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Abstract

Since electronics started to scale down, a growing concern about the reliability of these
electronic devices has emerged. At the same time, the increased demand for high performance
within the safety- and mixed-critical domains, such as the aerospace and automotive industry,
motivated a shift from previous consolidated and mature technology to the new cutting
edge devices with smaller feature sizes. Therefore, there is a need to improve the fault
tolerance of these high-end devices so that minimum failure rates can be obeyed. Although
redundancy has been a great solution for these problems, their drawbacks such as power
and area overheads must be watched carefully, so that per-unit price does not extrapolate
affordable limits, and the redundancy does not add more sources of error than it improves the
fault tolerance. This thesis proposes an approach for run-time management of redundancy
among the processor internal Functional Units (FUs) within mixed-critical scenarios, tackling
the compensation of the trade-offs between fault-tolerance, power consumption, hardware
usage (ageing), and hardware area (cost).

With these objectives in mind, this thesis presents a concept for a dynamic processor
architecture capable to enable and disable redundancy of FUs on-demand, and a software
mechanism for criticality-aware management of these units for mixed-critical processes within
an Operating System (OS). For this purpose, a processor design was extended with a few
additional instructions that enabled different replication schemes in the processor at run-time.
Furthermore, a compatible Real-Time Operating System (RTOS) is also extended to enable
the desired criticality-aware management of units.

Evaluating the implemented test platform when the extended processor was running bare-
metal code, the latency to shift between different replication schemes was of only one
instructions cycle. Furthermore, when the processor was running the adapted RTOS, the run-
time overhead over the latency to switch between processes remained below 2.5%. Meanwhile,
resulting from the processor extensions, the hardware overhead remained smaller than
standard full core replication schemes such as core lock-step approaches. Regarding fault
tolerance, the expected failure rate of the FUs module decreased by approximately 80%
when its FUs were configured with Triple Modular Redundancy (TMR). Furthermore, when
considering the whole area of the processor core, its respective failure rate decreased by
about 15% when configured these units with the same triplication scheme. Finally, it is also
presented that the run-time management of FUs was likewise able to decrease the power
consumption and hardware ageing for the proposed mixed-critical scenario. After all, we
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can say that the concept can increase fault tolerance on-demand of a processor design with
moderately low hardware overhead, while it also minimises the power consumption and
hardware usage (ageing) for its intended mixed-critical scenario.
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Zusammenfassung

Seit die Elektronik immer kleiner wird, ist eine wachsende Besorgnis über die Zuverlässigkeit
dieser elektronischen Geräte entstanden. Gleichzeitig motivierte die gestiegene Nachfrage
nach hoher Leistung in sicherheits- und gemischt kritischen Bereichen wie der Luft- und
Raumfahrt- und Automobilindustrie zu einer Umstellung von früher konsolidierter und
ausgereifter Technologie auf die neuen Spitzengeräte mit kleineren Strukturgrößen. Daher muss
die Fehlertoleranz dieser High-End-Geräte verbessert werden, damit minimale Ausfallraten
eingehalten werden können. Obwohl Redundanz eine großartige Lösung für diese Probleme
ist, müssen ihre Nachteile wie Energie- und Flächen-Overhead sorgfältig beobachtet werden,
damit der Preis pro Einheit nicht erschwingliche Grenzen extrapoliert und die Redundanz
nicht mehr Fehlerquellen hinzufügt, als sie verbessert Fehlertoleranz. Diese Arbeit schlägt
einen Ansatz für das Laufzeitmanagement der Redundanz zwischen den prozessorinternen
Funktionseinheiten (“Functional Units”, FUs) in gemischt kritischen Szenarien vor, wobei die
Kompensation der Kompromisse zwischen Fehlertoleranz, Stromverbrauch, Hardwarenutzung
(Alterung) und Hardwarebereich (Kosten).

Vor diesem Hintergrund stellt diese Arbeit ein Konzept für eine dynamische Prozessorar-
chitektur vor, die in der Lage ist, die Redundanz von FUs bei Bedarf zu aktivieren und
zu deaktivieren, sowie einen Softwaremechanismus zur kritikalitätsbewussten Verwaltung
dieser Einheiten für gemischt kritische Prozesse innerhalb eines Betriebssystems (“Operating
System”, OS). Dazu wurde ein Prozessordesign um einige zusätzliche Anweisungen erweitert,
die zur Laufzeit unterschiedliche Replikationsschemata im Prozessor ermöglichen. Darüber
hinaus wird auch ein kompatibles Echtzeit-Betriebssystem (“Real-Time Operating System”,
RTOS) erweitert, um die gewünschte kritikalitätsbewusste Verwaltung von Einheiten zu
ermöglichen.

Die Rekonfiguration des Prozessors erfordert nur einen Befehlszyklus, der gesamte zusätzliche
overhead für den Prozesswechsel beträgt weniger als 2,5%. In der Zwischenzeit blieb der
Hardware-Overhead aufgrund der Prozessorerweiterungen kleiner als bei standardmäßigen
vollständigen Kernreplikationsschemata, wie z. B. Core-Lock-Step-Ansätzen. In Bezug auf
die Fehlertoleranz verringerte sich die erwartete Ausfallrate des FU-Moduls um etwa 80%,
wenn es mit Dreifacher Modularer Redundanz (“Triple Modular Redundancy”, TMR) kon-
figuriert wurde. Darüber hinaus verringerte sich bei Betrachtung der gesamten Fläche des
Prozessorkerns die jeweilige Ausfallrate um etwa 15%, wenn die Einheiten mit demselben
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Verdreifachungsschema konfiguriert wurden. Abschließend wird auch dargestellt, dass das
Laufzeitmanagement von FUs den Stromverbrauch und die Hardwarealterung für das vor-
geschlagene gemischt-kritische Szenario ebenfalls verringern konnte. Schließlich können wir
sagen, dass das Konzept die Fehlertoleranz eines Prozessordesigns mit mäßig niedrigem
Hardware-Overhead bei Bedarf erhöhen kann, während es auch den Stromverbrauch und die
Hardwarenutzung (Alterung) für das beabsichtigte gemischt-kritische Szenario minimiert.
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CHAPTER 1

Introduction

Since the beginning of More’s law and Dennard scaling, the miniaturisation of devices has
been driving the electronics industry, which resulted in today’s high-end devices with billions
of transistors integrated into a single chip [10]. However, this level of miniaturisation and
integration resulted in reduced reliability of these devices (e.g., they may no longer function
as they were designed to, and work for a shorter period of time). For example, smaller
transistor dimensions and new computing principles such as lower supply voltages, and near
transistor threshold operation resulted in less energy necessary to change the electric charge
stored in memory cells, logic latches, or flip-flops. Therefore, charged particles (e.g., protons
and alpha particles) or neutrons hitting the silicon of an electronic device can easier cause a
bit-flip in its logical components [8, 65]. Furthermore, since the beginning of the last decade,
as transistor sizes became even smaller and operating voltages lower, the leakage current of
the transistors started to be even more significant for the overall power consumption of an
electronic device. Such an effect posed a barrier in the scaling down of the operating voltage,
and the power density no longer remained constant as transistors’ size decreased (no longer
following Dennard’s scaling predictions) [10]. Therefore, the smaller the transistors and the
bigger the integration rate, the bigger the power density and the smaller is the space for power
dissipation in these devices. Thus, since cooling technologies did not evolve proportionally,
these devices became exposed to higher temperatures, which accelerates natural ageing effects,
such as increasing the threshold voltage - the necessary voltage to switch on a transistor - and,
as a consequence, the speed at which transistors can be switched on and off [60]. Therefore,
the lifespan in which an electronic device can be operated at its maximum designed frequency
is reduced.

In the past, safety-critical applications could rely on consolidated and mature technologies
[8]. However, since there is an increasing demand for performance in this domain, these
applications needed to start looking into the newest hardware technologies of 3nm and below
[96, 83]. For instance, autonomous driving applications of today demand high performance
with real-time processing power, but a failure caused by a possible bit-flip in the hardware
elements can lead to harmful consequences [76, 103]. These kinds of applications lead the
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Chapter 1 Introduction

scientific community and industry to look for solutions that increase the reliability of these
high-end devices by overcoming the aforementioned negative effects of miniaturisation and
the high rate of integration while keeping the speed-up.

The most common strategy to cope with these reliability problems is the use of redundancy.
Multiple ways to apply redundancy can be found in the literature, some approaches use
temporal redundancy by simply performing multiple computations distributed over time,
while others use spatial redundancy, adding redundant (e.g., duplicating, or triplicating)
hardware modules to perform multiple computations in parallel. Once the redundancy
is in place, an error can be detected end/or corrected by comparing the results of these
multiple computations. The Triple Modular Redundancy (TMR) is the most common of these
approaches, based on triplication and majority voting, it was first envisioned by John Von
Neumann in 1960, and it is still used to provide error correction in safety-critical systems of
today (details of this approach will be revisited in the background section under Section 2.4.1).
However, the main problem of redundant approaches is the overhead: in time for the temporal
redundancy, or hardware area and power consumption for the spatial redundancy. The
hardware area overhead affects, for example, the per-unit price of the system, since more
hardware must be employed to build it; meanwhile, the power and timing overheads affect
the performance: the timing on the latency to provide results for computations, while the
extra power may limit the maximum frequency in which a system can runs. Furthermore,
another important aspect regarding hardware area and fault tolerance is that the bigger
the hardware in use, the bigger the probability of this hardware to fail. Therefore, any
fault-tolerant method that increases the hardware area must increase the fault tolerance
of the system enough to compensate for its hardware increase. Hence, not all systems can
afford such an overhead, and a good compromise must be found between the provided fault
tolerance and the area and power overheads when using redundancy.

Looking once again into the safety-critical application domain, it is expected that not all
tasks performed by the system are critical. For example, within a vehicle, the airbag systems
are highly critical, in which a wrong activation or a failure to activate them at the correct
time can lead to very harmful consequences such as human injuries or death; on the other
hand, the system that enables the rear light or the fuel light - to advice about the low
fuel level - have, in general, lower criticality attributed. The critical tasks are the ones in
which a failure can lead to very harmful consequences either for the system itself or for its
surrounding environment and humans. Because of these consequences, safety-critical systems
are usually regulated by standards in which minimum safety requirements must be obeyed.
For example, the ISO 26262 standard [44] regulates the functional safety assurance for road
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vehicles. It classifies the tasks of an automotive system in different safety-assurance levels
according to parameters like: how important is the task for the system, how harmful can
be the consequences of a failure, and the probability of a failure occurring. And depending
on how the tasks fit into these parameters, maximum failure rates must be guaranteed.
Furthermore, it is not seldom that critical and non-critical tasks share the same hardware
platform, and are controlled by the same Operating System (OS), in which these tasks are
only different processes within this OS. Therefore, this defines the mixed-critical scenario
within the safety-critical application domain, which is intended to be the context of this thesis.
A scenario like this can be found in multiple application fields such as aerospace, medical, and
automotive industries. An electronic medical device, for example, can have life monitoring
functions such as temperature and heart rate monitoring, as well as mundane and less critical
functions, such as rendering the graphical user interface in a display, running in the same
hardware platform, the same processor, and being controlled by the same OS.

Because embedded platforms within the safety-critical domain are usually designed for the
worst cases in their application set, the aforementioned mix of critical and non-critical
applications can lead to overestimated hardware and unnecessary use of power or hardware
resources. Furthermore, it is not unusual that the critical functions of a mixed-critical system
(e.g., the critical processes within an OS) run only for a small fraction of time, or they are
only triggered by a special event. For example, in a vehicle, the airbag system is controlled
by an electronic central unit that controls most of the electronic systems within a car, and
the airbags will only be activated once a frontal crash is detected, in the remaining time,
which is most of the lifetime, this central unit will be controlling other electronic functions
of the car. Therefore, since redundancy is one of the most common ways to improve fault
tolerance for the most critical functions in a safety-critical system, a system with redundant
schemes always enabled would be wasting energy and hardware resources while executing its
non-critical functions. To cope with that, this thesis proposes an approach that monitors
the criticality of currently running tasks in a system and applies, at run-time, a proper
redundant (or not) scheme. For example, it is possible to enable all redundant modules
when the current criticalities of the tasks are high, or disable the redundancy in case only
mundane functions are being performed. Such a strategy avoid unnecessary use of energy
and hardware resources. Tackling this problem using such a strategy is one of the objectives
of this thesis. This strategy was implemented within an approach in which the higher levels
of the systems (e.g., the software and the OS level) hold the criticality knowledge and, with
specifically implemented functions, properly manage the redundancy scheme throughout an
implemented hardware infrastructure.
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Run-time redundancy management for improved fault tolerance has been used in many
domains and levels. For example, reconfigurable devices such as Field Programmable Gate
Arrays (FPGAs) and Coarse-Grained Reconfigurable Arrays (CGRAs) enable from very
fine-grained primitive elements reconfiguration (e.g., Lookup Tables (LUTs) and flip-flops) to
processing elements, which can be a simple Arithmetical Logical Unit (ALU) or a complete
capable processor core [29, 55, 104]. When it comes to processor designs, such redundancy
management is mostly done at the core level [7, 87, 46]. However, other approaches using Very
Long Instruction Word (VLIW) and superscalar processor architectures enable redundancy
management at the level of their internal Functional Units (FUs) such as ALUs, multipliers,
and dividers [68, 86]. These internal units can cover a big portion of the hardware area of a
processor design. For example, for the RISC-V core CV32E40P (formerly known as RI5CY),
approximately 40% of its area is covered by FUs [85], meanwhile for the Plasma processor
core [75] (which is the one that is going to be used as a test vehicle in this dissertation), when
disregarding its register file, the remaining 60% of its area, approximately, is covered by FUs.
Therefore, if a fault-tolerant method is applied to these units, it is indeed true to say that a
big portion of the design is being protected.

Furthermore, FUs are very easy to manage within pipelines because they are not used as
storing elements, and, their control logic is very contained on its own. With such a property,
it is possible to, for example, disable an unnecessary FU without flushing the whole pipeline
of the processor in which the unit is inserted. Therefore, redundancy management within
these units can be very agile and be just a matter of a few clock cycles. Moreover, still
because of this agile property, once multiple units are available, it is possible to use them also
for wear levelling strategies like, for example, performing load balancing among the FUs. Or,
additionally, in case the architecture of the processor allows it, it is even possible to enable
these additional units in parallel for performance improvements.

Moreover, it is known that application programs have different characteristics depending on
their purpose. Based on these characteristics, some internal units of a processor design can
be overused, meanwhile, others can stay in an idle state for a long time [90]. Additionally, for
superscalar processors, for example, depending on the FUs allocation policy, certain units can
be prioritised for execution, thus, leading again to non-homogeneous usage of the hardware
resources [88]. Such heterogeneous usage causes as well a heterogeneous ageing of these units.
However, it is indeed known that equalising the utilisation of FUs in a processor core can
improve its lifetime reliability [37]. And, addressing this problem, multiple works are found
in the literature proposing different methods for clock gating, power gating and Negative
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Bias Temperature Instability (NBTI) aware instruction scheduling within processor designs
[72, 73, 88].

The problem of the current approaches that are performing redundancy management at the
FUs level is, for example, for the work done using VLIW processors, the run-time management
is very compromised. Because, despite having multiple FUs, these processor architectures are
very simple, and all the arrangements to distribute the operations throughout the available
units are done before run-time by the compiler and included in the instruction words. Secondly,
when a superscalar processor architecture is provided, although the dynamic scheduling of
instructions throughout the FUs is then possible, current approaches do not provide a way
to control the scheme in these units from the higher software levels, therefore they do not
benefit from software level knowledge regarding the criticality of current tasks. Thereby, one
of the aims of this thesis is to provide this interface that enables control of the processor’s
internal FUs from the software level, and manage, at run-time, these internal units scheme
according to the criticality of tasks (or processes within an OS).

In summary, since the beginning of the down-scaling, electronic devices had increased their
performance but also become more prone to fail. Additionally, with the advent of high-
performance applications in the safety-critical domain, there is a need to improve the fault
tolerance of these high-end devices so that minimum failure rates can be obeyed. Although
redundancy has been a great solution for these problems, its disadvantages such as power
and area overheads must be carefully considered, so that the price per unit does not increase
beyond affordable limits, and the redundancy does not add more sources of error than it
improves the fault tolerance. Therefore, looking for a compromise between fault tolerance,
hardware area overhead, power and hardware usage, the redundancy at the FUs level seems
to be a great choice because of their agile configuration properties, which can be very useful to
avoid waste of power and hardware resources within the context of mixed-critical applications.
Thus, the redundant configurations can be reserved only for the most critical applications,
while in the remaining time other schemes can be used over the available units (e.g., for wear
levelling or parallel schemes for performance improvement).

To conclude, this thesis pushes the state-of-the-art presenting an approach for run-time
management of redundancy among processor internal functional units, tackling to compensate
the trade-offs between fault-tolerance, power consumption, hardware usage (ageing), and
hardware area (cost).
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1.1 Objectives and Contributions of this Thesis

With all have said, and within the mixed-critical application domain, this thesis proposes a
concept that enables, throughout an implemented hardware mechanism, software management
of processor internal units towards improving the compromise between fault tolerance,
power consumption, and hardware usage and area. Therefore, this theses has the following
objectives:

• Objective 1: Enable fast and run-time software management of redundancy across
internal units of a processor design.

• Objective 2: Increase fault tolerance, on-demand, of a device against soft errors,
potentially caused by charged particles and neutrons hitting the silicon of an electronic
device.

• Objective 3: Develop a processor design capable to enable and disable redundancy
schemes for fault tolerance according to the criticalities of running processes. Thus,
enabling the design to minimise additional power consumption and save hardware
resources while not performing critical work.

Pursuing these objectives, this thesis presents a concept for a dynamic processor architecture
capable to enable and disable redundancy on-demand of FUs. On the targeted system, the
management of the units is done by the software (bare-metal or an OS) running on top of
the platform, and the redundancy configuration is done according to the criticality levels of
the tasks, or the processes in the case of the OS. This strategy, together with the hardware
mechanism for fast FUs management, are the main contributions of this thesis, in which
I aim to reach a platform that can increase and decrease, on-demand, its fault tolerance
against soft errors (e.g., Single-Event Upsets (SEUs)), and at the same time, minimise power
consumption and ageing while the platform is not performing any critical work.

1.2 Structure of this Thesis

After this introduction, the remaining chapters of this thesis are organised in such a way
that Chapter 2 presents a review of the topic’s state of the art. First, a background section
reviews the main concepts and terms linked to this thesis. Thereafter, methods to handle
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reliability problems are shown, which goes from deep hardware to software and OS based
methods.

In Chapter 3 the design concept for run-time management of processor internal FUs is
presented. Targeting the mixed-critical scenario, this chapter shows the advantages of this
fine-grained concept, as well as the possible foreseen configurations through the units. It also
shows how a software (bare-metal or an OS) running over the intended platform can use the
criticality information to enable or disable replication schemes of units towards improved
trade-offs between fault tolerance, hardware overhead, and power consumption. Following this
concept chapter, the details of the implemented test platform are presented in Chapter 4.

In Chapter 5 the implemented test platform is evaluated regarding its fault tolerance, hardware
overhead, latency for the run-time configuration of the FUs, ageing, and power consumption
incurred by the concept implementation.

Finally, Chapter 6 presents the concluding remarks about the whole approach. It evaluates
the advantages and disadvantages of the presented concept within the intended mixed-
critical scenario, and highlights whether the aforementioned objectives have been achieved.
Furthermore, as future work, it also shows a preliminary study on the applicability, as well
as its advantages, of this concept for a standard superscalar processor design.
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CHAPTER 2

Domain Analysis

Since More’s law started to set the pace of the electronics industry, and reliability problems
started to emerge, a huge number of methods tackling these problems have been proposed.
Techniques to improve fault tolerance can be found in all layers of electronic systems, from
methods using low-level physical effects of electronic components, to high-level pure software
approaches. In the next sections, we will first introduce and review important concepts, and
later on, we will review the most relevant methods for fault tolerance within the context of
this thesis.

2.1 Background, Concepts and Terminology

2.1.1 Dependable and Fault-Tolerant Computing

According to Avizienis et al., dependability of a computing system ‘is the ability to deliver
service that can justifiably be trusted’ [5]. Alternatively, also by the same author: ‘the
dependability of a system is the ability to avoid service failures that are more frequent and
more severe than is acceptable’ [5]. The service is the behaviour as it is perceived by the user;
a user is another system, physical or human, that interacts with the first; and finally, the
function of a system is what it is intended for according to the system specifications [5].

