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Introduction

In recent decades, commodity futures investments have become more popular than ever – for
instance, according to the commodity futures trading commission (CFTC), the open interest (that
is, the number of open future contracts) of the Goldman Sachs Commodity Index increased tenfold
between the ends of 1992 and 2016.1 While several irrational bubbles and unforeseeable crises
(such as the 2000 dot-com bubble, the 2008 global financial crisis or the 2020 stock market crash
and other effects of the COVID-19 pandemic) have affected the common stock market, research
on alternative investments was intensified and pointed out the general potential of commodity
futures (see Jensen et al., 2000; Gorton and Rouwenhorst, 2006; Bhardwaj et al., 2015; Narayan
et al., 2013; Daskalaki et al., 2014, 2017). Thus, commodity futures evolved from a pure hedging
instrument for commodity risk managers into a popular liquid asset class (see Rouwenhorst and
Tang, 2012; Tang and Xiong, 2012; Cheng and Xiong, 2014; Henderson et al., 2015). Because of the
absence of restrictions for short sellers, their negligible transaction costs, manageable extent and
high liquidity, commodity futures also offer attractive conditions for cross-sectional, time-variable
investment strategies, as studied by Shen et al. (2007); Szakmary et al. (2010); Fuertes et al. (2010);
Bianchi et al. (2015) or Fernandez-Perez et al. (2018a).
Motivated by the popularity of commodity futures investments in practice and academia, this

thesis examines passive and active investment strategies in commodity futures markets – especially,
the analysis of their risk and returns. Potential investors may wonder what level of risk to expect
when investing in commodity futures or, (in view of the recent financial market troubles) about the
extent to which these risks will be influenced by financial crises and which commodity investment
strategies will still yield a good return. To evaluate the former questions, following standards of
the Basel Committee on Banking Supervision, the expected shortfall (ES) measure found its way
into general risk management applications. It was intended to replace the related value at risk
(VaR) measure in the banking sector, as it fulfills the property of sub-additivity and allows not
just for the frequency, but also for the magnitude of shortfalls (see Artzner et al., 1999; Acerbi and
Tasche, 2002a,b; Basel Committee of Banking Supervision, 2012). Relying on this risk measure,
the following questions arise for investors in commodity futures markets (or likewise, for financial
trading institutions that have to compute for example margins of exchanges by means of ES): What
are common levels of ES? On which method should ES estimation be based? How can estimation
quality be evaluated ex post in order to readjust estimation processes if required?2

This thesis responds to these questions in the following way: First in Chapter 1, we evaluate
the qualities of several popular ES estimators in a general context. We focus on non-parametric
ES estimators, relying on some classic, weighted and outlier-robust versions of historic estimators
(see Inui and Kijima, 2005; Peracchi and Tanase, 2008; Jadhav et al., 2009; Nadarajah et al.,
2014) and represents of kernel density techniques (see Nadaraya, 1964; Scaillet, 2004; Chen, 2008).
Additionally, we consider two parametric benchmarks: the normal distribution approach and the

1The detailed data are available on https://www.cftc.gov/MarketReports/CommitmentsofTraders/

HistoricalCompressed/index.htm. Their computation of open interest follows https://www.cftc.gov/

MarketReports/CommitmentsofTraders/index.htm.
2Indeed, several (parametric and non-parametric) ES estimators already exist, but no general convention how to
estimate ES best became established. Moreover and in contrast to VaR (for which the backtests of Kupiec (1995);
Christoffersen (1998) and Berkowitz (2001) turned out to be standards), the ES’ lack of identifiability rules any
ideal direct method of ex post quality evaluation out.

1

https://www.cftc.gov/MarketReports/CommitmentsofTraders/HistoricalCompressed/index.htm
https://www.cftc.gov/MarketReports/CommitmentsofTraders/HistoricalCompressed/index.htm
https://www.cftc.gov/MarketReports/CommitmentsofTraders/index.htm
https://www.cftc.gov/MarketReports/CommitmentsofTraders/index.htm


Introduction

peak over threshold method (based on extreme value theory; see McNeil and Frey, 2000) and
analyze several combined estimators. To exclude distorting influences on data and hence, prevent
extra estimation errors, we work with several simulated settings that enable us to perform our
evaluation without any additional time-varying mean and volatility models or backtests (which is
not possible when working with commodity futures data directly). Rather, we analyze pure ES
estimator characteristics in terms of certain performance plots, error and risk measures for our
diverse simulated market settings.
After this, in Chapter 2, we turn our attention to ES estimation on commodity futures markets

especially. We begin by analyzing time-dependent ES levels of passive commodity investments over
nearly forty years. Then, applying two versions of a modern backtest of Du and Escanciano (2017)
that adapt the established VaR backtest standards to ES, we compare the time-varying qualities
of various ES estimators in the commodity futures market. In that process, we also analyze the
extent to which the estimated ES behavior differs when historical market phases change or crises
occur. In order to secure a correct validation of estimation results, we concentrate on ES estimators
that are based on invertible distribution functions, such as parametric estimators (assuming strictly
monotonic distribution functions) or semi-/ non-parametric approaches that base on smoothed and
data-dependent distributions. In addition to peak over threshold and kernel density estimators,
which we already introduced in Chapter 1, we expand our focus by allowing for the skewed t
distribution of Hansen (1994) that incorporates both skewness and kurtosis, and further parametric
methods that performed well in a commodity context, namely, the g-and-h distribution of Tukey
(1977), the Johnson (1949) system and a bivariate Gaussian mixture distribution. With this
proceeding, we can identify the sector-specific qualities of ES estimators in commodity markets.
After studying risk measurement with ES in general and for passive commodity futures invest-

ments in particular, we turn to the analysis of risk and return of active commodity futures market
strategies. In this context, one of the most popular representatives are cross-sectional momentum
strategies (see Rouwenhorst and Tang, 2012; Miffre, 2016), which emerged after the seminal work
of Jegadeesh and Titman (1993, 2001) in stocks sector and were extended to commodity futures
markets from Erb and Harvey (2006); Miffre and Rallis (2007) and others. However, for the last
two decades, traditional momentum strategies were found to exhibit decreasing performance in
stock markets (see Chordia et al., 2014; Hwang and Rubesam, 2015). In regard to that observa-
tion, the following questions immediately arise for investors in commodity futures markets: Was
the profitability of momentum strategies adversely affected, too? And is there still some potential
to enhance strategy performance?
In Chapter 3, we answer the first question with our performance analysis of several momentum

strategies during the last quarter-century. Regarding the second, we investigate whether the neg-
ative impacts of crises or other kinds of market turmoil on strategy performance can be avoided
by considering memory-enhanced momentum strategies. For that, we utilize short and long mem-
ory measures, namely variance ratios and Hurst exponents (based on Lo and MacKinlay (1988)
and Hurst (1951), respectively), which can be estimated without further characteristics than past
returns and deliver additional information about market stability to momentum strategies. For
our new, memory-enhanced momentum strategies, we also study which commodity sectors remain
most gainful for traders and which trading behavior prepares investors best to withstand portfolio
losses or even increase wealth despite recent crises.
The remainder of this cumulative thesis is organized as follows: It is subdivided into three main

parts (according to Chapters 1 to 3); Chapters 1 and 2 are based on Mehlitz and Auer (2020, 2021),
respectively, whereas Chapter 3 is still under review. Each part starts with a short motivation
that brings its particular approach into context of the thesis. In addition to the introductory and
concluding sections of each chapter, which discuss our research questions, relate it to the literature
and summarize our answers to them in detail, we conclude this thesis with a Summary of its most
important findings.

2



Part I

Motivation

Financial trading institutions or private investors that plan to measure financial risks with ES have
to select an appropriate method to estimate the expected shortfall of their data. For this purpose,
we provide a structured comparison of several approved ES estimators in the first chapter of that
thesis that will help risk managers to decide on suitable ES estimation methods, conditional on
their respective market settings.
The variety of contemplable ES estimators can be subdivided into two classes: parametric

(assuming underlying pre-specified probability distributions with a fixed set of parameters) and
non-parametric (number and nature of factors in the assumed model structure are determined
from data sample). The appropriateness of parametric estimation methods strongly depends on
the underlying population properties, whereas an application of non-parametric methods works
more generally. Therefore, we mainly concentrate on non-parametric estimators of ES in the
following chapter and give an overview of their estimation qualities by means of classic error
measures, relative standard deviation and certain performance profiles.
In order to obtain universally valid results that avoid misleading influences of past crises or

other real-world phenomena, we base our evaluation on simulated settings with zero mean and
unit variance. Practitioners can receive such data by extracting the underlying time-varying mean
and volatility processes with appropriate filter models. As we work with simulated mean- and
volatility-adjusted data directly, we prevent that our evaluation results can be distorted from
chosen filter models.
The evaluation is not only limited to the commodity context, but also can be useful for other

financial sectors. Indeed, we extend our focus to samples that originate from several skewed and
tailed distributional settings, such that appliers from commodity, stocks and other finance sectors
or (insurance) industries are enabled to identify the best-performing estimators to their setting (or
this one that matches best to their data). To complete our overview, we also incorporate several
common levels of ES and sample sizes (from one month to four years of daily data) that might
result from different kinds of application.

3



1. A Monte Carlo evaluation of non-parametric
estimators of expected shortfall

Abstract: Motivated by the growing importance of the expected shortfall in banking and finance,
this study compares the performance of popular non-parametric estimators of expected shortfall
(i. e., different variants of historical, outlier-adjusted and kernel methods) to each other, selected
parametric benchmarks and estimates based on the idea of forecast combination. Within a multi-
dimensional simulation setup (spanned by different distributional settings, sample sizes and con-
fidence levels), we rank the estimators based on classic error measures as well as an innovative
performance profile technique, which we adapt from the mathematical programming literature.
Our rich set of results supports academics and practitioners in the search for an answer to the
question of which estimators are preferable under which circumstances.

1.1. Introduction

Over decades, the value at risk (VaR) played a dominant role in quantifying asset and portfolio
risks of commercial banks, insurance companies and non-financial firms (see Basel Committee of
Banking Supervision, 1996, 2004; Jorion, 2007; Dańıelsson, 2011). However, in recent years, the
growing awareness of the measure’s theoretical deficiencies has led researchers and practitioners to
rethink its application. The VaR captures the loss that is not exceeded with a certain confidence
level and thus naturally does not look at the loss we have to expect if a tail event occurs. In
other words, it considers only the likelihood but not the size of large losses. Furthermore, it fails
to account appropriately for portfolio risk diversification because it does not fulfill the important
properties of subadditivity (see Artzner et al., 1997, 1999) and convexity (see Basak and Shapiro,
2001). In contrast, the expected shortfall (ES) does not suffer from such shortcomings because
it is defined as the expected value of losses exceeding the VaR (see Acerbi and Tasche, 2002a,b;
Tasche, 2002; Yamai and Yoshiba, 2005). Consequently, regulators have suggested phasing out
the VaR and replacing it with the ES in the calculation of capital requirements of banks (see
Basel Committee of Banking Supervision, 2012). Moreover, the usage of ES in the construction
and evaluation of stock, bond, commodity, currency and even bitcoin portfolios is on the rise (see
Harmantzis et al., 2006; Reboredo, 2013; Yao et al., 2013; Paraschiv et al., 2015; Degiannakis and
Potamia, 2017; Stavroyiannis, 2018).

The literature has brought forth a wide variety of methods to estimate the ES of an asset
or portfolio (see Nadarajah et al., 2014). Therefore, risk managers are faced with the question
of which estimator they should choose. In general, there are two approaches that can provide
an answer: backtesting and simulation. The problems with backtesting are that (i) its results
will be bound to the features of the analyzed empirical dataset and (ii) sophisticated backtesting
procedures for ES, which have become available just recently (see Du and Escanciano, 2017; Lösner
et al., 2019), are limited to specific classes of ES estimators.1 In contrast, simulation settings are
more flexible because they allow the construction of various distributional settings to see in which
environment an estimator behaves best and/or better than others. In the previous literature, we
can find several studies comparing different ES estimators in such a way (see Chen, 2008; Jadhav

1For a review of the properties of the most influential backtests, see Novales and Garcia-Jorcano (2019).

4



1.2. Estimators of expected shortfall

et al., 2009; Yu et al., 2010). While their results deliver important insights into, for example,
small-sample properties of the estimators, they are limited by the fact that they tend to compare
a newly proposed estimator to a simple benchmark method or a closely related estimator. Thus,
to the best of our knowledge, no simulation study provides a structured comparison of the most
popular estimators.
We fill this gap with a comprehensive analysis of the estimation error of non-parametric ES

estimators, specifically, the classic historic estimator, several weighted historic estimators (see
Inui and Kijima, 2005; Peracchi and Tanase, 2008), outlier-robust historic estimators (see Jadhav
et al., 2009) and some kernel estimators (see Scaillet, 2004; Chen, 2008). We focus on this class of
estimators because it does not require the assumption of a specific loss distribution and is thus less
prone to misspecification error than parametric estimators. Furthermore, commercial banks have
shown a preference for non-parametric methods of estimating VaR (see Pérignon and Smith, 2010)
and therefore might also tend to non-parametric ES estimators. As parametric benchmarks we
include the classic normal distribution approach and the well-known peak over threshold method
(originating from extreme value theory and propagated by McNeil and Frey, 2000) because the
former is the simplest available estimator and the latter has been shown to outperform many other
parametric techniques (such as mixture distributions and other non-normal classes) in the context
of VaR estimation (see Kuester et al., 2006; Abad et al., 2014). Our main goal is to derive a guide
for selecting the appropriate ES estimator. In other words, our results support a decision maker in
the process of finding the estimator most suitable for a given situation which is characterized by
the properties of the available data (e. g., the degrees of asymmetry and tail strength), the sample
size and the desired confidence level.
Alongside this main contribution, we present two additional original analyzes. First, we illustrate

how a mathematical programming technique called performance profile (see Dolan and Moré, 2002),
which was developed for benchmarking and comparing optimization software, can be applied to
the evaluation of ES estimators. Specifically, we show that its comprehensive graphical outputs
can supply valuable information not contained in simple estimator rankings based on standard
measures of estimation error. Second, we analyze whether a result intensively studied in the
forecasting literature can be used to construct better ES estimates. It has been shown that
combining forecasts originating from different models via averaging can generate new forecasts that
outperform the original models (see Timmermann, 2006; Weron, 2014). We investigate whether
averaging the estimates of different ES estimation techniques has a similar effect.
The remainder of our study is structured as follows. Section 1.2 presents our selection of ES

estimators subdivided in benchmark estimators, non-parametric estimators and a simple combined
estimate. Section 1.3 outlines the simulation setup (including distribution and parameter choices)
and the measures of estimation error (covering standard metrics and performance profiles). Sec-
tion 1.4 discusses our simulation results by distinguishing between settings particularly relevant for
banks (Basel framework) and non-banks (corporate framework). Moreover, it looks at additional
variants of combined estimators and reports the outcomes of some robustness checks. Section 1.5
concludes and outlines directions for future research.

1.2. Estimators of expected shortfall

1.2.1. Preliminary definitions

Before discussing the nature of our different estimators, we have to introduce some notation and
formally define ES.
Let (Xt) be a time series of negative asset returns (i. e., returns multiplied by −1) or losses Xt,

t = 1, . . . , n, which is assumed to be a sequence of independently and identically distributed (iid)
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1.2. Estimators of expected shortfall

random variables. For a given high confidence level γ (for example, 97.5%), VaRγ is then defined
as the γ-quantile of the cumulative distribution function (cdf) of (Xt).
With the probability density function (pdf) f of the losses, ESγ is given by

ESγ =
1

1− γ

∫︂ ∞

VaRγ

xf(x)dx =
1

1− γ

∫︂ 1

γ
VaRvdv. (1.1)

In the continuous case, this expression equates to the tail conditional expectation (see Artzner
et al. (1999)),

ESγ = E(Xt|Xt ≥ VaRγ), (1.2)

where E(.) denotes the mean function. Hence, the dedicated ESγ is the expected value of all Xt

exceeding VaRγ . Since the probability of loss larger than VaRγ equals 1 − γ, ESγ represents the
expected loss in the unlikely worst-case scenario of a tail-event.

1.2.2. Benchmark estimators

1.2.2.1. Normal method

One of the simplest techniques to estimate ES is to assume that losses are normally distributed
with mean µ and standard deviation σ (see McNeil et al., 2005, chpt. 2.2.4). Using (1.1) and
inverse integration by substitution then delivers

ESND
γ = µ+

σ

1− γ
ϕ
(︁
Φ−1(γ)

)︁
, (1.3)

where ϕ is the standard normal pdf and Φ−1 is the inverse standard normal cdf. Thus, to obtain
an empirical estimate, we simply have to estimate µ and σ via their sample counterparts and plug
the resulting values into Equation (1.3).

1.2.2.2. Peak-over-threshold method

Because the ES focuses on extreme losses, extreme value theory is a particularly interesting tool
for the derivation of new ES estimators. So far, most research in this field has focused on VaR
estimation (see Brooks et al., 2005; Mögel and Auer, 2018) but can easily be extended to ES
estimation (see McNeil and Frey, 2000; Martins-Filho and Yao, 2006; Martins-Filho et al., 2018).
Motivated by its popularity and persuasive backtest performance for high confidence levels (see
Gençay and Selçuk, 2004), we let the peak over threshold (POT) method represent the class of
estimators based on extreme value theory.
The POT method builds on the limit theorem of Balkema and de Haan (1974) and Pickands

(1975). In our context, this theorem states that, for (almost) any form of loss distribution, the
distribution of excesses Yt := Xt−u over a large threshold u is well approximated by the generalized
Pareto distribution (GPD). This result is important because it allows us to model the tail of the
loss distribution without having to specify the specific form of the loss distribution. In other words,
we can derive the ES based on the cdf of the excesses, which is given by

G(y) =

⎧⎨⎩1−
(︂
1 + ξy

σ

)︂− 1
ξ

if ξ ̸= 0,

1− e−
y
σ if ξ = 0,

(1.4)

where ξ and σ > 0 are shape and scale parameters, respectively (see McNeil, 1997). The support
of this function is y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −σ

ξ when ξ < 0.
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1.2. Estimators of expected shortfall

The cdf of the excesses implies the following cdf for the losses over u:

F (x) =

⎧⎨⎩1− q
(︂
1 + ξ(x−u)

σ

)︂− 1
ξ

if ξ ̸= 0,

1− qe−
x−u
σ if ξ = 0,

(1.5)

where q > 1−γ is the percentage of losses Xt exceeding u. Consequently, the VaR can be obtained
by inverting Equation (1.5), i. e.,

VaRPOT
γ =

⎧⎪⎨⎪⎩u+ σ
ξ

(︃(︂
1−γ
q

)︂−ξ
− 1

)︃
if ξ ̸= 0,

u− σ ln
(︂
1−γ
q

)︂
if ξ = 0,

(1.6)

and the ES for ξ < 1 by using (1.1) and integration by substitution (see McNeil and Frey, 2000):

ESPOT
γ =

VaRPOT
γ − ξu+ σ

1− ξ
for ξ < 1. (1.7)

With this knowledge at hand, we can estimate the ES by setting u, fitting a GPD to the
corresponding excesses and plugging the estimated GPD parameters into Equation (1.7). However,
note that the choice of u can be delicate because, if it is too high (low), the fit of the GPD will be
poor (the above limit theorem will not be satisfied).

1.2.3. Non-parametric estimators

1.2.3.1. Historic methods and modifications

Historic estimators do not require fitting theoretical distributions to empirical data and are thus
quite easy to implement. The only assumption which is implicitly made when using them is that
a given data sample adequately represents the properties of the underlying sequence (Xt).
Using the historic VaRH

γ in its established form (see Pritsker, 2006), the classic historic ES
estimator can be defined as

ESHγ = E(Xt|Xt ≥ VaRH
γ ) =

∑︁n
t=1XtI(Xt ≥ VaRH

γ )∑︁n
t=1 I(Xt ≥ VaRH

γ )
, (1.8)

where VaRH
γ = X(⌈nγ⌉) and I(.) is the mathematical indicator function which maps to 1 if its

argument is true and to 0 otherwise. Here, X(i) denotes the ith order statistic of (Xt), which
describes the ith-smallest value of (Xt), and ⌈.⌉ is the ceiling function, which rounds its argument
up to the next integer if it is not an integer. Because nγ is rounded up even if nγ has only a small
decimal place, rounding up can introduce a non-negligible error compared to rounding down. To
deal with this source of error, several modifications of Equation (1.8) have been proposed. If nγ
is natural, these variants reduce to the classic historic method.
The first modification dates back to Peracchi and Tanase (2008) and can be written as

ESH1
γ = ESHγ +

(︃
1− ⌊n(1− γ)⌋

n(1− γ)

)︃
X(⌊nγ⌋), (1.9)

where a correction term is added to the classic historic estimator and the floor function ⌊.⌋ rounds
down its argument if it is not an integer. The correction focuses on the loss X(⌊nγ⌋), which, if

we sorted (Xt) in ascending order, would stand right before VaRH
γ . Thus, it can be interpreted

as the VaR we would use if we preferred underestimating risk. X(⌊nγ⌋) is weighted by the factor(︂
1− ⌊n(1−γ)⌋

n(1−γ)

)︂
which tends towards 1 (0) if nγ has a small (large) non-zero decimal place.
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1.2. Estimators of expected shortfall

A second modification is sketched in Nadarajah et al. (2014, sec. 4.5) and uses

ESH2
γ = γESHγ + (1− γ)E(Xt|Xt ≥ X(⌊nγ⌋)). (1.10)

Here, the idea is to use a weighted sum of the classic ESHγ and the ES which results from under-
estimating risk. The weights are chosen to be γ and 1− γ, respectively.
In a last variant by Inui and Kijima (2005), the weights γ and 1 − γ in Equation (1.10) are

replaced by 1− (⌈nγ⌉ − nγ), which is the decimal place of nγ, and ⌈nγ⌉ − nγ, respectively. This
gives

ESH3
γ = (1− ⌈nγ⌉+ nγ)ESHγ + (⌈nγ⌉ − nγ)E(Xt|Xt ≥ X(⌊nγ⌋)), (1.11)

where we put more weight on the ES estimate corresponding to a smaller VaR if nγ has a small
decimal place.
Because all historic estimators discussed so far are (more or less) means of the largest losses,

they are sensitive to outliers. To obtain more robust estimators, Jadhav et al. (2009) propose to
eliminate outliers in the data by specifying a constant a ∈ [0, 0.1], chosen by the user to express
the risk of having outliers, and the function

k(t) = (n+ 1)

(︃
1− γ − t(1− γ)

⌊n(1− γ)⌋+ 1

)︃
for t ∈ R, (1.12)

which yield the alternative estimator

ESJ1γ =
1

⌊n(1− γ)1+a⌋+ 2

⌊n(1−γ)1+a⌋+1∑︂
t=0

X(n−⌊k(t)⌋). (1.13)

If a is small enough, ESJ1γ can reduce to the classic historic estimator. Otherwise, k excludes some
of the largest losses in the estimation of the ES.

Using the weighting function w(t) := k(t) − ⌊k(t)⌋ for t ∈ R we can obtain another version of
this estimator which is

ESJ2γ =
1

⌊n(1− γ)1+a⌋+ 2

⌊n(1−γ)1+a⌋+1∑︂
t=0

(1− w(t))X(n−⌊k(t)⌋) + w(t)X(n−1−⌊k(t)⌋). (1.14)

Here, we compute a weighted sum of ESJ1γ and a smaller ES which results from averaging smaller
values of (Xt), i. e., ignoring additional large values of (Xt).

1.2.3.2. Kernel density methods

While historical methods capture ES by directly averaging discrete data, kernel density methods
estimate the distribution function F via smoothing techniques and then use the results of this
preliminary step to derive an ES estimate. In our comparative study, we consider two of the most
popular approaches of this field, both of which require the specification of a kernel function K,
which has to be a symmetric pdf, and a positive bandwidth h, which determines the degree of
smoothing, but differ with respect to their specific form of estimating VaR.
Our first technique follows the seminal work of Nadaraya (1964) by estimating the relevant

distribution function F via

F̂ (x) =
1

n

n∑︂
t=1

Gh(x−Xt) with Gh(x) =

∫︂ x
h

−∞
K(u)du. (1.15)
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1.2. Estimators of expected shortfall

Here, Gh operates like a rescaled (in the sense of using the integration limit x
h instead of x) cdf of

the kernel density K. It sums larger values (from 0.5 up to one), if Xt is smaller than or equal to
the argument x, and smaller values (between zero and 0.5), if Xt exceeds x. Thus, the resulting
F̂ describes an average of the rescaled cdf Gh over all data points Xt. Based on this estimated
distribution function F̂ , VaRK1

γ can be derived as the inverse solution of F̂ (x) = γ.
Our second method estimates the VaR as a kernel-weighted sum of order statistics, as suggested

by Parzen (1979). In general, there are various possibilities to compute weights based on the kernel
density function K. However, because Sheather and Marron (1990) show that many estimators
resulting from different forms of weights w(t) are asymptotically equivalent, we focus our attention
on the most popular form of weighting:

wγ(t) =
1

h

∫︂ t
n

t−1
n

K

(︃
u− γ

h

)︃
du for t = 1, . . . , n. (1.16)

As we can see, the weights in this specification originate from sub-areas of the integral of the
compressed and shifted kernel density K between 0 and 1. The maximum weight wγ(t) is reached

when t−1/2
n = γ. Because the single weights wγ(t) do not sum to unity, we have to divide them by

their sum, which delivers the VaR estimator

VaRK2
γ =

1∑︁n
t=1wγ(t)

n∑︂
t=1

wγ(t)X(t). (1.17)

As shown by Scaillet (2004), in kernel density approaches, the ES can be estimated as a scaled,
weighted sum of Xt. That is, plugging in either VaRK1

γ or VaRK2
γ , our two versions of kernel-based

ES estimators are given by

ESK1,K2
γ =

1

n(1− γ)

n∑︂
t=1

XtGh(Xt −VaRK1,K2
γ ), (1.18)

where the weights Gh(Xt−VaRK1,K2
γ ) are large if a data point Xt exceeds the estimated VaRK1,K2

γ

and small otherwise.
The quality of a kernel estimate typically depends less on the form of K than on the magnitude

of its bandwidth h (see Bowman and Azzalini, 1997, chpt. 1.2). Too-small values of h do not
induce much smoothing (i. e., lead to spiky estimates which exaggerate some characteristics of a
sample), whereas too-large values cause oversmoothing (i. e., obscuring most of the structure of the
data). Consequently, an optimal bandwidth value should be chosen, which can be derived from
data-dependent bandwidth selection techniques studied in the context of VaRK2

γ (see Sheather and

Marron, 1990; Cheng and Sun, 2006) as well as VaRK1
γ and ES (see Sheather and Jones, 1991; Wand

and Jones, 1995; Bowman et al., 1998; Cheng and Sun, 2006; Raykar and Duraiswami, 2006). In
addition, it is instructive to know that under some data assumptions and if the bandwidth satisfies
h → 0, nh3−β → ∞ for any β > 0, and nh4 log2(n) → 0 as n → ∞, the error behavior of ESK1

γ

and ESHγ is similar (see Chen, 2008).

1.2.4. Combined estimation

Studies from a variety of fields have shown that combining the predictions of different forecasting
models often yields more accurate results than the best individual model (see Timmermann, 2006;
Weron, 2014). Another interesting finding of this strand of the literature is, that when forming
combinations via weighted averages, equal weights are superior to optimal weights estimated based
on specific (potentially erroneous) criteria (see Genre et al., 2013; Claeskens et al., 2016).
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1.3. Simulation setup

Based on these results, we extend our set of ES estimators by another one. That is, we calculate
the simple average

ESMV
γ =

ESND
γ + ESPOT

γ + ESHγ + ESH1
γ + ESH2

γ + ESH3
γ + ESJ1γ + ESJ2γ + ESK1

γ + ESK2
γ

10

across all of our estimators and compare its performance to the individual estimation methods.
While the focus of our main analysis in Sections 1.4.1 and 1.4.2 will be on this overall combination
ESMV

γ , Section 1.4.3 looks at combinations formed by picking only a few of the ES estimators.

1.3. Simulation setup

1.3.1. General design

Simulation studies analyzing the quality of VaR or ES estimators typically assume that losses
are generated by specific stochastic processes because this makes it possible to (i) calculate the
true ES of the processes; and (ii) evaluate whether an estimator delivers values close to it in
repeated random samples. A popular approach is to use a time series model with non-normal
disturbances, where the equation structure incorporates empirical autocorrelation in returns and
variances (see Campbell et al., 1993; Bollerslev et al., 1992) and the distribution of the disturbances
reflects empirical skewness and fat-tails of returns (see Cont, 2001). Generalized autoregressive
conditional heteroscedasticity models (see Manganelli and Engle, 2001; Chen, 2008) and related
non-linear classes (see Martins-Filho and Yao, 2006; Martins-Filho et al., 2018) are typical examples
of settings that have been used in previous research.
When evaluating ES estimators in such environments, we first have to estimate the parameters

of the time series model based on a simulated sample, then apply the ES formulas discussed
above to the (mean 0 and variance 1) model residuals and finally use the time-varying mean
and variance predictions of the time series model to scale the obtained ES estimate to its proper
level.2 Consequently, the simulated estimation error of an ES estimator has two components: the
non-negligible estimation error related to the time series model (see Mancini and Trojani, 2011;
Kellner and Rösch, 2016; Pitera and Schmidt, 2018) and the actual (pure) error of the ES formula.
Because we are interested in the pure error of our ES estimators, the design of our simulation
study is close to Peracchi and Tanase (2008) and Yu et al. (2010) who simulate iid returns from
normal, student t as well as normal and t mixture distributions. We differ from their approach
by using the skewed t distribution of Hansen (1994) (see Section 1.3.2) because this distribution
allows a flexible modeling of skewness and fat tails in a unified framework.3

We specify several settings with different distributional characteristics (see Section 1.3.3) and,
within each setting, simulate m time series (Xt) of length n. We then use our estimators to produce
ES estimates for each time series. Since we know the true ES, we can capture the estimation error
over all time series with summary measures of distance (see Section 1.3.4). This allows us to
identify the best and worst estimator(s) for a given distributional setting and to compare the
performance of estimators across settings.
Deriving estimator rankings is the main goal of our study. Focusing on the pure error simplifies

our simulation design but does not mean that it delivers unrealistic rankings in the light of typical
empirical time series behavior (e. g. volatility clustering). Our simulated data is constructed such
that it can be interpreted either as losses or the residuals of a standard time series model. This

2These steps are required because our ES formulas are designed for iid data and the residuals can be considered
iid provided that the time series model is correctly specified (see Kuester et al., 2006). For an interesting new
scaling approach, see Thavaneswaran et al. (2019).

3A similarly flexible alternative would be the family of g-and-h distributions, which just recently found its way into
risk management applications (see Degen et al., 2007).
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has two consequences. First, the rankings of our ES estimators are the same in an iid and a linked
non-iid simulation setting. Second, decision makers working with non-iid data and established
time series models can also use our results to look up the ideal ES estimator. They simply have
to check which of our specified distributional settings fits their model residuals best.

1.3.2. Data-generating process

To simulate loss data, we use the skewed t distribution of Hansen (1994), which is characterized
by the pdf

f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
bc

(︄
1 + 1

ν−2

(︃
bx+ a

1− λ

)︃2
)︄− ν+1

2

if x < −a
b ,

bc

(︄
1 + 1

ν−2

(︃
bx+ a

1 + λ

)︃2
)︄− ν+1

2

if x ≥ −a
b ,

(1.19)

where 2 < ν < ∞, −1 < λ < 1 and

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, c =

Γ((ν + 1)/2)√︁
π(ν − 2)Γ(ν/2)

. (1.20)

Per definition, a skewed t random variable has zero mean (µ1 = 0) and unit variance (µ2 = 1). If
ν > 3 and ν > 4, respectively, its skewness (i. e., the third standardized moment) µ3 and kurtosis
(i. e., the fourth standardized moment) µ4 are (see Jondeau and Rockinger, 2003):

µ3 =
(︁
m3 − 3a

(︁
1 + 3λ2

)︁
+ 2a3

)︁
/b3, µ4 =

(︁
m4 − 4am3 + 6a2

(︁
1 + 3λ2

)︁
− 3a4

)︁
/b4, (1.21)

where

m3 = 16cλ
(︁
1 + λ2

)︁ (ν − 2)2

(ν − 1)(ν − 3)
, m4 = 3

ν − 2

ν − 4

(︁
1 + 10λ2 + 5λ4

)︁
. (1.22)

If λ = 0, the skewed t distribution reduces to the student t distribution and if additionally ν → ∞,
it converges to the standard normal distribution. Thus, the parameters λ and ν control the degree
of skewness and kurtosis, respectively.
The true VaRγ of a skewed t random variable can be obtained as the γ-quantile of the inverse

cdf and the associated true ESγ via (1.1).

1.3.3. Parameter specifications

To conduct our analysis, we need to specify the skewed t parameters used for simulating loss data
and the parametrization of our ES estimators.

Simulation Based on typical empirical values of skewness and kurtosis (see, for example, Camp-
bell et al., 1997; Peiró, 1999, tab. 1.1 and 1, respectively), we define five distributional settings: (a)
positively skewed and light-tailed (µ3 = 1, µ4 = 5), (b) positively skewed and fat-tailed (µ3 = 1,
µ4 = 60), (c) negatively skewed and light-tailed (µ3 = −1, µ4 = 5), (d) negatively skewed and
fat-tailed (µ3 = −1, µ4 = 60) and (e) standard normal.4 To obtain a general picture of estimation
quality that is not linked to a specific parameter setting, we also look at a set of time series (f)

4In terms of λ and ν, i. e., with respect to (1.21), this means that we use the parameters (a) λ = 0.4784 and
ν = 10.1389, (b) λ = 0.1575 and ν = 4.1242, (c) λ = −0.4784 and ν = 10.1389 as well as (d) λ = −0.1575 and
ν = 4.1242.
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resulting from a merger of all settings (a)–(e). We generally assume 252 trading days per year
(as in Chan, 2013, chpt. 6) and simulate series of lengths n ∈ {21, 126, 252, 504, 1008}, which
represent daily losses over one month, six months as well as one, two and four years, respectively.
The number of time series simulated for each setting is m = 105.

Estimation We calculate the ES estimators of Section 1.2 for a confidence level of 97.5%, as
suggested by regulators (see Basel Committee of Banking Supervision, 2012), as well as alternative
levels of 95% and 99%, which have been common in VaR calculation (see Basel Committee of
Banking Supervision, 1996, 2004; Gilli and Këllezi, 2006). For J1 and J2, we represent the risk of
having outliers via a = 0.07. In kernel-based estimation K1 and K2, we choose the standard normal
pdf to be the kernel function K and follow bandwidth selection rules of Cheng and Sun (2006,
Method 4) and Wand and Jones (1995) for choosing h. Finally, we set the threshold-exceeding
percentage in the POT method to q = 0.1 because McNeil and Frey (2000) and Herrera (2013)
show numerically that this choice can reduce potential errors.

1.3.4. Evaluation methods

1.3.4.1. Basic measures

To evaluate the reliability of an estimator θ̂ for a parameter θ researchers typically use its mean
squared error MSE(θ̂) = Bias(θ̂, θ)2 + Variance(θ̂) because it summarizes its average deviation
from the true parameter value and the risk of obtaining estimates crucially deviating from the
mean estimate (see Greene, 2003, chpt. C.5). In the following, we have a closer look at measures
capturing these two components.
Because it is debatable whether over- or underestimation is the smaller evil (see Mögel and Auer,

2018) and because we wish to derive a clear ranking of ES estimators, our main error measure
is the mean absolute percentage error (MAPE), which, for an estimator j and m simulated time
series, is defined as

MAPEj =
1

m

m∑︂
i=1

APEj(i) =
100%

m

m∑︂
i=1

⃓⃓⃓⃓
ESjγ(i)− ESγ

ESγ

⃓⃓⃓⃓
. (1.23)

Because the MAPE is scale-independent, it can not only be compared across estimators but also
across distributional settings (see Hyndman and Koehler, 2006). It illustrates the average absolute
percentage deviation of an estimator j from the true (positive) ESγ associated with a distributional
setting. While our main analysis focuses on this measure, we also calculate the mean percentage

error (MPE) via MPEj = 100%
m

∑︁m
i=1

ESjγ(i)−ESγ
ESγ

and discuss its implications for overestimation

(MPEj > 0) and underestimation (MPEj < 0) in Section 1.4.3.1.
To judge the variability of an ES estimator j, we additionally compute the relative standard

deviation (RSD) of the estimates produced by it. That is, we use

RSDj =
100%

E
(︁
ESjγ

)︁
⌜⃓⃓⎷ 1

m− 1

m∑︂
i=1

(︁
ESjγ(i)− E

(︁
ESjγ

)︁)︁2
, (1.24)

where E
(︁
ESjγ

)︁
is the mean of ESjγ over all m estimates.

