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Die Mathematiker sind eine Art Franzosen: redet man zu ihnen,
so übersetzen sie es in ihre Sprache, und dann ist es alsobald

ganz etwas anderes. Johann Wolfgang von Goethe

Abstract

Motivated by computing functionals of high-dimensional, potentially metastable diffusion processes, this thesis
studies robustness issues appearing in the numerical approximation of expectation values and their gradients.
A major challenge being high variances of corresponding estimators, we investigate importance sampling of
stochastic processes for improving statistical properties and provide novel nonasymptotic bounds on the relative
error of corresponding estimators depending on deviations from optimality. Numerical strategies that aim to
come close to those optimal sampling strategies can be encompassed in the framework of path space measures,
and minimizing suitable divergences between those measures suggests a variational formulation that can be
addressed in the spirit of machine learning. A key observation is that while several natural choices of divergences
have the same unique minimizer, their finite sample properties differ vastly. We provide the novel log-variance
divergence, which turns out to have favorable robustness properties that we investigate theoretically and apply
in the context of path space measures as well as in the context of densities, for instance offering promising
applications in Bayesian variational inference.
Aiming for optimal importance sampling of diffusions is (more or less) equivalent to solving Hamilton-Jacobi-
Bellman PDEs and it turns out that our numerical methods can be equally applied for the approximation
of rather general high-dimensional semi-linear PDEs. Motivated by stochastic representations of elliptic and
parabolic boundary value problems we refine variational methods based on backward SDEs and provide the
novel diffusion loss, which can be related to other state-of-the-art attempts, while offering certain numerical
advantages.

5



Zusammenfassung

Motiviert durch das Berechnen von Funktionalen hochdimensionaler stochastischer Prozesse, untersucht diese
Dissertation Robustheitseigenschaften, die in der numerischen Approximation von Erwartungswerten sowie
deren Gradienten auftreten. Insbesondere für numerische Algorithmen, die auf geschätzten Werten basieren,
ist eine gewisse Stabilität bezüglich möglicherweise auftretender zufälliger Fluktuationen unabdingbar. Da
für Erwartungswerte in der Regel keine geschlossenen Formeln existieren, greift man hier auf die Monte-
Carlo-Methode zurück, welche jedoch die Herausforderung von hohen Varianzen, d.h. hohen statistischen
Fehlern, mit sich bringt. Insbesondere bei der Behandlung so genannter seltener Ereignisse kann der rela-
tive Fehler so hoch sein, dass die geschätzten Zahlen gänzlich unbrauchbar sind. Es ist Ziel dieser Arbeit, diese
(Nicht-)Robustheitseigenschaften von statistischen Schätzern besser zu verstehen und Algorithmen zu entwick-
eln, welche insbesondere in hohen Dimensionen effizient anwendbar sind. Dabei fokussieren wir unsere Analyse
auf das Importance Sampling als eine populäre Methode der Varianzreduktion.
Wir entwickeln neuartige nicht-asymptotische Schranken für den relativen Fehler von Importance-Sampling-
Schätzern in Abhängigkeit von Abweichungen von der optimalen Lösung – zunächst in einem abstrakten Sinne.
Schließlich betrachten wir insbesondere hochdimensionale, möglicherweise metastabile stochastische Prozesse
– dies korrespondiert zu Importance Sampling im so genannten Pfadraum, wofür wir zusätzliche Formeln für
den relativen Fehler der Schätzer entwickeln. Strategien für ein möglichst optimales Importance Sampling
von Diffusionsprozessen korrespondieren zu stochastischen Optimalsteuerungsproblemen. Inspiriert von diesem
Zusammenhang entwickeln wir einen einheitlichen Rahmen aus der Perspektive von Pfadmaßen, welcher neue
numerische Verfahren motiviert. Insbesondere legt er die Minimierung geeigneter Divergenzen zwischen diesen
Maßen in Form einer Variationsformulierung nahe, welche im Sinne des Machine Learnings gelöst werden kann.
Hierbei ist es eine zentrale Erkenntnis, dass verschiedene Divergenzen zwar denselben eindeutigen Minimierer
haben, sich aber hinsichtlich ihrer statistischen Eigenschaften stark unterscheiden können, etwa in Abhängigkeit
der Dimension oder bezüglich möglicher Fluktuationen in der Nähe der optimalen Lösung. Im Zuge dessen
schlagen wir die neuartige Log-Varianz-Divergenz vor, welche vorteilhafte Robustheitseigenschaften mit sich
bringt, die wir durch theoretische Analyse und zahlreiche numerische Beispiele belegen können. Als eine zusät-
zliche Anwendung dieser Divergenz für Dichten betrachten wir die Bayes’sche variationelle Inferenz. Dies führt
zu einem verbesserten Gradientenschätzer, welcher sowohl theoretisch als auch in numerischen Experimenten
seinem naiven Gegenpart deutlich überlegen ist.
Das Streben nach optimalem Importance Sampling von Diffusionsprozessen ist (mehr oder weniger) äquiva-
lent zum Lösen von Hamilton-Jacobi-Bellman-PDEs, und es stellt sich heraus, dass unsere entwickelten nu-
merischen Methoden gleichermaßen für die Approximation bestimmter allgemeinerer hochdimensionaler semi-
linearer PDEs angewendet werden können. Motiviert durch stochastische Darstellungen von elliptischen und
parabolischen Randwertproblemen entwickeln wir darauf aufbauend bestimmte variationelle Methoden weiter,
die auf rückwärts-SDEs basieren, und schlagen den neuartigen diffusion loss vor, welcher gegenüber den alter-
nativen Methoden einige numerische Vorteile mit sich bringt.
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Chapter 1

Introduction

Any meaningful method in quantitative science must be robust. In particular, any numerical algorithm relying
on values that need to be estimated has to be stable with respect to fluctuations to some extend in order to
yield correct results and account for reliable insights. A key quantity for the analysis of any random system is
the expectation value of some observable,

E [f(X)] , (1.1)

where X is a random variable and f some prescribed functional. Since usually no closed-form formulas for the
computation of (1.1) are available one has to rely on statistical estimations. In fact, the numerical approximation
of expectations by the so-called Monte Carlo method is ubiquitous in various disciplines such as quantitative
finance [106, 107], machine learning [34], computational statistics [101] or statistical physics [275], to name
just a few. Depending on the situation at hand, this estimation problem can be more or less difficult, but it
turns out that a major problem are potentially large statistical errors of naive sampling strategies, noting that
especially high-dimensional settings pose formidable challenges [287, 291]. It is therefore a common goal to
build estimators that exhibit a small variance, as compared to the quantity of interest, and thus a small relative
error. A typical situation, in which variance reduction is indispensable, is the simulation of rare events with
its characteristic exponential divergence of the relative error in the parameter that controls the rarity of the
quantity of interest [43].

There exist multiple strategies that strive for making estimation problems more robust [7]. In this thesis we
shall focus on importance sampling as a standard tool for variance reduction. The idea is to sample from an
alternative probability measure and reweight the resulting random variables with the likelihood ratio in order to
still produce an unbiased estimator for the quantity of interest. Naturally, the question arises which probability
distribution to choose. In theory, under appropriate assumptions, there exists an optimal proposal measure
that yields a zero-variance estimator and therefore removes all the stochasticity from the problem. However,
this measure depends on the quantity of interest itself and is therefore practically useless. Coming up with
feasible proposals, on the other hand, is a science in itself, and various numerical experiments demonstrate that
it is indeed a crucial one, as making bad choices can even increase the relative error of importance sampling
estimators significantly, therefore counteracting the original intention and leading to substantial robustness
issues [32, 108, 206, 272]. Loosely speaking, importance sampling gets increasingly difficult and sensitive to
small deviations from an optimal proposal distribution if the quantity of interest is mainly supported on small
regions which have little overlap with the regions of the proposal; such a phenomenon is more likely to appear
in high dimensions. Moreover, concentration of measure that may lead to degeneracies of likelihood ratios when
the probability of certain events becomes exponentially small is more likely to occur in high dimensional settings
[23, 237].

In this thesis we are particularly interested in random variables related to high-dimensional stochastic processes.
Being for instance relevant in engineering [298], physics [189, 208] or data assimilation [187], this setting brings
additional computational challenges, such as the numerical discretization of the process, metastable behaviors
leading to rare event phenomena or large trajectory lengths – all of which can affect the relative error of
corresponding estimators in non-trivial ways and make robust estimation a challenging endeavor. Importance
sampling has largely been studied in the context of sampling from probability densities in Rd and has become
popular for sampling diffusion processes only in recent years, with applications ranging from molecular dynamics
[131] to mathematical finance [106, 107] and climate modelling [240]. What the aforementioned fields have in
common, is that the quantities of interest are often related to rare events or large deviations from a mean or
an equilibrium state, and, often, the dynamics exhibits metastability, i.e. it features rare transitions between
semi-stable equilibria. To simulate these systems, variance reduction techniques like importance sampling are
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Chapter 1. Introduction

essential. Unfortunately, however, robust importance sampling of diffusions seems even more challenging than
in the density case and potential non-robustness issues have been observed in particular if the state space
dimension or trajectory length is large [80].

Motivated to better understand these non-robustness issues of importance sampling (and non-robustness issues
in sampling in general), while still aiming for feasible numerical strategies in high dimensions, we thus state the
following two guiding research questions:

1. How can we quantify the estimator’s statistical performance when it relies on suboptimal importance
sampling proposal measures?

2. How can we analyze and improve robust numerical strategies that aim to identify optimal importance
sampling strategies for diffusions, even if the dimensionality of the state space is large?

For stochastic processes our guiding problem can be understood as importance sampling in path space, where
drawing trajectories from alternative path space measures is equivalent to adding a feedback control to the
original stochastic dynamics. In fact, it turns out that aiming for the optimal zero-variance control (i.e. the
optimal importance sampling path measure) can be understood as a stochastic optimal control problem and it
seems reasonable to take into account methods and theoretical connections that have been developed in this
branch of mathematics over the last decades. A classical result in control theory is the connection of an optimal
control function to the solution of a nonlinear partial differential equation (PDE) of Hamilton-Jacobi type.
In fact, one can show an explicit correspondence between the optimal importance sampling control and the
solution to a specific Hamilton-Jacobi-Bellman (HJB) PDE, or similarly, by an appropriate transformation, to a
linear Feynman-Kac PDE. It is therefore evident that numerically aiming for the optimal importance sampling
measure is deeply connected to approximating solutions of PDEs.

The numerical treatment of PDEs is a prominent field in applied mathematics and methods such as finite
differences or finite elements have been studied extensively [239]. However, their practical use is often limited
by the fact that solving those equations becomes notoriously difficult in high-dimensional settings. The so-called
“curse of dimensionality” refers to the phenomenon that the computational effort scales exponentially in the
dimension, rendering classical grid based methods infeasible [19]. In recent years, however, there have been
fruitful developments in combining Monte Carlo based algorithms with neural networks in order to tackle high-
dimensional problems in a way that seemingly does not suffer from this curse, resting primarily on stochastic
representations of the PDEs under consideration [86, 87, 144, 242]. Many of the suggested algorithms perform
remarkably well in practice and some theoretical results proving beneficial approximation properties of neural
networks in the PDE setting are now available [119, 157]. Still, a complete picture remains elusive, and the
optimization aspect in particular continues to pose challenging and mostly open problems, both in terms of
efficient implementations and theoretical understanding. Most of those machine learning based attempts can be
understood as variational methods, where suitable loss functionals that admit a global minimum representing the
solution to the problem at hand are minimized by stochastic gradient descent. The loss is typically given in terms
of expectation values and consequently needs to be estimated based on a sample. For a principled understanding
of variational attempts it is therefore central to analyze the properties of loss functions and corresponding Monte
Carlo estimators and identify guidelines that promise good and robust performance. In this respect, important
desiderata are the absence of local minima as well as the availability of low-variance gradient estimators, noting
that smaller variances of gradient estimators usually yield better and faster convergence of the corresponding
algorithms [37].

Coming back to our guiding problem of identifying optimal importance sampling controls, the particular struc-
ture of the connected HJB PDE implies that a variety of loss functions can be constructed and analyzed in terms
of divergences between probability measures on the path space associated to controlled stochastic processes,
thereby providing a unifying framework for variational formulations. In analogy to the existence of an optimal
control function there exists a target path space measure that one can aim to approximate via minimizing
divergences in a family of proposal measures. Several natural choices for divergences are available, all having
the same unique minimizer, however it will turn out that they differ vastly in their finite sample properties,
leading to different losses and different robustness properties of corresponding algorithms. Furthermore, some
of the divergences can be readily applied for the approximation of more general semi-linear PDEs for which the
nonlinearity only depends on the solution through its gradient, leading to robustness improvements that seem
to be significant especially in challenging PDE problems for instance exhibiting metastable features.

1.1 Outline of the thesis

This thesis is structured as follows. Starting with the goal of identifying optimal importance sampling strategies,
Section 1.3 formally introduces five connected problems that relate to different fields of mathematics, such
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1.1. Outline of the thesis

as stochastic optimal control, PDEs and backward SDEs (BSDEs). In Section 1.4 we will show that, given
appropriate conditions, all these problems are in fact (more or less) equivalent and thereby build an appropriate
starting point for our analysis. There exist multiple numerical strategies for solving either of the five problems
and Section 1.5 shall provide a comprehensive literature overview, also referring to work related to robustness
issues of importance sampling. We will end the introductory part by discussing potential generalizations of the
stated problems.

Chapter 2 shall provide proper theoretical foundations for most of the aspects this thesis is based on. In
Section 2.1 we introduce to stochastic optimal control theory and derive the Hamilton-Jacobi-Belmann PDE. In
Section 2.2 we review stochastic representations of PDEs, focusing on linear PDEs in Section 2.2.1 and nonlinear
PDEs via the introduction of BSDEs in Section 2.2.2. We will discuss numerical discretizations of both forward
and backward processes in Section 2.2.3. In Section 2.3.1 we will formally introduce importance sampling,
in particular characterizing zero-variance strategies and focusing on sampling of diffusions in Section 2.3.2,
before in Section 2.3.3 we will draw connections to the theory of large deviations. In Section 2.3.4 we will
review the Donsker-Varadhan variational relation, again outlining connections to our original sampling intention.
Finally, in Section 2.4 we will define neural networks, refer to some recent results on their approximation
capabilities in particular in high-dimensional settings and briefly discuss stochastic optimization for targeting
the approximation task.

Chapter 3 will study importance sampling in more depth, aiming to provide nonasymptotic bounds on statistical
errors for suboptimal choices of proposal measures. In Section 3.1 we define importance sampling in an abstract
setting and recall the notions of divergences between proposal and target measures, while refining a bound
on the relative error and highlighting robustness issues in high dimensions. In Section 3.2 we will move to
importance sampling of stochastic processes. We will translate the bounds from the previous section to this
setting and derive an exact formula for the relative error with which we can then state novel bounds that allow
for interpretations with respect to robustness in higher dimensions and long time horizons. When focusing on
PDE methods in Section 3.2.1 we can essentially re-derive bounds from the previous section. In Section 3.2.2
we comment on how our bounds can help to understand potential issues in the small noise regime, and finally,
in Section 3.3 we present some numerical examples with which we will illustrate the previously discussed issues.

Chapter 4 will take the perspective of path space measures for the design of robust iterative algorithms to
solve either of the problems introduced in Chapter 1. As a unifying viewpoint, in Section 4.1 we will define
viable loss functions via divergences on path space and discuss their connections to the algorithmic approaches
encountered in Section 1.5. In particular, we will introduce the novel log-variance divergence and elucidate
its relationship with forward-backward SDEs. In the two upcoming sections we will analyze properties of the
suggested losses, where in Section 4.2 we obtain equivalence relations that hold in an infinite batch size limit
and in Section 4.3 we investigate the variances associated to the losses’ estimator versions. In the latter case,
we will consider stability close to the solution as well as in high dimensional settings. In Section 4.4 we will
provide numerical examples that illustrate our findings, while Appendix B.6 will bring further demonstrations
by explicit calculations for linear Ornstein-Uhlenbeck dynamics.

In Chapter 5 we will apply the log-variance divergence to Bayesian variational inference, resulting in a low-
variance gradient estimator. We will first provide background and context in Section 5.1, before in Section 5.2
we will derive VarGrad, our low-variance gradient estimator, and show its connection to the log-variance loss.
Theoretical analysis on VarGrad will be presented in Section 5.3, highlighting its interpretation as a control
variate version of a corresponding naive estimator. We can show that VarGrad is close to the optimal control
variate scaling under some mild assumptions, in particular demonstrating lower variance than the naive estima-
tor. In Section 5.4 we provide numerical experiments which demonstrate these findings, leading to computational
advantages and faster convergence of corresponding algorithms.

Chapter 6 will be devoted to numerical strategies for solving more general semi-linear PDEs. In Section 6.1
we will start with a variational approximation method for linear PDEs which is based on L2 projections. In
Section 6.2 we will show how parabolic PDEs on unbounded domains can be approached by BSDEs via backward
iterations – we will provide multiple numerical experiments showing in particular how this framework can be
used to exploit the tensor train format for efficient approximations in high dimensions. In Section 6.3 we
will review and extend residual and BSDE based methods for solving nonlinear PDEs from the perspective of
variational formulations of elliptic and parabolic boundary value problems. We will introduce the novel diffusion
loss as a combination of the previous two methods, which will turn out to bring some numerical advantages.
In Section 6.3.4 we will show how our framework can be used to solve special prominent PDE problems and
in Section 6.3.5 how it can be extended to linear and nonlinear elliptic eigenvalue problems. Section 6.3.6 will
discuss algorithmic design including some further modifications of the losses. Finally, in Section 6.3.7 we will
provide various numerical experiments comparing the different losses.
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Chapter 1. Introduction

We will conclude this thesis in Chapter 7, providing also multiple possible directions of future research. In par-
ticular, we will demonstrate connections to the Schrödinger problem that motivate novel algorithmic approaches
and we will provide a proof of concept for learning zero-variance importance sampling densities via the concept
of normalizing flows.

1.2 Contributions and main results

• We systematically review the connections and equivalences between sampling of diffusions, stochastic
optimal control and certain HJB PDEs (Theorem 1.2).

• We provide nonasymptotic bounds on the relative error of suboptimal importance sampling, explaining
fragility that has often been observed in numerical simulations before. Some of those bounds are formulated
in an abstract measurable space and can be readily applied to densities (Proposition 3.9). For path space
measures, we deduce some additional bounds that, in particular, highlight the sampling challenges due to
high dimensionality or long trajectories (Proposition 3.15).

• We develop a principled framework for solving specific HJB PDEs based on divergences between path
space measures, encompassing various existing methods. The perspective of constructing loss functions
via those divergences offers a systematic approach to algorithmic design and analysis. We show that
modifications of recently proposed approaches based on forward-backward SDEs [86, 122] can be placed
within this framework (Chapter 4).

• We introduce the novel log-variance divergence, encapsulating a family of forward-backward SDE systems
(Definition 4.4). The aforementioned adjustments needed to establish the path space perspective often
lead to faster convergence and more accurate approximation of the solution, as we demonstrate by means
of numerical experiments (Chapter 4).

• We show that certain instances of algorithms based on the KL divergence (or control objective) and
the log-variance divergence (or forward-backward SDEs) are equivalent when the sample size is large
(Proposition 4.19).

• We investigate the properties of sample based gradient estimators associated to the losses and divergences
under consideration. In particular, we define two notions of stability: robustness of a divergence under
tensorization (related to stability in high-dimensional settings) and robustness at the optimal control
solution (related to stability of the final approximation). From the losses and divergences considered
in this thesis, we show that only the log-variance divergence satisfies both desiderata and illustrate our
findings by means of extensive numerical experiments (Propositions 4.25 and 4.29).

• We apply the log-variance divergence to densities in the context of Bayesian variational inference, leading
to a low-variance gradient estimator which we call VarGrad. We show theoretically that this estimator
is somehow close to an optimal control variate scaling and conclude that under mild assumptions it has
lower variance than the corresponding naive estimator (Propositions 5.6 and 5.9).

• We review and extend strategies for solving semi-linear elliptic and parabolic boundary value problems
from the perspective of variational formulations, incorporating and generalizing residual and BSDE based
methods. We introduce the novel diffusion loss, which combines ideas from both methods, and show
that it can in fact be interpreted as an interpolation between the two (Propositions 6.24 and 6.25). We
illustrate potential advantages of this approach in numerical experiments.

• We show that the variational attempts for solving elliptic boundary value problems can be extended to
approximating principal eigenpairs to linear and nonlinear eigenvalue problems (Proposition 6.26).

• We propose to use the tensor train format in backward iteration schemes for solving high-dimensional
parabolic PDEs and demonstrate potential numerical advantages compared to neural network based at-
tempts in various numerical experiments (Section 6.2.3).

• We connect the Schrödinger problem to optimal importance sampling and suggest an algorithm for sam-
pling from specified target densities based on control theoretic ideas and the log-variance divergence
(Chapter 7 and Appendix B.10).

• We provide a proof of concept on how normalizing flows can be used to learn optimal importance sampling
densities via minimizing a suitable log-variance loss (Chapter 7 and Appendix B.11).

12
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1.3 Five perspectives on (more or less) the same problem

This section introduces the main ambition of the thesis more formally. Starting with the principal goal to
develop robust methods for the computation of expectation values related to diffusion processes via importance
sampling, we will show how this endeavor is inherently connected to four other problems, each being rooted in
different branches of mathematics.

Throughout, we will assume a fixed filtered probability space (Ω,F , (Ft)t≥0,Λ) satisfying the ‘usual conditions’
[171, Section 21.4] and consider stochastic differential equations (SDEs) of the form

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (1.2)

on the time interval s ∈ [t, T ], 0 ≤ t < T < ∞. Here, b : Rd × [t, T ] → Rd denotes the drift coefficient,
σ : Rd×[t, T ] → Rd×d the diffusion coefficient, (Ws)t≤s≤T denotes standard d-dimensional Brownian motion1,
and xinit ∈ Rd is the (deterministic) initial condition. For now, we will work under the following conditions
specifying the regularity of b and σ.

Assumption 1 (Coefficients of the SDE (1.2)). The coefficients b and σ are continuously differentiable, σ has
bounded first-order spatial derivatives, and (σσ⊤)(x, s) is positive definite for all (x, s) ∈ Rd×[t, T ]. Furthermore,
there exist constants C, c1, c2 > 0 such that

|b(x, s)| ≤ C (1 + |x|) , (linear growth) (1.3a)

c1|ξ|2 ≤ ξ · (σσ⊤)(x, s)ξ ≤ c2|ξ|2, (ellipticity) (1.3b)

for all (x, s) ∈ Rd × [t, T ] and ξ ∈ Rd.

Let us further introduce a modified version of (1.2),

dXu
s = (b(Xu

s , s) + σ(Xu
s , s)u(X

u
s , s)) ds+ σ(Xu

s , s) dWs, Xu
t = xinit, (1.4)

where we think of u : Rd × [t, T ] → Rd as a control term steering the dynamics. We will assume that u ∈ U ,
the set of admissible controls. For definiteness, we will set

U =
{︁
u ∈ C1(Rd × [0, T ],Rd) : u grows at most linearly in x, in the sense of (1.3a)

}︁
, (1.5)

but note that the smoothness and boundedness assumptions can be relaxed in various scenarios. Under Assump-
tion 1 and with U as defined in (1.5), the SDEs (1.2) and (1.4) admit unique strong solutions (see Theorem B.1
in the appendix).

We will usually fix the initial time to be t = 0, i.e. consider the SDEs (1.2) and (1.4) on the interval [0, T ]. Later
we will discuss how T can be replaced with a random stopping time. For a fixed initial condition xinit ∈ Rd, let
us introduce the path space

C = Cxinit([0, T ],Rd) =
{︁
X : [0, T ]→ Rd | X continuous, X0 = xinit

}︁
, (1.6)

equipped with the supremum norm and the corresponding Borel-σ-algebra, and denote the set of probability
measures on C by P(C). The SDEs (1.2) and (1.4) induce probability measures on C defined to be the laws
associated to the corresponding strong solutions; those measures will be denoted by P and Pu, respectively2

[285, 286].

Sampling problems
In various applications one is interested in the computation of expectation values of path functionals related
to diffusions. They can provide an ‘average’ behavior of certain observables connected to the dynamics and
thereby represent an important characteristic of the underlying stochastic process. We consider expectations
that are of the form

Z = E [exp(−W(X))] , (1.7)
1Most of the upcoming analysis can be undertaken when considering an m-dimensional Brownian motion, where then σ :

Rd ×[0, T ] → Rd×m. However, for notational convenience and potential issues that may arise in the importance sampling or
optimal control problems we shall focus on the case m = d.

2Of course, we have that P0 coincides with the path measure associated to the uncontrolled dynamics, i.e. P0 = P.
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where the work functional W : C → R is defined3 as

W(X) =

T∫︂
0

f(Xs, s) ds+ g(XT ), (1.8)

for suitable functions f ∈ C1(Rd × [0, T ], [0,∞)) and g ∈ C1(Rd,R). The exponential form in (1.7) constraints
the expectation to be positive, which will turn out to be helpful for dualities that we shall discuss later on (cf.
Section 2.3). In statistical physics the expectation value (1.7) appears in a quantity called free energy [130],
which, associated to the dynamics (1.2) and the work functional (1.8), can be defined as

− logE [exp(−W(X))] = − logZ. (1.9)

In almost all interesting scenarios the free energy cannot be computed analytically and one usually relies on the
Monte Carlo method to yield appropriate approximations [275]. However, quite often, the variance associated to
the random variable exp(−W(X)) is so large as to render direct estimation of the expectation E [exp(−W(X))]
computationally infeasible4. A natural approach is then to use the identity

E [exp(−W(X))] = E
[︃
exp(−W(Xu))

dP
dPu

(Xu)

]︃
, u ∈ U , (1.10)

where we recall that X and Xu refer to the strong solutions of (1.2) and (1.4), respectively, and dP
dPu denotes

the Radon-Nikodym derivative, explicitly given by Girsanov’s theorem5 (Theorem B.3),

dP
dPu

= exp

⎛⎝− T∫︂
0

u(Xu
s , s) · dWs −

1

2

T∫︂
0

|u(Xu
s , s)|2 ds

⎞⎠ , (1.11)

see the proof of Theorem 1.2. As will be explained in more detail in Section 2.3.2, techniques leveraging (1.10)
may be thought of as instances of importance sampling on path space, where the idea is to sample from another
measure and weight back with a corresponding likelihood ratio in order to still get an unbiased estimator – we
will further elaborate on statistical consequences of this attempt in Chapter 3.

Given that (1.10) holds for all u ∈ U , it is clearly desirable to choose the control such as to guarantee favorable
statistical properties. This is formulated as our first problem.

Problem 1.1 (Variance minimization). Find u∗ ∈ U such that

Var

(︃
exp(−W(Xu∗

))
dP
dPu∗ (X

u∗
)

)︃
= inf
u∈U

Var

(︃
exp(−W(Xu))

dP
dPu

(Xu)

)︃
. (1.12)

Under suitable conditions, it turns out that there exists u∗ ∈ U such the variance expression (1.12) is in fact zero
(see Theorem 1.2, (1d), Theorem 2.33 and Proposition B.6), therefore providing a perfect sampling scheme. At
the same time, it is known that choices u ̸= u∗ can potentially increase the variance of an importance sampling
estimator significantly [32, 108, 206, 272]. Let us already anticipate that it seems to be not obvious how other
choices of u influence the variance exactly and that finding a robust u seems to be non-trivial. Chapter 3 will
provide some quantitative analysis on this aspect.

Conditioning and rare events
Sampling gets particularly challenging when considering so-called rare events, which are characterized by the
fact that they only occur with a very small probability, usually obeying some exponential decay (see also
Section 2.3.3). In diffusions this phenomenon often appears if the dynamics exhibits some metastable behavior
(cf. Example 1.1). Any efficient sampling strategy should have the goal of making the event of interest commonly
observable. Ideally, we want to condition the dynamics on this event such that it can be observed easily, making
a statistically sound estimation of corresponding observables possible. This goal of conditioning a dynamics can

3As already hinted at, later we will as well replace the deterministic time horizon T with some random stopping time.
4In fact, the variance is particularly large in metastable scenarios such as those to be sketched in Example 1.1.
5By a slight abuse of notation, (1.11) is to be interpreted as a random variable on Ω provided by the measurable map ω ↦→ Xu

induced by (1.4). In other words, the left-hand side should be read as dP
dPu (Xu(ω)).
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be formalized in terms of weighted measures on path space. Consider again the work functional W, as defined
in (1.8). It induces a reweighted6 path measure Q on C via

dQ
dP

=
e−W

Z
, (1.13)

assuming f and g are such that Z is finite (we shall tacitly make this assumption from now on). We may ask
whether Q can be obtained as the path measure related to a controlled SDE of the form (1.4). This leads to
our second problem.

Problem 1.2 (Conditioning). Find u∗ ∈ U such that the path measure Pu∗
associated to (1.4) coincides with

Q.

Referring to the above as a conditioning problem is justified by the fact that (1.13) may be viewed as an
instance of Bayes’ formula relating conditional probabilities, where P can be interpreted as a prior measure and
e−W as a likelihood function, yielding the posterior measure Q [246]. This connection can be formalized using
Doob’s h-transform [75, 76] and applied to diffusion bridges and quasistationary distributions, for instance (see
Appendix B.10 and [55]).

Let us now present a guiding example which encompasses a stereotypical rare event scenario in a metastable
diffusion, demonstrating the potential sampling challenges.

Example 1.1 (Rare event simulation in metastable diffusion). Let us consider SDEs of the form (1.2), where
the drift is a gradient, i.e. b = −∇Ψ, and the potential Ψ is of multimodal type, yielding the overdamped
Langevin equation

dXs = −∇Ψ(Xs) ds+ σ(Xs, s) dWs. (1.14)

As an example we shall discuss the one-dimensional case d = 1 and assume that Ψ ∈ C∞(R) is given by

Ψ(x) = κ(x2 − 1)2, (1.15)

with κ > 0. Furthermore, let us fix the initial conditions xinit = −1 and t = 0, and assume a constant diffusion
coefficient of size unity, σ = 1. Observe that Ψ exhibits two local minima at x = ±1, separated by a barrier at
x = 0, the height of which is modulated by the parameter κ. When κ is sufficiently large, the dynamics induced
by (1.2) exhibits a metastable behavior: transitions between the two basins happen very rarely as the transition
time grows exponentially in the height of the barrier [26, 178] (see also Example 3.13).

Figure 1.1: Illustration of rare events in a metastable double well potential.

Applications such as molecular dynamics are often concerned with statistics and derived quantities from these
rare events, as those are typically directly linked to biological functioning [84, 264, 265]. At the same time,
computational approaches face a difficult sampling problem as transitions are hard to obtain by direct simulation
from (1.2). Choosing f = 0 and g such that e−g is concentrated around x = 1 (consider, for instance, g(x) =
ν(x−1)2 with ν > 0 sufficiently large), we see that Q as defined in (1.13) predominantly charges paths initialized
in x = −1 at t = 0 and enter a neighbourhood of x = 1 at final time T . Since in practice the distribution of
XT (corresponding to the path measure P in this particular case) often barely overlaps with the function e−g, as

6The reweighting formula (1.13) can sometimes be found under the name Feynman-Kac formula [64], not to be confused with
the Feynman-Kac formula from Theorem 2.14, and it builds the foundation of so-called resampling schemes that aim at heuristic
strategies for improving statistical sampling properties [77].
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illustrated in Figure 1.1, the identification of Q might be challenging. Problem 1.2 can therefore be understood
as the task of finding a control u that allows efficient simulation of transition paths. Similar issues arise in
the context of stochastic filtering, where the objective is to sample paths that are compatible with available data
[246].

Example 1.1 can be understood as a guiding problem, to which we will come back repeatedly throughout this
thesis. Next, we will move towards a different perspective.

Optimal control of diffusions
Usually the problem of finding good controls in SDEs such as (1.4) is addressed in the theory of stochastic
optimal control. Here, a certain objective that one wants to optimize has to be specified. We can for instance
consider the cost functional

J(u;xinit, t) = E

⎡⎣ T∫︂
t

(︃
f(Xu

s , s) +
1

2
|u(Xu

s , s)|2
)︃
ds+ g(Xu

T )

⃓⃓⃓⃓
⃓Xu

t = xinit

⎤⎦ , (1.16)

where f ∈ C1(Rd × [t, T ],R) specifies a part of the running costs, g ∈ C1(Rd,R) specifies the terminal costs,
and (Xu

s )t≤s≤T denotes the unique strong solution to the controlled SDE (1.4) with initial condition Xu
t = xinit.

Throughout we assume that f and g are such that the expectation in (1.16) is finite, for all (xinit, t) ∈ Rd×[0, T ].
Our objective is to find a control u ∈ U that minimizes (1.16):

Problem 1.3 (Optimal control). For (xinit, t) ∈ Rd × [0, T ], find u∗ ∈ U such that

J(u∗;xinit, t) = inf
u∈U

J(u;xinit, t). (1.17)

The specific form of the cost functional (1.16) is chosen with care and it will turn out that it is directly linked
to our importance sampling expression (1.10).

There exist many strategies to actually solve the optimal control Problem 1.3 and we will come back to some
of them later. For now, let us specify a quantity that will lead to yet another perspective. We define the value
function as the ‘optimal cost-to-go’ [98, Section I.4], namely

V (x, t) = inf
u∈U

J(u;x, t), (1.18)

noting that it is a function of the initial time and the initial condition. A classic result in control theory (to
be detailed in Section 2.1) shows that this function can be characterized as the solution to a specific parabolic
partial differential equation, which motivates our fourth perspective.

High-dimensional PDEs
It is well-known that under suitable conditions, V satisfies a Hamilton-Jacobi-Bellman PDE involving the
infinitesimal generator [230, Section 2.3] associated to the uncontrolled SDE (1.2),

L =
1

2

d∑︂
i,j=1

(σσ⊤)ij(x, t)∂xi
∂xj

+

d∑︂
i=1

bi(x, t)∂xi
. (1.19)

The optimal control solving (1.17) can then be recovered from u∗ = −σ⊤∇V (we will specify details later, e.g.
in Theorem 1.2). Let us state this reformulation of Problem 1.3 as follows:

Problem 1.4 (Hamilton-Jacobi-Bellman PDE). Find a solution V to the PDE 7

(∂t + L)V (x, t)− 1

2
|σ⊤∇V (x, t)|2 + f(x, t) = 0, (x, t) ∈ Rd × [0, T ), (1.20a)

V (x, T ) = g(x), x ∈ Rd, (1.20b)

where f and g are as in (1.16).

Throughout, we will focus on solutions to (1.20) that admit bounded and continuous derivatives of up to first
order in time and second order in space (see, however, Remark 1.3). This set will be denoted by C2,1

b (Rd ×
[0, T ],R). Note that we have now connected our probabilistic Problems 1.1-1.3 to a solely deterministic one
in Problem 1.4. Throughout this thesis, we will repeatedly encounter these two sides of the same matter and
the connection shall be further discussed in Section 2.2. Finally, our last problem brings yet another stochastic
perspective.

7Here and throughout this thesis, we slightly shorten notation by writing σ⊤∇V (x, t) instead of σ⊤(x, t)∇V (x, t).
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Forward-backward SDEs
Solutions to elliptic and parabolic PDEs admit probabilistic representations by means of the celebrated Feynman-
Kac formulae and their nonlinear extensions. To wit, we consider the following coupled system of forward-
backward SDEs (in the following FBSDEs for short):

Problem 1.5 (Forward-backward SDEs). For (xinit, t) ∈ Rd × [0, T ], find progressively measurable stochastic
processes Y : Ω× [t, T ]→ R and Z : Ω× [t, T ]→ Rd such that

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (1.21a)

dYs = −f(Xs, s) ds+
1

2
|Zs|2 ds+ Zs · dWs, YT = g(XT ), (1.21b)

almost surely.

Y is called a backward process due to its specified terminal condition and its requirement to be progressively
measurable indicates that it shall not be confused with a time-reversed process. Under suitable conditions, Itô’s
formula implies that it is connected to the value function V as defined in (1.18) via Ys = V (Xs, s). Similarly,
Z is connected to the optimal control u∗ through Zs = −u∗(Xs, s) = σ⊤∇V (Xs, s). We refer to [228, 229],
Theorem 1.2 and in particular to Section 2.2.2 for further details and will later see that this perspective will
open the door to Monte Carlo strategies for quite a wide range of problems, leading to computationally feasible
methods especially in higher dimensions.

1.4 Connections and equivalences

We have so far stated five perspectives, some of which coming from seemingly different areas of mathematics.
Let us now elaborate on their relations to one another. The following theorem shows that all of the above
problems are intimately connected.

Theorem 1.2 (Connections and equivalences). The following holds:

1. Let V ∈ C2,1
b (Rd × [0, T ],R) be a solution to Problem 1.4, i.e. solve the HJB PDE (1.20). Set

u∗ = −σ⊤∇V. (1.22)

Then

(a) the control u∗ provides a solution to Problem 1.3, i.e. u∗ minimizes the objective (1.16),

(b) the pair
Ys = V (Xs, s), Zs = σ⊤∇V (Xs, s) (1.23)

solves the FBSDE (1.21), i.e. Problem 1.5,

(c) the measure Pu∗
associated to the controlled SDE (1.4) coincides with Q, i.e. u∗ solves Problem 1.2,

(d) the control u∗ provides the minimum-variance estimator in (1.12), i.e. u∗ solves Problem 1.1. More-
over, the variance is zero, i.e. the random variable

exp(−W(Xu∗
))

dP
dPu∗ (X

u∗
) (1.24)

is almost surely constant.

Furthermore, we have that

J(u∗;xinit, 0) = V (xinit, 0) = Y0 = − logZ. (1.25)

2. Conversely, let u∗ ∈ U solve Problem 1.2, i.e. assume that Pu∗
coincides with Q. Then statement (1d)

holds. Furthermore, setting
Y0 = − logZ, Zs = −u∗(Xs, s), (1.26)

solves the backward SDE (1.21b) from Problem 1.5, i.e. (1.26) together with the first equation in (1.21b)
determines a process (Ys)0≤s≤T that satisfies the final condition YT = g(XT ), almost surely.

We will later extend the connections between the optimal control formulation (Problem 1.3) and FBSDEs
(Problem 1.5) in Proposition 4.19, see also Remark 4.20.
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Remark 1.3 (Regularity, uniqueness, and further connections). Going beyond classical solvability of the HJB
PDE (1.20) and introducing the notion of viscosity solutions [98, 228], the strong regularity and boundedness
assumptions on V in the first statement could be relaxed and the connections exposed in Theorem 1.2 could be
extended [234, 304]. As a case in point, we note that in the current setting, neither a solution to Problem 1.3
nor to Problem 1.5 necessarily provides a classical solution to the PDE (1.20), as optimal controls are known
to be non-differentiable, in general.
However, assuming classical well-posedness of the HJB PDE (1.20), Theorem 1.2 implies that the solution can
be found by addressing one of the Problems 1.1, 1.2, 1.3 or 1.5 and using the formulas (1.22) and (1.23), as long
as those problems admit unique solutions, in an appropriate sense. For the latter issue, we refer the reader to
[174] and [281, Chapter 11] in the context of forward-backward SDEs and to [33] in the context of measures on
path space. We note that in particular the forward SDE (1.21a) can be thought of as providing a random grid
for the solution of the HJB PDE (1.20), obtained through the backward SDE (1.21b) (cf. also Section 6.3).

Remark 1.4 (Random initial conditions). The equivalence between Problems 1.4 and 1.5 shows that u∗ does
not depend on xinit. Consequently, the initial condition in (1.21a) can be random rather than deterministic. In
Section 4.4.3 we demonstrate potential benefit of this extension for FBSDE-based algorithms.

Remark 1.5 (Variational formulas and duality). The identities (1.25) connect key quantities pertaining to the
problem formulations 1.2, 1.3, 1.4 and 1.5. The fact that J(u∗;xinit, 0) = − logZ can moreover be understood
in terms of the Donsker-Varadhan formula [40], furnishing an explicit expression for the value function,

V (x, t) = − logE

⎡⎣exp
⎛⎝− T∫︂

t

f(Xs, s) ds− g(XT )

⎞⎠ ⃓⃓⃓⃓⃓Xt = x

⎤⎦ , (1.27)

as discussed in [60, 61, 130] and Section 2.3.4.

Proof of Theorem 1.2. The statement (1a) is a classical result in stochastic optimal control theory, often referred
to as a verification theorem, and can for instance be found in [98, Theorem IV.4.4] or [234, Theorem 3.5.2]. We
will also state it in full generality in Theorem 2.4. The implication (1b) is a direct consequence of Itô’s formula,
cf. [234, Proposition 6.3.2], [46, Proposition 2.14] or Theorem 2.25. Before proceeding to (1c), we note that
the first equality in (1.25) now follows from (1.18) (for background, see [98, Section IV.2]), while the second
equality is a direct consequence of (1b). Using (1.21) and (1b), the third equality follows from

Z = E [exp(−W(X)] = exp(−Y0)E

⎡⎣exp
⎛⎝ T∫︂

0

u∗(Xs, s) · dWs −
1

2

T∫︂
0

|u∗(Xs, s)|2ds

⎞⎠⎤⎦ = exp(−Y0), (1.28)

relying on the facts that Y0 is deterministic (again using (1b)), and that the term inside the second expectation
is a martingale (as u∗ is assumed to be bounded). Turning to (1c), let us define an equivalent measure ˜︁Λ on
(Ω,F) via

d˜︁Λ
dΛ

= exp

⎛⎝ T∫︂
0

u∗(Xs, s) · dWs −
1

2

T∫︂
0

|u∗(Xs, s)|2 ds

⎞⎠ . (1.29)

Since u∗ is assumed to be bounded, Novikov’s condition is satisfied, and hence Girsanov’s theorem asserts that
the process (˜︂Wt)0≤t≤T defined by

˜︂Wt =Wt −
t∫︂

0

u∗(Xs, s) ds (1.30)

is a Brownian motion with respect to ˜︁Λ. Consequently, we have that

dPu∗

dP
(X(ω)) =

d˜︁Λ
dΛ

(ω) = exp (Y0 −W(X(ω))) =
dQ
dP

(X(ω)), ω ∈ Ω, (1.31)

using (1.21) and (1.25) in the last step. We note that similar arguments can be found in [165], [47, Section
3.3.1].
For the proof of (1d) we refer to Theorem 2.33. The proof of the second statement is very similar to the
argument presented for (1c), resting primarily on (1.29) and (1.31), and is therefore omitted.
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1.5 Related work and generalizations

The numerical treatment of Problems 1.1-1.5 has been addressed multiple times, relying an various different
approaches. In this section we shall provide a literature overview and discuss potential generalizations.

Problem 1.1 motivates minimizing the variance of estimators via importance sampling, which is a classic variance
reduction method in Monte Carlo simulation and introductions can be found in many textbooks, such as in [224,
Section 9] or [106, 198], however, mostly the finite-dimensional case in Rd is treated. The non-robustness of
importance sampling in high dimensions is well known and has often been observed in numerical experiments [32,
108, 206, 272]. Recently, the authors of [51] have proved that the sample size required for importance sampling
to be accurate scales exponentially in the KL divergence between the proposal and the target measure, when
accuracy is understood in the sense of the L1 error, rather than the commonly used relative error. (Clearly, an
unbounded L1 error implies that the relative error will be unbounded.) Similar results can be found in [3], in
which the authors analyze a self-normalized importance sampling estimator, in connection with inverse problems
and filtering. Necessary conditions that any importance sampling proposal distribution has to satisfy have been
derived in [260], using the more general f -divergences and adopting an information-theoretic perspective.

An important class of techniques for building proposal distributions is known by the name sequential importance
sampling, where we recommend [77] for a comprehensive review. Closely related are methods based on inter-
acting particle systems and nonlinear (mean-field) Feynman-Kac semigoups, in which the variance is controlled
by adaptively annihilating and generating particles to approximate good proposal distributions [65]. Adaptive
importance sampling for rare events simulation has been pioneered in [81, 82], based on exponential change of
measure techniques and the theory of large deviations and going back to the seminal work [270]. For diffusion
processes, large deviation principles can be used to approximate the optimal change of measure in the small
noise regime, where the resulting change of measure turns out to be be asymptotically optimal [274, 290].
Similarly, [80] studies potential problems that appear when an optimal importance sampling proposal is not
available, in particular when the time horizon of the problem is large. A non-asymptotic variant of the afore-
mentioned approaches for finite noise diffusions is based on the stochastic control formulation of the optimal
change of measure [127, 130]. Furthermore we should note that there have been many attempts to find good
(low-dimensional) proposals by taking advantage of specific structures of the problem at hand, using simplified
models that approximate a complicated multiscale system [79, 128, 133, 273]. Recently, the scaling properties
of certain approximations to control-based importance sampling estimators with the system dimension have
been analyzed in [217], suggesting that the empirical loss function that is used to numerically approximate the
optimal proposal distribution is essential.

For a recent numerical attempt to approach variance minimization based on neural networks we refer the reader
to [213, Section 5.2], for a theoretical analysis of convergence rates we refer to [4], and for a general overview
regarding adaptive importance sampling techniques we refer to [44]. The relationship between optimal control
and importance sampling (see Theorem 1.2) has been exploited by various authors to construct efficient samplers
[161, 279], in particular also with a view towards the sampling based estimation of hitting times, in which case
optimal controls are governed by elliptic rather than parabolic PDEs [126, 127, 131, 132]. Similar sampling
problems have been addressed in the context of sequential Monte Carlo [66, 136] and generative models [283,
284]. The latter works examine the potential of the controlled SDE (1.4) as a sampling device targeting a
suitable distribution of the final state Xu

T .

Conditioned diffusions (Problem 1.2) have been considered in a large deviation context [81] as well as in a
variational setting [127, 130] motivated by free energy computations, building on earlier work in [40, 61], see
also [9, 55, 60, 95]. The simulation of diffusion bridges has been studied in [207] and conditioning via Doob’s
h-transform has been employed in a sequential Monte Carlo context [136]. The formulation in Problem 1.2
identifies the target measure Q, motivating approaches that seek to minimize certain divergences on path space.
This perspective will be developed in detail in Section 4.1.1, building bridges to Problems 1.1, 1.3, 1.4 and 1.5.
Prior work following this direction includes [33, 113, 131, 160, 245], in particular relying on a connection between
the KL-divergence (or relative entropy) on path space and the cost functional (1.16), see also Proposition 4.7. A
similar line of reasoning leads to the cross-entropy method [130, 161, 255, 308], see Proposition 4.9 and equation
(4.32) in Section 4.1.3.

The numerical treatment of optimal control problems has been an active area of research for many decades
and multiple perspectives on solving Problem 1.3 have been developed. The monographs [30] and [182] provide
good overviews to policy iteration and Q-learning, strategies that have been further investigated in the machine
learning literature and that are generally subsumed under the term reinforcement learning [238]. We also
recommend [159] as an introduction to the specific setting considered in this thesis. To cope with the key issue
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Chapter 1. Introduction

of high dimensionality, the authors of [222] suggest solving a certain type of control problem in the framework
of hierarchical tensor products. Another strategy of dealing with the curse of dimensionality is to first apply
a model reduction technique and only then solve for the reduced model. Here, recent results on balanced
truncation for controlled linear S(P)DEs have for instance been suggested in [17], and approaches for systems
with a slow-fast scale separation via the homogenization method can be found in [128].

Solutions to Problem 1.4, i.e. to HJB PDEs of the type (1.20), can be approximated through finite difference or
finite volume methods [2, 218, 233]. However, these approaches are usually not applicable in high-dimensional
settings. In contrast, the recently introduced Multilevel Picard method [145] based on a combination of the
Feynman-Kac and Bismut-Elworthy-Li formulas has been proven to beat the curse of dimensionality in a variety
of settings, see [14, 146, 148, 149, 150].

The FBSDE formulation (Problem 1.5) has opened the door for Monte Carlo based methods that have been
developed since the early 90s. We mention in particular least-squares Monte Carlo, where (Zs)0≤s≤T is ap-
proximated iteratively backwards in time by solving a regression problem in each time step, along the lines of
the dynamic programming principle [234, Chapter 3]. A good introduction can be found in [109]; for extensive
analysis on numerical errors we refer the reader to [110, 306]. Recently, this approach has also been connected
with deep learning, replacing Galerkin approximations by neural networks [144] (see also Section 6.2).

Another method leveraging the FBSDE perspective has been put forward in [86, 122] and further developed
in [12, 13]. Here, the main idea is to enforce the terminal condition YT = g(XT ) in (1.21b) by iteratively
minimizing the loss function

L(u, y0) = E
[︁
(YT (y0, u)− g(XT ))

2
]︁
, (1.32)

using a stochastic gradient descent scheme (see also Definition 6.17). The notation YT (y0, u) indicates that the
process in (1.21b) is to be simulated with given initial condition y0 and control u (these representing a priori
guesses or current approximations, typically relying on neural networks), hence viewing (1.21b) as a forward
process. Consequently, the approach thus described can be classified as a shooting method for boundary value
problems. We note that this idea allows treating rather general parabolic and elliptic PDEs [118, 147], as well
as – with some modifications – optimal stopping problems [15, 16]. Using neural network approximations in
conjunction with FBSDE-based Monte-Carlo techniques holds the promise of alleviating the curse of dimen-
sionality; understanding this phenomenon and proving rigorous mathematical statements has been been the
focus of intense current research [29, 118, 119, 147, 157]. Let us also mention that similar algorithms have been
suggested in [241, 242], in particular proposing to modify the loss function (1.32) in order to encode the back-
ward dynamics (1.21b), and extensive investigation of optimal network design and choice of tunable parameters
has been carried out [50]. Furthermore, we refer to [48, 49] for convergence results in the broader context of
mean field control. In [127, Section III.B] it has been proposed to modify the forward dynamics (1.21a) (and,
to compensate, also the backward dynamics (1.21b)) by an additional control term. This idea is central for
some main results of this thesis, see Section 4.1.2. Similar ideas for other types of PDEs have been proposed
as well, see for instance [89, 242]. We refer to Section 6.3 for variational approaches on more general parabolic
and elliptic PDEs.

Generalizations
The problem formulations 1.3, 1.4 and 1.5 admit generalizations that keep parts of the connections expressed
in Theorem 1.2 intact. From the PDE-perspective (Problem 1.4), it is possible to consider more general non-
linearities,

(∂t + L)V (x, t) + h(x, t, V (x, t), σ⊤∇V (x, t)) = 0, (x, t) ∈ Rd × [0, T ), (1.33a)

V (x, T ) = g(x), x ∈ Rd, (1.33b)

with h being a function satisfying appropriate regularity and boundedness assumptions. As in Theorem 1.2
(1b), the nonlinear parabolic PDE (1.33) is related to a generalization of the forward-backward system (1.21),

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (1.34a)
dYs = −h(Xs, s, Ys, Zs) ds+ Zs · dWs, YT = g(XT ), (1.34b)

where the connection is still given by (1.23), see [234, Section 6.3] and Section 2.2.2. From the perspective of
optimal control (Problem 1.3), it is possible to extend the discussion to SDEs of the form

dXu
s = ˜︁b(Xu

s , s, us) ds+ ˜︁σ(Xu
s , s, us) dWs, (1.35)

20



1.5. Related work and generalizations

replacing (1.4), and to running costs ˜︁f(Xu
s , us, s) instead of f(Xu

s , s)+
1
2 |u(X

u
s , s)|2 in (1.16), assuming that us

has values in U ⊂ Rm, for some m ∈ N. This setting gives rise to more general HJB PDEs,

∂tV (x, t) +H(x, t,∇V (x, t),∇2V (x, t)) = 0, (1.36)

where ∇2V denotes the Hessian of V , and the Hamiltonian H is given by

H(x, t, p, A) = inf
u∈U

{︂˜︁b(x, t, u) · p+ 1
2 Tr(˜︁σ˜︁σ⊤A)(x, t, u) + ˜︁f(x, t, u)}︂ , (1.37)

see [98, 234] and Section 2.1. In certain scenarios [307, Section 4.5.2], it is then possible to relate (1.36) to
(1.34), noting however that typically h will be given in terms of a minimization problem as in (1.37). The
relationship to Problems 1.1 and 1.2 as well as the identity (1.22) rest on the particular structure8 inherent in
(1.4) and (1.16), enabling the use of Girsanov’s theorem (see the Proof of Theorem 1.2). The methods that will
be developed in this thesis can straightforwardly be extended to equations of the form (1.33) in the case when
h depends on V only through ∇V , owing to the invariance of the PDE under shifts of the form V ↦→ V +const.,
see Remark 4.14. In order to address optimal control problems involving additional minimization tasks posed
by Hamiltonians such as (1.37) it might be feasible to include appropriate penalty terms in the loss functional.
We leave this direction for future work.

8Note that this structure connects the PDEs (1.36) and (1.20) in view ofH(x, t,∇V,∇2V ) = LV+f+minu∈U

{︁
σu · ∇V + 1

2
|u|2

}︁
and minu∈U

{︁
σu · ∇V + 1

2
|u|2

}︁
= − 1

2
|σ⊤∇V |2.
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Chapter 2

Theoretical foundations

This thesis combines topics from different areas of mathematics. Some of the connections between them are
obvious, some of them rather non-standard. This chapter shall foster some of the relations, while providing a
solid theoretical foundation on the concepts that are used throughout the thesis. We will focus on key concepts
and central theorems and note that this collection is by no means exhaustive. For most topics, we follow the
strategy of first providing some rather formal and non-technical introduction with the purpose to gain helpful
intuition, while in the theorems we will be precise up to an extend that does not complicate our intentions too
much. For further technical subtleties we will try to provide corresponding references for the interested reader.

This chapter is organized as follows. In Section 2.1 we will provide an introduction to stochastic optimal
control theory, focusing on the dynamic programming principle and the Hamilton-Jacobi-Bellman PDE as an
equation that brings a deterministic viewpoint into a stochastic problem. In this spirit, Section 2.2 deals
with the stochastic representation of (deterministic) PDEs, where Section 2.2.1 treats the special case of linear
PDEs and states the celebrated Feynman-Kac theorem, while Section 2.2.2 introduces FBSDEs as a means to
represent nonlinear PDEs. Here we recall some existence and uniqueness results, before in Section 2.2.3 we
deal with the numerical discretization of SDEs and BSDEs. Section 2.3.1 then brings a proper introduction
to importance sampling, first in an abstract setting, then focusing on importance sampling of diffusions in
Section 2.3.2. Section 2.3.3 introduces the theory of large deviations and Section 2.3.4 recalls the Donsker-
Varadhan variational formula, both having strong ties to importance sampling. Finally, in Section 2.4 we will
define neural networks and briefly discuss stochastic optimization for targeting the approximation task.

2.1 Stochastic optimal control

We start with an introduction to the theory of stochastic optimal control, which deals with identifying optimal
strategies in somewhat noisy environments, in our case time-continuous diffusion processes. Optimal control
theory goes back to the 1950s with the dynamic programming principle as the key concept for characterizing op-
timality [19]. Even though simple and very intuitive in its formulation, it turns out that rigorous proofs are very
technical and can be approached with many different methods [24, 180]. A main result is the Hamilton-Jacobi-
Belmann PDE being the determining equation for optimality, thereby providing optimal control strategies.
However solutions to optimal control problems often do not posses enough regularity in order to formally fulfill
this equation, such that a complete theory of optimal control needs to introduce an appropriate concept of weak
solutions, leading to so-called viscosity solutions that have been extensively studied starting in the 1980s (cf.
Remark 2.7) [98, 197]. Even though being an interesting mathematical subject on its own, we shall not focus on
this aspect. As stated before, the intention of this short introduction is to provide a good basic understanding
and to state theorems that will be needed at later stages. For extensive introductions and further details we
refer to the monographs [97, 98, 234, 289], on which this introduction is heavily based on.

In a general setting, stochastic optimal control problems consider controlled diffusions9

dXu
s = ˜︁b(Xu

s , s, us) ds+ ˜︁σ(Xu
s , s, us) dWs, Xu

t = xinit, (2.1)

for s ∈ [t, T ] on a filtered probability space (Ω,F , (Fs)s≥0,Λ), where ˜︁b and ˜︁σ are suitable functions and W is a d-
dimensional Brownian motion. The control us shall be an element of some control set10 U (as for instance defined

9We put tildes on top of certain quantities in order to avoid confusion with other quantities defined beforehand, as for instance
in the controlled diffusion (1.4) that we have defined in the introduction.

10Note the difference of U being the set of progressively measurable control functions, and U being the set of the values us is
allowed to take, i.e. U ∋ us : Ω× [0, T ] → U .
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in (1.5)) taking values in U ⊂ Rd and being progressively measurable w.r.t. (Fs)s≥0, ˜︁b : Rd×[0, T ] × U → Rd

and ˜︁σ : Rd×[0, T ]× U → Rd×d shall be measurable and satisfy a uniform Lipschitz condition, such that for all
x, y ∈ Rd, s ∈ [0, T ], u ∈ U and a constant ˜︁L > 0 it holds

|˜︁b(x, s, u)−˜︁b(y, s, u)|+ |˜︁σ(x, s, u)− ˜︁σ(y, s, u)| ≤ ˜︁L |x− y|. (2.2)

Of course we assume the equation (2.1) to have a unique solution, which can for instance be guaranteed by
considering controls us for which

E

⎡⎣ T∫︂
0

(︂
|˜︁b(0, s, us)|2 + |˜︁σ(0, s, us)|2)︂ ds

⎤⎦ <∞. (2.3)

A control that fulfills all the above properties is said to be admissible and we denote by U the set of admissible
controls.

We now specify the control objective. To this end, let ˜︁f : Rd×[0, T ] × U → R, g : Rd → R be two measurable
functions. We suppose that g is lower bounded and that it satisfies a quadratic growth condition, i.e.

|g(x)| ≤ C(1 + |x|2) (2.4)

for all x ∈ Rd and come constant C > 0. We further demand

E

⎡⎣ T∫︂
t

| ˜︁f(Xu
s , s, us)|ds

⃓⃓⃓⃓
⃓Xu

t = x

⎤⎦ <∞ (2.5)

for all (x, t) ∈ Rd×[0, T ] and all us ∈ U . We can then define the cost functional to be

J(u;x, t) = E

⎡⎣ T∫︂
t

˜︁f(Xu
s , s, us)ds+ g(Xu

T )

⃓⃓⃓⃓
⃓Xu

t = x

⎤⎦ , (2.6)

where ˜︁f specifies running and g represents terminal costs. The objective in optimal control is to minimize this
quantity over all admissible control functions us ∈ U , and we therefore introduce the so-called value function

V (x, t) = inf
u∈U

J(u;x, t) (2.7)

as the optimal costs conditioned on being in position x at time t.

Remark 2.1 (Time horizon). The above definitions operate on a deterministic time horizon. For two alternative
variants of the optimal control problem we can either consider random time horizons, where T is replaced by a
random stopping time τ , or infinite time horizons, where T can be infinitely large. In this work we shall discuss
the two first options only and omit the infinite time horizon case11. In the sequel we will focus on the case
of a deterministic T , having in mind that, given suitable assumptions, most statements readily transfer to the
random time case. We will further elaborate on this aspect in Remark 2.9.

Often a control process is of the form12 us = u(Xu
s , s) for some measurable function u : Rd×[0, T ]→ U , where

we recall U ⊂ Rd to be the set of admissible control values. We call such a control Markov control since the
process Xu

t as defined in (2.1) is a Markov process. In the sequel, we shall tacitly assume that the value function
as defined in (2.7) is measurable in its arguments. This is actually not trivial a priori, and we refer to measurable
section theorems for sufficient conditions (see [67, Chapter III, Appendix]).

Let us come back to our goal of identifying an optimal control u∗ that minimizes the cost functional (2.6). The
following section will lead us towards strategies to accomplish this goal.

11Note for instance that in the infinite time horizon case, the running control costs have to be decreasing in time and that the
coefficients ˜︁b, ˜︁σ cannot explicitly depend on time anymore in order to have a well-defined control problem.

12Note the slight abuse of notation here, as with us ∈ U we refer to a random path, whereas u : Rd ×[0, T ] → U is a deterministic
function, to which randomness is added via the process Xu

s .
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2.1.1 The dynamic programming principle
The so-called dynamic programming principle goes back to Richard Bellman [19]. Loosely speaking, it tries to
approach the optimal control problem by subdividing it into multiple smaller problems, of which each is then
solved separately. The following statement provides the key observation that we can relate the value function
(2.7) at time t to the value function at any later time t+∆t for ∆t ∈ [0, T − t].

Theorem 2.2 (Dynamic programming principle). Let (x, t) ∈ Rd×[0, T ], let ˜︁f, us be as defined above and let
V be the value function as defined in (2.7), it then holds for any ∆t ≥ 0 with t+∆t ≤ T that

V (x, t) = inf
u∈U

E

⎡⎣ t+∆t∫︂
t

˜︁f(Xu
s , s, us)ds+ V (Xu

t+∆t, t+∆t)

⃓⃓⃓⃓
⃓Xu

t = x

⎤⎦ . (2.8)

Proof. Let us gain some intuition with a formal derivation for the case of us being a Markov control. For the
cost functional the relation

J(u;x, t) = E

⎡⎣ t+∆t∫︂
t

˜︁f(Xu
s , s, us)ds+ J(u;Xu

t+∆t, t+∆t)

⃓⃓⃓⃓
⃓Xu

t = x

⎤⎦ (2.9)

then follows immediately from the definition of J as in (2.6), the Markov property as well as the tower property
of the conditional expectation. Let

u′s :=

{︄
us s ∈ [0, t+∆t)

u∗s s ∈ [t+∆t, T ]
, (2.10)

with u∗s being the optimal control, which brings

V (x, t) ≤ J(u′;x, t) = E

⎡⎣ t+∆t∫︂
t

˜︁f(Xu′

s , s, u
′
s)ds+ V (Xu′

t+∆t, t+∆t)

⃓⃓⃓⃓
⃓Xu′

t = x

⎤⎦ (2.11)

by the definition of the value function as in (2.7). Now choosing us = u∗s for s ∈ [t, t+∆t) brings equality and
therefore the desired relation. A more general derivation can be found in [98] and more technical details are
provided in [24].

A consequence of the dynamic programming principle is that the optimization problem (2.7) can be split into
two, or, by iterating the argument, into multiple optimization problems. Given a time grid 0 = t0 < t1 < · · · <
tN = T and noting that V (x, T ) = g(x) is known, we can for instance first compute the optimal control on the
time interval [tN−1, tN ], yielding the quantity V (x, tN−1) for some x. This can then be used when computing
the optimal control in the preceding time interval [tN−2, tN−1] and so on. We will discuss more details on
algorithmic approaches in this spirit for instance in Section 6.2.

Remark 2.3. We can note the following, more probabilistic point of view on the dynamic programming principle
[289]. Let

Mu
t =

t∫︂
0

˜︁f(Xu
s , s, us)ds+ V (Xu

t , t), (2.12)

then the dynamic programming principle says: Mu
t is always a submartingale, while it is a martingale for

u = u∗.

A natural question is to study what happens if we let ∆t→ 0 in (2.8). What will come out is a key statement
of optimal control theory: a partial differential equation for the value function (2.7).

2.1.2 Hamilton-Jacobi-Bellman PDE
One can think of the Hamilton-Jacobi-Bellman (HJB) equation as the infinitesimal version of the dynamic
programming principle that we have stated in Theorem 2.2. Loosely speaking, it describes the local behavior
of the value function when the time increment ∆t is sent to 0. Importantly, let us for now assume that V is
sufficiently differentiable.
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Theorem 2.4 (Hamilton-Jacobi-Bellman PDE, verification theorem). Let V ∈ C2,1(Rd×[0, T ],R) fulfill the
PDE

∂tV (x, t) + inf
u∈U

{︃˜︁f(x, t, u) +˜︁b(x, t, u) · ∇V (x, t) +
1

2
(˜︁σ˜︁σ⊤)(x, t, u) : ∇2V (x, t)

}︃
= 0, (x, t) ∈ Rd×[0, T ),

(2.13a)

V (x, T ) = g(x), x ∈ Rd,
(2.13b)

such that |V (x, t)| ≤ C(1 + |x|2) for some C > 0, (x, t) ∈ Rd×[0, T ], and suppose there exists a measurable
function U ∋ u∗ : Rd×[0, T ]→ U that attains the above infimum. Let further the corresponding controlled SDE
Xu∗

have a strong solution. Then V coincides with the value function as defined in (2.7) and u∗ is an optimal
Markovian control.

Proof. A proof can for instance be found in [234, Theorem 3.5.2]. In order to gain some intuition let us provide
a formal derivation of the HJB equation. To this end, we can apply Itô’s formula to the value function V to get

V (Xu
t+∆t, t+∆t) = V (Xu

t , t) +

t+∆t∫︂
t

(∂s + Lu)V (Xu
s , s)ds+

t+∆t∫︂
t

σ⊤∇V (Xu
s , s) · dWs, (2.14)

where Lu is the infinitesimal generator of the controlled process defined by (2.1). Assuming that the Itô integral
is a martingale we can take conditional expectation to get

V (Xu
t , t) = E

⎡⎣− t+∆t∫︂
t

(∂s + Lu)V (Xu
s , s)ds+ V (Xu

t+∆t, t+∆t)

⃓⃓⃓⃓
⃓Xu

t

⎤⎦ . (2.15)

Let us recall the dynamic programming principle (2.8), namely

V (Xu∗

t , t) = E

⎡⎣ t+∆t∫︂
t

˜︁f(Xu∗

s , s, u∗s)ds+ V (Xu∗

t+∆t, t+∆t)

⃓⃓⃓⃓
⃓Xu∗

t

⎤⎦ , (2.16)

which we can combine with (2.15) to get

E

⎡⎣ t+∆t∫︂
t

(︂
(∂s + Lu

∗
)V (Xu∗

s , s) + ˜︁f(Xu∗

s , s, u∗s)
)︂
ds

⃓⃓⃓⃓
⃓Xu∗

t

⎤⎦ = 0. (2.17)

Now, dividing by ∆t and letting ∆t→ 0, we formally get

∂tV (x, t) + inf
u∈U
{LuV (x, t) + ˜︁f(x, t, u)} = 0, (2.18)

which is the HJB equation as stated in (2.13a). The boundary condition (2.13b) follows from the definition of
V as stated in (2.7).

Remark 2.5 (Semi-linear PDE). If the diffusion coefficient ˜︁σ does not depend on the control then the PDE
(2.13a) becomes semi-linear:(︃

∂t +
1

2
(σσ⊤)(x, t) : ∇2

)︃
V (x, t) + inf

u∈U

{︂ ˜︁f(x, t, u) +˜︁b(x, t, u) · ∇V (x, t)
}︂
= 0, (2.19a)

V (x, T ) = g(x). (2.19b)

Remark 2.6 (Pointwise optimization). Let us appreciate that the infimum in the HJB equation (2.13a) is merely
over the set U ⊂ Rd and not over U , i.e. entire paths as in (2.7), so the minimization reduces to a pointwise
operation. For a sanity check, note that if u∗ solves the optimal control problem then the HJB equation (2.13a)
translates to

∂tV (x, t) + ˜︁f(x, t, u∗) +˜︁b(x, t, u∗) · ∇V (x, t) +
1

2
(˜︁σ˜︁σ⊤)(x, t, u∗) : ∇2V (x, t) = 0 (2.20)

and the Feynman-Kac theorem (which will be stated in Theorem 2.14) brings that

V (x, t) = E

⎡⎣ T∫︂
t

˜︁f(Xu∗

s , t, u∗)ds+ g(Xu∗

T )

⃓⃓⃓⃓
⃓Xu∗

t = x

⎤⎦ , (2.21)

as expected from (2.7).
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Remark 2.7 (Viscosity solutions). Existence results for smooth solutions to parabolic PDEs of HJB type are
provided in [97], [105] or [180]. Here, the main required condition is a uniform ellipticity condition. As already
mentioned, often a solution to an optimal control problem is not in C2,1 however and it is a priori not clear
how to interpret the HJB equation (2.13a) in such a setting. For this, the notion of viscosity solutions as an
adequate concept of weak solutions has been introduced and extensively studied in the last decades. Although
being an interesting topic by itself, we will not elaborate any further and rather point to [98, 228] for details.

Remark 2.8 (Parabolic problem on bounded domain). Instead of considering the control problem on the entire
Rd, we can instead constrain it to a bounded set D ⊂ Rd. In this case we do not consider a fixed time horizon
T , but let the dynamics evolve up to time τ ∧ T , where τ = inf{t > 0 : Xt /∈ D} is the random exit time from
the domain. The control costs we consider are then given by

J(u;x, t) = E

⎡⎣ τ∧T∫︂
t

˜︁f(Xu
s , s, us)ds+ g(Xu

τ∧T )

⃓⃓⃓⃓
⃓Xu

t = x

⎤⎦ (2.22)

and problem (2.13) becomes a Dirichlet problem with boundary conditions V (x, T ) = g(x) for x ∈ D and
V (x, t) = g(x) for (x, t) ∈ ∂D × [0, T ]. Compare also to Section 6.3 for general semi-linear PDEs on bounded
domains.

Remark 2.9 (Autonomous version). We can as well consider an autonomous version of the stochastic dynamics
(2.1)

dXu
s = ˜︁b(Xu

s , us) ds+ ˜︁σ(Xu
s , us) dWs, Xu

t = xinit, (2.23)

on a bounded domain D ⊂ Rd, where now ˜︁b and ˜︁σ do not explicitly depend on time anymore. The control then
takes the feedback form

us = u(Xu
s ) (2.24)

and we consider the cost functional

J(u;x) = E

⎡⎣ τ∫︂
0

˜︁f(Xu
s , us)ds+ g(Xu

τ )

⃓⃓⃓⃓
⃓Xu

0 = x

⎤⎦ , (2.25)

which also does not depend on time anymore (note in fact that due to the Markov property the starting time
t = 0 is arbitrary). τ = inf{t > 0 : Xt /∈ D} is again the first exit time from D, for which we usually
impose conditions guaranteeing τ <∞ almost surely. Of course (2.25) implies that also the corresponding value
function

V (x) = inf
u∈U

J(u;x) (2.26)

does now not depend on time and a HJB equation analog to (2.13) is

inf
u∈U

{︃˜︁f(x, u) +˜︁b(x, u) · ∇V (x) +
1

2
(˜︁σ˜︁σ⊤)(x, u) : ∇2V (x)

}︃
= 0, x ∈ D, (2.27a)

V (x) = g(x), x ∈ ∂D, (2.27b)

A proof of a corresponding verification theorem is along the lines of the proof of Theorem 2.4. Further details
can for instance be found in [97, Theorem 4.2].

