Spike - a tool for reproducible
simulation experiments

Von der Fakultat 1 - MINT - Mathematik, Informatik, Physik,
Elektro- und Informationstechnik

der Brandenburgischen Technischen Universitat Cottbus-Senftenberg
genehmigte Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Jacek Chodak

geboren am 1977-02-21 in Barlinek, Polen

Vorsitzender: Prof. Dr. rer. nat. habil. Klaus Meer
Gutachterin: Prof. Dr.-Ing. Monika Heiner
Gutachter: Prof. PhD David Gilbert

Tag der miindlichen Priifung: 2021-12-15

https://www.b-tu.de/fakultaet1/
https://www.b-tu.de/fakultaet1/
https://www.b-tu.de
mailto:chodak@b-tu.de

DOI: 10.26127/BTUOpen-5850

https://doi.org/10.26127/BTUOpen-5850

Declaration

I herewith declare that I have produced this thesis without the prohibited
assistance of third parties and without making use of aids other than those
specified; notions taken over directly or indirectly from other sources have
been identified as such. This thesis has not previously been presented in
identical or similar form to any other German or foreign examination board.

The thesis work was conducted from 2017 to 2021 under the supervision
of Prof. Dr.-Ing Monika Heiner at Brandenburg University of Technology
Cottbus-Senftenberg.

Jacek Chodak

Thanks to all who made it possible.

Abstract

Reproducibility of simulation experiments is still a significant challenge
and has attracted considerable attention in recent years. One cause of
this situation is bad habits of the scientific community. Many results are
published without data or source code, and only a textual description of
the simulation set-up is provided. Other causes are: no complete simulation
set-up, no proper output data analysis and inconsistency of published data,
which makes it impossible to compare results.

The progress of computational modelling, amount of data and complexity
of models requires designing experiments in such a way that ensures repro-
ducibility. A textual description does not provide all the needed details. A
computer code is more reliable than a textual description. It is the precise
specification that describes a simulation configuration, model, etc. When
computer code, data, models and all parameters are provided, the simulation
results become reproducible.

The main goal of this thesis is to develop a tool that ensures reproducibility
and efficient execution of simulation experiments, often involving many indi-
vidual simulation runs. The tool should support a wide range of application
scenarios, where the typical scenario is simulation of biochemical reaction
networks, which are represented as (coloured) Petri nets interpreted in the
stochastic, continuous or hybrid paradigm. The model to be simulated can
be given in various formats, including SBML.

The result is a command line tool called Spike, which can be used for
various scenarios, including benchmarking, simulation of adaptive models and
parameter optimization. It builds on a human-readable configuration script
SPC, supporting the efficient specification of multiple model configurations
as well as multiple simulator configurations in a single configuration file.

Keywords: continuous, stochastic, hybrid, coloured (hierarchical) Petri
nets; parallel simulation; configuration; reproducibility; parameter scanning;
parameter optimization; simulation of adaptive models

Abstrakt

Die Reproduzierbarkeit von Simulationsexperimenten ist nach wie vor eine
grofe Herausforderung und hat in den letzten Jahren viel Aufmerksamkeit
bekommen. Eine Ursache fiir diese Situation sind schlechte Gewohnheiten
der wissenschaftlichen Gemeinschaft. Aus irgendwelchen Griinden werden
viele Ergebnisse ohne Daten und Quellcode veroffentlicht und es wird nur
eine textliche Beschreibung des Simulationsaufbaus gegeben. Andere Ursa-
chen sind: kein ordnungsgeméfler Simulationsaufbau, keine ordnungsgemafie
Analyse der Ausgabedaten und Inkonsistenz der veréffentlichten Daten (was
einen Vergleich der Ergebnisse unmdoglich macht).

Der Fortschritt der computergestiitzten Modellierung, die Datenmenge und
die Komplexitat der Modelle erfordern es, Experimente so zu gestalten,
dass die Reproduzierbarkeit gewahrleistet ist. Eine textliche Beschreibung
liefert nicht alle Details. Ein Computercode ist zuverlassiger als eine Textbes-
chreibung. Es bedarf einer genauen Spezifikation einer Simulationskonfigura-
tion, eines Modells usw. Durch die Bereitstellung von Computercode, Daten,
Modellen und allen Parametern werden die Ergebnisse einer Simulation
reproduzierbar.

Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das die Re-
produzierbarkeit und effiziente Durchfiithrung von Simulationsexperimenten,
die oft viele einzelne Simulationslaufe umfassen, gewahrleistet. Das Werkzeug
soll vielfaltige Anwendungsszenarien unterstiitzen, wobei das typische Szena-
rio die Simulation biochemischer Reaktionsnetzwerke ist, die als (farbige)
Petrinetze dargestellt werden, die im stochastischen, kontinuierlichen oder
hybriden Paradigma interpretiert werden. Das zu simulierende Modell kann
in verschiedenen Formaten, einschlielich SBML, vorliegen.

Das ergebnis ist ein Kommandozeilenwerkzeug namens Spike, das in verschie-
denen Anwendungsfillen eingesetzt werden kann, darunter Benchmarking,
Simulation adaptiver Modelle und Parameteroptimierung. Es basiert auf
einem fiir Menschen lesbaren Konfigurationsskript SPC und unterstiitzt
die effiziente Spezifikation mehrerer Modellkonfigurationen sowie mehrerer
Simulatorkonfigurationen in einer einzigen Konfigurationsdatei.

Schlagworter:: kontinuierlich, stochastisch, hybrid, farbig (hierarchisch)
Petri Netze; Parallelsimulation; Konfiguration; Reproduzierbarkeit; Parame-
terscannen; Parameteroptimierung; Simulation von adaptiven Modellen

Contents

List of Figures

List of Tables

Glossary

1 Introduction
1.1 Motivation
1.2 Objectives and Contributions,
1.3 Organization of the Thesis

2

Background and Related Work

2.1 PetriNets
2.2 Extended Petri Nets,
2.3 Quantitative Petri Nets o o
2.4 Coloured Petri Nets
2.5 Coloured Quantitative Petri Nets
2.6 Unfolding
2.6.1 Equivalent Standard Petri Nets
2.6.2 Unfolding Algorithm
2.7 Simulation
2.7.1 Mass-Action Kinetics L.
2.7.2 Stochastic Simulation L.
2.7.3 Deterministic Simulation 00000
2.7.4 Hybrid Simulation 0oL
2.8 Reduction e
2.8.1 Pruning Clean Siphons,
2.8.2 Pruning Constant Places
2.9 Reproducible Simulation o000
2.9.1 Rules to Drive Reproducible Experiments
2.9.2 Encoding of Simulation Experiments
2.9.3 Adaptive Model Simulation
2.10 Closing Remarks

ix

CONTENTS

3 Configuration Language 47
3.1 SPCFormat e 48
3.2 Experiment Definition 49
3.3 Main SPC Objects o 52

3.3 1 Import. 52
3.3.2 Configuration oo 54
3.33 Log 57
3.4 Basic definitions 58
3.4.1 Value e 58
3.4.2 Literal 58
3.4.3 Variable 60
3.4.4 Object 61
345 Array ... 62
346 Range 63
3.5 Expressionso 63
3.5.1 Arithmetic Expression 64
3.5.2 Boolean Expression. L o0 oL 65
3.5.3 Comparison Expression 66
3.5.4 Concatenation 66
3.5.5 Precedence 67
3.6 Conditional Block 69
3.7 Stepwise Simulation L Lo 70
3.8 Configuration Branching 0. 73
3.9 Closing Remarks 74

4 Spike Architecture 77
4.1 Spike Functionality L 79
4.2 Simulation. 81
4.3 Parallel Simulationo oo 82
4.4 Inter-Process Communication 83
4.5 Stepwise Simulation o 86
4.6 Reproducible Stochastic Simulation 88
4.7 Conversion e e e 88
4.8 IDD-based unfolding 89

4.8.1 IDD Reduction 90
4.8.2 Unfolding 90
4.8.3 Algorithms 92
4.8.4 The elemOf Operator and Boolean Colour Set 97
4.9 Closing Remarks 105

ii

CONTENTS

5 Use Cases 107
5.1 Benchmarking Lo 107
5.2 Simulation of Adaptive Models 120
5.3 Spike as a Backend Simulator for Parameter Optimization 133
5.4 Closing Remarks 142

6 Conclusions and Outlook 143
6.1 Conclusions L 143
6.2 Outlook e 144
6.3 Availability L 145
6.4 Acknowledgement Lo 145

References 147

Appendices 151

A Grammar of Configuration Script 153
A.1 Graphical notations L 153
A2 Main SPC Objects 154
A.3 Basic definitions 155
A4 Expressions 156
A.5 Conditional Block 158
A6 onStep e 158

B Source Code: Heuristic Method of Parameter Optimization 159
B.1 SIR Model In ANDL Format: SIR-SPN.andl 159
B.2 SPC Configuration Template: SIR-CPN-spc.tmp 160
B.3 Experiment Set-up in Python: optimization.py 161
B.4 Genetic Algorithm Library for Python: geneticalgorithmjch.py 165

C A Quick Guide to SPC 175

iii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1

3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

SIR model, as PN o 9
SIR model, as XPNo 11
SIR model as SPNo 13
Variation of the SIR model as XSPN 14
SIR model, as coloured PN 17
SIR model, as coloured SPN 18
SIR model, as coloured CPN 18
SIR model, as coloured HPN 18
A simple reaction as SPN 22
Influence of the number of simulation runs N on recorded and approxim-

ate stochastic simulation traces of SPN model 27
Simulation traces of the stochastic XYPN model 27
Comparison of the simulation traces between SPNC and CPNC models 28
Decay events of a disease L 28
SIR model, as CPN 29
Simulation traces of HPNC model 34
Removing insufficiently marked siphons 36
Replacing a constant place Lo 37

High level overview of the relations between main components of the

experiment L Lo 50
Graphical representation of relations between the experiment and main

SPC objects e 51
The three main objects of SPC 52
Import object 53
SBML object 53
Configuration object Lo 54
Model object 55
Simulation object 55
SPCwvalue e 58
SPCnumber 58
SPC string 59

LIST OF FIGURES

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14

5.1

5.2
5.3

5.4
5.5
5.6
5.7

SPClogical value 59
SPC declaration Lo e 60
SPC identifier 60
SPC assign 60
SPCobject e 61
SPC acCess . . . v v v i e e e e e e e 62
SPCarray o v v e 62
SPCrange o i e 63
SPC expression« o v oo e 64
SPC arithmetic 64
SPC boolean 66
SPC comparison 67
SPC string concatenationo 67
SPC conditional block oo 69
onStep object 71
doobject 71
Graphical representation of branching 73
Graphical representation of commands dispatching 78
Graphical representation of commands flow 78
PetriNuts framework o 79
Overview of Spike functionality 80
High level overview of performing parallel simulations 83
Life cycle of a broker and a worker process 84
Inter-process communication 86
Graphical representation of instantiating simulation threads 88
Data format conversions supported by Spike. 89
Data format conversions supported by Spike. 90
Coloured SPN SIR model with a more flexible solution to specify colour-

dependent rate functions Lo 99
SIR model, as coloured SPN driven by elemOf expressions 100
SIR model, as coloured SPA with mutual exclusion 102
Stepwise IDD computation L oo 104

Comparison of simulation traces between deterministic and stochastic

SIR model used in Example 5.1. 0oL 111
SIR and SEIR models used in Example 5.2. 114
Comparison of the simulation traces between SIR and SEIR models used

in Example 5.2.o o 115
SIR models used in Example 5.1. 0. 119
Control feedback loop 120
Results of the stepwise simulation 126
SIR model used in Example 5.5. 0oL 127

vi

LIST OF FIGURES

5.8 Results of the simulation - bigbang vs smooth relaxation rules 132
59 SIR model as CPN. 135
5.10 Reference data traces. 135
5.11 Optimization through simulation 137
5.12 Progress of the optimizationo 0oL 140
5.13 Reference data traces and optimization. 141

vii

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1

Arithmetic operators. 65
Boolean operators. 65
The truth table of boolean operations. 65
Test operators. e 66
Precedence of operators. o 67
List of Spike modules with their commands. 79
List of messages. 85
The truth table of IDD Boolean expression. 101
The performance of hybrid simulation algorithms supported by Spike. . 119

ix

Glossary

Name
BDD
CPN

CPNC€
CTMC
DAG
HPN
HPNC
IDD

No
oDE
PN
PNC
Q+

0
ROIDD
SPC

SPN
SPN€
XPN

XSPN
X(7)

Description
Binary decision diagrams
Continuous Petri net

Coloured Continuous Petri net
Continuous Time Markov Chain
Directed acyclic graphs

Hybrid Petri net

Hybrid Continuous Petri net
Interval Decision Diagrams

Set of positive integer numbers

Set of non-negative integer numbers
Ordinary Differential Equation
Petri net

Coloured Petri net

Set of positive rational numbers

Set of non-negative real numbers

Reduced ordered interval decision diagrams
Spike’s configuration

Stochastic Petri net

Coloured Stochastic Petri net
Current time

Extended Petri net

Extended Stochastic Petri net
System state at time

xi

Page List

88

v, 4, 12, 13, 18, 26, 30, 32, 43,
86

v, 4, 17, 43

12, 13, 25

88

v, 4, 12, 13, 18, 26, 33, 43
v, 4,17, 34, 43

vi, 20, 88--91, 93, 95, 96, 99
8

8

13, 28--31, 34

v, 4, 7--9, 14, 17, 18, 22, 34--38,
41--43, 52, 76, 102, 135, 136

7, 14, 1620, 34, 81, 88, 102
136

8

8

88--90

46--51, 53, 55, 57--63, 65--68,
73, 102--104, 111, 112, 118, 133,
135, 136, 145, 146

v, vi, 4, 12, 13, 18, 22, 25--27,
37, 43, 86, 98--100

v, 4,17, 43

29

v, 4, 9--12, 14, 27, 35, 43

v, 12, 14

29

Introduction

1.1 Motivation

Petri nets [Mur89] have been proven to be useful for modelling a wide range of applica-
tions, including, among others, biochemical networks [GHL07]. They provide an intuitive
graphical representation and a well-developed mathematical theory for system analysis.
In addition, Petri nets might bridge the gap between computational theoretician and
experimentalist. This thesis focuses on quantitative Petri nets [GHLO7] (stochastic,
continuous and hybrid Petri nets) and their high level representations, coloured Petri
nets [Liul2], which are used as modelling paradigms.

Simulation of biochemical models can be time and memory consuming. Thus, sim-
ulations should be delegated for performance reasons to be executed on a server.
Additionally, when experiments require running multiple simulations, the time spent
can be particularly long, when the individual simulations are merely executed one after
another. Frequently, it is required to prepare a set of simulation experiments in order
to find appropriate model parameters (e.g., initial conditions, kinetic parameters) or
simulator options (e.g., simulator type, length of simulation traces, resolution of the
traces recorded). Manual preparation of a new simulation run for each new model
and/or simulator configuration is time consuming and potentially error-prone. The
reproducibility of the entire experiment suffers if one of the runs is not well documented.

There are a couple of tools allowing the simulation of Petri net models, however
most of them have a graphical user interface (GUI) which usually involves additional
dependencies. Application tools with a GUI are not well suitable as a simulation
process to be executed on a server. Running simulation on a server helps to save user
resources and speed up simulations. On a server, a user can schedule multiple simulation
experiments which can be executed simultaneously or sequentially. Often, a user wants
to check how a model behaves for different sets of parameters. In this case, a user is
forced to make changes in the model using an appropriate tool. Each time a model is
changed, the simulation needs to be repeated. To compare how a model behaves under
different types of simulation algorithms (stochastic, continuous, hybrid), it is necessary

1. INTRODUCTION

to configure, each time separately, the simulation and the model. This scenario can
require to use separate tools for different types of simulations. To ensure reproducible
simulations, all parameters of the model and simulation configurations have to be saved.
To simplify the workflow, the configuration of the model and the configuration of the
simulation should be supported by a script language, which allows for easy modification
of any model and simulation parameters.

Simulation of dynamically changing processes (which change their dynamic behaviour
in response to the occurrence of external events) require an ongoing adaptation in terms
of time, quality, and flexibility. Therefore, to simulate such processes, it is necessary to
adjust the model according to its current simulation state during the simulation run
time. This allows to improve the quality of the simulation results. Such functionality
requires the implementation of a stepwise simulation that will allow the simulation of
adaptive models.

So far there is no tool that would allow easy configuration of simulation experiments
with support of a wide range of Petri nets classes and simulation types. However, there are
tools that partially cover some of these issues. For example, the tool COPASI [HSG+06]
supports stochastic, deterministic and hybrid simulation of biochemical networks. It
allows the definition of the export of multiple results. There is no direct support for
Petri nets. Configuration files follow a markup language format, which hinders their
readability by a user. In turn the tool Renew (The Reference Net Workshop) [KWD+-04]
supports modelling and simulation of models designed with the help of the reference
nets formalism which is an extension of Petri nets, where tokens can be references to
arbitrary objects, especially other nets, thus allowing nested net models. Renew allows
running simulation on a server [PJC14], however its core does not support quantitative
net classes (stochastic, continuous and hybrid).

1.2 Objectives and Contributions

The developed tool named Spike is part of the PetriNuts family of tools for dealing
with a variety of related models, for which Petri nets are used as an umbrella modelling
paradigm. The PetriNuts framework consists of tools for modelling (Snoopy [HHL+12]),
analysing (Marcie [HRS13], Charlie [HSW15]), simulating (Snoopy, Marcie, Spike [CH19)])
and animating (Snoopy, Patty [Sch08]).

Spike has been designed to address the following objectives:

e Reproducible simulation experiments - the amount of data produced by simulation
experiments and the complexity of models requires to design an experiment in such
way which ensures reproducibility. By providing computer code, data, models and
any parameters to configure model and/or the simulators involved, it is possible
to reproduce results of a simulation. Encoding of a model, which is de facto a
structure description that can comprise initial conditions and kinetic values, does
not sufficiently describe experiments. An experiment should be fully encoded if it

1.2 Objectives and Contributions

is meant to be reproducible. The encoding should be human-readable and allow
the creation of easily modifiable configuration scripts without any special tools.

e Efficient simulation - a simulation experiment can consist of a set of separate
simulations. To perform simulation efficiently, the set of simulations should be set
up in an automatized way and be executed sequentially or in parallel, depending
on available resources.

e Simulation of stochastic, continuous and hybrid Petri nets, coloured and uncoloured
ones, as supported by the PetriNuts framework.

e Support of a variety of use cases, including: benchmarking, simulation of adaptive
models, scanning of model parameters and simulation options, model parameter
optimization.

To achieve this, the main contributions of this thesis are:

e Design of a new language SPC to specify reproducible simulation experiments.

e Development of a new tool, named Spike, to process SPC files.

Spike builds on a human-readable configuration script, supporting the efficient
specification of multiple model configurations as well as multiple simulator config-
urations in a single file. Reproducibility is ensured by the requirement to provide
unambiguous parameter values of a model and the simulation engine.

e Support of a variety of use cases, including:

— Scanning of model parameters and simulation options - when evaluating a
configuration, it can be split into separate branches. Branching processes are
triggered by defining a set of configuration parameters to scan. A set of values
is assigned to each parameter. For each value in the set, a new configuration
branch is created. Such a feature allows a configuration script to be split into
separate branches, what results in multiple simulation configurations. Each
configuration branch is treated as a separate process and can be executed in
parallel or sequentially.

— Benchmarking - Spike supports three types of simulations: stochastic, de-
terministic and hybrid . Depending on the configuration, a given model is
simulated according to the specified simulation type, regardless of the model
type. Such functionality allows designing benchmarking experiments, the
main goal of which is to compare the performance of the model and simulation
algorithms.

1. INTRODUCTION

— Simulation of adaptive models - Through stepwise simulation, Spike allows
for the dynamic adaptation of the model during the simulation runtime. The
stepwise simulation advances in a given time interval and the parameters
(any constants to specify initial markings, arc weights, kinetic parameters) of
the model and its state can be adjusted/adapted after each simulation step.
The adaptation is based on an evaluation of boolean conditions, that may
involve the current state of the model and the simulation.

— Spike as a backend simulator for parameter optimization - Spike features such
as parameter scanning and parallel execution of configuration branches make
it suitable for performing simulation tasks, while an optimization strategy
must be implemented separately.

Coloured models can be unfolded using IDD-based unfolding, which is integrated
in the internally developed dssd_util library. The dssd_util library allows Spike to
import and export PN models in various formats (e.g. ANDL, CANDL, SBML, PNML).
The dssd_util library comes with the stand-alone tool ANDLconverter, which allows
unfolding coloured Petri nets and prune constant places and clean siphons.

To perform a simulation, Spike uses an internally developed simulation library; it is
capable to run three basic types of simulations: stochastic, deterministic and hybrid,
where each comes with several algorithms.

Both libraries are integral parts of the PetriNuts framework and are used by Snoopy,
Marcie and Spike.

1.3 Organization of the Thesis

Chapter 2: Background and Related Work - provides the necessary definitions of
the used Petri net classes and briefly introduces the general paradigm of modelling with
Petri nets, starting with the definition of basic PN through extended and quantitative
Petri nets, i.e. XYPN, SPN, CPN, HPN, and ending with their coloured counterparts
SPNC, CPNC, HPNC. By the use of examples it shows how the developed models
behave under three types, i.e. deterministic, stochastic and hybrid simulation.

Chapter 3: Configuration Language - describes the structure and grammar of
the Spike configuration script language (SPC), the main goal of which is to efficiently
support reproducible simulation experiments by setting up model parameters and
simulation options.

Chapter 4: Spike Architecture - provides general information about architecture
and functionality of Spike. Additionally, it describes implementation aspects of the
unfolding of coloured Petri nets by the use of an unfolding engine based on Interval
Decision Diagrams.

1.3 Organization of the Thesis

Chapter 5: Use Cases - illustrates the functionality of Spike based on three use
cases:

e benchmarking - to compare the computational complexity of models and simulation
algorithms,

e simulation of adaptive models - stepwise simulation as a discrete-time adaptive
modelling system,

e Spike as a backend simulator for simulative parameter optimization.

Chapter 6: Conclusions and Outlook - summarizes the achieved results, en-
countered issues and provides some ideas for future research.

2

Background and Related Work

Petri nets (PN), originating from the dissertation of Carl Adam Petri [Pet62], provide
a modelling paradigm, which fits well for parallel, concurrent, asynchronous and non-
deterministic systems. This makes PN a proper tool for modelling biological systems.
However, standard PN do not easily scale. To overcome this issue, Coloured Petri nets
(PNC) ware introduced as a suitable tool for modelling and analysing biological systems.
PNCs easily scale and allow for modelling huge systems without loss of the analysis
capabilities of standard PA. This is possible through automatic unfolding of a PN
to its corresponding uncoloured PN . This is a necessary step to apply analysis and
simulation techniques as most of them require standard Petri nets. Applying simulation
techniques allows for analysis of dynamic behaviours of a modelled system. It is an
essential tool for studying biochemical systems. Simulation types are divided into three
main classes: deterministic, stochastic and hybrid. Which one will be applied depends
on the model as well as the properties of interest.

After unfolding, the number of nodes can be much larger than in its coloured
counterpart. Reduction of a model may yield a more optimized (in terms of size) model,
provide insights into structural properties and reduces a simulation overhead. The main
challenge of a reduction is to preserve the main three properties of a PN model: liveness,
reversibility and boundedness. The two simplest techniques that preserve the main
three properties are pruning of clean siphons and constant places.

All of this should result in reproducible experiments. An experimenter should design
an experiment in a way that ensures reproducibility by obtaining consistent results
when using the same input data.

2.1 Petri Nets

A Petri net is a directed bipartite graph. Nodes in a PN are represented by transitions
(i.e. events that may occur) and places (i.e. local states). They are connected with
weighted arcs. The places represent pre- and/or post-conditions (described by the arcs)
for the transitions. They can contain a discrete number of marks called tokens. The

2. BACKGROUND AND RELATED WORK

initial distribution of tokens (the initial marking) of all places represents the initial
state of a system (network, model). In systems biology, places and transitions often
represent species and biochemical reactions (or transport steps), respectively. The
number (concentrations) of species is represented by tokens, while stoichiometries are
represented with the help of weighted arcs. The following formal notations are used
throughout this thesis.

Notation 1. Formal notations:
m(p) - the current marking of a place p;
*t - set of pre-places of a transition t;
t* - set of post-places of a transition t;
*p - set of pre-transitions of a place p;
o

p® - set of post-transitions of a place p;

Definition 1 (Petri net). A Petri net is a 5-tuple N = < P,T, A, f,mg >, where:

e P is a finite, non-empty set of places.

e T is a finite, non-empty set of transitions.

PNT =0.

AC(PxT)U(T x P) is a finite set of directed arcs.

f:+ A= Nis a function that assigns a positive integer number (weight) to each
arc a € A.

mo : P — Ny, is a function that assigns a non-negative integer number to each
place as the initial marking.

The dynamic behaviour of a PN is characterized by the enabling and firing of
transitions. A transition t is enabled if the marking of each of its pre-places °t is at
least equal to the weight of the corresponding arc (the arc connecting the place with
the transition). If a transition is enabled, it can fire and change the markings on its pre-
places *t and post-places t* by subtracting and adding tokens, respectively. The amount
of removed or added tokens depends on the arcs weights connecting the transition ¢
with its pre- and post-places. By firing of a transition a new state of the system is set
(achieved). The enabling and firing of a transition is determined by the following two
definitions.

Definition 2 (Transition enabling). A transition t € T is enabled in a marking m,
denoted by mt), if and only if the following condition is satisfied:

2.2 Extended Petri Nets

e m(p) > f(p,t), Vp € °t.

Definition 3 (Transition firing). A transition t € T enabled in a marking m, denoted
by m[t), can fire and reach a new marking m’ denoted by m[t)m’, with:

o m/(p) = m(p) — f(p,t), Vp € *t.

o m/(p) = m(p) + f(t,p), Vp et®.

Example 2.1. Figure 2.1 builds on the SIR model [HLM14], a simple compartmental
model used to model an epidemic process. The model consists of three compartments
(susceptible population, infected population and recovered population) and two events
(Infect and Recover), which are represented by places and transitions, respectively. In
the example as considered here, an epidemic spreads separately in two populations, A
and B. An individual from a given population may belong to one of three sub-populations
(states): Susceptible, Infected and Recovered. Due to the occurrence of the infection
events (represented by the transition Infect) an individual becomes infected and is
shifted from the SusceptiblePopulation to the Infected sub-population. The infection
events may occur as long as there are individuals in the Susceptible and Infected sub-
populations. Similarly, due to the occurrence of the second event (represented by the
transitions Recover) an individual recovers and is shifted from the Infected to the
Recovered sub-population. The recovery events occur as long as there is an individual
in the Infected sub-population.

ol = 3 D A

SusceptiblePopulation A 1 fect a Infected_ A Recover A Recovered A

= . -

SusceptiblePopulation B 1pfect B Infected B Recover B Recovered_B

Figure 2.1: SIR model, as PN'; where [] - transition, O - place, —» - directed arc.

2.2 Extended Petri Nets

Extended Petri net XPN is an extension of PN, where the set of arcs A is extended
by four special arcs:

1. —e read arc - does not change the marking after firing of a transition and enables
it, if the amount of tokens is greater or equal to the arc weight;

2. BACKGROUND AND RELATED WORK

2. —o inhibitor arc - does not change the marking after firing of a transition and
enables it, if the amount of tokens is less than the arc weight;

3. —ee cqual arc - does not change the marking after firing of a transition and
enables it, if the amount of tokens is equal to the arc weight (the equal arc can be
replaced by a combination of the two arcs, read and inhibitor);

4. —» reset arc - changes the marking on the tested place by removing all tokens
upon transition firing and does not add any additional restrictions to enable the
transition.

All four arcs connect a place with a transition.

Definition 4 (Extended Petri net). An extended Petri net is a 5-tuple N = <
P T A, f,mg >, where:

e P is a finite, non-empty set of places.
e T is a finite, non-empty set of transitions.
e PNT = 1.

e A=A;UA. UA; UA.UA, is a finite set of arcs defined as the union of:

0N

d

(P xT)U(T x P) is a finite set of directed arcs,
(PxT

~—

r is a finite set of read arcs,

s a finite set of inhibitor arcs,

S e e =
N

I\

NN 101NN
s
X
3

(P xT) is a finite set of equal arcs,
()

is a finite set of reset arcs.

e f: A — Nisa function that assigns a positive integer number to each arc a € A
depending on the arc type. If an arc is not explicitly weighted, then the weight of
one is assigned:

Ag — N,
A, = N,
f:< A, =N,
Ae = N,
A, — {1}.

e mg: P — Ny is a function that assigns a non-negative integer number to each
place as the initial marking.

An arc of XYPN can be self-modifying, if its weight depends on the marking of a place
[Val78]. This can be restricted to a transition’s pre-place to make the dependencies
clearly visible in the net. In the end, it is no restriction at all, because one can overcome it
by adding a read arc from the needed place with an arc weight set to this place [Roh17].

10

2.3 Quantitative Petri Nets

Definition 5 (Self-modifying arcs). f is a function that assigns a marking-dependent
arc weight to each arc a € A depending on the arc type:

A;— D,
A, — D,
f:¢A — D,
A. — D,
A, — {1}.

where D is defined as follows: D = {d|d; : Nol*tl = Ny, t € T} is the set of all
marking-dependent arc weight functions, and f(t) = d,Vt € T.

Example 2.2. Figure 2.2 presents a part of the model in Figure 2.1 as XPN. Its
purpose is to demonstrate the use of special arcs. In this model an epidemic may start
if the state of a susceptible population (place SusceptiblePopulation) is at least one and
there also exists at least one infected specimen (the read arc connecting the transition
Infect with the place Infected). The process of population recovery (Recover) can
continue only up to the limited number LIMIT. After exhausting the limit, the recovery
process is blocked by the inhibitor arc connecting the transition Recover with the place
Recovered. If the limit LIMIT 2 is reached (the equal arc connecting the transition
NewFEpidemic with the place Recovered), a new epidemic may start by resetting the
model to its initial state (with the help of reset arcs).
LIMIT

Infected_A o Recovered_ A

SusceptiblePopulation_A

62 L L (®) L O
Infect A
T_2
NewEpidemic

Figure 2.2: SIR model, as XPN; where SP - constant, which represents the initial state
of a susceptible population, LIMIT - weight of the inhibitor arc, LIMIT_2 - weight of the
equal arc, [] - transition, O - place, — - directed arc, —» - reset arc, —e - read arc, —ee
- equal arc, —o - inhibitor arc.

2.3 Quantitative Petri Nets

Quantitative Petri net is an extension of Petri net, where each transition is connected
with an arbitrary mathematical function (rate function) that defines the firing rate
of a transition. The rate usually depends on the system state, may involve kinetic
parameters (constants) and often follows specific kinetic patterns (e.g. mass/action
kinetics). To prevent that net structure and rate functions diverge, a constraint rule has
been adopted. The rule states that only pre-conditions (pre-places) of a given transition
can be used as variables.

11

2. BACKGROUND AND RELATED WORK

Definition 6 (Quantitative Petri net). A quantitative Petri net is a 6-tuple
N=<PT,A,f v,mg>, where:

e < P,T A, f,mg> is a Petri net (Definition 1).

e v: T — H is a function which assigns a firing rate function hy to each transition t
€ T, whereby H = {hy|hy : Rgl 0, RS, t € T} is the set of all marking dependent
firing rate functions, and v(t) = hy,Vt € T

The interpretation of the firing rate determines three types of quantitative Petri
nets [Her13]: stochastic, continuous and hybrid.

Stochastic Petri net - SPN. InaSPN model, a place contains a discrete number of
tokens (markings) (discrete place). Markings represent a system state whereas transitions
are associated with events of a Markov process. The probability of an event occurrence
is equal to a transition firing rate (stochastic transition). This allows representing
SPN behaviour as a continuous time Markov chains (CT MC) and apply stochastic
simulation algorithms. Furthermore, a time delay can be assigned to transition firing
and, depending on the interpretation, it can be a deterministic delay or stochastic delay
where the delay is randomly exponentially distributed. This leads to extended stochastic
Petri net YSPN as defined in [MRH12].

Definition 7 (Extended stochastic Petri net). A Stochastic Petri net is a 6-tuple
N=<PT A, fv,mg>, where:

e < PT, A, f,v,mg>1is a XPN (Definition 4).

o I'= Tstoch U Emmediata U CZ11%med U Tscheduled s a .ﬁnite set Of transitions deﬁned
as the union of:

1. Tgoen 18 @ finite set of stochastic transitions, that fire stochastically after an
exponentially distributed waiting time,

2. Timmediate 98 a finite set of immediate transitions, that all fire with waiting
time zero,

3. Tiimed s a finite set of deterministically delayed transitions, that fire after a
deterministic time delay

4. Tscheduled 1S a finite set of scheduled transitions, that fire at predefined time
points.

e v is a set of functions v = {g,w,d,c} where :

1. g Tsocn — Hs is a function that assigns a stochastic hazard function hg, to
each transition t € Tspocn, whereby Hys = {hg,|hs, : Rg I, Rg, t € Tstoch } 18
the set of all stochastic hazard functions, and g(t) = hs,,Vt € Tstoch,

12

2.3 Quantitative Petri Nets

2. w : Tymmediate — Huw 1S a function that assigns a weight function hy,

to each immediate transition t € Tinmediate, Such that Hy = {hy,|hw, :
R‘O 1, Ry, t € Timn} is the set of all weight functions, and w(t) = hy,,Vt €
Emmediate;

3. d: Tiyimed YU Tscheduled — R{)F, is a function that assigns a constant waiting
time to each deterministically delayed transition.

4. ¢ Tseheduled — R, is a function that assigns to each scheduled trans-
ition three real values representing the beginning of the firing interval, the
repetition value, and the end of the firing interval; respectively.

Continuous Petri net - CPN. In a CPN model, a place contains a continuous
number of markings (continuous place) whereas a transition rate is associated with the
continuous change of markings of the pre- and/or post-conditions (places). This allows
CPN to be represented as ordinary differential equations (ODEs) and carrying out a
numerical integration (finding numerical approximations to the solutions of ODEs).

Hybrid Petri net - HPAN. A HPN model is a fusion of the SPN and CPN
modelling approach. Within the same model, different types (discrete and continuous)
of places and transitions can exist side by side with some restrictions on the connection
between them [HH12]. A simulation has to apply a stochastic or continuous algorithm
depending on the type of subnet. The continuous subnet usually represents events that
occur frequently and the stochastic subnet represents less frequent events. In relation
to this, the continuous simulation will be applied most of the time and occasionally,
depending on the schedule of stochastic event occurrence, the stochastic one [HH18]|.

Example 2.3. Figure 2.3 presents the quantitative extension of the model in Figure
2.1 with additional rate functions that define transition firing rates. The rate functions
control how quickly a disease spreads. A rate is expressed by mass-action kinetics
pattern: MassAction(k); where k is a kinetic parameter. For more information on the
mass-action kinetics pattern, see Subsection 2.7.1 of this thesis.

= . -~ -

SusceptiblePopulation A pfect a Infected A Recover A Recovered_A

MassAction (k_infect_a) MassAction (k_recover_a)

= o S

SusceptiblePopulation B 1pfect B Infected B Recover B Recovered_B

MassAction (k_infect_b) MassAction (k_recover_b)

Figure 2.3: SIR model as SPN.

13

2. BACKGROUND AND RELATED WORK

Example 2.4. Figure 2.4 presents the extended quantitative model as stochastic XPN.
The model is a combined variation of the SIR models in Figures 2.2 and 2.3, where rate
functions control how quickly a disease spreads.

LIMIT

SusceptiblePopulation_ A Recovered_A

Infect A
MassAction (k_infect_a)

Recover_ A
MassAction (k_infect_a)

SE_A NewEpidemic A LIMIT_2

MassAction (1)

LIMIT

SusceptiblePopulation_ B Recovered_B

Recover_B
MassAction (k_infect_b)

Infect_B
MassAction (k_infect_b)

SESS NewEpidemic_B LIMIT_2

MassAction (1)

Figure 2.4: Variation of the SIR model as XSPN’; where SP - constant which represents
an initial state of a susceptible population, LIMIT - weight of the inhibitor arc, LIMIT 2 -
weight of the equal arc, [] - transition, O - place, —» - directed arc, —» - reset arc, —e -
read arc, —ee - equal arc, —o - inhibitor arc.

2.4 Coloured Petri Nets

Coloured Petri net PN [GL79, Kur8l] is an extension that preserves properties of
standard PN and combines the power of graphical modelling with the expressiveness of
a programming language. This combination is the main advantage of PAC and permits
the modelling of complex systems in a compact and structured way. Like PN, it consists
of places and transactions connected by arcs. The main addition of PN/ is enhanced by
discrete data types. In a programming language, a data type is a set of values that obey
some attributes [CW85] from which an expression (e.g. user-defined functions) may take
its values. In PN, discrete data types are represented by colour sets. The main basic
data types are: integer, Boolean, string and enumeration. They can be used to define
expressions (colour expressions) that are used to define multisets, initial markings, arcs
inscriptions, and guards. A colour set is assigned to each place, which may contain
distinguishable tokens. As a place can contain multiple numbers of tokens of the same
colour, the best way to describe them is a multiset. The multiset is a colour expression
over the colour set assigned to the place. A guard is associated with each transition.
The guard is a Boolean expression over constants, variables or functions. It enables an
associated transition only if the expression evaluates to true. Additionally, an expression
is assigned to each arc which defines a multiset over the colour set of the connected
place [Liul2, LHG19]. In addition to improved readability, PN allows to easily scale a
model by use of coloured expressions and adding or removing colours from colour sets.

14

2.4 Coloured Petri Nets

Definition 8 (Multiset). A multiset Syrg over S is a function m : S — Ny that maps
each element s € S onto a non-negative integer m(s) € Ng. It is denoted by a formal
sum m =y gm(s)'s, where:

e S is a finite, non-empty set.

Definition 9 (Multiset operations). Let S be a finite, non-empty set, and Vmy, ma, m €
Sus. Addition (+), scalar multiplication (), comparison (<), substraction (—) and
size |m| are defined as follows:

1. (m1 4+ m2)(s) = mi(s) + ma(s), Vs € S.

2. (nxm)(s) =n*m(s) Vn € Ny, Vs € S.

3. m1 < mg < my(s) <ma(s), Vs € S.

4. (ma —m1)(s) = ma(s) —mi(s), Vs € S and my; < ma.

- ml = 2ses ms)-

Oy

Example 2.5. Let a color set be S = {a,b,c}, then m = 1‘a+2‘b+4‘c is a multiset
over S, which contains 1 occurrence of element a, 2 occurrences of element b and 4
occurrences of element ¢, i.e. m(a) = 1, m(b) = 2 and m(c) = 4.

Definition 10 (Coloured Petri net). A coloured Petri net is an 8-tuple
N=<PT A>, C,g,f myg>, where:

P is a finite, non-empty set of places.

T is a finite, non-empty set of transitions.
e PNT =10

e AC(PxT)U(T x P) is a finite set of directed arcs.

> is a finite, non-empty set of colour sets.

e C: P — > is a colour function that assigns to each place p € P a colour set

Clp) €2

g:T — EXP is a guard function that assigns to each transition t € T a guard
expression of the Boolean type.

f+A— EXP is an arc function that assigns to each arc a € A an arc expression
of a multiset type C(p)as, where p is the place adjacent to the arc a.

mg : P — EXP is an initialization function that assigns to each place p € P an
initialization expression of a multiset type C(p)us.

15

2. BACKGROUND AND RELATED WORK

After unfolding a PNC N =< P, T, A, >, C, g, f,mp >, an uncoloured place instance
p(c) represents one colour ¢ € C(p) from colour set C'(p) associated with a coloured
place p € P. The set of all instances of a place p(c) of p is defined as Ip(p). The joined
set of all Ip(p) of all places p € P is defined as Ip.

Definition 11 (Place instance). A place instance p(c) is a pair (p,c) with p € P and
ce C(p).

Each expression (a guard of a transition and expressions on its adjacent arcs)
associated with a transition needs to be evaluated. If the expressions involve a set of
variables, then for each variable Var(t) associated with transition ¢ € T a binding
[JKWO07] must be applied. Through the binding b to each variable v € Var(t) a value of
a suitable data type is assigned. After unfolding, each uncoloured transition instance ¢(b)
represents one binding b € B(t) from the transition binding set B(t) (which represents
all bindings of given transition). The set of all transition instances ¢(b) of t is defined as
Ip(t). The joined set of all I7(t) of all transitions t € T is defined as Ip.

Definition 12 (Transition instance). A transition instance t(b) is a pair (t,b) with
teT and b€ B(t).

A transition instance ¢(b) is enabled if the guard g(¢) and the adjacent arc f(p,t)
expressions evaluates to true. The enabled transition instance ¢(b) can fire only if
pre-places have enough tokens of given colours that are denoted by arc expressions after
evaluation for a given binding.

Definition 13 (Transition instance enabling). A transition instance t(b) € Ip is
enabled in a marking m, denoted by m[t(b)), if and only if the following conditions are
satisfied:

1. g(t) (b) = true,

2. m(p) > f(p,t)(b), Vp € °t.

Definition 14 (Transition instance firing). A transition instance t(b) € It enabled in
a marking m may fire and reach a new marking m', denoted by m[t(b))m', with

m' (p) = m(p) + f(t,p)(b) — f(p,t)(b),Vp € P.
Upon firing, tokens are removed from all pre-place instances p(c) and added to all
post-place instances p(c) denoted by an arc expression .

Example 2.6. Figure 2.5 presents the coloured version of the SIR model in Figure 2.1.
The colour set Population is of the enumeration type, with two defined colours A and
B. Tt represents two populations and is assigned to each place. As a place may have
several tokens of different colours, the place SusceptiblePopulation is initialized with
the multiset expression 5ed‘A++le5‘B over the colour set Population. In this case, the
place contains 5e4 tokens of colour A and 1e5 tokens of colour B making in total 1.5e5
tokens. Similarly, the place Infected is initialized with one token of each colour from
Population, which describes the expression 1‘all.

16

2.5 Coloured Quantitative Petri Nets

5ed ' A++ «
le5'B 14all()
Population opulation Population
1 .(5)535 % oix % «
SusceptiblePopulation Infect Infected I Recovered

Figure 2.5: SIR model, as coloured PN. The colour definitions are as follows: colour set:
enum Population = { A, B}; variable: x of type Population.

2.5 Coloured Quantitative Petri Nets

An extension of PAC is the coloured quantitative Petri net. Similar like for the quant-
itative PN, a rate function is assigned to each transition - it sets a delay (temporize
transition) or a probability (immediate transition) of a transition firing. Depending
on the interpretation, this allows to define coloured stochastic Petri nets (SPNC) and
coloured continuous Petri nets (CPAC) [Liul2]. The fusion of SPAC and CPNC yields
to coloured hybrid Petri nets (HPNC) [HLR+18].