1.3.4.2. Performance profile construction

If a simulated time series i strongly differs from the underlying theoretical distribution (for exam-
ple, by having a large number of extreme values), the associated APE of an estimator j will be
significantly higher than for other time series. Thus, if we rank estimators based on their APE,
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the ranking in such extreme cases may differ from the ranking in regular situations. In an overall
ranking based on MAPE, a small number of extreme time series may strongly influence (or domi-
nate) general conclusions. In the worst case, just one crucial estimation failure could substantially
downgrade an estimator in its overall rank.
The performance profile technique of Dolan and Moré (2002) can handle such complications

because its different perspective makes it less sensitive to rare extreme errors than the simple
averages used in the computation of error means or standard deviations.5 In a first step, this
approach − when transferred to our specific risk measurement application − uses APE values (as
defined in Section 1.3.4.1) to derive a performance ratio

ri,j =
APEj(i)

min
j

{APEj(i)}
(1.25)

for each time series i and each estimator j.6 This ratio compares the error of an estimator j for a
time series i with the error of the best estimator for this series. If j is the best estimator for i, we
have ri,j = 1, and ri,j > 1 otherwise.

In the second step, we consider, for each estimator j, a function

ρj(x) =
1

m
|{i|ri,j ≤ x}| for x ∈ R, (1.26)

which can be interpreted as the cumulative distribution function of estimator j’s performance
ratios because it captures the proportion of simulated time series with performance ratios less
than or equal to the argument x. In other words, for each x ∈ R, ρj(x) is the probability that the
APE of estimator j is within a factor x of the best APEs.
Plotting such functions for a given simulation setting enables us to compare the quality of our ES

estimators in a comprehensive and elegant fashion. On the one hand, ρj(1) tells us the probability
that no other method has APE values better than estimator j. This implies that, if we are only
interested in a ranking based on the number of wins (i. e. , if we are searching for the estimator
which most frequently delivers the smallest APE), we have to compare the ρj(1) values of the
estimators. On the other hand, ρj(x) with x > 1 helps us to identify estimators which may not be
the very best in the majority of problems, but offer good estimation results (i. e., belong to the top
estimators) in situations the other methods fail. Such estimators have a good overall assessment
and therefore a high statistical efficiency. If the function ρj is steep, the associated estimator j
can be considered very robust.

1.4. Results

1.4.1. Basel framework

We start our discussion of results with a parameter constellation particularly relevant for banks
because it covers the suggestions of the Basel Committee of Banking Supervision (2012). That is,
we focus on a 97.5% confidence level and a one-year time horizon.

1.4.1.1. Basic assessment

For the Basel constellation and our different distributional settings, Table 1.1 presents the true
ES values and the means of the estimates produced by our set of ES estimators. Furthermore, it
reports the associated MAPE and RSD values of each estimator.

5For a general discussion of outlier sensitivity, see Wilcox (2012).
6Note that we add a small constant (10−5) to APE to guarantee numerical feasibility.
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Table 1.1.: ES estimates, MAPE and RSD for γ = 97.5% and n = 252

ES ND POT H H1 H2 H3 J1 J2 K1 K2 MV

True ES and mean of ES estimates
(a) 3.08 2.33 3.05 2.95 3.06 2.95 2.93 2.76 2.63 3.03 3.19 2.91
(b) 3.14 2.32 3.13 2.98 3.08 2.98 2.94 2.66 2.50 3.02 3.17 2.90
(c) 1.76 2.33 1.74 1.71 1.78 1.71 1.70 1.64 1.60 1.73 1.92 1.78
(d) 2.44 2.32 2.42 2.33 2.41 2.33 2.31 2.12 2.01 2.36 2.43 2.32
(e) 2.34 2.34 2.31 2.27 2.36 2.27 2.25 2.18 2.11 2.31 2.51 2.29

MAPE of ES estimates
(a) - 24.28 11.40 10.71 10.22 10.72 10.82 12.96 15.58 10.67 21.23 13.86
(b) - 26.23 19.69 15.55 14.93 15.56 15.61 17.90 21.28 15.20 24.90 18.68
(c) - 32.77 6.62 6.60 6.30 6.60 6.68 8.03 9.67 6.93 21.21 11.14
(d) - 8.71 17.49 13.54 12.86 13.54 13.60 15.73 18.74 14.06 21.49 14.98
(e) - 4.17 6.82 7.04 6.75 7.04 7.15 8.61 10.44 6.99 19.98 8.50
(f) - 19.23 12.40 10.69 10.21 10.69 10.77 12.65 15.14 10.77 21.76 13.43

RSD of ES estimates
(a) - 7.97 45.32 13.11 12.93 13.09 12.96 12.48 12.12 13.48 46.11 11.37
(b) - 12.02 97.21 20.02 19.66 20.00 19.73 16.80 15.77 19.37 50.88 17.96
(c) - 5.42 8.85 7.96 7.83 7.95 7.85 7.47 7.19 8.75 54.32 7.74
(d) - 10.47 310.68 17.23 16.89 17.20 16.95 14.47 13.52 17.95 43.71 34.84
(e) - 5.22 8.61 8.45 8.36 8.44 8.38 8.34 8.24 8.73 46.07 8.01
(f) - 8.22 94.13 13.35 13.14 13.34 13.17 11.91 11.37 13.65 48.22 15.98

For a confidence level of γ = 97.5% and a sample size of n = 252, this table presents the true expected shortfall (ES) as well
as the average, the mean absolute percentage error (MAPE) and the relative standard deviation (RSD) of the ES estimates
produced by our parametric and non-parametric techniques (defined in Section 1.2) in different simulation settings (specified
in Section 1.3.3). The lowest (second and third lowest) MAPE and RSD values within each setting are marked in italics
(bold). The estimators are abbreviated as follows: ND ˆ︁= normal distribution; POT ˆ︁= peak over threshold; H ˆ︁= classic historic
method; H1, H2, H3 ˆ︁= modified historic methods related to Peracchi and Tanase (2008), Nadarajah et al. (2014) and Inui
and Kijima (2005), respectively; J1, J2 ˆ︁= outlier-adjusted historic methods of Jadhav et al. (2009); K1, K2 ˆ︁= kernel-oriented
estimators of Scaillet (2004) based on Nadaraya (1964) and Parzen (1979), respectively; MV ˆ︁= combined estimate averaging
all estimators. The distributional settings are labeled as follows: (a) positive skew, light tail; (b) positive skew, fat tail; (c)
negative skew, light tail; (d) negative skew, fat tail; (e) normally distributed; (f) merger of settings (a)–(e). With the exception
of (f), all settings simulate m = 105 time series.

A first look at the true ES values shows that, not surprisingly, they are larger for positively
skewed (a, b) than for negatively skewed losses (c, d). Similarly, the ES is higher for fat-tailed (b,
d) than for light-tailed distributions (a, c). The ES of normally distributed data lies between the
ones for light-tailed data with positive (a) and negative (c) skewness. Turning to the estimators, we
see that the normal method does not estimate case-sensitive. That is, because of its focus on mean
and variance (which is the same in all distributional settings) its average estimate is similar across
(a)–(e). Another noteworthy observation is that, while the estimator K2 tends to overestimate the
ES in the majority of situations, the other estimators tend to underestimate.
As far as the MAPE and RSD values of the estimators are concerned, we can identify H1

as a favorable estimator in settings (a)–(c), whereas ND outperforms in settings (d) and (e).
While the reason for the good performance of ND in setting (e) is obvious, the result in the non-
normal environment (d) may appear puzzling at first glance. It can be explained by the fact that
our parametrization has unintentionally generated a situation where the case-insensitive average
estimates of ND are close to the true ES of the non-normal data. Thus, we should not conclude
that ND is generally preferable in negatively skewed and fat-tailed data. However, we can nicely
see that the very simple ND approach can have benefits in non-normal data especially because, in
our setting, skewness and kurtosis levels are set to values typically observed in practice.
Most ES estimators perform best in the negatively skewed and light-tailed environment (c) be-

cause here, in contrast to the other settings, the tail data occurs with higher probability within
a small interval such that even small samples contain sufficient tail information for high quality
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estimates.7 Because of the reverse reasoning, the POT method performs particularly poor in situ-
ations when insufficient tail data is available to adequately fit the GPD distribution. Especially in
settings (b) and (d), we can observe large MAPE and strikingly high RSD values. A closer inspec-
tion of the detailed simulation outcomes tells us that the POT suffers from some rare but drastic
misestimations. Consequently, proponents of the extreme value theory strand have two options.
On the one hand, they could closely monitor the results of the method to identify outcomes of
obviously unrealistic magnitude. In other words, they could rely on the technique in the situations
it works well and switch to another estimator when there is indisputable evidence of failure. On
the other hand, they could choose to generally work with a combination of the POT approach and
other estimation methods.8 MV is a simple representative of this option. Especially for settings
(b) and (d), its MAPE and RSD values are significantly lower than the ones of POT.
In the overall picture, i. e., the merged setting (f), the H1 estimates stand out because, on

average, they deviate only by 10.21% from the true ES values and fluctuate by only 13.14%
around their mean. The other historic methods and the estimator K1 have MAPE and RSD
values of similar magnitude, whereas most remaining non-parametric and parametric methods
perform worse. With somewhat lower RSD, the MAPE values of J1 and J2 significantly exceed
that of H1. K2 disappoints with the highest MAPE of all estimators. Unlike the POT method,
where rare events caused some large misestimations, the error of K2 might be systematic because
MAPE and RSD have a large magnitude in all settings. To reinforce our POT argumentation and
to check whether our presumption for K2 is true, we apply the performance profile technique.

1.4.1.2. Performance profiles

To avoid profiles, which are overfilled with detail, we use the results of Section 1.4.1.1 to group
estimators by type and widely similar performance. That is, while ND, POT, K1, K2 and MV are
left as they are, the historic (H, H1, H2, H3) and outlier-adjusted (J1, J2) methods are put in two
summary categories. Figure 1.1 presents the results, i.e., the functions ρj(x) for x ∈ [1, 3].
The performance plots confirm two of our results derived from Table 1.1. First, ND is again the

superior estimator in settings (d) and (e). Its probability ρj(1) of being the best method is the
highest across all estimators and takes values of about 38% and 45%, respectively. Furthermore,
ND estimates ES with the greatest efficiency. This is because its profile function ρj is significantly
above the ones for the other estimators over the entire interval [1, 3] and reaches maxima of about
57% and 62%, respectively. Second, despite of having large MAPE and RSD values in comparison
to other estimators in most skewed settings, POT reveals its strengths in the performance profiles.
In setting (c), it has the highest probability of being the best estimator. Even in the cases where it
is not the leading estimator, it belongs to the best methods with a high probability of up to about
55%. In settings (a), (b) and (d), it performs similar to K1 and mostly better than the historic
methods. Thus, its extraordinary misestimations do not cause a downgrade in the profile method.
Especially in the overall setting (f), we can see that POT is highly competitive.
Quite interesting observations can be made for K2. While, in Table 1.1, its performance is not

very persuasive, Figure 1.1 reveals that it has the highest ρj(1) of about 25% in settings (a) and
(b). Furthermore, with respect to this criterion, it ranks first in the overall setting (f). However,
the performance curves of K2 are not as steep as those of other estimators. This tells us that K2
often does not belong to the top estimators when it does not deliver the lowest error.
Finally, two other points are noteworthy. First, our combined estimator MV always either

performs worst or only manages to outperform ND. This result calls for an analysis of combinations
that go beyond our simple ad-hoc average. Second, when it comes to overall performance in

7Figure A.1 of the appendix illustrates and compares the pdfs of our different distributional settings.
8This is in fact a strategy which can often be found in the literature (see, for example, Taylor, 2008a; Schaumburg,
2012; Novales and Garcia-Jorcano, 2019).
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Figure 1.1.: Performance profiles for γ = 97.5% and n = 252

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

(e) normally distributed (f) merger of (a)–(e)

For a confidence level of γ = 97.5% and a sample size of n = 252, this figure plots the performance profiles (defined in
Section 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on a specific distributional setting (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and, for better visualization, the historic methods (H, H1,
H2, H3) and the outlier-adjusted methods (J1, J2) have been summarized in groups.
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setting (f), POT and K1 shine relative to the historic methods. This is in contrast to Table 1.1,
which emphasizes H1. Thus, depending on whether we prefer a MAPE and RSD evaluation or a
performance profile perspective, we end up with a different ideal estimator.

1.4.2. Corporate framework

1.4.2.1. Varied time horizon

While banks have to estimate ES based on an one-year horizon, risk managers of other industries
may use different time periods. Therefore, it is instructive to analyze the effects of higher (two
and four years) and lower (one and six months) sample size n on the ranking of our estimators.
Tables 1.2 and 1.3 report the MAPE and RSD values resulting from modifying the sample size

in the Basel framework. For better comparison, the Basel framework itself is also included. We
can observe that the historic methods tend to produce the most reliable estimation results. In the
overall setting (f) and with the exception of n = 21, H and H1 rank highest in terms of MAPE.
In the same distributional setting, the RSD values of H1 are lower than those of most other non-
parametric methods and the POT approach. Because of their construction, ND, J1 and J2 tend
to have smaller RSD values than H1. However, especially in large samples, this comes at the cost
of distinctively higher MAPE.

Table 1.2.: MAPE of ES estimates for γ = 97.5% and varied n

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

n = 21
(a) 28.49 38.18 33.78 38.75 33.83 35.72 33.77 35.86 33.71 288.55 60.06
(b) 32.82 46.37 41.72 37.58 41.75 43.04 41.88 43.20 41.19 242.66 61.22
(c) 31.59 24.47 21.76 51.54 21.81 23.30 21.78 23.42 21.80 307.29 54.88
(d) 20.98 41.25 37.01 36.29 37.04 38.28 37.10 38.44 36.89 281.84 60.51
(e) 14.51 28.06 24.59 45.84 24.65 26.59 24.75 26.97 24.51 336.83 57.73
(f) 25.68 35.67 31.77 42.00 31.82 33.39 31.86 33.58 31.62 291.86 58.88
n = 126
(a) 24.43 27.87 15.11 14.15 15.14 15.25 15.14 18.26 14.99 49.74 21.01
(b) 26.97 70.50 21.12 20.14 21.13 21.20 21.06 24.00 21.00 54.98 30.21
(c) 32.56 17.09 9.40 8.38 9.42 9.50 9.42 11.43 9.54 33.03 14.98
(d) 10.96 65.55 18.59 17.52 18.61 18.68 18.55 21.13 19.08 41.46 25.01
(e) 5.90 15.63 10.24 9.27 10.26 10.38 10.19 12.67 9.98 35.65 13.02
(f) 20.16 39.33 14.89 13.89 14.91 15.00 14.87 17.50 14.92 42.97 20.85
n = 252
(a) 24.28 11.40 10.71 10.22 10.72 10.82 12.96 15.58 10.67 21.23 13.86
(b) 26.23 19.69 15.55 14.93 15.56 15.61 17.90 21.28 15.20 24.90 18.68
(c) 32.77 6.62 6.60 6.30 6.60 6.68 8.03 9.67 6.93 21.21 11.14
(d) 8.71 17.49 13.54 12.86 13.54 13.60 15.73 18.74 14.06 21.49 14.98
(e) 4.17 6.82 7.04 6.75 7.04 7.15 8.61 10.44 6.99 19.98 8.50
(f) 19.23 12.40 10.69 10.21 10.69 10.77 12.65 15.14 10.77 21.76 13.43
n = 504
(a) 24.18 7.61 7.58 7.65 7.58 7.65 10.29 12.51 7.59 12.05 10.47
(b) 25.82 11.87 11.23 11.04 11.22 11.22 14.81 17.81 11.05 14.43 14.05
(c) 32.91 4.61 4.64 5.15 4.64 4.69 6.33 7.70 5.50 14.83 9.10
(d) 7.09 10.29 9.87 9.70 9.86 9.87 12.99 15.63 10.90 14.23 11.04
(e) 2.93 4.75 4.88 5.36 4.89 4.96 6.66 8.12 4.91 13.43 6.09
(f) 18.59 7.83 7.64 7.78 7.64 7.68 10.22 12.35 7.99 13.79 10.15
n = 1008
(a) 24.17 5.33 5.37 5.30 5.37 5.38 10.44 11.42 5.35 8.36 8.65
(b) 25.65 8.20 8.08 8.01 8.08 8.09 15.59 16.88 9.06 10.39 11.80
(c) 32.94 3.26 3.30 3.24 3.30 3.31 6.37 6.98 5.79 10.01 7.85
(d) 5.93 7.13 7.08 7.00 7.08 7.08 13.63 14.77 10.10 10.47 9.03
(e) 2.07 3.35 3.47 3.41 3.47 3.48 6.57 7.22 3.58 9.30 4.59
(f) 18.15 5.45 5.46 5.39 5.46 5.47 10.52 11.45 6.78 9.71 8.38

For a confidence level of γ = 97.5% and varied sample sizes n, this table presents the mean absolute percentage error (MAPE)
of the expected shortfall (ES) estimates produced by our parametric and non-parametric techniques. Simulation settings and
methods are specified and abbreviated as in Table 1.1. The lowest (second and third lowest) MAPE values within each setting
are again marked in italics (bold).
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Table 1.3.: RSD of ES estimates for γ = 97.5% and varied n

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

n = 21
(a) 27.22 47.24 40.80 35.56 40.65 37.73 40.83 37.60 40.68 60.47 28.72
(b) 34.81 62.72 60.04 47.45 59.74 53.51 58.67 52.19 52.54 66.18 34.46
(c) 18.21 26.39 23.74 20.15 23.63 21.59 23.68 21.43 23.91 79.40 27.97
(d) 28.91 52.90 49.12 38.35 48.85 43.45 49.97 43.84 46.66 68.59 31.72
(e) 18.29 31.79 27.34 24.80 27.25 25.63 27.49 25.72 27.35 63.79 32.63
(f) 25.49 44.21 40.21 33.26 40.02 36.38 40.13 36.16 38.23 67.69 31.10
n = 126
(a) 11.21 423.56 17.89 17.66 17.87 17.74 17.87 16.67 19.15 80.34 46.28
(b) 16.47 1338.73 27.10 26.61 27.05 26.78 27.03 22.27 27.56 84.10 134.46
(c) 7.57 783.99 10.73 10.56 10.71 10.62 10.77 9.89 12.10 63.98 77.54
(d) 14.01 1799.47 23.30 22.85 23.25 23.00 23.24 19.00 25.37 79.50 199.64
(e) 7.40 348.77 11.67 11.54 11.65 11.59 11.62 11.38 12.53 63.78 37.03
(f) 11.33 938.90 18.14 17.84 18.10 17.94 18.11 15.84 19.34 74.34 98.99
n = 252
(a) 7.97 45.32 13.11 12.93 13.09 12.96 12.48 12.12 13.48 46.11 11.37
(b) 12.02 97.21 20.02 19.66 20.00 19.73 16.80 15.77 19.37 50.88 17.96
(c) 5.42 8.85 7.96 7.83 7.95 7.85 7.47 7.19 8.75 54.32 7.74
(d) 10.47 310.68 17.23 16.89 17.20 16.95 14.47 13.52 17.95 43.71 34.84
(e) 5.22 8.61 8.45 8.36 8.44 8.38 8.34 8.24 8.73 46.07 8.01
(f) 8.22 94.13 13.35 13.14 13.34 13.17 11.91 11.37 13.65 48.22 15.98
n = 504
(a) 5.63 9.62 9.48 9.35 9.47 9.36 8.84 8.66 9.54 25.06 7.01
(b) 9.23 20.51 14.56 14.29 14.55 14.31 11.85 11.36 13.52 24.80 10.19
(c) 3.84 5.81 5.77 5.68 5.76 5.68 5.36 5.21 6.68 48.95 6.21
(d) 8.21 14.29 12.78 12.53 12.77 12.54 10.24 9.78 13.13 28.13 8.89
(e) 3.68 5.96 6.06 6.00 6.06 6.00 6.00 5.94 6.14 37.71 5.99
(f) 6.12 11.24 9.73 9.57 9.72 9.58 8.46 8.19 9.80 32.93 7.66
n = 1008
(a) 3.99 6.70 6.67 6.66 6.67 6.66 6.24 6.20 6.70 19.02 4.96
(b) 6.80 10.50 10.29 10.26 10.29 10.26 8.22 8.11 9.94 17.16 7.10
(c) 2.71 4.09 4.08 4.07 4.08 4.07 3.71 3.68 5.65 37.66 4.60
(d) 5.84 9.10 8.99 8.96 8.98 8.96 7.10 6.99 10.23 23.01 6.36
(e) 2.60 4.20 4.29 4.28 4.29 4.28 4.23 4.22 4.44 30.59 4.50
(f) 4.39 6.92 6.86 6.84 6.86 6.85 5.90 5.84 7.40 25.49 5.50

For a confidence level of γ = 97.5% and varied sample sizes n, this table presents the relative standard deviation (RSD) of
the expected shortfall (ES) estimates produced by our parametric and non-parametric techniques. Simulation settings and
methods are specified and abbreviated as in Table 1.1. The lowest (second and third lowest) RSD values within each setting
are again marked in italics (bold).

As to be expected from suitably defined estimators, the MAPE declines with increasing sample
size.9 However, there are drastic differences in the magnitudes of the reductions across estimators.
The ND method shows the lowest marginal decrease. For example, it loses the dominant role it
has for n = 21 in the overall setting (f) when switching to n = 126 because the improvement of
the historic methods overcompensates the improvement of ND. Furthermore, while the historic
methods still enhance from n = 504 to n = 1008, there is almost no betterment for ND because
estimates of mean and variance cannot be noticeably improved anymore (see Moraux, 2011).
In a synopsis of all n, the estimator K2 is characterized by the most significant marginal im-

provement, followed by POT. Nonetheless, Tables 1.2 and 1.3 advise against exclusively using one
of these methods for time horizons of n = 252 or smaller. In contrast, for n = 504 and n = 1008,
the error values of POT are close to the historic methods. For these n, it even tends to outperform
K1, which it did not for n = 252. Unfortunately, we cannot make such a statement for K2. Even
for n = 1008 it ranks last among the non-parametric methods and is inferior to POT.

9For the POT method there are exceptions when raising n = 21 to n = 126 in settings (b) and (d) which are
related to the trade-off between good GPD fit and validity of the limit theorem. In addition, J1 shows some
abnormalities between n = 504 and n = 1008.
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A closer look at the differences between the non-parametric methods illustrates some additional
aspects. First, we can see that, for n = 21 and n = 126, J1 is close to H, and often estimates
worse than H otherwise. Second, J2 always has higher MAPE and lower RSD than J1. Thus,
altogether, the classic historic method tends to dominate the outlier-adjusted methods. Finally,
while the kernel-weighted estimator K2 appears to fail categorically, K1 is more reliable. K1
actively competes against H (see also Chen, 2008), but is not able to consistently outperform it
in terms of MAPE and RSD. For example, K1 has a better MAPE performance than H in all
of our parametrizations for n = 21, except (c), whereas K1 performs worse than H in all of our
parameterizations for n = 1008, except for (a).

As far as the magnitude of the absolute deviations of the best estimators from the true ES values
is concerned, we observe about 13% for n = 252 (and 7% for n = 1008). Thus, for a portfolio of 100
million US dollars and true ES of 2.5% or 2.5 million US dollars, we are on average 0.325 million
US dollars (0.175 million US dollars) off. Depending on whether these magnitudes are considered
harmful from an economic perspective, larger sample sizes may be preferable in practice.10

We complete this section with some sample size-related insights from our performance profile
technique. Figure 1.2 plots the profile functions of our estimators for different n in the summary
setting (f).11 For small sample sizes of n = 21 and n = 126, we see that the outlier-adjusted meth-
ods J1 and J2 have the second highest and highest performance functions, respectively, followed
by K1. In large samples, other methods become serious competitors. For n = 504, K2 has a higher
probability ρj(1) than K1. However, the function ρj for K2 is quickly surpassed by the one for K1.
A weaker effect occurs for n = 1008, where a higher argument x is required for the performance
functions to intersect. Furthermore, we can observe that the POT method successively works its
way to the top. In the end (n = 1008), it does not have the highest probability ρj(1) but shows
very high probabilities of belonging to the best estimators. Finally, and in line with our previ-
ous results, historic estimators again appear less attractive in the performance profiles than in an
assessment based on MAPE and RSD values.

1.4.2.2. Alternative confidence levels

Also from a non-bank perspective, this section analyzes how the ranking of our ES estimators is
affected by the choice of confidence level. To this end, we start with an investigation of the MAPE
and RSD values for γ = 95% and γ = 99% in Table 1.4, where the Basel value of γ = 97.5%
is again supplemented for comparison. To keep our multidimensional set of results tractable, we
focus on a sample size of n = 252.12

In general, our previous assessment of the ES estimators also holds for alternative confidence
levels. That is, while the historic methods and K1 tend to have the lowest MAPE values, the RSD
of POT and K2 indicate some large estimation errors. J2 has the lowest RSD of all non-parametric
methods. As to expect, for all estimators, the magnitude of estimation error tends to increase with
the confidence level. MAPE and RSD values of significant size reject K2 for γ = 99%, while, in
the case of γ = 95%, the error values are closer to the other estimators.

With respect to changing estimator ranks, we find the following. First, H1 systematically out-
performs H only if γ = 97.5%. For γ = 95%, it performs worse than H in terms of MAPE in
settings (c), (e) and (f), and, in the case of γ = 99%, additionally in setting (a). However, at the
same time, the RSD values of H1 are consistently below H. Second, in almost all situations, J2
is dominated by J1 and the historic methods. Also, the relative differences between the MAPE

10Determining an accurate level of ES is crucial for several reasons. Probably the most important one is outlined
in Furlong and Keeley (1989) and Hugonnier and Morellec (2017). They illustrate that, for a value-maximizing
bank or corporation, incentives to decrease asset risk decline as its capital reserves increase.

11The profiles for the other distributional settings can be found in Figures A.2 to A.5 of the appendix.
12The results for the other sample sizes can be found in Tables A.4 and A.5 of the appendix.
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Figure 1.2.: Performance profiles for overall setting (f), γ = 97.5% and varied n

(a) n = 21 (b) n = 126

(c) n = 504 (d) n = 1008

For a confidence level of γ = 97.5% and varied sample size n, this figure plots the performance profiles (defined in Sec-
tion 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on the overall distributional setting (f) (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.

values of the latter two tend to shrink with increasing γ. Finally, K1 behaves in the opposite
fashion. Its mean distance to the MAPE of, for example, H falls with decreasing γ.
Figure 1.3 presents the performance plots for γ = 95% and γ = 99% in setting (f).13 It shows

that the POT approach plays a very important role along all observed x, directly followed by
the kernel method K1 which finally dominates the performance of POT in case of γ = 99%. The
ρj(1) rank of the outlier-adjusted methods increases with γ, whereas the rank of K2 decreases. The
higher the confidence level, the larger the general probability distance between the outlier-adjusted
methods and K2 becomes. For high γ, the adjusted estimators have a higher probability of being
the best, but are characterized by a lower efficiency than POT and K1.

13The performance plots for the other settings can be found in Figures A.6 and A.7 of the appendix.
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Table 1.4.: MAPE and RSD of ES estimates for n = 252 and varied γ

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

MAPE, γ = 95%
(a) 20.09 9.22 8.97 8.95 8.97 9.06 10.24 12.76 8.99 12.54 10.98
(b) 18.64 15.72 12.31 12.11 12.30 12.33 13.66 17.03 11.91 14.87 14.09
(c) 30.70 11.28 5.30 5.64 5.30 5.37 6.05 7.55 5.48 14.49 9.72
(d) 7.58 13.03 10.58 10.40 10.57 10.60 11.70 14.59 10.67 14.56 11.43
(e) 4.32 6.02 6.05 6.31 6.06 6.15 6.93 8.68 6.08 12.91 6.95
(f) 16.27 11.05 8.64 8.68 8.64 8.70 9.72 12.12 8.63 13.87 10.63
MAPE, γ = 97.5%
(a) 24.28 11.40 10.71 10.22 10.72 10.82 12.96 15.58 10.67 21.23 13.86
(b) 26.23 19.69 15.55 14.93 15.56 15.61 17.90 21.28 15.20 24.90 18.68
(c) 32.77 6.62 6.60 6.30 6.60 6.68 8.03 9.67 6.93 21.21 11.14
(d) 8.71 17.49 13.54 12.86 13.54 13.60 15.73 18.74 14.06 21.49 14.98
(e) 4.17 6.82 7.04 6.75 7.04 7.15 8.61 10.44 6.99 19.98 8.50
(f) 19.23 12.40 10.69 10.21 10.69 10.77 12.65 15.14 10.77 21.76 13.43
MAPE, γ = 99%
(a) 29.19 15.94 14.01 14.70 14.02 14.36 14.06 17.38 14.05 176.30 32.40
(b) 35.99 30.31 21.29 19.58 21.29 21.40 21.21 24.46 21.39 207.67 42.46
(c) 33.41 17.52 9.08 13.72 9.08 9.34 9.10 11.36 10.00 46.13 16.87
(d) 16.14 25.80 19.21 17.69 19.21 19.34 19.17 22.04 20.88 166.85 34.63
(e) 4.03 9.09 8.82 13.69 8.82 9.19 8.78 11.40 8.71 70.83 15.34
(f) 23.75 19.73 14.48 15.88 14.48 14.73 14.46 17.33 15.01 133.55 28.34

RSD, γ = 95%
(a) 8.25 26.11 11.23 11.11 11.22 11.12 10.95 10.78 11.31 21.16 8.55
(b) 12.23 153.64 15.86 15.61 15.84 15.62 13.97 13.24 15.04 21.85 19.67
(c) 5.39 1164.05 6.58 6.49 6.57 6.50 6.34 6.17 6.83 36.50 107.61
(d) 10.62 192.95 13.53 13.30 13.52 13.31 11.84 11.18 13.46 25.31 21.88
(e) 5.41 7.58 7.51 7.45 7.51 7.46 7.50 7.49 7.59 28.73 6.48
(f) 8.38 308.87 10.94 10.79 10.93 10.80 10.12 9.77 10.85 26.71 32.84
RSD, γ = 97.5%
(a) 7.97 45.32 13.11 12.93 13.09 12.96 12.48 12.12 13.48 46.11 11.37
(b) 12.02 97.21 20.02 19.66 20.00 19.73 16.80 15.77 19.37 50.88 17.96
(c) 5.42 8.85 7.96 7.83 7.95 7.85 7.47 7.19 8.75 54.32 7.74
(d) 10.47 310.68 17.23 16.89 17.20 16.95 14.47 13.52 17.95 43.71 34.84
(e) 5.22 8.61 8.45 8.36 8.44 8.38 8.34 8.24 8.73 46.07 8.01
(f) 8.22 94.13 13.35 13.14 13.34 13.17 11.91 11.37 13.65 48.22 15.98
RSD, γ = 99%
(a) 7.75 71.35 17.01 15.96 16.99 16.21 17.00 14.76 17.79 128.38 32.59
(b) 11.79 339.34 28.04 25.89 28.01 26.42 27.77 21.33 27.38 114.17 45.88
(c) 5.43 2777.16 10.71 9.97 10.70 10.14 10.76 9.18 13.08 111.57 240.40
(d) 10.74 133.45 25.26 23.18 25.23 23.68 24.95 18.75 27.30 142.82 37.49
(e) 5.05 11.68 10.32 9.81 10.32 9.93 10.29 9.55 10.74 132.62 22.36
(f) 8.15 666.60 18.27 16.96 18.25 17.28 18.15 14.71 19.26 125.91 75.74

For a sample size of n = 252 and varied confidence levels γ, this table presents the mean absolute percentage error (MAPE) and
relative standard deviation (RSD) of the expected shortfall (ES) estimates produced by our parametric and non-parametric
techniques. Simulation settings and methods are specified and abbreviated as in Table 1.1. The lowest (second and third
lowest) MAPE and RSD values within each setting are again marked in italics (bold).

1.4.3. Combined estimates

1.4.3.1. Preliminaries

Before turning to a detailed analysis of combined ES estimators, we take a brief look at the MPE
values of the individual estimators, which we document in the appendix (see Tables A.1 to A.3).
This is useful because it highlights over-/underestimation tendencies, which might cancel each
other out in adequate combinations and thus lead to improved estimates.14

14Similar to traditional portfolio theory, where asset correlations determine whether portfolio building is beneficial
(see Elton et al., 2007, chpt. 5), ES estimators characterized by suitable balancing countermovement should lead
to the best combinations.
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1.4. Results

Figure 1.3.: Performance profiles for overall setting (f), n = 252 and varied γ

(a) γ = 95% (b) γ = 99%

For a sample size of n = 252 and varied confidence levels γ, this figure plots the performance profiles (defined in Section 1.3.4.2)
of our expected shortfall estimators. Each subfigure concentrates on the overall distributional setting (f) (specified in Sec-
tion 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.

Regardless of distributional setting, n or γ, almost all techniques tend to underestimate the
true ES on average. Overestimation occurs for H1 only in a few situations. In contrast, ND
systematically overestimates in setting (c). In addition, the MPE of K2 strongly points to positive
when n is small and γ is large. As far as the underestimating techniques are concerned, most
of them show rather small MPE values in large samples. While the POT method shines in this
respect, the large errors of the outlier-adjusted methods are striking.15

1.4.3.2. Alternative combinations

Because Sections 1.4.1 and 1.4.2 show that MV, which pools all available estimators, does not
qualify as highly beneficial, we form additional equally weighted combinations based on our previ-
ous findings. The combination C1 includes H, H1 and K1 because these methods belong to the top
MAPE approaches across our entire set of results. C2 covers all methods except for the high RSD
estimators POT and K2. In C3, we combine H1, J1 and K1 to diversify across non-parametric
approaches by selecting the most promising (in terms of overall MAPE findings) representative of
each sub-class (historic, outlier-adjusted, kernel-based). For C4, we pick POT, J1, J2, K1 and K2
motivated by their outstanding performance profile results. C5 is a combination of H1 and K2,
which tend to overestimate in a few and most constellations, respectively. Based on the observation
that ND and K2 are characterized by the largest MAPE values in many situations, we combine
them to C6. Finally, C7 resembles a summary of C6 and H1, i. e., a combination of the worst and
the best methods.
In the following, we concentrate on a sample size of n = 252, the confidence levels γ ∈

{95%, 97.5%, 99%} and an analysis of MAPE and RSD because this is sufficient to answer the
question of whether combinations can be advantageous in the estimation of ES.16 Table 1.5 presents
the results for our alternative combinations and, for a better assessment of their magnitude, also
contains our previous findings for H1.

15Excluding observations which are valid realizations of the data-generating process is known to lead to bias (see
Studenmund, 2017, chpt. 3).