A system delivers correct service when it implements its intended functions or behaviour.
A failure is an event when the delivered service deviates from its correct service. A failure
is usually a consequence of one or more deviations from the correct service system states.
Such a deviation is called an error. Finally, the cause of an error is called a fault. If the fault
becomes an error the fault is active, otherwise, it is dormant [5]. For example, if a charged
particle hit an electronic device and generates a glitch or a fluctuation in its internal signals,
we have a fault, if this wrong value propagates through the logic in such a way that it is
saved in a register (flip-flop) or a memory cell, then the fault becomes an error. In case this
error causes a wrong calculation or a system misbehaviour, the system fails to deliver its
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intended service, thus, a system failure. These failures can have multiple consequences, which
can range from a simple calculation error to a total system break-down, in which the system
stops working completely.

Regarding the ability of the system to attain dependability, a system is called fault-tolerant
when it can avoid service failures in the presence of active faults (errors) - the ability to
tolerate errors [5]. This ability can be intrinsic to the system, but it is usually enhanced
with fault-tolerant methods to detect errors and correct them before generating a failure.
Sometimes, these fault-tolerant methods can correct errors, but the system service suffers
consequences, such as delaying its response to its intended service. Since this delay is planned,
we do not call it a failure, but in these cases, we say that we have a degraded service.

The usual metrics to measure the dependability of a system quantify the time between correct
and incorrect service. The availability of a system measures the time between failures, and
the reliability measures the time to failure. The difference between these two metrics is that
the last one considers the time at the beginning of the lifetime at instant zero (t = 0) [5].
Therefore, we can say that the reliability R(t) of a system is the probability that it will
deliver the correct service in the time interval [0, t], given that it was performing correctly at
instant zero (t = 0).

2.1.2 Soft Single-Event Effects

Faults and subsequent errors can appear on any electronic device. This thesis tackles problems
specifically concerning soft Single-Event Effects (SEEs). Soft SEEs are events induced by a
single radiation event [8], they are usually called soft errors in the literature, and they are
called soft because the event does not cause permanent damage to the silicon of an electronic
device, thus not a permanent error [8].

Soft errors can happen either in space or on Earth at ground level. In space, charged particles
such as protons and alpha particles, and at the ground level, particles such as neutrons can
hit the silicon area of an electronic device and accumulate enough energy to change or flip
the logic level of a design element [8].

In regards to the ground level, highly energetic cosmic rays interact with the Earth’s
atmosphere and produce a complex cascade of nuclear reactions. In this cascade of reactions,
secondary particles are produced, these secondary particles react again with the atmosphere
creating tertiary particles, and this process continues until these particles reach the Earth’s
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ground. It is mostly the sixth generation of particles, which represents less than 1% of the
primary flux, that will reach the sea level where this flux is composed of muons, protons,
neutrons, and pions. The neutrons are the ones with higher flux, and because neutron
reactions with the silicon nucleus release ions with significantly higher energy, they are
the most likely particles to cause effects in the silicon of electronic devices at the ground
level [8, 32]. According to the Joint Electron Device Engineering Council (JEDEC) in its
technical report JESD89A, it is expected that neutrons hit the Earth’s ground at a rate of
13neutrons/(cm2 ∗ h) at sea level [48]. Therefore, taking into consideration the enormous
amount of electronic devices of today, exceeding the billion mark scale as reported by the
International Roadmap for Devices and Systems (IRDS)™ on its 2021 report [42], such a rate
can not be neglected.

When such a particle hits the combinational logic of an electronic device, it can cause a
glitch or a temporary fluctuation in the logic value of a signal, thus generating a Single-Event
Transient (SET). Furthermore, when these particles accumulate enough energy to change
the state of, or the induced transient value is captured by, a logic device such as a latch, a
flip-flop or a memory cell, we have a Single-Event Upset (SEU) [8]. These soft effects are the
ones tackled in this thesis.

2.1.3 Mixed-Critical Systems

Criticality is the level of assurance against failure needed by a certain component of the system
[99]. A mixed-critical scenario is one with multiple components (e.g., tasks or processes) of
different criticalities running on a common hardware platform. A big portion of common
and complex safety-critical systems of today - such as the automotive and avionics industry
- are evolving into mixed-critical systems. Such evolution is mainly motivated by non-
functional requirements such as power consumption, cost, and device area [12]. Furthermore,
software standards, such as the AUTOSAR from the automotive industry [4], do address the
mixed-critical domain.

Regarding the different levels of criticality, errors can cause different consequences within
the safety-critical systems. Moreover, errors can cause dangerous consequences not only
to the device’s integrity but also to its surrounding environment and people. Therefore,
standards regulate minimum safety requirements within this application domain (e.g., IEC
61508 [38], DO-178C [16], DO-254 [17] and ISO 26262 [44]). For instance, the ISO 26262
rules the automotive industry regarding functional safety. It states different levels of safety
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requirements - the Automotive Safety and Integrity Levels (ASILs) - with minimum failure
rates according to parameters such as severity, time of exposure, and controllability of hazards.
For example, systems like airbags, anti-lock brakes, and power steering require the highest
degree of safety assurance because the risks associated with their failure are the highest. On
the other hand, components like rear lights fit into the lowest level of safety requirements
[94].

2.2 Basic Background on CMOS Transistors

Before looking into very specific details of electronic devices, it is important to explain
the basic element that forms these electronics considered in this thesis: the Metal-Oxide-
Semiconductor Field-Effect Transistor (MOSFET), or only MOS, for short. This is the
main transistor type used in electronics of today, and in its majority, the Complementary
MOSFET (CMOS) technology is used. Such technology uses the two complementary types
of devices, the p-type MOSFET (PMOS) and the n-type MOSFET (NMOS).

Simplifying the understanding of these devices for simple switches, once a certain voltage level
is applied to the gate terminal, current starts to flow between its source and drain terminals
(a fourth terminal may also be present, and it is connected to the body of the device).

Figure 2.1 illustrates the two CMOS devices with their terminals and their main relational
voltages, as well as their operating modes depending on the voltage applied to their terminals.
To behave as an ON switch, the modulus of the voltage between the gate and source (|VGS |)
terminals must be higher than the modulus of the threshold voltage (|Vth|) of the device.
Here the transistor is on its linear regime, so the current in the drain node (ID) is linearly
proportional to the modulus of the voltage between the drain and source terminals (|VDS |).
On the other hand, it is on its OFF (cut-off ) state, when |VGS | is lower than the |Vth|,
therefore the drain current is ideally zero. Furthermore, once the |VDS | reaches a certain
value, the transistor enters on its saturation mode. This means that the ID saturates, and
even if increasing the |VDS |, the current will remain ideally the same.

Please, note that the behaviour just described is regarding an ideal transistor. In real
transistors, leakage currents are observed even when they are in the OFF state. However,
this analysis goes beyond the scope of this thesis.
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Figure 2.1: Illustration of an NMOS and a PMOS transistor and their operating modes.

2.3 Background on Ageing of Integrated Circuits

Among the many effects and physical phenomena that increase ageing in a transistor, the
most prominent ones that cause ageing by decreasing the switching speed of transistors are
the Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI). These two effects
are particularly of interest because they gradually increase the transistor’s threshold voltage -
the necessary voltage applied to the transistor’s gate pin starting the current flow between its
source and drain pins -, therefore, decreasing the switching speed of the affected transistors,
and consequently, the design in which they belong.

In the remainder of this section, the BTI and HCI effects are explained, and how these relate
to ageing and the lifetime of electronic circuits.

Hot Carrier Injection

HCI is a phenomenon in which charge carriers with high kinetic energy (hot) travelling
through the transistor channel gain enough energy to be injected (or collide with other atoms
generating further particles that can be injected) in the dielectric layer of the transistor’s
gate (the gate-oxide). Such a phenomenon alter permanently the properties of the affected
transistor, in particular, it increases the modulus of its threshold voltage (|Vth|) [1, 62, 92].

These highly energetic carriers are caused by strong electric fields in and around the transistor
channel created by the potential difference between the transistor’s drain and source. While
in the linear regime this electric field is very small, in the saturation mode this electric
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field is very strong, therefore, the HCI effect becomes very prominent in this mode, causing
irreversible effects in the affected transistor [92].

In CMOS based electronics, during normal operation, the transistors enter, for a short time,
in saturation mode when the output of its respective gate is switching its logic level [57].
Therefore, the HCI effect is strongly related to the number of transitions (switching frequency)
observed in the output pin of the corresponding gate of the evaluated transistor. Furthermore,
the generated electric field in the transistor, and therefore the HCI effect, are also strongly
related to the temperature and the supply voltage.

Bias Temperature Instability

BTI is a physicochemical phenomenon that causes wear out of transistors by affecting their
threshold voltage. As its name says, it is a phenomenon caused by a certain bias in the
transistor state and intensified by higher temperatures. It can be divided into two similar
phenomena: Positive Bias Temperature Instability (PBTI) affecting the NMOS transistors,
and Negative Bias Temperature Instability (NBTI) for the PMOS transistors [51]. Although
the BTI effect is now known for years, the entire underlying physical and chemical processes
are not completely understood. Since this phenomenon is happening inside transistors at
the nanometer scale, it cannot be directly observed, and only indirect explanations based on
measurements are available. These indirect explanations are very debated in the community,
but the two of them, based on the trapping-detrapping [98] and in the reaction-diffusion [101]
processes, are the most accepted by the community [91].

In both theories, the BTI phenomenon can be divided into stress and recovery phases. The
stress phase happens when the transistor is in the ON state, which means that current is
flowing in the linear regime between its drain and source pins. In this situation, among
various physicochemical processes, the modulus of the threshold voltage (|Vth|) of the affected
transistor increases. On the other hand, when the transistor is in the OFF state, we have
the recovery phase. In this phase, the process that happened in the stress phase affecting
the transistor’s threshold voltage can be partially recovered, thus getting almost back to its
previous threshold voltage condition. However, as it was just mentioned, the transistor is
not fully recovered in this last phase, which causes the long term effects on the transistor
operation, increasing the base level of its |Vth|. Therefore, the threshold voltage shift in the
BTI effect is very dependent on the duty cycle between these stress and recovery phases.
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Finally, it seems to be a consensus in the community that the trapping-detrapping process is
responsible for the large and very fast modifications in the threshold voltage during stress
and recovery phases. Meanwhile, the reaction-diffusion process is responsible for the gradual
and long term effects [31], which are the ones of concern in this thesis.

Path Delay in Electronic Circuits

Combinational logic circuits are the ones with the property that at any point in time, the
output of the circuit is related to its current input signals by a certain Boolean expression.
These circuits are essentially formed by digital gates such as NAND, NOR and INV [78], and
multiple different paths are possible from its inputs to output signals. Each of these paths goes
through different gates, and each gate has its own propagation delay - the minimum time a
signal must hold its state on the input pins of a gate so that it propagates thoroughly, reaching
its outputs. Therefore, each path has its particular propagation delay based on the sum of
the delays throughout its multiple gates, among also other factors such as wires/connections
length. This path propagation delay is, sometimes, simply called as path delay. And the
path throughout a combinational logic with the biggest delay is called the critical path of an
electronic circuit.

In clock-driven electronic designs, the critical path delay plays a big role. Since the clock
period determines the amount of time a signal will hold a certain value, this period should be
at least as big as the critical path delay. Therefore, it is possible to say that the critical path
delay, basically, determines the maximum operating frequency of a clock-driven electronic
design. In the case of a processor core, the critical path is most likely located in between its
pipeline stages, and its operating frequency will be optimised to reach (usually with a certain
positive margin) the time required by this critical path delay.

From Path Delay to Ageing and Lifetime

Finally, effects caused by the BTI and HCI phenomena mentioned above can increase the
threshold voltage, and consequently, decrease the switching speed of transistors, therefore,
increasing the propagation delay of gates, and paths in which these affected transistors are
included within a digital electronic device.

Since the path delay is strongly related to the maximum operating frequency of a clock-driven
electronic device. In case the delay of a degraded path (e.g., affected by BTI and HCI)
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surpasses the clock period, it can directly affect the functioning of the device. Therefore,
further techniques are needed to keep the electronic device, such as a processor, working. For
example, in case of appropriate technology is available, it is possible to decrease the operating
frequency of the processor, or the particularly affected block. As a result, the critical path
delay can, again, fit within the clock period. However, such a decrease in frequency would,
consequently, lead to performance degradation of the device. Furthermore, other techniques
are also available to tolerate such an increase in the delay of critical paths [27, 30, 52, 64, 66].
However, in case none of these techniques is implemented, such a situation can potentially
result in an end of life of the whole device or, at least, of the respective affected electronic
block.

To Conclude

It was possible to notice that BTI and HCI phenomena do increase the |Vth| of transistors
depending on various parameters, but most importantly, on temperature, supply voltage,
switching frequency, and duty cycle. Some of these parameters are very dynamic and payload
dependent at run-time. For example, the individual switching activity and the duty cycle
of the internal transistors of a circuit can be very different from the global clock frequency
and duty cycle. Therefore, the degradation effects caused by these two phenomena can vary
for different payloads, and directly affect the maximum operating frequency of electronic
circuits shortening their lifetime, or, at least, decreasing performance. Hence, the study case
presented in this thesis on its respective ageing evaluation (Section 5.5).

2.4 State of the Art Analysis

Methods to increase fault tolerance are found at different levels throughout the electronic
systems stack. The next sections will go through these levels and present standard techniques,
as well as the ones most relevant to the domain of this thesis.

2.4.1 N-Modular Redundancy

Back in the 1950s/60s, John Von Neumann envisioned the use of redundant system modules
to make systems tolerate faults. He first proposed the Triple Modular Redundancy (TMR), a
scheme with triplicated system modules and an additional voter (Figure 2.2a). The working
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principle of this scheme is that in case one of the modules produces a wrong output, the other
two modules will likely remain working correctly and produce correct results on their output
signals. Therefore, this enables the voter to filter out the wrong result by majority voting,
and propagate only this value produced by the other, supposedly non-faulty, two modules.
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(a) TMR scheme as it was envisioned
by John Von Neumann.
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(b) TMR scheme with triplicated
voters.

Figure 2.2: TMR schemes.

The internal logic of a very simple voter is shown in Figure 2.3, the AND ports only produce
logic level one on their outputs when their both two inputs have logic level one as well,
otherwise, they produce logic level zero on their outputs. The OR port produces logic level
one on its output when any of its three inputs are in logic level one, it will only produce
logic level zero when all of its three inputs are in logic level zero as well. As explained before,
the voter is capable to filter out one input signal that is not matching the other two inputs.
Figure 2.4 shows two examples of non-matching inputs, the intermediate values, and the
respective output values. Note that the output signals follow the rule just mentioned, filtering
out the non-matching value of the inputs. Furthermore, Table 2.1 shows the complete truth
table for all possible digital inputs and their respective output values for such a voter. A
similar TMR scheme with triplicated voters is also proposed in the literature (Figure 2.2b).
This one is based on the same principle as the simple TMR, but, in this case, a fault in one
of the voters would also be covered by the triplication scheme [58].

In1 In2 In3

Output

Figure 2.3: The internal logic of a simple voter.
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Figure 2.4: Examples of a non-matching input and its respective output value.

Table 2.1: The truth table for a general three inputs voter.
Input 1 Input 2 Input 3 Output

0 0 0 0

0 0 1 0

0 1 0 0

1 0 0 0

0 1 1 1

1 1 0 1

1 0 1 1

1 1 1 1

Since the first TMR scheme was envisioned, multiple schemes using redundancy have been
proposed to increase the fault tolerance of electronic systems. Variations such as Double
Modular Redundancy (DMR), with only duplicated modules plus a comparator, enabled fault
detection instead of correction, but with less overhead. Therefore, the name of the technique
was generalised by some authors to N-Modular Redundancy (NMR), where N stands for the
number of replicated modules.

Regarding the replication of modules, not only spatial but also temporal replication is possible.
For example, in the spatial model, the voter is mostly done in hardware and the physical
components are replicated (e.g., transistors, flip-flops, processor units, and cores). Therefore,
the spatial replication has hardware area as its main penalty, and a very low, if any, execution
time overhead. Furthermore, because of the physical replication, this scheme would continue
working in case one of its redundant modules becomes permanently faulty. On the other hand,
in the temporal replication schemes, instead of replicating the hardware modules physically,
the calculation is the one performed redundantly over the time, one after the other, using
mostly the same hardware. In this case, the control of the replication is usually done in
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software with no dedicated hardware to perform the majority voting. Therefore, the temporal
approaches present a much lower area penalty, if any. In contrast, since the replication is
distributed over time, these schemes usually result in a bigger execution time. Moreover, the
temporal scheme would stop working in case its only one physical module becomes faulty,
thus, a redundant scheme that does not protect against permanent faults.

In the work presented in this thesis, the spatial replication scheme is used. It means that
this work benefits from the very low execution time overheads and, although not the main
goal tackled in the thesis, from the protection against permanent faults.

2.4.2 Pure Hardware approaches

Pure hardware approaches for fault tolerance are found in many levels of granularity. From
transistor and gate-level approaches, to complete processors with multiple fault-tolerant
techniques applied to their components. At transistor and gate-level, for example, optimised
versions of flip-flops were designed for better resilience against ageing effects (such as BTI)
and supply voltage fluctuations. These flip-flops were then integrated into an electronic circuit
design replacing only its most critical flip-flops (e.g., time-critical flip-flops on the design’s
critical path) [30]. Still in the same abstraction level, a multiple-input hysteresis flip-flop
(usually called C-Element), whose one output only changes when all of its inputs agree, is
used to increase fault tolerance over electronic designs. Although it was originally used in
the design of asynchronous circuits, in combination with a delay line and a comparator, it
can be used to detect and correct SETs, and also to detect increased propagation delays of
the logic in front of the C-Element [52, 64, 66]. Once more at gate-level, a flip-flop based
datapath was converted into a two-phased latch based one [27]. Targeting the detection
and correction of timing errors (possibly caused by ageing), as well as avoiding hold time
issues and enabling larger speculation windows, the authors replaced each flip-flop of the
pipeline using two-phased latches. These latches are phased with each other in such a way
that when one latch is open, the other two proximal ones (the preceding and the previous
one) are already closed. Such a replacement enabled an increase in the speculation window
for possible late signals to reach the open latch throughout the current datapath. Therefore,
possible and eventual timing errors in the propagation of the signals through the datapath
are corrected. However, although these methods do improve fault tolerance, they are usually
static, and no optimisation can be performed at run-time.

Another common method to make electronic designs tolerate faults and correct errors is
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the use of Error Correction Codes (ECCs) on storage elements such as memory cells and
registers. ECC methods can be embedded directly into the memory devices, or also into
the control logic of processor designs. For example, the fault-tolerant versions of Leon3
and Leon4 processors have Error-Detection and Correction (EDAC) units that use ECCs to
correct possible errors on their internal buffers and registers [28]. Once more, ECC is usually
applied permanently to storage elements within processor designs. Therefore, there is usually
no dynamic configuration of modules.

2.4.3 Software Approaches and Dependable Operating Systems

Going further in the electronic systems’ stack, we can find software-based methods for fault
tolerance. In this domain, stand-alone approaches work independently of an Operating
System (OS) for example; or also other approaches that are applied directly into the kernel
of OSs and other ones that simply run on top of it as user applications.

In the work developed in [79], the authors developed a replica-aware co-scheduling mechanism
for mixed-criticality systems. Such a mechanism explores the co-scheduling to provide short
response times for replicated tasks without affecting the remaining unprotected tasks. The
co-scheduling consists of scheduling interacting tasks/threads to be executed simultaneously
in different cores, which allow these to communicate more efficiently by reducing the waiting
and blocking time during synchronisation. Therefore, the time needed for synchronisation
and comparison of the replicated tasks is reduced. A specialised layer is introduced in the OS
to manage these replicated executions and the check-pointing and rollback of the protected
applications [18]. Therefore the replication turns to be transparent to the applications, and
the Processing Elements (PEs) (e.g., the processor cores) can just perform the computations
of the assigned tasks as usual. Furthermore, with such a system the applications that are not
critical can simply run as usual tasks/threads without the need to be co-scheduled.

Regarding fault-tolerant OSs, there is a good amount of work done and literature proposing
different approaches and systems. For example, professor Tanenbaum and his chair have
developed Minix 3, an open-source OS designed to be very reliable [35]. A part of other
components for processes monitoring, it is mainly based on the microkernel approach that
only a tiny portion of the system is running in kernel mode, and the rest of the OS runs as
isolated and protected processes in user mode, in which an error would not compromise the
whole system, but only its own process [35]. Therefore, it considerably decreases the time
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spent on sensitive software in which an error could potentially endanger the whole system
activity.

