deformation of X0 is a
versal monodeformation.

(3) More generally, one can construct a variant of the Kodaira-Spencer sequence for the
deformation functor DefY0\X0

: If ξ : X → S is a deformation of X0 over Y0, then there
is a commutative diagram

Y0 × S
σ //

##F
FF

FF
FF

FF
X

ξ����
��

��
��

S,

so if we set Jσ := Ker(σ∗ : OX → OY0×S) and denote by J0 the ideal of Y0 in OX0 ,
then we obtain a sequence analogous to (2.1.2) by taking coefficients in (OS , Jσ) and
(C, J0), respectively. This generalizes the case of deformations with section, where Y0

is the reduced point {0}, and the case of (ordinary) deformations, where Y0 is empty.

2.1.2 Modular subspaces

Definition 2.1.4. Let ξ : X → S be a deformation of the germ of a complex space X0 (with
section σ).

(1) A subspace M ⊆ S is called modular if the following condition holds: If ϕ : T →M and
ψ : T → S are morphisms such that the induced deformations ϕ∗(ξ|M ) and ψ∗(ξ) with
base T are isomorphic as deformations (with section), then ϕ = ψ.

(2) The restriction of a deformation to a modular subgerm is called a modular deformation.

(3) A maximal (with respect to inclusion) modular subspace in the base space of a semi-
universal deformation (with section) of X0 is called the modular stratum (with section)
of X0 and will be denoted by MX0 .

The last definition is justified by the following lemma – and by the proof of its existence
for any isolated singularity X0 which we will give in Corollary 2.2.7 below:

Lemma 2.1.5. Let ξ : X → S and ξ : X ′ → S′ be semi-universal deformations of X0 and
let M ⊆ S, M ′ ⊆ S′ be maximal modular subspaces. Then there is a unique isomorphism
ϕ : M ∼−→M ′.

The analogous statement holds for deformations with section.

Proof. (cf. [Pal02, Proposition 2.2]) Since ξ and ξ′ are both semi-universal, there exists an
isomorphism ϕ : S → S′ such that ξ ' ϕ∗(ξ′). In particular, by the maximality condition
on M and M ′ this implies that ϕ restricts to an isomorphism of the germs M and M ′ (since
ϕ(M) ∪M ′ ⊆ S′ is again modular by the next lemma below). Finally, its uniqueness is a
consequence of the modularity of M and M ′.

The following basic properties are immediate from the definition, the second of them has
already been used in the above proof:
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Lemma 2.1.6. Let ξ : X → S be a deformation of X0 (with section σ).

(1) Any subgerm of a modular germ M ⊆ S is again modular.

(2) If M1,M2 are modular subgerms of S, then M1 ∪M2 ⊆ S is modular, too.

(3) M ⊆ S is modular if and only if the condition of the definition is satisfied for any two
morphisms T →M , T → S where T is an Artinian germ.

Proof. The first two statements are checked directly using the definition, whereas the last one
is a consequence of the identity theorem for power series.

Proposition 2.1.7. Let ξ : X → S be a deformation of X0 (with section σ). {0} ⊆ S is
a modular subspace if and only if the corresponding Kodaira-Spencer map θξ : T 0(S,C) →
T 1(X0) (resp. θsξ : T 0(S,C) → T 1(X0,mX0)) is injective.

Proof. We give a proof for the functor of deformations with section – the statement for DefX0

follows by ’forgetting any section’ and treating all deformations as ’ordinary’ ones.
So suppose θsξ is injective first. We use the description of θsξ from Remark 2.1.3. Let Z

be an Artinian germ and ϕ : Z → S a morphism such that ϕ∗(ξ) is isomorphic to the trivial
deformation X0 × Z → Z. Clearly, ϕ = 0 if Z = {0}, so we are done by showing that ϕ = 0
under the assumption that we have already ϕ|Z′ = 0, whenever

0 → J → OZ → OZ′ → 0

is a simple extension. Thus we may assume that ϕ is given by

si 7→ ai + εci, ci ∈ C,

where si are generators of mS , ε is a generator of J as C-vector space and si 7→ ai mod J
defines ϕ|Z′ . Since this map is trivial, we can assume that ai = 0 for all i. But now we end
up with a map

OS → C[ε], si 7→ εci,

inducing a trivial deformation over the double point D with OD = C[ε], so ci = 0 for all i by
the injectivity of θξ.

On the other hand, suppose {0} ⊆ S is modular. If δ ∈ Ker(θsξ), then δ corresponds to
ψδ : D → S inducing the trivial deformation with base D. Thus ψ∗δ (ξ) ' ϕ∗(ξ|{0}), where
ϕ : D → {0} is the zero map. Hence ψδ = ϕ = 0 by the modularity of {0}, so θsξ is injective.

Together with Lemma 2.1.6 (1) this implies that, if ξ : X → S is not a monodeformation,
then S cannot contain a modular subspace at all. Hence, when studying modular germs, we
can restrict our attention exclusively to monodeformations.

Of course, the notion of modular subspace can be defined for a general deformation
groupoid. For instance, this had been done in [KS90]. In this paper there is given the
following general description of modular subgerms, which we now state for the special case of
the deformation functors that we are interested in. We use the following notions:
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Definition 2.1.8. For a germ of a complex space S we denote by (Gan/S) the category of
analytic germs over S. If ξ : X → S is a deformation of the germ X0, then

Autξ : (Gan/S) → (Groups)

is the functor (T
ϕ−→ S) 7→ AutT (ϕ∗(ξ)). Analogously, we define Autsξ in case ξ is a deforma-

tion with section σ : S → X.

Note that, in this situation, one has an obvious natural transformation Autξ → Hom(−, S).

Proposition 2.1.9. Let ξ : X → S be a monodeformation of X0 and M ⊆ S a subspace. If
Autξ|M → Hom(−,M) is smooth, then M is modular. The converse is also true provided that
ξ is semi-universal.

The analogous statement holds for a deformation with section, replacing Autξ by Autsξ.

Proof. This is proved (in much more general context) in [KS90, Theorem 3.3] – actually they
prove this statement only under the assumption on ξ to be versal, too, but this condition is
only used in the proof of the ’only if’-part.

So let M ⊆ S be modular first. Suppose a deformation η : Y → T is induced from a
morphism ϕ : T → M and α is an automorphism of the restricted deformation η|T ′ , where
T ′ ↪→ T is an embedding. By versality it can also be induced by some morphism ψ : T ′ → S
such that the following diagram commutes:

Y|T ′
α //

η|T ′

��

Y|T ′

η|T ′

��

� � // Y

η

��

// X|M
� � //

ξ|M

��

X

ξ

��
T ′

ψ

22T ′
� � // T

ϕ //M
� � // S,

Since M is modular, ψ is equal to the composition ϕ ◦ iT ′↪→T , from which we conclude that
α lifts to an automorphism of η.

Conversely, suppose Autξ|M → Hom(−,M) is smooth. In order to verify that M is
modular, let be given an Artinian germ T and morphisms ϕ : T → M and ψ : T → S,
such that the induced deformations ϕ∗(ξ|M ) and ψ∗(ξ) are isomorphic deformations over T
by means of some isomorphism α. By induction we may suppose that we have already found
a subgerm T0 ⊆ T such that ϕ|T0

= ψ|T0
and OT�OT0 is a simple extension with kernel J .

Hence α|T0
defines an automorphism of ϕ∗(ξ|M )|T0

, which can be lifted to an automorphism
of ϕ∗(ξ|M ). Therefore we may also assume that the restriction of α to T0 is the identity. Thus
we can define a map ϕ∗ − ψ∗ : OS → J which is a derivation, so this produces an algebra
homomorphism ρ : OS → C[ε]. Let η denote the deformation over the double point D induced
from ξ by ρ.

Now DefX0(D) acts in this situation freely and transitive∗ on the subset of DefX0(T ) of
those deformations whose restriction to T0 is ϕ∗(ξ|M )|T0

. ϕ∗(ξ|M ) and ψ∗(ξ) differ by η with
respect to this action.† But since they are isomorphic we conclude that η is trivial, hence
ρ = 0 as ξ is a monodeformation. This shows that ϕ = ψ, so M is modular.

∗This follows directly from the Schlessinger conditions, cf. [Kos88, (3.4)].
†Actually, this action is part of a whole exact sequence T 1(X0) → DefX0(T ) → DefX0(T0) → T 2(X0) also

including the obstructions for lifting deformations over T0 to a deformation over T . We refer to [Pal78, section
4] for a thorough discussion.
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Remark 2.1.10. In fact, for the case deformations of complex spaces, a proof of this state-
ment is already contained in [Pal78, Theorem 5.4]. Similarly, in [LP88] what is there called
the prorepresenting substratum of the formal moduli of an affine scheme X0 (in the base of
a semi-universal deformation of X0) is introduced differently, but it is shown in §1 of that
monograph that it coincides with our notion of modular subspace, and it is also proved a
criterion analogous to Proposition 2.1.9.

2.2 Characterizations of modular subspaces

In this section, we will prove the first of the main results of this chapter (Theorem 2.2.4
and Theorem 2.2.5). On the one hand they guarantee the existence of the modular stratum
for any isolated singularity X0, on the other hand they will form the starting point for an
algorithmic description of how it can be computed in practice.

2.2.1 Artinian and infinitesimal modularity

First of all, we introduce two more auxiliary notions, the first of them being motivated by
the fact that {0} ⊆ S is modular if and only if θξ is injective, as proved in Proposition 2.1.7.
A slightly different formulation of these concepts has already appeared in [Mar03].

Definition 2.2.1. A subgerm M ⊆ S in the base space of a deformation ξ : X → S (with
section σ) of X0 is called

(1) infinitesimally modular if the restriction to M of the map

Θ̃ξ|M : T 0(S,OM ) → T 1(X/S)|M

(resp. Θ̃s
ξ|M : T 0(S,OM ) → T 1(X/S, Jσ)|M if ξ is considered as deformation with section

σ) is injective;

(2) Artinian modular if any Artinian subgerm of M is modular.

(Here and subsequently we use the notations T i(X/S)|M := T i(X|M/M) etc. for the relative
cotangent cohomology of the restricted deformation ξ|M .)

Lemma 2.2.2. Let ξ : X → S be a monodeformation of X0 (with section σ).

(1) For both deformation functors, modular subspaces are infinitesimally modular.

(2) Conversely, any Artinian modular subspace M of S is modular.

Proof. ad (1): Let M ⊆ S be a modular subspace and suppose δ ∈ Ker(Θ̃ξ|M ) ⊆ T 0(S,OM ).
Then, similarly to the description of Θξ in Remark 2.1.3, δ corresponds to a morphism
ϕδ : M ×D → S such that the deformation ϕ∗δ(ξ) is isomorphic to the trivial one, which can
also be induced from ξ|M via the projection prM : M ×D →M . By the modularity of M we
conclude that ϕδ = i ◦ prM , hence δ = 0.

ad (2): Let Z be an Artinian germ and ϕ : Z → M , ψ : Z → S morphisms such
that ϕ∗(ξ|M ) ' ψ∗(ξ). We can factor ϕ = i ◦ ϕ0, where ϕ0 : Z → M0, M0 is Artinian
and i : M0 ↪→ M stands for the inclusion. Thus ψ∗(ξ) ' ϕ∗0(i

∗(ξ|M )) ' ϕ∗0(ξ|M0
). By the

assumption M0 is modular, so ψ = ϕ0 and therefore ψ and ϕ coincide, too.
Mutatis mutandis one obtains the analogous statements for the functor DefsX0

.
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2.2.2 A criterion for modularity

The characterizations of modular subspaces presented below depend heavily on a careful
analysis of the Kodaira-Spencer sequence (2.1.1) resp. (2.1.2). In particular, the following
technical lemma will form a key point:

Lemma 2.2.3. Suppose ξ : X → S is a semi-universal deformation of X0 (with section σ).
Then:

(1) The mapping

ev′ : T 0(ξ) → T 0(ξ, (C,OX0)) resp. ev′ : T 0(ξ, (OS , Jσ)) → T 0(ξ, (C,mX0))

is surjective.

(2) If M ⊆ S is modular, write simply ξ̂ (and σ̂) for the restrictions of ξ (and σ) to M .
Then

ev′|M : T 0(ξ̂) → T 0(ξ̂, (C,OX0)) resp. ev′|M : T 0(ξ̂, (OM , Jσ̂)) → T 0(ξ̂, (C,mX0))

is surjective, too.

Proof. First suppose ξ is semi-universal, with section σ. Take a derivation δ ∈ T 0(ξ, (C,mX0)).
Since ξ is semi-universal, in particular we have that θsξ is injective, so we may interpret δ as
element of T 0(X0,mX0) and it suffices to find a preimage in T 0(ξ, (OS , Jσ)).

We use the construction of [Pal90b, Proposition 1.8]: δ induces an automorphism aδ of
X0×D over D. Denote by ξ̃ the deformation ξ× idD : X ×D → S×D with section σ× idD.
Let T := ({0} × D) ∪ (S × {0}) and ϕ : T → S be the canonical projection onto S, so
ξ̃|T = ϕ∗(ξ). Let ãδ be the automorphism of ϕ∗(ξ) induced by aδ on the first component of
T and by idS on the second. Then ξ′ := ãδ ◦ ϕ∗(ξ) is of course still a versal deformation
with section (isomorphic to ξ̃|T ), hence ξ̃ is induced from it by some ψ : S ×D → X, which
altogether yields the diagram

a′ : X ×D //

ξ̃
��

(X ×D)|T
prX◦ãδ //

ξ′

��

X

ξ

��
ψ′ : S ×D

ψ // T
ϕ // S.

The corresponding map ψ′∗ : OS → OS [ε] gives a vector field η ∈ DerC(OS) defined by
ψ′∗(a) = a + εη(a), similarly a′ induces a vector field δ̃ ∈ DerC(OX , Jσ), with the property
that (η, δ̃) ∈ T 0(ξ, (OS , Jσ)) and ev′(η, δ̃) = δ.

Now let ξ̂ : Y → M be a modular deformation with section σ̂, ξ̂ = ξ|M being the
restriction to M ⊆ S of a semi-universal deformation with section ξ : X → S of X0. As
before, let ξ̃ := ξ̂ × idD, and for δ ∈ T 0(ξ̂, (C,mX0)) ' T 0(X0,mX0) let ξ′ be the (still versal)
deformation defined in the proof of (1). So we can induce ξ̃ : Y × D → M × D from ξ′ by
means of some morphism ψ, and we obtain again:

a′ : Y ×D //

ξ̃
��

(X ×D)|T
prX◦ãδ //

ξ′

��

X

ξ

��
ψ′ : M ×D

ψ // T
ϕ // S.
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On the other hand we can induce ξ̃ from ξ by just taking the projection pr1 : M×D →M ⊆ S.
Thus, by the modularity of M , pr1 = ψ′, so that a′ and ψ′ can be considered as maps
Y × D → Y resp. M × D → M , inducing the desired lift of δ to DerC(OY , Jσ̂) resp.
DerC(OM ).

Finally, omitting any section occurring we obtain the analogous statement for the functor
DefX0 .

Putting the last assertions together, we are now able to prove the following criteria for
M ⊆ S to be modular:

Theorem 2.2.4. For a subspace M ⊆ S of the base space of a semi-universal deformation
ξ : X → S of X0, the following assertions are equivalent:

(1) M is modular.

(2) M is infinitesimally modular.

(3) ev|M : T 0(X/S)|M → T 0(X0) is surjective.

(4) M is Artinian modular.

The implications (3)⇒(4)⇒(1)⇒(2) remain true for any (not necessarily versal) monodefor-
mation.

Theorem 2.2.5. For a subspace M ⊆ S of the base space of a semi-universal deformation
ξ : X → S of X0 with section σ : S → X, the following assertions are equivalent:

(1) M is modular.

(2) M is infinitesimally modular.

(3) ev|M : T 0(X/S, Jσ)|M → T 0(X0,mX0) is surjective.

(4) M is Artinian modular.

The implications (3)⇒(4)⇒(1)⇒(2) remain true for any (not necessarily versal) monodefor-
mation.

A statement for deformations of compact complex spaces analogous to assertion (3) is
already contained in [Pal78]. In [KS90] modular subspaces for general deformation groupoids
are studied, and an analogue for this criterion is given, involving a so-called exponential
functor that generalizes the module of derivations T 0(X/S) and its interplay with the group
of automorphisms of the deformation.

Similar statements have been formulated in [Mar02a], [Mar03], and a first version of the
proof below was included in [HM03]. In particular, we link two criteria for modularity:

• Any vector field of the special fibre lifts to a relative vector field over M (surjectivity
of ev|M ), this goes back to Palamodov’s approach of proving the existence of maximal
modular subspaces for deformations of compact complex spaces in [Pal78].

• The kernel of the Kodaira-Spencer map Θ̃ξ vanishes. This is a characterization of the
prorepresenting substratum in [LP88, Proposition 3.12], where this concept (which is an
analogue within the framework of (formal) deformations of affine schemes of what we
call the modular stratum here) is studied extensively by Laudal and Pfister.
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We only give a proof of Theorem 2.2.5 below – Theorem 2.2.4 follows by omitting any
section occurring and replacing any T i(X0,mX0) by T i(X0), T i(X/S, Jσ) by T i(X/S) etc.

Proof (of Theorem 2.2.5). (1) ⇒ (2) : This is Lemma 2.2.2 (1).
(2) ⇒ (3) : Consider the Kodaira-Spencer sequence (2.1.2) of (ξ, σ) with coefficients in

(OM , Jσ|M ). This sequence can be put between the rows of the original sequence (2.1.2) so
that altogether we obtain the commutative diagram with exact rows

0 // T 0(X/S, Jσ)

eev
��

// T 0(ξ, (OS , Jσ))

eev′
��

// T 0(S)

��

Θs
ξ // T 1(X/S, Jσ)

��

// . . .

0 // T 0(X/S, Jσ)|M

ev|M

��

// T 0(ξ, (OM , Jσ|M ))

ev′M
��

// T 0(S,OM )

��

Θ̃s
ξ|M // T 1(X/S, Jσ)|M

��

// . . .

0 // T 0(X0,mX0) // T 0(ξ, (C,mX0)) // T 0(S,C)
θs
ξ // T 1(X0,mX0) // . . . .

(2.2.1)

By assumption Θ̃s
ξ|M is injective, θsξ|M is injective since ξ is a monodeformation. Thus in

(2.2.1) we can identify ev|M and ev′M , the latter being surjective since, by Lemma 2.2.3 (1),
the composition ev′ = ev′M ◦ ẽv′ is surjective. Note that here (and only here!) we need the
versality of ξ, in order to apply Lemma 2.2.3.

(3) ⇒ (4) : By Proposition 2.1.9 it suffices to show the following: For any Artinian germ
Z and any morphism ϕ : Z → M , we can extend any automorphism of ϕ∗(ξ|M )|Z0

to an
automorphism of ϕ∗(ξ|M ), where Z0 ⊆ Z is a small extension. Denote ϕ∗(ξ|M ) by ξ̂ : X̂ → Z,
with section σ̂. We explain how this follows from the assumption: We claim that (3) implies
that the morphism in cotangent cohomology T 0(X̂/Z, Jσ̂) → T 0(X̂/Z, Jσ̂)|Z0

is surjective as
well. If this holds, we are done: Any given automorphism of ϕ∗(ξ|M )|Z0

is induced by an
element of T 0(X̂/Z, Jσ̂)|Z0

, and by the claim we can lift it to Z, so we obtain a lift to an
automorphism of ϕ∗(ξ|M ). Then we can apply Proposition 2.1.9 and it follows that M is
modular.

