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Abstract

Microgrids are distributed systems with high share of inverter-interfaced renewable energy sources where stable and
reliable system operation is realized by suitably controlling the inverters. In this work, we focus on secondary fre-
quency control, which is an important ancillary service provided by the inverters. In the literature on secondary
frequency control, the effect of clock drifts has often been neglected. However, clock drifts are practically unavoid-
able parameter uncertainties in inverter-based microgrids and we show that the most commonly employed distributed
secondary frequency controllers exhibit performance deteriorations when taking clock drifts explicitly into consider-
ation. Motivated by this, we propose a novel alternative control law called generalized distributed averaging integral
(GDAI) control, which achieves the secondary control objectives of steady-state accurate frequency restoration and
proportional power sharing in the presence of clock drifts. In addition, we derive a sufficient tuning criterion in the
form of a set of linear matrix inequalities (LMIs) which guarantees robust stability of the closed-loop equilibrium
point in the presence of uncertain clock drifts. Finally, our analysis is validated extensively via simulation with
comprehensive comparisons to other related distributed control approaches.

1. Introduction

1.1. Motivation and related work

Electric power systems are on the verge of a major
structural and technological transformation; structural,
because power generation is moving from a fairly small
number of large central power stations to a large num-
ber of distributed generation units; technological, be-
cause in contrast to conventional power networks, the
new or so-called smart grid (Farhangi, 2010) has the
major share of power generation coming from inverter-
interfaced renewable energy sources (RESs). The phys-
ical characteristics of inverters largely differ from those
of conventional generators. Therefore, novel control
strategies are needed to ensure stable and reliable power
system operation. In this context, the concept of micro-
grids (MGs) is foreseen as a promising solution (Las-
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seter, 2002; Hatziargyriou et al., 2007). A MG is a lo-
cally controllable subset of a large power system. It con-
sists of several RESs, storage units and corresponding
loads. A MG can typically work in islanded or grid-tied
mode (Lasseter, 2002; Hatziargyriou et al., 2007). In is-
landed mode, the units within the MG are responsible
for addressing control tasks such as frequency stability,
voltage stability and desired power sharing at steady-
state, see e.g., (Schiffer, 2015). With high share of
RESs, maintaining frequency stability in islanded MGs
where both load and generation evolutions are uncer-
tain, is a challenging control task. Therefore, in this
paper, we focus on frequency control in islanded MGs.

In conventional power systems, synchronous gen-
erators which operate as grid forming units are em-
ployed to accomplish this control objective. In inverter-
based MGs, inverter-interfaced sources or, more pre-
cisely, grid forming inverters (GFIs) have to replace
synchronous generators (Lopes et al., 2006). A GFI is
a voltage source inverter controlled using voltage and
frequency references (Lopes et al., 2006; Schiffer et al.,
2017b).

Inspired by conventional power systems, a hierarchi-
cal control strategy is often advocated to control an is-
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landed MG, see e.g., (Guerrero et al., 2013; Hans et al.,
2014). This hierarchical control structure has primary,
secondary and energy management layers. The primary
control layer consists of a decentralized proportional
control, called droop control, which is responsible for
maintaining frequency stability along with proportional
power sharing (Chandorkar et al., 1993). Despite many
advantages, a major drawback of the primary droop con-
trol law is that the steady-state frequency usually devi-
ates from its nominal value (50 or 60 Hz). However,
since many devices are designed to operate at the nom-
inal frequency value, correcting this frequency devia-
tion is important. Conventionally, a central integral sec-
ondary control law (Guerrero et al., 2013) is advocated
for this task, where a central unit communicates with
all the GFIs. Yet, considering the increasing complex-
ity and the huge number of generation units connected
in a MG, centralized approaches significantly increase
the communication burden and are also vulnerable to
single-point-failures. As a consequence, distributed sec-
ondary control architectures are being increasingly pro-
posed for this task (Bidram et al., 2014; Simpson-Porco
et al., 2015; Zhao et al., 2015; Schiffer et al., 2017a; Fu
et al., 2016; Persis et al., 2016).

Typically, distributed secondary frequency control is
implemented by means of consensus-based algorithms
where the agents in the network reach an agreement by
communicating with their neighbors, see e.g., (Olfati-
Saber et al., 2007). Since such distributed approaches
obviate the requirement for a central communication
unit, the overall communication burden in the network
is reduced and the reliability is improved (Bidram et al.,
2014). Therefore, in this paper, we focus on distributed
secondary frequency control in inverter-based islanded
MGs.

An inverter-based MG involves distributed compu-
tation, which is carried out on the digital-controller of
each GFI. It is a well known fact that the clocks used
to generate time signals of these digital-controllers are
not synchronized (Kopetz, 2011; Anritsu, 2001). This
results in clock drifts between the inverters. In MGs,
clock drifts create frequency mismatches (Schiffer et al.,
2017b). In the context of distributed secondary fre-
quency control, approaches presented in the literature
often neglect the effect of clock drifts. For example,
see (Bidram et al., 2014; Simpson-Porco et al., 2015;
Zhao et al., 2015; Schiffer et al., 2017a; Fu et al., 2016;
Persis et al., 2016). However, recently it has been high-
lighted that clock drifts have an adverse effect on the
performance of secondary frequency control (Castilla
et al., 2017, 2018; Martı́nez et al., 2017; Rosero et al.,
2017b; Martı́ et al., 2018). For example, in (Rosero
et al., 2017a), the detrimental effect of clock drifts on

the distributed averaging integral (DAI) controller is in-
vestigated and it is shown that the DAI controller is
unable to properly achieve usual secondary frequency
control objectives in the presence of clock drifts. More-
over, in (Martı́ et al., 2018), a comparative study com-
prising droop-only, droop-free and various consensus-
based distributed approaches in the presence of clock
drifts is presented. The authors conclude that all the ap-
proaches studied in (Martı́ et al., 2018) exhibit problems
in achieving secondary frequency control objectives in
the presence of clock drifts.

In (Castilla et al., 2017), steady-state and transient
performance of various decentralized secondary fre-
quency controllers in the presence of clock drifts are
compared. In a similar spirit, in (Castilla et al., 2018),
a decentralized secondary control approach is studied
and the robustness of this approach towards clock drifts
under high load conditions is evaluated experimentally.
Although decentralized secondary controllers avoid the
burden of communication, they have the disadvantage
that they exhibit inefficient allocation of generation re-
sources and suffer from poor robustness to measurement
bias (Weitenberg et al., 2018). In (Martı́nez et al., 2017),
a droop-free controller which requires neighboring node
communication is studied in the presence of clock drifts.
However, in the comparative study presented in (Martı́
et al., 2018), it is shown that the aforementioned droop-
free approach does not achieve steady-state power shar-
ing in the presence of clock drifts.

In (Rosero et al., 2017b), a consensus-based dis-
tributed frequency controller is studied and the authors
confirm experimentally that clock drifts induce power
sharing errors and frequency deviations. However, the
approach investigated in (Rosero et al., 2017b) requires
that each unit communicates with all other units in the
MG. In practice, such an all-to-all communication is
undesirable. Furthermore, in (Kolluri et al., 2017), a
consensus-based power control law is designed on top
of a primary angle droop1 control layer. The approach
presented in (Kolluri et al., 2017) is able to achieve
frequency consensus and power sharing at steady-state.
Recently, in (Kolluri et al., 2018), a modified frequency
droop control scheme to address power sharing issues in
the presence of clock drifts has been presented. How-
ever, the approaches proposed in (Kolluri et al., 2017,
2018) do not address the mandatory secondary fre-
quency control objective, which is to restore the net-
work frequency to the nominal value of 50 or 60 Hz.