In the work [36], the authors proposed the dOSEK, a Real-Time Operating System (RTOS)
dedicated to safety-critical systems. It is strongly based on two pillars: strict fault avoidance,
by static tailoring of the kernel towards a concrete application and hardware platform, thus
minimising vulnerable runtime states; and redundancy integration for fault detection and
containment within the kernel execution path, by employing arithmetic encoding to realise
control-flow errors across the RTOS execution path.

Yet, other commercial RTOSs aiming for safety-critical systems can be found, such as the
SAFERTOS [102] and Erika Enterprise RTOS [21]. The most common approaches to avoid
failures in these RTOSs are the following: the restriction of dynamic memory operations,
therefore, avoiding run-time memory problems such as memory leaks and memory overloads;
the manipulation of Memory Protection Units (MPUs) to provide task granular separation of
memory addresses, therefore avoiding unintentional or accidental access to incorrect memory
regions, which can potentially lead the whole system to crash. Furthermore, another usual
feature is the definition of safety cores within a multi-core environment by the RTOS. In
these configurations, the system is partitioned in such a way that the non-safety cores do
not interfere with the safety ones. Thereby, the safety cores can run their safety-critical
functionalities as well as the monitoring and verification of the other non-safety cores, while
these last ones can transparently run any other mundane application.

2.4.4 Dependable Processor Designs

Regarding complete processors, while some designs disable certain internal elements of their
pipeline so that critical instructions spend less time in unprotected internal buffers [47]. Other
works applied a coarse-grained redundancy approach, such as the lock-step processors [41, 46,
89]. These processors have their cores running in parallel and executing the same instructions
redundantly, and an additional combinational logic is responsible for keeping it synchronous,
comparing the core outputs, detecting, and possibly, correcting faults. Further comparisons
with these lock-step processor approaches will be made in the evaluation section of this thesis.
Therefore, Section 2.4.5 goes more into the details of these techniques. Other designs use
dynamic scheduler architectures based on Tomasulo’s algorithm [34]. These designs benefit
from the multiple Functional Units (FUs) available on their architectures so that different
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operating modes are proposed to tackle fault detection and fault correction using double or
triple re-execution of instructions over the processor FUs [67, 68].

In the work [54], the authors proposed a reliability-heterogeneous architecture. This archi-
tecture offers different types of reliability modes in different cores. For this, each core has
different stages of its pipeline hardened with different mitigation techniques for dependability
threats. The final and definitive set of cores of the architecture is defined at design-time and
optimised for the application scenario. At run-time, an adaptive manager is used to estimate
the reliability requirements of the applications and map their threads to a set of hardened
cores.

Still regarding fault-tolerant processor designs, the author of [25] developed a fault-tolerant
processor design based on RISC-V Instruction Set Architecture (ISA). The target of the work
is to enhance the execution stage of the pipeline of the design with fault-tolerant methods.
To detect and correct both transient and permanent errors, the author applied TMR in the
executions units of the design. Furthermore, the author also added a fourth unit allowing the
system to maintain the TMR scheme in case one of the units becomes permanently faulty. In
addition, the voter was modified to not only correct errors but also to detect them, therefore
the scheme can account the number of errors detected in each of the execution units, and
once a predefined threshold is reached, the unit is considered to be in a faulty state. With
such methods, the system can detect and correct both transient and permanent errors, and
track the current state of the execution units. However, no link with higher software levels is
provided.

Complete systems, from software to hardware are also proposed. For example, the authors of
[87] presented a fault-tolerant self-aware platform. A multi-core processor with tightly coupled
monitoring infrastructure. Such infrastructure monitors not only physical parameters (such
as temperature), but it also tackles fault detection and correction in the internal elements of
the processor such as its control registers. Furthermore, a system health map is maintained
with the information provided by the hardware monitors, and an OS running on top, uses
the data from this database to schedule tasks through the cores of the processor design.

2.4.5 Core Lock-Step Processors

Core Lock-Step processors are designs with their cores running in parallel performing the
same computation. The simplest version of this approach is the Dual Core Lock-Step (DCLS)
processors, these are the mainstream solution for terrestrial safety-critical applications, and
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it is possible to find them in many Commercial off-the-shelf (COTS) System on Chips (SoCs)
[3, 95]. The working principle of this scheme is strongly based on the DMR concept, in
which two cores run in parallel redundantly to each other, therefore performing the same
computations redundantly. An extra hardware mechanism is responsible for comparing the
outputs of these redundant cores and issuing an error signal in case these output signals
present different values. In the DCLS scheme, the recovery from detected errors is mainly
done using software approaches with checkpoints and rollback strategies [100]. It means that
assumed error-free checkpoints are created systematically when no difference is detected in
the output of the cores. When a difference is detected, a signal is raised by the fault detection
mechanism, and a recovery process can start rolling back the processor states to the last
saved checkpoint. However, check-pointing and rollback are expensive processes with big
penalties in execution time. Although it is very dependent on the amount of data to be saved
in the checkpoints, recent work shows execution time overheads ranging from 17% to 53%
[74]. Furthermore, the recovery process of rolling back the processor states may also vary,
but, depending on the architecture and the amount of data to be retrieved, it can take up to
a few seconds [82].

Another version of this approach is the Triple Core Lock-Step (TCLS) scheme. Here, instead
of two, there are three cores performing parallel computations redundantly to each other.
Thus, a TMR scheme with a voter is observed across the cores that allows this design to
perform at least fault correction at run-time without bigger penalties in execution time. A
good example of a TCLS design is the one presented by Iturbe et al. [46]. In this design, the
system uses the TMR scheme to correct errors in the output ports of the processor cores.
In this design, the memories are detached from the cores, and every data goes through the
TMR voter before going to the data cache. Therefore such a scheme prevents an erroneous
value to be saved in memory. Furthermore, an additional hardware is responsible to detect
non-matching outputs between the cores, and in the event of an error detection, the processor
can still keep itself running with the remaining cores (the two non-faulty ones) until a proper
time is available to recover the faulty core. Here, the recovery mechanism halts the cores,
saves the internal states of the non-faulty ones, resets them all, assigns the saved states to
the three cores and resumes the execution. Because of the TMR, and the detachment of the
caches from the cores, the caches are assumed to be safe from the detected error. Therefore,
there is no need to create checkpoints, and no execution time overhead is expected for normal
operation. Also, in the case of an error detection, the recovery procedure is optimised, because
the cache memories (data and instructions) are decoupled from the cores, only their internal
states need to be retrieved.
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In another variation of these DCLS and TCLS approaches the redundant cores are delayed
(unsynchronised) by a few clock cycles (usually one or two instruction cycles) from each other
(Figure 2.5). In this way, a possible error, caused by a fault event with a smaller duration
than the lockstep delay, affecting both of the cores at the same time would not affect the
very same calculation. Therefore, the comparison, or the majority voting, would still detect
or correct these errors.

Although these approaches present high protection against soft errors, the resulting hardware
overhead is considerably high. Because of the entire core replication and its additional control
logic, plus the recovery procedures, these schemes tend to present an area increase beyond
100% for DCLS and 200% for TCLS. In fact, the TCLS scheme proposed in [46], resulted in
218% of total area overhead, 200% for the cores and 18% for the control logic. Such a large
area overhead tends to increase power consumption, generate more heat, and, as consequence,
increase the ageing of the electronics. Therefore, for most of the application domains, and
especially for embedded systems with power restrictions, such an overhead is very undesirable.
Therefore one of the main goals of this thesis is to decrease the resulting area overhead while
still increasing the fault tolerance of the processor design.
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Figure 2.5: Example of a TCLS scheme with delayed cores.

2.4.6 Very Long Instruction Word and Superscalar Processors

Very Long Instruction Word (VLIW) and superscalar processor architectures present multiple
copies of their execution paths. Usually, each of these execution paths presents multiple
FUs such as Arithmetical Logical Units (ALUs), multipliers, dividers, and others. In the
VLIW architecture, the instruction-level parallelism is provided by these multiple execution
paths. However, these are very simple processors, and there is no logic for dynamic allocation
of instructions over these paths, thus, the instructions must be arranged before run-time
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to enable the desired parallelism. Therefore, these processors have very large instructions
words with multiple individual operations bundled together in only one instruction, and
each operation is then executed by its corresponding execution path (Figure 2.6). These
instructions are created by very sophisticated compilers with very little help, if any, from
the programmer [26]. On the other side, the superscalar processor architectures usually
have multiple components, for instance, register files, instruction queues, reservation stations
and instruction schedulers or dispatchers to enable dynamic allocation of instructions to be
executed in each of the available FUs [34, 93]. The parallelism provided by both of these
architectures is originally intended for performance improvement so that multiple operations
or instructions can be fetched from memory at once and executed in parallel.

However, these architectures can also be used in the strive for fault tolerance. An example of
such a design is presented in [86], in which a VLIW processor architecture is used to enable
redundant execution of instructions by different hardware units. For such a strategy, the
compiler duplicates all the software instructions, and with the help of additional control
bits, schedules each duplicated instruction to a different execution path. Furthermore, the
processor architecture is also extended to enable the comparison of the result of each of these
duplicated instructions, with its original. In case the result does not match, the duplicated
instruction is re-scheduled and executed again, and the third result is used for majority voting.
Therefore, it provides fault detection and correction. However, to achieve such a state, all the
software instructions must be duplicated in memory. Furthermore, the scheduling of parallel
and/or redundant instructions must be arranged by the compiler before run-time, which can
be affected by any change in the state of the hardware during run-time. For example, if one
of the units becomes permanently faulty, the mentioned mechanism can still re-arrange the
execution of the instruction in other units, but at the price of a bigger run-time overhead.

Another example is presented in [68], in which the authors presented a superscalar processor
architecture based on Tomasulo’s algorithm [34]. It uses its multiple functional units not
only for performance purposes but also, to enable redundant execution of operations. When
required, the design can execute the same instructions twice using different hardware units,
later on, the results of these operations are compared. If these results differ, a third execution
of the instruction can be triggered, thus enabling fault correction by majority voting over the
three results.

The problem of these approaches, performing dynamic or static scheduling of instructions for
fault tolerance, is that they do not usually explore the knowledge available at the software
levels, and neither provide a clear way (e.g., a mechanism or an interface) on how to do
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that. This means that high valuable knowledge of the criticality of the running tasks or
processes, usually only available at the higher software levels, is not used for the scheduling
of instructions among the units.

To conclude, taking into consideration the multiple functional units already available in the
superscalar processor architectures, these turn out to be good candidates for the approach
proposed in this thesis (further evaluation on this is presented in Chapter 6, Section 6.1).
Furthermore, this thesis still pushes the state of the art by proposing an approach in which
the criticality knowledge available from the higher software levels is used to organise at
run-time the execution of instructions over internal processor FUs. Thus, evolving from
the VLIW architecture based schemes enabling a run-time strategy for FU allocation. And
from the usual superscalar based approaches enabling software level decisions regarding the
allocation of units.
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Figure 2.6: A simplified representation of a VLIW processor architecture with its multiple execution
paths and bundled operations.

2.5 Summary

As it can be seen, fault tolerance is a topic that has been evolving together with electronics
for decades. As more complex electronic systems tend to be, more robust and well planned
the fault-tolerant methods must be. Therefore, there is a good portion of work already done
in most of the known subtopics. However, new methods are continuously needed as hardware
technologies continue to evolve. Furthermore, regarding hardware and software, most of

26



2.5 Summary

the approaches stay in their own domain. Thus, the hardware and software approaches are
usually very separated, or not well integrated and evaluated.

Although improving fault tolerance using redundant modules is a common technique, not
many approaches have tried to go at the level of processor internal units. Furthermore,
from the best of my knowledge, I have not seen approaches providing redundancy at this
level and enabling run-time software control of the desired redundancy scheme, therefore,
providing means to avoid unnecessary power consumption and hardware wear out. If so, no
proper evaluation on this was given. Hence, the approach presented in this thesis proposes a
design concept, with a hardware infrastructure and software extensions, to enable run-time
management of multiple (redundant or not) internal processor FUs (e.g., ALUs, multipliers
and shifters).
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CHAPTER 3

The Design Concept for Functional Units
Management

As introduced in the first two chapters of this thesis, the technology of electronics is constantly
evolving reaching feature sizes of 3nm and below. As more complex and smaller an electronic
system becomes, the more prone to fail it tends to be. Most likely because effects such as Bias
Temperature Instability (BTI) and Hot Carrier Injection (HCI) become more prominent, and
also because of new computing paradigms such as lower supply voltages, and near transistor
threshold operation, less energy is necessary to change the electric charge (digital value)
stored in memory cells, logic latches, or flip-flops. Consequently, particles hitting the silicon
of an electronic device can easier cause a bit-flip in its logical components [8]. Therefore, the
fault-tolerant methods need to evolve together with the electronics, and new methods and
strategies are needed to overcome the challenges these new technologies impose.

Within the safety-critical domain, earlier applications could rely on more reliable and con-
solidated technology with bigger feature sizes (e.g., 130nm and 90nm). However, as the
applications within this domain have also evolved, computation power has been required as
never before. Therefore, migrating to these new technologies and creating new methods to
overcome the vulnerabilities of these electronic devices are current issues. At the same time,
it is not unusual that embedded systems need to deal with limited power, which is also true
for most safety-critical systems. However, in this context, the power constraints and the fault
tolerance requirements may work against each other. In other words, the design may need to
spend more power to increase its fault tolerance (using Triple Modular Redundancy (TMR)
for example), however, as a power-limited system, it is desirable to save as much power as
possible. Therefore, a compromise between these parameters is usually required.

Taking this into account, the following research question guides the remainder of this
thesis: How can we increase the fault tolerance of an electronic system based
on a processor design without fully triplicating its power consumption? Is it
possible to manage the system elements, according to the application demand,
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and optimise run-time parameters such as fault tolerance, power consumption
and hardware degradation (ageing)?

To answer this question, this chapter introduces the concept of processor internal units
management, in which fault tolerance can be improved at run-time as the system demands.
Furthermore, when no improved fault tolerance is needed, the system can disable unnecessary
internal units, therefore avoiding unnecessary power consumption and ageing.

3.1 The Fine-grained Management Concept

The main idea of this concept is to enable run-time management of available Functional
Units (FUs) (spares or not) - such as Arithmetical Logical Units (ALUs), multipliers and
dividers - towards improved trade-offs between fault tolerance, power consumption, and
ageing. In this concept, the management of the available units is done by a software (bare-
metal or via an Operating System (OS)) running over the platform, which can take into
account parameters such as the criticality of running tasks (or processes in case of the OS),
increased susceptibility to faults (e.g., due to ageing), increased fault rate, and health state
of monitored units.

Other approaches do offer such a level of units management. However, it is usual that these
strategies are not available at run-time, or they add a high overhead in execution time. One
of the main properties of my approach is the fast and easy management of units at run-time.
Among different possibilities to reach these mentioned properties, very specific design and
implementation decisions were made. First, instead of using memory mapping, the Instruction
Set Architecture (ISA) of the processor design, and consequently its microarchitecture, was
extended enabling the desired run-time management of FUs. More about this decision, as
well as its implementation details, will be given in Chapter 4.

Second, since the configuration is performed only over the FUs, and, as it is usually the
case for any other processor design, these units are not used as storage elements within the
pipeline (e.g., registers or memory). Thereby, it is expected that no other pipeline stage
will access any data stored within the FUs for the upcoming instructions. Consequently,
there is no need to clear registers and neither to flush the processor pipeline to migrate
from one unit to another. Furthermore, in case of any data or control hazard, it will be the
case that a resulting value of a calculation performed by the FUs is needed in the preceding
pipeline stages. However, the needed value is forwarded to other pipeline stages only after the
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FUs, this pipeline connection is usually done only in the stage that follows the Instruction
Execute (EX) stage. Therefore, such a connection would not prevent, and neither affect the
flexibility of the desired configuration at the FUs. Thereby, the configuration process takes
the same as any other simple instruction of the processor: one instruction cycle.

The fast management of FUs enables a broad applicability scenario. For example, in very
seldom cases in which a system may be subjected to an increased rate of faults (e.g., due to
an increased rate of particles hitting its silicon), replication schemes of units can be enabled
to increase its run-time fault tolerance. Furthermore, it is also possible to enable/disable
replication schemes within very fast loop bodies of programs, in which the result of a very
punctual calculation may need to be assured by increasing the design’s fault tolerance.
Moreover, while configured with no redundancy, load balancing can be performed over the
available FUs replica, therefore enabling wear levelling strategies on these units. Last, but
not least, because of the multiple redundant FUs available, permanently defective units can
be masked out, however, at a cost of a reduction of the possible redundant schemes. Further
discussions on these topics are going to be presented in the next sections of this chapter.

Essentially, the idea is to enable a processor design with redundant schemes among its
internal FUs, and, with a run-time capable management mechanism, enable and disable these
units to configure triple, dual, or none redundancy. Therefore, providing error correction,
detection, or none, respectively. With this concept in mind, the management mechanism can
provide different configuration schemes, which are going to be explained in Section 3.1.1 that
follows.

3.1.1 Units Configuration Schemes

This section explains the main capabilities of the proposed design. In essence, it is possible
to manage, at run-time, the internal FUs of the platform to increase fault tolerance or avoid
its unnecessary usage. Therefore, it can minimise ageing and power consumption, or also
enable the load balance over the available units.

A processor design has usually multiple types of FUs such as ALUs, multipliers, dividers,
and Floating Point Unitss (FPUs). For the matter of understanding, in the remainder of
this chapter, I will refer to FU as a group of one unit of each type available in the processor
design. As it can be seen in Figure 3.1, there are essentially three major schemes in which
the units can be configured, and other minor variations within each scheme also. Therefore,
the schemes are the following:
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Figure 3.1: Run-time management capabilities of the design.

• Single Unit Mode (SlMode) Scheme

In this scheme, only one FU is enabled at a time. Therefore no replication scheme
is enabled, neither fault detection nor correction is enabled. For that, the hardware
modules responsible for comparison and error detection/correction are transparent
performing no function in this scheme.

This scheme can be used to avoid unnecessary power consumption, since all redundant
units are disabled, it is expected that this mode will consume the least. However, at a
price of decreased fault tolerance.

Furthermore, although only one FU is used at a time, it is still possible to perform load
balancing throughout the units. Therefore, with a proper algorithm, interchanging the
unit that is being used, it is possible to keep the usage of all available units at a similar
level. Such an algorithm can be either agnostic to the usage of the units, scheduling a
random unit to be used every time window (or every configuration’s switch), or it can
actually monitor the usage time of each unit, and schedule the units to balance their
usage.

Finally, for future improvements, and if supported by the processor architecture, this
mode can also be used for performance improvement by enabling the FUs in parallel.

• Double Modular Redundancy (DMR) Scheme

In this scheme, two of the FUs are enabled at a time. Therefore, the dual replication
scheme is enabled, which enables error detection through Double Modular Redundancy
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(DMR). For that, the hardware modules, responsible for comparison and error detection,
consider the output of these two units and detect any difference between them.

This scheme can still be used to avoid unnecessary power consumption since only dual
redundancy is enabled, it is expected that this mode will present medium consumption.
However, no error correction is provided here, but only detection. Therefore, this is an
intermediary configuration scheme, because, although its error detection capability may
be enough for some applications, it can also be used with other strategies, supported by
software mechanisms, for error correction on demand. Such strategies will be explored
more in detail in Section 3.5.

Furthermore, although two FUs are used in this scheme, it is again still possible to
perform load balancing throughout the available units.

Again, if supported by the processor architecture, this mode can also be used for
performance improvement by enabling the remaining FUs for parallel execution.

• Triple Modular Redundancy (TMR) Scheme

In this scheme, all three FUs are enabled. Therefore, the triple replication scheme is
enabled, which enables error correction through TMR. For that, the hardware modules,
responsible for the majority voting and, thus, the error correction, consider the output
of these three units and propagate only the value that wins the voting.

This is the scheme in which power is used the most, and all the units are under stress
of usage. However, since this scheme is actually intended for improved fault tolerance,
its price is acceptable once it is reserved only for the cases in which, for instance, the
criticality of the running application is at the highest level. Therefore, the extra power
expenditure is justified.

In case there are only three FUs available for management, no load balancing is possible
in this scheme. However, in case other spare units are available, load balancing would
again be possible using these extra units. Likewise, the same logic would apply to
possible parallel schemes for performance improvement.