Thus it remains to give an argument for the claim. We follow the proof given in [Pal78,
section 6]. Let N ⊆ M be an Artinian germ such that we can factor ϕ as Z → N ↪→ M .
We denote Z → N by the same letter ϕ. In addition, let π : Z × N → N denote the
projection and G ⊆ Z × N the graph of ϕ. We may assume that the extension Z0 ⊆ Z is
simple. In particular we now have an induced deformation π∗(ξ|N ) : Y → Z × N of X0,
together with a section σ̃ := π∗(σ). It is not hard to see that the morphisms in cotangent
cohomology T 0(Y/(Z × N), Jσ̃) → T 0(Y/(Z × N), Jσ̃)|G and T 0(Y/(Z × N), Jσ̃)|Z0×N →
T 0(Y/(Z × N), Jσ̃)|G×ZZ0

are both surjective. These morphisms can be combined into a
commutative diagram

T 0(Y/(Z ×N), Jσ̃)

����

// T 0(Y/(Z ×N), Jσ̃)|Z0×N

����
T 0(Y/(Z ×N), Jσ̃)|G // T 0(Y/(Z ×N), Jσ̃)|G×ZZ0

whose upper horizontal arrow is surjective as well as Z0 ⊆ Z is a simple extension. Thus
we conclude the surjectivity of the lower horizontal arrow. Now consider the commutative

31



diagram
G×Z Z0

� � //

��

G

��
Z0

� � // Z

whose vertical arrows are restrictions of π. Since they induce isomorphisms of the deforma-
tions ξ̂|Z0

' ϕ∗(ξ|N )|Z0
' π∗(ξ|N )|G×ZZ0

and ξ̂ ' ϕ∗(ξ|N ) ' π∗(ξ|N )|G, respectively, we are
done.

(4) ⇒ (1) : This is proved in Lemma 2.2.2 (2).

Remark 2.2.6.
(1) The definition of infinitesimal modularity used here differs slightly from the one stated in

[Mar02a], [Mar03], where it is formulated as injectivity of the relative Kodaira-Spencer
map Θξ|M : T 0(M) → T 1(X/S)|M of the deformation ξ|M . For any subspace M ⊆ S
there is a commutative diagram

T 0(S,OM )
Θ̃ξ|M // T 1(X|M/M),

T 0(M)
Θξ|M

55kkkkkkkkkkkkkkkk?�

OO
(2.2.2)

so Ker(Θ̃ξ|M ) = 0 is the stronger condition, and it is indeed this property that we have
to use in the above proof of the implication (2) ⇒ (3).

(2) We can prove implication (2) ⇒ (3) of the above statements only for semi-universal ξ
(this agrees with the results in [Pal78]; in [LP88] attention is restricted exclusively to
semi-universal deformations in that context). So what we can only say is that for a
non-versal monodeformation ξ : X → S we still have that

• injectivity of Θ̃ξ|M (resp. Θ̃s
ξ|M ) is necessary for M ⊆ S to be modular,

• surjectivity of ev (i. e. we can lift all vector fields of the special fibre to relative
vector fields of the deformation ξ|M ) is sufficient for M ⊆ S to be modular.

This makes it difficult to compare modular strata for the deformation functors DefX0

and DefsX0
– we will come back to that issue at the end of the chapter.

Criterion (2) of Theorem 2.2.4 resp. Theorem 2.2.5 gives rise to the following theoretical
construction of the modular stratum of an isolated singularity: Let OS = C{s1, . . . , sτ}/I be
the analytic algebra of the base space of a semi-universal deformation of X0 and let{

gi1
∂
∂s1

+ . . .+ giτ
∂
∂sτ

}
i=1...r

be a set of generators of the (finitely generated) OS-module Ker(Θξ) ⊆ T 0(S). Then IM :=
(gij : 1 ≤ i ≤ r, 1 ≤ j ≤ τ) mod I defines a minimal ideal in OS such that Θ̃ξ|M is injective.
Hence the subgerm V (IM ) := M ⊆ S is a maximal modular subspace of S. Analogously, one
takes generators of the kernel of the Kodaira-Spencer map Θs

ξ : T 0(S) → T 1(X/S, Jσ) in the
case of a semi-universal deformation with section σ. Thus we have proved:
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Corollary 2.2.7. For every isolated singularity X0 there exists the modular stratum with
respect to both deformation functors DefX0 and DefsX0

.

On the other hand, the above construction is only a theoretical one since, in general, there
is no algorithm to compute the kernel of the relative Kodaira-Spencer map of a semi-universal
deformation (the algorithms presented in [LP88] and [FK00] only compute the Kodaira-
Spencer map of restricted deformations, fixing some invariants of the original singularity).
Thus our construction to compute the modular stratum in chapter three will not use this
characterization but merely rely on some consequences of criterion (3) that will be discussed
later on in section 2.5.

2.2.3 Lifting obstructions

As a preparation we are now going to introduce an ’obstruction calculus’ for the lifting of
modularity under small extensions of Artinian germs, i. e. we rewrite condition (3) of the
above theorems in terms of defining equations. This can be seen as an analogue of the
obstruction calculus for killing obstructions in the construction of versal deformations of
singularities, cf. Remark 1.2.10. In this case the obstructions are induced by the Lie bracket
T 1(X0)×T 1(X0) → T 2(X0), whereas we now consider the bracket in degree one less, namely
T 0(X0)× T 1(X0) → T 1(X0).

So let be given a deformation ξ : X → S of the isolated singularity X0, and let

η : 0 → J → OB → OA → 0

be a small extension of Artinian germs A ⊆ B ⊆ S, i. e. mBJ = 0. Let m1, . . . ,mt form a
C-basis of J . If X0 is defined by f ∈ C{x}k and X is given by F ∈ OS{x}k, then we may
assume that for the restrictions FB resp. FA of F to OB{x}k resp. OA{x}k we have

FB = FA +
t∑

j=1

mjαj ,

where αj ∈ C{x}k represent elements of T 1(X0) (cf. [dJP00, section 10.2]). Now, for δ ∈
T 0(X0), the Lie bracket

[−,−] : T 0(X0)× T 1(X0) → T 1(X0)

gives an element
∑

jmj [δ, αj ] ∈ T 1(X0) ⊗ J , cf. [Pal78, sections 3–4]. Altogether we obtain
an induced map

obξ,η ∈ Hom(T 0(X0), T 1(X0)⊗ J) = Hom(T 0(X0), T 1(X0))⊗ J.

Definition 2.2.8. Let ξ : X → S be a deformation of X0, and

η : 0 → J → OB → OA → 0

a small extension of Artinian germs A ⊆ B ⊆ S. We call

obξ,η ∈ Hom(T 0(X0), T 1(X0))⊗ J

as defined above the obstruction element associated to η (with respect to the deformation ξ).
If, in addition, a section σ of ξ is given, we define similarly an obstruction element

obsξ,η ∈ Hom(T 0(X0,mX0), T
1(X0,mX0))⊗ J.
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The well-definedness of obξ,η and obsξ,η follows from the fact that the Lie bracket in cotan-
gent cohomology is independent from the choices made above. The link between this obstruc-
tion element and modular subspaces is established in the following statement:

Proposition 2.2.9. Let ξ : X → S be a deformation of X0 (with section σ : S → X).
Suppose that A ⊆ B is a small extension of Artinian subgerms of S by means of some
small extension η. If ev|A : T 0(X/S)|A → T 0(X0) (resp. T 0(X/S, Jσ)|A → T 0(X0,mX0) is
surjective, then ev|B : T 0(X/S)|B → T 0(X0) (resp. ev|B : T 0(X/S, Jσ)|B → T 0(X0,mX0)) is
surjective if and only if the obstruction element obξ,η (resp. obsξ,η) vanishes.

Proof. We give a proof for the case of deformations with section. We may assume that the
small extension is simple, i. e. given by a short exact sequence

η : 0 → J → OB → OA → 0,

such that dimC J = 1, and we write ε for a generator of J . As before, let f ∈ Ok
n define

X0 and F ∈ (On ⊗ OS)k define X. The restrictions can be written as F|B = F|A + εf̃ with
εf̃ ∈ Ok

n ⊗ J defining a class in T 1(X0,mX0) ⊗ J . Any δ ∈ T 0(X0,mX0) is represented by
some δ′ ∈ DerC(On, (x)) with δ′(f) = h · f , where h is a k × k-matrix with entries in On.
By assumption we can lift δ to a derivation δA ∈ T 0(X/S, Jσ)|A, represented by some δ′A
such that δ′A(F|A) = HAF|A, HA being a lift of h to On ⊗OA. Writing the same equation in
On ⊗OB implies

δ′B(F|B)−HBF|B = (δ′(f̃)− hf̃)ε = obsξ,η(δ) ∈ T 1(X0,mX0)⊗ J,

where we take arbitrary lifts δ′B and HB of δ′A and HA over OB. Thus, δ extends further to
a derivation δB ∈ T 0(X/S, Jσ)|B if and only if obsξ,η(δ) = 0.

As a corollary we obtain immediately:

Corollary 2.2.10. The tangent space T (M) to the modular stratum M of X0 equals the
subspace

{t ∈ T (S) : [θξ(t), δ] = 0 for all δ ∈ T 0(X0)}
(resp. T 0(X0,m) for deformations with section).

Here we use the isomorphism T (S) ' T 0(S,C) ' T 1(X0) (resp. T 1(X0,mX0)) induced by
the Kodaira-Spencer map of a semi-universal deformation.

Suppose A is modular and η : 0 → J → OB → OA → 0 is a small extension of Artinian
subgerms of S, the base space of a semi-universal deformation of X0. In addition, take
generators δ1, . . . , δm of T 0(X0) and a C-basis b1, . . . , bτ of T 1(X0). Write FB = FA+

∑
jmjgj ,

where the mj form a C-basis of J and gj induce classes in T 1(X0). Then we get, for i =
1, . . . ,m,

obξ,η(δi) =
∑
j

mj [δi, gj ] =
∑
j

mj

τ∑
k=1

cijkbk =
τ∑
k=1

∑
j

cijkmj

 bk =
τ∑
k=1

hikbk,

for suitable cijk ∈ C and
∑

j cijkmj =: hik ∈ J . Define J ′ to be the ideal generated by all
hik in OB. Then obξ,η vanishes modulo J ′, so the subgerm B′ of S with local ring OB/J ′ is
modular, lies between A and B, and is clearly maximal with this property. Altogether we
get:
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Corollary 2.2.11. With the notations introduced before:

(1) The subgerm B′ ⊆ S with local algebra OB′ = OB/J ′ is modular and

(2) B′ is maximal among the subgerms of S lying between A and B and satisfying condition
(1).

The same statement is true when considering a semi-universal deformation with section and
T i(X0,mX0), ob

s
ξ,η instead.

Remark 2.2.12. Note the apparent similarity of this construction to the computation of
semi-universal deformations of singularities, where an analogous consideration gives the max-
imal extension of a deformation of order k to a deformation of order k+1, cf. [dJP00, section
10.3], for example. In this case, the obstruction space is given as T 2(X0)⊗ J , whereas in our
context the obstructions belong to T 1(X0)⊗ J .

2.3 The support of the modular stratum

We now turn our attention to the underlying space forming the modular stratum M ⊆ S, i. e.
we pass to small representatives of S,M and X. The result will be that, for a suitably chosen
representative of S, M ⊆ S consists precisely of those points s ∈ S such that the fibre Xs has
still the same Tjurina number as the original singularity X0. For compact complex spaces, it
is also known that this subspace of S coincides with the stratum of points where the dimension
of T 0(X0) is constant by [Pal78, Theorem 7.2]. In general, for isolated singularities, T 0(X0)
is not finite-dimensional, so this statement does no longer make sense in the local situation.
But by considering a suitable quotient of T 0(X0) instead we will end up with a module which
is finitely generated as a C-vector space, and for which similar properties hold.

2.3.1 The modules T 0
• (X0) and T 0

• (X0, mX0)

So let us start by introducing this module: Obviously, in the modularity criteria Theorem 2.2.4
and Theorem 2.2.5, surjectivity of the evaluation mappings is equivalent to the surjectivity
of the mappings

• T 0(X/S)|M → T 0(X0)/ev(T 0(X/S)) resp.

• T 0(X/S, Jσ)|M → T 0(X0,m)/ev(T 0(X/S, Jσ)).

This gives rise to the following notions (cf. [Pal90b]):

Definition 2.3.1. Let ξ : X → S be a monodeformation of the singularity X0 (with section
σ). We define T 0

ξ (X0) resp. T 0
ξ (X0,mX0) as the quotient

Im(ev′)/Im(ev)

in the diagrams (2.1.1) resp. (2.1.2). This makes sense because T 0(X0) ' T 0(ξ, (C,OX0))
resp. T 0(X0,mX0) ' T 0(ξ, (C,mX0)) for a monodeformation, i. e. we have the diagrams

T 0(X/S) � � //

ev

��

T 0(ξ)

ev′

��

resp. T 0(X/S, Jσ)
� � //

ev

��

T 0(ξ, (OS , Jσ))

ev′

��
T 0(X0)

∼ // T 0(ξ, (C,OX0)) T 0(X0,mX0)
∼ // T 0(ξ, (C,mX0)).
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If ξ is semi-universal, we simply write

• T 0
• (X0) := T 0(X0)/ev(T 0(X/S)), resp.

• T 0
• (X0,mX0) := T 0(X0,mX0)/ev(T

0(X/S, Jσ)) for the case of deformations with section,

which equals T 0
ξ in this case because ev′ is surjective for a semi-universal deformation by

Proposition 2.2.3.

The following properties of T 0
• (X0) go back to [Pal90b]:

Proposition 2.3.2. Let X0 be an isolated singularity. Then:

(1) dimC T
0
ξ (X0) <∞ for any monodeformation ξ of X0.

(2) If X0 is a hypersurface defined by f ∈ On, then there is an exact sequence of On-modules

0 → T 0
• (X0)

ε−→ On/J(f)
mf−→ On/J(f) π−→ T 1(X0) → 0, (2.3.1)

where π is the projection, mf denotes multiplication by f modulo J(f), and ε is defined
as follows: If δ ∈ T 0(X0) is the class of a derivation δ′ : On → On subject to δ′(f) = h·f
for some h ∈ On, set ε(δ) := δ′(f)

f = h mod J(f).

(3) More generally, if T 2(X0) = 0 and ξ : X → S is a semi-universal deformation of X0,
then, for all points s in a small representative of S:

dimCKer(Θξ)0 ⊗OS,0
OS,0/mS,0 − dimCKer(Θξ)s ⊗OS,s

OS,s/mS,s =[
dimC T

0
• (X0)− dimT 1(X0)

]
−
[
dimC T

0
ξ (Xs)− dimC T

1(Xs)
]
.

Here Xs denotes the multigerm of the fibre of a representative ξ : X → S over s ∈ S.

In particular, this implies the inequality

dimC T
0
• (X0) ≥ τ(X0),

with equality if and only if Ker(Θξ) is a free OS-module.

The latter is the case if X0 is a complete intersection or if X0 is a reduced space curve
singularity.

Proof. The assertions (1)–(3) are proven in [Pal90b], Proposition 1.7, Proposition 3.1 and
Theorem 2.3. The Freeness of Ker(Θξ) for complete intersections is established by the Saito-
Looijenga-Theorem, see [Sai80] or [Loo84], and for reduced space curves this has been proven
by van Straten in [vS95].

We can prove properties similar to (1) and (2) for the module T 0
• (X0,m).

Proposition 2.3.3. Let X0 be an isolated singularity. Then:

(1) dimC T
0
ξ (X0,mX0) <∞ for any monodeformation with section of X0.
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(2) If X0 is a hypersurface defined by f ∈ On, then there is an exact sequence of On-modules

0 → T 0
• (X0,mX0)

ε−→ On/J(f)
mf−→ On/(x)J(f) π−→ On/(f, (x)J(f)) → 0, (2.3.2)

where the maps ε,mf and π are defined analogously to Proposition 2.3.2 (2). In partic-
ular we have:

dimC T
0
• (X0,mX0) = dimC T

0
• (X0) = τ(X0)

for any isolated hypersurface singularity.

Proof. Property (1) is a consequence of the Kodaira-Spencer sequence (2.1.2), cf. the proof
of [Pal90b, Proposition 1.7]: Its beginning can be written as

0 // T 0(X/S, Jσ) //

ev

��

T 0(ξ, (OS , Jσ) //

ev′

��

Ker(Θs
ξ) // 0

0 // T 0(X0,mX0)
∼ // T 0(ξ, (C,mX0)) // 0,

so ev′ induces a surjective OS-linear map

T 0(ξ, (OS , Jσ))/T 0(X/S, Jσ)�T 0
ξ (X0,mX0).

The OS-module on the left is isomorphic to the submodule Ker(Θs
ξ) of the finitely generated

OS-module T 0(S), hence it is itself finitely generated. Thus, applying − ⊗OS
C yields a

surjective map

T 0(ξ, (OS , Jσ))/T 0(X/S, Jσ)⊗OS
C�T 0

ξ (X0,mX0)⊗OS
C ' T 0

ξ (X0,mX0),

whose source is a finite-dimensional C-vector space, hence dimC T
0
ξ (X0,mX0) <∞, too.

We now prove (2), which can be done analogously to [Pal90b, Proposition 3.1]. First we
show that ε is well-defined: Let f ∈ On define X0 and let X be defined by F ∈ OS{x}.
In addition we may assume that σ is the zero section, i. e. Jσ = (x)OS{x}/(F ). If δ ∈
T 0(X0,mX0) lifts to δ̃ ∈ T 0(X/S, Jσ), then there exist Gi ∈ (x)OS{x} and H ∈ OS{x} such
that δ̃ is the class of

∑
iGi

∂
∂xi

and
∑

iGi
∂F
∂xi

= H · F . Since F and its partial derivatives
with respect to the xi form a regular sequence in OS{x}, this implies that H is in the ideal
generated by ∂F

∂x1
, . . . , ∂F∂xn

, i. e. ε(δ) = H|s=0 ∈ J(f).
It remains to verify the exactness of the sequence, which is obvious at the two terms on the

right. Also, it is clear that Im(ε) ⊆ Ker(mf ). On the other hand, if h mod J(f) ∈ Ker(mf ),
then hf =

∑
i gi

∂f
∂xi

with gi ∈ (x), i. e. h = ε(δ) for the derivation δ : OX0 → mX0 induced by∑
i gi

∂
∂xi

. Thus, Ker(mf ) = Im(ε), and it is only left to show that ε has trivial kernel. But
if δ is induced by a derivation δ′ of On with

∑
i gi

∂f
∂xi

= h · f and h =
∑

i hi
∂f
∂xi

, then its class
equals the class of

∑
i(gi − f · hi)

∂
∂xi

, so we may assume that for its lift δ′ we have δ′(f) = 0.
Thus its coefficients are a syzygy of the partial derivatives of f which form a regular sequence
in On. Hence δ belongs to the submodule generated by the classes of the derivations of the
form ∂f

∂xj

∂
∂xi

− ∂f
∂xi

∂
∂xj

, which clearly can be lifted to T 0(X/S, Jσ).
The dimension of T 0

• (X0,mX0) is now a consequence of Proposition 1.3.4, which implies
that

dimCOn/(f, (x)J(f)) = dimC T
1(X0,mX0) + 1 = τ(X0) + n.
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In addition, let µ(X0) := dimCOn/J(f) be the Milnor number of X0. Corollary 1.3.5 states
that the partial derivatives of f are linearly independent modulo (x)J(f), hence the dimension
of On/(x)J(f) equals µ+ n. Altogether we calculate using (2.3.2):

dimC T
0
• (X0) = dimCOn/J(f)− dimCOn/(x)J(f) + dimCOn/(f, (x)J(f))

= µ(X0)− (µ(X0) + n) + (τ(X0) + n)
= τ(X0),

which proves the last assertion.

