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Abstract

Reproducibility of simulation experiments is still a significant challenge

and has attracted considerable attention in recent years. One cause of

this situation is bad habits of the scientific community. Many results are

published without data or source code, and only a textual description of

the simulation set-up is provided. Other causes are: no complete simulation

set-up, no proper output data analysis and inconsistency of published data,

which makes it impossible to compare results.

The progress of computational modelling, amount of data and complexity

of models requires designing experiments in such a way that ensures repro-

ducibility. A textual description does not provide all the needed details. A

computer code is more reliable than a textual description. It is the precise

specification that describes a simulation configuration, model, etc. When

computer code, data, models and all parameters are provided, the simulation

results become reproducible.

The main goal of this thesis is to develop a tool that ensures reproducibility

and efficient execution of simulation experiments, often involving many indi-

vidual simulation runs. The tool should support a wide range of application

scenarios, where the typical scenario is simulation of biochemical reaction

networks, which are represented as (coloured) Petri nets interpreted in the

stochastic, continuous or hybrid paradigm. The model to be simulated can

be given in various formats, including SBML.

The result is a command line tool called Spike, which can be used for

various scenarios, including benchmarking, simulation of adaptive models and

parameter optimization. It builds on a human-readable configuration script

SPC, supporting the efficient specification of multiple model configurations

as well as multiple simulator configurations in a single configuration file.

Keywords: continuous, stochastic, hybrid, coloured (hierarchical) Petri

nets; parallel simulation; configuration; reproducibility; parameter scanning;

parameter optimization; simulation of adaptive models





Abstrakt

Die Reproduzierbarkeit von Simulationsexperimenten ist nach wie vor eine

große Herausforderung und hat in den letzten Jahren viel Aufmerksamkeit

bekommen. Eine Ursache für diese Situation sind schlechte Gewohnheiten

der wissenschaftlichen Gemeinschaft. Aus irgendwelchen Gründen werden

viele Ergebnisse ohne Daten und Quellcode veröffentlicht und es wird nur

eine textliche Beschreibung des Simulationsaufbaus gegeben. Andere Ursa-

chen sind: kein ordnungsgemäßer Simulationsaufbau, keine ordnungsgemäße

Analyse der Ausgabedaten und Inkonsistenz der veröffentlichten Daten (was

einen Vergleich der Ergebnisse unmöglich macht).

Der Fortschritt der computergestützten Modellierung, die Datenmenge und

die Komplexität der Modelle erfordern es, Experimente so zu gestalten,

dass die Reproduzierbarkeit gewährleistet ist. Eine textliche Beschreibung

liefert nicht alle Details. Ein Computercode ist zuverlässiger als eine Textbes-

chreibung. Es bedarf einer genauen Spezifikation einer Simulationskonfigura-

tion, eines Modells usw. Durch die Bereitstellung von Computercode, Daten,

Modellen und allen Parametern werden die Ergebnisse einer Simulation

reproduzierbar.

Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das die Re-

produzierbarkeit und effiziente Durchführung von Simulationsexperimenten,

die oft viele einzelne Simulationsläufe umfassen, gewährleistet. Das Werkzeug

soll vielfältige Anwendungsszenarien unterstützen, wobei das typische Szena-

rio die Simulation biochemischer Reaktionsnetzwerke ist, die als (farbige)

Petrinetze dargestellt werden, die im stochastischen, kontinuierlichen oder

hybriden Paradigma interpretiert werden. Das zu simulierende Modell kann

in verschiedenen Formaten, einschlielich SBML, vorliegen.

Das ergebnis ist ein Kommandozeilenwerkzeug namens Spike, das in verschie-

denen Anwendungsfällen eingesetzt werden kann, darunter Benchmarking,

Simulation adaptiver Modelle und Parameteroptimierung. Es basiert auf

einem für Menschen lesbaren Konfigurationsskript SPC und unterstützt

die effiziente Spezifikation mehrerer Modellkonfigurationen sowie mehrerer

Simulatorkonfigurationen in einer einzigen Konfigurationsdatei.

Schlagwörter:: kontinuierlich, stochastisch, hybrid, farbig (hierarchisch)

Petri Netze; Parallelsimulation; Konfiguration; Reproduzierbarkeit; Parame-

terscannen; Parameteroptimierung; Simulation von adaptiven Modellen
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Introduction

1.1 Motivation

Petri nets [Mur89] have been proven to be useful for modelling a wide range of applica-

tions, including, among others, biochemical networks [GHL07]. They provide an intuitive

graphical representation and a well-developed mathematical theory for system analysis.

In addition, Petri nets might bridge the gap between computational theoretician and

experimentalist. This thesis focuses on quantitative Petri nets [GHL07] (stochastic,

continuous and hybrid Petri nets) and their high level representations, coloured Petri

nets [Liu12], which are used as modelling paradigms.

Simulation of biochemical models can be time and memory consuming. Thus, sim-

ulations should be delegated for performance reasons to be executed on a server.

Additionally, when experiments require running multiple simulations, the time spent

can be particularly long, when the individual simulations are merely executed one after

another. Frequently, it is required to prepare a set of simulation experiments in order

to find appropriate model parameters (e.g., initial conditions, kinetic parameters) or

simulator options (e.g., simulator type, length of simulation traces, resolution of the

traces recorded). Manual preparation of a new simulation run for each new model

and/or simulator configuration is time consuming and potentially error-prone. The

reproducibility of the entire experiment suffers if one of the runs is not well documented.

There are a couple of tools allowing the simulation of Petri net models, however

most of them have a graphical user interface (GUI) which usually involves additional

dependencies. Application tools with a GUI are not well suitable as a simulation

process to be executed on a server. Running simulation on a server helps to save user

resources and speed up simulations. On a server, a user can schedule multiple simulation

experiments which can be executed simultaneously or sequentially. Often, a user wants

to check how a model behaves for different sets of parameters. In this case, a user is

forced to make changes in the model using an appropriate tool. Each time a model is

changed, the simulation needs to be repeated. To compare how a model behaves under

different types of simulation algorithms (stochastic, continuous, hybrid), it is necessary
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to configure, each time separately, the simulation and the model. This scenario can

require to use separate tools for different types of simulations. To ensure reproducible

simulations, all parameters of the model and simulation configurations have to be saved.

To simplify the workflow, the configuration of the model and the configuration of the

simulation should be supported by a script language, which allows for easy modification

of any model and simulation parameters.

Simulation of dynamically changing processes (which change their dynamic behaviour

in response to the occurrence of external events) require an ongoing adaptation in terms

of time, quality, and flexibility. Therefore, to simulate such processes, it is necessary to

adjust the model according to its current simulation state during the simulation run

time. This allows to improve the quality of the simulation results. Such functionality

requires the implementation of a stepwise simulation that will allow the simulation of

adaptive models.

So far there is no tool that would allow easy configuration of simulation experiments

with support of a wide range of Petri nets classes and simulation types. However, there are

tools that partially cover some of these issues. For example, the tool COPASI [HSG+06]

supports stochastic, deterministic and hybrid simulation of biochemical networks. It

allows the definition of the export of multiple results. There is no direct support for

Petri nets. Configuration files follow a markup language format, which hinders their

readability by a user. In turn the tool Renew (The Reference Net Workshop) [KWD+04]

supports modelling and simulation of models designed with the help of the reference

nets formalism which is an extension of Petri nets, where tokens can be references to

arbitrary objects, especially other nets, thus allowing nested net models. Renew allows

running simulation on a server [PJC14], however its core does not support quantitative

net classes (stochastic, continuous and hybrid).

1.2 Objectives and Contributions

The developed tool named Spike is part of the PetriNuts family of tools for dealing

with a variety of related models, for which Petri nets are used as an umbrella modelling

paradigm. The PetriNuts framework consists of tools for modelling (Snoopy [HHL+12]),

analysing (Marcie [HRS13], Charlie [HSW15]), simulating (Snoopy, Marcie, Spike [CH19])

and animating (Snoopy, Patty [Sch08]).

Spike has been designed to address the following objectives:

• Reproducible simulation experiments - the amount of data produced by simulation

experiments and the complexity of models requires to design an experiment in such

way which ensures reproducibility. By providing computer code, data, models and

any parameters to configure model and/or the simulators involved, it is possible

to reproduce results of a simulation. Encoding of a model, which is de facto a

structure description that can comprise initial conditions and kinetic values, does

not sufficiently describe experiments. An experiment should be fully encoded if it
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is meant to be reproducible. The encoding should be human-readable and allow

the creation of easily modifiable configuration scripts without any special tools.

• Efficient simulation - a simulation experiment can consist of a set of separate

simulations. To perform simulation efficiently, the set of simulations should be set

up in an automatized way and be executed sequentially or in parallel, depending

on available resources.

• Simulation of stochastic, continuous and hybrid Petri nets, coloured and uncoloured

ones, as supported by the PetriNuts framework.

• Support of a variety of use cases, including: benchmarking, simulation of adaptive

models, scanning of model parameters and simulation options, model parameter

optimization.

To achieve this, the main contributions of this thesis are:

• Design of a new language SPC to specify reproducible simulation experiments.

• Development of a new tool, named Spike, to process SPC files.

Spike builds on a human-readable configuration script, supporting the efficient

specification of multiple model configurations as well as multiple simulator config-

urations in a single file. Reproducibility is ensured by the requirement to provide

unambiguous parameter values of a model and the simulation engine.

• Support of a variety of use cases, including:

– Scanning of model parameters and simulation options - when evaluating a

configuration, it can be split into separate branches. Branching processes are

triggered by defining a set of configuration parameters to scan. A set of values

is assigned to each parameter. For each value in the set, a new configuration

branch is created. Such a feature allows a configuration script to be split into

separate branches, what results in multiple simulation configurations. Each

configuration branch is treated as a separate process and can be executed in

parallel or sequentially.

– Benchmarking - Spike supports three types of simulations: stochastic, de-

terministic and hybrid . Depending on the configuration, a given model is

simulated according to the specified simulation type, regardless of the model

type. Such functionality allows designing benchmarking experiments, the

main goal of which is to compare the performance of the model and simulation

algorithms.
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– Simulation of adaptive models - Through stepwise simulation, Spike allows

for the dynamic adaptation of the model during the simulation runtime. The

stepwise simulation advances in a given time interval and the parameters

(any constants to specify initial markings, arc weights, kinetic parameters) of

the model and its state can be adjusted/adapted after each simulation step.

The adaptation is based on an evaluation of boolean conditions, that may

involve the current state of the model and the simulation.

– Spike as a backend simulator for parameter optimization - Spike features such

as parameter scanning and parallel execution of configuration branches make

it suitable for performing simulation tasks, while an optimization strategy

must be implemented separately.

Coloured models can be unfolded using IDD-based unfolding, which is integrated

in the internally developed dssd util library. The dssd util library allows Spike to

import and export PN models in various formats (e.g. ANDL, CANDL, SBML, PNML).

The dssd util library comes with the stand-alone tool ANDLconverter, which allows

unfolding coloured Petri nets and prune constant places and clean siphons.

To perform a simulation, Spike uses an internally developed simulation library; it is

capable to run three basic types of simulations: stochastic, deterministic and hybrid,

where each comes with several algorithms.

Both libraries are integral parts of the PetriNuts framework and are used by Snoopy,

Marcie and Spike.

1.3 Organization of the Thesis

Chapter 2: Background and Related Work - provides the necessary definitions of

the used Petri net classes and briefly introduces the general paradigm of modelling with

Petri nets, starting with the definition of basic PN through extended and quantitative

Petri nets, i.e. XPN , SPN , CPN , HPN , and ending with their coloured counterparts

SPN C , CPN C , HPN C . By the use of examples it shows how the developed models

behave under three types, i.e. deterministic, stochastic and hybrid simulation.

Chapter 3: Configuration Language - describes the structure and grammar of

the Spike configuration script language (SPC), the main goal of which is to efficiently

support reproducible simulation experiments by setting up model parameters and

simulation options.

Chapter 4: Spike Architecture - provides general information about architecture

and functionality of Spike. Additionally, it describes implementation aspects of the

unfolding of coloured Petri nets by the use of an unfolding engine based on Interval

Decision Diagrams.
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Chapter 5: Use Cases - illustrates the functionality of Spike based on three use

cases:

• benchmarking - to compare the computational complexity of models and simulation

algorithms,

• simulation of adaptive models - stepwise simulation as a discrete-time adaptive

modelling system,

• Spike as a backend simulator for simulative parameter optimization.

Chapter 6: Conclusions and Outlook - summarizes the achieved results, en-

countered issues and provides some ideas for future research.
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Background and Related Work

Petri nets (PN ), originating from the dissertation of Carl Adam Petri [Pet62], provide

a modelling paradigm, which fits well for parallel, concurrent, asynchronous and non-

deterministic systems. This makes PN a proper tool for modelling biological systems.

However, standard PN do not easily scale. To overcome this issue, Coloured Petri nets

(PN C) ware introduced as a suitable tool for modelling and analysing biological systems.

PN Cs easily scale and allow for modelling huge systems without loss of the analysis

capabilities of standard PN . This is possible through automatic unfolding of a PN C
to its corresponding uncoloured PN . This is a necessary step to apply analysis and

simulation techniques as most of them require standard Petri nets. Applying simulation

techniques allows for analysis of dynamic behaviours of a modelled system. It is an

essential tool for studying biochemical systems. Simulation types are divided into three

main classes: deterministic, stochastic and hybrid. Which one will be applied depends

on the model as well as the properties of interest.

After unfolding, the number of nodes can be much larger than in its coloured

counterpart. Reduction of a model may yield a more optimized (in terms of size) model,

provide insights into structural properties and reduces a simulation overhead. The main

challenge of a reduction is to preserve the main three properties of a PN model: liveness,

reversibility and boundedness. The two simplest techniques that preserve the main

three properties are pruning of clean siphons and constant places.

All of this should result in reproducible experiments. An experimenter should design

an experiment in a way that ensures reproducibility by obtaining consistent results

when using the same input data.

2.1 Petri Nets

A Petri net is a directed bipartite graph. Nodes in a PN are represented by transitions

(i.e. events that may occur) and places (i.e. local states). They are connected with

weighted arcs. The places represent pre- and/or post-conditions (described by the arcs)

for the transitions. They can contain a discrete number of marks called tokens. The
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initial distribution of tokens (the initial marking) of all places represents the initial

state of a system (network, model). In systems biology, places and transitions often

represent species and biochemical reactions (or transport steps), respectively. The

number (concentrations) of species is represented by tokens, while stoichiometries are

represented with the help of weighted arcs. The following formal notations are used

throughout this thesis.

Notation 1. Formal notations:

m(p) - the current marking of a place p;

•t - set of pre-places of a transition t;

t• - set of post-places of a transition t;

•p - set of pre-transitions of a place p;

p• - set of post-transitions of a place p;

Definition 1 (Petri net). A Petri net is a 5-tuple N = < P, T,A, f,m0 >, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• P ∩ T = ∅.

• A ⊆ (P × T ) ∪ (T × P ) is a finite set of directed arcs.

• f : A→ N is a function that assigns a positive integer number (weight) to each
arc a ∈ A.

• m0 : P → N0, is a function that assigns a non-negative integer number to each
place as the initial marking.

The dynamic behaviour of a PN is characterized by the enabling and firing of

transitions. A transition t is enabled if the marking of each of its pre-places •t is at

least equal to the weight of the corresponding arc (the arc connecting the place with

the transition). If a transition is enabled, it can fire and change the markings on its pre-

places •t and post-places t• by subtracting and adding tokens, respectively. The amount

of removed or added tokens depends on the arcs weights connecting the transition t

with its pre- and post-places. By firing of a transition a new state of the system is set

(achieved). The enabling and firing of a transition is determined by the following two

definitions.

Definition 2 (Transition enabling). A transition t ∈ T is enabled in a marking m,
denoted by m[t〉, if and only if the following condition is satisfied:
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• m(p) ≥ f(p, t), ∀p ∈ •t.

Definition 3 (Transition firing). A transition t ∈ T enabled in a marking m, denoted
by m[t〉, can fire and reach a new marking m′ denoted by m[t〉m′, with:

• m′(p) = m(p)− f(p, t), ∀p ∈ •t.

• m′(p) = m(p) + f(t, p), ∀p ∈ t•.

Example 2.1. Figure 2.1 builds on the SIR model [HLM14], a simple compartmental

model used to model an epidemic process. The model consists of three compartments

(susceptible population, infected population and recovered population) and two events

(Infect and Recover), which are represented by places and transitions, respectively. In

the example as considered here, an epidemic spreads separately in two populations, A

and B. An individual from a given population may belong to one of three sub-populations

(states): Susceptible, Infected and Recovered. Due to the occurrence of the infection

events (represented by the transition Infect) an individual becomes infected and is

shifted from the SusceptiblePopulation to the Infected sub-population. The infection

events may occur as long as there are individuals in the Susceptible and Infected sub-

populations. Similarly, due to the occurrence of the second event (represented by the

transitions Recover) an individual recovers and is shifted from the Infected to the

Recovered sub-population. The recovery events occur as long as there is an individual

in the Infected sub-population.

SusceptiblePopulation_B Recovered_BInfected_B Recover_BInfect_B

2
1e5

SusceptiblePopulation_A Recovered_AInfected_A Recover_AInfect_A

2
5e4

Figure 2.1: SIR model, as PN ; where - transition, - place, - directed arc.

2.2 Extended Petri Nets

Extended Petri net XPN is an extension of PN , where the set of arcs A is extended

by four special arcs:

1. read arc - does not change the marking after firing of a transition and enables

it, if the amount of tokens is greater or equal to the arc weight;
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2. inhibitor arc - does not change the marking after firing of a transition and

enables it, if the amount of tokens is less than the arc weight;

3. equal arc - does not change the marking after firing of a transition and

enables it, if the amount of tokens is equal to the arc weight (the equal arc can be

replaced by a combination of the two arcs, read and inhibitor);

4. reset arc - changes the marking on the tested place by removing all tokens

upon transition firing and does not add any additional restrictions to enable the

transition.

All four arcs connect a place with a transition.

Definition 4 (Extended Petri net). An extended Petri net is a 5-tuple N = <
P, T,A, f,m0 >, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• P ∩ T = ∅.

• A = Ad ∪Ar ∪Ai ∪Ae ∪Az is a finite set of arcs defined as the union of:

1. Ad ⊆ (P × T ) ∪ (T × P ) is a finite set of directed arcs,

2. Ar ⊆ (P × T ) is a finite set of read arcs,

3. Ai ⊆ (P × T ) is a finite set of inhibitor arcs,

4. Ae ⊆ (P × T ) is a finite set of equal arcs,

5. Az ⊆ (P × T ) is a finite set of reset arcs.

• f : A→ N is a function that assigns a positive integer number to each arc a ∈ A
depending on the arc type. If an arc is not explicitly weighted, then the weight of
one is assigned:

f :



Ad → N,
Ar → N,
Ai → N,
Ae → N,
Az → {1}.

• m0 : P → N0 is a function that assigns a non-negative integer number to each
place as the initial marking.

An arc of XPN can be self-modifying, if its weight depends on the marking of a place

[Val78]. This can be restricted to a transition’s pre-place to make the dependencies

clearly visible in the net. In the end, it is no restriction at all, because one can overcome it

by adding a read arc from the needed place with an arc weight set to this place [Roh17].
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Definition 5 (Self-modifying arcs). f is a function that assigns a marking-dependent
arc weight to each arc a ∈ A depending on the arc type:

f :



Ad → D,

Ar → D,

Ai → D,

Ae → D,

Az → {1}.

where D is defined as follows: D = {dt|dt : N0
|•t| → N0, t ∈ T} is the set of all

marking-dependent arc weight functions, and f(t) = dt, ∀t ∈ T .

Example 2.2. Figure 2.2 presents a part of the model in Figure 2.1 as XPN . Its

purpose is to demonstrate the use of special arcs. In this model an epidemic may start

if the state of a susceptible population (place SusceptiblePopulation) is at least one and

there also exists at least one infected specimen (the read arc connecting the transition

Infect with the place Infected). The process of population recovery (Recover) can

continue only up to the limited number LIMIT. After exhausting the limit, the recovery

process is blocked by the inhibitor arc connecting the transition Recover with the place

Recovered. If the limit LIMIT 2 is reached (the equal arc connecting the transition

NewEpidemic with the place Recovered), a new epidemic may start by resetting the

model to its initial state (with the help of reset arcs).

SusceptiblePopulation_A Infected_A

Recover_AInfect_A

LIMIT

SP

LIMIT_2SP

NewEpidemic

1

Recovered_A

Figure 2.2: SIR model, as XPN ; where SP - constant, which represents the initial state
of a susceptible population, LIMIT - weight of the inhibitor arc, LIMIT 2 - weight of the
equal arc, - transition, - place, - directed arc, - reset arc, - read arc,
- equal arc, - inhibitor arc.

2.3 Quantitative Petri Nets

Quantitative Petri net is an extension of Petri net, where each transition is connected

with an arbitrary mathematical function (rate function) that defines the firing rate

of a transition. The rate usually depends on the system state, may involve kinetic

parameters (constants) and often follows specific kinetic patterns (e.g. mass/action

kinetics). To prevent that net structure and rate functions diverge, a constraint rule has

been adopted. The rule states that only pre-conditions (pre-places) of a given transition

can be used as variables.
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Definition 6 (Quantitative Petri net). A quantitative Petri net is a 6-tuple
N = < P, T,A, f, v,m0 >, where:

• < P, T,A, f,m0 > is a Petri net (Definition 1).

• v : T → H is a function which assigns a firing rate function ht to each transition t

∈ T , whereby H = {ht|ht : R+|•t|
0 → R+

0 , t ∈ T} is the set of all marking dependent
firing rate functions, and v(t) = ht, ∀t ∈ T .

The interpretation of the firing rate determines three types of quantitative Petri

nets [Her13]: stochastic, continuous and hybrid.

Stochastic Petri net - SPN . In a SPN model, a place contains a discrete number of

tokens (markings) (discrete place). Markings represent a system state whereas transitions

are associated with events of a Markov process. The probability of an event occurrence

is equal to a transition firing rate (stochastic transition). This allows representing

SPN behaviour as a continuous time Markov chains (CTMC) and apply stochastic

simulation algorithms. Furthermore, a time delay can be assigned to transition firing

and, depending on the interpretation, it can be a deterministic delay or stochastic delay

where the delay is randomly exponentially distributed. This leads to extended stochastic

Petri net XSPN as defined in [MRH12].

Definition 7 (Extended stochastic Petri net). A Stochastic Petri net is a 6-tuple
N = < P, T,A, f, v,m0 >, where:

• < P, T,A, f, v,m0 > is a XPN (Definition 4).

• T = Tstoch ∪ Timmediate ∪ Ttimed ∪ Tscheduled is a finite set of transitions defined
as the union of:

1. Tstoch is a finite set of stochastic transitions, that fire stochastically after an
exponentially distributed waiting time,

2. Timmediate is a finite set of immediate transitions, that all fire with waiting
time zero,

3. Ttimed is a finite set of deterministically delayed transitions, that fire after a
deterministic time delay

4. Tscheduled is a finite set of scheduled transitions, that fire at predefined time
points.

• v is a set of functions v = {g, w, d, c} where :

1. g : Tstoch → Hs is a function that assigns a stochastic hazard function hst to

each transition t ∈ Tstoch, whereby Hs = {hst |hst : R|
•t|
0 → R+

0 , t ∈ Tstoch} is
the set of all stochastic hazard functions, and g(t) = hst , ∀t ∈ Tstoch,
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2. w : Timmediate → Hw is a function that assigns a weight function hw
to each immediate transition t ∈ Timmediate, such that Hw = {hwt |hwt :

R|
•t|
0 → R+

0 , t ∈ Tim} is the set of all weight functions, and w(t) = hwt , ∀t ∈
Timmediate,

3. d : Ttimed ∪ Tscheduled → R+
0 , is a function that assigns a constant waiting

time to each deterministically delayed transition.

4. c : Tscheduled → R+
0 , is a function that assigns to each scheduled trans-

ition three real values representing the beginning of the firing interval, the
repetition value, and the end of the firing interval; respectively.

Continuous Petri net - CPN . In a CPN model, a place contains a continuous

number of markings (continuous place) whereas a transition rate is associated with the

continuous change of markings of the pre- and/or post-conditions (places). This allows

CPN to be represented as ordinary differential equations (ODEs) and carrying out a

numerical integration (finding numerical approximations to the solutions of ODEs).

Hybrid Petri net - HPN . A HPN model is a fusion of the SPN and CPN
modelling approach. Within the same model, different types (discrete and continuous)

of places and transitions can exist side by side with some restrictions on the connection

between them [HH12]. A simulation has to apply a stochastic or continuous algorithm

depending on the type of subnet. The continuous subnet usually represents events that

occur frequently and the stochastic subnet represents less frequent events. In relation

to this, the continuous simulation will be applied most of the time and occasionally,

depending on the schedule of stochastic event occurrence, the stochastic one [HH18].

Example 2.3. Figure 2.3 presents the quantitative extension of the model in Figure

2.1 with additional rate functions that define transition firing rates. The rate functions

control how quickly a disease spreads. A rate is expressed by mass-action kinetics

pattern: MassAction(k); where k is a kinetic parameter. For more information on the

mass-action kinetics pattern, see Subsection 2.7.1 of this thesis.

SusceptiblePopulation_B Recovered_BInfected_B Recover_BInfect_B

2
1e4

MassAction(k_infect_b) MassAction(k_recover_b)

SusceptiblePopulation_A Recovered_AInfected_A Recover_AInfect_A

2
5e4

MassAction(k_recover_a)MassAction(k_infect_a)

Figure 2.3: SIR model as SPN .
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Example 2.4. Figure 2.4 presents the extended quantitative model as stochastic XPN .

The model is a combined variation of the SIR models in Figures 2.2 and 2.3, where rate

functions control how quickly a disease spreads.

SusceptiblePopulation_A Infected_A

Recover_AInfect_A

LIMIT

LIMIT_2SP_A
NewEpidemic_A

1

Recovered_A

SP_A

MassAction(1)

MassAction(k_infect_a) MassAction(k_infect_a)

SusceptiblePopulation_B Infected_B

Recover_BInfect_B

LIMIT

LIMIT_2SP_B
NewEpidemic_B

1

Recovered_B

SP_A

MassAction(1)

MassAction(k_infect_b) MassAction(k_infect_b)

Figure 2.4: Variation of the SIR model as XSPN ; where SP - constant which represents
an initial state of a susceptible population, LIMIT - weight of the inhibitor arc, LIMIT 2 -
weight of the equal arc, - transition, - place, - directed arc, - reset arc, -
read arc, - equal arc, - inhibitor arc.

2.4 Coloured Petri Nets

Coloured Petri net PN C [GL79, Kur81] is an extension that preserves properties of

standard PN and combines the power of graphical modelling with the expressiveness of

a programming language. This combination is the main advantage of PN C and permits

the modelling of complex systems in a compact and structured way. Like PN , it consists

of places and transactions connected by arcs. The main addition of PN C is enhanced by

discrete data types. In a programming language, a data type is a set of values that obey

some attributes [CW85] from which an expression (e.g. user-defined functions) may take

its values. In PN C , discrete data types are represented by colour sets. The main basic

data types are: integer, Boolean, string and enumeration. They can be used to define

expressions (colour expressions) that are used to define multisets, initial markings, arcs

inscriptions, and guards. A colour set is assigned to each place, which may contain

distinguishable tokens. As a place can contain multiple numbers of tokens of the same

colour, the best way to describe them is a multiset. The multiset is a colour expression

over the colour set assigned to the place. A guard is associated with each transition.

The guard is a Boolean expression over constants, variables or functions. It enables an

associated transition only if the expression evaluates to true. Additionally, an expression

is assigned to each arc which defines a multiset over the colour set of the connected

place [Liu12, LHG19]. In addition to improved readability, PN C allows to easily scale a

model by use of coloured expressions and adding or removing colours from colour sets.
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Definition 8 (Multiset). A multiset SMS over S is a function m : S → N0 that maps
each element s ∈ S onto a non-negative integer m(s) ∈ N0. It is denoted by a formal
sum m =

∑
s∈Sm(s)‘s, where:

• S is a finite, non-empty set.

Definition 9 (Multiset operations). Let S be a finite, non-empty set, and ∀m1,m2,m ∈
SMS. Addition (+), scalar multiplication (∗), comparison (≤), substraction (−) and
size |m| are defined as follows:

1. (m1 +m2)(s) = m1(s) +m2(s), ∀s ∈ S.

2. (n ∗m)(s) = n ∗m(s) ∀n ∈ N0, ∀s ∈ S.

3. m1 ≤ m2 ⇔ m1(s) ≤ m2(s), ∀s ∈ S.

4. (m2 −m1)(s) = m2(s)−m1(s), ∀s ∈ S and m1 ≤ m2.

5. |m| =
∑

s∈Sm(s).

Example 2.5. Let a color set be S = {a, b, c}, then m = 1‘a+2‘b+4‘c is a multiset

over S, which contains 1 occurrence of element a, 2 occurrences of element b and 4

occurrences of element c, i.e. m(a) = 1, m(b) = 2 and m(c) = 4.

Definition 10 (Coloured Petri net). A coloured Petri net is an 8-tuple
N = < P, T,A,

∑
, C, g, f,m0 >, where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• P ∩ T = ∅

• A ⊆ (P × T ) ∪ (T × P ) is a finite set of directed arcs.

•
∑

is a finite, non-empty set of colour sets.

• C : P →
∑

is a colour function that assigns to each place p ∈ P a colour set
C(p) ∈

∑
.

• g : T → EXP is a guard function that assigns to each transition t ∈ T a guard
expression of the Boolean type.

• f : A→ EXP is an arc function that assigns to each arc a ∈ A an arc expression
of a multiset type C(p)MS, where p is the place adjacent to the arc a.

• m0 : P → EXP is an initialization function that assigns to each place p ∈ P an
initialization expression of a multiset type C(p)MS.
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After unfolding a PN C N =< P, T,A,
∑
, C, g, f,m0 >, an uncoloured place instance

p(c) represents one colour c ∈ C(p) from colour set C(p) associated with a coloured

place p ∈ P . The set of all instances of a place p(c) of p is defined as IP (p). The joined

set of all IP (p) of all places p ∈ P is defined as IP .