A possible remedy to alleviate the impact of clock

1In contrast to the conventional frequency droop control law, in an
angle droop controller, the voltage phase angle is calculated in pro-
portion to the power injected by the inverter (Majumder et al., 2010).



drifts is to use a global time synchronization strategy
(Guerrero et al., 2013), where a central unit communi-
cates a global time signal to all the GFIs. Again, such
a central setup increases the communication burden and
is prone to single-point-failures. Another interesting op-
tion is to use clock synchronization protocols applied in
sensor networks, see e.g., (Solis et al., 2006; Schenato
and Fiorentin, 2011). Yet, when it comes to MGs, for
implementing these clock synchronization protocols, an
additional clock synchronization control has to be de-
signed and should be activated before the primary and
secondary controllers. Hence, adding such an additional
control layer would increase the overall complexity of
the hierarchical control architecture used in MGs (Guer-
rero et al., 2013).

1.2. Contributions
The main contributions of this paper are highlighted

below.

1. We show that the most commonly employed dis-
tributed frequency controllers exhibit performance
deteriorations in the presence of clock drifts.

2. Building upon the above observation, we propose a
generalized distributed averaging integral (GDAI)
control which at steady-state achieves secondary
frequency control objectives in the presence of
clock drifts. Furthermore, we derive a sufficient
tuning criterion which guarantees that the closed-
loop equilibrium point is locally asymptotically
stable.

3. The performance of the GDAI controller in the
presence of clock drifts is compared with two other
distributed control approaches in the literature.

In contrast to (Kolluri et al., 2017; Martı́ et al., 2018;
Kolluri et al., 2018), we neither linearize the electri-
cal network, nor assume that the clock drift values are
known (nor neglect their effect) in the stability analysis.
Instead, we work with a non-linear MG model and con-
sider the fact that clock drift values in practice are un-
certain, but bounded. We use a Lyapunov function with
classic kinetic and potential energy terms (Pai, 1989;
Persis and Monshizadeh, 2017) to derive a stability cri-
terion which can be verified without the knowledge of
the operating point.

We present necessary and sufficient conditions for
achieving accurate steady-state frequency restoration
and power sharing in the presence of clock drifts with
various distributed frequency controllers. The GDAI
controller is proposed based on these necessary and suf-
ficient conditions. Unfortunately, compared to an anal-
ysis assuming ideal clocks (Simpson-Porco et al., 2015;
Bidram and Davoudi, 2012), the explicit consideration

of clock drifts in the MG dynamics hampers the skew-
symmetric interconnection with the GDAI controller
and, hence, significantly complicates the derivation of
controller parametrizations, which ensure closed-loop
stability. This fact is addressed in the present paper
by using a suitable Lyapunov function for the nonlin-
ear MG dynamics, which permits to derive a sufficient
stability criterion. The latter is cast as a set of LMIs,
which can be efficiently solved using standard software
like MATLAB R© with Yalmip (Löfberg, 2004).

The present work extends our previous works in (Kr-
ishna et al., 2017, 2018) in the following sense. In this
paper, the steady-state comparative study in (Krishna
et al., 2017) and the tuning criterion in (Krishna et al.,
2018) are unified with respect to a common MG model,
hence making this paper self-contained. In addition, we
provide an extensive numerical case study with com-
prehensive comparisons with other distributed control
approaches in the literature.

The paper is organized as follows. In Section 2,
we recall some preliminaries on graph theory and in-
troduce the MG model. In Section 3, we introduce a
general control representation of distributed secondary
frequency controllers and derive sufficient conditions to
achieve accurate frequency restoration and power shar-
ing in the presence of clock drifts. Based on these condi-
tions, we propose a GDAI control law which at steady-
state achieves the aforementioned control objectives in
the presence of clock drifts. In Section 4, a tuning cri-
terion in the form of linear matrix inequalities (LMIs)
which ensures robust stability of the closed-loop equi-
librium point with GDAI control is presented. In Sec-
tion 5, the performance of GDAI control is compared
with other distributed approaches via simulation. Fi-
nally, we summarize our work and suggest some future
research directions in Section 6.

2. Preliminaries

We denote by In the n×n identity matrix, by 0n×m the
n×m matrix with all entries equal to zero, by 1n the vec-
tor with all entries being equal to one and by 0n the zero
vector. Furthermore, ‖ · ‖2 denotes the Euclidean norm.
Let F and H be two real symmetric matrices of same di-
mension. Then, the maximum eigenvalue F is denoted
by λmax(F) and the elements below the diagonal of F
are denoted by ∗. If F is positive (negative) definite, we
denote this by F > 0 (F < 0). If F is positive (neg-
ative) semidefinite, we denote this by F ≥ 0 (F ≤ 0).
Similarly, F > H and F ≥ H represent F − H > 0 and
F − H ≥ 0 respectively. Let x = col(xi) denote a col-
umn vector with entries xi ∈ R, Y = diag(yi) a diagonal
matrix with diagonal entries yi ∈ R and X = blkdiag(Xi)



a block-diagonal matrix with matrix entries Xi ∈ Rni×ni .
Finally, for a function f : Rn → R, ∇ f denotes the
gradient of f .

2.1. Algebraic graph theory

A weighted undirected graph of order n > 1 is a triple
G = (N ,E,W) with set of vertices N = {1, . . . , n}. The
set of edges is denoted by E ⊆ [N]2, E = {e1, . . . , es}
where s = |E| and [N]2 represents the set of all two-
element subsets of N . Furthermore,W : E → R>0 is a
weight function. By assigning a random orientation to
the edges, the incidence matrix B ∈ Rn×s can be defined
element-wise as h jl = 1 if node j is the source of the l-th
edge el, h jl = −1 if node j is the sink of the l-th edge el
and h jl = 0 otherwise. Then, the Laplacian matrix of the
undirected weighted graph G is given by LC = BWB>
where W = diag(wl) ∈ Rs×s and wl > 0 is the weight of
the l-the edge, l = {1, . . . , s}. A path is an ordered se-
quence of nodes such that any pair of consecutive nodes
in the sequence is connected by an edge. The graph G
is called connected if there exists a path between every
pair of distinct nodes. The matrix LC has a simple zero
eigenvalue if and only if G is connected. Then, a corre-
sponding right eigenvector is 1n, i.e., LC1n = 0n, yield-
ingLC ≥ 0. The reader is referred to (Godsil and Royle,
2001; Mesbahi and Egerstedt, 2010; Diestel, 2010) for
more details on graph theory.

2.2. Primary droop-controlled MG model with clock
drifts

We consider a Kron-reduced representation (Kundur,
1994) of an inverter-based MG and denote its set of net-
work nodes by N = {1, ..., n}, n > 1. As customary
in secondary frequency control design, we assume that
all voltage amplitudes are constant and that the line ad-
mittances are purely inductive (Kundur, 1994). The lat-
ter assumption is generally satisfied for MGs in which
the inductive output impedance of the converter filter
and/or transformer dominates the resistive part of the
line impedances (Schiffer et al., 2014), and we only con-
sider such MGs. Thus, if there is a power line between
nodes i ∈ N and k ∈ N , then this is represented by a
nonzero susceptance Bik ∈ R<0. Furthermore, the elec-
trical network is assumed to be connected and the set of
neighboring nodes of the i-th node is denoted by Ni =

{k ∈ N | Bik , 0}. The phase angle and voltage magni-
tude at each bus i ∈ N are denoted by δi : R≥0 → R,
respectively Vi ∈ R>0. Note that voltage magnitudes are
assumed to be constant. In this work we focus solely
on aspects related to frequency control in MGs in the
presence of clock drifts. In frequency-related studies in

power systems, the assumption of constant voltage am-
plitudes is often made, see e.g., (Simpson-Porco et al.,
2013; Schiffer et al., 2017a).

