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Abstract As the architectural walls drive the number of parallel cores in multicore
systems up, it becomes harder to maintain cache coherence across all of the physical
memory and all cores. On the other hand, even given a performant cache-coherent sys-
tem, the unavoidable non-uniform memory (NUMA) and non-uniform cache (NUCA)
architectures make programming for it difficult. A potential solution to this problem is
to interpret massive multicore machines as a distributed system with remote memory
access, and therefore, use existing distributed programming models. A natural fit for
such an approach is the PGAS model, which provides a global address space divided
into partitions that can be either local or remote. Unfortunately, completely discarding
the notion of sharing ignores the efficient hardware mechanisms available in multicore
machines with shared memory. This survey examines PGAS frameworks and commu-
nication libraries with an focus on the PGAS model to enable PGAS applications to
exploit shared memory in massive multicore machines without sacrificing the benefits of
the PGAS programming model.

1 Introduction

As processor manufacturers face the power wall [13], further performance can mostly be
gained through an increase in parallelisms. An extreme of this can be seen in manycore
processors and accelerators that will happily trade core-complexity for a larger number of
cores, sacrificing single core performance, but improving overall throughput. Eventually,
architectures using full-featured cores started to adapt the interconnect designs employed
in manycore architectures, increasing the number of cores per socket dramatically.

On the other hand, parallel architectures are notoriously hard to program for. As se-
rial performance of a single core does not increase any more, processores require highly
parallel applications, runtimes, and operating systems to exploit the large number of
cores. This poses the question how applications for manycore systems should be de-
signed, and what programming model they should use. Models based on a global address
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space become more prevalent even in distributed systems, as the low-level interface be-
tween tightly-coupled system components has converged towards memory access: RMA
has become more widely supported in networks, PCIe basically routes memory accesses
between devices, and high-performance cache-coherent interfaces integrate accelerators
tightly into the physical address space of the host machine.

Programming with a global address space can be misleading if the underlying memory
is not uniform, hence, has not the same properties regardless of the address. The Par-
titioned Global Address Space (PGAS) model addresses this problem by dividing the
global address space into partitions with different properties. In common PGAS lan-
guages, each partition is local memory corresponding to a core, socket or cluster node.
By making the locality of the memory visible, the PGAS model enables programmers to
reason about the locality of their program. However, by discarding the notion of shared
memory, PGAS frameworks can not fully exploit hardware mechanisms for replication
available in multicore machines with real shared memory and shared caches.

This survey examines PGAS frameworks and communication libraries with an fo-
cus on the PGAS model to enables PGAS applications to exploit shared memory in
massive multicore machines without sacrificing the benefits of the PGAS programming
model. Section 2 examines a selection of manycore and massive multicore architectures.
Section 3 provides a short overview over the PGAS ecosystem. Section 4.1 looks into dif-
ferent PGAS frameworks. Section 4.2 examines communication libraries used by PGAS
frameworks. Section 5 surveys the memory models typically provided by PGAS frame-
works and communication libraries. Section 6 looks into how shared data and replication
is handled in PGAS frameworks and what kinds of optimisations are applied by PGAS
languages. Section 7 summarizes the lessons learned from PGAS frameworks and for-
mulates goals for extending the PGAS programming model for better shared memory
support.

2 Manycore and Massive Multicore Systems

As single core performance is limited by the architectural walls, the number of cores in
a system must increase in order to increase the overall performance. This section looks
into different options how an increasing number of cores is integrated into manycore and
massive multicore systems.

Chip-level Early single-chip manycore processors including the Tilera [10] and the Sin-
gle Chip Cloud Computer (SCC) [72] use a mesh interconnect topology. Whereas the
Tilera uses a distributed cache architecture, the SCC is not cache coherent.

Later commercially available manycore processors tend to provide coherent caches.
The XeonPhi Knight Corner processor uses two bidirectional rings as an intercon-
nect [75], but the XeonPhi family switched to a mesh topology with the next generation
(Knights Landing), using bidirectional half-rings along each dimension [134]. Later the
mesh-based interconnects found its way into processor architectures with fully-featured
cores. A good example for this is the Intel Skylake-SK processor, which adapted a mesh
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interconnect in contrast to its ring-based predecessor [137]. Based on the hop count be-
tween different processors, cache directories and memory controllers, NUMA-like effects
can appear even on a single die. Intel’s Sub-NUMA Clustering [134] clusters cores with
memories controllers and their assigned cache directories in order to expose this locality
to the programmer.

