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Abstract

Since the beginning of its development in the 1950s, mixed integer programming
(MIP) has been used for a variety of practical application problems, such as sequence
optimization. Exact solution techniques for MIPs, most prominently branch-and-cut
techniques, have the advantage (compared to heuristics such as genetic algorithms)
that they can generate solutions with optimality certificates. The novel process of
additive manufacturing opens up a further perspective for their use. With the two
common techniques, Wire Arc Additive Manufacturing (WAAM) and Laser Powder
Bed Fusion (LPBD), the sequence in which a given component geometry must be
manufactured can be planned. In particular, the heat transfer within the component
must be taken into account here, since excessive temperature gradients can lead to
internal stresses and warpage after cooling. In order to integrate the temperature,
heat transfer models (heat conduction, heat radiation) are integrated into a sequencing
model. This leads to the problem class of MIPDECO: MIPs with partial differential
equations (PDEs) as further constraints. We present these model approaches for both
manufacturing techniques and carry out test calculations for sample geometries in
order to demonstrate the feasibility of the approach.

Keywords: Wire Arc Additive Manufacturing, Laser Powder Bed Fusion, Mixed-Integer
Programming, Partial Differential Equations, Finite Element Method, Finite Difference
Method, Optimization.

1 Introduction

In this section we give a brief introduction to additive manufacturing, simulation of phys-
ical phenomena using the finite element method, and mixed-integer programming as our
method of choice to model the scheduling of the production process.
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Figure 1: Principle sketch of the material feed before the heating process (a), material
feed during the heating process (b), and welding robot for deposition on a turn/tilt table
(www.b-tu.de) (c).

1.1 3D Printing Systems and Their Classification

1.1.1 Material Feeding Before the Heating Process

The largest group of processes with material feed before heating to the melting point is
performed are the powder bed processes. As shown in Figure 1a, powder is spread over
the powder bed via a powder bed feed system. The energy source, for example a laser
beam [39, 53, 58], melts or sinters the powder locally at the points that will later form
the component. The excess powder in the build space is not heated and is removed and
recycled after the printing process. The layer-by-layer coating and melting, or sintering,
process is repeated until the complete geometry is built up. The powder bed system can
be used to build up very fine geometries with cavities inside and other high-resolution
features. Laser Powder Bed Fusion (LPBF) is selected in this work as an example of
trajectory optimization.

1.1.2 Material Feeding During the Heating Process

In contrast to the LPBF process, in powder feed systems the applied material is delivered
in the form of powder into the interaction zone between the heat source and the substrate
material. Alternatively, wire can be fed into the heat source or a wire can be used directly
as a consumable electrode (see Figure 1b). When material is fed during the heating
process, it is melted with electron beams, laser beams [2], an electric arc, or a plasma [64].
The deposition process is usually performed on a stationary workpiece, with the deposition
head moving, or the deposition head stationary and the workpiece moving. For some years
now, a variety of motion systems have been explored, whereby systems such as industrial
robots are also used to guide the deposition head and the workpiece is mounted, e.g., on
a positioner (see Figure 1c) [48]. This allows maximum degrees of freedom for positioning
the component and the deposition head. Very high deposition rates are possible, especially
with arc welding, so that even large-volume components can be built up. A particular
challenge of these processes is the trajectory planning of the deposition head, because
holes or material accumulation occur if the trajectories and deposition speeds are not
optimally set. Material accumulations in nodes very quickly cause process instabilities
and generate considerable post-processing costs [48]. With such application systems, even
worn or damaged components can be reworked.

1.2 Physical Phenomena During AM Processes

Due to the strong temperature gradients in almost all 3D printing processes, residual
stresses build up, which can only be removed with the help of cost-intensive thermal post-
treatments. A major disadvantage of AM processes is that, depending on the component
geometry and the printing strategy, the intensive heat input also leads to undesirable
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macroscopic effects in the component. One effect is that a high geometric inaccuracy
occurs due to thermal deformations during the printing process and during cooling. In
addition, it is possible that components crack during production due to the high thermal
stresses [59]. Notch-like defects or plate-stack-like stacking defects can occur on the surface
[40, 52] and defects such as gas porosity can occur inside the component [36], which can be
controlled by adjusting the process parameters [36, 42]. Macroscopic effects in particular
are difficult to avoid and often require additional post-processing such as chemical etching
[57] or conventional machining. These undesirable macroscopic effects mainly depend on
the tool path, the process settings and the cooling strategy. The locally acting heat source
causes inhomogeneous thermal expansion, which leads to contraction over the process
time and causes mechanical stresses and strains [18]. In almost all AM processes, the
temperature profile is strongly dependent on the heat conduction in the component, the
heat transfer coefficient, and the radiation into the surrounding medium (powder in LPBD
and air in WAAM).

1.3 Application of the FEM Method for AM Processes

With numerical simulations it is possible to calculate the heat transfer with conduction,
convection and radiation. Thus, in principle, the macroscopic effects such as the distor-
tion, residual stresses and plastic deformation can be investigated numerically, which has
also been done for the WAAM process [8, 32, 17]. Especially when thermal, mechanical,
and even the microstructural solvers are used in a coupled way, the simulation time for
the LPBD and the WAAM increases tremendously. Due to the complexity of the models,
convergence problems occur when solving large deformations, thermal stresses, and resid-
ual stresses, which can lead to the premature termination of the computation [9, 41, 7, 19].
Even for larger geometries, the temperature, stress, and thermal distortion could be sim-
ulated during the WAAM process and during cooling, with extremely high computation
times [49]. With the LPBD method, a simulation of a few hatches is possible [3, 45, 51],
but the representation of a layer or even a simple component appears impossible due to
the very long laser paths. However, in order to obtain a numerical estimation for real
components as well, reference volumes are defined across many layers and calculated with
different meso-models [63]. Depending on the resolution of the reference volumes, these
approaches enable a very fast global estimation of the temperature and the temperature
gradient. Due to the long calculation time, or because the reference volumes are too large,
both types of FEM models cannot be used to optimize the trajectory of the heat source
with regard to the local temperature gradient in a layer.

1.4 Direct Solution of PDEs for AM Processes

An alternative to highly simplified FEM models is the direct solution of PDEs to calculate
the temperature distribution in a layer. For this purpose, a method was first set up to
model the nodes of thin-walled hollow structures produced with the WAAM method and
to calculate their cooling by thermal radiation. The trajectory of the arc is realized with
the sequential activation of the nodes. An optimal node sequence is calculated under the
constraints of (i) single node visit, (ii) minimum number of start and end points, and (iii)
minimum temperature gradient using MILP [24]. Building on this work, heat conduction
was integrated by implementing beam elements (1D) between the nodes [4]. To apply the
optimization strategy to the LPBD method, the temperature calculation in the pressure
plane (2D) could be adapted, initially considering only the heat conduction in the layer
[6]. All works have in common that a steady state process is assumed and the temperature
of the lower layer is stable.
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1.5 Mixed-Integer Linear Programming

