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360 Wireless 100 Gbps And Beyond

The theoretical data rate of wireless transmissions is pushed to 100 Gbit/s and
even beyond. However, such extremely high data rates can not be processed
at the receiving hosts as the following short example exemplifies.

“A server in a data center is equipped with a 100 Gbit/s network inter-
face and a state-of-the-art processor, such as the Intel Haswell. To be
able to fully utilize the network interface, the server has to process 100
Gbit/s = 12.5 GB/s of packet data per second. Assuming the packets
have a size of 1500 Bytes, the server has to process 8,333,333.33 raw
packets per second respectively a new packet every 120 nanoseconds.
Putting that in relation with the 96.4 ns main memory access latency
for a 64 Byte cache line (Intel Haswell [379]), indicates that we have
to think of new protocol processing paradigms.” [380]

This short example shows that the traditional protocol processing within
the endpoint’s kernel space is not suited for these ultra-high data rates. Con-
sequently, one of the main questions for today’s high-speed network research
is how to handle the theoretical bandwidth, i.e., how to transform a single
stream of protocol data into a single stream of application data. Furthermore,
the challenge is increased due to a high bit error rate and changing channel
qualities as to be expected for a wireless communication setup.

Figure 10.1 shows the envisioned communication system. The systems con-
sist of the host, an embedded many-core that functions as a smart Network-
Interface-Card (NIC), and custom external accelerators for the compute ex-
tensive protocol tasks, such as the FEC calculation. In this setup, the hosts are
only used for producing and consuming the application data stream. The ap-
plication data stream is received by the smart NIC that processes the commu-
nication protocol in parallel, the higher-level protocol processing, e.g., buffer
and retransmission management are conducted on the embedded many-core
because of its programmability. Parallelizing the whole protocol processing
with the help of the stream processing paradigm allows providing the desired
data rate [380]. However, due to the expected fluctuations in the channel qual-
ities, it will not be sufficient to provide a static implementation for the wireless
scenario. Instead, the changes in channel quality are handled by automati-
cally reconfiguring the protocol processing. The automatic reconfiguration is
applied to all processing levels.

On the link level, the link quality is continuously monitored and the most
suited link is chosen for the connection. In the case that no single link can
provide the desired data rate, several links are automatically combined. On
the protocol level, the size of the payload per frame, the necessary redundancy
and the segmentation ratio of the frame can be reconfigured to better suit the
new communication links.

However, combining parallel links with different data rates and using new
protocol parameters most probably changes the processing requirements. Both
cases make it necessary that the protocol processing is also reconfigured, by
assigning more (ore less) resources, e.g., Central Processing Unit (CPU) cores,
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Figure 10.1
Envisioned wireless communication system. Adapted from [381]
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or by switching between implementations. Consequently, the stream process-
ing based protocol processing framework has to be extended with means of
on-demand reconfiguration of the implementation. Finally, the data recovery
layer must be reconfigurable in order to adapt the FEC parameters, such as
the amount of redundancy, to the reconfigured protocol and the monitored
channel quality.

As shown in Figure 10.1, additional accelerators are needed in the system
in order to perform a number of tasks which are of higher complexity. That
means certain protocol tasks have to be offloaded because their processing re-
quirements make them unsuitable for the processing in software. Apart from
complexity, not all protocol tasks are suited in nature for a software imple-
mentation. For these two reasons the presence of such external accelerators is
inevitable.

In general, Error handling techniques like FEC and ARQ are somewhat
inevitable, specifically at as high data-rates as 100 Gbps, to deal with trans-
mission errors, since wireless communication suffers from a high Bit Error
Rate (BER). Among these we have chosen Cyclic Redundancy Check (CRC)
and FEC protocols to be offloaded into special-purpose hardware. The main
reasons for adopting this strategy is as follows. FEC must perform extremely
fast, within only a few nanoseconds processing time for a single frame, to sup-
port 100 Gbps communication. This includes various processing that has to
be done on the packets, such as updating frame headers, calculation of check-
sums, splitting data into frames and segments, and more important than all
complicated mathematical operations to compute the redundant bits. At the
data rate of 100 Gbps for instance, TX and RX must process a frame of 1500
bytes within 120 nanoseconds, which is obviously an enormous burden on the
processing device. On the other side, a review of the Ethernet systems already
capable to achieve 100 Gbps on the general-purpose processors, i.e. four Intel
Xeon cores, reveals that they dissipate as much as 650 Watts of power [382].
This number will be even greater in the case of wireless communication, as
they need more processing power than Ethernet. This can be another reason
to offload some of the tasks to a hardware like Field Programmable Gate Ar-
ray (FPGA) or application-specific integrated circuit (ASIC) which facilitate
more efficient implementation of the aforementioned protocols.

This chapter is used to highlight the proposed solutions on parallelization
and on-demand reconfiguration of the communication system, as well as the
challenges concerning the wireless medium. In section 10.1 a parallelizable data
link protocol is presented. The proposed protocol can be processed parallel in
several pipeline steps. The individual pipeline steps can be parallelized further
in order to avoid stalling due to processing bottlenecks. However, finding such
bottlenecks is not a trivial task. Section 10.2 presents a design process that al-
lows transforming a communication protocol into a stream processing graph.
This graph allows to identify possible processing bottlenecks and eliminate
them by parallelization. However, some bottlenecks have such high require-
ments that parallelization is not an option. In Section 10.3 an FEC/CRC
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accelerator with embedded link adaptation methods is presented. The accel-
erator is integrated seamlessly into the communication system. Finally, an
evaluation of the communication system is presented in section 10.4.

10.1 A parallelizable Data Link Protocol

A protocol for ultra-high data rates has to be parallelizable, offloadable, and
reconfigurable. Figure 10.2 shows the frame format of the data link layer
protocol, designed for high-speed wireless communication.
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Frames
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Ack. Packet:
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Data-Packets
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requests

aggregates

aggregates

Figure 10.2
Frame format of the prototype data link protocol. From [381]

The frame format provides several layers of parallelization. At the highest
level, a data stream is divided into very large packets, called data chunks. A
data chunk is used for encapsulating the application level data stream. For
that, it provides all necessary information, such as its size and its position
within the stream. With these information it is possible to process individual
data chunks in parallel.

A data chunk itself is further separated into data packets. A data packet
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has an offset within the data chunk and a handle to the data chunk it belongs
to. Consequently, data packets that belong to the same data chunk can be
processed out of order and in parallel. The size of the data packets depends
on the expected BER, i.e., the lower the BER, the larger the data packet’s
size [381, 383]. However, in order to avoid, that small data paket’s lead to an
underutilization of the communication channel, data packets are aggregated
into larger frames.

Additionally, to the lower packet loss probablity, the aggregation has the ef-
fect that parts of frames can be retransmitted selectively instead of completely
losing the data. To reduce the metadata overhead, a frame can aggregate only
data packets that belong to the same data chunk. This can lead to a situa-
tion in with the communication channel is not completely utilized because not
enough data packets of a certain data chunk are ready for transmission. One
can circumvent this by further aggregating frames into superframes [381].

At this point, data packets can be processed completely in parallel, as
they provide all the necessary information. A similar approach is used for the
retransmission mechanism. All data packets that belong to a data chunk are
coded as an aggregated acknowledgment. This ACK/NACK bitmap describes
the current transmission status of the data chunk. Parallel processing is carried
out by dividing the bitmap of a data chunk into ”sub”-bitmaps. All sub-bitmap
can now be processed in parallel.