Definition 15 (Coloured quantitative Petri net). A coloured quantitative Petri net is
a 9-tuple N = < P,T,A,>,C,g, f,v,mg >, where:

e <P T A> , C,g,f,my>is a coloured Petri net.

e v: Iy — H is a function which assigns a firing rate function hyy) to each transition

instance t(b) € Ir(t), Vt € T, whereby H = {hyw)|hyw) : R5r|.t(b)| — Ry, t €T} is
the set of all firing rate functions, and v(t(b)) = hyyy, Vt(b) Vt € T

The rate function can be colour-dependent and therefore rate functions can vary
between transition instances.

Example 2.7. Figure 2.6 presents the quantitative extension of the model in Figure
2.5 with additional colour-dependent rate functions e.g. [r=A] : MassAction(k); where
the type of variable z is the colour set Population, k is the kinetic parameter and
the equation z = A determines the dependence on the colour. Rate functions of both
transitions are colour-dependent and follow specific kinetic patterns, mass-action. The
parameters of the mass-action rate reactions are parametrized by kinetic parameters
(crisp values) which depend on the colour value, e.g. [t=A] MassAction(k_infect_a) ++
[t=B] MassAction(k_infect_b). If the colour value is A, then MassAction is applied with
the kinetic parameter k_infect_a; similarly for the value B. In the model the standard
arcs connect transitions with pre- and post-places.

Example 2.8. The model in Figure 2.7 consists of continuous nodes, and it is derived
by a straightforward conversion of the model in Figure 2.6.

Example 2.9. Figure 2.8 presents a hybrid version of the model in Figure 2.6. For the
purpose of this example, the model is statically partitioned and consists of two clusters

17

2. BACKGROUND AND RELATED WORK

5ed ' A++ «
le5'B 17all()
Population opulation Population
1.5e5 % 2x X D x :
SusceptiblePopulation Infect Infected Recover Recovered
[x=A] : MassAction(k_infect_a) [x=A] : MassAction (k_recover_a)
[x=B] : MassAction(k_infect_b) [x=B] : MassAction (k_recover_b)

Figure 2.6: SIR model, as coloured SPAN; where [] - stochastic transition, O - discrete
place, —» - directed arc. A more flexible solution to specify colour-dependent rate functions
can be found in Section 4.8.

5ed ' A++ %
1'all()

le5'B
Population /\{opulation Population
1.5e5 « o « «

> » e > »
L L L L

RecoveredAndImmune

SusceptiblePopulation Infect Infected Recover
[x=A] : MassAction(k_infect_a) [x=A] : MassAction(k_recover_a)
[x=B] : MassAction(k_infect_b) [x=B] : MassAction (k_recover_b)

Figure 2.7: SIR model, as coloured CPAN; where [] - continuous transition, () - continuous
place, —» - directed arc.

(subnets), continuous and stochastic. These two parts model the infection and recovery

process, respectively.

5ed ' A++ %
17al1()

le5'B
Population ’////F\\\\{Spulation Population
1.5e5 x 2% x

X
- NG o J——0O

. . Recovered
SusceptiblePopulation Infect Infected Recover
[x=A] : MassAction(k_infect_a) [x=A] : MassAction(k_recover_a)
[x=B] : MassAction(k_infect_b) [x=B] : MassAction (k_recover_b)

Figure 2.8: SIR model, as coloured HPAN; where [] - stochastic transition, [| - continuous
transition, O - discrete place, () - continuous place, —» - directed arc.

2.6 Unfolding

Currently, unfolding a PAC (with finite discrete colour sets) to its corresponding
uncoloured PN is a necessary step to apply analysis and simulation techniques as most
of them require standard Petri nets. At this step each colour of a place and each binding
of a transition is unfolded to a place and transition instance, respectively.

2.6.1 Equivalent Standard Petri Nets

The equivalent standard PN of a PAC with finite colour sets is defined by the Definition
16 [Jen92].

18

2.6 Unfolding

Definition 16 (Unfolded Petri net). Let N = < P,T,A,>,C, g, f,mo > be a coloured
Petri net, its unfolded Petri net N* = < P*,T*, A*, f*, mg > is defined by:

1. P* = Ip.
2. T* = I.

p,t){b))(c) > 0} U

3. A" = {(p(c),t(b)) € P* x T*|(f({
)(0)){c) > 0}.

{(t(0),p(c)) € T x P[(f(t,p

4. Y(p(e), 1(b)) € A" = f*(p(c), t(b)) = (f(p,
V(t(b),p(c)) € A" : [(t(b), p(c)) = (f (2, p){b)){c)-

5. Vp(c) € P* : m{(p(c)) = mo(p){c).

I
—~
~
=
~—
—~

S
=
~—
—

o
L

1. The places of the Petri net N* correspond to the place instance p(c) € Ip in
the coloured Petri N. This means splitting of each coloured place p € P into as
many uncoloured places p* € P* as there are colours ¢ € C(p). This allows for
distinguishing coloured tokens (the colours are lost after translation) as they are
assigned to different places in the Petri net N*.

2. The transitions of the Petri net N* correspond to each binding (transition instance)
t(b) € I7 in the coloured Petri N. This means splitting of each coloured transition
t € T into as many uncoloured transitions t* € T* as there are bindings b € B(t).

3. An arc connecting p(c) with ¢(b) exists iff an occurrence of ¢ with the binding b
removes at last one coloured token ¢ from p, i.e. (f(p,t)(b)){c) > 0. Analogously,
an arc connecting t(b) with p(t) exists iff an occurrence of ¢ with the binding b
adds at last one coloured token c to p, i.e. (f(t,p)(b)){c) > 0.

4. The weight of the arc connecting p(c) with #(b) is the number of the ¢ tokens
(f(p,t)(b))(c) which an occurrence of ¢t with the binding b removes from p. Ana-
logously, the weight of the arc connecting ¢(b) with p(c) is the number of the ¢
tokens (f(t,p)(b))(c), which an occurrence of ¢ with the binding b adds to p.

5. The number of initial tokens of place p(c) € P* is equal to the number of the ¢
tokens mg(p){c) of place p € P.

The above definition does not include PAC with special arcs and any time informa-
tion. If PAC contains special arcs, then the unfolded counterparts need to be of the
same types. Likewise, if PAC contains time information, then it must be added to the
unfolded transitions.

19

2. BACKGROUND AND RELATED WORK

2.6.2 Unfolding Algorithm

In [Liul2] an unfolding algorithm for PAC is proposed. To be efficient, the Algorithm 1
may adopt the following optimization techniques:

e optimization techniques for transition instance computation: constraint satisfaction
approach, partial binding - partial test principle, merging identical patterns and
the fewer-colours-first policy,

e removal of false guarded transitions; during binding process (not at the end of the
unfolding), transition instances are removed if guards are evaluated to be false,

e removal of isolated places or transitions; during the binding process, isolated
places and transitions are removed as they do not contribute to the behaviour of
the net.

Valid bindings are computed for each transition ¢ in the net N (Line 2). If the
variable set V(t) of the transition t is not empty and simultaneously the binding set B
is empty, then ¢ is isolated and can be immediately excluded from the unfolded net N*
(Lines 3-5). Then for each binding b € B:

e a transition ¢*(b) € T™ is instantiated with the assigned value ¢(b) € T' (Line 7);

e for each pre-arc A(p,t) of ¢, its expression is evaluated with regard to binding and
then for each colour ¢ in the evaluated expression (f(p,t)(b)):
- a place p*(c) € P* is instantiated with the assigned value p(c) € P (Line 10);
- the number of ¢ tokens on place p is assigned to the place p*(c) (Line 11);
- an arc expression (f*(p*(c),t*(b)) is instantiated with the number of ¢ tokens

(f(p,£)(b))(c) in (f(p,2){b)) (Line 12);
- an arc (p(c),t(b)) is added to the net N* (Line 13);

e the post-arcs are created in the same way as the pre-arcs (Lines 16-23);

This algorithm does not consider PAC with special arcs and time information, but
the principles stay the same - only special arcs and time information need to be added to
the algorithm. It is a basic algorithm that says nothing about the implementation. The
description of an efficient implementation that builds on Interval Decision Diagrams
(IDD) can be found in Section 4.8.

20

2.6 Unfolding

Algorithm 1: Unfolding a coloured Petri net [Liul2].

Input: a coloured Petri net N =< P, T, A,>,C, g, f,my >;
Output: an unfolded Petri net N* =< P*,T*, A*, f*, m{ >;

1 for each transition t € T do

2 B = ComputeBindings(t);

3 if V (t) is not empty and B is empty then
4 t is isolated;

5 end

6 for each binding b € B do

7 t*(b) « t(b);

8 for each pre-arc (p,t) of t do

9 for each colour ¢ in (f(p,t)(b)) do
10 p(c) < ple)
n mp (0 ()) < mo(p)(c)
12 P25 (0,1 (0)) (f (DN e):
13 (p"(c), 7 (b)) < (p(c), t(b));

14 end

15 end

16 for each post-arc (t,p) of t do

17 for each colour c in (f(t,p)(b)) do
18 p*(c) < plo);
19 mg(p*(c)) < mo(p){c);
20 fr (), p*(c)) < (f(t,p) (b)) (c);
21 (t*(b), p*(c)) <= (£(b), p(c));
22 end

23 end

24 end

25 end

21

2. BACKGROUND AND RELATED WORK

2.7 Simulation

Modelling a system is the first step to understand it. The following step is often a
simulation, which allows for the analysis of dynamic behaviours of a modelled system.
It is an essential tool for studying biochemical systems. As presented in [Her13, Roh17],
simulation types are divided into three main classes: deterministic, stochastic and hybrid.
What kind of simulation class will be applied, depends on the model and the properties
of interest.

2.7.1 Mass-Action Kinetics

In biochemical reaction networks, the transition firing rates usually follow specific kinetic
patterns, e.g. mass-action kinetics. The mass-action law explains the relation between
the rates of reactions and the concentrations of reactants in the reaction network.

Reaction Networks. A chemical reaction network comprises a set of species (which
consists of subsets of reactants and products) and reactions. In PN, species are
represented by places and reactions by transitions. This can be clarified by considering
as example a simple reaction (2.1) and the corresponding SPA in Figure 2.9 , where
the species S1,..., 5|5 appear in the reaction with at least one non-zero coefficient o

or B.

k
a1S1+ -+ as—155)-1 + 55|15 = B1S1+ - + Bigj—15|51-1 + Bis19s) (2.1)

MassAction (k)

Figure 2.9: A simple reaction as SPN.

The species of the reaction (2.1) are reactants (left-hand side of the reaction (denoted
by directed arrows)) and products (right side). The rate constant of the reaction is
denoted by k. The reaction can concisely be represented by the equivalent equation
(2.2)

S| S|

j{:o%sk'k>j£:ﬁx5} (22)
=1 r=1

where «, and 3, are the stoichiometric coefficients of the species S, (that describe how
many molecules of the species S, react in each occurrence of the reaction), and |S] is

22

2.7 Simulation

the number of species which is equivalent to the length of the species vector in the
matrix-vector notation. Using the matrix-vector notation, the equation (2.2) can take
the form

aS % gs (2.3)

where S = [Sl, Sz, ce ,S|S|]T, a = [al, a9, ... ,a‘g‘] and ,6 = [ﬁl,ﬁg, ce ,,3|5|]
Similarly, for a reversible reaction (2.4)

k
arS1+ -+ as-1551-1 + 05199 % B1S1+ -+ Bis-15s)-1 + Bis|S)s) (2.4)
2

which represents forward and backward reactions that can be represented in an irre-
versible form (2.5)

k
o181 + -+ + oy51—15)811 + 5)S)s] = B1S1+ -+ + Bisi—15s1-1 + Bis1S)s (2.5)

k
151 4 -+ + ay51-155)-1 + @15S)s] = B1S1+ - + Bisj—15)s)-1 + B S)s)

where reaction rate constants are denoted by k1 and ko. This allows to derive the reaction
network (equation (2.6)) where every reaction in the reaction network is represented as
irreversible.

S |S]

ks .
;axsméleﬁx&u j=L. M (2.6)

where M is the number of reactions

Mass-Action Law. The dynamics of this reaction network can be derived by mass-
action law, which states that for an elementary reaction, that is, a reaction in which all
the stoichiometric coefficients of the reactants are one, the rate of reaction is proportional
to the product of the concentrations of the reactants [SFH99].

For the i-th species in a single irreversible reaction (a special case of a reaction
network where number of reactions is equal one), the rate of a reaction is given by the
equation

d[SZ] |S‘ Qg ‘S|
— =G o)k [T T [8:] = (8: — o)k [] 821 (27)
x=1 1 rx=1

Consequently, for the i-th species in a reaction network the equation has the form

23

2. BACKGROUND AND RELATED WORK

Y 5]
dc[liz] = (Bji — agi)ky [] [Sa] (2.8)
j=1 z=1

where (3;; — cj;) is a concentration of the species S; that changes during the occurrence
of the j-th reaction. The equation (2.2) can be expressed in the matrix-vector notation

= (8 —a)k[s]" (2.9)

where a = [a5)] and 8 = [Byy5)] are matrices of coefficients,

a1 o120 Pi1 Bz o By
N L T | R
QM1 QM2 ot Qs 51\'4,1 Bz\‘m 5M'7|S|
k = diag(ky, ko, ..., ky) is the diagonal matrix of kinetic parameters,
kk 0 --- 0
0 ky --- 0
k =diag(ky, ko, ... kn) = S E (2.11)
0 0 - ky
S =[51,52,..., S| 5‘]T the vector of species and S is the vector-matrix exponentiation

[Meil9]. It is an operation that maps S and « to its vector-matrix power S¢ defined as

g a 8(111’1551’2 . S|CV1|,\S\
1 S
S. SOé2,1 02,2 Saz,\S\
se=|T =77 SO F (2.12)
- . - .) .
S QM1 QM2 LIV
K S177 8, SlS\

and takes the form of a column vector with |S| entries.
The expression

|S|

k H [S,]% (2.13)
=1

also refers to the pattern MassAction(k) which is frequently used in the models of this
thesis.

24

2.7 Simulation

2.7.2 Stochastic Simulation

The stochastic simulation [Gil76, Gil77] fits well for biochemical systems as they are
discrete and stochastic in nature. The stochasticity results from the fact that it is
impossible to predict when a next reaction will occur. It can be described by a chemical
master equation as presented in [Gil76]. It is valid in all cases as long as it performs
a single run. For multiple runs, simulation traces are averaged and, as a result, some
events can be hidden (lost by averaging). In this case, it is comparable to a deterministic
simulation, and it is valid in the same situations [OSW69, Kur72]. Moreover, it deals
well with low concentration of species [MA99, Pah09] where the deterministic simulation
fails.

The semantics behind SPAN is described by a CT MC which represents a state space
that can be infinite. Instead of computing CT MC directly, a simulation approximates
it by generating different paths. A path is generated by repeatedly firing transitions
starting from an initial marking mgo [Roh17]. The main issue of a stochastic simulation
is to identify which reaction would occur next and when, which is described by the
reaction probability density function 2.14 [Gil76]. During simulation this issue leads to
a race condition as the next system state is determined by the fastest reaction.

P(r,t;lm)dr = probability at given state X (7) =m
that reaction t; will occur in (2.14)

the next time interval [7,7 + 07)

Proposed by Gillespie [Gil76, Gil77], a method to construct the numerical realiza-
tions of species concentration is a Monte Carlo procedure for numerically generating
paths through the CT MC. Gillespie’s Stochastic Simulation Algorithm (called SSA or
Gillespies algorithm) generates random walks through a CTMC. It has many variants
of implementations and optimizations, but basically each of them follows Algorithm 2.
The description of some of them can be found in [Roh17, Her13].

Algorithm 2 returns a trace of stored system states (one possible path through a
CTMC) for a given time interval. Executing the loop of the algorithm (lines: 4-9), the
current time 7 is increased starting from the initial time 7y until it reaches the end
time Tenq. A reliable insight into a system behaviour is only possible, if system states
of several runs are examined. Each run starts from the same initial state, in which a
random generator is initialized with a different/random seed (line: 1). This allows for
various runs of a stochastic process. A system state at time point 7 of each simulation
run is recorded and the mean state at this point is given by Equation 2.15.

N

X(r)=(1/N))_X(n,7) (2.15)

n=1

25

2. BACKGROUND AND RELATED WORK

Algorithm 2: Basic stochastic simulation algorithm [Roh17].
Data: SPN with initial state X (79);

time interval [0, Tendl;
Result: trace of stored system states;

1 initRand(seed);

2 time 7 = Ty;

3 state X (1) = X(19); /* make initial state to current state */
4 X(T) — store; /* add X(79) to the trace */
5 while 7 < 7,4 do

6 07 = determine duration until next firing by computing

7 rate function A of transitions depending on the current state X (7);

8 T=T+40T; /* determine the next time point */
9 t = select the next transition to fire depending on current state X (7);

10 X(T) =t — fire; /* compute new state X(7) by firing of t */
11 X(T) — store; /* add X(7) to trace */
12 end

As shown in Figure 2.10 (page 27), the number of runs N has an influence on the
accuracy of a simulation as its recorded traces (results) are approximated by the mean
state at point 7.

Example 2.10. Figure 2.11 (page 27) presents the results of the stochastic simulation
of the model in Figure 2.4. The simulation traces 2.11.(a, ¢) and 2.11.(b, d) represent
the states of the populations A and B over time, where the traces 2.11.(a, b) represent 1
simulation run, while 2.11.(c, d) are averaged over 100 simulation runs. The comparison
of the simulation traces 2.11.(a) and 2.11.(c) gives an insight into how a detailed view
of the system state can be lost due to averaging. A detailed view on a system state can
be provided by single runs of a stochastic simulation. In Figure 2.11.(a) the reset event
(TransientImmunity) is marked by values of Susceptible and Recovered population that
are set to the initial state, while it is flattened in Figure 2.11.(c).

Example 2.11. A stochastic or deterministic simulation can be applied to any model
type (SPN, CPN, HPN) after a straightforward conversion of its nodes to the ap-
propriate types determinates by the simulation. The model in Figure 2.6 (page 18)
consists of stochastic nodes and their continuous counterpart (see Figure 2.7, page 18)
is derived by a straightforward conversion. Figure 2.12 (page 28) presents the traces
of the stochastic (2.12.(a, b)) and the deterministic (2.12.(c, d)) simulation. Notably,
the resulting traces differ between Figure 2.12.(b) and 2.12.(d). This can be explained
by decay of a disease when all specimen in an infected population recovered without
spreading a disease (isolation) onto a susceptible population. This event cannot be clearly
seen in the traces of the stochastic simulation, as they show the averaged results of 10
runs. It is similar in the case of the deterministic simulation. This event is superseded,

26

2.7 Simulation

Number of Tokens.
° °
2 a

°

°
s

Number of Tokens.
RS

(c) 50

5

Number of Tokens
5 &

°

o 2 4 6 8 10
Time
[2 a 6 8 10

Figure 2.10

Time
— Recovered 8
(d) 5o
25
g20
£
3
e
S1s
]
H
5
210
0s
00
3 4 3 8 10
Time Time

: Influence of the number of simulation runs N on recorded and approximated
stochastic simulation traces of the SPA model in Figure 2.3; number of tokens on place
Recovered_B for single run (a - ¢) and an average of 100 runs (d).

—— SusceptiblePopulation_A

—— Infected A

—— Recovered A

(a) soo00
40000
30000

20000

Number of Tokens

10000

(b)

400

Time

600

800

1000

() soo00
40000
30000

20000

Number of Tokens

10000

(d)

400

Time

600

800

1000

Number of Tokens.

Number of Tokens

100000

80000

60000

40000

20000

100000

80000

60000

40000

20000

—— SusceptiblePopulation_B

—— Infected B

— Recovered B

°

200

600 800 1000

°

200

400

600 800 1000
Time

Figure 2.11: Simulation traces of the stochastic XPA model in Figure 2.4 represents
results of the stochastic simulation; (a, b) - 1 run, (¢, d) - an average of 100 runs; for
the model configured as follows: SP_A = 5ed; SP_B = 1eb5; LIMIT_A = SP_A + 1;
LIMIT_B = SP_B+1; k_.infect_a = 5.0e—5; k_infect_b = 5.0e—6; k_recover_a = 1.0e—1;
k_recover_b = 1.0e — 2.

27

2. BACKGROUND AND RELATED WORK

since the traces are results of approximating the solutions of ODEs. To spot this event,
it is necessary to apply a single run of a stochastic simulation. Figure 2.13 (page 28)
presents the resulting traces of such simulations. It is easy to spot the decay of a disease

(when all specimen in an infected population recovered) in the populations.

(a)

(c)

50000

40000

30000

Number of Tokens.

20000

10000

50000

40000

30000

20000

Number of Tokens

10000

— SusceptiblePopulation_A

(b)

100

150 200

Time

.

(d)

[50

100

150 200

Time

250

Number of Tokens

Number of Tokens

100000

80000

60000

40000

20000

0

100000

80000

60000

40000

20000

0

—— SusceptiblePopulation_B
—— Infected 8
—— Recovered B

150 200

Time

100 150 200

Time

Figure 2.12: Comparison of the simulation traces of the models in Figure 2.6 and 2.7;
average of 10 stochastic simulation runs (a, b) versus deterministic (continuous) simulation

(¢, d); where SusceptiblePopulation is set to bed‘A + +1e5‘B; k_infect_a

5.0e — 5;

kanfect b =5.0e — 6; k_recover_a = 1.0e — 1; k_recover_b = 1.0e — 2.

1.50

Number of Tokens

—— Infected A
—— Recovered_A

Number of Tokens

[2

Time

8

10

[2 4 6 8 10
Time

Figure 2.13: Decay events of a disease (when all specimen in an infected population
have recovered) in the populations. This event cannot be clearly seen in the traces of
the stochastic simulation if it is an averaged result of several runs (e.g. Figure 2.12(a,b)).
Similarly, for the deterministic simulation, this event is superseded in resulting traces, since
it is the result of approximating the solutions of ODEs (e.g. Figure 2.12(c,d)). The traces (a,
b) are results of stochastic simulations (set to single run) of the model in Figure 2.6; where
SusceptiblePopulation is set to bed' A+ +1e5'B; k_infect_a = 5.0e —5; k_infect_b = 5.0e — 6;
k_recover_a = 1.0e — 1; k_recover_b = 1.0e — 2.

28

2.7 Simulation

The stochastic simulation is computationally expensive, especially if it deals with
large biological models that involve large numbers of species [ACT+05, LCP+08, Pah09].

2.7.3 Deterministic Simulation

The deterministic simulation is widely used as it is a traditional way to simulate
biochemical systems [WUK+04, Gil07, Pah09]. It is well documented with established
mathematical basis. It is an accurate approach for a system with sufficient concentration
of species. With the assumption that a concentration and a volume of a system is
infinite (follow to infinity), an evaluation of a system (reaction influence on species
concentration) can be represented as a set of ordinary differential equations (ODEs)
[HR02, WUK+04, Gil07]. The equations have the form of (2.16):

dc[iii]:fi([Sl],...,[SN]), (2.16)

where [S;] is a concentration of the species S; at the current time 7 and f;([S1], ..., [SN])
is a function of the species’ concentrations. By solving ODEs, a concentration can be
approximated by a continuous variable [GB00]. Through a simulation, the system state
(marking) X (7) at the current time 7 is described as a continuous deterministic process
[Gil01]. During this process, a concentration evolves deterministically with time, what
means, when a process (simulation) is repeated, starting from the same initial system
state, the same state will be reached in any future time point.

Through an elementary kinetic rate laws (e.g. mass-action), it is possible to
derived/obtain a system of ODEs.

Example 2.12. The model in Figure 2.14 presents a part of the model in Figure 2.3
(page 13) as CPN. The model consists of continuous nodes and is derived by a straight-
forward conversion.

4 /\
5e 5

» » o »
—_—

Infected A Recovered_ A

SusceptiblePopulation_ A Infect A Recover A

MassAction (k_infect_a) MassAction (k_recover_a)

Figure 2.14: SIR model, as CPN; where [] - continuous transition, () - continuous place,
—» - directed arc.

The model can be expressed by two elementary reactions (2.17),

k_infect_a

Susceptible Population_A + Infected_A 2-Infected_A

(2.17)

k_recover_a

Infected_A ————— Recovered_A

29

2. BACKGROUND AND RELATED WORK

and the system of corresponding ODEs (2.22) can be obtained by applying either (2.8)
or (2.9). The following derivation relates to (2.9), as shown in the sequence of steps:

1. The difference of coefficients between products and reactants species;

0 11 (2.18)

2. The diagonal matrix of kinetic parameters;

k_infect_a 0

0 k_recover_a (2.19)

=

3. The vector-matrix exponentiation;

Susceptible Population_A|”
S = Infected_A =
Recovered_A

Susceptible Population_A' - Infected_A' - Recovered_A° (2.20)

Susceptible Population_AY - Infected_A' - Recovered_A°| —

Infected_A

| Susceptible Population_A - InfectedA‘

4. The ith species rate;

-1 0
=1 -1
0 1

Susceptible Population_A - Infected_A|
Infected_A a

0 k_recover_a

’k,m fect_a 0

—kinfect_a 0
=| kuinfect_.a —k_recover_a
0 k_recover_a

Susceptible Population_A - Infected_A| (2 21)
Infected_A -)

—k_infect_a - SusceptiblePopulation_A - Infected_A
= |k_infect_a - Susceptible Population_A - Infected_A — k_recover_a - Infected_A
k_recover_a - Infected_A

30

2.7 Simulation

4. The system of corresponding ODEs;

d[Susceptible Population_A]

dr
d[Infected_A]

dr

= —k_infect_a - [Susceptible Population_A] - [Infected_A]

= k_infect_a - [Susceptible Population_A] - [Infected_A]

— k_recover_a - [Infected_A]

d[Recovered_A]

= k_recover_a - [Infected_A]
dr

(2.22)

Following mass-action law and equation (2.8), the resulting system contains three
ODEs (the number of ODEs corresponds to the number of unique species in the
elementary reactions). Each of them describes the change in a species concentration over
time due the occurrence of one of the elementary reactions. The change is proportional to
the sum of the product of a transition rate constant and to the reactants concentration,
over all elementary reactions, where the stoichiometric coefficients for the reactants are
negative, and for the products - positive.

The underlying ODEs are generated automatically by the simulation library which
is an integral part of the PetriNuts framework and is used by Spike, Snoopy and Marcie.
A numerical solution of the obtained ODEs can be found by applying different solvers;
a classification can be found in [HNW93, HW96]. The basics steps of deterministic
simulation are presented by Algorithm 3.

Algorithm 3: Basic deterministic simulation algorithm [HH17].
Data: CPN with initial state X (79);

time interval |70, Tendl;
step size 07 where 07 < (Teng — 70);
Result: trace of stored system states;

1 define function f by constructing the ODEs induced by CPN;

2 time 7 = 79;

3 state X(T) = X(T()); /* make ODE solver initial state to X (79) */
4 X(T) — store; /* add X(79) to trace */
5 while 7 < 7,4 do

6 T=1T++ (57'; /* determine next time point */
7 X(T) - X(T) + 07 - f(3>; /* compute a new state */
8 X (1) — store; /* add X(7) to trace */
9 end

The deterministic approach is not the best choice for non-linear systems, due to
discreteness and random fluctuations in species concentrations, in particular, when the
concentrations are small [MA99, Pah(09]. In the deterministic simulation the results are

31

2. BACKGROUND AND RELATED WORK

approximations of the solutions of ODEs. This may lead to a loss of details in simulation
traces. For instance in the averaged traces of the SIR model simulation, it is easy to
overlook the case when one becomes infected and then recovers without affecting the
rest of a population. In contrast, an exact trace of a single run of a stochastic simulation
contains all details as the result is not averaged.

2.7.4 Hybrid Simulation

The hybrid simulation should be applied if a model contains a mix of: slow and fast
reactions, or/and small and high concentrations of species. Simulation of hybrid models
has been previously investigated in e.g. [HR02, KMS04, SK05, ACT+05, GCP-+06].
Applying only deterministic or stochastic approaches may lead to inaccurate or inefficient
simulation, respectively. A hybrid simulation overcomes these problems by clustering
a model. A cluster contains fast or slow reactions [Pah09], which are simulated in a
deterministic or stochastic way, respectively. Fast reactions occur frequently and can
be handled/treated as continuous processes. For simulation efficiency, it is better to
simulate them using the deterministic approach. In turn, slow reactions are of low
frequency and can be a source of various fluctuations/stochastic noise (e.g. volume
variation, molecule fluctuations), which may affect the behaviour of a model. This
make them more suitable for the stochastic approach. The hybrid approach comes with
two main issues, clustering (partitioning) and synchronization of the stochastic and
continuous regimes (systems), which need to be solved to achieve efficient and accurate
simulation.

A proper clustering is a source of efficient hybrid simulation. When reactions are
clustered inefficiently, it can be slower than a stochastic simulation. To cluster fast
reactions effectively, it must be taken into account that their reactants have to satisfy
thermodynamic conditions i.e. species concentration and system volume should be large
enough or close to infinity [Gil07]. A clustering process can be static (off-line, e.g. done
by a modeller before start of a simulation) or dynamic (online, during executing a
simulation).

A synchronization between both regimes (stochastic and continuous) is essential for
obtaining accurate simulation results. As a clustering does not split a model, these two
types of simulations have an effect on each other. Fast reactions may depend on the
state of the stochastic simulator and the propensities of slow reactions may change with
time when the continuous simulator advances [HR02].

Example 2.13. Figure 2.15 (page 34) presents resulting traces of the hybrid simulation
of the model in Figure 2.8 (page 18). It is worth noting that the Susceptible Population
reached negative values (Figure 2.15.(a)). For the efficiency of the continuous simulation,
a transition firing is only guarded by a rate function (in the case when the bio-semantic
is applied to simulate biochemical reactions). To avoid negative values, a rate function
should depend on (be proportional to) the concentrations of reactant species (pre-places).

32

2.7 Simulation

Algorithm 4: Basic hybrid simulation algorithm - an extended version of this
algorithm is introduced in [Her13].

Data: HPN with initial state X (79);
time interval [70, Tend);
step size 674 where 674 < (Tepda — 70);
Result: trace of stored system states;
1 define function f by constructing the ODEs induced by continuous part of HPN;
2 time 7 = Ty;

3 state X(T) = X(T()); /* make initial state to current state */
a4 X(1) — store; /* add X (79) to trace */
5 while 7 < 7,4 do

6 ensure ODE solver is initialized with X (7);

7 07 = determine duration until next firing by computing

8 rate function h of transitions depending on current state X (7);

9 T=T+40T; /* determine next time point */
10 T4 =T;

11 while 7; < 7 do
/* determine next time point for deterministic solver */

12 Td = Td + 074;

13 X(Td) = X(Td) + 57—d : f(S); /* compute new state */
14 X(Td) — store; /* add X(74) to trace */
15 end

16 t = select transition to fire depending on current state X (7);

17 X(T) =t — fire; /* compute a new state X(7) by firing of ¢ */
18 X(T) — store; /* add X(7) to trace */
19 end

33

2. BACKGROUND AND RELATED WORK

If concentrations fall to zero, a firing rate function should prevent a transition from
firing (it fires with zero rate) [HH17].

—— SusceptiblePopulation_A
A

(a) 50000 (b) 100000

40000 80000

§
30000 & 60000
2

s

mber of Tokens

7
20000 € 40000
5 5

N

2

10000 20000

o+ 0

4 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time Time

Figure 2.15: Simulation traces of the HPNC model in Figure 2.8.

More details about the hybrid approach can be found in [Her13].

2.8 Reduction

A growing amount of experimental data is leading to the development of complex models
that may contain numerous nodes. In the case of a PAC model, it needs to be unfolded
to a PN before a simulation. After unfolding, the number of nodes can be much larger
than in its coloured counterpart. Reduction of a model yields a more optimized (in
terms of size) model that provides insight knowledge about structural properties of the
model and reduces simulation overhead.

The reduction of PA” models is continuously studied in computer science. The main
challenge of reduction is to preserve the main three properties of PA model: liveness,
reversibility and boundedness.

Spike is able to structurally reduce a model by pruning clean siphons (a set of
empty places; a marking of those will never be changed because any reaction that would
cause a change depends on this set) and constant places (places, occurring only as side
conditions).

If a model is to be read as ordinary differential equations (ODEs), it can be reduced
by finding equivalence relations over variables. In [CTT+16] two equivalence relations
are presented. FDE (Forward differential equivalence) and BDE (backward differential
equivalence) which are implemented in ERODE [CTT+17]. Spike allows to export a
model to the ERODE format, however this functionality has experimental status.

2.8.1 Pruning Clean Siphons

A Siphon S is a non-empty subset of places S C P if every transition having an output
place in S has also an input place in S, i.e. *S C S® [Mur89]. This means that if a
siphon once loses all its tokens in its places, there will never be any token in those
places. By definition, a clean siphon is a set of empty places, the marking of those will

34

2.8 Reduction

never be changed because any reaction which would cause a change depends on this set.
Therefore, if a clean siphon is empty in the initial state X (79) or insufficiently marked,
it can be safely pruned from a model as a simulation will not change the state of the
siphon.

Based on the algorithm proposed in [KLP06], Christian Rohr developed in 2016 the
Algorithm 5 that finds a maximal insufficiently marked siphon and a corresponding set
of dead transitions, which can be pruned from a PN model.

Algorithm 5: Maximal insufficiently marked siphon [HRS13].

Data: XYPN with initial state X (79);
Result: maximal insufficiently marked siphon S and dead transitions D;
S=P;
D =T,
for allt € D do
if X(r9) >t~ AN X(10) >t ANX(79) <t; then
S=5\"t

end

end
do

s = ‘S‘, /* store the current size of unmarked siphon set */

© 0 N O TN W N

-
o

d= ‘D|, /* store the current size of dead transitions set */
for allt € D do
if *tNS =0 then
S =5\t
D =D\t
end

H Rl
[, S NIV R RS

end
while s # |S| vV d # |D|;

I
N o

Example 2.14. 5 To find a maximal insufficiently marked siphon in Figure 2.16 (a)
(page 36), initially all places are considered to belong to the maximal insufficiently
marked siphon set S and all transitions are considered to be dead (lines 1-2 of the
algorithm). If a transition is live in the initial state X (7,), then all its pre-conditions
are removed from the siphon set S (lines 3-7). For all transitions in the set D, if all its
pre-conditions are outside the siphon (the transition can structurally be fired), remove
all its post-conditions from the set S and remove the transition from the set of dead
transitions D (lines 11-16). Repeat this step until no place or transition is removed
from the siphon S or dead transitions set D, respectively (lines 8-17). Finally, all places
in the siphon and all dead transitions can be pruned from a model. The final result is
presented in Figure 2.16 (c).

35

2. BACKGROUND AND RELATED WORK

(a)
SusceptiblePopulation Infect Infected Recover Recovered
(b)

Recovered
Infected Recover

O

Recovered

Figure 2.16: (a) Example PN representing the SIR model where SP and I are initial
markings, IR and R are arcs weights. The arc weight IR represents the infection (transition)
rate. Assuming that the transition Infect is dead in the initial state (e.g. SP > 0 and
I =0), then the marked place SusceptiblePopulation (SP > 0) belongs to the insufficiently
marked siphon. The place can be pruned with the associated dead post-transition Infect
which results in the reduced model (b); The model has an additional insufficiently marked
siphon if the place Infected is initially unmarked (I = 0) or the arc weight R is greater than
the initial marking of this place (the associated dead post-transition Recover will never
fire, which allows treating this place as unmarked). This results in the subsequent model
reduction (c). Finally, the place Recovered can be also pruned as it is an unmarked siphon
as well.

2.8.2 Pruning Constant Places

Before a simulation, constant places (places, occurring only as side conditions) can be
pruned from rate functions and arc expressions. If an expression depends on a constant
place, then the dependency can be removed by replacing a place by its marking value.
If an expression involves the MassAction(k) pattern then one additional pre-step is
necessary. The pattern must be replaced by the expression (2.13) before substituting a
place. This allows to speed up an expression evaluation during simulation. To find a
constant place, its total weight of pre- and post-arcs can be used. If a total weight is
equal zero, then the adjacent arcs do not change the number of place tokens after firing
of the pre- and post-transitions. The Algorithm 6 presents this idea in more details.
The result of the algorithm execution is a set of constant places which can be pruned
by applying Algorithm 7.

Example 2.15. In the model in Figure 2.17 (page 37), the place C is the constant
place (its marking is constant upon firing the transition r) which occurs only as a side
condition. After replacing the rate function pattern MassAction(k) by the expression
(k-A-C), Figure 2.17.(b), it can be seen that the reaction rate function depends on the
place C. To speed up a simulation, the place can be replaced with its marking value,
Figure 2.17.(c).

36

2.8 Reduction

Algorithm 6: Finding constant places [HRS13].

Data: PN with initial state X (79);
Result: constant places C;

1 totalWeight = 0; /* total sum of arcs weight adjacent to p */
2 C = @; /* initialisation of constant places set */
3 NC =:®; /* initialisation of non constant places set */

4 for allt € T do

/* for all places that are simultaneous pre- and post-condition of t */

5 for allpe (*tUt*) do
6 if p € NC then
7 continue;
8 end
9 A(p) = (pxt)U(t x p); /* finite set of arcs adjacent to p */
10 for all a € A(p) do
11 if f(p,a) increase marking on p then
/* increase total arcs weight */
12 totalWeight(p) = totalWeight(p) + f(a);
13 else
/* decrease total arcs weight */
14 totalWeight(p) = totalWeight(p) — f(a);
15 end
16 end
17 if totalWeight(p) # 0 then
18 NC = NCUp;
19 end
20 end
21 end
22 C' =P\ NP;
(a) C (b) C (c) (¢}
@—@—@ @—@—@ @4—@——0
A r B A * B A r B
MassAction (k) k*A*C k*A*2

Figure 2.17: (a) Example SPN with the constant place C, where the reaction rate function
depends on this place; (b) the expression (k- A - C) replaced the pattern MassAction(k);
(c) the SPA with the reaction rate function where the place C has been replaced by its
marking,.

37

2. BACKGROUND AND RELATED WORK

Algorithm 7: Pruning constant places.

Data: PN with initial state X (79);
set of constant places C;
Result: pruned PN
1 for allt €T do

2 for all p € *t do
3 if p € C then
4 if v(t) depends on p then
/* make it depended on the place marking value */
5 v(t) = f(m(p));
6 end
7 end
8 end
9 end

2.9 Reproducible Simulation

The amount of data and complexity of models force to design an experiment in a
way that reproducibility is ensured. By providing computer code, data, models and
parameters, one can reproduce results of a simulation.

The term reproducibility coexists with the term replicability. For these two terms
contradicted interpretations exist that vary across a variety of scientific disciplines. More
about this issue can be found in [Barl8], where these terms are categorized according
to their use in scientific disciplines.

In this thesis the definitions of reproducibility and replicability are adopted as it
stands in [NAP19]:

reproducibility - obtaining consistent results using the same input data; com-
putational steps, methods, and code, and conditions of analysis,

replicability - obtaining consistent results across studies aimed at answering the
same scientific question, each of which has obtained its own data.

2.9.1 Rules to Drive Reproducible Experiments

The problem with reproducibility of published results is reported in [Hil17] and [KCCO05].
One cause of this situation is bad habits of the scientific community. Many results
are published without data and source code. Other causes are: no proper simulation
set-up, no proper output data analysis, inconsistency of published data (which makes it
impossible to compare results). To deal with all these issues, it is necessary to define and
adopt a workflow (set of rules) that will allow reproducing an experiment. Guidelines
that can help to establishing such a workflow are proposed in [SNT+13, WAB+11a].

38

2.9 Reproducible Simulation

One of the main principles of Spike is to support reproducible simulation experiments.

Where it is appropriate, Spike supports ten simple rules proposed in [SNT+13]:

1.

For every result, keep track of how it was produced - e.g. log all interme-
diate steps (call of commands, scripts, programs) in a logbook; with the help of
Spike all intermediate steps related to simulation are stored in a single
configuration file.

. Avoid manual data manipulation steps - e.g. all data manipulation should

be done by a script or program. If it is not possible, all manual data manipulation
should be described and stored in the logbook.

. Archive the exact versions of all external programs used - e.g. an external

program may not be any more available or some features have been removed.

. Version control all custom scripts - e.g. even smallest changes to a script

can affect the end results.

. Record all intermediate results, when possible in standardized formats

- e.g. intermediate results can be used as breakpoints during debugging, provide
insight into how experiments were performed, or help find issues if an experiment
fails. Spike allows to log the simulation progress and resulting data.

. For analyses that include randomness, note the underlying random

seeds - e.g. if an experiment involves stochastic simulation, then a seed should
be stored what ensures identical final results by initializing a random number
generator with the same seed. Spike allows to log a configuration set-up,
and when it is appropriate, includes a seed. For this purpose the logging
of a seed is introduced by Spike to achieve a reproducible stochastic
simulation.

Always store raw data behind plots - e.g. raw data allows the use of various
data visualization or analysis techniques. Spike allows storing raw data in
the CSV (comma-separated values) format.

. Generate hierarchical analysis output, allowing layers of increasing de-

tail to be inspected - e.g. the results of each stochastic simulation run should
be stored/logged to inspect the detailed values underlying the final results of
a stochastic simulation which represents average of all runs. Spike allows to
set-up multiple simulation in such way that the resulting raw data can
be stored in separated files. In addition, Spike allows results of a single
run of stochastic simulation to be saved along with the averaged one
in single resulting file.

. Connect textual statements to underlying results - e.g. textual interpret-

ations should directly point to the underlying results, making them easy to trace.

39

2. BACKGROUND AND RELATED WORK

10. Provide public access to scripts, runs, and results - e.g. as supplementary
online material to an article.

2.9.2 Encoding of Simulation Experiments

Encoding of a biochemical reaction model is supported by many formats (e.g. ANDL
[SRH16], CANDL [LHR12], SBML [Hucl5]). This allows a model to be imported / ex-
ported and reused in various experiments. Encoding of a model, which is de facto a
structure description, does not describe experiments. An experiment should be encoded
if it is meant to be reproducible. This issue is addressed in [WAB+11b] where SED-ML
(Simulation Experiment Description Markup Language) is introduced. SED-ML is a
markup language based on XML. It is built form five main components:

1. Model component - defines an identity and location of a model to be simulated
(SED-ML supports only models which are encoded in XML-based languages); it
also allows for altering attribute values or changing a model structure.

2. Simulation component - defines a simulation algorithm and configuration
details, e.g. a range of simulation (start and end time) and a resolution (number
of points to output).

3. Task component - assigns a defined algorithm to a model, the model and
simulation are defined separately and can be combined in various ways, e.g.
comparing a model behaviour under different simulation algorithms.

4. Data generator component - describes transformations of raw simulation data
by applying numerical equations, which allow, e.g. for normalization or scaling
resulting data.

5. Output component - describes grouping of output data from generators, which
allows for generating 2D and 3D plots, or output data streams as a set of unrelated
arrays.

SED-ML components can occur zero or more times, allowing multiple experiments
to be defined in a single SED-ML document.