16Nonetheless, the results for other sample sizes and the corresponding sets of performance plots are available from
the authors upon request.
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Table 1.5.: MAPE and RSD of combined ES estimators for n = 252 and varied γ

H1 C1 C2 C3 C4 C5 C6 C7

MAPE, γ = 95%
(a) 8.95 8.89 8.12 6.87 6.85 7.79 12.82 9.06
(b) 12.11 11.88 10.58 9.30 9.57 9.72 13.34 10.51
(c) 5.64 5.25 4.09 3.99 6.37 7.92 17.80 12.78
(d) 10.40 10.40 8.08 8.10 8.47 9.11 8.22 7.46
(e) 6.31 6.00 4.69 4.56 5.73 8.79 7.82 6.86
(f) 8.68 8.48 7.11 6.56 7.40 8.66 12.00 9.33
MAPE, γ = 97.5%
(a) 10.22 10.45 10.15 8.45 9.40 12.28 17.74 12.68
(b) 14.93 14.91 14.02 12.20 13.16 15.39 20.45 15.66
(c) 6.30 6.41 4.42 5.11 6.93 11.31 20.89 14.46
(d) 12.86 13.29 11.03 10.96 11.74 13.14 12.43 10.39
(e) 6.75 6.80 5.50 5.39 7.31 12.19 10.97 8.89
(f) 10.21 10.37 9.02 8.42 9.71 12.86 16.49 12.42
MAPE, γ = 99%
(a) 14.70 13.09 11.79 9.94 38.17 90.44 90.03 60.22
(b) 19.58 19.55 17.64 15.02 46.77 106.59 106.03 71.75
(c) 13.72 8.55 5.70 6.60 13.13 26.10 33.85 26.81
(d) 17.69 18.15 14.80 14.05 39.61 86.19 84.90 58.14
(e) 13.69 8.33 6.01 6.34 16.44 39.24 35.92 26.65
(f) 15.88 13.53 11.19 10.39 30.82 69.71 70.15 48.71

RSD, γ = 95%
(a) 11.11 11.20 8.51 8.40 9.06 11.86 12.26 9.70
(b) 15.61 15.13 11.67 11.16 34.10 13.30 13.04 11.66
(c) 6.49 6.61 4.65 4.94 224.54 18.72 16.52 11.82
(d) 13.30 13.24 9.69 9.78 41.49 14.18 13.49 10.91
(e) 7.45 7.51 5.56 5.64 7.89 15.65 15.29 11.26
(f) 10.79 10.74 8.02 7.98 63.41 14.74 14.12 11.07
RSD, γ = 97.5%
(a) 12.93 13.14 9.75 9.85 15.28 24.39 26.85 18.35
(b) 19.66 19.03 14.39 14.03 25.48 27.57 29.78 21.30
(c) 7.83 8.07 5.47 6.05 12.82 28.39 24.67 17.63
(d) 16.89 16.97 12.15 12.62 67.46 23.49 22.93 16.87
(e) 8.36 8.49 6.12 6.38 11.50 24.61 24.27 17.07
(f) 13.14 13.14 9.58 9.79 26.51 25.69 25.70 18.24
RSD, γ = 99%
(a) 15.96 16.79 12.19 12.65 54.11 90.35 100.69 75.77
(b) 25.89 25.48 19.09 19.09 73.60 83.53 93.06 71.81
(c) 9.97 10.78 7.06 8.23 493.16 60.74 55.98 39.52
(d) 23.18 24.13 17.03 18.17 61.94 99.53 105.85 80.17
(e) 9.81 10.21 7.19 7.70 39.98 78.27 81.26 57.27
(f) 16.96 17.48 12.51 13.17 144.56 82.49 87.37 64.91

For a sample size of n = 252 and varied confidence levels γ, this table presents the mean absolute percentage error (MAPE)
and relative standard deviation (RSD) of several (mean-)combined expected shortfall (ES) estimators. Simulation settings and
abbreviations of the individual methods are used as in Table 1.1. The combinations are C1 (H, H1, K1), C2 (all estimators
except POT and K2), C3 (H1, J1, K1), C4 (POT, J1, J2, K1, K2), C5 (H1, K2), C6 (ND, K2) and C7 (ND, K2, H1). The
lowest (second and third lowest) MAPE and RSD values within each setting are again marked in italics (bold).

The combination of the three best estimators (C1) produces better MAPE values than H1 when
γ = 95%. Unfortunately, this does not hold for most distributional settings when γ = 97.5% and
one setting when γ = 99%. However, it should be noted that, for high γ, C1 tends to belong to the
top three combinations. Excluding POT and K2 from MV (C2) results in generally better MAPE
than H1 and all other non-parametric approaches. This combination also produces the lowest RSD
values for almost all covered settings and confidence intervals. The MAPE results of a merger of
the best-in-class non-parametric representatives (C3) are the most impressive. C3 usually ranks
first among all combinations. The only exceptions are three light-tailed constellations, where C2
leads, and two heavy-tailed cases, where C7 is superior.
C4, C5, C6 and C7 fail in particular for a high confidence level γ = 99%. C4, the combination

of methods with best performance profiles, has its merits in positively skewed data when low
confidence levels are used. To a somewhat weaker extent, this is also true for C5, which combines
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1.5. Conclusion

methods with mixed tendencies to overestimate. While C6 never ranks among the top three
combinations, C7 is the dominant combination for negatively skewed and fat-tailed data when γ
is not too high.
In summary, we can always find a combination which has a lower MAPE than H1. Put differently,

in a comparison of the top estimators of Tables 1.4 and 1.5, we can often identify constellations
where combinations outperform each individual estimator. On the one hand, there is no combi-
nation that consequently ranks first across all distributional settings and confidence levels. The
performance and ranking of a given combination varies just like its components. On the other hand,
a best-in-class combination often scores very high and can therefore be considered promising.

1.4.4. Robustness

To check whether our findings are driven by some specifics of our simulation design or the
parametrization of our estimators, we performed two sorts of robustness checks.
First, as far as the stability of our simulation results is concerned, we ensured that m = 105 is

sufficient to provide the same estimator rankings when the entire simulation study is repeated.17

In other words, this m ensures that we almost capture the entire population such that the derived
MAPE, RSD and profile probability values are not estimates but population properties. For smaller
m, such as m = 104, this is not guaranteed.
Second, we evaluated the influence of changing some of the parameters in the ES estimation

methods. For the POT parameter q, we considered the alternative values 0.05, 0.08, 0.12 and
0.15 because these have also been used in previous research (see Herrera, 2013; Chavez-Demoulin
and McGill, 2012).18 Of course, this changes MAPE and RSD values, but does not influence our
overall assessment of the POT method. A similar effect can be found in the estimation of J1 and
J2 when changing the parameter a to 0.05 or 0.10. As indicated by the results, our implemented
bandwidth selection rule for K1 appears to choose suitable bandwidths h. However, there might
be problems in the bandwidth selections for K2. Therefore, we experimented with alternatives
available in Cheng and Sun (2006) and Wand and Jones (1995). Unfortunately, this either did not
change the results significantly or led to crucial ES outliers. There may be specifications yielding
better results. However, the focus of our study is not on optimal bandwidth choice but on the
quality of specifications often used in practice.

1.5. Conclusion

Motivated by recent proposals to replace the VaR with the ES in the calculation of capital require-
ments and other portfolio management applications, we present a rich set of tables and figures
which systematically compare the performance of popular non-parametric estimators of ES to
each other, well-known parametric benchmarks and combinations of different ES estimators. This
material allows researchers and risk managers to quickly look up the most suitable estimator for a
specific distributional environment and decision problem.
While no estimator outperformed all others in all specified situations, we can observe some gen-

eral tendencies. Based on the classic evaluation measures MAPE and RSD, a slightly modified
version of the traditional historic estimator often stands out. Outlier-adjusted variants have some
merits but should be handled with care because their design artificially ignores risk-relevant large
losses. Our extreme value theory method is characterized by some rare but drastic misestimations
with crucial impact on its ranking in comparison to other estimators. By chance, we found that,

17This is in line with the simulation sizes typically used in the evaluation of risk and performance measures (see, for
example, Schuhmacher and Eling, 2011; Schuhmacher and Auer, 2014).

18For a review of the literature dealing with the choice of q, see Scarrott and MacDonald (2012). For applications,
in which the choice of q appears to be irrelevant, see Auer (2015).
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1.5. Conclusion

in a setting specified with realistic levels of skewness and kurtosis, even a simple normally dis-
tributed estimation approach can be highly valuable. Furthermore, thoughtful combinations of ES
estimators have significant potential to reduce estimation error.
In an application of a performance profiling method, where the focus lies on the probability that

a given estimator is the best (or belongs to the best) estimator(s) of a selection of estimators, we
gained some additional insights. Because this method is less sensitive to extraordinary estimation
errors than the traditional evaluation measures, it often favors kernel-based methods and the
extreme value method. These techniques often rank first and, if they do not, they still belong to
the highest-ranked estimators.
Given these two perspectives, readers of our guide have to decide whether they want an otherwise

good estimator to be punished for few failures. If the answer is yes, they should rely on our MAPE
and RSD values when selecting the optimal estimator. If the answer is no, they should attend to
our performance profiles.
In future research, our work could be extended in several ways. First, it might be interesting

to analyze the error introduced by time series filters often used in practice (see McNeil and Frey,
2000; Marimoutou et al., 2009; Auer, 2015). In our iid setting, we know that there is no serial
correlation in returns and variances such that applying a time series filter in ES estimation will
definitely introduce finite-sample distortions. Their magnitude could be derived by comparing the
errors with and without filter. In similar extensions, we could generally quantify the role of error
originating from the assumption of potentially inadequate time series models. Second, one might
consider additional classes of parametric estimators. While standard theoretical distributions
are rather uninteresting in this respect (because we already know how close they will be to our
simulated distribution), flexible data-oriented distribution systems are more interesting. Mixtures
(of normal, student t or stable distributions), g-and-h settings or the Johnson framework are typical
examples of such systems (see Degen et al., 2007; Nadarajah et al., 2014; Novales and Garcia-
Jorcano, 2019) and a potential starting point for new research endeavors. Finally, our results may
be revisited with a focus on marginal ES which measures the impact of a single company on the
tail risk of the market (see Caporin and de Magistris, 2012; Dańıelsson et al., 2016). This can
provide valuable insights into the role of estimation error in the measurement of systemic risk.
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Part II

Motivation

In the last chapter, we discussed several promising ES estimators and analyzed their performances
in a well-defined simulated framework that enables us to identify their principal strengths and
weaknesses segregated from any distorting real-world influences. In the next chapter, we extend
this knowledge by conducting an analysis of ES estimators in commodity futures markets (in other
words, move on to real data).
As we can no longer rely on independent and identically distributed (iid) data, we addition-

ally allow for some underlying time-varying processes of mean and volatility. For that, we fit the
commodity futures indices to an autoregressive (AR) mean and a generalized autoregressive condi-
tional heteroscedasticity (GARCH) volatility process first (see Box and Jenkins, 1970; Bollerslev,
1986) and, following, concentrate on the resulting mean- and volatility-adjusted data. Naturally,
our assumptions of the underlying mean- and volatility processes have an additional effect on the
quality of ES estimations.19 In contrast to the simulation approach of Chapter 1, we are unaware
of the correct ES values when considering commodity futures indices, such that assessing estima-
tion quality becomes more complex, too. Thus, for our evaluation of ES estimations that follow
from an AR-GARCH specification and the subsequent application of ES estimators, we rely on
recently developed backtest procedures of Du and Escanciano (2017) to evaluate the reliability of
our estimated results.
Albeit Chapter 1 suggests several appropriate ES estimators for our filtered data20 (such as

peak over threshold, a kernel density approach or some historic variants), we instead focus on
estimators based on invertible distribution functions in order to secure reliable backtest results. In
other words, we mainly consider parametric estimators (as the peak over threshold method and
several others) and just one semi-/ non-parametric approach (a kernel density method) that bases
on a smoothed data-dependent distribution.
Altogether, we estimate daily-changing risk levels for more than a quarter-century of commodity

futures indices and can identify whether/ in which way past crises and bear markets affected the
commodity sectors. Based on the backtest procedures, we provide a ranking of (AR-GARCH
adjusted) ES estimators for several classes of commodity futures indices and detect when the
estimations remained critical in the past.

19It is worth mentioning to note that, for this reason, the term ES estimator does not any longer refer to a method that
models the distribution of pure iid losses, but to the package of AR-GARCH filter and distribution specification
both, when it is mentioned below in Chapter 2.

20In the following analysis, we will apply ES estimators at a 95% confidence level, which is evaluated in Table A.4.
The characteristics of our available commodity futures indices indicate that we have to consider specifications
(a) and (b) (according to their definition in Section 1.3.3). Due to the 2500 trading days spanning (time-varying)
estimation periods our analysis bases upon, n = 1008 remains the most adequate of the evaluated sample sizes.
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2. Time-varying dynamics of expected shortfall
in commodity futures markets

Abstract: Motivated by the growing interest of investors in commodities and by advances in risk
measurement, we present a full-scale analysis of expected shortfall (ES) in commodity futures mar-
kets. Besides illustrating the dynamics of historic ES, we evaluate whether popular estimators are
suitable for forecasting future ES. By implementing a new backtest, we find that the performance
of estimators hinges on market stability. Estimators tend to fail when markets are in turmoil and
accurate forecasts are urgently needed. Even though a kernel method performs best on average,
our results advise against the use of established estimators for risk (and margin) prediction.

2.1. Introduction

Over the last decades, commodity futures markets have grown significantly because, in addition
to hedgers using futures for risk management, investors have discovered the potential of futures
in investment products (see Rouwenhorst and Tang, 2012; Cheng and Xiong, 2014). In addi-
tion to documenting general properties of commodity futures (see Jagannathan, 1985; Gorton and
Rouwenhorst, 2006), the success of long-short trading strategies (see Miffre, 2016) and diversifica-
tion benefits in multi-asset portfolios (see Daskalaki et al., 2017), researchers have paid significant
attention to the risk of commodity futures positions (see Hirshleifer, 2015; Carter et al., 2017).1

Following the banking and industry standard, the investment risk of commodity futures has
typically been quantified by the value at risk (VaR) and the main objective of most studies has
been to identify the most suitable VaR estimation technique (see Aloui and Mabrouk, 2010; Füss
et al., 2010; Laporta et al., 2018). This, however, is problematic. While the VaR is a quite
intuitive measure, one that captures the loss of a financial instrument that is not exceeded with
a certain probability, it is not sub-additive (see Artzner et al., 1997, 1999; Yamai and Yoshiba,
2005). When using the VaR, the risk of a diversified portfolio can therefore be higher than the
sum of its components’ stand-alone risks.2 Furthermore, the VaR focuses on the frequency but
ignores the magnitude of tail events. The expected shortfall (ES), an alternative risk measure,
defined as the loss to be expected when the VaR is exceeded, has no such shortcomings. After
many years of neglect, regulators have just recently focused on these problems and now suggest
steadily replacing the VaR with the ES in risk management applications (see Basel Committee of
Banking Supervision, 2012; Kinateder, 2016). However, apart from a few exceptions, researchers
and practitioners in the commodity sector still appear reluctant to follow this lead. Consequently
only little is known about ES in commodity futures markets and there is a significant research gap
which we intend to fill. Reservations arise mainly because implementing the new measure requires a
suitable ES estimator but the empirical evaluation of available alternatives is not as straightforward
as it is for VaR estimators. For the VaR, the backtests of Kupiec (1995), Christoffersen (1998)

1For other investment vehicles, such as commodity ETFs, see Del Brio et al. (2017).
2Dańıelsson et al. (2013) discuss the sub-additivity issue in detail and show how the choice of VaR estimator can
mitigate this problem which is particularly serious when estimating via historical simulation.
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and Berkowitz et al. (2011) have become standard (see Kuester et al., 2006; Basel Committee of
Banking Supervision, 2011).3 The problem with finding a suitable backtesting procedure for ES is
that it does not fulfill the property of identifiability (see Nolde and Ziegel, 2017).4 Nevertheless,
various rudimentary backtests have been proposed over the years and occasionally applied in the
commodity sector (see, for example, Youssef et al., 2015; Del Brio et al., 2017). In a recent article,
Du and Escanciano (2017) make an important contribution to ending the backtesting debate
for ES by developing unconditional and conditional coverage tests (with suitable size and power
properties), which are easy to implement and to comprehend because they use ideas similar to
the established VaR backtests. In many fields, these new tests are receiving significant attention
because, after years of theoretical research, they finally allow a judgment of available ES estimators
(see Novales and Garcia-Jorcano, 2019; Hoga, 2019; Le, 2020). In the commodity context, there is
now no more reason to put research on hold.
With the overdue regime shift in risk measurement and the eventual availability of methods

to empirically evaluate ES estimators, several important questions arise for commodity investors.
Some of these questions are backward-looking: What is a typical level of ES in the overall com-
modity futures market and its subsectors? What kind of events have historically had the most
significant impact on the ES of commodity futures? Other questions are forward-looking: What
is the best estimator of ES when it comes to predicting future ES? Does the relative performance
of ES forecasts produced by different estimators vary over time? In other words, should we switch
estimators based on the market phase?
To answer these questions, we analyze a quarter-century of daily futures market data. As in

Bianchi et al. (2016) and Georgopoulou and Wang (2017), we focus on the futures-based Stan-
dard and Poor’s Goldman Sachs Commodity Index (S&P GSCI) and its five sub-indices − energy,
precious metals, industry metals, agriculture and livestock − to capture the most important com-
modity contracts. In other words, we consider investors who participate in the market either by
rolling the underlying futures themselves or by taking positions in investment products mimicking
these well-known commodity benchmarks. By modeling the ES of the index returns, we can cap-
ture the risk to which these investors are exposed. Furthermore, because ES forecasts have become
a key input variable in the margin calculations of some exchanges, we can simultaneously shed
light on whether different ES estimators tend to cause inadequate margin settings by systematic
under- or overprediction. Keeping daily margins at proper levels is important because too-low
margins are insufficient collateral against default; too-high margins increase traders’ transaction
costs or force them out of the market (see Brooks et al., 2005; Ho et al., 2008).
To obtain results on past and future ES, we use six estimators which have become quite popular

in the stock market literature (and are starting to attract attention in applications with commod-
ity data) but whose performance has not jet been fully verified by adequate backtesting. Five
of these estimators are parametric; one is (semi) non-parametric. The commonality of all esti-
mators is that they capture the time-varying dynamics of losses via a generalized autoregressive
conditional heteroscedasticity setting which is the workhorse of many commodity market studies
(see Marimoutou et al., 2009; Watugala, 2019). They differ in the form they assume for the con-
ditional distribution of losses. In the parametric cases, we consider Hansen’s skewed extension
of the Student t distribution (see Jondeau and Rockinger, 2003), an extreme value setting based
on the generalized Pareto distribution (see Gençay and Selçuk, 2004), the g-and-h distribution
(see Degen et al., 2007), the Johnson system of distributions (see Brooks et al., 2005) and a two-
component Gaussian mixture (see Kuester et al., 2006).5 The shapes of these distributions (or
distribution systems) are quite flexible, making them promising candidates for matching empirical

3For recently proposed extensions, see Ziggel et al. (2014), Wied et al. (2016) and Kratz et al. (2018).
4Identifiability allows for sensible forecast evaluation whereas elicitability is required for forecast comparisons (see
Gneiting, 2011; Fissler and Ziegel, 2016; Nolde and Ziegel, 2017).

5The robustness checks of Section 2.4.3 also document the consequences of simply assuming a normal distribution.
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data (see Nadarajah et al., 2014). In the non-parametric case, we apply a kernel density method
(see Nadaraya, 1964) which does not impose a specific theoretical distribution but instead derives
the distribution of losses by smoothing the empirical distribution with an appropriate kernel func-
tion and bandwidth parameter (see Scaillet, 2004; Chen, 2008).6 For all six methods, we estimate
the full set of parameters (time series model and distribution model) by the two-step procedure
of McNeil and Frey (2000) and Bhattacharyya et al. (2008), which, in parametric approaches, can
reduce misspecification error (in the parameters of the time series model) related to an incorrect
distributional choice (see Ergen, 2015) and, in non-parametric ones, is the de facto standard (see
Gao and Song, 2008). To characterize past investment risk in commodity futures markets and
analyze its behavior in turbulent phases like recessions and stock market downturns, we apply the
estimators to our entire range of return data.
To investigate whether our ES estimators can provide accurate forecasts of future ES, we rely

on the unconditional and conditional backtests of Du and Escanciano (2017). We do this in a
rolling-window setting because the quality of ES predictions may vary over time.7 In addition, a
rolling-window approach captures the empirical practice of regular model updating in VaR and
ES estimation (see Hillebrand, 2005; Ardia and Hoogerheide, 2014). In other words, we take the
perspective of an investor (or exchange with margin focus) continuously applying our estimators
to obtain up-to-date ES forecasts and check how often they failed. What’s even more important
is that we can also see in which market phases they were unable to support decision making.
The remainder of our study is organized as follows. Section 2.2 introduces our general approach

of ES estimation, the above-mentioned distribution models and our backtesting techniques. Sec-
tion 2.3 reports the key characteristics of our dataset. Section 2.4 presents our results, which we
subdivide into an analysis of the historic risk levels in the commodity sector, the evaluation of the
forecasting abilities of our ES estimators and a series of robustness checks. Section 2.5 concludes
and highlights directions for future research.

2.2. Methodology

2.2.1. General estimation procedure

Our starting point is a strictly stationary time series (Lt)t∈N representing the losses (i.e., negative
log returns) of commodity futures investments. Following McNeil and Frey (2000), we assume that
its dynamics are captured by

Lt = µt + σtXt, (2.1)

where the innovations (Xt) are an independent and identically distributed (iid) process with zero
mean, unit variance and continuous marginal cumulative distribution function (cdf) F . For each
t the time-varying mean µt and standard deviation σt are assumed to be measurable with respect
to Ωt−1, the information about the process up to time t− 1.

In this context, it can be shown that, under a coverage level of α, such as 5%, the time-varying
VaR and ES of the losses are

VaRα,t(Lt) = µt + σtVaRα(X), (2.2)

ESα,t(Lt) = µt + σtESα(X), (2.3)

6Section 2.2.2.6 explains why we have to focus on the kernel density method and cannot consider non-parametric
alternatives like historical simulation.

7This is because the frequency of extremes and consequently the distributional form of losses may change (see Bali,
2007; Bali et al., 2008).
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where VaRα(X) and ESα(X) denote the VaR and ES of the distribution of (Xt), which by as-
sumption does not depend on t (see Hoga, 2018). In accordance with Du and Escanciano (2017),
VaRα(X) is defined as the (1− α)-quantile of F , i.e., VaRα(X) = F−1(1− α), which means that,
in line with actuarial practice, it is a positive value not exceeded by most realizations of (Xt).
Based on that, the ES is defined as8

ESα(X) =
1

α

∫︂ ∞

VaRα(X)
xf(x)dx =

1

α

∫︂ α

0
VaRv(X)dv, (2.4)

where f is the continuous marginal probability density function (pdf) of (Xt).
9 It represents the

expected value of (Xt) in the worst-case of a tail-event, i.e., when the VaR is exceeded.
To obtain ES estimates based on this framework, McNeil and Frey (2000), Bhattacharyya et al.

(2008) and Ergen (2015) propose a parsimonious but effective two-step procedure.10 We follow its
basic idea. Also, note that, especially in our backtests, we split given loss data (Lt)t=1,...,T,...,T+n

into an in-sample period of size T (with indices 1, . . . , T ) for parameter estimation and a subsequent
out-of-sample period of size n (with indices T + 1, . . . , T + n) for evaluation.
In the first step, we have to choose a suitable model for the conditional mean and standard

deviation in Equation (2.1), fit it to the available in-sample loss data, estimate (µt) and (σt), and
calculate the implied model residuals (Xt), which will be relevant for the second step. When it
comes to volatility modeling, the literature tells us that it is unlikely to find a model that perfectly
describes our data (see Bollerslev, 1986) and that, out of hundreds of competing models, the
simple GARCH(1,1) model tends to perform best (see Hansen and Lunde, 2005).11 Therefore,
supplemented by the fact that higher-order autocorrelation of losses are typically negligible (see
Campbell et al., 1993), researchers and practitioners often prefer AR(1)-GARCH(1,1) settings (see
McNeil and Frey, 2000; Auer, 2015; Du and Escanciano, 2017; Le, 2020). We follow this majority
approach and use the specification

µt = α0 + α1Lt−1, (2.5)

σ2
t = β0 + β1 (σt−1Xt−1)

2 + β2σ
2
t−1, (2.6)

where α0,α1 and β0,β1,β2 are the parameters of the mean and variance equation, respectively. We
fit the model making no complex assumption about F . More precisely, we estimate its parameters
via quasi maximum likelihood (QML), i.e., by using the normal distribution assumption which we
do not necessarily believe. QML has the powerful property that, as long as the mean and variance
equations are correctly specified (and some mild additional conditions hold), it delivers consistent
and asymptotically normal estimates even if the true distribution is different from normal (see
Bollerslev and Wooldridge, 1992; Francq and Zaköıan, 2004, 2012; Fan et al., 2014). While QML
avoids the problem of inconsistent ML estimates in the case of a misspecified skewed innovation
distribution (see Newey and Steigerwald, 1997), the price to pay is that the estimates may not be
fully efficient. However, especially in large samples, this issue is not relevant for forecasting VaR
and ES (see Bauwens and Laurent, 2005). With the resulting parameter estimates at hand, we
can estimate (µt) and (σt) via the structures in Equations (2.5) and (2.6) and obtain the model
residuals (or standardized losses) via Equation (2.1), i.e., Xt = (Lt − µt)/σt.

8Note that this notation of ES corresponds to that of Du and Escanciano (2017) and therefore, slightly deviates
from our definition of ES in Chapter 1.

9In the case of a continuous distribution, ES is also given by ESα(X) = E(X|X ≥ VaRα(X)).
10For general discussions of one-step vs. multi-step estimation techniques, see (Tsay, 2015, chpt. 3.5.3), Bauwens

and Laurent (2005), Carnero and Eratalay (2014) and the references therein. Jalal and Rockinger (2008) show
that the two-step procedure (with extreme value theory specification) performs well even in non-GARCH data.

11In addition, Furió and Climent (2013) and Novales and Garcia-Jorcano (2017) emphasize that the choice of
innovation distribution is typically more influential on VaR forecasting than the conditional volatility specification.
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In the second step, we fit one of the distribution models outlined in Section 2.2.2 to the residuals
of the first step.12 This enables us to estimate VaRα(X) by using the inverse cdf F−1 of (Xt) and
to obtain ESα(X) by utilizing Equation (2.4). Rescaling to the original losses via Equation (2.3)
delivers in-sample ES estimates, which we analyze in Section 2.4.1. Furthermore, out-of-sample
standardized losses, which will be required for empirical backtesting in Section 2.4.2, can be ob-
tained by successively filling Xt = (Lt − µt)/σt with out-of-sample data (see Engle, 2001). To
avoid confusion, note that, in the remainder of the text, we use the term ES estimator to refer to
the package of AR-GARCH model and distribution specification.
In comparison to the one-step estimation of parametric setups, where the parameters of the

AR(1)-GARCH(1,1) model and assumed innovation distribution are estimated simultaneously via
ML, the properties of QML make the two-step procedure less sensitive to misspecification (see
Ergen, 2015). Furthermore, with the two-step approach any difference in estimator performance
will be entirely attributable to the choice of distribution in the second step because the AR(1)-
GARCH(1,1) parameters obtained in the first step will be identical for all estimators.13 Finally,
one-step estimation can be quite problematic if a distribution (such as the g-and-h distribution)
does not have a closed-form cdf. The two-step approach mitigates this issue. This is why two-step
estimation is the established technique in non-parametric settings (see Gao and Song, 2008).

2.2.2. Distribution models

2.2.2.1. Hansen’s skewed t distribution

One of the best-known methods of forecasting ES is to assume that the data follows the skewed t
distribution of Hansen (1994) which, in contrast to a normal distribution, can model the empirically
relevant features of asymmetry and heavy tails. In a commodity context, Degiannakis and Potamia
(2017) have used it to forecast VaR and ES of COMEX gold, silver, and copper futures and pointed
out its theoretical merits in comparison to simple standard approaches.14

Hansen’s skewed t distribution for x ∈ R is characterized by the pdf

f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
bc

(︄
1 + 1

ν−2

(︃
bx+ a

1− λ

)︃2
)︄− ν+1

2

if x < −a
b ,

bc

(︄
1 + 1

ν−2

(︃
bx+ a

1 + λ

)︃2
)︄− ν+1

2

if x ≥ −a
b ,

(2.7)

where 2 < ν < ∞, −1 < λ < 1 and

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, c =

Γ((ν + 1)/2)√︁
π(ν − 2)Γ(ν/2)

. (2.8)

By definition, a skewed t random variable x has zero mean and unit variance. The parameters
λ and ν control the degree of skewness and kurtosis, respectively. Thus, if λ = 0, the skewed t
distribution reduces to the Student t distribution and, if additionally ν → ∞, it converges to the
standard normal distribution.
To determine the parameter values, for which a theoretical distribution matches given data

(in our case model residuals) best, we can choose among fitting methods based on moments,
quantiles or maximum likelihood (see Cramér, 1946). For Hansen’s skewed t distribution, we use
the maximum likelihood method. Afterward we plug the resulting values into the pdf and integrate
it to obtain the cdf relevant for estimating and backtesting the ES.

12Guided by the general properties of our residuals, we fit all distribution models under the constraints of zero mean
and unit variance.

13In simultaneous estimation, each distribution would lead to other AR(1)-GARCH(1,1) parameter estimates.
14For other kinds of skewed t distributions and an application in commodity research, see Cheng and Hung (2011).
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2.2.2.2. Generalized Pareto distribution

Because the ES is a risk measure with natural focus on extreme losses, some researchers recommend
its estimation based on extreme value theory (see McNeil and Frey, 2000; Gilli and Këllezi, 2006;
Martins-Filho et al., 2018). One of the most popular approaches originating from this field, which
has been used by Krehbiel and Adkins (2005) (Marimoutou et al., 2009) in a VaR analysis of
NYMEX energy futures (Brent and WTI crude oil spot markets) and will also be the implemented
in our study, is the peak over threshold (POT) method. It builds on the limit theorem of Balkema
and de Haan (1974) and Pickands (1975), which, in our context, states that, for (almost) any form
of loss distribution, the distribution of excesses Yt := Xt − u over a large threshold u for t ∈ N is
well approximated by the generalized Pareto distribution (GPD). This result allows us to model
the tail of a distribution without having to specify the form of the entire distribution function. In
other words, we can derive ES based on the cdf of excesses, given by

G(y) =

⎧⎨⎩1−
(︂
1 + ξy

σ

)︂− 1
ξ

if ξ ̸= 0,

1− e−
y
σ if ξ = 0,

(2.9)

where ξ and σ > 0 are shape and scale parameters, respectively (see McNeil, 1997). The support
of this function is y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −σ

ξ when ξ < 0. If u = 0 and ξ = 0, the
dedicated G is equivalent to the exponential distribution.
Denoting by q > α the percentage of observations in the data exceeding u, the cdf of excesses

implies the following cdf for the tail data (x ≥ u if ξ ≥ 0 and u ≤ x ≤ u− σ
ξ otherwise):

F (x) =

⎧⎨⎩1− q
(︂
1 + ξ(x−u)

σ

)︂− 1
ξ

if ξ ̸= 0,

1− qe−
x−u
σ if ξ = 0.

(2.10)

Consequently, we can apply the POT method by setting the threshold u (or, equivalently, make a
choice of q), fitting a GPD via maximum likelihood to the corresponding excesses of our in-sample
data and plugging the estimated parameters into Equation (2.10).15 As discussed in McNeil (1997)
and Novales and Garcia-Jorcano (2019), there are several strategies for the choice of threshold u,
mostly resulting in q values between 0.08 and 0.15. To simplify our investigation, we follow their
approaches and choose q = 0.1.

2.2.2.3. g-and-h distribution

The g-and-h distribution of Tukey (1977) is another flexible distribution model, which originates
from transformations of standard normal variables and whose properties have been studied by
Martinez and Iglewicz (1984) and Headrick et al. (2008). After a series of stock market applications
(see, for example, Badrinath and Chatterjee, 1988; Mills, 1995; Jiménez Moscoso and Arunachalam,
2011), it has only recently found its way into the commodity sector, where it has been found to
model the VaR of the futures-based Bloomberg Commodity Index better than simpler traditional
distributions (see Dı́az et al., 2017).

15Fitting the GPD in-sample ensures that the cdf F (x) is real-valued for each in-sample argument x. However, when
applying the estimated F out-of-sample, which has to be done in our backtests, complex results can arise. This
occurs when there are strong differences between in-sample and out-of-sample data that lead to out-of-sample
function arguments outside the support of the fitted cdf. In such situations, we set the corresponding F (x) to
NaN and perform our backtests without the troublesome date. In a total of 6,637 evaluations per index, we
had to do this 8 (S&P GSCI), 9 (energy), 1,411 (precious metals), 151 (industry metals), 0 (agriculture) and 58
(livestock) times.
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For the g-and-h distribution, a cdf formula in closed form does not exist. However, a g-and-h
distributed variable x can be defined with G−1, a part of its quantile function, as satisfying

x = G−1(z) :=

⎧⎨⎩ egz−1
g e

hz2

2 if g ̸= 0,

ze
hz2

2 if g = 0,
(2.11)

where z follows a standard normal distribution, g controls the skewness and h ≥ 0 is related to
the kurtosis of the distribution. Consequently, the corresponding cdf can be derived as

F (x) = Φ(G(x)), (2.12)

where Φ is the standard normal cdf. If g = h = 0, the g-and-h distribution reduces to the standard
normal case. It can also capture other commonly used distributional shapes, such as log-normal,
Weibull and exponential, most of the Pearson family and even distributions that do not have finite
first four moments, such as the Cauchy distribution (see Xu et al., 2014).
To estimate the parameters g and h we follow Headrick et al. (2008) by setting skewness and

excess kurtosis of our in-sample residuals to the theoretical third and fourth standardized moments
of the g-and-h distribution, respectively, and solving the resulting system of equations. Afterwards,
we insert the estimates of g and h into Equation (2.11), solve it numerically for all z = G(Xt) with
in-sample t and compute outcomes of the cdf with Equation (2.12).

2.2.2.4. Johnson distribution

Additional distributions, based on and generalizing normal transformations, are contained in the
distribution system of Johnson (1949), which has been compared in detail to the g-and-h distribu-
tion in Mac Gillivray (1992) and applied by Mögel and Auer (2018) to model the VaR of London
Bullion Market gold spot returns. In this system, the associated cdf for x ∈ R is

F (x) = Φ

(︃
γ + δg

(︃
x− ξ

λ

)︃)︃
, (2.13)

where γ and δ > 0 determine the shape of the distribution, ξ is a location and λ > 0 a scale factor.
The function g can take one of the following forms: in the log-normal system gSL(x) = ln(x) for
each x > 0, in the unbounded system gSU (x) = sinh(x) for all x ∈ R or in the bounded system

gSB(x) = ln
(︂

x
1−x

)︂
for each x ∈ (0, 1).

To empirically implement the Johnson system, we have to choose the form of g and estimate the
parameters γ, δ, ξ and λ. To do that, we follow George and Ramachandran (2011) by using the
quantile estimation approach of Wheeler (1980), where we modified the minimum and maximum
orders of sample quantiles to be 0.05 and 0.95, respectively, as recommended by Aitchison and
Brown (1957).

2.2.2.5. Gaussian mixture distribution

While the unbounded Johnson system allows only unimodal non-normality (see DeBrota et al.,
1989), Gaussian mixtures break this limitation (see Broda and Paolella, 2011). According to Kon
(1984) daily financial data is better described by Gaussian mixtures than by non-mixed classic
distributions. Meade (2010) additionally suggest suitability for crude oil spot returns.
We set up a two-component Gaussian mixture via the weighted sum of two normal distributions

with means µ1, µ2 and standard deviations σ1, σ2, respectively, and a weight λ which is assumed

33



2.2. Methodology

to range between 0 and 1.16 The resulting cdf for all x ∈ R is denoted as

F (x) = λΦ

(︃
x− µ1

σ1

)︃
+ (1− λ)Φ

(︃
x− µ2

σ2

)︃
. (2.14)

The mixture reduces to a normal distribution if λ = 0 or λ = 1. Depending on its parametrization,
it can incorporate skewness, kurtosis, unimodality or bi-modality (see Rossi, 2014).
To fit this model, i.e., to find maximum likelihood estimates of the parameters, we use the

expectation-maximization algorithm (see Hastie et al., 2001).

