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Abstract

The basic filters in mathematical morphology are dilation and ero-
sion. They are defined by a structuring element that is usually shifted
pixel-wise over an image, together with a comparison process that
takes place within the corresponding mask. This comparison is made
in the grey value case by means of maximum or minimum for-
mation. Hence, there is easy access to max-plus algebra and, by
means of an algebra change, also to the theory of linear algebra.
We show that an approximation of the maximum function forms
a commutative semifield (with respect to multiplication) and corre-
sponds to the maximum again in the limit case. In this way, we
demonstrate a novel access to the logarithmic connection between
the Fourier transform and the slope transformation. In addition,
we prove that the dilation by means of a Fast Fourier Transform
depends only on the size of the structuring element used. More-
over, we derive a bound above which the Fourier approximation
yields results that are exact in terms of grey value quantization.

Keywords: Mathematical morphology, Fourier transform, Dilation, Max-plus
algebra, Slope transform
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1 Introduction

Max-plus algebra [1] is a class of algebraic systems and is obtained from linear
algebra by replacing addition with maximum and multiplication with addition.
This results in many analogues in the max-plus algebra to the conventional
algebra. Therefore, it is mainly used to cast non-linear relationships in a linear-
like structure. The max-plus algebra emerged from problems in graph theory
and operations research [2]. It has subsequently been used in other areas such
as discrete event systems [3–5], approaches to optimal control [6], and dynamic
systems and control [7, 8]. Another area of application for this algebra, to
which we will devote particular attention here, is mathematical morphology.

Mathematical morphology is a theory for the analysis of spatial structures
in images. It has evolved over decades to a very successful field in image pro-
cessing, see e.g. [9–11] for an overview. There are two main building blocks of
usual morphological operators. The first one is the structuring element (SE),
characterised by its shape, size and centre location. There are in addition two
types of SEs, flat and non-flat [12]. A flat SE basically defines a neighbour-
hood of the centre pixel where morphological operations take place, whereas
a non-flat SE also contains a mask of finite values used as additive offsets.
The SE is translated over an image, and often implemented as a sliding win-
dow. The second building block is a mechanism performing a comparison of
values within a SE. The basic operations in mathematical morphology are di-
lation and erosion, where a pixel value is set to the maximum or minimum of
the discrete image function within the SE centred upon it, respectively. Many
morphological filtering processes of practical interest, like e.g. opening, closing
or top hats, can be formulated by combining dilation and erosion. As dilation
and erosion are dual operations, it is often sufficient to focus on one of it for
algorithm construction.

From the interaction of these two theories, a first fundamental question
arises, namely how non-linear morphological dilation relates to its linear ana-
logue when one makes the transition between max-plus algebra and linear
algebra. From this connection arises a relation between the Fourier transform
in linear signal processing and the slope transform in morphology. This rela-
tion was introduced by Maragos [13] and by Dorst and van den Boomgaard
[14]. This suggested a logarithmic relationship between these two transfor-
mations, which Burgeth and Weickert, among others, analysed in their work
[15]. For this purpose, they naturally identified the convolution in the max-
plus algebra with the Laplace transformation and its conjugate with the
Cramer transformation. They called the resulting connection the logarithmic
connection.

We want to take up the analysis of Burgeth and Weickert and investigate
an alternative approach in order to find a direct access to the logarithmic
relationship without having to take a diversion via the Laplace and Cramer
transformation. To achieve this, we will replace the maximum operator in the
dilation by an approximation and show that the max-plus algebra is still a
commutative semifield (with respect to multiplication) by this approximation.
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Further, we will compare the resulting equations with respect to the dilation
via the Fourier or slope transformation theorem.

Another question arising from this connection with the approximated max-
plus algebra, which is still partly open, relates to the work [16] by Kahra,
Sridhar and Breuß. This represents an extension of the work [17] of Tuzikov,
Margolin and Grenov, where the calculation of the dilation by means of
Fourier transforms for binary images was discussed, to the case of greyscale
images. They have adopted the approaches and approximated the dilation by
an approximation of the maximum. In doing so, the authors posited that the
procedure using the approximated max-plus algebra mentioned above does not
depend on the shape or flatness of the SE, but solely on its size. However, an
analytical observation supporting this has been missing so far.