Rigid standards such as SED-ML cannot cover off-standard use cases, therefore it is
necessary to develop domain specific languages that allow for cutting-edge experiments.
A good example of such a language is SESSL that bases on the Scala language. SESSL
it is a domain-specific language for simulation experiments [EU14]. It acts as a separate
software layer on top of external simulation systems. SESSL uses bindings to support a
variety of modelling languages, e.g. ML-Rules [WHU17], which is a rule-based modelling
language for dynamically nested biochemical reaction networks [MRU11]. SESSL’s
design focuses on simplicity, which allows users to design an experiment without any
deep programming knowledge. However, users with the programming knowledge can

40

2.9 Reproducible Simulation

extend SESSL as its components are loosely coupled. Interdependencies between different
SESSL components and the dependencies to third-party software are managed by Apache
Maven (https://maven.apache.org/). This allows for portability and reproducibility
as software artefacts used in an SESSL experiment are stored in a Maven repository.
Such a solution enables an identical software to repeat simulation experiments on
different machines and operating systems. SESSL supports parameter scanning and
with the use of bindings integrates various software systems, what facilitates reuse of
experiments across simulation systems and analysis of the performance of simulation
algorithms at runtime, such as simulation-based optimization.

Spike is built on the configuration script language (SPC - Spike’s configuration),
which is a domain specific language and has a human-readable format. While the
configuration functionality of SPC is very similar to SED-ML and SESSL, it is specially
tailored to support reproducible simulation experiments of models designed using the
PN modelling language. SPC comprises a set of features that so far are not present in
SED-ML, e.g. parameter scanning and stepwise simulation. A stepwise simulation is also
not supported by SESSL. SPC allows to describe an experiment and its configuration
in one file. More details about the implementation of SPPC can be found in Section 3.1.

Spike unlike to SESSL, does not base on any dependency repositories as all depend-
encies are included. Both solutions have pros and cons. An external repository requires a
careful maintenance as the reproducibility can suffer from changing a software artefact
in the repository. From the other hand, dependencies of Spike makes its executable
grows with each new dependency added.

Reproducibility suffers when a software has to run on different systems. Some
programming languages are more prone to reproducibility and portability issues than
others. Inconsistent results may appear in compiled languages e.g. C or C++ due to:

e a floating point numbers precision,
e an undefined behaviour of signed integer overflows,

e how the lengths of certain data types, e.g. int and long, are defined differently
across compilers.

Especially in the case of a floating point, differences on different systems are amplified
over many iterations and can be responsible for reproducibility failures although the code
is correct. It is worth to consider use of software libraries that provide a consistent floating
point precision to obtain reproducible results across different systems as suggested
in [MSD+06, BBD+16]

An increase in the degree of reproducibility and portability can be achieved with the
help of a virtualization, As it is presented in [Boel5], a virtualization can be achieved with
help of e.g. Docker (https://www.docker.com). Docker is an open-source project that
provides operating system level virtualization. It allows for deployment of applications
as portable packages called containers. Containers are isolated from one another and

41

https://maven.apache.org/
https://www.docker.com

2. BACKGROUND AND RELATED WORK

resolve the issue of Dependency Hell by bundling their own software, libraries and
configuration files. However, containers are not a perfect solution, as the virtualization
is on an operating system level, a container must match the host architecture. Hardware
and related libraries (drivers) require pulling in features from the host itself. This method
can threaten long-term reproducibility due to upgrade of hardware and related libraries
on the host system. This is notably the case in the High Performance Computing [CY19].
For an application to achieve a top performance, it often needs to be optimized for the
architecture and capable of taking advantage of advanced hardware such as accelerators.
To achieve a greater degree of reproducibility, a full virtualization should be adopted
with a help of a Virtual Machine (VM). Unlike containers, a VM provides a complete
system encapsulation, including system-level drivers, a full operating system kernel,
and emulation of hardware. A container image could be invoked atop the VM. The
dual-virtualization method allows avoiding incompatibilities of hardware and related
libraries as the hardware is fully virtualized. Such solution has a drawback, it introduces
a measurable source of overhead that can negatively affect the performance.

A different approach towards achieving reproducibility is taken by a workflow
software, which are usually built on a well-established collaborative framework between
domain and computer scientists. A workflow software usually integrates a set of tools
installed on a server that communicates via various communication channels. One of
the integral components of the workflow software is a notebook [DTT+16, MCK+18],
which helps to achieve a reproducibility and usability. A notebook allows describing
an experiment configuration and store it on the server with an associated model. The
drawback of the workflow software is the lack of flexibility and the maintenance on
the server. A change in one software component can have a significant impact on
reproducibility.

In [KR12] is presented a workflow management system called Snakemake. It is a
tool to create reproducible and scalable data analyses. Snakemake uses a domain specific
language to describe workflows. The language relies on Python language, which allows
access to the full power of the underlying programming language e.g. for implementing
conditional execution and handling configuration. A workflow is described through a
set of rules. Each rule describes a step in an analysis, defining how to obtain input
files from output files of previous step. The set of rules creates a directed acyclic graph
that represents an execution plan of rules. Each node in the graph represent a job i.e.
the execution of a rule. A directed edge joining two jobs A and B defines that the
rule underlying job B needs the output of job A as an input file. A path in the graph
represents a sequence of jobs that have to be executed sequentially. Two disjoint paths
can be executed in parallel. Such approach allows for large-scale data analyses that
involve the chained execution of many command line applications. workflow engines

like Snakemake help to automate these pipelines and ensure reproducibility.

42

2.9 Reproducible Simulation

2.9.3 Adaptive Model Simulation

A simulation experiment typically consists of repeated series of simulation runs in which,
after each run, the simulation results are evaluated and the simulation and / or model
parameters are modified. Problems, which simulation means have to solve, generally
fall into two categories [KW85]:

e System identification or behaviour analysis - when the behaviour and characteristic
parameters of a system under various conditions are investigated.

e Reconstruction - when the structure and parameters of a model corresponding to
given specifications are determined.

Simulation of dynamically changing processes, which change their dynamic behaviour
following the occurrence of external events, requires an ongoing adaptation in terms
of time, quality, and flexibility. Therefore, if a model represents such a process, it is
necessary to adjust the model according to its state and the current simulation state
at the simulation run time. This can improve the quality of the simulation results due
to [Jav92]:

(a) The evaluated input information is obtained from the dynamic trajectory of the
model in the time-state space; as opposed to the usual case when static patterns
are dealt with.

(b) The action based on inferencing influences the source of information (i.e. model
and experimental conditions) itself. Thereby the procedure forms an inherent part
of a closed loop feedback system [BSG+09].

The dynamic adaptation of the model during the simulation runtime falls into the
category of self-adaptive systems, an overview of which can be found in [KRV15]. In
the case of PN models, the modelling process can be traded as programming and the
simulation of the model as execution of the program. In the context of this informal
definition the adaptive model simulation can be treated as adaptive programming [MH91].
An adaptive program changes its behaviour according to its environment. A discrete-
time adaptive modelling system (stepwise simulation) scans the set of states S (including
historical ones) of the model/system, which provides feedback. Based on the feedback
the internal parameters of the model are automatically adjusted by means of predefined
conditions. The conditions can have the form of rules e.g. [Jav92]:

if < condition > then < action > (2.23)

where condition can be a boolean expression consisting of variable values at a given
time ¢, i.e.,

43

2. BACKGROUND AND RELATED WORK

1551

() Sit), (2.24)
=1

where S;(t) € S; C S, j is a variable index and ¢ € [0, now|, where now is the current
value of simulation time.

As presented in [KCR4-09, Kan12], the feedback provided from a model state can
be used to dynamical change a simulation algorithm, which allows performing hybrid
simulation. Based on the analysis of a system state, transitions can be clustered and
assigned to different simulation algorithm. This approach reflects the ability of the
system to change its behaviour with respect to the simulation type. [KKV04] presents a
different approach, which reflects the ability to change the structure and the behaviour
of the simulated model. The structure is changed by replacing components of the model.
Depending on the predefined conditions, a new component is selected from the database
to replace the old one which is no longer suitable.

[KH96] describes a fast simulation approach for rare events. The technique is based
on the RESTART (REpetitive Simulation Trials After Reaching Threshold [VV+91])
method. To find rare events, the state of the model is monitored after each simulation
step, which provides the feedback. The set of predefined conditions defines thresholds.
When a value of the simulation traces reaches a threshold at time point A, the state of
the model is saved. If the threshold is reached from the opposite direction at time point
B, the model state is restored and the interval [A, B) is simulated again.

Based on control theory [BSG+09], the model adjustment can be controlled by a
feedback loop, which provides the generic mechanism for self-adaptation. The feedback
loop comprises activities which describe performed actions. Figure 5.5 (see page 120)
presents an example feedback control loop with four defined activities:

e simulation - collects data from executing a model and its current state,
e analyse - analyses the data to infer trends and identify symptoms,

e decide - decides on how to act on the execution of a model based on analyses
which are defined by conditions,

e alter model - alters model parameters based on decisions.

More details and an example implementation of the control loop in the stepwise
simulation supported by Spike can be found in Section 5.2.

44

2.10 Closing Remarks

2.10 Closing Remarks

This chapter introduced the paradigm of modelling with Petri nets. Starting with the
definition of the basic PN through extended and quantitative Petri nets, i.e. XPN,
SPN,CPN, HPN and ending with their coloured counterparts SPNC, CPNC, HPNC.
The SIR model was developed as an example for each introduced type of PN . Examples
where shown to illustrate how the developed models behave under three types of
simulation, i.e. deterministic, stochastic and hybrid.

This chapter also describes the definition of reproducible simulation with the
guidelines on how to achieve it.

Finally, a brief overview of the adaptive model simulation paradigm is provided,
which opens the door for more realistic simulation experiments.

The next chapter will introduce the Spike Configuration Script (SPC), which allows
defining reproducible simulation experiments by setting up model parameters and
simulation options.

45

3

Configuration Language

Configuration files are often used to set up initial parameters of computer programs.
Similarly, the Spike Configuration File (SPC) allows setting up a reproducible simu-
lation experiment. Through the embedded branching, one SPC script may involve a
set of configurations. This feature allows scanning of model parameters and configur-
ation options. It consists of a static and a dynamic part. The static part permits the
configuration of model and simulation parameters, whereas the dynamic part allows to
reconfigure a model during stepwise simulation.

The following graphical notations are used across this chapter to define relations
between various entities.

Notation 2. Graphical notations:

definition entry point;

- parallel entry point - states that all entry points/paths
must be chosen;

definition end point;
path - path to proceed;

split path - path splitting states, only one direction can be
chosen;

join paths - combined paths become one;

one occurrence of an entity;

Zero or one occurrence;

one or many OCCUurrences;

47

3. CONFIGURATION LANGUAGE

i

i

simulation,

{
3

10° 008

ZETO0 OT T™Tany occurrences;

higher order abstract definitions - abstract definitions
without any technical details;

SPC properties - properties used to define/configure an

experiment;

grammar definitions

abstract process - represents one occurrence of a compu-
tational activity;

abstract data - represents data in the form of a report;

abstract database - represents set of data in the form of a
database;

SPC basic property - represents a property that does not
group any other properties;

SPC complex property - represents a property that groups
one or more basic properties;

grammar operator - represents an operator;

grammar literal - represents a constant/fized value;

grammar rule - represents a meta variable/nonterminal
symbol;

3.1 SPC Format

SPC is an integral part of Spike, however it is language-independent and can be adopted
for use in various software. The SPC format is inspired by JSON (JavaScript Object
Notation) [RFC7159, ECMA-404]. JSON is an open standard data interchange format.
It uses human-readable text to store serialized data objects consisting of name/value
pairs and array data types. It does not enforce any order of sorted data and does not
allow for any condition. The base SPC structure is similar to the JOSN format and the
conventions used by SPC are familiar to the programmers of the C-family languages as
well as JavaScript, Python and many more. SPC is built on two structures:

e An unordered set of name/value pairs that defines the variables, see Figure
3.13 (page 60). In various languages this can be realized also as a record, struct,

48

3.2 Experiment Definition

dictionary, hash table, keyed list or associative array, see Figure 3.16 (page 61).
In SPC it is realized by an object, which is a variable that groups many variables.
Any variable declared inside an object becomes its member and is called a property.
An object is called a complex property. A variable that does not group any
other variables is called a basic property.

e An ordered set of values, is realized in SPC as an array. In various languages this
can be realized also as a vector, list, sequence, see Figure 3.18 (page 62).

In contrast to JSON, SPC allows defining multiple variations of stored data. These
variations are called branches. A branch represents a separated SPC script. Additionally,
SPC consists of a dynamic part where the order of stored information is important.
The dynamic part of SPC is a fully functional programming scripting language that
allows for a conditional simulation execution. Spike may carry out parallel simulation of
branches, what requires a lightweight formate for an interprocess communication. SPC
meets this requirement, similar to JSON. It is extremely lightweight in comparison to
formats based on a markup language, e.g. XML [ZDS14].

SPC is agnostic to data types until script evaluation. This means that casting
operators are applied when working with data (during an evaluation) and variable types
are enforced at runtime. SPC is weakly typed language. This means, it is not allowed
to add a number to a string using an arithmetic operator, but there is no restriction to
add a decimal to an integer number. This has implication on how errors are handled.
SPC does not care for the type of a variable or literal, as long as the evaluator has a
way to handle it. During the evaluation of the script, a variable can change its type
several times, as the assigned value determines its type.

3.2 Experiment Definition
SPC defines a numerical experiment as a set of five descriptive components:
1. models to be used in the experiment,
2. simulation algorithms,
3. combination of models and simulation algorithms into a numerical simulation,
4. data generators,

5. output/storing of results.

An overview of the high level relations between them is presented in Figure 3.1
(page 50).

49

3. CONFIGURATION LANGUAGE

experiment
1 3 4

5

user
simulation

algorithms
.~
-)

0 reports
data generators —

Figure 3.1: High level overview of the relations between the main components of an

experiment.

These five components are reflected in SPC, see Figure 3.2 (page 51).

1. A model can be imported and its parameters may be modified in the model

configuration object.

2. Simulation algorithms (solvers) are defined in the simulation configuration object.

3. A combination of model, simulation and optionally stepwise simulation configura-

tion, defines a process of numerical simulation.

4. The data generation process is defined by places and transitions of a model.
Additionally, observers (auxiliary variables) can be defined in a model and stepwise

simulation configuration.

5. Reports are defined by export of objects.

50

3.2 Experiment Definition

models e
\ y | model confgiuration |

@al orithms) | simulation configuration|

——

O‘ model |
p . [fi onSte,
simulation simulation configuration| | p |

’0 places
data generators :
| transitions | | observers |

reports | export
p— expo
export

Figure 3.2: Graphical representation of relations between an experiment and main SPC
objects.

51

3. CONFIGURATION LANGUAGE

3.3 Main SPC Objects

SPC consists of three main objects (complex properties), see Figure 3.3.

SPC

Figure 3.3: The three main objects of SPC.

Example 3.1. The three main objects declared in SPC format. NOTE: The order of
components is not important unless explicitly stated.

1 // One line comment

2 /*

3 * Multt line comment

e */

5

6 /*

7 * Import configuration

s */

o import: {...}

10

1 /¥

12 * Model and simulation configuration
13 */

14 configuration: {...}

15

16 /*

17 * Logging user-defined variables configuration
18 %/

19 log: {...} // [OPTIONAL]J

3.3.1 Import

Import is a complex property that names the model and defines its location, see Figure
3.4 (page 53). It groups (consists of) three properties:

e from - the basic property, defines which model to import by giving a path to a
model location. The path can be absolute or relative to a SPC file.

92

3.3 Main SPC Objects

e name - the optional basic property, allows overriding the name of an imported
model. If it is skipped in the configuration, then the name of an imported model
is assigned as default value of this property.

e sbml - the optional complex property, it is required if an imported model is in
SBML format.

Figure 3.4: Import object.

The sbml is a complex property (object), see Figure 3.5, and groups three basic
properties:

e net - allows defining whether a model should be imported as deterministic,
stochastic or hybrid PN,

e boundary - determines if boundary reactions (in/out flow) should be added for all
boundary conditions,

e reversible - determines if a reversible reaction should be replaced by two one-way
reactions.

sbml/

- —Getore)

Figure 3.5: SBML object.

53

3. CONFIGURATION LANGUAGE

Example 3.2. Declaration of import.

1 /%

2 * Import configuration
3 */

4 import: {

5 from: "./path/to/model";
¢ name: "examplel"; // [OPTIONAL]

7 sbml: {

8 /*

9 * Import a model as CPN (continuous PN)
10 * or SPN (stochastic PN)

11 */

12 net: "CPN";

13 boundary: true;

14 reversible: false;

15} // [OPTIONAL]

16

3.3.2 Configuration

Configuration is a complex property that allows configuring a model and a simulation
(see Figure 3.6). It may consist of two complex properties: model configuration and
simulation configuration.

configuration

|— —| simulation configuration

model configuration

Figure 3.6: Configuration object.

The model configuration object, see Figure 3.7 (page 55), has three complex proper-
ties:

e constants - allows for altering a value of a model attributes via parameters
specifying arc weights, initial marking or kinetic parameters;

e places - allows to directly alter the initial marking of places;

e observers - allows defining/overriding observers which are auxiliary variables,
which allow for extra measures by defining numerical functions; depending on the
type of observer, it can involve, constants (that belonged to the model), places,
transitions or simultaneously places and transitions;

54

3.3 Main SPC Objects

model configuration

constants

ll

observers

Figure 3.7: Model configuration object.

The simulation configuration object (see Figure 3.8) may consist of four (or more -
the property ezport can be defined multiple times) complex properties:

e simulation options - allows defining a simulation algorithm (solver) and its config-
uration details via the usual simulator-dependent options;

e interval - allows defining the range of a simulation (start and end time) and a
resolution (number of resulting points - snapshots taken during simulation);

e onStep - allows defining a steering script of stepwise simulation; this object has
special behaviour and properties that are described in details in Section 3.7;

e cxport - allows specifying multiple exports of simulation results by use of regular
expressions over the nodes of which the simulation traces are to be recorded; it is
possible to combine the results of places, transitions and observers, coloured and

uncoloured, in one CSV file.

simulation configuration
|— —| simulator options

interval

Figure 3.8: Simulation configuration object.

95

3. CONFIGURATION LANGUAGE

Example 3.3. Declaration of a model configuration. Note: An observer function is
given as string as it is evaluated by an external evaluator.

1 configuration: {

2

3 model: {

4 // Overriding constants

5 constants: {

6 valueset: "Main"; // Select global values set - [OPTIONAL]
7 all: { // The group name in a ANDL/CANDL model e.g.: "all"
8 // Select values set for the group
9 valueset: "Main"; // [OPTIONAL]J
10 Cl: 1; // Set constant wvalue

11 C2: 2;

12 }

13 }

14 // Overriding initial markings

15 places: {

16 Pl: 1; // Not coloured model

17 P2: "90‘a++80‘b"; // Coloured model
18 }

19 // Overriding/deflation observers

20 observers: {

21 place: { // [OPTIONAL]

22 oP: {

23 function: "(P1 + P2) / 2";

24 }

25 }

26 transition: { // [OPTIONAL]

27 0T: {

28 function: "t1 / 4";

29 3

30 }

31 // Involve places and transitions
32 mixed: { // [OPTIONAL]

33 oM: {

34 function: "P1 + t1";

35 }

36 }

37 }

38 }

39 “ .

10 }

o6

3.3 Main SPC Objects

Example 3.4. Declaration of a simulation configuration.

a1 configuration: {

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

simulation: {

name: "example"; // Name of a simulation
type:name0fType: {
solver:nameOfSolver: {
// Solver options

}
}
interval: 0:100:100; // start:splitting:end
// Define the stepwise stimulation
onStep: { // [OPTIONAL]

do: {
}
}

// Ezport results to a ftile
export: { // [OPTIONAL]

3.3.3 Log

Log is a complex property and may consist of many basic properties that store additional

data, that will be reported in a log.

Example 3.5. Declaration of the logging of user-defined variables.

1 /*

2 * Logging of user-defined variables
3 */

4 log: {

5

6 }

simulation: configuration.simulation.name;

o7

3. CONFIGURATION LANGUAGE

3.4 Basic definitions

3.4.1 Value

A value can be an object, an array, a range, a number, a string, true or false (see Figure

3.9).

value

1
1 object I

= 1
|_array |

| pey—
|_range |}

1
1 number I

I crrimm 1
_string |

—
l access I

(true)

a1
{ false)

Figure 3.9: SPC value.

The simplest values are literals and variables.

3.4.2 Literal

Literals are explicitly written constant values. SPPC defines three types of literals:

1. number - is a sequence of digital characters that may contain a decimal part
separated by the dot . terminal and can also be written in scientific notation, see
Figure 3.10.

number

Figure 3.10: SPC number. A digit is an atomic character unit in the range from 0 to 9; a
sequence of digits creates a number.

o8

3.4 Basic definitions

2. string - is a sequence of characters, except the quotation mark, which is used to
wrap the string, see Figure 3.11.

string

any character except "

Figure 3.11: SPC string. A character is an atomic unit; a sequence of characters creates a
text string wrapped in quotation marks.

3. boolean - a logical value represented by two literals, true and false, see Figure
3.12.

boolean value

(true)

true

Figure 3.12: SPC boolean value is represented by two literals, true and false.

Example 3.6. SPC literals.

1 /*

2 * Number

3 */

4 1002 // A number without decimals
5 10.02 // A number with decimals

6 12.0e3 // 12000

7 12.0e-3 // 0.012

9 /*

10 * String

11 */

12 "example string"
13

14 /*

15 * Boolean

16 */

17 true

18 false

59

3. CONFIGURATION LANGUAGE

3.4.3 Variable

Variables are named values and are used to store data values. A declaration of a variable
enforces its initialization with a value, Figure 3.13.

declaration -
oS a1 %
Figure 3.13: SPC declaration of a variable with an initial value.

A variable can have different values (which may be of different types) at different times,
and it is identified by an identifier, see Figure 3.14.

identifier

l-[-((letter or _ digit

Figure 3.14: SPC identifier.

An identifier is a unique name in a scope, it is defined by a parent object of a variable.
A new value can be assigned to a declared variable with the assignment operator =, see
Figure 3.15.

assign

[access f(Dm{ xpression =)

Figure 3.15: SPC assignments of a value to the previously declared variable.

The assignment operator is valid in the context of the stepwise simulation object. More
about its usage can be found in Section 3.7.

60

3.4 Basic definitions

Example 3.7. SPC variables.

1 /*

2 * Variable declaration
3 */

4 a: 1;

5 b: "text";

6 C: true;

7

8 /*

o * Value assignments
10 */

1nma-=1;

12 b = "text";
13 ¢ = true;

3.4.4 Object

An object is an unordered and unindexed data structure that groups many variables,
which are surrounded by curly brackets {.. .3}, see Figure 3.16. Any variable declared
inside an object becomes its member and is called a property. A variable that does not
group any other variables is called a basic property. An object is called a complex
property, which groups statements depending on their functionality and its definition
can cover several lines. Each object creates its own scope with separated set of variables.
Variables can share the same identifier, iff they are not members of the same scope
(object).

object

declaration

Figure 3.16: SPC object.

Accessing Object Members/Properties. In the scope of an object, its members
can be accessed directly by thier identifiers. Outside a parent scope, an object member
can be addressed by using a fully-qualified or relative path. The dot . operator separates
identifiers, see Figure 3.17.

61

3. CONFIGURATION LANGUAGE

access

—O—

Figure 3.17: SPC access.

Example 3.8. SPC object declaration and access to properties.

1 /*
2 * (Object declaration
3 * with properties

10 }

11 /*

12 * Access to the object properties
13 */

14 parent.a

15 parent.child.a

3.4.5 Array

An array is an ordered data type, that can hold more than one value of the same type
at any time. Values are comma separated and enclosed in square brackets, see Figure
3.18.

Figure 3.18: SPC array.

Accessing Array Elements. In the current version of SPC, elements of an array
CAN NOT be accessed directly, as they are used only to set values of some configuration
options.

62

3.5 Expressions

3.4.6 Range

A range is a special type of variable that defines array values of the type number. It
consists of three values (operands) of the type number separated by colon :, see Figure
3.19, where:

e first - defines the start of a range,

e second - step size which is used to obtain the next array element, what can be
described by a simple algorithm:

1 value = start

2 while value <= end do

3 add_value_to_array(value)
4 value = value + step

5 end do

e third - the end of a range.

range

number [m={: Jud number f=(:)=l number

Figure 3.19: SPC range.

Example 3.9. SPC array and range declaration.

1n: [1, 2, 3]; // Array of numbers

2 s: ["a", "b", "c"1; // Array of strings

3 0: [objl:{x:1;}, obj2:{x:2;}]1; // Array of objects
4 /*

w
*

Declaring of a range ts

6 * equivalent to an array declaration
7 % r: [1.0, 1.5, 2, 2.5, 3];

s */

or: [1:0.5:3];

3.5 Expressions

An expression is a combination of operands (variables and values) and operators.
Depending on the operator used, the operands can be of different types, such as
numbers, boolean values and strings, see Figure 3.20 (page 64). An expression computes
a value. The expression computation is called an evaluation. An expression can be
used to assign a value to a variable through the assignment operator or during its
declaration. The evaluation result determines the type of a variable. Operations with

63

3. CONFIGURATION LANGUAGE

a higher precedence are evaluated first. Round brackets may be used to change the
precedence and thus to control the order of evaluation.
SPC distinguishes four types of expressions: arithmetic, boolean, comparison and

concatenation.
comparision
concatenation
expression

boolean expression

arithmetic expression

expression

Figure 3.20: SPC expression.

3.5.1 Arithmetic Expression

An arithmetic expression (see Figure 3.21) is an expression, that evaluates to a number
value. The simplest arithmetic expressions are numerical literals and variables.

arithmetic expression

. access .

number

Figure 3.21: SPC arithmetic.

Complex arithmetic expressions can be formed by connecting the simplest arithmetic
expressions with one of the arithmetic operators (see Table 3.1) and can be grouped

64

3.5 Expressions

using round brackets (...)

Table 3.1: Arithmetic operators.

Operator | Meaning
+ add - if one of the operands is a real type, the result is real
— subtract - if one of the operands is a real type, the result is real
* multiply - if one of the operands is a real type, the result is real
/ divide - division of two integer values will give a real result

3.5.2 Boolean Expression

A boolean expression, see Figure 3.22, is an expression that evaluates to a boolean
value, i.e. true or false. The simplest boolean expressions are numerical literals and
variables. Complex boolean expressions can be formed by connecting the simplest
boolean expressions with one of the boolean operators, Table 3.2, and can be grouped
using round brackets (...).

Table 3.2: Boolean operators.

Operator | Meaning
&& and - denoted by z&&y
I or - denoted by z||y
! not - denoted by !z

The denoted expression values can be expressed by a truth table, see Table 3.3.
Table 3.3: The truth table of boolean operations.

x ‘ y ‘x&&y‘ x|ly ‘ Iz ‘
false | false | false | false | true
true | false | false | true | false
false | true | false | true
true | true true true

65

3. CONFIGURATION LANGUAGE

comparision
- access -

true

boolean expression

boolean expression

G
A4

Figure 3.22: SPC boolean.

3.5.3 Comparison Expression

A comparison expression, see Figure 3.23, checks whether a literal value, variable value,
or expression result is equal, not equal, greater than, or less than another value. The
result of a comparison expression evaluation is a boolean value. Comparison expressions
can be formed by connecting the arithmetic or boolean expressions with one of the test
operators, see Table 3.4.

Table 3.4: Test operators.

Operator | Meaning
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
e not equal to

The meanings of these operators are obvious, they can be combined with the boolean
operators.
3.5.4 Concatenation

A concatenation expression (see Figure 3.24) concatenates its operands. Before concat-
enation, the value of each operand is converted to string. To avoid errors/mistakes of a
false evolution, round brackets should surround expressions.

66

3.5 Expressions

comparison

expression

expression

Figure 3.23: SPC comparison.

[string Jr—— e _string }=——mvy
concatenation @—
1
| - true $

Figure 3.24: SPC string concatenation.

3.5.5 Precedence

The result of an expression evaluation depends on the precedence of operators, see
Table 3.5. The order of operator evaluations in relation to each other is determined by
precedence rules. Evaluation results of operators with higher precedence become the
operands of operators with lower precedence.

Table 3.5: Precedence of operators.

Entries at the top of the table have the highest precedence; entries in the same table
row have equal precedence.

Operators Meaning
* / multiply, divide
+ - << add, subtract, concatenation
! logical not
< > <= >= | less than, greater than, less than or equal to, greater than or equal to,
= || = test if equal, test if not equal
&& logical and
I logical or
3= assignment with declaration, simple assignment

Evaluation of operator precedence in an arithmetic expression:

1. Anything inside round brackets is evaluated first,

67

3. CONFIGURATION LANGUAGE

2. unary minus is evaluated next,
3. multiplications and divisions are evaluated before additions and subtractions,

4. operations of equal precedence are evaluated from left to right e.g. 10 - 5 - 1
evaluates to 4 and not to 6,

5. assignments are evaluated last.

Evaluation of operator precedence in a boolean expression:

1. Anything inside round brackets is evaluated first,

2. arithmetic is evaluated before equality and inequality tests,

3. logical operations are evaluated after equality and inequality tests,
4. not (!) is evaluated before and (&&),

5. and (&&) is evaluated before or (]]),

6. assignments are evaluated last.

Example 3.10. SPC expressions.

1 /*

2 * Ezpressions

3 */

sa: 1+ 2; // Evaluates to 3

5 b: a == // Evaluates to true

6 c: (2 + a) x5 // Evaluates to 25

7 /%

8 * String concatenation

9 */

10 s: "text_" << 1; // Ewaluates to text_1
1 /*

12 * Precedence of operators

13 */

ma+1>ad&& a>0 // Evaluates to true
15 /*

16 * and 1S equivalent to

17 */

18 ((a+ 1) > a) & (a > 0)

68

3.6 Conditional Block

3.6 Conditional Block

A conditional block, see Figure 3.25, consists of conditional statements, that allow to
perform different actions based on various conditions represented by boolean expressions:

e if - executes a block of code, if a given condition is true;

e else if - tests a new condition if the previous condition is false and executes an
alternative block of code if the current condition is true;

e else - executes a block of code if all previous conditions are false.

[Gecimm L
=

conditional block -
% boolean expression W —|canditianal block :) @ :

C

[hecimm L

122290]
it .
(D conditional block | |
(i) y==ed boOIeaN expression |—®—®—(—l conditional block T@d

Figure 3.25: SPC conditional block.

3. CONFIGURATION LANGUAGE

Example 3.11. Conditional block declaration.

1 if(conditionl) {

2 / *
3 * Block of code to be exzecuted
4 * 4f the conditionl s true
5 */
6 P
7 } else if(condition2) {
8 /*
9 * Block of code to be ezxzecuted
10 * 4f the conditionl is false
11 * and condition2 ts true
12 */
13 oo
14 } else {
15 /*
16 * Block of code to be exzecuted
17 * 1f all previous conditions
18 * are false
19 */
20 .« e
21 }
Example 3.12. A boolean expression can be used as a condition in a conditional
statement.
22 x: 1;
23 y: 2;

24

25 i£((y - 1) >= x && x '= 0) {

26 /*

27 * Block of code to be exzecuted
28 * 1f the condition s true

29 */

30 “ ..

31 }

3.7 Stepwise Simulation

A stepwise simulation allows to adjust a model after each simulation step, based on the
current state of a model and a running simulation. To set up a stepwise simulation, the
object onStep needs to be declared, see Figure 3.26 (page 71). It is a member of the
simulation configuration object.

70

3.7 Stepwise Simulation

onStep declaration

conditional block

Figure 3.26: onStep object.

The onStep object and all its properties are evaluated step by step. This means that
the order of declarations of variables, occurrence of expressions and conditionals blocks
is important. It can be logically divided into two parts:

e declaration - is evaluated only once, after the first simulation step (first step of
simulation is performed on an initial state of a model). It allows to declare and ini-
tialize variables. A declared variable can be observed (added to a set of observers),
which allows to include them in a simulation result. The value of declared variable
can be changed by use of the assignment operator. Assigning a new value can be
conditional (within the conditional block) and involves expressions consisting of
previously declared variables.

e after step evaluation - the do object, see Figure 3.27, is evaluated after each step
of a simulation. It allows for assigning new values to previously declared variables.
Similarly, like in the declaration part, assigning can be conditional and involves
expressions. The declaration of a new variable is allowed, however it should be
avoided for better performance.

do declaration

conditional block

Figure 3.27: do object - is evaluated after each step of a simulation.

In the scope of the onStep object, it is allowed to read and write the values of
places (markings) and constants. Read access is also possible to the current time and
the current step of a simulation. Additionally, variable states (values) can be logged by
assigning an expression to the predefined variable LOG.

71

3. CONFIGURATION LANGUAGE

Example 3.13. Declaration of a stepwise simulation.

1 /*

2 * Stepwise simulation

3 */

4 onStep: {

5 /*

6 * Declaration part - evaluates only
7 * once at the beginning of a simulation
8 */

9

10 a: 0;

11 /*

12 * A variable can be added to observers,
13 * what allows recording how wvariable
14 * change over a stmulation time

15 */

16 b:observe: 0;

17

18 do:{

19 /*

20 * Main loop part - evaluates after
21 * each stmulation step

22 */

23

24 /*

25 * Log values

26 */

27 LOG = "time: " << simulation.time;
28 LOG = "step: " << simulation.step;
29

30 if(a < 10 && place.P > 5) {

31 if (constant.C > 0) {

32 constant.C = constant.C - 1;

33 }

34 } else {

35 constant.C = constant.C + 1;

36 }

37 a=a+ 1;

38 LOG = "value_a: " << a; // Log wvalue of the wartable a
30 b=b+ 1; // Increment observable variable
40 }

a1 }

72

3.8 Configuration Branching

3.8 Configuration Branching

Branching is an operation on a configuration; it is triggered by defining in the configur-
ation a set of parameters to scan. Each parameter to scan needs to be defined as an
array of values. A new configuration branch is created for each value in an array (if the
size of an array is > 1). To distinguish branches from a regular array, a list of values
are surrounded by double square brackets - the branching operator [[...]]. Such a
feature allows a configuration script to be split into separate branches, what results in
multiple simulation configurations, see Figure 3.28. The set of configuration branches
can be executed sequentially or in parallel.

SPC
| a: [lvalues, ..., valueM]J;|

| z: [Ivaluel, ..., valueN]J; |

sPc SPC

| a: valuel; | | a: valuem; |

= 1| = = = |[. |

| z: [Ivaluel, ..., valueN]J; | | z: [lvaluel, ..., valueN]J; |
SPC SPC SPC SPC
| a: valuel; | | a: valuel; | | a: valuem; | | a: valuem; |
| z: value1; | | z: valuen; | | z: valuel1; | | z: valuen; |

data generators,

reports

(e

data generators,

Figure 3.28: Graphical representation of branching.

73

3. CONFIGURATION LANGUAGE

Example 3.14. Use of the branching operator. After evaluation, a base configuration
is split into two branches.

2 x: [[1, 2]1]1;

1 /*
2 * Configuration branch 1:

3 */
5 x: 1;

1 /%
2 * Configuration branch 2:

3 */

5 X: 2;

3.9 Closing Remarks

The main goal of SPC is to efficiently support reproducible simulation experiments.
This chapter has described the structure and grammar of SPC, together with examples.
SPC has a human-readable format and allows configuring a model, a simulation and
observers. Additionally, it enables to define the export of simulation results. Through
the branching of configurations it is possible to set up the scanning of model parameters
and simulation options. The branches of a configuration are loosely coupled (they only
have common high-level/parent configuration) and can be executed in parallel. SPC
supports adaptive stepwise simulation, which allows for reconfiguring model parameters
based on the current status of a model and a simulation. All of these allow Spike to
efficiently perform reproducible experiments.

Open Issues and Future Works. Even though the grammar of SPC is quite
flexible, it lacks some features, which need to be addressed in future work:

e Full support of arrays - currently SPPC supports only the declaration of arrays as
they are used only to set values of some configuration options. Accessing of array
elements will allow to reduce the number of declared variables and to collect and
organize data in many useful ways.

e Conditional loop blocks - condition loops allow certain parts of a program to
be run multiple times while a condition remains true. Support of a conditional
loop block in connection with arrays will be very handy. This will facilitate the
processing of data during stepwise simulation.

74

3.9 Closing Remarks

e Temporal logic - the temporal logic is focused on formulas that use temporal
operators to describe how static conditions change over time. Support of the
temporal logic syntax will allow to conveniently express how to alter a model after
each simulation step, based on the current state of a model and a simulation.

e Parameter optimization - parameter optimization could be a complementary
feature of parameter scanning. This will allow Spike to optimize a set of model
parameters through an embedded optimization strategy.

The following chapter will explain some implementation aspects, and in Chapter 5
use cases will be discussed based on complete examples.

75

4

Spike Architecture

Spike [CH19] is a command line tool for an efficient execution of multiple simulation
experiments of models, including biochemical reaction networks, represented as (coloured)
PNs and interpreted in the stochastic, continuous or hybrid paradigm. Simulation
of biochemical models can be time and memory consuming. Thus, simulations should
be delegated for performance reasons to be executed on a server. Additionally, when
experiments require running multiple simulations, the time spent can be particularly
long, when the individual simulations are merely executed one after another. Frequently,
it is required to prepare a set of simulation experiments in order to find appropriate
model parameters (e.g., initial conditions, kinetic parameters) or simulator options (e.g.,
simulator type, length of simulation traces, resolution of the traces recorded). Doing
this manually, by preparing a new simulation run for each new model and/or simulator
configuration, is time consuming and potentially error-prone. The reproducibility of the
entire experiment is compromised, if one of the runs is not well documented.

Spike has been designed to address all these issues. It builds on a human-readable
configuration script, supporting the efficient specification of multiple model configura-
tions as well as multiple simulator configurations in a single file. Each specific model
and simulator configuration determines a specific simulation experiment, for which
Spike creates a separate branch, ready to be executed on a server, with all branches
treated as parallel processes. Storing configurations in self-contained scripts allows for a
simplified work-flow and reproducible simulations in a user-friendly manner.

Spike has a modular structure, where the modules are basically decoupled from each
other. This allows to add new features easily. Modules communicate with each other
using the command dispatcher pattern, which is globally accessible. Each module has
its own list of commands with specific parameters. A command and its handler should
be part of the same module. This allows adding or removing modules with minimal
dependencies on each other. A command and its handler must be registered to the
dispatcher during initializations of a module, see Figure 4.1. A command can be invoked
outside its parent module and can be executed only by a handler associated with it.
Invoked commands are processed sequentially.

77

4. SPIKE ARCHITECTURE

Example 4.1. Considering the following use case illustrated in Figure 4.2 -- the
execution of a simple configuration script. When the command ”exe” is invoked, the
handler defined in the module Configuration will execute it. During execution, the
configuration module communicates with other modules by invoking new commands.

a module instancing & injecting

T

gcommands set) (handlers sel}

module

J \\

register a command
and its handler

command dispatcher

interpret a command
form the input data

command |—

matche the command

with the handler

the handler take care of
the command execution

command

instance the command

Figure 4.1: Graphical representation of command dispatching.

commands dispatching sequence

cLl &’ exe

xe < .l configuration |
load load, unfold, eval, sim

unfold
eval

load, unfold, eval

.' converter |

sim

A

.I simulation |

Figure 4.2: Flow of commands through Spike modules when a user types the command

” 9

exe

78

4.1 Spike Functionality

Table 4.1 shows a summary of all commands currently available in Spike.

Table 4.1: List of Spike modules with their commands.

Module ‘ Command ‘ Description
Main version display version of Spike
CLI help display help for a given command
Configuration exe execute configuration script
Converter load load a model from a given file
save save a model to a given file
prune prune a model
eval evaluate constants
unfold unfold a coloured model
Simulation sim run a simulation of the model

4.1 Spike Functionality

Spike is a slim, but powerful brother of Snoopy [HHL+12]; it is the latest addition to
the PetriNuts family of tools for modelling analysing and simulating a variety of related
models, for which Petri nets are used as umbrella modelling paradigm. For more details
see Figure 4.3.

Modelling CTL/CSL
model checking:

Simulation - symbolically Web based

Animation @‘ simulative @' animation
CTL model
checking
Structural
analysis / reduction
Reachability graph
analysis

Figure 4.3: The PetriNuts framework consists of tools for modelling (Snoopy [HHL+12]),
analysing (Marcie [HRS13], Charlie [HSW15]), simulating (Snoopy, Marcie, Spike [CH19)])
and animating (Snoopy, Patty [Sch08]).

Spike deals with quantitative Petri nets, comprising stochastic, continuous and
hybrid Petri nets, which are specifically tailored to the investigation of biochemical
reaction networks. The Spike core features are presented in Figure 4.4 (page 80) and
include: efficient and reproducible simulation experiments, the transformation between
different exchange data formats and some basic model reductions.

79

4. SPIKE ARCHITECTURE

Clean
ERODE siphons
Reduction
supported PN classes; further general reduction g
coloured and uncoloured rules under consideration
Constant

places

_/
\

Nz

and simulation
configuration

Figure 4.4: Overview of the Spike functionality, which includes efficient and reproducible
simulation experiments, the transformation between different exchange data formats and
some basic model reductions.

80

4.2 Simulation

The Spike core features allow, among others, configuring the model (via parameters
specifying arc weights, initial marking, kinetic parameters) and the simulator (via
the usual, simulator-dependent options) over sets of arguments (parameter/option
scanning). An argument is a value passed to a parameter or option. A set of argument
sets triggers the so-called branching process. A new configuration branch is created for
each argument set (if there is more than one). The set of configuration branches can
be executed sequentially or in parallel. The simulation results can be saved in CSV
files, which can be used later for analysis or visualization. They may comprise any
user-defined combinations of traces over place markings, transition rates, and observers
(auxiliary variables).

4.2 Simulation

The main focus of Spike lies in efficient and reproducible simulations. Depending on
the configuration, Spike is able to run three basic types of simulations: stochastic,
deterministic and hybrid [HLR+17], each comes with several algorithms.

Stochastic simulation follows basically the standard Gillespie algorithm; some al-
gorithms apply approximation ideas for reasons of efficiency. All implementations are
part of Snoopy’s library of simulation algorithms:

e direct - Gillespie’s stochastic simulation algorithm [Gil77],

e tauleaping - 7-leaping [Gil01],

e deltaLeaping - d-leaping [Roh17, Roh18],

e fau - fast adaptive uniformization [DHM+09, HRS+10, Roh17].
Deterministic simulation supports stiff/unstiff solvers ranging from simple fixed-
step-size unstiff solvers (e.g. Euler) to more sophisticated variable-order, variable-step,

multi-step stiff solvers (e.g. Backward Differentiation Formulas (BDF)). The ODE
solvers BDF and ADAMS use the external library SUNDIAL CVODE [HBG+05]; all

others are part of Snoopy’s library of simulation algorithms:
e BDF - Backward Differentiation Formulas [HBG+05],
e ADAMS - Adams-Moulton [HBG+05],

Classic - classical Runge-Kutta method (RK4) [VPT+02],

RosenBrock - Rosenbrock method [VPT+02],

Euler - Euler method (Runge-Kutta method, first order) [VPT+02],

ModEuler - two-steps Euler method (Runge-Kutta method, second order)
[VPT+02].

