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A B S T R A C T

This dissertation is a compilation of four self-contained research arti-
cles that focus on selected subjects in the field of energy economics.

The first article focuses on the competitiveness of offshore wind in
mature markets. In this work, we harmonise auction results based
on the auction design features and introduce the harmonised expected
revenue metric. We show that offshore wind power generation can
be considered commercially competitive in mature markets without
subsidy. Furthermore, once auction results are harmonised, we observe
similar expected revenue streams of wind farms across countries. This
finding means that different auction designs can fairly reflect the actual
costs of developing wind farms and thus translate cost reductions into
lower bids.

The second article explores the impacts of uncertainty in integrated
electricity and gas system optimization models. We address the trade-
off that the energy research community faces on a daily basis, i.e.,
whether to neglect uncertainty when constructing an energy system
model and accept a suboptimal solution or to incorporate uncertainty
and increase model complexity. Our research aims to bring a system-
atic understanding of which parametric uncertainties most substan-
tially affect long-term planning decisions in energy system models.
Moreover, the integrated model allows us to extend single-market
evaluations by tracing the effects of uncertainty across the electricity
and gas markets.

In the third article, we focus on seasonal flexibility in the European
natural gas market. We develop a bottom-up market optimization
model to simulate the operation of the gas market over a long period.
This allows us to explore structural trends in market development,
which are driven by changing supply and demand fundamentals. Our
work contributes to the methodological question of how to measure
the contributions of different flexibility options by proposing a scaled
coefficient of variation metric. We show that the metric improves the
understanding of seasonal flexibility’s market dynamics.

Finally, the fourth article investigates the value of Projects of Com-
mon Interest—gas infrastructure projects supported by EU public
funds—in maintaining gas system resilience amid cold-winter demand
spikes, supply shortages, and budget constraints. For this purpose,
we develop the first application of adaptive robust optimization to gas
infrastructure expansion planning. Our modeling approach confronts
the drawbacks of mainstream methods of incorporating uncertainty
into gas market models, in which the modeler predefines the proba-
bilities and realization paths of unknown parameters. The adaptive
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robust optimization problem endogenously identifies the unfortunate
realizations of unknown parameters and suggests the optimal invest-
ments strategies to address them. We find that (i) robust solutions
point to consistent preferences for specific infrastructure projects, (ii)
the real-world construction efforts have been focused on the most
promising projects from a business perspective, and (iii) most projects
are unlikely to be realized without financial support.

Z U S A M M E N FA S S U N G

Diese Dissertation ist eine Zusammenstellung von vier in sich selb-
ständigen Forschungsartikeln, die sich auf ausgewählte Themen aus
dem Bereich der Energiewirtschaft konzentrieren.

Der erste Forschungsartikel betrachtet die Wettbewerbsfähigkeit
der Offshore-Windenergie in entwickelten Märkten. In dieser Arbeit
harmonisieren wir Auktionsergebnisse auf der Grundlage von Aukti-
onsdesignmerkmalen und entwickeln die Metrik harmonisierte erwartete
Erlöse. Wir zeigen, dass die Offshore-Windenergieerzeugung in entwi-
ckelten Märkten ohne Subventionen als wettbewerbsfähig angesehen
werden kann. Sobald die Auktionsergebnisse harmonisiert sind, stellen
wir außerdem fest, dass die erwarteten Erlösströme von Windparks
in allen Ländern ähnlich sind. Dies bedeutet, dass unterschiedliche
Auktionsdesigns die tatsächlichen Kosten für die Entwicklung von
Windparks angemessen widerspiegeln und somit Kostensenkungen
in niedrigere Gebote umgesetzt werden können.

Der zweite Forschungsartikel untersucht die Auswirkungen der
Unsicherheit in integrierten Optimierungsmodellen für Strom- und
Gassysteme. Wir befassen uns mit einem Kompromiss, mit dem die
Energieforschungsgemeinschaft täglich konfrontiert ist, d. h. mit der
Frage, ob man die Unsicherheit bei der Erstellung eines Energiesystem-
modells vernachlässigen und eine suboptimale Lösung akzeptieren
soll oder die Unsicherheit einbezieht und dadurch die Modellkom-
plexität erhöht. Unsere Forschung zielt darauf ab, ein systematisches
Verständnis dafür zu schaffen, welche parametrischen Ungewissheiten
langfristige Planungsentscheidungen in Energiesystemmodellen am
stärksten beeinflussen. Darüber hinaus ermöglicht uns das integrierte
Modell, die Bewertung einzelner Märkte zu erweitern, indem wir die
Auswirkungen von Unsicherheiten auf den Strom- und Gasmärkten
verfolgen.

Im dritten Forschungsartikel konzentrieren wir uns auf die saisona-
le Flexibilität auf dem europäischen Erdgasmarkt. Wir entwickeln
ein Bottom-up-Optimierungsmodell, um die Funktionsweise des Gas-
marktes über einen langen Zeitraum zu simulieren. Dadurch kön-
nen wir strukturelle Trends in der Marktentwicklung untersuchen,
die durch sich ändernde fundamentale Strukturen von Angebot und
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Nachfrage bestimmt werden. Unsere Arbeit leistet einen Beitrag zur
methodischen Frage, wie die Beiträge verschiedener Flexibilitätsoptio-
nen gemessen werden können. Hierfür schlagen wir die Metrik des
skalierten Variationskoeffizients vor. Wir zeigen, dass diese Metrik das
Verständnis der Marktdynamik der saisonalen Flexibilität verbessert.

Schließlich untersucht der vierte Forschungsartikel den Wert von
Projekten von gemeinsamem Interesse—Gasinfrastrukturprojekte, die
mit öffentlichen EU-Mitteln gefördert werden—für die Erhaltung der
Leistungsfähigkeit des Gassystems in Zeiten von Nachfragespitzen
in kalten Winterzeiten, Versorgungsengpässen und Budgetbeschrän-
kungen. Zu diesem Zweck entwickeln wir die erste Anwendung der
adaptiven robusten Optimierung auf die Planung des Ausbaus der
Gasinfrastruktur. Unser Modellierungsansatz überwindet die Nach-
teile der gängigen Methoden zur Einbeziehung von Unsicherheiten
in Gasmarktmodellen, bei denen der Modellierer die Wahrscheinlich-
keiten und Realisierungspfade unbekannter Parameter vorgibt. Das
adaptive robuste Optimierungsproblem bestimmt endogen schlimmst-
mögliche Realisierungen unbekannter Parameter und schlägt optimale
Investitionsstrategien vor, um diese zu berücksichtigen. Wir stellen fest,
dass (i) robuste Lösungen auf konsistente Präferenzen für bestimm-
te Infrastrukturprojekte hindeuten, (ii) die realen Baumaßnahmen
sich auf die aus wirtschaftlicher Sicht vielversprechendsten Projek-
te konzentriert haben und (iii) die meisten Projekte ohne finanzielle
Unterstützung kaum zu realisieren wären.
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I N T R O D U C T I O N



1
I N T R O D U C T I O N

Energy systems around the globe are undergoing a major transition
that involves a broad range of restructuring processes in energy re-
source use, energy system operation, economics, and policy. TheseThe greatest constant

of modern energy
markets is change

processes include the deregulation of energy markets (i.e. replacing
regulated vertically integrated monopolies with competitive energy
markets to improve cost-effectiveness and bring welfare benefits to
society), climate policy actions aimed toward the reduction of green-
house gas emissions to tackle climate change, accelerating deployment
of renewable energy sources, and many other developments.

The energy transition is transforming the world around us, from
the prosaic—we can choose electricity suppliers via the internet based
on costs and our own preferences—to the profound—governments,
businesses, and research communities across the globe are working to-
gether to halt global warming. Moreover, the energy transition changes
our traditional institutions, practices, and beliefs.

These transformation processes raise a multitude of economic, tech-
nical, and environmental challenges that must be researched and
solved. Naturally, it is impossible to address all such energy transition
challenges in a single research project, let alone in a doctoral thesis.
Therefore, in this thesis, I present four research articles in which my
co-authors and I focus on several selected subjects in the field of energy
economics. The subjects are connected by three keywords: uncertainty,
complexity, and change.

More precisely, the first article focuses on auctions for offshore wind
and the competitiveness of this technology in mature markets. The
second explores the impacts of uncertainty in integrated electricity and
gas system optimization models. In the third article, we focus on the
topic of seasonal flexibility in the European natural gas market. Finally,
in the fourth article, we analyze the value of Projects of Common
Interest—gas infrastructure projects supported by EU public funds—
in maintaining gas system resilience amid cold-winter demand spikes,
supply shortages, and budget constraints. In this work, we offer the
first application of adaptive robust optimization to gas infrastructure
expansion planning.

The rest of this Introduction proceeds as follows: section 1.1 out-
lines the structure of the thesis, section 1.2 gives an overview of the
conducted research and contribution to the body of knowledge, and
section 1.3 ends with a note on open research.

2
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1.1 thesis structure

The main part of this thesis comprises four self-contained research
articles that are presented in individual chapters. The chapters are
sorted in chronological order of the articles’ publication.

I am the lead author of the research articles presented in chapters 3,
4, and 5 and a co-author of the article presented in chapter 2. All four
articles have a transparent authorship contribution statement, which
is provided at the end of each chapter.

Three articles included in this thesis were published in Nature Energy,
Applied Energy, and The Energy Journal, which are Q1 journals based
on the Scimago Journal Ranking.1 The fourth article is currently in
the review stage for publication in a Q1 journal. Therefore, chapter 5

presents the working paper published on the Optimization Online
eprints server.

The article presented in chapter 2 received remarkable public atten-
tion.2 The findings discussed in the paper were mentioned by more
than 120 international news outlets. Indeed, the article ranks as one
of the highest-scoring outputs from the Nature Energy journal (#3
of 1, 304). Such public attention scores in the 99th percentile of all
research outputs of the same age.

The four research articles are published with a large body of sup-
plementary data and online appendixes. I provide a description and
links to these supplementary materials at the end of each chapter. The
printed appendixes are provided at the end of this thesis.

1.2 research questions and contribution to the body of

research

chapter 2 : The analysis in this chapter focuses on the auctions for
offshore wind and the competitiveness of this technology in
mature markets without subsidy.

Although offshore wind is growing rapidly, this technology
has always been considered one of the more expensive decar-
bonization options. Many countries have recently introduced
competition-based auctions for supporting offshore wind. The
results of the first auctions shocked the industry and received
broad public attention. For example, more than 50% of capacity
awarded in the first two German offshore wind auctions bid
€0 MWh−1. These auction results suggest the prospect of off-
shore wind power becoming cheaper than conventional power
generation. However, a direct comparison of auction results is
a fruitless exercise due to a broad range of differences in the
auction designs.

1 See: https://www.scimagojr.com/journalrank.php
2 See: https://www.altmetric.com/details/86606597

https://www.scimagojr.com/journalrank.php
https://www.altmetric.com/details/86606597


4 introduction

For this reason, we collate auction results from five countries3

and harmonise them based on the auction-specific design fea-
tures. Using this data, we define and compute the harmonised
expected revenue metric as the discounted average revenue per
megawatt hour of electricity generated over the lifetime of the
project. This metric can be compared to wholesale prices or
the levelized costs of electricity of other technologies as a non-
subsidized benchmark. We show that offshore wind power gen-
eration can be considered commercially competitive in mature
markets.

We also show that once bids are harmonised over the differences
in auction designs, the expected revenue streams of wind farms
are similar across countries. This important finding suggests that
different auction designs can fairly reflect the actual costs of
developing wind farms and thus translate cost reductions into
lower bids.

Furthermore, we compute the effective level of government sub-
sidy that is paid to each auctioned wind farm and test its sen-
sitivity to future trajectories of wholesale electricity prices. We
make an observation that might be of significant interest for
energy sector stakeholders: the 2019 auction round in the United
Kingdom probably delivered the world’s first negative-subsidy
offshore wind farm (i.e. the farm will be paying money back to
society).

Overall, the chapter addresses the clear lack of academic liter-
ature on the question of whether offshore wind has reached
subsidy-free status. In this context, our findings equip policy-
makers, academics, and the industry with evidence that offshore
wind will be a low-cost, low-carbon technology in the future.

chapter 3 : This chapter explores the impacts of uncertainty in inte-
grated electricity and gas system optimization models.

The research in this chapter is motivated by the constantly rising
complexity of modern energy system models, which businesses
and policymakers use to assist decision-making when address-
ing the challenges of the energy transition and climate change.
These models comprise extensive databases, intertemporal dy-
namics, and a multitude of decision variables. The interdepen-
dence of electricity and natural gas markets adds another layer
of complexity, as state-of-the-art models include the operation
of both markets in integrated energy system optimization prob-
lems. This complexity poses a challenge for energy modelers,
who must address multiple uncertainties that are prevalent in
both electricity and gas markets. The operational research liter-
ature offers stochastic optimization approaches that enable an

3 Countries with two or more auctions held at the time of writing.
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adequate consideration of uncertainties in energy-related invest-
ment and operation planning problems. However, most previous
models (and studies) dealing with the integrated optimisation of
electricity and gas markets have used a deterministic approach.
This is because stochastic problems—even for a single market—
are complex. Therefore, while constructing integrated energy
models, researchers must decide whether to neglect uncertainty
and accept a suboptimal solution or to incorporate uncertainty
and increase model complexity. This trade-off suggests an im-
portant question: how inaccurate are solutions that neglect system
uncertainty?

To address this question, we develop an integrated stochastic
optimization problem and parametrize it with data for European
electricity and gas markets. Our analysis covers key uncertain-
ties, such as gas and electricity demand, installed capacity of
renewable energy technologies, and fuel and CO2 prices. We de-
rive the optimal investment decisions when these uncertainties
are explicitly encoded (or removed) in a model and quantify the
difference.

The chapter contributes to the body of literature in two ways.
First, we develop a stochastic optimization problem that inte-
grates the operation of electricity and gas systems and includes
endogenous investments in power generation capacity. We use
the model to explore the impacts of multiple uncertainties on
the energy systems. The integrated modeling framework allows
us to extend single-market uncertainty evaluations by tracing
the effects of uncertainty across the integrated electricity and
gas markets. Second, there is still no systematic understanding
of which isolated parametric uncertainty most substantially af-
fects long-term planning decisions in energy system models. We
present an applied methodology to examine the effects of iso-
lated parametric uncertainties on solution quality for large-scale
energy system optimization models.

While our methodological contributions should be of interest
to energy modelers, our findings are also relevant for indus-
try experts and stakeholders with an empirical interest in the
European energy system.

chapter 4 : This chapter focuses on seasonal flexibility in the Euro-
pean natural gas market.

Seasonality is a central characteristic of the European gas mar-
ket. European countries manage seasonal demand swings (i.e.
differences between winter and summer gas consumption) with
a mix of flexibility options such as variations in domestic gas
production, variations in pipeline or Liquefied Natural Gas (LNG)
imports, and the operation of underground gas storage facilities.
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In the years before 2018, a relative abundance of seasonal flexibil-
ity was observed in the European gas market. This was evident
in low seasonal gas price spreads on gas hubs and low utilization
of regasification terminals. However, this abundance of seasonal
flexibility is likely not permanent. In the future, several factors
will put significant downward pressure on the oversupply of
flexibility options. These include (i) closures of existing seasonal
flexibility options and (ii) decreasing volumes (and associated
flexibility) of European domestic gas production. However, other
factors work in the opposite direction. These include the contin-
uous integration of European gas markets (i.e., the completion
of new transmission and storage infrastructure), as well as the
optimization of existing assets. Taken together, the future supply
of seasonal flexibility remains unclear.

Previous studies have either discussed seasonal flexibility using
other methodological approaches or have maintained a narrow
focus, mostly on issues related to the security of supply. Fur-
thermore, there is still no systematic understanding of how to
measure the importance of a particular supply source to a sea-
sonal demand swing.

Hence, the work presented in this chapter contributes to the
literature in two ways. First, we focus our analysis on seasonal
flexibility. Second, we address the problem using a bottom-up
market optimization model to simulate the operation of the gas
market over a long period. This allows us to explore structural
trends in market development, which are driven by changing
supply and demand fundamentals. Furthermore, we contribute
to the methodological question of how to measure the contribu-
tions of different flexibility options by proposing a new metric.
We show that a scaled coefficient of variation improves the under-
standing of seasonal flexibility’s market dynamics.

chapter 5 : In this chapter, we analyze the value of Projects of Com-
mon Interest—gas infrastructure projects supported by EU pub-
lic funds—in maintaining gas system resilience amid cold-winter
demand spikes, supply shortages, and budget constraints. For
this purpose, we develop the first application of adaptive robust
optimization to gas infrastructure expansion planning.

This analysis is motivated by the ongoing discourse concerning
energy supply security and appropriate business and policy
decisions that involve stakeholders from public, private, and
academic spheres. The EU has proactively sought to enhance
its infrastructural capacity to curb vulnerabilities. Policymakers
have assigned great importance to increasing the security of
supply in the European gas market through Projects of Common
Interest. However, these projects have been the target of signifi-
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cant criticism; some contend that they are unnecessary from a
supply security perspective and are at risk of becoming stranded
assets.

This chapter contributes to the extant literature by suggesting an
adaptive robust optimization framework for gas infrastructure
expansion planning that considers long-term uncertainties. To
the best of our knowledge, this constitutes the first application of
adaptive robust optimization for gas infrastructure optimization
problems in a real-world setting.

Our modeling framework confronts the drawbacks of main-
stream methods of incorporating uncertainty into gas market
models (i.e., stochastic scenario trees), in which the modeler
predefines the probabilities and realization paths of unknown
parameters. The model endogenously identifies the unfortunate
realizations of unknown parameters and suggests the optimal
investments strategies to address them. We use this feature to
assess which infrastructure projects are valuable in maintaining
resilience amid system stress.

In the discussion section, we highlight that robust solutions
point to consistent preferences for specific infrastructure projects.
Interestingly, we find that real-world construction efforts have
been focused on the most promising projects from a business
perspective. However, we also find that most Projects of Common
Interest are unlikely to be realized without financial support,
even if they would serve as a hedge against stresses in the
European gas system.

The findings presented in this chapter are relevant to a broad cir-
cle of industry stakeholders with an interest in reliability issues
in the European energy system. In addition, the methodological
contribution will be of interest to those working on topics of
decision-making under uncertainty in energy markets.

1.3 a note on open and reproducible research

I believe that open science facilitates transparency and credibility,
reduces wasteful duplications of effort, helps share ideas, and encour-
ages further research in the field. This allows the research community
to advance the frontiers of science and gain the highest benefit from
scientific exploration for society. In this context, open means that data
and code are shared using an open license and thus can be studied,
modified, improved, and shared by anyone.

The four research articles included in this thesis are connected with
the ideal of open science. Datasets and source codes for these research
projects are available in public repositories under open licenses. I
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reference these repositories at the end of each chapter. The models in
these repositories reproduce the benchmarks from the papers.



Part II

M O D E L I N G C H A L L E N G E S O F M O D E R N
E N E R G Y M A R K E T S : S T U D I E S O N

U N C E RTA I N T Y, C O M P L E X I T Y, A N D C O N S TA N T
C H A N G E



2
O F F S H O R E W I N D C O M P E T I T I V E N E S S I N M AT U R E
M A R K E T S W I T H O U T S U B S I D Y

This chapter presents
the journal article as
originally published

in Nature Energy.
springernature

(c) 2020

abstract : Offshore wind energy development has been driven by
government support schemes; however, recent cost reductions
raise the prospect of offshore wind power becoming cheaper than
conventional power generation. Many countries use auctions to
provide financial support; however, differences in auction design
make their results difficult to compare. Here, we harmonize the
auction results from five countries based on their design features,
showing that offshore wind power generation can be considered
commercially competitive in mature markets. Between 2015 and
2019, the price paid for power from offshore wind farms across
northern Europe fell by 11.9 ± 1.6% per year. The bids received
in 2019 translate to an average price of €51 ± 3 MWh−1, and
substantially different auction designs have received comparably
low bids. The level of subsidy implied by the auction results
depends on future power prices; however, projects in Germany
and the Netherlands are already subsidy-free, and it appears
likely that in 2019 the United Kingdom will have auctioned the
world’s first negative-subsidy offshore wind farm.

published as : M. Jansen, I. Staffell, L. Kitzing, S. Quoilin, E.
Wiggelinkhuizen, B. Bulder, I. Riepin, F. Müsgens (2020), Off-
shore wind competitiveness in mature markets without subsidy,
Nature Energy, Issue 5, 614–622. DOI: https://doi.org/10.103
8/s41560-020-0661-2

2.1 introduction

Decarbonizing energy systems is a global necessity. Electricity from
Renewable Energy Sources (RES) will be crucial for this transformation.
Together with photovoltaics and onshore wind, offshore wind energy
has become a major contributor of renewable electricity in Europe.
With growth rates exceeding 35% a year for the last five years [1], the
global installed capacity reached 28 GW by the end of 2019. A capacity
of over 127 GW is forecasted by 2040 under the IEA’s most conservative
scenario [2] and the European Commission has announced its ambition
to achieve between 250 GW and 450 GW of electricity generated using
offshore wind in 2050 for Europe alone [3]. Global technical potentials
exceed 10, 000 GW of capacity and an annual production of 5, 000 TWh
in each of Europe, America and Asia [4, 5].

10
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This historic increase came at a cost. Offshore wind energy was sig-
nificantly more expensive than conventional generation, even among
options for decarbonization [6, 7]. Recently, the technology has expe-
rienced rapid cost reductions, which have been widely discussed in
the media and consultancy reports [8–10], with some speculating that
subsidy-free offshore wind was already achieved. As with the rapid
cost reductions in solar photovoltaics [11] and energy storage [12], the
pace of offshore wind cost reductions has proceeded more rapidly
than was widely anticipated, in contrast to the increasing capital costs
during the earlier stages of development [13–16]. For example, in 2016
Wiser et al. [17] used an expert survey to forecast the cost reductions
for wind power, and the prices received in recent auctions have already
fallen below the expectations for 2050.

Controversy remains around how close offshore wind power is to
economic competitiveness against other decarbonization options [18,
19]. The National Renewable Energy Laboratory compared auction
results from the Netherlands, the United Kingdom and Denmark by
adjusting values to account for grid connection, development costs and
contract lengths [20]. A transparent methodology was not provided
though, which limits the replicability of the results and the ability to
update data in this fast-paced industry. The IEA Wind TCP Task 26
has compared country-specific impacts on the Levelised Cost of Elec-
tricity (LCOE) [21], which comprehensively covers the costs of offshore
wind. While the publications mentioned in this paragraph provide a
valuable background, they do not explain the bids and the pace of the
underlying cost reduction. Both issues are addressed in this paper.

Competitiveness can be measured by comparing costs (usually LCOE)
to other technologies or to wholesale market prices, and provides an
aggregated measure of competition in the system [21, 22]. However,
actual LCOE data are only available in selected countries because
they are commercially valuable and sensitive [23, 24], which leads to
misrepresentation [25] and the need to estimate costs. For offshore
wind, estimates of investors’ expected LCOE can be derived from
auction results, and data on successful bids are often published openly.
Although bids should correlate with costs, they cannot be directly
translated, as information on expected revenues from wind power
projects is unavailable.

Several important differences exist in auction design, including the
length of support, whether it rises with inflation, optionality in build-
ing the project and the inclusion of development costs. Most critically,
the Contract for Differences (CfD) used for remuneration can be cat-
egorized as one-sided (providing a lower-bound price below which
revenues from the wind farm cannot fall) or two-sided (providing a
fixed price with both lower and upper bounds). For this reason, a
bid of €20 MWh−1 in Germany may provide more financial revenue
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for a wind farm developer than a bid of £50 MWh−1 in the United
Kingdom.

We harmonize the winning bids from 41 wind farms across auctions
in five European countries between 2005 and 2019, accounting for the
main features of each auction. Wind farms were selected based solely
on their payment allocation scheme, that is only wind farms that were
auctioned. All offshore wind technologies were considered, as were
all countries that had held at least two auction rounds at the time of
writing (the minimum required to detect a trend). These five countries
represented 77% of the global offshore wind capacity, and the only
other country to hold more than 1% of the global capacity was China,
which was not included as it had only auctioned a single offshore wind
farm at the time of writing [1]. This analysis provides two measures:
the expected revenues (in €2019 MWh−1) for each wind farm, which
we then compare with potential future wholesale market prices to
estimate the effective subsidy, and thus the financial competitiveness
of each wind farm. We aggregate data on auction settings and results,
showing that current offshore wind technologies at good sites in
mature markets have implied prices of less than €50 MWh−1, which
is likely to be subsidy-free or negative-subsidy depending on future
power prices.

2.2 offshore wind auctions in europe

Five countries in Europe have held auctions for offshore wind capac-
ity. In total, 17 auctions have been held, bringing forth over 20 GW
of capacity. The evolution of winning bids across these auctions is
summarized in Fig. 2.1. This does not reveal a clear trend and is
confounded by several bids of €0 (made into one-sided CfD auctions)
beginning in 2017. While a declining trend can be observed, this re-
veals as much about the heterogeneity in auction design as it does
about the reduction in wind farm costs.

All auctions for offshore wind in Europe are designed so that the
wind farm operator receives a guaranteed price for a certain prede-
fined period. This ‘strike price’, or ‘bid price’, closes the gap between
the market reference price (that is wholesale electricity prices) and a
guaranteed price. However, the exact payment arrangements differ
between countries, and the specific design of the support scheme
gives rise to significant differences in the bids received, and must be
accounted for when comparing bids across different schemes. Clarifi-
cation on auction design features and their influence can be found in
refs. [26–29].

Several differences in implementation exist. (1) The choice of re-
muneration mechanism, specifically the allocation of market upside.
One-sided CfDs usually pay when wholesale prices are below bid
prices but do not demand money if wholesale prices are above bid
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Figure 2.1: Raw bids received by auctions for new offshore wind capacity in
five European countries over the past eight years

Points show the date that auctions were announced, and are converted from
the local currency to €2019.

prices. With two-sided CfDs, investors must compensate for wholesale
price revenues above bid prices. Further explanation can be found
in Supplementary Note 1. (2) Defining the support duration based
on a fixed time period (years) or by the total support volume (TWh).
(3) Accounting for indexation, which defines whether the guaranteed
price is adjusted for inflation, choice of inflation index and base year
for indexation. (4) Choice of market reference price used as the basis
for comparison to the guaranteed price (for example hourly, daily,
monthly average). (5) Floors of market price below which no support
is being paid out (for example at negative market prices for several
consecutive hours). (6) The allocation of land lease costs, (7) grid con-
nection costs and (8) site development costs. (9) The option to capture
alternative revenue streams (for example ancillary services), and (10)
penalties for non-fulfilment of contracts, which could mean bids are
conceived as options to build and do not necessarily reflect realistic
cost estimates in all cases.

The auction schemes vary considerably across the five countries we
consider, as summarized in Table 2.1. All auctions provide remuner-
ation based on produced energy (that is per kWh); however, other
design aspects are not comparable between auction schemes. Further
details are given in Supplementary Data and Supplementary Table 1.
An overview of each country’s auction design and their differences is
given in Supplementary Note 2.

https://www.nature.com/articles/s41560-020-0661-2
https://doi.org/10.5281/zenodo.3840134
https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
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2.3 harmonization of expected revenues

The significant differences we identify in auction and product de-
sign across countries directly influence the costs and/or revenues of
projects, and thus influence the bids received. The winning bids in Eu-
ropean auctions for offshore wind were harmonized using a monthly
cashflow analysis, and account for the most significant factors identi-
fied in the previous section (see Methods). We define the ‘harmonized
expected revenue’ as the discounted average revenue per MWh of
electricity generated over the lifetime of the project. This gives the
equivalent bid that would be offered into a support scheme with a
two-sided CfD and a 25-year support duration, indexation to inflation
and site development costs paid by investors.

The harmonized expected revenue incorporates all the money a
wind farm can expect to earn over its lifetime, including revenues for
later in the project’s lifetime when support has ended. It is therefore
complementary to the widely used LCOE metric, referring to revenue
rather than cost. It could therefore be a proxy to LCOE in perfectly
competitive markets. The details for each wind farm that were used
to determine harmonize expected revenue, including key dates and
technical specification, are given in Supplementary Data and Supple-
mentary Table 1.

Comparing the harmonized expected revenues in Fig. 2.2 with the
raw bids reveals substantial differences: the raw bids are in the range
€0 − 150 MWh−1, whereas expected revenues are €50 − 150 MWh−1,
with wind farms due to begin operation after 2020 converging towards
a range of €50 − 70 MWh−1. From this analysis we cannot identify
one country that consistently creates lower bids than others, despite
varying site conditions, auction criteria and level of competition. A
capacity-weighted logarithmic regression through all auction results
yields a reduction in the harmonized revenue requirement of 5.8% per
year, with a standard regression error of ±1.1%. When considering
the more recent auctions, with start dates from 2015 onwards, this rate
increases to 11.9 ± 1.6% per year. The results for individual countries
are presented in Supplementary Table 2 and Supplementary Fig. 2. A
logarithmic fit was chosen to ensure that regression results cannot fall
below zero. The increased rate of cost reduction indicates that auctions
may have helped to improve efficiency in the offshore wind industry.