We will end this section on optimal control by noting that for a special (and prominent) choice of running
costs ˜︁f the minimization appearing in the HJB equation (2.13a) can be solved explicitly, therefore leading to a
closed-form PDE. It turns out that this connection is of special relevance for our importance sampling endeavor
(cf. Problem 1.4, Remark 1.5, Lemma 2.11, Theorem 2.33 and Remark 2.46).

Corollary 2.10 (HJB equation with quadratic running costs). If the diffusion coefficient ˜︁σ does not depend
on the control, the control enters additively in the drift, i.e. ˜︁b(x, t, u) = b(x, t) + σu(x, t), and the running costs
take the form ˜︁f(x, s, us) = f(x, s) +

1

2
|us|2, (2.28)

then the HJB PDE (2.13) can be stated in closed form

(∂t + L)V (x, t)− 1

2
|σ⊤∇V (x, t)|2 + f(x, t) = 0, (x, t) ∈ Rd×[0, T ), (2.29a)

V (x, T ) = g(x) x ∈ Rd . (2.29b)
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Chapter 2. Theoretical foundations

Proof. We formally compute

inf
u∈U

{︂ ˜︁f(x, t, u) +˜︁b(x, t, u) · ∇V (x, t)
}︂
= f(x, t) + b(x, t) · ∇V (x, t) + inf

u∈U

{︃
1

2
|u(x, t)|2 + σu(x, t) · ∇V (x, t)

}︃
,

(2.30)
and realize that the infimum is attained when choosing u∗ = −σ⊤∇V . Plugging this into the HJB PDE (2.19)
and recalling the definition of the infinitesimal generator L as provided in (1.19), we readily get the above PDE
(2.29).

It turns out that we can transform the nonlinear HJB PDE from Corollary 2.10 to a linear Feynman-Kac
PDE, that we will discuss in Theorem 2.14 in the next section, by using a logarithmic transformation known as
Hopf-Cole transformation [93, Section 4.4.1].

Lemma 2.11 (Linearization of HJB equation). Let V ∈ C2,1(Rd×[0, T ],R) solve the HJB PDE (2.29), then
ψ = e−V fulfills the linear Feynman-Kac PDE as stated in (2.44) (with k = 0 and appropriately transformed
boundary condition), i.e.

(∂t + L− f(x, t))ψ(x, t) = 0, (x, t) ∈ Rd×[0, T ), (2.31a)

ψ(x, T ) = e−g(x), x ∈ Rd . (2.31b)

Subsequently, we get an explicit representation for the value function by

V (x, t) = − logE

⎡⎣exp
⎛⎝− T∫︂

t

f(Xs, s)ds− g(XT )

⎞⎠ ⃓⃓⃓⃓⃓Xt = x

⎤⎦ . (2.32)

Proof. See Appendix C.1.

2.2 Stochastic representations of PDEs

The Hamilton-Jacobi-Bellman equation that we have discussed in the previous section is a PDE that connects
stochastic processes to deterministic quantities (in this case the value function) and is therefore a prominent
example of the interplay between these two sides of (more or less) the same problem. We have so far taken
the route of first stating the stochastic problem and subsequently identifying its deterministic counterpart as a
convenient tool for solving it. Likewise, it will turn out to be helpful to take the other direction, i.e. to rely
on stochastic representations in order to develop computational methods for solving deterministic PDEs. Our
control theory considerations from the previous section highlight one particular aspect of this fruitful connection,
which we want to generalize to other types of PDEs in the upcoming sections. We will start with certain linear
PDEs in Section 2.2.1, whose solutions can be explicitly expressed as conditional expectations via the Feynman-
Kac theorem, for instance following [162, 219, 248]. In Section 2.2.2 we will then move to semi-linear PDEs,
whose stochastic counterpart can be described by backward stochastic differential equations (BSDEs). These
representations are rather implicit, but will still provide fruitful numerical algorithms for the approximation of
PDEs, as will be described in more detail in Chapters 4 and 6 later. In Section 2.2.2 we will first try to give
an intuitive introduction and state some general existence and uniqueness results. Since the treatment of HJB
PDEs will be of central importance throughout this thesis, we will include an additional well-posedness result for
the case where the nonlinear term of the PDE can have a quadratic dependency on the gradient of the solution
(and therefore not be Lipschitz continuous). Finally, in Section 2.2.3 we will discuss some basic results for the
numerical discretization of both forward and backward processes that will be needed for the implementation of
the stochastic representations later on.

2.2.1 Stochastic representations of linear PDEs
Let us first introduce stochastic representations of linear PDEs. We recall that in its general form a linear PDE
of k-th order can be written as ∑︂

|α|≤k

aα(x, t)D
αV (x, t) = a0(x, t), (2.33)

where aα : Rd×[0, T ] → R and a0 : Rd×[0, T ] → R are given functions and where we use the multi-index
notation for partial derivatives13 (see Appendix A). We note that the linear parabolic differential operator

∂t + L = ∂t +
1

2

d∑︂
i,j=1

(σσ⊤)ij(x, t)∂xi
∂xj

+

d∑︂
i=1

bi(x, t)∂xi
, (2.34)

13To be precise, we introduce the variable z = (x, t)⊤ ∈ Rd+1, for which the multi-index notation gets applied.
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2.2. Stochastic representations of PDEs

that we have already defined in (1.19), is a special case of the one in (2.33). Let us further recall that L is the
infinitesimal generator of the stochastic process

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (2.35)

that we have for instance considered in (1.2), with b : Rd×[0, T ] → Rd and σ : Rd×[0, T ] → Rd×d being
functions that fulfill Assumption 1 in order to guarantee for strong solutions of the SDE.

The simplest linear PDE that can be connected to stochastic processes such as (2.35) is the Kolmogorov backward
equation, which we state in the following theorem.

Theorem 2.12 (Kolmogorov backward equation). Let Xt be a strong solution of (2.35), let

ψ(x, t) = E[g(XT )|Xt = x], (2.36)

with14 g ∈ Cb(Rd) and assume ψ ∈ C2,1(Rd×[0, T ],R). Then ψ solves the parabolic terminal value problem

(∂t + L)ψ(x, t) = 0, (x, t) ∈ Rd×[0, T ), (2.37a)

ψ(x, T ) = g(x), x ∈ Rd . (2.37b)

Proof. See for instance [230, Theorem 2.1] for d = 1, where a multidimensional extension is straightforward, or
[83, Chapter 9], [281, Proposition 2.6].

Remark 2.13. An original intention for studying the above connection was to use tools from the theory of PDEs
in order to establish, under suitable conditions, the existence of a solution to the transition probability of a
stochastic process and therefore the existence of continuous Markov processes, where we refer to [276, Chapters
2 and 3] for modern approaches relating to this methodology. As will turn out in Chapters 4 and 6, and as
already mentioned in the introduction of this section, we will have a quite different goal.

The Kolmogorov backward equation from Theorem 2.12 can be generalized by the Feynman-Kac formula.
Before we will state the proper theorem, let us first provide a formal derivation of this relation in order to
gain some intuition (ignoring most technical details for a moment). To this end, assume there exists a solution
ψ ∈ C2,1(Rd×[0, T ],R) to the linear PDE

(∂t + L− f(x, t))ψ(x, t) = 0, (x, t) ∈ Rd×[0, T ), (2.38a)

ψ(x, T ) = g(x), x ∈ Rd, (2.38b)

where f ∈ C(Rd×[0, T ],R) is a given function. A concept that we will repeatedly encounter throughout this
thesis is to consider the solution ψ along a trajectory of the stochastic process (2.35), namely Yt := ψ(Xt, t).
An application of Itô’s formula (as specified in Theorem B.2) then brings

Yt = g(XT )−
T∫︂
t

f(Xs, s)Ys ds−
T∫︂
t

σ⊤∇ψ(Xs, s) · dWs (2.39)

and taking conditional expectations on both sides yields

ψ(x, t) = E [Yt|Xt = x] = E

⎡⎣g(XT )−
T∫︂
t

f(Xs, s)Ysds

⃓⃓⃓⃓
⃓Xt = x

⎤⎦ . (2.40)

We can now identify the ODE

dYs = −f(Xs, s)Ys ds, YT = g(XT ), (2.41)

‘inside’ the expectation operator, which can be solved explicitly by an application of the variation of constants
formula15, yielding

ψ(x, t) = E

[︄
e−

∫︁ T
t
f(Xs,s)dsg(XT )

⃓⃓⃓⃓
⃓Xt = x

]︄
. (2.43)

14Note that this function g should not be confused with the g appearing in the work functional W defined in (1.8). We accept
this slight abuse of notation in order to draw a connection to the later appearing more general semi-linear PDEs. In fact, as
explained in Corollary 2.10, g in Theorem 2.12 is connected to g in (1.8) via the transformation x ↦→ e−x.

15To make the argument more precise, the stochastic version of the variation of constants formula for the SDE (2.39) yields

Yt = e−
∫︁ T
t f(Xs,s)dsg(XT )−

T∫︂
t

e−
∫︁ s
t f(Xr,r)dr(σ⊤∇ψ)(Xs, s) · dWs, (2.42)

where the martingale term vanishes when taking conditional expectations, therefore yielding expression (2.43), cf. also [307,
Proposition 4.1.2].
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Chapter 2. Theoretical foundations

We have ignored some technical details here, but in fact the common proof of the following theorem, which will
make our considerations more precise and general, essentially takes the same arguments in reversed order.

Theorem 2.14 (Feynman-Kac). Let f, k ∈ C(Rd×[0, T ],R), let g ∈ C2(Rd,R) be bounded from below, let
ψ ∈ C2,1(Rd×[0, T ],R) have bounded derivatives and let it solve the parabolic terminal value problem

(∂t + L− f(x, t))ψ(x, t) + k(x, t) = 0, (x, t) ∈ Rd×[0, T ), (2.44a)

ψ(x, T ) = g(x), x ∈ Rd . (2.44b)

Then

ψ(x, t) = E

⎡⎣ T∫︂
t

e−
∫︁ r
t
f(Xs,s)dsk(Xr, r)dr + e−

∫︁ T
t
f(Xs,s)dsg(XT )

⃓⃓⃓⃓
⃓Xt = x

⎤⎦ , (2.45)

where Xs is a strong solution to (1.2).

Proof. The proof, whose main ingredient is Itô’s Lemma, can for instance be found in [162, Theorem 5.7.6].

Remark 2.15. Given suitable regularity assumptions, the converse statement also holds: the stochastic rep-
resentation of ψ as in (2.45) implies that it solves the PDE (2.44), see for instance [155]. When not having
appropriate assumptions on the other hand, one should be careful saying anything about the existence or the
regularity of the solution.

Remark 2.16 (Initial value problems). In both the Kolmogorov backward and the Feynman-Kac equation, time
can be reversed and initial instead of terminal value problems can be formulated, for instance yielding

(∂t + L− f(x, t))ψ(x, t) + k(x, t) = 0, (x, t) ∈ Rd×(0, T ], (2.46a)

ψ(x, 0) = g(x), x ∈ Rd, (2.46b)

instead of (2.44), now with the stochastic representation

ψ(x, t) = E

⎡⎣ t∫︂
0

e−
∫︁ r
0
f(Xs,s)dsk(Xr, r)dr + e−

∫︁ t
0
f(Xs,s)dsg(Xt)

⃓⃓⃓⃓
⃓X0 = x

⎤⎦ . (2.47)

Remark 2.17 (Bounded domains). In analogy to Remarks 2.8 and 2.9 we can restrict ourselves to bounded
domains D ⊂ Rd and consider the parabolic PDE (2.44a) on D, adding the additional boundary condition16

ψ(x, t) = g(x) for x ∈ ∂D. The stochastic representation then becomes

ψ(x, t) = E

⎡⎣ τ∧T∫︂
t

e−
∫︁ r
t
f(Xs,s)dsk(Xr, r)dr + e−

∫︁ τ∧T
t

f(Xs,s)dsg(Xτ∧T )

⃓⃓⃓⃓
⃓Xt = x

⎤⎦ , (2.48)

with τ = inf{t > 0 : Xt /∈ D}, where we usually assume τ < ∞ almost surely. Likewise, we can consider the
elliptic boundary value problem

(L− f(x, t))ψ(x) + k(x) = 0, x ∈ D, (2.49a)
ψ(x) = g(x), x ∈ ∂D, (2.49b)

where now the solution ψ, the coefficients b and σ in the SDE (2.35) as well as f and k do not depend explicitly
on time anymore, yielding the stochastic representation

ψ(x) = E

⎡⎣ τ∫︂
0

e−
∫︁ r
t
f(Xs)dsk(Xr)dr + e−

∫︁ τ
t
f(Xs)dsg(Xτ )

⃓⃓⃓⃓
⃓X0 = x

⎤⎦ , (2.50)

again with τ = inf{t > 0 : Xt /∈ D}, see e.g. [162, Proposition 5.7.2].

Remark 2.18 (Semi-group property). Further intuition for the Feynman-Kac formula as stated in Theorem 2.14
can be gained by taking the semi-group perspective. To this end we first define the transfer operator Pt :
C(Rd,R)→ C(Rd,R) by

(Ptg)(x) = E[g(Xt)|X0 = x], (2.51)
16One can of course also consider a boundary condition that is different from the terminal condition (2.44b), see for instance

[190, Proposition 6.1] or (6.64).
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2.2. Stochastic representations of PDEs

noting that it is the main ingredient in the definition of the infinitesimal generator L,

Lg = lim
t→0

Ptg − g
t

, (2.52)

which we have specified already in (1.19), assuming g ∈ C2(Rd,R). By formally solving the Kolmogorov
backward equation (2.36), which (considered as an initial value problem) we can write as

∂t(Ptg)(x) = L(Ptg)(x), (P0g)(x) = g(x), (2.53)

we realize that (Pt)t≥0 defines a semi-group and can be expressed as

(Ptg)(x) = (eLtg)(x). (2.54)

Along those lines, now corresponding to the Feynman-Kac formula from Theorem 2.14, we can further define
the operator

(P ft g)(x) = E
[︂
g(Xt)e

−
∫︁ t
0
f(Xs)ds

⃓⃓⃓
X0 = x

]︂
, (2.55)

where now for simplicity f does not explicitly depend on time, bringing the Feynman-Kac semi-group

(P ft g)(x) = (e(L−f)tg)(x). (2.56)

In fact, the Feynman-Kac Theorem 2.14 and its relation to the Kolmogorov Theorem 2.12 can be understood
via this semi-group formula [228]. To this end, let us consider a time grid t = t0 < t1 < · · · < tN = T and note
that for a small step-size ∆t > 0 the Trotter–Kato formula [121, Theorem 20.1] brings

ψ(x, t) = (e(L−f)tg)(x) ≈ P∆t ◦ e−∆tf(·) ◦ P∆t ◦ e−∆tf(·) ◦ · · · ◦ P∆t(e
−∆tf(·)g), (2.57)

where the operator P∆t ◦e−∆tf(·) is applied N times with P∆t as defined in (2.51). Note that due to the Markov
property we have for any s ≥ 0 that (P∆tg)(x) = E [g(Xs+∆t)|Xs = x]. Hence we can write

ψ(x, t) ≈ E
[︂
e−∆tf(Xt1

) E
[︂
e−∆tf(Xt2

) · · ·E
[︂
e−∆tf(XT )g(XT )

⃓⃓⃓
FtN−1

]︂
· · ·
⃓⃓⃓
Ft1
]︂ ⃓⃓⃓
Xt = x

]︂
, (2.58)

which due to the tower property

E
[︂
e−∆tf(Xti

) E [ξ|Fti ]
⃓⃓⃓
Fti−1

]︂
= E

[︂
e−∆tf(Xti

)ξ
⃓⃓⃓
Fti−1

]︂
(2.59)

becomes
ψ(x, t) ≈ E

[︂
e−∆t

∑︁N
i=1 f(Xti

)g(XT )
⃓⃓⃓
Xt = x

]︂
. (2.60)

Taking the limit ∆t→ 0 we can formally recover the (shifted and time-reversed) Feynman-Kac formula (2.55),
i.e. ψ(x, t) = E

[︂
e−

∫︁ T
t
f(Xs)dsg(XT )

⃓⃓⃓
Xt = x

]︂
. We will come back to this semi-group viewpoint in the next

section when considering its nonlinear extension. For further semi-group analysis we recommend [278, Chapter
1] and for a study on its numerical discretization properties we refer to [94].

2.2.2 Stochastic representations of nonlinear PDEs via FBSDEs
We have discussed a stochastic representation of a certain kind of linear PDE via the Feynman-Kac formula
stated in Theorem 2.14. In this section, we want to move one step further and approach nonlinear PDEs. To
be precise, we will consider PDEs of semi-linear type. In its general form a semi-linear PDE of k-th order can
be defined as ∑︂

|α|=k

aα(x, t)D
αV (x, t) + a0(x, t, V (x, t), DV (x, t), . . . , Dk−1V (x, t)) = 0, (2.61)

where aα : Rd×[0, T ] → R and a0 : Rd×[0, T ] × R×Rd× · · · × Rd
k−1

→ R are given functions, recalling the
multi-index notation from Appendix A. Exploiting again the correspondence between the differential operator
(2.34) and the SDE (2.35), however this time allowing for nonlinear terms, will lead to so-called backward
stochastic differential equations (BSDEs) as a stochastic counterpart to certain PDEs of semi-linear form.
BSDEs have first been introduced in the 1970s [35] and a systematic study began in the 1990s [229], leading
to many technically challenging subtleties. At the same time BSDEs turn out to bring quite versatile tools for
computational approaches, which we will use heavily later on. In this section we will introduce basic concepts
as well as well-posedness statements based on [109, 228, 234, 281, 307], to which we refer for further technical
details. In some of those references statements are posed in a slightly more general version, cf. Remark 2.24.
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Let us start by gaining some intuition along the lines of Remark 2.18, where we have discussed the Feynman-Kac
semi-group (again following [228]). Instead of finding a stochastic representation of the linear PDE

(∂t + L)V (x, t)− f(x)V (x, t) = 0, V (x, T ) = g(x), (2.62)

we now aim at the nonlinear PDE

(∂t + L)V (x, t) + h(V (x, t)) = 0, V (x, T ) = g(x), (2.63)

where h : R → R is some nonlinear (usually Lipschitz continuous) function. Unfortunately, we cannot write
down an explicit expression for the semi-group, as we did in (2.56) for the linear case, anymore. Instead, let us
denote by Φt(V ) the value at time t of the solution to the ODE

dXt

dt
= h(Xt), X0 = V. (2.64)

In analogy to (2.58), we can then formally apply the Trotter-Kato formula

ψ(x, t) ≈ E
[︂
Φ∆t ◦ E

[︂
Φ∆t ◦ · · ·E

[︂
Φ∆t ◦ g(XT )

⃓⃓⃓
Ftn−1

]︂
· · ·
⃓⃓⃓
Ft1
]︂ ⃓⃓⃓
Xt = x

]︂
(2.65)

for a sufficiently small time-step ∆t. As before we would like to get a limiting formula for ∆t → 0 such that
we obtain an evolution of the process V (Xt, t) that does not rely on the knowledge of the function V (x, t)
itself. Inspecting the PDE (2.63) shows that two different actions are present: one is given by the ODE via the
function −h, the other by a projection on the σ-algebra Ft associated to the current time t via the infinitesimal
generator L. Note that in contrast to the linear case the conditional expectations in (2.65) do not commute
with the nonlinear mappings Φ∆t. In order to still find a feasible formula for V (Xt, t), let us proceed as
we have done in the linear case before, cf. (2.39), and apply Itô’s formula to Yt = V (Xt, t) (assuming that
V ∈ C2,1(Rd×[0, T ],R) is a classical solution to (2.63)) to get

Yt = g(XT ) +

T∫︂
t

h(Ys)ds−
T∫︂
t

σ⊤∇V (Xs, s) · dWs. (2.66)

Taking conditional expectations w.r.t. to Ft on both sides then yields

˜︁Yt := E [Yt|Ft] = E

⎡⎣g(XT ) +

T∫︂
t

h(Ys)ds

⃓⃓⃓⃓
⃓Ft
⎤⎦ , (2.67)

which indeed seems to be a good candidate for the desired stochastic representation of V . Following this line,
we can in fact find a slightly more general way of expressing Yt compared to (2.66). To this end, consider the
random variable appearing in (2.67),

χ = g(XT ) +

T∫︂
t

h(Ys)ds, (2.68)

which is a functional of Brownian motion (Ws)t≤s≤T and FT -measurable. Provided that χ is square-integrable
there now exists a unique d-dimensional process (Zs)0≤s≤T such that

(i) E
[︂∫︁ T

0
|Zs|2ds

]︂
<∞,

(ii) χ = E[χ|Ft] +
∫︁ T
t
Zs · dWs.

We can therefore write

Y t = g(XT ) +

T∫︂
t

h(Ys)ds−
T∫︂
t

Zs · dWs, (2.69)

which is a more general version of Yt as defined in (2.66). We should note that both Yt and Zt are Ft-adapted,
and that, since the process Yt has a terminal rather than an initial condition, i.e. YT = V (XT , T ) = g(XT ), it
is not really natural for Yt to be adapted to the Brownian motion (Ws)0≤s≤t before time t. In fact, the process
Zt as a factor in front of the Brownian motion can be interpreted as to satisfy this constraint, stressing that we
are really looking for a pair of processes (Y,Z).

Now that we have gained some intuition, let us make our formal considerations more precise. Throughout, we
will consider the following type of semi-linear PDEs.
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Definition 2.19 (Semi-linear PDE). Let V ∈ C2,1(Rd×[0, T ],R), we consider PDEs of the form

(∂t + L)V (x, t) + h(x, t, V (x, t), σ⊤∇V (x, t)) = 0, (x, t) ∈ Rd × [0, T ), (2.70a)

V (x, T ) = g(x), x ∈ Rd, (2.70b)

where h ∈ C(Rd×[0, T ]× R×Rd,R), g ∈ C(Rd,R) and L is a differential operator defined in (1.19).

Further, we define the solution to a forward-backward stochastic differential equation (FBSDE) as a triple
(X,Y, Z).

Definition 2.20 (FBSDE). We consider the forward-backward stochastic differential equation

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (2.71a)
dYs = −h(Xs, s, Ys, Zs) ds+ Zs · dWs, YT = g(XT ), (2.71b)

where the forward process Xs is as in (1.2), the backward processes Ys and Zs are progressively measurable17

and the functions h and g are as in Definition 2.19.

Let us remind ourselves once more that backward processes have a specified target value, but must still be
Fs-adapted for all s ∈ [0, T ]. This means that they must not be interpreted as time-reversed processes, since
those would depend on FT for all times s ∈ [0, T ].

Remark 2.21. (Martingale representation theorem and the role of Z) As already hinted at in the introduction
of this subsection, one can interpret BSDEs as a nonlinear version of the martingale representation theorem,
noting that the presence of Z is crucial in order to ensure the (Fs)0≤s≤T -measurability of Y . In contrast,
consider for instance the BSDE

dYs = σ(Ys, s) dWs, YT = ξ, (2.72)

for ξ ∈ L2(FT ). Then typically this equation has no (Fs)0≤s≤T -measurable solution. Consider for instance
σ = 0, then Ys = ξ for all s ∈ [0, T ], which is not (Fs)0≤s≤T -measurable unless ξ ∈ F0. Consider now the
martingale Yt = E[ξ|Ft], then by the martingale representation theorem [219, Theorem 4.3.4], there exists a
unique Z ∈ L2((Fs)0≤s≤T ) such that

Yt = ξ −
T∫︂
t

Zs · dWs. (2.73)

We note that this setting corresponds to choosing h = 0 in (2.71b).

Remark 2.22 (Stochastic version of methods of characteristics). In some sense FBSDEs can be interpreted as a
stochastic version of the method of characteristics for solving PDEs of first order. The idea of the latter is to
approach the linear PDE

∂tV (x, t) + b(x, t) · ∇V (x, t) = 0, (x, t) ∈ Rd×[0, T ), (2.74a)

V (x, T ) = g(x), x ∈ Rd, (2.74b)

via the process Ys = V (Xs, s) and the system of ODEs

Ẋs = b(Xs, s), X0 = x0, (2.75a)

Ẏ s = 0, YT = g(XT ). (2.75b)

This can be compared to Definitions 2.19 and 2.20 with h = 0, where the additional second derivatives in
the PDE change the ODE (2.75a) to SDE (2.71a) and the additional Itô term in the Y process guarantees
adaptedness. When generalizing (2.74) to nonlinear PDEs

∂tV (x, t) + b(x, t) · ∇V (x, t) + h(x, t, V (x, t)) = 0, (x, t) ∈ Rd×[0, T ), (2.76a)

V (x, T ) = g(x), x ∈ Rd, (2.76b)

then Zs = 0 in (2.71b) would suffice and (Ys)0≤s≤T would be the solution to the ODE

Ẏ s = −h(Xs, s, Ys), YT = g(XT ). (2.77)

Clearly, the randomness of the general BSDE from Definition 2.20 enters through the process X (and therefore
through Brownian motion W ) and we note once more that the role of the stochastic integral

∫︁ T
0
Zs · dWs is to

make the process Y adapted, i.e. to again “remove” its randomness. Along those lines we refer to [307, Section
9.4] for an interesting interpretation of Z essentially being the derivative of Y with respect to W .

17Progressive measurability implies Fs-adaptedness, the converse is not necessarily true.
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Chapter 2. Theoretical foundations

In the following, let us state some key results on BSDEs, focusing on existence and uniqueness results as well
as on the precise connection to the nonlinear PDE from Definition 2.19. We start with posing appropriate
assumptions.

Assumption 2. For the coefficients in the FBSDE system from Definition 2.20 we assume that

(i) b(0, ·), σ(0, ·), h(0, ·, 0,0), g(0) are bounded,

(ii) b, σ, h, g are uniformly Lipschitz continuous in (x, y, z),

(iii) b, σ, h are uniformly Hölder- 12 continuous in time.

Theorem 2.23 (Existence and uniqueness of FBSDE). Given Assumption 2, there exists a unique solution to
the FBSDE system from Definition 2.20.

Proof. The proof is essentially based on the martingale representation theorem and a Picard iteration scheme.
See for instance [90], [281, Theorem 10.2.] or [307, Theorem 4.3.1].

Remark 2.24. The BSDE that we have stated in Definition 2.20 is sometimes termed Markovian BSDE and
can be seen as a special case of the more general formulation

dYs = −h(s, ω, Ys, Zs) ds+ Zs · dWs, YT = ξ, (2.78)

where ξ is FT -measurable satisfying E[|ξ|2] < ∞, ω ∈ Ω, and h is P ⊗ Bd ⊗ Bd×n-measurable with P being
the predictable σ-algebra and Bd the Borel σ-algebra18, and we have in mind that h can depend on continuous
paths generated by Brownian motion. We note that many statements (as for instance the well-posedness in
Theorem 2.23) hold for this more general case, see for instance [281, Section 10.5] and [307].

Finally, the following statement makes the connection between the FBSDE from Definition 2.20 and the PDE
from Definition 2.19 precise.

Theorem 2.25 (Connection between FBSDE and PDE). Let V ∈ C2,1(Rd×[0, T ]) be a classical solution to
the semi-linear PDE (2.70) satisfying a linear growth condition and assume that for some constants C,α > 0
we have |∇V (t, x)| ≤ C(1 + |x|α) for all x ∈ Rd. Then, the pair (Y,Z) defined by

Yt = V (Xt, t), Zt = σ⊤∇V (Xt, t), 0 ≤ t ≤ T (2.79)

is the solution to the BSDE (2.71b).

Proof. The statement follows from an application of Itô’s formula to Yt, as done in (2.66), see also [234, Theorem
6.3.2].

Remark 2.26 (Viscosity solutions). Note that even though Yt = V (Xt, t) might not be smooth it can often be
shown that, given suitable regularity assumptions on the coefficients, it is still a unique solution to the PDE
(2.70) in the viscosity sense (cf. Remark 2.7), therefore showing the converse of Theorem 2.25, see for instance
[54, 90, 228] and [307, Section 5.5].

Remark 2.27 (Bounded domains). In analogy to Remark 2.17 we can constrain the semi-linear parabolic PDE
(2.70) that we have defined on all Rd to a bounded domain D ⊂ Rd. We can for instance consider the elliptic
boundary value

LV (x) + h(x, V (x), σ⊤∇V (x)) = 0, x ∈ D, (2.80a)
V (x) = g(x), x ∈ ∂D, (2.80b)

where now the solution does not explicitly depend on time anymore. The corresponding backward equation is
then defined as

dYs = −h(Xs, Ys, Zs) ds+ Zs · dWs, Yτ = g(Xτ ), (2.81)

where τ = {t > 0 : Xt /∈ D} is a first exit time from the domain. A theoretical justification can for instance
be found in [228, Theorem 4.6] and we note that parabolic problems on bounded domains can be defined
analogously (see also Section 6.3).

18In other words, the process (h(t, ω, y, z))0≤t≤T is predictable for every fixed (y, z) ∈ R×Rd.
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Corollary 2.28. Let V ∈ C2,1(Rd×[0, T ]) be a classical solution to the semi-linear PDE (2.70) and assume
the same as in Theorem 2.25. Then the backward processes

Y vt = V (Xv
t , t), Zvt = σ⊤∇V (Xv

t , t), 0 ≤ t ≤ T (2.82)

fulfill the generalized FBSDE system

dXv
s = (b(Xv

s , s) + σ(Xv
s , s)v(X

v
s , s)) ds+ σ(Xv

s , s) dWs, Xv
t = xinit, (2.83a)

dY vs = (−h(Xv
s , s, Y

v
s , Z

v
s ) + v(Xv

s , s) · Zvs ) ds+ Zvs · dWs, Y vT = g(Xv
T ), (2.83b)

for any v ∈ U .

Proof. As for Theorem 2.25 the proof follows by an application of Itô’s formula.

Remark 2.29 (Fully nonlinear PDEs). One can also consider more general nonlinear PDEs of the form

∂tV (x, t) + h(x, t, V (x, t),∇V (x, t),∇2V (x, t)) = 0, (x, t) ∈ Rd×[0, T ), (2.84a)

V (x, T ) = g(x), x ∈ Rd, (2.84b)

where now h : Rd×[0, T ]× R×Rd×Rd×d → R can also depend on the Hessian of V . With

Ys = V (Xs, s), Zs = ∇V (Xs, s), Γs = ∇2V (Xs, s), (2.85)

this brings the BSDE representation

dYs =

(︃
b(Xs, s) · Zs +

1

2
(σσ⊤)(Xs, s) : Γs − h(Xs, s, Ys, Zs,Γs)

)︃
ds+ σ⊤(Xs, s)Zs · dWs, YT = g(XT ).

(2.86)
See [13, 235] for further details and algorithmic approaches.

In this thesis we are particularly interested in Hamilton-Jacobi-Bellman PDEs, as for instance defined in (2.13)
or (2.29). Here usually the nonlinearity of the PDE depends quadratically on the gradient of the solution and
is therefore not uniformly Lipschitz continuous such that the usual assumptions on the coefficients, as posed in
Assumption 2, do not hold anymore. We must therefore come up with additional assumptions and will refer to
analysis that can still prove well-posedness of corresponding BSDEs.

Assumption 3 (Quadratic growth in z). We assume the following.

(i) There exists C > 0 such that for any (x, t, y, z) ∈ Rd×[0, T ]× R×Rd

|h(x, t, y, z)| ≤ C(1 + |y|+ |z|2). (2.87)

(ii) There exists C > 0 such that for any (x, t, y1, y2, z1, z1) ∈ Rd×[0, T ]× R×R×Rd×Rd

|h(x, t, y1, z1)− h(x, t, y2, z2)| ≤ C (|y1 − y2|+ (1 + |y1|+ |y2|+ |z1|+ |z2|)|z1 − z2|) . (2.88)

(iii) g(XT ) is FT -measurable and P(|g(XT )| > C) = 0 for some C > 0.

Theorem 2.30 (Existence and uniqueness of FBSDE with quadratic growth). Let Assumption 3 hold. Then
the FBSDE system as defined in Definition 2.20 admits a unique solution (Y,Z).

Proof. A proof can be found in [307, Theorem 7.3.3], which is mainly based on [174].

Lastly, let us note that there are other interesting connections between BSDEs and stochastic optimal control
problems as for instances explained in [234, Section 6.4] and [281, Section 10.4].

2.2.3 Discretization of forward and backward SDEs
For numerical simulations we need to discretize the forward and backward processes from Definition 2.20. In
this section we want to state some basic results on the discretization error that one encounters.

Throughout this work we discretize the forward and backward SDEs with the Euler-Maruyama scheme on a
time grid 0 = t0 < t1 < · · · < tN = T . For the forward process we define the iterative schemeˆ︁Xn+1 = ˆ︁Xn + b( ˆ︁Xn, tn)∆t+ σ( ˆ︁Xn, tn)ξn+1

√
∆t, ˆ︁X0 = x. (2.89)

where usually the step-size tn+1 − tn = ∆t = T
N is fixed, and ξn+1 ∼ N (0, Idd×d).

One is usually interested in how ˆ︁Xn converges to Xtn depending on the step-size ∆t. The convergence results
of scheme (2.89) are classic and the following theorem states that it is strongly converging with order 1

2 or 1
depending on whether the diffusion coefficient is x-dependent or not.
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Chapter 2. Theoretical foundations

Theorem 2.31 (Strong convergence of forward SDE scheme). Let X be a strong solution to (1.2), ˆ︁X the
discretization defined by (2.89) and let C(T ) be a (time-dependent) constant. It holds

max
0≤n≤N

E
[︂⃓⃓⃓ ˆ︁Xn −Xtn

⃓⃓⃓]︂
≤ C(T )

√
∆t. (2.90)

If the diffusion coefficient σ does not depend on x it holds

max
0≤n≤N

E
[︂⃓⃓⃓ ˆ︁Xn −Xtn

⃓⃓⃓]︂
≤ C(T )∆t. (2.91)

Proof. See [173].

The discretization of the backward process (2.71b) is not so obvious. First note that we can write it in its
integrated form for the times tn < tn+1 as

Ytn+1
= Ytn −

tn+1∫︂
tn

h(Xs, s, Ys, Zs)ds+

tn+1∫︂
tn

Zs · dWs. (2.92)

In a discrete version we have to replace the integrals with suitable discretizations, where for the deterministic
integral we can decide which end point to consider, leading to either of the following two discretization schemes

ˆ︁Yn+1 = ˆ︁Yn − h( ˆ︁Xn, tn, ˆ︁Yn, ˆ︁Zn)∆t+ ˆ︁Zn · ξn+1

√
∆t, (2.93a)ˆ︁Yn+1 = ˆ︁Yn − h( ˆ︁Xn+1, tn+1, ˆ︁Yn+1, ˆ︁Zn+1)∆t+ ˆ︁Zn · ξn+1

√
∆t. (2.93b)

Of course we could also come up with a scheme mixing the end points in the evaluation of the integral over h.
Note that the above scheme relies on an explicit representation of Z in terms of Y , which is often given via the
relations ˆ︁Yn ≈ V ( ˆ︁Xn, tn), ˆ︁Zn ≈ σ⊤∇V ( ˆ︁Xn, tn). Alternatively, one can also define the scheme

ˆ︁YN = g( ˆ︁XN ), ˆ︁Zn =
1√
∆t

E
[︂ˆ︁Yn+1ξn+1

⃓⃓⃓ ˆ︁Xn

]︂
, ˆ︁Yn = E

[︂ˆ︁Yn+1 + h( ˆ︁Xn, tn, ˆ︁Yn+1, ˆ︁Zn)∆t⃓⃓⃓ ˆ︁Xn

]︂
. (2.94)

Due to reasons that will become more obvious in Section 6.2 this scheme has been prominent in the analysis of
the discretization error and the following theorem states its convergence.

Theorem 2.32 (Discretization of BSDE). Let (Y, Z) evolve according to the BSDE (2.71b) and consider the
discretization scheme as in (2.94). If ∆t is small enough then

max
0≤n≤N

E
[︃(︂
Ytn − ˆ︁Yn)︂2]︃ +

N−1∑︂
n=0

E

⎡⎣ tn+1∫︂
tn

|Zs − ˆ︁Zn|2ds
⎤⎦ ≤ C(T )(1 + |x|2)∆t. (2.95)

Proof. See [307, Theorem 5.3.3].

2.3 Importance sampling and large deviations

In this section we come back to Monte Carlo estimation of observables related to (high-dimensional) diffusion
processes as one of the original motivations of this thesis (see Chapter 1). We have argued before that cor-
responding estimators often suffer from high variances and we therefore introduce importance sampling as a
popular method to approach this problem by sampling from an alternative probability measure and reweight-
ing the resulting random variables with a likelihood ratio in order to still produce unbiased estimators for the
quantity of interest. Loosely speaking, one can understand this change of the underlying probability measure
as making regions that are somehow “more important” appear more often in the simulation. In Section 2.3.1
we define importance sampling in an abstract setting, from which an application to densities is straightforward.
We will elevate those considerations to measures on path space and diffusion processes in Section 2.3.2, while
elaborating on the goal of reaching zero-variance estimators. In practice such optimal sampling schemes are
usually not available and we already refer to Chapter 3, where we will analyze statistical errors when considering
suboptimal choices. Since high variances of estimators are particularly common when dealing with so-called rare
events, we consider the theory of large deviations as an appropriate framework for studying those phenomena
in the context of converging sequences of probability measures. In Section 2.3.3 we will give an introduction to
this topic, while especially highlighting the perspective of changes of measures and pointing out connections to
importance sampling that will help us to understand potential drawbacks of certain practical methods. Finally,
in Section 2.3.4 we will introduce a variational formula that connects our sampling problem to changes of mea-
sures from yet another perspective that shall turn out to be fruitful in the identification of optimal importance
sampling schemes.
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2.3.1 Importance sampling
We shall now first introduce the idea of importance sampling in an abstract setting. To this end, we consider
the probability space (Ω,F ,Λ) and the measurable space (˜︁Ω, ˜︁F), on which we want to compute expected values

Z = E
[︂
e−W(X)

]︂
, (2.96)

where X : Ω → ˜︁Ω is a random variable that is distributed according to the measure ν = Λ(X−1(·)), and
W : ˜︁Ω→ R is some functional of X. Usually, we will specify ˜︁Ω to be either Rd or the path space C([0, T ],Rd).

The idea of importance sampling is to sample instead ˜︁X ∈ ˜︁Ω from another distribution ˜︁ν and weight the
samples back according to the corresponding likelihood ratio (or Radon-Nikodym derivative), provided that
ν ≪ ˜︁ν, namely

Z = E
[︃
e−W( ˜︁X) dν

d˜︁ν ( ˜︁X)

]︃
. (2.97)

One notorious intention of importance sampling is the reduction of the variance of the corresponding Monte
Carlo estimator ˆ︁ZK =

1

K

K∑︂
k=1

e−W( ˜︁X(k)) dν

d˜︁ν ( ˜︁X(k)), (2.98)

where K is the sample size and ˜︁X(k) are i.i.d. samples from ˜︁ν. We therefore often study the relative error

r(˜︁ν) =
√︃
Var

(︂
e−W( ˜︁X) dν

d˜︁ν ( ˜︁X)
)︂

Z
, (2.99)

noting that the true relative error of the estimator (2.98) is given by r(˜︁ν)/√K. It can be readily seen that
choosing the optimal proposal measure ˜︁ν = ν∗ defined via

dν∗

dν
=
e−W

Z
(2.100)

yields an unbiased zero-variance estimator. Of course, this estimator is usually infeasible in practice, as Z is
just the quantity we are after, and therefore not available.

Note that the exponential form in (2.96), e−W , constrains our observable to be positive. We make this choice
in order to be able to reach a zero variance proposal density without additional tricks, as the optimal proposal
measure ν∗ defined in (2.100) has to be non-negative. Requiring even strict positivity is convenient in order to
get variational dualities that rely on logarithmic transformations, cf. Section 2.3.4. An extension of importance
sampling to observables with negative parts can for instance be found in [223].

Many common applications of importance sampling consider measures that admit densities in Rd. However, we
shall focus on importance sampling of diffusions, which we will introduce in the next section.

2.3.2 Importance sampling in path space
Let us elevate the abstract importance sampling considerations from the previous subsection to solutions of
stochastic differential equations (SDEs) of the form

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (2.101)

on the time interval s ∈ [t, T ], 0 ≤ t < T < ∞, just as in (1.2). Again, b : Rd × [t, T ] → Rd denotes the drift
coefficient, σ : Rd×[t, T ]→ Rd×d the diffusion coefficient, (Ws)t≤s≤T standard d-dimensional Brownian motion,
and xinit ∈ Rd is the (deterministic) initial condition. As in (1.7) our goal is to compute expectations of the
form

Z = E
[︂
e−W(X)

]︂
, W(X) =

T∫︂
t

f(Xs, s)ds+ g(XT ), (2.102)

where f : Rd×[t, T ] → R, g : Rd → R are given functions. We will usually fix the initial time to be t = 0, i.e.
consider the SDE (2.101) on the interval [0, T ]. For fixed initial condition xinit ∈ Rd, let us recall the path space

C = Cxinit
([0, T ],Rd) =

{︁
X : [0, T ]→ Rd | X continuous, X0 = xinit

}︁
, (2.103)
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equipped with the supremum norm and the corresponding Borel-σ-algebra, and denote the set of probability
measures on C by P(C).

As in the previous section, the idea of importance sampling is to not sample from the original path measure
P ∈ P(C) that corresponds to paths of SDE (2.101), but from a different measure Pu ∈ P(C) and weight back
accordingly. Just as in (2.97) one then gets an unbiased estimator via

Z = E
[︃
e−W(Xu) dP

dPu
(Xu)

]︃
, (2.104)

where the Radon-Nikodym derivative is now given by Girsanov’s theorem (as stated in Theorem B.3) and it
turns out that the SDE corresponding to Pu is just a controlled version of the original one,

dXu
s = (b(Xu

s , s) + σ(Xu
s , s)u(X

u
s , s)) ds+ σ(Xu

s , s) dWs, Xu
t = xinit. (2.105)

We think of u : Rd × [t, T ]→ Rd as a control term steering the dynamics and note (as already hinted at by the
notation) the correspondence between u and Pu. As before, our quantity of interest is the relative error, which
now depends on the control u:

r(u) =

√︂
Var

(︁
e−W(Xu) dP

dPu (Xu)
)︁

Z
. (2.106)

Relating to Problem 1.1, we recall that it is a common goal to choose a control that minimizes this relative
error. In fact, there exists u∗ ∈ U that brings the variance, and therefore (2.106), the relative error of the
importance sampling estimator, to zero. This is formalized in the following theorem.

Theorem 2.33 (Zero-variance property in path space). Let

ψ(x, t) = E
[︂
e−W(X)

⃓⃓⃓
Xt = x

]︂
. (2.107)

Then the path space measure Pu∗
induced by the feedback control

u∗(x, s) = σ⊤∇ logψ(x, s) (2.108)

yields a zero variance estimator, i.e.

e−W(Xu∗
) dP
dPu∗ (X

u∗
) = ψ(x, 0) , Pu

∗
− a.s. (2.109)

Proof. See Appendix C.1.

Remark 2.34. The above zero-variance statement can also be understood by the following intuitive argument.
We know by Jensen’s inequality that

− logE
[︂
e−W(X)

]︂
= − logE

[︃
e−W(Xu) dP

dPu
(Xu)

]︃
≤ E

[︃
W(Xu)− log

dP
dPu

(Xu)

]︃
= E [W(Xu)] + KL(Pu|P).

(2.110)
One can show that equality can be reached via a minimization of the right hand side over u (see for instance
Theorem 2.44 or Remark 2.46), namely

− logE
[︂
e−W(X)

]︂
= inf
u∈U
{E [W(Xu)] + KL(Pu|P)} , (2.111)

where U is a suitable set of control functions as for instance defined in (1.5). Now, since the negative logarithm
is strictly convex, − log(E[Z]) = E[− log(Z)] only holds if Z is almost surely constant, which readily yields the
variance zero property as stated in (2.109) for u = u∗ being the minimizer in (2.111) (cf. [98, Section VI.2]).

As we have discussed in Chapter 1 and particularly in Theorem 1.2, it turns out that there are multiple equivalent
perspectives on the problem of finding the optimal importance sampling control u∗ in practice. Let us relate
to the perspective of conditioning from Problem 1.2 again, which claims that W induces a reweighted path
measure Q on C via

dQ
dP

=
e−W

Z
, (2.112)

assuming f and g are such that Z is finite (which we shall tacitly assume). It turns out that Q = Pu∗
and we

realize that the above formula is the same as in (2.100).
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Remark 2.35 (Path space importance sampling of trajectory-independent observables). Let us consider the
special case of f = 0 in the path functional (2.102). Then the optimal change of measure (2.112) is given by

dQ
dP

(X) =
e−g(XT )

E
[︁
e−g(XT )

]︁ , (2.113)

and we see by inspecting the right-hand side that it does not depend on the entire trajectory, but only on
the value at final time T . Since X is a Markov process, it is therefore enough to consider reweightings of the
probability density of the process at time T , which we call pT , namely

qT
pT

(x) =
e−g(x)

E
[︁
e−g(x)

]︁ , (2.114)

where the expectation is now taken with respect to the density pT instead of the path measure P. Since usually
neither pT nor the expectation value is known in practice, it is equally hard to solve this problem. There
exist multiple alternative ideas on somehow ‘transforming’ pT to qT , e.g. by resampling [77] or ‘bridging’ [101,
137], however, all methods are especially challenging when the two measures are far apart from each other.
For further algorithmic approaches of optimal importance sampling with densities we refer to Chapter 7 and
Appendix B.11.

2.3.3 Large deviations theory and its connections to importance sampling
A field that is strongly connected to key ideas in importance sampling is large deviations theory. In a nutshell,
this often very technical branch of probability theory provides an appropriate framework for the characterization
of the asymptotic concentration of probability measures, in particular empirical measures. As the naming
suggests, one is not only interested in “typical” behaviors, but rather in largely deviating phenomena that can
be very unlikely to happen. Large deviations theory is an indispensable tool in the analysis of rare events (cf.
Section 1.3) and often rather theoretic considerations can lead to practical algorithms for numerical simulations.

In this section we want to introduce some fundamental concepts of large deviations theory, e.g. following [43,
68, 69], having the goal in mind to connect them to importance sampling and other aspects that are related
to our guiding problems from Chapter 1. For ease of notation, let us start with one-dimensional random
variables X ∈ R that are distributed according to some measure ν, noting that multidimensional extensions are
straightforward. We want to estimate the expectation

Z = E[X] (2.115)

by its Monte Carlo approximation

ˆ︁ZK =
1

K

K∑︂
k=1

X(k), (2.116)

where Xk are i.i.d. from ν. We have already discussed why this can be difficult (cf. Example 1.1), but let us
provide yet another illustration for potential sampling issues in the following example.

Example 2.36 (Rare event simulations). Let us consider the random variable X = 1{Y >c}, where Y ∈ R is
some other random variable and c ∈ R some constant. The computation of the expectation (2.115) then results
in computing the probability

p = P(Y > c) = E
[︁
1{Y >c}

]︁
. (2.117)

In this scenario, the Monte Carlo approximation (2.116) gets particularly challenging if p is small (i.e. if the
event Y > c is rare), since the relative error of ˆ︁pK := ˆ︁ZK explodes when p approaches zero, namely

r(ˆ︁pK) =

√︁
p(1− p)√
Kp

=

√︂
1
p − 1
√
K

p→0−−−→∞ (2.118)

for a fixed K. This is a stereotypical problem in rare event estimation.

The above example motivates the question of how to choose K in order to still guarantee good estimators (for
fixed p ̸= 0), or differently put, we may ask the question of how the convergence rate of the sample mean to its
expectation depends on the sample size K. Large deviations theory tries to address this question, at least in
some specific regime. Before getting there, let us recall two standard approaches for studying the convergence
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of the Monte Carlo estimator (2.116) to its mean (2.115). First, assuming that E[X] < ∞, the strong law of
large numbers assures that ˆ︁ZK a.s.−−→ Z (2.119)

for K → ∞, but neither says something about convergence speed nor about any kind of fluctuations of the
estimator. A second attempt is the central limit theorem, which, now assuming that also E

[︁
X2
]︁
< ∞, states

that
√
K

( ˆ︁ZK −Z)
σ

d−→ N (0, 1) (2.120)

as K →∞, where σ2 = Var(X), or equivalently,

P

(︄
√
K

( ˆ︁ZK −Z)
σ

≥ z

)︄
→ 1− ϕ(z), (2.121)

where ϕ is the cumulant distribution function of a standard normally distributed random variable. With the
central limit theorem we can make statements about fluctuations around the mean, but should note that
loosely speaking due to the “strechting” with σ only “small fluctuations”, i.e. fluctuations close to the mean,
can be considered. The aim of large deviations theory on the other hand is to go one step further and study
fluctuations that are “far away” from the mean, while at the same time providing some asymptotic convergence
speed depending on K. To this end, in analogy to the expression in (2.121), let us study the cumulative
distribution function of our estimator ˆ︁ZK , for which we can readily find an upper bound as

P
(︂ ˆ︁ZK ≥ x)︂ = E

[︂
1 ˆ︁ZK≥x

]︂
= E

[︂
1αK( ˆ︁ZK−x)≥0

]︂
(2.122a)

≤ E
[︂
eαK( ˆ︁ZK−x)

]︂
= E

[︄
K∏︂
k=1

eαXk

]︄
e−αKx (2.122b)

= E
[︁
eαX

]︁K
e−αKx = eK(C(α)−αx), (2.122c)

where we have introduced some α > 0 and the cumulant generating function

C(α) = logE
[︁
eαX

]︁
. (2.123)

Since α is arbitrary we can minimize w.r.t. this quantity in order to make the bound tighter and get

P
(︂ ˆ︁ZK ≥ x)︂ ≤ einfα>0{K(C(α)−αx)} = e−KC

∗(x), (2.124)

where
C∗(x) = sup

α∈R
{αx− C(α)} ∈ [0,∞) (2.125)

is the Legendre-Fenchel transform of C, which has the property of being convex, non-decreasing on [Z,∞) and
C∗(Z) = 0. Here we already dropped the requirement α > 0 as it turns out that it is in fact not needed.

With (2.124) we have identified an upper bound for the cumulative distribution function that decreases expo-
nentially in K, with C∗ specifying the convergence speed. Since we aim at convergence statements similar to
(2.121), a corresponding lower bound is needed as well. And indeed, without going into further details about
its derivation, the following theorem shows that C∗ is just right for quantifying the asymptotic behavior of the
Monte Carlo estimator (2.116).

Theorem 2.37 (Cramér). Let ˆ︁ZK be as defined in (2.116). Then for any x > Z it holds

lim
K→∞

1

K
logP

(︂ ˆ︁ZK ≥ x)︂ = −C∗(x) = − inf
y≥x

C∗(y). (2.126)

Proof. See [43, Theorem 3.1.1] and note that the last equality in (2.126) follows from the fact that C∗ is non-
decreasing on [Z,∞) (and will make more sense when we introduce the more general notation in Definition 2.39).

Remark 2.38 (Convergence on exponential scale). In a more compact way we can write Cramér’s theorem as

P
(︂ ˆ︁ZK ≥ x)︂ ≃ e−KC∗(x) (2.127)
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for any x > Z. It is important to note that equations (2.126) and (2.127) refer to a convergence on an exponential
scale and that subexponential behavior might be hidden. We actually have

P
(︂ ˆ︁ZK ≥ x)︂ = cK(x)e−KC

∗(x), (2.128)

where the sequence (cK)K converges to zero at some subexponential rate, i.e. log cK
K → 0 for K →∞. The term

cK , however, is usually very difficult to compute in practice.

The above observations can be put in a more abstract framework and motivate what is called a large deviation
principle.

Definition 2.39 (Large deviation principle). Let νK be a sequence of probability measures on some space X , let
aK be a sequence of positive real numbers such that aK →∞ and let I : X → [0,∞] be a lower semicontinuous
functional. The sequence νK is said to satisfy a large deviation principle with speed aK and rate I if and only
if for each Borel measurable set E ⊂ X it holds

− inf
x∈E◦

I(x) ≤ lim inf
K→∞

1

aK
log(νK(E)) ≤ lim sup

K→∞

1

aK
log(νK(E)) ≤ − inf

x∈E
I(x). (2.129)

Comparing to our derivation from above we see that we can identify νK = P
(︂ ˆ︁ZK ∈ ·)︂ , E = [x,∞), aK = K

and I = C∗, noting once more that the rate function I is the essential quantity that determines the exponential
rate of the convergence that we are interested in.

Inspecting the proof of Cramér’s theorem, in particular for the lower bound, reveals a technique that we have seen
in our importance sampling considerations from Section 2.3.1 already. The idea is to define a new probability
measure by an exponential tilting of the original measure ν, namely by

να := eαx−C(α)ν =
eαx

E [eαX ]
ν, (2.130)

where C is the cumulant generating function as defined in (2.123) and α ∈ R is the tilting parameter. We note
that να and C can be related via

C ′(α) =
E
[︁
XeαX

]︁
E [eαX ]

= E
[︂
XeαX−C(α)

]︂
= Eνα [X] (2.131)

and similarly
C ′′(α) = Varνα(X), (2.132)

so one can say that C encodes some information of να. The intention of the tilting in (2.130) is to shift the
probability mass of the original random variables in such a way that the set under consideration becomes likely.
This can be seen by noting that with the choice α = α∗ that solves the maximization in the Legendre-Fenchel
transformation (2.125) we have

C ′(α∗) = Eνα∗ [X] = Eνα∗ [ ˆ︁Z] = x, (2.133)

i.e. ˆ︁Z ≈ x is no longer rare under να∗ and we conclude that the change of measure in (2.130) is optimal in some
asymptotic sense, as will be explained next.

Remark 2.40 (Rare events and asymptotically optimal variance). In order to illustrate further connections to
importance sampling, let us come back to the computations in (2.122), also connecting to Example 2.36, and
say we want to estimate

pK(x) = P
(︂ ˆ︁ZK ≥ x)︂ (2.134)

with ˆ︁ZK as in (2.116). In analogy to (2.130) we consider the exponential change of measure

να = eαK
ˆ︁ZK−KC(α)ν, (2.135)

such that we have
pK(x) = Eνα

[︃
1 ˆ︁ZK≥x

dν

dνα

]︃
. (2.136)

We can now compute the second moment depending on the tilting parameter α as

MK(x, α) = Eνα

[︂
1 ˆ︁ZK≥xe

−2K(α ˆ︁ZK−C(α))
]︂

(2.137a)

≤ e−2K(αx−C(α)), (2.137b)
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where we have used the same bound as in (2.122), noting that minimization w.r.t. α brings

MK(x, α∗) ≤ e−2KC∗(x). (2.138)

Combining this with our large deviations result as for instance stated in (2.127) and applying Jensen’s inequality
we get

e−2KC∗(x) ≃ p2K(x) ≤MK(x, α∗) ≤ e−2KC∗(x), (2.139)

implying

lim
K→∞

1

K
log p2K(x) = lim

K→∞

1

K
logMK(x, α∗) = −2C∗(x), (2.140)

or equivalently
p2K ≃MK(x, α∗), (2.141)

which means that up to subexponential terms the tilting (2.135) is asymptotically optimal in terms of variance
reduction. In fact, a guiding principle in the efficient estimation of rare event probabilities by Monte Carlo is
that importance sampling based on the change of measure suggested by large deviations theory can reduce the
variance by many orders of magnitude. We will later see, however, that importance sampling in a nonasymptotic
regime can still lead to large relative errors, since here the subexponential terms do matter (see Remark 2.42,
Chapter 3, in particular Section 3.2.2, and e.g. [108]).

For non-independent random variables Cramér’s Theorem 2.37 can be generalized to the Gärtner-Ellis theorem.
Let us here provide a glimpse on how this leads to large deviations theory of time-continuous stochastic processes,
for which we refer to [43, 68, 69] for further details. Instead of having K different random variables, where we
are interested in the behavior of sample means when K → ∞, we can now study two kinds of limits: we can
either let the time horizon of the stochastic process go to infinity or we can let its noise of go to zero. Let us
start with the latter case. To this end, we consider the SDE

dXη
s = b(Xη

s ) ds+
√
η dWs, Xη

0 = xinit, (2.142)

where η > 0 is a (small) parameter, and where we set the diffusion coefficient to be the identity for notational
convenience, but note that a generalization to an arbitrary σ(Xη

s ) in front of the Brownian motion is possible.
For η → 0 we expect our dynamics to become deterministic and to fulfill the ODE

φ′(s) = b(φ(s)), φ(0) = xinit. (2.143)

To be more precise, we assume that (cf. [100, Theorem 1.1])

P
(︃
lim
η→0
∥Xη − φ∥C = 0

)︃
= 1, (2.144)

where ∥f∥C = sups∈[0,T ] |f(s)| with the shorthand notation C = C([0, T ],Rd) for the set of continuous functions.
As before, we are interested in determining the rate of this convergence at an exponential level and (in analogy
to Cramér’s Theorem 2.37) expect a behavior like

P (∥Xη − φ∥C < δ) ≃ e−
1
η I(φ) (2.145)

for any small enough η, δ > 0, where I is an appropriate rate functional in the sense of Definition 2.39. Proving
corresponding large deviation results becomes rather technical and without going into further details let us just
highlight the following theorem, which proves that a small noise large deviation principle as in (2.145) is indeed
valid and specifies the corresponding rate functional.

Theorem 2.41 (Freidlin-Wentzell). The stochastic process Xη
s defined in (2.142) satisfies a large deviation

principle with rate function I : C1 → [0,∞] defined by

I(φ) =

{︄
1
2

∫︁ T
0
|φ′(s)− b(φ(s))|2ds, φ ∈ H1,

∞, otherwise,
(2.146)

where H1 =
{︂∫︁ T

0
φ(s)ds : φ ∈ L2([0, T ])

}︂
denotes the space of all absolutely continuous functions with value 0

at t = 0 that possess a square integrable derivative.

Proof. See [68, Theorem 5.6.3].

Comparing to the ODE (2.143), we note that the rate functional is zero if and only if the ODE is fulfilled and
that it can therefore be interpreted as a kind of cost penalizing deviations from this most probable path.
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2.3. Importance sampling and large deviations

Remark 2.42 (Asymptotically optimal variance in small noise regimes). In small noise regimes, one is often
interested in computing quantities like

ψη = E
[︂
e−

1
ηW(Xη)

]︂
, (2.147)

where W : C → R is a suitable path functional as for instance defined in (1.8) (see also Section 3.2.2). A
notorious problem is that this observable can have a substantially large second moment

Mη = E
[︂
e−

2
ηW(Xη)

]︂
, (2.148)

leading to large relative errors of Monte Carlo estimators. In order to better understand this phenomenon, let
us state the following variational relations, sometimes known as Varadhan’s integral theorem (see [68, Theorem
4.3.1], [290]),

γ1 := − lim
η→0

η logψη = inf
φ∈C

φ(0)=xinit

{I(φ) +W(φ)} (2.149)

and
γ2 := − lim

η→0
η logMη = inf

φ∈C
φ(0)=xinit

{I(φ) + 2W(φ)} , (2.150)

where I is the rate functional from Theorem 2.41. Just as in (2.139) and (2.140) we have 2γ1 ≥ γ2 by Jensen’s
inequality and note that 2γ1 = γ2 implies that a corresponding estimator is asymptotically optimal on an
exponential scale (i.e. (ψη)2 ≃ Mη, sometimes called log-efficient), see Remark 2.40. Let us stress again,
however, that the relative error of corresponding Monte Carlo estimators can still be large on a subexponential
nonasymptotic level, which can be seen by noting that√︃

Var
(︂
e−

1
ηW(Xη)

)︂
E
[︂
e−

1
ηW(Xη)

]︂ =

√︄
Mη

(ψη)2
− 1 =

√︂
e

2γ1−γ2+o(1)
η − 1, (2.151)

which can blow up even if 2γ1 = γ2, for example, it can increase exponentially as η−β for some β ∈ (0, 1) (cf.
[290]). We will come back to this observation in Section 3.2.2.

Remark 2.43 (Zero noise viscosity approximation). We have seen before (e.g. in Lemma 2.11) that

V η(x, t) = −η logE
[︂
e−

1
ηW(Xη)

⃓⃓⃓
Xt = x

]︂
(2.152)

fulfills the HJB equation(︂
∂t +

η

2
∆ + b(x, t) · ∇

)︂
V η(x, t)− 1

2
|∇V η(x, t)|2 + f(x, t) = 0, V η(x, T ) = g(x), (2.153)

where f and g are as in (1.8) and we recall that we have set the diffusion matrix to be the identity for notational
convenience. One can now show that taking the limit

V 0(x, t) := lim
η→0

V η(x, t) (2.154)

(as in (2.149)) brings the PDE [96]

(∂t + b(x, t) · ∇)V 0(x, t)− 1

2
|∇V 0(x, t)|2 + f(x, t) = 0, V 0(x, T ) = g(x), (2.155)

where the second derivative terms have disappeared, now corresponding to a deterministic rather than a stochas-
tic optimal control problem (compare also to Section 2.1), also resulting in the representation

V 0(x, t) = inf
φ∈C
φ(t)=x

⎧⎨⎩1

2

T∫︂
t

|φ′(s)− b(φ(s))|2ds+W(φ)

⎫⎬⎭ , (2.156)

which reminds of a deterministic cost functional. We again refer to Section 3.2.2 for further discussion in an
importance sampling context.
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At the end of this subsection, let us briefly mention the other type of limit that one can take in the large
deviation analysis of stochastic processes, namely letting the time horizon go to infinity [94]. To this end, we
consider the stochastic process

dXs = b(Xs) ds+ σ(Xs) dWs, Xt = xinit, (2.157)

and can now define the scaled cumulant generating function as

Cf (α) = − lim
T→∞

1

T
logE

[︂
e−α

∫︁ T
0
f(Xs)ds

]︂
, (2.158)

with some given f ∈ C(Rd, d), and define the rate function as

If (x) = sup
α∈R
{αx− Cf (α)} . (2.159)

An interesting connection to Section 2.2 is that Cf := Cf (1) is the principal eigenvalue of the operator L − f
appearing in the Feynman-Kac PDE from Theorem 2.14. Indeed, recalling the Feynman-Kac semi-group (e.g.
from Remark 2.18),

(P fT g)(x) = E
[︂
g(XT )e

−
∫︁ T
0
f(Xs)ds

⃓⃓⃓
X0 = x

]︂
, (2.160)

we expect
P fT g ∼T→∞ e−Tλ(f), (2.161)

where λ(f) is the largest eigenvalue of L − f . By taking the logarithm and dividing by T , we recover the
cumulant Cf , which shows that Cf = λ(f) is indeed the largest eigenvalue of L− f (see [94] for further details
and [95] for an algorithm that exploits this connection numerically).

2.3.4 Variational characterization of free energy
In this subsection we will take a seemingly different perspective on our sampling problem. We will elaborate on
a variational formulation of the free energy functional

− logE
[︂
e−W(X)

]︂
(2.162)

as defined in (1.9), where the path functional W should be thought of as in (1.8). We will gain further insights
about the variational nature of our guiding problem, having in mind that variational characterizations might
lead to numerical algorithms in the spirit of machine learning, and we will recover some of the concepts from
large deviations theory that we have discussed in the previous section. Eventually we will get back to where
we started and once more relate the free energy (2.162) to stochastic optimal control problems as discussed in
Section 2.1.

Let us start by stating the following theorem which contains two variational formulas in an abstract setting
that are dual to each other.

Theorem 2.44 (Donsker–Varadhan variational principle). Let (Ω,F) be a measurable space, let P(Ω) be the set
of probability measures on (Ω,F), let ν, ˜︁ν ∈ P(Ω) be measures and let W : Ω → R be a measurable functional,
then the following Legendre-type dualities hold. We have

−KL(˜︁ν|ν) = inf
W∈B(Ω)

{︃∫︂
W d˜︁ν + log

∫︂
e−Wdν

}︃
, (2.163)

where B(Ω) denotes the set of bounded, real-valued measurable functionals on Ω, and its dual

− log

∫︂
e−Wdν = inf˜︁ν∈P(Ω)

{︃∫︂
W d˜︁ν +KL(˜︁ν|ν)}︃ . (2.164)

Proof. A proof can for instance be found in [61] or [69], noting that the set B(Ω) can actually be made larger.
To gain some intuition for the second equation (cf. Remark 2.34), we see that Jensen’s inequality brings

− log

∫︂
e−Wdν = − log

∫︂
e−W dν

d˜︁ν d˜︁ν = − log

∫︂
e−W−log d˜︁ν

dν d˜︁ν ≤ ∫︂ (︃W + log
d˜︁ν
dν

)︃
d˜︁ν =

∫︂
W d˜︁ν +KL(˜︁ν|ν),

(2.165)

where equality is attained when considering the measure ˜︁ν defined by dν∗

d˜︁ν = e−W∫︁
e−Wdν

.
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Remark 2.45 (Relation to large deviations theory). The variational expression (2.163) can be equivalently
written as

KL(˜︁ν|ν) = sup
W∈B(Ω)

{︃∫︂
W d˜︁ν − log

∫︂
eWdν

}︃
(2.166)

and can therefore be compared to the Legendre-Fenchel transform of the cumulant generating function related
to random variables in R as defined in (2.125). This can be seen by noting that we can write

C∗(x) = sup
α∈R

{︁
αx− logE

[︁
eαX

]︁}︁
= sup
α∈R

{︃
αx− log

∫︂
eαxLν(X)(dx)

}︃
, (2.167)

where Lν(X) is the law of the random variable X, which (with an abuse of notation) is distributed according
to ν, as well as ∫︂

W d˜︁ν = ⟨W , ˜︁ν⟩, (2.168)

and
log

∫︂
e−Wdν = log

∫︂
e⟨W,˜︁ν⟩Lν(δX)(d˜︁ν), (2.169)

where Lν(δX) is the law of the empirical measure δX with X being distributed according to ν (cf. [176]). We
just made the observation that we can interpret the relative entropy in (2.163) as a rate functional, yielding
some sort of abstract version of Cramér’s Theorem 2.37, which should be compared to Sanov’s theorem, making
this connection more precise [176, Theorem 2.4.1].

Remark 2.46 (Path space interpretation). The abstract formulation in Theorem 2.44 allows for Ω being the
space of continuous paths, as denoted by C before, for ˜︁ν, ν being path space measures Pu,P and for W being a
path functional as for instance defined in (1.8) (cf. Remark 2.34). The variational formulation (2.164) can then
be translated to

− logE
[︂
e−W(X)

]︂
= inf

Pu≪P

⎧⎨⎩
∫︂
C

W dPu +KL(Pu|P)

⎫⎬⎭ , (2.170)

where X is a realization of the SDE (1.2). We well see in Chapter 4 that the perspective of path space measures
will be fruitful. Recalling Girsanov’s Theorem B.3 and denoting by Xu a solution to the controlled SDE (1.4),
we can make the expression explicit in the control u and write

− logE
[︂
e−W(X)

]︂
= inf
u∈U

E

⎡⎣W(Xu) +
1

2

T∫︂
0

|u(Xu
s , s)|2ds

⎤⎦ = inf
u∈U

J(u;xinit, 0), (2.171)

where the set of admissible controls U and the cost functional J are as defined in (1.5) and (1.16), see also
Proposition 4.7.

Remark 2.47 (Interpretation in statistical physics). The term free energy for expression (2.162) comes from
statistical physics, and indeed the fact that it is the Legendre transform of the relative entropy is a well-known
thermodynamic principle, as the variational formulation (2.164) furnishes the famous relation F = U − TS for
the Helmholtz free energy F , with U being the internal energy, T the temperature and S denoting the Gibbs
entropy. If we modify the previous assumptions by setting dν = dx, d˜︁ν = ρ dx as densities in Rd and assuming
thatW = βE, where β = (kBT )

−1 with kB > 0 being Boltzmann’s constant and E denoting a smooth potential
energy function that is bounded from below and growing at infinity, then

−β−1 log

∫︂
exp(−βE) dx⏞ ⏟⏟ ⏞
=F

= min
ρ>0

⎧⎪⎪⎨⎪⎪⎩
∫︂
Eρdx⏞ ⏟⏟ ⏞
=U

+β−1

∫︂
ρ log ρ dx⏞ ⏟⏟ ⏞

=−TS

⎫⎪⎪⎬⎪⎪⎭ (2.172)

with the unique minimizer being the Gibbs-Boltzmann density ρ∗ = exp(−βE)/Z with normalization constant
Z = exp(−βF ).

Remark 2.48 (Jarzynski’s equality). The Donsker–Varadhan variational principle from Theorem 2.44 shares
some features with the non-equilibrium free energy formula of Jarzynski, which relates the Helmholtz equilibrium
free energy to averages that are taken over an ensemble of non-equilibrium trajectories generated by forcing
the dynamics [156]. An extensive analysis on the relation of the Jarzynski formula to the optimal control of
diffusions in the context of variance reduction can be found in [134].

45



Chapter 2. Theoretical foundations

2.4 Neural networks and stochastic optimization

In this final section on the theoretical foundations we shall address a topic that is relevant for actually solving
our Problems 1.1-1.5 from Chapter 1. For numerical algorithms two obvious questions are how to approximate
the control functions u : Rd×[0, T ] → Rd as well as how to approach the minimization problems appearing
in the variational characterizations. Since Galerkin based approximations usually suffer from the curse of
dimensionality (cf. Section 1.5), we will mostly rely on neural networks, which are known to have remarkable
approximation properties and have demonstrated impressive numerical performance in various tasks. We will
formally introduce feed-forward neural networks and their variants and briefly discuss some recent approximation
results. Given their nested structure, minimization cannot be done in closed-form, rather it turns out that
gradient descent schemes are the method of choice. Noting that some stochastic optimization tricks can improve
performance significantly, we will introduce the Adam algorithm as a version of gradient decent that relies on
estimated gradient statistics to adjust learning rates.

We start by defining a neural network. It is essentially a complicated function consisting of concatenated affine
and nonlinear maps.

Definition 2.49 (Feed-forward neural network). A standard fully connected feed-forward neural network is a
function Φϱ : Rd → Rm given by

Φϱ(x) = ALϱ(AL−1ϱ( · · · ϱ(A1x+ b1) · · · ) + bL−1) + bL, (2.173)

with matrices Al ∈ Rnl×nl−1 , vectors bl ∈ Rnl , 1 ≤ l ≤ L, L ∈ N denoting the depth, and a nonlinear activation
function ϱ : R → R that is to be applied componentwise. Note that n0 = d and nL = m. The collection of
matrices Al and vectors bl comprises the learnable parameters.

In practice it turns out that adding “skip connections” in between some of the nonlinear activation functions
can bring numerical advantages [85, 142]. We therefore define the following version of a feed-forward neural
network.