The aggregation of acknowledgments for a full data chunk into a bitmap
leads to a situation in which all data packets that were not yet received, are
stated as ”NACK”. However, it is not clear whether these data packets were
sent already. To avoid that the sender has to determine whether a data packet
was already sent, the aggregated acknowledgments are sent only on demand by
the sender (by sending an AckRequest packet) of the sender. While this may
increase the latency per data chunk, it allows to request an acknowledgment
after all data packets of a certain data chunk were sent, consequently, all data
packets that are stated as missing in the acknowledgment were sent already
and have to be retransmitted.

The proposed frame format is also highly flexible. Firstly, the size of the
data chunk is configurable, which allows compromising between latency per
data chunk and the number of host invocations. Secondly, the data packet size
can be adjusted to the current BER, e.g., a low BER allows for larger data
packets and less protocol overhead. Lastly, the amount of redundancy used
for the FEC mechanism is configurable.

10.1.1 Protocol Description

The protocol works in two phases: A transmission and a retransmission phase.
The transmission phase is used to initially transmit the data chunk. It starts
with the separation of the data chunk into data packets, which are aggregated
into data frames. Before sending any data over the communication channel,
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the redundancy information for the FEC mechanism is calculated and added
to the frame.

Upon receiving a frame at the receiver, the frame is firstly checked for
errors which are corrected if possible by the FEC mechanism. Then the data
packets of the frames are copied to the destination position in the data chunk
they belong to. Each data packet that was correctly received is then marked
accordingly in the aggregated acknowledgment. Once all data packets that
belong to a data chunk were transmitted, the protocol switches into the re-
transmission phase.

The retransmission phase starts when the sender requests the first ag-
gregated acknowledgment from the receiver. Upon receiving the aggregated
acknowledgment as an answer to the request, the sender analysis the ac-
knowledgement and retransmits data packets that are stated as missing in
the acknowledgement. When all missing data packets were retransmitted, the
sender requests a new acknowledgment and waits. Eventually, all data pack-
ets are transmitted correctly and the sender and receiver switch back into the
transmission phase and process the next data chunk.

10.1.2 Protocol Pipelines

retransmissions

first phase of transmission

unused transmission time
while waiting for 

acknowledgements

retransmissions
Datachunk A

first phase
transmission
Datachunk A

fully utilized
communication

channel (no gaps)
first phase transmission

Datachunk B
(interrupted by retransmissions)

next datachunk starts
after retransmissions

a) b)

Figure 10.3
Channel utilization with single- and multi-pipeline implementations. From
[381].

The presented protocol may lead to wasted transmission time due to wait-
ing for the aggregated acknowledgement as shown in figure 10.3a). This results
in a stable and low latency per individual data chunk because the communica-
tion channel is monopolized for the transmission of that data chunk, however,
it also leads to a lower overall throughput due to the wasted transmission
time. This can be avoided by multiplexing the simultaneous transmission of
two consecutive data chunks on the communication channel as shown in figure
10.3b). Now the communication channel is completely utilized by accepting a
higher latency per data chunk. What approach is best suited depends on the
communication scenario.
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10.2 Parallel Protocol Processing

The parallelization and implementation of communication protocols are cum-
bersome tasks. This has many reasons: Firstly, the protocol processing is tra-
ditionally carried out in the operating system kernel. That means that im-
provements and testing of communication protocols always mean changes at
the kernel. Furthermore, the parallelization is hindered because of dependen-
cies within the protocol processing, e.g., the protocol state has to be shared
and therefore synchronized. Finally, the amount of parallelization is usually
unknown at design time as it depends on the protocol, the desired data rate,
the communication conditions, and the execution hardware.

These pitfalls can be avoided by moving the protocol processing into the
userspace. However, that contradicts the requirement of freeing the communi-
cation endpoint from the protocol processing. Using a smart NIC that consists
of an easily programmable embedded many-core, which also provides the nec-
essary parallel processing power for the higher-level protocol tasks, is another
way of solving that problem.

Parallelization is simplified by interpreting communication protocols as
stream processing problems. Each communication protocol can be described
as a stream processing graph [384], as shown for a generalized communication
protocol in figure 10.4. The protocol consists of a sender, S, which consumes a
stream of data and transforms it into a stream of Protocol Data Units (PDUs)
and a receiver, R, which consumes this PDU stream and transforms it back
into the original data stream. Additionally, the receiver produces a stream
of acknowledgments, which are consumed and used by the sender to create a
stream of retransmissions.

This approach has the advantage that stream processing applications are
implicitly parallelizable. The synchronization effort is thereby minimized be-
cause two stream-nodes do not share any state and depend only on the
streamed items. Therefore, the processing is implicitly synchronized by the
streaming of data items.

The stream processing graph of that generalized communication protocol
can be augmented with the protocol’s processing requirements and the pro-
cessing hardware’s performance characteristics. The processing requirements

p*pdu
s

r*ret
s

a*ack
s

d*data
s

d*data
sS R

Figure 10.4
Soft real-time problems stream processing problem. From [384] 2015 IEEE
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are given implicitly by the data rate of the incoming data stream. For example,
stage S has to process ndata data

second
zack ack
second . The performance characteristics,

i.e., what is the highest data rate that can be processed by the hardware,
can be measured individually for each stage on the processing hardware. An
analysis of the ratio between requirements and performance characteristics,
allows the protocol developer to identify processing bottlenecks. Moreover,
the analysis’s outcome can be used to adapt the stream processing graph so
that soft real-time requirements correspond to the hardware’s performance
characteristics.

10.2.1 Stream Processing based Protocol Design

On this basis, a design process as sketched in figure 10.5 was conceived. The
design process consists of 5 steps which are shortly presented in the following.
A detailed explanation of the design process can be found in [381, 380].

In the first step, the communication protocol is decomposed into pro-
cessing tasks (see figure 10.6). The finer the decomposition, the higher the
possible parallelization. The sender side of the data link protocol was de-
composed into five stages. The Data-Packet Generator (DG) is responsible
for cutting a data chunk into smaller data packets. These data packets are
streamed to the Data-Packet Aggregator (DA) which aggregates the data
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Measurement of a stage. From [381]

packets into frames. The complete frame is then given to the Forward Error

Correction (FEC) stage which adds the redundancy that is necessary for
the reconstruction of broken data packets. After the data chunk is completely
processed, the DG notifies the Acknowledgement Processor (AP) that the
processing is complete, and that an aggregated acknowledgment can be re-
quested from the receiver. Upon receiving the requested acknowledgments, the
AP retransmits the missing packets and requests another acknowledgment.

In the second step, the resulting stream graph, called a processing engine, is
analyzed for its processing requirements and the performance characteristics
given a certain hardware. The processing requirements are determined by
applying the target data rate at the inputs of the processing engine. The
established input data rate then determines the processing requirements of
the stage (see figure 10.7). Additionally, the processing stage transforms the
input stream into one or more output streams which now have their own data
rate. These streams are fed into the following processing stages and therefore
determine their processing requirements. The analysis is continued until the
processing requirements for all stages are established.

The performance characteristics are measured at the target hardware and
specify the maximum target data rate a group of stages can process on a cer-
tain number of processors. The measurement is straight forward because any
stage only depends on its internal state and the incoming messages. Therefore
a simple measuring setup as depicted in figure 10.8 can be used. In the first
step, the stage is set up to be in the state of interest. Afterward, messages are
streamed to the stage and the processing time is measured.

The measured processing time per message of the analysis is then used in
the adaptation step for fitting the processing engine to the target hardware.
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Since the stages are independent of each other, the processing engine can be
parallelized by splitting streams into substreams and, therefore, distribute the
processing load over a set of processors. The adaptation is conducted with the
help of three stream operators (see figure 10.9), which are used to manipulate
the data rate of a stream but not the streamed items.