81

4. SPIKE ARCHITECTURE

Hybrid simulation allows for static or dynamic partitioning. In both cases, continuous
transitions are simulated using an ODE solver, while stochastic transitions are simulated
by the direct method of the Gillespie algorithm [HHL+12]. Static partitioning can be
combined with static, staticAcc, HRSSA, or HRSSAacc. These are different strategies
to synchronize the stochastic and continuous subnets. Dynamic partitioning always
applies the exact method. The ODE solvers BDF and ADAMS use the external library
SUNDIAL CVODE [HBG+05]; all others are part of Snoopy’s library of simulation
algorithms:

e static - exact method [HR02, HH12],

staticAcc - accelerated exact method [HH16],

HRSSA - Hybrid Rejection-based Stochastic Simulation Algorithm [MPT16],

HRSSAacc - accelerated HRSSA [HH18],

dynamic - dynamic partitioning [HH12].

The simulation of stochastic, continuous and hybrid PN models is supported by
automatically unfolding them to their uncoloured counterparts.

A given model is simulated according to the specified simulation type, despite place
and transition types in the model. That means all places and transitions are converted
to the appropriate type. For example, if a user wants to run a stochastic simulation
on a continuous model, all places and transitions are converted to the stochastic type.
Likewise, for stochastic models to be simulated continuously, all stochastic transitions
are converted to the continuous type, likewise for places.

4.3 Parallel Simulation

The evaluation of configuration may cause the split into separate branches A branching
process is triggered by defining in the configuration a set of parameters to scan. The set
of values is assigned to the configuration parameters. For each value in the set, a new
configuration branch is created. Such a feature allows a configuration script to be split
into separate branches, what results in multiple simulation configuration.

Example 4.2. The constant D has been defined. To set the size of the diffusion grid.
With the help of the parameter scanning introduced in Spike, it is possible to reuse the
same model and to set the range of values to scan for the constant D in the configuration
script, e.g.:

82

4.4 Inter-Process Communication

2 configuration: {

3 model: {

4 constants: {

5 all: {

6 D: [[3, 5, 71]1;

10 F

11 ...

By using the branching operator [[...]1], the set of three values is assigned to the
constant D. The number of branches depends on the size of the set. For each value in
the set, Spike creates a new branch of the configuration script. In this case, Spike will
split the configuration and create three branches.

The set of configuration branches can be executed sequentially or in parallel. Each
branch is executed as a separate process of Spike. During running the simulation Spike
creates two types of processes. One so-called master process and one or more worker
processes. A high-level overview of performing parallel simulations is presented in
Figure 4.5.

SIMULATION
QUEUE
MWW .

Results

Results Results

Figure 4.5: High level overview of performing parallel simulations. A master process
orchestrates a queue of worker processes (simulations). Each simulation result is stored by
a worker process.

4.4 Inter-Process Communication

Spike distinguishes two types of processes: the master and the worker. The master process
acts as a broker that schedules the execution of simulation branches for the worker
processes. The worker process is instantiated by the broker to execute a simulation task.
After instantiating, a worker acts independently and communicates with the broker
via network sockets [SFR03]. The communication is asynchronous and workers do not

83

4. SPIKE ARCHITECTURE

block each other while communicating with a broker. The Boost.Asio library [Koh21]
was chosen for implementation as it is a cross-platform C++ library for network and
low-level I/O programming. Despite the use of network sockets, Spike is currently only
able to perform parallel simulation experiments on single host.

Figure 4.6, presents a simplified diagram of the life cycle of a broker and a worker
process. After instantiating of Spike, the main process acts as the broker and the owner
of the simulation experiment. The broker takes care of creating worker processes on
a local machine. A worker process is responsible for executing exactly one branch
of the simulation configuration. Depending on the option passed to Spike, a worker
process can exit after finishing its job or can be reused. The reuse of a worker allows
to speed-up initialization of a new simulation. It uses the resources acquired during
instantiating and only needs to be initialized with a new configuration branch. The
number of workers running in parallel depends on an option passed to Spike. If only one
worker is allowed, then each simulation branch will be executed sequentially. In such a
case, the broker waits for the worker to finish before outsourcing another configuration
branch. Otherwise, the broker will instantiate workers up to the maximum number
specified by the option of Spike. If the number of branches exceeds the number of
workers, the broker will postpone outsourcing of the execution of the next branch until
one of the currently running workers will finish its task.

The number of running worker processes is not equivalent to the number of running
threads. The number of thread depends on the simulation algorithm. The stochastic
simulation is an example, where the algorithm can be executed by utilizing multi-
threading.

127.0.0.1 127.0.0.1

if the branch set is empty and
there are no active workers,

finalize and exit
P_—l exe -ur[=127.0.0.1 -port=7777 -s

exe -f=conf.spc
[

instancing

instancing finalize

establishing connection

‘f ocke t’#’socke?’

two-way communication

Figure 4.6: Simplified diagram of the life cycle of a broker and a worker process. Both
processes are instantiated on the same local host. The broker process opens the default port
7777 of the local host (IP: 127.0.0.1) for inter-process communication. After establishing a
connection with the worker process, the two-way inter-process communication begins.

84

4.4 Inter-Process Communication

The communication between a broker and a worker is done through networks sockets
using a message pattern. When a message arrives at a receiver, a handler is invoked to
process the message. The message format is as follows:

MSG#[DATA]::msg::end
and consists of four parts:

e MSG - is a string that names a message,
e # - a message-data separator,
e DATA - optional data,

e ::msg::end - marks end of a massage.

Depending on the message, the DATA part can be optional or required. To mark
this, the following convention is used:

e square brackets - [optional data],
e angle brackets - <required data>,
e curly braces {default values},

e parenthesis (miscellaneous info).

The Table 4.2 contains the list of messages used in inter-process communication.

Table 4.2: List of messages.

Massage Description

GETCONF#::msg::end request a configuration,
sent from a worker to a broker;

GETCONF#<DATA>::msg::end response with a configuration data
on requests, sent from a broker to a worker;

SIMEND#::msg::end sent to a broker notifies about finishing
a simulation job, sent to a worker confirms
end of a task and allows a worker to finalize;

LOG#<DATA>:msg::end sent logging data to a logger;

Example 4.3. Figure 4.7 (page 86) presents a simplified scenario of an inter-process
communication during the life cycle of a worker performing a simulation task. After
instantiating, a worker asks a broker about the configuration. If a set of configuration
branches to be executed is not empty, then the broker will respond and send a message
with data that contains a configuration branch. After finishing a simulation task, the

85

4. SPIKE ARCHITECTURE

worker will send a message informing about the simulation end. If the queue is not empty
and Spike is configured to reuse a worker process, the broker will send the next branch
from the given set. Otherwise, a broker will send a message to the worker allowing to
finish the work and to finalize. If the queue is not empty, a new worker process will be
created.

(C} process (O process
broker worker

GETCONF#::msg::end
_

GETCONF#DATA::msg::end
2)

SIMEND#::msg::end
-

GETCONF#DATA::msg::end
=

SIMEND#::msg::end
2 —
finalize
\—)

Figure 4.7: An example of an inter-process communication during the life cycle of a worker
performing a simulation task.

(

4.5 Stepwise Simulation

The idea to implement a stepwise simulation arose from the need to introduce dynamic
relaxation/constraint rules into the SIR model. The stepwise simulation allows for
the dynamic adaptation of a model during the simulation runtime. It advances in
a given time interval, in which the parameters of the model and its state can be
adjusted/adapted after each simulation step. The adaptation is based on an evaluation
of boolean conditions that may involve the current state of a model and the simulation.

The proposed algorithms: Algorithm 8 and Algorithm 9 allow reusing any simulator
without its modification. The main idea is to apply a simulator for each time step. For
each step, a simulator is reinitialized with the current state of a model and a constant
time range. The time range corresponds to one simulation step and starts from zero
and ends with a value of a time step size. After each simulation, the state of a model is
stored and can be changed by predefined boolean conditions, which are evaluated for
each time step.

Spike supports deterministic and stochastic stepwise simulation. The support of
stepwise hybrid simulation is considered in future work.

86

4.5 Stepwise Simulation

Algorithm 8: Stepwise deterministic simulation algorithm.

Data: CPN with initial state X (79);

time interval [7o, Tendl;

step size 07 where 07 < (Teng — 70);
Result: trace of stored system states;

1 set of constants C' = 0;

2 time 7 = 7y;

3 state X (1) = 0;

4 while 7 < 7,4 do

5 X (1) = deterministic_simulator(CPN, 0, dt, 7);

6 X (1) — store; /* add X(7) to trace */
7 X(1), C = evaluate_boolean_conditions(X (1), C);

8 Se’t,COTLStaTLtS(CPN, 0), /* apply new constant values to the model */
9 set,makrings(C’PN, X(T)); /* apply new modified state to the model */
10 T=T+40T; /* determine next time point */
11 end

Algorithm 9: Stepwise stochastic simulation algorithm.

Data: SPN with initial state X (79);
time interval [70, Tend);
step size 67 where 07 < (Tepa — 70);
number of runs R;
Result: trace of stored system states;
1 run r = 0;
2 average state A = ();
3 while r < R do
4 set of constants C' = 0;

5 time 7 = 70;

6 state X (1) = 0;

7 while 7 < 7,4 do

8 X (1) = stochastic_simulator(SPN, 0, d1, 07);

9 A(r) = A(T) + X (7);

10 X (1), C = evaluate_boolean_conditions(X (1), C);

11 set,constants(SPN, C), /* apply new constant values to the model */
12 set,mak:rings(SPN, X(T)); /* apply new modified state to the model */
13 T=T+40T; /* determine next time point */
14 end

15 end

16 A= A/R;

17 A — store;

87

4. SPIKE ARCHITECTURE

4.6 Reproducible Stochastic Simulation

Random number generator play a crucial role in any stochastic simulation. In order
to guarantee the reproducibility of a stochastic simulation, the simulation library used
internally by the PetriNuts framework had to be modified in a such way, that each of
the simulation threads produce unique, reproducible results based on a main seed for
all random number generators.

The process of instantiating the simulation threads is from Spike’s point of view as
follows. The main thread is configured with a seed and a number of threads, which are
set in a configuration script. The seed initializes a random number generator which is
used by the main thread. The main thread creates a pool of random seeds and a pool of
threads. Each time when the random number generator of main thread is initialized
with the same seed, it ensures to generate the same pool of seeds. The size of both
pools is equal to the number of threads defined by a configuration. Each seed can be
assigned to only one thread from the pool. A pair of seed/thread defines a simulation,
which is added to the pool of simulation threads. After initializing, simulation threads
are executed in parallel. The graphical representation of this process is represented in
Figure 4.8.

SPC
(cocds soon)
|_ | seed: 12345678 | {3} thread seeds pool
main {} simulations
| threads: 3 | \— ool
[... | threads pool

Figure 4.8: Graphical representation of instantiating the simulation threads.

4.7 Conversion

Spike supports the following data formats and conversion between them, as shown in
Figure 4.9:

e ANDL and CANDL - human-readable formats for Petri nets and coloured Petri
nets, respectively, used internally by the PetriNuts framework,

e SBML (Systems Biology Markup Language) - an XML-based representation
format designed to exchange computational models within the systems biology
community [Hucl5],

e PNML - an XML-based interchange format for qualitative Petri nets [PNML]
used within the Petri net community,

88

4.8 IDD-based unfolding

e ERODE - a tool for the evaluation and reduction of chemical reaction net-
works [CTT+17].

Figure 4.9: Data format conversions supported by Spike. Please note that any node in
this diagram can be the entry point. For the PNML format, only import is allowed and no
further conversions are possible.

4.8 IDD-based unfolding

Spike uses IDD (Interval Decision Diagrams) to efficiently unfold PN [SRF+20].
IDD, first proposed in [LR95], belong to the symbolic data structures and can be seen
as a generalization of the popular Binary Decision Diagrams (BDD). BDD are widely
used to encode boolean functions, while DD encode interval logic functions. Interval
logic functions are boolean expressions involving atomic predicates defining integer
intervals, e.g.: 1 € [6,8), 2 > 0.

IDD are Directed Acyclic Graphs (DAG) with two types of nodes -- terminal
and non-terminal ones. There are two terminal nodes (typically represented as boxes),
labelled with 0 and 1, and the non-terminal nodes (typically represented as circles or
ellipses) are labelled with the variables occurring in the interval logic function to be
encoded. Non-terminal nodes may have an arbitrary number of outgoing arcs labelled
with intervals of natural numbers (including zero) partitioning the set of natural numbers.
Intervals have the form [a, b); where the lower bound a is included in the interval [a, b)
and the upper bound b not. Note that intervals of the form [a, c0) are allowed as well,
see Figure 4.10 for two examples.

89

4. SPIKE ARCHITECTURE

(a)

[1,00) \[0,1)

Figure 4.10: Two IDDs representing f = (z1 € [0,6) A 22 = 0); (a) not reduced; (b)
reduced.

4.8.1 IDD Reduction

Reduced Ordered Interval Decision Diagrams (ROZDD) are a canonical representa-
tion for interval logic functions and often provide a compact representation in many
application areas. An IDD is called reduced, if three conditions hold:

1. The interval partitions labelling the outgoing arcs of each non-terminal node are
reduced.

2. Each non-terminal node has at least two different children.
3. There exist no two nodes with isomorphic subgraphs.

Applying those rules to the IDD in Figure 4.10.(a) yields the reduced version
presented in Figure 4.10.(b). The reduction is carried out by merging the two nodes
labelled with x2 (third rule) and merging/reduction of redundant arcs (first rule).

The variable ordering can have an impact on the size of a ROZDD. Finding an
optimal ordering is generally infeasible, and even checking if a particular ordering is
optimal is NP-complete [BW96, RK08]. There exist interval logic functions, that have
ROLIDD representations of exponential size for any variable ordering. Heuristics, taking
into consideration that variables which depend on each other should be close together
in the ordering, often bring good results.

4.8.2 Unfolding

The unfolding engine utilized by Spike uses shared ROZDDs, an implementation
principle to keep several ROZDDs within one data structure. Technically speaking, a
shared ROZDD is a single multi-rooted DAG representing a collection of interval logic
functions. All functions in the collection must be defined over the same set of variables,
using the same variable ordering. Thanks to the canonicity of ROZDDs, two functions

90

4.8 IDD-based unfolding

in the collection are identical if and only if the ROZDDs representing these functions
have the same root in the shared ROZDD. The unfolding proceeds basically in three
steps (according to [SRF+20]):

1. Unfolding of coloured places -- generates for each coloured place as many unfolded
places as there are colours in the place’s colour set, which is also reflected in
the applied naming convention for the generated unfolded places. If the initial
marking of a coloured place p contains n tokens of the colour ¢, then the unfolded
place p_c has initially n (black) tokens.

2. Unfolding of coloured transitions -- generates an unfolded transition (transition
instance) for every variable binding and connects this unfolded transition with
those unfolded places, which correspond to the binding. The naming convention
for the generated unfolded transition reflects the variable binding.

3. Deleting any isolated unfolded places -- colours that are never used yield isolated
places, which will never influence the net behaviour, even if initially holding tokens;
thus they can be safely removed.

The first and last step are relatively easy. The core problem of efficient unfolding is
to determine the transition instances, i.e. all bindings of values to the variables involved,
potentially enabling coloured transitions. Fortunately, each coloured transition ¢ can be
considered separately, and the problem can be formulated as a constraint satisfaction
problem (CSP), defined by:

o the set of variables -- all variables occurring on any arc adjacent to transition;
e the domain of each variable -- given by its (finite, discrete) colour set;

e the constraints -- any guards involved, which are all Boolean expressions.

To solve the CSP, a corresponding I DD, which represents the constraints (the so-
called constraint IDD), is built stepwise bottom-up. First, the domain of each individual
variable is represented as I DD; the only colour set type causing here problems is union.
Next, the constraint I DD is constructed using standard DD algorithms. The set of
all paths going from the root to the terminal node 1 describes all solutions of the given
constraint problem; typically, one path encodes more than one solution. Thus, all CSP
solutions can be easily picked from the constraint IDD.

To deal with variables of union type, all different data types subsumed by the union
type, each yielding one constraint /DD, need to be considered alternatively. In other
words: if two variables of a union type subsuming three types (colour sets), the solution
is obtained by considering nine constraint I.DDs.

Guards, which may be arbitrarily complex, may not only serve as transition guards,
but also help to conveniently define colour sets as subsets of previously defined colour

91

4. SPIKE ARCHITECTURE

sets or to specify the initial marking in a concise and scalable way. Both need to
be considered when unfolding places. Likewise, guards also permit to specify colour-
dependent transition rate functions or conditional colour expressions for arcs.

4.8.3 Algorithms

This section sketches an implementation of the 1D D unfolding engine by a pseudocode
description; see Algorithms 10--13.

Algorithm 10. The main procedure of the 1D D unfolding engine follows the basic
steps outlined in Subsection 4.8.2. Before unfolding the coloured places (line 18) and
unfolding the coloured transitions (line 19), all colour-related net annotations have to
be registered (lines 6--17). This comprises four categories of declarations: constants,
colour sets, variables, and colour functions. Constants are crucial to design scalable and
easily adjustable coloured Petri nets; thus they are often used in colour sets and colour
functions.

The actual unfolding happens in Algorithms 11 and 12, which involves setting up
and solving a CSP for every place and every transition, respectively. This is here done
by the help of IDDs, but could be equally achieved by any other appropriate data
structure. Algorithm 11 creates unfolded places, but does not add them to the unfolded
net. Algorithm 12 creates unfolded transitions and their unfolded adjacent arcs and
does indeed add them to the unfolded net. Afterwards, all unfolded places, which are
involved in the unfolding of transitions, are actually added to the unfolded net in the
final step (lines 20--24), which implicitly prunes the unfolded net by ignoring isolated
places.

Algorithm 11. The unfolding of places can be done place by place and requires
determining all colours of a place’s colour set. Thus, the computational load for this
unfolding step depends on the kind of colour sets supported. Colour sets known by the
PetriNuts framework include the following.

e Dot sets. A Dot set contains one so-called black colour and is defined be a set of
one constant value: dot.

e Boolean sets. A Boolean set is defined by a set of two Boolean constants: true
and false.

e String sets. Are based on strings of characters surrounded by quotation marks,
7...7. A string colour set is specified by a set of single elements, and may
incorporate the usual set operations.

le.:

e Integer sets. Are based on natural numbers. An integer colour set can be specified
by a set of single elements or valid ranges, and may incorporate the usual set
operations.

o FEnumeration types are treated as integer sets, where all elements are given by
constants.

92

4.8 IDD-based unfolding

Algorithm 10: Unfold CPN

1 Net un foldedNet;
2 placeRe fTable C String x Int x Int = {); /* (name, tokens, number of references) */

3 Environment env; /* some kind of registry */
4
5 proc unfoldNet (CPN net)
6 forall ¢ € net.constants do
7 env.registerConstant(c.name, c.expr);
8 end
9 forall cs € net.colorsets do
10 env.registerColorset(cs.name, cs.expr);
11 end
12 forall v € net.variables do
13 env.registerVariable(v.name, v.colorset);
14 end
15 forall cf € net.color functions do
16 env.registerColor Function(cf);
17 end
18 un foldPlaces(net); /* Algorithm 2 */
19 un foldTransitions(net); /* Algorithm 3 */
20 forall (place, tokens, ref) € placeRefTable do
21 if ref > 0 then
22 unfoldedN et.addPlace(place, tokens);
23 end
24 end
25 end

e Product sets. Building on previously defined colour sets more complex, compound
colour sets can be defined by means of the Cartesian product.

o Subsets. Given a previously defined colour set, it is possible to select specific
elements characterised by a Boolean expression (guard). These guards are treated
as implicit guards during the unfolding (line 4).

The computation of all colours for the colour set of a given place is achieved by
constructing an IDD for the solution space (lines 8, 12). The solutions are obtained by
following all paths to the IDD’s terminal node 1 (supported by a corresponding iterator
concept); each solution generates an unfolded place (lines 18-22).

The creation of unfolded places includes the generation of their initial marking
according to the given marking expression (lines 6--11). Places which remain empty are
created afterwards (lines 12--13). Please note, places are created, but not added yet to
the unfolded net.

Algorithm 12. The unfolding of transitions can be done transition by transition
and requires determining all variable bindings for every transition. To set up the
corresponding CSP, the algorithm first iterates over all adjacent arcs (line 4), which are

93

4. SPIKE ARCHITECTURE

Algorithm 11: Unfold Places

1 proc unfoldPlaces (CPN net)

2 forall p € net.places do
/* replace function call by its body guard used to describe subsets */
substituteColor Functions(p.marking Expr, env);

a Guard ges = env.implicitGuard(p.colorset);

Set Gy = {ges};

/* separated by ’++’ */

w

6 forall expr € p.markingExpr do

7 Set vars = collectV ariables(markingExpr, env);
8 IDDSolutionSpaceRepr S(vars, expr.guard, env);
9 createPlaces(p, S, expr.value, expr.color);
10 Gp = G, U {expr.guard N ges };

11 end

/* remaining places are empty */

12 IDDSolutionSpaceRepr S(vars,,eq, 9, env);

13 createPlaces(p, S, 0, expr.color);

14 end

15 end

16
17 proc createPlaces (Place p, IDDSolutionSpaceRepr S, ColEzpr value, ColExpr color)
18 forall sol € S do

19 places = createPlace(p, color, sol, env);

20 values = createValue(value, sol, env);

21 placeRe fTable = placeRe fTable U {(places, values, 0)};
22 end

23 end

grouped into conditions (read arcs, inhibitory arcs, equal arcs, reset arcs) and updates
(standard arcs connecting pre- and post-places). A transition guard may be additionally
restricted by the implicit guards of any adjacent places with a subset colour set. Thus,
those implicit guards have to be collected (lines 5--7). Next, all variables involved in
any adjacent arc or transition guard are collected (line 9), which then permits to create
the IDD representation of the solution space of the given CSP (line 10).

Next, the CSP solutions are evaluated by iterating over the solution space, following
all paths to the IDD’s terminal node 1 (lines 11--23). Every solution generally generates
a set of arcs, whereby the unfolding of arcs always preserves the arc type; a coloured
read arc will always be unfolded to read arcs. If there are no arcs for a given CSP
solution, no unfolded transition is created (line 20--22).

Unfolded places will be ignored in Algorithm 10, if they are never connected to any
transition. Thus, the entry in the placeRefTable is updated by removing the previous
tuple and adding a new tuple with the number of references (usage of this place)
increased by 1 (line 33).

94

4.8 IDD-based unfolding

Algorithm 12: Unfold Transitions

1 proc unfoldTransitions (CPN net)

2 forall ¢t € net.transitions do
3 Guard G, = 0;
/* preparation step */
a forall (p, arcType, arcExpr) € t.conditions U t.updates do
/* guard used to describe subsets */
5 Guard g, = env.implicitGuard(p.colorset);

/* replace function call by its body */

6 substituteColor Functions(arcExpr, env);

7 G, = Gy U {arcEzpr.guards N g, };

8 end

9 Set vars = collectV ariables(t.conditions U t.updates U t.guard, env);
10 IDDSolutionSpaceRepr S(vars,t.guard N (UgEGa g),env);

/* creation step */

11 forall sol € S do
12 Set arcs;
13 forall (p, arcType, arcExpr) € t.conditions U t.updates do
14 arc = create Arc(p, arcType, sol, arcExpr.quard,
15 arcExpr.value, arcExpr.color);
16 if arc # null then
17 arcs = arcs U {arc};
18 end

19 end
20 if arcs # () then
21 un foldedNet.addTransition(createTransition(t, sol, env), arcs);
22 end

23 end

24 end

25 end

26
27 proc createArc (Place p, ArcType arcType, Solution sol, Guard guard, ColEzpr value,

28 ColEzpr color)

/* guard used to describe subsets */
29 Guard g, = env.implicitGuard(p.colorset);
30 if sol = guard N g, then
31 places = createPlace(p, color, sol, env);
32 values = createV alue(value, sol, env);
33 placeRefTable = placeRe fTable —{(places, values,n) } U{(places, values, n+1)};
34 return Arc(places, arcType, valueg);
35 else
36 return null;
37 end
3s end

95

4. SPIKE ARCHITECTURE

Algorithm 13: IDD solution space representation

1 class IDDSolutionSpaceRepr

2 IDD solutions;

3 proc constructor (Set vars, Guard guard, Environment env)
4

5

createVariableOrder(vars, guard);

solutions = 1; /* the universe */
/* create the potential solution space */

forall v € vars do

6

7 Intset is = env.getIntColorset(v);

8 solutions = solutions N makel DD(is, env);

9 end

/* create the actual solution space */

10 solutions = solutions N makel DD(guard, env);

11 end

12 proc makeIDD (Guard guard, Environment env)

13 if g = g1 A go then return makel DD(gy, env) N makel DD(gs, env) ;
14 if g = g1V g2 then return makelDD(g1,env) Umakel DD(ga,env) ;
15 if g = —g; then return 1 —makeIDD(g1,env) ;

16 if g= fiofa:o€e{=#,<<,>,>} then

17 Set vars = collectV ariables(f1) U collectV ariables(f2);

18 IDD S = {; /* empty set x/
19 forall v € vars do
20 Intset is = env.getIntColorset(v);
21 S = S UmakeIDD(is,env);

22 end

23 return ExtractAP(S,g);

24 end

25 end

26 end

Algorithm 13. This pseudocode is a data structure and provides the algorithm
to construct an I DD representing the solution space for a given CSP, characterized
by a set of variables and a guard in the context of the coloured net to be unfolded.
The algorithm starts with choosing the variable order (line 4). A good variable order
often depends on the specific guard involved; thus the guard occurs as parameter and is
evaluated by the procedure createVariableOrder to determine, which variables are close
to each other. Next, the potential solution space is constructed by combining the colour
sets of all variables involved (lines 6--9), which is afterwards restricted to the actual
solution space by considering the guard (line 10). The actual 7DD construction (lines
12--25) follows the standard IDD algorithms, see [ST11, Sch14]. The sub-procedure
ExtractAP (Extract atomic proposition, line 23) extracts all states in S fulfilling the
guard g, represented as IDD; for details see [Sch14], Algorithm 6.

The developed implementation is equipped with an iterator enabling the efficient

96

4.8 IDD-based unfolding

iteration over all solutions, which is used in Algorithms 11 and 12. As a special feature,
the iterator automatically updates the environment only with regard to changed variable
values.

This algorithm is not I D D-specific. The type IDD could be replaced just by some
set type and the algorithm will work. Although IDDs often yield a very compact
representation of sets and permit very efficient manipulation algorithms, it may be
worth considering explicit or other symbolic data structures.

4.8.4 The elemOf Operator and Boolean Colour Set

The implemented I DD unfolder supports expressions that may involve the elemOf
operator. It checks the membership of a certain colour in a colour set, which returns
true if the colour is a member of the colour set, otherwise it returns false. An expression
that uses the elemOf operator can be assigned to constrain transitions, arcs and colour-
dependent rate functions. If the elemOf operator is applied to a subset of a colour set,
then a given expression can be substituted by an explicit constrain, that defines the
subset and the elemOf operator is applied on the main colour set. The new expression
is combined by the logical operator &, e.g.:

for a given colour set and its subset

enumPopulation = {A, B,C, D, E, F};
PopulationAB = Population|x = Al|x = B;

the expression
z elemOf PopulationAB
is equivalent to

(x = Al|lz = B) && z elemOf Population .

Drawbacks of the implementation. Currently, the implementation of the elemOf
operator has the following drawbacks:

e An auxiliary variable is implicitly created for each colour set of the right-hand
operand. An auxiliary variable has an impact on the size of the calculated IDD,
as is shown in Figure 4.14 (page 104), and slow downs its evaluation.

o [f the elemOf operator is applied on a subset of a colour set, then a given expression
is substituted by an explicit constraint that defines the subset and the elemOf
operator is applied on the main colour set. Such a substitution is inefficient and

97

4. SPIKE ARCHITECTURE

may add extra non-terminal nodes to a resulting IDD. The process of such a
substitution is presented in Figure 4.14.(c), (f) (page 104) and the resulting /DD
in Figure 4.14.(g) (page 104).

e Only one elemOf operator is allowed in an expression as the substitution of such
expression

x elemOf PopulationAC && x elemOf PopulationAB
where

PopulationAB = Population[z = Al|x = BJ;
PopulationAC = Population|x = Al|z = C];

is unreliable and results in
((x = Allz = O)||(x = Al|z = B)) && x elemOf Population
where the constraints of the two subsets are implicitly joined by the operator ||.

Example 4.4. The model in Figure 4.11 (page 99) is a variation of the model in
Figure 2.6 (page 18). It presents a more flexible solution to specify colour-dependent
rate functions. In this model the colour set Population is extended by new species: C,
D, F and F. It contains one subpopulation PopulationAB defined as a subset of the
colour set Population. The colour-dependent rate functions are defined with the help of
the elemOf operator, which allows to assign a specific rate function based on a subset
of the population, e.g.: the following expression

[z elemO f PopulationAB] : MassAction(k_in fect|x])
[z elemO f PopulationF| : MassAction(k_infect_A + k_infect_B)

states that, if the value of the variable z belongs to the subpopulation PopulationAB,
then the reaction fires with the rate specified by the function

MassAction(k_in fect[z]),
where [...] is the indexing operator. With the help of the indexing operator, kinetic
parameters defined as constants can be accessed by a value of defined colours. The

indexing operator requires the definition of constants with a colour value at the end
of a constant name separated by an underscore, e.g: k_infect_A where A is the colour

98

4.8 IDD-based unfolding

value. If the value of the variable x belongs to the subpopulation PopulationF, then the
reaction fire with the rate specified by the function

MassAction(k_infect A+ k_infect_B) .

constants:
double k_infect_A = 5.0e-5;
double k_infect_B = 5.0e-6;

double k_recover_A = 1.0e-1;
double k_recover_B = 1.0e-2;
double k_recover_C = 1.0e-3;
double k_recover_D = 1.0e-4;
double k_recover_E = 1.0e-5;
double k_recover_F = 1.0e-6;

colorsets:
enum Population = {A,B,C,D,E,F};
PopulationAB = Population [x = A || x = B];

variables:
Population : x;

5ed4’all() * 1all()
Population opulation Population
1.5eb x 2% x x
SusceptiblePopulation Infect Infected Recover Recovered
[x elemOf PopulationAB] : MassAction (k_recover [x])

MassAction (k_infect [x])

[x elemOf PopulationF]
MassAction (k_infect_A + k_infect_B)

Figure 4.11: Coloured SPN SIR model with a more flexible solution to specify colour-
dependent rate functions.

Example 4.5. The model in Figure 4.12 (page 100), is a variation of the model in
Figure 4.11 (page 99). It presents a more advanced use of the elemOf operator. In
addition to the previous example, the elemOf operator is used to constrain transitions
and the model contains two additional subpopulation: PopulationF and Population-
ABF. The transition Infect is constrained and accepts species from the subpopulation
PopulationABF what is expressed by the expression

x elemOf PopulationABF .

In this case, the transition will accept and fire only for the species A, B and F. The

99

4. SPIKE ARCHITECTURE

transition Recowver is also constrained by the expression

x elemOf PopulationAB
and accepts species that belong to the subpopulation PopulationAB. The model comprises
also one additional transition Recover_F, which fires only if the colour value of the

variable z belongs to the PopulationF, what is defined by the constraint expression

x elemOf PopulationF .

constants:
double k_infect A = 5.0e-5;
double k_infect B = 5.0e-6;

double k_recover A = 1.0e-1;
double k_recover_ B = 1.0e-2;
double k_recover_F = k_recover_ A + k_recover_ B;

colorsets:
enum Population = {A,B,C,D,E,F};
PopulationF = Population [x = F];
PopulationAB = Population [x = A ||
PopulationABF = Population [x = A |
variables:
Population : X;

MassAction (k_recover [x])
[x elemOf PopulationF]
Recover_ F

5ed’A++
le5'B++ <
2.5e4'F 17all() x
P0§u%?é%on r_((///"\\\{fpulatio Population
. X 2'x
O >|_, >
SusceptiblePopulation Tnfect Infected Recovered

[x elemOf PopulationABF]

[x elemOf PopulationAB] : Recover
MassAction (k_infect [x]) [x elemOf PopulationAB]
[x elemOf PopulationF] : MassAction (k_recover [x])

MassAction(k_infect_A + k_infect_B)

Figure 4.12: SIR model, as coloured SPN driven by elemOf expressions.

100

4.8 IDD-based unfolding

In coloured Petri nets each token has a colour and thus each place must have a
colour set. The newly introduced Boolean colour set extends the implemented IDD
unfolder engine. The Boolean colour set is defined by a set of coloured values represented
by two Boolean constants: true and false; it supports the following boolean operators:

& - AND - denoted x&y;
| - OR - denoted z|y;

I - NOT - denoted !z.

The denoted expression values can be expressed by a truth table, see Table 4.3.

Table 4.3: The truth table of IDD Boolean expression.

X ‘ y ‘ &y ‘ x|y ‘ lz ‘
0 0 0 0 1

1 0 0 1 0

0 1 0 1

1 1 1 1

Example 4.6. The use of the Boolean colour set can simplify colour expressions, which
can be used to control the firing of transitions. The model in Figure 4.13 (page 102) is
a variation of the model in Figure 4.12 (page 100). In this model one additional place
AllowInfect is introduced. The place is of type Boolean and with the help of Boolean b
it ensures sequential occurrence of the Infection and Recovery process of an individual
population. It is a form of control of a mutual exclusion process, where firing of the
transition Infect is followed by firing of the transition Recover for a single population.

Example 4.7. The stepwise computation of the constraint 7DD to find all instances for
the single transition Recover_F' is documented in Figure 4.14 (page 104) and comprises
the following steps:

(a) Encoding the entire enumeration colour set Population = {A, B, C, D, E, F}
automatically involves a mapping of the enumerated constants to integer identifiers;
thus, the integer identifier 0 represents A, 1 stands for B, 2 for C, 3 for D, 4 for F
and 5 for F.

(b) Encoding the entire colour set Boolean, specified by the list of the boolean constants
{true, false}, automatically involves a mapping of boolean constants to integer
identifiers; thus, the integer identifier 0 represents false, 1 stands for true.

(¢) Constraining the colour Population given in (a) to = elemOf Population, which is
represented by the implicit auxiliary variable auz.

101

4. SPIKE ARCHITECTURE

constants:
double k_infect_A = 5.0e-5;
double k_infect_B = 5.0e-6;

double k_recover_A = 1.0e-1;
double k_recover_B = 1.0e-2;

double k_recover_F = k_recover_A + k_recover_B;

colorsets:
Boolean = {true, false};

enum Population = {A,B,C,D,E,F};

PopulationF = Population [x = F]
PopulationAB = Population [x = A || x = B];

PopulationABF = Population [x = A || x = B || x = F];
variables:

Boolean : b;
Population : x;

1’true AllowInfect
MassAction(k_infect_ [x])

[!b && x elemOf PopulationF]
Recover_ F

Boolean

S5ed’A++

le5'B++

2.5e4'F

P0§ulation Population
.75e5 x
SusceptiblePopulation Infect Infected Recovered

[x elemOf PopulationABF]
[x elemOf PopulationAB] : Recover
MassAction (k_infect_ [x]) [!b && x elemOf PopulationAB]
[x elemOf PopulationF] : MassAction (k_infect [x])

MassAction(k_infect_A + k_infect_B)

Figure 4.13: SIR model, as coloured SPA driven by elemOf expressions and Boolean
colour set. The palce AllowInfect is of type Boolean and is represented by two logical places
given in grey. A set of logical places, having the same name,refers to one and the same

place; it serves only to simplify the representation of the model.

102

4.8 IDD-based unfolding

(d) Constraining the colour set Boolean given in (b) to b = false yields the subrange
comprising false.

(e) Combining (c) and (d) by the logical operator & yields the IDD with the solution
space containing all elements of the entire colour set Population and the variable
b set to true.

(f) Constraining the colour Population given in (a) to x = F' yields the subrange
comprising the single value F, represented by its identifier 5.

(g) Combining (e) and (f) by the logical operator & yields the final result that
defines all possible bindings for the transition Recover_F according to its guard
b && x elemOf PopulationF'. There is one path going to the terminal node 1.
It encodes the value binding (false, F'), giving one uncoloured transition instance
for the coloured transition Recover_F'.

All IDDs in Figure 4.14 (page 104) have been generated by a logging mechan-
ism integrated in the unfolding engine for debugging purposes and visualized with
Graphviz [GNOO]. Non-terminal nodes are labelled with the variable index and the
variable name (in square brackets).

103

4. SPIKE ARCHITECTURE

(a) Population = {A,B,C,D,E,F} (b) Boolean = {true, false}

[6,00) \[0,6) [2,00) \[0,2)

0 1 0 1

(c) x elemOf Population (d) b = false

(e) !'b && x elemOf Population

(g) !b && (x=F) && x elemOf Population = !b && x elemOf PopulationF

Figure 4.14: Stepwise IDD computation to find all instances (bindings) for the
single transition Recover_F' of the model in Figure 4.13. The constrain expres-
sion b && z elemOf PopulationF' is substituted by the expression b && (z =
F) && z elemO f Population.

104

4.9 Closing Remarks

4.9 Closing Remarks

Spike is an efficient tool for the reproducible execution of parallel simulation experiments
of biochemical reaction networks. This chapter has described the main architecture of
Spike. The modular structure and the mechanism of intermodule communication allows
to easily extend Spike by new modules. The main functionalities of Spike allow importing
and exporting PN models in various formats. An imported coloured model can be
unfolded using IDD-based unfolding, which is integrated in the internally developed
dssd_util library used by Snoopy, Marcie and Spike. During the work on Spike the
Boolean colour set and the elmeOf operator were introduced into IDD-based unfolding.
The newly introduced colour set and operator allow simplifying coloured expressions.
To perform a simulation, Spike uses an internally developed simulation library; it is
able to run three basic types of simulations: stochastic, deterministic and hybrid, where
each comes with several algorithms. Spike is supported by a scripting language (SPC),
which allows for designing reproducible simulation experiments that can be executed in
parallel. Additionally, SPC allows the execution of a simulation in a stepwise manner.

Open Issues and Future Works. Spike can be improved in many ways, as it lacks
some features that should be addressed in future work:

e Model reduction - Spike allows for the basic reduction of a PN model. It is able
to structurally reduce a model by pruning clean siphons and constant places.
However, this basic reduction methods are insufficient. The growing amount of
experimental data and expressive power of the colour annotations leads to the
development of complex models. A complex model represented by PNC needs to
be unfolded before its simulation.

After unfolding, the number of nodes can be much larger than in its coloured
counterpart. Reduction of a model may yield a more optimized (in terms of size)
model, provide insights into structural properties and reduces a simulation over-
head. The main challenge of a reduction is to preserve the main three properties of
a PN model: liveness, reversibility and boundedness. The two simplest techniques
that preserve the main three properties are pruning of clean siphons and constant
places.

e Model decomposition - decomposition of PA” model into basic subnets. Decom-
position can be done by network structure or through type, if the PN is hybrid.
The process of clustering should be aided through manual selection / specification
of cluster set as well as through an automatic / algorithm approach. The model
decomposition will allow for distributed simulation of the decomposed model. Such
functionality should speed up the simulation of large models - more research needs
to be done to get a clear answer.

105

4. SPIKE ARCHITECTURE

e Distributed simulation - Spike is able to perform parallel executions of simulation
experiments on single host. Future work should consider implementation of dis-
tributed simulation, which can speed-up the execution of an experiment in the
following example cases:

(a) - a simulation experiment contains a set of exhaustive simulations - in this
case each simulation can be distributed over a network of computing peers,
where each peer performs a single simulation.

(b) - a parallel simulation of a decomposed model - in a such case each component
of the model is distributed over a network of computing peers, where each
peer performs a single, parallel, synchronized simulation for the received
model component.

e Parameter optimization - Optimization through a simulation can be used as a
search method [CM97] for the best candidates of input variables among all valid
alternatives at any system state. By adopting heuristic evaluation, it is possible to
reduce a search space without explicitly evaluating each possibility. Spike features
such as parameters scanning and parallel execution of configuration branches
make Spike suitable for this task. However, all these features are not sufficient
to perform parameter optimization. Future work should consider embedding the
optimization strategy directly into Spike.

The following chapter discusses use cases with complete examples that illustrate
most of the functionalities of SPC.

106

5

Use Cases

To illustrate the functionality of Spike and its configuration script language SPC
(intruded in Chapter 3) the following three use cases are discussed:

1. Benchmarking - designing of benchmarking experiments;
2. Simulation of adaptive models - stepwise simulation;

3. Spike as a backend simulator for simulative parameter optimization;

5.1 Benchmarking

Depending on the configuration, a given model is simulated according to the specified
simulation type, regardless of the model type. Such functionality allows to design
benchmarking experiments, with the main goal to compare the computational complexity
of models and / or the performance of the simulation algorithms. A benchmarking
experiment can be designed in the following two ways:

1. to firmly compare the performance of different simulation methods using a well
characterized comparative set of models,

2. to firmly compare the computational complexity of models (representing the same
system) using a set of simulations.

This allows to determine the strengths of each simulation method or model, respectively.
Essential information about designing of benchmarking experiments are provided

in [WSC+19] where a set of guidelines is introduced. Based on this, the following

guidelines should be considered when designing a benchmarking experiment:

e Define the purpose and scope of the benchmark - how comprehensive the bench-
mark should be.

107

5. USE CASES

Select (or design) representative data sets - number and types of data sets to be
included.

Choose appropriate parameter values - amount of tuning parameters.

Evaluate methods according to key quantitative performance metrics - numbers
and types of performance metrics.

Interpret results and provide recommendations - generality versus specificity of
recommendations.

Follow best practices for reproducible research, by making code and data publicly
available.

The examples below show that designing a benchmarking experiment is relatively
easy with Spike, which has the ability to scan its configuration options.

Example 5.1. To benchmark simulation types over a given model, the following
scenario represented by Algorithm 14 can be used.

Algorithm 14: Use case: Benchmarking of simulation types.

1 Load model;
2 Determine model configuration;
3 for each simulation type do

4 Determine simulation configuration;
5 Create new configuration branch;

6 Run simulation;

7 Store results;

8 end

The following implementation of this scenario is intended to compare the determin-
istic and stochastic simulations results of the SIR model (see Figure 2.6, page 18). The

scenario comprises four main steps:

(a)
(b)

()

Specification of the model source; lines 2 — 4.

Specification of the simulation name. The name depends on the named import
and the type of simulation; line 10. It is used to define the unique names of the
files, which contain the simulation results.