Mixed-Integer Programming refers to the mathematical field of modeling and solving prob-
lems from a certain class of optimization problems of the form

z˚ “ min cx
s.t. Ax ď b

x P Zp ˆQn´p,
(MILP)

where c is an n-dimensional row vector, b is an m-dimensional column vector, and A is an m
by n matrix, all containing rational numbers. For a fixed integer p P t1, . . . , n´1u we speak
of a mixed-integer (linear) program. Here cx is the objective and Ax ď b are the constraints.
Two special cases are worth mentioning: when p “ 0 we deal with a linear program (LP)
and p “ n is a pure integer (linear) program (ILP). Any column vector x P ZpˆQn´p with
Ax ď b is a feasible solution for (MILP). A feasible solution x˚ is an optimal solution for
(MILP) if its objective function value cx˚ is equal to z˚. The study of LPs began in the
mid 20th century with the work of Kantorovich [35], Koopmans [38], and most notably,
Dantzig’s invention of the Simplex algorithm to solve general LPs [16] - although earlier
attempts can be dated back to Fourier [22] and Motzkin [46]. A few years later, LPs
with integrality conditions came into focus. Dantzig, Fulkerson, and Johnson suggested
integer variables to model binary yes-no decisions, with the Traveling Salesman Problem
as prime application example. For the actual solution of such model they introduced the
LP relaxation and a cutting plane approach [15]. Since these method are still in use today,
we give a brief survey on the solution process of (MILP) (for p ą 1, i.e., MILP or ILP). We
first note that these problems are difficult to solve. From a theoretical perspective, they
fall into the call of NP-hard problems [25], so that a theoretically efficient algorithm for
the solution of general (M)ILP would imply P=NP (which is an open Millennium problem
[33]). From a practical perspective, the solution process of MILPs attacks them from two
sides, called the primal and the dual side. On the primal side one is concerned with finding
good feasible solutions fast. This is the realm of heuristics, such as Taboo Search [26],
Simulated Annealing [11, 1], or Evolutionary Algorithms [56], to name just a few. When
the objective function emphasizes a minimization, as it does in (MILP), then the objective
value cx of every primal solution x gives an upper bound on z˚. On the dual side one
tries to give lower bounds on z˚. Most prominently, the integrality conditions are dropped
(relaxed), so that (MILP) is turned into an LP problem, which can be solved much easier.
Searching over a larger space now, an LP feasible solution x̂ that satisfies Ax̂ ď b gives a
lower bound cx̂ on z˚. In case x̂ P ZpˆQn´p, this relaxation would give already a feasible
solution. However, this rarely happens in practice, where it can be expected that some of
the variables with integrality constraints have fractional values in the solution. Then the
integrality conditions are gradually re-introduced by either a cutting plane approach, such
as Gomory’s [28] (see also [12]), or branch-and-bound [43, 14]. In fact, both approaches can
be combined to a branch-and-cut method, which was pioneered by Padberg and Rinaldi
[50] and Balas et al. [5]. These methods are today readily available in several software
packages, such as IBM ILOG CPLEX [30], Gurobi [29], or Fico Xpress [21], which can
solve instances of (MILP) in the order of 100,000 variables and constraints. For further
details on mixed-integer programming we refer to the textbooks of Nemhauser and Wolsey
[47] and Wolsey [62].

In the additive manufacturing application we introduce below, mixed-integer program-
ming is used to formulate the problem of scheduling the production process within one
layer. The sequencing of the printing process is modeled by integer (in fact, binary)
decision variables, and the constraints represent restrictions on the possible sequences
and consequences of routing decisions, such as the material temperature and temperature
gradients, which in turn lead to internal stresses and warpage after cooling. Typical for
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Figure 2: An illustration of the LPBF process.

applied problems with a physical or technical background, they oftentimes come with rela-
tions that are not given by explicit functions but by ordinary (ODE) or partial differential
equations (PDE) instead. For example, the conduction of heat is described by the heat
equation, a well-known parabolic PDE. It is a modeling as well as solving challenge to
embed these conditions as constraints into the framework of mixed-integer programming.
Approaches for the integration of PDEs can be found in Frank et al. [23], where a PDE
was integrated into an MILP using a semi-discretization approach. The term MIPDECO
for this problem class was suggested by Leyffer [44]. A usual approach to tackle a PDE
is to use a finite difference approach for its discretization [55]. If the discretized equation
is linear, it can directly be used as a constraint in (MILP). This approach was used, for
instance, by Gnegel et al. [27]. However, the downside of this approach is the enormous
size of the constraint system (in terms of number of variables and constraints), which is
usually beyond the scope even of modern numerical MILP solvers, and the structure of
discretized PDE systems (such as band matrices), which are exploited by special-purpose
PDE solvers, but vastly ignored by current MILP solvers.

2 Laser Powder Bed Fusion

In laser powder bed fusion (LPBF), a laser beam melts a thin layer of metallic powder,
which solidifies during cooling and bonds to the already processed solid material. The
laser beam is controlled by a scanner which uses two rotating mirrors to direct the laser to
the desired part of the surface. This way the laser can process any point on the surface,
and the delay times requires to jump between two different areas is much shorter than the
actual process time. After finishing one layer, a powder recoater covers the surface with a
new thin powder layer, and the melting process iterates, until an entire three-dimensional
object emerges. An illustration of this process can be found in Figure 2.

As the heat source provided by the beam is concentrated on a tiny point of the surface,
the temperature of the whole object is usually very uneven. This uneven distribution leads
to significant thermal stress and after cooling to warpage. Thermal stress is mainly affected
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Figure 3: Example of an object subdivided into pixels.

by the material properties, the substrate height and the scanning strategy used by the laser
beam [37]. As the material type is usually fixed for a given part and the substrate height
is fixed by the machine, the best way to reduce thermal stress and thus warpage is to
optimize the scanning strategy. In fact, in [13] the authors show that a simple heuristic on
the scanning strategy can lead to a reduction of thermal stress of up to one third compared
to a standard strategy. More examples of scanning strategies influencing warpage can be
found in [54].

A common strategy for LPBF is called the island strategy. Here, the surface of the
printing is divided into smaller surfaces called islands which are then processed consecu-
tively to merge into the desired pattern. In [54] the authors use a heuristic approach to
decide in which order these islands are processed. Common to all of these approaches is
the use of heuristics to find a good solution, which is in some way better than a standard
or random order.

In this section we present an approach which aims to compute mathematically optimal
solutions for the printing order problem using a mixed-integer formulation with an inte-
grated temperature distribution model. This model is an extension of the model presented
in [6]. We discuss different methods to compute the temperature distribution and present
several different objective functions for optimization. The computed results are used in a
refined FEM simulation, which gives a good picture of the temperature distribution during
printing and an evaluation of the thermal stress and warpage.

2.1 Printing Order

As we are printing with an island strategy, the printing order will describe the sequence in
which these islands are processed. Therefore, we will section the surface of the object into
equal squares or pixels, each of which describes one island. As the scanner can target any
point of the surface at any given time without a significant delay, we can assume that any
permutation of the islands is an admissible printing order. The path used by the scanner
inside the island is usually preset by the given machine and the only information we are
given is the printing time of a single island.

