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Abstract
Over the last twenty years, Petri nets have been increasingly adopted for modelling
and simulating biological systems, as they offer an intuitive and graphical approach
for this purpose. Their usability convenience comes from the fact that they offer many
types of elements to describe systems in a qualitative and quantitative way. Coloured
Petri nets are particularly useful to model systems with repeated components in a
compact fashion. Our tool Snoopy for modelling and simulating Petri nets is one of
the most well-known tools supporting a family of related Petri net classes comprising
stochastic, continuous and hybrid Petri nets, and covering uncoloured and coloured
Petri nets alike. However, kinetic information of a biological system, i.e. kinetic pa-
rameters may be uncertain, due to many reasons, e.g. environmental factors. Besides,
coloured Petri nets as they were previously supported in Snoopy suffered from some
inconsistencies. Due to these inconsistencies, exploring the model behaviour using dif-
ferent sizes (scaleability) was not feasible. Both challenges call for a new and more
powerful approach integrating the modelling of uncertainties together with modelling
features supporting repeated structures in a compact and scalable way.

This thesis comprises two major contributions: Firstly, we introduce the definition
and present the simulation algorithm for both uncoloured and coloured fuzzy Petri
nets, by extending the existing quantitative uncoloured and coloured Petri nets in
Snoopy. This includes discretising the uncertain kinetic parameters to crisp values by
using sampling strategies. Secondly, we harmonise coloured Petri nets in Snoopy with
their uncoloured counterparts and we extend the Snoopy’s coloured Petri nets by all
the features, which are supported by the coloured abstract net description language -
an exchange format of coloured Petri nets in our PetriNuts tool family.

By performing fuzzy simulation, one can obtain two kinds of output: fuzzy bands
of each output variable and their corresponding timed-membership functions. Each
fuzzy band describes the uncertainties associated with the input, whereas membership
functions give more accurate information about the associated uncertainties. The most
important features that we obtain by harmonising coloured Petri nets are to develop
scaleable models, by defining scaling factors as constants and unifying the usage of
coloured Petri nets with the other tools in our PetriNuts tool family.

Keywords Uncertain Biological Systems; Modelling and Simulation; Quantitative
Fuzzy Petri Nets; Coloured Quantitative Fuzzy Petri Nets; Software Harmonisation.





Zusammenfassung
In den letzten zwanzig Jahren wurden Petri-Netze zunehmend für die Modellierung
und Simulation von biologischen Systemen eingesetzt. Sie bieten dafür sowohl eine
qualitative als auch quantitative Modellierungsmethode an. Farbige Petri-Netze sind
nützlich für die Modellierung von Systemen mit sich wiederholenden Komponenten.
Snoopy ist eines der bekanntesten Werkzeuge, das eine Familie von Petri-Netzen un-
terstützt, darunter sowohl ungefärbte als auch gefärbte stochastische, kontinuierliche
und hybride Petri-Netze.
In dieser Dissertation werden zwei Themen behandelt. Einerseits können Biologis-

che Systeme aus vielen Gründen unbestimmt sein, zum Beispiel aus Umweltgründen,
anderereseits hatten farbige Petri-Netze in Snoopy Inkonsistenzen, die den Bau skalier-
barer Modelle verhindern.
Die Ergebnisse der Fuzzy-Simulation sind sowohl das Fuzzy-Band jeder interessieren-

den Variablen als auch zeitliche Zugehörigkeitsfunktionen für jede Variable, damit man
die Unsicherheiten erforschen kann, die mit der Eingabe verbunden sind. Durch die
Harmonisierung von farbigen Petri-Netzen können wir skalierbare Modelle konstru-
ieren und dann das Verhalten des Modells mit verschiedenen Größen des vorliegenden
Modells untersuchen.

Freie Schlagwörter: Unbestimmte Systembiologie; Modellierung und Simula-
tion; Quantitative Unbestimmte Petri-Netze; Farbige Quantitative Unbestimmte Petri-
Netze; Software Hamonisierung.





Contents

Abstract

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Extended Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Quantitative Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Stochastic Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Continuous Petri Nets . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Hybrid Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Coloured Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Coloured Quantitative Petri Nets . . . . . . . . . . . . . . . . . . . . . 37
2.7 Unfolding Coloured Petri Nets . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 Equivalent Standard Petri Nets . . . . . . . . . . . . . . . . . . 41
2.7.2 Unfolding Algorithms . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Fuzzy Petri nets 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Fuzzy Quantitative Petri nets . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Coloured Fuzzy Quantitative Petri nets . . . . . . . . . . . . . . . . . 59
3.6 Export Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Fuzzy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Sampling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 Basic Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8.2 Reduced Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8.3 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . 68

i



Contents

3.9 Implementation Principle . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10.1 Virus Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.10.2 Decay Dimerization . . . . . . . . . . . . . . . . . . . . . . . . 80
3.10.3 Yeast Polarization . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.10.4 Repressilator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.10.5 Membrane Systems . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.10.6 2D Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.11 Some Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.12 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Some Implementation Aspects 105
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Harmonisation of Coloured Petri Nets . . . . . . . . . . . . . . . . . . 106

4.2.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.2 Colour Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.3 The elemOf Operation . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.4 The Set Difference Operation . . . . . . . . . . . . . . . . . . . 114
4.2.5 Colour Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.6 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Declaration Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.1 Declaration Dependencies in Uncoloured Petri Nets . . . . . . 125
4.3.2 Declaration Dependencies in Coloured Petri Nets . . . . . . . . 129
4.3.3 Applications of Declaration Dependencies . . . . . . . . . . . . 132

4.4 Command-line Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Conclusions and Outlook 139
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.1 Fuzzy Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.2 Harmonising Coloured Petri Nets . . . . . . . . . . . . . . . . . 140

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.1 Extending Fuzzy Petri Nets . . . . . . . . . . . . . . . . . . . . 141
5.2.2 Extending Coloured Petri Nets . . . . . . . . . . . . . . . . . . 142

Bibliography 145

A Appendices 155
A.1 Fuzzy Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 The BNF for colour expressions in Snoopy’s PN C . . . . . . . . . . . . 156
A.3 Snoopy’s Command-line Feature . . . . . . . . . . . . . . . . . . . . . 158

ii



List of Figures

2.1 Lotka Volterra Petri net model in Snoopy . . . . . . . . . . . . . . . . 10
2.2 Special arcs in Snoopy’s extended Petri net class . . . . . . . . . . . . 11
2.3 The Lotka Volterra system modelled as an extended Petri net . . . . . 14
2.4 Graphical representation of SPN transitions in Snoopy . . . . . . . . . 18
2.5 Original Lotka Volterra system represented as SPN . . . . . . . . . . 19
2.6 Stochastic simulation results of the Lotka Volterra system (basic model) 22
2.7 Stochastic simulation results of the Lotka Volterra system (basic model) 23
2.8 Stochastic simulation results of the extended Lotka Volterra system . 24
2.9 Transition simulation traces of the Lotka Volterra system . . . . . . . 25
2.10 Continuous simulation traces of the Lotka Volterra system . . . . . . . 28
2.11 Connecting rules among HPN elements . . . . . . . . . . . . . . . . . 31
2.12 HPNmodel of the extended Lotka-Volterra system . . . . . . . . . . . 32
2.13 Hybrid simulation trace . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.14 Coloured Petri net of the coloured food chain model . . . . . . . . . . 38
2.15 Unfolded Petri net of food chain coloured model given in Figure 2.14 . 38
2.16 Coloured stochastic Petri net of the food chain . . . . . . . . . . . . . 40
2.17 Coloured continuous Petri net of the food chain . . . . . . . . . . . . . 41
2.18 A coloured hybrid Petri net of the food chain model . . . . . . . . . . 42
2.19 Stochastic and deterministic simulation traces of the food chain model 43
2.20 Simulation traces of the food chain model (HPN C) . . . . . . . . . . . 43
2.21 Interval decision diagram example. . . . . . . . . . . . . . . . . . . . . 46
2.22 Interval decision diagram of one arc’s guard of the food chain. . . . . . 48

3.1 The general approach of fuzzy quantitative Petri nets . . . . . . . . . 53
3.2 A triangular fuzzy number (TFN) defined by the triple (a, b, c) . . . . 56
3.3 The FCPN model of Lotka Volterra system . . . . . . . . . . . . . . . 59
3.4 The FSPN C model of the food chain . . . . . . . . . . . . . . . . . . 61
3.5 Export relation between some of Snoopy’s Petri net classes . . . . . . 62
3.6 The unfolded FSPN of the food chain model . . . . . . . . . . . . . 63
3.7 Basic sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Reduced sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . 69
3.9 LHS construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.10 Representation of an LHS sampling matrix . . . . . . . . . . . . . . . 71

iii



List of Figures

3.11 Fuzzy continuous simulation results of the Lotka Volterra system . . . 73
3.12 Fuzzy stochastic simulation results of the food chain system. . . . . . 74
3.13 FPN class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.14 The class diagram of the FPN simulation engines. . . . . . . . . . . . 75
3.15 Snoopy’s result viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.16 The FSPN model of the Virus Infection . . . . . . . . . . . . . . . . 78
3.17 Fuzzy stochastic simulation results of the virus infection . . . . . . . . 79
3.18 The FCPN model of the Decay Dimerization . . . . . . . . . . . . . 80
3.19 Fuzzy continuous simulation results of the yeast polarization . . . . . 81
3.20 The FHPN model of the Yeast Polarization. . . . . . . . . . . . . . . 83
3.21 Fuzzy hybrid simulation results of the yeast polarization . . . . . . . . 84
3.22 The FSPN C model of Repressilator. . . . . . . . . . . . . . . . . . . . 86
3.23 Fuzzy stochastic simulation results of the Repressilator. . . . . . . . . 87
3.24 The general structure of a membrane system [AHF22]. . . . . . . . . . 88
3.25 A fuzzy stochastic membrane system together with its tree representation. 90
3.26 The coloured and unfolded models of the fuzzy membrane system. . . 92
3.27 Simulation results of the given fuzzy membrane system. . . . . . . . . 93
3.28 Timed-membership functions of the place membrane_A. . . . . . . . . 94
3.29 The FHPN C model of the Whole-cell modelling including. . . . . . . 95
3.30 coloured fuzzy hybrid simulation of the FHPN C model. . . . . . . . 97
3.31 coloured fuzzy hybrid simulation of the FHPN C model. . . . . . . . . 97
3.32 2D simulation plot of the min fuzzy traces (proteins) . . . . . . . . . . 98
3.33 2D simulation plot of the max fuzzy traces (proteins) . . . . . . . . . . 99
3.34 Fuzzy stochastic simulation results of the virus infection. . . . . . . . . 102
3.35 Virus infection - membership functions. . . . . . . . . . . . . . . . . . 102

4.1 The food chain SPN C for explaining elemOf operation. . . . . . . . . 112
4.2 Colour-dependent rates with elemOf expressions . . . . . . . . . . . . 113
4.3 Mutual exclusion problem . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 Basic coloured model of the GCD problem . . . . . . . . . . . . . . . . 118
4.5 Coloured model of the GCD problem (second scenario) . . . . . . . . . 119
4.6 Scaleable coloured Petri net model for the GCD problem . . . . . . . . 120
4.7 Observer traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.8 Some observer traces - Food chain model . . . . . . . . . . . . . . . . 123
4.9 Petri net declarations diagram . . . . . . . . . . . . . . . . . . . . . . 124
4.10 Dependency graph of user-defined declarations in uncoloured Petri nets 125
4.11 Colour sets diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.12 Dependency graph of user-defined declarations in coloured Petri nets . 130
4.13 Dependency graph for the constant SIZE . . . . . . . . . . . . . . . . 130
4.14 Checking unused declarations . . . . . . . . . . . . . . . . . . . . . . . 134
4.15 Selective import feature in Snoopy . . . . . . . . . . . . . . . . . . . . 135

iv



List of Figures

4.16 Selective import feature in Snoopy . . . . . . . . . . . . . . . . . . . . 136

v



List of Figures

vi



List of Tables

3.1 Rate functions of the Lotka Volterra system . . . . . . . . . . . . . . 59
3.2 Food chain FSPN C- the transitions’ firing rate functions. . . . . . . . 60
3.3 Rate functions of the virus infection . . . . . . . . . . . . . . . . . . . 77
3.4 Rate functions of the Decay Dimerization network . . . . . . . . . . . 80
3.5 Rate functions of the Yeast polarization. . . . . . . . . . . . . . . . . 82
3.6 Repressilator FSPN C- the transitions’ firing rate functions. . . . . . . 85
3.7 Declarations for the coloured model given in Figure 3.26a. . . . . . . . 93
3.8 Rate functions of the FHPN C model. . . . . . . . . . . . . . . . . . . 95
3.9 Declarations for the model given in Figure 3.29. . . . . . . . . . . . . . 96
3.10 Fuzzy simulation runtime for the Yeast Polarisation (FHPN ). . . . . 100
3.11 Fuzzy simulation runtime for the 2D Diffusion system (FSPN C). . . . 101

4.1 Pre-defined constant groups in Snoopy. . . . . . . . . . . . . . . . . . . 107
4.2 Constant data types in Snoopy’s PN C . . . . . . . . . . . . . . . . . . . 107
4.3 The usage of colour expressions in PN C . . . . . . . . . . . . . . . . . 111
4.4 Harmonised boolean operators. . . . . . . . . . . . . . . . . . . . . . . 111
4.5 Examples of the elemOf operation. . . . . . . . . . . . . . . . . . . . . 111
4.6 Declarations for the model given in Figure 4.1. . . . . . . . . . . . . . 113
4.7 Examples of the multi-set difference operation. . . . . . . . . . . . . . 114
4.8 Declarations for the model given in Figure 4.3. . . . . . . . . . . . . . 114
4.9 Declarations for all versions of the GCD model . . . . . . . . . . . . . 121
4.10 Observers in coloured quantitative Petri nets. . . . . . . . . . . . . . . 122
4.11 Some observer examples - coloured food chain model given in Figure 2.14122
4.12 Snoopy’s commands - alphabetically ordered . . . . . . . . . . . . . . 137

vii



List of Tables

viii



List of Algorithms

2.1 Direct simulation method [ROH17]. . . . . . . . . . . . . . . . . . . . . 20
2.2 Basic CPN simulation algorithm [HH18a]. . . . . . . . . . . . . . . . . 28
2.3 Basic HPN simulation algorithm [Her13]. . . . . . . . . . . . . . . . . . 33
2.4 Unfolding a coloured Petri net [Liu12]. . . . . . . . . . . . . . . . . . . 47
3.1 FPN simulation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Compute the alpha cut set of the corresponding fuzzy number and a

certain level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Compute output fuzzy band. . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Compute membership function of an output variable at the time point t. 67
4.1 Assigning constant values. . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Simulate/Animate a scaleable model when changing the selection of the

groups’ value sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Substitution of the function body. . . . . . . . . . . . . . . . . . . . . . 117
4.4 Computation of observers. . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5 Compute the dependency graph of a constant. . . . . . . . . . . . . . . 126
4.6 Compute the dependency graph of a function. . . . . . . . . . . . . . . 127
4.7 Compute the dependency graph of an observer. . . . . . . . . . . . . . . 128
4.8 Compute the dependency graph of a colour set. . . . . . . . . . . . . . 131
4.9 Determine whether a declaration is used or not in n PN model. . . . . 132
4.10 Automatically select the dependencies of a declaration. . . . . . . . . . 133

ix



LIST OF ALGORITHMS

x



List of Symbols

N Set of positive integer numbers
N0 Set of non-negative integer numbers including zero
R+
0 Set of non-negative real numbers including zero
∅ Empty set
•t Pre-place(s) of the transition t
t• Post-place(s) of the transition t
•pi Pre-transition(s) of the place pi
p•i Post-transition(s) of the place pi
m[t⟩ The transition t is enabled under the marking m
τ0 Start simulation time
τend End simulation time
m(τ0) System’s initial state
τ Current time
m(τ) System’s current state
δτ The next time a transition to occur (fire)
N Number of chemical species (tokens)
M Number of chemical reactions
m(τ) Mean system’s state
Pdisc Set of discrete places
Pcont Set of continuous places
Ts Set of stochastic transitions
Ti Set of immediate transitions
Td Set of deterministically delayed transitions
Tsched Set of scheduled transitions
Tcont Set of continuous transitions
Acont Set of continuous arcs
Adisc Set of discrete arcs
AT Set of read arcs
AI Set of inhibitor arcs
AE Set of equal arcs
AR Set of reset arcs
AM Set of modifier arcs
Σ Set of colour sets
C(p) Colour set of the place p

xi



LIST OF SYMBOLS

EXP Colour expression
C(p)MS Multiset expression
p(c) Place instance
t(b) Transition instance
B(t) Bindings of a set of variables of the transition t
g(t) guard of the transition t
It Set of all transition instances
Ip Set of all place instances
X Universal set
α Alpha level (membership degree)
α− cut Alpha cut set of certain alpha level
ξ̃ A fuzzy set
µξ̃ membership function of a fuzzy set
ξ̃α membership degree at certain alpha level α
Γ Set of fuzzy kinetic parameters
θ Kinetic parameter

xii



List of Abbreviations

ANDL Abstract Net Description Language

BDD Binary Decision Diagrams

CANDL Coloured Abstract Net Description Language

CLI Command Line Interface

CPN Continuous Petri Nets

CPN C Coloured Continuous Petri Nets

CSP Constraint Satisfaction Problem

CTMC Continuous Time Markov Chain

DAG Directed Acyclic Graphs

FCPN Fuzzy Continuous Petri Nets

FCPN C Coloured Continuous Fuzzy Petri Nets

FHPN Fuzzy Hybrid Petri Nets

FHPN C Coloured Hybrid Fuzzy Petri Nets

FIS Fuzzy Inference System

FPN Fuzzy Petri Nets

FPN C Coloured Fuzzy Petri nets

FSPN Fuzzy Stochastic Petri Nets

FSPN C Coloured Stochastic Fuzzy Petri Nets

GCD Greatest Common Divisor

GSPN Generalised Stochastic Petri nets

GUI Graphical User Interface

HPN Hybrid Petri Nets

HPN C Coloured Hybrid Petri Nets

IDD Interval Decision Diagrams

xiii



List of Abbreviations

LHS Latin Hypercube Sampling

ODE Ordinary Differential Equations

PN Petri Nets

PN C Coloured Petri Nets

QFPN Quantitative Fuzzy Petri nets

QFPN C Coloured Quantitative Fuzzy Petri nets

QPN Quantitative Petri Nets

QPN C Coloured Quantitative Petri Nets

RNG Random Number Generator

SPN Stochastic Petri Nets

SPN C Coloured Stochastic Petri Nets

SSA Stochastic Simulation Algorithms

TFN Triangular Fuzzy Number

UA Uncertainty Analysis

XPN Extended Petri Nets

XPN C Extended Coloured Petri Nets

XSPN Extended Stochastic Petri nets

xiv



1 Introduction

1.1 Motivation
Petri nets are an attractive approach to model biological systems. Instead of directly
dealing with mathematical formulas to describe systems, Petri nets offer an easy and
intuitive way to graphically develop models in a well-organised and tidy way. They
come generally in many flavours, ranging from uncoloured and qualitative Petri nets
to coloured and quantitative ones. Among these flavours, (coloured) quantitative Petri
nets [MRH12, LH14, BHM15] are interesting to study and analyse the behaviour of
many biological phenomena by introducing the notion of time. Our Petri nets tool
Snoopy [HHL+12] is one of the well-know tools supporting many types of Petri nets
for teaching and research purposes.

One of the critical problems accompanying the modelling of biological systems is to
determine the kinetic parameters (reaction rate parameters), as biological models gen-
erally come with a large number of kinetic parameters [KDS09]. In most cases, such
kinetic parameters can not be directly measured, as experiments typically measure
concentrations rather than rates [VLG+18]. Even when such parameters can be mea-
sured directly, this is usually in experimental conditions that are significantly different
from the cellular environment we wish to study [VLG+18].

Uncertainty analysis is performed to investigate the uncertainty in the model output
that is generated from uncertainty in parameter inputs [MHRK08]. A model is called
deterministic, if the output of the model is completely determined by the input pa-
rameters and structure of the model. The same input will produce the same output if
the model were simulated multiple times. Therefore, the only uncertainty affecting the
output is generated by input variation. This type of uncertainty is termed epistemic
(or subjective, reducible, type B uncertainty), which derives from a lack of knowledge
about the adequate value for a parameter that is assumed to be constant throughout
model analysis [HJSS06]. In contrast, a stochastic model will generally not produce the
same output when repeated with the same inputs because of inherent randomness in
the behaviour of the system. This type of uncertainty is termed aleatory (or stochastic,
irreducible, type A) [HJSS06]. Exploring uncertainties has been and still is an area of
interest and study in the field of systems biology.

Fuzzy logic is a powerful approach to deal with imprecise knowledge of, e.g. uncer-
tain kinetic parameters by representing each kinetic parameter as a connected set of
possible values (each value can be interpreted differently to describe the associated
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uncertainties), rather than one single value (crisp value). Furthermore, by applying
the Zadeh’s extension principle [Zad65] we can obtain output bands of the variables
of interest describing the uncertainties associated with the input. More importantly,
we can also obtain fuzzy timed-membership functions of an output variable, which
give more accurate information about the associated uncertainties [LHG20].

Combining (coloured) quantitative Petri nets with fuzzy logic (or fuzzy Petri nets for
short) offers a new quality in user support with sophisticated modelling and analysis
features [AHL21a], as two main issues can be addressed: the first is to model systems
with repeated structures by means of colours, whereas the second is to model uncertain
kinetic parameters by means of fuzzy sets. As we noticed from the literature, there is no
tool except Matlab [Mat] dedicated to model and simulate uncertain biological models.
However, Matlab may be a good choice for achieving this purpose, but it is not easy to
be used, especially by non-informaticians, e.g. biologists. Therefore, supporting fuzzy
Petri nets in Snoopy [HHL+12] offers a graphical and an easy-to-modify way to develop
biological models with uncertain kinetic parameters, which is one of the contributions
that we present in this thesis.

Coloured Petri nets [Liu12, LHR12a] as they are supported by Snoopy so far have
some inconsistencies, which are related to user-defined declarations including con-
stants, colour functions, observers, and colour expressions. For example, previously,
it was not possible to use constants as scaling factors in the model on hand, which
means that a modeller could just re-define constants in order to scale the model. More-
over, some models need to use some operations for colour expressions that were not
implemented. Fixing all these shortcomings will increase the modelling capabilities of
coloured Petri nets.

The coloured abstract net description language (CANDL) is a human and machine
readable format for different types of coloured Petri nets [ACR+21]. CANDL is used as
coloured Petri net exchange format among the family of Petri net tools PetriNuts [Pet].
Therefore, our second contribution is to unify the usage of coloured Petri nets in
our tools, which will be achieved, as we will see later, by harmonising the coloured
Petri nets with their Snoopy’s uncoloured counterparts and extending them by all the
features which are supported by the CANDL format. This step has the advantage of
overcoming all the existing inconsistencies in Snoopy as well as unifying the usage of
coloured Petri nets in the PetriNuts family of Petri net tools, e.g. Marcie [SRH11] and
Charlie [HSW15]. Software harmonising [WVR+12] is a branch of software engineering,
which is crucial for bridging the gap between the software technical design and its
implementation.
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1.2 Objectives and Contributions
This section outlines the objectives and contributions of this thesis. The objectives
are:

• Supporting the modelling of complex biological systems with uncertain kinetic
parameters using the Petri net modelling approach.

• Supporting the simulation of uncertain biological systems in order to describe
the uncertainties in output which reflect the uncertainties associated with input.

• Harmonising coloured Petri nets with their uncoloured counterparts to be able
to model, animate and simulate scaleable models.

• Increasing the expressive power of coloured Petri nets by supporting new oper-
ations/features.

The list of contributions sketched as follows:

• Modelling uncertainties associated with kinetic parameters
Modelling and analysing of uncertainties in biological systems is still a chal-
lenge, as precise kinetic parameters are not always available due to various rea-
sons. Thus, the ability to model uncertain (fuzzy) kinetic parameters and then
analyse the corresponding output will have many advantages for better under-
standing biological phenomena. A fuzzy set is a set whose elements have degrees
of membership, and thus it can represent uncertain parameters by associating
each uncertain kinetic parameter with a fuzzy number, e.g. triangular fuzzy num-
ber [Zim10]. Extending quantitative Petri nets by fuzzy kinetic parameters will
increase their expressive power by allowing the kinetic parameters to be modelled
either as fuzzy numbers or crisp values.

• Colouring fuzziness for systems biology
Coloured Petri nets are excellent for modelling systems with repeated compo-
nents by means of colours. This has advantages for modelling large and scaleable
systems in a compact fashion. Therefore, combining coloured Petri nets with
fuzzy logic yields a new powerful modelling approach, especially for modelling
both uncertainty and systems with similar components.

• Fuzzy simulation
Modelling uncertain kinetic parameters for biological systems is one side of the
coin. Fuzzy simulation is crucial for uncertainty analysis, which gives for each
output of interest a fuzzy band describing the uncertainties associated with the
input. Furthermore, much more accurate information can be obtained by gener-
ating for each output variable its membership functions over simulation time.
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• Efficient sampling Fuzzy simulation requires high computational and memory
resources, as each fuzzy kinetic parameter has to be discretised into a set of
continuous ranges, each called α-cut (or α level), and then to perform simula-
tion for each separated sample (crisp value) [Zad65, Zim10]. For this purpose,
sampling strategies have to be utilised. Sampling each α-cut set would probably
cause producing similar samples on every level, which obviously leads to perform
not needed simulations. Thus an efficient sampling strategy has to be chosen for
avoiding producing redundant samples. Overall, sampling strategies are crucial
for performing the fuzzy simulation efficiently. On one hand, they discretise each
fuzzy kinetic parameter into crisp values. On the other hand, they have an im-
pact on the total number of simulations that have to be performed, thus on the
total simulation time. It is important to support an efficient sampling strategy
which minimizes the total number of simulation as much as possible.

• Harmonising coloured Petri nets
The expressive power of coloured Petri nets comes from the fact, that they allow
to define different kinds of declarations which are used in the same way as in
programming languages. Firstly, constants are crucial for developing scaleable
models as well as for assigning kinetic parameters for transition rates. Secondly,
colour functions are useful for annotating the model with short-cut expressions
making the final model easy to understand and tidy. Here it could happen that
one function can be used (called) by other functions in a nested way, yielding
a nice feature for using them in the model. Last but not least, observers are
mathematical functions over model variables/transitions which are useful for
observing the involved variables/transitions as the modelled system evolves over
time.
Moreover, there are some forms of colour expressions which are not allowed to
be used for, e.g. initialising the coloured places. Finally, there is a need for using
some new operations for colour expressions, which increase the expressive power
of coloured Petri nets. Most of these mentioned features suffer from inconsisten-
cies due to the lack of implementation. Overcoming these inconsistencies can be
achieved by harmonising coloured Petri nets with their uncoloured counterparts
and extending them by those which are supported by the CANDL format.

1.3 Organisation of the Thesis
• Chapter 1: Introduction

Chapter 1 (this chapter) presents an overview of the overall thesis, the motivation
behind this work, the objectives and contributions, and the organisation of the
thesis.
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• Chapter 2: Background
Chapter 2 provides background information about modelling and simulating bi-
ological systems using (coloured) stochastic/continuous/hybrid Petri nets. We
present for each kind of Petri net class its formal definition together with its
simulation algorithm.

• Chapter 3: Fuzzy Petri Nets
Chapter 3 introduces fuzzy Petri nets and recent related work. Then we present
some basics for fuzzy logic and how to combine it with quantitative Petri nets
in order to represent biological systems with uncertain kinetic parameters. After
that, we introduce the fuzzy simulation algorithm together with three sampling
strategies. Then, we present a set of case studies which can be modelled and
simulated using the family of fuzzy Petri nets. Finally, we sketch some exper-
imental results illustrating how much burden one should expect when utilising
fuzzy simulation.

• Chapter 4: Some Implementation Aspects
Chapter 4 presents some of the existing inconsistencies in Snoopy’s coloured
Petri nets, and some implementation aspects of the harmonising procedure. Fur-
thermore, we present some new operations/feature that are useful for increasing
the expressive power of coloured Petri nets.

• Chapter 5: Conclusion and Outlook
Finally, this chapter concludes the thesis by summing up the overall presented
information and proposes possible extensions for future work.
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2.1 Introduction

Petri nets originate from the dissertation of Carl Adam Petri [Pet62] who introduced
the idea of place/transition nets. Petri nets (PN for short) are a powerful modelling
approach, which has been used in many applications in various fields, including natural
sciences, engineering sciences and life sciences [SRL+20]. These applications use Petri
nets for both modelling and exploration of the model behaviour. For this purpose,
Petri nets come generally with many analyse techniques, ranging from structural to
behavioural analysis. Furthermore, some applications call for model animation and
simulation. On one hand, model animation is helpful for exploring a model behaviour.
On the other hand, model simulation (execution of the model) using its initial state
and available kinetic parameters is crucial for predicting a model behaviour over time.

