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Abstract
In this thesis we study efficient time integration methods for linear parabolic partial differential
equations (PDEs) to solve practical problems that arise in a variety of real-world applications.
The classical construction of numerical methods for solving PDEs is based on the method of
lines, which leads to a large sparse semi-discretised system of ordinary differential equations
(ODEs) to which any numerical method for initial value ODE problems can be applied. The
standard method for solving such ODE systems and computing an approximate solution to
the PDE uses numerical time integration. When dealing with parabolic-type problems, the
underlying ODE systems are known to be stiff. Therefore, in the context of linear parabolic
problems, the use of implicit schemes is usually considered to be the best choice in practice.
However, this statement is not entirely correct for some relevant real-world applications

in image processing and computer vision or engineering. In particular, implicit schemes
can cause high computational costs for various practical problems that are equipped with
certain model conditions. Three examples of practical importance that we will focus on
in this thesis are of such a type. The model problems considered here are coupled with
various settings, ranging from many different initial conditions over long-term simulation
with relatively frequent model updates, to dealing with very large-scale problems for which
the matrix size can exceed several millions. For this reason, we are interested in sophisticated
and computationally efficient numerical methods that bring the aspects of approximation
accuracy as well as computational and storage complexity into balance.
Although several numerical solvers are available marking the state-of-the-art in diverse

scientific fields, even nowadays it is still a challenging task to devise a numerical method that
combines high accuracy, robustness and computational efficiency for the model problem to
be solved. Therefore, the main objective is to find an easy and efficient ODE integration
scheme for each individual model problem that is dealt with in this thesis. On this basis, we
first give a comprehensive overview and introduction to the state-of-the-art methods that are
often used for practical purposes. In this framework, we will investigate very detailed the
theoretical and numerical foundations of two popular techniques that are widely used in their
respective scientific fields, namely the fast explicit methods and the model order reduction
techniques. This is primarily important in order to fully understand the numerical methods,
and also absolutely essential in finding the best numerical method that is specifically suitable
for the intended purpose.
Our second goal is then to efficiently solve the relevant practical problems that arise in

connection with shape correspondence, geothermal energy storage and image osmosis filtering.
For each application we specify a complete setup, and in order to provide an efficient and
accurate numerical approximation, we give a thorough discussion of the various numerical
solvers along with many technical details and own adaptations. We validate our numerical
findings through many experiments using synthetic and real-world data. In this way we show
that we can obtain fast and accurate numerical methods for solving the problems in this
thesis. In addition, the thesis provides a complete and detailed description of the powerful
methods that can be very useful for tackling similar problems that are the subject of interest
in many applications.
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Zusammenfassung
In dieser Arbeit untersuchen wir effiziente Zeitintegrationsmethoden für lineare parabolische
partielle Differentialgleichungen (PDEs), um praktische Probleme zu lösen, die in einer
Vielzahl von realen Anwendungen auftreten. Die klassische Konstruktion von numerischen
Methoden zur Lösung von PDEs basiert auf der Linienmethode, die zu einem großen, dünnbe-
setzten und halbdiskretisierten System gewöhnlicher Differentialgleichungen (ODEs) führt,
auf das anschließend jede numerische Methode für die Lösung eines Anfangswertproblems
angewendet werden kann. Die Standardmethode zum Lösen solcher ODE-Systeme und zum
Berechnen einer Näherungslösung für die PDE verwendet die numerische Zeitintegration.
Bei parabolischen Problemen ist bekannt, dass die zugrunde liegenden ODE-Systeme steif
sind. Daher wird im Zusammenhang mit linearen parabolischen Problemen die Verwendung
impliziter Methoden in der Praxis normalerweise als die beste Wahl angesehen.
Diese Aussage ist jedoch für einige relevante Anwendungen in der Bildverarbeitung und

Computer Vision oder im Ingenieurwesen nicht ganz richtig. Insbesondere können implizite
Methoden hohe Rechenkosten für verschiedene praktische Probleme verursachen, die mit
bestimmten Modellbeschränkungen verbunden sind. Drei Beispiele von praktischer Relevanz,
auf die wir uns in dieser Arbeit konzentrieren werden, sind von einem solchen Typ. Die hier
betrachteten Modellprobleme sind mit verschiedenen Einstellungen verbunden, die von vielen
unterschiedlichen Anfangsbedingungen über die Langzeitsimulation mit relativ häufigen Mod-
ellupdates bis hin zur Behandlung sehr großer Probleme reichen, bei denen die Matrixgröße
mehrere Millionen überschreiten kann. Deswegen sind wir an ausgefeilten und rechnerisch
effizienten numerischen Methoden interessiert, die die Aspekte der Approximationsgenauigkeit
sowie der Rechen- und Speicherkomplexität in Einklang bringen.
Obwohl viele numerische Löser verfügbar sind, die den Stand der Technik in diversen

Forschungsbereichen markieren, ist es auch heute noch eine herausfordernde Aufgabe, eine
numerische Methode zu konzipieren, die hohe Genauigkeit, Robustheit und Recheneffizienz
für das zu lösende Modellproblem kombiniert. Das Hauptziel besteht darin, ein simples und
effizientes ODE-Integrationsschema für jedes Modellproblem zu finden, das hierin behandelt
wird. Zunächst geben wir einen umfassenden Überblick und eine Einführung in die modernsten
Methoden, die oft für praktische Zwecke eingesetzt werden. In diesem Rahmen werden wir die
theoretischen und numerischen Grundlagen zweier populärer Techniken, die in ihren jeweiligen
wissenschaftlichen Bereichen weit verbreitet sind, sehr detailliert untersuchen, nämlich die
schnellen expliziten Methoden und die Modellordnungsreduktionstechniken. Das ist erstens
wichtig, um die Verfahren vollständig zu verstehen, und ist unbedingt erforderlich, um die
beste numerische Methode zu finden, die speziell für den beabsichtigten Zweck geeignet ist.
Das zweite Ziel ist dann, die relevanten praktischen Probleme im Zusammenhang mit

Formkorrespondenz, geothermischer Energiespeicherung und osmosebasierte Bildverarbeitung
effizient zu lösen. Für jede Anwendung geben wir einen vollständigen Aufbau an. Um eine
effiziente genaue numerische Approximation bereitzustellen, werden die numerischen Löser
zusammen mit vielen technischen Details und eigenen Anpassungen ausführlich erläutert.
Wir validieren unsere numerischen Resultate durch Experimente mittels synthetischer und
realer Daten. Hierdurch zeigen wir, dass wir schnelle und genaue numerische Methoden zur
Lösung der Probleme in dieser Arbeit erhalten können. Außerdem bietet die Arbeit eine
vollständige und detaillierte Beschreibung der leistungsstarken Methoden, die sehr nützlich
sein können, um ähnliche Probleme anzugehen, die in vielen Anwendungen von Interesse sind.
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Chapter 1

Introduction

There is a very large number of scientific areas such as natural, engineering and medical
sciences, in which many important problems are modelled with linear or nonlinear partial
differential equations (PDEs) in several dimensions. Second order parabolic equations are one
of the most common classes of PDEs. Many complex problems that arise e.g. in astrophysics,
biology, combustion, fluid mechanics, medicine, imaging and vision, mathematical finance,
chemistry are formulated by nonlinear parabolic-based models, for some examples see [4, 120,
138]. However, there are plenty of situations in which physical, mechanical and mechatronic,
micro-electromechanical and mathematical imaging and visual processes in problems related
to heat transfer can be mathematically described with linear parabolic-type PDEs.
In general, heat transfer is mainly characterised by various mechanisms such as heat

conduction, heat radiation or heat convection. In many practical applications the most
important transport mechanism is heat conduction which describes the heat flow within and
through some material itself. The associated PDE, called the heat equation or the diffusion
equation, is a classic and well-studied differential equation. In the case of simplified but
still realistic model problems, the underlying medium can be considered as homogeneous
and isotropic, so that the Laplace differential operator involved is of linear form. In image
processing, the digital image intensities correspond to concentrations, so that physical
processes such as diffusion can be applied to manipulate the given image. If then diffusion
does not depend on the evolving image over time, linear diffusion is obtained. The basic
model equation in the form of a linear heat equation can be written as

ρ c ∂tu(x, t) = λ∆u(x, t) + f(x, t), (x, t) ∈ Ω× [0, tF ] (1.1)

with constant parameters known as thermal conductivity λ, density ρ, specific heat capacity c
and where f represents various heat sources and sinks. Here, ∂t denotes the partial derivative
with respect to time t, i.e. ∂tu(x, t) := ∂u(x,t)

∂t , and ∆ declares the spatial Laplace operator or
Laplacian in the continuous setting. More precisely, the Laplacian of a twice-differentiable
real-valued function g in n-dimensional Euclidean space is defined as the sum of all the
unmixed second partial derivatives in the Cartesian coordinates xk:

∆g =
n∑
k=1

∂2g

∂x2
k

(1.2)

A complete setup that covers a realistic scenario also includes various initial and boundary
conditions, in which the latter is usually based on the Dirichlet-, Neumann- and Robin
boundary conditions.

1



Chapter 1 Introduction

Once the physical model has been generated in mathematical terms as PDEs based on
spatial and temporal derivatives from the model-dependent technical process, methods for
the solution of such PDEs are required. Although the model problems considered here are
linear, for which closed-form solutions may be available by the ansatz of the separation of
variables in simple situations, their explicit calculation on a grid is computationally intensive,
since the analytical solution is represented by an infinite series. In order to investigate the
predictions of the PDE models, it is therefore necessary to numerically approximate their
solution. The most popular technique for solving time-dependent PDEs is the method of lines
(MOL), see e.g. [138, 161, 189, 247], in which all but one partial derivatives are discretised.
This proceeding leads directly to a semi-discretised system of ordinary differential equations
(ODEs) with just one independent variable to which an appropriate numerical method for
initial value ordinary equations can be applied. In other words, the focus of MOL is the
calculation of accurate numerical solutions. This highlights a significant advantage of the
MOL approach, since semi-discrete problems are much simpler to solve and far better to
understand than PDEs. The standard construction is usually conducted by first discretising
the spatial derivatives only and leaving the time variable continuous, which gives a large
ODE system (mostly n = 2, 3) with each component of the system corresponding to some
grid point as a function of time. In this context, the spatial derivatives are discretised with
approximations through e.g. finite differences, finite volume or finite element methods.

Let us assume that the continuous linear parabolic model problem (1.1) subjected to some
boundary conditions has been discretised in space on a certain grid with in total m grid point
xi. According to the MOL approach, (1.1) can be transformed into a semi-discretised and
time-continuous linear system of ODEs in the form

u̇(t) = Lu(t) +w(t), t ∈ (0, tF ], u(0) = u0, w(0) = w0 (1.3)

where the vector u(t) ∈ Rm is the spatial discretisation of the unknown solution u, the
negative semi-definite large sparse matrix L ∈ Rm×m represents the discrete Laplacian, the
time-dependent vector w(t) ∈ Rm includes the terms related to the boundary conditions and
heat sources/sinks, and u0, w0 ∈ Rm are the given initial vectors. The matrix L contains
the coefficients arising from the discretisation of the Laplace operator ∆. Moreover, the
sparsity of L depends on the spatial discretisation, in which only a small neighbourhood of a
considered grid point is involved, so only a small number of entries relative to the matrix
dimension are non-zero. The specific type (1.3) is known as linear first order initial value
problem, and the linearity of the system refers to the fact that the matrix coefficients are
constant. Obviously, the system remains linear for time-dependent matrices L(t), but in this
thesis we focus on ODE systems with time-invariant Laplacians in the form (1.3). We mention
that time-invariant systems are also referred to as autonomous. In addition, if w(t) = 0,
such a system is said to be homogeneous, otherwise nonhomogeneous. On closer inspection,
(1.3) is a coupled and typically large-scale system of m ODEs for the unknown variables in
u(t) which vary continuously in time along the lines. In order to determine the solution of
the underlying PDE, an approximate solution for the initial value ODE problem must be
computed. The solution of this ODE system gives m functions u1(t), u2(t), . . . , um(t), one
for each grid point, that approximate u(x, t) at the grid points i = 1, 2, . . .m.
Since ODEs have a long tradition and are omnipresent in real-world application, their

solution by discrete procedures is one of the oldest areas of numerical computation and is
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successfully used in all scientific fields. Although linear ODE systems have been thoroughly
studied and have exact solutions represented in simple terms, their numerical evaluation can
be computationally intensive. This is true even for the simplest linear ODE system. For
example, consider the linear autonomous system

u̇(t) = Lu(t), u(0) = u0 (1.4)

for which the exact solution is simply given by

u(t) = exp(Lt)u0 = eLtu0 (1.5)

In simple terms, the exact solution (1.5) is solely based on the matrix exponential eLt.
Nevertheless, the computation of the matrix exponential is still a tricky problem nowadays.
There are many methods [187] for computing eLt based on results in analysis, approximation
theory and matrix theory, but usually only the Krylov-type methods are generally useful for
large sparse problems. For this reason, it is natural to seek efficient numerical methods to
ODEs that are able to approximate the solution to any desired accuracy.

Basic Numerical Schemes Many methods for the numerical solution of general differential
equations have been developed. In general, the construction of approximation schemes to
solve ODE systems numerically is based on the discretisation of the continuous time interval
into a set of discrete time points. The time points have either fixed or variable spacing, where
the distance between two points is often called time step size. More precisely, a temporal
grid is used analogously to spatial discretisation. On this basis, the approximation to the
solution at a time level can be determined by using one or several former solutions computed.
For designing a numerical scheme, the time integration method [138] is normally applied in
which the ODE system is numerically integrated using the fundamental theorem of calculus.
However, there are other methods like exponential integrator methods [137], alternatives such
as Parker-Sochacki method [111], artificial neural networks [249], or symplectic integrator
method [119] especially designed for special classes of ODEs.

Following the time integration method to the system (1.4), the popular first order explicit
scheme reads

uk+1 = (I + τL)uk (1.6)

and the first order implicit scheme yields

(I − τL)uk+1 = uk (1.7)

with uniform time step size τ > 0 and uk ≈ u(kτ). In both cases, of course, the semi-
discrete problem is converted into a fully discrete problem. The quality of the approximation
uk+1 depends on two aspects: the error made by the approximation itself and the error
caused by continuing from approximate solution values. These two aspects are declared by
the terms of consistency and stability. Besides quality aspects, the computational effort
of the generated approximate solution is also of practical importance. In particular, the
computational efficiency of a solver is a key requirement for all current and future practical
purposes. To this end, the numerical results are typically reported in terms of accuracy and
central processing unit (CPU) time to confirm the efficiency of a proposed numerical method.
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Explicit methods like (1.6) are based on extremely easy evaluations as their computational
costs correspond to simple sparse matrix-vector multiplications. They are very easy to
implement and due to their explicit nature well-suited for parallel computing such as graphics
processing units (GPUs). Computations on GPUs offer a remarkable performance through
multi-core parallelism so that the CPU time required can be drastically reduced. Unfortunately,
the semi-discretised ODE systems related to parabolic problems are known to be stiff, meaning
that explicit schemes suffer from severe time step size restrictions on τ to satisfy numerical
stability. The use of a very small τ therefore makes explicit methods generally unusable in
practice. In contrast, implicit methods like (1.7) may have no time step size restriction, but
they require the inversion of large sparse matrices. This means that it is necessary to solve
a very large sparse system of equations at each time level, which can be computationally
costly and more difficult to parallelise. Fortunately, the underlying systems as considered
here are linear and can be efficiently solved by a factorisation or preconditioning technique
that is precomputed once only. As a result, they are relatively simple to implement or based
on existing sophisticated software packages and have moderate computational and memory
complexity. Hence, for linear parabolic problems, researchers clearly consider the use of
implicit schemes as the best choice.

1.1 Problem Formulation and Motivation

As stated above, implicit schemes based on the solution of large sparse systems of linear
equations are predestined for linear parabolic model problems in practice. However, for some
applications in image processing and computer vision or engineering this statement is not a
true one. Let us give three examples that we will focus on in this thesis that are still relevant
applications and of practical importance. For this purpose, we give a short overview of the
practical problems related to linear parabolic-based PDEs, see Figure 1.1 for an illustration.

Shape Correspondence The main task in shape correspondence is to retrieve similarities
between two or more similar three-dimensional objects. An important building block of many
methods constructed to achieve this goal is a simplified shape representation by means of a
shape descriptor, which characterises geometry around the points that define the surface of
a given shape. An interesting class of models for such descriptors is based on the Laplace-
Beltrami operator which enables to describe intrinsic geometric properties of a surface. To
this end, several geometric PDEs have been proposed such as the heat, wave or Schrödinger
equation. Geometric PDEs are characterised by the fact that they take into account geometric
surface information, although the geometry does not change during time evolution. The
underlying PDEs that are used have to be solved for each point and on each shape for a fixed
time interval. Consequently, the computational costs are directly related to the number of
points of the regarded shapes, and thus solving a system of linear equations with multiple
right-hand sides appears to be rather impractical for shapes with many thousands of points.
For this reason, it is necessary to find a fast and accurate numerical scheme.

Geothermal Energy Storage Besides efficient energy generation it is also important to
store it, ideally with minimal losses over long periods of time. The recent geothermal energy
storage technology provides a potential solution to energy storage, in which excess energy
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Figure 1.1: Main applications related to linear parabolic-based PDEs considered in this
thesis. Top left: Shape correspondence. Top right: Geothermal energy storage. Bottom:
Osmosis-based shadow removal with (left) initial image and (right) result.

generated during the summer can be easily stored. Interestingly, the latter heat tank is
closed by insulating walls upwards and to the sides, is open downwards, and interacts with
its environment, more precisely by the earth below the tank. The technical realisation by a
downwardly open heat tank is cost effective, since in practice it provides a multiple of the
capacity that is making up the actually relatively small tank. However, this setup becomes a
very important issue when the entire heating system is considered over a year or even several
years, depending on weather conditions and individual consumer demand. On the one hand,
the supply for the consumer must be ensured, while the economic viability based on the
optimal dimensioning of the heat tank is of great importance. Because of this, well-founded
long-term heat evolution simulations of a geothermal energy storage are required to assess
the profitability. In this context, in applications with source terms, it has to be kept in mind
that the contributions of the sources must be updated at relatively small time intervals for
obtaining an accurate simulation. Thus, implicit methods have to solve many large sparse
systems of linear equations which leads to a high computational effort. For this purpose, the
particular challenge is to find an efficient numerical method in connection with long-term
simulation of a geothermal energy storage.
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Osmosis Filtering Nowadays, digital image processing has become indispensable for indus-
trial, medical and of course daily life applications. With the help of image processing, the
quality of images can be improved by mathematical manipulation so that they are more
useful to a human observer or a computer vision system. For example, two important classes
of methods for image processing in connection with linear parabolic-based PDEs are linear
diffusion and osmosis filtering. In particular, the latter technique in its linear form, closely
related to its transport phenomenon in nature, provides a powerful tool for visual computing
applications such as image cloning and shadow removal. Based on the evolving camera
technology, the resolution of images tends to increase continually. Actually, conventional
digital compact cameras have a standard maximum resolution of more than 12 megapixels.
Therefore, implicit methods have to handle large images for which the matrix size easily
exceeds the order of several millions. As a consequence, the computational costs of the
implicit scheme used become very expensive. For this purpose, there is still the need for
a numerical scheme that combines accuracy and reasonable computational efficiency for
working with high resolutions.

1.1.1 Modern Numerical Schemes

As indicated in the applications above, while implicit schemes have good numerical stability
properties, they may cause high computational costs in various practical real-world problems.
Thus, enhanced and computationally more efficient numerical methods are needed, which
bring the aspects of approximation accuracy and computational and storage complexity
into balance. Of course, there are dozens of approaches such as higher order Runge-Kutta
(RK) schemes, extrapolation methods, linear multi-step methods or splitting methods, see
e.g. [119,138]. In the case of parabolic PDEs, however, only a modest order of accuracy is often
required, which usually does not exceed the order of the spatial discretisation, and therefore
low order methods are typically appropriate to yield accurate enough approximations of the
actual solutions. This suggests that one may forego high accuracy in exchange for a faster
CPU time.
Although many numerical methods have been developed, in the case of stiff linear ODE

systems there is no class of methods that can be classified as superior, since the correct choice
of the method used strongly depends on the underlying model problem. In this framework,
there are two popular techniques that are frequently used in their respective scientific fields:
fast explicit methods and model reduction techniques. However, a joint analysis and evaluation
of these methods in the context of numerical issues as considered here is often overlooked.
But exactly this is useful in finding the best numerical method that is specifically designed
for the intended purpose. Let us give a short insight into both classes of methods.

Fast Explicit Methods In order to achieve a stable scheme, the stability function of the
numerical scheme used must be bounded in unity. The stability function depends on the
product of the time step size and the eigenvalues of the underlying discrete Laplacian. It is
well known that for stiff problems the eigenvalues are very large in absolute value, so that the
associated time step size of classical explicit schemes must be very small. This relationship is
declared as the stability region, whereby this region is generally small for traditional explicit
methods. Consequently, explicit schemes are normally not applied for stiff problems due to
their stability restrictions.
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In many situations, the eigenvalues of the discrete Laplacian related to parabolic-based
problems are known to be in a long narrow strip along the negative real axis. In this type of
problems, a special class of multi-stage RK methods is a very powerful tool, in which those
methods are constructed such that they have regions of stability extended along the real
negative axis. In contrast to standard RK methods, the modified construction is based on
increasing the number of stages so that the stability region is as large as possible, rather
than to increase the order of accuracy of the method. More simply, some of the stages are
intended to meet the conditions of consistency, whereas the rest strive to extend the region
of stability along a strip near the negative real axis as much as possible. In this way, the
stability region increases quadratically with the number of stages which is very attractive
and makes these methods suitable for problems with large negative real eigenvalues. Since
the stability function of this class of methods is related to Chebyshev polynomials, these
methods are called RK-Chebyshev methods [138,281,286].
Overall, these methods are totally explicit with low memory demand and therefore do

not require the solution of large sparse system of linear equations, which is potentially
expensive. Based on their explicit nature, they are easy to implement and remain well-suited
for parallelisation on GPUs. Moreover, they can easily be applied to large problem classes
such as nonlinear problems, assuming those problems have negative real eigenvalues or
they are near to the negative real axis and the underlying discrete Laplacian is close to
be normal. More precisely, stability and convergence are only guaranteed for symmetric
negative semi-definite matrices, but in general these methods remain well applicable to general
(nonlinear) parabolic problems for which the system matrix does not deviate too much from
a normal matrix. Even if these requirements are satisfied, the modified RK schemes are only
useful for modestly stiff problems, since for extremely large eigenvalues in magnitude a very
large number of stages is required to achieve stability. Another weakness of the fast explicit
methods is that the positivity property is not ensured when performing the time integration,
even if the continuous and semi-discrete model problems provide this property. This of course
could be undesirable, for example, in image processing tasks for which images are generally
defined as functions with nonnegative range.

Model Reduction Techniques Another modern alternative to improve the performance of
the integration approach related to (non)linear large-scale semi-discrete ODE systems is based
on model reduction. Such techniques can be used to approximate the large-scale dynamical
system by a reduced, low dimensional dynamical system, for which the main characteristics
of the original one are essentially entirely preserved. In other words, model reduction aims to
reduce the computational complexity by reducing the number of describing equations of a
large dynamical system. An approximation to the original model is commonly referred to as
a reduced order model. At this point it should be mentioned that dynamical systems are
nothing else than the evolution of systems in time, in which continuous time systems are
typically modelled by ODEs or PDEs.

The reduction of linear dynamical systems has been extensively studied in the last decades
and is still considered nowadays as an important topic due to its wide range of applications
in physics, mathematics and engineering. This follows directly from the increasing ability
of methods and computers to accurately model real-world problems, but also to be able to
use these generated models in an efficient way for the intended purpose of e.g. simulation,
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Chapter 1 Introduction

optimisation and control. Although reduction methods have proven to be powerful tools for
a wide variety of applications, not everyone is familiar with these techniques. Apart from
that, a very large number of different methods and algorithms have been developed over
time, each of them has its advantages and disadvantages. For this reason, the efficient use of
model reduction techniques is not straightforward.
In general, existing reduction techniques can be classified into balancing based methods

and moment matching methods. This classification is not always consistent in the literature,
for a general overview see [10,11,193,248]. Reduction techniques can enable to significantly
speed up ODE integration. More precisely, the reduction procedure is understood as a
preprocessing step, so that the reduced order model can be solved much more easily by time
integration methods. Nevertheless, this proceeding should provide several requirements on a
reduced model such as a good approximation quality of the original model, conservation of
stability and characteristic behaviour, but also computational efficiency and robustness. In
fact, ODE systems involving negative semi-definite matrices, as is normally the case with
parabolic problems, guarantee preservation of stability in one-sided projection.

In particular, the model reduction process is divided into two main stages: the offline and
the online phase. First, the linear dynamical system is reduced independently by standard
techniques in an offline stage, then the reduced model is solved by a numerical method in
an online step. Obviously, model reduction pays off, if the benefit of multiple cheap online
evaluations outweighs the offline up-front costs required for computing the reduced model. It
is therefore desirable to avoid intensive offline and online computations so that the reduction
step is numerically justified. For a better understanding of this procedure, a visualisation is
shown in Figure 1.2. It should be noted that explicit and implicit schemes can also cause
offline costs, e.g. by transforming computations from CPU to GPU or by using factorisation
and preconditioning techniques. In contrast to model reduction, however, these computational
costs are low and can be neglected.

Online
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pu
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na
lc
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ts

Number of solve requests

With model reduction

Without model reduction

Figure 1.2: Computational costs in terms of offline and online computations using model
reduction techniques.
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1.1.2 Main Requirements for an Efficient Method
In total, there are many options to numerically solve linear parabolic-based model problems
in an efficient manner. A general overview can be found in Figure 1.3. Among the many
techniques available such as implicit methods, fast explicit methods and reduction techniques,
there is no overall best method. Model problems usually have different model-dependent
boundary conditions and therefore often require different approaches that specifically fit
into the intended framework. In particular, an efficient solver should provide the following
features that are important in practical use:

• good approximation quality

• preservation of system properties (stability, positivity, conservation laws)

• low computational costs and memory requirements

• numerically robust algorithm independent of data, size, parameters

• simple implementation and easy parallelisation

• small number of user-defined parameters

1.2 Contributions and Outline
As mentioned above, when dealing with large sparse linear semi-discretised ODE systems
resulting from the spatial discretisation of linear parabolic multi-dimensional PDEs by the
MOL approach, many methods for the numerical solution are available. However, the
underlying model problems considered here are coupled with different settings, ranging from
many different initial conditions over long-term simulation with relatively frequent model
updates to dealing with very large-scale problems for which the matrix size can exceed several
millions. Having a wide variety of solvers is a great advantage, but makes the decision more
difficult to use the correct numerical scheme for the model problem that has to be solved. In
simple terms, even nowadays it is still a challenging task to devise a method that combines
high accuracy, robustness and computational efficiency. Therefore, the main objective is to
find an easy and efficient ODE integration scheme for each individual problem.

The first goal of the thesis is to present a comprehensive overview and introduction to the
state-of-the-art methods that are frequently used, but only often employed in their respective
scientific fields. In this context, we will study the theoretical and numerical basics of implicit
methods, fast explicit methods and reduction techniques. This is primarily important in order
to fully understand the strengths and weaknesses of each technique. Furthermore, we clarify
in detail the problems that arise in practice in connection with error bounds, convergence,
stability, accuracy, implementation, parameters involved or other degrees of freedom. Besides
compiling the knowledge of various methods that can be used to solve the problems dealt
with in this thesis, we highlight why these numerical schemes need to be treated carefully
and in which cases their practical application is challenging.
With the help of this, our second goal is to efficiently solve the mentioned problems of

shape correspondence, geothermal energy storage and osmosis filtering. For each application
we provide a complete setup that covers the problem formulation, the related work, the
general framework, the numerical discretisation as well as the computational challenges and
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Physical System

ODE PDE

Model
Reduction

Time Integration
Methods

Explicit Methods Implicit Methods

Fast Explicit
Methods

Direct Methods Iterative Methods

Simulation, Control,
Optimisation

Spatial
Discretisation

Low-Scale
System

Matrix-Vector
Multiplication

System of
Equations

Exact ApproximationExtended Stability

Mathematical
Modelling

Large-Scale
System

Figure 1.3: General structure for the numerical solution of PDEs or ODEs using time
integration methods. In connection with the solution of (linear) parabolic model problems, we
distinguish between implicit methods, fast explicit methods and model reduction techniques.
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settings. In order to identify the best method for each model problem, we perform a thorough
numerical study of all the solvers mentioned, but also compare them to those which have
been alternatively proposed in the literature. Apart from that, we will also present several
substantial improvements of the integration based approaches and some novel numerical
strategies, so that a more accurate or efficient computational approach is achieved in contrast
to the original use.

Let us mention that we refer the reader to the beginning of Chapters 5-7 for a more detailed
description of our technical contributions to the practical problems discussed.

Outline of the Thesis This introductory chapter concludes with an overview of the different
chapters of this dissertation. In general, this thesis is organised into two main parts, i.e.
Chapters 2, 3 and 4 present the theoretical and numerical knowledge of the methods used,
while Chapters 5, 6 and 7 covering the main contributions of the author.

The next chapter introduces the relevant basics of numerical analysis for the reader
unfamiliar with the topics, including time integration methods, consistency and stability
properties, explicit and implicit methods, sparse direct and sparse iterative methods, and
matrix exponential approximations.

The third chapter provides a complete overview of the fast explicit solvers. The framework
of this class of methods together with all the theoretical and numerical aspects is presented.
Moreover, we will elaborate that there are two ways of designing such methods that conceptu-
ally belong to the class of RK methods, namely by direct and indirect approach. The former
ansatz is widespread in the classical numerical community, whereas the latter technique is
typically known in image processing. In addition to the description of the differences, a
section is dedicated to give a numerical comparison of both techniques using two experiments
based on linear and nonlinear PDE-based image diffusion.
In Chapter 4, as an alternative to considering the original large-scale ODE system, the

model reduction techniques based on projection methods are introduced so that the high
dimensional semi-discretised problem is replaced by one of reduced order in a suitable manner.
In this way, the computational complexity can be reduced, since the projection methods
generally rely on efficient numerical linear algebra techniques. In this sense, we focus on
four commonly used and well-studied methods that are usually the best choices for solving
real-world problems. Apart from providing the foundations and describing the necessity
and usefulness of model reduction, we clarify how these methods are to be applied, but also
indicate their limitations in practice.

The first practical problem in this thesis is discussed in Chapter 5, in which we investigate
shape correspondences between three-dimensional shapes that rely on feature descriptors.
An interesting class of models for such descriptors relies on simple linear PDEs based on the
Laplace-Beltrami operator. Besides a variety of PDEs, also several ways to solve them have
been considered in related works. In this chapter, we show how to define a computational
framework, which can be distinguished as spectrum-free and spectrum-based computation,
by using model reduction techniques that yield an efficient ODE integration and much more
accurate shape signatures as in previous works. Furthermore, as part of the construction of
our framework we elaborate several substantial details of the applied technique which are
necessary in order to enhance the usability. In addition, we highlight the similarities and the
differences to frequently used spectral methods that are derived from the series expansion of
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analytic solutions of the PDEs. Through our experiments, we present that the numerical
signatures obtained by time integration methods of the underlying PDEs lead to significant
improvements over state-of-the-art-methods for finding correct shape correspondences.
In Chapter 6 we are tackling the long-term simulation of the recent geothermal energy

storage technology that represents a potentially very attractive approach to energy storage.
We will precisely elaborate the complete continuous model and the corresponding discretisation
which is an important component for the numerical realisation. On this basis, we discuss
which methods are suitable for long-term simulations, and show how to adapt some of the
currently most efficient numerical approaches to the fundamental problem of heat evolution
with internal and external boundary conditions as well as source terms. In order to provide
an efficient and accurate enough simulation, we give a thorough discussion of the various
numerical solvers along with many technical details and own adaptations. More precisely, we
propose a heuristic procedure to resolve the essential problem of a large number of inputs
in connection with the Krylov-based model order reduction, which contains some technical
novelties. This is crucial for the application of model reduction techniques for the practical
use related to geothermal energy storage. In particular, we present that we can obtain
fast and accurate long-term simulations of typical geothermal energy storage facilities. We
validate our numerical findings using synthetic and real-world data.

In Chapter 7 we consider linear osmosis filtering. We first give a description of the
theoretical background from both continuous and discrete setting, before discussing the recent
efficient numerical implementation based on standard splitting techniques. However, such
methods suffer from splitting errors which have a strong influence on the accuracy of the
approximation. Therefore, we will propose to use fast explicit methods for osmosis-based
image processing tasks, as these combine accuracy and computational efficiency. Although
this class of methods cannot guarantee the preservation of the natural osmotic properties
and the numerical stability from a theoretical point of view, we show that these methods are
well applicable for isotropic and also anisotropic osmosis filtering, and experimentally verify
this by our numerical tests. To evaluate the performance, we conduct a thorough numerical
study using various image processing applications.
The dissertation completes in Chapter 8 with a summary of the results, and we also give

an outlook on some possible future works.
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Chapter 2

Classic Numerical Methods

This chapter is intended for a non-expert audience as a guide towards the mathematical
background for the numerical solution of time-continuous ODE systems that typically arise
when following the MOL approach by discretising parabolic-type PDEs first in space variables
and leaving the time variable continuous. The aim is to provide the reader with some basic
notions that are essential when tackling large sparse linear ODE systems and to describe
general challenges in using standard numerical methods for initial value problems. In Section
2.1 we introduce the time integration methods and the relevant criteria that are crucial for
the performance of a numerical algorithm such as consistency, stability and convergence.
Since the underlying linear ODE systems are known to be stiff, in Section 2.2 we provide
information about implicit schemes, more precisely on sparse direct and sparse iterative
methods, which are often considered due to their good stability properties. In Section 2.3 we
present the exponential integrators as an alternative class of numerical methods for solving
stiff ODE systems.

2.1 Time Integration Methods

As already described in the introductory chapter, the MOL approach for solving PDEs leads
to a semi-discretised ODE system so that any numerical method for initial value problem
can be applied. When considering linear parabolic PDEs in the context of heat conduction,
the linear semi-discretised system can basically be expressed in the form of

u̇(t) = Lu(t) +w(t), t ∈ (0, tF ], u(0) = u0, w(0) = w0 (2.1)

with a large sparse Laplacian matrix L ∈ Rn×n, the unknown solution vector u(t) ∈ Rn, a
vector w(t) ∈ Rn representing boundary conditions and/or source terms and given initial data
u0,w0 ∈ Rn. The most frequently used class for solving a system of ODEs are time stepping
methods, in which the time variable in (2.1) is discretised by 0 = t0 < t1 < · · · < tJ = tF .
Discrete time stepping methods of ODEs can be done using standard numerical integration
so-called time integration methods. Common time integration schemes are the explicit Euler
(EE) method, the implicit Euler (IE) method and the Crank-Nicolson (CN) method. In
general, all of these schemes belong to the well-known class of RK methods, which we will
discuss later. In the following let us describe the classic time integration methods and discuss
important properties such as consistency and numerical stability. For a complete and excellent
overview of time integration methods, we refer to [119,120,138,161,189,264,272].
To apply time discretisation methods, time intervals Ik = [tk, tk+1] are defined in order

to subdivide the complete integration time [0, tF ] into a partition. The resulting numerical

13



Chapter 2 Classic Numerical Methods

methods then generate approximations u(tk) at the different time levels tk. Uniform partitions
of time intervals are often used, as is also the case in this thesis. Let us first derive the classic
EE, IE and CN schemes, afterwards we will introduce in some detail important criteria for
the analysis of numerical methods. For the sake of simplicity, we set w(t) = 0 and consider
the semi-discretised system

u̇(t) = Lu(t), t ∈ (0, tF ], u(0) = u0 (2.2)

Explicit Euler Method As a first step, the application of the fundamental theorem of
calculus for (2.2) over the time interval Ik yields

tk+1∫
tk

u̇(t) dt =
tk+1∫
tk

Lu(t) dt (2.3)

Assuming that u̇ is integrable on Ik, the left-hand side of (2.3) obviously results in

tk+1∫
tk

u̇(t) dt = u(tk+1)− u(tk) (2.4)

Second, the approximation of the integral on the right-hand side of (2.3) using the left-hand
rectangle method gives

tk+1∫
tk

Lu(t) dt ≈ τLu(tk) (2.5)

where τ = tk+1 − tk is the uniform time step size. Finally, using the notation u(tk) = uk, the
well-known fully discrete EE method

uk+1 = (I + τL)uk (2.6)

with k ∈ {0, . . . , J − 1}, the identity matrix I and the given initial condition u0 = u(0) is
obtained. Due to the fact that the values uk at time tk are known, the new values uk+1 at
time tk+1 can easily be computed by simple sparse matrix-vector multiplication. Schemes
in this form are known as explicit methods and are well-suited for parallel computing like
GPUs. However, it is known that explicit methods are only conditionally stable. In other
words, the stability requirement leads to a severe limitation in the size of the time step τ . In
general, the typical time step size restriction has a rather small upper bound in the case of
stiff ODE systems. As a consequence, explicit schemes are usually considered to be extremely
inefficient numerical methods from a computational point of view.

Implicit Euler Method In an analogous manner, the integral on the right-hand side of (2.3)
can be approximated using the right-hand rectangle method via

tk+1∫
tk

Lu(t) dt ≈ τLu(tk+1) (2.7)
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so that the numerical method obtained is known as the fully discrete IE method

(I − τL)uk+1 = uk (2.8)

In order to compute the values uk+1 at time tk+1, a large sparse system of linear equations
has to be solved for each time step. Such schemes are called implicit methods. Consequently,
implicit schemes are numerically more intensive than explicit methods when choosing the
same time step size. However, the significant advantage of an implicit scheme is that most
of them theoretically result in an unconditionally stable scheme without a time step size
restriction on τ . For this reason, implicit methods are typically applied when dealing with
stiff ODE systems. Nevertheless, solving large sparse linear systems requires an efficient
solver to be effective in practice. We will discuss this issue in more detail in Section 2.2.

Crank-Nicolson Method Using the trapezoidal rule for the integral approximation of the
right-hand side of (2.3) gives

tk+1∫
tk

Lu(t) dt ≈ τ

2
(
Lu(tk+1) + Lu(tk)

)
(2.9)

which leads to the popular fully discrete CN scheme(
I − τ

2L
)
uk+1 =

(
I + τ

2L
)
uk (2.10)

The CN method, like the previous IE scheme, is an unconditionally stable implicit method.
In order to obtain the values uk+1 at time tk+1, it requires the solution of a system of linear
equations as well as a sparse matrix-vector multiplication in each time step. Usually, CN is
preferably used because of its second order convergence in time and at the same time only
marginally higher computational costs compared to IE. At this point it should be noted that
the CN method is sensitive to problems with discontinuous initial conditions and can lead to
undesirable oscillations in the numerical solution.

Let us emphasise that there are several ways to derive the numerical methods described
above. Besides the numerical integration, the construction principle can also be based
on numerical differentiation or truncated Taylor series expansion. Apart from that, the
introduced schemes belong to the class of one-step methods, since the numerical solution at
the current time step only refers to the previous solution. Later, we will consider RK methods,
where intermediate solutions are used to obtain higher order or accelerated methods.

Properties of Numerical Methods When solving PDEs numerically using time integration
methods several characteristics are crucial for the practical use of a numerical scheme. The
most important criteria are consistency, stability and convergence. In particular, consistency
is the condition that the numerical scheme converges towards the continuous differential
equation as the grid size h and the time step size τ tend to zero and the truncation errors
vanish. The stability of a numerical scheme is the property that all accumulated numerical
errors (truncation, round-off, noisy initial conditions) generated during the numerical process
remain bounded and should not be magnified. Convergence is the condition that the numerical
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solution converges towards the exact solution of the PDE as the discretisation parameters
h, τ tend to zero. The standard way to prove the convergence of a numerical approximation
is generally shown using the Lax equivalence theorem which states that a consistent method
is convergent if and only if it is stable. This framework is often expressed by the statement:

consistency + stability =⇒ convergence

In addition, two other useful properties such as conservation and boundedness are of interest
as well. The conversation property reflects that the underlying conservation laws should be
preserved at the discrete level. The boundedness means that physical quantities like densities,
temperatures or concentrations should remain nonnegative and oscillation-free.

In the following we provide a more detailed insight into the criteria consistency and stability.
Let us stress that there are several alternative definitions in the field of numerical analysis,
the choice of definition one prefers to use is just a matter of taste. Since our starting point
is the time-dependent ODE system (2.2), we assume that the spatial discretisation of the
continuous Laplace operator is consistent. Of course, the following investigations can be
applied analogously to problems in the form of

u̇(t) = f
(
t,u(t)

)
, t ∈ (0, tF ], u(0) = u0 (2.11)

where f is a general right-hand side function.

2.1.1 Consistency

As stated above, consistency means that the discretised equation of an ODE should become
exact as the time step size tends to zero. Checking consistency is usually simple by using the
Taylor expansion and comparing the local error by which the exact solution misses satisfying
the numerical scheme. More precisely, consistency is a local property of a numerical scheme.
Let us explain this by investigating the EE method.
For consistency, the local error is defined as

En = u(tn+1)− ũ(tn+1), n = 0, . . . , J − 1 (2.12)

where u(tn+1) and ũ(tn+1) denote the exact solution and the approximate solution, respect-
ively. In particular, the approximation is exemplarily computed here by the EE method

ũ(tn+1) = u(tn) + τLu(tn) (2.13)

in just one-step using the exact solution at time tn. In other words, the local error is the
error after one time step when starting with the exact solution within the numerical scheme.
A one-step method is said to be consistent if

max
0≤n≤J−1

‖En‖ → 0 for τ → 0 (2.14)

is satisfied. Moreover, the consistency with order p of an one-step method is defined by

max
0≤n≤J−1

‖En‖ = O
(
τp+1

)
(2.15)
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To analyse the EE method, the Taylor expansion of u (assuming that u is smooth) is
performed around any point in [0, tF ]. For convenience, expanding around tn gives

En = u(tn+1)− ũ(tn+1)

=
[
u(tn) + τ u̇(tn) + τ2

2 ü(ξn)
]
− u(tn)− τLu(tn) = τ2

2 ü(ξn) (2.16)

with an appropriate vector ξn ∈ (tn, tn+1). The comparison with (2.15) clearly shows that
the EE method has the consistency order one. In an analogous manner, it can be shown that
the IE method and the CN method are of first and second order, respectively.

Obviously, a global statement about the difference between the exact and the approximate
solution after a sequence of time steps is also of interest. It can be shown that (under
smoothness conditions) the convergence of a one-step method follows directly from its
consistency. In addition, the order of convergence is the same as the order of consistency. We
will not go into the convergence analysis of a numerical scheme any further detail. However,
unstable numerical schemes are not convergent. Because of this, the study of numerical
stability is extremely important.

2.1.2 Numerical Stability
As mentioned, global convergence relies on two important properties: consistency and
stability. A stable numerical scheme possesses the characteristic that numerical errors (round-
off, truncation) do not grow as the calculation proceeds. In simple terms, small local errors
should only lead to small global errors. More precisely, a numerical method is said to be
stable if all numerical errors remain bounded for τ → 0. The stability of a numerical scheme
is generally the most important property and usually the most difficult to verify. Let us
explain the difficulties involved in dealing with numerical stability. A fundamental tool in
stability analysis is the use of the Dahlquist test equation (2.17), which is used in various
parts in this thesis.

Scalar Test Problem We consider the scalar ODE in the form of

u′(t) = λu(t), λ ∈ C, u(0) = u0 (2.17)

where the analytical solution is given by u(t) = eλtu0. Let ũ(0) = u0 + δ be a slightly
perturbed initial condition, then the solution of the perturbed problem is ũ(t) = eλtu0 + eλtδ.
Thus, for Re(λ) > 0 the original problem (2.17) is an unstable problem1, since it holds that∣∣u(t)− ũ(t)

∣∣ = |eλtδ| (2.18)

which becomes arbitrarily large for each δ 6= 0 if t is sufficiently large. In contrast, for
Re(λ) ≤ 0, a small change in the initial condition causes only a small change in the solution
and therefore the problem (2.17) is called a stable problem. For this reason, stability
investigations of numerical schemes are only of interest for the case Re(λ) ≤ 0. An ODE with
a strictly negative λ is said to be asymptotically stable, with the solution converging to the
zero equilibrium point as t→∞ for any initial state.
1 A problem (2.17) is stable if, with small changes in the initial conditions, only small changes in the

solution occur.
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Based on this consideration, let us examine the EE method. Applying the EE scheme to
(2.17) results in

un+1 = un + τλun = (1 + τλ)un =: R(z)un (2.19)

The numerical behaviour of EE relies on

R(z) := 1 + z, z = τλ (2.20)

where R(z) is called the stability function. Assuming Re(λ) < 0, the analytical solution is
an exponentially decaying function, so a stable numerical scheme should exhibit the same
behaviour. This means that the approximations {un} should yield a decreasing sequence
with respect to | · |, expressed as

|un+1| < |un|, n = 0, . . . , J − 1 (2.21)

In order to mimic this behaviour, the EE method (2.19) must satisfy

|un+1| < |R(z)||un| =⇒ |R(z)| < 1 (2.22)

with z = τλ. For Re(λ) ≤ 0, the latter observation is obviously tantamount to |R(z)| ≤ 1.
Consequently, for real λ ≤ 0 the condition is equivalent to

− 2 ≤ τλ ≤ 0 ⇐⇒ τ ≤ −2
λ

=: τmax (2.23)

where τmax denotes the maximum stable time step size for the EE method. By nature is
τ > 0, so that with real λ ≤ 0 the interval z ∈ [−2, 0] is declared as the interval of absolute
stability for the EE method. In the case of Re(λ) ≤ 0, stability is guaranteed if the complex
number τλ lies in the nonpositive complex number plane inside the disk of radius one centred
at the point (−1, 0). This shows that the EE method is only conditionally stable, since the
time step size τ has to be chosen sufficiently small depending on λ to ensure stability. For
the complex case, the investigation leads to the definition of the stability region (stability
domain) or the so-called region of absolute stability, for which the set z = τλ fulfils the
stability condition in relation to the EE scheme via

SEE =
{
z = τλ ∈ C :

∣∣R(z)
∣∣ = |1 + z| ≤ 1

}
(2.24)

This proceeding can be done for both the IE method and the CN method as well. Applying
the IE scheme to (2.17) gives

(1− τλ)un+1 = un ⇐⇒ un+1 = (1− τλ)−1un =: R(z)un (2.25)

with R(z) = (1− τλ)−1, which implies

|R(z)| ≤ 1 ⇐⇒ τλ ≤ 0 (2.26)

The region of absolute stability is thus defined by

SIE =
{
z = τλ ∈ C :

∣∣R(z)
∣∣ =

∣∣∣(1− z)−1
∣∣∣ ≤ 1

}
(2.27)
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and the IE scheme is stable for the exterior of the open unit disk in the complex plane centred
at (1, 0). Finally, using the CN method it follows that∣∣∣1 + τλ

2

∣∣∣∣∣∣1− τλ
2

∣∣∣ = |2 + z|
|2− z| =

∣∣R(z)
∣∣ ≤ 1 ⇐⇒ τλ ≤ 0 (2.28)

and the stability region is specified by

SCN =
{
z = τλ ∈ C :

∣∣R(z)
∣∣ = |2 + z|
|2− z| ≤ 1

}
(2.29)

As a result, both implicit methods are called unconditionally stable, since the time step size
τ can be arbitrarily large. For the sake of completeness, the stability regions of all methods
are illustrated in Figure 2.1.

It should be noted that the consistency order can also be derived by analysing the stability
function of the numerical method used. This can be explained as follows: the EE method
can be written in the form

En := u(tn+1)−R(z)u(tn) (2.30)

with R(z) = 1 + z, z = τλ and where En denotes the consistency error. Using the analytical
solution u(t) = eλt, the discrete setting u(tn+1) = eτλu(tn) = ezu(tn) with tn+1 = tn + τ
implies that

En =
[
ez −R(z)

]
u(tn) (2.31)

The Taylor series expansion of the exponential function reads

ez = 1 + z + z2

2 + z3

6 +O
(
z4
)

(2.32)

so that (2.31) can be interpreted as

ez − (1 + z) = O
(
z2
)

as z → 0 (τ → 0) (2.33)

In particular, the EE method exactly matches the first two terms (1 and z) with the expansion
of the exponential function in the exact solution and thus implies the consistency order of one.
As a result, the desired order of accuracy can be achieved by ensuring that the leading terms
of the stability function exactly match with the Taylor series expansion of the exponential
function. In an analogous manner, the implicit schemes yield

(1− z)−1 = 1 + z + z2 +O
(
z3
)

(2.34)

2 + z

2− z = 1 + z + z2

2 + z3

4 +O
(
z4
)

(2.35)

which shows first and second order accuracy for the IE method (2.34) and the CN method
(2.35), respectively.
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Figure 2.1: The stability region S of the EE, IE and CN methods. The black colour indicates
the region of absolute stability. Left: Stability region SEE . Middle: Stability region SIE .
Right: Stability region SCN .

Nonscalar Test Problem After examining the scalar case for exactly one ODE, we now
study the numerical stability in relation to a system of ODEs

u̇(t) = Lu(t), u(0) = u0 (2.36)

with matrix L ∈ Rm×m and where the analytic solution is given by u(t) = eLtu0. Assuming
that L is diagonalisable (complete set of m linearly independent eigenvectors) with the eigen-
vector matrix Φ ∈ Rm×m and the diagonal matrix Λ ∈ Rm×m of corresponding eigenvalues,
the following identities hold:

L = ΦΛΦ−1 and Λ = Φ−1LΦ (2.37)

The multiplication of Φ−1 from the left to (2.36) and the introduction of the identity matrix
I = ΦΦ−1 gives

Φ−1u̇(t) = Φ−1LΦΦ−1u(t) (2.38)

Using the identity (2.37) and setting w(t) = Φ−1u(t), finally a decoupled ODE system with
m independent scalar equations for each component of w is obtained in the form

ẇ(t) = Λw(t) (2.39)

Applying the EE method to (2.39) yields

wn+1 = (I + τΛ)wn =: R(z)wn (2.40)

which for each decoupled component takes the form

wn+1
q =

(
1 + τλq

)
wn
q , q = 1, . . . ,m (2.41)

To be a stable method, each scalar problem simultaneously must be stable. This is obviously
fulfilled if λq ≤ 0 and τλq lie in the stability region SEE for all q. Because of this, the
maximum time step size is directly related to the largest eigenvalue λmax in absolute value by

τ ≤ −2
λmax

=: τmax (2.42)
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This in turn illustrates that τmax can be extremely small if the underlying system matrix
possesses very large negative eigenvalues. As a consequence, the EE method often causes high
computational costs for stiff ODE systems and is generally unusable for practical purposes.
The relation between the largest eigenvalue (in magnitude) and (2.40) using A := I + τΛ

leads to the necessary condition for numerical stability∣∣R(z)
∣∣ ≤ 1 ⇐⇒ ρ(A) ≤ 1 (2.43)

where ρ(A) is the spectral radius of A. The spectral radius is defined as the number

ρ(A) = max{|λ| : λ ∈ %(A)} (2.44)

for which the set % is called the spectrum of A, given by

%(A) = {λ : λ is eigenvalue of A} (2.45)

In this context, when using the well-known von Neumann stability analysis (also known as
Fourier stability analysis), which decomposes the errors into Fourier series, the corresponding
factor R(z)→ g(ξ) with a complex wave number ξ is called the amplification factor, and the
stability condition reads |g(ξ)| ≤ 1.

In contrast to EE, the IE and CN methods allow arbitrarily large time step sizes τ and are
used very frequently in practice. Although both methods are unconditionally stable, τ must
usually be chosen to be relatively small in order to achieve an accurate numerical solution.
Therefore, a fast solver for large sparse systems of linear equations is necessary.

From the observations above, a linear dynamical system like (2.36) is called asymptotically
stable if the real part of all eigenvalues λi of L are strictly negative, i.e. Re(λi) < 0. In this
case, any initial condition converges towards the zero equilibrium u(t) = 0 as t→∞, when
no input signal is applied. Furthermore, a linear system is said to be stable if the eigenvalues
of L satisfy

(i) Re(λi) ≤ 0, ∀i

(ii) L has no defective eigenvalue with Re(λ) = 0

The condition (ii) is satisfied e.g. when L is diagonalisable. It should be emphasised that for
a stable system the equilibrium solution does not necessarily converge to the origin, since
det(L) = 0 implies that infinitely many solutions for (2.36) exists.

As stated above, the eigenvalues of the system matrix are generally very important for
determining stability. However, the pure focus on the eigenvalues is not always sufficient to
guarantee the numerical stability. A typical example of this is the advection equation, let us
give a brief explanation.

Example 2.1. We consider the one-dimensional linear advection equation

∂tu(x, t) + a∂xu(x, t) = 0, (x, t) ∈ R× (0, tF ] (2.46)

with velocity a > 0, some given initial data u(x, 0) = f(x) and homogeneous Dirichlet
boundary conditions. In particular, the positive velocity describes the corresponding flow from

21



Chapter 2 Classic Numerical Methods

left to right of the domain. Assuming that there is a finite number m of spatial grid points
with a uniform grid width h = 1

m+1 and that the spatial derivative is approximated by means
of a backward difference scheme (first order upwind scheme), the MOL approach results in a
semi-discretised system that is given by

u̇(t) = Bu(t), t ∈ (0, tF ], u(0) = u0 (2.47)

with a nonsymmetric matrix

B = −a
h



1
−1 1

−1 1
. . . . . .

−1 1


(2.48)

Applying the EE method, the fully discrete scheme reads as

uk+1 = (I + τB)uk (2.49)

Although the system matrix B ∈ Rm×m is nonsymmetric and a defective Jordan, all eigenvalues
are real and given by the diagonal entries λi = − a

h for i = 1, . . . ,m. If the abovementioned
strategy for analysing stability is followed, the condition τλq ∈ SEE is required for all
eigenvalues of B. Therefore, the stability restriction leads to∣∣∣∣1− τa

h

∣∣∣∣ ≤ 1 ⇐⇒ 0 ≤ τa

h
≤ 2 (2.50)

and SEE contains the interval [−2, 0] on the real axis. Nonetheless, the latter condition is
wrong, since the eigenvalue examination for stability is only necessary, but not sufficient.
The problem arises from a critical property of the matrix B that is highly nonnormal. Based
on this fact, it is necessary to analyse the pseudospectrum, which is closely related to the
numerical abscissa. Using the pseudospectra, the stability requirement is given by

0 ≤ τa

h
≤ 1 (2.51)

which is smaller than (2.50) by a factor two. In other words, unlike the spectral radius the
pseudospectrum is robust to perturbations. The latter problem can be better understood if the
Euclidean norm is considered. In doing so, (2.49) is rewritten in the form

uk+1 = (I + τB)k+1u0 = R(τA)k+1u0 (2.52)

with A = I + τB, so that the following norm is analysed in more detail:∥∥∥uk+1
∥∥∥

2
=
∥∥∥R(τA)k+1u0

∥∥∥
2
≤
∥∥∥R(τA)k+1

∥∥∥
2

∥∥∥u0
∥∥∥

2
(2.53)

For 0 ≤ τa
h ≤ 2 it holds that |R(τλ)| ≤ 1 and this directly implies ‖R(τA)k+1‖2 → 0 as
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k →∞. However, stability does not imply a monotonic decrease of the solution towards zero
equilibrium. Consequently, the term ‖R(τA)k+1‖2 becomes very large before it decays to zero,
so that unacceptable error propagations produce unstable results. The transient growth in the
solution is a consequence of the nonnormality of the matrix B.

We mention that the stability requirement (2.51) can also be derived using the von Neumann
stability analysis, in which the growth rate of an initial condition in terms of a wave is analysed.

Even if the latter example has shown that the spectrum analysis with regard to highly
nonnormal matrices is only necessary. The eigenvalue analysis remains very important when
the underlying system matrix is normal or close to normal, which is the case in this thesis. Let
us therefore provide the relation between the necessary and sufficient condition for stability.

Sufficient Condition for Stability Applying the EE method to (2.36) leads to

uk+1 = (I + τL)uk = Auk (2.54)

with A = I + τL, which can be rewritten by means of

uk+1 = Auk = A2uk−1 = · · · = Ak+1u0 (2.55)

The numerical solution uk+1 should remain stable (bounded) with respect to a suitable norm
for all (bounded) initial conditions u0, expressed as∥∥∥uk+1

∥∥∥ ≤ C ∥∥∥u0
∥∥∥ (2.56)

with a positive number C independent of k, h and τ . The latter is also declared by∥∥∥uk+1
∥∥∥ ≤ KeβtF ∥∥∥u0

∥∥∥ (2.57)

with nonnegative constants K and β, meaning the numerical solution can grow as tF increases,
but not with the number of time steps used. From (2.55) it follows that∥∥∥uk+1

∥∥∥ =
∥∥∥Ak+1u0

∥∥∥ ≤ ∥∥∥Ak+1
∥∥∥ ∥∥∥u0

∥∥∥ (2.58)

so that the method is stable if the condition∥∥∥Ak+1
∥∥∥ ≤ C (2.59)

is satisfied. Using norm properties one has∥∥∥Ak+1
∥∥∥ =

∥∥∥AkA∥∥∥ ≤ ∥∥∥Ak∥∥∥ ‖A‖ ≤ · · · ≤ ‖A‖k+1 (2.60)

and the Lax-Richtmyer definition of sufficient stability is given by

‖A‖ ≤ 1 (2.61)

This condition is necessary and sufficient for the EE scheme to be stable in relation to the given
system (2.36). In fact, (2.61) holds true for all numerical one-step methods, since schemes
can be written as (2.55). For instance, the IE method takes this form with A = (I − τL)−1.
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Satisfying the condition (2.61) implies that ρ(A) ≤ 1 is also sufficient for stability, since
ρ(A) ≤ ‖A‖. Conversely, this is not valid because ρ(A) ≤ 1 can still imply ρ(A) ≤ 1 < ‖A‖,
which is often the case for nonnormal matrices. Fortunately, symmetric matrices possess the
property ρ(A) = ‖A‖2, so that an eigenvalue analysis is sufficient to ensure stability in the
Euclidean norm.

It should be noted that the latter derivation is also often discussed in the way that numerical
errors (round-off errors) should not be allowed to grow unboundedly in the course of the
computation. Let ũ0 be a perturbation of the initial vector and e = u− ũ denotes the error
associated with this perturbation. The use of (2.55) results in

ek+1 = uk+1 − ũk+1 = Ak+1(u0 − ũ0) = Ak+1e0 (2.62)

which is nothing else than the considerations already mentioned above, since∥∥∥ek+1
∥∥∥ ≤ ∥∥∥Ak+1

∥∥∥ ∥∥∥e0
∥∥∥ (2.63)

Finally, let us mention that the stability criterion (2.61) is also true for ODE systems in
the form (2.1). Applying the EE method leads to

uk+1 = (I + τL)uk + τwk = Auk + τwk (2.64)

which can be recursively represented by

uk+1 = Ak+1u0 +Akτw0 +Ak−1τw1 + · · ·+ τwk (2.65)

By using a perturbation ũ0, the same stability property as above is obtained because of

ek+1 = uk+1 − ũk+1 = Ak+1(u0 − ũ0) = Ak+1e0 (2.66)

Moreover, the stability criterion (2.61) can be weakened in some cases. For example, if the
solution of the underlying PDE increases exponentially with increasing t, as for the equation

ut = auxx + bu (2.67)

with positive constants a and b. Consequently, the necessary and sufficient condition for
stability can be specified by

‖A‖ ≤ 1 + τK (2.68)

with the positive number K independent of h and τ .

2.1.3 Stiff Problems

As we know, the EE method is only numerically stable if the time step size τ satisfies (2.42).
However, a very large negative eigenvalue λmax leads to an extremely small τ , so that a huge
number of EE iterations are required to reach the final stopping time tF . This in turn implies
high computational costs and makes the EE scheme useless in practice. In contrast, implicit
methods such as IE and CN are unconditionally stable and generally produces (qualitatively)
correct approximations for all (reasonable) time step sizes τ . Although an efficient method
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for solving very large sparse systems of linear equations is required, implicit schemes provide
a drastic improvement over the EE method.

The latter issue is related to the stiffness that typically arises in many practical problems.
Stiffness has in general no precise definition, but indicates a class of problems for which implicit
methods often perform much better than explicit methods. Let us give a characterisation of
the stiffness. We consider again the system (2.36) and assume that L ∈ Rn×n is diagonalisable
with the eigenvalues Re(λk) < 0 and the corresponding eigenvectors φk for k = 1, . . . , n. The
analytical solution u(t) = eLtu0 takes the form

u(t) =
n∑
k=1

ake
λktφk (2.69)

where ak is related to the initial condition. The property Re(λ) < 0 implies that each
component eλktφk → 0 as t→ 0. For large |Re(λk)| the corresponding term eλktφk will decay
quickly, otherwise if |Re(λk)| is small the term eλktφk decays slowly. On this basis, stiffness
is often defined in terms of the stiffness ratio:

max
∣∣Re(λ)

∣∣
min

∣∣Re(λ)
∣∣ (2.70)

which is based on the fastest and slowest eigenvalue. Nevertheless, a large stiffness ratio does
not directly imply that an ODE system is necessarily stiff. For instance, the eigenvalues of
the matrices A and Ã, which are exemplarily given by λmax = |−1000| and λmin = |−1| as
well as λ̃max = |−1| and λ̃min = |−0.001|, yield the same stiffness ratio of 1000. Although
the stiffness ratio is large, the maximum EE time step size τ̃max, which corresponds to the
relatively small λ̃max, may be reasonable for practical purpose. For this reason, a more
suitable characterisation of the stiffness is obtained from the following statement:

An ODE system is stiff if max
∣∣Re(λ)

∣∣ is large, e.g. ∣∣Re(λ)
∣∣� 1

In other words, a problem is called stiff for which explicit methods require an extremely
small time step size and are therefore extremely computationally slow, so implicit methods
are preferred to be used. This characterisation also holds for the nonlinear case in which the
eigenvalues of the Jacobian matrix J = ∂f/∂u are analysed.
Since the present thesis deals with parabolic-type PDEs, let us clarify that these model

problems belong to the class of stiff problems.

Example 2.2. As an example, we consider the one-dimensional linear heat equation

∂tu(x, t) = ∂xxu(x, t), (x, t) ∈ R× (0, tF ] (2.71)

with some given initial data u(x, 0) = g(x) and equipped with homogeneous Dirichlet conditions.
Assuming a finite number n of spatial grid points with a uniform grid width h = 1

n+1 , and
approximating the spatial derivative by means of central differences, the resulting semi-
discretised system using the MOL approach reads

u̇(t) = Lu(t), t ∈ (0, tF ], u(0) = u0 (2.72)
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with a symmetric matrix

L = 1
h2



−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2


(2.73)

The eigenvalues λk of the Laplacian matrix L ∈ Rn×n are explicitly given by

λk = − 4
h2 sin2

(
πkh

2

)
, k = 1, . . . , n (2.74)

Obviously, a large n implies that nh = n
n+1 ≈ 1 and the maximum eigenvalue in magnitude

can thus be specified as

λmax := λn = − 4
h2 sin2

(
πnh

2

)
≈ − 4

h2 (2.75)

To ensure stability the EE method must satisfy

|1 + τλmax| =
∣∣∣∣1− τ 4

h2

∣∣∣∣ ≤ 1 =⇒ τ ≤ h2

2 =: τmax (2.76)

meaning the stability requirement depends quadratically on the spatial grid size h. The
quadratic relation is also recognisable from the spectral condition number of the discrete
Laplace operator given in terms O(h−2). With a finer discretisation, the stiffness rate
therefore strives, i.e. the ODE system becomes increasingly stiff. As a consequence, the
resulting maximum EE time step size τmax leads to an unacceptable amount of effort in
practical computations.
The characterisation of moderate and high stiffness is widely used in the literature. This can

be explained in terms of the spatial grid size as follows: as shown above, the maximum time
step size (2.76) depends quadratically on h. However, if the underlying spatial discretisation
is chosen to be nonuniform, the smallest grid size hmin naturally determines the time step
size in the sense of τmax ≈

h2
min
2 . This means, in fact, that a very fine discretisation in a

small area of the computational domain leads to an extremely small time step size τmax,
while a rough discretisation in the remaining area would be sufficient. Such a case is often
referred to as high stiffness, whereas a uniform spatial discretisation (or a nonuniform with
approximately equal grid sizes) can be specified as moderate stiffness.

A-Stability and L-Stability Solving stiff problems requires the use of numerical methods
that have a very large region of absolute stability, as is the case with implicit methods.
Notably, not all implicit methods are unconditionally stable, e.g. Radau I or sometimes
called the Hammer & Hollingsworth method of order p = 3, is a counterexample. Because of
this, methods for which the stability region is unbounded, such as IE and CN, appear to be
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optimal for solving stiff problems. Unconditionally stable one-step numerical methods, for
which any time step size τ is allowed to ensure stability, belong to the class of the so-called
A-stable methods, in which the region of absolute stability S contains the entire left half-plane

S ⊇ C−
{
z ∈ C : Re(z) ≤ 0

}
(2.77)

The latter requirement is often weakened by introducing the A(α) stability with π − α ≤
arg(z) ≤ π + α so that the sectors are contained in the stability region S. This modification
can be used for many stiff problems where the eigenvalues lie far out into the left half-plane
but near the real axis. In the case of symmetric matrices in which the eigenvalues lie exactly
on the real axis, there is no reason to require that the entire left half-plane lies in the region
of absolute stability.

Although the CN method is A-stable, which is a desirable property, the scheme possesses
an undesirable feature. In fact, the stability function of the CN scheme is characterised by

R(z) = |2 + z|
|2− z| =

∣∣∣2z + 1
∣∣∣∣∣∣2z − 1
∣∣∣ → 1 for z →∞ (2.78)

In certain situations this feature has a significant influence on the quality of the approximate
solutions. Let us give a short explanation using an example.

Example 2.3. Again we consider the system (2.36) with the eigenvalues λk and the cor-
responding eigenvectors φk for k = 1, . . . , n. Rewriting the initial condition as a linear
combination of the L2-normalised eigenvectors of L gives

u0 =
n∑
k=1

αkφk, αk ∈ R (2.79)

and applying the CN method the solution can be expressed as

um =
n∑
k=1

αk

1 + τλk
2

1− τλk
2

mφk (2.80)

If R(τλk) is close to -1, the associated component αkφk of the initial condition is roughly
retained, but with a changing sign. This is particularly noticeable in the case of initial
conditions with discontinuities, since such discontinuities (high frequencies) are preserved
by the oscillation and are distorted instead of damped. In order to avoid such problems in
connection with discontinuous initial conditions, the time step size of the CN method must
therefore be chosen to be sufficiently small.

In contrast, the stability function for the IE method is specified by

R(z) = 1
|1− z| → 0 for z →∞ (2.81)

so that high frequencies are damped independently of R(τλk), and without producing
oscillations. Furthermore, (2.81) shows that the higher the frequency, the stronger the
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damping. One-step numerical methods with a stronger stability (damping) property are
referred to as L-stable, if they are A-stable and if their stability function fulfils

lim
z→∞

∣∣R(z)
∣∣ = 0 (2.82)

Some authors denote L-stable methods as strongly A-stable. Let us stress that L-stability
(strong A-stability) is a favourable property for solving parabolic-type PDEs.

While conventional implicit methods appear optimal for large stiff problems, in Chapter 3
we will point out a special class of explicit methods (explicit RK-Chebyshev methods) for
solving moderately stiff problems.

2.1.4 Explicit Runge-Kutta Methods

The EE method suffers from stability requirements on the time step size, especially in the
case of stiff problems. Hence, it might be interesting to investigate higher order explicit
schemes and their region of absolute stability. The following short introduction forms the
basis for the numerical methods introduced as well as for the fast explicit methods which we
consider in more detail in Chapter 3.
The EE, IE and CN schemes belong to the famous class of RK methods. The RK

methods are a family of explicit and implicit methods and were developed by Carl Runge
and Wilhelm Kutta around 1900. The basic idea is that the new approximation un+1 at
time tn+1 is computed by un at time tn and intermediate approximations uni ≈ u(tn + ciτ)
with i = 1, . . . , s, where s is the number of stages. The use of intermediate stages leads
to methods with higher order accuracy, but also to higher computational costs due to the
increase of function evaluations. In order to briefly describe the basic idea of the RK methods,
in particular for the explicit case, we start with an introductory example and consider the
semi-discretised system

u̇(t) = f
(
t,u(t)

)
, u(t0) = u0 (2.83)

The application of the fundamental theorem of calculus over [t0, t1] leads to

u(t1) = u0 +
t1∫
t0

f
(
t,u(t)

)
dt (2.84)

The integral can then be approximated, e.g. using the midpoint rule such that

u1 := u(t1) ≈ u0 + τf

(
t0 + t1

2 ,u

(
t0 + t1

2

))
(2.85)

with τ = t1 − t0 and for which the vector u( t0+t1
2 ) is unknown. With the Taylor expansion

u

(
t0 + t1

2

)
= u(t0) + τ

2 u̇(t) +O
(
τ2
)

(2.86)

the unknown u( t0+t1
2 ) can approximated by a small EE step

u

(
t0 + t1

2

)
≈ u(t0) + τ

2f
(
t0,u (t0)

)
(2.87)

28



2.1 Time Integration Methods

Finally, the approximation at time t1 is given by

u(t1) ≈ u0 + τf

(
t0 + τ

2 ,u
0 + τ

2f
(
t0,u

0
))

(2.88)

which can also be rewritten as

k1 = f
(
t0,u

0
)

k2 = f

(
t0 + τ

2 ,u
0 + τ

2k1

)
u1 = u0 + τk2

(2.89)

with the associated stages k1 and k2. Based on the fact that the stage k2 is computed with
only a half Euler step, the approximate solution u1 has a smaller error compared to the EE
method. In other words, the consistency order of the midpoint method is of order two. An
alternative way of determining the order of accuracy is to analyse the condition (2.31) using
the Dahlquist test equation. The corresponding stability function can be obtained by

un+1 = un + z

(
un + z

2u
n
)

= un + zun + z2

2 u
n

=
(

1 + z + z2

2

)
un = R(z)un = ezun +O

(
z3
)

(2.90)

with z = τλ. By using more accurate quadrature formulas, the number of stages can be
increased and thus higher order schemes are derived. In particular, an s-stage explicit RK
method for (2.83) has the form:

k1 = f
(
t0,u

0
)

k2 = f
(
t0 + c2τ,u

0 + τa21k1
)

k3 = f
(
t0 + c3τ,u

0 + τ (a31k1 + a32k2)
)

...

ks = f

t0 + csτ,u
0 + τ

s−1∑
i=1

(asiki)


u1 = u0 + τ

s∑
i=1

biki

(2.91)

with s the number of stages and a21, a31, a32, . . . , as1, as2, . . . , as,s−1, b1, . . . , bs, c2, . . . , cs be
real coefficients. Usually, for consistency the coefficients require the conditions

i−1∑
j=1

aij = ci, i = 2, . . . , s

s∑
j=1

bj = 1
(2.92)
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Note that these coefficients are often linked to the well-known Butcher tableau. An equivalent
definition of the explicit RK method (2.91) is specified in a more general form

y0 = un

yj = un + τ
j−1∑
l=0

ajlf(tn + clτ,yl), 1 ≤ j ≤ s

un+1 = ys

(2.93)

with the time step size τ = tn+1 − tn and the intermediate solutions yj at stages j.
Classic examples of explicit RK methods are for instance the first order EE method, the

second order midpoint method, the third order Heun method and the original fourth order
RK method. As exemplarily shown in (2.90), the stability function of an explicit RK method
is always a polynomial:

Theorem 2.1 ( [120]). If the explicit RK method is of order p, then

R(z) = 1 + z + z2

2! + · · ·+ zp

p! +O
(
zp+1

)
(2.94)

Obviously, explicit RK methods can never be A-stable (2.77). Analysing the real interval
of absolute stability using the stability function (2.94) for p = 1, 2, 3, 4 gives

I =


[−2, 0], for p = 1
[−2, 0], for p = 2
[−2.51, 0], for p = 3
[−2.78, 0], for p = 4

(2.95)

The latter indicates that one-step explicit RK methods are generally only practicable for
nonstiff initial value problems.
In contrast, for an s-stage implicit RK method, the stability function R(z) becomes a

rational function with numerator and denominator polynomials of degree ≤ s, represented by

R(z) = P (z)
Q(z) (2.96)

For most implicit methods the degree of the denominator polynomial is greater than or equal
to the degree of the numerator polynomial, so at least A-stability is guaranteed.

2.1.5 Alternative Numerical Methods
There are dozens of numerical methods for solving ODE systems, with each method has
advantages and disadvantages and is often used to solve a specific class of problem. Let us
give a brief overview of other common numerical methods that are generally unsuitable for
our purposes.

Extrapolation Methods Another technique for obtaining higher order accuracy is based
on the idea of extrapolation. This approach is often closely related to the Richardson
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extrapolation and includes the Romberg integration to solve ODEs. Since this class of
methods only constructs a higher accuracy rather than a computational speed-up, the
extrapolation of explicit methods is usually employed to solve nonstiff ODEs. We will
describe this approach in more detail later, especially when considering higher order fast
explicit diffusion methods, see Section 3.4.5.

Splitting Methods A widespread class of numerical integration schemes are the splitting
methods, whereby this technique can basically be divided into two classes. First, the splitting
of a mixed PDE, for example of the parabolic-convection type, in which diffusive and
convective forces are considered as two separate sub-problems, and second the splitting of a
pure multi-dimensional PDE into a sum of one-dimensional problems. The latter splitting
technique, known as dimensional splitting, is of more relevant in our setting as the underlying
problems in this work are of the pure type.
In this context, efficient numerical schemes are the alternating direction implicit (ADI)

method first proposed by Peaceman and Rachford, or additive and multiplicative operator
splitting schemes, where the latter schemes are often applied in image processing, e.g. for
nonlinear diffusion [21, 296, 297] or linear osmosis filtering [53, 206]. Such methods remain
implicit by their construction so that again large sparse systems of linear equations have
to be solved. Fortunately, the resulting systems are tridiagonal and allow the use of highly
efficient Gaussian elimination algorithms. Nevertheless, operator splitting methods need
to be handled more carefully when considering more complex (time-dependent) boundary
conditions or nonrectangular/unstructured grids. Another delicate issue is that undesirable
splitting errors normally occur, which can have a strong influence on the numerical solution.
To overcome this problem, the time step size must often be reduced significantly. As a
consequence, a greater number of iterations are required to reach the stopping time, which is
directly linked to the efficiency of these methods. We are going into more detail about the
operator splitting methods in Chapter 7.

Multi-Step Methods There is also another class, namely multi-step methods, that use
several previous solutions to compute the numerical solution at the current time step. Based
on the nature of multi-step methods, they can be computationally more efficient when
higher order schemes are applied, as fewer calculations are needed to produce the same order
compared to one-step methods. A common and effective representative of multi-step methods
is the implicit backward differentiation formula method. However, higher order schemes are
generally only better suited for smaller time step sizes τ , so their use is directly linked to
high effort when solving large sparse linear systems.
Let us emphasise that there exists even an explicit unconditionally stable method, the

DuFort-Frankel scheme. On closer examination, it can be analysed that this method is not
necessarily consistent (only conditionally consistent) with the underlying differential equation.
Therefore, the DuFort-Frankel scheme only converges to the solution if τ

h2 → 0, more precisely,
an accurate solution is only obtained if τ � h.

Since we deal with linear parabolic model problems coupled with large stopping times, in
general only low order (first or second order) accurate methods are of interest. Consequently,
we do not consider multi-step methods in this thesis.
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2.1.6 Summary

In general, schemes for the temporal integration of semi-discretised ODE systems can be
broadly categorised into explicit and implicit methods. Explicit schemes are very easy to
implement and well-suited for parallelisation on GPUs. In order to ensure the required
numerical stability, however, they have severe time step size restrictions. In simple terms,
explicit methods are always conditionally stable, where a too large time step size leading to a
significant numerical error. Hence, stiff problems require a huge number of explicit steps to
reach the desired stopping time of the underlying physical process, and this usually makes
explicit methods unsuitable for practical purposes.
In contrast, most implicit schemes possess stability regions that contain the entire left

half-plane (unconditionally stable) and provide accurate enough approximate solutions for a
reasonable time step size. Because of this, implicit methods are often considered to be the
best choice for solving stiff problems, which are typically arise from semi-discretised parabolic
or hyperbolic-parabolic equations. Nonetheless, the beneficial stability properties come at the
expense of solving large sparse (non)linear systems at each time level. This is known to be
computationally intensive, requires large memory space, and the underlying solution process
is also more difficult to parallelise. Moreover, especially in the case of very large systems for
which iterative methods are generally applied, several parameters must be taken into account
that make implicit schemes more parameter-sensitive.

2.2 Solution of Sparse Systems of Linear Equations

As described in the last section, implicit methods such as the IE method (2.8) and the CN
method (2.10) are unconditionally stable, but require the solution of a large sparse system of
linear equations given by

Ax = b (2.97)

with a large sparse matrix A ∈ Rn×n, a right-hand side b ∈ Rn and a solution vector x ∈ Rn
at each time level. For this reason, the application of time integration methods leads to
a new nonnegligible challenge, namely solving a system of linear equations with multiple
right-hand sides. Dealing with large sparse systems implies two main issues: the accuracy of
the solution and the computational efficiency of the numerical solver used. Consequently, the
main component for efficient algorithms is a fast procedure to solve linear systems multiple
times. There are several numerical solvers for solving linear systems, which have different
advantages in terms of computational effort and accuracy of the computed solution, but also
in their use and implementation. In general, sparse direct and sparse iterative methods are
the most common solvers to compute the solution of linear systems. However, the correct
choice of the solver still strongly depends on the model problem considered.