2.3.2 The support of MX0

We finish this section by giving the characterization of the points inMX0 ⊆ S already proposed
earlier in this chapter. Since in this context we talk about the points in representatives of X,S
and M , we are more careful regarding notations and mark the base points of the occurring
germs explicitly.

Proposition 2.3.4. Let (X0, 0) be an isolated singularity, ξ : (X, 0) → (S, 0) a semi-universal
deformation and (M, 0) ⊆ (S, 0) a maximal modular subspace. Then:

(1) There exist representatives X and M ⊆ S of these germs such that M coincides with
the set of those s ∈ S such that ξ is a semi-universal deformation of the fibre Xs.

(2) If T 2(X0) = 0, then this coincides with the points s ∈M such that

dimC T
1(Xs) = dimC T

1(X0).

In particular, for suitably chosen representatives the modular stratum of (X0, 0) coin-
cides with the stratum τ = const.

(3) If, in addition, the kernel of the relative Kodaira-Spencer map T 0(S) → T 1(X/S) is
free, this also equals the set of those s ∈ S such that

dimC T
0
• (Xs) = dimC T

0
• (X0).

Remark 2.3.5. Although we have stated (and prove) this result only for the functor DefX0 ,
it remains true when adapted to the functor of deformations with section. For the third
characterization, one needs additionally a property of T 0

• (X0,mX0) similar to Proposition
2.3.2 (3).

Proof. ad (1): Choose small representatives X and S of (X, 0) resp. (S, 0) such that ξ is still
a versal deformation (as multigerm!) of the fibre Xs for all s ∈ S. Consider the ’sheafified’
version of the right hand part of sequence (2.1.1) for arbitrary s ∈ S, as described in section
1.1.4:

T 0(ξ, (OM ,O|XM
) //

��

T 0(S,OM )
Θ̃ξ|M //

��

T 1(X|M/M)

��
T 0(ξ, (Cs,OXs)) // T 0(S,Cs)

θξ // T 1(Xs)
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The rows of this sequence are exact, and taking stalks at a point of S yields the corresponding
sequence of germs. – In particular, its stalk at 0 ∈ S is the restriction of (2.1.1) to M . By
the choice of X and S, the map T 0(S,Cs)s → T 1(Xs)s is still surjective for any s ∈ S and we
have to show that it is injective if and only if s ∈M .

So let s ∈M and suppose δ ∈ T 0(S,Cs)s induces a trivial infinitesimal deformation of the
multigerm Xs. From the exactness of the lower row it follows that we can find a corresponding
pair (δ, δ̃) ∈ T 0(ξ, (Cs,OXs))s, which can be lifted to an element (η, η̃) of T 0(ξ, (OM ,OX|M ))s.
But now η induces an element of the kernel of (T 0(S,OM ) → T 1(X|M/M))s, hence it must
be zero by the properties of M (characterization (2) in Theorem 2.2.4) and by the fact that
Ker(Θξ) is coherent, therefore δ = 0, too. On the other hand, if s ∈ S \M then it is clear
that the existence of non-trivial elements in the kernel of the relative Kodaira-Spencer map
implies that T 0(S,Cs)s → T 1(Xs)s is not injective.
ad (2): This is now a direct consequence of (1) since, in case T 2(X0) = 0, S is smooth and of
dimension τ(X0).
ad (3): Under these assumptions we can find representatives such that

dimC T
0
• (Xs)− dimC T

1(Xs) = dimC T
0
• (X0)− dimC T

1(X0)

for all s ∈ S by Proposition 2.3.2, hence we are done by (2).

2.4 Example: Quasihomogeneous complete intersections

At this point, we would like to demonstrate the constructions of this chapter by means of
a simple but important example: Quasihomogeneous complete intersection singularities. In
general, the modular stratum of an isolated singularity X0 carries a non-reduced structure
– we will present a lot of concrete examples in the last part of this thesis, calculated using
Singular. General statements concerning the structure of MX0 are difficult to obtain, be-
cause if one wants to use one of the criteria above, one either needs the kernel of the relative
Kodaira-Spencer map Θξ or the module of derivations T 0(X0) (or T 0

• (X0)) as a first step, and
a general description of these modules tends to be very hard. However, Aleksandrov’s article
[Ale85] contains a complete, explicit description of T 0(X0) for a quasihomogeneous isolated
complete intersection X0 of positive dimension. It generalizes the well-known fact, that for
quasihomogeneous hypersurface singularities the module of derivations is generated by the
Euler relation together with the trivial ones (coming from the Koszul relations). From this
result one can easily derive the structure of MX0 and obtains that it is reduced and smooth.
For the functor DefX0 , this is already observed in [Ale85, section 6]. Here we extend this
result to deformations with section, in particular showing that both modular strata coincide
for this class of singularities.

So let X0 be a complete intersection of positive dimension, defined by quasihomogeneous
polynomials f = (f1, . . . , fk) ∈ Ok

n of degrees d1, . . . , dk with respect to some positive integer
weights w1, . . . , wn.

Proposition 2.4.1. For such singularities, the OX0-module of derivations DerC(OX0) '
T 0(X0) is generated by the Euler derivation δE =

∑n
i=1wixi

∂
∂xi

, together with the Hamil-
tonian derivations H(i1, . . . , ik+1) for any 1 ≤ i1 < . . . < ik+1 ≤ n, which are obtained by
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cofactor expansion with respect to the first line of the symbolic matrix
∂

∂xi1
· · · ∂

∂xik+1
∂f1
∂xi1

· · · ∂f1
∂xik+1

...
...

∂fk
∂xi1

· · · ∂fk
∂xik+1

 .

Proof. [Ale85, section 6.1] – in fact, this had already been announced by Wahl in [Wah83].

Proposition 2.4.2. The modular stratum with respect to the functors DefX0 and DefsX0

of a quasihomogeneous isolated complete intersection singularity X0 of positive dimension is
reduced and smooth.

Its dimension equals the dimension of the eigenspace (with respect to the eigenvalue zero)
of the linear operator [δE ,−] : T 1(X0) → T 1(X0) – resp. T 1(X0,mX0) → T 1(X0,mX0) –
defined by the Euler derivation δE.

Proof. For the functor DefX0 this result has already been proved in [Ale85, section 6.2], here
we give a proof for deformations with section. First of all, note that Proposition 2.4.1 describes
T 0(X0,mX0) as well, since T 0(X0) ' T 0(X0,mX0) for any isolated singularity by Proposition
1.3.4 (of course, this also follows directly from the above description of this module).

Now let ξ : X → S be a semi-universal deformation with section σ of X0. In particular,
by the results of section 1.3, S ' (Cτs

, 0) is smooth. Obviously, all H(i1, . . . , ik+1) can
be lifted to T 0(X/S, Jσ), so we only have to consider δE . The bracket [−,−] in cotangent
cohomology induces an element [δE ,−] ∈ EndC(T 1(X0,mX0)) that gives a decomposition
T 1(X0,mX0) =

⊕
ν∈Z T

1(X0,mX0)ν into a direct sum of its eigenspaces T 1(X0,mX0)ν with
respect to the eigenvalue ν. Using the description of the tangent space to the modular stratum
MX0 in Corollary 2.2.10 we obtain T (MX0) ' T 1(X0,mX0)0.

But now it is clear that there are no further obstructions to lifting δE : If F = f+
∑τs

i=1 sig
(i)

is a semi-universal family with monomials g(i) as in Remark 1.3.10, then we may assume that
g(1), . . . , g(r) represent a basis of T 1(X0,mX0)0. From what was said above, it then follows
that T (MX0) ' ((s1, . . . , sr)/(s1, . . . , sr)2)∗, and we can lift δE to the restriction of ξ to the
smooth subspace (Cr × {0}, 0) of S, i. e. ξ|(Cr×{0},0) is the maximal modular deformation
inside ξ.

Corollary 2.4.3. For any quasihomogeneous isolated complete intersection singularity X0 of
positive dimension the modular strata with respect to both deformation functors DefX0 and
DefsX0

coincide.

Remark 2.4.4. Let us show how one can obtain this result differently, by analyzing the
relative Kodaira-Spencer map Θξ : T 0(S) → T 1(X/S): Let F ∈ C{s, x}k define a semi-
universal deformation of X0 as above, so F = f+

∑τ
i=1 sig

(i), where we can take g(i) = xαiek(i)
for all i, and these elements induce a C-basis of T 1(X0). By w(α) we denote the weight of α
with respect to the given weight vector w = (w1, . . . , wn), and d1, . . . , dk are the w-degrees of
f1, . . . , fk. Then

τ∑
i=1

(
dk(i) − w(αi)

)
si

∂
∂si

∈ Ker(Θξ),
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since it is mapped under Θξ to the class of

τ∑
i=1

(
dk(i) − w(αi)

)
sig

(i) =

(
d1F1

...
dkFk

)
−

n∑
j=1

wjxj ·


∂F1
∂xj

...
∂Fk
∂xj

 ,

hence gives zero in T 1(X/S). Therefore the ideal

I := (si : dk(i) 6= w(αi)) = (si : g(i) /∈ T 1(X0)0),

is contained in the ideal of a maximal modular subspace, where, as before, T 1(X0)0 means
the eigenspace to the eigenvalue 0 of the linear operator [δE ,−] ∈ EndC(T 1(X0)). Thus the
subgerm M ′ ⊆ S defined by OM ′ := OS/I contains a maximal modular subspace. But M ′

actually is modular itself, since restricted to M ′ we obtain that

Θ̃ξ|M ′ : T 0(S,OS/I) → T 1(X/S)|M ′

is injective: The latter module is equal to the quotient of OOkX|M′ by the submodule generated

by the classes of ∂F1
∂x1

, . . . , ∂Fk
∂xj

, 1 ≤ j ≤ k. Since F|M ′ becomes quasihomogeneous, this is a

free module with {g(i) : g(i) 6∈ T 1(X0)0} forming a set of free generators, and Θ̃ξ|M ′ is given
by si 7→ g(i). Hence M ′ is a maximal modular subspace of S by Theorem 2.2.5, equal to the
subspace described in Proposition 2.4.2.

Of course, the same consideration is valid for deformations with section and gives a dif-
ferent proof of Proposition 2.4.2 for the case of the functor DefsX0

.

Example 2.4.5. As a simple concrete example consider the singularity defined by f := x6 +
y3 ∈ C{x, y}. This defines a parabolic singularity J10 (in Arnold’s terminology, [AGZV85]),
which is unimodal. Bases of the vector spaces T 1(X0) ' C{x, y}/(x5, y2) and T 1(X0,mX0) '
(x, y)/(x6, xy2, xy5, y3) can be indicated as follows:

-

6

x

y

1 2 3 4 5 6

1

2

3

HHHHHHHHHHHHHH

d d d d d
d d d d t

-

6

x

y

1 2 3 4 5 6

1

2

3

HHHHHHHHHHHHHH

d d d d
d d d d t

d
d

f is quasihomogeneous of degree 1 with respect to the weight vector w = (1
6 ,

1
3), and x4y is

the unique monomial of weighted degree 1 in the above basis. Hence, f + t · x4y defines a
maximal modular deformation of f over the one-dimensional base with local ring C{t}.

Remark 2.4.6. We cannot drop parts of the assumptions made on X0. For instance, all
these statements become wrong when considering zero-dimensional singularities, and we will
give several examples of the phenomena that can occur in section 4.3.
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2.5 Flatness conditions

Let ξ : X → S be a semi-universal deformation of the isolated singularity X0. In section
2.2, the modular stratum MX0 =: M ⊆ S was characterized by the properties that all vector
fields of the special fibre (the elements of T 0(X0) can be lifted to relative vector fields of the
family X|M → M (the elements of T 0(X/S)|M ). In terms of equations f1 = . . . = fk = 0
defining X0, an element δ ∈ T 0(X0) is given by g1, . . . , gn ∈ On and a k× k-matrix h = (hij)
with entries in On such that δ is the class of δ̃ =

∑
i gi

∂
∂xi

∈ DerC(On) andδ̃(f1)
...

δ̃(fk)

 =

h11 . . . h1k
...

...
hk1 . . . hkk

 ·

f1
...
fk

 ,

i. e. (h11, . . . , hk1, h12, . . . , hkk,−g1, . . . ,−gn) is a syzygy of the columns of the matrix

Pf :=

 f1 f2 · · · fk
∂f1
∂x1

· · · ∂f1
∂xn

. . . . . . · · · . . .
...

...
f1 f2 · · · fk

∂fk
∂x1

· · · ∂fk
∂xn

 ,

so every δ gives rise to a syzygy of the column vectors of this matrix, and M is modular if
and only if every such syzygy has a lift over M . Since, over local rings, lifting of syzygies
can be interpreted as flatness of the corresponding module, this gives rise to a characteriza-
tion of M as flattening stratum of a suitable module. In the present section, we will make
these assertions precise and carry out the necessary proofs, generalizing and, at some points,
modifying previous results in this direction contained in [Mar02a], [Mar03].

2.5.1 Flatness of the relative T 1

Definition 2.5.1. Let X0 be a singularity, minimally embedded in (Cn, 0) and defined by
f = (f1, . . . , fk) ∈ On. Let, in addition, ξ : X → S be a deformation of X, defined by
F = (F1, . . . , Fk). We use the notations

J(f) :=


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fk
∂x1

. . . ∂fk
∂xn

 , Jx(F ) :=


∂F1
∂x1

. . . ∂F1
∂xn

...
...

∂Fk
∂x1

. . . ∂Fk
∂xn


for the Jacobian matrix of f1, . . . , fk and for the relative Jacobian matrix of F1, . . . , Fk,
respectively.

Similar to the matrix Pf defined above, we denote by PF the (k2 + n)× n-matrix

PF :=

 F1 F2 · · · Fk
∂F1
∂x1

· · · ∂F1
∂xn

. . . . . . · · · . . .
...

...
F1 F2 · · · Fk

∂Fk
∂x1

· · · ∂Fk
∂xn

 .

Now we set T̃ 1(X/S) := Ok
X/Jx(F ) = OS{x}k/PF . If ξ is a deformation of X0 with section σ,

we denote by T̃ 1(X/S, Jσ) the quotient of Ok
X by Jσ ·Jx(F ), where, as usually, Jσ := Ker(σ∗).
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Using these notions we can interpret criterion (3) in Theorem 2.2.4 as flatness of the
module T̃ 1(X/S), as indicated in the introduction to this section:

Proposition 2.5.2. Let M ⊆ S be a subspace in the base space of a semi-universal de-
formation ξ : X → S of the isolated singularity X0. Then M is modular if and only of
T̃ 1(X/S)⊗OS

OM is a flat OM -module.

Proof. There is the following commutative diagram with exact rows:

0 // K //

��

OM{x}k
2+n

��

PF // OM{x}k

��

// T̃ 1(X/S)⊗OS
OM

��

// 0

0 // K0
// Ok2+n

n

Pf // Ok
n

// Ok
X0
/J(f) // 0,

where K and K0 denote the kernels of the corresponding maps. By the lifting criterion for
flatness (see [Mat86, § 7], for example), T̃ 1(X/S) ⊗OS

OM = T̃ 1(X|M/M) is a flat OM -
module if and only if K → K0 is a surjection. We show that this is equivalent to ev :
T 0(X/S)|M → T 0(X0) being surjective, which concludes the proof of the assertion using
Theorem 2.2.4. Any element

(
hil
gj

)
∈ K0 corresponds to a derivation δ =

∑
j gj

∂
∂xj

such that∑
j gj

∂fl
∂xj

+
∑

i hilfi = 0 in On for all l, so this gives rise to a surjection α0 : K0 → T 0(X0),
similarly we construct a surjection α : K → T 0(X/S)|M . It is easy to see that the map

β0 : Okn
n → Ker(α0), (mij) 7→

(−∑jmij
∂fl
∂xj

)
i,l

(
∑

imijfi)j


is again a surjection, analogously we obtain a surjection β : OM{x}kn → K, and we end up
with the commutative diagram with exact rows

Ker(β) //

��

OM{x}kn

��

β // K
α //

��

T 0(X/S)|M

��

// 0

Ker(β0) // Okn
n

β0 // K0
α0 // T 0(X0) // 0.

If K�K0, then the square on the right implies that T 0(X/S)|M�T 0(X0) as well. Conversely,
if T 0(X/S)|M�T 0(X0) then the surjectivity ofK → K0 follows by applying the Five Lemma.

If X0 is a complete intersection then T̃ 1(X/S) equals T 1(X/S), hence:

Corollary 2.5.3. The modular stratum of an isolated complete intersection singularity X0

equals the flattening stratum of the relative Tjurina module T 1(X/S), where ξ : X → S is a
semi-universal deformation of X0.

More generally, there is always an exact sequence

0 → T 1(X/S) → T̃ 1(X/S) → Ok
X/HomOX

((F )/(F )2,OX) → 0,

which implies:
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Corollary 2.5.4. Let ξ : X → S be a semi-universal deformation of X0 such that

Ok
X/HomOX

((F )/(F )2,OX)

is a flat OS-module, F ∈ OS{x}k defining X. Then the modular stratum of X0 coincides with
the flattening stratum of T 1(X/S).

Aside from complete intersections where the condition in the corollary is trivially satisfied
(the quotient is zero), Cohen-Macaulay singularities of codimension 2 yield a further class
of examples. This follows from the determinantal structure of the normal module NX :=
HomOX

((F )/(F )2,OX) in this situation: OX has a resolution of the form

0 → OS{x}k−1 A−→ OS{x}k
∆−→ OX → 0,

where ∆ is given by the maximal minors of the matrix A, and a presentation of NX is obtained
from a k×(k2−k)-matrix C of (k−2)-minors of A by [Mar03, Proposition 8] (the argument is
given there for space curves but directly generalizes to arbitrary Cohen-Macaulay singularities
in codimension 2, noting that in the proof only the determinantal structure of the defining
equations and the fact that X has codimension 2 are used). The same description holds for
the corresponding objects A0, C0 at the special fibre, which in the end means that the columns
of C resp. C0 are generators for the syzygy modules of Ok

X/NX resp. Ok
X0
/NX0 , so Ok

X/NX

is OS-flat and the condition of Corollary 2.5.4 is satisfied. Hence:

Corollary 2.5.5. If ξ : X → S is a semi-universal deformation of an isolated singularity
X0 which is Cohen-Macaulay of codimension 2, then the modular stratum of X0 equals the
flattening stratum of T 1(X/S).

Analogous statement for deformations with section can be formulated as follows:

Proposition 2.5.6. Let ξ : X → S be a semi-universal deformation of an isolated singularity
X0 with section σ : S → X. Let X0 be defined by f = (f1, . . . , fk) ∈ C{x}k, and let X be
given by F = (F1, . . . , Fk) ∈ OS{x}k. Then a subgerm M ⊆ S is modular if and only if
T̃ 1(X/S, Jσ)⊗OS

OM is a flat OM -module, where, as before, Jσ := Ker(σ∗) ⊆ OX .

Proof. This follows easily from adapting the arguments in Proposition 2.5.2.

Corollary 2.5.7. If X0 is an isolated complete intersection singularity, then the modular
stratum (with section) of X0 coincides with the flattening stratum of the relative Tjurina
module T 1(X/S, Jσ), where S is the base space of a semi-universal deformation X → S of
X0 and Jσ = Ker(σ∗) ⊆ OX corresponds to the section σ : S → X.