In this chapter, we are going to illustrate how to make use of Petri nets for mod-
elling and simulating of systems, e.g. biological systems. For this purpose, we recall
various types of Petri nets and their formal definitions, ranging from standard qualita-
tive and quantitative Petri nets to coloured qualitative and quantitative ones. Section
2.2 presents qualitative Petri nets and the running example used to demonstrate all
Petri net classes introduced in this chapter. Section 2.3 introduces extended Petri nets
and their modelling features. In Section 2.4, we cover quantitative Petri nets, includ-
ing stochastic, continuous and hybrid Petri nets. Here we recall in more details the
semantic behind each one. in Section 2.5, we introduce coloured Petri nets and the
advantages of colour information, especially for systems biology. In Section 2.6, we
outline coloured quantitative Petri nets and their semantics. In order to be able to
reuse the uncoloured Petri net analysis techniques, we describe unfolding of coloured
Petri nets together with the unfolding algorithms in Section 2.7.

Please note that all definitions in this Chapter reflect the Petri net classes as sup-
ported by Snoopy [HHL+12].

2.2 Petri Nets

Petri nets are directed bipartite graphs, combining a well-defined mathematical theory
with graphical elements for describing concurrent, asynchronous and parallel systems
in an intuitive graphical notation. They basically comprise two types of nodes, transi-

7



2 Background

tions (i.e. events that may occur) and places (i.e. local states) of a given system under
consideration. Places and transitions are connected to each other by weighted arcs.
The initial state of a system is specified by the initial marking of all places. In systems
biology, places represent species; their total number or concentrations are specified by
a discrete number of tokens or a real number of tokens residing in the places. Transi-
tions represent biochemical reactions or transport steps that may occur, whereas arc
weights help to deal with stoichiometries [AHL21a].

Petri nets are generally useful to perform some analysis of the studied model, ranging
from structural to behavioural analysis, or even animating the model to gain some
initial trust in the model behaviour. The formal definition of Petri nets is given as
follows.

Definition 1 (Petri net [LH14])
A Petri net is a 5-tuple N = ⟨P, T,A, f,m0⟩, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• P ∩ T = ∅.

• A ⊆ (P × T ) ∪ (T × P ) is a finite set of directed arcs.

• f : A→ N is a function that assigns a positive integer number as an arc weight
to each arc a ∈ A. Please note that an arc weight is not allowed to be zero,
because this would mean that there is no connecting arc between a place and a
transition which does not respect the PN connectivity rules.

• m0 : P → N0, is a function that assigns a non-negative integer number to each
place as an initial marking.

Please note that N and N0 denote the sets of positive and non-negative integer
numbers including zero, respectively.
Each transition t ∈ T may have one or more pre-places connected to it. These

pre-places have an influence on the transition’s enabledness. In the same way, each
transition may be connected to one or more post-places, but they do not have an
influence on the transition’s enabledness. Both pre-places and post-places get generally
affected by firing the enabled transition by changing their markings. The notations
•t and t• denote the pre-places and post-places of the transition t, respectively. An
enabling of a given transition is formally given as follows.

Definition 2 (Enabling condition)
Let N = ⟨P, T,A, f,m0⟩ be a Petri net, m a marking of N , and t ∈ T a transition. The
transition t is enabled in the marking m, denoted by m[t⟩, if the following condition
holds.
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• ∀p ∈ •t,m(p) ≥ f(p, t), if (p, t) ∈ A.

If there is no enabled transition, the Petri net will be in a dead state. Once a
transition gets enabled, it can be fired. The firing rule of an enabled transition is
formally given as follows.

Definition 3 (Transition firing)
Let N = ⟨P, T,A, f,m0⟩ a Petri net, m be a marking of N, and t ∈ T a transition.
enabled in the marking m. The transition t can be fired and reach a new marking m′,
denoted by m[t⟩m′, with

m′(p) = m(p)− f(p, t) + f(t, p).

It may happen that two transitions are enabled, but the firing of one transition
disables the other one, i.e. a conflict occurs. The occurrence of dynamic conflicts indi-
cates alternative (branching) system behaviour. To solve dynamic conflicts, decisions
between alternatives are taken non-deterministically for the model animation, whereas
typically one transition fires after the other one for model analysis.

In the following, we are going to introduce a well-known ecological system called
Predator/Prey system [Lot09] (also called Lotka-Volterra) which will be used as a
running example. The Lotka-Volterra system has been frequently used to describe the
dynamics of biological systems. It comprises two kinds of species that interact with
each other, one as predator and the other as prey. It is generally characterized by its
oscillation behaviour, because the population of predator species, e.g. foxes, increases
by consuming prey species, e.g. rabbits, which will be decreased consequently and vice
versa.

Figure 2.1 gives a Petri net model of the Lotka-Volterra system. Both kinds of
species are represented as places Prey and Predator, respectively. The number of to-
kens in each place (determined by two integer constants N and M) gives the initial
state of the system. The model has three transitions representing the interactions
among species. The transition reproduce_prey describes the reproduction of preys,
whereas the transition death_predator describes the death of predators and the tran-
sition consumption_of_prey gives the interaction between preys and predators. Please
note that the number of reproduced preys and predators is determined by the constant
Births occurring as arc weight.

Let us discuss the possible behaviours of the predator/prey system using the corre-
sponding Petri net model

• Firing the transition death_predator M times changes the number of tokens in
the place Predator to zero. As a result, the transition consumption_of_prey will
never occur and the transition reproduce_prey will never be disabled, thus it
always occurs causing the number of prey species to explode.
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Figure 2.1: Lotka Volterra Petri net model in Snoopy; net elements: place , transi-
tion , standard arc . Births, N and M are integer constants. The
latter two are used as initial marking of the places Prey and Predator,
respectively, while the constant Births is used as an arc weight.

• Firing the transition reproduce_prey N times yields N · Births tokens in the
place Prey. Assuming M > N , firing the transition consumption_of_prey N
times changes the number of tokens in the place Prey to zero, and the number of
tokens in the place Predator to M −N +N ·Births. Consequently, the number
of tokens in the place Prey will never increase again. After that, the system will
reach a dead state by firing the transition death_predator M −N +N ·Births
times.

• Let us assume M < N , firing the transition consumption_of_prey N times
changes the number of tokens in the place Prey to zero and the number of to-
kens in the place Predator to (N ·Births)− (N −M). After that, the transitions
consumption_of_prey and reproduce_prey will never occur, thus firing the tran-
sition death_predator (N · Births) − (N − M) times will cause the system to
reach a dead state.

2.3 Extended Petri Nets

Extended Petri nets [HLGM09] (or XPN for short) extend standard Petri nets by
offering four special arcs, making a Petri net model more compact and increasing the
modelling power of the standard Petri nets, but decreasing the analysis power. These
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arcs are: inhibitory arcs, read (test) arcs, equal arcs and reset arcs. Please note that
all these arcs are directed from a place to a transition; compare Figure 2.2.

Figure 2.2: Special arcs in Snoopy’s extended Petri net class: read (test) arc ;
inhibitory arc ; equal arc and reset arc . A, B, C, D, x,
y and z are constant integers; where the following conditions have to hold
for enabling the transition t1: x = C, y ≤ B and A < z. Each condition
corresponds to a specific type of the special arcs. Only the place p4 gets
affected by firing the transition t1, whereas the markings of the other places
remain the same.

The read arcs, inhibitory arcs and equal arcs add constraints on firing a transition
connected with them, based on arc weights and the marking value of the transition’s
pre-place. Moreover, these arcs do not have an influence on the marking of the pre-
places upon firing the transition. They only control the firing of a transition by obeying
the following rules:

• A transition connected with a place using a read arc may fire when the marking
of the pre-place is equal or greater than the arc weight.

• A transition connected with a place using an inhibitory arc may fire when the
marking of the pre-place is less than the arc weight. This means that the in-
hibitory arc inhibits the enabling of a transition when the marking of a place is
greater than or equal to a certain threshold (arc weight of inhibitory arc).

• A transition connected with a place using an equal arc may fire when the marking
of the pre-place is exactly equal to the arc weight.

The reset arc does not add any constraint to the firing of a transition, but it cleans
the pre-place (changes its marking to zero) as soon as the connected transition fires.
The formal definition of extended Petri nets is given as follows.
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Definition 4 (Extended Petri net [HLGM09])
An extended Petri net is a tuple N = ⟨P ,T ,A, f ,m0 ⟩ where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• P ∩ T = ∅.

• A is a finite set of directed arcs. A is defined as the union of five disjunctive arc
sets, i.e. A := AS ∪AI ∪AT ∪AE ∪AR with:

– AS ⊆ (P × T ) ∪ (T × P) is the set of standard arcs,

– AI ⊆ P × T is the set of inhibitory arcs,

– AT ⊆ P × T is the set of test/read arcs,

– AE ⊆ P × T is the set of equal arcs, and

– AR ⊆ P × T is the set of reset arcs.

• f : A → N is a function that assigns a positive integer to each arc a ∈ F \ AR,
which means that all arc types take a non-negative integer as an arc weight,
except reset arcs.

• m0 : P → N0 gives the initial marking.

In comparison with standard Petri nets, the enabling conditions are formally given
as follows.

Definition 5 (Extended enabling condition)
Let N = ⟨P, T,A, f,m0⟩ be an extended Petri net and m be a marking of N . A tran-
sition t ∈ T is enabled in the marking m, denoted by m[t⟩, if the following conditions
are satisfied.

• ∀p ∈ •t, m(p) ≥ f(p, t), if (p, t) ∈ AS ,

• ∀p ∈ •t, m(p) < f(p, t), if (p, t) ∈ AI ,

• ∀p ∈ •t, m(p) ≥ f(p, t), if (p, t) ∈ AT ,

• ∀p ∈ •t, m(p) = f(p, t), if (p, t) ∈ AE .
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Definition 6 (Extended firing)
Let N = ⟨P, T,A, f,m0⟩ be an extended Petri net, m be a marking of N , and t a
transition t ∈ T enabled in the marking m. The transition t can be fired and reach a
new marking m′, denoted by m[t⟩m′, with

m′(p) =


m(p)− f(p, t) + f(t, p) if (p, t) ∈ AS and f(t, p) ∈ AS ,
m(p) + f(t, p) if (p, t) ∈ AI and f(t, p) ∈ AS ,
m(p) + f(t, p) if (p, t) ∈ AT and f(t, p) ∈ AS ,
m(p) + f(t, p) if (p, t) ∈ AE and f(t, p) ∈ AS ,
f(t, p) if (p, t) ∈ AR and f(t, p) ∈ AS .

Adding special arcs to our running example given in Figure 2.1 gives the extended
Petri net shown in Figure 2.3. The production of preys will be inhibited when the
number of preys reaches the upper bound specified by the constant Limit; this means
that the place Prey is bounded by Limit-many tokens. Please note that enabling the
transition reproduce_prey requires at least two tokens in the place Prey (specified by
the weight of the connected test arc). The transitions r_prey and r_pred have been
added to the model in order to reset the system to its initial state; for this purpose,
we make use of reset arcs together with inhibitory arcs. In this model, both transitions
r_prey and r_pred describe an alternative behaviour as firing one of them precludes
the other one, because firing one of these transitions will reinitialise both places Prey
and Predator and thus the other place will have a token number larger than the weight
of the connected inhibitory arc (here is one). Reset arcs are utilised to ensure that the
marking of the places Prey and Predator will not get doubled upon firing one of these
two transitions. Compared to the basic Lotka Volterra system given in Figure 2.1, the
extended version will not reach a dead state because of the Reset mechanism.

2.4 Quantitative Petri Nets

Quantitative Petri nets (QPN ) are an extension of standard time-free Petri nets (also
called qualitative Petri nets) by a notion of time [GHL07, BHM15]. Compared to
qualitative Petri nets, QPN associate each transition with a rate function, which is
an arbitrary mathematical function.

Firing rates are typically state-dependent, which means a transition’s pre-places are
allowed to occur as variables in rate functions. This rule has been set up to prevent
that net structure and rate functions diverge [BHM15]. Furthermore, rate functions
often follow certain kinetic patterns which have biological interpretations, such as
mass/action kinetics, and involve kinetic parameters (constants).

The rate functions of the models presented in this thesis follow the pattern Mass-
Action(k), whose formula is given as follows.
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Figure 2.3: The Lotka Volterra system modelled as an extended Petri net. The ex-
tended version permits resetting the system to its initial state and avoids
accumulation of tokens in the place Prey.

kj

Nj∏
l=1

[Sl]
αj l , (2.1)

where kj is the kinetic parameter of the reaction j, N is the number of reactant species
in reaction j, and αj l is the stoichiometric coefficient of reactant species Sl.
Please note that the default rate function of a transition in Snoopy’s QPN is Mas-

sAction(1), i.e. mass-action kinetics with parameter 1. Besides, Snoopy provides a
special feature supporting state-dependent firing rates which is a modifier arc, repre-
sented as a dashed arc, which always goes from a place to a transition and allows to use
this place in the transition’s rate function even if it is not a standard pre-place. Please
note that the modifier arc does not have an influence on the transition’s enabledness
(contrary to XPN ’s special arcs). For an example compare Figure 2.5.
Rate functions can be interpreted in different ways and we obtain - depending on the

interpretation - stochastic Petri nets (SPN ), continuous Petri nets (CPN ), or hybrid
Petri nets (HPN ) [HH14].

2.4.1 Stochastic Petri Nets

Stochastic Petri nets basically share the structure of time-free Petri nets which means
that each place and arc get assigned a discrete number of tokens or arc weight, respec-
tively.

In contrast to standard time-free Petri nets, each transition is associated with a
stochastic firing rate function determining a stochastic waiting time before an enabled
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transition actually fires [HH18b]. The definition of stochastic Petri nets is formally
given as follows.

Definition 7 (Stochastic Petri nets (SPN ) [ROH17])
Stochastic Petri nets are a 6-tuple SPN = ⟨P, T,A, F, V,m0⟩ where:

• P is a finite, non-empty set of discrete places.

• T = Ts is the set of stochastic transitions, which fire stochastically after an
exponentially distributed waiting time.

• P ∩ T = ∅.

• A = AS ∪AM is the set of directed arcs, with:
1. AS ⊆ (P × T ) ∪ (T × P ) defines the set of standard arcs.
2. AM ⊆ (P × T ) defines the set of modifier arcs.

• F : A → N is a function which assigns a positive integer number to each arc in
AS \AM , which means that modifier arcs are not allowed to have arc weights.

• V : T → H is a function which assigns a firing rate function ht to each transition
t ∈ T , whereby H = {ht|ht : R+|•t|

0 → R+
0 , t ∈ T} is the set of all firing rate

functions, and V (t) = ht, ∀t ∈ T .

• m0 : P → N0, is a function which assigns a non-negative integer number to each
place as the initial marking.

Please note that the notation R+
0 denotes the set of non-negative real numbers.

Traditional SPN have been extended by XPN ’s special arcs given in Definition 4
and a special type of stochastic transitions called immediate transition yielding Gen-
eralised Stochastic Petri nets (GSPN for short). An immediate transition has the
highest firing priority as its stochastic waiting time is always zero. To control the de-
cision of conflicts, each immediate transition is associated with a transition weight.
Thus, the transition with the largest weight has the highest firing priority. If there are
two immediate transitions with the same weight, then the firing decision is taken in a
nondeterministic way. GSPN is formally defined as follows [ROH17].

15



2 Background

Definition 8 (Generalised stochastic Petri nets [ROH17])
Generalised stochastic Petri nets are a 6-tuple GSPN = ⟨P, T,A, F, V,m0⟩ where:

• P is a finite and non-empty set of discrete places.

• T = Ts ∪ Ti, is a finite and non-empty set of transitions with:
1. Ts is the set of stochastic transitions, which fire stochastically after an

exponentially distributed waiting time.
2. Ti is the set of immediate transitions, which fire with waiting time zero;

they have higher priority compared with other transition types.

• P ∩ T = ∅.

• A = AS ∪ AI ∪ AT ∪ AE ∪ AR ∪ AM is the set of directed arcs, defined in the
same way as in Definition 4 .

• F : A → N is a function which assigns a positive integer number to each arc,
except reset and modifier arcs.

• V = Vs ∪ Vi, is a set of functions with:
1. Vs : Ts → H is a function which assigns to each stochastic transition a

stochastic rate function Vs(t) = hts.
2. Vi : Ti → R+

0 is a function which assigns to each immediate transition a
non-negative real value as weight.

• m0 : P → N0, is a function which assigns a non-negative integer number to each
place as the initial marking.

GSPN have been further extended by two types of transitions: deterministic and
scheduled yielding extended stochastic Petri nets (XSPN for short) [HLGM09]. A
deterministic transition fires after a deterministic firing delay (waiting time). The de-
lay is always relative to the time point where a transition gets enabled. Deterministic
transitions are helpful to minimize the PN size, by replacing a sequence of stochas-
tic transitions with a deterministic one; with the delay amount set to the sum of
those stochastic ones. Scheduled transitions belong to the deterministic transitions;
the deterministic firing occurs according to a schedule specifying absolute points of
the simulation time. A schedule can specify just a single time point, or equidistant time
points within a given interval triggering the firing once or periodically. To specify the
firing interval, a scheduled transition has three arguments which have to be specified:
the beginning and end of the interval and the repetition value which determines the
distance between each firing in this interval. Setting both the beginning and end time
points to the same value will cause the transition to fire once (at the specified time
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2.4 Quantitative Petri Nets

point). Assuming the following interval [5, 1, 50], the scheduled transition will fire 45
times starting from the time point 5, till the time point 50. In contrast, the values
[50, x, 50] will cause the transition to fire at the time point 50, and the repetition value
can be ignored. However, transitions only fire at their scheduled time points if they
are enabled.

Definition 9 (Extended stochastic Petri nets [ROH17])
Extended stochastic Petri nets are a 6-tuple XSPN = ⟨P, T,A, F, V,m0⟩ where:

• P is a finite and non-empty set of discrete places.

• T = Ts ∪ Ti ∪ Td ∪ Tsched is a finite and non-empty set of transitions with:
1. Ts is the set of stochastic transitions, which fire stochastically after an

exponentially distributed waiting time.
2. Ti is the set of immediate transitions, which fire with waiting time zero;

they have higher priority compared with other transition types.
3. Td is the set of deterministically delayed transitions, which fire after a de-

terministic time delay.
4. Tsched is the set of scheduled transitions, which fire at predefined time

points.

• P ∩ T = ∅.

• A = AS ∪ AI ∪ AT ∪ AE ∪ AR ∪ AM is the set of directed arcs, defined in the
same way as in Definition 4 .

• F : A → N is a function which assigns a positive integer number to each arc,
except reset and modifier arcs.

• V = Vs ∪ Vi ∪ Vd ∪ Vc, is a set of functions with:
1. Vs : Ts → H is a function which assigns to each stochastic transition a

stochastic rate function Vs(t) = hts.
2. Vi : Ti → R+

0 is a function which assigns to each immediate transition a
non-negative real value as weight.

3. Vd : Td → R+
0 is a function which assigns to each deterministic transition a

non-negative deterministic waiting time.
4. Vc : Tsched → H is a function which assigns to each scheduled transition

three real values representing the beginning of the firing interval, the repe-
tition value, and the end of the firing interval; respectively.

• m0 : P → N0, is a function which assigns a non-negative integer number to each
place as the initial marking.
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2 Background

Figure 2.4 gives the graphical representation of XSPN ’s transitions as they are
supported in Snoopy.

R

Figure 2.4: Graphical representation of SPN transitions in Snoopy: stochastic, im-
mediate, deterministic and scheduled; ordered from left to right. M is an
integer constant used as initial marking, whereas W, D, A, R and B are
double constants representing the weight of the immediate transition, time
delay of the deterministic transition and the start time point, repetition
value and end time point for the scheduled transition, respectively.

We are going to illustrate stochastic Petri nets using the Lotka Volterra system com-
prising four reactions. Species are represented as discrete places, while each reaction
is represented as a stochastic transition getting assigned a stochastic rate function.
Modifier arcs are used to allow the places (prey and Predator) to occur in the rate
functions of the transitions consumption_of_prey1 and consumption_of_prey2, re-
spectively. Compare Figure 2.5. The populations change over time according to a pair
of equations 2.2 and 2.3 [KHR10], [Wik21b]:

dx

dτ
= αx− βxy, (2.2)

dy

dτ
= δxy − γy, (2.3)

where x is the number of preys, y is the number of predators, α, β, δ and γ are
positive real parameters which can be interpreted as follows: α is the growth rate
constant of preys, β is the death rate constant of preys due to, e.g. being killed (eaten)
by predators, δ is the growth rate constant of predators and γ is the death rate constant
of predators. In order to explain the modelling of standard Petri nets, we assume that
β = δ.

Stochastic Simulation

The underlying semantic of an SPN is defined by a Continuous Time Markov Chain
(CTMC) [HGD08]. Setting up the CTMC of a given SPN may be infeasible as the
state space can be very large or even infinite. In order to approximate the CTMC, we
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2.4 Quantitative Petri Nets

Figure 2.5: Original Lotka Volterra system represented as SPN . N , M and Births are
integer constants, while kr, kc1, kc2 and kd are double constants (kinetic
parameters), representing α, β, δ and γ, respectively.

simulate an SPN model by generating different paths through it instead of computing
the CTMC directly [ROH17].

A path of the CTMC can be generated in the following way. We start from the initial
marking m0, then transitions have to be fired repeatedly. Here arise two questions:

1. When will the next transition fire?

2. Which transition will fire?

The probability density function 2.4 [Gil76] answers these two questions which is
given as follows.

P (τ, tj |m)dτ ≡ probability at given state m(τ)

that transition tj will fire in
the next time interval [τ, τ + δτ),

(2.4)

where τ + δτ is the next time at which the transition tj will fire.
An SPN model can be simulated using one of the stochastic simulation algorithms

(SSA). Gillespie’s stochastic simulation algorithm is one of the most popular stochastic
simulation algorithms (also knows as direct method) [Gil76, Gil77].

Gillespie’s SSA algorithm (also called direct method) generates random walks through
the CTMC. Algorithm 2.1 gives the basic idea. Based on the basic algorithm, some im-
provements were considered e.g. in [Her13, ROH17]. The algorithm takes an SPN model
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to be simulated together with the simulation time as the input and returns the out-
put trace of stored system states (one possible path through the CTMC). First of all,
some initialisation steps are required, the current time (τ) is initialised with the start
simulation time (line 2), the current state m(τ) is initialised with the initial state of
the model (line 3) and the output with the current system state (line 4). Then, the
algorithm goes in a loop (which stops when the current time reaches the end simu-
lation time τend), and for each iteration, it executes the following. It computes the
duration until the next transition will fire (line 6) and advances the current time by
this values (line 7). Afterwards, the transition t to be fired is selected depending on
the current system state (line 10). As soon as the transition is selected, it fires and
the system state is updated accordingly (line 9). Finally, the output trace is updated
with the current system state (line 10). A reliable insight into the system behaviour is
only possible if the system states of several runs are examined. Each run starts from
the same initial state, in which a random generator is initialised with a random seed
(line 1). This allows for various runs of a stochastic process. The system state at time
point τ of each simulation run is recorded and the mean state at this point is given by
Equation 2.5.

m(τ) = (1/N)
N∑

n=1

m(n, τ), (2.5)

where N is the number of simulation runs to be averaged.

Algorithm 2.1: Direct simulation method [ROH17].
Input: An SPN model with its initial state m(τ0);

simulation interval [τ0, τend];
Output: stochastic simulation trace over time.
1: initRandom(seed);
2: time τ = τ0; /* initialise the current time with the start simulation time */
3: state m(τ) = m(τ0); /* assign the initial state to the current state * /
4: m(τ)→ store; /* add the current state to the output trace */
5: while τ ≤ τend do
6: δτ = determine duration until next firing by computing rate function h of all

transitions depending on the current state m(τ);
7: τ = τ + δτ ; /* determine the next time point */
8: t = select the next transition to be fired depending on the current state m(τ);
9: m(τ) = t→ fire; /* fire the transition and update the system state

accordingly */
10: m(τ)→ store; /* add m(τ) to the output trace */
11: end while
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2.4 Quantitative Petri Nets

Figure 2.6 presents some stochastic simulation results of the original Lotka Volterra
system (Figure 2.1). Sub-figure 2.6a illustrates how the system sooner or later will
reach the dead state. Sub-figure 2.6b gives the averaged simulation over twenty runs.
Sub-figure 2.6c demonstrates how the population of preys explodes over time, because
the transition death_predator occurs more often than the transition reproduce_prey
causing the predator population to be dropped rapidly to zero before the prey popula-
tion becomes extinct; which means the system will never reach the dead state. Please
note that for this figure, we stopped plotting the curve at time 50 because after that
time the prey population will keep exponentially growing in a way that is not nu-
merically traceable. The same discussion is applied for Sub-figure 2.6d presenting the
averaged simulation over five runs.

Figure 2.7 shows stochastic simulation results for the original Lotka Volterra sys-
tem shown in 2.1, whereby the growth rate constant of preys is equal to the death
rate constant of predators with four scenarios (by changing the initial marking of
the model places). Sub-figure 2.7a shows that prey species explode, as the transition
death_predator had the chance to fire more often than the transition reproduce_prey
causing predator species to be extinct very quickly before prey species. This enables
prey species to multiply over time. Please note in this scenario we stopped the simu-
lation at time 20 due to the same reason mentioned previously. The other sub-figures
show that prey species become extinct earlier than predator species.

Figure 2.8 presents stochastic simulation results of the extended version of our run-
ning example (Figure 2.3). In Figure 2.6 we notice that the system always reaches a
dead state as preys will be consumed by predators and predators will be killed by, e.g.
hunters (model shown in Figure 2.1). In contrast, Figure 2.8 obviously shows that the
dead state is never reached due to the reset mechanism, according to the model shown
in Figure 2.3.

Figure 2.9 gives stochastic simulation results of the extended version of the Lotka
Volterra system. Here we give simulation traces of the transitions r_prey and r_pred.
The occurrence of one of them describes the re-initialisation of the system. Interest-
ingly, the transition r_pred occurs all the time, because the rate of the transition
pred_death is higher than the rate of the transition reproduce_prey; thus the place
Predator gets clean (zero tokens) before the place Prey, and this causes the transition
r_pred to fire and re-initialisate the system. Please note that if the transition repro-
duce_prey has a higher rate, then this transition will occur all the time due to the
same reason.
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(a) single simulation run with kr=1.1,
kc=0.01 and kd=0.4.
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(b) averaged simulation results over
20 runs.
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(c) single simulation run with kr=0.4,
kc=0.1 and kd=1.1.
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(d) averaged simulation results over
5 runs.

Figure 2.6: Stochastic simulation results of the original version of the Lotka Volterra
system shown in Figure 2.1. The constants N , M and Births have the
values 5, 16 and 2, respectively. The kinetic parameters kr, kc and kd
are assigned to the transitions reproduce_prey, consumption_of_prey and
death_predator, respectively. Sub-figures (a) and (b) show that the system
reaches a dead state in comparison with Sub-figures (c) and (d), due to
the kinetic parameter values.
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(a) single simulation run with N =6 and
M = 15.
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(b) single simulation run with N =50 and
M = 100.
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(c) single simulation run with N =150 and
M = 50.
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(d) single simulation run with N =100 and
M = 100.

Figure 2.7: Stochastic simulation results of the original version of the Lotka Volterra
system shown in Figure 2.1. The constant Births has the value 2. The ki-
netic parameters kr = kd = 1.1 and kc = 0.1 are assigned to the transitions
reproduce_prey, death_predator and consumption_of_prey, respectively.
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(b) averaged simulation results over 20
runs with N = 6 and M = 15.
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(c) single stochastic simulation run with
N = 17 and M = 22.
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(d) single stochastic simulation run with
N = 50 and M = 100.

Figure 2.8: Stochastic simulation results of the extended version of the Lotka Volterra
system shown in Figure 2.3. The kinetic parameters kr = 0.1, kd = 0.4 and
kc = 0.01 are assigned to the transitions reproduce_prey, pred_death and
consumption_of_prey, respectively. Both constants B = 2 and Limit = 15
are used as arc weights. The reset transitions r_prey and r_pred have the
same rate function with the kinetic parameter being 1. Contrary to the
traces shown in Sub-figure 2.6a, a dead state is not reached in the extended
version due to the reset mechanism.
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(a) Single simulation run with N=6,
M=15.
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(b) Single simulation run with N=17,
M=22.