Declaration of the simulation type list. The list contains the configuration of two
types of the simulation: stochastic and continuous (deterministic), for each of
them a new branch of the simulation configuration will be created and a separated
simulation performed. In the configuration of the stochastic simulation, the seed
value is specified to reproduce the simulation traces presented in Figure 5.1; lines
15 — 48.

108

5.1 Benchmarking

(d) Configuration of how to store the simulation results. It allows specifying which the

1
2

simulation traces are to be recorded - in this case, all paces related to population B.
The name of the resulting file depends on the variables defined in the configuration,
what allows to generate a unique name; lines 51 — 62.

// Import model
import: {

from: "./model/SIR-SPNC.candl";
i

configuration: {

simulation:
{

name: "BENCHMARK1:" << import.name << "_" << type; // Name of a simulation
/%

* Branching:
* Scanning over simulation types
*/

type: [L
// Stochastic simulation
stochastic: {

solver:
direct: {
threads: 1;

runs: 50;
// reproducing stochastic simulation resulting traces
seed: 2589244515;
}
single: true;
avg: true;
},
// Continuous Simulation
continuous: {
solver:
BDF: {
/*
* Define new variable "runs" that
* 15 used in the export file name
*/
runs: "CONT";
semantic: "adapt";
iniStep: 0.1;
linSolver: "CVDense";
relTol: le-5;
absTol: 1.0e-10;
autoStepSize: false;
reductResultingODE: true;
checkNegativeVal: false;
outputNoiseVal: false;
}
}
115

interval: 0:200:50;

109

5. USE CASES

51 export: {

52 // Array of places to save (if empty ezport all)
53 places: [".x_B.x"1;//[];// all places

54 //transitions: [];// all transitions

55 csv: {

56 sep: ";";// Separator

57 file: "./data/"

58 << name

59 << "_" << configuration.simulation.type.solver.runs
60 << ".csv";// File name

61 }

62 }

63

64 }

65 }

It is worth noting the difference between the resulting traces in Figure 5.1.(a) and
5.1.(b) (page 111). This can be explained by decay of a disease when all specimen in an
infected population recovered without spreading a disease (isolation) onto a susceptible
population. This event cannot be clearly seen in the traces of the stochastic simulation,
as they show the averaged results of 50 runs. It is similar in the case of the deterministic
simulation. This event is superseded, since the traces are results of approximating the
solutions of ODEs. To spot this event, it is necessary to look on a single run of a
stochastic simulation. The Figure 5.1.(c) (page 111) presents the resulting trace of the
single run selected from the set of the stochastic simulation runs. The selected 33th
run explains the notable difference between resulting trace. It shows decay events of a
disease (when all specimen in an infected population have recovered) in the populations.

110

5.1 Benchmarking

(a) 100000
80000 = SusceptiblePopulation_B
== |nfected_B
)
g = Recovered_B
S 60000
e
“
o
e
2
€ 40000
=]
=
20000
0
0 10 20 30 40 50
Time
(b) 100000
80000 = SusceptiblePopulation_B
= |nfected_B
o J—
5 Recovered_B
$ 60000
e
“
o
e
2
€ 40000
=]
=z
20000
0
0 10 20 30 40 50
Time
(C) 2.00
1.75
= |nfected_B#33

1.50 = Recovered_B#33

Number of Tokens
T
o N
s »

o
I
o

o
N
o

4
o
o

0 10 20 30 40 50
Time

Figure 5.1: Comparison of simulation traces of the model in Figure 2.6, which are related
to the population B; the deterministic (continuous) simulation (a) versus average of
50 stochastic simulation runs (b) and one of the single runs of the averaged stochastic
simulation (c); where SusceptiblePopulation is set to bed' A+ +1e5'B; k_infect_a = 5.0e — 5;
k_infect.b = 5.0e — 6; k_recover_a = 1.0e — 1; k_recover_b = 1.0e — 2. The selected 33th
run explains the notable difference between resulting traces. It shows decay events of a
disease (when all specimen in an infected population have recovered) in the populations.

111

5. USE CASES

Example 5.2. The following scenario represented by Algorithm 15 can be used to
benchmark models over one simulation type.

Algorithm 15: Use case: Benchmarking of simulation models.

1 for each model do

2 Load model;

3 Determine model configuration;

4 Determine simulation configuration;
5 Create new configuration branch;

6 Run simulation;

7 Store results;

8 end

The following scenario implementation is intended to compare the SIR model (see
Figure 5.2.(a), page 114) with its SEIR extension (see Figure 5.2.(b), page 114). SEIR is
an extension of the SIR model with one additional compartment representing population
of exposed species (E), which are infected but not yet infectious. Upon being infected,
individuals will move to this sub-population and remain there for an incubation period
before moving to the infected population.

The scenario comprises four main steps:

(a) Declaration of a list of models to import. The list contains the configuration of
two named imports: a and b, for each of them a new branch of the simulation
configuration will be created and a separated simulation performed; lines 5 — 12.

(b) Specification of the simulation name. The name depends on the named import; line
18. Tt is used to define the unique names of the files, which contain the simulation
results.

(c) Declaration of simulation type. lines 19 — 27.

(d) Configuration of how to store the simulation results. It allows specifying which
the simulation traces are to be recorded. The name of the resulting file depends
on the variables defined in the configuration, what allows to generate a unique
name; lines 31 — 44.

112

5.1 Benchmarking

1 /*

2 * Branching:

3 * Scanning over models to import

4 */

5 import: [[

6 SIR:{

7 from: "./model/SIR-SPNC.candl";
8 1,

9 SEIR:{

10 from: "./model/SEIR-SPNC.candl";
11 }

12 11;

14 configuration: {

16 simulation:

17 {

18 name: "BENCHMARK:" << import ; // Name of a simulation

19 type:

20 // Stochastic simulation

21 stochastic:

22 solver:

23 direct: {

{

24 threads: 1;

25 runs:
26 }
27 }

3;

29 interval: 0:200:100;

31 export: {

32 // Array of places to save (if empty exzport all)

33 places: [J;

//[1;// all places

34 //transitions: [];// all transitions

35 csv: {

36 sep: ";";

// Separator

37 file: "./data/"

38 <<
39 <<
40 <<
41 <<
42 <<

name << "_"

configuration.simulation.type << "_"
configuration.simulation.type.solver

"_" << configuration.simulation.type.solver.runs
".csv";// File name

Both models are configured with the same set of constants, with one exception that

the constant k_incubation is used in the SEIR model as the kinetic parameter of the
Incubation transition. The results of the simulation are presented in Figure 5.3. It can
be seen that the additional compartment that represents exposed species, slows down
the spread of the disease since during this period, species in the incubation state do not
take in the infection process making it is less violent.

113

5. USE CASES

constants:
double k_infect = 5.0e-5;
double k_recover = 1.0e-1;
double k_incubation = 1.0e-1;
int pop_size = 1;
colorsets:
enum Population = {1..pop_size};
variables:
Population : x;
(a) .
le57all () 1all()
Population opulation Population
]-Cejr’ X 2'x X I:l X :
SusceptiblePopulation Infect Infected Recover Recovered
MassAction (k_infect) MassAction (k_recover)
MassAction (k_incubation)
Exposed Incubation
Population . %
le57all() % 17all()
Population Population Population
SusceptiblePopulation Infect Infected Recover Recovered
MassAction (k_infect) MassAction (k_recover)

Figure 5.2: The SIR (a) and the SEIR (b) model used to simulate the spread of the disease.
The SEIR model extends the SIR model by one additional place Exposed and the transition
Incubation. Those two additional nodes create the compartment representing the population
of exposed species (E), which are infected but not yet infectious.

114

5.1 Benchmarking

(a) 100000 -1
80000 == SusceptiblePopulation
== Infected
g = Recovered
X
60000
e
w—
o
e
8
€ 40000
=]
=
20000
0 .L
0 20 40 60 80 100
Time
(b) 100000
80000 = SusceptiblePopulation
= Infected
2 = Recovered
] m— d
< 60000 XPose
=
.
o
=
8
€ 40000
S
=z
20000
0
0 20 40 60 80 100
Time

Figure 5.3: Simulation results of the SIR and the SEIR model presented in Figure 5.2.(a),(b),
respectively. As it can be seen, the additional compartment in the SEIR model that represents
exposed species, slows down the spread of the disease since during this period, species in
the incubation state do not take in the infection process making it less violent.

115

5. USE CASES

Example 5.3. The following scenario represented by Algorithm 16 comprises both

scenarios from the two previous examples. It allows to benchmark a set of models over a

given set of simulation types. A separated simulation will be performed for each unique

combination of model — simulation type.

Algorithm 16: Use case: Benchmarking of simulation types and models.

1 for each model do

2 Load model;
3 Determine model configuration;
4 for each simulation type do
5 Determine simulation configuration;
6 Create new configuration branch;
7 Run simulation;
8 Store results;
9 end
10 end

The following implementation of this scenario compare the performance of hybrid

simulation algorithms. It is a simplified version of the experiment presented in [HH18].

The scenario comprises four main steps:

(a)

Declaration of a list of models to import. The list contains the configuration of
two named imports: HPNC2 and HPNC| for each of them a new branch of the
simulation configuration will be created and a separated simulation performed;
lines 2 — 9;

Adjust the model parameters; lines 12 — 18.

Specification of the simulation name. The name depends on the type of simulation
algorithm; line 21. It is used to define the unique names of the files, which contain

simulation results.

Declaration of the simulation algorithm list. The list contains the configuration of
four hybrid simulation algorithms: static, staticAcc, HRSSA and HRSSAacc. For
each of them a new branch of the simulation configuration will be created and a
separated simulation performed; lines 27 — 89.

Configuration of how to store the simulation results. It allows specifying, which
the simulation traces are to be recorded. The name of the resulting file depends
on the variables defined in the configuration, what allows to generate a unique
name; lines 94 — 105.

116

5.1 Benchmarking

1 // Import - exactly one model

2

© 0N T AW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

import: [[
HPNC2: {
from: "./model/SIR-HPNC2.candl";
To
HPNC: {
from: "./model/SIR-HPNC.candl";
}
11;
configuration: {
model: {
constants: {
all: {
pop_size: 2;
¥
}
}
simulation:
{
name: "BENCHMARK:" << import << ":" << type.solver; // Name of a simulation
/%

* Branching:
* Scanning over simulation algorithms

*/

type: hybrid: {
solver: [[

1,

static: {
threads: 1;
runs: 3;

odeSolver: "BDF";
iniStep: 0.1;

linSolver: "CVDense";
relTol: 1le-5;

absTol: 1.0e-10;
autoStepSize: true;
reductResultingODE: true;
checkNegativeVal: false;
outputNoiseVal: false;

staticAcc: {

}’

threads: 1;

runs: 3;

odeSolver: "BDF";
iniStep: 0.1;

linSolver: "CVDense";
relTol: 1le-5;

absTol: 1.0e-10;
autoStepSize: true;
reductResultingODE: true;
checkNegativeVal: false;
outputNoiseVal: false;

117

5. USE CASES

54 HRSSA: {

55 threads: 1;

56 runs: 3;

57 odeSolver: "BDF";

58 iniStep: 0.1;

59 linSolver: "CVDense";

60 relTol: 1le-5;

61 absTol: 1.0e-10;

62 autoStepSize: true;

63 reductResultingODE: true;
64 checkNegativeVal: false;

65 outputNoiseVal: false;

66 //

67 fluctRatio: 0.2; // Fluct ratio
68 // Apply monitored places
69 applyMonPlaces: true;

70 P

71 HRSSAacc: {

72 threads: 1;

73 runs: 3;

74 odeSolver: "BDF";

75 iniStep: 0.1;

76 linSolver: "CVDense";

7 relTol: 1le-5;

78 absTol: 1.0e-10;

79 autoStepSize: true;

80 reductResultingODE: true;
81 checkNegativeVal: false;

82 outputNoiseVal: false;

83 //

84 fluctRatio: 0.2; // Fluct ratio
85 // Apply monitored places
86 applyMonPlaces: true;

87 applyInterfacePlaces: true;
88 ¥

89 11;

90 }

91

92 interval: 0:200:500;

93

94 export: {

95 // Array of places to save (if empty export all)
96 places: [1;//[];// all places
97 transitions: ["Travel.*"1;// all transitions
98 csv: {

99 sep: ";";// Separator

100 file: "./data/"

101 << name << "_"

102 << configuration.simulation.type.solver.runs
103 << ".csv";// File name
104 }

105 }

106 X

107 }

For this simple benchmark experiment two hybrid models are used. Each of them is
a specially tailored variation of the SIR model. The models are statically partitioned.
Model in Figure 5.4.(a) (page 119) contains two disjoint clusters, not connected by
any interface transitions. Clusters have the form of the separated CPNC and the
SPNC SIR model. The model in Figure 5.4.(b) (page 119) consists of two clusters: the

118

5.1 Benchmarking

deterministic and stochastic clusters are connected by one interface transition Recover.
The experiment demonstrates (see Table 5.1) that for a statically partitioned model
with absence of interface, reactions the accelerated HRSSA algorithm (HRSSAacc)
indeed improves the hybrid simulation performance. The number of interface reactions
influences the performance of hybrid simulation. Their firings affect the system state
of the deterministic regime. For each interface reaction the ODE solver needs to be
reinitialised when one of these reactions occurs.

(a)

X

le57all() 1'all()

Population ’////—\\\\Espulation Population
le5 x 2/x x x
»- > > —
SusceptiblePopulation Infect Infected Recover Recovered
MassAction (k_infect) MassAction (k_recover)
X
le5‘all () 17all()
Population opulation Population
%%? X 2'x X [:] x :
SusceptiblePopulationS r1.fects InfectedsS RecOvVers RecoveredS
MassAction (k_infect) MassAction (k_recover)

(b)

X

le57all () 17all()
Population ’////’-\\\\E?pulation Population
1.5e5 x 21x x x
- -0
SusceptiblePopulation Infect Infected Recover Recovered
MassAction (k_infect) MassAction (k_recover)

Figure 5.4: To compare the performance of hybrid simulation algorithms, the model
contains two disjoint SIR subnets in the form of CPN¢ and SPNC. Initial values of the
kinetic constants: k_infect = 5.0e — 5; k_recover = 1.0e — 1

Table 5.1: The performance of hybrid simulation algorithms supported by Spike.

Model \ Algorithm | static | staticAcc | HRSSA | HRSSAacc
(a) 30.1 13.1 21.8 1.6
(b) 18.0 5.7 3.0 3.1
Time [s]

Runtime of the four hybrid algorithms carried out on a PC with 2.6 GHz
Core i7-6700HQ processor and 32GB memory. The simulations performed
on models presented in Figure 5.4. Results are given in seconds [s].

119

5. USE CASES

5.2 Simulation of Adaptive Models

The simulation of adaptive models is an important part for all adaptive systems. In Spike,
a discrete-time adaptive modelling system (stepwise simulation) scans the state of the
model, which provides feedback. Based on the feedback the model internal parameters
are automatically adjusted by means of predefined conditions. The model adjustment is
controlled by a feedback loop which provides the generic mechanism for self-adaptation.
In Spike the control feedback loop (see Figure 5.5) is based on the model presented
in [BSG+09]. It comprises four implicit components/activities:

e simulation - collects data from the model executed and its current state,
e analyse - analyses the data to infer trends and identify symptoms,

e decide - decides how to act on the model executed based on analyses which are
defined by conditions,

e alter model - alters model parameters based on decisions.

All the activities can be defined in the configuration of a stepwise simulation with the
help of an SPC script.

A stepwise simulation advances in the given time range. Based on the current state
of the model and the simulation, it enables a model to be adapted after each simulation
step. As presented in [KCR+09, Kanl2], such an approach can be used to dynamical
change the simulation algorithm what allows performing hybrid simulation. Based on
the analysis of the system state, transitions can be clustered and assigned to different
simulation algorithms. Currently, during the runtime of a stepwise simulation, the
dynamic change of a simulation algorithm (by changing its type or configuration) is not
supported by Spike. This feature is considered in future work.

O process
simulation

alter model

Figure 5.5: Control feedback loop implicitly embedded in Spike’s stepwise simulation.

Example 5.4. The infection rate changes dynamically during a pandemic for various
reasons. Depending on the pandemic situation, one of the reasons could be rules that
restrict or relax social distancing. After applying the rules, the infection rate does not
change immediately, instead it changes over a range of time. During this period, the

120

5.2 Simulation of Adaptive Models

infection rate decreases or increases, depending on whether the restriction or relaxation

rules are applied. The change of the infection rate depends on the current state of

the system and requires appropriate adjustment of the model parameters during the

simulation.

The following configuration of the simulation experiment is defined over the model

in Figure 2.3 and comprises the following main steps:

(a)
(b)

Specification of the source of the model; lines 10 — 12.

Reconfiguration of the model by setting the new value of the kinetic constant
k_infect_a and new initial state of the susceptible population SusceptiblePopula-
tion_A; lines 18 — 27.

Configuration of the simulation by setting up its type and solver; lines 42 — 51.
Configuration of the simulation time; line 53.

Configuration of the stepwise simulation; lines 61 — 141. This step allows to define
the control feedback loop through the SPC script used for self-adaptation of the
model. In the lines 67 — 68 two auxiliary variables k_infect_lo and k_infect_hi
are defined which store the values of the kinetic parameters of the restriction
and relaxation rules. The lines 72 — 78 define the time period ¢ Win in which the
restriction and relaxation rules will be smoothly applied; lines 126 — 135. It means
that the infection kinetic parameter will progressively reach the value defined
by k_infect_lo in the case of restriction; lines 96 — 104; and the value defined by
k_infect_hi in the case of relaxation; lines 110 — 117.

Configuration of how to store the simulation results. It allows specifying which
the simulation traces are to be recorded. The name of the resulting file depends
on the variables defined in the configuration, what allows to generate a unique
name; lines 144 — 166.

The control feedback loop is realized within the do object which is evaluated after
each step of a simulation. After each simulation step the system state is accessible by

using the following predefined objects and variables:

e simulation - this object allows to read the time and the step of the simulation,

see line 89;

e place - this object allows read/write access to the model places, see in the line

69. The place Infected_A (place.Infected_A) is used in the boolean expression of
the conditional block that checks if the number of infected species is greater than
40% of the susceptible population;

121

5. USE CASES

e constant - this object allows read/write access to the model constants, see in the
line 102. The constant k_infect_a (constant.k_infect_a) is used in the expression
that calculates a new value of the variable d WinStepSize.

The combination of conditional blocks and expressions allows analysing the system state
(boolean expression of conditional blocks). Depending on the analyses, decisions can
be made (conditional blocks), which actions to perform, e.g. alter the model, set a new
variable value, etc.

The simulation results are presented in Figure 5.6. It can be clearly seen if the size
of the infected population Infected_A is greater than 40% of the susceptible population
SusceptiblePopulation_A then the restriction rules are applied (a). In this case, the
infection kinetic parameter k_infect_a is progressively decreasing (b). Similarly in the
case of applying relaxation rules. If the size of the infected population is less than 20%
of the susceptible population, then the relaxation rules are applied and the infection
kinetic parameter progressively increases.

122

5.2 Simulation of Adaptive Models

© 0 N OO s W N

T e e
N O Uk W NN = O

18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

VA LS

* Example configuration of a stepwise stimulation

*/

/7
/*

*/

- line comment

- block comment

// Import - exactly one model
import: {

I

from: "./model/SIR-SPN.andl";

configuration: {

model: {

}

S

{

constants: {
all: {
k_infect_a: 5.0e-5;
}
}
places: {
SusceptiblePopulation_A: 20000;
}

imulation:

/%

* This ts example variable that is added

* to the log
*/

varkExample: model.places.SusceptiblePopulation_A;

// Name of a simulation
name: "SIR";

/%
* Set up a simulation
*/
type:stochastic: {
solver:
direct: {
threads: 1;
runs: 3;
//seed: 2413805201;
¥

single: true;// Single
//avg: false;// Default set to true

interval: 0:200:100;

123

5. USE CASES

111

* Stepwise simulation

* Description: Depending on the current number of

* infected specimens set restriction or relazation

* rules by applying change of infection kinetic rates
* in a given time frame.

*/

onStep: enabled: {

/%
* Kinetic parameters of
* the restriction and relazation
* rules
*/
k_infect_lo: 1.0e-9;
k_infect_hi: 5.0e-5;

k_infect:observe: constant.k_infect_a;
ilnitailSusceptiblePopulation_A: place.SusceptiblePopulation_A;
iTimeFrame: 2;// Strech factor
/*
* Calculate the window size that stretch over
* the full time frames defined by iTimeFrame
*/
iWin: (interval.splitting / (interval.end - interval.start)) *
iTimeFrame;
iWinStep: O;
bFirst: false;
bRelax: false;
dWinStepSize: 0;

LOG = "END_INIT";

/%
* Smoothed stepwise lockdown and relazation
*/
do: {
LOG = "step:" << simulation.step;
LOG = "time:" << simulation.time;
/*

* Change infection rate if the number of

* infected specimens s > than 407 of susceptible

* population

*/

if (place.Infected_A > ilInitailSusceptiblePopulation_A * 0.4
&& 'bFirst) {

bFirst = true;
iWinStep = 0;
// Distance & step size
dWinStepSize = (constant.k_infect_a - k_infect_lo) / iWin;
bRelax = false;
¥
/*
* Change infection rate if the number of
* infected specimens s < than 20] of susceptible
* population
*/
else if(place.Infected_A < iInitailSusceptiblePopulation_A *
0.2 && !'bRelax && bFirst) {

iWinStep = O;

// Distance & step size

dWinStepSize = (constant.k_infect_a - k_infect_hi) / iWin;
bRelax = true;

124

5.2 Simulation of Adaptive Models

118 // ABS - absolut value

119 if (dWinStepSize < 0) {

120 dWinStepSize = -dWinStepSize;

121 }

122 /*

123 * Adjust the kinetic parameter according

124 * to the position in the time frame

125 */

126 if (iWinStep < iWin) {

127 if (!bRelax) {

128 constant.k_infect_a = constant.k_infect_a -
129 dWinStepSize;

130 } else if(bRelax) {

131 constant.k_infect_a = constant.k_infect_a +
132 dWinStepSize;

133 }

134 iWinStep = iWinStep + 1;

135 }

136 // Set the value of the observed variable

137 k_infect = constant.k_infect_a;

138 // Logging extra information

139 LOG = "bRelax: " << bRelax;

140 }

141 }

142

143

144 export: {

145 // Array of places to save (if empty ezport all)
146 places: [1;//[];// all places

147 //places:c: [1;//[1;// all coloured places

148 //places:u: [];// uncoloured places

149 transitions: [];// all transitions

150 //transitions:c: [];// all coloured transitions
151 //transitions:u: [];// all uncoloured transitions
152 observers: [];

153 csv: {

154 sep: ";";// Separator

155

156 file: "./data/"

157 << import.name << "_"

158 << configuration.simulation.type << "_"

159 << configuration.simulation.type.solver

160 << "_" << configuration.simulation.type.solver.runs
161 << "_" << configuration.model.constants.all.k_infect_a
162 << ||_n

163 << configuration.model.places.SusceptiblePopulation_A
164 << "_FIELSE-step.csv";// File name

165 }

166 }

167}

168 }

169

170 log: {

171 sim.varExa: configuration.simulation.varExample;

172 }

125

5. USE CASES

(a) 20000
17500
15000 = Infected_A
== SusceptiblePopulation_A
g = Recovered_A
2 12500
o
[
—
© 10000
s
[}
o
£ 7500
=]
=z
5000
2500
0
0 20 40 60 80 100
Time
(b) 0.00005
0.00004 = k_infect_a
3
© 0.00003
c
2
=
]
"E- 0.00002
0.00001
0.00000
0 20 40 60 80 100
Time

Figure 5.6: Simulation traces of stepwise simulation. It can be clearly seen if the size
of the infected population Infected_A is greater than 40% of the susceptible population
SusceptiblePopulation_A then the restriction rules are applied (a). In this case the infection
kinetic parameter k_infect_a is progressively decreasing (b). Similarly in the case of applying
relaxation rules. If the size of the infected population is less than 20% of the susceptible
population, then the relaxation rules are applied and the infection kinetic parameter
progressively increases.

126

5.2 Simulation of Adaptive Models

Example 5.5. This follow-up example represents an experiment that aims to compare

the effects of applying two different relaxation time frames:

1.

2.

bigbang - after applying the relaxation rules, the infection rate changes immediately

(in one simulation step),

smooth - after applying the relaxation rules, the infection rate changes smoothly
over a time range (multiple simulation steps).

To achieve this, the configuration of the experiment utilizes the feature of scanning

variable values.

TotalInfected
2ed
O - — [—0O
SusceptiblePopulation A [ecct a Infected_A Recover A Recovered A
MassAction (k_infect_a) MassAction (k_recover_a)

Figure 5.7: The SIR model used in the example is a variation of the SIR models in
Figure 2.3. It contains one population A and the additional place Totallnfected, which holds
the number of total infections. Initial values of the kinetic constants: k_in fect_a = 5.0e — 5;
k_recover_a = 1.0e — 1

The following configuration of the simulation experiment is defined over the model

in Figure 5.7 and comprises the following main steps:

(a)
(b)

Specification of the source of the model; lines 11 — 13.

Reconfiguration of the model by setting the new value of the kinetic constant
k_infect_a and new initial state of the susceptible population SusceptiblePopula-
tion_A; lines 19 — 28.

Configuration of the simulation by setting up its type and solver; lines 38 — 51.
Configuration of the simulation time; line 53.

Configuration of the stepwise simulation; lines 61 — 168. This step allows to define
the control feedback loop through SPC script used for self-adaptation of the model.
In the lines 67 — 68 two auxiliary variables k_infect_lo and k_infect_hi are defined
which store the values of kinetic parameters of the restriction and relaxation rules.
The lines 76 — 85 define the stretch factors for calculating time periods of the
restriction and relaxation rules. The definition involves parameter scanning which
allows defining values for the two cases bigbang and smooth, respectively. The
parameter scanning will trigger branching, which leads to two separate simulation
branches.

127

5. USE CASES

The lines 90 — 95 define two time periods win.iRest and win.iRelaxr in which the
restriction and relaxation rules will be applied; lines 145 — 157. They stretch over
the full time frames defined by timeFrame.iRestriction and timeFrame.iRelazation,
respectively. It means that the infection kinetic parameter will progressively reach
the value defined by k_infect_lo in the case of restriction; lines 113 — 121; and the
value defined by k_infect_hi in the case of relaxation; lines 127 — 136.

(f) Configuration of how to store the simulation results. It allows specifying which
the simulation traces are to be recorded. The name of the resulting file depends
on the variables defined in the configuration, what allows to generate a unique
name; lines 170 — 186.

The simulation results are presented in Figure 5.8. It can be clearly seen that the
simulation results depend on the size of the relaxation window. The number of infected
species Infected_A rise to the:

e higher value in the case of bighang - immediate introduction of relaxation, where
the size of the relaxation window is set to zero (win.iRelax = 0),

e lower value in the case of smooth - step by step introduction of relaxation, where
the size of the relaxation window equals twelve (win.iRelaz = 12).

It is worth noting that the total number of infections is the same in both cases. The size
of the restriction windows is the same in both cases, and it equals four (win.iRest = 4).

128

5.2 Simulation of Adaptive Models

© 0N OO W N

CGUOT Ot Ot R s R R R R R R R A W W W W W W W W W WNNNNNNNNNN R e e e
W N RO © WO O b W +HO®©®NO Gk WN =O ®© WO G B WK RO © 0w O Gk WK = O

VA LS
* Example configuration of a stepwise stmulation:
* BIGBANG vs SMOOTH relazation

*/
// - line comment
/%
- block comment
*/
// Import - exactly one model
import: {

from: "./model/SIR-SPN-BIGBANG.andl";
i

configuration: {

model: {
constants: {
all: {
k_infect_a: 5.0e-5;
}
}
places: {
SusceptiblePopulation_A: 20000;
}
}

simulation:

{

// Name of a simulation
name: "SIR";
/*
* Set up a simulation
*/
type: continuous: {
solver:
BDF: {
semantic: "adapt";
iniStep: 0.1;
linSolver: "CVDense";
relTol: le-5;
absTol: 1.0e-10;
autoStepSize: false;
reductResultingODE: true;
checkNegativeVal: false;
outputNoiseVal: false;
}
}

interval: 0:200:100;

129

5. USE CASES

54 /*

55 * Stepwise simulation

56 * Description: Depending on the current number of

57 * infected specimens set restriction or relazation

58 * rules by applying change of infection kinetic rates

59 * 4n a given time frame.

60 */

61 onStep: enabled: {

62 /*

63 * Kinetic parameters of

64 * the restriction and relazation

65 * rules

66 */

67 k_infect_lo: 1.0e-9;

68 k_infect_hi: 5.0e-5;

69

70 k_infect:observe: constant.k_infect_a;

71 ilnitailSusceptiblePopulation_A: place.SusceptiblePopulation_A;
72 /*

73 * Scan over stepwise simulation variables values

74 */

75 // Stretch factors

76 timeFrame: [[

77 bigbang: {

78 iRestriction: 2;

79 iRelaxation: O0;

80 },

81 smooth: {

82 iRestriction: 2;

83 iRelaxation: 6;

84 }

85 11

86 /*

87 * Calculate two windows size that stretch over the full time frames
88 * defined by timeFrame.iRestriction and timeFrame.iRelazation
89 */

90 win: {

91 iRest: (interval.splitting / (interval.end - interval.start)) *
92 timeFrame.iRestriction;

93 iRelax: (interval.splitting / (interval.end - interval.start)) *
94 timeFrame.iRelaxation;

95 }

96 iWinStep: O;

97 bFirst: false;

98 bRelax: false;

99 dWinStepSize: O;

100

101 LOG = "END_INIT";

102 /*

103 * Smoothed stepwise lockdown and relazation

104 */

105 do: {

106 LOG = "step:" << simulation.step;

107 LOG = "time:" << simulation.time;

108 /*

109 * Change infection rate if the number of

110 * infected specimens is > then 40J of susceptible

111 * population

112 */

113 if (place.Infected_A > ilnitailSusceptiblePopulation_A * 0.4 && !bFirst) {
114 bFirst = true;

115 iWinStep = 0;

116 // Distance & step size

117 if (win.iRest != 0) {

118 dWinStepSize = (constant.k_infect_a - k_infect_lo) / win.iRest;
119 }

120 bRelax = false;

121 }

130

5.2 Simulation of Adaptive Models

jun
[V
w
*

Change infection rate if the number of

124 * infected specimens s < then 20] of susceptible

125 * population

126 */

127 else if(place.Infected_A < iInitailSusceptiblePopulation_A * 0.2 && !bRelax &&
128 bFirst) {

129

130 iWinStep = 0;

131 // Distance & step size

132 if (win.iRelax != 0) {

133 dWinStepSize = (constant.k_infect_a - k_infect_hi) / win.iRelax;
134 }

135 bRelax = true;

136 }

137 // ABS - absolut value

138 if (dWinStepSize < 0) {

139 dWinStepSize = -dWinStepSize;

140 }

141 /*

142 * Adjust the kinetic parameter according

143 * to the position in the time frame

144 */

145 if (!bRelax) {

146 if (iWinStep < win.iRest) {

147 constant.k_infect_a = constant.k_infect_a - dWinStepSize;
148 } else if(win.iRest == 0) {

149 constant.k_infect_a = k_infect_lo;

150 }

151 } else if(bRelax) {

152 if (iWinStep < win.iRelax) {

153 constant.k_infect_a = constant.k_infect_a + dWinStepSize;
154 } else if(win.iRelax == 0) {

155 constant.k_infect_a = k_infect_hi;

156 }

157 }

158 iWinStep = iWinStep + 1;

159

160 // Set the walue of the observed wvariable

161 k_infect = constant.k_infect_a;

162 // Logging extra informations

163 LOG = "place.Infected_A: " << place.Infected_A;

164 LOG = "k_infect: " << k_infect;

165 LOG = "dWinStepSize: " << dWinStepSize;

166 LOG = "END_DO";

167 }

168 }

169

170 export: {

171 // Array of places to save (if empty export all)

172 places: [1;// all places

173 //transitions: [];// all transitions

174 observers: [];

175 csv: {

176 sep: ";";// Separator

177 file: "./data/"

178 << import.name << "_"

179 << configuration.simulation.type << "_"

180 << configuration.simulation.type.solver

181 << "_" << configuration.model.constants.all.k_infect_a
182 << "_" << configuration.model.places.SusceptiblePopulation_A
183 << "_" << configuration.simulation.onStep.timeFrame
184 << "-step.csv";// File name

185 }

186 }

187}

188 }

131

5. USE CASES

(a)
20000
17500
15000 —— SusceptiblePopulation_A
—— Infected_A
g —— Recovered_A
$ 12500 —— Totallnfected
e
5 10000
I
8
£ 7500
5
z
5000
2500
0
[20 40 60 80 100
(b) Time
0.00005
0.00004 — k_infect_a
)
S 0.00003
c
8
g
£ 0.00002
0.00001
0.00000 L
[20 40 60 80 100
Time
(c)
20000
17500
—— SusceptiblePopulation_A
15000 —— Infected_A
g —— Recovered_A
$ 12500 —— Totallnfected
e
Ly
5 10000
I3
8
£ 7500
5
=
5000
2500
0
0 20 40 60 80 100
(d) Time
0.00005 { ey
0.00004 —— k_infect_a
9
S 0.00003
c
2
2
]
£ 0.00002
0.00001
0.00000
[20 40 60 80 100
Time

Figure 5.8: The simulation results depend on the size of relaxation window. The number
of infected species Infected_A rises rapidly and to a higher value in the case of bigbang -
immediate introduction of relaxation, where the infection kinetic parameter k_infect_a is
immediately decreased (a), and the size of the relaxation window is set to zero (win.iRelax =
0) (b) or rise slowly and to a lower value in the case of smooth - step by step introduction
of relaxation, where the infection kinetic parameter k_infect_a is progressively decreasing
(c), and the size of the relaxation window equals twelve (win.iRelax = 12) (d). It is worth
noting that the total number of infections (Totallnfected) is the same in both cases. The
size of restriction windows is the same in both cases, and it equals four (win.iRest = 4).

132

5.3 Spike as a Backend Simulator for Parameter Optimization

5.3 Spike as a Backend Simulator for Parameter Optim-
ization

Parameter optimization is required when during developing a model some parameters
are not known yet or uncertain. A simulative approach can be applied in order to
optimize / estimate unknown values of model parameters. In this case, it is necessary
to carry out a series of simulation experiments and compare the obtained results with
the help of a fitness function (also known as the evaluation function), which evaluates
how close a given solution is to the optimum solution of the given problem. The fitness
function can have various forms and can be related not only to time series but also
to expectations (e.g. steady state), temporal logic, etc. Depending on the number of
uncertain parameters and the number of parameter values, the size of the simulation
set can be large and is equal to the product expressed by equation (5.1)

R[] (), (5.1)

where R is the number of repetitive simulation runs, m is the number of uncertain
parameters and n(i) is the number of values of the ith parameter.

Optimization through a simulation can be used as a search method [CM97] for the
best candidates of input variables among all valid alternatives at any system state. By
adopting heuristic evaluation it is possible to reduce a search space without explicitly
evaluating each possibility. Spike does not directly support a heuristic parameter
optimization. An optimization strategy must be implemented separately, while Spike
performs the simulation task. Nevertheless, Spike features such as parameters scanning
and parallel execution of configuration branches, makes it suitable for the task of brute
force optimization. In the following two scenarios of parameter optimization, it is shown
how Spike can be used to perform the simulation task.

Brute force. This is a straightforward approach where a new simulation is performed
for each combination of parameters. After performing all possible simulations, the best
matching results should be selected using a fitness function. This approach is presented
by Algorithm 17.

Example 5.6. The brute force approach can be useful as a quick method if the size
of the search space for each variable values is relatively small. The simulation tasks
can be easily performed by Spike, exploiting the branching of simulation configurations
(parameter scanning).

To find the best fitted result, the evaluation function represented by Algorithm 18
can be used. The given algorithm calculates the average percentage difference between
two data series.

133

5. USE CASES

Algorithm 17: Use case: Brute force multiple parameter optimization.

1 Load model,;

2 Determine simulator configuration;

3 for each unique combination of parameter values do
4 Determine model configuration;

5 Create new configuration branch;

6 Run simulation;

7 Save results of the simulation;

8 end

9 for each stored results do

10 if results not fitted then

11 Remove results;
12 end
13 end

Algorithm 18: Fitness function: comparison of two data traces.

Data: time series T'S;
simulation data trace DT
Result: fitness value dFit;

1 double dFit;

2 for each integer index iIdz in range of |T'S| do

3 if TS[ildx] + DT[ildz] ! = 0 then

4 dFit = dFit + |(TS[ildx] — DT[ildz))/(TS[ildx] + DT[ildz])|/2 = 100;
5 end

6 end

134

5.3 Spike as a Backend Simulator for Parameter Optimization

For the purpose of this example, the reference data (see Figure 5.10 on the page 135)
has been generated by the simulation of the model in Figure 5.9 with the following set
of kinetic constants: k_infect_b = 5.0e — 6; k_recover_b = 1.0e — 2. In this example, the
trace Recover_B can be used as the reference time series in the fitness function.

le5 /_\
e 2 .

> » >
L L L L

Infected B Recovered_B

SusceptiblePopulation_ B Infect B Recover B

MassAction (k_infect_b) MassAction (k_recover_b)
Figure 5.9: SIR model used in the example, with the following set of kinetic constants:

kanfect b = 5.0e — 6; k_recover b = 1.0e — 2. The simulation results are presented in
Figure 5.10.

100000

80000 = SusceptiblePopulation_B

Infected_B
= Recovered_B

60000

40000

Number of Toke

20000

0 200 400 600 800 1000
Time

Figure 5.10: Simulation traces of the deterministic simulation of the SIR model in Figure 5.9,
which are used as the reference data trace in the examples of parameter optimization.

By combining Algorithm 17 and 18, it is easy to select a most fitted simulation trace
from the set of simulation traces. The set is generated by the following configuration of
the simulation experiment which is defined over the model in Figure 5.9 (page 135) and
comprises the following main steps:

(a) Specification of the source of the model; lines 1 — 3.

(b) Reconfiguration of the model by setting the range of parameters for scanning the
kinetic constant k_infect_b and k_recover_b; line 8.

(c) Configuration of the simulation by setting up its type and solver; lines 14 — 26.
(d) Configuration of the simulation time; line 28;

(e) Configuration of how to store the simulation results. It allows specifying which
the simulation traces are to be recorded. The name of the resulting file depends

135

5. USE CASES

on the variables defined in the configuration, what allows to generate a unique
name;lines 30 — 43.

The beginning of the search space of the kinetic constant k_infect_b is set to 1.0e — 6
and will be scanned with a step of 1.0e — 6 to the end of the search space 1.0e — 5.
Similarly, for the kinetic constant k_recover_b the search space is limited by two real
values 1.0e — 3 and 1.0e — 1 and will be scanned with a step of 1.0e — 3. In this case,
the configuration of parameter scanning will result in 990 simulation branches. For this
example, the proposed range of values to be scanned is artificially adjusted to ensure
that one of the simulation branches contains the desired configuration values for the

kinetic parameters.
1 import: {
2 from: "./model/SIR-SPN.andl";

w

configuration: {
model: {
constants: { all: {
k_infect_b: [[1.0e-6:1.0e-6:1.0e-5]]; k_recover_b: [[1.0e-3:1.0e-3:1.0e-1]1];
1
}

© 0 N O U W

=
=)

simulation: {
name: "SIR-BRUTEFORCE-OPTIMIZATION";
type: continuous: {
solver: BDF: {

semantic: "adapt";
iniStep: 0.1;
linSolver: "CVDense";
relTol: le-5;
absTol: 1.0e-10;
autoStepSize: false;
reductResultingODE: true;
checkNegativeVal: false;
outputNoiseVal: false;

O I T ey
AW N RO © MmO U A W N

}
}

NN N
0w g o »

interval: 0:100:1000;

[V
o ©

export: {
places: [J;
csv: {
sep:
file: "./simresults/"
<< name << "_"
<< configuration.simulation.type << "_"
<< configuration.simulation.type.solver << "_"
<< "TST"
<< "_" << configuration.model.constants.all.k_infect_b
<< "_" << configuration.model.constants.all.k_recover_b

<< ".csv";

w W w
[SUI SR

n.on.
E]

5ELBEEEEREE S
o
-

-

.

136

5.3 Spike as a Backend Simulator for Parameter Optimization

Heuristic. The brute force approach does not reduce the search space of parameters
values. For each combination of parameters, a new simulation is performed, which is
both time and resources consuming. Frequently, the size of the value search space is too
large and prevents the optimization over a finite period of time. In such case, a heuristic
method is better suitable. In [DG08], a genetic algorithm is used to drive the optimization
strategy of model parameters. The DIRECT method and its derivatives [JPS93], as
presented in [GK10], also suite well as the optimization strategy in the use case presented
by Algorithm 19. As shown in Fig. 5.11 (page 137), simulation results are provided
for an optimization strategy which reduces the search space of parameter values by
checking the fitness of a set of parameters and provides a set of best fitted parameter
values as a feedback to the model.

Algorithm 19: Use case: Heuristic multiple parameter optimization.

1 Load model;
2 Determine simulator configuration;

3 repeat

4 for each unique combination of parameter values do
5 Determine model configuration;

6 Create new configuration branch;

7 Run simulation;

8 end

9 Run optimization strategy;

10 until space reduced;

input parameters feedback

{3} process optimization
simulation strategy

Figure 5.11: Optimization through simulation - simulation results are provided to an
optimization strategy, which reduces the space of parameter values by checking the fitness
of set of parameters and provides a set of best fitted parameter values for the model as
feedback.

Example 5.7. In this example Spike is used as backend simulator, which performs the
simulation task. The control loop and the optimization strategy is implemented by the
use of the Python programming language [VD09], as Spike does not currently support
heuristic parameter optimization directly.

The optimization strategy is implemented as a genetic algorithm [BSH17]| with the
help of the Python library geneticalgorithm [Sol13], which was slightly modified for the
purposes of the example. All script source code can be found in Appendix B.

137

5. USE CASES

The genetic algorithm [Hol75, Jon75] is a black-box optimization technique which
belongs to the class of random-based evolutionary algorithms. It is characterized by
three main features:

e population - is a set of solutions from which new solutions are to be generated;

e fitness - is associated with each solution which evaluates how close a given solution
is to the optimum solution of the given problem;

e variation - is a random process, which, based on a fitness value, performs random
variations on individual solutions in order to generate a new population.