For the model we assume that the surface is divided into pixels pi, jq P P (see Figure 3)
and the time steps are given in a set T “ t1, . . . , |P|u. The binary decision variable xi,j,t
represents the printing decision for pixel pi, jq at time step t, with xi,j,t “ 1 if pi, jq is
printed in time step t and xi,j,t “ 0 otherwise. We assume that each pixel of the surface
must be printed at some time step of the process, which is described by the following
equation.

ÿ

tPT
xi,j,t “ 1 @pi, jq P P. (1)

Due to the production process, we can also assume that at every time step exactly one
pixel is printed, which is represented as follows.
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ÿ

pi,jqPP
xi,j,t “ 1 @t P T . (2)

With these restrictions it is easy to see that the number of permutations of the pixels
|P|! is equal to the number of admissible printing orders.

2.2 Temperature Calculation

The most common way to mathematically calculate the temperature distribution in a
physical object is using Fourier’s heat equation:

Bθ

Bt
´ α∇2θ “ C, (3)

where θ is the temperature function, α the thermal diffusivity of the material, and C
is a heat source term. Furthermore, the operator ∇2 describes the Laplacian operator,
i.e., p B2

Bx2
1
` . . .` B2

Bx2
n
q. Given an initial temperature distribution at time 0 and heat sources

depending on time and space, the heat distribution of the object is given by θ. In LPBF
manufacturing we are dealing with a three-dimensional object in space over the duration
of the printing process. Therefore, the function θ is of the form θpx, y, z, tq : R4 Ñ R.
While in some printing processes it makes sense to deal with the temperature distribution
in two dimensions, i.e., neglecting the height (as we will see later for wire-arc additive
manufacturing), in this case the build platform acts as a strong heat sink which makes
the third dimension essential to modeling. However, a simpler two-dimensional model for
LPBF was presented in [6].

Fourier’s heat equation is an important example of a parabolic partial differential equa-
tion and has been widely studied since its introduction the 19th century. While there are
many approaches to solve these equations analytically, we are interested in a numerical
solution which can be embedded into a mixed-integer program. To this end, it is necessary
to describe everything with linear (in-) equalities and the procedure should be able to deal
with the heat source given by the laser beam. Furthermore, it is not essential that the
computation be very precise, as we are mainly interested in the relative distribution of
temperature in the object. However, as the overall optimization task will be computation-
ally expensive, the subtask of updating the temperature distribution should be as efficient
as possible.

All of these properties are fulfilled by finite differences schemes: They are made up of
linear equalities, can deal with changing momentary heat sources, and can be computed
quite efficiently. Moreover, this procedure pairs very well with the pixel structure imposed
on the printing pattern by the island strategy described in Section 2.1.

Most finite differences schemes are based on the forward time central space (FTCS)
and the backward time central space (BTCS) schemes. Being an explicit method, FTCS is
computationally very efficient. However, the drawback is that it is only conditionally stable
for Fourier’s heat equation, i.e., if we use the same step size h for all three dimensions, it
is only stable for:

∆t ď h4

6α. (4)

For the parameters used in our experiments (see Table 1) this condition is far from
being fulfilled. The BTCS scheme is an implicit method and unconditionally stable, how-
ever, in contrast to the explicit method it is necessary to solve a system of linear equa-
tions. While there are several adaptations of BTCS which either improve computation
time by generating more structured matrices (ADI) or which have more accurate solutions
(Crank-Nicholson), our model computes most efficiently with the standard BTCS scheme.
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Figure 4: Here we see a comparison of the temperature development of one block for the
nine time steps of the simulation of a 3ˆ3 square, as computed by BTCS, CN and a simple
FEM simulation. The temperature peak signifies the point at which the laser welds this
particular pixel.

Figure 5: The model as seen from above. The pale pixels are part of the object P and the
dark pixels form the surrounding powder.

Comparison in a simple 3ˆ 3 square have also shown that the results obtained by BTCS
are very similar in behavior to those computed using CN and even by a simple FEM
simulation (see Figure 4).

Following the method of Section 2.1 we partition the printing surface into pixels pi, jq P
P of size ∆x ˆ ∆x. The object is then separated into blocks pi, j, kq P Pobj of size
∆x ˆ ∆x ˆ ∆z matching with the pixels of the surface. As the object is surrounded by
powder, we embed Pobj in a larger cuboid C which is discretized in the same manner,
i.e., C “ tpi, j, kq : i P t1, . . . , Nu, j P t0, . . . ,Mu, k P t0, . . . ,Huu, where N denotes the
number of steps in x-direction, M the number of steps in y- direction and H denotes the
number of steps in z-direction. All blocks E “ CzP consist of the metal powder and are
modeled with different material qualities. Only the blocks in the bottommost level, i.e.,
the set tpi, j, kq P C : k “ 0u are of the same material as the object itself and model the
baseplate of the printing machine.

Now we introduce temperature variables θi,j,k,t for each block pi, j, kq P C and each
time step t P T . As the environment of the process is temperature controlled, we are given
a fixed initial temperature Θ0 in time step 0:
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θi,j,k,0 “ Θ0 @pi, j, kq P C. (5)

For the other time steps we use a BTCS discretization scheme applied to the heat
equation. In the top layer, i.e., the printing layer, the heat transfer is marginal into the
surrounding gas. Thus, we assume for simplicity that transfer upwards in z-direction is 0.
Furthermore, the temperature equations of the printing layer also include the heat source
S which is activated or deactivated by the laser control-variables xi,j,t:

θi,j,k,t´1 ` xi,j,t ¨ S “
ˆ

1` 4α ∆t
p∆xq2

˙

θi,j,k,t `

ˆ

1` α ∆t
p∆zq2

˙

θi,j,k,t

´ α
∆t
p∆xq2

ÿ

pi1,j1qPNi,j

θi1,j1,k,t ´ α
∆t
p∆zq2 θi,j,k´1,t,

(6)

where Ni,j is the set of blocks adjacent to pi, jq in the printing layer. For all other
layers of the model the heat transfer is computed in all directions:

θi,j,k,t´1 “
ˆ

1` 4α ∆t
p∆xq2

˙

θi,j,k,t `

ˆ

1` 2α ∆t
p∆zq2

˙

θi,j,k,t

´ α
∆t
p∆xq2

ÿ

pi1,j1qPNi,j

θi1,j1,k,t ´ α
∆t
p∆zq2

`

θi,j,k`1,t ` θi,j,k´1,t
˘

.

(7)

Note that the heat transfer coefficient α is given here in a simplified form. It is reliant
on the thermal diffusivity of the analyzed material. In this model we are usually given two
types of material: the welded solid material and the powder. These two materials have
very different thermal diffusivity, which is accounted for in the computations in a later
section.