Figure 2.9: Stochastic simulation traces of the reset transitions of the Lotka Volterra
system shown in Figure 2.3. The kinetic parameters kr = 0.1, kd = 0.4 and
kc = 0.01 are assigned to the transitions reproduce_prey, pred_death and
consumption_of_prey, respectively. Constant values are Births = 2 and
Limit = 15. Both reset transitions r_prey and r_pred have the same rate
function with the kinetic parameter 1.
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2.4.2 Continuous Petri Nets
Continuous Petri nets are another type of quantitative Petri nets. Compared to SPN ,
each continuous place (represented as shaded line circle) gets assigned a non-negative
real number; which can biochemically be interpreted as a concentration of a given
species. Moreover, each arc gets assigned a non-negative real number. In CPN , each
continuous transition (represented as shaded line rectangle) gets assigned a determin-
istic firing rate function, which means transitions fire continuously over time. The
formal definition of CPN is given as follows.

Definition 10 (Continuous Petri nets [HH18a])
Continuous Petri nets are a 6-tuple N = ⟨P, T,A, F, V,m0⟩ where:

• P is a finite, non-empty set of continuous places.

• T is a finite, non-empty set of continuous transitions.

• A = AS ∪AI ∪AT ∪AM is the set of directed arcs with,
– AS , AI and AT are sets of the standard, inhibitor and test arcs, respectively.

They follow the same definition as in Definition 4.
– AM ⊆ P × T is the set of modifier arcs.

• P ∩ T = ∅.

• F : A→ R+ is a function which assigns a positive real number to each arc a ∈ A,
except modifier arcs.

• V : T → H is a function which assigns a firing rate function ht to each transition
t ∈ T , whereby H = {ht|ht : R+|•t|

0 → R+
0 , t ∈ T} is the set of all firing rate

functions, and V (t) = ht, ∀t ∈ T .

• m0 : P → R+
0 , is a function which assigns a non-negative real number to each

place as initial marking.

Please note that the symbol R denotes the set of positive real numbers which do not
include zero. CPN do not have equal arcs, as a continuous value can not be precisely
tested. Moreover, reset arcs do not exist in CPN as well. In CPN , for a transition to
be enabled, the token value of all its pre-places must be greater than zero.

Continuous Simulation

The underlying semantic of CPN is best described as a system of ordinary differential
equations (ODEs), whereby each place is described by an equation [SH10], expressing
the continuous change over time of its token value. Thus, the simulation is performed
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by solving the induced system of ODEs. The corresponding ODE describing the change
of the place pi is generated by Equation 2.6, see, e.g., [GH06],

dpi
dτ

=
∑

tj∈•pi

F (tj , pi)Vj(τ)−
∑
tj∈p•i

F (pi, tj)Vj(τ), (2.6)

where pi is the current marking of the place pi. With other words, place names are
here read as real-valued variables. •pi and p•i denote the pre- and post-transitions of a
place pi, respectively; Vj(τ) is the rate function of the transition tj . Summing up all
inflow and outflow of a certain place describes exactly Equation 2.6.
Reading our running example in Figure 2.1 as CPN assuming mass-action kinet-

ics assigned to the transitions reproduce_prey, pred_death and consumption_of_prey
with the kinetic parameters k1, k2 and k3, respectively, gives the following ODEs:

dPrey

dτ
= k1 · Prey − k3 · Prey · Predator

dPredator

dτ
= k3 · Prey · Predator − k2 · Predator

Based on what has been presented above, continuous simulation is performed by
means of an ODE integrator to numerically solve the ODEs system of the model
on hand; see the basic steps sketched in Algorithm 2.2. The algorithm requires the
CPN model together with its initial state and the interval of simulation time. First,
the ODE system corresponding to the input model is constructed (line 1). Afterward,
the ODE solver is initialised with the initial state of the system m(τ0) (line 3), which
then will be added to the output trace (lines 4). Then, the system of ODEs is solved by
updating the system state m(τ) and the current simulation time τ till the simulation
end time is reached (lines 6 - 8).

ODE solvers range from simple fixed-step-size solvers (e.g. Euler), which are suitable
for unstiff CPN models, to more sophisticated variable-order, variable-step, multi-step
solvers (e.g. Backward Differential Formulas (BDFs)) [HBG+05], which are advisable
for stiff CPN models. Figure 2.10 presents simulation results of the original version of
the Lotka Volterra model shown in Figure 2.1 using the stiff solver BDF. As CPN do
not have reset arcs, we can not simulate the extended version of Lotka Volterra in
a deterministic way; thus we are going to model it by means of hybrid Petri nets
(HPN for short).
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Algorithm 2.2: Basic CPN simulation algorithm [HH18a].
Input: CPN with initial state m(τ0);

simulation interval [τ0, τend];
step size δτ with δτ < (τend − τ0);

Output: Deterministic simulation output trace over time.
1: define function f by constructing the ODEs induced by CPN ;
2: time τ = τ0; /* intialise current time with start simulation time */
3: state m(τ) = m(τ0); /* assign the initial state to the current state */
4: m(τ)→ store; /* add the current state to the output trace */
5: while τ ≤ τend do
6: τ ← τ + δτ ; /* determine next time point */
7: m(τ)← m(τ) + δτ.f(s); /* compute new state */
8: m(τ)→ store; /* update the output trace by the current state */
9: end while
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(b) Constant values are: N = 50,
M = 100 and Births = 2.

Figure 2.10: Continuous simulation traces of the Lotka Volterra system shown in Fig-
ure 2.1. The kinetic parameters kr = 1.1, kd = 0.4 and kc = 0.01 are
assigned to the transitions reproduce_prey, death_predator and consump-
tion_of_prey, respectively.
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2.4.3 Hybrid Petri Nets
Hybrid Petri nets (HPN ) [AD98, HH15] are the third net class of quantitative Petri
nets supported in our framework. They increase the modelling power of Petri nets
by combining both stochastic and continuous Petri net capabilities in one model.
They provide two types of places: discrete and continuous places. Discrete places hold
non-negative integer numbers representing number of species. Continuous places hold
non-negative real numbers representing the concentration of species [HH14].

Hybrid Petri nets offer all modelling elements (places, transitions and arcs) which
are mentioned in the preceding quantitative Petri nets. Thus, modellers have to pay
attention when trying to connect elements of different types together. For example,
connecting a discrete place to a continuous transition using a standard arc (or vice
versa) is not allowed as it contradicts the semantic of continuous transition firing
(the standard arc would carry a non-negative real number upon firing the transition).
Contrary, connecting a continuous place to a stochastic transition in both directions
is allowed as the firing of a stochastic transition will remove an integer value from
its pre-place(s) and add an integer value to its post-place(s). Moreover, the special
arcs (read, inhibitor and equal arcs) can go from a discrete/continuous place to a
stochastic/continuous transition; except connecting a continuous place with a con-
tinuous/stochastic transition using an equal arc as a real-valued weight cannot be
precisely tested. Furthermore, continuous transitions cannot use reset arcs; see also
Figure 2.11.

Th formal definition of HPN [Her13] is given as follows:

Definition 11 (Hybrid Petri nets (HPN ) [Her13])
Hybrid Petri nets are a 6-tuple HPN = ⟨P, T,A, F, V,m0⟩, where:

• P = Pdisc∪Pcont, whereby Pdisc is the set of discrete places to which non-negative
integer values are assigned, and Pcont is the set of continuous places to which
non-negative real values are assigned.

• T = Ts ∪ Ti ∪ Td ∪ Tsched ∪ Tcont with:
1. Ts is the set of stochastic transitions, which fire stochastically after an

exponentially distributed waiting time.
2. Ti is the set of immediate transitions, which fire with waiting time zero;

they have higher priority compared with all other transitions.
3. Td is the set of deterministically delayed transitions, which fire after a de-

terministic time delay.
4. Tsched is the set of scheduled transitions, which fire at predefined time

points.
5. Tcont is the set of continuous transitions, which fire continuously over time.
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• P ∩ T = ∅.

• A = Acont ∪Adisc ∪AI ∪AT ∪AE ∪AR ∪AM is the set of directed arcs, with:

1. Adisc ⊆ (P × T ) ∪ (T × P ) defines the set of discrete arcs,
2. Acont ⊆ (Pcont × T ) ∪ (T × Pcont) defines the set of continuous arcs,
3. AT ⊆ (P × T ) defines the set of read arcs,
4. AI ⊆ (P × T ) defines the set of inhibits arcs,
5. AE ⊆ (Pdisc × T ) defines the set of equal arcs,
6. AR ⊆ (P × TD) defines the set of reset arcs,
7. AM ⊆ (P × T ) defines the set of modifier arcs,

where TD = Ts ∪ Ti ∪ Td ∪ Tsched is the set of discrete transitions.

• F is a function

F :



Acont →,R+

Adisc → N,
AT → R+,

AI → R+
0 ,

AE → N,
AR → {1},
AM → {1}.

which assigns a positive integer value or a positive rational value as weight to
each arc depending on the arc type. If an arc is not explicitly weighted, we
assume a weight of 1.

• V is a set of functions V = {g, w, d, f} where :

1. g : Ts → Hs is a function which assigns a stochastic hazard function hst to
each transition tj ∈ Ts, whereby Hs = {hst |hst : R+|•t|

0 → R+
0 , tj ∈ Ts} is

the set of all stochastic hazard functions, and g(tj) = hst , ∀tj ∈ Ts.
2. w : Ti → Hw is a function which assigns a weight function hw to each

immediate transition tj ∈ Ti, such that Hw = {hwt |hwt : R
|•tj |
0 → R+

0 , tj ∈
Ti} is the set of all weight functions, and w(tj) = hwt , ∀tj ∈ Ti.

3. d : Td ∪ Tsched → R+
0 , is a function which assigns constant time to each

deterministically delayed and three real values to each scheduled transition
representing the beginning of the firing interval, the repetition value, and
the end of the firing interval; respectively.
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4. f : Tcont → Hc is a function which assigns a rate function hc to each
continuous transition tj ∈ Tcont, such that Hc = {hct |hct : R

|•tj |
0 → R+

0 , tj ∈
Tcont} is the set of all rates functions and f(tj) = hct , ∀tj ∈ Tcont.

• m0 = mcont ∪mdisc is the initial marking for both the continuous and discrete
places, whereby mcont ∈ R|Pcont|

0 , mdisc ∈ N|Pdisc|
0 .

It is worth mentioning that Snoopy offers two ways to convert between different
types of nodes (only in HPN ), while respecting the connectivity rules between two
different kinds of elements, compare Figure 2.11. The first way is to select a node,
afterwards one should go to Edit menu and then choose the command convert to; as
a result, Snoopy will give the possible target element types to be chosen. The second
option is to open the node attribute dialogue (by double clicking the node) and then
to choose the target node type from the node type attribute (combo-box user interface
(UI)).

Figure 2.11: Connecting rules among HPN elements. Graphical representation of
nodes in Snoopy: discrete place , stochastic transition , continuous
place , continuous transition [Her13]. Please note that immediate,
deterministic and scheduled transitions have the same connection rules as
stochastic transitions (left subnet).

Figure 2.12 presents the extended version of the Lotka-Volterra system in a hybrid
fashion, in which we add two transitions named r_prey and r_pred, each resets the
system to its initial state when either the place Prey or the the place Predator gets
clean (zero tokens). The transitions r_prey and r_pred follow the stochastic firing
principle, while the transitions reproduce_prey, pred_death and consumption_of_prey
follow the deterministic firing principle.
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Figure 2.12: Hybrid Petri net model of the extended Lotka Volterra system, for which
the reset technique is modelled by the stochastic transitions r_prey and
r_pred; while all other remaining Petri net elements being continuous.

Hybrid Simulation

By simulating a biochemical model by means of the hybrid simulator, the set of reac-
tions is first partitioned into two subsets: the slow and the fast ones. The fast reactions
frequently occur and thus it is better to simulate them deterministically, i.e. via an
ODE numerical integrator, while the slow reactions occur infrequently and thus it is
better to simulate them stochastically, i.e. via a stochastic simulation algorithm. A
synchronisation mechanism is utilised to switch between the deterministic and the
stochastic sub-systems [IHHA18].

The partitioning of transitions can be done statically before the simulation starts or
dynamically while the simulation is in progress; for more details, see [Her13, Pah09].
The synchronisation of the stochastic and continuous sub-systems is crucial to gain
accurate simulation results, see [Her13] for more details. The basic hybrid simulation
steps are sketched in Algorithm 2.3. The algorithm takes the initial state together
with the simulation interval as input. The ODEs corresponding to the continuous part
of the HPN model are constructed (line 1), and the initial state of the system with
the initial simulation time are written to the output trace (lines 2-4). Afterwards, the
algorithm determines the time at which a discrete event will occur (τ ′) (line 7), the
ODE system is solved (continuous part) and the corresponding trace is written to
the output trace till the time point τ ′ is reached (lines 10-12). Then, the stochastic
part begins by determining a stochastic transition to be fired (line 15), then firing the
transition and writing the system state to the output trace (lines 16-18).

Figure 2.13 presents simulation traces of the extended version in a hybrid fashion.
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2.4 Quantitative Petri Nets

Algorithm 2.3: Basic HPN simulation algorithm [Her13].
Input: An HPN with initial state m(τ);

simulation interval [τ0, τend];
step size δτ with δτ < (τend − τ0);

Output: Hybrid simulation output trace over time.
1: define function f by constructing the ODEs induced by the continuous part of
HPN ;

2: time τ = τ0; /* intialise current time with start simulation time */
3: state m(τ) = m(τ0); /* assign the initial state to the current state */
4: m(τ)→ store; /* add the current state to the output trace */
5: while τ ≤ τend do
6: ensure ODE solver is initialised;
7: determine duration δτ until next stochastic event;
8: τ ′ ← τ + δτ ; /* determine next time point */
9: while τ ≤ τ ′ do

10: τ ← τ + δτ ; /* advance simulation time */
11: m(τ)← m(τ) + δτ.f(s); /* compute a new state */
12: m(τ)→ store;
13: end while
14: ensure τ = τ ′;
15: determine the transition t firing at time τ ;
16: m(τ)← fire(s, t); /* actual firing of the stochastic transition and updating

the current state */
17: m(τ)→ store; /* update output trace by the new state */
18: end while

Sub-figure 2.13a gives the population change of the preys and predators, whereas Sub-
figure 2.13b presents the occurrences of the reset transitions demonstrating that the
transition r_pred occurs all the time, as the transition pred_death has a higher rate
than the transition reproduce_prey, thus the place Predator becomes clean before the
place Prey. As a result, the transition r_pred occurs all the time.
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(b) Transitions’ occurrences.

Figure 2.13: Hybrid simulation traces of the reset transitions of the extended version
of the Lotka Volterra system shown in Figure 2.12. Constant values are:
N=6, M=15, Births =2 and Limit = 15 ; simulation traces of the Lotka
Volterra hybrid model. The kinetic parameters kr = 0.1, kd = 0.4 and
kc = 0.001 are assigned to the transitions reproduce_prey, pred_death and
consumption_of_prey, respectively. The transitions r_prey and r_pred
got assigned the kinetic rate parameter 1. The time synchronisation
method is Static (exact) and the used ODE solver is ARK.
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2.5 Coloured Petri Nets

2.5 Coloured Petri Nets

Coloured Petri nets (PN C for short) are a powerful modelling approach, which com-
bine the expressive power of Petri nets with those of programming languages [GL79,
Jen81, GL81]. While Petri nets offer a graphical notation for modelling concurrent and
communicating/interacting systems, programming languages provide numerous data
types which allow us to enrich Petri nets with user-defined functions, colour expres-
sions and other annotations, and thus PN C permit to model complex systems in a
compact and tidy fashion [Liu12].

Like standard Petri nets, PN C consist of places, transitions and arcs. Moreover,
PN C are enriched by a set of discrete data types (called colour sets) and a set of
expressions that are used to define the initial marking, arc inscriptions, and guards.
Each place gets assigned a colour set and may contain distinguishable tokens, rep-
resented as a multiset expression over the assigned colour set. A multiset is a set,
which may contain an element several times. Thus, a place may hold several tokens
of the same colour. For instance, let a colour set be S = {a, b, c}, then the expression
1‘a++2‘b++4‘c is a multiset expression over S which contains 1 occurrence of element
a, 2 occurrences of element b and 4 occurrences of element c [AHL21a]. Each transi-
tion gets a guard, which is a Boolean expression over variables, constants or functions
working with the defined colour sets. The guard of a transition has to be evaluated to
true for enabling the transition. Coloured Petri nets are formally defined as follows.

Definition 12 (Coloured Petri net [Liu12])
A coloured Petri net is a 8-tuple N = ⟨P, T,A,Σ, c, g, f,m0⟩, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• P ∩ T = ∅

• A ⊆ (P × T ) ∪ (T × P ) is a finite set of directed arcs.

• Σ is a finite, non-empty set of colour sets.

• C : P → Σ is a colour function that assigns to each place p ∈ P a colour set
C(p) ∈ Σ.

• g : T → EXP is a guard function that assigns to each transition t ∈ T a guard
expression of the Boolean type.

• f : A→ EXP is an arc function that assigns to each arc a ∈ A an arc expression
of a multiset type C(p)MS , where p is the place adjacent to the arc a.
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• m0 : P → EXP is an initialization function that assigns to each place p ∈ P an
initialization expression of a multiset type C(p)MS .

Please note that extending this definition by the special arcs introduced for XPN yields
coloured extended Petri nets (XPN C).
Having a coloured Petri net N = ⟨P, T,A,Σ, c, g, f,m0⟩, each coloured place corre-

sponds to a set of (uncoloured) place instances IP (p), in which each place instance p(c)
represents one colour c from the colour set C(p) which is associated with the coloured
place p ∈ P . The set of place instances of all coloured places is denoted by IP . The
formal definition of a place instance is given as follows.

Definition 13 (Place instance)
A place instance p(c) is a pair (p,c) , where p ∈ P and c ∈ C(p).

For each transition t ∈ T , each expression (transition guard g(t) and its adjacent
arcs) needs to be evaluated. For each involved variable V ar(t), a binding algorithm
has to be applied in order to get all valid bindings B(t) [JKW07]. Each valid binding
b ∈ B(t) represents one (uncoloured) transition instance t(b). The set of all transition
instances of a transition t is denoted as IT (t) and the set of all transition instances of
all coloured transitions is detonated as IT . A transition instance is formally defined as
follows.

Definition 14 (Transition instance)
A transition instance t(b) is a pair (t, b), where t ∈ T and b ∈ B(t).

Definition 15 (Transition instance enabling)
A transition instance t(b) ∈ It is enabled in a marking m, denoted by m[t(b)⟩, if and
only if the following conditions hold:

• g(t)⟨b⟩,

• ∀p ∈ •t,m(p) ≥ f(p, t)⟨b⟩,

which means a transition t(b) is enabled if the guard g(t) induced by a transition’s
guard and those that may occur on the adjacent arc expressions f(p, t) are evaluated
to true. Then, the enabled transition instance t(b) can fire only if pre-place(s) have
enough tokens of the given colours.

Definition 16 (Transition instance firing)
A transition instance t(b) ∈ It enabled in a marking m, may fire and reach a new
marking m′, denoted by m[t(b)⟩m′, with

m′(p) = m(p) + f(t, p)⟨b⟩ − f(p, t)⟨b⟩, ∀p ∈ P
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2.6 Coloured Quantitative Petri Nets

Let us illustrate these definitions by extending the Lotka Volterra system to a
coloured version. As we have seen, the Lotka Volterra system basically comprises two
species: prey and predator, in which predators consume preys. We extend the Lotka
Volterra system to a food chain system, in which the speciesn survives by consuming
the speciesn−1. Figure 2.14 gives the coloured Petri net of the food chain system. The
set of coloured places are: Prey and Predator. All places get assigned the colour set CS
(finite colour set) consisting of three colours 1, 2 and 3. The place Prey is initialised
with N token of the colour 1 which is specified either by using the colour expression
N ‘1 or by using the colour expression N ‘all() (which initialises the place Prey with N
token of all colours) and then assigning the guard [x = 1]x as arc expression which is
the case in our example, while the place Predator is initialised with M token of each
colour which is specified by using the colour expression M ‘all() which means that all
the colours in the colour set CS are set to the same coefficient (here it is M).

Places and transitions are connected to each other by using standard arcs which
are decorated with arc inscriptions, the arc expression Births‘x specifies that Births-
many tokens of the colour determined by variable x will be added from the pre-
place to the post-place by firing either the transition consume_sp or the transition
reproduce_prey.

The transition reproduce_prey is restricted by using the guard (boolean expression)
x = 1. The colour expression [x = 1]x is required to allow only the colour 1 to be
passed over the arc connecting the coloured place Prey to the coloured transition
consume_sp. The colour expression [x > 1](x) + +[x > 1](−x) + +[x = 1](x) is
mandatory to preserve the connection in a chain style which means that if the colour
value of the variable x is greater than 1, then the colour determined by the variable x
together with its predecessor colour will be obtained, otherwise the colour value 1 will
be obtained. Please note that the former expression is equivalent to the expression
[x > 1](x + +(−x)) + +[x = 1]x, but due to some implementation issues in IDD
unfolding we deliberately used the former colour expression.
Please note that changing the colour set CS adjusts the Petri net model to a different

set of predators in the food chain model. Moreover, this also will change the size of
the unfolded model without touching the structure of the coloured model. To learn
more about the syntax of the colour expressions (EXP ). For further details of PN C

as supported by Snoopy, see [Liu12, LHR12b].
Figure 2.15 gives the equivalent standard Petri net of the food chain produced by

unfolding the coloured Petri net model.

2.6 Coloured Quantitative Petri Nets
Likewise, as we have just seen for the uncoloured world, coloured quantitative Petri
nets (QPN C) can be introduced exactly in the same way. For this, each transition
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Figure 2.14: Coloured Petri net of the extended version of the Lotka Volterra Petri sys-
tem (food chain). The colour definitions are: constants: SIZE = 3;N =
M = 10; colour sets: int CS = {1− SIZE}; variables: x: CS.

Births Births Births

Births

consume_sp_1 consume_sp_2 consume_sp_3

Prey_1 Predator_1 Predator_2 Predator_3

reproduce_prey pred_death_1 pred_death_2 pred_death_3

Figure 2.15: Unfolded Petri net of the coloured food chain model given in Figure 2.14.

instance tc of each coloured transition t ∈ T is associated with a rate function which
can be - as usual - interpreted either in the stochastic or continuous way, giving rise
to coloured stochastic Petri nets (SPN C), coloured continuous Petri nets (CPN C),
and coloured hybrid Petri nets (HPN C) [Liu12]. The formal definition of coloured
quantitative Petri nets is given as follows.
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Definition 17 (Coloured Quantitative Petri net [Liu12])
A coloured quantitative Petri net is a 9-tuple N = ⟨P, T,A,Σ, c, g, f, V,m0⟩, where:

• ⟨P, T,A,Σ, c, g, f,m0⟩ is a coloured Petri net.

• V : IT → H is a function which assigns a firing rate function ht(b) to each
transition instance t(b) ∈ IT (t), ∀t ∈ T , whereby H = {ht(b)|ht(b) : R+|•t(b)|

0 →
R+
0 , t ∈ T} is the set of all firing rate functions, and V (t(b)) = ht(b), ∀t(b) ∀t ∈ T .

Please note, firing rates can be colour-dependent, which means the instances of a
given coloured transition may enjoy different rate functions. This feature is crucial for
modelling and simulating biochemical systems.
Like SPN , an SPN C comprises a set of discrete places and stochastic transitions

(each associated with a possibly colour-dependent stochastic firing rate). Figure 2.16
shows the coloured stochastic Petri nets of the food chain model, in which the transition
consume_sp is associated with a colour-dependent rate function which assigns the
mass-action kinetics with parameter kc1 to the transition instance corresponding to
the colour x = 1, the mass-action kinetics with parameter kc2 to the transition instance
corresponding to the colour x = 2 and the mass-action kinetics with parameter kc3 to
the transition instance corresponding to the colour x = 3.
CPN C are the coloured version of continuous Petri nets, each coloured place gets

assigned a continuous number of coloured tokens. Similar to CPN , each coloured
transition gets assigned a continuous firing rate function, also here the rate function
is possibly colour-dependent. Figure 2.17 shows the coloured continuous Petri net of
the food chain model.

It is worth mentioning that the models shown in Figures 2.16 and 2.17 share the
same PN C structure; the difference is in the interpretation of the rate functions as
either stochastic or deterministic rates.
HPN C combines the modelling capabilities of both SPN C and CPN C in one model.

Figure 2.18 shows the food chain model as coloured hybrid Petri net. We further
extend our coloured model given in Figure 2.17 by two stochastic transitions: r_prey
and r_pred, firing any of these two transitions, will reset the system to its initial state,
compare the mechanism discussed for the model given in Figure 2.12. Assuming the
place Prey reaches one token of the colour 1, this will prevent enabling the transition
r_prey because of the connected inhibitor arc, which is decorated with the colour
expression 1′1. A reset transition can only fire, when the connected pre-place reaches
zero tokens of the colour induced by the variable x. Upon firing the transition, e.g.
r_pred, the place Prey will get N tokens of the colour 1 and the place Predator will
get M tokens of all colours.
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Figure 2.16: An SPN C of the food chain. The transition consume_sp gets assigned a
colour-dependent stochastic rate function with mass-action kinetics. This
means the transition instance corresponding to the colour x = 1 will enjoy
the kinetic parameter kc1, the transition instance corresponding to the
colour x = 2 will acquire the kinetic parameter kc2 and the transition
instance corresponding to the colour x = 3 will get the kinetic parameter
kc3.

The simulation of SPN C , CPN C and HPN C is always done on the uncoloured level.
For this purpose, coloured Petri nets are automatically unfolded to their correspond-
ing uncoloured counterparts. Figure 2.19a shows stochastic simulation traces of the
SPN C food chain model given in Figure 2.16 . Figure 2.19b gives the continuous sim-
ulation traces of the CPN C food chain model given in Figure 2.17. Figure 2.20 presents
the hybrid simulation traces of the HPN C food chain model given in Figure 2.18.

2.7 Unfolding Coloured Petri Nets

As we have seen, coloured Petri nets offer a compact way for modelling complex sys-
tems, in which the structure of a sub-system can be regularly repeated. Thus coloured
Petri nets are an excellent choice for modelling such systems. Having a (scalable)
coloured Petri net model, the size of the uncoloured model can be adjusted by chang-
ing the colour sets, e.g. changing the colour set CS in the food chain model will change
the number of predators. Studying the behaviour of coloured Petri nets calls for un-
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Figure 2.17: A CPN C of the food chain. The transition consume_sp gets assigned
a colour-dependent continuous rate function with mass-action kinetics
with parameters kc1, kc2 and kc3. This means the transition instance
corresponding to the colour x = 1 will enjoy the kinetic parameter kc1,
the transition instance corresponding to the colour x = 2 will enjoy the
kinetic parameter kc2 and the transition instance corresponding to the
colour x = 3 will enjoy the kinetic parameter kc3.

folding a coloured Petri net into its equivalent standard Petri net (unfolded Petri net);
then all analysis and simulation techniques supported by standard stochastic, continu-
ous and hybrid Petri nets can be utilised. The algorithm generating the unfolded Petri
net from a coloured Petri net is called Unfolding.

2.7.1 Equivalent Standard Petri Nets

A coloured Petri net has a corresponding equivalent standard Petri net if it builds
on finite colour sets [Jen92]. Definition 18 [Liu12] gives the formal definition of an
equivalent standard Petri net.

Definition 18 (Unfolded Petri net [Liu12])
Let N = ⟨P, T, F,

∑
, C, g, f,m0⟩ be a coloured Petri net. Its unfolded Petri net

N∗ = ⟨P ∗, T ∗, F ∗, f∗,m∗
0⟩ is defined by:

1. P ∗ = IP .

2. T ∗ = IT .
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r_prey r_pred

Figure 2.18: An HPN C of the food chain. It combines the HPN in Figure 2.12 with
the colour definitions of the model shown in Figure 2.16.

3. F ∗ = {(p(c), t(b)) ∈ P ∗ × T ∗|(f(p, t)⟨b⟩)⟨c⟩ > 0} ∪
{(t(b), p(c)) ∈ T ∗ × P ∗|(f(t, p)⟨b⟩)⟨c⟩ > 0}.

4. ∀(p(c), t(b)) ∈ F ∗ : f∗(p(c), t(b)) = (f(p, t)⟨b⟩)⟨c⟩,
∀(t(b), p(c)) ∈ F ∗ : f∗(t(b), p(c)) = (f(t, p)⟨b⟩)⟨c⟩.

5. ∀p(c) ∈ P ∗ : m∗
0(p(c)) = m0(p)⟨c⟩.

The explanations of this definition are as follows [Liu12].

1. Each place instance (each colour) in the place instance set IP of the coloured
Petri net N corresponds to a place in the Petri net N∗. That is, the coloured
tokens in the coloured Petri net are now distinguished by different places in its
corresponding Petri net.

2. Each transition instance (each binding) in the transition instance set IT of the
coloured Petri net N corresponds to a transition in the Petri net N∗. This means
that each binding of the coloured Petri net is instantiated as a transition in its
corresponding Petri net.