Large differences between auction date, Final Investment Decision
(FID) and planned commencement of operation can be noted. For some
zero bids in Germany, more than five years lie between the auction
result and commencement of operation, whereas several wind farms in
the United Kingdom made the FID on the day of winning the auction
or shortly after. As a result, there is more time for turbine costs to
decrease on German wind farms meaning the bids appear more in
line with each other.

https://doi.org/10.5281/zenodo.3840134
https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
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Table 2.1: Main characteristics of the auction systems for offshore wind ca-
pacity in five European countries

Characteristics DK UK NL DE BE

Wind capacity
(total/offshore)
[GW] [30]

5.7/1.3 5.7/1.3 4.5/1.1 59.3/6.4 3.4/1.2

Date of auctions 2005-16 2015-19 2016-19 2017-18 N.A.b

Capacity
awarded (all
rounds) [GW]

2.2 9.8 3.0 2.7 2.3

Wind farms
awarded

7 11 5 10 10

Average bid (cap.-
weighted)

€84
(DKK625)

€65
(£57)

€32 €19 €104

Minimum bid €50
(DKK372)

€46
(£40)

€0 €0 €79

Sided 2 2 1 1 1

Duration (years) 12 15 15 20 16c

Grid costs in bid x ✓ x x xd

Site costs in bid ✓ ✓ xa ✓ x

Inflation adjust-
ment

x ✓ x x x

a Land lease paid for by the wind farm in the latest tender round.
b Renewable obligation certificate scheme mirroring auction results of the
Netherlands.
c 16 − 20 years, with 16 years for the latest wind farms.
d Financial cap on total investment.
Full details about each wind farm in these auctions are provided in Sup-
plementary Data and Supplementary Table 1. Two bids from German wind
farms were undisclosed [31] and thus not analysed further. Denmark im-
plements a new auction design for each round and support length is based
on energy production. For more information on the auction design of each
country refer to Supplementary Note 2.

Fig. 2.2 shows that harmonized expected revenues for several projects
have fallen below €50 MWh−1. This places offshore wind towards the
lower end of LCOE estimates for fossil fuel generators [22]. However,
such a comparison must be caveated, as these revenues will only
reflect costs in perfectly competitive markets, and cost comparisons
between variable renewables and dispatchable fossil fuel generators
are subject to ongoing debate around integration costs [32–34].

https://doi.org/10.5281/zenodo.3840134
https://doi.org/10.5281/zenodo.3840134
https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
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Figure 2.2: Harmonized expected revenues for each offshore wind farm auc-
tioned in Europe

Each symbol shows the planned start date of operation against the harmo-
nized expected revenue. The lines show the lognormal regression of expected
revenue against time across all countries, covering all bids and the most
recent bids (since 2015). The shaded areas depict ±1 standard deviation on
each regression. Wholesale electricity prices are assumed to remain constant
in real terms when deriving revenue beyond the support duration end. Other
price scenarios are shown in Supplementary Figs. 1 and 2.

The harmonized expected revenue of most projects depends on
the future development of wholesale prices. First, wholesale prices
are directly received by projects under one-sided CfDs provided they
are above the bid. Second, with an assumed technical lifetime of 25
years, all projects are expected to sell their output on the wholesale
market after their auction remuneration expires. Medium- to long-
term wholesale prices are therefore of particular importance to these
results, but at the same time, they are highly uncertain. This is not only
an academic exercise but an issue that the bidding companies must
deal with, and one that the energy industry is, in general, familiar with.
Estimates can be made using electricity market models to quantify
the future energy system, but these depend on numerous uncertain
assumptions, such as the future CO2 allowance price. The fact that we
find similar revenues for wind farms across several countries in the

https://www.nature.com/articles/s41560-020-0661-2
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future would, however, indicate that several bidders have arrived at a
similar outlook on future power prices.

The results in Supplementary Fig. 2 consider the sensitivity of these
results to the future trajectory of wholesale power prices. We explore
this uncertainty by presenting a range of prices derived from indepen-
dent sources. First, we consider the EU Reference Scenario 2016, and
scale projected prices from 50% to 150%. This accounts for structural
changes in the electricity market (for example, increased penetration
of renewables and higher carbon prices), but is fundamentally a the-
oretical modelling exercise. To complement it, we take the average
power prices in each country from 2004 to 2018 and apply a constant
real-term annual growth rate of between −2% and +2%, which more
than spans the range of historical price growth observed in these
countries.

We argue that the long-term prices are probably a better indicator.
The prices laid out in the EU Reference Scenario 2016 are set to double
electricity prices in many countries between 2010 and 2020, and there-
fore we exercise caution using this price forecast alone. We provide the
results of all the price scenarios considered in Supplementary Fig. 2,
and Supplementary Software 1 provides the means to test other price
trajectories. From this assessment, we observe the large influence that
power price has on harmonized revenues, which is a factor that each
bidder will have to consider individually.

2.4 moving towards subsidy-free offshore wind farms

The harmonized expected revenues (including the support payments
expected under each wind farm’s CfD contract) can be compared to the
expected revenues that would be generated on the wholesale market
alone (as if each wind farm were a purely merchant project). The
difference between these allows us to derive the effective subsidy
that is being paid to each farm, as shown in Fig. 2.3. This is the
difference between the discounted income stream due to the RES

support payments. If the expected harmonized bid is equal to the
expected wholesale market price, the effective subsidy is zero and the
project is subsidy-free. These subsidies are the amount of money that
will have to be refinanced through the RES support scheme.

This study does not deal with the question of whether grid con-
struction costs should be paid by developers (the allocation-by-cause
principle) or be paid by society (socialized as part of a country’s
infrastructure investment). Fig. 2.3 therefore presents both versions,
keeping in mind that, on average, grid costs account for €13 MWh−1.
It must be noted that most countries have chosen the latter option,
and the funding models for grid infrastructure differ widely. In the
United Kingdom, socialized grid costs are borne jointly by generators
and demand through transmission charges for the transmission grid,

https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
https://zenodo.org/record/3906565
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Figure 2.3: Effective subsidy for each offshore wind farm auctioned in Europe

Panel a assumes grid connection costs should be paid for by the developer
and are thus considered part of the wind farm. Panel b assumes these
should be socialized and considered part of the overall grid infrastructure.
Each marker shows the effective subsidy for each wind farm at the planned
date of operation. The lines show the effective subsidy linear regression
against time across all countries, covering all bids, and recent bids from 2015
onwards. The shaded areas depict ±1 standard deviation for each regression.
Wholesale electricity prices are assumed to remain constant in real terms
when calculating the support level from each CfD. Other price scenarios are
shown in Supplementary Fig. 3.

whereas offshore connection is paid by the wind farm only. Germany
recovers grid charges (including for new offshore wind farms) solely
through final consumer bills. Offshore grid connection costs remain a
key uncertainty despite efforts to gather data [23, 35, 36] and model
[31], these costs for each wind farm (given in Supplementary Data
and Supplementary Table 1).

Using socialized grid connection costs, subsidies have reached
−€12 MWh−1 for the latest UK auction, with a large cluster between
−€10 MWh−1 and €20 MWh−1. This implies that several wind farms
could expect to earn less money under the RES support scheme than
under wholesale market terms alone (even with expected revenue
cannibalization effects). With the grid costs being paid for by the de-
veloper, the lowest effective subsidy is €2 MWh−1, assuming real-term
wholesale power price growth is 0% a year. Therefore, even slight
growth in market prices (above 0.28% a year) means the cheapest
wind farms are subsidy-free.

It can make sense for companies to forgo revenues in exchange
for predictability. First, funding from the RES support scheme mini-
mizes risk in several ways; notably, exposure to future market price
is reduced, which in turn reduces the financial cost of € multi-billion
projects and allows for a lower initial LCOE [37]. Second, in all cases,
using the RES support scheme is accompanied with monetary (for

https://www.nature.com/articles/s41560-020-0661-2
https://doi.org/10.5281/zenodo.3840134
https://www.nature.com/articles/s41560-020-0661-2


2.5 sensitivity to future power prices 19

example socialized grid connection) and non-monetary privileges
(for example site allocation, consent and planning) thus limiting the
pre-development costs for each project.

With grid support being paid by the developer, the expected sup-
port is falling across all auctions by €5.30 ± 1.00 MWh−1 per year.
Considering auction results from the last five years only, support
has fallen even more dramatically (by €10.20 ± 1.60 MWh−1 per year),
implying that offshore wind farms built from 2025 onwards will, on av-
erage, be subsidy-free if these cost reduction rates continue. The rates
of reduction are virtually identical if grid costs are socialized, with
€5.20 ± 0.90 MWh−1 (across all auctions) and €10.20 ± 1.50 MWh−1

(between 2015 and 2019) per year. Based on recent auctions, this sug-
gests the era of subsidy-free wind farms will begin in 2023, or in 2024
when all data have been considered.

2.5 sensitivity to future power prices

To analyse the significance of future price developments for subsidy-
free offshore wind farms, we vary future wholesale price assumptions
and calculate the resulting effective subsidies. Fig. 2.4 summarizes
the effect on subsidies of the real-term change in wholesale electricity
prices of between −2.5% and +2.5% a year.

Countries which offer two-sided CfDs (United Kingdom, Belgium
and Denmark) show a greater sensitivity to future wholesale prices,
as higher reference prices result in farm developers paying money
back to society. The minimum bids received in Germany and the
Netherlands show no sensitivity to power prices (Fig. 2.4, panels a,b,
horizontal lines). These one-sided €0 MWh−1 bids only see support
paid if wholesale prices turn negative, which is only expected for a
few hours per year (see Methods). If these wind farms were required
to pay for grid connections, this would be added onto the zero bid
(Fig. 2.4, panel b). It is noteworthy that, with its latest auction, the
United Kingdom appears to offer the lowest support payment for
any wind farm, with an effective subsidy of less than −€12 MWh−1,
which is in part due to the implementation of a two-sided CfD and is
accompanied by predicted government power prices increases [38].

The results of the latest UK auctions indicate that if wholesale prices
continue to see moderate growth of above 0.3% a year (which is below
historical rates), then these farms will receive negative subsidy, and
will be the first to pay money back to society. If grid construction
costs are assumed to be socialized, UK offshore wind farms would be
subsidy-free, even if power prices fell by more than 1.5% a year in real
terms. Wind farms in Germany and the Netherlands are subsidy-free
under any price scenario, whereas Belgian wind farms are trailing in
terms of effective subsidies. The last auction in Denmark took place in
November 2016, resulting in a comparatively high effective subsidy,
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Figure 2.4: Effective subsidy given to offshore wind farms as a function of
future real-term growth in wholesale power prices

The panels show four variants, considering the average bid (a,c) and mini-
mum bid (b,d) received in each country, assuming grid connection costs are
either paid by the developer (a,b) or are socialized (c,d). The circles on each
line indicate the average real-term growth in wholesale power between 2004
and 2018.

but showed comparable cost progression within the industry as a
whole.

2.6 discussion and conclusions

The era of subsidy-free offshore wind turbines has begun. This con-
clusion is founded on zero bids in the Netherlands and Germany that
effectively track wholesale power prices, and bids of approximately
£40 MWh−1 in the United Kingdom, which will be below future whole-
sale prices if historical growth rates are maintained. Recent projects
in the Netherlands have bid €0 MWh−1 and will pay land lease fees,
indicating that offshore wind farms are at the point where they are
likely to pay money back into the system.

Despite significant variations in auction design, we find that once
bids are harmonized the expected lifetime revenues of wind farms are
homogeneous across countries, without specific outliers that would
be attributable to the auction design. This implies that policymakers
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have managed to design auctions that fairly reflect the actual costs of
developing offshore wind farms, and that the specific auction design
is not particularly influential on the outcome. This finding could aid
the design of upcoming auction schemes for offshore wind farms on a
global scale. It also raises the question of whether auctions are suitable
policy instruments for driving down costs in less mature technologies
such as wave, tidal and floating offshore wind energy. This study
does not unveil whether policymakers should discontinue support
for renewable energy once price parity is achieved, as the revenue
stabilization offered by CfDs has been instrumental in making this
possible for offshore wind [2].

Harmonizing bids into expected revenues creates a proxy for the
actual costs of offshore wind, which closely relates to the LCOE plus
profits for the company. We show that wind farm costs are decreasing
in a uniform fashion across Europe, having recently dropped below
the €50 MWh−1threshold. This makes electricity production via off-
shore wind a competitive option and is an extraordinary success story
for a relatively young industry. It is possible that future wind farm
developers will aim to build ‘merchant’ offshore wind farms without
financial support, completely free of government support. However,
the development costs may rise as wind farms move to less favourable
locations or to less mature technologies.

There are several reasons why the harmonized expected revenues
we report may diverge from underlying costs. Auction results can be
seen as an ‘option to build’ that need not be realized if costs do not
fall sufficiently [31]. However, the FID has already been taken for some
recent bids (including the cheapest ones), including one on the day
of the auction result (see Supplementary Data and Supplementary
Table 1). We interpret these tangible financial commitments as a sign
of developers’ intent to progress with the awarded bids. The breadth
and heterogeneity of our sample (41 projects in different countries
and auction rules) also suggests that such ‘option bidding’ effects are
unlikely.

The presence of market power could also distort revenues away from
underlying costs in either direction. If the industry is going through a
shakeout period, investors may bid below cost to deter new entrants
from providing competition, accepting short-term losses in return for
gaining market share and higher long-term profits. This would mean
the true costs are above the harmonized expected revenues we report.
Alternatively, an oligopoly of large developers could exploit the lack
of competition to artificially inflate auction prices. This would mean
the true costs lie below our harmonized expected revenue and that
offshore wind is more competitive than our analysis suggests.

To facilitate market access, electricity generated from offshore wind
is often sold through Power Purchase Agreement (PPA), especially
in the United Kingdom. PPAs provide long-term revenue stability

https://doi.org/10.5281/zenodo.3840134
https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
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and offtaker risks are assumed by a counterparty. These could yield
agreed prices below the wind-weighted average wholesale price used
here, if for example limited competition between providers facilitated
excess profits. This would lower the expected revenues, suggesting
that offshore wind is cheaper than our results indicate. Evidence of
the discounts offered in PPAs is not publicly available; therefore, we
cannot establish whether they are reflective of the underlying revenue
cannibalization found across the investigated countries.

Policymakers can take the rapid price decreases shown here as
evidence that offshore wind will deliver in the future as a low-cost and
low-carbon technology. Hence, the initial spending made on support
schemes has been successful in helping to create a new industry. This
opens up questions around the next steps to support the further
rollout of offshore wind. This will likely entail designing schemes that
move away from support payments and instead focus on planning
issues, market integration, grid connection and the ease of accessing
financing.

Building on the story of success, policymakers may want to extend
their attention to support less mature technologies such as floating
offshore wind, which would allow access to deeper waters with higher
wind speeds. These technologies are currently at a less mature stage,
but may prove vital in harnessing the world’s best wind resources [2].

Our findings are derived from wind farms in Europe, but hold
relevance for other parts of the world. Europe has been at the forefront
of offshore wind as a result of its favourable conditions of relatively
shallow waters and high wind speeds. This enabled cost-efficient
monopile foundations to be used in most, but not all offshore wind
projects. One-fifth of the capacity we consider uses jacket or gravity-
based foundations. Regions of Asia and North America also benefit
from shallow waters [2], and could expect some of the learning of
Europe (for example, turbine size increase, construction techniques
and financing) to play a key role in achieving similar results. The rates
of price reduction found here may prove equally applicable to other
regions of the world, and to other foundation types if a comparable
scale-up is achieved, albeit from a higher starting price point. Regions
that are yet to develop a supply chain and innovation system for
offshore wind energy may require more time for these technologies to
become subsidy-free.

As decarbonization of the world’s electricity systems gains traction,
attention must be given to the issues of balancing and flexibility, and
to the decarbonization of heat, transport and industrial applications.
With offshore wind at competitive prices, numerous sector-coupling
applications that could not have been imagined as cost-competitive
just a decade ago are within reach.
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2.7 methods

General principle. Both auction and product design vary significantly
between different countries. We identified major differences from a
review of government literature and present these in Supplementary
Data and Supplementary Table 1. Many of the differences directly
influence the cost and/or revenue of the projects, and thus influence
the bids. This is obvious for the duration of support and also for
one-sided versus two-sided support schemes, where the former has
an implied option to profit in the event of future wholesale price
increases. Consequently, one-sided CfDs require lower bids to make
projects profitable.

The differences between auction designs were accounted for by
developing a methodology to harmonize the winning bids in European
auctions for offshore wind. Our harmonization accounts for the most
significant factors identified in Table 2.1. The bids are harmonized
using a monthly cashflow analysis, which addresses seasonal variation
in wind capacity factors and allows volume-based support schemes
to expire part-way through a year. Hence, we define the ‘harmonized
expected revenue’ as the (discounted) average revenue per MWh
of electricity generated over the lifetime of the project. This can be
interpreted as the bid that would give an equivalent net present value
over the project life if it were offered into a hypothetical auction
that offered a two-sided CfD with a 25-year duration, indexed with
inflation. On this basis, we can compare the bids (and the implied
expected revenues) over the entire lifetime of each wind farm, and
include revenues for later in the lifetime of the project when support
has ended. Details on each wind farm were primarily sourced from
developer and manufacturer websites and professional databases (for
example, 4C Offshore) as well as renewables and offshore wind news
outlets (https://renews.biz; https://www.4coffshore.com; https:
//www.offshorewind.biz; https://www.windpoweroffshore.com;
https://renewablesnow.com/).

The following sections detail how we adjust the strike price of each
bid to obtain the harmonized expected revenue. Each adjustment
changes the monthly cashflow, which results in monthly payments to
the wind farm from the market and the ‘effective’ payments from the
RES support scheme. The payment over the lifetime of the project is
then aggregated. This yields the average payment per MWh received
for the total (supported) payments. We also calculate the payments
that would have resulted if the electricity was sold exclusively on the
wholesale market. Finally, we calculate the difference between both,
which represents the actual average subsidy paid.

Harmonizing length of payments. Support durations vary between
projects. For most projects, legislation specifies an explicit time du-

https://doi.org/10.5281/zenodo.3840134
https://doi.org/10.5281/zenodo.3840134
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https://www.offshorewind.biz
https://www.offshorewind.biz
https://www.windpoweroffshore.com
https://renewablesnow.com/
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ration ds. For the Danish projects with an energy-based limit, we
calculated the resulting support duration ds,DK as follows, with ds,DK

being the support duration for Denmark, Es the supported energy, Pinst
the installed capacity, hy the hours in one year and CF the capacity
factor:

ds,DK =
Es

Pinst ∗ hy ∗ CF
(2.1)

The capacity factor CF is estimated using the Renewables.Ninja
model with the appropriate wind turbine model for each project [39,
40]. The numbers are validated against external data points where
possible [41, 42], and are found to be highly correlated. For projects
using next-generation turbines we developed parametric power curves
[43] if these were not publicly available. While we attempt to use
representative capacity factors, these have no influence on the main
results presented as both harmonised revenue and expected support
are normalised per MWh. They can have second-order effects due to
output-dependent support duration, but this yields minimal changes.
External factors that could influence capacity factors over the farm’s
lifetime (such as degradation [44, 45], wake effects [46], stilling [47] or
climate change [48]) are not considered as they are currently subject to
much uncertainty. These could be incorporated once better understood
using the cashflow models that we make available open source.

We model each wind farm’s revenue over its whole lifetime, both
from their strike price and the wholesale market alone. While the total
lifetime of offshore wind projects is still debated, most publications
estimate them between 20 and 30 years (for example, refs. [49–53]).
Therefore, we assume that the lifetime dl for all projects is 25 years.
This is needed to calculate the income after RES support from the
auction has run out. Variations to this assumption have limited impact
on results due to the effect of discounting.

Strike prices and market revenues. As explained above, the annual
revenue of projects are determined based on either the strike price or
the market price. Before we can identify which applies in any given
year for any given project, we must first derive a consistent time series
for both. Among other things, we normalize currencies to Euros and
all values to real monetary values for the year 2019.

We assume that wind farms sell their output on the wholesale
market (or at least receive payments based on the sold electricity’s
wholesale market value). Historic wholesale power prices are obtained
from ENTSO-E and Open Power Systems Data [54, 55]. Large uncer-
tainties exist regarding the future of power prices, especially as we
require them for more than 25 years in the future. The influence of
power prices is paramount for our considerations as it significantly
affects the bids. Obtaining consistent price forecast scenarios is chal-
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lenging as the national price forecast would show inconsistencies on
the input assumptions (fuel prices, CO2 emission prices and so on).

To address the uncertainty around future power prices we choose
a diversified approach. (1) The EU Reference Scenario 2016 PRIMES
model provides a consistent output covering all of Europe [56], which
forecasts the average annual power prices for every fifth year until 2050.
It should be noted that the prices are significantly higher than today’s
prices. Therefore, we multiply the prices provided with factors of 0.5,
1.0 and 1.5 to create an understanding of the impact of price variations.
(2) While best efforts have been made to model future power prices,
we aim to mitigate the influence of modelling altogether, by using the
average annual power prices to establish long-term price variations.
Based on this, we use long-term price (2004 − 2018) averages and
assume an annual growth of between −2% and 2% in 1% increments.

We can establish that the time-weighted average wholesale price
for the time period t is dependent on the assumed price growth
pr. The latter can either be given in percentage growth a year or
predetermined by external inputs, such as the time series from the EU
Reference Scenario 2016:

twpt = twp0 ∗ pr
t

12 (2.2)

with twp0 being the time-weighted average wholesale price at project
start, pr the rate of price growth and t the time in months since project
start.

However, it is well known that electricity generation from wind
does not receive the average price [57]. The price that offshore wind
turbines will be able to realize on the market on average shall be called
the ‘capture value’ (also referred to as market value factor, see ref.
[58]). We derive a capture value (a multiplier that is typically below
one, and thus subtracts from the average power prices) based on the
linear interpolation between today’s empirically determined data and
the price scenarios for 2030 [58]. The capture value cr is a multiplier
that determines the percentage of the time-weighted wholesale price
that the wind can capture. It is a large source of uncertainty for wind
farm developers, as it is expected to decrease over time. The results
from our modelling for the country-specific average values are shown
in Supplementary Table 3:

cr =
∑h outputh ∗ priceh

∑h outputh ∗ price
(2.3)

with outputh being the output in hours h, priceh the price in hours h,
price the time-weighted average price across all hours and h hours.

This allows us to further calculate the wind-weighted average whole-
sale price wwpt:

https://www.nature.com/articles/s41560-020-0661-2
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wwpt = twpt ∗ crt (2.4)

Linear interpolation of the market value cr between today and 2030
is assumed and can be justified using the different scenarios in the
UK National Grid Future Energy Scenarios annual publications [59]
shown in Supplementary Fig. 5. The modelling shows a roughly linear
relationship between installed wind power and the merit-order effect.
We can therefore also assume a linear relationship in our assessment,
both for the merit-order effect as well as the capture value derived
from the hourly time series analysis between today’s data and the
estimation for 2030.

Determination of strike price time series is relatively straightforward.
In the first step, we convert strike prices to € (if applicable) using
market exchange rates [60]. In the second step, we convert nominal
values to real monetary values of 2019 using country-specific averages
for the years 1998 to 2017 [61]. The long-term inflation for all five
countries was 1.65% a year. For the UK auctions, the strike price is
adjusted by the inflation rate, which is derived from the data [61]
and amounts to 1.89% a year. All available inflation data is shown
in Supplementary Table 4. Note that the indexation measure used
is based on the gross domestic product deflation index rather than
consumer price indexation, as often used by central banks. This is
believed to provide a more accurate representation of indexation [62].
The strike price SPt at time t is determined by auction design to either
be discounted or kept constant in real terms:

SPt =
SP0

ir
t

12
(2.5)

with SP0 being the strike price at project start, ir the inflation rate
(gross domestic product deflation) and t the time in months since
project start.

Determining revenues during support duration. At this point, we
have two normalized time series for the years of the support duration
(the strike price time series and the market revenue time series, both
calculated above). Which one is applicable is determined as follows:

For projects under two-sided CfDs, the strike price essentially de-
termines a fixed payment. Hence, the relevant time series during the
support duration is the strike price.

For projects under one-sided CfDs, the situation is more attractive:
these projects have the right (but not the obligation) to choose the
market revenues even during the support duration in case they exceed
the strike price. We address this optionality in two ways. First, we
select the maximum monthly strike price and market revenue as

https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
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the resulting revenue during those months. This is analogous to the
option’s intrinsic value. Second, the option has an additional ‘time
value’—reflecting the fact that the wholesale revenue described above
is uncertain. It could increase—and the projects under one-sided CfDs

would profit. It could also decrease, but the projects under one-sided
CfDs would lose less (as they can choose not to exercise the option
and sell at the strike price). Note again that, in contrast to option
terminology, ‘strike price’ is equivalent to ‘bid price’ in this paper.

We further establish the uplift premia up as a function of the strike
price sp. The uplift premia term describes the additional income for
the generator over the market price that is caused by capturing the
upside under a one-sided CfD. The uplift premium is a function of
the ratio between strike price and wholesale market price and differs
for every wind farm. Supplementary Fig. 4 derives the value for each
wind farm. It is not applicable for two-sided CfDs:

up(sp) =
∑h outputh ∗ max{priceh, sp}

∑h outputh ∗ priceh
(2.6)

Harmonizing bids. Having calculated one specific revenue time
series for each project, we then adjust these time series to reflect the
(country-specific) weighted average cost of capital. This discount rate
is also called the real cost of capital (over and above inflation rate).
The financing costs of wind power projects are dependent on the
local funding conditions and ease of capital access. Supplementary
Table 5 presents the weighted average cost of capital from different
sources for onshore and offshore wind, with offshore wind being
more expensive. The average across these sources was used, with
country-specific values in the range 6.2 − 7.9% and the average across
all countries being 7.3%.

As all input parameters are now defined, the revenue for the three
different cases can be calculated: (1) revenues without any RES support
scheme payments r0t, (2) revenues under a one-sided CfD r1t and (3)
under a two-sided CfD r2t:

revenue =


r0t = outputt ∗ wwpt no support

r1t = r0t ∗ upt one − sided C f D

r2t = SPt two − sided C f D

(2.7)

with r0t being revenue at market prices.
The Harmonized Expected Revenues (HER) for each case then results

in:

https://www.nature.com/articles/s41560-020-0661-2
https://www.nature.com/articles/s41560-020-0661-2
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HER =


∑
t

r0t
(1+dr)t no support

∑
t∈ST

r1t
(1+dr)t + ∑

t/∈ST

r0t
(1+dr)t one − sided C f D

∑
t∈ST

r2t
(1+dr)t + ∑

t/∈ST

r0t
(1+dr)t two − sided C f D

(2.8)

with dr being the discount rate, ST the support time from 1 to sd and
sd the support duration in years.

This allows us to calculate the effective subsidy ES as follows:

ES = HER − ∑
t

r0t

(1 + dr)t (2.9)

In the final step, we account for the fact that some auction designs
pay for grid connection and others pass the costs onto the developer.
Harmonizing the effective subsidy ES by subtracting the grid costs
CG accounts for the difference in the auction conditions and hap-
pens after the cashflow analysis. The implied cost differences can
be regarded as a significant subsidy [31]. We have collected wind
farm-specific connection costs were available in the overall data ta-
ble in Supplementary Data and Supplementary Table 1, averaging
country-specific data where primary data was missing. In some cases
(for example, Germany) connection costs are given in € kW−1 follow-
ing the methodology in ref. [31], which can then be converted into
€2019 MWh−1 using capacity factors. The United Kingdom is the only
country where wind farms pay in full for the grid connection. The ef-
fective subsidy with grid connection ESGridConn therefore only applies
to the UK auction results, as ESGridConn = ESUK. For all other countries
ESNoGridConn = ESDK,NL,BE,DE. The relationships between ESGridConn
and ESNoGridConn are

ESNoGridConn = ESGridConn − CG

In the results section of the paper, we show results with and without
grid connection costs as equally valid options. The discussion on cost
recovery of grid infrastructure will be presented in a future study.

data availability : The datasets used in this study are available
in the ZENODO repository as Supplementary Data, DOI: https:
//doi.org/10.5281/zenodo.3840134. This includes the raw
data for all results presented here and input data for Figs. 1-4.
Source data are provided with this paper.

code availability : The cashflow model produced for this study
is available in the ZENODO repository as Supplementary Soft-
ware 1, DOI: https://doi.org/10.5281/zenodo.3733604). The

https://doi.org/10.5281/zenodo.3840134
https://www.nature.com/articles/s41560-020-0661-2
https://doi.org/10.5281/zenodo.3840134
https://doi.org/10.5281/zenodo.3840134
https://doi.org/10.5281/zenodo.3733604
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model is set up to recreate the results of this paper. Refer to the
README in the instructions.

additional information : Supplementary information is avail-
able for this paper at https://doi.org/10.1038/s41560-020-0
661-2.

author contributions : Malte Jansen, Felix Müsgens, Iain Staffell
and Iegor Riepin conceived the study and developed the analysis.
All authors contributed to data gathering and data analysis. All
authors wrote and edited the paper.
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abstract : The interdependence of electricity and natural gas mar-
kets is becoming a major topic in energy research. Integrated
energy models are used to assist decision-making for businesses
and policymakers addressing challenges of energy transition and
climate change. The analysis of complex energy systems requires
large-scale models, which are based on extensive databases, in-
tertemporal dynamics and a multitude of decision variables.
Integrating such energy system models results in increased sys-
tem complexity. This complexity poses a challenge for energy
modellers to address multiple uncertainties that affect both mar-
kets. Stochastic optimisation approaches enable an adequate
consideration of uncertainties in investment and operation plan-
ning; however, stochastic modelling of integrated large-scale
energy systems further scales the level of complexity. In this
paper, we combine integrated and stochastic optimisation prob-
lems and parametrise our model for European electricity and
gas markets. We analyse and compare the impact of uncertain
input parameters, such as gas and electricity demand, renewable
energy capacities and fuel and CO2 prices, on the quality of
the solution obtained in the integrated optimisation problem.
Our results quantify the value of encoding uncertainty as a part
of a model. While the methodological contribution should be
of interest for energy modellers, our findings are relevant for
industry experts and stakeholders with an empirical interest in
the European energy system.

keywords : Energy modelling, Energy systems analysis, Sector cou-
pling, Stochastic programming, Uncertainty

published as : I. Riepin, T. Möbius, F. Müsgens (2021), Modelling
uncertainty in coupled electricity and gas systems—Is it worth
the effort? Applied Energy, Vol. 285, 116363. DOI: https://doi.
org/10.1016/j.apenergy.2020.116363

3.1 introduction

Modelling energy markets is immensely important for academic pur-
poses, business decision-making and governmental projections to ad-
dress energy transitions and climate change. Modern energy models
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entail extensive databases, intertemporal dynamics and a multitude of
decision variables, all of which are necessary to capture the complex
behaviour of energy markets.