2.2.2.6. Smoothed empirical distribution

The popular alternatives to parametric distribution fitting are non-parametric estimation via his-
torical simulation (see Chapter 1), quantile regression (see Taylor, 2008b) and kernel techniques
(see Scaillet, 2004). These methods do not assume that a theoretical distribution model holds but
instead build on the non-smoothed (historical simulation, quantile regression) or smoothed (kernel
techniques) empirical distribution function.
Unfortunately, not all of these techniques can be evaluated in the framework of Du and Es-

canciano (2017) because a closer look at its derivation reveals that the backtests require invertible
distribution functions to be applicable (see also Section 2.2.3). Only kernel techniques which trans-
form empirical staircase functions to continuous functions are in line with this premise. For this
reason and because its performance tends to be similar to classic historical simulation (see Chen,
2008), we chose a standard kernel density estimator (KDE) to represent the class of non-parametric
methods.17

Our approach is based on Nadaraya (1964) and requires chosing a kernel function k, which can
be a standard (often symmetric) pdf, and a bandwidth parameter h > 0. With these components,
the pdf f corresponding to empirical data X1, . . . , XT can be estimated via

f̂(x) =
1

hT

T∑︂
t=1

k

(︃
x−Xt

h

)︃
for x ∈ R. (2.15)

Consequently, the associated estimated cdf is

F̂ (x) =

∫︂ x

−∞
f̂(u)du =

1

T

T∑︂
t=1

∫︂ x−Xt
h

−∞
k(u)du for x ∈ R. (2.16)

According to Nadaraya (1965), for uniformly continuous f and a kernel function with bounded
variation, an appropriate bandwidth ensures that f̂ converges uniformly with probability one to f
as the sample size T tends to infinity. While switching the utilized kernel function typically does
not have a crucial impact, estimation results are very sensitive to the selected bandwidth (see Wand
and Jones, 1995, chpt. 2.7). Because the bandwidth controls the smoothness of f̂ , an unsuitable
choice of h can lead to under- or over-smoothing and thus misleading distribution shapes.
To mitigate bandwidth selection risk, we follow Chen (2008) and Yu et al. (2010) in two steps.

First, we use the standard normal pdf ϕ for the kernel k. Hence, our estimated cdf simplifies to
F̂ (x) = 1

T

∑︁T
t=1Φ(

x−Xt
h ) for x ∈ R. Second, we implement an effective normal scale rule to select

the bandwidth h (see Wand and Jones, 1995, chpt. 3.2.1). That is, we compute

h =

(︄
8
√
π
∫︁
ϕ(x)2dx

3T
(︁∫︁

x2ϕ(x)dx
)︁2
)︄ 1

5

σ̂, (2.17)

16Relying on a m-component mixture and letting the data determine the value of m (as in Kuester et al., 2006) does
not qualitatively influence our results.

17Recent research extends the standard or single kernel idea to double kernels. However, its additional smoothing
tends to introduce additional estimation error (see Kato, 2012).

34



2.2. Methodology

where σ̂ is an unbiased estimate of the population standard deviation.18

2.2.3. Backtests

After the backtests for VaR, proposed by Kupiec (1995), Christoffersen (1998) and Berkowitz
et al. (2011) had found their way into the VaR backtesting standards of bank regulators (see Basel
Committee of Banking Supervision, 2011),19 researchers immediately started asking whether there
are simple but effective ways to backtest ES. In recent years, research has produced significant
results. McNeil and Frey (2000) developed an unconditional ES evaluation procedure, based on a
likelihood residual approach, that uses bootstrap simulations to conduct a one-sided test against the
alternative hypothesis that ES is systematically underestimated. Berkowitz (2001) also suggested
a one-sided test, based on a censored normal likelihood, including a failure tolerance term and
the functional delta approach of Kerkhof and Melenberg (2004). Wong (2008) presented a saddle-
point technique and some empirical examples that illustrate higher small-sample power than the
two latter backtests. However, it is limited by the requirement of normally distributed data. The
additional backtests of Righi and Ceretta (2013) and Acerbi and Szekely (2014) are not restricted
by specific distributional assumptions but require extensive simulations to obtain critical values.
Constanzino and Curran (2015) finally designed the first unconditional coverage test for ES,

which is similar to the unconditional VaR backtest of Kupiec (1995) and thus easy to comprehend
and to compute. It was extended in Du and Escanciano (2017), where the authors also present a
concise conditional coverage test for ES, which is an ES analogue to the conditional VaR backtest
of Christoffersen (1998) and Berkowitz et al. (2011). These new coverage tests for ES are based
on distribution-free cumulative violations, which, in contrast to the pure violations of traditional
VaR backtests, can consider tail risk magnitude. In comparison to the alternatives, the latest
unconditional coverage test evaluates against the alternative of under- and over-estimation, thus
also protecting institutions against inefficient use of capital. While the unconditional coverage
test looks at under- and over-estimation of risk, the conditional coverage test enables us to check
whether both the unconditional coverage property and the independence of cumulative violations
are fullfilled simultaneously. This is important because dependent cumulative violations indicate
that a given ES estimator neglects available predictive information. We implement both the
unconditional and the conditional versions of the new ES backtest by using the following approach
and specification.
Because ESα(X) covers Xt exceeding the VaRα(X), for all out-of-sample t ∈ {T +1, . . . , T +n},

a matching α-violation (or hit) can be defined as

ht(α) = I(Xt ≥ VaRα(X)), (2.18)

where I denotes a mathematical indicator function which maps to 1 if its argument is true and to
0 otherwise. Because Equation (2.4) allows expressing the ES as the definite integral of the VaR
and the popular unconditional VaR backtest focuses on the number of α-violations, its extension
to the ES looks, for t ∈ {T + 1, . . . , T + n}, at the integrated (ht(α)), i.e.

Ht(α) =
1

α

∫︂ α

0
ht(v)dv. (2.19)

If the VaR model (and, hence, the ES model) is correctly specified, the mean of (Ht(α)) has to
equal α

2 . To test whether this requirement is fulfilled, the (Ht(α)) can be computed by using

18Note that Footnote 12 also applies to the non-parametric case.
19The regulatory standard backtest for VaR builds on the requirement that the rate of out-of-sample violations, i.e.

losses exceeding a well-estimated VaRα, should range around α. Compliance with this coverage condition can be
statistically evaluated with the binomial distribution.
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Equation (2.18) and the fitted invertible F̂ as follows:20

Ĥt(α) =
1

α

∫︂ α

0
I(F̂ (Xt) ≥ 1− v)dv

=
1

α
(F̂ (Xt)− 1 + α)I(F̂ (Xt) ≥ 1− α).

(2.20)

With these results at hand, the unconditional backtest with null hypothesis Hu
0 : E(Ht(α)− α

2 ) = 0
is conducted via the test statistic

U =

√
n(H̄ − α

2 )√︂
α(13 − α

4 )
, (2.21)

where H̄ = 1
n

∑︁T+n
t=T+1 Ĥt(α) is the mean of the (Ĥt(α)). Du and Escanciano (2017, Corollary 1)

show that the statistic U is asymptotically standard normal if the (in-sample) estimation period T
is much larger than the (out-of-sample) evaluation period n.21 Consequently, Hu

0 can be rejected
at the ᾱ-level if the realized U lies outside the interval [−Φ−1(1− ᾱ

2 ),Φ
−1(1− ᾱ

2 )].
The conditional backtest evaluates the null hypothesis Hc

0 : E(Ht(α) − α
2 |Ωt−1) = 0 via a

Box-Pierce test. For its implementation and for j ∈ {0, . . . ,m}, the lag-j autocovariances γj =
Cov(Ht(α), Ht−j(α)) of (Ht(α)) have to be estimated via

γ̂j =
1

n− j

T+n∑︂
t=T+1+j

(Ĥt(α)− α
2 )(Ĥt−j(α)− α

2 ). (2.22)

We have approximately γ̂j ≈ 1
n−j

∑︁T+n
t=T+1+j((Ĥt(α) − H̄)(Ĥt−j(α) − H̄)) + (H̄ − α

2 )
2. Thus,

testing based on these autocovariances brings power against deviations from zero autocovariance
(first term) and deviations from Hu

0 (second term).22 The relevant test statistic, which is based

on estimates of lag-j autocorrelations ρ̂j =
γ̂j

γ̂0
, can be expressed as

C(m) = n

m∑︂
j=1

ρ̂2j . (2.23)

According to Du and Escanciano (2017, Corollary 2) it asymptotically follows a chi-square distri-
bution with m degrees of freedom, if again n/T → 0.23 Therefore, Hc

0 is rejected if C(m) > χ2
1−ᾱ,m,

where χ2
1−ᾱ,m is the (1− ᾱ)-quantile of the chi-square distribution.

2.3. Data

To capture representative commodity investments, we obtain daily data from Thomson Reuters
Datastream for the world-production weighted S&P GSCI and its five sector sub-indices: energy
(including Brent crude oil, WTI crude oil, gas oil, heating oil, natural gas, unleaded gasoline),

20Invertibility, which is satisfied by each strictly monotonically increasing cdf, is necessary to ensure the property
I(Xt ≥ VaRα(X)) = I(F (Xt) ≥ 1 − α). If F is not strictly monotonic, such as in the case of an empirical
distribution function, we have a ≤ relation instead of equality. Put differently, in this situation, no unique
quantile function exists because of an absence of invertibility.

21Otherwise a parameter estimation effect requires using a normal distribution with a mean of zero and a variance
depending on the asymptotic relative magnitude of T and n (see Du and Escanciano, 2017, Theorem 1).

22Disentangling both hypotheses delivers a test of lower power (see Du and Escanciano, 2017, Footnote 8).
23Similar to footnote 21, violation of this condition leads to another distribution: a weighted chi-square distribution

that depends on the model and data generating process (see Du and Escanciano, 2017, Theorem 2).
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precious metals (gold, silver), industry metals (aluminum, copper, lead, nickel, zinc), agriculture
(cocoa, coffee, corn, cotton, soybeans, sugar, Chicago wheat, Kansas wheat) and livestock (feeder
cattle, lean hogs, live cattle). We focus on the total return versions of the indices which capture
returns accrued from investing in liquid fully collateralized futures nearest to expiration. Unlike
their spot return counterparts, they are directly replicable in practice and comparable to the
returns from an investment in the S&P 500 stock market index with dividend reinvestment. For
reasons of sample consistency, our investigation period spans from January 7, 1983 to December
31, 2018.
As a first look at the characteristics of our data, Figure 2.1 illustrates the appreciation and

depreciation of $ 100 invested into the S&P GSCI and its five sub-indices, respectively, on January
7, 1983. Especially for later discussions, it also includes US recession periods (according to the
National Bureau of Economic Research, 2010) and periods of S&P 500 bear markets (as defined in
Pagan and Sossounov, 2003).24 We can nicely identify the effects of the 2000 commodity boom or
super cycle (see Erten and Ocampo, 2013). While the total GSCI investment increased to about
$ 1,000 until July 2008, the investment in the energy sub-index was the most profitable of all sub-
indices with a significant rise to more than $ 3,000. The global financial crisis caused a crash of the
commodity market in 2008. Especially oil markets significantly contributed to the GSCI downturn
because, in July 2008, the crude oil price peaked at its historic maximum of more than $ 145 per
barrel and then plunged to less than $ 35 per barrel in December 2008 (see Lang and Auer, 2020).
Furthermore, weakened demand in the ensuing recession caused prices for industrial metals to drop
(see Jacobsen et al., 2019). After 2008, the energy investment was outperformed by the industrial
metals investment, which until April 2011 had increased almost 20-fold since inception. While the
latter scores first with respect to terminal value, precious metals and livestock rank far behind and
agriculture even closes with a capital loss.

Figure 2.1.: Performance of investments in the S&P GSCI and its sub-indices

This figure shows the development and final values of $100 invested into the S&P GSCI (total return futures version) and
its five sub-indices: energy, precious metals, industry metals, agriculture and livestock. The investment period spans from
January 7, 1983 to December 31, 2018. US recession periods (according to the National Bureau of Economic Research, 2010)
and S&P 500 bear markets (as defined in Pagan and Sossounov, 2003) are included as shaded areas.

24Bear situations are considered present when there are at least four months of negative returns or when there has
been a decline greater or equal than 20% in a single month.
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To conduct our ES analysis, we calculate the daily losses of the commodity future index levels
(It). That is, we obtain negative daily percentage log returns via Lt = −100(ln(It) − ln(It−1)).
Table 2.1 reports some descriptive statistics for these losses: their minimum, maximum, mean,
standard deviation, skewness and kurtosis. A look at the mean losses shows that only investments
in agriculture suffer on average daily losses whereas all others exhibit on average daily gains, a
typical observation in commodity futures markets (see Wang, 2001). Investment risk in terms of
standard deviation (and minimum-maximum spread) of losses is highest in the energy sector and
lowest in livestock. All time series are positively skewed, indicating that large losses are more likely
than large gains. This is also reflected by the fact that maximum losses are (in absolute terms)
larger than the minimum losses. Kurtosis strongly deviates from normality, with the exception of
agriculture, which is close to normal.25

Table 2.1.: Descriptive statistics

Min Max Mean Std Skewness Kurtosis

S&P GSCI -7.600 18.431 -0.013 1.233 0.563 12.143
Energy -12.938 34.828 -0.014 1.923 0.699 17.907
Precious metals -8.763 10.105 -0.010 1.069 0.308 9.770
Industry metals -8.420 12.495 -0.025 1.348 0.214 7.554
Agriculture -7.157 7.475 0.003 1.067 0.075 6.445
Livestock -3.254 4.248 -0.010 0.871 0.109 3.832

For the period from January 10, 1983 to December 31, 2018, this table reports minimum, maximum, mean, standard deviation,
skewness and kurtosis of daily losses (i.e. negative daily percentage log returns) incurred from investing in the S&P GSCI and
its five sector sub-indices.

2.4. Results

2.4.1. Historic risk characterization

We start our analysis of commodity futures ES with a documentation of its past levels over time
and across sectors. That is, for the 26-year period from 1983 to 2018, we apply the estimators
given by Sections 2.2.1 and 2.2.2 to the S&P GSCI and its sub-indices and inspect the in-sample
estimates. We limit ourselves to a presentation of results for a common coverage level of α = 0.05.26

Table 2.2 reports the estimates of ESα(X), i.e. the ES of the AR(1)-GARCH(1,1) standardized
losses, resulting under our different distributional assumptions. Note that, apart from the Johnson
and g-and-h distributions, standard diagnostic checking does not reject our estimated models.27

Across all indices, using the Johnson system delivers the smallest ES estimates, whereas the g-
and-h distribution consistently yields the highest. As far as the other estimators are concerned, an
ordering of estimators by ES magnitude differs from index to index. For example, for the energy
sub-index the ES levels ascend when moving from the Gaussian mixture over Hansen’s t to POT,

25Nonetheless, a Jarque-Bera test conducted at conventional significance levels rejects the null of normally distributed
losses for all six time series.

26Historic estimates for α = 0.01 are given in Table B.1 and Figure B.1 of the appendix. We do not conduct the
backtests of Section 2.2.3 for α = 0.01 because Du and Escanciano (2017) and Hoga (2019) advise against it.
The reason for this is that, in the case of very low α, the validity of the asymptotic test distributions may break
down.

27Ljung-Box tests for the standardized and squared standardized losses indicate that our AR(1)-GARCH(1,1) filter
is suitable. Exemplary findings for the S&P GSCI are presented in Table B.2 of the appendix. Figure B.2
visualizes the corresponding fit of our distribution models. Results for the sub-indices and the outcomes of
Kolmogorov-Smirnov goodness-of-fit tests (as specificed in Stavroyiannis, 2018) are available upon request.
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and descend for agriculture. Kernel density estimates are often either similar to or slightly higher
than these three methods.

Table 2.2.: Estimated ES of standardized losses for α = 0.05

Hansen POT g-and-h Johnson GM KDE

S&P GSCI 2.240 2.264 2.604 2.110 2.278 2.278
Energy 2.243 2.288 2.627 2.117 2.241 2.297
Precious metals 2.295 2.360 2.963 2.098 2.342 2.375
Industry metals 2.214 2.249 2.689 2.075 2.239 2.270
Agriculture 2.155 2.149 2.483 2.065 2.172 2.166
Livestock 2.166 2.219 2.279 2.116 2.196 2.243

This table reports the estimated ES of standardized losses related to investments in the S&P GSCI and its sector sub-indices.
The estimates are obtained using the methodology of Sections 2.2.1 and 2.2.2. That is, under an AR(1)-GARCH(1,1) model
for daily losses between January 10, 1983 to December 31, 2018, the ES with coverage level α = 0.05 is obtained by applying
different types of innovation distribution models: Hansen’s skewed t, peak over threshold (POT), g-and-h, Johnson system,
Gaussian mixture (GM) and kernel density estimation (KDE). The lowest ES estimates for each index are marked in italics
and the highest in bold.

Time-varying risk levels are obtained by daily rescaling the estimates in Table 2.2 via Equa-
tion (2.3) using AR(1)-GARCH(1,1) estimates of the time-dependent mean (µt) and standard
deviation (σt). Because, with six indices and six distributional settings, this generates 36 ES time
series, and to allow a discussion, which is not driven by estimator-specific results, we opt for a com-
pact form of result visualization. Using the fact that weighted averages of estimates derived from
estimators with different performance are typically superior to estimates from a single estimator
(see Timmermann, 2006; Wang et al., 2009, 2016; Baumeister and Kilian, 2015), we calculate the
simple arithmetic mean of the estimates produced by our six distribution models. For each index,
Figure 2.2 presents the resulting time-varying ES averages. To indicate the range of estimates
delivered by our different estimators, we calculate their deviations from this average and plot the
smallest and largest deviation in the form of shaded bars around the zero line. Consequently,
the value of the largest (smallest) ES estimate can be obtained by adding the plotted positive
(negative) deviation to the average estimate.28 Similar to Figure 2.1, we extend Figure 2.2 by US
recessions and S&P 500 bear sequences.
Figure 2.2 shows that our estimators are close to each other when the general risk level is low

and are farther apart when risk is high. This is not surprising because higher volatility σt in
Equation (2.3) has a magnifying effect. When taking a closer look at the overall picture, we
can see how spikes in ES, which are of crucial interest from an investment perspective, relate to
recession periods and bear phases in the stock market. Previous research indicates that commodity
markets and the economy are linked by supply and demand effects (see Sockin and Xiong, 2015;
Clayton, 2016) and that, in recent years, shocks in the stock market often tend to transmit to the
commodity market (and vice versa) because, in a process of financialization, many futures contracts
have become investment vehicles (see Cheng and Xiong, 2014; Adams and Glück, 2015).29 In both
cases, the strength of transmission depends on the type of commodity.
The first relevant period in our sample is a bear market at the end of 1987. It followed Black

Monday (October 19, 1987), when a sudden stock market crash shocked markets all over the world
(see Wang, 2001). While, in this less financialized period, we observe only little impact on most
commodity sectors, the ES of industry metal futures rose significantly.

28Note that, in our case, the plotted deviations relate exclusively to the Johnson and the g-and-h estimates.
29The impact of speculation on futures markets is still controversial and hard to measure (see Haase et al., 2016).
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2.4. Results

Figure 2.2.: Time-varying ES estimates, α = 0.05

(a) S&P GSCI (b) Energy

(c) Precious metals (d) Industry metals

(e) Agriculture (f) Livestock

This figure illustrates the behavior of conditional ES estimates (with α = 0.05) for the S&P GSCI index and its five sector sub-
indices from January 10, 1983 to December 31, 2018. Following Sections 2.2.1 and 2.2.2, in-sample ES estimates are obtained
by applying an AR(1)-GARCH(1,1) model to daily losses and using six alternative ways to approximate the distribution of the
model innovations. In other words, they are generated by daily AR(1)-GARCH(1,1) rescaling of the ES values in Table 2.2.
We do not plot the ES time series for all individual estimators but their average. In addition, we present the maximum (and
minimum) of the differences between the single estimators and the reported average in the form of bars around the zero line.
US recessions and S&P 500 bear markets are highlighted similar to Figure 2.1.
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The next period of interest is the recession from July 1990 to March 1991, and the corresponding
bear market, which originated in the 1990 oil price shock, the end of the Cold War and the savings
and loan crisis (see Fintzen and Stekler, 1999). Here we detect a significant rise of investment risk
in the energy and precious metals sectors (and consequently in the total commodity index). This
is linked to supply-side problems in the oil sector (caused by Iraq’s invasion of Kuwait in August
1990 and the ensuing First Gulf War) and safe haven capital flows in gold and silver markets (see
Baur and McDermott, 2010; Lucey and Li, 2015). Agriculture and livestock are almost unaffected,
which is in line with earlier evidence indicating a weaker link to the stock market than can be
observed for other commodities (see Nguyen et al., 2015). It also partially explains why livestock
(energy) exhibits the lowest (highest) ES in many time frames.
The recession from March 2001 to November 2001, fueled by the dot-com crash in 2000 and

the September 11, 2001 terrorist attacks (see Mostaghimi, 2004), had a less significant effect on
commodity markets. Because the stock market shock primarily hit internet-based companies, no
crucial transmission occurred. That is, over all indices, risk spikes do not stand out in comparison
to the pre-recession months. A more detailed look reveals that the main ES peaks come up directly
after the 9/11 attacks (and at the beginning of the bear market that accompanied the recession),
which were followed by price increases in the energy sector. The additional bear market shortly
after the recession apparently did not have a crucial effect on commodity futures markets.
In contrast to the millennium crash, the global financial crisis, ushering in a bear market in

winter 2007/2008 and a recession from December 2007 to June 2009, caused a risk surge in all
commodity sectors. The core of this impact is often considered to be a set of contemporane-
ous supply and demand surprises that coincided with low inventories and that were magnified by
macroeconomic shocks and policy responses (see Carter et al., 2011). Furthermore, one may also
argue that shock transmission from the stock market was strong because, induced by financial-
ization, correlations between stock and commodity markets, which have been low (or negative)
historically, had significantly increased (see Silvennoinen and Thorp, 2013).30 To illustrate this,
Figure 2.3 plots the time-varying correlations between the returns of our commodity indices and
the S&P 500 index. Between July 2008 and 2009, correlations rose from about −0.2 to 0.6. Thus,
considering empirical evidence on causality of stock market movements for commodity futures
fluctuations in this period (see Nguyen et al., 2015), shocks in the stock market could easily spill
over to the commodity futures market.31

Finally, as a last period of interest, we have the August 2011 bear market, triggered by the
European debt crisis (see Majewska and Olbrys, 2017). Similar to the recessions before the global
financial crisis, we can detect mild spikes in the ES of several sectors; however, they are not
comparable to the magnitude of the 2007-2009 increases in investment risk.
To extend our discussion beyond the impact of general shocks on commodity markets, the

appendix provides additional information on commodity-specific events and their consequences for
the risk levels in commodity subsectors.

2.4.2. Risk prediction accuracy

While our previous results indicate that many of our estimators can provide useful in-sample ES
estimates, which may be the input for mean-risk portfolio models comparing past risk-adjusted
investment performance (see Schuhmacher and Auer, 2014), investors are often concerned with an
even more important issue: the prediction of future ES. Since we know from basic econometrics

30In addition, transmissions between commodity sectors have intensified (see Kang et al., 2017).
31Table B.3 of the appendix shows that, in the recession, hedge and safe haven properties (as defined in Baur and

Lucey, 2010) of commodities for stocks are largely illusory. Only precious metals may be considered a hedge
(negative correlation on average) and a safe haven (negative correlation in times of stress). However, their
correlation magnitudes have rather weak economic relevance.

41



2.4. Results

Figure 2.3.: Correlations between commodity futures and stock returns

This figure shows the time-varying correlations between the returns on the S&P GSCI (and its sub-indices) and the S&P 500
index. Following Joy (2011) and Manera et al. (2013) correlations are determined via a DCC(1,1)-GARCH(1,1) model of the
Engle (2002) type, which is estimated via multi-step QML.

that models with adequate in-sample fit do not necessarily provide useful out-of-sample results
(see Pindyck and Rubinfeld, 1998), we dedicate this section to backtesting our ES estimators.

Because we are interested in whether the predictive ability of our ES estimators changes over
time, we perform a rolling-window analysis, where a time window is moved in steps of one day from
the beginning to the end of our sample. This window consists of an in-sample period of size T =
2, 500 and an out-of-sample period of size n = 250, which is in line with the backtest sample size
recommendation of Du and Escanciano (2017). It is also consistent with the minimum requirements
for reliable GARCH estimation (see Hwang and Valls Pereira, 2006) and the evaluation periods
typically set by regulators (see Argyropoulos and Panopoulou, 2019). Hence, our first out-of-
sample period spans from August 10, 1992 to July 23, 1993 and its backtest results are assigned to
the date July 23, 1993. For the following windows, we use similar mapping. Within the in-sample
period of each window, we re-estimate the models of Sections 2.2.1 and 2.2.2, i.e., the parameters
of our AR(1)-GARCH(1,1) model and the parameters of our different distribution models.32 After
this, we derive the standardized losses of the out-of-sample-period and use them in conjunction
with the in-sample estimated cdfs to conduct the backtests of Section 2.2.3. Following Du and
Escanciano (2017), we document the results of the unconditional and conditional backtests for a
significance level ᾱ = 0.05 and m = 5 lags.
Figure 2.4, which captures a total of 6,637 out-of-sample periods between August 10, 1992 and

December 31, 2018, presents the backtest statistics for the S&P GSCI. It is also supplemented by
dashed lines representing the rejection regions for ᾱ = 0.05. The conditional backtest rejects an
ES estimator if its test statistic is above χ2

1−ᾱ,5 ≈ 12.07, whereas the unconditional backtest rejects

if its test statistic falls outside [−Φ−1(1 − ᾱ
2 ),Φ

−1(1 − ᾱ
2 )] ≈ [−1.96, 1.96]. A large unconditional

statistic above (below) the upper (lower) rejection boundary indicates that an estimation technique
tends to underpredict (overpredict) the ES in the corresponding out-of-sample period.

32With a focus on the S&P GSCI, Figure B.3 plots the Ljung-Box statistics of the standardized residuals and the
squared standardized residuals over time. The results for the other indices are available upon request. In general,
we detect few instances of rejection, suggesting only occasional switching to models of higher order.
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Figure 2.4.: Backtest statistics for S&P GSCI, α = 0.05

(a) Hansen’s t distribution (b) Peak over threshold method

(c) g-and-h distribution (d) Johnson system

(e) Gaussian mixture distribution (f) Kernel density estimation

For the S&P GSCI and our different ES estimation methods, this figure plots the test statistics of the Du and Escanciano
(2017) unconditional (blue, left axis) and conditional (gray, right axis) backtests resulting in a rolling-window approach with
in-sample size T = 2, 500, out-of-sample size of n = 250 and step size of one day. The coverage level is α = 0.05 and the
number of lags in the conditional test is set to m = 5. The test statistics, which are assigned to the end date of each out-of-
sample period, span from July 23, 1993 to December 31, 2018. Dashed horizonal lines mark the backtest rejection areas for
a significance level of ᾱ = 0.05. While, for the unconditional backtest, the normal quantiles of the upper and lower line are
relevant, the conditional backtest can be conducted with the upper line, which, with reference to the right axis, also resembles
the required critical chi-square value.
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The statistics in Figure 2.4 reveal two important findings. First, none of our popular estima-
tors was capable of delivering adequate ES predictions during the global financial crisis. The
unconditional backtest rejects all distributional specifications. Even a continuous updating of the
estimators with fresh data, which is implemented in our rolling-window approach and standard in
practice (see Ardia and Hoogerheide, 2014), does not prevent this failure. This result is striking
because it calls for abandoning the established standard methods and searching for risk forecast-
ing techniques more effective in extremely turbulent market phases. Second, reasons for estimator
rejection are quite different. For example, in the one-year period after September 11, 2001, the
conditional null hypothesis E(Ht(α)− α

2 |Ωt−1) = 0 is rejected for all distributions, while rejections
of the unconditional null hypothesis E(Ht(α) − α

2 ) = 0 occur less frequently or, as in the case
of the g-and-h and kernel density settings, (almost) do not arise at all. This indicates that the
models are inadequate mainly because of autocorrelated cumulative violations. Similar situations
can be observed between June 2010 and April 2011 as well as from August to November 2016. In
contrast, from October 2008 to September 2009, the conditional backtest does not reject, but the
unconditional one does.33 In this case, the mean of cumulated violations tends to be the main
reason for rejection.
Turning to the differences between ES estimators, we can see that, on the one hand, the uncondi-

tional test statistics for the g-and-h distribution are generally lower than for the other distributions.
Consequently, when rejections of this distribution model occur, they are often related to an overes-
timation of risk, whereas other models tend to be rejected for underestimation. On the other hand,
the conditional test statistics deliver higher amplitudes for g-and-h than for the other estimators,
with the effect that it rejects the model more frequently than the others.
While the g-and-h distribution is conspicuously poor, the test statistics for our alternative dis-

tributions appear quite similar in the plots of Figure 2.4, which complicates a detailed comparison.
Therefore, we switch to a compact form of visualization that focuses on the resulting test decisions.
In this respect, Figure 2.5(a) depicts the percentages of trading days on which the tests of Fig-
ure 2.4 reject their null hypotheses each year. In a comparison of Figures 2.2(a) and 2.5(a), we see
that all of our ES estimators inaccurately predict the future ES of the S&P GSCI especially when
risk temporarily deviates from its long-run level. This holds not only for the global financial crisis
but also for smaller shocks. In other words, the estimators fail in turbulent times when accurate
forecasts are most needed. In contrast, they all appear reasonable in calm market phases. In
addition, Figure 2.5(a) illustrates that a general estimator (the kernel method) is not necessarily
always superior to a more restrictive one (the Hansen distribution). For example, shortly after the
millennium, more unconditional rejections occur for the latter than for the former. In contrast,
the conditional backtests of 2014 show no discrediting evidence against the latter but against the
former.
After our focus on the backtest results for the overall S&P GSCI, we now look at its sub-indices.

To this end, we again opt for compact summaries of annual rejection percentages and present
them in Figures 2.5(b) to 2.5(f).34 Again, we detect that, regardless of the choice of distribution
and during several phases of the global financial crisis 2008-2010, risk is seriously mispredicted in
all commodity sectors. Furthermore, extending our previous discussion, the g-and-h distribution
attracts attention by overestimation in many sectors. While this is particularly evident for precious
metals (see Figure 2.5(c)), the performance of the g-and-h model is closer to the other distributions
when focusing attention on livestock (see Figure 2.5(f)). Interestingly, in the precious metals sector,
the g-and-h model appears to pass our backtests in several phases where the other estimators fail

33Because the conditional test statistic has to pay attention to both autocorrelation and mean of (Ht(α)), it does
not necessarily bring the same sensitivity to the latter component as the unconditional test which only focuses
on the mean of (Ht(α)). This may result in a high unconditional statistic, while the conditional statistic is
simultaneously damped by an absence of autocorrelation.

34The underlying time series of test statistics are available from the authors upon request.

44



2.4.
R
esu

lts

Figure 2.5.: Backtest rejections per year

(a) S&P GSCI (b) Energy

(c) Precious metals (d) Industry metals

(e) Agriculture (f) Livestock

Based on the Du and Escanciano (2017) statistics (and critical values) of Figure 2.4, which evaluate different ES estimators for the S&P GSCI, Subfigure 2.5(a) of this figure uses a heat
map design to capture the (rounded) annual percentages of trading days on which the unconditional (U) and conditional (C) backtests reject their null hypotheses. Abbreviations of
distribution models are used as in Table 2.2. Subfigures 2.5(b) to 2.5(f) present similar visualizations for the sub-indices of the S&P GSCI. Figure B.4 of the appendix illustrates how
rejections cluster within years and whether unconditional rejections are associated with overestimation or underestimation.
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and vice versa. Thus, especially in this case, a combination of forecasts may have its merits
(see Timmermann, 2006).35 Finally, another observation is noteworthy. Although livestock can be
characterized as the least volatile sector, we see a significant number of rejections from 1998 to 2000.
In comparison, the more volatile agriculture sector (see Figure 2.5(e)) shows fewer rejections. Here,
rejection periods are mainly around 2000 and from August 2008 to September 2009 (unconditional
test) as well as in summer 2006 and from May 2013 to September 2014 (conditional test).
Even though our results show that all estimators are disappointing, it may be instructive to

document which one is the least likely to fail and which sectors have the best forecasts. To answer
these questions, we follow Brandolini and Colucci (2012) by counting the total number of backtest
rejections and present them in Table 2.3.36 Starting with the latter question, we find that the lowest
(highest) numbers of unconditional rejections can be found for agriculture (precious metals). In
contrast, conditional rejections are lowest (highest) for precious metals (livestock). With respect
to a ranking (from best to worst) of our estimators for given sectors, the unconditional test results
of Table 2.3 tell us that the kernel density estimation is the best method for the S&P GSCI and
the subsectors precious metals, industry metals and livestock. Hansen’s skewed t model and the
Gaussian mixture rank first for energy and agriculture, respectively. In contrast, the g-and-h
distribution scores last for all indices but the S&P GSCI and livestock. For the latter two, the
Johnson system has the highest number of rejections. In the conditional tests, the g-and-h model
consistently ranks last. The kernel method (Hansen’s skewed t) shines for the S&P GSCI (industry
metals and livestock). Finally, the Gaussian mixture, the Johnson system and the POT method
rank highest for precious metals, agriculture and energy, respectively.
Trusting both backtests, we can derive an aggregate estimator ranking which looks for moderate

rejection numbers in both tests and across commodity types. In this respect, with the lowest mean
of summarized rejection numbers, the kernel density method comes first. It is followed by Hansen’s
skewed t distribution, which delivers quite similar average rejection numbers. The Gaussian mix-
ture and the POT method rank in the middle. The former slightly outperforms the latter because
it compensates for its worse conditional backtest performance via fewer significant risk underesti-
mations. The Johnson distribution comes in fifth, whereas g-and-h distributed innovations are the
least reliable assumption.

2.4.3. Robustness checks

To investigate whether some specific choices in our research design influence our overall conclusions,
we performed several robustness checks with respect to the used time series (or filter) model, the
sample sizes, the backtest specification and looked at another often-mentioned estimator.37

Filtering In accordance with the literature, our main approach used an AR(1)-GARCH(1,1)
model whose parameters were estimated via QML with normal distribution assumption. We modify
this in two ways. First, because QML preserves its key features under other simple distributions
− provided that they are unimodal and symmetric around the origin (see Newey and Steigerwald,
1997; Klar et al., 2012) − we additionally perform QML with a Student t distribution. However,
we observe no notable differences in the rejection behavior of our test statistics. On average, there
is a slight decrease of unconditional backtest rejections and a small increase of conditional backtest

35Unfortunately, our backtests cannot straightforwardly check this statement. In contrast to ES estimation, which
is based on inverse distribution functions, the tests require the specification of a cdf. Because mapping a cdf onto
its inverse function is a nonlinear transformation, backtest computations based on a mean of several cdfs would
not generally correspond to the mean ES of the individual estimators.

36We could also use loss functions (see Le, 2020) or comparative backtests (see Nolde and Ziegel, 2017). However,
this would introduce arbitrariness and lead to an inconsistent abandonment of our chosen backtesting framework.