3. If the occurrence of t with binding b removes at least one token of colour c from
p, denoted by ((f(p, t)⟨b⟩)⟨c⟩ > 0, then an arc that connects p(c) and t(b) exists
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(a) Stochastic simulation traces of the
model given in Figure 2.16 (single run).
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(b) Deterministic simulation traces of the
model given in Figure 2.17.

Figure 2.19: Stochastic and deterministic simulation traces of the coloured food chain
models. The kinetic parameters kr, kc, kc2, kc3 and kd are getting as-
signed 0.5, 0.01, 0.02, 0.03 and 0.4, respectively.
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Figure 2.20: Simulation traces of the HPN C food chain model shown in Figure 2.18.
The kinetic parameters kr, kc, kc2, kc3 and kd are getting assigned
0.5, 0.01, 0.02, 0.03 and 0.4, respectively.

for the Petri net, whose weight is the number of tokens of the colour c, denoted
by ((f(p, t)⟨b⟩)⟨c⟩. Analogously, if the occurrence of t with the binding b adds at
least one token of the colour c to p, denoted by ((f(t, p)⟨b⟩)⟨c⟩ > 0, then an arc
that connects t(b) and p(c) exists for the Petri net, whose weight is the number
of tokens with colour c, denoted by ((f(t, p)⟨b⟩)⟨c⟩.
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4. If the initial marking of the coloured Petri net N contains tokens of the colour c
on the place p, then the place p(c) of the Petri net N∗ has initial tokens, whose
coefficient is the number of tokens of colour c, denoted by m0(p)⟨c⟩.

Please note that this definition does not involve special arcs and time information, if
PN C contains special arcs, we only need to set coloured arcs and their corresponding
unfolded arcs to the same arc types. For PN C with time information, we simply add
time information to the transition instances (unfolded transitions).

2.7.2 Unfolding Algorithms
Our platform supports three unfolding algorithms: Generic, Gecode and Idd-based
unfolding. All our unfolding engines proceed basically in three steps [SRL+20].

1. Unfolding of coloured places generates for each coloured place as many unfolded
places as we have colours in the place’s colour set, which is also reflected in
the applied naming convention for the generated unfolded places. If the initial
marking of a coloured place p contains n tokens of the colour c, then the unfolded
place p_c has initially n (black) tokens.

2. Unfolding of coloured transitions generates an unfolded transition (transition
instance) for every variable binding and connects this unfolded transition with
those unfolded places which correspond to the binding. The naming convention
for the generated unfolded transition reflects the variable binding.

3. Deleting isolated unfolded places which are never used yielding isolated places.
These isolated places will never influence the net behaviour, even if initially
holding tokens; thus they can be safely removed.

These three steps are sketched in Algorithm 2.4. Our unfolding engines differ from each
other by the method they use for solving the constraint satisfaction problems (CSP)
induced by guards which may occur over transitions, arcs or even initial marking. A
finite domain CSP can be expressed in the following form. Given are a set of variables,
together with a finite set of possible values that can be assigned to each variable, and
a list of constraints (boolean expressions). We have now to find all value combinations
of the variables that satisfy the CSP [Tsa93, BPS99].

Remarkably, all CSP’s defined by a given PN C can be solved independently. In the
following, we sketch briefly how each individual engine deals with the CSP problem
on hand.

Generic Unfolding The generic unfolding algorithm [LHY12] applies patterns (tem-
plates) and basically uses a similar pattern matching mechanism as CPN tools [CK04].
The patterns represent an expression with variables (identifiers) which can be matched
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with arguments to give the values of the variables. Let us take our running example
(food chain), the arc connecting the place Predator to the transition consume_sp has
the following expression as guard: [x > 1](x) ++[x > 1](−x) ++[x = 1](x) represent-
ing three conditions (patterns) separated by the symbol ++ which is interpreted here
as boolean OR, and the variable x is defined on the colour set CS. In order to resolve
the given guard, the binding of the variable x has to be computed, e.g. all the patterns
on the outgoing arc from the place Predator involve one variable (x). Thus, we can
match the coloured tokens on the place Predator (initialised with M tokens of every
colour of the colour set CS comprising the colours 1, 2 and 3) with the given pattern
yielding three possible bindings of the variable x, which is defined on the colour set
CS. The binding list is:

b1 = ⟨x = 1⟩,
b2 = ⟨x = 2⟩,
b3 = ⟨x = 3⟩.

Then, the trivial guard has to be checked against the binding list causing all the
bindings to be considered since they satisfy the given guard.

Gecode Unfolding For scaleable coloured models, the generic unfolding algorithm
suffers from an annoying increase of the unfolding runtime, particularly for large scaling
factors. For the purpose of reducing the unfolding runtime, constraint satisfaction
problems induced by, e.g. guarded transitions are solved by means of the constraint
solver library Gecode [Gec]. The Gecode unfolding accelerates the unfolding, but it
has a notable increase of the runtime for very large models.

Interval Decision Diagrams-based Unfolding IDDs have been proposed in [LR95].
They belong to the symbolic data structures and can be seen as a generalisation
of the popular Binary decision diagrams (BDD) which are helpful to encode Boolean
functions. IDDs are Directed acyclic graphs (DAGs) with two types of nodes - terminal
and non-terminal ones. There are two terminal nodes represented as boxes, labelled
with 0 and 1, and the non-terminal nodes are represented as circles, labelled with
variables occurring in the interval logic function to be encoded [SRL+20]. Non-terminal
nodes may have an arbitrary number of outgoing arcs labelled with intervals of natural
numbers in the form [a, b). To encode the CSP using IDD, the domain of each individual
variable is represented as IDD, then the set of all paths going from the root to the
terminal node 1 describes all solutions of the given CSP; one path encodes more than
one solution.

An IDD is called reduced if the following conditions hold:

1. The interval partitions labelling the outgoing arcs of each non-terminal node are
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reduced.

2. Each non-terminal node has at least two different children.

3. There exist no two nodes with isomorphic sub-graphs.

In comparison with the former unfolding approaches, IDD-based unfolding often
accelerates the unfolding procedure of scaleable models with large scaling factors. For
the entire unfolding algorithm making use of IDD please see [SRL+20].

Figure 2.21 gives an IDD for the boolean expression: (x1 ≥ 8) ∨ (x1 ∈ [5, 8) ∧ x2 ∈
[2, 10) ∧ x3 = 3). Figure 2.21a presents the non-reduced diagram, while Figure 2.21b
depicts the reduced one. Figure 2.22 gives the IDD of the expression [x > 1](x)++[x >
1](−x) ++[x = 1](x) which is used in our running example (food chain model) as arc
expression.

(a) Non-reduced IDD with
three solution paths.

(b) Reduced IDD (two solu-
tion paths) by merging the
labels of the outgoing arcs
of the nodes x1 and x2.

Figure 2.21: An interval decision diagram as an example for the purpose of illustrating
the IDD principle. First, variables have to be totally ordered, they occur
in same order and at most once along each path from the root node to one
of the two terminal nodes. All non-valid paths go to the terminal node
0, while the valid ones go to the terminal node 1. The possible solutions
are (accorrding to the non-reduced IDD (a)) :x1 = 5 − 6, x2 = 2, x3 =
3;x1 = 7, x2 = 3− 9, x3 = 3 and x1;≥ 8.
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Algorithm 2.4: Unfolding a coloured Petri net [Liu12].
Input: a coloured Petri net N = ⟨P, T, F,Σ, C, g, f,m0⟩
Output: an unfolded Petri net N∗ = ⟨P ∗, T ∗, F ∗, f∗,m∗

0⟩
1: for each place p ∈ P do
2: for each colour c ∈ C(p) do
3: create place instance p(c) and initialise it with the number of tokens of the

colour c;
4: end for
5: end for
6: for each transition t ∈ T do
7: collect involved variables from the guard and adjacent arcs;
8: compute variable bindings B;
9: for each binding b ∈ B do

10: create corresponding transition instance t(b);
11: for each arc of t do
12: evaluate its expression EXP ;
13: for each colour c in the binding b of the evaluated expression do
14: create corresponding arc, its weight determined by the number of

tokens of the colour c;
15: end for
16: end for
17: end for
18: end for
19: for each unfolded place p(c) ∈ P ∗ do
20: if it is not connected to any transition instance then
21: remove p(c); /* isolated place */
22: end if
23: end for
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0 1

x

[0,1) [4,oo) [1,4)

Figure 2.22: IDD diagram of the expression [x>1](x)++[x>1](-x)++[x=1](x) which is
used as arc expression in the food chain model given, e.g. in Figure 2.16.
The possible solutions are: x = 1, x = 2 or x = 3.

2.8 Closing Remarks
In this chapter, we recalled various types of Petri nets, qualitative and quantitative
ones alike. For each net class, we presented its formal definition together with modelling
features, and specifically the semantic of quantitative Petri nets comprising continu-
ous, stochastic and hybrid Petri nets. We also presented their simulation algorithms
together with simulation traces of our running example (Lotka Volterra) in different
modelling paradigms.

We also have seen how to model and simulate systems with repeated structures
using coloured Petri nets, for which unfolding is a crucial step for reusing the analysis
techniques of the uncoloured world. We briefly sketched the unfolding algorithms sup-
ported in our platform. In this chapter, we used the Lotka Volterra system as a running
example to illustrate all presented Petri net classes, We made some extensions to this
example to explain some modelling features. The basic version of this model represents
the interaction between two kinds of species (modelled as two places). We extended
the basic Lotka Volterra system to the food chain version (coloured model) which
comprises one prey and many predators (different kinds of predators, each adopts the
prey role for the next predator in the modelled chain) so that the repeated sub-systems
are well-suitable to be folded using coloured Petri nets.

Starting from the quantitative (coloured) Petri nets we are going to introduce the
fuzzy versions of these net classes in the next Chapter for addressing the uncertainties
which may be associated with the kinetic parameters.
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3.1 Introduction
Based on Chapter 2 we go one step further and introduce new classes of Petri nets.
These new classes are called fuzzy Petri nets (FPN ); they are useful for modelling
and simulating systems with uncertain kinetic parameters, e.g. biological systems.

In many biological systems, some kinetic parameters may be uncertain due to incom-
plete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary,
e.g., between different individuals, experimental conditions, etc. (often called variabil-
ity). Fuzzy sets capture kinetic parameters with fuzzy uncertainty or variability by
associating each of those parameters with a fuzzy number instead of a crisp real value.
By running fuzzy simulation, we obtain an uncertain band for each output according
to the fuzzy parameters. Furthermore, we obtain more accurate information about the
effect of parameter uncertainty on the output variables by reconstructing membership
functions over time.

This chapter is organized as follows. We first review previous work concerning the
combination of fuzzy logic with Petri nets in Section 3.2. In Section 3.3 we present
some required definitions which are related to fuzzy logic concept including fuzzy sets
and fuzzy numbers. Then, we introduce fuzzy quantitative Petri nets and their formal
definitions; we illustrate these definitions by means of our running example (Lotka
Volterra) in Section 3.4. In Section 3.5, we introduce coloured fuzzy quantitative Petri
nets together with their formal definitions; we use the food chain model to illustrate
these definitions. In Section 3.6, we present the export relationships among fuzzy and
non-fuzzy Petri nets. Then, we introduce fuzzy simulation algorithms and the required
sampling strategies in Sections 3.7 and 3.8, respectively. Afterwards, we explain the
implementation principle of FPN in Snoopy in Section 3.9. Last but not least, we
sketch some biological case studies which have been modelled and simulated using
our framework together with some experimental results in Sections 3.10 and 3.11,
respectively.
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3.2 Related Works
Fuzzification has been used for dealing with uncertainties in, e.g. biological systems.
Uncertainty here means that some parts of the model are not precisely known [GRHS00].

Uncertainties [KDS09] in biological systems generally fall into two categories [HH94]:
aleatoric and epistemic. Aleatoric uncertainty usually stems from the inherent random-
ness in the behaviour of the system under examination. In biology, for example, noise
in gene expression induces uncertainty in the model output. Since the noise stems from
physical principles, this uncertainty can not be avoided and needs to be addressed by
stochastic analysis. Epistemic uncertainty usually results from the lack of knowledge of
the biological system to be studied due to such limitations as insufficient understand-
ing of the underlying mechanisms, incomplete measurement data for some components
or measurement errors from some data. This kind of uncertainty is appropriately dealt
with by many fuzzy approaches [LHG20]. It is worth mentioning that when we deal
with insufficient understanding of the mechanisms or when we can not obtain suffi-
cient data of a system, we usually encounter structural uncertainty, i.e. it is hard to
determine the exact structure of the model to be built.

The main benefits of fuzzy approaches are based on the generality of function es-
timators, clarity, modularity and easy handling of uncertainty. Contrary, the main
limitations that restrict the use of these systems are the high computational costs and
memory requirements [TAAC15].

Fuzzy logic, as a fundamental component of the fuzzy approach, is a combination
of various mathematical principles for representing knowledge depending on a gradual
degree of membership instead of a crisp membership available in Boolean logic. Fuzzy
logic consists of several sets that can be used to map a certain input to an output, a
process referred to as fuzzy inference. For instance, inferring gene regulatory networks
(GRN) produces hypotheses about the presence or absence of interactions among
genes, hypotheses that can later be tested by laboratory experiments [TAAC15].

As Petri nets are a powerful tool for modelling biological systems, the authors
of [LHG20] reviewed some popular approaches to combine Petri nets with fuzzy logic
and their applications for dealing with uncertainties in systems biology. These ap-
proaches are the following three:

Basic fuzzy Petri nets Standard Petri nets are combined with fuzzy logic to represent
a set of fuzzy rules [V.R06, LYLT17]. These rules have the same form as the IF-THEN
and IF-THEN-ELSE statements describing the required system response as a function
of several linguistic variables. Such kind of modelling yields basic fuzzy Petri nets
(BFPN). This class of Petri nets can address the uncertainty of the model structure,
when the system under study suffers from insufficient prior knowledge or measurement
data to capture its accurate structure. Petri net places represent propositions, e.g.
gene1 is low, whereas transitions represent fuzzy rules over these propositions, e.g. if
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gene1 is low and gene2 is low, then gene3 is high. The connecting arcs represent the
direction of the reasoning. In a BFPN, there is no conflict, as there is no ”resource”
concept and the proposition (of a place) may be shared by different rules at the same
time. This means that all transitions sharing a pre-place can fire concurrently. Each
place p, which represents a proposition, gets a truth degree (or membership degree)
in the closed interval [0,1], obtained via fuzzification of a given crisp value of a species
like g1. A transition is said to be enabled if its pre-places have tokens and their
values are greater than or equal to a threshold. The reasoning process of an FPN
is performed by firing transitions (fuzzy rules) and updating the truth degree of the
places at each reasoning step [LYLT17]. For this purpose, a reasoning algorithm has
to be utilised. The fuzzy inference system (FIS) [MNP11] is responsible for reasoning
over the system. The main elements of the FIS are: fuzzifier, inference engine and
defuzzifier. Crisp input values are converted via the fuzzifier into fuzzy values, which
are then fed into the inference engine. The inference engine performs the reasoning
based on, e.g. Mamdani inference method [Mam77] to produce fuzzy output values.
Here a fuzzy reasoning algorithm is utilised, see, e.g. [V.R06]. The defuzzifier then
converts the fuzzy output values into crisp ones. This approach can equally be applied
on coloured Petri nets, which are useful to represent a large-scale system as a compact
model by encoding similar components of the system as colours [LC18], see Section 2.5.

Fuzzy quantitative Petri nets (FQPN) combine fuzzy rules with quantitative Petri
nets [Win13]. The aim is to complement uncertain modelling capabilities for exist-
ing quantitative Petri nets. FQPN offer a semi-quantitative approach for modelling a
complex biological system, where some components can be built as uncertain fuzzy
models, if some kinetic data are not available or insufficiently precise, and the other
as certain ones, if kinetic data are sufficiently known. There are two kinds of FQPNs
which have been proposed for systems biology.

1. Fuzzy hybrid functional Petri nets (FHFPN) [Win13], which are considered as
an instance of hybrid functional Petri nets (HFPN) [MTA+03] by extending
HFPN with fuzzy logic. An HFPN has two kinds of places (transitions): discrete
and continuous, and allows the weight of each arc to be a function over its
pre-places. Thus, an HFPN model can be divided into two parts, discrete and
continuous. The former can model discrete quantities like molecular numbers or
concentration levels and how they transit from one state to another, and the
latter can model continuous quantities like the concentration of species, and how
they evolve continuously. Unlike HFPN, in an FHFPN, the weight of an arc is
allowed to be a FIS, besides other forms of functions that are allowed in HFPN.

2. Fuzzy continuous Petri nets (FCPN) [BMZM18, LSHG19], which extend CPN by
fuzzy logic. CPN offer a graphical way to represent systems of ordinary differ-
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ential equations (ODEs). For CPN modelling and their semantic, please check
Section 2.4.2.

In an FCPN, some transitions are allowed to be fuzzy ones and the others are
continuous ones that are equivalent to a set of ODE, as a CPN is. Each fuzzy
transition is considered as an FIS, which calculates a concentration change per
time step of a specific species in a fuzzy way.

Quantitative Petri nets with fuzzy kinetic parameters Standard quantitative Petri
nets produce crisp simulation values/traces for specific input which is determined by
the initial state of the model and parameter values. However, there are the following
two scenarios that need to be modelled [LHG20]:

• For a biological model, if some of its kinetic parameters are unavailable or not
precisely known, quantitative (rather than qualitative) analysis of the model may
give an uncertain band of output, in which the true trace would lie in, according
to the uncertain kinetic parameters.

• For a biological model where some of its parameters vary due to environmental
effects or other factors and stochastic methods are not appropriate, it may make
more sense to obtain an uncertain band of output, according to the variability
of the parameters.

Quantitative Petri nets with fuzzy kinetic parameters are the perfect choice for dealing
with such scenarios. They extend the standard quantitative Petri nets by fuzzy kinetic
parameters.

Among all these combinations, we are interested in quantitative Petri nets with
fuzzy kinetic parameters (third group). Figure 3.1 presents the general approach of
combining quantitative Petri nets with fuzzy kinetic parameters represented as trian-
gular fuzzy numbers [ZMC14]. First, the quantitative Petri net model, e.g. a CPN , of
the biological network has to be developed, as usual. Then, fuzzy kinetic parameters
have to be assigned to some transitions, for which kinetic parameter(s) is uncertain.
Then, the fuzzy simulation algorithm has to be performed which gives for each output
variable as a result the following:

• a fuzzy band describing the uncertainties associated with the input. A fuzzy
band is constructed by making use of all generated simulation traces express-
ing the uncertainty which is associated with the input fuzzy number (uncertain
parameter), see the blue region in Figure 3.1,

• membership function developing over time which gives more accurate informa-
tion about the associated uncertainties.
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Figure 3.1: A general diagram of fuzzy quantitative Petri nets. Triangular fuzzy num-
bers are used as kinetic parameters in one or more rate functions. The blue
transition (r3) has a fuzzy kinetic parameter in its rate function, while all
other transitions have crisp kinetic parameters in their rate functions. The
fuzzy model is fed into the fuzzy simulator which generates fuzzy bands
and timed membership functions of the variables (places) of interest as re-
sult (here shown for S2). Note that one membership function at a certain
time point is shown.

In the following, we are going to sketch the related work for quantitative Petri
nets with fuzzy kinetic parameters. Fuzzy stochastic Petri nets have been introduced
in [LHY16] for exploring the uncertainties of output variables resulting from the uncer-
tainties associated with (input) kinetic parameters. They address both the randomness
and fuzziness of biological systems. While stochastic modelling is able to capture the
randomness and fine grain behaviour of biological systems which are not appropri-
ately described by deterministic methods, fuzzy sets are able to address uncertainties
associated with kinetic parameters.

Fuzzy approaches differ from parameter estimation in the following way. Parameter
estimation means to tune parameters and find crisp values to fit the simulation results
to in vivo/vitro experiment observations, i.e., removing parameter uncertainties, while
fuzzification means to derive the uncertainties of outputs which are caused by uncertain
input parameters, i.e., keeping parameter uncertainties. For detailed information about
parameter estimation with Petri nets framework, see [SSW06, KTC+06].
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In [SRAJ18], the authors used fuzzy stochastic Petri nets for studying the effect of
parametric uncertainty on some variables in the Tumor-Immune System. Moreover,
triangular fuzzy numbers have been used as fuzzy kinetic parameters of the system’s
reaction rates.

Fuzzy continuous Petri nets have been introduced in [LCHS18] by combining contin-
uous Petri nets with fuzzy logic. Similar to FSPN , kinetic parameters of continuous
rate functions can be represented by means of fuzzy sets if they can not be precisely
estimated.

In all these researches, modelling and simulation of FPN have been done using
Matlab. There is no doubt that Matlab is a powerful tool and can be used for this
purpose. But it needs a lot of experience and it is not easy to be used especially by
non-informaticians, e.g. biologists.

The research presented in this thesis aims at incorporating quantitative Petri nets
with fuzzy kinetic parameters into our powerful and graphical modelling and simula-
tion tool Snoopy; so that modellers, e.g. biologists, can more easily develop and sim-
ulate their models. Moreover, we consider fuzzy hybrid Petri nets (FHPN ) [AHL19]
as a combination of both fuzzy stochastic Petri nets (FSPN ) and fuzzy continuous
Petri nets (FCPN ) which was not considered previously. The number of fuzzy kinetic
parameters has an influence on the total number of simulations (which have to be
performed) and thus on the simulation time and memory load, as we will see in the
next sections. This calls for efficient sampling strategies to be considered. Moreover,
for the sake of reducing memory load, we reduce the fuzzy bands of the output vari-
ables by considering only the minimum and maximum traces over time. Furthermore,
we produce for each output variable their membership functions over time, which is
not considered in former related work. Finally, we extend coloured quantitative Petri
nets by fuzzy kinetic parameters which is a very powerful extension for modelling and
simulating systems with repeated structures and kinetic parameters. Here we reuse
the same analysis and simulation techniques that are supported by uncoloured fuzzy
Petri nets by unfolding a coloured fuzzy Petri net model into its uncoloured fuzzy
counterpart, which is done in the background.

The fuzzy approach does not aim to capture sensitivity (i.e., which parameters have
a minor/major influence on the output), but is meant to address any lack of knowledge
with respect to kinetic parameters, which we would have to assume as given for any
sensitivity analysis in the first place. What we obtain by our fuzzy kinetic parameters
are - besides the output band - membership functions of any output variable, while
sensitivity analysis does not give such kind of measures. See [MHRK08, LCHS18] for
a detailed discussion of the fuzzy approach and sensitivity analysis.

The fuzzy approach as supported by this thesis is characterised by the following:

• input: a (coloured) fuzzy quantitative Petri net model, whose transition rates
may either enjoy:
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1. crisp kinetic parameters, when the values of the kinetic parameters are
sufficiently well known, or

2. fuzzy kinetic parameters when the kinetic parameters are not precisely
known. We represent each fuzzy kinetic parameter using a triangular fuzzy
number, for which uncertainty is mapped into three points, each could be
interpreted differently.

• output: is described by two kinds of measures:
1. A fuzzy (uncertain) band of each variable (place) of interest describing

the variability associated with uncertain input parameters. The fuzzy band
usually comprises a set of traces describing the variability according to the
input parameters (uncertain parameters). In our approach, we represent
each band using two curves representing the minimum and maximum traces
over time.

2. Timed membership functions of each variable which precisely describe the
associated uncertainties. They capture knowledge about uncertainties caused
by input fuzzy kinetic parameters at each time point of simulation, by map-
ping the interpretation of each point of the input fuzzy kinetic parameter
to those forming the output timed membership function at a certain time
point.

3.3 Fuzzy Logic
Fuzzy logic was initially proposed to deal with imprecise knowledge by simulating
human thinking. It uses a degree of belonging defined by a membership function to
describe an element, and thus can represent different kinds of uncertainties. The fun-
damental concept of fuzzy logic is the fuzzy set [Zad65]. A fuzzy set ξ̃ is defined on a
universal set X by its membership function µ

µξ̃ : X→ [0, 1], (3.1)

which means it only takes real values in the closed (unit) interval [0, 1], thus specifying
a membership degree for each element belonging to the universal set. In contrast, in
traditional (crisp) sets, the membership function only takes the two values {0, 1}.

A fuzzy number is a special (convex and normalised) fuzzy set with the universal set
X given by the set of real numbers. Commonly used fuzzy numbers include triangular,
trapezoidal and Gaussian fuzzy numbers. Among the known types of fuzzy numbers,
triangular fuzzy numbers (TFN for short) have been applied in many application fields,
such as risk analysis, decision-making, and an evaluation type, where a triangular fuzzy
number is used to express the users’ comprehensive evaluation of items [ZMC14].
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A triangular fuzzy number, denoted by ξ̃ = (a, b, c), a ≤ b ≤ c, is defined as (see
Figure 3.2):

µξ̃(x) =


0 if a > x,
x−a
b−a if a < x ≤ b,
c−x
c−b if b < x ≤ c,

0 otherwise.

(3.2)

The α-cut of a fuzzy set at a given membership degree α ∈ [0, 1] (formally called α
level), consists of a crisp subset of X, in which each element has a membership degree
greater than or equal to the given α level.

ξ̃α = {x|µξ̃(x) ≥ α, x ∈ X, α ∈ [0, 1]}. (3.3)

The α-cut of a TFN for any α ∈ [0, 1] is written as

ξ̃α = [a+ α(b− a), c− α(c− b)]. (3.4)

a

μ

α

J 1

0

α

α
1

𝕏 
0

b c

Figure 3.2: A triangular fuzzy number (TFN) defined by the triple (a, b, c), with
0 ≤ a ≤ b ≤ c, where a can be read as the pessimistic value, b as the most
possible value, and c as the optimistic value; and its α-cuts, each defining
an α level.

Figure 3.2 gives a triangular fuzzy number and its α-cuts. Note that uncertainty can
be turned into fuzzy numbers in the following way: we first obtain a rough estimate
for the interval of parameter values, and then extract the pessimistic value (a), the
most possible value (b) and the optimistic value (c); all of these three values (a,b,c)
define a triangular fuzzy number.
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The extension principle [Zad65] offers a general procedure for extending crisp do-
mains to fuzzy domains. Assume f : Xn → Y, and Ã is a fuzzy set on X such that

Ã = µÃ(x1)/(x1) + µÃ(x2)/(x2) + ...+ µÃ(xn)/(xn). (3.5)

The notation Ã = µÃ(xi)/(xi)means that xi has the membership value of µÃ(xi)[Zim10].
Then, applying the extension principle yields the following fuzzy set

B̃ = f(Ã) = µÃ(y1)/(y1) + µÃ(y2)/(y2) + ...+ µÃ(yn)/(yn). (3.6)

where xi ∈ X, yi ∈ Y, yi = f(xi), i = 1, 2, ..., n. By applying the extension principle
on a model described by y = f(p,x, t), the model outputs can be expressed as fuzzy
sets when some or all elements of input parameters are expressed as fuzzy numbers.
Note that p, x and y denote the model parameters, inputs and outputs, respectively.
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3.4 Fuzzy Quantitative Petri nets

Fuzzy logic has been combined with many methods, such as Petri nets, artificial net-
works, differential equations to take advantage of the synergy between graphical rep-
resentation capability and uncertainty handling capability [LHG20].

Fuzzy Petri nets (FPN ) [AHL19] are an extension of standard quantitative Petri
nets by fuzzy kinetic parameters, meaning that kinetic parameters of rate functions can
be defined either as crisp values or fuzzy numbers. Depending on the rate function type,
this yields three quantitative Petri net classes: fuzzy stochastic Petri nets (FSPN )
[LHY16], fuzzy continuous Petri nets (FCPN ) [LCHS18], and fuzzy hybrid Petri nets
(FHPN ) [AHL19].
FSPN are an extension of SPN by associating each transition t ∈ T with a stochas-

tic rate function, whose kinetic parameter can be seen as a crisp value or a fuzzy
number.

In FCPN , continuous Petri nets have been combined with fuzzy kinetic parameters,
in which CPN is described as a set of ODEs, but have some inaccurate or missing ki-
netic parameters. Because of the existence of fuzzy uncertainties caused by insufficient
data as in, e.g. biological systems, we combine fuzzy methods with CPN to accomplish
a trustworthy modelling of such a Petri net class [LCHS18]. This allows continuous
rates to enjoy fuzzy kinetic parameters represented as fuzzy numbers.

Combining both FSPN and FCPN yields FHPN complementing the fuzzy Petri
net family, in which continuous/stochastic rates are allowed to enjoy fuzzy kinetic
parameters and crisp values (as usual).