Base on the feedback, provided by each run of the optimization strategy, a new
configuration of the model is determined. The newly determined model configuration is
combined with the following configuration template.

import: {
from: "./model/SIR-SPN.andl";
}

1

2

3

4

5 configuration: {
6

7 model: [[%s]];
8

9

simulation: {

10 name: "SIR";

11 type: continuous: {

12 solver:

13 BDF: {

14 semantic: "adapt";

15 iniStep: 0.1;

16 linSolver: "CVDense";

17 relTol: 1le-5;

18 absTol: 1.0e-10;

19 autoStepSize: false;

20 reductResultingODE: true;
21 checkNegativeVal: false;
22 outputNoiseVal: false;

23 }

24 }

25

26 interval: 0:100:1000;

27

28 export: {

29 places: [J1;

30 csv: {

31 sep: ";"

32 file: "simresults/" << name << "_"
33 << configuration.model
34 << ".csv'";

35 T

36 }

37}

38 }

138

5.3 Spike as a Backend Simulator for Parameter Optimization

The combination takes place in line 7, where the placeholder string (%s) is replaced by
the newly determined model configuration, e.g.:

1 inhab0: {
2 constants: {all: { k_infect_b: 0.577220; k_recover_b: 1.454898; } }
3 }

As in the previous example, the trace Recover_B from the generated data set (see
Figure 5.10, page 140) has been used as the reference time series in the fitness function.
The progress of the best performed experiment runs for two experiment set-ups is
presents in Figure 5.12. The main difference between those two experiments is the
size of the search space. In the first case (see Figure 5.12.(a), page 140), the search
space is set to k_infect b € (1.0e — 6,1.0e — 5) and k_recover_b € (1.0e — 3,1.0¢). In
the second case (see Figure 5.12.(b), page 140), the size of the search space is much
wider, and it is set to k_infect_b € (1.0e — 7,1.0) and k_recover_b € (1.0e — 7,1.0). In
both cases the genetic algorithm performed 20 iterations for the population of size 50.
The achieved accuracy for the case (a) is 0.0119032134008 and for (b) 3.104465461. The
experiment results are presented in Figure 5.13(a) and (b), which can be compared with
the reference data (c).

139

5. USE CASES

— fit

2.5

Fitness
-
w

1.0

0.5

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

40

30

Fitness

20

10

0.0 25 5.0 7.5 10.0 12,5 15.0 17.5
Iteration

Figure 5.12: Progress of optimization of two experiment set-ups: (a) - iteration =
20, population size = 50, mutation probability = 0.4, search space: k_infect.b €
(1.0e — 6,1.0e — 5), k_recover_b € (1.0e — 3,1.0e), FIT = 0.0119032134008 ;

(b) - iteration = 20, population size = 50, mutation probability = 0.6, search space:
kinfect b € (1.0e — 7,1.0), k_recover_b € (1.0e — 7,1.0), FIT = 3.104465461 .

140

5.3 Spike as a Backend Simulator for Parameter Optimization

= SusceptiblePopulation_B
= |nfected_B
== Recovered_B

(a
100000 -\
80000
(%)
C
9
S 60000
=
.
o
=
3
£ 40000
3
2
20000 ‘JI
0
0 200 400 600 800 1000
Time
() 100000
80000
%2}
C
g
S 60000
=
“
o
=
3
£ 40000
3
2
20000
0
0 200 400 600 800 1000
Time
(c)
100000
80000 -\
Q
S
2 60000
«“
o
C
[
Q
£ 40000
p=]
2
20000
0 ‘L
0 200 400 600 800 1000
Time

Figure 5.13: Simulation traces of the deterministic simulation of the SIR model in Figure 5.9;
(a) - FIT = 0.0119032134008, k_infect b = 4.7277170068 E — 06, k_recover_b = 0.009999231
and search space: k_infect_b € (1.0e — 6,1.0e — 5), k_recover_b € (1.0e — 3,1.0e) ;

(b) - FIT = 3.104465461, k_infect-b = 0.6702367369, k_recover_b = 0.0096678283 and
search space: k_infect_b € (1.0e — 7,1.0), k_recover_b € (1.0e — 7,1.0) ;

(¢) - the reference data trace, k_infect_b = 5.0e — 6, k_recover_b=1.0e — 2 .

141

5. USE CASES

5.4 Closing Remarks

The flexibility of SPC allows Spike to design and perform simulation experiments in
very efficient ways. The first example shows the power of scanning of model parameters
and simulation options. Through the branching of a configuration, Spike can perform a
set of simulation experiments in parallel. The second and third examples focus on the
stepwise simulation. Spike’s stepwise simulation feature allows designing simulation
experiments of adaptive models by adjusting dynamically the model parameters. The
forth example shows how to perform model parameter optimization by embedding Spike
in a third party application. All of these examples illustrate main features of Spike, but
certainly do not cover all use cases in which Spike can be used.

142

6

Conclusions and Outlook

6.1 Conclusions

Spike is an efficient tool for the reproducible execution of parallel simulation experiments
of biochemical reaction networks. The modular structure of Spike and the mechanism
of intermodule communication allows to easily extend Spike by new modules. The main
functionalities of Spike allow to import and export PN models in various formats. An
imported coloured model can be unfolded using IDD-based unfolding, which is integrated
in the internally developed dssd_util library used by Snoopy, Marcie and Spike. During
the work on Spike, the Boolean colour set and the elmeOf operator were introduced
into the IDD-based unfolding. The newly introduced colour set and operator increase
the expressive power of the colour annotations by simplifying coloured expressions. To
perform a simulation, Spike uses an internally developed simulation library; it is capable
to run three basic types of simulations: stochastic, deterministic and hybrid, where each
comes with several algorithms. Spike is supported by the scripting language (SPC),
which allows for designing reproducible simulation experiments, that can be executed in
parallel. Additionally, SPC allows the execution of a simulation in a stepwise manner.

The main goal of SPC is to efficiently support reproducible simulation experiments.
SPC has a human-readable format and allows configuring a model, a simulation and
observers. Additionally, it enables to define the export of simulation results. Through
the branching of configuration it is possible to set up the scanning of model parameters
and simulation options. The branches of a configuration are loosely coupled (they only
have in common a high-level /parent configuration) and can be executed in parallel. SPC
supports adaptive stepwise simulation, which allows for reconfiguring model parameters
based on the current state of a model and a simulation. All of this allows Spike to

efficiently perform reproducible experiments.

143

6. CONCLUSIONS AND OUTLOOK

6.2 Outlook

Spike and its configuration scripting language SPC can be improved in many ways.
Certain features are missing that should be addressed in future work.

e Full support of arrays - currently SPC supports only the declaration of arrays as
they are used only to set values of some configuration options. Accessing of array
elements will allow to reduce the number of declared variables and to collect and
organize data in many useful ways.

e Conditional loop blocks - condition loops allow certain parts of a program to
be run multiple times while a condition remains true. Support of a conditional
loop block in connection with arrays will be very handy. This will facilitate the
processing of data during stepwise simulation.

e Temporal logic - the temporal logic is focused on formulas that use temporal
operators to describe how static conditions change over the time. Support of the
temporal logic syntax will allow to conveniently express how to alter a model after
each simulation step, based on the current state of a model and a simulation.

e Model reduction - Spike allows for the basic reduction of a PN model. It is able
to structurally reduce a model by pruning clean siphons and constant places.
However, this basic reduction methods are insufficient. The growing amount of
experimental data and expressive power of the colour annotations leads to the
development of complex models. A complex model represented by PAC needs to be
unfolded before its simulation. After unfolding, the number of nodes can be much
larger than in its coloured counterpart. Reduction of a model may yield a more
optimized (in terms of size) model, provide insights into structural properties and
reduces a simulation overhead. The main challenge of a reduction is to preserve
the main three properties of a PA model: liveness, reversibility and boundedness.
The two simplest techniques that preserve the main three properties are pruning
of clean siphons and constant places.

e Model decomposition - decomposition of PA” model into basic subnets. Decom-
position can be done by network structure or through type, if the PN is hybrid.
The process of clustering should be aided through manual selection / specification
of cluster set as well as through an automatic / algorithm approach. The model
decomposition will allow for distributed simulation of the decomposed model. Such
functionality should speed up the simulation of large models - more research needs
to be done to get a clear answer.

e Distributed simulation - Spike is able to perform parallel executions of simulation
experiments on single host. Future work should consider implementation of dis-
tributed simulation, which can speed-up the execution of an experiment in the
following example cases:

144

6.3 Availability

(a) - a simulation experiment contains a set of exhaustive simulations - in this
case each simulation can be distributed over a network of computing peers,
where each peer performs a single simulation.

(b) - a parallel simulation of a decomposed model - in a such case each component
of the model is distributed over a network of computing peers, where each
peer performs a single, parallel, synchronized simulation for the received
model component.

e Parameter optimization - Optimization through a simulation can be used as a
search method [CM97] for the best candidates of input variables among all valid
alternatives at any system state. By adopting heuristic evaluation, it is possible to
reduce a search space without explicitly evaluating each possibility. Spike features
such as parameters scanning and parallel execution of configuration branches
make Spike suitable for this task. However, all these features are not sufficient
to perform parameter optimization. Future work should consider embedding the
optimization strategy directly into Spike, which will be a complementary feature
of parameter scanning. This will allow Spike to optimize a set of model parameters
through an embedded optimization strategy.

6.3 Availability

Spike is developed in C++ and available for Linux, Mac/OSX and Windows. Binaries
are statically linked and can be downloaded from Spike’s website https://www-dssz.
informatik.tu-cottbus.de/DSSZ/Software/Spike, which provides also documenta-
tion, installation instructions and a set of examples. The source code of Spike is available
in the GitHub repository: https://github.com/PetriNuts/spike under [GPLv3] li-
cence.

6.4 Acknowledgement

The author would like to gratefully acknowledge George Assaf !, David Gilbert 2 and
his team, Monika Heiner ! and Robert Walton 2 for their active contributions in beta
testing Spike.

!Brandenburg University of Technology Cottbus-Senftenberg
2Brunel University London
3University of Oxford

145

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike
https://github.com/PetriNuts/spike

References

[ACT+05]

[Bar18]

[BBD+16]

[BSH17]

[BSG+09]

[BW96]

[Boels]

[CH19]

[CM97]

[CTT+16]

[CTT+17]

Avronsi, A.; CaNcis, E.; TuriNicl, G.; VENTURA,
B. ; Huisinga, W.: Adaptive simulation of hy-
brid stochastic and deterministic models for bio-
chemical systems. In: ESAIM: Proc. 14 (2005),
pp. 1--13, cite: 29, 32

BArBA, L. A.: Terminologies for Reprodu-
cible Research. 2018. -- Available at ht-
tps://arxiv.org/abs/1802.03311, cite: 38

BREITWIESER, L.; BAUER, R.; MEcLIO, A. D.; Jo-
HARD, L.; KAISER, M.; MANCA, M.; MAZzZARA, M.;
RADEMAKERS, F. ; TaLaNov, M.: The biodynamo
project: Creating a platform for large-scale re-
producible biological simulations. In: arXiv pre-
print arXiv:1608.04967 (2016), cite: 41

Bozorg-HapDAD, O.; Sorci, M. ; LoAicica, H.:
Meta-heuristic and evolutionary algorithms for
engineering optimization. John Wiley & Sons,
2017, cite: 137

BRUN, Y.; SERUGENDO, G.; GACEK, C.; GIESE
KieNLE, H.; Litoru, M.; MULLER, H.; PEzzE
; SHAW, M.: Engineering self-adaptive systems
through feedback loops. In: Software engineer-
ing for self-adaptive systems. Springer, 2009, pp.
48--70, cite: 43, 44, 120

BoLLig, B.; WEGENER, I.: Improving the variable
ordering of OBDDs is NP-complete. In: IEEE
Transactions on computers 45 (1996), Nr. 9, pp.
993--1002, cite: 90

C. BOETTIGER: An introduction to Docker for re-
producible research. In: ACM SIGOPS Operat-
ing Systems Review 49 (2015), Nr. 1, pp. 71--79,
cite: 41

CHODAK, J.; HEINER, M.: Spike -- Reprodu-
cible Simulation Experiments with Configura-
tion File Branching. In: BorTOLUSSI, Luca (Eds.);
SANGUINETTI, Guido (Eds.): Computational Meth-
ods in Systems Biology Volume 11773. Cham:
Springer, LNCS, 2019, pp. 315--321, cite: 2, 77,
79

CARSON, Y.; MARIA, A.: Simulation optimization:
methods and applications. In: Proceedings of
the 29th conference on Winter simulation IEEE
Computer Society, 1997, pp. 118--126, cite: 106,
133, 145

CARDELLI, L.; TRIBASTONE, M.; TSCHAIKOWSKI, M. ;
VANDIN, A.: Symbolic computation of differen-
tial equivalences. In: ACM SIGPLAN Notices
Volume 51 ACM, 2016, pp. 137--150, cite: 34

CARDELLI, L.; TRIBASTONE, M.; TSCHAIKOWSKI, M. ;
VANDIN, A.: ERODE: a tool for the evaluation
and reduction of ordinary differential equations.
In: International Conference on Tools and Al-
gorithms for the Construction and Analysis of
Systems Springer, 2017, pp. 310--328, cite: 34,
89

147

[CWS85]

[CY19]

[DGOS]

[DHM+09]

[DTT+16)

[ECMA-404]

[EU14]

[GBOO]

[GCP+06]

[GHLOT)

(Gil76]

(Gil77]

(Gilo1]

CARDELLI, L.; WEGNER, P.: On Understanding
Types, Data Abstraction, and Polymorphism.
In: Computing Survey 17 (1985), Nr. 4, pp. 471-
-522, cite: 14

CANON, R.S.; YOUNGE, A.: A case for port-
ability and reproducibility of HPC containers.
In: 2019 IEEE/ACM International Workshop on
Containers and New Orchestration Paradigms for
Isolated Environments in HPC (CANOPIE-HPC)
IEEE, 2019, pp. 49--54, cite: 42

DONALDSON, R.; GILBERT, D.: A Model Checking
Approach to the Parameter Estimation of Bio-
chemical Pathways. In: M. HEINER . A.M. UHR-
MACHER (Eds.): Computational Methods in Sys-
tems Biology. Berlin, Heidelberg: Springer Ber-
lin Heidelberg, 2008, pp. 269--287, cite: 137

DipIER, F.; HENZINGER, T. A.; MATEEscu, M. ;
‘WoLF, V.: Fast adaptive uniformization of the
chemical master equation. In: 2009 Interna-
tional Workshop on High Performance Computa-
tional Systems Biology IEEE, 2009, pp. 118--127,
cite: 81

DRAWERT, B.; TROGDON, M.; TOOR, S.; PETZOLD,
L. ; HELLANDER, A.: Molns: A cloud platform for
interactive, reproducible, and scalable spatial
stochastic computational experiments in sys-
tems biology using pyurdme. In: SIAM Journal
on Scientific Computing 38 (2016), Nr. 3, pp.
C179--C202, cite: 42

ECMA 2017 the JSON Data Inter-
change Syntax. http://www.ecma-
international.org/publications/files/ECMA-
ST/ECMA-404.pdf, cite: 48

EwALD, R.; UHRMACHER, A.M.: SESSL: A
Domain-Specific Language for Simulation Ex-
periments. In: ACM Trans. Model. Comput.
Simul. 24 (2014), Nr. 2. -- ISSN 1049--3301,
cite: 40

GIBSON, M.; Bruck, J.: Exact stochastic simula-
tion of chemical systems with many species and
many channels. In: J. Phys. Chem. 105 (2000),
pp. 1876 -- 89, cite: 29

GRIFFITH, M.; CourRTNEY, T.; Peccoup, J. ;
SANDERs, W.: Dynamic partitioning for hybrid
simulation of the bistable HIV-1 transactivation
network. In: Bioinformatics 22 (2006), Nr. 22,
pp. 2782--2789, cite: 32

GILBERT, D.; HEINER, M. ; LEHRACK, S.: A uni-
fying framework for modelling and analysing
biochemical pathways using Petri nets. In:
CALDER, Muffy (Eds.); GILMORE, Stephen (Eds.):
Computational Methods in Systems Biology, Lec-
ture Notes in Computer Science Volume 4695.
Springer Berlin / Heidelberg, 2007, pp. 200--
216, cite: 1

GILLESPIE, D.: A general method for numeric-
ally simulating the stochastic time evolution of
coupled chemical reactions. In: J. Comput. Phys.
22 (1976), Nr. 4, pp. 403--434, cite: 25

GILLESPIE, D.: Exact stochastic simulation of
coupled chemical reactions. In: J. Phys. Chem.
81 (1977), Nr. 25, pp. 2340--2361, cite: 25, 81

GILLESPIE, D.: Approximate accelerated
stochastic simulation of chemically reacting
system. In: J. Chem. Phys. 115 (2001), pp.
1716--1733, cite: 29, 81

REFERENCES

[Gil07]

[GK10]

[GL79]

[GN00]

[GPLv3]

[HBG~+05]

[Her13]

[HH12]

[HH16]

[HH17)

[HH18]

[HHL+12]

[Hil17]

GILLESPIE, D.: Stochastic simulation of chemical
kinetics. In: Annu Rev Phys Chem. 58 (2007),
Nr. 1, pp. 35--55, cite: 29, 32

GRIFFIN, J.D.; KoLpa, T.G.: Asynchronous paral-
lel hybrid optimization combining DIRECT and
GSS. In: Optimization Methods and Software 25
(2010), Nr. 5, pp. 797--817, cite: 137

GENRICH, H.J; LAUTENBACH, K.: The ana-
lysis of distributed systems by means of
predicate/transition-nets. In: Semantics of Con-
current Computation. Springer, 1979, pp. 123--
146, cite: 14

GANSNER, E.; NORTH, S.: An open graph visualiz-
ation system and its applications to software en-
gineering. In: Software: practice and experience
30 (2000), Nr. 11, pp. 1203--1233, cite: 103

GNU General Public License. Version 3. Free
Software Foundation. Available at http://www.
gnu.org/licenses/gpl.html, cite: 145

HINDMARSH, A.; BROwWN, P.; GranT, K.; LEE, S.;
SERBAN, R.; SHUMAKER, D. ; WoobpwaARrD, C.:
SUNDIALS: Suite of Nonlinear and Differen-
tial/Algebraic Equation Solvers. In: ACM
Trans. Math. Softw. 31 (2005), pp. 363--396, cite:
81, 82

HERAJY, M.: Computational Steering of Multi-
Scale Biochemical Networks, BTU Cottbus, Dep.
of CS, PhD thesis, January 2013, cite: 12, 22,
25, 33, 34

HERAJY, M.; HEINER, M.: Hybrid Representation
and Simulation of Stiff Biochemical Networks.
In: J. Nonlinear Analysis: Hybrid Systems 6
(2012), November, Nr. 4, pp. 942--959, cite: 13,
82

HERAJY, M.; HEINER, M.: Accelerated Simulation
of Hybrid Biological Models with Quasi-disjoint
Deterministic and Stochastic Subnets. In: E CIN-
QUEMANI, A D. (Eds.): Proc. 5th Int. Workshop
on Hybrid Systems Biology (HSB 2016) Volume
9957, Springer, LNBI, October 2016, pp. 20--38,
cite: 82

HERAJY, M.; HEINER, M.: Adaptive and Bio-
semantics of Continuous Petri Nets: Choosing
the Appropriate Interpretation. In: Fundamenta
Informaticae 160 (2018), Nr. 1-2, pp. 53--80,
cite: 31, 34

HEerAJY, M.; HEINER, M.: An Improved Simu-
lation of Hybrid Biological Models with Many
Stochastic Events and Quasi-Disjoint Subnets.
In: M. RABE, A. JuaN, N. MUSTAFEE, A. SKOOGH,
S. JaIN, B. JonanssoN (Eds.): Proceedings of
the 2018 Winter Simulation Conference (WSC
2018), Gothenburg, Sweden, IEEE, December
2018 (978-1-5386-6572-5/18). -- WSC 2018,

December 9-12, 2018, pp. 1346--1357, cite: 13,
82, 116
HEINER, M.; HEraJY, M.; Liu, F.; RoHur, C.

SCHWARICK, M.: Snoopy -- A Unifying Petri Net
Tool. In: ATPN 2012, Springer, LNCS 7347,
2012, pp. 398--407, cite: 2, 79, 82

HiLL, D.: Numerical Reproducibility of Paral-
lel and Distributed Stochastic Simulation Us-
ing High-Performance Computing. In: Compu-
tational Frameworks. Elsevier, 2017, pp. 95--109,
cite: 38

148

[HLM14]

[HLR+17]

[HLR+18]

[HNW93]

[Hol75]

[HRO02]

[HRS13]

[HRS+10]

[HSG+06]

[HSW15]

[Hucl5]

[HW96]

[Jav92]

[Jen92]

Harko, T.; Loo, F. S. N. ; Mak, M. K.: Ex-
act analytical solutions of the Susceptible In-
fected Recovered (SIR) epidemic model and
of the SIR model with equal death and birth
rates. In: arXiv e-prints (2014), Maérz, pp.
arXiv:1403.2160, cite: 9

Herajy, M.; L, F.; Rour, C. ; HEINER, M.:
Snoopy’s Hybrid Simulator: a Tool to Construct
and Simulate Hybrid Biological Models. In:
BMC Systems Biology (2017). -- published: July
28, 2017, cite: 81

HErAJY, M.; Liu, F.; RoHR, C. ; HEINER, M.: Col-
oured Hybrid Petri Nets: an Adaptable Mod-
elling Approach for Multi-scale Biological Net-
works. In: Computational Biology and Chemistry
76 (2018), pp. 87--100, cite: 17

HAIRER, E.; NORSETT, S. ; WANNER, G.: Springer
Series in Comput. Mathematics. Volume 8: Solv-
ing ordinary differential equations I: nomnstiff
problems. Springer-Verlag, 1993, cite: 31

Hovranp, J.H. Adaptation in Natural and Artifi-
cial Systems. 1975, cite: 138

HASELTINE, E.; RAWLINGS, J.: Approximate sim-
ulation of coupled fast and slow reactions for
stochastic chemical kinetics. In: J. Chem. Phys.
117 (2002), Nr. 15, pp. 6959--6969, cite: 29, 32,
82

HEINER, M.; ROHR, C. ; SCHWARICK, M.: MARCIE -
Model checking And Reachability analysis done
effiCIEntly. In: Corom, JM (Eds.); DESEL, J
(Eds.): Proc. PETRI NETS 2013 Volume 7927,
Springer, LNCS, June 2013, pp. 389--399, cite:
2, 35, 37, 79

HEINER, M.; ROHR, C.; SCHWARICK, M. ; STREIF,
S.: A Comparative Study of Stochastic Analysis
Techniques. In: Proc. 8th International Confer-
ence on Computational Methods in Systems Bio-
logy (CMSB 2010), ACM digital library, Septem-
ber 2010, pp. 96--106, cite: 81

Hoors, S.; SAHLE, S.; GAUGES, R.; LEE, C.; PAHLE,
J.; Smmus, N.; SINGHAL, M.; Xu, L.; MENDES, P. ;
KUMMER, U.: COPASI--a complex pathway sim-
ulator. In: Bioinformatics 22 (2006), Nr. 24, pp.
3067--3074, cite: 2

HEINER, M.; SCHWARICK, M. ; WEGENER, J.:
Charlie -- An Extensible Petri Net Analysis
Tool. In: DEVILLERS, Raymond (Eds.); VALMARI,
Antti (Eds.): Application and Theory of Petri
Nets and Concurrency Volume 9115. Cham:
Springer, LNCS, 2015, pp. 200--211, cite: 2, 79

Hucka, M.: Systems biology markup language
(SBML). In: Encyclopedia of Computational
Neuroscience (2015), pp. 2943--2944, cite: 40,
88

HAIRER, E.; WANNER, G.: Springer Series in
Comput. Mathematics. Volume 14: Solving ordin-
ary differential equations II: stiff and differential-
algebraic problems. Springer-Verlag, 1996, cite:
31

JAVOR, A.: Demon controlled simulation. In:
Mathematics and Computers in Simulation 34
(1992), Nr. 3-4, pp. 283--296, cite: 43

JENSEN, K.: Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. Vol 1, Ba-
sic Concepts. Berlin Heidelberg: Springer, 1992,
cite: 18

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

REFERENCES

[JKWO7]

[Jon75]

[JPS93]

[Kan12]

[KCCO05]

[KCR+09)

[KH96]

[KKV04]

[KLPO6]

[KMS04]

[Koh21]

[KR12]

[KRV15]

[Kur72]

[Kur81]

JENSEN, K.; KRISTENSEN, L. M. ; WELLs, L. M.: Col-
oured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. In: In-
ternational Journal on Software Tools for Tech-
nology Transfer 9 (2007), Nr. 3/4, pp. 213--254,
cite: 16

Jong, K. A. D.: An Analysis of the Behavior of a
Class of Genetic Adaptative Systems, PhD thesis,
University of Michigan, PhD thesis, 1975, cite:
138

JoNEs, D. R.; PERTTUNEN, C. D. ; STUCKMAN, B. E.:
Lipschitzian optimization without the Lipschitz
constant. In: Journal of optimization Theory and
Applications 79 (1993), Nr. 1, pp. 157--181, cite:
137

KANG, P.: Modular implementation of dynamic
algorithm switching in parallel simulations. In:
Cluster Computing 15 (2012), Nr. 3, pp. 321--
332, cite: 44, 120

Kurkowski, S.; Camp, T. ; COLAGROSSO, M.:
MANET simulation studies: the incredibles. In:
ACM SIGMOBILE Mobile Computing and Com-
munications Review 9 (2005), Nr. 4, pp. 50--61,
cite: 38

Kana, P.; Cao, Y.; RAMAKRISHNAN, N.; RIBBENS, C.
; VARADARAJAN, S.: Modular implementation of
adaptive decisions in stochastic simulations. In:
Proceedings of the 2009 ACM symposium on Ap-
plied Computing, 2009, pp. 995--1001, cite: 44,
120

KeLuing, C.; HoMMEL, G.: Rare event simula-
tion with an adaptive” RESTART” method in
a Petri net modeling environment. In: Proceed-
ings of the 4th International Workshop on Par-
allel and Distributed Real-Time Systems IEEE,
1996, pp. 229--234, cite: 44

KrAauUsg, F.; KIND, C. ; VOIGTSBERGER, J.: Adapt-
ive modelling and simulation of product devel-
opment processes. In: CIRP Annals 53 (2004),
Nr. 1, pp. 135--138, cite: 44

KorpoN, F.; LINARD, A. ; PAviOT-ADET, E.: Op-
timized colored nets unfolding. In: International
Conference on Formal Techniques for Networked
and Distributed Systems Springer, 2006, pp. 339-
-355, cite: 35

KIEHL, T.; MATTHEYSES, R. ; SIMMONSs, M.: Hybrid
simulation of cellular behavior. In: Bioinformat-
ics 20 (2004), pp. 316--322. -- ISSN 1367--4803,
cite: 32

KoHrLHOFF, C.: Boost.asto. 2021. -- Avail-
able at https://www.boost.org/doc/libs/1_76_0/
doc/html/boost_asio.html, cite: 84

KOSTER, J.; RAHMANN, S.: Snakemake - a scalable
bioinformatics workflow engine. In: Bioinform-
atics 28 (2012), Nr. 19, pp. 2520--2522, cite: 42

KrupiTZER, C.; RoTH, F.; VANSYCKEL, S.; SCHIELE,
G. ; BECKER, C.: A survey on engineering ap-
proaches for self-adaptive systems. In: Pervasive
and Mobile Computing 17 (2015), pp. 184--206,
cite: 43

Kurtz, T.G.: The relationship between
stochastic and deterministic models for chem-
ical reactions. In: The Journal of Chemical Phys-
ics 57 (1972), Nr. 7, pp. 2976--2978, cite: 25

KuRrT, J.: Coloured Petri nets and the invariant-
method. In: Theoretical computer science 14
(1981), Nr. 3, pp. 317--336, cite: 14

149

[KW85]

[KWD-04]

[LCP408]

[LHG19]

[LHR12]

[Liul2]

[LR95]

[MA99]

[MCK+18]

[Mei19]

[MH91]

[MPT16]

[MRH12]

[MRU11]

Kur, G.; WAy, E.: Reconstructability analysis:
aims, results, open problems. In: Systems Re-
search 2 (1985), Nr. 2, pp. 141--163, cite: 43

KUMMER, O.; WIENBERG, F.; DUVIGNEAU, M.; J;
SCHUMACHER; KOHLER, M.; MoLpT, D.; ROLKE, H. ;
VALK, R.: An Extensible Editor and Simulation
Engine for Petri Nets: Renew. In: ATPN 2004,
Springer, LNCS 3099, 2004, pp. 484--493, cite:
2

L1, H.; Cao, Y.; PETZOLD, L. ; GILLESPIE, D.: Al-
gorithms and software for stochastic simulation
of biochemical reacting systems. In: Biotechnol.
Progr. 24 (2008), Nr. 1, pp. 56--61, cite: 29

Liu, F.; HEINER, M. ; GILBERT, D.: Coloured Petri
nets for multilevel, multiscale, and multidimen-
sional modelling of biological systems. In: Brief-
ings in Bioinformatics 20 (2019), Nr. 3, pp. 877-
-886. -- Published: 03 November 2017, cite: 14

Liu, F.; HEINER, M. ; RoHr, C.: Manual for
Colored Petri Nets in Snoopy / Brandenburg
University of Technology Cottbus, Department
of Computer Science. 2012 (02-12). -- Tech-
nical Report, cite: 40

Liu, F.: Colored Petri Nets for Systems Biology,
BTU Cottbus, Dep. of CS, PhD thesis, January
2012, cite: 1, 14, 17, 20, 21

LAUTENBACH, K.; RIDDER, H.: A Completion
of the S-invariance Technique by Means of
Fixed Point Algorithms / Universitat Koblenz-
Landau. 1995 (10--95). -- Technical Report,
cite: 89

McADpAMS, H.; ARKIN, A.: It’s a noisy business!
Genetic regulation at the nanomolar scale. In:
Trends in Genetics 15 (1999), Nr. 2, pp. 65 --
69, cite: 25, 31

MEeDLEY, J.K; Cnor, K.; KONiG, M.; SMmiTH, L.; Gu,
S.; HELLERSTEIN, J.; SEALFON, S.C. ; SAURO, H.M.:
Tellurium notebooksan environment for repro-
ducible dynamical modeling in systems biology.
In: PLoS computational biology 14 (2018), Nr. 6,
pp. €1006220, cite: 42

MEINSMA, G.: Dimensional and scaling analysis.
In: SIAM review 61 (2019), Nr. 1, pp. 159--184,
cite: 24

MoHAMED, G.; HERMAN, T.: Adaptive program-
ming. In: IEEE Transactions on Software En-
gineering 17 (1991), Nr. 9, pp. 911--921, cite:
43

MARCHETTI, L.; Priami, C. ; THANH, V.H.: HRSSA-
-Efficient hybrid stochastic simulation for spa-
tially homogeneous biochemical reaction net-
works. In: Journal of Computational Physics 317
(2016), pp. 301--317, cite: 82

MARWAN, W.; RoHR, C. ; HEINER, M.: Petri nets
in Snoopy: A unifying framework for the graph-
ical display, computational modelling, and sim-
ulation of bacterial regulatory networks. In:
HELDEN, Jv (Eds.); ToussaIiNT, A (Eds.) ; THIEF-
FrRY, D (Eds.): Methods in Molecular Biology --
Bacterial Molecular Networks Volume 804. Hu-
mana Press, 2012, Chapter 21, pp. 409--437,
cite: 12

Mavus, C.; RYBACKI, S. ; UHRMACHER, A.M.: Rule-
based multi-level modeling of cell biological sys-
tems. In: BMC systems biology 5 (2011), Nr. 1,
pp. 1--20, cite: 40

https://www.boost.org/doc/libs/1_76_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_asio.html

REFERENCES

[MSD+06]

[Mur89)

[NAP19]

[OSW69]

[Pah09]

[Pet62]

[PNML]

[PJC14]

[VDO09]

[RFC7159]

[RK0S]

[Roh17]

[Roh18]

[Scho8]

[Sch14]

[SFH99]

[SFRO3]

[SKO05]

McInTosH, E.; ScamipT, F.; DE DINECHIN, F. et al.:
Massive tracking on heterogeneous platforms.
In: 9th International Computational Accelerator
Physics Conference, 2006, cite: 41

MURATA, T.: Petri nets: Properties, analysis and
applications. In: Proceedings of the IEEE 77
(1989), Nr. 4, pp. 541--580, cite: 1, 34

NATIONAL ACADEMIES OF SCIENCES, ENGINEERING,
AND MEDICINE: Reproducibility and Replicabil-
ity in Science. Washington, DC: The National
Academies Press, 2019, cite: 38

OPPENHEIM, L.; SHULER, K. ; WEISs, G.: Stochastic
and deterministic formulation of chemical rate
equations. In: The Journal of Chemical Physics
50 (1969), Nr. 1, pp. 460--466, cite: 25

PaAHLE, J.: Biochemical simulations: stochastic,
approximate stochastic and hybrid approaches.
In: Brief Bioinform 10 (2009), Nr. 1, pp. 53--64,
cite: 25, 29, 31, 32

PeTRI, C.A.: Kommunikation mit Automaten,
Universitt Hamburg, PhD thesis, 1962, cite: 7

PETRI NET MARKUP LANGUAGE (PNML): Systems
and software engineering -- High-level Petri nets
-- Part 2: Transfer format. 2009. -- ISO/IEC
15909--2:2011, cite: 88

POLASEK, P.; JANOUSEK, V. ; CESKA, M.: Petri Net
Simulation as a Service. In: PNSE@ Petri Nets,
2014, pp. 353--362, cite: 2

RossuM, G. V.; DRAKE, F.L.: Python 3 Reference
Manual. Scotts Valley, CA: CreateSpace, 2009,
cite: 137

Internet Engineering Task Force (IETF)
2018 The JavaScript Object Notation
(JSON) Data Interchange Format. ht-

tps://tools.ietf.org/html/rfc7159, cite: 48

Rice, M.; KULHARI, S.: A survey of static vari-
able ordering heuristics for efficient BDD/MDD
construction. In: Ungversity of California, Tech.
Rep (2008), pp. 130, cite: 90

ROHR, C.: Simulative analysis of coloured exten-
ded stochastic Petri nets, BTU Cottbus, Dep. of
CS, PhD thesis, January 2017, cite: 10, 22, 25,
26, 81

Ronr, C.: Discrete-Time Leap Method For
Stochastic Simulation. In: Fundamenta Inform-
aticae 160 (2018), Nr. 1-2, pp. 181--198. -- ac-
cepted for publication: May, 16 2017, cite: 81

ScuuLz, K.: An Extension of the Snoopy Software
to Process and Manage Petri Net Animations (in
German), BTU Cottbus, Dep. of CS, Bachelor
thesis, November 2008, cite: 2, 79

SCHWARICK, M.: Symbolic on-the-fly analysis of
stochastic Petri nets, BTU Cottbus, Dep. of CS,
PhD thesis, 2014, cite: 96

STEINFELD, J.; FrRaANcIsco, J. ; Hase, W.: Chem-
ical kinetics and dynamics. Prentice Hall Upper
Saddle River, NJ, 1999, cite: 23

STEVENS, W.; FENNER, B. ; RUDOFF, A.: Uniz Net-
work Programming: The Sockets Networking API.
Volume Volume 1. 3rd Edition. Addison-Wesley
Professional, 2003, cite: 83

Savis, H.; KazNEssis, Y.: Accurate hybrid
stochastic simulation of a system of coupled
chemical or biochemical reactions. In: J. Chem.
Phys 122 (2005), Nr. 5, cite: 32

150

[SNT+13]

[Sol13]

[SRH16]

[SRF+20]

[ST11]

[Val78]

[VV+91]

[VPT+02]

[WAB+11a]

[WAB+11b]

[WHU17]

[WSC+19]

[WUK~+04]

[ZDS14]

SANDVE, G.K.; NEKRUTENKO, A.; TAYLOR, J. ;
Hovig, E.: Ten simple rules for reproducible
computational research. In: PLoS Comput Biol
9 (2013), Nr. 10, pp. 1003285, cite: 38, 39

Sorcl, R.M. geneticalgorithm. https://github.
com/rmsolgi/geneticalgorithm. 2020, cite: 137

SCHWARICK, M.; ROHR, C. ; HEINER, M.: MARCIE
Manual / Brandenburg University of Techno-
logy Cottbus, Department of Computer Science.
2016 (02-16). -- Technical Report, cite: 40

SCHWARICK, M.; Ronr, C.; Liu, F.; Assar, G.;
CHODAK, J. ; HEINER, M.: Efficient Unfolding
of Coloured Petri Nets Using Interval Decision
Diagrams. In: International Conference on Ap-
plications and Theory of Petri Nets and Concur-
rency Springer, 2020, pp. 324--344, cite: 89, 91

SCHWARICK, M.; TOVCHIGRECHKO, A.: IDD-based
model validation of biochemical networks. In:
Theoretical Computer Science 412 (2011), Nr.
26, pp. 2884--2908, cite: 96

VALK, R.: Self-modifying nets, a natural ex-
tension of Petri nets. In: Proceedings of the
Fifth Colloquium on Awutomata, Languages and
Programming. London, UK,: Springer-Verlag,
1978, pp. 464--476, cite: 10

VILLEN-ALTAMIRANO, M.; VILLEN-ALTAMIRANO, J.
et al.: RESTART: A method for accelerating
rare event simulations. In: Queueing, perform-
ance and Control in ATM (1991), pp. 71--76,
cite: 44

VETTERLING, T. W.; Press, W. H.; TEUKOLSKY,
S. A.; FLANNERY, B. P. ; BriaN, P.: Numerical
Recipes Ezample Book (C++): The Art of Sci-
entific Computing. Cambridge University Press,
2002, cite: 81

WALTEMATH, D.; Apams, R.; BEArD, D. A
BERGMANN, F.T.; BHALLA, U.S.; BRITTEN, R.; RAN-
DALL; CHELLIAH; VIJAYALAKSHMI; COOLING; T, Mi-
chael; COOPER; JONATHAN; CRAMPIN; J, Edmund
et al.: Minimum information about a simulation
experiment (MIASE). In: PLoS computational
biology 7 (2011), Nr. 4, pp. €1001122, cite: 38

WALTEMATH, D.; Apawms, R.; BErRaMANN, F.T;
Hucka, M.; Korpakov, F.; MILLER, A.K; MORARU,
I.I; NICKERSON, D.; SAHLE, S.; SNOEP, J.L. et al.:
Reproducible computational biology experi-
ments with SED-ML-the simulation experiment
description markup language. In: BMC systems
biology 5 (2011), Nr. 1, pp. 198, cite: 40

WARNKE, T.; HELMS, T. ; UHRMACHER, A.M.: Re-
producible and flexible simulation experiments
with ML-Rules and SESSL. In: Bioinformatics
34 (2017), 11, Nr. 8, pp. 1424--1427. -- ISSN
1367--4803, cite: 40

WEBER, L.; SAELENS, W.; CANNOODT, R.; SONESON,
C.; HAPFELMEIER, A.; GARDNER, P.; BOULESTEIX,
A.; SAEYS, Y. ; ROBINSON, M.: Essential guidelines
for computational method benchmarking. In:
Genome biology 20 (2019), Nr. 1, pp. 1--12, cite:
107

WOLKENHAUER, O.; ULLAH, M.; KoLcu, W. ; CHo,
K.: Modeling and simulation of intracellular dy-
namics: choosing an appropriate framework. In:
IEEE Trans. Nanobiosci. 3 (2004), Nr. 3, pp.
200--207, cite: 29

ZUNKE, S.; DSouza, V.: Json vs xml: A com-
parative performance analysis of data exchange
formats. In: Int J Comput Sci Netw 3 (2014),
Nr. 4, pp. 257--261, cite: 49

https://github.com/rmsolgi/geneticalgorithm
https://github.com/rmsolgi/geneticalgorithm

Appendices

151

Appendix A

Grammar of Configuration Script

>

1 TT

] [H] |’| h |

—

i

.1 Graphical notations

definition entry point;

parallel entry point - states that all entry points/paths
must be chosen;

definition end point;

path - path to proceed;

split path - path splitting states, only one direction can be
chosen;

join paths - combined paths become one;
one occurrence of an entity;

ZEero or one OCCurrence;

one or many OcCCurrences;

Z€ero or many occurrences;

SPC properties - - properties used to define/configure an
experiment;

grammar definitions

153

A. GRAMMAR OF CONFIGURATION SCRIPT

SPC basic property - represents a property that does not
associate any other properties;

SPC complex property - represents a property that asso-
ciate one or more basic properties;

grammar literal - represents a constant/fixed value;

>

]

O grammar operator - represents an operator;
O

]

grammar rule - represents a meta variable/nonterminal
symbol;

A.2 Main SPC Objects

SPC

net type

configuration

l— —| simulation configuration

—J| model configuration

154

A.3 Basic definitions

model configuration

— Ll
L L

observers

simulation configuration

|— = simulator options

onStep

]

A.3 Basic definitions

value

| J bject }

O,

access

string

any character except "

A. GRAMMAR OF CONFIGURATION SCRIPT

boolean value

L Y]
I {(true) |
declaration -
oY=\ Yo
identifier
letter or _ digit
assign

[access (D expression =)

object

access

—O—

array
0 .. D
0
range

number fm={: Y=l number [=(:)=\ number

A.4 Expressions

comparision

concatenation

expression

boolean expression

arithmetic expression

expression

156

A.4 Expressions

arithmetic expression

access

arithmetic expression

0]0J0]0,

OO®QOO

comparision
boolean expression access

false

i

(_true) -

boolean expression

comparison

expression

concatenation

157

A. GRAMMAR OF CONFIGURATION SCRIPT

A.5 Conditional Block

| gy |
—

conditional block

|—@—®—| boolean expression |—®—®—(—J conditional block T@

| ey |
—=
(D conditional block {assign]

boolean expression |—®—®—(—J conditional block

A.6 onStep

onstep

[=
I . | conditional block s E—l

| ppparye|
| assign |

do

|—d -(—A—| conditional block I—j- h—l

158

Appendix B

Source Code: Heuristic Method
of Parameter Optimization

B.1 SIR Model In ANDL Format: SIR-SPN.andl

1 spn [SIR-SPN]

2 {

3

4 3

5 double k_infect_a = 5.0e-5;

6 double k_infect_b = 5.0e-6;

7 double k_recover_a = 1.0e-1;

8 double k_recover_b = 1.0e-2;

9

10

11 8

12 Infected_A = 1;

13 Infected_B = 1;

14 Recovered_A = 0;

15 Recovered_B = 0;

16 SusceptiblePopulation_A = 50000;
17 SusceptiblePopulation_B = 100000;
18

19

20

21

22 8

23 : [Infected_A + 2] & [SusceptiblePopulation_A - 1] & [Infected_A - 1]
24 : MassAction(k_infect_a)

25 3

26

27 3

28 : [Infected_B + 2] & [SusceptiblePopulation_B - 1] & [Infected_B - 1]
29 : MassAction(k_infect_b)

30 ;

31

32 8

33 : [Recovered_A + 1] & [Infected_A - 1]
34 : MassAction(k_recover_a)

35 H

36

37 8

38 : [Recovered_B + 1] & [Infected_B - 1]
39 : MassAction(k_recover_b)