We will therefore close this gap here by giving two estimates for it. One in
a heuristic sense in the form of an energy estimate and a more direct variant
identifying the convolution with the k-norm. Both will demonstrate the pre-
sumed independence of the method from the form of the SE. Further, we will
also address the question of when this approximation is of sufficiently good
quality with respect to the exact calculation in practice.

2 General Definitions

We will first give some basic definition concerning dilation, erosion, Fourier
and slope transformations. Here we will use the discrete formulation when
switching between the plus-prod and the max-plus algebra and the continuous
formulation when referring exclusively to the Fourier transform.

We start by investigating how the morphological dilation and erosion for
a greyscale image f : R2 → R with a (flat) structuring function b : R2 → R̄
according to

(f ⊕ b)(x) := sup
y∈R2

(f(y) + b(x− y)) (1)

(f ⊖ b)(x) := inf
y∈R2

(f(y)− b(x− y)) (2)

behaves. To do this, we consider the generalisation used by Dorst and van den
Boomgaard [14]

(f⊕̌b)(x) := stat
y∈R2

(f(y) + b(x− y)) (3)

with

stat
y∈R2

f(y) := {f(z) : ∇f(z) = 0} ,

where the following connection exists:

sup(f⊕̌b) = (f ⊕ b). (4)
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Under this premise, one considers the slope transform S, which satisfies

S[f ](y) := stat
x∈R2

(f(x)− ⟨y, x⟩) , (5)

as a morphological analogy to the Fourier transform

F [f ](y) :=

∫
R2

f(x)e−2πi⟨y,x⟩dx, (6)

since S in a certain sense satisfies a convolution theorem similar to the Fourier
transform:

S[f⊕̌b] = S[f ] + S[b]. (7)

3 Approximation of the Max-Plus Algebra

In this section we will look at the properties of max-plus algebra. To be
more precise, we want to investigate to what extent an approximation of the
maximum preserves the max-plus algebra properties.

To do this, we first consider a convolution in the plus-prod algebra of f with
b from the previous section. If we now switch from the (discrete) convolution
in the plus-prod algebra to the max-plus algebra or min-plus algebra, we see
that this gives rise to two new convolutions (cf. [15]):

(f ∗d b)(x) = sup
y∈R2

(f(x− y) + b(y)) = sup
y∈R2

(f(y) + b(x− y)) = (f ⊕ b)(x)

(8)

(f ∗e b̄)(x) = inf
y∈R2

(
f(x− y) + b̄(y)

)
= inf

y∈R2
(f(y)− b(y − x)) = (f ⊖ b)(x),

(9)

where b̄(x) = −b(−x). Moreover, we know that we are able to approximate
the dilation using the smooth maximum with Fourier transforms, according to
[16]:

(f ⊕ b)(x) = sup
y∈R2

(f(y) + b(x− y)) = lim
n→∞

1

n
ln

∑
y∈R2

enf(y)enb(x−y)


= lim

n→∞

1

n
ln
(
enf(x) ∗ enb(x)

)
= lim

n→∞

1

n
ln
(
F−1

[
F
[
enf

]
· F

[
enb

]]
(x)

)
.

(10)

This brings us to the idea of creating a new max-plus algebra Rmax∗
n

=

(R ∪ {−∞}, 1
n ln

(∑
en·(...)

)
,+,−∞, 0) which resembles the normal max-plus
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algebra Rmax = (R∪{−∞},max,+,−∞, 0) except for the change that instead
of the maximum we use the smooth maximum without the limit transition
1
n ln

(∑
en·(...)

)
for the link ⊕̃. For better readability, we use ⊕̃ and ⊗̃ for the

general operations of addition and multiplication concerning the field axioms
to avoid confusion with the notation of dilation and erosion, respectively. To
check this, we only have to prove that Rmax∗

n
is an idempotent commutative

semifield.
For this purpose we prove the following theorem:

Theorem 1 Let the approximated smooth maximum be given by

max ∗
n(x1, . . . , xk) :=

1

n
ln

(
k∑

i=1

enxi

)
, k ∈ N, n ∈ R>0.

Then Rmax∗
n

= (R ∪ {−∞},max ∗
n,+,−∞, 0) represents for all n ∈ R>0 a

commutative (with respect to multiplication) semifield.

