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Abstract
Within the last decades, the number of social networks is growing fast. The competition of
retaining the customers to grow their platform and increase their profitability is rising. That is
why companies need to detect possible churners to retain these. The problem of predicting the
users’ lifetime, churning users, and the reasons for churning can be tackled by using machine
learning.

The goal of this bachelor thesis is to build machine learning models to predict user churn
and the user lifetime within the social network Jodel, a location-based anonymous messaging
application for Android and iOS.

To get the best possible prediction results, we have started with extensive literature research,
whose approaches we have tested and added to a machine learning pipeline to build predictive
models. With these models, we have investigated the performance after different observation time
windows and have finally compared the strongest models to detect similarities and understand
the insights to learn their behaviour.

The results of this thesis are machine learning models for a selected representative set of
communities varying in size within the Kingdom of Saudi Arabia and a country model leveraging
all data. These models are used for a regression task by predicting the lifetime of a user and a
multi-label classification of a user into six different churn classes. Additionally, we have also
given models for a binary classification, where the model will predict if the user will churn within
a given time or not. These models have shown general strong predictive power, which is shrinking
when limiting the observation time window. Especially the binary classification yielded high
accuracy of over 99%.

The best models have been used for predicting user churn within other communities to detect
communities with possible similar behaviour. These similarities then have been determined by
features’ importance, where the most important features have got fed back into empirics. This
has shown statistically significant differences between user groups with a different active time but
as of today no clear trends were visible that had led us to define the communities’ behaviours.

Since the competition of social networks is still growing, the retaining of users will stay a core
marketing strategy, which will need to be tackled by machine learning and artificial intelligence.
The created models could be useful for predicting churning users within the platform Jodel to
detect these customers that will churn within a given time.

Researches did not focus much on anonymous and location-based messaging. That is why the
results of this thesis on the anonymous messaging application Jodel opens a variety of possible
tasks for the future in this context.
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1 Introduction
Within the last years, the number of social networks is growing fast and the competition between
the companies is getting bigger. Each of these platforms depends on an active user-base to
stay alive and be attractive for new users. This user-base is threatened by user churn, which
represents the leaving users on the platform. That is why the retaining of existing customers is a
core marketing strategy [1], to avoid churning users. Therefore, the management tries to analyse
what leads users to churn from their platform to increase their profitability and grow their
platform. To achieve this, data and behavioural analysis are used to achieve a positive customer
relationship. Each network has loyal users, that probably inadvertently advertise the product
freely. Because of this, they tend to be more profitable for a company and are, therefore, more
important to retain. To measure the profitability of a user, the customer lifetime value (CLV) is
used, which denotes the expected profit over time in marketing. The users with a ’high value’ are,
therefore, more important to retain. One of the most popular scenarios is users who entering a
network and leaving it after a short time for many different reasons. They probably only wanted
to explore the platform shortly or had a bad experience with other customers. To counteract
against churn, detecting these reasons is one of the main but also complex tasks.

The prediction of user churn is a well-studied data mining task (cf. Sec. 3). This task is not
only limited to the detection of these users that will churn but also the likelihood of time until a
user might churn. These probabilities allow the companies direct timed steering to avoid churn
and improve the retention of users, by, e.g., sending (push) notifications or emails. This also
refers to the steering of communities or user-bases to achieve an optimal feature in mind. This
could include maintaining of healthy user-base, that should grow and converge into a well-mixed
population to achieve a sustainable level.

Within this thesis, we will predict the user churn by using Machine Learning (ML) within the
social network Jodel, which is a mobile-only location-based anonymous messaging application.
The application uses the GPS location of a user and builds the communities around this. As a
result, several distinct communities emerge within the country. The users then communicate
within the different communities when changing their location, because they cannot communicate
outside their location and therefore, makes the different communities disjoint. Because of
this disjunction, the churn prediction enables the comparison between the different geographic
communities on a countrywide level. In contrast to many other works, where non-anonymous
networks were focused, the prediction on Jodel, which does not include user-profiles and the
social credit does not play a role, enables us to study user churn in absence of any form of social
ties.

To achieve the best prediction result, we will focus on the Random Forest (RF) in this thesis.
With the help of this ML algorithm, we will build strong predictors for different tasks. On the
one hand, we will predict the user lifetime on the platform which will give us a specific time
(regression), and on the other hand, we will classify the users into different classes that symbolise
the time period until a user churns (classification). This will show us which users tend to churn
earlier and are, therefore, interesting to improve their retaining. Additional to this multi-label
classification we will then break down the problem to a classification of a user, as a customer
with a lifetime lower than a given threshold or greater. This makes the prediction easier and
more practical by giving the information which users will churn within a given time and are,
therefore, focused to avoid their churn.

With the built models, we will then have a look at their insights, to see how models of different
communities behave in others and if we can detect similarities between them, by observing the
most important features, their correlations, and detecting statistically significant differences
between user groups for these features. It will be evaluated if this information can be used to
define different community states, as well as learning and understanding the models’ behaviour.
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1.1 Jodel

In the spotlight of this bachelor thesis stands Jodel. It is a German mobile social media app for
Android and iOS. The goal of Jodel is the local and anonymous real-time interaction between
users. The providers want to give everyone a voice no matter who they are and aim to have helpful
and peaceful communities. Therefore, they established the hashtag ’’#GoodVibesOnly’’ [2].
Within a dynamic radius, a user can post messages and pictures with short captions into a feed
or channels that handle special topics. Users can also interact with other users by commenting
and voting their posts up or down to decide what is talked about or what he likes to see [2]. The
radius where a user can see and add posts can vary up to 20 km [3]. The users are communicating
anonymously, as users do not have a dedicated user profile. This means users do not have a
profile picture or other personal information available. When replying to others’ posts, each user
gets a consecutive ID within a single thread, to which everybody can refer. To represent the
good vibes a user is spreading, Jodel established the so-called ‘Karma’ points which reflect light
gamification for users to generate a positive atmosphere. They can be generated by posting and
replying to help other users by commenting or voting up or down [4].

We show the main Android interface of Jodel in Fig. 1. It consists of three important parts.
First, the header ♠1 where the user can switch between different channels ♠A , the current feed
of the actual location, the hometown ♠B , or the personal information displayed by Karma points♠C . The main part ♠2 includes the feed with up to 150 listed posts. And finally, the footer♠3 where the user can switch between the real-time feed ♠D or a feed with posts of the current
day or the past week ♠E or come back to the top with the newest posts ♠F . A typical post is
presented in Fig. 2. To represent the diversity of the Jodel community each post gets a random
colour [5]. At ♠I the user can see the time since it was posted, the channel, e.g., @main, and the
distance to the posting spot in different steps, which is shown in Tab. 1. ♠II shows the number
of comments and at ♠III the user can vote the post and see the actual vote-score, which is a
cumulated score calculated by 𝑢𝑝𝑣𝑜𝑡𝑒𝑠 − 𝑑𝑜𝑤𝑛𝑣𝑜𝑡𝑒𝑠.

Figure 1: The Android interface of the Jodel
App including the header at ❦1 with channels❦A , current locations ❦B and Karma points ❦C ,
the feed ❦2 , and the footer ❦3 for selecting
the time ❦D - ❦F .

Figure 2: An example Jodel post in-
cluding the distance and channel at ❦I ,
the number of comments at ❦II , and
the panel for voting at ✍✌✎☞

III , which also
shows the actual votescore (𝑢𝑝𝑣𝑜𝑡𝑒𝑠 −
𝑑𝑜𝑤𝑛𝑣𝑜𝑡𝑒𝑠).

Tag Distance
here ≤ 1 km
very close ≤ 2 km
close ≤ 10 km
far > 10 km
hometown Post with hometown feature

outside the radius

Table 1: The distance tags and their
meanings [6] are displayed at ❦I in
Fig. 2.
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A special feature of Jodel is the distributed moderation system. The app integrates the users
into moderation by letting them downvote the post or flagging it directly for moderation. To sort
the reported posts, Jodel uses a selection of users, which are outstanding within the community
and have shown that they can support the community guidelines strictly. These moderators
can give each reported post a vote (blocked or allowed) or skip it if they are unsure. If enough
moderators voted, an algorithm of Jodel finally decides if the post gets removed. If the post gets
removed, the owner loses all earned Karma of this post and gets a penalty of -1000 Karma [7].

1.2 Dataset

In this bachelor thesis, we base our work on a dataset of Jodel from 20.12.2014 to 07.08.2017
within the Kingdom of Saudi Arabia with 95 cities. As described in Tab. 2, it includes three
different tables, a user table with general information about each registered user, like the
date of registration, the number of posts and replies, happyratio ( 𝑢𝑝𝑣𝑜𝑡𝑒𝑠

𝑢𝑝𝑣𝑜𝑡𝑒𝑠+𝑑𝑜𝑤𝑛𝑣𝑜𝑡𝑒𝑠), postratio
( 𝑐𝑟𝑒𝑎𝑡.𝑝𝑜𝑠𝑡𝑠

𝑐𝑟𝑒𝑎𝑡.𝑝𝑜𝑠𝑡𝑠+𝑐𝑟𝑒𝑎𝑡.𝑟𝑒𝑝𝑙𝑖𝑒𝑠), or the generated Karma, the content table with information about all
created posts and replies including the date of creation, votes, a reference to the creator, or
the number of flags, and an interactions table, that includes information like registrations, the
creation of posts, or votes. This includes the date and the related user and content.

In our prediction tasks, we will focus on the active duration in minutes of a user from the
user table. Because of the fact, that our dataset only includes meta-data and that we do not
have data of passive consumption like just scrolling along the feed without posting or voting,
this value is a lower bound, which is set at the last active interaction. There is also a limitation
on the case of dates of votes, which are post affiliated. That is why the minimal time a user
was active on Jodel represents our optimization target. This includes also the users who did not
actively use Jodel by creating posts or voting. In the further progress of this thesis, we will refer
to this value as ‘active minutes’.

table content # columns # rows
user user information like registration date, number of created 20 1,214,881

posts or Karma
content information about all created content like date, votes, 14 469,323,817

Karma or the associated user
interactions information about different interactions like registrations, 7 966,865,197

votes or created posts

Table 2: The tables of the dataset and their columns.

The used dataset includes interactions of 1,214,881 users within the given time. To determine
a period where many users registered at Jodel we looked at the numbers of registrations per
month, which are shown in Fig. 3. As we can see, the number of users increased explosively in
March 2017.

To determine characteristics of the observed users we looked at the number of interactions
of a user, like posts, replies, or votes overall and outside the city of registration. As we can
see in Tab. 3, 35% of the users did not post, about 28% did not reply and about 25% did not
actively create content. In contrast to that, there are just 19% of the users who did not vote
and therefore, less than active content creation. This shows us that there exist more users who
are more likely to interact in a passive than in an active way.

In Tab. 4, we can also see that about one-third of the users mainly interacted outside their
registration city. That is why we added the virtual capital for a user. This virtual capital is
defined as the city, with most interactions of a user within. We have shown the number of users
by their registration city, as well as by their virtual capital in Tab. 5.
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Figure 3: Distribution of registration numbers in the period from August 2015 to August 2017.

interaction #users ratio
posts 428,104 35%

replies 335,010 28%
active 299,889 25%

passive (votes) 231,472 19%

Table 3: The ratios of users with zero active
content creation interactions (posts, replies, re-
ply & post) and passive interactions (votes) to
the number of all users (1,214,881).

#users ratio
within reg. city 679,358 56%
outside reg. city 361,490 30%

same in both 174,033 14%

Table 4: The number of users who interacted
most within and outside their registration
city, as well as users who equally interacted
in both regions. We can see that there are
about one-third of the users mainly interact-
ing outside their registration city.

City #user reg. city #user virtual capital
Saudi Arabia 1,214,881
Riyadh 314,156 289,963
Jeddah 114,976 103,386
Mecca 50,661 45,885
Al Bahah 12,931 11,458
Al Jafr 213 176

Table 5: The number of users in the dataset within the cities Riyadh, Jeddah, Mecca, Al Bahah,
and Al Jafr, divided into the city of registration and the city with their most interactions as virtual
capital.

As shown in Fig. 4, we also looked at the cumulative density function (CDF) and the quantiles
of the numbers of posts, replies, and votes, as well as posts and replies as one. We can see that
25% of the users did not post, replied just once, and voted just twice, which means that there is
a huge number of users who interact almost not at all. What we can also see is that in the 50%
and 75% quantiles the users are more likely to interact by an active content creation than by
votes. A special finding from this is the imbalance of the dataset. We see that there are 75% of
the users who created content a maximum of 223 times and just 25% with more interactions
and a maximum of about 38k posts or replies. When we have a look at the number of votes,
we see that 75% of the users voted a maximum of 97 times and just 25% voted more often
with a maximum of about 358k. That is why we identified the user interactions within Jodel as
imbalanced. This will be discussed and considered in Section 6.2.
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Figure 4: The CDF of posts, replies, posts+replies, and votes with given 25%, 50%, and 75%
quantiles, which shows us, that users are more likely to interact by votes than by actively creating
content.

1.3 Definition of Churn

What we want to observe and predict within this dataset, is the churn of users within a specific
time. A churner in the topic of social networks is a user who joined the network and leaves it
forever for some reason after a specific time. Therefore, we will look at different characteristics
within the observed users to classify them as churners. As a criterion, we will consider the active
time of a user on the platform.

We have therefore observed the CDF of the active minutes. As shown in Fig. 5, 25% of the
users did not stay longer than 7,359 minutes or about 5 days. We can also see that 50% of them
did not stay longer than about 38 days and thus just a bit longer than one month. We also
learned, that just 25% of the users did stay longer than 102 days (≈ 3 months). This leads us to
the conclusion, that many users stay for a really short time and churn from the platform.

Because of users that could not have been active for a longer time since registration and the,
therefore, bias, we have observed the ratio of time they could stay active to the real active time
in Fig. 6. We can see that 50% of the users (206,095) stayed a maximum of 66.4% of the time
they could. We can also see that there are just 25% of the users (103,047) who used more than
96.5% of the time. This shows us that this distribution has about 25% of users who used 10% of
the time in a maximum of their possible time, 25% of the users who used nearly every minute
they could and about 50% of them used it in a high time variety. This shows us that there is a
high variety in using the possible time, but also many users who are using just a fracture of it.
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Figure 5: The CDF of the active minutes with
the given quantiles, which shows that 25% of
the users did not stay longer than about 5 days,
50% not longer than about 38 days, and 75% not
longer than 102 days. This also means that many
users stay for a very short time and therefore,
churning soon after joining the platform.

Figure 6: The active minutes in relation to the
possible active minutes of the users and the
given quantiles. This shows that 25% of the
users used Jodel a maximum of 10.8% of the
possible time, 50% a maximum of 66%, and 75%
of them a maximum of 95%.

To define our churners, the definition was split into different classes to observe later in which
class we can achieve the highest prediction accuracy. After the observation we just made, we
decided to classify our churners as shown in Fig. 7 and Tab. 6. We decided to take a look at
users who churned after one day to see how good the predictive models can detect this subset of
just 15.5% of users. Because of the quantiles of the active minutes, we also decided to observe
the first week and month, and the first three months. To get a more detailed look we added also
the class for users who stayed just two weeks and finally, a class for all other users who stayed
longer than three months.

Figure 7: The CDF of the active minutes in
days separated into six classes, which will
be observed and discussed.

class active minutes # users ratio
1 ≤ 1 day 135,158 13.3%
2 1 day < ... ≤ 7 days 122,992 12.1%
3 7 days < ... ≤ 14 days 75,101 7.4%
4 14 days < ... ≤ 1 month 125,449 12.4%
5 1 month < ... ≤ 3 month 268,543 26.5%
6 > 3 months 185,376 28.2%

Table 6: The definition of the six shown classes in
Fig. 7, where we have given their borders, as well
as the number of users within this subset and their
ratio to all users.

1.4 Ethical and Social Aspects

The importance and sensitivity of data privacy and protection within a social network was the
topic of many discussions since social networks were established, but increased constantly within
the last years. Since social networks have been used, users trust the companies to keep their
private information safe and away from the public. In many cases, the protection of data is
discussed much. At least since 2018, where a huge amount of personal data of Facebook, one of
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the biggest social networks, was leaked, data protection is extremely discussed and came into
special focus.

The used data in this thesis was provided by Jodel and includes meta-data like registering
dates, number of votes for a user, or the number of created posts, that belong to a user ID
that cannot be tracked back to personal information. Jodel itself does not store any personal
information about a user. Registering needs just some technical information about the user
device and no phone number, mail address nor other personal details. Therefore, Jodel cannot
trace back a Jodel account [8]. We did not have access to any other data that let us conclude
with a specific person.

1.5 Research Question

Within this bachelor thesis the main research question will be:

Can we build predictive models for single communities that achieve high prediction
accuracy and can we build a single model that can predict user churn of different
communities in the Kingdom of Saudi Arabia with high prediction accuracy?

Based on these models, we will ask furthermore:

How do the different models perform on other communities, and can we detect
similarities to possibly define different behaviours of models, hence communities?

1.6 Contributions

The contributions of this thesis will be:

• creating and selecting of different features and feature subsets

• expansion and improvement of an existing ML framework for building a pipeline for data
preparation, predictive models, and evaluation

• evaluating the performance of the models based on different time-window feature subsets

• using the best models for predicting user churn in other communities to:

a) find a model with general strong performance in many communities
b) find similarities between the different models (using feature importance)

• using the most important features to detect trends in empiricism

1.7 Outline

We have organized this bachelor thesis as follows: In Section 2 we will explain the basics of ML
to help understand the presented work. After that, we will have a look at the existing work
for predicting churn in different contexts in Section 3. We will then have a look at the used
features and their engineering in Section 4, followed by a presentation of our ML pipeline and
its implementation in Section 5. As the main part, we will then present our evaluation of the
models in Section 6. Before summarizing the results and concluding in Section 9, we will have a
look at improvements of the models that could enhance our results, as well as future tasks, that
can be built on our results in Section 7 and 8.
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2 Background
In the following, we explain the processes that will be used within this thesis. For this, we will
start by feature engineering in Section 2.1, followed by the tools that were used for pre-processing
the data in Section 2.2 for scaling and balancing the data. After this, we will explain the
different used Machine Learning (ML) methods, including, e.g., the Decision Tree (DT), but also
some Ensemble methods, like the Random Forest (RF) in Section 2.3. Because of the different
parameters for each method, we will then explain the hyperparameter tuning in Section 2.4 and
how we avoid overfitting of our models by k-fold cross-validation in Section 2.5. For evaluating
and comparing the models, we will end this section by defining the used metrics in Section 2.6,
statistical tests in Section 2.7, and correlation coefficients in Section 2.8.

2.1 Feature Engineering

When training a model for a specific task, it needs to be fed with data. This data in ML is
represented by features. These features are representing different aspects of a user, from which
the models learn and create rules for predicting the correct result. To achieve the best possible
model, we need to feed it with ‘‘enough relevant features and not too many irrelevant ones" [9].
The selection of the best number and overall best features is called feature engineering. This
includes the selection of the most useful features, but also extracting and combining to new more
useful, as well as generating new features [9].

For selecting the most useful features, we will see in Section 3, a range of methods that can
be used to calculate the importance of features within the prediction process and giving us a set
of features that could work optimally.

Within this section, we will present the three methods, that we will use within this thesis.
These methods will calculate the importance of the features, that will be used to select the most
important features, as well as for detecting similarities of different models, hence communities
by using correlation coefficients. Because of their high importance, they could also describe the
characteristics of the models, hence communities, which will need to be confirmed by feeding
them back into empiricism.

2.1.1 Feature Importance from Decision Trees

The Decision Tree can be used when running a DT algorithm (cf. Sec. 2.3.1). It is the
visualisation of the created tree. This lets us interpret and understand the decision-making of
the created DT. A visualisation of a DT can be seen in Fig. 8. This enables the reading of the

active_days_ratio  0.5 
gini = 0.6667 
samples = 150 

value = [50, 50, 50] 
class = class 1 - 3

postcreated  20 
gini = 0.5 

samples = 100 
values = [0, 50, 50] 

class = class 2

gini = 0.0425 
samples = 46 

values = [0, 1, 45] 
class = class 3

gini = 0.168 
samples = 54 

values = [0, 49, 5] 
class = class 2

gini = 0.0 
samples = 50 

values = [50, 0, 0] 
class = class 1

True False

Figure 8: An example of a DT which displays a Boolean function for the decision, including the
node attributes: feature name and boundary, gini for impurity, values are the training instances of
each class at this node, class for the predicted class at this node [9].

9



used features, as well as the Gini impurity, instances of each class at this node or the predicted
class at this node [9].

Within tree-based algorithms like the RF (cf. Sec. 2.3.10.3) or the DT (cf. Sec. 2.3.1), the
Feature Importance can be used. It is based on the Gini Importance, which is a measure
that bases on the impurity reduction of splits within a DT. At each node, the Gini Impurity is
measured. The used feature at a split that has a large decrease of impurity, will be categorized
as important. The importance of a feature is then calculated as the sum of all impurity measures
overall nodes within the tree or forest [10].

2.1.2 ReliefF

The ReliefF algorithm was proposed in 1997 by Kononenko et al. in [11] and is a member of the
Relief family which was introduced in 1992 by Kira and Rendell in [12]. The Relief algorithm
returns the importance of the features, by observing the difference between the values of two
samples that are near to each other. It, therefore, searches first for the so-called nearest hit, a
sample of the same class, and nearest miss, a sample from the other class. It then calculates the
difference between the values of both instances and gives them weights, to finally, calculate the
total distance by cumulating the differences over all attributes [11].

The ReliefF is an extension of the Relief, ‘‘that improves the original algorithm by estimating
probabilities more reliably and extends it to deal with incomplete and multi-class data sets’’ [11].

2.1.3 RFECV

The RFECV is a combination of the Recursive Feature Elimination (RFE) and cross-validation
(CV).

The RFE is used to iteratively exclude features and was firstly proposed in [13], where
for each iteration the feature importance is calculated and the worst feature excluded until a
’perfect’ number of features with maximum importance is reached. When excluding more than
one feature at a time it can be sub-optimal and possibly remove features that could have more
effect. Therefore, the RFE iteratively removes one feature after another until a given subset
size is reached. It trains a given classifier and calculates the ranking criterion and ‘‘removes the
feature with the smallest ranking criterion’’ [13]. The final subset is then an optimal subset of
relevant features, but not all features within this subset must be individually most relevant [13].

In SciKit Learn the RFE is combined with cross-validation, which not returns a subset of a
given size, but a subset with an optimal number of features by looping until an optimal subset
was found [14].

2.1.4 Input Variance

The variance (̃︀𝑠2) of a dataset is a value, that represents the scattering of samples around their
mean. It is the square of the standard deviation and is, therefore, small when the values are
laying close to the mean. If the values laying far away and therefore, strongly scattered, the
variance is big [15]. According to [15], it is defined as follows:

̃︀𝑠2 = 1
𝑛

[(𝑥1 − �̄�)2 + ... + (𝑥𝑛 − �̄�)2] = 1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − �̄�)2 (1)

Because of more differences when having a higher variance for a feature, one can assume that
the samples are strongly differing for this feature and that it gains more information because
of a wider value range, which could help our predictor by classifying the samples. That is why
detecting features with the highest variance in ML, could help to improve the prediction result.
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2.2 Data Pre-Processing

The task of data pre-processing can be a very important part, to achieve strong results for ML.
In the following, we will show the used tools for scaling and balancing the data.