The use of sparse direct solvers, developed on the basis of Gaussian elimination, computes
highly accurate solutions and is generally predestined for solving a linear system with
multiple right-hand sides. In this case, the underlying matrix will be factorised once only,
and subsequently the system is solved for each right-hand side by forward and backward
substitution. Nevertheless, this type of solver can cause high memory and computational
costs, and appears to be rather impractical for very large systems due to the use of a complete
factorisation. In contrast, sparse iterative methods are naturally not tweaked for extremely
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high accuracy, but are very fast in computing approximate solutions. These methods are
based on sparse matrix-vector multiplications and require less memory space, and are thus
inherently attractive candidates for solving very large systems of linear equations. Although
iterative solvers are characterised by low algorithmic complexity, their run time depends
on the data, size, sparsity and accuracy required, making these methods a tool that is not
straightforward to use.
In the following we describe sparse direct and sparse iterative solvers in more detail.

Further information on the efficient solution of general large linear systems can be found in
the works [104,181].

Sparse Direct Methods Two classical approaches to compute the solution of (2.97) are
based on the explicit computation of the inverse or the determinant of A. Assuming that
the inverse of A exists, the solution is simply given by x = A−1b. Otherwise, according to
Cramer’s rule, the solution reads as

xi = det(Ai)
det(A) , i = 1, . . . , n (2.98)

where Ai are the matrices that result from A by substituting the i-th column with the right-
hand side b. While both approaches may seem practical, their use is normally impossible.

In general, direct methods refer to Gaussian elimination and the lower-upper (LU) factorisa-
tion, and its modifications and extensions. In simple terms, the classic Gaussian elimination
transforms the original system (2.97) into an equivalent upper triangular system Ux = y
which can easily be solved for x. This approach is not applied directly for each right-hand
side, but rather the Gaussian elimination is employed as LU factorisation, in which a lower
triangular matrix is also constructed within the first elimination algorithm. In fact, the given
matrix A is factorised by lower and upper triangular n× n matrices L and U , respectively,
into A = LU . Subsequently, the solution x can be computed highly efficiently from the right
hand side b by first solving Ly = b for y, and then Ux = y for x. The latter procedure is
known as forward and backward substitution. In the special case of a symmetric and positive
definite matrix A, which often arises in connection with the Laplace operator ∆, the so-called
Cholesky factorisation A = CC> with a lower triangular matrix C is mainly used. As a result,
the LU factorisation can be avoided that causes higher CPU time and memory requirements.
In addition, it is known that the Cholesky factorisation is numerically very robust due to the
advantageous properties of symmetric structures.
Although factorisation is a straightforward process from a theoretical point of view, the

factors usually do not preserve the sparsity even if the matrix A is sparse. Thus, the main
objective is to determine the factorisation in an efficient manner so that the factors are close
to being optimally sparse. This task is not trivial and includes the importance of bandwith
minimisation and reordering, control fill-in strategies and the connections to graph theory. In
this regard, a good knowledge of techniques from numerical linear algebra, graph algorithms
and permutations is required. We refer the reader to [47,73,75,104,181] and the reference
therein for more details on sparse direct methods.

Overall, direct methods are a powerful tool and theoretically provide the exact solution if
rounding errors that typically occur in computational practice are neglected. In the case of
very large linear systems, however, the complete factorisation is associated with a high level of
computation and storage complexity and leads to the impracticability of the direct methods
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in practice. Because of this, cheaper iterative methods are becoming a viable alternative and
are commonly used.

Sparse Iterative Methods The general idea of iterative methods is to successively compute
a sequence of approximate solutions {xk}, starting from a given initial x0, which converges
to x = A−1b, i.e.

x0,x1, . . . ,xk
k→∞−→ x ∈ Rn : Ax = b (2.99)

Typically, effective iterative methods are based on matrix-vector multiplications, which are
a relatively cheap process from a computational point of view, and that is exactly what
makes this framework highly attractive when the underlying matrix A is large and sparse. In
connection with the procedure (2.99), important issues arise such as the rate of convergence,
the computational effort per iteration, the memory requirement, the error control and the
construction principles of the iterative process.

In general, there are three types of iterative methods: splitting methods, Krylov subspace
methods and multigrid methods. Splitting methods such as the Jacobi method, the Gauss-
Seidel method or the relaxation methods are the simplest and most classic iterative methods.
These types of methods are usually only of theoretical significance in modern scientific
computing because their rate of convergence is very slow. Therefore, Krylov subspace
methods and multigrid methods are frequently applied due to their powerful performance.
For a more detailed insight into iterative methods we refer to [22,104,145,178,181,238].

Based on the fact that a large class of standard problems related to the Laplace operator
often leads to sparse, symmetric and positive definite matrices, we further focus on this
class since exploiting its special structure enables a numerically robust and efficient solution.
In this situation, the conjugate gradient (CG) method [128] is best suited, as it provides
fast convergence with monotonically decreasing error and is generally the most efficient and
numerically robust scheme. In what follows, we present the basic theory and discuss the
practical implementation that sheds light on the behaviour of the CG method, which is one
of the most popular methods in numerical linear algebra.

2.2.1 Conjugate Gradient Method

A particular class of iterative solvers designed for use with large sparse linear systems is the
class of Krylov subspace solvers. The main idea behind the Krylov approach is to search for
an approximate solution of (2.97) in a suitable low-dimensional subspace Rl of Rn that is
constructed iteratively with l being the number of iterates. The aim in the construction is to
have a good representation of the solution after a few iterates. It should be noted that this
construction is often not directly visible in the formulation of a Krylov subspace method.
The well-known CG method of Hestenes and Stiefel [128] is probably the most famous

Krylov subspace method and a widely used iterative solver for problems with large, sparse
symmetric and positive definite matrices. For the CG method it can be shown that the
approximate solutions xl of (2.97) are optimal in a sense as they minimise the so-called
energy norm of the error vector [181]. In other words, the CG method gives in the l-th
iteration the best solution available in the generated subspace. Since the dimension of the
Krylov subspace is increased in each iteration, theoretical convergence is achieved at latest
after the n-th step of the method if the sought solution is in Rn.
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The derivation of the CG method is basically connected with a projection method or the
minimisation of an optimisation problem. Let us describe both viewpoints in some detail.

Projection Method The basic task of a projection method is to seek for an approximate
solution xm to (2.97) from an m-dimensional subspace Km ⊂ Rn, so that the so-called
residual vector

rm = b−Axm (2.100)

is orthogonal to another m-dimensional subspace Lm ⊂ Rn, i.e.

w>rm = w>(b−Axm) = 0 ←→ w> ⊥ rm, ∀w ∈ Lm (2.101)

and thus makes use of an orthogonality condition. Assuming that an initial vector x0 for x
is given, the solution then lies in the space x0 +Km, more precisely, it holds xm = x0 + d
with some vector d in Km. In simple terms, the problem is to find xm ∈ x0 +Km such that

w>rm = w>(b−A(x0 + d)) = w>(r0 −Ad) = 0, ∀w ∈ Lm (2.102)

with an initial residual r0 = b−Ax0. Suppose now V = [v1, . . . , vm] and W = [w1, . . . , wm]
are two matrices of size n ×m whose columns form a basis for Km and Lm, respectively.
Then, the approximate solution can be written as xm = x0 +d = x0 +V y with some y ∈ Rm,
and the orthogonality implies that

w>(r0 −AV y) = 0, ∀w ∈ Lm (2.103)

which is equivalent to

W>(r0 −AV y) = 0 ←→ W>AV y = W>r0 (2.104)

Finally, assuming the inverse of W>AV exists, the approximate solution reads

xm = x0 + d = x0 + V y = x0 + V
(
W>AV

)−1
W>r0 (2.105)

If Km = Lm, the projection is orthogonal, otherwise for Km 6= Lm the projection method
is called skewed. In practice, (2.105) is iterated such that a new pair of subspaces Km and
Lm is used in each iteration, with the initial x0 equal to the approximate solution from the
previous iterate.
The iterative methods for sparse linear systems use the projection onto so-called Krylov

subspaces, where the m-th Krylov subspace Km(A,v) ⊂ Rn is defined by

Km := Km(A,v) = span
(
v, Av, A2v, . . . , Am−1v

)
(2.106)

In fact, the Krylov subspace Km is generated by the matrix A and the vector v. On closer
inspection, the procedure (2.106) is nothing else than an algorithm to increase successively
the dimension of Km. By combining the projection method (2.105) with the Krylov subspaces,
the CG method can finally be derived. In this case, an orthogonal projection with Lm =
Km = Km(A, r0) is used. In particular, this means Km is generated from an initial residual
vector r0 = b − Ax0 by successive cheap multiplications with the sparse matrix A. The
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nature of an iterative Krylov subspace method is that the computed approximate solution xm
belongs to x0 +Km(A, r0), which means that it is determined by the m-th Krylov subspace.
Thereby, the index m is also the m-th iteration of the iterative scheme.

In general, Krylov subspace methods are often derived by reformulating (2.97) as a
minimisation problem. In the case of the CG scheme, the construction combines the method
of steepest descent with the method of conjugate directions.

Optimisation Problem The basis for the derivation of the CG method is based on the fact
that for such a matrix the solution of Ax = b is exactly the minimum of the quadratic form

F (x) = 1
2〈x, Ax〉2 − 〈b,x〉2 (2.107)

since for a minimiser it holds that

∇F (x) = 1
2(A+A>)x− b = Ax− b != 0 ⇐⇒ Ax = b (2.108)

Here, 〈·, ·〉2 means the Euclidean scalar product. In other words, the minimum x? of F
in (2.107) solves the linear system Ax? = b. The equivalence (2.108) is always true if A
is symmetric and positive definite, since F is convex. Moreover, the solution vector that
satisfies (2.108) is unique. Let us mention that the quadratic form in (2.107) is often referred
to as the energy functional.

Thus, if xm is an approximate minimiser of F , then xm can be understood as an approximate
solution to Ax = b. More precisely, let ‖·‖A be the A-norm given by ‖y‖A :=

√
y>Ay.

Because of

F (xm) = 1
2x
>Ax− b>x = 1

2(xm − x?)>A(xm − x?)−
1
2b
>A−1b (2.109)

and F (x?) = −1
2b
>A−1b, it follows that

F (xm) = 1
2‖xm − x

?‖2A + F (x?) (2.110)

Consequently, an algorithm that generates a sequence of even better approximate minimisers
for F , at the same time produces even better approximate solutions to Ax = b with respect
to the A-norm.

These observations now imply the aim of minimising F successively, starting from some point
x ∈ Rn and along specific directions p ∈ Rn. In doing so, the function fx,p(d) = F (x+ dp)
is defined for x,p and the following proposition holds:

Proposition 2.1 ( [178]). Let the matrix A ∈ Rn×n be symmetric and positive definite and
the vectors x,p ∈ Rn, with p 6= 0, given. The global minimum of fx,p, i.e. the minimum of
F , starting in x and searching along x+ dp, is given by

dopt = 〈r,p〉2
〈Ap,p〉2

(2.111)

where r = b−Ax.
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As a result, for a sequence {pm} with pm 6= 0 and given x0, the algorithm with three
calculations in each iteration reads:

rm = b−Axm, dm = 〈rm,pm〉2
〈Apm,pm〉2

, xm+1 = xm + dmpm, m = 0, 1, . . . (2.112)

Obviously, a calculation rule is still required for the search directions {pm}. Furthermore,
without loss of generality it is assumed ‖pm‖2 = 1. The local optimal search direction is then
defined via the downhill direction. Using

∇F (x) = Ax− b = −r (2.113)

the well-known direction of steepest descent −∇F (x) at x is obtained as

p̃m = −∇F (xm) = rm (2.114)

with additional normalisation
pm = p̃m

‖p̃m‖2
= rm
‖rm‖2

(2.115)

Thus, the residual vectors define the search directions. Let us mention that the latter
construction is often called the method of steepest descent.

The use of the negative gradient direction is cheap to compute and extremely advantageous.
Nevertheless, this procedure causes a natural weakness, namely the typical zig-zagging
behaviour of the method. This means that the directions of the negative gradient can oscillate
rapidly during the gradient descent process and often producing zigzag paths, so a large
amount of iterations are needed to reach a near minimiser. The reason for this is that
previously used search directions p0, . . . ,pm−1 are neglected and are not considered in the
current search direction pm. For this reason, the CG method has to be modified in such a
way that the successive minimisation is performed along a set of linearly independent search
directions {pm}, so that

{xm} = argmin
{
F (x)

∣∣∣x ∈ x0 + span {p0, . . . ,pm}
}

(2.116)

To be more precise, the method of steepest descent gives an orthogonal projection with
K = L = span{rm−1} in each iteration. However, an optimality of the iterates with respect to
the entire subspace U = span{r0, . . . , rm−1} would be desirable, since for linearly independent
residual vectors the exact solution x? is found after at most n iterations if rounding errors
are neglected.

On this basis, the procedure can be generalised by extending the optimality of the approx-
imations xm onto the entire subspace Um = span{p0, . . . ,pm−1} with linearly independent
search directions. This optimality can be specified as follows: for F as in (2.107), x ∈ Rn is
optimal, first with respect to p ∈ Rn\{0}, if

F (x) ≤ F (x+ dp), ∀d ∈ R (2.117)

and second with respect to the subspace U ⊂ Rn, if

F (x) ≤ F (x+ ξ), ∀ξ ∈ U (2.118)
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The following can be shown:

Proposition 2.2 ( [178]). For F as in (2.107), x ∈ Rn is optimal with respect to U ⊂ Rn, if

r = b−Ax ⊥ U (2.119)

holds.

For the definition of a constructive procedure, first the question arises about the dimension
of U . In simple terms, a collection of search directions p0, . . . ,pm−1 should ensure to span
an m-dimensional subspace of Rn, so that

dimUm = m for Um = span{p0, . . . ,pm−1} (2.120)

This can be ensured, if the search directions are pairwise conjugate or A-orthogonal:

〈pi,pj〉A := 〈Api,pj〉2 = 0, ∀i, j ∈ {0, . . . ,m− 1}, i 6= j (2.121)

Using the A-orthogonality the following proposition holds:

Proposition 2.3 ( [178]). For a symmetric and positive definite matrix A ∈ Rn×n and search
directions p0, . . . ,pm−1 ∈ Rn\{0} pairwise A-orthogonal, then

dim(span{p0, . . . ,pm−1}) = m (2.122)

Let p0, . . . ,pm−1 ∈ Rn\{0} be pairwise conjugate search directions and xm be optimal
with respect to Um. Then the optimality of xm+1 = xm + dpm with respect to Um+1 for
j = 0, . . . ,m using (2.119) and (2.121) is obtained by

0 = 〈b−Axm+1,pj〉2 = 〈b−Axm,pj〉2︸ ︷︷ ︸
=0 for j 6=m

+d 〈Apm,pj〉2︸ ︷︷ ︸
=0 for j 6=m

(2.123)

Moreover, the representation for d yields

d = 〈rm,pm〉2
〈Apm,pm〉2

(2.124)

The resulting algorithm for given x0, r0 = b−Ax0 and m = 0, 1, . . . , n− 1, where {pm} is
still to be determined, results in:

dm = 〈rm,pm〉2
〈Apm,pm〉2

, xm+1 = xm + dmpm, rm+1 = rm − dmApm (2.125)

The current residual within the algorithm (2.125) results from

rm+1 = b−Axm+1 = b−A(xm + dmpm) = b−Axm −Admpm = rm − dmApm (2.126)

We emphasise that the latter construction is often called the method of conjugate directions.
Finally, as indicated earlier, the CG method [128] combines the method of steepest descent

with the method of conjugate directions. To this end, the following ansatz is used with the
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residual vectors as search directions:

p0 = r0, pm = rm +
m−1∑
j=0

αjpj (2.127)

For αj = 0, the method of steepest descent is recovered. Let now the αj ’s, m degrees of
freedom for ensuring A-orthogonality, then with (2.127) this implies

0 = 〈Apm,pi〉2 = 〈Arm,pi〉2 +
m−1∑
j=0

αj〈Apj ,pi〉2 (2.128)

for i = 0, . . . ,m− 1. With 〈Apj ,pi〉2 = 0 for i, j ∈ {0, . . . ,m− 1} and i 6= j it follows that

αi = −〈Arm,pi〉2
〈Api,pi〉2

(2.129)

Although all building blocks are now available, the representation (2.127) leads to inefficient
computations of the current pm and the storage of all the search directions is required.
This problem can be tackled with the A-orthogonality and some mathematical expressions
(see [178]) using the simplified formula

pm = rm −
〈Arm,pm−1〉2
〈Apm−1,pm−1〉2

pm−1 = rm + 〈rm, rm〉2
〈rm−1, rm−1〉2

pm−1 (2.130)

More precisely, each new conjugate vector pm can only be computed using the previous vector
pm−1 and is still automatically conjugate to all the other previously computed vectors.

In total, the storage costs are cheap and independent of the number of iterations performed,
moreover, only one sparse matrix-vector multiplication per iteration is needed. The final CG
algorithm is shown in Figure 2.2. In theory, the CG method converges to the exact solution
after at most n iterations, since the Krylov subspace spans the entire space Rn. In practice,
however, this cannot hold due to the finite precision of computer arithmetic and rounding
errors that occur.

Of course, it is desirable to terminate the CG algorithm long before k approaches n. Finally,
let us consider the efficiency of the CG method which depends on the so-called condition
number, which for a regular matrix A is defined as

conda := ‖A‖a‖A−1‖a (2.131)

where
‖A‖a := sup

‖x‖a=1
‖Ax‖a (2.132)

is the matrix norm induced by the vector norm ‖·‖a. For the CG method one can show the
following convergence statement on the basis of the condition number of the system matrix
using the A-norm:

Theorem 2.2 ( [178]). Let the matrix A ∈ Rn×n be symmetric and positive definite and let
{xm}m∈N0 be the sequence of approximated solutions generated by the CG method. Then the
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corresponding error vector em = xm −A−1b satisfies the inequality

‖em‖A ≤ 2
(√

cond2(A)− 1√
cond2(A) + 1

)m
‖e0‖A (2.133)

The latter indicates a weakness as the upper error bound depends on the condition
number of A. More precisely, if discretised parabolic PDEs are considered, the inequality
cond(A) ≤ O(h−2) with the minimum grid size h holds. Consequently, with small h the
quotient (

√
cond2(A)−1)/(

√
cond2(A)+1) is close to unity, with end up that no convergence

is achieved from a theoretical point of view. This observation gives no hope for an early
termination of the algorithm in practice. Fortunately, this problem can be overcome by
proper so-called preconditioning, which is a way to induce rapid convergence. We are going
into this in the next Section. First, let us turn to some computational details about using
the CG method in practice.

Computational Aspects Although the theory presented above is generally based on the
symmetry and positive definiteness of A, the CG method is also applicable even if the matrix
A is just positive semi-definite, but there is no guarantee that Ax = b will be solved. The
positive definiteness is important for avoiding division by zero within the CG algorithm.

Algorithm 2.1 Conjugate gradient method

Input: Matrix A ∈ Rn×n; right-hand side b ∈ Rn; initial vector x0 ∈ Rn

Output: Approximate solution for Ax = b

1.) p0 := r0 = b−Ax0, α0 = ‖r0‖22

2.) Iterate for m = 0, 1, . . . , n− 1

a) If αm 6= 0 proceed, else STOP

b) vm = Apm, dm = αm
〈vm,pm〉2

c) xm+1 = xm + dmpm

d) rm+1 = rm − dmvm

e) αm+1 = ‖rm+1‖22

f) pm+1 = rm+1 + αm+1
αm

pm

Figure 2.2: The CG scheme as an orthogonal Krylov subspace method for computing an
approximate solution to Ax = b. The basic algorithm stops, if rm = 0. Overall, the CG
algorithm is cheap both in terms of computational complexity and memory requirements,
since it only requires one sparse matrix-vector multiplication per iteration and storage of
four vectors.
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However, if A is only positive semi-definite, it may happen that a restart with a different
initialisation is necessary due to breakdowns. Apart from that, CG can also be practically
used for slightly nonsymmetric matrices, see [255].
Another aspect is the termination of the CG method, as illustrated in Algorithm 2.1. Of

course, the CG algorithm will not run until the exact solution has been found, so that the
choice αm 6= 0 must be clarified. Since the error vector em = xm −A−1b is not available, it
makes sense to have a termination criterion based on ‖rm‖. In a practical setting, the norm
of the residual vector rm = b−Axm usually serves as a measure for the quality of xm. One
reason for this is that rm = 0 implies xm = x with Ax = b. Therefore, most of the iterative
methods terminate when the residual is sufficiently small. One termination criterion is

‖rk‖
‖r0‖

≤ ε (2.134)

since for an iterative scheme in the k-th iteration the following condition holds:

‖ek‖
‖e0‖

≤ cond(A)‖rk‖
‖r0‖

(2.135)

Obviously, the norm of rk is only really meaningful for small condition numbers. Since for a
larger value cond(A), even small values ‖rk‖ does not show that xk is a good approximate of
x as cond(A)‖rk‖‖r0‖−1 can be considerably large. The latter fact together with (2.133) also
indicates another issue of iterative methods. A typical problem with these methods is that
their convergence becomes slower for larger time step sizes τ , as we might recall, A := I − τL
for the IE method, because the condition number of the system matrix A increases. As a
consequence, the time step size chosen within the implicit scheme has a direct impact on
the convergence and termination of the CG algorithm. This highlights a difference to the
direct methods, which can be understood to be independent on the time step size within the
forward and backward solution procedure.

The termination criterion (2.134) depends on the initial iterate r0 = b−Ax0. On the one
hand, this can lead to unnecessary work if the initial iterate is good, otherwise to a worse
approximation if the initial iterate is far from the solution. Because of this, the general
stopping criterion is normally based on the relative residual :

‖rk‖2
‖b‖2

≤ ε (2.136)

Both conditions (2.134) and (2.136) are equal if x0 = 0, which is a common choice. At
this point it should be emphasised that the reduction in ‖r‖2 does not necessarily decrease
monotonically in general, unlike the energy norm of the error vector, i.e. ‖e‖A, see [145, 166].
As mentioned earlier, the convergence of the CG scheme is only theoretically monotonic
with respect to the A-norm as the iteration progresses. However, it has been shown that the
relative residual is almost monotone in both the A-norm and the Euclidean norm, see the
work [292].

One of the main advantages of the relative residual (2.136) is its easy and cheap computation.
Another still user-defined parameter is the tolerance ε, for which no a priori optimal selection is
known and which directly influences the convergence rate of the method and the corresponding
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approximate solution. Increasing ε naturally leads to faster computations, but slightly worse
results and vice versa. Typically, ε = 10−6 is used, nevertheless the selected value depends
on the model problem being solved. Some previous works [16,17] built upon the discretised
linear Laplace operator verified a favourable acceptance range of ε ∈ [10−5, 10−3].

Besides a well-chosen tolerance ε, the Krylov subspace solver may be accelerated once more
by using an appropriate initialisation instead of the typical choice x0 = 0. In other words, a
useful observation on the Krylov subspace methods is that they can obviously benefit a lot
from a good educated guess of the solution which could be used as the initial iterate x0 for
the CG algorithm. Thus, the initial can be considered as another degree of freedom of the
method, which can have an important influence on the rate of convergence. That a suitable
initialisation can be computationally advantageous is shown, e.g. in [16] in the context of
surface normal integration by solving a discrete Poisson equation. We will take a closer look
at this aspect in Chapters 6 and 7.
Overall, the CG method is easy to implement and a cheap procedure in terms of compu-

tational complexity and memory requirement. As stated above, there are various problems
that make a reliable and efficient application of the method not straightforward. In general,
a practical solution can be reached after a small number l of iterations, resulting in a quick
termination of the CG method. In practice, however, numerical rounding errors occur and
one may suffer from convergence problems for very large systems. Suitable preconditioning is
therefore recommended in order to enforce all the beneficial properties of the algorithm along
with fast convergence at higher resolutions. Preconditioning is a very complex topic with
decades of research, for an excellent survey we refer the reader to [42].

Other Krylov Subspace Methods for Regular Matrices As explained previously, the CG
method is theoretically limited to the solution of linear systems Ax = b with underlying
symmetric and positive definite matrix A. In the context of complex applications, it is often
impossible to make statements about the properties of the systems that arise. Even for
basic model problems such as the convection-diffusion equation, the symmetry of the matrix
cannot be guaranteed, as in a similar case in Chapter 7. Consequently, other Krylov subspace
methods must be applied which, apart from the regularity of the matrix, initially do not
require further requirements for the linear system.
Clearly, all linear problems Ax = b with regular matrix A can be translated into a

linear system with symmetric and positive definite matrix using the normal equations
A>Ax = A>b. Unfortunately, it is known that the condition number increases quadratically,
since cond2(A>A) = cond2(A)2 and thus the normal equation ansatz is in general a bad idea.

There are many other Krylov subspace methods for solving general linear systems, assuming
the system matrix being invertible. One popular Krylov solver is the GMRES method which
was developed by Saad and Schultz in 1986. As with CG, the GMRES method is based on
the minimisation approach (least squares problem) and does not require the computation of
the action of A> on a vector. In the procedure the residual is constructed in such a way that
it is explicitly minimised over the Krylov subspace in each iteration. As a consequence, large
memory is required, so it is usually proposed to restart the algorithm in practice. It should
be mentioned that methods based on short-term recurrences such as CG and which also fulfil
the minimisation principle cannot be constructed for general matrices.
To overcome this problem, but simultaneously possess the favourable properties such
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as matrix-vector multiplications and modest memory space independent of the number of
iterations needed, one must therefore deviate from the ideal. In particular, such meth-
ods use the residual of the original system to control the termination. The first such
method was BICG developed by Fletcher in 1975, which stems from choosing Lm = K>m =
span{r0, A

>r0, . . . , (A>)m−1r0}. To avoid multiplications with A> in BICG, the CGS method
was proposed. On this basis, the biconjugate gradient stabilized (BiCGSTAB) method was
developed that attempts to smooth the convergence of CGS. All of these methods mentioned
are computationally cheap, but their convergence oscillates and a breakdown often occurs.
This should be carefully handled with this possibility in mind. Usually, once breakdown
has occurred, one can restart the algorithm or transfer the computation to another stable
algorithm such as GMRES.
Let us also mention that there is another family of algorithms that generally combine

the approaches of GMRES and BICG as a quasi-minimisation idea. The first proposed
representative was the QMR method, followed by its transpose-free TFQMR variant and
the QMRCGSTAB method derived using BiCGSTAB. These methods may suffer from
breakdowns and are more sensitive to rounding errors.

For a detailed description of the Krylov subspace methods for solving nonsymmetric linear
systems Ax = b, we refer to the references mentioned in this chapter. In practice, CGS,
BiCGSTAB, TFQMR, QMRCGSTAB are often used, but the right choice of the Krylov
subspace solver depends on the model problem, as each of these methods has its advantages
and disadvantages.

2.2.2 Preconditioned Conjugate Gradient Method

The introduced CG scheme is the method of choice for problems with sparse symmetric and
positive definite matrices. While the CG method can be very efficient, it may only show its
full potential for very large systems when combined with a suitable preconditioning. In simple
terms, preconditioning is used to reduce the condition number and consequently improve the
performance of the Krylov solver. The combination of CG and the preconditioning technique
is known as the preconditioned conjugate gradient (PCG) method. Of course, the convergence
of all Krylov subspace methods can be significantly improved by using preconditioners. For
nonsymmetric linear systems, a preconditioner is applied to either the left or right of A,
which is referred to as left and right preconditioning. For an overview and a comparison of
preconditioned Krylov subspace methods for large sparse nonsymmetric linear systems, we
refer to e.g. [102].
The basic idea of preconditioning is to multiply the original system Ax = b from the left

with a matrix P that is close to A−1. The modified system PAx = Pb is generally better
conditioned (small condition number close to one), has the same solution and is much more
efficient to solve. However, PA is typically not sparse, symmetric and positive definite, so
the CG method cannot be used. Therefore, a two-sided preconditioning strategy is chosen.
The two-sided preconditioning is applied in such a way that the original system is trans-

formed into the equivalent preconditioned system

PLAPRx
p = PLb

x = PRx
p

(2.137)
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with regular PL, PR ∈ Rn×n. The task now is to construct the preconditioning in a
manner that firstly PLAPR approximates the identity matrix I as closely as possible, i.e.
cond(PLAPR)� cond(A), secondly PL, PR are be easy to compute and thirdly PL, PR shall
cause a small amount of memory. Apart from that it must be easy to solve the linear systems
that involve the matrices PL and PR. In total, proper preconditioning reduces the iterations
required, but the correspondingly higher cost of an iteration is an essential issue and should
not be overlooked. As a result, preconditioning is usually only beneficial for very large
systems, where the CG method requires hundreds or thousands of iterations to converge.
When using CG, the two-sided preconditioning with P>L = PR is useful, because PLAP>L

is again symmetric and positive definite. Moreover, with P := P>L PL the matrices PA and
PLAP

>
L have the same eigenvalues. The corresponding preconditioned system

Apxp = bp (2.138)

is obtained with
Ap = PLAP

>
L , xp = P−TL x, bp = PLb (2.139)

where P−TL := (P−1
L )>. If xpm+1, r

p
m+1, p

p
m+1 are the iterate, residual and search direction

for CG applied to (2.138) then it holds

rpm+1 = bp −APxpm+1 =⇒ P−1
L rpm+1 = P−1

L bp − P−1
L APxpm+1 = b−Ax (2.140)

Consequently, with

xm+1 = P>L x
p
m+1, rm+1 = P−1

L rpm+1,

pm+1 = P>L p
p
m+1, zm+1 = P>L r

p
m+1 = P>L PLrm+1 = Prm+1

(2.141)

one can perform the iteration directly in terms of xm+1, A and P . Finally, the PCG algorithm
is illustrated in Figure 2.3. It should be noted that steps 2 and 3e) highlight the difference
between CG and PCG. In particular, the work associated with PCG is essentially the CG
work for one iteration plus the cost of solving the preconditioned system. More precisely,
zm+1 = Prm+1 reflects a linear system, since P ≈ A−1. Apart from that, a stopping criterion
based on αm is not suitable, because αm = ‖PLrm‖22 is not a direct evaluation of the residual.
Therefore, the relative residual (2.136) is used again.

The main challenge now is to construct a suitable preconditioner P with a good cost balance
for the computation of the preconditioner itself and the resulting efficiency per PCG iteration.
The simplest preconditioners are the symmetric splitting methods like Jacobi preconditioning,
where P is the inverse of the diagonal part of A. When dealing with symmetric matrices,
the incomplete Cholesky factorisation is mainly used to build a common and very efficient
preconditioner for the CG method. Since, the analysis of incomplete factorisations is both
difficult and important, let us briefly describe the technical approach without going into too
much detail.

Incomplete Cholesky Factorisation The Cholesky factorisation decomposes the matrix A
into A = CC> with a lower triangular matrix C, which is relatively simple to implement,
very robust and an efficient scheme. On this basis, zm+1 = C−>C−1rm+1 must be solved for
each PCG iteration via forward and backward substitution. However, the Cholesky factor C
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Algorithm 2.2 Preconditioned conjugate gradient method

Input: Matrix A; preconditioner P = P>L PL; right-hand side b; initial vector x0

Output: Approximate solution for Ax = b

1.) r0 = b−Ax0

2.) p0 = Pr0, α0 = 〈r0,p0〉2

3.) Iterate for m = 0, 1, . . . , n− 1

a) If αm 6= 0 proceed, else STOP

b) vm = Apm, dm = αm
〈vm,pm〉2

c) xm+1 = xm + dmpm

d) rm+1 = rm − dmvm

e) zm+1 = Prm+1, αm+1 = 〈rm+1, zm+1〉2

f) pm+1 = zm+1 + αm+1
αm

pm

Figure 2.3: The PCG scheme for computing an approximate solution to Ax = b. The basic
algorithm stops, if rm = 0. In contrast to CG, the PCG algorithm causes extra cost for
solving linear systems in steps 2 and 3e).

is normally not sparse and consequently causes high costs for memory storage and solving the
underlying triangular linear systems. Another important aspect is the computational effort
for the factorisation process performed. In the context of sparse matrices A, preconditioners
are typically defined over the same sparse structure of entries as in A. Because of this, a more
elaborate preconditioner relies on the sparse Cholesky factorisation, known as incomplete
Cholesky (IC) factorisation, which constructs a sparse lower triangular matrix C̃ that is close
to C in some sense. As a result, (C̃C̃>)−1 and its action on a vector are linked by two sparse
triangular solves. The use of an incomplete factorisation was originally proven by Meijerink
and Van der Vorst [177].

The complete factorisation of A is given by A = CCT + F . If the lower triangular matrix
C is allowed to have nonzero entries anywhere in the lower matrix, then F is the zero matrix
and the factorisation is the original one. If only the structure of the entries in A is used to
define C, the factorisation will be incomplete. In other words, the lower triangular matrix C
might be restricted to have the same nonzero pattern as that of the lower triangular part of
A. One natural and simple idea for an incomplete Cholesky factor is to set any entry in C to
zero if the corresponding entry in A is also zero.
This approach, also called IC by position, which uses the same sparsity pattern of A for

C, is often referred to as no-fill IC factorisation or IC(0). The no-fill preconditioner is very
easy to implement and less computationally intensive, but more difficult model problems
essentially require sophisticated preconditioners that allow for some fill-in. Adding additional
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nonzero elements to the sparsity pattern of C potentially improve the closeness between the
product CCT and A. This proceeding is often denoted as numerical fill-in strategy IC(γ),
where the parameter γ > 0 (called drop tolerance) describes a dropping criterion, cf. [104,238].
The approach can be explained as follows: new fill-ins are only accepted if the absolute value
of the elements is greater than the (local) drop tolerance γ. The drop tolerance approach
is an example of IC by value. Adding fill-ins can lead to a better preconditioner and a
potentially better convergence rate. On the other hand, it becomes more computationally
intensive to solve the underlying triangular systems and the preconditioner itself. Therefore,
a good selection of the parameter in the preconditioning method is essential.
Let us mention that from a computational point of view, there is no guarantee that the

IC factorisation will exist, as it is possible that the procedure will break down due to a
cancellation error. Typically, breakdowns occur if very small pivot elements during the
factorisation process arise. For certain classes of matrices such as M -matrices, the existence
of the IC factorisation can be ensured so that no breakdown is possible.

Modified Incomplete Cholesky Factorisation When dealing with parabolic PDEs, the
modified incomplete Cholesky (MIC) factorisation can lead to an even better preconditioner,
for an overview of MIC see [42,114,181]. In particular, it can be shown that for IC with small
levels of fill-in the condition number of PA still behaves as cond(PA) ≤ O(h−2). However,
in some cases this condition number can be improved by using MIC to cond(PA) ≤ O(h−1).
Consequently, fewer PCG iterations have to be performed, which generally results in a
significant improvement over the unmodified IC factorisation.

The basic idea behind the modification is to force the preconditioner to have the same row
sums as the original matrix A. This can be accomplished by adding the discarded fill-ins
to the diagonal. The latter approach is known as MIC(0) and can also be combined with
the abovementioned drop tolerance strategy to MIC(γ). An essential requirement for the
safe use of this technique is that A is a diagonally dominant M -matrix, which is often the
case for parabolic model problems. Otherwise, MIC can breakdown which occurs much more
frequently compared to unmodified factorisations. This fact indicates why MIC is not as
widely used, even though this technique can significantly improve the rate of convergence.

Computational Aspects Using PCG leads to a potentially better convergence rate and
speeds up the CG method dramatically. While the basics of the PCG method are relatively
simple to implement, it may require fine-tuning of the preconditioner parameter involved. The
difficulty is to choose a good value for the drop tolerance. A high drop tolerance yields a dense
preconditioner that achieves a better convergence, but is linked to higher computational costs.
In contrast, lower values provide faster PCG iterations, but due to worse convergence rates
much more iterations are required in total. Usually, a trial and error approach is employed
until a satisfactory value of γ is found. In practice, cf. [16, 42], good results are obtained for
values γ ∈ [10−4, 10−2], the optimal value naturally depends on the model problem.

As indicated above, both factorisations IC and MIC can fail due to possible breakdowns for
general symmetric and positive definite matrices. To guarantee the existence of an incomplete
factorisation of A, a simple and effective approach is to increase the diagonal dominance of A
by diagonal shifts, as proposed by Manteuffel in [173]. More precisely, IC and MIC are applied
to the shifted matrix Ã = A+ α diag(A), where α > 0 and diag(A) is the diagonal part of A.
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If the factorisation fails again, α is increased until an incomplete factorisation is successfully
computed. Obviously, the shifted versions IC and MIC exist because Ã becomes diagonally
dominant for some α?. However, larger values for α lead to an inefficient preconditioner, so
α� α? is preferred. Since a safe and good α is not known a priori, a trial and error strategy
is required again. We mention that the shifted technique is very useful for elliptic PDEs like
the Poisson equation equipped with Neumann boundary conditions [16], in which the system
matrix is only positive semi-definite. In this situation, the computational costs for computing
the preconditioner and solving the underlying triangular systems depend on both γ and α.
Thus, a fine-tuned selection of the two parameters is essential.

2.2.3 Multigrid Methods

Another special class of sparse iterative solvers is formulated by the multigrid (MG) methods.
The main idea of MG is to define a coarsening procedure, more precisely a hierarchy of
increasingly coarse grids, until a coarse grid is reached so that the cost of directly solving this
coarse problem is negligible. The coarse grid approximation is then transferred back to the fine
grid. Although the idea sounds simple, the technical realisation is tricky and specific operators
such as smoothing, restriction, interpolation and correction are used within the classic MG
process. Originally, MG algorithms were developed to numerically solve time-independent
large-scale elliptic boundary value problems for which solutions can be computed highly
efficiently. Over time, MG and its variants have been enhanced and successfully applied to
various problems in many disciplines. For a detailed introduction we refer to [117,275,298].

Besides solving time-independent or stationary PDEs such as the Poisson equation, MG
methods are also a particularly good choice for discretised parabolic problems [283]. Let us
mention that there are other practically important extensions of MG methods, e.g. algebraic
MG, geometric MG, combinatorial MG, lean algebraic MG, hierarchical MG or adaptive basis
MG. Apart from that we stress that MG and its variants can be used alone or as preconditioners
for iterative Krylov subspace methods. For example, classic MG-based [103, 269], AMG-
based [139, 214] as well as CMG-based [151,158] preconditioners are successfully employed in
connection with CG. For a more detailed overview and comparison see e.g. [102,154].

Of course, MG methods can be very powerful, but implementing them correctly is extremely
complex and cumbersome. In contrast, sparse iterative Krylov subspace methods are at the
same time considerably easier to use and implement, so MG is not dealt with in this thesis.

2.2.4 Summary

Overall, sparse direct methods with an effective factorisation are the first choice for solving
sparse linear system Ax = b until computer memory and CPU time become excessive. For
fine discretised two-dimensional problems or three-dimensional problems, the size of the
linear systems typically exceeds the order of O(106) and the computational costs in time and
memory space increase sharply. Therefore, sparse direct methods are not considered viable
for solving very large linear systems.

In this context, sparse iterative methods are a popular tool where most of these methods are
well described in many textbooks and are relatively easy to implement (except MG methods).
Compared to direct (factor-solve) methods, iterative methods are data dependent, need to be
coupled with an effective preconditioner to achieve high performance, and are often to be
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tailored to specific system types in order to converge well. Hence, more expertise is required
as one has to choose the Krylov subspace method and the preconditioner, which is usually
problem-dependent. In addition, it is difficult to properly choose optimal preconditioning
parameters. As a consequence, a significant amount of time is needed to find a reasonable
combination of the Krylov subspace method and the preconditioner through typical trial and
error approaches.

In the case of symmetric and positive definite system matrices A, this selection procedure
can be neglected, since it is known that PCG is widely recognised as the best Krylov method.
The IC factorisation is commonly used in combination with the CG method, whereby the
modified variant MIC is even a more efficient preconditioner for special classes of matrices.
The use of IC and MIC accelerates the CG method drastically, however, a good choice of
parameters (drop tolerance γ; shift parameter α) is essential in the preconditioning method.
Therefore, it will require a thorough study to identify the most useful parameters.

In total, a sparse iterative solver with an optimised preconditioner (and a suitable initial-
isation instead of x0 = 0) can efficiently solve extremely large systems. Another important
aspect is the flexible handling of the desired accuracy of the approximate solution by means
of the relative residual ε. For special model problems an ε with a large value is accepted,
so fewer iterations are needed. Consequently, in such situations the iterative solver can
outperform the direct solver even for small systems, cf. Chapter 5.

As already indicated, the greatest challenge with sparse direct and sparse iterative methods
is the required factorisation rather than the solution of the resulting factorised system. Ideally,
the (incomplete) factors should be easy to compute and require a modest amount of storage
space. Fortunately, most factorisations are based on existing sophisticated software packages
and are also generally available or importable into software like MATLAB. On this basis, it
is possible to find the best solver for the underlying model problem.

Obviously, both direct and iterative solvers lose their high performance when considering
nonlinear PDEs in which the spatial discretisation yields a nonlinear ODE system. In the
case of nonlinear systems, the underlying system matrix is nonconstant and a one-time
factorisation cannot be applied. To use implicit schemes such as IE and CN, one can employ
popular nonlinear system solvers e.g. the Newton-Krylov methods [145, 146]. The latter
technique combines Newton’s method with a sparse iterative linear solver that is inherently
computationally intensive.

2.3 Exponential Integrators

Lastly, we consider an alternative class of numerical methods for solving stiff ODE systems,
namely the exponential integrators or the so-called exponential time differencing. This class
of methods is based on the exact integration of the given initial value problem

u̇(t) = Lu(t) +w(t), t ∈ (0, tF ], u(0) = u0, w(0) = w0 (2.142)

The exact integration of (2.142) yields the corresponding integral equation

u(t) = eLtu0 +
t∫

0

eL(t−z)w(z) dz (2.143)
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Using a temporal discretisation, the exact solution (2.143) at time tk+1 is then given by

u(tk+1) = eLτu(tk) +
τ∫

0

eL(τ−z)w(tk + z) dz = eLτu(tk) + eLτ
τ∫

0

e−Lzw(tk + z) dz (2.144)

with the uniform time step size τ = tk+1 − tk. A numerical scheme is now obtained by
approximating the integral in (2.144) using an appropriate quadrature rule. The simplest
approximation is constructed under the assumption that w(tk) is constant within the interval
[tk, tk+1], which is often referred to as the exponential Euler method. Consequently, it holds

τ∫
0

e−Lzw(tk + z) dz =
τ∫

0

e−Lzw(tk) dz = w(tk)
τ∫

0

e−Lz dz = w(tk)
(
−e−Lτ + 1

L

)
(2.145)

and with (2.144) the numerical scheme leads to

uk+1 = eLτuk + eLτ
(
−e−Lτ + 1

L

)
wk = eLτuk +

(
eLτ − 1
L

)
wk (2.146)

For a more detailed introduction and discussion of exponential integrators, we refer the reader
to [64, 135–137,186] and the references therein. On closer inspection, the exponential matrix
operator within the numerical scheme (2.146) is treated exactly. Obviously, the main effort
of the scheme is the computation of the matrix exponential eLτ . For this reason, an efficient
method for computing the matrix exponential is of great importance.
For the sake of simplicity let us assume w(t) = 0. The solution of the corresponding

homogeneous semi-discretised system reads

u(t) = eLtu0 (2.147)

Although the latter analytical solution has a simple form, the problem of computing the
exponential of a matrix is an omnipresent issue in scientific computing and is therefore still
relevant today. The exponential function of a matrix is defined by the following series:

eLt =
∞∑
k=0

(Lt)k
k! (2.148)

where the power series is uniformly convergent [32], meaning that eLt is well defined for
all t and L. The naive approach of computing an approximation of eLt by truncating the
series (2.148) after the first k terms is known to be one of the worst practices cf. [187]. Many
methods for computing eLt have been introduced in the past, for an excellent survey see [187].
The most popular methods for computing an approximation of the matrix exponential are
certainly the Padé approximation, the scaling and squaring method (based on Padé or Taylor
series approximation), the Chebyshev polynomials, the matrix decomposition methods or the
Krylov subspace methods. However, the techniques mentioned (with the exception of the
matrix decomposition methods and the Krylov subspace methods) are generally only suitable
in computing exponentials of small matrices and are thus not a viable option for sparse large
discrete Laplacians as in our case.
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Because of this, we only give a brief discussion of the methods based on matrix decomposition
and Krylov subspace techniques. The former methods are of interest for some simple model
problems. The Krylov methods are well applicable to general problems, especially they
approximate the product of a matrix exponential function with a given vector rather than
computing the matrix exponential directly.

2.3.1 Matrix Decomposition Methods

In some special applications in the field of image processing and computer vision, the
underlying semi-discretised model problem must be solved multiple times e.g. for problems
with many different initial conditions. In this situation, it can be useful to approximate the
matrix exponential using an eigendecomposition of the system matrix and consider a reduced
order model based on the dominant eigenvalues and eigenvectors. Let us give a short insight.

One possible efficient method for problems with large sparse matrices and repeated evalu-
ations of eLt are those which are based on matrix decompositions. Assuming that L can be
decomposed in the form L = PSP−1, then the matrix exponential can be written as

eLt = PeStP−1 (2.149)

The key idea of the latter approach is to find a suitable decomposition for which eSt is easily
computable. In this context, standard approaches can be based on eigendecomposition, QR
algorithms, Jordan canonical form or Schur decomposition, see [187].
The simplest technique is to use an eigendecomposition. Let L ∈ Rn×n be diagonalisable,

then matrices P = Φ and S = Λ exist, where any diagonal element of Λ is an eigenvalue for
L and the corresponding column of Φ is an eigenvector for this eigenvalue. On this basis, the
solution (2.147) can easily be specified via

u(t) = eLtu0 = ΦeΛtΦ−1u0 =
n∑
i=1

eλitφiφ̃
>
i u

0 (2.150)

where φ̃>i is the i-th row of Φ−1. To ensure stability, the inequality∥∥u(t)
∥∥ ≤ ∥∥∥etL∥∥∥ ∥∥∥u0

∥∥∥ ≤ C ∥∥∥u0
∥∥∥ , ∀t ≥ 0 (2.151)

must be satisfied with a positive constant C. Suppose L only has nonpositive eigenvalues, it
follows that∥∥u(t)

∥∥ ≤ ∥∥∥ΦeΛtΦ−1
∥∥∥ ∥∥∥u0

∥∥∥ ≤ ‖Φ‖ ∥∥∥eΛt
∥∥∥ ∥∥∥Φ−1

∥∥∥ ∥∥∥u0
∥∥∥ = cond(Φ) max

k

∣∣∣eλkt
∣∣∣ ∥∥∥u0

∥∥∥ (2.152)

Since the eigenvalues are negative, it holds lim
t→∞

eλkt = 0 for all k, or eλ0t = 1 for a
zero eigenvalue λ0. Clearly, eλkt = 1 for t = 0 so that max

k
|eλkt| ≤ 1. Therefore, with

cond(Φ) = ‖Φ‖‖Φ−1‖ ≤ C the inequality (2.151) is true.
It should be emphasised that the major drawback of this approach is the computation of

all eigenvalues and eigenvectors, which is considered to be very computationally intensive.
However, in certain cases, for example in the field of geometry processing and shape analysis
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(see Chapter 5) it is sufficient to consider only a small dominant subset of the spectrum, i.e.

u(t) ≈
r∑
i=1

eλitφiφ̃
>
i u

0, r � n (2.153)

Obviously, the stability is preserved because the eigenvalues within the truncated approxima-
tion (2.153) are contained in the original spectrum. The use of only a few dominant modes
speeds up the computations drastically, but is linked with less accurate approximations.
Consequently, the truncated approximation is typically practicable when a lower number
of modes are able to capture the important contributions of the original physical system
responses. This technique is often applied to simple PDEs without source terms and complex
boundary conditions.

2.3.2 Krylov-Based Matrix Exponential Approximation

In many applications the underlying matrix L is large and sparse. Unfortunately, although
the discrete Laplacian is sparse, the matrix eLt is usually dense, which aims to avoid this
intensive computation. In fact, only the product eLtu0 needs to be computed rather than
the exponential of the full matrix. In this case, the powerful Krylov subspace methods
have become very important and are preferred over traditional methods for large-scale
problems. Based on the fact that Krylov subspace methods generally only require sparse
matrix-vector multiplications to compute an approximation, we discuss the basic idea and
the implementation below. Further details on the description and analysis can be found in
the works [98,134,237].
The principal idea of the Krylov subspace methods is to approximate the original large

sparse matrix L by a matrix Hm ∈ Rm×m with m� n, so that the computational costs for
the construction of the matrix exponential eHm are comparatively low. To this end, the aim
is to find the best approximation to the matrix exponential operation eLv in the form of

eLv ≈ pm−1(L)v (2.154)

where v is any nonzero vector and pm−1 is a polynomial of degree m− 1 in L that is a linear
combination of the vectors v, Lv, . . . , Lm−1v and thus an element of the Krylov subspace

Km (L,v) = span
{
v, Lv, . . . , Lm−1v

}
(2.155)

Since this approximation of eLv is an element of the Krylov subspace, the problem can be
reformulated to find an element of Km(L,v). Notably, using the vectors Ljv as the basis
itself is not a good idea as the vectors naturally become almost linearly dependent, meaning
that they point in almost the same direction as the dominant eigenvector of L based on
the power iteration properties. To find an appropriate basis, the numerically stable Arnoldi
algorithm is usually used, which is based solely on simple matrix-vector multiplications. The
Arnoldi algorithm is presented in Figure 2.4. To construct a basis Vm ∈ Rm×m of Km and
an upper Hessenberg matrix Hm, the Gram-Schmidt orthonormalisation process is normally
applied. More precisely, the Arnoldi algorithm constructs

LVm = VmHm + hm+1,mvm+1e
>
m, em = (0, . . . , 0, 1)> ∈ Rm (2.156)
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Algorithm 2.3 Arnoldi algorithm
Input: Matrix A; vector v; Krylov subspace order m
Output: Vm = [v1, . . . , vm]; Hm = (hi,j) ∈ Rm×m

1.) v1 = v

‖v‖2

2.) Iterate for j = 1, 2, . . . ,m

a) w = Avj

b) Iterate for i = 1, 2, . . . , j

i) hi,j = 〈w,vi〉2
ii) w = w − hi,jvi

c) hj+1,j = ‖w‖2, vj+1 = w

hj+1,j

Figure 2.4: Computation of a sequence of orthonormal vectors v1,v2, . . . , vm so that these
vectors span the Krylov subspace Km = {v, Av, A2v, . . . , Am−1v} and an upper Hessenberg
matrix Hm ∈ Rm×m.

with an orthonormal matrix Vm and the vector vm+1 satisfying V >m vm+1 = 0 such that
Hm = V >mLVm is obtained. Since for Krylov subspaces it holds that Km(tL,v) = Km(L,v)
for any arbitrary scalar t, Vm remains unchanged and only Hm is replaced by tHm. Therefore,
there is no loss of generality when directly applying the Arnoldi procedure to L. Let us now
concretise how the approximate solution pm−1(tL)v can be computed in a simple manner.
Let wopt be the optimal Krylov approximation in the least squares sense to w(t) = etLv.

Since Vm is a basis of the Krylov subspace, wopt can be written as wopt = Vmyopt with
yopt ∈ Rm. Using this fact, the goal is now to determine wopt by minimising∥∥w(t)−wopt

∥∥
2 = min

x∈Km(tL,v)

∥∥w(t)− x
∥∥

2 = min
y∈Rm

∥∥w(t)− Vmy
∥∥

2 (2.157)

Obviously, yopt = V >m e
tLv is the solution to this problem. To avoid etL when computing yopt,

the term v = βv1 with β = ‖v‖2 is used. This implies

yopt = βV >m e
tLv1 = βV >m e

tLVme1 (2.158)

where the first basis vector is specified via v1 = Vme1 and e1 = (1, 0, . . . , 0)> ∈ Rm. Using
now Hm = V >mLVm with V >m e

tLVm = eV
>

m tLVm = etHm , the approximation can finally be
represented by

etLv ≈ wopt = Vmyopt = βVme
tHme1 (2.159)

As a result, the matrix exponential of tL is approximated by the exponential over the much
smaller matrix Hm. On this basis, the reduced exponential etHm can be computed by any
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suitable scheme for matrices of moderate size such as the popular scaling and squaring
algorithm [130]. It should be stressed that the Krylov subspace concept works well, since the
eigenvalues of Hm (also called Ritz values) strongly match with the well-separated extreme
eigenvalues of L, see [273]. In simple terms, Hm preserves one important property, namely
the extreme eigenvalues of L, which are useful in approximating the matrix exponential etL.
The latter is shown in [81] using Schwerdtfeger’s formula.

Although this approach introduced by Saad [98, 237] causes very low computational costs,
it shows a major weakness with regard to the accuracy of the approximate solution (2.159)
when using large values of t. Let us briefly discuss the theoretical findings related to stability
and error analysis is some detail.

Stability As we know, when dealing with stiff ODE systems the stability property is an
important aspect for the computation of an efficient approximate solution. In particular,
explicit time integration methods suffer from stability requirements for the time step size and
lose their benefits of using sparse matrix-vector multiplications. In contrast, implicit schemes
require to solve systems of linear equations which is coupled with significant computational
costs. In this framework, it can be shown that matrix exponential approximations using
Krylov subspace methods are unconditionally stable in the Euclidean norm for negative
semi-definite matrices. This requires a more general concept based on the logarithmic norm.

A useful concept for the stability analysis of continuous dynamical systems is the logarithmic
norm introduced in [70], for further details see also [138,265,268]. The logarithmic norm of a
matrix A is defined as

µ(A) = lim
h→0+

‖I + hA‖ − 1
h

(2.160)

for which the limit exists and µ(A) is well-defined. It should be noted that the logarithmic
norm, despite its name, is not a matrix norm because µ(A) can be negative. The following
property of the logarithmic norm is crucial for deriving error bounds for initial value problems:

Theorem 2.3 ( [138]). Let A ∈ Cn×n and t ≥ 0. The matrix exponential is bounded by∥∥∥etA∥∥∥ ≤ etµ(A) (2.161)

More precisely, this means that a continuous system has stable solutions eLtu0 if µ(L) ≤ 0.
Furthermore, the logarithmic norm can also be expressed by means of the inner product 〈·, ·〉
in the form

µ(A) = sup
x6=0

Re〈x, Ax〉
〈x,x〉

(2.162)

which serves as an alternative definition. Consequently, the Euclidean inner product yields

µ2(A) = sup
x6=0

Re〈x, Ax〉2
〈x,x〉2

= max
{
λ : λ ∈ σ

(
1
2(A+A∗)

)}
(2.163)

and for real matrices it holds that

µ2(A) ≤ 0 ⇐⇒ 〈x, Ax〉2 ≤ 0, ∀x ∈ Rn (2.164)

For the stability analysis of Krylov-based matrix exponentials, the following lemma is required:
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Lemma 2.1 ( [98]). For any real matrix A ∈ Rn×n and corresponding upper Hessenberg
matrix Hm ∈ Rm×m generated by the Arnoldi algorithm holds

µ2(Hm) ≤ µ2(A) (2.165)

Proof. By construction, Vm is an orthogonal matrix, Hm satisfies Hm = V >mAVm and the
inequality max

k
λk(V >mAVm) ≤ max

k
λk(A) is true. Therefore, it easily follows that

µ2(Hm) = max
k

λk

(
V >mAVm + V >mA

>Vm
2

)
≤ max

k
λk

(
A+A>

2

)
= µ2(A) (2.166)

Based on the latter foundations, the unconditional stability of the Krylov subspace method
can be shown by the theorem below:

Theorem 2.4 ( [98]). The matrix exponential operation pm−1(tL)v = wopt computed by the
Krylov subspace approximation (2.159) is unconditionally stable for negative semi-definite
matrices L in the Euclidean norm.

Proof. To ensure unconditional stability, the term ‖βVmetHme1‖2 must be bounded for all
t ≥ 0. Since Vm is orthogonal, one has∥∥wopt

∥∥
2 =

∥∥∥βVmetHme1
∥∥∥

2
≤ β

∥∥∥etHm

∥∥∥
2

(2.167)

Setting β = C and using (2.161), (2.165) as well as (2.164) finally yields

β
∥∥∥etHm

∥∥∥
2
≤ Ceµ2(tHm) ≤ Ceµ2(tL) ≤ C (2.168)

so that ‖wopt‖2 ≤ C is true for all t ≥ 0.

The latter theorem generally holds in the case that etHm is evaluated exactly. Otherwise,
the stability depends on the calculation method used. Due to the unconditional stability, the
time step size t of the Krylov-based matrix exponential computation is free from restrictions.
At first glance, it appears that these approaches represent the best practise for solving stiff
ODEs numerically. However, it can be shown that the approximation error depends on ‖tL‖2,
which strongly limits the effectiveness of the approximation technique.

Error Analysis Using the approximation techniques described above, several practical
questions arise. For instance, how large should the dimension m be chosen to obtain
highly accurate approximations for a given t,v and L. Obviously, for m = n, the Krylov
approximation is exact, since vm+1 = 0 and it becomes AVm = VmHm. In the case m� n,
error bounds for the computation of etLv using the Krylov subspace method (2.159) are
given a priori by the following theorem:

Theorem 2.5 ( [98]). Let A be any matrix and let ρ = ‖tA‖2, β = ‖v‖2 and η = µ(tA).
Then the error of the approximation (2.159) with respect to the spectral norm is given by∥∥∥etLv − βVmetHme1

∥∥∥
2
≤ 2β ρ

meρ

m! (2.169)
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A sharper error bound holds for the logarithmic norm:∥∥∥etLv − βVmetHme1
∥∥∥

2
≤ 2β ρ

m

m! max(1, eη) (2.170)

since µ(A) ≤ ‖A‖.

Some more sophisticated and refined error bounds based on the Arnoldi method were studied
in [134]. In practice, the computation of the error bounds is expensive, alternatively [98]
proposes a posteriori error estimation given by

E(m, t) = βhm+1,me
>
mϕ(tHm)e1vm+1 (2.171)

with ϕ(x) = ex−1
x .

The bounds (2.169) and (2.170) indicate that the error depends on m and ‖tL‖2. Thus,
by reducing t, the scheme produces more accurate approximations without changing the
dimension of m. For stiff problems, however, it is known that the spectral norm of L is
typically very large. This may limit the time step parameter t to be too small, in general
t� 1 must be used. The Krylov subspace technique can therefore be considered as an explicit
ODE solver. Alternatively, by increasing the dimension m, a larger t can be used while
preserving accuracy. Nevertheless, the cost of computing and storing the Krylov basis vectors
vm increases. In addition, the practical calculation of etHm becomes more computationally
intensive. Consequently, a good selection of t and m is essential.

Due to the latter observations, a more efficient approach [257] is to apply the Krylov-based
matrix exponential approximation iteratively rather than computing the approximation in
one-step. This means that the time integration is split into a sum t = τ1 + τ2 + · · ·+ τq of
smaller time steps τj , so that u(t) is computed with

u(t) = etLu0 = e(τ1+τ2+···+τq)Lu0 = eτqL
(
. . .
(
eτ2L

(
eτ1Lu0

)))
(2.172)

This is equivalent to compute iteratively

uj = eτjLuj−1, j = 1, . . . , q (2.173)

which normally requires an adaptive procedure based on (2.171) to control the errors of
the method depending on τj and m. From (2.173) it follows that the Krylov subspace
Km(L,uj−1) has to be recomputed at each time level, which strongly influences the efficiency
of this technique. An algorithm for the procedure (2.173) is shown in Figure 2.5.

Preconditioning As mentioned earlier, the matrix Hm constructed by the Arnoldi algorithm
generally preserves the dominant eigenvalues with large magnitude of L. However, the
eigenvalues with small magnitude are mostly more relevant for the approximation of etL.
Therefore, the Arnoldi process requires a large dimension m to capture the important (small)
eigenvalues. To overcome this problem, a transformation of the underlying spectrum [278]
can be useful in order to determine the dominant (small) eigenvalues more quickly.

The basic idea is to apply the Arnoldi method to the matrix (I−γL)−1 instead of L, where
γ > 0 is a user-defined parameter. Accordingly, this means that the transformed matrix
can be considered as a kind of preconditioning. The corresponding Krylov subspace is then
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Algorithm 2.4 Krylov-based matrix exponential approximation

Input: Matrix L; initial condition u0; stopping time tF ; error tolerance ε
Output: u(tF )

1.) t = 0,v = u0

2.) β = ‖v‖2

3.) While t ≤ tF do

a) Construct Vm and Hm by Algorithm 2.3 until E(m, τ) ≤ ε using adaptive procedure

b) u(t+ τ) = βVme
τHme1

c) t := t+ τ,v = u(t+ τ)

d) β = ‖v‖2

Figure 2.5: Solving (2.173) using the Krylov-based matrix exponential approximation
(2.159). In addition, a suitable adaptive procedure is needed in order to control the error of
the method depending on the time step size τ and the dimension m.

generated via

Km
(
(I − γL)−1,v

)
= span

{
v, (I − γL)−1v, . . . , (I − γL)−(m−1)v

}
(2.174)

It should be noted that the adaptation of the Arnoldi process in Algorithm 2.3 using (2.174)
is straightforward. To this end, the matrix-vector multiplication in step 2a) is replaced by
w = (I − γA)−1vj . Consequently, the approximation on the transformed matrix reads

(I − γL)−1Vm = VmHm + hm+1,mvm+1e
>
m, em = (0, . . . , 0, 1)> ∈ Rm (2.175)

In this regard, the function

f tγ(h) = exp

 t(1− h−1)
γ

, for h ∈ (0, 1], f tγ(0) = 0 (2.176)

is employed, which fulfils f tγ((I − γL)−1) = etL. On this basis, the approximation of etLv is
given by

etLv ≈ βVmf tγ(Hm)e1 = βVme
tH̃me1 (2.177)

where H̃m = 1
γ (I −H−1

m ) is usually constructed with a small m. In contrast to the nonprecon-
ditioned approximation (2.159), the solution of large sparse systems of linear equation is now
required. In practice, a factorisation of I − γL is only computed once, so a fine-tuned value
γ is advantageous. Some remarks for an appropriate selection of γ can be found in [278].
Another difference to the basic method (2.159) concerns the a priori error bound. More
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precisely, the error estimate is independent of the norm of ‖tL‖ and only the first (smallest
in magnitude) eigenvalue of L is a significant factor for the convergence of this method. For
this reason, an iterative computation like (2.173) cannot be avoided. Therefore, the Krylov
subspace Km((I − γL)−1,uj−1) has to be constructed again at each time level, but only a
small dimension m is required for a good approximate solution. To control the time step size
τj , an adaptive procedure can be used which is based on the following posteriori error bound:

Ẽ(m, t) = βhm+1,m
γ

∣∣∣∣(I − γL)vm+1e
>
mH

−1
m etH̃me1

∣∣∣∣ (2.178)

In total, the algorithm for the preconditioned Krylov-based approximation remains structurally
unchanged compared to the basic Algorithm 2.4, only a factorisation (I − γL) with a suitable
γ is needed and the error bound (2.171) is replaced by (2.178).

2.3.3 Summary
The key element of exponential integrators is the efficient approximation of matrix exponentials.
A simple and effective technique can be based on eigendecomposition, but this proceeding is
practically limited to certain model problems.
In contrast, Krylov subspace techniques are well applicable to general model problems.

While these methods are unconditionally stable, the approximation accuracy depends on the
norm ‖tL‖. Since the spectral norm of L is typically very large for stiff problems, the Krylov
technique can be understood as explicit integrators that suffer from accuracy for large time
steps t. In this situation, a preconditioning can be useful, nevertheless both Krylov variants
require an iterative computation procedure. As a consequence, the Krylov basis has to be
recomputed at each time level, which leads to high computational costs.
One advantage of the Krylov-based matrix exponential approximation is that they are

well-suited for highly oscillatory problems with purely imaginary eigenvalues of large modulus,
as well as for nonlinear problems see [137].
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Fast Explicit Methods

As shown in Section 2.1, explicit schemes like the EE method (2.6) offer a very simple way
to solve parabolic heat or diffusion equations. They are based solely on cheap sparse matrix-
vector multiplications and can be easily accelerated with GPUs. However, the allowed time
step size is limited by a rather small upper bound which is given by the numerical stability
condition. Because of the time step size restriction, explicit schemes are generally considered
to be unsuitable for many practical applications, especially for long-term simulations of
parabolic-type equations where the underlying ODE system is typically stiff. To overcome
this problem while exploiting the advantages of an explicit scheme, acceleration techniques
have been developed which are based on extended stability regions along the negative real axis.
In this way, stiff problems can be numerically integrated using simple explicit evaluations that
would normally require the use of implicit methods. In the past, several elegant strategies
have been introduced [99,108,244,281], which conceptually belong to the class of RK methods.
Let us mention that there is also a novel framework [24] which is defined by time-accurate
and highly-stable explicit operators that act as preconditioners on the stiff terms and can be
employed straightforwardly to any existing explicit methods.

3.1 Introduction
In the following sections we provide a more detailed overview and description of fast explicit
methods known as Runge-Kutta-Chebyshev (RKC) or super time stepping (STS) methods,
which are simple and effective to speed up explicit schemes for parabolic or hyperbolic-
parabolic equations with dominant diffusion. Exactly for this problem class, these methods
offer a very attractive alternative for unconditionally stable implicit ones, assumed that
the corresponding eigenvalues lie in a long narrow strip along the negative real axis. The
main idea is to develop an explicit method whose stability region extends along into the
left half-plane as far as possible. In doing so, an s-stage RK scheme in connection with
Chebyshev polynomials forms the basis for the construction of an extended stability region.
In particular, the number of stages s is specified in such a way that the stability region of
the underlying stability polynomial is as large as possible rather than increasing the order of
the accuracy of the method. Although the stability interval for ensuring absolute stability is
finite, this interval is much larger than with standard explicit methods. More precisely, the
RKC methods possess stretched real stability intervals with a length proportional to s2, so
that the maximal stability domain on the negative real axis increases quadratically with the
number of stages s. The quadratic dependence is therefore the crucial factor for the success
of the RKC methods. Based on this derivation, the multi-stage RKC schemes remain explicit
and, compared to implicit methods, do not require the solution of sparse large linear (or
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nonlinear) algebraic equations when solving multi-dimensional problems. In addition, these
methods can easily be applied to large problem classes with little computational effort and
memory demand, and they avoid undesirable splitting errors like operator splitting methods.
This class of schemes has been successfully used in the context of nonlinear/anisotropic

heat conduction in magneto- and radiation hydrodynamics (computational astrophysics)
applications, e.g. [54, 63,182,183,185,198,277], or in image processing, e.g. [6, 108,116,118,
171, 172]. In general, RKC methods are used efficiently to solve problems with moderate
stiffness or for specific problem classes.
The fundamental concept of the fast explicit methods is the extension of the stability

region by using an explicit multi-stage RK scheme and suitable stability polynomials. In
order to better understand how these methods work, we first describe the basic idea [244]
introduced1 in the 1960s and then give a general insight into the theoretical framework.

Basic Concept For the sake of simplicity, let us consider the linear ODE system

u̇(t) = Lu(t), u(0) = u0 (3.1)

where u0 is the initial state and the boundary conditions are supposed to be contained
in (3.1). Furthermore, let the matrix L be symmetric and negative semi-definite, which is
often the case when considering parabolic problems. However, this approach can also be
applied to hyperbolic problems, in which L may consist (more or less) negative and imaginary
eigenvalues. To describe the main idea we follow [7], which made the relatively unknown
so-called STS scheme a popular numerical method. At this point it should be mentioned
that the general concept [244] is originated from iterative methods for solving linear systems
and is transferred to the parabolic case.
The basic principle is essentially based on the use of varying time step sizes τi within a

cycle of EE steps

uk+1 =

 s∏
i=1

(I + τiL)

uk (3.2)

over a super time step ∆τs =
s∑
i=1

τi, in which some of them violate the theoretical stability
limit τmax originating from EE method. In particular, the STS scheme replaces the sufficient
stability requirement

ρ (I + τL) ≤ 1 (3.3)

at the end of a time step τ by using a cycle of s nonuniform time steps τ1, . . . , τs, which
ensure relaxed stability after each cycle

ρ

 s∏
i=1

(I + τiL)

 ≤ 1 (3.4)

and for which the numerical solution at ∆τs approximates the solution of the problem, while
inner values are only be considered as intermediate calculations. As a result, methods based
on this approach are very simple, explicit and at the same time impressively effective. The
1 We stress that Yuan’ Chzao-Din, Franklin and Guillou & Lago proposed the basic idea at the same time.
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challenging task now is to select optimal values for the time step sizes τi in such a way that
an efficient explicit method is achieved.

The technique of finding an optimal set of time steps that relate to the optimality properties
of Chebyshev polynomials can be understood as a direct approach to a computation rule.
Later we will also present an indirect way [108] which is based on the relationship between
iterated box filtering and Gaussian convolution.

Super Time Stepping Method The STS scheme explicitly determines the time steps τi in
such a way that the relaxed stability condition (3.4) is ensured, while the super time step
∆τs of such a cycle is maximised. More precisely, the condition (3.4) is fulfilled when∣∣∣∣∣

s∏
i=1

(1 + τiλ)
∣∣∣∣∣ ≤ 1, ∀λ ∈ [−λmax,−λmin] (3.5)

where |λmin| and |λmax| are the smallest and largest eigenvalues of L, respectively. The
condition (3.5) can be further restricted by the requirement∣∣∣∣∣

s∏
i=1

(1 + τiλ)
∣∣∣∣∣ ≤ K, ∀λ ∈ [−λmax, µ] (3.6)

with µ ∈ [−λmin, 0), K ∈ (0, 1). The latter term is called damping and ensures numerical
stability. On this basis, hyperbolic-parabolic problems can also be realised. The damping
technique is described in more detail in the next section.
The condition (3.6) is now the starting point for finding an optimal set of varying τi so

that the polynomial

ps(λ) =
s∏
i=1

(1 + τiλ) (3.7)

finally satisfies:

|ps(λ)| ≤ K, ∀λ ∈ [−λmax, µ] (Stability)

|p′s(0)| =
s∑
i=1

τi maximal (Optimality)
(3.8)

The optimality is achieved if the properties of the Chebyshev polynomials

Ts(x) = cos
(
s arccos(x)

)
(3.9)

of degree s in the sense of ps(λ) = Ts(λ) are exploited. Based on the zeros of these polynomials,
the set of optimal values τi is explicitly given by

τi = τmax

(−1 + ν) cos
(

(2i− 1)π
2n

)
+ 1 + ν

−1

, i = 1, . . . , s (3.10)

with τmax being the theoretical upper bound for a stable EE scheme and ν = µ
λmax

, 0 < ν <
λmin
λmax

a damping factor. In particular, if ν is increased, the size of each τi is decreased, so
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more computations are required to reach the same diffusion time. The super time step size
with s intermediate time steps (stages) corresponds to

∆τs =
s∑
i=1

τi = τmax
N

2
√
ν

(
(1 +

√
ν)2s − (1−

√
ν)2s

(1 +
√
ν)2s + (1−

√
ν)2s

)
(3.11)

which results in
∆τs −−−→

ν→0
s2τmax (3.12)

Thus, STS is up to s times faster than the EE scheme with only marginal additional
computational costs. In fact, the STS scheme can be characterised as a multi-stage RK
method in which the intermediate stages are selected for stability rather than higher order
accuracy. The global error bound of this method is given by the following theorem:

Theorem 3.1 ( [7]). Let L be a symmetric negative semi-definite matrix and the function u
the exact solution of (3.1). The time step sizes τ1, . . . , τs are determined according to (3.8)
with ∆τs =

s∑
i=1

τi, then the numerical solution after k cycles satisfies

∥∥∥u(k∆τs)− uk
∥∥∥

2
≤ kλmax

2

s∑
i=1

τ2
i

∥∥∥u0
∥∥∥

2
(3.13)

From (3.13) it follows that the corresponding approximation order with respect to ∆τs is
one. In particular, the size of ∆τs, which is explicitly determined by the spectral radius of L
and the choice of s as well as ν, is only limited by the accuracy. Thus, the STS scheme can
be understood as an unconditionally stable method.
Here, ν is interpreted as a damping parameter, which means that the results are very

sensitive with respect to high frequencies. Accordingly, it has been suggested to use larger
values for ν which makes the method more robust to higher frequencies. However, this is
associated with a reduction in the cycle time ∆τs, so that the value ν implies a compromise
between efficiency and damping quality.
Although the STS scheme is unconditionally stable in theory, the numerical stability is

not guaranteed due to internal instabilities (numerical rounding errors) and generally makes
the method unusable in practice. In order to overcome the numerical instability, a suitable
rearrangement [99] of the internal time steps τi can reduce the round-off errors.
The concept of STS is essentially based on extending the stability region so that there is

a less strict limitation of the time step size. Due to its explicit construction, this class of
methods represents a compromise between cheap computation and the avoidance of small
time step sizes of classic explicit methods. Based on the STS concept presented, let us
describe the derivation of this method class in more detail.

3.2 Explicit Runge-Kutta-Chebyshev Methods
In the following let us explain the theoretical insights of the abovementioned basic methodology.
In doing so, we follow the works [1, 120, 138, 281, 286]. A historical survey of the development
of explicit RK methods can also be found in [280]. Fundamentally, it can be noted that
the central concept of the RKC methods is based on a special construction in two steps.
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First, optimal stability polynomials are designed that maximise the stability region along the
negative real axis. Second, appropriate numerical methods with such a favourable stability
function are finally constructed.
The RKC methods are dedicated to solve ODE systems of the form

u̇(t) = f
(
t,u(t)

)
, t ∈ (0, tF ], u(0) = u0 (3.14)

whereby the boundary conditions are supposed to be contained in (3.14). The derivation
and stability analysis of such schemes is generally independent of the class of PDEs or the
space discretisation. The only requirements for using RKC methods are: first, the eigenvalue
spectrum of the Jacobian matrix J = ∂f/∂u should lie in a narrow strip along the negative
axis of the complex plane, and second, the Jacobian matrix should be close to a normal
matrix. These two properties are trivially true if the Jacobian matrix is symmetric and
negative semi-definite.

Stability Function As mentioned earlier, the stability function according to the Dahlquist
test equation must satisfy two requirements: accuracy and stability. Regarding the consistency,
we recall that the stability function R(z) must approximate ez as z → 0 with some order
of accuracy. In particular, R(z) = ez + O(zp) implies the p-th order of consistency. For
example, the stability function of a first order accurate time stepping scheme must fulfil
R(z) = 1 + z +O(z2), in contrast, a second order scheme satisfies R(z) = 1 + z + z2

2 +O(z3).
Otherwise, the condition |R(z)| ≤ 1 must be fulfilled to ensure the stability of a numerical
method used.

The aim is now to design a stability function R(z) in such a way that the stability region

S =
{
z ∈ C :

∣∣R(z)
∣∣ ≤ 1

}
(3.15)

contains a large (still bounded) interval on the negative real axis [−γ, 0] with γ > 0, the
boundary of absolute stability, as large as possible. After such a suitable stability function
has been found, it is then possible to construct a numerical method.

3.2.1 Optimal Stability Polynomials

The first step in constructing RKC methods is to find a p-th order polynomial of the form

Rs(z) = 1 +
p∑

k=1

zk

k! +
s∑

k=p+1
βk
zk

k! (3.16)

where s is the number of stages and p ≤ s, in which γs is maximised subject to |Rs(z)| ≤ 1.
Assuming that the order p is fixed, the remaining free coefficients βk (for k = p+ 1, . . . , s)
of the stability polynomial (3.16) are naturally used to obtain a larger stability boundary
γs. In this context, the closed-form solutions for the polynomials with maximal real stability
boundaries are known as optimal stability polynomials.

First Order Polynomials Finding optimal polynomials depends on two terms: on the one
hand, the zeros of the stability polynomial Rs(z) are contained in the stability region. It is
thus obvious that an appropriate distribution of these real zeros gives a maximal value of γs.
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On the other hand, the condition of |Rs(z)| ≤ 1 must be fulfilled in between the zeros. The
key component of these two issues is related to the Chebyshev polynomials. It is known that
the Chebyshev polynomials Ts(x) of the first kind in the interval x ∈ [−1, 1] realise such an
optimal distribution of the zeros for a given s, while |Ts(x)| ≤ 1 is satisfied. On this basis, a
shift then leads to the optimal stability polynomial Rs(z) := Ts(1 + z

s2 ) with γs = 2s2. The
latter can be specified in the following theorem:

Theorem 3.2 ( [138]). For any explicit, consistent RK method, the boundary of absolute
stability γs depends on the number of stages s with γs ≤ 2s2, and the optimal stability
polynomial is the shifted Chebyshev polynomial of the first kind

Rs(z) = Ts

(
1 + z

s2

)
(3.17)

In order to verify (3.17), the evaluation of Rs(z) confirms the first order accuracy for any
s, since

Rs(z) = Ts

(
1 + z

s2

)
= 1 + z +O

(
z2
)

(3.18)

In particular, one obtains

R2(z) = 1 + z + 1
8z

2

R3(z) = 1 + z + 4
27z

2 + 4
729z

3

R4(z) = 1 + z + 5
32z

2 + 1
128z

3 + 1
8192z

4

(3.19)

Furthermore, the stability interval and the boundary of absolute stability γs are explicitly
obtained by analysing |Rs(z)| ≤ 1. For the Chebyshev polynomials hold

|Ts(x)| ≤ 1 =⇒ |x| ≤ 1 (3.20)

and therefore it follows that∣∣Rs(z)
∣∣ =

∣∣∣∣Ts (1 + z
s2

)∣∣∣∣ ≤ 1 =⇒
∣∣∣1 + z

s2

∣∣∣ ≤ 1 (3.21)

In general, z is complex-valued, however, for finding a real interval one can assume that z is
real that consequently implies∣∣∣1 + z

s2

∣∣∣ ≤ 1 =⇒ −2s2 ≤ z ≤ 0 (3.22)

Thus, the interval of absolute stability for first order schemes based on the stability function
(3.17) is given by

[−γs, 0] with γs = 2s2 (3.23)

For example, the stability intervals of P3(z) and P6(z) can be computed as

[−γ3, 0] = [−18, 0] for P3(z)
[−γ6, 0] = [−72, 0] for P6(z)

(3.24)
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Overall, the main feature is that the stability interval increases quadratically with the number
of stages s and is actually scaled as s2τmax, which is crucial to achieve large efficiency gains
compared to EE scheme. On closer inspection, the RKC methods can be considered as
unconditionally stable, since s2τmax is allowed to become arbitrarily large for sufficiently
large s while the stability is guaranteed.