2.3 Objective Functions

The main difficulty for the construction of the model is the choice of the objective function.
Simulating the resulting warpage of a printing process is very complicated, and even in
a refined FEM simulation with fixed printing order the warpage can only be inferred by
the resultant displacement. One natural way to circumvent this problem is to infer the
behavior of the warpage from a feature that is easier to simulate, such as the temperature
distribution. Uneven temperature distribution and successive cooling leads to thermal
stress in the material, which is a key cause of warpage. From this observation an obvious
choice for the optimization objective is the minimization of the temperature gradients
between the blocks of the discretization, i.e., an objective of the form:

min 1
T 2

ÿ

tPT

ÿ

pi,jqPP

ÿ

pi1,j1qPNi,j

ˇ

ˇ

ˇ

ˇ

θi,j,top,t ´ θi1,j1,top,t
∆x

ˇ

ˇ

ˇ

ˇ

, (8)

where we divide by T 2 to normalize by the number of time steps and pixels in the
geometry. As the absolute value function is non-linear, we require additional values
δ`i,j,i1,j1,t, δ

´
i,j,i1,j1,t P R` which represent the positive and the negative proportion of the

absolute value function, respectively. We can now reformulate the above objective func-
tion as:
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min 1
T 2

ÿ

tPT

ÿ

pi,jqPP

ÿ

pi1,j1qPNi,j

´

δ`i,j,i1,j1,t ` δ
´
i,j,i1,j1,t

¯

, (9)

with the additional constraint

δ`i,j,i1,j1,t ´ δ
´
i,j,i1,j1,t “

θi,j,top,t ´ θi1,j1,top,t
∆x @pi, jq P P, pi1, j1q P Ni,j ,

t P T .
(10)

Here we sum up only the gradients of the printing layer for the sake of simplicity.
However, it is also possible to sum up over all blocks of the object. In the following we
will refer to this objective as Grad.

This objective is not only complicated and involves the computation of many absolute
values, one can also easily see by assigning the value 1

|P| to each variable xi,j,t that the
value of an LP-relaxation is very close to zero. This can be interpreted as spreading the
energy of the laser beam evenly across the whole surface of the object. In fact, in practice
this is a significant problem and for example, a test using the geometry seen in Figure 5
could not be solved with a gap exceeding 95%, even if run for multiple days. In [6] the
authors use the same objective function for a much simpler two-dimensional model and
have similar difficulties.

These circumstances show that different objectives are needed in order to solve this
problem efficiently. One possibility is to evaluate the deviation in temperature from a
given fixed target-temperature Θ˚ and sum these up for all blocks in the printing layer
and all time steps:

min 1
T 2

ÿ

tPT

ÿ

pi,jqPP

ˇ

ˇθi,j,top,t ´Θ˚
ˇ

ˇ , (11)

where we again divide by T 2 to normalize by the number of time steps and pixels in
the geometry and the absolute value function is linearized just as in the objective Grad.

As can be see in the computational results presented in the next section, this already
significantly improves running times and yields good results for the printing order. In the
following we will refer to this objective as Dev. However, in order to make the computations
more efficient we also present the following objective:

min 1
T 2

ÿ

tPT

ÿ

pi,jqPP
θi,j,top,t. (12)

In this function we sum up all temperatures in the printing layer for all blocks and all
time steps. In the following we will refer to this objective as Sum. While at first glance
the value computed here seems trivial, i.e., minimizing the amount of energy added to
the surface layer by the laser beam, this can also be interpreted as maximizing the energy
passed to the boundary in form of the powder bed and the baseplate. As the printing
layer will always be the hottest part of the object, it creates a large amount of the thermal
stress within the object. Therefore, choosing a printing order which keeps this area as cool
as possible can make an impact on the resulting warpage. This is the case even more so
if the object is very irregular in the z-direction for example, in the form of an overhang.
In this case, the material on the overhang cannot pass energy towards the baseplate as
efficiently as material which has a direct connection to the baseplate. We will see in the
following section that this objective yields much faster computation times than both of
the other presented objectives.
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parameter unit value description
∆x mm 6 edge length of a pixel
∆z mm 1.3 and 0.13 height of a block
∆t s 3.6864 time step
λ W{pm ¨Kq 15 thermal conductivity
ρ kg{m3 8000 density
c J{pkg ¨Kq 500 specific heat capacity
α m2{s 3.75ˆ 10´6 thermal diffusivity

αpowder m2{s 0.03 ¨ α thermal diffusivity unwelded powder
τ W 250 laser power

Θ0 K 773.15 initial temperature
Θ˚ K 973.15 target temperature

Table 1: Parameters and values used for computations.

2.4 Computational Results

In order to test our model we used a standard setup for the printing process. The material
chosen was stainless steel of type 1.4571 whose material properties can be found in Table 1.
The shapes to be printed were designed to be asymmetrical, with some thinner areas and
a hole. Both instances can be found in Figure 6 with their respective surface and pixel
structure. More irregular shapes are more likely to warrant a customized printing order
and edges and holes are likely to cause more thermal stress. We use an edge length for each
pixel of 6mm. With regard to the height, we tested two different approaches. The height
of the printed object is chosen as 1.3 mm. As an actually printed layer has a height of
approximately 30 µm, we would have to model about 45 layers to reach a height of 1.3 mm.
Simulating a thinner object is not as interesting, as the temperature needs several rounds
of printing to accumulate in the object. Therefore, we first use one height layer (plus
the boundary condition representing the baseplate) and a heat source which is adjusted
to this height. This approximates the process in which all printing layers use the same
order. In a second approach, we use ten height layers of 0.13 mm each, and optimize the
strategy for each of these subsequently. This approximates the process where about 4-5
subsequent layers use the same strategy and then a new strategy is computed using the
previous temperature distribution. We assume a laser beam of 250 W and as a starting
temperature we choose 773.15 K. The heat source is computed using the laser energy and
is adjusted for the time step and pixel size.

These setups were then computed on the two different geometries (Geometry A and
Geometry B in Figure 6) for all presented objectives. The strategies denoted by big corre-
spond to the setup using one layer of 1.3 mm. The strategies denoted by layer correspond
to the setup where ten layers of 0.13 mm were used and are numbered for the layers pro-
cessed. The different objectives are denoted by grad, dev and sum. The computations
were made using IBM ILOG CPLEX 20.1.0.0 [30] with a time limit of 3600 s for the
layer-dev and layer-sum strategies and a time limit of 36 000 s for the big-dev and big-sum
strategies. The LP-method was set to parallel and the numerical emphasis was switched
on to improve the performance of LP relaxation. In the case of the layer-dev and layer-
sum strategies, we used MIP-starts in CPLEX to pass the solution of a previous layer to
the next computation. All computations were performed on a Linux system with a Intel
Xeon Gold 6136 CPU at 3 GHz using up to 32 kernels and 240 GiB RAM.
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Figure 6: The image on left represents the surface of Geometry A, and on the right we
see Geometry B. The strategy big-dev is given by the numbering on the pixels.