2.2.1 Scaling

When using numerical input features with a very different scale, many ML algorithms do not
perform very well. Therefore, a transformation of the data is often used [9]. In the following, we
will present the two main used scalers, the Standard Scaler (cf. Sec. 2.2.1.1) for standardisation
and the Min-Max-Scaler (cf. Sec. 2.2.1.2) for normalization from SciKit-Learn.

2.2.1.1 Standard Scaler

The Standard Scaler is used to standardise the values of a feature. This means that the
standardised values have a zero mean. To achieve this, the Standard Scaler first ’’subtracts the
mean value [...], and then it divides by the variance so that the resulting distribution has unit
variance’’ [9].

2.2.1.2 Min-Max-Scaler

The Min-Max-Scaler is used for normalizing the data, to rescale them to range between a
given interval [9]. According to [16] this can be achieved by calculating for each value 𝑥 of the
feature 𝑋:

Min-Max-Scaler(𝑥) = 𝑥 − 𝑚𝑖𝑛(𝑋)
𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋) (2)

The Min-Max-Scaler from SciKit-Learn has the feature_range parameter which can be used for
defining the range of the feature values [9].

2.2.2 Balancing

Especially in churn prediction, a special characteristic of the data is the class imbalance. This
means that we have differences in data quantities between the different classes, which means
classes with just a few representatives and classes with a great quantity of representatives. This
could follow to ML algorithms that may not get enough information about the smaller class and
result in potentially lower accuracy of the prediction. To avoid this, several sampling methods
to handle imbalance can be used. Besides the upcoming three presented methods, there exist a
variety of different variants. In the following two sections we will explain two used non-heuristic
methods for under- and oversampling and the used heuristic method for oversampling.

2.2.2.1 Random Over- and Undersampler

The Random Undersampler (RanUS) is a non-heuristic method from Imbalanced Learn [17],
that randomly eliminates examples of the majority class. This can be done fast and easy but also
increases the possibility of discarding useful data, because of the non-heuristic decision. These
could gain important information for the classifier and could therefore decrease the prediction
accuracy [18].

The Random Oversampler (RanOS) is also a non-heuristic method from Imbalanced
Learn [19], that randomly replicates examples of the majority class. This can also be done fast
and easy but increases the possibility of overfitting the data, because of the non-heuristic decision.
The exact replicates of the minority class can result in constructed rules that cover a replicated
example, which makes the prediction accurate [18].
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2.2.2.2 Synthetic Minority Oversampling Technique (SMOTE)

The Synthetic Minority Oversampling Technique (SMOTE), is an oversampling approach that
was introduced in 2002 by Chawla et al. in [20]. They compensate the oversampling with
replacement, like in the Random Oversampler, by creating ’synthetic’ examples by operating in
’feature space’. ’’The minority class is over-sampled by taking each minority class sample and
introducing synthetic examples along the line segments joining any/all of the 𝑘 minority class
nearest neighbors’’ [20]. From the 𝑘 nearest neighbours, randomly the required neighbours, for
the amount of over-sampling, are chosen [20].

The synthetic samples are generated by the difference of the feature vector of a sample and
its nearest neighbor, which gets multiplied by a random number between zero and one. The
result is added to the vector and results in a point between two specific features. This generates
’’larger and less specific decision regions [...], rather than smaller and more specific regions’’ [20].
This leads to the learning of more general regions and therefore, a better generalisation [20].

2.3 Learning Methods

Within the following section, we will explain the different ML methods that were used within
this thesis. We will explain common methods, as well as some combinations of them, called
ensemble methods.

2.3.1 Decision Trees

Decision Trees (DT’s) are ML algorithms, introduced by Leo Breiman in [21], that can be used
for classification and regression tasks.

DT’s are building a tree that represents a decision function. The algorithm traverses the tree
from root to leaf, by using a simple decision rule, as shown in Fig. 8. This is repeated until a
leaf is reached and the algorithm can specify the result [9].

DT’s acting like a white box, because of the simple visualisation and are, therefore, simple
to understand and interpret. Any given result can be observed and can easily be explained by
boolean logic.

Creating a DT can also result in over-complex trees, which leads to overfitting, e.g., because
of the not well generalised data. To avoid this, we can use mechanisms like setting the maximum
depth of the tree, pruning, or setting the minimum number of samples at a leaf node. Another
problem can be the dominance of classes, which leads to a biased tree. That can be avoided by
balancing the dataset [22].

2.3.2 K-Nearest-Neighbors

The K-Nearest Neighbours (KNN) is an ML algorithm for regression and classification tasks.
It classifies a sample based on the already classified samples. For this, it uses the k nearest
neighbours by a distance metric and labels the new sample from these, as shown in Fig. 9. The
distance can be any metric measure. These k neighbours can be a defined constant or ‘‘vary
based on the local density of points’’ [23].

For classification, it uses uniform weights, resulting in a simple majority vote of the nearest
neighbours of a single point. This can also be changed to distance weights, which assigns weights
proportional to the inverse of the distance from the query point [23].

For the regression, the algorithm labels a point by computing the mean of the labels of the
nearest neighbours. The weights of each point are uniform and therefore, equal for each point.
This can also be changed to distance weights like described for classification [23].
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Figure 9: 2D example of the result of classifying samples with class border (dotted line) as Voronoi
diagram [24].

2.3.3 Support Vector Machine

The Support Vector Machine (SVM), is a ML method that can perform binary and multi-class
classifications, as well as regression. They were proposed in 1992 by Boser et al. [25]. The SVM
basically is a binary classifier, that is why we will explain first the basic functionality. We will
then explain how to extend to handle multi-class classification and regression.

The SVM ‘‘constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional
space’’ [26]. The best hyper-plane can be achieved by choosing the largest distance to the
data points of classes (one-versus-one approach). ‘‘The determination of the model parameters
corresponds to a convex optimization problem’’ [27], where the target is to detect the maximum
of a margin between decision boundary and data points. ‘‘The location of this boundary is
determined by a subset of the data points, known as support vectors’’ [27], as red dotted bordered
points, shown in Fig. 10. The larger the distance is, the lower is the generalisation error of the
classifier.

X

Y

Figure 10: Classification of a SVM. Displays the decision boundary and data points and especially
the support vectors (data points with red dotted border) [28].

To handle the multi-class classification has been proposed a one-versus-the-rest approach by
a combination of multiple binary SVM’s. For k classes, we construct k separate SVM’s, where
the 𝑘𝑡ℎ model ‘‘is trained using the data from class 𝐶𝑘 as the positive examples and the data
from the remaining 𝑘 − 1 classes as negative examples’’ [27].

The Support Vector Regression is an extended Support Vector Classification and was proposed
in 1997 by [29]. It depends on a subset of the training data and constructs a function, to get the
training points inside a ‘tube’ of a given radius [29].
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2.3.4 Gradient Descent

The Gradient Descent (GD) is an ML method, that iteratively optimizes the parameters, to
minimize a cost function. To achieve this, it ‘‘measures the local gradient of the error function
[...], and it goes in the direction of [the] descending gradient’’ [9]. When reaching a gradient of
zero a local minimum is found.

The algorithm starts with a so-called random initialization, which fills the parameter vector
with random values. In each iteration, it will then gradually improve and attempt to decrease
the cost function until a minimum is reached [9], as shown in Fig. 11.

The size of the steps, also known as the learning rate hyperparameter, is very important. ‘‘If
the learning rate is too small, then the algorithm will have to go through many iterations to
converge, which will take a long time’’ [9]. If the learning rate is too big, the algorithm could
jump over the minimum and diverge, with larger and larger values and would finally fail [9].

Cost

Parameter Vector
Random Initial

value

Learning Step

Local 
Minimum

Figure 11: The proceeding of a GD, starting with random values and decreasing the cost function
until it reaches a minimum [9].

2.3.5 Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) uses a random subset of the training data at every step
and calculates the gradient as seen for the GD before, but based on this subset. This makes
the algorithm much faster and makes it possible to run on huge training sets in comparison
to the GD. The cost function is decreasing on average but may jump up and down until a
local minimum is reached. A disadvantage is that the SGD could continue jumping around the
minimum and will end with good final parameters, but not optimal [9], as shown in Fig. 12.
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Figure 12: The convergence of the SGD to the cost minimum and jumping around [9].
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2.3.6 Linear Regression

The Linear Regression (LR) is an ML method for classification and regression tasks. It is a
simple algorithm that predicts by optimizing a weighted sum of input features and a constant
(bias term), as shown in Equation 3 according to [9], which directly represents the optimization
target.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛 (3)

This includes the predicted value 𝑦, the bias term 𝛽0 and 𝑛 features, displayed by 𝑥𝑖 as the
𝑖𝑡ℎ feature value and 𝛽𝑗 the 𝑗𝑡ℎ model parameter or rather feature weight [9].

2.3.7 Logistic Regression

‘‘Logistic Regression is a statistical method of predictive analysis’’ [30] and is primary used for
binary classification and bases on the sigmoid or logit function (also called Logit Regression),
with values between 0 and 1 [31]. The Logistic Regression (LogR) is often used for estimating
the probability, that a data point belongs to a specific class. If it reaches a probability of greater
than 50% it predicts a certain class [9].

The LogR calculates like the LR, but returns the logistic of the result. This is also called
logit, a sigmoid function 𝜎, that returns a value between 0 and 1 [9], as shown in Equation 4
according to [9].

𝑝 = 𝜎(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛) (4)

2.3.8 Naïve Bayes

The Naïve Bayes (NB) is a classification method basing on the Bayes’ theorem. By using the
associated variables of an event, the algorithm calculates the probability that it will happen [32].
‘‘It adopts the idea of complete variables independence, as the presence/absence of one feature
is unrelated to the presence/absence of any other feature’’ [32]. As a result, the NB returns a
probability score and the predicted class [32].

2.3.9 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is an Artificial Neural Network (ANN). The ANN’s are
inspired by the brain’s architecture and were introduced by McCulloch in 1943 in [33]. It consists
of interconnected artificial neurons. They get two or more binary inputs and one binary output
as shown in Fig. 13. Because of the mappings of the brain in researches, the neurons are often
separated into consecutive layers, as shown in Fig. 14.

An extended, but simple version of ANN’s, the Perceptron was proposed by Rosenblatt in
1958 in [34]. It bases on the so-called linear threshold unit (LTU). The input and output became
numbers and the input is connected with weights. ‘‘The LTU computes a weighted sum [Σ] of
its inputs [...], then applies a step function [𝑍] to that sum and outputs the result’’ [9], as shown

C

BA Input

Neuron

Connection

Figure 13: An example of
an ANN performing a simple
logic [9].

Figure 14: ‘‘Multiple layers in a biological neural
network (human cortex)" [9].
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Figure 15: The concept of a Perceptron with LTU (left) and the Perceptron with multiple LTU’s
and input layer with bias neuron (right) [9].

on the left in Fig. 15. A Perceptron consists of a single layer of LTU’s, where each neuron is
connected with all inputs. These input connections are often represented by a so-called input
layer, that includes a bias neuron, which always outputs 1, and neurons that simply output their
inputs [9], as shown on the right in Fig. 15.

When training the perceptron, the weights between neurons get increased when they have
the same output. This was derived from the brain, where connections between neurons get
stronger when they get triggered [9]. But simple perceptrons are limited in, e.g., learning complex
patterns, because of the linear output of a neuron or ‘‘the fact that they are incapable of solving
some trivial problems’’ [9]. To eliminate these limitations the MLP was presented, which stacks
multiple perceptrons [9], as shown in Fig. 16. It includes the already explained input layer, one
or more hidden layers, which include layers of LTU’s and finally an output layer with LTU’s.
Except for the output layer, each layer has a bias neuron and gets ‘‘fully connected to the next
layer’’ [9], as shown in Fig. 16. The MLP is called a deep neural network when using two or
more hidden layers [9].

1

1

1

...

Input Layer

Hidden Layers

Output Layer

Figure 16: The MLP with an input layer, including two input variables and a bias neuron, multiple
hidden layers, including a bias neuron and four LTU’s, and the output layer, including three
LTU’s [9].
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The MLP gets trained using backpropagation, which was proposed in 1986 by D.E. Rumelhart
et al. [35]. This means that each neuron gets trained in each consecutive layer and the network’s
output error gets measured. ’’It computes how much each neuron in the last hidden layer
contributed to each output neuron’s error. It then proceeds to measure how much of these
error contributions came from each neuron in the previous hidden layer -- and so on until the
algorithm reaches the input layer’’ [9].

2.3.10 Ensemble Methods

Ensemble Methods implement the Idea of the wisdom of the crowd, which means the aggregated
answer of thousands of random people is better than the answer of one expert [36]. In our case,
we aggregate the predictions of a group of predictors to get a better prediction as the best single
predictor. We will call this group of predictors an Ensemble Method. In the following sections,
we will describe a selection of well-known methods to demonstrate a range of ensemble techniques
like bagging or boosting [9].

2.3.10.1 Voting Classifier

A Voting Classifier uses multiple classifiers and their prediction result, as shown in Fig. 17. The
Voting Classifier can be differentiated into a hard and soft voting classifier.

A hard voting classifier aggregates ’’the predictions of each classifier and predicts the class
that gets the most votes’’ and can, therefore, also be called a majority vote classifier [9].

The soft voting classifier is an ensemble of classifiers that can predict class probabilities. Each
class gets an average probability over all the individual classifiers and predicts the class with the
highest probability [9].

New Instance

Predictor 1 Predictor 2 Predictor 3 Predictor 4

1 1 12

1

Predictions

Diverse
Predictors

Ensemble's Predictions 
(e.g., majority vote)

Figure 17: The Voting Classifier uses multiple predictors to compute an ensemble prediction from
the single predictions by using, e.g., majority vote [9].

2.3.10.2 Bagging Classifier

A Bagging Classifier generates multiple versions of a given predictor. These predictors get
trained on multiple random subsets with bootstrap replicates and aggregate the prediction result.
For numerical outcomes, the prediction results get aggregated by the average for numerical data
or for the classification tasks by a plurality vote, as shown in Fig. 18. Breimann called this
procedure “bootstrap aggregating” and gave it the acronym bagging [37].
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Training set

Subset Subset Subset Subset

Random sampling 
(with replacement)

Predictor Predictor Predictor Predictor

Training

Ensemble  
Prediction

1 1 2 1

Aggregates Average (numerical) or
plurality vote (classification)

Figure 18: The Bagging Classifier trains a predictor on multiple subsets (with replacement) and
aggregates the prediction results for the ensemble prediction. This can be done, e.g., by aggregating
the average for numerical data or the plurality vote for classification [9].

2.3.10.3 Random Forest

A Random Forest (RF) is a so-called bagging classifier, introduced by Breiman in 2001 [38], that
can be used for regression and classification tasks. It combines a group of DT’s, a Decision Tree
Ensemble, and includes all hyperparameters of a DT as well as all of a Bagging Classifier, to
control the ensemble [9].

The trees of the RF ‘‘are built to explain the different features in data’’ [28]. When growing
the trees, the RF ‘‘searches for the best feature among a random subset of features’’ [9], in
contrast to the DT. ‘‘This results in a greater tree diversity, which [...] trades a higher bias for a
lower variance, [and is] generally yielding an overall better model’’ [9].

The RF can handle ‘‘large data and thousands of input variables’’ [28], as well as missing
and imbalanced data [28]. ‘‘Random forest’s weaknesses are that when used for regression they
cannot predict beyond the range in the training data and that they may over-fit data sets that
are particularly noisy’’ [28].

2.3.10.4 Boosting

Boosting is used by combining multiple weak learners into a single strong learner. The pre-
dictors get trained sequentially. Each predictor tries to correct its predecessor and results in
a rule-of-thumb for the prediction. Finally, the predictors get combined for a final prediction
rule [39].

2.3.10.5 AdaBoost

The Adaptive Boosting or AdaBoost is a boosting method. It proceeds iteratively and combines
many classifiers. At first, all training samples initialised with the same weight and get classified
for the first time. The weights of the misclassified data points get then increased or boosted.
The next classifiers repeat this procedure by using the weighted samples, to focus more on the
difficult cases [39], as shown in Fig. 19. When each predictor got trained, the predictions of
all predictors are aggregated and each predictor gets weighted. The class with the majority of
weighted votes will then be defined as the final prediction [9].
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Figure 19: The AdaBoost using multiple classifiers and increases the weights of misclassified samples
to focus more on difficult cases within the next classifier [9].

2.4 Hyperparametertuning

When selecting one or more methods to use for the problem, various hyperparameters can be
used, which can be adjusted to optimize the prediction result. Because of a wide range of possible
parameters, it is needed that these parameters get tested to find an optimal combination, which
is called Hyperparametertuning. Because of the enormous scope, it would be very tedious
work to test each parameter combination manually. That is why we are using a so-called Grid
Search, which receives the parameters and values as input to test and evaluates the possible
combinations. The used Grid Search in this thesis is combined with k-fold cross-validation, from
SciKit-Learn, called GridSearchCV [40], to avoid overfitting of our models [9].

2.5 k-fold Cross-Validation

For an evaluation of a model, we would split our model into a training and test set. We will then
train the model and predict the samples of the test set. This could work very well but could
skew the results because of the missing information of samples from the unseen test set and
could, therefore, lead to overfitting. This means, that the model performs well on the training
set, but does not generalize enough to perform well on new data. To avoid this we can use
k-fold cross-validation (CV). This splits the data into 𝑘 distinct subsets, the so-called folds.
It will then train the model 𝑘 times, by evaluating each time on a different fold and training
on the other 𝑘 − 1 folds. This results in 𝑘 evaluation scores. These can then be evaluated by
aggregation, e.g., calculating the standard deviation to measure how precise the model is [9].

This can avoid overfitting, because of the training on all samples in subsets and testing on
the whole data in subsets. This creates a more generalisation and therefore, a more diverse
observation and combination of different samples.
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2.6 Metrics

Within the following section, we will first explain the used metrics for regression tasks in
Section 2.6.1 and classification tasks in Section 2.6.2. These metrics are used to compare the
different algorithms and models and get a deeper look at their performance.

2.6.1 Regression Metrics

For the regression task, we will use three different metrics, for evaluating and comparing
the models. Within this thesis, we will use the Mean Squared Error (MSE), Mean Absolute
Error (MAE), and the R2 Score.

2.6.1.1 Mean Squared Error

The most common performance metric for regression tasks is the Root Mean Squared Er-
ror (RMSE). The task is to minimize this value. ’’Because the value that minimizes a function
also minimizes its square root’’ [9], and it is simpler to minimizes it and we achieve the same
result, in practice the Mean Squared Error (MSE) is used [9].

To reflect the consistency of a sample, both the behaviour of the expected value and the
variance of the estimation are included. This is done by using the MSE, which indicates the
deviation between the estimation (𝜃) and the true value (𝑇 ), which is expected for the estimator
and is defined in [15] as follows:

𝑀𝑆𝐸 =
∑︀𝑛

𝑖=1(𝑇𝑖 − 𝜃𝑖)2

𝑛
(5)

2.6.1.2 Mean Absolute Error

The Mean Absolute Error (MAE) calculates the mean of the prediction errors of the sam-
ples within the test set, which is calculated by ’’the difference between the true value (𝑇 ) and
the predicted value (𝜃) for the instance’’ [41]. According to [41], it is defined as follows:

𝑀𝐴𝐸 =
∑︀𝑛

𝑖=1 |𝑇𝑖 − 𝜃𝑖|
𝑛

(6)

2.6.1.3 R2 Score

To determine the quality of model adaption, we are using the coefficient of determination,
also called the R2 Score. It bases on the decomposition of variance and just indicates the
proportion of the total dispersion of the samples of set 𝑋 that is explained by the regression
from one set 𝑋 depending on another 𝑌 [15]. It, therefore, measures the correlation between 𝑋
(the true values) and 𝑌 (the predicted values). The R2 Score can be equal to or less than one,
where one symbolises the perfect adaption of the model [42]. According to [15] it is defined as:

𝑅2 =
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)2 (7)

where 𝑦 is the regression line, 𝑦 the predicted values and 𝑦 the true values.
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2.6.2 Classification Metrics

To evaluate the performance of a classifier, we have used the confusion matrix, from which we
can derive the precision, recall, F1 Score, and accuracy. Finally, we will explain the receiver
operating characteristic (ROC) and area under the curve (AUC), which also is connected to the
other metrics.

2.6.2.1 Confusion Matrix

The confusion matrix is an 𝑖 × 𝑖 matrix, where 𝑖 is the number of classes. It includes in-
formation on how often a classifier predicted a sample of class A as class B. The confusion matrix
can be visualized as shown in Fig. 20 and Fig. 21. The rows of the matrix represent the actual
class and the columns the predicted class. With the matrix we get 4 different classification cases:

True Positive (TP): samples that class is positive and got predicted correct

True Negative (TN): samples that class is negative and got predicted correct

False Positive (FP): samples that class is positive and got predicted negative

False Negative (FN): samples that class is negative and got predicted positive

The perfect classifier would achieve only non-zero values along the diagonal and would, therefore,
only have true positives and true negatives [9].

actual  
class

predicted  
class

TN FP

TPFN

N

P

N P

Figure 20: The confusion matrix of a binary
classification including the number of true
and false predicted samples for each class.
From this, the precision and recall can be
derived [43].
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FN FN

Figure 21: The confusion matrix of a multi-
label classification including the number of
true and false predicted samples for each
class. From this, we can derive the following
measures [44].

2.6.2.2 Precision, Recall, F1 Score and Accuracy

The following metrics can be derived from the confusion matrix. The precision represents the
accuracy of positive predictions [9]. In the case of a binary classification a prediction if a user
will churn or not. The precision could be explained as the ratio of users that were correctly
predicted as churner to the number of all users that were predicted as churner, or how many
predicted churners were predicted correctly? According to [24] the precision is defined as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(8)

21



The recall represents the True Positive Rate (TPR), also called sensitivity, which means
the ratio of instances that got correctly predicted by the classifier to the number of instances
that should be correctly predicted [9]. As for the precision, the recall for the binary classification
could be explained as the ratio of correctly predicted churner to the number of all churners, or
how many churners were predicted as such? According to [24], the recall is defined as:

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9)

When naming sensitivity, an often-used metric is specificity, which is also called the true negative
rate and represents the probability, that non-churners were predicted as such [24]. According
to [24], it is defined as follows:

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝐹𝑃 + 𝑇𝑁
(10)

Often precision and recall are combined to get the F1 score as a single metric. It is the harmonic
mean of both. This is more weighted on lower values, which results in a high F1 score only if
recall and prediction are high [9]. According to [24], it is defined as follows:

𝐹1 = 2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
= 𝑇𝑃

𝑇𝑃 + 𝐹 𝑁+𝐹 𝑃
2

(11)

The accuracy represents the ratio of correctly predicted samples and is also called the true
classification rate. According to [24], it is defined as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = true classifications
number of classifications = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(12)

2.6.2.3 ROC/AUC

The receiver operating characteristic (ROC) can be used for a visual evaluation in binary
classification. When plotting the ROC curve, we are plotting the TPR against the False Positive
Rate (FPR). We could also say plotting of sensitivity against 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 [9].

When plotting the curve of a purely random classifier the ROC curve would result in a
diagonal, as shown by the dotted line in Fig. 22. The farther away the line of the classifier is
(towards the top-left corner), the better. In the best case, the curve builds a right angle at the
top left corner [9].