Proof For this we calculate for arbitrary a, b, c ∈ R ∪ {−∞}:

• a ⊕̃ (b ⊕̃ c) =
1

n
ln
(
ena + e

n
n ln(enb+enc)

)
=

1

n
ln
(
ena + enb + enc

)
=

1

n
ln
(
e

n
n ln(ena+enb) + enc

)
=

1

n
ln
(
ena + enb

)
⊕̃ c = (a ⊕̃ b) ⊕̃ c

• a ⊕̃ b =
1

n
ln
(
ena + enb

)
=

1

n
ln
(
enb + ena

)
= b ⊕̃ a

• a ⊗̃
(
b ⊗̃ c

)
= a ⊗̃ (b+ c) = a+ (b+ c) = (a+ b) + c = (a ⊗̃ b) ⊗̃ c

• a ⊗̃ (b ⊕̃ c) = a+
1

n
ln
(
enb + enc

)
=

1

n
ln ena +

1

n
ln
(
enb + enc

)
=

1

n
ln
(
en(a+b) + en(a+c)

)
= (a ⊗̃ b) ⊕̃ (a ⊗̃ c)

• (a ⊕̃ b) ⊗̃ c =
1

n
ln
(
ena + enb

)
+ c =

1

n
ln
(
en(a+c) + en(b+c)

)
= (a ⊗̃ c) ⊕̃ (b ⊗̃ c)

• −∞⊕̃ a =
1

n
ln
(
e−∞ + ena

)
=

1

n
ln ena = a

• 0 ⊗̃ a = 0 + a = a = a+ 0 = a ⊗̃ 0

• a ̸= −∞ ⇒ ∃ã ∈ R ∪ {−∞} mit a ⊗̃ ã = 0 = ã ⊗̃ a :

ã = −a ∈ R ∪ {−∞}
• a ⊗̃ b = a+ b = b+ a = b ⊗̃ a.

□

Corollary 1 Let the approximated smooth maximum be given as in Theorem 1. Then
lim

n→∞
Rmax∗

n
represents a max-plus algebra.
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Proof For this, we only have to prove the idempotence with respect to addition, since
all other properties have already been proven in Theorem 1:

lim
n→∞

a ⊕̃ a = lim
n→∞

1

n
ln
(
ena + ena

)
= lim

n→∞
1

n
ln
(
2ena

)
= lim

n→∞
1

n
(ln 2 + na)

= lim
n→∞

ln 2

n
+ a = a.

□

Thus Rmax∗
n
does not represent a max-plus algebra, but at least a com-

mutative (with respect to multiplication) semifield. For sufficiently large n,
however, we again obtain the property of idempotence (with respect to ad-
dition), where in the morphological case the size of n must be considered in
relation to ln(k). Here k ∈ N represents the size of the mask under considera-
tion.

4 Connection of the Fourier Transform and the
Slope Transform

Next, we will deal with the logarithmic connection between morphological
and linear systems. To do this, we will use the max-plus algebra (or min-plus
algebra) to derive a connection between the Fourier and slope transforms and
their analogue from convex analysis, the Legendre transform, in particular on
the basis of dilation.

We first formulate the dilation by means of slope transformations using the
smooth maximum:

(f ⊕ b)(x) = sup
y∈M

(f⊕̌b)(x) = sup
y∈M

S−1 [S [f⊕̌b]] (x)

= sup
y∈M

S−1 [S [f ] + S [b]] (x)

= lim
n→∞

1

n
ln

∑
y∈M

enS
−1[S[f ]+S[b]](x)

(11)

where M := {y ∈ R2 : ∇(f(y) + b(x− y)) = 0}. Note that the supremum and
the sum over all y ∈ M used here are to be understood in a symbolic sense,
since the expressions do not depend directly on y but on x. The y is used here
in the stat function to ensure that the result is really unique and thus equation
(4) is fulfilled. Due to

nS−1 [S [f ] + S [b]] (x) = nstat
y∈R2

{S[f ](y) + S[b](y) + ⟨x, y⟩}

= stat
y∈R2

{nS[f ](y) + nS[b](y) + ⟨nx, y⟩}

= stat
y∈R2

{
nstat
z∈R2

{f(z)− ⟨y, z⟩}+ nstat
z∈R2

{b(z)− ⟨y, z⟩}+ ⟨nx, y⟩
}
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= stat
y∈R2