Under the explicit consideration of clock drifts, the
model of a GFI connected at the i-th node, i ∈ N can
be modeled as an AC voltage source given by (Schiffer
et al., 2017b, 2015)

(1 + µi)δ̇i = uδi , (2.1)

where uδi : R≥0 → R is the primary control input and
µi ∈ R is the constant, but uncertain relative drift of the
clock of the i-th unit.

Following standard practice (Chandorkar et al., 1993;
Guerrero et al., 2013), we assume that uδi is obtained by
the standard frequency droop control law given by

uδi = ωd − kPi (P
m
i − Pd

i ), (2.2)

whereωd ∈ R>0 is the desired electrical frequency, kPi ∈
R>0 is the droop coefficient, Pd

i ∈ R is the desired active
power set point and Pm

i : R≥0 → R is the active power
measured using a first order low pass filter given by

(1 + µi)τPi Ṗ
m
i = −Pm

i + Pi(δ) + GiiV2
i , (2.3)

where τPi ∈ R>0 is the time constant of the low pass fil-
ter and GiiV2

i ∈ R≥0 represents the constant impedance
load connected at the i-th node. The active power flow
Pi : Rn → R at the i-th node is given by (Kundur, 1994)

Pi(δ) =
∑

k∈Ni
|Bik |ViVk sin(δi − δk), (2.4)

where δ = col(δi) ∈ Rn is the vector of phase angles.
Due to the consideration of clock drifts, it is conve-

nient to introduce the internal frequency ω̄i : R≥0 →
R>0 of the inverter at the i-th node which is related to
the actual electrical frequencyωi = δ̇i by (Schiffer et al.,
2017b, 2015)

ω̄i = (1 + µi)δ̇i = (1 + µi)ωi, ∀i ∈ N . (2.5)

In the literature, the effect of clock drifts is often ne-
glected, i.e., it is assumed that µi = 0 and ω̄i = ωi.
For example, see (Bidram et al., 2014; Simpson-Porco
et al., 2015; Zhao et al., 2015; Schiffer et al., 2017a;
Fu et al., 2016; Persis et al., 2016). In practice, the
above assumption is not satisfied in inverter-based MGs
(Schiffer et al., 2017b).

Furthermore, combining (2.1), (2.2) and (2.3) and re-
calling (2.5) yields the dynamics of a primary droop-
controlled unit as

(1 + µi)δ̇i = ω̄i = ωd − kPi (P
m
i − Pd

i ),

(1 + µi)τPi Ṗ
m
i = −Pm

i + Pi(δ) + GiiV2
i .

(2.6)



For the presentation of our results, it is convenient to
rewrite the dynamics (2.6) as follows. Differentiating
the first equation in (2.6) with respect to time yields

˙̄ωi = −kPi Ṗ
m
i = −kPi

1
(1 + µi)τPi

(
−Pm

i + Pi(δ) + GiiV2
i

)
,

(2.7)
where to write the second equality, we have used the
second equation in (2.6). Next, from the first equation
in (2.6), the measured power Pm

i can be expressed as

Pm
i =

1
kPi

(
−ω̄i + ωd

)
+ Pd

i . (2.8)

Substituting (2.8) in (2.7) and multiplying the result
with 1/kPi yields

(1 + µi)Mi ˙̄ωi = −Di(ω̄i − ωd) −
(
Pi(δ) + GiiV2

i − Pd
i

)
,

(2.9)
where Mi = τPi/kPi ∈ R>0 is the virtual inertia coeffi-
cient and Di = 1/kPi ∈ R>0 is the damping coefficient.

Combining (2.9) with (2.5) yields

(1 + µi)δ̇i = ω̄i,

(1 + µi)Mi ˙̄ωi = −Di(ω̄i − ωd) −
(
Pi(δ) + GiiV2

i − Pd
i

)
,

(2.10)

which is an equivalent representation of (2.6).
To derive a compact model representation of the MG,

it is convenient to introduce the matrices

M = diag(Mi) ∈ Rn×n,D = diag(Di) ∈ Rn×n,

µ = diag(µi) ∈ Rn×n,

and the vectors

ω = col(ωi) ∈ Rn, ω̄ = col(ω̄i) ∈ Rn,

Pnet = col(Pd
i −GiiV2

i ) ∈ Rn.

Also, we introduce the potential function U : Rn → R,

U(δ) = −
∑
{i,k}∈[N]2

|Bik |ViVk cos(δik), (2.11)

where we use the short-hand δik = δi − δk. Let P(δ) =

col(Pi(δ)) ∈ Rn be the vector of active power flows
where Pi(δ) is defined in (2.4). With U(δ) defined in
(2.11), we note that

∇δU(δ) = P(δ).

Then, the dynamics (2.10) for the whole MG can be ex-
pressed as

(In + µ)δ̇ = ω̄,

(In + µ)M ˙̄ω = −D(ω̄ − 1nω
d) −

(
∇δU(δ) − Pnet

)
.

(2.12)

Observe that due to the skew symmetry of the power
flows,

1>n∇δU(δ) = 0. (2.13)

In MGs, sharing the active power injections in a
fair manner is a practically important control objective
(Schiffer, 2015; Guerrero et al., 2013). For this purpose,
we recall the following definition (Schiffer et al., 2014;
Dörfler et al., 2016).

Definition 2.1. The active power injections are shared
proportionally if

X
(
∇δU(δs) − Pnet

)
= α1n, (2.14)

where α ∈ R, X = diag(Xi) ∈ Rn×n is a weighting
matrix with Xi ∈ R>0 and ∇δU(δs) = ∇δU(δ)|δ=δs =

P(δs) is the vector of steady-state power flows.

Note that the parameter Xi is usually specified by
the designer. A typically choice would be to select
Xi = 1/S N

i where S N
i is the power rating of the i-th unit.

Hence, achieving (2.14) at steady-state ensures that the
loads connected in the MG are shared among the GFIs
in a fair manner, i.e., in proportion to their power rat-
ings. Furthermore, for the purpose of attaining steady-
state power sharing, it has been shown in (Simpson-
Porco et al., 2013, Theorem 7), (Schiffer et al., 2014,
Lemma 6.2) that the entries of the damping matrix D in
(2.12) can be chosen according to

XD = κIn, (2.15)

where κ ∈ R>0. Recall that D is the inverse droop coeffi-
cient matrix. Therefore, the condition (2.15) can be un-
derstood as a proportional choice of droop coefficients
in correspondence to the power ratings.

3. Secondary control in the presence of clock drifts

Like any power network, a MG is also designed to
work very close to the nominal frequency value of 50
or 60 Hz (Kundur, 1994; Anderson and Fouad, 2002).
However, the proportional nature of primary droop con-
trol dynamics leading to (2.12) results in steady-state
frequency deviation. Therefore, following standard
practice (Zhao et al., 2015; Schiffer et al., 2017a; Dörfler
et al., 2016), a secondary control input u = col(ui) :
R≥0 → Rn is introduced to the model (2.12) with the
aim of correcting the steady-state frequency deviation.
Thus, (2.12) becomes

(In + µ)δ̇ = ω̄,

(In + µ)M ˙̄ω = −D(ω̄ − 1nω
d) −

(
∇δU(δ) − Pnet

)
+ u.
(3.1)



Along any synchronized motion (i.e., a motion with
constant electrical frequencies ωs = ω∗1n for ω∗ ∈ R>0,
constant phase angle differences δs

i − δs
k and constant

secondary control input us) of the system (3.1), we have
that

1>n M(In + µ) ˙̄ω = 0 = −1>n D(ω̄s − 1nω
d)

− 1>n
(
∇δU(δs) − Pnet

)
+ 1>n us.