Ongoing energy transitions present new challenges for energy mod-
ellers by increasing the interconnection of energy markets. These chal-
lenges require consideration of multiple interdependencies between
the models of different sectors, such as the electricity and gas sectors
[63]. The growing role of gas-fired plants in renewable-based electricity
markets and the increasing dependence on natural gas imports make
this issue particularly important for the European energy modelling
community [64]. Thus, the number of model-based studies focusing
on integrated modelling of electricity and gas markets has grown in
recent years. The advantages of integrated modelling come at a cost in
the form of higher computational complexity stemming from simul-
taneous optimisation of both markets with their own intertemporal
dynamics and relevant infrastructure.

Another factor troubling energy modellers is the uncertainties of
input data that characterise the future development of electricity and
gas sectors. These include fuel prices, technological developments
(e.g. installed capacities of renewable generation), regulations and
political context. Most studies focusing on the integrated optimisation
of electricity and gas markets to date have been using a deterministic
approach. This is likely due to the fact that stochastic models—even
for a single sector—are complicated to construct and expensive to run.
In many cases, however, ignoring uncertainty leads to poor decisions
(see: [65, 66]).

Therefore, researchers must decide whether to neglect uncertainty
and accept a suboptimal set of decisions or to incorporate uncer-
tainty into large-scale integrated models and increase computational
complexity even further. When addressing this trade-off, the natural
question thus is: how inaccurate are solutions neglecting uncertainty?

Our paper answers this question. We derive the optimal investment
decisions when uncertainty is explicitly encoded (or removed) in a
model – and quantify the difference. Our approach is novel in two
ways:

a. To the best of our knowledge, our paper presents the first large-
scale integrated electricity and gas market model with invest-
ment decisions under uncertainty. This is a methodological ad-
vancement.

b. We quantify the impact of parametric uncertainties on the solu-
tion’s quality of the system dispatch & investment optimisation
problem for widely used electricity and gas market scenarios.
This is an empirical advancement.

The methodological contribution extends the existing literature
stream on electricity and gas market coupling [64, 67] with consider-
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ation of parametric uncertainty. It also extends the literature stream
on uncertainty in either of electricity or gas sectors [66, 68] with the
coupling of these sectors. Hence, our contribution provides a new
stimulus for both researchers working on sector coupling as well as
researchers working on stochastic optimisation – and may even foster
future collaboration between the two research streams.

On the empirical side, we isolate, quantify and compare the effect of
ignoring uncertainty. Our findings show which key parameters’ uncer-
tainty (electricity demand, installed renewable capacity, gas demand,
fuel prices and CO2 price) most substantially affects long-term invest-
ment planning decisions and total costs. Furthermore, we provide
in-depth insight into how uncertainty translates into market funda-
mentals, e.g. residual loads and variable costs of power generation.
Our analysis thus benefits future modellers facing the trade-off be-
tween model accurateness on the one hand and resource investment
on the other hand. In particular, it can help them decide whether and
to what extend to make their energy system models a) sector-coupled
and/or b) stochastic.

We apply our model to a stylised representation of the European
market. The majority of model-based studies on Europe rely on data
from ENTSO for the future development of the electricity and gas sec-
tors. We parametrise our model the same way by basing our data
primarily on the The Ten-Year Network Development Plan (TYNDP)
from ENTSOs [69]. Thus, we believe this research is a useful refer-
ence for a broad circle of industry experts and stakeholders with an
empirical interest in the European energy system.

In order to facilitate the transparency and reproducibility of our
results, as well as to encourage further research on model coupling
and uncertainty, our model code, associated data and scripts for result
processing are all published on the public GitHub repository.

3.2 integrated and stochastic modelling of electricity

and gas markets in the literature

3.2.1 Integrated modelling

As already stated, interest in the representation of complex interde-
pendencies between the electricity and gas sectors in energy models
has grown in recent years. The early studies on the interplay between
the two sectors were limited in their application to (i) simplified or
no representations of intertemporal dynamics, (ii) toy parametrisation
and (iii) soft- or hard-linking approaches.1 For example, an optimisa-

1 Soft-linking is defined as a model coupling approach in which information is processed
and transferred manually by the modeller; hard-linking (usually associated with an
iterative solution approach) is defined as a model coupling approach in which
input/output information transfer is handled by an algorithm [70].

https://github.com/Irieo/IntEG
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tion model on the natural gas and electricity sectors over a single time
period was discussed by An, Li, and Gedra [71] and Geidl and Ander-
sson [72]. A hard-linking approach is used by Ohishi and Mello [73],
among others. These authors highlight the importance of integrated
modelling for economic and secure energy system operation based
on a toy system model. Bartels and Seeliger [74] use a hard-linking
approach to analyse the long-term impact of CO2-emission trading on
the two markets with a pan–European geographical scope. More exam-
ples are provided by Rubio et al. [75], who present a literature survey
on integrated natural gas and electricity system planning literature
and highlight economic and market-related aspects.

Advancements in computing power and mathematical models paired
with the challenges of the energy transition process have facilitated
the development of more sophisticated models. Such models address
the limitations of earlier research and, thus, are characterised by (i) a
larger time scope and higher time resolution with complex intertem-
poral dynamics, (ii) parametrisation to a regional or pan–European
geographical scope and (iii) integrated (simultaneous) optimisation of
both sectors. Chaudry, Jenkins, and Strbac [76] investigate the impor-
tance of gas storage in the context of integrated system stability based
on the British gas and electricity network. Möst and Perlwitz [77] focus
on European gas supply prospects through 2020 and their relevance
for the power sector in the context of emission trading. Lienert and
Lochner [78] focus on the short- and long-term dynamics between
natural gas and electricity markets using the pan-European integrated
model; they highlight that quantitative models that do not consider
interdependencies between the two markets produce results with
systematic deviations from a more realistic integrated optimisation.
Abrell and Weigt [64] run several long-term gas market scenarios to
capture their impact on power plant investments and short-term sup-
ply shock scenarios to analyse spatial feedback towards the electricity
system. Deane, Ó Ciaráin, and Ó Gallachóir [67] construct an inte-
grated model with a daily temporal resolution to examine the impact
of gas supply interruptions on power system operation and gas flow
in the European market. Several authors focus on coordinated expan-
sion planning problems and investigate the potential for substitution
effects between investments in generation and transmission across
both sectors [79–81]. A number of studies have begun to examine the
value of gas network infrastructure flexibility in supporting the cost-
effective operation of power systems. Ameli, Qadrdan, and Strbac [82]
investigate benefits of employing flexible multi-directional compressor
stations as well as adopting an integrated approach to operate gas
and electricity networks. Clegg and Mancarella [83] develop a novel
multi-stage integrated gas and electricity transmission network model,
which uses electrical Direct Current (DC) optimal power flow and both
steady-state and transient gas analysis. The authors assess how the
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lack of gas network’s flexibility can affect the local generation and
reserve constraints in the electricity network.

3.2.2 Stochastic modelling

Actors in modern liberalised electricity markets face multiple uncer-
tainties. These are driven by the development of prices for primary
energy carriers, the structural changes in the energy sector (e.g. intro-
duction of carbon markets or nuclear phase-outs in several countries
around the globe) and regulation (subsidization of renewable genera-
tion, decarbonisation policy, the introduction of the carbon price floor
in the UK, etc). There are also uncertainties in natural gas markets,
where many factors on the demand side (weather, decarbonisation
policy) and the supply side (gas reserves) are inherently uncertain.
Gas markets are also subject to structural breaks, such as recent drops
in production capacity in North-Western Europe or US shale gas
revolution.

It is important to understand the impact of uncertain input param-
eters on the model outputs, conclusions or policy recommendations.
Stochastic programming, first conceived by Dantzig [84] as a frame-
work for decision-making under uncertainty, has been successfully
applied to energy models for decades. Möst and Keles [85] provide
a comprehensive survey of stochastic modelling approaches for lib-
eralised electricity markets while Egging [65] provides a structured
overview of stochastic market models and algorithms for both sectors;
both of these reviews show that stochastic modelling of energy mar-
kets can take on various mathematical forms with different purposes
and solution algorithms. In this section, however, we focus primarily
on applications of multi-stage optimisation models for short- and mid-
term generation and long-term system expansion planning, which are
most relevant for this paper.

Regarding electricity markets, Musgens and Neuhoff [86] use stochas-
tic optimisation to analyse the impact of the daily wind feed-in on
dispatch decisions and the value of updating wind forecasts. Benoot
et al. [87] develop the MARKAL/TIMES modelling framework to inte-
grate uncertainty about fuel prices, climate policy and price elasticity
of demand in the comprehensive assessment of energy and climate
change policies in the EU. Fürsch, Nagl, and Lindenberger [88] use a
multi-stage stochastic programming approach to optimise power plant
investments along uncertain renewable energy development paths.
Weijde and Hobbs [66] use two-stage stochastic optimisation for elec-
tricity grid reinforcement planning under uncertainty; they highlight
the fact that ignoring risk in transmission planning for renewables has
quantifiable economic consequences while considering uncertainty
yields decisions with expected costs lower than those from traditional
deterministic planning methods. Seljom and Tomasgard [89], studying
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the impact of stochastic wind feed-in on optimal generation capacity,
conclude that the stochastic representation of intermittent renewables
in long-term investment models provides more reliable results for
decision-makers. Xu et al. [90] evaluate the impact of scenario tree
reduction on solution quality of stochastic problem for hydropower
operation. Möbius and Müsgens [91] study the impact of uncertain
wind feed-in on long-term market equilibria. Schwarz, Bertsch, and
Fichtner [92] present a two-stage stochastic problem for optimising
investment and operation decisions in a decentralised energy system.
Xu et al. [93] use stochastic programming to identify the long-term
effects of using hydropower to complement wind power uncertainty.

Regarding gas markets, Zhuang [94] and Zhuang and Gabriel [95]
develop an extensive-form stochastic complementarity problem and
provide a small-scale natural gas market implementation. Egging [65]
develops a stochastic multi-period global gas market model. The au-
thor concludes that stochastic modelling shows hedging behaviour
that affects the timing and magnitude of capacity expansions, signifi-
cantly affecting local market situations and prices. Fodstad et al. [68]
analyse the impact of uncertainty about future European natural gas
consumption on optimal investments in gas transport infrastructure
and conclude that the option value of delaying investments in natural
gas infrastructure until more information is available in 2020 is very
limited due to the low costs of overcapacity. They also find, however,
structural differences between the infrastructure investments derived
from the stochastic model and those from the deterministic model.

3.2.3 Identifying the research gap

Our literature review reveals two important research gaps. First, few
studies to date have combined market integration and stochastic el-
ements. These are however, comprise toy energy systems [96, 97],
focus on a single uncertainty [98, 99] or are static [80]. This obser-
vation is bolstered by Deane, Ó Ciaráin, and Ó Gallachóir [67], who
state that while uncertainty in electricity and gas systems are not
a recent phenomenon, their impacts on integrated systems are not
well examined. Second, no study has yet to provide a framework to
ignore isolated uncertain model inputs and subsequently quantify and
compare their effects. Thus, there is still no systematic understanding
of which isolated parametric uncertainty most substantially affects
long-term planning decisions.

This paper serves to fill in these two research gaps. We present
an applied methodology and an open-source model to examine the
trade-off between complexity from integrated optimisation of gas and
electricity systems and a wide range of parametric uncertainties.
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3.3 methodology

We construct and apply an integrated stochastic bottom-up optimi-
sation model for European electricity and gas markets. The model’s
objective function minimises the total costs, comprising expected dis-
counted capital and operating costs for both sectors. The optimal
solution implies that all arbitrage opportunities across time and space
are exhausted to the extent that the infrastructure constraints of the
integrated system permit. The results of the model include spatial and
temporal decisions on both investment in power generation units and
the production, transportation and storage of electricity and gas. In-
vestments in electricity and gas transmission networks are considered
exogenous. The incorporation of storage and investment decisions
into the optimisation problem requires (and enables) intertemporal
optimisation. We opt for a linear model formulation to ensure scal-
ability and computational tractability of the model. We introduce
one-stage deterministic optimisation and two-stage stochastic optimi-
sation approaches in Section 3.3.1. Once all model runs are complete,
we analyse the results to determine whether neglecting uncertainty
results in an inaccurate solution. The theoretical background for this
approach is detailed in Section 3.3.2.

The gas market components in our model (input data and decision
variables) have a temporal resolution of 12 consecutive months while
the electricity market components are solved over 350 representative
hours for each modelled year.2 The temporal scope is 2020 − 2030.
Model simulations are performed for three representative years: 2020,
2025 and 2030. This allows us to capture both the short-term market
operations and long-term investments dynamics.

The model structure is made up by a network of nodes. A node
represents a country or a group of several countries from one region.
Nodes are connected by electricity and gas transmission infrastructure.
The geographical scope covers most European member states, Norway,
Switzerland, the United Kingdom and several non-European major
gas exporters (Russia, the United States, Algeria, Libya, Nigeria and
Qatar). We provide a full list of the countries considered in our model
in the Supplementary Data.

The markets are combined via fuel linkage; both the gas demand
for the power sector and the price for gas-fired electricity generation
are modelled endogenously. Fluctuations in natural gas demand from
the power and non-power sectors induce gas price volatility. Thus,
our modelling approach ensures endogenously defined spatial and
temporal gas price patterns; as gas price is the cost input for gas-fired

2 The reduced time-series is sampled by each 25th hour of a full time series, which
results in a set of 350 representative hours per year. For more detail on Nth hour time
reduction process, see [100].

https://doi.org/10.1016/j.apenergy.2020.116363
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units, its volatility affects dispatch and investment decisions in the
electricity sector.

Integrated modelling has several advantages over soft- and hard-
linking approaches. First, it excludes the convergence criteria used
in iterative linking approaches. These criteria are usually based on
the rate of change between model outputs over subsequent iterations.
Large-scale energy models solved iteratively may encounter regular
convergence problems [70, 101]. Second, integrated optimisation of two
sectors ensures that the optimal solution includes reliable marginal
cost estimators. Note that marginal electricity generation costs are
derived from the dual variables of each node’s energy balance con-
straints. Thus, the optimal solution ensures that a relaxation of these
constraints (by one MWh of gas or electricity) returns true marginal
savings from producing, transporting and storing that energy unit.3

Third, integrated modelling allows us to conveniently handle a large
number of model runs, which are necessary to answer this paper’s
research questions (see discussion of scenarios and modes in Section
3.3.3).

We provide a complete model formulation in Section 3.3.4. All of
the data used are from publicly available sources. In Section 3.3.5,
we discuss our assumptions on both sectors’ demand and supply
structure and transmission infrastructure. The model is formulated
in General Algebraic Modeling System (GAMS)4 and solved with a
CPLEX solver.

3.3.1 Optimization approaches

In this section, we introduce the one-stage deterministic optimisation
and the two-stage stochastic optimisation approaches.

Consider a Linear (optimization) Problem (LP), where x represents
a vector of variables, c and b are parameter vectors (i.e. known coeffi-
cients), A is a matrix of parameters, and T denotes a matrix transpose.
The inequalities are the constraints that specify a convex polytope
over which the objective function is to be optimised. The optimal
Deterministic Solution (DS) is to find a vector x that minimises the
objective under the set of relevant constraints:

DS = min
x

cTx (3.1a)

s.t. Ax ≥ b, x ≥ 0 (3.1b)

Due to their relative simplicity, these models can be solved with
a high degree of empirical detail. Hence, they are a widely used
‘work-horse’ in energy system modelling.

3 Thus, marginal costs can be considered as price indicators in a competitive market.
4 https://www.gams.com/

https://www.gams.com/
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However, energy system forecasters face multiple uncertainties, such
as primary energy carrier prices, technological developments, regula-
tions and political context. The optimisation problem and the resulting
decisions depend on these uncertainties. They are particularly relevant
when analysing investment decisions in energy systems, which are
largely irreversible and involve a high share of total generation costs.
An approach to explicitly incorporate uncertainty is to represent the
multi-stage nature of investment planning in a two-stage stochastic
model. It implies that optimal first-stage investment decisions in power
generation technologies must be made before the information on un-
certain factors is revealed; while second-stage dispatch decisions are
made after uncertainty is revealed.

The classical two-stage Stochastic (linear) Problem (SP) can be for-
mulated as follows [102]:

min
x

cTx + Eω[Q(x, ω)] (3.2a)

s.t. Ax = b, x ≥ 0 (3.2b)

where

Q(x, ω) = min
x

qT
ωy (3.3a)

s.t. Tωx + Wωy ≥ dω, y ≥ 0 (3.3b)

Where x represents the vector of first-stage variables, y is the vector
of second-stage variables, and ω is the vector of uncertain data for
the second stage (i.e. the vector of possible scenarios). The parameter
cT, the matrix A, and the right-hand-side vector b of the first stage
are assumed to be known with certainty. Problem 3.2 seeks a first-
stage decision to minimise the costs that occur at the first stage and
the expected costs of second-stage (recourse) decisions. Problem 3.3
seeks second-stage decisions that minimise the second-stage costs.
Second-stage decisions are restricted by the first-stage decisions of x,
the matrix T, the matrix W, and the right-hand-side vector d. Note that
the parameters (q, T, W, d) are actual realisations of uncertain data.

By solving a stochastic problem, we obtain an optimal solution x
of the first-stage problem and optimal solutions y of the second-stage
problem for each realisation of ωn. Given x, each yn corresponds to
an optimal second-stage decision corresponding to a realisation of
the respective scenario. In the context of this paper, the solution of a
stochastic problem (in the sense of minimising total expected costs)
defines (i) the optimal electricity generation investment (which must
hold for all scenarios) and (ii) scenario-dependent optimal dispatch
decisions of all assets for both electricity and gas components.
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3.3.2 The expected cost of ignoring uncertainty

Stochastic problems are often avoided in practice because they are
computationally difficult to solve. Many real-world problems are
addressed with simpler approaches. For example, one can solve sev-
eral deterministic programs—each corresponding to one particular
scenario—and then combine solutions using a heuristic rule. The ap-
proximation problem most often discussed in the context of two-stage
stochastic problems is the Expected Value Problem (EVP), a problem
wherein the uncertain parameters are replaced by their expected val-
ues. Consider a two-stage stochastic problem as formulated in section
3.3.1; a Stochastic Solution (SS) is defined as follows:

SS = min
x

cTx + Eω[Q(x, ω)] (3.4)

The EVP is constructed by setting ω = Eω · ω. Thus, a solution of an
EVP is:

EVS = min
x

cTx + [Q(x, ω)] (3.5)

Fig. 3.1 illustrates the modelling of an SP versus that of an EVP.
As we have already pointed out, problem 3.5 is an approximation

problem, meaning it does not consider uncertainty. An alternative is
to explicitly encode uncertainty into the model by setting a probability
distribution for uncertain parameters, as shown in problems 3.2 and
3.3. It is crucial for us to understand whether ignoring uncertainty
reduces the quality of the decisions reached. The theoretical answer to
this is given in the literature by the concept of the expected costs of
ignoring uncertainty (see: [102, 103]).

Figure 3.1: A two-stage stochastic problem and an approximation (EVP)

To reach this understanding, let x(ω) denote an optimal first-stage
decision in an EVP. Then, constraining the stochastic problem with
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the first-stage decisions of the EVP shows how well a decision x(ω)

performs. The expected result of imposing x(ω) into a stochastic
problem is denoted by Expected result of using the Expected Value
solution (EEV):

EEV = Eω[ϕ(x(ω), ω)] (3.6)

The Expected Cost of Ignoring Uncertainty (ECIU) is defined as:

ECIU = EEV − SS (3.7)

The ECIU is useful because it describes the value of considering the
full range of uncertainties in a stochastic model rather than that of
using a deterministic problem. Thus, the metric can be interpreted as
the expected cost of assuming that the future is certain.5

3.3.3 Scenario composition

Introducing scenarios. This paper quantifies the ECIU relative to the
EVP discussed above based on three scenarios from TYNDP (presented
in Section 3.3.5). Furthermore, we compute and discuss the ECIUs

when each of ENTSOs’ scenarios are chosen as the reference for a
deterministic model. This is done by replacing the EVP from problem
3.5 [ω = Eωω] with the data for a specific scenario [ωn]. Throughout
the discussion, we use the term Naïve (optimization) Problem (NP) to
refer to the set of four (each ωn and ω) possible deterministic problems
chosen by a system planner when uncertainty in data is ignored (albeit
present). Thus, the Solution to an NP is:

NPS = min
x

cTx + [Q(x, ω̂ ∈ {ωn, ω})] (3.8)

Consequently, we incorporate x(ωn) into a stochastic problem to
evaluate the expected result of each NPS:

EEVn = Eω[ϕ(x̂(ω̂, ω)]] (3.9)

This allows us to compute the scenario-specific ECIUs:

ECIUn = EEVn − SS (3.10)

5 An assumption we take to solve a two-stage stochastic problem is that the probability
distribution for scenarios representing uncertainty of model parameters is known.
This is a simplification of reality inherent to this type of optimisation problems. See
Laes and Couder [104] discussing the usefulness of bottom-up energy and climate
models in a light of ‘deep uncertainty’ that characterise the future development of
energy systems.
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Introducing stochastic model modes. We define two stochastic
model modes for this study: all parameters and isolated parameters. In the
first mode, a vector of uncertain data in a stochastic problem includes
all five uncertain parameters. For example, scenario branch EUCO
includes gas demand, electricity demand, installed RES capacity, fuel
prices and CO2 prices, which all have a path as defined in the EUCO
scenario of the TYNDP. The same applies to the other two branches of
a stochastic problem. Thus, optimal first-stage investment decisions in
power generation technologies must be made with consideration for a
composite uncertainty.

In the second mode, we provide more in-depth analysis by isolat-
ing the effects of parametric uncertainty. In this mode, a vector of
uncertain data in a stochastic problem includes a single parameter.
Intuitively, the development paths of the other four parameters (which
are known in this set-up) have their own effects, which we capture by
computing a matrix consisting of combinations of isolated parametric
uncertainties and the possible development paths of known parame-
ters.

Figure 3.2: Graphical illustration of scenario composition

Combining scenarios and modes. The composition of modes and
scenarios is illustrated in Fig. 3.2. Throughout the discussion of our
results, the term scenario branch refers to the branches of a stochastic
model (EUCO, ST, DG) that define possible development paths of un-
certain parameters; the term scenario refers to (i) the system planner’s
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choice for solving a deterministic problem (in ‘all parameters’ mode)
and (ii) the development paths for known parameters (in ‘isolated
parameters’ mode).

3.3.4 Model formulation

Nomenclature (1/2)

Abbreviation Dimension Description

Sets

gas(i) Subset of i Gas-fired technology

i Technology

m Month

n Node

nn Alias of n Node

psp(i) Subset of i Pump storage

res(i) Subset of i RES technology

rvr(i) Subset of i Water reservoir

s Scenario

t (Representative) hours

tm(t) Subset of t Hours in month m

y Year

Variables

arc f low MWhth/month Gas flow over the arc

cap MWel Inv. in power gen. capacity

charge MWhel/h Charge by PSP

f low MWhel/h Electricity flow

g MWhel/h Electricity generation

glow MWhth/month Gas flow volume

inj MWhth/month Gas injection into storage

level MWhth/month Stock level of gas in storage

pvol MWhth/month Gas production volume

shed MWhel/h Load shedding

sl MWhel Storage level of PSP

TC € Total system costs

with MWhth/month Gas withdrawal from storage
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Nomenclature (2/2)

Abbreviation Dimension Description

Parameters

AF % Availability factor

ARCCAP MWhth/month Transmission capacity

CAPex MWel Installed power generation capacity

CC tCO2/MWhth Carbon emission factor

CHP MWhel/h Minimum generation by CHP

CPF h Storage capacity-power factor

EndLevel MWhth Gas storage stock level: last period

DEMAND MWhel/h Electricity demand

DF Discount factor

FLH h Full load hours of water reservoirs

IC €/MWel Annual investment costs

ICAP MWhth/month Gas storage injection capacity

ICOST €/MWhth Gas storage injection costs

LTC MWhth/month LTC obligation for gas deliveries

NPGDEM MWhth/month Non-power sector gas demand

NTC MWel Net transfer capacity

PCO2 €/tCO2 Carbon price

PCAP MWhth/month Available gas production capacity

PCOST €/MWhth Marginal gas production costs

PF % Production factor for RES

SFmax % Max shedding factor per node

StLevel MWhth Gas storage stock level: start period

TCOST €/MWhth Marginal gas transport costs

TOP % Take-or-pay levels

VC €/MWhel Variable power generation costs

VOLA €/MWhel VoLA as the cost of load shedding

WCAP MWhth/month Gas storage withdrawal capacity

WCOST €/MWhth Gas storage withdrawal costs

WGV MWhth Working gas capacity of storage

η % Storage efficiency

ρ % scenario realization probability

Objective function 3.11 minimises the total expected discounted
capital and operating costs for both sectors:
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min TC =

∑
s,y

ρs · DFy ·



∑
g\gas,n,t

(
gi,n,t,y,s · VCi,n,t,y

)
+ ∑

gas,n,t

(
ggas,n,t,y,s ·

[
CCgas · PCO2

y /ηgas,n,y

])
+ ∑

n,t

(
shedn,t,y,s · VOLAn

)
+ ∑

p,n,c

(
pvolp,n,c,m,y,s · PCOSTp,n

)
+ ∑

p,n,nn ̸=n

(
g f lowp,n,nn,m,y,s · TCOSTn,nn,t

)
+∑

c

(
injc,m,y,s · ICOST + withc,m,y,s · WCOST

)


+ ∑

i,n,y
DFy · capi,n,y · ICi (3.11)

Eq. 3.12 ensures that the market is cleared under the constraint that
electricity demand in each node is satisfied at all times:

DEMANDn,t,y,s = ∑
i\psp

gi,n,t,y,s + shedn,t,y,s + gpsp,n,t,y,s · 1/ηpsp,n,y

− chargepsp,n,t,y,s + ∑
nn

(
f lownn,n,t,y,s − f lown,nn,t,y,s

)
∀n, t, y, s

(3.12)

Eq. 3.13 restricts hourly load-shedding activities to a share of the
country-specific demand:

shedn,t,y,s ≤ DEMANDn,t,y,s · SFmax ∀n, t, y, s (3.13)

Eq. 3.14 define the capacity restrictions for power stations. Eq. 3.14a
states that newly invested capacity in year y − 1 must be present
in the following year y. Eq. 3.14b limits generation to the available
installed capacity. Eq. 3.14c defines the hourly RES feed-in. Eq. 3.14d
considers political or technical restrictions on new investments in
specific technologies (e.g. nuclear, coal):

capi,n,y−1 ≤ capi,n,y ∀i, n, y (3.14a)

gi,n,t,y,s ≤ (CAP ex
i,n,y,s + capi,n,y) · AFi,n ∀n, t, y, s (3.14b)

gres,n,t,y,s ≤ CAP ex
i,n,y,s · PFres,t,n ∀RES ∈ I, n, t, y, s (3.14c)

capi,n,y ≤ capnew max
i,n,y ∀i, n, y (3.14d)



3.3 methodology 45

Eq. 3.15 describe the storage mechanism. Eq. 3.15a defines the
maximum storage level. Eq. 3.15b defines the state of the storage level
at the end of hour t. Eq. 3.15c defines the maximum charging capacity:

slpsp,n,t,y,s ≤ (CAP ex
psp,n,y + cappsp,n,y) · CPF (3.15a)

slpsp,n,t,y,s = slpsp,n,t−1,y,s − gpsp,n,t,y,s + chargepsp,n,t,y,s (3.15b)

chargepsp,n,t,y,s ≤ CAP ex
psp,n,y,s + cappsp,n,y · AFpsp,n (3.15c)

3.15 : ∀PSP ∈ I, n, t, y, s

Eq. 3.16 defines an annual limit to the generation by hydro reser-
voirs:

∑
t

grvr,n,t,y,s ≤ CAP ex
rvr,n,y,s · FLH ∀rvr ∈ I, n, y, s (3.16)

Eq. 3.17 states that gas-fired power plants are committed to country-
specific CHP requirements:

CHPn,t,y ≤ ∑
gas

ggas,n,t,y,s ∀n, t, y, s (3.17)

Eq.3.18 restricts cross-border electricity trading:

f lown,nn,t,y,s ≤ NTCn,nn,y ∀n, nn, t, y, s (3.18)

Eq. 3.19 ensures that the quantity of gas imported and withdrawn
from storage at each node is equal to the quantity consumed by power
sectors (endogenous) and non-power sectors (exogenous) and injected
into storage:

∑
p,n

pvolp,n,c,m,y,s =

NPGDEMc,m,y,s + pgdemc,m,y,s + withc,m,y,s − injc,m,y,s

∀c, m, y, s (3.19)

Eq. 3.20a defines capacity restrictions for gas production while
eq.3.20b defines those for gas transport:

PCAPp,n,y,m − ∑
c

pvolp,n,c,m,y,s ≥ 0 ∀p, n, m, y, s (3.20a)

ARCCAPn,nn,y − arc f lown,nn,m,y,s ≥ 0 ∀n, nn, y (3.20b)

where : arc f lown,nn,m,y,s = ∑
p

g f lowp,n,nn,m,y,s ∀n, nn, m, y, s
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Eq. 3.21 ensures flow conservation in gas network:

[
∑

nn ̸=n
pvolp,n,nn,m,y,s − ∑

nn ̸=n
g f lowp,n,nn,m,y,s

]
+[

∑
nn ̸=n

g f lowp,nn,n,m,y,s − ∑
nn ̸=n

pvolp,nn,n,m,y,s

]
= 0

∀p, n, m, y, s (3.21)

Eq. 3.22 sets a minimum amount of gas to be produced and dis-
patched under LTC between specific nodes:

∑
p

pvolp,n,nn,m,y,s − TOP ·LTCn,nn,m,y ≥ 0 ∀n, nn, m, y (3.22)

Eq. 3.23a-3.23d define storage levels at the end of month m and
ensure intertemporal optimisation over multiple years. Eq. 3.23e-3.23g
represent constraints on storage working gas capacity, injection capac-
ity, and withdrawal capacity:

levelc,m,y,s = levelc,m−1,y,s + (1 − η) · injc,m,y,s − withc,m,y,s

∀c, m \ Jan, y, s (3.23a)

levelc,m1,y,s = levelc,m12,y−1,s + (1 − η) · injc,m1,y,s − withc,m1,y,s

∀c, y, s (3.23b)

levelc,m,y,s = StLEVELc + (1 − η) · injc,m,y,s − withc,m,y,s

∀c, s [m = Jan, y = 2020] (3.23c)

levelc,m,y,s ≥ EndLEVELc

∀c, s [m = Dec, y = 2030] (3.23d)

WGVc,m,y − levelc,m,y,s ≥ 0 ∀c, m, y, s (3.23e)

ICAPc,m,y − injc,m,y,s ≥ 0 ∀c, m, y, s (3.23f)

WCAPc,m,y − withc,m,y,s ≥ 0 ∀c, m, y, s (3.23g)

Eq. 3.24 integrates both markets via the fuel link; gas demand of
the electricity sector becomes an endogenous variable and drives gas
consumption in eq. 3.19.

pgdemn,m,y,s = ∑
gas,t|t=tm

ggas,n,t,y,s

ηgas,n,y
∀gas ∈ I, t, y, s (3.24)
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3.3.5 Data

As already discussed, we parametrise our model primarily based on
the TYNDP report from ENTSOs [69]. In this section, we detail the
scenarios as defined in the report and present data for the electricity
and gas sectors.