{
stat
z∈R2

{nf(z)− ⟨ny, z⟩}+ stat
z∈R2

{nb(z)− ⟨ny, z⟩}+ ⟨nx, y⟩
}

= stat
y∈R2

{S[nf ](ny) + S[nb](ny) + ⟨nx, y⟩}

= S−1[S[nf ](ny) + S[nb](ny)](nx)

we can also write equation (11) as

(f ⊕ b)(x) = lim
n→∞

1

n
ln

∑
y∈M

eS
−1[S[nf ](ny)+S[nb](ny)](nx). (12)

If we now compare equations (10) and (12) by dragging the factor 1
n into the

logarithm for both and then dragging the limit transition into the logarithm
as well, we find that

lim
n→∞

∑
y∈M

eS
−1[S[nf ](ny)+S[nb](ny)](nx)

 1
n

= lim
n→∞

(
F−1

[
F
[
enf

]
(y) · F

[
enb

]
(y)

]
(x)

) 1
n .

(13)

This represents the relationship between the Fourier transform and the slope
transform using morphological dilation.

In the following, we will examine the case that is often considered in
practice, namely that we disregard the limit and instead assume a fixed n.
Thus, by now removing the limit transition and subsequently performing an
exponentiation with n, we transform equation (13) into the form∑

y∈M

eS
−1[S[nf ](ny)+S[nb](ny)](nx) = F−1

[
F
[
enf

]
(y) · F

[
enb

]
(y)

]
(x).

By applying the Fourier transform on both sides, we get because of the linearity
of the Fourier transform

F
[
enf

]
(y) · F

[
enb

]
(y) = F

∑
y∈M

eS
−1[S[nf ](ny)+S[nb](ny)](nx)

 (y)

=
∑
y∈M

F
[
eS

−1[S[nf ](ny)+S[nb](ny)](nx)
]
(y).

(14)

Alternatively, we can completely remove the Fourier transforms again by using
the convolution theorem instead of the linearity of the Fourier transform in
equation (14) and then applying the inverse Fourier transform to it again. This
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yields

F

∑
y∈M

eS
−1[S[nf ](ny)+S[nb](ny)](nx)

 (y) = F
[
enf ∗ enb

]
(y)

⇐⇒
∑
y∈M

eS
−1[S[nf ](ny)+S[nb](ny)](nx) =

(
enf ∗ enb

)
(x) =

∑
y∈R2

en(f(y)+b(x−y))

or ∑
y∈M

enS
−1[S[f ](y)+S[b](y)](x) =

∑
y∈R2

en(f(y)+b(x−y)). (15)

We summarise the above considerations into

Theorem 2 Let f : R2 → R and b : R2 → R are given. Then the sequences of the
functions

lim
n→∞

1

n
ln

∑
y∈R2

enf(y)enb(x−y)


and

lim
n→∞

1

n
ln
∑
y∈M

enS
−1[S[f ]+S[b]](x)

coincide in every element of the sequence.

Remark 1 Equation (15) in this context reflects the relationship between the convo-
lution theorems of the Fourier and the slope transformation with the dilation terms
when the equation is contrasted in the plus-prod algebra∑

y∈M

en(f⊕̌b) =
∑
y∈M

enS
−1[S[f ]+S[b]] = enf ∗ enb = F−1

[
F
[
enf
]
· F
[
enb
]]

and in the max-plus algebra using the monotonicity of the exponential function

sup
y∈M

S−1 [S [f ] (y) + S [b] (y)] (x) = sup
y∈R2

(f(y) + b(x− y)) = (f ⊕ b)(x).

In the plus-prod algebra we recognise a convolution which we can express
by means of Fourier transformations, and which we can now also determine in
this context by means of the generalised dilation shown in equation (3). In the
case of the max-plus algebra, we see that the application of the convolution
theorem of the slope transformation leads to an analogue of the well-known
dilation.
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5 Independence of the Fourier Dilation from
the Shape of the Structuring Element

At this point we would like to take a closer look at the choice of the smooth
maximum as a substitute for the ordinary maximum and examine which prop-
erties result from the example of a dilation. To do this, we look at the work
of Kahra, Sridhar and Breuß on the calculation of a fast dilation by means
of Fourier transforms and using the smooth maximum. In their work, Kahra,
Sridhar and Breuß describe that their method is independent of the shape of
the chosen structuring element and that it does not matter for their method
whether it is a flat or non-flat structuring element. However, they do not pro-
vide proof of this and refer to their observations and results. Therefore, we will
now present one for these observations. For this purpose, we want to present
two possible ways, both of which prove the above statement, but which yield
slightly different results in the process.