Definition 11 (Place instance). A place instance p(c) is a pair (p, c) with p ∈ P and
c ∈ C(p).

Each expression (a guard of a transition and expressions on its adjacent arcs)

associated with a transition needs to be evaluated. If the expressions involve a set of

variables, then for each variable V ar(t) associated with transition t ∈ T a binding

[JKW07] must be applied. Through the binding b to each variable v ∈ V ar(t) a value of

a suitable data type is assigned. After unfolding, each uncoloured transition instance t(b)

represents one binding b ∈ B(t) from the transition binding set B(t) (which represents

all bindings of given transition). The set of all transition instances t(b) of t is defined as

IT (t). The joined set of all IT (t) of all transitions t ∈ T is defined as IT .

Definition 12 (Transition instance). A transition instance t(b) is a pair (t, b) with
t ∈ T and b ∈ B(t).

A transition instance t(b) is enabled if the guard g(t) and the adjacent arc f(p, t)

expressions evaluates to true. The enabled transition instance t(b) can fire only if

pre-places have enough tokens of given colours that are denoted by arc expressions after

evaluation for a given binding.

Definition 13 (Transition instance enabling). A transition instance t(b) ∈ IT is
enabled in a marking m, denoted by m[t(b)〉, if and only if the following conditions are
satisfied:

1. g(t) 〈b〉 = true,

2. m(p) ≥ f(p, t)〈b〉, ∀p ∈ •t.

Definition 14 (Transition instance firing). A transition instance t(b) ∈ IT enabled in
a marking m may fire and reach a new marking m

′
, denoted by m[t(b)〉m′, with

m
′
(p) = m(p) + f(t, p)〈b〉 − f(p, t)〈b〉, ∀p ∈ P.

Upon firing, tokens are removed from all pre-place instances p(c) and added to all

post-place instances p(c) denoted by an arc expression .

Example 2.6. Figure 2.5 presents the coloured version of the SIR model in Figure 2.1.

The colour set Population is of the enumeration type, with two defined colours A and

B. It represents two populations and is assigned to each place. As a place may have

several tokens of different colours, the place SusceptiblePopulation is initialized with

the multiset expression 5e4‘A++1e5‘B over the colour set Population. In this case, the

place contains 5e4 tokens of colour A and 1e5 tokens of colour B making in total 1.5e5

tokens. Similarly, the place Infected is initialized with one token of each colour from

Population, which describes the expression 1‘all.
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1.5e5 x 2‘x x x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

RecoverInfect

5e4‘A++

1e5‘B 1‘all()

Population

Figure 2.5: SIR model, as coloured PN . The colour definitions are as follows: colour set:
enum Population = {A,B}; variable: x of type Population.

2.5 Coloured Quantitative Petri Nets

An extension of PN C is the coloured quantitative Petri net. Similar like for the quant-

itative PN , a rate function is assigned to each transition - it sets a delay (temporize

transition) or a probability (immediate transition) of a transition firing. Depending

on the interpretation, this allows to define coloured stochastic Petri nets (SPN C) and

coloured continuous Petri nets (CPN C) [Liu12]. The fusion of SPN C and CPN C yields

to coloured hybrid Petri nets (HPN C) [HLR+18].

Definition 15 (Coloured quantitative Petri net). A coloured quantitative Petri net is
a 9-tuple N = < P, T,A,

∑
, C, g, f, v,m0 >, where:

• < P, T,A,
∑
, C, g, f,m0 > is a coloured Petri net.

• v : IT → H is a function which assigns a firing rate function ht(b) to each transition

instance t(b) ∈ IT (t), ∀t ∈ T , whereby H = {ht(b)|ht(b) : R+|•t(b)|
0 → R+

0 , t ∈ T} is
the set of all firing rate functions, and v(t(b)) = ht(b), ∀t(b) ∀t ∈ T .

The rate function can be colour-dependent and therefore rate functions can vary

between transition instances.

Example 2.7. Figure 2.6 presents the quantitative extension of the model in Figure

2.5 with additional colour-dependent rate functions e.g. [x=A] : MassAction(k); where

the type of variable x is the colour set Population, k is the kinetic parameter and

the equation x = A determines the dependence on the colour. Rate functions of both

transitions are colour-dependent and follow specific kinetic patterns, mass-action. The

parameters of the mass-action rate reactions are parametrized by kinetic parameters

(crisp values) which depend on the colour value, e.g. [x=A] MassAction(k infect a) ++

[x=B] MassAction(k infect b). If the colour value is A, then MassAction is applied with

the kinetic parameter k infect a; similarly for the value B. In the model the standard

arcs connect transitions with pre- and post-places.

Example 2.8. The model in Figure 2.7 consists of continuous nodes, and it is derived

by a straightforward conversion of the model in Figure 2.6.

Example 2.9. Figure 2.8 presents a hybrid version of the model in Figure 2.6. For the

purpose of this example, the model is statically partitioned and consists of two clusters
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1.5e5 x 2‘x x x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

RecoverInfect

5e4‘A++

1e5‘B 1‘all()

Population

[x=A] : MassAction(k_infect_a)

[x=B] : MassAction(k_infect_b)

[x=A] : MassAction(k_recover_a)

[x=B] : MassAction(k_recover_b)

Figure 2.6: SIR model, as coloured SPN ; where - stochastic transition, - discrete
place, - directed arc. A more flexible solution to specify colour-dependent rate functions
can be found in Section 4.8.

1.5e5 x 2‘x x x

x

SusceptiblePopulation RecoveredAndImmuneInfected

PopulationPopulation

RecoverInfect

5e4‘A++

1e5‘B 1‘all()

Population

[x=A] : MassAction(k_infect_a)

[x=B] : MassAction(k_infect_b)

[x=A] : MassAction(k_recover_a)

[x=B] : MassAction(k_recover_b)

Figure 2.7: SIR model, as coloured CPN ; where - continuous transition, - continuous
place, - directed arc.

(subnets), continuous and stochastic. These two parts model the infection and recovery

process, respectively.

1.5e5 x 2‘x x x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

RecoverInfect

5e4‘A++

1e5‘B 1‘all()

Population

[x=A] : MassAction(k_infect_a)

[x=B] : MassAction(k_infect_b)

[x=A] : MassAction(k_recover_a)

[x=B] : MassAction(k_recover_b)

Figure 2.8: SIR model, as coloured HPN ; where - stochastic transition, - continuous
transition, - discrete place, - continuous place, - directed arc.

2.6 Unfolding

Currently, unfolding a PN C (with finite discrete colour sets) to its corresponding

uncoloured PN is a necessary step to apply analysis and simulation techniques as most

of them require standard Petri nets. At this step each colour of a place and each binding

of a transition is unfolded to a place and transition instance, respectively.

2.6.1 Equivalent Standard Petri Nets

The equivalent standard PN of a PN C with finite colour sets is defined by the Definition

16 [Jen92].
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Definition 16 (Unfolded Petri net). Let N = < P, T,A,
∑
, C, g, f,m0 > be a coloured

Petri net, its unfolded Petri net N∗ = < P ∗, T ∗, A∗, f∗,m∗0 > is defined by:

1. P ∗ = IP .

2. T ∗ = IT .

3. A∗ = {(p(c), t(b)) ∈ P ∗ × T ∗|(f(p, t)〈b〉)〈c〉 > 0} ∪
{(t(b), p(c)) ∈ T ∗ × P ∗|(f(t, p)〈b〉)〈c〉 > 0}.

4. ∀(p(c), t(b)) ∈ A∗ : f∗(p(c), t(b)) = (f(p, t)〈b〉)〈c〉,
∀(t(b), p(c)) ∈ A∗ : f∗(t(b), p(c)) = (f(t, p)〈b〉)〈c〉.

5. ∀p(c) ∈ P ∗ : m∗0(p(c)) = m0(p)〈c〉.

1. The places of the Petri net N∗ correspond to the place instance p(c) ∈ IP in

the coloured Petri N . This means splitting of each coloured place p ∈ P into as

many uncoloured places p∗ ∈ P ∗ as there are colours c ∈ C(p). This allows for

distinguishing coloured tokens (the colours are lost after translation) as they are

assigned to different places in the Petri net N∗.

2. The transitions of the Petri net N∗ correspond to each binding (transition instance)

t(b) ∈ IT in the coloured Petri N . This means splitting of each coloured transition

t ∈ T into as many uncoloured transitions t∗ ∈ T ∗ as there are bindings b ∈ B(t).

3. An arc connecting p(c) with t(b) exists iff an occurrence of t with the binding b

removes at last one coloured token c from p, i.e. (f(p, t)〈b〉)〈c〉 > 0. Analogously,

an arc connecting t(b) with p(t) exists iff an occurrence of t with the binding b

adds at last one coloured token c to p, i.e. (f(t, p)〈b〉)〈c〉 > 0.

4. The weight of the arc connecting p(c) with t(b) is the number of the c tokens

(f(p, t)〈b〉)〈c〉 which an occurrence of t with the binding b removes from p. Ana-

logously, the weight of the arc connecting t(b) with p(c) is the number of the c

tokens (f(t, p)〈b〉)〈c〉, which an occurrence of t with the binding b adds to p.

5. The number of initial tokens of place p(c) ∈ P ∗ is equal to the number of the c

tokens m0(p)〈c〉 of place p ∈ P .

The above definition does not include PN C with special arcs and any time informa-

tion. If PN C contains special arcs, then the unfolded counterparts need to be of the

same types. Likewise, if PN C contains time information, then it must be added to the

unfolded transitions.
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2.6.2 Unfolding Algorithm

In [Liu12] an unfolding algorithm for PN C is proposed. To be efficient, the Algorithm 1

may adopt the following optimization techniques:

• optimization techniques for transition instance computation: constraint satisfaction

approach, partial binding - partial test principle, merging identical patterns and

the fewer-colours-first policy,

• removal of false guarded transitions; during binding process (not at the end of the

unfolding), transition instances are removed if guards are evaluated to be false,

• removal of isolated places or transitions; during the binding process, isolated

places and transitions are removed as they do not contribute to the behaviour of

the net.

Valid bindings are computed for each transition t in the net N (Line 2). If the

variable set V (t) of the transition t is not empty and simultaneously the binding set B

is empty, then t is isolated and can be immediately excluded from the unfolded net N∗

(Lines 3-5). Then for each binding b ∈ B:

• a transition t∗(b) ∈ T ∗ is instantiated with the assigned value t(b) ∈ T (Line 7);

• for each pre-arc A(p, t) of t, its expression is evaluated with regard to binding and

then for each colour c in the evaluated expression (f(p, t)〈b〉):
- a place p∗(c) ∈ P ∗ is instantiated with the assigned value p(c) ∈ P (Line 10);

- the number of c tokens on place p is assigned to the place p∗(c) (Line 11);

- an arc expression (f∗(p∗(c), t∗(b)) is instantiated with the number of c tokens

(f(p, t)〈b〉)〈c〉 in (f(p, t)〈b〉) (Line 12);

- an arc (p(c), t(b)) is added to the net N∗ (Line 13);

• the post-arcs are created in the same way as the pre-arcs (Lines 16-23);

This algorithm does not consider PN C with special arcs and time information, but

the principles stay the same - only special arcs and time information need to be added to

the algorithm. It is a basic algorithm that says nothing about the implementation. The

description of an efficient implementation that builds on Interval Decision Diagrams

(IDD) can be found in Section 4.8.
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Algorithm 1: Unfolding a coloured Petri net [Liu12].

Input: a coloured Petri net N =< P, T,A,
∑
, C, g, f,m0 >;

Output: an unfolded Petri net N∗ =< P ∗, T ∗, A∗, f∗,m∗0 >;
1 for each transition t ∈ T do
2 B = ComputeBindings(t);
3 if V (t) is not empty and B is empty then
4 t is isolated;
5 end
6 for each binding b ∈ B do
7 t∗(b)← t(b);
8 for each pre-arc (p, t) of t do
9 for each colour c in (f(p, t)〈b〉) do

10 p∗(c)← p(c);
11 m∗0(p

∗(c))← m0(p)〈c〉;
12 f∗(p∗(c), t∗(b))← (f(p, t)〈b〉)〈c〉;
13 (p∗(c), t∗(b))← (p(c), t(b));

14 end

15 end
16 for each post-arc (t, p) of t do
17 for each colour c in (f(t, p)〈b〉) do
18 p∗(c)← p(c);
19 m∗0(p

∗(c))← m0(p)〈c〉;
20 f∗(t∗(b), p∗(c))← (f(t, p)〈b〉)〈c〉;
21 (t∗(b), p∗(c))← (t(b), p(c));

22 end

23 end

24 end

25 end
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2.7 Simulation

Modelling a system is the first step to understand it. The following step is often a

simulation, which allows for the analysis of dynamic behaviours of a modelled system.

It is an essential tool for studying biochemical systems. As presented in [Her13, Roh17],

simulation types are divided into three main classes: deterministic, stochastic and hybrid.

What kind of simulation class will be applied, depends on the model and the properties

of interest.

2.7.1 Mass-Action Kinetics

In biochemical reaction networks, the transition firing rates usually follow specific kinetic

patterns, e.g. mass-action kinetics. The mass-action law explains the relation between

the rates of reactions and the concentrations of reactants in the reaction network.

Reaction Networks. A chemical reaction network comprises a set of species (which

consists of subsets of reactants and products) and reactions. In PN , species are

represented by places and reactions by transitions. This can be clarified by considering

as example a simple reaction (2.1) and the corresponding SPN in Figure 2.9 , where

the species S1, . . . , S|S| appear in the reaction with at least one non-zero coefficient αx
or βx.

α1S1 + · · ·+ α|S|−1S|S|−1 + α|S|S|S|
k−→ β1S1 + · · ·+ β|S|−1S|S|−1 + β|S|S|S| (2.1)

r

MassAction(k)

Figure 2.9: A simple reaction as SPN .

The species of the reaction (2.1) are reactants (left-hand side of the reaction (denoted

by directed arrows)) and products (right side). The rate constant of the reaction is

denoted by k. The reaction can concisely be represented by the equivalent equation

(2.2)

|S|∑
x=1

αxSx
k−→
|S|∑
x=1

βxSx (2.2)

where αx and βx are the stoichiometric coefficients of the species Sx (that describe how

many molecules of the species Sx react in each occurrence of the reaction), and |S| is
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the number of species which is equivalent to the length of the species vector in the

matrix-vector notation. Using the matrix-vector notation, the equation (2.2) can take

the form

αS
k−→ βS (2.3)

where S = [S1, S2, . . . , S|S|]
T , α = [α1, α2, . . . , α|S|] and β = [β1, β2, . . . , β|S|].

Similarly, for a reversible reaction (2.4)

α1S1 + · · ·+ α|S|−1S|S|−1 + α|S|S|S|
k1−⇀↽−
k2
β1S1 + · · ·+ β|S|−1S|S|−1 + β|S|S|S| (2.4)

which represents forward and backward reactions that can be represented in an irre-

versible form (2.5)

α1S1 + · · ·+ α|S|−1S|S|−1 + α|S|S|S|
k1−→ β1S1 + · · ·+ β|S|−1S|S|−1 + β|S|S|S|

α1S1 + · · ·+ α|S|−1S|S|−1 + α|S|S|S|
k2−→ β1S1 + · · ·+ β|S|−1S|S|−1 + β|S|S|S|

(2.5)

where reaction rate constants are denoted by k1 and k2. This allows to derive the reaction

network (equation (2.6)) where every reaction in the reaction network is represented as

irreversible.

|S|∑
x=1

αxSx
kj−→

|S|∑
x=1

βxSx, j = 1, . . . ,M ;

where M is the number of reactions

(2.6)

Mass-Action Law. The dynamics of this reaction network can be derived by mass-

action law, which states that for an elementary reaction, that is, a reaction in which all

the stoichiometric coefficients of the reactants are one, the rate of reaction is proportional

to the product of the concentrations of the reactants [SFH99].

For the i -th species in a single irreversible reaction (a special case of a reaction

network where number of reactions is equal one), the rate of a reaction is given by the

equation

d[Si]

dτ
= (βi − αi)k

|S|∏
x=1

αx∏
1

[Sx] = (βi − αi)k
|S|∏
x=1

[Sx]αx (2.7)

Consequently, for the i -th species in a reaction network the equation has the form
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d[Si]

dτ
=

M∑
j=1

(βji − αji)kj
|S|∏
x=1

[Sx]αjx (2.8)

where (βij −αij) is a concentration of the species Si that changes during the occurrence

of the j-th reaction. The equation (2.2) can be expressed in the matrix-vector notation

d[Si]

dτ
= (β − α)Tk[S]α (2.9)

where α = [αM |S|] and β = [βM |S|] are matrices of coefficients,

α =

∣∣∣∣∣∣∣∣∣
α1,1 α1,2 · · · α1,|S|
α2,1 α2,2 · · · α2,|S|

...
...

. . .
...

αM,1 αM,2 · · · αM,|S|

∣∣∣∣∣∣∣∣∣ ; β =

∣∣∣∣∣∣∣∣∣
β1,1 β1,2 · · · β1,|S|
β2,1 β2,2 · · · β2,|S|

...
...

. . .
...

βM,1 βM,2 · · · βM,|S|

∣∣∣∣∣∣∣∣∣ ; (2.10)

k = diag(k1, k2, . . . , kM ) is the diagonal matrix of kinetic parameters,

k = diag(k1, k2, . . . , kM ) =

∣∣∣∣∣∣∣∣∣
k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · kM

∣∣∣∣∣∣∣∣∣ ; (2.11)

S = [S1, S2, . . . , S|S|]
T the vector of species and Sα is the vector-matrix exponentiation

[Mei19]. It is an operation that maps S and α to its vector-matrix power Sα defined as

Sα =

∣∣∣∣∣∣∣∣∣
S1
S2
...

S|S|

∣∣∣∣∣∣∣∣∣
α

=

∣∣∣∣∣∣∣∣∣∣
S
α1,1

1 S
α1,2

2 · · ·Sα1,|S|
|S|

S
α2,1

1 S
α2,2

2 · · ·Sα2,|S|
|S|

...

S
αM,1

1 S
αM,2

2 · · ·SαM,|S|
|S|

∣∣∣∣∣∣∣∣∣∣
; (2.12)

and takes the form of a column vector with |S| entries.

The expression

k

|S|∏
x=1

[Sx]αx (2.13)

also refers to the pattern MassAction(k) which is frequently used in the models of this

thesis.
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2.7.2 Stochastic Simulation

The stochastic simulation [Gil76, Gil77] fits well for biochemical systems as they are

discrete and stochastic in nature. The stochasticity results from the fact that it is

impossible to predict when a next reaction will occur. It can be described by a chemical

master equation as presented in [Gil76]. It is valid in all cases as long as it performs

a single run. For multiple runs, simulation traces are averaged and, as a result, some

events can be hidden (lost by averaging). In this case, it is comparable to a deterministic

simulation, and it is valid in the same situations [OSW69, Kur72]. Moreover, it deals

well with low concentration of species [MA99, Pah09] where the deterministic simulation

fails.

The semantics behind SPN is described by a CTMC which represents a state space

that can be infinite. Instead of computing CTMC directly, a simulation approximates

it by generating different paths. A path is generated by repeatedly firing transitions

starting from an initial marking m0 [Roh17]. The main issue of a stochastic simulation

is to identify which reaction would occur next and when, which is described by the

reaction probability density function 2.14 [Gil76]. During simulation this issue leads to

a race condition as the next system state is determined by the fastest reaction.

P (τ, tj |m)dτ ≡ probability at given state X(τ) = m

that reaction tj will occur in

the next time interval [τ, τ + δτ)

(2.14)

Proposed by Gillespie [Gil76, Gil77], a method to construct the numerical realiza-

tions of species concentration is a Monte Carlo procedure for numerically generating

paths through the CTMC. Gillespie’s Stochastic Simulation Algorithm (called SSA or

Gillespies algorithm) generates random walks through a CTMC. It has many variants

of implementations and optimizations, but basically each of them follows Algorithm 2.

The description of some of them can be found in [Roh17, Her13].

Algorithm 2 returns a trace of stored system states (one possible path through a

CTMC) for a given time interval. Executing the loop of the algorithm (lines: 4-9), the

current time τ is increased starting from the initial time τ0 until it reaches the end

time τend. A reliable insight into a system behaviour is only possible, if system states

of several runs are examined. Each run starts from the same initial state, in which a

random generator is initialized with a different/random seed (line: 1). This allows for

various runs of a stochastic process. A system state at time point τ of each simulation

run is recorded and the mean state at this point is given by Equation 2.15.

X̄(τ) = (1/N)

N∑
n=1

X(n, τ) (2.15)
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Algorithm 2: Basic stochastic simulation algorithm [Roh17].

Data: SPN with initial state X(τ0);
time interval [τ0, τend];

Result: trace of stored system states;
1 initRand(seed);
2 time τ = τ0;
3 state X(τ) = X(τ0); /* make initial state to current state */

4 X(τ)→ store; /* add X(τ0) to the trace */

5 while τ < τend do
6 δτ = determine duration until next firing by computing
7 rate function h of transitions depending on the current state X(τ);
8 τ = τ + δτ ; /* determine the next time point */

9 t = select the next transition to fire depending on current state X(τ);
10 X(τ) = t→ fire; /* compute new state X(τ) by firing of t */

11 X(τ)→ store; /* add X(τ) to trace */

12 end

As shown in Figure 2.10 (page 27), the number of runs N has an influence on the

accuracy of a simulation as its recorded traces (results) are approximated by the mean

state at point τ .

Example 2.10. Figure 2.11 (page 27) presents the results of the stochastic simulation

of the model in Figure 2.4. The simulation traces 2.11.(a, c) and 2.11.(b, d) represent

the states of the populations A and B over time, where the traces 2.11.(a, b) represent 1

simulation run, while 2.11.(c, d) are averaged over 100 simulation runs. The comparison

of the simulation traces 2.11.(a) and 2.11.(c) gives an insight into how a detailed view

of the system state can be lost due to averaging. A detailed view on a system state can

be provided by single runs of a stochastic simulation. In Figure 2.11.(a) the reset event

(TransientImmunity) is marked by values of Susceptible and Recovered population that

are set to the initial state, while it is flattened in Figure 2.11.(c).

Example 2.11. A stochastic or deterministic simulation can be applied to any model

type (SPN , CPN , HPN ) after a straightforward conversion of its nodes to the ap-

propriate types determinates by the simulation. The model in Figure 2.6 (page 18)

consists of stochastic nodes and their continuous counterpart (see Figure 2.7, page 18)

is derived by a straightforward conversion. Figure 2.12 (page 28) presents the traces

of the stochastic (2.12.(a, b)) and the deterministic (2.12.(c, d)) simulation. Notably,

the resulting traces differ between Figure 2.12.(b) and 2.12.(d). This can be explained

by decay of a disease when all specimen in an infected population recovered without

spreading a disease (isolation) onto a susceptible population. This event cannot be clearly

seen in the traces of the stochastic simulation, as they show the averaged results of 10

runs. It is similar in the case of the deterministic simulation. This event is superseded,
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(a) (b)

(d)(c)

Figure 2.10: Influence of the number of simulation runs N on recorded and approximated
stochastic simulation traces of the SPN model in Figure 2.3; number of tokens on place
Recovered B for single run (a - c) and an average of 100 runs (d).

(a)

(c)

(b)

(d)

Figure 2.11: Simulation traces of the stochastic XPN model in Figure 2.4 represents
results of the stochastic simulation; (a, b) - 1 run, (c, d) - an average of 100 runs; for
the model configured as follows: SP A = 5e4; SP B = 1e5; LIMIT A = SP A + 1;
LIMIT B = SP B+1; k infect a = 5.0e−5; k infect b = 5.0e−6; k recover a = 1.0e−1;
k recover b = 1.0e− 2.
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since the traces are results of approximating the solutions of ODEs. To spot this event,

it is necessary to apply a single run of a stochastic simulation. Figure 2.13 (page 28)

presents the resulting traces of such simulations. It is easy to spot the decay of a disease

(when all specimen in an infected population recovered) in the populations.

(a)

(c)

(b)

(d)

Figure 2.12: Comparison of the simulation traces of the models in Figure 2.6 and 2.7;
average of 10 stochastic simulation runs (a, b) versus deterministic (continuous) simulation
(c, d); where SusceptiblePopulation is set to 5e4‘A + +1e5‘B; k infect a = 5.0e − 5;
k infect b = 5.0e− 6; k recover a = 1.0e− 1; k recover b = 1.0e− 2.

(a) (b)

Figure 2.13: Decay events of a disease (when all specimen in an infected population
have recovered) in the populations. This event cannot be clearly seen in the traces of
the stochastic simulation if it is an averaged result of several runs (e.g. Figure 2.12(a,b)).
Similarly, for the deterministic simulation, this event is superseded in resulting traces, since
it is the result of approximating the solutions of ODEs (e.g. Figure 2.12(c,d)). The traces (a,
b) are results of stochastic simulations (set to single run) of the model in Figure 2.6; where
SusceptiblePopulation is set to 5e4‘A++1e5‘B; k infect a = 5.0e−5; k infect b = 5.0e−6;
k recover a = 1.0e− 1; k recover b = 1.0e− 2.
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The stochastic simulation is computationally expensive, especially if it deals with

large biological models that involve large numbers of species [ACT+05, LCP+08, Pah09].

2.7.3 Deterministic Simulation

The deterministic simulation is widely used as it is a traditional way to simulate

biochemical systems [WUK+04, Gil07, Pah09]. It is well documented with established

mathematical basis. It is an accurate approach for a system with sufficient concentration

of species. With the assumption that a concentration and a volume of a system is

infinite (follow to infinity), an evaluation of a system (reaction influence on species

concentration) can be represented as a set of ordinary differential equations (ODEs)

[HR02, WUK+04, Gil07]. The equations have the form of (2.16):

d[Si]

dτ
= fi([S1], . . . , [SN ]), (2.16)

where [Si] is a concentration of the species Si at the current time τ and fi([S1], . . . , [SN ])

is a function of the species’ concentrations. By solving ODEs, a concentration can be

approximated by a continuous variable [GB00]. Through a simulation, the system state

(marking) X(τ) at the current time τ is described as a continuous deterministic process

[Gil01]. During this process, a concentration evolves deterministically with time, what

means, when a process (simulation) is repeated, starting from the same initial system

state, the same state will be reached in any future time point.

Through an elementary kinetic rate laws (e.g. mass-action), it is possible to

derived/obtain a system of ODEs.

Example 2.12. The model in Figure 2.14 presents a part of the model in Figure 2.3

(page 13) as CPN . The model consists of continuous nodes and is derived by a straight-

forward conversion.

5e4

SusceptiblePopulation_A Recovered_AInfected_A Recover_AInfect_A

MassAction(k_infect_a) MassAction(k_recover_a)

2

Figure 2.14: SIR model, as CPN ; where - continuous transition, - continuous place,
- directed arc.

The model can be expressed by two elementary reactions (2.17),

SusceptiblePopulation A+ Infected A
k infect a−−−−−−−→ 2 · Infected A

Infected A
k recover a−−−−−−−→ Recovered A

(2.17)
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and the system of corresponding ODEs (2.22) can be obtained by applying either (2.8)

or (2.9). The following derivation relates to (2.9), as shown in the sequence of steps:

1. The difference of coefficients between products and reactants species;

(β − α) =

∣∣∣∣0 2 0
0 0 1

∣∣∣∣− ∣∣∣∣1 1 0
0 1 0

∣∣∣∣ =

∣∣∣∣−1 1 0
0 −1 1

∣∣∣∣ (2.18)

2. The diagonal matrix of kinetic parameters;

k =

∣∣∣∣k infect a 0
0 k recover a

∣∣∣∣ (2.19)

3. The vector-matrix exponentiation;

Sα =

∣∣∣∣∣∣
SusceptiblePopulation A

Infected A
Recovered A

∣∣∣∣∣∣
α

=

=

∣∣∣∣SusceptiblePopulation A1 · Infected A1 ·Recovered A0

SusceptiblePopulation A0 · Infected A1 ·Recovered A0

∣∣∣∣ =

=

∣∣∣∣SusceptiblePopulation A · Infected AInfected A

∣∣∣∣

(2.20)

4. The ith species rate;

d[Si]

dτ
=

∣∣∣∣∣∣
−1 0
1 −1
0 1

∣∣∣∣∣∣
∣∣∣∣k infect a 0

0 k recover a

∣∣∣∣ ∣∣∣∣SusceptiblePopulation A · Infected AInfected A

∣∣∣∣ =

=

∣∣∣∣∣∣
−k infect a 0
k infect a −k recover a

0 k recover a

∣∣∣∣∣∣
∣∣∣∣SusceptiblePopulation A · Infected AInfected A

∣∣∣∣ =

=

∣∣∣∣∣∣
−k infect a · SusceptiblePopulation A · Infected A

k infect a · SusceptiblePopulation A · Infected A− k recover a · Infected A
k recover a · Infected A

∣∣∣∣∣∣

(2.21)
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4. The system of corresponding ODEs;

d[SusceptiblePopulation A]

dτ
= −k infect a · [SusceptiblePopulation A] · [Infected A]

d[Infected A]

dτ
= k infect a · [SusceptiblePopulation A] · [Infected A]

− k recover a · [Infected A]

d[Recovered A]

dτ
= k recover a · [Infected A]

(2.22)

Following mass-action law and equation (2.8), the resulting system contains three

ODEs (the number of ODEs corresponds to the number of unique species in the

elementary reactions). Each of them describes the change in a species concentration over

time due the occurrence of one of the elementary reactions. The change is proportional to

the sum of the product of a transition rate constant and to the reactants concentration,

over all elementary reactions, where the stoichiometric coefficients for the reactants are

negative, and for the products - positive.

The underlying ODEs are generated automatically by the simulation library which

is an integral part of the PetriNuts framework and is used by Spike, Snoopy and Marcie.

A numerical solution of the obtained ODEs can be found by applying different solvers;

a classification can be found in [HNW93, HW96]. The basics steps of deterministic

simulation are presented by Algorithm 3.