Second Order Polynomials The development of higher order RKC schemes with regard to
designing the desired accuracy as well as finding intuitive formulas is much more challenging.
The existence and uniqueness of optimal stability polynomials with maximal real negative
stability interval for arbitrary p and s are theoretically guaranteed (cf. [286]), however, no
analytical expression is known for such polynomials of order p ≥ 2. Nonetheless, numerical
approximations of polynomials (also referred to as nearly optimal polynomials) can be used
to achieve optimal bounds γs which depend quadratically on s according to

γs ≈ Cps2 for s→∞ (C2 ≈ 0.82, C3 ≈ 0.49, C4 ≈ 0.34) (3.25)

For p = 2 there are two approximate polynomials in analytical form [280] for arbitrary s, which
were derived by Bakker and van der Houwen & Sommeijer. In general, the Bakker-Chebyshev
polynomial is preferred because of its better robustness with respect to numerical errors. For
instance, Bakker’s stability function for second order RKC methods is defined by

Bs(z) = 2
3 + 1

3s2 +
(1

3 −
1

3s2

)
Ts

(
1 + 3z

s2 − 1

)
(3.26)

which represents approximately 80% of the optimal stability region. By way of illustration,
second order accuracy is verified by

B3(z) = 1 + z + 1
2z

2 + 1
16z

3

B4(z) = 1 + z + 1
2z

2 + 2
25z

3 + 1
250z

4

B5(z) = 1 + z + 1
2z

2 + 7
80z

3 + 1
160z

4 + 1
6400z

5

(3.27)

In an analogous manner as above one can examine |Bs(z)| ≤ 1 which finally leads to
2
3(s2 − 1) ≤ z ≤ 0. Therefore, the interval of absolute stability for (3.26) can be specified as

[−γs, 0] with γs ≈
2
3
(
s2 − 1

)
(3.28)

We mention that ”≈“ in (3.28) depends on the degree of s. For an even degree γs is equal
to 2

3(s2 − 1), whereas for an odd degree γs is slightly larger. In contrast to the first order
polynomials the stability intervals are reduced, but yield a higher temporal accuracy. For
example, the interval of absolute stability for B3(z) and B6(z) is given by

[−γ3, 0] = [−16/3, 0] for B3(z)

[−γ6, 0] = [−70/3, 0] for B6(z)
(3.29)
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Higher Order Polynomials In the past, various strategies have been proposed for approx-
imating optimal stability polynomials which can generally be classified into three main
approaches. Besides the RKC methods mentioned, there are the DUMKA methods and the
ROCK methods. In particular, the latter two can be used to construct consistency orders of
p > 2. The DUMKA methods are based on the zeros of the optimal stability polynomials,
which can be computed iteratively. Conversely, the ROCK methods use the orthogonality of
Chebyshev polynomials and are obtained by combining the approaches of RKC and DUMKA.
For more detailed information, see e.g. [1] and the references therein. Apart from that, higher
order methods can also be achieved using extrapolation techniques [174,175].

3.2.2 Construction of Explicit Runge-Kutta-Chebyshev Methods

Given an optimal stability polynomial, the second step is now to construct a corresponding
RKC method. Schemes based on the optimal stability polynomials (3.17) and (3.26) are
known as first and second order RKC methods, respectively. In particular, two main strategies
have been realised for the construction. First, by factorisation of Euler steps, and second, by
exploiting the three-term recurrence relation of the Chebyshev polynomials. In the following
we describe the RKC methods formulated as factorised or recursive scheme.

Methods by Factorisation The basic idea for such RKC methods goes back to Yuan’ Chzao-
Din, Saul’ev, Franklin and Guillou & Lago in the years around 1960. The approach is based
on a sequence of EE steps Ψτ1 ,Ψτ2 , . . . ,Ψτs with corresponding time step sizes τ1, τ2, . . . , τs
which defines a one-step method as the composition

u1 =
(
Ψτs ◦ · · · ◦Ψτ1

) (
u0
)

(3.30)

Applying this factorisation gives the stability function Rs(z) =
s∏
i=1

(1 + τiz). As is known, the
shifted Chebyshev polynomials are optimal so that the optimal sequence τ1, . . . , τs is given by

τi = − 1
zi
, i = 1, . . . , s (3.31)

where zi are the zeros of Ts(z), since

Ts(z) =
s∏
i=1

(z − zi) =
s∏
i=1

(
1− z

zi

)
(3.32)

Thus, the resulting s-stage numerical scheme, called the factorised method, reads

y0 = un

yj = yj−1 + τjτmaxf
(
tn + cj−1τmax,yj−1

)
, 1 ≤ j ≤ s

un+1 = ys

(3.33)

with solution yj at stage j being denoted the intermediate solution of the method. Here, τmax
is the upper stability condition for the integration step τmax ≤ γs

ρ(J) with the spectral radius
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3.2 Explicit Runge-Kutta-Chebyshev Methods

ρ of J . Obviously, the factorised method corresponds to an explicit s-stage RK method with

c0 = 0, cj =
j∑
i=1

τi (1 ≤ j ≤ s), cs = 1 (3.34)

so that the stages (3.33) of this method are a sequence of EE steps with time step sizes

τ̃i =
∣∣∣∣∣τmax
zi

∣∣∣∣∣ (3.35)

and the corresponding super time step ∆τ̃s = τ̃1 + · · ·+ τ̃s.
As already mentioned, the order of the time step sizes τ̃i is extremely important with respect

to the internal stability. From a theoretical point of view, the factorised method is stable
at the end of each super time step due to (3.32). Otherwise, the condition |(1 + τ̃iλk)| > 1
reveals that half of the stages are unstable (internal instability), e.g. for certain eigenvalues
λk of J . Furthermore, the first zero of Ts(z), which is much smaller in absolute value than
the others, constructs a very large Euler step. The latter two facts lead to practical problems
such as numerical rounding errors which can cause a large accumulation of errors within one
cycle ∆τ̃s. A strategy to improve the internal stability and to overcome highly inaccurate
results is based on a special order in which small and large time steps are combined, see [99].
However, a proper order of the time step sizes depends on the stages used and can still lead
to unstable approximations.
Note that the factorised method (3.33) cannot be used as second order method because

the Bakker-Chebyshev polynomials (3.26) possess complex zeros. To achieve second order
accuracy, e.g. the Richardson extrapolation is applied as proposed in [198]. Another second
order method is possible using the numerical scheme of Lebedev [160] which is constructed in
a similar way to the factorised method described above. The Lebedev method approximates
the optimal stability polynomials by Zolotarev polynomials, while the internal stability is
again achieved using a special order of the stages. In addition, higher order factorised
methods [196,197] have been recently derived, which possess a high internal stability while
maintaining efficiency.

Methods by Recurrence Instead of using a factorisation formulation, van der Houwen &
Sommeijer [281] developed a family of methods with special recurrence relations around 1980.
Based on the three-term recurrence relation

T0(z) = 1, T1(z) = z, Tj(z) = 2zTj−1(z)− Tj−2(z), 2 ≤ j ≤ s (3.36)

they constructed a simple first order s-stage RKC scheme that generates the stability function
(3.17), which is given by

y0 = un

y1 = y0 + τ

s2f0

yj = 2yj−1 − yj−2 + 2τ
s2 fj−1, 2 ≤ j ≤ s

un+1 = ys

(3.37)
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with fj = f(tn + cjτ,yj), the time step size τ = tn+1 − tn and the intermediate solutions
yj . Apart from the computation of y1, the solutions yj at each intermediate stage obviously
depend on the two previous stages. The increment parameters cj are defined as

c0 = 0, c1 = 1
s2 , cj = 2cj−1 − cj−2 + 2

s2 (2 ≤ j ≤ s) (3.38)

so that the standard RK form reads

y0 = un

yj = un + τ
j−1∑
l=0

ajlf(tn + clτ,yl), 1 ≤ j ≤ s

un+1 = ys

(3.39)

where the coefficients ajl are identified via (3.38) and satisfying cl =
j−1∑
l=0

ajl. It should be

noted that 0 = c0 < c1 < · · · < cs−1 < cs = 1 and thus all (intermediate) stages at points
tn + cjτ lie within the current integration step.

The derivation of the stability function for each internal stage can be verified by applying
the scheme (3.37) to the Dahlquist test problem u′ = λu via

y0 = un

y1 = y0 + τ

s2λy0 =
(

1 + τλ

s2

)
y0 = T1

(
1 + τλ

s2

)
un

y2 = 2y1 − y0 + 2τ
s2 λy1 =

(
1 + 4τλ

s2 + 2(τλ)2

s4

)
y0 = T2

(
1 + τλ

s2

)
un

yj = 2yj−1 − yj−2 + 2τ
s2 λyj−1 = Tj

(
1 + τλ

s2

)
un, 3 ≤ j ≤ s

(3.40)

so that after a super time step un+1 = ys = Ts(1 + z
s2 )un with z = τλ is obtained.

The main advantage of the three-term Chebyshev recursion is based on its internal stability,
which is of crucial importance for the practical application. According to [281], it can be
shown that the scheme is stable at each integration step. This means that the recursive RKC
method, in contrast to the factorised method, only uses stable time integration steps. Besides
preserving internal stability, convergence properties were also analysed. The results of the
convergence analysis can be found in [287]. We will come back to this issue later.

3.2.3 Damped Stability Function

Although the introduced RKC schemes are of beneficial use, practical problems arise when
using the mentioned stability polynomials (3.17) and (3.26). To explain the potential
complications, let us exemplarily consider the stability function and the stability region of
the first order polynomial P3(z) in Figure 3.1. On closer inspection, the stability function
contains interior points z ∈ (−γs, 0) with |Rs(z)| = 1, so that at these points the stability
function touches the stability constraint at y = 1 or y = −1. Similarly, the same holds for
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Figure 3.1: First order stability polynomial R3(z) of degree s = 3. Left: Stability function.
Right: Stability region.

the stability region which contracts to a point on the real axis when |Rs(z)| = 1. This issue
is generally very restrictive in applications where a small imaginary perturbation on z due to
|Rs(z)| > 1 might cause instability.

To solve this problem, a modification of the stability polynomials by adding an additional
small damping is useful. In doing so, the stability requirement |Rs(z)| ≤ 1, z ∈ [−γs, 0] is
replaced by |Rs(z)| ≤ ν < 1, z ∈ [−γs,ν ,−δν ] where δν being a small positive parameter
depending on ν. On this basis, the stability function |Rs(z)| becomes bounded slightly
below 1 without losing its order of accuracy. Obviously, the proposed technique leads to
a slightly smaller stability interval than the undamped version, but the gain in stability is
primarily of central importance. In addition, the damping can also be used for problems with
complex-valued eigenvalues with a small imaginary part. It should be emphasised that the
use of a damping technique is generally preferable, especially for model problems that contain
a real eigenvalue spectrum. This follows from the fact that without a suitable damping, the
higher frequency components might be preserved such that these frequencies are not damped
and may thus lead to oscillations. As a result, an additional damping makes the method
more robust with respect to high frequencies.

The application of the damping technique requires the introduction of a damping parameter

w0 = 1 + ε

s2 (3.41)

with a small positive value ε. To derive the damped stability functions, the following ansatz
based on the general structures (3.17) and (3.26) via

Rs(z) = as + bsTs(ω0 + ω1z) (3.42)

is used, where the parameters as, bs, ω0, ω1 are determined in such a way that the requirements
for first and second order accuracy are fulfilled.

First Order Damped Polynomials In order to construct first order damped polynomials
the consistency conditions must be naturally satisfied. As is known, the stability function
Rs(z) = β0 + β1z + β2z

2 + · · · + βsz
s of a first order accurate time stepping scheme must

fulfil Rs(z) = 1 + z +O(z2). This requirement implies β0 = 1 and β1 = 1 which corresponds
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Figure 3.2: First order damped stability polynomial R3(z) of degree s = 3. Left: Stability
function with damping. Right: Stability region with damping.

to the conditions Rs(0) = 1 and R′s(0) = 1, respectively. On this basis, the parameters of the
damped version are chosen such that

Rs(0) = as + bsTs(ω0) = 1, R′s(0) = ω1bsT
′
s(ω0) = 1 (3.43)

implies first order consistency. With as = 0 one obtains the expression for bs by

Rs(0) = bsTs(ω0) = 1 =⇒ bs = 1
Ts(ω0) (3.44)

and it follows that

R′s(0) = ω1bsT
′
s(ω0) = 1 =⇒ ω1 = 1

bsT ′s(ω0) =⇒ ω1 = Ts(ω0)
T ′s(ω0) (3.45)

Finally, the first order damped stability function can be written in the format

Rs(z) = as + bsTs(ω0 + ω1z) = Ts(ω0 + ω1z)
Ts(ω0) (3.46)

Furthermore, it can be shown that

γs ≈
(

2− 4
3ε
)
s2 (3.47)

whereby the boundary of absolute stability is slightly reduced compared to the undamped
version (3.23). In practice, ε = 0.05 is often used which leads to γs ≈ 1.93s2. For completeness,
the damped stability function and the damped stability region are illustrated in Figure 3.2.

Second Order Damped Polynomials In an analogous manner it is assumed that

Bs(z) = as + bsTs(ω0 + ω1z) (3.48)

and to ensure second order accuracy, the following must hold:

Bs(0) = as + bsTs(ω0) = 1, B′s(0) = ω1bsT
′
s(ω0) = 1, B′′s (0) = ω2

1bsT
′′
s (ω0) = 1 (3.49)
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By solving the system depending on the three equations and unknowns, the stability function
reads as

Bs(z) = 1 + T ′′s (ω0)
(T ′s(ω0))2

(
Ts(ω0 + ω1z)− Ts(ω0)

)
(3.50)

with the parameters

as = 1− bsTs(ω0), bs = T ′′s (ω0)(
T ′s(ω0)

)2 , ω1 = T ′s(ω0)
T ′′s (ω0) (3.51)

The boundary of the damped stability interval is then given by

γs ≈ 2
3

(
s2 − 1

) (
1− 2

15ε
)

(3.52)

whereby the damping coefficient is often suggested as ε = 2/13.

3.2.4 Explicit Stabilised Runge-Kutta-Chebyshev Methods

As described earlier, the original RKC methods are based on the three-term recursion.
Logically, the Chebyshev recursion has to be adapted when the damped stability polynomials
are used. By imposing the three-term Chebyshev recursion and using the property Rj(0) = 1
it follows that Rj satisfies

R0(z) = 1, R1(z) = 1 + µ̃1z

Rj(z) = (1− µj − νj) + µjRj−1(z) + νjRj−2(z) + µ̃jRj−1(z)z + γ̃jz, 2 ≤ j ≤ s
(3.53)

with associated parameters

µ̃1 = b1ω1, µj = 2bjω0
bj−1

, νj = −bj
bj−2

, µ̃j = 2bjω1
bj−1

, γ̃j = −aj−1µ̃j , 2 ≤ j ≤ s (3.54)

Using the relations (3.53), the RKC integration formula for the underlying model problem
(3.14) can be derived by associating Rj with the intermediate approximation yj and z as the
function evaluation which results in

y0 = un

y1 = y0 + µ̃1τf0

yj = (1− µj − νj)y0 + µjyj−1 + νjyj−2 + µ̃jτfj−1 + γ̃jτf0, 2 ≤ j ≤ s
un+1 = ys

(3.55)

The latter s-stage RKC scheme obviously belongs to the explicit RK class (3.39). It should
be noted that a different set of coefficients is defined for each value of s. Finally, the first
order s-stage RKC scheme is realised on the basis of µj + νj = 1 and aj = 0 via

y0 = un

y1 = y0 + µ̃1τf0

yj = µjyj−1 + νjyj−2 + µ̃jτfj−1, 2 ≤ j ≤ s
un+1 = ys

(3.56)
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with the integration parameters

µ̃1 = ω1
ω0
, µj = 2bjω0

bj−1
, νj = −bj

bj−2
, µ̃j = 2bjω1

bj−1
, 2 ≤ j ≤ s (3.57)

The numerical stability of the scheme can be guaranteed if

τ ≤
(

1− 2
3ε
)
s2τmax (3.58)

where τmax is the theoretical stability limit for the original EE scheme. In contrast, the
second order s-stage RKC scheme is given by

y0 = un

y1 = y0 + µ̃1τf0

yj = (1− µj − νj)y0 + µjyj−1 + νjyj−2 + µ̃jτfj−1 + γ̃jτf0, 2 ≤ j ≤ s

un+1 = ys

(3.59)

with the parameters

µ̃1 = b1ω1

µj = 2bjω0
bj−1

, νj = −bj
bj−2

, µ̃j = 2bjω1
bj−1

, γ̃j = −
(
1− bj−1Tj−1(ω0)

)
µ̃j , 2 ≤ j ≤ s

(3.60)

as well as
a0 = 1− b0, a1 = 1− b1ω0, b0 = b1 = b2 (3.61)

with stability being ensured when

τ ≤ 1
3
(
s2 − 1

)(
1− 2

15ε
)
τmax (3.62)

The intermediate solutions yj depend only on the two previously computed intermediate
solutions and y0, independent of the number of stages s. The remaining time increment
parameters cj for the first and second order schemes are defined by

c0 = 0, cj = Ts(ω0)
T ′s(ω0)

T ′j(ω0)
Tj(ω0) (1 ≤ j ≤ s− 1), cs = 1 (3.63)

and

c0 = 0, c1 = c2
T ′2(ω0) , cj = T ′s(ω0)

T ′′s (ω0)
T ′′j (ω0)
T ′j(ω0) (2 ≤ j ≤ s− 1), cs = 1 (3.64)

respectively. Moreover, the increment parameters (3.63) and (3.64) fulfil the condition
0 = c0 < c1 < · · · < cs−1 < cs = 1. For more details we refer the reader to [281,286,287].
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3.2.5 Internal Stability and Convergence Properties

Finally, we focus on important properties such as internal stability and convergence properties,
see e.g. [287]. Since the RKC methods are in multi-stage form and include a large number of
stages s, it is necessary to take into account the error propagation over these stages within
a single integration step. This examination is often referred to as the internal (numerical)
stability analysis. In addition, the internal stability is also important for the convergence of
these methods.
As is known, the RKC methods can be specified in the RK form

y0 = un

yj = un + τ
j−1∑
l=0

ajlf(tn + clτ,yl), 1 ≤ j ≤ s

un+1 = ys

(3.65)

The perturbed version of (3.65) is then represented as

ỹ0 = ũn

ỹj = ũn + τ
j−1∑
l=0

ajlf(tn + clτ, ỹl) + rj , 1 ≤ j ≤ s

ũn+1 = ỹs

(3.66)

where ũn denotes a perturbation of un and rj a local perturbation at stage j that represents
round-off errors. Let en = ũn − un and dj = ỹn − yn denote the errors associated with this
perturbation. By applying the RKC method to the linear system (3.1) the error scheme is in
the general form

dj = Rj(τL)en +
j∑

k=1
Qjk(τL)rk, 1 ≤ j ≤ s (3.67)

with the absolute stability polynomials Rj and the so-called internal stability polynomials
Qjk. In particular, the internal stability polynomials determine the propagation of all internal
perturbations over the stages within a single integration step. Furthermore, it holds that
en+1 = ds and one obtains in the final stage the error

en+1 = Rs(τL)en +
s∑

k=1
Qsk(τL)rk (3.68)

Let L be symmetric and negative semi-definite, the error for the linear stability results in

∥∥∥en+1
∥∥∥

2
≤ max

z=τλ

∣∣Rs(z)
∣∣ ‖en‖2 +

s∑
k=1

max
z=τλ

∣∣Qsk(z)
∣∣ ‖rk‖2 (3.69)

where λ denotes the eigenvalues of L. If the absolute stability condition

τρ(L) ≤ γs (3.70)

is fulfilled, it follows that ‖Rs(z)‖2 ≤ 1, and then the usual stability from step to step for
the propagation en is considered. This, however, does not guarantee internal stability in
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general and depends directly on the numerical scheme used. An example of this is illustrated
in [286] when using the diagonal method. Notwithstanding, the use of the recursive RKC
method ensures internal stability. Let us emphasise again that the assumption (3.70) should
be interpreted as a condition on s rather than a restriction on τ .
Using the numerical scheme (3.55), the internal stability polynomials take the form

Qsk(z) = bs
bk
Us−k(ω0 + ω1z), 1 ≤ k ≤ s (3.71)

where Ui(z) being the i-th Chebyshev polynomial of the second kind. If then bj is chosen as
(3.44) or (3.51), (3.61) and z ∈ [−γs, 0], it can be shown that

∥∥Qsk(z)
∥∥

2 ≤
bs
bk

(s− k + 1)(1 + Cε) (3.72)

with the damping parameter ε and a constant C of moderate size independent of s. Con-
sequently, for a symmetric and negative semi-definite matrix L with τρ(L) ≤ γs the error
bound is determined by

∥∥∥en+1
∥∥∥

2
≤ ‖en‖2 +

s∑
k=1

bs
bk

(s− k + 1)(1 + Cε)‖rk‖2 (3.73)

and the following theorem holds for the first and second order RKC methods:
Theorem 3.3 ( [287]). Suppose that τ and s are chosen such that the stability time step size
restriction τρ(L) ≤ γs is satisfied. Then the following error bound is valid

∥∥∥en+1
∥∥∥

2
≤ ‖en‖2 + C̃

s∑
k=1

(s− k + 1)‖rk‖2 ≤ ‖en‖2 + 1
2s(s+ 1)C̃ max

k
‖rk‖2 (3.74)

where C̃ is a constant of moderate size independent of L, τ and s.
Thus, the accumulation of internal perturbations is independent of the spectrum of L if

τρ(L) ≤ γs is chosen. Apart from that, the estimate shows that the perturbations grow at
most quadratically with s, which is harmless in practice. In contrast to the diagonal or original
(not rearranged) factorised method, the recursive RKC scheme is therefore predestined to use
a large number of stages. The latter internal stability analysis is given more detailed in [287].
The internal stability is also of practical importance for the convergence properties and

the accuracy of the method. Let en = uh(tn)− un be the fully discrete error with respect to
the exact PDE solution uh(tn) restricted on a grid point with the underlying spatial mesh
size h, and σh(t) is the local spatial truncation error, then the global error bound for the
first order undamped RKC method can be specified in the following theorem:
Theorem 3.4 ( [287]). Assume uh ∈ C2[0, tF ] and τρ(L) ≤ γs. Then the global errors of
the first order undamped RKC scheme satisfy

‖en‖2 ≤ C
(
τ max

0≤t≤tF

∥∥üh(t)
∥∥

2 + max
0≤t≤tF

∥∥σh(t)
∥∥

2

)
, n = 1, 2, . . . : nτ ≤ tF (3.75)

with a constant C of moderate size independent of L, τ and s.
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3.3 Explicit Stabilised Runge-Kutta-Legendre Methods

Consequently, first order temporal convergence is achieved and it can be seen that the
global error decreases linearly with τ . For the second order undamped RKC method the
following error bound holds:

Theorem 3.5 ( [287]). Assume uh ∈ C3[0, tF ] and τρ(L) ≤ γs. Then the global errors of
the second order undamped RKC scheme (for n = 1, 2, . . . : nτ ≤ tF ) satisfy

‖en‖2 ≤ C
(
τ

s3 max
0≤t≤tF

∥∥üh(t)
∥∥

2 + τ2 max
0≤t≤tF

∥∥...uh(t)
∥∥

2 + max
0≤t≤tF

∥∥σh(t)
∥∥

2

)
(3.76)

with a constant C of moderate size independent of L, τ and s.

The error bound (3.76) shows that the second order undamped RKC scheme has almost a
second order convergence in time, where the term O( τ

s3 ) corresponds to the fact that the first
stage of the scheme possesses only first order consistency. However, a temporal order of two
is observed for large s. For further details we refer again to [287]. Note that the convergence
properties also hold for the damped RKC schemes and that the results based on internal
stability and convergence are transferable to nonlinear parabolic problems.

In conclusion, the class of RKC schemes has several advantages. The methods possess
extended stability regions and are easy to implement due to their explicit formulation.
Amazingly, the size of a super integration step grows quadratically with the number of stages
s. In addition, their explicit nature makes them well-suited for parallel computing such
as GPUs. Another advantage of the recursive RKC scheme (3.55) is that maximal three
intermediate solutions are required in order to compute the current intermediate solution yj
independent of the number of stages s, which therefore results in low memory storage costs. By
exploiting the recursion relations of the Chebyshev polynomials the internal stability within
the intermediate stages is ensured which is of crucial importance for practical application.
Apart from that, the use of damped stability polynomials makes the method more robust
with respect to higher frequencies. A further positive property is that the stabilised explicit
RKC methods are simple and well applicable to nonlinear parabolic problems.
Unfortunately, these techniques also have some disadvantages. For example, designing

higher order RKC schemes being challenging, but also the development of the formulas and
the incorporated parameters may not be intuitive. It should also be noted that the RKC
methods are not very suitable for extremely stiff (parabolic) problems as well as for problems
with significant advection.

Lastly, we emphasise that the idea of maximising the real stability boundary can also be
used to maximise the imaginary stability boundary and thus to develop hyperbolic RKC
methods for integrating hyperbolic problems (or convection dominated problems) that have
a Jacobian matrix with imaginary eigenvalues. For more details see [142,254,271,279,280].

3.3 Explicit Stabilised Runge-Kutta-Legendre Methods

According to the latter concept, an alternative approach [182, 183] has been constructed
building on the recursion relation associated with the Legendre polynomials which is called
the Runge-Kutta-Legendre (RKL) method. The proposed shifted Legendre polynomials are
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used as the basis for the construction of robust STS schemes without losing important features
of this class of methods. The main advantage of using Legendre polynomials over Chebyshev
polynomials is that their absolute value is bounded by one if their argument lies in the
range (−1, 1). Therefore, the corresponding stability function satisfies |Rs(z)| < 1 for each
stage of the multi-stage RK scheme, so that the RKL method is naturally stabilised. This
makes the method very robust and at the same time no damping is required, but the natural
stabilisation leads to a slightly smaller time step size limit. Let us briefly describe the RKL
scheme below.

As is known, the Legendre polynomials Pj(x) satisfy |Pj(x)| < 1 for x ∈ (−1, 1). Of course,
these polynomials also obey a three-term recursion which is given by

P0(x) = 1, P1(x) = x, Pj(x) =
(

2j−1
j

)
xPj−1(x)−

(
j−1
j

)
Pj−2(x), 2 ≤ j ≤ s (3.77)

For the development of first and second order RKL methods the same derivation as for the
RKC schemes can be used. As already stated, the general ansatz for the stability polynomial
of an s-stage RKL scheme is based on Rs(z) = as + bsPs(ω0 + ω1z). Building on the
boundedness of the Legendre polynomials, no damping is needed and the damping parameter
is set to ω0 = 1 for all RKL schemes. When deriving RKL schemes again consistency
conditions must be ensured. For first order consistency Rs(0) = 1 and R′s(0) = 1 must hold,
which consequently results in as = 0, bs = 1 and ω1 = 2

s2+s . Thus, the stability function is
determined as

Rs(z) := Ps

(
1 + 2

s2 + s
z

)
(3.78)

with the corresponding stability polynomial for each s being a shifted Legendre polynomial.
Furthermore, the first order stability polynomials Pj satisfy the recursion relation

Pj

(
1 + 2

s2 + s
z

)
=
(

2j − 1
j

)
Pj−1

(
1 + 2

s2 + s
z

)
+
(

1− j
j

)
Pj−2

(
1 + 2

s2 + s
z

)

+
(

2j − 1
j

)( 2
s2 + s

z

)
Pj−1

(
1 + 2

s2 + s
z

) (3.79)

Based on the latter recursion the first order s-stage RKL scheme is given by

y0 = un

y1 = y0 + µ̃1τf0

yj = µjyj−1 + νjyj−2 + µ̃jτfj−1, 2 ≤ j ≤ s

un+1 = ys

(3.80)

with the integration parameters

µ̃j = 2j − 1
j

ω1 = 2j − 1
j

2
s2 + s

, µj = 2j − 1
j

, νj = 1− j
j

(3.81)

To ensure stability, the condition |Rs(z)| ≤ 1 must be fulfilled. This implies that∣∣Ps(1 + ω1z)
∣∣ ≤ 1 =⇒ |1− ω1τλmax| ≤ 1 (3.82)
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3.3 Explicit Stabilised Runge-Kutta-Legendre Methods

and τ ≤ 2
ω1λmax

, so that the scheme remains stable if

τ ≤
(
s2 + s

2

)
τmax (3.83)

The corresponding time increment parameters cj are defined by the integration coefficients
µj , νj and µ̃j via

c0 = 0, c1 = µ̃1, cj = µjcj−1 + νjcj−2 + µ̃j (2 ≤ j ≤ s) (3.84)

To achieve a second order accurate RKL scheme, the leading terms of the stability polynomial
must exactly match with the expansion of the exponential in the exact solution that is
equivalent to satisfy the conditions Rs(0) = 1, R′s(0) = 1 and R′′s(0) = 1. Without damping
and thus setting ω0 = 1, the coefficients of the stability polynomial are determined by

as = 1− bs, bs = P ′′s (1)(
P ′s(1)

)2 = s2 + s− 2
2s(s+ 1) , (2 ≤ j ≤ s)

ω1 = P ′s(1)
P ′′s (1) = 4

s2 + s− 2

(3.85)

For s < 2 the free parameters are set to b0 = b1 = b2 = 1
3 . Substituting this into the

three-term Legendre recurrence relation (3.77) yields

aj + bjPj(1 + ω1z) =

1−
(

2j − 1
j

)
bj
bj−1

−
(

1− j
j

)
bj
bj−2



+
(

2j − 1
j

)
bj
bj−1

(
aj−1 + bj−1Pj−1(1 + ω1z)

)

+
(

1− j
j

)
bj
bj−2

(
aj−2 + bj−2Pj−2(1 + ω1z)

)

+
(

2j − 1
j

)
bj
bj−1

ω1z
(
aj−1 + bj−1Pj−1(1 + ω1z)

)

− aj−1

(
2j − 1
j

)
bj
bj−1

ω1z

(3.86)

Finally, the second order s-stage RKL scheme can be written as

y0 = un

y1 = y0 + µ̃1τf0

yj = (1− µj − νj)y0 + µjyj−1 + νjyj−2 + µ̃jτfj−1 + γ̃jτf0, 2 ≤ j ≤ s

un+1 = ys

(3.87)
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with the integration parameters

µ̃1 = b1ω1 = 4
3(s2 + s− 2) , µj = 2j − 1

j

bj
bj−1

= (2j − 1)(j + 2)(j − 1)2

j(j − 2)(j + 1)2

νj = −j − 1
j

bj
bj−2

= − (j − 1)3(j2 − 4)
j3(j + 1)(j − 3)

µ̃j = µjω1 = (2j − 1)(j + 2)(j − 1)2

j(j − 2)(j + 1)2
4

s2 + s− 2 , γ̃j = −aj−1µ̃j = (bj−1 − 1)µ̃j

(3.88)

To ensure stability, the corresponding maximum time step size has to be chosen as

τ ≤
(
s2 + s− 2

4

)
τmax (3.89)

Analogous to the first order scheme the remaining time increment parameters cj are defined
by µj , νj , µ̃j and γ̃j as

c0 = 0, c1 = µ̃1, cj = µjcj−1 + νjcj−2 + µ̃j + γ̃j (2 ≤ j ≤ s) (3.90)

Overall, the comparison of (3.58) and (3.62) with (3.83) and (3.89) clarifies that the first
and second order RKL methods have a slightly smaller time step size limit compared to their
RKC counterparts. The substantial advantage, however, is the better stability properties
which are useful for practical applications. Theoretical investigations such as the monotone
stability and the von Neumann stability analysis are presented in [182,183]. We also emphasise
that although the second order RKL method is theoretically stable, in practice only odd
values of s should be used as higher frequencies are not damped for even s, see [182]. However,
the second order RKC schemes can cause a similarly undesirable property.

The RKC and RKL schemes have been used successfully for parabolic problems in the past.
Since both variants are competitive, neither method is specifically preferred. Nevertheless,
the RKL methods have recently been considered more often because of their desired stability
properties. A comparison of the various STS schemes, especially in connection with nonlinear
diffusion, can be found in [2, 3, 34,183,277].
In the further course of the work we denote all schemes that belong to the class of multi-

stage RK methods with extended stability regions, such as RKC and RKL, as the class of
fast explicit methods.

3.4 Fast Explicit Diffusion

The introduced fast explicit methods RKC and RKL can be considered as methods in which
the extended stability region is constructed in an explicit manner. A similar (but indirect)
approach has been developed by Grewenig [107, 108], the so-called fast explicit diffusion
(FED) method, which is well-known in image processing. In contrast to the class of RKC
schemes, the use of FED is based on the decomposition of a box filter that can be factorised
into a cycle of explicit linear diffusion steps. In doing so, the FED method uses stable and
unstable time step sizes that significantly violate the upper stability bound of an EE scheme.
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Linear Diffusion

Gaussian Convolution

Equivalence

Iterated Box Filter
Approximation

Approximation

Figure 3.3: Relationship between linear diffusion, Gaussian convolution and iterated box
filter. From a theoretical point of view the linear diffusion process is equivalent to the
Gaussian convolution. The Gaussian convolution, in turn, can be approximated by iterated
box filtering. Thus, the iterative application of the box filter approximated linear diffusion.

In other words, FED is built on a factorisation of Euler steps and is therefore categorised
as a factorised method. To overcome some of the drawbacks of the basic FED method, the
advanced version called fast explicit diffusion Runge-Kutta (FEDRK) can be used, which is
based on a recurrence relation of the box filters. As a result, the FEDRK scheme ensures
internal stability, so the scheme is of practical use exactly like RKC and RKL. Furthermore,
unlike the RKC method, no additional damping is required which makes FEDRK ideal for
problems with higher frequencies.

In particular, the FEDRK scheme is of an explicit nature, well-suited for parallel computing
and highly efficient, and can also easily be applied to inhomogeneous, isotropic or anisotropic
and multi-dimensional diffusion problems. In the following let us provide an insight into the
FED and FEDRK method. For a more detailed analysis from a theoretical point of view we
refer the reader to [107,294]. Before going into the details, we first point out the core idea of
the FED technique.

Beyond Fast Explicit Diffusion The basic concept of the FED technique can be explained
as follows. It is well-known that homogeneous linear diffusion is equivalent to the Gaussian
convolution, since the Gaussian kernel is a fundamental solution to this problem. In simple
terms, the solution of the homogeneous linear diffusion applied to a signal is equivalent to
applying a Gaussian convolution to that signal. On the other hand, it is known from signal
filtering theory (central limit theorem) that a box filter that is applied multiple times to a
signal approximates a Gaussian convolution with this signal. In addition, it can be shown
that a box filter can be factorised into a cycle of explicit linear diffusion steps. Based on
this fact, the FED technique provides an alternative way of applying such a filter by using
iterations of explicit diffusion steps. The described relationship between linear diffusion,
Gaussian convolution and iterated box filter is also illustrated in Figure 3.3.

3.4.1 General Background

We are now going to describe the abovementioned equivalences in more detail. The crucial
point within these relationships is based on the equivalence between one-dimensional linear
symmetric filters and explicit diffusion schemes with varying time step sizes. For the derivation,
a factorisation of linear symmetric filter kernels is used, which can be represented as the sum
of discrete derivatives such as finite differences.
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Equivalence Between Linear Diffusion and Gaussian Convolution Let us consider the
one-dimensional homogeneous linear diffusion equation

∂tu(x, t) = div
(
∇u(x, t)

)
= ∂xxu(x, t), (x, t) ∈ R× (0,∞) (3.91)

with initial data given by u(x, 0) = f(x). The fundamental solution to this process reads

u(x, t) =

f(x), t = 0(
G√2t ∗ f

)
(x), t > 0

(3.92)

where Gσ is the Gaussian function defined as

Gσ(x) := (2πσ2)−
1
2 exp

(
−|x|

2

2σ2

)
(3.93)

with the standard deviation σ > 0 and the symbol ∗ denotes the continuous convolution

(g ∗ h)(x) =
∫
R

g(x− y)h(y) dy (3.94)

In fact, the solution (3.92) means that the linear diffusion applied to f(x) with stopping
time tF is equivalent to a convolution with a Gaussian of variance σ2 = 2tF . For higher
dimensional problems the fundamental solution is the product of the fundamental solutions
in each variable.

Approximation of Gaussian Convolution by Iterated Filter As stated above, the homogen-
eous diffusion process is equivalent to a Gaussian convolution applied to the original signal
data. For this reason, the Gaussian convolution is of fundamental importance for linear
parabolic problems and thus for numerous application. For practical use the continuous
convolution can also be expressed in a discrete setting.

Let f = (fi)i∈Z and g = (gi)i∈Z be discrete real-valued one-dimensional signals given on an
equidistant grid with mesh size h > 0. The discrete convolution of the two signals is given by

(f ∗h g)i :=
∑
k∈Z

fkgi+k (3.95)

However, the latter discrete convolution can also be redefined using a discrete filter Lh2n+1 of
finite length (2n+ 1)h with n ∈ N via

(
Lh2n+1(f)

)
i

:=
n∑

k=−n
wkfi+k (3.96)

where wk ∈ R are the weights of the convolution kernel. For example, in the case of a
Gaussian kernel, the discrete kernel wk = Gσ(xk) is obtained by sampling at the points
xk = kh which are the midpoints of the corresponding intervals [(k− 1

2)h, (k+ 1
2)h]. It should

be noted that when diffusion processes are considered the underlying kernels are symmetric
and the weights are assumed to be w−k = wk for k ≥ 1.
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Instead of discretising the Gaussian function and computing the corresponding discrete
convolution, one can also use arbitrary filter kernels whose weights are nonnegative and sum
up to 1, i.e.

n∑
k=−n

wk = 1 (3.97)

More precisely, the Gaussian kernel can be approximated using nonnegative filter kernels
with weights (3.97). This property follows from the central limit theorem, in which the
filter kernels are interpreted as probability density functions. As a result, the Gaussian
convolution in the discrete setting can be replaced by iterated filtering. There are several
ways to approximate the Gaussian, e.g. binomial kernel, maximum variance kernel, box
kernel or extended box kernel, for a more specific definition see [107].

Equivalence Between Symmetric Discrete Filter and Discrete Derivatives Before the
relation of symmetric filter kernels and explicit homogeneous diffusion schemes can be
illustrated, let us clarify that every discrete linear, symmetric one-dimensional filter Lh2n+1
can be written as a weighted sum of discrete even order derivatives such as

Lh2n+1 :=
n∑

m=0
α(n)
m ∆m

h (3.98)

with real-valued coefficients α(n)
m and the discrete one-dimensional Laplacian defined as

(∆hf)i := fi+1 − 2fi + fi−1
h2 (3.99)

For m = 0, the operator ∆m
h is declared as the identity operator, otherwise for m > 0 as the

m-times composition of the discrete Laplacian which corresponds to a central finite difference
approximation for the derivative of order 2m. The closed-form expression for ∆m

h with respect
to a discrete signal f is specified in the following proposition:

Proposition 3.1 ( [107]). Let f be a discrete signal and m ≥ 1. Then the m-times
composition of the discrete Laplacian ∆h fulfils

(∆m
h f)i = 1

h2m

m∑
k=−m

(−1)m+k
(

2m
m+ k

)
fi+k (3.100)

In addition, it can be shown that the coefficients α(n)
m in (3.98) are unique and that there

exists an explicit connection between the filter weights wk and α
(n)
m so that the following

theorem can be formulated:

Theorem 3.6 ( [107]). Let Lh2n+1 be an arbitrary discrete linear, symmetric one-dimensional
filter. Then the representation

Lh2n+1 =
n∑

m=0
α(n)
m ∆m

h (3.101)

expressed by a weighted sum of discrete even order derivative approximations is unique. The
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corresponding coefficients are given by

α(n)
m = h2m

n∑
k=m

(k +m

2m

)
+
(
1− δ(k+m),0

)(k +m− 1
2m

)wk (3.102)

with the Kronecker delta δi,j.

In this context, let us give an example for the computation of a signal convoluted via the
original definition (3.96) and the equivalent representation (3.101) using the box filter Bh

2n+1.

Example 3.1. Let us consider the box filter Bh
2n+1 with length (2n + 1)h. The uniform

weights of Bh
2n+1 are defined by

wk = 1
2n+ 1 ,

n∑
k=−n

wk = 1, k = −n, . . . , 0, . . . , n (3.103)

In this example, the signal is given by

f = (fi) = (0, 0, 1, 2, 3, 2, 1, 0, 0) (3.104)

The convoluted signal (3.96) based on the box filter with h = 1, n = 1 and wk = 1
3 yields

(
B1

3(f)
)
i

=
1∑

k=−1
wkfi+k =

(
0, 1

3 , 1, 2,
7
3 , 2, 1,

1
3 , 0
)

(3.105)

Analogously, for n = 2 and wk = 1
5 it follows that

(
B1

5(f)
)
i

=
2∑

k=−2
wkfi+k =

(
1
5 ,

3
5 ,

6
5 ,

8
5 ,

9
5 ,

8
5 ,

6
5 ,

3
5 ,

1
5

)
(3.106)

From Theorem 3.6 it is known that the box filter take the form

Bh
2n+1 =

n∑
m=0

α(n)
m ∆m

h (3.107)

where the corresponding coefficients are computed via (3.102) as

α
(n)
0 = 1, α(n)

m = h2m

2m+ 1

(
n+m

2m

)
(for m > 0) (3.108)

Consequently, the convoluted signal computed with (3.100) and ∆0
1 = I for n = 1 leads to

(
B1

3(f)
)
i

=
1∑

m=0
α(1)
m (∆m

1 f)i = α1
0 (f)i + α1

1

(
∆1

1f
)
i

= (f)i + 1
3

(
∆1

1f
)
i

= fi + 1
3 (fi−1 − 2fi + fi+1) =

(
0, 1

3 , 1, 2,
7
3 , 2, 1,

1
3 , 0
)

(3.109)
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and for n = 2 to

(
B1

5(f)
)
i

=
2∑

m=0
α(2)
m (∆m

1 f)i

= α2
0 (f)i + α2

1

(
∆1

1f
)
i
+ α2

2

(
∆2

1f
)
i

= (f)i +
(
∆1

1f
)
i
+ 1

5

(
∆2

1f
)
i

= fi + (fi−1 − 2fi + fi+1) + 1
5 (fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2)

=
(

1
5 ,

3
5 ,

6
5 ,

8
5 ,

9
5 ,

8
5 ,

6
5 ,

3
5 ,

1
5

)
(3.110)

which gives the same results as using the original definition.

Based on the fact that a discrete linear, symmetric filter Lh2n+1 can be represented as a series
expansion of a weighted sum of discrete even order derivative approximations, the equivalence
between symmetric one-dimensional filter kernels and explicit homogeneous diffusion schemes
with varying time step sizes can ultimately be derived.

Diffusion Interpretation of Symmetric Filters The starting point for demonstrating the
equivalence is based on the abovementioned filter representation (3.101). The discrete one-
dimensional Laplace operator ∆h contained therein can be replaced by the variable −z, i.e.
∆h = −z, which here reflects the spectrum of this operator, so that the following polynomial
PnL (z) ∈ C is obtained:

Lh2n+1 =
n∑

m=0
α(n)
m ∆m

h =
n∑

m=0
α(n)
m (−z)m =: PnL (z) (3.111)

According to the fundamental theorem of algebra, PnL (z) has exactly n zeros z0, . . . , zn−1 ∈ C
and can be written as

PnL (z) = c
n−1∏
m=0

(zm − z) (3.112)

where c ∈ R is a normalisation factor. Assuming that the weights wk of the filter Lh2n+1 are
nonnegative, this also holds for the coefficients α(n)

m represented by (3.102). In the case of
PnL (0) = α

(n)
0 > 0, this implies

PnL (0) = c
n−1∏
m=0

zm = α
(n)
0 > 0 (3.113)

which yields zm 6= 0 for all m and therefore the normalisation factor has to fulfil the following
simple representation:

c = α
(n)
0

n−1∏
m=0

zm

−1

(3.114)
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If it is further assumed that the weights of Lh2n+1 satisfy the symmetry condition w−k = wk
and sum up to 1, it holds that

α
(n)
0 =

n∑
k=0

(k
0

)
+ (1− δk,0)

(
k − 1

0

)wk = w0 + 2
n∑
k=1

wk = 1 (3.115)

Due to α(n)
0 = 1, the polynomial PnL (z) can be rewritten as follows:

PnL (z) = c
n−1∏
m=0

(zm − z) =

n−1∏
m=0

zm

−1
n−1∏
m=0

(zm − z) =
n−1∏
m=0

(
1− z

zm

)
(3.116)

Finally, the replacement of the variable −z via the discrete Laplacian ∆h leads to a composition
of operators

Lh2n+1 =
n−1∏
m=0

(I + z−1
m ∆h) (3.117)

with the zeros zm of the polynomial PnL (z) and the identity operator I, i.e. If = f .

Remark 3.1. Considering the one-dimensional linear diffusion equation ∂tu(x, t) = ∂xxu(x, t).
The application of the standard spatial and temporal discretisation to the PDE gives

uk+1
i = uki + τ

uki+1 − 2uki + uki−1
h2 = (I + τ∆h)uki (3.118)

In this case, the representation (3.117) can be seen as a composition of n explicit diffusion
steps with varying time step sizes z−1

m .

Obviously, the linear filter representation (3.117) corresponds to a series or a so-called cycle
of explicit homogeneous diffusion steps. In other words, the filter Lh2n+1 can be decomposed
into n explicit diffusion steps with varying time step sizes z−1

m , m = 0, . . . , n − 1. The
associated cycle time Θn, which is also interpreted as the stopping time of the underlying
diffusion process, matches with

Θn =
n−1∑
m=0

z−1
m = α

(n)
1 (3.119)

and is thus determined by

α
(n)
1 = h2

n∑
k=1

(k + 1
2

)
+
(
k

2

)wk = h2
n∑
k=1

k2wk (3.120)

We summarise these results established by Grewenig in the following main theorem:

Theorem 3.7 ( [107]). Let Lh2n+1 be an arbitrary discrete linear, symmetric one-dimensional
filter kernel with weights that fulfil

n∑
k=−n

wk = 1 (3.121)

84



3.4 Fast Explicit Diffusion

Then Lh2n+1 is equivalent to a cycle of n explicit one-dimensional linear homogeneous diffusion
steps

Lh2n+1 =
n−1∏
m=0

(I + τm∆h) (3.122)

with the varying time step sizes
τm = z−1

m ∈ C (3.123)

where zm ∈ C\{0} are the zeros of the polynomial PnL (z). The cycle time Θn is given by

Θn = h2
n∑
k=1

k2wk (3.124)

The latter theorem is the key to connecting symmetric filters and explicit diffusion schemes.
In particular, it allows a symmetric filter Lh2n+1 to be expressed in the form of n explicit
diffusion steps. Before presenting the final FED scheme, let us briefly indicate examples of
filter factorisations.

Filter Factorisations So far, it is known that any iterated filter kernel whose coefficients
are nonnegative and sum up to 1 approximates the Gaussian convolution. In fact, this is
rather general and therefore filter kernels must be analysed for practical use, see [107]. In the
work mentioned, four discrete filters have been evaluated by investigating their quality and
performance aspects. More precisely, the former relates to the approximation quality of a
Gaussian by iterated application of a filter, and the latter is based on the corresponding time
step sizes, number of iterations per cycle and the cycle times of the filter used. An overview
of the discrete filters investigated and their properties for the use within the FED technique is
given in Table 3.1. As can be seen, no filter fits perfectly for both aspects examined. However,
on closer inspection at the table indicates that the best compromise between efficiency and
approximation quality is achieved by the use of the box filter. In contrast, the iterated
binomial kernel provides a very good approximation of the Gaussian, but is rather inefficient
due to its small time step sizes. Otherwise, the maximum variance kernel only requires a
small number of iterations per cycle at the expense of a very poor approximation quality.

Table 3.1: Comparison of three symmetric discrete filters for the approximation of the
Gaussian with nonnegative weights which sum up to 1, adopted from [294]. We mention that
the extended box filter is also investigated in [107].

Kernel Binomial Maximum Variance Box

Time step sizes τi h2

4
h2

2
1

2 cos2(π 2i+1
4n )

h2

2
1

2 cos2
(
π 2i+1

4n+2

)
Cycle time Θn

h2

4 n
h2

2 n
2 h2

6 (n2 + n)

Performance Poor: O(n) Very good: O(n2) Good: O(n2)

Quality Very good Poor Good
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Box Filter The discrete box filter, denoted by Bh
2n+1, is identified as the best kernel in the

FED-setup because the filter provides both reasonable approximation quality and still good
performance. On this basis, we present some technical aspects of the box filter.

For the representation of Bh
2n+1 in the form (3.111) the coefficients are computed based on

the uniform box filter weights wk = 1
2n+1 by means of (3.102) via

α(n)
m = h2m

2n+ 1

n∑
k=m

(k +m

2m

)
+
(
k +m− 1

2m

) = h2m

2n+ 1

(
n+m

2m

)
(3.125)

Finally, the polynomial PnB(z) with respect to the box filter Bh
2n+1 is given by

PnB(z) =
n∑

m=0

h2m

2n+ 1

(
n+m

2m

)
(−z)m (3.126)

The latter can also be represented using the Chebyshev polynomials T2n+1(z) of the first
kind for z > 0 as

PnB(z) = (−1)n 2
2n+ 1

T2n+1
(
h
√
z

2

)
h
√
z

(3.127)

For a detailed derivation see [107,294]. The reformulated polynomial (3.127) also exists for
z → 0 and is equal to 1. In addition, it holds that |PnB(z)| < 1 for z ∈ (0, 4

h2 ], and therefore
no additional damping is required. The corresponding zeros z0, . . . , zn−1 of PnB(z) coincide
with the n positive zeros of the Chebyshev polynomial T2n+1(h

√
z

2 ) and are determined by

zm = 4
h2 cos2

(
π

2m+ 1
4n+ 2

)
, m = 0, . . . , n− 1 (3.128)

so that the time step sizes of the explicit one-dimensional linear homogeneous diffusion scheme
result in

τm = 1
zm

= h2

4
1

cos2
(
π 2m+1

4n+2

) , m = 0, . . . , n− 1 (3.129)

The associated cycle time based on n diffusion steps reads

Θn = h2
n∑
k=1

k2wk = h2

2n+ 1

n∑
k=1

k2 = h2

6 (n2 + n) (3.130)

Obviously, the stopping time grows quadratically in n and is n2+n
3 times higher than the

stopping time of a stable EE scheme with τmax = h2

2 . The latter consideration is a special
case of Theorem 3.7 and yields the following conclusion:

Theorem 3.8 ( [108]). A discrete one-dimensional box filter Bh
2n+1 is equivalent to a cycle

with n explicit linear diffusion steps:

Bh
2n+1 =

n−1∏
i=0

(I + τi∆h) (3.131)
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with the varying time step sizes

τi = τmax
1

2 cos2
(
π 2i+1

4n+2

) , i = 0, . . . , n− 1 (3.132)

and the corresponding diffusion time of one cycle

Θn = τmax

(
n2 + n

3

)
(3.133)

where τmax = h2

2 is the theoretical upper bound for a stable one-dimensional EE scheme.

It should be noted that the polynomial (3.127) represents the stability polynomial of the
underlying FED scheme, which can also be formulated by a Chebyshev polynomial of the
second kind via

PnB(z) = 1
2n+ 1U2n

√1− h2

4 z

 (3.134)

with z ∈ [0, h2

4 ]. The corresponding stability region is then given by the set

SnB =
{
z ∈ C :

∣∣PnB(−z)
∣∣ ≤ 1

}
=

z ∈ C :

∣∣∣∣∣∣U2n

√1 + h2

4 z

∣∣∣∣∣∣ ≤ 2n+ 1

 (3.135)

In order to match the well-known consistency property

PnB(−z) = 1 + z +
n∑
k=2

βk
zk

k! (3.136)

a normalisation by means of the division using the cycle time Θn = h2

6 (n2 + n) is required,
so that the stability function is finally obtained as follows:

RnB(−z) := PnB

(−z
Θn

)
(3.137)

As a result, the stability region is redefined by

SnB =
{
z ∈ C :

∣∣RnB(−z)
∣∣ ≤ 1

}
=

z ∈ C :

∣∣∣∣∣∣U2n

√1 + 3
2(n2 + n)z

∣∣∣∣∣∣ ≤ 2n+ 1

 (3.138)

In particular, first order accuracy holds, since

R2
B(−z) = 1 + z + 1

5z
2

R3
B(−z) = 1 + z + 1

4z
2 + 1

56z
3

R4
B(−z) = 1 + z + 27

100z
2 + 27

1000z
3 + 9

10000z
4

(3.139)
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Figure 3.4: Stability polynomial R3
B(−z) of degree n = 3 corresponding to the box filter.

Left: Stability function. Right: Stability region.

For the sake of completeness, the stability function and the stability region of the polynomial
R3
B(−z) are illustrated in Figure 3.4. As already indicated, the stability polynomial based

on the box filter ensures |RnB(−z)| < 1 for z ∈ (0, γn) and thus no additional damping
is necessary. Obviously, problems such as hyperbolic-parabolic equations with dominant
diffusion and possible complex-valued eigenvalues with a small imaginary part can also be
dealt with.

In summary, the Gaussian convolution is equivalent to homogeneous diffusion, whereby the
latter can easily be solved using the EE scheme. Otherwise, the box filter factorisation is an
efficient and accurate ansatz to approximate the Gaussian convolution in the form of explicit
diffusion steps with varying time step sizes. Consequently, the EE scheme is replaced with
the box filter factorisation to obtain an acceleration technique that is still a simple explicit
method, but avoids small time step sizes. The resulting scheme is called the FED method.

3.4.2 Fast Explicit Diffusion Scheme for Homogeneous Diffusion

Let us consider the ODE system, which is obtained by spatial discretisation of the one-
dimensional homogeneous heat equation equipped with homogeneous Neumann boundary
conditions, in the form of

u̇(t) = Lu(t), t ∈ (0, tF ], u(0) = u0 (3.140)

The underlying matrix L is assumed to be symmetric and negative semi-definite. The
numerical approximation of (3.140) with the EE scheme gives

uk+1 = (I + τL)uk (3.141)

According to the well-known Gershgorin’s circle theorem [100], the eigenvalues of L lie in the
interval [− 4

h2 , 0] so that the EE scheme is guaranteed to be stable for

τ ≤ h2

2 =: τmax (3.142)
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From the theoretical observations described in this section, the EE scheme can be replaced
by a box filter factorisation with varying time step sizes

τi = τmax
1

2 cos2
(
π 2i+1

4n+2

) , i = 0, . . . , n− 1 (3.143)

in order to obtain a numerical approximation using an FED cycle:

uk+1 =

n−1∏
i=0

(I + τiL)

uk (3.144)

The latter cycle in factorised form reads as

uk,i+1 = (I + τiL)uk,i, i = 0, . . . , n− 1 (3.145)

with uk,0 := uk and setting uk+1 := uk,n after a complete cycle. The FED scheme is stable
in the Euclidean norm because the vector uk+1 satisfies

∥∥∥uk+1
∥∥∥

2
=

∥∥∥∥∥∥
n−1∏
i=0

(I + τiL)

uk
∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥
n−1∏
i=0

(I + τiL)

∥∥∥∥∥∥
2

∥∥∥uk∥∥∥
2

= max
z∈
[

0, 4
h2

]
∣∣∣∣∣∣
n−1∏
i=0

(1− τiz)

∣∣∣∣∣∣
∥∥∥uk∥∥∥

2
≤
∥∥∥uk∥∥∥

2
(3.146)

where the box filter Bh
2n+1 is given by the stability polynomial (3.127) that fulfils the condition

|RnB(z)| ≤ 1 for all z ∈ [0, 4
h2 ]. In particular, FED achieves a considerable acceleration

compared to the original EE scheme, based on the fact that some of the time steps are
significantly large, i.e. τi � τmax. Note that the FED method may violate the stability in
the infinity norm, which is presented later in Example 3.2.

3.4.3 Internal Stability
Obviously, the FED scheme (3.144) belongs to the group of factorised methods, which
generally do not preserve the internal stability. In this context, let us briefly indicate
theoretical and numerical stability aspects.

Theoretical Internal Stability As known from (3.146) the FED scheme is stable in the
Euclidean norm after a complete cycle with n time steps. At this point the examination of
the theoretical internal stability

R
[k,n]
B (z) :=

k−1∏
i=0

(1− τiz), k = 1, . . . , n (3.147)

is of particular interest, in which the latter must be bounded in absolute value by 1. Remark-
ably, it can be shown that this property is fulfilled when the time step sizes τi are used in
their natural order, sorted from small to large.

89



Chapter 3 Fast Explicit Methods

Numerical Internal Stability Although the internal stability is theoretically fulfilled, the
FED scheme is nevertheless highly sensitive to numerical rounding errors due to |(1+τiλk)| � 1
when using large time step sizes. Consequently, a rearrangement of the natural sequence τi is
necessary in practice. This can be done e.g. by the so-called κ-cycles technique (originally
proposed by Gentzsch [99]), Leja ordering or Lebedev-Finogenov ordering. However, the
rearrangement causes another problem because the use of a rearranged sequence τi may
produce unstable intermediate results. More precisely, this leads to a significant loss of
efficiency when nonlinear diffusion problems or linear diffusion models with time-dependent
boundary conditions and source terms are considered, for which internal model updates
should therefore only be performed after a full FED cycle.

Before describing the stabilised FEDRK method that can be used to overcome the internal
instability problem, we discuss the consistency and convergence properties of the FED scheme.

3.4.4 Consistency and Convergence

In an analogous manner to the RKC methods, important properties such as the consistency
and the convergence of the linear FED scheme are analysed. Although, consistency has been
discussed earlier, we return to this property, especially with respect to the FED scheme used
with a total of M cycles, but also for the analysis of higher order schemes. The exact solution
of (3.140) is given by

u(t) = etLu0 =

 ∞∑
i=0

(tL)i
i!

u0 =
(
I + tL+ t2L2

2 + . . .

)
u0 (3.148)

In order to investigate the consistency order of the FED scheme, it must be analysed how
consistent the computed approximation for tk → 0 is compared with the latter expansion.
Let tk be an equidistant time grid{

tk = k tFM

∣∣∣ 0 ≤ k ≤M}
⊂ [0, tF ] (3.149)

with M ≥ 1. The parameter M denotes the number of outer cycles and should not be
confused with the number n of inner steps. More precisely, we emphasise that the accuracy of
the FED method can only be improved when outer cycles are employed. Obviously, increasing
the number of cycles M , whereby n becomes smaller, improves the approximation quality of
this scheme which is shown in this subsection. To be consistent, the FED method should
approximate the matrix exponential

exp
(
tF
M
L

)
=
∞∑
i=0

(tF )i
M ii!L

i (3.150)

in some degree. In particular, for first order consistency the condition

exp
(
tF
M
L

)
≈ I + tF

M
L (3.151)

must be fulfilled, while for second order the condition reads

exp
(
tF
M
L

)
≈ I + tF

M
L+ (tF )2

2M2 L
2 (3.152)
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Based on the polynomial representation (3.126), one FED cycle (3.144) can be written as a
matrix polynomial in L as follows:

uk+1 =

 n∑
m=0

h2m

2m+ 1

(
n+m

2m

)
Lm

uk (3.153)

Consequently, the series expansion of one FED cycle with n inner time steps yields

I + h2

3

(
n+ 1

2

)
L+

n∑
m=2

h2m

2m+ 1

(
n+m

2m

)
Lm (3.154)

so that the condition
h2

3

(
n+ 1

2

)
= tF
M

(3.155)

implies first order consistency. Although this condition cannot be fulfilled for arbitrary tF > 0
an incorporated adjustment factor q ∈ (0, 1] can overcome this problem. This means, first
the smallest integer ñ that satisfies

Θñ = h2

3

(
ñ+ 1

2

)
≥ tF
M

(3.156)

is determined by

ñ =
⌈√

2
h2

3tF
M

+ 1
4 −

1
2

⌉
(3.157)

then the adjustment factor can be defined as

q := tF
MΘñ

≤ 1 (3.158)

As a result, the time step sizes τi are scaled via τ̃i := τiq, i = 0, . . . , ñ− 1, so that this finally
leads to

ñ−1∏
i=0

(I + τ̃iL) = I + tF
M
L+

ñ∑
m=2

(qh2)m
2m+ 1

(
ñ+m

2m

)
Lm (3.159)

which demonstrates that the FED scheme is of first order consistency. Obviously, the
introduced scaling does not restrict the stability property, since[

−q 4
h2 , 0

]
⊆
[
− 4
h2 , 0

]
(3.160)

due to q ≤ 1. It should be stressed that the FED scheme, however, cannot satisfy the second
order consistency. To show convergence and to derive a closed-form expression of the error
bound, we refer to [107]. The error bound estimation of the FED method is given in the
following theorem:

Theorem 3.9 ( [107]). Let the function u : (0,∞) → RN be the exact solution of (3.140)
with initial data u0 = u(0), tF > 0 and M ∈ N the number of FED cycles. If the cycle

91



Chapter 3 Fast Explicit Methods

length ñ ∈ N and q ∈ (0, 1] are given according to (3.157) and (3.158), respectively, then the
numerical solution after M FED cycles,

uM :=

ñ−1∏
i=0

(I + qτiL)


M

u0 (3.161)

fulfils ∥∥∥u(tF )− uM
∥∥∥

2
≤ 32
h4
t2F
M

∥∥∥u0
∥∥∥

2
(3.162)

From the theorem it is observable that the FED scheme converges to the exact solution if
the number of cycles is increased, since

lim
M→∞

∥∥∥u(tF )− uM
∥∥∥

2
= 0 (3.163)

In addition, the global error decreases linearly with M and thus the convergence order is one
with respect to the number of cycles.

3.4.5 Higher Order Fast Explicit Diffusion

As mentioned above, the FED method cannot guarantee second order accuracy. However, it
can be shown that this problem is solved if FED is combined with the well-known Richardson
extrapolation technique introduced in [228,229]. In doing so, the basic idea is to consider the
underlying method used over different time increments and to combine them in a suitable
manner. We first briefly describe the extrapolation procedure based on the EE method.
The EE scheme uk+1 = (I + τL)uk implies first order accuracy in time. In contrast to

this calculation method, the numerical solution at time tk+1 can alternatively be computed
over two different time increments

uk+1
1 = (I + τL)uk (3.164)

uk+1
2 =

(
I + τ

2L
) (
I + τ

2L
)
uk (3.165)

which are finally combined via

uk+1 = 2uk+1
2 − uk+1

1 (3.166)

The latter extrapolated result has second order accuracy which can be shown by comparing
the Taylor series of the low order numerical solutions. The corresponding series of (I + τL)
in (3.164) and (I + τ

2L)2 in (3.165) result in

u1(t+ τ) =
(
I + τL+ τ2L2

)
u(t) +O

(
τ3
)

(3.167)

u2(t+ τ) =
(
I + τL+ 3

4τ
2L2

)
u(t) +O

(
τ3
)

(3.168)

otherwise the series to the analytical solution is given by

u(t+ τ) =
(
I + τL+ 1

2τ
2L2

)
u(t) +O

(
τ3
)

(3.169)
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Obviously, (3.167) and (3.168) do not have the consistency order two, but using the ansatz
2 · (3.168) − (3.167), like the scheme (3.166), a second order accurate method is obtained.
Further details concerning higher order schemes are given, e.g. in [105].
On the basis of this extrapolation concept, a second order FED method can finally be

constructed. More precisely, the scaled time step sizes τ̃i := τiq with the cycle length ñ are
chosen such that

ñ−1∑
i=0

τ̃i = τ (3.170)

where τ is the cycle time. In an analogous manner a cycle with the stopping time

ñ−1∑
i=0

τ̃i
2 = τ

2 (3.171)

is defined. Consequently, the extrapolated second order FED method reads

uk+1
1 =

ñ−1∏
i=0

(I + τ̃iL)

uk, uk+1
2 =

ñ−1∏
i=0

(
I + τ̃i

2 L

)
2

uk

uk+1 = 2uk+1
2 − uk+1

1

(3.172)

The corresponding stability analysis in the Euclidean norm is shown in [107]. Overall, the
FED extrapolation scheme requires a higher computational effort than the second order
versions of RKC and RKL, since the approximation is the combination of two separately
computed results.

3.4.6 Extension to Arbitrary Diffusion Problems

The FED method introduced in the one-dimensional setting can easily be applied to nonlinear,
anisotropic and multi-dimensional problems. Assume that a fully discrete nonlinear diffusion
problem with symmetric and negative semi-definite matrix L(u), which depends on the
time-dependent data u(t), is given in explicit form

uk+1 =
(
I + τL(uk)

)
uk (3.173)

In this case, a worst case a priori estimate with respect to the time step size restriction is
required obtained by

τ ≤ 2
ρ
(
L
(
u (t)

)) =: τmax (3.174)

Let us denote the largest eigenvalue in magnitude with λmax. As is known, the stability of
the FED scheme in the Euclidean norm is only satisfied for λmax ≤ 4

h2 . In order to ensure
stability also for the case λmax >

4
h2 , the multiplication by a suitable factor c < 1 is employed

similar to the adjustment factor q used for the consistency property. The factor is defined as

c := 4
h2λmax

(3.175)
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so that λmaxc = 4
h2 , and the time step sizes are determined via

τ̂i := cτi = 2
λmax

1
2 cos2

(
π 2i+1

4n+2

) = τmax
1

2 cos2
(
π 2i+1

4n+2

) , i = 0, 1, . . . , n− 1 (3.176)

Thus, an FED cycle for the nonlinear problem reads then

uk,0 = uk

uk,i+1 =
(
I + τ̂iL(uk)

)
uk,i, i = 0, . . . , n− 1

uk+1 = uk,n

(3.177)

We stress once again that the matrix L(uk) should be kept constant within a whole cycle,
as the FED scheme does not preserve internal stability from a numerical point of view.
Fortunately, this problem can be solved by using a recurrence relation for the box filters, as
already explained in connection with RKC and RKL.

3.4.7 Fast Explicit Diffusion Runge-Kutta
The FED method described is essentially based on the decomposition of a box filter and
causes numerical rounding errors in practice. To improve the numerical internal stability, a
different representation for the box filters building on a recursion formula can be used. The
resulting scheme, which is referred to as the FEDRK method, is thus related to the class of
RKC schemes introduced.

Box Filter Recursion In an analogous manner to the known three-term recurrence relation
with regard to special functions such as Chebyshev or Legendre polynomials, there exists also
the derivation of a box filter recursion relation. Let n ≥ 2, a given one-dimensional filtered
signal f using a box filter of length (2n− 1)h, i.e.

(
Bh

2n−1(f)
)
i

:= 1
2n− 1

n−1∑
k=−n+1

fi+k (3.178)

which is additionally convolved with the kernel mask (1/2, 0, 1/2) yields

f̃i = 1
2n− 1

n−1∑
k=−n+1

1
2 (fi+k+1 + fi+k−1) = 1

4n− 2

 n−1∑
k=−n+1

fi+k+1 +
n−1∑

k=−n+1
fi+k−1


= 1

4n− 2

 n∑
k=−n+2

fi+k +
n−2∑
k=−n

fi+k

 =:
(
Rh2n+1(f)

)
i

(3.179)

The latter can be expressed as

(
Rh2n+1(f)

)
i

= 1
4n− 2

n∑
k=−n

fi+k + 1
4n− 2

n−2∑
k=−n+2

fi+k

= 2n+ 1
4n− 2

(
Bh

2n+1(f)
)
i
+ 2n− 3

4n− 2
(
Bh

2n−3(f)
)
i

(3.180)
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and subsequently rearranged into

Bh
2n+1 = 4n− 2

2n+ 1R
h
2n+1 −

2n− 3
4n− 2B

h
2n−3 (3.181)

The convolution with (1/2, 0, 1/2) corresponds to a one-dimensional linear diffusion step with
time step size h2

2 , so that one finally obtains for n ≥ 2:

Bh
2n+1 = αn

(
I + h2

2 ∆h

)
Bh

2n−1 + (1− αn)Bh
2n−3 (3.182)

with αn = 4n−2
2n+1 . Consequently, the recurrence formula (3.182) means that a box filter of

length (2n+ 1)h can be decomposed into a sum of two box filters with lengths (2n− 1)h and
(2n− 3)h. At this point it should be noted that the recursion relation can also be derived
directly using the stability polynomial in the form of the Chebyshev polynomials of the
second kind (3.134) with z ∈ [0, 4

h2 ], so that the recursion formula reads as

PnB(z) = 4n− 2
2n+ 1

(
1− h2

2 z
)
Pn−1
B (z)− 2n− 3

2n+ 1P
n−2
B (z)

= αnP
n−1
B (z)− αn h

2

2 zP
n−1
B (z) + (1− αn)Pn−2

B (z) (3.183)

As explained earlier, by replacing z via −z and using an additional normalisation to an FED
cycle with length n by means of Θs = h2

6 (n2 + n), the recursion relation is finally given by

RnB(−z) = αnR
n−1
B (−z) + (1− αn)Rn−2

B (−z) + αn
3

n2+nzR
n−1
B (−z) (3.184)

Recursive Fast Explicit Diffusion Based on the derived recursion relation (3.184), the
original FED scheme of length s with varying time step sizes

un+1 =

s−1∏
i=0

(I + τiL)

un (3.185)

can be replaced by the equivalent formulation of a first order s-stage FEDRK scheme

y0 = un

y1 = y0 + µ̃1τf0

yj = µjyj−1 + νjyj−2 + µ̃jτfj−1, 2 ≤ j ≤ s
un+1 = ys

(3.186)

with fj = f(tn + cjτ,yj), the time step size τ = tn+1 − tn, the intermediate solutions yj and
the integration parameters

µ̃j = αj
3

s2 + s
, µj = αj , νj = 1− αj (3.187)

The associated increment parameters cj are defined as

c0 = 0, c1 = α1
3

s2 + s
, cj = αici−1 + (1− αi)ci−2 + αi

3
s2 + s

(2 ≤ j ≤ s) (3.188)
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which satisfy the condition 0 = c0 < c1 < · · · < cs−1 < cs = 1. Compared to (3.185) the
FEDRK method requires the same number of explicit diffusion steps and is also well-suited
for parallel computing. However, two intermediate results for j ≥ 2 must be stored in each
iteration. Conversely, the recursive scheme has two main advantages: first, no rearrangement
of time step sizes is required, and second, the internal stability is preserved. The internal
stability preservation follows from the relation to the class of RK schemes.

Theorem 3.10 ( [107]). If the time step size τ > 0 satisfies

τ ≤ τmax

(
s2 + s

3

)
(3.189)

then each integration step of the FEDRK scheme (3.186) is stable in the Euclidean norm.

As a result of preserving the internal stability, it is now allowed to perform inner updates,
e.g. when dealing with nonlinear problems. Nevertheless, increasing the number of stages s
does not result in highly accurate approximations. In particular, increasing the number of
outer cycles M , so that s becomes smaller, generally improves the accuracy of the scheme.
Of course, FEDRK can also be used to build a second order method based on the Richardson
extrapolation technique.
We note that the FEDRK method is also called the fast semi-iterative scheme [118], in

which the direct use of (3.182) gives the k-th outer iteration by

uk,i+1 = αi

(
I + τ̃L

(
uk,i

))
uk,i + (1− αi)uk,i−1, i = 0, . . . , s− 1

τ̃ := 3
s2 + s

τ, αi = 4i+ 2
2i+ 3 , uk,−1 := uk,0

(3.190)

and uk,0 = uk as well as uk+1 := uk,s.

After this comprehensive description of the RKC, RKL and FEDRK methods, a summary
of the algorithms and a performance evaluation are given in the next two subsections.

3.5 Implementation of Fast Explicit Methods

As we have already clarified in the description of FED, only an increase in the number
of outer cycles M improves the accuracy of the numerical solution. This characteristic is
naturally also true for the RKC and RKL schemes. Thus, for a given stopping time tF and a
desired number M of cycles, the corresponding number of stages s can be computed from
their maximum stable time step size with τ = tF

M .
For the first order RKC scheme the corresponding number of stages s required for the

stability (3.58) can be computed via

s =


√√√√ 1(

1− 2
3ε
)
τmax

tF
M

 (3.191)
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and for the second order RKC scheme using (3.62) as

s =


√√√√1 + 3(

1− 2
15ε
)
τmax

tF
M

 (3.192)

Here, the ceiling function dxe denotes the smallest integer n ∈ Z with n ≥ x. In an analogous
manner, the corresponding number of stages s is obtained for the first order RKL scheme by
(3.83) with

s =

1
2

√1 + 8
τmax

tF
M
− 1

 (3.193)

as well as for the second order RKL scheme by means of (3.89) as

s =

1
2

√9 + 16
τmax

tF
M
− 1

 (3.194)

Finally, for the FEDRK method the corresponding number of stages s is computed from its
stability condition (3.189) using

s =

1
2

√1 + 12
τmax

tF
M
− 1

 (3.195)

In total, a comparison of the stability limits or the number of stages s shows that the
computational efficiency of the RKC method is marginally better than that of the RKL
method. In this regard, FEDRK achieves the most inefficient performance. Nevertheless, both
RKL and FEDRK have better stability properties and are therefore much more attractive
in practice. The corresponding algorithms for RKC, RKL and FEDRK are illustrated in
the Figures 3.5-3.7. Let us emphasise again that the calculation of an estimate for τmax
poses no problem in practice due to the existence of the Gershgorin’s circle theorem [100].
This theorem provides a straightforward rule for estimating the largest eigenvalue λmax in
magnitude, and thus for estimating τmax.
If the underlying model problem is linear, we prefer to apply the recursive form (3.190)

since from a computational point of view it is cheaper to compute

uk,i+1 = αi (I + τ̃L)uk,i + (1− αi)uk,i−1

= αiAu
k,i + (1− αi)uk,i−1, i = 0, . . . , s− 1 (3.196)

with A = I + τ̃L. On this basis, the first order s-stage RKC scheme (3.56) has the form
(3.196) if the parameters are used via

τ̃ := µ̃1τ = ω1
ω0
τ and αi = µi = 2biω0

bi−1
(3.197)

Analogously, for the first order s-stage RKL scheme (3.80) the parameters are given by

τ̃ := 2
s2 + s

τ and αi = µi = 2i− 1
i

(3.198)
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Algorithm 3.1 Explicit stabilised Runge-Kutta-Chebyshev method

Input: Stopping time tF ; number M of RKC cycles; step size limit τmax; initial state u0

Output: u(tF )

1.) Compute minimum number of stages s according to the formula (3.191) or (3.192)

2.) Compute integration parameters (3.57) and (3.63) or (3.60) and (3.64)

3.) Apply numerical scheme using (3.56) or (3.59)

Figure 3.5: Algorithm for computing first and second order s-stage RKC method.

Algorithm 3.2 Explicit stabilised Runge-Kutta-Legendre method

Input: Stopping time tF ; number M of RKL cycles; step size limit τmax; initial state u0

Output: u(tF )

1.) Compute minimum number of stages s according to the formula (3.193) or (3.194)

2.) Compute integration parameters (3.81) and (3.84) or (3.88) and (3.90)

3.) Apply numerical scheme using (3.80) or (3.87)

Figure 3.6: Algorithm for computing first and second order s-stage RKL method.

Algorithm 3.3 Fast explicit diffusion Runge-Kutta method

Input: Stopping time tF ; number M of FEDRK cycles; step size limit τmax; initial state u0

Output: u(tF )

1.) Compute minimum number of stages s according to the formula (3.195)

2.) Compute integration parameters (3.187) and (3.188)

3.) Apply numerical scheme using (3.186) or in combination with (3.172)

Figure 3.7: Algorithm for computing first and second order s-stage FEDRK method. The
second order scheme is constructed by an extrapolation method.
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3.6 Numerical Experiments on Fast Explicit Methods
To complete this chapter, we finally give a numerical comparison of RKC, RKL and FEDRK
using two experiments. More precisely, we investigate the approximation accuracy and the
corresponding computational costs based on linear and nonlinear PDE-based image diffusion.
First, however, the L∞-stability is examined.

3.6.1 L∞-Stability
As is known, all fast explicit methods are stable in the Euclidean norm. The latter property is
particularly important for linear and nonlinear diffusion filters (equipped with homogeneous
Neumann boundary conditions), since the average grey level of the original image is preserved
during image evolution. In contrast, stability properties related to the infinity norm ‖u‖∞ =
max
i
|ui|, denoted by L∞, are important to satisfy the discrete maximum-minimum principle

min
i
uki ≤ uk+1

j ≤ max
i
uki (3.199)

for each j, where uk and uk+1 are the numerical solutions at time tk and tk+1, respectively.
Using a specific example from Grewenig [107], we show that all fast explicit methods may
violate the L∞-stability of the form

∥∥u(tF )
∥∥
∞ ≤ 1.

Example 3.2. Let us consider the one-dimensional example based on the symmetric and
negative semi-definite matrix L ∈ R6×6 given by

L =



−0.8564 0.8564 0 0 0 0
0.8564 −1.8357 0.9793 0 0 0

0 0.9793 −1.1773 0.1980 0 0
0 0 0.1980 −0.3196 0.1216 0
0 0 0 0.1216 −0.9721 0.8506
0 0 0 0 0.8506 −0.8506


(3.200)

Furthermore, we set tF = 28/3, M = 1, τmax = 1
2 and consider the initial condition u0 =

(1, 1, 1,−1, 1, 1)> which fulfils ‖u0‖∞ = 1. Solving this problem with the EE scheme leads to∥∥u(tF )
∥∥
∞ =

∥∥∥(0.6857, 0.6780, 0.6673, 0.6130, 0.6756, 0.6811)>
∥∥∥
∞
≈ 0.6857 ≤ 1 (3.201)

so that the L∞-stability is ensured. In contrast, applying the first order fast explicit schemes
produces the following results:

(i) RKC with ε = 0.05 and minimum number of stages s = 5∥∥u(tF )
∥∥
∞ =

∥∥∥(0.222, 0.412, 0.611, 1.937, 0.558, 0.259)>
∥∥∥
∞
≈ 1.937 > 1 (3.202)

(ii) RKL with minimum number of stages s = 6∥∥u(tF )
∥∥
∞ =

∥∥∥(0.363, 0.542, 0.734, 1.286, 0.563, 0.511)>
∥∥∥
∞
≈ 1.286 > 1 (3.203)
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(iii) FEDRK with minimum number of stages s = 7∥∥u(tF )
∥∥
∞ =

∥∥∥(0.509, 0.594, 0.698, 1.006, 0.604, 0.587)>
∥∥∥
∞
≈ 1.006 > 1 (3.204)

Consequently, this example demonstrates that all methods may violate the L∞-stability. In
other words, these methods may not maintain positivity.