Proof. X0 being a complete intersection we have, for any subspace M ⊆ S, an exact sequence

0 → T 1(X/S, Jσ)|M −→ T̃ 1(X/S, Jσ)|M
r−→ Ok

M → 0

of OM -modules, where r is the residue map. Hence T 1(X/S, Jσ)|M is OM -flat if and only if
T̃ 1(X/S, Jσ)|M is.

In fact, we can weaken the assumptions of the last corollaries to the more general condition
T 2(X0) = 0 (resp. T 2(X0,mX0) = 0). We need the following lemma:
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Lemma 2.5.8. Let ξ : X → S be a semi-universal deformation (with section σ) of the singu-
larity X0 and M ⊆ S a modular subspace. Then T 1(ξ|M ) = 0 (resp. T 1(ξ|M , (OM , Jσ|M )) =
0).

Proof. We give a proof for the case of ’ordinary deformations’. For the functor DefsX0
the

statement follows by adding the given section at the necessary places. According to Theorem
1.2.7, elements of T 1(ξ|M ) correspond to deformations of the morphism ξ|M over the double
pointD. So let Ξ : X →M be a deformation of ξ|M overD. In particular, Ξ can be interpreted
as a deformation of X0 as well, hence by the versality of ξ there exists a morphism ϕ : M→ S
inducing Ξ, i. e. we obtain the following diagram:

X|M

ξ|M

��

� � iX // X //

  @
@@

@@
@@

@

Ξ

��

X

ξ

��

D

M
� � iM //M

>>|||||||| ϕ // S.

Since M ⊆ S is modular, the composition ϕ ◦ iM must be equal to the inclusion M ↪→ S.
Thus we can conclude that M ' M × D and Ξ is isomorphic to the trivial deformation
ξ × idD : X ×D →M ×D, whence T 1(ξ|M ) = 0.

Remark 2.5.9. This proof is a variant of the proof of [Pal90b, Proposition 2.5], where it has
been shown that T 1(ξ) = 0 for a semi-universal deformation ξ of X0 itself.

Using this fact we can now establish:

Proposition 2.5.10. Let X0 be an isolated singularity which is unobstructed, i. e. T 2(X0) =
0. Let ξ : X → S be a semi-universal deformation of X0, and M ⊆ S a subgerm. Then M is
modular if and only if T 1(X/S)|M is OM -flat.

The analogous statement is true for deformations with section: If ξ : X → S is a semi-
universal deformation with section σ of the unobstructed singularity X0, then M ⊆ S is
modular if and only if T 1(X/S, Jσ)|M is OM -flat.

Proof. Since T 1(X/S)|M is finitely generated, its OM -flatness implies that it is a free OM -
module of rank τ , the Tjurina number of X0. Since T 2(X0) = 0 we know that, in addition,
OS ' C{s1, . . . , sτ} is smooth, whence T 0(S,OM ) ' Oτ

M , and the Kodaira-Spencer map
Θ̃ξ|M sends free generators of T 0(S,OM ) to free generators of T 1(X/S)|M . Thus Θ̃ξ|M is an
isomorphism, so in particular we can apply Criterion (2) in Theorem 2.2.4 and obtain that
M is modular.

Conversely, assume M ⊆ S is modular. We combine the relative Kodaira-Spencer maps
of the deformations ξ|M and of the deformation ξ (now with coefficients in (OM ,OX|M )) into
the single diagram (2.2.2):

T 0(S,OM ) � � Θ̃ξ|M // T 1(X/S)|M

T 0(M),
Θξ|M

77 77ooooooooooo?�

OO
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where the injectivity of Θ̃ξ|M follows from Theorem 2.2.4. Surjectivity of Θξ|M is implied by
the Kodaira-Spencer sequence

0 // T 0(X/S)|M // T 0(ξ|M ) // T 0(M)
Θξ|M // T 1(X/S)|M // T 1(ξ|M ) // . . .

of the deformation ξ|M , combined with Lemma 2.5.8. It follows that Oτ
M ' T 0(S,OM ) '

T 1(X/S)|M is a free and in particular a flat OM -module.

Remark 2.5.11. The result above has been conjectured before, being known only for the
cases of complete intersections and reduced space curves (with respect to DefX0). In partic-
ular it generalizes Corollaries 2.5.3 and 2.5.5 which form the main results of [Mar02a, section
6] and [Mar03].

Remark 2.5.12. Of course one may consider the flattening stratum of T 1(X/S) for any
deformation ξ : X → S of X0. But if ξ is not a monodeformation, there is no connection to
modular subspaces: As an example, take an arbitrary hypersurface singularity X0 defined by
f ∈ On, and g ∈ (f, J(f)). Then f + εg gives a trivial deformation XD of X0 over the double
point D, its Kodaira-Spencer map θξ is the zero map, thus ξ is not a monodeformation, so
D does not contain any modular space with respect to this deformation. On the other hand
T 1(XD/D) is a flat OD = C[ε]-module:

Indeed, let rf +
∑

k rk
∂f
∂xk

= 0 be a relation of f, ∂f∂x1
, . . . , ∂f∂xn

. Then

r(f + εg) +
∑
k

rk
∂

∂xk
(f + εg) = ε(rg +

∑
k

rk
∂g

∂xk
),

and this again belongs to ε(f, J(f)). Namely, if g = hf +
∑

i hi
∂f
∂xi

for suitable h, h1, . . . , hn ∈
On, we calculate:

rg +
∑
k

rk
∂g

∂xk
=
∑
k

rk
∑
i

hi
∂2f

∂xi∂xk
mod(f, J(f))

=
∑
i

hi
∂

∂xi

(∑
k

rk
∂f

∂xk

)
−
∑
i

hi
∑
k

∂rk
∂xi

∂f

∂xk

= −
∑
i

hi
∂rf

∂xi
= 0 mod(f, J(f).

Thus rg +
∑

k rk
∂g
∂xk

is equal to pf +
∑

k pk
∂f
∂xk

for some p, p1, . . . , pn ∈ On, so

(r − εp, r1 − εp1, . . . , rn − εpn)

lifts the given relation to On[ε]. This shows that for any trivial first-order infinitesimal
deformation of a hypersurface, T 1(XD/D) is OD-flat.

As a concrete example take, for instance, f := x4 + y7 ∈ C{x, y} and g := x3. The only
non-trivial relation that we have to consider is the Euler relation 1 · f − 1

4x
∂f
∂x −

1
7y

∂f
∂y = 0,

which yields g − 3
4g = 0 mod (f, J(f)) when putting g in.
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Let us summarize the various criteria for a germ M ⊆ S to be modular, ξ : X → S a
monodeformation of the singularity X0. The assertions of Proposition 2.1.9, Theorem 2.2.4,
Proposition 2.5.2 and Proposition 2.5.10 can be combined into the following diagram:

M is modular ks

��

T 0(X/S)|M�T 0(X0) ks +3 T̃ 1(X/S)⊗OS
OM is flat

T 0(S,OM ) ↪→ T 1(X/S)|M

08jjjjjjjj

jjjjjjjj

Autξ|M → Hom(−,M)is smooth
#+

ck OOOOOOOOOOOO

OOOOOOOOOOOO }�

=E�������

�������

T 1(X/S)|M is flat
��

KS

The dashed arrow only holds in case ξ is in fact semi-universal, so in this case all assertions are
equivalent, otherwise the statements on the right hand side only give sufficient criteria for M
to be modular. Furthermore, the dotted one holds in case T 2(X0) = 0 by Proposition 2.5.10.
Similarly, we have derived the same relationship between the corresponding statements with
regards to the functor of deformations with section.

These characterizations of modularity of M ⊆ S as flatness of a suitable OM -module
make it possible to compute the modular stratum of X0, at least up to a given order. It
will be the purpose of the subsequent chapter three to demonstrate how these theoretical
criteria can be turned into an algorithm, and to describe the resulting algorithm and its
implementation in Singular, making it possible to compute non-trivial examples of modular
strata of singularities.

2.5.2 Comparing flatness conditions

We close this section by some remarks on the interplay of the modular strata with respect to
both deformation functors under consideration. As already noted after the proof of Theorem
2.2.5, the modular strata themselves cannot be compared directly, because they are subgerms
of the different semi-universal deformations. However, we can at least discuss some connection
between modular subspaces for both functors. First of all note the following straightforward
fact:

Lemma 2.5.13. Let ξ : X → S be a deformation of X0 with section σ : S → X. If M ⊆ S is
modular with respect to the functor DefX0 (i. e. considering ξ as an ’ordinary’ deformation),
then it is modular with respect to DefsX0

, too.

Proof. Suppose M is DefX0-modular. Let ϕ : T → M and ψ : T → S be morphisms such
that ϕ∗(ξ|M ) and ψ∗(ξ) are isomorphic deformations with section of X0. Then they also give
the same element of DefX0(S), hence ϕ = ψ by assumption. Thus M is DefsX0

-modular,
too.

We now specialize down to hypersurfaces and restrict ourselves to deformations with singu-
lar section, as introduced in section 1.3. We can interpret such deformations as deformations
leaving the embedding dimension constant, the terms of its defining equation then belong m2

– but this is only true for hypersurfaces, so we have to restrict ourselves in the next statement
to singularities of codimension one:
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Proposition 2.5.14. Let ξ : X → S be a deformation with singular section of a hypersurface
X0, and let M ⊆ S. Assume additionally that S is a smooth germ. Then T 1(X/S)|M is a
flat OM -module if and only if so is T 1(X/S, Jσ)|M .

Proof. The short exact sequence of OX|M -modules

0 → Jσ|M → OX|M → OX|M /Jσ|M ' OM → 0

induces the long exact cohomology sequence

0 // T 0(X/S, Jσ)|M
ι0 // T 0(X/S)|M

π0 // T 0(X/S,OS)|M
δ0 //

δ0 // T 1(X/S, Jσ)|M
ι1 // T 1(X/S)|M

π1 // T 1(X/S,OS)|M // 0. (2.5.1)

Let f ∈ On define X0. Since X|M →M is a deformation with singular section of X0, we may
assume that X|M is defined by F ∈ (x)2OM{x}. In this situation we have T 1(X/S,OS)|M '
OM since it is the cokernel of

DerOM
(OM{x},OM ) → HomOX|M ((F )/(F 2),OM ) ' OM ,

δ 7→ δ(F )

which is the zero map as F ∈ (x)2OM{x}. In addition, Ker(ι1) is the OM -module gen-
erated by ∂F

∂x1
, . . . , ∂F∂xn

modulo (F ) + (xj ∂F∂xi
)i,j . But this is a free OM -module: namely,

suppose
∑

iGi(s)
∂F
∂xi

= H · F +
∑

i,j Hijxj
∂F
∂xi

. Since, by the smoothness assumption on S,
(F, ∂F∂x1

, . . . , ∂F∂xn
) form a regular sequence, this implies that, for all i, Gi(s) −

∑
j Hijxj ∈

(F, ∂F∂x1
, . . . , ∂F∂xn

), i. e.

Gi(s) =
∑

j
Hijxj +A · F +

∑
k
Bk

∂F
∂xk

for some A,Bk ∈ OM{x}. But this is only possible if Gi = 0 since F, ∂F∂x1
, . . . , ∂F∂xn

∈
(x)OM{x}.

Thus the long exact sequence (2.5.1) can be split into two short exact sequences

0 → Ker(ι1) ' On
M → T 1(X/S, Jσ)|M → Im(ι1) → 0 (∗)

and
0 → Ker(π1) → T 1(X/S)|M → OM → 0,

from which we derive that if T 1(X/S)|M is OM -flat, then so is T 1(X/S, Jσ)|M .
On the other hand, suppose T 1(X/S, Jσ)|M is a flat OM -module. Hence it is free since

it is finitely generated over OM . But, by what was said before, this module contains the
free submodule generated by ∂F

∂x1
, . . . , ∂F∂xn

. Extend these elements to a system of generators
of T 1(X/S, Jσ)|M . Modulo mM , they generate the C-vector space T 1(X0,mX0), and since
∂f
∂x1

, . . . , ∂f∂xn
are C-linearly independent modulo (x)J(f) by Corollary 1.3.5, we may take a

basis containing all ∂f
∂xi

which means that we find a free OM -basis of T 1(X/S, Jσ)|M containing
all ∂F

∂xi
. But this implies that the sequence (∗) is split exact, hence Im(ι1) is also flat which

in the end establishes the flatness of T 1(X/S)|M using the lower exact sequence from above.
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Nevertheless, even when we restrict ourselves to a deformation ξ : X → S with singular
section σ of the hypersurfaceX0 which is a monodeformation forDefX0 (and hence forDefsX0

,
too), we cannot conclude from this result that the maximal modular subspaces (with respect
to both functors) inside this deformation coincide, since we have only proved the following
implications for a subgerm M ⊆ S and only for the case that S is smooth:

M is DefX0-modular +3M is DefsX0
-modular

T 1(X/S)|M is OM -flat ks +3

KS

T 1(X/S, Jσ)|M is OM -flat.

KS

Nevertheless, computations make it plausible that in fact there should hold equivalence
in the first row, and we finish this chapter by the following

Conjecture 2.5.15. Let X0 be an isolated singularity and ξ : X → S a deformation of X0

with section σ : S → X such that ξ is a monodeformation with respect to both DefX0 and
to DefsX0

. Then M ⊆ S is DefX0-modular if and only if it is DefsX0
-modular.
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Chapter 3

Computing modular strata:
algorithm and implementation

Although the notion of modular deformations appeared in the literature already about twenty-
five years ago, there is only little knowledge regarding explicit examples of modular strata for
singularities: The modular stratum of quasihomogeneous complete intersections in positive
dimension was determined by Alexandrov in [Ale85], the result has been stated in Proposition
2.4.2 and extended to the functor of deformations with section. Besides, it is only known
that in many cases the modular stratum of a singularity X0 is an Artinian germ. Some
examples are given by Palamodov in [Pal90a], [Pal94] – others are obtained from the Tp,q,r-
series singularities defined by

f = xp + yq + zr + λ · xyz ∈ C{x, y, z}, 1
p + 1

q + 1
r ≤ 1,

which have an Artinian modular stratum for all but finitely many (p, q, r) (we will make this
precise later in section 4.2).

The problem in deriving general results about the modular stratum of a singularity is that
both criteria that one has at hand – injectivity of the relative Kodaira-Spencer map Θ̃ξ|M
and surjectivity of T 0(X|M/M) → T 0(X0) – require to determine objects which in general
are quite hard to describe. In particular, there are not many general results concerning the
structure of the module of derivations DerC(OX0) for non-quasihomogeneous singularities.
Our goal is therefore to use the theoretical background developed in the previous chapter and
to turn it into an algorithm that makes it possible to calculate (at least jets of) the modular
stratum of an isolated singularity by means of a computer, and we also describe in some detail
how it has been implemented in the computer algebra system Singular [GPS02] as library
modular.lib [HM04]. This work is built upon the algorithm by B. Martin that computes
local flattenings of modules over local rings [Mar02a] and on a first implementation of this
algorithm in Singular.

Thus this chapter is devoted to explaining how this algorithm works – in particular we
show that it gives the correct result for any isolated singularity (although, in practice, Sin-
gular will not be able to compute higher jets of the modular stratum of more complicated
singularities due to the complexity of the computations involved). For reasons of simplic-
ity and clarity, we restrict our presentation of the algorithm to the functor DefX0 . Obvious
changes apply to deformations with section, just switch to the modules T i(X0,mX0) instead of
T i(X0) etc. Using this algorithm and its implementation, we will calculate in the last chapter
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four a series of non-trivial examples of modular strata of singularities, exhibiting phenomena
most of which have not been presented before.

We do not try to conceal that, in fact, it will not be possible to compute higher order
jets of the modular stratum when the defining equations of the singularity become more
complicated – the data and computations involved are just to demanding in terms of memory
usage and computing time. On the other hand, despite this drawback we are able to describe
a relatively efficient way of computing the tangent space T (MX0) to the modular stratum,
and thus we can at least obtain equations for the modular family in many interesting cases.

3.1 An algorithm to compute the modular stratum

To start with, let be given an isolated singularity X0, defined by f1, . . . , fk ∈ C{x1, . . . , xn},
and ξ : X → S a semi-universal deformation of X0, given by F1, . . . , Fk ∈ OS{x} such that
Fi = fi mod mSOS{x} for all i and OS = C{s1, . . . , sτ}/I, τ = τ(X0) the Tjurina number of
X0.

Recall the following constructions and results of chapter two:

• Proposition 2.2.10: The tangent space to the modular stratum MX0 ⊆ S is given as

T (MX0) =
{
t ∈ T (S) : [δ, t] = 0 for all δ ∈ T 0(X0)

}
,

where we identify T (S) and T 1(X0) by means of the Kodaira-Spencer map θξ, and
[−,−] : T 0(X0)× T 1(X0) → T 1(X0) is the Lie bracket in cotangent cohomology.

• Definition 2.2.8 and Proposition 2.2.9: If A ⊆ S is an Artinian modular subgerm and
B ⊆ S is obtained from A by a small extension η : 0 → J → OB → OA → 0, then B is
modular if and only if obξ,η ∈ Hom(T 0(X0), T 1(X0))⊗ J vanishes.

• M ⊆ S is modular if and only if T̃ 1(X/S)|M = OM{x}k/PF |M is a flat OM -module,
and this module is the quotient of OM{x}k by the matrix PF |M introduced in section
2.5.

The idea is now the following: First compute the tangent space to the modular stratum.
That is, we determine the minimal ideal J(1) ⊆ mS such that the restriction of ξ to the
subspace of S defined by J(1) + m2

S is modular. Afterwards we obtain the approximation in
order k of the ideal of the modular stratum order by order, by killing obstructions – or, from
a different point of view, preserving flatness of the module T̃ 1.

3.1.1 Computing the tangent space

In order to determine T (MX0) we need an explicit description of T 0(X0), T 1(X0) and the Lie
bracket T 0 × T 1 → T 1. We obtain the data of these two modules and this map as follows:

• Consider the matrix

Pf :=

 f1 f2 ... fk
∂f1
∂x1

...
∂f1
∂xn

. . . . . . ...
. . .

...
...

f1 f2 ... fk
∂fk
∂x1

...
∂fk
∂xn

 (3.1.1)
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already used in order to provide the flatness criteria for modularity in section 2.5. If
(h11, . . . , hk1, h12, . . . , hkk,−g1, . . . ,−gn) is a syzygy of its columns, then we can define
δ :=

∑n
j=1 gj

∂
∂xj

∈ DerC(On) which represents a derivation in T 0(X0). Hence computing
the first syzygy module of the columns of Pf yields generators r1, . . . , rm of syz(Pf )
inducing representatives δ1, . . . , δm of generators of T 0(X0), together with k×k-matrices
h1, . . . hm, such that (

δi(f1)

...
δi(fk)

)
= hi ·

(
f1
...
fk

)
for all i = 1, . . . ,m.

• Let us give a short explanation of how one obtains a C-vector space basis of T 1(X0)
(for details, see [Ste03] or [Mar99], where an explicit description of the necessary
steps in Singular is included): T 1(X0) is the quotient of the normal module NX0 =
HomOX0

((f)/(f)2,OX0) = HomOn((f),OX0) by the submodule generated by (classes
of) the columns of the Jacobian J(f) of f . Let S be a k× l-matrix of generators of the
first syzygy module of f1, . . . , fk, cf. Remark 1.1.15. Then NX0 can be identified with
the first syzygy module of S̄t, where the bar indicates classes in OX0 . Consider a free
resolution of Coker(S̄t):

0 Coker(S̄t)oo Ol
X0

oo Ok
X0

S̄t
oo Ok2

X0

N1oo Ok3
X0

N2oo

On
X0

J(f)

OO

J ′

=={{{{{{{{

Then NX0 = Ker(S̄t) = Im(N1), hence T 1(X0) = Im(N1)/Im(J(f)) = Coker(N2 ⊕
J ′). Thus we have to find a lift of J(f) to Ok2

X0
by means of N1, and then a C-basis of

T 1(X0) is given by multiplying a basis of the quotient Ok2
X0
/(N2 ⊕ J ′) by N1.