To compare different classifiers by a measure, we can calculate the area under the curve (AUC)
of the ROC curve, so the area under the orange curve in Fig. 22.

The ROC/AUC would be equal to 0.5 when having a purely random classifier and equal to 1
for a perfect classifier [9].

22



1.0

0.8

0.6

0.4

0.2

0.0
0.0 1.00.80.60.40.2

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 22: The ROC curve with the result of a purely random classifier (dotted line) and a trained
classifier (orange line) [9].

2.7 Statistical Tests

Statistical tests are used to determine if an assumption for a parameter or distribution is
applicable or not. This needs a null hypothesis (𝐻0) and an alternative hypothesis (𝐻1), where
𝐻1 includes the interested research hypothesis and needs to prevail against 𝐻0 [15].

Based on the observed data, we need to calculate the test statistic and the so-called p-value,
which will be used for the decision. We decide to reject 𝐻0 if the statistic is greater than a critical
value. This critical value is defined by the known distribution of the data. If the distribution of
the data is not known, we can use the p-value which needs to be smaller than a predefined level
of significance: 𝑝 < 𝛼. If one of both variants is true, we can reject the 𝐻0 [15].

2.7.1 Mann-Whitney U-Test

The Mann-Whitney U-Test is a non-parametric or non-distribution test, where not the parameters
of the different distributions are focused, but the characteristics like median or quantiles [15]. It
is a two-sample test, that uses values from two populations and calculates the test variable 𝑈
and a p-value [45]. With the help of this test, it can be stated if there is a significant difference
between the mean of the two populations. It only requires ordinal scaled data. The test does not
base on the measures but the ranks. A greater test variable 𝑈 requires the rejection of 𝐻0 [46].

2.7.2 Kruskal-Wallis H-Test

The Kruskal-Wallis H-Test is used for 𝑘 independent populations and their distribution in the
case of the median. When rejecting 𝐻0, we can derive that at least two of the 𝑘 populations
have a statistically significant different distribution. For calculation of the test variable 𝐻, the
measures of the populations are brought into a common (ascending) ranking [46]. According
to [46], the test variable 𝐻 is calculated as follows:

𝐻 = 12
𝑛(𝑛 + 1)

𝑘∑︁
𝑗=1

𝑛𝑗(𝑅𝑗 − �̄�)2 = 12
𝑛(𝑛 + 1)

𝑘∑︁
𝑗=1

𝑅2
𝑗 /𝑛𝑗 − 3(𝑛 + 1) (13)

�̄�𝑗 ... average rank of population 𝑗
𝑅𝑗 ... sum of ranks in population 𝑗

�̄� ... average rank of all 𝑘 populations
𝑛𝑗 ... sample size of population 𝑗
𝑘 ... number of populations
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𝑛 ... sample size over all populations

The greater H gets, the more the average rank of each population (�̄�𝑗) is differing from the
overall average (�̄�). A greater test variable 𝐻 requires the rejection of 𝐻0 [46].

2.8 Correlations

In a further step, we will need to see how much the results of feature importance methods are
correlating to detect possible similarities. For this, we will use the Pearson Correlation and the
Spearman’s Rank Correlation. When getting a high positive or negative correlation between
feature values, it signalises that there could exist a causal relationship [47].

2.8.1 Pearson Correlation

The Pearson Correlation is a simple linear correlation [28]. ‘‘It determines the extent to which
two variables are proportional to each other. Proportional means that the two variables have
a linear relationship and this relationship can be represented by a line, called the regression
line’’ [28]. The correlation measures the relationship between the two variables and ranges from
-1 to 1, with 1 as total positive linear correlation, -1 as total negative linear correlation, and 0 as
no linear correlation [28]. According to [46], the Pearson correlation (𝑟) is calculated as follows:

𝑟 =
∑︀𝑛

𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︀∑︀𝑛
𝑖=1(𝑥𝑖 − �̄�)2 ∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2 (14)

where 𝑛 is the sample size, �̄�/𝑦 is the mean of each sample, and 𝑥𝑖/𝑦𝑖 the 𝑖𝑡ℎ point in the sample.

Example Calculation for Pearson Correlation

For a better understanding, we provide an example for the calculation of the Pearson Cor-
relation. For this, we have given in Tab. 7, the values of four example sets (𝑎, 𝑏, 𝑐, 𝑑) and their
mean (𝜇), as well as the difference between each value in the set and the mean. In Tab. 8, we
have given additionally the product of differences between set 𝐴 and the other three sets and
the sum.

A B C D
𝑖 𝑎𝑖 𝑎𝑖 − 𝜇𝑎 𝑏𝑖 𝑏𝑖 − 𝜇𝑏 𝑐𝑖 𝑐𝑖 − 𝜇𝑐 𝑑𝑖 𝑑𝑖 − 𝜇𝑑

1 1 -1.5 5 -1.5 8 1.5 3 0.5
2 2 -0.5 6 -0.5 7 0.5 4 1.5
3 3 0.5 7 0.5 6 -0.5 2 -0.5
4 4 1.5 8 1.5 5 -1.5 1 -1.5∑︀

10 - 26 - 26 - 10 -
𝜇 2.5 - 6.5 - 6.5 - 2.5 -

Table 7: The example sets (𝑎, 𝑏, 𝑐, 𝑑), their sum and mean (𝜇),
as well as the difference between a single point of the sample
and the mean.

𝑖 𝐴𝑖 * 𝐵𝑖 𝐴𝑖 * 𝐶𝑖 𝐴𝑖 * 𝐷𝑖

1 2.25 -2.25 -0.75
2 0.25 -0.25 -0.75
3 0.25 -0.25 -0.25
4 2.25 -2.25 -2.25∑︀

5 -5 -4

Table 8: The products of A with
B, C, and D from Tab. 7 and their
sum, where, e.g., 𝐴𝑖 = 𝑎𝑖 − 𝜇𝑎.

With the help of the squared values of Tab. 9, we can now calculate the Pearson Correlations
as follows:

𝑟𝑎𝑏 = 5√
5*5 = 5

5 = 1 (completly positive linear relation)

𝑟𝑎𝑐 = −5√
5*5 = −5

5 = −1 (completly negative linear relation)

𝑟𝑎𝑑 = −4√
5*5 = −4

5 = −0.8
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This shows us for 𝐴 a completely positive linear correlation with 𝐵, a completely negative
linear correlation with 𝐶, and a not completely negative linear correlation with 𝐷.

𝑖 (𝑎𝑖 − 𝜇𝑎)2 (𝑏𝑖 − 𝜇𝑏)2 (𝑐𝑖 − 𝜇𝑐)2 (𝑑𝑖 − 𝜇𝑑)2

1 2.25 2.25 2.25 0.25
2 0.25 0.25 0.25 2.25
3 0.25 0.25 0.25 0.25
4 2.25 2.25 2.25 2.25∑︀

5 5 5 5

Table 9: The squares of the differences of a sample point and sample mean and their sum.

2.8.2 Spearman’s Rank Correlation

The Spearman’s Rank Correlation is a non-linear correlation, that measures the relationship
between two variables, based on the ranks. It ranges from -1 to 1, like the Pearson Correlation,
where 1 means a similar rank and -1 a fully opposed rank [42]. According to [46], the Spearman’s
Rank Correlation (𝑟𝑠) is calculated as follows:

𝑟𝑠 = 1 − 6 *
∑︀𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖)2

𝑛3 − 𝑛
(15)

where 𝑛 is the sample size and 𝑥𝑖/𝑦𝑖 the 𝑖𝑡ℎ point of the sample.

Example Calculation for Spearman’s Rank Correlation

For a better understanding, we provide an example for the calculation of the Spearman’s
Rank Correlation as well. For this, we have given in Tab. 10, the values of four sets (𝑎, 𝑏, 𝑐, 𝑑)
and their rank (𝑟𝑔(𝑥𝑖)). Finally, we have given in Tab. 11, the square of the differences of the
sample ranks and their sum.

A B C D
𝑖 𝑎𝑖 𝑟𝑔(𝑎𝑖) 𝑏𝑖 𝑟𝑔(𝑏𝑖) 𝑐𝑖 𝑟𝑔(𝑐𝑖) 𝑑𝑖 𝑟𝑔(𝑑𝑖)
1 100 1 700 1 1300 4 300 3
2 200 2 900 2 1100 3 400 4
3 300 3 1100 3 900 2 100 1
4 400 4 1300 4 700 1 200 2

Table 10: The values of the example sets (𝑎, 𝑏, 𝑐, 𝑑) and their
rank (𝑟𝑔(𝑥𝑖)).

𝑖 (𝐴 − 𝐵)2 (𝐴 − 𝐶)2 (𝐴 − 𝐷)2

1 0 9 4
2 0 1 4
3 0 1 4
4 0 9 4∑︀

0 20 16

Table 11: The squared difference of
the ranks of A and the other three
samples, where, e.g., 𝐴 = 𝑟𝑔(𝑎𝑖), and
their sum.

With these values we can now calculate the Spearman’s Rank Correlation between 𝐴 and
the other samples as follows:

𝑟𝑠𝐴𝐵 = 1 − 6*0
64−4 = 1 − 0

60 = 1 (completly positive relation)

𝑟𝑠𝐴𝐶 = 1 − 6*20
64−4 = 1 − 120

60 = −1 (completely negative relation)

𝑟𝑠𝐴𝐷 = 1 − 6*16
64−4 = 1 − 96

60 = −0.6 (negative relation)

This shows us for 𝐴 a completely positive correlation with 𝐵, a completely negative correlation
with 𝐶, and a not completely negative correlation with 𝐷.
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3 Related Work
Within the last decades, there was published much work that has addressed predictive models
and especially the usage of them in the field of churn prediction. The approaches and different
tools for various prediction tasks within the following presented work are shown in Tab. 12. We
have seen approaches for Question Answering Site (CQA) for predicting churn [48, 49], answer
quality [50], user satisfaction [51], or vote score [52]. There is also work for predicting churn
in online games [53, 54, 55, 56, 57, 58], telecommunication [59, 32, 60] as well as in financial
groups [61] and urban migration [62], and the prediction of news popularity in online discussion
sites [63].

In the following, we will first have a look at different Machine Learning (ML) methods used
for different prediction tasks in Section 3.1 and will then display the approaches for different
churn definitions, observation windows, features and feature selection methods, and observations
of balancing in Section 3.2.

3.1 Machine Learning Methods

For investigating different methods, we will distinguish between two different prediction tasks.
At first, we will display the work for the churn prediction task in Section 3.1.1 and will then
have a look at methods for non-churn predictions in Section 3.1.2.

3.1.1 Churn Prediction

We will start with the main part of churn prediction in CQA’s, online games, telecommunication
as well as in financial groups, and urban migration.

For the CQA’s we have seen investigations on StackOverflow in [49] and Yahoo! Answers
in [48]. They have shown many methods like the Random Forest (RF), K-Nearest Neighbours
(KNN), Naïve Bayes (NB) in [48] or the Decision Tree (DT), Support Vector Machine (SVM),
or Logistic Regression (LogR) in [48, 49]. In both approaches, the tree-based methods like the
RF in [48] and the DT in [49] yielded the best prediction results.

Approaches for predicting churn in online games were presented in [53, 54, 55, 56, 57].
Within these works, they used the RF, DT, Linear Regression (LR), NB, SVM, AdaBoost,
Neural Networks (NN’s) as well as a heuristic and a Survival Ensemble approach. Especially the
Survival Ensemble, an ensemble-based learning method with a survival tree as the underlying
algorithm, yielded a high accuracy of about 96% in [55]. But also the SVM in [54] with an
accuracy of about 79% and the RF in [57] with an accuracy of about 87% yielded good results.
An approach for using NN’s for churn prediction in online games is shown in [58], where the
NN’s outperformed the DT, SVM, and LogR.

For the churn prediction in telecommunication companies, we have seen two approaches
in [59, 32]. They proposed also a wide range of different methods, like the already named ones,
but also some special ones like the Stochastic Gradient Boost (SGB) or an ensemble approach
of Rotation Forest, RF, and KNN in [59]. The Rotation Forest is an algorithm that splits the
features into k subsets and uses a principal component analysis (PCA) on each. Therefore the
new features for the classifier are created by k axis rotations and decide by using a DT. Because
of these two parts, the name Rotation Forest was chosen. They have shown that the ensemble
approach in [59] and the RF and AdaBoost in [32] yielded the best prediction results. In [60],
we have seen an approach of using NN’s, that also achieved high accuracy of 91% in churn
prediction for telecommunication companies.

In [61, 62], the RF was also presented as the best method for predicting churners within
financial groups and urban migrants. In [61], the Multi-Layer Perceptron (MLP) can achieve
high accuracy (≈ 94%) when sampling the data by SMOTE (cf. Sec. 2.2.2.2) too, in comparison
to the RF with an accuracy of about 96%.
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3.1.2 Non-Churn Prediction

We also looked at other non-churn prediction tasks, which include predictions of vote scores,
quality of answers, or user satisfaction.

We have seen different approaches for the CQA’s StackOverflow, Naver, and Yahoo! Answers
in [50, 51, 52]. A simple approach by testing the SVM, RF, NB, AdaBoost, and the C4.5
DT is shown in [51], where the C4.5 yielded the best accuracy of about 77% for predicting
user satisfaction. In [52], a Multiple Linear Regression approach for predicting the score of
questions was presented, which displays a dependent variable, that gets predicted by knowing
several independent variables. By using this method they achieved a high predictive power
and showed that their independent variables have much effect on the score of questions. An
approach of predicting the quality of answers on Naver was shown in [50]. They used a Retrieval
Approach, which uses a maximum entropy approach, that generates statistical models and returns
a probability and the kernel density estimation, which is a ‘‘nonparametric density estimation
technique that overcomes the shortcomings of histograms’’[50], to return the probability that a
question gets a good answer as result.

3.2 Dimensions

In this section, we will first present different definitions of churn in Section 3.2.1 and observation
windows, which means the time within the used method was trained, in Section 3.2.2. We will
then show the different approaches for feature engineering in Section 3.2.3 and finally the impact
of different balancing methods in Section 3.2.4.

3.2.1 Churn definitions

As already shown, there are many different tasks for churn prediction. Therefore we have seen
different definitions of churners but also work with already defined churners within the given
dataset [61, 59, 32, 56, 49].

At first, we want to present approaches for defining churners over time, which means that
users are classified as churners if they were not active for a specific time.

For churn prediction in online games, in [54] churners were defined as users who did not
return within the second observation week, in [55], users who did not play for 10 consecutive
days, and we have also seen a distinguished approach of defining churners as users who did not
play for 7 days on the one hand and 14 days on the other hand, in [57].

An approach for predicting the churn of migrants in Shanghai, people who migrate to the
city and leaving it after a given time, was presented in [62]. They have seen churners as migrants
who were not active within three weeks.

Approaches for defining churners over the number of sessions were proposed within the
gaming context in [53]. They differed their task into a classification problem for predicting
churner or non-churner, called hard churn, and a regression problem for predicting the number
of sessions or active days called soft churn.

3.2.2 Observation windows

Another aspect many works differ in is the time of observation of the users. This can mean the
observation of a period [48, 49, 54, 57, 62] or the time until a specific threshold gets reached [49,
54].

Within the CQA’s in [48, 49], we have seen an observation time of the first week after a user
created his first answer in [48] and a more fine granular analysis of different time windows (first
7, 15, 30 days) in [49], which showed that the accuracy increased by observing more days and
therefore increasing the observation window.

In [54, 57] different observation windows for the gaming context were presented. A distinction
between observing the first day, and the first three and seven days, is shown in [54]. This resulted
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in the best accuracy when observing the first seven days. Additionally, they have also shown,
that the accuracy is increasing when increasing the observation window. We have also seen an
approach for differentiation into observing for two and four weeks in [57]. They showed, that
the accuracy of the DT and RF enhanced by increasing the window, but decreasing when using
SMOTE (cf. Sec. 2.2.2.2), and the accuracy of the SVM decreases when increasing the window.
And finally, in the context of urban migration, an approach for observing the first three weeks of
a migrant in Shanghai was presented in [62].

The observation of the time until a specific threshold got reached, is another strategy on
CQA’s. In [49] we have seen a differentiation into the observation of the first 5 and the first 16
to 20 posts (questions and answers). They showed, that the accuracy of the DT is decreasing
when observing more posts. Within the gaming context, we found an investigation of the first
session in [54], which yielded the weakest accuracy in comparison to the time windows.

3.2.3 Feature Engineering

Feature engineering always is a special part of prediction tasks. Within the following, we will
first show different feature subsets within and beyond the churn context in Section 3.2.3.1
and will then have a look at different approaches used for selecting the best feature subsets in
Section 3.2.3.2.

3.2.3.1 Feature Subsets

We have seen different kinds of features in different contexts. In the following, we will firstly
present different features for churn prediction and secondly for non-churn prediction.

Churn Prediction

Within this section, we will present the different kinds of features for churn prediction. This will
include user-based, community-based, as well as temporal, purchase, and topic-specific features.

Within [48, 49] we have seen user features for CQA’s. In [49], user features were used
that represented number and quality of answers, questions consistency, and gratification, as
well as the knowledge level of a user, which presents how useful a user is for the community.
A differentiation into question, answer and gratification-related features for a user is shown
in [48]. This leads to features that display numbers of created questions and answers, as well as
gratification of the questions and answers. They have also shown that the number of posts of a
user gains the most information within the prediction process and that users with fewer posts
are more likely to churn. We have also seen that the gratification-related features are negatively
correlated with churning.

For gaming, activity features in [57], that display the number of logins or number of days of
a user, and a similar approach is presented in [55]. They used just game-independent features,
which displayed the information about time on the platform, active days or days until first
purchase, number of sessions, or the player level. In this case, the amount and the days since
the last purchase yielded the most information for the prediction.

We have also seen the usage of user features in the context of telecommunication in [60, 32]
as well as in financial groups in [61], or the urban migration task in [62]. These user features are
very context-related in all three cases, like the number of service calls in [32] or the income per
month in [61].

Another context of features is the community, which represents the activities around a given
user. In [49] the community features were used for competitiveness to compare the quality of
answers of users in comparison to others. In [57], community features that display the sociability
of a user in the context of gaming were presented, by, e.g., attending a guild or communicating
to friends. In the special context of predicting churning migrants, we have seen in [62], that the

29



community features are very important, which follows from the sociability of migrants and their
need for relationships or a circle of friends.

A very strong kind of feature is the time-relation which yielded the best results in [49] and [53].
These include features like time gaps between activities and time until a user responds in [49].
On their feature subsets, they performed an extensive analysis. They show that the isolated
temporal features yielded a competitive accuracy to all features when varying the observation
window in posts and days. In [53] we have seen temporal features like the playtime per session
or the average time between sessions. The last one in addition to the number of sessions were
most frequently used within the decision tree, and can, therefore, be seen as more important.

Another aspect of predicting churn is transactions and purchases, as presented in [57, 60].
In the context of gaming, we have seen economy-based features in [53], like flags for premium
users or the average spending per session, and in [57], that users who purchased are less likely
to churn. For the telecommunication context, features like total payment or the total bill of a
customer were presented in [60].

In the last part, we want to show context-specific features, which differ in many cases. We
have seen demographic features in [48, 60], which presented the age or gender of a customer.
In [59], an investigation of features in numerical and nominal format was shown. For financial
groups, context-specific features like the monthly income or the number of web actions in [61]
and the context-specific features in [62], including information about housing or geographical
patterns of migrants, which are very special to the seen features from other work, were presented.

Non-Churn Prediction

As we have already seen, there is also work with non-churning prediction tasks. For this,
in [52, 51] were presented user features. Especially in [51], a differentiation into questioner and
respondent features was done, as well as features for relations between them.

For the prediction of vote scores in [52] and for user satisfaction in [51], we have also seen
content-based features, which display the number of words of a question or the number of specific
words, as well as features for the category of a question.

At the CQA Naver, 13 non-textual features were presented in [50] to predict the quality of
answers. These features are not categorized and include information about the acceptance ratio
or recommendations of users as well as the number of clicks or answers activity level and answer
length. They have also shown, that excluding the feature for questions drops their prediction
accuracy.

3.2.3.2 Feature Importance and Selection

Based on the created features many different methods for calculating the importance of features
or selecting the best ones for a specific method were shown. The Feature Importance of the
RF [54, 57, 32] and the DT [53, 61], which we have explained in Section 2.1, was used in much
work. We have also seen different coefficients and correlations like the Pearson Correlation in
[50] (cf. Sec. 2.8.1), where the feature value was set into the correlation of a manually judged
quality score, Spearman’s Rank Coefficient in [52] (cf. Sec. 2.8.2), where the factors and scores
of questions were set into correlation, Integrated Brier Score in [55], or the LogR Coefficient and
standard error value in [54]. Also, the Gini Importance in [62], which is often connected with the
RF Feature Importance was presented. Finally, we have also seen some special algorithms like
the mRMR algorithm in [59], or the Boruta algorithm in [32], which were not used within this
thesis.

3.2.4 Impact of Balancing

For churn prediction tasks we have often seen an imbalance between the many users who are
churning from a network or company very fast and the few who are staying like described in
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Section 1.2. We have therefore seen some approaches for handling this problem. In [49, 59],
handling of imbalance by undersampling the data is presented. Another attempt, as shown in
[53], was the balancing by discarding data of the majority.

A deeper look into the impact of balancing was shown in [57] for predicting churn in online
games. They have observed the impact of using SMOTE (cf. Sec. 2.2.2.2) for the RF, DT, and
SVM. They have shown that the accuracy, precision, and recall, and therefore also the F1 Score
are slightly increasing when using SMOTE.

In [61], we have seen a very detailed investigation of SMOTE, over- and undersampling, as
well as a combination of both at different levels. They have shown, that in general using the
sampling methods, the accuracy and specificity are slightly decreasing, but also the sensitivity and
ROC/AUC score (cf. Sec. 2.6) are increasing. Especially the usage of SMOTE largely increased
the sensitivity and ROC/AUC. As two highlights we have also seen that using oversampling by
100% or 300% increases the accuracy, sensitivity, and ROC/AUC score slightly in a trade-off for
decreasing the specificity.

3.3 Conclusion

Within the related work, different definitions of churn were shown. We have seen this over time
in minutes, days, weeks, or months, but also for defining churners over the number of sessions or
other interactions.

A wide range of different ML methods within the literature using simple algorithms like the
DT or LR were presented, but also some more advanced approaches by using different ensemble
methods or NN’s. These methods were tested and evaluated to compare them and find the best
working models for a specific topic. We have seen that the tree-based methods DT and RF often
yielded the best results, but also methods like the KNN, SVM, or MLP as well as NN’s, can
achieve strong results by using for example over and under sampling methods.

The different approaches for the observation windows showed us, that we can specify our
observation window by time or different thresholds for, e.g., sessions. In general, we have seen,
that the accuracy is increasing when increasing the observation window.

In the case of features, we have especially seen that temporal features, like the time between
interaction, community, and user-based features, were classified as most important. These were
used for detecting the behaviour of a user and his community around, as well as different using
patterns like playtime or number of sessions. To select these, we have also seen a wide range of
different feature selection methods, like the Feature Importance of the RF or the DT.