To evaluate this, we estimate the error resulting from the difference between
the exact dilation and the approximated one. As a first step, we prove the
following lemma:

Lemma 1 Let fex : R2 → [0, 255] and fapp : R2 → [0, 255] be the results of the exact
dilation and the approximated dilation of the grayscale image f : R2 → [0, 255] with
the structuring element B ⊂ R2:

fex(x) = lim
k→∞

1

k
ln

∑
y∈R2

ekf(y)χB(x− y)


fapp(x) =

1

n
ln

∑
y∈R2

enf(y)χB(x− y)

 , n ∈ N,

where

χB(x) =

{
1, x ∈ B

0, otherwise
.

Then applies

(fex − fapp)(x) ≤ lim
k→∞

1

k
ln
(
e(k−n)f ∗ χB

)
(x). (16)

Proof We first consider

(fex − fapp)(x) = lim
k→∞

1

k
ln
(
ekf ∗ χB

)
(x)− 1

n
ln
(
enf ∗ χB

)
(x)

= lim
k→∞

ln

[(
ekf ∗ χB

) 1
k
(x)

]
− ln

[(
enf ∗ χB

) 1
n
(x)

]

= lim
k→∞

ln

(
ekf ∗ χB

) 1
k

(
enf ∗ χB

) 1
n

(x) = ln

 lim
k→∞

(
ekf ∗ χB

) 1
k

(
enf ∗ χB

) 1
n

(x)
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or

e(fex−fapp)(x) = lim
k→∞

(
ekf ∗ χB

) 1
k

(
enf ∗ χB

) 1
n

(x) ≤ lim
k→∞


(
ekf ∗ χB

)
(
enf ∗ χB

)


1
k

(x).

Next, we estimate the fraction by proving the following more general inequality:∑m
i=1 aibi∑m
j=1 ãjbj

≤
m∑
i=1

ai
ãi

, ai, ãi ∈ [1,∞), bi ∈ {0, 1}.

Without restriction of generality, let the bi be ordered such that bi = 0 ∀i ∈ {1, . . . , l}
for a fixed l ∈ {0, . . . ,m}. Then applies∑m

i=1 aibi∑m
j=1 ãjbj

=

∑m
i=l+1 aibi∑m
j=l+1 ãjbj

=

m∑
i=l+1

(
aibi∑m

j=l+1 ãjbj

)
︸ ︷︷ ︸

≤ ai
ãi

bi

≤
m∑
i=1

ai
ãi

.

So from this we get

e(fex−fapp)(x) ≤ lim
k→∞

(
e(k−n)f ∗ χB

) 1
k
(x). (17)

Due to the monotonicity of the logarithm function, we finally obtain the inequality
we are looking for. □

The first possibility to carry out the mentioned proof does not represent
an exact calculation in the conventional sense, but rather a heuristic, which
however delivers an expected result. We summarise this calculation as

Lemma 2 Let the conditions from Lemma 1 be fulfilled and be fex, fapp, f ∈ L2(R2).
Then holds

∥(fex − fapp)(x)∥22 ⪅ ∥f(x)∥22 ·A(B), (18)

where A(B) represents the area of B.

Proof We begin with∥∥∥∥∥∥
∫
R2

(fex − fapp)(x) e
−ixωdx

∥∥∥∥∥∥
2

(16)
≤

∥∥∥∥∥∥
∫
R2

lim
k→∞

1

k
ln
(
e(k−n)f ∗ χB

)
(x) e−ixωdx

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ lim
k→∞

1

k

∫
R2

ln
(
e(k−n)f ∗ χB

)
(x) e−ixωdx

∥∥∥∥∥∥
2

and use the Taylor linearisation of ln(x) at x0 = 1

ln(x)
·
≈ ln(x0) +

d

dx
ln(x)|x=x0 · (x− x0) = x− 1.