Strategy Geometry A Geometry B
runtime gap value runtime in s gap value in K

big-grad 36000 95.50% 121184.19 3600 94.47% 114286.61
big-dev 36000 1.20% 391.58 36000 1.45% 393.46

layer1-dev 2.12 0% 197.29 3.72 0% 197.29
layer2-dev 3.85 0% 194.58 4.99 0% 194.58
layer3-dev 3602 2.66% 197.12 3601 2.66% 197.13
layer4-dev 3600 5.23% 199.61 3601 5.23% 199.62
layer5-dev 3603 7.67% 201.97 3611 7.68% 201.99
layer6-dev 3603 10.00% 204.2 3601 10% 204.22
layer7-dev 3604 12.2% 206.26 3620 12.21% 206.30
layer8-dev 3604 14.29% 208.15 3601.73 14.3% 208.2
layer9-dev 3607 16.26% 209.85 3627.77 16.27% 209.92
layer10-dev 3602 18.13% 211.38 3600 – –

big-sum 1.43 0% 1039.9 1.49 0% 1038.78
layer1-sum 0.41 0% 775.86 0.55 0% 775.86
layer2-sum 3.31 0% 778.57 5.47 0% 778.57
layer3-sum 7.73 0% 781.27 15.31 0% 781.27
layer4-sum 82.35 0% 783.98 125.82 0% 783.97
layer5-sum 130.04 0% 786.67 81.46 0% 786.67
layer6-sum 52.65 0% 789.37 165.17 0% 789.36
layer7-sum 51.05 0% 792.06 113.87 0% 792.04
layer8-sum 141.87 0% 794.74 347.90 0% 794.72
layer9-sum 99.68 0% 797.42 448.05 0% 797.40
layer10-sum 709.81 0% 800.09 360.69 0% 800.07

Table 2: Computational results displaying runtime, optimality gap, and objective value for
all constructed models. Note that layer10-dev did not compute a solution in the defined
time frame of 3600s.
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Figure 7: A visualization of the temperature distribution and the normalized stress in the
last step of the process using both the optimized and a standard strategy on Geometry B.

The computational results in Table 2 for the big model clearly show that the objective
Grad leads to very inaccurate results when executed in the fixed time span of 36 000 s,
while the optimality gap for Dev is quite low in the same time frame. Objective Sum on
the other hand computes to optimality in less than two seconds. In the layer model we
can see the effect of the inclusion of multiple height layers. Note that the use of solutions
when moving from layeri to layeri`1 leads to some jumps in running time, as can be seen
for layer5-sum and layer6-sum. However, apart from this the computation time jumps in
an order of magnitude every other layer. This is an issue when computing with a large
amount of layers and further motivates, why we did not use the printing height of 30 µm.

To validate the results of the optimization, the computed printing orders were used
in a refined FEM simulation which can generate the temperature distribution, as well as
material displacement during the printing process. Here, we present the results for the or-
ders generated by the big-dev computation for both presented geometries. A visualization
of these printing orders can be found in Figure 6. Each of these results is compared to a
standard printing order which prints the objects in stripes moving from left to right and
from to p to bottom. In the following, the temperature distribution directly after the last
exposure step is shown. Since the heat is distributed very quickly, the scale is chosen in
such a way that only a temperature increase up to 80 K due to the heat source is resolved.

For Geometry B the temperature distribution and the normalized stress for the op-
timized and the standard strategy are given in Figure 7. We see that for Geometry B
the temperature distribution is more uniform with the optimized strategy, while with the
standard strategy the temperatures are much higher in the lower half of the object. Simi-
larly, the stress normalized to the yield stress is slightly reduced for the optimized printing
sequence.

The displacement produced by the temperature distribution (see Figure 8) shows clear
differences between the two strategies. First, the local z-shift is particularly visible in the
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Figure 8: A visualization of the z-displacement and the relative maximal resultant dis-
placement in the last step of the process using both the optimized and a standard strategy
on Geometry B.

last processed pixels, which can be seen as red dots. With the standard strategy, the local
z-shift can be seen in most areas of the surface. The the highest relative maximal resultant
displacement of 100% occurs in the the standard strategy. This resultant displacement
is essentially an aggregate of the displacement in all three dimensions and is only about
75% for the optimized strategy in comparison to the standard strategy and is much better
distributed in the optimized strategy. For the standard strategy, the maximum value is in
the lower right corner, which is the last area to be processed by this strategy.

For Geometry A we see a similar picture with regard to the temperature distribution
(see Figure 9). Due to the processing in stripes of the standard strategy, the lower half has
much higher temperatures than the top, dividing the object into two temperature zones,
while the optimized strategy is again more even. When analyzing the normalized stress,
however, the standard strategy seems to have a slight advantage.

In Figure 10 we see that this slight advantage in normalized stress also translates
to the displacement. Both z-displacement and relative maximal resultant displacement
are slightly higher in the optimized strategy, especially in the corner on the left. As
the temperature distribution is in fact better than that of the standard strategy, this
seems to imply that displacement (and thus warpage) cannot be inferred from temperature
distribution alone, but is also somewhat dependent on the geometry of the printed object.

As the strategy was computed with the Dev-objective, the goal of the computation
was to heat the object as close to a preassigned temperature as possible. While this seems
to have been successful, for some objects this does not necessarily lead to a reduction of
the displacement.
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Figure 9: A visualization of the temperature distribution and the normalized stress in the
last step of the process using both the optimized and a standard strategy on Geometry A.

Figure 10: A visualization of the z-displacement and the relative maximal resultant dis-
placement in the last step of the process using both the optimized and a standard strategy
on Geometry A
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3 Wire-Arc Additive Manufacturing

In the process of Wire-Arc Additive Manufacturing, the desired workpiece is built by
progressive deposition of weld beads on an underlying substrate using a weld source moving
around the working area freely. The wire is molten with high energy from an electrical arc
and deposited in droplets to produce weld beads. Although the process does not necessarily
require layer-by-layer deposition, we will consider only cases that can be accomplished by
slicing the part geometry and depositing material layer-by-layer. For a single layer, the
welding trajectory should be continuous since every time the weld source is moved without
welding, there is a chance to introduce bondin defects and the quality of the resulting
workpiece reduces. On the contrary, welding parts of the layer more than once leads
to material accumulation which affects the shape of the workpiece and increases post-
processing efforts. Furthermore, the high temperature of the weld source can cause large
temperature gradients with its surrounding, resulting in strain distribution in the welded
material, which can lead even to cracks. Thus it is desirable to achieve a homogeneous
temperature distribution within the workpiece by adjusting the welding trajectory. Taking
these aspects into account, careful planning of the welding trajectory is crucial for process
efficiency. In this work, we consider only workpieces with wall thicknesses larger than the
width of the weld bead. Since for areas filled with material there are many possible ways
to manufacture them [34], we assume that the path strategy is given and only the sequence
of the single welding moves can be optimized. A study about thin-walled structures with
wall thickness as broad as the width of the weld bead can be found in [4].

3.1 Path Generation

The maximum velocities of the weld source while welding vw P R` and for transiting
vm P R` are given parameters of the welding process. Let ∆t denote the length of
one discrete time step. We consider a given geometry of a two-dimensional layer as a
graph with nodes i P V at the coordinates ~ri P R2 of every intersection point between
two welding segments and edges pi, jq P W describing the part of the respective welding
segment between nodes i P V and j P V with length li,j P R`. Let in the following Vodd Ď V
and Veven “ VzVodd denote the set of nodes with odd and even node degree, respectively.
In this setting we assume that every welding segment pi, jq P W is printed at once and
transition moves can only be performed between the nodes. To reduce defects and increase
the quality of the workpiece, their number should be minimized. Since every segment must
be welded to process the whole layer, the problem of finding a feasible welding trajectory
can be seen as a Chinese postman problem [20] in the graph G “ pV,Wq. For this
problem it is known that, if necessary, additional edges must be inserted between nodes
of odd node degree to keep their number minimal. If G is not connected and contains
more than one component, this holds for the trajectory within every component and the
transition between two components containing nodes of odd node degree. For components
without nodes of odd node degree, every node is a possible start- or endpoint for them. Let
ν P N denote the number of components of G, Voddi and Veveni the sets of nodes with odd
or even node degree in component i P t1, . . . , νu, I Ď t1, . . . , νu the set of all components
with Voddi ‰ H, and Vtran “

´

Ť

iPI Voddi

¯

Y

´

Ť

iRI Veveni

¯

. Thus, all transition moves
are also restricted to the set U “ Vtran ˆ Vtran and the trajectory must start in a node
i P Vtran, otherwise another transition move is required. To incorporate transition moves
into the model, let ω P N be their minimal number required to process the complete layer
and dei,j “ }~ri ´ ~rj}2 the euclidean distance between nodes pi, jq P U . Note that ω also
contains transition moves between components of the graph, if it is not connected.