It is important to notice that the non-used units in each scheme can be disabled in different
ways. They can, for example, remain active (no clock and neither power gating) but with
their inputs forced to a low logic level, therefore performing no computations. Another
possibility is to apply clock-gating [15] and deactivate the input clock of the non-used units.
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However, it depends very much on the processor design, whether clock gating is possible (or
not) at the intended level for the intended units. In both cases, although not at the same
amount, power will be saved by disabling the non-used units.

Regarding power gating, the reactivation (warm-up) time needed to stabilise the voltage
level through a disabled circuit block, would increase considerably the latency to change
between the proposed FUs schemes, hence, not desirable. However, power gating could be
implemented if more than three units are available. Therefore, a fourth spare unit could,
for example, be gated out of the power minimising its power consumption while not in use.
Another possibility would be if it is known that certain units will remain inactive for a
minimum amount of time. Therefore, it would be possible to enable the power on these units
beforehand so that once needed they are already ready to use without warm-up delays.

3.2 Units Management within an Operating System with Multiple
Processes and Criticalities

Let us assume we have the mixed-critical scenario just as presented in Section 2.1.3, and our
scenario is based on an OS running multiple processes, each one with a different criticality.
The idea is to embed this criticality information into the processes data-set of the OS, and
using a proper hardware management infrastructure based on the concept from Section 3.1,
manage the processor FUs according to this parameter. With this new criticality parameter,
the mechanism of the OS to switch processes was modified to, before releasing a new process
for execution, enable the proper scheme of the FUs according to the criticality of this upcoming
process. As a result, the desired criticality-aware management of FUs for mixed-critical
processes within an OS is enabled. The implementation details to enable an OS with this
FUs management mechanism at processes granularity will be explained in the Section 4.3.

Regarding the redundancy scheme attributed to each criticality level, essentially, the user can
configure the desired scheme for the actual criticality levels within the system. However, in
general, the most critical processes and everything executed in kernel context (OS functions),
should run using the TMR scheme. On the other hand, the least critical ones should
be configured to use only one FU at a time (the Single Unit Mode (SlMode)). Finally,
intermediate critical processes can be customised using DMR. Because of the fault detection
provided by this scheme, with an additional implementation, this arrangement can work
together with strategies for instruction re-execution on-fault-detection. Such strategies can
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potentially correct faults by including pipeline rollback and execution rescheduling of the
instructions whose results differ in the DMR module. In case these strategies are implemented,
further timing analyses would indeed be necessary to make sure that there is no change in
the real-time characteristics of the system. Section 3.5 explores these possibilities in detail.

After all, it is expected that very few and punctual modifications would be necessary over an
OS kernel to enable it to control the hardware mechanism for FUs management. Therefore,
these modifications are very feasible and portable for a great variety of systems. In Chapter 4, a
real implementation example using the Plasma Real-Time Operating System (Plasma-RTOS)
is presented, where the few necessary modifications are discussed in detail.

3.3 Further Opportunities for Functional Units Management

Within the mixed-critical context, run-time management of hardware resources to better fit
into the current criticality requirements can help systems to deliver proper fault tolerance
when needed, and also avoid power and hardware resources from being wasted. My concept
enables such a feature at the FUs level. Furthermore, its low latency for the management
of the hardware units opens possibilities to change the unit’s schemes, not only between
processes but also in a multi-granular way. Therefore, two more possible scenarios, in which
my concept would be useful, are explored in the next subsections below.

3.3.1 Functional Units Management within Programs - Loop Bodies and
Algorithms

Once more within the mixed critical scenario, but now instead of changing the unit’s scheme
at process switching time, the idea is to enable and disable redundancy schemes within
processes algorithms, for instance, at loop bodies.

For example, in case a programmer wants to improve the chances that upcoming computations
present no errors, the newly added instructions can be used directly in the program code to
enable, for example, the TMR scheme over the FUs. Once the need for correctness is relieved,
another instruction can be used, still within the same program body, to enable one of the
other possible schemes (SlMode or DMR).
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This scheme is only possible because of the very fast management strategy adopted (Sec-
tion 3.1). With that, migrating between the replication schemes within a program would
increase the execution time by a rate of only one instruction cycle per migration performed.

3.3.2 Functional Units Management at an Increased Fault Susceptibility Zone

Still exploring the system, let us say that at this time, the processes are agnostic to parameters
like criticality and power consumption. However, one would like to run the system as reliable
as possible at some point in time, and avoid unnecessary power consumption whenever high
reliability is not needed. For example, in aerospace applications such as satellites, it is
expected that within the normal orbit there will be zones with a high incidence of charged
particles such as the South Atlantic Anomaly, in which the Earth’s radiation Belts are closer
to the ground [2]. Therefore, a satellite, or any other object or device in orbit, as it passes
over the South Atlantic Ocean, will receive a larger than average dose of radiation, thus
increasing the occurrence of events such as Single-Event Transients (SETs) and Single-Event
Upsets (SEUs). Therefore, an error monitor attached to the FUs can monitor the incidence
rate of these events, and once this rate reaches a certain level, it can be assumed that the
system is passing over this high incidence area.

Monitoring the error rate can be done, for example, using the provided DMR scheme. However,
other schemes and monitors, such as the ones presented preliminary by the author in [23],
can also be attached to the units. Once this error monitor is in place and monitoring the
error rates, an increase in these rates can be detected. In these situations, it can be assumed
that the satellite is entering a zone of high incidence of particles. Therewith, the platform
can enable TMR over its FUs, thus, increasing its fault tolerance. Once the error rate drops
again, the platform can return to its previous scheme, therefore avoiding unnecessary power
consumption and hardware resources.

3.4 Opportunities for Load Balancing over the Functional Units

As it was mentioned in Section 3.1.1, some of the schemes of the design do allow strategies to
perform load balancing over the FUs. In the ones that do not use all available units (e.g., the
SlMode and DMR), it is possible to shift from one unit to another while keeping the same
configuration regarding the redundancy scheme. This shift can be done in a multi-granular
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way depending on the application. For example, in case the platform is running only bare-
metal code, it is possible, for example, to shift from the current units to the others every
time the main loop of the running program reinitiates, or also, even within a loop body.

Another possibility is in case there is an OS running on the platform, the units shift can
be done, for example, every time the OS switches between processes. Similarly to the idea
presented in Section 3.2, every time the system switch between processes, besides being
able to choose the best replication scheme of the FUs, it is also possible to balance the load
over the units and keep the usage of all available units at the same level. For this, different
approaches can be used, for instance, it is possible to simply enable a different unit every
time the unit shift is performed, or also choose the units randomly. Furthermore, in a more
sophisticated approach, it would be possible to, for example, monitor the usage of the units,
and always enable the least used ones, therefore, keeping the usage at a similar level.

Once more, such strategies for load balancing, shifting from currently used units to others,
are only possible because of the very low latency of the management mechanism proposed in
this thesis.

3.5 Design Space Exploration

As it is stated in the previous sections, the proposed design enables run-time management of
redundancy schemes of the FUs, Figure 3.1 illustrates its run-time capabilities. As already
explained in previous sections, it can provide improved fault tolerance through a TMR scheme,
or avoid unnecessary usage of power enabling only a few (e.g., one or two) of its available
units. However, other variations are still possible, and some of them are being discussed in
the next subsections.

DMR and Error Correction On- Error Detection

An example of such variation would be the DMR configuration scheme with strategies for error
correction on error detection. This means that, once an error is detected using the comparator
of the DMR scheme, a strategy for on-demand error correction can be implemented. Such a
strategy can include rollback and re-execution of the instructions which were in the execution
stage of the pipeline while the error was detected. For this, the erroneous result should not
be committed into the memory or registers and the Program Counter (PC) should be rolled
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back by at most one instruction. If the rollback is needed for more than one instruction,
assumed non-faulty checkpoints must be created because it would be very difficult to prevent
erroneous results to be committed into memory or registers. Thus, creating these checkpoints
and retrieving them in case of an error, would result in bigger and undesirable run-time
penalties.

Within this approach, the instruction re-execution can also be explored as, for example,
Figure 3.2 suggests. Once an error is detected for the first time on a specific instruction,
a simple re-execution of this instruction using the very same unit can be performed. In
case an error is detected again in the same instruction, a different unit can then be used,
thus, avoiding any particular problem (permanent or temporary) of the previously used units.
Therefore, in case three units are available in total, it would be possible to change the units
two times, in the second and in the third attempt of execution. Finally, in case the error
still persists, a re-execution using the full TMR scheme can then be done, thus minimising
the possibility of a new error. Furthermore, these re-execution possibilities can be explored
according to the criticality level of the processes. For example, if one needs to guarantee that
the instruction must be corrected within, at most, its second attempt, the TMR must be
used in this attempt to avoid extra latency. Otherwise, the other options just explained can
be explored to avoid unnecessary usage of hardware units.

1st attempt

2nd and 3rd attempt

2nd or 4th attempt

Error detected!

Simple instruction re-
execution

(same unit)

Instruction re-
execution using

different unit

Instruction re-
execution using TMR

Running...

Figure 3.2: Possible instruction re-execution strategy once an error is detected.

These multiple attempts of error correction at run-time can potentially affect the real-
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time characteristics of a system. For example, while no error is detected, no extra time
is needed, but in case an error is detected, additional time is necessary to re-execute the
required instructions. As a consequence, it can potentially lead to run-time variation (jitter).
Therefore, in case implemented, further analysis must be performed in this regard. However,
for a worst-case analysis, the fourth attempt can be considered as the upper bound for the
re-execution of each instruction. And, although theoretically increasing the run time upper
bounds by four times its original, these would still be very deterministic, which would fit
again as a real-time system.

Temporal Redundancy using SlMode

Temporal replication schemes are also possible on this platform. For example, with additional
assembly instructions, it is possible to perform multiple and redundant calculations distributed
over time. For example, the pseudo-assembly code from Listing 3.1 shows a very simple version
of this temporal redundancy used for the multiplication. In this example, the multiplication
is performed first with the first group of FUs (Cfg 001 ), after that the pseudo-instruction Cfg
010 is used to disable this group and enable the second group of units. Therefore, performing
the same multiplication again, but using this other group of units. Then, the instruction
BranchEq R3 R4 "equal1" compares the results of the two redundant multiplications, and, if
it equals, it branches to the label equal1, which stores the result of the multiplication and
jumps back from the current context. In case the comparison of this branch (line 6) does
not succeed, the branch will not be taken, and the lines that follow will be executed. In this
case, the pseudo-instruction Cfg 100 is used to enable the third group of FUs (and disable
the others), and perform the same multiplication for the third time using this group of units.
Here, to simplify the operation, and since no further action is foreseen in this example, the
result from this third multiplication is considered correct. Therefore, the next two lines that
follow save the last multiplication result and exit from the current context. With such a piece
of code, temporal DMR, and TMR on-demand are provided.

On the other hand, as it can be seen from the example, despite the memory overhead to
store those extra instructions, it can be expected at least 6 additional instructions per desired
instruction to be protected over the temporal redundancy mechanism. Therefore, such an
approach can result in a considerable run-time overhead, which makes this approach only
applicable to a very small and specific set of instructions within a program. Additionally,
still regarding time, such an approach would only make sense to protect instructions that
take more time than the additional ones for configuration controlling and comparison. For
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Listing 3.1: Example of a pseudo assembly instructions for temporal redundancy.
1 FaultTolerantMulti : ;Fault - tolerant multiplication
2 Cfg 001 ; Enable group 1 of FUs
3 Mult R3 R1 R2 ; Multiply R1 by R2 and store on R3
4 Cfg 010 ; Enable group 2 of FUs
5 Mult R4 R1 R2 ; Multiply R1 by R2 and store on R4
6 BranchEq R3 R4 " equal1 " ;If R3 e R4 are equal , branch to label equal1
7 Cfg 100 ; Enable group 3 of FUs
8 Mult R5 R1 R2 ; Multiply R1 by R2 and store on R5
9 Add R R5 R0 ;store R5 on R

10 JumpBack ;Jump back from this current context
11 equal1 : Add R R3 R0 ;label equal1 - store R3 on R
12 JumpBack ;Jump back from this current context

the mentioned example, it only makes sense if the expected run-time for one multiplication
is bigger than the time needed for the Cfg, the BranchEq, the Add and the JumpBack
instruction. Otherwise, unless protected by other mechanisms, these additional instructions
would be adding more possible sources of errors than the instruction it wants to protect.

However, in case the application context can afford such a run-time overhead, and the
mentioned timing conditions are satisfied, the great advantage of this mechanism is, in case
some of the FUs become permanently faulty, it is still possible to perform the temporal
replication scheme while non-faulty units remain operating.

Permanent Fault Correction

As it is already stated, permanent fault correction is possible. However, not only when
running temporal replication schemes, but whenever one of the FUs become faulty, the
remaining units can be used to keep the system running using the other still possible schemes
(e.g., the SlMode or the DMR scheme).

Units Health Monitoring and Re-Adaptation when Degraded

Another very interesting scenario is when hardware units are degraded. In this scenario,
the OS running over the platform can be used to monitor the health state of the hardware
units of the platform. This can be done by tracking the number of errors detected in the
units, and once a certain threshold or rate is reached, it can be assumed that the units are
not anymore in their original health state. Once a change in this state is detected, it is
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possible to change the scheme that was previously attributed to the existent criticality levels
of the application scenario. Therefore, it is possible to compensate for an increased incidence
of errors, due to ageing for example, by attributing stronger fault tolerant measures (e.g.,
migration from DMR to TMR) to the existent criticality levels. A working example of this
scenario is demonstrated in Section 4.4.

3.6 Summary

In this chapter, the concept for the management of processor internal FUs was introduced, in
which essentially three major configurations schemes are foreseen: SlMode, DMR, and TMR.
Furthermore, together with this concept, the mechanism for criticality-aware management of
FUs for mixed-critical processes within an OS was introduced.

Moreover, an illustration of other opportunities for FUs management is provided for different
scenarios. Here, the satellite case was presented, in which the TMR scheme is needed for
zones of increased susceptibility of particles, such as the South Atlantic Anomaly. Still in
this line, it also presented the case of very fine-granular management of FUs within program
loops, and the opportunities for load balancing and wear levelling over on the FU.

Finally, this chapter closes with a brief illustration of other possibilities in which such a
concept for FUs management would be applicable.
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CHAPTER 4

From Conceptual Design to the Test Platform

This chapter introduces the implementation details of the test platform used to evaluate the
hardware and software concept for run-time management of Functional Units (FUs). It shows
how extensions were made over a processor design and an Operating System (OS), the Plasma
processor and the Plasma Real-Time Operating System (Plasma-RTOS) respectively. It
shows how this system is used to enable and disable replication schemes of processor internal
FUs at run-time, for the safety-critical domain in the context of mixed-critical applications.
Therefore, enabling tailored on-demand optimisations such as improved fault tolerance, and
decreased hardware usage and power consumption. Therefore, the next sections will first
show a quick overview of the baseline of the Plasma processor and, afterwards, illustrate the
extensions made in this processor design and in the Plasma-RTOS.

4.1 The Plasma Processor

As already mentioned, Plasma was used as the baseline of the test platform implemented
to comply with the design concept proposed in this thesis. Plasma is a synthesisable
32-bits Reduced Instruction Set Computer (RISC) microprocessor that executes the MIPS-
I user mode Instruction Set Architecture (ISA) [75]. The block diagram of the Plasma
microarchitecture and its corresponding pipeline stages are presented in Figure 4.1. The
PC_next and the Mem_ctrl are part of the Instruction Fetch (IF), the Control block and the
Bus_mux responsible for the Instruction Decode (ID), the FUs (the Mult, the Arithmetical
Logical Unit (ALU) and the Shifter) participate in the Instruction Execute (EX), and, finally,
the Reg_bank is part of the Write Back (WB). From the block diagram, it is possible to
notice that the IF is in the first pipeline stage, but the ID, the EX, and the WB, are all part
of the second stage, therefore, these three operations are performed all in the same cycle.

As it is possible to see from the block diagram, the Plasma processor has a very simplified
microarchitecture with few internal blocks, and only two pipeline stages. Despite its simplicity,
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it can, however, execute a good portion of programs supporting GNU Compiler Collection
(GCC) and a comprehensive subset of the American National Standards Institute (ANSI) C
library. There is also the Plasma-RTOS, which is a fully preemptive Real-Time Operating
System (RTOS) that is available for this processor. Therefore, its low complexity together
with its library support were the reasons this processor was chosen as a baseline for the test
platform going to be presented in the next sections.

ID

IFPC_next Mem_ctrl

Control

Bus_mux

WBReg_bank

EXMultALUShifter

Plasma

Stage #1

Stage #2

ID

IF
PC_next

Mem_ctrl

Control

Bus_mux

WBReg_bank

EXMultALUShifter

Stage #1

Stage #2

Figure 4.1: Block diagram and pipeline stages of Plasma processor design.

4.2 The Extended Plasma Processor

The core of this processor was modified as shown in Figure 4.2 to allow the intended fast
management of its internal FUs. The following sections go through each block of this design
and explain these in detail.

4.2.1 The Extended Instruction Decoder and the New Instructions

First, instead of an additional hardware component as presented in previous work [22], the
Instruction Decoder was extended in such a way that additional instructions were introduced
and enabled software control over the redundancy scheme of the FUs. These new instructions
extended the ISA of the processor design, and to avoid any modification in the compiler, an
assembly volatile declaration was used - asm volatile(”.byte < instruction > ”). Therefore,
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Figure 4.2: Extensions made over the hardware design showing the extended decoder, the extra
functional units and the control logic of the FUs Wrapper.

the compiler keeps the command stated in the < instruction > field unmodified after
compilation.

The created instructions were carefully planned to not overwrite any of the existing ones in
the ISA of the processor design (MIPS-I). As we can see in Table 4.1, we follow the convention
of the MIPS ISA, and the highest six bits of the instructions are the operation identifier
(the Operation Code (OpCode)), so the instruction decoder can easily identify these new
instructions. The lowest bits of the instructions, which are usually used for immediate values
and offsets, index the FUs, in which each existent unit could be indexed by a different bit in
this instruction. However, for bigger designs, it might be that there will be more available
units than available bits in the instruction. Therefore, to make it more general, and for
simplified operation, the different units were joined in groups, in such a way that each group
has one ALU, one multiplier, and one shifter (the different available FUs in the Plasma
processor). Therefore, for this current implementation, the lowest three bits of the instruction
index the groups of FUs, and not them individually. With this, the remaining bits that are
not used by now are reserved for future extensions.

The possible schemes follow the concept presented in Section 3.1.1, and are indexed by the
lowest three bits of the instruction just as it follows (Table 4.1):

• 001, or 010 or 100 → it indexes the Single Unit Mode (SlMode), enabling only one
group of FUs for computation, therefore, there is no replication in this scheme;

• 011, or 110 or 101 → it enables the Double Modular Redundancy (DMR) over the
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FUs. Therefore, two groups of units are working in parallel redundantly to each other,
and an additional hardware block (the programmable voter) is comparing the output
signals enabling error detection.

• 111→ it enables the Triple Modular Redundancy (TMR) scheme, which means that all
the three groups of FUs are working redundantly with each other, and the programmable
voter is performing the majority voting over the output signals of the FUs, correcting
any possible error produced individually by one of the units.

It is important to say that the new instructions only trigger the management actions, and
for the rest of the pipeline modules it is considered as a NOP instruction. NOP stands for
No-Operation and, as its name says, it is an operation that does nothing. This means, for
the FUs, that a NOP instruction is being executed, therefore, there is no operation in the
FUs while these are being configured. Furthermore, the process triggered by one of these new
instructions and the NOP instruction are equally executed in one instruction cycle. Thus,
this process does not interfere with any other instruction in the pipeline.

At this point, the reader might be wondering again: but why not use memory mapping
instead of extending the processor ISA and, therefore, its instruction decoder? To answer
this question, we first must look at the usual implementation of a processor’s pipeline. It is
mainly divided and ordered as follows: IF, ID, EX, Memory Access (MEM) and WB. The
MEM stage might be skipped if no memory operation is necessary. However, in the case
of memory mapping, this is exactly the stage in which our memory-mapped instructions
would be redirected to the management mechanism for appropriate controlling of the FUs.
While, in the meantime, another instruction would have already reached the FUs in the EX
stage, preventing the management mechanism from changing the FUs scheme without at
least waiting until the current operations in the units are finished and forwarded to the next
pipeline stage. Therefore, stalling the pipeline would be necessary in this case. In such a
situation, the management of the FUs would no longer be done in one instruction cycle, but
in at least, two to three extra cycles.