Algorithm 3: Basic deterministic simulation algorithm [HH17].

Data: CPN with initial state X(τ0);
time interval [τ0, τend];
step size δτ where δτ < (τend − τ0);

Result: trace of stored system states;
1 define function f by constructing the ODEs induced by CPN;
2 time τ = τ0;
3 state X(τ) = X(τ0); /* make ODE solver initial state to X(τ0) */

4 X(τ)→ store; /* add X(τ0) to trace */

5 while τ < τend do
6 τ = τ + δτ ; /* determine next time point */

7 X(τ) = X(τ) + δτ · f(s); /* compute a new state */

8 X(τ)→ store; /* add X(τ) to trace */

9 end

The deterministic approach is not the best choice for non-linear systems, due to

discreteness and random fluctuations in species concentrations, in particular, when the

concentrations are small [MA99, Pah09]. In the deterministic simulation the results are
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approximations of the solutions of ODEs. This may lead to a loss of details in simulation

traces. For instance in the averaged traces of the SIR model simulation, it is easy to

overlook the case when one becomes infected and then recovers without affecting the

rest of a population. In contrast, an exact trace of a single run of a stochastic simulation

contains all details as the result is not averaged.

2.7.4 Hybrid Simulation

The hybrid simulation should be applied if a model contains a mix of: slow and fast

reactions, or/and small and high concentrations of species. Simulation of hybrid models

has been previously investigated in e.g. [HR02, KMS04, SK05, ACT+05, GCP+06].

Applying only deterministic or stochastic approaches may lead to inaccurate or inefficient

simulation, respectively. A hybrid simulation overcomes these problems by clustering

a model. A cluster contains fast or slow reactions [Pah09], which are simulated in a

deterministic or stochastic way, respectively. Fast reactions occur frequently and can

be handled/treated as continuous processes. For simulation efficiency, it is better to

simulate them using the deterministic approach. In turn, slow reactions are of low

frequency and can be a source of various fluctuations/stochastic noise (e.g. volume

variation, molecule fluctuations), which may affect the behaviour of a model. This

make them more suitable for the stochastic approach. The hybrid approach comes with

two main issues, clustering (partitioning) and synchronization of the stochastic and

continuous regimes (systems), which need to be solved to achieve efficient and accurate

simulation.

A proper clustering is a source of efficient hybrid simulation. When reactions are

clustered inefficiently, it can be slower than a stochastic simulation. To cluster fast

reactions effectively, it must be taken into account that their reactants have to satisfy

thermodynamic conditions i.e. species concentration and system volume should be large

enough or close to infinity [Gil07]. A clustering process can be static (off-line, e.g. done

by a modeller before start of a simulation) or dynamic (online, during executing a

simulation).

A synchronization between both regimes (stochastic and continuous) is essential for

obtaining accurate simulation results. As a clustering does not split a model, these two

types of simulations have an effect on each other. Fast reactions may depend on the

state of the stochastic simulator and the propensities of slow reactions may change with

time when the continuous simulator advances [HR02].

Example 2.13. Figure 2.15 (page 34) presents resulting traces of the hybrid simulation

of the model in Figure 2.8 (page 18). It is worth noting that the SusceptiblePopulation

reached negative values (Figure 2.15.(a)). For the efficiency of the continuous simulation,

a transition firing is only guarded by a rate function (in the case when the bio-semantic

is applied to simulate biochemical reactions). To avoid negative values, a rate function

should depend on (be proportional to) the concentrations of reactant species (pre-places).
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Algorithm 4: Basic hybrid simulation algorithm - an extended version of this
algorithm is introduced in [Her13].

Data: HPN with initial state X(τ0);
time interval [τ0, τend];
step size δτd where δτd < (τend − τ0);

Result: trace of stored system states;
1 define function f by constructing the ODEs induced by continuous part of HPN;
2 time τ = τ0;
3 state X(τ) = X(τ0); /* make initial state to current state */

4 X(τ)→ store; /* add X(τ0) to trace */

5 while τ < τend do
6 ensure ODE solver is initialized with X(τ);
7 δτ = determine duration until next firing by computing
8 rate function h of transitions depending on current state X(τ);
9 τ = τ + δτ ; /* determine next time point */

10 τd = τ ;
11 while τd < τ do

/* determine next time point for deterministic solver */

12 τd = τd + δτd;
13 X(τd) = X(τd) + δτd · f(s); /* compute new state */

14 X(τd)→ store; /* add X(τd) to trace */

15 end
16 t = select transition to fire depending on current state X(τ);
17 X(τ) = t→ fire; /* compute a new state X(τ) by firing of t */

18 X(τ)→ store; /* add X(τ) to trace */

19 end
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If concentrations fall to zero, a firing rate function should prevent a transition from

firing (it fires with zero rate) [HH17].

(a) (b)

Figure 2.15: Simulation traces of the HPN C model in Figure 2.8.

More details about the hybrid approach can be found in [Her13].

2.8 Reduction

A growing amount of experimental data is leading to the development of complex models

that may contain numerous nodes. In the case of a PN C model, it needs to be unfolded

to a PN before a simulation. After unfolding, the number of nodes can be much larger

than in its coloured counterpart. Reduction of a model yields a more optimized (in

terms of size) model that provides insight knowledge about structural properties of the

model and reduces simulation overhead.

The reduction of PN models is continuously studied in computer science. The main

challenge of reduction is to preserve the main three properties of PN model: liveness,

reversibility and boundedness.

Spike is able to structurally reduce a model by pruning clean siphons (a set of

empty places; a marking of those will never be changed because any reaction that would

cause a change depends on this set) and constant places (places, occurring only as side

conditions).

If a model is to be read as ordinary differential equations (ODEs), it can be reduced

by finding equivalence relations over variables. In [CTT+16] two equivalence relations

are presented. FDE (Forward differential equivalence) and BDE (backward differential

equivalence) which are implemented in ERODE [CTT+17]. Spike allows to export a

model to the ERODE format, however this functionality has experimental status.

2.8.1 Pruning Clean Siphons

A Siphon S is a non-empty subset of places S ⊆ P if every transition having an output

place in S has also an input place in S, i.e. •S ⊆ S• [Mur89]. This means that if a

siphon once loses all its tokens in its places, there will never be any token in those

places. By definition, a clean siphon is a set of empty places, the marking of those will
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never be changed because any reaction which would cause a change depends on this set.

Therefore, if a clean siphon is empty in the initial state X(τ0) or insufficiently marked,

it can be safely pruned from a model as a simulation will not change the state of the

siphon.

Based on the algorithm proposed in [KLP06], Christian Rohr developed in 2016 the

Algorithm 5 that finds a maximal insufficiently marked siphon and a corresponding set

of dead transitions, which can be pruned from a PN model.

Algorithm 5: Maximal insufficiently marked siphon [HRS13].

Data: XPN with initial state X(τ0);
Result: maximal insufficiently marked siphon S and dead transitions D;

1 S = P ;
2 D = T ;
3 for all t ∈ D do
4 if X(τ0) ≥ t− ∧X(τ0) ≥ t−r ∧X(τ0) < t−i then
5 S = S \• t
6 end

7 end
8 do
9 s = |S|; /* store the current size of unmarked siphon set */

10 d = |D|; /* store the current size of dead transitions set */

11 for all t ∈ D do
12 if •t ∩ S = ∅ then
13 S = S \ t•;
14 D = D \ t;
15 end

16 end

17 while s 6= |S| ∨ d 6= |D|;

Example 2.14. 5 To find a maximal insufficiently marked siphon in Figure 2.16 (a)

(page 36), initially all places are considered to belong to the maximal insufficiently

marked siphon set S and all transitions are considered to be dead (lines 1-2 of the

algorithm). If a transition is live in the initial state X(τo), then all its pre-conditions

are removed from the siphon set S (lines 3-7). For all transitions in the set D, if all its

pre-conditions are outside the siphon (the transition can structurally be fired), remove

all its post-conditions from the set S and remove the transition from the set of dead

transitions D (lines 11-16). Repeat this step until no place or transition is removed

from the siphon S or dead transitions set D, respectively (lines 8-17). Finally, all places

in the siphon and all dead transitions can be pruned from a model. The final result is

presented in Figure 2.16 (c).

35



2. BACKGROUND AND RELATED WORK

SusceptiblePopulation RecoveredInfected RecoverInfect

(a)

(b)

RecoveredInfected Recover

(c)

Recovered

R

R

IR IR + 1
SP I

I

Figure 2.16: (a) Example PN representing the SIR model where SP and I are initial
markings, IR and R are arcs weights. The arc weight IR represents the infection (transition)
rate. Assuming that the transition Infect is dead in the initial state (e.g. SP > 0 and
I = 0), then the marked place SusceptiblePopulation (SP > 0) belongs to the insufficiently
marked siphon. The place can be pruned with the associated dead post-transition Infect
which results in the reduced model (b); The model has an additional insufficiently marked
siphon if the place Infected is initially unmarked (I = 0) or the arc weight R is greater than
the initial marking of this place (the associated dead post-transition Recover will never
fire, which allows treating this place as unmarked). This results in the subsequent model
reduction (c). Finally, the place Recovered can be also pruned as it is an unmarked siphon
as well.

2.8.2 Pruning Constant Places

Before a simulation, constant places (places, occurring only as side conditions) can be

pruned from rate functions and arc expressions. If an expression depends on a constant

place, then the dependency can be removed by replacing a place by its marking value.

If an expression involves the MassAction(k) pattern then one additional pre-step is

necessary. The pattern must be replaced by the expression (2.13) before substituting a

place. This allows to speed up an expression evaluation during simulation. To find a

constant place, its total weight of pre- and post-arcs can be used. If a total weight is

equal zero, then the adjacent arcs do not change the number of place tokens after firing

of the pre- and post-transitions. The Algorithm 6 presents this idea in more details.

The result of the algorithm execution is a set of constant places which can be pruned

by applying Algorithm 7.

Example 2.15. In the model in Figure 2.17 (page 37), the place C is the constant

place (its marking is constant upon firing the transition r) which occurs only as a side

condition. After replacing the rate function pattern MassAction(k) by the expression

(k ·A ·C), Figure 2.17.(b), it can be seen that the reaction rate function depends on the

place C. To speed up a simulation, the place can be replaced with its marking value,

Figure 2.17.(c).
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Algorithm 6: Finding constant places [HRS13].

Data: PN with initial state X(τ0);
Result: constant places C;

1 totalWeight = 0; /* total sum of arcs weight adjacent to p */

2 C = ∅; /* initialisation of constant places set */

3 NC = ∅; /* initialisation of non constant places set */

4 for all t ∈ T do
/* for all places that are simultaneous pre- and post-condition of t */

5 for all p ∈ (•t ∪ t•) do
6 if p ∈ NC then
7 continue;
8 end
9 A(p) = (p× t) ∪ (t× p); /* finite set of arcs adjacent to p */

10 for all a ∈ A(p) do
11 if f(p, a) increase marking on p then

/* increase total arcs weight */

12 totalWeight(p) = totalWeight(p) + f(a);

13 else
/* decrease total arcs weight */

14 totalWeight(p) = totalWeight(p)− f(a);

15 end

16 end
17 if totalWeight(p) 6= 0 then
18 NC = NC ∪ p;
19 end

20 end

21 end
22 C = P \NP ;

A Br

MassAction(k)

C(a)

A Br

k*A*C

C(b)

A Br

k*A*2

C(c)

Figure 2.17: (a) Example SPN with the constant place C, where the reaction rate function
depends on this place; (b) the expression (k ·A · C) replaced the pattern MassAction(k);
(c) the SPN with the reaction rate function where the place C has been replaced by its
marking.
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Algorithm 7: Pruning constant places.

Data: PN with initial state X(τ0);
set of constant places C;

Result: pruned PN ;
1 for all t ∈ T do
2 for all p ∈ •t do
3 if p ∈ C then
4 if v(t) depends on p then

/* make it depended on the place marking value */

5 v(t) = f(m(p));

6 end

7 end

8 end

9 end

2.9 Reproducible Simulation

The amount of data and complexity of models force to design an experiment in a

way that reproducibility is ensured. By providing computer code, data, models and

parameters, one can reproduce results of a simulation.

The term reproducibility coexists with the term replicability. For these two terms

contradicted interpretations exist that vary across a variety of scientific disciplines. More

about this issue can be found in [Bar18], where these terms are categorized according

to their use in scientific disciplines.

In this thesis the definitions of reproducibility and replicability are adopted as it

stands in [NAP19]:

reproducibility - obtaining consistent results using the same input data; com-

putational steps, methods, and code, and conditions of analysis,

replicability - obtaining consistent results across studies aimed at answering the

same scientific question, each of which has obtained its own data.

2.9.1 Rules to Drive Reproducible Experiments

The problem with reproducibility of published results is reported in [Hil17] and [KCC05].

One cause of this situation is bad habits of the scientific community. Many results

are published without data and source code. Other causes are: no proper simulation

set-up, no proper output data analysis, inconsistency of published data (which makes it

impossible to compare results). To deal with all these issues, it is necessary to define and

adopt a workflow (set of rules) that will allow reproducing an experiment. Guidelines

that can help to establishing such a workflow are proposed in [SNT+13, WAB+11a].

38



2.9 Reproducible Simulation

One of the main principles of Spike is to support reproducible simulation experiments.

Where it is appropriate, Spike supports ten simple rules proposed in [SNT+13]:

1. For every result, keep track of how it was produced - e.g. log all interme-

diate steps (call of commands, scripts, programs) in a logbook; with the help of

Spike all intermediate steps related to simulation are stored in a single

configuration file.

2. Avoid manual data manipulation steps - e.g. all data manipulation should

be done by a script or program. If it is not possible, all manual data manipulation

should be described and stored in the logbook.

3. Archive the exact versions of all external programs used - e.g. an external

program may not be any more available or some features have been removed.

4. Version control all custom scripts - e.g. even smallest changes to a script

can affect the end results.

5. Record all intermediate results, when possible in standardized formats

- e.g. intermediate results can be used as breakpoints during debugging, provide

insight into how experiments were performed, or help find issues if an experiment

fails. Spike allows to log the simulation progress and resulting data.

6. For analyses that include randomness, note the underlying random

seeds - e.g. if an experiment involves stochastic simulation, then a seed should

be stored what ensures identical final results by initializing a random number

generator with the same seed. Spike allows to log a configuration set-up,

and when it is appropriate, includes a seed. For this purpose the logging

of a seed is introduced by Spike to achieve a reproducible stochastic

simulation.

7. Always store raw data behind plots - e.g. raw data allows the use of various

data visualization or analysis techniques. Spike allows storing raw data in

the CSV (comma-separated values) format.

8. Generate hierarchical analysis output, allowing layers of increasing de-

tail to be inspected - e.g. the results of each stochastic simulation run should

be stored/logged to inspect the detailed values underlying the final results of

a stochastic simulation which represents average of all runs. Spike allows to

set-up multiple simulation in such way that the resulting raw data can

be stored in separated files. In addition, Spike allows results of a single

run of stochastic simulation to be saved along with the averaged one

in single resulting file.

9. Connect textual statements to underlying results - e.g. textual interpret-

ations should directly point to the underlying results, making them easy to trace.
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10. Provide public access to scripts, runs, and results - e.g. as supplementary

online material to an article.

2.9.2 Encoding of Simulation Experiments

Encoding of a biochemical reaction model is supported by many formats (e.g. ANDL

[SRH16], CANDL [LHR12], SBML [Huc15]). This allows a model to be imported / ex-

ported and reused in various experiments. Encoding of a model, which is de facto a

structure description, does not describe experiments. An experiment should be encoded

if it is meant to be reproducible. This issue is addressed in [WAB+11b] where SED-ML

(Simulation Experiment Description Markup Language) is introduced. SED-ML is a

markup language based on XML. It is built form five main components:

1. Model component - defines an identity and location of a model to be simulated

(SED-ML supports only models which are encoded in XML-based languages); it

also allows for altering attribute values or changing a model structure.

2. Simulation component - defines a simulation algorithm and configuration

details, e.g. a range of simulation (start and end time) and a resolution (number

of points to output).

3. Task component - assigns a defined algorithm to a model, the model and

simulation are defined separately and can be combined in various ways, e.g.

comparing a model behaviour under different simulation algorithms.

4. Data generator component - describes transformations of raw simulation data

by applying numerical equations, which allow, e.g. for normalization or scaling

resulting data.

5. Output component - describes grouping of output data from generators, which

allows for generating 2D and 3D plots, or output data streams as a set of unrelated

arrays.

SED-ML components can occur zero or more times, allowing multiple experiments

to be defined in a single SED-ML document.

Rigid standards such as SED-ML cannot cover off-standard use cases, therefore it is

necessary to develop domain specific languages that allow for cutting-edge experiments.

A good example of such a language is SESSL that bases on the Scala language. SESSL

it is a domain-specific language for simulation experiments [EU14]. It acts as a separate

software layer on top of external simulation systems. SESSL uses bindings to support a

variety of modelling languages, e.g. ML-Rules [WHU17], which is a rule-based modelling

language for dynamically nested biochemical reaction networks [MRU11]. SESSL’s

design focuses on simplicity, which allows users to design an experiment without any

deep programming knowledge. However, users with the programming knowledge can
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extend SESSL as its components are loosely coupled. Interdependencies between different

SESSL components and the dependencies to third-party software are managed by Apache

Maven (https://maven.apache.org/). This allows for portability and reproducibility

as software artefacts used in an SESSL experiment are stored in a Maven repository.

Such a solution enables an identical software to repeat simulation experiments on

different machines and operating systems. SESSL supports parameter scanning and

with the use of bindings integrates various software systems, what facilitates reuse of

experiments across simulation systems and analysis of the performance of simulation

algorithms at runtime, such as simulation-based optimization.

Spike is built on the configuration script language (SPC - Spike’s configuration),

which is a domain specific language and has a human-readable format. While the

configuration functionality of SPC is very similar to SED-ML and SESSL, it is specially

tailored to support reproducible simulation experiments of models designed using the

PN modelling language. SPC comprises a set of features that so far are not present in

SED-ML, e.g. parameter scanning and stepwise simulation. A stepwise simulation is also

not supported by SESSL. SPC allows to describe an experiment and its configuration

in one file. More details about the implementation of SPC can be found in Section 3.1.

Spike unlike to SESSL, does not base on any dependency repositories as all depend-

encies are included. Both solutions have pros and cons. An external repository requires a

careful maintenance as the reproducibility can suffer from changing a software artefact

in the repository. From the other hand, dependencies of Spike makes its executable

grows with each new dependency added.

Reproducibility suffers when a software has to run on different systems. Some

programming languages are more prone to reproducibility and portability issues than

others. Inconsistent results may appear in compiled languages e.g. C or C++ due to:

• a floating point numbers precision,

• an undefined behaviour of signed integer overflows,

• how the lengths of certain data types, e.g. int and long, are defined differently

across compilers.

Especially in the case of a floating point, differences on different systems are amplified

over many iterations and can be responsible for reproducibility failures although the code

is correct. It is worth to consider use of software libraries that provide a consistent floating

point precision to obtain reproducible results across different systems as suggested

in [MSD+06, BBD+16]

An increase in the degree of reproducibility and portability can be achieved with the

help of a virtualization, As it is presented in [Boe15], a virtualization can be achieved with

help of e.g. Docker (https://www.docker.com). Docker is an open-source project that

provides operating system level virtualization. It allows for deployment of applications

as portable packages called containers. Containers are isolated from one another and
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resolve the issue of Dependency Hell by bundling their own software, libraries and

configuration files. However, containers are not a perfect solution, as the virtualization

is on an operating system level, a container must match the host architecture. Hardware

and related libraries (drivers) require pulling in features from the host itself. This method

can threaten long-term reproducibility due to upgrade of hardware and related libraries

on the host system. This is notably the case in the High Performance Computing [CY19].

For an application to achieve a top performance, it often needs to be optimized for the

architecture and capable of taking advantage of advanced hardware such as accelerators.

To achieve a greater degree of reproducibility, a full virtualization should be adopted

with a help of a Virtual Machine (VM). Unlike containers, a VM provides a complete

system encapsulation, including system-level drivers, a full operating system kernel,

and emulation of hardware. A container image could be invoked atop the VM. The

dual-virtualization method allows avoiding incompatibilities of hardware and related

libraries as the hardware is fully virtualized. Such solution has a drawback, it introduces

a measurable source of overhead that can negatively affect the performance.

A different approach towards achieving reproducibility is taken by a workflow

software, which are usually built on a well-established collaborative framework between

domain and computer scientists. A workflow software usually integrates a set of tools

installed on a server that communicates via various communication channels. One of

the integral components of the workflow software is a notebook [DTT+16, MCK+18],

which helps to achieve a reproducibility and usability. A notebook allows describing

an experiment configuration and store it on the server with an associated model. The

drawback of the workflow software is the lack of flexibility and the maintenance on

the server. A change in one software component can have a significant impact on

reproducibility.

In [KR12] is presented a workflow management system called Snakemake. It is a

tool to create reproducible and scalable data analyses. Snakemake uses a domain specific

language to describe workflows. The language relies on Python language, which allows

access to the full power of the underlying programming language e.g. for implementing

conditional execution and handling configuration. A workflow is described through a

set of rules. Each rule describes a step in an analysis, defining how to obtain input

files from output files of previous step. The set of rules creates a directed acyclic graph

that represents an execution plan of rules. Each node in the graph represent a job i.e.

the execution of a rule. A directed edge joining two jobs A and B defines that the

rule underlying job B needs the output of job A as an input file. A path in the graph

represents a sequence of jobs that have to be executed sequentially. Two disjoint paths

can be executed in parallel. Such approach allows for large-scale data analyses that

involve the chained execution of many command line applications. workflow engines

like Snakemake help to automate these pipelines and ensure reproducibility.
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2.9.3 Adaptive Model Simulation

A simulation experiment typically consists of repeated series of simulation runs in which,

after each run, the simulation results are evaluated and the simulation and / or model

parameters are modified. Problems, which simulation means have to solve, generally

fall into two categories [KW85]:

• System identification or behaviour analysis - when the behaviour and characteristic

parameters of a system under various conditions are investigated.

• Reconstruction - when the structure and parameters of a model corresponding to

given specifications are determined.

Simulation of dynamically changing processes, which change their dynamic behaviour

following the occurrence of external events, requires an ongoing adaptation in terms

of time, quality, and flexibility. Therefore, if a model represents such a process, it is

necessary to adjust the model according to its state and the current simulation state

at the simulation run time. This can improve the quality of the simulation results due

to [Jav92]:

(a) The evaluated input information is obtained from the dynamic trajectory of the

model in the time-state space; as opposed to the usual case when static patterns

are dealt with.

(b) The action based on inferencing influences the source of information (i.e. model

and experimental conditions) itself. Thereby the procedure forms an inherent part

of a closed loop feedback system [BSG+09].

The dynamic adaptation of the model during the simulation runtime falls into the

category of self-adaptive systems, an overview of which can be found in [KRV15]. In

the case of PN models, the modelling process can be traded as programming and the

simulation of the model as execution of the program. In the context of this informal

definition the adaptive model simulation can be treated as adaptive programming [MH91].

An adaptive program changes its behaviour according to its environment. A discrete-

time adaptive modelling system (stepwise simulation) scans the set of states S (including

historical ones) of the model/system, which provides feedback. Based on the feedback

the internal parameters of the model are automatically adjusted by means of predefined

conditions. The conditions can have the form of rules e.g. [Jav92]:

if < condition > then < action > (2.23)

where condition can be a boolean expression consisting of variable values at a given

time t, i.e.,
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|Sj |⋂
i=1

Si(t), (2.24)

where Si(t) ∈ Sj ⊆ S, j is a variable index and t ∈ [0, now], where now is the current

value of simulation time.

As presented in [KCR+09, Kan12], the feedback provided from a model state can

be used to dynamical change a simulation algorithm, which allows performing hybrid

simulation. Based on the analysis of a system state, transitions can be clustered and

assigned to different simulation algorithm. This approach reflects the ability of the

system to change its behaviour with respect to the simulation type. [KKV04] presents a

different approach, which reflects the ability to change the structure and the behaviour

of the simulated model. The structure is changed by replacing components of the model.

Depending on the predefined conditions, a new component is selected from the database

to replace the old one which is no longer suitable.

[KH96] describes a fast simulation approach for rare events. The technique is based

on the RESTART (REpetitive Simulation Trials After Reaching Threshold [VV+91])

method. To find rare events, the state of the model is monitored after each simulation

step, which provides the feedback. The set of predefined conditions defines thresholds.

When a value of the simulation traces reaches a threshold at time point A, the state of

the model is saved. If the threshold is reached from the opposite direction at time point

B, the model state is restored and the interval [A,B) is simulated again.

Based on control theory [BSG+09], the model adjustment can be controlled by a

feedback loop, which provides the generic mechanism for self-adaptation. The feedback

loop comprises activities which describe performed actions. Figure 5.5 (see page 120)

presents an example feedback control loop with four defined activities:

• simulation - collects data from executing a model and its current state,

• analyse - analyses the data to infer trends and identify symptoms,

• decide - decides on how to act on the execution of a model based on analyses

which are defined by conditions,

• alter model - alters model parameters based on decisions.

More details and an example implementation of the control loop in the stepwise

simulation supported by Spike can be found in Section 5.2.
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2.10 Closing Remarks

This chapter introduced the paradigm of modelling with Petri nets. Starting with the

definition of the basic PN through extended and quantitative Petri nets, i.e. XPN ,

SPN , CPN , HPN and ending with their coloured counterparts SPN C , CPN C , HPN C .
The SIR model was developed as an example for each introduced type of PN . Examples

where shown to illustrate how the developed models behave under three types of

simulation, i.e. deterministic, stochastic and hybrid.

This chapter also describes the definition of reproducible simulation with the

guidelines on how to achieve it.

Finally, a brief overview of the adaptive model simulation paradigm is provided,

which opens the door for more realistic simulation experiments.

The next chapter will introduce the Spike Configuration Script (SPC), which allows

defining reproducible simulation experiments by setting up model parameters and

simulation options.
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Configuration Language

Configuration files are often used to set up initial parameters of computer programs.

Similarly, the Spike Configuration File (SPC) allows setting up a reproducible simu-

lation experiment. Through the embedded branching, one SPC script may involve a

set of configurations. This feature allows scanning of model parameters and configur-

ation options. It consists of a static and a dynamic part. The static part permits the

configuration of model and simulation parameters, whereas the dynamic part allows to

reconfigure a model during stepwise simulation.

The following graphical notations are used across this chapter to define relations

between various entities.

Notation 2. Graphical notations:
definition entry point;

... parallel entry point - states that all entry points/paths
must be chosen;

definition end point;

path - path to proceed;

split path - path splitting states, only one direction can be
chosen;

join paths - combined paths become one;

... one occurrence of an entity;

... zero or one occurrence;

...

one or many occurrences;
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... zero or many occurrences;

higher order abstract definitions - abstract definitions
without any technical details;

SPC properties - properties used to define/configure an
experiment;

grammar definitions

simulation abstract process - represents one occurrence of a compu-
tational activity;

reports

abstract data - represents data in the form of a report;

models abstract database - represents set of data in the form of a
database;

SPC basic property - represents a property that does not
group any other properties;

SPC complex property - represents a property that groups
one or more basic properties;

grammar operator - represents an operator;

grammar literal - represents a constant/fixed value;

grammar rule - represents a meta variable/nonterminal
symbol;

3.1 SPC Format

SPC is an integral part of Spike, however it is language-independent and can be adopted

for use in various software. The SPC format is inspired by JSON (JavaScript Object

Notation) [RFC7159, ECMA-404]. JSON is an open standard data interchange format.

It uses human-readable text to store serialized data objects consisting of name/value

pairs and array data types. It does not enforce any order of sorted data and does not

allow for any condition. The base SPC structure is similar to the JOSN format and the

conventions used by SPC are familiar to the programmers of the C-family languages as

well as JavaScript, Python and many more. SPC is built on two structures:

• An unordered set of name/value pairs that defines the variables, see Figure

3.13 (page 60). In various languages this can be realized also as a record, struct,
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dictionary, hash table, keyed list or associative array, see Figure 3.16 (page 61).

In SPC it is realized by an object, which is a variable that groups many variables.

Any variable declared inside an object becomes its member and is called a property.

An object is called a complex property. A variable that does not group any

other variables is called a basic property.

• An ordered set of values, is realized in SPC as an array. In various languages this

can be realized also as a vector, list, sequence, see Figure 3.18 (page 62).

In contrast to JSON, SPC allows defining multiple variations of stored data. These

variations are called branches. A branch represents a separated SPC script. Additionally,

SPC consists of a dynamic part where the order of stored information is important.

The dynamic part of SPC is a fully functional programming scripting language that

allows for a conditional simulation execution. Spike may carry out parallel simulation of

branches, what requires a lightweight formate for an interprocess communication. SPC
meets this requirement, similar to JSON. It is extremely lightweight in comparison to

formats based on a markup language, e.g. XML [ZDS14].

SPC is agnostic to data types until script evaluation. This means that casting

operators are applied when working with data (during an evaluation) and variable types

are enforced at runtime. SPC is weakly typed language. This means, it is not allowed

to add a number to a string using an arithmetic operator, but there is no restriction to

add a decimal to an integer number. This has implication on how errors are handled.

SPC does not care for the type of a variable or literal, as long as the evaluator has a

way to handle it. During the evaluation of the script, a variable can change its type

several times, as the assigned value determines its type.

3.2 Experiment Definition

SPC defines a numerical experiment as a set of five descriptive components:

1. models to be used in the experiment,

2. simulation algorithms,

3. combination of models and simulation algorithms into a numerical simulation,

4. data generators,

5. output/storing of results.

An overview of the high level relations between them is presented in Figure 3.1

(page 50).
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user models

algorithms

simulation

reports

data generators

experiment

1

2

3 4 5

Figure 3.1: High level overview of the relations between the main components of an
experiment.

These five components are reflected in SPC, see Figure 3.2 (page 51).

1. A model can be imported and its parameters may be modified in the model

configuration object.