In the following, the set of all fuzzy numbers is denoted by the symbol Γ. Please
note that the set of fuzzy numbers Γ includes real numbers in R+

0 , as a triangular
fuzzy number can be seen as a real number by assigning to the points forming the
triangular fuzzy number the same value, e.g. (a=b=c). The formal definition of fuzzy
quantitative Petri nets is given as follows:

Definition 19 (Fuzzy quantitative Petri nets)
A fuzzy quantitative Petri net is a 6-tuple N = ⟨P, T,A, F, V,m0⟩, where:

• ⟨P, T,A, F,m0⟩ is a quantitative Petri net; see Chapter 2

• V : T → H is a function which assigns a firing rate function ht to each transition
t, ∀t ∈ T , whereby H = {ht|ht : Γ|•t| → Γ, t ∈ T} is the set of all firing
rate functions, and V (t) = ht, ∀t ∈ T , which means that a kinetic parameter is
described by either a fuzzy number or a real (crisp) number in Γ.

We are going to illustrate fuzzy quantitative Petri nets using FCPN . Figure 3.3
gives fuzzy continuous Petri net of the Lotka Voltera systems, for which the kinetic
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parameter kr of the transition reproduce_prey is defined as a triangular fuzzy number,
whereas all other kinetic parameters remain crisp, see Table 3.1.

Table 3.1: Lotka Volterra system FCPN - rate functions of the transitions, all of them
follow mass/action kinetics pattern.

Transition Rate function Kinetic constant ki
reproduce_prey kr · Prey (0.04,0.46,0.89)
consumption_of_prey kc · (Prey + Predator) 0.1
pred_death kd · Predator 0.4

(a) FCPN model (b) The fuzzy kinetic parameter kr
represented as TFN.

Figure 3.3: The FCPN model of Lotka Volterra system. The transition repro-
duce_prey gets assigned the fuzzy kinetic parameter kr, its membership
function is shown in sub-figure (b).

-

3.5 Coloured Fuzzy Quantitative Petri nets

As we have seen, PN C combine the expressive power of standard Petri nets with
those of programming languages. They are useful for modelling large-scale systems
as compact models by encoding components of such systems as colours. Moreover,
in coloured Petri nets unfolding mechanism plays a crucial role for obtaining an un-
coloured standard Petri net from their coloured counterpart. This permits using all
analysis features which are available for standard Petri nets. For more detailed infor-
mation about colouring and unfolding, we strongly recommend to review Chapter 2.
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Coloured fuzzy Petri nets (FPN C) [AHL21a] are an extension of coloured quantita-
tive Petri nets (QPN C) by fuzzy kinetic parameters, in which kinetic parameters can
be either crisp values (as usual), or fuzzy kinetic parameter - represented as triangular
fuzzy numbers. Depending on the rate function type, we obtain three different Petri
net classes: coloured fuzzy stochastic Petri nets (FSPN C), coloured fuzzy continuous
Petri nets (FCPN C) and coloured fuzzy hybrid Petri nets (FHPN C).

Combining SPN C with fuzzy kinetic parameters yields FSPN C , in which kinetic
parameters of rate functions can be either crisp values or fuzzy numbers. FCPN C com-
bine coloured continuous Petri nets with fuzzy kinetic parameters. While CPN C de-
scribe a set of ODEs, fuzzy kinetic parameters describe parametric uncertainties.
Similar to coloured hybrid Petri nets, combining both FCPN C and FSPN C yields
FHPN C . The formal definition of coloured fuzzy quantitative Petri nets is given as
follows.

Definition 20 (Coloured fuzzy quantitative Petri net)
A coloured fuzzy quantitative Petri net is a 9-tuple N = < P, T,A,Σ, c, g, f, V,m0 >,
where:

• < P, T,A,Σ, c, g, f,m0 > is a coloured Petri net; see Chapter 2.

• v : T → Hc is a function which assigns a firing rate function htc to each transition
instance tc, ∀tc ∈ Tc ∀t ∈ T , whereby Hc = {htc|htc : Γ|•tc| → Γ, tc ∈ Tc} and
v(tc) = htc, ∀tc ∈ Tc ∀t ∈ T , which means that a kinetic parameter is described
by either a fuzzy number or a real number in Γ.

We chose to illustrate this definition using the food chain modelled as FSPN C . Ta-
ble 3.2 gives the rate function of each coloured transition, whereas Figure 3.4 presents
the coloured fuzzy stochastic model of the system.

Table 3.2: Food chain FSPN C- the transitions’ firing rate functions.
Transition Rate function Kinetic parameter
reproduce_prey kr · Prey kr = 0.5
consume_sp kc · Prey · Predator kc = (0.10, 0.42, 0.43)
pred_death k_block · Predator kd = 0.4

3.6 Export Relationships
Fuzzy Petri nets inherit all features from their non-fuzzy counterparts. This means
that it is possible to obtain one FPN net class from a non-fuzzy Petri net class,
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Figure 3.4: The FSPN C model of the food chain; The colour-related definitions: con-
stants: SIZE = 3;N = M = 10; Births = 2; colorset int CS = {1- SIZE};
and variable x: CS. The transition consum_sp is marked in red indicating
that it has a fuzzy kinetic parameter in its rate function.

where all kinetic parameters are crisp. Moreover, obtaining an FPN net class from
another FPN net class is simply done by keeping fuzzy kinetic parameters as they
are. For the coloured world, generating uncoloured FPN from the coloured one is
done by unfolding which is a required additional step.

Obtaining non-fuzzy Petri nets from their fuzzy counterparts will convert fuzzy
kinetic parameters into crisp ones (real values), by keeping the middle value of each
fuzzy kinetic parameter (point b). Additionally, FPN C can be obtained from QPN by
folding the uncoloured Petri net; where all kinetic parameters are crisp (by default).
Figure 3.5 gives the export relations among (coloured) fuzzy and non-fuzzy Petri net
classes.

Exporting a Petri net model to the ANDL format (an exchange format between
Snoopy and Charlie [HSW15]) is useful for, e.g. performing structural analysis of the
given FPN model using Charlie. Thus, uncoloured fuzzy Petri nets can be directly
exported to the ANDL format. For the coloured fuzzy Petri nets, they have to be
unfolded before exporting. Please note that fuzzy Petri nets are always exported to
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FSPN C

FSPN

FCPN C

FCPN

SPN C CPN C

HPN C

FHPN C

FHPN

HPN

SPN CPN

unfolding

folding

direct export

Figure 3.5: Export relation between some of Snoopy’s Petri net classes. Fuzzy nets
differ from their crisp counterparts by additional pre-defined data types,
supporting fuzzy numbers, which can be used as kinetic parameters. The
Snoopy extensions presented in [AHL19] are coloured in blue, while the
latest addition of net classes supported by Snoopy and their export relation
are coloured in red [AHL21a]. Note that for clarity three folding/unfolding
relations are not shown in the figure (SPN– SPN C , CPN– CPN C , HPN–
HPN C).

their non-fuzzy counterparts (in the ANDL files). Coloured fuzzy Petri nets can also
be exported to the CANDL (Coloured Abstract Net Description Language) format,
which is a textual format for the coloured Petri nets supported by Snoopy. Please
note that exporting coloured fuzzy Petri nets to the CANDL format will convert the
given model to its non-fuzzy counterpart by converting the fuzzy kinetic parameters
to crisp parameters and converting the Petri net class to the non-fuzzy counterpart.
For example, exporting an FCPN C model to CANDL, will set the target net class to
CPN C , and all fuzzy kinetic parameters will be crisp in the target CANDL file.

62
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3.7 Fuzzy Simulation

Simulation is always done on the uncoloured level. For this purpose, coloured fuzzy
Petri nets are automatically unfolded to their corresponding uncoloured counterparts.
Please note that fuzzy kinetic parameters do not have any influence on the unfolding
step.

Unfolding our running example FSPN C shown in Figure 3.4 generates the FSPN
shown in Figure 3.6.

Figure 3.6: The unfolded FSPN of the food chain model, given as FSPN C in Fig-
ure 3.4. Please note that the transition instances marked in red have the
fuzzy colour-independent kinetic parameter kc in their rate functions.

Simulation The general idea for simulation and analysis of FPN follows Zadeh’s
extension principle [Zad65], according to which a fuzzy number is represented as a
union of its α-cuts, typically equally spread over the continuous interval [0, 1].

The whole procedure is sketched in pseudo-code notation in Algorithm 3.1. The
algorithm starts off with iterating over all α levels, whereby all fuzzy parameters
are decomposed into α-cuts. This is mainly done by calling Algorithm 3.2 (line 3)
which takes an α level and a fuzzy parameter and returns the corresponding α-cut by
applying the Formula 3.4. After that, crisp values are obtained (line 4) by discretising
the α-cut. Then we draw samples at each α level and run – depending on the given
model class – stochastic, continuous or hybrid simulations for each sample combination
(lines 6–8). Please note that a sample combination means to combine samples taken
from each involved fuzzy parameter at the same level, for instance, having two fuzzy
numbers, then each sample combination comprises two values, each taken from each
fuzzy parameter at a certain level. Finally, the output fuzzy band and membership
functions over time of each output variable are obtained (lines 11–12).
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3 Fuzzy Petri nets

To obtain the output bands of the time series data, we could simply print all simu-
lation traces together into one plot. This would require to keep all simulation traces.
Instead, to reduce the memory load, we determine for each output variable the mini-
mum and maximum values of the traces as they evolve over time. The Algorithm 3.3
is responsible for computing the fuzzy band of a given variable.

Algorithm 3.4 presents how to compose the membership function of a given place
at a certain time point t. This algorithm requires the set of result traces of a given
variable p and the time point t, for which we would like to compute the membership
function. First, the algorithm determines for each α-level (except for the level α=1)
the result points (at the time point t) (lines 4-8). Then, we obtain for each level the
minimum and maximum result points (lines 9-12). Finally, we draw lines between the
computed points starting from the minimum points to the middle point and maximum
points. Please see [LHG20] for more details.

Discretising each α-cut of the fuzzy number(s) independently into crisp values may
produce redundant samples over all levels. This causes unnecessary simulation runs. To
address this issue, more efficient discretising method need to be designed to eliminate
redundant samples. Snoopy supports three sampling strategies, but the last one comes
with four improvements (algorithms). In the following, K gives the number of fuzzy
kinetic parameters, and J the number of α levels.

The FPN simulation settings comprise the same settings as for standard QPN/QPN C ,
but extended by the following settings:

1. alpha levels : specifies the number of α levels; the default value is 10.

2. discretisation points: specifies the number of sample points per each level; the
default value is 10.

3. sampling strategy: the user can choose among seven options: Basic sampling,
Reduced Sampling and five LHS sampling algorithms, outlined in Section 3.8.

3.8 Sampling Strategies

The sampling strategy plays a crucial role for fuzzy simulation. On one hand, it is
used to discretise fuzzy numbers into crisp values. On the other hand, it determines
the number of simulations which have to be performed. Thus, the more efficient the
sampling strategy, the less the number of simulation runs needed. We support three
sampling strategies: Basic Sampling, Reduced Sampling and Latin Hypercube Sam-
pling (LHS).
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Algorithm 3.1: FPN simulation algorithm.
Input: FPN with M variables (places, species) and K fuzzy kinetic parameters, J -

number of α levels.
Output: Output bands & membership functions of the M variables over time
1: for each α level αj , j = 0, 1, . . . J − 1 do
2: for each fuzzy kinetic parameter TFN do
3: α-cut= ObtainAlphaCut(αj ,TFN);
4: Sampling: discretise the α-cut and obtain crisp values;
5: end for
6: for each combination of values for the K fuzzy kinetic parameters do
7: Run stochastic/continuous/hybrid simulation;
8: end for
9: end for

10: for each variable Ym,m = 1, 2, . . .M do
11: Use Algorithm 3.3 for obtaining fuzzy band of the corresponding variable Ym;.
12: Compose all the α-cuts of Ym to obtain its membership function over time;
13: end for

Algorithm 3.2: Compute the alpha cut set of the corresponding fuzzy number
and a certain level.
Input: α level αj and TFN .
Output: α-cut.
1: a = TFN.GetLeft();
2: b = TFN.GetMiddle();
3: c = TFN.GetRight();
4: α-cut= [a+α (b - a), c - α (c - b)];
5: return α-cut;
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Algorithm 3.3: Compute output fuzzy band.
Input: Simulation traces of an output variable p.
Output: The corresponding fuzzy band.
1: MinTrace[ ] = 0; // set the entire trace to 0
2: MaxTrace[ ] = 0; // set the entire trace to 0
3: for each Time Point Tj , j = Start, Start+ 1, . . . EndT ime do
4: for each Simulation Trace ST do
5: if MinTrace[Tj ] > ST[p][Tj ] then
6: MinTrace[Tj ] = ST[p][Tj ];
7: end if
8: if MaxTrace[Tj ] < ST[p][Tj ] then
9: MaxTrace[Tj ] = ST[p][Tj ];

10: end if
11: end for
12: end for

3.8.1 Basic Sampling

Discretises each α-cut of the fuzzy number(s) independently into crisp values. This
strategy discretises each α level with the same number of samples, except for α = 1,
and samples are equally spread over each α level. Thus, samples may occur several
times at different α levels. The occurrence of redundant samples means that there
will be simulation repetition, and thus the same simulation traces will be obtained by
the redundant samples, compare Figure 3.7. The sample redundancy problem has an
influence not only on the fuzzy simulation time, but also on the memory load due to
the repetition of simulation traces. In this case, the total number of simulation runs
is given by Equation 3.7. samples.

S = NK × J + 1, (3.7)

with N being the number of samples per level, K is the number of fuzzy kinetic
parameters and J is the number of α-levels.

We consider our running Lotka Volterra example (FCPN ). For the default settings,
i.e., 10 levels and 10 samples per each level. We have K = 1, J = 10 and N = 10,
which in turn means: to obtain the averaged result of, e.g., 100 stochastic runs, we
have to perform in total 101 x 100 stochastic runs covering all samples over all levels.

3.8.2 Reduced Sampling

This strategy addresses the raised issue of redundant samples by basic sampling. It
takes redundant samples into consideration by reusing the samples at α = 0 for all
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Algorithm 3.4: Compute membership function of an output variable at the time
point t.
Input: Simulation traces of the output variable p (denoted as STp) and the time

point t of simulation time.
Output: Timed membership function of the variable p at the time point t.
1: LevelTraces[ ][ ] = 0; /* required output points at all levels */
2: MinPoints[ ] = 0; /* minimum points of all levels */
3: MaxPoints[ ] = 0; /* maximum points of all levels */
4: for each level j ∈ J except j = 1 do
5: for each simulation trace ST ∈ STp at the level j do
6: LevelTraces[j] .add(ST[t]);
7: end for
8: end for
9: for each vector v ∈ LevelTraces do

10: MinPoints.add(min(v)); /* compute the minimum point and add it to the
vector MinPoints */

11: MaxPoints.add(max(v)); /* compute the maximum point and add it to the
vector MaxPoints */

12: end for
13: Add the result point at the level j = 1 to the vector MinPoints;
14: Draw a line segment between each two minimum points starting from the first

level;
15: Draw line segments between each two maximum points starting from the level

j = 1;
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3 Fuzzy Petri nets

Figure 3.7: Basic sampling strategy. Equidistant samples (here 10) are independently
taken on each level. For α = 1, there is only one sample. The samples s2, s4
and s5 at the level α=0.2 are examples where the redundancy issue occurs.

levels; compare Figure 3.8. Thus, the number of samples at α = 0 should be larger
than in the basic sampling strategy, to obtain a suitable resolution of the results. In
this case, the total number of simulation runs is given by Equation 3.8.

S = NK + (J − 1)× 2 + 1, (3.8)

with N being the number of samples at α = 0, K is the number of fuzzy kinetic
parameters and J is the number of α-levels.
Assuming Lotka Volterra with the same setting as we have for basic sampling,

K = 1, J = 10 and N = 10 with averaged result of 100 stochastic runs, we have to
perform in total 29 x 100 runs.

3.8.3 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a statistical method for generating a near-random
sample of parameter values from a multidimensional distribution [MBC79]. Its name
originates from the terms Latin square and Latin hypercube [Wik21a]. A Latin square
is a matrix of symbols with the same number of rows and columns, where each symbol
occurs exactly once in its rows/columns. It is called Latin, because Latin symbols (let-
ters) were used. The second term hypercube means that the matrix can be generalized
to an arbitrary number of dimensions.

When sampling a function of J variables (uncertain parameters), the range of each
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Figure 3.8: Reduced sampling strategy. Reuses the samples at α = 0 (here 19) for all
levels, if they fall into the corresponding cut, complemented by two samples
at each level, determined by the cut with the triangular shape. For α = 1,
there is only one sample.

variable is divided into K equally probable intervals. K sample points are then placed
to satisfy the Latin hypercube requirements [MBC79], i.e., each sample point occurs
once in each row/column.

The basic principle of LHS matrix construction follows the basic algorithm (Random
LHS). Let us assume we have one uncertain kinetic parameter (K = 1) and we need to
generate four samples (N = 4). A random permutation of (1, 2, 3, 4) is generated for
each column (fuzzy parameter). The numbers from 1 to 4 denote the row index of each
sample, respectively. Let us consider the following permutation (3,1,2,4). This means
picking up a uniform random number from each quarter whose index corresponds to
the generated permutation. For instance, a random number between 0.5 and 0.75 is
chosen for the index of the first sample (picked up from the third quarter as the first
number in the generated permutation is 3), see Figure 3.9. In this way, we obtain a
sample distribution satisfying the LHS requirement. Finally, the uncertain range of
the fuzzy kinetic parameter is mapped to each column in the constructed matrix.

For our purpose, one sampling matrix is constructed for each α level, except the
level α = 1. Figure 3.10 illustrates the LHS sampling matrix with N samples and K
fuzzy kinetic parameters for a certain level j ∈ J . Thus, the total number of simulation
runs is given by Equation 3.9.
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K
N

P1

R1

R2

R3

R4

[0.5-0.75]

[0 - 0.25]

[0.25 -0.5]

[0.75 - 1]

0

1

0.25
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0.75

Figure 3.9: LHS construction for one uncertain parameter (P1) and four samples (R1
to R4). The range from 0 to 1 is equally divided into stripe quarters (de-
pending on the number of samples). The sample locations are determined
using a random permutation of (1, 2, 3, 4). The uniqueness here is char-
acterised by two features random numbers and colours. Note that for one
uncertain kinetic parameter we obtained one column (vector), but the gen-
eral principle follows a square matrix (same number of rows and columns).
Please also note the generated values have to be replaced with the uncer-
tainty range induced by the given uncertain kinetic parameter P1.

S = N × (J − 1) + 1, (3.9)

with N being the number of samples (per each level), which will then be translated
into the number of rows of the sampling parameter matrix, while its number of columns
is determined by K (number of fuzzy kinetic parameters). This sampling scheme does
not require more samples for more dimensions (variables). Using LHS we get now the
minimal number of simulation runs; no matter how many fuzzy kinetic parameters do
exist in the model.

Snoopy uses the public library lhslib [LIBa] for generating the sampling parameter
matrix. Besides the standard LHS Random algorithm, the lhslib library supports four
improved algorithms, which are included in Snoopy’s FPN simulator. In the following
we briefly sketch these algorithms:

• Improved Latin Hypercube Sampling creates an LHS matrix from a set of
uniform distributions to be used in creating an LHS matrix design. It attempts
to optimize the samples with respect to an optimum euclidean distance between

70



3.8 Sampling Strategies

design points [BR12]. The optimum distance D is obtained using Equation 3.10:

D = N/N
1.0
K , (3.10)

Where n is the number of rows (of the LHS matrix) or sample points and K is
the number of parameters.

• Optimum Latin Hypercube Sampling draws an LHS matrix from a set of
uniform distributions to be used in creating a Latin Hypercube Design. This
method uses the Columnwise Pairwise (CP) algorithm to generate an optimal
design with respect to the S optimality criterion. The S-optimality seeks to max-
imize the mean distance from each design point to all the other points in the
design, so the points are spread out as much as possible. For detailed information
about the CP algorithm, please see [Sto05].

• Latin Hypercube Sampling with a Genetic Algorithm this algorithm
attempts to optimize the samples with respect to the S optimality criterion
through a genetic algorithm. For more detailed information about the algorithm,
please see [Sto05].

• Maximin Latin Hypercube Sampling draws an LHS matrix from a set of
uniform distributions to be used for creating a Latin Hypercube Design. This al-
gorithm attempts to optimize the samples by maximizing the minimum distance
between design points (maximin criteria) [Ste87].

Sample No p1 p2 . . pK

1 s11 ∈ [a1, b1] s12 ∈ [a2, b2] · · s1K ∈ [aK , bK ]

2 s21 ∈ [a1, b1] s22 ∈ [a2, b2] s2K ∈ [aK , bK ]

· · · ·
· ·
N sN1 ∈ [a1, b1] sN2 ∈ [a2, b2] · · sNK ∈ [aK , bK ]

Figure 3.10: LHS sampling matrix with N samples and K fuzzy kinetic parameters
for a given level j ∈ J . Each row represents one sample combination of all
fuzzy kinetic parameters. Note that [ai, bi] is the uncertain range of the
parameter i at the level j; e.g. the range [a1, b1] corresponds to [s0, s9] in
Figure 3.7.

Assuming two fuzzy kinetic parameters and one of the LHS strategies is chosen, with
the number of samples per level N = 10 and number of levels J = 10, then the required
number of stochastic simulation runs will be 10 × 10 + 1, averaging results over, e.g.
100 stochastic runs will obtain in total 101 × 100. Compared to the basic sampling
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strategy, LHS obviously dramatically decreases the number of simulation runs required
in total. However, there is some additional overhead due to the computation of the
LHS matrix and the Random Number Generator (RNG) of the LHS library.

In the following, we present fuzzy simulation traces for our running example in two
versions (plain and coloured).

• Figure 3.11 gives the fuzzy simulation results (fuzzy bands and time membership
functions) of the Lotka Volterra system (basic version as FCPN ) shown in Fig-
ure 3.3. Each fuzzy band comprises two curves: the minimum and the maximum
traces over time. The two curves together describe the uncertainty caused by
the variability of the input fuzzy kinetic parameter kr. Sub-figure 3.11a gives a
narrow fuzzy band of both variables Prey and Predator (even identical) as the
used kinetic parameter kr describes a narrow uncertain range (0.06, 0.09, 0.25),
thus there is no big influence on the output, which means we obtain less uncer-
tainty for the used kinetic parameter. Sub-figure 3.11b gives wider fuzzy bands
describing larger uncertainties for the kinetic parameter kr = (0.04, 0.52, 0.89).
As we notice, the corresponding timed membership functions have a line shape,
which means that the points forming membership functions a, b and c are almost
identical. This is also reflected by the corresponding fuzzy band. For instance,
if we consider Sub-figure 3.11d, the membership function of the variable Prey
reports that a = b = c = 0 at time point 85, this can be seen from the fuzzy
band of the variable Prey at the same time point. The same discussion is also
applied for the membership function of the variable Predator which reports that
a = b = c = 2.94.

• Figure 3.12 presents the fuzzy simulation traces of the coloured food chain model.
Both traces show that increasing number of stochastic runs has an influence on
the shape of fuzzy bands and membership functions of the variables.

3.9 Implementation Principle
The implementation of FPN comprises two aspects: Modelling and Simulation. The
modelling aspect is achieved by extending the already existing quantitative (coloured)
Petri net classes by fuzzy kinetic parameters. In the following, we sketch class dia-
grams for some modelling and simulation aspects. For the purpose of simplifying the
diagrams, we only give the class names without presenting the data members and the
methods of each class.
Figure 3.13 presents the class hierarchy of fuzzy Petri nets as they are implemented

in Snoopy. Note that all metadata for the modelling and simulation aspects, e.g. the
place/transition information are kept in sophisticated data structures.

The simulation aspect comprises the following implementations:
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(b) The fuzzy bands - TFN with
(0.04, 0.52, 0.89).

(c) Membership functions at time point 3. (d) Membership functions at time point 85.

Figure 3.11: Fuzzy continuous simulation results of the Lotka Volterra system
(FCPN ) shown in Figure 3.3. Constant values are: N = 17 and M = 22
and Births = 2. The chosen sampling strategy is Basic Sampling, the
number of levels J = 10 and number of samples per each level is 10.

• Sampling algorithms (strategies), see Section 3.8.

• Fuzzy simulation, see Section 3.7.

• Computing the fuzzy bands/timed-membership functions of the output variables.

• Suitable data structures for keeping fuzzy bands together with timed-membership
functions.

• Extending Snoopy’s result viewer by drawing fuzzy bands and the corresponding
timed-membership functions of the selected variables (places), see Figure 3.15.

Figure 3.14 presents the class diagram of the FPN simulation engines. Note that
the library SPSIM [sps] is used for performing the stochastic/continuous/hybrid sim-
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(b) averaged simulation results over 1000 runs.

(c) timed membership functions at t=49 (av-
eraged 500 runs).

(d) timed membership functions at t=49 (av-
eraged 1000 runs).

Figure 3.12: Fuzzy stochastic simulation results of the food chain system shown in
Figure 3.4 and its unfolded FSPN given in Figure 3.6. Constant values
are: N = 10 and M = 10 and Births = 2. The chosen sampling strategy
is Basic Sampling, the number of levels J = 10 and number of samples
per each level is 10. The fuzzy parameter kc gets the uncertainty range
(0.10, 0.42, 0.43)

ulation over the crisp kinetic parameters. The SPSIM library is part of our PetriNuts
tool family.
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Figure 3.13: FPN class diagram. The highlighted classes represent the FPN exten-
sion in Snoopy, which are built by extending the unhighlighted ones.

Figure 3.14: The class diagram of the FPN simulation engines. The highlighted classes
represent the class extensions, which are built by extending the un-
highlighted ones. Note that the parent class SP_DLG_ColPNSimulation
keeps the unfolding information for coloured fuzzy Petri nets.
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Figure 3.15: Snoopy’s result viewer for all (coloured) Petri net classes belonging to
the family of fuzzy quantitative Petri nets. The upper sub-window shows
the fuzzy bands of the selected variables (places) which are constructed
from the minimum and maximum traces over simulation time. The lower
sub-window views timed membership functions of the selected variables.
Please note that one can adjust the time point either by scrolling the scroll
tool or feeding it directly in the related text field. Both fuzzy bands and
timed membership functions of the selected places can be exported into
an image format. Fuzzy bands of the selected places can also be exported
into the CSV format.
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3.10 Case Studies

In the following, we discuss six case studies (FPN and FPN C), for which some of the
kinetic parameters are assumed to be uncertain. For each case study, we present its
fuzzy Petri net model together with a table of the rate functions. Then we give fuzzy
simulation traces represented as fuzzy bands and timed-membership functions. Fuzzy
bands give us an impression of the associated uncertainties, whereas timed-membership
functions provide more accurate information about the associated uncertainties. In-
terested readers can also find more case studies in our technical report [AHL21b].

We would like to emphasise that the positions of the fuzzy kinetic parameters have
been chosen in an arbitrary way, i.e. we chose arbitrary transitions to assign fuzzy
kinetic parameters to the rate functions. The chosen values of the points forming
fuzzy kinetic parameters (a, b and c) have been chosen in an arbitrary way as well.

3.10.1 Virus Infection

The virus infection model [LHY16] describes the infection of healthy cells by a virus.
Cells grow or die. The virus may enter a healthy cell (UCell) and infect it (ICell). Then
the virus starts the replication of itself and more viruses are released. Besides, infected
cells may die and viruses may degrade. Figure 3.16 gives the FSPN model. The
system starts with one virus and 100 healthy cells (uninfected cells). Please note that
the virus replicates itself with 10 viruses as specified by the weight of the arc connecting
the transition virus_release and the place Virus. Table 3.3 gives rate functions of the
model transitions.

Table 3.3: Virus infection FSPN - rate functions of transitions, all following
mass/action kinetics.

Transition r Rate function Kinetic constant k
ucell_death k_ucelldeath · Uninfected_cells k_ucelldeath = 0.1
cell_growth k_growth k_growth = 1
infection k_infect · Uninfected_cells · V irus k_infect =(0.2, 0.3, 0.5)
icell_death k_death · Infected_Cells k_death = 0.5
virus_release k_release · Infected_Cells k_release =1
degradation k_deg · V irus k_deg =0.1

Figure 3.17 gives fuzzy bands of the variables (places) together with timed member-
ship functions using different numbers of stochastic runs. We notice that the number
of stochastic runs has an important rule in determining the shapes of fuzzy bands
and timed membership functions. A high number of stochastic runs gives better
shaped bands/membership function that we can trust due to the inherent random-

77



3 Fuzzy Petri nets

Figure 3.16: The FSPN model of the Virus Infection. The fuzzy kinetic parameter
k_infect is assigned to the transitions infection (coloured in red).

ness (stochasticity) induced by the system. Let us discuss the behaviour of the virus
as an example according to its fuzzy band shown in Sub-figure 3.17b. The fuzzy band
of the variable Virus describes the uncertainty range of the virus development (its
population) over time. The population the virus gets increased overtime due to its
replication. Sub-figure 3.17d shows the lower and upper bounds of the virus popula-
tion at time point 16, which are 14 and 24 (approximately), respectively.
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run per each sample).
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(b) Fuzzy band of variables (averaged over
10 000 runs).