37Because of space considerations, we largely concentrate on describing their main idea and outcome. Detailed
results are available upon request.
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Table 2.3.: Total number of backtest rejections

Hansen’s t POT g-and-h Johnson GM KDE

Panel A: Unconditional backtest

S&P GSCI 751
80 831 693

112 805 230
644 874 882

50 932 640
133 773 591

147 738

Energy 688
140 828 566

319 885 113
1165 1278 888

162 1050 547
418 965 454

444 898

Prec.metals 1254
0 1254 1179

64 1243 92
2281 2373 1444

0 1444 1323
8 1331 1099

86 1185

Ind.metals 811
135 946 787

160 947 89
1601 1690 1211

93 1304 647
210 857 614

217 831

Agriculture 692
62 754 688

68 756 194
851 1045 914

49 963 485
90 575 527

68 595

Livestock 1132
134 1266 891

224 1115 514
551 1065 1294

97 1391 858
218 1076 683

332 1015

Panel B: Conditional backtest

S&P GSCI 863 859 1232 915 878 847

Energy 717 669 1422 714 844 867

Prec.metals 308 451 2033 310 282 413

Ind.metals 1530 1610 2538 1538 1654 1648

Agriculture 643 666 806 624 729 706

Livestock 1665 1746 1925 1667 1747 1819

Panel C: Backtest summary

Mean 967 979 1523 1071 976 964

Std 390 388 582 408 424 410

Row-wise summarizing the results of Figures 2.5 and B.4, for each commodity index and ES estimation method, Panel A of
this table reports the total number of unconditional backtest rejections (regular font). Additionally, these numbers are split
into rejections related to underestimation (small upper-case number) and overestimation (small lower-case number) of risk.
Panel B presents the rejection numbers for the conditional backtest. Panel C aggregates Panels A and B by reporting the
(rounded) mean and standard deviation of the rejections across test types and commodity indices. Abbreviations are used as
in Table 2.2. For each index, the lowest total rejection number is marked in italics and the highest in bold.

numbers. Second, we implement some GARCH alternatives. Even though our specification tests
indicate no misspecified volatility dynamics in the plain vanilla GARCH setting, we also use a
TGARCH (or GJR-GARCH) model (as in Hammoudeh et al., 2014) and an EGARCH model (as
in Del Brio et al., 2017) because such models have been found to do quite well in predicting extreme
events, as required for accurate ES forecasts (see Trapin, 2018). However, we do not detect any
forecast improvements or changes in estimator ranking. On the contrary, the former model led to
a lot of additional backtest rejections between 2015 and 2018.38

Sample sizes While our in-sample size T = 2, 500 followed the recommendation of Du and Es-
canciano (2017), we also look at T = 2, 000 and T = 3, 000. In general, we observe lower peaks
of the conditional backtest statistics for larger sample sizes (especially during the global financial
crisis). This demonstrates that, in our application, a more extensive sample for parameter esti-
mation should be preferred to a small sample that places more emphasis on recent information.
However, it does not change our finding that all estimators perform inadequately. Furthermore,
we detect almost no changes in estimator rankings based on the unconditional backtest and find
that Hansen’s skewed t distribution improves more significantly with rising sample size than other

38This can be related to the fact that TGARCH residuals typically exhibit a non-iid dependence structure that can
best be described either non-parametrically or by means of copulae (see Beckers et al., 2017).
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parametric models. In contrast, rankings derived from the conditional backtests are slightly af-
fected. In the case of T = 3, 000, we observe quite similar rejections numbers. For example, when
looking at the overall S&P GSCI, most distributions exhibit rejection numbers ranging within a
small interval with absolute width of 45. Consequently, changes in ranking do not necessarily
indicate remarkable differences in predictive power. When T = 2, 000 is chosen, there are no red
flags.

Backtest specification Since a conditional backtest decision depends on the number m of in-
cluded autocorrelation coefficients, our evaluation may also be influenced by our choice of m = 5.
Therefore, we follow Escanciano and Lobato (2009) and Novales and Garcia-Jorcano (2019) by
also considering m = 1 and m = 10. While in the latter case the Johnson system can improve its
positions in our estimator rankings, all other techniques hold their relative order in ranking.

Normal distribution The assumption of conditional normality leads to a very simple cdf and
a quite compact ES estimation formula (see Frey and McNeil, 2002, chpt. 2.2.4). Thus, risk
managers may be tempted to use it in practice. To elaborate on the consequences of such an
action, we also analyzed this estimator. As far as the ES of standardized losses (extending Table
2.2) is concerned, we obtain around 2%. That is, not surprisingly, assuming a normal distribution
leads to the lowest risk estimates across all approaches. The unconditional backtest (extending
Panel A of Table 2.3) rejects the model in 1093 (1046, 47), 1207 (1045, 162), 1395 (1395, 0), 1203
(1123, 80), 981 (924, 57) and 1668 (1606, 62) cases. The conditional procedure (extending Panel B
of Table 2.3) does so 913, 740, 311, 1548, 640 and 1688 times. Thus, even though it can compete
with some distributions for certain subindices, it is inferior to the highscore models of our main
analysis.

2.5. Conclusion

Motivated by (i) increased trading activity in commodity futures markets, (ii) emerging efforts to
replace the established risk measure VaR by ES and (iii) a breakthrough with respect to backtesting
procedures for the evaluation of competing ES estimators, we dedicated this study to a full-scale
analysis of the dynamic features of ES in commodity futures markets.
Focusing on six parametric and non-parametric estimators (with the same time series setup

but that differ with respect to the continuous loss distribution), which are particularly popular
in academia and practice, we started with a documentation of historic risk levels in the overall
commodity market and its most important subsectors. We identified and discussed risk peaks in
several recessions, bear stock markets and commodity-specific shock environments. Furthermore,
we showed that investment risks tend to be highest in the energy sector and lowest in livestock.
In an out-of-sample evaluation of the predictive accuracy for future ES, the unconditional and

conditional backtests of Du and Escanciano (2017) revealed serious limitations of the estimators.
While most estimators tend to underpredict investment risk, the estimator using the flexible g-and-
h distribution seriously overshoots. Hansen’s skewed t, the POT extreme value approach and the
Gaussian mixture mispredict less frequently than the g-and-hmodel. The Johnson system performs
somewhere between the former and the latter group of estimators and a kernel density approach
emerges as the most useful choice on average. Across all commodity sectors, rejection numbers
are lowest for agriculture. Nonetheless, even the better distribution models fail with respect to
unconditional and/or conditional coverage when it comes to forecasting the ES in turbulent market
phases. In summary, all of them can mislead investors in their evaluation of risky futures positions
and cause exchanges to set inadequate margin levels.
Where do these results leave us? First, they advise against trusting the standard estimators

currently used in many studies unless we can be certain that smooth markets lie ahead. Second,
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they call for additional research because our study naturally cannot cover all potential alternative
estimation models. There is a variety of additional techniques which do not require a full specifica-
tion of the conditional distribution of the data and may thus reduce misestimation risk (rejections)
below the levels observed for our best models (see Cotter and Dowd, 2010; Escanciano and May-
oral, 2009; Le, 2020). Unfortunately, before such alternatives can be tested within a framework of
the Du and Escanciano (2017) type, it needs to be enhanced beyond a setup bound to invertible
distribution functions. Furthermore, it may be insightful to extend or abandon the established
simple AR-GARCH time series setting because, even though it cannot be rejected in standard di-
agnostic checking, other models might provide better forecasts of future means and volatilities. In
this context, we suggest three possible endeavors. (a) We might incorporate time-varying skewness
and kurtosis, which has recently been tried in asset allocation applications involving commodity-
based portfolio components (see Gao and Nardari, 2018). Even though some stock market studies
have found that these moments do not necessarily vary significantly over time (see Bali et al.,
2008; Ergün and Jun, 2010), preliminary results in commodity futures markets suggest otherwise
(see Fernandez-Perez et al., 2018a). (b) We could turn our back on the GARCH world and use
alternative processes (such as diffusion and stochastic volatility models) instead (see Chen and
Tang, 2005). (c) Leaving the narrative of pure time series models by adding exogenous predictors
(such as recession or stock market indicators or inventory variables) might also be fruitful (see Ye
et al., 2005; Peracchi and Tanase, 2008). However, because of a wide variety of potential forecast-
ing variables, the curse of dimensionality has to be faced in such considerations (see Guidolin and
Pedio, 2020).
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Part III

Motivation

In Chapter 2, we analyzed the risks that several passive commodity futures investments have
offered to investors in recent decades. In this context, we have seen that the common distribution
models that we used for ES forecasting tend to work insufficiently when markets are in turmoil.
Thus, market participants that invest in passive commodity futures strategies risk overlooking or
misjudging chancy market phases in spite of constantly assessing risks with established mean- and
volatility-adjusted ES estimators. This motivates us to study whether active investments strategies
in commodity futures markets also suffer from the same problems as passive.
In the following chapter, we turn to the analysis of several active commodity investment strate-

gies, to which we attach importance to their risks and returns, especially. First, we investigate
the past performance of traditional cross-sectional momentum strategies, which suggest to buy
(sell) the recently best- (worst-)performing commodity futures indices. Next, we study whether/
to what extent an additional incorporation of autocorrelation measures helps to deal with sways
in the market. For this, we design memory-enhanced momentum strategies to construct portfolios
that continue investing with established past-focusing momentum strategies when stable market
phases are indicated by a memory measure and stop it otherwise. In this context, we concentrate
on measures of both, short and long memory by first incorporating variances ratios (according
to Lo and MacKinlay, 1988) and second, Hurst coefficients (based on Hurst, 1951). Besides, we
analyze the extent to which strategy performances can be improved for volatile market phases by
allowing for (short-term) reversal.
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3. Memory-enhanced momentum in commodity
futures markets

Abstract: Motivated by the deteriorating performance of traditional cross-sectional momentum
strategies in commodity futures markets, we propose to resurrect momentum by incorporating
autocorrelation information into the asset selection process. Put differently, we introduce mea-
sures of short and long memory (variance ratios and Hurst coefficients, respectively) telling us
whether past winners and losers are likely to persist or not. Our empirical findings suggest that
a memory-enhanced momentum strategy based on variance ratios significantly outperforms tradi-
tional momentum in terms of reward and risk, effectively prevents momentum crashes and is not
bound to the movement of the overall commodity market. Furthermore, strategy returns cannot
be explained by typical factor portfolios and macroeconomic variables and are robust to various
parametrization choices, alternative data sets, transaction costs and data snooping. Finally and
in contrast to a newly emerging strand of literature promoting the benefits of long memory mea-
sures in portfolio management, we show that Hurst coefficients do not carry investment-relevant
information in a commodity momentum context.

3.1. Introduction

After the seminal work of Jegadeesh and Titman (1993, 2001), showing that stocks tend to continue
their past performance in the near future, the striking effectiveness of cross-sectional momentum
investment strategies has been verified in equity markets all over the world (see Fama and French,
2012; Asness et al., 2013). In addition, research activity has quickly spilled over to commodity
futures markets because, here, easier shorting, high liquidity, negligible transaction costs and an
overseeable asset universe make the strategies particularly successful (see Miffre and Rallis, 2007;
Shen et al., 2007; Szakmary et al., 2010; Fuertes et al., 2010, 2015; Bianchi et al., 2015, 2016).1

Unfortunately, some recent studies cast doubts on the future usefulness of momentum strategies
by indicating that stock momentum profits have significantly declined or even completely vanished
in the last decade (see Chordia et al., 2014; Mao and Wei, 2014; Hwang and Rubesam, 2015). In a
preliminary examination, we show that similar results can be obtained for commodity momentum.
That is, the significant multi-factor alphas of previous studies almost completely disappear using
an up-to-date sample. But does this mean that the momentum effect in commodities should be
declared dead, as has been done by many for the size effect in equities (see van Dijk, 2011)?
Asness et al. (2018) emphasize that the size effect can be resurrected if size is adjusted for firm

quality (as captured by the junk metric of Asness et al., 2019). In a similar vein, Asness and
Frazzini (2013) show that value portfolios can be improved by using a more adequate measure of
value (a book-to-market ratio which, in contrast to the traditional one, uses more timely prices).
Motivated by these approaches, we propose a refined momentum selection evaluating potential
performance continuation in a more sophisticated way than traditional momentum strategies. Our

1Miffre (2016) provides an excellent review of long-short commodity investing. Bond and foreign exchange markets
have been excessively studied as well (see Gebhardt et al., 2005; Serban, 2010).
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proposal originates from a closer look at the sources of momentum profits. In theoretical models,
empirical setups and simulation studies, Lewellen (2002), Pan et al. (2004) and Hong and Satchell
(2015) illustrate that, ceteris paribus, cross-sectional (and time series) momentum is particularly
strong if asset returns exhibit significant positive autocorrelation.2 Without such autocorrelation,
momentum profits tend to be lower or nonexistent. Therefore, we argue that it can be suboptimal
to base commodity momentum strategies on past performance (i.e., the cumulative returns of the
most recent months) only.3 Traditionally, a momentum strategy buys past winners and sells past
losers. If they are positively autocorrelated (persistent), it is likely that they continue their past
performance in the near future and the strategy succeeds. However, if there are phases where
they are uncorrelated or negatively autocorrelated (anti-persistent), performance is less likely to
continue or might even reverse such that the strategy is in danger of failure. Consequently, an
effective trading strategy should dynamically adjust to time-varying autocorrelation conditions in
the market (see DeMiguel et al., 2014) instead of just clinging to an established selection rule
which, depending on the current level of autocorrelation, may be misleading.
To take into account the empirical evidence on serial dependence in commodity futures markets

(see Kamara, 1984; Kristoufek and Vosvrda, 2014) and to limit the risk of entering disadvantageous
investment positions, we suggest using both past performance and autocorrelation to determine
the long and short positions in commodity momentum strategies. To compactly capture the
latter, we use the well-known variance ratio (VR) of Lo and MacKinlay (1988).4 Because, if
adequately specified, it represents a linear combination of low-order autocorrelation coefficients,
the VR measures the intensity of short-term autocorrelation or short memory and, in contrast to
other aggregates, like the Ljung and Box (1978) statistic with quadratic combination, allows a
differentiation between persistence (V R > 1) and anti-persistence (V R < 1). Using past returns
and variance ratios, our bivariate strategy consists of taking long positions into persistent winners
and anti-persistent losers as well as short positions into persistent losers and anti-persistent winners.
Variance ratio significance is evaluated via established statistical procedures such that we do not
trade based on potentially random signals but only on significant ones. Furthermore, even though
earlier studies indicate that (short-term) reversal is less relevant in commodity futures markets
(see Miffre and Rallis, 2007; Shen et al., 2007), our strategy design does not generally rule out
its existence because, especially in commodity markets, return behavior is subject to significant
variation (see Adams and Glück, 2015). In other words, we not only enhance traditional momentum
by refining the signals for momentum trades but also allow the momentum strategy to consider
(short-term) reversals if significant negative autocorrelation suggests doing so.
We find that tactically allocating wealth based on our strategy, which we call memory-enhanced

momentum (MEM), generates economically and statistically significant profits. It outperforms
traditional momentum in various ways. First, the best specifications (resulting from short holding
and ranking periods combined with first-order autocorrelation) earn alphas of about 2% per month
and exhibit notably lower tail risk. The latter observation is related to the fact that, especially in
phases where traditional momentum suffers its worst losses, MEM enters more suitable positions.
Second, strategy returns are not significantly linked to the overall commodity market. That is,
the profits are not just the result of strong upward trends observable in the recent history of some
commodity market sectors. Finally, while the short leg of traditional momentum significantly
weakens its investment outcome, the short leg of MEM is particularly strong.
Overall, MEM performs well in a wide variety of settings. Even without the short leg and the

trades related to detected anti-persistence, it is better than traditional momentum. Furthermore, it

2For earlier work in this area, see Lo and MacKinlay (1990) and Conrad and Kaul (1998).
3Rachev et al. (2007), Zaremba et al. (2021) and Chen et al. (2021) alternatively capture past performance via
reward-to-risk ratios, alphas as well as outlier-robust rank and sign measures, respectively.

4We might alternatively think of using autoregressive models (see Gaunt and Gray, 2003; DeMiguel et al., 2014).
However, our intention is to make the practical implementation of our strategy as simple as possible.
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is robust to using alternative futures data sets and survives both transaction costs and established
data mining tests. Last, but not least, the returns of MEM cannot be explained by a large set of
(stock, bond and commodity) factor portfolios and classic macroeconomic variables. This stability
and independence makes the strategy a valuable tool for commodity market investors.
Besides using variance ratios, we investigate the potential of another aggregate measure of auto-

correlation: the Hurst coefficient (HC). It captures the level and behavior of low- and high-order
autocorrelation and is thus typically referred to as a measure of long memory. In recent research,
estimates of the HC have been suggested to contain valuable information for portfolio managers (see
De Souza and Gokcan, 2004; Clark, 2005; Batten et al., 2013; Ramos-Requena et al., 2017; López-
Garćıa et al., 2021). For example, while De Souza and Gokcan (2004) and Batten et al. (2013)
point out their worth for hedge fund selection and gold market timing, respectively, López-Garćıa
et al. (2021) indicate that they can be used for the construction of profitable long-short portfolios
(and asset pricing factors) in equity markets. We extend this literature by investigating whether
using the HC can be beneficial within a memory-enhanced commodity momentum strategy. Again,
the measure allows an identification of persistence (HC > 0.5) and anti-persistence (HC < 0.5).
We obtain the HC by averaging the popular estimators of Hurst (1951), Higuchi (1988), Barabási
and Vicsek (1991) and Peng et al. (1994) and, because the HC literature is not yet as advanced as
the VR literature, use a heuristic decision rule do determine relevant levels of persistence or anti-
persistence. The general design of the HC investment strategy then follows the same principles as
the proposed VR strategy.
Interestingly, we find that MEM investing based on the HC does not perform particularly well.

This also holds when using an extended set of HC estimators and when modifying the employed
decision rule. Even if we explicitly allowed for data snooping, we would not be able to generate
persuasive outcomes. Consequently, we have to conclude that the HC does not contain information
valuable for improving momentum strategies in commodity futures markets. Despite the growing
popularity of the HC, its investment worth is far behind the one of the VR.
Our study is organized as follows. Section 3.2 briefly introduces our commodity data set. Sec-

tion 3.3 describes our approach to portfolio construction. Section 3.4 presents our empirical results
which we subdivide into traditional (univariate) momentum, memory-enhanced (bivariate) momen-
tum and robustness checks. Section 3.5 concludes and outlines directions for future research.

3.2. Data

Following Bianchi et al. (2015), our study captures investments in individual commodity futures
via the subindices of the well-known Standard and Poor’s Goldman Sachs Commodity Index (S&P
GSCI) and additional indices published by S&P (but not included in the S&P GSCI). Using the
continuous price series of S&P has several advantages over self-compiled series based on raw futures
contracts. First, the indices are much more accessible because they are established commodity
market benchmarks reflecting the real returns (from investing in fully collateralized futures nearest
to expiration) available to large market participants.5 They simultaneously generate a focus on
the most liquid futures. Second, while the immediate rollover implemented in many studies (see
Miffre and Rallis, 2007; Shen et al., 2007; Fuertes et al., 2010) is impractical for investors with large
positions because it would result in adverse price impact, the gradual rollover used in the indices
absorbs such an impact. Finally, individual futures contracts are difficult to manage because they
are traded across different exchanges. The pre-compiled indices are uniform and additionally make
our results easier to replicate.

5For a discussion of the implications of full collateralization, see Gorton and Rouwenhorst (2006), Fuertes et al.
(2010), Bianchi et al. (2016) and the review of Woodard et al. (2011).
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Our sample consists of commodities from six sectors: energy (Brent and WTI crude oil, gas oil,
heating oil, natural gas, petroleum, unleaded gasoline), precious metals (gold, platinum, silver),
industry metals (aluminum, copper, lead, nickel, tin, zinc), agriculture (cocoa, coffee, corn, cotton,
soybeans, soybean oil, sugar, Chicago and Kansas wheat) and livestock (feeder cattle, lean hogs,
life cattle).6 The corresponding price data, which we obtained from Thomson Reuters Datastream,
spans from December 1970 to December 2019. As can be seen in Table 3.1, in the early years of
our sample period, investors only had access to four traded commodity indices (corn, soybeans,
Chicago wheat, live cattle). Over time, the investment opportunity set then successively increased
to 28 indices with the latest addition (tin) in April 2007.

Table 3.1.: Descriptive statistics

Mean Volatility SR VaR ES Min Max Pos. mths Inception

S&P GSCI 0.54 5.72 0.03 9.25 12.41 -28.20 23.83 56.19 1970
Energy
Crude oil (Brent) 1.14 8.96 0.11 14.23 19.03 -33.75 36.56 57.77 1999
Crude oil (WTI) 0.85 9.48 0.06 13.38 18.97 -32.43 48.89 54.68 1987
Gas oil 1.13 9.04 0.11 13.76 19.01 -30.93 31.19 54.58 1999
Heating oil 0.91 9.02 0.07 13.65 17.74 -28.86 37.60 54.18 1983
Natural gas -1.17 14.22 -0.10 24.46 29.31 -37.63 53.08 44.69 1994
Petroleum 0.95 8.90 0.07 12.64 17.72 -32.75 37.73 53.83 1983
Unleaded gasoline 1.34 9.75 0.11 13.09 18.64 -39.52 49.46 57.44 1988
Precious metals
Gold 0.56 5.46 0.04 6.73 10.57 -20.41 28.23 50.40 1978
Platinum 0.66 6.34 0.06 9.04 13.47 -31.24 34.64 53.94 1984
Silver 0.68 9.28 0.03 11.46 18.30 -46.87 55.91 49.01 1973
Industry metals
Aluminum -0.03 5.42 -0.04 8.01 11.25 -16.76 15.92 44.67 1991
Copper 0.98 7.50 0.08 9.30 14.56 -35.55 38.43 52.23 1977
Lead 0.71 7.99 0.07 10.78 16.85 -27.43 27.03 53.85 1995
Nickel 0.89 9.82 0.07 13.18 18.91 -27.48 35.16 50.46 1993
Tin 0.55 7.47 0.07 12.80 14.70 -21.55 26.75 50.33 2007
Zinc 0.33 7.07 0.02 9.53 14.68 -34.17 28.06 48.13 1991
Agriculture
Cocoa 0.05 8.14 -0.03 12.14 15.20 -24.94 35.22 47.56 1984
Coffee 0.34 10.48 0.00 13.32 18.19 -30.89 54.24 46.04 1981
Corn 0.01 7.29 -0.05 11.63 14.83 -22.80 46.55 45.78 1970
Cotton 0.43 6.92 0.01 10.52 14.27 -22.58 27.52 52.82 1977
Soybeans 0.55 7.42 0.02 10.94 15.07 -21.98 56.64 50.81 1970
Soybean oil 0.18 6.80 0.01 10.36 15.43 -25.10 26.68 46.93 2005
Sugar 0.54 11.37 0.01 15.27 19.54 -29.69 68.63 49.37 1973
Wheat (Chicago) 0.01 7.84 -0.05 11.63 15.59 -25.27 42.40 48.65 1970
Wheat (Kansas) -0.28 8.32 -0.05 12.43 16.38 -23.72 36.01 44.62 1999
Livestock
Feeder cattle 0.28 4.74 0.04 7.95 10.47 -16.19 15.06 53.95 2002
Lean hogs 0.30 7.35 -0.01 11.35 14.77 -25.87 24.84 51.80 1976
Live cattle 0.58 4.97 0.04 7.93 10.75 -21.02 22.24 54.40 1970

Covering our strategy evaluation period from August 1973 to December 2019, this table presents some descriptive statistics
for the monthly percentage returns of S&P indices designed for the aggregate commodity market (S&P GSCI) and individual
commodities (grouped by sector). Besides mean, standard deviation (volatility) and Sharpe ratio (SR), we report the empirical
95% value at risk (VaR) and expected shortfall (ES), the minimum and maximum of returns as well as the percentage of positive
months. We also state the inception year of each index.

In addition to data availability information, Table 3.1 reports some descriptive statistics for
the monthly percentage returns of the S&P GSCI and the individual commodity indices. To
be consistent with our main strategy evaluation, these statistics concentrate on the period from
August 1973 to December 2019. Besides mean, standard deviation (volatility) and Sharpe ratio
(SR), we compute value at risk (VaR) and expected shortfall (ES), the minimum and maximum

6RBOB gasoline replaced unleaded gasoline in October 2006 (see https://www.goldmansachs.com/what-we-do/

global-markets/business-groups/sts-folder/gsci/components-weights-index-levels.html). The com-
modities petroleum, platinum, tin and soybean oil are currently not constituents of the S&P GSCI.
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3.3. Methodology

of returns as well as the percentage of positive months. SR is the ratio of mean excess returns
(over the risk-free rate proxied by the 1-month TBill rate) to volatility (see Sharpe, 1994).7 The
estimation of VaR and ES is based on the empirical 95% quantile (see Frey and McNeil, 2002).
Most commodities earn positive mean returns. In the energy sector, i.e., for unleaded gasoline,

Brent crude oil and gas oil, we can even observe mean returns greater than 1% per month.
These three commodities simultaneously exhibit the highest Sharpe ratios and are thus the most
interesting standalone investments. In contrast, many instances of negative Sharpe ratios make
the agricultural sector the least relevant. Turning to our downside risk measures VaR and ES,
natural gas shows the highest values of about 25% and 30%, respectively, across all commodities.
Interestingly, the lowest risk can be detected for gold (followed by feeder cattle and live cattle).
Finally, for many individual indices, we see that the maximum returns are (in absolute terms)
larger than the minimum returns. Furthermore, most sectors exhibit more positive than negative
returns. In this respect, agriculture appears to be an outstanding exception.

3.3. Methodology

3.3.1. Traditional momentum

Our construction of traditional commodity momentum portfolios is guided by Miffre and Rallis
(2007). That is, at the end of each month and based on the cumulative returns of the previous R
months (ranking period), we sort our commodities into quintiles.8 We then form equally weighted
winner and loser portfolios using the commodities in the top and bottom quintiles, respectively,
and monitor their returns over the subsequent H months (holding period). The corresponding
R-H momentum strategy involves buying the winner and selling the loser portfolios.

For the ranking and holding period lengths, we consider 1, 3, 6, 9 and 12 month(s). This leads
to a total of 25 strategies.9 If, for a given R, we have H > 1, the holding periods of constructed
portfolios naturally overlap. In these cases, we follow Fuertes et al. (2010) by computing the
monthly portfolio return as the return average of the portfolios formed in the recent H months.
Such averaging ensures that neither the strategy initiation month nor omitted momentum updating
in the holding period drive portfolio performance.

3.3.2. Memory-enhanced momentum

3.3.2.1. Variance ratios

Our first kind of MEM captures the strength of short-term memory in commodity returns. As
straightforward measures for the latter, we might think of using autocorrelation coefficients ρk ∈
[−1, 1] of order k ∈ {1, 2, . . . , T − 1}, which can be estimated via

ρ̂k =
1

(T − 1)σ̂2

T∑︂
t=k+1

((rt − µ̂)(rt−k − µ̂)) , (3.1)

where rt is the return in month t, T the sample size, µ̂ = 1
T

∑︁T
t=1 rt and σ̂2 = 1

T−1

∑︁T
t=1 (rt − µ̂)2

(see Campbell et al., 1997).10 They describe the linear dependence between the returns in t and

7The risk-free rate is available in Kenneth French’s Data Library: https://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html.
8Switching to quartiles or terciles does not change our overall picture.
9While momentum studies in equity markets skip one month between ranking and actual investment (see Jegadeesh
and Titman, 1993; Asness et al., 2013), this is often not done in commodity markets because it has been shown
to diminish strategy returns (see Miffre and Rallis, 2007; Fuertes et al., 2010; Bianchi et al., 2015).

10In contrast to our portfolio evaluations, which use simple returns capturing actual investment outcomes, variance
ratios and Hurst coefficients require log returns (see Peters, 1992; Charles and Darné, 2009).
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t − k. If ρ̂k > 0, we expect a return rt−k > µ̂ (rt−k < µ̂) to go along with rt > µ̂ (rt < µ̂). In
contrast, we would predict that rt−k − µ̂ and rt − µ̂ have opposite signs when ρ̂k < 0.
Because different lags k may lead to different expectations regarding future return directions and

because we are interested in a clear trading rule, we are looking for an aggregate autocorrelation
measure. As shown by Lo and MacKinlay (1988), variance ratios can serve this purpose because
V R(q) is not only the ratio of the variance of q-period returns and q times the variance of one-period
returns but, for q ≥ 2, can also estimated as

ˆ︃V R(q) = 1 + 2

q−1∑︂
k=1

(︃
1− k

q

)︃
ρ̂k. (3.2)

Put differently, it is a linear combination of the first q − 1 autocorrelation coefficients ρ̂k which
receive weights decreasing with lag size k. If returns are not autocorrelated, we expect to observeˆ︃V R(q) ≈ 1. However, if positive (negative) autocorrelation dominates the statistic, we will haveˆ︃V R(q) > 1 (ˆ︃V R(q) < 1).

To determine whether a variance ratio is significantly different from 1, Lo and MacKinlay (1988,
1989) have developed several statistical tests and intensively studied their small-sample properties.
We use their heteroscedasticity-robust version. That is, we base our decisions on the asymptotically
standard normal statistic (ˆ︃V R(q)− 1)/V̂ (q), where

V̂ (q) =

⌜⃓⃓⃓
⎷⃓q−1∑︂

k=1

⎛⎜⎝(︃2(q − k)

q

)︃2 ∑︁T
t=k+1 (rt − µ̂)2 (rt−k − µ̂)2(︂∑︁T

t=1(rt − µ̂)2
)︂2

⎞⎟⎠ (3.3)

is the estimated asymptotic standard deviation of ˆ︃V R(q).

3.3.2.2. Short memory strategy

The MEM strategy based on variance ratios supplements past performance by additional infor-
mation indicating whether it can be expected to persist or not. The core of the strategy can be
summarized by the following matrix:

[︃ Persistent Anti-persistent

Winner Long Short
Loser Short Long

]︃
(3.4)

A winner (loser) is bought (sold) only if our variance ratios tell us that it is persistent. If
they indicate anti-persistence, we sell (buy) past winners (losers). Besides the momentum-typical
persistence focus, we explicitly include the anti-persistence side because previously documented
marginality of (short-term) reversal (see Miffre and Rallis, 2007; Shen et al., 2007) may no longer
hold today. If there were phases of anti-persistence, it would not be wise to ignore this investment-
relevant information by using a outdated rule suggesting that there is never any reversal.
For the exact strategy specification, several aspects have to be noted. First, in contrast to a

focus on relative strength, where a commodity with negative past performance may show up on
the winner side because it is less negative than others, we follow Erb and Harvey (2006) by using
positive and negative returns to allow a clearer distinction between winners and losers. In this
setup, a combination with autocorrelation information is more meaningful. Second, we link q to
the ranking period R. That is, we concentrate our analysis on q ∈ {2, 4, 7, 13} and, for each R,
set q ≤ R + 1.11 With higher levels of q, we would leave our short memory focus. Third, because

11Recall from Section 3.3.2.1 that this choice of q-values considers autocorrelations up to 1, 3, 6 and 12 lags.
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variance ratios above or below 1 may just be random encounters, we label a commodity persistent
or anti-persistent only if the test of Section 3.3.2.1 suggests significant deviations from 1 at a 10%
level. The test is performed based on data covering 32 months. Finally, because there is also
some empirical evidence on time-dependent random walk behavior in commodity futures markets
(see Sensoy and Hacihasanoglu, 2014), there can be phases where our strategy does not suggest
taking a commodity position at all. In these cases, the futures collateral is assumed to be invested
risk-free earning the 1-month TBill rate.

3.3.2.3. Hurst coefficients

Originating from the empirical hydrology research of Hurst (1951) and theoretically incorporated
into a stationary stochastic process (the fractional Brownian motion, FBM) by Mandelbrot and
Van Ness (1968), the Hurst coefficient is one of the best-known measures of long memory. Its
interpretation can be nicely illustrated in the context of the latter because, here, HC = 0.5
implies that the FBM reduces to a classic Brownian motion with independent increments. In
contrast, HC > 0.5 introduces a strictly positive autocorrelation function, where the limit sum
of the autocorrelation coefficients goes to infinity. For HC < 0.5, the autocorrelation is negative
for arbitrary chosen time intervals and its coefficient sum tends to zero. Overall, the larger the
distance to 0.5, the higher is the absolute autocorrelation for small and large lags.12

Various methods have been proposed to estimate HC based on empirical data. Unfortunately,
many estimators lack a supplementary distribution theory such that testing hypotheses is often
impossible. In addition, Taqqu et al. (1995) and Rea et al. (2013) emphasize that there is no
consensus on the most suitable estimator and that the results of available estimators can differ
considerably. To take these issues into account, i.e., to limit estimation risk, we do not rely on a
single estimator but, in spirit of Liu (2015), use an equally weighted average of four particularly
promising ones (see below). To evaluate whether an estimate has relevant magnitude, we derive a
simple heuristic decision rule which proxies typical practitioner behavior (see below).

Rescaled range analysis Established by Mandelbrot and Wallis (1968, 1969) and Mandelbrot
(1971), rescaled range analysis (RSA) is the most frequently used estimation method. For various
τ , it begins with dividing the return sample into nτ = T

τ adjacent subsamples of length τ and

forming partial sums (Xj,t)t=1,...,τ =
∑︁jτ

t=(j−1)τ+1 rt for j = 1, . . . , nτ . For each subsample j, the
statistical range of mean-adjusted partial sums is then rescaled as

RSj(τ) =
1

σ̂j,τ

(︃
max
1≤t≤τ

(︁
Xj,t − µ̂j,τ · t

)︁
− min

1≤t≤τ

(︁
Xj,t − µ̂j,τ · t

)︁)︃
, (3.5)

where µ̂j,τ = 1
τ

∑︁jτ
t=(j−1)τ+1 rt and σ̂j,τ =

√︂
1
τ

∑︁jτ
t=(j−1)τ+1

(︁
rt − µ̂j,τ

)︁2
are the maximum likelihood

estimators of the return mean and standard deviation in a subsample. To deal with the fact that,
for small τ , RSA can deliver HC values different from 0.5 even for independent data, we apply the
Anis and Lloyd (1976) correction to obtain adjusted RS statistics RS∗

j (τ).
13,14 Next, for each τ , we

12For a nice illustration of autocorrelation behavior in typical long memory models, see Granger and Ding (1996)
and Campbell et al. (1997, chpt. 2.6).

13Formally, we have RS∗
j (τ) = RSj(τ) −

(︂
E(RS(τ)) +

√︂
1
2
πτ

)︂
, where E (RS(τ)) =

Γ

(︃
τ−1
2

)︃
√
πΓ( τ2 )

∑︁τ−1
t=1

√︂
τ−t
t

is the

expected value of the rescaled range in independent Gaussian data and whose logarithm asymptotically converges
to 1

2
log

(︁
1
2
πτ

)︁
. We do not apply the additional ‘correction’ of Peters (1994) because Couillard and Davison (2005)

and Ellis (2006) show that it introduces further bias.
14Another well-known modification, which scales via an autocovariance-adjusted variance (to avoid distorting effects

of short memory), has been proposed by Lo (1991). However, Teverovsky et al. (1999) and Kristoufek (2012)
show that it is biased toward independence primarily because the relevant autocovariance lag size is unknown.
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calculate the arithmetic mean RS
∗
(τ) of adjusted RS statistics over all j = 1, . . . , nτ subsamples

of length τ . This mean scales as RS
∗
(τ) ≈ cτHC with a finite constant c independent of τ . Thus,

we can estimate HC with the regression log
(︂
RS

∗
(τ)
)︂
= log(c) +HC log(τ).

Detrended fluctuation analysis As shown byWeron (2002), detrended fluctuation analysis (DFA),
proposed by Peng et al. (1994) and further developed by Kantelhardt et al. (2002), can outper-
form RSA in small samples. To implement this method, a sample again has to be subsequently
subdivided into nτ = T

τ adjacent subsamples with cumulative returns (Xj,t)t=1,...,τ . The (Xj,t) are
then detrended by subtracting the prediction aj + bj · t of a linear regression of (Xj,t) on time t.
The results deliver mean square detrended variables

Fj,s(τ) =

(︄
1

τ

τ∑︂
t=1

(Xj,t − aj − bj · t)2
)︄s/2

(3.6)

for all j = 1, . . . , nτ . Next, for each τ , the sth root of the arithmetic mean Fs(τ) of Fj,s(τ) over all

nτ subsamples is denoted as sth order fluctuation. It also scales as
(︂
Fs(τ)

)︂1/s
≈ cτHC such that

HC can again be estimated via logarithmic regression. Guided by Weron (2002), we restrict τ to
the interval [50, T ] (in both DFA and RSA) and concentrate on applying DFA with s = 1.

Higuchi approach According to Montanari et al. (1999) and Taqqu and Teverovsky (1998), the
estimator developed by Higuchi (1988) is particularly valuable when time series exhibit seasonality
(or are rather short). The key difference from RSA and DFA is that Higuchi’s approach is based
on sliding windows which, in contrast to using non-intersecting blocks, is more computationally
intensive. Specifically, we accumulate returns as Xt =

∑︁t
i=1 rt for t = 1, . . . , T . With the floor

function ⌊·⌋ and an independent constant c, we then define

L(τ) =
T − 1

τ3

τ∑︂
t=1

⌊︃
T − t

τ

⌋︃−1

⌊︁
T−t
τ

⌋︁∑︂
i=1

|Xt+iτ −Xt+(i−1)τ | (3.7)

and estimateHC by log-linearizing L(τ) ≈ cτHC−2 and subsequent regression. Similar to Boutahar
et al. (2007), τ is chosen based on sample size, which yields τ ∈ [4, 19].