We can finally say, that different sampling methods for handling imbalance and their impact
on accuracy, specificity, and sensitivity, which in general decrease the accuracy more or less, but
can therefore increase specificity or sensitivity, were shown.
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4 Feature Engineering
In the following, we will show our feature engineering process. This will first include an
explanation of our features based on an existed set, as well as their partitioning into different
subsets.

4.1 Features

Base Features. We based on an already existed set of 33 features. They are grouped into
generic, user, and community features. The generic features tell us time information about
the month, year, and day of the month, and the week of registration. The user features are
calculated values for a specific user. They include values like the number of down- or upvotes,
or the number of replies per thread within different periods. The community features finally,
display values for the whole community after different periods after registration, e.g., the
number of created posts of the community within the first hour after registration, as shown
in Tab. 16. This also includes the optimization target of our prediction task within the user
features: active_duration_minutes_lower_bound. It describes a lower bound of minutes a user
is active on Jodel.

Additional Features. In addition to these 33 features, we created 64 features for the user
(61) and community (3) group. These features are shown in Tab. 17. With the added community
features, we have added the postratio within the first hour and day after registration, and the
average replies per post over the whole time.

Temporal Features. For the user features, we have added 61 new ones. These were adopted
to some of the feature kinds, we have seen in the related work (cf. Sec. 3). in adoption to [49],
we have added temporal features, that, e.g., represent the time between posts or interactions, or
the time between registration and first post (RegPostGap_h).

Another set of features was adapted to the results in [53], where the number of sessions
and the days since registration, and the average time between sessions were most important
within the prediction task. We have adopted these, by adding the feature registered_days, which
displays the absolute number of days the user was active. Additionally to this, we have also
added features that give us information about the active days, in adoption to the session. We
defined an active day as a day with at least one interaction, like posting or voting. These active
days we have set into relation to the maximum possible number of active days since registration
(active_days_ratio). When observing the active days, we have also investigated the inactive
days, where we added a feature, that sets the longest absence time of a user in days in relation
to the maximum possible number of days (max_following_inactive_days_ratio).

Interaction Features. Another set of features are the average posts and replies per day,
which represent how active a user is on average a day, but also the average up- and downvotes.
Additionally, the votescore per post, that represents indirectly the acceptance of the community,
when, e.g., having a high average votescore, but also the number of created posts and replies or
the overall happyratio.

Time Window Features. To observe the performance of the model when predicting user
after a specific time (a day, week, two weeks, month, and three months), we have also expanded
some features by time limitations, which resulted in multiple features that are limited by the
given time boundaries. These features represent the development of user behaviour over time,
e.g., postcreated_Week and postcreated_3_months.

4.2 Feature Selection and Limitations

After creating our features, we have used the Random Forest Feature Importance (RFFI) and
ReliefF algorithm to observe the importance of the features. With the results of these, we got a
view on which features are not important and which are significantly more important than others.
This has shown, that we had one feature that yielded an importance of 0.79 in comparison to
all others with importance lower or equal to 0.03. That is why we have decided to exclude the
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feature registered_days. Because of the upper bound of active days it represents, the feature
could lead the predictor to predict the lifetime of a user lower or equal than the feature value,
which could be seen as ‘cheating’.

After removing this feature, we have calculated the importance again, which resulted in a
relatively ‘balanced’ importance distribution and we have decided to also use the less important
features. Starting from this point, future work could investigate the performance change
when using only the most important features, which could improve the model or decrease the
performance in a trade-off with the runtime or memory usage.

4.3 Feature Subsets

After we had set our features, we have partitioned them into different subsets for future
investigation.

General Subsets. Firstly, we have subdivided the features into the two general subsets
user and community, where each subset includes the presented features in Tab. 16 and 17 and
additionally the generic features. This has led to subset sizes as shown in Tab. 13, where we
have not counted the optimization target and given the number of features overall. Both subsets
do not include generic features. From overall 95 features, we will use 73+5 features as user
subset and 17+5 features as community subset.

group all user community generic
subset size 95 73 17 5

Table 13: The number of features per group. Within our further subset analysis, we will include
the generic features into the other three subsets. We have also not counted the optimization target
active_duration_minutes_lower_bound.

Time-Window Subsets. For an investigation of the performance of models after a given
time, we have subdivided our features into time-dependent and independent features. The
independent features are not limited to a time boundary and would, therefore, yield too much
information when, e.g., predicting for observation of one day. The numbers of features are shown
in Tab. 14. We have subdivided the time-dependant features into five time-window subsets.
Each subset has an upper border that represents the time of observation. That is why each
subset includes the community subset, because of features that are only related to a smaller
or greater time than the given windows. Additionally, each subset includes the features that
have a lower or equal time border. That is why the subsets are cumulated, which means that all
features of the smaller time-window subset are also included in all bigger ones. The sizes of the
subsets are shown in Tab. 15. The affiliation of the single features is have shown in Tab. 16
and 17 in the right column, where the smallest subset affiliation is given, which means that this
feature also belongs to all bigger subsets, as mentioned before.

time-indep. time-dep.
user 23 50
community 1 16
generic 5 0∑︀

29 66

Table 14: The number of features within
the three general groups, which are time-
dependent and independent. Where in-
dependent means, that the features are
not limited to a time boundary.

window day week 2 weeks month 3 months
subset size 33 50 57 64 71

Table 15: The number of features per observation
window, where the features of the smaller window
subset are also included in all bigger window subsets.
Each subset includes the 16 time-dependent community
features, as well as the five general features.
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window
Description affiliation

generic features (5)
month Month of registration -
year Year of registration -
hourUTC The hour of registration -
dayOfWeek Day of the week of registration -
dayOfMonth Day of month of registration -
user features (14)
active_duration_minutes_lower_bound The minimal number of active minutes of a user -
upvoted_24h Number of given upvotes within the first day day
downvoted_24h Number of given downvotes within the first day day
participated_threads_24h #threads a user participated within the first day day
postcreated_24h #posts created within the first day day
postflagged_24h #posts that got flagged within the first day day
postreply_positive_karma_24h #posts that generated positive karma within the first day day
received_downvotes_24h #downvotes received for posts and replies within the first day day
received_upvotes_24h #upvotes received for posts and replies within the first day day
replies_per_thread_24h #replies per thread within the first day day
replycreated_24h #replies created within the first day day
voted_within_threads_24h #threads the user voted within the first day -
user_replies_per_thread #replies per posts the user replied to -
user_threads #posts the user replied to -
community feature (14)
posts_day #posts in community within the first day day
replies_day #replies in community within the first day day
picture_posts_day #posts with pictures in community within the first day day
downvoted_day #downvotes in community within the first day day
upvoted_day #upvotes in community within the first day day
happyratio_day happyratio in community within the first day day
avg_response_time_minutes_day Avg. minutes between post creation and the first response in

community within the first day day
posts_hour #posts in community within the first hour day
replies_hour #replies in community within the first hour day
picture_posts_hour #posts with pictures in community within the first hour day
downvoted_hour #downvotes in community within the first hour day
upvoted_hour #upvotes in community within the first hour day
happyratio_hour happyratio in community within the first hour day
avg_response_time_minutes_hour Avg. minutes between post creation and the first response in

community within the first hour day

Table 16: The basis set of features, grouped into generic, user, and community features, with their
explanation and their affiliation to the time window subsets (cf. Tab. 15).

35



window
Description affiliation

community feature (3)
postratio_day postratio in community within the first day day
postratio_hour postratio in community within the first hour day
avg_replies_post The average number of replies per post within the community -
user features (61)
active_days_ratio #days with min. one interaction since registration in ratio to all possible days -
active_days_firstWeek_ratio #days with min. one interaction within the first week in ratio to all possible days week
active_days_first2Weeks_ratio #days with min. one interaction within the first two weeks in ratio to all possible days 2 weeks
active_days_firstMonth_ratio #days with min. one interaction within the first month in ratio to all possible days month
active_days_first3Months_ratio #days with min. one interaction within the first three months in ratio to all possible days 3 months
avg_minutes_between_interactions Average minutes between user interactions -
avg_minutes_between_downvoted Average minutes between user downvotes -
avg_minutes_between_upvoted Average minutes between user upvotes -
avg_minutes_between_posts Average minutes between user postings -
avg_minutes_between_replies Average minutes between user replies -
avg_postcreated_day Average #posts per day of user -
avg_replycreated_day Average #replies per day of user -
avg_upvotes_per_post Average #upvotes per post for user -
avg_downvotes_per_post Average #downvotes per post for user -
avg_votescore_per_post Average #votescore per post of user -
avg_votescore_firstDay Average #votescore per post within the first day day
avg_votescore_first2Days Average #votescore per post within the first two day week
avg_votescore_first3Days Average #votescore per post within the first three day week
avg_votescore_firstWeek Average #votescore per post within the first week week
avg_votescore_first2Weeks Average #votescore per post within the first two weeks 2 weeks
avg_votescore_firstMonth Average #votescore per post within the first month month
avg_votescore_first3Months Average #votescore per post within the first three month 3 months
postcreated Number of created posts (overall) -
replycreated Number of created replies (overall) -
upvotes Number of received upvotes (overall) -
downvotes Number of received downvotes (overall) -
votescore Votescore (overall) -
postratio Postratio (overall) -
happyratio Happyratio (overall) -
blocked Number blocks (overall) -
happyratio1stWeek Happyration within the first week week
happyratio1st2Weeks Happyration within the first two weeks 2 weeks
happyratio1stMonth Happyration within the first month month
happyratio1st3Months Happyration within the first three months 3 months
postcreated_2_Days #posts created within first two days week
postcreated_3_Days #posts created within first three days week
postcreated_Week #posts created within first week week
postcreated_2_Weeks #posts created within first two weeks 2 weeks
postcreated_1_month #posts created within first month month
postcreated_3_months #posts created within three months 3 months
replycreated_2_Days #replies created within first two days week
replycreated_3_Days #replies created within first three days week
replycreated_Week #replies created within first week week
replycreated_2_Weeks #replies created within first two weeks 2 weeks
replycreated_1_Month #replies created within first month month
replycreated_3_Months #replies created within first three months 3 months
received_upvotes_first2Days Number of received upvotes just for posts within first two days week
received_upvotes_first3Days Number of received upvotes just for posts within first three days week
received_upvotes_firstWeek Number of received upvotes just for posts within first week week
received_upvotes_first2Weeks Number of received upvotes just for posts within first two weeks 2 weeks
received_upvotes_firstMonth Number of received upvotes just for posts within first month month
received_upvotes_first3Months Number of received upvotes just for posts within first three months 3 months
received_downvotes_first2Days Number of received downvotes just for posts at first two days week
received_downvotes_first3Days Number of received downvotes just for posts at first three days week
received_downvotes_firstWeek Number of received downvotes just for posts at first week week
received_downvotes_first2Weeks Number of received downvotes just for posts at first two weeks 2 weeks
received_downvotes_firstMonth Number of received downvotes just for posts at first month month
received_downvotes_first3Months Number of received downvotes just for posts at first three months 3 months
max_following_inactive_days_ratio Maximum number of following days without interactions in relation to possible days -
RegPostGap_h Hours between registration and first post -
registered_days Number of days since registration (removed) -

Table 17: Created additional features for the community and user group separated into 12 subgroups
within the user features. We have given their explanation and affiliation to the window subsets (cf.
Tab. 15).
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5 Pipeline and Implementation
In the following, we will describe and explain our Machine Learning (ML) pipeline, as shown in
Fig. 23. We structured this into three main steps. The data preparation, the model building
and training, and the final prediction task, which also includes evaluations. In addition to this,
we will also explain the framework implementation, which was written in Python. We used the
pipeline of the Imbalanced-Learn package, which gives us the possibility to use also methods
from SciKit-Learn within our pipeline.

Jodel Dataset Feature Creation &
Target Definition

Hyperparameter tuning

Fitted Model

Model buildung & training

Fit

Scale Data

Transform

Transform

Transform

Data Preparation

Impute  
incomplete Data

Handle  
imbalanced Data

Feature  
Subset Analysis

Fitted Model

Result

Evaluation

Predict

Prediction & Evaluation

Figure 23: The ML pipeline including feature creation from the dataset, the preparation, which
includes scaling, balancing, as well as the feature subset analysis and the handling of incomplete
data, the training of the model on the training data, and the prediction of the best model on the
test data with a final evaluation.

5.1 Data Pre-Processing

As the first step, we will need to select and prepare our data to handle different issues. We will,
therefore, use the tools we described in Section 2.2.

To work with discretization, we are using manual bins or the KBinsDiscretizer from SciKit-
Learn [66], which will automatically bin the data into generated intervals. This will let us classify
our users into the different churn classes we described in Section 1.3.

As the second step, we will then create different features from our dataset and define our
optimization target. Before building and testing the models, we will then run a feature subset
analysis, which was explained in more detail in Section 4. Therefore, we will use the ReliefF
from Skrebate [67], which we have explained in Section 2.1.2. In addition to this method, we
will also use the feature importance and decision tree of the tree-based learning methods (cf.
Sec. 2.1.1), as well as the RFECV (cf. Sec. 2.1.3). These will calculate the features which weigh
most within the decision process. We will then build and test our model on different feature
subsets to evaluate later which subsets will yield the best results.

As we have shown in Section 1.2, we will also need to handle the imbalanced data. Therefore,
we will use over- and under sampling methods. These will adjust the class distribution.

5.1.1 Imputing

Due to the fact that the data was incomplete and therefore, missing values for some users in
case of active minutes, because of no post- and happyratio, that results from no created posts
or replies and respectively no existing feedback of the community. This leads to NULL values
within our created features and therefore, an incomplete dataset. To handle this we will exclude
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all users without an active minutes value, because of the distortion of the results by imputing the
optimization target which we want to predict. To handle the incompleteness of all other features,
we will use imputation. This means we will use the Simple Imputer from SciKit-Learn [68] and
replace the missing values by mean.

5.1.2 Scaling

As the next step, we will also scale and normalize our data. We will need this because of the
usage of different units within the dataset. We, e.g., use the feature which tells us about active
minutes and the number of posts that have different units and can vary greatly. This is one
of the things that ML methods can be highly sensitive to. To handle this, we will use from
Scikit-Learn on the one hand a Min-Max-Scaler (cf. Sec. 2.2.1.2) which will normalize the values,
so they range between zero and one. And on the other hand, we will use a Standard Scaler
(cf. Sec. 2.2.1.1), which will transform the data, so that we get a mean of zero and a standard
deviation of one [69].

5.2 Model building and Testing

For the next two steps, we will split our data into a random testing and training subset, by using
the ShuffleSplit from SciKit-Learn [70]. With the training subset, we will build our different
models. We will, therefore, perform a hyperparameter tuning by running a grid-search (cf.
Sec. 2.4). This will test different parameter combinations of the model to find the best ones.
In our framework, this grid-search will be in combination with a k-fold cross-validation (CV)
[40] which we have described in Section 2.5. This will take every parameter combination and
will run a k-fold CV and calculate different metrics. These metrics will be the R2 Score, the
Mean Squared Error (MSE), and Mean Absolute Error (MAE) for regression tasks, and the
precision, recall, F1 Score, and accuracy for classification tasks (cf. Sec. 2.6). This will allow
us to compare different models and select the best ones. We will then validate the optimized
models for different cities and different feature subsets.

5.3 Prediction and Evaluation

As the last step, we will use our prepared testing data and the fitted and optimized models for
the final prediction task. This prediction will then also calculate different evaluation metrics
for better comparison and save them into a JSON file, together with the results of the feature
importance and ReliefF.

In addition to this, the framework plots a heatmap in dynamic bins for regression or the
defined classes as described in Tab. 6 in Section 1.3. To compare the accuracy of the models
within the different classes, we will then also calculate the differences of the heatmaps to figure
out which model works best in which section. As another evaluation part, the framework will
also calculate and plot the ROC/AUC (cf. Sec. 2.6). To validate the final models we will also
run a k-fold CV, which we described in Section 2.5.

5.4 Framework Structure

We have already described the packages we used within our framework. In the following, we will
put the different parts of our framework together to an overall diagram to get an overview. We
have drawn the parts we added for this thesis in orange (∝) and modified in green (◁▷).

As shown in Fig. 24, we added the possibility of querying the data from the database we
want to use (process_query()).

We have also modified the plotting of the grid search results and heatmaps (Package: plot),
to get a better view of our defined classes. That is why now automatically six heatmaps are
generated for regression problems, which are zooming into the time windows we have defined, to
get a closer look.

38



constants

framework_extensions model_factoriesio

plots

SciKit-Learn TensorFlowImbalanced LearnSciKit-Rebate pymrmr

Package-Diagram

Static

run_app()

process_query()

cross_validate_model()

grid_search_model()

train_model()

test_model()

build_pipeline()

Figure 24: The package diagram of the framework and the static functions, which do not belong to
any package.

We have also switched the used pipeline implementation from SciKit-Learn to the pipeline
from Imbalanced-Learn, to get the chance for using implementations of both packages within
our pipeline, as shown in Fig. 25.

«interface» 
BasePipeline

«interface» 
BaseMinMaxScaler

«interface» 
BaseStandardScaler

«interface» 
BaseReliefF

«interface» 
KerasClassifierBase

«interface» 
BaseShuffleSplit

MinMaxScaler

_reshape_data_for_scaler()

_reshape_data_from_scaler()

partial_fit()

transform()

KerasClassifier

n_labels

__init__()

get_params()

predict()

StandardScaler

old_shape

_reshape_data_for_scaler()

_reshape_data_from_scaler()

partial_fit()

transform()

NoShuffleSplit

_iter_indices

ReliefF

__init__()

fit()

Pipeline

transfer_params: dict[str, [str, str]]

direct_params: dict[str, dict[str, obj]]

__init__()

set_params()

Figure 25: The class diagram of the framework extensions package, which includes the changed
pipeline of the Imbalanced-Learn Package.

For the data preparation we added the balancing methods (DataBalanceType) and the
imputing (ImputingType), which can handle different strategies, e.g., replacing by mean or
median.

As shown in Fig. 26, we also added ML methods, like the Naïve Bayes (NB), AdaBoost, or
the Multi-Layer Perceptron (MLP) (ModelType). In this context we also added functions to
figure out if we are using a classification model and if we want to use a feature selection method
(is_classification(), has_feature_importance()).
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To have more variety in evaluating the models, we added the ROC/AUC score for classification
tasks, and the explained variance score, and the maximum residual error for regression tasks.

<<enumeration>> 
FeatureSelection

None
RELIEFF
MRMR
 

<<enumeration>> 
ImputingType

None
SIMPLE
ITERATIVE
KNN
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DataBalanceType
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REPEATEDEDITEDNN
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ONESIDEDSELECTION
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SMOTEENN
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<<enumeration>> 
DataTransformType

None
POWER
QUANTILE_GAUSSIAN
QUANTILE_UNIFORM

<<enumeration>> 
DataScaleType

None
STANDARD
MINMAX
 

<<enumeration>> 
DiscretizationEncodeType

ONEHOT_DENSE
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<<enumeration>> 
DiscretizationStrategyType

QUANTILE
KMEANS

<<enumeration>> 
ModelType

DUMMY
DUMMY_CLASSIFICATION
RF
RF_CLASSIFICATION
KNN
KNN_CLASSIFICATION
DT
DT_CLASSIFICATION
GD
GD_CLASSIFICATION
MLP
MLP_CLASSIFICATION
CNN
CNN_CLASSIFICATION
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ADAB_CLASSIFICATION
SVM
NB
LR
GRU
LSTM

 

is_recurrent()
is_classification()
has_feature_importance()
use_labelencoding()
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ActionType

train
test
cross_validation
grid_search
plot_grid_search
plot_cross_validation_improvement

__str__()
from_string()
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verbose: bool

dataset_file: str
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model_type: ModelType

best_parameter: [str, objcet]
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scale_data: DataScaleType

balance_data: DataBalanceType

transform_data: DataTransformType
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exclude_columns: [str]
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_init_()
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n_bins: int
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init()

Figure 26: The class diagram of the constants package, which includes the added ImputingType,
the FeatureSelection, newly added ML methods, the functions for detecting classification and
feature selection, and new methods for the balancing.

5.5 Framework Testing

To ensure that the framework works flawlessly, we used different intermediate results. While
creating the features, we have tested the calculation of the features on a range of users, which
should be as different as possible. We calculated the features for these users by hand and
compared the results to ensure correctness.

Within our framework and pipeline, we ensured correctness by checking the intermediate
results. This includes graphics, which showed us the effect of balancing in Fig. 27 and scaling in
Fig. 28, as well as the output of numbers of missing values before and after imputing, or the
features of a subset, which were selected within the JSON file, which include the results. These
intermediate results can then be checked to ensure correctness.
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Figure 27: An example of balancing with SMOTE for the defined churning classes in Al Jafr. The
number of samples raised from 174 to 324 and led to a regular class size of 54 samples.

Figure 28: An example of scaling the presented selected features. The value ranges of the features
differ greatly before scaling. The, e.g., active minutes range from 0 to 211,047 in contrast to a
range of 0 to 1 for the postratio_day feature.
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6 Evaluation
Within the following section, we will present and explain our Machine Learning (ML) approach
results. For this, we will first present the theory of our proceedings, which will be followed by
the results.

We will start by defining the baselines for the different tasks, which the different models will
need to exceed. The different tasks will be the regression, where we will need to predict the
exact active minutes, and the classification where our model will predict a) one of the six churn
classes in Tab. 6 and so a multi-label classification, and b) a binary classification, where our
model will predict if a user has an active time lower or equal than a given threshold or a greater
one, where the threshold will be one day, week, two weeks, one month or three months.

Our proceeding can be split into two parts. As a first step, we will run a breadth-first
search, as shown in Fig. 29. Within this step, we will test the presented ML methods, we have
presented in Section 2.3, for the communities of Jeddah with more than 100k users, Al Jafr with
174 users, and the whole country with over one million users to get a view on their performance
on different data sizes. With these results, we will select the method, that yielded the best R2

Score for the regression task and accuracy for the classification task.

BaselineRegression Classification

Select

RF DT KNN SVM MLP AdaBoost

Best Model

Figure 29: The breadth-first search, where we will use the different usable methods, to get an
overview of which models work best for the different tasks, which will then be fixed and be
investigated in detail. The methods will be compared by different baselines, which they need to
exceed.

As the second step, we will run a depth-first search, as shown in Fig. 30. For this, we
will use the best method, which will be fixed, and will have a more fine granular investigation.
This will start with an observation of different data transformation tools, as we have shown
in Section 2.2, to detect, e.g., the best imputing strategy. After we have defined which tools
strengthen our model, we will fix our setup and will observe the performance change within
the different communities, as well as the change when using different feature subsets, as we
have shown in Section 4. Besides the communities of different cities, we will also present the
performance of a country model, which could be more generalised and therefore, work well on the
whole country, but also perform strongly when predicting only users of the single communities.
After this step, we will have an overview of the different tasks and the best models for each.

After the evaluation of the different models and detecting the best ones for different tasks,
we will then investigate the insights of the models. For this, we will start by training the model
on its specific community and will let it predict the active time within the other communities.
With these models, we will see, if these also work very well within different communities and
therefore, seem to have similarities in behaviour, w.r.t. user churn. We will also see if the
country model has an equal or even better performance compared to the specific models within
the different communities. To detect the specific behaviours, we will then have a look into
the feature importances of the Random Forest (RF), as well as of the ReliefF, which we have
described in Section 2.1.2. With the help of correlations between the important features of
the different communities, we will then see which communities have also similarities in feature
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Figure 30: The depth-first search, which will use the fixed selected method from the breadth-first
search. We will start by testing different data transformation tools, which then will also be fixed
and used, followed by a fine granular observation of performance change within the different
communities, as well as a detailed feature subset analysis.

importance and thus, similar models.
The features with the highest importance are then presented, as well a the cumulated

importance of the subsets to detect these similarities. These features will be seen as features
with the most impact on predicting the active time.