• So let us assume we have determined a C-basis b1, . . . , bτ of T 1(X0) (strictly speaking
we refer to the bi as elements of C{x}k whose classes induce a basis of T 1(X0)), in
particular we assume that the chosen semi-universal deformation has the property that
θξ(si) = bi, where s1, . . . , sτ generate the maximal ideal of OS .

• For each i = 1, . . . , τ and j = 1, . . . ,m we now determine the Lie bracket of δj and bi
by computing lijk ∈ C such that

[δj , bi] = δj(bi)− hj · bi =
τ∑
k=1

lijkbk,

where the bar means taking the class in T 1(X0); and we write shortly δj(bi) for the
component-wise application of δj to the entries of bi. Arranging the lijk in the following
manner we end up with a total description of the bracket T 0 × T 1 → T 1 contained in
the τ × τm-matrix (whose entries are complex numbers)

B :=

l111 · · · l11τ l121 · · · l12τ · · · l1m1 · · · l1mτ
...

...
...

...
...

...
lτ11 · · · lτ1τ lτ21 · · · lτ2τ · · · lτm1 · · · lτmτ

 ∈Mat(τ, τm; C).
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Knowing this matrix B it is now easy to determine T (MX0) by simple linear algebra:
Equations for T (MX0) are given by the conditions

0 = [δj ,
∑
i

ciθξ(si)] =
∑
i

ci[δj , bi] =
∑
i

ci
∑
k

lijkbk =
∑
k

(∑
i

lijkci

)
bk

for j = 1, . . . ,m, i. e. the tangent space is given by all those
∑

i cisi such that (c1, . . . , cτ )·B =
0. Let C be an e× τ -matrix (cij) ∈ Mat(e, τ,C), whose rows form a C-vector space basis of
the annihilator of the column space of B. We now restrict the base (S, 0) ⊆ (Cτ , 0) to this
linear subspace, which is achieved by the algebra map

ϕ : C{s1, . . . , sτ}/I�C{t1, . . . , te}/(t)2 (∗)

si 7→
e∑
j=1

cjitj ,

inducing a modular subdeformation ϕ∗(ξ) : XT → T of ξ.

We have determined the tangent space directly in such a manner that we can reduce as
many variables as possible, which is crucial in terms of computational complexity: Of course,
we could have computed a minimal ideal J(1) ⊆ mS of linear forms in s defining the tangent
space, but the advantage is that explicitly computing the tangent space of MX0 by means
of the map in (∗) may push down the embedding dimension of the basis considerably. In
particular, getting ϕ for granted out of this calculation, we can easily compute the equations
F (x, ϕ(s)) ∈ OT {x}k defining ϕ∗(ξ) out of the equations F for ξ. Since this map results
quite naturally from the above computation, it also seems more efficiently to do this directly
than to compute equations of J(1) and then perform the appropriate coordinate change resp.
projection in a second step, as had been done in first implementations.∗

As an example, consider the plane curve singularity given by f := x10+x8y3+x5y7+y12 ∈
C{x, y}. Its Tjurina number is 83 and the embedding dimension of its modular stratum is 30.
This number has been computed by Singular in approx. 13 seconds† using our implemen-
tation but does not finish when computing using the other method indicated in the previous
paragraph. In fact, most of the time is used for finding lifts of the δi – the computation of
the embedding dimension itself only takes approx. two seconds.

In particular, the above construction gives an explicit formula for the embedding dimension
of MX0 in terms of the cotangent cohomology of X0:

Proposition 3.1.1. Let X0 be an isolated singularity, and let δ1, . . . , δm be generators of
T 0(X0) as an OX0-module, and b1, . . . , bτ be a C-basis of T 1(X0). If the matrix B = (lijk) ∈
Mat(τ,mτ,C) from above represents the Lie bracket [−,−] : T 0(X0) × T 1(X0) → T 1(X0),
then

e.dim(MX0) = τ − rank(B).
∗In fact, our approach means geometrically that we are restricting the computation of the modular stratum

MX0 to the tangent subspace of MX0 ⊆ (Cτ , 0). For many examples this is feasible but actually this needs not
give the full modular stratum in general. Therefore, when one is interested in a complete answer regarding the
dimension or the equations of the modular stratum, one has to compute with respect to the given embedding
in (Cτ , 0), i. e. not reducing the number of variables in the way described above.

†All computations and timings mentioned were performed on an Intel Pentium III, 933 MHz machine with
256 MBytes of memory, running Red Hat Linux 9 and Singular revision 2-0-4.
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Remark 3.1.2. Alternatively, one could use the finite-dimensional C-vector space T 0
• (X0)

instead of T 0(X0) (which in fact has dimension τ for complete intersections by Proposi-
tion 2.3.2). Our implementation uses T 0(X0) for some reasons originating in the way the
computations have to be done in Singular, as the second of the following examples shall
demonstrate.

Example 3.1.3.
(1) As a first example, we consider a quasihomogeneous singularity, where we already know

the result from Proposition 2.4.2. Take, for instance, f := x4 + y8 ∈ C{x, y}. Its
Tjurina number τ is 21, a C-basis of T 1(X0) is induced by {1, x, x2, y, xy, x2y, . . . , x2y6}.
Generators of T 0(X0) are given by the Euler derivation δE := 2x ∂

∂x + y ∂
∂y (we take a

multiple such that we get δE(f) = 8f for the sake of simplicity) and the trivial Koszul
relation δK = ∂f

∂y
∂
∂x −

∂f
∂x

∂
∂y , which we do not need consider. Now δE(xpyq) − 8xpyq =

(2p+ q − 8)xpyq, so for this example, B is a τ × 2τ -block matrix:

• Its first τ × τ -block is a diagonal matrix with diagonal entry 2p + q − 8 at the
position corresponding to the basis monomial xpyq, and this gives zero precisely
for (p, q) = (1, 6) and (2, 4).

• Besides, for δK we have an additional τ × τ -block of zeros.

Thus the embedding dimension of the modular stratum is two, and the corresponding
family is given as

f + t1xy
6 + t2x

2y4

over C{t1, t2}/(t1, t2)2, agreeing with Proposition 2.4.2, which also tells us that this al-
ready yields the maximal modular family over the smooth base with local ring C{t1, t2}.

(2) As an example of a non-quasihomogeneous singularity, take f := 1
4x

4
1 + 1

3x
3
2 + 1

3x
3
3 +

x1x2x3 ∈ C{x1, x2, x3}, which defines a T4,3,3-singularity. In this situation, a Singular-
computation yields six generators of syz(f, J(f)). Alternatively, note that in this case
(J(f) : f) = m, the maximal ideal in C{x1, x2, x3}, as µ(f)− τ(f) = 1 is the dimension

of T 0
• which is isomorphic to the kernel of the multiplication map Q(f)

·f−→ Q(f) in
the local algebra of f by Proposition 2.3.2. So it suffices to determine three derivations
δi such that δi(f) = xif for i = 1, 2, 3, and to continue as above, with only three
derivations to be taken into account instead of six ones, i. e. cutting down the number
of partial computations by one half. Computing them in Singular yields:(

1
12 + 1

12x1

)
x1f =

(
1
48x

2
1 + 1

144x2x3 + 1
48x1x2x3 + 1

144x
3
3

) ∂f
∂x1

+
(
− 5

144x
2
3 − 1

36x1x
2
3

) ∂f
∂x2

+
(

1
36x

2
2 + 1

16x1x3 + 1
36x1x

2
2 + 1

18x
2
1x3 − 1

144x2x
2
3 − 1

144x
3
1x3

) ∂f
∂x3

for δ1 and similarly for δ2, δ3. In any case, we can only compute δi(f) = uixif , where
ui ∈ C{x1, x2, x3} is a unit, which makes further steps much more complicated when
trying to implement them in Singular. The reason why these units necessarily pop up
comes from the fact that, over polynomial rings with local orderings (what is the frame-
work within which all these computations have to be performed in Singular), there
exists only a weak normal form, i. e. if g ∈ Rk is an element of the submodule generated
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by m1, . . . ,ms ∈ Rk, then we can only compute a representation ug =
∑

j cjmj with
cj ∈ R and u ∈ R∗ – for a detailed discussion, see [GP02, chapters 1–2], for example.

Let us come back to our example. The result for the tangent space to the modular
stratum is the following: Take {1, x1, x

2
1, x

3
1, x2, x

2
2, x3, x

2
3} as C-basis of T 1(X0), then

[δ1, xki ] = δ1(xki )− u1x1 · xki = 0 for i = 2, 3, but [δ1, xk1] =
(
k
48 −

1
12

)
xk+1

1 modulo
(f, J(f)), so this only gives zero in T 1(X0) for k = 3. For δ2, δ3 we obtain similar
results, and we end up with the modular family given by

f + t1x
3
1 + t2x

2
2 + t3x

2
3

over C{t1, t2, t3}/(t1, t2, t3)2 as first-order approximation of the modular stratum. In
particular its embedding dimension equals three – we will see how this can be generalized
to arbitrary singularities of the T -series in section 4.2.

3.1.2 Lifting obstructions to higher order

Having constructed T (MX0), we use the obstruction calculus developed in section 2.2 in order
to find higher order jets of the modular stratum, more precisely we use its interpretation as the
condition of preserving flatness of the module T̃ 1(X/S): Given a modular subgerm A ⊆ S and
a small extension A ⊂ B we want to find the maximal subgerm between A and B preserving
modularity. We know by the modularity of A that we can lift all vector fields in T 0(X0) to
T 0(X/S)|A and we want do determine the maximal extension B′ ⊆ B such that they can
actually be lifted to T 0(X/S)|B′ . In terms of Proposition 2.5.2, this means that we want to
find the maximal extension B′ such that T̃ 1(X/S)⊗OS

OB′ is still OB′-flat.
We now have to introduce some more notations in order to describe these conditions in

terms of the equations of the given singularity. To this end, let, as before

PF :=

 F1 F2 · · · Fk
∂F1
∂x1

· · · ∂F1
∂xn

. . . . . . · · · . . .
...

...
F1 F2 · · · Fk

∂Fk
∂x1

· · · ∂Fk
∂xn

 ,

and let PF,e be its e-th graded component in (s), and PF,(e) :=
∑e

i=0 PF,i. Suppose we have
already computed J(e) ⊆ me

S such that the subgerm defined by J(e) + me+1
S is modular, and

this is the minimal ideal in me+1
S with this property. Let δ1, . . . , δm be elements of DerC(On)

inducing generators of T 0(X0) (i. e. δi(f) = hi · f for suitable hi ∈ Mat(k, k;On), and their
coefficients correspond to syzygies r1, . . . , rm of Pf ). We can then find lifts δ(e)1 , . . . , δ

(e)
m and

H
(e)
1 , . . . ,H

(e)
m which correspond to lifts R(e)

1 , . . . , R
(e)
m of the syzygies ri of Pf to syzygies of

PF,(e), and again we denote by Rij the i-th graded component in (s).

This means that, writing R(e) for the matrix with columns the R(e)
j , we have PF,(e)·R(e) = 0

modulo J(e) + me+1
S . Now we compute the obstructions with respect to the small extension

0 → (J(e) + me+1
S )/mS(J(e) + me+1

S ) → OS/mS(J(e) + me+1
S ) → OS/(J(e) + me+1

S ) → 0.

To this end, the obstruction for lifting δj is given by the class of

PF,(e+1)R
(e)
j = PF,1R

e
j + . . .+ PF,e+1R

0
j mod mS(J(e) + me+1

S )
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in T 1(X0)⊗ (J(e) + me+1
S )/mS(J(e) + me+1

S ), i. e. reducing modulo Pf = PF,0 we find

PF,(e+1)R
(e)
j + PF,0R

e+1
j =

τ∑
i=1

wijbi

for (classes of) some elements wij ∈ OS , homogeneous of degree e + 1. Doing this for all
δ1, . . . , δm, we obtain elements wij forming the degree-(e + 1)-part of J(e+1), the maximal
modular extension to order e+ 1.

Example 3.1.4. Let us calculate explicitly what this means for the T4,3,3-singularity whose
tangent space had been computed in Example 3.1.3 (2): It is defined by f = 1

4x
4
1 + 1

3x
3
2 +

1
3x

3
3 + x1x2x3 ∈ C{x1, x2, x3}, and the first-order approximation of the modular stratum had

been calculated as (t1, t2, t3)2 ⊆ C{t1, t2, t3}, with corresponding modular family f + t1x
3
1 +

t2x
2
2 + t3x

2
3. In this case, Pf equals(

1
4x

4
1 + 1

3x
3
2 + 1

3x
3
3 + x1x2x3 x3

1 + x2x3 x2
2 + x1x3 x2

3 + x1x2

)
,

and a matrix R(0) of generators of syz(Pf ) is given by 12x1+12x2x3 12x2−12x2
3 12x3+12x1x3 0 0 0

−3x2
1−x2x3−4x1x2x3−x3

3 −4x1x2+3x1x2
3 −4x1x3−3x2

1x3 0 x1x2+x2
3 x2

2+x1x3

−4x1x2+x2
3−4x2

2x3−x1x2
3 −4x2

2−x2
1x3+4x2

3 −4x2x3+x3
1−4x1x2x3 x1x2+x2

3 0 −x2x3−x3
1

−5x1x3+x2
1x3−3x2x2

3+x3
1x3 −4x2x3+x3

1+x1x2x3+4x3
3 −4x2

3−x2
1x2−4x1x2

3 −x2
2−x1x3 −x2x3−x3

1 0

 ,

illustrating how complicated already the first step of computing these syzygies becomes even
for such a relatively simple example. In fact, computing syz(Pf) in Singular yields one
more column, the next to last one is doubled. Since the last columns (with entry 0 in the
first row) correspond to trivial derivations, we could omit them as well. We keep them here
in order to demonstrate the steps and intermediate results produced by Singular.

Nevertheless, we can compute a lift R(1) such that PF,(1)R(1) = 0 modulo (t1, t2, t3)2. We
omit to write down the matrix R1 which contains already a lot of terms. The product PF,1R1

gets even worse, the first entry of this matrix reads as

− 12x1x3t1t2 − 4x1x2t
2
2 + 3x2

3t
2
2 − 12x2

3t1t3 − 10x2x3t2t3 + 3x1x
2
2t1t2 + 9x2

1x3t1t2 − 3x2x
2
3t1t2

+ 2x2
1x2t

2
2 − 5x2

2x3t
2
2 − 6x1x

2
3t

2
2 − 6x2

1x2t1t3 + 6x2
2x3t1t3 + 2x3

1t2t3 − 20x1x2x3t2t3 − 8x3
3t2t3

+ 4x2
1x3t

2
3 − 8x2x

2
3t

2
3 − 9x2

1x2x3t
2
1 − 18x2

1x
2
2t1t2 + 9x3

1x3t1t2 + 6x1x2x
2
3t1t2 + 4x3

1x2t
2
2

+ 5x1x
2
2x3t

2
2 + 2x2

1x
2
3t

2
2 − 5x2x

3
3t

2
2 − 24x3

1x2t1t3 − 6x1x
2
2x3t1t3 + 3x2x

3
3t1t3 + 2x4

1t2t3

+ 6x2
1x2x3t2t3 + 10x2

2x
2
3t2t3 + 3x1x

3
3t2t3 + 4x3

1x3t
2
3 + 2x4

3t
2
3 + 9x5

1t
2
1 + 9x3

1x2x3t
2
1

+ 9/4x3
1x

2
2t1t2 + 3x4

1x3t1t2 − 39/2x2
1x2x

2
3t1t2 + 3/4x4

1x2t
2
2 − 5x2

1x
2
2x3t

2
2 − 3/2x3

1x
2
3t

2
2

+ 10x1x2x
3
3t

2
2 − 6x4

1x2t1t3 + 9/2x2
1x

2
2x3t1t3 − 9/4x1x2x

3
3t1t3 + 2x5

1t2t3 + 3x3
1x2x3t2t3

− 10x1x
2
2x

2
3t2t3 − 1/4x2

1x
3
3t2t3 + 7/2x2x

4
3t2t3 + 4x4

1x3t
2
3 + 3x2

1x2x
2
3t

2
3 − x1x

4
3t

2
3

− 27/4x4
1x2x3t

2
1 − 27/16x4

1x
2
2t1t2 − 9/4x5

1x3t1t2 + 147/8x3
1x2x

2
3t1t2 + 9/8x5

1x2t
2
2

+ 15/4x3
1x

2
2x3t

2
2 + 45/16x4

1x
2
3t

2
2 − 15/4x2

1x2x
3
3t

2
2 − 15/4x2

2x
4
3t

2
2 − 27/8x3

1x
2
2x3t1t3
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However, in this example we are nearly finished: Modulo Pf this reduces to

−12t1t2 · x2 + (7t22 − 12t1t3) · x2
3 + 12t2t3 · x3

1

16t22 · x2 + 16t2t3 · x2
3 + 12t1t2 · x3

1

−16t2t3 · x2 − 8t23 · x2
3 + (7t22 − 12t1t3) · x3

1

0
0
0



t

and so J(2) is defined by (t1t2, t1t3, t22, t2t3, t
2
3). One checks that this not only gives a lift

modulo J(2) + (t1, t2, t3)3 but even modulo J(2), so the one-dimensional subgerm of (C3, 0)
defined by J(2) forms the modular stratum of the T4,3,3-singularity. A primary decomposition
of J(2) is given as

J(2) = (t2, t3) ∩
[
(t1) + (t2, t3)2

]
,

so the modular stratum contains one smooth component corresponding to the one-parameter
family f + t1x

3
1, and, in addition, one embedded fat point.

3.2 On the implementation in Singular

We are now going to turn the discussion of the two previous sections into an explicit al-
gorithmic description, quite close to the actual implementation in the Singular-library
modular.lib whose header is included as appendix A. For further technical details on the way
the algorithm is coded we refer to the documented source code. Most of the steps in the al-
gorithm written down below have a direct counterpart in Singular and are self-explanatory,
but some remarks are in order, concerning the normal form algorithm with respect to a local
ordering.

The procedure division(p,N,d,x): One of the crucial steps in the algorithm will be to
reduce elements modulo Pf and write the remainder as a linear combination of the given
C-basis of T 1(X0). More generally, let N be a submodule of Rk, R := K[x1, . . . , xn], and
n1, . . . , rt a standard basis of N with respect to a local ordering, such that (Rk/N) has a
finite K-basis b1, . . . , bt ∈ K[x]k with d the maximal degree (in x) occurring. In addition, let
S := R ⊗ K[s1, . . . , se], and let p ∈ Sk. Here we choose a block ordering whose first block
corresponds to the given local ordering on R.

Then the following procedure will give a standard representation of p with respect to S ·N
up to degree d:

1: while p 6= 0 do
2: p := jet(p, d, x)
3: if there is i such that Lt(ni)|Lt(p) then
4: p := p− Lt(p)

Lt(ni)
ni

5: ri := ri +
Lt(p)
Lt(ni)

6: else
7: r := r + Lt(p)
8: p := p− Lt(p)
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Here we mean, for two terms cxαei and dxβei′ in K[x]k, by cxαei|dxβei′ that i = i′ and
αj ≤ βj for all j. In this case cxβei

dxαei
:= c

dx
β−α.