Generalized Hurst exponent approach Finally, screening Barunik and Kristoufek (2010) for an
estimator which is well-behaved in non-Gaussian data, we discover the generalized Hurst exponent
(GHE) approach of Barabási and Vicsek (1991).15 It is based on the computation of w-order
moments of financial increment processes, such that we again require interval returnsXt =

∑︁t
i=1 ri.

For increasing lags τ , we compute

Kw(τ) =
T−τ∑︂
t=1

(|Xt+τ −Xt|w) /
T−τ∑︂
t=1

(|Xt|w) (3.8)

statistics which approximately scale as Kw(τ) ≈ cτwHC . Following Barunik and Kristoufek (2010),
we regress with w = 2 such that Kw is proportional to the autocorrelation function of the interval
return processes. As in Di Matteo et al. (2005), we set τ to range within [1, 19].

15Barunik and Kristoufek (2010) simulate time series with different lengths following a family of stable distributions.
This family is based on a characteristic exponent α ≤ 2 which, fitted to our data, ranges from 1.676 to 1.974.
Hence, we consult their simulation results for α-segments from 1.7 to 2.
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3.3.2.4. Long memory strategy

Our MEM strategy incorporating Hurst coefficients follows the basic design of matrix (3.4). How-
ever, several points require clarification. First, while many studies document the properties of
HC estimators for very large sample sizes (such as 10.000 or more observations; see Taqqu and
Teverovsky, 1998; Kristoufek, 2012), which are clearly not feasible for most financial applications,
Weron (2002) and Chamoli et al. (2007) point out that, depending on the method, smaller samples
(fewer than 500 observations) may be used to obtain reasonable estimates. Batten et al. (2013) go
even further and argue that HC measurements based on just 22 or 66 returns deliver exploitable
information. Taking these findings into account, as a compromise, we fix our rolling window size
for HC estimation to 4 years of daily data.16 Second, we combine two sources to obtain a decision
rule for judging whether a deviation of our estimator average from 0.5 can be considered relevant.
One source is the simulation study of Weron (2002) providing approximate confidence intervals for
RSA and DFA. In our setting, the rounded 90% intervals would be (0.37; 0.62) and (0.41; 0.58),
respectively. The other source are rule-of-thumb boundaries popular in the applied literature.
Screening Couillard and Davison (2005), Batten et al. (2013), Hull and McGroarty (2014) and
others, persistence (anti-persistence) is typically declared for estimates within [0.55; 0.65] ([0.35;
0.45]) and higher (lower). For the sake of brevity and because we find that HC strategies can-
not compete with VR strategies, we concentrate on the strategies resulting from a (0.38; 0.62)
insignificance interval, which is a typical choice of investors following the mainstream literature.

3.4. Empirical results

3.4.1. Traditional momentum

We start our empirical analysis with the performance of traditional momentum. To conserve space,
we follow Miffre and Rallis (2007), Fuertes et al. (2010) and Bianchi et al. (2015) by focusing on
the dynamics of the strategies where the mean returns are statistically significant at the 10% level.
That is, we document 11 of 25 strategies.17 Specifically, we have five strategies with a 1-month
ranking period (R1-H1, R1-H3, R1-H6, R1-H9, R1-H12), four strategies with a 3-month ranking
period (R3-H1, R3-H3, R3-H9, R3-H12), and one strategy with a 6-month (R6-H1) and a 12-month
(R12-H1) ranking period each.
Table 3.2 reports basic descriptive statistics for the portfolio returns subdivided into the long

(winner) leg, the short (loser) leg and the long-short (momentum) combination. For comparison, it
also includes a simple equally weighted benchmark portfolio of all 28 commodities. Because many
studies evaluating momentum performance focus on standard statistical measures summarizing raw
returns, Bianchi et al. (2015) suggest the additional calculation of metrics popular in investment
practice. We follow this lead by using the set of measures (especially tail risk metrics) already
introduced in Section 3.2, which will be relevant for the comparison of traditional momentum and
our new strategies.18

In the overall perspective, we can confirm a typical finding for commodity momentum (see
Miffre, 2016; Shen et al., 2007): mean returns of long-short momentum portfolios are dominated
by the returns of the long legs. In contrast to previous work, we see that, in recent data, the
short leg contributes negatively, not positively, to the long-short portfolio. The best long-short

16While using daily instead of monthly data may appear to be a break in consistency, it is a standard approach to
improve estimation (and prediction) quality in monthly portfolio settings (such as, for example, beta estimation
for monthly cross-sectional regressions; see Frazzini and Pedersen, 2014; Jegadeesh et al., 2019).

17The detailed results for the 14 remaining strategies are available from the authors upon request.
18Because Ljung and Box (1978) and Engle (1982) tests (with up to 12 lags) indicate autocorrelation and het-

eroscedasticity in momentum returns, we base all t-tests in our study on Newey and West (1987) standard
errors.
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strategies are the ones with short holding periods. The leading strategy R1-H1 earns mean returns
of 1.17% (= 1.23%− 0.06%) per month, which is nearly twice as much as the benchmark.19 On
an annual basis this implies a mean return of 14.04% (= 14.76% − 0.72%). In comparison, for
a R1-H1 strategy, the earlier study of Fuertes et al. (2010) documents mean returns of 17.69%
(= 12.39% − (−5.30%)) per year.20 On a risk-adjusted basis, the monthly (annualized) Sharpe
ratios of our best long-short strategy is, with a value of 0.09 (0.31), also larger than the one of the
benchmark. Again, a comparison to Fuertes et al. (2010), who report a Sharpe ratio of 0.66 per
year, indicates a decline in performance.21

Table 3.3 reports the estimates (and corresponding t-statistics) of the coefficients α, βS , βB
and βC in the multi-factor model rP,t = α + βSrS,t + βBrB,t + βCrC,t + εt, where rP,t reflects
our strategy portfolio returns and rS,t, rB,t and rC,t denote the returns of the S&P 500 Composite
Stock Market Index, the S&P 10-Year US Government Bond Index and the S&P GSCI, respectively.
Furthermore, it presents idiosyncratic volatility (i.e., the standard deviation of model residuals),
the multi-factor version of the information ratio (i.e., the ratio of alpha to idiosyncratic volatility;
see Goodwin, 1998) and the adjusted coefficient of determination. Our model choice is guided by
Miffre and Rallis (2007), Fuertes et al. (2010) and Bianchi et al. (2015) because we wish to compare
our results to the previous literature and our goal is to evaluate investment performance which
requires that the chosen factors are the returns of portfolios which can be realized by investors.22

Consequently, α measures the worth momentum strategies generate in excess of index investments
in the three major asset classes stocks, bonds and commodities. Note that, when it comes to the
analysis of (potentially non-tradeable) factors explaining strategy returns (see Section 3.4.4.5), we
use a significantly extended model.
Looking at the model betas, we detect that the long legs are significantly positively connected to

the movements of the entire commodity market. The short legs show additional positive (negative)
linkage to the stock (bond) market. In contrast, evidence on a relation of long-short momentum and
market index returns is strongly limited. Interestingly, and in comparison to previous studies (see
Fuertes et al., 2010; Bianchi et al., 2015), none of the long-short strategies generates a significantly
positive alpha.23 While this suggests that traditional momentum has lost its merits, focusing on
the long legs may still be considered beneficial. For example, the long side of R3-H1 not only earns
a high and statistically significant monthly alpha of 0.61% but also exhibits the highest monthly
information ratio of 0.11 which captures the compensation for bearing one unit of idiosyncratic
risk generated by turning away from passive (diversified) market investments and toward an active
(less diversified) momentum strategy.

3.4.2. Short memory momentum

3.4.2.1. Baseline results

After observing that traditional momentum has significantly weakened, we now turn to our first
variant of MEM which, as discussed in Section 3.3.2.2, focuses on short-term autocorrelation
captured via variance ratios. Table 3.4 reports the basic return characteristics of several short
memory strategies R-q with a focus on a 1-month holding period because, similar to Section 3.3.1,

19Figure C.1 of the appendix illustrates the portfolio compositions suggested by R1-H1 over time.
20Note that a comparison of results in the momentum literature requires special care because their presentation

varies significantly. For example, some studies present monthly returns, others annualize them. Furthermore,
there are articles reporting non-percentage returns instead of percentage values.

21A subsample analysis performed in Bianchi et al. (2015) further supports this finding.
22Because the bond index launched in September 2013, we approximate the years before by the (highly correlated)

maturity-congruent Datastream Bond Index.
23Very low and partially negative values of R2̄ are consistent with the observations of Fuertes et al. (2010) and

Bianchi et al. (2015).
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Table 3.2.: Basic characteristics of traditional momentum strategies

R1-H1 R1-H3 R1-H6 R1-H9 R1-H12 R3-H1 R3-H3 R3-H9 R3-H12 R6-H1 R12-H1 Benchmark

Panel A: Long
Mean 1.23 1.07 0.98 0.83 0.79 1.41 1.07 0.92 0.83 1.28 1.01 0.60
t-Statistics 3.35 3.49 3.43 3.02 2.89 3.58 3.06 2.95 2.75 3.40 2.52 2.76
Volatility 7.53 5.97 5.50 5.34 5.24 7.95 6.75 5.95 5.83 7.58 8.04 4.35
SR 0.11 0.12 0.11 0.09 0.08 0.13 0.10 0.09 0.08 0.12 0.08 0.05
VaR 9.87 8.18 7.43 7.38 6.90 9.83 9.26 8.23 7.77 10.68 11.66 6.39
ES 13.27 11.30 10.83 10.68 10.60 13.89 13.07 11.77 12.12 14.96 17.00 9.20
Min -20.29 -21.30 -21.95 -22.51 -22.17 -33.31 -33.42 -28.50 -29.34 -33.31 -33.31 -21.74
Max 51.20 35.56 29.20 24.48 25.15 51.20 35.56 36.44 34.83 41.87 41.87 25.81
Pos. mths 55.30 56.73 58.17 57.27 55.12 55.66 55.30 56.73 55.12 54.94 54.94 55.48
Panel B: Short
Mean 0.06 0.28 0.37 0.49 0.42 0.26 0.36 0.47 0.44 0.10 0.02 0.60
t-Statistics 0.19 1.07 1.59 2.20 1.87 0.89 1.47 1.96 1.90 0.35 0.06 2.76
Volatility 6.67 5.40 5.14 4.95 4.82 6.29 5.70 5.20 4.96 6.73 6.70 4.35
SR -0.05 -0.02 -0.00 0.02 0.01 -0.02 -0.00 0.02 0.01 -0.04 -0.05 0.05
VaR 10.21 8.06 7.25 6.81 6.89 10.26 9.03 7.27 6.94 10.57 9.89 6.39
ES 15.91 12.48 10.96 10.12 9.88 14.41 12.16 10.15 9.58 14.67 14.36 9.20
Min -24.34 -20.75 -20.52 -20.64 -20.97 -20.75 -21.54 -20.50 -20.14 -20.40 -22.34 -21.74
Max 25.00 27.95 22.71 30.14 31.18 22.71 22.71 25.49 24.99 32.20 33.77 25.81
Pos. mths 52.24 52.96 53.68 55.48 54.40 50.09 52.24 53.68 54.40 49.91 49.01 55.48
Panel C: Long-short
Mean 1.17 0.79 0.61 0.35 0.37 1.15 0.71 0.45 0.39 1.17 1.00 0.60
t-Statistics 2.90 2.83 3.00 2.18 2.62 2.54 2.07 1.89 1.84 2.87 2.22 2.76
Volatility 8.94 5.63 4.41 3.87 3.44 9.05 7.29 5.26 4.68 9.15 9.58 4.35
SR 0.09 0.07 0.05 -0.01 -0.00 0.09 0.05 0.01 0.00 0.09 0.06 0.05
VaR 12.60 7.02 5.36 4.93 4.31 11.54 8.98 7.43 6.08 11.78 14.29 6.39
ES 17.51 10.73 8.15 7.41 6.50 16.40 14.00 10.83 10.36 17.57 19.38 9.20
Min -30.79 -30.79 -20.76 -16.48 -13.69 -30.79 -30.79 -17.91 -19.58 -30.79 -37.26 -21.74
Max 47.01 26.31 25.87 28.67 30.78 40.61 33.10 42.54 32.24 52.67 52.67 25.81
Pos. mths 56.01 54.22 54.94 52.78 54.76 53.68 53.68 52.06 51.89 53.14 53.50 55.48

Based on data from August 1973 to December 2019, this table presents descriptive statistics for the monthly percentage returns of traditional long, short and long-short momentum
portfolios (constructed as outlined in Section 3.3.1). R and H refer to the ranking and holding periods, respectively. The benchmark is an equally weighted portfolio of all commodity
futures. Further abbreviations are used as in Table 3.1. t-statistics are based on Newey-West standard errors. Significant means at a 5% level are marked in in bold.
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Table 3.3.: Alphas and betas of traditional momentum strategies

R1-H1 R1-H3 R1-H6 R1-H9 R1-H12 R3-H1 R3-H3 R3-H9 R3-H12 R6-H1 R12-H1

Panel A: Long
α 0.52 0.37 0.33 0.25 0.20 0.61 0.38 0.33 0.23 0.35 0.24
tα 1.74 1.88 2.25 1.88 1.48 1.98 1.77 2.33 1.68 1.50 1.02
σε 5.60 3.68 3.12 2.85 2.71 5.53 4.26 3.16 2.97 5.23 5.27
IR 0.09 0.10 0.11 0.09 0.07 0.11 0.09 0.10 0.08 0.07 0.05
βS 0.06 0.07 0.10 0.10 0.11 0.07 0.09 0.11 0.11 0.06 0.07
tS 0.82 1.53 2.71 2.88 3.51 0.92 1.77 3.13 3.07 1.00 1.15
βB 0.02 0.00 -0.04 -0.07 -0.05 0.04 -0.10 -0.10 -0.09 0.06 0.07
tB 0.21 0.01 -0.53 -1.03 -0.86 0.28 -0.94 -1.40 -1.30 0.49 0.60
βC 0.68 0.69 0.64 0.64 0.63 0.73 0.69 0.67 0.70 0.71 0.79
tC 7.81 15.76 19.78 20.61 21.59 9.05 14.46 17.04 17.48 11.64 10.35

R2̄ 0.32 0.52 0.58 0.62 0.64 0.35 0.46 0.60 0.64 0.37 0.41
Panel B: Short
α -0.14 0.07 0.13 0.15 0.06 -0.05 0.08 0.00 0.05 -0.10 -0.16
tα -0.59 0.46 0.82 0.98 0.41 -0.21 0.37 0.02 0.29 -0.37 -0.55
σε 5.06 3.46 3.07 2.93 2.80 4.97 4.19 3.50 3.39 5.28 5.44
IR -0.03 0.02 0.04 0.05 0.02 -0.01 0.02 0.00 0.01 -0.02 -0.03
βS 0.15 0.14 0.11 0.11 0.10 0.17 0.13 0.13 0.12 0.20 0.13
tS 2.58 3.43 3.14 3.11 3.17 2.86 2.43 3.08 3.09 3.46 1.78
βB -0.25 -0.16 -0.14 -0.12 -0.12 -0.17 -0.14 -0.12 -0.14 -0.13 -0.18
tB -2.24 -2.35 -2.31 -1.97 -2.12 -1.68 -1.80 -1.61 -2.03 -1.21 -1.54
βC 0.61 0.55 0.59 0.57 0.56 0.51 0.56 0.56 0.54 0.56 0.55
tC 10.18 14.95 16.38 17.67 19.01 9.22 11.19 12.74 13.67 9.06 6.58

R2̄ 0.34 0.47 0.56 0.56 0.57 0.28 0.38 0.47 0.47 0.29 0.26
Panel C: Long-short
α 0.66 0.30 0.21 0.10 0.14 0.66 0.30 0.32 0.18 0.45 0.40
tα 1.50 1.17 1.29 0.78 1.14 1.52 1.00 1.65 0.98 1.28 1.01
σε 8.25 4.74 3.48 2.94 2.57 7.95 6.16 4.28 3.86 7.84 8.18
IR 0.08 0.06 0.06 0.03 0.05 0.08 0.05 0.08 0.05 0.06 0.05
βS -0.09 -0.07 -0.01 -0.01 0.01 -0.09 -0.04 -0.02 -0.01 -0.14 -0.06
tS -0.75 -1.10 -0.26 -0.34 0.31 -0.77 -0.47 -0.51 -0.26 -1.63 -0.48
βB 0.27 0.16 0.10 0.05 0.07 0.20 0.04 0.02 0.05 0.19 0.25
tB 1.69 1.62 1.36 0.87 1.30 1.12 0.32 0.24 0.67 1.13 1.45
βC 0.07 0.14 0.05 0.07 0.07 0.21 0.14 0.12 0.16 0.15 0.24
tC 0.55 2.35 1.14 1.64 2.07 1.76 1.68 1.78 2.52 1.46 1.64

R2̄ 0.00 0.02 0.00 0.01 0.02 0.02 0.01 0.01 0.04 0.01 0.02

For the strategies of Table 3.2, this table presents estimates for the coefficients α, βS , βB and βC of a linear regression of monthly percentage strategy returns on investable stock (S&P
500 Composite Stock Market Index), bond (S&P 10-Year US Government Bond Index) and commodity (S&P Goldman Sachs Commodity Index) indices. Their dedicated t-statistics are

calculated with Newey-West adjustment. σε, IR and R2̄ refer to the idiosyncratic volatility, the information ratio and the adjusted coefficient of determination, respectively. Significant
coefficients at a 5% level are marked in bold.
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Table 3.4.: Basic characteristics of short memory strategies

R1-q2 R3-q2 R3-q4 R6-q2 R6-q4 R6-q7 R12-q2 R12-q4 R12-q7 R12-q13 Benchmark

Panel A: Long
Mean 1.41 1.06 1.01 0.91 1.07 0.49 0.77 0.76 0.34 0.28 0.60
t-Statistics 7.04 5.92 4.72 6.63 5.75 2.34 4.62 3.97 1.34 1.17 2.76
Volatility 4.30 4.14 4.95 3.62 4.32 5.00 3.98 4.47 5.07 4.83 4.35
SR 0.24 0.17 0.13 0.15 0.16 0.02 0.10 0.09 -0.01 -0.02 0.05
VaR 4.13 4.18 7.03 4.33 4.85 6.18 5.62 7.09 9.22 8.23 6.39
ES 7.24 8.52 10.75 7.38 8.52 12.12 9.85 10.41 13.59 14.23 9.20
Min -22.08 -16.84 -21.46 -16.63 -17.29 -32.43 -16.84 -17.29 -31.74 -31.74 -21.74
Max 25.09 23.90 36.37 25.09 28.88 42.91 23.90 21.27 42.91 23.05 25.81
Pos. mths 83.84 83.12 82.05 82.59 81.87 79.53 82.59 80.43 77.38 78.64 55.48
Panel B: Short
Mean -0.66 -0.28 -0.12 -0.32 -0.23 -0.36 -0.39 -0.22 -0.51 -0.63 0.60
t-Statistics -2.93 -1.28 -0.68 -1.17 -1.02 -1.32 -1.61 -0.99 -2.11 -2.66 2.76
Volatility 4.82 4.79 5.04 5.38 5.29 5.58 5.18 5.26 5.28 5.02 4.35
SR -0.21 -0.14 -0.10 -0.13 -0.11 -0.13 -0.15 -0.11 -0.17 -0.20 0.05
VaR 8.80 8.07 8.59 8.53 8.86 9.06 8.52 8.86 10.51 9.94 6.39
ES 13.52 12.87 13.32 14.17 14.26 16.43 13.98 14.35 16.02 15.76 9.20
Min -23.46 -23.46 -24.62 -23.46 -24.62 -27.67 -23.46 -24.07 -24.78 -24.78 -21.74
Max 44.05 44.05 36.13 38.43 36.13 36.13 44.05 36.13 36.13 24.71 25.81
Pos. mths 14.18 16.34 15.98 17.95 16.88 15.08 16.70 16.88 16.16 13.29 55.48
Panel C: Long-short
Mean 2.07 1.35 1.14 1.22 1.30 0.85 1.16 0.98 0.85 0.91 0.60
t-Statistics 7.52 5.02 4.34 4.28 4.90 3.05 4.35 3.74 3.04 3.38 2.76
Volatility 6.09 5.97 6.93 6.00 6.67 7.10 6.26 6.81 6.95 6.57 4.35
SR 0.28 0.16 0.11 0.14 0.14 0.07 0.12 0.09 0.07 0.08 0.05
VaR 6.42 7.76 10.16 7.78 9.98 9.60 8.65 10.47 10.54 10.28 6.39
ES 10.57 12.51 14.41 13.04 14.12 15.80 14.15 14.65 15.58 15.38 9.20
Min -42.24 -42.24 -35.70 -38.08 -39.28 -41.52 -43.40 -39.28 -39.28 -24.71 -21.74
Max 30.91 23.90 36.37 25.09 29.89 42.91 23.90 24.15 42.91 29.07 25.81
Pos. mths 78.10 74.69 74.87 74.15 75.76 72.71 74.87 72.89 70.56 72.71 55.48

From August 1973 to December 2019, this table presents descriptive statistics for the monthly percentage returns of long, short and long-short memory-enhanced momentum portfolios
(constructed as outlined in Section 3.3.2.2). R refers to the period used to rank the commodities, q − 1 to the number of lags used in the calculation of variance ratios. All strategies
use a holding period of 1 month. The benchmark is an equally weighted portfolio of all commodity futures. Further abbreviations are used as in Table 3.1. t-statistics are based on
Newey-West standard errors. Significant means at a 5% level are marked in bold.
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Table 3.5.: Alphas and betas of short memory strategies

R1-q2 R3-q2 R3-q4 R6-q2 R6-q4 R6-q7 R12-q2 R12-q4 R12-q7 R12-q13

Panel A: Long
α 1.47 1.13 1.19 0.96 1.17 0.15 0.77 0.77 -0.02 0.04
tα 6.27 5.63 4.30 5.60 5.19 0.55 4.29 3.54 -0.06 0.15
σε 4.32 4.14 5.12 3.71 4.51 5.12 4.09 4.67 5.20 4.82
IR 0.34 0.27 0.23 0.26 0.26 0.03 0.19 0.16 -0.00 0.01
βS 0.05 0.04 0.02 0.05 0.07 0.14 0.13 0.12 0.19 0.16
tS 0.87 0.83 0.40 1.08 1.17 2.16 3.05 2.19 2.62 2.25
βB -0.18 -0.17 -0.26 -0.14 -0.17 0.16 -0.20 -0.18 0.03 -0.14
tB -1.91 -2.16 -2.35 -1.63 -1.83 1.44 -2.27 -2.07 0.32 -1.72
βC 0.18 0.18 0.19 0.16 0.13 0.24 0.12 0.11 0.24 0.24
tC 3.83 3.48 3.81 5.09 3.33 3.43 3.05 2.90 3.03 2.99

R2̄ 0.07 0.06 0.05 0.07 0.04 0.08 0.06 0.04 0.09 0.10
Panel B: Short
α -1.00 -0.53 -0.13 -0.42 -0.35 -0.49 -0.61 -0.31 -0.76 -0.89
tα -4.14 -2.22 -0.69 -1.33 -1.46 -1.56 -2.27 -1.32 -2.75 -3.44
σε 4.67 4.60 4.97 4.92 4.92 5.48 4.77 4.84 5.23 4.86
IR -0.21 -0.12 -0.03 -0.09 -0.07 -0.09 -0.13 -0.06 -0.15 -0.18
βS 0.18 0.14 0.02 0.09 0.13 0.08 0.18 0.10 0.14 0.17
tS 3.38 2.60 0.52 0.99 2.52 1.12 2.49 1.58 1.84 2.08
βB -0.10 -0.07 -0.15 -0.18 -0.09 -0.02 -0.09 -0.09 0.06 -0.04
tB -0.92 -0.75 -1.95 -1.82 -1.10 -0.14 -0.83 -1.13 0.59 -0.33
βC 0.27 0.29 0.25 0.38 0.34 0.32 0.26 0.33 0.22 0.25
tC 4.50 5.33 4.25 5.99 5.28 4.04 4.66 4.85 3.38 3.43

R2̄ 0.13 0.13 0.08 0.18 0.15 0.10 0.12 0.14 0.07 0.10
Panel C: Long-short
α 2.47 1.66 1.32 1.38 1.52 0.64 1.38 1.08 0.74 0.93
tα 7.64 5.19 4.09 3.74 4.48 1.76 4.24 3.36 2.26 2.87
σε 6.26 6.12 7.25 5.99 6.79 7.45 6.26 6.88 7.28 6.79
IR 0.39 0.27 0.18 0.23 0.22 0.09 0.22 0.16 0.10 0.14
βS -0.12 -0.11 0.00 -0.04 -0.07 0.06 -0.05 0.02 0.05 -0.01
tS -1.92 -1.54 0.00 -0.39 -0.81 0.71 -0.53 0.26 0.66 -0.06
βB -0.08 -0.09 -0.11 0.04 -0.08 0.18 -0.12 -0.09 -0.02 -0.11
tB -0.55 -0.81 -0.78 0.33 -0.68 1.17 -0.85 -0.79 -0.17 -0.76
βC -0.09 -0.11 -0.06 -0.22 -0.20 -0.08 -0.14 -0.22 0.01 -0.01
tC -1.31 -1.72 -0.91 -3.48 -2.69 -0.86 -1.94 -2.59 0.12 -0.09

R2̄ 0.01 0.01 -0.00 0.04 0.03 0.00 0.01 0.02 -0.01 -0.00

For the strategies of Table 3.4, this table presents estimates for the coefficients α, βS , βB and βC of a linear regression of monthly percentage strategy returns on investable stock (S&P
500 Composite Stock Market Index), bond (S&P 10-Year US Government Bond Index) and commodity (S&P Goldman Sachs Commodity Index) indices. Their dedicated t-statistics are

calculated with Newey-West adjustment. σε, IR and R2̄ refer to the idiosyncratic volatility, the information ratio and the adjusted coefficient of determination, respectively. Significant
coefficients at a 5% level are marked in bold.
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they perform better than specifications with larger H.24 For the same strategies, Table 3.5 presents
the results of our multi-factor performance regressions.

We observe that mean returns and Sharpe ratios of our long-short strategies are systematically
above their traditional counterparts in Table 3.2. Furthermore, by considering autocorrelation
information, the short legs of the strategies now deliver the negative returns we would expect
from a working strategy (see Jegadeesh and Titman, 1993). Finally, combinations of small ranking
periods and variance ratios of low order tend to perform better than strategies with high R and q.
Especially the first-order autocorrelation is key to performance improvement.
The best strategy turns out to be R1-q2. It earns a monthly (annualized) mean return of 2.07%

(24.84%) with a Sharpe ratio of 0.28 (0.97). This not only exceeds the benchmark but also all
traditional momentum specifications.25 In addition, and particularly noteworthy, it nearly halves
tail risk magnitude (i.e., VaR and ES) in comparison to the traditional R1-H1 momentum strategy
and brings risk to levels close to the benchmark. Finally, R1-q1 (and many other specifications)
deliver significant alphas.26 Specifically, we have a monthly (annualized) value of 2.47% (29.64%).
The long and short legs of the strategy also earn impressive alphas, which, on their own, outperform
traditional momentum strategies.
Figure 3.1 provides further information about the R1-q2 strategy. Figure 3.1(a) compares the

evolution and terminal value of US$1 million invested into the long and long-short portfolios of
R1-q2 and R1-H1 as well as the equally weighted benchmark. Not surprisingly, the benchmark
ranks last with respect to final wealth. Once more, we can observe that removing the short leg from
a traditional momentum strategy leads to a higher investment outcome. Interestingly, we can also
see that this was not true before the year 2000. Apparently, the short leg turned to a performance
killer after 2000, which indicates commodity momentum crashes similar to the crashes documented
for stock market momentum (see Daniel and Moskowitz, 2016). Given that the year 2000 coincides
with the Commodity Futures Modernization Act (CFMA), which increased media coverage and
the speed of information diffusion in commodity futures markets, this (and stagnating long-only
performance) is also qualitatively consistent with the behavioral theory of Hong and Stein (1999)
which predicts weaker momentum returns under such circumstances.27 In contrast, the short leg is
a valuable addition in the memory-enhanced strategy. However, even ignoring the short side (for
example, because of potential short selling limitations; see Alexander, 2000) leads to a valuable
strategy. Altogether, MEM is characterized by an almost steady upward movement, effectively
avoiding the performance break of traditional momentum around 2000. Furthermore, the decline
of traditional momentum performance in the most recent years of our sample is not evident for
MEM.
Because MEM is a sophisticated combination of momentum and (short-term) reversal, the ques-

tion arises on how important the trades based on anti-persistence signals are for the performance

24Again, the full set of strategy results is available upon request.
25For a statistical verification of this claim, see Table C.1 of the appendix. It presents a performance comparison

based on the Ledoit and Wolf (2008) bootstrap test, which does not rely on bivariate normal iid return data
(thus improving over Jobson and Korkie, 1981; Memmel, 2003) and performs well in small samples (thus being
superior to heteroscedasticity and autocorrelation robust kernel density estimation outlined in Andrews, 1991;
Andrews and Monahan, 1992; Romano and Wolf, 2006).

26Table C.2 of the appendix, which allows alphas to vary with business cycle proxies (term spread, default spread),
shows that alphas can be considered stable over time (see models 1 and 2). Furthermore, alphas remain highly
significant if we take into account potential time-variation in betas (see model 3). A ranking of the strategies
based on alphas, idiosyncratic volatilities and information ratios leads to similar results as in our main analysis.
Consequently, the performance of our strategies is not a compensation for time-varying market exposure. Sim-
ilar results can be obtained when allowing alphas and betas to vary with lagged strategy and market returns,
respectively.

27In contrast, the theory of Daniel et al. (1998) would predict a significantly stronger momentum effect because
the CFMA facilitated the entry of less-sophisticated investors which are likely to exhibit overconfidence and
self-attribution biases (see Goetzmann and Huang, 2018).
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Figure 3.1.: Wealth development

(a) Short-selling contribution (b) Anti-persistence contribution

Subfigure (a) presents the evolution and terminal value of US$1 million investments into the long and long-short portfolios of
the memory-enhanced R1-q2 strategy and the traditional R1-H1 strategy as well as an equally weighted benchmark portfolio.
While this illustrates the contribution of the short legs to the performance of R1-q2 and R1-H1, Subfigure (b) sheds light on the
role of trades initiated by anti-persistence signals in R1-q2. That is, it separates persistence-based trades from the complete
trading activity. The investment period spans from August 1973 to December 2019.

of R1-q2. To shed light on this issue, Figure 3.1(b) isolates the persistence-based trades from
the total trading activity. As we can see, implementing a persistence-only strategy, which simply
enhances the traditional momentum signal by autocorrelation testing, is already well-behaved.
However, we also detect that, starting around 2000, the anti-persistence trades strongly contribute
to the overall strategy performance. This shows that a (short-term) reversal effect can no longer
be considered absent in commodity futures markets and should be dynamically considered in the
implementation of trend-following strategies.
To conclude this section, we put the performance of R1-q2 into a more general perspective,

meaning that we compare it to other bivariate strategies. Among the most prominent ones, we
have the term structure extension (TSE) of Fuertes et al. (2010) and the (long-term) reversal
inclusion (RI) of Bianchi et al. (2015). On an annual basis, the best specification of TSE exhibits
mean returns and alphas of 23.55% and 23.66%, respectively. However, especially its tail risk is
almost four times higher than that of R1-q2 and the strategy returns are significantly bound to the
performance of the overall commodity market. That is, returns tend to decline in falling markets.
Table 3.5 indicates no such behavior for our strategy. RI shows slightly different features. For
example, it is not bound to the market. Furthermore, while it exhibits return levels similar to TSI,
it generates even larger tail risk. However, these observations should not discourage the use of
the strategies because both have a solid methodological foundation and their overall performance
(relative to passive investments and traditional momentum) makes them highly relevant in practice.

3.4.2.2. Dissecting strategy behavior

To learn more about our short memory strategies, this section has a detailed look at its commodity
selection behavior. Figure 3.2 starts by identifying which commodities have been most frequently
included in our strategy portfolios. For the sake of brevity, we concentrate on the strategies R1-q2,
R3-q2, R6-q2 and R6-q4 outstanding in terms of Sharpe and information ratios.
Our strategies obviously do not favor specific commodity sectors but invest across all of them.

However, because the commodities show different autocorrelation dynamics, some are traded more
often than others.28 In particular, WTI crude oil, copper and sugar stand out when considering

28Figure C.2 of the appendix illustrates the timely evolution of variance ratios for selected commodities.

66



3.4. Empirical results

Figure 3.2.: Strategy constituents

(a) R1-q2 (b) R3-q2

(c) R6-q2 (d) R6-q4

This figure plots the number of months in which a given commodity has been considered by the long and short sides of selected
memory-enhanced momentum strategies presented in Tables 3.4 and 3.5.

only first-order autocorrelation. In addition, with a focus on autocorrelation up to three lags, zinc
and corn receive special attention. As far as the least relevant commodities are concerned, Kansas
wheat (soybeans) is never included in the presented q2 (q4) strategies. Gold, which typically
receives significant attention in the financial industry, plays a negligible role in our strategies.
Turning to the positions entered over time, Figure 3.3 illustrates some additional features of our

strategies. In the early sample years, they often switch from a long-only to a short-only investment
with just one commodity. Because the strength of autocorrelation is time-varying, they also
frequently exit the commodity market completely. Thus, despite originating from a cross-sectional
setup, the behavior of the strategies is somewhat comparable to technical single-commodity time
series strategies (see Marshall et al., 2008) whose timing performance, however, often crucially
depends on the choice of commodity (see Han et al., 2016; Rapalias et al., 2021). The entry-
exit dynamic becomes particularly valuable between 1995 and 2010, where traditional momentum
suffered some of its heaviest losses.29 While traditional momentum is forced to invest in a balanced
long-short portfolio of several commodities, even when statistical testing indicates random walk

29Table C.3 of the appendix presents the worst losses of R1-H1 and the corresponding returns of R1-q2.
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Figure 3.3.: Strategy positions over time

(a) R1-q2 (b) R3-q2

(c) R6-q2 (d) R6-q4

This figure plots the monthly number of commodities in the long and short legs of selected memory-enhanced momentum
strategies presented in Tables 3.4 and 3.5.

behavior, our strategy only invests when there is autocorrelation evidence. Around the year 2000
this often led to a full risk-free investment (supplemented by occasional autocorrelation-indicated
bets) and thereby generated no crucial losses.
One may argue that our strategies are not sufficiently diversified (in terms of the number of

included futures contracts). However, for three reasons, this should not be a serious concern.
First, we have to realize that, especially in the early years of our sample, where the number
of commodities is limited, traditional momentum cannot be considered diversified either. Second,
diversification is apparently not the key to momentum success. Even though traditional momentum
tends to include more commodities, it produces lower returns and higher risk than our approach.
Finally, our strategy is not generally an one-asset portfolio. Especially around 2010, where the
autocorrelation of many commodities intensified, the position sizes of our strategy significantly
increased and simultaneously included long and short investments. These positions have been
quite successful. For example, crude oil (Brent and WTI), petroleum, platinum and cocoa on
average contributed more than 4% per traded month to the performance of R1-q2. With the
exception of coffee, the other commodities also provided non-negative contributions.30

30In comparison, R6-q4 is pulled down by negative means of WTI crude oil, platinum, cocoa and lean hogs.
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3.4.3. Long memory momentum

After highlighting the merits of incorporating variance ratio information into the selection process,
we now turn to the potential of Hurst coefficients which aggregate information on short- and
long-term autocorrelation. In a momentum context, we are not interested in exploiting long
memory but rather in the information the long memory measure can deliver on the level of short-
term autocorrelation.31 Tables 3.6 and 3.7 report basic return characteristics and multi-factor
regression results for the ‘long memory’ strategy outlined in Section 3.3.2.4, respectively. Similar
to our presentation of short memory results, we focus on the best strategies with a 1-month holding
period.