Introduction of scenarios. We consider scenario-dependent data for
gas demand, electricity demand, installed RES capacities, fuel prices
and CO2 prices. Fig. 3.3 illustrates the three scenarios for the year 2030:
Distributed Generation scenario (DG), Sustainable Transition scenario
(ST) and the European Commission’s core policy scenario (EUCO).

Figure 3.3: Scenarios from the 2018 TYNDP report

Source: ENTSOs [69]

The DG scenario represents a decentralised development of the
energy system with a focus on end-user technologies. It assumes
that consumers use smart technology and dual fuel appliances (e.g.
hybrid heat pumps) to switch energy sources in line with market
conditions. Additionally, in this scenario, electric vehicles see their
highest penetration; Photovoltaics (PV) and batteries are both widely
used in buildings. Relative to the other scenarios, DG is characterised
by (i) the highest demand for electricity (both peak and total) and (ii)
the highest amount of installed RES capacities.

The ST scenario represents a quick and economically sustainable
reduction of CO2 emissions achieved by replacing coal and lignite
with gas in the power sector. Gas also replaces some oil usage in the
transportation sector. The electrification of heat and transportation
develops at a relatively slow pace. Relative to the other scenarios, ST is
characterised by (i) the highest peak and total demand for natural gas
and (ii) the highest price for CO2 certificates (89.9 €2020/t in 2030).

The EUCO, which was created using the PRIMES model and the 2016
EU Reference Scenario as a starting point, is the European Commis-
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sion’s core policy scenario. The scenario represents the attainment of
the 2030 climate and energy targets as agreed upon by the European
Council in 2014, including an energy efficiency target of 30%. Relative
to the other scenarios, EUCO is characterised by (i) the highest prices
for lignite (8.8 €2020/MWhth in 2030) and hard coal (16.5 €2020/MWhth
in 2030) and (ii) the lowest price for CO2 certificates (28.8 €2020/t in
2030).

A detailed overview of the scenario data is provided in the Supple-
mentary material6.

Electricity sector data. The model inputs for both sectors can be
roughly divided into demand, supply and infrastructure. Electricity
sector demand input, thus, encompasses scenario-dependent data
on country-specific load structures and annual demand projections,
which stem from ENTSOs [69].

Regarding the electricity sector supply inputs, scenario-dependent
data on installed RES capacities (such as onshore wind, offshore wind
and PV), fuel prices for lignite, hard coal and oil-fired power plants,
and CO2 prices are based on ENTSOs [69]. Prices for natural gas are
endogenously derived using the integrated model. Fuel prices for nu-
clear power plants are based on Schröder et al. [105]. National thermal
and hydro generation capacity, efficiency and decommission pathways
come from Schröder et al. [105], Gerbaulet and Lorenz [100], Capros
et al. [56] and Open Power System Data [106]. Investment costs for new
power stations are taken from [105]. Additionally, we account for polit-
ical and technical restrictions to investments in new technologies (e.g.
the installation of nuclear, lignite or hard coal plants is only possible
in countries without phase-out intentions). Run-of-river hydroelec-
tricity, hydroelectric reservoirs, biomass and all above-mentioned RES

are not subject to an endogenous investment decision. In order to ac-
count for country-specific Combined Heat and Power (CHP) utilisation
schemes for gas-fired units, we implement temperature-dependent
must-run conditions to meet the annual production volumes of CHP

plants from Eurostat [107]. The storage level of a Pumped-Storage
Power plant (PSP) is restricted by the capacity of the upper basin. A
capacity-power factor connects the installed turbine capacity with the
water capacity of the upper basin; it can be understood as the full load
hours of a fully charged storage plant. Generation by hydroelectric
reservoirs is bounded to the installed capacities and an annual water
budget. To determine the annual water budget, we use empirical elec-
tricity generation data. Both empirical electricity generation data and
installed capacities are taken from ENTSO-E. Transparency Platform
[108]. Data on future installed capacities are derived from Capros et

6 A discussion of the assumptions for each scenario and the background methodology
of the TYNDP report can be found on the following website: https://tyndp.entsoe
.eu/tyndp2018/scenario-report/

https://doi.org/10.1016/j.apenergy.2020.116363
https://doi.org/10.1016/j.apenergy.2020.116363
https://tyndp.entsoe.eu/tyndp2018/scenario-report/
https://tyndp.entsoe.eu/tyndp2018/scenario-report/
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al. [56]. Electricity generation from intermittent renewable capacities
is not dispatchable and depends on meteorological conditions. We
implement hourly feed-in profiles for onshore wind, offshore wind
and PV, which are derived from the ENTSO-E. Transparency Platform
[108]. Given the existence of different ‘wind-years’, we assume that
hourly feed-in profiles do not vary within our model horizon and only
adjust capacity levels over time.

Within the model’s geographical scope, we allow for cross-border
trade. Electric power transmission between nodes is restricted by net
transfer capacities, which are from ENTSOs [69]. Intranational imita-
tions on electricity flows are neglected in this study. Load-shedding
activities, which are driven by a scarcity of power plant capacities,
are penalised by the Value of Lack of Adequacy (VoLA), which is
determined for each European country individually by Cambridge
Economic Policy Associates [109]. In order to avoid an unreasonable
‘trade’ of shedding activities, we implement a maximum shedding fac-
tor that is assumed to limit hourly load shedding to 20% of respective
hourly demand in a node.

Gas sector data. Scenario-dependent data on gas demand projec-
tions for European countries are based on scenarios from the ENTSO-G
[110]. The annual gas demand levels are broken down to a monthly
structure for each node. Monthly demand profiles are calculated based
on historical average monthly gas consumption data from Eurostat
[107].

We also use the ENTSO-G [110] for data on gas supply potential. We
consider Long-Term Contracts (LTC) on an annual level, in line with
Neumann, Rüster, and Hirschhausen [111], to realistically represent
gas market fundamentals. In particular, we use information on con-
tracting parties, annual contracted gas volume and contract expiration
dates.7 These data are used in the model as an exogenous constraint
specifying the minimum bound on a trade variable between respective
nodes. This constrains diversification of supplies from importing coun-
tries that would not have been captured if the long-term obligations
had been omitted.

Data on the existing gas pipeline infrastructure are from the ENTSO-
G [112] capacity map. Data for LNG infrastructure are based on Gas
Infrastructure Europe [113] and GIIGNL [114]. Data about national
storage capacities are based on Gas Infrastructure Europe [113]. All
storage data are aggregated on the node level (i.e. each region has
one representative storage node). Strategic storage requirements are
based on an European Commission [115].8 Our model incorporates
exogenous gas infrastructure capacity expansions. The structure of the

7 As information about take-or-pay levels is not disclosed, we assume a level of 70%.
8 Thus, country-specific shares of storage capacities, which are booked for strategic

storage, are exogenously fixed and excluded from the model’s decision space.
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system’s development is harmonised with the information from the
ENTSO-G [110]. Only units with final investment decision status are
included in the dataset.

We used numerous public information portals and academic studies
to parametrise the cost structure of gas production [116], transmission
[68, 116–118] and storage [115]. See Riepin and Musgens [119] for
details on the cost structure and necessary assumptions for the gas
model.

3.4 results

This section is organised in the following way. We begin with a brief
overview of the solutions from a deterministic investment problem of
an integrated electricity and gas system in Section 3.4.1. We then detail
the costs of ignoring uncertainty in a composite mode in Section 3.4.2.
Finally, in Section 3.4.3, we focus on the effects of single parametric
uncertainty.

technical note : The computation was performed on a personal
laptop with 2.20 GHz Intel(R) i7 − 8750H processor and 16 GB
RAM system. The simulation time for different instances of a
stochastic problem varied between 5 minutes (with fixed first-
stage decisions) and 30 minutes (with unfixed first-stage deci-
sions). The complete project requires computing 4 deterministic
problems, 6x4 stochastic problems and 6x4 stochastic problems
with fixed first-stage decisions (see Fig. 3.2). The resulting simu-
lation time is at 11 hours.

3.4.1 Deterministic solutions

We begin with a classical scenario analysis by formulating a determin-
istic cost-minimisation investment problem as defined in equation 3.1
and incorporating different inputs from three ENTSOs scenarios and
an EVP.

Note that model’s investment decision space is limited to thermal
power plants (Open-Cycle Gas Turbines (OCGT), Combined-Cycle Gas
Turbines (CCGT), lignite and hard coal power plants) and PSPs. Capac-
ity installations of wind, PV, biomass, hydroelectric reservoirs and
run-of-river technologies, based on data from the 2018 TYNDP, are
implemented exogenously.

Fig. 3.4 breaks down the investment mix by scenario. Evidently,
the different assumptions (input data) across the four scenarios result
in different solutions (optimal technology mix) to the deterministic
cost-minimisation problems.

The EUCO and DG scenarios are characterised by fairly similar invest-
ment mixes. A considerable amount of lignite capacities (ca. 25 GW in
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Figure 3.4: Investments in power generation capacities [GW] and total system
costs [bn €2020] for three deterministic scenarios and an expected
value problem

each) in these investment mixes can be explained by the middle-term
2020 − 2030 modelling horizon (i.e. we do not account for further cli-
mate policy actions after 2030). In particular, CO2-intensive capacities
that are built with such foresight may end up stranded later on. In
the ST scenario, the optimal investment decisions are based on, among
other influential factors, an expectation of a high CO2 price. Thus,
we observe the highest degrees of investment in nuclear (14.5 GW)
and CCGT (56.9 GW) technologies due to the high efficiency of CO2

emissions per MWhel. Interestingly, in the EVP scenario, capacities
invested in each technology are not close to a mere arithmetical mean
among the scenarios. The capacities of CCGT and nuclear technologies
are similar to those in the ST scenario, though just a minor amount of
lignite is kept in the optimal investment mix.

Another thing that stands out in Fig. 3.4 is the difference in total
system costs across individual deterministic solutions; EUCO has the
lowest aggregated and discounted investment costs (€ 202.6 bn) fol-
lowed by DG (€ 209.9 bn), EVP (€ 214.0 bn) and, the most expensive,
ST (€ 230.0 bn). These cost differences are, again, driven by scenario-
specific assumptions. The high total system costs in the ST scenario
are driven by the high variable costs of power generation, which, in
part, are driven by the scenario’s relatively high CO2 price.

As already discussed, an alternative to such a scenario analysis
is to explicitly encode uncertainty as a part of the model by setting
a probability distribution for uncertain parameters, as shown in eq.
3.2 and 3.3. Comparing the two approaches—ignoring uncertainty
versus explicitly modelling uncertainty—is crucial for us understand
the degree to which modelling uncertainty affects decision quality.

3.4.2 Effects of ignoring uncertainty: All parameters

In this section, we continue to solve the stochastic problem defined
in eq. 3.2 and 3.3 by using a vector of uncertain data that includes all
five correlated uncertain parameters (see section 3.3.3). The optimal
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first-stage decision for this problem is illustrated in Fig. 3.5. It includes
a mix of technologies that hedges against a composite uncertainty (as
the stochastic model, by definition, minimises the expected costs by
accounting for all possible scenarios).

Figure 3.5: Investments in power gen-
eration capacities [GW] for
the stochastic solution

Fig. 3.6 highlights how the
scenario-specific deterministic
first-stage investment decisions
perform in a stochastic setting.
The expected total system costs
of stochastic problems with fixed
first-stage decisions are defined
in eq. 3.9 as EEVn (markers with
a solid fill). It is thus intuitive
that EEVn can be below/above
the total system costs of corre-
sponding deterministic solutions
(markets with a pattern fill), as a
stochastic problem by definition
accounts for the expected costs
across all considered scenarios.
Interestingly, the optimal invest-
ment mix for the stochastic prob-
lem is not optimal for any indi-

vidual scenario despite the fact that the stochastic solution has the
lowest expected costs overall.
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Figure 3.6: Total expected system costs for the SS and four EEV (markers with
a solid fill) and total system costs for four DS (markers with a
pattern fill)

The difference between the EEVn and the SS is denoted as ECIUn

(as shown in equation 3.10). Table 3.1 depicts the results for the ECIU

calculation. Evidently, the ECIU varies by scenario. The ECIU values
range from € 1, 005.2 M (EUCO scenario) to € 2, 131.3 M (DG scenario).
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For comparison, this accounts for 10.1− 21.3% of all power generation
investment costs in the stochastic solution. Note that ECIU cannot be
negative, as recognising the correct probabilities cannot worsen the
expected costs [66].

In contrast to intuition, the ECIU in the EUCO scenario is lower than
that in the EVP scenario. This is likely due to load-shedding activities,
which are driven by the allocation of scenario-specific maximum
residual load levels. A closer inspection of ENTSOs data for electricity
demand reveals there are several country subsets (i.e. nodes in our
model) that face maximum residual load levels in each of the three
scenarios. Hence, no investment plan based on a deterministic scenario
is dominant with regard to minimising load-shedding activities in the
stochastic problem. A detailed analysis of this issue is provided in the
Supplementary Data.

Table 3.1: The expected costs of ignoring uncertainty: A composite mode
(considering all uncertain parameters)

EUCO ST DG EVP

ECIU [€2020] € 1, 005.2 M € 1, 620.5 M € 2, 131.3 M € 1, 125.4 M

ECIU [% of in-
vestment costs]

10.1% 16.2% 21.3% 11.3%

Costs are computed for three representative years: 2020, 2025 and 2030.

3.4.3 Effects of disregarding uncertainty: Isolated parameters

This section addresses isolated uncertainties. For this, we set a vector
of uncertain outcomes in a stochastic problem to include only one
unknown parameter, allowing us to compute the isolated effects of
parametric uncertainty (see Section 3.3.3 for details on scenario com-
position). Table 3.2 presents the results which are backed up with a
detailed analysis below.

Electricity demand and installed RES capacity. As shown in Table
3.2, ECIU for electricity demand is significant across all four scenarios.
ECIU is the highest, among all parameters, for electricity demand in
three of the four scenarios. This is likely because investment deci-
sions are sensitive to peak demand levels. Underestimating this effect
leads to under-investment that cause higher load-shedding activities
while overestimating it leads to over-investments and, in turn, higher
investment costs.

Under the condition of uncertain electricity demand, investment
decisions derived using deterministic scenarios, compared to the
stochastic problem, lead to higher shedding costs in the EEV prob-

https://doi.org/10.1016/j.apenergy.2020.116363
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Table 3.2: Expected costs of ignoring uncertainty: Isolated parametric uncer-
tainty

Isolated parameter EUCO ST DG EVP

Electricity demand € 577.3 M € 695.8 M € 1, 112.6 M € 674.7 M

Installed RES capacity € 89.9 M € 83.0 M € 389.5 M € 104.5 M

Gas demand1 € 50.2 M € 45.9 M € 3.0 M € 0.4 M

Fuel price2 € 245.8 M € 9.3 M € 51.0 M € 1.0 M

CO2 price € 864.2 M € 661.4 M € 11.5 M € 41.9 M

Costs in [€2020] are computed for three representative years: 2020, 2025, 2030.
1 Gas demand reflects uncertainty in non-power sector gas demand.
2 Fuel price reflects uncertainty in lignite, hard coal and oil prices.

lems (see Table 5 in the Supplementary Data.). This is due to the
fact that scenario-specific demand developments differ between Euro-
pean countries. Thus, all deterministic capacity expansion plans show
under-investment in some nodes and, therefore, increased shedding
activities. The DG scenario, for example, has the highest electricity
demand, which results in an investment level higher than that of the
stochastic solution. This, in turn, leads to lower load-shedding activi-
ties relative to other scenarios. However, certain nodes’ demand levels
reach their maximum in other scenarios (e.g. in the UK node, max-
imum demand is observed in the EUCO scenario; thus, constraining
the stochastic problem with the investment mix from the DG scenario
results in increased shedding activities in the UK node).

As with electricity demand, electricity generation from RES capaci-
ties eventually affects the residual load. Hence, the mechanism how
uncertainty in RES installed capacities affects the investment decisions
is similar to that in electricity demand (i.e. a system planner optimises
a capacity mix that varies by scenario- and country-specific residual
load levels). However, when analysing uncertain development in RES

capacity, the ECIUs are lower than those for electricity demand. This is
likely due to the influence of parametric uncertainty on the residual
load.

Fig. 3.7 shows boxplots for hourly residual load levels for each
scenario in 2030 after varying after varying electricity demand and
RES capacity levels. The necessary assumption to depict residual load
levels for electricity demand variation is to fix the RES feed-in to one
of four scenarios (and vice versa for RES feed-in variation). We use
the EUCO scenario for both illustrative examples in Fig. 3.7 but the
impact on the residual load is within the same magnitude for the
other scenarios. Residual load boxplots for all scenarios are in the
Supplementary Data.

https://doi.org/10.1016/j.apenergy.2020.116363
https://doi.org/10.1016/j.apenergy.2020.116363
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Figure 3.7: Comparing residual load after varying demand (left) and RES

capacity (right) following ENTSOs scenarios for 2030

It is clear that the difference in maximum residual level between
scenario branches is significantly higher when implementing demand
variation. The maximum residual load level ranges within the three
branches from 491.2 GW to 512.0 GW when electricity demand is var-
ied but only from 503.6 GW to 506.2 GW when RES capacity is varied.

Gas demand, fuel price and CO2 price. As shown in Table 3.2,
ECIU for gas demand is at a negligible level across all four scenarios.
ECIU for fuel price is negligible in all but one scenario (EUCO). The
effect of CO2 price uncertainty strongly varies by scenario from high
to negligible. We back up these observations with a detailed analysis
of the impact that parametric uncertainties have on the integrated
system.

Our analysis is supported by Fig. 3.8, which comprises convex hull
plots depicting variable costs for four technologies: lignite, hard coal,
CCGT and OCGT. Nuclear and biomass are excluded because their
costs do not differ across ENTSOs scenarios. The abscissa represents
years. The ordinate represents variable costs in €/MWh. Each column
represents an uncertainty driver—gas demand, fuel price and CO2

price—while each row represents a scenario path for the other four
known parameters. Each hull is built around nine dots—three dots
per year. The three dots represent variable costs for each technology
evaluated at gas, fuel, and CO2 prices observed in each of the three
branches in a relevant stochastic model. Thus, convex hull width con-
veys ranges of variable costs per technology caused by parametric
uncertainty. These plots are useful because they visualise how paramet-
ric uncertainty affects variable costs of power generation and provide
an intuition for the resulting ECIU measures.9

In the first column of Fig. 3.8, convex hull width depicts the sensi-
tivity of variable costs to gas demand uncertainty. The impact of gas
demand uncertainty on the variable costs of CCGT and OCGT is small.
Predictably, the impact on lignite and hard coal is null. We conclude

9 More detail on constructing convex hull plots can be found on the following link:
https://github.com/Irieo/IntEG/tree/master/HullPlots

https://github.com/Irieo/IntEG/tree/master/HullPlots
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Figure 3.8: Variation of variable costs for four technologies due to uncertainty
regarding gas demand (first column), fuel price (second column)
and CO2 price (third column)

Colour codes: lignite [brown]; hard coal [grey]; CCGT [orange]; OCGT [yellow].

that the differences in gas prices driven by the uncertainty of gas
demand do not significantly change installed capacities of electricity
generation technologies. This result is driven by the substantial Euro-
pean gas infrastructure, which is sufficiently capable of meeting the
range of future gas demand scenarios defined in TYNDP. The negligible
ECIU measures for gas demand uncertainty reflect this observation.10

The second column of Fig. 3.8 depicts the sensitivity of variable
costs to the uncertainty of lignite and hard coal prices. It is notable that
the intersection of lignite and CCGT significantly varies by underlying
fuel price assumption. For example, with uncertain fuel prices and

10 Riepin, Möbius, and Müsgens [98] illustrate the reallocation of gas-fired technologies
as the effect of gas demand uncertainty on electricity sector investments. However,
they also point out that the value of a stochastic solution (the ECIU) is small. Similar
results are revealed by Fodstad et al. [68], who study the effect of gas demand
uncertainty on investments in gas sector infrastructure. They find structurally distinct
infrastructure solutions in stochastic and deterministic models but report a negligible
value of a stochastic solution.
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the high CO2 price in the ST scenario, generation with CCGT becomes
cheaper than that with a lignite plant in all branches of the stochastic
model by 2025. Isolating fuel price uncertainty reveals that the cost
structures of the ST, DG and EVP scenarios ensure that there are null
or minor investments in lignite power plants. Thus, uncertainty in
lignite prices has a negligible effect. In the EUCO scenario, with a low
CO2 price, lignite remains cheaper than CCGT all over the modelling
horizon in some branches of a stochastic problem. Consequently, the
optimal solution contains a moderate amount of lignite capacity in the
investment mix. In this case, lignite price uncertainty has a notable
effect, which is reflected by the ECIU measure.

The third column of Fig. 3.8 depicts the sensitivity of variable costs
to the uncertainty of CO2 prices. The hull widths (ranges of variable
costs) are higher than in the other two parametric uncertainties. In
order to explain values for CO2 price uncertainty in Table 3.2, it is
important to note that hull width illustrates the potential for high
costs of ignoring uncertainty. This is driven by the stochastic problem
hedging against the large differences in variable costs established by
the extreme CO2 price values (the ‘higher’ and ‘lower’ hull edges).
The deterministic solution, by definition, disregards this variation
and seeks to optimise investments for a particular CO2 price reali-
sation. The width of hulls (i.e. variety of cost structures) highlights
this mismatch. This is illustrated by the results in the EUCO and ST

scenarios (characterised by the high and low CO2 prices, respectively),
resulting in considerable ECIU measures. The optimal capacity mix
for deterministic solutions in these two scenarios significantly differs
from the optimal mix for the stochastic problem, which accounts for a
full range of scenarios. Therefore, evaluating the performance of these
deterministic solutions in a stochastic setting results in considerably
higher expected system costs.

3.5 conclusions

This paper investigates the trade-off between complexity from inte-
grated optimisation of gas and electricity systems and parametric
uncertainty. To do this, we use a combination of deterministic and
stochastic optimisation approaches. The methodological contributions
of combining integrated and stochastic optimisation problems and
comparing the isolated effects of parametric uncertainty shall be of
interest for energy modellers. We parametrise our model and derived
scenarios from data in the 2018 TYNDP report published by ENTSOs.
We believe that our findings are of interest to industry experts and
stakeholders with an empirical interest in the European energy system.
In order to enhance the transparency and reproducibility of our results,
we have published the data and source codes for the entire research
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project online. Beyond these broad methodological and empirical
contributions, we recognise five key take-aways.

First, the expected costs of ignoring uncertainty can constitute a
significant share (up to 20%) of cumulated costs from investments in
power generation capacity. Although our results are obtained under
restrictive assumptions and do not reflect all real-world planning
complexities, this number is impressive given that it is obtained just
by adjusting the planning approach.

Second, concerning the underestimation of required capacity and
the resulting load-shedding activities, our results suggest that no ca-
pacity expansion plan based on a deterministic scenario is dominant
in terms of minimising load-shedding activities. Energy modellers
should recognise that, in a framework of European TYNDP data, choos-
ing the scenario with the highest aggregated demand does not result
in the absence of load shedding on account of country-specific load
peak variation.

Third, our analysis of isolated parametric uncertainties revealed
that the effect of ignoring electricity demand uncertainty is significant
across all four scenarios in our modelling scope. For installed RES

capacities, the effect is notably low. The magnitude of the effect for
these parametric uncertainties is mainly driven by residual load peak
variation. This observation should be seen in light of the ten-year
modelling horizon we included; however, it strongly suggests incorpo-
rating electricity demand uncertainty into research items that focus on
the expansion plans of power generation in the context of increasing
capacities of renewable energy sources.

Fourth, the expected costs of disregarding gas demand uncertainty
are low across all considered scenarios. The take-away for energy
modellers is two-fold. One, our findings suggest that there is a small
value for incorporating stochastic optimisation under gas demand
uncertainty into large-scale integrated electricity and gas system mod-
els. Two, when focusing on the impacts of long-term uncertainty in
single-sector models for electricity and gas, the effect of capturing
interactions between the two sectors seems limited; this could justify
the choice of future modellers to focus resources on a single sector
when analysing uncertainty. It is worth noting that this finding should
be seen in the light of our modelling scope and TYNDP scenario data
for gas demand uncertainty.

Fifth, the effect of CO2 price uncertainty strongly varies by the
scenario path of other parameters. In the context of the 2018 TYNDP

scenarios, the effect is negligible when the DG scenario realises. In
contrast, ignoring CO2 price uncertainty leads to expensive decisions if
the EUCO or ST scenarios play out, as investments made in anticipation
of these scenarios poorly match with system needs after uncertainty
is revealed. Our concluding suggestion for the energy modelling
community focused on long-term system planning problems is to



3.5 conclusions 59

consider including CO2 price uncertainty into model formulations—at
least during test runs. Investigating the interactions between assumed
future CO2 price ranges (or, alternatively, emission caps) and scenario
assumptions for the other parameters can bring significant benefits
over naïve modelling practices.

data & code availability : Datasets related to this article and a
source code for the entire project are available in the public
GitHub repository: https://github.com/Irieo/IntEG. The
code reproduces the benchmarks from the paper.

supplementary data Supplementary data to this article can be
found online at https://doi.org/10.1016/j.apenergy.2020.
116363.
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abstract : This paper focuses on seasonal demand swings in the
European natural gas market. We quantify and compare the role
of different flexibility options (domestic production, gas stor-
age, and pipeline and LNG imports) to assess European demand
fluctuations in monthly resolution. We contribute to the exist-
ing literature on seasonal flexibility by addressing the problem
with a mathematical gas market optimization model. Our paper
provides valuable empirical insights into the decline of gas pro-
duction in northwestern Europe. Furthermore, we focus on how
specific flexibility features differ between pipeline supplies and
LNG supplies and between gas imports and storage dispatch. In
terms of methodology, we construct a bottom-up market opti-
mization model and publish the complete source code (which is
uncommon for gas market models). Furthermore, we propose a
new metric—the scaled coefficient of variation—to quantify the
importance of supply sources for seasonal flexibility provision.
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4.1 introduction

Seasonal demand swings (i.e. differences in gas consumption across
seasons) constitute a fundamental element of the European gas market.
Heating demand, which is primarily driven by temperature, is high in
the winter but low in the summer, causing strong seasonal demand
swings—the aggregated European gas demand is typically more than
twice as high in the winter than it is in the summer.1 European coun-
tries balance the demand variation with a mix of flexibility options,
such as varying domestic gas production, varying pipeline or LNG

imports, and operating of underground gas storage facilities.
These options differ in terms of both cost and availability. Varying

domestic gas production requires free domestic production capacity.
Varying imports requires free foreign production capacity and free ca-

1 Between 2010 and 2017, natural gas consumption in the EU-28 was, on average, 2.2
times higher during the three winter months than it was during the three summer
months [107].
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pacity in transportation infrastructure. LNG imports are only available
to certain European countries, as they require regasification termi-
nals; however, increasingly integrated European gas markets allow
cross-border gas transfers. Gas storages provide seasonal flexibility by
shifting gas demand from the winter to summer; utilization of gas stor-
ages is also subject to available capacities and technical characteristics
of storage facilities.