Package-level To increase the number of cores per package without scaling up the
number of cores per die, one can disintegrate a processor into chiplets by fitting mul-
tiple dies into a package. Due to the lower die area per chiplet, this increases yield in
production compared to larger single chip processors [80].

The AMD Zen Architecture uses chiplets called “Zeppelin” [9] as the basic building
block, which integrates 8 cores on a single die. Up to 4 of these chiplet are integrated into
into one package, enabling up to 32 cores in a 2 socket system. Package-level integration
can also be used to integrate local die-stacked memory into the package[80], potentially
lessening the effect of the memory wall.

System-level Classical NUMA configurations connect up to 8 different processors with
each other throught a concurrent point-to-point interconnects, like UPI in Intel proces-
sors [109] or AMDs Infinity Fabrik Global Memory (IF GMI).

The NUMAlink technology used in HP Hyperdom Servers [74] enables to scale NUMA
to more processors than originally supported by the processor vendor. NUMAlink does
this by replacing one processor in the supported configurations with a router that man-
ages concurrency and address translation between boards. However, it is hard to see
where to draw a line to classical shared memory supercomputers at this level.

Currently there are a number of compiting standards and proporitary interfaces that
enables coherent memory between hosts and accellerators, such as CLX [37], Open-
Capi [115], NVLINK [114], CCIX [27], and RapidIO [121].

Conclusion The system architecture increased the amount of cores on each level: more
cores on each die, multible dies in one package, large-scale NUMA systems, and support
for manycore accelerators. However it has become clear that, despite its costs in large
scale systems, consistent shared memory is not given up upon. If anything, standardiza-
tions efforts on cache coherent interfaces enable accelerators to participate in the cache
coherence protocol and benefit from fast access to cached data.

3 PGAS

The PGAS model is described fairly good by it name. It is a global address space that is
explicitly partitioned into places to represent locality. Places consist of execution units
as well as memory. From the view of a place, the memory can either be local (at the same
place), or remote (at any other place). Each place may also have private memory that is
only accessable locally, hence, from the same place. In general, all execution units in a
places have a relatively uniformly view on the resources of the system [28]: For example,
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layer role example

application problem solving page rank, fluid dynamics
domain-specific library high-level operations linear algebra, graph representa-

tion, stencil operations
PGAS framework programming model global address space, locality and

concurrency control
communication lbraries hardware abstractions (active) messages, remote mem-

ory access

Table 1: Potential layers in a PGAS application.

in a cluster of NUMA machines, memory access latencies can differ depending on the
NUMA domain. However, these latencies may are relatively small compared to remote
memory access through the network.

As a model, PGAS is a reasonable compromise between implicit locality, and exposing
all available information to the programmer. For example, the hardware locality library
hwloc [19] provides a very detailed picture of the memory hierarchy and locations of ex-
ecution units of a system. Unfortunately, it is hard to derive meaningful decisions about
data distributions on application level without condensing this information into a more
simple model. On the other hand, models that do not provide an abstraction for loca-
tions are unable to allow the programmer to control or reason about data distribution.
The trade-off between programability and performance is typically called productivity,
and has been studied as an argument for the adoption of PGAS languages [24, 51, 149,
21].

The PGAS programming model can be implemented on language- as well as on library-
level [155]. In the following, the term PGAS framework will be used to include both
PGAS languages and library-based PGAS implementations. Naturally, PGAS frame-
works do not exist in a vacuum, but are used by an application. Table 1 lists different
layers potentially found in a PGAS application. PGAS frameworks are typically imple-
mented on top of a communication library, that abstract from the concrete hardware,
operating system details, or vendor-specific network interfaces. The PGAS framework
further abstracts from the concrete machine by implementing the global address space,
locality and concurrency control. On top the PGAS framework, a well-structured ap-
plication may consist of domain-specific libraries, that use the PGAS framework to
implement primitives that are used by a concrete application. This may include linear
algebra operations, graph processing frameworks, or stencil operations. In reality, un-
fortunately, this layer might be convoluted with the actual application. Finally, there
is an application layer that formulates a concrete problems in terms of the high-level
operations. For example, the application may load and process a graph representing
website links in order to calculate a page rank.