Definition 2.50 (DenseNet). We define the DenseNet by

Φϱ(x) = ALxL + bL, (2.174)

where xL is specified recursively by

yl+1 = ϱ(Alxl + bl), xl+1 = (xl, yl+1)
⊤, (2.175)

with Al ∈ Rnl×
∑︁l−1

i=0 ni , bl ∈ Rl for 1 ≤ l ≤ L− 1 and x1 = x, n0 = d. Again, the collection of matrices Al and
vectors bl comprises the learnable parameters.

One reason for the success of neural networks are their approximation properties. This following classic theorem
demonstrates that they can approximate any continuous function arbitrarily well.

Theorem 2.51 (Universal approximation theorem). Let ϱ : R → R be continuous, but not a polynomial. Let
d ≥ 1, L = 2 and D ⊂ Rd be compact. Then for any continuous function f : Rd → Rm and every ε > 0 there
exists a feed-forward neural network Φϱ : Rd → Rm such that

sup
x∈D
|Φ(x)− f(x)| < ε. (2.176)

Proof. See [191].

Remark 2.52. First versions of this theorem (with different conditions on the activation function) using func-
tional analytic arguments relying for instance on the Hahn-Banach theorem and the measure formulation of
the Riesz representation theorem can be found in [59, 141]. We see that even “shallow” neural networks only
containing one hidden layer posses the universal approximation property. However, one should note that The-
orem 2.51 theorem gives no information on the needed “width” of the network, i.e. the sizes of the matrices Al.
For a more quantitative analysis we refer to [205, 236]. Furthermore, note that there also exists a dual version
of Theorem 2.51, where neural networks are allowed to have fixed width, however arbitrary depth, see e.g. [203].

Remark 2.53 (High-dimensional approximation). Neural networks cannot break the curse of dimensionality for
arbitrary target functions [202, 232, 301], however there are multiple numerical experiments demonstrating
that they are particularly well-suited for the approximation of high-dimensional functions. This observation is
backed up by recent theoretical analysis demonstrating that the curse can be beaten at least in certain scenarios
[8, 22, 53, 88, 157].
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2.4. Neural networks and stochastic optimization

Let us denote the learnable parameters (e.g. the entries of the matrices Al and vectors bl in Definition 2.49) by
θ ∈ Θ ⊂ Rp. The idea in machine learning is to consider loss functions

L : Θ→ R (2.177)

that measure the performance of corresponding learning tasks. Permissible loss functions include those that
admit a (not necessarily unique [28]) global minimum representing the solution to the problem at hand. They
often involve expectation values of random variables and therefore rely on Monte Carlo approximation in
practice. The minimization of L is usually approached via stochastic gradient decent (SGD), going back to
[252], where in every iteration step one updates the parameter vector according to

θn+1 = θn − ηngn, (2.178)

with ηn denoting the learning rate and gn an unbiased estimate of the gradient, i.e. E[gn] = ∇θL. Analysis
and improvements of such schemes have been the focus of several studies [37]. One major challenge is that even
though losses might be convex in function space, they are usually non-convex in parameter space such that the
optimization can get stuck in local minima or take a very long time due to high variances of gradient estimators.
Many versions of SGD, often relying on heuristic tricks, have been suggested that try to improve convergence.
We shall highlight the Adam algorithm [169], somehow combining the idea of gradient aggregation (i.e. reusing
previously computed gradients) and gradient scaling in the spirit of second-order methods. We can interpret
the algorithm as performing an online adjustment of the learning rate ηn according to a heuristic that takes into
account exponential moving averages of the gradients and the squared gradients computed in previous iteration
steps. More precisely, one computes

mn =
(1− β1)
(1− βn1 )

n∑︂
i=1

βn−i1 gi, vn =
(1− β2)
(1− βn2 )

n∑︂
i=1

βn−i2 gi ⊙ gi, (2.179)

where gi ∈ Rp is the estimator of the gradient at iteration i, ⊙ denotes elementwise multiplication and β1, β2 ∈
[0, 1) are hyperparameters. A parameter update is then performed via

θ
(k)
n+1 = θ(k)n − ηn

m
(k)
n√︂

v
(k)
n + ε

(2.180)

for each k ∈ {1, . . . , p}, where 0 < ε≪ 1 aims at avoiding a division by zero.
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Chapter 3

Nonasymptotic bounds for suboptimal
importance sampling

The goal of this chapter is to quantify non-robustness issues of importance sampling. We have introduced
importance sampling as a classical method for variance reduction in Section 2.3, where the idea is to sample
from an alternative probability measure and reweight the resulting random variables with the likelihood ratio in
order to produce an unbiased estimator for the quantity of interest. In theory, under appropriate assumptions,
there exists an optimal proposal that yields a zero-variance estimator and therefore removes all the stochasticity
from the problem. At the same time, however, any suboptimal choice harbours the risk of actually increasing the
relative error of the estimator significantly, therefore counteracting the original intention. To better understand
this robustness (or better: fragility) of the optimal proposal in importance sampling is the main goal of this
chapter.

In applications, one often faces situations where the probability measures admit densities on a subset of Rd
or a function space like the space of (semi-)continuous trajectories with values in Rd, called path space. We
shall put special emphasis on the latter case, specifically on diffusion processes, where additional challenges,
such as small noises or metastable dynamics, might occur. We will provide quantitative bounds on the relative
error of importance sampling estimators that explain the fragility of importance sampling in these situations.
Some of those bounds are formulated on an abstract measurable space, but they can be readily applied to the
density case. For the path space measures, we deduce some additional bounds that, in particular, highlight the
challenges due to high dimensionality or long trajectories.

The chapter is structured as follows. In Section 3.1 we recall the notions of divergences between proposal
and target measures, while refining a bound on the relative error and highlighting robustness issues in high
dimensions. In Section 3.2 we translate the bounds from the previous section to this setting and derive an exact
formula for the relative error with which we can state novel bounds that allow for interpretations with respect
to robustness in higher dimensions and long time horizons. When focusing on PDE methods in Section 3.2.1
we can essentially re-derive bounds from the previous section. In Section 3.2.2 we comment on how our bounds
can help to understand potential issues in the small noise regime. Finally, in Section 3.3 we present a couple
of numerical examples with which we illustrate the previously discussed issues. Additional auxiliary statements
and technical lemmas can be found in Appendix B.4.

Parts of this chapter have been done in collaboration with Carsten Hartmann and published in [129].

3.1 Importance sampling bounds based on divergences

Let us recall from Section 2.3 that one relevant quantity for the study of importance sampling estimators of

Z = E
[︃
e−W( ˜︁X) dν

d˜︁ν ( ˜︁X)

]︃
(3.1)

is the relative error

r(˜︁ν) =
√︃
Var

(︂
e−W( ˜︁X) dν

d˜︁ν ( ˜︁X)
)︂

Z
, (3.2)
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Chapter 3. Nonasymptotic bounds for suboptimal importance sampling

as already defined in (2.99), where ν is the base measure, according to which our random variables are dis-
tributed, and ˜︁ν is some absolutely continuous proposal measure. It can be readily seen that choosing the optimal
proposal measure ˜︁ν = ν∗ defined via

dν∗

dν
=
e−W

Z
(3.3)

yields an unbiased zero-variance estimator, which, however, is infeasible in practice, as Z is just the quantity we
are after, and therefore not available. In this section, we study the relative error when using any other absolutely
continuous, suboptimal proposal measure ˜︁ν ̸= ν∗. It turns out that divergences between those measures are
helpful in this analysis, in particular the following two.

Definition 3.1 (Kullback-Leibler divergence). Let ν1, ν2 be probability measures. The Kullback-Leibler (KL)
divergence is defined as19

KL(ν1|ν2) =

{︄
Eν1

[︂
log dν1

dν2

]︂
, if ν1 ≪ ν2,

∞, else.
(3.4)

Definition 3.2 (χ2 divergence). Let ν1, ν2 be probability measures. The χ2 divergence is defined as

χ2(ν1|ν2) =

⎧⎨⎩Eν2
[︃(︂

dν1
dν2

)︂2
− 1

]︃
, if ν1 ≪ ν2,

∞, else.
(3.5)

We start by noting the equivalence of the squared relative error and the χ2 divergence between the actual and
the optimal proposal measure.

Lemma 3.3 (Equivalence with χ2 divergence). Let ˜︁ν be a measure that is absolutely continuous with respect to
ν, let ν∗ be the optimal proposal measure as defined in (3.3) and let r(˜︁ν) be the relative error as in (3.2). Then

r2(˜︁ν) = χ2(ν∗|˜︁ν). (3.6)

Proof. By using the definition of the χ2 divergence in the first step, we compute

χ2(ν∗|˜︁ν) = E˜︁ν
[︄(︃

dν∗

d˜︁ν
)︃2

− 1

]︄
= E˜︁ν

[︄(︃
dν∗

d˜︁ν
)︃2
]︄
− E˜︁ν

[︃
dν∗

d˜︁ν
]︃2

(3.7a)

= Var˜︁ν
(︃
dν∗

d˜︁ν
)︃

=
1

Z2
Var

(︃
e−W( ˜︁X) dν

d˜︁ν ( ˜︁X)

)︃
= r2(˜︁ν). (3.7b)

Motivated by known bounds on the χ2 divergence, we can formulate our first statement, where we quantify the
suboptimality by the Kullback-Leibler divergence between the actual and the optimal proposal measure.

Proposition 3.4 (Lower bound on relative error). Let W : ˜︁Ω→ R, let ˜︁ν be a measure and let ν∗ be the optimal
proposal measure as defined in (3.3), then for the relative error (3.2) it holds

r(˜︁ν) ≥√︁eKL(ν∗|˜︁ν) − 1. (3.8)

Proof. With Jensens’s inequality we have

KL(ν∗|˜︁ν) = Eν∗

[︃
log

dν∗

d˜︁ν
]︃
≤ logEν∗

[︃
dν∗

d˜︁ν
]︃
. (3.9)

Combining this with Lemma 3.3 yields

r2(˜︁ν) = E˜︁ν
[︄(︃

dν∗

d˜︁ν
)︃2

− 1

]︄
= Eν∗

[︃
dν∗

d˜︁ν − 1

]︃
≥ eKL(ν∗|˜︁ν) − 1 (3.10)

and therefore the desired statement.
19As a remark on our notation, let us mention that we sometimes endow the expectation operator with a subscript indicating

with respect to which measure the expectation is taken, e.g. Eν indicates that the expectation is considered with respect to the
measure ν. When explicitly writing down the corresponding random variable, e.g. E[X], it is usually clear from the context with
respect to which measure the expectation shall be understood, and we omit the subscript (see also Remark 4.2).
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3.1. Importance sampling bounds based on divergences

Remark 3.5 (Bounds on the χ2 divergence). In the setting of importance sampling the χ2 divergence also appears
in [52]. A bound of the χ2 divergence that is sometimes used is χ2(ν∗|˜︁ν) ≥ KL(ν∗|˜︁ν), which is essentially based
on x ≤ ex−1 and therefore yields a less tight bound compared to Proposition 3.4. The exponential bound we
use instead can for instance be found in [78, Theorem 4] and [261, Proposition 4] in a discrete setting; here, a
lower bound in terms of the total variation distance is provided as well. [104] offers a continuous version and
some other helpful relations between divergences. An application of the bound to importance sampling relative
errors can be found in [3] and more analysis with respect to more general f -divergences has been done in [260].
The statement should also be compared to the results in [51], where the required sample size of importance
sampling is proved to be exponentially large in the KL divergence between the proposal and the target measure.

Remark 3.6 (Cross-entropy method). Note that the expression KL(ν∗|˜︁ν) appearing in (3.8) is exactly the
quantity that is minimized in the so-called cross-entropy method [63, 308], which aims at approximating the
optimal importance sampling proposal in a family of reference proposals.

Remark 3.7 (Exponential dependence on the dimension). We recall that the KL divergence usually gets larger
with increasing state space dimension as can for instance be seen by Lemma B.7 in the appendix, implying
that importance sampling is especially difficult in high dimensional settings. Another way of noting bad scaling
behavior in high dimensions, similar to Proposition 4.29, is the following. Assume20

˜︁ν =

d⨂︂
i=1

˜︁νi, ν∗ =

d⨂︂
i=1

ν∗i , (3.11)

where each ˜︁νi, and ν∗i respectively, shall be identical for i ∈ {1, . . . , d}. Then

r2(˜︁ν) = Var˜︁ν
(︃
dν∗

d˜︁ν
)︃

= E˜︁νi
[︄(︃

dν∗i
d˜︁νi

)︃2
]︄d
− E˜︁νi

[︃
dν∗i
d˜︁νi

]︃2d
= E˜︁νi

[︄(︃
dν∗i
d˜︁νi

)︃2
]︄d
− 1 ≥ Cd − 1, (3.12)

where C := E˜︁νi
[︃(︂

ν∗
i˜︁νi
)︂2]︃

> 1 if ˜︁ν ̸= ν∗ due to Jensen’s inequality. This can be compared to [260, Section 5.2.1],

and, to be fair, we should note that also naive sampling, i.e. choosing ˜︁ν = ν, usually leads to an exponential
dependency of the relative error on the dimension.

We have so far constructed a lower bound for the relative error. In order to get an upper bound, let us first
state the following version of a generalized Jensen inequality, which will turn out to be helpful and is essentially
borrowed from [209, Theorem 2].

Proposition 3.8 (Generalized Jensen inequality). Let λ and ν be measures on (˜︁Ω, ˜︁F),
J (f, ν, φ) := Eν [f(φ)]− f (Eν [φ]) (3.13)

be the normalized Jensen functional, where f : R → R is convex and φ : ˜︁Ω → R, and let m = infE∈F
ν(E)
λ(E) ,

M = supE∈F
ν(E)
λ(E) . Then

mJ (f, λ, φ) ≤ J (f, ν, φ) ≤MJ (f, λ, φ). (3.14)

Proof. See Appendix C.2.

We can now derive an upper bound as well as a tighter lower bound for the relative error.

Proposition 3.9 (Refined bounds on relative error). Let ˜︁ν be a measure that is absolutely continuous with
respect to ν and let ν∗ be the optimal proposal measure as in (3.3). Let m and M be as defined in Proposition 3.8
(with the measures ν and λ being replaced by ˜︁ν and ν∗ respectively). Then for the relative error (3.2) it holds√︁

emKL(˜︁ν|ν∗)+KL(ν∗|˜︁ν) − 1 ≤ r(˜︁ν) ≤√︁eM KL(˜︁ν|ν∗)+KL(ν∗|˜︁ν) − 1. (3.15)

Proof. Inspired by [262] (which focuses on a discrete probability space) we choose ν = ν∗, λ = ˜︁ν, φ = dν∗

d˜︁ν and
f(x) = − log(x) for the expressions in (3.14) in order to get

J (f, ν∗, φ) = −Eν∗

[︃
log

(︃
dν∗

d˜︁ν
)︃]︃

+ log

(︃
Eν∗

[︃
dν∗

d˜︁ν
]︃)︃

= −KL(ν∗|˜︁ν) + log
(︁
χ2(ν∗|˜︁ν) + 1

)︁
, (3.16)

J (f, ˜︁ν, φ) = −E˜︁ν
[︃
log

(︃
dν∗

d˜︁ν
)︃]︃

+ log

(︃
E˜︁ν
[︃
dν∗

d˜︁ν
]︃)︃

= KL(˜︁ν|ν∗). (3.17)

20The factorization of the optimal proposal measure ν∗ assumes a factorization of the quantity e−g .

51



Chapter 3. Nonasymptotic bounds for suboptimal importance sampling

With Proposition 3.8 we then get

mKL(˜︁ν|ν∗) + KL(ν∗|˜︁ν) ≤ log
(︁
χ2(ν∗|˜︁ν) + 1

)︁
≤M KL(˜︁ν|ν∗) + KL(ν∗|˜︁ν) (3.18)

and with Lemma 3.3 our statement follows.

Remark 3.10. One should note that m and M depend on ˜︁ν and ν∗, respectively, and are hard to compute in
practice. We have m ∈ [0, 1] and M ∈ [1,∞] and indeed it is possible to get m = 0 or M = ∞. The former
case brings back the ordinary Jensen inequality and the lower bound from Proposition 3.9 is then equivalent to
the one from Proposition 3.4. The case M = ∞ on the other hand yields a trivial upper bound, for which we
provide an illustration in Example 3.11.

Example 3.11 (Upper bound for relative error). In order to illustrate the case where the upper bound in
Proposition 3.9 becomes meaningless, consider for instance the measure ν on [1,∞) ⊂ R admitting the one-
dimensional density p(x) = α 1

xα+1 defined for x ≥ 1. This density is special since for α ≤ 1 we have E[X] =∞,
however for α ∈ (1, 2) it holds E[X] < ∞, whereas still E

[︁
X2
]︁
= ∞ and therefore J (x ↦→ x2, ν, φ) = ∞

for φ(x) = x. Now Proposition 3.8 implies that the upper bound also has to be infinity. Let us illustrate this
for the particular choice of the measure λ admitting the density q(x) = 2α 1

x2α+1 . For this choice we have
J (x ↦→ x2, λ, x ↦→ x) <∞ for α ∈ (1, 2), however we compute

M = sup
a,b∈[1,∞]
a ̸=b

∫︁ b
a
p(x)dx∫︁ b

a
q(x)dx

≥ sup
a∈[1,∞)

∫︁∞
a
p(x)dx∫︁∞

a
q(x)dx

= sup
a∈[1,∞)

1
aα

1
a2α

= sup
a∈[1,∞)

aα =∞. (3.19)

In fact Proposition 3.8 implies that one cannot not find any λ for which both J (x ↦→ x2, λ, x ↦→ x) and M are
finite.

To conclude this section, let us illustrate our bounds by looking at a concrete example using Gaussians on˜︁Ω = Rd (which should be compared to [206, Section 6]).

Example 3.12 (High-dimensional Gaussians). Suppose we want to compute E
[︁
e−α·X

]︁
, with a given vector

α ∈ Rd, where X ∼ N (µ,Σ) =: p is distributed according to a multidimensional Gaussian with mean µ ∈ Rd
and covariance matrix Σ ∈ Rd×d. Then the optimal importance sampling density is given by

p∗(x) =
e−α·x

Z
p(x) = N (x;µ− Σα,Σ). (3.20)

If we however sample from a perturbed version

˜︁pε := N (x;µ− Σ(α+ ε),Σ) (3.21)

with a vector ε ∈ Rd, we get the relative error

r(˜︁pε) = 1

Z

√︄
Var

(︃
e−α· ˜︁X p˜︁pε ( ˜︁X)

)︃
=
√︁
eε·Σε − 1. (3.22)

In this particular case, the computations can be compared to the relative error of a log-normally distributed
random variable, see Appendix B.4.1. Taking, for instance, ε = (˜︁ε, · · · , ˜︁ε)⊤,Σ = diag(σ2, · · · , σ2) yields

r(˜︁pε) =√︁edσ2˜︁ε2 − 1, (3.23)

where we see an exponential dependence on the variance σ2, the squared suboptimality parameter ˜︁ε and the
dimension d. This implies that, in order to control the relative error in high dimensions, any suboptimal
importance sampling estimator needs about K = O(edσ2ε̃2) independent realizations to reach convergence. This
observation is in agreement with the seminal result of Bengtsson and Bickel [23] that any importance sampling
estimator for Gaussians ceases to be asymptotically efficient when log(K)/d → 0 as K, d → ∞ (see also [192,
Thm. 3.1]).

For this example, we can also apply the bound from Proposition 3.4, by noting that KL(p∗|˜︁pε) = 1
2ε · Σε, and

get

r(˜︁pε) ≥√︂e 1
2 ε·Σε − 1. (3.24)

A comparison to the exact quantity (3.22) reveals that this lower bound is not tight. For an application of
Proposition 3.9 we note that also KL(˜︁pε|p∗) = 1

2ε ·Σε, however m and M are intractable. Still, it is intuitively
clear that m becomes smaller and M larger, the more the two Gaussians are apart from each other.
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3.1. Suboptimal control of stochastic processes

We made the particular choice of ˜︁pε in (3.21) in order to have an analogy to the path measure setting, which we
will discuss in the next section. In fact, the added term Σε in (3.21) can be compared to a constant control σσ⊤ε
in a stochastic process as in (3.25), which, as will be seen in (3.43), yields a completely analog expression for the
relative error, noting that standard d-dimensional Brownian motion is distributed according to WT ∼ N (0,Σ)
with Σ = T Idd×d.

3.2 Suboptimal control of stochastic processes and bounds for the
relative error

Let us now apply our abstract bounds from the previous section to importance sampling of diffusions given by

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (3.25)

as in (1.4), by considering their controlled counterparts

dXu
s = (b(Xu

s , s) + σ(Xu
s , s)u(X

u
s , s)) ds+ σ(Xu

s , s) dWs, Xu
t = xinit, (3.26)

as in (2.105), noting the correspondence between u and the path measure Pu (see also Section 2.3.2). The
importance sampling attempt in (3.1) translates to

Z = E
[︃
e−W(Xu) dP

dPu
(Xu)

]︃
(3.27)

and we recall from Section 2.3.2 that our quantity of interest, the relative error

r(u) =

√︂
Var

(︁
e−W(Xu) dP

dPu (Xu)
)︁

Z
, (3.28)

now depends on the control u. Given suitable conditions, there exists u∗ ∈ U that brings (3.28), the relative
error of the importance sampling estimator, to zero, see Theorem 2.33. We recall that an optimal path measure
Pu∗

= Q can be defined via
dQ
dP

=
e−W

Z
, (3.29)

in analogy to (3.3), assuming f and g are such that Z is finite.

Let us now bring an example that shall illustrate why variance reduction methods are indispensable in certain
SDE settings.

Example 3.13 (Rare events of SDEs). Monte Carlo estimation gets particularly challenging when considering
rare events. As a prominent example, let us consider the one-dimensional Langevin dynamics

dXs = −∇Ψ(Xs) ds+
√
η dWs, X0 = xinit, (3.30)

with double well potential Ψ(x) = κ(x2 − 1)2, κ > 0, and noise coefficient η > 0, as illustrated in Figure 3.1 (cf.
Example 1.1 and Sections 4.4.4, 6.2.3.6).

Figure 3.1: Illustration of rare events in a metastable double well potential. We consider the problem described
in Example 3.13 with κ = 5, ρ = 3 on a time horizon T = 10 and display the distributions of XT as well as
Xu∗

T , which is controlled with the optimal importance sampling control u∗ yielding a time-dependent optimal
potential.
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Chapter 3. Nonasymptotic bounds for suboptimal importance sampling

We suppose that the dynamics starts in the left well and choose a function g such that e−g is concentrated
in the right well, e.g. g(x) = ρ(x − 1)2, ρ > 0. We are interested in computing E[exp(−g(XT ))|X0 = xinit]
for, say, xinit = −1. To understand the difficulties associated with this sampling problem, let pT be the law of
XT for some T > 0 and recall that the optimal change of measure is given by the (unnormalized) likelihood
dqT /dpT ∝ exp(−g) that is concentrated in the right well (cf. Remark 2.35). However, regions where exp(−g)
is strongly supported have probability close to zero under pT , for pT drops to zero quickly for x > 0. This can be
seen as follows: Let τ be the first exit time of the set D = {x : x ≤ 0}. By Kramer’s law [26], the mean first exit
time (MFET) satisfies the large deviations asymptotics E[τ ] ≃ exp(2∆Ψ/η) as η → 0, where ∆Ψ is the energy
barrier that the dynamics has to overcome to leave the set D, and it turns out that the MFET is independent of
the initial condition x ∈ D. Therefore

lim
η→0

η logP(τ < T ) = −2∆Ψ , T ≪ E[τ ] , (3.31)

which is a straightforward consequence of Kramer’s law, combined with the Donsker-Varadhan large deviations
principle that, for a system of the form (3.30), states that P(τ < T ) ≃ 1 − exp(λ1T ) as T → ∞ and η → 0,
where λ1 ≃ −1/E[τ ] is the principal eigenvalue of the infinitesimal generator associated with (3.30); see, e.g.
[41].

Now, by (3.31), we can conclude that pT (x) ≃ exp(−2∆Ψ/η) for x > 0. Since pT is essentially supported on
(−∞, 1], we can approximate exp(−g(x)) by a step function 1{x∈Dc} on x ∈ (−∞, 1] and it thus follows that
(up to exponentially small error) the relative error for small η > 0 can be approximated by

r(0) =

√︄
E[exp(−2g(XT ))]− E[exp(−g(XT ))]2

E[exp(−g(XT ))]2
(3.32a)

≈

√︄
exp(−2∆Ψ/η)− exp(−4∆Ψ/η)

exp(−4∆Ψ/η)
≈ exp(∆Ψ/η) . (3.32b)

This kind of exponential behavior is typical for rare event simulation and metastable systems like (3.30). So
unless our terminal time T is very large or the energy barrier rather small, XT is usually mostly supported on
the left side of the well and therefore does not overlap very much with e−g, which leads to an extremely large
relative error. Note that this problem gets even more severe with growing values of κ and ρ.

We have stated that, given suitable conditions, there exists u∗ ∈ U that brings (3.28), the relative error of
the importance sampling estimator, to zero. However, in practice, u∗ is usually not available (just as ν∗ is
not available in the abstract setting). Let us instead consider the setting where we have the control u ∈ U at
hand. We want to investigate how the relative error (3.28) behaves depending on how far from optimal u is.
For the upcoming analysis, it will turn out that it makes sense to measure the suboptimality and therefore the
difference between Pu and Pu∗

in terms of the difference δ := u∗ − u. The first statement is an implication of
Proposition 3.4.

Corollary 3.14 (Lower bound for relative error on path space). Consider the path measures Pu,Pu∗ ∈ P(C)
as previously defined and let δ = u∗ − u. For the relative error (3.28) it holds

r(u) ≥
(︂
exp

(︂
KL(Pu

∗
|Pu)

)︂
− 1
)︂ 1

2

(3.33)

and therefore

r(u) ≥

⎛⎝exp

⎛⎝E

⎡⎣1
2

T∫︂
0

|δ(Xu∗

s , s)|2ds

⎤⎦⎞⎠− 1

⎞⎠
1
2

. (3.34)

Proof. The first statement is just Proposition 3.4 with the abstract measures replaced by path measures. The
second statement then follows from Girsanov’s theorem as stated in Theorem B.3.

One can of course also transfer the more general bound from Proposition 3.9 to path measures, however, the
computations of the quantities m and M seem even more difficult and impractical than in the density case. In
order to still find tighter and more applicable bounds, let us now identify an exact formula for the relative error
in the SDE setting.

Proposition 3.15 (Formula for path space relative error). Let Xu
s be the solution to SDE (3.26) and let

δ = u∗ − u. Then the relative error (3.28) is given by

r(u) =

⎛⎝E

⎡⎣exp
⎛⎝− T∫︂

0

|δ(Xu
s , s)|2ds+ 2

T∫︂
0

δ(Xu
s , s) · dWs

⎞⎠⎤⎦− 1

⎞⎠
1
2

, (3.35)

54



3.2. Suboptimal control of stochastic processes

or equivalently

r(u) =

⎛⎝E

⎡⎣exp
⎛⎝ T∫︂

0

|δ(Xu+2δ
s , s)|2ds

⎞⎠⎤⎦− 1

⎞⎠
1
2

. (3.36)

Proof. The proof can be found in Appendix C.2. Alternatively, the second statement follows as well from
Proposition 3.22.

Remark 3.16. We note that in formula (3.35) the forward process is controlled by u, whereas in (3.36) it
is controlled by u + 2δ = 2u∗ − u, which of course is usually not available in practice. In the upcoming
Corollary 3.18 we will see how we can still make use of the formula.

Remark 3.17. Note that Proposition 3.15 entails Corollary 3.14 since

EPu

[︄(︃
dPu∗

dPu

)︃2
]︄
= EPu∗

[︃
dPu∗

dPu

]︃
= E

⎡⎣exp
⎛⎝1

2

T∫︂
0

|δ(Xu∗

s , s)|2ds+
T∫︂

0

δ(Xu∗

s , s) · dWs

⎞⎠⎤⎦ (3.37a)

≥ exp

⎛⎝E

⎡⎣1
2

T∫︂
0

|δ(Xu∗

s , s)|2ds

⎤⎦⎞⎠ . (3.37b)

Without the change of the measures as in (3.37a) we obtain

EPu

[︄(︃
dPu∗

dPu

)︃2
]︄
≥ exp

⎛⎝E

⎡⎣− T∫︂
0

|δ(Xu
s , s)|2ds

⎤⎦⎞⎠ , (3.38)

where now the process is controlled by u, however this expression has a negative sign in the exponential and is
therefore rather useless. The bound

EPu

[︄(︃
dPu∗

dPu

)︃2
]︄
= E

⎡⎣exp
⎛⎝ T∫︂

0

|δ(Xu+2δ
s , s)|2ds

⎞⎠⎤⎦ ≥ exp

⎛⎝E

⎡⎣ T∫︂
0

|δ(Xu+2δ
s , s)|2ds

⎤⎦⎞⎠ , (3.39)

on the other hand, seems more useful.

The following corollary derives bounds from the previous Proposition 3.15 that might be useful in practice.

Corollary 3.18 (Bounds for path space relative error). Let again δ = u∗ − u and let us assume there exist
functions h1, h2 : [0, T ]→ R such that

h1(t) ≤ |δ(x, t)| ≤ h2(t) (3.40)

for all x ∈ Rd, t ∈ [0, T ], then⎛⎝exp

⎛⎝ T∫︂
0

h21(s)ds

⎞⎠− 1

⎞⎠
1
2

≤ r(u) ≤

⎛⎝exp

⎛⎝ T∫︂
0

h22(s)ds

⎞⎠− 1

⎞⎠
1
2

. (3.41)

In particular, if ˜︁ε1 ≤ |δi(x, t)| ≤ ˜︁ε2 (3.42)

for all components i ∈ {1, . . . , d} and for all (x, t) ∈ Rd×[0, T ] with ˜︁ε1, ˜︁ε2 ∈ R, then(︂
ed˜︁ε21T − 1

)︂ 1
2 ≤ r(u) ≤

(︂
ed˜︁ε22T − 1

)︂ 1
2

. (3.43)

Proof. Both statements follow directly from equation (3.36) in Proposition 3.15 by noting that the dependence
on the stochastic process and therefore the expectation disappears if we consider bounds on δ that do not
depend on x. Two alternative proofs of the corresponding statements can be found in Appendix C.2.

Remark 3.19. Note that bounding the suboptimality δ for all x can be a strong assumption for practical
applications, as often it might vary substantially in x. Still, even those conservative bounds often yield lower
bounds that render importance sampling a very challenging endeavor. On the contrary, it seems to be hard
to make x-dependent bounds on δ useful due to potentially very complex stochastic dynamics. Let us further
note that the bounds in (3.41) imply that errors made over different points in time accumulate, i.e. it does not
matter if they have been made at the beginning or the end of a trajectory and neither can they be compensated
at later stages.
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Another upper bound on the relative error can be derived by means of the Hölder inequality.

Proposition 3.20 (Another bound for path space relative error). Let δ = u∗− u. For the relative error (3.26)
it holds

r(u) ≤

⎛⎜⎝E

⎡⎣exp
⎛⎝(1 +

√
2)2

T∫︂
0

|δ(Xu
s , s)|2ds

⎞⎠⎤⎦
1

1+
√

2

− 1

⎞⎟⎠
1
2

(3.44)

Proof. See Appendix C.2.

Remark 3.21. Some intuition of the quality of this bound can be gained when for instance assuming that δ(x, t) =

ε with a constant vector ε = (˜︁ε, . . . , ˜︁ε)⊤ ∈ Rd. Then this bound yields r(u) ≤
(︁
exp

(︁
(1 +

√
2)d˜︁ε2T )︁− 1

)︁ 1
2 , which

is less tight than the bound (3.43) in Corollary 3.18. Nevertheless the bound (3.44) is useful in that it only
depends on the stochastic process controlled by u, which is a known quantity.

3.2.1 PDE methods for the study of relative errors
Another means of studying the relativ error r(u) are partial differential equations (PDEs). We will formulate
a PDE for the relative error (3.2), which might be helpful for future analysis and by which we can rederive
bounds from the previous section.

By a slight generalization of [274], one can identify a PDE for the u-dependent second moment (conditioned on
Xu
t = x),

Mu(x, t) = E

[︄
e−2W(Xu)

(︃
dP
dPu

(Xu)

)︃2
⃓⃓⃓⃓
⃓Xu

t = x

]︄
, (3.45)

namely

(∂t + L− σu(x, t) · ∇ − 2f(x, t) + |u(x, t)|2)Mu(x, t) = 0, (x, t) ∈ Rd × [0, T ), (3.46a)

Mu(x, T ) = e−2g(x), x ∈ Rd, (3.46b)

where L = 1
2 (σσ

⊤)(x, t) : ∇2 + b(x, t) · ∇ is the infinitesimal generator associated to the SDE (3.25).

Defining δ = u∗ − u, this then immediately leads to the PDE

(∂t + L+ σ(σ⊤∇V (x, t) + δ(x, t)) ·∇−2f(x, t) + |σ⊤∇V (x, t) + δ(x, t)|2)Mu(x, t) = 0, (x, t) ∈ Rd × [0, T ),
(3.47a)

Mu(x, T ) = e−2g(x), x ∈ Rd,
(3.47b)

which describes the second moment of suboptimal importance sampling. It can be shown that for δ = 0, i.e.
under the optimal control u = u∗, we recover indeed the zero-variance property of the corresponding importance
sampling estimator, see Proposition B.6 in the appendix. In the following statement we construct the PDE that
is relevant for the relative error r(u) and re-derive a formula that we have already seen before.

Proposition 3.22 (PDE for the relative error). Let δ = u∗ − u. We consider the second moment as in (3.45)
and the conditional expectation ψ(x, t) = E

[︂
e−W(Xu)

⃓⃓⃓
Xt = x

]︂
, then the function hu : Rd × [0, T ] → R defined

by

hu(x, t) =
Mu(x, t)

ψ2(x, t)
, (3.48)

(and related to the relative error by r(u) =
√︁
hu(x, 0)− 1) solves the PDE(︁

∂t + Lu+2δ + |δ(x, t)|2
)︁
hu(x, t) = 0, (x, t) ∈ Rd × [0, T ), (3.49a)

hu(x, T ) = 1, x ∈ Rd, (3.49b)

with Lu+2δ := L+ σ(u+ 2δ) · ∇. This then implies

hu(x, t) = E

⎡⎣exp
⎛⎝ T∫︂
t

|δ(Xu+2δ
s , s)|2ds

⎞⎠ ⃓⃓⃓⃓⃓Xu+2δ
t = x

⎤⎦ . (3.50)

56



3.2. Suboptimal control of stochastic processes

Proof. We plug the ansatz
Mu(x, t) = hu(x, t)ψ

2(x, t) = hu(x, t)e
−2V (x,t) (3.51)

into the PDE (3.47a). Noting that

(σσ⊤) : ∇2(hue
−2V ) = (σσ⊤) :

(︁
∇
(︁
∇hue−2V − 2hu∇V e−2V

)︁)︁
(3.52a)

= e−2V
(︁
(σσ⊤) : ∇2hu − 4σσ⊤∇V · ∇hu + 4hu|σ⊤∇V |2 − 2hu(σσ

⊤) : ∇2V
)︁
, (3.52b)

we get the PDE

−2hu
(︃
∂tV + LV − 1

2
|σ⊤∇V |2 + f

)︃
⏞ ⏟⏟ ⏞

=0

+∂thu + Lhu − σσ⊤∇V · ∇hu + σδ · ∇hu + |δ|2hu = 0, (3.53)

from which the statement follows from the identity u∗ = −σ⊤∇V and a specific Hamilton-Jacobi-Bellman
equation that is for instance stated in Problem 1.4. The probabilistic representation (3.50) follows immediately
from the Feynman-Kac formula, see Theorem 2.14.

Remark 3.23. Note that hu from Proposition 3.22 is related to the relative error (3.28) via r(u) =
√︁
hu(x, 0)− 1.

On the first glance it looks like the PDE (3.49) does not depend on f and g. This is of course not true and we
should note that the PDE depends on u∗, which again depends on f and g. Finally, note that with (3.50) we
recover the result (3.36) from Proposition 3.15.

3.2.2 Small noise diffusions
A prominent application of importance sampling in stochastic processes can be found in the context of small noise
diffusions and rare event simulations (relating to Example 3.13, see also [79, 273, 274, 290] and Section 2.3.3).
We model small noises with the smallness parameter η > 0 by considering the SDEs21

dXη
s = b(Xη

s , s) ds+
√
η ˜︁σ(Xη

s , s) dWs, Xη
t = xinit, (3.54)

and we want to compute quantities like

ψη(x, t) = E
[︂
e−

1
ηW(Xη)

⃓⃓⃓
Xη
t = x

]︂
. (3.55)

If η gets smaller it becomes harder to estimate ψη(x, t) via Monte Carlo methods as the variance grows exponen-
tially in η. To be more precise (and as already stated in Remark 2.42), by Varadhan’s lemma [68, Theorem 4.3.1],
using the quantities

γ1 := − lim
η→0

η logE
[︂
e−

1
ηW(Xη)

]︂
and γ2 := − lim

η→0
η logE

[︂
e−

2
ηW(Xη)

]︂
, (3.56)

one gets for the relative error of the uncontrolled process

r(0) =

√︂
e

2γ1−γ2+o(1)
η − 1, (3.57)

asymptotically as η → 0. By Jensen’s inequality we have 2γ1 > γ2 unless W is a.s. constant, but we note that
even for 2γ1 = γ2 the relative error explodes in the limit η → 0. Let us again consider a controlled process

dXu,η
s = (b(Xu,η

s , s) + ˜︁σ(Xu,η
s , s)u(Xu,η

s , s)) ds+
√
η ˜︁σ(Xu,η

s , s) dWs, Xu,η
t = xinit, (3.58)

and realize that the optimal importance sampling control that yields zero variance,

u∗ = −˜︁σ⊤∇V η = η ˜︁σ⊤∇ logψη, (3.59)

can be computed via the HJB equation(︂
∂t +

η

2
(˜︁σ˜︁σ⊤)(x, t) : ∇2 + b(x, t) · ∇

)︂
V η(x, t)− 1

2
|(˜︁σ⊤∇V η)(x, t)|2 + f(x, t) = 0, V η(x, T ) = g(x). (3.60)

Since solving this PDE is notoriously difficult (especially in high dimensions), various approximations have
been suggested that lead to estimators that enjoy log-efficiency or a vanishing relative error in the regime of

21To be consistent with the notation from before, we could hide the smallness parameter η in the diffusion coefficient, i.e.
σ =

√
η˜︁σ. Then the HJB equation that provides the zero variance control is (∂t+

η
2
(˜︁σ˜︁σ⊤) : ∇2+b ·∇)V − 1

2
|√η˜︁σ∇V |2+ 1

η
f(x, t) =

0, V (x, T ) = 1
η
g(x) and the relation V η = ηV yields HJB equation (3.60).
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a vanishing η. However, since log-efficient estimators still often perform badly in practice (as for instances
discussed in [6, 108]), in [290] it is suggested to replace u∗ by the vanishing viscosity approximation u0 based
on the corresponding HJB equation with η = 0:

u0 = −˜︁σ⊤∇V 0, (3.61)

where V 0 is the solution to

(∂t + b(x, t) · ∇)V 0(x, t)− 1

2
|(˜︁σ⊤∇V 0)(x, t)|2 + f(x, t) = 0, V 0(x, T ) = g(x). (3.62)

While it can be shown that, given some regularity assumptions on f and g, it holds [290]

lim
η→0

r(u0) = 0, (3.63)

a large relative error for a small, but fixed η > 0 is still possible. In our notation from before, this situation
corresponds to choosing δ = u∗ − u0 and Propositions 3.15 and 3.22 show that

r(u0) =

⌜⃓⃓⃓
⎷E

⎡⎣exp
⎛⎝ T∫︂

0

|u∗ − u0|2(X2u∗−u0

s , s)ds

⎞⎠⎤⎦− 1. (3.64)

Even though this expression converges to zero as η → 0 provided that V → V 0 and u∗ → u0 [96], we expect an
exponential dependence on the time T and the dimension d for any fixed η > 0 (cf. our numerical experiment
in Section 3.3.4).

In [96] it is proved that
∇V = ∇V 0 + η∇v1 + o(η), (3.65)

uniformly on all compact subsets of Rd×(0, T ), where v1 solves the PDE stated in Appendix B.4.2. As a
consequence, we can write

|∇V −∇V 0| = |η∇v1 + o(η)| = η|∇v1 + o(1)| (3.66)

and

r(u0) = E

⎡⎣exp
⎛⎝η2 T∫︂

0

|(σ⊤∇v1)(X
2u∗−u∗

0
s , s)|2ds+ o(η2)

⎞⎠⎤⎦ . (3.67)

Specifically, if there exist constants C1, C2 > 0 such that C1 < |∇v1(x, t)| < C2 for all (x, t) ∈ Rd×(0, T ), then
the relative error grows exponentially as√︁

eη
2C2

1T+o(η2) − 1 ≤ r(u∗) ≤
√︁
eη

2C2
2T+o(η2) − 1 (3.68)

due to Corollary 3.18. We emphasize, however, that it is not clear under which assumptions this uniform bound
can be achieved, given that, in practice, v1 can be strongly x-dependent as is illustrated with a numerical
example in Section 3.3.4.

Remark 3.24. The above considerations show that the relative error is potentially only small if η is (much)
smaller than C1

√
T . This can be compared to equation (5.3) in [274] and in particular to [80], where a concrete

example is constructed for which the second moment can be lower bounded by e−
1
ηC1+(T−K)C2 for C1, C2,K > 0,

i.e. the time T and the smallness parameter η compete. We illustrate the degeneracy with growing T for a toy
example in Figure 3.7.

3.3 Numerical examples

In this section we provide numerical examples that shall illustrate some of the formulas and bounds derived in
the previous sections. We particularly demonstrate that importance sampling can be very sensitive to small
perturbations of the optimal proposal measure. Here we focus on path space measures and provide several ex-
amples of importance sampling of diffusions. The code can be found at https://github.com/lorenzrichter/
suboptimal-importance-sampling.
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3.3. Numerical examples

3.3.1 Ornstein-Uhlenbeck process
An example where the optimal importance sampling control is analytically computable is the following. Consider
the d-dimensional Ornstein-Uhlenbeck process

dXs = AXs ds+B dWs, X0 = 0, (3.69)

and its controlled version

dXu
s = (AXu

s +Bu(Xu
s , s)) ds+B dWs, Xu

0 = 0, (3.70)

where A,B ∈ Rd×d are given matrices. In (2.102) we set f = 0 and g(x) = α · x, for a fixed vector α ∈ Rd, i.e.
we want to estimate the quantity

Z = E
[︁
e−α·XT

]︁
. (3.71)

As shown in Appendix B.5.1, the zero-variance importance sampling control is given by

u∗(x, t) = −B⊤eA
⊤(T−t)α. (3.72)

We choose A = −3 Idd×d + (ξij)1≤i,j≤d and B = Idd×d + (ξij)1≤i,j≤d, where ξij ∼ N (0, σ2) are i.i.d. random
coefficients that are held fixed throughout the simulation. We set T = 1, σ = 1, α = (1, . . . , 1)⊤ and first
consider the perturbed control

u = u∗ + (ε, . . . , ε)⊤. (3.73)

In the two left panels of Figure 3.2 we display a Monte Carlo estimation of the relative error (3.28) using
K = 106 samples and compare it to the formulas from Corollary 3.18 and the bound from Corollary 3.14, once
with varying perturbation strength ε, once with varying dimension d. We see that in both cases the simulations
agree with our formula, even though for moderate to large deviations from optimality the estimated values of
r are observed to fluctuate.

Figure 3.2: Sampled relative error with varying constant or time-dependent perturbation ε and dimension d
compared to the formulas derived in Corollary 3.18 and to the lower bound from Corollary 3.14.

Let us now look at an example with a time-dependent perturbation of the optimal control. More specifically,
we consider a perturbation that is active only for a certain amount of time s < T , namely

u(x, t) = u∗(x, t) + (ε, . . . , ε)⊤1[0,s](t), (3.74)

where in our experiment we choose s = 0.2. In the two right panels of Figure 3.2 we display the same
comparisons as before, however now using formula (3.41) in order to account for the time-dependent nature of
the perturbation.

3.3.2 Double well potential
For strongly metastable systems, Monte Carlo estimation is notoriously difficult and variance reduction methods
are often indispensable. Importance sampling seems like a method of choice, but we want to illustrate that one
has to be very careful with the design of the importance sampling control.
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Figure 3.3: Top panels: Double well potentials and optimal tiltings as well as additive perturbations for different
values of ρ and κ. Bottom left: Relative error of the naive Monte Carlo estimator for different values of ρ and
κ. Bottom right: Relative error depending on the multiplicative perturbation factor ζ.

As in Example 3.13, let us consider the Langevin SDE

dXs = −∇Ψ(Xs) ds+B dWs, X0 = xinit, (3.75)

in d = 1, where B ∈ R is the diffusion coefficient, Ψ(x) = κ(x2 − 1)2 is a double well potential with κ > 0 and
x = −1 is the initial condition. For the observable in (2.102) we consider f = 0 and g(x) = ρ(x − 1)2, where
ρ > 0; the terminal time is set to T = 1. Note that choosing higher values for ρ and κ accentuates the metastable
features, making sample-based estimation of E [exp(−g(XT ))] more challenging. For an illustration, the two top
panels of Figure 3.3 show the potential Ψ and the weight from (3.29), e−g(x), for different values of ρ and κ and
for B = 1. We also plot the ‘optimally tilted potentials’ Ψ∗ = Ψ+ BB⊤V , noting that −∇Ψ∗ = −∇Ψ+ Bu∗.
In the bottom left panel we show the relative error of the naive estimator depending on different values of κ
and ρ.

As before, let us perturb the optimal control, this time both in an additive and multiplicative way, namely

u = u∗ + ε = −B⊤∇(V −B−⊤ε · x) and u = ζu∗, (3.76)

where ε ∈ Rd, ζ ∈ R specify the perturbation strengths. In the bottom right panel of Figure 3.3 we show the
relative error for the multiplicative perturbation and see that for higher values of ρ and κ the exponential diver-
gence becomes more severe, demonstrating that the robustness issues of importance sampling are particularly
present in metastable settings.

Let us now consider perturbations depending either on time or space,

u1(x, t) = u∗(x, t) + ε sin(αt) and u2(x, t) = u∗(x, t) + ε sin(αx), (3.77)

as illustrated in Figure 3.4 with α = 50.
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Figure 3.4: Left: Optimal importance sampling control and time perturbation for two different values of x.
Middle: Optimal importance sampling control and space perturbation for two different values of t. Right:
Relative error of suboptimal importance sampling estimators depending on the perturbation strength ε; here,
the dashed line refers to the exact formula (3.78).

In the former case we can analytically compute the relative error due to Corollary 3.18 to be

r1(ε) =

√︄
exp

(︃
ε2
(︃
T

2
− sin(2αT )

4α

)︃)︃
− 1. (3.78)

Let us again illustrate how the relative error depends on the perturbation strength ε. In the right panel of
Figure 3.4 we can see the agreement of the sampled version with formula (3.78) when considering the time-
dependent perturbation. We do not have a formula in the case of a space-dependent perturbation, however we
can still observe the exponential dependence on the perturbation strength in the estimated relative error, which
is expected for instance from formulas (3.34) and (3.35).

3.3.3 Random stopping times
The suboptimal importance sampling bounds from Section 3.2 can be transferred to problems that involve a
random stopping time τ rather than a fixed time horizon T , where mostly τu = inf{t > 0 : Xu

t /∈ D} is defined22

as the first exit time of a bounded domain D ⊂ Rd. However, one has to be careful with applying our formulas
and bounds from above, as τu itself depends on the law of the process. For an illustration, let us consider a
one-dimensional toy example, where the dynamics is a scaled Brownian motion

Xt =
√
2Wt (3.79)

and we choose f = 1, g = 0 in (2.102), such that

Z = E
[︁
e−τ

]︁
. (3.80)

By noting that ψ(x) = E [e−τ |X0 = x] fulfills the boundary value problem

(∆− 1)ψ(x) = 0, x ∈ D, (3.81a)
ψ(x) = 1, x ∈ ∂D, (3.81b)

we can compute the optimal zero-variance importance sampling control to be

u∗(x) =
√
2∇ logψ(x) =

√
2
1− e−2x

1 + e−2x
. (3.82)

In our experiment, we again perturb the optimal control via

u = u∗ + ε. (3.83)

Formula (3.36) provides an expression for the relative error, even if T is replaced by a random time τ (which
we leave the reader to check for herself), namely

r(u) =
(︂
E
[︂
eε

2τ2u∗−u
]︂
− 1
)︂ 1

2 ≥
(︃
e
ε2 E

[︂
τ2u∗−u

]︂
− 1

)︃ 1
2

, (3.84)

22We denote with τ = τ0 the hitting time of the uncontrolled process Xt.
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Chapter 3. Nonasymptotic bounds for suboptimal importance sampling

where it is essential that τ2u
∗−u refers to the hitting time of the process X2u∗−u

t . We applied Jensen’s inequality
in the last expression and note that naively assuming

r(u) ≈
(︂
eε

2 E[τ ] − 1
)︂ 1

2

(3.85)

is usually wrong. Figure 3.5 compares the sampled relative error with the exact formula, the lower bound in
(3.84) and the wrong expression (3.85).

Figure 3.5: Relative error of a quantity involving a random stopping time compared to the exact formula, a
lower bound as well as a naive, but usually wrong approximation.

Remark 3.25. Let us note again that estimating quantities involving hitting times gets particularly challenging
in rare event settings, where the expected hitting time might become very large, cf. Example 3.13. The relation
(3.84) for the relative error then indicates that Monte Carlo estimation becomes especially difficult.

3.3.4 Small noise diffusions
As an example for a small noise diffusion, we consider a modification of a one-dimensional toy example that has
been proposed in [290]. We take the scaled Brownian motion

Xη
s =
√
ηWs, X0 = 0.1, (3.86)

and want to compute
E
[︂
e−

1
η g(X

η
T )
]︂

(3.87)

with

g(x) =
α

2

(︃
1− |x|√

α

)︃2

(3.88)

for α > 0. One readily sees that

V 0(x, t) =
α
(︂
1− |x|√

α

)︂2
2(T − t+ 1)

(3.89)

is the unique viscosity solution to the deterministic problem (3.62); we refer to [98] for a discussion of the
theory of viscosity solutions. Since an explicit solution V ∗(x, t) to the second-order HJB equation (3.60) is
not available, we approximate it with finite differences. In Figure 3.6 we show the corresponding controls
u0(x, s) = −σ⊤∇V 0(x, t) and u∗(x, s) = −σ⊤∇V ∗(x, t) for different values of the noise coefficient η.

Figure 3.6: For a small noise diffusion problem we display once the optimal control and once the control resulting
from the zero-noise approximation with different noise scalings η.
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In the middle panel of Figure 3.7 we show the relative error depending on the noise parameter η. Unlike one
could expect from (3.68), it seems to not grow exponentially in η, which can be explained by looking at the
exponentiated L2 error, exp

(︂
E
[︂∫︁ T

0
|u∗ − u0|2(Xu0

s , s)ds
]︂)︂

, which we plot in the left panel. The observation
that this does not grow exponentially seems to be rooted in the fact that the suboptimality δ = u∗ − u0 is very
different for different values of x. If we vary T , however, we can observe an exponential dependency on the
time horizon, as displayed in the right panel of Figure 3.7, again being in accordance with the consideration in
Section 3.2.2.

Figure 3.7: Small noise diffusions with vanishing noise coefficient η. Left: Exponential of L2 error between u∗

and u0 depending on η for T = 1. Middle: Relative importance sampling error depending on η. Right: Relative
importance sampling error depending on T for η = 0.005.
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Chapter 4

Approximating probability measures on
path space

In this chapter we aim at designing and analyzing robust algorithms for numerically solving either of the
Problems 1.1-1.5 that we have formulated in Chapter 1. One common feature is that they can be formulated
as variational problems that, on a formal level, can be recast as approximation tasks for probability measures
on the space of trajectories, i.e. “path space”, where a central object is the controlled diffusion

dXu
s = (b(Xu

s , s) + σ(Xu
s , s)u(X

u
s , s)) ds+ σ(Xu

s , s) dWs, Xu
0 = xinit, (4.1)

that we have already specified in (1.4). In order to solve either of our problems we will build on recent
machine learning inspired approaches and investigate a class of algorithms that may be termed iterative diffusion
optimization (IDO) techniques, related, in spirit, to reinforcement learning [238]. Speaking in broad terms, those
are characterized by the following outline of steps meant to be executed iteratively until convergence or until a
satisfactory control u is found:

1. Simulate K realizations {(Xu,(k)
s )0≤s≤T , k = 1, . . . ,K} of the solution to (4.1).

2. Compute a performance measure and a corresponding gradient associated to the control u, based on
{(Xu,(k)

s )0≤s≤T , k = 1, . . . ,K}.

3. Modify u according to the gradient obtained in the previous step. Repeat starting from 1.

We note that many algorithmic approaches from the literature can be placed in the IDO framework, in particular
some that connect forward-backward SDEs and machine learning [86, 122] as well as some that are rooted in
molecular dynamics and optimal control [131, 160, 308]. Crucially, those instances of IDO mainly differ in terms
of the performance measure employed in step 2, or, in other words, in terms of an underlying loss function L(u)
constructed on the set of control vector fields. Typically, L(u) is given in terms of expectations involving the
solution to (4.1). Consequently, step 1 can be thought of as providing an empirical estimate of this quantity
(and its gradient) based on a sample of size K.

For a principled design and understanding of IDO-like algorithms, it is central to analyze the properties of loss
functions and corresponding Monte Carlo estimators, and identify guidelines that promise good performance.
Permissible loss functions include those that admit a global minimum representing the solution to the problem
at hand. Moreover, suitable loss functions yield themselves to efficient optimization procedures (step 3) such
as stochastic gradient descent. In this respect, important desiderata are the absence of local minima as well as
the availability of low-variance gradient estimators.

In this chapter, we show that a variety of loss functions can be constructed and analyzed in terms of divergences
between probability measures on the path space associated to solutions of (4.1), providing a unifying framework
for IDO and extending on previous works in that direction [131, 160, 308]. As this perspective entails the
approximation of a target probability measure as a core element, our approach exposes connections to the
theory of variational inference [36, 305] (see also Chapter 5). Classical divergences include the relative entropy
(or KL-divergence) and its counterpart, the cross-entropy. Motivated by connections to forward-backward SDEs
and importance sampling, we propose the novel family of log-variance divergences,

D
Var(log)˜︁P (P1|P2) = Var˜︁P

(︃
log

dP2

dP1

)︃
, (4.2)
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Chapter 4. Approximating probability measures on path space

parametrized by a probability measure ˜︁P. Loss functions based on these divergences can be viewed as modifi-
cations of those proposed in [86, 122] for solving forward-backward SDEs, essentially replacing second moments
by variances, see Section 4.1.2. Moreover, it turns out that the log-variance divergences are closely related to
the KL-divergence (see Proposition 4.22), allowing us to draw (perhaps surprising) connections to methods that
directly attempt to optimize the dynamics with respect to a control objective.

As the loss functions considered in this section are defined in terms of expected values, practical implementations
require appropriate Monte Carlo estimators whose variance directly impacts algorithmic performance. We study
the associated relative errors, in particular in high-dimensional settings and for P1 ≈ P2, i.e. close to the optimal
control. The proposed log-variance divergence and its corresponding standard Monte Carlo estimator turn out
to be robust in both settings, in a precise sense that will be developed later.

Let us recall Section 1.5, where we have provided a literature overview related to the connections between
different perspectives on the control problem under consideration, in particular summarizing corresponding
numerical treatments. As a unifying viewpoint, in Section 4.1 we define viable loss functions through divergences
on path space and discuss their connections to the algorithmic approaches encountered in Section 1.5. In
particular, we elucidate the relationships of the log-variance divergences with forward-backward SDEs. In the
two upcoming sections we analyze properties of the suggested losses, where in Section 4.2 we obtain equivalence
relations that hold in an infinite batch size limit and in Section 4.3 we investigate the variances associated to the
losses’ estimator versions. In the latter case, we consider stability close to the optimal control solution as well
as in high dimensional settings. In Section 4.4 we provide numerical examples that demonstrate our findings
and in Appendix B.6 we present some further illustrations.

Parts of this chapter are based on joint work with Nikolas Nüsken and have been published in [217].

4.1 Iterative diffusion optimization

In this section we demonstrate that many of the algorithmic approaches encountered in Section 1.5 can be
recovered as minimization procedures of certain divergences between probability measures on path space. Similar
perspectives (mostly discussing the relative entropy and cross-entropy in Definition 4.1 below) can be found in
the literature, see [131, 160, 308]. Recall from Section 1.3 that we denote by C the space of Rd-valued paths on
the time interval [0, T ] with fixed initial point xinit ∈ Rd. As before, the probability measures on C induced by
the stochastic process

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = xinit, (4.3)

as in (1.2) and its controlled counterpart

dXu
s = (b(Xu

s , s) + σ(Xu
s , s)u(X

u
s , s)) ds+ σ(Xu

s , s) dWs, Xu
t = xinit, (4.4)

as in (1.4) will be denoted by P and Pu, respectively. From now on, let us assume that there exists a unique
optimal control with convenient regularity properties:

Assumption 4. The HJB PDE (1.20) admits a unique solution V ∈ C2,1
b (Rd × [0, T ]). We set

u∗ = −σ⊤∇V. (4.5)

For Assumption 4 to be satisfied, it is sufficient to impose the regularity and boundedness conditions b, σ, f ∈
C2,1
b (Rd) and g ∈ C3

b (Rd), see23 [98, Theorem 4.2]. The strong boundedness assumption on V could be weakened
and for instance be replaced by the condition σ⊤∇V ∈ U . For existence and uniqueness results involving
unbounded controls we refer to [99], and for specific examples to Sections 4.4.2 and 4.4.3. In the sense made
precise in Theorem 1.2, the control u∗ defined above provides solutions to the Problems 1.1-1.5 considered in
Chapter 1. Moreover, there exists a corresponding optimal path measure Q (in the following also called the
target measure) defined in (1.13) and satisfying Q = Pu∗

. We further note that Assumption 4 together with the
results from [281, Chapter 11] imply that the solution to the FBSDE (1.21) is unique.

4.1.1 Divergences and loss functions
The SDE (4.4) establishes a measurable map U ∋ u ↦→ Pu ∈ P(C) that can be made explicit in terms of Radon-
Nikodym derivatives using Girsanov’s theorem (see Theorem B.3 in the Appendix). Consequently, we can elevate

23This result requires the boundedness of the controls in U . However, applying [181, Chapter II, Theorem 3.1] to (1.27), we see
that ∇V is bounded and hence U can be restricted appropriately.
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divergences between path measures to loss functions on vector fields. To wit, let D : P(C)×P(C)→ R≥0 ∪{∞}
be a divergence24, where, as before, P(C) denotes the set of probability measures on C. Then, setting

LD(u) = D(Pu|Q), u ∈ U , (4.6)

we immediately see that LD ≥ 0, with Theorem 1.2 implying that LD(u) = 0 if and only if u = u∗. Consequently,
an approximation of the optimal control vector field u∗ can in principle be found by minimizing the loss LD.
In the remainder of this section, we will suggest possible losses and study some of their properties.

Starting with the KL-divergence as defined in Definition 3.1, we introduce the relative entropy loss and the
cross-entropy loss, corresponding to the divergences

DRE(P1|P2) = KL(P1|P2) and DCE(P1|P2) = KL(P2|P1). (4.7)

Definition 4.1 (Relative entropy and cross-entropy losses). The relative entropy loss is given by

LRE(u) = EPu

[︃
log

dPu

dQ

]︃
, u ∈ U , (4.8)

and the cross-entropy loss by

LCE(u) = EQ

[︃
log

dQ
dPu

]︃
, u ∈ U , (4.9)

where the target measure Q has been defined in (1.13).

Remark 4.2 (Notation). Note that, by definition, the expectations in (4.8) and (4.9) are understood as integrals
on C, i.e.

LRE(u) =

∫︂
C

(︃
log

dPu

dQ

)︃
dPu, LCE(u) =

∫︂
C

(︃
log

dQ
dPu

)︃
dQ. (4.10)

In contrast, the expectation operator E (without subscript, as used in (1.10) and (1.16), for instance) throughout
denotes integrals on the underlying abstract probability space (Ω,F , (Ft)t≥0,Λ), see also footnote 19 on page 50.

We can further define the variance and log-variance divergences.

Definition 4.3 (Variance divergence). For ˜︁P,P1,P2 ∈ P(C) we define the family of variance divergences
parametrized by ˜︁P as

DVar˜︁P (P1|P2) =

{︄
Var˜︁P

(︂
dP2

dP1

)︂
, if P1 ∼ P2 and E˜︁P

[︂⃓⃓⃓
dP2

dP1

⃓⃓⃓]︂
<∞,

∞, otherwise.
(4.11)

Definition 4.4 (Log-variance divergence). For ˜︁P,P1,P2 ∈ P(C) we define the family of variance divergences
parametrized by ˜︁P as

D
Var(log)˜︁P (P1|P2) =

{︄
Var˜︁P

(︂
log dP2

dP1

)︂
, if P1 ∼ P2 and E˜︁P

[︂⃓⃓⃓
log dP2

dP1

⃓⃓⃓]︂
<∞,

∞, otherwise.
(4.12)

For any ˜︁P ∈ P(C), it is straightforward to verify that both the variance and the log-variance divergence define
indeed divergences on the set of probability measures equivalent to ˜︁P.

Remark 4.5. Setting ˜︁P = P1, the quantity DVar
P1

(P1|P2) coincides with the Pearson χ2-divergence as defined
in Definition 3.2 [70, 196] measuring the importance sampling relative error [4], hence relating to Problem 1.1
(see also Lemma 3.3). The divergence DVar(log)˜︁P seems to be new; it is motivated by its connections to the
forward-backward SDE formulation of optimal control (see Problem 1.5), as will be explained in Section 4.1.2.
Let us already mention that inserting the log in (4.11) to obtain (4.12) has the potential benefit of making
sample based estimation more robust in high dimensions (see Section 4.3.2). Furthermore, we point the reader
to Proposition 4.19 revealing close connections between D

Var(log)˜︁P and the relative entropy.

Using (4.11) and (4.12) with ˜︁P = Pv, we obtain two additional families of losses, indexed by v ∈ U :
24The defining property of a divergence between probability measures is the equivalence between D(P1|P2) = 0 and P1 = P2.

Prominent examples include the KL-divergence and, more generally, the f -divergences [196].
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Definition 4.6 (Variance and log-variance losses). For v ∈ U , the variance loss is given by

LVarv (u) = VarPv

(︃
dQ
dPu

)︃
, u ∈ U , (4.13)

and the log-variance loss by

Llog
Varv

(u) = VarPv

(︃
log

dQ
dPu

)︃
, u ∈ U , (4.14)

whenever EPv

[︁⃓⃓
dQ
dPu

⃓⃓]︁
< ∞ or EPv

[︁⃓⃓
log dQ

dPu

⃓⃓]︁
< ∞, respectively25. The notation VarPv is to be interpreted in

line with Remark 4.2.

By direct computations invoking Girsanov’s theorem, the losses defined above admit explicit representations
in terms of solutions to SDEs of the form (4.3) and (4.4). Crucially, the propositions that follow replace the
expectations on C used in the definitions (4.8), (4.9), (4.11) and (4.12) by expectations on Ω that are more
amenable to direct probabilistic interpretation and Monte Carlo simulation (see also Remark 4.2). Recall that
the target measure Q is assumed to be of the type (1.13), where W has been defined in (1.8). We start with
the relative entropy loss:

Proposition 4.7 (Relative entropy loss). For u ∈ U , let (Xu
s )0≤s≤T denote the unique strong solution to (4.4).

Then

LRE(u) = E

⎡⎣1
2

T∫︂
0

|u(Xu
s , s)|2 ds+

T∫︂
0

f(Xu
s , s) ds+ g(Xu

T )

⎤⎦+ logZ. (4.15)

Proof. See [131, 160]. For the reader’s convenience, we provide a self-contained proof in Appendix C.3.

Remark 4.8. Up to the constant logZ, the loss LRE coincides with the cost functional (1.16) associated to the
optimal control formulation in Problem 1.3. The approach of minimizing the KL-divergence between Pu and Q
as defined in (4.8) is thus directly linked to the perspective outlined in Problem 1.3. We refer to [131, 160] and
Remark 2.46 for further details.

The cross-entropy loss admits a family of representations, indexed by v ∈ U :

Proposition 4.9 (Cross-entropy loss). For v ∈ U , let (Xv
s )0≤s≤T denote the unique strong solution to (4.4),

with u replaced by v. Then there exists a constant C ∈ R (not depending on u in the next line) such that

LCE(u) =
1

Z
E

[︄⎛⎝1

2

T∫︂
0

|u(Xv
s , s)|2 ds−

T∫︂
0

(u · v)(Xv
s , s) ds−

T∫︂
0

u(Xv
s , s) · dWs

⎞⎠ (4.16a)

exp

⎛⎝− T∫︂
0

v(Xv
s , s) · dWs −

1

2

T∫︂
0

|v(Xv
s , s)|2 ds−W(Xv)

⎞⎠]︄+ C, (4.16b)

for all u ∈ U .

Proof. See [308] or Appendix C.3 for a self-contained proof.

Remark 4.10. The appearance of the exponential term in (4.16b) can be traced back to the reweighting

DCE(P|Q) = EQ

[︃
log

(︃
dQ
dP

)︃]︃
= EPv

[︃
log

(︃
dQ
dP

)︃
dQ
dPv

]︃
, (4.17)

recalling that Pv denotes the path measure associated to (4.4) controlled by v. While the choice of v evidently
does not affect the loss function, judicious tuning may have a significant impact on the numerical performance
by means of altering the statistical error for the associated estimators (see Section 4.1.3). We note that the
expression (4.15) for the relative entropy loss can similarly be augmented by an additional control v ∈ U .
However, Proposition 4.29 in Section 4.3.2 discourages this approach and our numerical experiments using a
reweighting for the relative entropy loss have not been promising. In general, we feel that exponential terms of
the form appearing in (4.16b) often have a detrimental effect on the variance of estimators – this should also
be compared to the analysis of the relative error of suboptimal importance sampling estimators in Chapter 3.
Therefore, an important feature of both the relative entropy loss and the log-variance loss (see Proposition 4.12)
seems to be that expectations can be taken with respect to controlled processes (Xv

s )0≤s≤T without incurring
exponential factors as in (4.16b).

25These integrability conditions can be checked in practice using the formulas provided in Proposition 4.12 below.
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Remark 4.11. Setting v = 0 leads to the simplification

LCE(u) =
1

Z
E

[︄⎛⎝1

2

T∫︂
0

|u(Xs, s)|2 ds−
T∫︂

0

u(Xs, s) · dWs

⎞⎠ exp(−W(X))

]︄
+ C, (4.18)

where (Xs)0≤s≤T solves the uncontrolled SDE (4.3). The quadratic dependence of LCE on u has been exploited
in [308] to construct efficient Galerkin-type approximations of u∗.

Finally, we derive corresponding representations for the variance and log-variance losses:

Proposition 4.12 (Variance-type losses). For v ∈ U , let (Xv
s )0≤s≤T denote the unique strong solution to (4.4),

with u replaced by v. Furthermore, define

˜︁Y u,vT = −
T∫︂

0

(u · v)(Xv
s , s) ds−

T∫︂
0

f(Xv
s , s) ds−

T∫︂
0

u(Xv
s , s) · dWs +

1

2

T∫︂
0

|u(Xv
s , s)|2 ds. (4.19)

Then
LVarv (u) =

1

Z2
Var

(︂
e
˜︁Y u,v
T −g(Xv

T )
)︂
, (4.20)

and
Llog
Varv

(u) = Var
(︂˜︁Y u,vT − g(Xv

T )
)︂
, (4.21)

for all u ∈ U .

Proof. With ˜︁Y u,vT defined as in (4.19) and using Theorem B.3, we compute for the variance loss

LVarv (u) = VarPv

(︃
dQ
dPu

)︃
= VarPv

(︃
dQ
dP

dP
dPu

)︃
=

1

Z2
VarPv

(︂
e
˜︁Y u,v
T −g(Xv

T )
)︂
. (4.22)

Similarly, the log-variance loss equals

Llog
Varv

(u) = VarPv

(︃
log

dQ
dPu

)︃
= VarPv

(︃
log

(︃
dP
dPu

dQ
dP

)︃)︃
= VarPv

(︂˜︁Y u,vT − g(Xv
T )− logZ

)︂
(4.23a)

= VarPv

(︂˜︁Y u,vT − g(Xv
T )
)︂
. (4.23b)

Setting v = u in (4.20) recovers the importance sampling objective in (1.10), i.e. the variance divergence DVar
Pu

encodes the formulation from Problem 1.1. See also [213] and Chapter 3.

Remark 4.13. While different choices of v merely lead to distinct representations for the cross-entropy loss LCE

according to Proposition 4.9 and Remark 4.10, the variance losses LVarv and Llog
Varv

do indeed depend on v.
However, the property LVarv (u) = 0 ⇐⇒ u = u∗ (and similarly for Llog

Varv
) holds for all v ∈ U , by construction.

4.1.2 FBSDEs and the log-variance loss

As it turns out, the log-variance loss Llog
Varv

as computed in (4.21) is intimately connected to the FBSDE
formulation in Problem 1.5 (and we already used the notation ˜︁Y u,vT in hindsight). Indeed, setting v = 0 in
Proposition 4.12 and writing

Var
(︂˜︁Y u,0T − g(X0

T )
)︂
= Var

(︂ ˜︁Y u,0T + y0⏞ ⏟⏟ ⏞
=:Y u,0

T

−g(X0
T )
)︂
, (4.24)

for some (at this point, arbitrary) constant y0 ∈ R, we recover the forward SDE (1.21a) and the backward SDE
(1.21b) from (4.19) in conjunction with the optimality condition Llog

Varv
(u) = 0, using also the identification

u∗(Xs, s) =: −Zs suggested by (1.23). For arbitrary v ∈ U , following Corollary 2.28, we similarly obtain the
generalized FBSDE system

dXv
s = (b(Xv

s , s) + σ(Xv
s , s)v(X

v
s , s)) ds+ σ(Xv

s , s) dWs, Xv
0 = xinit, (4.25a)

dY u
∗,v

s = −f(Xv
s , s) ds+ v(Xv

s , s) · Zs ds+
1

2
|Zs|2 ds+ Zs · dWs, Y u

∗,v
T = g(Xv

T ), (4.25b)
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again setting
Y u,vT = ˜︁Y u,vT + y0. (4.26)

In this sense, the divergence DVar(log)
Pv (Pu|Q) encodes the dynamics (4.25). Let us again insist on the fact that by

construction the solution (Ys, Zs)0≤s≤T to (4.25) does not depend on v ∈ U (the contribution σ(Xv
s , s)v(X

v
s , s) ds

in (4.25a) being compensated for by the term v(Xv
s , s)·Zs ds in (4.25b)), whereas clearly (Xv

s )0≤s≤T does. When
u∗(Xs, s) = −Zs is approximated in an iterative manner (see Section 4.4.1), the choice v = u is natural as it
amounts to applying the currently obtained estimate for the optimal control to the forward process (4.25a). In
this context, the system (4.25) was put forward in [127, Section III.B]. The bearings of appropriate choices for
v will be further discussed in Section 4.3.