The years leading up to 2018 saw a relative abundance of flexible
capacity in the gas market. This was largely due to (i) low gas demand
in almost all European countries over the past decade, (ii) investment
in additional assets,2 and (iii) the integration of European gas markets
driven by the optimized utilization of existing assets. This abundance
of flexible capacity was reflected by low seasonal gas price spreads at
European gas hubs and the low utilization of European regasification
terminals.

However, this abundance of seasonal flexibility is not permanent.
In the future, several factors will put significant downward pressure
on the availability of flexibility options. First, market forces reflect an
oversupply of such options amid lower price spreads between summer
and winter months. Lower spreads make investments in additional
flexibility less attractive and may even cause a shutdown of exist-
ing flexibility options. Second, both the Netherlands and the United
Kingdom—the European Union’s two largest gas producers—will
provide less flexibility in the future. In response to seismic activity, the
Dutch government announced a series of directives to limit maximum
annual production from the Groningen field;3 the annual-production
cap of 42.4 bcm p.a., which had been in place since January 2014,
was reduced to 21.6 bcm p.a. for the 2017 − 2018 gas year with the
ultimate goal being to completely shut down the Groningen field by
2030 [121, 122]. Furthermore, in 2016, the Dutch government estab-
lished regulations to spread out natural gas production as evenly as
possible throughout the year. In terms of monthly fluctuations, this
regulation fixes gas extraction from the Groningen field each month to
a range of plus or minus 20% [121]. Taken together (Fig. 4.1), these two
changes reduce the Groningen field’s seasonal flexibility by around
85% (from a swing of 4 − 5 bcm between the winter and the summer
in 2011 − 2013 to one of just 0.6 bcm in 2017 − 2018).4 The UK govern-
ment also indicates that there will be a rapid decline in domestic gas
production.5 The projected 2030 production volume is 17.8 bcm p.a.,
which constitutes a drop of more than 50% from the 2015 production

2 ENTSO-G [110] reports that 42 infrastructure projects were completed between 2015
and 2018.

3 REKK [120] estimates that total European production flexibility was 213 mcm/day in
2012, of which 163 mcm/day was from the Groningen field.

4 21.6 bcm p.a. / 12 = 1.8 bcm per month; 0.6 bcm = 1.8 bcm * (1 + 20%)− 1.8 bcm *
(1 − 20%).

5 See: https://www.gov.uk/guidance/oil-and-gas-uk-field-data

https://www.gov.uk/guidance/oil-and-gas-uk-field-data


62 seasonal flexibility in the european natural gas market

volume. Consequently, gas import dependency is expected to increase
significantly—from 44% in 2015 to 74% in 2030 [123]. Europe must re-
spond to this drop in domestic production and the associated decline
in flexibility with alternative options and find a new cost-optimal way
to cover seasonal demand swings.

Figure 4.1: Monthly natural gas production at the Groningen field, January
2011 - June 2018

Data is based on NAM https://www.nam.nl/gas-en-oliewinning/gronin

gen-gasveld.html

On the other hand, new infrastructure projects are expected to
enter the market. The ENTSO-G [110] identifies plans for around
120 transmission and compressor stations, 27 LNG terminals, and 9
underground storage facilities. Forty-six of these projects have been
approved for investment; almost 75% of the submitted initiatives are
expected to be commissioned no later than 2022.

Overall, the future need for seasonal flexibility remains unclear.
Assessments must consider both regulatory and economic changes in
the gas market structure. The application of an economic modeling
framework can reveal market fundamentals and the evolving structure
of flexibility options.

This paper analyzes seasonal gas demand swings and the flexibility
necessary to cover them using a fundamental modeling framework.
We analyze how various flexibility options (domestic production, gas
storage, and pipeline and LNG imports) cover European demand fluctu-
ations in monthly resolution. We contribute to the existing discussion
on seasonal flexibility by addressing the problem with a mathemat-
ical gas market optimization model. Our paper provides valuable
empirical insights into the decline of gas production in northwest-
ern Europe, much of which stems from the Groningen event and
recent developments in the UK. Such structural breaks are optimally
addressed by fundamental models. Furthermore, we differentiate be-
tween LNG and pipeline imports to analyze the specific flexibility
features of pipeline and LNG supplies. In terms of methodology, we
construct a gas market model and publish the complete source code.6

6 While there is almost a decade of open modeling initiatives in European energy
research (e.g. https://wiki.openmod-initiative.org listing numerous open
models for the electricity, heat, and mobility sectors), publishing input data and

https://www.nam.nl/gas-en-oliewinning/groningen-gasveld.html
https://www.nam.nl/gas-en-oliewinning/groningen-gasveld.html
https://wiki.openmod-initiative.org
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Furthermore, we propose a new metric to improve the quantification
of supply sources’ provision of seasonal flexibility. This metric extends
the well-established coefficient of variation.

The remainder of this paper is organized as follows. Section 4.2
details the methodology employed for this study. We present our
modeling framework as well as a mathematical description of our
market optimization model and its associated data. Section 4.3 presents
and interprets the modeling results. We begin by illustrating modeling
results in the form of monthly gas demand profiles to lay a background
for the analysis. We continue with an investigation into supply sources’
quantitative contributions to cover gas demand and determine which
supply source offers the most flexibility in covering seasonal demand
fluctuations. Finally, Section 4.4 concludes with major findings and
outlines our ideas for future work.

4.2 methodology and data

We construct and apply an optimization model covering the European
gas market and its neighboring regions. The model is formulated as a
deterministic linear programming problem with perfect foresight. This
allows us to solve the large-scale optimization model with intertempo-
ral constraints and high temporal granularity over a large timespan.
As such, decision variables (e.g. gas production, trade, and storage)
have a time resolution of 12 consecutive months for each modeled year.
We simulate market operations over a long time period (from 2018 to
2030). This enables us to explore future market developments driven
by changing supply and demand fundamentals. The model’s spatial
coverage encompasses European countries and major non-European
gas exporters (Norway, Russia, United States, Algeria, Libya, Nigeria,
and Qatar). The dataset, which includes all necessary economic and
technical data, is taken from publicly available sources. We discuss
our assumptions regarding gas demand and supply structures as well
as transmission infrastructure elements below. The model is formu-
lated in GAMS v25.17 and solved with a CPLEX solver with default
solver settings.8 The applied GAMS code, associated input data, and
processing of the results are available in a public GitHub repository:
https://github.com/Irieo/SeasonalFlex

source code is still uncommon among studies on the gas sector. A recent update to
this is made by Egging and Holz [124] who published code and data documentation
for the Global Gas Model.

7 more details at: https://www.gams.com/
8 An instance of this problem for 27 nodes and 204 time periods (17 years x 12 months)

has 2, 868, 379 single variables and 552, 599 equations.

https://github.com/Irieo/SeasonalFlex
https://www.gams.com/
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4.2.1 Related work

The mathematical modeling of gas markets has a long history. Math-
iesen, Roland, and Thonstad [125] were among the first to model
the European gas market. Interest in model-based analysis of the
European gas market increased significantly at the end of the 1990s
when the European Commission initiated liberalization policies. The
growth of computing power and the advancement of mathematical
models—paired with the challenges of energy transitions—facilitated
the widespread employment of elaborated mathematical models in
this field. Since then, a considerable amount of research has been
oriented to the economic modeling of the European gas market.

Most of the studies in this research stream have adopted one of two
methodological approaches. Studies using the first approach analyze
the operation of the gas market using mixed complementarity-based
equilibrium models, which allow for the incorporation of individual
players’ strategic decisions [65, 116, 126–130]. Those that use the second
approach employ bottom-up optimization models in which the whole
system is optimized with regard to the costs of the gas supply and
relevant constraints. While these models must rely on the assumption
of perfectly competitive market operation, they benefit from the use of
optimization solvers that allow for the incorporation of a high level of
spatial and temporal resolution as well as more detailed representation
of complex gas infrastructure (e.g. [64, 111, 131–134]).

Most recent studies that use a bottom-up optimization model to
analyze flexibility in the European gas market focus on short-term
flexibility, often dealing with supply security (e.g. the ability of the
gas system to sustain operation under shock scenarios). REKK [120]
analyzes the flexibility of the European gas market with a focus on how
interconnectivity, gas storage, and demand-side adjustments impact
the resilience of the gas system during supply shocks. Tóth et al. [135]
examine the infrastructure priorities of the EU’s LNG and underground
gas-storage strategies in various short-term supply/demand shock
scenarios. While these studies include seasonal representation of the
European gas market operation in their models, they do not focus on
seasonal flexibility.

The literature on seasonal flexibility has adopted other methodolog-
ical approaches. For example, Höffler and Kübler [136] conduct a sim-
ple top-down analysis of supply flexibility, in which they project future
additional demand for gas storage in northwestern Europe. Correlje
[137] provides another outlook on seasonal flexibility in northwestern
Europe and addresses the issue of supply capacity adequacy to meet
gas demand during a potential severe winter. They propose and com-
pare several statistical methods to evaluate the required amount of
seasonal flexibility needed for 2011 − 2020. A comprehensive empiri-
cal investigation of the role of gas storage in the European gas market
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is provided in a report issued by the European Commission [115].
The report, which looks at 2013 and 2014, discusses the competition
between gas storage and alternative sources of flexibility and suggests
the use of a variation coefficient to measure supply sources’ contribu-
tions to demand swing. Our work adds a detailed analysis of seasonal
flexibility through 2030 with a fundamental model of the European
gas market; furthermore, it suggests improving the methodology by
measuring the provision of seasonal flexibility (see Section 4.3.2).

To sum up, previous studies either discussed seasonal flexibility
using top-down or statistical approaches or they maintained a narrow
focus, dealing mainly with short-term flexibility. The literature still
lacks a systematic understanding of how to measure the importance of
a particular supply source’s contribution to seasonal demand swings.
Hence, this study contributes to the literature by conducting a long-
term analysis of seasonal flexibility with a large-scale gas market
model. Furthermore, we contribute to the methodological question of
how to measure the contributions of different flexibility options by
proposing a new metric.

4.2.2 Model structure

The model structure consists of a network of nodes, each of which
represents a country or a region. This paper incorporates 27 nodes
representing the countries and regions that are most relevant in the
European gas market (Fig. 4.2). Nodes are connected by gas transmis-
sion infrastructure, including (i) cross-border interconnection pipelines
within the EU, (ii) cross-border pipelines with non-EU parties (such
as Nord Stream), and (iii) liquefaction and regasification terminals.
All forms of gas transmission infrastructure are represented via one-
directional arcs.9 Bidirectional flows are displayed using two parallel
one-directional arcs. The model neglects friction and pressure drops
in the gas network.10

The model includes the following activities that can occur within
each node: production, consumption, storage (injection and with-
drawal), and both exporting and importing via pipelines or LNG

routes. The only exception to this rule is that, in the case of non-EU
gas exporters, we model only the supply side using residual supply
curves (i.e. gas supply potential available to European markets).11

9 We use entry and exit point capacities at the transmission level. Data about gas
distribution networks is scarce and has not been included.

10 The nonlinear dynamics of gas flow in transportation networks are usually ignored in
the literature on natural gas markets. Of course, there are some exceptions, including
Midthun [138], Herrán-González et al. [139], and Qiu et al. [140]. Although interesting
and insightful, the models presented in these studies do not scale up to a large-scale
representation of the European natural gas market.

11 A modeling exercise incorporating the operation and development of domestic
markets in these nodes would require a global gas model.
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Figure 4.2: Nodes included in the model and capacities of gas infrastructure
elements as of 2017 (in bcm p.a.)

We provide a full list of the countries and regions included in our model in
Appendix B.

It is important to note that gas production for export is optimized
endogenously for both the non-EU gas exporters and the European
domestic gas producers. The demand side consists of exogenous gas
consumption levels. To account for seasonality, annual consumption is
transformed into monthly consumption based on historical average
demand profiles for each country (or region). Demand-side response
is not considered in our analysis, as data on country-specific potentials
are generally not available. Furthermore, the European Commission
[115] argues that the role of demand-side response as a flexibility
tool in the European gas market is limited. We incorporate long-term
contracted volumes (minimum take-or-pay levels) as lower bounds
for gas deliveries between respective nodes to ensure a realistic repre-
sentation of gas supply flexibility options. Additionally, we apply a
special constraint for Dutch production to incorporate the impact of
regulation on the Groningen field’s flexibility.

The model algorithm receives exogenous input data and searches
for the decision vectors matching gas demand and supply with re-
spect to minimizing the total cost function. The optimal solution is
that in which all arbitrage opportunities across time and space are
exhausted to the extent that infrastructure (i.e. production, transporta-
tion, and storage) permit. The results of the model include spatial and
temporal decisions on production, transportation, and storage. The
incorporation of gas storage into the model requires and guarantees
intertemporal optimization.
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It is important to note that the model is designed to provide a quan-
titative assessment of possible future developments by capturing the
economic aspects of decision-making in a competitive gas market.12

The model can simulate market operation based on the supply and
demand equilibrium; additionally, it accounts for dynamic factors. The
results largely depend on the quality of the input data. Our assump-
tions on these are based on publicly available sources from 2018 to
early 2019, when the paper was written. Of course, data quality varies;
some parameters (e.g. uncertain future developments and unavailable
data) are estimates. However, to ensure transparency, we are provid-
ing input data in the public GitHub repository. Furthermore, our
methodology can be used with more accurate data once it is available.

4.2.3 Declarations

The following notations are valid for the gas market model formula-
tion used in this paper. We use subscripts for indexation. For readers’
convenience, we use upper-case letters for exogenous variables (param-
eters) and lower-case letters for endogenous variables.13 For example,
the parameter PRODCAPp,n,t sets an upper constraint for the gas
production from each facility p located in a node n for a time period t.

Nomenclature (1/2)

Element Description

Sets

n, m ∈ N nodes in the network

c ∈ N nodes where consumption activity occurs

p ∈ P gas production facilitiesa

t ∈ T time periods (months)b

aElements of set P come from linear piecewise approximation of the loga-
rithmic production cost function per node.
bThe temporal structure in the model consists of sets of consecutive months
and years. The tracking of the year index is not shown for clarity.

12 Our model relies on the assumption of perfect competition. See, for example, Chyong
and Hobbs [116], Hecking and Panke [127], and Holz [128], who discuss strategic
aspects of the European gas market.

13 Throughout the remainder of this paper, we follow established conventions and refer
to exogenous variables (i.e. model inputs) as “parameters” and endogenous variables
(which are determined during optimization) as “variables.”

https://github.com/Irieo/SeasonalFlex
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Nomenclature (2/2)

Element Description

(Positive) Variables

prodvolp,n,m,t gas production from p’s facility in node n
and export to node m

expphp,n,m,t gas flow volume over arc n ⇒ m

arc f lown,m,t total gas flow volume over arc n ⇒ m

leveln,t stock level of working gas storage in node n

injn,t gas injection volume into storages in node n

withn,t gas withdrawal volume from storages in
node n

Parameters

PRODCOSTp,n marginal production costs of p’s facility in
node n

PRODCAPp,n,t production capacity of p’s facility in node n

ARCCAPn,m,t transmission capacityc for arc n ⇒ m

TRANSCOSTn,m,t marginal transmission costs for arc n ⇒ m

CONSUMn,t gas consumption in node n

WGVn, t working capacity of gas storage in node n

INJCAPn,t storage injection capacity in node n

WITHCAPn,t storage withdrawal capacity in node n

INJCOST storage injection costs

WITHCOST storage withdrawal costs

LOSS gas losses per storage cycle

LTCn,m,t take-or-pay levels of gas deliveries under LTC

from node n to node m
cIt includes LNG routes and exogenous infrastructure capacity expansions.

4.2.4 Model formulation

Objective function 4.1 represents the total system costs that include
aggregated gas production costs, gas transmission costs over pipeline
and LNG routes14, and gas storage costs.

14 The costs of liquefaction are modeled as costs of using the “virtual arc” between gas
production and liquefaction activities. Similarly, the costs of regasification are modeled
as costs of using the “virtual arc” between gas regasification and consumption
activities.
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min TC =

∑
t


∑

p,n,c

(
prodvolp,n,c,t · PRODCOSTp,n

)
+ ∑

n,m ̸=n
(arc f lown,m,t · TRANSCOSTn,m,t)

+∑
c
(injc,t · INJCOST + withc,t · WITHCOST)

 (4.1)

The objective function is subject to the following set of technical and
balance constraints. Equation 4.2 limits the quantity of gas produced
and exported by each production facility to its production capacity.

PRODCAPp,n,t − ∑
c

prodvolp,n,c,t ≥ 0 ∀p, n, t (4.2)

Equation 4.3 ensures that arc capacity constrains the total gas flow
over each arc.

ARCCAPn,m,t − arc f lown,m,t ≥ 0 ∀n, m, t (4.3a)

where : arc f lown,m,t = ∑
p

expphp,n,m,t (4.3b)

Equation 4.4 ensures that the entire quantity of gas imported and
withdrawn from storage by each node equals the entire quantity
consumed and injected into storage.

∑
p,n

prodvolp,n,c,t = CONSUMc,t + withc,t − injc,t ∀c, t (4.4)

Equation 4.5 ensures flow conservation throughout the network; for
each node, gas trade variables (imports/exports) must equal physical
flow variables (inflows/outflows).15

[
∑

m ̸=n
prodvolp,n,m,t − ∑

m ̸=n
expphp,n,m,t

]
+[

∑
m ̸=n

expphp,m,n,t − ∑
m ̸=n

prodvolp,m,n,t

]
= 0 ∀p, n, t (4.5)

Equation 4.6 establishes minimum production and export levels
under long-term contracts between nodes.

15 Note that n and m are aliases for nodes in the system. n, m denotes a flow from n to
m; while m, n denotes a flow from m to n.
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∑
p

prodvolp,n,m,t − LTCn,m,t ≥ 0 ∀n, m, t (4.6)

Equation 4.7 defines the storage level at time period t.16

levelc,t = levelc,t−1 + (1 − LOSS) · injc,t + withc,t ∀c, t (4.7)

Equations 4.8a, 4.8b and 4.8c represent storage capacity, injection
capacity, and withdrawal capacity constraints, respectively.

WGVc, t − levelc,t ≥ 0 ∀c, t (4.8a)

INJCAPc,t − injc,t ≥ 0 ∀c, t (4.8b)

WITHCAPc,t − withc,t ≥ 0 ∀c, t (4.8c)

Finally, equation 4.9 sets a production flexibility constraint for the
Netherlands.

0 ≤
∑p,m prodvolp,n,m,t

∑p,m prodvolp,n,m,t−1
≤ 0 ∀t ≥ Jan16, n = NL (4.9)

4.2.5 Data

Data for the existing cross-border interconnection pipelines is based on
the ENTSO-G [141]. Data for LNG liquefaction and regasification termi-
nals was acquired from Gas Infrastructure Europe [113] and GIIGNL
[114]. The model also incorporates exogenous capacity expansions of
gas infrastructure (including transmission, storage, and regasification).
The structure of the system’s development is harmonized with the
ENTSOs [69] TYNDP report. Only units with final investment deci-
sion status are included in the dataset.17 This study does not include
endogenous capacity expansions.

We also use the ENTSOs [69] TYNDP for data on gas supply po-
tential.18 Gas demand projections for European countries are based
on the EUCO demand scenario from the same source. EUCO is a core

16 At the start of the first month, storage levels are fixed at 60%; at the end of the
last month, storage levels must reach 60%. This prevents the “finite time horizon”
problem, which would mean that the model’s algorithm tends to withdraw all gas
from storage facilities by the end of the last year (to maximize profit by using the
value of gas stored).

17 New infrastructure is typically added to the model dataset each January. Thus, all
units that are planned to be commissioned in 2020 will be “launched” by the model
in January 2020.

18 Supply potential is defined as “the capability of a supply source to supply the European
gas system in terms of volume availability.”
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policy scenario originally produced by the European Commission. It
projects a nearly constant annual EU gas demand over the next decade
(451 bcm in 2020 and 453 bcm in 2030). Country-specific projections,
however, vary considerably (e.g. over the same decade, annual gas
demand increases by 50% in Poland and 36% in Belgium but decreases
by 12% in the UK). Annual gas demand is transformed into monthly
levels for each node. Monthly demand profiles are calculated based on
historical average monthly gas consumption data from Eurostat [107].
We provide the results for two additional scenarios for gas demand
developments in the Online Appendix.

We analyzed public information portals, open-source literature, and
relevant academic papers to parametrize the cost structure of gas pro-
duction, transmission, and storage. Production costs are calculated as
linear piecewise approximations to logarithmic cost functions, which
are calibrated based on Chyong and Hobbs [116].19 Transmission costs
are calculated as linear functions of pipeline length. Following the
literature on natural gas modeling [68, 116] and publicly available
estimates [117], transmission costs are assumed to be 1.2 €/MWh per
1000 km. For all underwater transmission routes, transmission costs
are 2.0 €/MWh per 1000 km. Liquefaction and regasification costs
are assumed to be 3.7 €/MWh and 0.7 €/MWh, respectively [68, 142].
LNG shipping costs are calculated as a function of the distance be-
tween nodes,20 average vessel speed (18 knots), average vessel capacity
(150.000 m3), and charter rates (69.000 €/day) based on GIIGNL [114]
and Rogers [143]. Information about average vessel speed and capacity
paired with information on charter costs allows us to compute cost per
voyage (0.1 €/MWh per 1000 km). This data, combined with distance
between nodes, gives shipping costs in €/MWh per route. For example,
the shipping cost between the Qatar and UK nodes (approximate dis-
tance of 9, 875 km) is estimated to be 1.95 €/MWh. Hence, the delivery
cost (including liquefaction, regasification, and shipping) of one MWh
via the LNG route between these two nodes amounts to € 6.35. Due to
the limited information available on the actual price paid by storage
users, we assume variable costs to be uniform at 2.0 €/MWh across all
storage nodes. This cost level represents the marginal operation costs
and transport fees between storage sites and virtual trading points
[115].

Data on national storage capacities and maximum monthly injec-
tion and withdrawal rates is from Gas Infrastructure Europe [113].
This data was aggregated on the node level (i.e. each region has one
representative storage node). We assume storage losses to be 1.5%
per cycle.21 We incorporate European strategic storage requirements

19 Please note that marginal production costs vary over the modeling horizon because
they are a function of PRODCAPp,n,t (see Appendix A).

20 We use https://sea-distances.org/

21 This assumption is in line with Egging [65], who finds that storage losses vary between
1% and 1.5% depending on storage operator information and local characteristics.

https://github.com/Irieo/SeasonalFlex
https://sea-distances.org/
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based on data from CEER [144] and European Commission [115].22 As
such, country-specific shares of storage capacity, which are reserved
for strategic storage, are exogenously fixed and not included in the
model’s decision space. In turn, storage obligations are not included
in the model.23 Thus, in our modeling framework, gas storage utiliza-
tion is driven solely by price signals.24 Related short-term flexibility
measures (e.g. management of gas stored in the pipeline network) are
not included in the model due to this paper’s seasonal focus.

Our model incorporates existing long-term contracts based on data
from a study by Neumann, Rüster, and Hirschhausen [111], which
contains a literature survey on existing global long-term contracts
covering both pipeline and LNG deliveries.25 In particular, we use
information on contracting parties, annual contracted gas volumes,
and contract expiration dates. As information about take-or-pay levels
is not disclosed, we assume a uniform level of 70%. This data is used in
the model as an exogenous constraint specifying the minimum bound
on a trade variable between nodes. This constrains the diversification
of supply by importing countries that would not have been captured
if long-term obligations had been omitted.

4.3 results

This section discusses the numerical results of our model. The first sub-
section investigates the quantitative contributions of supply sources to
cover gas demand. We focus on competition between different flexibil-
ity options to cover seasonal swings. The second subsection introduces
a novel quantitative metric that measures the contribution of different
flexibility options to meet seasonal demand swings. We apply this
metric to determine which supply source offers the most flexibility
in covering seasonal demand fluctuations and how the contribution
changes over time.

22 Strategic storage refers to a mechanism under which a portion of storage capacity is
removed from the market, generally by the Transmission System Operator (TSO), for
use only in extreme circumstances.

23 Storage obligations require market participants (mainly gas suppliers) to secure storage
capacity and ensure that a certain amount of gas is stored and available at a specified
time.

24 Gas storage has multiple functions aside from addressing seasonal flexibility needs,
e.g. covering short-term flexibility needs and system security needs. This paper,
however, focuses exclusively on seasonal flexibility. Note that we do not deduct
storage capacity that is used for short-term flexibility needs. Thus, we establish an
upper limit of flexibility available for seasonal needs from gas storage. However,
benchmarking our results with historical data suggests that modeled injection and
withdrawal volumes are in line with history in the European and country-specific
cases.

25 The data covers 426 long-term (five years or more) gas supply contracts, of which 127
are for pipeline deliveries and 299 are for LNG shipments.
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4.3.1 Quantitative supply contributions by source

Gas supply profiles follow the seasonal structure of demand. A cer-
tain “base load” must be covered throughout the year. In addition,
heating demand increases gas consumption during the winter. We dis-
tinguish between four options for providing natural gas to European
consumers: domestic gas production, pipeline imports, LNG imports,
and storage withdrawals.26

Since our modeling setup aims to determine the market-clearing
that minimizes the total cost, the simulated supply mix at every node
is formed each month based on a “merit order” principle (i.e. in
ascending order of marginal costs). One strength of our approach is
that it considers intertemporal constraints with respect to storage. As
a result, supply sources with the lowest value-chain costs are the first
to be dispatched to meet gas demand. More expensive supply sources
are used to satisfy “peak load.” However, intertemporal optimization
adds complexity to this picture (e.g. importing and storing gas in the
summer to decrease imports during the winter).

Fig. 4.3 illustrates the modeling results for quantitative gas supply
contributions to cover monthly gas demand. We show the European
aggregated demand profile, as well as that of three selected nodes:
Germany, the UK (the two countries with highest gas consumption in
Europe), and the Netherlands (due to significant expected production
changes). Another reason these countries are particularly interesting
for our analysis is that Germany and the Netherlands maintain one-
third of all gas storage in the EU-28 (21% and 13% accordingly),
while the UK historically has a relatively low level of gas storage
(1% following the closure of the Rough storage facility [113]). For the
historical outlook, we plot data from Eurostat [107] (January 2014 -
December 2017) next to the model simulation results (from January
2018). It is important to note that the data from Eurostat does not
differentiate between pipeline imports and LNG imports. However,
we are able to differentiate between the two in our model. Hence,
Eurostat’s aggregated net imports (i.e. imports minus exports) should
be compared to the sum of pipeline imports and LNG imports. In
addition, Dutch domestic production includes gas volumes used for
exports (therefore, for the period of 2014 − 2017, Dutch production
exceeds Dutch consumption).

It is clear that base load is largely covered by domestic production
(e.g. the Netherlands until 2018), pipeline imports (e.g. Germany), or
a combination of the two (e.g. the UK). Seasonal demand swing is
covered by country-specific combinations of all four sources. Such
combinations depend on geographical position, domestic production

26 Note that while withdrawals from storage can be a supply source for one month, the
gas must first be injected in the form of increased consumption in a prior month.
Overall, gas storage is a net consumer (due to losses) but an important source of
flexibility.
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volumes, flexibility, the availability of transmission infrastructure (in-
cluding pipeline and LNG routes), and the production capacity of gas
exporters.

Figure 4.3: Quantitative gas supply contributions for selected countries in
bcm per month. Time axis depicts calendar years

Fig. 4.3 also illustrates how the two major European domestic pro-
ducers, the UK and the Netherlands, compensate for their decreases
in production volumes. The Netherlands, which became a net gas
importer in 2017, increasingly relies on pipeline imports and storage
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to cover seasonal fluctuations.27 In the UK, however, while annual
domestic production decreases in the future, it still allows for seasonal
flexibility. The latter is partially driven by a relative lack of alternative
flexibility sources (in particular storage; see Fig. 4.4 below for detailed
discussion).

To further enhance the visualization of the usage of seasonal flexi-
bility options, we also present monthly demand levels in descending
order of magnitude to form load duration curves.28 Fig. 4.4 presents
load duration curves for selected nodes on a monthly resolution, start-
ing with the highest demand month on the left, for 2020, 2025, and
2030. The figure provides insight into the utilization levels of gas
supply sources, their seasonality, and their role in the future of gas
storage.

On the European level, the results reinforce what we pointed out in
the discussion of Fig. 4.3.

First, storage provides the most flexibility on the European level.
Storage withdrawals during peak demand remain high over the mod-
eling horizon.

Second, the share of pipeline gas imported (relative to gross con-
sumption) does not change significantly over the modelling period.
LNG is increasingly filling in the gap in European consumption left
by the drop in domestic European production. Up from 42 bcm of
LNG imported by Europe in 2014 and 60 bcm in 2017, the volume
of LNG imported in our model simulation is 61 bcm in 2020 and 91
bcm in 2030. Thus, LNG has a growing role in the European import
mix—but it does not become the game-changer that some expect it to
be. However, higher quantities of potential LNG imports are available
to Europe. The maximum supply available to Europe (assumed in
the model) is 103.2 bcm in 2020 and 158.3 bcm in 2030.29 It is worth
noting that the share of LNG in European imports depends not only on
availability of global liquefaction capacities and cost chain, but also on
the availability and costs of alternative supply sources and European
gas demand.