The three stream operators are stream split, stream duplicate, and stream
join. The stream split operator distributes streamed items round-robin over a
certain number of sub-streams, consequently, the data rate of the sub-streams
is reduced. The stream duplicate stream operator is used to clone a stream,
i.e., each sub-stream contains the same items and has the same data rate.
Finally, the stream join operator combines several streams, i.e., the resulting
data rate is the sum of all input data rates.

The stream operators are used for the adaptation of the processing engine
as shown in figure 10.10. In the example, the input data rate of the framing
stage is too high for a single processor. Consequently, a stream split operator
is used to reduce the data rate by splitting the stream into two sub-streams.
However, not all stages are candidates for parallelization. For example, the
FEC stage has high computational requirements and is better suited to be
offloaded into external accelerators. Since the stages are connected by the
message streams, it is only necessary to employ a message passing mechanism
between the devices and marshal the message. Details about the offloaded FEC

follow later in this chapter.
The adapted processing engine can be mapped onto the communication

system. Due to the design process, the resulting processing engine can process
the desired data rate on the target hardware given the expected communica-
tion conditions.

However, wireless communication systems can seldom guarantee static con-
ditions. On one side, the communication requirements, such as the desired data
rate, can change. On the other side, the communication conditions, such as the
channel quality, are not necessarily static either. This can lead to a situation
in which a communication protocol and its implementation were optimized for
the wrong parameters, which, in turn, leads either to wasted resources or to
performance degradation. Such a situation arises when the protocol implemen-
tation is not able to handle the new communication conditions/requirements
efficiently.
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Avoiding resource wastefulness, as well as performance degradation, can
be achieved using a suitable processing engine at all times, which means that
the protocol processing has to be changed at runtime. Depending on the sit-
uation, it can be sufficient to readapt the currently used processing engine.
However, in some cases, a complete processing engine can be unsuitable and
has to be replaced. The on-demand adaptation and replacement of processing
engines that will be described in the following, use the PETL. The PETL is
a graph description language that describes the stages as well as connections
and provides the configuration for the individual stages.

10.2.2 Processing Engine Template Language

The stream processing approach leads to a statically designed processing en-
gine that is specialized for a given data rate or communication condition. This
is undesired in situations in which high flexibility is needed, e.g., whenever the
communication conditions change, or when, even worse, the conditions are un-
known at the time the protocol is being designed.

In order to provide the desired flexibility, the unadapted processing en-
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gine can be regarded as a template [385]. This way, a processing engine can
be adapted for different data rates, communication scenarios, as well as for
changed communication conditions, on-demand with the help of a single de-
scription.

Transforming a processing engine into a template is accomplished by pro-
viding additional information that specifies how a certain adaptation has to
be executed. This information is provided by regarding stages as collections
and individual streams as relations. Both of these are used to construct a
template processing engine, whereas a collection describes a set of stages and
a relation describes a set of message streams between stages. Each processing
engine template comes with a set of adaptation patterns that describe the
valid template specifications. In the following, the collections, relations and
adaptation patterns are explained in detail.

Collections represent the stages of a processing engine and their paral-
lelization information, i.e., how a single stage has to be parallelized. Besides
the static name, which identifies the stage, each collection is described by the
following parameters:
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Figure 10.11
Stages of the protocol implementation described as collections

� Stage-Type – The Stage-Type field of a collection specifies the actual
implementation of stage for that collection.

� Count – The count specifies the number of parallel instances in a collec-
tion.

� Config – The config field is an ordered list of configurations, such as a
retransmission timeout, used to set up the individual stages. Configura-
tions are specific for each stage-type and are applied in the order they are
stated.

� Groups – The groups attribute states the number configuration groups
within a collection, i.e., how many stages in a Collection share the same
configuration.
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� CPUs – The CPUs field is an ordered list that defines the CPU-mapping
for a collection. The mappings are also applied in the order they are stated.

� Outputs – The Outputs field is an array of output configurations. An
output configuration defines the stream operators that are used for each
slot of the output.

With these attributes, the protocol developer is able to specify the type
of the stages, the needed number of instances, their configuration, as well
as the stream operators for each output for any type of processing engine.
The count parameter is considered to be unspecified in the description and
therefore making the description a template. However, any other of the pa-
rameters, such as the stage type, can be unspecified and be considered as a
template parameter, hence, making the template more flexible. Figure 10.11
shows an example of a fully specified collection. Instantiating the collection A

leads to four stages, each of them is being parameterized according to their
configuration, CPU mapping and stream operator setup.

The message streams between the stages in a processing engine are re-
presented by the relation primitive of the PETL. Similar to the collections,
which provide the parallelization information for a stage, a relation describes
the data streams between two collections. A relation has by the following
attributes:

1. Source- and Destination Collection – The name of the source and the
destination collection, respectively.

2. Source Output/Destination Input – Since a stage can have several
outputs/inputs, these attributes specify the output and input that have
to be connected.

3. Modifier – The modifier specifies how a stream operator, specified in a
collection, is applied to the source and destination collection.

4. Slot – The slot specifies which output-slot of the output shall be used for
the relation. This attribute was introduced for the developer’s convenience
and is used to enable output selection by indexing.

By defining the attributes of the relations two collections are connected.
However, after defining the relation’s attributes, the actual streams between
stages of the source and destination collection are still ambiguous, i.e., it
is not clear how the relation should connect the individual instances of the
collections. These ambiguities are resolved by stating a modifier that defines a
generic connection pattern for each relation. The modifiers are shown in figure
10.12 and explained in the following.

The direct, symmetric and all-to-all modifiers are the three cases of the
n-to-m modifier. The main idea of the n-to-m modifier is, that it divides
two arbitrary collections into subsets that are then connected in a all-to-all
pattern.
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Figure 10.12
The unfolding of relations depends on the collection’s count attribute and the
assigned stream modifier: a) direct b) symmetrical c) all-to-all d) explicit.

When the direct modifier is used, a relation connects the xth source stage
with the xth destination stage. This is used when it is necessary to connect the
stages of a collection strictly pairwise. In the case the number of processing
stages in a collection differs, some processing stages stay unconnected.

Symmetrical relation unfolding is used to separate the source and the des-
tination collection into subsets that are connected individually. Since these
subsets form distinct processing pipelines, the symmetrical modifier is used to
create independent protocol pipelines. The principle is shown for the relation
between the collections A and B. Both collections are logically separated into
an equal amount of subsets. In the example, it results in splitting the output
data stream of the processing stages of the source collection into two pro-
cessing stages of the destination collection. These subsets are now connected
individually.

The All-to-All modifier connects all source stages with all destination
stages, i.e., the workload of all source stages is distributed over all destination
stages.

Additionally, the explicit allows for the application of a certain relation
to an individual stage in a collection, as shown for the relation between the
collections A and B. This is used when it is necessary to connect the indi-
vidual stages of a collection independently. Instead of applying the Split/Join
operator to the whole source collection, the relation is constraint by the ex-
plicit modifier and only applied to stage A2. When both, the source and the
destination instance, are specified, it connects two individual stages of two
collections. The explicit modifier adds the source and destination instance to
a relation-definition.

Figure 10.13 shows how a PETL description of a processing engine with
5 stages is specialized into an actual processing engine with the help of relation
modifiers and the collection’s count attribute.
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Figure 10.13
Instantiation of a PETL-description into a specialized processing engine by
assigning the parallelization ratios.

10.2.3 Reconfiguration of a deployed Processing Engine

The presented description language [385] was developed during this project
and allows describing template implementations of protocols. As shown, the
actual protocol implementations can be derived from the PETL description
by applying the necessary parallelization ratios. However, reconfiguring the
implementation at runtime leads to the question at what point of time during
the transmission the reconfiguration can be conducted.