It is instructive to compare the expression (4.24) for the log-variance loss to the ‘moment loss’

Lmoment(u, y0) = E
[︃(︂
Y u,0T (y0)− g(X0

T )
)︂2]︃

(4.27)

suggested in [86, 122] in the context of solving more general nonlinear parabolic PDEs26. More generally, we
can define

Lmomentv (u, y0) = E
[︃(︂
Y u,vT (y0)− g(Xv

T )
)︂2]︃

(4.28)

as a counterpart to the expression (4.21). This loss is essentially motivated from the FBSDE (4.25) and penalizes
deviation from the terminal condition. We will further elaborate on it in Section 6.3.2. Note that unlike the
losses considered so far, the moment losses depend on the additional parameter y0 ∈ R, which has implications
in numerical implementations. Also, these losses do not admit a straightforward interpretation in terms of
divergences between path measures. As we show in Proposition 4.22, algorithms based on Lmomentv are in fact
equivalent to their counterparts based on Llog

Varv
in the limit of infinite batch size when y0 is chosen optimally

or when the forward process is controlled in a certain way. We already anticipate that optimizing an additional
parameter y0 can slow down convergence towards the solution u∗ considerably (see Section 4.4).

Remark 4.14. Reversing the argument, the log-variance loss can be obtained from (4.27) by replacing the second
moment by the variance and using the translation invariance (4.24) to remove the dependence on y0. The fact
that this procedure leads to a viable loss function (i.e. satisfying L(u) = 0 ⇐⇒ u = u∗) can be traced back to
the fact that the Hamilton-Jacobi PDE (1.20a) is itself translation invariant (i.e. it remains unchanged under
the transformation V ↦→ V + const). Following this argument, the log-variance loss can be applied for solving
more general PDEs of the form (1.33) in the case when h depends on V only through ∇V . Furthermore, our
interpretation in terms of divergences between probability measures on path space remains valid, at least in the
case when σ is constant (in the following we let σ = Idd×d for simplicity)27. Indeed, denoting as before the path
measure associated to (1.34a) by P, defining the target Q via dQ

dP ∝ e−g, and introducing the approximation˜︁u ≈ −σ⊤∇V , the backward SDE (1.34b) induces a ˜︁u-dependent path measure P˜︁u,
dP˜︁u
dP

(X) ∝ exp

⎛⎝ T∫︂
0

h(Xs, s,−˜︁u(Xs, s)) ds−
T∫︂

0

˜︁u(Xs, s) · (b(Xs, s) ds− dXs)

⎞⎠ , (4.29)

assuming that the right-hand side is P-integrable. Replacing Z ≈ −˜︁u in (1.34b) and denoting the corresponding
process by Y ˜︁u, we then obtain

L(˜︁u) = VarP

(︃
log

dQ
dP˜︁u

)︃
= Var

(︂
Y ˜︁u
T − g(XT )

)︂
(4.30)

as an implementable loss function, with straightforward modifications to (1.34) when P is replaced by Pv, see
(4.25). Note, however, that in general the vector field ˜︁u does not lend itself to a straightforward interpretation
in terms of a control problem. The PDEs treated in [86, 122] and Chapter 6 do not possess the shift-invariance
property (that is, h depends on V ), and thus the vanishing of (4.30) does not characterize the solution to the
PDE (1.33a) uniquely (not even up to additive constants). Uniqueness may be restored by including appropriate
terms in (4.30) enforcing the terminal condition (1.33b). Theoretical and numerical properties of such extensions
may be fruitful directions for future work, see also Chapter 7.

26We have employed the notation Y u,0
T (y0) in order to stress the dependence on y0 through (4.26).

27For more general diffusion coefficients, we can make similar arguments considering measures on the path space associated to
(Wt)t≥0, however departing slightly from the set-up in this thesis.
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4.1. Iterative diffusion optimization

4.1.3 Algorithmic outline and empirical estimators
In order to motivate the theoretical analysis in the following sections, let us give a brief overview of algorithmic
implementations based on the loss functions developed so far. We refer to Section 4.4.1 for a more detailed
account. Recall that by the construction outlined in Section 4.1.1, the solution u∗ as defined in (4.5) is char-
acterized as the global minimum of L, where L represents a generic loss function. Assuming a parametrization
Rp ∋ θ ↦→ uθ (derived from, for instance, a Galerkin truncation or a neural network), we apply gradient-descent
type methods to the function θ ↦→ L(uθ), relying on the explicit expressions obtained in Propositions 4.7, 4.9
and 4.12. It is an important aspect that those expressions involve expectations that need to be estimated on
the basis of ensemble averages. To approximate the loss LRE, for instance, we use the estimator

ˆ︁L(K)
RE (u) =

1

K

K∑︂
k=1

⎡⎣1
2

T∫︂
0

|u(Xu,(k)
s , s)|2 ds+

T∫︂
0

f(Xu,(k)
s , s) ds+ g(X

u,(k)
T )

⎤⎦ , (4.31)

where (X
u,(k)
s )0≤s≤T , k = 1, . . . ,K denote independent realizations of the solution to (4.4), and K ∈ N refers to

the batch size. The estimators ˆ︁L(K)
CE (u), ˆ︁L(K)

Var (u), ˆ︁Llog,(K)
Var (u) and ˆ︁L(K)

momentv (u, y0) are constructed analogously,
i.e. the estimator for the cross-entropy loss is given by

ˆ︁L(K)
CE,v(u) =

1

K

K∑︂
k=1

[︄⎛⎝1

2

T∫︂
0

|u(Xv,(k)
s , s)|2 ds−

T∫︂
0

(u · v)(Xv,(k)
s , s) ds−

T∫︂
0

u(Xv,(k), s) · dW (k)
s

⎞⎠ (4.32a)

exp

⎛⎝− T∫︂
0

v(Xv,(k)
s , s) · dW (k)

s − 1

2

T∫︂
0

|v(Xv,(k)
s , s)|2 ds−W(Xv,(k))

⎞⎠]︄, (4.32b)

the estimator for the variance loss is given by

ˆ︁L(K)
Varv

(u) =
1

K − 1

K∑︂
k=1

(︂
e
˜︁Y u,v,(k)
T −g(Xv,(k)

T ) −
(︂
e
˜︁Y u,v
T −g(Xv

T )
)︂)︂2

, (4.33)

the estimator for the log-variance loss by

ˆ︁Llog(K)
Varv

(u) =
1

K − 1

K∑︂
k=1

(︂˜︁Y u,v,(k)T − g(Xv,(k)
T )−

(︂˜︁Y u,vT − g(Xv
T )
)︂)︂2

, (4.34)

and the estimator for the moment loss by

ˆ︁L(K)
momentv (u, y0) =

1

K

K∑︂
k=1

(︂˜︁Y u,v,(k)T + y0 − g(Xv,(k)
T )

)︂2
. (4.35)

In the previous displays, the overline denotes an empirical mean, for example

˜︁Y u,vT − g(Xv
T ) =

1

K

K∑︂
k=1

(︂˜︁Y u,v,(k)T − g(Xv,(k)
T )

)︂
, (4.36)

and (W
(k)
t )t≥0, k = 1, . . . ,K denote independent Brownian motions associated to (X

u,(k)
t )t≥0. By the law

of large numbers, the convergence ˆ︁L(K)(u) → L(u) holds almost surely up to additive and multiplicative
constants28, but as we show in Section 4.4, the fluctuations for finite K play a crucial role for the overall
performance of the method. The variance associated to empirical estimators will hence be analyzed in Section
4.3.

Remark 4.15. The estimators introduced in this section are standard, and more elaborate constructions, for
instance involving control variates [253, Section 4.4.2], can be considered to reduce the variance. We leave this
direction for future work. It is noteworthy, however, that the log-variance estimator (4.34) appears to act as a
control variate in natural way, see Propositions 4.19, 4.22, 5.6, Lemma 5.5 and Remark 4.23.

Remark 4.16. Note that the estimator ˆ︁L(K)
CE,v depends on v ∈ U , in contrast to its target LCE; in other words,

the limit limK→∞ ˆ︁L(K)
CE,v(u) does not depend on v. This contrasts the pairs ( ˆ︁L(K)

Varv
,LVarv ) and ( ˆ︁Llog,(K)

Varv
,Llog

Varv
),

see also Remark 4.10.
28More precisely, ˆ︁L(K)

RE (u) → LRE(u) − logZ and ˆ︁L(K)
CE,v(u) → Z(LCE(u) − C). The fact that the estimators ˆ︁L(K)

RE and ˆ︁L(K)
CE,v

do not depend on the intractable constants Z and C is crucial for the implementability of the associated methods.
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Chapter 4. Approximating probability measures on path space

We provide a sketch of the algorithmic procedure in Algorithm 1. Clearly, choosing different loss functions (and
corresponding estimators) at every gradient step as indicated leads to viable algorithms. In particular, we have
in mind the option of adjusting the forward control v ∈ U using the current approximation uθ. More precisely,
denoting by u

(j)
θ the approximation at the jth step, it is reasonable to set v = u

(j)
θ in the iteration yielding

u
(j+1)
θ . In the remainder of this section, we will focus on this strategy for updating v, leaving differing schemes

for future work.

Algorithm 1: Approximation of u∗

Choose a parametrization Rp ∋ θ ↦→ uθ.
Initialize uθ (with a parameter vector θ ∈ Rp).
Choose an optimization method descent , a batch size K ∈ N and a learning rate η > 0.
repeat

Choose a loss function L and a corresponding estimator ˆ︁L(K).
Compute ˆ︁L(K)(uθ) according to either (4.31), (4.32), (4.33), (4.34) or (4.35).
Compute ∇θ ˆ︁L(K)(uθ) using automatic differentiation.
Update parameters: θ ← θ − η descent(∇θ ˆ︁L(K)(uθ)).

until convergence;
Result: uθ ≈ u∗.

4.2 Equivalence properties in the limit of infinite batch size

In this section we will analyze some of the properties of the losses defined in Section 4.1.1, not taking into
account the approximation by ensemble averages described in Section 4.1.3. In other words, the results in this
section are expected to be valid when the batch size K used to compute the estimators ˆ︁L(K) is sufficiently large.
The derivatives relevant for the gradient-descent type methodology described in Section 4.1.3 can be computed
as follows,

∂

∂θi
L(uθ) =

δ

δu
L(u;ϕi)

⃓⃓⃓
u=uθ

, ϕi =
∂uθ
∂θi

, (4.37)

where δ
δuL(u;ϕ) denotes the Gâteaux derivative in direction ϕ. We recall its definition [269, Section 5.2]:

Definition 4.17 (Gâteaux derivative). Let u ∈ U and ϕ ∈ C1
b (Rd × [0, T ],Rd). A loss function L : U → R is

called Gâteaux-differentiable at u, if, for all ϕ ∈ C1
b (Rd × [0, T ],Rd), the real-valued function ε ↦→ L(u+ εϕ) is

differentiable at ε = 0. In this case we define the Gâteaux derivative in direction ϕ to be

δ

δu
L(u;ϕ) := d

dε

⃓⃓⃓
ε=0
L(u+ εϕ). (4.38)

Remark 4.18. The functions ϕi defined in (4.37) depend on the chosen parametrization for u. In the case when
a Galerkin truncation is used, uθ =

∑︁
i θiφi, these coincide with the chosen ansatz functions (i.e. ϕi = φi).

Concerning neural networks, the family (ϕi)i reflects the choice of the architecture, the function ϕi encoding
the response to a a change in the ith weight. For convenience, we will throughout work under the assumption
(implicit in Definition 4.17) that the functions ϕi are bounded, noting however that this could be relaxed with
additional technical effort. Furthermore, note that Definition 4.17 extends straightforwardly to the estimator
versions ˆ︁L(K).

The following result shows that algorithms based on 1
2L

log
Varv

and LRE behave equivalently in the limit of infinite
batch size, provided that the update rule v = u for the log-variance loss is applied (see the discussion towards
the end of Section 4.1.3), and that ‘all other things being equal’, for instance in terms of network architecture
and choice of optimizer. Furthermore, we provide an analytical expression for the gradient for future reference.

Proposition 4.19 (Equivalence of log-variance loss and relative entropy loss). Let u, v ∈ U and ϕ ∈ C1
b (Rd ×

[0, T ],Rd). Then Llog
Varv

and LRE are Gâteaux-differentiable at u in direction ϕ. Furthermore,

1

2

(︃
δ

δu
Llog
Varv

(u;ϕ)

)︃ ⃓⃓⃓
v=u

=
δ

δu
LRE(u;ϕ) = E

⎡⎣(︂g(Xu
T )− ˜︁Y u,uT

)︂ T∫︂
0

ϕ(Xu
s , s) · dWs

⎤⎦ . (4.39)

Remark 4.20. Proposition 4.19 extends the connection between the cost functional (1.16) and the FBSDE
formulation (1.21) exposed in Theorem 1.2. Indeed, the Problems 1.3 and 1.5 do not only agree on identifying
the solution u∗; it is also the case that the gradients of the corresponding loss functions agree for u ̸= u∗.
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Moreover, it is instructive to compare the expressions (4.15) and (4.21) (or their sample based variants (4.31)
and (4.34)). Namely, computing the derivatives associated to the relative entropy loss entails differentiating
both the SDE-solution Xu as well as f and g, determining the running and terminal costs. Perhaps surprisingly,
the latter is not necessary for obtaining the derivatives of the log-variance loss, opening the door for gradient-free
implementations.

Proof of Proposition 4.19. We present a heuristic argument based on the perspective introduced in Section 4.1.1
and refer to Appendix C.3 for a rigorous proof.

For fixed P ∈ P(C), let us consider perturbations P+εU, where U is a signed measure with U(C) = 0. Assuming
sufficient regularity, then

d

dε

⃓⃓⃓
ε=0

DRE(P+ εU|Q) =
d

dε

⃓⃓⃓
ε=0

EP

[︃
log

(︃
d(P+ εU)

dQ

)︃
d(P+ εU)

dP

]︃
= EP

[︃
dU
dP

]︃
⏞ ⏟⏟ ⏞

=0

+EP

[︃
log

(︃
dP
dQ

)︃
dU
dP

]︃
, (4.40)

where the first term on the right-hand side vanishes because of U(C) = 0. Likewise,

d

dε

⃓⃓⃓
ε=0

D
Var(log)˜︁P (P+ εU|Q) =

d

dε

⃓⃓⃓
ε=0

(︄
E˜︁P
[︃
log2

(︃
d(P+ εU)

dQ

)︃]︃
− E˜︁P

[︃
log

(︃
d(P+ εU)

dQ

)︃]︃2)︄
(4.41a)

= 2E˜︁P
[︃
log

(︃
dP
dQ

)︃
dU
dP

]︃
− 2E˜︁P

[︃
log

(︃
dP
dQ

)︃]︃
E˜︁P
[︃
dU
dP

]︃
. (4.41b)

For ˜︁P = P, the second term in (4.41b) vanishes (again, because of U(C) = 0), and hence (4.41b) agrees with
(4.40) up to a factor of 2.

Remark 4.21 (Covariance structure and local minima). It is interesting to note that (4.41) can be expressed as

d

dε

⃓⃓⃓
ε=0

D
Var(log)˜︁P (P+ εU|Q) = Cov˜︁P

(︃
log

dP
dQ

,
dU
dP

)︃
. (4.42)

In particular, the derivative is zero for all U with U(C) = 0 if and only if P = Q. In other words, we expect the
loss landscape associated to losses based on the log-variance divergence to be free of local minima where the
optimization procedure could get stuck. By similar reasoning we expect the same for the relative entropy and
cross-entropy losses (compare also to [58, Theorem 2.7.2 ]). A more refined analysis concerning the former can
be found in [195]. The covariance structure will also turn out to be important in statistical properties of the
estimator. Note that we can write

Cov˜︁P
(︃
log

dP
dQ

,
dU
dP

)︃
= E˜︁P

[︃(︃
log

dP
dQ
− E˜︁P

[︃
log

dP
dQ

]︃)︃(︃
dU
dP
− E˜︁P

[︃
dU
dP

]︃)︃]︃
(4.43)

and the two ‘centerings’ indicate potential numerical advantages. We refer to Remark 4.23 and Chapter 5 for
further discussions.

In the following proposition, we gather results concerning the moment loss Lmomentv defined in (4.28). The first
statement is analogous to Proposition 4.19 and shows that Lmomentv and Llog

Varv
are equivalent in the infinite

batch size limit, provided that the update strategy v = u is employed. The second statement deals with the
alternative v ̸= u. In this case, y0 = − logZ (i.e. finding the optimal y0 according to Theorem 1.2) is necessary
for Lmomentv to identify the correct u∗. Consequently, approximation of the optimal control will be inaccurate
unless the parameter y0 is determined without error.

Proposition 4.22 (Properties of the moment loss). Let u, v ∈ U and y0 ∈ R. Then the following holds:

1. The losses Lmoment,v(·, y0) and Llog
Varv

are Gâteaux-differentiable at u, and(︃
δ

δu
Lmomentv (u, y0;ϕ)

)︃ ⃓⃓⃓
v=u

=

(︃
δ

δu
Llog
Varv

(u;ϕ)

)︃ ⃓⃓⃓
v=u

(4.44)

holds for all ϕ ∈ C1
b (Rd × [0, T ],Rd). In particular, (4.44) is zero at u = u∗, independently of y0.

2. If v ̸= u, then
δ

δu
Lmomentv (u, y0;ϕ) = 0 (4.45)

holds for all ϕ ∈ C1
b (Rd × [0, T ],Rd) if and only if u = u∗ and y0 = − logZ.
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Proof. The proof can be found in Appendix C.3.

Remark 4.23 (Control variates). Inspecting the proofs of Propositions 4.19 and 4.22, we see that the identities
(4.39) and (4.44) rest on the expression

δ

δu
L(u)

⃓⃓⃓
v=u

= E

⎡⎣(︂g(Xv
T )− ˜︁Y u,vT

)︂ T∫︂
0

ϕ(Xv
s , s) · dWs

⎤⎦+ β E

⎡⎣ T∫︂
0

ϕ(Xv
s , s) · dWs

⎤⎦ , (4.46)

noting the vanishing of last term, where β = −y0 for the moment loss and β = −E
[︂
g(Xu

T )− ˜︁Y u,uT

]︂
for the

log-variance loss. The corresponding Monte Carlo estimators (see Section 4.1.3) hence include terms that are
zero in expectation and act as control variates. The general idea of control variates is to add a quantity with
known expectation that might correlate with the estimator in such a way that the overall variance is reduced
[253, Section 4.4.2]. Here we rely on the Itô integral representing this quantity, i.e. we consider the control
variate

∫︁ T
0
ϕ(Xv

s , s) · dWs. Using the explicit expression for the derivative in (4.39), the optimal value for the
control variate scaling β in terms of variance reduction, as stated in Lemma 5.1, is given by

β∗ = −
Cov

(︂(︂
g(Xu

T )− ˜︁Y u,uT

)︂ ∫︁ T
0
ϕ(Xu

s , s) · dWs,
∫︁ T
0
ϕ(Xu

s , s) · dWs

)︂
Var

(︂∫︁ T
0
ϕ(Xu

s , s) · dWs

)︂ (4.47a)

= −E
[︂
g(Xu

T )− ˜︁Y u,uT

]︂
−

Cov

(︃
g(Xu

T )− ˜︁Y u,uT ,
(︂∫︁ T

0
ϕ(Xu

s , s) · dWs

)︂2)︃
E
[︃(︂∫︁ T

0
ϕ(Xu

s , s) · dWs

)︂2]︃ , (4.47b)

which splits into a ϕ-independent (i.e. shared across network weights) and a ϕ-dependent (i.e. weight-specific)
term (see also Lemma 5.5). The ϕ-independent term is reproduced in expectation by the log-variance estima-
tor. Numerical evidence suggests that the ϕ-dependent term is often small and fluctuates around zero, but
implementations that include this contribution (based on Monte Carlo estimates) hold the promise of further
variance reductions. We note however that determining a control variate for every weight carries a significant
computational overhead and that Monte Carlo errors need to be taken into account. Finally, if y0 in the moment
loss differs greatly from −E

[︂
g(Xu

T )− ˜︁Y u,uT

]︂
, we expect the corresponding variance to be large, hindering algo-

rithmic performance. In Chapter 5 we have provided a more detailed analysis of the connections between the
log-variance divergences and variance reduction techniques in the context of computational Bayesian inference,
in particular leading to more rigorous statements on the connection to (optimal) control variate scalings (see
Proposition 5.6).

4.3 Finite sample properties and the variance of estimators

In this section we investigate properties of the sample versions of the losses as outlined in Section 4.1.3 and, in
particular, study their variances and relative errors. We will highlight two different types of robustness, both of
which prove significant for convergence speed and stability concerning practical implementations of Algorithm
1, see the numerical experiments in Section 4.4.

4.3.1 Robustness at the solution u∗

By construction, the optimal control solution u∗ represents the global minimum of all considered losses. Con-
sequently, the associated directional derivatives vanish at u∗, i.e.

δ

δu

⃓⃓⃓
u=u∗

L(u;ϕ) = 0, (4.48)

for all ϕ ∈ C1
b (Rd × [0, T ],Rd). A natural question is whether similar statements can be made with respect to

the corresponding Monte Carlo estimators. We make the following definition.

Definition 4.24 (Robustness at the solution u∗). We say that an estimator ˆ︁L(N) is robust at the solution u∗

if
Var

(︃
δ

δu

⃓⃓⃓
u=u∗

ˆ︁L(K)(u;ϕ)

)︃
= 0, (4.49)

for all ϕ ∈ C1
b (Rd × [0, T ],Rd) and K ∈ N.
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Robustness at the solution u∗ implies that fluctuations in the gradient due to Monte Carlo errors are suppressed
close to u∗, facilitating accurate approximation. Conversely, if robustness at u∗ does not hold, then the relative
error (i.e. the Monte Carlo error relative to the size of the gradients (4.37)) can be large near u∗, potentially
incurring instabilities of the gradient-descent type scheme. We refer to Figure 4.12 in the next section and the
corresponding discussion for an illustration of this phenomenon.

Proposition 4.25 (Robustness and non-robustness at u∗). The following holds:

1. The variance estimator ˆ︁L(K)
Varv

and the log-variance estimator ˆ︁Llog(K)
Varv

are robust at u∗, for all v ∈ U .

2. For all v ∈ U , the moment estimator ˆ︁L(K)
momentv (·, y0) is robust at u∗, i.e.

Var

(︃
δ

δu

⃓⃓⃓
u=u∗

ˆ︁L(K)
momentv (u, y0;ϕ)

)︃
= 0, for all ϕ ∈ C1

b (Rd × [0, T ],Rd), (4.50)

if and only if y0 = − logZ.

3. The relative entropy estimator ˆ︁L(K)
RE is not robust at u∗. More precisely, for ϕ ∈ C1

b (Rd × [0, T ],Rd),

Var

(︃
δ

δu

⃓⃓⃓
u=u∗

ˆ︁L(K)
RE (u;ϕ)

)︃
=

1

K
E

⎡⎣ T∫︂
0

|(∇u∗)⊤(Xu∗

s , s)As|2 ds

⎤⎦ , (4.51)

where (As)0≤s≤T denotes the unique strong solution to the SDE

dAs = (σϕ)(Xu∗

s , s) ds+
[︂
(∇b+∇(σu∗))(Xu∗

s , s)
]︂⊤

As ds+As · ∇σ(Xu∗

s , s) dWs, A0 = 0. (4.52)

4. For all v ∈ U , the cross-entropy estimator ˆ︁L(K)
CE,v is not robust at u∗.

Remark 4.26. The fact that robustness of the moment estimator at u∗ requires y0 = − logZ might lead to
instabilities in practice as this relation is rarely satisfied exactly. Note that the variance of the relative entropy
estimator at u∗ depends on ∇u∗. We thus expect instabilities in metastable settings, where often this quantity
is fairly large. For numerical confirmation, see Figure 4.12 and the related discussion.

Proof. For illustration, we show the robustness of the log-variance estimator ˆ︁Llog(K)
Varv

. The remaining proofs are
deferred to Appendix C.3.

By a straightforward calculation (essentially equivalent to (C.37) in Appendix C.3), we see that

δ

δu
ˆ︁Llog(K)
Varv

(u;ϕ) =
2

K − 1

K∑︂
k=1

[︄(︂
g
(︂
X
v,(k)
T

)︂
− ˜︁Y u,v,(k)T

)︂ δ˜︁Y u,v,(k)T

δu
(u;ϕ)

]︄
(4.53a)

− 2

K(K − 1)

K∑︂
k=1

[︂(︂
g
(︂
X
v,(k)
T

)︂
− ˜︁Y u,v,(k)T

)︂]︂ K∑︂
k=1

[︄
δ˜︁Y u,v,(k)T

δu
(u;ϕ)

]︄
, (4.53b)

where
δ˜︁Y u,v,(k)T

δu
(u;ϕ) =

T∫︂
0

ϕ(Xv,(k)
s , s) · dW (k)

s −
T∫︂

0

(ϕ · (u− v)) (Xv,(k)
s , s) ds. (4.54)

The claim now follows from observing that(︂
g
(︂
X
v,(k)
T

)︂
− ˜︁Y u,v,(k)T

)︂ ⃓⃓⃓
u=u∗

(4.55)

is almost surely constant (i.e. does not depend on k), according to the second equation in (4.25b).

4.3.2 Stability in high dimensions – robustness under tensorization
In this section we study the robustness of the proposed algorithms in high-dimensional settings. As a motivation,
consider the case when the drift and diffusion coefficients in the uncontrolled SDE (4.3) split into separate
contributions along different dimensions,

b(x, s) =

d∑︂
i=1

bi(xi, s), σ(x, s) =

d∑︂
i=1

σi(xi, s), (4.56)

75



Chapter 4. Approximating probability measures on path space

for x = (x1, . . . , xd) ∈ Rd, and analogously for the running and terminal costs f and g as well as for the control
vector field u. It is then straightforward to show that the path measure Pu associated to the controlled SDE
(4.4) and the target measure Q defined in (1.13) factorize,

Pu =

d⨂︂
i=1

Pui , Q =

d⨂︂
i=1

Qi. (4.57)

From the perspective of statistical physics, (4.57) corresponds to the scenario where non-interacting systems are
considered simultaneously. To study the case when d grows large, we leverage the perspective put forward in
Section 4.1.1, recalling that D(P|Q) denotes a generic divergence. In what follows, we will denote corresponding
estimators based on a sample of size K by ˆ︁D(K)(P|Q), and study the quantity

r(K)(P|Q) :=

√︃
Var

(︂ ˆ︁D(K)(P|Q)
)︂

D(P|Q)
, (4.58)

measuring the relative statistical error when estimating D(P|Q) from samples, noting that r(K)(P|Q) = O(K−1/2).
As r(K) is clearly linked to algorithmic performance and stability, we are interested in divergences, corresponding
loss functions and estimators whose relative error remains controlled when the number of independent factors
in (4.57) increases:

Definition 4.27 (Robustness under tensorization). We say that a divergence D : P(C)×P(C)→ R∪{∞} and
a corresponding estimator ˆ︁D(K) are robust under tensorization if, for all P,Q ∈ P(C) such that D(P|Q) < ∞
and K ∈ N, there exists C > 0 such that

r(K)

(︄
M⨂︂
i=1

Pi
⃓⃓⃓ M⨂︂
i=1

Qi

)︄
< C, (4.59)

for all M ∈ N. Here, Pi and Qi represent identical copies of P and Q, respectively, so that
⨂︁M

i=1 Pi and
⨂︁M

i=1 Qi
are measures on the product space

⨂︁M
i=1 C([0, T ],Rd) ≃ C([0, T ],RMd).

Clearly, if P and Q are measures on C([0, T ],R), then M coincides with the dimension of the combined problem.

Remark 4.28. The variance and log-variance divergences defined in (4.11) and (4.12) depend on an auxiliary
measure ˜︁P. Definition 4.27 extends straightforwardly by considering the product measures

⨂︁d
i=1
˜︁Pi. In a similar

vein, the relative entropy and cross-entropy divergences admit estimators that depend on a further probability
measure ˜︁P,

ˆ︁DRE,(K)˜︁P (P|Q) =
1

K

K∑︂
k=1

[︃
log

(︃
dP
dQ

)︃
dP
d˜︁P
]︃
(X(k)), ˆ︁DCE,(K)˜︁P (P|Q) =

1

K

K∑︂
k=1

[︃
log

(︃
dQ
dP

)︃
dP
d˜︁P
]︃
(Xk), (4.60)

where X(k) ∼ ˜︁P, motivated by the identities DRE(P|Q) = E˜︁P
[︂
log
(︂

dP
dQ

)︂
dP
d˜︁P
]︂

and DCE(P|Q) = E˜︁P
[︂
log
(︁
dQ
dP
)︁

dQ
d˜︁P
]︂
.

We refer to Remark 4.10 for a similar discussion.

Proposition 4.29. We have the following robustness and non-robustness properties:

1. The log-variance divergence DVar(log)˜︁P , approximated using the standard Monte Carlo estimator, is robust

under tensorization, for all ˜︁P ∈ P(C).
2. The relative entropy divergence DRE, estimated using ˆ︁DRE,(K)˜︁P , is robust under tensorization if and only

if ˜︁P = P.

3. The variance divergence DVar˜︁P is not robust under tensorization when approximated using the standard
Monte Carlo estimator. More precisely, if dQ

dP is not ˜︁P-almost surely constant, then, for fixed K ∈ N, there
exist constants a > 0 and C > 1 such that

r(K)

(︄
M⨂︂
i=1

Pi
⃓⃓⃓ M⨂︂
i=1

Qi

)︄
≥ aCM , (4.61)

for all M ≥ 1.
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4. The cross-entropy divergence DRE, estimated using ˆ︁DRE,(K)˜︁P , is not robust under tensorization. More
precisely, for fixed K ∈ N there exists a constant a > 0 such that

r(K)

(︄
M⨂︂
i=1

Pi
⃓⃓⃓ M⨂︂
i=1

Qi

)︄
≥ a

(︃√︂
χ2(Q|˜︁P) + 1

)︃M
, (4.62)

for all M ≥ 1. Here

χ2(Q|˜︁P) = E˜︁P
[︄(︃

dQ
d˜︁P
)︃2

− 1

]︄
(4.63)

denotes the χ2-divergence between Q and ˜︁P.

Proof. See Appendix C.3.

Remark 4.30. Loosely speaking, the reason for the robustness under tensorization of the log-variance loss and the
relative entropy loss for the case ˜︁P = P can be traced back to the fact that measures appear inside the logarithm,
which turns products into sums. In particular, Proposition 4.29 suggests that the variance and cross-entropy
losses perform poorly in high-dimensional settings as the relative errors (4.61) and (4.62) scale exponentially in
M . Numerical support can be found in Section 4.4. For the variance loss, this should also be compared to an
analysis on relative errors of suboptimal importance sampling in Chapter 3. We note that in practical scenarios

we have that ˜︁P ̸= Q as it is not feasible to sample from the target, and hence
√︂
χ2(Q|˜︁P) + 1 > 1.

4.4 Numerical experiments for path space approximations

In this section we illustrate our theoretical results on the basis of numerical experiments. In Section 4.4.1
we discuss computational details of our implementations, complementing the discussion in Section 4.1.3. The
Sections 4.4.2 and 4.4.3 focus on the case when the uncontrolled SDE (4.3) describes an Ornstein-Uhlenbeck
process and the dimension is comparatively large. In Section 4.4.4 we consider metastable settings (of both
low and moderate dimensionality), representative of those typically encountered in rare event simulations (see
Example 1.1). We rely on PyTorch as a tool for automatic differentiation and refer to the code at https:
//github.com/lorenzrichter/path-space-PDE-solver.

4.4.1 Computational aspects
The numerical treatment of the Problems 1.1-1.5 using the IDO-methodology is based on the explicit loss
function representations in Section 4.1.1, together with a gradient descent scheme relying on automatic differ-
entiation29. Following the discussion in Section 4.1.3, a particular instance of an IDO-algorithm is determined
by the choice of a loss function, and, in the case of the cross-entropy, moment and variance-type losses, by a
strategy to update the control vector field v in the forward dynamics (see Propositions 4.9 and 4.12). As men-
tioned towards the end of Section 4.1.3, we focus on setting v = u at each gradient step, i.e. to use the current
approximation as a forward control. Importantly, we do not differentiate the loss with respect to v; in practice
this can be achieved by removing the corresponding variables from the autodifferentiation computational graph
(for instance using the detach command in the PyTorch package). Including differentiation with respect to v
as well as more elaborate choices of the forward control might be rewarding directions for future research.
Practical implementations require approximations at three different stages: first, the time discretization of the
SDEs (4.3) or (4.4); second, the Monte Carlo approximation of the losses (as outlined in Section 4.1.3), or, to
be precise, the approximation of their respective gradients; and third, the function approximation of either the
optimal control vector field u∗ or the value function V . Moreover, implementations vary according to the choice
of an appropriate gradient descent method.
Concerning the first point, we discretize the SDE (4.4) using the Euler-Maruyama scheme [173] along a time
grid 0 = t0 < · · · < tN = T , namely iterating

ˆ︁Xu
n+1 = ˆ︁Xu

n +
(︂
b( ˆ︁Xu

n , tn) + σ( ˆ︁Xu
n , tn)u( ˆ︁Xu

n , tn)
)︂
∆t + σ( ˆ︁Xu

n , tn)ξn+1

√
∆t, ˆ︁X0 = xinit, (4.64)

where ∆t > 0 denotes the step size, and ξn ∼ N (0, Idd×d) are independent standard Gaussian random variables.
Recall that the initial value can be random rather than deterministic (see Remark 1.4). We demonstrate the
potential benefit of sampling ˆ︁X0 from a given density in Section 4.4.3.

29Note that for the gradients of the process (Xu
s )0≤s≤T alternative computational methods can be considered (see [111] for an

overview). A numerical analysis of the approach we rely on can be found in [300].
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We next discuss the approximation of u∗. First, note that a viable and straightforward alternative is to instead
approximate V and compute u∗ = −σ⊤∇V whenever needed (for instance by automatic differentiation), see
[241]. However, this approach has performed slightly worse in our experiments, and, furthermore, V can be
recovered from u∗ by integration along an appropriately chosen curve. To approximate u∗, a classic option is a
to use a Galerkin truncation, i.e. a linear combination of ansatz functions

u(x, tn) =

M∑︂
m=1

θnmφm(x), (4.65)

for n ∈ {0, . . . , N−1} with parameters θnm ∈ R. Choosing an appropriate set {φm}Mm=1 is crucial for algorithmic
performance – a task that in high-dimensional settings requires detailed a priori knowledge about the problem
at hand. Instead, we focus on approximations of u∗ realized by neural networks as defined in Definitions 2.49
and 2.50.
Neural networks are known to be universal function approximators [59, 141], with recent results indicating
favorable properties in high-dimensional settings [91, 92, 118, 232, 266]. The control u can be represented by
either u(x, t) = Φϱ(y) with y = (x, t)⊤, i.e. using one neural network for both the space and time dependence, or
by u(x, tn) = Φnϱ (x), using one neural network per time step. The former alternative led to better performance
in our experiments, and the reported results rely on this choice. For the gradient descent step we either choose
SGD with constant learning rate [114, Algorithm 8.1] or Adam [114, Algorithm 8.7], [169], a variant that relies
on adaptive step sizes and momenta (cf. Section 2.4). Further numerical investigations on network architectures
and optimization heuristics can be found in [50].
To evaluate algorithmic choices we monitor the following two performance metrics:

1. The importance sampling relative error, namely

δ(u) :=

√︂
Var

(︁
e−W(Xu) dP

dPu (Xu)
)︁

E[e−W(X)]
, (4.66)

where u is the approximated control in the corresponding iteration step. This quantity is zero if and only
if u = u∗ (cf. Theorem 1.2) and measures the quality of the control in terms of the objective introduced in
Problem 1.1. Since its Monte Carlo version fluctuates heavily if u is far away from u∗ we usually estimate
this quantity with additional samples not being used in the gradient computation.

2. An L2-error,

E

⎡⎣ T∫︂
0

|u− u∗ref|2(Xu
s , s) ds

⎤⎦ , (4.67)

where u∗ref is computed either analytically or using a finite difference scheme for the HJB PDE (1.20). This
quantity is more robust w.r.t. deviations from u∗ and therefore we compute the Monte Carlo estimator
using just the samples from the training iteration.

4.4.2 Ornstein-Uhlenbeck dynamics with linear costs
Let us consider the controlled Ornstein-Uhlenbeck process

dXu
s = (AXu

s +Bu(Xu
s , s)) ds+B dWs, Xu

0 = 0, (4.68)

where A,B ∈ Rd×d. Furthermore, we assume zero running costs, f = 0, and linear terminal costs g(x) = γ · x,
for a fixed vector γ ∈ Rd. As shown in Section B.5.1, the optimal control is given by

u∗(x, t) = −B⊤eA
⊤(T−t)γ, (4.69)

which remarkably does not depend on x. Therefore, not only the variance and log-variance losses are robust at
u∗ in the sense of Definition 4.24, but also the relative entropy loss, according to (4.51) in Proposition 4.25.
We choose A = −Idd×d+(ξij)1≤i,j≤d and B = Idd×d+(ξij)1≤i,j≤d, where ξij ∼ N (0, ν2) are sampled i.i.d. once
at the beginning of the simulation. Note that this choice corresponds to a small perturbation of the product
setting from Section 4.3.2. We set T = 1, ν = 0.1, γ = (1, . . . , 1)⊤ and as function approximation take the
DenseNet from Definition 2.50 using two hidden layers, each with a width of n1 = n2 = 30, and ϱ = max(0, x)
as the nonlinearity. Lastly, we choose the Adam optimizer as a gradient descent scheme. Figure 4.1 shows the
algorithm’s performance for d = 1 with batch size K = 200, learning rate η = 0.01 and step size ∆t = 0.01. We
observe that log-variance, relative entropy and moment loss perform similarly and converge well to a suitable
approximation. The cross-entropy loss decreases, but at later gradient steps fluctuates more than the other
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losses (we note that the fluctuations appear to be less pronounced when using SGD, however at the cost of
substantially slowing down the overall speed of convergence). The inferior quality of the control obtained using
the cross-entropy loss may be explained by its non-robustness at u∗, see Proposition 4.25.

Figure 4.1: Performance of the algorithm using five different loss functions according to the metrics introduced
in Section 4.4.1 as a function of the iteration step.

Figure 4.2 shows the algorithm’s performance in a high-dimensional case, d = 40, where we now choose K = 500
as the batch size, η = 0.001 as the learning rate, ∆t = 0.01 as the time step, and as before rely on a DenseNet
with two hidden layers. We observe that relative entropy loss and log-variance loss perform best, and that
the moment and cross-entropy losses converge at a significantly slower rate. The variance loss is numerically
unstable and hence not represented in Figure 4.2. We encounter similar problems in the subsequent experiments
and thus do not consider the variance loss in what follows. In Figure 4.3 we plot some of the components of the
40-dimensional approximated optimal control vector field as well as the analytic solution u∗ref(x, t) for a fixed
value of x and varying time t, showcasing the inferiority of the approximation obtained using the cross-entropy
loss. The comparatively poor performance of the cross-entropy and the variance losses can be attributed to
their non-robustness with respect to tensorizations, see Section 4.3.2. To further illustrate these results, Figure
4.4 displays the relative error associated to the loss estimators computed from K = 1.5 ·107 samples in different
dimensions. The dimensional dependence agrees with what is expected from Proposition 4.29, but we note that
our numerical experiment goes beyond the product case.

Figure 4.2: Performance of the algorithm using four different loss functions in a high-dimensional setting.
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Figure 4.3: Approximation u (dashed lines) and reference solution u∗ref (straight lines) for the optimal control
obtained using the relative entropy and cross-entropy losses, respectively. 7 out of the 40 components of u and
u∗ref are plotted.

Figure 4.4: Relative error of the log-variance and cross-entropy losses depending on the dimension.

Lastly, let us investigate the effect of the additional parameter y0 in the moment loss. For a first experiment,
we Initialize y0 with either the naive choice y(1)0 = 0, or y(2)0 = 10, a starting value which differs considerably
from − logZ or the optimal choice y(3)0 = − logZ ≈ −5.87. Let us insist that in practical scenarios the value
of − logZ is usually not known. Additionally, we contrast using Adam and SGD as an optimization routine –
in both cases we choose K = 200, η = 0.01, ∆t = 0.01, and the same DenseNet architecture as in the previous
experiments.
Figure 4.5 shows that the initialization of y0 can have a significant impact on the convergence speed. Indeed,
with the initialization y0 = − logZ, the moment and log-variance losses perform very similarly, in accordance
with Proposition 4.22. In contrast, choosing the initial value y0 such that the discrepancy |y0 + logZ| is large
incurs a much slower convergence.
Comparing the two plots in Figure 4.5 shows that the Adam optimizer achieves a much faster convergence overall
in comparison to SGD. Moreover, the difference in performance between y0-initializations is more pronounced
when the Adam optimizer is used. The observations in these experiments are in agreement with those in [50].
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Figure 4.5: Performance of the algorithm with the moment loss and different initializations for y0, using Adam
and SGD.

4.4.3 Ornstein-Uhlenbeck dynamics with quadratic costs
We consider the Ornstein-Uhlenbeck process described by (4.68) with quadratic running and terminal costs, i.e.
f(x, s) = x⊤Px and g(x) = x⊤Rx, with P,R ∈ Rd×d. This setting is known as the linear quadratic Gaussian
control problem [289]. The optimal control is given by [289, Section 6.5]

u∗(x, t) = −2B⊤
t Ft x, (4.70)

where the matrices Ft fulfill the matrix Riccati equation

d

dt
Ft +A⊤

t Ft + FtAt − 2FtBtB
⊤
t Ft + P = 0, FT = R. (4.71)

In this example, we demonstrate an approach leveraging a priori knowledge about the structure of the solution.
Motivated by (4.70), we consider the linear ansatz functions

u(x, tn) = Υnx, (4.72)

where the entries of the matrices Υn ∈ Rd×d, n = 0, . . . , N − 1 represent the parameters to be learnt. The
matrices A and B are chosen as in Subsection 4.4.2 and we set P = 1

2 Idd×d, R = Idd×d and T = 0.5. Figure
4.6 shows the performance using Adam with learning rate η = 0.001 and SGD with learning rate η = 0.01,
respectively. The relative entropy losses converges fastest, followed by the log-variance loss. The convergence of
the cross-entropy loss is significantly slower, in particular in the SGD case. We also note that the cross-entropy
loss diverges if larger learning rates are used. These findings are in line with the results from Proposition 4.29.
When SGD is used, the moment loss experiences fluctuations in later gradient steps. This can be explained by
the fact that the moment loss is robust at u∗ only if y0 = − logZ is satisfied exactly (see Proposition 4.22).

Let us illustrate the potential benefit of sampling X0 from a prescribed density (see Remark 1.4), here X0 ∼
N (0, Idd×d). The overall convergence is hardly affected and the L2 error dynamics agrees qualitatively with the
one shown in Figure 4.6. However, the approximation is more accurate at initial time t = 0, see Figure 4.7.
This phenomenon appears to be particularly pronounced in this example, as independent ansatz functions are
used at each time step.
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Figure 4.6: Performance of the losses for the Ornstein-Uhlenbeck process with quadratic costs, using Adam and
SGD.

Figure 4.7: Approximation and reference solution of the optimal control with either deterministic or random
initializations of xinit. Three components of u and u∗ref are plotted.

4.4.4 Metastable dynamics in low and high dimensions
We now come back to the double well potential from Example 1.1 and consider the SDE

dXs = −∇Ψ(Xs) ds+B dWs, X0 = xinit, (4.73)

where B ∈ Rd×d is the diffusion coefficient, Ψ(x) =
∑︁d
i=1 κi(x

2
i − 1)2 is the potential (with κi > 0 being a

set of parameters) and xinit = (−1, . . . ,−1)⊤ is the initial condition. We consider zero running costs, f = 0,
terminal costs g(x) =

∑︁d
i=1 νi(xi− 1)2, where νi > 0, and a terminal time T = 1. Recall from Example 1.1 that

choosing higher values for κi and νi accentuates the metastable features, making sample-based estimation of
E [exp(−g(XT ))] more challenging. For an illustration, Figure 4.8 shows the potential Ψ and the weight at final
time e−g (see (1.13)), for different values of ν and κ, in dimension d = 1 and for B = 1. We furthermore plot
the ‘optimally tilted potentials’ Ψ∗ = Ψ + BB⊤V , noting that −∇Ψ∗ = −∇Ψ + Bu∗. Finally, the right-hand
side shows the gradients ∇u∗ at initial time t = 0.
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Figure 4.8: The double well potential and the weight e−g, for different values of κ and ν as well as optimal
controls (inducing ‘tilted potentials’) and their gradients.

For an experiment, let us first consider the one-dimensional case, choosing B = 1, κ = 5 and ν = 3. In this
setting the relative error associated to the standard Monte Carlo estimator, i.e. the estimator version of (4.66),
which we denote by ˆ︁δ, is roughly ˆ︁δ(0) = 63.86 for a batch size of K = 107 trajectories, from which only about
2 · 103 (i.e. 0.02%) cross the barrier. Given that e−g is supported mostly in the right well, the optimal control
u∗ steers the dynamics across the barrier. Using an approximation of u∗ obtained by a finite difference scheme,
we achieve a relative error of ˆ︁δ(u∗) = 1.94 (the theoretical optimum being zero, according to Theorem 1.2) and
a crossing ratio of approximately 87.28%.

Figure 4.9: Training iterations for the one-dimensional metastable double well example for a small batch size.

Figure 4.10: Training iterations for the one-dimensional metastable double well example for a large batch size.

To run IDO-based algorithms, we use the standard feed-forward neural network (see Definition 2.49) with the
activation function ϱ = tanh and choose ∆t = 0.005, η = 0.05. We try batch sizes of K = 50 and K = 1000 and
plot the training progress in Figures 4.9 and 4.10, respectively. In Figure 4.11 we display the approximation
obtained using the log-variance loss and compare with the reference solution u∗ref .
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Figure 4.11: Approximation and reference solution for the double well control problem in d = 1.

It can be observed that the log-variance and moment losses perform well with both batch sizes, with the log-
variance loss however achieving a satisfactory approximation with fewer gradient steps. The cross-entropy loss
appears to work well only if the batch size is sufficiently large. We attribute this observation to the non-
robustness at u∗ (see Proposition 4.25) and, tentatively, to the exponential factor appearing in (4.16b), see
Remark 4.10.

The optimization using the relative entropy loss is frustrated by instabilities in the vicinity of the solution
u∗. In order to further investigate this aspect we numerically compute the variances of the gradients and the
associated relative errors with respect to the mean, using 50 realizations at each gradient step. Figure 4.12 shows
the averages of the relative errors and variances over weights in the network30, confirming that the gradients
associated to the log-variance loss have significantly lower variances. This phenomenon is in accordance with
Proposition 4.25 (in particular noting that |∇u∗|2 is expected to be rather large in a metastable setting, see
Figure 4.8) and explains the unsatisfactory behaviour of the relative entropy loss observed in Figures 4.9 and
4.10.

Figure 4.12: We display the L2 error pertaining to the one-dimensional double well experiment, along with the
estimated averages of the variances and relative errors of the gradients along the training iterations for different
losses.

Let us now consider the multidimensional setting, namely d = 10, where the dynamics exhibits ‘highly’
metastable characteristics in 3 dimensions and ‘weakly’ metastable characteristics in the remaining 7 dimen-
sions. To be precise, we set κi = 5, νi = 3 for i ∈ {1, 2, 3} and κi = 1, νi = 1 for i ∈ {4, . . . , 10}. Moreover, we
choose the diffusion coefficient to be B = Idd×d and conduct the experiment with a batch size of K = 500.

In Figure 4.13 we see that only the log-variance loss achieves a reasonable approximation. Interestingly, the
training progresses in stages, successively overcoming the potential barriers in the highly metastable directions.
On the right-hand side we display the components of the approximated optimal control associated to one highly
and one weakly metastable direction, for fixed t = 0. We observe that the approximation is fairly accurate, and

30In order to lessen the impact of Monte Carlo errors and numerical instabilities, we take moving averages comprising 30 gradient
steps and discard partial derivatives with an average magnitude of less than 0.01. We note that the plateaus present in Figure 4.12
are an artefact due to the moving averages, but insist that this procedure does not alter the main results in a qualitative way.

84



4.4. Numerical experiments for path space approximations

that comparatively large control forces are needed to push the dynamics over the highly metastable potential
barrier.

Figure 4.13: Training iterations for the multidimensional metastable double well along with the approximated
solution using the log-variance loss, from which we plot two components.

85





Chapter 5

VarGrad: A low-variance gradient
estimator for Bayesian variational
inference

In Chapter 4 we have studied variational formulations of certain PDE related problems, which led to the
approximation of path space probability measures via minimizing certain divergences. In particular, the idea
was to approach a given target by minimizing over a family of alternative measures. Crucially, this led to
the novel log-variance divergence, for which we have shown remarkable properties. Although we have so far
highlighted an application to path space measures, this divergence is valid for any probability measure and
therefore can also be applied to densities on Rd, leading to yet other applications. One such application is
Bayesian variational inference, where the target measure (or density) is the posterior distribution given by
Bayes’ theorem. As before, the idea is to approximate this target by minimizing divergences over a family of
densities, which is usually done by gradient descent methods in practice. Taking derivatives of a corresponding
log-variance loss will then lead to a gradient estimator, which we call VarGrad. This chapter is about analyzing
VarGrad both theoretically and numerically, ultimately showing its favorable variance properties. In Section 5.1
we will first provide an introduction to Bayesian variational inference, emphasizing why there is indeed need for
variance reduction. We note that the used terminology is adapted to the corresponding scientific community
and might therefore be slightly different from the other chapters. In Section 5.2 we will introduce VarGrad,
which we will subsequently analyze in Section 5.3, in particular showing a closeness to optimally scaled control
variate estimators and demonstrating lower variance compared to naive estimators. In Section 5.4 we illustrate
these properties on numerical examples.

This chapter is based on joint work with Ayman Boustati, Nikolas Nüsken, Francisco J. R. Ruiz and Ömer
Deniz Akyildiz and has been published in [250].

5.1 Background on Bayesian variational inference

We consider the joint density p(x, z) (also called probabilistic model), with z ∈ RD denoting so-called latent
variables and x ∈ Rd the data, and are interested in computing the posterior p(z|x) = p(x, z)/p(x), where p(x) =∫︁
p(x, z)dz is the marginal likelihood31. For most models of interest, the posterior is hard to compute due to

the intractability of the marginal likelihood, and we therefore resort to an approximation. Variational inference
approximates the posterior p(z|x) within a parameterized family of distributions qθ(z) (with θ ∈ Θ ⊂ Rp), called
variational family32. To be precise, it usually finds the parameters θ∗ that minimize the KL divergence,

θ∗ = argmin
θ∈Θ

KL (qθ(z)|p(z|x)) , (5.1)

thus, variational inference casts the inference problem as an optimization problem, which can be solved with
stochastic optimization tools when the KL divergence is not available in closed form. This optimization problem

31Note that by slightly abusing notation we use the same latter for the joint density p(x, z), the posterior p(z|x) and the evidence
p(x), however their corresponding arguments should make it clear which object we are referring to. This notation is standard in
the machine learning literature on Bayesian variational inference.

32Note that we switch the meaning of the letters p and q in order to be consistent with most of the literature on Bayesian
variational inference. In contrast to e.g. Chapter 4 now p denotes the target, whereas q the approximating quantity.
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is intractable because the KL divergence itself depends on the intractable posterior. Variational inference
sidesteps this problem by maximizing instead the evidence lower bound (ELBO) given by33

ELBO(θ) = Eqθ
[︃
log

p(x, z)

qθ(z)

]︃
, (5.2)

which is a lower bound on the marginal likelihood, since

log p(x) = ELBO(θ) + KL (qθ(z)|p(z|x)) ≥ ELBO(θ). (5.3)

Inspecting (5.3), we realize that the maximizer of the ELBO with respect to θ is equivalent to the minimizer
of the KL divergence. As the expectation in (5.2) is typically intractable, variational inference uses stochastic
optimization to maximize the ELBO. In particular, it forms unbiased Monte Carlo estimators of the gradient
∇θ ELBO(θ).

In the sequel, we analyze a multi-sample estimator of the gradient of the ELBO. In particular, we focus on an
estimator first introduced in [177] and [259], which is based on the so-called score function method [297] with
control variates. We first show the connection between this estimator and the log-variance loss as an alternative
divergence measure between the variational distribution qθ(z) and the exact posterior p(z|x). This divergence,
which is different from the standard KL divergence used in variational inference, is defined as the variance, under
some arbitrary distribution r(z), of the log-ratio log qθ(z)

p(z|x) . As done in the path measure setting in Definition 4.4,
we refer to this divergence as the log-variance loss. We show that we recover the gradient estimator of [177] and
[259] by taking the gradient with respect to the variational parameters θ of the log-variance loss and evaluating
the result at r(z) = qθ(z). This property suggests a simple algorithm for computing the gradient estimator,
based on differentiating through the log-variance loss. We refer to the estimator as VarGrad.

We next review the score function method, a Monte Carlo estimator commonly used in variational inference.
Instead of the ELBO, we focus on the gradients of the KL divergence with respect to the variational parameters
θ directly. These gradients are equal to the gradients of the negative ELBO because the marginal likelihood
p(x) does not depend on θ; that is, ∇θ KL (qθ(z)|p(z|x)) = −∇θ ELBO(θ).

The score function estimator [45, 226, 244, 297], also known as Reinforce, expresses the gradient as an expectation
that depends on the log-ratio log (qθ(z)/p(x, z)) weighted by ∇θ log qθ(z) (known as score function in statistics).
A formal computation, assuming exchangeability of differentiation and integration, yields

∇θ KL (qθ(z)|p(z|x)) =
∫︂ (︃

p(x, z)

qθ(z)

∇θqθ(z)
p(x, z)

qθ(z) + log

(︃
qθ(z)

p(x, z)

)︃
∇θqθ(z)
qθ(z)

qθ(z)

)︃
dz (5.4a)

= ∇θ
∫︂
qθ(z)dz +

∫︂
log

(︃
qθ(z)

p(x, z)

)︃
∇θ log (qθ(z)) qθ(z)dz, (5.4b)

where the first summand vanishes due to ∇θ
∫︁
qθ(z)dz = ∇θ(1) = 0. This brings the resulting estimator

∇θ KL (qθ(z)|p(z|x)) ≈ ˆ︁gReinforce(θ) =
1

K

K∑︂
k=1

log

(︃
qθ(z

(k))

p(x, z(k))

)︃
∇θ log qθ(z(k)), (5.5)

where z(k)
i.i.d.∼ qθ(z). It is often observed in practice that this estimator suffers from high variance and

therefore additional tricks are needed; [244] for instance suggests to use Rao-Blackwellization, which exploits
a potential factorization of the variational distribution, as well as control variates. The idea of the latter is to
add a quantity with known expectation that might correlate with the estimator in such a way that the overall
variance is reduced. Here we rely on the score function for being this quantity, i.e. we consider the control
variate a ⊙ ∇θ log qθ(z), where ⊙ denotes the Hadamard (elementwise) product and the idea is to choose the
coefficient a ∈ Rp as to decrease the estimator’s variance, noting that

E [∇θ log qθ(z)] =
∫︂
∇θqθ(z)
qθ(z)

qθ(z)dz = 0. (5.6)

We get the unbiased control variate gradient estimator

ˆ︁gCV(θ) = ˆ︁gReinforce(θ)− a⊙

(︄
1

K

K∑︂
k=1

∇θ log qθ(z(k))

)︄
. (5.7)

It remains the question of how to choose a in practice and we note that there is a theoretical optimal choice
yielding minimal variance.

33As a further remark on the notation, note that the subscript after the expectation or variance operator indicates the density
w.r.t. to which the random variable is drawn, e.g. Eq [f(z)] =

∫︁
Rd f(z)q(z)dz, cf. footnote 19 on page 50.
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5.2. The log-variance loss and its connection to VarGrad

Lemma 5.1. Let fθ(z) := log qθ(z)
p(x,z) . For each i ∈ {1, . . . , p}, the i-th component of the optimal control variate

scaling is given by

a∗i =
Covqθ (fθ∂θi log qθ, ∂θi log qθ)

Varqθ (∂θi log qθ)
. (5.8)

Proof. For each i we compute

Varqθ (ˆ︁gCV,i(θ)) = Varqθ (ˆ︁gReinforce,i(θ)) +
ai

2

S
Varqθ (∂θi log qθ)−

2ai
S

Covqθ (fθ∂θi log qθ, ∂θi log qθ) , (5.9)

which is a parabola in ai that opens up. One therefore readily computes the minimal value to be ai = a∗i as
specified in (5.8).

For the estimation of ∇θ KL (qθ(z)|p(z|x)) [177] and [259] leverage the multi-sample estimator by using K − 1
samples to compute a particular control variate coefficient a and then average over the resulting estimators,
which they call leave-one-out estimator,

ˆ︁gLOO(θ) =
1

K

K∑︂
k=1

∇θ log qθ(z(k))

⎛⎝fθ(z(k))− K∑︂
j ̸=k

fθ(z
(j))

⎞⎠ (5.10a)

=
1

K − 1

(︄
K∑︂
k=1

fθ(z
(k))∇θ log qθ(z(k))− f̄θ

K∑︂
k=1

∇θ log qθ(z(k))

)︄
, (5.10b)

where z(k) i.i.d.∼ qθ(z) and for simplicity of notation we have defined

fθ(z) := log
qθ(z)

p(x, z)
and f̄θ :=

1

K

K∑︂
k=1

fθ(z
(k)) ≈ −ELBO(θ). (5.11)

We note that this method makes no assumptions on the model p(x, z) or the distribution qθ(z); the only
requirements are to be able to sample from qθ(z) and to evaluate log qθ(z) and log p(x, z).

5.2 The log-variance loss and its connection to VarGrad

We now show the connection between the leave-one-out estimator (5.10) and the log-variance loss. We will
introduce the log-variance loss for densities and will refer to the estimator (5.10) as VarGrad.

The log-variance loss
In analogy to the path space measure setting, the log-variance loss for densities is defined as the variance, under
some arbitrary distribution r(z), of the log-ratio log qθ(z)

p(z|x) . It has the property of reproducing the gradients of
the KL divergence under certain conditions (see Proposition 5.3 for details). We next give the precise definition
of the loss (completely analogous to Definition 4.4).

Definition 5.2. For a given distribution r(z), the log-variance loss Lr(·) is given by

Lr(qθ(z)|p(z|x)) =
1

2
Varr

(︃
log

(︃
qθ(z)

p(z|x)

)︃)︃
. (5.12)

We refer to the distribution r(z) as the reference distribution under which the discrepancy between qθ(z) and
the posterior p(z|x) is computed. When the support of the reference distribution contains the supports of qθ(z)
and p(z|x), (5.12) is a divergence34; it is zero if and only if qθ(z) = p(z|x). The factor 1/2 in (5.12) is only
included because it simplifies some expressions later in this section35.

We next show that the gradient of the log-variance loss and the gradient of the standard KL divergence coincide
under certain conditions. In particular, taking the gradient of (5.12) with respect to the variational parameters
θ and then evaluating the result for a reference distribution r(z) = qθ(z) gives the gradient of the KL divergence.
This property is detailed in Proposition 5.3.

34More technically, as we assume that r(z), p(z|x), and qθ(z) admit densities such that measure-zero sets of r(z) are necessarily
measure-zero sets of p(z|x) and qθ(z), implying that the divergence is well defined.

35Note that compared to Definition 4.4 we introduced a factor 1
2

in the definition of the log-variance loss in order to relate the
corresponding gradient estimator (5.19) to the Reinforce estimator (5.5).
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Chapter 5. VarGrad: A low-variance gradient estimator

Proposition 5.3. The gradient with respect to θ of the log-variance loss, evaluated at r(z) = qθ(z), equals the
gradient of the KL divergence,

∇θLr(qθ(z)|p(z|x))
⃓⃓⃓
r=qθ

= ∇θ KL(qθ(z)|p(z|x)). (5.13)

Proof. We first consider the gradient of the KL divergence. It is given by

∇θ KL(qθ(z)|p(z|x)) =
∫︂
∇θqθ(z) dz +

∫︂
log

(︃
qθ(z)

p(z|x)

)︃
∇θqθ(z) dz, (5.14)

where we can drop the first term since
∫︁
∇θqθ(z) dz = ∇θ

∫︁
qθ(z) dz = ∇θ(1) = 0.

We now consider the gradient of the log-variance loss. Using the definition from (5.12), we see that

∇θLr(qθ(z)|p(z|x)) =
1

2
∇θ
∫︂

log2
(︃
qθ(z)

p(z|x)

)︃
r(z)dz − 1

2
∇θ
(︃∫︂

log

(︃
qθ(z)

p(z|x)

)︃
r(z)dz

)︃2

(5.15a)

=

∫︂
log

(︃
qθ(z)

p(z|x)

)︃
∇θqθ(z)
qθ(z)

r(z)dz −
(︃∫︂

log

(︃
qθ(z)

p(z|x)

)︃
r(z)dz

)︃(︃∫︂
∇θqθ(z)
qθ(z)

r(z)dz

)︃
.

(5.15b)

When we evaluate the gradient at r(z) = qθ(z), the right-most term vanishes, since∫︂
∇θqθ(z)
r(z)

r(z) dz =

∫︂
∇θqθ(z) dz = 0. (5.16)

Thus, the gradient of the log-variance loss becomes equal to the gradient of the KL divergence.

Proposition 5.3 implies that we can estimate the gradient of the KL divergence by estimating instead the
gradient of the log-variance loss.

Remark 5.4. The result in Proposition 5.3 is obtained by setting r(z) = qθ(z) after taking the gradient with
respect to θ. The same result does not hold if we set r(z) = qθ(z) before differentiating.

VarGrad: Derivation of the gradient estimator from the log-variance loss
The leave-one-out estimator in (5.10) [177, 259] is connected to the log-variance loss from above through
Proposition 5.3. Firstly, note that the log-variance loss is intractable as it depends on the posterior p(z|x).
However, since the marginal likelihood p(x) has zero variance, it can be dropped from the definition in (5.12)
yielding

Lr(qθ(z)|p(z|x)) =
1

2
Varr

(︃
log

(︃
qθ(z)

p(x, z)

)︃)︃
=

1

2
Varr (fθ(z)) , (5.17)

where fθ(z) is defined in (5.11).

Next, we can build the estimator of the log-variance loss as the empirical variance of K Monte Carlo samples,

Lr(qθ(z)|p(z|x)) ≈
1

2(K − 1)

K∑︂
k=1

(︂
fθ(z

(k))− f̄θ
)︂2
, z(k)

i.i.d.∼ r(z). (5.18)

Applying Proposition 5.3 by differentiating through (5.18), we can arrive at the VarGrad estimator, ˆ︁gVarGrad(θ) =ˆ︁gLOO(θ) ≈ ∇θ KL (qθ(z)|p(z|x)), where

ˆ︁gVarGrad(θ) =
1

K − 1

(︄
K∑︂
k=1

fθ(z
(k))∇θ log qθ(z(k))− f̄θ

K∑︂
k=1

∇θ log qθ(z(k))

)︄
, (5.19)

and z(k) i.i.d.∼ qθ(z).

The expression for VarGrad in (5.19) is identical to that of the leave-one-out estimator in (5.10) and it can
therefore (more or less) be interpreted as a control variate estimator with a particular choice of a. Furthermore,
VarGrad is an unbiased estimator of the gradient of the KL divergence (and equivalently the gradient of the
ELBO). From a probabilistic programming perspective, setting the reference r(z) = qθ(z) after differentiating
w.r.t. θ amounts to sampling z(k) ∼ qθ(z) and detaching the resulting samples from the computational graph.
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This suggests a novel algorithmic procedure, given in Algorithm 2. Its implementation is simple: we only need
the samples z(k) ∼ qθ(z) and apply the stop_gradient operator (assuring that derivatives are not taken with
respect to r(z)), evaluate the log-ratio fθ(z

(k)) for each sample, and then differentiate through the empirical
variance of this log-ratio.

Algorithm 2: Pseudocode for VarGrad
Input: Variational parameters θ, data x, sample size K.
for k = 1 to K do

z(k) ← sample(qθ(·)) (sample from the approximate posterior)
z(k) ← stop_gradient(z(k)) (detach the samples from the computational graph)
f
(k)
θ ← log qθ(z

(k))− log p(x, z(k)) (an estimate of the negative ELBO)
endˆ︁L ← 1

2 Var({f
(k)
θ }Kk=1) (an estimate of the log-variance loss)

Result: Gradient of ˆ︁L (differentiate through the loss w.r.t. θ)

5.3 Analytical results for VarGrad

We now study some properties of ˆ︁gVarGrad in comparison to other estimators based on the score function
method. We analyze the difference δCV between the control variate coefficient of VarGrad (called aVarGrad)
and the optimal one stated in Lemma 5.1. The former can be approximated cheaply and unbiasedly, while
a standard Monte Carlo estimator of the latter is biased and often exhibits high variance. Furthermore, we
establish that the difference δCV is negligible in certain settings, in particular when KL(qθ(z)|p(z|x)) is either
very large or close to zero; thus in these settings the control variate coefficient of VarGrad is close to the optimal
coefficient. Later we show that a simple relation between δCV and the ELBO is sufficient to guarantee thatˆ︁gVarGrad has lower variance than ˆ︁gReinforce when the number of Monte Carlo samples is large enough.

Analysis of the control variate coefficients
As mentioned before, in [244] it is proposed to modify ˆ︁gReinforce using a score function control variate yielding
(5.7),

ˆ︁gCV(θ) = ˆ︁gReinforce(θ)− a⊙

(︄
1

K

K∑︂
k=1

∇θ log qθ(z(k))

)︄
, (5.20)

where a is a vector chosen so as to reduce the variance of the estimator. We recover VarGrad as in (5.19), up
to a factor of proportionality, by setting the control variate coefficient a = f̄θ1 in (5.7), where 1 is a vector of
ones. The proportionality relation is K−1

K ˆ︁gCV = ˆ︁gVarGrad. In terms of variance reduction, we recall the optimal
coefficient a∗ from Lemma 5.1.

We next show that the coefficients of VarGrad, aVarGrad, are close to the optimal coefficients a∗. For this, we
first relate aVarGrad to a∗ in Lemma 5.5.

Lemma 5.5. We can write the optimal control variate coefficient as the expected value of aVarGrad plus a control
variate correction term δCV, i.e.,

a∗ = Eqθ [aVarGrad] + δCV = −ELBO(θ) + δCV, (5.21)

where aVarGrad = f̄θ and the components of the correction term δCV are given by

δCV
i =

Covqθ

(︂
fθ, (∂θi log qθ)

2
)︂

Varqθ (∂θi log qθ)
. (5.22)

Proof. First, notice that Varqθ (∂θi log qθ) = Eqθ [(∂θi log qθ)2] since Eqθ [∂θi log qθ] = 0. We then compute

a∗i =
Eqθ

[︁
fθ(∂θi log qθ)

2
]︁

Eqθ
[︂
(∂θi log qθ)

2
]︂ (5.23a)

=
Eqθ

[︁
fθ(∂θi log qθ)

2
]︁
− Eqθ [fθ]Eqθ

[︁
(∂θi log qθ)

2
]︁
+ Eqθ [fθ]Eqθ

[︁
(∂θi log qθ)

2
]︁

Eqθ
[︂
(∂θi log qθ)

2
]︂ (5.23b)

= Eqθ [f̄θ] + δCV
i . (5.23c)

In the last line we have used the fact that Eqθ [fθ] = Eqθ [f̄θ].
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Chapter 5. VarGrad: A low-variance gradient estimator

According to Lemma 5.5, the difference between the optimal control variate coefficient and the (expected)
VarGrad coefficient is equal to the correction δCV. We hypothesize that direct Monte Carlo estimation of δCV

in (5.22) (or similarly for (5.8)) suffers from high variance because it takes the form of a fraction36 (see for
instance Section 5.4.2). Moreover, estimating (5.22) by taking the ratio of two Monte Carlo estimators gives a
biased estimate. Furthermore, estimating δCV

i with the same samples as the ones used for estimating the score
function yields a biased gradient estimator [106, Section 4].

We next show that in certain settings the correction term δCV becomes negligible, implying that ˆ︁gVarGrad andˆ︁gReinforce equipped with the optimal control variate coefficients behave almost identically. We provide empirical
evidence of this finding in Section 5.4 (and in Section 5.4.2 for the Gaussian case).