Third, the model forecasts significant free seasonal flexibility re-
maining in the European system over the modeled period. Regarding
storage capacity, only 49 − 60 bcm—out of about 110 bcm of work-
ing gas storage capacity—is withdrawn annually.30 With regard to

27 Please note that an important update on Dutch domestic production was published
while this paper was in the peer-review process. The Groningen field is expected
to be closed in 2022 with a possible extension up to 2026 to prevent supply issues
[145]. Analyzing the effects of this supply shift on gas market in northwestern Europe
would be a fruitful area for further research.

28 While the term is mostly used in the context of electricity markets, the underlying
idea is useful for visualising the use of gas market flexibility sources.

29 Please note that we parametrize the model with the estimates for LNG supply poten-
tials that were available in 2018.

30 This observation reconfirms that reserving a certain share of storage for short-term
flexibility needs would likely not affect results in the context of our analysis.
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LNG, the annual utilization of terminals increases from 29% in 2020
to 43% in 2030. The same applies to pipeline infrastructure; while
some cross-border interconnection points to Europe (e.g. RU ⇒ DE,
NO ⇒ UK) or within Europe (e.g. DE ⇒ NL after 2021) are utilized at
full capacity during the winter, a large amount of available pipeline
capacity remains unused. This indicates that there is significant excess
pipeline and LNG import potential. Nonetheless, events not analyzed
in this paper (e.g. supply interruptions and exceptionally cold and
long winter periods) require additional flexibility and more detailed
analysis.

An analysis of country-specific results reveals further insights.

Figure 4.4: Annual load duration curves for selected countries in bcm per
month. Time axis depicts calendar years. Values are sorted by gas
consumption levels
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The UK has historically had a relatively low level of gas storage (for
more details, see Le Fevre [146]). The working capacity dropped even
further in 2017 after the permanent stop of Rough storage operations,
which had 3.3 bcm of working capacity (approx. 70% of all UK storage
capacity). As a result, the working capacity of gas storage in the
UK was reduced to 1.4 bcm p.a.—a remarkably low value compared
to the country’s 2017 gross national consumption of 77.6 bcm [107].
According to our modeling results, the remaining storage is utilized
at full capacity. Additional flexibility in the UK is provided by LNG,
which primarily covers winter demand, thus taking the role of seasonal
peak supplier. The importance of LNG for the UK gas supply increases
over time. Furthermore, it is noteworthy that even declining national
production will contribute to flexibility for the UK. Fig. 4.4 shows this
clearly.

The results in Germany and the Netherlands are substantially in-
fluenced by Russian gas. In the case of Germany, the Nord Stream 2
pipeline project (which is included in our model from January 2020)
immediately started to influence storage utilization.31 Fig. 4.4 reveals
that pipeline imports partially substitute storage withdrawals for the
first half of the calendar year 2020. This substitution drives fewer stor-
age injections in the preceding summer, though more injections occur
in the following summer;32 as a result, storage utilization recovers in
winter 2020/2021. In the medium term, the effect of Nord Stream 2
on the utilization of German storage is limited. More detail on this
effect is provided in the Online Appendix. In the case of the Nether-
lands, the share of gas imports from Russia in a consumption mix
increases from 2021 onwards, substituting the drop in domestic pro-
duction. Norwegian export volumes decrease over time, reflecting our
assumptions on decreasing production capacity. Our results are in
line with the argument of Honore [121] that the only possibility of
increasing the delivery of Norwegian gas to the Netherlands would be
to re-direct some volumes at the expense of other European importers.
The take-away message is that Norwegian exports cannot be seen as a
solution to substitute the drop in Dutch production gas volumes and
associated flexibility.

4.3.2 Measuring seasonal flexibility

In this section, we analyze the contributions of different flexibility op-
tions to seasonal flexibility on both the country-specific and European
level. Flexibility is analyzed on a monthly level, and both monthly

31 During the peer-review process, information emerged that the completion of the
project is delayed until Q4 2020 or Q1 2021.

32 This effect is possible because Nord Stream 1 is utilized at full capacity (transport
costs via the Ukrainian route are higher). The actual Nord Stream 1 utilization neared
93% in 2017

https://github.com/Irieo/SeasonalFlex
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and seasonal conclusions are derived.33 Consequently, all of our input
data is in a monthly resolution to be consistent. Furthermore, our
gas market model is optimized to analyze seasonal flexibility with a
monthly time resolution. Thus, a key metric to measure and compare
technologies’ flexibility contribution should also be optimized for the
research question and constructed with a monthly resolution.

With this aim, we develop a new metric that extends the Coefficient
of Variation (CV) used in a report by the European Commission [115].
The authors introduce the CV to determine which supply source pro-
vides the most swing required to meet demand fluctuations. The CV is
defined as a variable’s standard deviation in relation to its mean 4.10:

CV =

√
1
n ∑n

1(xi − x)2

x
(4.10)

We propose adjusting the CV to remove two potential pitfalls of ap-
plying it in the context of seasonal gas market flexibility analysis. First,
problems likely arise when the mean value is close to zero. With the
mean in the denominator, the CV becomes sensitive to small changes of
the mean near zero. For example, a small volume of LNG imported by
a country with little LNG in its import mix in a specific year may cause
the CV parameter to approach a relatively high number for that year.
Second, the importance of a supply source in the provision of seasonal
flexibility cannot be measured solely by CV. Following our earlier ex-
ample, a small volume of imported LNG imported in a month of peak
demand may have a high CV value (if the imported LNG volumes are
low in most other months); however, the actual contribution of LNG

imports to covering seasonal demand may be minuscule compared
to a high volume of flexible pipeline imports. Hence, to fix both of
these problems, we propose scaling the CV with the annual share of a
specific supply source in covering gas demand 4.11:

SCVi = CVi · ASi =

√
1
12 ∑m12

m1 (Si,m − Si)2

Si
· ∑m Si,m

∑i,m Si,m
(4.11)

where
CVi annual coefficient of variation for flexibility option i

ASi annual share of gas demand covered by flexibility option i

Si,m gas quantity supplied by flexibility option i in month m

The intuition for this SCV metric can be derived from its components.
The CV is zero when supply is constant throughout the year (i.e.
standard deviation is zero). It only increases once the supply pattern
forms a seasonal structure. ASi, as specified in equation 4.11, reflects

33 An analysis of short-term flexibility on the daily or weekly level requires a different
set-up.
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a supply source’s aggregated annual contribution to demand and has
an interval of [0, 1]. Therefore, the CV’s first problem does not apply to
the SCV metric, as a low ASi value compensates for the CV’s tendency
to spike in cases where the mean is close to zero. The second problem
is also addressed, as a supply source with even small-to-moderate
seasonal variation is noted by the SCV metric if it has a relatively high
ASi value. Alternatively, a supply source with high seasonal variation
but a small ASi value would have a small SCV value. Overall, the SCV

constitutes an effective measurement for the contributions of different
flexibility options to covering seasonal demand swings.

We calculate SCVs based on our modeling results for the representa-
tive nodes on an annual basis (Fig. 4.5). We include Eurostat data for
2015 − 2017 to provide a historical reference. On the European level,
the results show that compared to other flexibility sources, gas storage
contributes most to seasonal flexibility. We find no evidence that gas
storage facilities may be displaced from this position of prominence
by pipeline or LNG imports in the long term.

Figure 4.5: Annual SCVs for selected countries

Regarding country-specific results, Fig. 4.5 again shows the relative
lack of storage in the UK market. In all other regions presented in
the figure, storage is the most significant provider of flexibility based
on the SCV. In the UK, storage makes the lowest average contribution
over the period of observation. Furthermore, the contribution of do-
mestic production to seasonal flexibility decreases over the modeling
horizon. This is driven by declining domestic production volumes in
the UK. The low volume of storage working capacity and the decline
in domestic production can potentially be compensated by pipeline
interconnections with continental Europe, a direct pipeline intercon-
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nection with Norway, and high-capacity regasification terminals. The
sharp increase in seasonal flexibility provided by LNG between 2018
and 2022 is driven by increasing LNG volumes during the winter.

In Germany, the SCV for domestic production is low on account
of low volumes and a constant production pattern. Gas storage, in
contrast, covers the bulk of its seasonal demand swings. The SCV

metric also captures the above-mentioned (see Section 4.3.1) short-
term effect of Nord Stream 2 displacing German storage as the key
provider of seasonal flexibility, especially in the year 2020. The results
also highlight that the role of pipeline imports in covering German
seasonal demand swings increases after 2021, largely due to the higher
volume of gas imports brought about by the eventual completion of
the Nord Stream 2. The abundant volume of German working gas
storage capacity permits significant storage of gas imports during the
summer; therefore, it should be noted that seasonal flexibility provided
by storage requires sufficient capacity of pipeline interconnectors.

The SCVs in the bottom-right chart of Fig. 4.5 quantify the drop in
seasonal supply flexibility provided by domestic production in the
Netherlands. Since 2017, Dutch production has played a minor role in
covering demand swings, delivering a nearly constant amount of gas
(see Section 4.3.1). Increasing SCVs for gas storage and pipeline imports,
both based on historic and model-generated values, quantifies their
role as replacements for domestic production.

4.4 conclusions

This paper quantifies and compares the roles of various flexibility
options in the European gas market using a fundamental modeling
framework. We contribute to the ongoing discussion of this topic with
(i) a thorough analysis of seasonal flexibility and (ii) an optimization
model to simulate long-term market operations. This allows us to
explore structural trends in market development, which are driven
by changing supply and demand fundamentals. Furthermore, we
propose a new metric to quantify the provision of seasonal flexibility.

Our findings provide several insights into changes in the utilization
of gas supply sources. In particular, the results illustrate that (i) Eu-
ropean domestic production faces a dramatic decrease in volume; (ii)
while LNG makes up a growing share of the European import mix,
it does not constitute a game-changer; (iii) Europe continues to rely
heavily on pipeline imports from Russia. Norwegian export volumes
will not fill the gap, as Norway’s production is expected to decrease
steadily over the next few decades. Russia, in contrast, has enough
free production and transportation capacity to substantially increase
its exports to Europe. Our findings show that the bulk of the decline
in Dutch production is substituted by pipeline imports from Russia
while Norwegian gas is mainly imported to cover seasonal demand
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swings; (iv) storage utilization at peak demand levels will remain high
on both the national and European level.

We show that our methodologically enhanced CV—the scaled coeffi-
cient of variation—allows for a better understanding of how market
dynamics affect seasonal flexibility. For example, the SCV captures the
effects caused by the decline in Dutch domestic production and flexibil-
ity, the closure of the Rough storage facility in the UK, and the comple-
tion of new transmission infrastructure projects (e.g. Nord Stream 2).
Our results indicate that gas storage contributes most to European
seasonal flexibility across all years in the modeling horizon. Even
following the completion of Nord Stream 2, pipeline imports rarely
displace storage in meeting seasonal gas demand swings. Instead,
additional interconnection is used with relatively low variations over
the year. The contribution of LNG to seasonal flexibility is small on the
European level; however, it may play a more important seasonal role
on the national level (e.g. the UK). Taken together, we find no evidence
that gas storage facilities will be displaced by pipeline or LNG imports
from its role as the key seasonal flexibility provider in the long term.

Several questions remain for further research. In terms of method-
ology, our work can serve as the foundation for future work that
quantifies the value of flexibility options, especially gas storage. In
this paper, the new SCV metric was computed and interpreted exclu-
sively with monthly data. Time resolution could be increased further
to introduce short-term market dynamics (e.g. diurnal seasonality).
Consequently, future investigations might differentiate between types
of storage facilities (e.g. seasonal storage and fast-cycle storage). Paired
with an analysis of the short-term factors most responsible for extrinsic
optionality (which is not part of this study), assets in the gas sector
could be evaluated. Furthermore, it would be interesting to see fur-
ther studies that, while inspired by our methodology, focus on other
product markets (e.g. electricity).

Further modeling work must be conducted to determine the impacts
of demand and supply shocks on seasonal flexibility. Such analysis
could determine the critical transport infrastructure projects and con-
tribute to a comprehensive understanding of gas system safety needs
and the insurance value associated with gas storage facilities. A further
study with a focus on the gas market in northwestern Europe could
include data on L-gas and H-gas production fields and transmission
infrastructure. An increased geographical scope of the model would
allow researchers to study the impacts of global LNG trends on the
European gas market; this would facilitate a more thorough analysis
of the competition between LNG supplies and alternative seasonal flexi-
bility options. A progression of this work with a focus on southeastern
Europe could be developed by incorporating the Caspian Sea region
into its geographical scope. As this study adopted a deterministic
approach, further research could explore the effects of parametric
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uncertainty on the role of different flexibility options in the European
gas market. Additionally, further modeling work could explore the
potential of flexibility on the demand side. While the price elasticity
of natural gas demand is difficult to estimate, sector demands could
be analyzed in more detail by coupling sector models. Thus, an in-
tegrated electricity and gas sector model could be used to analyze
the potential role of demand response by gas-fired power generation.
Finally, the SCV metric could be used in further research to facilitate a
vulnerability analysis of gas networks.

data & code availability : Datasets related to this article and a
source code for the entire project are available in the public
GitHub repository: https://github.com/Irieo/SeasonalFlex.
The code reproduces the benchmarks from the paper.

online appendix We provide modelling results for two additional
scenarios and other supplementary data to this article in the
Online Appendix at https://github.com/Irieo/SeasonalFlex.
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df.
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abstract : The European natural gas market is undergoing funda-
mental changes, fostering uncertainty regarding both supply
and demand. This uncertainty is concentrated in the value of
strategic infrastructure investments, e.g., Projects of Common In-
terest supported by European Union public funds, to safeguard
security of supply. This paper addresses this matter by suggest-
ing an adaptive robust optimization framework for the problem
of gas infrastructure expansion planning that considers long-
term uncertainties. This framework confronts the drawbacks of
mainstream methods of incorporating uncertainty in gas market
models (i.e., stochastic scenario trees), in which the modeler
predefines the probabilities and realization paths of unknown
parameters. Our mathematical model endogenously identifies
the unfortunate realizations of unknown parameters, and sug-
gests the optimal investments strategies to address them. We use
this feature to assess which infrastructure projects are valuable in
maintaining system resilience amid cold-winter demand spikes,
supply shortages, and budget constraints. The robust solutions
point to consistent preferences for specific projects. We find that
real-world construction efforts have been focused on the most
promising projects from a business perspective. However, we
also find that most projects are unlikely to be realized without
financial support, even if they would serve as a hedge against
stresses in the European gas system.

keywords : Adaptive robust optimization, Capacity planning, Euro-
pean gas market, Uncertainty

published as : I. Riepin, M. Schmidt, L. Baringo, F. Müsgens (in
review), European gas infrastructure expansion planning: an
adaptive robust optimization approach. Working paper in Opti-
mization Online (2021): http://www.optimization-online.org/
DB_HTML/2021/10/8654.html

5.1 introduction

Natural gas is a key energy source in modern economies, as it is used
for heating, for generating electricity, and as a combustion fuel for
industrial processes. Despite increasing global demand, recent years
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have seen the production of natural gas steadily decline in traditional
European supply countries, such as Norway, the Netherlands, and
the U.K. Hence, European dependence on natural gas is set to rise
alongside rising competition for foreign resources. These two simulta-
neous developments entail heightened geopolitical risks, potentially
triggering supply disruptions [147]. While gas demand in Europe is
expected to drop dramatically in the long term—under the assump-
tion that policy objectives will be met—its trajectory in the medium
term is subject to significant uncertainty, with scenarios anticipating a
peak in 2030 [148]. This uncertainty poses planning challenges for the
European transmission system.

Since the initial foray of European Union (EU) into energy market
liberalization, the issue of supply security has been a priority on the
policy agenda [149]. The EU has proactively sought to enhance its
infrastructural capacity in order to curb vulnerabilities. An official
European energy security strategy instituted in 2014 tackles two policy
priorities: first, boosting the short-term resilience of the natural gas
network as a mechanism against supply interruption; second, reducing
dependence on prevailing suppliers in the long term [150]. Policy-
makers have lent great importance to heightening supply security
through the development of new gas pipelines and LNG receiving
terminals. European Projects of Common Interest (PCI) have been
supported by public funds to advance market reform and further
integrate and strengthen transnational gas infrastructure. Recently,
these projects have been the target of significant criticism, with some
arguing that they are unnecessary from a supply security perspective
and are at risk of becoming stranded assets [151].

In order to evaluate the impacts of uncertainties on European natural
gas infrastructure and assess which infrastructure projects are critical
to maintaining system resilience, this paper employs an Adaptive
Robust Optimization (ARO) approach [152]. Several features of ARO

make it particularly suitable for this purpose. First, ARO does not rely
on the assumption of a finite number of uncertainty realizations with
respective (known) probabilities. This feature confronts the drawbacks
of mainstream methods of incorporating uncertainty in gas market
models (i.e., stochastic scenario trees based on discrete probability
distributions) [102, 153]. ARO requires only basic information about
underlying uncertainty (e.g., the range of the uncertain data). Second,
ARO is preferable when solutions exhibit strong sensitivity to minor
changes in assumptions or input data. This feature is valuable in sys-
tems like the European natural gas market with complex spatial and
intertemporal dynamics and numerous infrastructure assets. Finally,
ARO has gained attention as a mechanism with which to model un-
certainty in applications with high reliability requirements. Solution
robustness in the context of energy systems is extremely valuable, as
the penalty associated with infeasible solutions is exorbitant [152].
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This paper addresses the following research questions:

• How can an adaptive robust optimization approach be employed
to assess the impact of supply and demand uncertainties on
infrastructure development in the European gas market?

• What implications do different levels of uncertainty have on
specific infrastructure projects in the context of supply security?

ARO has gained prominence in the field of electricity systems analy-
sis; however, in the field of gas network modeling, the applications has
largely been restricted to testing distribution networks and stationary
models [154, 155]. This paper contributes to the extant literature by
applying ARO to model uncertainties in a real-world setting. To the
best of our knowledge, this constitutes the first application of ARO

in gas infrastructure expansion planning. Furthermore, we make an
empirical contribution to the literature by assessing the implications
of demand and supply uncertainty in 2030 on European natural gas
infrastructure.

To facilitate transparency and encourage future research in this field,
the source code of the model and the associated input data for each sce-
nario is published in a public GitHub repository: github.com/Irieo/ARO-
GasInfrastructure. The code reproduces the results presented in the
paper.

The remainder of the paper is organized as follows. Section 5.2 pro-
vides a brief overview of the methods used in this paper. Section 5.3
presents the formulation of the adaptive robust optimization problem,
a representation of the employed uncertainty sets, and their empirical
application to the European natural gas market. Section 5.4 reports
and discusses the results and their implications. Section 5.5 concludes
the paper with a summary of our analysis and a brief outlook on the
potential for future research. Appendix C provides the detailed formu-
lation of the adaptive robust optimization model for gas infrastructure
expansion planning. Appendix D provides an illustrative example of
the worst-case demand and supply realisations subject to uncertainty
budgets. Appendix E lists PCI included in our analysis. Appendix F
complements literature review section and lists research papers that
focus on natural gas markets and address parametric uncertainty.

5.2 literature review

This section briefly reviews common approaches to model long-term
uncertainties in the extant literature. In Section 5.2.1, we discuss meth-
ods for addressing long-term uncertainty in energy system models. In
Section 5.2.2, we narrow our focus to natural gas market models.

https://github.com/Irieo/ARO-GasInfrastructure
https://github.com/Irieo/ARO-GasInfrastructure
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5.2.1 Methods for addressing long-term uncertainty in energy systems
models

The subject of long-term uncertainty in the context of model-based pol-
icy analysis has been vigorously discussed in the academic literature
for decades [156]. Assessments of the impact of long-term systematic
uncertainty in energy systems models commonly employ one of the
three methods illustrated in Figure 5.1.

The vast majority of analyses incorporate uncertain parameters
via deterministic scenarios (Figure 5.1a), often coupled with ex-post
sensitivity analyses [157].

(a) Point estimate (deter-
ministic)

(b) Scenario tree (stochas-
tic)

(c) Uncertainty sets (ro-
bust)

Figure 5.1: Methods for incorporating uncertainty in energy optimization
problems

Another prominent method of incorporating uncertainty involves
multi-stage stochastic optimization (Figure 5.1b). In this method, un-
certain information is modeled by scenario trees (i.e., sequences of
observable data vectors over the planning horizon). The branches (pos-
sible realizations of uncertain data) follow a probability distribution,
which is assumed to be known to the decision-maker. At each stage,
a decision must be irrevocably fixed based on the currently available
information. One drawback of applying stochastic optimization to
real-world problems is the fact that the realization probabilities of the
random variables are mostly unknown [158]. Detailed reviews of the
use of stochastic methods in energy system modeling are available
in Wallace and Fleten [159], Möst and Keles [160], and Collins et al.
[161]. However, a simple stochastic representation of uncertainty is
not always viable when the probabilities of possible events are uncer-
tain, knowledge of all possible events (unknown unknowns and black
swans) is unavailable [162], or uncertainty is not purely exogenous.

The third method employs robust optimization (Figure 5.1c), which
dates back to Soyster [163]. An adaptive robust optimization imple-
ments different techniques to improve on the original static robust
optimization by incorporating multiple stages of decision into the
algorithm [164]. As noted above, ARO is well-suited for applications
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where distributional information about a given uncertainty is limited
or where solution feasibility is the ultimate evaluation metric. ARO

renders solutions that exhibit feasibility for all possible realizations
of uncertainty within a range defined in an uncertainty set. The set
should be constructed to capture correlations among certain parame-
ters. Although one can derive such sets based on probabilistic data,
well-defined probability distributions are not required to construct un-
certainty sets. Various types of uncertainty sets (e.g., box, polyhedral,
ellipsoidal, cardinality-constrained budgets) have been employed in
the extant literature [165]. Original box-type uncertainty sets were only
able to accommodate the most conservative uncertainty manifestations.
More recently, polyhedral uncertainty sets have been developed and
employed [166]. Their uncertainty budgets can constrain the degree of
uncertainty attached to a parameter. An in-depth review of its appli-
cations and methodological foundations can be found in Yanikoglu,
Gorissen, and Hertog [167]. In terms of its applications in the analysis
of energy systems, ARO has been utilized to evaluate both short- and
long-term uncertainties. Short-term analyses predominantly focus on
electricity markets with unit commitment problems under uncertainty
(e.g., intermittent wind power feed-in) [152, 168, 169]. Fewer short-term
analyses involve natural gas, and most that do focus on scheduling
problems in coupled electricity and gas markets (e.g., [154, 170]). In
terms of long-term uncertainties, a substantial strand of literature has
applied variations of ARO to transmission-expansion planning models
(e.g., [171–174]). There have yet to be any such ARO approaches to gas
market modeling.

5.2.2 Long-term uncertainty and its representation in natural gas models

The subject of medium- to long-term uncertainty in natural gas mar-
kets has received considerable attention. The prevailing strand of
analysis is deterministic in nature, deploying scenario and sensitivity
analyses or (n-1) stress tests to incorporate uncertainty. More recently,
model-based analyses have begun to adopt a stochastic approach in
order to handle ranges of uncertain manifestations of relevant param-
eters (e.g., [68, 175–177]). A tabular overview of such studies and their
individual structures and representations of uncertainties is provided
in Table F.1 in Appendix F.

The overview highlights that extant literature has explored devel-
opments in natural gas supply and demand. Prospective demand
trajectories, supply interruptions, and infrastructural bottle-necks have
been in the focus of recent work. Research on the European market has
focused on supply interruptions and infrastructure resilience on ac-
count of past geopolitical discord associated with transit negotiations
regarding Russian gas supplied via Ukraine [129, 176, 178–181]. Given
the uncertainty on the use of natural gas in medium-term trajectory,
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the prudence of impending investments in the resource remains in
center of researchers’ attention.

Our analysis contributes to the growing literature on this subject
by employing a novel methodological approach to evaluate the re-
silience of European natural gas infrastructure under the worst-case
combinations of uncertain demand and supply developments.

5.3 problem formulation

This section details the formulation of the ARO model. For the sake
of clarity, we first introduce an ARO problem in a compact form in
Section 5.3.1. Afterward, in Section 5.3.2, we present a decomposition
algorithm for the ARO problem. Finally, we apply the ARO model to a
gas infrastructure expansion planning problem in Section 5.3.3. In this
section, we also parameterize the problem with the respective input
data for the European natural gas market.

5.3.1 Compact formulation

The methodology takes stock of the ARO problems developed for en-
ergy markets (primarily electricity markets) [171, 174, 182–184]. These
problems are formulated as three-level optimization problems. The
robust problem can be written in compact matrix form, as illustrated
in Figure 5.2.

Figure 5.2: Schematic representation of ARO model formulation

Authors’ illustration based on Baringo, Boffino, and Oggioni [174] and
Mínguez and García-Bertrand [184]

The problem in Figure 5.2 includes three nested optimization layers:

1. The first level represents a planning strategy prior to the uncer-
tainty realization (i.e., binary variables in vector x representing
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investment in transmission infrastructure projects with an invest-
ment cost vector CI).

2. The second level represents the worst-case uncertainty realization
(in the sense of cost maximization) within an uncertainty set (i.e.,
variables in vector u).

3. The third level represents the corrective actions made to mitigate
the effect of the uncertainty realization (i.e., variables in vector y
with the vector including operating costs CO).

Thus, the problem illustrated in Figure 5.2 involves both a preven-
tive and a curative component. Hence, in many respects, it mirrors
the nature of infrastructure planning processes (i.e., project planning
subject to uncertainty realizations, for which subsequent mitigation
measures are deployed) [171]. In the problem, Ξ and U are the feasibil-
ity and uncertainty sets, respectively. Set Ξ identifies the feasible space
of the third-level optimization variables, as explained in subsection
5.3.1.1, while uncertainty set U is described in subsection 5.3.1.2.

5.3.1.1 Definition of feasibility sets

Set Ξ models the feasible space of third-level optimization variables
given the first- and second-level decisions:

Ξ(x, u) = {y :

A(x, u) · y = b(x, u) : λ

D(x, u) · y ≥ e(x, u) : µ

}

(5.1)

where A, b, D, and e are matrices with constant parameters depending
on the problem configuration, and λ and µ are the dual variable
vectors associated with inequality and equality sets of constraints,
respectively. Note that the feasibility set Ξ is parameterized in terms
of first- and second-level decision variables.

5.3.1.2 Definition of uncertainty sets

This paper employs a specific type of polyhedral uncertainty sets. Bert-
simas et al. [152] were among the first to apply such uncertainty sets
for the energy network transmission expansion problem. The applica-
bility of polyhedral uncertainty sets to modern energy research paired
with the challenges of energy transitions facilitated intensive research
and elaborated descriptions of the uncertainty in the literature.

In particular, cardinality-constrained uncertainty sets are advanta-
geous, as they enable the description of uncertainty in the energy
markets alongside the improved convergence characteristics of the
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ARO problems. In such a formulation, the worst-case uncertainty real-
ization corresponds to the vertex of the polyhedron representing the
uncertainty set. Thus, polyhedral uncertainty sets can be equivalently
characterized by solely modeling the finite set of extremes or ver-
texes of the polyhedron. This approach has been employed by many
researchers (e.g., [174, 184–187]), with binary variables being used
to model the extreme-based equivalent for the original cardinality-
constrained uncertainty set.

The problem in Figure 5.2 includes the second-stage decision vari-
able u, which takes values within the known confidence bounds:

u ∈ [ũ − û, ũ + û] (5.2)

where ũ and û represent the vectors of the forecast and fluctua-
tion levels of the uncertain variables, respectively. The corresponding
cardinality-constrained uncertainty set, as defined in Baringo, Boffino,
and Oggioni [174], assumes the following form:

U =
{

u = ũ + diag(z+)û − diag(z−)û, (5.3a)

z+, z− ∈ {0, 1}m, (5.3b)
m

∑
k=1

(z+k + z−k ) ≤ Γ, (5.3c)

z+k + z−k ≤ 1, ∀k
}

(5.3d)

Eq. (5.3a) defines the value of the uncertain variable u based on
the forecast and fluctuation levels. Eq. (5.3b) defines the vectors of
binary variables z+ and z−. Eq. (5.3c) defines the uncertainty budget
Γ, which enables us to control the robustness of the solution. Γ = 0
implies that all instances of the uncertain variable u are equal to their
forecast values (i.e., uncertainty is disregarded). Any positive value of
Γ implies that the variable u can deviate from its forecasted value. m
indicates the size of the vector of variable u. Eq. (5.3d) ensures that
the uncertain variables in vector u cannot simultaneously be at both
their upper and lower bounds.

5.3.2 Solution procedure

The three-level optimization expressed in Figure 5.2 is solved via a
decomposition technique. Here we again follow past research in the
field of robust optimization for power systems. Specifically, we rely
on the research of Baringo, Boffino, and Oggioni [174] and Mínguez
and García-Bertrand [184], who employ an efficient coupling method
for second- and third-level problems, as well as that of Bertsimas et al.
[152], Mínguez and García-Bertrand [184], and Conejo et al. [188],
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who develop, benchmark, and illustrate a Column-and-Constraint
Generation (CCG) algorithm, which is efficient for ARO problems.

The CCG algorithm involves iterative solutions for the master prob-
lem and subproblem through the exchange of information provided
by the primal decision variables.1 Finite convergence to the optimal
solution is guaranteed given the convexity of the problem [152, 164].
The algorithm consists of the following three major steps:

1. First, the master problem is solved. The master problem is mainly
based on the first-level problem in Figure 5.2. The master prob-
lem uses the solution from the subproblem as input data (i.e.,
uncertainty realization variables in vector u).

2. Second, the subproblem comprising the second- and third-level
problems is solved. The subproblem incorporates input data
from the master problem (i.e., the infrastructure expansion deci-
sions in binary vector x).