2. Simulation algorithms (solvers) are defined in the simulation configuration object.

3. A combination of model, simulation and optionally stepwise simulation configura-

tion, defines a process of numerical simulation.

4. The data generation process is defined by places and transitions of a model.

Additionally, observers (auxiliary variables) can be defined in a model and stepwise

simulation configuration.

5. Reports are defined by export of objects.
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models

algorithms

simulation

data generators

reports

import

model confgiuration

simulation con guration

places

observerstransitions

onStepsimulation con guration
model

export

export

export

Figure 3.2: Graphical representation of relations between an experiment and main SPC
objects.
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3.3 Main SPC Objects

SPC consists of three main objects (complex properties), see Figure 3.3.

SPC

import

con guration

log

Figure 3.3: The three main objects of SPC.

Example 3.1. The three main objects declared in SPC format. NOTE: The order of

components is not important unless explicitly stated.

1 // One line comment

2 /*

3 * Multi line comment

4 */

5

6 /*

7 * Import configuration

8 */

9 import: {...}

10

11 /*

12 * Model and simulation configuration

13 */

14 configuration: {...}

15

16 /*

17 * Logging user-defined variables configuration

18 */

19 log: {...} // [OPTIONAL]

3.3.1 Import

Import is a complex property that names the model and defines its location, see Figure

3.4 (page 53). It groups (consists of) three properties:

• from - the basic property, defines which model to import by giving a path to a

model location. The path can be absolute or relative to a SPC file.
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• name - the optional basic property, allows overriding the name of an imported

model. If it is skipped in the configuration, then the name of an imported model

is assigned as default value of this property.

• sbml - the optional complex property, it is required if an imported model is in

SBML format.

import

sbml

from

name

Figure 3.4: Import object.

The sbml is a complex property (object), see Figure 3.5, and groups three basic

properties:

• net - allows defining whether a model should be imported as deterministic,

stochastic or hybrid PN ,

• boundary - determines if boundary reactions (in/out flow) should be added for all

boundary conditions,

• reversible - determines if a reversible reaction should be replaced by two one-way

reactions.

sbml

reversible

boundary

net type

Figure 3.5: SBML object.
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Example 3.2. Declaration of import.

1 /*

2 * Import configuration

3 */

4 import: {

5 from: "./path/to/model";

6 name: "example1"; // [OPTIONAL]

7 sbml: {

8 /*

9 * Import a model as CPN (continuous PN)

10 * or SPN (stochastic PN)

11 */

12 net: "CPN";

13 boundary: true;

14 reversible: false;

15 } // [OPTIONAL]

16 }

3.3.2 Configuration

Configuration is a complex property that allows configuring a model and a simulation

(see Figure 3.6). It may consist of two complex properties: model configuration and

simulation configuration.

con guration

simulation con guration

model con guration

Figure 3.6: Configuration object.

The model configuration object, see Figure 3.7 (page 55), has three complex proper-

ties:

• constants - allows for altering a value of a model attributes via parameters

specifying arc weights, initial marking or kinetic parameters;

• places - allows to directly alter the initial marking of places;

• observers - allows defining/overriding observers which are auxiliary variables,

which allow for extra measures by defining numerical functions; depending on the

type of observer, it can involve, constants (that belonged to the model), places,

transitions or simultaneously places and transitions;
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model con guration

constants

places

observers

Figure 3.7: Model configuration object.

The simulation configuration object (see Figure 3.8) may consist of four (or more -

the property export can be defined multiple times) complex properties:

• simulation options - allows defining a simulation algorithm (solver) and its config-

uration details via the usual simulator-dependent options;

• interval - allows defining the range of a simulation (start and end time) and a

resolution (number of resulting points - snapshots taken during simulation);

• onStep - allows defining a steering script of stepwise simulation; this object has

special behaviour and properties that are described in details in Section 3.7;

• export - allows specifying multiple exports of simulation results by use of regular

expressions over the nodes of which the simulation traces are to be recorded; it is

possible to combine the results of places, transitions and observers, coloured and

uncoloured, in one CSV file.

simulation con guration

simulator options

interval

onStep

export

Figure 3.8: Simulation configuration object.
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Example 3.3. Declaration of a model configuration. Note: An observer function is

given as string as it is evaluated by an external evaluator.

1 configuration: {

2 ...

3 model: {

4 // Overriding constants

5 constants: {

6 valueset: "Main"; // Select global values set - [OPTIONAL]

7 all: { // The group name in a ANDL/CANDL model e.g.: "all"

8 // Select values set for the group

9 valueset: "Main"; // [OPTIONAL]

10 C1: 1; // Set constant value

11 C2: 2;

12 }

13 }

14 // Overriding initial markings

15 places: {

16 P1: 1; // Not coloured model

17 P2: "90‘a++80‘b"; // Coloured model

18 }

19 // Overriding/deflation observers

20 observers: {

21 place: { // [OPTIONAL]

22 OP: {

23 function: "(P1 + P2) / 2";

24 }

25 }

26 transition: { // [OPTIONAL]

27 OT: {

28 function: "t1 / 4";

29 }

30 }

31 // Involve places and transitions

32 mixed: { // [OPTIONAL]

33 OM: {

34 function: "P1 + t1";

35 }

36 }

37 }

38 }

39 ...

40 }
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Example 3.4. Declaration of a simulation configuration.

41 configuration: {

42 ...

43 simulation: {

44 name: "example"; // Name of a simulation

45 type:nameOfType: {

46 solver:nameOfSolver: {

47 // Solver options

48 ...

49 }

50 }

51 interval: 0:100:100; // start:splitting:end

52 // Define the stepwise simulation

53 onStep: { // [OPTIONAL]

54 ...

55 do: {

56 ...

57 }

58 }

59 // Export results to a file

60 export: { // [OPTIONAL]

61 ...

62 }

63 }

64 ...

65 }

3.3.3 Log

Log is a complex property and may consist of many basic properties that store additional

data, that will be reported in a log.

Example 3.5. Declaration of the logging of user-defined variables.

1 /*

2 * Logging of user-defined variables

3 */

4 log: {

5 simulation: configuration.simulation.name;

6 }
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3.4 Basic definitions

3.4.1 Value

A value can be an object, an array, a range, a number, a string, true or false (see Figure

3.9).

array

object

value

number

false

string

true

range

access

Figure 3.9: SPC value.

The simplest values are literals and variables.

3.4.2 Literal

Literals are explicitly written constant values. SPC defines three types of literals:

1. number - is a sequence of digital characters that may contain a decimal part

separated by the dot . terminal and can also be written in scientific notation, see

Figure 3.10.

0 .

+

-

digit
1-9

E

e

digit

digit

digit

-

number

Figure 3.10: SPC number. A digit is an atomic character unit in the range from 0 to 9; a
sequence of digits creates a number.
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2. string - is a sequence of characters, except the quotation mark, which is used to

wrap the string, see Figure 3.11.

" "any character except "

string

Figure 3.11: SPC string. A character is an atomic unit; a sequence of characters creates a
text string wrapped in quotation marks.

3. boolean - a logical value represented by two literals, true and false, see Figure

3.12.

false

true

boolean value

Figure 3.12: SPC boolean value is represented by two literals, true and false.

Example 3.6. SPC literals.

1 /*

2 * Number

3 */

4 1002 // A number without decimals

5 10.02 // A number with decimals

6 12.0e3 // 12000

7 12.0e-3 // 0.012

8

9 /*

10 * String

11 */

12 "example string"

13

14 /*

15 * Boolean

16 */

17 true

18 false
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3.4.3 Variable

Variables are named values and are used to store data values. A declaration of a variable

enforces its initialization with a value, Figure 3.13.

expression: ;

declaration

identi er

object

Figure 3.13: SPC declaration of a variable with an initial value.

A variable can have different values (which may be of different types) at different times,

and it is identified by an identifier, see Figure 3.14.

letter or _ digit

identifier

Figure 3.14: SPC identifier.

An identifier is a unique name in a scope, it is defined by a parent object of a variable.

A new value can be assigned to a declared variable with the assignment operator =, see

Figure 3.15.

expression=access ;

assign

Figure 3.15: SPC assignments of a value to the previously declared variable.

The assignment operator is valid in the context of the stepwise simulation object. More

about its usage can be found in Section 3.7.

60



3.4 Basic definitions

Example 3.7. SPC variables.

1 /*

2 * Variable declaration

3 */

4 a: 1;

5 b: "text";

6 c: true;

7

8 /*

9 * Value assignments

10 */

11 a = 1;

12 b = "text";

13 c = true;

3.4.4 Object

An object is an unordered and unindexed data structure that groups many variables,

which are surrounded by curly brackets {...}, see Figure 3.16. Any variable declared

inside an object becomes its member and is called a property. A variable that does not

group any other variables is called a basic property. An object is called a complex

property, which groups statements depending on their functionality and its definition

can cover several lines. Each object creates its own scope with separated set of variables.

Variables can share the same identifier, iff they are not members of the same scope

(object).

object

declaration{ }

Figure 3.16: SPC object.

Accessing Object Members/Properties. In the scope of an object, its members

can be accessed directly by thier identifiers. Outside a parent scope, an object member

can be addressed by using a fully-qualified or relative path. The dot . operator separates

identifiers, see Figure 3.17.
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.

access

identi er

Figure 3.17: SPC access.

Example 3.8. SPC object declaration and access to properties.

1 /*

2 * Object declaration

3 * with properties

4 */

5 parent: {

6 a: 1;

7 child: {

8 a: 2;

9 }

10 }

11 /*

12 * Access to the object properties

13 */

14 parent.a

15 parent.child.a

3.4.5 Array

An array is an ordered data type, that can hold more than one value of the same type

at any time. Values are comma separated and enclosed in square brackets, see Figure

3.18.

[ ]value

array

,

Figure 3.18: SPC array.

Accessing Array Elements. In the current version of SPC, elements of an array

CAN NOT be accessed directly, as they are used only to set values of some configuration

options.
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3.4.6 Range

A range is a special type of variable that defines array values of the type number. It

consists of three values (operands) of the type number separated by colon :, see Figure

3.19, where:

• first - defines the start of a range,

• second - step size which is used to obtain the next array element, what can be

described by a simple algorithm:

1 value = start

2 while value <= end do

3 add_value_to_array(value)

4 value = value + step

5 end do

• third - the end of a range.

: number

range

:number number

Figure 3.19: SPC range.

Example 3.9. SPC array and range declaration.

1 n: [1, 2, 3]; // Array of numbers

2 s: ["a", "b", "c"]; // Array of strings

3 o: [obj1:{x:1;}, obj2:{x:2;}]; // Array of objects

4 /*

5 * Declaring of a range is

6 * equivalent to an array declaration

7 * r: [1.0, 1.5, 2, 2.5, 3];

8 */

9 r: [1:0.5:3];

3.5 Expressions

An expression is a combination of operands (variables and values) and operators.

Depending on the operator used, the operands can be of different types, such as

numbers, boolean values and strings, see Figure 3.20 (page 64). An expression computes

a value. The expression computation is called an evaluation. An expression can be

used to assign a value to a variable through the assignment operator or during its

declaration. The evaluation result determines the type of a variable. Operations with
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a higher precedence are evaluated first. Round brackets may be used to change the

precedence and thus to control the order of evaluation.

SPC distinguishes four types of expressions: arithmetic, boolean, comparison and

concatenation.

( )

expression

string

expression

arithmetic expression

boolean expression

comparision

access

concatenation

Figure 3.20: SPC expression.

3.5.1 Arithmetic Expression

An arithmetic expression (see Figure 3.21) is an expression, that evaluates to a number

value. The simplest arithmetic expressions are numerical literals and variables.

/* -+

/

*

+

-

arithmetic expression( )

number

arithmetic expression

access

Figure 3.21: SPC arithmetic.

Complex arithmetic expressions can be formed by connecting the simplest arithmetic

expressions with one of the arithmetic operators (see Table 3.1) and can be grouped
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using round brackets (...)

Table 3.1: Arithmetic operators.

Operator Meaning

+ add - if one of the operands is a real type, the result is real

− subtract - if one of the operands is a real type, the result is real

∗ multiply - if one of the operands is a real type, the result is real

/ divide - division of two integer values will give a real result

3.5.2 Boolean Expression

A boolean expression, see Figure 3.22, is an expression that evaluates to a boolean

value, i.e. true or false. The simplest boolean expressions are numerical literals and

variables. Complex boolean expressions can be formed by connecting the simplest

boolean expressions with one of the boolean operators, Table 3.2, and can be grouped

using round brackets (...).

Table 3.2: Boolean operators.

Operator Meaning

&& and - denoted by x&&y

|| or - denoted by x||y
! not - denoted by !x

The denoted expression values can be expressed by a truth table, see Table 3.3.

Table 3.3: The truth table of boolean operations.

x y x&&y x||y !x

false false false false true
true false false true false
false true false true
true true true true
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||&&

||

&&

boolean expression( )

comparision

false

true

!

boolean expression access

Figure 3.22: SPC boolean.

3.5.3 Comparison Expression

A comparison expression, see Figure 3.23, checks whether a literal value, variable value,

or expression result is equal, not equal, greater than, or less than another value. The

result of a comparison expression evaluation is a boolean value. Comparison expressions

can be formed by connecting the arithmetic or boolean expressions with one of the test

operators, see Table 3.4.

Table 3.4: Test operators.

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

! = not equal to

The meanings of these operators are obvious, they can be combined with the boolean

operators.

3.5.4 Concatenation

A concatenation expression (see Figure 3.24) concatenates its operands. Before concat-

enation, the value of each operand is converted to string. To avoid errors/mistakes of a

false evolution, round brackets should surround expressions.
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comparison

>=> <=< !===

expression

expression

||&&

Figure 3.23: SPC comparison.

concatenation

string string

false

access

number

true

false

access

number

true <<

Figure 3.24: SPC string concatenation.

3.5.5 Precedence

The result of an expression evaluation depends on the precedence of operators, see

Table 3.5. The order of operator evaluations in relation to each other is determined by

precedence rules. Evaluation results of operators with higher precedence become the

operands of operators with lower precedence.

Table 3.5: Precedence of operators.

Entries at the top of the table have the highest precedence; entries in the same table
row have equal precedence.

Operators Meaning

∗ / multiply, divide

+ − << add, subtract, concatenation

! logical not

< > <= >= less than, greater than, less than or equal to, greater than or equal to,
== ! = test if equal, test if not equal

&& logical and

|| logical or

: = assignment with declaration, simple assignment

Evaluation of operator precedence in an arithmetic expression:

1. Anything inside round brackets is evaluated first,
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2. unary minus is evaluated next,

3. multiplications and divisions are evaluated before additions and subtractions,

4. operations of equal precedence are evaluated from left to right e.g. 10 - 5 - 1

evaluates to 4 and not to 6,

5. assignments are evaluated last.

Evaluation of operator precedence in a boolean expression:

1. Anything inside round brackets is evaluated first,

2. arithmetic is evaluated before equality and inequality tests,

3. logical operations are evaluated after equality and inequality tests,

4. not (!) is evaluated before and (&&),

5. and (&&) is evaluated before or (||),

6. assignments are evaluated last.

Example 3.10. SPC expressions.

1 /*

2 * Expressions

3 */

4 a: 1 + 2; // Evaluates to 3

5 b: a == 3 // Evaluates to true

6 c: (2 + a) * 5 // Evaluates to 25

7 /*

8 * String concatenation

9 */

10 s: "text_" << 1; // Evaluates to text_1

11 /*

12 * Precedence of operators

13 */

14 a + 1 > a && a > 0 // Evaluates to true

15 /*

16 * and is equivalent to

17 */

18 ((a + 1) > a) && (a > 0)
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3.6 Conditional Block

A conditional block, see Figure 3.25, consists of conditional statements, that allow to

perform different actions based on various conditions represented by boolean expressions:

• if - executes a block of code, if a given condition is true;

• else if - tests a new condition if the previous condition is false and executes an

alternative block of code if the current condition is true;

• else - executes a block of code if all previous conditions are false.

else

if ( ) {boolean expression }

{ }

if (

conditional block

) {boolean expression }

assign

declaration

conditional block

assign

declaration

conditional block assign

declaration

conditional block

Figure 3.25: SPC conditional block.

69



3. CONFIGURATION LANGUAGE

Example 3.11. Conditional block declaration.

1 if(condition1) {

2 /*

3 * Block of code to be executed

4 * if the condition1 is true

5 */

6 ...

7 } else if(condition2) {

8 /*

9 * Block of code to be executed

10 * if the condition1 is false

11 * and condition2 is true

12 */

13 ...

14 } else {

15 /*

16 * Block of code to be executed

17 * if all previous conditions

18 * are false

19 */

20 ...

21 }

Example 3.12. A boolean expression can be used as a condition in a conditional

statement.

22 x: 1;

23 y: 2;

24

25 if((y - 1) >= x && x != 0) {

26 /*

27 * Block of code to be executed

28 * if the condition is true

29 */

30 ...

31 }

3.7 Stepwise Simulation

A stepwise simulation allows to adjust a model after each simulation step, based on the

current state of a model and a running simulation. To set up a stepwise simulation, the

object onStep needs to be declared, see Figure 3.26 (page 71). It is a member of the

simulation configuration object.
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onStep

assign

declaration

conditional block do

Figure 3.26: onStep object.

The onStep object and all its properties are evaluated step by step. This means that

the order of declarations of variables, occurrence of expressions and conditionals blocks

is important. It can be logically divided into two parts:

• declaration - is evaluated only once, after the first simulation step (first step of

simulation is performed on an initial state of a model). It allows to declare and ini-

tialize variables. A declared variable can be observed (added to a set of observers),

which allows to include them in a simulation result. The value of declared variable

can be changed by use of the assignment operator. Assigning a new value can be

conditional (within the conditional block) and involves expressions consisting of

previously declared variables.

• after step evaluation - the do object, see Figure 3.27, is evaluated after each step

of a simulation. It allows for assigning new values to previously declared variables.

Similarly, like in the declaration part, assigning can be conditional and involves

expressions. The declaration of a new variable is allowed, however it should be

avoided for better performance.

do

assign

declaration

conditional block

Figure 3.27: do object - is evaluated after each step of a simulation.

In the scope of the onStep object, it is allowed to read and write the values of

places (markings) and constants. Read access is also possible to the current time and

the current step of a simulation. Additionally, variable states (values) can be logged by

assigning an expression to the predefined variable LOG.
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Example 3.13. Declaration of a stepwise simulation.

1 /*

2 * Stepwise simulation

3 */

4 onStep: {

5 /*

6 * Declaration part - evaluates only

7 * once at the beginning of a simulation

8 */

9

10 a: 0;

11 /*

12 * A variable can be added to observers,

13 * what allows recording how variable

14 * change over a simulation time

15 */

16 b:observe: 0;

17

18 do:{

19 /*

20 * Main loop part - evaluates after

21 * each simulation step

22 */

23

24 /*

25 * Log values

26 */

27 LOG = "time: " << simulation.time;

28 LOG = "step: " << simulation.step;

29

30 if(a < 10 && place.P > 5) {

31 if(constant.C > 0) {

32 constant.C = constant.C - 1;

33 }

34 } else {

35 constant.C = constant.C + 1;

36 }

37 a = a + 1;

38 LOG = "value_a: " << a; // Log value of the variable a

39 b = b + 1; // Increment observable variable

40 }

41 }
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3.8 Configuration Branching

Branching is an operation on a configuration; it is triggered by defining in the configur-

ation a set of parameters to scan. Each parameter to scan needs to be defined as an

array of values. A new configuration branch is created for each value in an array (if the

size of an array is > 1). To distinguish branches from a regular array, a list of values

are surrounded by double square brackets - the branching operator [[...]]. Such a

feature allows a configuration script to be split into separate branches, what results in

multiple simulation configurations, see Figure 3.28. The set of configuration branches

can be executed sequentially or in parallel.

SPC

a: value1;

...

z: [[value1, ..., valueN]];

SPC

a: valueM;

...

z: [[value1, ..., valueN]];

SPC

a: value1;

...

z: value1;

SPC

a: value1;

...

z: valueN;

SPC

a: valueM;

...

z: value1;

SPC

a: valueM;

...

z: valueN;

simulation

data generators

reports

simulation

data generators

reports

. . .

SPC

a: [[value1, ..., valueM]];

...

z: [[value1, ..., valueN]];

. . .

simulation

data generators

reports

simulation

data generators

reports

. . .

Figure 3.28: Graphical representation of branching.
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Example 3.14. Use of the branching operator. After evaluation, a base configuration

is split into two branches.

1 ...

2 x: [[1, 2]];

3 ...
1 /*

2 * Configuration branch 1:

3 */

4 ...

5 x: 1;

6 ...
1 /*

2 * Configuration branch 2:

3 */

4 ...

5 x: 2;

6 ...

3.9 Closing Remarks

The main goal of SPC is to efficiently support reproducible simulation experiments.

This chapter has described the structure and grammar of SPC, together with examples.

SPC has a human-readable format and allows configuring a model, a simulation and

observers. Additionally, it enables to define the export of simulation results. Through

the branching of configurations it is possible to set up the scanning of model parameters

and simulation options. The branches of a configuration are loosely coupled (they only

have common high-level/parent configuration) and can be executed in parallel. SPC
supports adaptive stepwise simulation, which allows for reconfiguring model parameters

based on the current status of a model and a simulation. All of these allow Spike to

efficiently perform reproducible experiments.

Open Issues and Future Works. Even though the grammar of SPC is quite

flexible, it lacks some features, which need to be addressed in future work:

• Full support of arrays - currently SPC supports only the declaration of arrays as

they are used only to set values of some configuration options. Accessing of array

elements will allow to reduce the number of declared variables and to collect and

organize data in many useful ways.

• Conditional loop blocks - condition loops allow certain parts of a program to

be run multiple times while a condition remains true. Support of a conditional

loop block in connection with arrays will be very handy. This will facilitate the

processing of data during stepwise simulation.
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• Temporal logic - the temporal logic is focused on formulas that use temporal

operators to describe how static conditions change over time. Support of the

temporal logic syntax will allow to conveniently express how to alter a model after

each simulation step, based on the current state of a model and a simulation.

• Parameter optimization - parameter optimization could be a complementary

feature of parameter scanning. This will allow Spike to optimize a set of model

parameters through an embedded optimization strategy.

The following chapter will explain some implementation aspects, and in Chapter 5

use cases will be discussed based on complete examples.
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Spike Architecture

Spike [CH19] is a command line tool for an efficient execution of multiple simulation

experiments of models, including biochemical reaction networks, represented as (coloured)

PN s and interpreted in the stochastic, continuous or hybrid paradigm. Simulation

of biochemical models can be time and memory consuming. Thus, simulations should

be delegated for performance reasons to be executed on a server. Additionally, when

experiments require running multiple simulations, the time spent can be particularly

long, when the individual simulations are merely executed one after another. Frequently,

it is required to prepare a set of simulation experiments in order to find appropriate

model parameters (e.g., initial conditions, kinetic parameters) or simulator options (e.g.,

simulator type, length of simulation traces, resolution of the traces recorded). Doing

this manually, by preparing a new simulation run for each new model and/or simulator

configuration, is time consuming and potentially error-prone. The reproducibility of the

entire experiment is compromised, if one of the runs is not well documented.

Spike has been designed to address all these issues. It builds on a human-readable

configuration script, supporting the efficient specification of multiple model configura-

tions as well as multiple simulator configurations in a single file. Each specific model

and simulator configuration determines a specific simulation experiment, for which

Spike creates a separate branch, ready to be executed on a server, with all branches

treated as parallel processes. Storing configurations in self-contained scripts allows for a

simplified work-flow and reproducible simulations in a user-friendly manner.

Spike has a modular structure, where the modules are basically decoupled from each

other. This allows to add new features easily. Modules communicate with each other

using the command dispatcher pattern, which is globally accessible. Each module has

its own list of commands with specific parameters. A command and its handler should

be part of the same module. This allows adding or removing modules with minimal

dependencies on each other. A command and its handler must be registered to the

dispatcher during initializations of a module, see Figure 4.1. A command can be invoked

outside its parent module and can be executed only by a handler associated with it.

Invoked commands are processed sequentially.
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Example 4.1. Considering the following use case illustrated in Figure 4.2 -- the

execution of a simple configuration script. When the command ”exe” is invoked, the

handler defined in the module Configuration will execute it. During execution, the

configuration module communicates with other modules by invoking new commands.

command dispatcher

command

module

commands set handlers set

command

register a command
 and its handler

matche the command
 with the handler

handler

the handler take care of
 the command execution

interpret a command
 form the input data

a module instancing & injecting

instance the command

Figure 4.1: Graphical representation of command dispatching.

exe

load

unfold

eval

sim

commands dispatching sequence

con guration

converter

simulation

load, unfold, eval, sim

exe
exe

load, unfold, eval

CLI

sim

Figure 4.2: Flow of commands through Spike modules when a user types the command
”exe”.

78



4.1 Spike Functionality

Table 4.1 shows a summary of all commands currently available in Spike.

Table 4.1: List of Spike modules with their commands.

Module Command Description

Main version display version of Spike
CLI help display help for a given command
Configuration exe execute configuration script
Converter load load a model from a given file

save save a model to a given file
prune prune a model
eval evaluate constants
unfold unfold a coloured model

Simulation sim run a simulation of the model

4.1 Spike Functionality

Spike is a slim, but powerful brother of Snoopy [HHL+12]; it is the latest addition to

the PetriNuts family of tools for modelling analysing and simulating a variety of related

models, for which Petri nets are used as umbrella modelling paradigm. For more details

see Figure 4.3.

SNOOPY

SPIKE

MARCIE

CHARLIE

PATTY

Modelling

Simulation

Animation

Web based

animation

Simulation

CTL / CSL

model checking:

Structural

analysis / reduction

Reachability graph

analysis

CTL model

checking

- symbolically

- simulative

Figure 4.3: The PetriNuts framework consists of tools for modelling (Snoopy [HHL+12]),
analysing (Marcie [HRS13], Charlie [HSW15]), simulating (Snoopy, Marcie, Spike [CH19])
and animating (Snoopy, Patty [Sch08]).

Spike deals with quantitative Petri nets, comprising stochastic, continuous and

hybrid Petri nets, which are specifically tailored to the investigation of biochemical

reaction networks. The Spike core features are presented in Figure 4.4 (page 80) and

include: efficient and reproducible simulation experiments, the transformation between

different exchange data formats and some basic model reductions.
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supported PN classes;
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Figure 4.4: Overview of the Spike functionality, which includes efficient and reproducible
simulation experiments, the transformation between different exchange data formats and
some basic model reductions.
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The Spike core features allow, among others, configuring the model (via parameters

specifying arc weights, initial marking, kinetic parameters) and the simulator (via

the usual, simulator-dependent options) over sets of arguments (parameter/option

scanning). An argument is a value passed to a parameter or option. A set of argument

sets triggers the so-called branching process. A new configuration branch is created for

each argument set (if there is more than one). The set of configuration branches can

be executed sequentially or in parallel. The simulation results can be saved in CSV

files, which can be used later for analysis or visualization. They may comprise any

user-defined combinations of traces over place markings, transition rates, and observers

(auxiliary variables).

4.2 Simulation

The main focus of Spike lies in efficient and reproducible simulations. Depending on

the configuration, Spike is able to run three basic types of simulations: stochastic,

deterministic and hybrid [HLR+17], each comes with several algorithms.

Stochastic simulation follows basically the standard Gillespie algorithm; some al-

gorithms apply approximation ideas for reasons of efficiency. All implementations are

part of Snoopy’s library of simulation algorithms:

• direct - Gillespie’s stochastic simulation algorithm [Gil77],

• tauLeaping - τ -leaping [Gil01],

• deltaLeaping - δ-leaping [Roh17, Roh18],

• fau - fast adaptive uniformization [DHM+09, HRS+10, Roh17].

Deterministic simulation supports stiff/unstiff solvers ranging from simple fixed-

step-size unstiff solvers (e.g. Euler) to more sophisticated variable-order, variable-step,

multi-step stiff solvers (e.g. Backward Differentiation Formulas (BDF)). The ODE

solvers BDF and ADAMS use the external library SUNDIAL CVODE [HBG+05]; all

others are part of Snoopy’s library of simulation algorithms:

• BDF - Backward Differentiation Formulas [HBG+05],

• ADAMS - Adams-Moulton [HBG+05],

• Classic - classical Runge-Kutta method (RK4) [VPT+02],

• RosenBrock - Rosenbrock method [VPT+02],

• Euler - Euler method (Runge-Kutta method, first order) [VPT+02],

• ModEuler - two-steps Euler method (Runge-Kutta method, second order)

[VPT+02].
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Hybrid simulation allows for static or dynamic partitioning. In both cases, continuous

transitions are simulated using an ODE solver, while stochastic transitions are simulated

by the direct method of the Gillespie algorithm [HHL+12]. Static partitioning can be

combined with static, staticAcc, HRSSA, or HRSSAacc. These are different strategies

to synchronize the stochastic and continuous subnets. Dynamic partitioning always

applies the exact method. The ODE solvers BDF and ADAMS use the external library

SUNDIAL CVODE [HBG+05]; all others are part of Snoopy’s library of simulation

algorithms:

• static - exact method [HR02, HH12],

• staticAcc - accelerated exact method [HH16],

• HRSSA - Hybrid Rejection-based Stochastic Simulation Algorithm [MPT16],

• HRSSAacc - accelerated HRSSA [HH18],

• dynamic - dynamic partitioning [HH12].

The simulation of stochastic, continuous and hybrid PN C models is supported by

automatically unfolding them to their uncoloured counterparts.

A given model is simulated according to the specified simulation type, despite place

and transition types in the model. That means all places and transitions are converted

to the appropriate type. For example, if a user wants to run a stochastic simulation

on a continuous model, all places and transitions are converted to the stochastic type.

Likewise, for stochastic models to be simulated continuously, all stochastic transitions

are converted to the continuous type, likewise for places.

4.3 Parallel Simulation

The evaluation of configuration may cause the split into separate branches A branching

process is triggered by defining in the configuration a set of parameters to scan. The set

of values is assigned to the configuration parameters. For each value in the set, a new

configuration branch is created. Such a feature allows a configuration script to be split

into separate branches, what results in multiple simulation configuration.