(c) Membership functions did not formed us-
ing single run per each sample).

(d) Membership function of variables at time
point t=16 (averaged over 10 000 runs).

Figure 3.17: Fuzzy stochastic simulation results of the virus infection (FSPN ). The
number of α levels is 10 and the number of samples per each level is 10.
The fuzzy kinetic parameter is k_infect with (0.2,0.3,0.5). The sampling
strategy is Basic Sampling.
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3.10.2 Decay Dimerization
This model consists of a degradation reaction (r1 ), one reversible dimerization reac-
tion (modelled by r2 and r3 ), and the transition r4 describing the reaction which
produces the species S3 from the species S2 [LCHS18]. The FCPN model is shown
in Figure 3.18. Table 3.4 gives the rate functions of the transitions.

Figure 3.18: The FCPN model of the Decay Dimerization. The fuzzy kinetic param-
eters k3 and k4 are assigned to the transitions r3 and r4 (marked in blue
and red, respectively).

Table 3.4: decay-dimerization network FCPN - rate functions of transitions, all follow-
ing mass/action kinetics.

Transition ri Rate function Kinetic constant ki
r1 k1 · S1 k1 = 0.2
r2 k2 · (S1 + S1) k2 = 0.04
r3 k3 · S2 k3 =(0.45, 0.5, 0.55)
r4 k4 · S2 k4 = (4.9, 5.0, 5.4)

Figure 3.19 presents fuzzy simulation traces. Sub-figures 3.19a and 3.19b give the
fuzzy bands of the variables (places) S2 and S3, respectively. Each band describes the
uncertainty range of the concentration of each variable over time. Sub-figures 3.19c
and 3.19d present the membership functions of the variables S2 and S3, respectively.
Each provides precise information about the associated uncertainties, for instance, the
membership function of the variable S2 at time point 31 reports that the minimum
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bound of the species concentration is 13.22, whereas the maximum bound is 14.66,
and the corresponding values for the species S3 are 29.60 and 30.77, respectively.
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(a) Fuzzy band of the variable S2.
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(b) Fuzzy band of the variable S3.

(c) Membership function of the variable S2 at
time point t= 31.

(d) Membership function of the variable S3 at
time point t= 20.

Figure 3.19: Fuzzy continuous simulation results of the Decay Dimerization . The num-
ber of α levels is 10, and the number of samples per each level is 10. The
fuzzy kinetic parameters are k3 =(0.45, 0.5, 0.55) and k4 =(4.9, 5.0, 5.4).
The LHS sampling method is chosen as sampling strategy.
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3.10.3 Yeast Polarization
Yeast Polarization [DLPK10, DRGP11a, CBL17] comprises a set of biochemical re-
actions involving seven species describing the pheromone induced G-protein cycle in
Saccharomyces cerevisiae [DRGP11b]. We model and simulate this system by means
of FHPN , see Figure 3.20. The places R, L, and RL represent the pheromone recep-
tors, ligands, and receptor-ligand complexes, respectively. The place G represents the
G-protein, and Ga, Gd and G_bg represent three separate units. The ligands L bind
with the receptors R to form complexes RL. See [DLPK10] for more details.

This model [LHY16] consists of eight reactions. The continuous net elements are
divided into three continuous transitions (r1, r2 and r6 ) and three continuous places
(R, G_a and G_d), while the rest of the net elements are either discrete places or
stochastic transitions. In this case study, the reactions r6 and r8 have non-complete
knowledge about the kinetic parameter; thus they got assigned fuzzy kinetic param-
eters represented as triangular fuzzy numbers. The entire reactions of this model are
given in Table 3.5. Figure 3.20 gives the corresponding FHPN model.

Figure 3.21 presents the fuzzy bands and membership functions of two variables.
Both fuzzy bands describe how the lower and upper bounds of selected variables de-
velop over time according to the uncertainties caused by uncertain kinetic parameters.
We notice that the bands of the selected places intersect between the period ranging
from 16 and 30 (of simulation time), this is also reflected by the membership functions
at time point 20. As our model has two fuzzy kinetic parameters, we chose the LHS
sampling strategy to reduce the total number of required simulations to be performed,
which will be 101 runs instead of 1001 runs (using basic sampling).

Table 3.5: Yeast polarization FHPN - rate functions of transitions, all following
mass/action kinetics.

Transition ri Rate function Kinetic constant ki
r1 k1 k1 =0.38
r2 k2 ·R k2 = 0.04
r3 k3 · (L+R) k3 =0.082
r4 k4 ·RL k4 =0.12
r5 k5 · (RL+G) k5 = 0.12
r6 k6 ·Ga k6 =(0.08, 0.1, 0.12)
r7 k7 · (Gd +Gbg) k7 =0.005
r8 k8 k8 =(10, 13.21, 15)
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Figure 3.20: The FHPN model of the Yeast Polarization. The fuzzy kinetic parame-
ters k6 and k8 are assigned to the transitions r6 and r8 (coloured in green
and brown, respectively). The deterministic net elements are: the places
R, G_a and G_d and the transitions r1, r2 and r6. The other remaining
net elements are discrete places and stochastic transitions.
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(a) Fuzzy bands of the variables G_a and G_bg.

(b) Membership functions at time point t= 20.

Figure 3.21: Fuzzy hybrid simulation results of the yeast polarization. Th number of α
levels is 10 and the number of samples per each level is 10. LHS sampling
method is chosen as sampling strategy. The number of stochastic runs
(for the stochastic part) is 20 runs.
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3.10.4 Repressilator
Repressilator is a synthetic genetic regulatory circuit known for its oscillation be-
haviour [EL00]. It comprises at least three genes, e.g. a, b and c, each blocking the
next gene in a cyclic way [BCP08]. The coloured model comprises three places, each
gets assigned the colour set Geneset encoding three colours a, b and c. The place gene
is initialised with one token of each colour by using the colour expression 1‘all(). The
set of transitions are generate, block, unblock and degrade. The transition generate
gets a fuzzy kinetic parameters (k_gene) represented as TFN in its rate function,
while the remaining transitions have crisp kinetic parameters in their rate functions;
for more details about transitions’ rate functions; see Table 3.6, and see Figure 3.22
for the entire FSPN C model.

Figure 3.23 presents fuzzy simulation results of some unfolded places using a different
number of stochastic simulation runs. Due to the stochasticity induced by the system,
the number of stochastic runs has an influence on the formed fuzzy band and timed-
membership functions i.e. increasing number of stochastic runs gives better shapes of
fuzzy bands and timed membership functions. Please note that averaging simulation
traces over a high number of runs removes the oscillation behaviour from traces.

The output fuzzy bands of the unfolded places a, b and c report that the fuzzy
kinetic parameter k_gen causes more uncertainties occurring between the minimum
and maximum curves of each individual band, while the system evolves over time.
Furthermore, the proteins a, b and c have the lower bound of 28.01 and their upper
bounds are 85.37, 84 and 84, respectively, as reported by their timed membership
functions at time point 32, see Sub-figure 3.23d.

Table 3.6: Repressilator FSPN C- the transitions’ firing rate functions.
Transition Rate function Kinetic parameter
generate k_gen · gene k_gen = (0.1, 0.1, 0.15)
degrade k_deg · protein k_deg = 0.001
blocked k_block · protein k_block = 1
unblocked k_unblock · blocked k_unblock = 0.0001
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3 Fuzzy Petri nets

(a) The FPN C model of the Repressilator.

(b) The automatically unfolded FSPN , layout auto-
matically generated with the FMMM algorithm
built-in Snoopy by help of the OGDF library [OGD].

Figure 3.22: The FSPN C model of the Repressilator together with its unfolded ver-
sion, adopted from [LH14]; The colour declarations: colorset enum Gene-
Set = {a, b, c}; and variable x: GeneSet. The transition generate is
marked with the orange colour indicating that it has a fuzzy kinetic pa-
rameter in its rate function.
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(a) Fuzzy band of the unfolded places (aver-
aged over 500 runs).
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(b) Fuzzy band of the unfolded places (aver-
aged over 10000 runs).

(c) Membership function of the variables at
time point t=32 (averaged over 500 runs).

(d) Membership function of the variables at
time point t=32 (averaged over 10000
runs).

Figure 3.23: Fuzzy stochastic simulation results of the Repressilator. The number of
α levels is 10 and the number of samples per each level is 10. The kinetic
parameter is k_gen with (0.1, 0.1, 0.15). The used sampling strategy is
basic sampling.
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3.10.5 Membrane Systems

Membrane computing is a branch of molecular computing that aims to develop models
and paradigms that are biologically motivated [Iba05]. Membrane systems (also known
as P systems) are a very powerful computational modelling language, as they are able
to model complex biological phenomena due to their modularity and their ability to
enclose the evolution of different environments and different interrelated processes
[DRQ+20].

Figure 3.24 presents the general structure of a membrane system. Each membrane
(compartment) may contain other membranes and components (also called objects)
that either reside in or translocate between these membranes. A membrane’s object
can be any reactant, i.e. molecule, gene, protein, etc. Furthermore, the skin membrane
(outer membrane) is the one which separates the system from its environment [PR02].
An elementary membrane is the one which does not contain any further membrane.
In membrane systems, there may be some membranes with the same label in the same
level of hierarchy, i.e. two copies with the same label may exist in one compartment.
Therefore, in order to differentiate each copy, we have to use integer numbers as unique
identities [LH13]. Then each membrane will be encoded as a tuple, e.g. (ID, label).
In Figure 3.24, the membranes (m1, l2) and (m2, l2) have the same label l2, thus
the identifiers m1 and m2 have to be used to differentiate them. Note that membrane
labels refer to the types of compartments (e.g., cell membrane and other membranes
of cellular compartments such as chloroplasts, mitochondria, vacuoles etc.), whereas
membrane identifiers refer to the copy number of the cell or cellular compartments.

(m1,l1)

skin

membranes

r2, r3rules

U,Vobjects
(m1,l2)

(m2,l2)
(m3,l2)

(id,label)
elementary membrane

r1

Figure 3.24: The general structure of a membrane system [AHF22].
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A membrane structure µ is represented as a string of matching parentheses [LH13].
Each pair of matching square parentheses [] is called a membrane, e.g. [[]] denotes two
nested membranes. Besides, each membrane is associated with a label, e.g. [1[2]2]1.
For simplicity, we omit the label of the left parentheses, e.g. [[]2]1. The membrane’s
degree m is defined as the number of membranes in a given membrane system; e.g.
m = 2 for the former example. Alternatively, the membrane structure µ with the
degree m ≥ 1 can be represented as a (rooted) tree, whereby the root node represents
the skin membrane and the leaf nodes the elementary membranes.

Note that objects (components) are represented by symbols from a given alphabet.
Tanslocation and/or transformation (interconversion) of the objects occurs according
to certain rules which are called developmental rules. These rules are specific for a cer-
tain compartment or pairs of compartments. Note that developmental rules have many
forms, determining either the transformation or the translocation of the membrane’s
objects. The membrane structure and the multisets of objects in the membranes de-
fine a configuration of a membrane system. The initial configuration is given by the
membrane structure and the multisets of objects available in their membranes at the
beginning of a computation.

The system’s rules include membrane creation, dissolution or division [LH13], ac-
cording to which the membrane system changes its structure, e.g. increase or decrease
the number of membranes. In this case, the membrane system is called a dynamic
membrane system; otherwise, it is called a static membrane system, i.e. with In-
communication/Out-communicates rules only permitting objects to be translocated
within the system’s hierarchy. In the following, we are going to model and analyse a
static membrane system. Please note that dynamic membrane systems are subject to
further work.

Each rule is associated with a stochastic kinetic parameter. Thus, a stochastic sim-
ulation algorithm can be utilised for simulating the system.

Figure 3.25 gives a fuzzy stochastic membrane system (static membrane system).
The system comprises three membranes with two copies of the membrane with la-
bel 2 and four copies of the membrane with label 3. The skin membrane (1,1) is
associated with the object a, while the other ones have no associated objects at the
beginning of computation (initial state of the system). In this example, there is one
in-communication rule which translocates the object a from membrane with label 1
to a randomly chosen membrane with label 3.

As a tree is a special case of a graph, we are going to exploit this idea to represent
membrane systems with nested hierarchy. For this purpose, we introduce the elemOf
(boolean) operation. The elemOf operation is a boolean operation motivated by the
discrete space, represented by a directed graph, e.g. geographical map. Technically
speaking, the elemOf takes two operands, the left-hand operand is a certain colour,
while the right-hand one is a colour set, e.g. c elemOf CS. This operation returns true
if the colour (in left-hand operand) belongs to the colour set (in right-hand operand);
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otherwise, it returns false.

(1,1)

a
(1,2)

(2,2)
a[ ] [a]

(1,3)

(3,3)

(2,3)

(4,3)

a

a

3 3

(a) A membrane system.

(1,1)

(1,2) (2,2)

(1,3) (2,3) (3,3) (4,3)

(b) The tree representing the structure of the
given membrane system.

Figure 3.25: (a) Fuzzy stochastic membrane system. The membrane (1,1) (skin mem-
brane) is associated with the object a, whereas the other membranes have
no associated objects, the rule a[]3 → [a]3 is an in-communication rule
taking place in membrane (1,1), which will transfer the object a to an el-
ementary membrane with label 3. Note that the object a has to be passed
through the membrane with the label 2 to get into the membrane with
label 3. (b) The structure of the membrane system represented as directed
graph (tree). The red node refers to the root of the tree representing the
skin membrane. The leaves of the tree represent the elementary mem-
branes. The directed arcs refer to the direction of moving an object in the
system.

To apply this modelling idea, we perform the following steps:

• We define an enum colour set encoding the vertices of the tree, e.g. Nodes. Each
colour of this colour set encodes one vertex in the tree. Please note that a tree
node corresponds to one membrane.

• A product colour set induced by performing the Cartesian product of the colour
set Nodes, e.g. Matrix. Each element (tuple) of this colour set represents one
possible connection (directed connection) between two graph vertices.

• To obtain the required connections between the graph vertices, we define a subset
colour set, e.g. Connections, by constraining the product colour set Matrix using
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a boolean expression, see Table 3.7.

• To encode the system hierarchy, we add one coloured place, e.g. membrane. This
place has to be defined on the colour set Nodes. Then, we define the initial
marking of this place with one token of the colour A, e.g. 1‘A, as the membrane
(1,1) has one associated object (here the a).

• To encode the rule together with the connectivity style, we add one coloured
transition, e.g. translocate. This transition has to be connected using a loop (two
opposite arcs) to the place membrane. Each arc is decorated with a variable
(defined on the colour set Nodes). Then, We assign a guard to this transition to
determine the directed connections between each two nodes, e.g. (a,b) elemOf
Connections. Please note that we define this guard as a colour function, e.g.
IsConnected(a,b). As each coloured transition corresponds to a set of transition
instances in the unfolded net, thanks to coloured-dependent rate, which allows
to us to specify different rate functions to different transition instances. In this
example, we are going to specify different rate functions to the transition in-
stances representing the translocation of the object a from the membrane (1,1)
(the skin membrane) to the membrane (1,2) and the translocation of the object
a from the membrane (1,1) to the membrane (2,2).

See Figure 3.26 for the coloured fuzzy stochastic Petri net model together with
the unfolded version of this model. Please note that our modelling approach allows
only to define one kind of object to be translocated in the system’s hierarchy. We
may overcome this by combining our modelling approach and the approach which is
presented in [LH13].

Figure 3.27 gives the fuzzy simulation traces of the fuzzy stochastic membrane sys-
tem shown in Figure 3.26a. As our model has two fuzzy kinetic parameters (kab and
kac), we make use of the LHS sampling strategy to reduce the number of required
runs. The discussion related to increasing the number of stochastic runs (which has
been presented for the Repressilator) is also applied here as we have coloured fuzzy
stochastic Petri net model.

The fuzzy bands sketched in Figure 3.27 describe the uncertain probability range,
for which the object a may have the chance to stay in the membrane A (1,1) or
to translocate to the membrane E (4,3). Figure 3.28 presents the timed-membership
functions of the variable membrane_A at different time points. For instance, at time
point 2 the lower bound of the probability that the object may stay at the membrane
membrane_A is 0.14 and the upper bound value is 0.82.
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x
x

x

y
y

x y

(a) Coloured fuzzy stochastic Petri net model.

(b) The unfolded FPNmodel.

Figure 3.26: (a) The coloured fuzzy stochastic Petri net (FSPN C) model, see Ta-
ble 3.7 for colour definitions. Note that we map each tuple representing
(membrane id, label) into a letter encoded by enum type, e.g. the colour A
corresponds the membrane whose id = 1 and label = 1, because colour ids
are not allowed to have the symbol ”_” (due to some inconsistencies). The
parameters kac and kab are fuzzy kinetic parameters. (b) The unfolded
fuzzy stochastic Petri net model, the transition instance translocate_A_C
has the fuzzy kinetic parameter kac and the transition instance translo-
cate_A_B has the fuzzy kinetic parameter kab.
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Table 3.7: Declarations for the coloured model given in Figure 3.26a.
Type Declaration
Constant TFN kab = (0.1, 0.4, 0.9); //fuzzy kinetic parameter.
Constant TFN kac = (0.1, 0.3, 0.61); //fuzzy kinetic parameter.
Constant double kother = 1.0; //crisp kinetic parameter.
Colorset Nodes = enum with {A,B,C,D,E,F,G}; // graph vertices.
Colorset Matrix = product with Nodes x Nodes; // All possible connec-

tions.
Colorset Connections = Matrix with (x = A&(y = B|y = C))|(x =

B&(y = D|y = E))|(x = C&(y = F |y = G));// required con-
nections between the graph nodes.

Variable x :Nodes; y:Nodes;
ColorFunction bool IsConnected(n Nodes, m Nodes) { ((n,m) elemOf Con-

nections)}; // colour function checking a certain colour (n,m)
whether it belongs to the colour set Connections or not.

Figure 3.27: Fuzzy bands and timed-membership functions of the instance places mem-
brane_A and membrane_E at time point t = 3. Fuzzy settings are: α-
levels = 10; Number of sampling points/level = 10; sampling strategy =
LHS; the number of stochastic runs: 1000 runs (first column), averaged
over 10000 runs (second column).
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Figure 3.28: Timed membership functions of the place instance membrane_A at time
points t = 1, 2, 10 and 15; from top left to bottom right. Fuzzy settings are:
α-levels = 10; Number of sampling points/level = 14; sampling strategy
= LHS; averaged over 6000 stochastic runs.
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3.10.6 2D Diffusion
Here we consider an imaginary model [LAC21] to illustrate how to incorporate both
stochastic and deterministic elements in one coloured model as FHPN C . The scenario
we consider is as follows. A gene has two states: active or inactive, which transit from
one to the other with a given probability. When a gene is active, it can be transcribed
into mRNA. Then, mRNA can either be degraded or translated into proteins, which
may degrade or diffuse from one compartment to another [LBHY14]. We model this
scenario in Figure 3.29. In this model, the gene and its state transitions are modelled
using SPN ; whereas protein generation, degradation and diffusion are modelled us-
ing CPN . The transition translate adopts the fuzzy kinetic parameter ktranslate. We
represent the space of the cell as a grid with 51 x 51 sub-volumes, each representing
a compartment. Therefore, we define a tuple colour set with 2601 colours to represent
2601 compartments. Thus, we make use of coloured Petri nets to represent diffusion
space. Table 3.9 presents the colour-related definitions and kinetic parameter values;
also compare Table 3.8 for reaction rates.

Figure 3.29: The FHPN C model of the Whole-cell modelling which includes diffusion.
See Table 3.9 for the colour definitions.

Table 3.8: Rate functions of the FHPN C model.
Transition Rate function Kinetic parameter
activate k1 × Gene_inactive 0.3
inactivate k2 × Gene_active 0.1
transcribe k3 × Gene 0.1
degrade_mRNA k4 × mRNA 0.001
translate k5 × mRNA (0.5, 1.0, 1.5)
diffuse k6 × Protein 1
degrade_protein k7 × Protein 0.001

Figure 3.30 gives the fuzzy simulation traces of some variables. We notice that the
fuzzy bands of the variables Proteins_1_1 and Proteins_1_2 are somewhat iden-
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Table 3.9: Declarations for the model given in Figure 3.29.
Type Declaration
Constant int D1 = 51; //an integer constant used as a scaling factor.
Constant int D2 = D1; //an integer constant used as a scaling factor.
Colorset XDim = int with 1 - D1; // space of X coordinates.
Colorset YDim= int with 1 - D2; // space of Y coordinates.
Colorset CS2D = product with XDim x YDim; // 2D Grid.
Variable x :XDim; y:YDim;
ColorFunction bool Neighbor(x XDim, y YDim, a XDim, b YDim) { (a=x

| a = x+1 | a = x-1) & (b=y | b = y+1 | b = y-1) & ((a=x &
b=y)) & (a <= D1 & b <= D2) & (a >= 1 & b >= 1) }; //
colour function checking whether two points are neighbors
or not.

tical; this is also reflected by the corresponding timed-membership functions; while
Figure 3.31 presents the fuzzy band and corresponding timed-membership function of
the unfolded place mRNA_25_25. It is worth mentioning that the size of the unfolded
model is quite large as follows: 10,404 places, 33,205 transitions, 61,208 standard arcs
and 2,601 read arcs. Thus, obtaining our fuzzy results consumed about half a day of
runtime, and this would be much worse when we average over many stochastic runs.

Figure 3.32 and Figure 3.33 present the 2D minimum and maximum simulation
plots of the fuzzy simulation results, which reflect the concentration of proteins as
they evolve over space and time.
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(a) Fuzzy bands of some unfolded variables. (b) Membership functions of some unfolded
variables at time point t=47.

Figure 3.30: Coloured fuzzy hybrid simulation of the FHPN C model shown in Fig-
ure 3.29. The number of α-levels and number of sampling points per each
level is 5.

(a) Fuzzy band of the unfolded place
mRNA_25_25.

(b) Membership function of the unfolded place
mRNA_25_25 at time point t=30.

Figure 3.31: Coloured fuzzy hybrid simulation of the FHPN C model shown in Fig-
ure 3.29. The number of α-levels and number of sampling points per each
level is 5.
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(a) 2D simulation plot of the protein concen-
tration at each compartment at time point
20.

(b) 2D simulation plot of the protein concen-
tration at each compartment at time point
100.

(c) 2D simulation plot of the protein concen-
tration at each compartment at time point
700.

(d) 2D simulation plot of the protein concen-
tration at each compartment at time point
1000.

Figure 3.32: 2D simulation plot of minimum fuzzy traces of proteins at different points
of the simulation time.
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(a) 2D simulation plot of the protein concen-
tration at at time point 20.

(b) 2D simulation plot of the protein concen-
tration at time point 100.

(c) 2D simulation plot of the protein concen-
tration at time point 700.

(d) 2D simulation plot of the protein concen-
tration at time point 1000.

Figure 3.33: 2D simulation plot of the maximum fuzzy traces of proteins at different
points of the simulation time.
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3.11 Some Performance Results
In this section, we present some experimental results for the fuzzy simulation. We
compare fuzzy simulation runtime for different fuzzy settings. Then we explore the
accuracy of the obtained results using different simulation settings.

In the following, we sketch some performance measures, which describe how much
burden to expect when performing the fuzzy simulation for both uncoloured fuzzy Petri
nets and coloured ones. Table 3.10 presents simulation runtime for Yeast Polarisation
(see Section 3.10.3) using different settings. In this model, fuzzy simulation has been
averaged over 20 runs for the stochastic part of the model. Choosing the LHS as a
sampling strategy, simulation always finishes first, even for a substantial number of
both α-levels and samples/level. This result is expected as the LHS sampling strategy
considerably reduces the number of simulation runs, when we have more than one
fuzzy kinetic parameter in the model.

Table 3.10: Fuzzy simulation runtime for the Yeast Polarisation (FHPN ).
Input simulation time

Levels J Samples N Basic Reduced LHS
10 10 3.49 m 1.41 m 22 s
15 20 5.36 m 3.38 m 55 s
18 30 1.40 h 29 m 2.12 m
20 40 2.17 h 38 m 3.7 m
50 50 14h 12 h 25 m
75 75 ⋄ 21 h 43m

∗ ⋄ simulation did not finish within 24 hours. Done on PC, Intel(R) CPU 1.80GHz, RAM 32.00GB.

For coloured fuzzy Petri nets, we choose the 2D diffusion system. For more details
about the size of the unfolded model and the kinetic data, please check Section 3.10.6.
Table 3.11 gives the fuzzy simulation runtime for the three sampling strategies. We
notice that the fuzzy simulation finishes first using the Reduced sampling strategy,
because the model has only one fuzzy kinetic parameter which means simulation has
to be done using the samples at the level α = 0. However, fuzzy simulation lasts for the
same time for the other two strategies, because both strategies give the same number
of samples when the model has only one fuzzy kinetic parameter. Moreover, we notice
that LHS sampling slightly gives less simulation runtime than the basic sampling which
could confirm that the procedure of discretising the fuzzy number using LHS sampling
is faster than the basic sampling due to some implementation aspects.

Overall, the number of involved fuzzy kinetic parameters together with the number
of levels and number of samples at every level have an influence on the number of
simulations to be performed, and thus on the total simulation time.

Figure 3.34 and Figure 3.35 show fuzzy simulation results for the virus infection
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Table 3.11: Fuzzy simulation runtime for the 2D Diffusion system (FSPN C).
Input simulation time

Levels J Samples N Basic Reduced LHS
4 4 20.25 m 13.4 m 20.19 m

15 10 5.36 m 30.52 m 48.30 m
7 15 2.24 h 31.48 m 2.12 h

10 10 7.23 h 26.12 m 7.11 h
20 20 ⋄ 26.12 m ⋄

∗ ⋄ simulation did not finish within 24 hours. Done on PC, Intel(R) CPU 1.80GHz, RAM 32.00GB.

model with changing the sampling strategy. We notice that the three sampling strate-
gies gave us somewhat identical shapes of fuzzy bands and membership functions.
According to our experience, theses three strategies behave well. Which to choose de-
pends on the number of fuzzy kinetic parameters that exist in the model on hand, as
we have seen above.
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(a) Fuzzy band of variables - basic sampling
strategy.
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(b) Fuzzy band of variables - reduced sampling
strategy.
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(c) Fuzzy band of variables - LHS sampling
strategy.

Figure 3.34: Fuzzy stochastic simulation results of the virus infection (FSPN ). The
number of α levels is 10 and the number of samples per each level is 10.
The fuzzy kinetic parameter is k_infect with (0.2,0.3,0.5).

(a) basic sampling. (b) reduced sampling. (c) LHS sampling

Figure 3.35: Membership functions of the variables for virus infection at time point
11. The fuzzy kinetic parameter is k_infect with (0.2,0.3,0.5).
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3.12 Closing Remarks
In this chapter, we presented various classes of fuzzy quantitative Petri nets sup-
ported in Snoopy comprising coloured and uncoloured ones. These Petri net classes
are very useful when kinetic parameters of the modelled system can not be estimated
or measured precisely. Among those fuzzy Petri nets, coloured fuzzy Petri nets are par-
ticularly useful for modelling and simulating scalable models, e.g. biological models,
involving several copies of a given component, while having at the same time uncertain
kinetic parameters. Moreover, we illustrated three sampling techniques for obtaining
crisp values of the fuzzy kinetic parameters. Among them, LHS is an efficient sam-
pling method trying to minimise the required number of simulations. Moreover, we
briefly sketched the implementation principle of fuzzy Petri nets in Snoopy. Finally,
we presented some experimental results demonstrating how much burden could one
expect when performing fuzzy simulation.

In our framework, we choose to represent biochemical networks as Petri nets. How-
ever, our approach can be equally applied to any related modelling approach for bio-
chemical reaction networks involving fuzzy kinetic parameters.

Future work will include the generation of configuration scripts to delegate the time-
consuming simulation step to the command-line tool Spike [CH19], which will run the
simulations in a parallel manner and possibly remotely on a server. Finally, so far
Snoopy supports only TFNs; we consider the option to support other types of fuzzy
numbers, e.g. trapezoidal fuzzy numbers.
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4.1 Introduction
In this chapter, we sketch some implementation aspects, which are related to our Petri
nets modelling and simulation tool Snoopy. The major contributions include harmon-
ising coloured Petri nets in Snoopy [LHR12a] with the CANDL format [ACR+21] and
with their uncoloured counterparts (in Snoopy) as well. Harmonising coloured Petri
nets is important, as it overcomes previously existing inconsistencies due to some im-
plementation issues, for example, some operators of colour expressions were supported
by the CANDL format, but not by Snoopy. Thus, such a step is crucial to unify the
usage of coloured Petri nets in all our tools. Moreover, we now support new features for
dealing with user-defined declarations in both uncoloured and coloured Petri nets by
exploiting the causal dependencies among Petri net declarations, e.g. cleaning unused
declarations.