Proposition 5.6 (δCV is small in comparison to Eqθ [aVarGrad] if the KL divergence between qθ(z) and p(z|x)
is large or small). Assume that qθ(z) has lighter tails than the posterior p(z|x), in the sense that there exists a
constant C > 0 such that

sup
z

qθ(z)

p(z|x)
< C. (5.24)

Furthermore, define the kurtosis of the score function,

Kurt[∂θi log qθ] =
Eqθ [(∂θi log qθ)4]

(Eqθ [(∂θi log qθ)2])2
, (5.25)

and assume that it is bounded, Kurt[∂θi log qθ] <∞. Then, the ratio between the control variate correction δCV

and the expected control variate coefficient of VarGrad can be upper bounded by⃓⃓⃓⃓
δCV
i

Eqθ [aVarGrad]

⃓⃓⃓⃓
≤

2
√︁
C Kurt[∂θi log qθ]⃓⃓⃓⃓√︁

KL(qθ(z)|p(z|x))− log p(x)√
KL(qθ(z)|p(z|x))

⃓⃓⃓⃓ . (5.26)

Proof. Note that

⃓⃓⃓⃓
δCV
i

Eqθ [aVarGrad]

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓Covqθ

(︂
fθ, (∂θi log qθ)

2
)︂

Eqθ [fθ] Varqθ (∂θi log qθ)

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓Eqθ

[︂
(fθ − Eqθ [fθ]) (∂θi log qθ)

2
]︂

Eqθ [fθ]Eqθ [(∂θi log qθ)2]

⃓⃓⃓⃓
⃓⃓ , (5.27)

where we have used the fact that Eqθ [∂θi log qθ] = 0. From

E[fθ] = −ELBO(θ) = KL(qθ(z)|p(z|x))− log p(x),

and using the Cauchy-Schwarz inequality, (5.27) can be bounded from above by(︂
Varqθ

(︂
log qθ(z)

p(z|x)

)︂)︂1/2
|KL(qθ(z)|p(z|x))− log p(x)|

(︃
Eqθ [(∂θi log qθ)4]

(Eqθ [(∂θi log qθ)2])2

)︃1/2

. (5.28)

The second factor equals
√︁
Kurt[∂θi log qθ]. To bound the first factor, notice that(︃

Varqθ

(︃
log

qθ(z)

p(z|x)

)︃)︃1/2

≤
(︃
Eqθ

[︃
log2

qθ(z)

p(z|x)

]︃)︃1/2

=

(︃
Eqθ

[︃
log2

p(z|x)
qθ(z)

]︃)︃1/2

(5.29a)

≤
(︃
2Eqθ

[︃
exp

(︃⃓⃓⃓⃓
log

p(z|x)
qθ(z)

⃓⃓⃓⃓)︃
− 1−

⃓⃓⃓⃓
log

p(z|x)
qθ(z)

⃓⃓⃓⃓]︃)︃1/2

, (5.29b)

where we have used the estimate

ex − 1− x =

∞∑︂
n=0

xn

n!
− 1− x =

∞∑︂
n=2

xn

n!
≥ 1

2
x2, x ≥ 0, (5.30)

with x =
⃓⃓⃓
log p(z|x)

qθ(z)

⃓⃓⃓
. We now use [103, Lemma 8.3] to bound (5.29b) from above by

2
√
Ch(qθ(z) | p(z|x)), (5.31)

36Monte Carlo estimators of fractions are not straightforward. As a simple example, consider the ratio of two independent
Gaussian random variables, each with zero mean and unit variance. The ratio follows a Cauchy distribution, which has infinite
variance.
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where

h(qθ(z)|p(z|x)) =

√︄∫︂ (︂√︁
qθ(z)−

√︁
p(z|x)

)︂2
dz (5.32)

is the Hellinger distance. From [247, Lemma A.3.5] we have the bound h(qθ(z) | p(z|x)) ≤
√︁

KL(qθ(z) | p(z|x)).
Combining these estimates we arrive at the claimed result.

Remark 5.7. The variational approximation qθ(z) typically underestimates the spread of the posterior p(z|x)
[36], and so the assumption in (5.24) is typically satisfied in practice after a few iterations of the optimization
algorithm. The kurtosis Kurt[∂θi log qθ] quantifies the weight of the tails of the variational approximation in
terms of the score function. In Section 5.4.1 we analyze the kurtosis of exponential family distributions and
show that it is uniformly bounded for Gaussian variational families.

Remark 5.8. The upper bound in (5.26) allows us to identify two regimes. When KL(qθ(z)|p(z|x)) is large, the
bound asserts that the relative error satisfies⃓⃓⃓⃓

δCV
i

Eqθ [aVarGrad]

⃓⃓⃓⃓
⪅ O

(︂
KL(qθ(z)|p(z|x))−1/2

)︂
, (5.33)

as the second term in the denominator of (5.26) becomes negligible. This can happen in the early stages of the
optimization process, in which case we can conclude that δCV is expected to be small. Since the KL divergence
increases with the dimensionality of the latent variable z (see Appendix B.7), (5.26) also implies that the ratio
becomes smaller as the number of latent variables grows. Moreover, if the minimum KL divergence between
the variational family and the true posterior is large (i.e., if the best candidate in the variational family is still
far away from the target), the correction term δCV

i can be negligible during the whole optimization procedure,
which is often the case in practice.
In the regime where KL(qθ(z)|p(z|x)) approaches zero (i.e., towards the end of the optimization process if the
variational family is well specified and includes the posterior), then (5.26) implies that⃓⃓⃓⃓

δCV
i

Eqθ [aVarGrad]

⃓⃓⃓⃓
⪅ O

(︂
KL(qθ(z)|p(z|x))1/2

)︂
. (5.34)

In this regime, the error w.r.t. the optimal control variate coefficient decreases with the KL divergence. The
estimates in (5.33) and (5.34) combined suggest that the relative error remains bounded throughout the opti-
mization. We will verify this proposition experimentally in Section 5.4.

Variance of the estimator
Now we provide a result that guarantees that the variance of ˆ︁gVarGrad is smaller than the variance of ˆ︁gReinforce

when the number of Monte Carlo samples is large enough.

Proposition 5.9. Consider the two gradient estimators ˆ︁gReinforce(θ) and ˆ︁gVarGrad(θ), each with K Monte Carlo
samples, as defined in (5.5) and (5.19), respectively. If

− δCV
i

Eqθ [aVarGrad]
=

δCV
i

ELBO(θ)
<

1

2
(5.35)

then there exists K0 ∈ N such that

Var (ˆ︁gVarGrad,i(θ)) ≤ Var (ˆ︁gReinforce,i(θ)) , for all K ≥ K0. (5.36)

Proof. See Appendix C.4.

If the correction δCV is negligible in the sense of Proposition 5.6, then the assumption in (5.35) is satisfied
and Proposition 5.9 guarantees that VarGrad has lower variance than Reinforce when K is large enough. We
arrive at the following corollary, which also considers the dimensionality of the latent variables. The main
assumption that the KL divergence increases with the dimension of the latent space is supported by the result
in Appendix B.7.

Corollary 5.10. Let K be the number of samples and D the dimension of the latent variable z. Furthermore,
let the assumptions of Proposition 5.6 be satisfied and assume that KL(qθ(z)|p(z|x)) is strictly increasing in D
and goes to infinity for D →∞. Then, there exist K0, D0 ∈ N such that

Var (ˆ︁gVarGrad,i(θ)) ≤ Var (ˆ︁gReinforce,i(θ)) , for all K ≥ K0 and D ≥ D0. (5.37)
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Chapter 5. VarGrad: A low-variance gradient estimator

Proof. Note that with Proposition 5.6 we have⃓⃓⃓⃓
δCV
i

Eqθ [aVarGrad]

⃓⃓⃓⃓
→ 0 (5.38)

for D → ∞, assuming that KL(qθ(z)|p(z|x)) is strictly increasing in D. Therefore, for large enough D, the
condition from Proposition 5.9 (see (5.35)), is fulfilled and the statement follows immediately.

We provide further intuition on the condition in (5.35) with the analysis in Section 5.4.2.

Work related to VarGrad
In the last few years, many gradient estimators of the ELBO have been proposed; see [212] for a comprehensive
review. Among those, the score function estimators [45, 226, 244, 297] and the reparameterization estimators
[168, 249, 280], as well as combinations of both [214, 257], are arguably the most widely used. nvil [210] and
MuProp [120] are unbiased gradient estimators for training stochastic neural networks.

Other gradient estimators are specific for discrete-valued latent variables. The concrete relaxation [154, 204]
described a way to form a biased estimator of the gradient, which rebar [282] and relax [116] use as a control
variate to obtain an unbiased estimator. Other recent estimators have been proposed by [57, 188, 231, 267, 302,
303], and [74]. In Section 5.4, we compare VarGrad with some of these estimators, showing that it exhibits a
favorable performance versus computational complexity trade-off.

The VarGrad estimator was first introduced by [177] and [259]. It also relates to vimco [211] in that it is a
leave-one-out estimator. In this chapter, we have described an alternative derivation of VarGrad, based on the
log-variance loss.

The log-variance loss defines an alternative divergence between the approximate and the exact posterior distri-
butions. In the context of optimal control of diffusion processes and related forward-backward stochastic differ-
ential equations, it arises naturally to quantify the discrepancy between measures on path space, see Chapter 4.
Other forms of alternative divergences have also been explored in previous work; for example the χ2-divergence
[70], the Rényi divergence [194], the Langevin-Stein [243], the α-divergence [138], other f -divergences [292], a
contrastive divergence [256], and also the inclusive KL [215], see also Section 5.4.3.

5.4 Numerical experiments for VarGrad

In order to verify the properties of VarGrad empirically, we test it on two popular models: a Bayesian logistic
regression on a synthetic dataset and a discrete variational autoencoder (DVAE) [168, 258] on a fixed binarization
of Omniglot [186]. Let us first explain the two different experiments in detail37.

In the Bayesian logistic regression we define the discrete likelihood for x ∈ {0, 1} to be the probability mass
function of a Bernoulli random variable, i.e.

p(x|z) = b(x;σ(Y z)) (5.39)

with (the componentwise application)

b(x; ξ) := ξx(1− ξ)1−x, σ(y) =
1

1 + e−y
, (5.40)

z ∈ RD being the latent variables (which in this case are the coefficients of a logistic regression) and Y ∈ Rn×D
a given design matrix whose entries are once generated uniformly on [−1, 1]. We choose N = 100 and will
vary the dimension D. We consider a Gaussian prior p(z) = N (z;µ,Σ), where in our experiment we choose
µ = (0, . . . , 0)⊤,Σ = diag(25, . . . , 25, 1). For the variational distribution we choose qθ(z) = N (z; ˜︁µ, ˜︁Σ), with˜︁Σ = diag(˜︁σ1, . . . , ˜︁σD), i.e. θ = (˜︁µ1, . . . , ˜︁µD, ˜︁σ1, . . . , ˜︁σD)⊤. We train the models using stochastic gradient descent
with a learning rate of 0.001.

As a second example we consider a discrete variational autoencoder (DVAE), following the setup in [204], which
was also replicated in [116] and [282]. We fix the prior to be p(z) = b(z; 0.5), where here and in the sequel b is
applied componentwise. We consider data x ∈ Rm, latent variables z ∈ RD and define

pϑ(x|z) = b(x; Φϑ(z)) and qθ(z) = b(z; ˜︁Φθ(x)), (5.41)
37The code is available at https://github.com/aboustati/vargrad.
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where Φϑ : RD → Rm and ˜︁Φθ : Rm → RD are neural networks with parameters ϑ and θ respectively.

One speaks of stochastic binary layers38 when considering the graphical model

pϑ(x, z) = pϑ(x, z1, . . . , zr) = pϑr
(x|zr)

(︄
r−1∏︂
i=1

pϑi
(zi+1|zi)

)︄
p(z1). (5.42)

Let us choose r = 2 in the sequel, i.e.

pϑ(x, z) = pϑ(x, z1, z2) = pϑ2
(x|z2)pϑ1

(z2|z1)p(z1) (5.43)

with z = (z1, z2), ϑ = (ϑ1, ϑ2) and

pϑ2
(x|z2) = b(x; Φ2,ϑ2

(z2)), pϑ1
(z2|z1) = b(z2; Φ1,ϑ1

(z1)), p(z1) = b(z1; 0.5) (5.44)

and analogously
qθ(z) = qθ(z1, z2) = qθ1(z1|z2)qθ2(z2) (5.45)

with θ = (θ1, θ2) and
qθ1(z1|z2) = b(z1; ˜︁Φ1,θ1(z2)), qθ2(z2) = b(z2; ˜︁Φ2,θ2(x)). (5.46)

As before we want to reach pϑ(z|x) ≈ qθ(z), i.e. we want to maximize the lower bound

ELBO(ϑ, θ) = Eqθ
[︃
log

pϑ(x, z)

qθ(z)

]︃
(5.47)

w.r.t. θ, and now also simultaneously w.r.t. ϑ in order to improve the model pϑ. We note that we can write

∇θ ELBO(ϑ, θ) = −∇θ KL(qθ(z)|pϑ(x, z)) = −∇θLr(qθ(z)|pϑ(z|x))
⃓⃓⃓
r=qθ

(5.48)

∇ϑ ELBO(ϑ, θ) = −∇ϑKL(qθ(z)|pϑ(x, z)) = Eqθ [∇ϑ log pϑ(x, z)] , (5.49)

so we perform the optimization w.r.t. θ with VarGrad, whereas the optimization w.r.t. ϑ is done with the
usual KL estimator, which usually does not suffer from high variance, as we do not have to differentiate w.r.t.
parameters that determine the random variables. For the data we take a binarization of Omniglot [186], where
we binarize at the standard cut-off of 0.5. We use the standard train/test splits for this dataset. We use the two
layers linear architecture, which has two stochastic binary layers with 200 units each, as used in [204]. For this
model, the decoders mirror the corresponding encoders. For training the models, we use the Adam optimizer
[169] with learning rates 0.001, 0.0005 and 0.0001.

Closeness to the optimal control variate
In Section 5.3 we analytically showed that VarGrad is close to the optimal control variate, and in particular that
the ratio

⃓⃓
δCV
i /Eqθ [aVarGrad]

⃓⃓
can be small over the whole optimization procedure. This behavior is expected to

be even more pronounced with growing dimensionality of the latent space. In Figure 5.1, we confirm this result
by showing the ratio

⃓⃓
δCV
i /Eqθ [aVarGrad]

⃓⃓
for the logistic regression model. We also show the KL divergence

along the iterations and the denominator of the bound in (5.26); see Figure 5.1 for the details.
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Figure 5.1: Illustration of Proposition 5.6 and Remark 5.8 on the logistic regression model. In (a), we show that
the ratio

⃓⃓
δCV
i /Eqθ [aVarGrad]

⃓⃓
is small and uniformly bounded over epochs, illustrating that the VarGrad estima-

tor stays close to the optimal control variate coefficients during the whole optimization procedure. Additionally,
this ratio decreases with increasing dimensionality of the latent variables. In (b), we display an estimate of
the KL divergence across epochs and demonstrate the beneficial effect of higher dimensions, since the bound of
(5.26) is expected to scale like O(KL−1/2) in the early phase. In (c), we plot an estimate of the denominator
of the bound (5.26), which increases or stays constant over epochs, demonstrating that the ratio in (5.26) stays
stable (and small) over the epochs.

38Not to be confused with layers in a neural network.
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Chapter 5. VarGrad: A low-variance gradient estimator

(a) Two-layer linear DVAE. (b) nonlinear DVAE.

Figure 5.2: The distribution of δCV
i

E[aVarGrad]
associated with the biases of two DVAE models with 200 latent

dimensions trained on Omniglot using VarGrad. The estimates are obtained with 2000 Monte Carlo samples.
The ratio δCV

i

E[aVarGrad]
is consistently small throughout the optimization procedure.

In Figure 5.2, we provide further evidence that this ratio is also small when fitting DVAE. Indeed, we observe that
the ratio δCV

i /E[aVarGrad] is typically very small and is distributed around zero during the whole optimization
procedure.

Variance reduction and computational cost
In Figure 5.3 we show the variance of different gradient estimators throughout optimization in the logistic re-
gression setting. We realize a significant improvement of VarGrad compared to the standard Reinforce estimator
(5.5). In fact, we observe only a small difference between the variance of VarGrad and the variance of an oracle
estimator based on Reinforce with access to the optimal control variate coefficient a∗. Figure 5.3 also shows the
variance of the sampled estimator, which is based on Reinforce with an estimate of the optimal control variate;
this confirms the difficulty of estimating it in practice. (A similar trend can be observed for the DVAE, where
VarGrad is compared to a wider list of estimators from the DVAE literature.) All methods use K = 4 Monte
Carlo samples, and the control variate coefficient is estimated with either 2 extra samples (sampled estimator)
or 1000 samples (oracle estimator).

Figure 5.3: Estimates of the variance of the gradient component w.r.t. the posterior mean of one of the weights
for the logistic regression model. The variance of VarGrad is close to the oracle estimator based on Reinforce
with access to the optimal control variate coefficient a∗. Moreover, the sampled estimator (based on Reinforce
with an estimate of a∗) shows the difficulty of estimating the optimal control variate coefficient in practice.
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Figure 5.4: optimization trace versus epoch (left) and wall-clock time (right) for a two-layer linear DVAE on a
fixed binarization of Omniglot. The plot compares VarGrad to Reinforce with score function control variates
[244], dynamic rebar [282], relax, relax + rebar [116] and ARM [303]. The number of samples used to
compute each gradient estimator is given in the figure legend. VarGrad demonstrates favorable scalability and
performance when compared to the other estimators.

Finally, Figure 5.4 compares VarGad with other estimators by training a DVAE on Omniglot. The figure
shows the negative ELBO as a function of the epoch number (left plot) and against the wall-clock time (right
plot). The negative ELBO is computed on the standard test split and the optimization uses Adam [169] with
learning rate of 0.001. VarGrad achieves similar performance to state-of-the-art estimators, such as rebar
[282], relax [116], and arm [303], while being simpler to implement (see Algorithm 2) and without any tunable
hyperparameters.

In Figure 5.5 we present additional results on the practical variance reduction that VarGrad induces in the
two layer linear DVAE. Here, we compare with various other estimators from the literature. VarGrad achieves
considerable variance reduction over the adaptive (RELAX) and non-adaptive (controlled Reinforce) model-
agnostic estimators. Structured adaptive estimators such as Dynamic REBAR and RELAX + REBAR start
with a higher variance at the beginning of the optimization, which reduces towards the end. ARM, which
uses antithetic sampling, achieves the most reduction; however, it is only applicable to models with Bernoulli
latent variables. Notably, the extra variance reduction seen in some of the methods does not translate to better
optimization performance on this example.

Figure 5.5: Estimates of the gradient variance of the DVAE at 4 points during the optimization for different
gradient estimators. The plot compares VarGrad to Reinforce with score function control variates [244], dynamic
rebar [282], relax, relax + rebar [116] and ARM [303]. The number of samples used to compute each
gradient estimator is given in the figure legend.
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5.4.1 Results on the kurtosis of the score for exponential families
Here we provide a more explicit expression for Kurt[∂θi log qθ] in the case when qθ(z) is given by an exponential
family, i.e. qθ(z) = h(z) exp

(︁
θ⊤T (z)−A(θ)

)︁
, where T (z) is the vector of sufficient statistics and A(θ) denotes

the log-partition function. As an application, we show that in the Gaussian case, Kurt[∂θi log qθ] is uniformly
bounded across the whole variational family.

Lemma 5.11. Let qθ(z) = h(z) exp
(︁
θ⊤T (z)−A(θ)

)︁
. Then

Kurt[∂θi log qθ] =
Eqθ

[︁
(Ti(z)−mi)

4
]︁

Eqθ [(Ti(z)−mi)2]
2 , (5.50)

where mi = Eqθ [Ti(z)] denotes the mean of the sufficient statistics. In particular, Kurt[∂θi log qθ] does not
depend on h(z) or A(θ).

Proof. The claim follows by direct calculation. Indeed,

∂θi log qθ(z) = Ti(z)−
∂A

∂θi
(θ). (5.51)

It is left to show that ∂A
∂θi

(θ) = µi. For this, notice that the normalization condition∫︂
h(z) exp

(︁
θ⊤T (z)−A(θ)

)︁
dz = 1 (5.52)

implies ∫︂
h(z)

(︃
Ti(z)−

∂A(θ)

∂θi

)︃
exp

(︁
θ⊤T (z)−A(θ)

)︁
dz = 0 (5.53)

by taking the derivative w.r.t. θi. The left-hand side equals Eqθ [Ti(z)]− ∂A
∂θi

(θ), and so the claim follows.

Lemma 5.12. Let qθ(z) be the family of one-dimensional Gaussian distributions. Then there exists a constant
C > 0 such that

Kurt[∂θi log qθ] < C (5.54)

for all i and all θ ∈ Θ. In fact, it is possible to take C = 15.

Proof. For the Gaussian family, the sufficient statistics are given by T1(z) = z and T2(z) = z2. We have that

EN (µ,σ2)

[︁
(T1(z)−m1)

4
]︁

EN (µ,σ2) [(T1(z)−m1)2]
2 =

EN (µ,σ2)

[︁
(z − µ)4

]︁
EN (µ,σ2) [(z − µ)2]

2 = 3, (5.55)

by the well-known fact the standard kurtosis of any univariate Gaussian is 3. A lengthy but straightforward
computation shows that

EN (µ,σ2)

[︁
(T2(z)−m2)

4
]︁

EN (µ,σ2) [(T2(z)−m2)2]
2 =

3(4µ4 + 20µ2σ2 + 5σ4)

(2µ2 + σ2)2
, (5.56)

which is maximized for µ = 0, taking the value 15.

Lemma 5.12 shows that the kurtosis term in our bound (5.26) can be bounded for Gaussian families. This result
is expected to extend to the multivariate cases as well. We note that we observe in our experiments that the
bound is finite in a variety of cases.
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5.4.2 Illustrations in the Gaussian case
In the case when q(z) and p(z|x) are (diagonal) Gaussians we can gain some intuition on the performance of
VarGrad by computing the relevant quantities analytically. The principal insights obtained from the examples
presented in this section can be summarized as follows: Firstly, in certain scenarios the Reinforce estimator does
indeed exhibit a lower variance in comparison with VarGrad (although the advantage is very modest and only
materializes for a restricted set of parameters). This finding illustrates that the conditions in equations (5.35)
and (5.36) (the latter referring to K ≥ K0) cannot be dropped without replacement from the formulation of
Proposition 5.9. Secondly, in line with the results from Section 5.4, the relative error δCV

i /E[aVarGrad] decreases
with increased dimensionality. Moreover, the variance associated to computing the optimal control variate
coefficients a∗ is significant and increases considerably with the number of latent variables.

Comparing the variances of Reinforce and VarGrad
In order to understand when the variance of VarGrad is smaller than the variance of the Reinforce estimator
we first consider the one-dimensional Gaussian case q(z) = N (z;µ, σ2) and p(z|x) = N (z; ˜︁µ, ˜︁σ2) and analyze
the derivative w.r.t. µ. A lengthy calculation shows that

∆Var(µ, ˜︁µ, σ2, ˜︁σ2,K) := Var(ˆ︁gReinforce,µ)−Var(ˆ︁gVarGrad,µ) (5.57a)

=
1

4Kσ4˜︁σ2

(︃
(µ− ˜︁µ)4 + 2(µ− ˜︁µ)2(︃3K − 7

K − 1
σ2 − 3˜︁σ2

)︃
+

5K − 7

K − 1

(︁
σ2 − ˜︁σ2

)︁2)︃ (5.57b)

≈ 1

4Kσ4˜︁σ2

(︁
∆4
µ + 6∆2

µ∆σ2 + 5∆2
σ2

)︁
, (5.57c)

where the last line holds for large K with ∆µ := µ− ˜︁µ and ∆σ2 := σ2 − ˜︁σ2.

For an illustration, let us vary the above parameters. First, let us fix σ2 = ˜︁σ2 = 1. We note from (5.57c) that
in this case we expect VarGrad to have lower variance regardless of ∆µ as long as K is large enough. In Figure
5.6 we see that this is in fact the case, however a different result can be observed for small K, which is again in
accordance with (5.57b).

Figure 5.6: We compare the variance of the reinforce estimator with the variance of VarGrad. VarGrad is often
better even for small K – for large K this can be guaranteed with Proposition 5.9.

Next, we consider arbitrary σ2 and ˜︁σ2, but fixed µ = 1, ˜︁µ = 2. In Figure 5.7 we observe that the variance
of VarGrad is smaller for most values of σ2 and ˜︁σ2. However, even for large K there remains a region where
the Reinforce estimator is superior. In fact, one can compute the condition for this to happen to be ∆σ2 ∈[︁
−∆2

µ,− 1
5∆

2
µ

]︁
, which can be compared with the condition in (5.35) in Proposition 5.9.
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Figure 5.7: Variance comparison with varying σ2 and ˜︁σ2. VarGrad only wins outside a certain region, however,
if so, then potentially by orders of magnitude.

In Figure 5.8 we display the variance differences ∆Var as functions of ∆µ and ∆σ2 , approximated according to
(5.57c), for the same fixed values as before and see that they are bounded from below, but not from above.

Figure 5.8: Variance differences of the Reinforce estimator and VarGrad with varying ∆µ and ∆σ2 for different
sample sizes K.

For a D-dimensional Gaussian it is hard to compute the condition from (5.35) in full generality, but we can
derive the following stronger criterion that can guarantee better performance of VarGrad when assuming that
ELBO(θ) ≤ 0 (which for instance holds in the discrete-data setting).

Lemma 5.13. Assume ELBO(θ) ≤ 0 and

Cov
(︂
fθ, (∂θi log qθ)

2
)︂
> 0. (5.58)

Then there exists K0 ∈ N such that

Var (ˆ︁gVarGrad,i(θ)) ≤ Var (ˆ︁gReinforce,i(θ)) , for all K ≥ K0. (5.59)

Proof. With ELBO(θ) ≤ 0 we have

Cov
(︂
fθ, (∂θi log qθ)

2
)︂
≤ Eqθ

[︂
fθ (∂θi log qθ)

2
]︂
− 1

2
Eqθ [fθ]Eqθ

[︂
(∂θi log qθ)

2
]︂

(5.60a)

= Eqθ
[︂
(∂θi log qθ)

2
]︂(︃

δCV
i − 1

2
ELBO(θ)

)︃
. (5.60b)
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If now
Cov

(︂
fθ, (∂θi log qθ)

2
)︂
> 0, (5.61)

then also
δCV
i − 1

2
ELBO(θ) > 0, (5.62)

and the statement follows by Proposition 5.9.

The condition from (5.58) gives another guarantee for VarGrad having smaller variance than the Reinforce
estimator. However, we note that the converse statement is not necessarily true, i.e. if the condition does not
hold, VarGrad can still be better. The advantage of (5.58), however, is that it can be verified more easily in
certain settings, as for instance done for D-dimensional diagonal Gaussians in the following lemma.

Lemma 5.14 (Covariance term for diagonal Gaussians). Let q(z) and p(z|x) be diagonal D-dimensional Gaus-
sians with means µ and ˜︁µ and covariance matrices Σ = diag(σ2

1 , . . . , σ
2
D) and ˜︁Σ = diag(˜︁σ2

1 , . . . , ˜︁σ2
D). Then

Covqθ

(︂
fθ, (∂θk log qθ)

2
)︂
=

1˜︁σ2
k

− 1

σ2
k

(5.63)

for k ∈ {1, . . . , D},

Covqθ

(︂
fθ, (∂θk log qθ)

2
)︂
=

1

σ2
k

(︃
1˜︁σ2
k

− 1

σ2
k

)︃
(5.64)

for k ∈ {D + 1, . . . , 2D} with θ = (µ1, . . . , µD, σ
2
1 , . . . , σ

2
D)

⊤ and

Covqθ

(︂
fθ, (∂θk log qθ)

2
)︂
=

1˜︁σ2
k

− 1

σ2
k

(5.65)

for k ∈ {D + 1, . . . , 2D} with θ = (µ1, . . . , µD, log σ
2
1 , . . . , log σ

2
D)

⊤.

Proof. See Appendix C.4.

Optimal control variates in the Gaussian case
In the diagonal Gaussian case we can also easily analytically compute the optimal control variate coefficients from
(5.8), along the lines of the proof of Lemma 5.14. Our setting is again q(z) = N (z;µ,Σ), p(z|x) = N (z; ˜︁µ, ˜︁Σ)
with Σ = diag

(︁
σ2
1 , . . . , σ

2
D

)︁
, ˜︁Σ = diag

(︁˜︁σ2
1 , . . . , ˜︁σ2

D

)︁
. In Figure 5.9 we plot the variances of four different gradient

estimators with varying sample size K, namely ˆ︁gReinforce, ˆ︁gVarGrad, as well as the Reinforce estimator augmented
with the optimal control variate, once computed analytically and once sampled using K samples. The variance
depends on the mean and the covariance matrix; here we choose µi = 3, σ2

i = 3, ˜︁µi = 1, ˜︁σ2
i = 1 for all

i ∈ {1, . . . , D}.

Figure 5.9: Comparion of the variances of the different gradient estimators ˆ︁gReinforce, ˆ︁gVarGrad, as well as the
reinforce estimator with the optimal control variate coefficient, once computed analytically and once sampled
with K samples, for dimensions D = 3 and D = 30.
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Chapter 5. VarGrad: A low-variance gradient estimator

We observe that the VarGrad estimator is close to the analytical optimal control variate, and that the sampled
optimal control variate performs significantly worse in a small sample size regime. These observations get more
pronounced in higher dimensions and indicate that the variance of the sampled optimal control variate can itself
be high, which shows that using it might not always be beneficial in practice.

Let us additionally investigate the optimal control variate correction term δCV
i as defined in (5.22) for D-

dimensional Gaussians q(z) and p(z|x) as considered above. In Figure 5.10 we display the variances, means and
relative errors of δCV

i and aVarGrad = f̄θ and realize that indeed the ratio of those two converges to zero when D
gets larger. Furthermore we notice that the relative error of δCV increases with the dimension, explaining the
difficulties when estimating the optimal control variate coefficients from samples. Finally, we plot a histogram
of δCV

i (varying across i) in Figure 5.11, showing that δCV
i is small in comparison to E

[︁
aVarGrad

]︁
and distributed

around zero.

Figure 5.10: Mean, variance and relative errors associated to the two contributions to the optimal control variate
coefficient, δCV

i and aVarGrad = f̄θ.

Figure 5.11: The histogram of δCV
i shows that it is usually rather small in comparison to E

[︁
aVarGrad

]︁
, which is

roughly 700 here, and that it fluctuates around zero.

5.4.3 VarGrad’s connections to other divergences
Comparing to the other losses from the path measure setting in Chapter 4, the Reinforce gradient estimator
(5.5) can as well be derived from the moment loss

Lmoment
r (qθ(z)|p(z|x)) =

1

2
Er(z)

[︃
log2

(︃
qθ(z)

p(z|x)

)︃]︃
, (5.66)

namely

∇θLmoment
r (qθ(z)|p(z|x))

⃓⃓⃓
r=qθ

= Eqθ
[︃
log

(︃
qθ(z)

p(z|x)

)︃
∇θ log qθ(z)

]︃
. (5.67)

In the log-variance loss, on the other hand, one can omit the logarithm to obtain the variance loss

LVar
r (p(z|x)|qθ(z)) =

1

2
Varr(z)

(︃
p(z|x)
qθ(z)

)︃
=

1

2
Er(z)

[︄(︃
p(z|x)
qθ(z)

)︃2

− 1

]︄
, (5.68)
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which with r = qθ coincides with the χ2-divergence, see Definition 3.2. The potential of using the latter in
the context of variational inference was suggested in [70]. Here one is in principle again free of choosing r(z),
but unlike the log-variance loss, this loss in not symmetric with respect to qθ(z) and p(z|x). Our analysis in
Chapter 4 (for distributions on path space) however suggests that the variance loss (unlike the log-variance loss)
scales unfavorably in high-dimensional settings in terms of the variance associated to standard Monte Carlo
estimators, see also Chapter 3.
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Chapter 6

Solving high-dimensional PDEs

In Chapter 4 we have developed and analyzed numerical methods for solving semi-linear PDEs with nonlinearities
that depend on the solution only through its gradient (in particular relating to Problems 1.1-1.5), offering the
perspective of path space measures as a unifying framework. In this chapter we want to deal with more general
PDEs, now allowing for nonlinearities that may also directly depend on the solution. Even though we will not
focus on path spaces anymore, stochastic representations of PDEs via diffusion processes will still play a central
role. On the one hand we will consider backward iterations that approach the problem by dividing it into
multiple subproblems. On the other hand, variational formulations will bring iterative optimization routines
in the spirit of machine learning. An essential difference of the latter approach is that it aims to approximate
solutions on entire domains rather than along trajectories of the forward process, in particular allowing for the
approximation of solutions to elliptic and parabolic boundary value problems.

This chapter is organized as follows. In Section 6.1 we will start with a variational formulation of linear PDEs
that relies on L2 projections. Those projections have been prominent in algorithms for solving certain semi-
linear parabolic PDEs on unbounded domains based on backward iterations, which we will cover in Section 6.2.
We will particularly suggest to combine these algorithms with the tensor train format for efficient computations
in high dimensions. Section 6.3 is devoted to variational formulations of elliptic and parabolic boundary value
problems, introducing the novel diffusion loss, which can be interpreted as an interpolation of two existing
methods. We will provide multiple numerical examples demonstrating advantages and drawbacks of either
of the methods and show how some of them can be extended to approximate solutions of elliptic eigenvalue
problems.

6.1 Linear PDEs and L2 projections

Let us start with linear PDEs. In this section we will review and further develop an approach that relies on the
Feynman-Kac formula that we have stated in Theorem 2.14. We recall that the solution to the linear PDE39

(∂t + L− f(x, t))V (x, t) + k(x, t) = 0, (x, t) ∈ Rd×[0, T ), (6.1a)

V (x, T ) = g(x), x ∈ Rd, (6.1b)

admits the stochastic representation

V (x, t) = E

⎡⎣ T∫︂
t

e−
∫︁ r
t
f(Xs,s)dsk(Xr, r)dr + e−

∫︁ T
t
f(Xs,s)dsg(XT )

⃓⃓⃓⃓
⃓Xt = x

⎤⎦ , (6.2)

where the process X follows the dynamics as stated in (1.2),

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt = x, (6.3)

for times s ∈ [t, T ]. Further, let us recall that a conditional expectation as in (6.2) can be characterized as the
minimizer of a least squares problem.

39Note that we have called the solution of a linear PDE ψ in Section 2.2.1 in order to highlight a connection to a nonlinear PDE
attained via a logarithmic transformation, see Lemma 2.11. Here we will call all PDE solutions V for consistency.
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Lemma 6.1 (Conditional expectation as L2 projection). Let A ∈ Rd+1 and B ∈ R be two random variables
and let φ ∈ C(Rd+1,R). Then the solution to

φ∗ = argmin
φ∈C(Rd+1,R)

E
[︂
(φ(A)−B)

2
]︂

(6.4)

is given by
φ∗(a) = E[B|A = a]. (6.5)

Proof. See Appendix C.5.

By exploiting Lemma 6.1 we can now design a learning algorithm for the approximation of the solution to PDE
(6.1). The idea is to consider the random variables

A = (x, t)⊤ and B =

T∫︂
t

e−
∫︁ r
t
f(Xs,s)ds k(Xr, r)dr + e−

∫︁ T
t
f(Xs,s)ds g(XT ), (6.6)

where X follows the diffusion (6.3) with randomly sampled initial times t ∼ µ([0, T ]) and initial values x ∼ ν(Rd)
from prescribed probability measures ν, µ. Relation (6.4) then suggests to minimize the loss

Llinear(φ) = E
[︂
(φ(x, t)−B))

2
]︂

(6.7)

w.r.t. an approximating function φ ∈ C(Rd×[0, T ],R) noting that φ fulfills PDE (6.1) if and only if L(φ) = 0.
This algorithm has been suggested in the special case of a fixed initial time t = 0 for the approximation of
V (X0, 0) in [12, 29] and was extended to variable t ∈ [0, T ] in the setting of parameter-dependent Kolmogorov
PDEs in [27]. In practice, φ is often represented by a neural network, and we will provide a numerical example
in Section 6.3.7.9.

Remark 6.2 (Linear PDEs on bounded domains). An application of the above learning strategy to linear PDEs
on bounded domains D ⊂ Rd is straightforward by letting the stochastic process (6.3) run until it exits D and
by replacing the terminal condition (6.1b) with a corresponding boundary condition, cf. Remark 2.17. We note,
however, that corresponding random stopping times of the process can be large, e.g. if the domain is large or
if the dynamics exhibits metastable behavior. We will provide a numerical experiment in Section 6.3.7.9 and
refer to Section 6.3.6.2 for further discussion on the hitting time aspect in the case of nonlinear PDEs.

6.2 Backward iteration schemes for parabolic PDEs

The L2 projection idea stated in Lemma 6.1 has found a popular application in solving nonlinear PDEs via BS-
DEs. The idea it to approximate semi-linear PDEs by backward iteration schemes, which are reminiscent of the
dynamic programming principle from control theory (cf. Section 2.1.1), where one divides the problem at hand
into multiple subproblems and iterates backwards in time. For this attempt we shall focus on parabolic PDEs
on unbounded domains, as applications to elliptic and bounded problems turn out to be not straightforward
(see also Remark 6.8).

As in Definition 2.19, we consider terminal value problems of the form

(∂t + L)V (x) + h(x, t, V (x), σ⊤∇V (x)) = 0, (x, t) ∈ Rd×[0, T ), (6.8a)

V (x, T ) = g(x), x ∈ Rd . (6.8b)

Backward iteration schemes rely on a BSDE representation of the PDE solution and we recall from Section 2.2.2
that defining the Fs-adapted processes

Ys = V (Xs, s), Zs = σ⊤∇V (Xs, s), (6.9)

leads to the system of forward-backward SDEs

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, X0 = xinit, (6.10a)
dYs = −h(Xs, s, Ys, Zs)ds+ Zs · dWs, YT = g(XT ). (6.10b)

We aim at numerically solving for the backward processes Y and Z and therefore provide approximations of the
PDE (6.8) along the forward trajectories of X via the connection stated in (6.9). To this end, let us consider a
discrete version of the forward process (6.10a) on a time grid 0 = t0 < t1 < · · · < tN = T byˆ︁Xn+1 = ˆ︁Xn + b( ˆ︁Xn, tn)∆t+ σ( ˆ︁Xn, tn)ξn+1

√
∆t, (6.11)
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where n ∈ {0, . . . , N−1} enumerates the steps, ∆t = tn+1− tn is the step-size, ξn+1 ∼ N (0, Idd×d) are normally
distributed random variables and ˆ︁X0 = x0 provides the initial condition, as already defined in Section 2.2.3. In
order to motivate different numerical discretization schemes for the backward process note that we can write
(6.10b) in its integrated form for the times tn < tn+1 as

Ytn+1
= Ytn −

tn+1∫︂
tn

h(Xs, s, Ys, Zs)ds+

tn+1∫︂
tn

Zs · dWs. (6.12)

In a discrete version we have to replace the integrals with suitable discretizations, where for the deterministic
integral we can decide which end point to consider, leading to either40:

ˆ︁Yn+1 = ˆ︁Yn − h( ˆ︁Xn+1, tn+1, ˆ︁Yn+1, ˆ︁Zn+1)∆t+ ˆ︁Zn · ξn+1

√
∆t, (6.13a)

or

ˆ︁Yn+1 = ˆ︁Yn − h( ˆ︁Xn, tn, ˆ︁Yn, ˆ︁Zn)∆t+ ˆ︁Zn · ξn+1

√
∆t. (6.13b)

Finally, we complement (6.13a) and (6.13b) by specifying the terminal conditions ˆ︁YN = g( ˆ︁XN ) and ˆ︁ZN =

σ⊤∇g( ˆ︁XN ).

Both of our schemes solve the discrete processes backwards in time. To wit, we start with the known terminal
value ˆ︁YN = g( ˆ︁XN ) and move backwards in iterative fashion until reaching ˆ︁Y0. Throughout this procedure, we
posit functional approximations ˆ︁φn( ˆ︁Xn) ≈ ˆ︁Yn ≈ V ( ˆ︁Xn, tn) (6.14)

to be learnt in the update step n+ 1→ n which can either be based on (6.13a) or on (6.13b), leading to either
explicit or implicit schemes. In the following we will elaborate on two approaches for their numerical treatment:
L2 regressions and direct backward schemes.

6.2.1 L2 projections and regression-based schemes
Popular early attempts for the numerical approximation of BSDEs are regression-based schemes, often also
termed least squares Monte Carlo, which go back to [200], have been more systematically introduced in [39,
110] and later refined in [20, 21, 112]. We can motivate them by writing the backward process Y in a slightly
different way. First note that taking the conditional expectation w.r.t. the filtration Ftn on both sides of (6.12)
yields41

Ytn = E

⎡⎣Ytn+1 +

tn+1∫︂
tn

h(Xs, s, Ys, Zs)ds

⃓⃓⃓⃓
⃓Xtn

⎤⎦ , (6.17)

which is reminiscent of the dynamic programming equation from Theorem 2.2 and suggests that the value of
the backward process at time tn can be written as depending on its value at time tn+1. Discretizing the forward
and backward processes as suggested above, while taking either the left or right end point in discretizing the

40It can be shown that both converge to the continuous-time process (6.10b) as ∆t→ 0, see [172].
41Alternatively, taking conditional expectation of the integrated version of (6.10b) we can write the backward process as

Yt = V (Xt, t) = E

⎡⎣g(XT ) +

T∫︂
t

h(Xs, s, Ys, Zs)ds

⃓⃓⃓⃓
⃓Xt

⎤⎦ , (6.15)

where we note that E[·|Ft] = E[·|Xt] holds due to the Markovianity of the forward process and that by definition Yt = V (Xt, t) is
Ft-measurable (compare also to (2.67)). Using the tower property of the conditional expectation, we can now derive that for any
0 ≤ tn ≤ tn+1 ≤ T

Ytn = E

⎡⎢⎣g(XT ) +

tn+1∫︂
tn

h(Xs, s, Ys, Zs)ds+

T∫︂
tn+1

h(Xs, s, Ys, Zs)ds

⃓⃓⃓⃓
⃓Xtn

⎤⎥⎦ (6.16a)

= E

⎡⎢⎣E
⎡⎢⎣g(XT ) +

T∫︂
tn+1

h(Xs, s, Ys, Zs)ds

⃓⃓⃓⃓
⃓Xtn+1

⎤⎥⎦+

tn+1∫︂
tn

h(Xs, s, Ys, Zs)ds

⃓⃓⃓⃓
⃓Xtn

⎤⎥⎦ = E

⎡⎢⎣Ytn+1 +

tn+1∫︂
tn

h(Xs, s, Ys, Zs)ds

⃓⃓⃓⃓
⃓Xtn

⎤⎥⎦ .
(6.16b)
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integral analogous to (6.13a) or (6.13b), we can immediately find a discretized version of (6.17) to be42

ˆ︁Yn = E

[︄ˆ︁Yn+1 + h( ˆ︁Xn+1, tn+1, ˆ︁Yn+1, ˆ︁Zn+1)∆t

⃓⃓⃓⃓
⃓ ˆ︁Xn

]︄
, (6.18)

or ˆ︁Yn = E

[︄ˆ︁Yn+1 + h( ˆ︁Xn, tn, ˆ︁Yn, ˆ︁Zn)∆t
⃓⃓⃓⃓
⃓ ˆ︁Xn

]︄
(6.19)

which hold for any n ∈ {0, . . . , N −1} and where as before the terminal condition is ˆ︁YN = g( ˆ︁XN ). Furthermore,
we note that the explicit scheme (6.18) can be similarly written as

ˆ︁Yn = E

[︄ˆ︁Yn+1 + h( ˆ︁Xn, tn, ˆ︁Yn+1, ˆ︁Zn+1)∆t

⃓⃓⃓⃓
⃓ ˆ︁Xn

]︄
. (6.20)

All three schemes rely on the fact that forward and backward processes are decoupled and we realize that
the explicit and implicit schemes are equivalent up to terms of order (∆t)2 [173] so that for small enough ∆t
we expect similar numerical performances. In fact, the numerical properties of the above schemes (and some
variants of them) have been extensively studied. One known result is that given suitable assumptions on the
stochastic process and the functions g and h in the BSDE (6.10b), the approximations (6.18), (6.19) and (6.20)
converge in a strong sense of order 1

2 , i.e. there exists a constant C > 0 such that

max
0≤n≤N

E
[︃(︂ˆ︁Yn − Ytn)︂2]︃ ≤ C∆t, (6.21)

see Theorem 2.32 or [109, Theorem 7.3.1].

Remark 6.3 (Backward multistep schemes). In contrast to taking only the left or right end point, we can
alternatively approximate the integral in (6.17) by employing multiple time-steps (or, equivalently, by recursively
plugging in the formula for ˆ︁Yn+1 in (6.20) and using the tower property of conditional expectations) to get the
formula ˆ︁Yn = E

[︄
g( ˆ︁XN ) +

N−1∑︂
i=n

h( ˆ︁Xi, ti, ˆ︁Yi, ˆ︁Zi)∆t
⃓⃓⃓⃓
⃓ ˆ︁Xn

]︄
. (6.22)

A corresponding scheme will lead to different numerical behaviors and we will come back to it in equation (6.43).

Let us now move towards implementable algorithms. A strategy to actually solve the backward process numer-
ically with formulas (6.18), (6.19), (6.20) at hand can be derived by applying Lemma 6.1 and recalling that a
conditional expectation can be characterized as a best approximation in L2, namely

E[B|Fn] = argmin
A∈L2

Fn−measurable

E
[︁
(A−B)2

]︁
(6.23)

for any random-variable B ∈ L2. Let us further recall the relations

Ys = V (Xs, s), Zs = σ⊤∇V (Xs, s) (6.24)

for the time-continuous processes and therefore writeˆ︁Yn ≈ ˆ︁φn( ˆ︁Xn), ˆ︁Zn ≈ σ⊤∇ˆ︁φn( ˆ︁Xn) (6.25)

for their discrete counterparts, where the approximating functions ˆ︁φn : Rd → R, n ∈ {0, . . . N − 1} are in some
suitable function class F . We can therefore define our explicit scheme (6.20) (and the schemes (6.18) and (6.19)
analogously) as

ˆ︁φn = argmin
φn∈F

E
[︃(︂
φn( ˆ︁Xn)− ˆ︁φn+1( ˆ︁Xn+1)− h( ˆ︁Xn, tn, ˆ︁φn+1( ˆ︁Xn+1), σ

⊤∇ˆ︁φn+1( ˆ︁Xn+1))∆t
)︂2]︃

(6.26)

for n ∈ {0, . . . , N − 1}, initializing ˆ︁φN = g. In a sample version considering K realizations of the discrete
forward process (6.11) we get the Monte Carlo approximation

ˆ︁φn ≈ argmin
φn∈F

1

K

K∑︂
k=1

(︂
φn( ˆ︁X(k)

n )− ˆ︁φn+1( ˆ︁X(k)
n+1)− h( ˆ︁X(k)

n , tn, ˆ︁φn+1( ˆ︁X(k)
n+1), σ

⊤∇ˆ︁φn+1( ˆ︁X(k)
n+1)∆t

)︂2
. (6.27)

42This relation can alternatively be derived directly from the Euler schemes (6.13a) and (6.13b) by arranging terms and taking
the conditional expectation E[·| ˆ︁Xn].
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We can now state a schematic version of our backward iteration algorithm.

Algorithm 3: Backward iteration scheme for parabolic PDEs
Choose a batch size K ∈ N and time grid 0 = t0 < · · · < tN = T .
Choose a function space F and parametrizations Rp ∋ θn ↦→ φθnn ∈ F for n ∈ {0, . . . , N − 1}.
Simulate K trajectories of the discrete forward process (6.11).
Initialize ˆ︁YN = g( ˆ︁XN ) and (if needed) ˆ︁ZN = σ⊤∇g( ˆ︁XN ).
for n = N − 1 to 0 do

Approximate either of (6.26), (6.35), (6.36), (6.42) with Monte Carlo (all depending on ˆ︁φn+1).
Minimize this quantity (explicitly or by iterative schemes).
Set ˆ︁φn to be the minimizer.

end
Result: ˆ︁φn ≈ V (·, tn) along the trajectories of the forward process for n ∈ {0, . . . , N − 1}.

Remark 6.4 (Error propagation). It is important to mention that even though dividing the problem into multiple
chunks brings the advantage of potentially making each subproblem easier to solve, potential errors due to Monte
Carlo approximation, optimization routines or function class properties might propagate from one time-step to
the other, entailing the problem of exploding errors. In fact, assuming that we make a certain error in each
time step, one can only get a bound of the overall error that grows exponentially in the time horizon T , cf.
Theorems 8.3.2 and 8.3.4 in [109]. This issue does not occur in the variational approaches from Chapter 4 and
Section 6.3.

It remains to specify the function class F and to solve the minimization problem in (6.27). We will consider
parametric functions, for which two popular choices are discussed in the sequel. The first one turns out to be
particularly efficient when considering explicit schemes.

6.2.1.1 Explicit least squares approximation with basis functions

We will start with the class that consists of linear combinations of some prescribed ansatz functions
{ϕ1(x), . . . , ϕM (x)}, where each ϕm ∈ C(Rd,R), namely

F =

{︄
M∑︂
m=1

θn,mϕm(x) : θn,m ∈ R

}︄
. (6.28)

We already hinted by the notation that the time-dependency of the functions will be encoded in the parameter
θn,m, i.e. at each time-step n ∈ {0, . . . , N − 1} we consider the representation

φn(x) =

M∑︂
m=1

θn,mϕm(x). (6.29)

For notational convenience, let us introduce the vectors θn := (θn,1, . . . , θn,M )⊤ and bn = (b1n, . . . , b
K
n )⊤ with

bkn = ˆ︁φn+1( ˆ︁X(k)
n+1) + h( ˆ︁X(k)

n , tn, ˆ︁φn+1( ˆ︁X(k)
n+1), σ

⊤∇ˆ︁φn+1( ˆ︁X(k)
n+1))∆t (6.30)

and let us define the matrices
An =

(︂
ϕm( ˆ︁X(k)

n )
)︂
1≤m≤M,1≤k≤K

. (6.31)

Our minimization problem (6.27) then translates to

θn = argmin
θ∈RM

|Anθ − bn|2, (6.32)

which, assuming that An has maximal rank M , can be solved explicitly by

θn =
(︁
A⊤
nAn

)︁−1
A⊤
n bn. (6.33)

This easily implementable scheme has been extensively analyzed, and we for instance refer to [110] for proving
convergence of order 1

2 as ∆t → 0 and M,K → ∞. Even though it looks inherently simple, we should note
that it remains challenging to make suitable choices of ansatz functions ϕm in practice, where especially high-
dimensional problems usually suffer from the curse of dimensionality. We will come back to this in Section 6.2.3.
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6.2.1.2 Least squares approximation with neural networks

We have argued before that neural networks bring remarkable properties for function approximation (cf. Sec-
tion 2.4). In this section we will therefore tackle the minimization problem (6.27) by considering the function
class of feed-forward neural networks, i.e.

F =
{︁
ALϱ(AL−1ϱ(· · · ϱ(A1x+ b1) · · · ) + bL−1) + bL : Al ∈ Rnl×nl−1 , bl ∈ Rnl , 1 ≤ l ≤ L, ϱ : R→ R

}︁
, (6.34)

as already stated in Definition 2.49. The least-squares problem from before can be readily transferred to this
setting (and we note that it has appeared under the name deep splitting in [11]), yielding the scheme

ˆ︁φn = argmin
φn∈F

E
[︃(︂
φn( ˆ︁Xn)− ˆ︁φn+1( ˆ︁Xn+1)− h( ˆ︁Xn+1, tn+1, ˆ︁φn+1( ˆ︁Xn+1), σ

⊤∇ˆ︁φn+1( ˆ︁Xn+1))∆t
)︂2]︃

(6.35)

for n ∈ {0, . . . , N − 1} with ˆ︁φN = g, where we have now chosen the discretization variant (6.18) instead of
(6.20) in order to be more compatible with the existing literature. In contrast to the linear combination of
ansatz functions in Section 6.2.1.1, the minimization problem cannot be solved analytically anymore and one
instead relies on iterative minimization routines such as gradient descent. For an analysis of the approximation
error of this scheme we refer to [102].

Remark 6.5 (Gradient descent initializations). The initialization of the parameters when using gradient decent
algorithms (or other iterative (stochastic) optimization routines) matters and it not clear how to make good
choices a priori. It is likely, however, that ˆ︁φn is not all too different from ˆ︁φn+1 and therefore it seems reasonable
to initialize the parameters of φn with the parameters of φn+1 that have just been learnt in the previous time-
step. In practice, this then suggests a rather long optimization runtime for the first time step and allows for
much faster optimization runs thereafter.

Since we now rely on iterative optimization methods anyway, it is not much more complicated to consider the
implicit time scheme instead. Following (6.19) this then leads to the minimization problem

ˆ︁φn = argmin
φn∈F

E
[︃(︂
φn( ˆ︁Xn)− ˆ︁φn+1( ˆ︁Xn+1)− h( ˆ︁Xn, tn, φn( ˆ︁Xn), σ

⊤∇φn( ˆ︁Xn))∆t
)︂2]︃

, (6.36)

for n ∈ {0, . . . , N − 1} with ˆ︁φN = g, where now the function with respect to which we optimize additionally
appears in the nonlinear term h.

Remark 6.6 (Numerical scheme for Z). Sometimes explicit representations of ˆ︁Zn relying on ∇ˆ︁φn( ˆ︁Xn) might not
be available or are hard to compute. We can then alternatively make use of an explicit time stepping scheme
for ˆ︁Zn. To this end, let us multiply (6.13b) (elementwise) with ξn+1, take conditional expectation and use the
fact that ˆ︁Yn is Fn-adapted to get

E
[︂
ξn+1

(︂ˆ︁Yn+1 −
√
∆t ˆ︁Zn · ξn+1

)︂ ⃓⃓⃓ ˆ︁Xn

]︂
= 0, (6.37)

or equivalently ˆ︁Zn =
1√
∆t

E
[︂
ξn+1

ˆ︁Yn+1

⃓⃓⃓ ˆ︁Xn

]︂
. (6.38)

This can be solved by the least squares approach as before, now introducing additional functions ψn : Rd → Rd,
aiming at ˆ︁ψn = argmin

ψn∈F
E
[︃(︂
ψn( ˆ︁Xn)− ξn+1 ˆ︁φn+1( ˆ︁Xn+1)

)︂2]︃
. (6.39)

We should note, however, that a small ∆t might lead to potential numerical instabilities of this scheme.

6.2.2 Direct backward schemes

An alternative to L2 projections for the numerical approximation of backward SDEs has been proposed in [144]
and is based directly on the implicit discrete backward process (6.13b), which we can write as

ˆ︁Yn − ˆ︁Yn+1 − h( ˆ︁Xn, tn, ˆ︁Yn, ˆ︁Zn)∆t+ ˆ︁Zn · ξn+1

√
∆t = 0. (6.40)

Instead of taking conditional expectations as in Section 6.2.1, we now enforce the Euler step by penalizing
deviations from (6.40) with a quadratic loss at every time-step. This results in two schemes that differ in
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6.2. Backward iteration schemes for parabolic PDEs

whether we approximate ˆ︁Zn with extra functions or whether we exploit the relation Zs = σ⊤∇V (Xs, s). For
the first case this brings the minimization problem

(ˆ︁φn, ˆ︁ψn) = argmin
φn,ψn∈F

E
[︃(︂
φn( ˆ︁Xn)− ˆ︁φn+1( ˆ︁Xn+1)− h( ˆ︁Xn, tn, φn( ˆ︁Xn), ψn( ˆ︁Xn))∆t+ ψn( ˆ︁Xn) · ξn+1

√
∆t
)︂2]︃
(6.41)

for n ∈ {0, . . . , N − 1}, with the initializations ˆ︁φN = g, ˆ︁ψN = σ⊤∇g. We note that in contrast to the L2-
projections from Section 6.2.1, now the Brownian increment appears in the quantity to minimize. An advantage
of this approach is that its accuracy can be tested at each time-step when minimizing the loss function. Up to
the time discretization, the loss should now be equal to zero for the exact solution. In contrast, the minimum of
the loss functions in the previous regression-based schemes is not known for the exact solution as it corresponds
to the residual of the L2 projection, and thus the accuracy of the scheme cannot be tested directly with the
available samples. Since this scheme is implicit, no closed-form minimization formulas are available and therefore
often neural networks are chosen as approximating functions, relying on gradient descent for the minimizations.
In our numerical experiments in Section 6.2.3 we will further rely on the tensor train format for which we will
handle implicit regressions by fixed-point iterations (see Appendix B.8.2).

A variant of (6.41) that makes use of the relation ˆ︁Zn = σ⊤∇V ( ˆ︁Xn, tn), is given by

ˆ︁φn = argmin
φn∈F

E
[︃(︂
φn( ˆ︁Xn)− ˆ︁φn+1( ˆ︁Xn+1)− h( ˆ︁Xn, tn, φn( ˆ︁Xn), σ

⊤∇φn( ˆ︁Xn))∆t+ σ⊤∇φn( ˆ︁Xn) · ξn+1

√
∆t
)︂2]︃
(6.42)

for n ∈ {0, . . . , N − 1} with initialization ˆ︁φN = g.

Finally, let us introduce one last version of direct backward iterations that relies on a multistep scheme. Here
the essential idea is to incorporate multiple time-steps at once (see e.g. [102]), a procedure that we have already
motivated in Remark 6.3. This results in the minimization problem

(ˆ︁φn, ˆ︁ψn) = argmin
φn,ψn∈F

E

[︄(︄
φn( ˆ︁Xn)− h( ˆ︁Xn, tn, φn( ˆ︁Xn), ψn( ˆ︁Xn))∆t+ ψn( ˆ︁Xn) · ξn+1

√
∆t

−
N−1∑︂
i=n+1

(︂
h( ˆ︁Xi, ti, ˆ︁φi( ˆ︁Xi), ˆ︁ψi( ˆ︁Xi))∆t− ˆ︁ψi( ˆ︁Xi) · ξi+1

√
∆t
)︂
− g( ˆ︁XN )

)︄2]︄
.

(6.43)

for n ∈ {0, . . . , N − 1}. While this scheme seems to lead to better convergence rates [102], it is at the same
time computationally more expensive as the sum in the quantity to minimize gets large with successive time
iterations.

Remark 6.7 (Log-variance loss). We have already elaborated in Remark 4.14 that we can usually consider
the log-variance loss as defined in Definition 4.6 instead of a quadratic loss as long as the nonlinearity in the
corresponding PDE, h, only depends on the solution V through its gradient ∇V and if one is interested in
approximating ∇V instead of V (which is for instance of common interest in optimal control problems). This
is also true for the backward iteration schemes that we have introduced in this section, translating for instance
(6.42) into the objective

ˆ︁φn = argmin
φn∈F

Var
(︂
φn( ˆ︁Xn)− ˆ︁φn+1( ˆ︁Xn+1)− h( ˆ︁Xn, tn, φn( ˆ︁Xn), σ

⊤∇φn( ˆ︁Xn))∆t+ σ⊤∇φn( ˆ︁Xn) · ξn+1

√
∆t
)︂
.

(6.44)
Whether this adjustment of loss functions can lead to numerical advantages as we have demonstrated for the
variational BSDE algorithms in Chapter 4 will be an interesting question of future work.

Remark 6.8 (Backward iterations on bounded domains). It is not completely obvious how to apply backward
iteration schemes to elliptic and parabolic boundary value problems, where different trajectories have different
lengths due to random boundary hitting times. One idea is to only consider “active” trajectories in the regression
steps, however, corresponding Monte Carlo estimators might suffer from variance issues especially at the end
of the trajectories due to potentially small sample sizes. Besides some attempts in [38] we are not aware of
any rigorous error and convergence analysis for this case and have neither seen a systematic investigation of
numerical performances. Still, in a numerical example in Section 6.2.3.6 we can see that in certain scenarios
the above backward iteration schemes can produce reasonable results even in bounded domains.

111



Chapter 6. Solving high-dimensional PDEs

Remark 6.9 (Backward iterations with forward control). Naturally, the backward iteration schemes can also be
applied to generalized FBSDE systems

dXv
s = (b(Xv

s , s) + σ(Xv
s , s)v(X

v
s , s)) ds+ σ(Xv

s , s) dWs, Xv
t0 = xinit, (6.45a)

dY vs = −h(Xv
s , s, Y

v
s , Z

v
s ) ds+ v(Xv

s , s) · Zvs ds+ Zvs · dWs, Y vT = g(Xv
T ), (6.45b)

that admit a control v ∈ C(Rd×[0, T ],Rd) in the forward process as already defined in (4.25) for a special
case. This forward control can be understood as pushing the trajectories into desired regions of the state space,
noting that the relations (6.9) hold true independent of the choice of v (see Corollary 2.28). The algorithms
from this section readily transfer to this change of sampling the forward process by adapting the backward
process and the corresponding schemes accordingly. We will demonstrate potential numerical advantages for
this adjustment in Section 6.2.3.6. Additionally, this perspective can lead to a demonstration of the relation
between the backward iteration schemes and the dynamic programming principle appearing in optimal control
problems (as for instance specified in Theorem 2.2), as we will show in the following lemma.

Lemma 6.10. Consider the generalized FBSDE system as in (6.45) with a forward control given by v =
−σ⊤∇V , where V is the solution to (6.8) with a nonlinear term

h(x, s, y, z) = f(x, s)− 1

2
|z|2. (6.46)

Then the backward recursion as defined in (6.17) is equivalent to the dynamic programming equation from (2.8).

Proof. See Appendix C.5.

The above lemma is of course only of heuristic value, as V is not known in practice and therefore no numerical
consequences follow.

6.2.3 Numerical examples for backward iteration schemes
In this section we provide some numerical examples for solving (high-dimensional) PDEs with the backward
iteration schemes that we have introduced in the previous sections. The examples have appeared in the papers
[127] and [251] and have been conducted in collaboration with Leon Sallandt, Nikolas Nüsken and Carsten
Hartmann. Corresponding code can be found at https://github.com/lorenzrichter/PDE-backward-solver
and https://github.com/lorenzrichter/BSDE.

For the experiments we will often rely on neural networks for the approximating functions, and, instead of using
a linear combination of ansatz functions as explained in Section 6.2.1.1, we will further consider the tensor train
(TT) format [220]. In fact, the salient features of tensor trains make them an ideal match for the stochastic
methods alluded to in the previous section: First, tensor trains have been designed to tackle high-dimensional
problems while still being computationally cheap by exploiting inherent low-rank structures [73, 163, 164]
typically encountered in physically inspired PDE models. Second, built-in orthogonality relations allow fast
and robust optimization in regression type problems arising naturally in stochastic backward formulations of
parabolic PDEs. Third, the function spaces corresponding to tensor trains can be conveniently extended to
incorporate additional information such as initial or final conditions imposed on the PDE to be solved. Last
but not least, tensor trains allow for extremely efficient and explicit computation of first and higher order
derivatives. All those potential benefits are expected to become particularly relevant for explicit schemes that
lead to closed-form formulas for the minimization as stated in (6.33). We will provide some background on
tensor trains in Appendix B.8.

Remark 6.11 (Terminal function in function class). It seems likely that at least close to the terminal time the
solution to the PDE looks similar to its terminal condition g. This suggests to add g to the function class F
and consider instead

Fg = {φ+ αg : φ ∈ F , α ∈ R}, (6.47)

where α is an additional parameter that can be fixed or learnt during optimization. Note that this modification
is compatible with both the linear combination of ansatz functions and nonlinear neural networks.

Remark 6.12 (Amount of samples). In the backward iteration schemes we usually consider a fixed amount of
samples for the forward trajectories, which we use to compute either closed-form formulas or full gradients in
iterative minimization schemes. For gradient descent, randomly choosing mini-batches in each gradient step
is feasible and brings the advantage of potential computational speedups, while incorporating more different
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6.2. Backward iteration schemes for parabolic PDEs

data points over the entire optimization. However, this approach has led to worse convergence in our numerical
experiments. This is different from the variational approaches in Chapter 4 and Section 6.3, where new samples
are generated on the fly, which might potentially lead to a better generalizability and state space exploration
in high dimensional problems.

6.2.3.1 High-dimensional Hamilton-Jacobi-Bellman equation

As stated in Section 2.1, the Hamilton-Jacobi-Bellman equation (HJB) is a PDE for the value function that
represents the minimal cost-to-go in stochastic optimal control problems from which the optimal control policy
can be deduced. As suggested in [86], we consider the HJB equation

(∂t +∆)V (x, t)− |∇V (x, t)|2 = 0, (x, t) ∈ Rd×[0, T ), (6.48a)

V (x, T ) = g(x), x ∈ Rd, (6.48b)

with g(x) = log
(︁
1
2 + 1

2 |x|
2
)︁
, leading to

b = 0, σ =
√
2 Idd×d, h(x, s, y, z) = −1

2
|z|2 (6.49)

in terms of the notation established in (6.8). One appealing property of this equation is that (up to Monte
Carlo approximation) a reference solution is available:

V (x, t) = − logE
[︂
e−g(x+

√
T−tσξ)

]︂
, (6.50)

where ξ ∼ N (0, Idd×d) is a normally distributed random variable (see Lemma 2.11).

In our experiments we consider d = 100, T = 1,∆t = 0.01, x0 = (0, . . . , 0)⊤ and K = 2000 samples. In Table 6.1
we compare the explicit scheme stated in (6.27) with the implicit scheme from (6.42), once with tensor trains
and once with neural networks. For the tensor trains we try different polynomial degrees, and it turns out that
choosing constant ansatz functions is the best choice, while fixing the rank to be 1. For the neural networks we
use a DenseNet like architecture with 4 hidden layers (all the details can be found in Appendices B.9).

We display the approximated solutions at (x0, 0), the corresponding relative errors
⃓⃓⃓ ˆ︁φn(x0)−Vref (x0,0)

Vref (x0,0)

⃓⃓⃓
with

Vref(x0, 0) = 4.589992 being provided in [86], their computation times, as well as PDE and reference losses,
which are specified in Appendix B.9. We can see that the TT approximation is both more accurate and much
faster than the NN-based approaches, improving also on the results in [11, 86]. As it turns out that the explicit
scheme for neural networks is worse in terms of accuracy than its implicit counterpart in all our experiments, but
takes a very similar amount of computation time we will omit reporting it for the other experiments. In Figures
6.1 and 6.2 we plot the reference solutions computed by (6.50) along two trajectories of the discrete forward
process (6.11) in dimensions d = 10 and d = 100 and compare to the implicit TT and NN-based approximations
correspondingly. We can see that the TT approximations perform particularly well in higher dimensions.

TTimpl TTexpl NNimpl NNexplˆ︁φ0(x0) 4.5903 4.5909 4.5822 4.4961
relative error 5.90e−5 3.17e−4 1.71e−3 2.05e−2

reference loss 3.55e−4 5.74e−4 4.23e−3 1.91e−2

PDE loss 1.99e−3 3.61e−3 90.89 91.12
comp. time 41 25 44712 25178

Table 6.1: Comparison of approximation results for the HJB equation in d = 100.
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Figure 6.1: Reference solutions compared with implicit TT and NN approximations along two trajectories in
d = 10.

Figure 6.2: Reference solutions compared with implicit TT and NN approximations along two trajectories in
d = 100.

In Figure 6.3 we plot the mean relative error over time, as defined in Appendix B.9, indicating that both schemes
are stable and where again the implicit TT scheme yields better results than the NN scheme.

Figure 6.3: Mean relative error for TT and NN attempts.

The accuracy of the TT approximations is surprising given that the ansatz functions are constant in space. We
further investigate this behavior in Table 6.2 and observe that the required polynomial degree decreases with
increasing dimension. While similar “blessings of dimensionality” have been reported and discussed (see, for
instance, Figure 3 in [10] and Section 1.3 in [167]), a thorough theoretical understanding is still lacking. To
guide intuition, we would like to point out that the phenomenon that high-dimensional systems become in some
sense simpler is well known from the theory of interacting particle systems (“propagation of chaos”, see [277]):
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In various scenarios, the joint distribution of a large number of particles tends to approximately factorize as the
number of particles increases (that is, as the dimensionality of the joint state space grows large). It is plausible
that similar approximate factorizations are relevant for high-dimensional PDEs and that tensor methods are
useful (i) to detect this effect and (ii) to exploit it. In this experiment, the black-box nature of neural networks
does not appear to reveal such properties.

d Polynomial degree
0 1 2 3 4

1 3.62e−1 3.60e−1 2.47e−3 3.86e−4 4.27e−2

2 1.03e−1 1.02e−1 1.87e−2 1.79e−2 1.79e−2

5 1.55e−2 1.54e−2 1.03e−3 9.52e−4 1.96e−2

10 2.84e−3 2.86e−3 1.37e−3 1.34e−3 1.10e−1

50 1.17e−4 1.29e−4 2.79e−4 3.35e−4 6.96e−5

100 5.90e−5 4.99e−5 8.65e−5 1.23e−4 3.62e−5

Table 6.2: Relative errors of the TT approximations ˆ︁φn(x0) for different dimensions and polynomial degrees.

6.2.3.2 HJB with double-well dynamics

In another example we consider again an HJB equation, however this time making the drift in the dynamics
nonlinear, as suggested in [217]. The PDE becomes

(∂t + L)V (x, t)− 1

2
|σ⊤∇V (x, t)|2 = 0, (x, t) ∈ Rd×[0, T ), (6.51a)

V (x, T ) = g(x), x ∈ Rd, (6.51b)

with L as in (1.19), where now the drift is given as the gradient of the double-well potential

b = −∇Ψ, Ψ(x) =

d∑︂
i,j=1

Cij(x
2
i − 1)(x2j − 1) (6.52)

and the terminal condition is g(x) =
∑︁d
i=1 νi(xi − 1)2 for νi > 0. Similarly as before a reference solution is

available,
V (x, t) = − logE

[︂
e−g(XT )

⃓⃓⃓
Xt = x

]︂
, (6.53)

where Xt is the forward diffusion as specified in (6.10a).

First, we consider diagonal matrices C = 0.1 Idd×d, σ =
√
2 Idd×d, implying that the dimensions do not interact,

and take T = 0.5, d = 50,∆t = 0.01,K = 2000, νi = 0.05. We set the TT-rank to 2, use polynomial degree
3 and refer to Appendix B.9 for further details on the TT and NN configurations. Since in the solution of
the PDE the dimensions do not interact either, we can compute a reference solution with finite differences. In
Table 6.3 we see that the TT and NN approximations are compatible with tensor trains having an advantage
in computational time. We assume that the TT result could possibly be improved by choosing a better fit of
ansatz functions, as due to the local behavior of the double well potential non-global ansatz functions might be
a better choice.

TTimpl NNimplˆ︁φ0(x0) 9.6876 9.6942
relative error 1.41e−3 7.27e−4

reference loss 1.36e−3 4.25e−3

PDE loss 3.62e−2 2.66e−1

computation time 95 1987

Table 6.3: Approximation results for the HJB equation with non-interacting double well potential in d = 50.

Let us now consider a non-diagonal matrix C = Idd×d + (ξij), where ξij ∼ N (0, 0.01) are sampled once at the
beginning of the experiment and further choose σ =

√
2 Idd×d, νi = 0.5, T = 0.3. We aim at the solution at

x0 = (−1, . . . ,−1)⊤ and compute a reference solution with (6.53) using 107 samples. We see in Table 6.4 that
tensor trains are much faster than neural networks, while yielding a similar performance. Note that due to the
non-diagonality of C it is expected that the TTs are of rank larger than 2. For the explicit case we do not cap
the ranks of the TT and the rank-adaptive solver finds ranks of mostly 4 and never larger than 6. Motivated
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by these results we cap the ranks at ri ≤ 6 in the implicit case and indeed they are obtained for nearly every
dimension, as seen from the ranks below,

[5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5].

The results were obtained with polynomial degree 7.