Here we almost always have the case that ln(x) ≤ x− 1 applies, so in the following

we write ln(x)
·
≤ x− 1. If we substitute this into the above inequality, we get∥∥∥∥∥∥

∫
R2

(fex − fapp)(x) e
−ixωdx

∥∥∥∥∥∥
2
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·
≤

∥∥∥∥∥∥ lim
k→∞

1

k

∫
R2

[(
e(k−n)f ∗ χB

)
(x)− 1

]
e−ixωdx

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥
lim

k→∞

1

k

∫
R2

(
e(k−n)f ∗ χB

)
(x) e−ixωdx− lim

k→∞

1

k

∫
R2

e−ixωdx

︸ ︷︷ ︸
=0

∥∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥ lim
k→∞

1

k
F
[
e(k−n)f ∗ χB

]
(ω)

∥∥∥∥
2

=

∥∥∥∥ lim
k→∞

1

k

(
F
[
e(k−n)f

]
· F [χB ]

)
(ω)

∥∥∥∥
2

=

∥∥∥∥ lim
k→∞

1

k
F
[
e(k−n)f

]
(ω)

∥∥∥∥
2

· ∥F [χB ] (ω)∥2.

Next we estimate the two norms and start with the aid of Parseval’s Theorem∥∥∥∥ lim
k→∞

1

k
F
[
e(k−n)f

]
(ω)

∥∥∥∥
2

= lim
k→∞

1

k

∥∥∥F [e(k−n)f
]
(ω)
∥∥∥
2
= lim

k→∞

1

k

∥∥∥e(k−n)f(x)
∥∥∥
2
.

To achieve the desired result, we still need to remove the exponential function. For
this reason, we reintroduce the logarithm that we previously removed with the Taylor
linearisation by performing the said linearisation backwards in an approximate sense
(see Remark 2):

lim
k→∞

1

k

∥∥∥e(k−n)f(x)
∥∥∥
2
=

∥∥∥∥ lim
k→∞

1

k
e(k−n)f(x)

∥∥∥∥
2

=

∥∥∥∥ lim
k→∞

1

k

(
e(k−n)f(x) − 1

)∥∥∥∥
2

⪆

∥∥∥∥ lim
k→∞

1

k
ln
(
e(k−n)f(x)

)∥∥∥∥
2

=

∥∥∥∥ lim
k→∞

(
k − n

k

)
f(x)

∥∥∥∥
2

= ∥f(x)∥2.

For the second norm, we also use Parseval’s Theorem to derive

∥F [χB ] (ω)∥2 = ∥χB(x)∥2 =

∫
R2

|χB(x)|2dx


1
2

=

∫
R2

χB(x)dx


1
2

=
√

A(B)

from it. From this we finally deduce the assertion∥∥∥∥∥∥
∫
R2

(fex − fapp)(x) e
−ixωdx

∥∥∥∥∥∥
2

⪅ ∥f(x)∥2 ·
√

A(B),

which results in the approximate estimate we are looking for. □

Remark 2 The backwards linearisation may actually break the chain of inequalities
in an exact calculation, which is why we spoke of a heuristic. However, on the one
hand because we have only used equalities since the linearisation and on the other
hand because we get reasonable results in the form of (18), it appears evident that
the backwards use of the same linearisation may only slightly violate the inequality.

Another way (and not a heuristic) to substantiate the observation of Kahra,
Sridhar and Breuß, we summarise as the



12

Lemma 3 Let the conditions from Lemma 1 be fulfilled. Then holds

(fex − fapp)(x) ≤ sup
y∈B

∥f(x− y)∥. (19)

Proof We start from the inequality (17) and rewrite it as follows:

e(fex−fapp)(x) ≤ lim
k→∞

(
e(k−n)f ∗ χB

) 1
k
(x) = lim

k→∞

∫
R2

e(k−n)f(y)χB(x− y) dy


1
k

= lim
k→∞

∫
B

e(k−n)f(x−z) dz


1
k

= lim
k→∞

∫
B

(
e

k−n
k f(x−z)

)k
dz


1
k

= lim
k→∞

∫
B

∣∣∣ e k−n
k f(x−z)

∣∣∣k dz


1
k

= lim
k→∞

∥∥∥e k−n
k f(x−·)

∥∥∥
k

= sup
y∈B

∥∥∥ef(x−y)
∥∥∥ ≤ sup

y∈B
e∥f(x−y)∥.

By applying the logarithm on both sides, we obtain the required result. □

Both inequality (18) and (19) show that the observation that in the ap-
proximation of the smooth maximum for the dilation, the shape or flatness
of the structuring element used does not matter. This is particularly evident
from the fact that the error depends on the area of the structuring element, i.e.
its size, and on the original image at the searched position or on the original
image in the area given by the structuring element. In both cases, all required
values for the searched pixel are constant and thus show the validity of the
observation made.