Two situations have to be discussed. Firstly, increasing resources and se-
condly removing resources. Increasing the amount of resources is done by allo-
cating the resources and integrating new processing stages on the fly. Firstly,
new stages are created and then they are connected into the processing engine.
This way all resources needed are initialized and ready to use when the first
protocol messages arrive.

However, removing resources is more difficult because the resources are
in use. Instead of just removing processors, the resources to be removed are
marked accordingly. Then the incoming message streams are cut, i.e., no new
protocol messages can reach the stages that have to be removed. Eventually,
the input queues of these stages are empty, at this moment the stages are
removed.

Since all connections that were directed to a removed stage were cut, no
messages can reach the draining stages anymore. Therefore, all stages have to
be ”self-sufficient” after being removed. That means a stage that is marked as
prepare-to-discard must be able to process messages. In case the completion
of such a stage’s immediate task is crucial1 to the further protocol processing,
but cannot be finished, the stage has to inform the remaining of the processing
engine that it could not proceed.

In some cases, a completely new protocol is needed to fulfill the processing

1The question what is a crucial task depends on the protocol and it’s implementation.
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Figure 10.14
Replacement process of a protocol. a) The collection C is over-utilized, then
a patch that adds two more stages is applied. b) The collection C is under-
utilized, then a patch that removes two stages is applied. From [381]

requirements. However, applying changes to the underlying protocol leads to
an inconsistent protocol state that has to be reinterpreted. Since the reinter-
pretation of states is highly dependent on the protocols between the inter-
pretation should be done, the reinterpretation would had to be designed for
each protocol pair. This is highly inconvenient because it does not allow for
a generic reconfiguration process. Stopping the transmission and restarting
it with the new protocol is no solution either because the resulting overhead
would severely affect the transmission.

Instead, two protocols are used simultaneously for a transmission. The old
protocol is used until it is drained of data, and the new protocol is used for the
ongoing transmission. This allows us to seamlessly switch between two differ-
ent protocols. However, this approach also means, that two protocols for the
same transmission are possibly multiplexed on the same links. Consequently,
the network frames received from an underlying layer have to be distributed
to the correct protocol implementation.

This is achieved by virtualizing the communication interface with virtual
channels as shown in figure 10.15a). A virtual channel is a protocol identifica-
tion number that is transparently added to outgoing frames. Upon receiving
a frame the communication systems read the virtual channel and forward it
to the network frame to the correct protocol implementation.
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a) The virtual channel multiplexes two or more processing engines onto a com-
munication channel. b) Replacing a processing engine on-demand. From [381]

The actual switch between the two protocols is conducted in two steps.
Firstly, after choosing a suitable protocol, the new protocol is built, mapped
and initialized. Once the protocol is ready, the data streams from the producer
are reconnected so that the new protocol is used. Since the old and the new
protocol are used simultaneously the virtual channel distributes the network
frames to the correct protocol implementation as shown in figure 10.15b).

10.3 FEC

The other part of the system which is of great importance in high-throughput
wireless communication systems is the one dealing with detection and cor-
rection of errors occurring during transmission. As discussed before at the
beginning of section 10 such related tasks are offloaded to a different hard-
ware like FPGA which is apart from the protocol processors. The aim of this
section is to cover these tasks in more depth and reveal what strategies have
been adopted in this project to realize the FEC part of the system. In addi-
tion to FEC a number of other protocols and algorithms are also needed to
complement the work of FEC. These are also reviewed in this section.
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Figure 10.16
IRS coding. From [386]

10.3.1 IRS Coding

The first option for the FEC technique considered for a high-throughput wire-
less communication is RS code. Although RS codes are not in general as
powerful as other techniques like low-density parity-check (LDPC) and Turbo
codes, they have the advantage of simplicity and lower complexity. That’s why
they have been the first choice in this project.

A single RS decoder entity with an 8-bit symbol cannot run at a frequency
higher than 250 MHz on Virtex7 FPGA. Thus, the throughput is limited to
� 2 Gbps. It means that at least 50 parallel entities are required to achieve
the targeted 100 Gbps data rate. Here, a modified version of IRS codes for
high-speed hardware decoding is utilized. However, the same concept can be
used for construction of interleaved Bose–Chaudhuri–Hocquenghem (BCH)
codes.

The general structure of the proposed IRS engine is shown in Figure 10.16.
As shown in this figure, the data symbols are multiplexed between different
RS decoders which causes burst errors in the incoming data-stream to be
interleaved between different RS decoders. In addition, Figure 10.17 shows the
proposed IRS decoder architecture optimized for the case in which the inputs
and outputs accept 64-bit words and the employed RS coders are based on 4-
or 8- or 12-bit symbols. According to Figure 10.17, input data is split between
parallel RS structures. Each single RS entity calculates 4, 8 or 12 bits from the
64-bit word. The calculated amount of data is defined by the RS symbol size.
The main reason for choosing the 64-bit architecture is hardware multiplexing
supported by common serial protocols. The hardware multiplexers deserialize
the data to 64 bits in most cases such as 10G Ethernet and GTH/GTX/GTZ
transceivers. These transceivers can be used to interface to other devices, for
example to the baseband (BB) processor. Thus, 64-bit buses are considered in
the design presented in this section. This significantly reduces the complexity
of the proposed data-link layer (DLL) processor.

The proposed IRS scheme has three main advantages. Firstly, interleaving
improves correction of burst errors. Secondly, the interleaver can be realized as
a static routing network and there is no hardware overhead for the interleaving
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Figure 10.17
Proposed parallel RS structures for 100 Gbps IRS coding. From [386]

structure. Thirdly, IRS achieves high decoding throughput due to the parallel
architecture.

The following coding schemes are considered as a base for the IRS pro-
cessor: RSp15, 13q, RSp255, 237q and RSp4095, 4006q with symbol sizes 4, 8,
and 12 bits. The code rates are on a similar level, and the decoders achieve
optimal calculation latency in the targeted very high speed integrated circuit
hardware description language (VHDL) implementation. It means that the
proposed codes are selected very carefully according to practical issues and the
decoding throughput has to be not lower than 1symbol{clk. This constraint
reduces the required clock frequency, and the area required to implement the
IRS engine.

In addition to FEC schemes, ARQ [387] is also one of the most important
techniques used in wireless communications. It provides robustness in wire-
less protocols. Every time, when an incorrect frame is received, ARQ uses a
return channel to inform the transmitter about the lost frame. After that, the
transmitter can schedule the frame for re-transmission (Figure 10.18). The
stop-and-wait-ARQ solution is inefficient. Both RF front-ends have to switch
to transfer the acknowledgment (ACK) frame after each data frame trans-
mission. Additionally, the data frame has to be fully processed and the CRC
has to be recalculated before the ACK-frame can be prepared and sent. Data
frame processing may introduce significant delay due to FEC and pipe-lining.
That reduces transmission goodput, which can be estimated by the following
formula

η � tdatap1�BERql
toverhead � tdata

, (10.1)

where l is the frame length in bits, tdata is the time used for payload trans-
mission and toverhead is the time used for all other processing, e.g., radio
switching, preamble, header and CRC transmission.

To achieve higher goodput, a different ARQ method such as selective-
repeat ARQ [387] shown in Figure 10.19 has to be used. The selective-repeat
ARQ repeats individual frames and uses a single block-ACK-frame [388] to
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Figure 10.18
Stop-and-wait-ARQ. From [386]

acknowledge all successfully received data frames. This reduces the number of
Physical Layer (PHY) turnarounds and transmitted ACK-frames.