The latter experiment highlights a disadvantage of the fast explicit methods, as they can
cause solution artefacts when using larger time steps for problems with higher frequency
structures. As a consequence, high frequencies are not damped and may lead to oscillations.
In this case, we emphasise that a time step size which is chosen to be really smaller than
the stability limit often yields stability in the L∞ sense. Otherwise, this problem can also
be solved by increasing the number of outer cycles M , since the methods posses natural
damping, so that overshoots and undershoots are usually smoothed out in the evolution
process. In addition, the experiment also indicates that the FEDRK method appears to be
the most robust method.

Let us now compare the methods in terms of the computational effort and the accuracy of
the computed solution. For the comparison we use the mean squared error (MSE) defined by

MSE(u1,u2) := 1
N

N∑
i=1

(
u1,i − u2,i

)2 (3.205)

where u1 and u2 are two images with N pixels.

3.6.2 Linear Image Diffusion

First, we consider the two-dimensional linear diffusion filtering

∂tu(x, t) = div(∇u(x, t)) = ∆u(x, t), x ∈ R2, t ∈ (0, tF ] (3.206)

with the Laplace operator ∆ and where u(x, y, t) : R2 × (0, tF ]→ R is a continuous image
at time t. The two-dimensional initial data (original image) is given by f(x, y) and we
set u(x, y, 0) = f(x, y). In image processing f is a digital image, with the pixel (xi, yj)
representing a grid point on the rectangular grid and f(xi, yj) = fi,j the corresponding grey
value at that point in the image domain. The application of the continuous linear diffusion
filter (3.206) iteratively computes a filtered version u(x, y, t) of f(x, y) at diffusion time t with
suitable boundary conditions. In computer science this is also referred to as the evolution
process of an image. In general, homogeneous Neumann boundary conditions ∂nu = 0 are
chosen so that there is no flux of grey values across the boundaries and thus the average grey
value of the image can be preserved (depending on the numerical method used). For a more
detailed insight, see e.g. [293] and the references therein.
For the sake of simplicity, we suppose that the grid size is set to ∆x = ∆y = 1 as is

common practice in image processing. The approximation of the spatial partial derivatives
uxx and uyy in (3.206) by central differences leads to

dui,j
dt = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j (3.207)
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and we end up with the semi-discrete system

u̇(t) = Lu(t), t ∈ (0, tF ], u(0) = f (3.208)

Here, u(t) is an N -dimensional vector that represents the unknown values in the image domain,
and the Laplacian matrix L ∈ RN×N is symmetric and negative semi-definite. Subsequently,
the fully discrete system according to the EE method is given by uk+1 = (I + τL)uk.

For the linear diffusion experiment the Lena test image is selected as initial data, visualised
in Figure 3.8. Furthermore, we set the stopping time to tF = 100 seconds and apply the
mentioned first and second order fast explicit methods to obtain the filtered image. In order to
compare the filtered results u generated by RKC, RKL and FEDRK, the computed solution
ũ of the EE method (cf. Figure 3.8) is used as a reference solution for the MSE measurement,
i.e. MSE(ũ,u). The corresponding performance of the methods used is shown in Figure 3.9.
It can be seen that in order to improve the accuracy of the fast explicit methods, the number
of cycles M must be increased which is directly connected with higher computational costs.
The first order versions of FEDRK and RKL provide the best performance. In contrast, the
RKC scheme provides worse results, but the second order damped scheme outperforms its
first order damped counterpart. As expected, the second order FEDRK scheme achieves the
worst performance, because the extrapolation procedure is computationally intensive.

3.6.3 Nonlinear Isotropic Image Diffusion

Lastly, we investigate the performance of the fast explicit methods using nonlinear diffusion
filtering introduced by Perona and Malik [217]. In order to avoid smoothing of edges (which
are important characteristics of an image) in the diffusion process, they suggested to apply a
diffusivity controlled using the image gradient ∇u of the evolving image. The corresponding
nonlinear diffusion equation is given by

∂tu(x, t) = div
(
g
(
|∇u(x, t)|2

)
∇u(x, t)

)
, x ∈ R2, t ∈ (0, tF ], u(x, 0) = f(x) (3.209)

with a diffusivity function such as

g
(
|∇u|2

)
:= 1

1 + |∇u|2
κ2

, κ > 0 (3.210)

Figure 3.8: Linear diffusion filtering. Left: Lena test image (512× 512). Right: Filtered
image using the EE scheme with stopping time tF = 100 and τmax = 1/4.
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Figure 3.9: Linear diffusion filtering based on the Lena test image (512× 512), cf. Figure
3.8: comparison of the MSE and the corresponding CPU time for the fast explicit methods
at stopping time tF = 100 and τmax = 1/4. The reference solution is computed with the EE
method. The best performances achieve the first order versions of FEDRK and RKL. In
contrast, the second order damped RKC scheme (with ε = 2/13) outperforms its first order
damped counterpart (with ε = 0.05). The second order FEDRK scheme clearly provides the
worst results because it is based on a computationally intensive extrapolation approach.

Here, κ is a contrast parameter, where the Perona-Malik model is of forward parabolic type
for |∇u|2 ≤ κ and of backward parabolic type for |∇u|2 > κ, for further details see e.g. [293].
To overcome the ill-posedness, a regularisation in the form g(|∇uσ|2) can be used proposed
by [56] which is a Gaussian-smoothed version of (3.210). The resulting regularised nonlinear
diffusion process take the form

∂tu = div
(
g
(
|∇uσ|2

)
∇u
)

(3.211)

which is a well-posedness problem for σ > 0. The implementation of a spatial discretisation
as proposed in [293] onto (3.211) yields the semi-discrete nonlinear system

u̇(t) = L(u(t))u(t), t ∈ (0, tF ], u(0) = f (3.212)

with symmetric and negative semi-definite matrix L(u(t)), which depends on the evolving
image at time t. Consequently, using the EE scheme, the fully discrete version reads
uk+1 = (I + τL(uk))uk, which is numerically stable for τ ≤ 1

4 .
Finally, we compare the performance of all the methods at hand a noisy version of the Lena

test image, see Figure 3.10. For this experiment the parameters are set to tF = 100, κ = 3/2
and σ = 1/2. Moreover, the computed solution of the EE method (cf. Figure 3.10) is used
again as the reference solution for the MSE assessment. The performances of RKC, RKL
and FEDRK based on first and second order consistency are illustrated in Figure 3.11 and
show the same results as before. Once again, the first order versions of FEDRK and RKL
are clearly the superior methods.
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Figure 3.10: Nonlinear isotropic diffusion filtering. Left: Noisy Lena test image (512×512).
Right: Filtered image using the EE scheme with stopping time tF = 100 and parameters
κ = 3/2, σ = 1/2, τmax = 1

4 .
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Figure 3.11: Nonlinear isotropic diffusion filtering based on a noisy version of the Lena test
image (512×512), cf. Figure 3.10: comparison of the MSE and the corresponding CPU time for
the fast explicit methods at stopping time tF = 100 and parameters κ = 3/2, σ = 1/2, τmax = 1

4 .
The reference solution is computed with the EE method. Once again, the first order versions
of FEDRK and RKL are the superior methods.

Overall, the first order variants of FEDRK and RKL achieve the best results in terms
of accuracy and computational costs, where both methods providing nearly competitive
efficiency. In contrast, the first order RKC scheme is significantly less efficient. As shown,
the second order versions are not beneficial for the experiments considered.

3.7 Summary
Fast explicit methods have favorable stability properties, which makes them ideal for solving
stiff parabolic PDEs efficiently. The formulation of fast explicit methods is generally based
on factorisation, recurrence relation and a combination of both methods for developing
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higher order schemes. Although the stability polynomial is independent of the numerical
scheme used, it can no longer be guaranteed that the intermediate stages of the factorised
methods are stable, since some τi are larger than τmax. Rearranging the time step sizes τi
can be helpful, but when linear problems with time-dependent model updates and nonlinear
parabolic operators are considered, it can lead to an unstable scheme. In contrast, the
recursive methods ensure internal stability and provide a greater robustness in the scheme.

We emphasise again that the stability and convergence results for the fast explicit methods
presented here only hold for symmetric matrices in the Euclidean norm. In cases where
the operators are nonlinear and nonsymmetric, the condition on the amplification factor
R(z) obviously remains the same, but z can now range over the complex plane instead of
being restricted to the negative real axis. To preserve stability, the overall amplitude of the
amplification factor should be bounded by unity. This is the reason that the fast explicit
methods are based on (natural) damped stability polynomials. As a result, the solvers remain
well applicable to linear and nonlinear problems with nonsymmetric matrices. However,
the following requirements must be satisfied: first, the spectrum of the system matrix (or
Jacobian matrix) is located in a long narrow strip along the negative axis of the complex
plane, and second, the underlying matrix is close to be normal. This situation typically arises
when parabolic or hyperbolic-parabolic PDEs with dominant diffusion are considered.

Besides the comprehensive theoretical overview, the numerical experiments presented in this
section show, to the best of our knowledge, for the first time a performance comparison of all
three fast explicit methods in the literature. Even if the solvers, especially FEDRK and RKL,
are equally competitive, the conclusion of these experiments should not be underestimated.
As stated at the beginning of this chapter, the numerical solvers are generally only known in
their special research areas such as computational astrophysics or image processing. These
knowledge gaps can be filled within the scope of the present work. In particular, we have
analysed and discussed in detail the differences in their theoretical derivations, but also their
differences from a numerical point of view in relation to L∞-stability as well as in their use
for linear and nonlinear diffusion problems, for example in image processing applications.
Although both FEDRK and RKL are considered as superior and competitive schemes, we
find that there is a notable difference between the two methods. Apart from their theoretical
derivations, it should be emphasised that RKL possess a second order method in which
the approximations can be computed efficiently. In contrast, the FEDRK method appears
to be more robust with respect to higher frequencies, as shown in Example 3.2, which is
advantageous in practice.
Although fast explicit methods are a powerful tool for solving (dominant) parabolic heat

or diffusion equations in a highly efficient manner, we emphasise that these methods lose
their superiority for highly stiff problems, since in this case the finest grid width leads to an
extremely small upper stability bound.
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Model Order Reduction for Linear Dynamical
Systems

As already mentioned in this thesis, various physical processes such as the linear heat
equation can be described by a linear time-invariant input-output system that arise by spatial
discretisation of the underlying mathematical PDE, in a semi-discrete form

u̇(t) = Lu(t) +Kw(t), u(0) = u0

y(t) = Cu(t)
(4.1)

with sparse state matrix L ∈ Rn×n, input matrix K ∈ Rn×p and output matrix C ∈ Rq×n.
Here u(t) ∈ Rn denotes the state vector, w(t) ∈ Rp the inputs, y(t) ∈ Rq the outputs
and u0 the initial state of the model. The time-dependent vector w(t) represents e.g. the
boundary conditions and the sources/sinks that control the dynamical model. In systems
theory, the system (4.1) is called as multi-input-multi-output (MIMO) system. Otherwise, for
a single-input-single-output (SISO) system with p = q = 1, the matrices K and C become
vectors k and c> and the vectors w and y become scalars w and y.

When using time integration methods, the introduced explicit and implicit methods have
to handle a large sparse system matrix L, whereby the computational costs are directly linked
to the number of grid points that result from the spatial discretisation. In this context, model
order reduction (MOR) methods (also known as reduced order model methods) can be used to
approximate the original high dimensional linear and time-invariant first order ODE system
(4.1), where the time invariance refers to the fact that the corresponding matrix is constant
in time, by a very low r-dimensional dynamical system

u̇r(t) = Lrur(t) +Krw(t), ur(0) = ur,0

yr(t) = Crur(t)
(4.2)

with r � n and Lr ∈ Rr×r,Kr ∈ Rr×p, Cr ∈ Rq×r,ur(t) ∈ Rr,yr(t) ∈ Rq so that the main
characteristics of the original ODE system are preserved. In fact, this means that MOR is a
technique that is employed as a preprocessing step to reduce the computational effort for
numerical simulations of models like (4.1). The general procedure of MOR is visualised in
Figure 4.1 and can be considered as a useful tool to obtain efficient numerical simulations
while ensuring the desired accuracy. It should be noted that within the formulation (4.2)
only the number of the state variables is reduced, whereas the number of inputs and outputs
remains the same.

In this thesis, we focus on MOR methods that are based on projections. Existing projection-
based MOR techniques can be classified into singular value decomposition (SVD)-based
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methods and Krylov-based methods and are very frequently used in different research fields
such as control system theory, circuit design, fluid mechanics, thermal flow problems or
computational biology. The mentioned classification is not always consistent in the literature,
for a general overview see e.g. [8, 10,11,25,29,35,193,248].

The projection-based MOR methods are derived via a projection of the original model onto a
low-dimensional subspace which reduce the full system using projection matrices and therefore
rely on efficient numerical linear algebra techniques. Let us mention that projection techniques
are characterised by the way in which the projection matrices are constructed. Common
and popular MOR approaches are modal coordinate reduction [45, 76, 93, 222], balanced
truncation [159,176,188,270], proper orthogonal decomposition [43,59, 61, 133,147,165,220]
and Krylov-based model order reduction [9, 19,92,94–96,109]. A more detailed comparison
of some model reduction techniques can be found in [40, 44, 86, 152]. It should also be
noted that the existing methods are not strictly limited to the categories mentioned. There
exist a variety of MOR techniques by combining the advantages of different techniques, see
e.g. [112,144,157,218,233,299].

Before we give an overview of the common MOR methods, let us briefly introduce the
mathematical fundamentals that are based on the concept of projection operators, as well as
some general background information on linear dynamical systems in a first step.

Physical System

PDE

Large System of ODEs

Reduced System of ODEs

Approximated Solution

Mathematical Modeling

Spatial Discretisation

Model Order Reduction

Simulation, Control, Optimisation

Figure 4.1: Motivation of the MOR framework.
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4.1 Linear Dynamical Systems

A dynamical system is a system that is based firstly on state variables that completely
describe the state of the system, and secondly on a dynamical rule or law that specifies
the system changes over time. The intrinsic behaviour of a dynamical system is defined
based on the dynamic and the initial state. Linear dynamical systems are characterised by
a linear mapping, meaning that the system can be written in matrix form (4.1) with the
matrix coefficients being constant. In systems theory, a linear dynamical system therefore
describes an input-output behaviour relying on the relations between the input w(t) and initial
conditions u(0) and the corresponding output response y(t). We recommend e.g. [93,143,234]
for a more detailed description to the fundamentals in systems theory. Let us give a very
brief insight.

4.1.1 Model Accuracy Measurement

As already mentioned, the main challenge for MOR methods is to construct a reduced order
model (4.2) in such a way that the behaviour of the original system (4.1) is approximated.
In order to describe how good a reduced system approximates the original system, a measure
for quantifying the accuracy is required. This can be examined by defining the (time domain)
error signal E(t) as the deviation between two responses y(t) and yr(t) from the original and
the reduced model, respectively, in the form

E(t) =
∥∥y(t)− yr(t)

∥∥ (4.3)

with a suitable vector norm. Consequently, the approximation concept is generally based on
minimising the errors between the original and approximated responses. In particular, the
behaviour of the response depends on the given initial condition u0 and the input w(t), as
can be seen from the exact integration of (4.1) via

y(t) = C

eLtu0 +
t∫

0

eL(t−z)Kw(z) dz

 (4.4)

If w(t) = 0 is assumed, the output is called the zero-input response and is defined exclusively
on the basis of the initial condition u0. Otherwise, if u0 = 0, the output is called as the
zero-state response and is defined solely by the input w(t). Thus, the response (4.4) of a
linear dynamical system can be decomposed into the zero-state response and the zero-input
response. On closer examination, by the use of the coordinate transformation ũ(t) = u(t)−u0

the original system can be translated into a transformed system with zero initial conditions
ũ(0) = 0. This observation suggests that the response of a system in general only depends
on the zero-state response, so that we assume zero initial conditions in the further course.
Overall, for a correct measurement (4.3) the difference between the responses should be
compared at the same time instances and for the same input w(t). We stress that the above
error signal is defined in the time domain, but such a characterisation can also be considered
in the frequency domain. In other words, the error can be measured based on the frequency
responses Y (s) and Yr(s) of the original and the reduced system, respectively. As part of
systems theory, the frequency response is defined by the transfer function of the system.
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4.1.2 Transfer Function

The use of MOR methods is closely related to the transfer function H(s) of the underly-
ing dynamical system (4.1). The transfer function represents the input-output behaviour
depending on the input w(t) and the output y(t) in the frequency domain. Since the transfer
function is defined in the frequency domain and describes a function of the frequency of the
input signal, this terminology is traditionally linked to the Laplace transform. The Laplace
transform F (s) of a function f(t) is defined by

F (s) =
∞∫
0

f(t)e−st dt (4.5)

where s ∈ C is the frequency parameter. An alternative notion for the Laplace transform is
L{f(t)}. Applying the Laplace transform to the system (4.1) gives

sU(s)− u0 = LU(s) +KW (s) (4.6)

The assumption of zero initial conditions finally leads to

U(s) = (sI − L)−1KW (s)
Y (s) = C (sI − L)−1KW (s)

(4.7)

where the inverse (sI − L)−1 exists for s 6= λi and where λi denotes the eigenvalues of L.
For s = λi the characteristic polynomial is zero, which is often referred to as the pole of the
system. Based on the representation (4.7), the transfer function is defined as

H(s) = C (sI − L)−1K (4.8)

and describes the direct relation between the input W (s) and the output Y (s) of the original
system in the frequency domain via

Y (s) = H(s)W (s) (4.9)

Note that for SISO systems the transfer function will be a vector and for MIMO systems it
gives a matrix, more precisely a matrix of transfer functions. The transfer function Hr(s) of
the reduced model is defined in an analogous manner. As is known, the model accuracy of a
reduced order model is measured based on the difference of the frequency responses Y (s)
and Yr(s). As the responses depend on their transfer functions, the approximation quality in
the frequency domain is defined by

E(s) =
∥∥H(s)−Hr(s)

∥∥ (4.10)

with a suitable norm. This consequently implies that the approximation quality of a reduced
system is linked to the approximation of the transfer function of the original system. As a
result, the appropriate approximation of the transfer function

H(s) ≈Hr(s) (4.11)

is the main task of MOR methods.
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4.2 Projective Model Order Reduction

Projection operators play an important role in numerical linear algebra and are also of great
importance for the derivation and development of MOR approaches. In the following the
mathematical basics of projection [237] are explained and how this technique can be used in
connection with the solution of dynamical systems.

4.2.1 Projection Operators

A projection is defined as a linear mapping of a vector space Rn into itself, which can be
represented by a multiplication with a projector P in the form

xp = Px (4.12)

An illustrative example for a projection is the shadow cast of a three-dimensional object onto
a two-dimensional plane. In fact, the image (range) of a projection is either a subspace of
V ⊂ Rn or Rn itself. In this framework, a matrix P ∈ Rn×n is defined as a projector onto a
subspace V ⊆ Rn if it fulfils:

P 2 = P and im(P ) = V (4.13)

From this definition it follows that a repeated projection provides the same outcome

xp = Pxp (4.14)

In more detail, the eigenvalues of P are either zero and one, so any vector x ∈ Rn can be
specified as

x = Px+ (I − P )x (4.15)

Consequently, the vector space Rn can be decomposed into two subspaces as

Rn = span(V ⊕W) (4.16)

with V = im(P ) and W = null(P ). In other words, a projector P separates Rn into two
subspaces and projects x onto V and along W.

Matrix Representation In order to obtain such desired projectors P in matrix representation
two bases are required: a basis V = [v1, . . . , vr] for the subspace V = im(P ) and another
basis W = [w1, . . . , wr] for the subspace W = null(P ). Let us explain the derivation of a
projector P as in (4.12) using the abovementioned example of the shadow cast in R3.

A vector x ∈ R3 shall be projected onto a two-dimensional plane spanned by the columns
of the matrix V ∈ R3×2, meaning that x is projected along the direction xd. To this end, a
matrix W ∈ R3×2 is defined whose columns are orthogonal to xd, i.e.

W>xd = 0 (4.17)

Since the vector xp should lie in V , xp can be represented as a linear combination of the

109



Chapter 4 Model Order Reduction for Linear Dynamical Systems

columns of V via
xp = V r (4.18)

where r ∈ R2 is unknown. Based on the relations of x,xd and xp, it follows that

xd = x− xp (4.19)

and inserting (4.18) and (4.19) into (4.17) yields

W>xd = W>x−W>xp = W>x−W>V r = 0 (4.20)

The latter can be solved for r as

W>x = W>V r ⇐⇒ r =
(
W>V

)−1
W>x (4.21)

assuming that V and W have full rank and that the inverse of W>V exists. Finally, with
(4.18) the projector can be specified by

xp = V r = V
(
W>V

)−1
W>x = Px (4.22)

with P = V (W>V )−1W>. Obviously, the derived P is a projector since

P 2 = V
(
W>V

)−1
W>V

(
W>V

)−1

︸ ︷︷ ︸
I

W> = V
(
W>V

)−1
W> = P (4.23)

The formulation (4.22) describes more precisely a projection onto the subspace im(V ) along
the direction of the orthogonal complement of im(W ). Furthermore, it can be shown that
the assumption of invertibility of W>V is fulfilled if no vector of V is orthogonal to W . Let
us also stress that the projector is independent of the choice of the basis matrices V and W
for the subspaces V and W , respectively. Obviously, this derivation can also apply to higher
dimensional projections.
It should be noted that the projection relation xp = V r is of particular importance as it

describes a reduction in the order, where

xr := r =
(
W>V

)−1
W>x (4.24)

represents the reduced vector xr of x with respect to the basis V .

Orthogonal and Skew Projection As part of projection, two main types are considered,
an important class of projectors being obtained when the subspace V and W are orthogonal.
The projector P is said to be orthogonal in an algebraic formulation when P = P>, otherwise
the projection is called skew. The special choice W = V automatically leads to an orthogonal
projection P = V (V >V )−1V >. If the projection matrices are chosen to be biorthogonal, i.e.
W>V = I, then the projector is represented via P = VW>. Orthogonal projectors do not
necessarily have biorthogonal bases, meaning that orthogonal projection and biorthogonal
bases denote different characterisations. The choice W = V is defined as Galerkin projection,
otherwise using a skew projection is called a Petrov-Galerkin projection.
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4.2.2 Model Reduction by Projection

The basic concept of MOR is to approximate the high dimensional state space vector u(t) ∈ Rn
by a reduced vector ur(t) ∈ Rr of lower dimension r � n. For this purpose, projection-based
methods approximate the state space vector u(t) by a reduced basis

u(t) ≈ V ur(t) (4.25)

where V ∈ Rn×r characterises the projection matrix. An exact realisation in (4.25) is usually
not fulfilled so that the difference is denoted by the error e(t) = u(t)− V ur(t). Inserting the
latter into the original system (4.1) results in

V u̇r(t) = LV ur(t) +Kw(t) + ε(t) (4.26)

where the residual ε(t) = Le(t)− ė(t) contains the error terms caused by the approximation.
The system is generally overdetermined since it has n equations but only r unknowns resulting
from ur(t). To obtain a unique solution, the system is projected onto the r-dimensional
subspace of im(V ) using a projector matrix P = V (W>V )−1W> in the form of

V
(
W>V

)−1
W>V u̇r(t) = V

(
W>V

)−1
W>LV ur(t)

+ V
(
W>V

)−1
W>Kw(t) + V

(
W>V

)−1
W>ε(t)

(4.27)

The projected system can be solved exactly for any ε(t) (generally not known), where
the projection is chosen such that the projection of the residual ε(t) becomes zero, i.e.
V (W>V )−1W>ε(t) = 0. This condition is known as the Petrov-Galerkin condition and
should not be confused with the error e(t) because V (W>V )−1W>e(t) 6= 0. Assuming that
the columns of V are linearly independent, then the matrix V in (4.27) can be omitted and
the reduced model with r equations and r unknowns, can be solved exactly for ur(t) as

u̇r(t) =
(
W>V

)−1
W>LV ur(t) +

(
W>V

)−1
W>Kw(t) (4.28)

Finally, by setting Lr := (W>V )−1W>LV and Kr := (W>V )−1W>K the reduced system
can be rewritten in a more compact form

u̇r(t) = Lrur(t) +Krw(t) (4.29)

If the bases V andW are biorthogonal, the reduced system (4.29) is defined via Lr := W>LV
and Kr := W>K. Obviously, solving the reduced model (4.28) always fulfils the Petrov-
Galerkin condition, since

u̇(t)− Lu(t)−Kw(t) = 0
=⇒ P

(
u̇(t)− Lu(t)−Kw(t)

)
= 0

=⇒ P
(
V u̇r(t)− LV ur(t)−Kw(t)

)
− Pε(t) = 0

=⇒ Pε(t) = 0 (4.30)

Overall, we have described the basic MOR procedure for linear dynamical systems which is
based on the projection of the original high dimensional model into a reduced low-dimensional
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model. For this reason, the main task of a projection-based MOR method is to construct
appropriate bases V and W .

4.2.3 Stability of Projection-Based Model Order Reduction

Another important aspect that should not be neglected is the stability of the reduced system
(4.29). Therefore, when dealing with projection-based MOR methods, it is advantageous if
the stability is preserved under projection. In particular, this means if L is a stable system
matrix, the reduced matrix Lr should also be stable. In this context, we recall that a matrix
is said to be stable if every eigenvalue of L has a negative real part. In engineering, a stable
matrix is often referred to as a Hurwitz matrix. At this point it should be stressed that the
stability property above should not be confused with the numerical stability of the underlying
numerical scheme. It is clear that explicit methods remain conditionally stable when reduced
order models are solved numerically.

Projection-based MOR techniques are generally not stability preserving during the reduction
process, even if the original system is stable. In fact, the stability preservation can only be
ensured if truncation1 methods are used or in other special cases. In order to avoid this
problem and to preserve stability, for example, certain postprocessing procedures can be
applied, which normally cause higher computational costs or/and accuracy losses.
Fortunately, the stability of the reduced order model can be guaranteed if a one-sided

projection method, i.e. W = V , coupled with a negative semi-definite system matrix L is
applied. This is obviously a stronger requirement than just a stable system matrix, since a
Hurwitz matrix may not be negative (semi-)definite. At this point we would like to point out
again that model problems with negative semi-definite matrices are of particular interest in
this thesis. To give sufficient conditions for the preservation of stability during the reduction,
we recall the logarithmic norm as already introduced in Section 2.3.2.

The logarithmic norm of a matrix L ∈ Cn×n, also called numerical abscissa or matrix
measure, is defined as

µp(L) = lim
h→0+

‖I + hL‖p − 1
h

(4.31)

For the logarithmic norm holds
α(L) ≤ µp(L) (4.32)

where α is referred to as the spectral abscissa and is defined by

α(L) = max
i

{
Re(λi)

}
(4.33)

The fundamental result for stability analysis purposes is that the numerical abscissa satisfies∥∥∥etL∥∥∥
p
≤ etµp(L), ∀t ≥ 0 (4.34)

As a result, the logarithmic norm implies the important property that the state u(t) of the

1 Truncation methods are characterised by a transformation of the original model into an equivalent system,
which can subsequently be truncated in a suitable manner so that the reduced system inherits stability.
Typical representatives are modal coordinate reduction and balanced truncation methods.

112



4.2 Projective Model Order Reduction

homogeneous system u̇(t) = Lu(t) fulfils for any arbitrary initial state∥∥u(t)
∥∥
p ≤

∥∥∥etL∥∥∥
p

∥∥u(0)
∥∥
p ≤ e

tµp(L) ∥∥u(0)
∥∥
p , ∀t ≥ 0 (4.35)

This in turn means that the system is stable if µp(L) ≤ 0, or equivalently etµp(L) ≤M with
finite constant M independent of t. For real matrices, the matrix measure for the three most
common norms is given by

µ1(L) = max
j

ajj +
∑
i 6=j

∣∣aij∣∣


µ2(L) = max
i
λi

(
L+ L>

2

)

µ∞(L) = max
i

aii +
∑
j 6=i

∣∣aij∣∣


(4.36)

In particular, it follows that

µ2(A) ≤ 0 ⇐⇒ 〈x, Ax〉2 ≤ 0, ∀x ∈ Rn (4.37)

Based on the concept of matrix measure, the sufficient condition for stability preservation in
the Euclidean norm can be derived as follows:
Theorem 4.1 ( [251]). Given a continuous linear time-invariant system (4.1) with µ2(L) ≤ 0,
then the reduced system (4.2) is stable if an orthonormal one-sided projection matrix V ∈ Rn×r
is used, i.e. W = V .
Proof. Since V is orthonormal, it holds that ‖V ‖2 = 1. Using the logarithmic norm one can
easily obtain

µ2(Lr) = lim
h→0+

‖Ir + hLr‖2 − 1
h

= lim
h→0+

‖Ir + hV >LV ‖2 − 1
h

≤ lim
h→0+

‖V >‖2‖I + hL‖2‖V ‖2 − 1
h

= lim
h→0+

‖I + hL‖2 − 1
h

= µ2(L) ≤ 0 (4.38)

Consequently, the stability preservation with respect to the definiteness of L can be
characterised by the following lemma:
Lemma 4.1 ( [251,259]). Given a continuous linear time-invariant system (4.1) with real
negative semi-definite matrix L, then the reduced system (4.2) is stable if an orthonormal
one-sided projection matrix V ∈ Rn×r is used, i.e. W = V .
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Proof. The stability preservation results from (4.36) via

µ2(Lr) = max
i
λi

(
Lr + L>r

2

)
= max

i
λi

V >LV +
(
V >LV

)>
2


= max

i
λi

(
V >LV + V >L>V

2

)
= max

i
λi

(
V >(L+ L>)V

2

)

≤ max
i
λi

(
L+ L>

2

)
= µ2(L) ≤ 0 (4.39)

The condition µ2(L) ≤ 0, or equivalently L + L> ≺ 0, corresponds to the negative semi-
definiteness of a matrix.

This sufficient condition was also presented in connection with the passivity property of
systems [95,194]. Let us emphasise that the Theorem 4.1 is of crucial importance due to its
generality, meaning that the stability preservation holds independently of the MOR method
used to build the projection matrix V . Notably, the stability preservation is only guaranteed
when using a one-sided projection method. The stability properties also apply to more general
models such as Eu̇(t) or second order systems, see e.g. [201,251].

4.2.4 Main Requirements for Model Order Reduction Methods
As already described, the main task of applying MOR is to reduce the computational costs
of expensive numerical simulations. However, there are a number of requirements that must
be satisfied, when using MOR techniques to extract a reduced order model from the original
one. For this reason, we summarise the most important aspects and desirable characteristics.
Accuracy: The reduced model should capture the most dominant dynamics and provide an

adequately accurate model for the original system, meaning that the associated error
between the input-output behaviour in time (4.3) or frequency domain (4.10) should be
small with respect to a certain norm. In this framework, the existence of error bounds
is desirable in order to assess the suitability of reduced models.

System properties preservation: The reduced model should preserve the main physical prop-
erties of the original system, e.g. stability, conservation and boundedness.

Compactness: The number of state variables of the reduced model, specified by the order r,
should be significantly small compared to the original model in order to exhibit cheap
online costs for the simulation of the resulting reduced model.

Numerical efficiency: The MOR technique should be numerically efficient in order to avoid
large offline costs for the computation of the reduced model. The construction process of
the reduced basis should be simple and numerically as robust as possible independently
of the order r, and cause low memory storage costs.

Automation: The model reduction algorithm should in some way be automatic, meaning
that the algorithm offers minimal user intervention and is thus nearly free of design
parameters.
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In the following the four most common methods for constructing suitable projection matrices
are presented.

4.3 Modal Coordinate Reduction

The simplest MOR technique, known as the modal coordinate reduction (MCR) method
(or modal truncation), was introduced in the 1960s by Davison [76] and is based on the
eigendecomposition of the underlying state matrix. The basic concept of MCR is to transform
the original model from physical coordinates in physical space into modal coordinates in
modal space using the eigenvector matrix and to reduce the transformed system such that the
dominant eigenvalues and eigenvectors are retained in the reduced model. We mention that
at the same time the approach was also described in structural dynamics by Guyan [115]. It is
known from structural mechanics that the actual response of the elastic string vibration can
be approximated quite well by considering only the few first (dominant) harmonics. From a
mathematical point of view, the vibration frequencies and modes correspond to the eigenvalues
and the eigenfunctions, respectively. As a result of the fact that large-scale systems arise both
structural dynamics and systems theory, many methods have been developed independently.
On closer examination, the MCR concept using an eigendecomposition ansatz is closely

related to the matrix decomposition methods or the kernel-based methods, see Sections
2.3.1 or 5.7. The kernel-based methods build on the analytical solution of the underlying
PDE, with the kernel representing the fundamental solution for a linear partial differential
operator. The fundamental solution can be expressed by a series of its eigenfunctions and
eigenvalues, which means that the analytical solution is finally approximated by the set
of dominant eigenfunctions which have the most contribution in such a series. However,
analytical solutions of PDEs are generally only available for some simple geometries. For a
practical example based on the heat equation, see e.g. [101].
To tackle this issue, the spatial discretisation of the PDE is first performed so that the

eigendecomposition ansatz can then be applied to the semi-discretised model. More precisely,
the original system in physical coordinates is transformed into modal coordinates, in which
those modes are subsequently removed that have less important contributions to the system
responses. In general, the MCR technique is highly beneficial when only a few modes have a
significant influence on the system dynamics within the frequency range of interest. Let us
describe the MCR technique using the semi-discrete SISO system

u̇(t) = Lu(t) + kw(t)
y(t) = c>u(t)

(4.40)

with a stable and diagonalisable matrix L ∈ Rn×n as well as k, c,u(t) ∈ Rn and w(t), y(t) ∈ R.
For a more detailed insight into MCR, we refer the reader to [45,93,222].

4.3.1 Modal Transformation

Since L being diagonalisable, there exists a matrix Φ ∈ Rn×n with eigenvectors of L and
a diagonal matrix Λ ∈ Rn×n with the corresponding eigenvalues λi so that L = ΦΛΦ−1.
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Inserting the latter identity into (4.40), the subsequent multiplication of Φ−1 leads to

Φ−1u̇(t) = ΛΦ−1u(t) + Φ−1kw(t)
y(t) = c>u(t)

(4.41)

By changing the basis
Φ−1u(t) = z(t) ⇐⇒ u(t) = Φz(t) (4.42)

also called regular (modal) transformation, the physical space representation (4.40) can be
rewritten in modal coordinates as

ż(t) = Λz(t) + k̃w(t)
y(t) = c̃>z(t)

(4.43)

with c̃> = c>Φ and k̃ = Φ−1k. Obviously, the ODE system (4.43) is decoupled into n
differential equations in the modal coordinates

z′i(t) = λizi(t) + k̃iw(t), i = 1, . . . , n (4.44)

Applying the Laplace transform to (4.44) yields

zi(s) = 1
s− λi

k̃iw(s), i = 1, . . . , n (4.45)

so that the response is represented by the composition of decoupled paths as follows:

y(s) =
n∑
i=1

c̃izi(s) (4.46)

Otherwise, the defined transfer function (4.8) is given in the simple form

H(s) = c̃> (sI − Λ)−1 k̃ =
n∑
i=1

c̃ik̃i
s− λi

(4.47)

Comparing (4.46) and (4.47) shows that each decoupled ODE with the eigenvalue λi and the
modal coordinate zi represents exactly one path within the transfer function.

Remark 4.1. Note that the approach mentioned is only applicable if the underlying matrix
L is orthogonal diagonalisable. Although the discrete Laplacian is generally not symmetric,
the properties such as the orthogonality of the eigenvectors can be preserved for most applica-
tions. Thus, the “desire” for a symmetric (diagonalisable) matrix can be recovered using an
appropriate scalar product. More precisely, the mutual orthogonality can be achieved if the
matrix L can be factorised in two symmetric matrices L = AB, with A also positive definite.
This factorisation is fulfilled for any matrix that has real eigenvalues and a complete set of
eigenvectors, see [46]. This will be important for the practical application in Chapter 5.

Dominant Modal Coordinates The representation (4.47) illustrates that a modal coordinate
zi can be removed without affecting the input-output-relation, if either c̃i or k̃i zero. In
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addition, each eigenvalue λi itself represents a certain significance in the transfer behaviour.
These observations are the basis for the simplest MOR method, meaning to remove weak
parts zi if c̃i or k̃i or both are small as well as to remove zi if λi has less contributions to the
system responses.
The main strategy is now to identify those states zi such that their elimination has a

minimal influence on the system’s behaviour. The reduction process results in a reduced
order model, whereby the approximation quality of the r-dimensional reduced system being
given by the error bound

∥∥H(s)−Hr(s)
∥∥ ≤ n∑

j=r+1

∣∣c̃j∣∣ ∣∣∣k̃j∣∣∣∣∣s− λj∣∣ =
n∑

j=r+1

∣∣c̃j∣∣ ∣∣∣k̃j∣∣∣∣∣Re(λj)
∣∣ (4.48)

The identification of the relevant eigenvalues and eigenvectors is the main task of the MCR
method, as this determines the approximation quality of the reduced model. However,
deciding which modal coordinates may be neglected during the reduction process is not a
trivial task. A closer look at (4.48) indicates that the eigenvalues close to the imaginary axis
have a strong influence on the system’s behaviour. This means that low frequencies, which
correspond to small eigenvalues, usually dominate the dynamics of the underlying physical
system. Therefore, a widespread and classic approach is to order the eigenvalues with respect
to the distance to the imaginary axis:

0 > Re(λ1) ≥ Re(λ2) ≥ · · · ≥ Re(λn) (4.49)

In practice, a dominance analysis based only on the position of the eigenvalues in relation
to the imaginary axis can lead to misjudgements of the system dominance behaviour. For
this reason, the contributions of the modal coordinates are often linked to the dominance
measure proposed by Litz. A more detailed explanation and discussion can be found in [93].

4.3.2 Modal Truncation

Assuming that the modes are provided, the modal coordinates representation (4.43) can be
rearranged so that the eigenvalues are sorted from high to low dominance:ż1(t)

ż2(t)

 =

 Λ1 0r×(n−r)

0(n−r)×r Λ2

z1(t)
z2(t)

+

k̃1

k̃2

w(t)

y(t) = (c̃>1 c̃>2 )

z1(t)
z2(t)


(4.50)

with Λ1 ∈ Rr×r,Λ2 ∈ R(n−r)×(n−r) and k̃1, c̃
>
1 , z1(t) ∈ Rr as well as k̃2, c̃

>
2 , z2(t) ∈ R(n−r).

Based on this ordered representation, the reduced model of order r is obtained by truncating
the nondominant subsystem

ż1(t) = Λ1z1(t) + k̃1w(t)
y(t) = c̃>1 z1(t)

(4.51)
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This low dimensional system is much faster to solve than the original one, but choosing a
suitable order r depends on the model problem. We note that the stability of the reduced
system (4.51) is guaranteed if the original system itself is stable, since the eigenvalues of the
reduced system are a subset of the eigenvalues of the original system.

Computational Aspects The application of the MCR method depends strongly on the
number of the eigenvalues that are required to obtain a desirable approximation quality of the
reduced model. Based on the fact that there exists efficient solvers to compute the eigenvalues
and eigenvectors, the MCR method can also be used for large-scale systems. Nevertheless,
the technique is only practicable for a suitable number of eigenvalues. As stated in (4.49), the
complete eigendecomposition is actually not necessary, meaning that the smallest eigenvalues
of sparse matrices are computed iteratively in an efficient way. Furthermore, eigenmodes
associated with other specific, relevant frequency ranges can also be computed.
The MCR method is considered as an automatic method, since the choice of r depends

in a certain way on the growth rate of the eigenvalues, cf. (4.48). However, a good value
for r is strongly depending on the model problem. If, for instance, the heat equation is
considered, the modes are related to the geometry of the set-up, the boundary conditions and
the material parameters such as the thermal diffusivity of the medium. Therefore, several
thousand eigenfunctions may be required for an appropriate representation of a temperature
field of a more complex model problem.
Obviously, MCR is well applicable to MIMO systems and is not directly limited by the

size of the input matrix. Nonetheless, MCR is usually limited in such a way that the higher
the number of inputs, the higher the number of dominant modes. But as the number of
dominant poles is higher, the reduced system is larger, which shows the indirect dependence.
As a consequence, a higher number of dominant modes directly increase the order of the
reduced system, which shows the indirect dependence to the input matrix.

4.3.3 Modal Coordinate Reduction as Projection
Finally, we illustrate that the MCR technique belongs to the class of projection-based model
reduction methods. In other words, the reduced model (4.51) can also be obtained directly
by the projection (4.28), i.e.

Lr =
(
W>V

)−1
W>LV, kr =

(
W>V

)−1
W>k, c> = c>V (4.52)

In doing so, the projection matrices V and W> are given by the right eigenvectors ai and
left eigenvectors b>i for i = 1, . . . , r corresponding to the r dominant eigenvalues via

V = Ar = [a1, . . . ,ar], W> = B>r =


b>1
...
b>r

 (4.53)

where the eigenvectors fulfil

Lai = λiai ⇐⇒ LAr = ArΛr
b>i L = λib

>
i ⇐⇒ B>r L = ΛrBr

(4.54)
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Obviously, the matrices are not necessary biorthogonal, meaning W>V 6= Ir. If the matrix L
is symmetric, then ai = bi and thus V = W . In an analogous manner, let the matrices V
and W> be given by the eigenvector matrix and its inverse

V = Φr, W> = Φ−1
r (4.55)

then it holds that φ>i φj = δi,j with Kronecker delta δi,j . Consequently, the matrices are
biorthogonal W>V = Ir and this leads to B>r = Φ−1

r . In total, the MCR method can be
interpreted as a projection onto the r-dimensional subspace of the dominant right eigenvectors
and orthogonal to the subspace of the left eigenvectors.

4.4 Balanced Truncation

A common method for MOR is the balanced truncation (BT) method (or truncated balanced
realisation) which was introduced by Moore [188] in the 1980s. In an analogous manner to
MCR, the concept of BT is a transformation to a balanced representation so that nondominant
variables can be easily identified. Then the reduced model is obtained by truncating these
less important states. The BT method preserves the stability of the original system [216] and
also provides a global a priori error bound [84] which is based on the difference of the transfer
functions between the full and the reduced model. Let us give a brief introduction of BT.

The basic idea of BT is to preserve those states for which the least energy to be controlled
is required and simultaneously provide the most energy through observation. Otherwise,
state variables that are difficult to stimulate and/or to observe have a less contribution to the
input-output behaviour and will be neglected. For this reason, the important properties of a
dynamical system, known as controllability and observability, play a crucial role. In particular,
the controllability describes the relation between the input w(t) and the state u(t), which
means that the system can be transferred from the initial state u(0) = 0 to any arbitrary
final state u(tF ) = utF . On the other hand, the observability characterises the connection
between the state u(t) and the output y(t) such that the initial state u(0) = u0 can be
uniquely determined solely from y(t) and the known input w(t). In order to adequately asses
controllability and observability, a measurement is needed, whereby the (generalised) energy
is normally used.

Observability With regard to observability, the question arises which output energy in the
steady state results from a given initial state. Assuming that u(0) = u0 is given and w(t) = 0,
then the solution of (4.1) reads as y(t) = CeLtu0. The output energy dependent on u0 using
the L2-norm is defined as

∞∫
0

y2(t) dt =
∞∫
0

y>(t)y(t) dt =
∞∫
0

(u0)>eL>tC>CeLtu0 dt

=
(
u0
)> ∞∫

0

eL
>tC>CeLt dt u0

=
(
u0
)>

Wou
0 (4.56)
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with Wo =
∫∞

0 eL
>tC>CeLt dt, which is often referred to as the observability Gramian. The

product (4.56) describes the energy that the state u0 provides by observing the output.
Moreover, considering the eigenvalues and eigenvectors of Wo yield

Woφo,i = λo,iφo,i (4.57)

If u0 = φo,i then
Eo = φ>o,iλo,iφo,i (4.58)

Therefore, large eigenvalues (singular values) of the observability Gramian usually provide
useful information as the corresponding eigenvectors point in the directions that generate the
most energy. In simple terms, the eigenvectors corresponding to large eigenvalues of Wo are
easy to observe since (4.58) is large.

Controllability In an analogous manner it should be evaluated, which minimum input
energy is required to transfer the state variable from zero to the final state. This task can be
formulated as a linear optimisation problem via

minimise J =
tF∫
0

w2(t) dt

subject to u̇(t) = Lu(t) +Kw(t)
u(0) = 0, u(tF ) = utF

(4.59)

where tF is free and is thus part of the optimisation itself. To address this problem, the
substitution δ = tF − t can be used, so that by setting tF →∞, the optimisation variable tF
is eliminated. Finally, this yields the optimisation problem

minimise J =
∞∫
0

w2(δ) dδ

subject to u̇(δ) = −Lu(δ)−Kw(δ)
u(0) = utF , lim

δ→∞
u(δ) = 0

(4.60)

The solution to this problem with minimum energy results from the control law

w?(t) = K>e−L
>tW−1

c utF (4.61)

while for the minimum energy it holds that

Ec = u>tFW
−1
c utF (4.62)

The matrix Wc is called the controllability Gramian, which is explicitly given by

Wc =
∞∫
0

eLtKK>eL
>t dt (4.63)

In particular, the measure (4.62) describes the minimum energy that is needed to reach the
final state. Considering the eigenvalues and eigenvectors of Wc gives
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Wcφc,i = λc,iφc,i (4.64)

so that utF = φc,i implies
Ec = φ>c,i

1
λc,i

φc,i (4.65)

In the case of controllability the largest eigenvalues also provide significant information, since
the corresponding eigenvectors point in the direction that generates minimum energy. More
precisely, the eigenvectors corresponding to large eigenvalues of W−1

c are easy to reach as the
energy (4.62) is small.

Lyapunov Equations The main task of the BT method is based on the computation of the
controllability Gramian and the observability Gramian in order to transform the system in
its balanced realisation form. In practice, the Gramians Wc and Wo can be found as the
solutions of the two Lyapunov equations

LWc +WcL
> +KK> = 0, L>Wo +WoL+ C>C = 0 (4.66)

under the assumption that the dynamical system is stable. Let us mention that the Lyapunov
equation is a special case of the Sylvester equation. The relation of BT to the Lyapunov
equation can also be presented, if Wc is used directly as the solution of (4.66) because

LWc +WcL
> =

∞∫
0

LeLtKK>eL
>t dt+

∞∫
0

eLtKK>eL
>tL> dt

=
∞∫
0

d
dt
(
eLtKK>eL

>t
)

dt = −KK> (4.67)

The latter calculation uses the fact lim
t→∞

eLt = 0, which holds for stable matrices L in which
all eigenvalues have a negative real part. In addition, the Gramians as the solution of the
Lyapunov equation are unique and positive definite if L is stable.

4.4.1 Balancing

As already mentioned, the basic BT concept is based on identifying and removing the states
that are the least controllable and observable at the same time. This task is realised by the
so-called balancing transformation or balancing realisation. In doing so, a transformation
is applied in which the Gramians are diagonal, equal and have Hankel singular values on
their diagonal. The Hankel singular values are defined by the positive square roots of the
eigenvalues of the Gramians product and identify significant dynamic modes associated with
the input-output behaviour of the system.

In order to detect the significant directions, a balancing transformation z = Tu is applied
which balances the given dynamical system. A system is said to be balanced if the Gramians
are diagonal and equal:

Wc = Wo = diag(σ1, σ2, . . . σn) (4.68)
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When using a nonsingular transformation, the transformed Gramians are given by

W̃c = TWcT
>, W̃o = T−TWoT

−1 (4.69)

Obviously, the eigenvalues of Wc and Wo change using this transformation, however, they
remain invariant for the product WcWo under any state coordinate transformation, since

W̃cW̃o = TWcT
>T−TWoT

−1 = T (WcWo)T−1 (4.70)

In other words, the eigenvalues of WcWo, known as the Hankel singular values, defined as

σi =
√
λi (WcWo), i = 1, . . . , n (4.71)

are independent of the representation of the system. This observation is the basis of BT, as
the product WcWo simultaneously contains the information about the controllable and the
observable states, which are defined by the Hankel singular values.
Finally, a representation of the state transformation T is required, which the system

transforms into a balanced representation. This can be achieved by using first the Cholesky
factorisation and second the SVD as follows:

1.) Cholesky factorisation of

Wc = RcR
>
c , Wo = RoR

>
o (4.72)

where Rc and Ro are lower triangular matrices.

2.) SVD of
R>o Rc = UΣŨ> (4.73)

3.) Computing the state transformations by

T := Σ−
1
2U>R>o , T−1 := RcŨΣ−

1
2 (4.74)

As a matter of fact, this procedure achieves a balanced system because

W̃c = TWcT
>

= Σ−
1
2U>R>o

(
RcR

>
c

) (
Σ−

1
2U>R>o

)>
= Σ−

1
2U>R>o

(
RcR

>
c

)
RoUΣ−

1
2

= Σ−
1
2U>UΣŨ>ŨΣU>UΣ−

1
2

= Σ−
1
2 Σ2Σ−

1
2 = Σ (4.75)

with Ũ>Ũ = U>U = I. The same holds for Wo in an analogous manner.
Let us stress that the original BT method by Moore [188] was developed through spectral

decompositions, but the calculation method presented above, cf. [159], is a more efficient and
numerically more robust version.
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4.4.2 Truncation

Once the balanced representation (after transformation z = Tu) has been created, in which
the state variables are ordered according to their importance from high to low due to
their sorting σi, the order reduction can be performed analogously to the MCR method by
truncation. In practice, however, the balancing and truncating is done in an alternative way
without calculating the complete balanced system. Usually, the projection matrices V ∈ Rn×r
and W> ∈ Rr×n are determined via the state transformation (4.74) by means of

V := RcŨrΣ
− 1

2
r , W> := Σ−

1
2

r U>r R
>
o (4.76)

Based on this construction, the projection matrices are biorthogonal, since it holds that

W>V = Σ−
1
2

r U>r R
>
o RcŨrΣ

− 1
2

r = Σ−
1
2

r U>r UrΣrŨ
>
r ŨrΣ

− 1
2

r = Ir (4.77)

Finally, the reduced matrices of order r can be computed with

Lr = W>LV, Kr = W>K, Cr = CV (4.78)

and the reduced system is given by

u̇r(t) = Lrur +Krw(t)
yr(t) = Crur

(4.79)

Besides the stability preservation (assuming that the original system is stable), which
results from the positive definite solutions of the Lyapunov equations, the most important
characteristic of BT is that a global error bound is provided by the Hankel singular values
that are truncated ∥∥H(s)−Hr(s)

∥∥
∞ ≤ 2

n∑
j=r+1

σj (4.80)

Consequently, the practical choice of r depends only on the decay rate of the Hankel singular
values. This means that the BT method can be used automatically by setting a user-defined
error bound and finding the smallest possible dimension r of the reduced system, which
satisfies that bound. More details can be found, e.g. in [8, 106,176,193].
It should be noted that the error bound (4.80) is based on the assumption of zero initial

conditions and in general no longer holds if u0 6= 0. However, this issue can be resolved for
instance by transforming the system to zero initial conditions. Some other methods for dealing
with linear systems and inhomogeneous initial conditions are proposed in [27,71,124,170].

Computational Aspects In total, the application of BT requires five calculation steps. At
first, the Gramians Wc and Wo are computed by solving the Lyapunov equations (4.66).
Then a Cholesky factorisation and an SVD are performed, and the projection matrices V,W
are calculated as mentioned in (4.72)-(4.74). Finally, the system is projected to obtain a
reduced order model (4.78)-(4.79). The BT method is clearly performed without computing
a complete SVD, as only the largest Hankel singular values are of interest, which can be
computed iteratively.
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While BT is attractive in theory and in practice provides accurate reduced order models,
its use is generally limited to medium-sized systems. The main disadvantage of the BT
method is directly related to the computation complexity for solving the Lyapunov equations
(4.66). Due to the fact that the matrices involved are of the size of the original model, the
BT technique is linked to high computational costs. Even if the system matrix L is sparse,
the Gramians are generally dense and cause very high memory requirements. In order to
solve the Lyapunov equation there exists direct and iterative methods. Usually, Lyapunov
equations are solved with the standard Bartels-Stewart algorithm [23] which requires the
computation of the Schur form. Some interesting iterative methods are based on low-rank
approximations via ADI iteration [163], the sign function [230] or Krylov subspaces [260]. For
an overview of the solution techniques we refer to [36,38,149]. In connection with MOR, some
discussion on efficient methods for approximate BT are presented in [25, 37,239,240]. Let us
stress that the stated beneficial properties of BT are generally lost due to the approximate
solution of the Lyapunov equations.

Although in recent years many techniques have been developed and the iterative methods
that compute an approximation of the Sylvester equation have become more efficient, the
BT method is generally not preferred for large-scale systems because the approximation of
the Lyapunov equation is still quite computationally intensive. Overall, the BT technique is
naturally applied to problem sizes with dimensions up to O(105)−O(106). As a consequence,
the BT method is less used in connection with parabolic PDEs, see e.g. [35, 40, 123,150,239].

As in the case of MCR, the BT method has no direct dependence on the number of inputs.
Nevertheless, a large-scale input implies a larger controllable and observable subspace of
the system states. As the weak controllable and observable states are to be eliminated, the
reduced system size consequently becomes larger. This can be directly observed during the
BT reduction process as the Hankel singular values typically decay much more slowly when a
large number of inputs are taken into account.

4.5 Krylov-Based Model Order Reduction

Nowadays, the most frequently used MOR method for linear and large-scale dynamical
systems is moment matching using Krylov subspaces, which is referred to as Krylov-based
model order reduction. In the 1970s and 1980s, moment matching methods [52, 77,252] were
initially developed which built a reduced order model from an explicit knowledge of the Padé
approximant. The underlying basic concept gained more interest as the asymptotic waveform
evaluation method was introduced in [219]. Nonetheless, moment matching only became
a popular tool as numerically reliable algorithms have been proposed that are implicitly
based on Krylov subspaces [89]. Implicit moment matching methods generally construct an
accurate reduced order model highly efficiently, so this technique is applied to large-scale
systems ranging from circuit simulation, power systems, electromagnetics, descriptor systems,
control designs to electro-thermal processes or heat conduction models e.g. [29,58,89,95,266].
The basic idea of moment matching methods is the local approximation of the transfer

functionH(s) around a frequency σ of interest. In doing so, the transfer function is expanded
into an infinite Taylor series in which the coefficients are defined as the moments. Based
on this representation, the reduced order model is constructed so that some of the first
moments of the original and reduced system are matched, which reflects why the approach
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is called moment matching. Within this approach, the Krylov subspaces are required in
order to construct the projection matrices that correspond to form bases of these subspaces
when performing moment matching. For this purpose, efficient iterative methods such as the
Lanczos and the Arnoldi algorithms are employed. Since implicit moment matching is based
on Krylov subspace methods, mainly sparse matrix-vector multiplications are involved in
the reduction process. As a result, Krylov-based MOR is predestined for the reduction of
large-scale systems and provides a superior computational technique compared to MCR and
BT. However, unlike the two truncation methods, there is generally no guarantee for stability
preservation. As is known, the stability is preserved under certain assumptions without
additional computational effort, cf. Theorem 4.1. Otherwise, there are some algorithms that
can preserve stability, e.g. the ISRK algorithm that combines BT with Krylov-based MOR.
Although moment matching is indeed a simple and powerful tool, its use generally leads

difficulties in practice. This essentially follows from the fact that there are no general,
efficiently computable error bounds for the approximation quality and that several additional
parameters (order r, expansion point σ) within the approach normally have to be determined
by the user. To overcome this issue, the CURE algorithm developed in [200] can provide
rigorous error bounds and automatic strategies for the selection of the expansion points.
In the following the basics of the Krylov-based MOR technique are presented. For a

comprehensive introduction we refer the reader to [19,29,96,109,125,167,242,243].

4.5.1 Moments
Assuming that the inverse (sI −L)−1 exists, the transfer function of the semi-discrete system
(4.1) reads as

H(s) = C (sI − L)−1K (4.81)

which describes the relation between the input W (s) and the output Y (s) in the frequency
domain. Another important representation of the transfer function is based on the Taylor
expansion around a (complex) frequency σ defined as

H(s) = −
∞∑
k=0

mk(σ)(s− σ)k (4.82)

where the coefficients mk(σ) are called the moments of the transfer function. In particular,
the k-th moment around σ is given by

mk(σ) = C(L− σI)−(k+1)K (4.83)

The equivalence between the two formulations above can be specified as follows: first, the
transfer function (4.81) can be expressed as

H(s) = C(sI − L)−1K

= C
(
(σI − L) + (s− σ)(σI − L)−1(σI − L)

)−1
K

= C
(
I + (s− σ)(σI − L)−1

)−1
(σI − L)−1K

= −C
(
I − (s− σ)(−σI + L)−1

)−1
(−σI + L)−1K (4.84)
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and by denoting L̃ = (−σI + L)−1 one obtains

H(s) = −C
(
I − (s− σ)L̃

)−1
L̃K (4.85)

Furthermore, by making use of the Neumann series

(I − T )−1 =
∞∑
i=0

T i (4.86)

(4.85) can be extended with T := (s− σ)L̃ into the Taylor series

H(s) = −C
(
I + (s− σ)L̃+ (s− σ)2L̃2 + . . .

)
L̃K = −

∞∑
k=0

CL̃k+1K(s− σ)k (4.87)

The comparison with (4.82) finally gives the expression (4.83). By definition, σ is the so-called
expansion point by which the Taylor series of the transfer function is expanded. As stated
in the literature, the resulting problems for σ = 0, σ = ∞ and 0 < σ < ∞ are known as
Padé approximation, partial realisation and shifted Padé approximation, respectively. Let
us recall that after using the Laplace transform the original problem is considered in the
frequency domain. Thus, σ corresponds to the frequencies contained in the original model,
so that small values approximate low frequencies and σ → ∞ higher frequencies. In most
cases the underlying PDEs are characterised by a rather slow dynamic, so approximating
the system at the frequency σ ≈ 0 is a natural choice. Otherwise, focusing on fast dynamics
results in approximating the system on high frequency range at σ ≈ ∞. In this context,
the moments of the transfer function around σ = ∞ are called Markov parameters. More
precisely, the Markov parameters are defined as the coefficients of the Taylor series expansion
of the transfer function for σ →∞. In an analogous manner as above and using the geometric
series it can be shown that the Markov parameters are given by

mk(∞) = CLkK (4.88)

In particular, the Markov parameters are important to approximate the system’s impulse
response value with rapidly decaying dynamics at t = 0.

4.5.2 Moment Matching

The basic idea of MOR by means of moment matching is to approximate the transfer function
(4.82), in which the intended reduction focuses on matching the first moments around σ.
More precisely, the aim is to find a reduced system (4.2) with transfer function

Hr(s) = Cr (sIr − Lr)−1Kr = −
∞∑
k=0

m̃k(σ)(s− σ)k (4.89)

whose moments match the first l moments of the original transfer function:

mk(σ) = m̃k(σ), k = 0, 1, . . . , l − 1 (4.90)
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Obviously, moment matching is by nature a local approach as the transfer function is
only approximated in a region around the expansion point. Single-point moment matching
(4.90) can be improved by matching of moments at several frequencies (also known as
rational interpolation or multi-point moment matching), in particular by expanding the
transfer function at multiple points {σ1, . . . , σk}. The main challenges of multi-point moment
matching are how to select the expansion points and how many of them are required for an
appropriate approximation. Apart from that, it should also be noted that the projection
technique based on moment matching implies the loss of the physical interpretability of the
original states within the reduced order model. Nevertheless, an approximation of the original
state vector can simply be computed by a back projection, i.e. u ≈ V ur.
Finally, the question arises how the problem of moment matching can be solved from a

numerical point of view. In doing so, the moment matching technique can be done explicitly
or implicitly. Let us briefly describe both approaches.

Explicit Moment Matching Explicit approaches to solving the problem of moment matching
are based on rational function approximations. It is known that the Padé approximant is the
best approximation of a given function by a rational function. In other words, the transfer
function is approximated by the Padé approximant. Unfortunately, explicit moment matching
methods are known to be numerically unstable, especially as the dimension of the reduced
order model r grows.
The r-th Padé approximant of Hr(s) that matches the first l = 2r moments of the series

expansion of H(s) at σ = 0 is expressed as

H(s) = Hr(s) +O(s2r) (4.91)

In doing so, the transfer functions can be represented as rational functions via

H(s) = B(s)
A(s) = bn−1s

n−1 + · · ·+ b0
ansn + · · ·+ 1 , Hr(s) = B̃(s)

Ã(s)
= b̃r−1s

r−1 + · · ·+ b̃0
ãrsr + · · ·+ 1 (4.92)

where A(s), B(s), Ã(s), B̃(s) are real-valued polynomials. In consequence, the parameters b̃
and ã are chosen so that the moments m̃k of the reduced order system are equal to those
mk of the original system for k = 0, . . . , 2r − 1. To obtain the coefficients for Ã(s) and B̃(s)
from (4.91) and (4.92) one uses the relation

H(s) = Hr(s) +O(s2r) ⇐⇒
2r∑
i=0

mis
iÃ(s) = B̃(s) +O(s2r)Ã(s) (4.93)

Consequently, the computation of the parameters requires the solution of two systems of
linear equations including Hankel matrices. For example, in order to determine ã it requires
to solve for i = r, . . . , 2r − 1 the linear system

m0 m1 . . . mr−1

m1 m2 . . . mr

...
... . . . ...

mr−1 mr . . . m2r−2




ãr

ãr−1
...
ã1

 = −


mr

mr+1
...

m2r−1

 (4.94)
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with the 2r selected moments mk of the original system being computed explicitly in a
preprocess. Another linear system is solved separately for the coefficients b̃. However, the
Hankel matrix contained in (4.94) is ill-conditioned so that the moments are numerically hard
to compute. Due to the numerical instability, the explicit moment matching cannot compute
accurate moments m̃k as r grows, and therefore results in a less accurate approximation of
the reduced transfer function Hr(s).
A numerically stable way of computing the moments is the implicit moment matching

based on Krylov subspaces which is usually performed in practice.

Implicit Moment Matching To avoid the numerical instabilities mentioned above, implicit
methods match the moments of the transfer functions of the original and reduced model
without calculating them explicitly, and compute the projection matrices in which the columns
form the bases of particular Krylov subspaces. On this basis, implicit moment matching is
highly efficient, numerically robust and achieves a good approximation quality. A compact
introduction can be found in [167,242].
For the sake of simplicity let us consider the SISO system (4.40), so that the system

matrices of the reduced order model in state space are given by

Lr =
(
W>V

)−1
W>LV, kr =

(
W>V

)−1
W>k, c>r = c>V (4.95)

The goal of moment matching is to match the first l moments of the original and reduced
system in the form (4.90), meaning that the following conditions must be satisfied:

c>(L− σI)−(k+1)k = c>r (Lr − σIr)−(k+1)kr, k = 0, 1, . . . , l − 1 (4.96)

It can be shown that the latter is achieved when Krylov subspaces are used for the construction
of the projection matrices V and W .

Theorem 4.2 ( [11, 109, 242]). Form the columns of the projection matrix V ∈ Rn×r used
in (4.95) a basis of the Krylov subspace Kr

(
(L− σI)−1 , (L− σI)−1 k

)
around σ, and is

W ∈ Rn×r arbitrary such that det(Lr − σIr) 6= 0, then the first l = r moments of the original
and the reduced system around σ match.

Proof. Using (4.95) and (4.96) the first moment of the reduced system reads as

m̃0(σ) = c>r (Lr − σIr)−1 kr

= c>V

((
W>V

)−1
W>LV − σIr

)−1 (
W>V

)−1
W>k

= c>V

((
W>V

)−1 (
W>LV − σW>V

))−1 (
W>V

)−1
W>k

= c>V
(
W>LV − σW>V

)−1
W>k

= c>V
(
W>LV − σW>V

)−1
W>(L− σI)(L− σI)−1k (4.97)

Since (L−σI)−1k is the first direction of Kr and V represents a basis of this Krylov subspace,
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the vector can be written as a linear combination of the columns of V via

∃r0 ∈ Rr : (L− σI)−1 k = V r0 (4.98)

Thus, (4.97) yields

m̃0(σ) = c>V
(
W>LV − σW>V

)−1
W>(L− σI)V r0

= c>V
(
W>LV − σW>V

)−1 (
W>LV − σW>V

)
r0

= c>V r0 = c> (L− σI)−1 k = m0(σ) (4.99)

The evidence of (4.90) for the remaining moments can be done by induction.

The Krylov subspace Kr((L− σI)−1, (L− σI)−1k) is called the input Krylov subspace and
based on the fact that W can be chosen optionally, the projection method is called the one-
sided Krylov subspace method. Another important Krylov subspace that is used for implicit
moment matching is the output Krylov subspace defined by Kr((L − σI)−>, (L − σI)−>c)
which can be considered as the dual one to the input Krylov subspace. Due to the duality
property, the first r moments can also be achieved using the output Krylov subspace expressed
in the following theorem:

Theorem 4.3 ( [11,109,242]). Form the columns of the projection matrix W ∈ Rn×r used in
(4.95) a basis of the Krylov subspace Kr((L−σI)−>, (L−σI)−>c) around σ, and is V ∈ Rn×r
arbitrary such that det(Lr − σIr) 6= 0, then the first l = r moments of the original and the
reduced system around σ match.

Proof. The proof follows analogously to the Theorem 4.2 from the duality, by replacing
L,k, V with L>, c,W .

Obviously, the dual technique is also considered as a one-sided Krylov subspace method.
When using the one-sided Krylov subspace method, W = V is a typical choice. Furthermore,
the combined use of the input and output Krylov subspaces can double the number of
matched moments, while keeping the order r of the reduced system the same, as given by the
following theorem:

Theorem 4.4 ( [11,109,242]). Form the columns of the projection matrices V ∈ Rn×r and
W ∈ Rn×r used in (4.95) a basis of the input and output Krylov subspace, respectively, then
the first l = 2r moments of the original and the reduced system around σ match.

This projection method is called the two-sided Krylov subspace method. In total, 2r is the
maximum number of matching moments, as a transfer function of order r has only 2r degrees
of freedom. It should be emphasised that two-sided Krylov subspace methods can generate
unstable reduced models.
In summary, the number of matching moments depends directly on the method used

(one-sided or two-sided). Obviously, a two-sided reduction achieves a better accuracy of
the reduced model, as more moments of the transfer function match, whereas a one-sided
method can guarantee stability under certain assumptions. The theorems above can easily
be extended to match the moments about σ = 0 or σ =∞, and also to ensure multi-point
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moment matching. In addition, implicit moment matching can also be applied to MIMO
systems by using block Krylov subspaces [242]. When considering MIMO systems, the system
matrices of the reduced order model are given by

Lr =
(
W>V

)−1
W>LV, Kr =

(
W>V

)−1
W>K, Cr = CV (4.100)

with K ∈ Rn×p and C ∈ Rq×n. In this regard, the input and output block Krylov subspaces
Kr1((L − σI)−1, (L − σI)−1K) and Kr2((L − σI)−>, (L − σI)−>C), respectively, must be
applied. Finally, the previous theorems can be generalised to the MIMO case.

Theorem 4.5 ( [242]). If the matrix V used in (4.100) is a basis of the input Krylov
subspace Kr1 with rank r (where r is a multiple of p) and the matrix W is chosen such that
det(Lr−σIr) 6= 0, then the first l = r

p moments of the original and the reduced system around
σ match.

Theorem 4.6 ( [242]). If the matrices V and W used in (4.100) are a bases of the input
and output Krylov subspaces Kr1 and Kr2 , respectively, both with rank r (where r is a multiple
of p and q), then the first l = r

p + r
q moments of the original and the reduced system around

σ match.

As a result, using a one-sided Krylov method will match r
p moments, otherwise a two-sided

method match r
p + r

q moments. For MIMO systems, the moments are not scalars and each
moment has pq entries. Thus, the number of matching scalar characteristic parameters
is pq rp = qr and pq( rp + r

q ) = qr + pr for the one-sided and the two-sided Krylov method,
respectively. Note that the projection matrices V andW must require appropriate dimensions,
meaning that the order of the reduced system should be a multiple of the number of inputs
and outputs.
In the course of the further work, we denote implicit moment matching as the Krylov

subspace model order reduction (KSMOR) technique.

4.5.3 Numerical Algorithms

After the theoretical presentation of the KSMOR framework, the question still has to be
answered, how the underlying projection can be constructed numerically.

In order to ensure a numerically stable moment matching, the projection matrices V and
W have to be computed building on particular Krylov subspaces. However, the explicit
computation of the Krylov directions, i.e. (L− σI)−1k, must be avoided from a numerical
point of view. This can be explained as follows: for convenience only we assume σ = 0 so that
the projection matrix V implies being a basis of the input Krylov subspace Kr(L−1, L−1k).
In simple terms, V is constructed via

range(V ) = Kr
(
L−1, L−1k

)
with Kr := span

(
L−1k, . . . , L−rk

)
(4.101)

and gives V = [L−1k, . . . , L−rk]. Obviously, iteratively computing the individual Krylov
directions by means of

v1 = L−1k, vi = L−1vi−1, i = 2, . . . , r (4.102)
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leads to a known numerical problem. The successive multiplication with the same matrix
yields that the directions L−1vi−1 quickly converge towards the eigenvector associated with
the dominant eigenvalue of L as i increases. In consequence, the directions vi become linearly
dependent after a few iterations and the projection matrix V is rank deficient.
To overcome the rank deficiency problems mentioned in the construction of the desired

Krylov subspace, two main approaches [29, 167] exist which are variations of the Arnoldi and
the Lanczos algorithms, and building on the (modified) Gram-Schmidt orthogonalisation
process in an iterative manner.

One-Sided Arnoldi Algorithm In one-sided Krylov methods, the most common procedure
for constructing the projection is the Arnoldi algorithm. The Arnoldi algorithm computes an
orthonormal basis and finds a set of normalised vectors that are orthogonal to each other,
more precisely V >V = Ir. In particular, the iteration rule (4.102) is improved by applying
the (modified) Gram-Schmidt method in each iteration. Thus, each newly constructed vector
is orthogonal to all the other previous ones and is normalised. An algorithm of the one-sided
Krylov subspace method for SISO systems using the input Krylov subspace

range(V ) = Kr
(
(L− σI)−1 , (L− σI)−1 k

)
(4.103)

is shown in Figure 4.2. Within the Algorithm 4.1 the inverse (L − σI)−1 is required. It
should be clear that the inverse will never be computed explicitly, since the problem can be
equivalently reformulated as

vi = (L− σI)−1vi−1 ⇐⇒ (L− σI)vi = vi−1 (4.104)

in which a system of linear equations has to be solved in each iteration. For an efficient
computation, the underlying matrix (L−σI) is factorised into a product of triangular matrices
(L−σI) = L̃Ũ so that the systems for each right-hand side vi are efficiently solved by forward
and backward substitution due to (L − σI)−1 = (L̃Ũ)−1 = Ũ−1L̃−1. Consequently, the
numerically most expensive part of the one-sided Krylov method is the LU factorisation. For
symmetric and positive definite matrices the LU factorisation is replaced by the common
Cholesky factorisation.

For the construction of the Krylov subspace V , large and sparse systems of linear equations
usually have to be solved. When using sparse direct solvers the factorisation can lead to high
computational costs. To avoid this problem, preconditioned sparse iterative solvers can be
employed to solve the corresponding linear systems. However, based on the fact that iterative
solvers produce approximate solutions, the constructed subspace generated by the Algorithm
4.1 do not longer match with the projection subspace (4.103), i.e.

range(V ) 6= Kr
(
(L− σI)−1 , (L− σI)−1 k

)
(4.105)

As a consequence, the moment matching property cannot hold in general. Let us stress that
the use of inexact solvers on KSMOR methods of linear dynamical systems was analysed
in [26]. More precisely, it was shown that for a well selected expansion point, the iterative
KSMOR method can be robust to the perturbations based on the inexact solutions. Otherwise,
a poorly selected σ can produce a magnified effect through the model reduction process.
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Algorithm 4.1 One-sided Krylov subspace method for SISO systems using input vector
Input: Matrix L; input vector k; Krylov subspace order r; expansion point σ
Output: V = [v1, . . . , vr]

1.) Set i = 1
a) v1 = (L− σI)−1k

b) v?1 = v1
‖v1‖

2.) Iterate for i = 2, . . . , r
a) vi = (L− σI)−1v?i−1

b) Orthogonalise vi w.r.t. {v?1, . . . , v?i−1} using (modified) Gram-Schmidt method
c) v?i = vi

‖vi‖

Figure 4.2: The one-sided Krylov subspace method for constructing the projection matrix
V considering SISO systems using the input Krylov subspace. For σ =∞, from (4.104) it
follows that vi = Lvi−1, cf. Markov parameters (4.88). In this case, just sparse matrix-vector
multiplications are performed.

The calculation procedure described can be applied analogously for MIMO systems. In
doing so, the input Krylov subspace only needs to be replaced by the input block Krylov
subspace with the input matrix K. We will discuss the one-sided block Krylov subspace
method in more detail in Chapter 6.
Although we are interested in MOR methods that preserve the stability of the original

system, a short overview is given about two-sided Krylov subspace methods that match the
first 2r moments and achieve a more accurate approximation of the transfer function.

Two-Sided Lanczos Algorithm The common two-sided Lanczos algorithm simultaneously
creates the projection matrices V and W based on two sequences of basis vectors spanning
the input and output Krylov subspaces so that the generated basis vectors are orthogonal to
each other, which means W>V = Ir. On this basis, the classical two-sided Lanczos algorithm
is numerically unstable and suffers from the loss of biorthogonality as r increases. Therefore,
a reorthogonalisation within the algorithm is proposed to avoid these numerical problems.

Two-Sided Arnoldi Algorithm Another two-sided Krylov subspace method is based on the
Arnoldi algorithm presented above, which is numerically stable compared to the Lanczos
algorithm. In general, the one-sided Arnoldi process in Algorithm 4.1 is used twice to generate
separately the subspaces

range(V ) = Kr
(
(L− σI)−1 , (L− σI)−1 k

)
range(W ) = Kr

(
(L− σI)−> , (L− σI)−> c

) (4.106)
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Thus, each basis is itself orthonormal, i.e. V >V = Ir and W>W = Ir, and by setting
W := W (W>V )−> it can also ensure W>V = Ir. The two-sided Arnoldi algorithm causes
higher computational costs, but avoids a possible breakdown within the construction of the
projection matrices.
It should be noted that both two-sided Krylov subspace algorithms lead to a reduced

system with the same transfer function. In most cases, however, the one-sided Arnoldi process
is preferred because, in addition to ensuring numerical stability, the stability of the original
system can also be preserved.

In summary, the numerically stable KSMOR method requires a relatively low computational
effort and memory storage, which favours this technique for the reduction of large-scale
systems. For single-point moment matching only one matrix factorisation of (L − σI) is
required, whereby the remaining operations are based on triangular systems that can be
solved numerically in a highly efficient manner. As a result, KSMOR usually computes the
reduced order model in a fast offline phase with a good numerical accuracy, in which the
accuracy explicitly depends on the still user-defined parameters.

4.5.4 Computational Aspects

Although the KSMOR methods have been extensively analysed over the past decades to
address numerous theoretical and numerical problems, there are still challenges within the
process. Let us indicate the most relevant issues.

Error Bounds Apart from the stability preservation, also an a priori knowledge of the error
between the original and the reduced model is crucial. Some existing methods, e.g. [20],
specify error bounds for the approximation quality under certain conditions. In [28, 300]
heuristic error indicators for the reduction of electro-thermal models or dynamical systems
with frequency-dependent damping were introduced without a theoretical justification. In
order to provide a rigorous error bound describing the qualitative difference between the
original and the reduced model, the CURE algorithm [200], which is based on the duality of
Krylov subspaces and Sylvester equations, can be applied in an adaptive manner. The CURE
framework constructs the reduced order model adaptively and ensures a strictly monotonous
decrease in the error norm independently of the choice of the expansion point.

Choice of the Reduced Order Another important aspect in connection with the error
bounds is to find a suitable order r for the reduced system. In other words, a procedure
is desired that easily specify the approximation quality with respect to the choice of the
reduced order. A possible approach to determine the order r is to stop the KSMOR process
when no more new linearly independent vectors can be found within the Arnoldi or Lanczos
algorithms, see [167]. Another stopping criterion can be achieved by using the above error
indicators, where the order r is increased until a user-defined error tolerance is reached. Apart
from these heuristic processes, the CURE algorithm can obviously be used which provides
an iterative reduction of the error norm and therefore determine an adaptive choice of the
reduced order.
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Choice of the Expansion Point One of the most important parameters in moment matching
methods, in fact, is the choice of the expansion point around which the moments are matched.
The value of σ steers the quality of the reduced order model and can also influence the
numerical effort if σ is close to an eigenvalue of the underlying system matrix. More precisely,
the solution of the linear systems within the construction of the projection matrices can be
based on nearly singular matrices.

Typically, slow dynamics are of interest and thus the choice σ = 0 (or σ ≈ 0) is widely used
in a first setup as it often gives good results in a large neighbourhood of the low-frequency
part of the spectrum. Otherwise, σ =∞ is often chosen if higher frequencies are relevant.
For a more automatic selection, the ICOP algorithm [82] is proposed which is a simple and
numerically efficient procedure for computing an optimised single expansion point. The
optimality properties result from the time domain interpretation of moment matching based
on matching the Laguerre coefficients of the impulse response.

If a multi-point moment matching for SISO systems is additionally considered, the number
of expansion points selected also has a significant influence. In this situation, the IRKA
algorithm [113] is often employed which computes the expansion points in an iterative manner.
This technique has also been generalised to the MIMO case. Alternatives for optimising the
selection of expansion points are proposed by [55, 200], whereby the latter is an improved
version of the IRKA algorithm.