As a final step, we will then investigate the empiricism of the best features and will search
for feedback from it. This will include the test of which user groups are statistically significantly
different distributed for the best features, as well as detecting significant trends for these features.
With these trends, we will then probably see connections between the active time of a user to
specific features, which will give us explicit feedback on why the features was that important
and how the users behaviour is changing within the user groups, which could be used for a better
description of the communities.

For our ML approach, we will have a look at the cities Riyadh, Jeddah, Mecca, Al Bahah,
and Al Jafr, which differ in user-base size.

Besides these, we will present a model approach for the whole country. We will start our
investigation by selecting the best working method in Section 6.1, which will be followed by a
precise observation of the best one, in Section 6.2 and Section 6.3.

6.1 Machine Learning Algorithm Selection

In this section, we will have a look at the general performance of the different usable methods.
These will include the Decision Tree (DT), K-Nearest Neighbours (KNN), Support Vector
Machine (SVM) Multi-Layer Perceptron (MLP), Stochastic Gradient Descent (SGD), Random
Forest (RF), and the Adaptive Boosting (AdaBoost). We run a grid-search (cf. Sec. 2.4) of
some generally accepted parameters for the different methods on the data of the communities of
Jeddah and Al Jafr, as well as on the whole country in Tab. 18. This gives a view of the general
performance of the methods on different data sizes. This is shown for the regression, where the
R2 Score and its standard deviation were used, and the multi-label classification task, where the
accuracy and its standard deviation (std dev) were used. We have also given the baseline for the
given tasks, where we used the Dummy Regressor/Classifier from SciKit-Learn [71, 72]. For the
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score DT KNN MLP SGD RF AdaBoost SVM Baseline

Je
dd

ah

R2 0.9336 0.6555 0.9215 0.4525 0.9667 0.8062 -- -0.00009
std dev ±0.0025 ±0.0032 ±0.0266 ±0.01057 ±0.0016 ±0.0030 --
accur. 0.8000 0.5668 0.7844 0.2302 0.9413 0.6856 0.9251 0.2554
std dev ±0.0065 ±0.0033 ±0.0262 ±0.0828 ±0.0006 ±0.01668 ±0.0010

A
l

Ja
fr R2 0.7220 0.4881 0.3887 0.2753 0.8219 0.7948 -- -0.02382

std dev ±0.1168 ±0.1321 ±0.1953 0.4098 ±0.1115 ±0.0783 --
accur. 0.6551 0.5286 0.5753 0.2590 0.7012 0.6035 0.5861 0.3104
std dev ±0.0730 ±0.0511 ±0.0977 ±0.0916 ±0.0384 ±0.0655 ±0.0359

C
ou

nt
ry R2 0.9580 0.6764 0.9668 0.3422 0.9819 0.7654 -- -0.00001

std dev ±0.0009 ±0.0013 ±0.0036 ±0.0551 ±0.0002 ±0.0012 --
accur. 0.8288 0.5871 0.7271 0.2639 0.9697 0.6974 -- 0.2818
std dev ±0.0059 ±0.0006 ±0.0222 ±0.0062 ±0.0004 ±0.0077 --

Table 18: The results of the grid-search with 5-fold cross-validation for the regression (R2 Score)
and classification (accuracy score) task and their standard deviations (std dev), for the different
ML algorithms over all features. This gives us information on which method works best to use for
a detailed observation. As we can see, for all data sets, the RF yielded the strongest score and only
the SGD did not exceed the baselines. We have also listed only the results of the SVM for the
classification task, because of the non-termination of for the regression task and the classification
task on the country data.

regression task, the dummy regressor always predicted the mean, and for the classification the
most frequent label. These baselines need to be exceeded by the methods.

As we can see in Tab. 18, for all three datasets, the RF yielded the best score and just the
SGD falls below the baselines for the classification task in all three datasets. For the regression
task, we can also see that there are also the DT and MLP that resulted in high scores.

Because the RF is the best method in all three communities by R2 Score and accuracy,
which is an aggregation, we looked at the detailed results in case of a heatmap, to see how the
prediction of the RF is distributed and scattered and confirm it as the best method, as shown in
Fig. 31 and 32 for Jeddah. We only visualised the results of Jeddah because of the small number
of samples in Al Jafr which results in too few data points, which do not give a conclusive image.

We have plotted the results of the regression in Fig. 31 and the classification task in Fig. 32.
The heatmaps represent the real active days/churn class of a user on the x-axis and the predicted
active days/churn class on the y-axis. It displays the normalised number of users predicted for
the different cases.

For the regression task, we can see, that we have an overall relatively low scattering around
the diagonal line. This diagonal displays the optimal prediction result. Just above around 80
days, we can see an increased scattering, which may be due to a lower number of users that were
active for that long time and therefore, less information of that users. This confirms that the RF
performs well for this problem.

In Fig. 32, the results of the classification task and therefore, the real and predicted classes
of the users are shown. We have again normalised the results to get a more generalized view.
As we can see, we have a very low scattering around the diagonal and 88% of the users were
predicted on the diagonal and therefore, correct. This shows us, that we can also confirm the
RF as a classification method with high predictive power.

As we have seen, the RF resulted in the best scores for both tasks, which we could also
confirm by looking at the predicted values. Because of the large parameter space and limitations
in runtime for tuning and testing, detailed research for all methods is infeasible. That is why we
will focus on the RF, as the best method, within the next sections. For this method, we will
observe the impact of changing the imputing strategy, as well as the use of scaling and balancing
methods and a further investigation of the performance of the model, when using the different
feature subsets.
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Figure 31: A detailed look at the prediction
of the regression task in Jeddah. The x-axis
displays the real active days of a user and the
y-axis the predicted active days. This shows us
that we have a huge ratio of users that were
predicted correctly along the optimal diagonal
up to around 80 days and a bit more scatter-
ing above. Overall we can see that we have a
relatively low scattering around the diagonal.

Figure 32: A detailed look at the prediction
of the regression task in Jeddah. The x-axis
displays the real churn class of a user and the
y-axis the predicted churn class. We can see
that there is a very low scattering around the
optimal diagonal, and 88% of the users were
predicted on this diagonal, which shows us that
RF also performs very well for the classification
task.

6.2 Impact of Data Pre-Processing

In this section, we will have a look at the impact of different tools for pre-processing the data.
We will start by observing the change of the imputing strategy from mean to the median
and most frequent. After that, we will have a look at the two presented scaling methods and
finally at the three presented balancing methods, Random Oversampler (RanOS), Random
Undersampler (RanUS), and SMOTE.

6.2.1 Impact of Imputing

Because of the already named non-treatment of missing data, we imputed our data till now
by mean. In the following, we will investigate the other imputing strategies median and most
frequent for the community models. We will, therefore, have a look at the observation of all
features to get a generalised result and to get information on if and how much our model improves.
For the regression task, we have shown the results of imputing by the three strategies within the
different communities in Tab. 19 and for the classification task in Tab. 20.

As we can see in Tab. 19, the change of the imputing strategy decreases the R2 Score in all
communities, except Riyadh and Mecca, where using the most frequent can enhance the score.
Overall we can see, that changing the strategy does not enhance or deteriorate the score for the
regression task. This can also be confirmed by a Kruskal-Wallis H-Test, where we have tested
if one of the strategies is significantly different from the others. The equal distribution of the
scores for the three methods was 𝐻0. Because of a statistic of 0.2454 and a p-value of 0.8845,
we will not reject 𝐻0, which means for us that the change of the imputing strategy does not
significantly change the R2 Score.

In Tab. 20, we can see that using the most frequent strategy enhances the accuracy in nearly
all communities, which shows us, that using the most frequent strategy will yield better results
for the RF classification task. We again used the Kruskal-Wallis H-Test with equally distributed
scores of the communities for the different imputing strategies as 𝐻0. With a statistic of 0.18
and a p-value of 0.9139, we can also say that changing the imputing strategy will not trigger a
statistically significant difference in the score. Because of the fact, that the score increased in
four of five communities, we nonetheless have decided to use the most frequent strategy for the
following classification tasks.
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Regression
comm. mean median most frequent
Riyadh 0.9728 0.9722 0.9733
std dev ±0.0013 ±0.0011 ±0.0008
Jeddah 0.9667 0.9658 0.9667
std dev ±0.0016 ±0.0021 ±0.0017
Mecca 0.9551 0.9539 0.9571
std dev ±0.0035 ±0.0035 ±0.0026

Al Bahah 0.9457 0.8873 0.9430
std dev ±0.0032 ±0.0022 ±0.0018
Al Jafr 0.8219 0.8033 0.7866
std dev ±0.1115 ±0.1020 ±0.1134

Table 19: The mean R2 Score and its stan-
dard deviation (std dev) for the regression task
within the different communities when imput-
ing by the three different strategies, shows us
that changing the imputing decreases the score
in most cases, except for Riyadh and Mecca,
and therefore, imputing by mean yields the
best results. Besides the fact, that the scores
are higher, we can also see no significant in-
or decreasing, when using the Kruskal-Wallis
H-Test.

Classification
comm. mean median most frequent
Riyadh 0.9578 0.9551 0.9625
std dev ±0.0006 ±0.0011 ±0.0007
Jeddah 0.9413 0.9427 0.9436
std dev ± 0.0006 ±0.0007 ±0.0008
Mecca 0.9240 0.9218 0.9231
std dev ± 0.0035 ± 0.0032 ±0.0039

Al Bahah 0.8811 0.8873 0.8885
std dev ± 0.0080 ±0.0071 ±0.0060
Al Jafr 0.7012 0.7183 0.7240
std dev ±0.0384 ±0.0383 ±0.0694

Table 20: The mean accuracy and its standard
deviation (std dev) within the different com-
munities when imputing by the three different
strategies, which shows us that using the most
frequent strategy increases the accuracy and
can, therefore, yield the best results. Besides
the fact that we cannot see a significant in-
crease when using the Kruskal-Wallis H-Test,
we nonetheless have decided to use the most
frequent strategy for the classification task.

6.2.2 Impact of Scaling

Another aspect to look at when transforming the data is scaling. In the following, we considered
using a Standard Scaler for standardisation or the Min-Max-Scaler for normalising from SciKit-
Learn, which are explained in Section 2.2.1. In this section, we will observe the performance
change when using both tools. The results within the different communities for the regression
task are shown in Tab. 21 and for the classification task in Tab. 22. The results were calculated
on all features.

As we can see in Tab. 21, using both scaling methods does not affect the R2 Score, except
in Al Jafr where the Min-Max-Scaler increased the score of just 0.03, but with a standard

Regression
community without Standard MinMax

Riyadh 0.9728 0.9728 0.9728
std dev ±0.0013 ±0.0013 ±0.0013
Jeddah 0.9667 0.9667 0.9667
std dev ±0.0016 ±0.0016 ±0.0016
Mecca 0.9551 0.9551 0.9551
std dev ±0.0035 ±0.0035 ±0.0036

Al Bahah 0.9457 0.9457 0.9457
std dev ±0.0032 ±0.0032 ±0.0031
Al Jafr 0.8219 0.8218 0.8221
std dev ±0.1115 ±0.1113 ±0.1115

Table 21: The mean R2 Score and its standard
deviation (std dev) within the different commu-
nities for the regression task using all features,
when using the Standard Scaler and Min-Max-
Scaler from SciKit-Learn in comparison to the
score without scaling. This shows us that scal-
ing the data will not change our results and just
in Al Jafr the score is increasing by about 0.003
when using the Min-Max-Scaler, which does not
signalise a significant difference, especially when
having a standard deviation of over 0.1.

Classification
community without Standard MinMax

Riyadh 0.9578 0.9578 0.9574
std dev ±0.0006 ±0.0006 ±0.0006
Jeddah 0.9413 0.9413 0.9415
std dev ±0.0006 ±0.0006 ±0.0004
Mecca 0.9240 0.9238 0.9234
std dev ± 0.0035 ±0.0033 ±0.0032

Al Bahah 0.8811 0.8806 0.8810
std dev ± 0.0080 ± 0.0077 ± 0.0076
Al Jafr 0.7012 0.7012 0.7012
std dev ± 0.0383 ±0.0384 ±0.0384

Table 22: The mean accuracy and its standard
deviation (std dev) within the different commu-
nities for the classification task using all features,
when using the Standard Scaler and Min-Max-
Scaler from SciKit-Learn in comparison to the
score without scaling. This shows us that scaling
the data for the classification task just increases
in Jeddah when using the Min-Max-Scaler, but
decreases or stands equal in all other communi-
ties when using scaling. This can also be seen
with the standard deviation, where the possible
scorings are crossing. This leads to the same
result as for the regression task.
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deviation of over 0.1, there exists no significant difference. In Tab. 22, we have shown, that the
methods for the classification task are just increasing by using the Min-Max-Scaler in Jeddah.
In all other communities, we can detect an equal or lower score which shows us, that using the
scaling methods will not improve our prediction results. This can also be seen with the standard
deviations, which symbolise that the usage of a scaler does not significantly improve the models.
We have seen that using scaling methods will not improve the prediction results of the RF, and
if, it improves, it does not have a huge impact and cannot be generalised.

6.2.3 Impact of Balancing

As we have mentioned in Section 1.2, a common problem in churn prediction is the imbalance
of the data, which can lead to inaccuracy, due to the lack of information. To solve this we
will use different balancing methods, which we have described in Section 2.2.2. We have tested
these methods on the different communities by using all features, to get a look at the general
improvements when using balancing.

As we can see in Tab. 23, the balancing methods for the classification task do not enhance
the accuracy within the different communities and especially the RanUS decreases the accuracy
strongly, which shows, that balancing methods are not very sensible for the classification task.
This also gets confirmed by using the Kruskal-Wallis H-Test with equally distributed scores of
the communities for the different balancing methods as 𝐻0. With a statistic of 4.12 and a p-value
of 0.2488, we can confirm that the usage of a balancing method has no statistically significant
difference between the scores, because of the non-rejection of 𝐻0.

Classification
community without RanOS RanUS SMOTE Baseline

Riyadh 0.9578 0.9550 0.9358 0.9532 0.1892
std dev ±0.0006 ±0.0005 ±0.0015 ±0.0002
Jeddah 0.9413 0.9367 0.9201 0.9365 0.1761
std dev ±0.0006 ±0.0018 ±0.0017 ±0.0021
Mecca 0.9240 0.9154 0.8974 0.9175 0.1793
std dev ±0.0035 ±0.0030 ±0.0035 ±0.0022

Al Bahah 0.8811 0.8806 0.8595 0.8746 0.1754
std dev ±0.0080 ±0.0075 ±0.0075 ±0.0096
Al Jafr 0.7012 0.6494 0.5462 0.6489 0.2471
std dev ±0.0383 ±0.0661 ±0.0534 ±0.1181

Table 23: The change of the mean accuracy and its standard deviation (std dev) for the regression
task within the different communities when using the different balancing methods. We have
printed the highest scores for each community in bold. We can see, that balancing is not enhancing
the score within the different communities. Especially when using the RanUS, a decrease in the
accuracy can be seen. Overall we cannot detect a significant difference, which also follows by the
high standard deviations.

In contrast to the classification task, we can also see in Tab. 24, that using the RanOS
increases the mean R2 Score in all communities, except Riyadh. Especially in Al Jafr, an
enhancement of 0.0031 and in all other communities of just 0.0001 can be seen. But this
enhancement in Al Jafr also needs to be relativised, because of the high standard deviations.
The RanUS did not affect the scores, except of Riyadh, where a small decrease was detected.
When having a look at the significant difference of the scores with the Kruskal-Wallis H-Test
and the same 𝐻0 as for the classification task, a statistic of 0.4558 and a p-value of 0.7962 shows,
that the scores of the communities are not statistically significantly different, because of the
non-rejection of 𝐻0.
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Regression
community without RanOS RanUS Baseline

Riyadh 0.9728 0.9728 0.9709 -0.00032
std dev ±0.0013 ±0.0013 ±0.0013
Jeddah 0.9667 0.9668 0.9655 -0.00046
std dev ±0.0016 ±0.0017 ±0.0019
Mecca 0.9551 0.9553 0.9548 -0.00036
std dev ±0.0035 ±0.0035 ±0.0045

Al Bahah 0.9457 0.9458 0.9448 -0.00056
std dev ±0.0032 ±0.0031 ±0.0032
Al Jafr 0.8219 0.8250 0.8144 -0.02325
std dev ±0.1115 ±0.1157 ±0.1091

Table 24: The change of the mean R2 Score and its standard deviation (std dev) for the regression
task within the different communities when using the different balancing methods. We have
printed the highest scores for each community in bold. The RanOS enhanced the score within all
communities, except for Riyadh. The highest increase we have seen in Al Jafr, where the smallest
number of users are used, but because of the high standard deviations, no significant difference
when using a sampling method can be detected. As we have seen in Section 3, using balancing
methods can also have side effects. That is why we will have a look at the change of the MSE and
MAE when using these methods in the following.

As we have seen in Section 3, using balancing methods can also have side effects on the one
hand, which can improve the prediction results in case of alleviating the, e.g., R2 Score. On the
other hand, a higher Mean Squared Error (MSE) in special areas, e.g., in areas where we had too
few samples before balancing could be visible. To get a look at the side effects of the balancing
methods, we have investigated the change of the MSE and Mean Absolute Error (MAE) for the
regression task. The results of this are shown in Tab. 25 for the RanUS and Tab. 26 for the
RanOS.

In Tab. 25, we show the deltas of MSE and MAE of the models with and without balancing
by RanUS. As we can see, all deltas are negative and therefore, represent an increasing MSE and
MAE, which confirms the results from Tab. 24, that using the RanUS deteriorates the results of
the regression task and is, therefore, not sensible for the regression task.

For the RanOS, we have calculated these deltas in Tab. 26. Because of the positive deltas,
we can see also an improvement for the MAE and MSE, which can especially be seen in the
example Al Jafr. This confirms our findings from Tab. 24, that the RanOS improves our model
and is, therefore, sensible for the classification task.

MSE MAE
community without RanUS Δ without RanUS Δ

Riyadh -199,319,455 -213,159,831 +13,840,376 -6,992.9 -7,427.1 +435.1
std dev ±10,173,116 ±9,841,031 ±45.7 ±55.2
Jeddah -166,686,375 -172,408,347 +5,721,972 -6,769.6 -6,991.7 +222.1
std dev ±8,650,275 ±10,306,674 ±113.1 ±91.9
Mecca -217,252,687 -218,420,066 +1,167,379 -7,903.3 -7,935.9 +32.6
std dev ±17,252,794 ±21,702,672 ±51.8 ±70.2

Al Bahah -222,141,567 -225,832,997 +3,691,430 -8,274.2 -8,351.1 +76.9
std dev ±12,997,544 ±13,069,353 ±180.6 ±159.7
Al Jafr -759,772,901 -784,380,088 +24,607,187 -17,594.0 -17,882.2 +288.2
std dev ±485,134,990 ±470,019,128 ±4327.1 ±3930.6

Table 25: The difference between imbalanced and random undersampled model by MSE and MAE
and their standard deviation (std dev), which shows, that the RanUS also decreases the MSE and
MAE beside the R2 Score, as seen in Tab. 24. This shows us, that the RanUS does have just
negative impacts on the metrics.
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MSE MAE
community without RanOS Δ without RanOS Δ

Riyadh -199,319,455 -199,274,403 -45,052 -6,992.9 -6,991.7 -1.2
std dev ±10,173,116 ±10,048,456 ±45.7 ±46.0
Jeddah -166,686,375 -165,789,879 -896,496 -6,769.6 -6,754.5 -15.1
std dev ±8,650,275 ±8,931,702 ±113.1 ±114.1
Mecca -217,252,687 -216,271,482 -981,205 -7,903.3 -7,891.8 -11.5
std dev ±17,252,794 ±17,168,107 ±51.8 ±59.0

Al Bahah -222,141,567 -221,765,338 -376,229 -8,274.2 -8,260.0 -14.2
std dev ±12,997,544 ±12,981,777 ±180.6 ±184.3
Al Jafr -759,772,901 -751,360,947 -8,411,954 -17,594.0 -17,368.5 -225.5
std dev ±485,134,990 ±499,346,128 ±4327.1 ±4673.4

Table 26: The difference between imbalanced and random oversampled model by MSE and MAE
and their standard deviation (std dev), which shows, that the RanOS also improves the MSE and
MAE beside the R2 Score, as seen in Tab. 24. This means, that the RanOS does not have any
negative impacts in case of the both regression metrics.

6.3 Random Forest Evaluation

After detecting the best working data pre-processing methods, we will now display the scores of
the RF for the regression and classification task, when using all features and the presented feature
subsets from Section 4. For this, we will again have a look at the already seen communities, but
also at the country model, to see for each step, if we can also build a model that works well for
the whole country.

6.3.1 Regression Model

We will start the investigation of the regression task by looking at the general subsets of all,
user and community features. The data were imputed by mean and balanced with the RanOS.
The different models will be evaluated by the mean R2 Score and its standard deviation (std
dev). All models need to exceed the baselines in Tab. 27, where the Dummy Regressor from
SciKit-Learn, which predicted the mean and was oversampled by RanOS, was used. The results
of this, are shown in Tab. 28.

community Riyadh Jeddah Mecca Al Bahah Al Jafr Country
Baseline -0.00032 -0.00046 -0.00036 -0.00056 -0.02325 -0.0002

Table 27: The baselines of the different communities, calculated by Dummy Regressor from
SciKit-Learn, always predicted the mean and used the RanOS.

This shows that the RF yields the best score for the community models in Riyadh when
using just the user features with a score of 0.9740 (±0.001). What can also see, that the score is
decreasing when training on a smaller number of users, but still yields a score of 0.8250 (±0.1157)
for just 174 users in Al Jafr. The country model outperformed the community models with an
R2 Score of 0.9826 (±0.0002) when using the user features, but also did not exceed the score of
Riyadh when using the community features.

Another significant finding is the strong decrease of the score when using just the community
features, with a maximum loss of 0,4494 in Jeddah, but also the remaining strong score when
using just the user features, in contrast to using all features. This leads to the finding, that the
user features yield more and better information for predicting churning users and therefore, in
general work better.

As the second step, we looked at the performance change when changing the time-depended
feature subsets within the different communities and for the country model. This will give us
information after what time we can predict the active minutes of a user by which accuracy. For
this, we will first have a look at predicting all users in Tab. 29 and after that at the results when
predicting on these users, who were active for equal or longer than the lower bound of the time
window in Tab. 30.
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community all user community #users
Riyadh 0.9728 0.9740 0.6005 283,741
std dev ±0.0013 ±0.0010 ±0.0032
Jeddah 0.9668 0.9682 0.5174 100,654
std dev ±0.0017 ±0.0020 ±0.0046
Mecca 0.9553 0.9573 0.5217 44,622
std dev ±0.0035 ±0.0027 ±0.0038

Al Bahah 0.9458 0.9479 0.6127 10,942
std dev ±0.0031 ±0.0037 ±0.0307
Al Jafr 0.8250 0.8213 0.4056 174
std dev ±0.1157 ±0.1303 ±0.1441

Country 0.9819 0.9826 0.5763 1,012,619
std dev ±0.0002 ±0.0002 ±0.0014

Table 28: The mean R2 Scores and its standard deviation (std dev) for the regression task within
the different communities and the country for the feature subsets all, user and community. As
we can see, the highest scores can be achieved when using just the user features, except for Al
Jafr, with a maximum in Riyadh with R2 = 0.9740 for the community models. Using only the
community features will strongly decrease our score. The country model achieved a higher score
than the community models with a score of 0.9826 when using the user features and did not exceed
the best score of the community models when using the community features. This leads to the
finding, that community behaviour is not that significant for predicting the churn of a user.