Load Balancing over the Functional Units

The new instructions were created to enable control, not only of the replication scheme, but
actually of the desired units to be used. Therefore, one can choose to operate in SlMode
or DMR and explicitly define which units should be enabled. Therefore, one can use these
commands to, at every certain time window, migrate from the currently enabled units to the
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other ones while still using the same replication scheme. Thus, enabling the user to create
load balancing strategies over the FUs.

Table 4.1: The created instructions for software control of the processor FUs and their respective
configuration schemes.

Instruction bit-fields Configuration
OpCode Not used Group Units Index Units Group FUs Scheme

(31 downto 26) (25 downto 3) (2 downto 0) FUs3 FUs2 FUs1
don’t care 001 - - X

don’t care 010 - X - SlMode
don’t care 100 X - -

010101 don’t care 011 - X X

don’t care 110 X X - DMR
don’t care 101 X - X

don’t care 111 X X X TMR

4.2.2 Functional Units Wrapper

The processor core was extended in such a way that more FUs were added to the design. In
fact, two extra units of each type (two ALUs, two multipliers and two shifters) were added
allowing the configuration of the additional DMR and TMR schemes among these units.

Furthermore, these units were encapsulated into the FUs Wrapper. This wrapper is a very
tiny layer in between the units and the rest of the processor core, which controls the group
of units to be used, therefore the desired scheme (with redundancy or not) among the FUs.
Within this wrapper we can find the Configuration State block, the Distribute block and the
Programmable Voter. As we saw in Section 4.2.1, the instruction decoder is responsible for
decoding the newly created instructions for FUs management, and retrieving the requested
group of units to be used from the last three bits of the command. The Configuration State
block receives this configuration from the instruction decoder, writes it in a local configuration
register, which may be read from software for status control, and send the control signals to
the Distribute block and the Programmable Voter. The Distribute block receives these control
signals and it configures its internal logic to distribute the incoming pipeline signals to one,
two, or all three groups of units accordingly. Finally, the Programmable Voter also receives
these configuration signals and, as its name says, it is not only a voter, but a hardware block
that can be transparent (just forward the incoming signals) when using only one group of
FUs, a fault detector (a comparator) when in the DMR scheme, or a three inputs voter (just
as Table 2.1 describes) when TMR is enabled.
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For the Plasma processor, the ALU and the shifter are not directly clock-driven, they are
instead placed within the pipeline control logic. The only clock-driven FU is the multiplier.
Therefore, to disconnect the non-used units from the pipeline, the Distribute block places a
switch between the input pins of the FUs and the incoming pipeline signals. In this way, units
can be disconnected by forcing their input pins to zero logic level. Otherwise, the switches
just capture the incoming pipeline signals and reproduce them in the input pins of the active
units. Furthermore, since the multiplier is the only directly clock-driven unit, besides these
mentioned switches on the inputs, clock gating was also used, thus, maximising the power
savings on these units when disabled.

4.2.3 The Low Latency Process to Manage the Units Configuration

As it was mentioned, the process to manage the scheme on the FUs is triggered by one of
the newly added instructions (Table 4.1). So, once one of these instructions is fetched from
memory, the following happens.

• The instruction is fetched from memory and reaches the extended instruction decoder.

• The instruction decoder recognises this instruction, retrieves the requested scheme for
the FUs, and sends the control signals to the Configuration State block.

• The Configuration State writes this configuration in a local register, and sends these
signals to the Distribute and the Programmable Voters.

• The Distribute and the Programmable Voters receive these signals and configure their
internal logic to use the requested units.

Because of the management mechanism just presented in the sections above, and the strategy
to use dedicated instructions to manage the units, the design can go from one configuration
scheme to the other within a very low latency. This process takes only one instruction
cycle, which is the cycle the processor design takes to execute any of its simple instructions
(e.g., ADD and AND instructions). Furthermore, because the Plasma processor core has a
very flat pipeline, once the instruction is fetched from memory and reaches the instruction
decoder, the process to change the scheme of the units takes only one clock cycle. Figure 4.3
illustrates the instruction flow within the pipeline of the Plasma processor core. It shows
three general instructions (inst1, inst3, inst4 ), and one instruction to change the FUs scheme
(cfg2 ). As we have explained in previous sections, one particular implementation of the
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Plasma pipeline is that the ID, the EX and the WB stages are merged within the same
control logic so that no extra clock cycle is spent within these stages. Therefore, it is possible
to see that, once the cfg2 instruction reaches the ID stage, it is internally translated into a
NOP opcode, with that the FUs within the EX stage and also the WB stage do not perform
any operation in this clock cycle. Furthermore, in the next clock cycle, as soon the inst3
reaches the EX stage, the FUs from group 2 are already enabled and ready to perform the
required operations, meanwhile the FUs from group 1 are already disabled. This concept,
and its provided very low latency, opens possibilities for the usage of this mechanism in a
very broad way, enabling the management of processor FUs even within small program loops
as suggested in Section 3.3.1.
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Figure 4.3: Instructions within the pipeline of the Plasma processor core while disabling a group
FUs and enabling another one.

4.3 The Extended Operating System

The baseline OS used for the implementation of this test platform is the Plasma-RTOS. This
RTOS was created by Rhoads to run in the Plasma processor. It supports interrupts, threads,
semaphores, mutexes, message queues, timers, heaps, and preemptive context switching
[80]. For this thesis, the Plasma-RTOS was extended to perform at run-time the desired
management of the processor FUs. Figure 4.4 shows the main software components which
participate in the management process.

Due to the hardware extensions in the instruction decoder of the processor design, and the
new set of instructions (Table 4.1) presented in Section 4.2.1, the software layer can use these
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Figure 4.4: Software and OS blocks that participate in the management process.

instructions to control the configuration of the FUs. These new instructions are represented
in Figure 4.4 as the ISA Extensions.

The per Process Data Structure that stores information regarding its corresponding process
(such as process id, name, priority, and state) was extended with a criticality level field
(Listing 4.1).

Furthermore, the processes interface function that creates new processes for the operating
system was extended with an additional criticality parameter. As it can be noticed in the
Listing 4.2, this interface is a function that creates the processes (which are called threads
within the Plasma-RTOS). This function has usual parameters to create a new process
such as the process name, the pointer to its actual code/function (funcPtr), respective
arguments that its respective process may expect, the priority of the process that is used by
the scheduling algorithm to order the processes executions, the respective desired stack size,

Listing 4.1: Plasma-RTOS Process Data Structure extended with the criticality level field.
1 struct OS_Thread_s {
2 const char *name; // Name of thread
3 OS_ThreadState_e state; // Pending , ready or running
4 [...]
5 uint32 criticality ; // Criticality of thread
6 // (0= low , 255= high)
7 [...]
8 // Linked list of threads by priority
9 struct OS_Thread_s *next;

10 struct OS_Thread_s *prev;
11 };
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and finally, the newly added criticality value. This extension allows the operating system,
right from the creation of the process, to attribute the desired value to the criticality level
field in the Process Data Structures just mentioned.

Furthermore, once this per process criticality parameter is available, the Process Switching
Mechanism of the Plasma-RTOS was modified to, before releasing a new process for execution,
enable and/or disable the proper group of FUs according to a user predefined configuration
that matches the criticality of each process. In summary, the inline function from Listing 4.3
was added at the very end of the Process Switching Mechanism. The inline definition was here
used to prevent the compiler from creating a function call by actually adding the content of
this inline function directly at the address it was called. Therefore, this avoids the additional
overheads, incurred by a normal function call, of saving context and jumping instructions.

Nevertheless, despite being inline, this function has its additional internal instructions. For
example, extra memory read operations (load instructions) are necessary to read the criticality
value from the per Process Data Structures, and additional supporting instructions (branches
and comparison with immediate values) are needed to compare with reference values and
branch to the correct place where the corresponding instruction to enable the proper FUs
group is located. These additional instructions for loading data and branching to correct
places, together with the extra instruction for FUs management, result in memory and
execution time overheads. The incurred memory overhead is actually only a few lines of
assembly code that do not take much space. However, the execution time overhead will
include the cycles needed to execute these additional instructions and increase the time needed
to perform the process switching. Nevertheless, such an overhead will still represent a small
fraction of the whole time used by the Process Switching Mechanism as it will be presented
in the Evaluation Chapter in Section 5.1. This process switching procedure, together with
the FUs scheme configuration, is further detailed in Section 4.3.1.

Finally, assuming that all operations executed in the kernel context are considered at the

Listing 4.2: Operating system interface to create a process extended with the criticality parameter.
1 // Extending the ThreadCreat to assign a criticality value
2 OS_Thread_t * OS_ThreadCreate (const char *name ,
3 OS_FuncPtr_t funcPtr ,
4 void *arg ,
5 uint32 priority ,
6 uint32 stackSize ,
7 uint32 criticality );
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Listing 4.3: Prototype of the inline function created to switch the FUs scheme.
1 inline void switch_FUsMode ( uint32 criticality );

highest criticality, the instruction to enable the TMR scheme in the FUs was placed at the
very beginning of the assembly code of the Interrupt Service Routine (ISR). Therefore,
once an interruption is raised calling the system to enter in the kernel context, its first
instruction will enable the TMR scheme over the FU, thereby, any further instruction will
be executed with this scheme. Furthermore, the mechanism will keep this TMR mode until
the Plasma-RTOS switches to a new process, then, right before jumping to this process, the
instruction to enable the proper units’ configuration for this upcoming process is issued.

Although switching the FUs scheme to enter in kernel context could be done directly in
hardware, it would need further modifications in the core of the processor design, which
would make the implementation of the mechanism much more intrusive, opening possibilities
for more implementation errors. Secondly, a configuration done directly in hardware would
not comply with my current concept, in which the hardware only provides the management
mechanism, but the software is the one responsible to control and manage the hardware
units.

Regarding the mapping between the FUs scheme and the criticality of the processes present
in the system, it can actually be done by a user before run-time, Table 4.2 illustrates an
example of such a configuration. However, in summary, the most critical processes should
run using the TMR scheme, while the other less critical processes can be mapped to the
DMR or SlMode.

Table 4.2: Configuration example for the criticality levels and its correspondent redundancy scheme.

Criticality level Criti 0 Criti 1 Criti 2 Criti 3
Redundancy scheme SlMode SlMode DMR TMR

4.3.1 The Process Switching Procedure

As stated, the Plasma-RTOS supports priority and preemptive context switching. Thus,
each application process runs its portion of time (time-slice), and the next process in the
ready state with the highest priority should be released for execution. Figure 4.5 shows
the intermediate states of the procedure for process switching with the management of the
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hardware FUs in between. While the application process is running, an end of time-slice
interruption is raised, the application process stops and the ISR is called. At the very
beginning of the ISR, there is an instruction to enable the TMR scheme among the FUs of
the design. The TMR is then enabled, and the process switching mechanism performs its
remaining operations normally.

Later on, before releasing the next process for running, the criticality level of the respective
upcoming process is read (load instruction) from the respective process data-set structure,
and, according to this criticality level, the expected instruction to enable the proper FUs
scheme is issued. Here, in case the new configuration scheme does not use all available units
(e.g., the SlMode or the DMR), the choice of the units to be used can obey an algorithm for
load balancing, thus balancing the usage of the units and enabling wear levelling between
them.

Finally, once the proper scheme is enabled, the application process is released and will now
run using the units it was programmed for.

Running Application Process...

ISR: instruction 
 to configure the design to TMR

configuration

OS Context: Process switching
operations

- Process criticality is read; 
 - instruction to proper configure

the design is issued.

- Application process is released
for execution

- Process time-slice finished 
- Timer Interruption  

- ISR is called

Figure 4.5: Procedure for the process switching with the management of hardware FUs in between.

4.3.2 Portability Analysis

The extensions made over the baseline code of the Plasma-RTOS used very few extra lines
of code. Moreover, the necessary modifications were very punctual and very easy to port.
Therefore, the extensions explained in the sections above can be easily portable to other
systems.

53



Chapter 4 From Conceptual Design to the Test Platform

As an example, the FreeRTOS was studied. FreeRTOS is an RTOS distributed freely under
the MIT open source license. It supports more than 35 architectures and provides core
real-time scheduling functionality, inter-task communication, timing, and synchronisation
primitives only. Additional functionality, such as a command console interface, or networking
stacks, can then be included with add-on components [40].

Looking into the FreeRTOS implementation, it has a good number of similarities with the
Plasma-RTOS. For example, it also has a per process data structure called Task Control
Block that saves processes state information. So this structure could also be expanded with
the criticality level field as it is done for the Plasma-RTOS.

Regarding the Process Switching Mechanism, the FreeRTOS has special functions to perform
the context switch. These functions are usually architecture dependent, and, in a general
way, the top level of these functions looks like the one presented in the Listing 4.4. Here
the implementation of the top-level function used for manual context switch (vPortYield())
is presented. This function calls other specialised functions that save the current context,
switch the processes, restore the context for the new process, and jump into its new context
for execution. So, we could use the switch_FUsMode() function right before jumping to the
new process context, so that it would configure the FUs scheme a few instructions before
starting its execution. Other implementations are also possible here, however, a deeper and
specialised implementation analysis over other platforms is out of the scope of this thesis.

To change to the TMR scheme when entering in RTOS context, the assembly of the ISR in
the FreeRTOS can also be modified in the same way as in the Plasma-RTOS. Therefore, the
instruction to enable the TMR scheme can be placed at the very beginning of the assembly
part of the FreeRTOS ISR.

Listing 4.4: Implementation of the FreeRTOS context switch function.
1 /* Manual context switch . */
2 void vPortYield ( void )
3 {
4 /* Save the context of the current task.*/
5 portSAVE_CONTEXT ();
6 /* Switch to the highest priority task that is ready to run.*/
7 vTaskSwitchContext ();
8 /* Start executing the task we have just switched to.*/
9 portRESTORE_CONTEXT ();

10 }
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Finally, the processes interface function of the FreeRTOS can also be extended similarly as
it was done for the Plasma-RTOS. Therefore, the criticality level parameter can be added
to the function so that it can be attributed right at the time in which the processes are
created.

4.4 Test Case - Units Monitoring and Re-Adaptation when
Degraded

In this section, a test case of the platform just described in the sections above is presented.
However, the management of the FUs takes into account two parameters: the criticality levels
of the application processes running on top of the Plasma-RTOS, and the health state of the
FUs. The experiment going to be described was presented in detail in [24], and evaluates the
system’s capability for run-time re-adaptation according to detected changes and degradation
in the health states of monitored FUs.

First, we divided the applications into three different criticality levels: ordinary, medium,
and critical. Second, for the health state classification, the intermittent soft errors (e.g.,
Single-Event Upsets (SEUs)) were considered, which are the ones that usually increase their
occurrence as the electronic elements start to age [33, 37]. Therefore, each unit has its
own health state classified according to the number of errors detected by assumed monitors
attached to each unit. Furthermore, to go from one state to another, thresholds were defined
as presented in Figure 4.6, once the number of detected faults reaches the Medium Healthy,
the Intermittent or the Faulty threshold, the unit changes its state, respectively, from Healthy
to Medium, from Medium to Intermittent and from Intermittent to Faulty. It is important to
notice that no actual fault monitors are attached to the functional units. Although it can be
done while the design is in DMR or TMR scheme, this experiment does not intend to evaluate
individual fault monitoring techniques nor hardware fault detection mechanisms. However,
an example of such monitors with preliminary hardware overhead results is presented by the
author in [23]. Thereby, the simulation presented in Figure 4.7 shows the platform behaviour
during this experiment, which consists of a series of increments in the individual unit registers
(units_regs[< FU − index >]), which accounts the errors detected in the FUs. Since these
registers are the ones responsible for counting the number of events that led to errors, these
registers were incremented, in the experiment, in such a way that the FUs changed their
initial attributed health states. Thus, it can be observed that the platform chooses the
healthier units to execute its application processes.
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For this experiment, the health state thresholds (Figure 4.6) were configured as the following:
the Medium Healthy threshold to 10 (0x0A) faults, the Intermittent threshold to 100 (0x64),
and the Faulty threshold to 1000 (0x3E8). It is important to notice that these are only
demonstration numbers, and linking the number of errors detected in hardware units to
health states can be the subject of a completely separate study.

State 0 -
Healthy

Faults

State 1 -
Medium

State 2 -
Intermittent

State 3 -
Faulty

Medium Healthy 
threshold

Intermittent 
threshold

Faulty 
threshold

Figure 4.6: Health states of the FUs and their respective thresholds.

The signals in Figure 4.7 represent, from top to bottom, the clock signal (clk), the configuration
status registers that store the current units’ configuration (stats_reg), the application
processes with ordinary (Process1), medium (Process2) and high (Process3) criticality, and,
finally, the units registers: units_regs(0) representing the accounted events for FU 1, the
units_regs(1) for FU 2 and the units_regs(2) for FU 3. As it is highlighted in the figure
by the dashed red lines and squares, once the number of accounted events in a specific FU
reaches one of the health thresholds, the configuration scheme attributed to each criticality
- and consequently to the processes - is updated taking into account the new health state
of the units. As a result, the further executions of the processes are done using a new
configuration, either by replacing a faulty FU or shifting from DMR to TMR. For example,
in the figure, Process1 begins using FU 1. As the register responsible to save events in this
unit is incremented and reaches the Intermittent threshold, FU 1 goes to the Intermittent
health state. Therefore, in the next execution of Process1, the system uses one of the other
healthier units, as in the case of the figure, the FU 2.

Following the other processes in Figure 4.7, we can see similar behaviour with Process2. The
design shifts from FU 1 and FU 2 to FU 2 and FU 3 as the FU 1 goes to the Intermittent
health state. However, a different situation is observed when there are no more FUs in the
Healthy state. In this case, the system needs to re-adapt its default configurations, and, to
compensate for its increased susceptibility to intermittent faults due to assumed ageing, it
increases its fault tolerance and goes from DMR to TMR scheme as it can be noticed in the
third execution of Process2 in the figure.

Finally, still in Figure 4.7, the last case is noticed when we look at Process3. Since it is
a highly critical process, it starts running with TMR. However, as the simulation evolves,

56



4.5 Summary

the system enters in a state in which one of its FUs is classified as Faulty. Therefore, the
system needs to re-adapt again, and the TMR is replaced by a degraded service configuration
using DMR over the remaining non-faulty units. It is important to say that, although not
yet implemented, this degraded DMR configuration can be upgraded with a scheme for
instruction re-execution once a mismatch is detected over the outputs of the units, thus,
potentially correcting a soft error that may occur in the remaining units.

clk
stats_reg[15:0]

Process1_Ordinary
Process2_Medium

Process3_High
units_regs[2][15:0]
units_regs[1][15:0]
units_regs[0][15:0]

FU1
state 1

FU1
state 2

FU2
state 1

FU2
state 2

FU3
state 1

FU3
state 2

FU3
state 3

Process3
High
TMR
FUs: 1, 2, 3

Process2
Medium
DMR
FUs: 1, 2

Process1
Low
SlMode
FUs: 1

Process2
Medium
TMR
FUs: 1, 2, 3

Process2
Medium
DMR
FUs: 2, 3

Process1
Low
SlMode
FUs: 2

Process1
Low
SlMode
FUs: 3

Process1
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DMR
FUs: 1,2

Process3
High
TMR
FUs: 1, 2, 3

Process3
High
TMR
FUs: 1, 2, 3

Process3 
High 
DMR (degraded service)
FUs: 1, 2

Figure 4.7: The fault simulation performed over the platform. The fault counter registers are
incremented from time to time simulating the detection of faults in the FUs. Adapted from [24].

4.5 Summary

In this chapter, we saw the details of the test platform implemented to reach the concept
proposed in Chapter 3. First, the extended Plasma processor design was presented. New
instructions were created and, with these, the instruction decoder was extended. Together
with also added FUs and a wrapper, these new instructions were used to change from one
scheme to another with a very low latency. Not only changing the redundancy scheme,
but load balance can also be done using the new instructions. Furthermore, the extended
Plasma-RTOS was presented. It shows how the per process data-set was incremented with
criticality information, and the process switching mechanism extended, to enable criticality-
aware management of FUs for mixed-critical processes. Finally, a use case test was presented,
in which the degradation of FUs is considered, and the platform adapts its FUs scheme to
the new degraded state.
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CHAPTER 5

Evaluation

This chapter evaluates the hardware overhead, latency, and power consumption incurred
by the concept implementation over the test platform. Furthermore, it shows the fault
tolerance for the different configuration schemes and, also, the hardware ageing incurred by
the criticality-aware management of Functional Units (FUs).