(3.2)

Note that in the presence of clock drifts, the internal
frequencies are not uniform, i.e., from (2.5), ωs = ω∗1n
implies that

ω̄s = (In + µ)ωs = ω∗(In + µ)1n. (3.3)

Moreover, with (2.13), the scalar ω∗ can be obtained
from (3.2) as

ω∗ = ωd 1>n D1n

1>n D(In + µ)1n
+

1>n (Pnet + us)
1>n D(In + µ)1n

. (3.4)

From (3.4), it is obvious that ω∗ = ωd only if us satisfies

1>n (Pnet + us) = ωd1>n Dµ1n. (3.5)

Remark 3.1. In the case of ideal clocks, i.e., if µ =

0n×n, from (3.4), it is clear that if us satisfies 1>n (Pnet +

us) = 0, we have ω∗ = ωd. Similar results assuming
ideal inverter clocks have been presented in (Schiffer
et al., 2017a; Zhao et al., 2015). However, in the pres-
ence of clock drifts (µi , 0), satisfying 1>n (Pnet + us) = 0
does not guarantee ω∗ = ωd. See (3.4).

3.1. General distributed control representation

We are interested in designing a control law for u in
(3.1) such that ω∗ = ωd and power sharing, i.e., (2.14)
are satisfied at steady-state. For this purpose, we pro-
pose the following general distributed control represen-
tation to study the effect of clock drifts on secondary
frequency control,

u = p,

(In + µ) ṗ = −(B + βXDLC)(ω̄ − 1nω
d) − DXLCXp,

(3.6)
where B ∈ Rn×n and D ∈ Rn×n are diagonal controller
matrices, β ∈ R is a controller parameter, LC ∈ Rn×n

is the Laplacian matrix representing the communication
network andX is the design parameter defined in (2.14).
The matrix B is commonly called the pinning gain ma-
trix, see e.g. (Bidram et al., 2014).

It is customary to use the internal frequency of the
inverter to implement a distributed control law like
(3.6), since it obviates the requirement for extra fre-
quency measurement. This is mainly because extra
measurement devices can potentially increase the com-
plexity and can bring in further measurement errors into
the system. For example, see (Bidram et al., 2014;
Simpson-Porco et al., 2015; Schiffer et al., 2017a; Schif-
fer and Dörfler, 2016; Zhao et al., 2015). Therefore, it
is important to note that in the control law (3.6), we use
the internal frequency ω̄. However, in the works men-
tioned above, the authors do not consider clock drifts
and assume that the internal frequency and the electri-
cal frequency are the same, i.e., ω̄ = ω, see (3.3). Yet,
when explicitly considering clock drifts, from (2.5), it is
relevant to note that ω̄ = (In + µ)ω.

The control law (3.6) represents a generalized version
of various distributed secondary frequency controllers
and can be parametrized as follows.

DAI control
The DAI control presented/studied in (Simpson-

Porco et al., 2015; Schiffer et al., 2017a; Schiffer and
Dörfler, 2016; Zhao et al., 2015) can be obtained from
(3.6) if the control parameters in (3.6) are chosen such
that

B > 0, β = 0,D > 0. (3.7)

By using (3.7) in (3.6) yields the DAI control (Simpson-
Porco et al., 2015, Eq. 6)

u = p,

(In + µ) ṗ = −B(ω̄ − 1nω
d) − DXLCXp, (3.8)

where B > 0 and D > 0.

Pinning control
The pinning control law proposed in (Bidram et al.,

2014) can be obtained from (3.6) if the control parame-
ters in (3.6) are chosen such that

B ≥ 0, β = 0,D > 0. (3.9)

Thus, (3.6), (3.9) yields the pinning control (Bidram
et al., 2014, Eq. 52,53)

u = p,

(In + µ)ṗ = −B(ω̄ − 1nω
d) − DXLCXp, (3.10)

where B ≥ 0 and D > 0. The correspondence of the pin-
ning control law presented in (Bidram et al., 2014, Eq.
52,53) with that of (3.10) is detailed in the appendix.

For the subsequent analysis, to represent the natural
power-balance of the system (3.1), (3.6), it is convenient
to introduce the notion below.



Definition 3.2 (Synchronized motion). The closed-loop
system (3.1), (3.6) admits a synchronized motion if it has
a solution for all t ≥ 0 of the form

δs(t) = δs
0 + ω∗1nt, ωs(t) = ω∗1n, ps(t) ∈ Rn,

where ω∗ ∈ R>0 is the synchronized electrical frequency
and δs

0 ∈ Rn such that

|δs
0,i − δs

0,k | <
π

2
∀i ∈ N , ∀k ∈ Ni.

In Definition 3.2, |δs
0,i−δs

0,k | < π
2 limits the power flow

within the desired power-angle stability region (Ma-
chowski et al., 2008, Chapter 5) over the line connect-
ing i-th and k-th units. Furthermore, the terminology
synchronized motion denotes the fact that with constant
phase angle differences δs

i (t)−δs
j(t) for all t ≥ 0, i, j ∈ N

in the system (3.1), (3.6) imply that the frequencies of
all the units have converged to a common value, i.e.,
δ̇s

i = δ̇s
i = ω∗, ω∗ ∈ R>0. Moreover, note that there

is no unique synchronized motion of the system (3.1),
(3.6) with the power flow given by (2.4), but any mo-
tion withωs(t) and ps(t) given in Definition 3.2 and with
δs(t) = δs

0 +ω∗1nt + α1n for any α ∈ R is a desired syn-
chronized motion, see also (Schiffer et al., 2014, Re-
mark 5.7). For further details about synchronized mo-
tions in power system models similar to (3.1), (3.6), the
reader is referred to (Schiffer and Dörfler, 2016, Lemma
4.2). We make the following power-balance feasibility
assumption.

Assumption 3.3. The closed-loop system (3.1), (3.6)
possesses a synchronized motion. �

In practice, clock drift values observed in commercial
inverters can vary from 1 µsec (Schiffer et al., 2017b;
Anritsu, 2001) to 1 millisec (Kolluri et al., 2017, Table
I) depending on the quality of the micro-controller used.
Thus, as outlined in (Schiffer et al., 2017b, 2015) for the
purpose of secondary frequency control, it is reasonable
to assume that the clock drifts are bounded. This is for-
malized in the assumption below.

Assumption 3.4. ‖µ‖2 ≤ ε, 0 ≤ ε < 1.

We are interested in the following problem.

Problem 3.5 (Secondary control objectives). Con-
sider the closed-loop system (3.1), (3.6) with Assump-
tion 3.4 and Assumption 3.3. Design the parameters B,
β, D and edge-weights ofLC in (3.1), (3.6) such that the
following control objectives are satisfied:

1. Accurate frequency restoration at steady-state,
that is,

ω∗ = ωd. (3.11)

2. Steady-state power sharing according to Defini-
tion 2.1.

3. Asymptotic convergence of the solutions of the sys-
tem (3.1), (3.6) to the synchronized motion in Def-
inition 3.2.

3.2. Steady-state performance
In this section, we address the first two points in Prob-

lem 3.5. We begin by providing necessary and sufficient
conditions with which the first objective in Problem 3.5
can be accomplished.

Lemma 3.6 (Accurate frequency restoration). Consider
the closed-loop system (3.1), (3.6) with Assumption 3.3.
Let D > 0. Suppose that the diagonal matrix B has at
least one positive entry. Then, the synchronized electri-
cal frequency of the system (3.1), (3.6) is given by

ω∗ =
1>n D−1X−1B1n

1>n D−1X−1B(In + µ)1n
ωd. (3.12)

Furthermore, (3.11) is satisfied if and only if

1>n D−1X−1Bµ1n = 0. (3.13)

Proof. Along any synchronized motion, the electrical
frequencies at all nodes of (3.1), (3.6) have to be identi-
cal, i.e.,

δ̇s = ωs = 1nω
∗, (3.14)

which directly implies (3.3). Furthermore, at steady-
state, ṗs = 0n. Hence, (3.6) becomes

−(In+µ)ṗs = 0n = (B+βXDLC)(ω̄s−1nω
d)+DXLCXps.