3. Third, the master problem and the subproblem are iteratively
solved until they reach convergence to the optimal solution (i.e.,
a convergence tolerance is fulfilled).

The following sections provide detailed explanations of the master
problem, the subproblem, and the solution procedure.

5.3.2.1 Master problem

The master problem, in a compact form at iteration ν, is as follows:

min
x,η,y(ν)

ZM = CT
I x + η (5.4a)

subject to

h(x) = 0 (5.4b)

g(x) ≤ 0 (5.4c)

η ≥ [CO(x, u(ν′)]T · y(ν
′) ∀ν′ ≤ ν (5.4d)

A(x, u(ν′)) · y(ν
′) = b(x, u(ν′)) ∀ν′ ≤ ν (5.4e)

D(x, u(ν′)) · y(ν
′) ≥ e(x, u(ν′)) ∀ν′ ≤ ν (5.4f)

where variables in set ΦM = [x, η, y(ν
′), ∀ν′ ≤ ν] are the optimization

variables of the master problem (5.4).
Overall, the master problem (5.4) is a relaxed version of the three-

level problem in Figure 5.2, in which the auxiliary variable η iteratively
approximates the worst-case value of the second-level objective func-
tion. Note that Eqs. (5.4d)–(5.4f) are formulated for all realizations of

1 For this reason, the algorithm is sometimes referred to as “primal Benders’ decomposi-
tion”.
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u(ν′), which refers to the optimal values of variables u obtained in the
subproblem at iteration (ν′). This procedure is the basis for the term
“column-and-constraint generation”.

5.3.2.2 Subproblem

The subproblem is formulated in two steps.
In the first step, we follow the approach used by Baringo, Boffino,

and Oggioni [174] and Mínguez and García-Bertrand [184] to couple
the second- and third-level problems depicted in Figure 5.2. We do
this by taking the third-level problem:

min
y

[CO(x(ν), u]Ty (5.5a)

subject to

A(x(ν), u) · y = b(x(ν), u) : λ (5.5b)

D(x(ν), u) · y ≥ e(x(ν), u) : µ (5.5c)

and deriving the corresponding dual problem:

max
λ,µ

[b(x(ν), u)]Tλ + [e(x(ν), u)]Tµ (5.6a)

subject to

[A(x(ν), u)]Tλ + [D(x(ν), u)]Tµ = CO(x(ν), u) (5.6b)

λ : f ree, µ ≥ 0 (5.6c)

In the second step, we rely on the strong duality equality, which
allows us to merge the dual form of the third-level problem (5.6) with
the second-level problem. As a result, the subproblem is formulated
as a single-level optimization problem:

max
u,λ,µ

ZS = [b(x(ν), u)]Tλ + [e(x(ν), u)]Tµ (5.7a)

subject to

[A(x(ν), u)]Tλ + [D(x(ν), u)]Tµ = CO(x(ν), u) (5.7b)

λ : f ree, µ ≥ 0, u ∈ U (5.7c)

where variables in set ΦS = [u, λ, µ] are the optimization variables
of the subproblem (5.7). Note that at each iteration of ν, the master
problem (5.4) provides the expansion decision x, which is fixed in
the subproblem: x = x(ν). In turn, the subproblem determines the
worst-case uncertainty realizations in variable vector u, which are
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passed to the next iteration of the master problem. Thus, the size of
the master problem increases alongside the number of iterations, as a
new instance of uncertainty realization is added to the master problem
constraints in each iteration.

At this stage, there is only one detail left unfulfilled in formulat-
ing the subproblem. The bilinear term [b(x(ν), u)]Tλ included in the
objective function (5.7a) must be linearized. We follow the example
of Mínguez and García-Bertrand [184] by replacing the bilinear term
with the mathematically exact reformulation, which is provided in
Appendix C.

5.3.2.3 Algorithm

At this point, the master problem (5.4) and the subproblem (5.7) have
been defined. The problems are iteratively solved via the exchange
of information provided by the primal decision variables. The CCG

algorithm functions as follows:

1. Input: Select the uncertainty budgets ΓG and ΓD, and the conver-
gence tolerance ε. These data are selected by the decision-maker.

2. Initialization: Initialize the iteration counter (ν = 0) and set the
lower bound (LB) and the upper bound (UB) to −∞ and +∞,
respectively.

3. Solve the master problem (5.4).

4. Update the lower bound: LB = ZM∗.

5. The solution to the master problem contains decision variable
vector x∗; set x(ν) = x∗.

6. Solve the subproblem (5.7).

7. Update the upper bound: UB = min{UB, CTx + ZS∗}, where S∗

is the optimal value of the subproblem objective function.

8. If UB − LB < ε, the algorithm stops. The optimal decision is x∗.
Otherwise, go to Step 9.

9. Update the iteration counter as follows: (ν = ν + 1).

10. Set u(ν) = u∗, where u∗ is the optimal decision variable vector of
the subproblem obtained in Step 6.

11. Go to Step 3.

Figure 5.3 presents a visual depiction of the algorithm:
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Figure 5.3: Schematic representation of CCG algorithm

Authors’ illustration based on Conejo et al. [188].

5.3.3 Empirical application: European gas infrastructure expansion problem

In this section, we apply the ARO method described above to em-
pirically analyze infrastructure expansion needs in the European gas
system under unfortunate realizations of demand and supply for 2030.

The resulting model is formulated as a Mixed-Integer Linear Prob-
lem (MILP). The model endogenously determines the worst-case stress
for the gas system that falls within the confidence bounds (see sec-
tion 5.3.1.2) and iteratively finds the optimal infrastructure expansion
plan to address that stress. The objective function aims to minimize
the costs of constructing the new infrastructure assets and the opera-
tional costs of supplying natural gas under unfortunate realizations
of parametric uncertainty subject to the appropriate techno-economic
constraints.

The remainder of this section is structured as follows. First, we
provide a brief description of the gas network in Subsection 5.3.3.1.
Second, we take a deeper look at the key elements of our analysis:
(i) an empirical parametrization of uncertainty budgets in Subsection
5.3.3.2 and (ii) the set investment options (PCIs) in Subsection 5.3.3.3.
Finally, we discuss the model’s other data inputs in Subsection 5.3.3.4.
The formulation of the expansion planning problem for the European
gas market is provided in Appendix C.
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5.3.3.1 Gas network

The model structure consists of a network of nodes, each of which
represents a country or region. Overall, the gas network (shown in
Figure 5.4) comprises 37 nodes representing the countries and regions
that are most relevant in the European gas market.

Nodes are connected by gas transmission infrastructure assets, in-
cluding (i) cross-border pipe-lines within the EU, (ii) cross-border
pipelines with non-EU parties (such as the Nord Stream), and (iii)
regasification terminals for LNG imports. Overall, the gas network
includes 96 individual pipeline arcs and 11 regasification terminals.
Bi-directional pipelines are modeled as two distinct arcs. In our anal-
ysis, we model a single representative LNG producer that serves the
European market and can ship liquified gas to individual countries
based on its total domestic regasification capacity. Regasification ter-
minals included as part of the PCI investment options are similarly
modeled as arcs available to be built between the LNG supplier and the
destination country. The model neglects friction and pressure drops
in the gas network.

Figure 5.4: Stylized representation of the European natural gas network

Authors’ illustration.

5.3.3.2 Long-term uncertainty characterization: Uncertainty set

Here, in line with Section 5.3.1.2, we present the parametrization of the
uncertainty sets with the data instance relevant for the European gas
market. In this paper, we focus on uncertainties surrounding natural
gas demand and supply. Both of these sources of uncertainty are
characterized by cardinality-constrained uncertainty sets, which are
represented mathematically as follows:
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Ω =
{

gD
dt = G̃D

dt + zD
dt · ĜD

dt ∀d, ∀t (5.8a)

gP
p = G̃P

p − zP
p · ĜP

p ∀p (5.8b)

∑
d∈D,t∈T

zD
dt ≤ ΓD (5.8c)

∑
p∈P

zP
p ≤ ΓP (5.8d)

zD
dt ∈ {0, 1} ∀d, ∀t (5.8e)

zP
p ∈ {0, 1} ∀p

}
(5.8f)

Constraints (5.8a) and (5.8b) express the uncertain variables—the
demand and supply vectors—with respect to projected reference val-
ues and their deviations, resulting in system stress. In Eq. (5.8a), gD

dt
denotes the uncertain demand in each node and time step, G̃D

dt de-
notes the reference value, and ĜD

dt denotes the possible deviation from
the reference value. Eq. (5.8b) corresponds similarly to the network
supply. Note that the unfortunate realization of supply is modeled
on an annual basis. Thus, Eq. (5.8b) does not feature a time step in-
dex. This reflects the temporal nature of parametric uncertainty in
the model: cold-winter gas demand spikes on the one hand; policy-
and technology-driven development of annual gas supply potentials
on the other hand. Constraints (5.8c)–(5.8f) follow the explanation in
Section 5.3.1.2.

Data-driven approaches to constructing suitable uncertainty sets are
the common tools used in ongoing research [171]. Such approaches
incorporate available data to devise uncertainty sets that ensure that
the random variables under investigation are contained in defined
probability distributions. We construct the uncertainty sets for natural
gas demand and supply volumes based on scenario projections for
2030, which stem from the scenario framework adopted in the TYNDP

[189].2 The reference values adopted for the uncertainty sets corre-
spond to the optimistic scenario projections regarding supply security
(i.e., mild winter demand levels and the highest available supply vol-
umes). The uncertainty sets enable the investigation of unfortunate
realizations with respect to 2030 supply security. The demand and
supply volumes covered by the cumulative budgets are displayed in
Figure 5.5. The bar graphs comprise the scenario-specific demand and
supply projections for the individual countries and/or suppliers in
the model.

In line with the analysis of the PCIs’ contributions to supply secu-
rity, the demand uncertainty budgets are constructed to reflect the
realization of a cold-winter peak demand event across Europe. The
demand budgets considered are allocated across five winter months

2 Projections are sourced from the National Trends and Global Ambition scenario.
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(a) Demand uncertainty set

(b) Supply uncertainty set

Figure 5.5: Scenario projections used for the construction of the uncertainty
sets

Each segment represents the annual demand level (top panel) and supply
potential (bottom panel) of an individual country. Source: ENTSO-G [189]

(November–March). Deviations per month incorporated are based
on historical peaks of gas demand in each modeled country over
the last decade [190]. To provide a more explicit illustration of how
the uncertainty budgets are employed in the model, Figure D.1 in
Appendix D illustrates the worst-case demand realizations given the
uncertainty budget of ΓD = 10. The demand spikes materialize in a
way that represents the worst-case scenario in terms of the gas system
operational costs.

Regarding the employed supply uncertainty budget, the deviations
represent the difference in the projected 2030 supply potentials be-
tween the most optimistic and the most pessimistic supply scenarios.
In contrast to the demand uncertainty budgets, the supply uncertainty
budgets are constructed on an annual basis (i.e., an endogenously
determined supply cut applies to the entire year). As detailed above,
the supply cost curves for the six largest gas producers3 are modeled
in a piece-wise fashion, resulting in a merit order-style supply stack.
Each individual supply stack consists of five individual segments. For
EU producers, we assume a simplified per-unit cost. As illustrated in
Figure D.1 in D, the endogenous realization of a supply drop given

3 Russia, Norway, LNG, Caspian region, Algeria, Ukraine
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the uncertainty budget of ΓS = 10 entails cutting supply from the five
supply fields, which results in the worst-case scenario (i.e., the highest
possible increase in the system’s operational costs).

5.3.3.3 Investment options: Projects of Common Interest

As indicated above, our analysis focuses on the economic viability
of proposed gas infrastructure projects awarded the status of PCI. To
qualify as PCI, projects must demonstrate significant improvement in
market integration in at least two EU countries, enhance competition
in energy markets, and contribute to the energy security [191]. PCI are
eligible to receive public funding from the Connecting Europe Facility
(CEF), which can cover up to 50% of project-specific investments. The
most recent PCI list—the fourth such list, approved at the beginning of
2020—includes 32 gas-related infrastructure projects, most of which
focus on enhancing regional infrastructure in Central and Southeastern
Europe. According to European Commission [191], the completion
of these 32 projects will facilitate a well-interconnected and shock-
resilient gas network, providing all EU member states with access to
at least three gas supply sources or the global LNG market.

In this analysis, we focus on the cross-border pipelines and regasi-
fication projects from the fourth PCI list. The individual projects are
incorporated as discrete investment decisions (i.e., they constitute sep-
arate connections between the countries under consideration). Thus,
the projects spanning multiple countries are split up into their con-
stituent cross-border connections. The investment options comprise 26
pipeline arcs (13 bi-directional cross-border pipeline connections) and
four LNG regasification terminals. Data on project-specific investments
and the associated capacities of the considered PCI was obtained from
various publicly available sources [192–196].

Figure 5.6: PCI included in the analysis: 26 pipelines and four LNG regasifi-
cation terminals

Authors’ illustration.
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The projects included in the analysis are illustrated in Figure 5.6.
A table with information relevant to the individual pipeline and
regasification terminal projects can be found in Appendix E.

5.3.3.4 Other input data

Network data for the model (i.e., existing cross-border pipelines and
regasification terminals in Europe) is primarily sourced from the
ENTSO-G [197]. For the purposes of this analysis, we assume that the
Nord Stream 2 project is completed and at full operational capacity
in 2030 and that the terms of the recently negotiated Russia-Ukraine
transit deal, in which there is a set minimum capacity obligation of
40 bcm/year through 2024, are extended. The analysis assumes that
gas flows from Russia via Ukraine are restricted to this minimum
volume [198].

Transmission costs are calculated using linear functions of pipeline
length, pipeline type (on-shore/offshore), and transmission cost factor
per unit of gas volume and unit of distance. The transmission cost
factor is based on the natural gas modeling literature [116, 124]. The
production costs of the largest suppliers are modeled based on a piece-
wise approximation of the Golombek logarithmic cost function, which
stems from Egging and Holz [124] and Riepin and Musgens [119]. For
smaller domestic producers, we assume a constant per-unit production
cost. Similarly, we model the representative LNG supply cost curve
in a piece-wise linear manner to reflect the LNG supply structure for
Europe. The constructed LNG cost curves include liquefaction and
regasification costs. LNG shipping costs are calculated as a capacity-
weighted function of distance between nodes. The supply cost curves
for Europe in 2030 are calibrated based on BEIS [199].

Data concerning country-specific storage capacities as well as max-
imum monthly injection and withdrawal rates are sourced from the
Gas Infrastructure Europe [113]. The data are aggregated at the na-
tional level (i.e., each country has one representative storage node).
Since the optimization problem focuses on a single year, storage levels
at the beginning and end of the year are fixed. We do not explic-
itly consider the demand-side response in our analysis, as data on
country-specific potentials are generally unavailable, and the role of
demand-side response as a flexibility tool in the European gas market
is limited European Commission [115]. Thus, we incorporate an option
for gas demand shedding at a penalty cost.

5.4 results and discussion

The results section is organized as follows. Section 5.4.1 focuses on
the robust expansion plan of European gas infrastructure considering
the PCI and the worst-case realizations of cold-winter demand spikes
under increasing uncertainty budgets. Afterward, Section 5.4.2 ex-
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pands this analysis by assuming that the solution space is not limited
to the set of PCI and including the option to expand all existing arcs
in the EU. Section 5.4.3 evaluates the realization of PCI investments
when incorporating uncertainty budgets representing both demand
spikes and supply shortages. Finally, Section 5.4.4 examines the ex-
tent to which the composition of robust investments changes when
introducing an investment budget.

It should be noted that the analysis and visualization of each sce-
nario entail some modifications to the model solution space (i.e., the
set of possible investment options) and uncertainty budgets (ΓD and
ΓS). We explain these modifications at the start of each subsection.
Neither the ARO model nor the solution algorithm are changed across
the considered scenarios.

In all cases, the results are computed in GAMS4 using CPLEX solver
on a computer with an Intel Core i7 − 8750 CPU at 2.20 GHz and
16 GB of RAM. The ARO model for all of the following scenarios is
successfully converged (i.e., UB − LB = 0).

5.4.1 Robust expansion considering cold-winter gas demand spikes

This section investigates how the optimal (in terms of system robust-
ness) investment plan changes with respect to different values of the
demand uncertainty budget ΓD. The analysis is based on the following
assumptions:

1. Investment decisions are made from the set of PCI (see Appendix
E).

2. Uncertainty budget ΓD is fixed to [0, 10, 30, 60]. Note that the
worst-case realizations of unknown parameters are determined
endogenously by the model algorithm. Empirically, a unit of un-
certainty budget for demand entails one month of peak demand
in a specific node (see Section 5.3.3.2 for further details). As this
subsection focuses on gas demand uncertainty, supply uncer-
tainty is not considered, meaning ΓS is fixed to 0 (i.e., available
supply is based on the reference scenario).

3. No limits are enforced on investment budget availability (i.e.,
constraint C.1c in C is relaxed).

Figure 5.7 presents the results of this analysis. The choropleth maps
illustrate gas demand spikes associated with the worst-case demand
realization under the uncertainty budget ΓD. The realized investments
are displayed as lines connecting two countries (pipelines) and trian-
gles (regasification terminals). Note that for each scenario, the projects

4 https://www.gams.com/

https://www.gams.com/
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built represent the optimal expansion plan for the respective uncer-
tainty budget. Above the choropleth maps, summary tables offer a
quick comparison of investments across all scenarios.

The bottom row of Figure 5.7 represents an estimated CAPEX sce-
nario, which assumes that project investors do not receive financial
grants from the EU. This scenario can be viewed as an analysis of
whether PCI are beneficial from a societal perspective. The results show
that only two projects are built: the HU–Sl pipeline (ΓD = [0, 10, 30, 60])
and the PL–SK pipeline (ΓD = 60). The HU–Sl pipeline notably ap-
pears in the optimal solution under all uncertainty budgets, indicating
the high value of this project to the gas system. According to the
European Commission, the connection between the gas markets in Sl
and HU aims to diversify the gas supply in the region. The pipeline
will improve diversification of gas sources (LNG sources from the
Adriatic region), which are available in SI and enable access to gas
storages in HU for SI users [200]. The PL–SK pipeline aims to create
a north–south gas corridor in Eastern Europe and boost gas supply
security throughout the region [201]. The model results suggest that
the project provides value to the system amid increased demand
uncertainty (scenario ΓD = 60 entails demand spikes in Poland).

The top row of Figure 5.7 represents a subsidized CAPEX scenario,
which assumes that, due to their PCI status, the projects receive finan-
cial support from the CEF. This scenario can be viewed as an analysis
of whether PCI are profitable from a business perspective (i.e., whether
their value exceeds lower, subsidized investment costs). The results are
notably different, as the optimal expansion plan includes a minimum
of three projects built in ΓD = 0 and as many as eight projects under
the uncertainty budget ΓD = 80. The two projects built across all of
the uncertainty budgets are the regasification terminals in Ireland and
Croatia. The latter of these two, the KrK LNG terminal in Croatia, is
the first LNG project of its kind in the country with an initial capacity
of 2.6 bcm/a, which is equivalent to the annual gas demand in Croatia.
With increasing uncertainty budget values, seven further projects are
realized, resulting in stronger interconnection among the Baltic states
(LV–LT), a new physical connection between the Baltic states and
Poland (LT–PL), the north–south gas corridor (PL–SK), a regasification
terminal in Greece (GR–LNG), greater supply diversification in the
Balkan region (BG–SB, GR–BG, HR–SL), and increased access to LNG

through terminals in Greece and Croatia.
One interesting observation in the subsidized CAPEX scenario is that

the optimal expansion plan captures all of the PCI that are in the final
realization stage. It should be noted that the LNG terminal in Croatia
is operational starting January 2021 and four other projects that are
currently under construction (LT–PL, BG–SB, PL–SK, GR–BG) have
received significant financial support through grants and low-interest
loans (see Appendix E). The results of the ARO model suggest that
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real-world construction efforts have been targeted toward the most
promising projects from a systems perspective. These projects appear
to be well-situated to ensure supply security amid increasing demand
uncertainty. Nevertheless, from a societal perspective (i.e., absent of
subsidies), the results indicate that the vast majority of PCI are not
economically viable under our model assumptions—even when the
system is stressed by the ARO algorithm with regard to cold-winter
gas demand spikes.

The results demonstrate a general trend toward an increasing num-
ber of investments alongside greater system stress (i.e., an increasing
demand uncertainty budget). Additional projects are built to hedge
against increasing levels of demand uncertainty, either by connecting
countries in which demand spikes materialize to other countries or by
interconnecting regions to diversify their supply and alleviate system
congestion.

5.4.2 Robust expansion considering cold-winter gas demand spikes and
investment options beyond the PCI list

The expansion options considered in the above section were discrete
expansion options limited to the set of PCI. This section evaluates
whether the expansion of other existing infrastructure assets would be
preferable from a systems perspective to hedge against the worst-case
realization of demand across Europe. The analysis incorporates the
following assumptions:

1. Investment decisions are made from the union of two sets: (i) PCI

and (ii) 20% capacity increase on any arc in the gas infrastructure
network (pipelines or regasification terminals) located in the
EU.5

2. Uncertainty budgets are fixed: ΓD = [0, 10, 30, 60], ΓS = 0.

3. No limits are enforced on investment budget availability (i.e.,
constraint C.1c in C is relaxed).

Figure 5.8 illustrates the results. The choropleth maps follow the ex-
ample of the previous section, illustrating the gas demand realizations
and the respective investments under a range of uncertainty budgets.

One notable observation from the subsidized CAPEX scenario (top
row of Figure 5.8) is that, despite expanding the investment options to
more than 100 projects (17 PCI and 92 non-PCI projects), the solution
of the ARO model comprises nine projects—the majority of which are

5 The capacity of new investment options—a total of 92 arcs—is parametrized to a
20% increase in existing infrastructure items; the average capacity is comparable to
the average size of the PCI projects. The CAPEX of the new investment options is
parametrized based on the 75th percentile of the PCI’ investment per bcm of capacity.
The factors per bcm applied are computed separately for pipelines and LNG projects.
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PCI. Hence, our modeling exercise confirms the estimates of national
TSOs on gas flows under the system stress and the promising projects
from to address that stress. This result suggests that, despite the
high degree of interconnectivity in the European gas network, certain
PCI are promising from a business perspective (i.e., in a presence of
subsidy) in the face of the worst-case demand realization.

The new non-PCI projects that are realized as a part of the optimal
expansion plan include one pipeline (UA–PL) and two regasification
terminals in Belgium and France.

Interestingly, even though the UA–PL pipeline is not listed on the
PCI list, the interconnector is highly likely to assume operations by the
end of 2022, as the Ukrainian and Polish TSOs signed an agreement
in 2016 to advance the construction of the project [202]. The project
was conferred a code in the TYNDP 20206. Although a relatively small
addition in terms of transmission capacity, expansion of the pipeline
would facilitate the further integration of Ukrainian storage facilities
into the European gas system. The project is solely realized under a
relatively large uncertainty budget of ΓD = 60, which indicates the
potential flexibility that it would provide the system amid widespread
cold-winter demand peaks.7

Another observation that stands out in Figure 5.8 is the partial
substitution of PCI by non-PCI projects. In particular, the two new LNG

terminals reroute flows to Central Europe, compromising the economic
viability of the LNG terminal in Greece and the two PCI pipelines
previously built to bring gas north from the Adriatic region (the
GR–BG and BG–SB pipe-lines are not built in this scenario). This result
can be understood in the context of the system-wide optimization that
the model entails.

The results are markedly different in the estimated CAPEX scenario
(bottom row of Figure 5.8). As with the results in Section 5.4.1, the
HU–Sl pipeline appears in the optimal solution under all uncertainty
budgets. However, the other two projects built under high uncertainty
budgets (UA–PL and FR–LNG) are not from the PCI set. It is unsur-
prising to see the UA–PL pipeline appearing in the model solution in
this scenario, as, in reality, the project is also completed without the
subsidy. Overall, these results reflect the importance of efficient trade
and storage utilization in a system as complex as the European gas
market.

The results of this section provide further insight into robust gas
infrastructure expansion under uncertainty budgets. The insights (i)
confirm that, without financial support, most of the PCI are unlikely

6 In the TYNDP 2020, the project is listed under the code “TRA-A-621” for the Polish
section and the code “TRA-A-561” for the Ukrainian section [197]

7 The integration of Ukrainian storage facilities into the European gas system brings
further benefits not explicitly captured by our model (e.g., allowing vast Ukrainian
storage capacity to be used by Polish companies that face strategic storage obliga-
tions).
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to be realized; (ii) point toward the system benefits of the HU–Sl and
UA–PL pipelines; and (iii) indicate that, in a subsidized setting, PCI

provide more system value in guarding against demand uncertainty
than the infrastructure expansion options beyond the PCI list; this find-
ing aligns with the strategic aims of the project list. The observation
made in Section 5.4.1 that the ARO solution entails more investments
under higher ΓD values holds for this case as well.

5.4.3 Robust expansion considering cold-winter demand spikes and supply
shortages

Moving beyond an isolated analysis of 2030 demand uncertainty, this
section investigates the optimal robust expansion plan considering the
worst-case realizations of both gas demand and supply within the un-
certainty budgets. The analysis is based on the following assumptions:

1. Investment decisions are made from the set of PCI projects.

2. Uncertainty budgets are fixed as follows: ΓD = [0, 10, 30, 60],
ΓS = [1, 2].8 Empirically, a unit of the uncertainty budget entails
a shortage in one production field in a specific node over the
entire modeled year (see Section 5.3.3.2 for further details).

3. Investment costs are based on the subsidized CAPEX scenario.

4. No limits are enforced on investment budget availability (i.e.,
constraint C.1c in C is relaxed).

The results of this analysis are reported in Figure 5.9. The choropleth
maps now illustrate the worst-case realizations of both demand and
supply under the uncertainty budgets. As with the results in the
previous sections, the ΓD steps are visualized as columns, while the
ΓS steps form two rows for each CAPEX scenario.

Figure 5.9 demonstrates several interesting features of the robust
solution.

First, the supply uncertainty budget of ΓS = 1 eliminates some
projects from the solution space. These include pipelines in the Baltic
states and Central Europe (LT–PL, LV–LT, PL–SK). The projects aimed
at facilitating supply diversification in the Balkan region as well as two
regasification terminals in Ireland and Croatia remain a part of the
optimal expansion plan. Furthermore, this scenario includes (i) one
additional investment (LNG terminal in Greece), which brings greater
regasification capacity to the Adriatic region, and (ii) the construction
of the GR–BG pipeline, which supports the GR–LNG terminal. As the
resulting worst-case supply realization under ΓS = [1] constitutes a
supply drop of ca. 50 bcm/a from Russia, this solution is aimed at a
cost-optimal substitution of the missing supply.

8 A model run with ΓS = [0] is discussed in Section 5.4.1.
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Second, the supply uncertainty budget of ΓS = 2 yields a situation
in which an additional 45 bcm/a of LNG supply is unavailable. This
further decreases the number of realized projects. As expected, new
regasification projects are not viable in this scenario due to a shortage
of available LNG supply. This has a reverberating effect, as the projects
aimed at bringing gas north by connecting the Adriatic region with
Central Europe (GR–BG, HR–Sl, BG–SB) do not appear in the robust
solution. The sole realized project is the HU–SL interconnector. This
can be explained by its central location and the importance of access
to gas storage in Hungary for consumers in Slovenia and neighboring
countries.

Third, the results of this section highlight the general trend of in-
vestment dynamics when supply drops are incorporated into the
uncertainty budget—the ARO solution generally entails fewer invest-
ments. This outcome stems from the fact that investment decisions
associated with the robust solution under supply uncertainty entail
interplay between capital costs, load-shedding costs, and network
topology. The results demonstrate that additional LNG projects may be
viable to hedge against pipeline supply shortages (e.g., GR–LNG, sup-
ply drops in Russia); however, if the supply of both Russian pipeline
gas and LNG fall into the uncertainty budget, the economic viability of
projects is compromised due to the system’s overall supply shortage.
This is indicated by load-shedding volumes of ca. 65 bcm/a.

5.4.4 Robust expansion considering an investment budget

This section evaluates how budget availability can influence the com-
position of investment decisions in the robust solution. The analysis is
conducted with the following assumptions:

1. Investment decisions are made from the set of PCI projects.

2. Uncertainty budgets are fixed as follows: ΓD = 60, ΓS = 0.

3. Investment costs are based on the subsidized CAPEX scenario.

4. An annualized investment budget has an upper limit that takes
values of 20, 40, and 60 MEUR (i.e., constraint C.1c in C is
binding).

The robust solution considering assumptions 1 and 2 and neglecting
a budget constraint is detailed in Section 5.4.1. The model configu-
ration yields the results reported in Figure 5.7 (row with ΓD = 60).
The composition of investments obtained in the model configura-
tion entails an annualized investment of 62.8 MEUR. Using this value
as a reference, we construct a set of sensitivity cases in which the
annualized investment budget is assumed to be 20, 40, and 60 MEUR.
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Figure 5.10 illustrates the optimal investments for each budget
scenario. Note the new columns with solution information relevant to
this section. IB* reports the cost of an annualized investment budget in
MEUR per scenario. Each value is less than the budget limit set by the
constraint due to the discrete nature of the investment decisions. ∆IC
reports the difference between the most expensive investment mix
(with no constraint imposed on IB) and the optimal solution in each
scenario. ∆TC reports the difference between the total cost (objective
value of the subproblem) of each scenario and the total cost of the
solution absent the investment budget. The optimization framework of
the ARO model ensures that (a) ∆TC ≥ ∆IC (i.e., investment decisions
must have a positive (or no) impact on the objective value and that (b)
the model setup void of an investment budget yields, by definition,
the lowest objective value.