Looking at the long-short performance, for R < 12, we have significantly positive mean returns
around 0.50% per month accompanied by Sharpe ratios around 0.05. This clearly cannot beat
the benchmark. Furthermore, the strategies earn comparably low alphas and thus cannot compete
with our short memory strategies. The reasons for this poor performance can be revealed by
studying their investment behavior. While the Hurst strategies were more convincing before 1984
and during the global finance crisis from October 2008 to April 2011, they have hardly suggested
active trades after these periods. Combined with a historically low (almost negligible) risk-free rate
in the recent decade, this crucially attenuates mean returns. Furthermore, in the active phases of
the strategies, their long and short sides have focused on only few commodities. In the long legs,
silver is most actively traded, followed by platinum, copper, corn, soybeans and several energy
indices. Consequently, natural gas, gold, most of the industry metals and agricultural indices as
well as the entire livestock sector have never been included.32 In the short legs, we observe a
similarly selective behavior.
Because no specification whatsoever can save the long memory strategies (see Section 3.4.4.1),

our results indicate that Hurst coefficients are of low economic relevance. Even though several
studies document that they can model the autocorrelation structure in commodity futures returns
(see Barkoulas et al., 1999; Coakley et al., 2016),33 their problem in investment applications might
be that they enforce a very specific behavior of the autocorrelation function. Variance ratios allow
autocorrelations at different lags to vary widely with respect to sign and magnitude. In contrast,
by working with Hurst coefficients investors assume that, for example, the sign is the same for
all lags. The latter may reach a better overall fit in the description of the short- and long-term
autocorrelation of a time series but at the cost of potentially distorting the levels of short-term
autocorrelation. While this is apparently not problematic for other assets like hedge funds (see
Clark, 2005), it appears to diminish the usefulness of Hurst coefficients in a commodity momentum
context.34 Put differently, compared to variance ratios they may be a too compact (and thus less
informative) measure.

3.4.4. Robustness

To ensure that our results are not driven by some specifics of our research design, we conduct a
variety of robustness checks. Besides general issues concerning estimation, data and transaction
costs,35 we discuss the impact of data mining and study whether popular (portfolio-based and
macroeconomic) factor variables can explain the returns of our strategies.

31This is similar to the focus of previous investment applications of the Hurst coefficient (see Section 3.1).
32Figure C.3 of the appendix illustrates the typical evolution of Hurst coefficients for selected actively traded and

untraded commodities.
33For stock markets, the evidence is rather controversial (see, for example, Willinger et al., 1999; Weron, 2002).
34A detailed analysis of this proposition is beyond the scope of our study and thus left for future research.
35For the sake of brevity, this first part of our sensitivity checks concentrates on a verbal summary of results. Details

are available upon request.
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Table 3.6.: Basic characteristics of long memory strategies

R1-Hurst R3-Hurst R6-Hurst R12-Hurst Benchmark

Long Short Long-Short Long Short Long-Short Long Short Long-Short Long Short Long-Short
Mean 0.48 -0.10 0.58 0.37 -0.10 0.47 0.41 0.00 0.41 0.23 -0.21 0.43 0.60
t-Statistics 3.73 -0.88 3.55 2.77 -0.75 2.69 3.48 0.03 2.01 1.44 -1.37 1.90 2.76
Volatility 2.79 3.17 4.16 3.27 3.34 4.61 3.20 3.33 4.56 3.16 3.03 4.41 4.35
SR 0.04 -0.15 0.05 0.00 -0.14 0.02 0.01 -0.11 0.01 -0.04 -0.19 0.01 0.05
VaR 0.03 2.68 4.80 0.00 2.50 4.80 0.00 3.44 5.44 0.00 4.10 2.52 6.39
ES 5.28 8.71 9.67 2.39 9.23 11.36 2.06 8.33 12.38 2.32 9.07 11.99 9.20
Min -17.29 -33.09 -17.29 -46.87 -33.09 -46.87 -46.87 -20.33 -46.87 -46.87 -20.33 -46.87 -21.74
Max 28.88 23.25 34.35 28.88 22.01 34.35 28.88 27.35 28.88 16.33 24.71 21.68 25.81
Pos. mths 85.37 4.81 82.41 86.85 4.26 83.89 86.30 4.81 82.96 85.93 3.70 84.26 55.48

From January 1975 to December 2019, this table presents descriptive statistics for the monthly percentage returns of long, short and long-short memory-enhanced momentum portfolios
(constructed as outlined in Section 3.3.2.4). R refers to the period used to rank the commodities. Hurst coefficients are obtained via estimator averaging. All strategies use a holding
period of 1 month. The benchmark is an equally weighted portfolio of all commodity futures. Further abbreviations are used as in Table 3.1. t-statistics are based on Newey-West
standard errors. Significant means at a 5% level are marked in bold.

Table 3.7.: Alphas and betas of long memory strategies

R1-Hurst R3-Hurst R6-Hurst R12-Hurst

Long Short Long-Short Long Short Long-Short Long Short Long-Short Long Short Long-Short
α 0.36 -0.03 0.39 0.25 -0.08 0.32 0.28 0.02 0.26 0.25 -0.23 0.48
tα 3.60 -0.24 2.51 1.26 -0.47 1.15 1.52 0.16 1.02 1.60 -1.37 1.99
σε 2.68 3.18 4.10 3.27 3.37 4.70 3.16 3.06 4.39 3.21 2.85 4.42
IR 0.13 -0.01 0.09 0.08 -0.02 0.07 0.09 0.01 0.06 0.08 -0.08 0.11
βS 0.09 0.06 0.04 0.09 0.04 0.04 0.10 0.03 0.06 0.08 0.04 0.03
tS 1.67 1.96 0.66 1.39 1.57 0.59 1.81 1.15 1.08 1.60 1.45 0.56
βB 0.03 -0.19 0.21 -0.06 -0.11 0.05 -0.06 0.02 -0.09 -0.23 -0.04 -0.19
tB 0.35 -1.38 1.30 -0.97 -0.87 0.36 -1.48 0.28 -0.95 -1.61 -0.80 -1.20
βC 0.02 0.07 -0.04 0.06 0.10 -0.03 0.07 0.08 -0.01 0.04 0.12 -0.07
tC 1.29 1.64 -1.06 1.45 2.43 -0.56 1.69 1.96 -0.22 1.40 2.51 -1.22

R2̄ 0.02 0.04 0.01 0.03 0.03 -0.00 0.03 0.02 -0.00 0.04 0.06 0.01

For the strategies of Table 3.6, this table presents estimates for the coefficients α, βS , βB and βC of a linear regression of monthly percentage strategy returns on investable stock (S&P
500 Composite Stock Market Index), bond (S&P 10-Year US Government Bond Index) and commodity (S&P Goldman Sachs Commodity Index) indices. Their dedicated t-statistics are

calculated with Newey-West adjustment. σε, IR and R2̄ refer to the idiosyncratic volatility, the information ratio and the adjusted coefficient of determination, respectively. Significant
coefficients at a 5% level are marked in bold.
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3.4.4.1. Estimation settings

We start with varying some of the settings in our short memory strategy. First, we enlarge the
estimation window for variance ratios to 128 months. This only slightly increases the performance
of R1-q2 by improving the short leg of the strategy. Second, we switch to daily and weekly data
(and also consider smoothing this data) for variance ratio estimation (as in, for example, Lo and
MacKinlay, 1988). However, no crucial impact on strategy performance can be observed. Finally,
we follow Marcjasz et al. (2018) by working with averaged estimates across different window sizes.
Again, our results turn out to be robust.
Turning to the long memory strategy, we extend the set of Hurst coefficient estimators used in

our main analysis by additionally implementing the periodogram regression method, the averaged
wavelet estimator and the detrended moving average approach of Geweke and Porter-Hudak (1983),
Simonsen et al. (1998) and Alessio et al. (2002), respectively.36 Furthermore, we follow Batten
et al. (2013) who argue that Hurst coefficient estimation can be improved by applying estimators to
filtered returns instead of raw returns.37 However, regardless of the choice of estimation procedure,
we find that the long memory strategies do not perform well. Finally, a quite important sensitivity
check deals with our heuristic decision rule. That is, we narrow and expand the interval of our main
analysis in various ways and find that, regardless of the chosen boundaries, long memory selection
does not become successful. Put differently, the lack of statistical tests for Hurst coefficients is not
a limitation because their potential decisions are captured by our robustness check.

3.4.4.2. Alternative data set

To independently test and validate the performance of our strategies, we apply them to the futures
subindices provided in the context of the Bloomberg Commodity Index (formerly the Dow Jones
UBS Commodity Index). They differ from our indices in aspects such as the underlying futures
contracts, the rollover period (6th to 10th trading day of a month instead of 5th to 9th) and data
availability (starting January 1991 instead of December 1970). We find that, in this data set,
traditional momentum barely offers significant mean returns. In comparison, our short memory
strategy shows even higher mean returns, Sharpe ratios and alphas than in our main analysis.
Consequently, our main conclusions are not driven by the choice of data set.

3.4.4.3. Transaction costs

Even though commodity futures markets are known for their low transaction costs, it has become
standard in the momentum literature to discuss their impact on strategy returns. The basis of
such evaluations typically is the general futures market documentation of Locke and Venkatesh
(1997), largely confirmed for commodity futures by Ferguson and Mann (2001) and Marshall et al.
(2012), according to which trading costs typically range from 0.0004% to 0.033%.
The study of Fuertes et al. (2010) can be used to provide a particularly interesting conservative

proxy for transaction costs. Across their bivariate momentum strategies based on 37 commodity
futures, they compute the maximum average annual portfolio turnover (which yields 10.38) and,
assuming costs of 0.033% per trade, estimate maximum costs of just 0.69% per annum. Given
that our leading bivariate strategies trade less frequently (see Figure 3.3) and earn monthly returns
above 1% or even 2% (see Table 3.4), transaction costs can not compensate for their outstanding
performance.38

36We also consider a modification of DFA using s = 2 (as in Peng et al., 1994; Barunik and Kristoufek, 2010).
37They estimate the Hurst coefficient based on the residuals of AR(1), AR(2) and ARMA(2,1) models.
38Considering brokerage fees in magnitudes suggested by Paschke et al. (2020) does not change this picture.
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3.4. Empirical results

3.4.4.4. Data mining

To rule out data mining biases, we conduct the White (2000) reality check (RC) and the Hansen
(2005) test for superior predictive ability (SPA). Both tests evaluate the null hypothesis that even
the best alternative within a set of given active trading strategies does not outperform a given
benchmark in terms of expected losses.39 In contrast to RC, SPA involves a studentized test
statistic and a sample-dependent distribution under the null hypothesis. These features make the
latter more powerful and less sensitive to the inclusion of poor and irrelevant alternatives.
Similar Fuertes et al. (2010) and Bianchi et al. (2015), we use the equally weighted commodity

portfolio of our main analysis as the benchmark and define the set of alternative strategies to
contain our traditional momentum and short memory strategies.40 To ensure robustness, we
implement the tests using various (circular and stationary) bootstrap methods and block lengths,
and report their consistent p-values in Table 3.8.41 All tests confirm that the superiority of our
outstanding active strategy is not due to data mining.

Table 3.8.: Data mining tests

Circular Stationary

b = 0.5 b = 0.2 b = 0.1 b = 0.05 b = 0.5 b = 0.2 b = 0.1 b = 0.05

Long
RC 0.006 0.011 0.011 0.008 0.006 0.006 0.008 0.009
SPA 0.004 0.008 0.009 0.010 0.003 0.007 0.008 0.007
Long-Short
RC 0.001 0.002 0.003 0.003 0.001 0.002 0.002 0.002
SPA 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000

This table reports the consistent p-values of the White (2000) reality check (RC) and the Hansen (2005) superior predictive
ability (SPA) test. Both procedures are implemented with either circular (see Politis and Romano, 1992) or stationary (see
Politis and Romano, 1994) bootstrapping. 1

b
∈ {2, 5, 10, 20} describes the fixed block sizes (expected values of the geometrically

distributed block lengths) in the former (latter) bootstrapping scheme. For each test, the bootstrap is replicated 10,000 times.
The benchmark strategy and the alternative (long and long-short) strategies are collected from Tables 3.2 and 3.4. Significance
at a 5% level is marked in bold.

3.4.4.5. Factor exposures

To study whether systematic or macroeconomic risk factors may explain the variation of our
strategy returns, we collect factor data and perform several multivariate regressions. While, in
the stock momentum literature, the Fama and French (1993, 2015) three- and five-factor models
have become the de facto standards (see Chen et al., 2021), there is currently no widely accepted
model for use in commodity research. Fuertes et al. (2010) use passive market indices, exchange
rates and inflation as explanatory variables. Moskowitz et al. (2012) opt for passive indices and
the classic (stock market) size, value and momentum factors. Bianchi et al. (2015) extend this
variable universe by the TED spread (as a measure of global funding liquidity), the VIX volatility
index and investor sentiment. Finally, Paschke et al. (2020) have a supplementary look at selected
macroeconomic variables (such as industrial production, term spreads and default spreads) and
commodity-specific factor portfolios (based on, for example, carry strategies).
We suggest using a model with factor portfolio returns from a particularly interesting source. In

a recent study, Ilmanen et al. (2021) construct a data set spanning over a century and containing
the most prominent factors that have a strong in- and out-of-sample support in many markets,
are commonly employed by quantitative investors and are at the center of most academic and

39As in White (2000) and Bianchi et al. (2015), we express losses via negative strategy returns. Some authors, such
as Fuertes et al. (2010), apply different loss functions.

40Including the long memory strategies does not qualitatively change the test outcomes.
41For a comparison of the pros and cons of the bootstrap methods, see Lahiri (1999).

72
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practitioner asset pricing research. Besides representative long-only portfolios for the entire stock,
bond and commodity market, they supply the returns of long-short portfolios implementing value,
momentum, carry and defensive strategies within these markets.42 In our context, this selection
of factors has the advantages that it captures the most relevant asset classes and includes both
passive and active factors. Furthermore, with regard to future research, the factors are freely
available and constructed based on a consistent methodology.43

Table 3.9 reports the coefficient estimates (and t-statistics) of regressions of the long and long-
short returns of R1-q2 on the returns the aforementioned factor portfolios.44 We find that, while
the long-only strategy returns load positively with the overall commodity market, the long-short
returns do not load significantly with any of the factors. Thus, supplemented by the observation
of a negligibly small coefficient of determination, our strategies cannot be explained by prominent
systematic risk factors.
Because Ilmanen et al. (2021) use a rich set of macroeconomic variables to study the character-

istics of their factors, they also guide us in our selection of non-tradeable factors.45 Specifically,
we use the Pastor and Stambaugh (2003) aggregate stock market liquidity measure, the Baker and
Wurgler (2006) investor sentiment index, the CBOE volatility index, GDP growth, CPI inflation,
a geopolitical risk index, the ICE US dollar index as well as the term spread (difference between
the 30-year US TBond yield and the 3-month US TBill rate), default spread (yield difference be-
tween Moody’s seasoned Baa and Aaa US corporate bonds) and TED spread (3-month LIBOR
rate minus 3-month TBill rate).46

As we can see in Table 3.9, with the exception of inflation in the long case, none of the macroeco-
nomic variables is significantly linked to our strategy returns.47 Since most traditional investments
decline in value during extreme liquidity events (see Pastor and Stambaugh, 2003; Asness et al.,
2013) or are strongly driven by investor sentiment (see Jacobs, 2015), our strategy generates re-
turns ‘independent’ of the overall state of the market and the economy and appears to be largely
uninfluenced by investors’ mood.

3.5. Conclusion

We have proposed a new kind of bivariate commodity futures trading strategy exploiting significant
autocorrelation in futures returns. In contrast to other bivariate strategies brought forth in recent
research, we do not combine traditional momentum with other independently profitable strategies
(based on cross-sectional selection via, for example, term structure signals, idiosyncratic volatility
or skewness; see Fuertes et al., 2010, 2015; Fernandez-Perez et al., 2018b) but instead go back
to the roots of momentum by refining the quality of its buy and sell signals. That is, we only
enter positions in the case of significant autocorrelation. Furthermore, we allow the strategy to
dynamically adjust to the possibility of (short-term) reversal to anticipate momentum crashes.

42The term defensive relates to asset selection via market betas (as suggested by Frazzini and Pedersen, 2014).
43The data set and a detailed description of its variables can be found in the ARQ Capital Management Data

Library: https://www.aqr.com/Insights/Datasets/Century-of-Factor-Premia-Monthly.
44Ilmanen et al. (2021) do not implement a carry (defensive) strategy in stock (commodity) markets because there

are no futures on individual stocks (methodological issues regarding a reference portfolio for beta estimation).
45Note that some of the factor portfolios may also be considered non-tradeable because, for example, the stock

market factors are based on hundreds of stocks and do not consider transaction costs.
46While the majority of these variables can be obtained from Thomson Reuters Datastream, aggregate liq-

uidity, investor sentiment (incorporating information such as industrial production and unemployment) and
the geopolitical risk index are available via https://faculty.chicagobooth.edu/lubos-pastor/data, http:

//people.stern.nyu.edu/jwurgler and http://www.policyuncertainty.com/gpr.html, respectively.
47This finding does not qualitatively change when using lagged explanatory variables (as additionally considered in

Ilmanen et al., 2021) or performing univariate regressions with only the 20% most extreme realizations of the
explanatory variables (as in Bianchi et al., 2015).
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Table 3.9.: Explanatory regressions

Factor portfolios Long Long-short Macroeconomic variables Long Long-short

Stock passive 0.05 -0.09 Pastor-Stambaugh liquidity 3.15 -2.52
0.79 -1.39 0.72 -0.51

Stock value 0.02 0.01 Baker-Wurgler sentiment 0.22 1.32
0.26 0.10 0.42 1.63

Stock momentum 0.01 0.07 CBOE volatility index -0.08 -0.04
0.11 0.72 -1.56 -0.45

Stock defensive 0.05 -0.11 GDP growth 6.59 4.51
1.00 -1.24 1.60 1.10

Bond passive -0.23 0.21 CPI inflation 1.89 -1.48
-1.38 0.84 2.36 -0.96

Bond value -0.14 -0.08 Geopolitical risk index -0.00 0.01
-0.77 -0.34 -1.01 1.89

Bond momentum 0.01 0.23 ICE US dollar index 0.00 -0.02
0.06 1.32 0.06 -0.40

Bond carry 0.16 -0.30 Term spread 0.03 0.13
0.89 -1.29 0.11 0.40

Bond defensive 0.03 0.15 Default spread 2.03 2.42
0.22 0.72 1.39 1.44

Commodity passive 0.30 -0.03 TED spread -0.66 0.63
4.52 -0.45 -0.45 0.47

Commodity value 0.03 0.11
0.76 1.56

Commodity momentum -0.00 0.07
-0.08 1.19

Commodity carry -0.01 0.02
-0.15 0.42

Constant 1.28 2.05 Constant 1.14 1.54
5.54 6.07 0.42 0.32

R2̄ 0.08 0.01 R2̄ 0.02 0.00

This table reports the coefficient estimates (and below them the corresponding Newey-West-adjusted t-statistics) of linear
regressions explaining the long and long-short returns of our memory-enhanced R1-q2 strategy with a set of factor portfolio
returns (left panel) and a set of macroeconomic variables (right panel). The choice of variables is guided by Ilmanen et al.
(2021). While the left panel is based on data from August 1973 to December 2019, issues with data availability in the right

panel restrict the regression sample to the period from January 1990 to December 2019. R2̄ is the adjusted coefficient of
determination. Significance at a 5% level is marked in bold.

When capturing short-term autocorrelation via variance ratio statistics, we can show that our
strategy significantly outperforms traditional momentum in terms of reward (mean returns and
alphas) and risk (volatility, value-at-risk, expected shortfall). It has the appealing features of being
highly liquid and inexpensive to implement. In addition, it does not require information other than
the returns of commodity futures and is not significantly related to a rich set of systematic risk
factors and macroeconomic variables. This and its robustness to specification changes, data set
variations and other typical influences, make the strategy a particularly valuable addition to the
toolkit of quantitative commodity market investors.
Our results offer plenty of scope for future research. For example, because there is empirical

evidence that industry momentum in stock markets is significantly driven by return autocorrelation
(see Pan et al., 2004), it may be instructive to transfer our strategy to stock markets or apply
it across asset classes (see Asness et al., 2013). To preserve the liquid nature of our strategy, we
suggest doing this in a small stock universe such as the Dow Jones Industrial Average (or the S&P
500), whose constituents have been shown to exhibit exploitable autocorrelation and momentum
patterns (see Fama, 1965; Figelman, 2007; Taylor, 2014). Furthermore, analyzing whether variance
ratio information can stimulate new forms of momentum (such as, for example, curve momentum;
see Paschke et al., 2020) could also be a fruitful endeavor.
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Summary

In this thesis, we explored research questions concerning risk and return of passive and active
investment strategies in commodity futures markets. To analyze the former, we concentrate on
the risk measure ES; for the latter we deal with momentum-based investment strategies. The
thesis consists of three parts, whose main results can be summarized as follows.

First, we make a structured comparison of non-parametric ES estimators, further parametric
benchmarks and several combinations of different ES estimators with respect to common error or
risk measures and performance profiles in a multidimensional simulation setup (that is naturally
not limited to the commodity sector). Although we find that no estimator constantly outperforms
all others, the variety of our presented results allows identification of the most suitable estimator
situational for certain distributional settings, sample sizes and confidence levels in particular. Risk
managers just have to decide whether they search for estimators with the lowest averaged error,
fewest variability characteristics or best general performance. They can then consult our study to
find the most appropriate ES estimator, depending on their market situation.
Second, we study the behavior of historic risk levels and time-variable risk predictions due to

several appropriate ES estimators in commodity futures markets. Relying on backtest procedures
of Du and Escanciano (2017), we detected that investment risks in terms of ES tend to be highest
in energy, lowest in livestock sector and, on average, can be estimated best-possible with a non-
parametric kernel density approach. In total, we find that ES predictions remain insufficient when
markets are in turmoil (and accurate risk forecasts are needed most) and therefore, advise risk
managers against the use of the established ES estimators for active risk prediction.
Finally, we investigate the performance of traditional cross-sectional momentum and some new

memory-enhanced strategies in commodity futures markets. Our memory-enhancements allow us
to pause or reverse momentum strategies when turbulent market phases are detected by measures
of autocorrelation. We see that incorporation of Hurst coefficients, which belong to the measures
of long memory, cannot improve the traditional investment strategies. However, introducing a
measure of short memory, variance ratios, significantly improves the performance of traditional
momentum strategies in several terms of reward and risk. Furthermore, the strategy returns are
not significantly related to several known market indices, risk factors or macroeconomic variables
and the results are also robust to a variety of typical influences such as specification or data changes,
transaction costs and data mining. Thus, our enhanced momentum strategies that capture short-
term autocorrelation via variance ratios can be a lucrative tool for investors in commodity markets.
This work could be extended in several ways. First, future researchers may further relate our

general simulation-based evaluation of ES estimators to a potential application within the com-
modity context by considering additional parametric approaches as g-and-h settings, Johnson’s
system or distribution mixtures within the simulated framework. Additionally, researchers may
look for advanced backtest enhancements that are not limited to ES estimation with invertible dis-
tribution functions and therefore, enable evaluation of the performance of general non-parametric
estimators, as historic variants, in the commodity futures context. Besides, further modifications
or replacements of the established AR-GARCH time series setting of ES estimators in commodity
futures markets might be fruitful. It also might be instructive to see how well our results hold for
other sectors, like stock markets – especially, whether the active investment strategies can preserve
their strong performance.
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A. Supplementary results for Chapter 1

A.1. Additional tables

Table A.1.: MPE of ES estimates for γ = 95% and varied n

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

n = 21
(a) -21.69 -20.25 -24.79 -22.61 -25.28 -25.28 -24.55 -33.25 -11.56 78.75 -13.05
(b) -20.73 -23.21 -27.30 -25.35 -27.83 -27.83 -27.28 -37.38 -12.19 66.75 -16.24
(c) 28.15 -12.43 -15.70 -12.62 -16.02 -16.02 -15.74 -21.29 -8.28 88.44 -0.15
(d) -1.08 -20.16 -23.82 -21.52 -24.29 -24.29 -23.86 -32.63 -10.82 70.69 -11.18
(e) -1.20 -15.37 -19.35 -16.67 -19.76 -19.76 -19.50 -26.23 -9.46 84.93 -6.24
(f) -3.31 -18.28 -22.19 -19.75 -22.64 -22.64 -22.19 -30.16 -10.46 77.91 -9.37
n = 126
(a) -20.15 8.06 -4.79 -1.61 -4.96 -5.86 -4.88 -12.84 -2.00 1.25 -4.78
(b) -18.03 -4.79 -5.43 -2.56 -5.65 -6.72 -5.47 -16.69 -2.92 -2.07 -7.03
(c) 30.49 -1.75 -3.03 0.76 -3.14 -3.69 -2.98 -7.67 -1.70 10.44 1.77
(d) 2.03 0.29 -4.84 -1.72 -5.02 -5.95 -4.69 -14.24 -2.55 -1.10 -3.78
(e) -0.20 -1.00 -3.74 -0.15 -3.87 -4.53 -3.72 -8.95 -1.79 6.17 -2.18
(f) -1.17 0.16 -4.37 -1.06 -4.53 -5.35 -4.35 -12.08 -2.19 2.94 -3.20
n = 252
(a) -20.07 -0.32 -1.95 1.37 -2.05 -3.17 -7.12 -11.48 -1.27 -1.26 -4.73
(b) -17.76 0.43 -2.17 0.83 -2.30 -3.66 -10.27 -15.86 -2.58 -3.85 -5.72
(c) 30.70 -6.24 -1.23 2.66 -1.29 -1.96 -4.19 -6.79 -1.26 4.88 1.53
(d) 2.44 -0.42 -1.83 1.41 -1.94 -3.12 -8.76 -13.56 -2.13 -2.27 -3.02
(e) -0.09 -0.33 -1.46 2.25 -1.53 -2.34 -4.66 -7.69 -1.04 2.70 -1.42
(f) -0.96 -1.38 -1.73 1.70 -1.82 -2.85 -7.00 -11.08 -1.66 0.04 -2.67
n = 504
(a) -19.97 -0.12 -1.38 -0.82 -1.43 -1.59 -10.61 -12.06 -0.62 -1.27 -4.99
(b) -17.47 0.25 -1.58 -1.08 -1.64 -1.84 -15.05 -16.82 -2.57 -3.66 -6.15
(c) 30.86 -0.02 -0.87 -0.22 -0.90 -1.00 -6.17 -7.03 -1.20 2.86 1.63
(d) 2.85 0.19 -1.32 -0.78 -1.38 -1.54 -12.87 -14.40 -2.39 -2.24 -3.39
(e) -0.04 -0.07 -1.04 -0.41 -1.07 -1.19 -6.86 -7.89 -0.51 1.31 -1.78
(f) -0.75 0.05 -1.24 -0.66 -1.28 -1.43 -10.31 -11.64 -1.46 -0.60 -2.93
n = 1008
(a) -19.94 -0.23 -0.58 -0.01 -0.60 -0.79 -10.93 -11.76 -0.49 -1.01 -4.63
(b) -17.39 -0.21 -0.69 -0.18 -0.73 -0.96 -15.66 -16.66 -3.50 -3.67 -5.97
(c) 30.91 -0.06 -0.37 0.29 -0.38 -0.50 -6.34 -6.83 -2.07 1.69 1.63
(d) 2.94 -0.13 -0.55 0.00 -0.58 -0.78 -13.37 -14.23 -3.61 -1.91 -3.22
(e) -0.01 -0.16 -0.44 0.19 -0.46 -0.60 -7.00 -7.59 -0.39 0.80 -1.57
(f) -0.70 -0.16 -0.53 0.06 -0.55 -0.73 -10.66 -11.41 -2.01 -0.82 -2.75

For a confidence level of γ = 95% and varied sample sizes n, this table presents the mean percentage error (MPE) of the
expected shortfall (ES) estimates produced by our parametric and non-parametric techniques. Simulation settings and methods
are specified and abbreviated as in Table 1.1.
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Table A.2.: MPE of ES estimates for γ = 97.5% and varied n

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

n = 21
(a) -25.81 -31.89 -24.97 25.92 -25.28 -31.31 -24.92 -31.61 -24.92 280.75 8.60
(b) -28.63 -38.20 -28.90 15.36 -29.24 -35.95 -28.52 -36.00 -29.86 227.22 -1.27
(c) 30.20 -20.54 -16.35 50.92 -16.55 -20.65 -16.38 -20.89 -16.37 307.07 26.05
(d) -8.35 -33.99 -25.77 24.39 -26.07 -32.09 -25.54 -32.23 -26.18 275.33 8.95
(e) -0.76 -23.95 -18.96 42.73 -19.20 -24.04 -19.25 -24.59 -18.84 335.76 22.89
(f) -6.67 -29.71 -22.99 31.86 -23.27 -28.81 -22.92 -29.06 -23.23 285.74 13.06
n = 126
(a) -24.38 -3.42 -8.30 -5.07 -8.42 -9.02 -8.37 -15.96 -2.64 30.22 -5.54
(b) -26.18 -8.70 -10.12 -7.26 -10.27 -11.01 -10.09 -20.90 -4.25 28.22 -8.06
(c) 32.56 -0.06 -5.33 -1.54 -5.41 -5.78 -5.29 -9.97 -1.83 22.38 1.97
(d) -5.35 5.29 -9.11 -6.03 -9.24 -9.89 -9.01 -18.44 -3.70 18.00 -4.75
(e) -0.21 -2.06 -6.14 -2.49 -6.23 -6.66 -6.12 -11.09 -2.02 22.92 -2.01
(f) -4.71 -1.79 -7.80 -4.48 -7.91 -8.47 -7.78 -15.27 -2.89 24.35 -3.68
n = 252
(a) -24.27 -1.12 -4.10 -0.67 -4.18 -4.99 -10.54 -14.53 -1.70 3.62 -6.25
(b) -25.89 -0.13 -4.98 -1.92 -5.07 -6.13 -15.02 -20.19 -3.73 0.99 -8.21
(c) 32.77 -0.99 -2.57 1.36 -2.61 -3.13 -6.53 -9.01 -1.54 8.97 1.67
(d) -5.01 -1.06 -4.52 -1.25 -4.60 -5.53 -13.21 -17.77 -3.61 -0.49 -5.71
(e) -0.09 -1.38 -2.93 0.90 -2.99 -3.56 -6.90 -9.66 -1.22 7.34 -2.05
(f) -4.50 -0.94 -3.82 -0.32 -3.89 -4.67 -10.44 -14.23 -2.36 4.09 -4.11
n = 504
(a) -24.18 -0.69 -1.59 1.97 -1.63 -2.61 -9.08 -12.00 -1.07 -1.08 -5.20
(b) -25.64 -0.01 -1.79 1.39 -1.85 -3.14 -13.55 -17.34 -4.32 -4.66 -7.09
(c) 32.91 -0.33 -1.00 3.01 -1.03 -1.63 -5.53 -7.35 -2.29 4.76 2.15
(d) -4.61 -0.17 -1.62 1.75 -1.67 -2.80 -11.88 -15.21 -4.89 -2.99 -4.41
(e) -0.04 -0.56 -1.15 2.78 -1.18 -1.85 -5.65 -7.67 -0.82 3.52 -1.26
(f) -4.31 -0.35 -1.43 2.18 -1.47 -2.41 -9.14 -11.91 -2.68 -0.09 -3.16
n = 1008
(a) -24.17 -0.43 -1.19 -0.59 -1.21 -1.36 -10.23 -11.29 -0.74 -1.20 -5.24
(b) -25.57 -0.30 -1.42 -0.89 -1.45 -1.66 -15.45 -16.81 -5.84 -4.93 -7.43
(c) 32.94 -0.12 -0.75 -0.08 -0.77 -0.86 -6.24 -6.90 -4.71 2.22 1.47
(d) -4.53 -0.33 -1.30 -0.74 -1.33 -1.51 -13.50 -14.70 -7.67 -2.91 -4.85
(e) -0.02 -0.30 -0.83 -0.17 -0.84 -0.95 -6.36 -7.09 -0.86 1.73 -1.57
(f) -4.27 -0.30 -1.10 -0.49 -1.12 -1.27 -10.36 -11.36 -3.96 -1.02 -3.52

For a confidence level of γ = 97.5% and varied sample sizes n, this table presents the mean percentage error (MPE) of the
expected shortfall (ES) estimates produced by our parametric and non-parametric techniques. Simulation settings and methods
are specified and abbreviated as in Table 1.1.
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Table A.3.: MPE of ES estimates for γ = 99% and varied n

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

n = 21
(a) -30.58 -51.35 -38.44 3.27 -38.54 -40.53 -38.35 -40.54 -32.19 668.84 36.16
(b) -38.12 -62.97 -45.67 -12.04 -45.77 -47.84 -45.64 -47.91 -41.07 517.32 13.03
(c) 30.71 -34.22 -26.26 33.08 -26.33 -27.77 -26.28 -27.87 -19.84 770.93 64.62
(d) -18.15 -57.09 -41.77 -2.54 -41.86 -43.76 -41.56 -43.66 -36.44 621.55 29.47
(e) -1.22 -38.32 -28.99 24.84 -29.08 -30.80 -29.20 -31.08 -22.15 842.28 65.63
(f) -11.47 -48.79 -36.23 9.32 -36.32 -38.14 -36.21 -38.21 -30.34 685.80 41.81
n = 126
(a) -29.33 16.11 -13.41 0.39 -13.48 -15.12 -13.36 -21.02 -6.05 312.93 21.77
(b) -36.13 -13.64 -17.34 -5.54 -17.42 -19.55 -17.31 -27.92 -9.97 301.37 13.66
(c) 33.19 0.89 -8.91 7.19 -8.95 -10.04 -8.87 -13.92 -2.84 121.15 10.89
(d) -15.58 18.44 -15.87 -3.23 -15.95 -17.85 -15.81 -25.28 -8.61 281.70 18.20
(e) -0.21 -2.18 -9.40 6.42 -9.45 -10.61 -9.40 -14.55 -3.53 193.10 14.02
(f) -9.61 3.92 -12.99 1.05 -13.05 -14.63 -12.95 -20.54 -6.20 242.00 15.83
n = 252
(a) -29.18 -2.48 -6.39 8.84 -6.44 -8.96 -6.47 -15.62 -3.90 157.24 8.66
(b) -35.88 1.07 -8.36 4.94 -8.43 -11.89 -8.37 -21.90 -8.79 182.20 8.46
(c) 33.41 -10.37 -4.24 12.84 -4.27 -5.93 -4.26 -10.20 -3.53 34.03 3.75
(d) -15.19 0.03 -7.62 6.39 -7.68 -10.80 -7.48 -19.71 -8.43 142.40 7.19
(e) -0.09 -3.03 -4.42 12.56 -4.45 -6.15 -4.43 -10.24 -2.67 57.32 3.44
(f) -9.39 -2.96 -6.21 9.11 -6.25 -8.75 -6.20 -15.53 -5.46 114.60 6.43
n = 504
(a) -29.09 -1.75 -4.91 -4.31 -4.94 -5.02 -10.92 -13.52 0.78 25.20 -4.85
(b) -35.65 -0.84 -6.61 -6.09 -6.65 -6.77 -16.49 -20.13 -3.79 38.93 -6.41
(c) 33.59 -1.33 -3.24 -2.58 -3.26 -3.32 -7.07 -8.76 -4.23 11.93 1.17
(d) -14.95 -1.20 -6.03 -5.48 -6.06 -6.17 -14.82 -18.10 -4.37 15.91 -6.13
(e) -0.04 -1.58 -3.33 -2.67 -3.35 -3.41 -6.84 -8.53 -0.15 11.98 -1.79
(f) -9.23 -1.34 -4.82 -4.23 -4.85 -4.94 -11.23 -13.81 -2.35 20.79 -3.49
n = 1008
(a) -29.10 -0.99 -2.57 -1.96 -2.59 -2.71 -9.50 -11.20 -0.80 0.68 -6.07
(b) -35.59 -0.83 -3.42 -2.87 -3.44 -3.60 -15.10 -17.50 -7.06 -1.04 -9.05
(c) 33.63 -0.63 -1.68 -1.01 -1.69 -1.77 -6.10 -7.21 -12.12 4.40 0.58
(d) -14.85 -0.99 -3.10 -2.53 -3.12 -3.27 -13.51 -15.68 -7.08 -2.84 -6.70
(e) -0.02 -0.77 -1.71 -1.03 -1.72 -1.80 -5.73 -6.83 -2.87 4.34 -1.81
(f) -9.19 -0.84 -2.50 -1.88 -2.51 -2.63 -9.99 -11.68 -5.99 1.11 -4.47