Large Number of Inputs The introduced KSMOR method is a popular tool for large-scale
SISO and MIMO systems, assuming that the number of inputs is limited to a relatively small
number. This no longer holds to model problems with a high number of inputs, which can
be explained as follows.
In general, the problem actually lies in the computation of the projection matrices. For

instance, let us consider a one-sided Krylov subspace method and assume that the system
having order n with p inputs. For this reason, the input block Krylov subspace has p initial
vectors for constructing the Krylov subspace. Consequently, for each additional moment
that requires to be matched, further p columns are added to the previous V matrix and
the order of the reduced model increases by p. As an example, let n = 10000 and p = 1000
then matching the first ten moments will result in a reduced model of the same order as
the original one. In addition to the intensive computational costs related to the underlying
input block Krylov subspace in the offline phase, the online costs for simulating the resulting
reduced model increase strongly.
In consequence, the dependence of the reduction efficiency and the number of inputs is

directly linked. We will discuss this issue in more detail later in Chapter 6.

Approximation of the Complete Output In many problems the state response at all grid
nodes is required, meaning that C = I in (4.1). This is the case, for instance, when the
whole temperature field is needed for practical purposes, which is referred to as single-input-
complete-output (SICO) or multi-input-complete-output (MICO) setup. In particular, when
using a one-sided Krylov subspace method coupled with an input Krylov subspace the Arnoldi
process does not explicitly include the output matrix in the KSMOR process. Consequently,
the computation of the reduced order model depends only on the input and the full state
output is easily recovered. Otherwise, one-sided (using output Krylov subspace) and two-sided
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methods, which require the output matrix for the constructing W , are unsuitable in practice.

Overall, based on these observations the original KSMOR technique cannot be generally
used as an automatic method as in the case of MCR and BT. In general, the user has
to specify a certain set of parameters (order r, expansion point σ) to which the selected
algorithm constructs the projection. The resulting reduced order model is then examined
and a fine-tuning of the parameters is performed until satisfactory results are obtained.
However, applying the CURE algorithm enables the adaptive selection of these parameters
and thus employs an automation at the expense of additional computational costs. Because
the procedure is based on an optimisation problem and uses a trust-region method.

4.6 Proper Orthogonal Decomposition
Finally, we introduce the proper orthogonal decomposition (POD) method, which is a wide-
spread technique in the MOR community. The original concept was developed 1901 by
Pearson [212], but this technique has also been rediscovered many times in the past, so
multiple names will be found in the literature such as Karhuenen-Loeve expansion, principal
component analysis and Hotelling transformation. The mathematical formulation of POD is
also directly related to the statistical analysis of vector data and the covariance matrix, see
for instance [147].

The POD method is based solely on data reduction (also known as data-driven reduction),
meaning that dominant structures, more specifically an optimal orthonormal basis in the
least-squares sense is extracted from a given set of theoretical, experimental or simulation
data. Building on this optimal basis the reduced order model is then obtained by truncating.
The most common approach for data reduction is the method of snapshots introduced by
Sirovich [263]. In this approach, the data are created as time snapshots by a numerical
simulation of the underlying model problem at certain time instances so that this dataset
appropriately reflects the system dynamics. In contrast to the other MOR methods presented
in this section, the POD method is based on the time domain formulation of the input-output
behaviour of the system.

Based on the extracted data, POD has been employed to build reduced order models that
are intensively used in fluid dynamics, control theory, inverse problems as well as signal
analysis and pattern recognition, cf. [133,147,165,220] and references therein. The correct
choice of the underlying dataset is obviously an essential component within this technique, as
the computed POD basis depends on the data. In contrast to other MOR techniques, POD
as a data-based method is not limited to a specific model structure and can also easily be
used for nonlinear problems as well as for problems with time-dependent coefficients. For this
reason, this technique is considered as a powerful and universal tool for large-scale dynamical
systems in many fields of science and engineering. Besides these positive features, it should
be noted that POD does not guarantee stability preservation [221,233], even if the original
model is stable. However, in fact, POD belongs to the class of one-sided projection methods
and thus preserves the stability (cf. Lemma 4.1), independent of the underlying data, if the
system matrix is negative semi-definite [221]. In this case, the data only affect the quality of
the resulting reduced model.
In general, the POD method is often applied to nonlinear dynamical systems in practice

because of its ease of use and the simultaneous competitive approximation quality of the
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reduced model. The successful use of POD for practical applications in connection with
(parabolic) PDEs can be found in [5, 12,33, 48, 85,195]. Let us describe the POD approach in
more detail.

4.6.1 Proper Orthogonal Decomposition Method
As mentioned above, the basic idea of POD is to use the system’s time responses given by a
certain input, that contains the essential behaviour of the system, and to provide a basis that
optimally represents the given data in the least squares sense. Assuming that the dynamical
system is measured s times at different time instances with s� n, where each measurement
uk for k = 1, . . . , s being a large vector of real entries, i.e. uk ∈ Rn. The measurements, also
called snapshots, are stored in a matrix

U = [u1,u2, . . . ,us] ∈ Rn×s (4.107)

To obtain a reduced order model, the application of a projection can be formulated mathem-
atically as an optimisation problem or, to be more precise, as a matrix optimisation problem
of the form

min
rank(Pr)=r

‖U − PrU‖22 s.t. P 2
r = Pr ∈ Rn×n (4.108)

where Pr = ΦrΦ>r ,Φ ∈ Rn×r and Φ>r Φr = Ir. Thus, the given data is used to find an
orthogonal projection P of fixed (best) rank r to the data in the L2-norm.

Let U be a separable Hilbert space with inner product 〈·, ·〉2 and orthonormal basis {φ}i∈I .
Then, any element u(x, t) ∈ U take the form

u(x, t) =
∑
i

ai(t)φi(x) =
∑
i

〈
u(x, t), φi(x)

〉
2 φi(x) (4.109)

with time-dependent Fourier coefficients ai. With this formulation, the matrix optimisation
problem (4.108) can be reformulated into

min
φ1,...,φr

s∑
j=1

∥∥∥∥∥∥uj −
r∑
i=1

〈
uj ,φi

〉
2φi

∥∥∥∥∥∥
2

2

s.t.
〈
φi,φj

〉
2 = δi,j (4.110)

with Kronecker delta δi,j and r < s. The orthogonality of the basis implies for all i, j that

0 ≤

∥∥∥∥∥∥uj −
r∑
i=1

〈
uj ,φi

〉
2φi

∥∥∥∥∥∥
2

2

=

uj − r∑
i=1

〈
uj ,φi

〉
2φi

>uj − r∑
i=1

〈
uj ,φi

〉
2φi


= u>j uj − 2

r∑
i=1

〈
uj ,φi

〉2
2 +

r∑
i=1

〈
uj ,φi

〉2
2

=
∥∥uj∥∥2

2 −
r∑
i=1

〈
uj ,φi

〉2
2 (4.111)
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Consequently, the problem (4.110) is equivalent to

max
φ1,...,φr

s∑
j=1

r∑
i=1

〈
uj ,φi

〉2
2 s.t.

〈
φi,φj

〉
2 = δi,j (4.112)

Note that (4.112) is an equality constrained optimisation problem and can be solved by the
method of Lagrange multipliers. The corresponding Lagrangian function of (4.112) reads

L(φ1, . . . ,φr,Λ) =
s∑
j=1

r∑
i=1

〈
uj ,φi

〉2
2 +

r∑
i,j=1

λi,j
(
δi,j −

〈
φi,φj

〉
2

)
L : Rn × · · · × Rn︸ ︷︷ ︸

r-times

×Rr×r
(4.113)

with φ1, . . . ,φr ∈ Rn and multipliers Λ = (λi,j) ∈ Rr×r. The necessary first order optimality
condition, for which the convex objective function and the constraints are continuously
differentiable, is then given by the gradient of the Lagrangian L via

∂L
∂φk

(φ1, . . . ,φr,Λ) = 0 (k ∈ {1, . . . , r}), ∇ΛL = 0 (4.114)

The partial derivatives of L can be expressed as

∂L
∂φk

(φ1, . . . ,φr,Λ) =
s∑
j=1

2
〈
uj ,φk

〉
2 uj −

r∑
i=1

(λi,k + λk,i)φi (4.115)

From (4.114) and (4.115) it holds that
s∑
j=1

〈
uj ,φk

〉
2 uj = 1

2

r∑
i=1

(λi,k + λk,i)φi, k ∈ {1, . . . , r} (4.116)

The left-hand side of the latter equation can be rewritten by means of
s∑
j=1

〈
uj ,φk

〉
2 uj = UU>φk (4.117)

Using induction implies: for r = 1 one has k = 1 and with (4.116) it follows that

UU>φ1 = λ1φ1 (4.118)

with λ1 = λ1,1. Supposing now, for r ≥ 1 the first order optimality conditions are given by

UU>φk = λkφk, k ∈ {1, . . . , r} (4.119)

so that one has to show that for a basis {φi}r+1
i=1 of rank r + 1 the conditions

UU>φk = λkφk, k ∈ {1, . . . , r + 1} (4.120)
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hold. For this reason it must be shown:

UU>φr+1 = λr+1φr+1 (4.121)

With (4.116) it can be obtained first

UU>φr+1 = 1
2

r+1∑
i=1

(λi,r+1 + λr+1,i)φi (4.122)

Using the orthogonality conditions 〈φr+1,φj〉2 = 0, the symmetry of UU> and (4.119), it
holds for any j ∈ {1, . . . , r}:

0 = λj〈φr+1,φj〉2 = 〈φr+1, UU
>φj〉2 = 〈UU>φr+1,φj〉2

= 1
2

r+1∑
i=1

(λi,r+1 + λr+1,i)〈φi,φj〉2 = (λj,r+1 + λr+1,j) (4.123)

This implies then
λr+1,i = −λi,r+1, i ∈ {1, . . . , r} (4.124)

Inserting (4.124) into (4.122) yields

UU>φr+1 = 1
2

r∑
i=1

(λi,r+1 + λr+1,i)φi + λr+1,r+1φr+1

= 1
2

r∑
i=1

(λi,r+1 − λi,r+1)φi + λr+1,r+1φr+1 = λr+1,r+1φr+1 (4.125)

and setting λr+1,r+1 = λr+1 results in (4.121). In summary, the necessary optimality
conditions for (4.112) are given by the symmetric n× n eigenvalue problem

UU>φi = λiφi, i = 1, . . . , r (4.126)

The functions φi are called POD modes (or POD basis) and λi are the POD eigenvalues.
Moreover, the matrix UU> is positive semi-definite and closely related to the covariance
matrix from the field of statistics. Finally, it can be shown that the optimality is given by

s∑
j=1

∥∥∥∥∥∥uj −
r∑
i=1

〈
uj ,φi

〉
2φi

∥∥∥∥∥∥
2

2

= λr+1 (4.127)

Selection of the Dimension The question arises how many basis functions are required in
order to achieve a good approximation of the given dataset. In most cases, not all of the basis
POD modes are necessary to capture the main characteristics of the dataset. The condition
(4.127) forms the basis for the selection of the dimension, meaning that the eigenvalues
of UU> give a measure of the relevance. Thus, large eigenvalues correspond to the main
characteristics of the system, whereas small eigenvalues have less contributions to the system
dynamics. In this context, the number of dimension r is often based on an energy criterion
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in the format

E(r) :=

r∑
i=1

λi

s∑
i=1

λi

(4.128)

The employed tolerance Emin with E(r) ≥ Emin is depending on the model problem. Obviously,
for r � s the eigenvalues should decrease sufficiently fast. In fact, in many applications such
as heat transfer one often observes an exponential decrease in eigenvalues, so a low order
model may possibly be sufficient to represent the original model.

4.6.2 Method of Snapshots

Unfortunately, the basic POD concept requires an eigendecomposition of the underlying
n×n matrix UU>. To overcome this computationally hard problem the method of snapshots
proposed by Sirovich [263] is often used in practice. The general idea is based on the SVD of
the data U , so let

U = ΦΣΨ> (4.129)

with orthogonal matrices Φ,Ψ satisfying

Uψi = σiφi, U>φi = σiψi, i = 1, . . . , rank(U) (4.130)

Furthermore, it holds that

UU> = ΦΛΦ> ∈ Rn×n

U>U = ΨΛΨ> ∈ Rs×s
(4.131)

where Λ = Σ2. More precisely, Ψ and Φ contains the eigenvectors of U>U and UU>,
respectively. From (4.130) it follows that UΨ = ΣΦ = Λ 1

2 Φ so that

Φ = Λ−
1
2UΨ (4.132)

and therefore Φ = [φ1, . . . ,φs] contains the desired POD modes. In other words, solving the
symmetric s× s eigenvalue problem

U>Uψi = λiψi, i = 1, . . . , s (4.133)

gives the same eigenvalues as UU>, so the corresponding POD modes are given by

φi = 1√
λi
Uψi, i = 1, . . . , s (4.134)

Model Order Reduction by POD In the following we specify the POD algorithm. To
obtain a reduced order model by this projection technique, five steps are necessary:

1.) Form the snapshot matrix U = [u(t1), . . . ,u(ts)] = [u1, . . . ,us] ∈ Rn×s with s� n and
rank(U) = k, k ≤ s.
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2.) Solve the eigenvalue problem

U>Uψi = λiψi, i = 1, . . . , k (4.135)

and compute the corresponding POD modes

φi = 1√
λi
Uψi, i = 1, . . . , k (4.136)

with eigenvector matrix Φk ∈ Rn×k and Φ>k Φk = Ik.

3.) Set a threshold, e.g. using the measurement (4.128), to pick the r highest eigenvalues.

4.) Assemble the projection matrix V that corresponds to the r modes selected in step 3
via V := [φ1, . . . ,φr] ∈ Rn×r.

5.) Approximation of the state space vector u(t) by the reduced POD basis u(t) ≈ V ur(t).
Using this reduced representation and projecting along the subspace generated by V
results in the reduced model.

For example, if a general dynamical system of the form u̇(t) = f
(
t,u(t)

)
is given, the reduced

model reads
u̇r(t) = V >f

(
t, V ur(t)

)
(4.137)

The snapshot matrix in step 1.) of the algorithm is usually formed by the simulation of the
original model using a suitable numerical solver. Of course, the selection of the snapshots is
very important as the POD basis depends on the initial condition and the input.

Remarks The POD concept building on data reduction makes this technique highly flexible
so that this MOR method can also be applied to nonlinear dynamical systems. In addition,
using the method of snapshots the dominant POD modes are computed in a relatively
easy way. However, as described above, the POD basis is constructed directly from the
system responses. This highlights the main weakness of the technique as the main retained
characteristics contained in the POD basis are signal-dependent by nature. The reduced
model therefore only has a good approximation quality compared to the original system if
the input is close to the model input. In other words, the computed POD modes do not
provide a general physical interpretation compared to the MCR modes, but they provide a
good characterisation of the dynamics. The efficient selection of the number and the sample
of snapshots is still a research subject. Obviously, the snapshots should be captured precisely
when the dynamics of the system is change. Otherwise, it should be mentioned that the
POD technique aims to describe the given data using the same global features. This means
that the characteristics of a large dataset often vary in space and the use of local features
can be beneficial to represent different system behaviours of the given data set. The latter
observations indicate that POD cannot be used automatically.

For further details from a theoretical and practical point of view, we refer to e.g. [190,276].
Let us note that there are other types of POD methods such as frequency-domain POD
or POD in combination with BT. Apart from that, POD is often successfully applied in
combination with the Galerkin projection [155,220] which is an analytical-based method.
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4.7 Summary of Linear Model Order Reduction Methods

In summary, we have given a detailed description of the most important methods for linear
MOR. Within the scope of this thesis the methods MCR and KSMOR are of interest. This
can be explained as follows: first, the model problems dealt with in this work contain large
and sparse dynamical systems with more than O(105) − O(106) variables, these problem
sizes often arising in the field of image processing, computer vision or engineering problems.
Second, the model problems have to be solved only once with the underlying setting, meaning
that the reduced order model is computed in an online-based2 process. This eliminates
the need for intensive offline-based computations that often arise when problems related
to parameter estimation, uncertainty quantification, optimisation and control are must be
repeatedly solved.

In particular, BT fails to be an efficient MOR method for the underlying model problems
considered here, since the core of this technique is linked to the solution of computationally
intensive Lyapunov equations. Furthermore, the POD technique is also not relevant in our
setting as training snapshots are first needed to build the reduced order model. This approach
therefore contradicts the MOR concept to a certain extent, since the large and unreduced
system must first be solved in order to reduce exactly this system. Solving the large original
model problem and constructing the projection cause high computational costs and is in
consequence exactly what we want to avoid.

The use of MCR naturally requires to perform an eigenvalue decomposition and can lead
to high computational costs, especially if the approximation quality of the reduced model
involves retaining a large number of MCR modes. Nevertheless, this technique can be efficient
for model problems with many different initial conditions along with a smaller number of
dominant eigenvalues that are required to properly represent the main characteristics of the
underlying dynamical system. In this case, only one eigendecomposition is necessary. In
contrast, all other MOR methods presented have to recomputed the reduced order model for
new system parameters such as initial conditions or input vectors.
For linear model problems with a small number of initial conditions or inputs, KSMOR

is in general the most efficient method nowadays as it is based on efficient numerical linear
algebra techniques, namely Krylov subspaces, and often only requires a small dimension of
the resulting reduced order model.

4.8 Outlook of Model Order Reduction

In the previous sections we introduced and discussed the state-of-the-art MOR methods with
an emphasis on linear time-invariant dynamical systems. Since MOR is a very active research
area due to the industrial need, there exist alternative methods. For example, the class of
nonprojective MOR methods including vector fitting methods, see e.g. [192]. Besides the
linear time-invariant systems dealt with this thesis, MOR methods are also conceptually
applied to different classes of model problems. Therefore, a brief overview of the use of MOR
in relation to various model problems that often arise in practical applications is given below.
2 In principle, the statement “online-based” corresponds to “an extremely fast offline computation” and

should emphasise that we want to avoid time-consuming MOR methods, although these may achieve a
more accurate approximation quality of the reduced order model.
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Second Order Dynamical Systems In practical applications such as electrical, mechanical
and structural dynamics, second order dynamical systems are often of interest. In general, a
time-invariant second order MICO system is described by

M ü(t) +Du̇(t) +Ku(t) = Pw(t)
y(t) = Eu(t)

(4.138)

with system matrices M,D,K ∈ Rn×n, input matrix P ∈ Rn×p, output matrix E ∈ Rn×q
and initial conditions u(0) = u0 as well as u̇(0) = ũ0. To deal with such problems using
MOR methods, the second order system can be reformulated into an equivalent linear first
order system of the form

Cẋ(t) +Gx(t) = Bw(t)
y(t) = Lx(t)

(4.139)

with the components

x(t) =

u(t)
u̇(t)

 , C =

D M

W 0

 , G =

K 0
0 −W

 , B =

P
0

 , L =

E
0

 (4.140)

where W ∈ Rn×n is a suitable nonsingular matrix. Afterwards, any of the MOR techniques
mentioned can be applied to the linearised system (4.139), see e.g. [19]. Obviously, the
linearised system differs from the original system structure (4.1) by the matrix C in front
of ẋ(t), but this is not a limitation with regard to the MOR techniques introduced. If the
matrix C is regular, the original structure is obtained by multiplying from the left with
C−1 to (4.139). Another option is the direct reduction of the second order system (4.138),
whereby the definiteness properties of the matrices M,D,K can be more easily preserved.

Parametric Dynamical Systems Another research field focuses on the problem class in
which the system dynamics depend on a parameter set p = [p1, . . . , pd]> of the form

u̇(t) = L(p)u(t) +K(p)w(t)
y(t) = C(p)u(t)

(4.141)

with the parameters involved representing, for example, material properties, system geometry
or system configuration. The problem class of parameter-varying systems is also known as
parametric MOR. The parametric dependence represents different new challenges for MOR,
whereby the presented techniques cannot simply be applied. In particular, the reduced
model is also parameter dependent, which means that the parametric dependence must be
introduced into the projection matrices V and W . Consequently, the main task of parametric
MOR is to preserve the parameter dependence within the reduced model, so that the variation
of the parameters should not be accompanied by a recomputation of the reduction process.
A detailed survey about projection-based parametric MOR can be found e.g. in [39].

Closely related to parametric dynamical systems are linear time-varying systems, in which
the system matrices are time-dependent. A possible application purpose is, for example,
moving loads in which the position of the input (load) can vary over the considered time
horizon. More details can be found e.g. in [66,256].
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Nonlinear Dynamical Systems Apart from the model reduction of time-variant or parameter-
dependent systems, many scientific problems contain nonlinearities so that a natural con-
sequence is to deal with MOR of nonlinear dynamical systems. Numerical simulations of
complex nonlinear problems usually cause high computational costs due to large spatial
and temporal grids within the discretisation process. Therefore, reduced order models are
generally indispensable in practice. Although linear MOR techniques have been extensively
studied in the past, the extension of these concepts to nonlinear problems in general is not
successfully applicable. This results directly from the complexity and diversity of nonlinear
systems compared to the clearly defined structure of linear systems. Because of this, MOR
is still a major challenge for nonlinear problems, and extensive research for establishing a
formal concept is being done. Nevertheless, several methods have been developed to handle
nonlinear dynamical systems. The main approaches are linearisation and quadratic methods,
piecewise linear trajectory-based MOR, empirical Gramians methods and POD techniques.

The linearisation methods are the simplest approach for the model reduction of nonlinear
dynamical systems. The main strategy is based on a linearisation of the state space system
around an operating point, so that any linear MOR technique can be applied to obtain a
reduced order model. The linearisation of the nonlinear functions uses Taylor series expansion
which is truncated after the first order (linear) term. As a result, the Jacobian of the nonlinear
system is linearised and only linear effects are considered within the new system. The main
disadvantage of this reduction technique is that the approximation quality of the reduced
model is only accurate for the system behaviour close to this operating point.
The quadratic methods are an improvement over the linearisation methods. The basic

difference to the previous approach is that also the second order (quadratic) term of the
Taylor expansion is retained. This aims to improve the accuracy of the reduced representation
and should extend its validity to a larger state space. Although the quadratic method is more
precise than its linearised counterpart, both approaches only build a good approximative
reduced model in the neighbourhood of the operating point. Thus, the reduced models are
only locally accurate and are practically useful for weakly nonlinear dynamical systems.
To overcome this weak nonlinearity limitation, a modified approach called the piecewise

linear trajectory-based MOR technique can be used. The central idea of this class of methods
is to use a set of operating points such that a globally accurate reduced model is achieved.
More precisely, the linear model reduction consists of local linear submodels, in which the
projection matrix is generated by individual projection bases for each local submodel. The
final reduced model is then obtained via the weighted combination of all the reduced models.
In particular, any MOR technique can be applied to the linear submodels.

Another approach is the empirical Gramians method (empirical BT) which is an extension
of BT to nonlinear problems. The technique is solely based on balancing the nonlinearities
and uses the (discrete) empirical Gramians. In this setting, empirical Gramians are a type
of a covariance matrix and provide the input-output behaviour of the nonlinear dynamical
system. The construction of empirical Gramians built on the averaging over local Gramians
for any varying quantity (input, initial condition, parameter) around an operating point, see
for example [132,156].

The most popular MOR method for nonlinear dynamical systems is the POD method and
their variants. Despite the drawbacks mentioned in Section 4.6, model reduction via POD is
currently state-of-the-art for many nonlinear problems due to its simple implementation and
promising accuracy.
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Let us emphasise that the evaluation of the nonlinear terms within the reduction process is
also important from a computational point of view. This means that during the MOR process
the nonlinear term still has to be evaluated in the original dimension. In each iteration, the
low-dimensional solution must be projected back onto the full state space and vice versa.
Both processes are computationally intensive and a speed-up of the computation of the
nonlinearities is desirable. A common method for dealing with such problems is the discrete
empirical interpolation method introduced by Chaturantabut [60], in which the nonlinear
function is cleverly interpolated.
For a deeper insight into MOR of nonlinear dynamical systems we refer the reader to

[25, 91, 110, 133, 192] and the references therein. Note that there are also simulation-free
methods [236] for computing a reduced order model in the nonlinear regime.

Surrogate Modelling and Artificial Intelligence Numerical simulations of very complex
systems arising from the solution of the recent society problems in modern sciences require
extremely expensive computational costs, especially when simulations need to be repeated
frequently due to changes of initial values and parameters e.g. in applications of design,
control, optimisation and uncertainty quantification. In this situation, high offline costs
are often accepted in order to obtain a reduced order model that enables fast, yet accurate
simulation results in the online phase. At present, the field of artificial intelligence is one of
the most exciting developments. A more recent aspect are therefore MOR techniques building
on artificial intelligence, the synonym MOR usually being referred to as surrogate modelling.

Surrogate modelling strategies for reducing the computational burden are generally construc-
ted using a data-driven approach. Data-driven methods substitute conceptually expensive
numerical simulations with a surrogate model so that the input-output mapping of a specific
numerical simulation is basically approximated by a black box. The black box is often built
by interpolation or regression of simulation data based on e.g. Gaussian processes or Kriging
methods coming from statistics. Kriging methods have been successfully used as surrogate
models, but such techniques only use scalar information from the extensive simulations. In
consequence, the vast amount of information generated by these simulations remains unused
for the statistical surrogate models. In order to overcome these problems, new data-driven
surrogate models are being developed that are based on artificial neural networks and can
also use physical information, which are also referred to as physics-informed neural networks.
Besides the advantages such as versatility, low evaluation costs and a large number of

modelling techniques, where the implementations are open source (ready-to-use), a substantial
advantage of neural networks is that the offline process of deriving the surrogate model is
handled relatively nonintrusive as only a collection of input-output data is needed. In contrast,
statistical methods typically lead to a loss of flexibility in their surrogate model, since the
models may only be applicable to the specific conditions under which their was derived.
However, neural networks are numerically expensive to train, and the acquisition and storage
of the training data normally incur significant computational costs. Recent works also deal
with online learning and transfer learning. The former enables parallel training to a running
simulation, while the latter uses functional similarities of different systems to reduce the data
and time required to train accurate surrogate models. For an overview about data-driven
surrogate modelling we refer e.g. to [153]. We also refer to some recent techniques based on
MOR coupled learning [122,241,291] or PDE learning [121,168,223–225,246,262].
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Chapter 5

Efficient Descriptor-Based Shape Analysis

In this chapter we are interested in the highly efficient computation of shape descriptors
proposed in [67, 68], which are based on time integration methods and whose intrinsic shape
signatures are useful for shape analysis purposes. The numerical signatures obtained by
time integration methods of the underlying PDEs lead to significant improvements over
state-of-the-art-methods for finding correct shape correspondences. However, its computation
by solving a large system of linear equations for a huge number of right-hand sides is linked
to high computational costs and make it generally impractical for high resolution shapes.
Therefore, it is absolutely essential to find a fast and accurate numerical scheme within this
framework. To this end, we analyse and evaluate direct, iterative and MOR methods and
their influence to shape correspondence applications which are validated on standard shape
datasets with different resolutions.
We will identify that MOR methods, more precisely KSMOR and MCR, provide simple

and efficient time integrators with an equally accurate shape matching performance compared
to the original works [67, 68]. For this reason, we show in more detail how to define
a computational framework by MOR which can be distinguished as spectrum-free and
spectrum-based computation by KSMOR and MCR, respectively. Furthermore, within the
construction of our framework we elaborate several substantial details of the MCR technique
which are necessary in order to enhance the usability. In this context, we will also provide a
detailed description of the differences and similarities to the methods which are based on the
analytical solutions of the underlying geometric PDEs.
Our conducted experiments will also show that spectral decomposition methods are

beneficial for high resolution shapes. Although solving an eigenvalue problem is considered
to be quite expensive, in general only a small number of eigenvalues and eigenvectors are
required for many shape correspondence purposes, so that the corresponding computational
costs are relatively low. The latter statement is identified by evaluating at hand of the
complete TOSCA dataset and is an important practical topic for the methods discussed
with regard to pointwise shape correspondence (PSC). In addition, we demonstrate that the
MCR technique presented here, which is linked to the IE scheme, is superior in the class of
spectrum-based methods due to a much higher matching accuracy.

Apart from that, we will introduce the soft correspondence map and the mapping indicator
function for detecting specific geometric regions. On this basis, we show that the KSMOR
method can achieve a high correspondence quality, while the spectrum-based approaches
produce a less accurate correspondence quality. In this context, we also demonstrate that the
MCR technique outperforms their direct counterparts, the heat kernel signature (HKS) and
the wave kernel signature (WKS).
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We note that a part of this chapter was already presented in our work [18]. Employing the
MCR technique in its raw version introduced in [18] for the shape matching purpose have shown
some promising first results. However, we introduce novel aspects and techniques compared
to the preliminary examinations. In particular, the extended experimental evaluations allow
to highlight some relevant properties of the MOR signatures.

Chapter Organisation After an overview on related work in Section 5.1, we briefly recall the
general framework we rely on along with the arising PDEs and the numerical discretisations
employed in space and time in the Sections 5.2 and 5.3, respectively. As our work relies very
much on related numerical techniques, we give in Section 5.4 a short discussion of numerical
solvers with an emphasis on solvers for systems of linear equations that arise. We also give a
detailed exposition of MOR methods and some related issues is given in our setting. Our first
experimental evaluation presented in Section 5.5 focuses on the evaluation of all introduced
numerical solvers. This is followed by a discussion of the numerical similarity transform, time
rescaling and modification of the initial condition, we propose here for optimisation the MCR
technique in Section 5.6. Beginning with Section 5.7 the kernel-based methods are included in
our discussion. In Section 5.8 we give a detailed comparison of the spectrum-based approaches
focusing thereby on the most promising MOR methods, identified in the previous sections,
and the kernel-based methods HKS and WKS. The chapter is finished by a summary.

5.1 Introduction

In computer graphics the Laplace-Beltrami operator, which is connected to geometric PDEs
such as the heat, wave or Schrödinger equation, is successfully used in several applications
in the field of shape parameterisation, deformation, compression, segmentation, comparison
and analysis. Geometric PDEs are characterised by the fact that they take into account
geometric surface information, although the geometry does not change during time evolution.
A main task within shape analysis is called shape matching where it is often important to
decrypt information about the relation between three-dimensional objects. The investigation
of correspondences between three-dimensional shapes is a fundamental problem and has a
wide variety of potential applications, including e.g. shape comparison or texture transfer, see
e.g. [282] for some discussion. The basic task, cf. Figure 5.1, of finding shape correspondences
is to identify a relation between elements of two or more shapes, where a nonnegligible
challenging setting for this is concerned with nonrigid shapes that are assumed to be just
almost isometric, compare for instance [50]. One of the possible strategies to find pointwise
correspondences is to construct a feature descriptor, or shape signature, which characterises
geometry around the points that define the surface of a given shape. Moreover, a suitable
feature descriptor is required which is invariant under almost isometric transformations. An
interesting class of models for such descriptors is based on the Laplace-Beltrami operator
which enables to describe intrinsic geometric properties of a shapes’ surface [162,226,235].
To this end, several PDEs have been proposed [14, 67, 267] for the construction of shape
signatures that rely on the Laplace-Beltrami operator as a crucial component. In order to
conduct the construction, not only a variety of PDEs but also several ways to solve them have
been considered in previous works [14,18,67,267,285] or in related applications [208,209,301].
All approaches are based on time-evolution processes, so let us give a short overview.
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M M̃

xi

x̃j

Figure 5.1: The fundamentalPSC task. Find the pointwise correspondence between the
given two shapesM and M̃. More precisely, find a pointwise map S which matches points
xi ∈M on x̃j ∈ M̃. In this work we use a simplified representation, the so-called pointwise
feature descriptor.

Time-Evolution Methods A popular trend in shape analysis consists of exploiting intrinsic
time-evolution processes carried by PDEs on geometric shapes. In this framework, diffusion
processes are well established, allowing a meaningful interpretation relating the propagation
of information and intrinsic distances. For example, the propagation of heat on a shape can
be interpreted as a random walk among surface points [49,62].

In the spirit of this framework, [267] introduced the HKS based on the heat equation. The
HKS describes the amount of heat that remains at a certain point after a certain amount of
time. The geometric interpretation of this approach is that one can determine a connection
between the heat kernel and intrinsic distances via Varadhan’s formula [284]. Later, a scale
invariant extension of the HKS was developed [51]. Other authors in [87] propose a point-
based signature for three-dimensional mesh segmentation, called as heat mean signature,
that is based on the average of heat kernels used by HKS. In [14] another feature descriptor
namely the WKS inspired by equations of theoretical physics is proposed. Based on the
Schrödinger equation, the WKS represents the average probability of measuring a quantum
mechanical particle at a specific location. At the same time, [49] proposed a scheme that is
able to generalise the diffusion-based approaches. All of these methods are computed using
the kernels of the analytical solutions of the underlying PDEs. In particular, the feature
descriptors are based on the spectral decomposition of the Laplace-Beltrami operator and can
be represented by a truncated series using the eigenvalues and eigenfunctions of the discrete
Laplacian. In general, it is not immediately evident when to truncate the series for practical
purposes, yet some strategies have been given in the literature [50]; see also [69] for a recent,
related investigation.
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In order to avoid eigendecompositions some works [208,209,285] employ rational approx-
imations of the matrix exponential, where the eigenvalues of the discrete Laplacian are not of
any great relevance in the actual computations. The mentioned work [285] is dealt with fast
multi-scale heat kernel computation. The basic idea is the combination of a multi-resolution
approach (low to high resolution representation of the given shape) and computing the matrix
exponential by the popular scaling and squaring method. The multi-resolution approach
can achieve fast and suitable approximations, but the method also has some limitations,
especially from a theoretical point of view. In a similar context regarding diffusion distance
computations, Patané [208,209] suggests the use of the wFEM heat kernel with an additional
computation of the matrix exponential via Padé-Chebyshev approximation. The proposed
wFEM heat kernel is intrinsically scale-invariant and consequently robust to shape and scale
changes. Nevertheless, the Padé approximation is linked to high computational costs when
considering all points of the shape. To reduce the CPU time, the computation of the matrix
exponential can be replaced by an approximation to the matrix exponential operator on
an operand vector. The matrix-vector product can be efficiently computed by the Krylov
subspace projection technique as performed in [301] for image smoothing using the heat
kernel. However, the accuracy of this method depends on the spectrum of the underlying
matrix and is thus often used as an iterative procedure. In consequence, the Krylov subspaces
have to be computed newly at each time level.

An alternative approach to the kernel-based methods are the time integration methods of
the PDEs considered in [68]. In addition to the abovementioned types of PDEs the shape
signature defined via the classic wave equation [67] has been realised in this setting. Compared
to the kernel-based methods the numerical integration as reported in [67, 68] generally yield
more accurate shape correspondences, while the computation of the numerical signatures is
much more time-consuming than the kernel-based signatures.

In [179] the authors developed a feature descriptor using a specific discrete diffusion process
without solving an eigenvalue problem. This approach is characterised via a discrete time
evolution and using geodesic distances instead of the Laplace-Beltrami operator. In other
words, it derives the relation between elements by exploiting an alternative evolution paradigm
rather than considering geometric PDEs. This construction achieves better results in terms
of matching performance than the kernel-based methods, whereas the method based on the
computation and storage of pairwise geodesic distances is still very computationally intensive.
Finally, an overview of the mentioned approaches for shape analysis by time-evolution

methods is given in Figure 5.2. Let us emphasise that the works [210,282,302] provide a good
introduction when working with the Laplace-Beltrami operator on surfaces and volumes for
the first time, with particular attention to shape correspondence, spectral mesh processing or
Laplace spectral distances and kernels.

5.2 About the Shape Correspondence Framework

In this section we introduce the basic facts that are necessary to define the shape correspond-
ence framework. Concerning the general shape analysis set-up, we largely follow concepts as
discussed for instance in [50]. For notions from differential geometry as employed here we
refer the reader to [79].
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Shape Analysis by Time-Evolution Methods

Geometric PDEs
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Bähr [18]
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Figure 5.2: Approaches for shape analysis and matching by time-evolution methods.

5.2.1 Almost Isometric Shapes

A three-dimensional geometric shape can be described by its bounding surface. Thus, our
shape model consists of compact two-dimensional Riemannian manifoldsM⊂ R3, equipped
with the metric tensor g ∈ R2×2 that describes locally the geometry.

Two shapesM and M̃ may be considered as isometric if there is a smooth homeomorphism
T :M→ M̃ between the corresponding object surfaces that preserves the intrinsic distances
between surface points:

dM(x1,x2) = dM̃
(
T (x1), T (x2)

)
, ∀x1,x2 ∈M (5.1)

The intrinsic distance between two surface points xk, k = 1, 2 can be interpreted as the
shortest path along the surfaceM connecting x1 and x2.

In many applications, the notion of isometric shapes may be too restrictive. For instance,
small noise in a dataset could be considered as an elastic deformation yielding some distortions
in intrinsic distances. To take into account this issue, we call two shapes M and M̃ almost
isometric, if there exists a transformation S :M→ M̃ with

dM(x1,x2) ≈ dM̃
(
S(x1), S(x2)

)
, ∀x1,x2 ∈M (5.2)

5.2.2 PDE-Based Models for Shape Description

A classic but still modern descriptor class that can handle almost isometric transformations
is based on physical models that are conveniently described by PDEs. In the following we
introduce the two1 fundamental PDEs that we employ to this end.
1 The geometric Schrödinger equation can also be used in this setting, see [68].
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The geometric heat equation that yields a useful shape descriptor [267] involves the Laplace-
Beltrami operator. This is the geometric2 version of the Laplace operator that takes into
account the curvature of a smooth manifold in 3D. Given a parameterisation of such a two-
dimensional manifold, the Laplace-Beltrami operator applied to a scalar function u :M→ R
can be expressed in local coordinates as

∆Mu = 1√
|g|

2∑
i,j=1

∂i

(√
|g|gij∂ju

)
(5.3)

where gij are the entries of the inverse of the metric tensor and |g| is its determinant. Using
this the geometric heat equation reads as

∂tu(x, t) = ∆Mu(x, t), x ∈M, t ∈ I (5.4)

and describes how heat would diffuse along a surfaceM.
The geometric wave equation is the second PDE that is going to be discussed in this

chapter. It has been introduced in [67] as a useful model for computing pointwise a shape
descriptor. Assuming that the speed of wave propagation is identical to one in all directions
on the manifold, the corresponding PDE is

∂ttu(x, t) = ∆Mu(x, t), x ∈M, t ∈ I (5.5)

Both of the PDEs described require an initial condition in order to be meaningful. In the
context of shape correspondence construction, we employ a Dirac delta function u(x, 0) =
u0(x) = uxi centred around a point of interest xi ∈M. The PDE (5.5) is of second order in
time, so that it needs to be supplemented not only by a spatial function as an initial state,
but also an account of the initial velocity of that initial state is needed. As it is a canonical
choice, we consider the zero initial velocity condition ∂tu(x, 0) = 0.

Remark 5.1. Many shapes appear as a closed manifold with ∂M = ∅, where it is not
necessary to define additional boundary conditions. For the case M is bounded, often
homogeneous Neumann boundary conditions are used.

5.2.3 Feature Descriptor and Shape Correspondence
We now make precise how geometric feature descriptors are obtained by employing the
introduced PDEs, and how we construct shape correspondence on that basis.

Feature Descriptor For many shape analysis tasks, it is useful to consider a pointwise
feature descriptor as a shape representation. The purpose of the feature descriptor is to give
an account of the geometry of the surface at a certain local region centred about a considered
point. To this end, we restrict the spatial component of solutions u(x, t) of the PDEs used to

fxi(t) := u(x, t)|x=xi
with u(x, 0)|x=xi

= uxi (5.6)

and call the fxi(t) the pointwise feature descriptor at the location xi ∈M.
2 Let us emphasise again that we refer to these PDEs in this thesis as geometric PDEs as they take into

account geometric surface information, although the geometry does not change during time evolution.
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Let us comment that there exists a physical interpretation related to the feature descriptors
we are using. The heat-based feature descriptor fxi(t) describes the rate of heat transferred
away from the considered point xi, see Figure 5.3. The spreading of heat takes into account
the geometry of the surface using the Laplace-Beltrami operator. In turn, the wave-based
feature descriptor describes the motion amplitudes of an emitted wave front observed at
the considered point xi during time evolution. More precisely, the latter feature descriptor
catches the typical wave interaction observable in the solution of the wave equation as can e.g.
be seen in the well-known formula of d’Alembert in the one-dimensional case. Analogously
to the situation for the heat signature, the observable motion of the waves is influenced by
the intrinsic geometry of the surface. As time evolves, the waves spread over the surface so
that their amplitude observed via fxi(t).

Remark 5.2. The feature descriptors discussed here cannot distinguish between intrinsic
symmetry groups as they are based on intrinsic shape properties.

The feature descriptor defined above is in general a simplified representation and make it
therefore a very lucrative candidate for a pointwise signature in the PSC application. It is
also possible to define a compact point signature as a family of functions

fxi(x, t) := u(x, t) with u(xi, 0) = uxi (5.7)

On this basis, the complexity of storing and comparing the signatures (5.7) of two different
points would be extremely high. Nonetheless, we note that there are some related works in
this case, e.g. [199].

t

f x
i
(t

)

Figure 5.3: The dynamics described by the geometric heat equation (5.4). The initial
condition is based on the Dirac delta function u0(x) = uxi . The time evolution of u is
shown from left to the right. The feature descriptors fxi(t) at the location xi ∈M contains
geometric information of the local neighbourhood. In simple terms, fxi(t) describes how
much heat remains at xi after t seconds.
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Shape Correspondence To compare the feature descriptors for different locations xi ∈M
and x̃j ∈ M̃ on respective shapes M and M̃ , we employ a distance df (xi, x̃j) using the
L1-norm as

df (xi, x̃j) =
∫
I

∣∣∣fxi(t)− fx̃j
(t)
∣∣∣ dt (5.8)

It is clear that the tuple of locations (xi, x̃j) ∈M× M̃ with the smallest feature distance
should belong together. This consideration naturally leads to a minimisation problem for all
locations in the form:

(xi, x̃j) = arg min
x̃k∈M̃

df (xi, x̃k) ⇐⇒ xi ←→ x̃j (5.9)

The latter relation can also be expressed using x̃j = S(xi) = xi, so that the map S can
pointwise be restored for all xi. Let us remark that without further alignment it cannot be
expected that the restored map S is injective or surjective, since the minimisation condition
is not unique.

5.3 Basic Discretisation of Continuous-Scale Models

This section will recall the basics of the discretisation of the PDEs that we use. In order to
prepare for later developments that are at the heart of the contributions of this chapter, let
us note that we really give just the description of the fundamentals. The concrete schemes
used for computations are relying on the technical building blocks we introduce here.

5.3.1 Discretising in Space and Time

The discrete surface representation for the computations is given by a triangular mesh which
we denote asMd = (P, T ), cf. Figure 5.4. The underlying point cloud P := {x1, . . . ,xN}
contains a finite number of vertices in terms of coordinate points. The mesh is constructed
by connecting the vertices xi so that one obtains triangular cells. The individual triangles T
contain the neighbourhood relations between corresponding vertices. As visualised in Figure
5.4, let Ωi be the barycentric cell volume that surrounds the i-th vertex. Turning from space
to time discretisation, we define time intervals Ik = [tk, tk+1] and set t0 = 0 to subdivide the
complete integration time [0, tF ].

5.3.2 Finite Volumes: Semi-Discrete Form

Letting for the moment ∂∗ be either ∂t or ∂tt, we consider the PDEs (5.4) and (5.5) over a
so-called control volume Ωi and a time interval Ik. Integration in space and time yields∫

Ik

∫
Ωi

∂∗u(x, t) dx dt =
∫
Ik

∫
Ωi

∆Mu(x, t) dx dt (5.10)
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Figure 5.4: Continuous and discrete shape
representation. The discrete shape is given
by nonuniform linear triangles. Volume cells
as shown here in green are constructed using
the barycentric area around a vertex.

βij
αij αij

i

j

i

j

cij cij

Figure 5.5: The cotangent weight scheme
as discretisation of the Laplace-Beltrami op-
erator. Left: Interior edge. Right: Bound-
ary edge.

In a finite volume method the quantities that are considered in the computations are cell
averages, i.e. for the i-th control volume, or cell, we define

ui(t) = u(x̄i, t) = 1
|Ωi|

∫
Ωi

u(x, t) dx (5.11)

where |Ωi| denotes the area of the i-th control volume. Therefore, the averaged Laplacian is
defined as

Lui(t) = 1
|Ωi|

∫
Ωi

∆Mu(x, t) dx (5.12)

As for the meaning of the latter integral on the right hand side, one has to apply the divergence
theorem to substitute the volume integral into a line integral over the boundary of the cell
volume. For the discretisation of the arising integral quantities, the widespread cotangent
weight scheme as introduced in [184] is employed.

The arising discrete Laplace-Beltrami operator L ∈ RN×N is composed of the sparse matrix
representation that can be written as L = D−1C. The appearing symmetric cotangent weight
matrix C contains the entries

Ci,j =


−
∑
j∈Ni

cij , if i = j

cij , if i 6= j and j ∈ Ni

0, else

(5.13)

where Ni denotes the set of points adjacent to the vertex xi. The weights cij of the edge
(i, j) between corresponding vertices distinguish between interior Ei and boundary edges Eb
as shown in Figure 5.5, and are given by

cij =


cotαij + cotβij

2 , if (i, j) ∈ Ei
cotαij

2 , if (i, j) ∈ Eb
(5.14)
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Furthermore, αij and βij denote the two angles opposite to the edge (i, j), and the matrix

D = diag
(
|Ω1|, . . . , |Ωi|, . . . , |ΩN |

)
(5.15)

contains the local volume cell areas.

Remark 5.3. The Laplacian matrix L is ultimately not symmetric. This fact has a significant
influence on the resulting computational setting and is discussed in detail in Section 5.4.1.

Lastly, we now put together and summarise the components of the discretisation as we
developed it until now. In this way we end up with a semi-discrete form of the scheme. Let a
function defined on all cells be represented by now as an N -dimensional vector

u(t) =
(
u1(t), . . . , uN (t)

)> (5.16)

Rewriting (5.10) using volume cell averages we obtain a semi-discrete system of ODEs, one
for each control volume:

∗
u(t) = Lu(t) where ∗

u(t) = d∗u(t)
dt∗ (5.17)

where the use of the star derivative ∗u indicates the time derivatives of first and second order,
as introduced in (5.10).
Standard methods for the numerical solution of (5.17) in general deal directly with first

order ODE systems. For the geometric heat equation the system (5.17) reads as

u̇(t) = Lu(t), t ∈ (0, tF ], u(0) = u0 (5.18)

In contrast, the geometric wave equation is of second order, and a transformation into a first
order system

q̇(t) = Kq(t), t ∈ (0, tF ] (5.19)

with the matrix

K =

0 I

L 0

 ∈ R2N×2N (5.20)

where I ∈ RN×N is the identity matrix and

q(t) =
(
q1(t), q2(t)

)> =
(
u(t), u̇(t)

)> (5.21)

is necessary.
We now turn to the discrete initial conditions of the time evolutions described. As indicated,

the initial velocity function u̇(0) for use with the geometric wave equation is identical to
zero. Thus, we have only to describe here the discrete setting for the initial spatial density
u(0) which is used for both the geometric heat and wave equation. To this end, a discretised
version of the Dirac delta function has to be constructed that we formally employed in the
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continuous-scale model. Using the cell average∫
Ωi

u(x, 0) dx = 1 (5.22)

where u(x, 0) may be interpreted now as a box function with unit area, being expressed as

u(x, 0) =


1
|Ωi| , if x ∈ Ωi

0, else
(5.23)

the initial condition at the location xi can be formulated as

ui,0 :=
(
0, . . . , 0, |Ωi|−1, 0, . . . , 0

)>
(5.24)

that implicitly bears a dependence on the index i.

5.3.3 Time Integration

Solving the arising ODE systems (5.18) and (5.19) involves the application of numerical
integration and can be done using the time stepping methods described in Section 2.1, such
as the EE method, the IE method or the CN method. In a similar application for smoothing
meshes, the authors [78] suggest to use an implicit integrator for the underlying diffusion
equation. This also holds for the PSC application, which can be explained as follows.
Obviously, the EE method leads to limitations of the time step size depending on the

volume cell areas when applied for shape analysis tasks. The main reason is that in typical
discrete meshes representing shapes, one has to face in general a large variety of mesh
widths, and especially also very small mesh widths arise. As the spatial mesh width and
the allowed time step size of explicit methods are coupled, exactly this issue makes the
explicit methods not being attractive in our setting. Although the application of fast explicit
methods as employed in [18], such as the FEDRK3 scheme, can substantially reduce the
computational costs compared to the EE method, its use is not preferable as a consequence
of the L∞-stability violation. Thus, the discrete maximum-minimum principle (positivity
property) is not fulfilled which may yield undesirable oscillations with respect to the discrete
feature descriptors, see Figure 5.6.
Usually, the implicit CN scheme is frequently used, see for example Chapter 6. However,

we do not consider this approach to be practicable here due to the underlying initial condition.
The latter method is not L-stable which may result in undesirable oscillations in the numerical
solution for problems with discontinuous initial conditions as employed herein, see Figure 5.6.
In other words, oscillations-free numerical signatures are of interest in our approach. In such
a case, naturally L-stable schemes are preferred, so the IE method, as [67, 68] has shown,
represents a reasonable choice for our purpose.

In total, we only consider here the IE method for the numerical solution of the underlying
geometric PDEs. In Section 5.6.4 it will also be shown that the IE scheme provides a practical
feature because of its artificial damping.
3 Although the system matrix L is not symmetric, FEDRK can be applied. By multiplication of D to the

equation (5.18) we have Duk+1 = (D + τC)uk, where C is symmetric and negative semi-definite.
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Figure 5.6: Results for the wolf dataset using the geometric heat equation for tF = 25. We
compare the discrete feature descriptor fx10(t) (left) and fx1000(t) (right) obtained by the
methods IE, CN and FEDRK. To enhance the visual comparability, the feature descriptor
fx1000(t) is only plotted within the range [0, 8]. Obviously, oscillations-free numerical signatures
are generated via IE method, contrary to CN and FEDRK as on the right of the figure.

Implicit Euler Method for the Geometric PDEs Applying the fundamental theorem of
calculus and using the right-hand rectangle method for the integral approximation of the
right-hand side of (5.18), we obtain the IE method

(I − τL)uk+1 = uk (5.25)

using the notation u(tk+1) = uk+1 and with the uniform time step size τ = tk+1 − tk, k ∈
{0, . . . , F − 1} as well as u0 = ui,0. The analogous application of the same approximation
scheme to the geometric wave equation (5.19) leads to

qk+1 = qk + τKqk+1 (5.26)

In (5.26) the component q1 at times tk+1 and tk reads

uk+1 = uk + τ u̇k+1 (5.27)
uk = uk−1 + τ u̇k (5.28)

while the component q2 at tk+1 can be expressed as

u̇k+1 = u̇k + τLuk+1 (5.29)

The combination of (5.27)-(5.29) transform (5.26) into a two step approach(
I − τ2L

)
uk+1 = 2uk − uk−1 (5.30)

with a system size N ×N . The wave equation requires to define two initial conditions, namely
u(t0) and u̇(t0). With u0 = ui,0 and the fixed initial velocity u̇0 = 0 it follows that(

I − τ2L
)
u1 = u0 for k = 0 (5.31)
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Remark 5.4. The IE scheme can be applied analogously to the geometric Schrödinger
equation [68]. However, at each time level a linear system with complex coefficients has to be
solved which is much more cost intensive. At the same time, the descriptors based on the
wave equation generally achieve better results, cf. [67]. Therefore, we only consider here the
geometric heat and wave equation.

5.4 Numerical Solvers

In this section we provide some relevant information about the sparse direct solver, the CG
method, the KSMOR technique and the MCR approach for the PSC application. Based on
the fact that the methods strongly depend on the properties of the system matrix L, we
give a discussion of the discrete Laplace-Beltrami operator beforehand. In doing so, the
eigenvalues, eigenvectors and the definiteness of the discrete Laplacian are analysed.

5.4.1 Discrete Laplace-Beltrami Operator

We focus now on the properties of the discrete Laplace-Beltrami operator L, more precisely
on the eigenvalues λ and eigenfunctions φ of the matrix L. The basic problem, also called
the (standard) eigenvalue problem, is to determine λ ∈ C and φ ∈ RN , φ 6= 0 such that

Lφ = λφ (5.32)

is fulfilled, where L ∈ RN×N is nonsymmetric here. This task causes both theoretical
and numerical problems. On the one hand, nonsymmetric matrices do not guarantee real
eigenvalues and eigenvectors. On the other hand, their numerical computation may yield
complex-valued results even if they were real. These aspects are discussed below. A general
overview on the Laplace operator and its properties is presented in [302].

Generalised Eigenvalue Problem As mentioned, the discrete Laplace-Beltrami operator
is given by L = D−1C, where D is a regular diagonal matrix with positive entries on the
diagonal, and C is a symmetric matrix. Under these conditions the eigenvalue problem (5.32)
can be reformulated as a generalised eigenvalue problem (GEP) via D−1Cφ = λφ or

Cφ = λDφ (5.33)

which have the same eigenvalues and eigenvectors as the original problem. It should be noted
that if C and D are symmetric and D is also positive definite, which is the case here, then
all eigenvalues λ are real and the N eigenvectors φ are linearly independent, whereby the
eigenvectors are D-orthogonal with φ>i Dφj = δij , see [207]. This means, the eigenvectors are
orthogonal with respect to the inner product

〈f , g〉D = f>Dg (5.34)

As a result, the equalities hold

L = ΦΛΦ>D, I = Φ>DΦ, Λ = Φ>CΦ (5.35)
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where Λ is a diagonal matrix of eigenvalues and Φ corresponds to the right eigenvector matrix
of L. Therefore, the eigenvalues of the underlying matrix L are real and the eigenfunctions
are D-orthogonal. The definiteness of L can specified by the following proposition:

Proposition 5.1. The discrete Laplace-Beltrami operator L is negative semi-definite.

Proof. The cotangent weight matrix C is a symmetric diagonally dominant matrix with real
negative diagonal entries. According to the Gershgorin’s circle theorem [100] it follows that
C is negative semi-definite. This implies that L is also negative semi-definite with respect to
the inner product (5.34), because of

〈x, Lx〉D = x>DLx = x>Cx ≤ 0, ∀x 6= 0 (5.36)

In particular, the eigenvalues of the discrete Laplacian are real nonpositive analogous to the
continuous Laplace-Beltrami operator. Let us highlight that the numerical solution of (5.32),
although the eigenvalues of L are real, may produce complex-valued results as exemplarily
shown Figure 5.7. It is generally advantageous to compute φ and λ by making use of (5.33)
due to the fact, that numerical methods for the GEP recognise the developed theoretical
properties and generate real eigenvalues and eigenvectors.

Remark 5.5. Another characteristic of the discrete Laplacian is its zero row sum property.
Consequently, zero is an eigenvalue of L with associated constant eigenvector g := (c, . . . , c)>,
since Lg = 0.
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Figure 5.7: Comparison of the numerical eigenvalue problem computation on the wolf
dataset using the standard eigenvalue problem (5.32) and the GEP (5.33). The eigenvalues
are computed by the internal MATLAB R2018b function eigs. Left: Computation of the
first ten smallest eigenvalues. Right: Computation of the first thirty smallest eigenvalues. It
can be seen that the internal MATLAB solvers regarding the standard eigenvalue problem
and GEP produces not the same results, since the eigenvalues are not equally even for a
small number. Interestingly, the numerical solution of (5.32), although the eigenvalues are
theoretically real, produces complex-valued results as presented on the right of the figure.
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5.4.2 Implicit Solvers

As described in the last section the temporal integration will be done implicitly. An essential
key requirement for our objective of a correct shape matching is a sufficient accuracy of the
computed numerical solution. Apart from that, the underlying PDEs that are used to this
end have to be solved for each point and on each shape for a fixed time interval t ∈ (0, tF ].
Consequently, the computational costs are directly related to the number of points of the
regarded shapes. This suggests that one may forego high accuracy in exchange for a faster
CPU time. In order to evaluate this proceeding, an analysis of the numerical solvers related
to shape matching is absolutely essential.

The implicit schemes (5.25) and (5.30) result in a large sparse systems of linear equations
and can be expressed as

Ax = b (5.37)

with A = I − τL, b = uk, x = uk+1 for the geometric heat equation and A = I − τ2L, b =
2uk − uk−1, x = uk+1 for the geometric wave equation. The matrix A ∈ RN×N is positive
definite, nonsymmetric, large, sparse and structured since it is based on a discretisation of the
Laplace-Beltrami operator. As stated in Section 2.2 the linear system (5.37) can be solved
with either sparse direct or sparse iterative solver.

Sparse Direct Solver In this case, the underlying matrix A will be factorised just once
into a product of triangular matrices A = LU using a complete and sparse LU factorisation.
Then such systems are solved for each right-hand side by forward and backward substitution,
which is apparently very efficient.

To improve the performance of the sparse direct solver, an alternative object-oriented
factorisation is useful to solve the linear system. In contrast to the LU factorisation,
precomputing the matrix factors in the object-oriented framework is more expensive, but this
only has to be done once and it yields in total a faster solver with exactly the same results.
In order to accelerate the computation in this way we use the SuiteSparse package [74], more
precisely the function factorize.

Remark 5.6. The internal MATLAB-function decomposition can also be used. For the PSC
setup considered here, the SuiteSparse package provides a better performance.

At this point, we mention another possibility to use the direct solver which may be very
effective in this framework. As indicated, we are interested in constructing pointwise feature
descriptors fxi(t) which are essentially not based on a solution of the heat and wave equation
in a global sense. From a practical point of view it therefore does not seem useful to solve the
geometric PDEs on the entire discrete mesh. The latter statement suggests to solve the PDEs
only locally, i.e. in a certain area, close to the considered point xi. The localised solving
can be obtained by localising the underlying Cholesky factorisation as proposed in [126,127].
This technique enables to significantly speed up the computations and may yield a further
advancement in the future.

Sparse Iterative Solver In contrast to direct methods, iterative solvers are very efficient in
computing approximate solutions. This may be very useful in the PSC application considered
here. As mentioned before, the purpose of the feature descriptor fxi(t) is to give an account
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of the geometry of the surface at a certain local region centred around xi, cf. Figure 5.3.
Consequently, the construction of feature descriptors generally requires only a sufficiently
accurate numerical solution in a local area. This may suggest that a good representation of
the shape signature is achieved after a small number of iterations.
We propose to employ the highly efficient CG method for problems involving sparse

symmetric and positive definite matrices, cf. Section 2.2.1. In order to realise the symmetric
case in (5.37), the multiplication from the left of the matrix D in (5.15) to the equations
(5.25) and (5.30) results in

(D − τC)uk+1 = Duk (5.38)(
D − τ2C

)
uk+1 = 2Duk −Duk−1 (5.39)

where D − ταC with α = 1, 2, is symmetric positive definite due to the properties of the
cotangent weight matrix C. Therefore, the CG method is solving the new system

Ãx = b̃ (5.40)

with Ã = D − τC, b̃ = Duk for the geometric heat equation and Ã = D − τ2C, b̃ =
2Duk −Duk−1 for the geometric wave equation.

For the PSC application, we will investigate the effects of the user-defined termination of
the CG algorithm if the approximate solution reaches a specific convergence tolerance or a
maximum number of iterations. The use of the MIC preconditioner for large systems is also
being investigated.

5.4.3 Model Order Reduction

The implicit methods have to handle large sparse systems, whereby the computational costs
depend on the point cloud size. The MOR techniques, as presented in Chapter 4, can be
used to approximate the original linear and time-invariant first order ODE system (5.18) and
(5.19) by a very low dimensional system, thereby preserving the main characteristics of the
original ODE system. Before we discuss specific techniques, let us briefly describe the general
procedure of MOR on the system (5.18). Of course, the approach can be applied analogously
to the geometric wave equation (5.19).

Applying the MOR concept to (5.18) may be understood as projecting the original system u̇(t) = Lu(t)
yi(t) = e>i u(t), ui(0) = ui,0, i = 1, . . . , N

(5.41)

with the state variable u ∈ RN , the single output variable yi(t) ∈ R and the i-th unit vector
ei ∈ RN onto a reduced order modelW

>V u̇r(t) = W>LV ur(t)
yr,i(t) = e>i V ur(t), V ur,i(0) = ui,0

(5.42)

using a reduced basis representation u(t) ≈ V ur(t) with ur(t) ∈ Rr, r � N and projection
matrices V ∈ RN×r and W> ∈ Rr×N . We note that the dynamical system in (5.41) can be

160



5.4 Numerical Solvers

interpreted as a zero-input-single-output (ZISO) system, whereby no input variable exists
due to the considered boundary conditions. Notably, N different initial conditions are taken
into account, which corresponds to extracting the feature descriptor yi(t) for each point on
the given shape. By multiplication from the left with (W>V )−1, assuming that the inverse
exists, and using biorthogonal matrices W>V = Ir the system (5.42) leads to the reduced
system of order r as follows: u̇r(t) = Lrur(t)

yr,i(t) = e>r,iur(t), V ur,i(0) = ui,0
(5.43)

with Lr = W>LV ∈ Rr×r, er,i = e>i V ∈ Rr and ur,i ∈ Rr.
As mentioned in Chapter 4, MCR, BT, POD and KSMOR are common and widespread

approaches for constructing the projection matrices V,W . For our application purposes,
however, the usability of the BT and POD method can be excluded on grounds of efficiency
in advance. Both methods are based on performing an SVD. In addition, BT has to solve
Lyapunov equations and POD has to form the snapshot matrix for each point on the given
shape which results in inefficient processes.
An alternative approach to dealing with different initial condition could be the use of

parametric MOR techniques. In this way, the dynamical system can be reformulated as a
parameter-varying system, but this issue is beyond the scope of this work. In conclusion, our
aim is to provide a short overview of the remaining two methods mentioned above, KSMOR
and MCR.

Krylov Subspace Model Order Reduction The KSMOR methods presented in Section 4.5
are based on moment matching and approximate the transfer function of the original system
(5.41), which describes the dependence between the input and the output. Based on the
fact that no input variable exists, the output depends only on the initial condition which
corresponds to the consideration of the zero-input response of the system. As a result of the
latter fact a coordinate transformation is not necessary, although nonzero initial conditions
are given.

Remark 5.7. Since no coordinate transformation is required, the computational costs can be
reduced. This follows from the fact, that a transformation is accompanied by an additional
sparse matrix-vector multiplication, when translating the nonzero initial condition to the
right-hand side of the ODE system. In the PSC application considered here, this proceeding
would have to be performed for each point on each shape.

Applying the Laplace transform to the ZISO system (5.41) we obtain

U(s) = (sI − L)−1 ui,0

Yi(s) = e>i U(s) = e>i (sI − L)−1 ui,0
(5.44)

where the inverse (sI − L)−1 exists for s 6= λi. Therefore, the transfer function is defined as

H(s) = e>i (sI − L)−1 ui,0 (5.45)

which describes here the direct relation between the initial condition ui,0 and the output
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Yi(s) of the original system in the frequency domain. Based on this, the Taylor series of the
transfer function expanded around σ is given by

H(s) = −
∞∑
k=0

mk(σ)(s− σ)k (5.46)

where mk(σ) = e>i (L− σI)−(k+1)ui,0 is the k-th moment. For the shape matching purpose
the one-sided Arnoldi approach is applied, which constructs an orthogonal basis

range(V ) = Kr
(
(L− σI)−1 , (L− σI)−1 ui,0

)
with Kr : = span

(
(L− σI)−1 ui,0, . . . , (L− σI)−r ui,0

) (5.47)

with W = V such that W>V = V >V = Ir.

Proposition 5.2. Let V being a bases of Kr in (5.47) and W = V . For Lr = W>LV, er,i =
e>i V, W

>ui = ur,i and σ 6= λi, where λi is an eigenvalue of L, then the first r moments
around σ are matched:

mk(σ) = m̃k(σ), k = 0, . . . , r − 1 (5.48)

where m̃k(σ) are the moments of the transfer function Hr(s) of the reduced system (5.43).

Proof. Analogous to the Theorem 4.2.

Remark 5.8. As a result of the underlying stable dynamical system (5.41) built on the
negative semi-definite matrix L, the one-sided KSMOR method, i.e. W = V , preserves the
stability of the reduced system, cf. Lemma 4.1.

Due to the above construction using Krylov subspaces, the KSMOR method is obviously
not based on the computation of eigenvalues and eigenvectors and especially represents a
spectrum-free method.

A parameter that still has to be determined is the choice of the expansion point σ. The
underlying PDEs are obviously characterised by a rather slow dynamic, so approximating
the system at the frequency σ ≈ 0 is a natural choice. In particular, for σ = 0 the inverse
(L− σI)−1 does not exist, since λ = 0 is an eigenvalue of L. Moreover, the setting σ =∞
could be useful. This choice does not appear logical because high frequencies correspond to
fast dynamics. However, in the PSC application the feature descriptors fxi(t) only require a
sufficiently accurate numerical solution in a local neighbourhood of the considered point xi.
This suggests that a potentially small number r achieves reasonable numerical signatures.
The latter conjecture would be cost-effective, since the underlying construction of the Krylov
subspace V = Kr(L,Lui,0) is based solely on sparse matrix-vector multiplications.
For constructing the Krylov subspace V = Kr((L − σI)−1, (L − σI)−1ui,0) large sparse

systems of linear equations have to be solved. This requires the application of the previously
mentioned sparse direct or sparse iterative solvers. We apply here the sparse direct solver
in combination with the SuiteSparse package [74]. The computational costs of KSMOR are
directly linked to the costs of constructing the Krylov subspace V . At this point it should be
stressed again that the projection matrix V must be recalculated at each point and on each
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shape due to the need to consider various initial conditions. Therefore, the computational
costs scale substantially when increasing the number of Krylov subspaces. Nonetheless, the
KSMOR method can be highly practicable if a low number of subspaces represent a large
part of the system dynamics.

Remark 5.9. In general, the discrete feature descriptors fxi(t) are generated built on the
integration time [0, tF ], which is subdivided into (F + 1) time levels. Thus, on each point,
F large linear systems are solved. Provided that the selected number of subspaces r is small
(r � F ), consequently only r large and F reduced linear systems have to be solved, which
strongly reduces the computational costs.

Modal Coordinate Reduction An alternative way to realise MOR in the context of the
application discussed is the MCR technique, cf. Section 4.3, which is based on the eigenvalue
decomposition of the underlying system matrix L of the original system (5.41). The concept
of MCR is to transform the full model from physical coordinates in physical space to modal
coordinates in modal space by using the eigenvectors of L that are usually put together to
form column by column an eigenvector matrix. Subsequently, those modes are removed that
have less important contributions to the system responses. In general, only a few modes have
a significant impact on the system dynamics within the frequency range of interest.
It should be noted that the use of the MCR method in the field of computer graphics

is not new, cf. [141, 213], and is also often used, e.g. for the physical simulation of fluid-
object interaction [274], realistic sound rendering [57] and deformable objects [131,258,290].
Nevertheless, we show how to define a computational framework by MCR that yields efficient
time integration linked with accurate shape signatures. Within the construction of our
framework some technical improvements in Section 5.6 are introduced that in this framework
turns out to be highly beneficial for this approach. The following describes how to apply
MCR for the PSC framework.
The application of a regular modal transformation u = Φz to the system (5.41), where

Φ ∈ RN×N is the unit eigenvector matrix of L, results in

Φż(t) = LΦz(t) (5.49)

Then the multiplication from the left by D and Φ> yields

Φ>DΦż(t) =Φ>DLΦz(t) (5.50)

From (5.35) we have I = Φ>DΦ and Λ = Φ>CΦ, which due to L = D−1C also implies that
Λ = Φ>DLΦ. Inserting the last identities in (5.50) finally leads to

ż(t) =Λz(t) (5.51)

The latter equation is the starting point for choosing eigenvalues and eigenvectors and
explicitly clarifies in this way the affiliation to the class of spectrum-based methods.
It is well-known that the low frequencies which correspond to small eigenvalues are

supposed to dominate the dynamics of the system. Suppose r � N ordered eigenvalues
0 = |λ1| < |λ2| ≤ · · · ≤ |λr| are of interest. Consequently, we obtain with Λr ∈ Rr×r and
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Φr ∈ RN×r extracted from Λ and Φ, respectively, the reduced model of order r given by

żr(t) =Λrzr(t) where zr = Φ>r Du (5.52)

This low dimensional and decoupled ODE system is much faster to solve than the original
one. Applying the IE method to (5.52) leads to

(Ir − τΛr) zk+1
r =zkr , z0

r = Φ>r Du0 (5.53)

or otherwise to

zk+1
r =Pzkr , z0

r = Φ>r Du0 (5.54)

with the simple matrix inversion

P = (Ir − τΛr)−1 = diag
( 1

1− τλ1
, . . . ,

1
1− τλ r

)
(5.55)

The reduced system (5.54) is based solely on diagonal matrices and can easily be solved by
sparse matrix-vector multiplications.
To summarise, the computational costs only depend on the eigenvalues and eigenvectors

of L, which are known to be computationally intensive to obtain. Based on the above
considerations, only the smallest eigenvalues have to be computed iteratively so that the
MCR technique is practicable for a convenient number of modes. Apart from that the MCR
method constructs the projection matrix V = Φr only once independent of the corresponding
initial condition, which therefore differs from the KSMOR method.

Remark 5.10. Obviously, the MCR method is for physical simulations with a very large
basis r of several hundreds or thousands of modes not practical. However, we will show that
in all of our experiments a sufficiently small number of modes used are suitable to compute
numerical signatures accurately enough.

Connection to HKS: The reduced system (5.52) can also be solved exactly. It is well-known,
that the solution of the linear ODE in modal coordinates is given by

zr(t) = eΛrtzr(0) (5.56)

or in physical coordinates as

u(t) ≈ Φrzr(t) = Φre
ΛrtΦ>r Du(0) =

r∑
i=1

eλitφiφ
>
i Du(0) (5.57)

The latter formulation corresponds to the raw4 version of the HKS method which uses the
analytical solution of the continuous heat equation expressed as a series expansion. This is
not surprising, as the series is based on the eigenfunction expansion and is consequently the
analytical counterpart of MCR built on the eigendecomposition of the discrete Laplacian.
4 Let us stress that in order to make the series expansion techniques HKS effective, it is recommended to

employ heuristics such as the scaling of time [267].
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However, we consider the MCR method to be more beneficial. On the one hand, this
technique is based on a decoupled ODE system which can be solved exactly in a more simple
manner contrary to the approach of separation when dealing with the continuous PDEs.
Otherwise, it does not generally require any knowledge of the analytical solution and can be
applied if the semi-discretised model is available. As a result, MCR is much more comfortable
due to its flexibility.

5.5 Comparison of Implicit Euler Solvers Based on Two Datasets

As seen before, the temporal integration for (5.18) or (5.19) is done using the IE method
which requires to solve systems of linear equations. For the latter task exists various numerical
solvers, that have different properties in terms of computational effort and accuracy of the
computed solution which can significantly influence a shape matching task. For this reason,
the numerical solvers and their performance in terms of matching quality and CPU time are
analysed and evaluated at hand of two different datasets. The experiments are only evaluated
for the geometric heat equation (5.18), analogous results have been achieved for (5.19) in
undocumented tests. As methods of choice we consider:

1. Sparse direct solver. The internal function factorize included in the SuiteSparse package
is employed.

2. Sparse iterative solver. The user-defined parameters ε > 0 and l related to the tolerance
of the relative residual (2.136) and the maximum number of iterations, respectively,
are used to terminate the CG algorithm. Furthermore, the MIC preconditioner is being
investigated for large systems. In this case, a numerical fill-in strategy is used where
the associated parameter is fixed5 to γ = 10−3.

3. KSMOR method. The solver can be tuned by the number of projection subspaces Kr
used. For computing the Krylov subspace V = Kr((L − σI)−1, (L − σI)−1ui,0) the
sparse direct solver is applied. In addition, different values for σ are investigated, more
precisely σ ≈ 0 and σ =∞.

4. MCR method. The performance of the solver can be tuned by the number of eigenvalues
and eigenvectors used, here called modes r. For a fair comparison between the solvers
used, we apply MCR combined with the IE method as developed in (5.54).

As indicated, we are particularly interested in CPU time as well as actual accuracy of the
results related to shape matching. In order to evaluate the accuracy of the methods a dense
point-to-point correspondence is performed, involving all vertices the shapes are made off. In
detail, the experiments are evaluated as follows.

Discrete Feature Descriptor The discrete version of the introduced feature descriptor (5.6)
is generated by numerical time integration of the underlying geometric PDE. Therefore, the
time axis [0, tF ] is subdivided using (F + 1)-time levels into 0 := t0 < t1 < · · · < tF with
5 In practice, cf. [16, 42] or the Chapter 6, a good performance is obtained for values of γ ∈ [10−4, 10−2].
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F = tF
τ , where the time step size τ is uniformly chosen. The corresponding discrete feature

descriptors are of the form

fxi(t) := u(xi, t)|t=tk
, k = {0, 1, . . . , F} (5.58)

for i = 1, . . . , N , meaning that fxi(t) ∈ RF+1. The computation of a discrete feature
descriptor at xi for a given shape requires solving F sparse large linear systems of size N ×N .
Consequently, the computation of all fxi(t) implies that one has to solve in total N · F linear
systems for each shape.

Hit Rate The percentage hit rate is defined as TP/(TP + FP ), where TP and FP are the
number of true positives and false positives, respectively.

Geodesic Error For the evaluation of the correspondence quality, we follow the Princeton
benchmark protocol [148]. This procedure evaluates the precision of the computed matchings
xi by determining how far are those away from the actual ground-truth correspondence x∗.
Therefore, a normalised intrinsic distance dM(xi,x∗)/

√
AM on the transformed shape is

introduced. Finally, a matching is accepted to be true if the normalised intrinsic distance is
smaller than the threshold 0.25, as illustrated in Figure 5.8.

Dataset For the experimental evaluation, datasets at two different resolutions are compared,
namely small and large. The small (N = 4344) shapes of the wolf are taken from the TOSCA
dataset [50]. The baby shapes have a large resolution (N = 59727) and are taken from the
KIDS dataset [231]. The datasets are available in the public domain, examples of it are shown
in Figure 5.9. All shapes provide ground-truth, and degenerated triangles were removed.

Figure 5.8: Evaluation of PSC using the geodesic error. The (correct) ground truth
matching is visualised by the black line. On the transformed shape we allow a certain radius
of tolerance around the ground truth point. Matchings within the radius (e.g. the green
point) are considered to be correct while points outside of the radius (e.g. the red point) are
considered as outliers.
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wolf baby
N = 4344 N = 59727

Figure 5.9: For experimental evaluation, shapes at two different resolutions are compared,
namely small and large. These are represented by the dataset wolf and baby, taken from the
TOSCA [50] and KIDS [231] dataset, respectively.

General Parameters For this experiment, we set the stopping time and the uniform time
increment to tF = 25 and τ = 1, respectively. The parameters are chosen without a fine-
tuning, as we are interested to figure out the differences of the numerical methods compared
to accuracy and computational costs. In this context, some studies on setting the diffusion
time have been done in [67,68].
Another issue when using time integration methods is the choice of the initial condition

u(x, 0) = u0(x). As mentioned in Section 5.3.2, we employ here a discrete Dirac delta peak
in the form of

ui,0 =
(
0, . . . , 0, |Ωi|−1, 0, . . . 0

)>
(5.59)

Finally, besides the specification σ =∞, the expansion point for constructing the Krylov
subspace V = Kr((L− σI)−1, (L− σI)−1ui,0) is fixed to σ = 0.1 (without loss of generality).

Computational Aspects All experiments were done in MATLAB R2018b with an Intel(R)
Xeon(R) CPU E5-2609 v3. The CPU times presented incorporate the precomputation
(factorisation, preconditioning, eigendecomposition, reduction) and the numerical resolution,
so that the performances are therefore easily comparable. The eigenvalues and eigenvectors
for MCR are computed by the MATLAB internal function eigs.
We also note that the computations were taken using the Parallel Computing Toolbox

integrated in MATLAB. As already indicated, all methods have to solve the geometric heat
equation for each point of the given shape independently. This step can easily be parallelised
by distributing the code to 6 workers using the parfor loop.

Remark 5.11. The two datasets used were selected because they are useful for demonstrating
in detail the described behaviour of the solvers as it can be observed in all tests we performed.
They show the typical range of results that one obtains in terms of quality and efficiency.
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5.5.1 Experimental Results

In what follows we compare the four important numerical approaches at hand of the two
selected test datasets.

Results on Sparse Direct Solver First, we consider the wolf dataset with a small point
cloud size of only N = 4344 points for each of the two shapes, cf. Figure 5.9. In order
to compute the discrete feature descriptors, the geometric heat equation has to be solved
numerically once for each point and on each shape. This ultimately results in dealing with
217200 sparse linear systems (5.37) of size N ×N . Solving the geometric heat equation via the
sparse direct solver gains very good results by around 91.6% matching performance. By using
the LU factorisation provided by MATLAB, the CPU time with around 600 seconds causes
significant computational costs and is extremely inefficient. However, the computational costs
can be reduced to around 25 seconds with the powerful SuiteSparse package, which generates
the same geodesic error accuracy.
For the baby dataset with N = 59727 points on each shape, it is necessary to solve

in total 2986350 sparse linear systems. The direct solver combined with the SuiteSparse
package performs this task in exactly 9267 seconds (≈ 2 1/2 hours) and yields a matching
performance of around 48%. At this point it is recognisable, that large datasets cause high
computational costs and that the direct solver appears to be impractical for such shape
matching applications.
The results (CPU time and geodesic error) of the direct solver including SuiteSparse

factorisation are used in the further course for a comparison with the remaining solvers.