5.1 The Units Management Latency

First, the latency of the hardware platform while running bare-metal code was evaluated.
For this, one of the new instructions stated in Table 4.1 was manually introduced in the
source code of the testing program. The test program used in this case was a bubble sort
algorithm, and the instruction was introduced at the very beginning of the algorithm, right
before the loops that perform the ordering. In this situation, the latency observed was of one
instruction cycle. As already stated, our processor design has a very flat pipeline with only
two stages. This means that once our instruction reaches the instruction decoder, the units
are already properly configured in the next clock cycle.

Such a low latency can enable even finer granular changes in the configuration of the units.
For example, a change of the redundancy scheme can be performed even within program
loops adding only one extra instruction cycle per change. Therefore, a very focused increase
in fault tolerance is possible targeting, for example, specific calculations within a program
loop.

The next step was to measure the latency (increase in execution time) introduced over the
Plasma Real-Time Operating System (Plasma-RTOS) due to the implemented extensions
presented in Section 4.3. As explained, the process switching mechanism was extended to
change the units’ scheme at every process switch. The mechanism reads the criticality level
field in the processes data structure and, according to this level, it will issue the correct
instruction to enable the proper scheme over the FUs. For this procedure, extra instructions

59



Chapter 5 Evaluation

are needed, for example, to load the criticality value from memory, and to compare, branch,
and issue the correct instruction to configure the FUs. These additional instructions take
extra time that is summed to the overall execution time of the process switching mechanism.

To realise the latency added by these extra instructions, the execution time of the raw process
switching mechanism was measured and compared with the same when the above mentioned
extra instructions are included (the extended version). However, since the execution time of
the process switching mechanism depends on various internal states of the operating system,
it varies each time it runs. Therefore enough measurements were done, so it was possible to
see a convergence for a common value. After these measurements, it was possible to see that
the extended process switching mechanism increased its execution time by approx. 15 clock
cycles (value calculated by a geometric mean of the acquired values).

Nevertheless, altogether, these extra clock cycles represent just a small fraction of the whole
switching mechanism. In fact, for the current implementation of the process switching
mechanism within the Plasma-RTOS, these 15 extra cycles represent approx. 2.4% of the
cycles needed by the whole mechanism.

5.2 Hardware Area Overhead

The Plasma processor core and its extensions were synthesised using the Cadence® Genus™

tool and mapped to the Open Cell Library (OCL) 15nm [61], the resulting area is shown
in Table 5.1. This table also shows the total area covered by the Plasma design with no
modification (Original), and a further row with the area of the Plasma processor with its
internal FUs triplicated, but with no additional control logic for dynamic management, so
the design has Triple Modular Redundancy (TMR) scheme always enable (static) with no
further possibility for configuration of other schemes.

It is important to notice that the original Plasma processor core has about 22% of its area
covered by functional units, and when triplicating these units, they add an overhead of about
44% to the design. This overhead is the very same presented in both designs: the Plasma
TMR static and the Plasma Extended for dynamic management. However, comparing these
two modified designs we can notice a slightly bigger overhead in the control logic of the
Plasma Extended design for dynamic management (from approx. 2% for the static TMR,
to approx. 6% for the dynamically configurable design). This extra overhead is due to the
additional control logic to make the design dynamically configurable at run-time, such as the
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extensions in the Instruction Decoder and in the other blocks inside of the FUs Wrapper just
as it is presented in Figure 4.2. Therefore, we can conclude that in case the design is already
made to be fault-tolerant with triplicated FUs, the control logic overhead to make the design
dynamically configurable would be approximately 4% (comparing the overhead of approx.
2% for the static TMR, with the approx. 6% of overhead for the dynamically configurable
design).

Table 5.1: Hardware area overhead for the Plasma Original design, the Plasma with static TMR,
and the Plasma extended for dynamic management of FUs.

Design Total Area Total Area Total Area FUs Area FUs Area Control Logic Control Logic

Overhead Overhead Overhead Overhead Overhead Overhead

[um2] [um2] [um2] [um2]

Plasma Original 3522.13 - - - - - -

Plasma TMR static 5122.33 1600.24 45.43% 1530.99 43.47% 69.25 1.97%

Plasma Extended 5269.29 1747.16 49.61% 1530.99 43.47% 216.17 6.14%

(dynamic managm.)

The overhead just presented in Table 5.1, although not negligible, is still less than other
full core replication approaches such as core lock-step schemes [45, 89]. In these schemes,
the whole processor core is under double or triple modular redundancy, and a control logic
is built on top of these cores to administrate the redundancy and perform error detection
or correction among the core output signals. Therefore, since these approaches place the
whole processor core over the redundancy scheme, it is expected a better fault tolerance
performance when compared to my mechanism for fine-grained management of FUs. However,
the price of hardware overhead for full core replication is usually above 100% for duplication
and 200% for triplication. For example, in [45] the authors claim to have the overhead
for replicating the cores plus an additional 18% of control logic overhead. Meanwhile, for
my approach, the overhead is very dependent on the area distribution of its internal units,
but, in summary, tends to be much smaller. To better illustrate such differences, Table 5.2
presents the hardware overhead for the Plasma Extended with the mechanism for dynamic
management of FUs and an estimation for applying this same mechanism to the RI5CY
processor [85]. Then it is compared with the expected minimum overhead for full core
lock-step schemes based on the numbers presented by other authors [45]. As it is shown, my
approach presents an overhead between 50% to 82%, meanwhile, the core lock-step scheme
goes above 200%.

To summarise, it is notable that the approach for replications and management of FUs

61



Chapter 5 Evaluation

presented in this thesis would result in less overhead compared to full core replications
schemes, but also less protection concerning fault tolerance. Hence, our approach fits as
an intermediate level solution that is less costly in terms of hardware area, although not
providing full core protection. Furthermore, in processors in which multiple FUs are already
present such as superscalar processors, only the additional control logic to enable the dynamic
management would be needed to apply the concept for dynamic management of FUs presented
in this thesis. Therefore, in this case, it is expected that the resulting overhead would be even
lower, and closer to the only 6% of control logic overhead needed for the Plasma processor.

Table 5.2: Area overhead comparison between designs implemented with the mechanism proposed in
this thesis and the Triple Core Lock-Step (TCLS) scheme.

Design Design area Proposed scheme TCLS scheme

FUs participation total overhead total Overhead

Plasma 22% ∼50% >200%

RI5CY 40% ∼82% (estimated) >200%

5.3 Critical Path Delay

After evaluating the hardware overhead, we need to check how much the critical (longest)
path delay increased due to the implementation of the management mechanism. For this,
the critical path delay was compared between the Plasma Original version and the Plasma
Extended. For this synthesis, instead of using 500MHz, I tried to push the designs more
to closer to their operating limits, and for this, the synthesis was performed targeting an
operating frequency of 1GHz. Therefore, the signals throughout the electronic design must
propagate thoroughly before 1000ps.

Table 5.3 presents the results of this timing analysis. It can be noticed that, under this
scenario, the critical path delay increased by 6% in the Plasma Extended design. Despite
this increment, both of the designs met the timing constraints to operate at 1GHz.
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Table 5.3: Increase in the critical path delay for a synthesis targeting 1GHz.
Design Critical Path Delay

Plasma Original 866ps

Plasma Extended 920ps

Path Delay increase 54ps (6.2%)

5.4 Power Overhead

Going further in the evaluation of the platform, the power overhead generated by the additional
hardware in the design was verified. For this evaluation, I used the same synthesised designs
as in Section 5.2 (mapped to OCL 15nm [61]), and targeted an operating frequency of
500MHz.

For this evaluation, after the synthesis, the design needs to be simulated for a certain amount
of time using ModelSim. This simulation needs to be captured and stored in a Value Change
Dump (VCD) file, which is a human-readable dump file that stores all states of all elements
of the design for the desired simulation time. The VCD file is then used to generate the
power profile of the design in the Cadence® Tempus™ tool. Thereby, the same tool is used to
generate the power report of the design and get its power consumption based on this power
profile.

Since the power profile takes into account the switching activity of the signals throughout
the processor design, the simulation time to correctly represent the general switching activity
of the signals depends strongly on the payload. Moreover, the captured simulation time in
the VCD file should be enough to represent a fraction of a long run.

The Payload and the Scenarios

The payload used for these power measurements consisted of the Plasma-RTOS running three
extra application processes. These application processes are identical and all the three are
performing the same bubble sort algorithm. For this payload in particular, the initialisation
phase of the design spends most of the time in the operating system context, and only
after that the processes start to run periodically. In a long run, the resources used in this
initialisation time would not be significant. However, in this short simulation time, the
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extra power spent in this time would indeed lead to inaccurate results. Thus the first two
milliseconds of the simulation were discarded. The ∼ 1.6ms that follows is then captured in
the VCD file and used to generate the power profile of the hardware design.

The power report was generated for four different scenarios. In the first one, the original
Plasma design with no modifications was evaluated. Because the original processor design has
no management possibility of its FU, the Plasma-RTOS was also used with no modifications.
In the second scenario, the extended processor design was evaluated, but in this scenario,
the design runs with the TMR scheme always enabled over the FUs, which would be the
case if no dynamic management is possible. Again, since there is no change in the FUs
scheme in this scenario, the Plasma-RTOS was used with no modifications. It is important
to mention, that the normal state of the design is in the TMR scheme, which means that as
long it receives no instruction to change its units scheme, it will remain running in the TMR.
Therefore, no change in the hardware design is needed to pin it to the TMR scheme.

In the third scenario, the extended processor design was evaluated again, but in this scenario,
it is performing a dynamic configuration of the FUs scheme according to the criticality of
the running processes. Here, the extended Plasma-RTOS as it was explained in Section 4.3
was used. Therefore, the design changes its FUs scheme every time the system switches
between processes. In summary, for this scenario, each process was configured with a different
criticality level: one with the lowest possible criticality level configured to run in Single Unit
Mode (SlMode); one with an intermediate level of criticality configured to run in the Double
Modular Redundancy (DMR) scheme; and the last one with the highest possible criticality
level, therefore configured to run using the TMR scheme. Everything else, besides these
three processes, was considered operating system context, also considered highly critical and
configured to run using TMR as well. It is important to say that for this scenario, the amount
of time spent in the different FUs scheme highly impact the power profile generated later on.
Therefore, to produce accurate results regarding the power consumption of the design, the
execution window captured in the VCD file must present all the processes equally distributed
over the time. Figure 5.1 shows how the processes, the Operating System (OS) context, and
the configuration schemes of the FUs are distributed over the execution time window captured
for this scenario. As it can be noticed, in this execution time, all the processes run for one
time-slice and the OS context is equally distributed over the time performing the process
switching. Therefore, this execution window represents a factor of other bigger execution
times so that longer execution times will be only repetitions of this. Hence, this execution
window can be used to generate the power profile of the design. Table 5.4 illustrates the
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different schemes running in this third scenario and the time spent in each of the processes
and in the operating system context.

In the fourth scenario, the extended processor design using the extended Plasma-RTOS is
again evaluated. Once more, three application processes are used. However, in this scenario,
these three processes are all considered of the lowest criticality level, therefore, they all run
in SlMode. Only the OS functions will be executed using TMR. Figure 5.1 shows also, the
schemes distributions for this fourth scenario. As well as Table 5.4 shows the run time spent
in each of the schemes configurations for this scenario.

It is important to notice that for the first two scenarios, in which there is no change in the
schemes of the FUs, none of the hardware blocks is presenting considerable time without any
switching activity. Therefore, the power profile is not considerably affected in case of small
differences in the distributions of the processes throughout the captured execution window.
Because of this behaviour, we could use the same execution time window for all the evaluated
scenarios.

Process A

Process B

Process C
1 => SlMode

OS Context 2 => DMR
3 => TMR

Configuration scenario 3 3 2 3 1

Configuration scenario 4 3 1 3 1 3 1

Execution Time

Configuration Legend:

Figure 5.1: Execution time window when changing the FUs scheme for every process.

Table 5.4: Processes run time and its redundancy scheme configuration for the third and fourth
scenarios.

Running context FUs Scheme Run time
scenario 3 scenario 4

Application process A SlMode SlMode 522984 ns
Application process B DMR SlMode 522996 ns
Application process C TMR SlMode 522966 ns
Operating system TMR TMR 3918 ns
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The Results

Finally, Table 5.5 illustrates the power consumption for the original and the extended version
of Plasma design through the four different evaluated scenarios as it was explained above.
As it can be noticed, the worst case for power consumption, presenting a power overhead of
approximately 98%, is the second scenario in which the extended design is evaluated and no
dynamic management of its triplicated FUs is enabled. However, as the dynamic management
is enabled, the power consumption decreased reaching an overhead of approximately 57% for
the third scenario and 16% for the fourth scenario.

Table 5.5: Power savings when doing dynamic management of the redundancy scheme over the FUs.
Evaluated scenario Design Total power [mW] Total power overhead

1 - no dynamic managm. Plasma Original 2.68 -
2 - no dynamic managm. Plasma Extended 5.29 97.7%

fixed in TMR
3 - dynamic per process managm. Plasma Extended 4.22 57.6%

4 - dynamic per process managm. Plasma Extended 3.11 16.2%

Power Consumption Comparison

Table 5.6 summarises the power overhead for different approaches. It is notable that the
resulting power overhead for triplicating only the FUs is much lower than for triplicating,
or even for only duplicating, the whole core which would be the case for the core lock-step
approaches. Furthermore, while the dynamic management of FUs enabled fault tolerance
improvement at run-time, it enabled even lower power consumption than other mechanisms
that apply always enabled redundant schemes.

Table 5.6: Power overhead comparison related to the single-core Plasma original design.
Design Total Power overhead
Plasma with TCLS >200%
Plasma with Dual Core Lock-Step (DCLS) >100%
Plasma Extended with dynamic per process managm. from 16% to 98%
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To Conclude

The results presented in this section clearly illustrate that the FUs triplication, together
with the dynamic management of units, could avoid the overall triplication of the power
consumption for a system in which the TMR scheme is enabled dynamically.

5.5 Ageing Evaluation

The main goal of this evaluation is to show the reduced ageing provided by the criticality-aware
management of the FUs enabled by the software and hardware mechanism proposed in this
thesis. To this end, payload dependent ageing and its effects need to be evaluated.

As we have seen in Section 2.3, from multiple effects that can increase the ageing of electronic
devices, the Hot Carrier Injection (HCI) and the Bias Temperature Instability (BTI) are the
ones that most affect the switching speed of transistors, by increasing the modulus of their
threshold voltage (|Vth|). Therefore, these effects can possibly decrease the working speed of
big blocks within an electronic circuit, or even a complete device such as a processor core.
Consequently, these effects are often taken into account when estimating the degradation of
electronic devices due to transistor ageing [11, 43, 49, 72].

To estimate ageing effects caused by these two phenomena, proper mathematical models are
necessary. For this purpose, this thesis uses widely accepted and already validated models for
the BTI and the HCI phenomena described in [9, 101] and [72] respectively. These models
describe the long-term transistor threshold voltage shift (∆Vth) for these two effects. The
respective equations to calculate the transistor threshold voltage shift at time t due to HCI
(VthHCI

(t)) and BTI (∆VthBT I
(t)) are summarised in Table 5.7.

Furthermore, once the threshold voltage shift is calculated for the two considered effects, the
respective relative delay degradation (∆reld) at time t can be obtained using Equation (5.1).
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Table 5.7: Ageing models for the threshold voltage shift due to BTI and HCI effects, and their
respective parameters, variables, and constants [71].

∆VthBT I
(t) ≤ ABTI

( √
DHδTcyc

1− β1/(2n)(t)

)2n

β(t) = 1−
ξ1tox +

√
ξ2DH(1− δ)Tcyc

2tox +
√
DHt

ABTI = q

Cox

((
K exp

(
Eox
E0

))2
Cox (Vgs − Vth)

)1/(2n)

n = 1/6

Long-term BTI model for Vth shift

∆VthHCI
(t) ≈ AHCI · exp

(
Eox
E1

)
· exp

(
−Ea
kT

)
·
√
α · f · t Long-term HCI model for Vth shift

DH = γe−Ea/kT

γ = 108, Ea = 0.13eV, k = 8.6174 · 10−5eV/K
Reaction/Diffusion constants

ξ1 = 0.9, ξ2 = 0.5 Back-diffusion constants [6]
tox = 0.9 nm Transistors oxide thickness [6]

q = 1.602 · 10−19 C Elementary charge
Cox = t−1

ox · 3.45 · 10−22 F/nm Oxide Capacitance
Eox = Vgs−Vth,0

tox
Electrical field

E0 = 0.08 V/nm Technology dependent constant [6]
E1 = 0.8 V/nm Technology dependent constant

Vth,0 =
{

0.317 V for PMOS
0.271 V for NMOS

Default transistors threshold voltage

δ Stress time to total cycle (duty cycle)
α Transistor switching activity per clock cycle

of the circuit frequency
Tcyc Stress-recovery cycle time
T Temperature
K Electric field influence
f Clock frequency of the design

AHCI Technology dependent constant

∆reld(t) = d(t)
d(0) = (Vdd − Vth,0)σ

(Vdd − Vth,0 −∆Vth(t))σ =
(

1− ∆Vth(t)
Vdd − Vth,0

)−σ

(5.1)

where: ∆reld(t) = relative delay degradation at time t

∆ Vth(t) = is the superposition of the threshold voltage shift due to BTI and HCI

(∆VthBT I
and ∆VthHCI

respectively)

Vdd = supply voltage

Vth,0 = transistor threshold voltage at time t = 0

σ = technology dependent constant (for modern technologies σ ≈ 1.3 [39])

In this model, it is important to note that the electric field influence K is a proportionality
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constant in the BTI model, and its exact influence can only be determined experimentally.
The same is valid for the technology dependent constant AHCI from the HCI model, it
can only be determined experimentally. Therefore, these two constants were determined in
such a way that under worst-case conditions (e.g., permanent stress and 100° C), the delay
degradation is at most 10% after 3 years, which follows previous results presented in [70,
50].

Therefore, it was just described, at the transistor level, the long-term threshold voltage
shift (∆Vth) caused by ageing degradation due to the BTI and the HCI effects. And using
Equation (5.1) above, it just relates these degradation effects over the threshold voltage to its
respective relative delay degradation (∆reld) in the transistor. Moreover, using the developed
framework described in the next section, this transistor delay is translated into gate delay,
and later to path delay. Once reaching this level, the design’s critical path can be recalculated
and its respective propagation delay as well.

Furthermore, as already explained in Section 2.3, this critical path delay is strongly related to
the maximum operating frequency of an electronic circuit, in such a way that its respective
period must be, at least, as big as the propagation delay over the critical path. Therefore, in
case effects such as BTI and the HCI increase the critical path delay so that it exceeds the
clock period of the circuit, special techniques such as graceful degradation, modified flip-flops,
or others [27, 30, 52, 64, 66] must be applied to maintain the affected device in operation.
After all, the critical path delay is, therefore, the metric used in this section to evaluate
ageing effects over the test platform used in this thesis.

Moreover, since the mentioned BTI and HCI models take into account the transistor switching
activity (e.g., toggle rate, and frequency) and stress time (e.g., duty cycle), they can be
used to estimate the threshold voltage shift and its respective delay degradation according
to the design’s switching activity of specific payloads. Therefore, the next sections first
describe the implemented framework to estimate ageing accordingly to different payloads.
And, afterwards, the results of the ageing estimation are presented.

5.5.1 The Ageing Estimation Framework

Together with an implementation of the HCI and the BTI models from Table 5.7, an ageing
estimation framework was built, which allowed payload-specific estimation of ageing at the
design level based on the transistor ageing models mentioned above. This framework is Tool
Command Language (TCL) based and, as it can be seen from Figure 5.2, it calls different
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software tools for digital design throughout its workflow, which is described in the multiple
steps below.

outputs
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Figure 5.2: Workflow of the ageing estimation framework.

Step 1: Run-Time simulation

First, using Modelsim, a gate-level design (the design’s netlist) is simulated using the desired
payload, and its signals switching activities are then saved in a VCD or a Switching Activity
Interchange Format (SAIF) file. The intention here, is to capture these signals activities for
certain payloads to, at the end of this evaluation, compare the estimated ageing for different
payloads.
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Step 2: Getting the activity

The same design and the just generated VCD/SAIF activity file are then loaded in the
Cadence® Genus™ tool. Once we have the design and the activity file properly loaded, we use
the tool to generate a human-readable power report with the input and output pins activity
of each gate (e.g., NAND gate, NOR, and INV) in the design. In this stage, we are especially
interested in the toggle-rate and the duty-cycle of the gate pins in order to use these in the
ageing models.