This chapter is organised as follows: In Section 4.2 we introduce the CANDL format
for coloured Petri nets and we present previously existing inconsistencies, we then
present how to deal with these inconsistencies. Moreover, we introduce new operations
for colour expressions such as (--) and elemOf which increase the modelling power
of coloured Petri nets. Furthermore, we present some algorithms reflecting the actual
implementation of what has been done. Due to the lack of biological case studies
for demonstrating some of these new operations, we illustrate their usage by some
popular teaching examples for concurrent systems, e.g. the mutual exclusion problem.
We then introduce declaration dependencies in Petri nets and how to represent these
dependencies by means of dependency graphs in Section 4.3. After that, we present two
application scenarios illustrating the usage of declaration dependencies for keeping the
model on hand consistent (valid), for example, to avoid removing declarations which
are already used in the model in an indirect way.

Finally, we present Snoopy’s command-line feature and its advantages in Section 4.4.
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4.2 Harmonisation of Coloured Petri Nets

As we have seen, coloured Petri nets have a set of user-defined declarations which may
be annotated at different parts of the model, i.e. places, transitions and arcs. These
annotations are crucial to obtain the desired model to be built. The coloured abstract
net description language (CANDL) is a human and machine readable exchange format
for different types of coloured Petri nets [ACR+21]. This format is used as a communi-
cation mean (intermediate language) between the family of PetriNuts tools [Pet], e.g.
Snoopy, MARCIE [HRS13] and Spike [CH18] are able to communicate via CANDL.

Software harmonisation is a software engineering aspect. In our context, we mean
by harmonisation to unify the definition of coloured Petri nets in Snoopy [HHL+12]
as they are supported by the CANDL format. This includes unifying the usage of
constants to be used in the same way as in uncoloured Petri nets, which has a big
advantage of developing scaleable models.

We would like to draw the reader’s attention to that we use American English for
the naming convention of the key words, e.g. colorset, whereas we use the British
counterparts in the text describing these key words, e.g. colour set.

4.2.1 Constants

Constants in coloured Petri nets can be characterised into two flavours; the first flavour
is to use them as kinetic parameters, whereas the second one is to use them for colour-
ing purposes; please note that the constants representing kinetic parameters of tran-
sitions’ rate functions (quantitative coloured Petri nets) were previously dealt with as
parameter nodes (ellipses), which means to add one constant, a new parameter node
has to be added to the canvas. For large models, this makes the final model untidy and
will have an influence on the size of the PN model file, as the graphics’ information
have to be kept as well. Thus, harmonising constants to be used in the same way as
in uncoloured Petri nets is an important step.

A constant can be a specific value or a mathematical expression which may involve
pre-defined constants. Each constant has to be associated with a named group. Each
constant group can have one value set or many value sets. The default value set is
the Main value set. Coloured Petri nets in Snoopy support by default four pre-defined
groups. Table 4.1 sketches these groups together with their usage.

Each constant has a data type determining the type of the constant value; see
Table 4.2 for the available data types in coloured Petri nets as they are supported by
Snoopy.

Exporting our running example (food chain) to CANDL format gives the CANDL
file shown in Listing 1. All constants have two value sets, each of which gets allocated
to one of the following groups : all, coloring, marking and parameters. For example,
the constant SIZE belonging to the group coloring is used to scale the model by using
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Table 4.1: Pre-defined constant groups in Snoopy.
Group Name Usage
all constants belonging to the all group are used for all purposes
coloring constants belonging to the coloring group are used for the pur-

pose of scaling the model
marking constants belonging to the marking group are used for initialising

the marking of places
parameter constants belonging to the parameter group are used as kinetic

parameters

Table 4.2: Constant data types in Snoopy’s PN C .
PN class Data types
Qualitative coloured Petri nets int - bool
Quantitative coloured Petri nets int - bool - double
Fuzzy Quantitative coloured Petri nets int - bool - double - TFN

it in the definition of the colour set CS. Thus, the size of the unfolded model (number
of unfolded Petri net elements) will be determined depending on the chosen value set
of the coloring group. It is worth mentioning that exporting a coloured Petri net into
the uncoloured counterpart will not export the constants belonging to the coloring
group as they are only used for the purpose of scaleability.

Listing 1: Coloured food chain model in CANDL format.

1 colspn [food_chain]
2 {
3 constants:
4 /*
5 Value sets
6 */
7 valuesets[Main:V_Set_0]
8

9 /*
10 grouping of constants
11 */
12 all:
13 int Births = [2:3];
14 coloring:
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15 int SIZE = [3:5];
16 marking:
17 int N = [10:20];
18 int M = [N:20];
19 parameter:
20 double kc1 = [.01:0.001];
21 double kc2 = [0.02:0.03];
22 double kc3 = [.03:0.01];
23 double kd = [.4:0.1];
24 double kr = [.5:0.1];
25

26 colorsets: /* colour sets*/
27 Dot = {dot};
28 CS = {1..SIZE};
29

30 variables:
31 CS : x; /* variable defined on the colour set CS */
32

33 /*
34 discrete places
35 */
36 places:
37 discrete:
38 CS Prey = N`1;
39 CS Predator = M`all;
40

41 /*
42 stochastic transitions
43 */
44 transitions:
45 consume_sp
46 :
47 : [Predator + {Births`x}]
48 & [Predator - {[x>1](x++(-x))++[x=1]x}]
49 & [Prey - {[x=1]x}]
50 : /* colour-dependent rates*/
51 [x=1] MassAction(kc1)
52 ++ [x=2] MassAction(kc2)
53 ++ [x=3] MassAction(kc3)
54 ;
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55 reproduce_prey
56 {[x=1]} /* explicit transition guard */
57 :
58 : [Prey + {Births`x}] & [Prey - {x}]
59 : MassAction(kr)
60 ;
61 pred_death
62 :
63 : [Predator - {x}]
64 : MassAction(kd)
65 ;
66

67 }

When the given model has many defined groups and many associated value sets, it is
important to determine efficiently the constant values for obtaining the desired results
for unfolding, animating, simulating or even exporting the coloured model on hand.
Algorithm 4.1 sketches the procedure’s steps assigning the values of the corresponding
selected value set to the constants. The procedure iterates over all defined groups and
then it assigns for all constants belonging to the current group the corresponding value
of the selected value set (lines 1- 6). Please note that the procedure assigns a value
to a constant if the value set is not empty; otherwise, it assigns the default value set
(Main value set, which has to be non-empty) to the constant (line 8).

Algorithm 4.1: Assigning constant values.
1: procedure AssignConstantValues(v) /* v is the selected value sets*/
2: for each defined group g do
3: for each selected value set v do
4: for each constant c belonging to the group g do
5: if the corresponding value of v denoted as v0 is not empty then
6: assign v0 to the constant c;
7: else
8: assign Main value set to the constant c;
9: end if

10: end for
11: end for
12: end for
13: end procedure
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Animation and simulation of scaleable models which are scaled by one or more
scaling factors (constants belonging to the coloring group) require re-unfolding the
model on hand; when changing the latest selected value set of the coloring group.
Algorithm 4.2 sketches the procedure’s steps for assigning the constant values after
changing the latest selected value sets when simulating or animating the given model.
The procedure first calls the procedure AssignConstantValues (line 3). The model will
be unfolded if the value set of the coloring group has changed (line 4). Finally, we
animate or simulate the model (line 6).

Algorithm 4.2: Simulate/Animate a scaleable model when changing the selection
of the groups’ value sets.

1: procedure UpdateConstantValues(ṽ) /* ṽ is the newly selected value sets*/
2: AssignConstantValues(ṽ);
3: if the value set of the coloring group has changed then
4: re-unfold the model;
5: end if
6: do animation/Simulation;
7: end procedure

4.2.2 Colour Expressions
Colour expressions are used as annotations in different positions of the given coloured
Petri net model including places, transitions and arcs. Table 4.3 presents some ex-
amples of using colour expressions in the different positions of a coloured Petri net
model. Due to some previous inconsistencies (related to the computation of the places’
initial marking) in Snoopy, Snoopy now computes the initial marking by means of the
dssd_util library [dss] which makes use of the IDD for this purpose. For more details
about the allowed expressions, please check our CANDL report [ACR+21]. Further-
more, some parts of the colour expression syntax checker in Snoopy previously required
manual parsing which is a time consuming and non-safe way for checking larger models.
Thus, Snoopy now uses the the dssd_util syntax checker.
Another inconsistency between Snoopy and CANDL lay in the usage of some colour

expression operators. Table 4.4 presents these operators and their usage together with
some explanatory examples. Now both operators in each line can be used interchange-
ably.

Beyond that, Snoopy supports now new features/functionalities by extending the
colour expression parser whose grammar and its associated rules were introduced
in [LHR12a]. These features are crucial for dealing with some problems. In the follow-
ing we present these new features together with examples demonstrating them. See
Appendix A for the updated grammar of Snoopy’s colour expressions parser.

110



4.2 Harmonisation of Coloured Petri Nets

Table 4.3: The usage of colour expressions in PN C .
Position Usage Examples

Places
initialise all place instances
with one token

1‘all()

initialise a certain place in-
stance with one token

[x = N&y = M ]1‘(x, y)

initialise a set of place in-
stances with one token

1‘(x > 1)

Transitions guards x=1
colour-dependent rates [x = 1]MassAction(k1)++[x >

1]MassAction(k2)

Arcs arc inscriptions 2‘x++3‘y

Table 4.4: Harmonised boolean operators.

Operator Alternative Description Example
& && logical AND operators x = 1 & & y = 3
| ∥ logical OR operators x = 1 ∥ x = 3
= == equal operators x == 1
<> ! = unequal operators x! = 1

4.2.3 The elemOf Operation
The elemOf operation belongs to the boolean operations; it takes two operands and
returns either true or false. It checks a certain colour whether it belongs to a certain
colour set or not. It returns true if the colour (left-hand operand) belongs to the colour
set (right-hand operand); otherwise, it returns false. Table 4.5 illustrates the usage of
the elemOf operation.

Table 4.5: Examples of the elemOf operation.
example colour set returned boolean value
2 elemOf CS1 CS1 ={1..5} true
8 elemOf CS2 CS2 ={1..5} false
x elemOf CS1 CS1 ={1..5} depends on the binding of the variable x
(x,y) elemOf CS3 CS3 =CS1 x CS2 depends on the bindings of the variables x

and y

Assuming our running example (coloured food chain model), let us assume the first
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prey gets consumed by its predator in a different rate than all other preys in the
chain. Obviously, this problem can be solved by means of colour-dependent rates, as
we have seen in the first chapter. We could also make use of the elemOf operation
to formulate the given problem. For this purpose, we are going to define a subset
colour set called CS_PREY containing the colour of the first prey (by constraining
the colour set CS to the colour 1). We then add a colour-dependent rate function to the
transition consume_sp, i.e. we assign the kinetic parameter kc1 to the rate function if
the instance corresponds to the colour set CS_PREY (colour 1 corresponds to the first
transition instance, e.g. consume_sp_1 ); otherwise, we assign the kinetic parameter
kc2 to the rate functions of all other transition instances. Figure 4.1 gives the coloured
stochastic Petri net model for the problem on hand.

Figure 4.2 gives related stochastic simulation traces of the place instances Prey_1
and Predator_1. We notice that the Predator_1 consumes the Prey_1 and sooner
or later the Predator_1 becomes extinct over time (sub-system 1). For another case
study utilising the operator elemOf, see Epidemic/Pandemic modelling [CGH21].

Figure 4.1: Using elemOf in colour-dependent rates. For the colour definitions and the
used kinetic parameters, see Table 4.6.
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(b) Averaged over 3 stochastic runs.

Figure 4.2: Stochastic simulation traces of the food chain model shown in Figure 4.1.
For the constant values, see Table 4.6.

Table 4.6: Declarations for the model given in Figure 4.1.
Type Declaration
Constant int SIZE = 3; // an integer constant used as scaling factor.
Constant int N = 10; // an integer constant used for initialising the places’

marking
Constant int M = N;
Constant double kc1 = 0.03; // kinetic parameter.
Constant double kc2 = 0.01; // kinetic parameter.
Constant double kr = 0.1; // kinetic parameter.
Constant double kd = 0.4; // kinetic parameter.
Colorset CS = int with 1 - SIZE; // space of preys/predators
Colorset CS_PREY= CS with [ x ==1 ]; // subset colour set with the

first prey, determined by the boolean expression x == 1.
Variable x :CS;
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4.2.4 The Set Difference Operation
The set difference operation is applied in multi-set expressions to subtract a certain
colour or a set of colours from a given colour set. The operator of this operation
is detonated as (--) which performs the opposite operation of the multi-set addition
operator (++). Let a colour set be S = {a, b, c}, Table 4.7 gives some examples of
multi-set expressions with (--) operator over the colour set S.

Table 4.7: Examples of the multi-set difference operation.
Multi-set expression Result
2‘a -- 1‘a 1 occurrence of a
2‘a --a 1 occurrence of a
1‘a ++ 2‘b -- 1‘b 1 occurrence of a and 1 occurrence of b
all() -- 1‘c 1 occurrence of a and 1 occurrence of b
all() -- (1‘a++1‘b) 1 occurrence of c

In the following, we present one case study (mutual exclusion problem), for which it
is crucial to use the set difference operation. The mutual exclusion problem is one of the
most well-known problems in concurrent systems, in which many processes compete to
obtain access to the critical section. The critical section has to be protected from the
concurrent access to a shared resource for writing purposes, i.e. keeping that shared
resource consistent, when several processes are trying to change it. Figure 4.3 gives
the scaleable coloured Petri model for the problem on hand. This model is scaled by
the number of processes. For the colour definitions, please compare Table 4.8.

Table 4.8: Declarations for the model given in Figure 4.3.
Type Declaration
Constant int N = 3; // an integer constant used as scaling factor

representing the number of processes
Colorset Process = int with 1 - N ; // integer colour set
Colorset Bool = bool with {true, false}; // boolean colour set
Colorset Flag = product with Process x Bool; // product colour set
Variable x : Process;
Variable y : Bool;

Each process has four states: Idle, Waiting, AboutToEnter and Mutex, each rep-
resented as a coloured place (defined on the colour set Process) with the place Idle
initialised with one token of every colour. In order to recognise the process which al-
ready asked to get accessed to the critical section, we need to associate a boolean flag
with each process. Thus we add a new place Flag (defined on the colour set Flag)
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being initialised with false for all processes. Moreover, to avoid the situation that two
waiting processes get access to the critical section at the same time, we need to check
that the flags of all the other remaining processes are false. This can be achieved by
using the colour expression (all()--x,y) and assigning the guard y == false to the
transition wait. We then set the flag (to be true) of the process which successfully
passes the transition wait, which means that this process can safely enter the critical
section. Finally, we unset the flag of the process as soon as it leaves the critical section.

In the following we are going to illustrate the model behaviour by playing the token
game (model animation). In our model, the number of competing processes is N = 3,
and the transition askingForAccess is enabled under the given initial marking; thus
the variable x has the following three bindings; x = 1; x = 2; and x = 3; let us fire
the transition askingForAccess by choosing the binding x = 2; this will remove one
token of the colour 2 from the place Idle and add that coloured token to the place
Waiting. Consequently, the transition wait is enabled; because there is one coloured
token in its pre-place and the flags of the processes 1 and 3 are both false; thus, the
process 2 can proceed by firing the transition wait. After that, the transition setFlag
can obviously fire as it is enabled under the current marking, so firing this transition
leads the process 2 to enter the critical section and to set the flag of the process 1 to
true by (2, true).

Now, let us assume that the process 1 (binding x = 1) would try to take its turn;
so firing the transition askingForAcces will remove one token of the colour 1 from the
place Idle and add it to the place Waiting. The transition wait is not enabled as the
flag of the process 2 is true; which does not fulfil the associated guard. Assuming the
process 2 finishes its work in the critical section, then the transition resetFlag can
fire; thus firing this transition leads to reset the flag of the process 2 by (2, false). At
this moment, the process 1 can enter the critical section as the transition wait gets
enabled; the flags of the other remaining processes were reset to false.
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Figure 4.3: One possible solution of the mutual exclusion problem - many processes
trying to get concurrently access to the critical section. See Table 4.8 for
the colour definitions.
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4.2.5 Colour Functions

Colour functions can be any arbitrary colour expressions which can be annotated in
different positions in the coloured model making the coloured Petri net much more
tidy and easy to read. They can be used:

• To determine the initial markings of places,

• As transition’s guard,

• As arc expression.

Each colour function has a return type (colour set) determining the type of the returned
value, parameters together with their colour types and an arbitrary colour expression
as a function body. Snoopy now supports nested function calls (inside the function
body) which implicitly substitutes a function call by its body. Algorithm 4.3 sketches
the function which is responsible for the function body substitution.

Algorithm 4.3: Substitution of the function body.
1: function SubstituteFunctionBody(functionBody)
2: if there is no function call in functionBody then
3: return functionBody;
4: end if
5: substitutedBody ← empty string; /* initialisation step */
6: for each function call f in functionBody do
7: substitutedBody ← substitute f by its body; /* first level substitution*/
8: end for
9: substitutedBody ← SubstituteFunctionBody(substitutedBody); /* recursive call

for more nested function calls if they do exist*/
10: return substitutedBody;

Furthermore, we now support colour functions to be used in a tuple expression
(which was not possible), so that the returned colour value represents an element
in the tuple expression. This includes the default colour function all() which returns
all colours of the given colour set, see the mutual exclusion problem for an example
(Figure 4.3). We are going to illustrate this feature using the GCD (Greatest Common
Divisor) problem.

We define the function g which is formally given in Equation 4.1 [Rüd93]:

g(x, y) =


x if x ≤ y
y if x > y & x % y = 0
x% y otherwise

(4.1)
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In the following, we present three scenarios for modelling the GCD problem by dis-
tributing the computations over many processes. The idea of distributing the GCD
computation was initially introduced in [Mat89], whereas the equivalent PN C model
was presented in [Rüd93].

First scenario Let us assume that we need to compute cooperatively the GCD for
three given integer numbers a, b and c, by distributing the computation on three differ-
ent processes. In this paradigm, the first process computes concurrently the function g
(see Equation 4.1) on the numbers a and b, i.e. g(a,b), the second process first computes
concurrently the function g on the numbers a and b, then it computes the function g
for the output of its first computation and the third number c i.e. g(g(a,b),c). Finally,
the third process computes concurrently the function g on the first and third numbers,
i.e. g(a,c). We iterate all these steps until we obtain the GCD value. See Figure 4.4.

Figure 4.4: Basic coloured model of the GCD problem. We model the space of the
integer numbers by using the integer colour set Nat. Then we initialise
each process with one coloured token representing a, b and c. The three
processes communicate with each other by means of the logical places,
their names start with the prefix ch (channel). Thus these places work as
communication channels between neighbouring processes. We then use the
colour function g to compute the GCD formula. See Table 4.9, for the used
colour definitions.

Second scenario In this scenario, processes are arranged in a cycle, each process
computes the function g(x, y), where x is the integer number which is assigned to
the current process and y is the integer number which is delivered from the single
neighbouring process. Thus, the first process computes g(a, c), the second process
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computes g(b, a) and the third process computes g(c, b). This communication paradigm
gives a better scaleable communication style than the one which has been presented in
the first scenario by exploiting a uniform neighbourhood relation between processes.
See Figure 4.5.

Figure 4.5: Coloured model of the GCD problem (second scenario). The cyclic compu-
tation pipe line exploits the uniform neighbourhood relation between two
consecutive processes. Here we assume, the process 3 is the neighbour of
the process 1. See Table 4.9, for the used colour definitions.

The two coloured models presented in the former scenarios are not scaleable in terms
of the number of communicating processes. This means that we need to manually
add Petri net blocks (representing processes), as many as the number of the integer
numbers we would like to involve in the computation, and we have to add new places
representing the channels between them. Figure 4.6 presents the scalable version of
the GCD model.

4.2.6 Observers

Observers are mathematical expressions, which may involve some model variables
(places) or transitions in order to observe them as the model evolves over time. As
observers were already supported in quantitative Petri nets (uncoloured PN ), we
now support them in coloured quantitative Petri nets in order to observe coloured
places/transitions, place/transition instances or a combination of both (either coloured
or uncoloured places/transitions). Each observer has a unique name, a type which de-
termines the observer type and a mathematical function as observer body. It is worth
mentioning that the observer body may involve constants (integer or double type).
Table 4.10 lists the allowed observer types and a brief description for each one.

Algorithm 4.4 sketches the required steps for computing observers. The algorithm
takes as input the following: simulation traces of places and transitions (coloured and
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Figure 4.6: Scaleable coloured Petri net model for the GCD problem. We encode the
integer numbers and the processes using integer colour sets, e.g. Nat and
process, respectively. In order to associate each process with an integer
number, we need to define the product colour set Channel, by applying
the Cartesian product on the colour sets Process and Nat. The place a is
initialised with one token of the colour (1,108), one token of the colour
(2,76) and one token of the colour (3,60). These tokens represent the pro-
cesses together with the integer numbers which are initially assigned to
them. The place mailbox represents the channels, which will take care of
the communication between neighbouring processes. So, we need to anno-
tate the pre-arc of the place mailbox with the colour expression (left(p),x),
where the function left will return the left neighbour of the process p. Thus,
the tuple expression (left(p),x) represents sending the current number to
the left neighbour. See Table 4.9 for more details.

unfolded ones) and the defined observers, while it gives observer traces as output.
We first initialise the output traces of the observers. We then iterate over all defined
observers (line 2), and for each time point of the simulation time we evaluate the
observers’ body using the simulation traces of the involved places/transitions, and
finally we assign the evaluated value to the corresponding output trace (line 4).

Table 4.11 gives some observer definitions for the coloured food chain shown in
Figure 2.14. Figures 4.7 and 4.8 present the corresponding observer traces. In order to
show the difference between simulation traces of some variables/transitions and their
observer counterparts we give both simulation traces and observer traces side by side.
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Table 4.9: Declarations for all versions of the GCD model. Please note that this table
combines the colour definitions for the three GCD model versions; thus some
definitions in this table are not used by all models.

Type Declaration
Constant int N = 3; // an integer constant used as scaling factor repre-

senting the number of processes.
Constant int MAX_INT = 200;
Colorset Process = int with 1 - N ; // integer colour set
Colorset Nat = int with 1 - MAX_INT ; // integer colour set
Colorset Channel = product with Process x Nat; // product colour set.
Variable x, y, z : Nat;
Variable p : Process;
ColorFunction bool g(y Nat, z Nat) {

[y<=z] y ++ [y>z & y% z=0] z ++ [y>z & y%z <>0] y%z }
ColorFunction Process left (q Process) { [q=1] N ++ [q<>1] q-1 };

Algorithm 4.4: Computation of observers.
Input: Simulation traces and the defined observers.
Output: Output traces of observers.
1: initialise output trace output;
2: for each defined observer do
3: for each time point of the simulation time do
4: output ← evaluate observer body using simulation traces of the involved

variables/transitions;
5: end for
6: end for
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Table 4.10: Observers in coloured quantitative Petri nets.
Type what for
Place observes one or more coloured places
Transition observes one or more coloured transitions
Place instance observes one or more place instances
Transition instance observes one or more transition instances
Mixed observes a combination of any kind of

observers including pre-defined mixed ob-
servers

Table 4.11: Some observer examples - coloured food chain model given in Figure 2.14.
Please note that the constant ko is an arbitrary constant used in the ob-
server body expression.

Observer ID Type Body Figure
ColPlaceObs Place Predator ∗ ko 4.7b
InstPlaceObs Place instance (Predator_1 + 1) ∗ ko 4.8b

InstTransObs Transition instance
pred_death_1 +
pred_death_2 +
pred_death_3

4.8d

MixedObs Mixed InstP laceObs+
ColP laceObs

4.8e

MixedTransObs Mixed pred_death1 +
pred_death

4.8f
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	0

	50

	100

	150

	200

	250

	300

	350

	400

	450

	0 	20 	40 	60 	80 	100

Nu
m
be

r	o
f	T

ok
en

s

Time

ColPlaceObserver

(b) Observer trace, with ko = 2.

Figure 4.7: Simulation trace of the coloured place Predator and its corresponding
coloured place observer (ColPlaceObserver).
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place Predator_1.
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(b) Trace of the InstancePlaceObserver,
with ko = 2.
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(c) Simulation traces of transition
instances for the transition Predator.
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(d) Trace of the InstanceTransObserver.
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(e) Trace of the MixedObserver.
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(f) Trace of the MixedTransitionObserver.

Figure 4.8: Some observer traces of the food chain model as they are defined in Ta-
ble 4.11. The kinetic parameters kr=0.5, kc=0.01 and kd=0.4 are get-
ting assigned to the rate functions of the transitions reproduce_prey, con-
sume_sp and pred_death, respectively.
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4.3 Declaration Dependencies
As we have seen, Petri nets basically comprise different types of structural elements
which can involve a set of user-defined declarations. These declarations are used in
different positions of the model on hand. For example, constants can be used as kinetic
parameters for the transitions’ rates in standard quantitative Petri nets and they can
also be used to develop scaleable models in (quantitative) coloured Petri nets.

The diagram sketched in Figure 4.9 depicts the Petri net declarations for both stan-
dard and coloured Petri nets as they are supported by our framework. We obviously
notice that coloured Petri nets outperform uncoloured Petri nets by their colour-related
definitions which are colour sets, variables and colour functions.

Figure 4.9: Petri net declarations diagram.

In our framework, one declaration can be used by other declarations depending on
its kind, e.g. constants can be used by observers, but not vice versa. Thus, there exist
dependencies among user-defined declarations. We can make use of these dependencies
as we will see later to, e.g. avoid removing one used declaration by other declarations
or by the structural elements of the model on hand, when it contains a large number
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of declarations, and it is difficult to recognise which of these declarations is in use.
Dependency graphs are directed graphs representing causal dependencies between

a set of elements in the form of a directed graph [FRS19, ELMS21]. They have many
applications in, e.g. compilers and text extraction. In the following, we present the
relation among user-defined declarations.

4.3.1 Declaration Dependencies in Uncoloured Petri Nets
Uncoloured Petri nets have three kinds of declarations: constants, functions and ob-
servers. Figure 4.10 presents the possible dependencies among these declarations.

Figure 4.10: Dependency graph of user-defined declarations in uncoloured Petri nets.
Please note that a function is a shortcut for a mathematical expression
that a constant may depend on, i.e. the value of a constant is defined by
a mathematical expression. Constants can take mathematical expressions
directly as values.

Each of these declarations except observers can be used in the PN model for the
following purposes:

• to initialise the places’ marking,

• as arc weight, and

• as kinetic parameter of a transition’s rate.

Algorithm 4.5 sketches the function ComputeConstantDependencyTree which com-
putes the dependency graph of a given constant. Firstly, the algorithm assigns the
constant identifier to the root as key. Then, for each function depending on this con-
stant, it adds the dependency graph of this function as child, by calling the procedure
AddChild, which takes the root node of the given constant and the root node of the
function’s dependency graph that will be obtained by calling the function Compute-
FunctionDependencyTree (lines 3-5). After that, we repeat the same steps for observers
(lines 6-8). Finally, we return the root node of the dependency graph, if the constant is
not used by the other remaining constants (lines 9-11). Otherwise, we add the depen-
dency graph for each constant depending on the given constant by recursively calling
the function ComputeConstantDependencyTree (lines 12-17).
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Algorithm 4.6 presents the function ComputeFunctionDependencyTree, which com-
putes the dependency graph of an input function. Firstly, we assign the function iden-
tifier to the root node as key. We add the dependency graph of each constant if it
depends on the given function (lines 3-5). Then, for each observer depending on this
function, we add the dependency graph of that observer as child by calling the pro-
cedure AddChild, which in turn calls the function ComputeObserverDependencyTree
(lines 1-13). We finally return the root node of the dependency graph, if there is no
other function depending on the given function (lines 6-8). Otherwise, we add the de-
pendency graph for each function depending on the given function as child by calling
the function AddChild which in turn recursively calls the function ComputeFunction-
DependencyTree (lines 14-19).