TTimpl TTexpl NNimplˆ︁V0(x0) 35.015 34.756 34.917
relative error 1.52e−3 2.82e−3 4.24e−3

reference loss 1.30e−2 1.59e−2 6.38e−2

PDE loss 79.9 341 170.64
computation time 460 15 16991

Table 6.4: Approximation results for the HJB equation with interacting double well potential in d = 20.

6.2.3.3 Cox–Ingersoll–Ross model

Our last example is taken from financial mathematics. As suggested in [158] we consider a bond price in a
multidimensional Cox–Ingersoll–Ross (CIR) model, see also [5, 151]. The underlying PDE is specified as

∂tV (x, t) +
1

2

d∑︂
i,j=1

√
xixjγiγj∂xi

∂xj
V (x, t) +

d∑︂
i=1

ai(bi − xi)∂xi
V (x, t)−

(︃
max
1≤i≤d

xi

)︃
V (x, t) = 0. (6.54)

Here, ai, bi, γi ∈ [0, 1] are uniformly sampled at the beginning of the experiment and V (T, x) = 1. We set
d = 100 and aim to estimate the bond price at the initial condition x0 = (1, . . . , 1)⊤. As there is no reference
solution known, we rely on the PDE loss to compare our results. Table 6.5 shows that all three approaches
yield similar results, while having a rather small PDE loss. The TT approximations seem to be slightly better
and we note that the explicit TT scheme is again much faster.

TTimpl TTexpl NNimplˆ︁φ0(x0) 0.312 0.306 0.31087
PDE loss 5.06e−4 5.04e−4 7.57e−3

computation time 5281 197 9573

Table 6.5: K = 1000, d = 100, x0 = [1, 1, . . . , 1]

In Table 6.6 we compare the PDE loss using different polynomial degrees for the TT ansatz function and see
that we do not get any improvements with polynomials of degree larger than 1.

Polynom. degree
0 1 2 3ˆ︁φ0(x0) 0.294 0.312 0.312 0.312

PDE loss 9.04e−2 7.80e−4 1.05e−3 5.06e−4

computation time 110 3609 4219 5281

Table 6.6: PDE loss and computation time for tensor trains with different polynomial degrees

Noticing the similarity between the results for polynomial degrees 1, 2, and 3, we further investigate by com-
puting the value function along a sample trajectory in Figure 6.4, where we see that indeed the approximations
with those polynomial degrees are indistinguishable.
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6.2. Backward iteration schemes for parabolic PDEs

Figure 6.4: Reference trajectory for different polynomial degrees.

6.2.3.4 PDE with unbounded solution

As an additional problem, we choose an example from [144] which offers an analytical reference solution. For
the PDE as defined in (2.70) we consider the coefficients

b(x, t) = 0, σ(x, t) =
Idd×d√

d
, g(x) = cos

(︄
d∑︂
i=1

ixi

)︄
, (6.55)

h(x, t, y, z) = k(x) +
y

2
√
d

d∑︂
i=1

zi +
y2

2
, (6.56)

where, with an appropriately chosen k, a solution can shown to be

V (x, t) =
T − t
d

d∑︂
i=1

(sin(xi)1xi<0 + xi1xi≥0) + cos

(︄
d∑︂
i=1

ixi

)︄
. (6.57)

In Table 6.7 we compare the results for d = 10,K = 1000, T = 1,∆t = 0.001, x0 = (0.5, . . . , 0.5)⊤. For the TT
case it was sufficient to set the ranks to 1 and we see that the results are improved significantly if we increase
the sample size K from 1000 to 20000. Note that even when increasing the sample size by a factor 20, the
computational time is still lower than the NN implementation. It should be highlighted that adding the function
g to the neural network (as explained in Appendix B.9) is essential for its convergence in higher dimensions and
thereby mitigates the observed difficulties in [144]).

TTimpl TT∗
impl NNimplˆ︁φ0(x0) −0.1887 −0.2136 −0.2137

relative error 1.22e−1 6.11e−3 5.50e−3

ref loss 2.47e−1 7.57e−2 3.05e−1

abs. ref loss 2.52e−2 9.29e−3 1.69e−2

PDE loss 2.42 0.60 1.38
computation time 360 1778 4520

Table 6.7: Approximation results for the PDE with an unbounded analytic solution. For TT∗
impl we choose

K = 20000, for the others we choose K = 1000.

6.2.3.5 Allen-Cahn like equation

Let us consider the following Allen-Cahn like PDE with a cubic nonlinearity in d = 100:

(∂t +∆)V (x, t) + V (x, t)− V 3(x, t) = 0, x ∈ Rd×[0, T ), (6.58a)

V (x, T ) = g(x), x ∈ Rd, (6.58b)

where we choose g(x) =
(︁
2 + 2

5 |x|
2
)︁−1, T = 3

10 and are interested in an evaluation at x0 = (0, . . . , 0)⊤. This
problem has been considered in [86], where a reference solution of V (x0, 0) = 0.052802 calculated by means of
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the branching diffusion method is provided. We consider a sample size of K = 1000 and a step-size ∆t = 0.01
and provide our approximation results in Table 6.8.

TTimpl TTexpl NNimpl NN∗
implˆ︁φ0(x0) 0.05280 0.05256 0.04678 0.05176

relative error 4.75e−5 4.65e−3 1.14e−1 1.97e−2

PDE loss 2.40e−4 2.57e−4 9.08e−1 6.92e−1

comp. time 24 10 23010 95278

Table 6.8: Approximations for Allen-Cahn PDE, where NN∗
impl uses K = 8000 and the others K = 1000

samples.

6.2.3.6 Double well potential with controlled forward trajectories

As an example for rare events in d = 1 we consider computing the probability of leaving a metastable set before
a prescribed time T , namely

ψ(x, t) = P (τ < T |Xt = x),

where the dynamics is given by the Langevin equation

dXs = −∇Ψ(Xs)ds+ σ dWs (6.59)

with a potential Ψ(x) = (x2 − 1)2, a diffusion coefficient σ > 0 and a random stopping time τ = inf{t > 0 :
Xt /∈ D},D = (∞, 0). We recall that leaving a metastable set scales exponentially with the energy barrier ∆Ψ
and the inverse of the diffusion coefficient σ by Kramers law, namely

lim
σ→0

σ2 log(E[τ ]) = 2∆Ψ. (6.60)

The overall stopping time is min{τ, T}. Referring to the notation in (1.8) this corresponds to choosing f(x) = 0
and g(x) = − log(1∂D(x)) and since the latter expression is difficult to handle numerically we consider the
regularized problem by taking gε(x) = − log(1∂D(x) + ε) for a small ε > 0 and note that ψ(x, t) = ψε(x, t)− ε
and V (x, t) = − log (exp (−V ε(x, t))− ε). We also note that the choice of ε can have a significant effect on the
corresponding optimal control as illustrated in Figure 6.5 for the choice of σ = 0.2.

Figure 6.5: The original potential and its optimally tilted versions for different regularization values ε.

Via the Feynman-Kac formula ψ(x, t) fulfills the parabolic PDE

(∂t + L)ψ(x, t) = 0, (x, t) ∈ D × [0, T ), (6.61)

with the boundary conditions

ψ(0, t) = 1, t ∈ [0, T ), (6.62a)
ψ(x, T ) = 0, x ∈ D. (6.62b)
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6.2. Variational formulations of boundary value problems

Figure 6.6: Left: The original potential and its two tilted versions – once the optimal tilting that leads to a
zero-variance estimator and once its approximation. Right: The approximations of the value functions with the
iterated regression based algorithm.

We numerically approach this problem by using the regression-based algorithm explained in Section 6.2.1, to
be specific (6.27), which we additionally iterate by using a previously found approximation as an additional
forward control as explained in Remark 6.9. More precisely, after the first iteration, the algorithm provides
approximations for Ŷ n, Ẑn for 0 ≤ n ≤ N , and we can use −Ẑn, corresponding to the optimal control, as an
additional drift in the forward process to run the algorithm once again and iterate. As a small modification to
the above described algorithm we choose random initial points ˆ︁X0 ∼ Unif([−1.5, 0]), which make the algorithm
more stable since in particular the matrix inversion in (6.33) is easier if trajectories are more spread out.

In our simulation, we choose M = 5 equidistant Gaussian functions ϕm(x) in the linear ansatz (6.29) and let
ε = 0.01, T = 1,∆t = 0.001, σ = 0.75,K = 1000. A reference solution is computed by a numerical discretization
of (6.61). In the bottom panel of Figure 6.6 we see that after the second iteration we get quite close to the
true value function, however, we have no guarantee for such a behavior and depending on σ we have observed
stability issues of the algorithm, which are related to a clever choice of ansatz functions and a possible clever
first initial guess of a drift in the forward process. Convergence analysis of the iteration procedure is a question
for further research.

As an alternative strategy for computing the rare event probabilities that we are after, which is also suitable in
the case where the value function approximation seems to not converge, one can do importance sampling as an
additional step. Our algorithm provides an approximation of the control by once again noting u∗ = −σ⊤∇V and
we can use this – even if potentially suboptimal – in a Girsanov reweighting such as explained in Section 2.3.2.
We illustrate this for the choice of σ = 0.5, for which the value function approximation itself did not yield
satisfactory results. We compare the importance sampling approach to naive Monte Carlo, where one does not
add any drift to the forward trajectories. Here the true value is

ψ(−1, 0) = P(τ < T ) = 2.62× 10−4 (6.63)

and we realize that the importance sampling approach brings a significant reduction of the relative error by,
roughly, a factor of 20, as a consequence of which the amount of samples needed in order to reach a given
accuracy is reduced by a factor of 400.

estimated prob. relative error trajectories hit
naive MC 2.42× 10−4 61.08 0.02 %
importance
sampling 2.54× 10−4 2.76 68.15 %

6.3 Variational formulations of elliptic and parabolic boundary
value problems

In this section we will treat elliptic and parabolic PDEs on bounded and unbounded domains. Similar to
Chapter 4 we will aim to approximate solutions via variational minimizations in the spirit of machine learning,
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Chapter 6. Solving high-dimensional PDEs

however now allowing for more general PDEs. To be precise, we consider boundary value problems of the form

(∂t + L)V (x, t) + h(x, t, V (x, t), σ⊤∇V (x, t)) = 0, (x, t) ∈ D × [0, T ), (6.64a)
V (x, T ) = f(x), x ∈ D, (6.64b)
V (x, t) = g(x, t), (x, t) ∈ ∂D × [0, T ], (6.64c)

on a domain D ⊂ Rd, where h ∈ C(Rd×[0, T ] × R×Rd,R), f ∈ C(Rd,R), g ∈ C(Rd×[0, T ],R) are given
functions and

L =
1

2

d∑︂
i,j=1

(σσ⊤)ij(x, t)∂xi
∂xj

+

d∑︂
i=1

bi(x, t)∂xi
(6.65)

is a differential operator including the functions b ∈ C(Rd×[0, T ],Rd) and σ ∈ C(Rd×[0, T ],Rd×d) with σ
being assumed to be non-degenerate (as defined e.g. in (1.19)). We will later make use of the fact that L is the
infinitesimal generator of the diffusion process defined by the SDE

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, (6.66)

where Ws is a standard d-dimensional Brownian motion. Let us note that PDEs of the form (6.64) include
certain prominent cases of parabolic and elliptic problems to be specified in Section 6.3.4 and that they can
readily be transferred to eigenvalue problems, on which we shall elaborate in Section 6.3.5.

We have stated before that a notorious challenge which appears in the numerical treatment of PDEs is the
curse of dimensionality, suggesting that the computational complexity increases exponentially in the dimension
of the state space. In recent years, however, multiple numerical [86, 144, 242] and some theoretical works [119,
157] have suggested that combining certain Monte Carlo methods with neural networks offers a promising way
to overcome this problem. Two strategies that allow for solving quite general nonlinear PDEs are based either
on direct residual minimizations (e.g. physics informed neural networks (PINNs) [242] and the deep Galerkin
method (DGM) [271]) or on backward stochastic differential equations (BSDEs) [86]. In Sections 6.3.1 and 6.3.2
we will review and generalize those attempts, while highlighting that both can be understood as variational
formulations of the boundary value problem at hand. Motivated by the existing methods and building on the
inherent connection between the PDE (6.64) and the SDE (6.66), we will introduce an alternative variational
approach that builds on the novel diffusion loss in Section 6.3.3. It turns out that this new method contains the
residual and BSDE methods as edge cases in some appropriate sense, noting that to the best of our knowledge
it is in fact the first time that these two seemingly different approaches get connected. Besides this theoretical
insight, we realize that the diffusion loss brings some algorithmic advantages, such as fast computations in high
dimensions, especially when full Hessians are present in the PDE, as well as accurate approximations near the
boundary of a domain. We will discuss some modification of the losses in Section 6.3.6 and provide numerous
numerical examples, especially in high dimensional settings in Section 6.3.7.

This section is based on joint work with Nikolas Nüsken and will be published soon in [216].

Remark 6.13 (Compact notation). Note that for the sake of a more compact notation, we can write problem
(6.64) in the following equivalent way. Consider the operator A = ∂t + L, the domain DT = D × [0, T ), the
boundary ∂DT = D × {T} ∪ ∂D × [0, T ], and the augmented variable z = (x, t)⊤ ∈ Rd+1. Then problem (6.64)
becomes

AV (z) + h(z, V (z), σ⊤∇xV (z)) = 0, z ∈ DT , (6.67a)
V (z) = k(z), z ∈ ∂DT , (6.67b)

with

k(z) =

{︄
f(x), t = T, x ∈ D,
g(x, t), t ≤ T, x ∈ ∂D.

(6.68)

Remark 6.14 (Neumann boundary conditions). In (6.64) we have posed a PDE with Dirichlet boundary condi-
tions. Similarly we can include Neumann boundary terms, such as

∂

∂ν
V (x, T ) = fN (x), x ∈ ∂D, (6.69a)

∂

∂ν
V (x, t) = gN (x, t), (x, t) ∈ ∂D × [0, T ], (6.69b)

where ∂
∂ν is the derivative in the direction normal to the boundary. All methods that we will discuss can be

applied in this scenario too.
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6.3. Variational formulations of boundary value problems

We now consider boundary value problems such as (6.64) in a variational formulation. We make the following
assumption for the PDE solution.

Assumption 5. The boundary value problem (6.64) admits a unique classical solution V ∈ C2,1(Rd×[0, T ],R).
Moreover, the gradient of V satisfies a polynomial growth condition in x, that is,

|∇V (x, t)| ≤ C(1 + |x|q) (6.70)

for some C, q > 0.

In the spirit of machine learning, we aim to approximate the solution V with some function φ ∈ F by minimizing
suitable loss functionals

L : F → R+, (6.71)

which are zero if and only if the boundary value problem is fulfilled, i.e.

L(φ) = 0 ⇐⇒ φ = V. (6.72)

Here F ⊂ C2,1(Rd×[0, T ],R) is some appropriate function class, usually consisting of deep neural networks.
With a loss function at hand we can apply gradient-descent like algorithms to minimize estimator versions of
L, having in mind that different choices of losses lead to different statistical and computational properties and
therefore potentially to different convergence speeds and robustness qualities (see Chapter 4). Let us start by
introducing two prominent losses that we have already referred to before.

6.3.1 PINN loss
A loss based on PDE residuals goes back to [184, 185] and has gained recent popularity under the name physics
informed neural network (PINN) in [242] and under the name deep Galerkin method (DGM) in [271]. The idea
is quite simple: one minimizes the L2 norm of the residuals of both the PDE and its boundary terms respectively
that one gets when using the approximating function φ instead of V , where the derivatives of φ are computed
analytically or via automatic differentiation and the data on which φ is evaluated is distributed according to
some prescribed probability measure (often a uniform distribution). A precise definition is as follows:

Definition 6.15 (PINN loss). Let φ ∈ F . The PINN loss consists of three terms,

LPINN(φ) = α1LPINN,int(φ) + α2LPINN,T(φ) + α3LPINN,b(φ), (6.73)

where

LPINN,int(φ) = E
[︂(︁
(∂t + L)φ(X, t) + h(X, t, φ(X, t), σ⊤∇φ(X, t))

)︁2]︂
, (6.74a)

LPINN,T(φ) = E
[︂(︁
φ(XT , T )− f(XT )

)︁2]︂
, (6.74b)

LPINN,b(φ) = E
[︂(︁
φ(Xb, tb)− g(Xb, tb)

)︁2]︂
, (6.74c)

α1, α2, α3 > 0 are suitable weights and X,XT ∼ ν(D), Xb ∼ µ(∂D), t, tb ∼ λ([0, T ]) are sampled randomly from
probability measures with full supports on the respective domains.

Remark 6.16 (PINN loss). The PINN loss does in fact not rely on the specific form of the differential operator
L as defined in (6.65) and can easily be applied to more general PDEs. One can for instance include differential
operators containing ∂t∂t or ∂xi

∂xj
∂xk

. Let us further already mention that making appropriate choices of the
weights α1, α2, α3 > 0 is important, but not trivial. We will elaborate on this aspect in Section 6.3.6.1.

6.3.2 BSDE loss
The second loss makes use of a stochastic representation of boundary value problem (6.64) given by a backward
stochastic differential equation (BSDE) rooted in the correspondence between the differential operator L defined
in (6.65) and the stochastic process defined in (6.66) (cf. Section 2.2.2, Chapter 4 and Section 6.2). To wit, the
PDE (6.64) is equivalent to the system of forward and backward SDEs [228]

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, Xt0 = xinit, (6.75a)
dYs = −h(Xs, s, Ys, Zs)ds+ Zs · dWs, YT = k(XT∧τ , T ∧ τ), (6.75b)

where τ = inf{t > 0 : Xt /∈ D} is a stopping time and k is defined as in (6.68), in the sense that, given some
regularity conditions, the backward processes are equal to

Ys = V (Xs, s), Zs = σ⊤∇V (Xs, s), (6.76)
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i.e. they provide the solution and its derivative along trajectories of the forward process. Aiming for the
approximation φ ≈ V , the idea is to penalize deviations from the terminal condition via the loss

L(φ) = E
[︃(︂
k(XT∧τ , T ∧ τ)− ˜︁YT (φ))︂2]︃ , (6.77)

where ˜︁Y (φ) is the backward process Y as in (6.75b) and (6.76) with V replaced by φ. This results in the
following loss.

Definition 6.17 (BSDE loss). Let φ ∈ F . The BSDE loss is defined as

LBSDE(φ) = E

[︄(︄
f(Xτ∧T )1τ∧T=T + g(Xτ∧T , τ ∧ T )1τ∧T=τ − φ(Xt0 , t0)−

τ∧T∫︂
t0

σ⊤∇φ(Xs, s) · dWs

+

τ∧T∫︂
t0

h(Xs, s, φ(Xs, s), σ
⊤∇φ(Xs, s))ds

)︄2]︄
,

(6.78)

where (Xt)0≤t≤τ∧T is a solution to (6.66), τ = inf{t > 0 : Xt /∈ D} is the first exit time from D and X0 ∼
ν(D), t0 ∼ λ([0, T ]) are sampled from prescribed probability measures.

Remark 6.18 (BSDE loss). In contrast to the PINN loss, the BSDE loss consists of only one term and does not
rely on additional data for learning the boundary conditions. This has the advantage of not needing to tune
weights α1, α2, α3, but brings the additional challenge of simulating hitting times τ efficiently and accurately.
We shall elaborate on this aspect in Section 6.3.6.2.

Remark 6.19 (Related work). The idea of approximating PDEs by solving BSDEs has been studied extensively
[39, 110, 228], where first approaches were regression based, relying on iterations backwards in time (cf. Sec-
tion 6.2). A variational attempt using neural networks has first been introduced in [86], where however in
contrast to Definition 6.17, t0 = 0 is fixed, only parabolic problems are considered and slightly different choices
for the approximations are chosen, namely V is only approximated at the fixed initial condition X0 at t0 = 0
and ∇V instead of V is learnt by multiple instead of only one neural network. We note that the correspondence
between BSDEs and PDEs on bounded domains is e.g. justified by [228, Section 4].

Remark 6.20 (Compact version of BSDE loss). Relying on the more compact PDE notation from Remark 6.13,
we can equivalently define the BSDE loss as

LBSDE(φ) = E

[︄(︄
k(XτDT

, τDT
)− φ(Xt0 , t0)−

τDT∫︂
t0

σ⊤∇φ(Xs, s) · dWs +

τDT∫︂
t0

h(Xs, s, φ(Xs, s), σ
⊤∇φ(Xs, s))ds

)︄2]︄
,

(6.79)

where (Xt)0≤t≤τDT
is a solution to (6.66), τDT

= inf{t > 0 : Xt /∈ DT } is an exit time and X0 ∼ ν(D), t0 ∼
µ([0, T ]) are sampled.

Remark 6.21 (BSDE loss for linear PDEs). When approaching linear PDEs with the BSDE loss from Defini-
tion 6.17, the resulting algorithm can be directly compared to an approach that relies on L2 projections as
suggested in Section 6.1. For simplicity let us consider the linear PDE

(∂t + L)V (x, t) = 0, (x, t) ∈ Rd×[0, T ), (6.80a)

V (x, T ) = g(x), x ∈ Rd, (6.80b)

which amounts to choosing f = k = 0 in (6.1). The variational formula (6.7) then translates to

Llinear(φ) = E
[︂
(g(XT )− φ(x, t))2

]︂
, (6.81)

recalling that the initial times t ∼ µ([0, T ]) and initial values x ∼ ν(Rd) are sampled from some prescribed
probability measures ν, µ. The BSDE loss as defined in Definition 6.17 on the other hand is

LBSDE(φ) = E

⎡⎢⎣
⎛⎝g(XT )− φ(x, t)−

T∫︂
t

σ⊤∇φ(Xs, s) · dWs

⎞⎠2
⎤⎥⎦ . (6.82)

Comparing expressions (6.81) and (6.82) we realize that they only differ in the extra Itô integral involving
gradients of the approximating function. We refer to Section 6.3.7.9 for a numerical comparison of the two
losses.
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6.3.3 Diffusion loss
We will now introduce a novel loss that combines ideas of the previously defined PINN and BSDE losses. Similar
to the BSDE loss it is rooted in the connection between SDE (6.66) and its infinitesimal generator (6.65), to be
precise, it relies on Itô’s formula

V (XT , T )− V (X0, 0) =

T∫︂
0

(∂s + L)V (Xs, t)ds+

T∫︂
0

σ⊤∇V (Xs, s) · dWs, (6.83)

which motivates the following variational formulation of the boundary value problem (6.64).

Definition 6.22 (Diffusion loss). Let φ ∈ F . The diffusion loss consists of three terms,

Lt
diffusion(φ) = α1Lt

diffusion,int(φ) + α2Lt
diffusion,T(φ) + α3Lt

diffusion,b(φ), (6.84)

where

Lt
diffusion,int(φ) = E

[︄(︄
φ(XT , T )− φ(Xt0 , t0)−

T∫︂
t0

σ⊤∇φ(Xs, s) · dWs (6.85a)

+

T∫︂
t0

h(Xs, s, φ(Xs, s), σ
⊤∇φ(Xs, s))ds

)︄2]︄
,

Lt
diffusion,T(φ) = E

[︂(︁
φ(XT , T )− f(XT )

)︁2]︂
, (6.85b)

Lt
diffusion,b(φ) = E

[︂(︁
φ(Xb, tb)− g(Xb, tb)

)︁2]︂
, (6.85c)

α1, α2, α3 > 0 are suitable weights, (Xt)t0≤t≤T is a solution to (6.66) with maximal trajectory length t > 0,
T := (t0 + t) ∧ τ ∧ T is a shorthand notation, where τ = inf{t > 0 : Xt /∈ D} is an exit time, and Xt0 , X

T ∼
ν(D), Xb ∼ λ(∂D), t0, tb ∼ µ([0, T ]) are sampled randomly from prescribed probability measures with full
supports on the respective domains.

Remark 6.23 (Differences to other losses). Let us comment on the essential differences of the diffusion loss to
the other two losses that we have defined previously. In contrast to the PINN loss, the data inside the domain
is not sampled according to a prescribed probability measure, but along trajectories of the diffusion (6.66).
Consequently, second derivatives do not have to be computed explicitly, but are approximated via the driving
Brownian motion. A main difference to the BSDE loss is that the simulated trajectories have a maximal length,
which might be beneficial if exit times are large. Additionally, the sampling of extra boundary data circumvents
the problem of accurately simulating those exit times. Both aspects will be further discussed in Section 6.3.6.
We refer to Figure 6.7 for a graphical illustration of the three losses.

PINN loss BSDE loss, t= 0.0001 Diffusion loss, t= 0.0001,N= 50

Figure 6.7: We illustrate the training data used for the three losses inside the unit square D = (0, 1)2. The
PINN loss in the left panel takes i.i.d. data points that are sampled from prescribed probability distributions in
the domain and on the boundary respectively (in this case a uniform distribution). The BSDE loss in the middle
consists of trajectories that are started at random points (green points) and run until they hit the boundary
(red points). The trajectories of the diffusion loss on the other hand have a maximal length and can therefore
start and end inside the domain, as displayed in the right panel. The blue points for the PINN and diffusion
losses indicate the additionally sampled boundary data.
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Let us now show that the novel loss Lt
diffusion is indeed suitable for the boundary value problem (6.64).

Proposition 6.24. Consider the diffusion loss as defined in Definition 6.22 and assume that b and σ are
globally Lipschitz continuous in x, uniformly in t. Furthermore, assume the following Lipschitz and boundedness
conditions on f , g and h,

|f(x)| ≤ C(1 + |x|p),
|g(x, t)| ≤ C(1 + |x|p),

|h(t, x, y, z)| ≤ C(1 + |x|p + |y|+ |z|),
|h(t, x, y, z)− h(t, x, y′, z)| ≤ C|y − y′|,
|h(t, x, y, z)− h(t, x, y, z′)| ≤ C|z − z′|,

for appropriate constants C, p ≥ 0. Finally, assume that Assumption 5 is satisfied. Then for φ ∈ F the following
are equivalent:

1. φ minimizes the diffusion loss,
Lt
diffusion(φ) = 0. (6.86)

2. φ fulfills the boundary value problem (6.64).

Proof. We first note that Lt
diffusion(φ) ≥ 0 for all φ ∈ F . Denoting by Xs the unique strong solution to (6.66),

an application of Itô’s lemma to φ(Xs, s) yields

φ(XT , T ) = φ(Xt0 , t0) +

T∫︂
t0

(∂s + L)φ(Xs, s) ds+

T∫︂
t0

σ⊤∇φ(Xs, s) · dWs, (6.87)

almost surely. Assuming that φ fulfills the PDE (6.64a), it follows from the definition in (6.85a) that Lt
diffusion,int(φ) =

0. Similarly, the boundary conditions (6.64b) and (6.64c) imply that Lt
diffusion,T(φ) = Lt

diffusion,b(φ) = 0. Con-
sequently, we see that Lt

diffusion(φ) = 0.
For the converse direction, observe that Lt

diffusion(φ) = 0 implies that

φ(XT , T ) = φ(Xt0 , t0) +

T∫︂
t0

σ⊤∇φ(Xs, s) · dWs −
T∫︂
t0

h(Xs, s, φ(Xs, s), σ
⊤∇φ(Xs, s)) ds, (6.88)

almost surely, and that the same holds with φ replaced by V . We proceed by defining the processes ˜︁Ys :=
φ(Xs, s) and ˜︁Zs := σ⊤∇φ(Xs, s), as well as Ys := V (Xs, s) and Zs := σ⊤∇V (Xs, s). By the assumptions on φ,
b and σ, the processes Y , Z, ˜︁Y and ˜︁Z are progressively measurable with respect to the filtration generated by
(Wt)t≥0 and moreover square-integrable. Furthermore, the relation (6.88) shows that the pairs (Y,Z) and (˜︁Y , ˜︁Z)
satisfy a BSDE with terminal condition ξ := φ(XT , T ) on the random time interval [t0, T ]. Well-posedness of
the BSDE (see [228, Theorems 1.2 and 3.2]) implies that Y = ˜︁Y and Z = ˜︁Z, almost surely. Conditional on t0
and Xt0 , we also have V (Xt0 , t0) = Y Xt0

,t0 = ˜︁Y Xt0
,t0 = φ(Xt0 , t0), where the superscripts denote conditioning

on the initial time t0 and corresponding initial condition Xt0 , see [228, Theorems 2.4 and 4.3]. Hence, we
conclude that φ = V , ν ⊗ µ-almost surely, and the result follows from the continuity of φ and V and the
assumption that ν and µ have full support.

We have noted before that the diffusion loss combines ideas from the PINN and BSDE losses. In fact, it turns
out that it can be interpreted as some kind of interpolation between the two. The following proposition makes
this observation precise.

Proposition 6.25 (Relation of diffusion loss to PINN and BSDE losses). Let φ ∈ F . We have

Lt
diffusion,int(φ)

t2
→ LPINN,int(φ), (6.89)

as t→ 0. Moreover, for t0 = 0 we have

Lt
diffusion,int(φ)→ LBSDE(φ), (6.90)

as t→∞.
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Proof. Itô’s formula shows that Lt
diffusion,int can be expressed as

Lt
diffusion,int(φ) = E

⎡⎢⎣
⎛⎝ T∫︂
t0

(∂s + L)φ(Xs, s) ds+

T∫︂
t0

h(Xs, s, φ(Xs, s), σ
⊤∇φ(Xs, s)) ds

⎞⎠2
⎤⎥⎦ , (6.91)

which implies the limit (6.89) by noting that T → t0 as t → 0. Relation (6.90) follows immediately from the
definition of LBSDE by noting that T → τ ∧ T as t→∞.

6.3.4 Special PDE cases
We have formulated the boundary value problem (6.64) in a rather general form. In this section we shall mention
two special cases.

Parabolic PDE on an unbounded domain

The general problem formulation in (6.64) allows for considering unbounded domains D = Rd, which makes the
boundary condition (6.64c) obsolete and yields the parabolic terminal value problem

(∂t + L)V (x, t) + h(x, t, V (x, t), σ⊤∇V (x, t)) = 0, (x, t) ∈ Rd×[0, T ), (6.92a)

V (x, T ) = f(x), x ∈ Rd . (6.92b)

Of course, in practice, we cannot sample data from the entire unbounded domain, but rather define some region
of interest from which we sample and on which we aim to approximate the PDE.

Solving parabolic PDEs on unbounded domains via stochastic representations has been considered many times.
Motivated by original attempts for the numerical approximation of BSDEs by backward-in-time iterations [39,
110, 228], those methods have been considered and further developed with neural networks in [11, 144] and
endowed with tensor trains in [251], see also Section 6.2. As we have already mentioned in Remark 6.19, the
original variational BSDE algorithm in [86] as well as a variant of it in [241] has been formulated for problems
of type (6.92). Furthermore, linear parabolic PDEs on unbounded domains have for instance been approached
via combining the Feynman-Kac formula with neural networks in [12, 29].

Elliptic boundary value problems

If we remove the time dependency from the solution we get the elliptic boundary value problem

LV (x) + h(x, V (x), σ⊤∇V (x)) = 0, x ∈ D, (6.93a)
V (x) = g(x), x ∈ ∂D, (6.93b)

where now h ∈ C(Rd×R×Rd,R). In analogy to (6.75), the corresponding backward equation can then be
defined as

dYs = −h(Xs, Ys, Zs)ds+ Zs · dWs, Yτ = g(Xτ ), (6.94)

where τ = {t > 0 : Xt /∈ D} is the first exit time from the domain. Given suitable assumptions on h and
assuming that τ is almost surely finite, one can show existence and uniqueness of solutions Y and Z, which,
as before, represent the solution V and its gradient along trajectories of the forward process [228, Theorem
4.6]. Furthermore, Proposition 6.24 and its proof can straightforwardly be generalized to the elliptic setting,
assuming that the stopping time τ is finite, almost surely. An algorithm for solving elliptic PDEs as in (6.93)
in the spirit of the BSDE loss has been suggested in [179], using the same approximation ideas as in [86] (cf.
Remark 6.19). We note that linear elliptic PDEs often admit alternative variational formulas via some sort of
energy minimization [296]. An approach via the Feynman-Kac formula has been considered in [117].

6.3.5 Elliptic eigenvalue problems
We can extend our algorithmic approaches to eigenvalue problems of the form

LV (x) = λV (x), x ∈ D, (6.95a)
V (x) = g(x), x ∈ ∂D, (6.95b)
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which corresponds to choosing h(x, y, z) = −λy in the elliptic PDE (6.93). Note, however, that h now depends
on the unknown eigenvalue λ ∈ R. Furthermore, we can consider nonlinear eigenvalue problems of the form

LV (x) + h(x, V (x), σ⊤∇V (x)) = λV (x), x ∈ D, (6.96a)
V (x) = g(x), x ∈ ∂D, (6.96b)

with h ∈ C(Rd×R×Rd,R).

For the linear problem (6.95) it is known that, given suitable assumptions, there exists a principal eigenvalue
and that the corresponding eigenfunction is the only one that is positive on the entire domain D [25, Theorem
2.3]. This motivates us to consider the above losses now depending also on λ as well as enhanced with an
additional term, and we define

Leigen(φ, λ) = Lλ(φ) + αcLc(φ), (6.97)

where Lλ(φ) is any of the losses from above, where Lc(φ) = (φ(xc)− 1)2 with xc ∈ D being somewhere in the
center of the domain and where αc > 0 is an additional weight. The second term shall avoid finding the trivial
solution that is zero everywhere, noting that V is often only defined up to a scalar factor (unless there is a
fixed non-zero boundary condition). Often, one has periodic boundary conditions instead of an explicitly given
boundary function g. In this case we can replace the loss term Lb for the boundary (e.g. in Definition 6.15 or
Definition 6.22) by

Lb(φ) = E
[︃(︂
φ(Xb)− φ(Xb

)
)︂2]︃

+ E
[︃⃓⃓⃓
∇φ(Xb)−∇φ(Xb

)
⃓⃓⃓2]︃

, (6.98)

where Xb ∼ µ(∂D) is sampled randomly and X
b

is its reflected/periodic counterpart. We note that in this
scenario we cannot rely on the BSDE loss.

The idea is to constrain the function φ to be non-negative and to minimize Leigen(φ, λ) w.r.t. φ ∈ F and λ ∈ R
simultaneously. The following proposition shows that this is indeed a good idea for the approximation of the
first eigenpair.

Proposition 6.26. Let φ ∈ F with φ ≥ 0 and assume that Lλ(φ) = 0 if and only if (6.95) is satisfied. Then
the following are equivalent:

1. φ is the principal eigenfunction for (6.95) with principal eigenvalue λ and normalization φ(xc) = 1.

2. The pair (φ, λ) minimizes the loss (6.97), that is

Leigen(φ, λ) = 0. (6.99)

Remark 6.27. The assumption that Lλ(φ) is equivalent to (6.95) is satisfied for any ‘reasonable’ loss function.
For the diffusion loss, Proposition 6.24 establishes this condition whenever the coefficients in (6.95) are regular
enough.

Proof. It is clear that 1.) implies 2.) by the construction of (6.97). For the converse direction, notice that
(6.99) implies φ(xc) = 1 as well as (6.95), that is, φ is an eigenfunction with eigenvalue λ. In conjunction with
the constraint φ ≥ 0, it follows by [25, Theorem 2.3] that φ is the principal eigenfunction.

A similar approach can be found in [124], where, however, the eigenvalue problem is connected to a parabolic
PDE and is formulated as a fixed point problem.

6.3.6 From losses to algorithms
In this section we will discuss some details regarding the losses that we have introduced in Sections 6.3.1-6.3.3.
We will show how they can be applied in practice and elaborate on certain implementational aspects. For
convenience let us start by stating a prototypical algorithm that relies on the variational formulations that we
have discussed before.
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Algorithm 4: Approximation of solution V to boundary value problem (6.64)
Choose a parametrization Rp ∋ θ ↦→ φθ.
Initialize φθ (with a parameter vector θ ∈ Rp).
Choose an optimization method descent , a batch size K ∈ N and a learning rate η > 0. For PINN and
diffusion losses choose weights α1, α2, α3 > 0 and batch sizes Kb,KT ∈ N for the boundary terms. For
BSDE and diffusion losses choose a step-size ∆t > 0, for the diffusion loss choose a trajectory length
t > 0.

repeat
Choose a loss function L of either (6.73), (6.78) or (6.84).
Simulate data according to the chosen loss.
Compute ˆ︁L(φθ) as a Monte Carlo version of L.
Compute ∇θ ˆ︁L(φθ) using automatic differentiation.
Update parameters: θ ← θ − η descent(∇θ ˆ︁L(φθ)).

until convergence;
Result: φθ ≈ V .

6.3.6.1 Training data and weights

The three losses that we have introduced differ in how training data is created. Our boundary problem (6.64)
consists of three parts: the PDE (6.64a) that is defined inside the domain D as well as the two boundary
conditions, in time (6.64b) and in space (6.64c). The general idea is to create sufficient artificial training
data such that all corresponding parts of problem (6.64) can be learnt by minimizing the empirical versions
of the losses evaluated on this data. In the PINN loss, domain data is sampled i.i.d. from a prescribed
probability measure ν that has full support on the domain. While for ν taking the uniform distribution
seems like an intuitive choice, alternative attempts seem promising and further research might focus on some
sort of importance sampling with the goal to highlight certain more relevant regions of the domain, thereby
potentially speeding up convergence or improving approximation accuracy in regions of interest. We note that
it is mathematically not well understood why (uniformly) sampling from very high dimensional spaces seems to
not make the algorithms suffer from the curse of dimensionality.
The BSDE and diffusion losses on the other hand rely on data that is generated by the forward SDE (6.66),
implying that second derivatives as well as time derivatives do not have to be computed explicitly since they
are approximated by the underlying Brownian motion. We will further elaborate on the simulation of diffusions
in Section 6.3.6.2.

For the PINN and diffusion losses training data for the boundary terms is sampled explicitly from prescribed
probability measures µ and λ, for which one often chooses uniform distributions in practice. The boundary data
are incorporated into the losses as additional terms and one has to choose weights α1, α2, α3 > 0 for balancing
the three loss parts. It is important to note that these choices are crucial, as in practice only certain weight
configurations bring convergence to the right solution. Unfortunately it is generally not clear how to make
appropriate choices a priori. For the PINN loss we refer to [288, 293, 294, 295] for some systematic insights and
strategies, which might also be applied to the diffusion loss. For the BSDE loss on the other hand, boundary
data is sampled implicitly by hitting the boundary with the underlying diffusion process. We will elaborate on
this aspect in the upcoming section.

6.3.6.2 Simulation of diffusions and their exit times

The BSDE and diffusion losses rely on data from the stochastic process (6.66). In practice the SDE has to be
approximated on a time grid t0 ≤ t1 ≤ · · · ≤ tN , for instance with the Euler-Maruyama scheme

˜︁Xn+1 = ˜︁Xn + b( ˜︁Xn, tn)∆t+ σ( ˜︁Xn, tn)ξn+1

√
∆t, (6.100)

or, to be precise, by its stopped version

ˆ︁Xn+1 = ˆ︁Xn +
(︂
b( ˆ︁Xn, tn)∆t+ σ( ˆ︁Xn, tn)ξn+1

√
∆t
)︂
1Cn+1

(6.101)

with step condition Cn :=
(︂ ˜︁Xn ∈ D

)︂
∨ (tn ≤ T ) and time-increment tn+1 = tn + ∆t1Cn+1 , where ∆t > 0 is

the step-size and ξn+1 ∼ N (0, Idd×d) is a standard normally distributed random variable. We can then easily
construct Monte Carlo versions of either the BSDE or the diffusion loss. For an example, the discrete version
of the domain part of the diffusion loss (6.85a) reads
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ˆ︁L(K,N)
diffusion,int(φ) =

1

K

K∑︂
k=1

(︄
φ( ˆ︁X(k)

N , t
(k)
N )− φ( ˆ︁X(k)

0 , t
(k)
0 )−

N−1∑︂
n=0

σ⊤∇φ( ˆ︁X(k)
n , t(k)n ) · ξ(k)n+1

√
∆t1C(k)

n

+

N−1∑︂
n=0

h
(︂ ˆ︁X(k)

n , t(k)n , φ( ˆ︁X(k)
n , t(k)n ), σ⊤∇φ( ˆ︁X(k)

n , t(k)n )
)︂
∆t1C(k)

n

)︄2

,

(6.102)

where K is the sample size and N = t
∆T the maximal discrete trajectory length. The Monte Carlo version of

the BSDE loss can be formed analogously.

It is known that, given suitable assumptions, the strong discretization errors of the forward and backward
processes are of order

√
∆t [172, 307], cf. also [123] for a numerical analysis on the original version of the BSDE

loss. An additional challenge when considering bounded domains, however, is the approximation of exit times.
In the BSDE loss boundary data is implicitly generated by the diffusion hitting the boundary at a random
time τ . There are two problems that might occur here: On the one hand, exit times can be very large (e.g.
if the domain is large or if the diffusion exhibits some metastable characteristics [26]), leading to very long
runtimes of corresponding algorithms. One can try to counteract this phenomenon by adding an additional
control to the forward process, however the choice of an adequate control seems to be non-trivial in practice
(see Section 6.3.6.4 for further details). On the other hand, we note that any numerical scheme of SDE (6.66)
leads to discretization errors not only of the process itself, but also of the exit times, leading to nontrivial
effects and additional challenges at the boundary. In the two left panels of Figure 6.8 we illustrate this problem
by displaying multiple “last positions” of an Euler-Maruyama discretization of Brownian motion as defined in
(6.101) just before leaving the unit square using two different step-sizes. For our algorithms, all these points
should in principle lie on the boundary, which in practice can only be achieved by choosing very small step-sizes,
leading to additional computational challenges.

boundary points, t = 0.001 boundary points, t = 0.0001 trajectories, t = 0.001 reversed trajectories, t = 0.001

Figure 6.8: Illustration of the boundary data in the BSDE method.

The problem of discretizing exit times has been addressed multiple times and some improved sampling strategies
have been suggested, see e.g. [42, 135]. For our problem, however, we should emphasize that it is not the principal
goal to estimate exit times themselves, but it is rather of interest that trajectories are stopped accurately. We
can therefore suggest the following two attempts that aim to improve the sampling of boundary data:

1. Rescaling: Start X0 randomly in D, simulate the trajectory and stop once the boundary has been crossed,
however scale the last time step in such a way that the trajectory exactly ends on ∂D.

2. Time-reversal: Start X0 on the boundary ∂D and simulate the trajectory for a given time T (unless it
hits the boundary again before time T , in this case stop the trajectory accordingly). Then reverse the
process such that the reversed process ends on the boundary exactly.

An illustration of the two different strategies can be found in the two right panels of Figure 6.8.

Remark 6.28 (Backward iterations on bounded domains). We have mentioned in Remark 6.19 that an original
attempt to solve BSDEs relies on backward iterations, however mostly formulated for unbounded domains. One
can also try to solve BSDEs on bounded domains, incorporating random stopping times, by backward iteration
algorithms. Of course the issue of approximating stopping times accurately remains the same and there is the
additional challenge that trajectories have different lengths and therefore regression techniques might suffer from
variance issues at the end of the trajectories, cf. [127] and Remark 6.8. Some numerical analysis in the context
of parabolic PDEs on bounded domains has been done in [38], however numerical simulations are lacking and
we are not aware of any rigorous error analysis or systematic numerical study related to this attempt.
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6.3.6.3 Further modifications of the losses

The three losses that we have introduced in Sections 6.3.1-6.3.3 are natural candidates for solving the boundary
value problem (6.64), differing however in how training data is generated. In Table 6.9a we contrast those
different data generation attempts. We have discussed before that each of the losses has advantages and
potential drawbacks. In Table 6.9b we summarize some of them.

Table 6.9: Comparison of the different losses.

PINN BSDE Diffusion
SDE simulation ✗ ✗

boundary data ✗ ✗

(a) The three losses can be characterized by how training
data is generated.

PINN BSDE Diffusion
Hessian computations ✗

boundary issues ✗

weight tuning ✗ ✗

long runtimes ✗

discretization ✗ ✗

(b) In this table we list potential challenges and drawbacks
for the corresponding losses.

In the following we shall discuss certain modifications for some of the losses, relating also to versions that have
appeared in the literature before.

6.3.6.4 Forward control

We can modify the SDE-based losses by adding control functions v ∈ C(Rd×[0, T ],Rd) to the forward process
(6.66), yielding the controlled diffusion

dXv
s = (b(Xv

s , s) + σ(Xv
s , s)v(X

v
s , s)) ds+ σ(Xv

s , s) dWs. (6.103)

By applying Itô’s formula we can get appropriate losses similar to the ones from before. For instance, the
diffusion loss can then be written as

Lt,v
diffusion,int(φ) = E

[︄(︄
φ(Xv

T , T )− φ(Xv
t0 , t0)−

T∫︂
t0

σ⊤∇φ(Xs, s) · dWs

+

T∫︂
t0

[︁
h(Xv

s , s, φ(X
v
s , s), σ

⊤∇φ(Xv
s , s))− v(Xv

s , s) · σ⊤∇φ(Xv
s , s)

]︁
ds

)︄2]︄ (6.104)

instead of (6.85a), where we note that we actually have a family of losses parametrized by v since Proposition 6.24
holds true for Lt,v

diffusion with any v.

The same considerations are true for the BSDE loss, noting that with the generalized BSDE system

dXv
s = (b(Xv

s , s) + σ(Xv
s , s)v(X

v
s , s)) ds+ σ(Xv

s , s) dWs, Xv
t0 = xinit, (6.105a)

dY vs = −h(Xv
s , s, Y

v
s , Z

v
s ) ds+ v(Xv

s , s) · Zvs ds+ Zvs · dWs, Y vT = k(Xv
T∧τ , T ∧ τ), (6.105b)

we still have the relations
Y vs = V (Xv

s , s), Zvs = σ⊤∇V (Xv
s , s) (6.106)

for any suitable v ∈ C(Rd×[0, T ],Rd), analog to (6.76), see also Corollary 2.28. This immediately brings the
family of losses

LvBSDE(φ) = E

[︄(︄
f(Xv

τ∧T )1τ∧T=T + g(Xv
τ∧T , τ ∧ T )1τ∧T=τ − φ(Xv

t0 , t0)−
τ∧T∫︂
t0

σ⊤∇φ(Xv
s , s) · dWs

+

τ∧T∫︂
t0

(︁
h(Xv

s , s, φ(Xs, s), σ
⊤∇φ(Xs, s))− v(Xv

s , s) · σ⊤∇φ(Xv
s , s)

)︁
ds

)︄2]︄
,

(6.107)

again parametrized by v ∈ C(Rd×[0, T ],Rd).
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Adding a control to the forward process can be understood as driving the data generating process into regions of
interest, which can be seen as importance sampling of diffusions, see also Section 2.3. We have noted before that
a challenge in the BSDE loss is that exit times might be large. One idea is therefore to aim for controls v that
decrease such exit times, while still allowing for low-variance estimators of the losses and their gradients. How
to identify such suitable forward controls might be an interesting topic for future research (we recall Chapter 4
for some systematic approaches in this respect relating to Hamilton-Jacobi-Bellman PDEs).

6.3.6.5 Approximating the gradient of the solution

Inspecting the BSDE system (6.75) we realize that we can as well consider losses that are slightly different
from the BSDE loss as stated in Definition 6.17. Going back to [86], we can for instance use the fact that the
backward process Y can be written in a forward way, yielding the discrete process

ˆ︁Yn+1 = ˆ︁Yn − h( ˆ︁Xn, tn, ˆ︁Yn, ˆ︁Zn)∆t+ ˆ︁Zn · ξn+1

√
∆t. (6.108)

We realize that this scheme is explicit and the only unknowns are ˆ︁Y0 and ˆ︁Zn for n ∈ {0, . . . , N − 1}. This
motivates to learn the single parameter y0 ≈ ˆ︁Y0 ∈ R and the functions ϕ ≈ σ⊤∇V ∈ C(Rd×[0, T ],Rd) (rather
than V directly). This approach can be summarized in the loss

LBSDE−2(ϕ, y0) = E

[︄(︄
f(Xτ∧T )1τ∧T=T + g(Xτ∧T , τ ∧ T )1τ∧T=τ − y0 −

τ∧T∫︂
0

ϕ(Xs, s) · dWs

+

τ∧T∫︂
0

h(Xs, s, Ys, ϕ(Xs, s))ds

)︄2]︄
.

(6.109)

In this setting X0 has to be chosen deterministically and we note that we can only hope to approximate
y0 ≈ V (X0, 0) as well as the gradient of V along the trajectories of the forward process. We have shown in
Chapter 4 that one can consider alternative losses (like the log-variance loss) whenever the nonlinearity h only
depends on the solution through its gradient, in which case the extra parameter y0 can be omitted.

6.3.6.6 Penalizing deviations from the discrete scheme

Another approach that is grounded in the discrete backward process has been suggested in [241] for problems
on unbounded domains. It relies on the idea that for each n ∈ {0, . . . , N − 1} we can penalize deviations from
(6.108) (cf. also [144] and Section 6.2, where however an implicit scheme and backward iterations are used).
Noting that we aim for ˆ︁Yn ≈ φ( ˆ︁Xn, tn), ˆ︁Zn ≈ σ⊤∇φ( ˆ︁Xn, tn), this motivates the loss

ˆ︁L(K,N)
BSDE−3(φ) = α1

ˆ︁L(K,N)
BSDE−3,int(φ) + α2

ˆ︁L(K,N)
BSDE−3,b(φ) (6.110)

with the interior part

ˆ︁L(K,N)
BSDE−3,int(φ) =

1

K

K∑︂
k=1

N−1∑︂
n=0

(︄
φ( ˆ︁X(k)

n+1)− φ( ˆ︁X(k)
n ) + h

(︂ ˆ︁X(k)
n , φ( ˆ︁X(k)

n ),σ⊤∇φ( ˆ︁X(k)
n )

)︂
∆t

− σ⊤∇φ( ˆ︁X(k)
n )ξn+1

√
∆t

)︄2
(6.111)

and the boundary term

ˆ︁L(K,N)
BSDE−3,b(φ) =

1

K

K∑︂
k=1

(︂
φ( ˆ︁X(k)

N )− g( ˆ︁X(k)
N )

)︂2
. (6.112)

A generalization to bounded problems is straightforward and we note that it is not possible to write down
a continuous version of (6.110). Interesting, however, is that we can relate this loss to the diffusion loss via
Jensen’s inequality, yielding ˆ︁L(K,N)

diffusion,int(φ) ≤ N ˆ︁L(K,N)
BSDE−3,int(φ). (6.113)

Yet another approach that is based on a discrete backward scheme is the following. Let us initialize ˆ︁Y0 = φ( ˆ︁X0, 0)
and simulate ˆ︁Yn+1 = ˆ︁Yn − h( ˆ︁Xn, ˆ︁Yn, σ⊤∇φ( ˆ︁Xn, tn))∆t+ σ⊤∇φ( ˆ︁Xn, tn) · ξn+1

√
∆t (6.114)
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for n ∈ {0, . . . , N − 1}, where in contrast to the previous attempt we have now only replaced ˆ︁Zn by its
approximation σ⊤∇φ( ˆ︁Xn, tn) and take ˆ︁Yn from previous iteration steps, which is in spirit similar to the attempt
in LBSDE−2. Following the motivation of LBSDE−3, i.e. penalizing deviations from the discrete scheme, we can
now introduce the loss

ˆ︁L(K,N)
BSDE−4(φ) =

α1

K

K∑︂
k=1

N∑︂
n=0

(︂
φ( ˆ︁X(k)

n , tn)− ˆ︁Y (k)
n

)︂2
+
α2

K

K∑︂
k=1

(︂
φ(X

(k)
b )− g(X(k)

b )
)︂2
. (6.115)

Let us note that in both LBSDE−3 and LBSDE−4 we can replace the deterministic initial point ˆ︁X0 at t = 0 by
random choices ˆ︁Xt0 ∼ ν at random times t0 ∼ µ, where ν and µ are prescribed probability measures, adjusting
the sums in (6.111) and (6.115) accordingly.

6.3.7 Numerical experiments
In this section we will provide several numerical examples of high-dimensional parabolic and elliptic PDEs that
shall demonstrate the performances of Algorithm 4 using the different loss functions that we have discussed be-
fore. We will focus on the three losses from Sections 6.3.1-6.3.3 since their modified versions from Section 6.3.6.3
did not yield better performances consistently.

6.3.7.1 Computational aspects and function approximations

We usually rely on neural networks for our approximating function φ, where we note that its derivatives can be
computed by autodifferentiation tools. We should note however that computing second derivatives with tools
such as PyTorch or Tensorflow can be expensive, especially if the state space dimension d is large. In particular,
if for the differential operator as defined in (6.65) we need to compute the full Hessian matrix of φ, which is the
case if σ is non-diagonal, d2 partial derivatives need to be computed, which can be costly even for state-of-the
art software packages. Here the BSDE and diffusion losses have a potential advantage since they do not rely on
an explicit computation of the Hessian, but rather approximate second derivatives by the underlying Brownian
motion.

In our experiments we will rely on standard feed-forward neural networks and on the DenseNet as defined in
Section 2.4. For the optimization of the losses we rely on the Adam optimizer [169]. If not specified otherwise,
we take a DenseNet with ReLU activation function and four hidden layers with d + 20, d, d, d hidden units
respectively for the approximating function φ and a learning rate η = 0.001 for the optimization. We take
K = 200 samples inside the domain and K = 50 on the boundary. For the SDE discretization we usually
choose a step-size of ∆t = 0.001. For the PINN and diffusion losses we try out different weight configurations
beforehand and decide for best.

6.3.7.2 Elliptic problem with Dirichlet boundary data

Let us start with a nonlinear toy problem for which we can test different PDE settings by comparing our
approximations against available analytical reference solutions. Here we define the domain to be the unit ball
D = {x ∈ Rd : |x| < 1}. Let us first consider an elliptic boundary value problem as defined in (6.93). Let γ ∈ R
and choose

b(x, t) = 0, σ(x, t) =
√
2 Idd×d, g(x) = eγ , (6.116a)

h(x, y, z) = −2γy(γ|x|2 + d) + sin
(︂
e2γ|x|

2

− y2
)︂
. (6.116b)

One can readily check that
V (x) = eγ|x|

2

(6.117)

is the solution to (6.93).

We consider d = 50 and choose γ = 1. For the PINN and diffusion losses we decide for the weights α = (10−5, 1)
and α = (0.1, 1) respectively. We sample the data uniformly and take a maximal trajectory length of N = 20

for the diffusion loss. In Figure 6.9 we display the average relative errors |φ(x)−V (x)|
V (x) as a function of r = |x|

in the left panel, noting that most samples are placed close to the boundary of the ball. In the right panel we
display the L2 error during the training iterations evaluated on uniformly sampled test data. We can see that
PINN and diffusion losses yield similar results and that the BSDE loss performs worse in particular close to the
boundary, which might be due to the hitting time discretizations as described in Section 6.3.6.2.
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Figure 6.9: Left: Average relative errors as a function of r = |x| evaluated on uniformly sampled data for the
three losses smoothed with a moving average over 500 data points. Right: L2 error during the training iterations
evaluated on uniformly sampled test data.

6.3.7.3 Elliptic problem requiring full Hessian matrix

Let us consider the same problem as before, but now replace the diffusion coefficient and the nonlinearity by

σ(x, t) =

√︃
2

d

⎛⎜⎝1 · · · 1
...

. . .
...

1 · · · 1

⎞⎟⎠ , h(x, y, z) = −2γy

⎛⎝γ d∑︂
i,j=1

xixj + d

⎞⎠+ sin
(︂
e2γ|x|

2

− y2
)︂
, (6.118)

respectively. We can check that V (x) = eγ|x|
2

is still the solution to the corresponding boundary problem.
Since σ is not diagonal anymore, inspecting the differential operator (6.65) shows that now the full Hessian
matrix of the solution is present in the PDE. We have discussed already in Section 6.3.7.1 that this particularly
impacts the runtime of the PINN method since all derivatives need to be computed explicitly. For the BSDE
and diffusion losses, on the other hand, second derivatives are approximated by the underlying Brownian motion
and we therefore do not expect longer runtimes in those cases.

Let us consider d = 20 and γ = 1. In Figure 6.10 we display the L2 error during the training process, once
plotted against the gradient steps and once plotted against the runtime. We can see that the PINN loss
takes significantly longer, as expected. This effect should become even more severe with growing state space
dimension.

Figure 6.10: L2 error during the training process evaluated on test data for the three losses, once plotted against
the gradient steps and once against the runtime.
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6.3.7.4 Parabolic problem with Neumann boundary data

Let us now consider a parabolic problem with Neumann instead of Dirichlet data for the spatial boundary.
To this end, we refer to problem (6.64) with the boundary term (6.64c) replaced by a Neumann condition (as
described in Remark 6.14) and take

b(x, t) = 0, σ(x, t) =
√
2 Idd×d, f(x) = eγ|x|

2+T , gN (x, t) = 2γeγ+t, (6.119a)

h(x, t, y, z) = −y(2γ(2γ|x|2 + d) + 1) + sin
(︂
e2γ|x|

2+2t − y2
)︂
. (6.119b)

We can check that now
V (x, t) = eγ|x|

2+t (6.120)

solves our problem.

Figure 6.11: Left and central panel: Approximations along a curve for two different times using the three losses.
Right: L2 test error along the training iterations.

We choose d = 20 and γ = 1. In the left and central panels of Figure 6.11 we display the approximated
solutions along the curve

{︂
(x, . . . , x)⊤ : x ∈ [−1/

√
d, 1/
√
d]
}︂

for two different times. We can see that the BSDE
loss seems to be slightly worse than the other two losses, with small advantages for the PINN loss. The right
panel displays the L2 test error over the iterations and confirms this observation. We note that in fact the
BSDE loss holds the disadvantage that due to a potential exit before time T only few data points might be
available for fitting the function f , which might also explain the instability of this loss that can be observed in
the right panel.

6.3.7.5 Dependence on the trajectory length

In the diffusion loss as stated in Definition 6.22 we are free to choose the length t of the forward trajectories,
which affects the generated training data. Let us therefore investigate how different choices of t influence the
performance of Algorithm 4. To this end, we consider again the elliptic problem from Section 6.3.7.2, now in
d = 10, and vary t. To be precise, let us fix different step-sizes ∆t and vary the Euler steps N (recalling that
t = N∆t). As displayed in Figure 6.12, it turns out that there seems to be an optimal choice.

Figure 6.12: We display the L2 error that one attains when using different choices of the maximal Euler steps
N in the diffusion loss for different discretization step-sizes ∆t.
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6.3.7.6 Committor functions

Committor functions are important quantities in molecular dynamics as they specify transition pathways and
transition rates between (potentially metastable) regions of interest [84, 201]. Since for most interesting appli-
cations those functions are high-dimensional and hard to compute, there have been recent attempts to approach
this problem with neural networks [166, 193, 254]. Since committor functions fulfill elliptic boundary value
problems, we can rely on the methods that we have discussed in this section.

The committor function is defined as

V (x) = P(τB < τA|X0 = x) = E[1B(Xτ )|X0 = x], (6.121)

where X is a stochastic process as defined in (6.66), A,B ⊂ Rd are given sets and τA = inf{t > 0 : Xt ∈ A}
and τB = inf{t > 0 : Xt ∈ B} are corresponding hitting times, denoting τ = min{τA, τB}. V is therefore the
probability of hitting set A before B and via the Kolmogorov backward PDE it fulfills the elliptic boundary
value problem

LV = 0, V|∂A = 0, V|∂B = 1. (6.122)

In the notation of (6.93) we have D = Rd \(A ∩B), h = 0 and g(x) = 1B(x).

Let us construct the following example for which a reference solution can be computed analytically [127]. We
take standard Brownian motion Xt = x + Wt, i.e. b = 0 in (6.65), and are interested in leaving a domain
through either of two surrounding spheres. To be precise, we define the two sets

A = {x ∈ Rd : |x| < a}, B = {x ∈ Rd : |x| > b} (6.123)

with b > a > 0. An analytic solution can be computed as

V (x) =
a2 − |x|2−da2

a2 − b2−da2
(6.124)

for any d ≥ 3. Let us consider d = 10 and choose a = 1, b = 2. We take a DenseNet with tanh as an activation
function and compare our three losses against each other. In Figure 6.13 we display the approximated solutions
along a curve

{︂
(x, . . . , x)⊤ : x ∈ [a/

√
d, b/
√
d]
}︂

in the left panel, realizing that in particular the PINN and
diffusion losses lead to good approximations. This can also be observed in the right panel, where we plot a
moving average of the L2 error on test data with moving window of 200. It seems that the diffusion loss is more
stable than the PINN and BSDE losses.

Figure 6.13: Left: approximations of the 10-dimensional committor function evaluated along a curve. Right:
moving average of the test L2 error along the training iterations.

We should note that an evaluation along a curve as specified above is slightly unfair since uniformly sampled
data barely lies close to the left endpoint of this curve. Realizing that the solution (6.124) is radial symmetric,
i.e. depends on x only through its distance to the origin denoted by r = |x|, we sample 10000 data points
uniformly on D and plot the evaluation of the approximating function φ along these points in Figure 6.14. We
can again see the superiority of the PINN and diffusion loss approximations, noticing in particular that the
BSDE loss approximation gets worse closer to the boundary, which might be due to the numerical challenges
that we described in Section 6.3.6.2.
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Figure 6.14: We plot the approximated committor functions evaluated at 10000 points uniformly sampled from
the domain D (blue dots) and compare those to the reference solution (orange line) as a function of r = |x|.

6.3.7.7 Parabolic Allen-Cahn equation on an unbounded domain

The Allen-Cahn equation in d = 100 has been suggested as a benchmark problem in [86]. It is an example for
a parabolic PDE on an unbounded domain, compatible with the setting that we have specified in (6.92):

(∂t + L)V (x, t) + V (x, t)− V 3(x, t) = 0, (x, t) ∈ Rd×[0, T ), (6.125a)

V (x, T ) = f(x), x ∈ Rd, (6.125b)

with f(x) =
(︁
2 + 2

5 |x|
2
)︁−1

, T = 3
10 . In order to use Algorithm 4, we nevertheless need to define a domain on

which we aim to approximate the solution. Let us choose a ball D = {x ∈ Rd : |x| < R}, where we take the
radius R = 7. Instead of sampling uniformly on the domain, we consider sampling uniformly on a box around
the origin with side length 2 and multiply each data point x by R

|x| . In contrast to the uniform sampling this
approach generates more samples close to the origin. We compare our approximations with a reference solution
for x0 = (0, . . . , 0)⊤ for different times t ∈ [0, T ] that is provided by a branching diffusion method specified in
[86]. In Figure 6.15 we see that all three attempts match this reference solution, with minor advantages of the
PINN and diffusion losses. In Table 6.10 we display the computation times needed until reaching convergence
of the corresponding algorithms, realizing that the BSDE loss needs significantly longer. We note that the
computation times are larger in comparison to e.g. [86] since we aim for a solution on a given domain, whereas
other attempts only strive to approximate the solution at a single point.

Figure 6.15: Approximation of the solution to an Allen-
Cahn equation in d = 100 using different losses com-
pared to a referecene solution at x0 = (0, . . . , 0)⊤ for
different times t ∈ [0, T ].

Computation time

PINN loss 325.46 min

BSDE loss 4280.68 min

Diffusion loss 194.38 min

Table 6.10: Computation times needed until the algo-
rithms converged.

6.3.7.8 Elliptic eigenvalue problems

In this section we provide two examples for the approximation of principal eigenvalues and corresponding
eigenfunctions. The first one is a linear problem and therefore Proposition 6.26 assures that the minimization
of a corresponding loss as in (6.97) is feasible. The second example is a nonlinear eigenvalue problem, for which
we can numerically show that our algorithm still provides the correct solution.
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Fokker-Planck equation

As suggested in [124] let us aim at computing the principal eigenpair of the linear Fokker-Planck operator,
which is defined through acting on a function V : D → R via

−∆V −∇ · (V∇Ψ) (6.126)

on the domain D = (0, 2π)d, where Ψ(x) = sin
(︂∑︁d

i=1 ci cos(xi)
)︂

is a potential with ci ∈ [0.1, 1], assuming
periodic boundary conditions. This results in solving the eigenvalue problem

∆V (x) +∇Ψ(x) · ∇V (x) + ∆Ψ(x)V (x) = −λV (x) (6.127)

and one can readily check that
V (x) = e−Ψ(x) (6.128)

is an eigenfunction to the principal eigenvalue λ = 0. We choose ci = 0.1 and approach this problem in
dimension d = 5 following Section 6.3.5, i.e. by minimzing the loss (6.97), where for L we choose the diffusion
loss and the periodic boundary condition is encoded via the term (6.98). Here and in the following eigenvalue
problems the positivity of the approximating function is achieved by adding a ReLU function after the last layer
of the DenseNet.

In Figure 6.16 we display the approximated eigenfunction evaluated along the curve
{︁
(x, . . . , x)⊤ : x ∈ [0, 2π]

}︁
in the left panel and compare it to the reference solution. In the central panel we show the L2 error w.r.t.
the reference solution evaluated on uniformly sampled test data along the training iterations. The right panel
displays the moving average of the absolute value of the eigenvalue with a moving window of 100 gradient
steps (since the true value is λ = 0 it is not feasible to compute a relative error here). We see that both the
eigenfunction and the eigenvalue are approximated sufficiently well.

Figure 6.16: Left: Approximation and reference of the eigenfunction corresponding to the principal eigenvalue
of the Fokker-Planck operator. Middle: L2 error w.r.t. test data along the training iterations. Right: Moving
average of the absolute value of the approximated eigenvalue along the gradient steps.

Nonlinear Schrödinger equation

Let us now consider a nonlinear eigenvalue problem. Again following [124], we take the nonlinear Schrödinger
operator including a cubic term that arises from the Gross-Pitaevskii equation for the single-particle wave
function in a Bose-Einstein condensate. To be precise, we consider

∆V (x)− V 3(x)−Ψ(x)V (x) = −λV (x) (6.129)

with

Ψ(x) = − 1

c2
exp

(︄
2

d

d∑︂
i=1

cosxi

)︄
+

d∑︂
i=1

(︃
sin2(xi)

d2
− cosxi

d

)︃
− 3, (6.130)

again on the domain D = (0, 2π)d. One can show that

V (x) =
1

c
exp

(︄
1

d

d∑︂
i=1

cosxi

)︄
(6.131)

is the eigenfunction corresponding to the principal eigenvalue λ = −3, where c is chosen such that
∫︁
D V

2(x)dx =
|D|. We add the latter constraint into the loss function by replacing the term Lc(φ) in (6.97) with Ln(φ) =(︁
E
[︁
φ(X)2

]︁
− 1
)︁2, where X is sampled uniformly on D. Figure 6.17 shows the approximate solution of the
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eigenfunction in d = 5 evaluated along the curve
{︁
(x, . . . , x)⊤ : x ∈ [0, 2π]

}︁
as well as its L2 error and the

relative error of the approximated eigenvalue along the training iterations. We see that we can approximate
both the eigenfunction and the eigenvalue quite well.

Figure 6.17: Left: Approximation and reference of the eigenfunction corresponding to the principal eigenvalue
of the nonlinear Schrödinger operator in d = 5. Middle: L2 error w.r.t. test data along the training iterations.
Right: Relative error of the approximated eigenvalue along the gradient steps.

We repeat the experiment in dimension d = 10 and display the results in Figure 6.18. The optimization task gets
slightly more difficult, but the resulting eigenfunction and eigenvalue still fit the reference solution sufficiently
well. Note that in both experiments no explicit boundary conditions, but only the norm constraint and the
periodicity are provided.

Figure 6.18: Same experiment as in Figure 6.17 in dimension d = 10.

6.3.7.9 Heat equation as an example for a linear PDE

As proposed in [12], let us consider the linear PDE

(∂t +∆)V (x, t) = 0, (x, t) ∈ Rd×[0, T ), (6.132a)

V (x, T ) = g(x), x ∈ Rd, (6.132b)

with terminal condition g(x) = |x|2 at T = 1. A solution can be readily computed to be

V (x, t) = |x|2 + 2d(T − t). (6.133)

We shall take this problem in order to evaluate the difference between the L2 projection loss from Section 6.1
and the BSDE loss from Definition 6.17, cf. Remark 6.21. For the training algorithm we sample data uniformly
from the domain D = {x ∈ Rd : |x| < 1} with d = 10 and consider K = 200 data points for each gradient
computation. We start with a step-size of ∆t = 0.01 for the discretization of the stochastic processes and switch
to ∆t = 0.001 when the loss does not decrease anymore. In Figure 6.19 we display the smoothed L2 test error
as a function of the runtime as well as the approximated functions compared with the reference solution for two
different points in time along the curve

{︂
(x, . . . , x)⊤ : x ∈ [−1/

√
d, 1/
√
d]
}︂

. The gradient computations of the
BSDE loss are expected to take longer due to the additional appearance of the approximating function. Still,
we can see that the BSDE loss significantly outperforms the L2 projection approach, indicating that including
the Itô integral seems to bring numerical advantages, which can also be compared to the results in Section 6.2.3.
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Figure 6.19: Comparison of the BSDE loss and the L2 projection attempt for approximating the solution
of a linear heat equation. Left: Smoothed L2 test error computed on uniformly sampled data points along
the training iterations. Middle and right panels: Approximations compared to the reference solution for two
different points in time.

6.3.7.10 Computing expected exit times

In the remaining numerical examples we shall illustrate how sampling problems similar to the ones introduced
in Chapter 1 can be approached by approximating solutions to PDEs. We will employ the variational method
from Section 6.3 and mostly rely on the PINN loss, noting however that the diffusion loss would be equally valid.
For the BSDE loss we note once more that in particular large hitting times might cause numerical challenges.

Let us start by computing expected exit times E[τ ], where τ = inf{t > 0 : Xt /∈ D} is the first exit from the
domain D ⊂ Rd. This expectation value can be approximated by Monte Carlo estimation, which however is
difficult if for instance the hitting times are large or the estimators exhibit high variances. Taking the PDE
perspective, we note that with Theorem 2.14 and Remark 2.17 the function V (x) = E[τ |X0 = x] fulfills the
elliptic boundary value problem

LV (x) + 1 = 0, x ∈ D, (6.134a)
V (x) = 0, x ∈ ∂D. (6.134b)

For an example, let us consider the one-dimensional Langevin dynamics

dXs = −∇Ψ(Xs)ds+
√
η dWs, X0 = xinit, (6.135)

with a potential Ψ(x) = κ(x2 − 1)2 and recall that E[τ ] ≃ exp(2∆Ψ/η) as η → 0, implying that for large values
of κ and small values of η the hitting times become large and naive Monte Carlo sampling gets more and more
challenging, cf. e.g. Example 3.13. We choose D = (−∞, 1], κ = 10, η = 4 and aim to approximate the solution
to (6.134) with the PINN loss. In Figure 6.20 we display the L2 error compared to a reference solution computed
with finite differences. In the right panel we compare the PDE approximation to the reference solution as well
as to sampled expected hitting times based on K = 1000 trajectories with different step-sizes in the Euler
discretization. We can see that the PDE solution does not suffer from variance issues that much, indicating
that, even though it brings additional challenges, approximating the PDE might be constructive for solving the
estimation problem. We further note that for the Monte Carlo approximation small step-sizes are necessary,
whereas the PDE approximation with the PINN loss does not rely on a time discretization.