As we can in Tab. 29, the mean R2 Scores of the different communities are enhancing, when
increasing the feature time window, up to a score of 0.8102 (±0.0018) in Riyadh when observing
for 3 months. This can also be seen in Fig. 33, where we have given the time window subset
on the x-axis and the mean R2 Score and its standard deviation on the y-axis. We can also see
that the prediction scores after one day of observation are relatively low and a prediction after
one day would result in a relatively low R2 Score. The country model also yielded the highest
score for this task in comparison to all others when observing for three months, but also did not
exceed the models of Riyadh and Al Bahah when using a lower observation window.

Regression
community Day Week 2 Weeks Month 3 Months #users

Riyadh 0.6678 0.6910 0.7047 0.7317 0.8102 283,741
std dev ±0.0039 ±0.0039 ±0.0033 ±0.0026 ±0.0018
Jeddah 0.5919 0.6294 0.6496 0.6880 0.7918 100,654
std dev ±0.0031 ±0.0014 ±0.0021 ±0.0037 ±0.0048
Mecca 0.5920 0.6189 0.6398 0.6750 0.7804 44,622
std dev ±0.0051 ±0.0071 ±0.0060 ±0.0065 ±0.0050

Al Bahah 0.6817 0.6972 0.7096 0.7355 0.8022 10,942
std dev ±0.0205 ±0.0167 ±0.0176 ±0.0105 ±0.0097
Al Jafr 0.5274 0.5371 0.5541 0.5790 0.6301 174
std dev ±0.1335 ±0.1187 ±0.0706 ±0.0962 ±0.0775

Country 0.6445 0.6715 0.6893 0.7217 0.8189 1,012,619
std dev ±0.0018 ±0.0019 ±0.0015 ±0.0010 ±0.0015

Table 29: The mean R2 Scores and its standard deviation (std dev) within the different communities
and the country for the 5 time window feature subsets. As we can see, the score is enhancing when
increasing the time window, which can also be seen in Fig. 33. The highest score can be achieved in
Riyadh with an R2 Score of 0.8102 for the community models, which gets exceeded with a score of
0.8189 for the country model, which, therefore, yielded a lower score for the smaller time windows
than 3 months in comparison to Riyadh and Al Bahah. This shows us, that we can predict the
users as churners best when observing for three months.
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Figure 33: The visualised mean R2 Scores of the communities for the different time window feature
subsets and their standard deviation (std dev). As we can see, the increasing of the time window
also increases the R2 Score. We can also see, that the standard deviation is relatively low for all
communities, except for Al Jafr where we have a high standard deviation of up to ±0.1335.

Time Window Features. In Section 4.3, we have described the cumulated time window
features, where, e.g., the features of the one-day time window are also part of the three months
time window. Because of users that were active for a smaller time than the time window, the
features of the greater window would result in the same value as the features of the smaller
window, e.g., for the features postcreated_24h and postcreated_3_Months, where a user with
an active time of one day and five created posts would have the same feature value for both.
Because of this, these features could gain too much information for longer time windows and
could result in a skew, which can be seen by the increasing R2 Score when increasing the time
window in Tab. 29. To observe this impact, we have also calculated the mean R2 Score and its
standard deviation (std dev) for the users who were active for minimally the time of observation
for the community models. These results are shown in Tab. 30 and visualised in Fig. 34, where
we again have given the time window subsets on the x-axis and the R2 Score and its standard
deviation on the y-axis.

Regression | time window
community Day Week 2 Weeks Month

Riyadh 0.6380 0.6404 0.6486 0.6752
std dev ±0.0038 ±0.0039 ±0.0046 ±0.0040
Jeddah 0.5504 0.5395 0.5393 0.5444
std dev ±0.0035 ±0.0080 ±0.0093 ±0.0120
Mecca 0.5568 0.5494 0.5447 0.5490
std dev ±0.0064 ±0.0074 ±0.0072 ±0.0061

Al Bahah 0.6730 0.6897 0.6868 0.7005
std dev ±0.0176 ±0.0154 ±0.0171 ±0.0146
Al Jafr 0.5123 0.4285 0.3521 0.4113
std dev ±0.1201 ±0.1808 ±0.3214 ±0.2752

Table 30: The mean R2 Scores and its standard deviation (std dev) within the different communities,
when predicting users, who were minimally active as long as the observation time. As we can see,
the progress of the score when changing the observation window has changed from the observation
before in Tab. 29. We cannot see a clear increase and therefore, a more balanced score for all
subsets, which can also be seen in Fig. 34.

As we can see, the mean R2 Scores of the different communities have changed and are more
balanced, except for Al Jafr. We cannot see the improvement when increasing the observation
window like we have seen before in Fig. 33. This supports the assumption, that the number
of users with fewer active minutes than the observation window results in a bias. This results
in the highest score in Al Bahah of 0.7005 (±0.0146) when observing for three months and
has decreased by 0.1017 in comparison to the result of Al Bahah in the observation before (cf.
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Tab. 29).
Another finding of this is the volatile score of Al Jafr, which differs strongly and also has a

huge standard deviation, with a maximum of 0.3214 when observing two weeks. This shows us
that we have a high scattering of the R2 Score in Al Jafr, which means that our prediction for
Al Jafr does not have a guaranteed high or low prediction power, because of the high standard
deviation.

Figure 34: The mean R2 Score and its standard deviation (std dev) when predicting on users with
active minutes greater or equal than the time window, to remove the bias, that results of users
who were less active than the given time window and therefore, result in repeating values for the
further window features.
As we can see, the scores are much more balanced than before (cf. Fig. 33), where we cannot see
the increase of the score when increasing the window. The results of Al Jafr differ from the others
in the case of the volatile score and a huge standard deviation, as we can especially see for the
observation time of two weeks.

6.3.2 Classification Model

The next step of the RF investigation was the performance of the classification tasks. The
method will have the task to predict the churning class of a user, as we have described in Tab. 6.
We will distinguish the classification into multi-label and binary classification. The data were
imputed by most frequent and we will evaluate the models by mean accuracy and its standard
deviation (std dev).

6.3.2.1 Multi-Label Classification

As a first step, we looked at the multi-label classification, where the model will predict one of
the six churn classes for a user. For this we have started with the feature subsets all, user and
community within the different communities and for the country model. The models will need
to exceed the baselines we have defined in Tab. 31, where we used the Dummy Classifier from
SciKit-Learn, predicting always the most frequent label. The results for this task are shown in
Tab. 32

We can achieve a relatively high mean accuracy (over 0.9) in Riyadh, Jeddah, and Mecca
when using all and user features, and just in Al Bahah and Al Jafr is the accuracy falling back,
which could be derived by a smaller number of samples, which gain less information and therefore,

community Riyadh Jeddah Mecca Al Bahah Al Jafr Country
Baseline 0.3335 0.2554 0.2642 0.2736 0.3104 0.2818

Table 31: The baselines of the different communities for the multi-label classification, calculated by
Dummy Classifier from SciKit-Learn, which always predicted the most frequent label.
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lead to a poorer generalisation. As for the regression task, also the user features are the strongest
with higher accuracy than using all features, except in Al Jafr. The accuracy is also decreasing
strongly when using just the community features. In this case, Al Bahah results in the best
accuracy with 0.5667 (±0.0052). This leads us to the same finding as for the regression task:
The user features are the strongest and the impact of the community features for predicting
churn is relatively low. This can also be seen for the country model, which outperformed the
other models when using all and the user features, but also did not yield the highest score when
using the community features.

Multi-label Classification
community all user community #users

Riyadh 0.9625 0.9641 0.5521 283,741
std dev ±0.0007 ±0.0005 ±0.0009
Jeddah 0.9436 0.9464 0.5264 100,654
std dev ±0.0008 ±0.0007 ±0.0035
Mecca 0.9231 0.9271 0.5285 44,622
std dev ±0.0039 ±0.0029 ±0.0024

Al Bahah 0.8885 0.8933 0.5667 10,942
std dev ±0.0060 ±0.0057 ±0.0052
Al Jafr 0.7240 0.7239 0.5113 174
std dev ±0.0694 ±0.0923 ±0.0821

Country 0.9697 0.9711 0.5444 1,012,619
std dev ±0.0004 ±0.0005 ±0.0008

Table 32: The mean accuracy and its standard deviation (std dev) of the different communities
and the country for the classification task, when using all, user and community features. The data
were imputed by most frequent. As we can see, the usage of user features achieves the highest
accuracy in all communities, except for Al Jafr. Using just the community features decreases the
accuracy extremely, which shows us that the multi-label classification task is not sensible for the
community features and would, therefore, yield weak results. This leads us to the assumption that
the behaviour of the community probably does not have a huge impact on the retention of a user,
which will be investigated in more detail in the following sections. Using only the user features
results in the best mean accuracy. For the country model, we can see, that it exceeds all other
models when using the user features but also did not exceed the models of Riyadh and Al Bahah
when using the community features.

As a second step for the classification task, we looked at the time window features and the
change of accuracy when increasing the observation time. This will give us a deeper look at
what time we can predict the churning class of a user by which accuracy. The results of this are
shown in Tab. 33 and are visualised in Fig. 35, where the time window subsets are given on the
x-axis and the mean accuracy and its standard deviation on the y-axis.

As we can see in Tab. 33, the accuracy is enhancing when increasing the feature time window,
up to an accuracy of 0.7910 (±0.0021) in Riyadh, when observing for 3 months. This can also
be seen in Fig. 35, where the accuracy is increasing when increasing the time window. Another
finding is the deficit of Al Jafr in all cases of around -0.1, which again could be explained by the
small number of samples, which does not gain enough information to create a more generalised
model. The country model outperforms all other models for all time windows, which shows that
using the country model yields the best results for the classification task with a maximum of
0.8169 when observing for three months, in contrast to the regression task.

For the regression task, we have calculated the accuracy when using only the users who were
minimally active for the given time of the window. This observation cannot be done for the
classification task, because of the decreasing number of classes when increasing the time window.
This limits the observation to one month as maximum, because of the single remaining class
within users. This results in a bias, because of this volatile number of predictable classes for
different time windows. That is why the calculated accuracies would not be directly comparable
and would, therefore, also not result in the desired conclusions. We have, therefore, left this part
for the classification task.
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Multi-label Classification
community Day Week 2 Weeks Month 3 Months #users

Riyadh 0.5648 0.6189 0.6515 0.6999 0.7910 283,741
std dev ±0.0016 ±0.0013 ±0.0015 ±0.0015 ±0.0021
Jeddah 0.5329 0.6011 0.6386 0.6936 0.7827 100,654
std dev ±0.0041 ±0.0029 ±0.0025 ±0.0031 ±0.0016
Mecca 0.5324 0.5962 0.6346 0.6822 0.7707 44,622
std dev ±0.0022 ±0.0035 ±0.0029 ±0.0059 ±0.0054

Al Bahah 0.5755 0.6172 0.6547 0.6909 0.7289 10,942
std dev ±0.0044 ±0.0064 ±0.0096 ±0.0081 ±0.0121
Al Jafr 0.4770 0.5114 0.5229 0.5750 0.6151 174
std dev ±0.0379 ±0.0810 ±0.0826 ±0.0593 ±0.0483

Country 0.6086 0.6620 0.6968 0.7422 0.8169 1,012,619
std dev ±0.0007 ±0.0008 ±0.0011 ±0.0009 ±0.0011

Table 33: The change of the mean accuracy and its standard deviation (std dev) within the different
communities and the country for the classification task when imputing by most frequent. For each
time window feature subset, we are predicting for all users within the community/country. As
we can see, the score is enhancing, when increasing the time window and all models can exceed
the baseline. We achieved the highest score in Riyadh with an accuracy of 0.7910 when observing
for 3 months for the community models and a higher score of the country model with 0.8169
when observing for 3 months, which also exceeded the scores of all communities for the other time
windows.

Figure 35: The change of the mean accuracy and its standard deviation (std dev) within the
different communities, when changing the feature time window. As we have seen for the regression
task (cf. Fig. 33), the increasing time window also increases the accuracy in all communities with a
relatively low standard deviation, except for Al Jafr, where the standard deviation is much higher.

6.3.2.2 Binary Classification

After we have looked at the multi-label classification, which did not perform well on the
time window subsets, we will now investigate the binary classification. For this, the model will
have to predict one class or another. This represents the more practical case, that a company uses
the model to predict if a user will leave the platform within a given time. This also makes the
prediction task or the predictor easier. Each of the following models needs to exceed the baselines,
we have defined in Tab. 34, where we have used the Dummy Classifier from SciKit-Learn, that
always predicted the most frequent label. In Tab. 35, we have shown the results of these tasks for
the five communities and the country model. These were calculated on all features and imputed
by most frequent. Each column displays the prediction of a user to a class of lower or equal to
the given time or greater.
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Binary Classification Baseline
community one day one week two weeks one month three months

Riyadh 0.8754 0.7670 0.7008 0.5889 0.6665
Jeddah 0.8415 0.7121 0.6337 0.5093 0.7461
Mecca 0.8521 0.7235 0.6439 0.5136 0.7506

Al Bahah 0.8574 0.7098 0.6121 0.5419 0.8155
Al Jafr 0.8161 0.7012 0.6380 0.5296 0.7931

Country 0.8665 0.7451 0.6709 0.5470 0.7182

Table 34: The imbalanced baselines for the different communities and the country when processing
a binary classification with the given threshold. The classification tasks with the highest accuracy
per community are printed in bold. We used the Dummy Classifier from SciKit-Learn that always
predicted the most frequent.

We can see in Tab. 35 and Fig. 36, that the highest mean accuracy can be achieved when
using one day as the class border, where we achieve a high score of over 0.97 in all communities,
but also a relatively high score for the other tasks. These weaker results could be derived by the
smaller number of users for the greater class which leads to less information and therefore, could
also decrease the precision and recall. The country model again outperformed the community
models for all five binary classification tasks with a maximum accuracy of 0.9970 (±0.0001) for the
one-day border. This shows us, that the RF is also very sensible for the binary classification task
within the different communities, but also that the country model outperforms the community
models for all classification tasks.

Binary Classification
community Day Week 2 Weeks Month 3 Months #users

Riyadh 0.9966 0.9953 0.9936 0.9910 0.9830 283,741
std dev ±0.0002 ±0.0002 ±0.0003 ±0.0003 ±0.0004
Jeddah 0.9944 0.9924 0.9902 0.9869 0.9779 100,654
std dev ±0.0003 ±0.0003 ±0.0005 ±0.0004 ±0.0007
Mecca 0.9923 0.9903 0.9860 0.9803 0.9701 44,622
std dev ±0.0007 ±0.0007 ±0.0007 ±0.0019 ±0.0012

Al Bahah 0.9881 0.9808 0.9715 0.9687 0.9720 10,942
std dev ±0.0021 ±0.0054 ±0.0036 ±0.0053 ±0.0021
Al Jafr 0.9714 0.9197 0.9313 0.9370 0.9366 174
std dev ±0.0313 ±0.0418 ±0.0497 ±0.0419 ±0.0219

Country 0.9970 0.9961 0.9955 0.9939 0.9893 1,012,619
std dev ±0.0001 ±0.0002 ±0.0001 ±0.0001 ±0.0003

Table 35: The mean accuracy and standard deviation (std dev) of the binary classification of the RF
on all features and imputed by most frequent. The user gets predicted to the class which contains
users with an active time lower or equal to the given time or to the class with users with a greater
active time.
The highest mean accuracy can be achieved when using one-day as the class border and the accuracy
is not strongly decreasing for the other tasks. We can also see that the country model outperforms
all other models.
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Figure 36: The change of the mean accuracy and its standard deviation (std dev) within the different
communities for the binary classification, when changing the time threshold, which represents the
time until a user will churn. This enhances the accuracy extremely up to over 99% for the country
model and the three big communities Riyadh, Jeddah, and Mecca. This shows that the models are
very sensible for the binary classification task.

Conclusion

In both tasks, using only the community features has decreased the score extremely. This
leads us to the conclusion, that the community features are insufficient for a good prediction of
user churn, but the community probably does have an impact on the user churn. This could
follow by a bad representation of the community by the community features and can be more
seen when observing the feature importance in Section 6.5.2. There we will specify if there are
community features that are important for our predictor and how important they are.

As another main finding, we have seen, that the score is enhancing with increasing observation
time. In this context, we have also looked at the skew of the cumulative time window features
and the predictions when predicting on users with a minimal active time of greater or equal to
the specific time window for the regression task. This had an impact on the resulting R2 Scores,
which were more balanced across all time windows and not increasing when using a bigger time
window.

For the classification task, an approach for multi-label classification was shown, which resulted
in strong scores for the user features, but low scores for the time window subset analysis. That is
why we have also shown an approach for binary classification. We have seen a high accuracy for
the different tasks and that the RF also has a possible usage of the models with strong predictive
power.

In the proceedings, we have also observed the performance of a country model in comparison
to the specific community models. For this we have seen that the country model outperformed
the community models for all classification tasks and only for the regression task when using
all, the user and the three months feature subsets. This has shown us, that for the regression
task and therefore, for predicting the specific active time, the country model seems not to be the
strongest. This we will investigate more in Section 6.5.1, where we will have a look at which
models work well on which communities and if there is a model that can perform well on the
whole country as well as on the specific communities.
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6.4 Sweet Spot Detection

When tuning the parameters of the RF, finding a sweet spot is important for the daily usage of
a ‘perfect’ model. This needs a trade-off between the accuracy of the model and the fitting time,
to predict as strong as possible, but also as fast as possible. As an example, the community of
Jeddah is given, which achieved a mean R2 Score of 0.9668 (±0.0017) for the regression task,
with 2048 estimators and a maximum depth of 32 and a mean fitting time of around 3979 seconds
(±212 sec) ≈ 66 minutes. For the classification, it achieved a mean accuracy of 0.9437 (±0.0007),
with 2048 estimators and a maximum depth of 32 and a mean fitting time of around 1982 seconds
≈ 33 minutes (±125 sec).

We first looked at the correlation between the R2 Score and its standard deviation on the
y-axis, and the number of estimators, or rather trees in the forest, on the x-axis for the maximum
depth of the trees as different coloured lines, as shown in Fig. 37.

As a second step, the mean fitting time and its standard deviation are given on the y-axis
and the two parameters as before on the x-axis and legend, to find a trade-off between score and
fitting time, as shown in Fig. 38.

The scorings of the regression are shown in Fig. 37. This shows an increase of the max. depth
of the trees can increase the score significantly. Especially the maximum depth of 16 and 32
achieved the highest scores and differed of just 0.0027 and could, therefore, be our max. depth
parameter value for the sweet spot. Another finding is the missing significant improvement when
using more than 32 estimators, which leads us to a sweet spot of 32 estimators.

To see if we can use the lower depth of 16, we will look at the impact of the maximum depth
on the fitting time, as shown in Fig. 38. The fitting time of the RF with a maximum depth of 16
is lower when using less or equal than 1024 estimators and nearly equal when using 16 (±7 sec)
or 32 (±2 sec) estimators. Because of this small fitting time difference, we can set our sweet
spot at 32 estimators with a depth of 32, because of the higher score. This results in a mean R2

Figure 37: The improvement of the mean R2

Score and its standard deviation (std dev)
when changing the number of estimators
and the maximum depth of the trees of the
RF for the regression task in Jeddah. This
shows us, that we do not achieve a significant
score improvement when using more than 32
estimators and a higher score when increasing
the maximum depth. The maximum depth of
16 and 32 yielded the best results and differ of
just 0.0027 at 32 estimators.

Figure 38: The change of mean fit time in sec-
onds and its standard deviation (std dev) when
changing the number of estimators and the max-
imum depth of the trees of the RF for the re-
gression task in Jeddah. As we can see, the
fitting time when using a depth of 16 is lower
than for 32 when using lower or equal than 1024
estimators and a nearly equal time when using
16 (±7 sec) or 32 (±2 sec) estimators. This re-
sults in a sweet spot when using 32 estimators
and a maximum depth of 32, with a mean R2

Score of 0.9651 (±0.0016) and a mean fitting
time improvement of 0.98 hours ≈ 59 minutes,
and a score decrease of 0.0027.
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Score of 0.9651 (±0.0016) of the sweet spot and therefore, a decrease of 0.0017, but also a mean
fitting time improvement of 0.98 hours ≈ 59 minutes.

For the classification task, the results are shown in Fig. 39 and 40, where the axes display
the same as for the regression task, with the accuracy instead of the R2 Score. As we can see in
Fig. 39, the accuracy of the RF is not significantly increasing, when using 256 or more estimators.
Similar to the regression task, increasing the maximum depth also significantly increases the
accuracy, and the depth of 16 and 32 again achieve the highest accuracy and differ just 0.0077
when using 256 estimators. As we have done for the regression task, we have also looked at the
fitting time of both depths, to make a trade-off, as shown in Fig. 40.

As we can see in Fig. 40, the depth of 16 has a lower fitting time than a depth of 32 when
using less or equal than 1024 estimators. When we have a look at the fitting time of both, we have
a time advantage of only 25 seconds when using a depth of 16. Because of this small fitting time
advantage, but also a small accuracy disadvantage, we can also use a maximum depth of 32 and
256 estimators as a sweet spot. This results in a sweet spot mean accuracy of 0.9333 (±0.0014)
with a mean fitting time of 119 seconds (±16 sec), which leads to an accuracy decreasing of just
0.0104 in comparison to the best result and fitting time advantage of approximately 30 minutes.

Figure 39: The improvement of the mean accu-
racy and its standard deviation (std dev) when
changing the number of estimators and the max-
imum depth of the trees of the RF for the clas-
sification task in Jeddah. This shows us, that
we do not achieve a significant score improve-
ment when using more than 256 estimators. As
we have seen for the regression, the accuracy
is also significantly increasing when increasing
the maximum depth, to a maximum score when
using a depth of 16 and 32, which differ by just
0.0077 when using 256 estimators. To make a
trade-off, we need to look at the fitting time,
which is shown beside.

Figure 40: The change of mean fit time in sec-
onds and its standard deviation (std dev) when
changing the number of estimators and the max-
imum depth of the trees of the RF for the clas-
sification task in Jeddah. The depth of 16 has
a lower fitting time than 32 when using less
or equal to 1024 estimators. Both compared
depths differ just 25 seconds when using 256
estimators, which leads us to a sweet spot when
using 256 estimators and a maximum depth of
32, with an accuracy of 0.9333 (±0.0014) and
fitting time of 119 seconds (±16 sec). This de-
creases the fitting time of about 30 minutes, in
comparison to the best result and an accuracy
decrease of 0.0104 as a trade-off.
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6.5 Detailed View into the Models

After we have detected the best models and got an overview of their performance, we have seen
good working models for each community and for the country model.