10.3.2 Energy Efficient FEC Schemes

In addition to RS codes the possibility of using one of the other capacity-
achieving codes for high-throughput wireless communications has also been
examined. In an attempt to find a FEC code suitable for high-throughput com-
munication systems operating with data-rates near 100 Gbps, various aspects
of a code must be carefully inspected. Turbo codes, LDPC codes and Polar
codes are three classes that are known as capacity-achieving codes, mean-
ing that they are potentially capable of approaching Shannon capacity of the
channel under some special circumstances. However, high encoding and de-
coding complexity of such powerful codes may appear as an obstacle for them
to be used in high-throughput communication systems. Nevertheless, find-
ing good instances of such codes and optimizing their encoding and decoding
performance is an important topic and therefore the focal point of research.

Based on the extensive and advanced research conducted so far on LDPC
and Turbo codes, LDPC codes better suit the requirements of high-throughput
next generation networks. Here some of the advantages of LDPC codes over
Turbo codes are summarized:

1. Unlike Turbo codes, LDPC codes do not require long interleaver to achieve
good error performance [387];

2. LDPC codes have better block error performance [387];

3. In general, the error floor in LDPC codes occurs at higher signal to noise
ration (SNR)s compared with Turbo codes [389];

4. LDPC decoders have lower latency [389] and higher adaptability to parallel
architectures [389, 390] which together promise faster decoding operation.

On the other hand, the superiority of polar codes and convolutional codes
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Figure 10.19
Selective-repeat ARQ. From [386]

over LDPC codes and even Turbo codes is only for short blocks [391, 392].
Relying on these conclusions, there is a seemingly good prospect for applica-
tion of LDPC codes to high-throughput systems. Regarding the limited energy
budget in nJ b for wireless systems that the designer face and the high com-
plexity that LDPC codes bring in, their entire construction, encoding and
decoding operations have to be re-examined.

In particular, QC-LDPC codes [393] have been one of the examples of
LDPC codes that have gained a large attention and seemt to be a suitable
candidate for high-throughput communication systems. In fact, the cyclic
structure of QC-LDPC codes can be exploited to simplify both encoding
[394, 395, 396, 397] and decoding [398, 399, 400, 401] process of the code.
Therefore, we focused on QC-LDPC codes in order to find a practical archi-
tecture tailored to high-throughput communication systems.

The generator matrix of QC-LDPC codes is not, in general, in systematic
form. Therefore, finding the message corresponding to a detected codeword at
the receiver is not as straightforward as it is in the case of systematic codes. In
[393] two methods for finding the message from the codeword in a QC-LDPC
code are proposed. The first method is a general scheme which views the
problem as a set of linear equations. This method is not realizable with pure
digital circuits and may be implemented by having a processor core in the
design. The second method is rather an alternative scheme which makes use
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Table 10.1
Non-systematic Latin-square QC-LDPC codes compliant with the proposed
method for obtaining message from the codeword. From [393] © 2019 IEEE

Code (n,k) Code rate #Steps

HLSp6, 1, 64q (4032,3304) 0.819 40

HLSp6, 1, 60q (4032,3308) 0.820 40

HLSp6, 1, 56q (4032,3312) 0.821 40

HLSp6, 1, 52q (4032,3316) 0.822 40

HLSp6, 1, 48q (4032,3320) 0.823 40

HLSp6, 1, 44q (4032,3324) 0.824 40

HLSp6, 1, 40q (4032,3328) 0.825 40

HLSp6, 1, 36q (4032,3332) 0.826 40

HLSp6, 1, 32q (4032,3336) 0.827 34

HLSp6, 1, 16q (4032,3448) 0.855 19

HLSp6, 1, 8q (4032,3624) 0.899 33

HLSp6, 1, 4q (4032,3792) 0.940 33

HLSp5, 1, 32q (992,750) 0.756 19

HLSp5, 1, 28q (992,754) 0.760 19

HLSp5, 1, 24q (992,758) 0.764 19

HLSp5, 1, 20q (992,762) 0.768 19

HLSp5, 1, 16q (992,766) 0.772 14

HLSp5, 1, 12q (992,790) 0.796 14

HLSp5, 1, 8q (992,814) 0.821 4

HLSp5, 1, 4q (992,878) 0.885 1
HLSp4, 1, 16q (240,160) 0.666 9

HLSp4, 1, 12q (240,164) 0.683 9

HLSp4, 1, 8q (240,168) 0.700 5

HLSp4, 1, 4q (240,188) 0.783 1

IEEE 802.16e (1152,2304) 0.5 49

of a particular structure in generator matrices of QC-LDPC codes in order
to find the message from a non-systematic codeword. The examination of a
large number of non-systematic Latin squares QC-LDPC codes [402] and one
of the IEEE 802.16e standard QC-LDPC codes [398] show that they all have
the required structure to be usable by the algorithm. The latter method is
realizable in hardware and can be implemented with a digital circuit consisting
of XOR gates. Table 10.1 shows the non-systematic codes which have been
examined, along with the number of required steps it takes for the method to
complete. More details on the proposed method and QC-LDPC codes can be
found in the corresponding reference [393].

Another proposed improvement on QC-LDPC codes is a general form of
shuffling of their parity-check matrix (PCM) which can split the critical path
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delay in layered decoding (LD) and therefore improve throughput by allowing
higher clock rates [403]. Layered (or Turbo) decoding of LDPC codes is con-
sidered as a decoding schedule that facilitates partially parallel architectures
for performing iterative algorithms based on belief propagation. It has reduced
implementation complexity and memory overhead compared to fully parallel
architectures and also higher convergence speed compared to both serial and
parallel architectures. LD relies on the layered structure of the PCM. In LD
schedule, each iteration is split into several sub-iterations, running over suc-
cessive layers of the PCM. During each sub-iteration, reliability messages are
exchanged between check node (CN)s of that layer and their neighbor vari-
able node (VN)s, and at the end, the updated reliability messages are handed
to the next layer. Accordingly, only a subset of CNs and VNs participate in
each sub-iteration, and layers are processed successively from top to down the
PCM.

The generalized shuffling method described here is to include the idea of
critical path splitting of [398]. Given that the PCM consists of c layers, each
with b rows, suppose that a set of integer offset values O1, . . . , Oc related to
layers of Hqc is selected, such that 0 ¤ Oj   b, j � 1, . . . , c. For i � 1, . . . , b,

let H
piq
g be the matrix made up of i � O1, i � b � O2, i � 2b � O3, . . . , i �

pc � 1qb � Oc rows of Hqc. Consequently, the new shuffled matrix H
pg shq
qc ,

having matrices H
piq
g as its layers, will be the generalized shuffled matrix.

The offset values are carefully selected according to the Hqc which is to be
shuffled, such that in the generated shuffled PCM no column in a layer has the
weight of greater than one. This will ensure the least possible path delay in the
very-large-scale integration (VLSI) implementation of the LD. For example,
consider the IEEE 802.16e QC-LDPC code whose base matrix has been shown
in table 10.2. The PCM for this code is derived by substituting each non-
negative integer with an identity matrix of size 96 cyclically shifted rightward
equal to that integer [398]. The appropriate offset values for such a PCM
are r0, 8, 0, 12, 84, 0, 88, 8, 0, 16, 0, 80s as determined in [398]. Otherwise, when
choosing all the offset values as 0 which is equivalent to performing the primary
form of shuffling results in some columns of weight bigger than one in some
layers and therefore longer path delay.