Figure 6.20: Computation of the expected exit time by solving a linear PDE. Left: L2 error on test data along
the training iterations. Right: Reference PDE solution compared with its approximation by the PINN method
as well as by Monte Carlo approximation using K = 1000 samples.
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6.3.7.11 Exit times in a multidimensional double well potential

Let us further aim to compute the quantity E[e−τ ], which amounts to choosing f = 1, g = 0 in (1.8), again with
τ = inf{t > 0 : Xt /∈ D} being the first exit time, where we now choose the domain to be D = {x ∈ Rd : xi < 1}.
Let us consider the Langevin dynamics as in (6.135), now in d = 2, where we choose the double well potential
V (x) =

∑︁d
i=1(x

2
i − 1)2. According to Theorem 2.14 the expectation V (x) = E [e−τ |X0 = x] fulfills the PDE

(∂t + L− 1)V (x) = 0, x ∈ D, (6.136a)
V (x) = 1, x ∈ ∂D. (6.136b)

In the left panel of Figure 6.21 we display a neural network approximation that we have gained using the PINN
loss and in the left we show a reference solution computed with finite elements. The good agreement of our
approximation can be confirmed when looking at the functions evaluated along the curve

{︁
(x, x)⊤ : x ∈ [−2, 1]

}︁
,

as illustrated in the right panel.

Figure 6.21: Approximation and reference solution for the PDE related to exiting a 2d double well potential
via the top right well.

6.3.7.12 Leaving metastable sets before given time

Next, let us repeat an example from Section 6.2.3.6 and consider computing the probability of leaving a
metastable set before a prescribed time T in d = 1, namely

V (x, t) = P (τ < T |Xt = x), (6.137)

for the dynamics given by the Langevin equation as specified in (6.135). We take d = 1, the potential Ψ(x) =
(x2 − 1)2, the noise coefficient √η = 0.5 and a random stopping time τ = inf{t > 0 : Xt /∈ D} for leaving the
interval D = (∞, 0). One approach is to consider the transformation

˜︁V = − log V, (6.138)

which brings a HJB equation with terminal costs g(x) = − log(1∂D(x)). In Section 6.2.3.6 we have taken this
path, introducing a regularization in order to cope with the singularity at the boundary. Alternatively, we know
that V fulfills the parabolic boundary value problem

(∂t + L)V (x, t) = 0, (x, t) ∈ D × [0, T ), (6.139a)
V (0, t) = 1, t ∈ [0, T ), (6.139b)
V (x, T ) = 0, x ∈ D, (6.139c)

which can be solved directly by the methods introduced in Section 6.3. We approach this problem with the PINN
loss and compare the approximated solution with a reference solution computed by numerical discretization
of the PDE in Figure 6.22. We see good agreement for most of the domain, but note that whenever the
committor probability is close to zero, which relates to rare event probabilities, we might still encounter a large
relative error

⃓⃓⃓
V (x)−φ(x)

V (x)

⃓⃓⃓
, as displayed in the right panel of Figure 6.22. We conclude that for computing rare

event probabilities it seems to be not sufficient to solely rely on the PDE approximation. As demonstrated
in Section 6.2.3.6, however, one can still improve rare event estimates by using importance sampling schemes
incorporating controls based on the PDE solution.
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Figure 6.22: Left and middle: Approximation and reference solution of the committor probability as a function
of the starting point x and the starting time t. Right: Comparison of approximation and reference solution for
small values of the committor function, which relate to rare event probabilities.
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Chapter 7

Conclusion and outlook

Motivated by the estimation of functionals related to diffusion processes, this thesis studied the robust compu-
tation of expectation values and proposed advanced algorithms for solving high-dimensional semi-linear PDEs.
Let us take the chance to conclude this endeavor and provide an outlook towards future research questions.
Along these lines, we will state proofs of concepts for novel algorithms related to the Schrödinger problem and
the learning of zero-variance importance sampling proposal densities.

Suboptimal importance sampling
In order to explain potential non-robustness issues of importance sampling, Chapter 3 was devoted to quanti-
tative bounds on the relative error of the corresponding estimator that depend on the divergence between the
actual proposal measure and the theoretically optimal one. These bounds indicate that importance sampling is
very sensitive with respect to suboptimal choices of the proposals, which has been observed frequently in nu-
merical experiments before and is in line with recent theoretical analysis [3, 51, 260]. In particular, we showed
that the relative error scales exponentially in the KL divergence between the optimal and the actual proposal
measure and argued that this renders importance sampling especially challenging in high dimensional settings.

We have focused on importance sampling of stochastic processes and derived some novel formulas for the relative
error depending on the suboptimality of the function u that controls the drift of the process. These formulas
can be used to get practically useful bounds and they also indicate two potential issues for importance sampling
in path space: for high-dimensional systems and for problems on a long time horizon the relative error becomes
exponentially large in the state space dimension d and the time horizon T . We have briefly discussed how
this observation can be transferred to random stopping times, such as first hitting times, and have applied our
formulas to importance sampling in a small noise regime, offering new perspectives and revealing some potential
drawbacks of existing methods.

Even though the key message regarding the use of importance sampling in high dimensions seems to be rather
discouraging, the following chapter provided a remedy at least for numerical methods that approach optimal
importance sampling schemes.

Robust variational minimization via the log-variance divergence
Motivated by taking different perspectives on the sampling problem, as presented in Problems 1.1-1.5, some of
which bearing variational formulations, Chapter 4 provided a unifying framework based on divergences between
path space measures, encompassing various existing numerical methods in the class of algorithms that we termed
iterative diffusion optimization. In particular, we have introduced the novel log-variance divergence and showed
its close connection to forward-backward SDEs. We have furthermore shown a fundamental equivalence between
approaches based on the KL-divergence and the log-variance divergence. Turning to the variance of Monte Carlo
gradient estimators, we have defined and studied two notions of stability – robustness under tensorization and
robustness at the solution. Of the losses and estimators under consideration, only the log-variance loss is stable
in both senses, which often results in superior numerical performance. The consequences of robustness and
non-robustness have been exemplified by extensive numerical experiments.

The results presented in Chapter 4 can be extended in various directions. First, it would be interesting to
consider other divergences on path space and construct and study the ensuing algorithms. Deeper understanding
of the design of IDO algorithms could be achieved by extending our stability analysis beyond the product case
and for controls that differ greatly from the optimal one. In particular, advances in this direction might help
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to develop more sophisticated variance reduction techniques. Furthermore, it would be interesting to design
algorithms that can treat more general HJB equations and address optimal control problems involving additional
minimization tasks posed by general Hamiltonians, for which it might be feasible to include appropriate penalty
terms in the loss functional.

Extensions to more general PDEs
We may attempt to generalize the framework and numerical approaches from Chapter 4 to more general PDEs.
We have argued in Remark 4.14 that an application of the log-variance loss to any PDE of the form (1.33)
is straightforward as long as the nonlinearity only depends on the solution through its gradient. Likewise, an
application to elliptic PDEs and boundary value problems follows readily (see also Chapter 6). More challenging
will be an application of the path space considerations and the log-variance loss to more general semi-linear
PDEs where the nonlinearity may also depend on the solution directly. As already discussed in Remark 4.14
one idea is to add additional appropriate boundary terms that mitigate the shift-invariance of this loss. Another
attempt is to combine the log-variance with the moment loss. To this end, similar to (4.29), we can consider

Y ˜︁u,v
T = y0 + ˜︁Y ˜︁u,v

T , ˜︁Y ˜︁u,v
T = −

T∫︂
0

h(Xv
s , s, Y

v
s ,−˜︁u(Xv

s , s)) ds−
T∫︂

0

(v · ˜︁u)(Xv
s , s) ds−

T∫︂
0

˜︁u(Xv
s , s) · dWs. (7.1)

An idea is to split the moment loss into two parts, namely

Lmomentv (u, y0) = Var (Y u,vT (y0)− g(Xv
T )) + E [Y u,vT (y0)− g(Xv

T )]
2 (7.2a)

= Var
(︂˜︁Y u,vT (y0)− g(Xv

T )
)︂
+ E [Y u,vT (y0)− g(Xv

T )]
2 (7.2b)

=: Llog
Varv

(u, y0) + L2
meanv

(u, y0). (7.2c)

Even though both terms depend on u and y0, one can aim at only differentiating the first term w.r.t. u and the
second term w.r.t. y0, hoping for reduced variances of corresponding gradient estimators. We leave it to future
research whether such a method or similar attempts bring any computational advantages.

Efficient forward controls
Recalling that many of the losses that we have considered in Chapter 4 are valid for arbitrary forward controls
v, a notorious question is which choice of v to make in practice. It might be desirable to choose controls that
improve statistical properties of the gradient estimator or make the exploration of the state space more efficient.
We have argued in Section 4.2 that in the case of the nonlinearity h(x, t, y, z) = − 1

2 |z|
2 (relating to Problems

1.1-1.5) the choice v = u seems beneficial, see in particular Proposition 4.19 and Remark 4.23. For the general
case, similar to the computation in (C.40), a variation of the moment loss brings

δ

δu
Lmomentv (u, y0) = 2E

[︄
(Y u,vT (y0)− g(Xv

T ))

(︄ T∫︂
0

∇zh(Xv
s , s, Y

v
s ,−us) · ϕ(Xv

s , s) ds

−
T∫︂

0

(v · ϕ)(Xv
s , s) ds−

T∫︂
0

ϕ(Xv
s , s) · dWs

)︄]︄
,

(7.3)

which might suggest to use v = ∇zh in order to cancel two of the integrals in (7.3). We expect that further
theoretical and numerical research in this direction might be fruitful in particular for more general PDEs.

Multiple scales
Even though the log-variance loss has favorable scaling properties when going to high dimensions, the perfor-
mance of the variational approach generally degrades when the dimension of the underlying dynamics is high or
when the equations are very stiff (e.g. due to the presence of multiple time or length scales). A strategy to cope
with high dimensionality or stiffness is to reduce the dimension of the dynamics prior to solving the variational
problem by eliminating (e.g. fast or stiff) degrees of freedom.

Assuming that the reduced system captures all features of the quantity of interest (here: f or g) for any
given control (or no control), an obvious question then is whether the reduced dynamics can also be used to
compute an approximation to the solution of the full dynamics. In terms of the associated path space measure
Pu and Pu∗

= Q, the question is whether minimizers stay minimizers if Pu and Q are replaced by suitable
approximations, and whether both the minimizers and the corresponding functionals are (in some sense) close
to each other.
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Conditioning of stochastic processes and the Schrödinger problem
In Chapter 1 we have stated five problems that are more or loss equivalent to each other. We can in fact add
yet another perspective which will turn out to be highly related, originally going back to Erwin Schrödinger
[263]. It considers controlled stochastic processes that are conditioned on starting from an initial density and
ending at a prescribed target density, while minimizing a given control cost.

Problem 7.1 (Schrödinger). Given two densities µ0 and µT and the controlled diffusion as in (1.4),

dXu
s = (b(Xu

s , s) + σ(Xu
s , s)u(X

u
s , s)) ds+ σ(Xu

s , s) dWs, Xu
0 ∼ µ0, (7.4)

find a control u∗ such that
Xu∗

T ∼ µT (7.5)

and such that u∗ has minimal control energy, i.e.

J(u) = E

⎡⎣1
2

T∫︂
0

|u(Xu
s , s)|2ds

⎤⎦ (7.6)

is minimized.

We refer to Appendix B.10 for a discussion on how Problem 7.1 is connected to Problems 1.1-1.5 and how one
can attempt to solve it. Combining ideas from stochastic optimal control and iterative diffusion optimizations
from Chapter 4, we can propose a numerical algorithm for the case of µ0 being a Dirac measure. In particular,
this algorithm enables us to sample from any arbitrary prescribed target density, similar to an approach in
[284], however relying on the log-variance loss as illustrated in the following example.

Example 7.1 (Sampling from prescribed density). Let us consider a one-dimensional toy example that shall
demonstrate how we can use Theorem B.16 to sample from some prescribed density. Let us say we want to
sample from the Gaussian mixture model43

µT (x) =
1

2
N (x;−2, 0.1) + 1

2
N (x; 2, 0.1). (7.7)

We can define our data generating process X as we like, as long as we know its distribution at terminal time
T = 1. Let us consider an Ornstein-Uhlenbeck dynamics

dXs = −Xs ds+
√
2 dWs, X0 = 0, (7.8)

whose density at time t ∈ [0, T ] is given by

pt(x) = N (x; 0, 1− e−2t), (7.9)

as specified in (B.29). As argued in Remark B.17, finding the drift that lets the process end up at the prescribed
density µT in some optimal way is equivalent to solving an optimal control problem. Since the structure of this
problem is the same compared to the problems we have considered in Chapter 4 we shall rely on the log-variance
loss to find appropriate approximations of the optimal control. We parametrize the control u with a neural
network and recall from Proposition 4.12 that the log-variance loss for this problem is given by

Llog
Varv

(u) = Var

(︃˜︁Y u,vT + log
µT
pT

(Xv
T )

)︃
= Var

(︃˜︁Y u,vT + log
˜︁µT˜︁pT (Xv

T )

)︃
, (7.10)

where we added the additional forward control v, with Xv defined as in (7.4) with u replaced by v, and refer
to (4.19) for a definition of ˜︁Y u,vT . In our simulation we choose for v the current approximation of u∗ with the
purpose to move our trajectories to the target already in the training runs, aiming for higher numerical stability
when computing the likelihood ratio. With ˜︁µT ∝ µT , ˜︁pT ∝ pT we denote the corresponding unnormalized
densities and realize that the log-variance loss offers the convenient property that the normalization constants
can be omitted (this can also be compared to Section 5.2). In Figure 7.1 we display the learnt control in the left
panel and some controlled trajectories in the center. The right panel demonstrates that indeed the target density
µT is reached when applying the approximated optimal control.

43Of course, sampling from Gaussians can be done much more efficiently and we choose this toy density merely for demonstrational
purposes, noting that it consists of two modes. We stress that our algorithm is black box in nature and can be applied to any
density that can be written down even without knowing its normalizing constant.
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Figure 7.1: Left panel: Optimal control computed by the neural network approximation (dashed lines) compared
to a reference solution computed by numerical integration (solid lines) for different times. Center: Half of the
controlled sample trajectories end up in either of the two modes of the target density. Right: We display the
histograms of controlled trajectories at certain times and see that they indeed agree with the target density at
time t = T .

Example 7.1 serves as a proof of concept and future research might study how these considerations can be
applied to more challenging high-dimensional sampling problems.

Extensions to data assimilation
Another aspect is an extension to data assimilation in a Bayesian framework [246]. Let us consider a situation
in which the initial condition in (1.2) is random rather than deterministic, i.e. X0 ∼ ρ0, for a given probability
distribution ρ0. In the context of data assimilation, ρ0 may be interpreted as encoding prior knowledge or belief
about the system under consideration at time t = 0. The uncontrolled SDE (1.2) now induces a probability
measure P on C, with time marginal at t = 0 given by ρ0. Assuming a Bayesian perspective, P represents our a
priori belief, that is, our belief in the absence of data, concerning the probability that a certain path is realized
by the system described by (1.2).

For the remaining discussion, we will adopt a notation that is common in the statistics literature and denote
P by p((Xt)0≤t≤T ). Suppose that a noisy measurement yobs of Xt becomes available at time t = T . A typical
observation model might for instance be given by

yobs = XT + ξ, (7.11)

where ξ is a mean-zero Gaussian random variable with covariance matrix Σ ∈ Rd×d. In other words, the
likelihood of observing yobs given a (deterministic) path (Xs)0≤s≤T ∈ C can be written as

p(yobs|(Xs)0≤s≤T ) = p(yobs|XT ) ∝ exp

(︃
−1

2
(XT − yobs)Σ−1(XT − yobs)

)︃
. (7.12)

In the current setting the likelihood depends on (Xs)0≤s≤T only through XT ; we made this fact explicit by
slight abuse of notation. (More general measurement processes can be modelled by alternative specifications of
p(yobs|(Xt)0≤t≤T ).) The Bayesian approach to statistics dictates that a posteriori belief that takes into account
the measurement is encoded by the posterior probability

p((Xt)0≤t≤T |yobs) ∝ p((Xs)0≤t≤T )p(yobs|(Xt)0≤t≤T ). (7.13)

Direct simulation from (7.13) is possible by reweighting samples from (Xs)0≤s≤T according to p(yobs|(Xs)0≤s≤T ).
In high dimensions, however, or when p((Xs)0≤t≤T ) and p(yobs|(Xt)0≤t≤T ) barely overlap, this approach be-
comes computationally infeasible as the effective sample size decreases sharply (cf. also Chapter 3). Note
that the challenges posed by rare event sampling in molecular dynamics and data assimilation are completely
analogous. Not surprisingly, posterior approximation can be addressed solving the Problems 1.1-1.5.

Proposition 7.2. [134, 246] For fixed yobs, assume that p(yobs|XT ) > 0 and let g be the negative log-likelihood

g(x) = − log p(yobs|XT = x), x ∈ Rd. (7.14)

Set f = 0 and let V be the value function solving (1.20). Set u∗ = −σ⊤∇V and define the reweighted initial
distribution ˆ︁ρ0(x) = ρ0(x)e

−V (x,0)∫︁
Rd ρ0(x′)e−V (x′,0) dx′

. (7.15)

Then the path measure induced by the controlled SDE (4.4) with initial condition Xu∗

0 ∼ ˆ︁ρ0 coincides with
(7.13).
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The reweighted initial condition ˆ︁ρ0 represents the updated belief about the distribution at t = 0 with data
incorporated at t = T . Proposition 7.2 explains how to efficiently sample from the Bayesian posterior (7.13)
based on the solution to any of the Problems 1.1-1.5. Conversely, it may open up the possibility to develop new
sequential Monte Carlo or particle filtering algorithms for solving large-scale HJB equations.

The log-variance divergence for the approximation of densities
We have applied the log-variance divergence to densities in the context of variational approximations of Bayesian
posteriors in Chapter 5. This resulted in an efficient way of computing a low-variance gradient estimator, termed
VarGrad, which can be seen as a control variate version of its naive counterpart. We have demonstrated that
this estimator brings computational advantages in real-world numerical examples and showed theoretically that
under certain conditions it is close to the optimal control variate scaling. Moreover, we have established condi-
tions under which VarGrad is guaranteed to exhibit lower variance than the naive estimator. For future work
it might be interesting to explore the direct optimization of the log-variance loss for alternative choices of the
reference distribution r. It might also be worthwhile to combine the log-variance loss with the reparametrization
trick for gradient computations [168, 299], aiming for further variance reductions.

Of course the approximation of probability densities is relevant in many more fields and we expect that relying
on the log-variance loss in further applications might be fruitful, in particular keeping in mind the convenient
property that no knowledge of normalizing constants is required.

Learning optimal importance sampling proposal densities

One application for approximating densities is related to importance sampling in Rd. We can aim to learn
proposal densities that significantly reduce the variance of Monte Carlo estimators, similar to attempts in [213]
and [227, Section 6.2.1]. Let us say we want to compute the expectation

Z = E
[︂
e−g(X)

]︂
, (7.16)

where the random variable X ∈ Rd is distributed according to some density p and g ∈ C(Rd,R) is a given func-
tion. We recall the idea of importance sampling, e.g. from Section 2.3.1, namely sampling from an alternative
probability density and reweighting to get

Z = E
[︃
e−g(

˜︁X) p˜︁p ( ˜︁X)

]︃
, (7.17)

where ˜︁X ∼ ˜︁p, and we note that an optimal, zero-variance importance sampling proposal density ˜︁p is given by

q(x) =
e−g(x)

Z
p(x). (7.18)

Hence a notorious goal in importance sampling is to aim at approximations ˜︁p ≈ q, which can be approached by
minimizing divergences between ˜︁p and q, leading to implementable losses, similar to what we have considered
in Chapter 4 for path space measures and in Chapter 5 in the context of Bayesian variational inference. We
shall focus on the log-variance divergence

DVar(log)
r (˜︁p|q) = Varr

(︃
log

q˜︁p (X)

)︃
, (7.19)

where r specifies an arbitrary reference density, leading to the log-variance loss

Llog
Varr

(˜︁p) = Varr (log p(X)− log ˜︁p(X)− g(X)) , (7.20)

which admits the convenient property that it is independent of Z (see Definition 4.4). In all of the following
demonstrations we will choose the reference distribution r = ˜︁p to be the current approximation of the target
density, however, in analogy to Chapters 4 and 5, we will not differentiate with respect to this term. One idea
could be to parametrize ˜︁p = ˜︁pθ with some parameter θ ∈ Rp and iteratively minimize the above loss with
gradient descent methods in θ. In practice, the optimal proposal q as defined in (7.18) is unknown and it makes
sense to consider a class of flexible proposal densities ˜︁p, in particular keeping in mind that our importance
sampling ambitions require that it is both easy to sample from as well as easy to evaluate ˜︁p. We will therefore
rely on the concept of so-called normalizing flows [175], where the idea is to not learn the function ˜︁p directly,
but rather to learn a deterministic transformation of a random variable in such a way that the transformed
variable is distributed according to ˜︁p. To be precise, we take any base density pZ , draw a random variable
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Z ∼ pZ from this density and consider the transformation X = φ(Z) ∼ ˜︁p, where φ : Rd → Rd is a function to
be specified. We recall that ˜︁p(x) = pZ(φ

−1(x))| detDφ−1(x)|, (7.21)

where Dφ−1 is the Jacobi matrix of φ−1. For computing ˜︁p as in (7.21) we identify two main challenges: the
function φ needs to be invertible and computing its Jacobi determinant should be not too complicated. In recent
years special types of neural networks have been designed that fulfill these two properties, while providing the
usual flexible function approximation qualities [175]. We will rely on so-called coupling flows [71], in particular
on an attempt suggested in [72]. Let us emphasize that the base density pZ is arbitrary and that sampling from˜︁p is straightforward as long as it is easy to sample from pZ . The following example illustrates this idea as a
poof of concept for learning optimal proposal densities and we refer to Appendix B.11 for further examples.

Example 7.3 (Non-Gaussian target, high-dimensional). Let p be the standard Gaussian and consider g(x) =
x41+ · · ·+x4d in dimension d = 10 such that the optimal proposal q is not Gaussian. We consider the normalizing
flow attempt as described above and use the log-variance loss (7.20) as our objective to minimize. In Figure 7.2
we display the learning progress and the approximation of q along the curve

{︁
(x, . . . , x)⊤ : x ∈ [−1, 1]

}︁
, where

we see good agreement with the target. Using this approximation as an importance sampling proposal we can
bring the relative error of the estimator from roughly 5 in the naive Monte Carlo attempt down to 10−1.

Figure 7.2: Left: Log-variance loss along the training iterations. Right: Approximation of the optimal (non-
Gaussian) proposal density.

Computing partition functions
Along the lines of computing optimal importance sampling densities we can further aim to approximate partition
functions with normalizing flows and the log-variance loss. This is illustrated in the following example.

Example 7.4 (Computing partition functions). It is often of interest to compute the partition function

A =

∫︂
Rd

e−βΨ(x)dx, (7.22)

where Ψ : Rd → R is a given potential and β > 0 a temperature, yielding the Gibbs-Boltzmann density

p(x) =
e−βΨ(x)

A
. (7.23)

We recall the Donsker-Varadhan variational formula from Theorem 2.44,

− log

∫︂
e−g(x)p(x)dx = inf˜︁p∈P(Rd)

{︃∫︂
g(x)˜︁p(x)dx+KL(˜︁p|p)}︃ . (7.24)

Taking g = 0 and p as in (7.23) brings

0 = inf˜︁p∈P(Rd)
E˜︁p [log ˜︁p(X) + βΨ(X)] + logA (7.25)

and with the optimal ˜︁p = q we get
A = e−Eq [log q(X)+βΨ(X)], (7.26)

noting that in fact q = p. Instead of minimizing (7.25) directly, we again rely on the log-variance loss as our
objective, which we can now write as

Llog
Varr

(˜︁p) = Varr (log ˜︁p(X) + βΨ(X)) , (7.27)
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where we should once again appreciate the fact that the constant A vanishes44. Let us first consider a convex
potential Ψ(x) = |x|2 and set β = 1, then p is a multidimensional standard Gaussian and we know that A =

√
πd.

We choose d = 20 and display the learning progress in Figure 7.3. We can see that we can approximate the
partition function quite well with a relative error |A− ˆ︁A|

A of roughly 10−4.

Figure 7.3: Left: Log-variance loss over gradient steps for learning the partition function A. Middle: We
compare the current approximation of A according to (7.26) with to the true value indicated by the orange line.
Right: We plot a moving average of the relative error with a smoothing window of 1000.

Next, let us consider the d-dimensional double well potential

V (x) =
(︂
b− a

2

)︂ d∑︂
i=1

(x2i − 1)2 +
a

2

d∑︂
i=1

(xi − 1), (7.30)

where we choose a = 0.1 and b = 1. Since the dimensions do not interact we can compute a reference value
for A by numerical integration. In Figure 7.4 we display the learning progress for the choice of d = 4, β = 0.2.
Due to the non-convexity of the potential the learning becomes harder, but we can still reach a relative error of
roughly 10−2 for the approximation of A.

Figure 7.4: Left: Log-variance loss over the gradient steps for learning the partition function A of the double
well example. Middle: We compare the approximation ˜︁p of q = p with the reference solution along the curve{︁
(x, . . . , x)⊤ : x ∈ [−1, 1]

}︁
. Right: We plot a moving average of the relative error with a smoothing window of

1000.

For the approximation of partition functions as well as for learning optimal importance sampling densities future
research might study how to approach high-dimensional and more metastable examples in a robust way.

Backward iterations using the tensor train format
We have addressed and improved algorithms for solving parabolic PDEs on unbounded domains in Section 6.2.
In particular, we have proposed to rely on the tensor train format for function approximation in backward iter-
ation schemes, potentially leveraging their efficient approximation capabilities whenever low-rank structures are
present. We have considered both explicit and implicit schemes, allowing for a trade-off between approximation

44Note that minimizing the KL divergence based losses, on the other hand, brings additional challenges. When considering

KL(p|˜︁p) = Ep [−Ψ(X)− ˜︁p(X)]− logA (7.28)

we need to be able to sample from p, which is usually non-trivial, and when considering

KL(˜︁p|p) = E˜︁p [Ψ(X) + ˜︁p(X)] + logA (7.29)

the random variables are distributed according to ˜︁p w.r.t. which we need to differentiate, which often leads to numerical challenges.
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accuracy and computational cost. Notably, the tensor train format specifically allows us to take advantage of
the additional structure inherent in least-squares based formulations, particularly in the explicit case. This
led to substantial computational advantages compared to state-of-the-art neural network based approaches in
various numerical experiments. In this context it will be particularly interesting to better understand structures
of PDE solutions, in particular in high dimensions. We believe that the “blessing of dimensionality” observed in
Section 6.2.3.1 deserves a mathematically rigorous explanation; progress in this direction may further inform the
design of scalable schemes for high-dimensional PDEs. It is further appealing to combine backward iterations
with the log-variance loss, which is feasible whenever the nonlinearity in the PDE only depends on the solution
through its gradient (cf. Remark 6.7). Finally, an analysis and systematic numerical study on how backward
iteration algorithms can be applied to bounded domains is an interesting topic for future research.

Variational formulations of elliptic and parabolic boundary value problems
We have reviewed the approximation of semi-linear elliptic and parabolic boundary value problems from the
perspective of variational formulations, incorporating and generalizing residual and BSDE based methods in
Section 6.3. The novel diffusion loss, which combines ideas from both methods, brought some substantial
advantages in certain numerical experiments, in particular targeting issues of the BSDE based method in large
domains as well as close to the boundary. Here it will be interesting to study more systematic choices of the
weights appearing in the loss terms as well as to consider sampling strategies other than the uniform distribution
in order to emphasize certain regions of interest or to speed up convergence. For the PINN method it will be
worthwhile to incorporate variance reduction ideas similar to the ones that we have applied in the BSDE case.

We have further extended our algorithms to the approximation of principal eigenpairs to linear and nonlinear
eigenvalue problems. While having provided a proof for the linear case, a rigorous treatment for the nonlinear
setting is still open. We expect that the approximation of eigenfunctions and eigenvalues other than the principal
one might be tackled by integrating appropriate additional terms into the loss functions.
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Appendix A

Notation

N set of natural numbers
Z set of integer numbers
R set of real numbers
x⊤ transpose of the variable x ∈ Rd

x · y scalar product of the vectors x, y ∈ Rd, defined as x⊤y
|x| Euclidean norm of the vector x ∈ Rd, defined as

√
x · x

x⊙ y elementwise multiplication of the vectors x, y ∈ Rd⨂︁
tensor product

Tr trace operator
A : B Tr(A⊤B), where A and B are matrices
X ∼ ν random variable X is distributed according to probability measure ν
A ≃ B A is asymptotically equivalent to B

f ∈ o(g) f is asymptotically negligible in comparison to g, i.e. limx→a

⃓⃓⃓
f(x)
g(x)

⃓⃓⃓
= 0

f ∈ O(g) g is an asymptotic bound for f , i.e. lim supx→a

⃓⃓⃓
f(x)
g(x)

⃓⃓⃓
<∞

∂i partial derivative w.r.t. xi ∈ R, also denoted by ∂xi

∂2i second partial derivative w.r.t. xi ∈ R, also denoted by ∂2xi

∇f gradient of a function f : Rd → R, defined as (∂1f, . . . , ∂df)
⊤

∇θf gradient of a function f : Rp → R w.r.t. θ ∈ Rp, defined as (∂θ1f, . . . , ∂θpf)
⊤

∇2f Hessian matrix of a function f : Rd → R, defined as (∂i∂jf)1≤i,j≤d

∆f Laplace operator of a function f : Rd → R, defined as
∑︁d
i=1 ∂

2
i f

Dαf generic derivative, defined as ∂|α|f

∂
α1
x1

···∂αd
xd

, where α = (α1, . . . , αd) with αi ∈ N

is a multi-index and |α| = α1 + · · ·+ αn is the order of the index
Dk collection of k-th order partial derivatives
δ
δuf(u) Gateaux derivative of functional f w.r.t. function u as defined in Definition 4.17
f ◦ g composition of functions f and g
f(x)

⃓⃓
x=y

function evaluated at x = y

detA determinant of the matrix A
E[X] expectation value of random variable X
Eν [X] expectation value of random variable X w.r.t. the probability measure ν
E[X|Y ] expectation value of random variable X conditioned on the event Y
Var(X) variance of random variable X
Cov(X,Y ) covariance between random variables X and Y
Kurt[X] Kurtosis of the random variable X as defined in (5.25)
1A indicator function that is 1 of A is true and 0 otherwise
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C(A,B) set of continuous functions mapping from set A into set B
Cb(A,B) set of continuous and bounded functions mapping from set A into set B
Ck(A,B) set of k times differentiable functions mapping from set A into set B
Ck,l(A,B) set of functions mapping from the set A into set B, which are k times differentiable

in the first set of variables and l times in the second set of variables
inf infimum
sup spremum
min minimum
argmin minimizer, i.e. argument of the minimum
max maximum
x ∧ y min{x, y}, i.e. minmum of x ∈ R and y ∈ R
∂D boundary of the domain D

Special symbols used in this thesis

d state space dimension
K sample size
T time horizon
N number of grid points or time-steps
f a given function f : Rd → R
g a given function g : Rd → R
b drift function b : Rd×[0, T ]→ Rd in a stochastic process
σ diffusion function σ : Rd×[0, T ]→ Rd×d in a stochastic process
u control function u : Rd×[0, T ]→ Rd, see (1.4)
U set of admissible control functions, see (1.5)
Ws standard d-dimensional Brownian motion
Xs uncontrolled stochastic process as in (1.2)
Xu
s stochastic process controlled with control function u as in (1.4)
C set of continuous paths
P set of probability measures
Z expectation value, quantity of interest
P path space measure, often related to the uncontrolled stochastic process (1.2)
Pu path space measure, often related to the controlled stochastic process (1.4)
Q target path space measure, usually defined as in (1.13)
ν, µ, λ probability measures
W work functional, usually defined as in (1.8)
τ random stopping time of a stochastic process
L infinitesimal generator of a stochastic process, as defined in (1.19)
V function V : Rd×[0, T ]→ R that solves a general PDE
ψ function ψ : Rd×[0, T ]→ R that solves a linear PDE
h function h : Rd×[0, T ]× R×Rd → R specifying the nonlinearity in a PDE
J expected control costs as defined in (1.16) or (2.6)
∆t time increment ∆t > 0

KL Kullback-Leibler divergence as defined in Definition 3.1
χ2 χ2 divergence as defined in Definition 3.2
ELBO evidence lower bound as defined in (5.2)
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N (µ,Σ) normal distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d

L loss function
D(P1|P2) generic divergence between the measures P1 and P2

p(x|y) conditional probability density
p(x, y) joint probability density
0 a vector full of zeros, i.e. (0, . . . , 0)⊤

1 a vector full of ones, i.e. (1, . . . , 1)⊤

Idd×d d× d identity matrix
D domain in Rd
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Appendix B

Supplementary material and helpful
theorems

B.1 Strong solutions of SDEs

Theorem B.1 (Strong solutions of SDEs). Consider the SDE

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, X0 = xinit, (B.1)

where Ws is a standard m-dimensional Brownian motion and b : Rd×[0, T ] → Rd, σ : Rd×[0, T ] → Rd×m are
measurable functions, for which we assume there exists C > 0 such that for all x ∈ Rd and s ∈ [0, T ]

|b(x, s)|+ |σ(x, s)|F ≤ C(1 + |x|), (B.2)

and for all x, y ∈ Rd and s ∈ [0, T ]

|b(x, s)− b(y, s)|+ |σ(x, s)− σ(y, s)|F ≤ C|x− y|. (B.3)

We assume further that the initial condition xinit is independent of the Brownian Motion Ws with E
[︂
|xinit|2

]︂
<

∞. Then the SDE has a unique strong solution Xs with

E

⎡⎣ t∫︂
0

|Xs|2ds

⎤⎦ <∞ (B.4)

for all t ∈ [0, T ].

Proof. See for instance [219, Theorem 5.2.1].

B.2 Itô formula

Theorem B.2 (Itô formula). Consider the stochastic process Xt defined by the SDE

dXt = b(Xt, t) dt+ σ(Xt, t) dWt, (B.5)

and define Yt := f(Xt, t). Then

dYt =

(︃
∂tf(Xt, t) +∇f(Xt, t) · b(Xt, t) +

1

2
(σσ⊤)(Xt, t) : ∇2f(Xt, t)

)︃
dt+∇f(Xt, t) · σ(Xt, t) dWt (B.6a)

= (∂t + L) f(Xt, t) dt+∇f(Xt, t) · σ(Xt, t) dWt. (B.6b)

Proof. [219, Theorem 4.2.1]

B.3 Girsanov theorem

The Radon-Nikodym derivatives between two path space measures can be computed explicitly.
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Theorem B.3 (Girsanov). Let u ∈ U and denote by P the path space measure associated to the diffusion
(1.2) and by Pu the path space measure associated to (1.4). Then P and Pu are equivalent. Moreover, the
Radon-Nikodym derivative satisfies

dPu

dP
(X) = exp

⎛⎝ T∫︂
0

(︁
u⊤σ−1

)︁
(Xs, s) · dXs −

T∫︂
0

(σ−1b · u)(Xs, s) ds−
1

2

T∫︂
0

|u(Xs, s)|2 ds

⎞⎠ (B.7)

Proof. The fact that the two measures are equivalent follows from the linear growth assumption on u (see (1.5)),
combining Beneš’ theorem with Girsanov’s theorem, see [285, Proposition 2.2.1 and Theorem 2.1.1]. According
to a slight generalization of [285, Theorem 2.4.2], we have

dP
dPW

(X) = exp

⎛⎝ T∫︂
0

(b(Xs, s) · σ−2(Xs, s) dXs −
1

2

T∫︂
0

(b · σ−2b)(Xs, s) ds

⎞⎠ , (B.8)

and

dPu

dPW
(X) = exp

⎛⎝ T∫︂
0

(b+ σu)(Xs, s) · σ−2(Xs, s) dXs −
1

2

T∫︂
0

(︁
(b+ σu) · σ−2(b+ σu)

)︁
(Xs, s) ds

⎞⎠ , (B.9)

where PW denotes the measure on C induced by

dXs = σ(Xs, s) dWs, X0 = xinit. (B.10)

Using
dPu

dP
(X) =

dPu

dPW

dPW

dP
(X), (B.11)

and inserting (B.8) and (B.9), we obtain the desired result.

B.4 Auxiliary statements for the analysis on suboptimal importance
sampling

In this section, we recall some known statements and provide some helpful additional results for the analysis of
importance sampling with suboptimal proposal measures as studied in Chapter 3.

Corollary B.4 (Formula for path space relative error in a special case). If the difference u∗−u does not depend
on x, then

r(u) =

⎛⎝exp

⎛⎝ T∫︂
0

|u∗ − u|2(s)ds

⎞⎠− 1

⎞⎠
1
2

. (B.12)

Proof. This is a direct consequence of (3.36). For the reader’s convenience, we provide an alternative proof. If
u∗ − u does not depend on x, then the random variable

Y = −
T∫︂

0

|u∗ − u|2(s)ds+ 2

T∫︂
0

(u∗ − u)(s) · dWs (B.13)

is normally distributed, with mean and variance given by

µ = −
T∫︂

0

|u∗ − u|2(s)ds, σ2 = 4

T∫︂
0

|u∗ − u|2(s)ds, (B.14)

where the second expression follows from the Itô isometry. The random variable
(︂

dPu∗

dPu (Xu)
)︂2

= eY is then
log-normally distributed and we compute

E
[︁
eY
]︁
= eµ+

σ2

2 = e
σ2

4 , (B.15)

which gives the desired statement.
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Lemma B.5. Let n, p, q > 1 with 1
p +

1
q = 1, then it holds that

E

[︄(︃
dPu∗

dPu
(Xu)

)︃n]︄
≤ E

⎡⎣exp
⎛⎝nq(np− 1)

2

T∫︂
0

|u∗ − u|2(Xu
s , s)ds

⎞⎠⎤⎦
1
q

. (B.16)

Proof. Let us write δ(x, s) := (u∗−u)(x, s), and let n, p, q > 1, then, using the Hölder inequality with 1
p+

1
q = 1,

it holds

EPu

[︄(︃
dPu∗

dPu

)︃n]︄
= EPu

⎡⎣exp
⎛⎝n T∫︂

0

δ(Xs, s) · dWs −
n2p

2

T∫︂
0

|δ(Xs, s)|2ds+
n(np− 1)

2

T∫︂
0

|δ(Xs, s)|2ds

⎞⎠⎤⎦
(B.17a)

≤ EPu

⎡⎣exp
⎛⎝ T∫︂

0

np δ(Xs, s) · dWs −
1

2

T∫︂
0

|np δ(Xs, s)|2ds

⎞⎠⎤⎦
1
p

(B.17b)

EPu

⎡⎣exp
⎛⎝nq(np− 1)

2

T∫︂
0

|δ(Xs, s)|2ds

⎞⎠⎤⎦
1
q

(B.17c)

= EPu

⎡⎣exp
⎛⎝nq(np− 1)

2

T∫︂
0

|δ(Xs, s)|2ds

⎞⎠⎤⎦
1
q

. (B.17d)

Note that, even though Hölder’s inequality holds for p, q ∈ [1,∞], the inequality becomes useless for q = 1 and
p =∞.

Proposition B.6 (Zero-variance property). We get a vanishing relative error r(u) = 0 if and only if δ =
u∗ − u = 0, i.e. when having the optimal control u = u∗ = −σ⊤∇V .

Proof. The fact that δ = 0 implies r(u) = 0 follows directly from (3.36) or (3.50). For the other direction note
that r(u) = 0 implies Mu(x, t) = ψ2(x, t) (as defined in Proposition 3.22) for all (x, t) ∈ Rd×[0, T ] and therefore
equation (3.46a) becomes

(∂t + L− σu(x, t) · ∇ − 2f(x, t) + |u(x, t)|2)ψ2(x, t) = 0. (B.18)

Further note that due to the Kolmogorov backward equation it holds

(∂t + L− 2f(x, t))ψ2(x, t)− |σ⊤∇ψ(x, t)|2 = 0. (B.19)

Combining these two PDEs brings

ψ2(x, t)|u(x, t)|2 − 2(ψσu · ∇ψ)(x, t) + |σ⊤∇ψ(x, t)|2 = |(ψu)(x, t)− σ⊤∇ψ(x, t)|2 = 0, (B.20)

which implies that

u = σ⊤∇ψ
ψ

= σ⊤∇ logψ = −σ⊤∇V. (B.21)

B.4.1 Relative error of log-normal random variables

Let Y ∼ N (µ,Σ) with arbitrary µ ∈ Rd,Σ ∈ Rd×d and take γ ∈ Rd, c ∈ R, then eγ·Y+c is log-normally
distributed and its relative error is

r(γ,Σ) =

√︄
E
[︁
e2(γ·Y+c)

]︁
E [eγ·Y+c]

2 − 1 =

√︄
E [e2γ·Y ]

E [eγ·Y ]
2 − 1 =

√︂
eγ·Σγ − 1, (B.22)

independent of c. With the setting and notation from Example 3.12 we can now for instance compute

e−g(
˜︁X) p˜︁pε ( ˜︁X) = exp

(︃
−α · ˜︁X + log

p˜︁pε
)︃

= exp

(︃
ε · ˜︁X − µ · (α+ ε) +

1

2
(α+ ε) · Σ(α+ ε)

)︃
(B.23)

and with γ = ε, c = −µ · (α+ ε) + 1
2 (α+ ε) · Σ(α+ ε),Σ = Σ one therefore gets the relative error

r(˜︁pε) =√︁eε·Σε − 1 (B.24)

as stated in (3.22).
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B.4.2 Asymptotic expansion in small noise diffusions
To get further intuition on the small noise diffusions defined in Section 3.2.2, let us consider the formal expansion
of the solution to the HJB equation (3.60)

V = v0 + ηv1 + η2v2 + . . . . (B.25)

Inserting into (3.60) (with σ = Idd×d) and comparing the powers of η yields the PDEs

∂tv0 + b · ∇v0 −
1

2
|∇v0|2 = 0, (B.26a)

∂tv1 +
1

2
∆v0 + b · ∇v1 −∇v0 · ∇v1 = 0, (B.26b)

∂tv2 +
1

2
∆v1 + b · ∇v2 −∇v0 · ∇v2 −

1

2
|∇v1|2 = 0, (B.26c)

and so on, where all but the first PDE are transport equations (see [274]). We note that (given some appropriate
assumptions) we have v0 = V 0, with V 0 being to solution to (3.62). In [96] it is proven that

∇V = ∇V 0 + η∇v1 + o(η), (B.27)

where v1 fulfills the PDE above and V is the solution to the original HJB equation (3.60).

B.5 The Ornstein-Uhlenbeck process and a solvable control problem

A convenient (toy) example for the analysis of stochastic processes is the Ornstein-Uhlenbeck process,

dXs = AXs ds+B dWs, Xt = x, (B.28)

where A,B ∈ Rd×d are given matrices and Ws is a d-dimensional Brownian motion. It is one of the rare case
of processes for which the distribution of XT for any given T ∈ [t,∞) with t ≥ 0 is known explicitly, namely

(XT |Xt = x) ∼ N (µt,Σt) (B.29)

with

µt = eA(T−t)x, Σt =

T−t∫︂
0

eAsBB⊤eA
⊤s ds =

T∫︂
t

eA(T−s)BB⊤eA
⊤(T−s) ds. (B.30)

In the following we will use this fact to conduct explicit calculations that might be helpful for illustrative
purposes and for gaining further intuition on some of the questions that we discuss in this thesis.

B.5.1 Optimal control for Ornstein-Uhlenbeck dynamics with linear cost
Let us consider the Ornstein-Uhlenbeck process as defined in (B.28) and let us take f(x) = 0 and a linear
observable g(x) = γ · x in the observable (1.8), where γ ∈ Rd is a prescribed vector, leading to the quantity of
interest

ψ(x, t) = E
[︁
e−γ·XT |Xt = x

]︁
. (B.31)

Since we know the distribution of XT , we can compute

ψ(x, t) = exp

(︃
−γ ·

(︃
µt −

1

2
Σtγ

)︃)︃
, (B.32)

with µt and Σt as specified in (B.30). As demonstrated in Section 4.4.2 this quantity can be associated to an
optimal control problem with linear terminal costs. It is one of the few examples where the optimal control
function can be computed analytically. Using Lemma 2.11 we recall that the value function solving the HJB
PDE (1.20) that corresponds to the optimal control problem fulfills V (x, t) = − logψ(x, t), which brings

V (x, t) = γ ·
(︃
µt −

1

2
Σtγ

)︃
, (B.33)

and therefore with (1.22) we note that

u∗(x, t) = −B⊤∇V (x, t) = −B⊤eA
⊤(T−t)γ (B.34)

for the optimal control. We note it does not depend on the space variable.
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B.6 Explicit calculations and illustrations for iterative diffusion
optimizations

We extend the discussion on path space approximations from Chapter 4 by conducting some explicit calculations
in order to get a better understanding of the iterative diffusion optimization (IDO) that we have introduced
earlier. In particular we will again contrast the log-variance with the moment divergence and demonstrate
potential advantages of the former.

B.6.1 IDO calculations for the Ornstein-Uhlenbeck process
Let us consider the Ornstein-Uhlenbeck process

dXs = AXs ds+B dWs, Xt = xinit, (B.35)

as e.g. in Appendix B.5 and choose f(x) = 0, g(x) = γ · x. We recall that the backward process as in (4.19)
with v = 0 is given by

Y uT (y0) = ˜︁Y uT + y0, ˜︁Y uT = −
T∫︂

0

u(Xs, s) · dWs +
1

2

T∫︂
0

|u(Xs, s)|2 ds. (B.36)

Let us first consider the moment loss

Lmoment(u, y0) = E
[︁
(Y uT (y0)− g(XT ))

2
]︁
, (B.37)

which we have already introduced in (4.27) and (4.28). Since we know from Appendix B.5.1 that the optimal
control in our Ornstein-Uhlenbeck example is constant in x, it is reasonable to make the ansatz

u(x, tn) = θn ∈ Rd (B.38)

for n ∈ {0, . . . , N − 1}. Let us collect all parameters RNd+1 ∋ (θ, y0) = (θ0, . . . , θN−1, y0)
⊤ and consider the

Monte Carlo estimator of (B.37),

ˆ︁LKmoment(θ, y0) =
1

K

K∑︂
k=1

(︂ˆ︁Y θ,(k)N (y0)− g( ˆ︁X(k)
N )

)︂2
, (B.39)

where ˆ︁X is the Euler-Maruyama discretization of the forward process as defined in (2.89) and ˆ︁Y θN is the discrete
backward process with the optimal u∗ replaced by u (which is again parametrized by θ) as in (B.36). Note that
we can write the backward process explicitly as

ˆ︁YN (y0) = y0 −
N−1∑︂
n=0

(︃
−1

2
| ˆ︁Zn|2∆t+ ˆ︁Zn · ξn+1

√
∆t

)︃
(B.40)

which with our ansatz for u brings

ˆ︁Y θN (y0) = y0 +

N−1∑︂
n=0

(︃
1

2
|θn|2∆t− θn · ξn+1

√
∆t

)︃
. (B.41)

We can now explicitly compute the partial derivatives that we need for the minimization of the loss,

∂y0
ˆ︁LKmoment(θ, y0) =

2

K

K∑︂
k=1

(︂ˆ︁Y θ,(k)N (y0)− g( ˆ︁X(k)
N )

)︂
, (B.42)

∂θn,i
ˆ︁LKmoment(θ, y0, ) =

2

K

K∑︂
k=1

(︂
θn,i∆t− ξ(k)n+1,i

√
∆t
)︂(︂ˆ︁Y θ,(k)N (y0)− g( ˆ︁X(k)

N )
)︂

(B.43)

for n ∈ {0, . . . , N − 1}, i ∈ {1, . . . , d}. Alternatively, we can consider the log-variance loss

Llog
Var(u) = Var

(︂˜︁Y uT − g(XT )
)︂

(B.44)

as defined in (4.21), whose Monte Carlo version reads

ˆ︁Llog,K
Var (θ) =

1

K − 1

K∑︂
k=1

(︄ˆ︁˜︁Y θ,(k)N − g( ˆ︁X(k)
N )− 1

K

K∑︂
k=1

(︃ˆ︁˜︁Y θ,(k)N − g( ˆ︁X(k)
N )

)︃)︄2

. (B.45)
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In the particular setting considered above we can compute the partial derivatives of this loss to be

∂θn,i
ˆ︁Llog,K
Var (θ) =

2

K − 1

K∑︂
k=1

(︄
−ξ(k)n+1,i

√
∆t+

1

K

K∑︂
k=1

ξ
(k)
n+1,i

√
∆t

)︄(︄ˆ︁˜︁Y θ,(k)N − g( ˆ︁X(k)
N )− 1

K

K∑︂
k=1

(︃ˆ︁˜︁Y θ,(k)N − g( ˆ︁X(k)
N )

)︃)︄
,

(B.46)
where compared to (B.43) we note the vanishing of the θn,i terms and the corresponding centerings of the two
terms in the sum as explained in Remark 4.21.

Discretization errors

When considering the Ornstein-Uhlenbeck dynamics the discrete forward process can be written down explicitly
as well, namely by

ˆ︁XN = (I +A∆t)N ˆ︁X0 +

N−1∑︂
n=0

(I +A∆t)N−n−1B ξn+1

√
∆t, (B.47)

where we use the shorthand notation I = Idd×d. Looking at our objective

ˆ︁YN (y0)− g( ˆ︁XN ) = y0 +

N−1∑︂
n=0

(︃
1

2
|ˆ︁u∗n( ˆ︁Xn)|2∆t− ˆ︁u∗n( ˆ︁Xn) · ξn+1

√
∆t

)︃

− γ ·

(︄
(I +A∆t)N ˆ︁X0 +

N−1∑︂
n=0

(I +A∆t)N−n−1B ξn+1

√
∆t

)︄ (B.48)

we can deduce that the discrete optimal control corresponding to the problem above (that brings the corre-
sponding losses to zero) is given by

ˆ︁u∗n(x) = −B⊤(I +A⊤∆t)N−n−1γ, (B.49)

which cancels the noise in the expression ˆ︁YN (y0)− g( ˆ︁XN ). This then leads to the optimal y0 being

y0 = −1

2

N−1∑︂
n=0

|B⊤(I +A⊤∆t)N−n−1γ|2∆t (B.50)

in the discrete case. We note that due to

(I +A⊤∆t)N−n−1 = (I +A⊤∆t)
T
∆t−

t
∆t−1 −→ eA

⊤(T−t) (B.51)

for ∆t→ 0 and comparing to (B.34), we indeed have

ˆ︁u∗n(x) −→ u∗(x, t). (B.52)

Similarly we note

N−1∑︂
n=0

|B⊤(I +A⊤∆t)N−n−1γ|2∆t −→ γ ·
T∫︂

0

eA(T−s)BB⊤eA
⊤(T−s) ds γ (B.53)

and therefore y0 → V (X0, 0) for ∆t → 0. In Figure B.1 we illustrate the convergence of the discrete optimal
control ˆ︁u∗n to its continuous version for decreasing step sizes ∆t in the left panel and show that the convergence
of the discrete optimal y0 to the continuous one as in (B.53) is linear in ∆t. For the Ornstein-Uhlenbeck case
this can be seen by comparing V (X0, 0) to expression (B.50) using a Taylor expansion in ∆t around 0, namely

(I +A∆t)N−n−1 − eA(N−n)∆t = ∆t+
(∆t)2

2

(︁
(n−N + 1)(n−N + 2)− (n−N)2

)︁
+

(∆t)3

6

(︁
(n−N + 1)(n−N + 2)(n−N + 3)− (n−N)3

)︁
+ . . . .

(B.54)

Note that in general we have |ˆ︁Y0 − Y0| = O(√∆t) according to Theorem 2.32.
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Figure B.1: Left: Convergence of the discrete optimal control ˆ︁u∗n(x) to its continuous version for decreasing
step-sizes ∆t. Right: We plot the discrete version of the optimal y0 as a function of ∆t noting its linear
dependence.

In Figure B.2 we show approximations of the optimal control during different learning stages in IDO when
either relying on the constant approximation as in (B.38) or on a neural network approximation, where time is
modelled as an additional input dimension as described in Section 4.4.1. We use a step size of ∆t = 0.1 and
see that both approaches converge to the discrete optimal solution at the grid points. Interestingly the neural
network approach seems to interpolate the times in between the grid points in a reasonable way, however still
not agreeing with the continuous optimal control due to the expected discretization error.

Figure B.2: Left: Approximations of the optimal control with constant ansatz functions for different learning
iterations. Right: Approximations of the optimal control with a single neural network displayed at different
learning iterations.

More generally, instead of taking the constant ansatz for the control as in (B.38) we can consider a linear
combination of ansatz functions {φ1, . . . , φM} ⊂ C1(Rd,R), as e.g. in Section 6.2.1.1 and equation (4.65),
aiming for

V (x, tn) ≈
M∑︂
m=1

θn,mφm(x), i.e. u∗(x, tn) ≈ −B⊤
M∑︂
m=1

θn,m∇φm(x). (B.55)

In this case we can compute the partial derivatives of the moment loss to be

∂y0
ˆ︁LKmoment(θ, y0) =

2

K

K∑︂
k=1

(︂ˆ︁Y θ,(k)N (y0)− g( ˆ︁X(k)
N )

)︂
, (B.56)

∂θn,j
ˆ︁LKmoment(θ, y0) =

2

K

K∑︂
k=1

(︄
BB⊤∇φj( ˆ︁Xn) ·

M∑︂
m=1

θn,m∇φm( ˆ︁X(k)
n )∆t+B⊤∇φj( ˆ︁X(k)

n ) · ξ(k)n+1

√
∆t

)︄
(︂ˆ︁Y θ,(k)N (y0)− g( ˆ︁X(k)

N )
)︂ (B.57)

for n ∈ {0, . . . , N − 1}, j ∈ {1, . . . ,M}. The partial derivatives of the log-variance loss can be computed
analogously.

Moment vs. log-variance loss: learning y0 can slow down the optimization

Let us now consider a simple toy example that shall demonstrate the effect of learning the additional parameter
y0. To this end, let d = 1, consider the Ornstein-Uhlenbeck process (B.35), set A = B = γ = T = 1 and take
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the ansatz
u(x, t) = −esin(2πθ)(T−t), (B.58)

which contains only one parameter θ ∈ R, noting that with θ ∈
{︁

4k−1
4 : k ∈ Z

}︁
we recover the optimal control

(B.34). Let us compare the moment loss with the log-variance loss, where we recall that the moment loss
requires the optimization of the additional parameter y0, for which in this example we can compute the optimal
value to be y0 = − 1

4

(︁
1− e−2T

)︁
≈ −0.216. In Figure B.3 we display the L2 error as defined in (4.67) along the

gradient steps and see that using the log-variance loss is significantly faster, as we have similarly observed in
more realistic examples (cf. Section 4.4, in particular Figure 4.5). In the central and right panels we visualize
the loss landscapes of the moment and log-variance losses respectively by varying θ and y0, noting again that
the log-variance loss does not depend on y0. We realize that the additional parameter y0 in the moment loss
complicates the loss landscape significantly. We further plot the trace of the parameters during the optimization
process and realize that for the moment loss the optimization of θ depends on the current value of y0 and vice
versa, leading to harder optimization constraints and slower convergence.

Figure B.3: Left: L2 approximation error using either the moment or the log-variance loss for an Ornstein-
Uhlenbeck toy example in d = 1. Middle: We plot the loss landscape of the moment loss depending on the two
parameters y0 and θ as well as the parameter trace during optimization (white line). Right: The loss landscape
of the log-variance loss depends only on θ, which leads to a faster convergence of this parameter during training.

B.7 Dimension-dependence of the KL-divergence

The following lemma shows that the KL-divergence increases with the number of dimensions. This result follows
from the chain-rule of KL divergence, see, e.g., [58].

Lemma B.7. Let u(D)(z1, . . . , zD) and v(D)(z1, . . . , zD) be two arbitrary probability distributions on RD. For
J ∈ {1 . . . , D} denote their marginals on the first J coordinates by u(J) and v(J), i.e.

u(J)(z1, . . . , zJ) =

∫︂
· · ·
∫︂
u(D)(z1, . . . , zD) dzJ+1 . . . dzD, (B.59)

and
v(J)(z1, . . . , zJ) =

∫︂
· · ·
∫︂
v(D)(z1, . . . , zD) dzJ+1 . . . dzD. (B.60)

Then
KL(u(1) | v(1)) ≤ KL(u(2) | v(2)) ≤ . . . ≤ KL(u(D) | v(D)), (B.61)

i.e. the function J ↦→ KL(u(J) | v(J)) is increasing.

B.8 The tensor train format

In this section we discuss the functional approximations ˆ︁φn, that we have used in Section 6.2 in order to
solve high-dimensional parabolic PDEs, in terms of the tensor train format, leading to efficient optimization
procedures for the schemes (6.27) and (6.42). This has been done in collaboration with Leon Sallandt and
Nikolas Nüsken and published in [251] .

Encoding functions defined on high-dimensional spaces using traditional methods such as finite elements, splines
or multi-variate polynomials leads to a computational complexity that scales exponentially in the state space
dimension d. However, interpreting the coefficients of such ansatz functions as entries in a high-dimensional
tensor allows us to use tensor compression methods to reduce the number of parameters. To this end, we define
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a set of functions {ϕ1, . . . , ϕm} with ϕi : R → R , e.g. one-dimensional polynomials or finite elements. The
approximation ˆ︁φ of V : Rd → R takes the form

ˆ︁φ(x1, . . . , xd) = m∑︂
i1=1

· · ·
m∑︂
id=1

ci1,...,idϕi1(x1) · · ·ϕid(xd), (B.62)

motivated by the fact that polynomials and other tensor product bases are dense in many standard function
spaces [268]. Note that for the sake of simplicity we choose the set of ansatz functions to be the same in every
dimension. As expected, the coefficient tensor c ∈ Rm×m×···×m ≡ Rmd

suffers from the curse of dimensionality
since the number of entries increases exponentially in the dimension d. In what follows, we review the tensor
train format to compress the tensor c.

For the sake of readability we will henceforth write ci1,...,id = c[i1, . . . , id] and represent the contraction of the
last index of a tensor w1 ∈ Rr1×m×r2 with the first index of another tensor w2 ∈ Rr2×m×r3 by

w = w1 ◦ w2 ∈ Rr1×m×m×r3 , (B.63a)

w[i1, i2, i3, i4] =

r2∑︂
j=1

w1[i1, i2, j]w2[j, i3, i4]. (B.63b)

In the literature on tensor methods, graphical representations of general tensor networks are widely used. In
these pictorial descriptions, the contractions ◦ of the component tensors are indicated as edges between vertices
of a graph. As an illustration, we provide the graphical representation of an order-4 tensor and a tensor train
representation (see Definition B.8 below) in Figure B.4.

u1 u2 u3 u4c =
r1 r2 r3

m m m mm

m
m
m

Figure B.4: An order 4 tensor and a tensor train representation.

Tensor train representations of c can now be defined as follows [220].

Definition B.8 (Tensor Train). Let c ∈ Rm×···×m. A factorization

c = u1 ◦ u2 ◦ · · · ◦ ud, (B.64)

where u1 ∈ Rm×r1 , ui ∈ Rri−1×m×ri , 2 ≤ i ≤ d−1, ud ∈ Rrd−1×m, is called tensor train representation of c. We
say that ui are component tensors. The tuple of the dimensions (r1, . . . , rd−1) is called the representation rank
and is associated with the specific representation (B.64). In contrast to that, the tensor train rank (TT-rank)
of c is defined as the minimal rank tuple r = (r1, . . . , rd−1), such that there exists a TT representation of c with
representation rank equal to r. Here, minimality of the rank is defined in terms of the partial order relation on
Nd given by

s ⪯ t ⇐⇒ si ≤ ti for all 1 ≤ i ≤ d,

for r = (r1, . . . , rd), s = (s1, . . . , sd) ∈ Nd.

It can be shown that every tensor has a TT-representation with minimal rank, implying that the TT-rank is
well defined [140]. An efficient algorithm for computing a minimal TT-representation is given by the Tensor-
Train-Singular-Value-Decomposition (TT-SVD) [221]. Additionally, the set of tensor trains with fixed TT-rank
forms a smooth manifold, and if we include lower ranks, an algebraic variety is formed [183].

Introducing the compact notation

ϕ : R→ Rm, ϕ(x) = [ϕ1(x), . . . , ϕm(x)],

the TT-representation of (B.62) is then given as

ˆ︁φ(x) = m∑︂
i1

· · ·
m∑︂
id

r1∑︂
j1

· · ·
rd−1∑︂
jd−1

u1[i1, j1]u2[j1, i2, j2] · · ·ud[jd−1, id]ϕ(x1)[i1] · · ·ϕ(xd)[id]. (B.65)
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The corresponding graphical TT-representation (with d = 4 for definiteness) is then given as follows:

u1 u2 u3 u4

ϕ(x1) ϕ(x2) ϕ(x3) ϕ(x4)

ˆ︁φ(x) =
r1 r2 r3

m m m m

Figure B.5: Graphical representation of ˆ︁φ : R4 → R.

B.8.1 Optimization on the TT manifold
The multilinear structure of the tensor product enables efficient optimization of (6.27) and (6.42) within the
manifold structure by means of reducing a high-dimensional linear equation in the coefficient tensor to small
linear subproblems on the component tensors45. For this, we view (6.27) and (6.42) abstractly as least squares
problems on a linear space V ⊂ L2(D), where D ⊂ Rd is a bounded Lipschitz domain. Our objective is then to
find

argminˆ︁φ∈V

J∑︂
j=1

|ˆ︁φ(xj)−R(xj)|2, (B.66)

where {x1, . . . , xJ} ⊂ D are data points obtained from samples of ˆ︁Xn, and R : D → R stands for the terms in
(6.27) and (6.42) that are not varied in the optimization. Choosing a basis {b1, . . . , bM} of V we can represent
any function w ∈ V by w(x) =

∑︁M
m=1 cmbm(x) and it is well known that the solution to (B.66) is given in terms

of the coefficient vector
c = (A⊤A)−1A⊤r ∈ RM , (B.67)

where A = [aij ] ∈ RJ×M with aij = bj(xi) and rj = R(xj) ∈ RJ .

The alternating least-squares (ALS) algorithm [139] reduces the high-dimensional system (B.67) in the coefficient
tensor c to small linear subproblems in the component tensors ui as follows: Since the tensor train format (B.64)
is a multilinear parametrization of c, fixing every component tensor but one (say ui) isolates a remaining low-
dimensional linear parametrization with associated local linear subspace Vloc,i. The number Mi of remaining
parameters (equivalently, the dimension of Vloc,i) is given by the number of coefficients in the component tensor
ui, i.e. Mi = ri−1mri. If the ranks ri, ri−1 are significantly smaller than M , this results in a low-dimensional
hence efficiently solvable least-squares problem. Iterating over the component tensors ui then leads to an
efficient scheme for solving high-dimensional least-squares problems with low rank structure. Basis functions
in Vloc,i are obtained from the order 3 tensor bloc depicted in Figure B.6 (note the three open edges). A
simple reshape to an order one tensor then yields the desired basis functions, stacked onto each other, i.e.
bloc,i(x) = [bloc,i1 (x), bloc,i2 (x), . . . , bloc,iMi

(x)].

More precisely, the local basis functions can be identified using the open edges in Figure B.6 as follows. Assuming
u2 is being optimized, we notice that the tensor ϕ(x1) ◦ u1 is a mapping from R → Rr1 , which means that we
can identify r1 many one-dimensional functions. Note that this corresponds to the left part of the tensor picture
in Figure B.6. Further, we have that ϕ(x2) is a vector consisting of m one-dimensional functions, which is the
middle part of the above tensor picture. The right part, consisting of the contractions between ϕ(x2), u3, u4,
and ϕ(x4), is a set of two-dimensional functions with cardinality r2. Taking the tensor product of the above
functions yields an r1mr2 dimensional function space of four-dimensional functions, which is exactly the span
of the local basis functions.

u1 u3 u4

ϕ(x1) ϕ(x2) ϕ(x3) ϕ(x4)

bloc,i(x) =
r1 r2 r3

m m m m

Figure B.6: Graphical representation of the local basis functions for i = 2.

In many situations the terminal condition g, defined in (6.8), is not part of the ansatz space just defined. This
is always the case if g is not in tensor-product form. However, as the ambient space Rmd

is linear, g can
be straightforwardly added46 to the ansatz space, potentially increasing its dimension to md + 1. Whenever a

45In the case of (6.42), an additional nested iterative procedure is required, see Section B.8.2.
46We note that the idea of enhancing the ansatz space has been suggested in [307] in the context of linear parametrizations.
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component tensor ui is optimized in the way described above, we simply add g to the set of local basis functions,
obtaining as a new basis

bloc,ig = {bloc,i1 , . . . , bloc,im , g}, (B.68)

only marginally increasing the complexity of the least-squares problem. In our numerical tests we have noticed
substantial improvements using the extension (B.68). Incorporating the terminal condition, the representation
of the PDE solution takes the form depicted in Figure B.7, for some cg ∈ R.

u1 u2 u3 u4

ϕ(x1) ϕ(x2) ϕ(x3) ϕ(x4)

ˆ︁φ(x) = + cgg(x)
r1 r2 r3

m m m m

Figure B.7: Graphical representation of ˆ︁φ : R4 → R.

Summing up, we briefly state a basic ALS algorithm with our adapted basis bloc,i:

Algorithm 5: Simple ALS algorithm
Input: initial guess u1 ◦ u2 ◦ · · · ◦ ud.
repeat

for i = 1 to d do
identify the local basis functions (B.68), parametrized by uk, k ̸= j
optimize ui using the local basis by solving the local least squares problem

end
until noChange is true ;
Result: result u1 ◦ u2 ◦ · · · ◦ ud.

The drawback of Algorithm 5 is that the ranks of the tensor approximation have to be chosen in advance.
However, there are more involved rank-adaptive versions of the ALS algorithm, providing a convenient way
of finding suitable ranks. Here we make use of the rank-adaptive stable alternating least-squares algorithm
(SALSA) [115]. However, as seen in Section 6.2.3, we can in fact oftentimes find good solutions by setting the
rank to be (1, . . . , 1) ∈ Nd−1, enabling highly efficient computations.
By straightforward extensions, adding the terminal condition g to to set of local ansatz functions can similarly
be implemented into more advanced, rank adaptive ALS algorithms, which is exactly what we do for our version
of SALSA.

B.8.2 Handling implicit regression problems
The algorithms described in the previous section require the regression problem to be explicit such as in (6.27).
In contrast, the optimization in (6.42) is of implicit type, as ˆ︁hn contains the unknown ˆ︁φn. In order to solve
(6.42), we therefore choose an initial guess ˆ︁φ0

n and iterate the optimization of

E[(ˆ︁φk+1
n ( ˆ︁Xn)− h( ˆ︁Xn, tn, ˆ︁Y kn , ˆ︁Zkn)∆t+ ˆ︁Zkn · ξn+1

√
∆t− ˆ︁φn+1( ˆ︁Xn+1))

2] (B.69)

with respect to ˆ︁φk+1
n until convergence (see Appendix B.9 for a discussion of appropriate stopping criteria).

In the above display, ˆ︁Y kn = ˆ︁φkn( ˆ︁Xn) and ˆ︁Zkn = σ⊤∇ˆ︁φkn( ˆ︁Xn) are computed according to (6.9). For theoretical
foundation, we guarantee convergence of the proposed scheme when the step size ∆t is small enough.

Theorem B.9. Assume that V ⊂ L2(D) ∩ C∞
b (D) is a finite dimensional linear subspace, that σ(x, t) is

nondegenerate for all (x, t) ∈ [0, T ]× Rd, and that h is globally Lipschitz continuous in the last two arguments.
Then there exists δ > 0 such that the iteration (B.69) converges for all ∆t ∈ (0, δ).