For a confidence level of γ = 99% and varied sample sizes n, this table presents the mean percentage error (MPE) of the
expected shortfall (ES) estimates produced by our parametric and non-parametric techniques. Simulation settings and methods
are specified and abbreviated as in Table 1.1.
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A.1. Additional tables

Table A.4.: MAPE and RSD of ES estimates for γ = 95% and varied n

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

MAPE, n = 21
(a) 26.21 32.39 31.18 30.05 31.37 31.37 31.08 35.84 30.42 93.52 37.34
(b) 28.58 39.22 37.07 36.02 37.22 37.22 37.12 40.97 37.98 86.70 41.81
(c) 29.83 19.73 19.47 17.78 19.61 19.61 19.42 22.76 19.29 90.55 27.81
(d) 20.43 33.97 32.13 30.84 32.27 32.27 32.20 35.73 33.18 83.57 36.66
(e) 15.14 23.52 23.41 22.01 23.60 23.60 23.44 27.90 22.09 92.03 29.67
(f) 24.04 29.77 28.65 27.34 28.81 28.81 28.65 32.64 28.59 89.27 34.66
MAPE, n = 126
(a) 20.36 30.43 12.66 12.22 12.68 12.80 12.63 15.42 12.66 19.37 16.12
(b) 19.90 46.33 16.99 16.44 16.99 17.05 17.09 19.74 16.76 21.74 20.90
(c) 30.49 11.85 7.55 7.16 7.56 7.65 7.53 9.25 7.68 21.71 11.84
(d) 9.90 40.57 14.54 13.94 14.55 14.61 14.58 16.90 14.73 20.20 17.45
(e) 6.12 11.74 8.72 8.34 8.74 8.87 8.67 10.85 8.65 19.13 9.98
(f) 17.35 28.18 12.09 11.62 12.10 12.20 12.10 14.43 12.10 20.43 15.26
MAPE, n = 252
(a) 20.09 9.22 8.97 8.95 8.97 9.06 10.24 12.76 8.99 12.54 10.98
(b) 18.64 15.72 12.31 12.11 12.30 12.33 13.66 17.03 11.91 14.87 14.09
(c) 30.70 11.28 5.30 5.64 5.30 5.37 6.05 7.55 5.48 14.49 9.72
(d) 7.58 13.03 10.58 10.40 10.57 10.6 11.70 14.59 10.67 14.56 11.43
(e) 4.32 6.02 6.05 6.31 6.06 6.15 6.93 8.68 6.08 12.91 6.95
(f) 16.27 11.05 8.64 8.68 8.64 8.70 9.72 12.12 8.63 13.87 10.63
MAPE, n = 504
(a) 19.97 6.29 6.32 6.26 6.32 6.33 11.04 12.31 6.31 8.87 9.00
(b) 17.90 9.12 8.83 8.77 8.84 8.84 15.37 16.99 8.51 10.81 11.40
(c) 30.86 3.71 3.74 3.68 3.74 3.75 6.46 7.21 4.00 10.41 7.76
(d) 5.89 7.75 7.58 7.51 7.58 7.58 13.16 14.56 7.73 10.59 8.99
(e) 3.04 4.22 4.28 4.23 4.29 4.30 7.28 8.15 4.28 9.08 5.32
(f) 15.53 6.22 6.15 6.09 6.15 6.16 10.66 11.84 6.17 9.95 8.49
MAPE, n = 1008
(a) 19.94 4.46 4.48 4.47 4.48 4.49 10.99 11.79 4.47 6.38 7.59
(b) 17.58 6.33 6.29 6.26 6.29 6.30 15.68 16.67 6.41 8.07 9.59
(c) 30.91 2.63 2.65 2.64 2.65 2.65 6.37 6.85 3.37 7.21 6.79
(d) 4.62 5.40 5.38 5.35 5.38 5.38 13.39 14.24 6.09 7.93 7.32
(e) 2.15 2.98 3.02 3.01 3.02 3.03 7.07 7.63 3.03 6.55 4.15
(f) 15.04 4.36 4.36 4.35 4.36 4.37 10.7 11.44 4.67 7.23 7.09

RSD, n = 21
(a) 28.12 42.04 35.52 35.26 35.42 35.42 35.59 34.79 40.72 64.79 26.42
(b) 34.84 55.17 46.95 46.34 46.73 46.73 46.69 41.28 56.08 69.91 32.92
(c) 18.12 23.65 20.08 19.86 20.00 20.00 19.99 19.25 24.37 58.13 16.67
(d) 28.69 45.82 38.49 37.91 38.28 38.28 38.74 33.78 48.06 69.11 27.57
(e) 19.15 28.87 25.02 24.88 24.97 24.97 24.97 25.31 28.06 61.20 24.11
(f) 25.78 39.11 33.21 32.85 33.08 33.08 33.20 30.88 39.46 64.63 25.54
RSD, n = 126
(a) 11.69 1668.37 15.66 15.50 15.63 15.52 15.61 14.93 16.06 32.36 189.73
(b) 16.25 1056.80 21.92 21.58 21.87 21.64 22.21 18.80 21.55 33.58 109.25
(c) 7.60 268.86 9.11 8.99 9.09 9.01 9.12 8.60 9.61 44.69 27.07
(d) 14.22 865.01 18.65 18.32 18.60 18.38 18.65 15.81 19.11 32.84 91.09
(e) 7.67 195.68 10.55 10.47 10.53 10.48 10.50 10.49 10.83 35.85 21.68
(f) 11.49 810.94 15.18 14.97 15.15 15.01 15.22 13.73 15.43 35.86 87.76
RSD, n = 252
(a) 8.25 26.11 11.23 11.11 11.22 11.12 10.95 10.78 11.31 21.16 8.55
(b) 12.23 153.64 15.86 15.61 15.84 15.62 13.97 13.24 15.04 21.85 19.67
(c) 5.39 1164.05 6.58 6.49 6.57 6.50 6.34 6.17 6.83 36.50 107.61
(d) 10.62 192.95 13.53 13.30 13.52 13.31 11.84 11.18 13.46 25.31 21.88
(e) 5.41 7.58 7.51 7.45 7.51 7.46 7.50 7.49 7.59 28.73 6.48
(f) 8.38 308.87 10.94 10.79 10.93 10.8 10.12 9.77 10.85 26.71 32.84
RSD, n = 504
(a) 5.81 7.93 7.89 7.88 7.89 7.88 7.59 7.57 7.93 16.08 5.78
(b) 9.42 13.22 11.27 11.24 11.27 11.24 9.37 9.25 10.51 16.39 8.00
(c) 3.83 4.68 4.64 4.63 4.64 4.63 4.40 4.37 4.93 31.66 4.44
(d) 8.11 10.22 9.63 9.60 9.62 9.60 7.94 7.82 9.52 19.97 6.79
(e) 3.81 5.29 5.30 5.30 5.30 5.30 5.36 5.36 5.36 23.62 4.77
(f) 6.20 8.27 7.75 7.73 7.74 7.73 6.93 6.87 7.65 21.54 5.95
RSD, n = 1008
(a) 4.12 5.60 5.62 5.61 5.61 5.61 5.40 5.39 5.61 12.93 4.16
(b) 6.79 8.03 7.98 7.96 7.98 7.96 6.60 6.55 7.34 12.86 5.62
(c) 2.71 3.30 3.30 3.30 3.30 3.30 3.10 3.09 3.71 26.22 3.40
(d) 5.94 6.83 6.81 6.79 6.81 6.79 5.56 5.52 6.79 16.71 4.86
(e) 2.70 3.74 3.77 3.76 3.77 3.76 3.80 3.80 3.79 19.57 3.55
(f) 4.45 5.50 5.50 5.48 5.50 5.48 4.89 4.87 5.45 17.66 4.32

For the confidence level γ = 95%, this table extends the results of Table 1.4 to other sample sizes n.
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A.1. Additional tables

Table A.5.: MAPE and RSD of ES estimates for γ = 99% and varied n

ND POT H H1 H2 H3 J1 J2 K1 K2 MV

MAPE, n = 21
(a) 31.96 53.73 41.57 28.39 41.62 42.78 41.54 42.80 37.70 673.48 103.56
(b) 40.03 66.13 50.70 32.90 50.75 51.73 50.73 51.80 47.08 527.35 96.92
(c) 31.95 35.79 28.23 34.98 28.27 29.17 28.20 29.20 24.47 771.07 104.13
(d) 24.81 60.06 46.33 27.53 46.37 47.29 46.22 47.23 42.82 624.92 101.36
(e) 14.17 39.84 30.87 31.69 30.92 32.04 31.03 32.27 26.82 842.62 111.23
(f) 28.58 51.11 39.54 31.10 39.59 40.60 39.54 40.66 35.78 689.44 96.13
MAPE, n = 126
(a) 29.34 74.35 19.64 16.06 19.65 20.08 19.53 22.94 19.19 324.81 56.56
(b) 36.42 137.72 28.11 23.61 28.12 28.41 28.07 31.05 28.14 319.16 68.88
(c) 33.20 35.53 12.82 11.50 12.83 13.14 12.83 15.16 12.75 125.95 28.57
(d) 17.32 118.10 25.23 20.54 25.24 25.53 25.29 28.06 25.97 297.59 60.89
(e) 5.71 26.54 12.90 11.86 12.92 13.33 12.86 15.72 12.14 200.64 32.46
(f) 24.40 78.45 19.74 16.71 19.75 20.10 19.72 22.59 19.64 253.55 48.13
MAPE, n = 252
(a) 29.19 15.94 14.01 14.70 14.02 14.36 14.06 17.38 14.05 176.30 32.40
(b) 35.99 30.31 21.29 19.58 21.29 21.40 21.21 24.46 21.39 207.67 42.46
(c) 33.41 17.52 9.08 13.72 9.08 9.34 9.10 11.36 10.00 46.13 16.87
(d) 16.14 25.80 19.21 17.69 19.21 19.34 19.17 22.04 20.88 166.85 34.63
(e) 4.03 9.09 8.82 13.69 8.82 9.19 8.78 11.40 8.71 70.83 15.34
(f) 23.75 19.73 14.48 15.88 14.48 14.73 14.46 17.33 15.01 133.55 27.66
MAPE, n = 504
(a) 29.09 10.35 10.16 9.97 10.16 10.18 12.59 14.40 10.95 43.01 16.09
(b) 35.73 17.05 15.81 15.63 15.81 15.82 18.69 21.17 15.84 64.76 23.63
(c) 33.59 6.59 6.60 6.38 6.60 6.61 8.17 9.36 9.70 25.58 11.92
(d) 15.41 15.02 14.15 13.96 14.15 14.16 16.82 19.06 16.38 39.60 17.87
(e) 2.84 6.15 6.34 6.13 6.34 6.35 8.00 9.19 6.82 24.78 8.30
(f) 23.33 11.03 10.61 10.41 10.61 10.62 12.85 14.64 11.94 39.55 15.20
MAPE, n = 1008
(a) 29.10 7.20 7.21 7.07 7.22 7.23 10.33 11.67 8.01 14.73 10.98
(b) 35.62 11.70 11.54 11.41 11.55 11.55 16.01 17.96 12.15 21.10 16.06
(c) 33.63 4.58 4.64 4.49 4.64 4.65 6.66 7.53 13.80 16.69 10.13
(d) 15.06 10.36 10.34 10.20 10.35 10.35 14.34 16.10 12.82 16.66 12.66
(e) 2.01 4.27 4.41 4.27 4.41 4.42 6.35 7.20 6.43 15.35 5.91
(f) 23.08 7.62 7.63 7.49 7.63 7.64 10.74 12.09 10.64 16.91 10.89

RSD, n = 21
(a) 26.45 108.09 40.93 35.69 40.87 39.66 41.02 39.67 41.59 62.29 37.35
(b) 33.23 192.55 58.39 46.63 58.28 56.00 58.88 56.36 53.70 68.17 40.85
(c) 18.21 53.28 23.63 20.01 23.58 22.72 23.51 22.58 25.45 83.45 44.84
(d) 29.24 151.04 50.27 39.12 50.16 47.97 49.75 47.37 48.70 71.05 41.95
(e) 17.91 65.34 27.57 25.01 27.53 26.82 27.62 26.85 28.81 65.54 43.36
(f) 25.01 114.06 40.16 33.29 40.09 38.63 40.16 38.56 39.65 70.10 41.67
RSD, n = 126
(a) 10.89 3710.57 21.94 20.61 21.91 21.26 21.83 19.33 24.83 100.78 355.64
(b) 16.03 5120.62 35.60 32.86 35.54 34.23 35.72 28.13 38.31 92.29 391.19
(c) 7.70 1909.28 13.53 12.59 13.51 13.05 13.61 11.77 16.64 146.16 176.23
(d) 14.10 3028.81 30.91 28.42 30.87 29.66 31.10 24.42 36.04 115.69 306.32
(e) 7.17 765.50 13.61 12.93 13.60 13.25 13.53 12.64 15.15 133.51 75.70
(f) 11.18 2906.96 23.12 21.48 23.09 22.29 23.16 19.26 26.19 117.69 261.02
RSD, n = 252
(a) 7.75 71.35 17.01 15.96 16.99 16.21 17.00 14.76 17.79 128.38 32.59
(b) 11.79 339.34 28.04 25.89 28.01 26.42 27.77 21.33 27.38 114.17 45.88
(c) 5.43 2777.16 10.71 9.97 10.70 10.14 10.76 9.18 13.08 111.57 240.40
(d) 10.74 133.45 25.26 23.18 25.23 23.68 24.95 18.75 27.30 142.82 37.49
(e) 5.05 11.68 10.32 9.81 10.32 9.93 10.29 9.55 10.74 132.62 22.36
(f) 8.15 666.60 18.27 16.96 18.25 17.28 18.15 14.71 19.26 125.91 75.74
RSD, n = 504
(a) 5.47 13.20 12.03 12.00 12.02 12.01 11.12 10.80 13.76 113.33 16.96
(b) 9.20 26.88 20.10 20.03 20.09 20.05 16.23 15.33 20.24 125.19 22.56
(c) 3.88 8.27 7.66 7.64 7.66 7.64 6.97 6.72 12.64 76.09 9.73
(d) 8.16 21.57 17.70 17.64 17.69 17.66 14.39 13.55 21.16 115.71 18.39
(e) 3.56 7.63 7.31 7.29 7.30 7.29 7.12 7.02 8.67 67.30 9.31
(f) 6.06 15.51 12.96 12.92 12.95 12.93 11.17 10.69 15.29 99.52 15.39
RSD, n = 1008
(a) 3.87 9.07 8.77 8.75 8.77 8.75 8.01 7.86 10.06 47.28 7.79
(b) 6.62 15.17 14.68 14.62 14.67 14.63 11.60 11.22 14.36 66.52 11.88
(c) 2.74 5.74 5.59 5.57 5.59 5.57 5.05 4.94 13.97 63.12 7.54
(d) 6.05 13.36 13.20 13.15 13.19 13.15 10.30 9.92 15.65 46.55 9.82
(e) 2.52 5.32 5.29 5.28 5.29 5.28 5.12 5.08 7.96 50.49 6.56
(f) 4.36 9.73 9.50 9.47 9.50 9.48 8.01 7.80 12.40 54.79 8.72

For the confidence level γ = 99%, this table extends the results of Table 1.4 to other sample sizes n.
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A.2. Additional figures

A.2. Additional figures

Figure A.1.: Densities of distributional settings

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

This figure illustrates the densities of the four distributional settings (a)–(d) defined in Section 1.3.3 in comparison to the
normally distributed setting (e). The dashed line (entry on the x-axis) visualizes the value at risk (VaR) of the former (latter)
for an exemplary confidence level of γ = 97.5%.
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A.2. Additional figures

Figure A.2.: Performance profiles for γ = 97.5% and n = 21

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

(e) normally distributed (f) merger of (a)–(e)

For a confidence level of γ = 97.5% and a sample size of n = 21, this figure plots the performance profiles (defined in
Section 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on a specific distributional setting (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.
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A.2. Additional figures

Figure A.3.: Performance profiles for γ = 97.5% and n = 126

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

(e) normally distributed (f) merger of (a)–(e)

For a confidence level of γ = 97.5% and a sample size of n = 126, this figure plots the performance profiles (defined in
Section 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on a specific distributional setting (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.
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A.2. Additional figures

Figure A.4.: Performance profiles for γ = 97.5% and n = 504

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

(e) normally distributed (f) merger of (a)–(e)

For a confidence level of γ = 97.5% and a sample size of n = 504, this figure plots the performance profiles (defined in
Section 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on a specific distributional setting (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.
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A.2. Additional figures

Figure A.5.: Performance profiles for γ = 97.5% and n = 1008

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

(e) normally distributed (f) merger of (a)–(e)

For a confidence level of γ = 97.5% and a sample size of n = 1008, this figure plots the performance profiles (defined in
Section 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on a specific distributional setting (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.
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A.2. Additional figures

Figure A.6.: Performance profiles for γ = 95% and n = 252

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

(e) normally distributed (f) merger of (a)–(e)

For a confidence level of γ = 95% and a sample size of n = 252, this figure plots the performance profiles (defined in
Section 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on a specific distributional setting (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.
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A.2. Additional figures

Figure A.7.: Performance profiles for γ = 99% and n = 252

(a) positive skew, light tail (b) positive skew, fat tail

(c) negative skew, light tail (d) negative skew, fat tail

(e) normally distributed (f) merger of (a)–(e)

For a confidence level of γ = 99% and a sample size of n = 252, this figure plots the performance profiles (defined in
Section 1.3.4.2) of our expected shortfall estimators. Each subfigure concentrates on a specific distributional setting (specified
in Section 1.3.3). The estimators are abbreviated as in Table 1.1 and grouped as in Figure 1.1.
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B. Supplementary results for Chapter 2

B.1. Additional tables

Table B.1.: Estimated ES of standardized losses for α = 0.01

Hansen POT g-and-h Johnson GM KDE

S&P GSCI 3.259 3.259 3.788 2.805 3.207 3.240
Energy 3.292 3.311 3.837 2.816 3.209 3.275
Precious metals 3.775 3.711 4.677 2.858 3.973 3.754
Industry metals 3.243 3.327 3.991 2.745 3.297 3.333
Agriculture 3.074 3.045 3.562 2.710 2.991 3.074
Livestock 2.968 2.952 3.086 2.804 2.868 2.927

This table repeats the calculations of Table 2.2 for the coverage level α = 0.01 and reports the estimated ES of standardized
losses related to the S&P GSCI and its sector sub-indices. Again, the lowest ES estimates for each index are marked in italics
and the highest bold.

Table B.2.: AR(1)-GARCH(1,1) results

Parameters LB(5) LB(20)

AR α0 α1 4.168 28.033
-0.024 -0.001 (0.526) (0.109)

GARCH β0 β1 β2 9.489 26.341
0.005 0.056 0.943 (0.091) (0.155)

For the S&P GSCI and from January 10, 1983 to December 31, 2018, this table reports the QML estimated parameters of
an AR(1)-GARCH(1,1) model based on daily losses (i.e. negative daily percentage log returns). Furthermore, it presents
the Ljung-Box test statistics LB(m) for serial correlation up to m lags in the standardized and squared standardized model
residuals. p-values are given in parentheses.

Table B.3.: Mean correlations between commodity futures and stock returns

General Falling Extreme

S&P GSCI 0.175 0.083 0.002
Energy 0.164 0.078 0.002
Precious metals -0.059 -0.031 -0.002
Industry metals 0.226 0.106 0.002
Agriculture 0.147 0.069 0.001
Livestock 0.147 0.069 0.001

For the period of recession in the global financial crisis (December 2007 to June 2009), this figure presents the mean value of
the correlations presented in Figure 2.3 in general, in falling markets (i.e., when S&P 500 returns are negative) and in very
extreme market conditions (i.e., when S&P 500 returns are below their 1% quantile).
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B.2. Additional figures

B.2. Additional figures

Figure B.1.: Time-varying ES estimates, α = 0.01

(a) S&P GSCI (b) Energy

(c) Precious metals (d) Industry metals

(e) Agriculture (f) Livestock

This figure extends the results of Figure 2.2 to ES estimation for α = 0.01. That is, for our commodity futures index series,
it presents the time-varying averages of our six conditional ES estimators, the largest and smallest deviations of individual
estimators from the averages as well as US recessions and S&P 500 bear markets.
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B.2. Additional figures
Figure B.2.: Empirical vs. fitted distribution functions

(a) Full cumulative distribution functions (b) Zoom into empirical 5% tail

This figure presents the empirical cdf of the standardized residuals corresponding to the S&P GSCI AR(1)-GARCH(1,1)
model of Table B.2 and the cdfs of our fitted distribution models. While the first subfigure shows the full functions, the second
provides a zoomed-in perspective starting from the 95% quantile of the empirical cdf. Note that, in the POT method, the
fitted function concerns only the tail.

Figure B.3.: Ljung-Box test results over time

(a) LB(5) residuals (b) LB(5) squared residuals

(c) LB(20) residuals (d) LB(20) squared residuals

For the in-sample periods of our rolling windows and with a focus on the S&P GSCI, this figure presents the Ljung-Box (LB)
test statistics (5 and 20 lags) of the AR(1)-GARCH(1,1) standardized residuals and squared standardized residuals. Critical
chi-square values for a significance level of ᾱ = 0.05 are given as dashed horizontal lines.
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Figure B.4.: Backtest rejection dates

(a) S&P GSCI (b) Energy

(c) Precious metals (d) Industry metals

(e) Agriculture (f) Livestock

This figure presents the rejection dates behind the percentages of Figure 2.5. That is, a blue (black) bar reflects a date where the unconditional backtest statistic lies above (below) the
upper (lower) bound of its critical region such that the corresponding method underestimates (overestimates) the ES. Similarly, a gray bar corresponds to a rejection via the conditional
backtest.
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B.3. Extended discussion of Figure 2.2

B.3. Extended discussion of Figure 2.2

While our general discussion of Figure 2.2 looked at ES behavior in recessions and bear markets,
this appendix turns to an inspection of the individual commodity subsectors which allows us to
highlight their highs and lows and to discuss the impact of purely commodity-specific events.
Starting with Figure 2.2(b) for the energy sub-index, in 1986 and 2014/2015, we can detect the
effects of Saudi Arabia’s decision to temporarily abandon its role as a swing producer in the
oil market and to significantly increase its production levels (see Plante, 2019). The mean ES
quadrupled in these years and reached local maxima of 13.9% and 8.8%, respectively. The highest
surge in investment risk can be detected in the oil price crisis during the First Gulf War. Between
August and September 1990 (January 02-18, 1991), ES increased from 4% to more than 10% (6%
to 23.2%). However, in June 1991, the ES quickly returned to its pre-crisis level. As mentioned
above, other notable risk peaks are connected to the terrorist attacks of September 11, 2001 and
the global financial crisis of 2008.
As far as the risk of the precious metals sub-index in Figure 2.2(c) is concerned, its first peak

occurs in 1983 (a rise from 2.6% to 5.7% between January and March), after the early 1980s
recession (not covered by our sample period), when the US announced its Strategic Defensive
Initiative during the Cold War and the Israel bank stock crisis started (see Kucher and McCoskey,
2017). In contrast to the other sectors, the ES of precious metals was highly volatile in this year.
In the remaining sample, some of the clearest peaks are in March 1985; August 1990 (recession of
the early 1990s); August 1993; December 1996; September 1999; September 2001; between June
2005 and 2006 (corresponding to a crucial drop in US housing prices); 2008 (global financial crisis);
summer 2011 (US debt-ceiling crisis and bear market with dropping silver and gold prices after
large increases); and April 2013 (another US debt-ceiling crisis).1

Figure 2.2(d) is dedicated to the risk of industry metals futures. Besides a slight spike at the
beginning of 1983, indicating a industry metal price recovery after the recession of the 1980s, and
the Black Monday crash in October 1987, where the ES doubled from 3.3% to 6.6% between
October 20, 1987 and October 23, 1987, another important event influenced investment risk in
the 1980s. In February, 1989 the ES reached a local maximum of 8.4% because labor unrest in
South American mines had restricted the availability of copper (see Dumas, 1992). With respect
to other maxima, the spring of 2006 highlights some additional spikes just before the peaks of the
global financial crisis in autumn 2008. Again, jumps primarily in copper prices caused the ES to
rise from 2.4% in February to 7% in May. Interestingly, and similar to precious metals, we can
document increased risk in the industry metal sector during the US bear market and debt-ceiling
crisis in the summer of 2011, which is not evident in the energy, agriculture and livestock sectors.
In contrast to the other sectors, the ES swings of the agriculture sub-index in Figure 2.2(e) are

less clear-cut. Nonetheless, we can observe several pronounced increases. For example, between
May and July 1988, the ES rose from 1.2% to 5.8%. Furthermore, in the world food price crisis
(often presumed to be triggered by speculation; see Etienne et al., 2018), it had magnitudes up to
6% (6.8%) in March (October) 2008 and 5.2% in November 2010. In the aftermath of this crisis,
ES levels returned to values as low as 1.5% in February 2013.
As can be seen in Figure 2.2(f), the ES in the livestock sector stands out by distinctively lower

maximum risk levels and the fact that the ES values produced by our different estimators are
almost identical. This is not surprising because Table 2.1 shows that the losses of livestock futures
are close to being normally distributed and many of our estimators contain the normal distribution
as a special case. Outstanding peaks appeared around May 1986, December 1998, January 2004
(where the mean ES reaches its maximum of 3.4%), during the food price crisis in October 2008
as well as in November 2015 and October 2016. In January 2014, the ES realized its minimum of
1.1%.

1For a general discussion of US debt-ceiling crises, see Buchanan (2013).
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C. Supplementary results for Chapter 3

C.1. Additional tables

Table C.1.: Sharpe ratio significance

R1-H1 R3-H1 R6-H1 R12-H1 R1-q2 R3-q2 R3-q4 R6-q2 R6-q4 R6-q7 R12-q2 R12-q4 R12-q7 R12-q13 Benchmark

R1-H1 0.58 0.89 0.43 0.02 0.34 0.78 0.53 0.36 0.07 0.77 0.62 0.04 0.02 0.08
R3-H1 0.94 0.71 0.21 0.05 0.49 0.97 0.76 0.53 0.04 0.55 0.43 0.03 0.01 0.04
R6-H1 0.97 0.97 0.17 0.03 0.40 0.87 0.60 0.43 0.06 0.71 0.56 0.03 0.02 0.05
R12-H1 0.65 0.69 0.52 0.01 0.15 0.39 0.24 0.16 0.30 0.76 0.91 0.12 0.08 0.45
R1-q2 0.01 0.01 0.00 0.00 0.09 0.04 0.03 0.15 0.00 0.01 0.01 0.00 0.00 0.00
R3-q2 0.25 0.21 0.20 0.12 0.01 0.40 0.59 0.94 0.01 0.13 0.14 0.01 0.00 0.05
R3-q4 0.72 0.63 0.65 0.40 0.01 0.30 0.69 0.34 0.06 0.55 0.29 0.02 0.01 0.18
R6-q2 0.43 0.41 0.33 0.24 0.03 0.67 0.55 0.73 0.03 0.21 0.22 0.01 0.01 0.09
R6-q4 0.38 0.34 0.30 0.19 0.02 0.66 0.39 0.96 0.01 0.24 0.03 0.01 0.00 0.07
R6-q7 0.72 0.75 0.69 0.97 0.00 0.10 0.36 0.14 0.09 0.17 0.21 0.24 0.30 0.58
R12-q2 0.57 0.55 0.52 0.32 0.00 0.43 0.79 0.73 0.80 0.31 0.80 0.05 0.03 0.41
R12-q4 0.99 0.96 0.98 0.68 0.00 0.18 0.60 0.30 0.09 0.64 0.49 0.07 0.05 0.55
R12-q7 0.73 0.78 0.74 0.94 0.00 0.13 0.46 0.23 0.16 0.95 0.30 0.67 0.69 0.29
R12-q13 0.89 0.94 0.91 0.75 0.00 0.19 0.61 0.33 0.28 0.74 0.42 0.88 0.69 0.19
Benchmark 0.56 0.60 0.56 0.82 0.00 0.13 0.37 0.27 0.22 0.82 0.31 0.59 0.79 0.63

Extending Tables 3.2 and 3.4, this table presents the p-values of the Ledoit and Wolf (2008) bootstrap test for investigating the null hypothesis of equal Sharpe ratios. The Sharpe ratios
of long (long-short) strategies are compared pairwise in the right (left) triangle. Because varying bootstrap block sizes within {1, 3, 6, 9, 12} does not alter the rejection decision, we
present the results for a block size of 6. Bootstrapping is performed with 5,000 repetitions. Significant entries at a 5% level are marked in bold.
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C.1. Additional tables

Table C.2.: Conditional multi-factor models

R1-q2 R3-q2 R3-q4 R6-q2 R6-q4 R6-q7 R12-q2 R12-q4 R12-q7 R12-q13

Panel A: Long
Model 1 (term spread)
α1 0.12 0.02 -0.06 -0.04 -0.13 0.01 0.11 -0.18 0.01 0.10
tα1 0.70 0.14 -0.30 -0.25 -0.71 0.07 0.64 -0.93 0.06 0.46
Model 2 (term spread)
α1 0.22 0.07 0.01 0.01 -0.03 -0.00 0.03 -0.12 0.01 0.06
tα1 1.35 0.45 0.03 0.09 -0.15 -0.02 0.16 -0.70 0.07 0.34
Model 3 (term spread)
α 1.49 1.25 1.06 0.93 1.08 -0.01 0.81 0.74 -0.18 -0.09
tα 6.37 5.58 4.06 4.65 4.61 -0.05 3.56 2.97 -0.67 -0.33
σε 4.40 4.20 4.90 3.77 4.42 4.92 4.26 4.69 5.00 5.15
IR 0.34 0.30 0.22 0.25 0.24 -0.00 0.19 0.16 -0.04 -0.02
Model 1 (default spread)
α1 0.00 0.49 1.05 -0.02 0.24 0.01 -0.61 -0.68 -1.16 -0.83
tα1 0.00 0.80 1.53 -0.04 0.38 0.02 -1.02 -1.03 -1.67 -1.15
Model 2 (default spread)
α1 0.07 0.24 1.03 -0.10 0.31 -0.08 -0.62 -0.26 -1.09 -0.88
tα1 0.11 0.43 1.59 -0.20 0.52 -0.12 -1.08 -0.42 -1.65 -1.30
Model 3 (default spread)
α 1.54 1.17 0.99 0.91 1.07 0.04 0.77 0.75 -0.16 -0.06
tα 6.55 5.06 3.76 4.44 4.48 0.14 3.32 2.96 -0.59 -0.22
σε 4.41 4.32 4.93 3.83 4.46 4.91 4.32 4.72 5.00 5.14
IR 0.34 0.30 0.22 0.25 0.24 -0.00 0.19 0.16 -0.04 -0.02
Panel B: Long-short
Model 1 (term spread)
α1 0.28 0.01 -0.37 -0.04 -0.09 -0.15 0.14 -0.48 -0.44 -0.10
tα1 1.14 0.03 -1.24 -0.15 -0.33 -0.51 0.57 -1.68 -1.52 -0.36
Model 2 (term spread)
α1 0.24 -0.11 -0.28 -0.21 -0.06 -0.14 -0.15 -0.53 -0.45 -0.14
tα1 1.04 -0.52 -1.04 -0.90 -0.24 -0.53 -0.65 -2.03 -1.69 -0.55
Model 3 (term spread)
α 2.51 1.63 1.19 1.22 1.48 0.48 1.25 1.03 0.51 0.66
tα 7.71 5.24 3.07 3.67 3.99 1.23 3.85 2.73 1.35 1.78
σε 6.12 5.87 7.29 6.23 6.98 7.38 6.11 7.08 7.18 6.96
IR 0.41 0.28 0.16 0.20 0.21 0.07 0.20 0.15 0.07 0.09
Model 1 (default spread)
α1 -0.41 -0.16 -0.06 -0.60 -0.18 -0.25 -1.14 -1.25 -2.45 -1.17
tα1 -0.49 -0.20 -0.05 -0.69 -0.19 -0.25 -1.34 -1.27 -2.47 -1.21
Model 2 (default spread)
α1 0.75 0.56 0.60 0.22 0.69 0.72 -0.50 -0.32 -2.12 -0.82
tα1 0.93 0.72 0.62 0.26 0.75 0.74 -0.61 -0.34 -2.24 -0.88
Model 3 (default spread)
α 2.57 1.54 1.10 1.16 1.41 0.45 1.19 0.99 0.45 0.59
tα 8.02 4.95 2.83 3.51 3.81 1.16 3.64 2.63 1.17 1.60
σε 5.99 5.80 7.25 6.19 6.90 7.28 6.12 7.03 7.16 6.96
IR 0.41 0.28 0.16 0.20 0.21 0.07 0.20 0.15 0.07 0.09

Extending Table 3.5 and focusing on long and long-short strategies, this table presents the results of multi-factor regressions
where alphas and betas are functions of a conditioning variable Z. That is, we take into account that investment performance
and/or systematic connection to the market may be time-varying. Following Christopherson et al. (1998), we specify αt =
α0 + α1Zt−1 and βi,t = βi,0 + βi,1Zt−1 for i ∈ {S,B,C}. Model 1 allows for both time-varying alpha and betas. Model 2
(3) assumes time-varying alpha (betas) but constant betas (alpha). The term spread (i.e., the difference between the 30-year
US TBond yield and the 3-month US TBill rate) and the default spread (i.e., the yield difference between Moody’s seasoned
Baa and Aaa US corporate bonds) are used for conditioning. Limited by the availability of the conditioning variables, the
regressions are based on data from January 1986 to December 2019. The t-statistics are based on Newey-West standard errors.
Significance at a 5% level is marked in bold.
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C.2. Additional figures

Table C.3.: Worst losses of traditional momentum

R1-H1 R1-q2

07/1975 -30.79 0.48
09/2004 -28.20 13.60
08/1981 -27.16 -6.40
08/2000 -23.00 0.50
03/1976 -20.93 0.40
03/1987 -20.40 1.48
06/1999 -19.72 0.40
03/2003 -18.91 0.10
11/1978 -18.64 0.70
07/1988 -17.97 0.51
10/1974 -17.17 0.51
05/2019 -16.94 18.92
02/1983 -16.38 0.62
09/1981 -16.30 -0.54
07/1981 -15.48 0.58
07/1985 -15.47 8.10
11/2004 -15.41 17.92
02/1996 -15.06 0.39
05/2003 -14.91 0.09
02/1995 -14.89 0.40

This table reports the 20 worst losses of the traditional momentum strategy R1-H1 and contrasts them with the returns of the
memory-enhanced strategy R1-q2.

C.2. Additional figures

Figure C.1.: Traditional momentum positioning

For each month t in our sample, this figure shows the top (bottom) 20% commodities, as suggested by the return in month t,
and thus the winners (losers) that are chosen for investment in the t+ 1 long (short) leg of a R1-H1 momentum strategy.
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C.2. Additional figures

Figure C.2.: Variance ratios over time

(a) Selected commodities, q = 2 (b) Selected commodities, q = 13

(c) Crude oil (WTI), various q (d) Gold, various q

For several commodities and orders q, this figure presents the monthly evolution of variance ratios (estimated as outlined in
Section 3.3.2.1) used in our short memory momentum strategies.

Figure C.3.: Hurst coefficients over time

(a) Actively traded commodities (b) Untraded commodities

For selected commodities, this figure presents the monthly evolution of Hurst coefficients (estimated via the averaging approach
of Section 3.3.2.3) used in our long memory momentum strategies.
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