This procedure results in elements r1, . . . , rt ∈ S and r ∈ Sk such that

p = r1n1 + . . .+ rtnt + r mod (x)d+1Sk,

and the remainder r ∈ Rk is aK[s]-linear combination of the vector space basis b1, . . . , bt of the
quotient. This ’normal form up to order d in x’ can be seen as a way of forcing Buchberger’s
normal form algorithm to terminate in a local ordering by throwing away everything in oder
≥ d+ 1 (i. e. taking the relative d-jet with respect to the variables x1, . . . , xn).

This procedure had been suggested by B. Martin, and a first implementation into the
Singular-kernel had been done by the author for the purpose of applications involving local
computations like the ones needed in the context we are dealing with here.

3.2.1 Computing the tangent space

Now, having explained how to work around this technical obstacle, we can describe what to
do in Singular in order to compute modular strata (or, more precisely, at least jets of it).
First of all we explain how to compute the tangent space. To this end, we have to construct
all necessary data out of the given input ideal f = (f1, . . . , fk). These data will then be used
as well when computing higher order approximations of the modular stratum. Altogether it
can be summarized as stated in the box below.

Lines 1–8 construct the preliminary data: A C-basis of T 1(X0) is computed (respectively
the algorithm is aborted in case X0 is not an isolated singularity), and the matrices PF,0
and R0 are constructed. Lines 9-13 contain the main loop of the algorithm where the matrix
associated to the bracket T 0×T 1 → T 1 is computed. Afterwards, in lines 14–17 the resulting
equations for the tangent space to the modular stratum are determined and we are done
in case MX0 is trivial. Otherwise, in lines 18–22 the rings corresponding to the restricted
deformation are constructed and the lift R1 of the relations is computed before returning the
result. Experience shows that this last step (computing R1) is the most expensive step of the
algorithm.

Algorithm: tangmodular – computes the tangent space to the modular stratum

Input: f = f1, . . . , fk ∈ C{x1, . . . , xn} defining (V (f), 0) = X0

Output: a list of two rings S0, P0 such that

• S0 = C{s1, . . . , se}, P0 = C{x1, . . . , xn} ⊗ S0 and

• F1 =
∑e

i=1 sigi ∈ P0 such that f +F1 defines the maximal modular family up
to order 2 in (s), e = dim(MX0), together with an appropriate lift R1 of the
relations of Pf .

• In addition, Pf = PF,0, PF,1, R0, R1, τ , KB, m, dmax are exported.
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1: Compute a k × τ -matrix KB containing a C-basis of T 1 (using sing.lib)
2: τ := ncols(KB)
3: dmax := maxi,j{degKBi,j}+ 1
4: if τ = ∞ then
5: exit // not an isolated singularity!
6: Construct the matrix PF,0 = Pf defined as in (3.1.1)
7: R0 := syz(PF,0)
8: m := ncols(R0)
9: for i = 1 to τ do

10: for j = 1 to m do

11: tmp :=


KB1,i . . . KBk,i

∂KB1,i

∂x1
. . .

∂KB1,i

∂xn

. . . . . .
. . .

...
...

KB1,i . . . KBk,i
∂KBk,i

∂x1
. . .

∂KBk,i

∂xn


12: tmp := division(tmp ·R0

j , PF,0, dmax, x)[2] =
∑τ

l=1 clKBl
13: bracketi,(j−1)τ+1...jτ := (c1, . . . , cτ )
14: S := syz(transpose(bracket))
15: e := ncols(S) //embedding dimension of MX0

16: if S = 0 then
17: return(0) // trivial modular stratum {0}
18: S0 := C{s1, . . . , se}, P0 := C{x} ⊗ S0

19: F1 :=
∑e

i=1 si · (KB · S)i
20: Construct the matrix PF,1 out of F1 as in (3.1.1)
21: R1 := division(PF,1 ·R0, PF,0, dmax, x)[1]
22: return(S0, P0)

Remark 3.2.1. Obvious changes apply to the functor of deformations with section. Here we
need a C-basis of T 1(X0,mX0) instead of a basis of T 1(X0) and we have to change the matrix
Pf into f1 f2 . . . fk x1

∂f1
∂x1

. . . x1
∂f1
∂xn

· · · xn
∂f1
∂x1

. . . xn
∂f1
∂xn

. . . . . . . . .
. . .

...
... · · ·

...
...

f1 f2 . . . fk x1
∂fk
∂x1

. . . x1
∂fk
∂xn

· · · xn
∂fk
∂x1

. . . xn
∂fk
∂xn

 .

3.2.2 Higher order jets of the modular stratum

After performing the computations of algorithm tangmodular the situation is the following:
We have constructed F1 ∈ C{x} ⊗ C{s1, . . . , se} such that F0 + F1 defines a modular family
over C{s1, . . . , se}/(s)2, e = e.dim(MX0), this gives a complete description of the tangent
space to the modular stratum, and we have also found a matrix R1 of lifts of the relations R0

over C{s, x}/(s)2, i. e.

(PF,0 + PF,1) · (R0 +R1) = 0 mod (s)2.

For the explicit computation of the next-order approximation, we now use the interpretation
of the obstructions to lifting modularity in Proposition 2.2.9 and Corollary 2.2.11 in terms
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of flatness of the module T̃ 1(X/S), the quotient of OS ⊗ C{x}k by PF . Thus we can now
apply B. Martin’s algorithm to compute flattening strata of modules over local rings, which
we therefore want to recall now. We follow the description in [Mar02a, section 4], adapting
it to our situation.

Theorem 3.2.2. Let N be an A := OS{x}-module with presentation

OS{x}k
′ → OS{x}k

PF−→ N → 0,

and suppose that N is finitely generated over OS. Let L0 be a C-basis of N0 := N⊗OS
OS/mS

and R0 a matrix with columns generating the kernel of PF,0 := PF ⊗OS
OS/mS. Then we can

find Ri, Li and J ′i, such that

PF,eR
0 + . . .+ PF,0R

e = J ′1L
e−1 + J ′2L

e−2 + . . .+ J ′eL
0 (3.2.1)

holds in Ae := A⊗OS
OS/me+1

S for all e and the elements of the matrix J ′1 + . . .+ J ′e define
the e-jet J(e) of the flattening ideal∗ of N .

Here, as before, indices of homogeneous objects (with respect to the order in mS) denote
their order.

Proof. This is [Mar02a, Proposition 4.1]. We only recall the construction because we will
use it for our description of the algorithm. Suppose one has constructed everything in Ae−1,
hence we need to determine suitable matrices Re, J ′e and Le−1 such that equation (3.2.1) holds
in Ae. Now let

X := PF,eR
0 + . . .+ PF,1R

e−1 − J ′2L
e−2 − . . .− J ′e−1L

1 != J ′1L
e−1 + J ′eL

0 − PF,0R
e,

so X is known from the step before as the left hand side of the equation. Reducing X modulo
J ′1 yields some X ′ and we can find a lift Le−1 such that

X −X ′ = J ′1L
e−1.

Reducing X ′ further modulo PF,0 produces a matrix X ′′, and we can lift

X ′ −X ′′ = PF,0R
e

for a suitable matrix Re. Finally, what remains can be represented in the C-basis L0 of N0,
i. e.

X ′′ = J ′eL
0

for some L0. Putting everything together gives the desired equation (3.2.1) in Ae, and one
checks that the objects constructed have the asserted properties.

Remark 3.2.3.
(1) First of all, in our situation we may assume that PF,k = 0 for all k > 1: Starting with

F1 := f +
∑τ

i=1 sibi, we may assume that this is the equation of the semi-universal
deformation inside of which we are computing the modular stratum: This follows from
the fact that lifting the syzygies of f1, . . . , fk is included in lifting the syzygies of Pf ,
so flatness of OS{x}/(F ) is preserved, i. e. the families under consideration are always
deformations of (V (f), 0).

∗i. e. the minimal ideal J of A such that N ⊗A/J is A/J-flat. See e. g. [Mar02a, section 2] for a proof of
its existence.
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(2) In the form stated above we could not apply this construction to our setting, where
N = T̃ 1(X/S): In general, this is not a finitely generated OS-module. But nevertheless,
this is only needed at the last step in the construction, where we want to lift the last
reduction X ′′ with respect to a C-basis of N0 = C{x}k/Pf . But since this coincides
with the obstruction element with respect to the small extension

0 → (J(e) + me+1
S )/mS(J(e) + me+1

S ) → OS/mS(J(e) + me+1
S ) → OS/(J(e) + me+1

S ) → 0,

X ′′ actually ends up in T 1(X0)⊗me+1
S , so we can use a finite C-basis of T 1(X0) instead.

Translating the above construction into an algorithm we finally obtain:

Algorithm: modular – computes the modular stratum up to a given order

Input: f = f1, . . . , fk ∈ C{x1, . . . , xn} defining (V (f), 0) = X0, and d ≥ 1
Output: a list of two rings S0, P0 such that

• S0 = C{s1, . . . , se}, P0 = C{x1, . . . , xn} ⊗ S0

• these rings contain F = f +
∑e

i=1 sigi ∈ P0 and ideals J(1), . . . , J(d) such that
J(e) defines the modular stratum of X0 up to order e for all e = 1, . . . , d.

1: (S0, P0) := tangmodular(f1, . . . , fk)
// so PF,0, PF,1, R0, R1, τ,KB,m, dmax are known

2: if (S0, P0) = 0 then
3: exit // trivial modular stratum {0}
4: (R2, tmp) := division(PF,1 ·R1, PF,0, dmax, x)
5: Compute J ′2 ∈Mat(τ,m;S0) with tmp = KB · J ′2
6: L0 := kontrahom(ideal(KB),m) // =̂ Hom(ideal(KB),C{x}m)
7: J(2) := ideal(J ′2)
8: for e = 3 to d do
9: X := PF,1 ·Re−1 − J ′3 · Le−3 − . . .− J ′e−1 · L1

10: X ′ := NF(X, J ′1)
11: Le−1 := lift(X −X ′, J ′1)
12: (Re, X ′′) := division(X ′, PF,0, dmax, x)
13: Compute J ′e ∈Mat(τ,m;S0) with X ′′ = KB · J ′e
14: J(e) := ideal(J ′2 + . . .+ J ′e)
15: return(S0, P0)

In the first three lines, the algorithm calls tangmodular to obtain the tangent space and
the data computed there. It finishes in case the result is trivial. The next lines 4–7 contain
the computation in order two, and the remaining lines 8–14 are the main loop, calculating
the data of the next order up to the given bound d, which is done exactly as described in the
proof of Theorem 3.2.2.

Remark 3.2.4. This part of the computation of MX0 does not require any modifications
in order to adjust it to the functor of deformations with section: All differences concerning
the objects involved are already taken into account in tangmodular, where the necessary
modifications to PF,0, PF,1 and KB are made.
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Remark 3.2.5. In general, the algorithm presented above will only return e-jets of the mod-
ular stratum MX0 , and only in lucky cases we obtain polynomial equations for MX0 , i. e.
J(e) defines MX0 for some e. Nevertheless, one can perform some tests which, when positive,
imply that one can stop and has obtained the correct equations:

(1) If (s)e+1 ⊆ J(e) in some iteration, then we will not get anything new in further degree,
in particular the modular stratum is Artinian in this case.

(2) Check whether the algorithm has found a lift modulo J(e), i. e. whether PF,(1) · R(e)

vanishes modulo J(e). This test usually takes longer and implies that the algorithm has
found a set of polynomial generators for the ideal of MX0 which of course does not have
to be the case.

For practical usage, it seems more convenient to let the algorithm run for some loops (in fact,
for more complicated input, it will not terminate in higher degree since data becomes much
to memory-consuming), and to perform test (2) afterwards on the data returned.

Let us give some examples to demonstrate the functionality of our implementation in the
Singular-library modular.lib. A more technical description of the procedures included is
contained in appendix A.

Example 3.2.6. As a simple example, take the plane curve f := x6 + y8 + x4y6 ∈ C{x, y}.
(1) We compute its modular stratum and a maximal modular family using the command

modular provided by modular.lib (’==>’ denotes Singular output):

LIB "modular.lib";
ring r=0,(x,y),ds;
poly f=x6+y8+x4y6;
list L=modular(f,4);

==> // Equation(s) of modular family:
==> f1[1,1]=x3y4C+x4y5B+x3y6A
==>
==> // Embedding dimension: 3
==> // ** not all weights are positive!
==>
==> // Ideal of modular stratum up to order 4:
==> J(4)[1]=A2
==> J(4)[2]=AB
==> J(4)[3]=B2
==>
==> // modular has computed a list, say L, of two rings:
==> // - basering of the modular stratum, containing J(k), the k-jet
==> // of the ideal defining the modular stratum for k<=4;
==> // - basering of embedding space of the total deformation space.
==> // to make them accessible type def So=L[1]; def Po=L[2];

Hence, the maximal modular family is given by f +A · x3y6 +B · x4y5 + C · x3y4 over
the base C{A,B,C)/(A,B)2 (the computation is only done up to order 4, but now one
can check that all relations not only lift modulo J(4) + (A,B,C)5 but already modulo
J(4)). The returned list L contains two rings S0 and P0 as stated in the formulation of
the algorithm, in which the respective objects Ri, Li etc. are defined.
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(2) For computations with respect to DefsX0
, one has to pass an additional non-zero third

parameter to Singular when invoking modular resp. tangmodular, e. g. for the same
singularity as in (1):

L=modular(f,4,1);

==> // Equation(s) of modular family:
==> f1[1,1]=x5E+x3y4D+y7A+x4y5C+x3y6B
==>
==> // Embedding dimension: 5
==>
==> // Ideal of modular stratum up to order 4:
==> J(4)[1]=A2
==> J(4)[2]=AB-17/18AE
==> J(4)[3]=B2-3/2BE
==> J(4)[4]=AC
==> J(4)[5]=BC-5/84AE-4/21CE
==> J(4)[6]=C2
==> J(4)[7]=AD
==> J(4)[8]=AE-14/13CE
==> J(4)[9]=BE+4/9E2
==> J(4)[10]=DE
==> J(4)[11]=E2
==>
==> // modular has computed a list, say L, of two rings:
==> // - basering of the modular stratum, containing J(k), the k-jet
==> // of the ideal defining the modular stratum for k<=4;
==> // - basering of embedding space of the total deformation space.
==> // to make them accessible type def So=L[1]; def Po=L[2];

Again, one can check that this already gives a complete description of the modular
stratum, and a primary decomposition of its ideal is[

(A,E) + (B,C)2
]
∩

(D,E2, BE, 13AE − 14CE,C2, 546BC − 139CE,AC,B2, 117AB − 119CE,A2),

where the family over the first component coincides with the modular stratum for
DefX0 , and the second ideal describes a non-reduced point in the hyperplane D = 0.

If one is only interested in the embedding dimension and the equations of the modu-
lar family (or in checking whether the modular stratum is trivial), one can simply use the
command tangmodular:

Example 3.2.7. For instance, the following computation shows that the cone over the ra-
tional normal curve of degree 4 has trivial modular stratum:

ring r=0,(x(0..4)),ds;
matrix M[2][4]=x(0),x(1),x(2),x(3),

x(1),x(2),x(3),x(4);
ideal I=minor(M,2);
print(I);
==> -x(3)^2+x(2)*x(4), -x(2)*x(3)+x(1)*x(4), -x(1)*x(3)+x(0)*x(4),
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==> x(2)^2-x(1)*x(3), x(1)*x(2)-x(0)*x(3), -x(1)^2+x(0)*x(2)

tangmodular(I);
==> // trivial modular stratum
==> 0

All previous examples could be computed quite fast, none of the computations takes more
than a few seconds to finish. In contrast, consider the following singularity:

Example 3.2.8. Let I ⊆ C{x0, . . . , x5} be given as the ideal of all but the neighboring
2× 2-minors of the matrix of indeterminates

M :=
(
x0 x1 x2 x3 x4 x5

x1 x2 x3 x4 x5 x0

)
.

The computation of the embedding dimension of the modular stratum is performed quite fast
(approx. 15 seconds), but then it takes about 60 more seconds to compute lifts of the syzygies
in R0. The result is (with somewhat shortened output):

ring r=0,(x(0..5)),ds;
ideal I=x(0)*x(3)-x(1)*x(2), x(1)*x(4)-x(2)*x(3), x(2)*x(5)-x(3)*x(4),

x(3)*x(0)-x(4)*x(5), x(0)*x(4)-x(1)*x(3), x(1)*x(5)-x(2)*x(4),
x(2)*x(0)-x(3)*x(5), x(0)*x(5)-x(1)*x(4), x(1)*x(0)-x(2)*x(5);

tangmodular(I);

==> // Equation(s) of modular family:
==> [...]

==> // Embedding dimension: 25
==> [...]

Hence, in this example the tangent space to the modular stratum coincides with the
tangent space of S, since 25 equals the Tjurina number of (V (I), 0). But now we are not able
to compute higher jets of the modular stratum: The next step would consist of computing
the product PF,1 · R1 and reducing it modulo PF,0. Here we reach practical limits: Because
of the high embedding dimension of the modular stratum we cannot reduce the number of
variables, in addition R0 contains as much as 389 columns, and even printing the resulting
9× 389-matrix PF,1 ·R1 produces more than 50 MBytes (!) of output.

Nevertheless, this is an interesting example because we obtain that, in contrast to Example
3.2.7 where the modular stratum has been trivial, for this singularity its embedding dimension
is as big as possible.

We will come back to these two examples in section 4.3 where we discuss some general
facts concerning the modular stratum of quasihomogeneous singularities.
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Chapter 4

Examples of modular strata

In this final part of our work we are going to apply the methods and the algorithm developed
so far to the study of some concrete examples and classes of singularities. The theoretical
criteria on a germ to be modular usually do not enable us to compute the modular stratum
for a general given type of singularities, since this would require precise information on the
module of derivations which, in general, one cannot get. Thus the present implementation can
be useful to compute concrete examples, ant it has it possible to exhibit phenomena which
have not been known before.

As a first example, we give an answer to the question which had formed the motivation
of our study of deformations with section and which had been formulated in the introduction
of this thesis: Is a splitting of the singular locus along a modular family with respect to the
functor DefsX0

possible? The answer is yes – and the first example below will illustrate this
phenomenon. Thus, in the following we will concentrate mainly on the ’usual’ deformation
functor.

As an example of a whole class of singularities where we can give a complete description
of the modular stratum, we determine the modular strata of all hypersurface singularities of
modality zero and one. Having established this result we compare it to the adjacency table
of this class of singularities.

In the last two sections we take the characterization of the modular stratum of quasiho-
mogeneous complete intersections (of positive dimension) in chapter two as a starting point:
We investigate what happens when these assumptions are no longer fulfilled – i. e. what one
may encounter in dimension zero or for non-complete intersections: The Euler relation still
imposes a restriction on the dimension of the modular stratum, but in general the modular
stratum may become much more complicated.

Finally we restrict ourselves to hypersurfaces and try to give some idea of what kind of
modular strata may occur when passing to semi-quasihomogeneous singularities.