For every welding segment pi, jq P W, the number of time steps to process it is given
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by τwi,j “
Q

li,j

vw∆t

U

and the whole layer is processed in T proc “
ř

pi,jqPW τwi,j time steps. In
a similar way, the number of necessary time steps to perform a transition move between
nodes i, j P V is computed by τmi,j “

Z

de
i,j

vm∆t

^

. Due to the varying length of the transition
moves, the overall time to perform them is not known apriori, but it can be overestimated
by T tran “ ωmaxi,jPV τ

m
i,j . Overall, the discrete time horizon is given by T “ t1, . . . , Tmaxu

with Tmax “ T proc ` T tran. As abbreviations we use T0 “ T Y t0u, T ´ “ T ztTmaxu, and
T end “ tT proc`ωmini,jPV τ

m
i,j , . . . , T

maxu, the set of discrete time steps where the process
could finish, depending on the length of the necessary transition moves.

Since every segment can be processed in both directions, the edge set W is expanded to
W “ tpi, jq P VˆV | pi, jq P W_pj, iq P Wu and the number of time steps for processing is
adjusted to τwi,j “ τwj,i for pi, jq P W. Relating all possible connections with their respective
processing time, we obtain the sets W˚ “ tpi, ti, j, tjq P V ˆ T0 ˆ V ˆ T | pi, jq P W, tj “
ti`τ

w
i,ju for the welding moves and U˚ “ tpi, ti, j, tjq P VˆT ˆVˆT | pi, jq P U , tj “ ti`τ

m
i,ju

for all possible transition moves. Note that transition moves cannot occur in the first time
step since if this happens, there is a feasible welding trajectory starting at the end point of
this transition with a smaller ω and less processing time. Binary variables wi,ti,j,tj P t0, 1u,
indicating if the weld source moves from node i P V to node j P V from time step ti P T0
to time step tj P T , are used to track the welding trajectory. For the transition moves,
there are binary variables ui,ti,j,tj P t0, 1u, equal to one if and only if the weld source
moves between node i, j P V from time step ti P T to time step tj P T without welding.
Due to the varying number of time steps for the transition moves, further binary variables
ui,t P t0, 1u, indicating whether the welding trajectory ends in node i P Vtran at time step
t P T end, are required. Thus, a feasible welding trajectory is described by the following
constraints: The weld source must start its path at some node

ÿ

i,j,tj :pi,0,j,tjqPW˚

iPVtran

wi,0,j,tj “ 1, (13)

ÿ

j,tj :pi,0,j,tjqPW˚

wi,0,j,tj “ 0 @i P VzVtran. (14)

Furthermore, every segment must be processed
ÿ

ti,tj :pi,ti,j,tjqPW˚

wi,ti,j,tj `
ÿ

tj ,ti:pj,tj ,i,tiqPW˚

wj,tj ,i,ti “ 1 @pi, jq P W. (15)

The resulting trajectory must be continuous
ÿ

k,tk:pk,tk,i,tqPW˚

wk,tk,i,t `
ÿ

k,tk:pk,tk,i,tqPU˚
uk,tk,i,t

“
ÿ

j,tj :pi,t,j,tjqPW˚

wi,t,j,tj `
ÿ

j,tj :pi,t,j,tjqPU˚
ui,t,j,tj

@i P Vtran, t P T zT end, (16)
ÿ

k,tk:pk,tk,i,tqPW˚

wk,tk,i,t `
ÿ

k,tk:pk,tk,i,tqPU˚
uk,tk,i,t

“
ÿ

j,tj :pi,t,j,tjqPW˚

wi,t,j,tj `
ÿ

j,tj :pi,t,j,tjqPU˚
ui,t,j,tj ` ui,t

@i P Vtran, t P T end, (17)
ÿ

k,tk:pk,tk,i,tqPW˚

wk,tk,i,t “
ÿ

j,tj :pi,t,j,tjqPW˚

wi,t,j,tj

@i P VzVtran, t P T , (18)

17



Transition moves cannot be used consecutively since they then can be merged to a single
one

ÿ

k,tk:pk,tk,i,tqPU˚
uk,tk,i,t `

ÿ

j,tj :pi,t,j,tjqPU˚
ui,t,j,tj ď 1 @i P Vtran, t P T . (19)

Finally, the number of end nodes and transition moves is limited by
ÿ

iPVtran

ÿ

tPT end

ui,t “ 1, (20)
ÿ

pi,ti,j,tjqPU˚
ui,ti,j,tj “ ω. (21)

3.2 Temperature Calculation

Considering the temperature distribution within the workpiece, it is affected by the heat
input of the weld source, heat conduction, convection, and heat radiation. The progression
of the temperature at every point within the layer can be described by the two-dimensional
heat equation

Bθ

Bt
px, y, tq “ α

˜

B2θ

pBxq2
px, y, tq `

B2θ

pByq2
px, y, tq

¸

` qpx, y, tq

@px, yq P Ω, t P p0, T s , (22a)
Bθ

Bn
px, y, tq “ κe

´

ϕadd ´ θpx, y, tq
¯

@px, yq P BΩ, @t P r0, T s , (22b)

θpx, y, 0q “ θinitpx, yq @px, yq P Ω, (22c)

with thermal diffusivity α P R`, an artificial cooling factor κe P r0, 1s and initial tem-
perature distribution θinit : Ω Ñ R`. We assume the heat source function qpx, y, tq :
Ωˆ r0, T s Ñ R` to be piece-wise constant. The Robin boundary (22b) is used to approx-
imate the heat exchange with the environment by heat radiation and convection. It has
the slope κe and an additive constant ϕadd P R`.