Example 4.2. The constant D has been defined. To set the size of the diffusion grid.

With the help of the parameter scanning introduced in Spike, it is possible to reuse the

same model and to set the range of values to scan for the constant D in the configuration

script, e.g.:
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1 ...

2 configuration: {

3 model: {

4 constants: {

5 all: {

6 D: [[3, 5, 7]];

7 }

8 }

9 }

10 }

11 ...

By using the branching operator [[...]], the set of three values is assigned to the

constant D. The number of branches depends on the size of the set. For each value in

the set, Spike creates a new branch of the configuration script. In this case, Spike will

split the configuration and create three branches.

The set of configuration branches can be executed sequentially or in parallel. Each

branch is executed as a separate process of Spike. During running the simulation Spike

creates two types of processes. One so-called master process and one or more worker

processes. A high-level overview of performing parallel simulations is presented in

Figure 4.5.

SIMULATION

QUEUE

time

01

Simulation

time

...

Simulation

time

N

Simulation

Results

Results

Results

Figure 4.5: High level overview of performing parallel simulations. A master process
orchestrates a queue of worker processes (simulations). Each simulation result is stored by
a worker process.

4.4 Inter-Process Communication

Spike distinguishes two types of processes: the master and the worker. The master process

acts as a broker that schedules the execution of simulation branches for the worker

processes. The worker process is instantiated by the broker to execute a simulation task.

After instantiating, a worker acts independently and communicates with the broker

via network sockets [SFR03]. The communication is asynchronous and workers do not
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block each other while communicating with a broker. The Boost.Asio library [Koh21]

was chosen for implementation as it is a cross-platform C++ library for network and

low-level I/O programming. Despite the use of network sockets, Spike is currently only

able to perform parallel simulation experiments on single host.

Figure 4.6, presents a simplified diagram of the life cycle of a broker and a worker

process. After instantiating of Spike, the main process acts as the broker and the owner

of the simulation experiment. The broker takes care of creating worker processes on

a local machine. A worker process is responsible for executing exactly one branch

of the simulation configuration. Depending on the option passed to Spike, a worker

process can exit after finishing its job or can be reused. The reuse of a worker allows

to speed-up initialization of a new simulation. It uses the resources acquired during

instantiating and only needs to be initialized with a new configuration branch. The

number of workers running in parallel depends on an option passed to Spike. If only one

worker is allowed, then each simulation branch will be executed sequentially. In such a

case, the broker waits for the worker to finish before outsourcing another configuration

branch. Otherwise, the broker will instantiate workers up to the maximum number

specified by the option of Spike. If the number of branches exceeds the number of

workers, the broker will postpone outsourcing of the execution of the next branch until

one of the currently running workers will finish its task.

The number of running worker processes is not equivalent to the number of running

threads. The number of thread depends on the simulation algorithm. The stochastic

simulation is an example, where the algorithm can be executed by utilizing multi-

threading.

process

broker

exe -url=127.0.0.1 -port=7777 -s

exe -f=conf.spc

instancing instancing

127.0.0.1 127.0.0.1

port: 7777

Figure 4.6: Simplified diagram of the life cycle of a broker and a worker process. Both
processes are instantiated on the same local host. The broker process opens the default port
7777 of the local host (IP: 127.0.0.1) for inter-process communication. After establishing a
connection with the worker process, the two-way inter-process communication begins.
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The communication between a broker and a worker is done through networks sockets

using a message pattern. When a message arrives at a receiver, a handler is invoked to

process the message. The message format is as follows:

MSG#[DATA]::msg::end

and consists of four parts:

• MSG - is a string that names a message,

• # - a message-data separator,

• DATA - optional data,

• ::msg::end - marks end of a massage.

Depending on the message, the DATA part can be optional or required. To mark

this, the following convention is used:

• square brackets - [optional data],

• angle brackets - <required data>,

• curly braces {default values},

• parenthesis (miscellaneous info).

The Table 4.2 contains the list of messages used in inter-process communication.

Table 4.2: List of messages.

Massage Description

GETCONF#::msg::end request a configuration,
sent from a worker to a broker;

GETCONF#<DATA>::msg::end response with a configuration data
on requests, sent from a broker to a worker;

SIMEND#::msg::end sent to a broker notifies about finishing
a simulation job, sent to a worker confirms
end of a task and allows a worker to finalize;

LOG#<DATA>::msg::end sent logging data to a logger;

Example 4.3. Figure 4.7 (page 86) presents a simplified scenario of an inter-process

communication during the life cycle of a worker performing a simulation task. After

instantiating, a worker asks a broker about the configuration. If a set of configuration

branches to be executed is not empty, then the broker will respond and send a message

with data that contains a configuration branch. After finishing a simulation task, the
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worker will send a message informing about the simulation end. If the queue is not empty

and Spike is configured to reuse a worker process, the broker will send the next branch

from the given set. Otherwise, a broker will send a message to the worker allowing to

finish the work and to finalize. If the queue is not empty, a new worker process will be

created.

process

broker

process

worker

GETCONF#DATA::msg::end

GETCONF#::msg::end

GETCONF#DATA::msg::end

SIMEND#::msg::end

SIMEND#::msg::end

handler

handler

handler

handler

handler

nalize

Figure 4.7: An example of an inter-process communication during the life cycle of a worker
performing a simulation task.

4.5 Stepwise Simulation

The idea to implement a stepwise simulation arose from the need to introduce dynamic

relaxation/constraint rules into the SIR model. The stepwise simulation allows for

the dynamic adaptation of a model during the simulation runtime. It advances in

a given time interval, in which the parameters of the model and its state can be

adjusted/adapted after each simulation step. The adaptation is based on an evaluation

of boolean conditions that may involve the current state of a model and the simulation.

The proposed algorithms: Algorithm 8 and Algorithm 9 allow reusing any simulator

without its modification. The main idea is to apply a simulator for each time step. For

each step, a simulator is reinitialized with the current state of a model and a constant

time range. The time range corresponds to one simulation step and starts from zero

and ends with a value of a time step size. After each simulation, the state of a model is

stored and can be changed by predefined boolean conditions, which are evaluated for

each time step.

Spike supports deterministic and stochastic stepwise simulation. The support of

stepwise hybrid simulation is considered in future work.
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Algorithm 8: Stepwise deterministic simulation algorithm.

Data: CPN with initial state X(τ0);
time interval [τ0, τend];
step size δτ where δτ < (τend − τ0);

Result: trace of stored system states;
1 set of constants C = ∅;
2 time τ = τ0;
3 state X(τ) = ∅;
4 while τ < τend do
5 X(τ) = deterministic simulator(CPN, 0, δτ, δτ);
6 X(τ)→ store; /* add X(τ) to trace */

7 X(τ), C = evaluate boolean conditions(X(τ), C);
8 set constants(CPN, C); /* apply new constant values to the model */

9 set makrings(CPN, X(τ)); /* apply new modified state to the model */

10 τ = τ + δτ ; /* determine next time point */

11 end

Algorithm 9: Stepwise stochastic simulation algorithm.

Data: SPN with initial state X(τ0);
time interval [τ0, τend];
step size δτ where δτ < (τend − τ0);
number of runs R;

Result: trace of stored system states;
1 run r = 0;
2 average state A = ∅;
3 while r < R do
4 set of constants C = ∅;
5 time τ = τ0;
6 state X(τ) = ∅;
7 while τ < τend do
8 X(τ) = stochastic simulator(SPN, 0, δτ, δτ);
9 A(τ) = A(τ) +X(τ);

10 X(τ), C = evaluate boolean conditions(X(τ), C);
11 set constants(SPN, C); /* apply new constant values to the model */

12 set makrings(SPN, X(τ)); /* apply new modified state to the model */

13 τ = τ + δτ ; /* determine next time point */

14 end

15 end
16 A = A/R;
17 A→ store;
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4.6 Reproducible Stochastic Simulation

Random number generator play a crucial role in any stochastic simulation. In order

to guarantee the reproducibility of a stochastic simulation, the simulation library used

internally by the PetriNuts framework had to be modified in a such way, that each of

the simulation threads produce unique, reproducible results based on a main seed for

all random number generators.

The process of instantiating the simulation threads is from Spike’s point of view as

follows. The main thread is configured with a seed and a number of threads, which are

set in a configuration script. The seed initializes a random number generator which is

used by the main thread. The main thread creates a pool of random seeds and a pool of

threads. Each time when the random number generator of main thread is initialized

with the same seed, it ensures to generate the same pool of seeds. The size of both

pools is equal to the number of threads defined by a configuration. Each seed can be

assigned to only one thread from the pool. A pair of seed/thread defines a simulation,

which is added to the pool of simulation threads. After initializing, simulation threads

are executed in parallel. The graphical representation of this process is represented in

Figure 4.8.

thread

main

SPC

seed: 12345678

...

threads: 3

seeds pool

threads pool

simulations

pool

Figure 4.8: Graphical representation of instantiating the simulation threads.

4.7 Conversion

Spike supports the following data formats and conversion between them, as shown in

Figure 4.9:

• ANDL and CANDL - human-readable formats for Petri nets and coloured Petri

nets, respectively, used internally by the PetriNuts framework,

• SBML (Systems Biology Markup Language) - an XML-based representation

format designed to exchange computational models within the systems biology

community [Huc15],

• PNML - an XML-based interchange format for qualitative Petri nets [PNML]

used within the Petri net community,
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• ERODE - a tool for the evaluation and reduction of chemical reaction net-

works [CTT+17].

ANDL

ERODE

CANDL PNML

SBML

Figure 4.9: Data format conversions supported by Spike. Please note that any node in
this diagram can be the entry point. For the PNML format, only import is allowed and no
further conversions are possible.

4.8 IDD-based unfolding

Spike uses IDD (Interval Decision Diagrams) to efficiently unfold PN C [SRF+20].

IDD, first proposed in [LR95], belong to the symbolic data structures and can be seen

as a generalization of the popular Binary Decision Diagrams (BDD). BDD are widely

used to encode boolean functions, while IDD encode interval logic functions. Interval

logic functions are boolean expressions involving atomic predicates defining integer

intervals, e.g.: x1 ∈ [6, 8), x2 > 0.

IDD are Directed Acyclic Graphs (DAG) with two types of nodes -- terminal

and non-terminal ones. There are two terminal nodes (typically represented as boxes),

labelled with 0 and 1, and the non-terminal nodes (typically represented as circles or

ellipses) are labelled with the variables occurring in the interval logic function to be

encoded. Non-terminal nodes may have an arbitrary number of outgoing arcs labelled

with intervals of natural numbers (including zero) partitioning the set of natural numbers.

Intervals have the form [a, b); where the lower bound a is included in the interval [a, b)

and the upper bound b not. Note that intervals of the form [a,∞) are allowed as well,

see Figure 4.10 for two examples.
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(a) (b)

0 1

x1

[6,oo) x2

[0,5)

x2

[5,6)

[1,oo) [0,1)[1,oo) [0,1)

0 1

x1

[6,oo) x2

[0,6)

[1,oo) [0,1)

Figure 4.10: Two IDDs representing f = (x1 ∈ [0, 6) ∧ x2 = 0); (a) not reduced; (b)
reduced.

4.8.1 IDD Reduction

Reduced Ordered Interval Decision Diagrams (ROIDD) are a canonical representa-

tion for interval logic functions and often provide a compact representation in many

application areas. An IDD is called reduced, if three conditions hold:

1. The interval partitions labelling the outgoing arcs of each non-terminal node are

reduced.

2. Each non-terminal node has at least two different children.

3. There exist no two nodes with isomorphic subgraphs.

Applying those rules to the IDD in Figure 4.10.(a) yields the reduced version

presented in Figure 4.10.(b). The reduction is carried out by merging the two nodes

labelled with x2 (third rule) and merging/reduction of redundant arcs (first rule).

The variable ordering can have an impact on the size of a ROIDD. Finding an

optimal ordering is generally infeasible, and even checking if a particular ordering is

optimal is NP-complete [BW96, RK08]. There exist interval logic functions, that have

ROIDD representations of exponential size for any variable ordering. Heuristics, taking

into consideration that variables which depend on each other should be close together

in the ordering, often bring good results.

4.8.2 Unfolding

The unfolding engine utilized by Spike uses shared ROIDDs, an implementation

principle to keep several ROIDDs within one data structure. Technically speaking, a

shared ROIDD is a single multi-rooted DAG representing a collection of interval logic

functions. All functions in the collection must be defined over the same set of variables,

using the same variable ordering. Thanks to the canonicity of ROIDDs, two functions
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in the collection are identical if and only if the ROIDDs representing these functions

have the same root in the shared ROIDD. The unfolding proceeds basically in three

steps (according to [SRF+20]):

1. Unfolding of coloured places -- generates for each coloured place as many unfolded

places as there are colours in the place’s colour set, which is also reflected in

the applied naming convention for the generated unfolded places. If the initial

marking of a coloured place p contains n tokens of the colour c, then the unfolded

place p c has initially n (black) tokens.

2. Unfolding of coloured transitions -- generates an unfolded transition (transition

instance) for every variable binding and connects this unfolded transition with

those unfolded places, which correspond to the binding. The naming convention

for the generated unfolded transition reflects the variable binding.

3. Deleting any isolated unfolded places -- colours that are never used yield isolated

places, which will never influence the net behaviour, even if initially holding tokens;

thus they can be safely removed.

The first and last step are relatively easy. The core problem of efficient unfolding is

to determine the transition instances, i.e. all bindings of values to the variables involved,

potentially enabling coloured transitions. Fortunately, each coloured transition t can be

considered separately, and the problem can be formulated as a constraint satisfaction

problem (CSP), defined by:

• the set of variables -- all variables occurring on any arc adjacent to transition;

• the domain of each variable -- given by its (finite, discrete) colour set;

• the constraints -- any guards involved, which are all Boolean expressions.

To solve the CSP, a corresponding IDD, which represents the constraints (the so-

called constraint IDD), is built stepwise bottom-up. First, the domain of each individual

variable is represented as IDD; the only colour set type causing here problems is union.

Next, the constraint IDD is constructed using standard IDD algorithms. The set of

all paths going from the root to the terminal node 1 describes all solutions of the given

constraint problem; typically, one path encodes more than one solution. Thus, all CSP

solutions can be easily picked from the constraint IDD.

To deal with variables of union type, all different data types subsumed by the union

type, each yielding one constraint IDD, need to be considered alternatively. In other

words: if two variables of a union type subsuming three types (colour sets), the solution

is obtained by considering nine constraint IDDs.

Guards, which may be arbitrarily complex, may not only serve as transition guards,

but also help to conveniently define colour sets as subsets of previously defined colour
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sets or to specify the initial marking in a concise and scalable way. Both need to

be considered when unfolding places. Likewise, guards also permit to specify colour-

dependent transition rate functions or conditional colour expressions for arcs.

4.8.3 Algorithms

This section sketches an implementation of the IDD unfolding engine by a pseudocode

description; see Algorithms 10--13.

Algorithm 10. The main procedure of the IDD unfolding engine follows the basic

steps outlined in Subsection 4.8.2. Before unfolding the coloured places (line 18) and

unfolding the coloured transitions (line 19), all colour-related net annotations have to

be registered (lines 6--17). This comprises four categories of declarations: constants,

colour sets, variables, and colour functions. Constants are crucial to design scalable and

easily adjustable coloured Petri nets; thus they are often used in colour sets and colour

functions.

The actual unfolding happens in Algorithms 11 and 12, which involves setting up

and solving a CSP for every place and every transition, respectively. This is here done

by the help of IDDs, but could be equally achieved by any other appropriate data

structure. Algorithm 11 creates unfolded places, but does not add them to the unfolded

net. Algorithm 12 creates unfolded transitions and their unfolded adjacent arcs and

does indeed add them to the unfolded net. Afterwards, all unfolded places, which are

involved in the unfolding of transitions, are actually added to the unfolded net in the

final step (lines 20--24), which implicitly prunes the unfolded net by ignoring isolated

places.

Algorithm 11. The unfolding of places can be done place by place and requires

determining all colours of a place’s colour set. Thus, the computational load for this

unfolding step depends on the kind of colour sets supported. Colour sets known by the

PetriNuts framework include the following.

• Dot sets. A Dot set contains one so-called black colour and is defined be a set of

one constant value: dot.

• Boolean sets. A Boolean set is defined by a set of two Boolean constants: true

and false.

• String sets. Are based on strings of characters surrounded by quotation marks,

i.e.: ”...”. A string colour set is specified by a set of single elements, and may

incorporate the usual set operations.

• Integer sets. Are based on natural numbers. An integer colour set can be specified

by a set of single elements or valid ranges, and may incorporate the usual set

operations.

• Enumeration types are treated as integer sets, where all elements are given by

constants.
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Algorithm 10: Unfold CPN

1 Net unfoldedNet;
2 placeRefTable ⊂ String × Int× Int = ∅; /* (name, tokens, number of references) */

3 Environment env; /* some kind of registry */

4

5 proc unfoldNet (CPN net)
6 forall c ∈ net.constants do
7 env.registerConstant(c.name, c.expr);
8 end
9 forall cs ∈ net.colorsets do

10 env.registerColorset(cs.name, cs.expr);
11 end
12 forall v ∈ net.variables do
13 env.registerV ariable(v.name, v.colorset);
14 end
15 forall cf ∈ net.colorfunctions do
16 env.registerColorFunction(cf);
17 end
18 unfoldP laces(net); /* Algorithm 2 */

19 unfoldTransitions(net); /* Algorithm 3 */

20 forall (place, tokens, ref) ∈ placeRefTable do
21 if ref > 0 then
22 unfoldedNet.addP lace(place, tokens);
23 end

24 end

25 end

• Product sets. Building on previously defined colour sets more complex, compound

colour sets can be defined by means of the Cartesian product.

• Subsets. Given a previously defined colour set, it is possible to select specific

elements characterised by a Boolean expression (guard). These guards are treated

as implicit guards during the unfolding (line 4).

The computation of all colours for the colour set of a given place is achieved by

constructing an IDD for the solution space (lines 8, 12). The solutions are obtained by

following all paths to the IDD’s terminal node 1 (supported by a corresponding iterator

concept); each solution generates an unfolded place (lines 18-22).

The creation of unfolded places includes the generation of their initial marking

according to the given marking expression (lines 6--11). Places which remain empty are

created afterwards (lines 12--13). Please note, places are created, but not added yet to

the unfolded net.

Algorithm 12. The unfolding of transitions can be done transition by transition

and requires determining all variable bindings for every transition. To set up the

corresponding CSP, the algorithm first iterates over all adjacent arcs (line 4), which are
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Algorithm 11: Unfold Places

1 proc unfoldPlaces (CPN net)
2 forall p ∈ net.places do

/* replace function call by its body guard used to describe subsets */

3 substituteColorFunctions(p.markingExpr, env);
4 Guard gcs = env.implicitGuard(p.colorset);
5 Set Gp = {gcs};

/* separated by ’++’ */

6 forall expr ∈ p.markingExpr do
7 Set vars = collectV ariables(markingExpr, env);
8 IDDSolutionSpaceRepr S(vars, expr.guard, env);
9 createP laces(p, S, expr.value, expr.color);

10 Gp = Gp ∪ {expr.guard ∩ gcs};
11 end

/* remaining places are empty */

12 IDDSolutionSpaceRepr S(vars,
⋂

g∈Gp
¬g, env);

13 createP laces(p, S, 0, expr.color);

14 end

15 end
16

17 proc createPlaces (Place p, IDDSolutionSpaceRepr S, ColExpr value, ColExpr color)
18 forall sol ∈ S do
19 places = createP lace(p, color, sol, env);
20 values = createV alue(value, sol, env);
21 placeRefTable = placeRefTable ∪ {(places, values, 0)};
22 end

23 end

grouped into conditions (read arcs, inhibitory arcs, equal arcs, reset arcs) and updates

(standard arcs connecting pre- and post-places). A transition guard may be additionally

restricted by the implicit guards of any adjacent places with a subset colour set. Thus,

those implicit guards have to be collected (lines 5--7). Next, all variables involved in

any adjacent arc or transition guard are collected (line 9), which then permits to create

the IDD representation of the solution space of the given CSP (line 10).

Next, the CSP solutions are evaluated by iterating over the solution space, following

all paths to the IDD’s terminal node 1 (lines 11--23). Every solution generally generates

a set of arcs, whereby the unfolding of arcs always preserves the arc type; a coloured

read arc will always be unfolded to read arcs. If there are no arcs for a given CSP

solution, no unfolded transition is created (line 20--22).

Unfolded places will be ignored in Algorithm 10, if they are never connected to any

transition. Thus, the entry in the placeRefTable is updated by removing the previous

tuple and adding a new tuple with the number of references (usage of this place)

increased by 1 (line 33).
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Algorithm 12: Unfold Transitions

1 proc unfoldTransitions (CPN net)
2 forall t ∈ net.transitions do
3 Guard Ga = ∅;

/* preparation step */

4 forall (p, arcType, arcExpr) ∈ t.conditions ∪ t.updates do
/* guard used to describe subsets */

5 Guard gp = env.implicitGuard(p.colorset);
/* replace function call by its body */

6 substituteColorFunctions(arcExpr, env);
7 Ga = Ga ∪ {arcExpr.guards ∩ gp};
8 end
9 Set vars = collectV ariables(t.conditions ∪ t.updates ∪ t.guard, env);

10 IDDSolutionSpaceRepr S(vars, t.guard ∩ (
⋃

g∈Ga
g), env);

/* creation step */

11 forall sol ∈ S do
12 Set arcs;
13 forall (p, arcType, arcExpr) ∈ t.conditions ∪ t.updates do
14 arc = createArc(p, arcType, sol, arcExpr.guard,
15 arcExpr.value, arcExpr.color);
16 if arc 6= null then
17 arcs = arcs ∪ {arc};
18 end

19 end
20 if arcs 6= ∅ then
21 unfoldedNet.addTransition(createTransition(t, sol, env), arcs);
22 end

23 end

24 end

25 end
26

27 proc createArc (Place p, ArcType arcType, Solution sol, Guard guard, ColExpr value,
28 ColExpr color)

/* guard used to describe subsets */

29 Guard gp = env.implicitGuard(p.colorset);
30 if sol |= guard ∩ gp then
31 places = createP lace(p, color, sol, env);
32 values = createV alue(value, sol, env);
33 placeRefTable = placeRefTable−{(places, values, n)}∪{(places, values, n+1)};

34 return Arc(places, arcType, values);

35 else
36 return null;
37 end

38 end
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Algorithm 13: IDD solution space representation

1 class IDDSolutionSpaceRepr
2 IDD solutions;
3 proc constructor (Set vars, Guard guard, Environment env)
4 createV ariableOrder(vars, guard);
5 solutions = 1; /* the universe */

/* create the potential solution space */

6 forall v ∈ vars do
7 Intset is = env.getIntColorset(v);
8 solutions = solutions ∩makeIDD(is, env);

9 end
/* create the actual solution space */

10 solutions = solutions ∩makeIDD(guard, env);

11 end
12 proc makeIDD (Guard guard, Environment env)
13 if g ≡ g1 ∧ g2 then return makeIDD(g1, env) ∩makeIDD(g2, env) ;
14 if g ≡ g1 ∨ g2 then return makeIDD(g1, env) ∪makeIDD(g2, env) ;
15 if g ≡ ¬g1 then return 1−makeIDD(g1, env) ;
16 if g ≡ f1 ◦ f2 : ◦ ∈ {=, 6=,≤<,>,≥} then
17 Set vars = collectV ariables(f1) ∪ collectV ariables(f2);
18 IDD S = ∅; /* empty set */

19 forall v ∈ vars do
20 Intset is = env.getIntColorset(v);
21 S = S ∪makeIDD(is, env);

22 end
23 return ExtractAP (S, g);

24 end

25 end

26 end

Algorithm 13. This pseudocode is a data structure and provides the algorithm

to construct an IDD representing the solution space for a given CSP, characterized

by a set of variables and a guard in the context of the coloured net to be unfolded.

The algorithm starts with choosing the variable order (line 4). A good variable order

often depends on the specific guard involved; thus the guard occurs as parameter and is

evaluated by the procedure createVariableOrder to determine, which variables are close

to each other. Next, the potential solution space is constructed by combining the colour

sets of all variables involved (lines 6--9), which is afterwards restricted to the actual

solution space by considering the guard (line 10). The actual IDD construction (lines

12--25) follows the standard IDD algorithms, see [ST11, Sch14]. The sub-procedure

ExtractAP (Extract atomic proposition, line 23) extracts all states in S fulfilling the

guard g, represented as IDD; for details see [Sch14], Algorithm 6.

The developed implementation is equipped with an iterator enabling the efficient
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iteration over all solutions, which is used in Algorithms 11 and 12. As a special feature,

the iterator automatically updates the environment only with regard to changed variable

values.

This algorithm is not IDD-specific. The type IDD could be replaced just by some

set type and the algorithm will work. Although IDDs often yield a very compact

representation of sets and permit very efficient manipulation algorithms, it may be

worth considering explicit or other symbolic data structures.

4.8.4 The elemOf Operator and Boolean Colour Set

The implemented IDD unfolder supports expressions that may involve the elemOf

operator. It checks the membership of a certain colour in a colour set, which returns

true if the colour is a member of the colour set, otherwise it returns false. An expression

that uses the elemOf operator can be assigned to constrain transitions, arcs and colour-

dependent rate functions. If the elemOf operator is applied to a subset of a colour set,

then a given expression can be substituted by an explicit constrain, that defines the

subset and the elemOf operator is applied on the main colour set. The new expression

is combined by the logical operator &, e.g.:

for a given colour set and its subset

enumPopulation = {A,B,C,D,E, F};
PopulationAB = Population[x = A||x = B];

the expression

x elemOf PopulationAB

is equivalent to

(x = A||x = B) && x elemOf Population .

Drawbacks of the implementation. Currently, the implementation of the elemOf

operator has the following drawbacks:

• An auxiliary variable is implicitly created for each colour set of the right-hand

operand. An auxiliary variable has an impact on the size of the calculated IDD,

as is shown in Figure 4.14 (page 104), and slow downs its evaluation.

• If the elemOf operator is applied on a subset of a colour set, then a given expression

is substituted by an explicit constraint that defines the subset and the elemOf

operator is applied on the main colour set. Such a substitution is inefficient and
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may add extra non-terminal nodes to a resulting IDD. The process of such a

substitution is presented in Figure 4.14.(c), (f) (page 104) and the resulting IDD

in Figure 4.14.(g) (page 104).

• Only one elemOf operator is allowed in an expression as the substitution of such

expression

x elemOf PopulationAC && x elemOf PopulationAB

where

PopulationAB = Population[x = A||x = B];

PopulationAC = Population[x = A||x = C];

is unreliable and results in

((x = A||x = C)||(x = A||x = B)) && x elemOf Population

where the constraints of the two subsets are implicitly joined by the operator ||.

Example 4.4. The model in Figure 4.11 (page 99) is a variation of the model in

Figure 2.6 (page 18). It presents a more flexible solution to specify colour-dependent

rate functions. In this model the colour set Population is extended by new species: C,

D, E and F. It contains one subpopulation PopulationAB defined as a subset of the

colour set Population. The colour-dependent rate functions are defined with the help of

the elemOf operator, which allows to assign a specific rate function based on a subset

of the population, e.g.: the following expression

[x elemOf PopulationAB] : MassAction(k infect[x])

[x elemOf PopulationF ] : MassAction(k infect A+ k infect B)

states that, if the value of the variable x belongs to the subpopulation PopulationAB,

then the reaction fires with the rate specified by the function

MassAction(k infect[x]),

where [...] is the indexing operator. With the help of the indexing operator, kinetic

parameters defined as constants can be accessed by a value of defined colours. The

indexing operator requires the definition of constants with a colour value at the end

of a constant name separated by an underscore, e.g: k infect A where A is the colour
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value. If the value of the variable x belongs to the subpopulation PopulationF, then the

reaction fire with the rate specified by the function

MassAction(k infect A+ k infect B) .

1.5e5 x 2‘x x x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

RecoverInfect

5e4‘all() 1‘all()

Population

MassAction(k_recover[x])[x elemOf PopulationAB] :

MassAction(k_infect[x])

[x elemOf PopulationF] :

MassAction(k_infect_A + k_infect_B)

constants:

  double k_infect_A = 5.0e-5;

  double k_infect_B = 5.0e-6;

  double k_recover_A = 1.0e-1;

  double k_recover_B = 1.0e-2;

  double k_recover_C = 1.0e-3;

  double k_recover_D = 1.0e-4;

  double k_recover_E = 1.0e-5;

  double k_recover_F = 1.0e-6;

colorsets:

  enum Population = {A,B,C,D,E,F};

  PopulationAB = Population [x = A || x = B];

variables:

  Population : x;

Figure 4.11: Coloured SPN SIR model with a more flexible solution to specify colour-
dependent rate functions.

Example 4.5. The model in Figure 4.12 (page 100), is a variation of the model in

Figure 4.11 (page 99). It presents a more advanced use of the elemOf operator. In

addition to the previous example, the elemOf operator is used to constrain transitions

and the model contains two additional subpopulation: PopulationF and Population-

ABF. The transition Infect is constrained and accepts species from the subpopulation

PopulationABF what is expressed by the expression

x elemOf PopulationABF .

In this case, the transition will accept and fire only for the species A,B and F . The
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transition Recover is also constrained by the expression

x elemOf PopulationAB ,

and accepts species that belong to the subpopulation PopulationAB. The model comprises

also one additional transition Recover F, which fires only if the colour value of the

variable x belongs to the PopulationF, what is defined by the constraint expression

x elemOf PopulationF .