(3.15)
Multiplying (3.15) from the left with 1>n D−1X−1 and re-
calling the fact that 1>nLC = 0>n , yields

0 = 1>n D−1X−1B(ω̄s − 1nω
d).

Using (3.3) in the above equation leads to

0 = 1>n D−1X−1B
(
(In + µ)1nω

∗ − 1nω
d
)
. (3.16)

Under the standing assumption that at least one entry of
the diagonal matrix B is positive, ω∗ can be solved from
(3.16) yielding (3.12).

Furthermore, from (3.12), we note that ω∗ = ωd if
and only if

1>n D−1X−1B(In + µ)1n = 1>n D−1X−1B1n,

which is equivalent to (3.13), completing the proof.

In the following lemma, we present necessary and
sufficient conditions under which the second objective
in Problem 3.5 can be fulfilled.



Lemma 3.7 (Power sharing). Consider the closed-loop
system (3.1), (3.6) with Assumption 3.3. Let D > 0. Sup-
pose that the diagonal matrix B has at least one positive
entry. Then, active power sharing according to Defini-
tion 2.1 along the synchronized motion is achieved if
and only if B, β, D and LC are chosen such that[

D−1X−1B + (β + κ)LC]F1nω
d = 0n, (3.17)

where

F =
1>n D−1X−1B1n

1>n D−1X−1B(In + µ)1n
(In + µ) − In. (3.18)

Proof. Along a synchronized motion, the primary con-
trol dynamics (3.1) with u = p becomes

0n = −D(ω̄s − 1nω
d) −

(
∇δU(δs) − Pnet

)
+ ps. (3.19)

We can rearrange (3.19) as

ps = D(ω̄s − 1nω
d) +

(
∇δU(δs) − Pnet

)
. (3.20)

Next, consider (3.6) at steady-state given by

0n = (B + βXDLC)(ω̄s − 1nω
d) + DXLCXps. (3.21)

Inserting ps obtained from (3.20) in (3.21) results in

0n =
(
B + βXDLC)(ω̄s − 1nω

d) + DXLCXD(ω̄s − 1nω
d)

+ DXLCX
(
∇δU(δs) − Pnet

)
.

Under the standing assumption that (2.15) is satisfied,
the above equation becomes

0n =
(
B + βXDLC + κDXLC)(ω̄s − 1nω

d)

+ DXLCX
(
∇δU(δs) − Pnet

)
,

which, when left-multiplied with D−1X−1 > 0, yields

0n =
(
D−1X−1B + βLC + κLC)(ω̄s − 1nω

d)

+LCX
(
∇δU(δs) − Pnet

)
.

(3.22)

Recall that LC is the Laplacian matrix of a connected
undirected graph. Hence,

LCX
(
∇δU(δs) − Pnet

)
= 0n

if and only if (2.14) is satisfied. From (3.22),
LCX (∇δU(δs) − Pnet) = 0n if and only if(

D−1X−1B + (β + κ)LC)(ω̄s − 1nω
d) = 0n. (3.23)

Finally, with (3.3) and ω∗ given by (3.12), the condi-
tion (3.23) holds if and only if (3.17) is satisfied. This
completes the proof.

In the presence of clock drifts, it is straightforward to
verify that the DAI parametrization (3.7) neither satis-
fies Lemma 3.6 nor Lemma 3.7. Turning to the pinning
parametrization (3.9), we see that (3.9) satisfies the con-
ditions of Lemma 3.6 if the structure of the pinning gain
matrix B is chosen such that Bµ = 0n×n. However, the
parametrization (3.9) does not satisfy Lemma 3.7.

We are interested in finding parameters of the
controller (3.6) which satisfy both Lemma 3.6 and
Lemma 3.7. But, since the coefficients µi are unknown
and different for different units, Lemma 3.7 reveals that
unlike in the case of ideal clocks (Bidram et al., 2014;
Simpson-Porco et al., 2015; Schiffer et al., 2017a; Fu
et al., 2016; Persis et al., 2016), when taking clock drifts
explicitly into account, it is hard to determine B, β and D
directly from the conditions presented in Lemmata 3.6
and 3.7. Therefore, instead, below we present a suffi-
cient condition for the control parameters B, β and D
such that Lemmata 3.6 and 3.7 are satisfied.

Lemma 3.8 (Accurate frequency restoration and power
sharing). Consider the closed-loop system (3.1), (3.6)
with Assumption 3.3. Let D > 0. Suppose that the diag-
onal matrix B has at least one positive entry. Then, the
first two objectives in Problem 3.5 along a synchronized
motion are achieved if the control parameters B and β
are chosen such that

Bµ = 0n×n, and β = −κ. (3.24)

Proof. Consider Lemma 3.6. For Bµ = 0n×n, (3.13)
holds. Thus, we have (3.11).

Next, consider Lemma 3.7. With Bµ = 0n×n, (3.17)
becomes [

(β + κ)LC]µ1nω
d = 0n,

which holds when β = −κ. Hence, Lemma 3.7 is sat-
isfied, yielding steady-state power sharing (2.14). This
completes the proof.

The condition Bµ = 0n×n presented in Lemma 3.8
can be interpreted as follows. Define the clock of one
of the units in the network as master clock, say the k-th
unit, k ≥ 1. Then, µk = 0 and the drifts µi, i , k, of
all other clocks in the MG are expressed with respect
to the master clock of the k-th unit. Furthermore, the
diagonal pinning gain matrix B ≥ 0 will have a non-
zero positive entry only at the (k, k)-th position resulting
in Bµ = 0n×n.

Applying the parametrization (3.24) to the general



control representation (3.6) yields

u = p,

(In + µ) ṗ = (−B + κXDLC)(ω̄ − 1nω
d) − DXLCXp,

(3.25)
with Bµ = 0n×n,B ≥ 0. The control law (3.25) is termed
generalized distributed averaging integral (GDAI) con-
trol in the remainder of this paper.

4. Robust GDAI control design

We have identified that the GDAI controller given
by (3.25) achieves the first two objectives mentioned in
Problem 3.5. In this section, the third point in Prob-
lem 3.5 is addressed. More precisely, a sufficient tuning
criterion with which the solutions of the system (3.1),
(3.25) asymptotically converge to the synchronized mo-
tion in Definition 3.2 is presented.

4.1. Coordinate reduction and error states
Combining (3.1) and (3.25) yields the closed-loop

system

(In + µ)δ̇ = ω̄,

(In + µ)M ˙̄ω = −D(ω̄ − 1nω
d) −

(
∇δU(δ) − Pnet

)
+ p,

(In + µ) ṗ = (−B + κXDLC)(ω̄ − 1nω
d) − DXLCXp.

(4.1)

As the power flow ∇δU(δ) only depends on angle dif-
ferences (see (2.4)), following (Schiffer et al., 2014) we
choose an arbitrary node, say node n, and express all
angles relative to that node, i.e.,

θ = R>δ, θ ∈ Rn−1, R =

[
In−1
−1>n−1

]
∈ Rn×(n−1).