Results on Sparse Iterative Solver Solving the sparse linear systems (5.38) with the CG
method involves setting the stopping criterion of the algorithm. In case of the wolf dataset,
increasing ε leads to a faster CG approximation, but it turns out that the accuracy remains
almost unchanged even for the relatively large value ε = 10−1, cf. on the top row in Figure
5.10. This implies, a good representation of the shape signature is achieved already after a
small number of iterations. In addition, the repeated experiment for ε = {10−1, 10−2} and
various maximum numbers l of CG iterations, i.e. the iterative scheme terminates if one of
the conditions is satisfied, is also shown on the bottom row in Figure 5.10. In this case, the
reduction of l has only a minor influence on the geodesic error accuracy, but leads to a fast
CPU time of a few seconds with almost equally matching performance as the direct solver.
Regarding the baby dataset the matrix size should be taken into account which generally

affects the convergence rate of the CG algorithm. Therefore, we first analyse the PCG method
including MIC(10−3) as shown on the top row in Figure 5.11. Compared to the performance
of the direct solver no improvement is achieved. Furthermore, a closer examination of the
iterations required to terminate the iterative algorithm shows that PCG needed just about
l = 1 iteration. As a result, PCG cannot be further tuned in terms of its performance. The
latter observation again inspires the idea to perform the CG method for a very small number
of iterations l, which accordingly should be sufficient to gain acceptable results in fast CPU
time. The results of the CG method for ε = 10−1 and l ≤ 10 are shown on the bottom row
in Figure 5.11. Also in this case, the iterative solver can reduce the computational effort
significantly up to 80%, but the percentage deviation of the accuracy in relation to the direct
solver is approximately up to 10%.
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Figure 5.10: Results for the wolf dataset using the geometric heat equation. We compare
the geodesic error at 0.25 (left) and the CPU time (right) between the direct solver and
the CG method for various ε (top) and different number of CG iterations l (bottom) for
ε = 10−1 and ε = 10−2. The latter means, the iterative scheme terminates if one of the
conditions is satisfied.

Results on KSMOR First, let us discuss the results of the KSMOR method using σ =∞
for the wolf dataset illustrated on the top row in Figure 5.12. As expected, a good matching
performance is already obtained for a small number r of Krylov subspaces in an additionally
very fast CPU time. Unfortunately, a large number r is needed to converge towards the same
geodesic error accuracy compared to the direct solver.
For the baby dataset, however, the numerical signatures are only accurate enough for

larger numbers r as a consequence of approximating a higher frequency spectrum within the
KSMOR technique, see on the bottom row in Figure 5.12. Nevertheless, the computational
costs can be highly reduced up to 99%, whereby the percentage deviation of the accuracy in
relation to the direct solver is approximately up to 10%.

The results of KSMOR using σ = 0.1 for the wolf dataset are illustrated on the top row
in Figure 5.13. As expected, increasing the dimension of Krylov subspaces r are leading
to a more accurate approximation, whereby the same geodesic error accuracy compared
to the direct solver can already be achieved for r ≤ 10. The computational costs required
correspond to those of CG, but we obtain a higher accuracy in terms of the geodesic error.
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Figure 5.11: Results for the baby dataset using the geometric heat equation. We compare
the geodesic error at 0.25 (left) and the CPU time (right) between the direct solver and
the PCG method, including MIC(10−3), for ε = 10−1 and ε = 10−2 (top). In addition, we
present a comparison between the direct method and the CG method (bottom) for ε = 10−1

and the first ten CG iterations l. The latter means, the iterative scheme terminates if one of
the conditions is satisfied.

The same performance output is obtained by applying KSMOR for the baby dataset, cf.
on the bottom row in Figure 5.13. Also for this dataset, the use of approximately r = 1 is
deemed sufficient to obtain an excellent trade-off between quality and efficacy and can save
around 95% of the CPU time in relation to the direct solver.
Overall, the best performance in the context of the KSMOR technique is achieved when

σ ≈ 0 is used to capture the slow dynamics. However, we note that the CPU time for r = 1
with around 420 seconds is still relatively high for this standard size shape.

Remark 5.12. A further improvement in efficiency may be the coupling of KSMOR with the
CG method when constructing the Krylov subspaces. Due to the fact that r can be kept very
small the use of an equally small tolerance value ε is deemed be useful, since the accumulated
projection error remains negligible within the few iteratively constructed subspaces.

Results on MCR Finally, we examine the MCR technique. For the experiments the number
of ordered modes used are increased, starting from r = 5 and going up to r = 1000. Regarding
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Figure 5.12: Results for the dataset wolf (top) and baby (bottom) using the geometric
heat equation. We compare the geodesic error at 0.25 (left) and the CPU time (right)
between the direct solver and KSMOR method with σ = ∞ for a different number of
Krylov subspaces Kr. The construction of the Krylov subspace V is only based on sparse
matrix-vector multiplications.

to the wolf dataset we would expect the correspondence quality improve as the number of
modes is increased. However, the evaluation on the top row in Figure 5.14 does not show
this desirable behaviour. The outcome for a small spectrum r ≈ 10 is much better than for
a large spectrum6 r ≈ 1000, which seems at first glance not intuitive. Nevertheless, let us
emphasise that the CPU time is incredibly fast when using a small number of modes. For
values up to r = 100 the approximate solutions are computed in less than 1 second, but the
obtained matching performance is far too low.
Applying the MCR technique to the baby dataset yields in total a similar behaviour, but

we also observe a surprising result, see on the bottom row in Figure 5.14. In this experiment
again, a small spectrum leads to better results compared to larger numbers of modes. In
contrast to the wolf dataset, two notable observations can be made. First, using r = {5, 10}
even outperforms the geodesic error accuracy in relation to the direct solver and, second, the
matching performance of both solvers are nearly equal already for r = 50. In this case, MCR
has an extremely short CPU time of around 10 seconds, which reduces the computational
effort compared to the direct solver by around 99.9%.
6 The geodesic error converges towards the solution of the direct method beginning from about r = 2000

which is an excessive high number of modes for the MCR approach.
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Figure 5.13: Results for the dataset wolf (top) and baby (bottom) using the geometric
heat equation. We compare the geodesic error at 0.25 (left) and the CPU time (right)
between the direct solver and KSMOR method with σ = 0.1 for a different number of Krylov
subspaces Kr. The construction of the Krylov subspace V requires the solution of sparse
linear systems.

5.5.2 Discussion of the Solvers

The experiments based on the two datasets illustrated the performances of all the applied
solvers. The direct solver generally produces the best results in relation to the geodesic error
accuracy. For high resolution shapes (N > 50000), however, the method is quite inefficient
and causes computational costs amounting to several hours.

In contrast, the CG method may reduce the computational costs by around 80%, whereby
the percentage deviation of the geodesic error accuracy in relation to the direct method is
approximately less than 10%. As was to be expected, a preconditioning is not useful for the
considered PSC application.
By using KSMOR technique, even a better performance is achieved, where σ ≈ 0 is the

better option here. In this study, the choice of just r = 1 saves around 95% of the CPU time,
whereby the percentage deviation of the matching quality compared to the direct solver is
only around 1%. Although the efficiency of KSMOR as spectrum-free approach is superior
compared to the direct and iterative solvers, its computational costs are still relatively high
as the projection matrices have to be reconstructed at each point. In contrast, the main
advantage of the KSMOR technique is to compute a factorisation (in the case σ 6= ∞) of
L− σI only once.
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Figure 5.14: Results for the dataset wolf (top) and baby (bottom) using the geometric
heat equation. We compare the geodesic error at 0.25 (left) and the CPU time (right)
between the direct solver and the MCR technique for different number of modes r ∈ [5, 1000].

The computational effort of the MCR method grows exponentially (by increasing r) and
accordingly a practicable value r should be small. It is remarkable that the matching
performance for a small spectrum (r ≈ 10) is even better to the ones for a significantly larger
spectrum (r ≈ 1000). In case of using a small spectrum, the MCR method is highly efficient
and can save around 99.9% CPU time, which suggests that this technique is favourable for
solving shape matching by time integration.

Due to the incredible power of MCR, we follow this technique within this chapter. In this
context, an interesting aspect would be to tune the method so that it achieves a more stable
and higher matching performance, e.g. when using it with shapes such as the wolf shape.

5.6 Optimised MCR Signatures

As a result of the last section, the MCR method appears favourable for computing the
numerical shape signature, especially considering the extremely low computational costs
when using a small number of modes. Remarkably, the matching performance based on
the geodesic error is highly dependent on the number of modes used. For this reason, the
computation of the MCR signature leads to new challenges, as the aim is to ensure in a
reliable way a high quality of results without additional computational costs.
In the following we introduce three technical approaches in order to enhance matching
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robustness and quality. First, we discuss the calculation of the eigendecomposition again in
order to prevent numerical instabilities. Second, we propose a rescaling of the integration
domain [0, tF ], and third the initial condition is adapted to obtain a more unique signature.

It should be emphasised that the adaption of the integration domain is depending on the
underlying geometric PDE. In a first step we are therefore going into the geometric heat
equation in more detail. Then the geometric wave equation is dealt with. Lastly, we will
analyse the essential differences of the MCR technique in terms of solving the decoupled
reduced ODE system exactly and numerically.

5.6.1 Stable Eigenvalue Computation

An important aspect of the MCR method is the way how the eigenvalues λ and eigenvectors φ
of the system matrix L = D−1C are computed. As described in Section 5.4.1, the computation
is performed by solving the GEP (5.33), which uses certain properties of the underlying
matrices D and C to generate numerically real-valued eigenvalues and eigenvectors. However,
the computation in this way may exhibit traces of instability in numerical practice and
strongly affects the matching performance of the MCR signatures.

Another more favourable approach is to transform Cφ = λDφ into the standard eigenvalue
problem without loss of the symmetry of C, so that more robust numerical eigensolvers
can be used. The symmetric eigenvalue problem (SEP) can be achieved by a similarity
transformation in the following way:

L = D−1C = D−
1
2D−

1
2CD−

1
2D

1
2 = D−

1
2BD

1
2 (5.60)

where the matrix B = D−
1
2CD−

1
2 is symmetric due to the symmetry of C. Thus, the matrices

L and B are similar, have the same real eigenvalues and an eigenpair (λ,φ) of Bφ = λφ

corresponds to an eigenpair (λ, φ̃) = (λ,D− 1
2φ) of Lφ̃ = λφ̃. The matrix D− 1

2 in (5.60)
is well-defined due to the positive diagonal matrix D−1 and is also positive diagonal. The
eigenvectors φ of B are orthonormal with φ>i φj = δi,j so that the eigenvectors of L are
D-orthogonal

φ>i φj =
(
D

1
2 φ̃i

)>
D

1
2 φ̃j = φ̃>i Dφ̃j = δi,j (5.61)

A comparison of the numerical computation of eigenvalues with GEP and SEP is visualised
in Figure 5.15. This test clearly demonstrates that the eigenvalues computed via GEP are
not numerically robust, since the first twenty dominant eigenvalues are not identical when
computing the eigendecomposition for r = {20, 50}. In contrast, SEP provides stable results.
Let us comment on an important issue here that may arise when adapting our framework to
different types of spatial discretisations such as the prominent finite element method which
is one of the frequently used methods for numerical computations. Obviously, if D−1 is
not a diagonal matrix, computing D− 1

2 is not a viable option. Nevertheless, the proposed
transformation is applicable if D−1 is symmetric positive definite. This situation arises, for
instance, when the finite element ansatz is employed instead of the presented finite volume
set-up in Section 5.3.2, whereby D−1 represents the mass matrix in that setting cf. [302].
Then Cφ = λDφ can be reformulated using the existing Cholesky factorisation D = LL>,
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with a lower triangular matrix L containing positive diagonal entries, as

Cφ = λDφ ⇔ Cφ = λLL>φ

⇔ L−1Cφ = λL>φ

⇔ L−1CL−>L>φ = λL>φ

⇔ L−1CL−>φ̃ = λφ̃

⇔ Bφ̃ = λφ̃ (5.62)

with B = L−1CL−> and φ̃ = L>φ.
Based on this framework, we analyse the abovementioned computation (5.60) of the

eigenpairs (λ,φ) using datasets wolf and baby. The evaluation by solving the GEP and the
SEP is visualised in Figure 5.16. As indicated above, we observe that the ansatz of using
the similarity transformation for tackling the eigenvalue problem achieves significantly more
stable matching results. A stable eigenvalue computation is therefore essential when using
MCR signatures for the PSC application.

Remark 5.13. The use of this stability improvement obviously shows the accuracy behaviour,
especially in the case of the wolf shape, that we would have expected when increasing the
number of modes, which indicates a better robustness of the approach. A quality improvement
for the baby shape is also be obtained.
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Figure 5.15: Comparison of the numerical eigenvalue problem computation on the wolf
dataset with GEP (5.33) and SEP (5.60). The eigenvalues are computed by the MATLAB
R2018b internal function eigs. Here we illustrate the first twenty eigenvalues when computing
the first r = 20 and r = 50 dominant (smallest) eigenvalues of the underlying discrete
Laplacian. Left: Eigenvalues computed with GEP. Right: Eigenvalues computed with SEP.
Usually, the eigenvalues should remain identical regardless of the computation of a certain
number of dominant eigenvalues. In contrast to SEP, however, GEP generates no stable
eigenvalue calculations.
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Figure 5.16: Results for the dataset wolf (left) and baby (right) using the geometric heat
equation. We compare the geodesic error at 0.25 between the direct solver and the MCR
method for different number of modes r ∈ [5, 1000]. The eigenvalue problem is computed
by solving GEP (5.33) and SEP (5.60). Using the similarity transformation achieves better
matching results.

Remark 5.14. The mentioned similarity transform is well known, cf. [226,302]. However,
GEP is often used for computing the eigendecomposition, see [14,51,131,199,226,227,235,267].
As shown, for example, when using the MCR technique for the PSC application in this chapter,
the implementation of solving GEP and SEP numerically should not be underestimated in terms
of stable eigenvalue computations. Whether this transformation must always be performed is
not known and depends on the software used. This is essential when using MATLAB 2018b.

5.6.2 Improved Scaling of the Integration Domain
We now discuss the effect of the choice of the parameter tF with respect to the MCR technique.
In principle, the computed numerical signatures are constructed over a temporal domain
[0, tF ], which makes them easily measurable for the shape matching purposes. Nonetheless,
we show that it pays off to extend the considered time scale in the numerical MCR signature.
In doing so, we describe how the use of a small spectrum affects the characteristics of the
feature descriptor and thus the matching performance.

MCR Heat Signature In what follows we focus on solving the decoupled reduced ODE
system (5.56) exactly. Of course, the same reasoning is also true when the reduced system is
solved numerically, e.g. using the IE scheme.
Let us start our discussion of time scaling by considering the basic idea for motivation.

The analytical solution of the (coupled) semi-discrete geometric heat equation u̇(t) = Lu(t)
is given in the form

u(t) = eLtu(0) (5.35)= eΦΛΦ>Dtu(0) = ΦeΛtΦ>Du(0)

=
N∑
i=1

eλitφiφ
>
i Du(0) =

N∑
i=1
φ>i Du(0)eλitφi (5.63)
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where φ>i Du(0) is a scalar. Therefore, the pointwise feature descriptor results in

fxj (t) := u(x, t)|x=xj
=

 N∑
i=1
φ>i Duj(0)eλitφi

> êj =

 N∑
i=1
φ>i êje

λitφi

> êj (5.64)

with Duj(0) = êj , where êj is the j-th unit vector. The representation of the solution (5.64)
describes an exponential decay of heat transferred away from the considered point xj . Using
only a small number of r dominant frequencies (small eigenvalues) of a system, the reduced
basis solution as an approximative feature descriptor is given by

fxj (t) ≈ ũ(xj , t) =

 r∑
i=1
φ>i êje

λitφi

> êj (5.65)

Furthermore, the reduced solution (5.65) with eigenvalues 0 ≤|λi| � 1 (i = 1, . . . , r), can be
simplified for small times t as

ũ(xj , t) =

 r∑
i=1
φ>i êj e

λit︸︷︷︸
≈1
φi

> êj ≈ (Φryj
)>
êj = cr,j (5.66)

for all time levels t = tk, where cr,j is a constant and yj is the j-th column vector of Φ>r .
This implies that the reduced feature descriptor is almost constant for small times t.

After this observation, we now turn to the MCR method which is also built on dominant
modes (low frequencies). The solution of the (decoupled) reduced model żr(t) = Λrzr(t)
with eigenvalues 0 ≤|λi| � 1 (i = 1, . . . , r) reads

zr(t) = eΛrt︸︷︷︸
≈I

zr(0) ≈ zr(0) (5.67)

so that with u(t) ≈ Φrzr(t) follows

u(t) ≈ Φrzr(t) ≈ Φrzr(0) (5.52)= ΦrΦ>r Du(0) (5.68)

Consequently, the pointwise MCR feature descriptor results in

fxj (t) ≈
(
ΦrΦ>r Du(0)

)>
êj =

(
ΦrΦ>r êj

)>
êj =

(
Φryj

)>
êj = cr,j (5.69)

Obviously, both reduced approximate solutions (5.66) and (5.69) are equal and have nearly
constant behaviour. This shows that the MCR descriptor exhibits in general a slow rate of
heat transfer as expected. Consequently, the MCR shape signature is not highly precise in
terms of the geometric location on a shape, especially when a small number of modes are
used in combination with small stopping times tF , as e.g. shown for fx1(t) in Figure 5.17
using the wolf dataset.
This observation requires an appropriate adaptation of the MCR method concerning the

computation of the feature descriptor in (5.67)-(5.69). A useful way to enhance the geometric
information for the shape matching process without increasing the computational effort is to

177



Chapter 5 Efficient Descriptor-Based Shape Analysis

5 10 15 20 25
0

0.2

0.4

0.6

t

f x
1
(t
)

Direct MCR100 MCR1000

MCR10 MCR500 MCR2000

Figure 5.17: Results for the wolf dataset using the geometric heat equation for tF = 25.
We compare the discrete feature descriptor fx1(t) obtained by the direct solver and the MCR
technique for different number of modes r, shortened here as MCRr. Obviously, a small
number of modes used (here r = 10 or r = 100) correlate to a slow rate of heat transfer.
Therefore, the feature descriptors tend to almost constant functions when decreasing the
number of modes, and this may lead to shape signature values that give not much information
about the geometry of the given surface.

modify the numerical signatures via an adapted temporal domain. We intend to construct an
adapted time t? with t? � tF for small eigenvalues 0 < |λi| � 1, that causes eλit

? � eλitF ≈ 1.
Obviously, this also generally implies eλit � 1 for all time levels t = tk. Due to λi ≤ 0, the
latter inequality bears the meaning that we obtain by rescaling time in the indicated way a
more significant spreading of values, so that the eigenvalues are more discriminative. This
improves the physical characteristics and the diversity of the MCR signatures.
We start with the following thought. Obviously, the rate of heat transfer of the reduced

feature descriptor of order r depends on the fastest mode λr. In addition, a higher order
reduced model r′ > r corresponds to faster heat transfer, which in turn implies t?r′ < t?r to be
suitable in order to get a more discriminative descriptor value. Based on this consideration,
we modify [0, tF ] to [0, t?r ] as follows: we propose to adapt the temporal domain in a simple
way using the function

t?r = t?(λr) = k√
|λr|

(5.70)

where k is a constant. This still to be determined parameter is defined in our construction
via the condition

tF
!= t?(λN ) = k√

|λN |
(5.71)

which must be fulfilled for the reduced model of full order N . Therefore, making use of (5.71)
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the modified integration domain [0, t?r ] is specified by

t?(λr) = tF
√
|λN |√
|λr|

(5.72)

The corresponding uniform time increment that is required for the time integration can easily
be calculated via τ = t?r

F .

Remark 5.15. One may notice, that the square root in (5.70) prevents an extremely large
time domain (eigenvalues |λr| grow exponentially) which would lead anew to less descriptive
shape signatures.

Remark 5.16. The HKS method, described in more detail later in Section 5.7.1, uses
logarithmically-spaced time samples for similar reasons, see [267].

Remark 5.17. For determining the adapted integration domain one has to compute the
largest eigenvalue |λN |, but these computational costs are practically negligible.

As an example to illustrate the usefulness of our rescaling, the strategy given for the wolf
dataset yields the modified integration domain [0, t?r] shown in Figure 5.18. Based on this
modification the adapted feature descriptor fx1(t), illustrated in Figure 5.19, demonstrates a
more suitable numerical signature.
Finally, we compare the matching performances of the MCR technique including the

similarity transformation, described in Section 5.6.1, using the original [0, tF = 25] and the
adapted [0, t?r ] temporal domain for the datasets wolf and baby. The corresponding evaluation
is presented in Figure 5.20. In general, the substantial increase of the stopping time t?r of
the reduced model significantly improves the geodesic error accuracy. However, the results
may differ for a small spectrum as in the case of the baby dataset. A possible heuristic
explanation could be based on the nature of the first few modes that correspond to a low pass
filtered shape signature, meaning that one may obtain a good matching of a coarse shape
representation in some cases.
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Figure 5.18: Results for the wolf dataset using the geometric heat equation. Visualisation
of the original [0, tF = 25] and the adapted [0, t?r ] temporal domain using the formula (5.72)
depending on mode λr for r ∈ [2, 4344].
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Figure 5.19: Results for the wolf dataset using the geometric heat equation (for F = 25 time
levels). We compare the discrete feature descriptor fx1(t) between the original [0, tF = 25]
(left) and the adapted [0, t?r ] (right) temporal domain using the formula (5.72) computed by
the MCR technique for r = 10. Note that the left figure shows a nearly constant function,
whereas a decaying exponential function as on the right after rescaling is the desired result.
The modified integration domain clearly provides a more suitable numerical signature.
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Figure 5.20: Results for the dataset wolf (left) and baby (right) using the geometric heat
equation. We compare the geodesic error at 0.25 between the original [0, tF = 25] and the
adapted [0, t?r] temporal domain using formula (5.72) computed by the MCR technique for
different number of modes r ∈ [5, 1000]. The eigenvalues and eigenvectors are constructed
using the similarity transformation (5.60).

MCR Wave Signature The integration domain of the geometric wave equation ü(t) = Lu(t)
can be adapted in an analogous manner. The (decoupled) reduced model z̈r(t) = Λrzr(t),
with the boundary conditions zr(0) = Φ>r Du(0), żr(0) = Φ>r Du̇(0) = 0, can initially be
interpreted as r independent scalar ODEs

z′′i (t) = λizi(t), i = 1, . . . , r (5.73)
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The analytical solution of (5.73) is given by

z1(t) = A1 +B1t, zi(t) = Ai sin(
√
−λit) +Bi cos(

√
−λit), (i = 2, . . . , r) (5.74)

where the terms Ai sin(
√
−λit) and B1t vanish due to the given initial zero velocity conditions,

so that we obtain

z1(t) = z1(0), zi(t) = cos(
√
−λit)zi(0), (i = 2, . . . , r) (5.75)

Using only a small number of r dominant eigenvalues with 0 ≤|λi| � 1 (i = 1, . . . , r) the
reduced solution (5.75) can be simplified in matrix form for small times t as

u(t) ≈ Φrzr(t) ≈ Φr cos(
√
−Λrt)︸ ︷︷ ︸
≈1

zr(0) = ΦrΦ>r Du(0) (5.76)

Consequently, the corresponding pointwise feature descriptors are given by (5.69) and have
again nearly constant behaviour. Based on our experiments we propose to define the modified
integration domain [0, t?r ] as follows:

t?(λr) = tF
4
√
|λN |

4
√
|λr|

(5.77)

Remark 5.18. We use the 4-th root here because the adapted temporal domain [0, t?r ] according
to the square root (5.72) is too large and leads to strong oscillating numerical shape signatures
which are less advantageous.

5.6.3 Modified Initial Condition
The third strategy for improving the matching performance is to modify the initial spatial
density introduced in Section 5.3.2. In doing so, we are retaining the Dirac delta function,
but the construction of the discrete version is modified. Instead of using the cell average
(5.22) linked with unit area, the new condition builds on unit energy which at location xi
can easily be expressed as

uxi = u(xi, 0) = êi (5.78)

The usability of the latter version can be justified as follows. From a theoretical point of view,
this modification is incorrect, since the initial condition depends on the volume cell area size.
However, this approach works well as the initial condition is independent of the cell size, and
remains invariant under remeshing which is an important property in this framework. As a
result of this proposal, the higher matching performance using the modified initial condition
(5.78) is reflected in Figure 5.21.

Remark 5.19. The modified initial condition (5.78) generally also leads to a higher matching
performance for the full model, see Figure 5.21. In contrast, the HKS and WKS methods
are based on the original initial condition (5.24). Consequently, this modification highlights
another difference to the reference methods.

In what follows we denote the proposed solver, including all three abovementioned im-
provements, as optimised MCR method. For a fair comparison we will also use the modified
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Figure 5.21: Results for the dataset wolf (left) and baby (right) using the geometric heat
equation. We compare the geodesic error at 0.25 between the original (5.24) and the modified
(5.78) initial condition computed by the MCR technique for different number of modes
r ∈ [5, 1000]. The eigenvalues and eigenvectors are constructed by solving the SEP and the
adapted temporal domain [0, t?r] is applied. For the sake of completeness, the direct solver
including the modified initial condition is also reported. For the baby dataset a slightly higher
geodesic error accuracy is also achieved using the full model.

initial conditions within the original full model for all further experiments.
So far, the improvements presented have only been demonstrated in relation to the MCR

heat signature. For completeness the results of the standard and optimised MCR wave
signatures for the given datasets are shown in Figure 5.22.

Remark 5.20. An interesting aspect is that the optimised MCR technique may achieve a
higher matching performance (hit rate at geodesic error of 0.25) compared to the full model,
which is exemplarily illustrated in Figures 5.21 and 5.22 when approximately r > 50 modes
are used. One reason may be that the high-frequency eigenfunctions are more error-prone,
the greater the intrinsic deformation. Therefore, low-frequency modes can be more beneficial
in this situation.

5.6.4 MCR: Analytical versus Numerical Solution

An important issue that has not yet been considered up to now is the way in which the
solution of the decoupled reduced model is computed. In general, analytical solutions are
preferable if they exist, especially in cases where the computational costs are comparatively
low such as those of the numerical solver. However, we show that an approximate solution
based on the IE scheme will be beneficial in the PSC application. Let us firstly discuss the
MCR heat signature, then the wave signature is analysed in more detail.

MCR Heat Signature At the beginning of the investigation, we present the matching
performances of the optimised MCR heat signature based on the analytical (5.56) and the
numerical (5.54) solution for the dataset wolf and baby, see Figure 5.23. For the wolf dataset
both kinds of solutions produce the same geodesic error accuracy, but this is not the case
for the baby dataset. The latter fact can be explained as follows: the feature descriptor
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Figure 5.22: Results for the dataset wolf (left) and baby (right) using the geometric wave
equation. We compare the geodesic error at 0.25 between the original and the optimised
MCR technique for different number of modes r ∈ [5, 1000]. The direct solver also includes
the modified initial condition (5.78). As before, the MCR technique is solved by the IE
scheme using (5.30)-(5.31).

fxi(t) constructed on the geometric heat equation decreases exponentially as t increases.
Therefore, the variation of the descriptor is large for small times t. In consequence, rapidly
decreasing heat signatures are less suitable for the shape matching purpose. However, the IE
scheme (5.54) provides a damped version of (5.56) so that its approximation gives a more
faithful (in some cases such as here) heat signature, especially at small times t, cf. Figure
5.24. The latter observation of rapidly decreasing heat signatures holds for the baby dataset,
and consequently the matching performance that results from the IE scheme outperforms
these of the analytical solution, as already shown in Figure 5.23.
Remark 5.21. The analytical (5.56) and numerical (5.54) solution can be rewritten as

zr(t+ τ) = eΛrτzr(t) (5.79)

as well as
zr(tk+1) = (Ir − τΛr)−1zr(tk) (5.80)

respectively, where t+ τ corresponds to tk+1. A comparison of the coefficients of (5.79) and
(5.80), i.e. eΛrτ and (Ir − τΛr)−1, verifies the damping effect of the IE scheme when we
explicitly consider the following inequality with x = −τλr as λr < 0:

e−x ≤ 1
1 + x

, ∀x ≥ 0 (5.81)

For this reason, the IE scheme provides a more suitable feature descriptor, especially when
the corresponding analytical heat signature changes more rapidly at small times t.

Remark 5.22. In relation (5.79) the term

zr(t+ τ) = eΛr(t+τ)zr(0) = eΛrteΛrτzr(0) = eΛrτzr(t) (5.82)

with zr(t) = eΛrtzr(0) is used.
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Figure 5.23: Results for the dataset wolf (left) and baby (right) using the geometric heat
equation. We compare the geodesic error at 0.25 between the analytical (5.56) and the
numerical (5.54) solution computed by the optimised MCR technique for different number
of modes r ∈ [5, 1000]. The numerical solution is based on the IE scheme and achieves a
significantly higher matching performance for the baby dataset.
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Figure 5.24: Results for the baby dataset using the geometric heat equation. We compare
the discrete feature descriptor fx100(t) obtained by the analytical (5.56) and the numerical
(5.54) solution using the MCR technique for r = 100. The numerical solution is based on the
IE scheme. For a better comparison the time axis is scaled logarithmically. Obviously, the
heat signature linked to the numerical solution is damped.

MCR Wave Signature The approach for computing the solution with regard to the geo-
metric wave equation is discussed analogously to the above procedure. As previously stated,
the analytical solution of the decoupled reduced model is given by

zr(t) = cos(
√
−Λrt)zr(0) (5.83)

In contrast to this the numerical solution, cf. (5.30)-(5.31), reads as

zr(tk+1) = (Ir − τ2Λr)−1 (2zr(tk)− zr(tk−1)
)

(5.84)
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On closer examination, the exact solution (5.83) reflects a pure oscillating behaviour, whereas
the IE scheme once again adds an artificial damping to the numerical solution (5.84). The
corresponding comparison of both kinds of solution in terms of matching performance is
illustrated in Figure 5.25. Contrary to expectations, the (damped) numerical solution clearly
achieves a higher geodesic error accuracy for both datasets. Usually, we would have expected
that the (undamped) exact solution is the better procedure, as a more unique wave signature
is obtained. However, this presumption can be invalidated for the discrete shape matching
application as follows: in general, it can be assumed that the mesh arises from the point cloud
is slightly shifted and altered due to the almost isometric transformation. A function that
lives on the shifted/changed mesh is sampled differently. Comparing the same function on
the slightly different grids, may lead to a deviation in the amplitude and also produce a phase
shift. For this reason, the point-to-point correspondence of two points, that actually belong
together, can fail as a consequence of the phase shift when using the analytical solution
(5.83). Contrary to this, a damped wave signature can be beneficial so that a higher matching
probability is generally achieved.
The latter justification is described in more detail using a test example at hand of the

points x1611 ∈ M and x̃1611, x̃795 ∈ M̃ for the wolf dataset. It should be noted that the
points x1611 and x̃1611 belong together. The feature descriptors fx1611(t), fx̃1611

(t), fx̃795
(t)

obtained by (5.83) and (5.84) for r = 100 are presented in Figure 5.26. On the one hand, the
wave signatures fx1611(t) and fx̃1611

(t) which are computed by (5.83) produce a phase shift
for t > 10. On the other hand, fx1611(t) and fx̃795

(t) generally match up to an amplitude for
all times t. Interestingly, the wave signatures fx1611(t) and fx̃1611

(t) obtained via (5.84) are
almost fit together on the considered temporal domain.
To illustrate the latter results more comparable, we use the L1-error (along the temporal

axis) defined as

d̃f(i,j)(t) =
∣∣∣fxi(t)− fx̃j

(t)
∣∣∣ xi ∈M, x̃j ∈ M̃ (5.85)
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Figure 5.25: Results for the dataset wolf (left) and baby (right) using the geometric wave
equation. We compare the geodesic error at 0.25 between the analytical (5.83) and the
numerical (5.84) solution computed by the optimised MCR technique for different number
of modes r ∈ [5, 1000]. The numerical solution is based on the IE scheme and achieves a
significantly higher matching performance, especially for the baby dataset.
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Figure 5.26: Results for the wolf dataset using the geometric wave equation. We compare
the discrete feature descriptor between fx1611(t) ∈ M and fx̃1611

(t), fx̃795
(t) ∈ M̃ obtained

by the analytical (5.83) (left) and the numerical (5.84) (right) solution using the MCR
technique for r = 100. Note that the points x1611 and x̃1611 belong together. Obviously,
the wave signatures linked to (5.83) are damped-free. Furthermore, it can also be seen that
fx1611(t) and fx̃1611

(t) generally match for t < 10, otherwise there is a phase shift between both
signatures. In contrast, fx1611(t) and fx̃795

(t) have the same function profile with a generally
decreasing amplitude. Apart from that, the signatures fx1611(t) and fx̃1611

(t) constructed by
(5.84) are relatively equal on the considered temporal domain due to the dampened effect of
the IE scheme. The corresponding L1-errors (5.85) are shown in Figure 5.27.

The corresponding L1-error between fx1611(t) and fx̃1611
(t), fx̃795

(t) is shown in Figure 5.27.
Obviously, the phase shift leads to a high accumulated L1-error and thus to a wrong point-
to-point correspondence. In contrast, the correct matching is preserved when the damped IE
scheme is used, which prevents an unfavourable phase shift for this test example.
The last experiment demonstrates the beneficial use of the IE scheme for the MCR wave

signature. Overall, we have shown through various tests that the IE scheme (for both
geometric PDEs) is superior compared to the analytical solution due to its higher geodesic
error accuracy. Therefore, we will apply the optimised MCR method based on the IE schemes
(5.54) and (5.84) for all further experiments.

Remark 5.23. A damped wave signature can be achieved in different ways. Another possibility
is to apply an appropriate weighting within (5.8), however, we prefer some kind of weighting
depending on the considered point of a given shape. And that is, in fact, exactly what the
IE scheme provides. Another possibility would be to remodel the continuous geometric wave
equation by adding a desired damping term, for example via a diffusion process. The latter
option models in particular an analytical damping instead of a numerical (artificial) damping
and is also an interesting issue, but this is beyond the scope of this work.

5.6.5 Implementation of the Optimised MCR Method

We now briefly describe the simple implementation of the optimised MCR signature which
makes it a candidate for practical shape analysis purposes.
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Figure 5.27: Results for the wolf dataset using the geometric wave equation. We compare
the L1-error (5.85) between the discrete feature descriptors fx1611(t) and fx̃1611

(t), fx̃795
(t)

obtained by the analytical (5.83) (left) and the numerical (5.84) (right) solution using
the MCR technique for r = 100. Although the points x1611 and x̃1611 belong together, its
accumulated L1-error of d̃f(1611,1611)(t) constructed via (5.83) is much larger than using (5.84).
Thus, the point-to-point correspondence is preserved (for this test example) when the damped
IE scheme is used. The results of this experimental investigation should demonstrate why
the use of the analytical solution is not beneficial and consequently leads to worse matching
performances compared to the use of (5.84), cf. Figure 5.25.

As already mentioned, the feature descriptors have to be computed for each point and
on each shape. Therefore, two implementation strategies exist. First, the signatures can be
calculated separately for each point combined with parallel computing7 to speed up the CPU
time. Second, the computation can be done simultaneously for all locations xi ∈ M on a
given shape by putting it into the format of a matrix-matrix multiplication. In addition, a
parallelisation on GPUs8 can be used, which further improves the computational efficiency.
The CPU times for both strategies based on the geometric heat equation are illustrated in
Figure 5.28. Since the GPU computation is more beneficial in our setting, we explain the
implementation procedure based on the second strategy.

Optimised MCR Heat Signature Solving the decoupled and reduced geometric heat equa-
tion numerically using the IE scheme (5.54) including the modified initial conditions (5.78)
can be rewritten into the matrix-matrix multiplication format as

Zk+1
r = PZkr and Uk+1 ≈ Uk+1

r = ΦrZ
k+1
r , k = 0, . . . , F − 1

Z0
r = Φ>r DU0 = Φ>r D

(5.86)

with Φr ∈ RN×r, Zr ∈ Rr×N , U0 = I and P = (Ir − τΛr)−1. In particular, Zr and Ur
correspond to the reduced solutions in modal and physical coordinates, respectively. The
complete algorithm for computing the optimised MCR heat signature is described in Figure
7 The class parfor from MATLAB 2018b is employed. The computations are conducted with six cores here.
8 The class gpuArray from MATLAB 2018b is employed.
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Figure 5.28: Results for the dataset wolf (left) and baby (right) using the geometric heat
equation. We compare the CPU time between the class parfor and the class gpuArray
computed by the optimised MCR technique for different number of modes r ∈ [5, 1000]. The
CPU times indicate the pure computational costs for solving the reduced systems without the
costs for generating eigenvalues/eigenvectors. The computations are conducted on six cores
or with NVIDIA GeForce GTX 690. The use of gpuArray is in our setting significantly faster
than using parfor. However, we stress again that almost all computational costs incurred
when solving the eigenvalue problem.

5.29. It should be stressed that the extraction of the feature descriptors fxi(t) in step 3c)
of the algorithm uses the Hadamard product. Finally, the correspondence quality can be
evaluated on the selected measure.

Remark 5.24. Incidentally, the computation of the temporal domain [0, t?r] and the time
increment τ in step 2.) of the Algorithm 5.1 is only done for the reference shape. This
ensures that a correct matching is made by comparing the feature descriptors for different
locations xi ∈ M and x̃j ∈ M̃ on the time scale. This is another difference to the HKS
method, in which signatures for different shapes are computed at different time samples.

Remark 5.25. Another interesting issue would be the use of a nonuniform time sampling.
This may lead to a potential improvement if more information is captured, especially at small
times t.

Optimised MCRWave Signature The above aspects can analogously be used to numerically
solve the geometric wave equation by the IE scheme (5.30)-(5.31). The implementation
procedure for computing the optimised MCR wave signature, see Figure 5.30, remains
identical to the Algorithm 5.1, except for the calculation of t?r in step 2b) and the numerical
solution scheme in step 3b)-3d).
Finally, a comparison of the optimised MCR method using the geometric heat and wave

equation is illustrated in Figure 5.31. Overall, the geometric wave equation achieves approx-
imately 3% higher matching performance on average than using the heat equation for the
two considered datasets. The more accurate matching of the wave equation is primarily due
to the fact that wave signatures capture more information of shape variations and thus give
better separation of the signatures.
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Algorithm 5.1 Optimised MCR heat signature

Input: Matrices D−1, C; reduction order r; amount of time levels F + 1; stopping time tF
Output: fxi(t)

Reference Shape

1.) Computation of Λr ∈ Rr×r and Φr ∈ RN×r

a) Compute r dominant eigenpairs (λ,φ) of B = D−
1
2CD−

1
2 by solving Bφ = λφ

b) Calculation of
(
λ, φ̃

)
of L with φ̃ = D−

1
2φ

2.) Computation of [0, t?r ] using (5.72)

a) Compute fastest mode λN by solving Bφ = λφ

b) t?r = tF
√
|λN |√
|λr|

, τ = t?r
F

3.) Solving reduced system (5.86)

a) Z0
r = Φ>r D

b) P = (Ir − τΛr)−1

c) Compute Zk+1
r = PZkr and Extract fxi(t) by

fxi(tk+1) =
r∑
j=1

[(
Φr ◦

(
Zk+1
r

)>)]
ij

for k = 0, . . . , F − 1

Transformed Shape(s)

Repeat computations of Steps 1.) and 3.)

Figure 5.29: Algorithm to compute the optimised MCR signature by solving the geometric
heat equation. The implementation is structured into three parts. First, the eigenvalues and
eigenvectors are computed by solving SEP. In a second step, the adapted integration domain
[0, t?r ] is calculated via (5.72). The last step includes solving the decoupled and reduced ODE
system (5.86) based on the IE scheme and extracting the pointwise feature descriptors.
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Algorithm 5.2 Optimised MCR wave signature

Input: Matrices D−1, C; reduction order r; amount of time levels F + 1; stopping time tF
Output: fxi(t)

Reference Shape

1.) Computation of Λr ∈ Rr×r and Φr ∈ RN×r

a) Compute r dominant eigenpairs (λ,φ) of B = D−
1
2CD−

1
2 by solving Bφ = λφ

b) Calculation of
(
λ, φ̃

)
of L with φ̃ = D−

1
2φ

2.) Computation of [0, t?r ] using (5.77)

a) Compute fastest mode λN by solving Bφ = λφ

b) t?r = tF
4
√
|λN |

4
√
|λr|

τ = t?r
F

3.) Solving reduced system based on (5.30)-(5.31)

a) Z0
r = Φ>r D

b) P =
(
Ir − τ2Λr

)−1

c) Compute Z1
r = PZ0

r and Extract fxi(t1) =
r∑
j=1

[(
Φr ◦

(
Z1
r

)>)]
ij

d) Compute Zk+1
r = P (2Zkr − Zk−1

r ) and Extract fxi(t) by

fxi(tk+1) =
r∑
j=1

[(
Φr ◦

(
Zk+1
r

)>)]
ij

for k = 1, . . . , F − 1

Transformed Shape(s)

Repeat computations of Steps 1.) and 3.)

Figure 5.30: Algorithm to compute the optimised MCR signature by solving the geometric
wave equation. The implementation procedure is identical to the Algorithm 5.1 in Figure
5.29, except for the calculation of t?r in step 2b) and the numerical solution scheme in step
3b) - 3d).
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Figure 5.31: Results for the dataset wolf (left) and baby (right) by applying the optimised
MCR technique. We compare the geodesic error at 0.25 between using the geometric heat
and wave equation for different number of modes r ∈ [5, 1000]. The wave equation achieves a
slightly higher geodesic error accuracy.

5.7 Reference Models
In this section we describe in more detail those approaches that are explicitly based on the
analytical solution of the underlying geometric PDEs. These models are called kernel-based
methods (or spectral methods) and relates to the matrix decomposition methods (eigendecom-
position methods) to approximate the matrix exponential of the discrete Laplacian. Apart
from that, we will shortly discuss the rational approximants and the Krylov subspace methods
for approximating the matrix exponential.
Let us note here that also the procedure described in [179] is technically related to the

approaches as it is a time-evolution method and is based on diffusion. However, as noted
in [179], the technique is computationally very demanding compared to HKS and WKS
construction. We therefore refrain from comparing to this method, as one of our main aims
is computational efficiency.

5.7.1 Kernel-Based Methods
The spectral methods HKS and WKS that we employ for comparison with our MCR approach
are based on the geometric heat equation [267] and the geometric Schrödinger equation [13,14],
respectively. As already indicated, the kernel-based methods build on the analytical solutions
of the underlying geometric PDEs. In particular, the descriptor class is based on the
spectral decomposition of the Laplace-Beltrami operator and yields a series expression of its
eigenfunctions and eigenvalues. The contributions in such a series are ordered in a way that
the first terms contain the low frequency components describing the macroscopic (global)
properties of a shape. Taking into account a corresponding part of the spectral components
thus leads to a feature descriptor that is robust to local errors such as (high frequent) noise,
but vulnerable to global distortions such as e.g. changes in shape topology.
For the construction of spectral descriptors, it is assumed that a function of the form

u(x, t) = φ(x)θ(t) will be the solution of the geometric heat and Schrödinger equation which
is true if the underlying PDEs are linear and homogeneous. The approach of separation is
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built on the fact that if the product of two functions φ and θ that depend on different sets of
variables is a constant, then each function must separately be a constant. Therefore, one
may separate the equations to get a function of only t and x:

θt(t)
κθ(t) = ∆Mφ(x)

φ(x) = const = λ (5.87)

where κ summarises both equations, namely κ = 1 for geometric heat equation or κ = i for
geometric Schrödinger equation, and λ is called the (arbitrary) separation constant. This
leaves us with two new equations, namely an ODE for the temporal component

θt(t) = κλθ(t), t ∈ [0, T ] (5.88)

and the spatial part takes the form of the Helmholtz equation∆Mφ(x) = λφ(x), x ∈M
〈∇Mφ,n〉 = 0, x ∈ ∂M

(5.89)

where the constant λ has here the meaning of the operator’s eigenvalue.
For a compact domain M, which is the case here, the Laplace-Beltrami operator is a

self-adjoint operator on the space L2(M). This implies that the Helmholtz equation has
an infinite number of nontrivial solutions φk for certain eigenvalues λk and corresponding
eigenfunctions, which is a result of the spectral theorem [245]. Consequently, (5.89) takes the
following format: ∆Mφk(x) = λkφk(x), x ∈M

〈∇Mφk,n〉 = 0, x ∈ ∂M
k = 1, 2, . . . (5.90)

In particular, the ordered spectrum of eigenvalues {0 = λ1 > λ2 ≥ . . .} and the corresponding
eigenfunctions {φ1, φ2, . . .} form an orthonormal basis of L2(M).

Remark 5.26. With Neumann boundary conditions or without shape boundaries, constant
functions are solutions of the Helmholtz equation for the first eigenvalue with zero value. Thus,
only one eigenvalue vanishes with the constant function as the corresponding eigenfunction.

It is well known that the eigenfunctions are a natural generalisation of the classical Fourier
basis for working with functions on shapes. In this context, the physical interpretation of the
Helmholtz equation can be understood as follows. The shape of a three-dimensional object
can be viewed as a vibrating membrane, the φk can be interpreted as its vibration modes,
while λk have the meaning of the corresponding vibration frequencies, sorted from low to
high magnitude.
Thus, for each index k one obtains an ODE depending on t such as (5.17) which can be

solved by indefinite integration:∫ dθ(t)
θ(t) =

∫
κλk dt =⇒ θ(t) = αke

κλkt (5.91)

where the integration constant αk should satisfy the initial condition of the k-th eigenfunction.
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Consequently, the product solution reads as

uk(x, t) = αke
κλktφk(x) (5.92)

Finally, for a linear homogeneous differential equation the principle of superposition can be
used so that the analytical solution can be expressed as the sum (linear combination) of
all individual solutions. Therefore, a closed-form solution of the geometric heat equation is
expressed in terms of a series with

u(x, t) =
∞∑
k=1

αke
λktφk(x) (5.93)

and the solution of the geometric Schrödinger equation is given via

u(x, t) =
∞∑
k=1

αke
iλktφk(x) (5.94)

where the coefficients αk are chosen to fulfil the initial condition.

Heat Kernel Signature The coefficients αk of the series expansion (5.93) can be computed
using the L2-inner product

αk = 〈u0, φk〉L2(M) =
∫
M

u0(y)φk(y) dy (5.95)

which gives

u(x, t) =
∞∑
k=1

∫
M

u0(y)φk(y) dy

 eλktφk(x) =
∫
M

u0(y)

 ∞∑
k=1

eλktφk(y)φk(x)


︸ ︷︷ ︸

=K(x,y,t)

dy (5.96)

The heat kernel K(x,y, t) describes the amount of heat that is transferred from x to y in
time t. By setting the initial condition to be a delta heat distribution with u0(y) = δx(y) and∫
M δx(y) dy = 1 at the position y, we obtain according to [267] the HKS feature descriptor

HKS(x, t) =
∞∑
k=1

eλkt
∣∣φk(x)

∣∣2 (5.97)

where the shifting property of the delta distribution f(x) =
∫
M f(y)δx(y) dy is applied.

Accordingly, the term HKS(x, t) describes the amount of heat at point x at the time t.
Furthermore, the discrete HKS constructs a feature descriptor for a point xi on a given shape
M via

HKS(xi, t) =
N∑
k=1

eλkt
∣∣φk(xi)∣∣2 (5.98)

and is the corresponding equivalent of the MCR heat signature.
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Remark 5.27. As already notified, the discrete HKS signature (5.98) is interpreted formally
as the raw version and corresponds to the analytical solution (5.57) using the MCR technique.

In order to enhance the discrete signatures for shape matching purposes the authors in [267]
apply two heuristic modifications. First, for comparing two computed signatures on different
time intervals a normalised distance based on the L2-norm is used as follows:

dHKS(xi, x̃j) =


tb∫
ta


∣∣∣HKS(xi, t)−HKS(x̃j , t)

∣∣∣∫
M

HKS(x, t)

2

d log t


1
2

(5.99)

Second, uniform time samples ta := t1 < t2 < · · · < tF =: tb over the logarithmic scaled
temporal domain [ta, tb] with ta = 4 ln(10)

|λr| and tb = 4 ln(10)
|λ2| are used (validated merely by

experiments), to overcome the issue which arises for larger times t in which the heat distribu-
tion converges to a less informative constant temperature. Consequently, the nonlogarithmic
time sampling is actually a nonuniform discretisation.

Remark 5.28. In practice the dominance of small eigenvalues at larger times t is compensated
by introducing a logarithmic time sampling.

Wave Kernel Signature The authors in [14] define the WKS as the time-averaged probability
of detecting a particle of a certain energy distribution at the point x in the form of

WKS(x, e) = lim
T→∞

1
T

T∫
0

∣∣∣u(x, t)
∣∣∣2 dt =

∞∑
k=1

∣∣α(ek)
∣∣2 ∣∣φk(x)

∣∣2 (5.100)

whereby taken in advantage the fact that the functions eiλkt are orthogonal for the L2-norm.
Moreover, the time variable is replaced by an energy which is directly related to the eigenvalues
of the Laplace-Beltrami operator.

Remark 5.29. Replacing the time variable generally highlights the suggestion to use the
Schrödinger equation, since the constructed feature descriptor then forms a function of the
energy of a particle. In this way, WKS constructs more intuitive and discriminative signatures.

Thus, α(ek) in (5.100) becomes a function of the energy distribution ek of the quantum
mechanical particle and can be chosen as a log-normal distribution, i.e.

∣∣α(ek)
∣∣2 = exp

− (e− log|λk|
)2

2σ2

 (5.101)

where σ denoted the variance of the energy distribution, cf. [13, 14] for more details. Finally,
the WKS is obtained in the form

WKS(x, e) = Ce

∞∑
k=1

φ2
k(x) exp

− (e− log|λk|
)2

2σ2

 (5.102)
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and in discrete sense

WKS(xi, e) = Ce

N∑
k=1

φ2
k(xi) exp

− (e− log|λk|
)2

2σ2

 (5.103)

with a normalisation factor Ce. To compare two discrete WKS signatures a normalised
distance based on the L1-norm is employed

dWKS(xi, x̃j) =
eb∫
ea

∣∣∣∣∣∣WKS(xi, e)−WKS(x̃j , e)
WKS(xi, e) + WKS(x̃j , e)

∣∣∣∣∣∣ de (5.104)

where ea = log(|λ2|) + 2σ, eb = log(|λr|) − 2σ and the uniform time increment is fixed to
τ = eb−ea

F as described in [14].

Remark 5.30. The latter heuristic of scaling the energy domain (logarithmic energy scale)
is employed in order to enhance the practicability of the WKS techniques.

Computational Aspects In contrast to the present cotangent weight scheme [184], the
kernel-based methods rely on the mesh Laplace operator [31] as discretisation of the Laplace-
Beltrami operator on triangular meshes. In addition, the eigenfunctions and eigenvalues of
the discrete Laplacian are computed by solving the GEP. Let us recall that the eigenvectors
of L = D−1C with respect to the inner product

〈f , g〉D = f>Dg (5.105)

are D-orthogonal with φ>i Dφj = δij . Thus, in the discrete setting, the HKS signature for a
given initial vector f :M→ RN can be specified as

HKS(·, t) =
N∑
k=1

eλkt〈f ,φk〉Dφk (5.106)

The WKS signature is handled analogously.

Remark 5.31. The latter representation can be expressed as the matrix exponential of the
discrete Laplacian. First, the presented heat kernel (5.106) can be rewritten in matrix form as

HKS(·, t) =
N∑
k=1

eλkt〈f ,φk〉Dφk = ΦeΛtΦ>Df = Ktf (5.107)

with Kt = ΦeΛtΦ>D. Using (2.148) and the equalities (5.35) implies

Kt = Φ
N∑
k=1

(tΛ)k
k! Φ>D =

N∑
k=1

(ΦtΛΦ>D)k
k! =

N∑
k=1

(tL)k
k! = etL (5.108)

Hence, for a given f , the heat kernel is expressed by the exponential matrix of the Laplacian

HKS(·, t) = etLf (5.109)
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This clarifies again that HKS and WKS are eigendecomposition methods and approximate the
matrix exponential (5.109) when r < N dominant eigenvalues and eigenvectors are used.

For the sake of completeness, we deal with the proposed improvements (eigenvalue compu-
tation, modified initial condition) with regard to the shape signatures which are based on the
kernel-based methods.

First, the matching performances of HKS and WKS in relation to the use of GEP and SEP
for the dataset wolf and baby are shown in Figure 5.32. Obviously, the matching results of
both kernel-based methods are independent of the specifically computed eigendecomposition.
This can be explained experimentally, cf. Figure 5.33, using a test example by means of the
HKS technique as follows: the contribution of slightly disturbed eigenvalues especially affects
the feature descriptors at very small times t, since the heat signature decays exponentially
as t increases and thus converges to a constant temperature. In contrast to the temporal
domain [0, t?r ] as used within the MCR approach, HKS signatures are built on the scale [ta, tb].
However, applying this scale neglects exactly those small time samples so that unstable
eigenvalue computations have no significant influence on the HKS signature, as shown Figure
in 5.33. Although robust techniques are usually considered to be beneficial in practice, this
might come at the cost of the matching performance for the PSC application. For similar
reasons, the WKS signature is also robust towards unstable eigenvalue computations.

In a second experiment, the results of the modified initial condition (5.78) are displayed in
Figure 5.34. Compared to MCR, this modification is not a useful tool in order to improve
the kernel-based methods.

To conclude the present discussion, we give an overview of all essential differences between
the MCR technique and HKS/WKS in Table 5.1.
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Figure 5.32: Results for the dataset wolf (left) and baby (right) using the kernel-based
methods. We compare the geodesic error at 0.25 between HKS and WKS for different number
of modes r ∈ [5, 1000]. The eigenvalues and eigenvectors are computed by solving the GEP
(5.33) and the SEP (5.60). The geodesic error accuracy is generally independent of the
underlying eigendecomposition.
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Figure 5.33: Results for the wolf dataset using the geometric heat equation. We compare
the discrete feature descriptor fx100(t) obtained by the HKS method (left) and the optimised
MCR technique (right) for r = 100. The signatures are computed by GEP as well as SEP.
For a better comparison the time axes are scaled logarithmically. Obviously, the type of
eigendecomposition generally only affects the MCR heat signature.
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Figure 5.34: Results for the wolf dataset using HKS (left) and WKS (right). We compare
the geodesic error at 0.25 between the original (5.24) and the modified (5.78) initial condition
computed by the kernel-based methods for different number of modes r ∈ [5, 1000]. The
eigenvalues and eigenvectors are computed by solving the GEP. This type of modification
yield worse matching results, especially for HKS.

Table 5.1: Technical differences between MCR and the kernel-based techniques.

Specification MCR HKS WKS

Eigenvalue problem SEP SEP/GEP SEP/GEP

Temporal sampling uniform nonuniform uniform

Time scales on shapes identical various various

Initial condition unit energy unit volume unit volume
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5.7.2 Rational Approximants and Krylov Exponential Approximations

Finally, we consider methods for approximating the matrix exponential that belong to
the class of spectrum-free computations. As mentioned in Section 2.3.2 popular methods
for computing etL such as the Padé approximation, the scaling and squaring method or
the Chebyshev polynomials are generally only effective in computing exponentials of small
matrices. Therefore, these methods are usually not suitable for discrete Laplacians with
larger resolutions.
In order to tackle this issue and to use the scaling and squaring method efficiently, the

authors [285] apply a multi-resolution approach. As a result, this technique can achieve fast
approximations, but this approach, along with some theoretical limitations, is much more
cumbersome to implement.
In contrast, Patané [208] proposes for applications in shape comparison to compute the

wFEM heat kernel via the generalised Chebyshev approximation, in which the matrix
exponential is replaced by

Ktf ≈ α0f −
r∑
i=1

αi(tL+ΘiD)−1Df (5.110)

with the poles {Θi}ri=1 and the coefficients {αi}ri=1. Then the approximate solution (5.110)
is computed by solving sparse linear systems using an iterative solver for r = 5 or r = 7.
Obviously, the Chebyshev method leads to high computational costs in the PSC application,
since (5.110) has to be solved for all points on the shape. On closer inspection, this approach
represents a higher order scheme and leads to higher computational costs than the proposed
first order IE scheme.
In fact, only the product etLf is required instead of the full exponential matrix. In this

situation the Krylov subspace methods introduced in Section 2.3.2 are one of the most
efficient methods as used, e.g. for image smoothing [301]. However, as indicated earlier, the
convergence of this method depends on the norm of ‖tL‖2. In connection with the fact that
L is characterised through a wide spectrum of eigenvalues, it is evident that Krylov-based
matrix exponential approximations are not practical for the present application. The use of
a preconditioner according to [278] is also practically unsuitable. Although the dimension m
of the Krylov subspace is often still quite small compared to the basic method, the subspaces
have to be constructed on each time level. Contrarily, the KSMOR technique constructs the
Krylov subspaces only once.

We therefore consider the proposed KSMOR technique, as described in Section 5.4.3, to be
the superior method in the class of spectrum-free computation methods.

5.8 Evaluation of Optimised MCR and Kernel-Based Methods

In this section we give a qualitative evaluation between the developed optimised MCR
technique, relying on both geometric heat and wave equation, compared to the kernel-based
methods HKS and WKS. To this end, we benchmark the methods at hand of the complete
TOSCA dataset [50] whose shapes are almost isometric.

It should be noted again that the comparison of the optimised MCR wave signature and
WKS is not caused on the same PDE model, although the notion “wave kernel signature”
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suggests this, as the latter method is based on the Schrödinger equation. Concerning this
point, let us note first that a recent work [67] has shown that the numerical descriptor9 based
on the geometric wave equation gains better results than the numerical descriptor constructed
on the geometric Schrödinger equation. Second, within the class of kernel-based methods the
WKS can be considered as a competitive descriptor. Thus, we compare the optimised MCR
wave signature in its relation to the WKS due to their distinct role in their respective class.

Evaluation Measure. For the evaluation of the correspondence quality, we use again the
geodesic error.

Technical Remarks. The TOSCA dataset [50] we investigate includes several classes of
almost isometric shapes. In detail, it contains 76 shapes (without gorilla shapes) which
are divided into 8 classes (humans and animals) of varying resolution (4K to 53K vertices).
Furthermore, for an introductory experiment the datasets wolf and baby that have already
been used are evaluated.

The experimental comparison basically considers the implementations of the kernel-based
methods and its parameter settings as described in [14,267]. For all methods we compute
the feature descriptors sampled at 100 points. On this basis, the adapted temporal domain
[0, t?r ] and the uniform time increment τ are calculated using tF = 25 and F = 100.
All experiments were done in MATLAB R2018b with an Intel Xeon(R) CPU E5-2609 v3

CPU. The eigenvalues and eigenvectors are computed by the MATLAB internal function eigs.
Moreover, the optimised MCR technique and the kernel-based methods are built on solving
SEP and GEP, respectively.

5.8.1 Evaluation of the Geodesic Error

The following evaluation is subdivided into two parts. First, we compare the correspondence
quality of the optimised MCR technique and the kernel-based methods using the specified
datasets wolf and baby. Second, all methods are benchmarked at hand of the complete
TOSCA dataset. Let us emphasise at this point that the numerical advances in the use of
the MCR technique as a time integration solver here enable for the first time the evaluation
of the entire TOSCA dataset.
Besides the qualitative evaluation, we also shed light on the number of eigenvalues that

should be employed within all of the techniques mentioned. This is still an important practical
issue for the methods discussed in the PSC application.

Evaluation on Dataset Wolf and Baby The results presented in Figure 5.35 show a sig-
nificantly higher matching performance using the optimised MCR technique. The MCR
signatures outperform their competitive methods HKS and WKS for both datasets. Another
interesting aspect is that the MCR heat signature achieves even better results than WKS.
In addition, the depicted curves in Figure 5.35 show a saturation behaviour with respect to
the number of modes used. This means in particular that the correspondence quality can no
longer be significantly improved after a certain number of modes have been used. For the
considered two datasets the point of saturation is achieved approximately for r = 100 modes.
9 In this work the underlying PDEs are solved numerically by discretisation in space and time.
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Figure 5.35: Results for the dataset wolf (left) and baby (right). Comparison of the
geodesic error at 0.25 between the optimised MCR technique and the kernel-based methods
for different number of modes r ∈ [5, 1000]. The eigenvalues and eigenvectors for MCR and
the kernel-based methods are computed by solving SEP and GEP, respectively. Obviously,
our proposed MCR technique clearly outperforms HKS and WKS. It is also interesting that
the MCR heat signature gives better results than WKS.
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Figure 5.36: Results for the datasets wolf (left) and baby (right) using the geometric heat
equation. Comparison of the CPU time required between the optimised MCR technique and
the kernel-based methods for a varying number of modes r ∈ [5, 1000]. The CPU time of the
kernel-based methods is slightly faster, especially for r > 100 modes, but the MCR technique
is obviously competitive. Using the geometric wave equation has the same costs.

For the sake of completeness, we also examine the CPU time required for the methods
used on the basis of the wolf and baby dataset. As shown in Figure 5.36, both techniques
achieve almost equally fast CPU times.

Evaluation on TOSCA Dataset First, let us discuss here the number of the ordered modes
for the methods used. In many publications on the kernel-based methods this number is
manually set to a fixed value, e.g. r = 300 is often used. Because of their influence on
computational efficacy, we were motivated to consider the examined measurements and the
amount of eigenvalues used for the TOSCA dataset, see the results illustrated in Figure 5.37.
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Figure 5.37: Results for the TOSCA dataset. Comparison of the geodesic error at 0.25
between the optimised MCR technique and the kernel-based methods for a varying number
of modes r. The eigenvalues and eigenvectors for MCR and the kernel-based methods are
computed by solving SEP and GEP, respectively. Again, the proposed MCR technique
achieves a better performance than HKS and WKS.

Over the whole TOSCA dataset, we obtain qualitatively identical results as for the examples
wolf and baby. The proposed MCR technique outperforms the kernel-based methods in terms
of the geodesic error. More precisely, for both PDEs the optimised MCR method provides
around 5-10% higher correspondence quality than the corresponding kernel-based approach.
Again, the MCR heat signature generally slightly outperforms WKS. It should also be
emphasised at this point that the MCR signatures produce a high matching performance
compared to the kernel-based methods even for a small number of r = 10 modes used.

Moreover, the experiment additionally indicates that a saturation behaviour is achieved at
a small spectrum of r ≈ 50 modes for all methods. In total, by using a small spectrum the
computational effort can be notably reduced without losing performance, which is particularly
important in the case of highly resolved meshes. Of course, fast approximations of the
Laplace-Beltrami eigenproblem are useful when considering high resolutions. In fact, a recent
work [191] has been introduced an efficient approximation for the lowest part of the Laplacian
spectrum which perfectly fits into the spectrum-based concept.
For the sake of documentation, we finally evaluate the geodesic error within the range

[0, 0.25] for all methods using r = 50 modes as visualised in Figure 5.38. As expected, the
outcomes are the same to those as before, in particular the MCR wave signature is superior
to all other methods.

KSMOR Technique on TOSCA Dataset As already noted, we consider the KSMOR
technique to be superior in the class of the spectrum-free computation methods for the PSC
application. First tests in Section 5.5 have shown that KSMOR achieves a high matching
performance linked with a fast CPU time. Therefore, it is essential to give an evaluation
of the KSMOR method using the complete TOSCA dataset. The corresponding results
are visualised in Figure 5.39. Compared to the spectrum-based methods, the matching
performance on the basis of the geodesic error at 0.25 is slightly lower. In contrast, KSMOR
achieves a higher accuracy in terms of the geodesic error up to around 0.05.
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Figure 5.38: Results for the TOSCA dataset. Comparison of the geodesic error for the
interval [0, 0.25] between the optimised MCR technique and the kernel-based methods for
r = 50 modes. The proposed MCR technique achieves a higher geodesic error accuracy than
HKS and WKS.
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Figure 5.39: Results for the TOSCA dataset. Comparison between the numerical heat and
wave signatures based on the KSMOR technique with σ = 0.1. Left: Comparison of the
geodesic error at 0.25 for a varying number of Krylov subspaces Kr. Right: Comparison of
the geodesic error for the interval [0, 0.25] using r = 2 subspaces. On the basis of KSMOR,
both geometric PDEs achieves almost the same matching performance.

5.8.2 Evaluation Based on Mapping Indicator Functions

All previous results were based on the geodesic error, especially at the hit rate of 0.25, but
without some kind of a visual matching comparison or an explicit rating with respect to
the point-to-point10 correspondence quality. However, this is a very important matter and
demonstrate the practical usability of a method in the context of the PSC application. To
this end, we additionally compare all techniques using mapping indicator functions that are

10 Even nowadays, the correspondence of two nonisometric shapes as an assignment problem, which can be
interpreted as the matching of pointwise descriptors, is a highly interesting area of research, see e.g. [288]
and the references therein. We do not address this issue in this thesis, as we are more interested in the
efficient computation of precise feature descriptors than in the assignment problem.
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defined for a specific region of a shape. A brief description of the procedure is given below.
Let us recall the correspondence map S which was essentially introduced in Section 5.2.3. For

two discrete shapesM, M̃ with associated point clouds P = {x1, . . . ,xN}, P̃ = {x̃1, . . . , x̃Ñ},
the matrix representation of the correspondence map S{0,1} : P̃ × P → {0, 1} can be encoded
by using

S{0,1}ji =

1, if df (xi, x̃j) ≤ df (xi, x̃k), k = 1, . . . , Ñ
0, else

(5.111)

where S{0,1} is a binary assignment matrix of size Ñ ×N . For finding a single corresponding
counterpart, e.g. of xi ∈ P on M̃, we construct a N -dimensional vector-valued indicator
function h : P → {0, 1} with

hi(xk) =

1, if i = k

0, else
(5.112)

By performing the matrix-vector multiplication h̃j := S{0,1}hi, we obtain the indicator vector
h̃j for the case the tuple (xi, x̃j) ∈ P × P̃ is a corresponding pair. However, due to strong
elastic deformations, noisy shapes or intrinsic symmetries (i.e. inherent ambiguities) the
construction (5.111) may result in a misleading matchings. Therefore, the correspondence
map S{0,1} is in practice neither injective nor surjective, even if N = Ñ .
By allowing values between 0 and 1, the correspondence map can be cast as a soft

correspondence map S[0,1] : P̃ × P → [0, 1], as used for example in [83], which can be
interpreted as a correspondence probability using normalisation

N∑
i=1

S[0,1]ji = 1, j = 1, . . . , Ñ (5.113)

For a certain point xi ∈ P on the reference shape, the map encodes the transition probabilities
to the points on P̃ based on the feature distances, whereby high probabilities correspond to
low feature distances and vice versa. The arising soft correspondence map allows us to express
the probability transition of all points from a reference shape onto a target shape. Therefore,
this framework may enable the detection of specific geometric regions. The key idea is that
intrinsic feature descriptors have almost identical low feature distances for whole regions
where the intrinsic geometry is similar. Using the soft correspondence map, we compare the
methods when dealing with problems such as the correspondence of shape segments. To this
end, a discrete indicator function h is constructed, e.g. for the tail of the wolf shape with

h(xi) =

1, if xi ∈ tail ⊂M
0, else

(5.114)

By performing h̃ := S[0,1]h, the entries of h̃ contain the probability of the matched indicator
function on the transformed shape, which is exemplarily presented in Figure 5.40.
In what follows we consider for a qualitative comparison in particular the tail, the nose,

the front left paw and the left ear of the wolf. The corresponding indicator functions are
visualised in Figure 5.41.
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×=

MS[0,1]M̃

Figure 5.40: Idea of mapping indicator functions: an indicator function (visualised by a
colour map on the shape) h ∈M is defined such that it is one at the tail of the dog and zero
else, cf. (5.114). Using the soft correspondence matrix, we exemplarily define the probability
of the matched indicator function h̃ ∈ M̃ by performing h̃ := S[0,1]h. The probability of
matching the indicator function on the tail of the transformed wolf M̃ is very high, while the
colour encodes the probability ranging from white (almost zero probability) to black (high
probability). Since the ground truth is the identical labelling (i, i), the soft correspondence
matrix has a diagonally dominant structure.

Figure 5.41: Mapping of indicator functions defined on certain regions of the wolf shape.
From left to right the indicator function are triggered (to be 1 - black colour) at the wolf’s
tail, nose, front left paw and left ear. Let us note that the other colours (except black and
white) are due to the plotting properties of graphics in MATLAB.

Results on Shape Segments of Wolf Dataset The correspondence quality is measured
built on the soft correspondence matrix S[0,1]. The realisation of S[0,1] can easily be done in
the following way: the computed feature distances can be normalised and reformulated as
probabilities, so that low distances correspond to high probabilities.

In a first experiment, we evaluate the correspondence quality based on the geometric heat
equation using the direct solver, see Figure 5.42. The same graphic also shows the matching
results with respect to the KSMOR solver with σ = 0.1 and using r = 2 Krylov subspaces.
Obviously, both methods perform very well and capture the sought region on the transformed
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shape (indicator functions h and h̃ are very similar). On closer examination, the KSMOR
technique indicates a minor correspondence quality compared to the direct solver for the
indicator function belonging to the ear region. Nevertheless, KSMOR is much more efficient
in computing the numerical signatures and can save around 95% of the CPU time in relation
to the direct solver, as we have shown in Section 5.5. Let us mention that the same quality
outcome is obtained for the geometric wave equation.

The latter experiment is also performed for the optimised MCR technique and the kernel-
based methods using r = 50 modes. First, the results for the geometric heat equation are
illustrated in Figure 5.43. Compared to the direct solver and KSMOR, the spectrum-based
methods achieve in part significantly different results. The matching probability of the
indicator functions of the transformed wolf is lower and, in general, more scattered over
the whole shape. However, it is evident that the MCR technique realises a much higher
correspondence quality than HKS, especially for the indicator function related to the tail,
nose and paw. An interesting aspect is that the MCR approach has fewer problems with
intrinsic symmetries than HKS, cf. the front left paw. Because the HKS method, in contrast,
identifies all four paws with a high degree of probability (darker colour).
The correspondence quality of MCR and WKS based on the geometric wave and the

Schrödinger equation, respectively, are visualised in Figure 5.44. Once again the MCR
technique achieves a much higher correspondence quality than WKS, especially for the
indicator function with respect to the tail and nose. In contrast to the geometric heat
equation, the wave signatures show a less precise matching performance for the detection of
the front left paw.
In total, the last experiments using mapping indicator functions have clearly shown that

the KSMOR technique can provide a high correspondence quality. In contrast, the results
of the spectrum-based methods are less good due to the use of low-frequency modes, since
small details (which are described by high-frequency) are generally more difficult to capture.
Nonetheless, the use of soft correspondence maps in combination with the MCR technique
may provide very beneficial results compared to HKS and WKS.

Future Work on Soft Correspondence The soft correspondence map S[0,1] is a dense matrix
of size Ñ × N that becomes increasingly cumbersome for large Ñ and N . In particular,
storing S[0,1] might be computationally expensive for large shapes. In addition, the soft
correspondence map could be used to extract the ideal binary assignment matrix S{0,1}
from itself using a more sophisticated (optimisation) approach, but this task is not trivial in
practice. For both issues it would be desirable to reduce the information contained in the
dense soft correspondence matrix and therefore to give S[0,1] ideally a sparse structure while
keeping its useful meaning for PSC. The sparse structure appears to be a reasonable and
computationally efficient compromise between the dense soft correspondence matrix and the
ideal binary assignment matrix.

A simple strategy to increase the sparsity could be for instance to set iteratively small entries
of S[0,1] (with low probability) in ascending order to zero until a specific tolerance is reached.
However, the essential building block for a possible extraction of the binary assignment matrix
S{0,1} is to develop a method that could make full use of the soft correspondence information,
which may result in a quite powerful approach. Obviously, this is not trivial and beyond the
scope of this work.

205



Chapter 5 Efficient Descriptor-Based Shape Analysis

Figure 5.42: Results for the wolf dataset using the geometric heat equation. Comparison of
the mapping of the indicator function defined on a certain region of the wolf shape (from top
to bottom: tail, nose, front left paw, left ear) to a transformed version of it between the
direct solver (left) and the KSMOR technique (right) with σ = 0.1 and r = 2. For reasons of
clarity, the shapes are rotated for detecting the specific shape segments. The colour encodes
the probability of the matching, being black for a high probability and white for almost zero
probability. Both methods perform very well and generally capture the sought region on the
transformed shape. However, KSMOR is much more efficient in computing the numerical
signatures. The same quality results are obtained using the geometric wave equation.
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Figure 5.43: Results for the wolf dataset using the geometric heat equation. Comparison of
the mapping of the indicator function defined on a certain region of the wolf shape (from top
to bottom: tail, nose, front left paw, left ear) to a transformed version of it between the
optimised MCR technique (left) and HKS (right) using r = 50 modes. The colour encodes
the probability of the matching, being black for a high probability and white for almost zero
probability. For reasons of clarity, the shapes are rotated for detecting the specific shape
segments. Obviously, MCR achieves better matching performance, especially for the regions -
tail, nose and paw.
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Figure 5.44: Results for the wolf dataset using the geometric wave equation. Comparison
of the mapping of the indicator function defined on a certain region of the wolf shape (from
top to bottom: tail, nose, front left paw, left ear) to a transformed version of it between the
optimised MCR technique (left) and WKS (right) using r = 50 modes. The colour encodes
the probability of the matching, being black for a high probability and white for almost zero
probability. For reasons of clarity, the shapes are rotated for detecting the specific shape
segments. In general, MCR achieves better matching performance, especially for the regions -
tail and nose.
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5.9 Summary
We have extended the numerical framework that has been presented in earlier literature [67,68],
and in our opinion, we have tweaked with this chapter the MOR approach very close to its
limit with regard to its use in the PSC application. On the basis of numerical time integration,
we have developed the spectrum-free KSMOR technique and the spectrum-based optimised
MCR approach, which are of beneficial use compared to the state-of-the-art solvers in the
class of time-evolution method. We have demonstrated that the efficient KSMOR method
can achieve a high correspondence quality using mapping indicator functions. In contrast, the
optimised MCR technique is highly efficient for applications with high resolutions and clearly
outperforms their direct counterparts HKS and WKS with respect to the geometric error,
but also for the detection of specific geometric regions. To achieve this, we have combined
several numerical techniques related to MCR with benefit that result in an algorithm that is
ultimately easy to implement.

Let us stress that our approaches are nearly free of parameters. One can even conclude for
the remaining few parameters like e.g. r the number of eigenvalues or Krylov subspaces that
we have shown experimentally how to choose them in applications, so that in practice our
approach can be considered as parameter-free, which is of high practical value.

We think that the use of KSMOR and MCR for particular tasks in shape analysis such as
shape detection could be a promising subject of future research. Furthermore, the use of soft
correspondence maps as introduced here appears to be promising. However, for the practical
use of a sparse soft correspondence matrix a sophisticated method has to be developed that
could make full use of this sparse information.

We also emphasise that as part of the functional maps pipeline mentioned in related work,
feature descriptors are used to compute a coarse correspondence between points. Providing
accurate initial correspondences based on feature descriptors improve the performance and
CPU time of dense shape correspondence algorithms relying on functional maps, as reported
in [179]. We conjecture that our methods may be useful in this framework as well, and
therefore this topic will be of interest in the future.
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Chapter 6

Efficient Long-Term Simulation of a
Geothermal Energy Storage

In this chapter we discuss particular challenges of numerical methods arising in connection
with long-term simulation of a geothermal energy storage (GES). Long-term evolutions of
parabolic PDEs such as the heat equation are the subject of interest in many applications.
There are several numerical solvers marking the state of the art in diverse scientific fields
that may be employed with benefit for the simulation of such long-term scenarios. However,
long-term simulation of technical models often requires numerical methods that are specifically
designed for the intended purpose.
The main goal of this chapter is to investigate which numerical methods are suitable for

long-term simulations as appearing in real-world applications as considered here, and how
they need to be used for the fundamental problem of heat evolution with internal and external
boundary conditions as well as source terms. This problem arises in GES, for which we
provide here a comprehensive analytical and numerical model. In order to provide an efficient
and accurate enough simulation, we give a thorough discussion of the various numerical
solvers along with many technical details and adaptations. In this context, let us emphasise
that the methods we rely on already exist in previous literature, but we show how to use
them in order to obtain efficient schemes for the GES application.

In our investigation, we focus on two largely competitive approaches, namely the FEDRK
method originating in image processing and the KSMOR technique. Considering our GES
application, we will precisely elaborate the complete continuous model and the corresponding
discretisation which is an important component for the numerical realisation. In particular,
the matching conditions at the interfaces that occur leading to a large-scale input, which is
why special care is required when using the KSMOR technique.

Under these circumstances, it is essential to adapt the original KSMOR technique for
practical use. We validate our numerical findings at the hand of two experiments using
synthetic and real-world data, and show that one can obtain fast and accurate long-term
simulations of typical GES facilities.
Since the long-term simulation of a three-dimensional GES is linked to extreme compu-

tational costs, it is of high relevance if the model dimension itself could be reduced for
computational purposes. We will demonstrate that the application of a two-dimensional
linear heat equation is absolutely sufficient for the long-term simulation considered in our
purpose. The latter is validated on real-world data using temperature probes of a real
three-dimensional test field. The simplified and dimensionally reduced model can then be
used in practice instead of the real (nonlinear) model either for simulation purposes or for
parameter optimisation.
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Let us note that a part of this chapter was already presented in our work [17]1. To improve
the performance of the FED method, which has shown some promising first results, the
FEDRK scheme is employed. In doing so, we show how to use the FEDRK method for
parabolic problems including sources/sinks, which demonstrates the wide applicability of
this technique also in connection with engineering problems. In addition, we modify the
original KSMOR technique for systems with a large number of inputs in a similar manner as
proposed in [232]. In this framework, we provide here to our best knowledge the first very
detailed exposition and comparison of this kind of approach.

In total, we give a detailed overview of relevant and modern numerical solvers that can be
helpful for tackling long-term heat evolution in many engineering fields.

Chapter Organisation First, a brief introduction to the GES application is given in Section
6.1. The Section 6.2 contains the continuous model description including the modelling of the
external and internal boundary conditions, and we also inform about the generation of the
initial heat distribution. Then we recall the numerical realisation by spatial and temporal
discretisation in Section 6.3. In Section 6.4 a detailed overview of the numerical solvers is
given. To be more precise, we discuss the methods: FED, FEDRK, linear system solvers,
KSMOR and its adapted variant KSMOR?. The experimental evaluation presented in Section
6.5 focuses on the simulation quality and efficiency of the numerical solvers by comparing at
hand of two GES experiments. This chapter is concluded with a summary.