De Wael et al. [48] have classified PGAS languages considering their model for par-
allelism, the topology, the data distribution and the access to remote data. For par-

4



allelism, they differentiate between implicit parallelism, single program multiple data
(SPMD), and the asynchronous partitioned global address model (APGAS) [122]. For
the topology, they differentiate between a flat topology (with numbered partitions), an
user-defined mesh (flat topology with an mapping from the mesh nodes), and a hierar-
chical topology (partitions are partitioned further). Data can be distributed implicitly
by the runtime or explicitly by the user. The data itself can be regular, such as arrays
divided up into same sized blocks, or irregular. Finally, access to remote data can either
be implicit, or must be made explicit by the programmer.

In the following, partitioned global address space implies that the global partitions
are visible and directly accessable to the programmer. This excludes array languages
such as ZPL [98] and HPF [101], as well as distributed shared memory (DSM) systems
and distributed object frameworks with implicit object distribution.

DSM Software-based distributed shared memory (SW-DSM) started with the page-
based DSM Ivy [97]. In current high-performance computing runtimes, SW-DSM is
often an ingredient of distributed application runtimes and facilitates the data move-
ments. Legion [8] has a task oriented programming model and is implemented with on
top of Realm [140]. Realm manages data in physical regions, which can have multi-
ple instantiates with the same memory layout. Legion enforces its memory model via
task ordering. The StarPU [4] runtime is supported by a distributed shared memory.
It supports multiple concurrent readers and access to partitions of data using filters
and enforces consistency with a Modified/Shared/Invalid protocol. HPX [78] uses an
Active Global Adress Space (AGAS), in which active messages can be send to migrate-
able logical partitions. Charm++ [79] also provide logical partition, which can be made
are migratable by user-provided serialisation functions [1]. It also supports distributed
objects.

Distributed Objects The overlap between distributed object frameworks and PGAS
frameworks is obvious, for example, in the RMI middleware TACO [113], which have an
explicitly partitioned object space and enables RMA over a global array pointer. How-
ever, most PGAS frameworks tend to focus on regular data structures, data parallelism
and single-sided remote access (RMA), whereas distributed object frameworks tend to
focus on (irregular) objects, remote method invocations and their semantics.

4 Data Access

In distributed systems, data can in general accessed in two ways: Data-shipping copies
the data to the location that want to access it, whereas function-hipping transfers the
control flow to the location of the data.

The two-sided model for communication generally provides two operations: send and
receive (send/recv). Send expects a user-provided buffer as an argument, which is
transmitted to the receiver. Analogously, the receiver uses the receive function to
determine a buffer where the received message should be copied into.
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In systems with local shared memory, memory can be mapped (map) into the address
space of a process. Afterwards, the process can access the memory like its private
memory, hence, directly through the processors instruction set.
Put and get are the operations associated with the one-side model for distributed

computing. Put writes to a global address, whereas get loads from a global address.
In distributed systems, these operations can be implemented using hardware supported
remote memory access (RMA).

An active message consists of data to be transmitted and a handler to be executed
at the receiver. One can distinguish between different kinds of messages [105]: Short
messages only consisting of arguments for the handler. Medium messages can name a
buffer from which data is copied, the destination buffer is chosen by the communication
library and is only valid during the execution of the handler. For long messages, the
sender determines both the source and destination buffer.

Atomic operations (atomics) are operations that appear as if they are executed in-
stantaneously, hence, they can not be observed in a transitional state. Often these
operations have (optional) memory ordering semantics, which allows to to use them for
synchronization.

4.1 PGAS Frameworks

This section aims to give an overview over several PGAS framework, and will look at
the most popular one in more detail. De Wael et al. [48] categorize the PGAS languages
historically as retrospective PGAS languages such as HPF, ZPL, and GA; original PGAS
languages such as CAF, Titanium, and UPC; HPCS PGAS languages such as Chapel,
X10, and Fortress; and recent PGAS languages such as XCalableMP. Here, we will focus
on a subset of languages that is still maintained and used outside of example code.
However, this choice is somewhat subjective and exclusion does not imply a language is
unmaintained or without real-world application.