Note that the matrixR has the property that 1>nR = 0>n−1.
Next, with Assumption 3.3 for the system (4.1), we

introduce the error states

ω̃ = ω̄ − ω̄s = ω̄ − (In + µ)1nω
d,

θ̃ = θ − θs, p̃ = p − ps, x = col
(
θ̃, ω̃, p̃

)
,

where we have used (3.3) and (3.11) to express ω̄s.
Thus, the resulting error dynamics of the system (4.1)

is given by

˙̃θ = R>(In + µ)−1ω̃,

(In + µ)M ˙̃ω = −Dω̃ − R
[
∇θ̃U(δ(θ̃ + θs)) − ∇θ̃U(δ(θs))

]
+ p̃,

(In + µ) ˙̃p = (−B + κXDLC)ω̃ − DXLCXp̃,
(4.2)

where

∇θ̃U(δ(θ̃ + θs)) =
∂U(δ(θ̃ + θs))

∂θ̃
,

∇θ̃U(δ(θs)) =
∂U(δ(θ + θs))

∂θ̃

∣∣∣
θ̃=0n−1

.

Note that x∗ = 03n−1 is an equilibrium point of (4.2).
Furthermore, asymptotic stability of x∗ = 03n−1 implies
asymptotic convergence of solutions of the system (4.1)
to the synchronized motion in Definition 3.2 up to a uni-
form shift of all angles (Schiffer et al., 2014).

4.2. Stability criterion
For the presentation of our main result, it is conve-

nient to define the following. Since µ is a diagonal ma-
trix, with Assumption 3.4 we have that

‖µ(In + µ)−1‖2 ≤ g1(ε), g1(ε) = ε
1−ε > 0,

‖(µ2 + 2µ)(In + µ)−2‖2 ≤ g2(ε), g2(ε) = ε2+2ε
(1−ε)2 > 0.

(4.3)

Moreover, we define the matrices

T :=
[
T11

1
2

(
−ςIn − σD1n1>n D−1X−1 + B̃ − κLCX

)
∗ T22

]
,

T̂2 :=
[
σM1n1>n B̃X−1 σD−1X−11n1>n D

0n×n −σD−1X−11n1>n

]
,

Hµ :=
[
ςg2(ε)M 0n×n

0n×n g1(ε)D−1

]
,

(4.4)

where g1(ε) and g2(ε) are defined in (4.3). Furthermore,
σ ∈ R>0, B̃ = D−1B ≥ 0 and

T11 = ςD − σ
2

(
M1n1

>
n B̃X−1 + X−1B̃1n1

>
n M

)
,

T22 = XLCX +
σ

2

(
D−1X−11n1

>
n + 1n1

>
nX−1D−1

)
.

The stability result is as follows.

Proposition 4.1. Consider the system (4.2) with As-
sumption 3.3. Recall g1(ε) and g2(ε) defined in (4.3).
Suppose that there exist ς ∈ R>0 and σ ∈ R>0, such that

Hnom :=
[
ςM −σM1n1>n D−1X−1

∗ D−1

]
> Hµ, (4.5)

and

T >
(
εζ + ςg1(ε)

√
λmax(D2) + 1

)
I2n,

0 ≥
[−ζI2n T̂2
∗ −ζI2n

]
,

(4.6)



where ζ ∈ R>0 and the matrices Hµ, T and T̂2 are
defined in (4.4). Then, local asymptotic stability of
x∗ = 03n−1 is guaranteed for all unknown clock drifts
satisfying Assumption 3.4.

Proof. Consider the Lyapunov function candidate

V =
ς

2
ω̃>Mω̃ + ςU(δ(θ̃ + θs)) − ς∇θ̃U(δ(θs))>θ̃

+
1
2

p̃>D−1(In + µ) p̃

− σ p̃>(In + µ)D−1X−11n1
>
n M(In + µ)ω̃,

(4.7)

where ς > 0 and σ > 0 are design parameters. The Lya-
punov functionV contains kinetic and potential energy
terms ω̃>Mω̃, respectively U(θ̃) (Pai, 1989), a quadratic
term in secondary control input p̃ and a cross term be-
tween ω̃ and p̃ which allows us to ensure that V is de-
creasing along the trajectories of (4.2).

First, we will show that V is indeed positive defi-
nite under the premises of Proposition 4.1. Note that
∇xV

∣∣∣
x∗ = 03n−1. This shows that x∗ is a critical point of

V. Moreover, the Hessian ofV at x∗ is given by

∇2
xV|x∗=

ς∇
2
θ̃
U(δ(θ̃ + θs))|θ̃=0n−1

0(n−1)×n 0(n−1)×n

∗ ςM H23
∗ ∗ D−1(In + µ)

,
(4.8)

where H23 = −σ(In+µ)M1n1>n D−1X−1(In+µ). Note that
∇2
θ̃
U(δ(θ̃ + θs))|θ̃=0n−1

> 0 (Schiffer et al., 2014, Lemma
5.8). Therefore, the Hessian ∇2

xV|x∗ is positive definite
if and only if[
ςM −σ(In + µ)M1n1>n D−1X−1(In + µ)
∗ D−1(In + µ)

]
> 0. (4.9)

By performing a congruence transforma-
tion using the positive definite matrix S =

blkdiag
(
(In + µ)−1, (In + µ)−1

)
and by invoking

Sylvester’s law of inertia (Horn and Johnson, 2012),
we see that the matrix on the left hand side of (4.9)
is positive definite if and only if the following matrix
inequality is satisfied[

ς(In + µ)−2M −σM1n1>n D−1X−1

∗ (In + µ)−1D−1

]
> 0. (4.10)

Inequality (4.10) can be written as

Hnom −
[
ς(µ2 + 2µ)(In + µ)−2M 0n×n

0n×n µ(In + µ)−1D−1

]
> 0,

where Hnom is defined in (4.5). Furthermore, since µ, M
and D are all diagonal matrices, we have that[

ς(µ2 + 2µ)(In + µ)−2M 0n×n
0n×n µ(In + µ)−1D−1

]
≤ Hµ,

where Hµ is defined in (4.4). Consequently, under the
premises of Proposition 4.1, ∇2

xV|x∗ > 0, confirming
the positive definiteness ofV. Note that ∇xV

∣∣∣
x∗ = 03n−1

and ∇2
xV|x∗ > 0 implies that x∗ is a strict local minimum

ofV (van der Schaft, 2000).
Next, we calculate the time derivative of V along the
solutions of (4.2), which yields

V̇ = −ςω̃>(In + µ)−1Dω̃ + ςω̃>(In + µ)−1 p̃

+ p̃>
(
−D−1B + κXLC

)
ω̃ − p̃>XLCXp̃

+ σ p̃>(In + µ)D−1X−11n1
>
n Dω̃

− σ p̃>(In + µ)D−1X−11n1
>
n p̃

+ σω̃>(In + µ)M1n1
>
nX−1D−1Bω̃

= −η>
[
T̃11 T̃12
T̃21 T̃22

]
η,

(4.11)

where
η := col(ω̃, p̃), (4.12)

and

T̃11 = ς(In + µ)−1D − σ(In + µ)M1n1
>
nX−1D−1B,

T̃22 = XLCX + σ(In + µ)D−1X−11n1
>
n ,

T̃12 = −ς(In + µ)−1,

T̃21 = −σ(In + µ)D−1X−11n1
>
n D + D−1B − κXLC.

Note that the scalar V̇ can be equivalently expressed as

V̇ = −η>
[
T̃11 T̃12
T̃21 T̃22

]
η = −1

2
η>

[
T̃11 + T̃>11 T̃12 + T̃>21
∗ T̃22 + T̃>22

]
η

:= −η>
[
T11 T12
∗ T22

]
η = −η>Tη,

(4.13)

where

T11 =
1
2

(
T̃11 + T̃>11

)
= ς(In + µ)−1D

− σ
2

(
(In + µ)M1n1>n D−1BX−1 + D−1BX−11n1>n M(In + µ)

)
,

T22 =
1
2

(
T̃22 + T̃>22

)
= XLCX + σ

2

(
(In + µ)D−1X−11n1>n + 1n1>n D−1X−1(In + µ)

)
,

T12 =
1
2

(
T̃12 + T̃>21

)
=

1
2

(
−ς(In + µ)−1 − σD1n1

>
n (In + µ)D−1X−1 + D−1B − κLCX

)
.