Step 3: Using the ageing model and calculating the gate relative delay

Once we get the toggle-rate and the duty-cycle of the pins for each gate in the design, we
use these values in the ageing model to get the respective voltage threshold shift (∆ Vth),
and therefore, the respective relative delay degradation (∆reld) for each gate in the design.
However, the equations presented in Table 5.7 model the BTI and the HCI effects for only
one transistor. And, as we know, digital gates are composed of multiple transistors, and
these are connected differently depending on the function of the gate. Therefore, a first
assumption must be made regarding these internal transistor connections within a gate. Such
an assumption should allow us to use the obtained toggle-rate and the duty-cycle in the input
pins of a certain gate, to estimate the respective activity on its internal transistors. Thus,
enable the usage of the ageing models from Table 5.7. To this end, the following is then
defined:

• Assumption 1: It is assumed that all transistors in a gate are directly connected to,
at least, one of its inputs. Therefore, there is no intermediate transistor in between
the inputs and the output of the gates, and they are all switching together with the
switching activity in the input pins of the gate. Figure 5.3 shows a NAND gate as an
example in which this assumption is valid. As it can be noticed, all transistors in the
gate are directly connected to, at least, one input of the gate. Although this assumption
might not be true for all gates used in a design’s combinational logic, it holds for the
gates that are used the most (e.g., inverters, NAND, and NOR gates). For instance,
approximately 80% of the gates in the combinational logic of the core of the Plasma
processor fulfil this assumption.

From this first assumption, once we get the switching activity at the input pins of a gate, we
then have the activity for all transistors within this gate. In this case, transistors connected
to the same pin/pins will age equally. And transistors connected to different inputs in
the gate will have different activity rates, leading to different ageing rates. Furthermore,
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Figure 5.3: Circuit implementation of a NAND gate in Complementary MOSFET (CMOS) techno-
logy.

from the ageing models presented in Table 5.7, different ∆ Vth are expected for p-type
MOSFET (PMOS) and n-type MOSFET (NMOS) transistors. Therefore, at the end of this
phase, there will be two different relative delays (one for the PMOS and another for the
NMOS transistors) for each input of the gate under evaluation.

However, in the used software tools it is only possible to deal with gate-level delays, therefore,
it is necessary to find a respective gate-level delay with the just obtained transistor-level
delay rates. Therefore, a second assumption is made to cover this situation:

• Assumption 2: It is assumed that all transistors in a gate will age homogeneously
equal to the most degraded transistor relatively to the switching activity at the input
pins of this gate. Although this assumption might not again be true for all gates in a
design, it gives us a good estimation of a gate’s worst-case degradation based on its
input activity.

To follow this assumption first: the toggle-rate in the output pin of the respective gate
of the transistor under evaluation is taken, so it gives the worst case for the HCI effect;
and the highest and lowest duty-cycle are taken for the NMOS and the PMOS transistors
respectively, so that the highest duty-cycle represents the biggest amount of time spent in
the BTI stress-phase for the NMOS transistor, the lowest duty-cycle represents the same for
the PMOS transistor.

Thereafter, using the models from Table 5.7, two different ∆ Vth are calculated: one for
the NMOS and the other for the PMOS transistors. These represent the threshold voltage
variation for the most degraded NMOS and the most degraded PMOS transistor within
the gate. Secondly, these two different ∆ Vth are used to calculate their respective relative
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delay degradation for the NMOS (∆reldNMOS) and PMOS (∆reldPMOS) transistors using
Equation 5.1. Finally, for these two different relative relays, the second assumption is used
again getting its worst-case estimation, and the one with the highest relative delay is chosen
to represent the relative delay of the entire gate (∆reldgate).

Afterwards, this ∆reldgate must be applied to the respective gate in the design. For this, the
Cadence® Tempus™ tool is used to apply a derating factor to the desired gate. This derating
factor is used to change the original timing information of a desired gate, therefore, it can
make a gate faster or slower by applying a factor smaller or bigger than 1.0, respectively. After
all, such a derating factor is exactly the ∆reldgate that was just calculated using Equation (5.1)
from the ageing model.

Step 4: Using the aged gate-level netlist to recalculate the design’s path delays

Step 3 above needs to be repeated for each and every existent gate in the design, thereby, a
relative delay is properly applied to all gates in the design, resulting in an aged gate-level
netlist. Once it is done, the Cadence® tool is used again to recalculate the path delays of the
design and generate the respective timing reports.

Finally, with these timing reports, it is possible to compare, for different payloads, the delay
increase over the design’s critical paths due to the estimated ageing. Therefore, it is possible
to compare the criticality-aware run-time management of the FUs approach proposed in this
thesis with, for example, a case in which redundancy is always enabled over the FUs.

5.5.2 The Ageing Estimation Results

This section intends to evaluate the benefit of the criticality-aware management of FUs for
mixed-critical scenarios proposed in this thesis. For this purpose, the four scenarios used for
the power overhead evaluation (Section 5.4) are again used here. Quickly describing these
scenarios again, we have as it follows:

• Scenario 1: Plasma Original design running the Plasma-RTOS without any modifica-
tion.

• Scenario 2: Plasma Extended design fixed in the TMR scheme and running the
Plasma-RTOS without any modification.
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• Scenario 3: Plasma Extended design running the extended Plasma-RTOS and per-
forming the per process management of FUs. Here application process A is running
in SlMode, application process B in DMR, and application process C, as well as the
Real-Time Operating System (RTOS) functions, are running in the TMR scheme
(Figure 5.1).

• Scenario 4: The same as scenario 3 with Plasma Extended design and the extended
Plasma-RTOS, but here the application processes A, B and C are running in SlMode,
the RTOS functions are the only ones running in the TMR scheme (Figure 5.1).
Furthermore, in this scenario, a load balancing approach is being used, and each
application process runs in a different FU.

Running the ageing estimation framework, described in Section 5.5.1 above, for these four
scenarios, we can evaluate their correspondent delay differences, due to ageing, over the
critical paths of the design. Table 5.8 shows the critical path delay before (non-aged) and
after (aged) applying the ageing estimation framework for the four described scenarios. The
Non-aged delay presented in the table was the critical path delay calculated right after
synthesis. And the Aged was the critical path delay calculated after applying the ageing
estimation framework for an estimated ageing of 3 years. From the table, it is possible to see
that the ageing impact over the critical path delay decreased as the dynamic management of
FUs is enabled. For example, the delay degradation (the difference before and after ageing)
decreased from 287.99ps for scenario 2, to 222.37ps for scenario 3, and to 214.71ps for scenario
4 in which the dynamic management of FUs is performed. Such a decrease in the delay
degradation can have a positive impact on the long-term performance of the electronic device.
This means that as long we can avoid the critical path delay to increase, signals are still able
to propagate throughout this path within the clock period specified at design-time. Once the
critical path delay becomes larger than the intended period, there is not enough time for the
propagation of a signal throughout this path. Consequently, if no further technique is applied,
the device is no longer able to operate at the frequency specified at the design-time. After all,
under the evaluated scenarios and for the tested design, we can say that the criticality-aware
management of FUs is indeed able to decrease the ageing rate by reducing the degradation
over the critical path delay.
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Table 5.8: Critical path delay before and after applying the ageing estimation framework for the
four described scenarios.

Critical path delay Delay difference Delay (ageing) reduction
Evaluated scenario Design Non-aged1 Aged due to ageing due to dynamic managm.
1 - no dyn. managm. Plasma Original 922.00ps 1172.79ps 250.79ps -
2 - no dyn. managm. Plasma Extended 1139.00ps 1426.99ps 287.99ps -

fixed in TMR
3 - dynamic Plasma Extended 1139.00ps 1361.37ps 222.37ps 65.61ps (scenario 3 vs. 2)
per process managm.
4 - dynamic Plasma Extended 1139.00ps 1353.71ps 214.71ps 73.27ps (scenario 4 vs. 2)
per process managm.
1 results obtained directly after synthesis of the design, therefore, it is no payload dependent.

5.6 Fault Tolerance Evaluation

In this section, we will first see a theoretical evaluation regarding the reliability of the different
FUs schemes proposed in this thesis. Later on, a practical and comprehensive fault tolerance
evaluation is presented using fault injection campaigns.

5.6.1 Theoretical Evaluation

A standard method to evaluate the fault tolerance of a system is in terms of its reliability.
As we have seen, the reliability R(t) of a system is the probability that it will deliver the
correct service in the time interval [0, t], given that it was performing correctly at instant
zero (t = 0). Following an exponential lifetime distribution, and for a constant failure rate
λ, we have that the reliability of a system at a specific point in time (R(t)) is defined as
Equation (5.2) [53].

R(t) = e−λt (5.2)

When a group of hardware modules is working together we can calculate the reliability of the
entire system (composed of these modules). For such a calculation, one must take into account
how these multiple modules interact with each other. First of all, we must assume that the
modules are independent of each other, therefore, a failure in a particular module would not
generate another failure in the other neighbour modules, and neither affects their individual
reliability. This assumption is taken for all the upcoming reliability models mentioned in this
section.
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A system that fails if one of its participant modules fails, is called a series system, and its
resulting reliability is obtained by the product of the individual reliability of the n participant
modules, as it is defined by Equation (5.3).

Rseries(t) = Rmod1(t) ·Rmod2(t) · . . . ·Rmodn(t) =
n∏
i=1

Rmodi
(t) (5.3)

In case we have n identical modules, the reliability for a series system is as stated in
Equation (5.4).

Rseries(t) = (Rmod(t))n (5.4)

Another possibility is a parallel system, which is defined as a set of n modules working
together so that it requires that all participant modules fail for the system to fail as well.
Therefore, to calculate the reliability of the system, we first calculate its unreliability (the
probability for all modules failing), which is the product of the individual unreliability of
each module (∏n

i=1(1−Rmodi
(t))). Finally, for the final system reliability, we subtract this

unreliability from the whole probability space. Therefore, the resulting reliability of a parallel
system is as it is stated in Equation (5.5).

Rparallel(t) = 1−(1−Rmod1(t))·(1−Rmod2(t))·. . .·(1−Rmodn(t)) = 1−
n∏
i=1

(1−Rmodi
(t)) (5.5)

And, again, in case the system is formed by n identical modules, the reliability for this parallel
system is as stated in Equation (5.6).

Rparallel(t) = 1− (1−Rmod(t))n (5.6)

However, not all systems fit into the series or parallel model, so that there are other models
in the literature to cover these. Here, we are particularly interested in models that fit into the
TMR and DMR replication schemes used in this thesis. First, regarding the TMR scheme, it
is classified as an M-of-N system, which consists of a system of N identical modules that fails
when fewer than M modules are working correctly, thus, the TMR is a 2-of-3 system. With
this, we have that the reliability of any generic TMR system (RTMR(t)), is composed in terms
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of the individual reliability of its redundant modules (Rmod(t)) and the voter (Rvoter(t)), as
it is defined by Equation (5.7) [53].

RTMR(t) = Rvoter(t) · (3R2
mod(t)− 2R3

mod(t)) (5.7)

Continuing in this line, to calculate the reliability of any standard DMR scheme, we must
add the coverage factor C that represents the probability of the faulty module to be correctly
diagnosed, identified and corrected. With this, we have the reliability of such a system
(RDMR(t)) defined as Equation (5.8) in terms of this factor, and the individual reliability of
the modules (Rmod(t)) and the comparator (Rcomp(t)) [53].

RDMR(t) = Rcomp(t) · (R2
mod(t) + 2CRmod(t)(1−Rmod(t))) (5.8)

Regarding the respective schemes proposed in this thesis, we can say that they follow the
equations (5.7) and (5.8) above. Therefore, the modules are actually the FUs, and the voter
for the TMR and the comparator for the DMR are represented by the Programmable Voter,
which is present in the two schemes and is responsible for both the voting and the comparing
in the TMR and the DMR schemes respectively.

Finally, we are still missing the SlMode scheme, in which we have only one module working
in series with the Programmable Voter. It is important to notice here, that the Programmable
Voter is not doing any voting, and neither comparing any signal. But in this scheme, it
is only bypassing the incoming signals from the working module (one of the FUs) to the
outgoing hardware modules in the remaining of the design. Nevertheless, this voter is still
in between the modules and the remaining of the design, thus, a series system. Therefore,
the reliability for this scheme (RSlMode(t)) follows the simple series model as it is shown in
Equation (5.9).

RSlMode(t) = Rvoter(t) ·Rmod(t) (5.9)

With these three equations ( (5.7), (5.8), and (5.9)) we can calculate the theoretical reliability
for the three different configuration schemes proposed in this thesis. Therefore, to calculate
this, let us assume that the failure rate is constant, and at a certain point in time t, the
individual reliability of each FU is Rmod(t) = 0.90. With this, we calculate the reliability for
the three different schemes taking into consideration different values for the reliability of the
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Programmable Voter up to an ideal case, though unreal, with voter reliability Rvoter(t) = 1
(Table 5.9).

Table 5.9: Theoretical reliability estimation.
Rvoter(t) Rmod(t) RSlMode(t) RDMR(t)∗ RTMR(t)
0.80 0.90 0.720 0.792 0.778
0.90 0.90 0.810 0.891 0.874
0.91 0.90 0.819 0.900 0.884
0.92 0.90 0.828 0.911 0.894
0.93 0.90 0.837 0.921 0.903
0.94 0.90 0.846 0.931 0.913
0.95 0.90 0.855 0.940 0.923
0.98 0.90 0.882 0.970 0.952
0.99 0.90 0.891 0.980 0.962
1.00 0.90 0.900 0.990 0.972

*C = 1

It is important to notice here that for the DMR scheme, the probability factor C was
considered to be one, which means that a possible high-level mechanism would always be able
to, once detected, correctly diagnose, identify and correct a possible fault. Disregarding time,
such behaviour provides the same benefit as the TMR, but with less hardware. Therefore,
from the reliability point of view, it means fewer sources of errors, which justifies the
higher resulting reliability, from Table 5.9, for the DMR scheme when compared with the
TMR. However, in real applications, this probability factor C is actually smaller than one.
Furthermore, this correction provided by a possible high-level mechanism, and assumed to be
working together with the DMR scheme, would also take additional time, which is not the
case for the TMR. After all, since evaluating these high-level mechanisms is not the objective
of this thesis, this assumption is done so we can better compare the reliability of the different
configuration schemes.

As it can be noticed from Table 5.9, once the reliability of the voter is high enough (e.g.,
higher than or equal to 0.92 for the DMR, and higher than or equal to 0.93 for the TMR for
the cases presented in the table), the reliability of the DMR and the TMR schemes are as
such that they have a higher value than the reliability of one module alone. Therefore, we can
conclude that, if certain conditions are met (e.g., from the case in the table Rvoter(t) ≥ 0.95,
and Rmod(t) = 0.90), these two schemes do increase the reliability of a module, as it is
proposed for the FUs in this thesis.
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5.6.2 Practical Evaluation

A framework based on ModelSim simulator was implemented to perform the fault injection
campaigns, and its workflow is illustrated in Figure 5.4. As it shows, it first runs a golden
simulation with no interference. After that, it runs several other faulty simulations, in which
a fault is injected on each simulation round. The fault is injected within the simulation time
window at a randomly selected point in time, in a randomly chosen design signal. Since the
target of this thesis is to cope with soft Single-Event Effect (SEE), the actual fault model
performs a bit-wise inversion of the value of a signal (bit-flip). Thus, it is equivalent to a
Single-Event Transient (SET), or a Single-Event Upset (SEU) if the inversion is captured
by a latch or flip-flop. Finally, it uses ModelSim again to compare both the golden and the
faulty simulations. In the end, we have the number of injected faults that generated an error
in the output ports of the design.

outputsInput stimuli

Output signals 
behaviour 
captured

DUT*

Golden Simulation

outputsInput stimuli

Output signals 
behaviour 
captured

DUT*

n-Faulty Simulation Fault 
injected

Output signals 
Golden

Output signals 
n-Faultycompare

Dataset comparison

Saving results n-Faulty simulation…

n+1

*Device under test

Figure 5.4: Workflow of the fault injection campaign. First, a golden simulation, then n-faulty
simulations are performed.

However, due to the large size of electronic designs, it becomes very time consuming, or
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even unfeasible, to run a fault injection for all design signals at each unit of time. For the
core of the Plasma processor design, for example, there are around two hundred thousand
signals, and considering that a fault can cause different effects at each clock cycle, there
would be around a hundred billion of possible points to inject a fault for one millisecond
of simulation time, considering an operating frequency of 500MHz. Therefore, to shorten
the time spend on these campaigns, the design must be sampled. For this sampling, the
initial population (N) consists of these billions of possible points to inject a fault (all possible
signals at any clock cycle). It is assumed that the characteristics of this population follow
a normal distribution, which means that each individual (e.g. a fault possibility at a given
clock cycle) from the initial population must have the same probability to be selected in the
sample [56]. Such a sample must be big enough to represent, with a reasonable error margin,
the whole set of signals and possibilities for injection of faults throughout the simulation
time. Therefore, from statistical theory, the Equation (5.10) can be used to find the sample
size (n) of a finite population of elements (N) that follow a normal distribution for given
different error margins (e) and confidence levels (t). This approach of defining the sample
size for fault injections campaigns was presented by Leveugle et al. in [56], and has been used
and acknowledged by many authors in the test community in works such as [13, 14, 19, 20,
63, 77, 97].

n = N

1 + e2 · N−1
t2·p·(1−p)

(5.10)

where: n = represents the sample size (number of faults to randomly select for
injections;

N = the initial population;
p = the estimated probability of faults resulting in a failure;
e = the error margin;
t = the cut-off point (or critical value) corresponding to the confidence level,

this level is the probability that the exact value is actually within the
error interval. The cut-off point is computed with respect to the Normal
distribution (quantile table).

The calculated sample sizes for different error margins and confidence levels are presented
in Table 5.10. It is important to notice that the design is being simulated at gate-level, in
which, again, there are this very big amount of signals to be simulated by the tool (∼200000
signals). Therefore, each simulation round can take a considerable amount of time, from
several seconds to a few minutes. Looking for a feasible sample size, in which the fault
injection campaigns could be performed using a reasonable amount of time, the option for an
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error margin of 1% with a confidence level of 99% was chosen: 16586 samples.

Table 5.10: Calculated sample sizes for different error margins and confidence levels obtained using
Equation (5.10).

t = 1.96 t = 2.5758 t = 3.0902
(95% conf.) (99% conf.) (99.8% conf.)

e = 5% 384 663 955
e = 1% 9604 16586 23873
e = 0.1% 959180 1655052 2379811

In fact, the real amount of time for each simulation depends not only on the design, but
also on the payload. Regarding this, the open-source Powerstone benchmark suite [59] was
taken. This benchmark contains a collection of embedded and portable applications, therefore,
suitable for the intended application domain of this thesis. However, due to limitations of the
software library provided by the Plasma CPU project, not all benchmarks could be compiled
for the design. Furthermore, there were also additional benchmarks that were compiled
successfully, but their required run time were too long, therefore not feasible for the several
gate-level simulations needed by this fault injection campaign, in which a few milliseconds of
a single virtual simulation can take several minutes or even hours depending on the simulated
design. After all, four different benchmarks from the Powerstone benchmark suite, and one
test program available together with the Plasma CPU project [75] were used as payloads
for the fault injection campaign. These five benchmarks include applications performing
shift and adding, graphics functions, cyclic redundancy check (CRC) calculation, paging
communication protocols and a test program testing all MIPS I opcodes supported by the
Plasma processor. Table 5.11 summarises these benchmarks and shows the required virtual
simulation time for each of them.

Regarding the different designs tested in this section. The fault injection campaigns were
performed through four designs. These four designs consist of the Plasma unmodified version
(original), and the remaining three are of the Plasma extended design fixedly running in
SlMode, DMR and TMR scheme. There are different run times for each design and each
payload.

The fault injections were performed in a server machine with its cores running at 2.3GHz (its
Central Processing Unit (CPU) model and vendor will not be disclosed due to confidentiality).
An individual simulation cannot be divided into different processes, therefore each simulation
runs only on one processor core. However, the n-Faulty simulations are each a different
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process that can be distributed to run in parallel through the cores of a machine. Table 5.12
illustrates the average amount of time used per CPU core in each simulation for the five
benchmarks and each design tested. Finally, this table also shows a summary of all CPU time
used for these fault injections campaigns using the calculated sample size from above. It can
be noted that taking into account all the designs simulated, all the five different payloads, and
the number of simulations that needed to be performed to reach the calculated sample size n,
the total amount of CPU time used for the fault injection campaign was approximately 8307
hours.