Algorithm 4.5: Compute the dependency graph of a constant.
1: function ComputeConstantDependencyTree(Idconst, root)
2: root ← Idconst;
3: for each declared function f depending on constant Idconst do
4: newFunChild = CreateNode(); /* creates a new node */
5: AddChild(root, ComputeFunctionDependencyTree(f , newFunChild));
6: end for
7: for each declared observer ob depending on constant Idconst do
8: newOBSChild = CreateNode(); /* creates a new node */
9: AddChild(root, ComputeObserverDependencyTree(ob, newOBSChild));

10: end for
11: if there is no constant uses constant Idconst then
12: return root;
13: end if
14: for each declared constant const except Idconst do
15: if the constant const uses constant Idconst then
16: newConstChild = CreateNode(); /* creates a new node */
17: AddChild(root, ComputeConstantDependencyTree(const,newConstChild));
18: end if
19: end for
20: return root;
21: end function;

Algorithm 4.7 sketches the function ComputeObserverDependencyTree, which com-
putes the dependency graph for an observer. We first assign the observer identifier to
the root node as key (line 2). We then return the root node, if the given observer is
not used by the other remaining observers; otherwise, we add the dependency graph
for each observer using the given observer as child, by calling the procedure AddChild,

126



4.3 Declaration Dependencies

Algorithm 4.6: Compute the dependency graph of a function.
1: function ComputeFunctionDependencyTree(Idfun, root)
2: root ← Idfun;
3: for each declared constant const depending on function Idfun do
4: newConstChild = CreateNode(); /* creates a new node */
5: AddChild(root, ComputeConstantDependencyTree(const, newConstChild));
6: end for
7: for each declared observer ob depending on function Idfun do
8: newObsChild = CreateNode(); /* creates a new node */
9: AddChild(root, ComputeObserverDependencyTree(ob, newObsChild));

10: end for
11: if there is no function uses Idfun then
12: return root;
13: end if
14: for each declared function f except Idfun do
15: if the function f uses function Idfun then
16: newFunChild = CreateNode(); /* creates a new node */
17: AddChild(root, ComputeFunctionDependencyTree(f , newFunChild));
18: end if
19: end for
20: return root;
21: end function;

which recursively calls the function ComputeObserverDependencyTree using a newly
created node (lines 6-11). Please note that this algorithm does not iterate over con-
stants and functions, as there are no forward dependencies form constants/functions
to observers.

127



4 Some Implementation Aspects

Algorithm 4.7: Compute the dependency graph of an observer.
1: function ComputeObserverDependencyTree(Idobs, root)
2: root ← Idobs;
3: if there is no observer uses observer Idobs then
4: return root;
5: end if
6: for each declared observer ob except Idobs do
7: if the observer ob uses observer Idobs then
8: newObsChild = CreateNode(); /* creates a new node */
9: AddChild(root, ComputeObserverDependencyTree(ob, newObsChild));

10: end if
11: end for
12: return root;
13: end function;
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4.3.2 Declaration Dependencies in Coloured Petri Nets

Beside the declarations existing in uncoloured Petri nets, coloured Petri nets have
colour-related declarations. The colour-related declarations include colour sets, vari-
ables and colour functions. Colour sets basically come in two flavours: simple and
compound, where each of which has its own sub-types; compare Figure 4.11. One
colour set may depend on pre-defined colour sets; which is a common case for, e.g.
subset colour sets and product colour sets.

Figure 4.11: Colour sets diagram; illustrating the sub-types of simple and compound
colour sets. Union colour set is marked with red to indicate that it is
deprecated.

Figure 4.12 presents the dependency graph of declarations in coloured Petri nets.
This graph extends the dependency graph of uncoloured Petri nets (shown in Fig-
ure 4.10) by colour sets, variables and colour functions.

Figure 4.13 gives the dependency graph of the constant SIZE for the coloured model
shown in Figure 4.1.
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Figure 4.12: Dependency graph of user-defined declarations in coloured Petri nets.

Figure 4.13: Dependency graph for the constant SIZE, compare Table 4.6 for the
colour-related definitions of the model given in Figure 4.1.

Computing dependency graphs of constants in coloured Petri nets can basically be
performed in the same way as sketched in Algorithm 4.5; but we need to iterate over
colour sets and colour functions. Then we add the dependency graphs of each colour set
and colour function as children, if they use the given constant. Algorithm 4.8 sketches
the function ComputeColorsetDependencyTree, which computes the dependency graph
of the given colour set (line 2). We first assign the colour set identifier to the root node
as key. Then, we iterate over variables and colour functions as they directly depend
on colour sets, and we add their dependency graphs as children if they use the given
colour set (lines 3-13). We finally add the dependency tree of each colour set (except
the given one) as child, if the latter use the given colour set (18-23); otherwise, we
return the root node of the dependency graph of the given colour set (15-17).

The function ComputeVarDependencyTree computes the dependency tree of a vari-
able. It only checks subset colour sets, if they use the given variable to constrain a
global colour set (see colour related definitions of the coloured model shown in Fig-
ure 4.1). Then we add their dependency graphs as children to the root node of the
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given variable. Similarly, the function ComputeColourFunDependencyTree computes
the dependency tree of a colour function which checks the other remaining colour
functions, if they use the given colour function. If so, we add their dependency graphs
as children to the root node of that colour function.

Algorithm 4.8: Compute the dependency graph of a colour set.
1: functionComputeColorsetDependencyTree(Idcs, root)
2: root ← Idcs;
3: for each declared variable var do
4: if the variable var uses colour set Idcs then
5: newV arChild = CreateNode(); /* creates a new node */
6: AddChild(root, ComputeVarDependencyTree(var, newV arChild));
7: end if
8: end for
9: for each declared colour function colfun do

10: if the colour function colfun uses colour set Idcs then
11: newFunChild = CreateNode(); /* creates a new node */
12: AddChild(root, ComputeColourFunDependencyTree(colfun,

newFunChild));
13: end if
14: end for
15: if there is no colour set uses the colour set Idcs then
16: return root;
17: end if
18: for each declared colour set except Idcs do
19: if the colour set cs uses colour set Idcs then
20: newCsChild = CreateNode(); /* creates a new node */
21: AddChild(root, ComputeColorsetDependencyTree(cs, newCsChild));
22: end if
23: end for
24: return root;
25: end function;
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4.3.3 Applications of Declaration Dependencies

In the following, we present two applications for making use of the declaration depen-
dencies.

Cleaning Unused Declarations

Users may define many declarations of the same or different types at early stages of the
model design without using them in the final model. This would cause confusion for
modellers, when they would further develop the model in the future. Thus polishing the
model by cleaning its unused declarations would be of help for this case. Algorithm 4.9
sketches the boolean function IsUsedDeclaration. This function takes the root node of
the dependency graph of a certain declaration, to take a decision about the usage of
the declaration (in the model). This function returns true if one of the following two
cases hold: the first case (2-4): the declaration is directly used in the model, e.g. by a
place; the second case: there exists at least one other declaration (in the dependency
graph) using it in an indirect way (lines 5-9). Otherwise, it will return false (line 10).
For example, the dependency graph shown in Figure 4.13, the constant SIZE is used
by the colour set CS which in turn is used directly in the model shown in Figure 4.1.

Algorithm 4.9: Determine whether a declaration is used or not in n PN model.
1: function IsUsedDeclaration(root)
2: if the key of the root is used in the model then
3: return true; /* the declaration is directly used in the model */
4: end if
5: for each child node do
6: if IsUsedDeclaration(child) then
7: return true; /* stop here, it is enough to find one used declaration (child)

to take a decision */
8: end if
9: end for

10: return false; /* the declaration is not used */
11: end function;

After finding unused declarations, a user can delete them, but it could happen
that a modeller would like to keep some unused declarations for further use in the
future. For this purpose, we support an option to individually select/unselect some
of those declarations. Here we make use of the dependency graph to automatically
find those dependencies which have to be kept. Algorithm 4.10 sketches the procedure
SelectDeclarationDependencies which is responsible for selecting all dependencies of a
certain declaration.
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Algorithm 4.10: Automatically select the dependencies of a declaration.
1: procedure SelectDeclarationDependencies(key)
2: for each declaration dependency graph do
3: if the key do exist as child then
4: select the key of the root node as related dependency;
5: end if
6: end for
7: end procedure;

Assuming the coloured model shown in Figure 4.4, which contains all the decla-
rations sketched in Table 4.9. In this model, as we see, there is no need to declare
the following declarations (they are not in use): constant: N; Colorsets: Processes and
Channel; variable: p. Figure 4.14a gives the result of performing Algorithm 4.9 on
Snoopy’s declaration graph, whereas Figure 4.14b presents the result of performing
Algorithm 4.10 on the dependency graph for the given node p.

Selective Import ANDL/CANDL

Snoopy is able to read (coloured) Petri nets from ANDL/CANDL (text format) files,
and to translate the model into its graphical representation. This will import the
entire model including places, transitions, arcs and all defined declarations. For some
modellers who frequently develop models relating to their major, e.g. biological models,
they probably need to define the same declarations for each new model, which suggests
to extend their modelling context. Thus, it would be helpful to have the most used
declarations in a separate ANDL/CANDL file, and then what needs to be done is to
import (from the declarations file in ANDL/CANDL format) only those declarations
which are frequently used. For this purpose, we added the selective import feature.

By using the selective import feature, one can individually choose some declarations
to be imported to the model on hand, but these individual declaration may depend
on other unselected declarations (dependencies). This would make the model invalid
as it lacks some missing dependencies. Thus, we make use of the dependency graph
of declarations to automatically select the related dependencies. Figure 4.15 presents
some screenshots for using the selective import feature in Snoopy. We first import the
CANDL file which contains all declarations sketched in Table 4.9. In Sub-figure 4.15a,
all declaration are unselected, In Sub-figure 4.15b, we select the variable p to be
imported to our model, the other remaining Sub-figures give the automatically selected
declarations due to the existing dependencies. The automatically selected declarations
are obtained by performing Algorithm 4.10 on the input declaration variable: p.

Another useful scenario for the declaration dependencies is to unselect one decla-
ration (meaning to keep it in the model) and all the other declarations that use this
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(a) Checking all declarations. (b) Unselect the variable p.

Figure 4.14: Checking unused declarations (coloured Petri nets) in Snoopy. Sub-figure
(a) all unused declaration are marked in red. Sub-figure (b) Unselecting
the variable p will automatically unselect (marked with blue) the colour
set Process and the constant N due to the existing dependencies. Thus
these declarations will be kept, while the colour set Channel will remain be
selected to be deleted (marked with red), as there is no related dependency
with the variable p.

declaration, because removing the former declaration and keeping those declarations
which depend on it would make the model invalid. This calls for automatically unse-
lecting all the declarations that use the unselected one. This can easily be achieved by
iterating over the dependency graph of the unselected declaration and then marking
all its child nodes as unselected. For example, unselecting the constant N will auto-
matically unselect the colour sets Process and Channel, the colour function left and
the variable p as all of them depend on the constant N which means all of them are
children of the dependency graph of the constant N, see Figure 4.16.

It is worth mentioning that the selective import feature requires an active Petri
net document (an already opened PN document in the environment); otherwise,
Snoopy will notify about this by means of a log message. Moreover, if some selected
declarations to be imported do already exist in the target model, then Snoopy will
offer an option to overwrite them.
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(a) All declarations are unselected. (b) Select the variable p.

(c) The colour set Process has been automat-
ically selected.

(d) The constant N has been automatically
selected.

Figure 4.15: Selective import feature in Snoopy. Please note, the declarations in the
color functions tab of the import definitions window will remain unse-
lected. Declaration definitions are shown/disappear in the right-hand sub
window as they are selected/unselected automatically (or manually by
the user).
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(a) All declarations are selected. (b) Unselect the constant N .

(c) The colour sets Process and Channels have
been automatically unselected.

(d) The variable p has been automatically un-
selected.

Figure 4.16: Selective import feature in Snoopy. All declarations were initially selected
(by default). Please note, that the declarations in the color functions tab
of the import definitions window will remain be selected.
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4.4 Command-line Feature
Command-line tools may outperform those with a graphical user interface (GUI), in
that the command-line interface (CLI) can be faster and more efficient than scrolling
across GUI tabs and dialogues. This can be particularly useful when dealing with
repetitive tasks. So we could write a simple script calling the tool (see Appendix A.3),
and then let it run over all tasks automatically without any interaction with the tool
itself. For this purpose, we now have an option to run Snoopy via the command-line
prompt, with a few commands so far. Table 4.12 sketches the supported commands in
Snoopy.

Table 4.12: Snoopy’s commands - alphabetically ordered. The short-hand command
has to be prefixed by -, whereas the alternative full command has to be
prefixed by --.

Short
command

Full
command

Options Description

c close close the tool
hw help show command line help
l layout 1-3 do layout using one of these algo-

rithms 1: FMMM ; 2: Planarization; 3:
Sugiyama

p export 1 export the model to 1: EPS
s save save the model
v version show the tool’s version

In the following, we present some command-line examples: the first example (line 1)
prompts Snoopy to show the command-line help. The second example (line 2) prompts
Snoopy to export the model myPNModel.cpn to EPS, with performing layout using
the algorithm Planarization, saving the original model (after doing layout) and finally
closing the tool. The third example (line 3) is equivalent to the example 2, but it uses
the full form of the commands. The Example 4 (line 4) is also equivalent to example
2, but it combines all options together in one command.

Listing 2: Command-line examples. Please note that, the symbol $ refers to the
command-line prompt.

1 $snoopy -hw
2 $snoopy myPNModel.cpn -p 1 -l 2 -s -c
3 $snoopy myPNModel.cpn --export 1 --layout 2 --save --close
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4 $snoopy myPNModel.cpn -p1l2sc

The implementation of this feature is basically done by the help of the wxWid-
gets library [LIBb], which provides a pre-defined parsing technique for adding a new
command together with its options.

4.5 Closing Remarks
In this chapter, we presented some implementation aspects. The major work focuses on
harmonising of coloured Petri nets in Snoopy with the CANDL format and uncoloured
Petri nets as they are supported by Snoopy.

Firstly, grouping of the constants is now supported, which allows us to assign a set of
constants to a specific group, for which many value sets can be defined. This has a big
advantage for developing scalable models. Furthermore, Snoopy was previously using
parameter nodes (elapses on canvas) to define kinetic parameters, this would make
the model untidy and may have an influence on the size of the PN model file, as the
graphics information has to be kept as well. Now, we can define constants in the same
way as in uncoloured Petri nets. Secondly, due to some inconsistencies in Snoopy’s
implementation, some colour expressions were not working, especially for initialising
the marking for coloured places, and even checking the syntax of colour expressions
was done in a manual way (meaning no parsing technique was utilised). However,
we now use the dssd_util to initialise the places’ marking and to check the syntax
of colour expressions. Thirdly, we extended Snoopy’s parser (which is responsible for
interpreting colour expressions and related colour operations) with new operations, i.e.
elemOf and set difference operation; here we presented two (teaching) case studies for
illustrating their usage. Fourthly, we harmonised some operators for colour expressions,
e.g. = and ==.
As uncoloured Petri nets, coloured Petri nets now support observer definitions over

coloured places/transitions, place/transition instances or even over a combination of
all kinds. Finally, we introduced the concept of dependency graph and we showed
how to make use of declaration dependencies for cleaning unused declarations and for
importing declarations in a selective way.

Last but not least, we presented Snoopy’s command-line feature together with the
currently supported commands, and showed how to use this feature by means of some
examples.
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In this chapter, we briefly recall our contributions, and then for each contribution, we
sketch some possible extensions.

5.1 Conclusions

During this research work, we presented two different contributions to the interdis-
ciplinary field of Petri nets and their applications on the field of systems biology.
The two contributions are: the definition together with the implementation of new
Petri net classes, fuzzy Petri nets, and the harmonisation of coloured Petri nets in
Snoopy as they are supported by the CANDL format as well as uncoloured Petri nets.
Of course, our approaches are not only useful for modelling and simulating biological
systems, but also for other different systems. In the following sections, we summarise
our contributions and some possible suggestions for future work.

5.1.1 Fuzzy Petri Nets

The modelling of biological systems is often hampered by parametric uncertainty,
which usually comes from unavailable or imprecise parameters due to some environ-
mental factors or lack of exact knowledge. When stochastic methods are not able to
deal with such models, analysing them by giving uncertain band of all outputs of
interest might be an alternative. Furthermore, more precise information about asso-
ciated uncertainties can be obtained by producing timed membership functions for
each output variable. We combine fuzzy logic with (coloured) quantitative Petri nets
to address this issue yielding a new family of Petri nets called fuzzy Petri nets.

Fuzzy Petri nets capture the parametric uncertainties by representing each uncertain
kinetic parameter as triangular fuzzy number. Uncertainty can be turned into fuzzy
numbers in the following way: we first obtain a rough estimate for the interval of
parameter values, and then extract the pessimistic value (a), the most possible value
(b) and the optimistic value (c); all of these three values (a, b , c) define a triangular
fuzzy number. For this purpose, a fuzzy simulation algorithm needs to discretise each
fuzzy number into its crisp values, and then to perform the simulation on each sample.
Thus, sampling strategies have to be utilised. The more efficient the sampling strategy
is, the less redundant samples.
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We presented the following sampling strategies: Basic sampling, Reduced sampling
and LHS sampling. The basic sampling strategy discretises each level (of the fuzzy
number) with the same number of samples, thus redundant samples may occur, which
yields unnecessary simulation traces. The reduced sampling strategy tries to address
the redundant samples issue by reusing those samples from the first level of all levels.
For the first and second strategies, the number of samples depends on the number
of the involved fuzzy kinetic parameters. The LHS sampling strategy is the most
efficient strategy, as it always reduces the number of required samples, no matter how
many fuzzy kinetic parameters are involved. The LHS sampling strategy produces a
sampling matrix with N x K, where N is the number of desired samples and K is the
number of fuzzy kinetic parameters. Here there is an overhead induced by the required
computation to obtain the matrix which are performed by the LHS library.

In order to reduce the memory load, we produce for each fuzzy band the minimum
and maximum traces over time. Finally, we presented some performance measurements
for the fuzzy simulation algorithms.

5.1.2 Harmonising Coloured Petri Nets

Coloured Petri nets as they are supported in Snoopy suffered from some inconsistencies
related to the usage of constants, colour expressions and observers, due to some former
implementation issues. To use our tools. This means to use coloured Petri nets in a
uniform way, for example, usage of colour expressions should be the same for, e.g.
Snoopy and Spike. CANDL is a coloured Petri net format shared among all our tools,
so we harmonised the usage of the definitions of coloured Petri nets as follows:

Snoopy now supports grouping of constants in the same way as they are supported in
uncoloured Petri nets, which allows to assign many value sets for each group, and then
users can run their experiments (for animation and simulation) on different constant
values, without having to re-define the constants in use; what they need to do indeed
is to change the value sets of the constant groups. The old way to define constants (to
be used as kinetic parameters) required adding new graphic nodes, which makes the
final model untidy and increases the size of the Petri net document. Now, constants
can be defined by using the constant definitions window which is a more efficient and
easy-to-use way.

Colour expressions are now used in the same way as in the CANDL format, which
will be used to initialise the markings of places, arc expressions, guards or colour
dependent-rates. This includes harmonising the logical (boolean) operations, e.g. &
and &&.

We harmonised the usage of colour functions, so that one colour function can use
nested function calls. Moreover, colour functions are now allowed to be used as elements
inside tuple expressions. Moreover, we support new operations for colour expressions,
these operations are: elemOf and --. All these new features/operations increase the
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modelling power of coloured Petri nets. Please check Chapter 4 for some case studies.
Observers are mathematical functions over places and transitions. Now, we support

the definition of observers to observe either coloured places, coloured transitions, place
instances, transition instances or a combination of all these possibilities.

We then investigated the dependencies among user-defined declarations, and in-
troduced a way depending on the dependency graphs to make use of such existing
dependencies to detect and clean unused declarations, and to import ANDL/CANDL
files (into Snoopy) in a selective way.

5.2 Outlook
In the following, we discuss some possible extensions for the contributions which have
been presented in this thesis. Some of these extensions aim to get a better performance,
while others aim to extend the current work with new features.

5.2.1 Extending Fuzzy Petri Nets
Extending fuzzy Petri nets presented in Chapter 3 includes both modelling and simu-
lation aspects. In the following, we present some possible extensions:

Supporting other types of fuzzy numbers As we have seen, fuzzy kinetic pa-
rameters may be represented as triangular fuzzy numbers, where uncertainties are
turned into triangular fuzzy numbers by means of three points. But it is also interest-
ing to investigate the other types, as more accurate information about uncertainties
could be obtained. We suggest to consider the following types:

• Trapezoidal fuzzy numbers: an uncertain kinetic parameter is represented using
four points, which allows to give each point a different interpretation.

• Bell-shaped fuzzy numbers: like triangular fuzzy numbers, bell-shaped fuzzy
numbers are represented by means of three points.

• Gaussian fuzzy numbers: each gaussian fuzzy number is determined by using two
parameters, e.g. c and σ, which control the centre and the width of the shape of
the gaussian fuzzy number, respectively.

Parallelising the fuzzy simulation algorithm For large-scale coloured fuzzy
Petri net models, we noticed annoying simulation time, particularly when we deal with
FSPN C and FHPN C , whereby the number of stochastic runs (for each simulation)
can be specified. This can be done more efficiently by, e.g. assigning the samples of
each α-level to a separate core, which will then perform the simulation for that level.

Parallelising the computation of fuzzy bands and timed-membership func-
tions After the fuzzy simulator finished, the computation of fuzzy bands and the
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timed-membership functions is triggered, which causes annoying waiting time, espe-
cially when we have a large interval of the simulation time, as the membership functions
of each output variable have to be computed. As each computation is independent,
these computations can be parallelised by distributing them on several cores.

Extending ANDL/CANDL format by fuzzy Petri nets As we have seen
in Chapter 3, exporting an FPN/FPN C model to the ANDL/CANDL format will
approximate the model on hand to its non-fuzzy counterpart, as ANDL and CANDL
do not support fuzzy Petri nets so far, this extension includes two steps: extending the
ANDL/CANDL grammar to accept the corresponding types of fuzzy Petri nets and
extending the constant types by permitting constants to be defined as, e.g., triangular
fuzzy numbers.

Investigating other kinds of uncertainties uncertainty of the model structure
could be an example, as we have seen in the literature. Dealing with such kind of
uncertainty requires implementing a new class of fuzzy Petri nets, called basic fuzzy
Petri nets. Two perspectives have to be considered here: the ability to define a set
of fuzzy rules and then applying a fuzzy reasoning approach using a fuzzy inference
engine. For more details, see the literature, e.g. [V.R06, MNP11].

5.2.2 Extending Coloured Petri Nets

In the following, we propose some useful extensions for coloured Petri nets:
Harmonising The specification style for arc expressions and rate functions should

be harmonized with that of marking expression. Marking expression widget (marking
grid window for specifying the marking of places) basically consists of one column
for specifying the colour and another one for specifying multiplicity. Each row of this
window represents one part of the multi-set expression, where each part is separated
by ++. Specifying both arc expression and colour-dependent rate have to be in the
same style. Moreover, adding/removing/editing new value sets has to be allowed as
well. The the appropriate value set can be chosen, when simulating/animating the
given model.

Colour sets It should be possible to define new colour sets based on mathematical
set operations on pre-defined colour sets (for integer colour sets), e.g. CS3 = CS1 -
CS2; where each colour of the colour set CS3 is obtained by performing the subtract
operation (on sets). Another extension is to support dynamic colour sets which are
crucial for modelling and simulating dynamic membrane systems which may create or
remove membranes while the system evolves over time [AHF22].

IDD-based Unfolding We still have some inconsistencies for the IDD unfolding
algorithm, these consistencies are listed in our CANDL report, for more detailed in-
formation, please check [ACR+21]. For instance, unfolding models which make use of
the operator -- is not working using the IDD unfolding engine.

Command-line feature The list of Snoopy’s commands can be extended, so that
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we can make use of the command-line feature to perform the same functionalities which
already exist in Snoopy, such as model unfolding and simulation. Then, Snoopy will
be able to perform, e.g. simulation for a set of PNmodels by configuring an external
script to call Snoopy in the same way as the automatic layout feature, see Section 4.4.
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A Appendices

A.1 Fuzzy Petri nets
In this section, we give some useful material for both uncoloured and coloured fuzzy
Petri nets, including:

• Fuzzy Petri nets manual, which includes numerous case studies. The manual is
accessible from:
• https://www-dssz.informatik.tu-cottbus.de/publications/btu-reports/

fpn_manual.pdf.

• Snooy’s FPNfiles for all fuzzy Petri net case studies which are presented in this
thesis as well as in the manual. These files are accessible from:
• https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples?

dir=fpn.

• Some video clips showing the principle of modelling and simulating FPN in
Snoopy; please navigate the following link:
• https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy#

manuals.
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A Appendices

A.2 The BNF for colour expressions in Snoopy’s PN C

Here we present the extended grammar of the colour expressions for coloured Petri
nets in Snoopy:

ColorExpr ::= MultiSetExpr

MultiSetExpr ::= Predicate | MultiSetExpr MSAddDiffOp Predicate

MSAddDiffOp ::= ”++” | ”--”

Predicate ::= SeparatorExpr | ”[” OrExpr ”]” SeparatorExpr

SeparatorExpr ::= TupleExpr | SeparatorExpr SeparatorOp TupleExpr

SeparatorOp ::= ”‘”

TupleExpr ::= OrExpr | ”(” CommaExpr ”)”

CommaExpr ::= TupleExpr | CommaExpr CommaOp TupleExpr

CommaOp ::= ”,”

OrExpr ::= AndExpr | OrExpr OrOp AndExpr

AndExpr ::= EqualExpr | AndExpr AndOp EqualExpr

AndOp ::= ”&” | ”&&”

EqualExpr ::= RelationExpr | EqualExpr EqualOp EqualExpr

EqualOp ::= ”=” | ”==” | ”!=” | ”<>”

RelationExpr ::= AddExpr | RelationExpr RelationOp AddExpr

RelationOp ::= ”<” | ”<=” | ”>=” | ”>” | ”elemOf”

AddExpr ::= MultiplicityExpr | AddExpr AddOp MultiplicityExpr

AddOp ::= ”+” | ”-”

MultiplicityExpr ::= UnaryExpr | MultiplicityExpr MultiplicityOp

UnaryExpr

MultiplicityOp ::= ”*” | ”/” | ”%” | ”ˆ”

UnaryExpr ::= PostfixExpr | UnaryOp PostfixExpr

UnaryOp ::= ”+” | ”-” | ”@” | ”!”
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PostfixExpr ::= AtomExpr | PostfixExpr ”[” AtomExpr ”]” |

PostfixExpr ”:” AtomExpr

AtomExpr ::= Constant | Variable | Function | ”(” ColorExpr ”)” |

AllFun

AllFun ::= ”all” ”(” ”)”

Constant ::= Integer | String

Variable ::= Identifier

Function ::= Identifier ”(” ArgumentList”)” ”{” FunctionBody ”}”

ArgumentList ::= OrExpr | ArgumentList CommaOp OrExpr

FunctionBody ::= MultiSetExpr

Integer ::= Digit | Integer Digit

String ::= LetterOrDigit | String LetterOrDigit

Identifier ::= Letter | Identifier LetterOrDigit

LetterOrDigit ::= Letter | Digit

Digit ::= ”0-9”

Letter ::= ”a-zA-Z”
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A.3 Snoopy’s Command-line Feature

Here we present one application scenario for Snoopy’s command-line feature. In this
application, we call Snoopy for performing an automatic layout for a set of Petri net
files represented as andl files. For each file, we perform the layout by means of one of
the layout algorithms (here FMMM ). Afterwards, we export the obtained Petri net to
the eps format. Finally, we use an external tool, e.g. epstopdf to convert each eps file
to an pdf file.

Listing 3: Python script for performing automatic layout by calling Snoopy using the
command-line.

1 # call as: python runSnoopyAutoLayout.py
2 #
3 #!/usr/bin/python
4

5 import sys
6 import os
7 import subprocess
8 import argparse
9 import math

10 import shutil
11 import re
12 import glob
13

14 #to be adjusted by the snoopy executable - in macosx:
15 # right click snoopy (in Applications folder),
16 # then choose 'show Package Contents',
17 # then 'Contents' folder,
18 # then MacOS, add this path here
19 ## no '/' at the end
20 #Snoopy="/Applications/snoopy.app/Contents/MacOS/snoopy"
21

22 ## or add snoopy path to .bash_profile
23 Snoopy="snoopy"
24

25 #to be adjusted to your .andl files Folder;
26 #there should be '/' at the end
27 MODELS="Dropbox/Waddington_landscape/woodstock/test-layoutAutomised/"
28

29 def createConfig(model,start):
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30 configFile = Snoopy +" "+ model +" "+ start
31 return configFile
32

33 def createConfigPDF(model):
34 configFile = "epstopdf "+ model +".eps"
35 return configFile
36

37 if __name__ == "__main__":
38 #fetch all ANDL files from the folder whose path,
39 # is determined by the global variable MODELS.
40 all_files=glob.glob(MODELS+"*.andl")
41

42 #iterate all the fetched andl files and ,
43 #for each one do export run Snooy command and then convert to pdf
44 for file in all_files:
45 # adjust command line options in the second param of this function
46 config = createConfig(file,"-l1p1sc")
47 confINK = createConfigPDF(file)
48 print(config)
49 subprocess.call(config,shell=True)# call snoopy
50 subprocess.call(confINK,shell=True)# call epstopdf
51 os.remove(file+".eps")#remove the eps files,
52 #after converting them to pdf
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