When aiming to backtrack the evolution of the PGAS frameworks, it is helpful to follow
the contributions of the UC Berkely, which had a great influence on their development.
Most notably are: active messages [53, 42, 105], the early parallel C extension Split-
C [41], the PGAS languages Titanium [150] and Unified Parallel C (UPC) [25], the
communication middleware GASNet [14], and the PGAS library UPC++ [155].

Unified Parallel C (UPC) is one of the original PGAS languages, provides a SPMD
programming model with explicit distribution and implicit remote access [48]. There
is a huge diversity of UPC compilers and runtime environments. Berkeley UPC [11] is
basically the reference implementation of UPC and implements UPC 1.3 [143]. Its run-
time can be used with different compilers and source-to source translators, for example
Gnu UPC [64] and the Clang UPC Toolkit[36]. However, other runtime implementations
are available: the GCC UPC Portal4 runtime [56], the MuPC UPC run time system [124,
153], and ScaleUPC [154], which targets only shared memory multiprocessors.

HP UPC has been the first commercial available UPC compiler, but is now discon-
tinued. Its final version is 3.3 [120] and implements UPC 1.2 [142]. Further vendor
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send/recv. map put/get active msg. atomics

PGAS frameworks
UPC - - x - > 1.3
UPC++ - - x > 2.0 x
X10 - - - x -
Chapel - - x x x
XcalableMP (XMP) - - x - x

communication libraries
MPI x > 3.0 > 2.0 - > 3.01,2

OpenSHEM - - x - x1

GASNet(EX) - - x x > EX
ARMCI - - x - x2

UCCS/UCX x x x x x
GASPI x3 - x - x2

shared memory
POSIX SHM - x - - x1

XPMEM - x - - x1

LiMIC x - - - -
KNEM x - x - -
CMA - - x - -

Table 2: Data access in different middleware

1 via instructions on mapped memory
2 via API call
3 for passive communication
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implementations of UPC include the UPC Cray Compiler [40], HP-X UPC[73] by Mel-
lanox and XL UPC for the IBM PERCS architecture [138].

UPC++ [155] is a library-based C++ PGAS framework from the University of Berkeley.
It uses futures [7] to allow the programmer to overlap computation and communication.
Habanero UPC++ [91] is a extension that integrates UPC++ with the HabaneroC++ local
workstealing scheduling framework.

X10 [34] is a PGAS language originating from IBM’s entry to the DARPA High
Productivity Computing Systems (HPCS) project. It coined the term APGAS [122],
that is an execution model where asynchronous task-based parallelism is combined with
the PGAS model. X10 has become adopted by the research community with a relatively
high number of publications that build on the language, for example with aggregating
synchronization primitives [130] or global work balancing [152]. There also is a wide
variety of applications written in X10.

The APGAS runtime [139] inherits a fault-tolerant programming model developed
for Resilent X10 [43], whereas the Habenero Java language [26] is a less closely related
hybrid between X10 and Java.

Chapel originates from Crays entry [22] to the HPCS project. Interesting about
Chapels design is especially the clear separation between locality and concurrency, as
well as the concept of multiresolution programming [30]: The language provides reason-
able defaults for implicit distribution and concurrency, but allows the programmer to
control both explicitly if necessary. Since the end of the HPCS program, Chapel has
significantly matured [29], improving the performance as well as productivity features.

XcalableMP (XMP) [95, 141] is a pragma-based framework, which supports an OpenMP-
like [44] data-parallel global view on data structures, the OpenMP dependency-driven
task interface [63, 141], but also a partitioned global address space for explicit location
control. Unlike other PGAS frameworks, global data structure are always accessed lo-
cally. To maintain consistency, the reflect annotation exchanges replicated shadow
areas of global data structures. XcalableMP is a successor of OpenMPD [96], which
has a similar concept for global data structures, but uses MPI as its location-aware
communication model.