4.1 Splitting of the singular locus

To start with this program, we study the following example below. It illustrates how the
isolated singular point of the original singularity can break up along a modular family, demon-
strating that τ -constantness along the modular stratum is only satisfied by considering the
fibres as multigerms. Intuitively one might have expected that this phenomenon cannot occur
when studying deformations having a section – but in fact, this is possible in that case, too.
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Example 4.1.1. Consider the plane curve singularity X0 defined by f := y3 + x3y2 + x11 ∈
C{x, y}, with Tjurina number τ = 16. The computation of its modular stratum MX0 in
Singular is carried out easily, and the result is: MX0 has embedding dimension 4, and a
primary decomposition of its defining ideal is given as

(a, c, d)∩ (a2 − 4b, c, d)∩ (d2, cd, c2, bd, b2, abc, 112bc+ 109ad, 109a2c− 100bc, a3 − 4ab+ 38ac)

in C{a, b, c, d}. Hence MX0 decomposes into two smooth curves C1 and C2, and one embedded
point. The corresponding modular family is given by

FM = f + a · x10 + b · x9 + c · x4y + d · (x3y − 11
2 x

8),

and can be illustrated as follows:
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Thus we obtain two one-parameter τ -constant families with special fibre X0: One is defined
by ft := f+ tx9 over the cure C1. It has, for all t, 0 as only singular point, its Tjurina number
is 16, and it becomes quasihomogeneous for t 6= 0. On the other hand, consider the family
defined by f̃t := f+2tx10 +t2x9 over C2. Then, for t 6= 0, X̃t = V (ft) has two singular points,
namely (0, 0) and (−t, 0) with Tjurina numbers 15 and 1, respectively. I. e., the singularity at
0 becomes slightly ’simpler’ in the fibers outside the origin, with an additional A1-singularity
popping up. This illustrates that τ -constancy really means constancy of the Tjurina number
of the multi-germ X̃t (in accordance with the principle of conservation of number in analytic
geometry, cf. [dJP00, Chapter 6]).

The same splitting also occurs along the DefsX0
-modular stratum: Its embedding dimen-

sion increases by one, with (similar) maximal modular family

FM = f + a · x10 + b · x9 + c · x5y + d · x4y + e · (y2 + 3
5x

3y + 11
30x

8)

over C{a, b, c, d, e}. The modular stratum again splits into two smooth curves V (a, c, d, e)
and V (a2 − 4b, c, d, e) defining the same one-parameter subfamilies, and one embedded point
(different from the one above, of course). In particular, we again have the modular family
ft := f + 2tx10 + t2x9 where the singular locus splits for t 6= 0.

A similar example exhibiting this phenomenon already appeared in [Mar02a]. In fact,
this example had been the starting point for investigating what happens to the modular
stratum when considering the functor of deformations with section instead of the ’ordinary’
deformation functor.
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4.2 Hypersurfaces of modality 0 and 1

A complete classification of these classes of singularities is well-known, cf. [AGZV85], for
example, and we follow the notations used there. Apart from the A −D − E−singularities,
which clearly have trivial modular stratum {0} (they are simple!), there is only one infinite
series of singularities of modality ≤ 1: The Tp,q,r-series. Therefore, first of all we show that
all but finitely many singularities of this series have Artinian modular stratum, and we give
a description in fairly concrete terms∗:

Proposition 4.2.1. Let p1 ≥ p2 ≥ p3 ∈ N such that 1
p1

+ 1
p2

+ 1
p3
≤ 1. Then the modular

stratum of the singularity Tp1,p2,p3 := (V (fp), 0) ⊆ (C3, 0) given by

fp :=
xp11

p1
+
xp22

p2
+
xp33

p3
+ λ · x1x2x3, λ ∈ C, †

is shown in the following table:

p1 p2 p3 FM JM e.dim dim
6 3 2 fp + s1x1x2x3 (0) 1 1
4 4 2 fp + s1x1x2x3 (0) 1 1
3 3 3 fp + s1x1x2x3 (0) 1 1
7 3 2 fp + s1x

6
1 + s2(x5

1 − 1
84x

2
1x2) (s2) ∩ (s1, s22) 2 1

6 4 2 fp + s1x
5
1 + s2x

3
2 (s1) ∩ (s21, s2) 2 1

6 3 3 fp + s1x
5
1 + s2x

2
2 + s3x

2
3 (s1, s2) ∩ (s1, s3) ∩ (s21, s2, s3) 3 1

5 4 2 fp + s1x
4
1 + s2x

3
2 (s2) ∩ (s1, s22) 2 1

4 4 3 fp + s1x
3
1 + s2x

3
2 + x2

3 (s1, s2) ∩ [(s3) + (s1, s2)2] 3 1
4 3 3 fp + s1x

3
1 + s2x

2
2 + s3x

2
3 (s2, s3) ∩ [(s1) + (s2, s3)2] 3 1

other 3 2 fp + s1x
p1−1
1 + s2(x

p1−2
1 − 1

12p1
x2

1x2) (s1, s2)2 2 0
other ≥ 4 2 fp + s1x

p1−1
1 + s2x

p2−1
2 (s1, s2)2 2 0

other other ≥ 3 fp + s1x
p1−1
1 + s2x

p2−1
2 + s3x

p3−1
3 (s1, s2, s3)2 3 0

Here FM is the equation of the maximal modular family and JM the ideal in C{s1, s2, s3}
(resp. C{s1, s2} in case p3 = 2) defining the modular stratum. The last columns indicate the
embedding dimension resp. the dimension of the modular stratum.

Proof. The first two parts of the table follow from a direct computation in Singular (note
that its first part is also an application of Proposition 2.4.2). For the proof that all others
have Artinian modular stratum we can proceed as follows: Let us show this for the case that
p1, p2, p3 ≥ 4 (the remaining cases p3 = 2, 3 can be treated similarly, one has to make some
modifications for the derivations and lifts).

We simply write f = fp. Its Milnor number µ(f) equals p1 + p2 + p3 − 1, and a C-basis
of its local algebra Q(f) = C{x1, x2, x3}/J(f) is given by

Bµ := {1, x1, . . . , x
p1−1
1 , x2, . . . , x

p2−1
2 , x3, . . . , x

p3−1
3 , x1x2x3}.

∗We should note that the below equations do not describe the full modular stratum of the corresponding
singularities – cf. the footnote (∗) on p. 53.

†under the restrictions λ3 + 27 6= 0 for (3, 3, 3), λ2 6= 4 for (4, 4, 2), 4λ3 + 27 6= 0 for (6, 3, 2) and λ 6= 0
otherwise.
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For the Tjurina number τ we have τ = µ − 1, and we obtain a C-basis of T 1 as Bτ := Bµ \
{x1x2x3}. In particular, the kernel of the multiplication map Q(f)

·f−→ Q(f) has dimension
µ− 1, hence equals (x1, x2, x3)/J(f). Since this is isomorphic to T 0

• by Proposition 2.3.2, we
conclude that it suffices to lift three derivations δx1 , δx2 , δx3 ∈ DerC(C{x1, x2, x3}) such that
δxi(f) = xif . Explicitly we can take (cf. [Pal85]):

δx1 :=
(
x2

1

p1
+ u · xp2−2

2 xp3−2
3

)
∂

∂x1
+
(
x1x2

p2
− u · xp3−1

3

)
∂

∂x2
+
(
x1x3

p3
+ u · x1x3

)
∂

∂x3
,

where u :=
(
1− 1

p1
− 1

p2
− 1

p3

)(
1 + xp1−3

1 xp2−3
2 xp3−3

3

)−1
is a unit in C{x1, x2, x3}, and by

interchanging the variables cyclically, we also find δx2 , δx3 . Now compute the Lie bracket
[−,−] : T 0

• × T 1 → T 1. We get (for j = 1, 2, 3 and i = 1, . . . , pj − 1):

• [δxj , x
i
j ] = ( i

pj
− 1)xi+1

j modulo (f, J(f)), hence this goes to zero in T 1 if and only if
i = pj − 1.

• [δxj , x
i
j′ ] = 0 for all i and j 6= j′.

Thus we obtain the following modular family over C{s1, s2, s3}/(s)2: F := f + f1 where
f1 :=

∑3
j=1 sjx

pj−1
j . Now we have to compute lifts of the derivations δxj modulo (s)2, here

again it suffices to consider δx1 . Thus we want to find δ̃ =
∑3

i,j=1 sjgi,j(x)
∂
∂xi

and h̃ =
s1h1(x) + s2h2(x) + s3h3(x) such that

(δx1 + δ̃)(f + f1) = (x1 + h̃) · (f + f1) mod (s)2,

which finally yields the equations

s1 ·
(
g1,1

∂f
∂x1

+ g2,1
∂f
∂x2

+ g3,1
∂f
∂x3

− h1 · f
)

= s1 ·
(

1
p1
xp11 − u · xp1−2

1 xp2−2
2 xp3−2

3

)
s2 ·

(
g1,2

∂f
∂x1

+ g2,2
∂f
∂x2

+ g3,2
∂f
∂x3

− h2 · f
)

= s2 ·
(

1
p2
x1x

p2−1
2 + u · xp2−2

2 xp3−1
3

)
s3 ·

(
g1,3

∂f
∂x1

+ g2,3
∂f
∂x2

+ g3,3
∂f
∂x3

− h3 · f
)

= s3 ·
(

1
p3
x1x

p3−1
3 − u · x1x

p3−1
3

)
.

A solution to the first of these equations is given as

g1,1 = ux1 · (a1 + b1x
p1−3
1 xp2−3

2 xp3−3
3 + c1x

p1−4
1 x2p2−4

2 xp3−4
3 )

g2,1 = ux2 · (a2 + b2x
p1−3
1 xp2−3

2 xp3−3
3 + c2x

p1−4
1 x2p2−4

2 xp3−4
3 + xp1−4

1 xp2−4
2 x2p3−4

3 )

g3,1 = ux3 · (a3 + b3x
p1−3
1 xp2−3

2 xp3−3
3 + c3x

p1−4
1 x2p2−4

2 xp3−4
3 )

h1 = u · (a0 + b0x
p1−3
1 xp2−3

2 xp3−3
3 + c0x

p1−4
1 x2p2−4

2 xp3−4
3 ),

where

a0 = b0 = − 1
p1 · (1− 1

p1
− 1

p2
− 1

p3
)

c0 =
1

1− 1
p1
− 1

p2
− 1

p3

a1 = b1 =
1
p1

(
1

1− 1
p1
− 1

p2
− 1

p3

− a0

)
c1 = − c0

p1

a2 = b2 = −a0

p2
c2 = − c0

p2

a3 = −a0

p3
b3 = −1− a0 − a1 − a2 c3 = c0 ·

(
1
p1

+
1
p2
− 1
)
.
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A similar calculation gives gi,2, gi,3, h2 and h3. We now look at the obstructions to finding δ̂
and ĥ (homogeneous of degree 2 in s) such that

(δx1 + δ̃ + δ̂)(f + f1) = (x1 + h̃+ ĥ)(f + f1) mod (s)3,

so, looking at degree 2, we would have to solve

δ̃(f1)− h̃f1 = ĥf − δ̂(f).

Sorting the left hand side with respect to coefficients of s1sj , one obtains as coefficient of s21:

g1,1
∂xp1−1

1

∂x1
− h1x

p1−1
1 = u(a1(p1 − 1)− a0)x

p1−1
1 + r,

where r vanishes modulo (f, J(f)), but the coefficient of xp1−1
1 is non-zero. An analogous

computation for the other monomials s1sj shows that it is not possible to lift the derivation
further, and by considering the other two derivations δx2 and δx3 as well, we see that we
cannot lift them all simultaneously further than modulo (s1, s2, s3)2, so this defines a maximal
modular subgerm.

Having determined the modular strata of the Tp1,p2,p3-series singularities, we can complete
the table of modular strata for singularities of modality 0 and 1 (according to Arnold’s
classification list [AGZV85]) as follows:

Proposition 4.2.2. The following tables show the modular strata of all zero- and unimodal
hypersurface singularities, except for the T -series singularities (including the parabolic sin-
gularities P8=̂T3,3,3, X9=̂T4,4,2 and J10=̂T6,3,2), for which the modular strata are listed in
Proposition 4.2.1:

• Zeromodal singularities:

Ak Dk E6 E7 E8

xk+1 x2y + yk−1 x3 + y4 x3 + xy3 x3 + y5

All these singularities have trivial modular stratum.

• Exceptional unimodal singularities:

Type f FM JM

E12 x3 + y7 + λxy5 f + s1xy
4 + s2(xy3 + 7

5λy
5) JM = (s1, s2)2

E13 x3 + xy5 + λy8 f + s1y
7 + s2(xy3 + 8

5λy
6) JM = (s1, s2)2

E14 x3 + y8 + λxy6 f + s1xy
5 + s2(xy4 + 4

3λy
6) JM = (s1, s2)2

Z11 x3y + y5 + λxy4 f + s1xy
3 + s2y

4 JM = (s1, s2)2

Z12 x3y + xy4 + λx2y3 f + s1xy
3 + s2x

2y2 JM = (s1, s2)2

Z13 x3y + y6 + λxy5 f + s1xy
4 + s2y

5 JM = (s1, s2)2

W12 x4 + y5 + λx2y3 f + s1xy
3 + s2x

2y2 JM = (s1, s2)2

W13 x4 + xy4 + λy6 f + s1x
2y2 + s2y

5 JM = (s1, s2)2

Q10 x3 + y4 + yz2 + λxy3 f + s1y
3 + s2xy

2 + s3xz JM = (s1, s2, s3)2

Q11 x3 + y2z + xz3 + λz5 f + s1xy + s2xz
2 + s3z

4 JM = (s1, s2, s3)2

Q12 x3 + y5 + yz2 + λxy4 f + s1y
4 + s2xy

3 + s3xz JM = (s1, s2, s3)2

S11 x4 + y2z + xz2 + λx3z f + s1x
2z + s2x

2y + s3x
3 JM = (s1, s2, s3)2

S12 x2y + y2z + xz3 + λz5 f + s1xz + s2yz
2 + s3z

4 JM = (s1, s2, s3)2

U12 x3 + y3 + z4 + λxyz2 f + s1yz
2 + s2xz

2 + s3xyz JM = (s1, s2, s3)2
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The families shown above are valid for nonzero values of the modulus parameter λ (which
are all semi-quasihomogeneous with µ − τ = 1). In each case, the modular stratum is
Artinian, with embedding dimension equal to the embedding dimension of the respective
singularity.

For λ = 0 the resulting quasihomogeneous singularities have trivial modular stratum.

Proof. For the zeromodal singularities it is obvious that their modular stratum is trivial (be-
sides, the result also follows directly from Proposition 2.4.2), and for the remaining unimodal
ones the modular strata have been computed using Singular.

We would like to discuss now how the positive-dimensional modular strata popping up
at the beginning of the T -series fit into the picture of adjacencies of unimodal hypersurface
singularities. The following picture shows the beginning of their adjacency diagram (see
[Bri79] for a complete list of all adjacencies). The first number in each row is the Milnor
number of the singularities in that row, whereas the subscript to the left of each type stands
for its Tjurina number:

12 : [11]Z12

��
,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX [11]E12

��yyssssssssss
[11]Q12

yyssssssssss

��

[11]U12

yysssssssss

$$JJJJJJJJJ

11 : [10]T7,3,2

��

[10]T6,3,3

yyssssssssss
[10]T6,4,2

ttiiiiiiiiiiiiiiiiiiii [10]Z11

��

[10]S11

��zzttttttttt

$$JJJJJJJJJ

10 : [10]T6,3,2 [9]T5,4,2

��

[9]T4,4,3

zzttttttttt
[9]Q10

��
9 : [9]T4,4,2 [8]T4,3,3

��
8 : [8]T3,3,3

In addition, there are several additional adjacencies between the exceptional and other
singularities of the T -series, as well as the obvious adjacencies Tp,q,r → Tp′,q′,r′ for p ≥ p′,
q ≥ q′, r ≥ r′ which we have not included because they are not important for the present
discussion. Now there are two types of one-dimensional modular strata in the list of T -series
singularities:

(1) For T6,3,2, T4,4,2 and T3,3,3 we obtain the one-dimensional family of non-isomorphic
singularities of the given type.

(2) The other six triples (p, q, r) giving one-dimensional modular strata are precisely those
that are directly adjacent to the three previous ones, as shown in the diagram above.
The adjacencies

T7,3,2 → T6,3,2 T6,4,2 → T6,3,2 T6,3,3 → T6,3,2

T5,4,2 → T4,4,2 T4,4,3 → T4,4,2 T4,3,3 → T3,3,3
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coincide with those adjacencies where the Milnor number decreases by one whereas
the Tjurina number stays constant – and the one-dimensional smooth subfamily of the
maximal modular deformation induces the respective adjacency.

All other adjacencies between unimodal singularities do not leave the Tjurina number fixed,
therefore the modular strata of Tp,q,r reflect them only infinitesimally.

Remark 4.2.3. In that context, we should note that A. G. Alexandrov has obtained a list of
normal forms of one-dimensional quasihomogeneous complete intersections in [Ale82], which
in particular includes the singularities T6,3,2 and T4,4,2. By Proposition 2.4.2 such singularities
give rise to examples of singularities with smooth maximal modular families. In [Ale00] he has
shown how one can construct a moduli space of curves which are unimodal quasihomogeneous
complete intersections and have Milnor number less than 17 by gluing together appropriate
modular families. Moreover, it is shown there that this moduli space admits a covering by
either the complex plane or the punctured complex plane.

4.3 Quasihomogeneous complete intersections

The quasihomogeneous singularities in the table of Proposition 4.2.2 (i. e., take λ = 0) are
examples of the assertion in Proposition 2.4.2, which contains a complete description of the
modular stratum (with respect to both deformation functors) of quasihomogeneous complete
intersections in positive dimension. Let us recall its formulation from section 2.4:

Proposition 2.4.2. The modular stratum with respect to the functors DefX0 and DefsX0

of a quasihomogeneous isolated complete intersection singularity X0 of positive dimension is
reduced and smooth.

Its dimension equals the dimension of the eigenspace (with respect to the eigenvalue zero)
of the linear operator [δE ,−] : T 1(X0) → T 1(X0) – resp. T 1(X0,mX0) → T 1(X0,mX0) –
defined by the Euler derivation δE.

We want to show that in this statements all assumptions made on X0 are necessary by
means of some examples, and to explain what one can still say for arbitrary quasihomogeneous
singularities.

First of all, recall that the main ingredient in its proof had been Aleksandrov’s description
of T 0(X0) ' T 0(X0,mX0) for such singularities in [Ale85]: It can be generated by the Euler
derivation δE , together with the trivial ones, and we can lift the Euler derivation precisely
along the subgerm of the base space corresponding to the kernel of the map T 1(X0) → T 1(X0),
g 7→ [δE , g]. If X0 is not a complete intersection or has dimension zero, then there may exist
more non-trivial derivations that have to be lifted along a modular family, but, anyway, the
Euler derivation is still present, and it restricts the modular stratum to the subspace described
above. This argument proves:

Proposition 4.3.1. Let X0 be an isolated quasihomogeneous singularity. Then the embed-
ding dimension (and thus the dimension) of its modular stratum is bounded above by the
dimension of the eigenspace of zero of the endomorphism [δE ,−] ∈ EndC(T 1(X0)) (resp.
EndC(T 1(X0,mX0)) when considering deformations with section) defined by the Euler deriva-
tion δE.
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Remark 4.3.2. Proposition 4.3.1 also gives a sufficient condition on a quasihomogeneous
germ X0 to have trivial modular stratum: If 0 is not an eigenvalue of the linear operator
[δE ,−] defined on T 1(X0) resp. T 1(X0,mX0), then this germ must have trivial modular
stratum.