To transform the partial differential equation system (22) into the discrete framework,
we apply the finite element method (FEM) according to [60]. Along every welding segment
pi, jq P W, τwi,j ´ 1 equidistantly distributed discretization points are added and stored in
the set V int. Let in the following V “ V Y V int denote the set of all nodes, n “ |V|,
and ξ : V int Ñ W ˆ t1, . . . , τwi,ju the function assigning every interior node to its position.
Then, the FEM is set up with the node set V as discretization points, the shape of the
considered geometry as its boundary, and linear triangle elements between the nodes.
Using the implicit time approach, it results in the linear equation system

pM `∆tKq~θt`1 “ ∆tp~qt`1
~fH ` κeϕadd ~fRq `M~θt, (23)

with mass matrix M “ pmi,jq P Rnˆn, stiffness matrix K “ pki,jq P Rnˆn, and load vectors
~fH P Rn, ~fR P Rn. Note that the stiffness matrix is computed by K “ αKS ` κeKR,

where KS P Rnˆn and KR P Rnˆn are the effects of (22a) and (22b), respectively. The
heat input in all nodes at time step t P T0 is given by the vector ~qt P Rn` and the vector ~θt
consists of the variables θi,t P R`, describing the temperature of node i P V at time step
t P T0. Furthermore, we use fHi , fRi , and qi,t to denote element i P V of the above defined
vectors.

For the weld source, we use the piece-wise constant approximation of the Goldak heat
source model derived in [4]. It assumes the area of effect of the weld source to be circular
with a homogeneous energy distribution in every direction and splits it into Kw non-
overlapping rings, where a constant proportion κw1 ą κw2 ą κwKw of the maximum welding
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temperature ϕw is added to every node within it. Every ring is identified with the interval
Pk, k “ 1, . . . ,Kw, given by the minimum and the maximum distance from the weld
source, where the factor κwk applies. Due to the choice of the nodes V, the heat source is
centered above one node at every time step. Thus, the heat input vector ~qt is given by

qi,t “ ϕw

¨

˚

˚

˚

˚

˝

wi,t `
Kw
ÿ

k“1

ÿ

jPV
de

i,jPPk

κwk wj,t

˛

‹

‹

‹

‹

‚

@i P V, t P T0, (24)

where wi,t is an abbreviation for

wi,t “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0 , i P VzVodd,
t “ 0,

ř

j,tj :pi,0,j,tjqPW˚ wi,0,j,tj , i P Vodd, t “ 0,
ř

ph,th,j,tjqPW˚

ξpiq“ph,j,kq
t“th`k

wh,th,j,tj `
ř

pj,tj ,h,thqPW˚

ξpiq“ph,j,kq
t“th´k

wj,tj ,h,th , i P V int, t P T ,

ř

h,th:ph,th,i,tqPW˚ wh,th,i,t `
ř

h:ph,th,i,tqPU˚ uh,th,i,t , i P V, t P T .

(25)

Discretizing the initial temperature distribution θinitpx, yq to θiniti P R` describing the ini-
tial temperature of node i P V, the temperature distribution within the layer is calculated
by

θi,0 “ θiniti @i P V, (26)
ÿ

jPV

pmi,j `∆tki,jqθj,t “
ÿ

jPV

mi,jθj,t´1 `∆t
´

qi,tf
H
i ` κ

eϕaddfRi

¯

@i P V, t P T . (27)

To obtain a flexible objective function, we minimize the absolute deviation from a given
target temperature θtari,t in node i P V at time step t P T0. With this approach, different
goals can be achieved by choosing appropriate values. If the target temperature is chosen
constant and equal for all nodes and time steps, a welding trajectory with a homogeneous
temperature distribution is preferred. Specified material properties can be obtained by
setting the target temperature for the desired nodes to the necessary temperature pro-
gression. The objective function is given by

min
ÿ

iPV

ÿ

tPT0

|θi,t ´ θ
tar
i,t |. (28)

As we have seen in Section 2, additional variables ϑ`i,t, ϑ´i,t P R` are required to linearize
the absolute value function. These represent the positive and the negative proportion of
the absolute value function, respectively. Then, the linearized objective function is

min
ÿ

iPV

ÿ

tPT0

´

ϑ`i,t ` ϑ
´
i,t

¯

, (29)

with the additional constraint

θi,t ´ θ
tar
i,t “ ϑ`i,t ` ϑ

´
i,t @i P V, t P T0. (30)
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Figure 11: Geometry used to estimate the parameters of the model using the yellow marked
points.

3.3 Parameter Estimation

The parameters ϕw, κe and ϕadd are artificial parameters that cannot be identified to
physical or material parameters or contain several of them. To achieve good values for
them, a parameter estimation is necessary. Therefore, the geometry displayed in Figure 11
was simulated in LS-DYNA with a predefined welding trajectory for every layer, thermal
diffusivity α “ 15.6 W

mm ˝C , and time step length ∆t “ 0.5s. Basic information about
the AM-modeling technique with death-birth elements in the simulation environment of
LS-DYNA can be found in [31]. The geometry with the chosen points used for the cali-
bration is displayed in Figure 11. To achieve data of the process while in steady state, the
temperature of the 10th layer is taken as desired temperature distribution which should
be approximated by the mathematical model using a weighted absolute deviation. Let
i P VM and θsimi,t P R` denote the set of nodes which are identified with the chosen points
and their simulated temperature data at time step t P T0, respectively. Since the welding
trajectory is fixed, only ϕw, κe, ϕadd and the temperature θi,t of every node i P V at time
step t P T0 remain as variables. The relevant area of the geometry is modeled using the
temperature data of the outer chosen points as boundary set VB with a Dirichlet boundary
condition. Thus, the optimization model simplifies to

min
ÿ

iPVM

ÿ

tPT0

θsimi,t
M

|θi,t ´ θ
sim
i,t |, (31a)

θi,0 “ θiniti @i P V, (31b)
ÿ

jPV

pmi,j `∆tki,jqθj,t “
ÿ

jPV

mi,jθj,t´1 `∆t
´

qi,tf
H
i ` κ

eϕaddfRi

¯

@ i P VzVB, t P T , (31c)
θi,t “ θsimi,t @ i P VB, t P T , (31d)
ki,j “ αkRi,j ` κ

ekSi,j @ i, j P V. (31e)

where M P R is a constant to scale the weights, kRi,j P R and kSi,j P R are the elements of
matrices KR and KS , respectively. Due to constraint (31c), model (31) is nonlinear, thus
the absolute value function in the objective function (31a) can remain. Its optimal solution
was computed using a Trust-region method [10] implemented in the Python package Scipy
1.3.1 [61]. The obtained optimal values for the parameters are ϕw “ 1763˝C, κe “ 0.1705,
and ϕadd “ 428.65˝C.
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Figure 12: Example geometry with numbered components and a single layer of it.

3.4 Computational Results

The MILP consisting of constraints (13)–(21), (24)–(27), and (30), and objective func-
tion (29) was implemented in AMPL. The velocities of the heat source were set to
vw “ 6.66mm

s , vm “ 30mm
s , and the time step length is ∆t “ 1s. The thermal diffusivity

is again α “ 15.6 W
mm ˝C , the results of Section 3.3 are applied, and the parameters for the

heat source are taken according to [4]. As initial temperature we choose θiniti “ 500˝C for
all nodes i P V and the target temperature is fixed to θtar “ 700˝C for all nodes and time
steps. They were chosen to achieve a constant temperature within the workpiece over the
whole processing time reducing thermal stresses by uniform cooling behavior. To illustrate
the advantage of trajectory optimization, we consider again the geometry of Section 3.3
and compare the solution of the optimization model to 100 random generated sequences.
The geometry contains ten components, nine smaller squares and one surrounding square,
displayed in Figure 12. To reduce the model complexity, we assume that any of the ten
squares of the geometry must be processed completely before the next square can be
chosen and within a square, the edges are welded counterclockwise starting in the upper
left corner. Thus, it remains to find the optimal sequence of the ten squares, leading
to 3, 628, 800 possible trajectories and simulating of all their temperature distributions is
ineffective.