As a further step, we will now observe the differences and similarities of the different models,
starting with cross applications of the models in Section 6.5.1. This will include training of the
best models in their community and a prediction of the active time/churn class of the users from
other communities, as well as of the whole country. With this, a generalised view of the models
in other communities can be achieved.

We will then run a feature analysis in Section 6.5.2, where we will determine some charac-
teristics of the different regression models. As the last step, we will then use this information
and will have a deeper look into the empiricisms of selected features, in Section 6.5.3, for more
feedback.

6.5.1 Cross Application

As the first step, we want to have a look at the performance of the best model trained on their
community, predicting the active time and user churn class on users of other communities. This
will give us information on which communities could have equal characteristics, as well as show
us which model can also work well on different communities.

Regression

We will first have a look at the regression task. These results are shown in Fig. 41, where the
best R2 Score for each community on all features from the grid-search is noted on the diagonal as
a baseline for comparison. The model was trained on the community on the x-axis and predicted
the active time of users from the community on the y-axis. This shows that the group of models
of Riyadh, Jeddah, and Mecca achieves a relatively high score within the other communities.
The model of Mecca is the only one that achieves a higher score on a community than the specific
community model, in Al Jafr. Within both models, we can see that we achieve the smallest
decrease of the score in general.

Figure 41: The R2 Score for the model trained on community A and predicting the active minutes
of community B. The diagonal shows the best score for the community from the grid-search over
all features. The models of Riyadh, Mecca, and the country yielded in all communities a relatively
high score and the models of Al Bahah and Al Jafr decreased the scores in Riyadh, Mecca, and
Jeddah strongly, with a score below the baseline of Riyadh. Also, the model of Jeddah did not
exceed the baselines of AL Jafr and Al Bahah. In general, all models result in a lower, but still
strong R2 Score, except for the model of Mecca for Al Jafr, where we can see a small increase.
Especially the country model yielded a high score within all communities, which shows that the
country model works better on all communities than the specific model.
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The country model outperformed the community models for each task. It achieves the highest
R2 Score within all communities and therefore, also shows us that the country model will work
best when predicting the specific active time of a user in all communities.

Another special finding is the weak performance of the model Jeddah on the communities of
Al Jafr and Al Bahah and the models of Al Bahah and Al Jafr in Riyadh, which resulted in a
negative score and also did not exceed the dummy baselines of the communities. The models of
Al Bahah and Al Jafr did also achieve a weak score, but still, a positive score when predicting
the users in Mecca and Jeddah with a score below 0.5. For all the other models is the R2 Score
decreasing but still relatively high.

Classification

For the classification task, we have shown the results in Fig. 42, where the diagonal again
displays the best results for each community from the grid-search. Except for the model of Al
Bahah, all models could achieve greater or equal accuracy in Al Jafr than the specific model. We
can also see, that the models of Al Bahah und Al Jafr did not work well for the other communities
and especially the model of Al Jafr decreases the accuracy strongly, but still exceeds the dummy
classifier of 0.3335 in Riyadh. The model of Riyadh yielded the best scores when predicting on
the other communities and decreased the accuracy of around 10% in comparison to the actual
community model, except for Al Jafr where the model of Riyadh outperformed the model of Al
Jafr and enhanced the accuracy of 9%. As we have seen for the regression task, the models of
Riyadh, Jeddah, and Mecca worked best when predicting the user churn in other communities.

What we have already seen for the regression task is the strong performance of the country
model. It again achieved a very high score in all communities, but in contrast to the regression
task did not exceed the specific community model, except for Al Jafr, but still yielded stronger
results in comparison to all other models. This shows us that the country model did perform
best in all other communities and would, therefore, be chosen for predicting many communities
over the whole country but not when predicting for a single community.

For both tasks, we can see, that predicting users from another community can still achieve a
high prediction score and especially the country model worked best over all communities. This
leads us to the finding, that the different communities could have similar behaviour, w.r.t. user

Figure 42: The accuracy for the model trained on community A and predicting the user churn class
of community B. The diagonal shows the best score for the community from the grid-search over
all features. As we can see, the models of Al Bahah and Al Jafr yielded the weakest results, but
still exceeded the dummy baselines for the specific community.
Another main finding is the strong performance of the group of models of Riyadh, Jeddah, and
Mecca with an accuracy of over 80% within the other communities. The strongest result was
achieved by the country model, which performs well in all communities, as we have already seen
for the regression task, but does not perform stronger than the specific community models.
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churn.
A similar behaviour could be seen when observing the most important features within the

models, which then may also be very important for the country model. Within the next section,
we will investigate these similarities within the different communities and will try to detect these
also within the country model.

6.5.2 Feature Analysis

To detect the similarities and differences between the different models, hence communities, we
will now have a look at the features and their importance and rank, calculated by the Random
Forest Feature Importance (RFFI) and the ReliefF algorithm (cf. Sec. 2.1), as well as at the
selected features of the Recursive Feature Elimination with Cross-Validation (RFECV). For
this we will first have a look at the correlations between the importances and most important
features of the different models by RFFI and ReliefF, to see if there may also be a similarity.
For the models, where we have seen strong correlations, we will then have a look at the specific
importance within the communities and detect the most important ones. This will give us a
look into the most important features within each community and the similarities between the
different models, which could help to derive the different characteristics within the communities
and possibly find common features that could also be important for the country model and
therefore, could display a common characteristic.

6.5.2.1 Feature Correlations

We will now investigate the Pearson Correlations (cf. Sec. 2.8.1) of the models’ feature importance
and feature subset importance, as well as at the Spearman’s Rank correlations (cf. Sec. 2.8.2)
for the feature ranks, to detect which models are strongly correlating and therefore, have models
building upon similar features at similar importance and thus, seem to have similar communities
with similar behaviour, w.r.t. user churn. Due to the fact, that the correlations of the regression
and classification task yielded equal results, the correlations of RFFI and ReliefF of the regression
task will be presented in the following.

Random Forest Feature Importance

As the first step, we will have a look at the RFFI. For this, we will observe the correlations
between the subsets, the feature ranks, as well as explicit importance.

Subset Correlations. We have first looked at the feature subset correlations, as shown
in Fig. 43 by using the Pearson Correlation (cf. Sec. 2.8.1), where each communities’ subset
importance on the x-axis is set into correlation to each community on the y-axis. For this,
we have calculated the cumulated importance of the features for each feature subset in all
communities. We have seen, that there is a high correlation within the communities Riyadh,
Jeddah, and Mecca, but also with Al Jafr. The correlations of Al Bahah with all communities
are standing back and especially with Jeddah we can see a noncorrelation.

For the country model, we can see a high correlation with Jeddah and Al Jafr and a
noncorrelation with Al Bahah but also a low correlation with the communities of Riyadh and
Mecca. In contrast to the correlations of the single communities, there is less correlation of the
country model, which leads us to the finding that the country model differs a little in the case of
the subset importance.

Feature Rank Correlation. To get a more detailed look at the specific features, we have
also shown the feature rank correlation in Fig. 44, where we have used the Spearman’s Rank
Correlation (cf. Sec. 2.8.1), where each communities’ feature ranks of the x-axis are set into
correlation to each on the y-axis. As we can see, Mecca still correlates strongly with Riyadh
and Jeddah and also Riyadh and Jeddah have a high correlation. In contrast to the subset
correlation, a high correlation between Al Bahah and Jeddah can be seen. This could follow by
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Figure 43: The Pearson Correlation of the cu-
mulated importance of the features for each
subset from the RFFI, showing the community
and country regression models. The country
model has a strong correlation to Jeddah and
a bit lower one to Al Jafr. We can also see a
very weak correlation to Al Bahah. In contrast
to the community models, there is not a high
correlation to all other models of the country
model, except for Al Bahah. The community
models of Riyadh, Jeddah, Mecca, and Al Jafr
are highly correlated, but also with the country
model, and a noncorrelation between Jeddah
and Al Bahah can be seen.

Figure 44: The Spearman’s Rank Correlation
of the features importance from the RFFI for
the community and country regression model.
This shows us that there are low correlations
between Al Jafr and Al Bahah. We can also
see the highest correlation of only 0.8534 in
Riyadh with the country model, which shows
that the feature ranks of the country model
are not very strongly correlated to these of the
community models. For the community models,
the strong correlations between Riyadh, Jeddah,
and Mecca can be confirmed and in contrast to
the subsets, a high correlation between Jeddah
and Al Bahah can be seen.

a relatively equal ranking of the feature, but a high difference when having a look at the specific
importances, which then also have an impact on the cumulated subset importance. There is also
a lower correlation of Al Jafr with Riyadh, Jeddah, and Mecca but as we have mentioned for
Jeddah, a higher correlation with Al Bahah. This supports our findings that there are some
similarities within the different communities and especially in Riyadh, Jeddah, and Mecca. For
the country model, we can see that there is also a low correlation, especially in Al Bahah and Al
Jafr. The highest correlation exists with 0.8534 in Riyadh. This also shows us, that the feature
ranks of the country model are not very strongly correlated and differ strongly, except with these
of Riyadh.

Importance Correlation. As a final step, we have observed the correlations of the specific
importance of a feature, as shown in Fig. 45, by using the Pearson Correlation, where each
communities’ feature importance on the x-axis is set into correlation to each on the y-axis. The
correlations are again decreasing in comparison to the rank correlations. The highest correlations
can be seen again for Mecca with Jeddah and Riyadh. The assumption of high differences
between the feature importances but similar feature rankings in Jeddah and Al Bahah, which
we have done from the subset and rank correlation, can also be confirmed, because of the low
correlation for the detailed importances. This shows us that there are still correlations between
the different communities, although these are much lower, which could follow by the higher
diversity of values for the features importances than for ranks.

The country model and the model of Riyadh are again strongly correlated and this strong
correlation can be seen for all of the three observations. We can also see again, that there is a
near noncorrelation to Al Bahah and a weak one to Al Bahah and Mecca. Just the correlation
to Jeddah is relatively high in addition to Riyadh.

As an overall finding for the RFFI, we can say, that there are high correlations between
the different models which could follow by similarities and equal behaviour within the different
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communities. We have also seen that the country model did not correlate that strong to the
community models, except for Riyad. That shows us that there are features that seem to be
important within the communities, but also for the whole country. To confirm this, we will now
observe the correlations of the ReliefF.

Figure 45: The Pearson Correlations of the specific feature importances from the RFFI for the
community and country regression model. This supports the correlation of the country model
with the model of Riyadh, because of a high correlation for this task. We can also see that the
noncorrelation with Al Bahah can be confirmed. For the community models, the correlations
are shrinking but still most strongly in Riyadh, Jeddah, and Mecca, and we can also confirm the
assumption of high differences in importance and similarities in ranking between Jeddah and Al
Bahah.

ReliefF

After we have observed the feature importance of the RF, we now want to observe these
of the ReliefF (cf. Sec. 2.1.2), to see if this leads to equal results and therefore, supports the
findings of the RFFI.

Subset Correlations. As we have done for the RFFI, we have first looked at the feature
subsets within the different communities. As we can see in Fig. 46, where each communities’
subset importance on the x-axis is set into correlation to each on the y-axis, all models have a
high correlation, except for Al Jafr with Al Bahah. In contrast to the community models, a weak
or rather noncorrelation of the country model to all other models, except for Al Jafr, can be seen,
which shows us that for the ReliefF there could be many differences for the feature importance.

Feature Rank Correlation. To have a closer look into the detailed feature importances,
we have also looked at their ranking in Fig. 47, where each communities’ feature ranks on the
x-axis is set into correlation to each on the y-axis. This showed us, that also the ranks of the
features are strongly correlating within all models, except Al Jafr. This leads us to the finding,
that there could be a range of features that are important within all communities and could,
therefore, also gain much information for the country model.

When investigating the country model, the correlations are a big contrast to these of the
subset observation. We achieve a high correlation between the country model and the models
of Riyadh and Mecca, but also for Jeddah and Al Jafr. Only the model of Al Bahah does not
correlate strongly with the country model. This leads us to the finding, that the ranking of the
features within the different models seems to be very similar, but differ in their importance. To
confirm this we have, therefore, also observed the correlations of the specific importance.
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Figure 46: The Pearson Correlations of the
feature subset importances of the ReliefF for the
regression models. We can see a high correlation
of all models, except for Al Jafr with Al Bahah.
Especially the communities Riyadh, Jeddah, and
Mecca a strongly correlating, which leads to the
finding, that there are similarities within the
different communities.

Figure 47: The Spearman’s Rank correlations
for the ReliefF feature ranks for the regression
models. There are fewer correlations as for the
subsets, but again high correlations between
Riyadh, Jeddah, Mecca, and Al Bahah. Al Jafr
stands back and has a weak correlation to the
other communities. This shows us that the
presumed similarities can also be seen for the
rank correlation.

Importance Correlation. For the explicit importance, we can see in Fig. 48, where each
communities’ feature importance on the x-axis is set into correlation to each on the y-axis, that
there is just a high correlation within the cities Riyadh, Jeddah, and Mecca, but also a strong
correlation between Al Jafr and these three cities, as well as between Al Bahah and Jeddah. The
country model has just with Mecca a correlation of greater than 0.9, but still high correlations in
Jeddah and Riyadh. This shows us that there are also similarities for the specific importances
like we have seen between the community models.

As a final conclusion for the ReliefF, we can say that there are again strong correlations
between the different communities, and especially in Riyadh, Jeddah, and Mecca. That leads
us to the finding, that there are equally communities with relatively similar behaviour, which
could also be seen within the country model, which also had a strong correlation in rank and

Figure 48: The Pearson Correlations of the feature importances of the ReliefF. There are again
fewer correlations than for the ranks, but still high correlations within Riyadh, Jeddah, and Mecca.
In Al Jafr we can also see a strong correlation to these three models, as well as in Al Bahah with
Jeddah. This shows us again, that there could be many similarities within the different communities,
which support the presumption of a general model for the whole country.
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importance to the cities Riyadh, Jeddah, and Mecca. To specify this behaviour and similarities,
we will observe the best and selected features of the different models in detail and will try to
detect common features.

Feature Inputvariance

As a last step for the correlations, we have looked at the Spearman’s Rank Correlation of
the feature rankings of the input variances, as well as on the Pearson Correlation for the specific
input variances, as we have shown in Fig. 49. Each communities’ input variance (right) and
ranks (left) on the x-axis are set into correlation to each community on the y-axis. For this, we
have normalised the feature by a Min-Max-Scaler between zero and one.

On the left side, there are strong correlations between the communities of Riyadh, Jeddah,
Mecca, and Al Bahah with a value greater than 0.98 for the rank correlation, but also for Al
Jafr with values greater than 0.87 with all other communities.

On the right side, we can see for the correlations of the specific input variances, that we
have an overall high correlation of the communities with a value greater than 0.9, except for
Al Jafr and Al Bahah, where the correlations fall back slightly in Al Bahah. Just in Al Jafr,
a noncorrelation to all other communities, except for Al Bahah, can be seen, where just a low
correlation can be detected. This shows us that we have high correlations in input variance
within the big communities, which supports the findings of the correlations of the RFFI and
ReliefF.

Figure 49: The Spearman’s Rank Correlation for the ranking of the feature input variance and the
Pearson Correlation for the specific variances for the different communities. On the left, we see
an overall strong correlation between the ranks of the different communities, except for Al Jafr,
where the correlations to Riyadh and Jeddah are falling below 0.9. On the right side, we can see a
difference, where only the communities of Riyadh, Jeddah, and Mecca are strongly correlated with
a value greater than 0.98, but also strong correlations of Al Bahah to all other communities with
a value greater than 0.8. Just for Al Jafr, we see noncorrelations and a low correlation with Al
Bahah.

6.5.2.2 Feature Subset Importances

As we have seen in the previous section, there are strong correlations between the commu-
nities for the feature subset importance. These subset importances are shown in Tab. 36, where
we have listed the cumulated importance of the features for each subset. For the time window
features, we have also given the enhancement for the ReliefF, because of the fact, that the bigger
subsets including the features of the smaller ones and are, therefore, equal or more important
than the smaller subset.
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Riyadh generic user community day week 2 weeks month 3 months
RFFI 0.1500 0.6500 0.1500 0.1500 0.1500 0.1500 0.1500 0.1500
ReliefF 0.3839 1.5236 0.7026 0.7303 0.8529 0.9117 1.0498 1.2979
enhancement - - - - +0.1226 +0.0588 +0.1381 +0.2481

Jeddah generic user community day week 2 weeks month 3 months
RFFI 0.2400 0.6500 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600
ReliefF 0.3760 1.6271 0.8748 0.9149 1.0797 1.1476 1.3134 1.4950
enhancement - - - - +0.1648 +0.0679 +0.1658 +0.1816

Mecca generic user community day week 2 weeks month 3 months
RFFI 0.1400 0.6500 0.1600 0.1600 0.1600 0.1600 0.1600 0.1600
ReliefF 0.3750 1.7912 0.7463 0.8151 1.0008 1.0854 1.2717 1.4726
enhancement - - - - +0.1857 +0.0846 +0.1863 +0.2009

Al Bahah generic user community day week 2 weeks month 3 months
RFFI 0.0000 0.4200 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
ReliefF 0.8120 2.2679 2.3937 2.4246 2.7824 3.0018 3.3834 3.5782
enhancement - - - - +0.3578 +0.2194 +0.3816 +0.1948

Al Jafr generic user community day week 2 weeks month 3 months
RFFI 0.0500 0.7500 0.1200 0.1200 0.1200 0.1200 0.13 0.3500
ReliefF 0.3387 2.7870 0.7993 0.9843 1.1751 1.3065 1.5783 2.0350
enhancement - - - - +0.1908 +0.1314 +0.2718 +0.4567

Country generic user community day week 2 weeks month 3 months
RFFI 0.27 0.71 0.0000 0.0000 0.0000 0.0000 0.0000 0.01
ReliefF 0.4051 1.7714 0.3128 0.3821 0.5781 0.6547 0.8231 1.0700
enhancement - - - - +0.1960 +0.0766 +0.1684 +0.2469

Table 36: The cumulated feature subset importance for the RFFI and ReliefF within the different
communities and in the country and the enhancement for the time-window features for the ReliefF.
The user features yielded the highest importance in all models, except for Al Bahah, where the
community features outperformed the user features, which may explain the noncorrelation to
Jeddah, as well as the low correlation to all other models. We can also see the enhancement for
the time-window feature subsets, which follows by their cumulated features, where the smaller
window is a subset of the bigger one, as we have described in Section 4.3. That is why we have
also given the enhancement for the ReliefF importances when increasing the window. Except for
Al Bahah, all models yielded the highest improvement for the three months window, which could
also be a reason for the correlations of Al Bahah. The stagnating importances for the RFFI can
be explained by the calculation to two decimal places and, therefore, a resulting zero importance
for many features. The country model shows us, that the community features did not have any
importance for the prediction process.

The time-independent feature subsets generic, user and community show us that the user
features achieved in all communities the highest importance for both methods, except for Al
Bahah where the community features yielded the higher importance for both methods and
also the generic features yielded a much lower score. This could be an explanation of the low
correlation of the subsets, as we have seen in Fig. 43 and 44, with Riyadh, Jeddah, and Al Jafr.

When we have a look at the time-window feature subsets, we can see stagnating importance
for the RFFI in all cities, except for Al Jafr. This follows by a calculation of the importance to
two decimal places and therefore, a resulting zero importance for many features. For the ReliefF
importances, we can see, an increase of the importance when increasing the window, which
follows by the cumulated features, where the smaller windows are subsets of the bigger ones, as
we have described in Section 4.3. That is why we have given the enhancement below, which
symbolises the importance of each window. This shows us, that the highest enhancement can be
seen for three months, except for Al Bahah, which again could be a reason for the noncorrelation.

This has shown us that there is a relatively equal subset importance between the communities.
This has only shown us that our assumptions from the previous section can be supported. As
a next step, we now want to look at the specific importance and features. This will show us
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which characteristics were most important within the different communities by which importance.
With this, also similarities and common features can be detected.

6.5.2.3 Most important Features

After we have seen that there are correlations between the feature importances of the models
and also how the importance is distributed along with the feature subsets, we now want to have
a look at the best features and the number of features of the RFFI, ReliefF, and RFECV.

As a first step, we have observed the number of features that were selected by each method
within the different communities, as well as by each method in all communities and the country.
This is shown in Tab. 37. For the RFFI, we have counted the features with importance greater
than zero, and for the ReliefF, these features with importance greater than 0.056. The importance
threshold for the ReliefF is based on the 80% quantile of the feature importances.

There are 15 to 22 features selected by the RFFI, 14 to 26 by RFECV, and 14 to 29 by the
ReliefF. This shows us, that we have a relatively equal range of selected features. We can also
see, that ten features were selected in all communities by the RFFI, and eight by RFECV and
ReliefF. From these features, two were selected by all three methods. In Tab. 38, we can also
see in the upper table, that we have three to four features that get selected by both of these
methods in all communities.

For the country model we can see in the lower table of Tab. 38, the number of features that
were selected by the three methods within the country, as well as by each and two of them.
There are 10 to 15 features that were selected by each method and nine features for the RFFI,
seven for the RFECV, and six for the ReliefF, that were selected in all communities and for the
country as intersection B in Tab. 37. From these only one feature was selected by all three
methods. In the lower table of Tab. 38, we can also see that there are 4 to 12 features that were
selected by two of the methods and four by all three for the country model.

After we have now seen that there are non-empty intersections, we will now look at these
features and their specific importance and rank, to see which characteristics we could derive. At
first, we want to observe the features that were selected by RFECV in Tab. 39. Within this
table, we have shown the features that were selected in all communities, for the country model
and in both. Five features were selected for all communities and the country. This shows us

# selected features
RFFI RFECV ReliefF

Riyad 16 14 14
Jeddah 15 24 14
Mecca 15 22 16
Al Bahah 15 26 29
Al Jafr 22 19 23
intersection A 10 8 8
intersect overall 2
Country 15 19 10
intersection B 9 7 6
intersect overall 1

Table 37: The number of selected features of
the three methods for the communities and the
country. Intersection A means the number of
features that were selected in all communities
by the method and intersection overall the num-
ber of features within all communities and by
all three methods. Intersection B means the
number of features that were selected in all
communities as well as for the country by the
specific method.

# selected features communities
ReliefF RFECV RFFI

ReliefF 8 4 3
RFECV 4 8 4
RFFI 3 4 10
all 2

# selected features country
ReliefF RFECV RFFI

ReliefF 10 7 4
RFECV 7 19 12
RFFI 4 12 15
all 4

Table 38: The number of selected features that
were selected by two of the methods in all
communities (top) and by two methods in the
country, as well as by all three in the lower
right corner.
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all communities country all communities and country
month act_days_first2Weeks_ratio active_days_first3Months_ratio

act_days_firstMonth_ratio max_following_inactive_days_ratio
avg_replycreated_day avg_min_bet_posts
avg_postcreated_day active_days_ratio
avg_min_bet_replies postcreated
replycreated
dayOfMonth
dayOfWeek
downvotes
year

Table 39: The features, that were selected by RFECV in all communities, in the country, and in
both.

that these features could symbolise the general behaviour of the different communities, as well
as of the whole country. That is why we will observe these features in more detail.