10.3.3 Link Adaptation

It is possible to design an algorithm that finds a trade-off between the coding
overhead and the desired error correction capability. The algorithm is able to
adjust the code-rate on the fly during the transmission. It takes two statistics
to make a decision, whether the code-rate should be reduced, increased or
remain unchanged. Specifically, the corresponding unit monitors how many
segments were lost and compares the value with the code redundancy. If the
efficiency degradation caused by the loss of segments is higher than the coding
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Table 10.2
Base matrix of the rate-1{2 QC-LDPC code in IEEE 802.16e standard.
From [393] © 2019 IEEE

-1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 24 22 81 -1 33 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1
-1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

-1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1
-1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1
12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1
-1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0
43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

overhead, then the code-rate is decreased. The threshold as described in [404]
is derived as �

error segments

all segmnts



º

�
RS overhead

RS block size



. (10.2)

The reader can find more details in [404] on how the above equation can
be further simplified and then realized in a hardware like FPGA.

10.4 Evaluation

All concepts presented in this chapter have been implemented and tested. This
section is used to present selected results. Firstly, the protocol processing ap-
proach is evaluated concerning the protocol processing capabilities and the
processing overhead. Afterward, two scenarios that use the automatic recon-
figuration and protocol replacement are presented. The results corresponding
to the offloaded FEC is then evaluated. The chapter ends with the results of
an integration test, which combines the offloaded FEC and stream processing
approach into a communication system.

10.4.1 Stream Processing Approach

The following results were obtained with the stream processing framework
StrIPEs that implements the presented concept. StrIPEs was implemented
on top of a zero overhead Linux that disables preemptive scheduling in order
to minimize interruption from the operating system.
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Table 10.3
Theoretical maximum and measured goodput, as well as the processing over-
head of the protocol processing overhead (shortened from [381]).

Data-Packet Size: 8192

# of 10 GbE 1 2 3 4 5 6 7 8

Measured
Goodput
(Gbit/s)

9.925 19.855 29.788 39.701 49.601 59.467 69.346 79.176

Theo.Max.
Goodput
(Gbit/s)

9.931 19.862 29.793 39.724 49.655 59.586 69.517 79.448

Overhead
(Gbit/s)

0.006 0.007 0.005 0.023 0.054 0.119 0.171 0.272

Overhead in % 0.060 0.035 0.017 0.058 0.109 0.200 0.246 0.342

The framework and the protocols are executed on Mellanox TileGx72
manycore boards [405], which provide 72� 1 Ghz cores and 8� 10 GbE inter-
faces. The 10 GbE interfaces are used in the following evaluation to emulate
the wireless links.

10.4.1.1 Overhead and Scalability

The main performance indicators for the StrIPEs framework are the maxi-
mum achievable data rate and the overhead induced by the processing concept.
The theoretical maximum achievable data rate, the actually measured data
rate and the processing overhead are shown in table 10.3 for a data packet
size of 8192 Bytes and a stable channel without any packet loss.

The results show that the achieved data rate scale almost linear with
the theoretically achievable data rate, furthermore, the processing concept
introduces only insignificant overhead of maximum 0.342% for 8 � 10 GbE
interfaces. Further evaluations of the scalability and efficiency are presented
in [381, 380].

10.4.1.2 Protocol Replacement

The scenarios are used to showcase the feasibility of the on-demand adapta-
tion. The first scenario emulates a situation in which the host’s desired data
rate for the transmission changes over time. In this scenario the data rate is
determined by the host, i.e., the host tells the communication system about
the desired data rate and the communication system can change the commu-
nication protocol accordingly.

Whenever the newly desired data rate can not be fulfilled by the proto-
col and the number of communication channels or the number of of allotted
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Figure 10.20
The goodput in Gbit/s over time of for an adapting (red) and a static (blue)
processing engine. From [381]
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Figure 10.21
The latency per datachunk in ms over time for an adapting (red) and a static
(blue) processing engine. From [381]

resources is to high, a new better suited protocol is build and deployed. For
data rates lower than 70 Gbit/s a single pipeline protocol is used. The single
pipeline monopolizes the communication channels and achieves a lower and
more stable latency. However, due to processing pauses, e.g., while waiting
for the acknowledgement, the maximum achievable data rata is slightly below
the theoretically achievable data rate. Therefore, for data rates higher than
70 Gbit/s a multi pipeline protocol is used. With the multi pipeline approach
the transmission of two consecutive data items is multiplexed on the commu-
nication channel. Consequently, processing pauses of one data chunk can be
hidden.

The goodput of the first 60 seconds of the transmission are shown in fig-
ure 10.20. The host starts with a desired data rate of 5 Gbit/s. After 5s the
data rate changes to 7 Gbit/s, however, the communication protocol stays un-
changed because it can still fulfill the processing requirements. After 10 sec-
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Figure 10.22
Channel capacities used for the dynamic channel bonding scenario. From [381]

onds the protocol is replaced the first time when the desired data rate is
increased to 19 Gbit/s. This continues over the course of the transmission.

For comparison the same transmission was carried with a static 80 Gbit/s
multi pipeline protocol. The results show, that the on demand replacement
has no impact on the achieved data rate, i.e., the on demand replacement of
communication protocols can be used to react to changing data rate require-
ments.

The latency results are shown in figure 10.21. One can clearly see how
the latency per data chunk varies over the course of the transmission when
the protocol replacement is used. This is because the number of combined
channels and the allotted processing resources limit the latency. In compar-
ison, the static 80 Gbit/s multi pipe line protocol achieves a constantly low
latency. However, while wasting processing resources which are not used for
the transmission.

10.4.1.3 Protocol Reconfiguration and Dynamic Channel Bonding

The second scenario is used to show the applicability of the protocol recon-
figuration in a communication environment with unstable channels. In this
scenario the host sends data with a constant data rate of 29 Gbit/s and the
communication channel’s qualities change in 10ms intervals. Consequently, the
communication system has to reconfigure the protocol automatically whenever
the achievable data rate is lower than required. This is done by dynamically
bonding the minimum amount of channels that fulfill the data rate require-
ments and by parallelizing the protocol processing accordingly. However, this
can lead to wasted resources, i.e., used processors and communication chan-
nels, in the case the quality of the bonded channel change for the better.
Consequently, the protocol is also reconfigured in the case the desired data
rate can be achieved with a lower resource consumption. Figure 10.22 shows
the assumed channel capacities over a 100 ms timespan. The quality of the
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(a) The protocol was adapted with an expected BER of 0. The resulting average goodput
is 17.28 Gbit/s of desired 29 Gbit/s.
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(b) The protocol was adapted for the worst case scenario. During the transmission a goodput
of unstable 29 Gbit/s was achieved. The resource consumption is high due to the worst case
adaptation.
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(c) The protocol was adapted on-demand depending on the channel capacities. The trans-
mission resulted in a stable goodput of 29 Gbit/s. The resource consumption was minimal
depending on the channel capacity.

Figure 10.23
The goodput and throughput of three transmissions given a desired data rate
of 29 Gbit/s and the channel qualities presented in figure 10.22. The trans-
missions shown in figure a) and b) were conducted with statically adapted
protocols, the transmission shown in figure c) was conducted with a protocol
that was adapted on-demand depending on the channel capacities. From [381]
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channels changes every 10 ms. These channel capacities are reported to the
embedded many core boards.

The scenario was evaluated with a static multi pipeline protocol that was
configured for a desired data rate of 29 Gbit/s but was able to use all commu-
nication channels (S29), a statically configured multi pipeline protocol that
was configured for the theoretically maximum data rate of 80 Gbit/s (S80),
and a dynamically reconfigured multi pipeline protocol that uses the reported
channel capacities for the selection of channels and for the estimation of the
necessary parallelization (dynamic).