Table 5.11: Benchmarks used as payloads for the fault injection campaigns and their required
simulation time.

Benchmark Description Simulation time

Opcodes2 Test all supported MIPS I opcodes 0.2ms

BCNT Bit shifting and anding through 1K array 2.0ms

CRC Cyclic redundancy check 3.0ms

Blit Graphics application 3.5ms

POCSAG Communication protocol used to transmit data to pagers 4.5ms

Table 5.12: CPU time used for each benchmark simulation and the full fault injection campaign.
Benchmark CPU Time

Plasma Original Plasma Ext. SlMode Plasma Ext. DMR Plasma Ext. TMR

Opcodes2 ∼3 s ∼3 s ∼4 s ∼5 s

BCNT ∼60 s ∼66 s ∼89 s ∼135 s

CRC ∼69 s ∼76 s ∼105 s ∼148 s

Blit ∼87 s ∼95 s ∼121 s ∼175 s

Pocsag ∼95 s ∼113 s ∼150 s ∼204 s

Total time (x16586) ∼5208004 s ∼5854858 s ∼7778834 s ∼11062862 s

Total CPU time ∼299045558 s (∼8307 hours)

As already mentioned, the fault injection campaign was performed through the unmodified
(original) version of the Plasma processor design, and the extended version presented in
Section 4.2 in three different configurations: in SlMode, DMR and TMR scheme. These
designs were synthesised and mapped to OCL 15nm [61], and, therefore, these are the
evaluated Devices Under Test (DUTs), as presented in Figure 5.4. After performing the fault
injections, it was possible to get the amount of injected faults that propagated through the
design and generated an error in the output ports of the Plasma processor core. Therefore,
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the rate at which faults propagate through the design or, in other words, the vulnerability of
the design. Such a metric, when attributed to a specific structure of an electronic design (e.g.,
an internal module, or the whole processor core) is called to be the Architecture Vulnerability
Factor (AVF). This factor, together with two further introduced metrics, are used to illustrate
in the next sections the design’s fault tolerance regarding the intended fault model (SETs
and SEUs).

Architecture Vulnerability Factor Evaluation

The AVF is defined as the probability that a fault in a particular structure will result
in a visible error in the final output of a program [69]. In the fault injection campaigns,
this probability is actually the rate of injected faults, in a given design or structure, that
resulted in a visible error in the output signals of the tested designs - therefore a failure -
(Equation (5.11)).

AV F = failures

injected faults
(5.11)

Figure 5.5 shows the calculated AVFs for all the tested designs and for each of the prepared
payloads, with additional columns to illustrate the average AVF values of the designs.
Notably, the overall vulnerability of the design decreased for the Plasma Extended processor
in all evaluated configurations. However, as expected, the most prominent vulnerability
improvement was over the extended design when the TMR scheme was enabled. This means
that it is less likely that a fault will become an error for this design while in this scheme.
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Figure 5.5: AVF for Plasma original and the extended design in different configuration schemes.

83



Chapter 5 Evaluation

Figure 5.6 shows a deeper vulnerability analysis of the internal modules of the processor
design. The internal modules are shown as described in section 4.1. What is important to
notice here, is the "FUs Module / FUs Wrapper" column that evaluates the vulnerability for:
all the FUs of the Plasma Original processor; and the extended FUs module of the Plasma
Extended design that contains all FUs and the additional control logic for units management
(such a module is represented by the FUs Wrapper in Figure 4.2). It is very important to
notice in this column that the extended FUs module, when configured with the TMR scheme,
presented a near null vulnerability factor. This means that for this scheme, it is very unlikely
(with a near zero probability) that a fault will propagate generating an error in the module and
an erroneous behaviour in the output pins of the processor core, thus generating a failure.
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Mult
Top CPU

Overall design
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Figure 5.6: Average AVF of the internal modules of Plasma original and the extended design in
different configuration schemes.

However, since we are evaluating the vulnerability of the design regarding faults caused by
external particles hitting the device silicon (e.g., SEE). It is also necessary to use a metric
that takes into account the area of the tested designs. Because an increase in silicon area
would, consequently, increase the chances of a charged particle or neutron hitting the device.
Therefore, the cross-section metric is used for this evaluation, which takes into account the
AVF and the area of the tested designs.
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Cross-Section Evaluation

In the context of electronic devices testing, the cross-section σ is defined as the radiation-
sensitive area of a device [84]. It is usually obtained experimentally by fault injection
experiments using the Equation (5.12) defined below.

σ = λ

φ
(5.12)

where: σ = cross-section;
λ = observed error output rate, thus the failure rate
φ = particle flux

Where λ is the observed failure rate (e.g., the number of failures per unit of time), and
φ is the particle flux, which represents the rate of particles hitting the device silicon per
unit of area. Therefore, the units attributed to each of these metrics are the illustrated in
Equation (5.13) for λ and in Equation (5.14) for φ.

λ = [failures]
[time] (5.13)

φ = [particles]
[area · time] (5.14)

Putting these all together in Equation (5.12) we have as it shows in Equation (5.15), and as
it shows, after working a little on the formula, we have defined our cross-section in terms of
what it actually represents.

σ = λ

φ
= [failures · time−1]

[particles · area−1 · time−1] = [failures]
[particles · area−1] = [failures · area]

[particles]
(5.15)

If we consider the number of faults injected in the fault injection experiments as the particles
from the equations above, and the number of failures generated by these injected faults as the
failures from the equation above. We have then defined a way to calculate the cross-section
of the tested designs, and its final result would represent the fault-sensitive area of that given
design. Furthermore, as we have seen above, the AVF is exactly this factor between the
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observed failures and the injected faults. Therefore, we can finally calculate the cross-section
σ in terms of the AVF and the respective area of a design, as defined by the Equation (5.16).

σ = [failures]
[injected faults] · area = AV F · area (5.16)

Therefore, we can calculate the cross-section σ of the four tested designs by multiplying the
obtained AVF from the section above by their corresponding area obtained as a result of the
synthesis presented in Section 5.2.

The resulting cross-sections for each of the payloads and the tested designs are presented
in Figure 5.7. It is notable that the fault-sensitive area of the device did decrease for the
extended design when enabled with TMR over its FUs. This means that despite being bigger
than the original design, it is less likely that a particle hitting the design will cause a failure
in this extended version when enabled with this scheme.
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Figure 5.7: The cross-section for Plasma original and the extended design in different configuration
schemes for the different benchmarks.

Figure 5.8 shows a deeper analysis of the cross-section for the internal modules of the Plasma
processor design. From the figure, it is noticeable that the most relevant differences are in
the cross-section size of the "FUs Module / FUs Wrapper" and in the overall processor core.
The overall design improved just as we have explained. But for the FUs module, its fault
sensitive area did decrease reaching almost none area.

On the other hand, looking at the figures it is notable that the design got an average increase
on its cross-section, while configured with SlMode and DMR scheme. It is, however, expected
because the extended version of the Plasma processor is bigger than its original. And since
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Figure 5.8: Cross-section average value of the internal modules of Plasma original and the extended
design in different configuration schemes.

no error is being corrected in these modes (only error detection is enabled in the DMR), the
device only became more susceptible to faults, since it is bigger and easier for a particle to
hit its silicon. Another interesting analysis is regarding the cross-section increase while the
design is in the DMR scheme when compared to the SlMode one. This increase happens
because a bigger portion of the design is now active. Therefore, since the DMR scheme
enables two units, while the SlMode enables only one, it is more likely that a particle will
hit an area that is being used, which will easier activate and propagate the fault. However,
as it is stated in previous sections, the DMR scheme not only enables error detection, but
also the usage of strategies for error correction on-demand, which can compensate for the
increased susceptibility to faults of this scheme. Therefore, it can be used, for example, with
applications that can accept the time overhead of these strategies but still need to tolerate
faults by correcting them on-demand.

Failure Rate at Sea Level

As it is already mentioned in Section 2.1.2, at sea level, the neutron particles are the ones
that cause the most prominent effect over electronic devices and, therefore, are more likely
to produce soft SEE. Furthermore, according to the Joint Electron Device Engineering
Council (JEDEC), in its technical report JESD89A, it is expected that neutrons hit the
Earth’s ground at sea level at a rate of 13neutrons/(cm2 ∗ h) [48]. Additionally, from
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Equation (5.12) we have that the failure rate of a device can be calculated as defined by
Equation (5.17) below. Finally, entering in this equation the obtained cross-section σ and
the flux φ of neutron particles at sea level, it is possible to calculate the expected failure
rate λ at sea level for the above tested processor designs. Furthermore, the corresponding
Failure In Time (FIT) rate can also be obtained by multiplying this failure rate by 109, which
represents the number of detected failures in one billion hours of device operation.

λ = σ · φ (5.17)

Figure 5.9 illustrates the calculated failure rate (failures/hour) and the corresponding FIT
rate for the evaluated designs and each of the payloads as well. Furthermore, a comparison
was done between the unmodified version of the processor design (Plasma Original) and the
three different configuration schemes of the Plasma Extended. Figure 5.10 shows these rate
comparisons for the different payloads and an average result. In the figure, it is possible to
see that, for the TMR scheme, the failure rate at sea level decreased for all payloads. As a
result, it presented an average decrease in this rate of approximately 15%.
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Figure 5.9: Calculated failure rate at the evaluated designs at sea level for the obtained cross-section
and the given flux φ of neutron particles.

However, if we look closer at the internal modules again, Figure 5.11 illustrates the average
calculated failure rate (failures/hour) and the corresponding FIT rate for the internal FUs
Module and its units within. Furthermore, Figure 5.12 shows again a comparison of the
Plasma Original and the Extended, but it is now highlighting this mentioned internal FUs
module. From the figure, it is possible to see that the failure rate decreased by a factor of
approximately 80% for this module when configured with the TMR scheme, and regarding
its internal units, these get their sensitive area decreased by almost 100%. Therefore, it is
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Figure 5.10: Failure rate at sea level comparison for different benchmarks and the evaluated designs.

possible to say that, by adding the necessary control logic for the management of the units,
and when configured with TMR, this module became approximately 80% less sensitive to the
studied faults, if compared to its original and non-fault tolerant implementation.
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Figure 5.11: A closer look at the FUs module calculated failure rate at the evaluated designs at sea
level for the obtained cross-section and the given flux φ of neutron particles.
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Figure 5.12: Failure rate at sea level comparison for the FUs module of the evaluated designs.

To Conclude

To summarise, we could see throughout this fault tolerance evaluation section that the
replication method applied to the FUs did decrease the failure rate of not only its internal
FUs module, but also the whole design. Given the evaluated scenario, if we assume that
the remaining units and registers of the processor can be protected by other methods (e.g.,
Error Correction Code (ECC) in the register file), it is possible to say that the mechanism
proposed in this thesis can decrease the failure rate of the FUs module by approximately 80%
when TMR is enabled on this module. Still, if nothing else is done to improve the fault
tolerance of the processor design, my mechanism can, alone, improve the failure rate of the
whole processor by approx. 15% when the same triplication scheme is used.

5.7 Summary

This chapter evaluates the implemented test platform in many different aspects. It first
presented the latency to change between the FUs scheme, in which two cases were presented:
while running bare-metal code, and while running an OS. For the first, we could see that a
latency of only one instructions cycle was necessary to change the FUs scheme. For the OS
we could see that only a few clock cycles were added to the process switching mechanism of
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the OS, accounting approx. 2.4% of latency overhead to switch between processes. Secondly,
the area overhead to implement the hardware management mechanism was presented. It
was possible to see that the extra FUs were responsible for the most for the area increase.
However, if considering only the control logic overhead, we could see that the area increased
by about 216.2um2, which means less than 6.2% of overhead compared to the original design
of the core of the Plasma processor. Nevertheless, taking altogether this scheme’s overhead
is still below standard replication schemes such as core lock-step approaches. Continuing,
the power overhead was evaluated, and it was possible to see that the run-time management
of FUs can decrease and optimise the power consumption of the proposed system for the
proposed mixed-critical scenario. Furthermore, regarding the increase in the critical path
delay. Despite the 6% increase in the critical path delay, the design could still reach its
desired operating frequency at design-time.

Regarding fault tolerance, a very comprehensive evaluation was presented. Through fault
injections campaigns at gate-level, this chapter presented how the implementation of the
management mechanism affected positively and negatively the design. Nevertheless, under
the evaluated scenario, the average failure rate of the internal FUs module, when configured
with the TMR scheme, decreased by approximately 80% if compared to its original version.
Furthermore, evaluating the whole design, it was possible to see that the mechanism pro-
posed in this thesis can, alone, decrease the failure rate of the whole processor design by
approximately 15% when configured with the same triplication scheme.

Finally, when evaluating ageing. A framework was implemented that enabled the measure-
ment of critical path delay increase regarding payload-dependent ageing effects. With this
framework, it was possible to notice that the criticality-aware management of FUs could
successfully decrease the ageing rate over the design’s critical path.
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Conclusions

Systems targeting reconfiguration for fault tolerance can be especially interesting in the
domain of mixed-critical systems. Because tailored designs for this domain tend to be
overestimated for the worst-case scenarios, changing system configuration or redundancy
schemes to match the current criticality of running tasks can avoid unnecessary power
consumption and usage of hardware resources. Within the mixed-critical context, but in the
domain of processor designs, management of hardware resources has been done mostly at
the level of cores, and very few further approaches deal with internal units of the processor
core, for example. Furthermore, even fewer works link these low-level hardware units with
software-level management, and if so, no proper study is presented to evaluate the effects
that such a level of management can provide. To cover this gap, this thesis just presented
the concept and its implementation details for a software-managed hardware mechanism that
enables run-time management of processor internal Functional Units (FUs). With such a
mechanism, it was possible to enable, on-demand, redundancy schemes of the internal units
of the processor design, therefore, increasing the system’s fault tolerance.

Targeting soft Single-Event Effects (SEEs), Section 5.6 presented a fault tolerance evaluation.
It is shown that once Triple Modular Redundancy (TMR) is enabled over the FUs, the
expected failure rate over the FUs module decreased by approximately 80% if compared to its
original implementation. Furthermore, when evaluating the whole processor, it was possible
to see that the proposed mechanism could, alone, decrease the failure rate by approximately
15% when compared to the Plasma Original version (reaching objective 2 ).

Additionally, as Section 5.1 presented, the proposed concept enabled very agile management
of hardware FUs, taking only one instruction cycle to configure the desired scheme of the
units down the hardware (reaching objective 1 ).

Furthermore, using the presented design, it was possible to enable the desired scheme of
the FUs not only fast, but on-demand at run-time. And when complemented with an
Operating System (OS) and the proposed extensions, the presented platform was able to
perform criticality-aware management of its FUs for mixed-critical processes at a cost of
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approximately 2% of increase in the execution time of the process switching mechanism of
the Plasma Real-Time Operating System (Plasma-RTOS) (reaching objective 3 ). This was
only possible because of the very fast mechanism based on the newly created instructions,
which enabled this low latency to enable or disable a desired redundancy scheme of the units
down the hardware. Such a low latency could enable even smaller configuration granularity,
for example, inside program loops.

Moreover, because of the criticality-aware management of FUs, it was possible to enable and
disable the replication schemes as the criticality of the running applications changed. For
example, in Section 5.4, it was possible to see that the switching between different replication
schemes as the criticality of the currently running process changed, decreased the overall
power consumption if compared to permanently enabled replication. The actual decreasing
factor depends on the amount of time the design spends on each of the possible replication
schemes. But for example, for one of the cases presented in Section 5.4, instead of adding a
power overhead of approximately 98%, the dynamic per process management strategy allowed
an overhead of only 16.2%. Such a decreased power overhead was observed in the scenario
in which only the OS is executed in TMR, while the remaining processes are in Single Unit
Mode (SlMode).

Furthermore, when evaluating ageing, we could see that the criticality-aware management of
FUs could decrease the ageing rate over the design’s critical path, by lowering the degradation
rate of its respective propagation delay.

Regarding the impact over the hardware, Section 5.2 presented that the overall hardware
overhead (∼50%) to implement the hardware mechanism is very dependent on the area of the
FUs and, a part of the extra area incurred for triplicating these units, the overhead for the
control logic was only about to ∼6%. This means that in case the FUs are already part of
the intended design, the only significant overhead would be this small additional control logic.
Furthermore, because of the additional hardware elements in the pipeline of the processor
design, there was an increase in the critical path delay. However, when pushed closer to its
operating limits, targeting an operating frequency of 1GHz, the propagation delay of the
critical path increased by approximately 6%. Nevertheless, despite this increase, the synthesis
tool was still able to synthesise the design so that the timing constraint required for this
frequency was met.

Finally, after performing all the evaluations described above, it was possible to see that
my concept was able to increase fault tolerance on-demand of a processor design, while
minimising its power consumption and hardware usage (ageing) penalties for its intended
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mixed-critical scenario. Such a feature was provided at a cost of moderately low hardware
overhead when compared to other course-grained replication approaches.

6.1 Future Work - Applying the Concept to Superscalar
Processors

Superscalar processors have multiple copies of their datapath hardware so that instructions
can be executed simultaneously. To enable this feature, special hardware elements must be
available in the processor’s microarchitecture, and multiple FUs are expected to be found
in these processors. These microarchitectures usually have register files, instruction queues
and instruction schedulers to allocate instructions for being executed on each of the available
FUs [68, 93].

Due to their internal microarchitecture, these processors are good candidates for my concept
of fine-grained control of FUs. I estimate that after a proper extension in the instruction
decoder with instructions and signals to control the operations, very few further modifications
would be necessary for the remainder of the design. So, my approach would benefit from the
already in place FUs and the logic to control these.

Thinking in a simplified way, the instructions scheduler would need to be extended with
additional control bits that would allow it to allocate instructions for multiple executions.
These executions could be done in parallel or in series using either the different available FUs,
or a simple series of re-executions under the same unit. Additionally, other control bits would
need to be aggregated to the operations and their results, so that, additional combinational
logic would be necessary to perform the comparison of the results or, when triple redundancy
is enabled, the majority voting.

To conclude, the overhead to implement my approach is potentially smaller for superscalar
processors than for simple processors as I have presented for the implemented test platform
in Chapter 4. Therefore, I see a high potential for improvements in fault tolerance for
these designs. However, since these processors present different internal structures, further
evaluations would still be necessary to confirm my expectations about the hardware overhead
and its possible improvement in fault tolerance.
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Figure 6.1: Simplified superscalar processor design with its extension points highlighted in dark
Gray.
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APPENDIX A

Acronyms

ALU Arithmetical Logical Unit
ANSI American National

Standards Institute
ASIL Automotive Safety and

Integrity Level
AVF Architecture Vulnerability

Factor
BTI Bias Temperature

Instability
CGRA Coarse-Grained

Reconfigurable Array
CMOS Complementary MOSFET
COTS Commercial off-the-shelf
CPU Central Processing Unit
CRC cyclic redundancy check
DCLS Dual Core Lock-Step
DMR Double Modular

Redundancy
DUT Device Under Test
ECC Error Correction Code
EDAC Error-Detection and

Correction
EX Instruction Execute
FIT Failure In Time
FPGA Field Programmable Gate

Array
FPU Floating Point Units

FU Functional Unit
GCC GNU Compiler Collection
HCI Hot Carrier Injection
ID Instruction Decode
IF Instruction Fetch
ISA Instruction Set

Architecture
ISR Interrupt Service Routine
IRDS International Roadmap for

Devices and Systems
JEDEC Joint Electron Device

Engineering Council
LUT Lookup Table
MEM Memory Access
MOSFET Metal-Oxide-

Semiconductor Field-Effect
Transistor

MPU Memory Protection Unit
NBTI Negative Bias Temperature

Instability
NMOS n-type MOSFET
NMR N-Modular Redundancy
OCL Open Cell Library
OS Operating System
OpCode Operation Code
PBTI Positive Bias Temperature

Instability

99



PC Program Counter
PE Processing Element
PMOS p-type MOSFET
Plasma-RTOS Plasma Real-Time

Operating System
RISC Reduced Instruction Set

Computer
RTOS Real-Time Operating

System
SAIF Switching Activity

Interchange Format
SEE Single-Event Effect

SET Single-Event Transient
SEU Single-Event Upset
SlMode Single Unit Mode
SoC System on Chip
TCLS Triple Core Lock-Step
TCL Tool Command Language
TMR Triple Modular

Redundancy
VCD Value Change Dump
VLIW Very Long Instruction

Word
WB Write Back
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