Lemma 4 Let the conditions from Lemma 1 be fulfilled. Then holds

(fex − fapp)(x) ≤ ∥f(x)∥+ ln
√

A(B). (20)

Proof We begin by expressing, for a non-negative integrable function h, the inequality∫
h(x) dx =

∫
|h(x)| dx = ∥h(x)∥1 ≤ ∥h(x)∥ 1

n
=

(∫
h

1
n (x) dx

)n

, n ∈ N,

due to the monotonicity of the p-norm and exponentiate it with 1
n :(∫

h(x) dx

) 1
n

≤
∫

h
1
n (x) dx, n ∈ N. (21)

With the help of this inequality we can now estimate as follows:

F
[
efex−fapp

]
(ω) =

∫
R2

e(fex−fapp)(x) e−iωx dx
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(17)
≤ lim

k→∞

∫
R2

(
e(k−n)f ∗ χB

) 1
k
(x) e−iωx dx

= lim
k→∞

∫
R2

∫
R2

e(k−n)f(y)χB(x− y) dy


1
k

e−iωx dx

(21)
≤ lim

k→∞

∫
R2

∫
R2

e
k−n
k f(y)χ

1
k

B(x− y) dy

 e−iωx dx

= lim
k→∞

∫
R2

(
e

k−n
k f ∗ χB

)
(x) e−iωx dx

= lim
k→∞

F
[
e

k−n
k f ∗ χB

]
(ω) = lim

k→∞
F
[
e

k−n
k f

]
(ω) · F [χB ] (ω),

where we have used the convolution theorem in the last equality. We next form the
norm over this inequality and estimate the norm of the first Fourier transform using
Parseval’s theorem:

lim
k→∞

∥∥∥F [e k−n
k f

]
(ω)
∥∥∥ = lim

k→∞

∥∥∥e k−n
k f(x)

∥∥∥ =

∥∥∥∥ lim
k→∞

e(1−
n
k )f(x)

∥∥∥∥ =
∥∥∥ef(x)∥∥∥

≤ e∥f(x)∥

and we estimate the norm of the second Fourier transform, as in the proof of Lemma
1, with

√
A(B). By applying Parseval’s theorem again for the backward direction we

get ∥∥∥e(fex−fapp)(x)
∥∥∥ =

∥∥∥F [efex−fapp

]
(ω)
∥∥∥ ≤

∥∥∥∥ lim
k→∞

F
[
e

k−n
k f

]
(ω) · F [χB ] (ω)

∥∥∥∥
≤ lim

k→∞

∥∥∥F [e k−n
k f

]
(ω)
∥∥∥ · ∥F [χB ] (ω)∥ ≤ e∥f(x)∥

√
A(B).

Furthermore, we can use this inequality to achieve the desired result:

(fex − fapp)(x) = ln e(fex−fapp)(x)︸ ︷︷ ︸
≥0

= ln
∥∥∥e(fex−fapp)(x)

∥∥∥ ≤ ln
(
e∥f(x)∥

√
A(B)

)
= ∥f(x)∥+ ln

√
A(B).

□

The bound derived above is apparently weaker than the ones from previous
result. However, it demonstrates the same kind of independence from shape
of the structuring element, and within the proof one may observe that it is a
relatively pessimistic (and thus unsharp) estimate.

6 Practical Error Estimation

From this context, the question automatically arises for which n this error
becomes negligible in practice. To answer this question, we evaluate the error
range. The largest error is in the case that all considered k pixels have the



14

same value, i.e. we obtain ln(k)
n as error, see proof of Corollary 1. Consequently,

the smallest error results if we have a single maximum grey value xi:

1

n
ln

k∑
j=1

enxj = xi +
1

n
ln

k∑
j=1
j ̸=i

en(xj−xi).

We consider an error to be negligible in practice if it is smaller than 1
2 , because

we assume natural grey values from the interval [0, 255] and we round up or
down the floating point numbers resulting from the calculation according to
the usual rounding rules in order to continue calculating with natural numbers.
This means that we can estimate the smallest error as follows:

1

n
ln

k∑
j=1
j ̸=i

en(xj−xi) ≤ 1

n
ln

k∑
j=1
j ̸=i

e−n =
1

n
(ln(k − 1)− n) =

ln(k − 1)

n
− 1

!
<

1

2

⇐⇒ n
!
>

2

3
ln(k − 1)

and for the largest error

ln(k)

n

!
<

1

2
⇐⇒ n

!
> 2 ln(k).