40 3

41 }

159

1
2

B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

B.2 SPC Configuration Template: SIR-CPN-spc.tmp

import: {
from: "./model/SIR-SPN.andl";

configuration: {
model: [[%s]];

simulation: {
name: "SIR";
type: continuous: {
solver:
BDF: {
semantic: "adapt";
iniStep: 0.1;
linSolver: "CVDense";
relTol: le-5;
absTol: 1.0e-10;
autoStepSize: false;
reductResultingODE: true;
checkNegativeVal: false;
outputNoiseVal: false;
}
}

interval: 0:100:1000;

export: {
places: []1;
csv: {
sep:
file: "simresults/" << name << "_"
<< configuration.model
<< ".csv";

n.n,
EIY

160

© 0 N O U e W N

GO Ot 0T O OU O O R R R R R R B s i W0 W W W W0 W W W W W N NNNNNNNNN R R e e e
N O U W RO © 000N U R WN RO © N0 RWN RO O X0 E WN RO © 0NN O R WN RO

B.3 Experiment Set-up in Python: optimization.py

B.3 Experiment Set-up in Python: optimization.py

Copyright 2021 Jacek Chodak

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and assoctated documentation files (the "Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

3
import numpy as np

from geneticalgorithmjch import geneticalgorithm as ga

import subprocess

import csv

import time

import matplotlib.pyplot as plt

B
#

CSV

#

def readCSV(filename):

tsB = []
tsR = []
try:
with open(filename) as csvDataFile:
csvReader = csv.DictReader(csvDataFile, delimiter = ";")

for row in csvReader:
tsB.append (row["Infected_B"])
tsR.append (row["Recovered_B"])
except FileNotFoundError:
print("open: :FileNotFoundError: 7s" 7, (filename))

tdB = np.array(tsB).astype(np.float)
tdR = np.array(tsR).astype(np.float)

return tdB, tdR

161

B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

58 ##

59 #

60 # Fitnes function

61 #

62

63 def £(X):

64

65 strTemplatePopulationInhabitant = "inhabld: {\n"\

66 "constants: { all: {k_infect_b: %f; k_recover_b: %f;}}\n"\
67 n }"

68

69

70 ildx = 0O

71 strPopulationInhabitant = ""

72

73 strPopulationInhabitant += strTemplatePopulationInhabitant\
74 % (ildx,

75 x[ol,

76 X[1]

77)

78

79 # read conf template

80 with open("SIR-CPN-spc.tmp", "r") as templateFile:

81 strTemplateConf = templateFile.read()#.replace(’\n’, ’’)
82

83 strConf = strTemplateConf 7 (strPopulationInhabitant)

84 strSpikeCmd = "conf -s=’%s’ exe -p=4 -process=1"

85 ## remove whitespece

86 ## (space, tab, newline, and so on) -> sentence = ’’.join(sentence.split())
87 strSpikeCmd = strSpikeCmd 7 (’’.join(strConf.split()))

88

89 returnCode = subprocess.call(["./spike-release", strSpikeCmd],
90 stdout=None, stderr=None)

91 print ("SPIKE:", returnCode)

92

93 ## Compare

94 strFile = "./simresults/SIR_inhab’d.csv" % (iIdx)

95 print(strFile)

96 tdInfec, tdRecov = readCSV(strFile)

97 dFit = 0.0;

98 dFitMax = 0;

99

100 ## Percentage Difference

101 for iIdx in range(len(m_tdInfec)):

102 if m_tdInfec[iIdx] + tdInfec[iIdx] > O:

103 dFit = dFit + abs(m_tdInfec[iIdx] - tdInfec[iIdx]) / \
104 (m_tdInfec[iIdx] + tdInfec[iIdx]) / 2 * 100
105

106 dFit /= len(m_tdInfec);

107

108 print("dFit: ", dFit)

109 print("k_infect: ", X[0])

110 print("k_recover: ", X[1])

111

112 return dFit

162

B.3 Experiment Set-up in Python: optimization.py

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156

158
159
160
161
162
163
164
165
166
167
168
169
170

#
Report progress callback function

#

def onProgress(genalg):

print (’\r The best solution found:\n %s’), (genalg.best_variable))
print (°’\n\n Objective function:\n %s\n’ 7 (genalg.best_function))

re=np.array(genalg.report)
rePop = np.array(genalg.reportPop)

plt.cla(Q)
plt.plot(re)

plt.xlabel("Iteration:

%s" % genalg.counter)

plt.ylabel("Objective function: 7s" 7, genalg.best_function)
plt.title("Genetic Algorithm: %s" 7, genalg.best_variable)

#plt.show()
plt.draw()
plt.pause(0.0001)

with open("progress.csv", "w", newline = "\n") as file:
#with open('"progress-Js.csv") time.time(), "w", newline = "\n") as file:
csvwriter = csv.writer(file, delimiter = ";")

csvwriter.writerow(["fit", "k_infect", "k_recover"])

iIldx = 0
for x in re :

csvwriter.writerow([x, rePop[iIdx][0], rePop[iIdx][1]])

ildx += 1

B

#
Experiment: Case A
#

def caseA():

varbound=np.array([[1.0e-6, 1.0e-5], [1.0e-3, 1.0e-1]1)
vartype=np.array([["real"], ["real"]])

algorithm_param = {’max_num_iteration’: 20,\
’population_size’: 50,\
’mutation_probability’: 0.4,\
’elit_ratio’: 0.01,\
’crossover_probability’: 0.5,\
’parents_portion’: 0.3,\
’crossover_type’: ’uniform’,\
‘max_iteration_without_improv’: None}

model = ga(function=f,\

onProgress=onProgress, \

dimension=2,\

#variable_type="real’, \
variable_type_mixed=vartype,\
variable_boundaries=varbound, \
function_timeout=30,\
algorithm_parameters=algorithm_param,\
progress_bar=True)

return model

163

B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

171 #4
172 #
173 # Experiment: Case B
174 #

175
176 def caseB():

177 varbound=np.array([[1.0e-7, 1.0], [1.0e-7, 1.0]11)
178 vartype=np.array([["real"], ["real"]l)

179

180 algorithm_param = {’max_num_iteration’: 20,\

181 ’population_size’: 50,\

182 ’mutation_probability’: 0.6,\
183 ’elit_ratio’: 0.01,\

184 ’crossover_probability’: 0.5,\
185 ’parents_portion’: 0.3,\

186 ’crossover_type’: ’uniform’,\
187 ’max_iteration_without_improv’: None}
188

189 model = ga(function=f,\

190 onProgress=onProgress, \

191 dimension=2,\

192 #variable_type=’real’, \

193 variable_type_mixed=vartype,\

194 variable_boundaries=varbound,\

195 function_timeout=30,\

196 algorithm_parameters=algorithm_param,\
197 progress_bar=True)

198

199 return model

200

201 HHARHHHRHARBHARREHFRUHRBHARBHARREARBRARBRARBHARREHFRRARBRARBHARRRHFRRARBHAFBHHTH
202 #

203 # Main

204 #

205

206

207 ## Refernce data trace

208 m_tdInfec, m_tdRecov = readCSV("./sim/data/SIR-SPN_continuous_BDF.csv")
209

210 ## Select example case

211 model = caseA()

212 #model = caseB()

213

214 model.run()

215

216 solution = model.best_variable
217

218 print(model.output_dict)

164

© 0N U A W N

CUOOT OT U OU O i R R R R R B s s W W W W W W W W W WNNNNNNNNNN R R e e e
Tl W N = O © 00 3O U WKN~=O®©OoWwNO U & W =O®© w1 O U & W HFHFO O OW- O U W= O

B.4 Genetic Algorithm Library for Python: geneticalgorithmjch.py

B.4 Genetic Algorithm Library for Python: geneticalgorith-

mjch.py

Copyright 2020 Ryan (Mohammad) Solgi

Permisstion is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software t¢s furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

import numpy as np

import sys

import time

from func_timeout import func_timeout, FunctionTimedOut
import matplotlib.pyplot as plt

B s

class geneticalgorithm():
722 Genetic Algorithm (Elitist wversion) for Python

An implementation of elitist gemetic algorithm for solving problems with
continuous, integers, or mized variables.
Implementation and output:
methods:
run(): implements the genetic algorithm
outputs:
output_dict: a dictionary including the best set of wariables
found and the value of the given function associated to it.
{’variable’: , ’function’: }
report: a list including the record of the progress of the
algorithm over iterations

165

B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

56 s

57 def __init__(self, function, onProgress, dimension, variable_type=’bool’, \
58 variable_boundaries=None,\

59 variable_type_mixed=None, \

60 function_timeout=10,\

61 algorithm_parameters={’max_num_iteration’: None,\

62 ’population_size’:100,\

63 ’mutation_probability’:0.1,\

64 ’elit_ratio’: 0.01,\

65 ’crossover_probability’: 0.5,\

66 ’parents_portion’: 0.3,\

67 ’crossover_type’:’uniform’,\

68 ’max_iteration_without_improv’:None},\
69 convergence_curve=True, \

70 progress_bar=True) :

71 27200

72 @param function <Callable> - the given objective function to be minimized
73 NOTE: This implementation minimizes the given objective function.

74 (For mazimization multiply function by a negative sign: the absolute

75 value of the output would be the actual objective function)

76

7 @param dimension <integer> - the number of decision variables

78

79 @param variable_type <string> - ’bool’ if all wvariables are Boolean;

80 ‘int’ 4if all variables are integer; and ’real’ if all variables are

81 real value or continuous (for mized type see @param variable_type_mized)
82

83 @param variable_boundaries <numpy array/None> - Default Nome; leave %t
84 Nome if variable_type s ’bool’; otherwise provide an array of tuples

85 of length two as boundaries for each variable;

86 the length of the array must be equal dimension. For example,

87 np.array([0,100], [0,200]) determines lower boundary O and upper boundary
88 100 for first and upper boundary 200 for second variable where dimension is 2.
89

90 @param variable_type_mized <numpy array/None> - Default Nome; leave %t
91 None if all wartables have the same type; otherwise this can be used to
92 spectify the type of each variable separately. For example if the first
93 variable is integer but the second one is real the input is:

94 np.array([’int’], [’real’]). NOTE: it does not accept ’bool’. If wariable
95 type is Boolean use ’int’ and provide a boundary as [0,1]

96 in variable_boundaries. Also if wvariable_type_mized is applied,

97 variable_boundaries has to be defined.

98

99 Oparam function_timeout <float> - if the given function does not provide
100 output before function_timeout (unit is seconds) the algorithm raise error.
101 For exzample, when there is an infinite loop in the given function.

102

103 O@param algorithm_parameters:

104 @ maz_num_iteration <int> - stoping criteria of the genetic algorithm (GA)
105 @ population_size <int>

106 @ mutation_probability <float in [0,1]>

107 @ elit_ration <float in [0,1]>

108 @ crossover_probability <float in [0,1]>

109 @ parents_portion <float in [0,1]>

110 @ crossover_type <string> - Default is ’uniform’; ’one_point’ or

111 ’two_point’ are other options

112 @ maz_iteration_without_improv <int> - mazximum number of

113 successive iterations without improvement. If Nome it is ineffective
114

115 @param convergence_curve <Irue/False> - Plot the convergence curve or not
116 Default is True.

117 @progress_bar <True/False> - Show progress bar or not. Default is True.
118

119 for more details and examples of implementation please visit:

120 https://github.com/rmsolgi/geneticalgorithm

121

122 220

166

B.4 Genetic Algorithm Library for Python: geneticalgorithmjch.py

123
124
125
126
127
128
129
130
131
132

134
135
136
137
138

140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156
157
158
159

161
162
163
164
165
166

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

189

self.__name__=geneticalgorithm

input function
assert (callable(function)),"function must be callable"

self.f=function

anput function onProgress
assert (callable(onProgress)),"function onProgress must be callable"

self.onProgressDo=onProgress

#dimension

self.dim=int (dimension)

input variable type

assert(variable_type==’bool’ or variable_type==’int’ or\
variable_type==’real’), \
"\n variable_type must be ’bool’, ’int’, or ’real’"

input variables’ type (MIXED)

if variable_type_mixed is None:

if variable_type==’real’:

self .var_type=np.array([[’real’]]*self.dim)
else:

self .var_type=np.array([[’int’]]*self.dim)

else:
assert (type(variable_type_mixed).__module__==’numpy’),\
"\n variable_type must be numpy array"
assert (len(variable_type_mixed) == self.dim), \
"\n variable_type must have a length equal dimension."

for i in variable_type_mixed:
assert (i==’real’ or i==’int’),\
"\n variable_type_mixed is either ’int’ or ’real’ "+\
"ex:[’int’,’real’,’real’]"+\
"\n for ’boolean’ use ’int’ and specify boundary as [0,1]"

self.var_type=variable_type_mixed

input variables’ boundaries

if variable_type!=’bool’ or type(variable_type_mixed).__module__==’numpy’:

assert (type(variable_boundaries).__module__==’numpy’),\
"\n variable_boundaries must be numpy array"

assert (len(variable_boundaries)==self.dim),\
"\n variable_boundaries must have a length equal dimension"

for i in variable_boundaries:
assert (len(i) == 2), \
"\n boundary for each variable must be a tuple of length two."
assert (i[0]<=i[1]),\
"\n lower_boundaries must be smaller than upper_boundaries "+\
"[lower,upper]"

self.var_bound=variable_boundaries

else:
self .var_bound=np.array([[0,1]]*self.dim)

167

B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

190 B
191 #Timeout

192 self .funtimeout=float (function_timeout)

193 i
194 #convergence_curve

195 if convergence_curve==True:

196 self.convergence_curve=True

197 else:

198 self.convergence_curve=False

199 B B
200 #progress_bar

201 if progress_bar==True:

202 self.progress_bar=True

203 else:

204 self.progress_bar=False

205 B
206 B o
207 # input algorithm’s parameters

208

209 self.param=algorithm_parameters

210 self.pop_s=int (self.param[’population_size’])

211

212 assert (self.param[’parents_portion’]<=1\

213 and self.param[’parents_portion’]>=0),\

214 "parents_portion must be in range [0,1]"

215

216 self.par_s=int (self.param[’parents_portion’]*self.pop_s)
217 trl=self.pop_s-self.par_s

218 if trl % 2 != 0:

219 self.par_s+=1

220

221 self.prob_mut=self.param[’mutation_probability’]

222

223 assert (self.prob_mut<=1 and self.prob_mut>=0), \

224 "mutation_probability must be in range [0,1]"

225

226 self .prob_cross=self.param[’crossover_probability’]

227 assert (self.prob_cross<=1 and self.prob_cross>=0), \

228 "mutation_probability must be in range [0,1]"

229

230 assert (self.param[’elit_ratio’]<=1 and self.param[’elit_ratio’]>=0),\
231 "elit_ratio must be in range [0,1]"

232

233 trl=self.pop_s*self.param[’elit_ratio’]

234 if trl<l and self.param[’elit_ratio’]>0:

235 self.num_elit=1

236 else:

237 self .num_elit=int (trl)

238

239 assert(self.par_s>=self .num_elit), \

240 "\n number of parents must be greater than number of elits"
241

242 if self.param[’max_num_iteration’]==None:

243 self.iterate=0

244 for i in range (0,self.dim):

245 if self.var_typelil==’int’:

246 self.iterate+=(self.var_bound[i] [1]-self.var_bound[i] [0])* \
247 self.dim*(100/self.pop_s)

248 else:

249 self.iterate+=(self.var_bound[i] [1]-self.var_bound[i] [0])* \
250 50*(100/self .pop_s)

251 self.iterate=int (self.iterate)

252 if (self.iterate*self.pop_s)>10000000:

253 self.iterate=10000000/self.pop_s

254 else:

255 self.iterate=int (self.param[’max_num_iteration’])

168

B.4 Genetic Algorithm Library for Python: geneticalgorithmjch.py

256
257
258

260
261
262
263
264
265

267
268
269
270
271
272

274
275
276
277
278
279

281
282
283
284
285
286

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

def

self.c_type=self.param[’crossover_type’]

assert (self.c_type==’uniform’ or self.c_type==’one_point’ or\
self.c_type==’two_point’),\

"\n crossover_type must ’uniform’, ’one_point’, or ’two_point’ Enter string"

self.stop_mniwi=False
if self.param[’max_iteration_without_improv’]==None:
self .mniwi=self.iterate+l
else:
self .mniwi=int(self.param[’max_iteration_without_improv’])

run(self):

B
Initial Population

self.integers=np.where(self.var_type==’int’)
self .reals=np.where(self.var_type==’real’)

pop=np.array([np.zeros(self.dim+1)]*self.pop_s)
solo=np.zeros(self.dim+1)
var=np.zeros(self.dim)

for p in range(0,self.pop_s):

for i in self.integers[0]:

var [i]=np.random.randint (self.var_bound[i] [0],\
self.var_bound[i] [1]+1)

solo[il=var[i].copy()

for i in self.reals[0]:
var[i]=self.var_bound[i] [0]+np.random.random()*\
(self.var_bound[i] [1]-self.var_bound[i] [0])
solo[il=var[il.copy()

obj=self.sim(var)
solo[self.dim]=obj
pop [pl=solo.copy ()

B
Report

self .report=[]

self.reportPop=[]

self.test_obj=obj

self.best_variable=var.copy ()

self .best_function=obj

B

t=1

counter=0

self.counter = counter
while t<=self.iterate:

if self.progress_bar==True:

self .progress(t,self.iterate,status="GA is running...")
e L L
#Sort

pop = poplpopl:,self.dim].argsort()]

169

B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

if popl[0,self.dim]<self.best_function:
counter=0
self .best_function=pop[0,self.dim] .copy()
self .best_variable=pop[0,: self.dim].copy()
else:
counter+=1
self.counter = counter

Report
self .report.append(pop[0,self.dim])
self.reportPop.append(pop[0,: self.dim])

Normalizing objective function
normobj=np.zeros(self.pop_s)
minobj=pop[0,self.dim]

if minobj<0:

normobj=pop[:,self.dim]+abs(minobj)

else:
normobj=pop[:,self.dim] .copy()

maxnorm=np .amax (normobj)
normobj=maxnorm-normobj+1

LA A A A 1A A A A H A Attt Attt Attt AE A A AR A AR A A FE A A A Hh At HHHt Attt

Calculate probability

sum_normobj=np.sum(normobj)
prob=np.zeros (self.pop_s)
prob=normobj/sum_normobj
cumprob=np . cumsum(prob)

Select parents

par=np.array([np.zeros(self.dim+1)]*self.par_s)

for k in range(0,self.num_elit):
par [k]=pop[k] .copy ()

for k in range(self.num_elit,self.par_s):
index=np.searchsorted (cumprob,np.random.random())
par [k]=pop [index] . copy ()

ef _par_list=np.array([False]*self.par_s)
par_count=0
while par_count==0:
for k in range(0,self.par_s):
if np.random.random()<=self.prob_cross:
ef_par_list[k]=True
par_count+=1

ef _par=par [ef_par_list].copy()

#New generation
pop=np.array([np.zeros(self.dim+1)]*self.pop_s)

170

B.4 Genetic Algorithm Library for Python: geneticalgorithmjch.py

382 for k in range(0,self.par_s):

383 pop [kl=par [k] . copy O

384

385 for k in range(self.par_s, self.pop_s, 2):
386 ri=np.random.randint (0,par_count)

387 r2=np.random.randint (0,par_count)

388 pvarl=ef_par[ril,: self.dim].copy()

389 pvar2=ef_par[r2,: self.dim].copy()

390

391 ch=self.cross(pvarl,pvar2,self.c_type)
392 ch1=ch[0].copy()

393 ch2=ch[1] .copy()

394

395 chil=self .mut(chi)

396 ch2=self .mutmidle(ch2,pvarl,pvar2)

397 solo[: self.dim]=chl.copy()

398 obj=self.sim(ch1)

399 solo[self.dim]=obj

400 pop [k]=solo.copy ()

401 solo[: self.dim]=ch2.copy()

402 obj=self.sim(ch2)

403 solo[self.dim]=obj

404 pop [k+1]=so0lo.copy ()

405

406 t+=1

407 if counter > self.mniwi:

408 pop = poplpopl:,self.dim].argsort()]
409 if pop[0,self.dim]>=self.best_function:
410 t=self.iterate

411 if self.progress_bar==True:

412 self .progress(t,self.iterate,status="GA is running...")
413 time.sleep(2)

414 t+=1

415 self.stop_mniwi=True

416

417 HREHARHHARH

418 #Sort

419 pop = poplpopl:,self.dim].argsort()]

420

421 if pop[0,self.dim]<self.best_function:

422

423 self.best_function=pop[0,self.dim].copy()
424 self .best_variable=pop[0,: self.dim].copy()
425

426 HEHARFHH

427 # Report

428

429 self.report.append(pop[0,self.dim])

430

431 #self.reportPop. append(pop)

432 self.reportPop.append(pop[0,: self.dim])

433

434 self .output_dict={’variable’: self.best_variable, ’function’:\
435 self .best_function}

436 if self.progress_bar==True:

437 show=" ’*100

438 sys.stdout.write(’\r’s’ 7 (show))

439 ## JCH-S

440 self.onProgress()

441 ## JCH-E

171

B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

sys.stdout.write(’\r The best solution found:\n %s’ % (self.best_variable))
sys.stdout.write(’\n\n Objective function:\n %s\n’ 7 (self.best_function))
sys.stdout.flush()
re=np.array(self.report)
if self.convergence_curve==True:

plt.plot(re)

plt.xlabel(’Iteration’)

plt.ylabel(’Objective function’)

plt.title(’Genetic Algorithm’)

plt.show()

if self.stop_mniwi==True:
sys.stdout.write(’\nWarning: GA is terminated due to the’+\
’ maximum number of iterations without’+\
’improvement was met!’)

B i
def cross(self,x,y,c_type):

ofsl=x.copy()
ofs2=y.copy()

if c_type==’one_point’:
ran=np.random.randint (0,self.dim)
for i in range(O,ran):
ofs1[i]l=y[i].copy ()
ofs2[il=x[i].copy)

if c_type==’two_point’:

ranl=np.random.randint (0,self.dim)
ran2=np.random.randint (rani,self.dim)

for i in range(rani,ran2):
ofs1[il=y[i].copy)
ofs2[i]l=x[i].copy ()

if c_type==’uniform’:

for i in range(0, self.dim):
ran=np.random.random()
if ran <0.5:
ofs1[il=y[il.copy)
ofs2[i]=x[i].copy ()

return np.array([ofsl,ofs2])

B i o g
def mut(self,x):

for i in self.integers[0]:
ran=np.random.random()
if ran < self.prob_mut:

x[i]=np.random.randint (self.var_bound[i] [0],\
self.var_bound[i] [1]+1)

for i in self.reals[0]:
ran=np.random.random()

if ran < self.prob_mut:

x[i]=self.var_bound[i] [0]+np.random.random() *\
(self.var_bound[i] [1]-self.var_bound[i] [0])

return x

172

B.4 Genetic Algorithm Library for Python: geneticalgorithmjch.py

507 HHABHBHRHTHARARHGHBHT AR AR RAGHGHGH

508 def mutmidle(self, x, pl, p2):

509 for i in self.integers[0]:

510 ran=np.random.random()

511 if ran < self.prob_mut:

512 if p1[il<p2[i]:

513 x[il=np.random.randint (p1[il,p2[il)

514 elif p1[il>p2[i]:

515 x[il=np.random.randint (p2[il,p1[il)

516 else:

517 x[i]=np.random.randint (self.var_bound[i] [0],\
518 self.var_bound[i] [1]+1)

519

520 for i in self.reals[0]:

521 ran=np.random.random()

522 if ran < self.prob_mut:

523 if p1[il<p2[i]:

524 x[il=p1[il+np.random.random()*(p2[il-p1[il)
525 elif p1[i]l>p2[il:

526 x[1]=p2[i]+np.random.random() * (p1[i]l-p2[i])
527 else:

528 x[i]=self.var_bound[i] [0]+np.random.random() *\
529 (self.var_bound[i] [1]-self.var_bound[i] [0])

530 return x

531 E

532 def evaluate(self):

533 return self.f(self.temp)

534 7 G

535 def sim(self,X):

536 self.temp=X.copy()

537 obj=None

538 try:

539 obj=func_timeout (self.funtimeout,self.evaluate)

540 except FunctionTimedOut:

541 print("given function is not applicable")

542 assert (obj!=None), "After "+str(self.funtimeout)+" seconds delay "+\
543 "func_timeout: the given function does not provide any output"
544 return obj

545

546 HEHARBHARRHAFEHARERARBHAFRRAFRHARBHAFREH TR A

547 def progress(self, count, total, status=’’):

548 bar_len = 50

549 filled_len = int(round(bar_len * count / float(total)))
550

551 percents = round(100.0 * count / float(total), 1)

552 bar = ’|’ % filled_len + ’_’ * (bar_len - filled_len)
553

554 sys.stdout.write(’\r%s Ys’s %s’), (bar, percents, ’J,’, status))
555 sys.stdout.flush()

556

557 ## JCH-S

558 self.onProgress()

559 ## JCH-E

560

561

562 def onProgress(self):

563 return self.onProgressDo(self)

564

e
566 ' f 4 f & f

173

Appendix C

A Quick Guide to SPC

175

e:g oiL] ix ¢

/x ¥

‘le ‘S ‘2 ‘G 0°4] ixx ¢
uorjererosp Aerre o] juafearnby x ¢
1

f
a8uvy v Suisp) Av.ary uv Surv(dacq
pua:days:jaels 1

‘a8uer e Jo pus - pIry) .

op pus
dals + anrea anrea
(onreA)Aeire~ o1 anjea ppe
op pus => 9NTBA 3ATTym
1JB1S = anfeA

suryyrrode opd
-urts e Aq paquIdsap aq ued jeym ‘JuauIa[d Aeire
1XaU UTe}qO 0} Pasn ST Yorym azis dajs - puodas

‘93uel e Jo 11e}s SAUYAP - ISIY «
19yM
“[:] uojod £q pajeredas raquinu ad£) jo (spuerado)
San[eA 921y} JO $ISISUO0D J] “Ioquinu ad£) jo sonyea Lex
-Ie sauyap 1ey) ‘O[qerrea jo ad£) [ewads e st a8uer y
aSuvy

‘suonydo uonjernSyuod wos Jo sanjea

195 0} ATuo pasn are £a1]) se ‘A[}D21Tp Passadde aq LON
NVD Aelre ue Jo SJUSWI[d ‘DJS JO UOISIIA 1USLIND UL
‘HLON

Sjuawa]q AviLy Suissady

soury *
ordrirnuw ueds ued uorjeiedop AIerie uy x
*/

N m o~ ® o

:saurp opdnnur ueds ued
pue 10jerado Lerre ay) Jo asn Aq pareap st Aeire uy

Avaay uv Su1iv)aag
[{tg:x}:glqo {1 :x}:1[qo]

/*
sj199[qo jo Aerry x

sburarys jo Aeriy // [,9,
sTaqunu jo Aerry //

[
arenbs £q papunorins [‘] ewuwoo £q pajeredas are

sanjeA ‘awr) e je ad£3 suwres ay) Jo anjea suo ueyy darouw
PIoy ued jey) ‘O[qerrea jo ad£y erads e st ferre uy

~ om0 o

] (103exado Aexre) syoddeiq

sanjvp Jo dviry

ix'[qo 9 1
‘A-[qo + x'[qo :q

(U

1
©9STeJ

/* 6 10 anI) :san[eA om) A[UO JABY UED - SULI[OOY o
2doos T1eOOT SIT * 8

JO opIsino Joquow 193[Go ayj 03 SS90y H\ M ixe1 spduexe, 1
{ ¢ :sojonb 9[QNOP UTYIIM US)ILIM 1X3) B - sSUING o

Joquow TBOOT 9yl 01 SS999y // ‘X e ¥ o . :
A © 2L0°0 // €-20°gh ¥
Loxoe 0ooct // €20°¢l ¢
} ilqo 1 sTewroop yirm Joqunu vy // 20°0L ¢
STewroap JnoylrIm Joqunu y // 2001 1

:uo1ssa1dxa U JoNIISUOD 0} Pasn aq Ued s1daquiaul 303[(qo
‘sa[qerrea 19jo 1] Isn(10jerado * jop Sursn £q osye
Passadde aq ued sIAqUIdW }23[qo uy s1aynuapt Aq
A[30211p Passadde aq Ued SIaqUIdW S} 303[qo ue apIsuy

{UOT}BIOU DYIFUIIOS UT UdPLIM
9q Aew pue S[EWIDIP UTRIUOD ABW - SIDQUINN o

1S3N[BA JUB)SUOD 0] SANI XeJUAS

S12qUIaIN 192[q0) 115599y ST
{
{ ‘SINJBA J[QRLIRA - SI[qRLIBA o
< aroy Buoreq [xx m ‘SaNTBA JULISUOD - STRISN] o
«mnoom:umge\u MN :sanfea Jo sad£y om) saugap JDS Jo xejuls
JuaIayyIp 01 buoraq sarqeraea v:« * 81 SanJvA
JO yoed INq ‘SITGRIIRA OM] * o
Aq pareys ST ,xXx, JOIFIIUdPT dY] *\ 91 o+ x iz
* St *
} :laoprtuo w1 anreA x
mmgm:m\.* M painduwod & ubISSE pue 9[qRITRA B 9IB[I9(] *
I 2 *
JO 19S5 umo SIT YIIm 199[qo PIIYO Y * 1 /
*/ o @ 8fs 4n 8w
£,1x91, MM 6 sonfeA ubrsse pue so[qerieA aae[oaq //
Z°m ¢ 8
wom XX L 1dros vonen8yuod
} :[go o ©3IONISU0D 0} MOY SI[NI JO 335 b dsL1dwod Xejuss DS
G © XDIUA
sadA} QJuaIdJFIP JO x ¥ S
SO[QRTIBA [BIDAIS SOIBIIOSSE JBYy) * ¢
108[qo adAy jo ,[qo, arqeriea ayjl ageroaqg x ¢ .
®/ 1 8

‘(393[qo) adoos awres ay} Jo s1aqUIdW J0U d1€ A3}
T I9GNUIPI SWIeS dY) dIeYS ULD SI[QRLIEA ‘SI[QELIBA JO
10s pajeredas yiim adods umo s31 $33ea1d 193(q0 Yoeg
‘saur] aydnnur ueds uwed uonTuUyap s pue jfeuonouny
112y uo Surpuadap sjuawaiels sdnoid 923(qo uy ‘19q
~WAUI S)T SAWI003q 193(qO Ue IPISUT PAIL[IIP J[qeLIBA
Auy © {" -} s1oypeiq A1Imd £q papunolins aIe Yorym
sa[qerea Auewr 2)eI00SSE JeY) SI[qeLIeA a1 s1d3[qO

$192lq0
burays adAy jyo // ¢, 1x91, 'S
uearooq adA1 jyo // fonay :q
Jequnu adAy jo // poix
/*
So[qeraeA aIe[29(] *
*/

‘anfea [eniul ue ugisse o) pasn st uSis

UOJ0d Y/ "dN[BA [BIIIUL S} WOIJ PIALIIP ST J[(ELIBA JO
ad4£) ay, *(s1oynyuapr) saweu anbrun yiim pagnuapr
9q 3snuw A9y], 'SaN[eA BJeP I0)S 0} PasN Ik SI[qRLIBA
S21qVLIVA

JdS03}ap

:10e19d0 UE 210J9q /191 e 11 11[dS 03 153q ST 31
QUI] B UO 11 JOU S0P JUSWd}R}S B J] "SI9)OBIRYD ()8 UBY)
138u0] - saur] 3uo[proae 01 19133q St 11 ‘AII[Iqepeal 104

SYva.g aurT puv yiSuaT aurg
pai11Two aq ued uorodIwWeg ---> // {
S
}oix
Ly
jo3deIq L[N SUTSO[D 19)J8 PAIIIWIO 3q ULD UO[OITUWIS
/A P
:QUI] JUO UT SJUIUIIIR)S [EIIAIS I0J SMOT[E STYT,
K
IX

9
S
4

€
¢ b
L {UOJODIWAS B YIIM PUS ISNUW JUIWIIRIS DJS Yoeq

£ 10109111285

‘SudWIWIOd .

‘SPIOMAY o

InS Ydinb y

€
@
1

1

@
1

‘suorssardxa e

‘s1ojerado o

‘sanfeA o
:Jo pasoduwrod are sjuawIeIS DJS
.cormh:wmcg B 9ULSP JBY) SIUIWILIS JO ISI[ST DJS
SUBWIAIDIS
sordwexs sjuswwod yo puj //
/*
s
:q
*/

/*

*

burays adAy yo // !, 1x91,
uearooq adAy jyo // fonay

pajlenyeAs jou aq [[IM

1n0 pajuswwod oIe SAUT] BUIMOTTOJ :910N * 8
*/ ¢

9

1IN0 pajusumiod ST auI[STyl [/ ‘| :x [/ ¢

i

/x €

Sjuouwwod jo sardwexd 930N x ¢

®/ 1

‘parouSiaq [IM [x pue

*/ U22MIdQ)X} AUB - SJUSWIWOD SUT[-[}[NUI

‘pa1ouSI aq [[Im dUI[Ay} JO puUa pue // Yse[s
3[qNOp UIIM]2q X3} AU - SJUIWWOD duT] d[FUTS

:sjuaWWOd Jo sad£) om) 10 smo[e DJS ‘uonern3y
-U0d dATIEUI)[E Ue SUT)Sa) Uaym pajenfead Suraq woiy
uonem8yuod ay) jo 1red juasaid 0y 10 sajou axyeur
0] pasn aq ued A3y ‘pajenyeAd Jou dIe SIUIUIOD)

SJUIUUULO))

APy

RS
ayuareanbs are saury Surmorroy ay L,
‘Bunyeurio] 10 pasn aq ued sadeds ‘ojqepear arow 1drids
uonernSyuod e aew of, ‘paioudt axe sadeds ajdnniy

20vds 231 M

*JOATOS

‘uoTyeTNWIS ‘dbuer ‘Topow ‘BOT ‘TEATIIUT
‘330dwt ‘FT ‘3J0dXd ‘9ST9 ‘uorieInbBIFUOD
:SIYIJUIPI [qBLIBA S PASN 3 UBD YOIYM SIWeU
awos saA1asal ayidg uonjem8yuod jo asodind 1og

splomAay

“19sn 3} woay dfqissod
se 110330 911 se Surrnbar ‘9[qepear uewny pue as1o
-u0d st XejuLs DJS 2y, 1duos uonem3yuod pajusario
-ejep parnonis e st (uonem8yguo) aIdS) DJS

solseg

JOUTal BATUOK ‘Xepoy) Xaoer
X'9 |y ioyrds

ZoI0°0 A :199YyS 1BAY)

176

123(qo
‘o8uer o

‘fe1re o

‘ejep 2Al}
-twrnid astrduwod ued ey ad£y eyep st eyep aysodwod v

v1v(21150d110D)

JUSWIAIRYS [BUOTIIPUOD {9N.1} ST UOT}IPUOD JUSLIND Y}
B UT UOT}IPUOD B SB Pasn 3q ued uolssardxa ueajooq y J1 9POD JO 300[q 9AIJRUII}[E UB 9JNIIXD PUB Is[ef
st snoraaxd ay) J1 UONIPUOD MAU B 153] - JTAS[3

L >> ,71x93, s
/*x o

‘adf} burasys x st il -
Sjuasardod yorym | 1x9) o9lenfeAj x Fl 9
/ €1 / S
a ONI) ST UOTIIPUOD oYl JT v
I 11 pPaInNooxa aq 03 9pod JO XNI0Tg * €
/x o1 */ 4
1

*odA1 goqunu jurtod x 6 } (uotitpuod)yT

burleoTy SIU9SETdaT YITYm G'() 01 91BNTBAT * 8

. onay st
5 UOIIIPU0D UdATS © JT 3P0 JO YD0[q © 9INIIXA - JT »
mEEe] o 2+ 1 Q¢ -
. /x v SUOTIIPUOD U
Surns . ‘adA) Toqunu IT96ajuT x ¢ -IAPIP UO PIseq SUOIOL JUIIYIP wiiogiad 03 mo[[e ey}
Y S1U9s0IdOT YOTYM g 03 93BNTBAT x ¢ SIUIWIILIS [BUOIIPUOD JO SISISUOD YI0[q [EUOIIPUOD Y/
x/ 1
91} A4 “o[qetreA -ernuurg astmdaig :99s) uonjenyesd days £q dass woAM—%m_w
-1odoixd Teuonippe ynoyyim anfea e st ejep aantwiid y O 2d4) sururialap sjnsar uorjenyeAd ayjJ, ‘d[qerreA e AN § k
0] anfeA [erjur ue ugisse 0} pasn aq ued uorssardxa uy 3Y» Ut pajen(eaa AJUo 1 420[q [eUONIPU0D 34 :LON
vIv(] 01 1ULLL] B _ Y2014 [puopu0)
| T1x81 01 ojenfeAj // | >> , 1x91, 1 .
burays adA) jo SI X Moy // ¢,95493, = X € :s3urns pue s1aquinu se yons ‘sad4£) yuaragyip jo
‘] :x ¢ 2q uedsanfea dy} ‘pasn 1ojerado ayj uo urpusdap pue ann ann anny | ann
adf) Toqunu ® Sse pasITEIITUL ST X // 1 Lo+ X1 ann asyey ann | asyej

:sad£) e1ep JUSIAHIP P[OY 0] Pasn aq ued d[qerIeA
swes ay) ey} sueawr eym - sad£) srwreudp sey HJS

saddy vivq
N:HXWQH: STep
€] :aea

/x

*SOTQRITBA JUOTIFFIP OM] OJE *
‘Ie/ puUB TBA :SOTQRITBA Y] *
*/

*OATITSUDS JSBD dIB SIDYTIUAPI [V

2017151125 25V

iii prreaur // LG

PIIeA // LB JEA
prrep // LJen
prrep // “aea
prrep // TeAn
srarjyrjuapr arduexs //
‘SaIodsIapun pue mﬁw:U

‘5191191 9q Ued s13)1deIeyd JUIMO[[0] Y], * ~ 3I0dsIdpun
ue I0 1919 ® YIIM S}Ie)S Jey) sidjdoereyd jo aduanbas
SI IaY1JUSPI UY 'SI[QELIBA JWEU 0} PISN Ik SISYNUIP]

siarfiuapy

/*
onI) ST UOT]IIPUOD Byl FI *
paInNooxa aq 0} 9pod JO XNI0Tqg *

(0 =i x 83 x =< (1 - A))3r1

9
<
i

€
@
1

~a o %o

~a @%b o N ® oo

as[ey | onx} | os[ey | aspej | onn
onn | asfey | oaspej | as[ej | asqej
Gg 03 9jeniea3 // G x (g +¢) ¢ [Tx [dix [dgpx [£ [x
anry o1 ajenyeay // 7=zl A —
‘uonen[eas ue paf[es st uoneind passardxa aq ued sanyea uorssardxa pajouap oy}
-wod uorssardxa ay [, ‘siojerado pue sanjea ‘sa[qerrea
JO uoreuIqUIOd e s 3] "anfea e sayndwod uorssardxe uy

:sa[qeLiea urejuod Aew uoissardxs uy

Xj p}Ousp - ION - i

suoissaidxg x patouap -0 - ||
B ‘4:329x par0UdP - ANV - B3
B)
/* 48 2o1q
asTey ore x 0 [BUOI}IPUOD © UI Pasn aq ued jey} suorssardxa
SUOT1TpPU0d snorraad e JI « ot UBd[00q 9JIID 0} Pasn aq ued s10jerdado ueajooq e
Pa1Noaxe aq 01 PO JO Yo0[g * 6
x/ 8 (uonyernuurg asimdalg
} esta { ¢ :93s) uonenyeas days £q dais jo ased ayy ur paje
c 9 -npeaa A[uo st 10jerado yuawrudisse a1 :HLON
/x s
NIy} SI [UOTIIPU0D dyl JT * v anrea mau e ubrssy // ‘g = X €
pPo1Noaxo aq 01 9pod JO NOO[g * € uoTIRIRTO9D STQRIIRA [/ f| X 1
4
i

:paIe[dap
U23q SeY)1 I91Je J[qRLIBA Y} O} dN[BA MU & uSIs
-se 0} pasn aq ued = ojerado juawudisse ayy o

*/
} (Luotirpuod) gt
{as[eJ a1e SUOT}Ip
-uod m50_>0\:m :N .ﬁ UVOU MO v—UOT& 2INIDIXI - Omﬁu .
LAX0VT, 5> | >, TIx0),

{ #
€1 :sonfea Auewr woiy Surns e 21eaId 0} pasn
/[* o aq ued >> I10jerado uorjeudIBOUOD JULNS Y} .
oNI) ST ZUOT]ITPUOD pUB * 1
9STeJ ST [UOTIIPUOD Y] JFI * ot —
paInNoaxe 9q 03 9pod JO 4I0[g * 6 oniy // g == ¢ !
*/ 8
} (guoTaTpuod)yT asye { - 1 9STRJ 10 aNI) I0J }Sd) 0} pasn aq
\ o ued > < => =< =j == siojerado uostreduwrod .
* S
onJa} ST |UOTITPU0D 8y} JT * 2
pPa1noaxa aq 01 9poI JO 4OO0Tg * 3 G x (g+¢g) 1
T
1

*/
} (puotyTpuod) ¥ :sanjea andwod

-

o}pasnaqued [x - + siojerado dnAWIYILIE .