In the absence of an investment budget (the reference case, row IB
= in f in Figure 5.10), the ARO model prefers nine PCI, among them
three regasification terminals and six pipelines. When adding a budget
restriction, the ARO model reduces the number of investments to avoid
violating the budget.

With a budget of 20 MEUR, four projects are realized: LT–PL to
establish a physical connection between the Baltic states and Poland;
LV–LT to strengthen interconnection among the Baltic states; and
HR–LNG and HR–Sl to provide the Balkan region with access to
LNG. This result aligns well with the current project status of the PCI,
as the four projects built in the robust solution are either already
operational or in the final stage of development. With a budget of
40 MEUR, a regasification terminal in Ireland is added to the invest-
ment mix. Increasing the budget to 60 MEUR adds a regasification
terminal in Greece as well as two pipeline projects, GR–BG and BG–SB,
which connect the Greek regasification terminal to the Balkan region.
Eliminating the budget yields a single additional project—the PL–SK
pipeline.

Figure 5.10 depicts how decreasing the investment budget results
in a gradual increase in total costs. The behavior takes place due to
an incremental increase in the operational costs. Under the model
optimization framework, the investment decision is based on the
equality of the investment costs and the benefits (i.e., a decrease in
operational costs) of using the new infrastructure item. For this reason,
no other PCI is realized despite the unlimited investment budget—an
increase in the annual investment payment ∆IC would not compensate
for the decrease in the total costs.
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5.5 summary and outlook

The European natural gas market is subject to evolving market con-
ditions and energy and climate policy dynamics that intensify un-
certainty regarding the long-term projections of both demand and
supply. This paper addresses this matter by suggesting an adaptive
robust optimization framework for gas infrastructure expansion plan-
ning under these uncertainties. In particular, we analyze the value of
Projects of Common Interests—gas infrastructure projects supported
by EU public funds—in ensuring supply security in 2030. Methodolog-
ically, our analysis contributes to the literature by demonstrating the
first application of adaptive robust optimization for gas infrastructure
expansion planning considering long-term uncertainties.

In terms of demand uncertainty, we draw the conclusion that in-
creasing levels of uncertainty, represented by the increasing value of
uncertainty budgets, lead to additional investments. These investments
aim to hedge against demand uncertainty, either by interconnecting
regions to diversify their supply and alleviate system congestion or by
connecting countries in which cold-winter demand spikes material-
ize to neighboring countries with large storage facilities (e.g., PL-UA
pipeline).

There is a clear distinction in the incidence of project realization
between scenarios with subsidized CAPEX and scenarios with esti-
mated CAPEX. Without a substantial level of financial support, only
a small subset of proposed projects are built. This finding coincides
with recent analysis suggesting the superfluous nature of the projects
proposed in the fourth Projects of Common Interest list [151].

The results of the scenario run considering a possibility of expand-
ing the capacity of existing transmission infrastructure assets reveal
that the subsidized investments in the Projects of Common Interest
remain predominantly represented in the robust solution. These in-
vestments are complemented by the expansion of LNG infrastructure
in Northwest Europe and by construction of UA–PL pipeline that
enables the use of large Ukrainian storage facilities when hedging
against demand spikes in Central Europe. The HU–Sl and UA–PL
pipelines are built even in a non-subsidized setting, which highlights
the system benefits of these projects. Overall, these results reflect the
importance of efficient trade and storage utilization in a system as
complex as the European gas market.

An interesting observation is that introducing an investment budget
result in the prioritization of a particular set of Projects of Common
Interest—those that are either already operational or in the final stage
of development. This result suggest that real-world construction efforts
have been targeted toward the most promising projects from a systems
perspective.
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When supply drops are incorporated into the model, the general
trend of investment dynamics is that the robust solution entails fewer
investments with increasing supply uncertainty budget. This obser-
vation stems from the fact that investment decisions entail interplay
between capital costs, load-shedding costs, and network topology.
Specifically, the robust expansion plan utilizes the group of projects
associated with facilitating access to Adriatic LNG supplies to hedge
against supply drop from Russia. However, increasing the value of
the uncertainty budget further, both Russian pipeline gas and LNG fall
into the uncertainty budget. In this case, the economic viability of LNG

projects is compromised due to the system overall supply shortage.
Our analysis contributes to the extant research on modeling uncer-

tainty in the European gas market. In terms of methodology, our work
can serve as the foundation for future research aimed at quantifying
the value of gas infrastructure projects. However, our analysis must be
considered in the proper context. Due to the scope of our analysis and
the complexity of adaptive robust optimization, the employed linear
model fails to incorporate demand elasticity and neglects strategic
behaviors in gas markets. Furthermore, the aggregated nature of the
transport model abstracts from physical gas flows and the associated
non-linearities. The model application also entails certain simplifica-
tions (e.g., designating a central European LNG supplier instead of
explicitly modeling gas liquefaction and regasification terminals).

Several questions remain for further research. In particular, demand
uncertainty sets can be configured to incorporate regional correlation
regarding cold-winter peaks. In our analysis, the worst-case demand
realizations were assessed at the system level. Given that the impacts of
extreme cold are likely to manifest regionally, uncertainty sets can be
formulated to reflect spatial correlations. Future investigations could
focus on storage assets from the Projects of Common Interests list,
which were not within the scope of our analysis. Furthermore, it would
be interesting to see research that, while inspired by our methodology,
focuses on the markets for other products (e.g., hydrogen).

data & code availability : Datasets related to this article and a
source code for the entire project are available in the public
GitHub repository: https://github.com/Irieo/ARO-GasInfr
astructure. The code reproduces the results presented in the
paper.
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L O G A R I T H M I C P R O D U C T I O N C O S T F U N C T I O N S

Production costs, as proposed by Golombek, Gjelsvik, and Rosendahl
[203] and elaborated by Huppmann [204], are determined by a logarith-
mic function related to capacity utilization. The increasing marginal
cost function can be expressed as follows:

TPC′(q) = α + β · q + γ · ln(1 − q
Cap

) (A.1a)

α, β ≥ 0, γ ≤ 0, q < Cap (A.1b)

In equation A.1, q is production quantity, Cap is available production
capacity, α is the minimum marginal unit cost term, β is the per-unit
linearly increasing cost term, and γ is a logarithmic term. Note that
marginal production costs increase sharply when production nears
full capacity. The logarithmic term ensures that if capacity is expanded,
marginal production costs for the same quantity of gas decrease (and
vice versa). Fig. A.1 illustrates this approach for two selected nodes:
Russia and the Netherlands.

Figure A.1: Marginal production cost functions for two selected nodes

In order to keep the model formulation linear, we use piecewise approxima-
tions to logarithmic cost functions. Thus, we obtain a merit-order type of
linear production costs function for each node.
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B
G E O G R A P H I C A L C O V E R A G E O F T H E G A S M A R K E T
M O D E L

Node names, compound regions, and individual countries.

Countries in the EUa

Austria (AT) Italy (IT)

Belgium (BE) Netherlands (NL)

Czech Republic (CZ) Poland (PL)

Denmark (DK) Romania (RO)

France (FR) Slovakia (SK)

Germany (DE) Sweden (SE)

Hungary (HU)

Regions in the EU

Balkan node Bulgaria (BG)

Greece (EL)

Croatia (HR)

Slovenia (Sl)

Serbiab (RS)

Baltic node Estonia (EE)

Latvia (LV)

Lithuania (LT)

Iberian node Spain (ES)

Portugal (PT)

Major gas suppliers to the EU

Algeria (DZ) Qatar (QA)

Libya (LY) Russia (RU)

Nigeria (NG) United States (US)

Norway (NO)
aThe EU members that are not represented in the model are Cyprus, Finland,
Luxembourg, and Malta.
bAs of May 2020, Serbia is not a member of the EU; however, the country is
included in the model as a part of the Balkan node.
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C
D E TA I L E D F O R M U L AT I O N O F M O D E L
A P P L I C AT I O N

This Appendix provides the detailed formulation of the transmission
expansion planning problem for the European natural gas market.

Nomenclature (1/3)

Element Description

Indices

d Demands

p Producers

l Arcs (pipeline and LNG routes)

n Nodes

s Storages

t Time steps (months)

Sets

ΨD
n Demands located at node n

ΨP
n Producers located at node n

ΨT Time steps in modelling horizon

Ψl+ Prospective transmission infrastructure assets
(PCI)

Ψl Existing transmission infrastructure assets

r(l)/s(l) Receiving/sending-end node of the lth arc

Scalars

M Large scalar value

Parameters

CLS
d Load-shedding cost of demand d [€/kcm]

CP
p Production cost of producer p [€/kcm]

CL
l Transport costs across of the lth arc [€/kcm]

CIC
l Annualized cost of of the lth arc [€]

C̄I Annualized investment budget [€]
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Nomenclature (2/3)

Element Description

Parameters

G̃D
dt Reference level of demand d [bcm/m]

G̃P
p Reference capacity of producer p [bcm/a]

ĜD
dt Max deviation from level of reference demand

d [bcm/m]

ĜP
p Max deviation from reference capacity of pro-

ducer p [bcm/m]

GSI
d /GSW

d Injection/withdrawal capacity of storage
mapped to demand d [bcm/m]

GS
dt/GS

dt Lower/upper bound on working gas volume of
storage mapped to demand d [bcm]

ηSI
d /ηSW

d Injection/withdrawal efficiency of storage
mapped to demand d [%]

ES0
d Storage level at the first period of modelling

horizon [bcm]

ΓD Uncertainty budget for demand

ΓP Uncertainty budget for supply

Primal Variables

gLS
dt Load shed by demand d [bcm/m]

gP
pt Production by producer p [bcm/m]

gL
lt Gas transport across lth arc [bcm/m]

gD
dt Uncertain level of demand d [bcm/m]

gP
pt Uncertain capacity of producer p [bcm/m]

wgS
dt Working gas volume of storage mapped to de-

mand d [bcm]

gSI
dt Gas injection in storage mapped to demand d

[bcm/m]

gSW
dt Gas withdrawal from storage mapped to de-

mand d [bcm/m]

Dual Variables

(·) Dual variables are provided after the corre-
sponding equalities or inequalities separated
by a colon
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Nomenclature (3/3)

Element Description

Binary Variables

xL
l Binary investment decision in prospective trans-

mission asset l

zD
dt Binary variable representing deviation from ref-

erence monthly demand level G̃D
dt

zP
p Binary variable representing deviation from ref-

erence annual supply level G̃P
p

Auxiliary Vari-
ables

λ̃nt Auxiliary variable to linearize zD
d(n)t · λnt

ϕ̃P
pt Auxiliary variable to linearize zP

p · ϕ
P
pt

c.1 deterministic model

The transmission expansion planning model for the European natural
gas market can be formulated as the following deterministic MILP:

min
ΦD

∑
l∈ΨL+

xL
l · CIC

l +(
∑
pt

gP
pt · CP

p + ∑
lt

gL
lt · CL

l + ∑
dt

gLS
dt · CLS

d
)

(C.1a)

subject to

xL
l = {0, 1} ∀l ∈ ΨL+ (C.1b)

∑
l∈ΨL+

xL
l CIC

l ⩽ C̄I (C.1c)

∑
p∈ΨP

n

gP
pt + ∑

d∈ΨD
n

(gSW
dt − gSI

dt )− ∑
l|s(l)=n

gL
lt + ∑

l|r(l)=n
gL

lt =

∑
d∈ΨD

n

(G̃D
dt − gLS

dt ) : λnt ∀n, ∀t (C.1d)

0 ≤ gL
lt ≤ GL

lt : ϕ
L
lt ∀l, ∀t (C.1e)

0 ≤ gP
pt ≤

G̃P
p

|ΨT| : ϕ
P
pt ∀p, ∀t (C.1f)

0 ≤ gLS
dt ≤ G̃D

dt : ϕ
D
dt ∀d, ∀t (C.1g)

0 ≤ gSI
dt ≤ GSI

d : ϕ
SI
dt ∀d, ∀t (C.1h)

0 ≤ gSW
dt ≤ GSW

d : ϕ
SW
dt ∀d, ∀t (C.1i)
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wgS
dt = wgS

d,t−1 + gSI
dt ηSI

d −
gSW

dt

ηSW
d

: µS
d,t ∀d, ∀t ∈ ΨT\{t1} (C.1j)

wgS
d(t1) = ES0

d + gSI
d(t1)η

SI
d −

gSW
d(t1)

ηSW
d

: µS
d(t1) ∀d, {t1} (C.1k)

GS
dt ≤ wgS

dt ≤ GS
dt : ϕS

dt
, ϕ

S
dt ∀d, ∀t (C.1l)

where variables in set ΦD =
{

xL
l ; gP

pt; gLS
d ; gL

lt; wgS
dt; gSW

dt ; gSI
dt

}
denote

the optimization variables of the deterministic optimization problem.
The deterministic optimization problem (C.1) assumes perfect (and
optimistic) foresight regarding realizations of natural gas demand and
supply levels—G̃D

dt and G̃P
p , respectively.

The objective function (C.1a) consists of two distinct parts. The
first part constitutes investments in infrastructure assets, including
pipelines and LNG terminals. Binary variable (xL

l ) represents a discrete
investment option of each asset. The second part of the objective func-
tion entails the operational costs for existing infrastructure, including
production, transportation, and storage costs.

The objective function also includes associated costs for unserved
demand. The objective function is subject to a range of constraints. The
first such constraint is energy balance (C.1d), which entails the market-
clearing condition (i.e., the gas flows entering and exiting a node must
balance out). Supply constraints (C.1f) confine the monthly supply
volumes of natural gas in each production node. The transmission
constraint (C.1e) limits the monthly volume of natural gas transported
via pipelines or LNG arcs. Finally, storage constraints (C.1i - C.1l) limit
storage operation and define working gas volume in storage facilities
across the time horizon of the model.

c.2 adaptive robust optimization model

As noted above, the adaptive robust optimization problem takes the
form of the following min-max-min problem:

min
Φ1

∑
l∈ΨL+

xL
l · CIC

l

+ max
Φ2∈Ω

min
Φ3∈Ξ(·)[

∑
t

(
∑

p
gP

pt · CP
p + ∑

l
gL

lt · CL
l + ∑

d
gLS

dt · CLS
d

)]
(C.2a)

subject to

Constraints (C.1b) - (C.1c) (C.2b)
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where variables in sets Φ1 =
{

xL
l , ∀l ∈ ΨL+}, Φ2 =

{
gD

dt; gP
pt

}
, and

Φ3 =
{

gP
pt; gLS

d ; gL
lt; wgS

dt; gSW
dt ; gSI

dt

}
denote the optimization variables

of the first, second, and third level optimizations problems, respec-
tively. The three-tiered formulation incorporates the following nested
optimization problems:

1. The first level involves the determination of cost-optimal expan-
sion decisions (i.e., the variables in set Φ1 that correspond to
investments in pipelines and LNG infrastructure).

2. The second level corresponds to unfortunate realizations of un-
certainty variables represented by uncertainty sets (i.e., variables
in set Φ2).

3. The third level consists of corrective dispatch decisions, made in
response to perturbations elicited by the first- and second-level
decisions, that ensure a feasible solution (i.e., variables in set Φ3

that correspond to the production, transportation, and storage
of natural gas as well as, if necessary, the shedding of demand).

In problem (C.2), Ω and Ξ represent the uncertainty and feasibility
sets, respectively.

c.3 uncertainty sets

As explained in section 5.3.1.2, uncertainty in the demand and supply
of natural gas is expressed by constructing confidence bounds around
the respective decision variables. This is implemented in the model us-
ing the following cardinality-constrained uncertainty set formulation
[174]:

Ω =
{

gD
dt = G̃D

dt + zD
dt · ĜD

dt ∀d, ∀t (C.3a)

gP
p = G̃P

p − zP
p · ĜP

p ∀p (C.3b)

∑
d∈D,t∈T

zD
dt ≤ ΓD (C.3c)

∑
p∈P

zP
p ≤ ΓP (C.3d)

zD
dt ∈ {0, 1} ∀d, ∀t (C.3e)

zP
p ∈ {0, 1} ∀p} (C.3f)

c.4 feasibility sets

Given the first- and second-level decision variables, the set Ξ models
the feasible space of third-level optimization problem:
Ξ(gP

pt; gLS
d ; gL

lt; wgS
st; gSW

st ; gSI
st ) =
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{
Φ3 :

∑
p∈ΨP

n

gP
pt + ∑

d∈ΨD
n

(gSW
dt − gSI

dt )− ∑
l|s(l)=n

gL
lt + ∑

l|r(l)=n
gL

lt =

∑
d∈ΨD

n

(gD
dt − gLS

dt ) : λnt ∀n, ∀t (C.4a)

0 ≤ gL
lt ≤ GL

lt : ϕ
L
lt ∀l, ∀t (C.4b)

0 ≤ gP
pt ≤ gP

pt : ϕ
P
pt ∀p, ∀t (C.4c)

0 ≤ gLS
dt ≤ G̃D

dt : ϕ
D
dt ∀d, ∀t (C.4d)

0 ≤ gSI
dt ≤ GSI

d : ϕ
SI
st ∀d, ∀t (C.4e)

0 ≤ gSW
dt ≤ GSW

d : ϕ
SW
st ∀d, ∀t (C.4f)

wgS
dt = wgS

d,t−1 + gSI
dt ηSI

d −
gSW

dt

ηSW
d

: µS
d,t ∀d, ∀t ∈ ΨT\{t1}

(C.4g)

wgS
d(t1) = ES0

d + gSI
d(t1)η

SI
d −

gSW
d(t1)

ηSW
d

: µS
d(t1) ∀d, {t1} (C.4h)

GS
dt ≤ wgS

dt ≤ GS
dt : ϕS

dt ∀d, ∀t (C.4i)

}

The associated dual variables for the respective constraints are
provided after the colon in each equation.

c.5 solution procedure

We use the column-and-constraint generation algorithm detailed in
section 5.3.2 to iteratively solve the master and subproblem of the ARO

model. A formulation of the master and subproblem in the explicit
form is described in the following.

c.5.1 Master problem

The master problem at iteration v is as follows:

min
ΦM

∑
l∈ΨL+

xL
l · CIC

l + θ (C.5a)

subject to

Constraints (C.1b) - (C.1c)

θ ⩾

[
∑

t

(
∑

p
gP

ptv′ · CP
p + ∑

l
gL

ltv′ · CL
l + ∑

d
gLS

dtv′ · CLS
d

)]
∀v′ ⩽ v

(C.5b)
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∑
p∈ΨP

n

gP
ptv′ + ∑

d∈ΨD
n

(gSW
dt − gSI

dt )− ∑
l|s(l)=n

gL
ltv′ + ∑

l|r(l)=n
gL

ltv′ =

∑
d∈ΨD

n

(gD(v′)
dt − gLS

dtv′) ∀n, ∀t, ∀v′ ⩽ v (C.5c)

0 ⩽ gL
ltv′ ⩽ GL

lt ∀l, ∀t, ∀v′ ⩽ v (C.5d)

0 ⩽ gP
ptv′ ⩽

gP(v′)
p

|ΨT| ∀p, ∀t, ∀v′ ⩽ v (C.5e)

0 ⩽ gLS
dtv′ ⩽ G̃D

dt ∀d, ∀t, ∀v′ ⩽ v (C.5f)

0 ⩽ gSI
dtv′ ⩽ GSI

d ∀d, ∀t, ∀v′ ⩽ v (C.5g)

0 ⩽ gSW
dtv′ ⩽ GSW

d ∀d, ∀t, ∀v′ ⩽ v (C.5h)

wgS
dtv′ = wgS

d,t−1,v′ + gSI
dtv′ · ηSI

d −
gSW

dtv′

ηSW
d

∀d, ∀t ∈ ΨT\{t1}, ∀v′ ⩽ v

(C.5i)

wgS
d(t1)v′ = ES0

d + gSI
d(t1)v′ · ηSI

d −
gSW

d(t1)v′

ηSW
d

∀d, {t1}, ∀v′ ⩽ v (C.5j)

GS
dt ⩽ wgS

dtv′ ⩽ GS
dt ∀d, ∀t, ∀v′ ⩽ v (C.5k)

where set ΦM =
{

Φ1; θ; gP
ptv′ ; gLS

dtv′ ; gL
ltv′ ; wgS

dtv′ ; gSI
dtv′ ; gSW

dtv′

}
are the opti-

mization variables of master problem (C.5).

c.5.2 Subproblem

At each iteration v, master problem (C.5) yields the expantion de-
cisions. The subproblem formulated below takes these decisions as
input and determines the worst-case uncertainty realization:

max
Φ2∈Ω

min
Φ3∈Ξ(·)

[
∑

t

(
∑

p
gP

pt · CP
p + ∑

l
gL

lt · CL
l + ∑

d
gLS

dt · CLS
d

)]
(C.6)

Subproblem (C.6) is a bilevel problem in which the lower-level
problem is continuous and linear on its decisions variables. Thus, we
follow Baringo, Boffino, and Oggioni [174] and replace the lower-level
problem by its dual form. Furthermore, we can replace the objective
function of the subproblem by the dual objective function using the
strong duality theorem. This allows formulating the subproblem as
the single-level problem:

max
Φ2,Φ3

∑
t

 ∑
d∈ΨD

n

(G̃D
dtλn(d)t + ĜD

dtλ̃n(d)t) + ∑
l∈ΨL

−GL
ltϕ

L
lt + ∑

l∈ΨL+

−GL
ltX

L(v)
l ϕ

L
lt
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+∑
p
(−

G̃P
p

|ΨT|ϕ
P
pt +

ĜP
p

|ΨT| ϕ̃
P
pt) + ∑

d
(−GSI

d ϕ
SI
dt − GSW

d ϕ
SW
dt + GS

dtϕ
S
dt
− GS

dϕ
S
dt)

+∑
d
−G̃D

d ϕ
D
d

]
+ ∑

d
µS

d,{t1}ES0
d (C.7a)

subject to

gD
dt = G̃D

dt + zD
dt · ĜD

dt ∀d, ∀t (C.7b)

gP
p = G̃P

p − zP
p · ĜP

p ∀p (C.7c)

∑
d∈D,t∈T

zD
dt ≤ ΓD (C.7d)

∑
p∈P

zP
p ≤ ΓP (C.7e)

λn(p)t − ϕ
P
pt − cP

p ≤ 0 ∀p, ∀t (C.7f)

λn(d)t − ϕ
D
dt − cLS

d ≤ 0 ∀d, ∀t (C.7g)

− λn(s(l))t + λn(r(l))t − ϕ
L
lt − cL

l ≤ 0 ∀l ∈ ΨL ∪ ΨL+|XL(v)
l = 1, ∀t

(C.7h)

λn(d)t − ϕ
SW
dt − 1

ηSW
d

· µS
dt ≤ 0 ∀d, ∀t (C.7i)

− λn(d)t − ϕ
SI
dt + ηSI

d µS
dt ≤ 0 ∀d, ∀t (C.7j)

− µS
dt + µS

d,t+1 + ϕS
dt
− ϕ

S
dt = 0 ∀d, ∀t = 1, ...ΨT

|ΨT | − 1 (C.7k)

− µS
d,t + ϕS

d,t
− ϕ

S
d,t = 0 ∀s, ∀t = ΨT

|ΨT | (C.7l)

ϕ
P
pt ≥ 0 ∀p, ∀t (C.7m)

ϕ
D
dt ≥ 0 ∀d, ∀t (C.7n)

ϕ
L
lt ≥ 0 ∀l ∈ ΨL, ∀t (C.7o)

ϕ
L
lt ≥ 0 ∀l ∈ ΨL+|XL(v)

l = 1, ∀t (C.7p)

ϕ
SW
dt , ϕ

SI
dt , ϕS

dt
, ϕ

S
dt ≥ 0 ∀d, ∀t (C.7q)

µS
dt f ree ∀d, ∀t (C.7r)

λnt f ree ∀n, ∀t (C.7s)

zD
dt ∈ {0, 1} ∀d, ∀t (C.7t)

zP
p ∈ {0, 1} ∀p (C.7u)

Note that to omit a MINLP formulation, we use a linearization
technique addressing the bilinear terms λn(d)t · gD

dt and ϕ
P
pt · gP

pt in the
objective function of the problem (C.7). The following constraints are
added to the problem rendering the subproblem into the equivalent
MILP:
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(−M) · zD
d(n)t ≤ λ̃nt ≤ (M) · zD

d(n)t (C.8a)

(−M) · (1 − zD
d(n)t) ≤ λnt − λ̃nt ≤ (M) · (1 − zD

d(n)t) (C.8b)

(−M) · zP
p ≤ ϕ̃P

pt ≤ (M) · zP
p (C.8c)

(−M) · (1 − zP
p ) ≤ ϕ

P
pt − ϕ̃P

pt ≤ (M) · (1 − zP
p ) (C.8d)
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D E M A N D A N D S U P P LY U N C E RTA I N T Y B U D G E T S

Figure D.1: Illustrative example of the worst-case demand and supply reali-
sations subject to uncertainty budgets [Γ]

Authors’ illustration.
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E
P R O J E C T S O F C O M M O N I N T E R E S T S I N C L U D E D I N
T H E A N A LY S I S

Table E.1: Projects of Common Interests included in the analysis (Chapter 5)

No. PCI project Capacity
[bcm/a]

Start
year

Estimated
CAPEX1

[MEUR]

Subsidy
from
CEF&EC
[MEUR]

Status

1 Poland-Lithuania 2.4 (PL-LT) 2022-
2023

558 276 U.C.3

1.9 (LT-PL)

2 Baltic Pipe 3.1 (PL-DK) 2022 784 267 U.C.

10.4 (DK-PL)

3 Latvia-Lithuania 1.9 (LT-LV) 2023 37 Proposed

2.0 (LV-LT)

4 Bulgaria-Serbia 1.8 (BG-SB) 2022 487 77 U.C.

0.2 (SB-BG)

5 Eastring Pipeline (a) 4.4 (RO-HU) 2025 547 Proposed

4.4 (HU-RO)

6 Eastring Pipeline (b) 3.3 (TR-BG) 2025 200 Proposed

3.3 (BG-TR)

7 Hungary-Slovenia 1.4 (HU-SI) 2025 104 Proposed

1.4 (SI-HU)

8 Slovenia-Austria 2.7 (AT-SI) 2023 218 Proposed

5.5 (SI-AT)

9 Croatia-Slovenia 5.0 (SI-HR) 2023 218 Proposed

5.0 (HR-SI)

10 Slovakia-Hungary2
3.8 (HU-SK) 2022 138 Proposed

1.0 (SK-HU)

11 Poland-Slovakia 4.7 (PL-SK) 2021 287 107 U.C.

5.7 (SK-PL)

12 Greece-Bulgaria 5.0 (GR-BG) 2021 287 Proposed

5.0 (BG-GR)

13 Poseidon Pipeline 14.0 (GR-IT) 2022-
2025

2096 Proposed

14.0 (IT-GR)

14 Shannon LNG 2.8 (IE) 2022 500 Proposed

15 Krk LNG 2.6 (HR) 2021 234 107 Operation

16 Baltic Sea Coast LNG 4.0 (PL) 2022 196 Proposed

17 Alexandroupolis LNG 6.1 (GR) 2023 382 Proposed

1 Information on PCI projects is collected from www.gem.wiki web-page
unless stated otherwise (Status: June 2021)
2 PCI status pertains to the expansion of the interconnector
3 Under Construction (U.C.)
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F
L I T E R AT U R E R E V I E W O F N AT U R A L G A S M O D E L S
A N D R E P R E S E N TAT I O N O F U N C E RTA I N T Y

Table F.1: Overview of natural gas studies and their respective representation
of uncertainty

Author/year Problem
type

Uncertainty addressed

Zwart and Mulder [205] deterministic supply, demand, capital costs

Lochner and Bothe [206] deterministic pipeline capacities

Zhuang and Gabriel [95] stochastic LTCs, spot market

Zwart [207] deterministic resource constraints

Neumann, Viehrig, and Weigt
[208]

deterministic supply, demand, infrastructure

Lochner, Dieckhoener, and Linden-
berger [209]

deterministic supply, demand, infrastructure

Abada and Massol [178] deterministic supply interruptions

Abada and Jouvet [210] stochastic demand

Dieckhoener [179] deterministic infrastructure projects

Dieckhoener, Lochner, and Lin-
denberger [211]

deterministic demand, supply, pipeline capacities

Egging [175] stochastic production, market structure

Chyong and Hobbs [116] deterministic demand, South Stream pipeline,
transit fees

Flouri et al. [212] Monte
Carlo simu-
lation

supply disruptions

Egging and Holz [180] stochastic demand, supply disruptions, re-
source basis

Fodstad et al. [68] stochastic demand

Holz, Richter, and Egging [129] deterministic demand

Kiss, Selei, and Tóth [213] deterministic infrastructure projects

Baltensperger et al. [181] deterministic LNG supply disruptions

Hecking and Weiser [214] deterministic LNG supply, Nord Stream 2

pipeline

Egging et al. [215] stochastic shale gas exploration

Xunpeng, Variam, and Tao [216] deterministic supply, demand

Deane, Ó Ciaráin, and Ó Gal-
lachóir [67]

deterministic supply disruptions

Abrell, Chavaz, and Weigt [217] deterministic infrastructure projects

Eser, Chokani, and Abhari [132] deterministic infrastructure projects

Sesini, Giarola, and Hawkes [218] deterministic supply disruptions

Hauser [176] stochastic demand, supply disruptions

Riepin, Möbius, and Müsgens
[177]

stochastic demand
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