Proof. In this proof, we denote the underlying probability measure by P, and the corresponding Hilbert space
of random variables with finite second moments by L2(P). We define the linear subspace ˜︁V ⊂ L2(P) by

˜︁V =
{︂
f( ˆ︁Xn) : f ∈ V

}︂
, (B.70)

noting that ˜︁V is finite-dimensional by the assumption on V, hence closed. The corresponding L2(P)-orthogonal
projection onto ˜︁V will be denoted by Π˜︁V . By the nondegeneracy of σ, the law of ˆ︁Xn has full support on D, and
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so ∥ · ∥L2(P) is indeed a norm on ˜︁V. Since ˜︁V is finite-dimensional, the linear operators

˜︁V ∋ f( ˆ︁Xn) ↦→
∂f

∂xi
( ˆ︁Xn) ∈ L2(P) (B.71)

are bounded, and consequently there exists a constant C1 > 0 such that⃦⃦⃦⃦
∂f

∂xi
( ˆ︁Xn)

⃦⃦⃦⃦
L2(P)

≤ C1

⃦⃦⃦
f( ˆ︁Xn)

⃦⃦⃦
L2(P)

, (B.72)

for all i = 1, . . . , d and f ∈ V . Furthermore, there exists a constant C2 > 0 such that

E
[︂
f4( ˆ︁Xn)

]︂1/4
:=
⃦⃦⃦
f( ˆ︁XN )

⃦⃦⃦
L4(P)

≤ C2

⃦⃦⃦
f( ˆ︁Xn)

⃦⃦⃦
L2(P)

, (B.73)

for all f ∈ V , again by the finite-dimensionality of ˜︁V and the fact that on finite dimensional vector spaces, all
norms are equivalent. By standard results on orthogonal projections, the solution to the iteration (B.69) is
given by

φk+1
n ( ˆ︁Xn) = Π˜︁V[︁− h( ˆ︁Xn, tn, ˆ︁Y kn , ˆ︁Zkn)∆t+ ˆ︁Zkn · ξn+1

√
∆t− ˆ︁φn+1( ˆ︁Xn+1)

]︁
. (B.74a)

We now consider the map Ψ : ˜︁V → ˜︁V defined by

f( ˆ︁Xn) ↦→ Π˜︁V[︁− h( ˆ︁Xn, tn, f( ˆ︁Xn), σ
⊤∇f( ˆ︁Xn))∆t+ σ⊤∇f( ˆ︁Xn) · ξn+1

√
∆t− ˆ︁φn+1( ˆ︁Xn+1)

]︁
. (B.75a)

For F1, F2 ∈ ˜︁V with Fi = fi( ˆ︁Xn), fi ∈ V , we see that

∥ΨF1 −ΨF2∥L2(P) =
⃦⃦
Π˜︁V[︁− h( ˆ︁Xn, tn, f1( ˆ︁Xn), σ

⊤∇f1( ˆ︁Xn))∆t+ h( ˆ︁Xn, tn, f2( ˆ︁Xn), σ
⊤∇f2( ˆ︁Xn))∆t (B.76a)

+
√
∆t
(︂
σ⊤∇f1( ˆ︁Xn)− σ⊤∇f2( ˆ︁Xn)

)︂
· ξn+1

]︁⃦⃦
L2(P) (B.76b)

≤ C3

⃦⃦
Π˜︁V ⃦⃦L2(P)→L2(P)

(︄
∆t ∥F1 − F2∥L2(P)

+
√
∆t
⃦⃦⃦(︂
σ⊤∇f1( ˆ︁Xn)− σ⊤∇f2( ˆ︁Xn)

)︂
· ξn+1

⃦⃦⃦
L2(P)

)︄ (B.76c)

for some constant C3 that does not depend on ∆t, where we have used the triangle inequality, the Lipschitz
assumption on h, the boundedness of σ, and the estimate (B.72). Using the Cauchy-Schwarz inequality, bound-
edness of σ as well as (B.72) and (B.73), the last term can be estimated as follows,

⃦⃦⃦(︂
σ⊤∇f1( ˆ︁Xn)− σ⊤∇f2( ˆ︁Xn)

)︂
· ξn+1

⃦⃦⃦
L2(P)

≤
⃦⃦⃦⃦(︂
σ⊤∇f1( ˆ︁Xn)− σ⊤∇f2( ˆ︁Xn)

)︂2 ⃦⃦⃦⃦1/2
L2(P)

⃦⃦
ξ2n+1

⃦⃦1/2
L2(P) (B.77a)

≤ C4 ∥F1 − F2∥L2(P) , (B.77b)

where C4 is a constant independent of ∆t. Collecting the previous estimates, we see that δ > 0 can be chosen
such that for all t ∈ (0, δ), the mapping Ψ is a contraction on ˜︁V when equipped with the norm ∥ · ∥L2(P), that
is,

∥ΨF1 −ΨF2∥ ≤ λ∥F1 − F2∥, (B.78)

for some λ < 1 and all F1, F2 ∈ ˜︁V. Finally, the statement follows from the Banach fixed point theorem.

Remark B.10. In order to ensure the boundedness assumption in Theorem B.9 and to stabilize the computation
we add a regularization term involving the Frobenius norm of the coefficient tensor to the objective in (B.69).
Choosing an orthonormal basis we can then relate the Frobenius norm to the associated norm in the function
space by Parseval’s identity. In our numerical tests we set our one-dimensional ansatz functions to be approxi-
mately H2(a, b)-orthonormal47, where a and b are set to be approximately equal to the minimum and maximum
of the samples ˆ︁Xn, respectively. The corresponding tensor space (H2(a, b))⊗d = H2

mix([a, b])
d can be shown to

be continuously embedded in W 1,∞(D), guaranteeing boundedness of the approximations and their derivatives
[268].

47Here, H2(a, b) refers to the second-order Sobolev space, see [268].
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Remark B.11 (Parameter initializations). Since we expect V (·, tn) to be close to V (·, tn+1) for any n ∈ {0, . . . , N−
1}, we initialize the parameters of φ0

n as those obtained for ˆ︁φn+1 identified in the preceding time step.

Clearly, the iterative optimization of (B.69) is computationally more costly than the explicit scheme described
in Section B.8.1 that relies on a single optimization of the type (B.66) per time step. However, implicit schemes
typically ensure improved convergence orders as well as robustness [172] and therefore hold the promise of
more accurate approximations (see Section 6.2.3 for experimental confirmation). We note that the NN based
approaches considered as baselines in Section 6.2.3 perform gradient descent for both the explicit and implicit
schemes and therefore no significant differences in the corresponding runtimes are expected.

B.9 Implementation details for backward iteration schemes

For the evaluation of the backward approximations we rely on reference values of V (x0, 0) and further define
the following two loss metrics, which are zero if and only if the PDE is fulfilled along the samples generated by
the discrete forward SDE (6.11). In the spirit of [242], we define the PDE loss as

LPDE =
1

KN

N∑︂
n=1

K∑︂
k=1

(︂
(∂t + L)V ( ˆ︁X(k)

n , tn) + h( ˆ︁X(k)
n , tn, V ( ˆ︁X(k)

n , tn), σ
⊤∇V ( ˆ︁X(k)

n , tn))
)︂2
, (B.79)

where ˆ︁X(k)
n are realizations of (6.11), the time derivative is approximated with finite differences and the space

derivatives are computed analytically (or with automatic differentiation tools). We leave out the first time step
n = 0 since the regression problem within the explicit and the implicit schemes for the tensor trains are not
well-defined due to the fact that ˆ︁X(k)

0 = x0 has the same value for all k. We still obtain a good approximation
since the added regularization term brings a minimum norm solution with the correct point value V (x0, 0).
Still, this does not aim at the PDE being entirely fulfilled at this point in time.

Further, we define the relative reference loss as

Lref =
1

K(N + 1)

N∑︂
n=0

K∑︂
k=1

⃓⃓⃓⃓
⃓V ( ˆ︁X(k)

n , tn)− Vref( ˆ︁X(k)
n , tn)

Vref( ˆ︁X(k)
n , tn)

⃓⃓⃓⃓
⃓ , (B.80)

whenever a reference solution for all x and t is available.

All computation times in the reported tables are measured in seconds.

Our experiments have been performed on a desktop computer containing an AMD Ryzen Threadripper 2990
WX 32x 3.00 GHz mainboard and an NVIDIA Titan RTX GPU, where we note that only the NN optimizations
were run on this GPU, since our TT framework does not include GPU support. It is expected that running the
TT approximations on a GPU will improve time performances in the future [1].

B.9.1 Details on tensor train approximation
For the implementation of the tensor networks we rely on the C++ library xerus [143] and the Python library
numpy [125].

Within the optimization we have to specify the regularization parameter as noted in Remark B.10, which we
denot here by η > 0. We adapt this parameter in dependence of the current residual in the regression problem
(B.69), i.e. η = cw, where c > 0 and w is the residual from the previous sweep of SALSA. In every all our
experiments we set cη = 1. Further, we have to specify the condition “noChange is true” within Algorithm
5. To this end we introduce a test set with equal size as our training set. We measure the residual within a
single run of SALSA on the test set and the training set. If the change of the residual on either of this sets is
below δ = 0.0001 we set noChange = true. For the fixed-point iteration we have a two-fold stopping condition.
We stop the iteration if either the Frobenius norm of the coefficients has a smaller relative difference than
γ1 < 0.0001 or if the values ˆ︁φk+1

n and ˆ︁φkn and their gradients, evaluated at the points of the test set, have a
relative difference smaller than γ2 < 0.00001. Note that the second condition is essentially a discrete H1 norm,
which is necessary since by adding the final condition into the ansatz space the orthonormal basis property is
violated.
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B.9.2 Details on neural network approximation
For the neural network architecture we rely on the DenseNet, which we have defined in Definition 2.50. We
introduce the vector r := (din, r1, . . . , rL−1, dout) to represent a certain choice of a DenseNet architecture, where
in our setting din = d and dout = 1. If not otherwise stated we fix the parameter θ to be 1. For the activation
function ϱ : R→ R, that is to be applied componentwise, we choose tanh.
For the gradient descent optimization we choose the Adam optimizer with the default parameters β1 = 0.9, β2 =
0.999, ε = 10−8 [169]. In most of our experiments we chose a fixed learning rate ηN−1 for the approximation
of the first backward iteration step to approximate ˆ︁φN−1 and another fixed learning rate ηn for all the other
iteration steps to approximate ˆ︁φn for 0 ≤ n ≤ N − 2 (cf. Remark B.11). Similarly, we denote with GN−1 and
Gn the amount of gradient descent steps in the corresponding optimizations.
In Tables B.1 and B.2 we list our hyperparameter choices for the neural network experiments that we have
conducted.

HJB, d = 10, NNimpl

Figure 6.1

K = 2000,∆t = 0.01

r = (100, 110, 110, 50, 50, 1)

Gn = 8000, GN−1 = 40000

ηn = 0.0001, ηN−1 = 0.0001

HJB, d = 100, NNimpl

Table 6.1, Figures 6.2, 6.3

K = 2000,∆t = 0.01

r = (100, 130, 130, 70, 70, 1)

Gn = 5000, GN−1 = 40000

ηn = 0.0001, ηN−1 = 0.0003

HJB, d = 100, NNexpl

Table 6.1, Figures 6.2, 6.3

K = 2000,∆t = 0.01

r = (100, 110, 110, 50, 50, 1)

Gn = 500, GN−1 = 7000

ηn = 0.00005, ηN−1 = 0.0003

HJB double well
d = 50, NNimpl, Table 6.3

K = 2000,∆t = 0.01

r = (50, 30, 30, 1)

Gn = 2000, GN−1 = 25000

ηn = 0.0002, ηN−1 = 0.0005

HJB interacting double well
d = 20, NNimpl, Table 6.4

K = 2000,∆t = 0.01

r = (50, 20, 20, 20, 20, 1)

Gn = 3000, GN−1 = 30000

ηn = 0.0007, ηN−1 = 0.001

CIR, d = 100, NNimpl

Table 6.5

K = 1000,∆t = 0.01

r = (100, 110, 110, 50, 50, 1)

Gn = 2000 for 0 ≤ n ≤ 15

Gn = 300 for 16 ≤ n ≤ N − 2

GN−1 = 10000

ηn = 0.00005, ηN−1 = 0.0001

Table B.1: Neural network hyperparameters for the experiments.

PDE with unbounded solution
d = 10, NNimpl, Table 6.7

K = 1000,∆t = 0.001

r = (10, 30, 30, 1)

Gn = 100, GN−1 = 10000

ηn = 0.0001, ηN−1 = 0.0001

Allen-Cahn
d = 100, NNimpl, Table 6.8

K = 8000,∆t = 0.01

r = (10, 30, 30, 1)

Gn = 10000 for 0 ≤ n ≤ 5

Gn = 6000 for 6 ≤ n ≤ N − 2

GN−1 = 15000

ηn = 0.0002, ηN−1 = 0.001

Table B.2: Neural network hyperparameters for the additional experiments.
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B.10 Conditioning of stochastic processes and the Schrödinger
problem

Let us discuss how one can solve Problem 7.1, often also called Schrödinger problem, and how it is related
to importance sampling of diffusions. We start with some preliminary statements that consider processes
starting and ending at prescribed points, i.e. let us consider Problem 7.1 with µ0 = δx0

, µT = δz being Dirac
distributions. Here a central object is the transition density connected to the uncontrolled stochastic process

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, X0 = xinit, (B.81)

namely
p(s, y; t, x) = P (Xs = y|Xt = x) (B.82)

for s > t (assuming again Assumption 1 for definiteness). The idea is to change this transition density in such
a way that the target µT = δz is reached. We note that for the conditioned transition probability it holds

P (Xs = y|Xt = x,XT = z) =
P (Xs = y,XT = z|Xt = x)

P (XT = z|Xt = x)
=

P (XT = z|Xs = y)P (Xs = y|Xt = x)

P (XT = z|Xt = x)
, (B.83)

which motivates to consider the transformation [153]

ph(s, y; t, x) =
p(s, y; t, x)p(T, z; s, y)

p(T, z; t, x)
. (B.84)

In fact one can show that this transformation leads to a controlled SDE of the form (7.4). The following theorem
establishes this relation in a slightly more general form.

Theorem B.12 (Change of transition density). Let Xt be a solution of (B.81) and let48 h(x, t) be a strictly
positive classical solution of

(∂t + L)h(x, t) = 0, (B.85)

i.e. E[h(Xs, s)|Xt = x] = h(x, t) for any 0 ≤ t < s < T . Then the SDE

dXs = (b(Xs, s) + σσ⊤∇ log h(Xs, s)) ds+ σ(Xs, s) dWs (B.86)

admits a solution and its transition density is given by

ph(s, y; t, x) =
p(s, y; t, x)h(y, s)

h(x, t)
. (B.87)

Proof. See [60, Theorem 2.1].

Choosing h(x, t) = p(T, z; t, x) in Theorem B.12, noting that it solves (B.85) as required and that via the
Chapman-Kolmogorov equation it holds

E[p(T, z;Xs, s)|Xt = x] =

∫︂
Rd

p(T, z; y, s)p(y, s;x, t)dy = p(T, z; t, x) (B.88)

justifies that the transformation (B.84) indeed leads to a conditioned stochastic process, as we make precise in
the following corollary.

Corollary B.13 (Conditioning on point). For a fixed z ∈ Rd consider the strictly positive function

h(x, t) = p(T, z; t, x) (B.89)

and define u∗(x, t) = σ⊤∇ log h(x, t), then there exists a solution to

dXu∗

s = (b(Xu∗

s , s) + σu∗(Xu∗

s , s)) ds+ σ(Xu∗

s , s) dWs, Xu∗

0 = xinit. (B.90)

If Xs is a solution of (B.81), then Xu∗

s has the conditioned law of Xs in the sense that

E[g(Xu∗

s )] = E[g(Xs)|XT = z] (B.91)

for any s ∈ [0, T ) and any bounded measurable function g.
48For historical reasons we are slightly inconsistent with our notation and note that h must not be confused with the nonlinearity

appearing in our semi-linear PDEs as for instance stated in Definition 2.19.
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Proof. See [60, Corollary 2.1].

Remark B.14 (Doob’s h-transform and discrete path measures). The transformation (B.84) has originally been
suggested in [75] and is therefore often termed Doob’s h-transform. We note that we can write (B.87) as

ph(s, y; t, x) =
p(s, y; t, x)h(y, s)

E[h(Xs, s)|Xt = x]
, (B.92)

which should be compared to the formula for the optimal change of measures, as stated e.g. in (1.13) and
discussed in detail for path spaces in Chapter 4. In fact, the h-transform of the transition probability motivates
to look at the discrete counterparts of path space measures. To this end, let us consider the discrete stochastic
process ˆ︁Xn on a time grid 0 = t0 < t1 < · · · < tN = T and note that the Markov property brings

P( ˆ︁XN = xN , . . . , ˆ︁X0 = x0) =

N−1∏︂
n=0

p(tn+1, xn+1; tn, xn). (B.93)

Similarly, we can define the discrete target measure as the product of h-transformed transition densities, namely

Q( ˆ︁XN = xN , . . . , ˆ︁X0 = x0) =

N−1∏︂
n=0

ph(tn+1, xn+1; tn, xn) =

N−1∏︂
n=0

p(tn+1, xn+1; tn, xn)h(xn+1, tn+1)

h(xn, tn)
(B.94a)

= P( ˆ︁XN = xN , . . . , ˆ︁X0 = x0)
h(xN , tN )

h(x0, 0)
. (B.94b)

In the importance sampling application (as discussed in Section 2.3.2) the choice h(x, t) = E[e−g(XT )|Xt = x]
defines the optimal change of measure and we note that (B.94) can be understood as the discrete version of its
continuous counterpart49,

dQ
dP

(X) =
e−g(XT )

E
[︁
e−g(XT )

]︁ , (B.95)

similarly to (1.13), see also [136]. A generalization to the path dependent functional
W(X) =

∫︁ T
0
f(Xs, s)ds + g(XT ) as for instance defined in (1.8) can be acquired by considering the function

h(x, t) = E
[︂
e−

∫︁ T
0
f(Xs,s)ds−g(XT )

⃓⃓⃓
Xt = x

]︂
and the change of the transition density defined by [62]

ph(s, y; t, x) = p(s, y; t, x)
h(y, s)

h(x, t)
e−

∫︁ s
t
f(Xr,r)dr, (B.96)

where now h(x, t) fulfills the PDE (∂t + L − f)h(x, t) = 0 (see Section 2.2.1), corresponding to the change of
path measures defined by

dQ
dP

(X) =
e−W(X)

Z
, (B.97)

as frequently considered in this thesis.

Example B.15 (Brownian bridge). A prominent example for a conditioned processes is the so-called Brownian
bridge, which conditions Brownian motion to end at a specified point z ∈ Rd. Let us for instance consider the
process Xs =Ws + x0, which admits the transition density

p(T, z; t, x) =
1√︁

(2π)d(T − t)
exp

(︃
− |x− z|

2

2(T − t)

)︃
. (B.98)

According to Corollary B.13 the conditioned process can be readily computed as50

d ˜︁Xs = −
˜︁Xs − z
T − s

ds+ dWs, ˜︁X0 = x0, (B.99)

where we note that the control is small at the beginning and can get infinitely large for s→ T unless ˜︁Xs → z.
49We slightly abuse notation with P and Q either denoting probabilities of discrete events or probabilities of continuous paths

of stochastic processes, as used throughout this thesis.
50Note that this Ornstein-Uhlenbeck process can be explicitly written as ˜︁Xt = x0

(︁
1− t

T

)︁
+ z t

T
+ (T − t)

∫︁ t
0

dWs
T−s

, from which
one can immediately read off the desired conditioning.
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Let us move on towards approaching Problem 7.1 and now consider stochastic processes that are conditioned
to end in a prescribed target distribution rather than at a given point. To this end, let us define the operator
St acting on densities by

Stµ(x) =

∫︂
Rd

p(t, x; 0, y)µ(y)dy. (B.100)

The following theorem shows how Problem 7.1 can be solved if µ0 is a Dirac measure concentrated at x0 ∈ Rd.

Theorem B.16 (Conditioning on target density). Let µ0 = δx0 and assume that KL(µT |STµ0) < ∞. Define
the function

h(x, t) =

∫︂
Rd

p(T, z; t, x)
µT
STµ0

(z)dz = E
[︃
µT
STµ0

(XT )
⃓⃓⃓
Xt = x

]︃
. (B.101)

Then u∗ = σ⊤∇ log h solves Problem 7.1.

Proof. With (B.87) it can easily be seen that

ph(T, z; 0, x0) =
p(T, z; 0, x0)h(z, T )

h(x0, 0)
= p(T, z; 0, x0)

µT
STµ0

(z) = µT (z). (B.102)

For further rigorous details see [60, Theorem 3.1].

Remark B.17 (Control interpretation). We have seen before that PDEs of Feynman-Kac type, such as the one
in (B.85), can be related to stochastic optimal control problems by means of a logarithmic transformation, see
e.g. Lemma 2.11. Likewise, it can readily be seen that identifying the drift in Theorem B.16 that pushes the
diffusion to the specified target distribution at terminal time while having minimal control costs corresponds to
solving an optimal control problem with terminal costs g(x) = − log µT

STµ0
(x). To be precise it holds that

− log h(x, t) = min
u∈U

J(u;x, t) = min
u∈U

E

⎡⎣1
2

T∫︂
t

|u(Xu
s , s)|2ds− log

µT
STµ0

(Xu
T )

⃓⃓⃓⃓
⃓Xu

t = x

⎤⎦ . (B.103)

It is interesting to note that the optimal control costs of this problem are given by

J(u∗;x0, 0) = KL(Pu
∗
|P) = KL(µT |STµ0), (B.104)

i.e., the “global” KL divergence equals the KL divergence between the final densities [60].

Remark B.18 (Relation to importance sampling). Note that we can relate Theorem B.16 to our importance
sampling considerations from Section 2.3.2 in the special case where W does not depend on f . We have already
argued in Remark 2.35 that in this case the reweighting on path space can be reduced to a reweighting of the
terminal density given by

qT (x) =
e−g(x)pT (x)

E
[︁
e−g(x)

]︁ , (B.105)

which motivates defining our target density to be µT = qT . Going back to the path space perspective we can
now use formula (B.101) to get

h(x, t) = E
[︃
µT
STµ0

(XT )
⃓⃓⃓
Xt = x

]︃
=

E
[︂
e−g(XT )

⃓⃓⃓
Xt = x

]︂
E
[︁
e−g(XT )

]︁ (B.106)

and therefore the optimal control

u∗(x, t) = σ⊤∇ log h(x, t) = σ⊤∇ logE
[︂
e−g(XT )

⃓⃓⃓
Xt = x

]︂
, (B.107)

which according to Theorem 2.33 is just the zero-variance control in path space importance sampling. In other
words, for the case f = 0 the problem of identifying an optimal importance sampling control corresponds exactly
to the problem of reaching the target density qT as defined in (B.105) while minimizing quadratic control costs,
as stated in Problem 7.1.

Example B.19 (Conditioning and importance sampling of Brownian motion). We shall illustrate the connec-
tion between conditioning and importance sampling in the following toy example. Let us consider Brownian
motion

Xs =Ws (B.108)
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and let us aim at computing51 E
[︁
|XT |2

]︁
by sampling. We can determine an optimal target density to be

qT (x) =
|x|2

E [|XT |2]
pT (x) =

|x|2

dT
√︁

(2π)dT
exp

(︃
−|x|

2

2T

)︃
(B.109)

and an optimal importance sampling control to be

u∗(x, t) = ∇ logE
[︁
|XT |2|Xt = x

]︁
= ∇ log

(︁
d(T − t) + |x|2

)︁
=

2x

d(T − t) + |x|2
. (B.110)

For such a control the quantity |Xu∗

T |2 dP
dPu∗ (Xu∗

) must be almost surely constant according to Theorem 2.33.
Let us do a simulation in d = 2 for T = 1. In Figure B.8 we can see that |Xu∗

t |2 dP
dPu∗ (Xu∗

) as a function of
time indeed starts and ends in one point and that the target density as given by (B.109) is reached.

Figure B.8: In the left panel we display the quantity |Xu∗

t |2 dP
dPu∗ (Xu∗

) depending on time. In the two right
panels we compare the true density of Xu∗

T given by (B.109) with its histogram approximation using an Euler-
Maruyama discretization of the controlled stochastic process.

Figure B.9 provides an illustration of the conditioning. Due to the constraint of |Xu∗

T |2 dP
dPu∗ (Xu∗

) being almost
surely constant, the different reweighted trajectories that start at the origin are conditioned to be placed on a
straight line at terminal time.

Figure B.9: We display the components of the controlled and reweighted process (Xu∗

t )2 dP
dPu∗ (Xu∗

t ) (where the
square is to be understood componentwise) at different times. For t = T the quantity |Xu∗

T |2 dP
dPu∗ (Xu∗

T ) is
almost surely constant, to be precise (Xu∗

T )21
dP

dPu∗ (Xu∗

t )+(Xu∗

T )22
dP

dPu∗ (Xu∗

t ) = 2, which implies that the different
realizations are conditioned to lie on the blue line.

At the end of this section let us briefly discuss how one can approach Problem 7.1 in full generality, i.e. condition
a process on starting from and ending at arbitrary densities µ0 and µT , where we will however leave algorithms
that are e.g. based on a control formulation for future work. First, let us state the following representation of
µ0 and µT that will motivate a fruitful approach.

Theorem B.20. Given two probability measures µ0, µT on Rd and a transition density p(s, y; t, x) there exists
a unique pair of probability densities (ν0, νT ) such that the joint density defined by

p(T, y; 0, x)ν0(x)νT (y) (B.111)

has marginals µ0, µT .
51Note that comparing to the notation from e.g. (2.102) this corresponds to choosing g(x) = − log(|x|2), which is ∞ for x = 0,

however e−∞ = 0 justifies this choice.
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Proof. See [31, 152, 153].

The above theorem suggests considering the so-called Schrödinger system defined by the two equations

µ0(x) = ν0(x)

∫︂
Rd

p(T, y; 0, x)νT (y)dy, (B.112a)

µT (y) = νT (y)

∫︂
Rd

p(T, y; 0, x)ν0(x)dx, (B.112b)

in the unknowns ν0, νT . Those quantities will turn out to be the essential ingredient in solving Problem 7.1.
Motivated by (B.112) let us define

h(x, t) =

∫︂
Rd

p(T, y; t, x)νT (y)dy, (B.113)

h̄(y, s) =

∫︂
Rd

p(s, y; 0, z)ν0(z)dz. (B.114)

We see that h is the solution of the parabolic backward PDE

(∂t + L)h(x, t) = 0, h(x, T ) = νT (x) (B.115)

and h̄ solves the forward PDE

(∂t − L) h̄(x, t) = 0, h̄(x, 0) = ν0(x). (B.116)

The backward PDE (B.115) should be compared to (B.85), where however now the terminal condition is
unknown.

Finally, the following theorem shows that with h as defined in (B.113) we can indeed solve Problem 7.1.

Theorem B.21 (Schrödinger problem with general distributions). Let∫︂
Rd

x2µ0(x)dx <∞, KL(µT |ST ν0) <∞,
∫︂
Rd

ν0
µ0

(x)µ0(x)dx <∞ (B.117)

and
h(x, t) =

∫︂
Rd

p(T, z;x, t)νT (z)dz = E
[︂
νT (XT )

⃓⃓⃓
Xt = x

]︂
. (B.118)

Then u∗ = σ⊤∇ log h solves Problem 7.1.

Proof. See [60, Theorem 3.2].

We expect fruitful connections potentially leading to useful algorithms by studying control theoretic formulations
of the general Schrödinger problem, similar to the one discussed in Remark B.17 that is related to the special
case of starting from a Dirac distribution. We will leave this topic for future research.

B.11 Learning optimal importance sampling proposal densities

In Chapter 7 we have stated how one can aim to learn optimal importance sampling densities by relying on the
log-variance loss. Here we will provide some additional examples and comment on alternative losses that might
by suitable.

Remark B.22 (Alternative losses for learning optimal importance sampling densities). In analogy to Section 4.1.1
one can also take others losses for learning optimal importance sampling densities. We can for instance consider
the variance loss

LVarr (˜︁p) = Varr

(︃
p˜︁p (X)e−g(X)

)︃
, (B.119)
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however we expect numerical issues in high-dimensional settings, as demonstrated in Proposition 4.29. Alter-
natively, the KL divergence leads to either the relative entropy loss

LRE(˜︁p) = KL(˜︁p|q) = E˜︁p
[︃
log

(︃ ˜︁p(X)Z
p(X)e−g(X)

)︃]︃
= E˜︁p [log ˜︁p(X)− log p(X) + g(X)] + logZ, (B.120)

or, by reversing the arguments, to the cross-entropy loss

LCE(˜︁p) = KL(q|˜︁p) = Ep
[︃
log

(︃
p(X)e−g(X)˜︁p(X)Z

)︃
e−g(X)

Z

]︃
= Ep

[︃(︂
log p(X)− g(X)− log ˜︁p(X)

)︂e−g(X)

Z

]︃
− logZ.

(B.121)

In contrast to the variance-based losses, those two losses do not naturally posses the property of allowing for
arbitrary reference distributions r. For the cross-entropy loss we expect numerical issues in high-dimensional
settings (cf. Proposition 4.29) and for the relative entropy loss we note that differentiating can be challenging
since the random variables themselves are distributed according to ˜︁p (cf. Chapter 5).

For the computation of the optimal proposal density as defined in (7.17) one can consider an example where an
analytical solution is available and where an easy parametrization of ˜︁p can be identified.

Example B.23 (Sampling from high-dimensional Gaussians). Suppose we want to compute E
[︁
e−α·X

]︁
, where

α ∈ Rd is a given vector and where X ∼ N (µ,Σ) =: p is distributed according to a multidimensional Gaussian
with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. Naive Monte Carlo estimators might suffer from large
relative errors, in particular in high-dimensional settings, cf. Example 3.12. We therefore rely on importance
sampling, where the optimal importance sampling density can be computed to be

q(x) =
e−α·x

Z
p(x) = N (x;µ− Σα,Σ). (B.122)

Let us define our proposal to be Gaussian as well, namely

˜︁p(x) = N (x; ˜︁µ, ˜︁Σ), (B.123)

and aim to learn its parameters ˜︁µ, ˜︁Σ. Since the covariance matrix can be written in its Cholesky decomposition˜︁Σ = ˜︁K ˜︁K⊤, where ˜︁K is a triangular matrix, we have to learn p = d+ d(d+1)
2 parameters. We run an experiment

in dimension d = 9, where the entries of µ and K are drawn from a standard normal distribution once at the
beginning of the experiment. We initialize ˜︁µ and ˜︁K with µ and K and minimize the log-variance loss (7.20)
with the Adam optimizer using the learning rate 2 · 10−4. In Figure B.10 we can see that the log-variance loss
decreases over the iteration steps. In the center we plot the Euclidean distance of the current ˜︁µ to the optimal
µ∗ = µ − Σα, noting that it approaches zero. In the right panel we display the variance of the importance
sampling estimator over the gradient steps noting that it decreases significantly. In fact, compared to the naive
Monte Carlo estimator the relative error of the learnt importance sampling estimator reduces from roughly 10
to 10−4.

Figure B.10: Left: Log-variance loss over the iteration steps. Middle: Euclidean distance of the current ˜︁µ to
the optimal µ∗ = µ− Σα over the gradient steps. Right: Variance of the importance sampling estimator using
the corresponding proposal approximation.

In addition to Example 7.3, the following example relies on the normalizing flow attempt described in Chapter 7.

Example B.24 (Non-Gaussian target, more complex shape). Let us consider an example where the target
density q is slightly more complicated by taking

g(x) = − log(|x|)− α · x. (B.124)
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We consider d = 2 and for p again the standard Gaussian. In Figure B.11 we see that we are still able to learn
the optimal importance sampling density quite well. The relative error of the corresponding importance sampling
estimator reduces from roughly 1 to 10−2.

Figure B.11: Left: Log-variance loss along the training iterations. Right: Approximation of the optimal (non-
Gaussian) proposal density.
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Appendix C

Proofs

C.1 Proofs for Chapter 2

Proof of Lemma 2.11. We consider the transformation ψ = e−V and compute

Le−V (x,t) = −b(x, t) · ∇V (x, t)e−V (x,t) − 1

2

⎛⎝ d∑︂
i,j=1

(σσ⊤(x, t))ij∂i

(︂
∂jV (x, t)e−V (x,t)

)︂⎞⎠ (C.1a)

= −e−V (x,t)

(︄
b(x, t) · ∇V (x, t) +

1

2

(︄
d∑︂

i,j=1

(σσ⊤(x, t))ij∂i∂jV (x, t)

−
d∑︂

i,j=1

(σσ⊤(x, t))ij∂iV (x, t)∂jV (x, t)

)︄)︄ (C.1b)

= −e−V (x,t)

(︄
b(x, t) · ∇V (x, t) +

1

2

(︄
d∑︂

i,j=1

(σσ⊤(x, t))ij∂i∂jV (x, t)

−
d∑︂

i,j,k=1

σikσjk(x, t)∂iV (x, t)∂jV (x, t)

)︄)︄ (C.1c)

= −e−V (x,t)

⎛⎝b(x, t) · ∇V (x, t) +
1

2

⎛⎝ d∑︂
i,j=1

(σσ⊤(x, t))ij∂i∂jV (x, t)−
d∑︂
k=1

(︄
d∑︂
i=1

σik(x, t)∂iV (x, t)

)︄2
⎞⎠⎞⎠

(C.1d)

= −e−V (x,t)

(︃
b(x, t) · ∇V (x, t) +

1

2
(σσ⊤)(x, t) : ∇2V (x, t)− 1

2

⃓⃓
σ⊤∇V (x, t)

⃓⃓2)︃
. (C.1e)

The Feynman-Kac PDE (2.44) therefore becomes

0 = (∂t + L− f(x, t))e−V (x,t) = −e−V (x,t)

(︃
(∂t + L)V (x, t) + f(x, t)− 1

2

⃓⃓
σ⊤∇V (x, t)

⃓⃓2)︃
, (C.2)

which is equivalent to the HJB PDE in (2.29).

Proof of Theorem 2.33. The proof is based on the Feynman-Kac formula and Itô’s Lemma, where we refer to
[98, Sec. VI.5] for all technical details regarding the regularity of solutions of PDEs. By the Feynman-Kac
formula from Theorem 2.14, the function ψ solves the parabolic boundary value problem

(∂t + L− f)ψ(x, t) = 0 (x, t) ∈ Rd×[0, T ), (C.3a)

ψ(x, T ) = e−g(x) x ∈ Rd . (C.3b)

Now let us define the process
ζus = − logψ(Xu

s , s) , (C.4)

with Xu
s given by (2.105). Then, using Itô’s Lemma and introducing the shorthands

ψus = ψ(Xu
s , s), bus = b(Xu

s , s), σus = σ(Xu
s , s), (C.5)
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we see that (ζus )0≤s<T satisfies the SDE

dζus =− ∂s logψus ds−∇ logψus · (bus + σus us) ds

− 1

2
σus (σ

u
s )

⊤ : ∇2(logψus )ds−
(︁
(σus )

⊤∇ logψus
)︁
· dWu

s

(C.6a)

=−
(︃
(∂t + L)ψus

ψus
+

(︃
(σus )

⊤∇ψus
ψus

)︃
· us −

1

2

|(σus )⊤∇ψus |2

(ψus )
2

)︃
ds−

(︃
(σus )

⊤∇ψus
ψus

)︃
· dWu

s (C.6b)

=−
(︃
f(Xu

s , s) +

(︃
(σus )

⊤∇ψus
ψus

)︃
· us −

1

2

|(σus )⊤∇ψus |2

(ψus )
2

)︃
ds−

(︃
(σus )

⊤∇ψus
ψus

)︃
· dWu

s . (C.6c)

In the last equation, we have used the Feynman-Kac PDE (C.3a). Now, choosing us = u∗s for 0 ≤ s ≤ T to be
the optimal control

u∗s = σ(Xu∗

s , s)⊤∇ logψ(Xu∗

s , s), (C.7)

the last equation can be recast as

dζu
∗

s = −
(︃
f(Xu∗

s , s) +
1

2
|u∗s|2

)︃
ds− u∗s · dWu∗

s . (C.8)

If we introduce

Zu
∗

s,T =

T∫︂
s

u∗r · dWu∗

r +
1

2

T∫︂
s

|u∗r |2dr, (C.9)

we have
dζu

∗

s = −f(Xu∗

s , s)ds− dZu
∗

s,T . (C.10)

As a consequence, using the continuity of the process as s ↓ 0,

ζu
∗

T = ζu
∗

0 − Zu
∗

0,T −
T∫︂

0

f(Xu∗

s , s)ds . (C.11)

By definition of ζus , the initial value ζu
∗

0 = − logψ(Xu∗

0 , 0) = − logψ(x, 0) is deterministic. Moreover ζu
∗

T =
− logψ(Xu∗

T , T ) = g(Xu∗

T ), which in combination with (C.11) yields

− logψ(x, 0) = g(Xu∗

T ) +

T∫︂
0

f(Xu∗

s , s)ds− Zu
∗

0,T . (C.12)

Rearranging the terms in the last equation, we find

ψ(x, 0) = exp

⎛⎝−Zu∗

0,T −
T∫︂

0

f(Xu∗

s , s)ds− g(Xu∗

T )

⎞⎠ , (C.13)

with probability one, which yields the assertion of the statement.

C.2 Proofs for Chapter 3

Proof of Proposition 3.8. We adapt a proof of [209]. Assume first that m ≥ 1, then for any E ∈ F

ν(E)− λ(E) ≥ ν(E)−mλ(E) ≥ 0, (C.14)

where the last inequality follows from the definition of m. On the other hand, if E = ˜︁Ω, then ν(E)− λ(E) = 0
and therefore it follows that m = 1, i.e. ν = λ.

Let now m < 1. We want to show mJ (f, λ, φ) ≤ J (f, ν, φ), which is equivalent to

Eν [f(φ)]−mEλ[f(φ)] +mf (Eλ[φ]) ≥ f (Eν [φ]) . (C.15)
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We compute

Eν [f(φ)]−mEλ[f(φ)] +mf (Eλ[φ]) ≥ (Eν [1]−mEλ[1]) f
(︃
Eν [φ]−mEλ[φ]
Eν [1]−mEλ[1]

)︃
+mf (Eλ[φ]) (C.16a)

= (1−m)f

(︃
Eν [φ]−mEλ[φ]

1−m

)︃
+mf (Eλ[φ]) (C.16b)

≥ f (Eν [φ]−mEλ[φ] +mEλ[φ]) (C.16c)
= f (Eν [φ]) , (C.16d)

where we used two times the convexity of f . The other inequality follows analogously.

Proof of Proposition 3.15. We compute

E

[︄
e−2W(Xu)

(︃
dP
dPu

(Xu)

)︃2
]︄
= E

[︄
e−2W(Xu)

(︃
dP
dPu∗ (X

u)
dPu∗

dPu
(Xu)

)︃2
]︄

(C.17a)

= Z2 E

[︄(︃
dPu∗

dPu
(Xu)

)︃2
]︄
, (C.17b)

where we used
dP
dPu∗ (X

u) = eW(Xu)Z. (C.18)

Equation (3.35) now follows by the Girsanov formula (see Theorem B.3) and the definition of the variance. For
equation (3.36) note that we can write

EPu

[︄(︃
dPu∗

dPu

)︃2
]︄
= EPu+2δ

[︄(︃
dPu∗

dPu

)︃2
dPu

dPu+2δ

]︄
. (C.19)

We compute

dPu∗

dPu
(Xu+2δ) = exp

⎛⎝3

2

T∫︂
0

|δ(Xu+2δ
s , s)|2ds+

T∫︂
0

δ(Xu+2δ
s , s) · dWs

⎞⎠ (C.20)

and

dPu

dPu+2δ
(Xu+2δ) = exp

⎛⎝−2 T∫︂
0

|δ(Xu+2δ
s , s)|2ds− 2

T∫︂
0

δ(Xu+2δ
s , s) · dWs

⎞⎠ , (C.21)

from which the desired formula immediately follows.

Alternative proof of Corollary 3.18. We follow the reasoning in [170, Thm. 2.1] and apply Grönwall’s inequality
to the square integrable exponential martingale Z.52 To this end, we define the shorthands δ(x, t) := (u∗−u)(x, t)
and

Zt := exp

⎛⎝−1

2

t∫︂
0

|δ(Xs, s)|2ds+
t∫︂

0

δ(Xs, s) · dWs

⎞⎠ . (C.22)

Then, by Itô’s formula,

Z2
t = 1 + 2

t∫︂
0

ZsdZs +

t∫︂
0

Z2
s |δ(Xs, s)|2ds, (C.23)

and therefore, after taking expectations,

E
[︁
Z2
t

]︁
= 1 + E

⎡⎣ t∫︂
0

Z2
s |δ(Xs, s)|2ds

⎤⎦ (C.24a)

≤ 1 +

t∫︂
0

E
[︁
Z2
s

]︁
h22(s)ds. (C.24b)

52See also Theorem 2 in http://math.ucsd.edu/~pfitz/downloads/courses/spring05/math280c/expmart.pdf.
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We can now apply Grönwall’s inequality to get

E
[︁
Z2
t

]︁
≤ exp

⎛⎝ t∫︂
0

h22(s)ds

⎞⎠ (C.25)

and therefore the desired statement after applying Proposition 3.15. The other direction follows analogously by
noting that

−E
[︁
Z2
t

]︁
≤ −1−

t∫︂
0

E
[︁
Z2
s

]︁
h21(s)ds. (C.26)

Remark C.1. Yet another alternative to prove Corollary 3.18 is by computing

E

[︄(︃
dPu∗

dPu
(Xu)

)︃2
]︄
= E

⎡⎣exp
⎛⎝− T∫︂

0

|δ(Xu
s , s)|2ds+ 2

T∫︂
0

δ(Xu
s , s) · dWs

⎞⎠⎤⎦ (C.27a)

= E

⎡⎣exp
⎛⎝ T∫︂

0

|δ(Xu
s , s)|2ds− 2

T∫︂
0

|δ(Xu
s , s)|2ds+ 2

T∫︂
0

δ(Xu
s , s) · dWs

⎞⎠⎤⎦ (C.27b)

≤ exp

⎛⎝ T∫︂
0

h22(s)ds

⎞⎠ E

⎡⎣exp
⎛⎝−1

2

T∫︂
0

|2δ(Xu
s , s)|2ds+

T∫︂
0

2δ(Xu
s , s) · dWs

⎞⎠⎤⎦ (C.27c)

= exp

⎛⎝ T∫︂
0

h22(s)ds

⎞⎠ , (C.27d)

where we used the constant expectation property of the exponential martingale in the last step. The other
direction follows analogously.

Proof of Proposition 3.20. From Lemma B.5 it holds for n, p, q > 1 with 1
p +

1
q = 1 that

E

[︄(︃
dPu∗

dPu
(Xu)

)︃n]︄
≤ E

⎡⎣exp
⎛⎝nq(np− 1)

2

T∫︂
0

|u∗ − u|2(Xu
s , s)ds

⎞⎠⎤⎦
1
q

. (C.28)

We write q = p
p−1 and note that q(np− 1) = p(np−1)

p−1 is minimized by p∗ = 1±
√︂
1− 1

n , from which we are only

allowed to take the positive part due to the constraint p ≥ 1. For n = 2 this yields p∗ =
√
2+1√
2

and q∗ =
√
2+1,

and we get the desired statement by recalling

r2(u) = VarPu

(︃
dPu∗

dPu

)︃
= EPu

[︄(︃
dPu∗

dPu

)︃2
]︄
− 1. (C.29)

C.3 Proofs for Chapter 4

Proof of Proposition 4.7. Using (1.13) and (B.7) (or arguing as in the proof of Theorem 1.2) we compute

LRE(u) = EPu

[︃
log

dPu

dQ

]︃
= EPu

[︃
log

(︃
dPu

dP
dP
dQ

)︃]︃
(C.30a)

= E

⎡⎣ T∫︂
0

u(Xu
s , s) · dWs +

1

2

T∫︂
0

|u(Xu
s , s)|2 ds+

T∫︂
0

f(Xu
s , s)ds+ g(Xu

T )

⎤⎦+ logZ (C.30b)

= E

⎡⎣1
2

T∫︂
0

|u(Xu
s , s)|2 ds+

T∫︂
0

f(Xu
s , s)ds+ g(Xu

T )

⎤⎦+ logZ. (C.30c)
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Proof of Proposition 4.9. Similarly, we compute

LCE(u) = EQ

[︃
log

dQ
dPu

]︃
= EPv

[︃
log

(︃
dQ
dP

dP
dPu

)︃
dQ
dP

dP
dPv

]︃
(C.31a)

= E

[︄⎛⎝1

2

T∫︂
0

|u(Xv
s , s)|2 ds−

T∫︂
0

(u · v)(Xv, s) ds−
T∫︂

0

u(Xv
s , s) · dWs −W(Xv)− logZ

⎞⎠
1

Z
exp

⎛⎝−W(Xv)−
T∫︂

0

v(Xv
s , s) · dWs −

1

2

T∫︂
0

|v(Xv
s , s)|2 ds

⎞⎠]︄
(C.31b)

=
1

Z
E

[︄⎛⎝1

2

T∫︂
0

|u(Xv
s , s)|2 ds−

T∫︂
0

(u · v)(Xv
s , s)ds−

T∫︂
0

u(Xv
s , s) · dWs

⎞⎠
exp

⎛⎝− T∫︂
0

v(Xv
s , s) · dWs −

1

2

T∫︂
0

|v(Xv
s , s)|2 ds−W(Xv)

⎞⎠]︄+ C,

(C.31c)

where C ∈ R does not depend on u.

Proof of Proposition 4.19. For ε ∈ R and ϕ ∈ C1
b (Rd × [0, T ],Rd), let us define the change of measure

ΞT (ε, ϕ) = exp

⎛⎝−ε T∫︂
0

ϕ(Xu
s , s) · dWs −

ε2

2

T∫︂
0

|ϕ(Xu
s , s)|2 ds

⎞⎠ ,
d˜︁Λ
dΛ

= ΞT (ε, ϕ). (C.32)

According to Girsanov’s theorem, the process (˜︂Ws)0≤s≤T , defined as

˜︂Wt =Wt + ε

t∫︂
0

ϕ(Xu
s , s) ds, (C.33)

is a Brownian motion under ˜︁Λ. We therefore obtain

LRE(u+ εϕ) = E

⎡⎣⎛⎝1

2

T∫︂
0

|(u+ εϕ)(Xu
s , s)|2 ds+

T∫︂
0

f(Xu
s , s) ds+ g(Xu

T )

⎞⎠Ξ−1
T (ε, ϕ)

⎤⎦+ logZ. (C.34)

Using dominated convergence, we can interchange derivatives and integrals (for technical details, we refer to
[195]) and compute

d

dε

⃓⃓⃓
ε=0
LRE(u+ εϕ) = E

[︄ T∫︂
0

(u · ϕ)(Xu
s , s) ds+

⎛⎝1

2

T∫︂
0

|u(Xu
s , s)|2 ds+

T∫︂
0

f(Xu
s , s) ds+ g(Xu

T )

⎞⎠
T∫︂

0

ϕ(Xu
s , s) · dWs

]︄ (C.35a)

= E

⎡⎣(︂g(Xu
T )− ˜︁Y u,uT

)︂ T∫︂
0

ϕ(Xu
s , s) · dWs

⎤⎦ , (C.35b)

where we have used Itô’s isometry,

E

⎡⎣ T∫︂
0

ϕ(Xu
s , s) · dWs

T∫︂
0

u(Xu
s , s) · dWs

⎤⎦ = E

⎡⎣ T∫︂
0

(u · ϕ)(Xu
s , s) ds

⎤⎦ . (C.36)

Turning to the log-variance loss, we see that

d

dε

⃓⃓⃓
ε=0
Llog
Varv

(u+ εϕ) =
d

dε

⃓⃓⃓
ε=0

(︃
E
[︃(︂˜︁Y u+εϕ,vT − g(Xv

T )
)︂2]︃
− E

[︂(︂˜︁Y u+εϕ,vT − g(Xv
T )
)︂]︂2)︃

(C.37a)

=2E
[︃(︂˜︁Y u,vT − g(Xv

T )
)︂ d

dε

⃓⃓⃓
ε=0

˜︁Y u+εϕ,vT

]︃
− 2E

[︂(︂˜︁Y u,vT − g(Xv
T )
)︂]︂

E
[︃
d

dε

⃓⃓⃓
ε=0

˜︁Y u+εϕ,vT

]︃
, (C.37b)
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where
d

dε

⃓⃓⃓
ε=0

˜︁Y u+εϕ,vT =

T∫︂
0

(ϕ · (u− v))(Xv
s , s) ds−

T∫︂
0

ϕ(Xv
s , s) · dWs. (C.38)

Setting v = u, we obtain

(︃
d

dε

⃓⃓⃓
ε=0
Llog
Varv

(u+ εϕ)

)︃ ⃓⃓⃓
v=u

= 2E

⎡⎣(︂g(Xu
T )− ˜︁Y u,uT

)︂ T∫︂
0

ϕ(Xu
s , s) · dWs

⎤⎦ , (C.39)

from which the result follows by comparison with (C.35).

Proof of Proposition 4.22. We compute

d

dε

⃓⃓⃓
ε=0
Lmomentv (u+ εϕ) = 2E

⎡⎣(︂˜︁Y u,vT + y0 − g(Xv
T )
)︂⎛⎝ T∫︂

0

(ϕ · (u− v))(Xv
s , s) ds−

T∫︂
0

ϕ(Xv
s , s) · dWs

⎞⎠⎤⎦ .
(C.40)

Setting v = u and using that E
[︂
y0
∫︁ T
0
ϕ(Xv

s , s) · dWs

]︂
= 0, the first statement follows by comparison with

(4.39). The second statement follows from

(︃
δ

δu
Lmomentv (u, y0;ϕ)

)︃ ⃓⃓⃓
u=u∗

= 2E

⎡⎣(y0 + logZ)

⎛⎝ T∫︂
0

(ϕ · (u∗ − v))(Xv
s , s) ds

⎞⎠⎤⎦ , (C.41)

where we have used the fact that ˜︁Y u∗,v
T − g(Xv

T ) = logZ, almost surely.

Proof of Proposition 4.25. 1.) We compute

δ

δu

⃓⃓⃓
u=u∗

ˆ︁L(K)
Varv

(u;ϕ) = 2

(︄
1

K

K∑︂
k=1

[︄
exp

(︂
2
(︂˜︁Y u∗,v,(k)

T − g
(︂
X
v,(k)
T

)︂)︂)︂ δ˜︁Y u,v,(k)T

δu
(u∗;ϕ)

]︄
(C.42a)

− 1

K

K∑︂
k=1

[︄
exp

(︂˜︁Y u∗,v,(k)
T − g

(︂
X
v,(k)
T

)︂)︂ δ˜︁Y u,v,(k)T

δu
(u∗;ϕ)

]︄
1

K

K∑︂
k=1

[︂
exp

(︂˜︁Y u∗,v,(k)
T − g

(︂
X
v,(k)
T

)︂)︂]︂)︄
, (C.42b)

where δ˜︁Y u,v,(k)
T

δu (u;ϕ) is given in (4.54). As in the proof for the log-variance estimator, the quantity

exp
(︂˜︁Y u∗,v,(k)

T − g
(︂
X
v,(k)
T

)︂)︂
(C.43)

is almost surely constant and thus the statement follows.

2.) Similarly to the computations involved in 1.) we have

δ

δu

⃓⃓⃓
u=u∗

ˆ︁L(K)
momentv (u, y0;ϕ) =

2

K

K∑︂
k=1

(︂˜︁Y u∗,v,(k)
T + y0 − g

(︂
X
u∗,(k)
T

)︂)︂ δ˜︁Y u,v,(k)T

δu
(u∗;ϕ) (C.44a)

=
2

K
(− logZ + y0)

K∑︂
k=1

⎛⎝ T∫︂
0

ϕ(Xv,(k)
s , s) · dW (k)

s −
T∫︂

0

(ϕ · (u∗ − v)) (Xv,(k)
s , s) ds

⎞⎠ , (C.44b)

where we have used the fact that ˜︁Y u∗,v,(k)
T −g

(︂
X
u∗,(k)
T

)︂
= − logZ according to (1.25) and (4.25b). The variance

of this expression equals

4

K
(logZ − y0)2 E

⎡⎢⎣
⎛⎝ T∫︂

0

ϕ(Xv,(k)
s , s) · dW (k)

s −
T∫︂

0

(ϕ · (u∗ − v)) (Xv,(k)
s , s) ds

⎞⎠2
⎤⎥⎦ , (C.45)

implying the claim.

3.) Let ϕ ∈ C1
b (Rd× [0, T ],Rd) and ε ∈ R. As usual, we denote by (Xu∗+εϕ

s )0≤s≤T the unique strong solution to
(1.4), with u replaced by u∗+εϕ. By a slight modification of [181, Theorems 3.1 and 3.3] detailed, for instance, in
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[225, Section 10.2.2], Xu∗+εϕ
s is almost surely differentiable as a function of ε. Furthermore, dXu∗+εϕ

s

dε

⃓⃓⃓
ε=0

=: As

satisfies the SDE (4.52). We calculate

d

dε

⃓⃓⃓
ε=0

⎡⎣1
2

T∫︂
0

|u∗ + εϕ|2(Xu∗+εϕ
s , s) ds+

T∫︂
0

f(Xu∗+εϕ
s , s) ds+ g(Xu∗+εϕ

T )

⎤⎦ (C.46a)

=

T∫︂
0

(u∗ · ϕ)(Xu∗

s , s) ds+
1

2

T∫︂
0

(∇|u∗|2)(Xu∗

s , s) ·As ds+
T∫︂

0

∇f(Xu∗

s , s) ·As ds+∇g(Xu∗

T ) ·AT . (C.46b)

From (1.20b) and using integration by parts, we see that the last term in (C.46b) satisfies

(∇g)(Xu∗

T )·AT = ∇V (Xu∗

T , T )·AT =

T∫︂
0

∇V (Xu∗

s , s)·dAs+
T∫︂

0

As ·d(∇V (Xu∗

s , s))+
⟨︂
A·,∇V (Xu∗

· , ·)
⟩︂
T
. (C.47)

Next, we employ Itô’s formula and Einstein’s summation convention to compute

d(∂xi
V (Xu∗

s , s)) = (C.48a)

=

[︃
∂xi

∂sV + (∂xi
∂xj

V )(b+ σu∗)j +
1

2
(∂xi

∂xj
∂xk

V )σjlσkl

]︃
(Xu∗

s , s) ds+
[︁
(∂xi

∂xj
V )σjk

]︁
(Xu∗

s , s) dW k
s

(C.48b)

= ∂xi

[︃
∂sV + LV − 1

2
(∂xjV )σjkσlk(∂xl

V )

]︃
(Xu∗

s , s) ds+
[︁
(∂xi∂xjV )σjk

]︁
(Xu∗

s , s) dW k
s

+

[︃
1

2

(︁
(∂xj

V )(∂xl
V )− ∂xj

∂xl
V
)︁
∂xi

(σjkσlk)− (∂xj
V )∂xi

bj

]︃
(Xu∗

s , s) ds

(C.48c)

=

[︃
1

2

(︁
(∂xjV )(∂xl

V )− ∂xj∂xl
V
)︁
∂xi(σjkσlk)− (∂xjV )∂xibj − ∂xif

]︃
(Xu∗

s , s) ds

+
[︁
(∂xi

∂xj
V )σjk

]︁
(Xu∗

s , s) dW k
s ,

(C.48d)

where we used (4.5) from the second to the third line and (1.20) to manipulate the first term in the third line.
Using (4.52) and (C.48), we see that the quadratic variation process satisfies

⟨︂
A·,∇V (Xu∗

· , ·)
⟩︂
T
=

1

2

T∫︂
0

Aj
[︁
∂xj (σikσlk)(∂xi∂xl

V )
]︁
(Xu∗

s , s) ds. (C.49)

Combining (4.52), (C.47), (C.48) and (C.49), it follows that (C.46) equals

T∫︂
0

[︁
Aj(∂xi

V )∂xj
σik +Aj(∂xi

∂xj
V )σik

]︁
(Xu∗

s , s) dW k
s = −

T∫︂
0

As · (∇u∗)(Xu∗

s , s) dWs. (C.50)

The claim is now implied by Itô’s isometry.

4.) With the definition of the cross-entropy loss estimator as in (4.32) we compute

δ

δu

⃓⃓⃓
u=u∗

ˆ︁LCE,v(u;ϕ) =
1

K

K∑︂
k=1

[︄⎛⎝ T∫︂
0

(ϕ · (u∗ − v))(Xv,(k)
s , s) ds−

T∫︂
0

ϕ(Xv,(k)
s , s) · dW (k)

s

⎞⎠
exp

⎛⎝− T∫︂
0

v(Xv,(k)
s , s) · dW (k)

s − 1

2

T∫︂
0

|v(Xv,(k)
s , s)|2 ds−W(Xv,(k))

⎞⎠]︄.
(C.51)

Since E
[︂
δ
δu

⃓⃓⃓
u=u∗

ˆ︁LCE,v(u;ϕ)
]︂
= 0 by construction, we see that
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Var

(︃
δ

δu

⃓⃓⃓
u=u∗

ˆ︁LCE,v(u;ϕ)

)︃
=

1

K
E

[︄⎛⎝ T∫︂
0

(ϕ · (u∗ − v))(Xv
s , s) ds−

T∫︂
0

ϕ(Xv
s , s) · dWs

⎞⎠2

exp

⎛⎝−2 T∫︂
0

v(Xv
s , s) · dWs −

T∫︂
0

|v(Xv
s , s)|2 ds− 2W(Xv)

⎞⎠]︄.
(C.52)

Let us assume for the sake of contradiction that Var
(︂
δ
δu

⃓⃓⃓
u=u∗

ˆ︁LCE,v(u;ϕ)
)︂
= 0, for all ϕ ∈ C1

b (Rd × [0, T ],Rd).
It then follows that

T∫︂
0

(ϕ · (u∗ − v))(Xv
s , s) ds =

T∫︂
0

ϕ(Xv
s , s) · dWs, (C.53)

which is clearly false, in general.

Proof of Proposition 4.29. Throughout the proof, we will use the notation

PM :=

M⨂︂
i=1

Pi, QM :=

M⨂︂
i=1

Qi, ˜︁PM =

M⨂︂
i=1

˜︁Pi (C.54)

to denote the product measures on
⨂︁M

i=1 C([0, T ],Rd) ≃ C([0, T ],RMd) associated to P, Q and ˜︁P, where Pi, Qi
and ˜︁Pi refer to identical copies.

1.) First note that

D
Var(log)˜︁PM

(PM |QM ) = Var˜︁PM

(︄
M∑︂
i=1

log

(︃
dQi
dPi

)︃)︄
=

M∑︂
i=1

Var˜︁Pi

(︃
log

(︃
dQi
dPi

)︃)︃
=MD

Var(log)˜︁P (P|Q). (C.55)

The sample variance satisfies [56]

Var
(︂ ˆ︁DVar(log),(K)˜︁PM

(PM |QM )
)︂
=

1

K

(︃
µ4 −

K − 3

K − 1
D

Var(log)˜︁PM
(PM |QM )2

)︃
, (C.56)

where

µ4 = E˜︁PM

[︄(︃
log

(︃
dQM

dPM

)︃
− E˜︁PM

[︃
log

(︃
dQM

dPM

)︃]︃)︃4
]︄
. (C.57)

We calculate

µ4 = E˜︁PM

⎡⎣(︄ M∑︂
i=1

(︃
log

(︃
dQi
dPi

)︃
− E˜︁Pi

[︃
log

(︃
dQi
dPi

)︃]︃)︃)︄4
⎤⎦ (C.58a)

=MEP

[︄(︃
log

(︃
dQ
dP

)︃
− EP

[︃
log

(︃
dQ
dP

)︃]︃)︃4
]︄
+ 6

(︄
M

2

)︄
EP

[︄(︃
log

(︃
dQ
dP

)︃
− EP

[︃
log

(︃
dQ
dP

)︃]︃)︃2
]︄2
, (C.58b)

where we have used the fact that, for instance,

E˜︁PM

[︄(︃
log

(︃
dQi
dPi

)︃
− E˜︁Pi

[︃
log

(︃
dQi
dPi

)︃]︃)︃(︃
log

(︃
dQj
dPj

)︃
− E˜︁Pj

[︃
log

(︃
dQj
dPj

)︃]︃)︃3
]︄
= 0, (C.59)

for i ̸= j. Combining this with (C.55), it follows that Var ˆ︁DVar(log),(K)˜︁PM
(PM |QM ) = O(M2). The claim is then a

consequence of the definition (4.58).

2.) We compute

DRE(PM |QM ) = EPM

[︃
log

dPM

dQM

]︃
=M EP

[︃
log

dP
dQ

]︃
=MDRE(P|Q). (C.60)
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For ˜︁P = P we have

Var
(︂ ˆ︁DRE,(K)

PM (PM |QM )
)︂
=

1

K
VarPM

(︃
log

dPM

dQM

)︃
=

1

K
VarPM

(︄
d∑︂
i=1

log
dPi
dQi

)︄
=
M2

K
VarP

(︃
log

dP
dQ

)︃
, (C.61)

from which the robustness follows immediately. For ˜︁P ̸= P, on the other hand,

Var
(︂ ˆ︁DRE,(K)˜︁PM

(PM |QM )
)︂
=

1

K
Var˜︁PM

(︃
log

(︃
dPM

dQM

)︃
dPM

d˜︁PM
)︃
, (C.62)

and the proof of the non-robustness proceeds as in 4.).

3.) As in the proof of 1.) we have

Var
(︂ ˆ︁DVar,(K)˜︁PM

(PM |QM )
)︂
=

1

K

(︃
µ4 −

K − 3

K − 1
DVar˜︁PM (PM |QM )2

)︃
, (C.63)

where

µ4 = E˜︁PM

[︄(︃
dQM

dPM
− E˜︁PM

[︃
dQM

dPM

]︃)︃4
]︄
, (C.64)

and

DVar˜︁PM (PM |QM ) = Var˜︁PM

(︃
dQM

dPM

)︃
= E˜︁P

[︄(︃
dQ
dP

)︃2
]︄M
− E˜︁P

[︃
dQ
dP

]︃2M
. (C.65)

We can write the relative error as

r(K) =

⌜⃓⃓⎷ 1

K

(︄
µ4

DVar˜︁PM
(PM |QM )2

− K − 3

K − 1

)︄
, (C.66)

and estimate

µ4

DVar˜︁PM
(PM |QM )2

≥
E˜︁PM

[︃(︂
dQM

dPM − E˜︁PM

[︂
dQM

dPM

]︂)︂4]︃
E˜︁P
[︂(︁

dQ
dP
)︁2]︂2M ≥

1
8 E˜︁PM

[︃(︂
dQM

dPM

)︂4]︃
− E˜︁PM

[︂
dQM

dPM

]︂4
E˜︁P
[︂(︁

dQ
dP
)︁2]︂2M (C.67a)

=

1
8 E˜︁P

[︂(︁
dQ
dP
)︁4]︂M − E˜︁P [︁dQdP ]︁4M

E˜︁P
[︂(︁

dQ
dP
)︁2]︂2M =

1

8

⎛⎜⎜⎜⎜⎜⎜⎝
E˜︁P
[︂(︁

dQ
dP
)︁4]︂

E˜︁P
[︂(︁

dQ
dP
)︁2]︂2⏞ ⏟⏟ ⏞

=:C1

⎞⎟⎟⎟⎟⎟⎟⎠

M

−

⎛⎜⎜⎜⎜⎜⎜⎝
E˜︁P [︁(︁dQdP )︁]︁4
E˜︁P
[︂(︁

dQ
dP
)︁2]︂2⏞ ⏟⏟ ⏞

=:C2

⎞⎟⎟⎟⎟⎟⎟⎠

M

, (C.67b)

where the second bound is implied by the cr-inequality [199, Section 9.3]. By Jensen’s inequality and since dQ
dP

is not ˜︁P-almost surely constant by assumption, it holds that C1 > 1 and C2 < 1. The claim therefore follows
from combining (C.66) and (C.67).

4.) Employing the notation introduced in (C.54), we see that

DCE(PM |QM ) = EQM

[︃
log

(︃
dQM

dPM

)︃]︃
=

M∑︂
i=1

EQi

[︃
log

(︃
dQi
dPi

)︃]︃
=MDCE(P|Q). (C.68)

Furthermore,

Var
(︂ ˆ︁DCE,(K)˜︁PM

(PM |QM )
)︂
=

1

K
Var˜︁PM

(︃
log

(︃
dQM

dPM

)︃
dQM

d˜︁PM
)︃

(C.69a)

=
1

K

(︄
E˜︁PM

[︄
log2

(︃
dQM

dPM

)︃(︃
dQM

d˜︁PM
)︃2
]︄
− E˜︁PM

[︃
log

(︃
dQM

dPM

)︃
dQM

d˜︁PM
]︃2)︄

(C.69b)

=
1

K

(︄
EQM

[︃
log2

(︃
dQM

dPM

)︃
dQM

d˜︁PM
]︃
−M2EQ

[︃
log

(︃
dQ
dP

)︃]︃2)︄
. (C.69c)
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Manipulating the first term, we obtain

EQM

[︃
log2

(︃
dQM

dPM

)︃
dQM

d˜︁PM
]︃
= EQM

⎡⎣(︄ M∑︂
i=1

log

(︃
dQi
dPi

)︃)︄2

dQM

d˜︁PM
⎤⎦ (C.70a)

=

M∑︂
i=1

EQM

[︃
log2

(︃
dQi
dPi

)︃
dQM

d˜︁PM
]︃
+

M∑︂
i,j=1
i ̸=j

EQM

[︃
log

(︃
dQi
dPi

)︃
log

(︃
dQj
dPj

)︃
dQM

d˜︁PM
]︃

(C.70b)

=M

(︃
EQ

[︃
dQ
d˜︁P
]︃)︃M−1

EQ

[︃
log2

(︃
dQ
dP

)︃
dQ
d˜︁P
]︃
+
M(M − 1)

2

(︃
EQ

[︃
log

(︃
dQ
dP

)︃
dQ
d˜︁P
]︃)︃2(︃

EQ

[︃
dQ
d˜︁P
]︃)︃M−2

.

(C.70c)

Notice that

EQ

[︃
dQ
d˜︁P
]︃
= E˜︁P

[︄(︃
dQ
d˜︁P
)︃2
]︄
= χ2(Q|˜︁P) + 1. (C.71)

The claim now follows from combining (C.68) and (C.69) in definition (4.58).

C.4 Proofs for Chapter 5

Proof of Proposition 5.9. We start by defining the short-cuts

A = fθ(z), B = (∂θi log qθ) (z). (C.72)

Let us compute the difference of the variances of the estimators to leading order in K, namely

Var(ˆ︁gReinforce,i)−Var(ˆ︁gVarGrad,i) =
1

K
Var(AB) +

K − 2

K(K − 1)
E [(A− E[A])(B − E[B])]

2 (C.73a)

− Var(A)Var(B)

K(K − 1)
− 1

K
E
[︁
(A− E[A])2(B − E[B])2

]︁
(C.73b)

=
1

K

(︁
E
[︁
A2B2

]︁
− E[AB]2

)︁
+

K − 2

K(K − 1)
E[AB]2 (C.73c)

− 1

K

(︁
E
[︁
A2B2

]︁
− 2E[A]E

[︁
AB2

]︁
+ E[A]2 E

[︁
B2
]︁)︁

+O
(︃

1

K2

)︃
(C.73d)

= − 1

K(K − 1)
E[AB]2 − 1

K
E[A]

(︁
E[A]E

[︁
B2
]︁
− 2E

[︁
AB2

]︁)︁
+O

(︃
1

K2

)︃
(C.73e)

=
1

K
E[A]

(︁
2E
[︁
AB2

]︁
− E[A]E

[︁
B2
]︁)︁

+O
(︃

1

K2

)︃
(C.73f)

=
1

K
E[A]E

[︁
B2
]︁ (︁

2δCV
i + E[A]

)︁
+O

(︃
1

K2

)︃
(C.73g)

and we note that with E
[︁
B2
]︁
> 0 the leading term is positive if

E[A]δCV
i +

1

2
E[A]2 > 0, (C.73h)

which is equivalent to the statement in the proposition.

Proof of Lemma 5.14. We compute

fθ = −
1

2

D∑︂
i=1

log

(︃
σ2
i˜︁σ2
i

)︃
− 1

2

D∑︂
i=1

(zi − µi)2

σ2
i

+
1

2

D∑︂
i=1

(zi − ˜︁µi)2˜︁σ2
i

(C.74)

and
∂µk

log qθ =
zk − µk
σ2
k

. (C.75)

We again use the short-cuts
A = fθ(z), B = (∂µk

log qθ) (z), (C.76)
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and obtain

Covqθ (A,B
2) = Eqθ

[︁
AB2

]︁
− Eqθ [A]Eqθ

[︁
B2
]︁

(C.77a)

= Eqθ

[︄(︄
−1

2

D∑︂
i=1

log

(︃
σ2
i˜︁σ2
i

)︃
− 1

2

D∑︂
i=1

(zi − µi)2

σ2
i

+
1

2

D∑︂
i=1

(zi − ˜︁µi)2˜︁σ2
i

)︄(︃
zk − µk
σ2
k

)︃2
]︄

− Eqθ

[︄(︄
−1

2

D∑︂
i=1

log

(︃
σ2
i˜︁σ2
i

)︃
− 1

2

D∑︂
i=1

(zi − µi)2

σ2
i

+
1

2

D∑︂
i=1

(zi − ˜︁µi)2˜︁σ2
i

)︄]︄
Eqθ

[︄(︃
zk − µk
σ2
k

)︃2
]︄

(C.77b)

= −1

2

(︃
3

σ2
k

+
D − 1

σ2
k

)︃
+

1

2

⎛⎜⎝ 1

σ2
k

D∑︂
i=1
i ̸=k

σ2
i + (µi − ˜︁µi)2˜︁σ2

i

+
1

σ2
k˜︁σ2

k

(︁
3σ2

k + (µk − ˜︁µk)2)︁
⎞⎟⎠

−

(︄
−D

2
+

1

2

D∑︂
i=1

σ2
i + (µi − ˜︁µi)2˜︁σ2

i

)︄
1

σ2
k

(C.77c)

= − 1

σ2
k

+
1

2σ2
k˜︁σ2

k

(︁
3σ2

k + (µ− ˜︁µ)2)︁− 1

2σ2
k˜︁σ2

k

(︁
σ2
k + (µ− ˜︁µ)2)︁ (C.77d)

=
1˜︁σ2
k

− 1

σ2
k

. (C.77e)

For the terms with the partial derivative w.r.t. σ2
k we first note that

∂σ2
k
log qθ = −

1

2σ2
k

+
(zk − µk)2

2σ4
k

=
1

σ2
k

∂log σ2
k
log qθ. (C.78)

We compute

Eqθ
[︁
AB2

]︁
= Eqθ
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= − 1
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and similarly
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We therefore get the result by again computing Covqθ (A,B
2) = Eqθ

[︁
AB2

]︁
− Eqθ [A]Eqθ

[︁
B2
]︁
. The partial

derivative w.r.t. log σ2
k can be recovered from (C.78).

C.5 Proofs for Chapter 6

Proof of Lemma 6.1. Let φC(a) = E[B|A = a]. We compute

E
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= E
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− 2E
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, (C.81b)

which is minimized by φ = φC since the last term is equal to53

EA
[︁
EB|A

[︁
(φ(A)− φC(A))(φC(A)−B)

]︁]︁
= EA

[︁
(φ(A)− φC(A))EB|A

[︁
(φC(A)−B)

]︁]︁
= 0. (C.82)

Therefore φ∗ = φC .
53Here the notation EA refers to the expectation over A, whereas EB|A refers to the expectation over B conditional on A.
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Appendix C. Proofs

Proof of Lemma 6.10. We assume the generalized FBSDE system as in (6.45). The backward iteration (6.17)
then writes

Y vtn = E

⎡⎣Y vtn+1
+

tn+1∫︂
tn

(︃
f(Xv

s , s)−
1

2
|Zvs |2 − Zvs · v(Xv

s , s)

)︃
ds

⃓⃓⃓⃓
⃓Xv

tn

⎤⎦ . (C.83)

The choice of the nonlinearity implies that the running costs in corresponding the control problem take the
form f(x, s)+ 1

2 |u(x, s)|
2 and in this case we have u∗(Xv

s , s) = −σ⊤∇V (Xv
s , s) = −Zvs (see also Corollary 2.10).

Therefore, taking v = u∗ yields
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where the last line follows from the definition of the optimal control u∗ and the dynamic programming principle
stated in Theorem 2.2. A comparison to (2.8) and noting that Y u

∗

tn = V (Xu∗

tn , tn) yields the statement.
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