The results of the evaluation are shown in figure 10.4.1.3 to 10.4.1.3. The
results for S29 (see figure 10.4.1.3) show an unstable goodput that does not
provide the desired data rate for the application. Furthermore, the results
show a high throughput, i.e., the sum of goodput and retransmissions. This
is due to the high number retransmission caused by using broken channels.
The results for S80 (see figure 10.4.1.3) show that the desired data rate could
be reached most of the time. This is because the protocol was configured for
a data rate of 80 Gbit/s, i.e., the resulting protocol was theoretically able to
handle the expected packet loss. However, the transmission also shows spikes
that refer to data rate breakdowns. Finally figure 10.4.1.3 shows the results
for the automatic reconfiguration according to the reported channel capacities.
One can see that the desired data rate was provided in a stable manner with
less retransmissions. This is because the protocol was always configured to
use the minimum amount communication channels. Consequently, completely
broken down channels were not used, which considerably reduced the number
of necessary retransmissions.

10.4.2 FEC Results

The design consisting of the protocols and techniques outlined in section 10.3
has been fully implemented and synthesized using GenusTM software, and its
layout has been made with InnovusTM. Moreover, the following optimization
measures have been performed on the Netlist and layout, in order to achieve
the reported throughput of 165 Gbps with energy efficiency of 4.47 pJ/bit:

� The dual port static random access memory (RAM) memories needed
for RS implementation [406] are replaced by flip-flop (FF) arrays. This
solution sounds insane from the power and area point of view, but the
memories are the main bottleneck of throughput in our design. Moreover,
planning a chip with memories is more difficult than placing pure logic
alone. In our case, we need to place 64 memories, each of the size of
256 � 8 bits. Replacing the memories with FF arrays increases the clock
speed from 600 MHz up to 2100 MHz, which corresponds to the throughput
improvement from 67 Gbps up to 235 Gbps. However, the chip area also
increases from 0.57 mm2 to 1.02 mm2 and the power from 0.286 W up to
3.5 W.
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Figure 10.24
ASIC layout of the implemented processor (receiver) in 28 nm CMOS tech-
nology. From [407] © 2019 IEEE.

� In order to reduce the energy dissipated in the FF arrays emulating the
memory blocks, the technique of clock gating is adopted which causes a
reduction in the very high dynamic power. In each clock cycle, we read
and write just a single byte to each FF memory. This means that we
access only � 0.19% of the total memory registers in each clock cycle.
Thus, we can significantly reduce the power by inserting clock gates and
deactivating � 99.81% of the memory registers. Although the clock gates
increase area by � 0.02 mm2 and reduce the clock by 600 MHz (from 2100
MHz downto 1500 MHz), the power is desirably reduced to 0.928 W from
the initial 3.5 W.

� To reduce the static power dissipated by the chip, multi-threshold voltage
optimization is performed. In short, for all critical paths, the transistors
with the lowest voltage switching threshold are inserted, while for non-
critical paths transistors with a high threshold and reduced leakage are
used. This reduces the power from 928 mW to 602 mW. As a result, the
chip area remains almost unchanged, but the clock frequency is further
reduced by � 200 MHz (from 1500 MHz downto 1300 MHz).

The layout of the chip is shown in Figure 10.24. We use a doubled VDD-
VSS power ring around the placed logic. The input-output (IO) pads are
excluded from the area and power analysis. We highlighted a single RS decoder
entity and its belonging codeword memories. The input memory is placed close
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Figure 10.25
Matlab simulation model. From [386]

to the chip edge due to the input signals routing. The corrected codeword,
after fixing the evaluated error is stored in the memory placed next to the
decoder. It is possible to reduce the memory size by 25% by removing the
bypass First In First Out (FIFO)s, which are used to shift out the originally
received codeword, in the case when the decoder cannot correct all the bit
errors.

10.4.2.1 DLL Frame Format

Figure 10.25 shows a Matlab simulation of the proposed DLL processor. TX
and RX models use all the aforementioned techniques, including aggregation,
fragmentation, FEC, and a hybrid ARQ with link adaptation. As a default sce-
nario, a point-to-point communication between a TX and a RX is performed,
as depicted in figure 10.25. TX transmits data to RX with the data-rate of
100 Gbps. Then, the sender waits for a feedback from the receiver to figure
out whether the frames have been received correctly.

To support two-way communication, time division duplex (TDD) is ap-
plied. In short, the sender stops transmissions of the data frames after a pre-
defined time, and allows the receiver to send acknowledgments. Figure 10.26
shows a Finite State Machine (FSM) that controls the transmission.

The transmitter sends a predefined number of frames, and each frame is
carrying a predefined number of data-fragments (Figure 10.27). After that, a
single ACK-frame is requested, and a timer is started. If timeout occurs, then
the ACK request frame is retransmitted. This procedure is repeated until the
ACK is received successfully. All mentioned parameters of the FSM and frame
format are fully adjustable.

10.4.2.2 Energy consumption

As mentioned in the introduction, energy and power consumption are one
of the most critical parameters of the high-speed transceivers. In our case,
the energy and power depend on channel BER and selected FEC code. The
energy is mostly consumed by the RS decoders and it is indeed related to the
code-rate curve shown in figure 10.28.

Figure 10.29 shows the variation in energy consumption versus BER.
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Figure 10.26
FSM of the transmitter. From [386]

Figure 10.27
Frame format used in the simulation model. From [386]

For BER   1e � 5 which is correspondent to the highest code-rate of
RSp255, 253q, the processor consumes extremely low DC-power of 29.7 mW,
equivalent to 0.22 pJ/bit. With the increase of BER, the DC-power also in-
creases and saturates at 602 mW, or equivalently 4.47 pJ/bit. This high-power
mode corresponds to the lowest code-rate of RSp255, 223q.

It should be noted that power consumption is dependent upon the number
of Galois field multiplications

10t
255� k

2
u2 � 771t

255� k

2
u� 255, (10.3)

and additions

6t
255� k

2
u2 � 764t

255� k

2
u, (10.4)

which in the case of RSp255, kq decoding are asymptotically Opn2q.
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Figure 10.28
Link adaptation scheme. The algorithm changes the FEC code-rate according
to the internally estimated fragment error rate. From [407] 2019 IEEE

10.4.2.3 Voltage Scaling

Further saving of energy may be made by adjusting the throughput, clock
speed, and voltage. The voltage range for the targeted process is 0.8 - 1.1 V.
In our design, the clock speed scales almost linearly with the voltage (Figure
10.30), which is not the case for LDPC decoders realized in comparable tech-
nologies [408, 409]. On the other side, for the energy per bit in the targeted
range of 0.8 - 1.1 V, a quadratic function fits the points more precisely. Both
fitting curves are as follows:

Throughput Gbps 313.42x 199.81, (10.5)

Energy per bit pJ bit 3x2 1.22x 0.509, (10.6)

where x 0.8, 1.1 represents the chip voltage.
In our case, we need to reduce the throughput to 115 Gbps at 1.01 V

to achieve the limit of 3.8 pJ/bit at BER 6.3e-2 with RS 255, 223 . The
BER value of 6.3e-2 is the lowest achievable BER for additive white Gaussian
noise (AWGN) channel as well as the worst case from the energy consumption
point of view. Assuming the lowest possible voltage of 0.8 V, the processor
achieves 50.4 Gbps and consumes max. 2.38 pJ/bit.

10.4.2.4 Comparison with other Published Work

To the best of our knowledge, there is not any comparable work providing simi-
lar comprehensive functionality to our implementation. Therefore, we compare
our work to existing high-speed LDPC and polar decoders (table 10.4).
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Table 10.4
Performance comparison of FEC and DLL processors. From [407]
© 2019 IEEE

[410] [411] [412] [409] [413] [414] [408] [415] Current work

Technology
ST Micro.
65nm SVT

CMOS

40nm G
CMOS

40nm
LP-CMOS

28nm
UTBB
FDSOI

28nm
CMOS

ST Micro.
28nm

FDSOI

28nm
FDSOI

28nm
GlobalF.