Trends In general, a rise of PGAS libraries can be observed, for example the APGAS
library for Java [139]. For C++, there is UPC++ [155], DASH [57, 55] and other PGAS
libraries [52]. Interestingly, the more recent PGAS frameworks X10 and UPC++ shift
their focus from actual data distribution to providing a object-based toolkit for data
access and synchronization. The PyGAS [50] Python PGAS extension provides trans-
parent object proxies and generally resembles a distributed object framework. Another
trend is the support of memory regions that are not in a 1-to-1 relation to places [132,
6, 84]. These regions allow the PGAS framework to model, for example, accelerator
memory.
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4.2 Communication Libraries

Communication libraries are a wide topic which spans a spectrum between thin software
layers interfacing with the hardware and frameworks with a programmability comparable
to a complete PGAS language. Here, we will examine three different levels of communi-
cation libraries: High-level libraries that provides complete environment that facilitates
programming without additional productivity layers. Intermediate-level libraries often
abstract from specific hardware and vendors and are targeted at the implementer of
higher-level frameworks. Low-level communication libraries targets a specific hardware
or hardware of a specific vendor. For low-level libraries, we will look into low-level API
for shared memory in more detail.

High-level libraries MPI is the standard for distributed computing focusing mainly
on two-sided communication. With the latest versions, MPI has added support for
one-sided communication. Whereas first iterations where not well-suited for the imple-
mentation of PGAS frameworks [17], support for one-sided communication has improved
considerably [71, 49]. Although MPI is often used in a BSP-style [145] programming
model, it is common to see other programming models, e.g. PGAS, or other middleware
implementated on top of MPI [17, 153, 45, 156] In the last years, MPI has adapted to
the changing environment towards multicore clusters and remote memory access: MPI
windows allow access to remote memory [108] via put and get operations and provide a
mean to access allocate memory shared between multible ranks of one cluster node [70,
108]. There is a number of MPI implementations, but most notable are MPICH2 and
OpenMPI, and vendor-specific derivatives.

The SHEM libraries stems from an environment of more tightly integrated super-
computers. In consequence, SHMEM enables one-sides communication and features a
symmetric heap model. OpenSHMEM [33, 116] is a standardization effort for SHMEM,
its implementation is based on the lower-level library UCX. Similar to MPI, SHMEM is
widely supported by different vendors. GPSHMEM is a SHMEM implementation on top
of ARMCI [118]. There are also attempts to use SHMEM as the programming model
for manycore environments (TSHMEM [92, 93]).

Intermediate-level libraries More on the lower end of the spectrum, there are libraries
like GASNet [16], its successor GASNetEX [18, 59], ARMCI [110] and GASPI [132].

GASNet(EX) is build around the idea of active messages, transferring data but also
carrying out an operation after the data is transferred. The extended API of GASNet
also provides put and get functions that perform RMA without the need to execute a
message handler.

GASPI [132] emerged from an effort to standardize GPI [67]. GPI has evolved from the
Fraunhofer Virtual Machine (FVM) [103]. In contrast to other communication libraries,
communication functions are designed with timeouts in order to enable robustness to
node failures. Remote access is carried out relative to segments in the global address
space without imposing an specific memory model. Its implementation GPI-2 specif-
ically targets Infinibands interconnects as well as accelerators. Although GASPI can
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replace MPI, it can also be used as a complemement to accelerate time-critical compute
kernels [133].

ARMCI [111, 110] is designed as a one-sided memory copy engine to be used as a
supplement to MPI. It is based on generalized I/O vectors, but also provides mutexes
for synchronization, memory allocation functions, and atomic accumulate operations.
As the communication middleware of global arrays [112], ARMCI has been replaced by
ComEx [45], which provides a similar API, but supports a wider set of platforms by
providing a MPI backend.

UCCS [127] and its successor UCX [126] aim to unify communication libraries for
different programming models by providing a toolbox consisting of active messages,
RDMA primitives, atomic operations, collective operations, and wrappers for bootstrap
and runtime environments (RTE).