Note that the entries of the matrix T in (4.13) are un-
certain, because the clock drift matrix µ is uncertain.
Hence, to obtain verifiable conditions that ensure T > 0



and, thus, V̇(η) being negative definite, we note that T
can be decomposed as

T = T − 1
2

(
Γ1T̂1 + T̂>1 Γ1

)
− 1

2

(
Γ2T̂2 + T̂>2 Γ2

)
, (4.14)

where T and T̂2 are defined in (4.4) and

Γ1 = blkdiag
(
µ(In + µ)−1, µ(In + µ)−1

)
,

Γ2 = blkdiag (µ, µ) , T̂1 =

[
ςD −ςIn
0n×n 0n×n

]
.

(4.15)

For any matrices A ∈ Rn×n and B ∈ Rn×n, it holds that
(Horn and Johnson, 2012)

AB + B>A> ≤ 2‖A‖2‖B‖2In.

Therefore from (4.14), we have that

T ≥ T −
(
‖T̂1‖2‖Γ1‖2 + ‖T̂2‖2‖Γ2‖2

)
I2n. (4.16)

Assumption 3.4 together with (4.3), implies that

‖Γ1‖2 ≤ g1(ε), ‖Γ2‖2 ≤ ε,
where Γ1 and Γ2 are defined in (4.15). Therefore, (4.16)
becomes

T ≥ T −
(
g1(ε)‖T̂1‖2 + ε‖T̂2‖2

)
I2n. (4.17)

Furthermore, from (4.15), we have that

‖T̂1‖2 =

√
λmax(T̂1T̂>1 ) = ς

√
λmax(D2) + 1.

Turning to T̂2 defined in (4.4), we see that T̂2 depends
on the control parameters B and D. Therefore, to obtain
‖T̂2‖2 required in (4.17), we observe that

‖T̂2‖2 =

√
λmax(T̂2T̂>2 ) ≤ ζ

⇔ λmax(T̂2T̂>2 ) ≤ ζ2,

⇔ T̂2T̂>2 ≤ ζ2I2n,

⇔ 1
ζ

T̂2T̂>2 − ζI2n ≤ 0,

where ζ ∈ R>0 is an upper bound for ‖T̂2‖2. By using the
Schur complement (Horn and Johnson, 2012), the last
inequality above is equivalent to the second inequality
in (4.6). Thus, from (4.17) we see that T > 0 if

T −
(
ςg1(ε)

√
λmax(D2) + 1 + εζ

)
I2n > 0,

where ζ satisfies the second inequality in (4.6). Thus,
with the made assumptions, T > 0 implies that

V̇(η) < 0 for η(t) , 02n. (4.18)

This shows that x∗ is stable. Recall η(t) defined in (4.12)
and therefore, V̇(η) does not depend on θ̃.

Hence, to conclude local asymptotic stability of x∗,
we need to show that the following implication holds
along solutions of the system (4.2)

Tη(t) ≡ 02n ⇒ lim
t→∞ x(t) = x∗. (4.19)

Since T > 0 by assumption, the implication (4.19) is
satisfied if and only if η(t) = 02n, which yields that ω̃ =

0n and p̃ = 0n. Furthermore, from (4.2), ω̃ = 0n implies
that θ̃ is constant. Moreover at η(t) = 02n, from the
second equation in (4.2), we obtain that

0n = −R
[
∇θ̃U(δ(θ̃ + θs)) − ∇θ̃U(δ(θs))

]
,

which by multiplying from the left with R> and rear-
ranging terms is equivalent to

R>R∇θ̃U(δ(θ̃ + θs)) = R>R∇θ̃U(δ(θs)). (4.20)

Note that R>R is invertible and recall that ∇2
θ̃
U(δ(θ̃ +

θs))|θ̃=0n−1
> 0 (Schiffer et al., 2014, Lemma 5.8). There-

fore, in a neighborhood of the origin, (4.20) only holds
for θ̃ = 0n−1. This shows that the implication (4.19)
holds. Hence, x∗ is locally asymptotically stable, com-
pleting the proof.

Remark 4.2. By fixing the tuning parameter σ, the de-
sign conditions (4.5) and (4.6) are a set of LMIs in ς,
ζ, B̃,D−1 and LC that can be solved efficiently using
standard software like Yalmip (Löfberg, 2004) within
MATLAB R©. Furthermore, the control parameters B and
D can be easily recovered from B̃ = D−1B and D−1.

5. Case study

In this section, the performance and robustness of the
closed-loop MG model (3.1), (3.6) with DAI, pinning
and GDAI control are compared via simulation. The
MG (Figure 1) used in the case study is simulated us-
ing MATLAB R©/Simulink R© and PLECS (Plexim GmbH,
2013). In order to evaluate robustness towards further
model uncertainties, lines are modeled with a small
positive line resistance value. A constant impedance
load of 500 kVA, unity power factor is connected at all
GFIs. The time constant of the low pass filter used to
measure the power output is 0.2 sec. To measure the
synchronized electrical frequency ω∗ (given in (3.12))
of the MG accurately, a conventional three-phase syn-
chronous reference frame phase locked loop (SRF-PLL)
(Golestan et al., 2012) is connected at the point of com-
mon coupling (PCC)2.

2PCC is the point at which an islanded MG can be connected to
the main grid (Lopes et al., 2006).



The weighting matrix X for the MG was fixed to (in
pu)

X = diag(0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.06, 0.07),
(5.1)

and the vector of desired active power set point as (in
pu)

Pd = col(0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.80, 0.85).
(5.2)

The damping matrix D is chosen according to (2.15)
with κ = 0.2. The incidence matrix B of the con-
nected undirected graph mentioned in Section 2.1 is
fixed in correspondence to the sparse communication
topology shown in Figure 2. The reader is referred to
(Fu et al., 2016; Alghamdi et al., 2018) for a compre-
hensive study on topology identification to implement
similar distributed frequency control laws in power sys-
tems. In this section, we are interested in finding D, B
and the edge weight matrix W yielding LC = BWB>
such that the LMIs (4.5) and (4.6) are feasible.

PCC

∼
1

∼
2

∼
3

∼
4

∼
5

∼
6

∼
7

∼
8

Figure 1: MG used in the simulation. There are eight GFIs, all of
them having a constant impedance load connected to them. At the
PCC, an SRF-PLL is connected to measure the synchronized electrical
frequency ω∗ (given by (3.12)) accurately. GFI1 is assumed to have
the master clock, thus the clock drift matrix µ takes the form (5.3).

1

2 3

45 6 78

Figure 2: Topology of the communication network used in the simula-
tion. This topology is used to calculate the incidence matrix B ∈ R8×7

required to build the Laplacian matrix LC = BWB> ∈ R8×8, where
W ∈ R7×7 is the edge weight matrix.

The clock of GFI1 in Figure 1 is chosen as the master
clock (µ1 = 0). The relative clock drift values of the

other GFIs considered in the simulation (in sec) are

µ = 10−4diag(0, 3, 7,−3, 8, 5,−5, 2) ∈ R8×8. (5.3)

Hence, with the considered clock drift factors, ε =

0.001 in Assumption 3.4.
The tuning criterion (4.5), (4.6) presented in Proposi-

tion 4.1 is verified with σ = 10−6 using the optimization
toolbox Yalmip (Löfberg, 2004) in MATLAB R©/Simu-
link R©. The feasibility of the conditions presented in
(4.5), (4.6) ensures that the equilibrium point of the
GDAI-controlled MG (4.1) is locally asymptotically
stable in the presence of clock drifts. The control pa-
rameters satisfying (4.5), (4.6) were obtained as

D = diag(132.5, 88.7, 90.8, 81.6, 84.6, 63.5, 69.0, 65.9),
B = diag(0.003, 0, 0, 0, 0, 0, 0, 0),

W = (0.01) · diag(0.12, 0.06, 0.03, 0.03, 0.03, 0.03, 0.08).
(5.4)

Next, we simulate the MG shown in Figure 1 using the
parameters (5.4). Note that in the simulation outputs,
the term power sharing ratios denote (Pi − Pnet

i )/Xi, i ∈
{1, . . . , 8}, see also (2.14).