Thus, in practice, it is sufficient to choose a n ∈ N which, depending on the
mask and grey value distribution, is larger than the corresponding value from
the interval

[
2
3 ln(k − 1), 2 ln(k)

]
, so that R∗

max behaves like a max-plus algebra.
In the following, we will test this accuracy criterion using the example

of the error observation of the previous section. That means we have to set
n > 2 ln |B|. Let p := |B| and set n := 4 ln(p) for simplicity’s sake. Let
the pixels within the structuring element at position x ∈ R2 be given by xj ,
j ∈ {1, . . . , p}. Furthermore, the largest grey scale value in the neighbourhood
B of pixel x should be located at position xi, i ∈ [1, p], so that fex(x) = f(xi).
We can then estimate the approximated dilation accordingly with

fapp(x) =
1

4 ln(p)
ln

p∑
j=1

e4 ln(p)f(xj) = f(xi) +
1

4 ln(p)
ln

p∑
j=1
j ̸=i

e4 ln(p)(f(xj)−f(xi))

≤ f(xi) +
1

4 ln(p)
ln(p− 1) = f(xi) +

1

4

ln(p− 1)

ln(p)
< f(xi) +

1

4
.

It therefore follows that |(fex − fapp)(x)| < 1
4 and we also see that the error,

as expected, is less than 1
2 . Thus, when rounding, it disappears and we get the

correct result.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Filtering results for dilation with a 3×3 SE. Original image of size
40× 40 (a) and exact dilated image (b). Approximated dilation with n = 0.05
(c), n = 0.1 (d), n = 0.2 (e) and n = 4.5 (f).
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To illustrate our findings, we consider a greyscale image of size 40 × 40
and perform a dilation with a 3 × 3 SE, see Figure 1. The comparison of the
different scaling factors n for the values 0.05, 0.1, 0.2 and 4.5 shows that the
resulting grey value shift becomes smaller and smaller with increasing n and
in the case of n = 4.5 even disappears completely. This supports the inequality
shown above, since 2 ln(9) ≈ 4.3944.

In order to make the effect of the grey value shift and the quantisation,
which arises through the now more targeted rounding, even clearer, we con-
sider another example. For this we again choose a greyscale image of the size
40×40 and a SE with 3×3, see Figure 2. The image is created by superimpos-
ing smaller centred squares with different brightness levels, where the largest
square is 40 × 40 and has the grey value 0 and the smallest in the middle is
10 × 10 and has the grey value 3. The squares in between have correspond-
ing edge lengths of 20 and 30 and grey values of 1 and 2. Here we see in the
histograms how the approximated dilation with (grey) and without quantisa-
tion (dark grey) relates to the exact dilation (light grey). For relatively small
n, such as 0.1 or 0.2, quite large deviations from the correct result occur. The
quantised approximation approaches the exact solution more quickly and more
accurately than the non-quantised approximation, as we can see in the dia-
grams for n ∈ {1, 1.5, 2, 4.5}. Here, too, the quantised approximation finally
agrees with the exact solution for n = 4.5.

Figure 2: Comparison of filtering results for dilation of a 40 × 40 image
of squares of graduated grey values 0,1,2 and 3 with a 3 × 3 SE. The exact
dilation is indicated in each case with light grey and the approximated dilations
with quantisation grey and without quantisation dark grey. Top:From left
to right: Approximation with scaling factor 0.1,0.2 and 1.0. Bottom:From
left to right: Approximation with scaling factor 1.5,2.0 and 4.5.
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7 Conclusion

We have shown a short and simple way to demonstrate the logarithmic re-
lationship between the Fourier and slope transforms. In doing so, we have
established that a convolution can be calculated by means of a generalised di-
lation in the plus-prod algebra and that the convolution theorem of the slope
transformation in the max-plus algebra yields an ordinary dilation.

We also proved that the dilation by Fourier transforms is independent of
the shape of the SE and depends exclusively on its size. In this respect, we gave
an estimate for the scaling factor n at which point it leads to the approximated
solution not differing from the exact solution by more than half a grey value,
in the sense of a grey value scale from 0 to 255. In particular, it becomes
obvious that the grey value shift, which arises through the approximation, can
be eliminated through appropriate choice of the factor n by means of rounding
off.
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