:suorssaxd

-X? JONIISU0D 0} pamof[e aie sioyerado Surmoroy ayy,

si03p19d0

‘1911e1ed Ut 10 A[reriuanb

-39S PaINdaxXa 9q Ued saydueIq uoreInSyuod Jo 13s Ay,
uoryeanbryuos jyo 1driog //

‘,gyoueaq,

uoryeanbryuos jyo 1driog //
/*
:Z Yyoueiq uorieinbryuo) x

&/
uoryeinbryuoos yo 1driog //

‘. lyouerq,

uoryeinbryuoos yo 1driog //

/*
I| youeIq uorIeINBIFUOY *
&)

/*
:ojegouab aq [[IM *
SUOT1RINBIFUOD OM] ‘UOTIBNTBAD J91JFY *

2
[l

_—n

¢, gyoueiq, :e
} g youeaq x
A

f,lyoueaq, :e
} 1 youerq x

11:x

/*

uorjereroap 109[qo ue Aq buryoueig x
*/

2 X

:gZ Youerq uorjeinbryuo) //

gL 9%

i youeiq uorjernbryuo) //

/*

:ojegouab aq [[IM x
SUOT1eINBIFUOD OM) ‘UOTIEBNTEBAD JILJY *
*/

Tleirill ix
/*
obues Aq pauryop SanTeA 9ABYy [[IM X 9J9YyM *
SayoueIq UOTIRINDBIFUOD Z S9]1BID «
IIIm uoryerado buryouerg
*/
S]] (o
-erado Suryoueiq) syaxdeiq arenbs sjqnop £q papunox
-Ins a1e sanjea Jo Isi| e Lelre 1e[n3al e woj saydueIq
ysm3unsip o], ‘(T < sI Aexre ue jo azIs ay) JI) paje
-oI0 ST YdoueIq uoneInSyuod Mau e Aelre Ue Ul anfeA
yoes 104 "uoneindyuod e uo uonerado ue st Juryduerg

Sunyouvig

v

177

pua-abuer 1z

buTpI029T UOT)IBTNWIS B JO 2WI) puj //
days-ebuer

awr) ur jurod 31xau ayj o031 dn azrs dalg // st
1Je)s - abuer s

bUTPI029T UOTIBTNWIS B JO QW) }aels // 91

/x vl
‘buryiTrds-rearajur / *x €l
(17B1S [BATOIUT - pud [BATAIUT) = dals x 11
‘pud reaolur = pud = 11
f)aels-[eaJolur = 1Jels x ol
:obuer 0} rearejur burddey x 6
*/

8

L

puo -’ [BATOIUT 9

burpr008T UOTIRTNWIS B JO AWI} puj // ¢
Buty1ITTdS TRATOIUT ¥

pJ02o1 03 sordues Auew moy // ¢

1JB}S [BATOIUT ©

buTpI029T UOTIRTNWIS B JO BWI} }JBIS // 1

:passadoe aq ued jey) sanjaridord
yum s103lqo axe auer ayy pue [earajur ayJ, dSuer e
10 [BAIS9IUL UB JO WLIOJ Y} UI 3¢ UBD W} UOLIR[NWIS

U], U0V NUIIS

{ 1

{ og

te 6T

[IvnoILdo] // } :3Jodxe sc
/* LT

O[IF B 01 s)1[nsag jJodx3 x 9
*/ st

T

{ €

. o

[T¥NOILdO] // } :deiguo 1
/* 0z

uorlernuis asimdals oyl ouryo(q 61
*/ 81

‘pua:days:yaels :aebuer// 91

£001:00L:0 :TBATD}UT ¥I

/* €1

pua:burIIrds:1aels 148
TeATOIUT * I

*/ o1

6

{ 8

{ L

T 9

suorjdo TOATOS // <
} :J9ATOGFQAWERU: TOATOS v
} todAjypoweu:adAy €
uoryBTNWTS B FO owey // ¢, ordwexs, :aweu ¢
1

} :uoryernuts

'$}[NSal1 uone[nuIs Jo 310dxa o

‘o8uer e 10 [eA
-I9)UT U JO ULIOJ 94} UT USATS SWIT} UOTIR[NWIIS B o

‘19A10s $31 pue ad£) uonenwis e o

:Buijoads smore uonenuurs e jo uonjernyuod diseq

uoyvInIULS

"UIPPLLIDAO 3q [[IM UOT}IU

0z ~JOP S} ‘UOIIUYSP [9POW 3} UI ‘S3SIXd I9AIISQO Y} J[
61

19JON
{
{
{
‘1% + Id, :‘uorjoung
} tWo
[TvNoILdO] // } ipaxtu
suorjrsuerl pue sooerd o9AToAUT [/
{
{
‘v / 13, ruoriouny
} 10
[T¥NOILdO] // } :uoTiTsuery
suorjrsuer] //
{
{
.2 / (&d + 1d), :uoriouny
} :do
[TvnOILdO] // } :eoerd
soorld //
} :sI1aaresqo
/*
JojenreAsa x
TeuI91Xxd ue Aq pajenyera ST 1T Se x
burils se UdAID ST UOTIOUNF TOATISQO UY *
iii JLON Qii *
STOATOSQO dUTFa(g *
*
/

:suorjisuer) pue saded A[snoau
-ej[nuIis 10 suonsuer) ﬁmuNﬁm ‘sjue)suod t9ATOAUT UEBD
uondUNJ [EILIDWNU € ‘I9AI35q0 Jo ad) ay) uo Surpuad
-9p ‘suonouny [eorPWNU Juruyap £q SIINSLIW BIIXd
10J MOT[E (S9[qeLIeA ATRI[IXNE) SIDAIISO JO UONITUGI]

{
£,4.08++8.06, ‘¢d
Tepouw painoro) //
L otid
T8pou pa.inorod jop //
} :sooerd
/*
sburyaew TRTITUT SPTIITAA() *

*/

[IvnoILdo] // *f.uTew, "uwwwswm>
*
dnoib sjuelsuoo x
9yl JOF 19S SONTBA 129[9G *
*/

}oitre

JI18, 6o x
Topouw JaNy)/IANY B uT aweu dnoib ayj x
*/
[T¥NOILdO] // *.uTen, ”Hmmmzwm>
*
10s sanreAa [eqorb 129795 *
*/
} :siueisuoo
/*
SJUBISUOD BPTIIIA() *
*/

‘dnoig parerosse ay) Yim
1 0} Pappe pue pajeaid aq [[IM }I ‘UOIHIULGSP [9powt
AU} UT }SIX9 J0U S20p JUBISUOD 9] 9Sed U] "SonjeA Iy}
SUIPLLIZAO SMO[[E SJUBISUOD [dpow JO uoneIn3yuoD)

L A ¢
" [IvNOILdO] // { "} :sieagesqo ¥
& [TYNOILdO] // {*+"} :seoerd ¢
g [TvNoTLdO] // {° "} :siueysuod ¢
b } :Tepow 1
« ”wuv>\5mﬂs

_MM Surugep pue (sSunyIewr [eNIUI pue SJULISUOD) SI9)
o1 -wrered si1 Suifjoads smojre [apout e jo uonem3yuo)

81
12PON
§1 pajen[eAd st anfea sj1 ‘rojowrered uonernSyuod uaAld

¥1 10 sdnyoo ay1dg uaym sueaur jey) ‘puewap uo nq
€1 days £q days pajenyeas jou st uonern3yuod d1seq Ay,

1 {r
o1 {--°} :uoriernurs ¢
6 [7vNoTLdO] // {~} :Topow 2
i } :uorieanbryuoo
4 UOT}R[NUITS PUE [9POUT JO SUOT)
M -en8yuod dn Suras smoje yo0[q uonerndyuod ayJ,
v uoyvInyuo)
€
T
1 { et
{ 8t
{9STRF :9[(QISIOAdT Lt
‘anI)} :AJepunoq 91
‘uNdd, :18u &
/* w1
(Nd 21158Y201S) NdS JO * €1
(Nd snonuriuod) Nd) se [apow jaodu] x 41
6 */
3 } irwags 0
L /* 6
9 TWGS ST Topow pajiodur ayl Jr x 8
< uoT1RINBTFUOD TRUOTIIPPY * L
x/ 9
M {, 18pouw/o1/yjed, :iwoay <
z } aTodut ¥
1 /* €
ja0dwr 03 jeym x
®/ 1
€T
144 :paxmbax st
12 yonjean8yuod euonippe ‘pajrodur st [ppowr TNGS © JT
0z
o E(elerE
L1 “TNGS -
91
st “IANVD -
¥l
€1 “IANV
[
o :sjeur1oy [ppowr pajroddng
ot {
¢ ¢, Topow/o1/yied, :woiy
8 } 11J0dut
L *
© 1J0dwr 01 1BYM *
< «/
¥
¢ :Jopour e Jo 901nos urkjoads smojre 3o0[q 3rodwr ayJ,
T
1 1eodui]

~ om0 o

£19SaNTBA"SIUBISUOD * TOPOW" UOTIBINBTFUOD >>
11asanfeA |, >>

SUEUUOTIBTNWTS UOTIBINBTIU0D >>
ruoryernut 19UTT UO Ul [TE

£19SANTBA°SIUBISUOD * [9POW° UOTIBINBTFUOD :)13SANTEA
£9WRUUOTIBTNWTS "UOTIBINBTFUOD :uOTIRTNUTS
} :bor
/*
bor er)xj «
*x/
:padeI) 9qQ Ued SI[QELIBA PIIR[IIP JO SIN[BA dI9UM I0[q

601 oy ur pauyap aq ued erep JurdSo| feuonippy

Su18807
[Tvnortdol /7 £} ”woﬂ
x
sarqerIeA pauryap-iasn burbboy x
*/
{---} :uorreanbryu0D
/*
uoTIBTNUWTS pUB TOPOUW FO UOTIBINGTJUOY) *
*/
{--"} :170dut
/*
Jaodur 01 jBRYM *
*/

:$122(q0/$)D0[q UTeU 2311} JO SISISUOD DJS

-juejzodwr jou ST suor}

-do uonein8yuod jo 19pIo Y3 ‘pajers APoI[dxa ssafun
‘HLON

[TVYNOILJO] se 1oyrew are suonido £103e811q0 10N
‘HLON

24n2N13S

uonendiuo)

prreaur // eniy ||

i

prreaur // ostey |[o ¢
T

prrep // @siej || eniy 1

ad £y eyep ueaooq ay) uo L[uo ayerado yeyy
s101e1ado uea[00q SA[OAUT SUOISSaIdXd ULI[00] o

1

PITBA // 9STBF >> | >> |

‘ad4£) Surns ayy 01 puerado
yoea 11au0d> Apordur pue ejep aanrurrd
o) uo ajerado 1ojerado uoneusajedouod Surns o

pITEAUT // € + 9nI} €
prreaur // g + e, 1
PITEA // G2 + | !
adAy
Bjep IoquInu Y3 uo AJuo 9jerado jey) siojerd
-do omouryjrre aAjoAUT suolssardxa onouwIy)IIe o

:suotssaxdxa jo uon
-enjeas Surmp suop st sad4) erep sanfea jo SunydayD

SupyoayD addy viv

178

fanr1) :saoefdeoejiajurArdde
sooerd parojruow Arddy //
0T1eJ 10074 // ‘¢°0 :OTIBYIONTE
//
fasTeF :TepdSTONINdINO
fasTey :1epaATIRBANYO0YD
fan1y :3qobuTITNSaYIONpaT
‘anIy} :azigdejgoine
‘0L-20" L
1G-3|
£,9SUSQA), TIATOSUTT
/x
LAubyydspy, ,69qdspg,
,beIgn, ‘,Jwbdspy, ‘,9suagAd, *
&
f1°0 :daygrur
JSWYAV., 408, ‘. M8V, //°.SWVaY, :I3AT0Sopo
] isuna
{] :speaayy
} :100BYSSHH

fonyy :saoeTduopArdde
sooerd parojruow Arddy //
orjer 1any4 // ‘g°0 :0T1BYIONTJ
//
‘asTey :TepasToNIndIno
fosTeJ :TepaATIEBaNM29YD
fana) :3gpbut)[nSaylonpar
fan1) :azrgdaisoine
‘0L-20"L
‘G-9)
£,95U3(A), :JIdATOSUI]
/x
LJubydspy, ,69qdspg,
,BeIgA, ‘., JwWbdSA), ‘,9SUdAAD, *
=/
£1°0 :deagrur
4ad, .4V, //%.SWYay, :I3AT0S9po
] sunx
f] :speagyy
} :VSSHH

«SWYaY.,

‘9sTeF :TepdSTONINdINO

fasTeF :TeAdATIEBANYDOYD

fanr) :3QqobBuTyNSayIonpar

‘onr) :azrgdalgoine

‘01L-20°| :T0lSq®

{Gg-9| ojTax

£49SUSEAD, TIATOSUTT
/x
SJubz1dspy, *,00qd5A9, x
‘.berap, ‘,awbdspy, ‘,9susgpl, *
*

‘10 Nawumﬂcﬂ

JSWYAV. 408, MYV, //%.SWYGV, :T9AT0S9PO

f] :sunT

{] :speaiyy

} :ooyoriels

n

—~ e

0

6

8

19S ST paas wopues uayl juasard jou JI L
*/ 9
s

¥

€

z

1

19S ST paas wopues uayl juasard jou JI

6
8

L

19S ST paas wopues uayl juasard jou JJ 9
*/ S
¥

€

T

1

fasTey :repastoNindino 91
fasej :[epdATIEDBANYODYD <1
fonr) :3QgoBuTITNSAYIONPAT ¥

G-9] :1o][aJ 48
asuagp), :IO9ATOSUTT o1

/x 6

JJubzydspg, “,69qdspg, 8
.berang, ,ubdspy, ‘,9suagad, * L
x/ 9

170 :deigrur <
i

€

z

1

JSWYQY. “.4ad., ‘. MHV. //1.SWYaV, :I8AT0S3po
‘o

1suna
f] :speaayy
} :o11e3S

5190108 uonvNLS priqap]

{ a
wopue.r yrnejaq //10c508¢€Lve ‘pPods// a
/* a1
19s SI poaas wopuel uayl juasard jou JFJ «
*/ 6

¢)-90°| :uorrsda 8
‘L1-90°| :geirep ¢
f11-90°| :eirep 9

£/-90°| :92UBIdTO)
‘0 :epqueixeu

{| :speaiyl
} :negy

wopues 1rneyoq //10250861vZ Pa9s//
/*

‘0°) :eifap
00} :sunr
{1 :speaiyy
rre //

} :burdesqjeirrep

wopuer yrnejyaq //‘102508€Lkg ‘Po9S//
/*

*/
00l :sunr
{] :speaayy
e //

} :burdesaqney

wopues 1[neyeq //¢102508€1vZ :Po9s//
*

01 :suna
{] :speaiyy}
e //

} :100a1p

5190108 UOLIVINUILS I1]SDYI0]S

S
14
fp isunI e
T
T

R I I

‘asTey :TepasToyNIndino
{9sTey :1epaAT1IRbANYOOYD
fan1y :3goburiTnsayironpar
mwwﬂmw nmNHmawuwau:m
‘0L-90"} :T0lSqe
{G-9| :[ojT[aT
uzmmzmQ>O: SIIATOSUTT
/*
. Juby1dspy, “,62adspg, x
‘.berapg, ‘,Jwbdsp), ,95ud@Ad, *
*/
‘170 :daagrut
401q, //%,01q, 1oTjuewes
} r1ern3poy

‘asTeF :1epastonIndino
‘9sTej :TepaATIEbaNYO9YD
fonay :3qpburinsaylronpas
‘osTey :azrgdelgoine
‘0L-90"} :T0]1SqR
‘G-a| :[olTaT
w9SUSQAD, :TOATOSUTT
/*
LAwbyadspy, ©,69qdsp),
‘.berapny, ‘,Twbdspy, ,9suddAd, *
*/
170 :deagrur
.ota, //%,01q, :oriuewss
} 391Ny

‘osTey :1epastoniIndino
fasTeF :TepOATIRBANYOOUD
fon1) :3QgobuTITNSaYIONPaT
‘osTey :azrgdalgoine
‘0L-20° | :10lSqe
{G-9| :TojTaT
£,9SU9(A), :TOATOSUTT
/*
JJwbr1dspy, ,62qdspg,
‘.6e1an), *,TWBdSAD, ¢,9SUBAAD, *
*/
170 :deigrur
4014, //%,01q, :oTjuewWas
} jooaguasoy

‘osTey :repastoNIndino
{9sTey :1epaAaT1IEbANYO0YD
fonr) :3jgpburiTnsaylonpar
‘osTey :azrgdaygoine
‘0L-90"} :T0lSqe
{G-9| :[oj[8J
£,9SUd([A), :JIATOSUTT
/*
JJwby1dspg, “,60qdspg,
‘,6erany, ,Jwbdsp), °,osuagAd, *
*/
170 :deagrut
4014, //%,01q, :oTjuewes
} :orsser)

fosTey :Tepastoyindino #r
fosTeJ :TepdATIERbBaNYOayD €1
‘onry :jgpburinsaylonpar a1
fosTey z1gdaygo1ne 1
‘01-90°| :T10]sqe o1

{G-9] :TOJ[dT 6

£,9SU9(@JA), :JOATOSUTT

S JubF1dspg,
‘.berany, °,Iwbdsp),

Jidepe, < o01q, //%,1depe, :oTiuewds
} iswvav

{ ot

fasTeJ :TepasTONINdino w1
£9sTeF :TBASATIERBANYD0YD €1
‘ona) :3goburi[nsayronpas

i
10 :dergrur €
T
T

:Tojsqe o1
fG-9] :TOJ[oT 6

L @SU9(QJAD, :JOATOSUTIT 8
/* L
9

<

JJubyidspy, “,60qdspy,
‘.berany, ‘,wbdspy, ‘,9sus@p), *
*/ 4
mv.ouamam_:_ m
N
_

1depe, :0T}juBWSS
} g

$190]0S UOVNULLS SHONULIUOD)

JHdepe, < o1q, //

n

{
{

} :JaATOGFQAWEU: TOATOS
} pragAy:adAy

{ e
1rnejyeq //‘eniy :bae a1
1rneyeq //‘osiey :o1burs 1

& oo

} :IaATOSFQawERU: TOATOS
} oT1seyosois:adhy

{ ¢

/* o1

uorjernurs peaiyjl arburs x 6

J0F prrea ATuo st uorydo STyl :JION * 8
pabeiaae pue ung 97burs B Jo S}[NS9J x L
170dxo uB 0] SOPNTIUT JoYlaym auryo(q * 9
*/ S

{ ¥

e €

T

1

{

} :J9ATOSFQOWRU: TOATOS
} snonutiuoo:adAy

‘A10)epURW JT€ [[B PUE SIN[EA J[NEJIp OU

aaey suonido uonjenuurs ayy ‘pajess Ao1rdxa ssajun

‘HLON
PHAAY o
O13ISeYD03S o
‘SNONUTIU0D o

:sad £y uorjernuuts pajroddng

sadd] uoyvnuig

179

9UO UI ‘PaINO[0dUN PUB PIINO[OD ‘SIIAIISAO PUB SUOT}
-1suer) ‘saderd Jo sjnsar ay) auIquiod 03 dqissod st 1|

‘[] :sIaArasqo

/*
ST9ATISqO TTE 170dX7 *
*/
][] :n:suoryrTsuery
/*
suorjrsuer} paanorooun Afuo 11odx3 x
*/
‘[] :9:suoryTSuery
/*
SUOT1ISuURI) PaInofod Afuo jaodxj «
*/
‘[] :suoriTsuery
/*
suorjrsuerl [re 1Jodxj x
*/
ssed joN // €g| dUEN ¥ “[] :o:sooerd
ssed joN // | BWeNdORTd £F /x
ssed jopy ZloweNaoeTd TF
sseq 0N ““ ol oueNaoRTy IF sooeTd paInorod Atuo jJ0dx3 *
ssed 10N // 000WeN®ORTd 0F */
ssed // £g1oWeN9GpZAXa0eTd 6€ ‘[] :n:sooerd
ssed \\ €gloweNadeTd 8¢ *
ssed // 00Q2WENDOBTd L€ sooerd painofooun ATuo jJ0dx7 *
ssed // 0002WeNeTd 9 %/
<€
{e}le-0louens-erg ve - L.[E-L]OPwWeNx "BId, ,L09wWeNd9eTd, | “wwowﬁ_
€€ *
rarduexy e palJodxa aq [TIM *
1€ saoerd 77y Aydwe st Aerie ayl Fr :JION *
£S,1 aI0W JO U yodjep - {‘u}r MM ‘uoTsordxa UIATD e 01 x
T CRREL] s ssed jeyl ooerd parjhoads 1ao0dx3
£S,T w pue u udamiaq yojey - {wulr */

5,1 u A1oEXx3 - {u}r < :pajrodxa aq [[Im 138
77 UAAIS e woiy sapou TTV udy) A3dura st Aerre uaars e jy
£s,d 8U0 JO 0197 - &I €2°PapI0dal 9q 0 ATe SIDBI) UOTIR[NWIS Y} YIIYM JO SIpoU
a1 1910 (suorssaxdxg ren3ay pajroddng :33s) suors

£$,J dJ0W JO duU() - +I 1T
oz -saxdxa re[ngaxjuasaxdar jeyy sdurns jo seire jo asn £g
fuorssardxa Jernbor Aue ST I aroym 61 500
‘s,1 910w I0 0197 - I 81
A {
£101197 oaseoraddn 91 o
ue 1deoxe IojoeIRYD AUB ‘9SBO STY} U] - [z-v~] st } :3170dx8
1
£s319)0eIq 9IBNbS UT €1 000 {
9soyy 3deoxa J930BIRYO AUR yOERY - [v] M“ } :110dxa
¢7 10 o ybnoayy [wory 193319y Aue q ‘e 01 S}[nsal uone[nuiis jo
ssydlew {31 ur abues Toloereyd yoley - [zo-lqe] M syrodxs ajdnnu astadwod Lews o[y uoneInSyuod auQ
{z 30 K “x sayojey - [zAx] M N\QQRN
{s1910BIRYD JO 9buRT B YdlE - [1 ¢
14
‘19)0eIRYD AUB UdlE) - € 0o {
z o 2
{x T910eIRYD AuR yOlRY - X 1 } :parqestp:asiMdals
- paTqesIp

suoissaidxqg uvinday pajsoddng

se 31 Surredap £q pajqesip aq ued uonernuiis asimdalg

{n Suyqusiq uoyvnuig asimdalg
o1
{ 6 ‘deys-uoryernurs >> , :dajs wrg, = 9o
{,AS0°8[TJ/01/yred, :a[T¥ 8 fawTy uoTIR[NUIS >> | rawry wrg, = 9O
Jojeredas ejeq // ¢, ¢, :das L
} iAso o : 907 9[qerrea paugapaxd ay) 03 uorssardxa
<

ue Surudisse £q saje)s sajqerrea Soy 03 a[qrssod st 1|
[] :syanzasqo

‘
. ¥
¢[] :suorytsuery ¢ dayls-uoTieTnuts
4
I

‘][] :seoerd SWT) UOTIeTNWTS

} :317odxe :uonjenuurs e jo dajs
[ASD PuE W) JUILIND € 0) 3[qIssod Os[e ST $sa00e peax ay [,

JUIBISUO)FSWEU " JUB)SUOD
0BT dFpoweudoeTd

z¢ :[2POW € JO sjueIsuod pue sadefd 0} $sadJL dJLIM/peax
' 5y sqqissod st yoojq dayguo jo adods ayy uf
0€

6T A
[{
« ‘L+a=gq
(14 /¥
& JBA 9TQBATOSQO JUSBWOTIUT *
i %/
€ ‘e >> etanrea, = 90
w ‘e arqersea ayl jyo aniea boj //
kg {L+e=¢e
0T *
61] + D IUBISUOD =) JUBISUOD
s } esto {
LT A
9t f] - D IUB}SUOD =) JUB}ISUOD

<t } (0 < 971ueISU0D)FT
" } (G < d'ooerd g3 0l > B)JT
e £)73UBISU0D >> g enTeA, = 9O
" ‘doys-uoriernurs >> , :dajs, = 9o
ot foWT) UOTIBINWIS >> , oW}, = 907
© *
® ‘) 1uB1SU0D |*
¢ “dals pue awr) UOTIBTNWIS - *
9 :9y) Jo anyea boj x
S *\
¥

€ /x
¢ dals uorjernurs yoesa x
T

J91jB sajenrerd - 1aed dooy urey x
*/
}:op

£0 :9AJ9SQO:Q
/*

oWT) UOTIBTNWIS B T9A0 abueyo

L aTqerIeA MOy BUTIPIODdT SMOT[E 1BUM *
9 “STOATISQO 0] Pappe 9q Ued I[GRIIBA Y *
S */
i i =
€

T /*
1

uorlernwis e yo buruurbag ayl e 99UO0 *
ATuo sajenters - jaed uoriererosq x

-days uorjernurs yoea 19)je [Ppow
¢ ejsnlpe jey) Surd8or urew s1suU0d prnoys pue
uonjernuuts e Jo dajs yoea 191je Paren[eAd si- op e

~

'
{] :9AI9S(O:dUWENIBA 1
:[nsax
UOTIB[NWIS B Ul WAy} 9PN[IUT 0} SMO[[E 1eym
(ST9AIISQO JO 39S © 0} PIppe) ‘PIATISQO] Ued
d[qeLIeA paIe[dap e ‘uonenuwis e jo Suruuraq
3} 1€ 90UO Pajen[eAd SI }1 pue ‘sa[qerrea jo Jur
-ZI[eT)TUl pue SULIR[D9P I0J SMO[[E - UOTJBIR[DAP

T

:s31ed 0M] JO S)STSU0D puE (UOTIONISUT J9)Je UOT)

. -onnsur) days £q days pajenyeas s1do[q daiguo ayL
! “yueprodur st suorndo uoreIn3yuod Jo 19pIo Y],
‘HLON

uonbnwis asIMdals

@
1

g

£9NI] :0FUT1TBYMOYS

uorjewroyur buruoririaed moys //
00} :BsprIedXEW

sabessaw buruoririaed xey //
proysaayy buryrey // ¢ 0°¢ :Iyjbursirew
proysaayy ajey // ¢ 0°0L :Jdueled
//

fon1) :saoeydeoeyrajurhtdde
sooerd eoejrojur Arddy //

or1er 19074 // ‘g 0 :0TIBYIONTF
//

‘9sTeF :TepdSTONINdINO

fasTeF :TeAdATIEBANYD0YD

fanr) :3QqoBuTINSayIonpar

‘onI1) :azrgdalgoine

‘01L-20°| :T0lSq®

{Gg-9|

£,95U9@A), tJOATOSUTT

o Jubz1d5A,
‘.berans, ‘,awbdspy, &
*/

‘10 :dergrur
JSWYQY, “.408. ‘. MHY. //°.SWYQV, :I3ATOS3pO
f] isunx
f] :speaiyy
} :otweuAp

180

Vpasanory —

'$}[NsaI uonje[nuIg :g 2InJrg

0

005z

0005

005t

0000t

ooszt

SUSOL JO JGUINN

00051
o051

0000

S3nsay

oweu d[14 //%,A$2°do1S-35T1I14, >>

<\:c_«a~:aomwﬂnwuawum:w.mwumHaAkuos.:owumu:mﬁw:Wo >>

w ow >>
J9AT0S " 9dA1 "UOTIBTNWTS UOTIBINBTFUOD >>
~, >> adAy-uoTieTnuIS uOTIRINBTFUOD >>
~, >> oweu-jryodur >>
T, >> dweu >>//
u/BI8P/ ", 3TTF

:das

} :aso

f[] :sranrasqo

SuOT1TSuUBI} parnorooun [re //f[] :n:suorirsuery//

Suor)rsuer) parnofod [re //f[] :o:suoryrsuery//

suorjrsuer} [re //¢[] :suoryrsuery

saoerd parnorooun //f[] :n:seoerd//

saoerd parnoroo Tre //f[]//[] :0o:seoerd//

sooerd rre //f[]//¢[] :seoerd

(112 170dx8 A)dwo jr) eaes o) seoerd jo Aeiry //
} :370dx8

JojeTRdOS //

£001:002:0 :TeATOIUT

({
fasTey :1ep@sTONINdINO
fas[eJ :1epanrIebapN}O9yd
fana3} :3QOBUTITNSdYIONPaT
‘asTey :azr1gdalgoine
‘01-90°| :10lsqe
£G-9| :1O[TaT
{,9SUd(AD, :TOATOSUTT

JJwbyydspg, ¢,62qdspy, “,68TAAD, n,‘:rwam_u: ‘,05u800), //

170 :deysrur
. //%,1depe, :oT1uRWaS
} t40dg
1 TOATOS
} :snonutjuoo:adAy
/*
uorjernWIs B dn 1ag x

. 1depe,

‘YIS, :sweu
uorjernuis e jyo auey //

}

IuoTIRTNWIS
p {
£0000g ‘v uorierndodarqrideasng

} :sooerd
} :1epow

} :uorieanbTFu0O

{
‘. IPUB NdS-HIS/TopoW/ *, :woly
} :1J0dut
Tepow auo Ar3oexe - jaoduy //
/*
=
Jjusuwod aury - \\

/x
uor1eInbyyuod arduexy
xx/

uonean3gyuod uonyenurs ajduirg :1 spdurexg

QuBWWOD I0Tq -

¥ pa19A00RY

O— 7

_ (B~ T9A0091 %) UOTIOYSSE) :
[1 - v7poroogur] ¥ [1 + v pasonooay] :
uw>owwz
B]09FUT Y)UOTIOYSSE W
VSSE|

_ [1 - v_pa1odjur]
B [1 - v uorierndogarqrideosng] 3 [g + vy paloajur]

309JUT
9T1SBY20)S
1suoTIISURTY

£0000§ = v uorierndogdarqridaosng
{0 = YV paJanooay
7] =y pa1dajur

19195 TP

:saoeTd

f1-80°| = B J9A0091 ¥ 3[qnop
£G-90'G = ® 109JuT ¥ aTqnop
Bid
1S1UBISUOD
}
[NdS-yIS] uds

"NdS Se [9poul YIS [2InBL]

(£"12A009173) UOTADYSSER (eT3093uTTY) UOTIOYSSEN
V19A009 v peapegur ¥ 3923UI y—yorqerndogaTqridesns
735

"9p0d 22INos

TANY se pue T 2181 uo pajuasardar st [opowr ay], ‘A[poandadsar ‘suony
-1suen) pue sade[d £q pajuasardar are Yorym (194003 pue 103JU]) SJUIAS
om) pue (uonjendod pa1arodar - ypaiaroday pue uorjendod pajoayur
- v~ pa1ajuf ‘uvoneindod spquidassns - y-uonemndogaiqridadsng) syusaux
-j1redwod 9a1yj Jo $3s1SU0D [apowt Ay, *ss3201d drwrapida ayy [apour 03 pasn
ST YIS [opour [eyusurjreduwod ajduurs e ajdurexs Suryiom e sy :japour ay,

sa)dwex3 |14

181

‘oTdwex3TeA UOTIBTNWTS UOTIRINBTFUOD :BXJTRA WIS
} :bor

{

oweu o114 //%,AS0 do3S-357314 ", >>
<\:owum~=acmm~n_«awom:wAmmomﬂa.Hwnos.:cﬂunu:mﬂw:mu >>

©T109FUT 3 [[B°SIUBISUOD TOPOW" UOTIBINBTFUOD >>
SuNI*19AT0S " 9dA} *UOTIRTNWTS "UOTIRINBTFUOD >> 7 >>
J9AT0S 9dA} "UOTIBTNWIS "UOTIRINBTJUOD >>

~, >> adAyuorle[nuis uorjeinbijuod >>

=, >> aweujJyodut >>

L /erep/ , OTTY

Jojeredag //¢ ¢, :das

} :aso

{[] :syonrasqo

suor)Isuer) painofooun [re //f[] :n:suorjrsuer}//

Suor}rsuer) parnofod [re //f[] :o:suorirsuery//

suorjrsuerl [re //¢[] :suoriTsuer}

saoerd parnorooun //f[] :n:seoerd//

sooerd parnogoo rre //f[]//4[] :o:seoerd//

sooerd re //:[]//¢[] :sedoerd

(118 3J0dXx8 A3dwe yr) 8aes 03 saoerd yo Aeray //
} :3J0dxs

£001:002:0 :TBAISIUT

{

{

‘Il
. {
‘osTey :TepastToyNIndino
{osTey T EYN RN EITR]
‘onr) :3Qq0buTITNSaYIONpaT
‘astey :azrgdejgoine
‘0L-20° :TO0lSq®
fG-9| :To]ToT
,9SUB(AD, :JTOATOSGUTT
JIubyrdspg, ©,60qdspg, ¢,6e1gp), ‘., Twbdspd, &:mmzmm>u= //
‘170 rdeistur
JHdepe, < o1q, //, 3depe, :OrjuRWLS
£,1N0D, :sunx
/*
oweu o971y 1J0dxd 9yl Ul pasn ST x
1BY} B[QRTIRA , SUNT, MAU dUTFO(*
*/
} tdad
TJ9ATOS

} :isnonutjuoo

uorjeNUIS Snonuruo) //

A
anr} 30 18s 1[nejaq //‘estej :bae//
arburs //fenty :arburs//

{
102508€Lv :PI3s//
‘g isunr
| :speaiyy

} :308a1p

1 TOATOS

} :o1iseyools
uoTIeTNUIS DTISBYI0IS //
1] :edAy
/*
sadA} uoriernurs J9A0 BUTUUBIG x
:buryouerg x
=
‘,4IS, :aweu
uoryeTNUWIS B JO auey //
{y uoryerndogarqrideosng-saoeyd- [opow :oydwexjTea
/x
bor ay1 01
pappe ST 1By} arqerieA arduexa ST STy x

i
}
1UoTIBTNUTS
. {
1100005 ‘00002]] :v uorierndogarqrideosng
stojowered [opouw JoAo Buruueds :buryouerg //
} :seoerd
({
‘[[5-90°8 ‘G-90°G]] :eT309juT ™y
srojuered [opou J9A0 buluueds :buryouerg //
}oirre
} :sijuejsuoo
} :t1epouw

} :uorjeanbryuod

{
‘. IPuB NdS-HIS/Topou/ -,

} :3zodut

19pow auo Arjoexe - jaoduy //

/x

QuWIOD YI0Tq -

=/
Juowwod sury - //

/x

buryoueaq yo uorjeinbrjuos orduexy x
*x/

‘uorjernuurs Jo ad4) ‘ased sty ur ‘suonndo uonein3yuod .
‘s1a1owered [popowr o

1940 Suruueds 10§ Suryouelq uorem3yuod dn 3as 0) MOF
Suryouerq voneinSyuo) :g ajdurexy

182

*S$}[NSAI UOTI[NUITS AY], :¢ 2InJ1]

000000

00000

200000

181 uopIU

00000

500000

awnt

Vpanosy —
¥ oneindogaiandarsns —
Vpeva —

005z

o005

0000

005z

suaoL Jo saquinN

o00st

005t

0000z

S3nsay

£9TdWeXJTEA UOTIBTNWTS ' UOTIBINGTFUOD :BXJTRA WIS

oueu dr14 //*, A9 da1s-367314,
v uotierndogatqrideosng - saoerd: Tapou :ojmu:mﬂ:mu

BT109JUT 3" [[B°SIUBISUOD " [9pOUW* UOTIRINBTFUOD >>
SuUNJ*J9AT0S 9dA) "UOTIBRTNWIS UOTIBINBTJUOD >>
JIATOS " adA1-uoTyeTNUITS " :o:muzmzcou

>> adAy- uoTeTNUTS uot1eanb1yuod
>> aweu - jJodwt
«/BIEp/ ", -

Jojeredas //*¢

] :sas

SUOT1TSUBTY pagnorooun (e //{[] :n:SUOTITSI
SUOT}TSUBRIT] PaInofod [[e //f[] :2:Suor}Ts
suorjrsuery [re //¢[] :suory

sooerd painofooun //f[] :in:sa:

saoerd paanoroo 1re //f[]//4[] :9:se
sooerd rre //f[1//¢[] :

(118 370dx0 Aydwo jr) oaes o} ssoerd jo Ae
b

}

{

>>
>>

>>
>>
>>
CIRES

:doas

} :aso
ATDSqO
uery//
uery//
Tsuer)
oerd//
oerd//
saoeTd
xy /[

1370dx3

{

{

:boT

{

{
{XBTOHq >> , (XBT3Yq, 901
SUOT)BWIOFUT BIIXD m:~mmcq //
£7)109JUT Y IUBISUOD = }09JUTl Y
9TqRIIRA POATOSGO 9Yy) FO 9NTeA 8yl 195 //
{
‘L + dojguTmr = dojgurmr
{
‘azrgdarguImMp
+ B]09FUT 3 1UBISUOD = B 1D9FUT) JUBISUOD
} (xeraya)sr asta {
foz15da1GuUIMP
- BT109JUT 3 1UBISUOD = B 129JUT ¥ 1UBISUOD
} (xeroyaj)sr
} (utmr > doasuimr) st
/¥
owery awr) 8yl ur uorirsod oyl 01
burproooe gojewered orjoury 8yl 1snlpy x
]
{
f9z15da1GuTMp- = 8z15daIGuUTMP
} (0 > 9z15dorguImMp) I T
anfeA 1nfosqe - gy \M
fanI} = XeTayq
SUTMT / (TY 399JUT ¥ - B 109JUT ¥ IUBISU0D) = 9Z15ddIGUTMP
azrs dajs ¥ ooueisia //
‘0 = dayguImr
} (3sIT4q 38 XeTOYAi 8% ¢°0
* yuoryerndodo[qridedsngTeITUIT > \ pajoajur-aoe(d)Fr asye
/*
uorjerndod «x
a7qr1daosns Jo %0z ueyl > ST SuUaWINAds pPajdaFur
JO Joqunu oyl JI o)es uor}oajur abuey)
£/
{
{osTey xerayq
fUTMT / (OT7309JUT™) - B 309JUl 3 juUe}Su0d) = 9z15doISUIMP
az1s dajs ¥ aouelsiq //
0 = daygurmr
fonI) = 3sSIT4q
_ _} (asatjai 3%
¥°0 * ¥ uor1erndodarqridedsngTTeITUIT < Y Pa1daju] aoerd)FT
/*
uoryerndod x
21qr1daosns jo y0p ueYyl < ST Suswroads pajoajur «x
FO Joqunu oyl JFT 9)BT UOTIO9FuT abuey)
x
£AWT) "UOTIRTNWIS >> = aOﬁ
‘doys-uorTieTNUTS >> =907
} top
/*
UOTIBXBTOT pUBR UMOPYDO] 3SIMdd]S Payloous x
=
‘W1INIGN3, = 9071
0Lt ‘0 :azrgdajsuimp
691 {9STRF :XBToYyq
891 f9sTeF :1SIT4q
£91 o :deygurmr
991 fower fowt |1
<91x ((3JBIS TBAISIUT - pud TeATdIuT) [BuTIITTAS TBATSIUT) :UIMT
791 /*
€91 ower4owr|T Aq pauryop Sowery awr) [[NF oyl
91 JOAO YOBDILS JBY) OZIS MOPUIM dY] dIBNI[E) *
191 x/
091 J019BF Y2071 //fg :owes{owT|T
6cfy uorierndogarqrideosng aoerd :y uorierndodaqrideosngrre)Turt
8S1 £BT109JUT Y JUBISUOD :9ATDSQO:1IdJUT ¥
51
9¢1 £G-90°G :TYy 309FuT
(491 £6-90°| :O[3109juT
st /x
€51 S9INT *
st UOT]BXBTOT PUB UOTIITISAT 9y} *
11 Fo siojawerd o1)aury *
ost */
671 } :parqeus :daiguo
8p1 /%
51 cowery owr) usAIb B Ul *
9F1 SajleJ 911aury uor12ajur jo abueyos e burhrdde Aq sapni x
vl UOT1BXBTOJ JO UOT}OIIIS8T 39S ‘Suswroads pajodjur «
wpl FO Joqunu JuaIInd oyl uo burpuadag :uoridriosaqg x
€p1 uorie[NUIS 9STMd1G *
241 *

£001:002:0 :TeATOIUT

{
onI) 10 19s 1[nejyaq //‘estey :bae//
arburs //‘en1y :oybuts
{
‘102508¢€Lve P39S/ /
‘g isunr
{1 :speaiyy
} 100a1p

/*

uoryernurs e dn 195 x
=/
‘,4IS, :aweu
uorjerNWIS € jo auey //

‘y uoryerndoda1qridsosng - saoerd- [opow :aydwexjrea
/x
bor 8yl 01 *
pappe ST 1ey) o[qerrea ofduexa ST SIy| x
=
}
tuoryeTNUTS
({
£0000g v uorierndogoarqridaosng
} :seoerd
{
) g
£G-90°G B 109FuUT Y
}oirre
} :sjueisuoo
} :repow

} :uorieanbTFuU0d

{
*, IPUB NdS-4IS/Tapow/ ", :woIy
} :3J0dut
19pow auo Arjoexe - jaodwy //
/%
JuaumIod ¥o0Tq
]
Juduwwod dury - //
/x
uoryeTNUIS 8SIMdals & Jo uorieInbIyuod ordwexy x
127
duwrely awr}

R uaA1d © Ul sajel d1jauDy uondajur jo adueyd e Juikjdde £q sayn1 uonexerar

vm

‘HQ UOMO1IISAT 338 AEOEAUOQA P23123JUTl JO Iaquinu jua1Ind MMH uo WE:UEM&MQ

uorjernurs asimdalg :¢ ajdurexy

—
e

183

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Contributions
	1.3 Organization of the Thesis

	2 Background and Related Work
	2.1 Petri Nets
	2.2 Extended Petri Nets
	2.3 Quantitative Petri Nets
	2.4 Coloured Petri Nets
	2.5 Coloured Quantitative Petri Nets
	2.6 Unfolding
	2.6.1 Equivalent Standard Petri Nets
	2.6.2 Unfolding Algorithm

	2.7 Simulation
	2.7.1 Mass-Action Kinetics
	2.7.2 Stochastic Simulation
	2.7.3 Deterministic Simulation
	2.7.4 Hybrid Simulation

	2.8 Reduction
	2.8.1 Pruning Clean Siphons
	2.8.2 Pruning Constant Places

	2.9 Reproducible Simulation
	2.9.1 Rules to Drive Reproducible Experiments
	2.9.2 Encoding of Simulation Experiments
	2.9.3 Adaptive Model Simulation

	2.10 Closing Remarks

	3 Configuration Language
	3.1 SPC Format
	3.2 Experiment Definition
	3.3 Main SPC Objects
	3.3.1 Import
	3.3.2 Configuration
	3.3.3 Log

	3.4 Basic definitions
	3.4.1 Value
	3.4.2 Literal
	3.4.3 Variable
	3.4.4 Object
	3.4.5 Array
	3.4.6 Range

	3.5 Expressions
	3.5.1 Arithmetic Expression
	3.5.2 Boolean Expression
	3.5.3 Comparison Expression
	3.5.4 Concatenation
	3.5.5 Precedence

	3.6 Conditional Block
	3.7 Stepwise Simulation
	3.8 Configuration Branching
	3.9 Closing Remarks

	4 Spike Architecture
	4.1 Spike Functionality
	4.2 Simulation
	4.3 Parallel Simulation
	4.4 Inter-Process Communication
	4.5 Stepwise Simulation
	4.6 Reproducible Stochastic Simulation
	4.7 Conversion
	4.8 IDD-based unfolding
	4.8.1 IDD Reduction
	4.8.2 Unfolding
	4.8.3 Algorithms
	4.8.4 The elemOf Operator and Boolean Colour Set

	4.9 Closing Remarks

	5 Use Cases
	5.1 Benchmarking
	5.2 Simulation of Adaptive Models
	5.3 Spike as a Backend Simulator for Parameter Optimization
	5.4 Closing Remarks

	6 Conclusions and Outlook
	6.1 Conclusions
	6.2 Outlook
	6.3 Availability
	6.4 Acknowledgement

	References
	Appendices
	A Grammar of Configuration Script
	A.1 Graphical notations
	A.2 Main SPC Objects
	A.3 Basic definitions
	A.4 Expressions
	A.5 Conditional Block
	A.6 onStep

	B Source Code: Heuristic Method of Parameter Optimization
	B.1 SIR Model In ANDL Format: SIR-SPN.andl
	B.2 SPC Configuration Template: SIR-CPN-spc.tmp
	B.3 Experiment Set-up in Python: optimization.py
	B.4 Genetic Algorithm Library for Python: geneticalgorithmjch.py

	C A Quick Guide to SPC