5e4‘A++

1e5‘B++

2.5e4‘F

1.75e5 x 2‘x

x

x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

Infect

1‘all()

Population

[x elemOf PopulationAB] :

MassAction(k_infect[x])

Recover

MassAction(k_recover[x])[x elemOf PopulationF] :

MassAction(k_infect_A + k_infect_B)

[x elemOf PopulationABF]

[x elemOf PopulationAB]

Recover_F

MassAction(k_recover[x])

[x elemOf PopulationF]

x

x

constants:

  double k_infect_A = 5.0e-5;

  double k_infect_B = 5.0e-6;

  double k_recover_A = 1.0e-1;

  double k_recover_B = 1.0e-2;

  double k_recover_F = k_recover_A + k_recover_B;

colorsets:

  enum Population = {A,B,C,D,E,F};

  PopulationF = Population [x = F];

  PopulationAB = Population [x = A || x = B];

  PopulationABF = Population [x = A || x = B || x = F];

variables:

  Population : x;

Figure 4.12: SIR model, as coloured SPN driven by elemOf expressions.
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In coloured Petri nets each token has a colour and thus each place must have a

colour set. The newly introduced Boolean colour set extends the implemented IDD

unfolder engine. The Boolean colour set is defined by a set of coloured values represented

by two Boolean constants: true and false; it supports the following boolean operators:

& - AND - denoted x&y;

| - OR - denoted x|y;

! - NOT - denoted !x.

The denoted expression values can be expressed by a truth table, see Table 4.3.

Table 4.3: The truth table of IDD Boolean expression.

x y x&y x|y !x

0 0 0 0 1
1 0 0 1 0
0 1 0 1
1 1 1 1

Example 4.6. The use of the Boolean colour set can simplify colour expressions, which

can be used to control the firing of transitions. The model in Figure 4.13 (page 102) is

a variation of the model in Figure 4.12 (page 100). In this model one additional place

AllowInfect is introduced. The place is of type Boolean and with the help of Boolean b

it ensures sequential occurrence of the Infection and Recovery process of an individual

population. It is a form of control of a mutual exclusion process, where firing of the

transition Infect is followed by firing of the transition Recover for a single population.

Example 4.7. The stepwise computation of the constraint IDD to find all instances for

the single transition Recover F is documented in Figure 4.14 (page 104) and comprises

the following steps:

(a) Encoding the entire enumeration colour set Population = {A, B, C, D, E, F}
automatically involves a mapping of the enumerated constants to integer identifiers;

thus, the integer identifier 0 represents A, 1 stands for B, 2 for C, 3 for D, 4 for E

and 5 for F.

(b) Encoding the entire colour set Boolean, specified by the list of the boolean constants

{true, false}, automatically involves a mapping of boolean constants to integer

identifiers; thus, the integer identifier 0 represents false, 1 stands for true.

(c) Constraining the colour Population given in (a) to x elemOf Population, which is

represented by the implicit auxiliary variable aux.
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5e4‘A++

1e5‘B++

2.5e4‘F

1.75e5 x 2‘x

x

x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

Infect

1‘all()

Population

[x elemOf PopulationAB] :

MassAction(k_infect_[x])

Recover

MassAction(k_infect_[x])[x elemOf PopulationF] :

MassAction(k_infect_A + k_infect_B)

[x elemOf PopulationABF]

[!b && x elemOf PopulationAB]

Recover_F

MassAction(k_infect_[x])

x

x

constants:

double k_infect_A = 5.0e-5;

double k_infect_B = 5.0e-6;

double k_recover_A = 1.0e-1;

double k_recover_B = 1.0e-2;

double k_recover_F = k_recover_A + k_recover_B;

colorsets:

Boolean = {true, false};

enum Population = {A,B,C,D,E,F};

PopulationF = Population [x = F];

PopulationAB = Population [x = A || x = B];

PopulationABF = Population [x = A || x = B || x = F];

variables:

Boolean : b;

Population : x;

[!b && x elemOf PopulationF]

AllowInfect

bb !b

!bbb

Boolean

AllowInfect

1‘true

b
b

!b

AllowInfect

Figure 4.13: SIR model, as coloured SPN driven by elemOf expressions and Boolean
colour set. The palce AllowInfect is of type Boolean and is represented by two logical places
given in grey. A set of logical places, having the same name,refers to one and the same
place; it serves only to simplify the representation of the model.
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(d) Constraining the colour set Boolean given in (b) to b = false yields the subrange

comprising false.

(e) Combining (c) and (d) by the logical operator & yields the IDD with the solution

space containing all elements of the entire colour set Population and the variable

b set to true.

(f) Constraining the colour Population given in (a) to x = F yields the subrange

comprising the single value F, represented by its identifier 5.

(g) Combining (e) and (f) by the logical operator & yields the final result that

defines all possible bindings for the transition Recover F according to its guard

!b && x elemOf PopulationF . There is one path going to the terminal node 1.

It encodes the value binding (false, F ), giving one uncoloured transition instance

for the coloured transition Recover F .

All IDDs in Figure 4.14 (page 104) have been generated by a logging mechan-

ism integrated in the unfolding engine for debugging purposes and visualized with

Graphviz [GN00]. Non-terminal nodes are labelled with the variable index and the

variable name (in square brackets).
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0 1

0[x]

[6,oo) [0,6)

(a) Population = {A,B,C,D,E,F} 

0 1

0[b]

[2,oo) [0,2)

(b) Boolean = {true, false} 

0 1

1 [b]

[1,oo) [0,1)

(d) b = false

0 1

2 [x]

[0,5) [6,oo) [5,6)

(f) x=F

0 1

0 [aux]

[6,oo)

1 [b]

[0,6)

[1,oo) 2 [x]

[0,1)

[0,5) [6,oo) [5,6)

(g) !b && (x=F) && x elemOf Population

0 1

0[aux]

[6,oo) 1[b]

[0,6)

[1,oo) [0,1)

(e) !b && x elemOf Population

0 1

0[aux]

[6,oo) [0,6)

(c) x elemOf Population

!b && x elemOf PopulationF

Figure 4.14: Stepwise IDD computation to find all instances (bindings) for the
single transition Recover F of the model in Figure 4.13. The constrain expres-
sion !b && x elemOf PopulationF is substituted by the expression !b && (x =
F ) && x elemOf Population.
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4.9 Closing Remarks

Spike is an efficient tool for the reproducible execution of parallel simulation experiments

of biochemical reaction networks. This chapter has described the main architecture of

Spike. The modular structure and the mechanism of intermodule communication allows

to easily extend Spike by new modules. The main functionalities of Spike allow importing

and exporting PN models in various formats. An imported coloured model can be

unfolded using IDD-based unfolding, which is integrated in the internally developed

dssd util library used by Snoopy, Marcie and Spike. During the work on Spike the

Boolean colour set and the elmeOf operator were introduced into IDD-based unfolding.

The newly introduced colour set and operator allow simplifying coloured expressions.

To perform a simulation, Spike uses an internally developed simulation library; it is

able to run three basic types of simulations: stochastic, deterministic and hybrid, where

each comes with several algorithms. Spike is supported by a scripting language (SPC),
which allows for designing reproducible simulation experiments that can be executed in

parallel. Additionally, SPC allows the execution of a simulation in a stepwise manner.

Open Issues and Future Works. Spike can be improved in many ways, as it lacks

some features that should be addressed in future work:

• Model reduction - Spike allows for the basic reduction of a PN model. It is able

to structurally reduce a model by pruning clean siphons and constant places.

However, this basic reduction methods are insufficient. The growing amount of

experimental data and expressive power of the colour annotations leads to the

development of complex models. A complex model represented by PN C needs to

be unfolded before its simulation.

After unfolding, the number of nodes can be much larger than in its coloured

counterpart. Reduction of a model may yield a more optimized (in terms of size)

model, provide insights into structural properties and reduces a simulation over-

head. The main challenge of a reduction is to preserve the main three properties of

a PN model: liveness, reversibility and boundedness. The two simplest techniques

that preserve the main three properties are pruning of clean siphons and constant

places.

• Model decomposition - decomposition of PN model into basic subnets. Decom-

position can be done by network structure or through type, if the PN is hybrid.

The process of clustering should be aided through manual selection / specification

of cluster set as well as through an automatic / algorithm approach. The model

decomposition will allow for distributed simulation of the decomposed model. Such

functionality should speed up the simulation of large models - more research needs

to be done to get a clear answer.
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• Distributed simulation - Spike is able to perform parallel executions of simulation

experiments on single host. Future work should consider implementation of dis-

tributed simulation, which can speed-up the execution of an experiment in the

following example cases:

(a) - a simulation experiment contains a set of exhaustive simulations - in this

case each simulation can be distributed over a network of computing peers,

where each peer performs a single simulation.

(b) - a parallel simulation of a decomposed model - in a such case each component

of the model is distributed over a network of computing peers, where each

peer performs a single, parallel, synchronized simulation for the received

model component.

• Parameter optimization - Optimization through a simulation can be used as a

search method [CM97] for the best candidates of input variables among all valid

alternatives at any system state. By adopting heuristic evaluation, it is possible to

reduce a search space without explicitly evaluating each possibility. Spike features

such as parameters scanning and parallel execution of configuration branches

make Spike suitable for this task. However, all these features are not sufficient

to perform parameter optimization. Future work should consider embedding the

optimization strategy directly into Spike.

The following chapter discusses use cases with complete examples that illustrate

most of the functionalities of SPC.

106



5

Use Cases

To illustrate the functionality of Spike and its configuration script language SPC
(intruded in Chapter 3) the following three use cases are discussed:

1. Benchmarking - designing of benchmarking experiments;

2. Simulation of adaptive models - stepwise simulation;

3. Spike as a backend simulator for simulative parameter optimization;

5.1 Benchmarking

Depending on the configuration, a given model is simulated according to the specified

simulation type, regardless of the model type. Such functionality allows to design

benchmarking experiments, with the main goal to compare the computational complexity

of models and / or the performance of the simulation algorithms. A benchmarking

experiment can be designed in the following two ways:

1. to firmly compare the performance of different simulation methods using a well

characterized comparative set of models,

2. to firmly compare the computational complexity of models (representing the same

system) using a set of simulations.

This allows to determine the strengths of each simulation method or model, respectively.

Essential information about designing of benchmarking experiments are provided

in [WSC+19] where a set of guidelines is introduced. Based on this, the following

guidelines should be considered when designing a benchmarking experiment:

• Define the purpose and scope of the benchmark - how comprehensive the bench-

mark should be.
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• Select (or design) representative data sets - number and types of data sets to be

included.

• Choose appropriate parameter values - amount of tuning parameters.

• Evaluate methods according to key quantitative performance metrics - numbers

and types of performance metrics.

• Interpret results and provide recommendations - generality versus specificity of

recommendations.

• Follow best practices for reproducible research, by making code and data publicly

available.

The examples below show that designing a benchmarking experiment is relatively

easy with Spike, which has the ability to scan its configuration options.

Example 5.1. To benchmark simulation types over a given model, the following

scenario represented by Algorithm 14 can be used.

Algorithm 14: Use case: Benchmarking of simulation types.

1 Load model;
2 Determine model configuration;
3 for each simulation type do
4 Determine simulation configuration;
5 Create new configuration branch;
6 Run simulation;
7 Store results;

8 end

The following implementation of this scenario is intended to compare the determin-

istic and stochastic simulations results of the SIR model (see Figure 2.6, page 18). The

scenario comprises four main steps:

(a) Specification of the model source; lines 2 − 4.

(b) Specification of the simulation name. The name depends on the named import

and the type of simulation; line 10. It is used to define the unique names of the

files, which contain the simulation results.

(c) Declaration of the simulation type list. The list contains the configuration of two

types of the simulation: stochastic and continuous (deterministic), for each of

them a new branch of the simulation configuration will be created and a separated

simulation performed. In the configuration of the stochastic simulation, the seed

value is specified to reproduce the simulation traces presented in Figure 5.1; lines

15− 48.
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(d) Configuration of how to store the simulation results. It allows specifying which the

simulation traces are to be recorded - in this case, all paces related to population B.

The name of the resulting file depends on the variables defined in the configuration,

what allows to generate a unique name; lines 51 − 62.

1 // Import model

2 import: {

3 from: "./model/SIR-SPNC.candl";

4 }

5

6 configuration: {

7

8 simulation:

9 {

10 name: "BENCHMARK1:" << import.name << "_" << type; // Name of a simulation

11 /*

12 * Branching:

13 * Scanning over simulation types

14 */

15 type: [[

16 // Stochastic simulation

17 stochastic: {

18 solver:

19 direct: {

20 threads: 1;

21 runs: 50;

22 // reproducing stochastic simulation resulting traces

23 seed: 2589244515;

24 }

25 single: true;

26 avg: true;

27 },

28 // Continuous Simulation

29 continuous: {

30 solver:

31 BDF: {

32 /*

33 * Define new variable "runs" that

34 * is used in the export file name

35 */

36 runs: "CONT";

37 semantic: "adapt";

38 iniStep: 0.1;

39 linSolver: "CVDense";

40 relTol: 1e-5;

41 absTol: 1.0e-10;

42 autoStepSize: false;

43 reductResultingODE: true;

44 checkNegativeVal: false;

45 outputNoiseVal: false;

46 }

47 }

48 ]];

49

50 interval: 0:200:50;
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51 export: {

52 // Array of places to save (if empty export all)

53 places: [".*_B.*"];//[];// all places

54 //transitions: [];// all transitions

55 csv: {

56 sep: ";";// Separator

57 file: "./data/"

58 << name

59 << "_" << configuration.simulation.type.solver.runs

60 << ".csv";// File name

61 }

62 }

63

64 }

65 }

It is worth noting the difference between the resulting traces in Figure 5.1.(a) and

5.1.(b) (page 111). This can be explained by decay of a disease when all specimen in an

infected population recovered without spreading a disease (isolation) onto a susceptible

population. This event cannot be clearly seen in the traces of the stochastic simulation,

as they show the averaged results of 50 runs. It is similar in the case of the deterministic

simulation. This event is superseded, since the traces are results of approximating the

solutions of ODEs. To spot this event, it is necessary to look on a single run of a

stochastic simulation. The Figure 5.1.(c) (page 111) presents the resulting trace of the

single run selected from the set of the stochastic simulation runs. The selected 33th

run explains the notable difference between resulting trace. It shows decay events of a

disease (when all specimen in an infected population have recovered) in the populations.
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Figure 5.1: Comparison of simulation traces of the model in Figure 2.6, which are related
to the population B; the deterministic (continuous) simulation (a) versus average of
50 stochastic simulation runs (b) and one of the single runs of the averaged stochastic
simulation (c); where SusceptiblePopulation is set to 5e4‘A+ +1e5‘B; k infect a = 5.0e−5;
k infect b = 5.0e − 6; k recover a = 1.0e − 1; k recover b = 1.0e − 2. The selected 33th
run explains the notable difference between resulting traces. It shows decay events of a
disease (when all specimen in an infected population have recovered) in the populations.

111



5. USE CASES

Example 5.2. The following scenario represented by Algorithm 15 can be used to

benchmark models over one simulation type.

Algorithm 15: Use case: Benchmarking of simulation models.

1 for each model do
2 Load model;
3 Determine model configuration;
4 Determine simulation configuration;
5 Create new configuration branch;
6 Run simulation;
7 Store results;

8 end

The following scenario implementation is intended to compare the SIR model (see

Figure 5.2.(a), page 114) with its SEIR extension (see Figure 5.2.(b), page 114). SEIR is

an extension of the SIR model with one additional compartment representing population

of exposed species (E), which are infected but not yet infectious. Upon being infected,

individuals will move to this sub-population and remain there for an incubation period

before moving to the infected population.

The scenario comprises four main steps:

(a) Declaration of a list of models to import. The list contains the configuration of

two named imports: a and b, for each of them a new branch of the simulation

configuration will be created and a separated simulation performed; lines 5 − 12.

(b) Specification of the simulation name. The name depends on the named import; line

18. It is used to define the unique names of the files, which contain the simulation

results.

(c) Declaration of simulation type. lines 19 − 27.

(d) Configuration of how to store the simulation results. It allows specifying which

the simulation traces are to be recorded. The name of the resulting file depends

on the variables defined in the configuration, what allows to generate a unique

name; lines 31− 44.
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1 /*

2 * Branching:

3 * Scanning over models to import

4 */

5 import: [[

6 SIR:{

7 from: "./model/SIR-SPNC.candl";

8 },

9 SEIR:{

10 from: "./model/SEIR-SPNC.candl";

11 }

12 ]];

13

14 configuration: {

15

16 simulation:

17 {

18 name: "BENCHMARK:" << import ; // Name of a simulation

19 type:

20 // Stochastic simulation

21 stochastic: {

22 solver:

23 direct: {

24 threads: 1;

25 runs: 3;

26 }

27 }

28

29 interval: 0:200:100;

30

31 export: {

32 // Array of places to save (if empty export all)

33 places: [];//[];// all places

34 //transitions: [];// all transitions

35 csv: {

36 sep: ";";// Separator

37 file: "./data/"

38 << name << "_"

39 << configuration.simulation.type << "_"

40 << configuration.simulation.type.solver

41 << "_" << configuration.simulation.type.solver.runs

42 << ".csv";// File name

43 }

44 }

45

46 }

47 }

Both models are configured with the same set of constants, with one exception that

the constant k incubation is used in the SEIR model as the kinetic parameter of the

Incubation transition. The results of the simulation are presented in Figure 5.3. It can

be seen that the additional compartment that represents exposed species, slows down

the spread of the disease since during this period, species in the incubation state do not

take in the infection process making it is less violent.

113



5. USE CASES

1e5 x 2‘x x x

x
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PopulationPopulation

RecoverInfect

1‘all()
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1e5‘all()

MassAction(k_infect) MassAction(k_recover)

constants:

  double k_infect     = 5.0e-5;

  double k_recover    = 1.0e-1;

  double k_incubation = 1.0e-1;

  int pop_size = 1;

colorsets:

  enum Population = {1..pop_size};

variables:

  Population : x;

1e5 x x x x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

RecoverInfect

1e5‘all() 1‘all()

Population

Exposed Incubation

Population
x

x

MassAction(k_infect) MassAction(k_recover)

MassAction(k_incubation)

(a)

(b)

Figure 5.2: The SIR (a) and the SEIR (b) model used to simulate the spread of the disease.
The SEIR model extends the SIR model by one additional place Exposed and the transition
Incubation. Those two additional nodes create the compartment representing the population
of exposed species (E), which are infected but not yet infectious.
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Figure 5.3: Simulation results of the SIR and the SEIR model presented in Figure 5.2.(a),(b),
respectively. As it can be seen, the additional compartment in the SEIR model that represents
exposed species, slows down the spread of the disease since during this period, species in
the incubation state do not take in the infection process making it less violent.
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Example 5.3. The following scenario represented by Algorithm 16 comprises both

scenarios from the two previous examples. It allows to benchmark a set of models over a

given set of simulation types. A separated simulation will be performed for each unique

combination of model − simulation type.

Algorithm 16: Use case: Benchmarking of simulation types and models.

1 for each model do
2 Load model;
3 Determine model configuration;
4 for each simulation type do
5 Determine simulation configuration;
6 Create new configuration branch;
7 Run simulation;
8 Store results;

9 end

10 end

The following implementation of this scenario compare the performance of hybrid

simulation algorithms. It is a simplified version of the experiment presented in [HH18].

The scenario comprises four main steps:

(a) Declaration of a list of models to import. The list contains the configuration of

two named imports: HPNC2 and HPNC, for each of them a new branch of the

simulation configuration will be created and a separated simulation performed;

lines 2− 9;

(b) Adjust the model parameters; lines 12 − 18.

(c) Specification of the simulation name. The name depends on the type of simulation

algorithm; line 21. It is used to define the unique names of the files, which contain

simulation results.

(d) Declaration of the simulation algorithm list. The list contains the configuration of

four hybrid simulation algorithms: static, staticAcc, HRSSA and HRSSAacc. For

each of them a new branch of the simulation configuration will be created and a

separated simulation performed; lines 27 − 89.

(e) Configuration of how to store the simulation results. It allows specifying, which

the simulation traces are to be recorded. The name of the resulting file depends

on the variables defined in the configuration, what allows to generate a unique

name; lines 94− 105.
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1 // Import - exactly one model

2 import: [[

3 HPNC2: {

4 from: "./model/SIR-HPNC2.candl";

5 },

6 HPNC: {

7 from: "./model/SIR-HPNC.candl";

8 }

9 ]];

10

11 configuration: {

12 model: {

13 constants: {

14 all: {

15 pop_size: 2;

16 }

17 }

18 }

19 simulation:

20 {

21 name: "BENCHMARK:" << import << ":" << type.solver; // Name of a simulation

22 /*

23 * Branching:

24 * Scanning over simulation algorithms

25 */

26 type: hybrid: {

27 solver: [[

28 static: {

29 threads: 1;

30 runs: 3;

31 odeSolver: "BDF";

32 iniStep: 0.1;

33 linSolver: "CVDense";

34 relTol: 1e-5;

35 absTol: 1.0e-10;

36 autoStepSize: true;

37 reductResultingODE: true;

38 checkNegativeVal: false;

39 outputNoiseVal: false;

40 },

41 staticAcc: {

42 threads: 1;

43 runs: 3;

44 odeSolver: "BDF";

45 iniStep: 0.1;

46 linSolver: "CVDense";

47 relTol: 1e-5;

48 absTol: 1.0e-10;

49 autoStepSize: true;

50 reductResultingODE: true;

51 checkNegativeVal: false;

52 outputNoiseVal: false;

53 },
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54 HRSSA: {

55 threads: 1;

56 runs: 3;

57 odeSolver: "BDF";

58 iniStep: 0.1;

59 linSolver: "CVDense";

60 relTol: 1e-5;

61 absTol: 1.0e-10;

62 autoStepSize: true;

63 reductResultingODE: true;

64 checkNegativeVal: false;

65 outputNoiseVal: false;

66 //

67 fluctRatio: 0.2; // Fluct ratio

68 // Apply monitored places

69 applyMonPlaces: true;

70 },

71 HRSSAacc: {

72 threads: 1;

73 runs: 3;

74 odeSolver: "BDF";

75 iniStep: 0.1;

76 linSolver: "CVDense";

77 relTol: 1e-5;

78 absTol: 1.0e-10;

79 autoStepSize: true;

80 reductResultingODE: true;

81 checkNegativeVal: false;

82 outputNoiseVal: false;

83 //

84 fluctRatio: 0.2; // Fluct ratio

85 // Apply monitored places

86 applyMonPlaces: true;

87 applyInterfacePlaces: true;

88 }

89 ]];

90 }

91

92 interval: 0:200:500;

93

94 export: {

95 // Array of places to save (if empty export all)

96 places: [];//[];// all places

97 transitions: ["Travel.*"];// all transitions

98 csv: {

99 sep: ";";// Separator

100 file: "./data/"

101 << name << "_"

102 << configuration.simulation.type.solver.runs

103 << ".csv";// File name

104 }

105 }

106 }

107 }

For this simple benchmark experiment two hybrid models are used. Each of them is

a specially tailored variation of the SIR model. The models are statically partitioned.

Model in Figure 5.4.(a) (page 119) contains two disjoint clusters, not connected by

any interface transitions. Clusters have the form of the separated CPN C and the

SPN C SIR model. The model in Figure 5.4.(b) (page 119) consists of two clusters: the
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deterministic and stochastic clusters are connected by one interface transition Recover.

The experiment demonstrates (see Table 5.1) that for a statically partitioned model

with absence of interface, reactions the accelerated HRSSA algorithm (HRSSAacc)

indeed improves the hybrid simulation performance. The number of interface reactions

influences the performance of hybrid simulation. Their firings affect the system state

of the deterministic regime. For each interface reaction the ODE solver needs to be

reinitialised when one of these reactions occurs.

1e5 x 2‘x x x

x

SusceptiblePopulationS RecoveredSInfectedS

PopulationPopulation

RecoverSInfectS

1e5‘all() 1‘all()

Population

MassAction(k_infect) MassAction(k_recover)

1e5 x 2‘x x x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

RecoverInfect

1‘all()

Population

MassAction(k_infect) MassAction(k_recover)

1e5‘all()

1.5e5 x 2‘x x x

x

SusceptiblePopulation RecoveredInfected

PopulationPopulation

RecoverInfect

1‘all()

Population

1e5‘all()

MassAction(k_infect) MassAction(k_recover)

(a)

(b)

Figure 5.4: To compare the performance of hybrid simulation algorithms, the model
contains two disjoint SIR subnets in the form of CPN C and SPN C . Initial values of the
kinetic constants: k infect = 5.0e− 5; k recover = 1.0e− 1

Table 5.1: The performance of hybrid simulation algorithms supported by Spike.

Model \ Algorithm static staticAcc HRSSA HRSSAacc

(a) 30.1 13.1 21.8 1.6

(b) 18.0 5.7 3.0 3.1

Time [s]
Runtime of the four hybrid algorithms carried out on a PC with 2.6 GHz
Core i7-6700HQ processor and 32GB memory. The simulations performed
on models presented in Figure 5.4. Results are given in seconds [s].
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5.2 Simulation of Adaptive Models

The simulation of adaptive models is an important part for all adaptive systems. In Spike,

a discrete-time adaptive modelling system (stepwise simulation) scans the state of the

model, which provides feedback. Based on the feedback the model internal parameters

are automatically adjusted by means of predefined conditions. The model adjustment is

controlled by a feedback loop which provides the generic mechanism for self-adaptation.

In Spike the control feedback loop (see Figure 5.5) is based on the model presented

in [BSG+09]. It comprises four implicit components/activities:

• simulation - collects data from the model executed and its current state,

• analyse - analyses the data to infer trends and identify symptoms,

• decide - decides how to act on the model executed based on analyses which are

defined by conditions,

• alter model - alters model parameters based on decisions.

All the activities can be defined in the configuration of a stepwise simulation with the

help of an SPC script.

A stepwise simulation advances in the given time range. Based on the current state

of the model and the simulation, it enables a model to be adapted after each simulation

step. As presented in [KCR+09, Kan12], such an approach can be used to dynamical

change the simulation algorithm what allows performing hybrid simulation. Based on

the analysis of the system state, transitions can be clustered and assigned to different

simulation algorithms. Currently, during the runtime of a stepwise simulation, the

dynamic change of a simulation algorithm (by changing its type or configuration) is not

supported by Spike. This feature is considered in future work.

analyze

decide

alter model

process

simulation

Figure 5.5: Control feedback loop implicitly embedded in Spike’s stepwise simulation.

Example 5.4. The infection rate changes dynamically during a pandemic for various

reasons. Depending on the pandemic situation, one of the reasons could be rules that

restrict or relax social distancing. After applying the rules, the infection rate does not

change immediately, instead it changes over a range of time. During this period, the
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infection rate decreases or increases, depending on whether the restriction or relaxation

rules are applied. The change of the infection rate depends on the current state of

the system and requires appropriate adjustment of the model parameters during the

simulation.

The following configuration of the simulation experiment is defined over the model

in Figure 2.3 and comprises the following main steps:

(a) Specification of the source of the model; lines 10 − 12.

(b) Reconfiguration of the model by setting the new value of the kinetic constant

k infect a and new initial state of the susceptible population SusceptiblePopula-

tion A; lines 18− 27.

(c) Configuration of the simulation by setting up its type and solver; lines 42 − 51.

(d) Configuration of the simulation time; line 53.

(e) Configuration of the stepwise simulation; lines 61− 141. This step allows to define

the control feedback loop through the SPC script used for self-adaptation of the

model. In the lines 67 − 68 two auxiliary variables k infect lo and k infect hi

are defined which store the values of the kinetic parameters of the restriction

and relaxation rules. The lines 72 − 78 define the time period iWin in which the

restriction and relaxation rules will be smoothly applied; lines 126− 135. It means

that the infection kinetic parameter will progressively reach the value defined

by k infect lo in the case of restriction; lines 96 − 104; and the value defined by

k infect hi in the case of relaxation; lines 110 − 117.

(f) Configuration of how to store the simulation results. It allows specifying which

the simulation traces are to be recorded. The name of the resulting file depends

on the variables defined in the configuration, what allows to generate a unique

name; lines 144− 166.

The control feedback loop is realized within the do object which is evaluated after

each step of a simulation. After each simulation step the system state is accessible by

using the following predefined objects and variables:

• simulation - this object allows to read the time and the step of the simulation,

see line 89;

• place - this object allows read/write access to the model places, see in the line

69. The place Infected A (place.Infected A) is used in the boolean expression of

the conditional block that checks if the number of infected species is greater than

40% of the susceptible population;
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• constant - this object allows read/write access to the model constants, see in the

line 102. The constant k infect a (constant.k infect a) is used in the expression

that calculates a new value of the variable dWinStepSize.

The combination of conditional blocks and expressions allows analysing the system state

(boolean expression of conditional blocks). Depending on the analyses, decisions can

be made (conditional blocks), which actions to perform, e.g. alter the model, set a new

variable value, etc.

The simulation results are presented in Figure 5.6. It can be clearly seen if the size

of the infected population Infected A is greater than 40% of the susceptible population

SusceptiblePopulation A then the restriction rules are applied (a). In this case, the

infection kinetic parameter k infect a is progressively decreasing (b). Similarly in the

case of applying relaxation rules. If the size of the infected population is less than 20%

of the susceptible population, then the relaxation rules are applied and the infection

kinetic parameter progressively increases.
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1 /**

2 * Example configuration of a stepwise simulation

3 */

4

5 // - line comment

6 /*

7 - block comment

8 */

9 // Import - exactly one model

10 import: {

11 from: "./model/SIR-SPN.andl";

12 }

13

14

15

16 configuration: {

17

18 model: {

19 constants: {

20 all: {

21 k_infect_a: 5.0e-5;

22 }

23 }

24 places: {

25 SusceptiblePopulation_A: 20000;

26 }

27 }

28

29 simulation:

30 {

31

32 /*

33 * This is example variable that is added

34 * to the log

35 */

36 varExample: model.places.SusceptiblePopulation_A;

37 // Name of a simulation

38 name: "SIR";

39 /*

40 * Set up a simulation

41 */

42 type:stochastic: {

43 solver:

44 direct: {

45 threads: 1;

46 runs: 3;

47 //seed: 2413805201;

48 }

49 single: true;// Single

50 //avg: false;// Default set to true

51 }

52

53 interval: 0:200:100;
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54 /*

55 * Stepwise simulation

56 * Description: Depending on the current number of

57 * infected specimens set restriction or relaxation

58 * rules by applying change of infection kinetic rates

59 * in a given time frame.