This seems the best what one can get for arbitrary quasihomogeneous singularities. The
examples computed at the end of chapter three demonstrate the two possible extreme cases
for dimC T

1(X0)0:

(1) The rational normal curve has trivial modular stratum, as computed in Example 3.2.7:
Its defining equations are the 2× 2-minors of(

x0 x1 x2 x3

x1 x2 x3 x4

)
∈Mat(2, 4,C{x0, . . . , x4})

are homogeneous of degree two, but there are no elements of this degree in its T 1: A
C-basis is given by 

 0
−x3
0
x2
0
x0

 ,

 x3
0
0
x1
x0
0

 ,

 0
0
x3
0

−x2
x1

 ,

 x4
x3
x2
0
0
0

 ,

for instance. Thus in this example the condition imposed by the Euler relation already
implies that the modular stratum has to be trivial.

(2) On the other hand the determinantal singularity of Example 3.2.8 was defined by ho-
mogeneous polynomials of degree two as well, but here we obtain a basis of T 1 whose 25
elements all have the same degree two. Thus, in this case the Euler relation is satisfied
for every element.

There are a lot more non-trivial derivations that one has to take into account, but here
it is possible to find lifts of all of them up to second order, giving the result of the
Singular-computation which implies that in this example the tangent space of the
modular stratum equals the whole tangent space of the base space of the semi-universal
deformation.

Let us now show what can happen for quasihomogeneous complete intersections in dimen-
sion zero. In [Nik03], a great number of modular strata for such subgerms of (C2, 0) had been
computed. The structure of the module of derivations of such singularities can become much
more complicated, see [AM92], for instance. We present some examples illustrating how the
assertion of Proposition 2.4.2 becomes completely wrong in this situation:

Example 4.3.3.
(1) The modular stratum can be singular and decompose into several components. As an

example, the modular stratum of V ((x2y2, x4 + y8), 0) is given by the family

FM = (x2y2 + s · x3, x4 + y8 + t · xy6)

over the base C{s, t}/(s · t).
A somewhat more complicated example of a similar kind is given by I := (x2y5, x8 +
y4) ⊆ C{x, y}: In this case, we obtain the maximal modular family

FM = (x2y5 + s2 · x6y3 + s3 · x8y2 + s4 · x12, x8 + y4 + s2 · 6
5x

4y2 + s1 · x6y)
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over the subspace of (C4, 0) defined by s1 · (s1 − 8
5s3). So in this case the modular

stratum has a two-dimensional singular locus, being the union of two hyperplanes in C4

meeting in a plane.

(2) In addition, it is no longer true that MX0 is a reduced germ: As an example, consider
the germ defined by (x2y3, x8 + y4) ⊆ C{x, y}. In this case, we get e.dim(MX0) = 2,
with defining ideal (t) ∩ (s, t2) ⊆ C{s, t}.
Similarly, a maximal modular family of the germ V ((x2y7, x7 +y7), 0) ⊆ (C2, 0) is given
by

FM = (x2y7 + s2 · y9 + s3 · xy8 + s4 · x6y3, x7 + y7 + s1 · x5y2 + s4 · 7x4y3),

and the modular stratum decomposes into a two-dimensional component V (s1, s4) and
an embedded point in (C4, 0).

(3) Nevertheless, for many examples the situation stays the same. For instance, take X0 :=
(V (I), 0) with I := (x2y4, x4 + y8) ⊆ C{x, y}. Then a maximal modular deformation is
defined by the family

FM = (x2y4 + s1 · y8 + s2 · xy6 + s3x
3y2, x4 + y8 + s4xy

6)

over the smooth base (C4, 0) – with respect to both deformation functors under consid-
eration.

The examples presented above and in the previous sections illustrate that the modular
stratum of an isolated singularity X0 is in general non-reduced or singular, when X0 is not
a quasihomogeneous complete intersection of positive dimension. In particular, Proposition
2.4.2 becomes immediately wrong when dropping parts of the assumptions on X0.

One might now conjecture that Proposition 2.4.2 admits a converse in the following sense:
If X0 is an isolated complete intersection of positive dimension such that the modular stratum
is reduced and smooth, then X0 is quasihomogeneous. However, this proves wrong, as the
following example shows:

Example 4.3.4. Let f := x5 + y5 +x3y3 ∈ C{x, y} define the plane curve X0. Then f is not
quasihomogeneous as µ(X0) = 16 > 15 = τ(X0), but we obtain a maximal modular family

FM = f + s · x2y3 + t · x3y2

over the smooth base with local ring C{s, t}. Its Newton diagram looks like this:

-
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x

y

1 2 3 4 5

1

2

3

4

5
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In general, for non-quasihomogeneous germs X0 there is little knowledge about the struc-
ture of the module of derivations DerC(OX0) ' T 0(X0). One general fact, due to Scheja and
Wiebe, is:

Proposition 4.3.5. Let A be an analytic algebra defining a reduced isolated complete inter-
section singularity. If there exists a non-nilpotent derivation δ ∈ DerC(A), then there exists
a positive grading on A‡.

Proof. [SW77, section 4].

Thus we obtain the following interpretation on the modular stratum, which has already
been stated in [Pal90b] for hypersurfaces and is some sort of a converse to Remark 4.3.2:

Corollary 4.3.6. Suppose X0 is a reduced isolated complete intersection singularity which is
not quasihomogeneous. Then MX0 is non-trivial.

Proof. By Proposition 4.3.5, all derivations in T 0(X0) are nilpotent so, by Engel’s theorem,
there is a non-zero element g ∈ T 1(X0) vanishing under the action of T 0(X0) on T 1(X0).
Hence T (MX0) and thus MX0 is non-trivial.

However, in many of the examples of section 4.2 the modular stratum is non-trivial but
we only obtain an Artinian germ, since it is only possible to lift the vector fields in T 0(X0)
infinitesimally: The exceptional uni-modular and T -series singularities (except the ones at
the beginning of that series) are instances of this phenomenon.

4.4 Semi-quasihomogeneous hypersurfaces

We now specialize down our discussion to hypersurfaces. For quasihomogeneous ones, we
have a complete answer concerning their modular strata, so it is a natural next step to ask
what the situation is like when considering semi-quasihomogeneous hypersurfaces instead. In
this class, the simplest types of singularities are those where the Tjurina number drops by one
compared to the Milnor number. For such singularities, computations lead to the following

Conjecture 4.4.1. Suppose f ∈ On defines a semi-quasihomogeneous hypersurface singu-
larity X0 such that τ(X0) = µ(X0) − 1. In addition, let X̃0 be the germ defined by the
quasihomogeneous initial form of f . Then

(1) e.dim(MX0) ≤ e.dim(X0) + dimC T
1(X̃0)0 and

(2) dim(MX0) = dim(MX̃0
) = dimC T

1(X̃0)0.

For suitably general f , equality holds in the first formula. As before, T 1(X̃0)0 denotes the
eigenspace of 0 of the Euler operator.

We are not able to give a proof of this conjecture at the moment, but at least we can give
a proof of its first part in case f is of a special form:

‡Here we say that δ is non-nilpotent if its linear part defines a non-nilpotent linear operator on the vector
space mA/m2

A.
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Proposition 4.4.2. Let f := xp11 + . . . + xpn
n + xp1−2

1 · · ·xpn−2
n ∈ C{x1, . . . , xn}, i. e. f is

semi-quasihomogeneous of Hesse type and its initial form f0 := xp11 + . . .+xpn
n is a Brieskorn

polynomial. Suppose pi ≥ 4 for all i. Then

e.dim(MX0) ≤ e.dim(X0) + dimC T
1(X̃0)0,

where X0 is defined by f and X̃0 by f0. For suitably general f , equality holds in this formula.

Proof. The argument is similar to the proof of Proposition 4.2.1: Since µ(X0) = τ(X0)− 1 it
follows that (J(f) : f) = mOn . Thus it suffices to find derivations δ1, . . . , δn ∈ DerC(On) with
the property δi(f) = xif and to determine their action on T 1(X0), in order to compute the
tangent space to the modular stratum. By symmetry we only need to find δ1, the others are
obtained by permuting the variables. So consider the derivation

δ1 :=

x2
1

p1
− u

p1

n∏
j=2

x
pj−2
j

 ∂

∂x1
+

n∑
i=2

x1xi

pi
+ (−1)i u

pi

i−1∏
j=1

(1− 2
pj

) · x(i−1)(p1−2)−1
1 ·

i−1∏
j=2

x
(i−1)(pj−2)−1
j · x(i−1)pi−2i+1

i ·
n∏

j=i+1

x
i(pj−2)
j

 ∂

∂xi
,

where u ∈ O∗
n is defined as

n− 1− 2 ·
∑n

i=1
1
pi

1 + (−1)n−1
∏n
j=1

[
(1− 2

pj
)x(n−1)pj−2n
j

] .
By plugging in f one checks that δ1(f) = x1f . Now consider the following monomial basis of
T 1(X0):

B := {xα1
1 · · ·xαn

n : αi ≤ pi − 1 for all i} \ {xp1−2
1 · · ·xpn−2

n }.

Then δ1(xα)−x1x
α = (

∑n
i=1

αi
pi
−1)xα1+1

1 xα2
2 · · ·xαn

n + higher order terms, so this expression
vanishes in T 1(X0) in the following situations:

• xα has weighted degree one with respect to the weight vector ( 1
p1
, . . . , 1

pn
), since one

checks that in this case all further terms vanish modulo (f, J(f)) as well,

• α1 = p1 − 2 or

• α1 = p1 − 3 and αi = pi − 2 for all i ≥ 2.

The analogous conditions are obtained for δ2, . . . , δn, so the only elements vanishing on the
action of all δi are

a) xα :
∑ αi

pi
= 1, b)

xp1−2
1 · · ·xpn−2

n

xi
: 1 ≤ i ≤ n,

which gives the desired estimate on the dimension of the tangent space of MX0 . For general
f , the two above sets above have empty intersection, so in this case even equality holds.
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Remark 4.4.3.
(1) Thus we have determined as equation of the maximal modular family

FM = f +
n∑
i=1

si
xp1−2

1 · . . . · xpn−2
n

xi
+
∑
j

tjgj ,

with gj the monomials in a C-basis of T 1(X0) of weighted degree 1. Of course, the direc-
tions corresponding to si in the modular stratum can occur only infinitesimally in gen-
eral, because these parameters do not yield τ -constant deformations – except for special
cases like the singularity x5 +y5 +x3y3 of Example 4.3.4, where the monomials x3y3

x and
x3y3

y already lie on the diagonal. So this also explains why this semi-quasihomogeneous
singularity has a smooth modular stratum.

(2) For pi < 4 the calculation from above becomes wrong: Take, for instance, f := x10 +
y3 + x8y ∈ C{x, y}. Then

FM = f + s · x9 + t · (x8 + 4
5x

6y)

is the equation of a maximal modular family, with base C{s, t}/(s, t)2. Nevertheless
this result still agrees with the conjecture on the (embedding) dimension of the modular
stratum. Note that in this example all monomials occurring in the modular family lie
below the Newton boundary of the original polynomial f .

For more general semi-quasihomogeneous hypersurfaces, where the difference µ − τ be-
comes bigger, the structure of the modular stratum becomes more and more complicated to
describe. For instance, in the examples considered so far we only encountered zero-dimensional
embedded components (if any) – cf. also our list of modular strata for unimodal singularities.
By contrast, in the following example we find an embedded component of positive dimension:

Example 4.4.4. Consider the plane curve given by f := x6+y6+x3y4 ∈ C{x, y}. A maximal
modular deformation is defined by the equation

FM = f + s1 · x2y4 + s2 · x3y3 + s3 · x4y2 + s4 · x4y3 + s5 · xy4,

and the ideal of the modular stratum is (s5) ∩ (s25, s2, s4, s1 − 1
3s

2
3). In this example we also

have one infinitesimal direction (namely, s5), where the corresponding monomial (xy4) lies
below the Newton boundary of the semi-quasihomogeneous function defining (X0, 0).

As some sort of a converse to the case µ − τ = 1 let us consider the situation of a semi-
quasihomogeneous hypersurface where the difference of the Tjurina and the Milnor number is
as big as possible (among all polynomials with the same initial form). For such singularities
we can at least prove a rough lower estimate on the dimension of its modular stratum:

Proposition 4.4.5. Let f ∈ On be semi-quasihomogeneous with initial form f0 and let X0

denote the germ defined by f . Assume that

τ(X0) = min{τ(g) : g ∈ On semi-quasihomogeneous with initial form f0}.

Denote by ρ(X0) the number of monomials of degree bigger or equal than one in a basis of
the local algebra of f (with respect to weights such that f0 has degree one). Then

dimMX0 ≥ ρ(X0)− (µ(X0)− τ(X0)).
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Proof. Let ξ : X → S be a semi-universal deformation of X0 and η : X̂ → T a semi-
universal unfolding of X0. We then have T ' (Cµ, 0). Let T ′ ⊆ T be a subspace such
that the restriction of η to T ′ gives a maximal τ -constant unfolding. Then, by passing to
representatives of the germs under consideration, we may consider η|T ′ as an affine family,
and its base T ′ has dimension ρ(X0). It can be induced from ξ by means of some morphism
ϕ, again we consider appropriate affine families. Since ξ is semi-universal, the fibres of this
morphism are of dimension µ − τ , and its image induces a modular subgerm of S since it
defines a τ -constant subfamily of ξ by construction. Therefore the dimension of a maximal
modular subspace is at least dimT ′ − (µ− τ) = ρ(X0)− (µ− τ).

So far we are not able to prove precise statements concerning the modular stratum of
arbitrary semi-quasihomogeneous hypersurfaces. We thus finish by formulating a conjecture
which is a variant of Conjecture 4.4.1 for certain classes of semi-homogeneous plane curves.
Consider a semihomogeneous function f ∈ C{x, y} such that its homogeneous initial form
f0 is a form of degree d. Functions of this type have been studied in [Mar93] where coarse
moduli spaces of such germs with fixed d and τ are constructed..

Conjecture 4.4.6. Let f ∈ C{x, y} be semi-homogeneous of degree d with homogeneous
initial form f0. Suppose that

• f = f0 + λ · xαyβ, where xαyβ is a monomial of degree bigger than d in a basis of the
local algebra of f , and

• we impose the further condition 2α+ β, α+ 2β > 2d− 1.

Then
e.dim(MV (f),0) = d− 3 + 2 · (µ(f)− τ(f)).

To justify this formula, note the following: We know that the homogeneous germ (V (f0), 0)
has (d− 3)-dimensional modular stratum since this is the number of basis elements of degree
d in a basis of its Tjurina algebra, so we obtain this number by Proposition 2.4.2. These
elements correspond to the basis monomials on the diagonal of the Newton diagram of f ,
giving τ -constant deformations of X0 := (V (f), 0) as well.

In addition, consider sequence (2.3.1) of Proposition 2.3.2:

0 → T 0
• (X0)

ε−→ C{x, y}/J(f)
mf−→ C{x, y}/J(f) π−→ T 1(X0) → 0,

and recall that dimC T
0
• (X0) = τ . Thus, σ := µ− τ equals the codimension of T 0

• (X0) in the
local algebra of f . Suppose we find a basis of T 0

• (X0) of monomials h1, . . . , hτ which belong
to derivations δ1, . . . , δτ ∈ DerC(C{x, y}), i. e. δi(f) = hif , and a set Kσ of monomials
extending them to a basis of C{x, y}/J(f). We end up with a picture like this:
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The monomials corresponding to the big square give a basis of the local algebra of f ,
B \ Bσ induces a basis of T 1(X0), and B \Kσ = {h1, . . . , hτ}. Then the monomials in the
two shaded regions T1, T2 of the above picture vanish under the action of T 0

• , thus they
give additional 2 · #Bσ = 2 · (µ − τ) tangent directions for the modular stratum, and if f
is general, we cannot achieve [δi, b] = δi(b) − hib = 0 ∈ T 1(X0) for any other b ∈ T 1(X0)
(linearly independent from those found before corresponding to T1 and T2).

The second condition from above now ensures that T1 and T2 do not intersect with the
diagonal, which implies the above formula.

We close this discussion by illustrating these considerations by means of some examples:

Example 4.4.7. Take d := 12, i. e. f0 := x12 + y12 ∈ C{x, y} with Milnor number 121. The
following table lists some examples of semi-homogeneous polynomials with the same initial
form x12 + y12:

f µ− τ e.dim(MX0)
f + x10y10 1 11 = 9 + 2 · 1
f + x10y9 2 13 = 9 + 2 · 2
f + x10y8 3 15 = 9 + 2 · 3
f + x10y7 4 17 = 9 + 2 · 4
f + x9y9 4 17 = 9 + 2 · 4
f + x9y8 6 21 = 9 + 2 · 6
f + x8y8 9 27 = 9 + 2 · 9

For instance, let us consider f+x8y8 with Tjurina number 112. In accordance with Conjecture
4.4.6, its modular stratum has embedding dimension 27 = (12− 3) + 2 · (121− 112), and the
corresponding modular family is given as

FM = f + s1x
10y2 + s2x

9y3 + . . .+ s9x
2y10

+ s10x
8y5 + s11x

9y5 + s12x
10y5 + s13x

8y6 + s14x
9y6

+ s15x
10y6 + s16x

8y7 + s17x
9y7 + s18x

10y7

+ s19x
5y8 + s20x

5y9 + s21x
5y10 + s22x

6y8 + s23x
6y9

+ s24x
6y10 + s25x

7y8 + s26x
7y9 + s27x

7y10.
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The picture of the Newton diagram and the respective basis monomials looks like this:
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Appendix A

The Singular-library modular.lib

LIBRARY: modular.lib PROCEDURES TO COMPUTE THE MODULAR STRATUM
AUTHORS: Bernd Martin, email: martin@math.tu-cottbus.de

Tobias Hirsch, email: hirsch@math.tu-cottbus.de

OVERVIEW:
A library to compute modular strata of isolated singularities with respect
to the usual deformation functor as well as to the functor of deformations
with section.
tangmodular(f) computes the tangent space of the modular stratum, i. e. the
first-order approximation of a maximal modular family inside a semi-universal
family of the singularity defined by f.
modular(f,d) computes the modular stratum of the singularity up to order d
by determining and killing the obstructions to lift modularity.

PROCEDURES:

tangmodular(f[,s]); tangent space of modular stratum of ideal f
modular(f,d[,s]); modular family of iso. singularity f up to degree d

/////////////////////////////////////////////////////////////////////////////

tangmodular(ideal I,list #)
USAGE: tangmodular(f,d[,s]); f ideal, d integer
ASSUME: ordering is local,

f is an ICIS when computing w.r.t deformations with section
RETURNS: list of two rings:

[1]: embedding ring of the modular stratum of f,
[2]: embedding ring of total space of the modular family, F0+F1

inside this ring give the equations of the modular family
except in the case when the modular stratum is trivial -
in which nothing is returned.

This gives the tangent space and the infinitesimal modular family
for f - higher order jets of the modular stratum are computed in
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the procedure modular.
If an additional argument s is given and non-zero, then computations
ware performed w.r.t. the functor of deformations with section

EXAMPLE: example tangmodular; shows an example.

/////////////////////////////////////////////////////////////////////////////

modular(ideal f, int d, list #)
USAGE: modular(f,d[,s]); f ideal, d integer
ASSUME: ordering is local,

f is an ICIS when computing w.r.t deformations with section
RETURNS: list of two rings:

[1]: embedding ring of the modular stratum of f, containing the
ideals J(k) defining the k-th jet of the modular stratum
for 2<=k<=d;

[2]: embedding ring of total space of the modular family, F0+F1
inside this ring give the equations of the modular family,
except in the case when the modular stratum is trivial - in which
nothing is returned.

If an additional argument s is given and non-zero, then computations
are performed w.r.t. the functor of deformations with section

EXAMPLE: example modular; shows an example.
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