Applying the optimization model, the considered instance was solved using IBM ILOG
CPLEX 20.1 [30] with a time limit of 190, 800 seconds and default settings on a Mac Pro
with an Intel Xeon W running 32 threads parallel at 3.2 GHz clockspeed and 768 GB RAM.
The best found solution with a remaining gap of 1.32% is displayed in Figure 13. For the
random generated sequences, their objective function values were computed after 12, 510
seconds in total using the constraints (24)–(27) and (30) with objective function (29) for
accordingly fixed binary variables wi,ti,j,tj , pi, ti, j, tjq P W˚, and ui,ti,j,tj , pi, ti, j, tjq P U˚.
None of them is better than the objective function value of the optimized trajectory, as
their distribution shows in Figure 14.

4 Conclusions and Future Work

In this work we presented a mixed linear integer programming approach towards the
otimization of printing orders for WAAM an LPBD manufacturing. We constructed com-
plete models using real-world parameters, which were tested for computational properties
for several instances and objectives. The computed results were evaluated in part using
simulation tools common in the field of additive manufacturing, showing promising results
for the reduction of warpage, due to the production process.

In our future work, we accelerate the solution process of the WAAM optimization model
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Figure 13: Best found welding sequence of the considered instance by the optimization
model within a time limit of 190, 800 seconds. The red point is the starting node, dashed
lines represent transition moves and the numbers give the sequence of the squares.

Figure 14: Distribution of the objective function values of the 100 random generated
sequences and the solution found by optimization, marked by a red dotted line.
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to reduce the computation time for finding optimal welding trajectories. Furthermore, the
model is extended to geometries with arbitrary wall strengths and the objective function
is reworked to achieve results easier to interpret.

For the optimization of LPBD process many questions are still open. Our model can
still be refined with regards to the temperature computation. Other numerical methods to
solve the heat can still be tested with regards to the trade-off between accuracy and speed
of computation in the integrated MILP model. Furthermore, as the direct simulation of
the warpage is already computationally very expensive (the model used here needs several
hours to compute one printing layer), the question still remains whether optimizing the
heat distribution is the only way to approximate warpage efficiently. Our model can be
adapted for a multitude of different objective functions, which could be compared to the
ones used here. In a next step, experimental results can be used to further reinforce our
results. This seems to be a challenge, as small differences during the printing process
and in the material can sometimes lead to different warpage even for the same strategy.
Another question is whether our model can be adapted to other related printing processes.
For example, LPBF can also be executed with multiple lasers, both for welding and for
heating the material under the melting point. This would lead to very different printing
patterns and could have interesting effects on the optimization process.
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[24] Armin Fügenschuh, Markus Bambach, and Johannes Buhl. Trajectory optimization
for wire-arc additive manufacturing. In Operations Research Proceedings, pages 331–
337. Springer International Publishing, 2019.

[25] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., 1979.

[26] F. Glover. Future Paths for Integer Programming and Links to Artificial Intelligence.
Computers and Operations Research, 13(5):533–549, 1986.

[27] F. Gnegel, A. Fügenschuh, M. Hagel, S. Leyffer, and M. Stiemer. A solution frame-
work for linear PDE-constrained mixed-integer problems. Mathematical Program-
ming, Series B, 188:695–728, 2021.

[28] R.E. Gomory. An algorithm for the mixed integer problem. Technical report, RM-
2597, The RAND Cooperation, 1960.

[29] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

[30] International Business Machines Corporation. IBM ILOG CPLEX Optimizer Refer-
ence Manual, 2021.

[31] R Israr, J Buhl, J Elze, and M Bambach. Simulation of different path strategies
for wire-arc additive manufacturing with Lagrangian finite element methods. In LS-
DYNA Forum, 2018.

[32] M. Ito, Seiichiro Izawa, Yu Fukunishi, and Masaya Shigeta. Sph simulation of gas arc
welding process. In Proc. Seventh International Conference on Computational Fluid
Dynamics (Hawaii, 2012), ICCFD7-3706, 2011.

[33] A.M. Jaffe. The Millennium Grand Challenge in Mathematics. Notices of the AMS,
53(6):652–660, 2006.

[34] Jingchao Jiang and Yongsheng Ma. Path planning strategies to optimize accuracy,
quality, build time and material use in additive manufacturing: a review. Microma-
chines, 11(7):633, 2020.

[35] L.V. Kantorovich. Mathematical Methods of Organizing and Planning Production.
Management Science, 6(4):366–422, 1960. English translation of the original Russian
paper from 1939.

[36] Felix H Kim and Shawn P Moylan. Literature review of metal additive manufacturing
defects. Technical report, U.S. Department of Commerce, may 2018.

[37] S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher. 3d fe simulation for
temperature evolution in the selective laser sintering process. International Journal
of Machine Tools and Manufacture, 44(2):117–123, 2004.

25



[38] T.C. Koopmans. Exchange Ratios between Cargoes on Various Routes (Non- Re-
frigerated Dry Cargoes). Technical report, Memorandum for the Combined Shipping
Adjustment Board, Washington, D.C., 1942.

[39] H.R. Kotadia, G. Gibbons, A. Das, and P.D. Howes. A review of laser powder bed
fusion additive manufacturing of aluminium alloys: Microstructure and properties.
Additive Manufacturing, 46:102155, oct 2021.

[40] D. Kotzem, P. Dumke, P. Sepehri, J. Tenkamp, and F. Walther. Effect of miniaturiza-
tion and surface roughness on the mechanical properties of the electron beam melted
superalloy inconel®718. Progress in Additive Manufacturing, 5(3):267–276, oct 2019.

[41] Milan Kucharik, Richard Liska, Pavel Vachal, and Mikhail Shashkov. Arbitrary
lagrangian-eulerian (ALE) methods in compressible fluid dynamics. Programs and
Algorithms of Numerical Mathematics, 13:178–183, 2006.

[42] Carolin Körner, Andreas Bauereiß, and Elham Attar. Fundamental consolidation
mechanisms during selective beam melting of powders. Modelling and Simulation in
Materials Science and Engineering, 21(8):085011, nov 2013.

[43] A.H. Land and A.G. Doig. An automatic method for solving discrete programming
problems. Econometrica, 28:497–520, 1960.

[44] S. Leyffer. Mixed-integer PDE-constrained optimization. In L. Liberti, S. Sager, and
A. Wiegele, editors, Mixed-integer Nonlinear Optimization: A Hatchery for Modern
Mathematics, volume 46, page 2738–2740. Mathematisches Forschungsinstitut Ober-
wolfach, 2015.

[45] Ming Liu, Louis N.S. Chiu, Chaitanya Vundru, Yang Liu, Aijun Huang, Chris Davies,
Xinhua Wu, and Wenyi Yan. A characteristic time-based heat input model for simu-
lating selective laser melting. Additive Manufacturing, 44:102026, aug 2021.
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