60 */

61 onStep: enabled: {

62 /*

63 * Kinetic parameters of

64 * the restriction and relaxation

65 * rules

66 */

67 k_infect_lo: 1.0e-9;

68 k_infect_hi: 5.0e-5;

69

70 k_infect:observe: constant.k_infect_a;

71 iInitailSusceptiblePopulation_A: place.SusceptiblePopulation_A;

72 iTimeFrame: 2;// Strech factor

73 /*

74 * Calculate the window size that stretch over

75 * the full time frames defined by iTimeFrame

76 */

77 iWin: (interval.splitting / (interval.end - interval.start)) *

78 iTimeFrame;

79 iWinStep: 0;

80 bFirst: false;

81 bRelax: false;

82 dWinStepSize: 0;

83

84 LOG = "END_INIT";

85 /*

86 * Smoothed stepwise lockdown and relaxation

87 */

88 do: {

89 LOG = "step:" << simulation.step;

90 LOG = "time:" << simulation.time;

91 /*

92 * Change infection rate if the number of

93 * infected specimens is > than 40% of susceptible

94 * population

95 */

96 if(place.Infected_A > iInitailSusceptiblePopulation_A * 0.4

97 && !bFirst) {

98

99 bFirst = true;

100 iWinStep = 0;

101 // Distance & step size

102 dWinStepSize = (constant.k_infect_a - k_infect_lo) / iWin;

103 bRelax = false;

104 }

105 /*

106 * Change infection rate if the number of

107 * infected specimens is < than 20% of susceptible

108 * population

109 */

110 else if(place.Infected_A < iInitailSusceptiblePopulation_A *

111 0.2 && !bRelax && bFirst) {

112

113 iWinStep = 0;

114 // Distance & step size

115 dWinStepSize = (constant.k_infect_a - k_infect_hi) / iWin;

116 bRelax = true;

117 }
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118 // ABS - absolut value

119 if(dWinStepSize < 0) {

120 dWinStepSize = -dWinStepSize;

121 }

122 /*

123 * Adjust the kinetic parameter according

124 * to the position in the time frame

125 */

126 if(iWinStep < iWin) {

127 if(!bRelax) {

128 constant.k_infect_a = constant.k_infect_a -

129 dWinStepSize;

130 } else if(bRelax) {

131 constant.k_infect_a = constant.k_infect_a +

132 dWinStepSize;

133 }

134 iWinStep = iWinStep + 1;

135 }

136 // Set the value of the observed variable

137 k_infect = constant.k_infect_a;

138 // Logging extra information

139 LOG = "bRelax: " << bRelax;

140 }

141 }

142

143

144 export: {

145 // Array of places to save (if empty export all)

146 places: [];//[];// all places

147 //places:c: [];//[];// all coloured places

148 //places:u: [];// uncoloured places

149 transitions: [];// all transitions

150 //transitions:c: [];// all coloured transitions

151 //transitions:u: [];// all uncoloured transitions

152 observers: [];

153 csv: {

154 sep: ";";// Separator

155

156 file: "./data/"

157 << import.name << "_"

158 << configuration.simulation.type << "_"

159 << configuration.simulation.type.solver

160 << "_" << configuration.simulation.type.solver.runs

161 << "_" << configuration.model.constants.all.k_infect_a

162 << "_"

163 << configuration.model.places.SusceptiblePopulation_A

164 << "_FIELSE-step.csv";// File name

165 }

166 }

167 }

168 }

169

170 log: {

171 sim.varExa: configuration.simulation.varExample;

172 }
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Figure 5.6: Simulation traces of stepwise simulation. It can be clearly seen if the size
of the infected population Infected A is greater than 40% of the susceptible population
SusceptiblePopulation A then the restriction rules are applied (a). In this case the infection
kinetic parameter k infect a is progressively decreasing (b). Similarly in the case of applying
relaxation rules. If the size of the infected population is less than 20% of the susceptible
population, then the relaxation rules are applied and the infection kinetic parameter
progressively increases.
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Example 5.5. This follow-up example represents an experiment that aims to compare

the effects of applying two different relaxation time frames:

1. bigbang - after applying the relaxation rules, the infection rate changes immediately

(in one simulation step),

2. smooth - after applying the relaxation rules, the infection rate changes smoothly

over a time range (multiple simulation steps).

To achieve this, the configuration of the experiment utilizes the feature of scanning

variable values.

SusceptiblePopulation_A Recovered_AInfected_A Recover_AInfect_A

2
2e4

MassAction(k_recover_a)MassAction(k_infect_a)

TotalInfected

Figure 5.7: The SIR model used in the example is a variation of the SIR models in
Figure 2.3. It contains one population A and the additional place TotalInfected, which holds
the number of total infections. Initial values of the kinetic constants: k infect a = 5.0e− 5;
k recover a = 1.0e− 1

The following configuration of the simulation experiment is defined over the model

in Figure 5.7 and comprises the following main steps:

(a) Specification of the source of the model; lines 11 − 13.

(b) Reconfiguration of the model by setting the new value of the kinetic constant

k infect a and new initial state of the susceptible population SusceptiblePopula-

tion A; lines 19− 28.

(c) Configuration of the simulation by setting up its type and solver; lines 38 − 51.

(d) Configuration of the simulation time; line 53.

(e) Configuration of the stepwise simulation; lines 61− 168. This step allows to define

the control feedback loop through SPC script used for self-adaptation of the model.

In the lines 67− 68 two auxiliary variables k infect lo and k infect hi are defined

which store the values of kinetic parameters of the restriction and relaxation rules.

The lines 76 − 85 define the stretch factors for calculating time periods of the

restriction and relaxation rules. The definition involves parameter scanning which

allows defining values for the two cases bigbang and smooth, respectively. The

parameter scanning will trigger branching, which leads to two separate simulation

branches.
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The lines 90− 95 define two time periods win.iRest and win.iRelax in which the

restriction and relaxation rules will be applied; lines 145 − 157. They stretch over

the full time frames defined by timeFrame.iRestriction and timeFrame.iRelaxation,

respectively. It means that the infection kinetic parameter will progressively reach

the value defined by k infect lo in the case of restriction; lines 113 − 121; and the

value defined by k infect hi in the case of relaxation; lines 127 − 136.

(f) Configuration of how to store the simulation results. It allows specifying which

the simulation traces are to be recorded. The name of the resulting file depends

on the variables defined in the configuration, what allows to generate a unique

name; lines 170− 186.

The simulation results are presented in Figure 5.8. It can be clearly seen that the

simulation results depend on the size of the relaxation window. The number of infected

species Infected A rise to the:

• higher value in the case of bigbang - immediate introduction of relaxation, where

the size of the relaxation window is set to zero (win.iRelax = 0),

• lower value in the case of smooth - step by step introduction of relaxation, where

the size of the relaxation window equals twelve (win.iRelax = 12).

It is worth noting that the total number of infections is the same in both cases. The size

of the restriction windows is the same in both cases, and it equals four (win.iRest = 4).
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1 /**

2 * Example configuration of a stepwise simulation:

3 * BIGBANG vs SMOOTH relaxation

4 */

5

6 // - line comment

7 /*

8 - block comment

9 */

10 // Import - exactly one model

11 import: {

12 from: "./model/SIR-SPN-BIGBANG.andl";

13 }

14

15

16

17 configuration: {

18

19 model: {

20 constants: {

21 all: {

22 k_infect_a: 5.0e-5;

23 }

24 }

25 places: {

26 SusceptiblePopulation_A: 20000;

27 }

28 }

29

30 simulation:

31 {

32

33 // Name of a simulation

34 name: "SIR";

35 /*

36 * Set up a simulation

37 */

38 type: continuous: {

39 solver:

40 BDF: {

41 semantic: "adapt";

42 iniStep: 0.1;

43 linSolver: "CVDense";

44 relTol: 1e-5;

45 absTol: 1.0e-10;

46 autoStepSize: false;

47 reductResultingODE: true;

48 checkNegativeVal: false;

49 outputNoiseVal: false;

50 }

51 }

52

53 interval: 0:200:100;
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54 /*

55 * Stepwise simulation

56 * Description: Depending on the current number of

57 * infected specimens set restriction or relaxation

58 * rules by applying change of infection kinetic rates

59 * in a given time frame.

60 */

61 onStep: enabled: {

62 /*

63 * Kinetic parameters of

64 * the restriction and relaxation

65 * rules

66 */

67 k_infect_lo: 1.0e-9;

68 k_infect_hi: 5.0e-5;

69

70 k_infect:observe: constant.k_infect_a;

71 iInitailSusceptiblePopulation_A: place.SusceptiblePopulation_A;

72 /*

73 * Scan over stepwise simulation variables values

74 */

75 // Stretch factors

76 timeFrame: [[

77 bigbang: {

78 iRestriction: 2;

79 iRelaxation: 0;

80 },

81 smooth: {

82 iRestriction: 2;

83 iRelaxation: 6;

84 }

85 ]];

86 /*

87 * Calculate two windows size that stretch over the full time frames

88 * defined by timeFrame.iRestriction and timeFrame.iRelaxation

89 */

90 win: {

91 iRest: (interval.splitting / (interval.end - interval.start)) *

92 timeFrame.iRestriction;

93 iRelax: (interval.splitting / (interval.end - interval.start)) *

94 timeFrame.iRelaxation;

95 }

96 iWinStep: 0;

97 bFirst: false;

98 bRelax: false;

99 dWinStepSize: 0;

100

101 LOG = "END_INIT";

102 /*

103 * Smoothed stepwise lockdown and relaxation

104 */

105 do: {

106 LOG = "step:" << simulation.step;

107 LOG = "time:" << simulation.time;

108 /*

109 * Change infection rate if the number of

110 * infected specimens is > then 40% of susceptible

111 * population

112 */

113 if(place.Infected_A > iInitailSusceptiblePopulation_A * 0.4 && !bFirst) {

114 bFirst = true;

115 iWinStep = 0;

116 // Distance & step size

117 if(win.iRest != 0) {

118 dWinStepSize = (constant.k_infect_a - k_infect_lo) / win.iRest;

119 }

120 bRelax = false;

121 }
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122 /*

123 * Change infection rate if the number of

124 * infected specimens is < then 20% of susceptible

125 * population

126 */

127 else if(place.Infected_A < iInitailSusceptiblePopulation_A * 0.2 && !bRelax &&

128 bFirst) {

129

130 iWinStep = 0;

131 // Distance & step size

132 if(win.iRelax != 0) {

133 dWinStepSize = (constant.k_infect_a - k_infect_hi) / win.iRelax;

134 }

135 bRelax = true;

136 }

137 // ABS - absolut value

138 if(dWinStepSize < 0) {

139 dWinStepSize = -dWinStepSize;

140 }

141 /*

142 * Adjust the kinetic parameter according

143 * to the position in the time frame

144 */

145 if(!bRelax) {

146 if(iWinStep < win.iRest) {

147 constant.k_infect_a = constant.k_infect_a - dWinStepSize;

148 } else if(win.iRest == 0) {

149 constant.k_infect_a = k_infect_lo;

150 }

151 } else if(bRelax) {

152 if(iWinStep < win.iRelax) {

153 constant.k_infect_a = constant.k_infect_a + dWinStepSize;

154 } else if(win.iRelax == 0) {

155 constant.k_infect_a = k_infect_hi;

156 }

157 }

158 iWinStep = iWinStep + 1;

159

160 // Set the value of the observed variable

161 k_infect = constant.k_infect_a;

162 // Logging extra informations

163 LOG = "place.Infected_A: " << place.Infected_A;

164 LOG = "k_infect: " << k_infect;

165 LOG = "dWinStepSize: " << dWinStepSize;

166 LOG = "END_DO";

167 }

168 }

169

170 export: {

171 // Array of places to save (if empty export all)

172 places: [];// all places

173 //transitions: [];// all transitions

174 observers: [];

175 csv: {

176 sep: ";";// Separator

177 file: "./data/"

178 << import.name << "_"

179 << configuration.simulation.type << "_"

180 << configuration.simulation.type.solver

181 << "_" << configuration.model.constants.all.k_infect_a

182 << "_" << configuration.model.places.SusceptiblePopulation_A

183 << "_" << configuration.simulation.onStep.timeFrame

184 << "-step.csv";// File name

185 }

186 }

187 }

188 }
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Figure 5.8: The simulation results depend on the size of relaxation window. The number
of infected species Infected A rises rapidly and to a higher value in the case of bigbang -
immediate introduction of relaxation, where the infection kinetic parameter k infect a is
immediately decreased (a), and the size of the relaxation window is set to zero (win.iRelax =
0) (b) or rise slowly and to a lower value in the case of smooth - step by step introduction
of relaxation, where the infection kinetic parameter k infect a is progressively decreasing
(c), and the size of the relaxation window equals twelve (win.iRelax = 12) (d). It is worth
noting that the total number of infections (TotalInfected) is the same in both cases. The
size of restriction windows is the same in both cases, and it equals four (win.iRest = 4).
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5.3 Spike as a Backend Simulator for Parameter Optim-
ization

Parameter optimization is required when during developing a model some parameters

are not known yet or uncertain. A simulative approach can be applied in order to

optimize / estimate unknown values of model parameters. In this case, it is necessary

to carry out a series of simulation experiments and compare the obtained results with

the help of a fitness function (also known as the evaluation function), which evaluates

how close a given solution is to the optimum solution of the given problem. The fitness

function can have various forms and can be related not only to time series but also

to expectations (e.g. steady state), temporal logic, etc. Depending on the number of

uncertain parameters and the number of parameter values, the size of the simulation

set can be large and is equal to the product expressed by equation (5.1)

R
m∏
i=1

n(i), (5.1)

where R is the number of repetitive simulation runs, m is the number of uncertain

parameters and n(i) is the number of values of the ith parameter.

Optimization through a simulation can be used as a search method [CM97] for the

best candidates of input variables among all valid alternatives at any system state. By

adopting heuristic evaluation it is possible to reduce a search space without explicitly

evaluating each possibility. Spike does not directly support a heuristic parameter

optimization. An optimization strategy must be implemented separately, while Spike

performs the simulation task. Nevertheless, Spike features such as parameters scanning

and parallel execution of configuration branches, makes it suitable for the task of brute

force optimization. In the following two scenarios of parameter optimization, it is shown

how Spike can be used to perform the simulation task.

Brute force. This is a straightforward approach where a new simulation is performed

for each combination of parameters. After performing all possible simulations, the best

matching results should be selected using a fitness function. This approach is presented

by Algorithm 17.

Example 5.6. The brute force approach can be useful as a quick method if the size

of the search space for each variable values is relatively small. The simulation tasks

can be easily performed by Spike, exploiting the branching of simulation configurations

(parameter scanning).

To find the best fitted result, the evaluation function represented by Algorithm 18

can be used. The given algorithm calculates the average percentage difference between

two data series.
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Algorithm 17: Use case: Brute force multiple parameter optimization.

1 Load model;
2 Determine simulator configuration;
3 for each unique combination of parameter values do
4 Determine model configuration;
5 Create new configuration branch;
6 Run simulation;
7 Save results of the simulation;

8 end
9 for each stored results do

10 if results not fitted then
11 Remove results;
12 end

13 end

Algorithm 18: Fitness function: comparison of two data traces.

Data: time series TS;
simulation data trace DT ;

Result: fitness value dFit;
1 double dFit;
2 for each integer index iIdx in range of |TS| do
3 if TS[iIdx] +DT [iIdx] ! = 0 then
4 dF it = dF it+ |(TS[iIdx]−DT [iIdx])/(TS[iIdx] +DT [iIdx])|/2 ∗ 100;
5 end

6 end
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For the purpose of this example, the reference data (see Figure 5.10 on the page 135)

has been generated by the simulation of the model in Figure 5.9 with the following set

of kinetic constants: k infect b = 5.0e− 6; k recover b = 1.0e− 2. In this example, the

trace Recover B can be used as the reference time series in the fitness function.

1e5

SusceptiblePopulation_B Recovered_BInfected_B Recover_BInfect_B

MassAction(k_infect_b) MassAction(k_recover_b)

2

Figure 5.9: SIR model used in the example, with the following set of kinetic constants:
k infect b = 5.0e − 6; k recover b = 1.0e − 2. The simulation results are presented in
Figure 5.10.

Figure 5.10: Simulation traces of the deterministic simulation of the SIR model in Figure 5.9,
which are used as the reference data trace in the examples of parameter optimization.

By combining Algorithm 17 and 18, it is easy to select a most fitted simulation trace

from the set of simulation traces. The set is generated by the following configuration of

the simulation experiment which is defined over the model in Figure 5.9 (page 135) and

comprises the following main steps:

(a) Specification of the source of the model; lines 1 − 3.

(b) Reconfiguration of the model by setting the range of parameters for scanning the

kinetic constant k infect b and k recover b; line 8.

(c) Configuration of the simulation by setting up its type and solver; lines 14 − 26.

(d) Configuration of the simulation time; line 28;

(e) Configuration of how to store the simulation results. It allows specifying which

the simulation traces are to be recorded. The name of the resulting file depends
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on the variables defined in the configuration, what allows to generate a unique

name;lines 30− 43.

The beginning of the search space of the kinetic constant k infect b is set to 1.0e− 6

and will be scanned with a step of 1.0e − 6 to the end of the search space 1.0e − 5.

Similarly, for the kinetic constant k recover b the search space is limited by two real

values 1.0e− 3 and 1.0e− 1 and will be scanned with a step of 1.0e− 3. In this case,

the configuration of parameter scanning will result in 990 simulation branches. For this

example, the proposed range of values to be scanned is artificially adjusted to ensure

that one of the simulation branches contains the desired configuration values for the

kinetic parameters.
1 import: {

2 from: "./model/SIR-SPN.andl";

3 }

4

5 configuration: {

6 model: {

7 constants: { all: {

8 k_infect_b: [[1.0e-6:1.0e-6:1.0e-5]]; k_recover_b: [[1.0e-3:1.0e-3:1.0e-1]];

9 }}

10 }

11

12 simulation: {

13 name: "SIR-BRUTEFORCE-OPTIMIZATION";

14 type: continuous: {

15 solver: BDF: {

16 semantic: "adapt";

17 iniStep: 0.1;

18 linSolver: "CVDense";

19 relTol: 1e-5;

20 absTol: 1.0e-10;

21 autoStepSize: false;

22 reductResultingODE: true;

23 checkNegativeVal: false;

24 outputNoiseVal: false;

25 }

26 }

27

28 interval: 0:100:1000;

29

30 export: {

31 places: [];

32 csv: {

33 sep: ";";

34 file: "./simresults/"

35 << name << "_"

36 << configuration.simulation.type << "_"

37 << configuration.simulation.type.solver << "_"

38 << "TST"

39 << "_" << configuration.model.constants.all.k_infect_b

40 << "_" << configuration.model.constants.all.k_recover_b

41 << ".csv";

42 }

43 }

44 }

45 }
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Heuristic. The brute force approach does not reduce the search space of parameters

values. For each combination of parameters, a new simulation is performed, which is

both time and resources consuming. Frequently, the size of the value search space is too

large and prevents the optimization over a finite period of time. In such case, a heuristic

method is better suitable. In [DG08], a genetic algorithm is used to drive the optimization

strategy of model parameters. The DIRECT method and its derivatives [JPS93], as

presented in [GK10], also suite well as the optimization strategy in the use case presented

by Algorithm 19. As shown in Fig. 5.11 (page 137), simulation results are provided

for an optimization strategy which reduces the search space of parameter values by

checking the fitness of a set of parameters and provides a set of best fitted parameter

values as a feedback to the model.

Algorithm 19: Use case: Heuristic multiple parameter optimization.

1 Load model;
2 Determine simulator configuration;
3 repeat
4 for each unique combination of parameter values do
5 Determine model configuration;
6 Create new configuration branch;
7 Run simulation;

8 end
9 Run optimization strategy;

10 until space reduced ;

process

simulation

optimization
strategy

results

feedbackinput parameters

Figure 5.11: Optimization through simulation - simulation results are provided to an
optimization strategy, which reduces the space of parameter values by checking the fitness
of set of parameters and provides a set of best fitted parameter values for the model as
feedback.

Example 5.7. In this example Spike is used as backend simulator, which performs the

simulation task. The control loop and the optimization strategy is implemented by the

use of the Python programming language [VD09], as Spike does not currently support

heuristic parameter optimization directly.

The optimization strategy is implemented as a genetic algorithm [BSH17] with the

help of the Python library geneticalgorithm [Sol13], which was slightly modified for the

purposes of the example. All script source code can be found in Appendix B.
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The genetic algorithm [Hol75, Jon75] is a black-box optimization technique which

belongs to the class of random-based evolutionary algorithms. It is characterized by

three main features:

• population - is a set of solutions from which new solutions are to be generated;

• fitness - is associated with each solution which evaluates how close a given solution

is to the optimum solution of the given problem;

• variation - is a random process, which, based on a fitness value, performs random

variations on individual solutions in order to generate a new population.

Base on the feedback, provided by each run of the optimization strategy, a new

configuration of the model is determined. The newly determined model configuration is

combined with the following configuration template.

1 import: {

2 from: "./model/SIR-SPN.andl";

3 }

4

5 configuration: {

6

7 model: [[%s]];

8

9 simulation: {

10 name: "SIR";

11 type: continuous: {

12 solver:

13 BDF: {

14 semantic: "adapt";

15 iniStep: 0.1;

16 linSolver: "CVDense";

17 relTol: 1e-5;

18 absTol: 1.0e-10;

19 autoStepSize: false;

20 reductResultingODE: true;

21 checkNegativeVal: false;

22 outputNoiseVal: false;

23 }

24 }

25

26 interval: 0:100:1000;

27

28 export: {

29 places: [];

30 csv: {

31 sep: ";";

32 file: "simresults/" << name << "_"

33 << configuration.model

34 << ".csv";

35 }

36 }

37 }

38 }
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The combination takes place in line 7, where the placeholder string (%s) is replaced by

the newly determined model configuration, e.g.:

1 inhab0: {

2 constants: {all: { k_infect_b: 0.577220; k_recover_b: 1.454898; } }

3 }

As in the previous example, the trace Recover B from the generated data set (see

Figure 5.10, page 140) has been used as the reference time series in the fitness function.

The progress of the best performed experiment runs for two experiment set-ups is

presents in Figure 5.12. The main difference between those two experiments is the

size of the search space. In the first case (see Figure 5.12.(a), page 140), the search

space is set to k infect b ∈ 〈1.0e− 6, 1.0e− 5〉 and k recover b ∈ 〈1.0e− 3, 1.0e〉. In

the second case (see Figure 5.12.(b), page 140), the size of the search space is much

wider, and it is set to k infect b ∈ 〈1.0e− 7, 1.0〉 and k recover b ∈ 〈1.0e− 7, 1.0〉. In

both cases the genetic algorithm performed 20 iterations for the population of size 50.

The achieved accuracy for the case (a) is 0.0119032134008 and for (b) 3.104465461. The

experiment results are presented in Figure 5.13(a) and (b), which can be compared with

the reference data (c).
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Figure 5.12: Progress of optimization of two experiment set-ups: (a) - iteration =
20, population size = 50, mutation probability = 0.4, search space: k infect b ∈
〈1.0e− 6, 1.0e− 5〉, k recover b ∈ 〈1.0e− 3, 1.0e〉, FIT = 0.0119032134008 ;
(b) - iteration = 20, population size = 50, mutation probability = 0.6, search space:
k infect b ∈ 〈1.0e− 7, 1.0〉, k recover b ∈ 〈1.0e− 7, 1.0〉, FIT = 3.104465461 .
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(a)

(b)

(c)

Figure 5.13: Simulation traces of the deterministic simulation of the SIR model in Figure 5.9;
(a) - FIT = 0.0119032134008, k infect b = 4.7277170068E−06, k recover b = 0.009999231
and search space: k infect b ∈ 〈1.0e− 6, 1.0e− 5〉, k recover b ∈ 〈1.0e− 3, 1.0e〉 ;
(b) - FIT = 3.104465461, k infect b = 0.6702367369, k recover b = 0.0096678283 and
search space: k infect b ∈ 〈1.0e− 7, 1.0〉, k recover b ∈ 〈1.0e− 7, 1.0〉 ;
(c) - the reference data trace, k infect b = 5.0e− 6, k recover b = 1.0e− 2 .
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5.4 Closing Remarks

The flexibility of SPC allows Spike to design and perform simulation experiments in

very efficient ways. The first example shows the power of scanning of model parameters

and simulation options. Through the branching of a configuration, Spike can perform a

set of simulation experiments in parallel. The second and third examples focus on the

stepwise simulation. Spike’s stepwise simulation feature allows designing simulation

experiments of adaptive models by adjusting dynamically the model parameters. The

forth example shows how to perform model parameter optimization by embedding Spike

in a third party application. All of these examples illustrate main features of Spike, but

certainly do not cover all use cases in which Spike can be used.
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6.1 Conclusions

Spike is an efficient tool for the reproducible execution of parallel simulation experiments

of biochemical reaction networks. The modular structure of Spike and the mechanism

of intermodule communication allows to easily extend Spike by new modules. The main

functionalities of Spike allow to import and export PN models in various formats. An

imported coloured model can be unfolded using IDD-based unfolding, which is integrated

in the internally developed dssd util library used by Snoopy, Marcie and Spike. During

the work on Spike, the Boolean colour set and the elmeOf operator were introduced

into the IDD-based unfolding. The newly introduced colour set and operator increase

the expressive power of the colour annotations by simplifying coloured expressions. To

perform a simulation, Spike uses an internally developed simulation library; it is capable

to run three basic types of simulations: stochastic, deterministic and hybrid, where each

comes with several algorithms. Spike is supported by the scripting language (SPC),
which allows for designing reproducible simulation experiments, that can be executed in

parallel. Additionally, SPC allows the execution of a simulation in a stepwise manner.

The main goal of SPC is to efficiently support reproducible simulation experiments.

SPC has a human-readable format and allows configuring a model, a simulation and

observers. Additionally, it enables to define the export of simulation results. Through

the branching of configuration it is possible to set up the scanning of model parameters

and simulation options. The branches of a configuration are loosely coupled (they only

have in common a high-level/parent configuration) and can be executed in parallel. SPC
supports adaptive stepwise simulation, which allows for reconfiguring model parameters

based on the current state of a model and a simulation. All of this allows Spike to

efficiently perform reproducible experiments.
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6.2 Outlook

Spike and its configuration scripting language SPC can be improved in many ways.

Certain features are missing that should be addressed in future work.

• Full support of arrays - currently SPC supports only the declaration of arrays as

they are used only to set values of some configuration options. Accessing of array

elements will allow to reduce the number of declared variables and to collect and

organize data in many useful ways.

• Conditional loop blocks - condition loops allow certain parts of a program to

be run multiple times while a condition remains true. Support of a conditional

loop block in connection with arrays will be very handy. This will facilitate the

processing of data during stepwise simulation.

• Temporal logic - the temporal logic is focused on formulas that use temporal

operators to describe how static conditions change over the time. Support of the

temporal logic syntax will allow to conveniently express how to alter a model after

each simulation step, based on the current state of a model and a simulation.

• Model reduction - Spike allows for the basic reduction of a PN model. It is able

to structurally reduce a model by pruning clean siphons and constant places.

However, this basic reduction methods are insufficient. The growing amount of

experimental data and expressive power of the colour annotations leads to the

development of complex models. A complex model represented by PN C needs to be

unfolded before its simulation. After unfolding, the number of nodes can be much

larger than in its coloured counterpart. Reduction of a model may yield a more

optimized (in terms of size) model, provide insights into structural properties and

reduces a simulation overhead. The main challenge of a reduction is to preserve

the main three properties of a PN model: liveness, reversibility and boundedness.

The two simplest techniques that preserve the main three properties are pruning

of clean siphons and constant places.

• Model decomposition - decomposition of PN model into basic subnets. Decom-

position can be done by network structure or through type, if the PN is hybrid.

The process of clustering should be aided through manual selection / specification

of cluster set as well as through an automatic / algorithm approach. The model

decomposition will allow for distributed simulation of the decomposed model. Such

functionality should speed up the simulation of large models - more research needs

to be done to get a clear answer.

• Distributed simulation - Spike is able to perform parallel executions of simulation

experiments on single host. Future work should consider implementation of dis-

tributed simulation, which can speed-up the execution of an experiment in the

following example cases:
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(a) - a simulation experiment contains a set of exhaustive simulations - in this

case each simulation can be distributed over a network of computing peers,

where each peer performs a single simulation.

(b) - a parallel simulation of a decomposed model - in a such case each component

of the model is distributed over a network of computing peers, where each

peer performs a single, parallel, synchronized simulation for the received

model component.

• Parameter optimization - Optimization through a simulation can be used as a

search method [CM97] for the best candidates of input variables among all valid

alternatives at any system state. By adopting heuristic evaluation, it is possible to

reduce a search space without explicitly evaluating each possibility. Spike features

such as parameters scanning and parallel execution of configuration branches

make Spike suitable for this task. However, all these features are not sufficient

to perform parameter optimization. Future work should consider embedding the

optimization strategy directly into Spike, which will be a complementary feature

of parameter scanning. This will allow Spike to optimize a set of model parameters

through an embedded optimization strategy.

6.3 Availability

Spike is developed in C++ and available for Linux, Mac/OSX and Windows. Binaries

are statically linked and can be downloaded from Spike’s website https://www-dssz.

informatik.tu-cottbus.de/DSSZ/Software/Spike, which provides also documenta-

tion, installation instructions and a set of examples. The source code of Spike is available

in the GitHub repository: https://github.com/PetriNuts/spike under [GPLv3] li-

cence.
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Appendix A

Grammar of Configuration Script

A.1 Graphical notations

definition entry point;

... parallel entry point - states that all entry points/paths
must be chosen;

definition end point;

path - path to proceed;

split path - path splitting states, only one direction can be
chosen;

join paths - combined paths become one;

... one occurrence of an entity;

... zero or one occurrence;

...

one or many occurrences;

... zero or many occurrences;

SPC properties - - properties used to define/configure an
experiment;

grammar definitions
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A. GRAMMAR OF CONFIGURATION SCRIPT

SPC basic property - represents a property that does not
associate any other properties;

SPC complex property - represents a property that asso-
ciate one or more basic properties;

grammar operator - represents an operator;

grammar literal - represents a constant/fixed value;

grammar rule - represents a meta variable/nonterminal
symbol;

A.2 Main SPC Objects

SPC

import

con guration

log

import

sbml

from

name

sbml

reversible

boundary

net type

con guration

simulation con guration

model con guration
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A.3 Basic definitions

model con guration

constants

places

observers

simulation con guration

simulator options

interval

onStep

export

A.3 Basic definitions

array

object

value

number

false

string

true

range

access

0 .