For the RFFI and ReliefF, we have also shown the selected features as well as their average
importance over all communities, as well as their median rank. These are shown in Tab. 40, where
we have printed these features in bold that were selected by both methods and underlined these,
that were selected by RFECV. The feature max_foll_inact_d_ratio, which was selected in all
communities by RFECV was also ranked at one in all cities by ReliefF and yields high average
importance. We can also see that the features postcreated, avg_min_bet_posts, RegPostGap_h,
and month were selected by two methods. These features seem to have a high impact on the
models’ decisions and will, therefore, also be observed in more detail.

avg. median avg. median
RFFI imp. rank ReliefF imp. rank
postcreated 0.136 4 max_following_inactive_days_ratio 0.3464 1
replycreated 0.128 3 month 0.2815 2
downvotes 0.040 9 posts_day 0.1509 5
avg_min_btw_posts 0.036 8 active_days_firstMonth_ratio 0.0902 10
RegPostGap_h 0.028 10 RegPostGap_h 0.0819 7
avg_min_bet_replies 0.024 12 avg_min_bet_downvoted 0.0728 10
upvotes 0.016 13
user_threads 0.014 13

Table 40: The selected features of the RFFI (importance greater zero) and ReliefF (importance
greater 0.056) in all communities, that were not selected by all methods, with their average
importance and median rank. We have underlined the features that were also selected by RFECV
in all communities in Tab. 39 and printed these features in bold, which were just selected by RFFI
and ReliefF in all communities.

For the country model, we have listed the selected Features of RFFI and ReliefF in Tab. 41.
We have underlined these features that were also selected by RFECV and printed these bold
that were also selected in all communities. Seven features were also important in all communities
for the RFFI and also two for the ReliefF. For the RFFI we can also see, that the feature
postcreated was defined as most important, which we have also seen for the community models,
where it was on average also the most important feature. This can also be seen for the feature
max_foll_inact_d_ratio for the ReliefF. This shows us, that the country model also selected
features as important that we have seen for the community models too.

A special interest was in the features that were selected by all three methods in all communities,
as well as in the country. These features are shown in Tab. 42, where we have given their
average importance and median rank of RFFI and ReliefF over all communities, as well as over
all communities and the country for the avg_min_bet_interactions, which is the only feature
that was selected in all communities and the country by all methods, which, therefore, leads
us to the finding that this feature seems to be important for the characteristics of the country
and the different communities. The replies_day were selected in all communities and therefore,
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could be used for a general characteristic of the communities. In comparison to the features that
were not selected by all three methods in Tab. 40, we can also see that there are features that
achieved higher average importance than these two features. Overall we have seen that there
are features that were selected by two or more of these three methods in all communities, which
we will observe in more detail in the next section.

RFFI imp. rank ReliefF imp. rank
postcreated 0.26 1 max_foll_inact_d_ratio 0.29 2
avg_min_bet_posts 0.11 3 act_d_first3Months_ratio 0.09 4
year 0.08 4 active_days_firstWeek_ratio 0.08 6
avg_replycreated_day 0.05 7 happyratio1st3Months 0.08 7
replycreated 0.05 8 happyratio1stMonth 0.06 9
downvotes 0.03 9 act_d_firstMonth_ratio 0.06 10
avg_min_bet_replies 0.02 11
avg_postcreated_day 0.01 12
replycreated_3_months 0.01 13
upvotes 0.01 14
user_threads 0.01 15

Table 41: The features of the country model, that were only selected by RFFI or ReliefF with their
importance and rank. We have underlined these features that were also selected by RFECV for
the country and printed these features in bold, which were also selected by the specific method in
all communities, as we have seen in Tab. 40.

avg. imp. median rank
Intersection of all three RFFI ReliefF RFFI ReliefF
replies_day 0.106 0.1778 4 4
avg_min_bet_interactions 0.092 0.0803 4 6
avg_min_bet_interactions 0.867 0.0829 4 5.5

Table 42: The features that were selected in all communities by all three methods and their
average importance and median rank for RFFI and ReliefF, as well as the median rank and average
importance for the avg_min_bet_interactions of all communities and the country as the features,
that was selected in all models by all three methods.

6.5.3 Feedback into Empirical Analysis

As the next step, we want to have a look at the empiricism of the best features. We will,
therefore, have a look at the mean value and its standard deviation (std dev) for different user
groups. The groups will be the defined classes for the active time, see Tab. 6 in Section 1.3.
With these user groups, we try to detect significant differences for the different features. With
the help of this analysis, we probably will detect statistically significant different user groups
for specific features. For these features, there could then be detected a trend, like an increasing
happyratio for a longer active time, that let us learn how the model behaves and let us define
different community characteristics.

As the first step, we have looked at the distributions of means of the most important features
and their standard deviation within the different user groups. For this, we have seen in [15], that
for a normal distribution, around 68% of the samples lay inside the standard deviation of the
mean, 95% inside the double of the standard deviation of the mean, and 99% inside the triple
of the standard deviation, which we can use as a rule of thumb to select specific user groups
for specific features that have no overlapping standard deviation and therefore, could have a
significantly different distribution.

Because of user groups with no overlapping standard deviation, as we can see in Tab. 43,
where the x-axis shows the user groups and the y-axis the feature value normalised between zero
and one by Min-Max-Scaler, we will first have a look at the user groups, as we have defined
them in Tab. 6, for the features max_following_inactive_days_ratio, month, posts_day, and
replies_day. We assume that these four features could have statistically significant different user
groups. To confirm this we have used statistical significance tests (cf. Sec. 2.7).
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user group
feature d w 2w m 3m >

max_foll_inact_d_ratio

month

posts_day

replies_day

avg_min_bet_interactions

avg_min_bet_posts

RegPostGap_h

postcreated

Table 43: The distribution of the mean value of the given feature within the given time-window user
groups and their standard deviation, normalised between 0 and 1. We use the rule of thumb that
these user groups are statistically significantly distributed when they do not have an overlapping
standard deviation. This can be seen for the first four features.

To confirm that these features have significant differences, we have used the Kruskal-Wallis
H-Test (cf. Sec. 2.7.2) for all models, with 𝛼 = 0.05 and 𝐻0, that all user groups have an equal dis-
tribution of the specific feature. The results of the features max_following_inactive_days_ratio,
month, posts_day, month, posts_day, and replies_day are shown in Tab. 44 for all communities,
where we have rounded the p-value for four decimal places. Because of the huge number of
samples, we can see that we have a high statistic value and a p-value of zero within all cities for
all features, which leads to the rejection of 𝐻0. This means, that for each feature at least one
group dominates the others and therefore, is statistically significantly different distributed.

max_foll_inact_d_ratio month posts_day replies_day
community stat p-value stat p-value stat p-value stat p-value
Riyadh 156,742.68 0.0 70,127.05 0.0 71,246.44 0.0 90,127.88 0.0
Jeddah 56,969.24 0.0 30,290.73 0.0 217,45.40 0.0 29,074.37 0.0
Mecca 24,849.06 0.0 14,189.39 0.0 10,658.59 0.0 13,891.33 0.0
Al Bahah 4,548.52 0.0 4,920.32 0.0 4,900.94 0.0 4,854.76 0.0
Al Jafr 110.59 0.0 54.96 0.0 52.17 0.0 55.18 0.0
Country 541,526.02 0.0 314,902.98 0.0 61,906.83 0.0 97,394.93 0.0

Table 44: The results of the Kruskal-Wallis H-test for each community for the four most important
features, that had no overlapping standard deviation, as we have seen in Tab. 43. For each feature,
the statistic and p-value are given, which was rounded for four decimal places. 𝐻0 was, that all
user groups have an equal distribution of the specific feature. As we can see, the p-value for all
features in all cities equals zero, which confirms our assumption that we have significant differences
between user groups for these features.

To determine these significant user groups, we have used the Mann-Whitney U-Test, see
Section 2.7.1, to compare each user group to the others for each community. We have used
again 𝛼 = 0.05, and the changed 𝐻0, that both user groups have the same distribution for the
specific feature. This showed us many statistically significant differences of user groups, but also
nonsignificant ones.

We have seen just significant distributions over all user group combinations for the features
max_following_inactive_days_ratio and replies_day in all cities and the country, except for Al
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Jafr. The results for the four features of Al Jafr are shown in Fig. 50, where the user group on
the x-axis is statistically tested to the user group on the y-axis, and a dark orange symbolises a
p-value lower than the 𝛼 of 0.05 or the darkest orange lower than 0.01, which means that we
reject 𝐻0, which means that the specific user groups have a statistically significant different
distribution. This shows us, that for the max_following_inactive_days_ratio only the user
groups month and two weeks do not have a significant difference in distribution. For the other
three features, we can see that users with more than three months of active time are significantly
different distributed than all other groups, and also the three months user from users from one
day and week for the feature month. For the posts_day, a significantly different distribution
between users from one week and users from two weeks, month, and three months can also be
detected. Because of the small number of samples/users in Al Jafr (176), we can assume that
these findings are a good representation of the city itself, but not for the whole population.

Figure 50: The p-value of the Mann-Whitney U-Test for the four presented features and the
defined classes of users in Al Jafr. For the max_following_inactive_days_ratio just the month and
two weeks user are not significantly different distributed. For the other features, we can see fewer
significant differences. Just for the users with more than three months active time a significant
difference to all others, and for the three-month user with the day and week users for the feature
month can be seen. For the posts_day, we see that also the week users are significantly different
from these of two weeks, month, and three months. Because of the small number of samples/users
in Al Jafr (176), we can assume that these findings representing Al Jafr in a good way, but not
represent the whole population in a good way.

For the other communities, we have seen in Fig. 51, where the user group on the x-axis is
statistically tested to the user group on the y-axis, that we have just a few user groups that are
not significantly different for the features month and replies_day. For the month feature we can
see, that, except for Al Bahah, the user groups month and day are not significantly different.
In Al Bahah we can see that only the groups day and week are not statistically significantly
different. For the replies_day feature we can see that we have no difference for the groups week
and two weeks for all cities, except for Mecca, and additionally the day and month group for
Riyadh and Mecca.

This shows us, that nearly all user groups are statistically significantly different for the given
features, except for Al Jafr, which has a much smaller number of samples, which does not lead
to a good representation. Also, the huge amount of samples in the other communities supports
the statistical significance in the case of huge statistic values. This shows for us practically that
we have features with statistically significant differences between the user groups, which help
our model for a better prediction. For this, we will now also examine the qualitative distribution
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Figure 51: The p-value of the Mann-Whitney U-Test for the two features month and replies_day
and the defined classes of users in Riyadh, Jeddah, Mecca, and Al Bahah, as well as for the country.
There are only a few user groups that are not significantly different, like the month and day group
for the month feature in Riyadh, Jeddah, and Mecca, as well as in Riyadh and Mecca for the
replies_day. Also, the two weeks and week groups are not significantly different for the feature
replies_day in Riyadh, Jeddah, and Al Bahah, as well as the groups two weeks and day in Al
Bahah for the month feature. This shows us, that there are just a few groups of users, that cannot
be marked as significantly different, which supports their strength from the calculated importance
and symbolises a better help for the differentiation of the predictor. Because of the higher number
of samples/users, e.g., in Riyadh (289,963) we can also say that these results can be used for a
better representation of the whole population in contrast to the results of Al Jafr before.

of these features in order to identify any trends.
For the examination of the qualitative distribution, we have calculated the quantiles of the

sets (10% to 90%) and plotted these for the time subsets in Tab. 45, where the x-axis represents
the user groups and the y-axis the feature values, which are normalised between zero and one.
The line represents the median (50%) and the outermost brightest area of the population between

user group
feature d w 2w m 3m >

max_foll_inact_d_ratio

month

posts_day

replies_day

avg_min_bet_interactions

avg_min_bet_posts

RegPostGap_h

postcreated

Table 45: The user churn groups for the most important features and their qualitative population.
The red line displays the median and the areas around the are between the quantiles of 10%-90%,
20%-80%, etc. The features were normalised by Min-Max-Scaler between zero and one. This shows
trends of the different features over the churn time of the users.
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the 10% and 90% quantile.
Because of the fact, that we can see for some metrics a clear trend and for others not, and

because of the fact that some features are time-invariant, we cannot draw a clear conclusion of
this part. This could be part of future work, because of the usage of features with a clear trend
that could be useful, e.g., learning from model behaviour.

6.6 A sample Decision Tree

As a small excurse, we now want to have a look at a sample DT. As we have seen in Section 6.1,
the DT also yielded strong results for the classification task in Jeddah with an accuracy of 0.8000
(±0.0065) and for the regression task with a R2 Score of 0.9336 (±0.0025). Because of this, we
now want to show a sample DT for the prediction of the active time within Jeddah. This we
have shown in Fig. 52. The model of Jeddah had a depth of 16. Because of the space limitations,
we have shown a depth of four. At each node, we have given the feature boundary, the samples
at this node, and the class that would be predicted for a sample at this node. For the root node,
we have also given the value, which displays how many samples are ordered to which class, and
have printed this class bold that had the most samples and would, therefore, be predicted. At
the leaves, we have just given the number of samples, as well as the final prediction class. For
better visualisation, the features are given as numbers. At each node, the predictor would predict
this class with the highest number of samples.

We have printed six nodes in colours, because of their multiple occurrences and therefore,
could be interpreted as more important than other features. For these six nodes, we have given
their label in the upper left corner. For this task, we can see that the features downvotes,
received_upvotes_firstWeek and the replies_day, would be seen as possibly more important than
the others. With the help of this, we could also create a Boolean function that is represented by
this tree. As an example, we have chosen the function for class 3, whose path we have printed
as red dotted border. The Boolean function for this would be:

𝑐𝑙𝑎𝑠𝑠3 = (𝑑𝑜𝑤𝑛𝑣𝑜𝑡𝑒𝑠 > −0.18)
∧ (replies_day > 0.33)
∧ (avg_response_time_minutes_day ≤ −0.43)
∧ (replies_day > 1.09)

(16)
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Figure 52: An example of a DT for the community of Jeddah with a depth of four. We have
coloured these nodes that used the same feature and have given their feature name in the upper left
corner. We have also given an example path for predicting class 3, which is shown as red dotted
elements. For the root node, we have given the additional value, which displays the number of
samples per class at this node, and printed the highest value bold, which would be predicted. This
also exists for all other nodes but is not shown, because of space limitations.
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7 Lessons Learned
Within the proceedings of this bachelor thesis, we have seen a range of methods and tools that
we have not used, because of time limitations, but which could improve our models. We will
now have a look at the different steps, to explore the possible model/evaluation space.

Feature Engineering. Within the Related Work (cf. Sec. 3), a wide range of different
features was presented. We have adapted our set of features to these, but also not to all.
For this, it could be useful to test a wider range of features, like content-based features or
word embeddings. What we have also seen in Section 4, that features like the registered_days
got calculated importance that clearly outscored all others and therefore, probably gained too
much information, which needs to be more avoided in future work. Also features with a strong
correlation to the active minutes are possible too predictive because of their time-invariance,
and could, therefore, be more normalised to avoid too much impact of the model prediction,
as we have seen, e.g., for the postcreated feature, which tends to raise with increasing active
time. This will then be also more interpretable within the empirical feedback. As we have
mentioned in Section 4.2, also an investigation of the performance when using only the most
important features could yield some interesting information and could lead to a trade-off between
performance, runtime, and memory usage.

Pre-Processing. When pre-processing the data, a range of other imputing methods, e.g.,
a KNNImputer from SciKit-Learn [73] that completes the missing values with the K-Nearest
Neighbours algorithm (cf. Sec. 2.3.2), may impute the missing values by a more realistic way
and, therefore, could improve the models’ performance, could be used. For the scaling of the
data, other methods from SciKit-Learn than the Min-Max-Scaler and StandardScaler, like the
RobustScaler, that uses statistics for scaling the data and is robust to outliers [74], could be tested
for improvements. We have also seen many more balancing methods from Imbalanced-Learn [75],
that we have not used, e.g., a version of SMOTE, like the BorderlineSMOTE [76]. These methods
should be investigated in the future for an improvement of the predictive model. All these
different methods could be useful for improving the models, as well as for different other use
cases we did not observe for our models. The possibility of improvement can not really be
assessed, because of the fact, that the tested methods in this thesis did not significantly improve
our models, also because of the already high scores.

ML Methods. When having a look at the used ML methods, a wider range of methods could
be tested and used, e.g., the Naïve Bayes or a self-defined ensemble method, that uses a range of
weak methods, as we have seen in [59]. A ML approach we have only touched is the usage of
Neural Networks. We have only used the Multi-Layer Perceptron, which also yielded strong
results for the regression task. That is why we argue, that an investigation of, e.g., Convolutional
Neural Networks, could achieve high predictive power, as we have, e.g., seen in [60, 58].
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8 Future Work
Within this bachelor thesis, we have built strong models for predicting the minimal active time
of users from different communities. With knowledge about features that increase the retention
of a user and therefore, also can be used for avoiding user churn, there are multiple tasks for
future work.

Textual Features. Within our research, we have only used meta-data features. That is
why a textual approach on the users could gain also information that could help to understand
the user behaviour, which could then again be used for a connection to behavioural results of
this research to detect trends of textual features in comparison to, e.g., the happyratio to detect
word or word groups that in- or decrease the happyratio of a user and therefore, could influence
the user churn indirectly.

Optimization Target. A possible task for the future could be the change of our optimization
target, active time. For this, we could use features, that were most important for different tasks.
I.e., the happyratio of a user could be a possible target, which means, their ratio of upvotes and
downvotes, which indirectly symbolises the acceptance of a user’s post within the communities
and could, therefore, have an impact on the users active time, e.g., a lower one when a user
achieved a low ratio. But also other targets could result in strong models that could each gain
information from a certain viewpoint about user behaviour and community characteristics.

User-Community Relationship. Within this thesis, we have observed the models for
different characteristics and, therefore, also the communities. That indirectly symbolised the
impact of the community on the churn of a single user. A switch of the research from user
churn to community churn could give another point of view. For this, an investigation of the
impact of the user on the community could give information about the shrinking or growth of
communities concerning user behaviour. This would then show that not only the community
can strengthen user churn, as we have shown in this thesis, but also the user on the community
churn, by creating unfriendly content that could lead to a shrinking community. This could then
be combined to define the user-community relationship and its impact on churn.

Time Observation. A part of our research, was the observation of the performance of the
models, when using the different time-window features and therefore, the observation of how the
model improves when scaling up the observation time of a user before predicting his active time.
Within this thesis, we have only observed for a day, week, two weeks, month, and three months.
For the future, a long time observation of a year or multiple years could yield interesting results,
as we have seen in [77], where also an optimization of the models for the observation time, and
therefore, finding a trade-off between observation time and prediction accuracy was shown. This
could then be used for determining long-term user behaviour.

Location. Because of the model approach on the community of Saudi Arabia for the social
media app Jodel, there also is a wide range of use cases within other countries. It could be
interesting to observe the performance of the model when, e.g., predicting users from Germany,
which probably have a different behaviour because of a different culture and therefore, different
behaviour in posting, like a higher amount of posts, more replying to posts or another post
content. This again could be investigated to build more general models that not only work for
specific communities or a single country but rather perform well in multiple countries. With
the help of cross applications between different countries, as we have done with the different
communities, we could then detect possible similarities between these to find a generalisation,
which then could be determined by feature analysis, which could be fed back into the empirics of
different countries.

Empiricism. For observing the characteristics of a community, we have observed the
importance of the features and therefore, also the most important features of the different models
and also within the different communities. These features symbolise an important usage within
the models and were, therefore, fed back into an empirical analysis. This helped us for a better
understanding of the models’ behaviour and insights. This empirical analysis could be expanded
to detect community states, that include the most important features that can represent the

79



communities and their behaviour. This could then be used for a more complex comparison of
the models, hence communities. Another step, that could be done is the observation of clear
trends within these empiricisms. These trends could return a picture of the characteristics and
could, therefore, help to understand and learning the models’ behaviour, which nowadays is more
known as explainable AI.
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9 Conclusion
The retaining of users and the associated avoiding of user churn is a core part of marketing to
increase profitability and growth of a companies platform. That is why detecting users with a
high customer lifetime value and retaining them to a platform is important but also a complex
task. Because of this, predicting churners by ML has got much attention in the past. Within this
thesis, an approach was shown for predicting churners or rather their lifetime on the anonymous
social media app Jodel.

To get closer to the topic, we have looked at the empiricism of the user-base of Jodel within
the Kingdom of Saudi Arabia, which we have used to define user churn on Jodel. Based on
literature research we have seen many approaches for predicting churn in different contexts,
where different ML methods performed very well, and also the feature approach and churn
definition differed widely. Also textual and meta-data-based approaches, as well as time-related
features that were compared in different ways, were shown. Using ML does not always work
with the same success and there is a wide range of methods and proceedings that can be used to
build optimal models for a prediction task.

Based on an existed feature set and a range of newly created ones, we have used a ML
framework, that we have expanded, to build models for different communities and the whole
country to predict the users’ lifetime/churn class.

The underlying research question of this thesis ‘‘Can we build predictive models for single
communities that achieve high prediction accuracy and can we build a single model that can
predict user churn of different communities in the Kingdom of Saudi Arabia with high prediction
accuracy?" was answered by ML models for predicting the exact lifetime of a user (regression
problem) and classifying the user into one of six churn classes (multi-label classification) and
additionally if a user will churn within a given time (binary classification).

As main findings, we have seen that the Random Forest was most sensible for the regression
and classification task. With this method, we have built models for the communities and the
country. With these, we proceeded with a feature subsets analysis, which has shown that the
models worked very well when using all features and the user features in general. When having
a look at the time window features, we have seen that the models did not work very strong for
both tasks, where the strongest score was achieved after an observation time of three months,
which has shown us that the prediction accuracy probably increases when observing for a longer
time. Due to undesirably bad scores, we decided to ease up the classification problem from a
multi-label to a binary classification, which has increased the scores extremely and has shown
that the models can perform very strong for this task when predicting if a user will churn until
different time thresholds with maximum accuracies over 99%.

Based on these models, we additionally, wanted to answer the question: ‘‘How do the different
models perform on other communities, and can we detect similarities to possibly define different
behaviours of models, hence communities?’’

For this, we have researched the model performance on other communities to see how
applicable they are in these. This has shown that the country model performed very strong for
the regression task and outperformed all other models. For the classification task, the country
model again yielded the strongest scores over all communities even if it did not outperform the
community-specific models. Besides the country model, also the models of Riyadh, Jeddah, and
Mecca yielded very strong results even if they did not exceed the country model. By using the
models’ feature importance, we have detected strong correlations between the models Riyadh,
Jeddah, and Mecca but also with the country model. These correlations, hence similarities,
were determined by the most important features of the three methods Random Forest Feature
Importance, ReliefF, and RFECV. These were fed back into empirics, which has shown significant
differences between user groups that were defined by the borders of the six churning classes.
These have also shown relations of features to the active time of users and, therefore, trends
but no conclusive ones that led us to define community states that represent the communities’
behaviours.
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Since we could not detect clear trends in empiricism and could not define characteristics of
models, hence communities, there are many tasks for feature analysis and empirical researches,
that could be used for defining community states for more learning and understanding of the
model behaviour. Due to the small amount of literature for anonymous social networks, the
research on this topic is very versatile and open, and because of the continuous growth of social
networks, the competition will grow too and, therefore, firstly the retaining of users and secondly
the knowledge about reasons for churn will be very important for the platforms. With the help
of ML and explainable AI, the retaining of users could be improved.
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