6.1 Introduction

Alternatives to fossil fuel resources are becoming increasingly important. Apart from an
efficient energy generation it is also important to store it, ideally with minimal losses over
long periods of time. The recent GES technology represents a potentially very attractive
approach to energy storage. The GES is implemented in natural underground sites, for
instance using large soil tanks. Such tanks are partially surrounded by insulating walls and,
depending on their depth, soils with different heat conduction and capacity properties. It is a
very cost effective technology that can be used in both new construction and refurbishment.

In contrast to classic energy storage approaches, in which tanks are employed that are
fully closed and do not interact with their environment, the technical realisation of GES is
characterised by a downwardly open heat tank. This is one of the aspects that makes the
technology highly cost effective as it is not required to excavate the ground to a large degree.
It is sufficient to excavate a relatively small area that will represent the tank, while staying
thereby close to the surface. In the resulting pit the heating pipes are installed, and one has
to insulate the walls (excepted the bottom side) of the pit for instance by use of styrofoam.
Afterwards, the pit may typically simply be filled with the original soil. The second aspect
that makes the GES technology cost effective compared to traditional heat storage in a closed
tank is given by considering the dimensions that are needed to provide sufficient capacity
for storing energy in practice. The advantage of the open tank is that the heat energy is
effectively stored by the earth in and below the tank, making its capacity extremely high in

1 In our previous four-page conference paper, we have shown some preliminary results encompassing a
simple synthetic experiment, thereby comparing the performances of the IE method and the FED scheme.

212



6.1 Introduction

real applications and providing in practice a multiple of the capacity that is making up the
actual tank.
We are particularly interested in the potential of GES to store excess energy generated

during the summer, e.g. by the use of solar cells, for heating in winter. This becomes
a very important issue when the entire heating system is considered over a year or even
several years, depending on weather conditions, day, night and weekly rhythm. Even though
already working GES exist, especially for single-family homes and smaller office buildings,
well-founded evidence or simulations are required to assess the profitability of a GES. This
is of great importance for the optimal dimensioning of the heat tank, which is the most
expensive design factor. Apart from that, this will also be very important in order to adopt
this technique for large office complexes.
To study the reliability of such systems it is important to know how they behave over

long time spans for several months or years. The problem can be formulated in terms of
a parabolic PDE model given by the heat equation related to space and time. In order to
describe the heat transfer in the GES set-up adequately enough, the mathematical model
including contact and boundary conditions must first be described. Then the simulation of
heat evolution is run as long as the user requires. At this point, it should be emphasised that
the simulation may not be performed offline, as the planning of a GES typically requires
communication between engineers, architects and the customer, often directly on construction
sites. The simulation can therefore ideally be performed online in a few minutes at most
during the discussion.

The long-term heat evolution in a geothermal setting can often be modelled on the basis of
assuming a homogeneous and isotropic setup, corresponding to a linear PDE. The simulation
of linear heat transfer is of fundamental importance in diverse scientific fields. However, even
nowadays it is still a challenging task to specify a numerical method that combines reasonable
accuracy and computational efficiency. In particular, the computing power of a solver is a key
requirement when working with multi-dimensional problems. The long-term integration that
needs to be performed in order to simulate seasonal energy storage represents an additional
challenge. Standard methods are not devised for combining high efficiency and accuracy in
time, so that an analysis of time integration methods for the heat equation in the context of
GES is absolutely essential.
There exist countless methods for solving the linear heat equation. As examples, we

mention finite difference, finite volume or finite element methods that discretise the spatial
dimensions into ODEs. After the spatial discretisation, the temporal integration can either
be done explicitly or implicitly. Explicit schemes are based on simple sparse matrix-vector
multiplications in which the allowed time step size has a rather small upper bound, rendering
the explicit strategy unsuitable for long-term evaluations. On the other hand, the use of
implicit schemes leads to the task of solving a system of linear equations in each time
step, whereby the number of variables related to the multi-dimensional GES may extend
to several hundreds of thousands or perhaps millions. The implicit schemes do not suffer
from restrictions on the time step size in theory, but a fast solver for large sparse systems of
linear equations is needed. Another numerical aspect that has to be kept in mind when using
implicit methods for applications with source terms is that the contributions of the sources
must be updated at relatively small time intervals for obtaining an accurate simulation.
The classic solvers such as explicit schemes, sparse direct or sparse iterative solvers are

relatively simple to implement or are based on existing sophisticated software packages. As
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is known, their efficiency is related to severe time step size restrictions in the case of explicit
methods, or high effort for solving large systems of linear equations (implicit methods).
For making these approaches efficient enough and to tackle our application, two popular
techniques in their respective scientific fields, FEDRK and KSMOR, can be helpful to reduce
the computational effort significantly compared to conventional methods.

The FEDRK approach, originating from image processing and belongs to the class of fast
explicit methods, combines the advantage of an explicit evaluation with the possibility of
achieving high integration times in just a few steps of evaluation. As a result, FEDRK is
much more efficient than the usual explicit scheme and simultaneously is based on cheap
matrix-vector multiplications. The MOR methods represent another possible approach to
reduce the computational complexity of heat simulations. Such techniques can be applied to
approximate the underlying ODE system by a significantly reduced system, that is much
faster to solve due to its reduced dimension. To solve large-scale problems, the powerful
KSMOR methods are most frequently used in this area [29,123,140,150,169,232,261] due
to their superior numerical efficiency. Although the basic aspects of the KSMOR technique
are well understood, it is not easy to devise it in a way that yields an efficient scheme for
resolving heat transfer if internal boundary conditions with a high number of inputs are
involved, as in our case.

We note again that there exist other popular strategies to speed up diffusion processes such
as operator splitting methods, e.g. the ADI method. The main idea of these techniques is to
split the multi-dimensional problem into several one-dimensional problems which can then
be efficiently solved using tridiagonal matrix algorithms. However, this approach induces a
splitting error that increases with the magnitude of the time step size τ . Moreover, external
and internal boundary conditions have to be treated very carefully which makes it difficult to
apply these methods in our setting.

6.2 Continuous-Scale Mathematical Model
As indicated, the GES concept is specially designed for seasonal heat storage, so that long-term
simulation is a particular challenge. The heat transfer in the near-surface ground is mainly
characterised through heat conduction, heat radiation, advection, convection, evaporation,
seepage water and geothermal heat. The most important transport mechanism in the ground
is usually heat conduction. The associated PDE, called the heat equation, is a classic and
thoroughly studied equation. A complete setup that covers a realistic scenario also includes
heat sources and sinks, multiple boundary conditions and other physical properties such as
the heat dissipation, which may vary in space and time. The basic model equation that we
consider is therefore given by

ρ c ∂tu(x, t) = div
(
λ∇u(x, t)

)
+ f(x, t), (x, t) ∈ Ω× [0, tF ] (6.1)

with thermal conductivity λ, density ρ, specific heat capacity c and heat source/sink f . In
general, the physical quantities λ, ρ, c may vary in space and time, and may depend on the
current temperature u in this equation. Furthermore, various boundary conditions including
Dirichlet-, Neumann- and Robin boundary conditions are required. Indeed, the different
regions depicted in Figure 6.1 consist of different media and thus their heat transfer properties
are different. This implies that interface boundary conditions are needed in our model.
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Heat tank

Above ground

Insulating wall Upper ground

Lower ground

Figure 6.1: Cross section as a schematic representation of a 3D-GES. The upper ground
often has different properties than the lower ground. The heat tank is filled with upper
ground, contains a heat source/sink and is downwardly open. Accordingly, the heat flows
into the tank from below or vice versa. Each interface exhibits different transition properties
that need to be modelled into the heat flow equations.

6.2.1 Basic Model for Describing the Geothermal Energy Storage

As already mentioned, we aim to tackle the long-term evolution of heat in a GES as sketched
in Figure 6.1. In the following it is assumed that the physical variables λ, ρ and c are constant
and nonzero. These assumptions are reasonable in our near ground scenario even though the
physical quantities are not perfectly constant. However, the temperature fluctuations are
so small, in the regime we are interested in, that they may hardly cause any difference in
the solutions of the PDE. In addition, we assume the surrounding soil to be nonporous and
that seeping rainwater has no influence on the long-term evolution of the GES. The latter
influencing factor has only a short-term effect on the underground temperature, see [253].

Lastly, an important condition within the GES model is related to the groundwater, which
may have a strong impact on the temperature distribution in the underground. In this
work, it is assumed that the flowing groundwater has a large distance to the heat tank, so
that one can specify isothermal boundary conditions for the lower ground boundary in our
three-dimensional model. The latter assumption not only enables the consideration of a
pure heat equation without a convection term, but on this basis we may also neglect the
percentage of water in the soil for specifying of heat conductivity.
These assumptions ensure that the surrounding soils can be considered as homogeneous

isotropic media. With this setup we define the thermal diffusivity a := λ
ρc and (6.1) can be

rewritten into the following linear model PDE:

∂tu(x, t) = a∆u(x, t) + f(x, t)
ρc

, (x, t) ∈ Ω× [0, tF ] (6.2)

which has to be considered for each region sketched in Figure 6.1. The function f represents
various heat sources and sinks. Furthermore, an initial heat distribution u(x, 0) and boundary
conditions (interface, border) are required as explained below.
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6.2.2 Modelling of Interface Conditions

Concerning the interface conditions set-up, we follow the general modelling framework as
described for instance in [15]. The interface x = xi between two solids, where no heat is
lost when considering the flux between them, can be modelled by means of the following
boundary conditions:

λ(k)
(
∂nu

(k)
) ∣∣∣∣
xi

= λ(l)
(
∂nu

(l)
) ∣∣∣∣
xi

(6.3)

Here, u(k) and u(l) are the solutions for the individual regions and where ∂n denotes the
derivative in the outer normal direction.

With special attention to the contact between the upper and the lower ground, we assume
that the contact is perfect and the heat transfer is continuous, so that it additionally follows
at the interface

u(k)(xi, t) = u(l)(xi, t) (6.4)

In contrast, the interface in which the insulating walls are involved is subjected to thermal
contact resistance, which can generally lead to a discontinuity in heat transfer, and thus
yields the condition

λ(k)
(
∂nu

(k)
) ∣∣∣∣
xi

= αc
(
u(l) − u(k)

)
, λ(l)

(
∂nu

(l)
) ∣∣∣∣
xi

= αc
(
u(l) − u(k)

)
(6.5)

with a contact heat transfer coefficient αc ≥ 0. The latter equation implies two properties.
For αc = 0, homogeneous boundary conditions are obtained whereby no exchange of heat
exists between two solids. In contrast, for αc → ∞, the temperature profile between two
solids is continuously being.

Consequently, the interaction between different types of soils at interface xi can be modelled
by the equations (6.3)-(6.4). Instead, the interface between soil and insulation is modelled
via (6.3) and (6.5).

6.2.3 Modelling of Boundary Conditions

External boundary conditions must also be specified within the model. Therefore, we have to
fix conditions situated on ∂Ω, actually at the top, at the bottom and at the sides.
The upper domain boundaries (i.e. between upper and above ground, see Figure 6.1) are

characterised such that the soil of the upper ground is not covered by other structures. Thus,
time-dependent Robin boundary conditions

− λ(k)
(
∂nu

(k)
) ∣∣∣∣
xi

= αA
(
u(k) − TA(t)

)
(6.6)

are considered at the interface between the topmost layer of ground and the air above, where
TA(t) is the ambient temperature on the earth’s surface and αA the heat transfer coefficient.
The coefficient αA can either be assumed to be constant or dependent on current weather
conditions. If the wind speed v is known, the coefficient αA can be specified, cf. [30], via

αA(v) =


1.8 + 4.1v, v ≤ 5m/s

7.3v0.73, v > 5m/s
(6.7)
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The lateral domain boundaries on ∂Ω are generally unknown and may be influenced by
various factors such as for instance border-near basements. Ideally, we assume that there
exist no anthropogenic influences. Therefore, within the model, time-dependent Dirichlet
boundary conditions are specified in the form of undisturbed ground temperatures Tg(t, x),
which also depend on space (i.e. on depth in the ground, in meters) in the following form:

Tg(t, x) = θ̄ − δθ exp
(
− x
δg

)
cos

[
2π (t− t)

th
− x

δg

]
+Gtx (6.8)

with average ambient temperature θ̄, amplitude of monthly fluctuations in ambient temper-
ature δθ, measure of lagging ambient temperature in depth δg, number of hours in year th,
time lag between the time of the lowest annual temperature t and geothermal gradient Gt,
where δg is given by

δg =
√

3600thλ
πρc

(6.9)

In particular, the lateral boundary condition (6.8) depends on the location of the installed
GES due to the location-dependent parameters θ̄, δθ, δg and Gt.
Finally, the lower domain boundaries are given by time-dependent Dirichlet boundary

conditions in the form of groundwater temperatures

Tgw(t) = b1 cos

 2πt
th3600

+ b2 (6.10)

with a measure of fluctuation intensity b1 and the average groundwater temperature b2. The
latter condition models a seasonal shift, as the thermal energy spreads down into the depths
with a time delay, cf. [202].

Remark 6.1. The modelling of other boundary conditions can be done without restrictions.
For instance, if the GES is located below a base plate or lateral to a basement, the boundary
conditions only need to be adapted to fit the model.

6.2.4 Generating the Initial Heat Distribution
The initial condition of the GES model problem, which corresponds to the initial temperatures
at time t = 0, is generally not known. In practice, initial temperatures may only be determined
by mounting temperature sensors s̃ at some grid points. In the presence of sensor data,
the initial temperature is known in some places xj ∈ ΩK ⊂ Ω, but most of the initial
heat distribution u(x, 0) remains unknown. One possibility is to estimate the unknown
temperatures by interpolation using the given data. In doing so, the interpolation task can be
realised by PDE-based image inpainting, also known as Laplace interpolation, see e.g. [97,250].
More precisely, image inpainting is a process in order to reconstruct or fill-in missing parts in
the inpainting domain Ω\ΩK in a way that is undetectable to the casual observer.

To this end, in turn, the heat equation can be used. In the simplest case of applying linear
diffusion, the initial heat distribution is obtained as the steady state solution, i.e.

u(x, 0) := lim
t→∞

ũ(x, t) (6.11)
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of the heat evolution that is described by

∂tũ(x, t) = ∆ũ(x, t), ∀x ∈ Ω\ΩK

ũ(x, 0) = 0, ∀x ∈ Ω\ΩK

ũ(x, t) = s̃(x), ∀x ∈ ΩK

(6.12)

with suitable boundary conditions on ∂Ω. In other words, the temperature sensors on ΩK

are interpreted as thermostats that are kept at a fixed temperature at any time, and are thus
modelled as Dirichlet boundary conditions.

6.3 Discretisation of the Continuous-Scale Model

In this section we provide the basic discretisation of the underlying continuous GES model,
characterised via linear heat equation (6.2), different interior (6.3)-(6.5) and exterior (6.6)-
(6.8), (6.10) boundary conditions and initial heat distribution (6.11). In doing so, we describe
the discretisation aspects in space and time in detail in the following subsections.

The underlying computational domain (as well as the heat tank), cf. Figure 6.1, is given by
a cuboid type form, so that we apply standard finite difference schemes for the discretisation
of the continuous model, which will be sufficient for the application in this chapter.

6.3.1 Discretisation in Space

For reasons of simplicity we consider in the following the two-dimensional rectangular domain
(x, y) = [x1, xn] × [y1, ym] ∈ Ω with an equidistant mesh size h = ∆x = ∆y > 0 in x- and
y-direction, where ui,j(t) denotes an approximation of the unknown function u at grid point
(xi, yj) and time t. For convenience only, we use the abbreviation ui,j := ui,j(t).

The approximation of the spatial partial derivatives uxx and uyy in (6.2) using standard
central differences leads to

dui,j
dt = a

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j
h2 + fi,j

ρc
(6.13)

where fi,j is the discretised heat source/sink. It should be noted that (6.13) is only valid for
inner points of the computational domain that are not located at internal interfaces. The
spatial discretisation at the interfaces can be explained as follows.
In particular, we assume that no grid point is located exactly at the interface xi. Exem-

plarily, we define the interface as xi := (xi+ 1
2
, yj), which is centred located between the grid

points (xi, yj) and (xi+1, yj). As stated before, the interaction between different types of soils
is modelled by the equations (6.3)-(6.4). Discretising (6.3) at the interface xi between two
layers, denoted here as “k” and “l”, using the forward and backward difference results in

λ(k)
u

(k)
i+1,j − u

(k)
i+ 1

2 ,j

h
2

= λ(l)
u

(l)
i+ 1

2 ,j
− u(l)

i,j

h
2

(6.14)

Due to (6.4) we have u(k)
i+ 1

2 ,j
= u

(l)
i+ 1

2 ,j
=: uI for the fictitious value uI at the interface, which
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can then be calculated via

uI =
λ(k)u

(k)
i+1,j + λ(l)u

(l)
i,j

λ(k) + λ(l) (6.15)

The latter scheme is visualised on the left in Figure 6.2. At this point it should be mentioned
that the discretisation can also be done without using a fictitious value, if one assumes that
a grid point lies on the interface, see [129].

In contrast, when modelling the relation between soil and insulation, condition (6.4) must
be replaced by (6.5). The discretisation of (6.5) at xi using the forward and backward
differences gives

λ(k)
u

(k)
i+1,j − u

(k)
i+ 1

2 ,j

h
2

= αc

(
u

(l)
i+ 1

2 ,j
− u(k)

i+ 1
2 ,j

)
(6.16)

which can be rewritten as(
2λ(k)

h
− αc

)
u

(k)
i+ 1

2 ,j
+ αcu

(l)
i+ 1

2 ,j
= 2λ(k)

h
u

(k)
i+1,j (6.17)

Moreover, the equation (6.14) can be transformed into

u
(k)
i+ 1

2 ,j
+ λ(l)

λ(k)u
(l)
i+ 1

2 ,j
= u

(k)
i+1,j + λ(l)

λ(k)u
(l)
i,j (6.18)

The equations (6.17)-(6.18) form a system of linear equations for the two unknowns u(k)
i+ 1

2 ,j

Layer l

λ(l)
Layer k

λ(k)

h

uI

(xi+ 1
2
, yj)

ui−1,j ui,j ui+1,j ui+2,j

Layer k

λ(k)
Layer l

λ(l)

h

(xi+ 1
2
, yj)

ui−1,j ui+1,jui,j ui+2,j

u
(k)
i+ 1

2 ,j

u
(l)
i+ 1

2 ,j

Figure 6.2: Schematic sketch at the interface xi = (xi+ 1
2
, yj) between the layers k and l

using the proposed finite difference schemes at grid points (dots) and equidistant mesh size h.
Left: The discretisation of the interaction between different types of soils leads to fulfilling
the matching conditions (6.3)-(6.4) around the fictitious interface point, and defining the
value uI using the formula (6.15). Right: The discretisation of the interaction between soil
and insulation leads to fulfilling the matching conditions (6.3) and (6.5) around the fictitious
interface points, and defining left and right values u(k)

i+ 1
2 ,j

and u(l)
i+ 1

2 ,j
using the system of linear

equations (6.19).
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and u(l)
i+ 1

2 ,j
by means of


1 λ(l)

λ(k)

2λ(k)

h
− αc αc



u

(k)
i+ 1

2 ,j

u
(l)
i+ 1

2 ,j

 =


u

(k)
i+1,j + λ(l)

λ(k)u
(l)
i,j

2λ(k)

h
u

(k)
i+1,j

 (6.19)

The following proposition verifies that the latter system has a unique solution for αc 6=
2λ(k)λ(l)

h(λ(k)+λ(l)) and can be solved with Cramer’s rule [65]:

Proposition 6.1. The linear system (6.19) has a unique solution for

αc 6=
2λ(k)λ(l)

h
(
λ(k) + λ(l)

) (6.20)

Proof. The determinant of (6.19) is given by

det

∣∣∣∣∣∣∣∣∣∣
1 λ(l)

λ(k)

2λ(k)

h
− αc αc

∣∣∣∣∣∣∣∣∣∣
= αc

(
1 + λ(l)

λ(k)

)
− 2λ(l)

h
=: D (6.21)

Due to the requirements h > 0 and λ(k) > 0, the determinant D exists and is well-defined.
For αc = 0 is D 6= 0, since λ(l) > 0. In contrast, for αc 6= 0, the equation (6.21) implies that
the determinant D is zero if αc = 2λ(k)λ(l)

h(λ(k)+λ(l)) holds.

The used scheme at the interface including a jump condition is shown on the right in
Figure 6.2. The case for xj := (xi, yj+ 1

2
) is handled analogously. We mention that another

possible discretisation is presented in [129].
Finally, the exterior boundary conditions have to be discretised. In case of the upper domain

boundaries at the topmost layer of ground, again interfaces xi = (xi, ym) and fictitious values
u

(k)
i,m+1 for i = 1, . . . , n are incorporated. Using the standard first order spatial discretisation

(
∂yu

(k)
) ∣∣∣∣∣

(xi,ym)
=
u

(k)
i,m+1 − u

(k)
i,m

h
+O(h) (6.22)

linked to the discretised condition (6.6) as

− λ(k)
(
∂yu

(k)
) ∣∣∣∣∣

(xi,ym)
= αA

(
u

(k)
i,m − TA(t)

)
(6.23)

leads to
u

(k)
i,m+1 = u

(k)
i,m −

hαA
λ(k)

(
u

(k)
i,m − TA(t)

)
(6.24)
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The remaining conditions concerning the lateral and lower domain boundaries are fixed via

u
(k)
0,j = u

(k)
n+1,j = Tg(t, dj) = Tgj , j = 1, . . . ,m (6.25)

u
(k)
i,0 = Tgw(t), i = 1, . . . , n (6.26)

where dj is the depth of the j-th grid layer. Let us mention that the three-dimensional case
can be handled analogously.

Remark 6.2. When using first order discretisations, the accuracy at the boundary is formally
by one order worse than the error of the boundary-free discrete equation. However, it is a
matter of definition of boundary location to understand the same finite difference expression
as a central discretisation of the derivative inbetween the considered points, which is again of
second order. This means we do not have to expect any error deterioration. In addition, an
important aspect of the proposed first order discretisation is the symmetry preservation of the
underlying Laplacian matrix L. The symmetry is of great importance for the application of
numerical solvers.

6.3.2 Arising System of Ordinary Differential Equations
Lastly, we summarise the components of the proposed two-dimensional discretisation (6.13),
(6.15), (6.19) and (6.24)-(6.26) which end up in a semi-discrete system. In particular, a
function defined on all grid points can now be represented as an N -dimensional vector

u(t) =
(
u1(t), . . . , uN (t)

)> (6.27)

where N is the total number of all grid points with linear grid point numbering from top left
to bottom right.

The spatial discretisation of the GES by applying finite differences on a regular grid with
constant grid size h results into an ODE system, one ODE for each grid point, which can be
represented as follows:

u̇(t) = Lu(t) +K1u1(t) +K2u2(t) +KATA(t) +KgwTgw(t) +KgTg(t) +Kff(t) (6.28)

with temperature vector u ∈ RN , temperature vectors u1 ∈ Rn (continuity condition) and
u2 ∈ Rñ (discontinuity condition) for fictitious points at the two different types of interfaces,
ambient temperature TA ∈ R, groundwater temperature Tgw ∈ R, undisturbed ground
temperature vector

Tg(t) =
(
Tg1(t), . . . , Tgm(t)

)> ∈ Rm (6.29)

and source/sink vector f ∈ Rm̃. At this point it should be mentioned that the values for ñ
and m̃ depend on the user-defined size setting of the insulating walls and geometry setting of
the considered source/sink, respectively.

Remark 6.3. The conditions at the lateral boundaries on Ω considered here are identical,
therefore it is sufficient that the input Tg specified in (6.29) is of size m.

The matrices L ∈ RN×N , K1 ∈ RN×n, K2 ∈ RN×ñ and Kf ∈ RN×m̃ collect the terms of
the basic discretisation and are not shown in detail. Nevertheless, we give an exemplary
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illustration of the technical construction for the Laplacian matrix L based on the continuity
condition in Figure 6.3. The remaining components, which correspond to the ambient
temperature, the groundwater temperature and the undisturbed ground temperature, have
the following simple structure:

KA = αA
ρch



1
0
...
0
1
0
...
0
...



, Kgw = a

h2



0
...
0
1
0
...
0
1
...



, Kg = a

h2


Im,m

0N−2m,m

Im,m

 (6.30)

with KA,Kgw ∈ RN , Kg ∈ RN×m, the identity matrix Im,m ∈ Rm×m, the null matrix
0N−2m,m ∈ R(N−2m)×m, and where a, ρ, c depend on material parameters. The mark ”—“
within (6.30) indicates that the discretisation points of the underlying rectangular computa-
tional domain are considered row by row. Finally, the discrete initial condition is given by
(6.11) with u0 := u(x, 0).

Remark 6.4. Apart from the exemplary illustration for assembling the Laplacian matrix L,
the Figure 6.3 additionally indicates the symmetry preservation of the matrix structure.

6.3.3 Time Integration

The application of the developed spatial discretisations leads to the ODE system (6.28) which
can be represented as

u̇(t) = Lu(t) +Kw(t), t ∈ (0, tF ], u(0) = u0, w(0) = w0 (6.31)

with input matrix and inputs

K =
[
K1,K2,KA,Kgw,Kg,Kf

]
, w(t) =

(
u1(t),u2(t), TA(t), Tgw(t),Tg(t),f(t)

)> (6.32)

In doing so, we specify the input matrix K ∈ RN×p with p = n+ ñ+ 2 +m+ m̃ and make
use of stacked vectors for defining w(t) ∈ Rp. Let us note once more that the time-dependent
large-scale input w(t) controls the model by boundary conditions and heat sources/sinks.
Furthermore, the Laplacian matrix L is symmetric and negative definite which is large, sparse
and structured. The definiteness follows directly from its strictly diagonal dominance and
negative diagonal entries according to the Gershgorin’s circle theorem [100].

Remark 6.5. Although the matching conditions at the interfaces corresponding to u1 and
u2 are not user-defined controls, one has to handle these as indirect inputs.
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ui

ui−1

ui+1

ui+mui−m
Interface I uI



. . . . . . . . . . . . . . .
1 1 −4 11 1

1 11 −4 1 1
. . . . . . . . . . . . . . .


=⇒



. . . . . . . . . . . . . . .
1 1 −4 00 1

1 00 −4 1 1
. . . . . . . . . . . . . . .



(A)

(B)

Original matrix L Adapted matrix L
ui-th row

ui+1-th row

Figure 6.3: Exemplary illustration of the technical construction for the system matrix L
including the mentioned matching conditions in 2D. Top: The sketch can be interpreted as
a (red, blue) five-point stencil of the two-dimensional discrete Laplace operator, which is
used to represent finite difference approximations of derivatives at grid points. The stencil
considered here is made up of the point itself together with its four ”neighbours“. This means,
for h = 1 the original red stencil yields ∆ui ≈ ui+1 + ui−1 + ui+m + ui−m − 4ui, where m
denotes the number of rows. Bottom: The corresponding rows of the original and adapted
system matrix L for the grid points ui and ui+1 at the interface I, as already illustrated in
the upper sketch. (A) To compute ∆ui (red stencil), ui+1 (red square) is substituted via
uI (black square). More precisely, we replace 1 inside the original matrix L with 0 into the
adapted matrix (red dashed line). (B) To compute ∆ui+1 (blue stencil), we substitute ui
(blue square) via uI (black square). Again, 1 is replaced with 0 (blue dashed line). In this
case, the fictitious value uI is defined by the formula (6.15). This proceeding is performed
analogously for all grid points at the interfaces. In the same manner, the second kind of
matching conditions is also being handled. This implementation implies that the adapted
system matrix L remains symmetric. Let us stress that the changed coefficients ”1“ do not
disappear. Since these coefficients then define the matrices K1 and K2 for the corresponding
temperature vectors u1 and u2, respectively.
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Discrete time integration of ODEs can then be achieved using the standard time stepping
methods, introduced in Section 2.1. Besides the EE method we consider here the IE and CN
scheme for the numerical solution of the underlying model problem. For time discretisation,
we define uniform time intervals Ik = [tk, tk+1] and set t0 = 0 for subdividing the complete
integration time [0, tF ].

Explicit Euler Method Applying the fundamental theorem of calculus and the left-hand
rectangle method for the left-hand side and right-hand side, respectively, of (6.31) including
the uniform time step size τ = tk+1 − tk and using the notations u(tk) = uk, w(tk) = wk

results in the EE scheme

uk+1 = (I + τL)uk + τKwk (6.33)

with k ∈ {0, . . . , F −1}, the identity matrix I ∈ RN×N and given data u0 = u(0), w0 = w(0).
Due to the fact that the values uk and wk are known, the computation of the corresponding
values uk+1 at time level k + 1 can be done by simple matrix-vector multiplication.

From Section 2.1.2 it is known that the stability properties of the EE scheme remain
unrestricted if w is linearly dependent on the temperature, which is the case here. The
following time step size restriction on τ holds:
Proposition 6.2. The numerical stability of the EE method (6.33) is guaranteed for

(i) in 2D: τ ≤ 2h2

max(a) max
(

8, 6 + αAh

λ̃

) =: τmax,2D

(ii) in 3D: τ ≤ 2h2

max(a) max
(

12, 10 + αAh

λ̃

) =: τmax,3D

where a is the thermal diffusivity of the materials (varies on location), αA the heat transfer
coefficient, h the uniform grid size and λ̃ the thermal conductivity of the upper ground.
Proof. Let us consider the two-dimensional model problem. First, we recall the adapted
Laplacian matrix L, extended from Figure 6.3. Using the mentioned first order spatial
discretisation (6.24) one obtains

L = 1
h2



za a a

a −4a a a

a −4a a a
. . . . . . . . . . . .

a −4a 0 a

a 0 za a a

a a −4a a a
. . . . . . . . . . . . . . .



with z = −3− αAh

λ̃
(6.34)
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It should be noted that the thermal diffusivity a is not constant, in particular, the value
depends on material properties and varies in relation to the grid points. According to the
Gershgorin’s circle theorem [100] we have

%(L) ⊆

λ ∈ C :

∣∣∣∣∣∣λ+
(

3 + αAh

λ̃

)
a

h2

∣∣∣∣∣∣ ≤ 2a
h2 ∨

∣∣∣∣∣∣λ+
(

3 + αAh

µ̃

)
a

h2

∣∣∣∣∣∣ ≤ 3a
h2

∨
∣∣∣∣λ+ 4a

h2

∣∣∣∣ ≤ 2a
h2 ∨

∣∣∣∣λ+ 4a
h2

∣∣∣∣ ≤ 3a
h2 ∨

∣∣∣∣λ+ 4a
h2

∣∣∣∣ ≤ 4a
h2


=

min

−8a
h2 ,

(
−6− αAh

λ̃

)
a

h2

 , 0
 (6.35)

where % denotes the spectrum of L. Due to the symmetry of L the eigenvalues are real and
their Euclidean norm corresponds to the largest eigenvalue in magnitude. To ensure stability
the following condition for τ must hold:∣∣∣∣∣1 + τ

h2 min
(
−8a,−6a− αAh

λ̃
a

)∣∣∣∣∣ ≤ 1 =⇒ τ ≤ 2h2

max(a) max
(

8, 6 + αAh

λ̃

)
︸ ︷︷ ︸

=:τmax,2D

(6.36)

The three-dimensional case is handled analogously.

Implicit Methods Applying the fundamental theorem of calculus, including the use of the
right-hand rectangle method or the trapezoidal rule for the integral approximation of the
right-hand side of (6.31), we obtain the implicit methods

(IE) : (I − τL)uk+1 = uk + τKwk+1 (6.37)

(CN) :
(
I − τ

2L
)
uk+1 =

(
I + τ

2L
)
uk + τ

2K
(
wk+1 +wk

)
(6.38)

where wk,wk+1 is given from data. As is known, both schemes are by theory unconditionally
stable and require the solution of a linear system for the values at the time level k + 1. The
CN method is slightly more intensive than IE, but provides second order convergence in time.

6.4 Numerical Methods
In this section we provide some details in order to properly apply the FEDRK scheme and the
KSMOR technique for the fundamental problem of heat evolution with internal and external
boundary conditions as well as source terms. First, some relevant properties of the FEDRK
method are highlighted that overcome the disadvantages of the FED method. Second, we
introduce the KSMOR methods in connection with the GES application for the first time.
Due to a large number of inputs (6.32) the use of KSMOR leads to new challenges. For this
reason, we follow a recent approach [232] to enhance the efficiency of the original technique.
Finally, the viability of the modified KSMOR method is demonstrated using a test example.
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6.4.1 Fast Explicit Methods
As presented in Chapter 3 fast explicit methods are highly efficient schemes that are well-
suited for parallel GPU processing and are simple to implement. In this class of methods,
FEDRK and RKL are of beneficial use because no additional damping is required. Both
techniques, which basically differ from a theoretical point of view, can be deemed as equally
competitive, so we focus on the FEDRK method which is solely applied in image processing.
The FED and FEDRK method are mainly used for image processing tasks, especially in

connection with homogeneous nonlinear and anisotropic diffusion filtering [6,108,116,118,294]
or image registration including force vectors [171,172]. However, the scheme can be applied
to many parabolic problems, including sources/sinks, also in an engineering context as
demonstrated in this chapter.

Fast Explicit Diffusion The FED method described in Section 3.4 can easily be used for
problems including sources as well as internal and external boundary conditions. Applying
FED to (6.31) yields a cycle of n explicit linear diffusion steps given by

uk+1,0 = uk,

uk+1,i+1 = (I + τ̃iL)uk+1,i + τ̃iKw
k, i = 0, 1, . . . , n− 1

uk+1 = uk+1,n

(6.39)

with τ̃i := cτi, c := 4
h2λmax

, and where the time step sizes are defined by

τ̃i := τmax
1

2 cos2
(
π 2i+1

4n+2

) , i = 0, 1, . . . , n− 1 (6.40)

The corresponding upper stability bound τmax is specified in the Proposition 6.2 above. It
should also be noted that the input wk is constant within the full cycle (6.39). Therefore,
the FED scheme inherits the same properties as the original method without existing an
input as shown in the following:
Proposition 6.3. Let L be the introduced adapted discrete Laplacian and let the time step
limit τmax satisfies the stability condition given in Proposition 6.2, then the FED scheme
(6.39) is stable with respect to the Euclidean norm.
Proof. One FED cycle can be represented recursively by

uk+1,1 = (I + τ̃0L)uk+1,0 + τ̃0Kw
k (6.41)

uk+1,2 = (I + τ̃1L)uk+1,1 + τ̃1Kw
k

= (I + τ̃1L)
[
(I + τ̃0L)uk+1,0 + τ̃0Kw

k
]

+ τ̃1Kw
k

= (I + τ̃1L) (I + τ̃0L)uk+1,0 + (I + τ̃1L) τ̃0Kw
k + τ̃1Kw

k (6.42)

and analogously for i = 2, . . . , n− 1 this finally leads to

uk+1,n =

n−1∏
i=0

(I + τ̃iL)

uk+1,0 +

n−1∏
i=1

(I + τ̃iL)

 g0 +

n−1∏
i=2

(I + τ̃iL)

 g1 + · · · (6.43)
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with gi = τ̃iKw
k. Using a perturbed vector uk+1,0

∗ of the initial values uk+1,0, the perturbed
solution is given as

uk+1,n
∗ =

n−1∏
i=0

(I + τ̃iL)

uk+1,0
∗ +

n−1∏
i=1

(I + τ̃iL)

 g0 +

n−1∏
i=2

(I + τ̃iL)

 g1 + · · · (6.44)

The combination of equations (6.43) and (6.44) with the perturbation error vector defined as
e = u∗ − u yields

en = uk+1,n
∗ − uk+1,n =

n−1∏
i=0

(I + τ̃iL)

(uk+1,0
∗ − uk+1,0

)
=

n−1∏
i=0

(I + τ̃iL)

 e0 (6.45)

with a perturbation e0 := (uk+1,0
∗ − uk+1,0). Consequently, the FED scheme is stable in the

Euclidean norm following (3.146).

In theory, the only requirement for the FED scheme is that the underlying matrix L must
be symmetric and negative semi-definite. Nevertheless, the FED scheme has two major
drawbacks from a numerical point of view. Although the internal stability of the scheme is
fulfilled when using the natural sequence τi and thus stable intermediate solutions are enabled,
FED is highly sensitive with respect to numerical rounding errors. Thus, a rearrangement of
varying time steps is required in order to avoid serious accumulation of rounding errors. As
a consequence, such a rearrangement can yield highly unstable intermediate solutions and
therefore the input wk should be kept constant within one cycle (6.39) (updating after a full
cycle). For this reason, the well-performing FEDRK scheme is better suited for solving GES.

Fast Explicit Diffusion Runge-Kutta In order to reduce numerical rounding errors and
simultaneously to increase the approximation quality we apply the FEDRK method, cf.
Section 3.4.7. Another advantage over FED is that FEDRK causes less computational effort
due to the use of nonvarying time step sizes, since I + τL must be computed only once.
For time-independent inputs, i.e. w(t) ≡ w, both methods obviously give identical results.
In contrast to FED, the FEDRK scheme only uses stable time steps and ensures internal
stability so that strong numerical rounding errors can be avoided. As a result, the time step
sizes do not require a rearrangement and the input wk can be updated within a cycle. Based
on these properties, the proposed FEDRK scheme is highly beneficial. To use FEDRK with
inner updates of the input, we recall the recursive form (3.196). Finally, the cyclic FEDRK
scheme for the m-th cycle with cycle length n is given by

um,k+1 = αk

[
(I + τL)um,k + τKwm,k

]
+ (1− αk)um,k−1, k = 0, . . . , n− 1

n =


√

3tF
τmaxM

+ 1
4 −

1
2

, τ = 3tF
Mn(n+ 1) , αk = 4k + 2

2k + 3 , um,−1 := um,0

wm,k := wm(ck), ck+1 = αk

(
ck + 3tF

Mn(n+ 1)

)
+ (1− αk)ck−1, c0 = c−1 = 0

(6.46)
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where M is the number of outer FEDRK cycles, tF the stopping time and wm,k is the input
at the increment parameter ck of the m-th cycle. Considering the GES application, the
FEDRK scheme (6.46) is inherently stable in the Euclidean norm when the EE scheme is
stable. Let us note again that increasing the number of cycles, whereby n becomes smaller,
improves the accuracy of this method.
We point out that the fast explicit methods such as FED and FEDRK have a natural

weakness. The methods perform inefficiently for highly nonuniform meshes, especially when
very small grid widths arise. This is based on the fact that the (minimum) spatial mesh width
and the allowed time step size of explicit methods are coupled. In this chapter, however, it is
sufficient to consider (relatively) uniform grids in the context of the GES application.

6.4.2 Implicit Methods

The IE and CN method are implicit schemes and result in a system of linear equations. More
precisely, (6.37) and (6.38) can be expressed as a linear system

Ax = b (6.47)

using the notations A = I − τL, b = uk + τKwk+1 for the IE method as well as A = I − τ
2L,

b = (I + τ
2L)uk + τ

2K(wk+1 + wk) for the CN scheme. The underlying constant matrix
A ∈ RN×N is symmetric, positive definite and also large, sparse and structured.

The linear system (6.47) can be solved with sparse direct and sparse iterative solvers, see
Section 2.2. In doing so, it will be interesting which of the two solvers is more efficient for the
GES application considered here. In case of iterative solvers such as CG and PCG, the optimal
selection of the parameters, more precisely the relative residual ε and the drop tolerance γ,
must be investigated experimentally. Another interesting aspect from a numerical point of
view is the effect on the iterative solver’s performance when the current heat distribution is
used as the start initialisation, in simple terms by x0 = uk, within CG and PCG instead
of the common choice x0 = 0. In principle, the latter initialisation appears logical if two
successive approximations uk and uk+1 do not differ strongly, which is to be expected for
linear heat equations for smaller time step sizes τ .
Other techniques such as MG methods may also be used for solving (6.47) efficiently.

As already mentioned, their implementation is a rather delicate and quite elaborate, and
basically such methods are typically superior for discretised elliptic boundary value problems.
Otherwise, due to the large variety of different MG methods it is beyond the scope of this
work to investigate the use of those methods here.

6.4.3 Adapted KSMOR Technique

The implicit methods have to handle large sparse systems, in which the computational
costs directly depend on the data size. A potential alternative to implicit solvers are MOR
techniques as already demonstrated for the PSC application in Chapter 5. Since the underlying
ODE system (6.31) is large, the use of the BT method is not preferable for reasons of efficiency.
In addition, due to the inclusion of internal and external boundary conditions in connection
with extensive computational costs for solving an eigenvalue problem, the MCR technique is
also impractical and will not be considered further here.
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As stated in Section 6.3.2 and 6.3.3, the original system is built on a large-scale input.
Unfortunately, a large number of inputs is a major challenge when using the KSMOR
technique. To overcome this problem, we propose an adapted KSMOR? method that is used
in a similar way to the recent SVD-based method [232]. Within the scope of this work, this
issue is addressed very detailed in this section, with the practicability is tested at hand an
example. Using this test example, we will compare both KSMOR variants with the POD
method (introduced in Section 4.6) for dealing with dynamical systems with a large number
of inputs.

Krylov Subspace Model Order Reduction As explained in Section 4.5, moment matching
techniques approximate the moments of the system’s transfer function and assuming zero
initial condition u(0) = 0. Therefore, by use of the coordinate transformation ũ(t) = u(t)−u0

the original MICO2 system (6.31) can be translated into ˙̃u(t) = Lũ(t) + Lu0 +Kw(t)
ỹ(t) = ũ(t) + u0, ũ(0) = 0

(6.48)

where the nonzero initial condition now appears on the right-hand side of the ODE system.
The transformed system (6.48) equipped with zero initial conditions can be rewritten as ˙̃u(t) = Lũ(t) + K̃w̃(t)

ỹ(t) = ũ(t) + u0, ũ(0) = 0
(6.49)

with K̃ = [K,Lu0] and w̃(t) = [w(t), 1]>. Applying the Laplace transform to the system
(6.49) and assuming that the inverse (sI − L)−1 exists, we obtain

Ũ(s) = (sI − L)−1K̃W̃ (s)
Ỹ (s) = (sI − L)−1K̃W̃ (s) + u0

s = H(s)W̃ (s) + u0

s

(6.50)

where the transfer function H(s) = (sI−L)−1K̃ is expressed by the input W̃ and the output
Ỹ in the frequency domain. The key idea of KSMOR is based on moment matching, whereby
the k-th moment of the transfer function is given here via mk(σ) = (L−σI)−(k+1)K̃. In order
to avoid numerical problems the projection matrices are chosen as biorthogonal matrices
W>V = I. In doing so, the one-sided Arnoldi approach is applied by means of W = V , which
amounts to construct an orthogonal basis using the input block Krylov subspace

V = span
(
(L− σI)−1K̃, (L− σI)−2K̃, . . . , (L− σI)−qK̃

)
(6.51)

Due to the fact that K̃ ∈ RN×(p+1) is a matrix, the projection matrix V ∈ RN×r with
dimension r = (p+ 1)q is computed by the block Arnoldi algorithm [238], and the reduced
system leads to  ˙̃ur(t) = Lrũr(t) + K̃rw̃(t)

ỹr(t) = V ũr(t) + u0, ũr(0) = 0
(6.52)

2 In this work, we are generally interested in the complete (temperature) distribution so that the output
vector y(t) is of full dimension, which is a difference to many other works found in the literature.
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where Lr = V >LV ∈ Rr×r, K̃r = V >K̃ ∈ Rr×(p+1). Then the reduced system can be
efficiently solved by using an implicit time integration scheme in combination with a direct
solver and an LU factorisation. After computing the solution of the reduced model (6.52)
the original solution can be recovered via ũ ≈ V ũr and u(t) = ũ(t) + u0.

Remark 6.6. As a result of the underlying stable dynamical system built on the negative
definite matrix L, the one-sided KSMOR method, i.e. W = V , preserves the stability of the
reduced system, cf. Lemma 4.1.

A parameter still to be determined is the choice of the expansion point σ. The underlying
heat evolution is characterised by a rather slow dynamic, so approximating the system at the
frequency σ = 0 is a natural choice. In particular, the inverse (L− σI)−1 does not exist for
σ = λi, where λi corresponds to an eigenvalue of L.

Block Arnoldi For the construction of the Krylov subspace

range(V ) = Kq
(
(L− σI)−1, (L− σI)−1K̃

)
(6.53)

the included inverse (L − σI)−1 leads anew to the task of solving large sparse systems of
linear equations. This requires the application of sparse direct or sparse iterative solvers as
previously stated. In this chapter we focus on the MOR technique itself, therefore we apply
the sparse direct solver as this gives the most accurate representation. Analogous to the SISO
system, see Section 4.5, the Arnoldi algorithm with W = V computes an orthonormal basis
using the (modified) Gram-Schmidt method. For MIMO systems the input Krylov subspace
is simply replaced by the input block Krylov subspace with multi-dimensional input matrix
K̃. The corresponding algorithm of the one-sided Krylov method for MIMO systems using
the input block Krylov subspace is shown in Figure 6.4. The underlying construction of V
has to deal with orthogonalisation processes. Typically, there can be a significant loss of
orthogonality due to round-off errors as an orthogonalisation algorithm progresses. In order
to address this orthogonality problem and to achieve a stable procedure that improves the
moment matching accuracy, a reorthogonalisation of a new computed block with respect to
all previous blocks is performed, see step 2e) in Algorithm 6.1.

Dealing with MIMO systems has the consequence that the dimension of the reduced order
model is significantly larger compared to SISO systems, since the Krylov subspace (6.53) has
to contain all the information from the individual Krylov subspaces corresponding to the
columns generated by K̃. Consequently, the computational costs of the KSMOR method
increase both for the offline as well as for the online phase.

Remarks on the Reduced Solution Based on the interior GES matching conditions and
their associated calculations of fictitious values at the interfaces, the reduced solution ũr of
(6.52) must be re-enlarged in each time step into the original dimension by means of

ũ ≈ V ũr (6.54)

Because the projection matrix V is not sparse the matrix-vector multiplication (6.54) increases
the computational costs significantly in each iteration. For this reason, we strive to avoid
large dimensional projection matrices for the GES application.
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Algorithm 6.1 One-sided Krylov subspace method for MIMO systems using input matrix
Input: Matrix L; input matrix K; Krylov subspace order q; expansion point σ

Output: V = [V1, . . . , Vq]

1.) Set i = 1

a) V1 = (L− σI)−1K

b) QR factorisation: Q1R1 = V1

c) V = [Q1]

2.) Iterate for i = 2, . . . , q

a) Vi = (L− σI)−1Qi−1

b) Vi = Vi − V
(
V >Vi

)
c) QR factorisation: QiRi = Vi

d) V := [V,Qi]

e) Reorthogonalise V

Figure 6.4: The one-sided Krylov subspace method for constructing the projection matrix
V considering MIMO systems using the input block Krylov subspace. QR factorisations are
used within the algorithm that reflect the modified Gram-Schmidt process. Assuming the
input matrix contains p inputs, the reduced model is of order r = pq.

In order to overcome this issue more efficiently, it could be useful to use approaches such as
the discrete empirical interpolation method [60] that deal with such problems in the nonlinear
regime. However, this is not investigated in this chapter.

Treatment of a Large Number of Inputs A significant weakness of KSMOR arises when
dealing with dynamical systems with large-scale inputs. To retain high computational
efficiency the KSMOR techniques typically require a relatively small number of inputs. The
efficiency limitations caused by the large-scale input can be explained as follows: first, a large
number of inputs leads to higher computational costs when constructing the Krylov subspace
(6.51) within the offline phase. Second, every input eventually needs to be expanded in terms
of several moments, so that the order of the reduced system grows significantly with the
number of inputs and thus the online costs increase.

In general it is assumed that the number of inputs is quite small and usually independent
of the fineness of the grid. However, the GES application discussed in this chapter cannot
guarantee this feature. In particular, the input size depends on the user-defined dimensions
of the heat tank and the incorporated insulating walls, which have to fulfil the matching
conditions described in Section 6.2.2. Because of these considerations, the KSMOR method
should not be applied directly and a change in method for dealing with large-scale inputs is
absolutely necessary.
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At present, there exists no universal procedure to tackle the problem of a large input
dimension, and how to deal with this issue also generally depends on the model problem.
Some investigations [38,41,88,90,140,164,232] have been done in the past. The proposed
methods [41,88,90,164] are based on the approximation of the input matrix using the dominant
singular vectors of the transfer function at the steady state. Usually, these approaches are
limited to systems with a high correlation between the various inputs and outputs, which
is not the case for thermal systems as considered here. Another method is based on the
superposition principle to linear systems introduced in [38]. The reduction is performed
separately using each column of the input matrix so that the original system is approximated
by the summation of the output responses of each of the single-input reduced systems. As
a result, the original MIMO system is decoupled into separate single-input systems. The
superposition approach leads to the fact that the same number of moments is matched and a
reduced system of the same order is built. Consequently, in order to attain the same accuracy
this technique reduces the computational complexity for systems with a large number of
inputs compared to the standard KSMOR method. Nonetheless, the superposition principle
for systems with large-scale inputs remains computationally intensive for practical purposes.

The recently proposed approach by [232] is similar to ours. The basic idea is to use an input
matrix reduction based on a snapshot matrix linked with computing the dominant singular
vectors. We also make use of snapshots here, but in order to reduce the computational costs
we neglect the SVD and use the snapshot matrix directly. The idea of using the snapshot
matrix in a direct manner is applied to a nonlinear-input problem in [140], where the authors
proposed to use the weighted average of these snapshots to form a single input. However,
this is not an appropriate approach for this application.

Modified Krylov Subspace Model Order Reduction (KSMOR?) Let us now propose a
heuristic procedure to resolve the problem of a large number of inputs which incorporates
some technical novelties. In doing so, we only adapt the input matrix explicitly for the
subspace construction procedure. For the description let us return to the ODE-system (6.31),
in particular to the part of the control term. For the sake of simplicity, we represent the
p-dimensional input w and the corresponding input matrix K ∈ RN×p by

w(t) =
(
w1(t), . . . , wp(t)

)>
, K =


| | |
K1 K2 · · · Kp

| | |

 (6.55)

with Ki ∈ RN for i = 1, . . . , p. As is known, the costs of building the Krylov subspace
V = Kq((L−σI)−1, (L−σI)−1K) for large values p are immense. For motivation, we assume
that the input is time-independent, i.e. w(t) ≡ w, then the input matrix K from (6.55) could
be assembled via

Kw =: K̂ ∈ RN (6.56)

which would be accompanied by very low computational costs for generating

V̂ = Kq
(
(L− σI)−1, (L− σI)−1K̂

)
(6.57)
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Before proceeding with our approach, we state the relations (6.55)-(6.57) in an exemplary
manner below.

Example 6.1. Let us explain the formulation (6.56) in more detail using the following simple
example: for instance, the underlying dynamical system has the form

u̇1(t) = u1(t) +w1(t)
u̇2(t) = u2(t) +w2(t)
u̇3(t) = u3(t) +w3(t)
u̇4(t) = u4(t)

=⇒ u̇(t) = Lu(t) +Kw(t) (6.58)

with the matrices and the vectors

L =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , K =


1 0 0
0 1 0
0 0 1
0 0 0

 , u(t) =


u1(t)
u2(t)
u3(t)
u4(t)

 , w(t) =


w1(t)
w2(t)
w3(t)

 (6.59)

Assuming the input is time-independent, i.e. w(t) ≡ w, the system (6.58) can be expressed as

u̇(t) = Lu(t) +


1 0 0
0 1 0
0 0 1
0 0 0



w1

w2

w3

 = Lu(t) +


w1

w2

w3

0

 = Lu(t) + K̂ŵ (6.60)

with the adapted input

K̂ =


w1

w2

w3

0

 ∈ R4, ŵ = 1 (6.61)

This implies that the input of the reformulated system (6.60) is accordingly one-dimensional
instead of three-dimensional as before. Consequently, the costs of the subspace construction
(6.57) can be reduced within the KSMOR method, which are directly depending on the size of
the underlying input matrix.

However, when executing the latter approach the discrepancy between the subspaces V and
V̂ may be large due to the dimensional difference between the matrix K and the vector K̂.
This means, that the dimensional difference can be comprehended as a kind of information
loss and affects the moment matching process.
Therefore, we modify this idea for simplification by building a compromise between V

and V̂ , and construct a new input matrix K ∈ RN×s, where the columns lie in a known
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s-dimensional subspace of K with s � p. In doing so, the realisation of this procedure is
based solely on snapshots from a numerical simulation of the dynamical system in a similar
manner to the POD technique. More precisely, using snapshot data

W =
[
w(t1),w(t2), . . . ,w(ts)

]
=



w1(t1) w1(t2) · · · w1(ts)
w2(t1) w2(t2) · · · w2(ts)
w3(t1) w3(t2) · · · w3(ts)

...
...

...
wp(t1) wp(t2) · · · wp(ts)


∈ Rp×s (6.62)

generated by a simulated model, we can construct the snapshot-based input matrix K and
the subspace V via K = KW and V = Kq((L − σI)−1, (L − σI)−1K), respectively. The
original KSMOR method is then continued with K and w(t). This means, the methods
KSMOR and KSMOR? differ only in the computation of the subspaces V and V , which are
based on the corresponding input matrices. The structure of the algorithm for the proposed
KSMOR? method is sketched in Figure 6.5.

Remark 6.7. For the proposed approach a numerical simulation is necessary, since the
temperature vectors u1 and u2 within (6.32) are not known a priori.

Remark 6.8. The viability of our proposed method is only justified experimentally in this
section. We will show this, first on a simple test example and second with a synthetic as well
as real-world GES experiment. In doing so, the presented results are analysed both at the
steady state solution and during the transient simulation.

Full Model

Simulation of Full Model for Creating Snapshot Data W

Computing Input Matrix K

Constructing Subspace V

Model Order Reduction onto Full Model

Simulation of Reduced Model

Figure 6.5: Structure of the algorithm for the KSMOR? method.
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For the sake of completeness, let us briefly describe the differences to the approach performed
in [232] in our GES setting. The authors also use the snapshot matrix (6.62), but in an
indirect manner. In doing so, l singular vectors belonging to the largest singular values
are calculated, which subsequently assembling the appropriate columns of the input matrix.
Thus, the eigenvalues λi and eigenvectors φi of

Y = W>W ∈ Rs×s (6.63)

are computed, and the corresponding singular vectors are given by

wi = Wφi√
λi
, i = 1, . . . , s (6.64)

Finally, the dominant l modes with l ≤ s form the matrix

W = [w1,w2, . . . ,wl] (6.65)

so that the snapshot-based input matrix is constructed by means of K = KW ∈ RN×l. It
should be noted that the latter ansatz of computing the input matrix based on snapshots is
not performed in exactly the same way in [232], since they have a different model problem as
considered here. In the following we will abbreviate the approach as KSMOR-SVD.
In contrast to KSMOR? the latter approach has two drawbacks, mainly in terms of

computational costs and degrees of freedom. On the one hand, the additional solution of
an eigenvalue problem of size s× s increases the computational costs. On the other hand,
the number of dominant singular values used is not evident and is set manually depending
on the problem being solved. Therefore, a good trade-off between the number of snapshots
selected and the dominant singular values is essential.
Let us end this section with a numerical evaluation on a test example. In doing so, we

compare the numerical solutions that are generated by the methods KSMOR? and KSMOR-
SVD. In addition, we also study the performance of the POD technique, which can be easily
employed without further modifications for problems with many inputs.

Example 6.2. Apart from the numerical comparison, we describe here more detailed the
realisation of KSMOR? at hand on a selected numerical experiment. In particular, we
demonstrate the general viability of our approach, which makes it a candidate for solving
large-scale dynamical systems with a large number of inputs in an efficient way.

For the sake of completeness and to shed light on the technical differences between the
approaches, we first analyse the quality of the solutions obtained through CN, KSMOR and
KSMOR? according to the L2-error (6.77) recorded at a specific time tF . Second, we compare
the performance of KSMOR? with that of KSMOR-SVD and POD.

For an evaluation, let us consider a two-dimensional linear heat equation on a rectangular
domain Ω = [0, 3/2]× [0, 2] equipped with time- and space-dependent boundary conditions. The
diffusion problem reads as

∂tu (x, y, t) = a∂xxu (x, y, t) + b∂yyu (x, y, t) + f (x, y) , (x, y, t) ∈ Ω× [0, tF ] (6.66)

where the fluxes and the source term are given by

a = 1
18π2 , b = 1

2π2 , f (x, y) = 2 cos
(
3
√

2πx
)

cos
(√

2πy
)

(6.67)
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The corresponding external boundary conditions are fixed to

g1 (y, t) = u (0, y, t) = cos
(√

2πy
)

g2 (y, t) = u
(
3/2, y, t

)
= cos (πy) e−t + cos

(
9
√

2
2 π

)
cos

(√
2πy

)
h1 (x, t) = u (x, 0, t) = sin (3πx) e−t + cos

(
3
√

2πx
)

h2 (x, t) = u (x, 2, t) = sin (3πx) e−t + cos
(
3
√

2πx
)

cos
(
2
√

2π
)

(6.68)

with the initial condition specified as

u (x, y, 0) = sin (3πx) cos (πy) + cos
(
3
√

2πx
)

cos
(√

2πy
)

(6.69)

The semi-discrete system can be expressed in the form

u̇(t) = Lu(t) + g1 +Kg2g2(t) +Kh1h1(t) +Kh2h2(t) + f , u(0) = u0 (6.70)

or as a transformed system with zero initial conditions

˙̃u(t) = Lũ(t) + K̃w̃(t), ũ(0) = 0 (6.71)

with input matrix and input

K̃ =
[
g1,Kg2 ,Kh1 ,Kh2 ,f , Lu

0
]
, w̃(t) =

(
1, g2(t),h1(t),h2(t), 1, 1

)> (6.72)

Furthermore, we set h = 0.02, τ = 0.001 and tF = 5. In this case, the number of grid
points amounts to N = 7676 and the individual input dimensions result in g2 ∈ R101 and
h1, h2 ∈ R76 with Kg2 ∈ R7676×101 and Kh1 , Kh2 ∈ R7676×76, respectively. In total, the input
and the corresponding input matrix are of size w̃ ∈ R256 and K̃ ∈ R7676×256, respectively.

To compare the performances of KSMOR and KSMOR?, the result of the CN method
is used as a reference solution. We note that the computational costs of CN for the fixed
parameters amount to 5.97 seconds. Obviously, the number of subspaces used within the
KSMOR methods is still a free parameter and influences the approximation quality as well
as the efficiency of the numerical scheme, see Figure 6.6. As expected, KSMOR leads to
a reduction of the L2-error as the number of subspaces is increased, but the computational
costs are significantly higher compared to CN. Even if the subspace order q = 1 is used, the
costs are almost twice as high. Thus, this experiment clarifies the inefficiency of KSMOR for
problems with a large number of inputs. Conversely, the proposed KSMOR? method can be
applied to tackle this problem. For the application of this approach, snapshot data are required
for g2, h1 and h2, while the other inputs are constant and can be ignored. To construct the
snapshot-based input matrix K ∈ R7676×(3s+3) and the corresponding subspace V , the model
is simulated using the CN method for τ = tF

s and the input data is stored as

W1 =
[
g2(t1), . . . , g2(ts)

]
, W2 =

[
h1(t1), . . . ,h1(ts)

]
, W3 =

[
h2(t1), . . . ,h2(ts)

]
(6.73)

with W1 ∈ R101×s and W2, W3 ∈ R76×s. The snapshot-based matrix is then determined via

K =
[
g1,Kg2W1,Kh1W2,Kh2W3,f , Lu

0
]

(6.74)
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Figure 6.6: Results for the test example (6.66)-(6.69) at a fixed time tF = 5. Comparison of
the L2-error (left) and the CPU time (right) between KSMOR and KSMOR? for a different
number of Krylov subspaces Kq. The reference solution is computed with the CN method.
In experiments we study different numbers of snapshots s = 2, 5, 10 used for the KSMOR?
method, which is abbreviated as KSMOR?s. Obviously, the KSMOR? technique is much more
efficient compared to the original KSMOR method.

After the construction of V = Kq((L − σI)−1, (L − σI)−1K) with σ = 0, the dimension
reduction is applied to the original system (6.71). For the sake of convenience, the latter
snapshot dependence on s is abbreviated to KSMOR?s. The results for KSMOR?2, KSMOR?5
and KSMOR?10 shown in Figure 6.6 clearly demonstrate a much higher efficiency compared to
CN and KSMOR. For example, using KSMOR?5 with q = 10 results in an excellent trade-off
between quality and efficacy and can save approximately 95% and 80% of the CPU time in
relation to KSMOR and CN, respectively.

When using the KSMOR-SVD method, the snapshot data are first assembled into one
matrix, i.e.

W =
[
Kg2W1,Kh1W2,Kh2W3

]
(6.75)

Based on (6.63)-(6.65) the l dominant singular vectors form then the matrix W ∈ RN×l with
l ≤ s. Afterwards, the reduced input matrix can be assembled by means of

K =
[
g1,W ,f , Lu0

]
∈ R7676×(l+3) (6.76)

and the subspace V is constructed. First, Figure 6.7 shows an investigation of KSMOR-SVD
to (6.66)-(6.69) in terms of varying numbers of snapshots s = 2, 5, 10 combined with a complete
spectrum l = 3s. The method produces results with the same accuracy compared to KSMOR?,
but at the same time causes to higher computational costs. In Figure 6.8 the experiment is
repeated with s = 5 for a different number of dominant singular values l = 2, 5, 10, 15, whereby
l = 10 gives the best trade-off. Based on these investigations a comparison between KSMOR?
and KSMOR-SVD with s = 5, l = 10 is visualised in Figure 6.9. For this test example, our
proposed KSMOR? approach is most efficient. In conclusion, both approaches are absolutely
beneficial for problems with large-scale input and can remarkably reduce the computational
costs compared to the original KSMOR method as well as the implicit CN scheme.
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Figure 6.7: Results for the test example (6.66)-(6.69) at a fixed time tF = 5. Comparison
of the L2-error (left) and the CPU time (right) using KSMOR-SVD for a different number
of Krylov subspaces Kq. The reference solution is computed with the CN method. In
experiments we study different numbers of snapshots s = 2, 5, 10 used for the KSMOR-SVD
method. Let us mention, that we apply a complete SVD (l = 3s), without selecting dominant
singular values. The results are equally accurate compared to KSMOR?, but also linked to
higher computational costs, cf. Figure 6.6.
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Figure 6.8: Results for the test example (6.66)-(6.69) at a fixed time tF = 5. Comparison of
the L2-error (left) and the CPU time (right) using KSMOR-SVD for s = 5 and a different
number of Krylov subspaces Kq. The reference solution is computed with the CN method.
In total, the spectrum amounts to l = 15. In this experiment we study different numbers of
dominant singular values l = 2, 5, 10, 15 used for the KSMOR-SVD method.

Lastly, we also examine the POD method, which can be easily used in case of large-scale
inputs. The results presented in Figure 6.10 demonstrate that the POD technique cannot
maintain the performances of KSMOR? and KSMOR-SVD. In order to be competitive in this
case, POD requires a very large number of snapshots.
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Figure 6.9: Results for the test example (6.66)-(6.69) at a fixed time tF = 5. Comparison of
the L2-error (left) and the CPU time (right) between KSMOR? and KSMOR-SVD for s = 5
snapshots and a different number of Krylov subspaces Kq. The reference solution is computed
with the CN method. The number of dominant singular values for KSMOR-SVD is fixed to
l = 10. Obviously, the KSMOR? technique is more efficient compared to the KSMOR-SVD
method. Nevertheless, both approaches can significantly reduce the computational costs
compared to the original KSMOR method and the implicit CN scheme.
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Figure 6.10: Results for the test example (6.66)-(6.69) at a fixed time tF = 5. Comparison of
the L2-error (left) and the CPU time (right) using POD for a different number of dominant
singular values l. The POD method is studied using various snapshots s = 50, 100, 500, 1000.
The reference solution is computed with the CN method. The results are less accurate
compared to KSMOR? and KSMOR-SVD, although a relatively large number of snapshot
data are applied.
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6.5 Comparison of Solvers for Long-Term GES Simulation
The numerical long-term simulation of the GES model considered in this chapter, is mainly
based on the explicit FEDRK method, the implicit sparse direct/iterative solver and the
KSMOR? technique. In the following we evaluate the numerical solvers by two different
experiments and assess their performance in terms of approximation quality and CPU time.
As methods of choice we consider:

1. EE method. The upper bound τmax is given by Proposition 6.2.
2. FEDRK scheme. τmax is known, the number M of cycles is the only tuning parameter.
3. Sparse direct solver applied to the implicit CN method (called direct CN ). The internal

MATLAB-function decomposition3 including a Cholesky factorisation is used. The
tuning parameter is the time step size τ .

4. Sparse iterative solver using CG or PCG applied to the implicit CN method (called
iterative CN ). User-defined parameters are the time step size τ and the tolerance
ε > 0, the latter parameter is required to terminate the algorithm using the relative
residual (2.136). The preconditioners IC or MIC are employed for PCG. Another tuning
parameter γ > 0 is required, which corresponds to a numerical fill-in strategy IC(γ) or
MIC(γ). Furthermore, the initial condition within CG and PCG is a user-defined issue,
so we test the current heat distribution as initialisation x0 = uk.

5. KSMOR? method. This technique can be tuned by the number of projection subspaces
Kq and snapshot data W = [w(t1),w(t2), . . . ,w(ts)] used. The sparse direct solver is
applied to compute the Krylov subspace generated by the Block Arnoldi method. The
reduced model is then solved for a selected τ via the direct CN scheme.

To evaluate the accuracy of the methods the solution of the EE scheme is used as reference.
Based on a simplified GES application without a source term, we first examine the optimal
selection of the parameters within the methods used. Second, we validate the mathematical
model on real data including sources. In addition, a uniform grid with ∆x = ∆y = h is
considered in all experiments and the evaluation is measured by the L2-error defined as

L2(u, ũ) =

√√√√ N∑
i=1

(ui − ũi)2 (6.77)

between the analytical/reference solution u and the numerical solution ũ.

Remark 6.9. All experiments were done in MATLAB R2018b with an Intel Xeon(R)
CPU E5-2609 v3 CPU. All CPU times presented incorporate the modelling (linear system,
preconditioning, reduction) and the numerical resolution. Therefore, the performances are
easily comparable.

6.5.1 Geothermal Energy Storage Simulation without Source
First, we consider the simulation of a GES under real-world conditions without sources/sinks.
The heat tank is assumed to be placed underground, closed on its sides and upwards, compare
3 The same performance is also achieved by the object-oriented factorisation of SuiteSparse [74] in

undocumented tests.
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Figure 6.1. The lower part is open to accommodate the heat delivery. The thermophysical
parameters of the materials used are assumed to be constant and are given in Table 6.1. In
this setup, we specify that the upper and the lower ground have the same material properties,
and further parameters are αc = 0.5 and αA = 10. As mentioned in Section 6.2.3, the external
conditions are given via time-dependent Robin (6.6), time- and space-dependent Dirichlet
(6.8) and time-dependent Dirichlet boundary conditions (6.10) with b1 = 0.5 and b2 = 10.

For the evaluation, a two-dimensional rectangular domain is considered given by [0, 15]×
[0, 10] in meters, whereby the heat tank with size 5× 1.5 meters has an installation depth
of 1.5 meters. The thickness of the insulation is determined to 12 centimetres. Moreover,
a mid-size model problem is considered by setting h = 0.04 centimetres (N = 94376 grid
points) and the stopping time is assumed to be tF = 2.609 · 106 seconds (around 30 days).
As initialisation, the temperature is fixed to 30 degrees for the heat tank, 20 degrees for the
insulation and 10 degrees otherwise.
Let us first discuss the spatial dimensioning of the underlying model. The original geo-

thermal field is given in 3D, but it is clear that its fundamental simulation is computationally
more expensive than a two-dimensional model. In fact, however, a full three-dimensional
simulation is not necessary, which can be explained as follows: the considered model problem
is isotropic, homogeneous and linear, and almost symmetric with respect to the spatial
environment. As a result, the physics of the three-dimensional continuous model can be
reproduced by considering a cross section of a 3D geothermal field in 2D. Besides the purely
physical justification, we confirm the reduction in the spatial model dimensions by comparing
the results in 2D and 3D using the EE method. Later it will also be shown that the approach
is justified by taking real data into account.

Results on EE According to Proposition 6.2, the time step size restriction for the two-
dimensional model problem is given by τmax,2D ≈ 417.44 seconds. On this basis, 6250
iterations have to be performed to reach the final stopping time tF , whereby the corresponding
computational costs of EE amount to 11.1 seconds. In contrast, the upper stability bound of
the underlying three-dimensional problem is determined with τmax,3D ≈ 278.145 such that
9380 iterations are required for the simulation. In this case, the discrete domain is defined by
N = 35485376 grid points, which enlarges the size of the system matrix considerably and
thus increases the computational effort. In consequence, the entire simulation requires around
20000 seconds which is considered to be unsatisfactory. As expected, Figure 6.11 confirms
the use of a two-dimensional model as a substitute. First, it shows almost equal results when
comparing the 2D and 3D model, in which the latter is evaluated via a cross section along the

Table 6.1: Thermophysical properties of the materials involved for the synthetic experiment.

Material/Layer Conductivity Density Specific heat Diffusivity
λ (W/(m·K)) ρ (kg/m3) c (J/(kg·K)) a (m2/s)

Water-saturated soil 2.3 2100 1143 9.5821 · 10−7

Insulation walls 0.03 100 1000 3 · 10−7
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Figure 6.11: Results of the GES experiment without source: visual representation of the 2D
and 3D solution at tF = 2.609 · 106 by applying the EE method for h = 0.04. (a) Result of
the 2D model after 6250 iterations with τmax,2D = 417.44. (b) Result of the 3D model after
9380 iterations with τmax,3D = 278.145, visualised in form of a cross section along the middle
of the 3D-GES. (c) Temporal temperature profile S1 fixed in the centre of the heat tank. (d)
Temporal temperature profile S2 fixed in the centre between heat tank and bottom border.

middle of the 3D-GES. Second, a comparison of two artificial temporal temperature profiles
S1 and S2 demonstrate the expected similarities of the 2D and 3D simulation results. In
the further course, we therefore compare the proposed methods using the 2D-GES model on
both synthetic and real data.
Let us emphasise that for the evaluation of the solvers no analytical solution is available

and a reference solution is required. In general, the EE method provides the most precise
solution that can be used as reference solution for a fair comparison in this section. To this
end, we assess the L2-error at a fixed moment in time and the corresponding CPU time
between the solutions of EE and the tested solver. In doing so, we do not consider a full
error computation along the temporal axis because the methods yield completely different
sampling rates, which potentially leading to unfair comparisons.
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Results on Direct CN In a first test, we examine the performance using the sparse direct
solver applied to IE and CN. The results illustrated in Figure 6.12 demonstrate the expected
superiority of the CN scheme due to its second order accuracy in time. For this reason, the
IE method is no longer considered here for the GES application.

Results on Iterative CN We now study the iterative solver and its parameters involved.
For this purpose, the influence of the stopping criterion on the accuracy and the CPU time is
analysed in Figure 6.13. The value ε = 10−4 provides the best trade-off and is assumed to
be fixed for all subsequent tests. Due to the size of the system matrix a preconditioning is
suitable. By consideration of the specified preconditioners, Figure 6.14 shows that MIC(10−2)
outperforms both CG and IC(10−3). Based on this investigation, we use MIC(10−2) for all
further experiments.
Since the heat conduction flow modelled by a linear heat equation is rather slow, it is to

be expected that the approximation uk and uk+1 do not differ strongly. Therefore, it may
be useful to employ the last heat distribution uk, as initialisation within the CG and PCG
method, for the computation of the new iterate uk+1. This strategy is investigated in Figure
6.15 for the iterative CN solver. Using the strategy x0 = uk is highly beneficial for the CG
method and can significantly improve the efficiency. In contrast, no substantial improvements
are achieved for the MIC preconditioner.

Results on FEDRK We now experimentally confirm the considerations mentioned in Section
6.4.1. For realisation the differences between the basic scheme and the adapted versions
using inner updates of wm,k are examined in Figure 6.16. In case of the basic scheme we
only consider the FEDRK technique, since both methods yield equally numerical solutions.
Let us first note that FED and FEDRK using inner updates cannot deliver the same output
anymore because the schemes built on different integration points. For convenience only we
denote the adapted versions in this paragraph as FED-updated and FEDRK-updated. As
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Figure 6.12: Results of the two-dimensional GES experiment without source: comparison
of the L2-error and the corresponding CPU time between direct IE and direct CN at
tF = 2.609 · 106 for h = 0.04. The reference solution is computed with the EE method. The
CN scheme clearly outperforms the IE method in terms of efficiency.
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Figure 6.13: Results of the two-dimensional GES experiment without source: comparison
of the L2-error and the corresponding CPU time for iterative CN using the CG method and
different values ε at tF = 2.609 · 106 for h = 0.04. The reference solution is computed with
the EE method. The choice ε = 10−4 provides the best trade-off.
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Figure 6.14: Results of the two-dimensional GES experiment without source: comparison
of the L2-error and the corresponding CPU time using iterative CN at tF = 2.609 · 106 for
h = 0.04. The stopping criterion is fixed to ε = 10−4. The reference solution is computed
with the EE method. Left: Iterative CN is computed using IC-preconditioner for different
drop tolerances γ. The choice γ = 10−3 provides the best trade-off. Right: Iterative CN is
computed by IC(10−3) and MIC-preconditioner for different drop tolerances γ. A value for
γ ∈ [10−3, 10−2] is optimal.
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Figure 6.15: Results of the two-dimensional GES experiment without source: comparison of
the L2-error and the corresponding CPU time for iterative CN at tF = 2.609 ·106 for h = 0.04
using the initialisation x0 = uk. The stopping criterion is fixed to ε = 10−4. The reference
solution is computed with the EE method. Left: Iterative CN is computed by CG. Right:
Iterative CN is computed by MIC(10−2). The strategy x0 = uk is a highly useful tool for the
effectiveness of the CG method. Contrary, no significant improvements are achieved for MIC.
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Figure 6.16: Results of the two-dimensional GES experiment without source: comparison
of the computed L2-error (left) and the corresponding CPU time (right) between FEDRK,
FED-updated and FEDRK-updated for a different number of cycles M at tF = 2.609 · 106

for h = 0.04. The reference solution is computed with the EE method. To ensure numerical
stability within the FED method we apply a Leja-ordering with κ = 7, see [107]. Inner
updates significantly improve the performance of both schemes. However, FED-updated may
lead to highly unstable intermediate solutions and therefore also affects the final solution,
especially if a small number of M cycles is used. Contrary, FEDRK-updated is absolutely
stable and causes lower computational costs than FED-updated.
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expected, FED-updated is highly unstable, especially for a small number of cycles M . The
latter fact is due to unstable intermediate solutions as a consequence of a rearrangement,
where we used the Leja ordering with κ = 7 as suggested in [107]. This implies the use of a
relatively large cycle Number M , nevertheless, a stable solution is not guaranteed. In contrast,
FEDRK-updated provides stable solutions and is additionally much more efficient. Using
the basic FEDRK scheme is less computationally intensive than using FEDRK-updated, at
the cost of a significant loss of performance. The lack of efficiency between the two FEDRK
versions is also presented in Figure 6.17.

Results on KSMOR? Due to external, lateral time- and space-dependent Dirichlet boundary
conditions and internal matching conditions, the model has to deal with many inputs. In
particular, the input variable results in w̃(t) ∈ R1106, with u2(t) ∈ R852 and Tg(t) ∈ R251,
while u1 does not have to be taken into account due to the identical material properties of
both soils (upper and lower ground).

The performance of the original KSMOR technique for q = 2, 3, 5 and σ = 0 is illustrated
in Figure 6.18. The reduction technique provides very reasonable results, but is also linked
to extremely high computational costs. This is hardly surprising as a common weakness of
KSMOR is the handling of a large-scale input.
To overcome this limitation, we apply the KSMOR? approach proposed in Section 6.4.3.

Initially, we fix q = 2 and vary the size of the snapshot data as visualised on the left in Figure
6.19. Obviously, increasing s leads to better approximations. However, a saturation occurs
for high values s, for which s = 20 provides the best performance trade-off. In a second test,
we increase the number of subspaces q if s = 20 is used, cf. on the right in Figure 6.19. As
expected, increasing moment matching improves the accuracy. Unfortunately, large values
q are associated with high computational costs. Overall, KSMOR? is much more efficient
compared to the original KSMOR method.
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Figure 6.17: Results of the two-dimensional GES experiment without source: comparison
of the L2-error and the corresponding CPU time between FEDRK and FEDRK-updated at
tF = 2.609 · 106 for h = 0.04. The reference solution is computed with the EE method. The
scheme FEDRK-updated clearly outperforms their counterpart without inner updates.
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Figure 6.18: Results of the two-dimensional GES experiment without source: comparison of
the L2-error and the corresponding CPU time using KSMOR at tF = 2.609 · 106 for h = 0.04.
KSMOR is used by constructing subspaces with w̃(t) ∈ R1106, K̃ ∈ RN×1106 and σ = 0 for
q = 2, 3, 5. The reference solution is computed with the EE method. The results are accurate,
but also linked to extremely high computational costs.
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Figure 6.19: Results of the two-dimensional GES experiment without source: comparison
of the L2-error and the corresponding CPU time using KSMOR? at tF = 2.609 · 106 for
h = 0.04. The reference solution is computed with the EE method. Left: KSMOR? is
applied with q = 2 and a varying size of snapshot data for s = 5, 10, 20, 50. Right: KSMOR?
is used by constructing subspaces with s = 20 for q = 2, 3, 5. The best compromise in
performance is achieved with s = 20 and q = 3. Compared to the original KSMOR method
the approximations are computed dramatically fast.
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Comparison of the Solvers Finally, a full comparison of the methods tested – direct CN,
iterative CN using CG with x0 = uk as well as MIC, FEDRK with inner updates and
KSMOR? – is shown on the left in Figure 6.20.