28nm SLP
CMOS

Estimation
stage

Post
layout

Post
physical
synthesis

- - -
Post

synthesis
Post

layout
Post

layout
Post

layout

Design ASIC ASIC ASIC ASIC ASIP ASIC ASIC ASIC
ASIC,
128-bit

data bus
Voltage [v] 1.2 0.9 1.1 1.07 0.9 0.9 0.6-0.9 0.9 0.8-1.1

Freq. [MHz] 257 500 220 260 470 - - 451

1300c

1000d

750e

450f

FEC
LDPC

802.11ad
LDPC

802.11ad
LDPC

802.11ad
LDPC

802.11ad
LDPC

802.11ad
LDPC

(30000,26786)
LDPC

802.11ad
Polar code
(1024,869)

IRS

Soft-decision decoding YES, 4-bit YES, 5-bit YES, 5-bit YES, 5-bit YES YES, 5-bit YES YES NO

Code-rate 0.813 0.813 0.5 0.5 0.5 0.893 - 0.848 0.875
Eb/N0 [dB]
@ BER 1e-5

AWGN

�13
64-QAM� -

�3.5
BPSK�

�3.5
BPSK

�3.5
BPSK

�4.5
BPSK

- -
�5.5�� (BPSK)
�14�� (64-QAM)

Throughput [Gbps] 160.8 5.6 6.2 12 18.4 200
160a

57.1b
7.8

145.5
111.9
83.9
50.4

Chip area [mm2] 12.09 0.16 0.8 0.63 0.78 3.73 2.8 0.35 1.04

Energy per bit
rpJ{bs 32.49 17.7 32.9 30 18 1.5

6a

2.9b
1.41

4.47c

3.69d

3.04e

2.38f

Normalized
throughput
rgbps{mm2s

13.9 35 6.16 19.04 23.6 53.6
57.14a

20.39b
22.28

139.9c

107.6d

80.7e

48.5f

Functionality
FEC

decoder
FEC

decoder
FEC

decoder
FEC

decoder
FEC

decoder
FEC

decoder
FEC

decoder
FEC

decoder

FEC dec.,
FEC enc.,
HARQ-I,

link adaptation,
aggregation,

fragmentation

a) at 0.9 V; b) at 0.6 V; c) at 1.1 V and RS(255,223); d) at 1.0 V and RS(255,223); e) at
0.9 V and RS(255,223); f) at 0.9 V and RS(255,223); -) not specified or unclear; �) channel
not specified, AWGN assumed; ��) including 0.55 dB fragmentation gain.
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Figure 10.29
Average energy consumption per bit for the DLL receiver as a function of
BER. From [407] 2019 IEEE

As stated before, most of the chip resources are utilized by FEC, and
hence, such a comparison is fair. Compared to high-speed LDPC at similar
code-rates [410, 414], our hard-decision RS loses 1 dB gain. It rather leads
to a smaller chip area and significantly higher throughput normalized to the
area. In our case, we achieve up to 140 Gbps mm2, and this value is at least 2
times higher than for LDPC decoders. We require only 1.04 mm2, but LDPC
requires 2 6 mm2 at the same data-rate. Moreover, we integrate a complete
DLL processor, not only FEC decoders. Thus, we believe that the 1 dB gain
loss of the proposed hard decision method is mitigated by the superior area
efficiency.

The other very important design parameter is energy efficiency. Our im-
plementation can work with energy as low as 2.38 pJ/bit at 0.8 V, which is
a moderately good result. The LDPC [414] and polar [415] solutions require
only 1.5 pJ/bit and 1.42 pJ/bit, respectively. Other published 28 nm LDPC
decoders consume 2.9 30 pJ/bit [409, 413, 408].

The data-rate of our solution can be additionally improved. Currently, we
process 128 bits/clk and use 1.04 mm2 chip area. Thus, there are no technical
barriers to use more computation entities in parallel and process more than
165 and 145 Gbps at RS 255, 253 and RS 255, 223 , respectively.
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Figure 10.30
Throughput and energy per data bit as a function of chip voltage in the range
of 0.8 to 1.1 V. From [407] 2019 IEEE

10.5 Conclusion

In this chapter we presented a scalable approach for processing communication
protocols with ultra-high data rates. The approach seamlessly combines a
software-based protocol implementation for higher-level protocol processing
tasks with efficient hardware implementations for low-level tasks.

Using a software approach for high-level protocol processing tasks eases
protocol implementation and testing, while using custom hardware implemen-
tations for tasks unsuitable for software implementations reduces the stress on
processing hardware. The latter mainly includes a dedicated method for FEC
along with a link customization scheme to adjust the code rate in relation
to the current status of the link. These tasks were specifically implemented
by hardware description language (HDL) and synthesized in 28 nm CMOS
technology.

After the protocol tasks have been distributed to the most suitable process-
ing hardware, protocol processing must be parallelized at all levels. In order
to reduce the complexity associated with parallelization of a communication
protocol, a design process was conceived to further facilitate implementation.
The design process uses the stream processing paradigm to separate the com-
munication protocol into independent and parallelizable protocol tasks. In
addition, it has been shown that communication protocol processing can be
analyzed similarly to soft real-time problems, resulting in a statically paral-
lelized protocol implementation capable of providing the desired data rate for
specific communication conditions.
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Such a static protocol implementation is sufficient for scenarios where com-
munication conditions such as BER and communication requirements such as
the desired data rate are fixed and known at compile-time. However, this is
not the case for wireless communication scenarios. To avoid using unsuitable
protocol implementations when communication conditions change, the imple-
mentations must be adapted at runtime.

This was achieved with an adaptation process that implements the changes
in parallel with the transfer and then switches to the new implementation
when it is ready. In this way, the impact of the protocol-adaptation on the
transfer is minimal. To further reduce the impact, each adaptation can result
in two implementations being used simultaneously. The first implementation is
used until all data originally sent with this implementation is fully processed,
while the new implementation is already used for the current transmission.
This way, it can be avoided that the current transmission comes to a standstill
until all old data has been transmitted.

In order to avoid the necessity of designing implicit per-protocol adapta-
tion strategies, a new template language for describing communication pro-
tocols was developed. The language provides general means to describe com-
munication protocols as templates that can be automatically instantiated and
parallelized.

Finally, all presented concepts were evaluated with a newly designed data
link protocol for ultra-high wireless communication. The protocol was imple-
mented and parallelized with the presented design process. It was shown that
the design process allows a straight-forward analysis and implementation of
the communication protocol. The resulting protocol implementation and the
parallelization derived from the analysis were evaluated in several scenarios
[416, 380, 385, 381]. In summary, the evaluation showed that wireless commu-
nication with ultra-high data rate with low overhead can be performed with
the presented approaches.

At lower levels the use of different channel coding techniques was investi-
gated. These included both the prominent conventional RS code and a special
class of LDPC codes known as QC-LDPC codes. While RS codes are not
as powerful in detecting and correcting errors as LDPC codes, they are of
less complexity in coding and decoding, and this gives much better results
in terms of energy efficiency when used as FEC procedures. However, for the
QC-LDPC codes, a shuffling method has been introduced that further reduces
their decoding complexity, paving the way for their use in next generation,
high throughput wireless networks. It should be noted that the low-level pro-
tocol tasks implemented separately on dedicated hardware have also been
synthesized for a 28nm CMOS technology.
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