+

-

digit
1-9

E

e

digit

digit

digit

-

number

" "any character except "

string
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false

true

boolean value

expression: ;

declaration

identi er

object

letter or _ digit

identifier

expression=access ;

assign

object

declaration{ }

.

access

identi er

[ ]value

array

,

: number

range

:number number

A.4 Expressions

( )

expression

string

expression

arithmetic expression

boolean expression

comparision

access

concatenation
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A.4 Expressions

/* -+

/

*

+

-

arithmetic expression( )

number

arithmetic expression

access

||&&

||

&&

boolean expression( )

comparision

false

true

!

boolean expression access

comparison

>=> <=< !===

expression

expression

||&&

concatenation

string string

false

access

number

true

false

access

number

true <<
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A. GRAMMAR OF CONFIGURATION SCRIPT

A.5 Conditional Block

else

if ( ) {boolean expression }

{ }

if (

conditional block

) {boolean expression }

assign

declaration

conditional block

assign

declaration

conditional block assign

declaration

conditional block

A.6 onStep

onStep

assign

declaration

conditional block do

do

assign

declaration

conditional block
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Appendix B

Source Code: Heuristic Method
of Parameter Optimization

B.1 SIR Model In ANDL Format: SIR-SPN.andl

1 spn [SIR-SPN]
2 {
3 constants:
4 all:
5 double k_infect_a = 5.0e-5;
6 double k_infect_b = 5.0e-6;
7 double k_recover_a = 1.0e-1;
8 double k_recover_b = 1.0e-2;
9

10 places:
11 discrete:
12 Infected_A = 1;
13 Infected_B = 1;
14 Recovered_A = 0;
15 Recovered_B = 0;
16 SusceptiblePopulation_A = 50000;
17 SusceptiblePopulation_B = 100000;
18

19 transitions:
20 stochastic:
21 Infect_0
22 :
23 : [Infected_A + 2] & [SusceptiblePopulation_A - 1] & [Infected_A - 1]
24 : MassAction(k_infect_a)
25 ;
26 Infect_1
27 :
28 : [Infected_B + 2] & [SusceptiblePopulation_B - 1] & [Infected_B - 1]
29 : MassAction(k_infect_b)
30 ;
31 Recover_0
32 :
33 : [Recovered_A + 1] & [Infected_A - 1]
34 : MassAction(k_recover_a)
35 ;
36 Recover_1
37 :
38 : [Recovered_B + 1] & [Infected_B - 1]
39 : MassAction(k_recover_b)
40 ;
41 }
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B. SOURCE CODE: HEURISTIC METHOD OF PARAMETER
OPTIMIZATION

B.2 SPC Configuration Template: SIR-CPN-spc.tmp

1 import: {

2 from: "./model/SIR-SPN.andl";

3 }

4

5 configuration: {

6

7 model: [[%s]];

8

9 simulation: {

10 name: "SIR";

11 type: continuous: {

12 solver:

13 BDF: {

14 semantic: "adapt";

15 iniStep: 0.1;

16 linSolver: "CVDense";

17 relTol: 1e-5;

18 absTol: 1.0e-10;

19 autoStepSize: false;

20 reductResultingODE: true;

21 checkNegativeVal: false;

22 outputNoiseVal: false;

23 }

24 }

25

26 interval: 0:100:1000;

27

28 export: {

29 places: [];

30 csv: {

31 sep: ";";

32 file: "simresults/" << name << "_"

33 << configuration.model

34 << ".csv";

35 }

36 }

37 }

38 }
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B.3 Experiment Set-up in Python: optimization.py

B.3 Experiment Set-up in Python: optimization.py

1 ’’’

2

3 Copyright 2021 Jacek Chodak

4

5 Permission is hereby granted, free of charge, to any person obtaining a copy of

6 this software and associated documentation files (the "Software"), to deal in

7 the Software without restriction, including without limitation the rights to use,

8 copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the

9 Software, and to permit persons to whom the Software is furnished to do so,

10 subject to the following conditions:

11

12 The above copyright notice and this permission notice shall be included in all

13 copies or substantial portions of the Software.

14

15 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

16 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

17 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

18 THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

19 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

20 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

21 SOFTWARE.

22

23 ’’’

24

25 ###############################################################################

26 ###############################################################################

27 ###############################################################################

28

29 import numpy as np

30 from geneticalgorithmjch import geneticalgorithm as ga

31 import subprocess

32 import csv

33 import time

34 import matplotlib.pyplot as plt

35

36 ###############################################################################

37 #

38 # CSV

39 #

40 ###############################################################################

41 def readCSV(filename):

42 tsB = []

43 tsR = []

44

45 try:

46 with open(filename) as csvDataFile:

47 csvReader = csv.DictReader(csvDataFile, delimiter = ";")

48 for row in csvReader:

49 tsB.append(row["Infected_B"])

50 tsR.append(row["Recovered_B"])

51 except FileNotFoundError:

52 print("open::FileNotFoundError: %s" % (filename))

53

54 tdB = np.array(tsB).astype(np.float)

55 tdR = np.array(tsR).astype(np.float)

56

57 return tdB, tdR
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OPTIMIZATION

58 ###############################################################################

59 #

60 # Fitnes function

61 #

62 ###############################################################################

63 def f(X):

64

65 strTemplatePopulationInhabitant = "inhab%d: {\n"\

66 "constants: { all: {k_infect_b: %f; k_recover_b: %f;}}\n"\

67 " }"

68

69

70 iIdx = 0

71 strPopulationInhabitant = ""

72

73 strPopulationInhabitant += strTemplatePopulationInhabitant\

74 % (iIdx,

75 X[0],

76 X[1]

77 )

78

79 # read conf template

80 with open("SIR-CPN-spc.tmp", "r") as templateFile:

81 strTemplateConf = templateFile.read()#.replace(’\n’, ’’)

82

83 strConf = strTemplateConf % (strPopulationInhabitant)

84 strSpikeCmd = "conf -s=’%s’ exe -p=4 -process=1"

85 ## remove whitespece

86 ## (space, tab, newline, and so on) -> sentence = ’’.join(sentence.split())

87 strSpikeCmd = strSpikeCmd % (’’.join(strConf.split()))

88

89 returnCode = subprocess.call(["./spike-release", strSpikeCmd],

90 stdout=None, stderr=None)

91 print("SPIKE:", returnCode)

92

93 ## Compare

94 strFile = "./simresults/SIR_inhab%d.csv" % (iIdx)

95 print(strFile)

96 tdInfec, tdRecov = readCSV(strFile)

97 dFit = 0.0;

98 dFitMax = 0;

99

100 ## Percentage Difference

101 for iIdx in range(len(m_tdInfec)):

102 if m_tdInfec[iIdx] + tdInfec[iIdx] > 0:

103 dFit = dFit + abs(m_tdInfec[iIdx] - tdInfec[iIdx]) / \

104 (m_tdInfec[iIdx] + tdInfec[iIdx]) / 2 * 100

105

106 dFit /= len(m_tdInfec);

107

108 print("dFit: ", dFit)

109 print("k_infect: ", X[0])

110 print("k_recover: ", X[1])

111

112 return dFit
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113 ###############################################################################

114 #

115 # Report progress callback function

116 #

117 ###############################################################################

118 def onProgress(genalg):

119 print(’\r The best solution found:\n %s’ % (genalg.best_variable))

120 print(’\n\n Objective function:\n %s\n’ % (genalg.best_function))

121

122 re=np.array(genalg.report)

123 rePop = np.array(genalg.reportPop)

124 plt.cla()

125 plt.plot(re)

126 plt.xlabel("Iteration: %s" % genalg.counter)

127 plt.ylabel("Objective function: %s" % genalg.best_function)

128 plt.title("Genetic Algorithm: %s" % genalg.best_variable)

129 #plt.show()

130 plt.draw()

131 plt.pause(0.0001)

132 with open("progress.csv", "w", newline = "\n") as file:

133 #with open("progress-%s.csv" % time.time(), "w", newline = "\n") as file:

134 csvwriter = csv.writer(file, delimiter = ";")

135 csvwriter.writerow(["fit", "k_infect", "k_recover"])

136 iIdx = 0

137 for x in re :

138 csvwriter.writerow([x, rePop[iIdx][0], rePop[iIdx][1]])

139 iIdx += 1

140

141 ###############################################################################

142 #

143 # Experiment: Case A

144 #

145 ###############################################################################

146 def caseA():

147 varbound=np.array([[1.0e-6, 1.0e-5], [1.0e-3, 1.0e-1]])

148 vartype=np.array([["real"], ["real"]])

149

150

151 algorithm_param = {’max_num_iteration’: 20,\

152 ’population_size’: 50,\

153 ’mutation_probability’: 0.4,\

154 ’elit_ratio’: 0.01,\

155 ’crossover_probability’: 0.5,\

156 ’parents_portion’: 0.3,\

157 ’crossover_type’: ’uniform’,\

158 ’max_iteration_without_improv’: None}

159

160 model = ga(function=f,\

161 onProgress=onProgress,\

162 dimension=2,\

163 #variable_type=’real’,\

164 variable_type_mixed=vartype,\

165 variable_boundaries=varbound,\

166 function_timeout=30,\

167 algorithm_parameters=algorithm_param,\

168 progress_bar=True)

169

170 return model
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171 ###############################################################################

172 #

173 # Experiment: Case B

174 #

175 ###############################################################################

176 def caseB():

177 varbound=np.array([[1.0e-7, 1.0], [1.0e-7, 1.0]])

178 vartype=np.array([["real"], ["real"]])

179

180 algorithm_param = {’max_num_iteration’: 20,\

181 ’population_size’: 50,\

182 ’mutation_probability’: 0.6,\

183 ’elit_ratio’: 0.01,\

184 ’crossover_probability’: 0.5,\

185 ’parents_portion’: 0.3,\

186 ’crossover_type’: ’uniform’,\

187 ’max_iteration_without_improv’: None}

188

189 model = ga(function=f,\

190 onProgress=onProgress,\

191 dimension=2,\

192 #variable_type=’real’,\

193 variable_type_mixed=vartype,\

194 variable_boundaries=varbound,\

195 function_timeout=30,\

196 algorithm_parameters=algorithm_param,\

197 progress_bar=True)

198

199 return model

200

201 ###############################################################################

202 #

203 # Main

204 #

205 ###############################################################################

206

207 ## Refernce data trace

208 m_tdInfec, m_tdRecov = readCSV("./sim/data/SIR-SPN_continuous_BDF.csv")

209

210 ## Select example case

211 model = caseA()

212 #model = caseB()

213

214 model.run()

215

216 solution = model.best_variable

217

218 print(model.output_dict)
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B.4 Genetic Algorithm Library for Python: geneticalgorith-
mjch.py

1 ’’’

2

3 Copyright 2020 Ryan (Mohammad) Solgi

4

5 Permission is hereby granted, free of charge, to any person obtaining a copy of

6 this software and associated documentation files (the "Software"), to deal in

7 the Software without restriction, including without limitation the rights to use,

8 copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the

9 Software, and to permit persons to whom the Software is furnished to do so,

10 subject to the following conditions:

11

12 The above copyright notice and this permission notice shall be included in all

13 copies or substantial portions of the Software.

14

15 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

16 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

17 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

18 THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

19 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

20 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

21 SOFTWARE.

22

23 ’’’

24

25 ###############################################################################

26 ###############################################################################

27 ###############################################################################

28

29 import numpy as np

30 import sys

31 import time

32 from func_timeout import func_timeout, FunctionTimedOut

33 import matplotlib.pyplot as plt

34

35 ###############################################################################

36 ###############################################################################

37 ###############################################################################

38

39 class geneticalgorithm():

40

41 ’’’ Genetic Algorithm (Elitist version) for Python

42

43 An implementation of elitist genetic algorithm for solving problems with

44 continuous, integers, or mixed variables.

45 Implementation and output:

46 methods:

47 run(): implements the genetic algorithm

48 outputs:

49 output_dict: a dictionary including the best set of variables

50 found and the value of the given function associated to it.

51 {’variable’: , ’function’: }

52 report: a list including the record of the progress of the

53 algorithm over iterations

54

55 ’’’
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56 #############################################################

57 def __init__(self, function, onProgress, dimension, variable_type=’bool’, \

58 variable_boundaries=None,\

59 variable_type_mixed=None, \

60 function_timeout=10,\

61 algorithm_parameters={’max_num_iteration’: None,\

62 ’population_size’:100,\

63 ’mutation_probability’:0.1,\

64 ’elit_ratio’: 0.01,\

65 ’crossover_probability’: 0.5,\

66 ’parents_portion’: 0.3,\

67 ’crossover_type’:’uniform’,\

68 ’max_iteration_without_improv’:None},\

69 convergence_curve=True,\

70 progress_bar=True):

71 ’’’

72 @param function <Callable> - the given objective function to be minimized

73 NOTE: This implementation minimizes the given objective function.

74 (For maximization multiply function by a negative sign: the absolute

75 value of the output would be the actual objective function)

76

77 @param dimension <integer> - the number of decision variables

78

79 @param variable_type <string> - ’bool’ if all variables are Boolean;

80 ’int’ if all variables are integer; and ’real’ if all variables are

81 real value or continuous (for mixed type see @param variable_type_mixed)

82

83 @param variable_boundaries <numpy array/None> - Default None; leave it

84 None if variable_type is ’bool’; otherwise provide an array of tuples

85 of length two as boundaries for each variable;

86 the length of the array must be equal dimension. For example,

87 np.array([0,100],[0,200]) determines lower boundary 0 and upper boundary

88 100 for first and upper boundary 200 for second variable where dimension is 2.

89

90 @param variable_type_mixed <numpy array/None> - Default None; leave it

91 None if all variables have the same type; otherwise this can be used to

92 specify the type of each variable separately. For example if the first

93 variable is integer but the second one is real the input is:

94 np.array([’int’],[’real’]). NOTE: it does not accept ’bool’. If variable

95 type is Boolean use ’int’ and provide a boundary as [0,1]

96 in variable_boundaries. Also if variable_type_mixed is applied,

97 variable_boundaries has to be defined.

98

99 @param function_timeout <float> - if the given function does not provide

100 output before function_timeout (unit is seconds) the algorithm raise error.

101 For example, when there is an infinite loop in the given function.

102

103 @param algorithm_parameters:

104 @ max_num_iteration <int> - stoping criteria of the genetic algorithm (GA)

105 @ population_size <int>

106 @ mutation_probability <float in [0,1]>

107 @ elit_ration <float in [0,1]>

108 @ crossover_probability <float in [0,1]>

109 @ parents_portion <float in [0,1]>

110 @ crossover_type <string> - Default is ’uniform’; ’one_point’ or

111 ’two_point’ are other options

112 @ max_iteration_without_improv <int> - maximum number of

113 successive iterations without improvement. If None it is ineffective

114

115 @param convergence_curve <True/False> - Plot the convergence curve or not

116 Default is True.

117 @progress_bar <True/False> - Show progress bar or not. Default is True.

118

119 for more details and examples of implementation please visit:

120 https://github.com/rmsolgi/geneticalgorithm

121

122 ’’’
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123 self.__name__=geneticalgorithm

124 #############################################################

125 # input function

126 assert (callable(function)),"function must be callable"

127

128 self.f=function

129 #############################################################

130 # input function onProgress

131 assert (callable(onProgress)),"function onProgress must be callable"

132

133 self.onProgressDo=onProgress

134 #############################################################

135 #dimension

136

137 self.dim=int(dimension)

138

139 #############################################################

140 # input variable type

141

142 assert(variable_type==’bool’ or variable_type==’int’ or\

143 variable_type==’real’), \

144 "\n variable_type must be ’bool’, ’int’, or ’real’"

145 #############################################################

146 # input variables’ type (MIXED)

147

148 if variable_type_mixed is None:

149

150 if variable_type==’real’:

151 self.var_type=np.array([[’real’]]*self.dim)

152 else:

153 self.var_type=np.array([[’int’]]*self.dim)

154

155 else:

156 assert (type(variable_type_mixed).__module__==’numpy’),\

157 "\n variable_type must be numpy array"

158 assert (len(variable_type_mixed) == self.dim), \

159 "\n variable_type must have a length equal dimension."

160

161 for i in variable_type_mixed:

162 assert (i==’real’ or i==’int’),\

163 "\n variable_type_mixed is either ’int’ or ’real’ "+\

164 "ex:[’int’,’real’,’real’]"+\

165 "\n for ’boolean’ use ’int’ and specify boundary as [0,1]"

166

167 self.var_type=variable_type_mixed

168

169 #############################################################

170 # input variables’ boundaries

171

172 if variable_type!=’bool’ or type(variable_type_mixed).__module__==’numpy’:

173

174 assert (type(variable_boundaries).__module__==’numpy’),\

175 "\n variable_boundaries must be numpy array"

176

177 assert (len(variable_boundaries)==self.dim),\

178 "\n variable_boundaries must have a length equal dimension"

179

180

181 for i in variable_boundaries:

182 assert (len(i) == 2), \

183 "\n boundary for each variable must be a tuple of length two."

184 assert(i[0]<=i[1]),\

185 "\n lower_boundaries must be smaller than upper_boundaries "+\

186 "[lower,upper]"

187 self.var_bound=variable_boundaries

188 else:

189 self.var_bound=np.array([[0,1]]*self.dim)
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190 #############################################################

191 #Timeout

192 self.funtimeout=float(function_timeout)

193 #############################################################

194 #convergence_curve

195 if convergence_curve==True:

196 self.convergence_curve=True

197 else:

198 self.convergence_curve=False

199 #############################################################

200 #progress_bar

201 if progress_bar==True:

202 self.progress_bar=True

203 else:

204 self.progress_bar=False

205 #############################################################

206 #############################################################

207 # input algorithm’s parameters

208

209 self.param=algorithm_parameters

210 self.pop_s=int(self.param[’population_size’])

211

212 assert (self.param[’parents_portion’]<=1\

213 and self.param[’parents_portion’]>=0),\

214 "parents_portion must be in range [0,1]"

215

216 self.par_s=int(self.param[’parents_portion’]*self.pop_s)

217 trl=self.pop_s-self.par_s

218 if trl % 2 != 0:

219 self.par_s+=1

220

221 self.prob_mut=self.param[’mutation_probability’]

222

223 assert (self.prob_mut<=1 and self.prob_mut>=0), \

224 "mutation_probability must be in range [0,1]"

225

226 self.prob_cross=self.param[’crossover_probability’]

227 assert (self.prob_cross<=1 and self.prob_cross>=0), \

228 "mutation_probability must be in range [0,1]"

229

230 assert (self.param[’elit_ratio’]<=1 and self.param[’elit_ratio’]>=0),\

231 "elit_ratio must be in range [0,1]"

232

233 trl=self.pop_s*self.param[’elit_ratio’]

234 if trl<1 and self.param[’elit_ratio’]>0:

235 self.num_elit=1

236 else:

237 self.num_elit=int(trl)

238

239 assert(self.par_s>=self.num_elit), \

240 "\n number of parents must be greater than number of elits"

241

242 if self.param[’max_num_iteration’]==None:

243 self.iterate=0

244 for i in range (0,self.dim):

245 if self.var_type[i]==’int’:

246 self.iterate+=(self.var_bound[i][1]-self.var_bound[i][0])* \

247 self.dim*(100/self.pop_s)

248 else:

249 self.iterate+=(self.var_bound[i][1]-self.var_bound[i][0])* \

250 50*(100/self.pop_s)

251 self.iterate=int(self.iterate)

252 if (self.iterate*self.pop_s)>10000000:

253 self.iterate=10000000/self.pop_s

254 else:

255 self.iterate=int(self.param[’max_num_iteration’])
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256 self.c_type=self.param[’crossover_type’]

257 assert (self.c_type==’uniform’ or self.c_type==’one_point’ or\

258 self.c_type==’two_point’),\

259 "\n crossover_type must ’uniform’, ’one_point’, or ’two_point’ Enter string"

260

261

262 self.stop_mniwi=False

263 if self.param[’max_iteration_without_improv’]==None:

264 self.mniwi=self.iterate+1

265 else:

266 self.mniwi=int(self.param[’max_iteration_without_improv’])

267

268

269 #############################################################

270 def run(self):

271

272

273 #############################################################

274 # Initial Population

275

276 self.integers=np.where(self.var_type==’int’)

277 self.reals=np.where(self.var_type==’real’)

278

279

280

281 pop=np.array([np.zeros(self.dim+1)]*self.pop_s)

282 solo=np.zeros(self.dim+1)

283 var=np.zeros(self.dim)

284

285 for p in range(0,self.pop_s):

286

287 for i in self.integers[0]:

288 var[i]=np.random.randint(self.var_bound[i][0],\

289 self.var_bound[i][1]+1)

290 solo[i]=var[i].copy()

291 for i in self.reals[0]:

292 var[i]=self.var_bound[i][0]+np.random.random()*\

293 (self.var_bound[i][1]-self.var_bound[i][0])

294 solo[i]=var[i].copy()

295

296

297 obj=self.sim(var)

298 solo[self.dim]=obj

299 pop[p]=solo.copy()

300

301 #############################################################

302

303 #############################################################

304 # Report

305 self.report=[]

306 self.reportPop=[]

307 self.test_obj=obj

308 self.best_variable=var.copy()

309 self.best_function=obj

310 ##############################################################

311

312 t=1

313 counter=0

314 self.counter = counter

315 while t<=self.iterate:

316

317 if self.progress_bar==True:

318 self.progress(t,self.iterate,status="GA is running...")

319 #############################################################

320 #Sort

321 pop = pop[pop[:,self.dim].argsort()]
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322 if pop[0,self.dim]<self.best_function:

323 counter=0

324 self.best_function=pop[0,self.dim].copy()

325 self.best_variable=pop[0,: self.dim].copy()

326 else:

327 counter+=1

328 self.counter = counter

329 #############################################################

330 # Report

331

332 self.report.append(pop[0,self.dim])

333 self.reportPop.append(pop[0,: self.dim])

334

335

336 ##############################################################

337 # Normalizing objective function

338

339 normobj=np.zeros(self.pop_s)

340

341 minobj=pop[0,self.dim]

342 if minobj<0:

343 normobj=pop[:,self.dim]+abs(minobj)

344

345 else:

346 normobj=pop[:,self.dim].copy()

347

348 maxnorm=np.amax(normobj)

349 normobj=maxnorm-normobj+1

350

351 #############################################################

352 # Calculate probability

353

354 sum_normobj=np.sum(normobj)

355 prob=np.zeros(self.pop_s)

356 prob=normobj/sum_normobj

357 cumprob=np.cumsum(prob)

358

359 #############################################################

360 # Select parents

361 par=np.array([np.zeros(self.dim+1)]*self.par_s)

362

363 for k in range(0,self.num_elit):

364 par[k]=pop[k].copy()

365 for k in range(self.num_elit,self.par_s):

366 index=np.searchsorted(cumprob,np.random.random())

367 par[k]=pop[index].copy()

368

369 ef_par_list=np.array([False]*self.par_s)

370 par_count=0

371 while par_count==0:

372 for k in range(0,self.par_s):

373 if np.random.random()<=self.prob_cross:

374 ef_par_list[k]=True

375 par_count+=1

376

377 ef_par=par[ef_par_list].copy()

378

379 #############################################################

380 #New generation

381 pop=np.array([np.zeros(self.dim+1)]*self.pop_s)
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382 for k in range(0,self.par_s):

383 pop[k]=par[k].copy()

384

385 for k in range(self.par_s, self.pop_s, 2):

386 r1=np.random.randint(0,par_count)

387 r2=np.random.randint(0,par_count)

388 pvar1=ef_par[r1,: self.dim].copy()

389 pvar2=ef_par[r2,: self.dim].copy()

390

391 ch=self.cross(pvar1,pvar2,self.c_type)

392 ch1=ch[0].copy()

393 ch2=ch[1].copy()

394

395 ch1=self.mut(ch1)

396 ch2=self.mutmidle(ch2,pvar1,pvar2)

397 solo[: self.dim]=ch1.copy()

398 obj=self.sim(ch1)

399 solo[self.dim]=obj

400 pop[k]=solo.copy()

401 solo[: self.dim]=ch2.copy()

402 obj=self.sim(ch2)

403 solo[self.dim]=obj

404 pop[k+1]=solo.copy()

405 #############################################################

406 t+=1

407 if counter > self.mniwi:

408 pop = pop[pop[:,self.dim].argsort()]

409 if pop[0,self.dim]>=self.best_function:

410 t=self.iterate

411 if self.progress_bar==True:

412 self.progress(t,self.iterate,status="GA is running...")

413 time.sleep(2)

414 t+=1

415 self.stop_mniwi=True

416

417 #############################################################

418 #Sort

419 pop = pop[pop[:,self.dim].argsort()]

420

421 if pop[0,self.dim]<self.best_function:

422

423 self.best_function=pop[0,self.dim].copy()

424 self.best_variable=pop[0,: self.dim].copy()

425

426 #############################################################

427 # Report

428

429 self.report.append(pop[0,self.dim])

430

431 #self.reportPop.append(pop)

432 self.reportPop.append(pop[0,: self.dim])

433

434 self.output_dict={’variable’: self.best_variable, ’function’:\

435 self.best_function}

436 if self.progress_bar==True:

437 show=’ ’*100

438 sys.stdout.write(’\r%s’ % (show))

439 ## JCH-S

440 self.onProgress()

441 ## JCH-E
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442 sys.stdout.write(’\r The best solution found:\n %s’ % (self.best_variable))

443 sys.stdout.write(’\n\n Objective function:\n %s\n’ % (self.best_function))

444 sys.stdout.flush()

445 re=np.array(self.report)

446 if self.convergence_curve==True:

447 plt.plot(re)

448 plt.xlabel(’Iteration’)

449 plt.ylabel(’Objective function’)

450 plt.title(’Genetic Algorithm’)

451 plt.show()

452

453 if self.stop_mniwi==True:

454 sys.stdout.write(’\nWarning: GA is terminated due to the’+\

455 ’ maximum number of iterations without’+\

456 ’improvement was met!’)

457

458 ##############################################################################

459 ##############################################################################

460 def cross(self,x,y,c_type):

461

462 ofs1=x.copy()

463 ofs2=y.copy()

464

465 if c_type==’one_point’:

466 ran=np.random.randint(0,self.dim)

467 for i in range(0,ran):

468 ofs1[i]=y[i].copy()

469 ofs2[i]=x[i].copy()

470

471 if c_type==’two_point’:

472

473 ran1=np.random.randint(0,self.dim)

474 ran2=np.random.randint(ran1,self.dim)

475

476 for i in range(ran1,ran2):

477 ofs1[i]=y[i].copy()

478 ofs2[i]=x[i].copy()

479

480 if c_type==’uniform’:

481

482 for i in range(0, self.dim):

483 ran=np.random.random()

484 if ran <0.5:

485 ofs1[i]=y[i].copy()

486 ofs2[i]=x[i].copy()

487

488 return np.array([ofs1,ofs2])

489 ###############################################################################

490 def mut(self,x):

491

492 for i in self.integers[0]:

493 ran=np.random.random()

494 if ran < self.prob_mut:

495

496 x[i]=np.random.randint(self.var_bound[i][0],\

497 self.var_bound[i][1]+1)

498

499 for i in self.reals[0]:

500 ran=np.random.random()

501 if ran < self.prob_mut:

502

503 x[i]=self.var_bound[i][0]+np.random.random()*\

504 (self.var_bound[i][1]-self.var_bound[i][0])

505

506 return x
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507 ###############################################################################

508 def mutmidle(self, x, p1, p2):

509 for i in self.integers[0]:

510 ran=np.random.random()

511 if ran < self.prob_mut:

512 if p1[i]<p2[i]:

513 x[i]=np.random.randint(p1[i],p2[i])

514 elif p1[i]>p2[i]:

515 x[i]=np.random.randint(p2[i],p1[i])

516 else:

517 x[i]=np.random.randint(self.var_bound[i][0],\

518 self.var_bound[i][1]+1)

519

520 for i in self.reals[0]:

521 ran=np.random.random()

522 if ran < self.prob_mut:

523 if p1[i]<p2[i]:

524 x[i]=p1[i]+np.random.random()*(p2[i]-p1[i])

525 elif p1[i]>p2[i]:

526 x[i]=p2[i]+np.random.random()*(p1[i]-p2[i])

527 else:

528 x[i]=self.var_bound[i][0]+np.random.random()*\

529 (self.var_bound[i][1]-self.var_bound[i][0])

530 return x

531 ###############################################################################

532 def evaluate(self):

533 return self.f(self.temp)

534 ###############################################################################

535 def sim(self,X):

536 self.temp=X.copy()

537 obj=None

538 try:

539 obj=func_timeout(self.funtimeout,self.evaluate)

540 except FunctionTimedOut:

541 print("given function is not applicable")

542 assert (obj!=None), "After "+str(self.funtimeout)+" seconds delay "+\

543 "func_timeout: the given function does not provide any output"

544 return obj

545

546 ###############################################################################

547 def progress(self, count, total, status=’’):

548 bar_len = 50

549 filled_len = int(round(bar_len * count / float(total)))

550

551 percents = round(100.0 * count / float(total), 1)

552 bar = ’|’ * filled_len + ’_’ * (bar_len - filled_len)

553

554 sys.stdout.write(’\r%s %s%s %s’ % (bar, percents, ’%’, status))

555 sys.stdout.flush()

556

557 ## JCH-S

558 self.onProgress()

559 ## JCH-E

560

561 ###############################################################################

562 def onProgress(self):

563 return self.onProgressDo(self)

564

565 ###############################################################################

566 ###############################################################################
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