Solving the CN method with the sparse direct solver is more efficient than with the iterative
solver. Only for more accurate solutions, which correspond to small time step sizes τ , both
implicit solvers perform comparably well due to a faster convergence of the iterative solver.
The KSMOR? technique, in which the parameters s = 20 and q = 3 are fixed, achieves

the worst performance in comparison to the other methods. In contrast to the investigated
test example in Section 6.4.3, the selected number of snapshots has to be relatively large. In
combination with the number of Krylov subspaces linked to expensive offline precomputations
and the additional enlargement of the reduced solution (6.54), the KSMOR? approach cannot
maintain the efficiency of the other solvers.

The results on the left in Figure 6.20 clearly demonstrate the superior efficiency of FEDRK,
which outperforms all other methods. This is mainly explained by two facts: first, FEDRK is
an explicit method and is built on cheap matrix-vector multiplications. Second, the input
w(t) can be updated within one cycle. And exactly this update process, including the external
and internal boundary conditions, that is of great importance for an accurate approximation.

Finally, the performances of the proposed methods should also be considered using a finer
grid, especially in the case of explicit methods in which the associated stability requirement
depends quadratically on the spatial grid size. Apart from that, the computational cost of
solving linear equations belonging to very large systems is also of interest. Therefore, we
rerun the experiment for h = 0.01 which corresponds to N = 1502501 grid points. In this
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Figure 6.20: Results of the two-dimensional GES experiment without source: comparison
of the L2-error and the corresponding CPU time between iterative and direct CN, KSMOR?

as well as FEDRK at tF = 2.609 · 106. The iterative methods are based on CG (with
initialisation x0 = uk) and MIC(10−2), and the KSMOR? is performed with q = 3 and
s = 20. The reference solution is computed with the EE method. Left: Proposed methods
applied for h = 0.04 (N = 94376 grid points). Right: Proposed methods applied for h = 0.01
(N = 1502501 grid points). The FEDRK method clearly outperforms all other methods, even
for finer grids.
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case, the upper bound is given by τmax,2D ≈ 26.09 and the application of EE requires 100000
iterations, resulting in a CPU time of around 2800 seconds. The final outcome, illustrated on
the right in Figure 6.20, gives exactly the same rating as before. Here as well, the FEDRK
method achieves significantly higher efficiency. Apart from that, the result of KSMOR?,
shows another interesting fact. For the considered grid, the selected number of snapshots
and subspaces is not sufficient to converge towards the EE solution. This demonstrates that
the values for q and s are related to the fineness of the grid and the definition of a fixed set
of parameters for our application cannot be done directly without further investigations.

From an engineering point of view, however, a more detailed investigation of the dynamic
behaviour of the underlying model shows that small values s and q are deemed appropriate. A
visualisation of the results between the absolute differences of EE and KSMOR? for h = 0.04
and a different number of s and q is visualised in Figure 6.21. As expected, increasing the
number of snapshots s or subspaces q leads to better results in terms of the maximum error
and the L2-error. An individual change of s and q leads to a kind of saturation behaviour, so
that both parameters require relatively large values for an accurate approximation.
Furthermore, a reasonable number of snapshots s is significantly important because less

data lead to strong artefacts at the interfaces where the matching conditions between different
materials have to be fulfilled. This observation is a consequence of the proposed input matrix
reduction, which clarifies the interdependence between snapshot data and the errors at the
interfaces. Due to the fact that small values of s and q only influence the area around the
interfaces (cf. Figure 6.21), which is generally negligible for a reasonable reproduction of the
GES model, the use of KSMOR? appears to be significantly appropriate.
Based on the presented findings, we investigate the performance of FEDRK, direct CN

and KSMOR? with s = 10 and q = 2 on real data.

Remark 6.10. The same interdependence between snapshot data and errors at the interfaces
as specified above can also be determined when using the KSMOR-SVD approach.

6.5.2 Geothermal Energy Storage Simulation on Real Data

Lastly, we present a comparison concerning a full error computation along the temporal axis
using the two-dimensional GES simulation including sources. The evaluation is based on real
data, in particular matching of temperature probes of a test field and its thermal behaviour

Table 6.2: Thermophysical properties of the materials involved for the real-world data
scenario from the present test field.

Layer Conductivity Density Specific heat Diffusivity
λ (W/(m·K)) ρ (kg/m3) c (J/(kg·K)) a (m2/s)

Lower ground 0.5 1900 750 3.51 · 10−7

Upper ground 1.7 2000 1250 6.8 · 10−7

Insulation walls 0.035 40 1500 5.83 · 10−7
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Figure 6.21: Results of the two-dimensional GES experiment without source: visual com-
parison (absolute differences) of the results between EE and KSMOR? for varying number of
s and q at tF = 2.609 · 106 for h = 0.04 with τ = 2609. The visualisations are ordered from
left to right by s = 5, 10, 20 and from top to bottom via q = 2, 3, 5, 10. Special care
must be taken in rating the visualisations, because no uniform temperature scaling between
the absolute differences of the solutions is given: we still opted to represent the solutions in
this way, as the differences between the errors that occur are too large to employ a uniform
scaling. For a better comparison, the L2-error is also displayed. Increasing the number of
snapshots s or subspaces q, better results in terms of the maximum error and the L2-error
are obtained. Obviously, a reasonable selection of s is of great importance, since less snapshot
data lead to strong artefacts at the interfaces.
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given in 3D, cf. Figure 6.22. In this way, the experiment will also demonstrate that the
proposed linear two-dimensional model is sufficient to reproduce the heat exchange correctly.

For this experiment, the thermophysical parameters of the materials used are assumed to
be constant and are given in Table 6.2. The other parameters are fixed to αc = 0.1, αA =
10, b1 = 0.5 and b2 = 12. The two-dimensional rectangular domain is defined via [0, 20]× [0, 8]
in meters, whereby the size of the heat tank amounts to 10× 1.2 meters. The installation
depth and the insulation thickness are determined to 70 and 12 centimetres, respectively. In
addition, the thermal energy

Q = mc∆T (6.78)

with the specific heat capacity c and the mass m of the fluid and temperature change of the
inlet and return temperatures ∆T is given over a period of tF = 21 · 106 seconds (around
243 days). The parameters are fixed to c = 1.16 and m = 850 and the source is simply
distributed over three pipe levels inside the heat tank. The initialisation shown in Figure
6.23 is computed by the Laplace interpolation, as described in Section 6.2.4, based on given
temperature probes.

In order to validate the correct heat exchange behaviour, we initially apply the EE method
to the two-dimensional GES model. The visualisation of the real temperature probe B1 (3rd

Figure 6.22: Position of the temperature probes. Left: Plan view of the GES and the
installation location of the temperature probes. Right: Cross section of a 3D-GES and the
installation height of temperature probes. Each probe has several measuring points.
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Figure 6.23: The initial heat distribution computed via Laplace interpolation using the
initial temperature given from temperature probes at time t = 0, see Section 6.2.4. The
interpolation task is performed with suitable boundary conditions.
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from the top, see Figure 6.22) compared to EE is shown exemplarily on the top left in Figure
6.24. The result clearly demonstrates the appropriate use of a two-dimensional simulation of
a 3D-GES model. Note that one may use any working probe to come to the same conclusion,
and we show other corresponding results in this section as well.
Building on the validation, the performances of FEDRK, direct CN and KSMOR? with

q = 2 and s = 10 are identified using the temperature probe B1 by two variants. First, a
visual assessment of the approximations compared to real data is illustrated in Figure 6.24. In
the experiment documented in Figure 6.24 we give quickly computed approximations (CPU
time of 10 seconds) in comparison with EE (CPU time of 69 seconds). Second, the relation
between the L2-error (along the temporal axis) and the corresponding CPU time is evaluated
in Figure 6.25. In both investigations, the FEDRK scheme is still considered as a superior
method, which provides a fast computation combined with high accuracy. Nevertheless,
the KSMOR? method is also very efficient. As in the previous tests the direct CN method
provides the worst performance.
Finally, the FEDRK scheme and the KSMOR? method are tested on the temperature

probe B6 (5th from the top) and B9 (2nd from the top), see Figure 6.26. Both approaches
achieve the desired reproduction of heat distribution behaviour compared to the real data.
However, the KSMOR? results may also exhibit oscillations, especially in a local area around
the interfaces between different materials. This illustrates again that the numerical solutions
obtained by KSMOR? are locally representative away from the interfaces if q and s are chosen
in a competitive range in our application, whereas the FEDRK method correctly reproduces
the global behaviour of the underlying GES model.

6.6 Summary

In this chapter we have demonstrated that a model based on a linear heat equation equipped
with external and internal boundary conditions is suitable to represent the long-term behaviour
of the GES in a realistic way. Furthermore, we have shown experimentally using real-world
data from a three-dimensional test field that a two-dimensional GES simulation is sufficient to
tackle the long-term simulation task. As a result, the computational costs can be extremely
reduced and a long-term simulation is practicable.
In view of the possible candidates for an efficient numerical simulation, a state-of-the-art

method that appears to be attractive is the KSMOR scheme. For our practical problem we
have seen that this scheme is not easy to apply, since the underlying discretised model is
linked to a large number of inputs due to the modelled boundary conditions. Independent of
the numerical approach, it has also been noticed that the presence of sources and boundary
conditions makes the long-term simulation issue in practice delicate to handle. With these
fundamental difficulties, we illuminated in detail that it is not straightforward to device an
efficient and accurate enough numerical scheme.
In total, we have demonstrated the practical usability of the FEDRK scheme and the

KSMOR variant introduced here as KSMOR? which turn out to be the two most powerful
methods among the schemes for our GES application. The explicit FEDRK scheme borrowed
from image processing, is highly efficient due to cost-effective matrix-vector multiplications
and the natural frequent update process of the input within the approach. In addition to this,
it is by construction of the FEDRK method also possible to use modern parallel architectures
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Figure 6.24: Results of the GES experiment for temperature probe B1 (3rd from the top):
visual comparison (along the temporal axis) between the real temperature from 3D test
field and the approximations of the 2D model computed by the proposed solvers. A special
emphasis on this is that the results generated by FEDRK, direct CN and KSMOR? cause
computational costs of 10 seconds, whereas the EE scheme produces substantial costs of 69
seconds. Left top: Result of EE after 35839 iterations for τmax,2D = 588.23. Right top:
Result of direct CN for τ = 44854, which leads to 470 iterations. Left bottom: Result
of KSMOR? with s = 10 and q = 2 for τ = 13176, which corresponds to 1600 iterations.
Right bottom: Result of FEDRK for M = 220 cycles, which yields 4840 iterations. The
EE method applied to the two-dimensional model problem reproduces a highly accurate
approximation with regard to real data given from the three-dimensional test field. The
numerical solvers FEDRK and KSMOR? are extremely efficient and achieve almost the same
output as EE. On closer inspection, the FEDRK scheme provides the best trade-off as it is
less cost-intensive due to matrix-vector multiplications and additionally produces a better
accuracy based on a more frequent update process. In contrast, the direct CN method cannot
maintain the performance of the other two methods.
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Figure 6.25: Results of the GES experiment for temperature probe B1 (3rd from the top):
comparison of the L2-error (along the temporal axis) and the corresponding CPU time
between FEDRK, direct CN and KSMOR? with q = 2 as well as s = 10. The simulation
time amounts to tF = 21 · 106 seconds and the grid size is fixed to h = 0.04 (N = 100701
grid points). The reference solution is computed with the EE method. The FEDRK scheme
is the most efficient solver. For the sake of completeness, the RKL scheme is also tested that
even provides a slightly better performance than FEDRK.

like GPUs, which can even further increase the efficiency. We would also like to point out
here that to our best knowledge, this work provides the first application of FEDRK outside
the field of image processing. Our proposed efficient KSMOR? technique uses an input matrix
reduction via snapshots and generates a small-sized reduced order model, which can then be
resolved easily using the direct solver. We illustrated and analysed the viability of KSMOR?,
which is in this form a new variant of existing schemes. At this point it should be stressed
that compared to previous works in the area of KSMOR schemes, we have made our method
here explicit in all the details and important parameters, which is through the computational
experience gained in the course of this chapter highly relevant for practical application.
Apart from the fact that FEDRK and KSMOR? are predestined solvers for tackling the

long-term simulation of a GES, we also specifically discussed the local and global behaviour
of their solutions. In summary, we (absolutely) suggest the use of the FEDRK scheme when
the global behaviour of solutions is of interest. Let us also mention that this may be preferred
in the framework of our application as this takes into account general configurations, also at
interfaces, to measure temperatures with probes in realistic environments. Otherwise, both
techniques perform equally effective for local areas, but generally not at interfaces.
Overall, we have precisely analysed the features of all the applied solvers and at the

same time illustrated their properties using different experiments. For these reasons the
comprehensive work given here provides, from our point of view, a reasonable overview of
the state-of-the-art numerical solvers of various scientific areas and can be very helpful in
solving similar problems in many engineering fields.
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Figure 6.26: Results of the GES experiment for temperature probe B6 (5th from the top)
and temperature probe B9 (2nd from the top) on the left and right side in this figure,
respectively: visual comparison (along the temporal axis) between the real temperature from
3D field and the approximations of the 2D model computed by FEDRK as well as KSMOR?.
The computational costs of the computed approximations of both methods amount again
to 10 seconds. Top: Result of FEDRK for M = 220 cycles, which gives 4840 iterations.
Bottom: Result of KSMOR? with s = 10 and q = 2 for τ = 13176, which corresponds to
1600 iterations. Both methods reproduce the same temperature behaviour compared to the
real data. However, the corresponding temperature of the KSMOR? scheme can oscillate
highly sensitive, especially in a local area around the interfaces between different materials.
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Chapter 7

Efficient Linear Osmosis Filtering

In this chapter we are interested in an efficient computation of the PDE osmosis model
based on fast explicit methods. The osmosis process, which is based on the nonsymmetric
linear drift-diffusion equation, is widely used for image processing tasks and typically has
to deal with large images. Hence, an efficient numerical scheme is of essential importance.
However, even nowadays it is still a challenge to find a method that combines accuracy and
computational efficiency, while preserving physical properties from the continuous setting
also in the discrete case.
In this context, standard methods show their weaknesses in terms of inefficiency or

inaccuracies, which we will demonstrate by our experiments. In particular, the IE method is
being unconditionally stable and produces accurate approximations, but requires a complete
LU factorisation which is extremely costly for large images. Unfortunately, iterative Krylov
methods such as the BiCGSTAB method, which have to solve large sparse nonsymmetric
linear systems, suffer from its poor convergence rate and thus cannot provide a desirable
fast computation. In contrast, operator splitting schemes enable the handling of tridiagonal
systems, which can be solved highly efficiently, whereas causing unfavourable splitting errors
even for small time step sizes. The splitting errors that occur have a strong influence on the
accuracy of the approximation, so that postprocessing steps are often required in order to
obtain a desired image quality.

To address these issues we propose to use FEDRK and RKL for osmosis-based image pro-
cessing tasks, as fast explicit methods are based solely on simple matrix-vector multiplications
and are well-suited for parallel GPU processing. As a result, the osmosis approximation ob-
tained is computed both accurately and extremely efficiently, and is a significant improvement
over the state-of-the-art-methods. However, when using fast explicit methods the preservation
of the natural osmotic properties and also the numerical stability cannot be guaranteed from
a theoretical point of view. So far, these aspects can only be verified experimentally by our
numerical tests. In addition, we will show that the fast explicit methods are well applicable
for anisotropic osmosis filtering which is a useful extension of linear (isotropic) osmosis.
Within the framework of linear osmosis we analyse the use of the KSMOR method as an

alternative to the IE method. The projection onto a reduced order model achieves an essential
efficiency gain. Nonetheless, for large images this technique inherits worse performance due to
convergence problems of the iterative BiCGSTAB method itself. Apart from that important
properties such as stability and positivity preservation can only be ensured experimentally.

For the performance evaluation of the solvers, we conduct a thorough numerical study and
analyse the schemes using image processing applications. The simple compatible and the
more appealing quasi-compatible case are considered, in which visual computing problems
such as image cloning and shadow removal with different resolutions are discussed.
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The FEDRK method is well-known in image processing. Remarkably, it appears that
the fast explicit methods are still underestimated, especially when nonsymmetric matrices
such as for the osmosis process are considered, as in this situation the internal stability
cannot be guaranteed from a theoretical point of view. Nevertheless, FEDRK and RKL are
ideally suited to problems with nonsymmetric matrices provided that the hyperbolic-parabolic
equation possesses dominant diffusion and the corresponding system matrix is close to a
normal matrix, which is generally fulfilled for the osmosis model.

Chapter Organisation After a brief introduction of linear osmosis filtering in Section 7.1,
we recall the general framework in a continuous and discrete setting in the Sections 7.2 and
7.3. As our work relies on related numerical methods, we introduce and discuss in Section
7.4 the use of numerical solvers for solving the underlying osmosis model. Afterwards, we
present in Section 7.5 a detailed comparison of the solvers in terms of accuracy and efficiency
using different scenarios related to image processing tasks in which the osmosis process is
normally applied. Finally, the chapter ends with a summary.

7.1 Introduction

Diffusion processes are a frequent and successful tool in image processing and computer
vision such as image denoising, image inpainting, centroidal Voronoi tessellation or shape
analysis (cf. Chapter 5). In order to deal with more sophisticated imaging tasks where the
steady state is nonflat, e.g. image editing or shadow removal, a modified version of the
diffusion equation can be used. To achieve those nontrivial steady states the original PDE is
extended by a drift term. The resulting drift-diffusion equation is known as linear osmosis
filter and is closely related to its transport phenomenon in nature. In fact, osmosis describes
the transport of liquid concentrations through a semipermeable membrane where different
steady state concentrations can arise on both sides. This natural process can be transferred
to image processing, where image intensities correspond to concentrations and the membrane
represents the boundary between two neighbouring pixels. In other words, osmosis can be
seen as the nonsymmetric counterpart to diffusion, in which the nonsymmetry arises due
to the nonsymmetric permeability of osmosis in both directions. As a result, the osmosis
processes enable nontrivial steady states by steering the user-defined drift term (gradient
data) and thus can tackle different interesting imaging problems. Remarkably, the osmosis
model remains completely linear, although the diffusion equation incorporates an additional
drift term that is of particular importance from a theoretical and numerical point of view.
We mention that the linearity results due to the use of time-independent drift term structure
which differs from nonlinear diffusion.

Based on the fact that osmosis is basically derived from diffusion, both show similarities
in their physical processes, so that essential properties also hold for the osmosis model. In
particular, the resulting drift-diffusion equation is in divergence form so that the average grey
value as well as the nonnegativity of the initial image is preserved. A first comprehensive
description of the linear osmosis model with special attention to the continuous setting
was given in [295]. In an accompanying paper [289] also the fully discrete counterpart was
provided and studied.

The most important feature of the osmosis model is its evolution towards a desired steady
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state. Consequently, the steady state solution of the linear osmosis process is of interest.
This suggests to solve the corresponding elliptic PDE directly, as proposed in [72], which
represents the osmotic steady state solution of the parabolic PDE. However, the elliptic
problem has infinitely many solutions, so the solution of the parabolic-based problem is
preferred that is positive and has the same average grey value as the initial data. Another
significant aspect of osmosis is that the process converges towards a multiplicatively rescaled
version of the initial drift term data. This implies that the osmosis model provides invariance
under multiplicative illumination changes and can also adapt the contrasts of input images
that differ significantly. This makes the osmosis filter to be a powerful tool for visual
computing applications and overcomes those weaknesses that occur when using the well-
known Poisson image processing [215]. In addition, the osmosis model is flexible and also
enables an anisotropic extension [205] as has already been done in connection with diffusion
filtering. The anisotropic modelling incorporates local directions depending on the image
orientation and can improve the linear osmosis, in particular blurring artefacts, but can itself
lead an over-smoothing effect. Recently, another application based on osmosis was presented
which uses the osmosis energy term to derive a new variational model for nonlinear image
fusion [204]. Within the process, the osmosis energy used is related to the osmotic steady
state which is a minimiser of a quadratic energy functional.
Apart from the continuous framework, the numerical solution of the nonsymmetric semi-

discrete system, especially for large images is of practical interest. As shown in [289], the
EE and IE methods preserve the fundamental osmotic properties, whereby EE being subject
to a time step size restriction and IE being unconditionally stable. In order to efficiently
compute the osmotic steady state the IE scheme combined with the BiCGSTAB method
is proposed [289]. Although BiCGSTAB is often used to solve nonsymmetric large and
sparse linear systems, the solver loses efficiency due to its poor convergence rate within
the osmosis framework. Therefore, efficient operator splitting methods in the form of ADI
schemes have been considered [53]. Unfortunately, the Peaceman-Rachford splitting fulfils
the osmotic properties only for sufficiently small time step sizes. In contrast, the Douglas
splitting provides unconditional stability, whereas nonnegative off-diagonal entries cannot be
guaranteed. To overcome these problems the additive and multiplicative operator splitting
schemes for osmosis have been proposed [206] which are unconditionally stable and causes
extremely low computational costs. Unfortunately, these splitting methods cause a natural
splitting error, which means that the time step size must be relatively small in practice.

Before we discuss in more detail the numerical realisation, let us give a short description
about the theoretical background of linear osmosis filtering. The classic theory of linear
osmosis was introduced by Weickert et al. [289,295]. In the works both the continuous and
the discrete setting is studied.

7.2 Continuous Linear Osmosis Filter

Let Ω ⊂ R2 be a bounded rectangular domain with boundary ∂Ω and u, v, f : Ω→ R+ be
positive greyscale images. Moreover, a drift vector field d : Ω→ R2 is given. Then a linear
osmosis filter computes iteratively a version u(x, t) of f(x) by solving the drift-diffusion
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(advection-diffusion) equation

∂tu(x, t) = ∆u(x, t)− div
(
d(x)u(x, t)

)
, on Ω× (0, tF ] (7.1)

with initial condition
u(x, 0) = f(x), on Ω (7.2)

and typical homogeneous Neumann boundary conditions, specifying a vanishing flux to the
image boundary

〈∇u(x, t)− d(x)u(x, t),n〉 = 0, on ∂Ω× (0, tF ] (7.3)

where 〈·, ·〉 denotes the Euclidean scalar product and n the outer normal vector.
In the continuous setting it can be shown that any solution of (7.1)-(7.3) preserves

the average grey value and the positivity. Furthermore, if the vector field d in the form
d(x) = ∇(ln(v(x))) then the steady-state solution is a minimiser of a so-called osmosis energy
functional. The essential theoretical properties are summarised in theorem below:

Theorem 7.1. ( [295]) The solution of the linear osmosis process (7.1)-(7.3) with positive
initial image f and drift vector field d satisfies the following properties:

(a) The preservation of the average grey value:

1
|Ω|

∫
Ω

u(x, t) dx = 1
|Ω|

∫
Ω

f(x) dx, ∀t > 0 (7.4)

(b) The preservation of the positivity:

u(x, t) > 0, ∀(x, t) ∈ Ω× (0, tF ] (7.5)

(c) The convergence to a nontrivial steady state:
If d satisfies d(x) = ∇(ln(v(x))) with some positive image v. The steady state equation

∆u(x, t)− div
(
d(x)u(x, t)

)
= 0 (7.6)

is equivalent to the Euler-Lagrange equation of the energy functional

Ev(u) :=
∫
Ω

v(x)

∥∥∥∥∥∥∇
(
u(x)
v(x)

)∥∥∥∥∥∥
2

dx (7.7)

Moreover, the steady state solution is given by w(x) = µf

µv
v(x), where µf and µv denote

the average grey values of f and v, respectively.

The positivity preservation of osmosis filtering is a weaker property compared to pure
diffusion filtering which fulfils the maximum-minimum principle. Remarkably, osmosis
implies a nontrivial steady state solution, whereas diffusion converges to flat steady states.
Consequently, the steady state of the linear osmosis model depends on the drift term and
enables the drift vector field to be used as a model parameter to steer the process towards a
desired steady state solution. This is an interesting aspect for image processing applications.
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Since d contains the gradient information of ∇(ln v), osmosis filtering can be used as
process of data integration such as image editing and image fusion. In addition, d = ∇(ln v)
is invariant under multiplicative rescaling of v. It should be mentioned that linear osmosis
is not limited to the greyscale case. To deal with colour images, the osmosis process is
performed using individual drift vector fields in each RGB channel separately.

The described linear drift-diffusion process enables to integrate gradient data information
based on its drift term in a simple way without requiring any nonlinearities. This is
advantageous from a computational and practical point of view. Nevertheless, the linear
setting also has general limitations in its model solution. For instance, shadow removal
applications generally require a postprocessing inpainting step in order to improve the output
of linear osmosis. To overcome this issue Parisotto et al. [205] introduce anisotropic osmosis
filtering that includes local directional structures via a modified tensor, and thus encodes
local directional information. This enhanced technique has also been employed in connection
with nonlinear diffusion filtering. However, anisotropic models are both theoretically and
numerically more demanding. From a numerical point of view, designing a suitable scheme
is not a trivial task as spatial discretisation should ensure that the underlying matrix has
nonnegative off-diagonals. Fortunately, the anisotropic tensor is only computed once with
respect to the initial image, so the model remains linear. We emphasise that the use of
anisotropic osmosis can lead to an over-smoothing effect.

Elliptic Steady State Obviously, when using osmosis filtering one is mainly interested in
the steady state solution. The osmotic steady state is given by the elliptic PDE

∆u(x, t)− div
(
d(x)u(x, t)

)
= 0 (7.8)

Thus, it appears to solve (7.8) directly in connection with homogeneous Neumann boundary
conditions by using numerical solvers for sparse linear systems. Compared to the time-
dependent parabolic equation (7.1), solving only one sparse linear system leads to lower
computational costs and, moreover, no setting of a stopping time is required. In this
framework, the authors [72] suggests to replace the global elliptic model by a local model in
which the data locality represents a region of interest. This local model can be solved highly
efficiently and leaves the region outside of the local part unaltered. This is beneficial, but
may also lead to some saturation effects.

However, it should be noted that the elliptic problem has infinitely many solutions, meaning
for any solution w(x), also cw(x) with some arbitrary constant c is a solution. Consequently,
the main information of a given v such as the average grey value gets lost. This suggests to
compute the steady state by solving the parabolic equation (7.1).

7.3 Discrete Linear Osmosis Filter

Building on the continuous model the fully discrete theory for osmosis filtering was studied
in [289]. For the discrete case we adopt the spatial finite-difference discretisation proposed
by Weickert et al. [295], and consider a discrete rectangular image domain Ω of size n×m.
Moreover, for a given uniform grid size h > 0, we denote by ui,j the approximated function
value of u at grid point xi,j = (xi, yj) = ((i− 1

2)h, (j− 1
2)h)), where i = 1, . . . , n, j = 1, . . . ,m.
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The numerical approximation of the given drift-diffusion equation

∂tu = ∆u− div(du) = ∂xxu+ ∂yyu−
(
∂x(du) + ∂y(du)

)
(7.9)

using standard finite difference spatial discretisation and setting d = (d1, d2)> yields

u′i,j = ui+1,j − 2ui,j + ui−1,j
h2 − 1

h

[
(du)i+ 1

2 ,j
− (du)i− 1

2 ,j

]
+ ui,j+1 − 2ui,j + ui,j−1

h2 − 1
h

[
(du)i,j+ 1

2
− (du)i,j− 1

2

]
= ui+1,j − 2ui,j + ui−1,j

h2 − 1
h

(
d1,i+ 1

2 ,j

ui+1,j + ui,j
2 − d1,i− 1

2 ,j

ui,j + ui−1,j
2

)
+ ui,j+1 − 2ui,j + ui,j−1

h2 − 1
h

(
d2,i,j+ 1

2

ui,j+1 + ui,j
2 − d2,i,j− 1

2

ui,j + ui,j−1
2

) (7.10)

The approximation of the drift vector field (d1[v], d2[v])> = ∇v
v for some positive image at

intermediate grid points is defined using upwind discretisation via

d1,i+ 1
2 ,j

= 2(vi+1,j − vi,j)
h(vi+1,j + vi,j)

, d2,i,j+ 1
2

= 2(vi,j+1 − vi,j)
h(vi,j+1 + vi,j)

(7.11)

and fulfil ∣∣d1(x)
∣∣ < 2

h
,
∣∣d2(x)

∣∣ < 2
h
, ∀x ∈ Ω (7.12)

The latter equations identify the osmosis process (semi-permeable membrane between neigh-
bouring pixels) and describe the transport of particles, here image intensities, depending on
the orientation. Notably, the model remains linear after introducing the drift term. Incorpor-
ating the still missing homogeneous Neumann boundary conditions correspond to mirror the
image at its boundaries and setting zero drift vector across the boundaries. Rearranging of
(7.10) subsequently gives

u′i,j = ui+1,j

 1
h2 −

d1,i+ 1
2 ,j

2h

+ ui−1,j

 1
h2 +

d1,i− 1
2 ,j

2h


+ ui,j+1

 1
h2 −

d2,i,j+ 1
2

2h

+ ui,j−1

 1
h2 +

d2,i,j− 1
2

2h


+ ui,j

− 4
h2 −

d1,i+ 1
2 ,j

2h +
d1,i− 1

2 ,j

2h −
d2,i,j+ 1

2

2h +
d2,i,j− 1

2

2h


(7.13)

If using now an N -dimensional vector u(t) ∈ RN that represents the unknown values (replace
double by single indexing, N = nm denotes the number of pixels), we end up with the
following semi-discrete system:

u̇(t) = Au(t), t ∈ (0, tF ], u(0) = f (7.14)
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where the matrix A ∈ RN×N is large, sparse and nonsymmetric based on the additional drift
term. This differs from its counterpart, diffusion filtering, which leads to symmetric system
matrices. Using the defined drift vector discretisation (7.11) ensures that the weights of the
neighbours of ui,j within the scheme (7.13) are positive and implies that the off-diagonals of
A are nonnegative.

As shown above, the continuous linear osmosis model preserves both mass and nonnegativity
and, in addition, creates a nontrivial steady state. These properties should also be valid in
the discrete case, which is a particularly important issue for the corresponding fully discrete
theory. As shown in [289], the osmotic properties can be achieved in complete analogy to the
continuous case built on Weickert’s discrete framework for diffusion filters [293] and can be
seen as the nonsymmetric counterpart.

Theorem 7.2 ( [289]). For a given f ∈ RN+ , consider the fully discretised problem

uk+1 = Puk, u0 = f , k ≥ 0 (7.15)

where the nonsymmetric matrix P ∈ RN×N is assumed to be irreducible, nonnegative with
strictly positive diagonal entries and with unit column sum, then the following properties hold:

(a) The preservation of the average grey value:

1
N

N∑
i=1

uki = 1
N

N∑
i=1

fi, ∀k > 0 (7.16)

(b) The evolution preserves positivity:

uki > 0, ∀i ∈ {1, . . . , N}, ∀k > 0 (7.17)

(c) There exists a unique steady state for k →∞ which is given by the eigenvector of P
associated with the eigenvalue 1.

The crucial point of the latter theorem lies in its generalisation. In fact, the important
properties for the discrete linear osmosis are ensured if the numerical scheme used fulfils the
four requirements of the corresponding matrix P , namely that all column sums of P are one,
P is nonnegative, P is irreducible and P has only positive diagonal entries. Furthermore, the
theorem is not based on a specific spatial discretisation.

7.4 Numerical Methods

In what follows we discuss the numerical realisation of the semi-discrete system (7.14) with
nonsymmetric system matrix A. As shown in [289] the EE and IE method fit this discrete
framework and, in particular, the implicit method remains unconditionally stable. In order
to improve the efficiency for large images, Parisotto et al. proposed to use operator splitting
methods as presented in [53, 206]. However, these numerical solvers suffer strongly from
efficiency or accuracy problems, and thus we will introduce the use of fast explicit methods
as well as MOR methods based on KSMOR.
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Discrete Time Integration Solving the arising ODE system (7.14) involves a temporal
discretisation and can be done with the time integration methods. According to Section 2.1,
the EE method is given by

uk+1 = (I + τA)uk (7.18)

and analogously the IE method

(I − τA)uk+1 = uk (7.19)

where τ > 0 is the time step size and index k denotes the approximation of uk = u(kτ) at
time kτ . Assuming that the matrix (I − τA) is invertible, both schemes (7.18) and (7.19)
can be expressed as

uk+1 = Puk (7.20)

with P := I + τA and P := (I − τA)−1 for the explicit and the implicit case, respectively.
The authors in [289] have shown that the EE and IE method fulfil the requirements of the
corresponding matrix P , which is summarised by the theorem as follows:

Theorem 7.3 ( [289]). For a given f ∈ RN+ , consider the semi-discretised problem (7.14)
where the nonsymmetric matrix A ∈ RN×N is assumed to be irreducible, with nonnegative
off-diagonal entries and zero-column sum. Then the following results hold:

(a) The EE scheme
uk+1 = (I + τA)uk (7.21)

satisfies the requirements for the discrete linear osmosis processes provided that

τ <
h2

|ai,i|
, ∀i ∈ {1, . . . , N} (7.22)

(b) The IE scheme
(I − τA)uk+1 = uk (7.23)

satisfies the requirements for the discrete linear osmosis processes for all time step sizes
τ > 0.

For both schemes, P is an irreducible, nonnegative matrix with strictly positive diagonal
entries and unit column sum so that the Theorem 7.2 holds true.

In image processing applications the grid size is fixed to h = 1. Thus, based on the
condition (7.12), the EE scheme preserves the positivity, the average grey value and converges
to its unique steady state for τ < 1

8 . More precisely, the latter condition on τ can be seen as
a natural stability criterion for which the discrete model preserves the fundamental physical
properties of the continuous osmosis model. We mention that this condition should not be
confused with numerical stability. Otherwise, the IE method is unconditionally stable (or
unconditionally positive), since any arbitrarily large time step sizes τ are allowed. Apart
from that, the second order CN method(

I − τ
2A
)
uk+1 =

(
I + τ

2A
)
uk (7.24)
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can also be used, but it can be shown that the osmotic properties are only fulfilled for
sufficiently small time step sizes.

Lemma 7.1. For a given f ∈ RN+ , consider the semi-discretised problem (7.14) where the
nonsymmetric matrix A ∈ RN×N is assumed to be irreducible, with nonnegative off-diagonal
entries and zero-column sum. Then the CN scheme (7.24) preserves the average grey value,
the positivity and converges to a unique steady state for τ < 2(max|ai,i|)−1, i = 1, . . . , N .

Proof. The CN scheme take the form uk+1 = Puk via

uk+1 =
(
I − τ

2A
)−1 (

I + τ
2A
)
uk (7.25)

where P = P−P+ with P− = (I − τ
2A)−1 and P+ = (I + τ

2A). Analogous to Theorem 7.3,
the matrix P− is strictly column diagonally dominant with nonpositive off-diagonal entries.
Consequently, P− is a nonsingular M -matrix and it holds that its inverse has only strictly
positive entries. Moreover, P− has unit column sums and the same holds true for its inverse.
Otherwise, the matrix P+ has unit column sum based on the zero column sums of A and
is only nonnegative for τ < 2(max|ai,i|)−1. As a result, the matrix multiplication P−P+ is
ensured to be nonnegative for τ < 2(max|ai,i|)−1. Finally, one can show that the unit column
sum is retained after the matrix multiplication P−P+.

Based on these observations, the IE method is preferred to solve the semi-discrete linear
osmosis problem (7.14) due to its unconditional stability. However, when dealing with large
images the direct solution of sparse linear systems becomes computationally intensive. Also
note that for colour images sparse linear systems have to be solved separately for each colour
channel. Therefore, the use of efficient sparse iterative solvers such as Krylov subspace
methods is required. Since the system matrix is nonsymmetric, CG and its preconditioned
variants IC and MIC are not useful. One of the most efficient and popular Krylov solver for
handling nonsymmetric matrices is the BiCGSTAB method cf. [178,237]. The BiCGSTAB
method was also used for the practical performance in [289].

7.4.1 Operator Splitting Schemes

The Krylov subspace solvers such as the BiCGSTAB method can cause high computational
costs for large images. To tackle this issue Parisotto et al. proposed the use of operator
splitting schemes to efficiently compute the numerical solution of the osmosis model [53, 206].
The dimensional splitting strategy implies the solution of only simple tridiagonal systems for
which efficient matrix factorisation techniques can be used. Unfortunately, this method class
is also confronted with problems, for instance natural stability restrictions or splitting errors.
Let us give a brief overview, we follow the work of Parisotto [203].

Basic Idea The splitting methods were developed simultaneously in the Soviet Union and
the USA around 1960s. Operator splitting has been well discussed and is a widespread
technique to solve complex problems. The class of operator splitting includes a variety
of approaches and often the same method is denoted by different names due to its wide
applicability. For a general overview of splitting methods we refer to [138].
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The idea behind the technique is that a complicated semi-discretised operator is split into
simpler operators, which are formally written as a sum. This means, the problem is split into
a set of simpler tasks called sub-problems, where each of them is of a type for which there
are simpler and more efficient solvers. Finally, an appropriate numerical scheme for each
sub-model is required, and the solutions of the schemes are combined to form a solution of
the original problem.

The splitting approach has several advantages, for example, the numerical method is gen-
erally more efficient, reduce memory requirements, can increase the stability range, and even
provide methods that are unconditionally stable. In contrast, the splitting implementation of
the operators can become cumbersome for complex model problems. Even more problematic is
that the operator splitting introduce a splitting error, which can be large and is related to the
selected time step size. For reducing the errors originating from these splitting mechanisms,
the time step size must normally be reduced. Overall, operator splitting schemes can be a
powerful tool for efficiently solving initial value problems, but their approximation quality
depends on the underlying model problem.

Alternating Direction Implicit In order to reduce the computational costs for solving the
semi-discretised problem (7.14), a splitting of the operator A into the sum A1 + A2 along
the space direction x and y is performed. The discretisation from (7.10) can be split by
Au = A1u+A2u into two one-dimensional problems

(
A1(u)

)
i,j

:= ui,j

− 2
h2 −

d1,i+ 1
2 ,j

2h +
d1,i− 1

2 ,j

2h


+ ui+1,j

 1
h2 −

d1,i+ 1
2 ,j

2h

+ ui−1,j

 1
h2 +

d1,i− 1
2 ,j

2h


(7.26)

and

(
A2(u)

)
i,j

:= ui,j

− 2
h2 −

d2,i,j+ 1
2

2h +
d2,i,j− 1

2

2h


+ ui,j+1

 1
h2 −

d2,i,j+ 1
2

2h

+ ui,j−1

 1
h2 +

d2,i,j− 1
2

2h


(7.27)

where A1, A2 are now tridiagonal operators. Again the grid size is fixed to h = 1. On this
basis, two ADI methods can then be formed which are in general unconditionally stable.

The Peaceman-Rachford (PR) scheme [211]: For every k ≥ 0 and time step size τ > 0, the
second order accurate PR scheme computes an approximation uk+1 via

uk+ 1
2 = uk + τ

2A1u
k + τ

2A2u
k+ 1

2

uk+1 = uk+ 1
2 + τ

2A1u
k+1 + τ

2A2u
k+ 1

2

(7.28)

In an analogous manner to the CN method a forward and backward Euler step is applied.
The PR scheme ensures the osmotic properties only for sufficiently small time step sizes.
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Lemma 7.2 ( [53]). Let f ∈ RN+ and τ < 2(max{max|a1
i,i|,max|a2

i,i|})−1, i = 1, . . . , N ,
where a1

i,i and a2
i,i are the corresponding diagonal elements of A1 and A2, respectively. Then

the PR scheme (7.28) based on the splitting (7.26)-(7.27) preserves the average grey value,
the positivity and converges to a unique steady state.

The weighted-Douglas (WD) scheme [80]: For every k ≥ 0, time step size τ > 0 and
θ ∈ [0, 1], the approximation uk+1 is computed using the rule

y0 = uk + τA1u
k + τA2u

k

yj = yj−1 + θτ
(
Ajy

j −Ajuk
)
, j = 1, 2

uk+1 = y2

(7.29)

The latter scheme computes, at each time level, firstly a forward predictor and secondly a
stabilisation based on the specified splitting, where the weight θ influences the implicit or
explicit behaviour of these intermediate steps. The consistency order of the scheme is two
for the weight θ = 1

2 , otherwise of order one. For the WD scheme one can show that the
following lemma holds:

Lemma 7.3 ( [53]). Let f ∈ RN+ , τ > 0 and θ ∈ [0, 1]. Then, the WD scheme (7.29) based
on the splitting (7.26)-(7.27) preserves the average grey value.

We stress that for the WD scheme exists no guarantee that the off-diagonal entries are
nonnegative, so the requirements of the Theorem 7.2 are not satisfied. Overall, due to the
presence of explicit steps within the abovementioned two ADI schemes, both methods suffer
from natural stability requirements on τ as already seen when considering the CN method.

Additive and Multiplicative Operator Splitting Another class of operator splitting schemes
is the so-called additive operator splitting (AOS) and multiplicative operator splitting (MOS)
which are widely used within image processing applications such as nonlinear diffusion models,
proposed in [21,296].

Let us exemplarily show how the AOS schema is derived. The IE method reads as

uk+1 = (I − τA)−1 uk (7.30)

Using the operator splitting A = A1 +A2 one can rewrite the latter equation as

uk+1 =
(
I − τ (A1 +A2)

)−1
uk

=

 2∑
l=1

1
2I − τ

2∑
l=1

Al

−1

uk =

 2∑
l=1

1
2 (I − 2τAl)

−1

uk (7.31)

To extract the sum from the power operator, one can show 2∑
l=1

1
2 (I − 2τAl)

−1

≈ 1
4

2∑
l=1

(
1
2(I − 2τAl)

)−1
(7.32)
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so that the AOS scheme is finally obtained by

uk+1 = 1
2

2∑
l=1

(I − 2τAl)−1 uk (7.33)

The tridiagonal matrix structure of (I − 2τAl)−1 for l = 1, 2 can be solved very efficiently by
using tridiagonal LU factorisation. A second advantage of AOS is that both operators are
applied independently, which makes it well-suited for parallel processing [297].

In contrast the MOS scheme is based on the multiplication of the operators in the form of

uk+1 =
2∏
l=1

(I − τAl)−1 uk (7.34)

Furthermore, Parisotto proposed to use a more accurate additive-multiplicative operator
splitting (AMOS) scheme as a combination of AOS and MOS, where uk+1 is computed via

uk+1 = 1
2

2∑
l=1

((
I − τAjl

)−1 (
I − τAil

)−1
)
uk, i = {1, 2}, j = {2, 1} (7.35)

The schemes AOS, MOS and AMOS are first order accurate in time. Apart from the splitting
errors that occur, the advantageous use of all three methods is their unconditional stability
coupled with their highly efficient factorisation.

Lemma 7.4 ( [206]). Let f ∈ RN+ , the schemes AOS, MOS and AMOS in the form of (7.33),
(7.34) and (7.35), respectively, based on the splitting (7.26)-(7.27) preserves the average grey
value, the positivity and converges to a unique steady state for any τ > 0.

7.4.2 Fast Explicit Methods

As already seen, the EE method is restricted by a rather small upper bound that is given
by the natural stability condition (7.22). This directly implies the numerical stability for
τ < (max|ai,i|)−1, since

‖I + τA‖1 ≤ 1 (7.36)

ensures the sufficient stability condition (2.61). We emphasise that the numerical stability is
also satisfied for the time step size τ ≤ 1

4 due to the fact∥∥∥(I + τA)k+1
∥∥∥ ≤ C (7.37)

with a moderate constant C, then the matrix (I + τA)k+1 approaches a constant matrix as
k → ∞. Obviously, osmosis does not allow to give stability results in terms of decreasing
Lp-norms for p > 1, as osmosis that starts from a flat initial and converges to a nonflat
one represents a counterexample. However, the larger upper stability bound, i.e. τ ≤ 1

4 , is
accompanied by destroying the positivity properties which we want to maintain when time
discretisation is performed.
In order to overcome the inefficiency of the EE method, but also to avoid splitting errors

when using operator splitting schemes, we propose the use of fast explicit methods as presented
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in Chapter 3. Although the underlying matrix is not symmetric and thus the internal stability
of this class of methods is not guaranteed, FEDRK and RKL are very well applicable to such
problems in practice, provided that the spectrum firstly is located in a narrow strip around
the negative axis of the complex plane and secondly the corresponding system matrix is close
to a normal matrix. These two requirements are usually fulfilled in connection with the linear
osmosis model. Up to now, this cannot be proven from a theoretical point of view and is
left for future research. Fortunately, all of our numerical tests suggest that both properties
remain valid. With regard to defining when a matrix is close to a normal, meaning that
ρ(A) ≈ ‖A‖2 is satisfied.
The application of FEDRK and RKL to the osmosis model is easily performed as in

Chapter 3 extensively discussed. It should be remembered that the fast explicit methods may
violate the L∞-stability as shown in Example 3.2. In consequence, the positivity property

uki > 0, ∀i ∈ {1, . . . , N}, ∀k > 0 (7.38)

cannot be ensured. In fact, the desired steady state solution with a large stopping time tF ,
which is steered by the drift term, is mainly important for the osmosis evolution process.
In our experiments, it holds that uk0

i > 0 for k0 > k > 0 for large tF so that the positivity
is preserved from a numerical point of view. Nevertheless, it is not possible to exclude the
existence of pathological cases where the positivity may violate even for large stopping times.
This issue remains left for future research.

7.4.3 Krylov Subspace Model Order Reduction

In the case of large images, the numerical realisation via the IE method becomes very
expensive as a consequence of computing a complete LU factorisation. To tackle this issue
in general, efficient iterative solvers such as the BiCGSTAB method are used to solve the
resulting nonsymmetric large and sparse linear systems. An alternative approach is the use
of MOR methods which generate a reduced order model in a preprocess, as described in
Chapter 4. The application of MCR, BT and POD can be excluded on grounds of efficiency in
advance, since performing an eigendecomposition or solving Lyapunov equations is required.
Consequently, we discuss the KSMOR method, as introduced in Section 4.5, for solving the
semi-discretised problem (7.14).
Let us first note that the linear osmosis model is obviously stable because all eigenvalues

have negative real part. This follows directly from the matrix measure property (4.32), so
that α(A) ≤ µ1(A) = 0 holds due to the zero column sum of A. However, the stability of the
reduced system using a one-sided projection method cannot be guaranteed a priori, since
Theorem 4.1 is only valid for the Euclidean norm. Despite the nonguaranteed stability, the
reduced system remains stable, which we could only identify experimentally by our tests.

For approximate the transfer function via moment matching, we construct the orthogonal
basis V ∈ RN×r using the one-sided Arnoldi approach with W = V by

V = span
(
(A− σI)−1 u0, . . . , (A− σI)−r u0

)
(7.39)

The latter means that the projection matrix is constructed using the zero-input response of
the system. In other words, there is no input variable within the osmosis model and therefore
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no coordinate transformation is applied to obtain zero initial condition. The drift-diffusion
equation is characterised by a rather slow dynamic so that the still open parameter σ is
determined at σ ≈ 0. In particular, for σ = 0 the inverse (A−σI)−1 does not exist, since λ = 0
is an eigenvalue of A, which results from the homogeneous Neumann boundary conditions
within the modelling.

Using the projection matrix V the reduced system of order r yields

u̇r(t) = Arur(t), t ∈ (0, tF ], ur(0) = V >u(0) (7.40)

with Ar = V >AV ∈ Rr×r, which is finally solved by the IE method. It should be noted that
although the reduced model (7.40) experimentally preserves stability, this does not necessarily
imply that the positivity is also ensured. In any case, our experiments have shown that for
small values σ the positivity property holds.

7.5 Numerical Experiments
In this section we discuss the accuracy and efficiency of the numerical solvers for linear
osmosis filtering for small and medium colour image sizes at two different cases, namely the
compatible and quasi-compatible case. In doing so, visual computing problems are considered
such as seamless image cloning and shadow removal as also were used for practical purposes
in [295]. In addition, the efficiency of the solvers concerning a large colour image is evaluated.
In this setting, we also analyse the use of the KSMOR method.

Computational Aspects All experiments were done in MATLAB R2018b with an Intel
Xeon(R) CPU E5-2609 v3 CPU. The splitting schemes AOS, MOS, AMOS, PR and WD
incorporate tridiagonal matrices based on the splitting matrices A1 and A2. For this reason,
the highly efficient tridiagonal LU factorisation by the internal MATLAB function lu within the
computation is employed. In contrast, for IE and CN a complete LU factorisation is performed
by the internal MATLAB function decomposition which leads to higher computational costs.
Using the SuiteSparse package gives the same performance. The source code implementations
of the schemes AOS, MOS, AMOS, PR and WD can be found in [203].

The computations were taken with the Parallel Computing Toolbox integrated in MATLAB.
As mentioned, we consider colour images such that the osmosis process can be computed
separately for each colour channel. Consequently, this step can be parallelised using the
MATLAB parfor loop to distribute the code to 3 workers. We only do this for the implicit
methods AOS, MOS, AMOS, PR, WD, IE and CN. Note that AOS and AMOS may be
accelerated by using parallel code, this is not done here.
For a fair comparison we compute the explicit schemes EE, FEDRK, RKL and second

order RKL (denoted as RKL2) by parallelisation on GPUs using NVIDIA GeForce GTX
690, whereby MATLAB gpuArray is used which additionally improves the computational
efficiency. Let us stress that for the explicit methods, the GPU computation is more efficient
than using CPU coupled with parfor distribution.
Moreover, τ = 0.12 is chosen as the upper bound for both the EE method and the fast

explicit methods, which obviously satisfies the condition (7.22). All CPU times presented
incorporate the modelling (linear system, factorisation, parallelisation) and the numerical
computation. The performances are therefore easily comparable.
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7.5.1 Compatible Case

The compatible case is related to the situation where the drift vector field d is defined as
a given positive image as d = ∇(ln v) over all pixels of the image domain. In this setting
the osmosis process convergence to a rescaled version of v. Obviously, the convergence to a
rescaled version of an image v, that is already known, is unappealing from a practical point
of view, but the compatible case is reasonable for a first assessment of the solvers.
For the evaluation the well-known mandrill test image of size 256× 256 is applied. Here

v = (v1, v2, v3) represents the RGB image and the drift vectors in colour channel i are fixed
chosen as ∇(ln vi). Finally, starting from a flat initial image in which each colour channel has
the same mean value as the mandrill image, the osmosis model (7.1)-(7.3) evolves towards
a known steady-state. The convergence behaviour is illustrated in Figure 7.1 using the EE
method with τ = 0.12 and stopping time tF = 100000.

Results on First Order Accurate Schemes The performances with regard to the MSE and
the corresponding CPU time of the first order accurate schemes AOS, MOS, AMOS, WD
with θ = 1, IE, FEDRK and RKL using varying time step sizes τ or cycles M with stopping
time tF = 100000 are illustrated on the top in Figure 7.2. It can be seen that all computed
approximations converge towards the EE solution, with the exception of the solvers MOS and
AMOS, which result in different behaviour due to their multiplicative splitting nature. Since,
in contrast to additive splittings, not all coordinate axes are treated in the same manner.
The best performance can be achieved with AOS, IE and the fast explicit methods.

Results on Second Order Accurate Schemes In an analogous manner the corresponding
performances of the second order accurate schemes PR, WD with θ = 0.5, CN and RKL2
are visualised on the bottom in Figure 7.2. Obviously, the approximations of the second
order solvers provide a faster convergence towards the EE solution if τ and M are sufficiently
small and large, respectively. The performances of PR, WD with θ = 0.5 and RKL2 are
competitive, the worst performance is achieved by CN due to its stability restriction and
higher computational costs for a complete factorisation.

Figure 7.1: Convergence of osmosis to the mandrill image (256× 256) using the EE method
with τ = 0.12. From left to right: (a) Initial image, each colour channel has the same
mean value as the mandrill image. (b) Osmosis at evolution time t = 100. (c) Osmosis at
evolution time t = 1000. (d) Osmosis at stopping time tF = 100000.
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Figure 7.2: Results of osmosis using mandrill image (256× 256): comparison of the MSE
and the corresponding CPU time between the numerical solvers using varying time step sizes
τ or cycles M with stopping time tF = 100000. With regard to the MSE, the original image
as reference solution is used. For a better comparability, also the MSE of the EE method
(yellow line) is visualised. Applying EE leads to a CPU time of 213.64 seconds. Top: First
order accurate schemes. Bottom: Second order accurate schemes.

Overall, the most efficient solvers for the compatible case are AOS, IE, FEDRK and RKL.
As the compatible case is trivial, we consider the quasi-compatible case where d is locally
modified which is much more interesting in practice.

7.5.2 Quasi-Compatible Case

As already indicated, more interesting is the osmosis process in which the drift vector field
can be steered in a local region by its user, denoted as quasi-compatible case. To this end,
we compare the performances of the solvers using osmosis as a process for seamless image
cloning and shadow removal, cf. [295]. Another application of linear osmosis, for instance, is
the solution of the light balance problem in thermal-quasi reflectography imaging [206] for
cultural heritage, in order to support restoration purposes of mural paintings.
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Figure 7.3: Seamless image cloning using osmosis-based image editing for images (300×230)
of Euler and Lagrange. From left to right: (a) Painting of Euler. (b) Painting of Lagrange.
(c)Mask for seamless image cloning. (d) Osmosis image cloning at stopping time tF = 100000
using the EE method with τ = 0.12.

Seamless Image Cloning Image cloning is an old image processing problem where the
general task is to merge two images. Nowadays often Poisson image editing [215] is used
which is a powerful tool. However, when both input images differ significantly in their
contrast, the fused image will also show limitations in contrast. The osmosis-based process is
an alternative to Poisson image editing and achieves impressive results, cf. [295].
Let us briefly explain the idea of image cloning at hand of the paintings of Euler and

Lagrange of image size 300× 230, illustrated in Figure 7.3. Two images f1 and f2 of both
mathematicians are given and should be merged in such a way that f2 replaces image
information of f1. In our case the direct cloning of Lagrange on top of Euler’s face is executed.
In doing so, the canonical drift vectors of f1 on the local region of the face are replaced by
the ones of f2. In addition, at the boundary of the local region the arithmetic mean of both
drift vectors is used.
The osmosis process is initialised with f1 on the whole image domain, where each colour

channel has the same mean value as the Euler image. The final osmosis image editing solution
using the EE method with τ = 0.12 and stopping time tF = 100000 is shown in Figure 7.3.
Obviously, using osmosis as seamless image cloning gives a very good contrast reconstruction.

Results on First Order Accurate Schemes: In order to give an evaluation, we analyse the MSE
and the corresponding CPU time of the first order accurate schemes AOS, MOS, AMOS,
WD with θ = 1, IE, FEDRK and RKL using varying time step sizes τ or cycles M with the
reference solution. The reference solution1 is computed using the EE method with stopping
time tF = 100000, cf. Figure 7.3. The performances are visualised on the top in Figure
7.4. The splitting schemes AOS, MOS and AMOS do not converge to the elliptic steady
state solution unless the time step size as τ → 0. This demonstrates a similar behaviour as
also seen for the compatible case. In contrast, the solvers IE, FEDRK and RKL are highly
efficient and achieve competitive results. The WD scheme is only accurate for sufficiently
small τ .

1 The approximation by the EE method gives in general the most accurate solution, as already seen in the
compatible case.
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Figure 7.4: Results of seamless image cloning using osmosis-based image editing for images
(300× 230) of Euler and Lagrange: comparison of the MSE and the corresponding CPU time
between the numerical solvers using varying time step sizes τ or cycles M at stopping time
tF = 100000. With regard to the MSE, the reference solution computed with the EE method
is used (cf. Figure 7.3). Applying EE leads to a CPU time of 211.46 seconds. Top: First
order accurate schemes. Bottom: Second order accurate schemes.

Results on Second Order Accurate Schemes: The performances of the second order accurate
schemes PR, WD with θ = 0.5, CN and RKL2 are shown on the bottom in Figure 7.4. Once
again, these solvers provide a faster convergence than the first order schemes, when τ and
M is chosen sufficiently small and large. As expected, these solver are linked with higher
computational costs. The best and the worst performance achieves PR and CN, respectively.

In total, IE, FEDRK, RKL and PR are the most efficient solvers based on the examined
example of seamless image cloning.

Shadow Removal Another important image processing task is shadow removal. This is often
applied as a preprocessing step in which shadows within an image can lead to complications
in the subsequent image processing due to their artefacts and should be avoided.
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In general, the task of shadow removal is to remove the shadow appearing in an image
while preserving the image geometry. This can be mathematically formulated, cf. [203], by
the continuous linear osmosis model adapted to shadow removal in the form

∂tu(x, t) = ∆u(x, t)− div
(
d(x)u(x, t)

)
, on Ω1 ∪ Ω2 × (0, tF ]

∂tu(x, t) = ∆u(x, t), on Ω3 × (0, tF ]
u(x, 0) = f(x), on Ω
〈∇u(x, t)− d(x)u(x, t),n〉 = 0, on ∂Ω× (0, tF ]

(7.41)

with d(x) = ∇(ln(f(x))) and where f denotes the shaded positive image. In particular, the
rectangular domain Ω is decomposed into three parts Ω = Ω1 ∪ Ω2 ∪ Ω3. The regions Ω1,Ω2
and Ω3 represent the shaded region, unshaded region and the shadow boundaries of the image
f . Furthermore, the drift vector field, which contains the image geometry (gradient data) of
the initial image, is modified as d = 0 on Ω3. The shadow boundary, where d = 0, is a thin
stripe and defines the jump of light caused by the shadow. More precisely, the shadow itself
is only encoded by the drift vector field on the edge of the shadow. Setting the drift vectors
at the shadow boundaries to zero particularly describes image inpainting by linear diffusion.
Due to the linear inpainting process on Ω3, the final unshaded image in this area will

be blurred based on the properties of the linear diffusion operator. In order to avoid the
undesirable blurred artefacts the thickness of the shadow boundary can be optimised in
a certain sense. However, the automatic segmentation of the shadow boundary is very
challenging. Otherwise, the manual shadow boundary selection may be very tedious. An
alternative to this would be a postprocessing inpainting correction step to remove the blurring
artefacts. As already noted, also the use of an anisotropic osmosis model is possible. Although
this resulting challenge is an interesting aspect, we will not address this problem further in
this work.

The osmosis-based shadow removal process is shown in Figure 7.5, starting from a shaded
positive image f of size 425× 640 and setting d = 0 at the shadow boundary. The initial
condition contains in each colour channel the same mean value as the original shaded image.
The final osmosis steady state solution, in which the shadow has been removed, is computed
by the EE method with τ = 0.12 and stopping time tF = 100000. The corresponding CPU
time of EE amounts to 527.81 seconds. Obviously, blurred artefacts (zooming on the solution)
due to linear diffusion inpainting are visible within the steady state solution, otherwise the
contrast is also slightly changed. This issue could be improved by using a local model similar
to the approach in [72], which solve the osmosis process within a local region of interest and
leaves the region outside be unaltered.

Results on AOS, PR, IE and FEDRK: As seen in the previous evaluations the most efficient
solvers were AOS, PR, IE and FEDRK2, so only these are considered here for the shadow
removal application. The performances of the solvers concerning the shadow removal quality
of the approximations are given visually in the Figure 7.6, also the corresponding CPU times
are reported. Obviously, the approximations of AOS and PR suffer from splitting errors, for
the latter also the small upper bound of the natural stability restriction is evident. In contrast,
IE and FEDRK provide accurate results already for large τ and small M , respectively. Due
2 The same performance is also achieved by RKL in undocumented tests.
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Figure 7.5: Shadow removal by osmosis. From left to right: (a) Original image (425×640).
(b) User-selected shadow boundaries, with d = 0 on the boundaries (shadow’s edge), otherwise
the canonical drift vectors are used. (c) Osmosis reconstruction at stopping time tF = 100000
using the EE method with τ = 0.12 and the required CPU time of 527.81 seconds.

0.38 s 0.57 s 2.44 s 21.32 s

0.44 s 0.66 s 2.92 s 25.71 s

2.68 s 4.35 s 24.57 s 217.21 s

1.36 s 4.04 s 12.49 s 39.19 s

Figure 7.6: Shadow removal by osmosis applied to data from Figure 7.5 using AOS, PR, IE
and FEDRK for varying time step sizes τ or cycles M and stopping time tF = 100000. The
corresponding CPU time is reported below the respective image. From left to right: (a)
τ = 100000 or M = 1. (b) τ = 10000 or M = 10. (c) τ = 1000 or M = 100. (d) τ = 100 or
M = 1000. From top to bottom: (i) AOS. (iii) PR. (iii) IE. (iv) FEDRK.
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to lower computational costs in the GPU computation, instead of a complete factorisation in
the case of IE, the fast explicit method FEDRK is highly efficient.

7.5.3 Higher Resolution

Finally, let us discuss the important issue of dealing with large images as resolutions increase
continually due to the camera technology nowadays. To this end, the last experiment of
osmosis-based shadow removal is repeated by double upsizing the original data to an image
size of 900× 1280.

For an evaluation, we compare the MSE and the corresponding CPU time of the schemes
AOS, IE, FEDRK and RKL using varying time step sizes τ or cycles M with the reference
solution computed with the EE method. The performance of the solvers is shown in the
Figure 7.7. As is known, the fast explicit methods FEDRK and RKL are highly efficient
and achieve high accuracy coupled with fast computation due to their explicit nature. In
contrast, the AOS scheme provides significant low computational complexity, but suffers from
its splitting error. Conversely, the IE method yields accurate approximations at the expense
of extremely high computational costs.
Based on the fact that the direct IE method requires a complete LU factorisation which

is highly computationally intensive for larger resolutions, the BiCGSTAB method with
ε = 10−6 (gives the best compromise in undocumented experiments) is applied, denoted
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Figure 7.7: Results of osmosis-based shadow removal applied to data from Figure 7.5 for a
larger image (900× 1280), where the smaller image resolution is double upsized by internal
MATLAB function imresize: comparison of the MSE and the corresponding CPU time
between the schemes AOS, IE, FEDRK and RKL using varying time step sizes τ or cycles
M at stopping time tF = 100000. With regard to the MSE, the reference solution computed
with the EE method is used. Applying EE leads to a CPU time of 2013 seconds. Within the
results we distinguish between direct IE, iterative IE and iterative IE?. Direct, iterative and
iterative? is related to complete LU factorisation, iterative BiCGSTAB and BiCGSTAB with
modified initial vector x0 = uk.
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here as iterative IE. However, the use of a relatively small tolerance ε coupled with a slow
convergence rate makes the BiCGSTAB method inefficient, cf. Figure 7.7. We emphasise
that the preconditioned BiCGSTAB with incomplete LU factorisation achieves even worse
performance and is not reported here. In addition, the approach of using the previous osmosis
evolution uk, as initialisation within the BiCGSTAB method for the computation of the new
iterate uk+1, is examined as already done in Chapter 6. Using the strategy x0 = uk, labelled
as iterative IE?, significantly improve the efficiency of BiCGSTAB, nevertheless, the iterative
method is generally unsuitable for large images in practice as shown in Figure 7.7.
On the basis of this example the KSMOR method is also analysed. For constructing the

Krylov subspace V = Kr((A− σI)−1, (A− σI)−1u0) large sparse systems of linear equations
have to be solved. Tests have shown that fixing the expansion point as σ ≤ 10−5 (but
σ 6= 0) is necessary for reasonable approximations. The corresponding results of KSMOR by
applying the complete LU factorisation for a different number of subspaces r are presented in
Figure 7.8. Already, r = 10 subspaces are sufficient to achieve the same accuracy as IE, while
the CPU time required for small time step sizes is dramatically lower. However, the use of
the iterative BiCGSTAB method to build the projection matrix V causes extremely high
computational costs (not documented here), which result from the extremely slow convergence
rate based on the small value σ. Thus, both iterative-based schemes IE and KSMOR suffer
from the poor performance of the iterative method itself.

Unfortunately, as a consequence of the unusability of the iterative methods, the analysis of
the moment matching property for inexact solvers cannot be performed here. As stated in

102 103 104
10−8

10−6

10−4

10−2

τ

M
SE

IE K5 K8 K10

0 20 40 60 80
10−8

10−6

10−4

10−2

100

CPU time in seconds

M
SE

Figure 7.8: Results of osmosis-based shadow removal applied to data from Figure 7.5
for a larger image (900 × 1280): comparison between IE and KSMOR using varying time
step sizes τ at stopping time tF = 100000. The KSMOR method is used by constructing
Krylov subspaces Kr for r = 5, 8, 10 and setting σ = 10−6. Both schemes IE and KSMOR
are supplemented with complete LU factorisation. With regard to the MSE, the reference
solution computed with the EE method is used. Left: Comparison between MSE and varying
τ . Right: Comparison between MSE and corresponding CPU time. A small number of
r = 10 subspaces achieves the same MSE as IE with simultaneous faster computation time.
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Section 4.5, inexact solvers cannot generally satisfy the moment matching property. Therefore,
a suitable choice of the expansion point σ is necessary [26] in order to obtain robustness with
respect to perturbations which are generated by the inexact solutions. This is an important
aspect for the general applicability of KSMOR, the standard method for large-scale problems.
This interesting point is left for future.

Stability Limit for Explicit Schemes So far, we have chosen the upper bound τ = 0.12
for the explicit methods. As already mentioned, the condition can be satisfied by means of
an a-priori estimate by a simple precomputation of c := max|ai,i| for i = 1, . . . , N . For the
underlying data from Figure 7.5, the true time step size yields

τ? = 0.2386 < 1
c
, with c ≈ 4.1893 (7.42)

This upper bound is approximately twice as large as the standard one. As a result, this leads
to a significant speed-up when using the fast explicit methods as shown in Figure 7.9. For
large images, the RKL scheme even performs slightly better than FEDRK.

Overall, for larger images we prefer the use of FEDRK and RKL coupled with GPU
computation. The fast explicit methods are simple schemes and provide a highly efficient
approximation of osmosis-based imaging processes. For small and medium size images, the
IE method and the KSMOR technique can also be used efficiently.
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Figure 7.9: Results of osmosis-based shadow removal applied to data from Figure 7.5 for
a larger image (900× 1280): comparison of the MSE and the corresponding CPU time for
FEDRK and RKL using varying cycles M at stopping time tF = 100000. We compare the
standard upper bound τ = 0.12 < 1

8 and the true natural stability bound (7.22). The latter
can be specified as τ? = 0.2386 < 1

c with c = max|ai,i| ≈ 4.1893, and is denoted by FEDRK?

as well as RKL?. With regard to the MSE, the reference solution computed with the EE
method is used. Obviously, the larger upper stability bound improves the efficiency. For
larger images, the RKL achieves a slightly better performance than FEDRK due to its smaller
number of stages s required for preserving the internal stability.
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Figure 7.10: Shadow removal via osmosis on (top) synthetic image (201×201) and (bottom)
real-world image (375× 505). Comparison between isotropic and anisotropic osmosis using
FEDRK with tF = 100000 and M = 1. From left to right: (a) Shadowed image. (b)
Mask, fixing d = 0 on the boundaries, otherwise the canonical drift vectors are used. (c)
Isotropic osmosis. (d) Anisotropic osmosis.

7.5.4 Anisotropic Osmosis Filtering

Lastly, it should be emphasised that the fast explicit methods can also be employed for
anisotropic osmosis filtering. This is exemplarily shown in Figure 7.10 for solving the shadow
removal problem by the FEDRK method using isotropic and anisotropic osmosis for synthetic
and real-world images. For this experiment, we fixed tF = 100000 and M = 1, and used the
parameter settings as described3 in [205]. Anisotropic osmosis effectively removes shadows
both for synthetic and real-world images, but an over-smoothing effect is noticed.

7.6 Summary

We have extended the numerical framework for solving the linear osmosis model that has been
presented in earlier literature [53, 206,289]. Even if there exists no theoretical foundation for
preserving positivity and numerical stability when using the fast explicit methods, we have
demonstrated that FEDRK and RKL are well applicable for osmosis-based image processing.
At this point it should be noted that FEDRK and RKL possess a natural damping so that
over- and undershoots that can occur in the initial phase are usually smoothed out as the
osmosis evolves towards the steady state. In contrast to the inefficient IE solver and the
3 The source code for anisotropic osmosis filter with respect to shadow removal is available on the website

https://gitlab.developers.cam.ac.uk/sp751/anisotropic-osmosis-filter. We used the default
setting and only replaced the computational intensively explicit expleja solver by the highly efficient
FEDRK method. Let us mention that the expleja solver belongs to the group of Krylov-based matrix
exponential approximations, as presented in Section 2.3.2.
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inaccurate splitting schemes, fast explicit methods overcome both issues and produce highly
efficient and accurate approximations. Due to the fact that FEDRK and RKL are simple
schemes based on its explicit nature, they are very well-suited for parallelisation on GPUs,
which is especially of importance when using osmosis processes for large images. Remarkably,
the fast explicit methods are also ideally suitable for anisotropic osmosis filtering.
In the osmosis framework we also analysed the use of MOR methods, in particular the

KSMOR technique. Our experiments have shown that for a small number of r ≤ 10 subspaces
the scheme produces nearly the same approximations than its full order model counterpart.
However, for large images that require an iterative method to construct the Krylov basis V ,
this technique suffers from convergence problems of the iterative method itself just like already
the iterative IE method. Furthermore, the slow convergence rate results from using small
values σ which are required within the KSMOR process to provide accurate approximations.
To overcome this problem, the use of MG methods for computing the projection matrix V
appear promising. This issue is of interest in the future.

Let us reiterate once again that we have not provided a theoretical basis for preservation the
positivity and (numerical) stability property when using fast explicit methods and KSMOR.
This issue will remain left for future research. As already indicated, we have analysed
experimentally in undocumented tests that the solvers ensure these aspects when using a
large stopping time tF and a small value σ within the schemes.
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Summary and Outlook

The present thesis has dealt with the efficient solution of relevant applications in connection
with linear parabolic-type PDEs. This problem class is still of high importance for the
fast and accurate approximation of real-world applications that arise in the areas of image
processing, computer vision and engineering. In the work, we focused on the numerical time
integration approach that specifically results from the MOL method, a popular technique for
solving PDEs in which all but one dimension is discretised. More precisely, MOL allows the
use of any numerical method designed for time integration of large sparse semi-discretised
ODE systems. Unfortunately, the ODE systems resulting from parabolic PDEs are known to
be stiff and present severe numerical difficulties for the use of simple and computationally
cheap explicit methods due to the stability requirements on the time step size. Although
implicit schemes appear to be a good choice for numerically solving linear parabolic problems,
we have demonstrated that there are better schemes for specific real-world problems that are
equipped with different model settings.
In order to provide a fast solution for PSC tasks, the long-term simulation of a GES and

image osmosis filtering, there was still a need for a numerical method that combines accuracy
and reasonable computational efficiency. In the thesis, two popular approaches were discussed,
which are based on extended stabilised RK methods as well as MOR techniques. Of course,
both method classes are known in their respective scientific fields, but are mostly only used to
solve problems that arise exactly in this area, and are often overlooked in order to efficiently
solve similar problems from other fields. Therefore, we had set ourselves the aim to fully
understand the numerical methods from their theoretical principles and derivations over
their numerical analysis to their practical weaknesses and limitations. While the individual
techniques are relatively well understood, a complete and joint analysis is missing in the
literature to the best of our knowledge. However, this is very important in finding the best
numerical method for the underlying linear model problem, since the basis for doing so is the
correct use of the particular method.

The first main task of the thesis was to provide a complete and very detailed overview and
discussion of several numerical solvers marking the state-of-the-art in diverse scientific fields
that are often beneficially used to solve linear parabolic model problems. In particular, we
presented a detailed analysis of sparse direct and iterative solvers, exponential integrators,
fast explicit methods and model order reduction techniques. In addition to the theoretical
basics, we have dealt intensively with the computational aspects from a numerical point of
view. At this point it should be noted that we have elaborated in detail the theoretical and
numerical similarities and differences of the fast explicit methods developed. From our point
of view, this is another important component to supplement the documentation provided.
Typically, the different variants RKC/RKL and FED/FEDRK are applied independently
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from each other. Both main classes of fast explicit solvers, directly or indirectly derived, have
interesting properties which we have also demonstrated in this thesis. While RKC/RKL can
provide efficient higher order schemes, FED/FEDRK achieve better damping properties.

Based on the theoretical documentation as well as the linear model problems discussed, we
have clearly shown that the fast explicit methods and the model order reduction techniques
can significantly outperform the sparse direct and iterative methods. Of course, there is no
best numerical method, since all solvers have specific weaknesses and are strongly dependent
on the model settings of the underlying problem. However, we believe that our work not
only provides extensive theoretical knowledge, but can also be very useful for tackling similar
parabolic problems that arise in many applications more easily and efficiently based on the
practical applications considered here.

Finally, for each application discussed in Chapters 5, 6 and 7, let us summarise the
conclusions by highlighting the outcomes and the possible future interests.

Shape Correspondence Even nowadays, the shape correspondence task is a highly interest-
ing area of research and there are various efficient solution strategies. We introduced simple
and efficient time integrators based on MOR methods to compute numerical shape descriptors.
By our experimental results, we have demonstrated that MOR methods are highly predestined
for solving shape matching tasks using time integration methods of the underlying geometric
PDEs. We have elaborated the spectrum-free KSMOR technique and the spectrum-based
optimised MCR approach, which provide beneficial use and consequently achieve a better
trade-off between quality and computational effort compared to the state-of-the-art solvers in
the class of time-evolution methods. In our opinion, we have tweaked the MOR approaches
very close to their limits with regard to their use in the PSC framework. In this context,
we have discussed various questions when using the MCR approach, ranging from stable
eigenvalue computations over scaling the integration domain to changing the initial condition
and analysing the calculation method for the reduced solution.

We have shown through several real-world experiments that our optimised MCR technique
is highly efficient for applications with high resolutions and clearly outperforms their direct
counterparts HKS and WKS. In contrast, the KSMOR technique is less efficient compared
to the spectrum-based methods, but can achieve a high correspondence quality, which we
highlighted by mapping indicator functions. Both developed MOR methods are very powerful,
nearly free of parameters and ultimately easy to implement.
For the future let us highlight two possible tasks that arise from our work. First, the use

of soft correspondence maps as introduced in this thesis appears to be promising and is an
interesting subject of research. As we pointed out, the soft correspondence map could be
used to extract the ideal binary assignment matrix from itself using a more sophisticated
optimisation approach. Nevertheless, in practice it needs sparse information for this in the
soft correspondence matrix. Of course, it is not trivial to develop a method that could make
full use of the soft correspondence information, which may result in a quite powerful approach.
Another task is to integrate our MOR approaches into the functional map framework, which
uses initial correspondences based on feature descriptors to compute a dense correspondence
between points. We expect that our methods are useful in this framework as well, so the dense
shape correspondence performances can be notably improved compared to the kernel-based
methods HKS and WKS.
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Geothermal Energy Storage We have numerically studied the recent GES technology as
an effective alternative to storing the excess energy generated during the summer. Due to
the fact that the heat tank is open downwards and interacts with the earth below the tank,
long-term heat evolution simulations of the GES are required to assess the profitability, but
also to ensure the heat supply of the consumer. In this context, we have demonstrated that a
two-dimensional GES simulation based on a linear heat equation equipped with external and
internal boundary conditions is suitable for representing the long-term behaviour of real GES
facilities. This has been shown experimentally using real-world data from a three-dimensional
test field. As a result, the simplified and dimensionally reduced GES model can easily be
used in practice either for simulation purposes or for parameter optimisation.
In order to efficiently solve the two-dimensional GES model, we focused on the FEDRK

method and the KSMOR technique, for which both solvers were investigated in detail. In
particular, we have seen that the latter scheme is not easy to apply for the GES problem due
to the large-scale input resulting from the discretisation of the internal boundary conditions.
Under these circumstances, we have successfully adapted the original KSMOR technique
by own adaptations for practical use when dealing with large input vectors. Our proposed
efficient KSMOR? technique is based on an input matrix reduction via snapshots, so that the
subspace construction is obtained in an explicit manner. We have demonstrated the practical
usability of KSMOR?, which in this form represents a new variant of existing schemes. In
total, FEDRK and KSMOR? turned out to be the most powerful methods for an efficient
numerical simulation of our GES application. The only difference between the two techniques
is the local and global behaviour of their solutions obtained. While FEDRK produces accurate
approximations globally, KSMOR? shows oscillations, especially in a local area around the
interfaces, which directly results from the input matrix construction.

For future research at least two aspects are of interest. Besides the successful application
of the proposed KSMOR? method, we have not dealt with theoretical aspects. However, this
is important to ensure the applicability of our approach to similar model problems. Apart
from that, the GES setup is modelled on the assumption that the flowing groundwater has a
large distance to the heat tank, but this requirement can of course be relatively strict. The
integration of flowing groundwater requires a model adaptation of the underlying continuous
and discrete model. In this case, the proposed numerical schemes must be carefully restudied,
since the advection has a strong influence on the approximation to be computed, for example
its numerical stability.

Osmosis Filtering We have discussed efficient numerical schemes for isotropic osmosis
filtering based on direct and iterative methods, splitting methods, fast explicit methods and
the KSMOR technique. We studied both the compatible and the quasi-compatible case
and, for the latter in particular, presented a detailed performance analysis using relevant
visual computing problems such as seamless image cloning and shadow removal. Through
our experiments, we have clearly shown that the fast explicit solvers coupled with GPU
computation provide highly efficient approximations to osmosis-based imaging processes,
even for large images. In addition, we have highlighted the beneficial use of such methods for
anisotropic osmosis filtering, which is an important extension of the isotropic osmosis filter.
As future research there are two possible main issues. While fast explicit methods are

well applicable from a practical point of view, the preservation of positivity and stability
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is theoretically not guaranteed because the system matrix is not symmetric. In all (also
undocumented) tests, we were able to experimentally ensure these aspects for large stopping
times. The positivity preservation is mainly due to the natural damping of FEDRK and
RKL, so over- and undershoots are usually smoothed out as the osmosis evolves towards
the steady state. The stability preservation in practice generally relies on the osmosis-based
system matrix, which is close to a normal matrix. From a theoretical point of view, however,
the full understanding of these aspects and the corresponding safe and stable approximate
solution are of primary interest. The second future matter concerns the KSMOR technique.
Besides theoretical aspects that need to be addressed, this method suffers from convergence
problems of the iterative method itself. An interesting point is therefore the use of MG
methods for computing the projection matrix, which appears promising to deal efficiently
with large images.
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