Vendor- and hardware-specific libraries libfabric [66] is a core component of the Open-
Fabrics Interfaces (OFI) and aims to be used by higher level frameworks like MPI or
SHMEM. LAPI [125] for PowerPC, PAMI [90] for IBM BlueGene/Q supercomputers and
Crays DMAPP [20] are both vendor-spezific middleware, which can be used to implement
higher level or vendor-independed middleware. There are communication libraries like
Mellanox MXM, Cray GNI, Intel PSM. These libraries often provide a additional services
above hardware features, such as tag-matching, and abstract from different hardware of
a single vendor.

Shared memory libraries Infrastructure for communication libraries also includes APIs
for intranode shared memory communication. The POSIX Shared Memory API and the
XPMEM [147] kernel module both can be used to establish shared memory regions
between processes. XEMEM [83] is a extension to XPMEM that provide a name ser-
vice and allow communication between different virtual machines or containers on a
shared memory machine. LiMIC [77] enables tag-matching two-sided single-copy mem-
ory transfer implemented as a Linux kernel module. KNEM [65] is a kernel module
that provides safe single-copy one-sided RDMA-emulation between processes, including
collective memory transfers [102]. CMA [146] is part of the Linux kernel since version
3.2 and allows one-sided access to memory of other processes.

5 Memory Models in PGAS

A memory model is a contract between the programmer and a language concerning
the order and visibility of memory accesses. For context, this section first gives an
introduction into memory models. The rest of this section discusses the memory models
found in PGAS frameworks and communication libraries.

Sequential Consistency (SC) [94] guaranties that a global total ordering of every mem-
ory access exists and that order is an interleaving of the programm orders of the processes
involved. The programm order is the order of memory accesses as written down in the
program code. Therefore, algorithm written in SC are relatively easy to reason about.
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Unfortunately, establishing a global order of all accesses between all processors is ex-
pensive. Consequently, Processor Consistency or Pipelined RAM (PRAM) [99] allows
reordering read accesses before independent write accesses, which allows processors to
buffer writes in a local queue. Additionally, not every order given in program order is
meaningful, hence, only a portion of programm order constraints are nessecary to en-
force the correct program semantics. Hybrid memory models [107, 61] label memory
accesses to synchronizing variables, which are in turn used to establish order between
non-sychronizing accesses. Release consistency [61] is a family of memory models that
prominently uses aquire and release labels. For distributed shared memory, the fur-
ther relaxed lazy release consistency [82] is more popular, as it does not require eager
distribution of data. Location consistency [58, 100] is a hybrid memory model designed
for systems with incoherent caches.

Finally, a important property of memory models for programming languages is se-
quential consistent for data race free (SC4DRF). It means that if a programm does
not have any data races, it behaves as if all accesses are sequentially concistent. Mod-
ern programming languages (C++ [12], Java [106]) have converged towards a memory
model with this property as a compromise between performance on current hardware
and programability. The concept of programs being “synchronized enough” has been
first introduced with the data-race-free-0 (DRF0) [2] memory model.

5.1 Frameworks

The memory model of PGAS frameworks often starts out underspecifed und improves
as implementors and user explore the edge cases. A good example for that is the UPC
memory model: Some early work towards a clear definition can be found in the master
thesis of Kuchera [87], followed by tech reports about a programmer-friendly specification
based on abstract state machines [89] and illustrative test cases for the model [88].
After a tech report [148] and further discussion [86], the current formal definition can
be found in the UPC specification [143, §B]: Access to shared variables in UPC can
be either strict or relaxed. All strict accesses are totally ordered, hence, a program
consisting only of strict memory accesses is sequential consistent. Two accesses are
ordered if they are issued by the same thread and at-least one of them is strict. Finally,
dependent accesses are ordered within each thread. In result, the UPC memory model
guaranties sequential consistency for data-race-free executions. The semantics of library
calls is described in terms of strict memory accesses to a synchronization variable. Non-
collective memory operations have semantics similar to weak memory accesses, whereas
collective operations may have fence semantics depending on the arguments. Atomic
operation can have either weak or strong semantics.

The UPC++ memory model [5] extends the C++11 memory model by specifying the
happens-before and sequenced-before relations for the global effects of UPC++ library
functions, and therefore, remote memory accesses. UPC++ supports atomic get, put
and fetch-and-add operations for 32 and 64 bit integer types. These operations support
C++ memory order descriptions.