5.1. GDAI control

The GDAI-controlled system (4.1) is simulated using
the control parameters (5.4). The simulation output is
given in Figure 3 where until 10 sec, only the primary
droop controller is in operation. The GDAI controller
(3.25) is activated at 10 sec. Note that (3.25) satisfies
the conditions in Lemma 3.6. Hence, we have ω∗ = ωd.
See the enlarged frequency plot at 90 sec in Figure 3
where we can see that ω∗ = 50 Hz.

Furthermore, since (3.25) also satisfies the conditions
of Lemma 3.8, steady-state power sharing is guaranteed
in the presence of clock drifts. This can be confirmed
by observing the enlarged power sharing ratio plot at 90
sec in Figure 3, where, it is clear that the power shar-
ing ratios of all the GFIs converge to the same value.
For better clarity, compare the enlarged power sharing
ratio plots at 5 sec (droop control only: maximum rela-
tive deviation of approximately 42%) and 90 sec (droop
with GDAI control: 0% relative deviation) in Figure 3.
Hence correcting the steady-state deviations in power
sharing ratios.

In order to compare the steady-state behavior of
GDAI control with other distributed approaches, we im-
plement the DAI control (3.8) and the pinning control
(3.8) for the same MG given in Figure 1.
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Figure 3: Simulation result with droop control (3.1) (active from 0
sec) and GDAI control (3.25) (activated at 10 sec). Note that ω∗ con-
verges exactly to 50 Hz and the power sharing ratios reach consensus,
see the zoom plots at 90 sec.

5.2. DAI control
We simulate the DAI-controlled system (3.1), (3.8)

using the same parameters given in (5.4) with the only
exception that B has all the diagonal entries equal to
0.003 yielding B > 0. The simulation output is given
in Figure 4, where until 10 sec, only the primary droop
controller (3.1) (with u = 08) is in operation. The DAI
controller (3.8) is activated at 10 sec. In Figure 4, we
can see that the internal frequencies of the inverters con-
verge close to the nominal value (ωd = 50 Hz), but not
exactly to 50 Hz in the presence of clock drifts. Further-
more, the enlarged frequency plot in Figure 4 at 90 sec
shows that ω∗ ≈ 49.97 , 50 Hz. Hence resulting in a
non-negligible steady-state network frequency error of
approximately 30 mHz.

Considering the aspect of power sharing, when the
DAI controller is activated on top of the droop con-
troller at 10 sec, power sharing ratios diverge further.
See the enlarged power sharing plots in Figure 4 at 5 sec
(droop control only: maximum relative deviation of ap-
proximately 42%) and 90 sec (droop with DAI control:
maximum relative deviation of approximately 60%) re-
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Figure 4: Simulation result with droop control (3.1) (active from 0
sec) and DAI control (3.6), (3.7) (activated at 10 sec). Note that ω∗
does not converge to 50 Hz and the power sharing ratios do not reach
consensus. See the zoom plots at 90 sec.

spectively. Hence, the performance in terms of power
sharing in the presence of clock drifts is observed to be
better with just the droop controller than a combination
of droop and DAI controllers.

5.3. Pinning control
We simulate the pinning-controlled system (3.1),

(3.10) using the MG shown in Figure 1 with the param-
eters given by (5.4). The simulation output is given in
Figure 5, where until 10 sec, only the primary droop
controller (3.1) (with u = 08) is under operation. The
pinning controller (3.10) is activated at 10 sec. Note that
the pinning gain matrix B is chosen such that Bµ = 08×8.
Hence, with ω∗ defined in (3.12), we have ω∗ = ωd. See
the enlarged frequency plot at 90 sec in Figure 5 where
we can see that ω∗ = 50 Hz.

However, with regard to power sharing, the pinning
controller is not able to correct deviations in power shar-
ing ratios. Although in contrast to the DAI controller,
power sharing ratios do not diverge as the pinning con-
troller is activated. See the power sharing plot in Fig-
ure 5 at 5 sec (droop controller only) and 90 sec (droop



and pinning controller), where in both the cases, an ap-
proximate maximum relative deviation of 42% can be
observed.
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Figure 5: Simulation result with droop control (3.1) (active from 0
sec) and pinning control (3.6), (3.9) (activated at 10 sec). Note that
ω∗ converges exactly to 50 Hz. However, the power sharing ratios do
not converge to a common value, i.e., no consensus. See the zoom
plots at 90 sec.

Our observations are summarized in Table 1.

Objective/Control law DAI Pinning GDAI
Accurate network
frequency restoration no yes yes
Accurate power sharing no no yes

Table 1: Steady-state performance comparison of DAI, pinning
and GDAI control in the presence of clock drifts.

6. Conclusions

In inverter-based MGs, clock drifts are a non-
negligible phenomenon which can adversely affect the
performance of secondary frequency control. In this pa-
per, various distributed secondary frequency controllers

are compared in the presence of clock drifts. Further-
more, necessary and sufficient conditions for steady-
state accurate network frequency restoration and power
sharing in the presence of clock drifts are derived.
Based on these conditions, an alternative control law,
called GDAI control, is proposed which achieves the
aforementioned secondary control objectives. A tuning
criterion which renders local asymptotic stability of the
closed-loop equilibrium point with the GDAI controller
in the presence of unknown bounded clock drifts is also
presented. Finally, via simulation, the GDAI controller
is compared with two other distributed frequency con-
trollers in the literature.

Future research will incorporate time delays in com-
munication network used in GDAI control. Also, we
plan to test the GDAI controller on a real MG. Another
interesting aspect is to consider time varying voltage
amplitudes in the analysis.
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Appendix A. Remark on (3.10)

In the following we illustrate how (3.10) is the same
as the control law presented in (Bidram et al., 2014).
The primary frequency droop control (Bidram et al.,
2014, Eq. 47) for the whole MG can be expressed in
our notation as

ω = −D−1
(
∇U(δ) − Pnet

)
+ usec, (A.1)

where usec : R≥0 → Rn is the secondary control input.
Note that (A.1) represents the frequency dynamics in
(3.1) with

• µ = 0n×n (yielding ω̄ = ω, see (2.5)),

• τP = diag(τPi ) = 0n×n ⇒ M = 0n×n,

• ωd = 0 and

• usec = D−1u.

Furthermore, the secondary frequency control law pro-
posed in (Bidram et al., 2014, Eq. 52,53) for the whole
network can be expressed in our notation as

u = p,

ṗ = −CF

[
(B +LC)(ω − 1nω

d) +LCD−1
(
∇U(δ) − Pnet

)]
,



where CF > 0 and B ≥ 0 are diagonal controller matri-
ces and LC ∈ Rn×n is the Laplacian matrix of the com-
munication graph. Inserting D−1 (∇U(δ) − Pnet) from
(A.1) in the above control law yields

ṗ = −CFB(ω − 1nω
d) −CFLCusec,

= −CFB(ω − 1nω
d) −CFLCD−1 p,

= −CFB(ω − 1nω
d) − 1

κ
CFLCXp,

where we have used usec = D−1u = D−1 p and (2.15).
For CF = κDX and CFB = B, the control law described
above is the same as (3.10).
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