There is very few documented work on memory models for X10. Most importantly, no
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model is given in the specification [123]. Similarly, no primitive atomic operations are
specified. A proposed X10 memory model [157] addresses local memory ordering, and
assumes that remote accesses will be ordered by activity creation and synchronization.

The Chapel memory model [32] is motivated by multi-resolution programming. In
order to guarantee that the correctness of algorithms does not change regardless of the
data distribution, the memory model can not differentiate between remote and local
accesses. It is inspired by XC [135], and the C++11 memory model [32, §29.2]. Con-
sequently, the atomic operations also mirrow the C++11 atomics. Internally, this high
level model model is mapped to model based on fences [54], reminiscent of release con-
sistency [61]. An acquire fence ensures that no stale data from the cache is returned.
The release fence conceptually writes back dirty entries in the cache, hence, making
writes observable to the outside.

5.2 Communication Libraries

Poole et al. [119] have surveyed remote and local completion and ordering primitives
with a focus on SHMEM implementations. SHMEM provide a fence operation that
guaranteed that, for every remote process, every store issued before the fence is com-
pleted before any store issued after the fence. The quiet operation is stronger, as it
guaranties that any store issued before quiet is completed before any store issued after
it. Some SHMEM implementations additionally guarantee remote completion for fence

and quiet. A barrier has the usual semantics for synchronization, however, some
SHMEM implementation guarantee remote completion for any outstanding store.

In contrast to the SHMEM semantics, modern PGAS framework are often oriented
on the (a)synchronous GASNet semantics, which did not seperate ordering from remote
completion [28]. Hence, the only way to order outstanding stores is to wait for remote
completion. As of version 1.8.1 [15], GASNet does not support atomic operations. How-
ever, GASNetEX [6, 18] adds support for atomic domains as introduced by [143]. Atomic
domains select a implementation for atomic operations based on a datatype, requested
operations, and hardware support.

For GASPI [132], there is an accepted proposal [85] demanding sequential consistency
between ordinary access to a local memory segment and GASPI functions executed by
the same thread. However, this does not imply any global memory ordering, which must
by archived by using queues and synchronization via notifications. All operation in a
queue are completed locally after waiting on a queue. This waiting does not guarantee
remote completion [60]. Furthermore, all operation in a local queue with the same re-
mote are completed in order. This includes notifications, which can therefore be used
to wait for completion of a data transfer on the remote end. GASPI also provides ex-
tended communication calls that combine one or more memory operation (read/write)
and a notification. These calls do not enforce ordering with other operations in the
same queue [131]. GASPI supports the atomic operations fetch-and-add as well as
compare-and-swap. These operations are independant from queues and have no order-
ing semantics.

ARMCI [110] can order memory access by waiting for local completion (wait) or
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ordering primitives ordering by atomics inspiration

UPC strict accesses, fence strict atomics SC4DRF
UPC++ waiting acq&rel C++11
Chapel waiting acq&rel C++11, XC
X10 waiting locally Java, C++11

OpenSHMEM fence, quiet none -
GASNet-EX active messages, waiting optional acq&rel -
GASPI queues, notifications none -
ARMCI fence none LC

coreRMA flush - RMA, PGAS
Calin et al. [21] channels - PGAS

Table 3: Memory models in PGAS

global completion (fence). The memory model for remote access is described [110]
as similar to location consistency [58]. Additionally, ARMCI provides totally ordered
atomic accumulation operations.

5.3 Abstract Models

Finally, there has been some effort to construct more abstract models that can be applied
to multiple PGAS frameworks: Calin et al. [21] examines the robustness of PGAS pro-
grams. Robustness is a less strict correctness criterion than data-race freedom and was
originally proposed by Shasha and Snir [128] for shared memory program. coreRMA [46]
is a memory model for RMA programming. It is used to discover contradictions in the
documentation of libraries for one-sided memory access and predict the behavior of pro-
grams.

5.4 Conclusion

This section has given an overview over the memory models used in the PGAS ecosystem.
As a trend, younger frameworks tend to have underspecified or less documented memory
models. Table 3 illustrates quite clearly that communication libraries typically have
relaxed memory models that require synchronization with low-level primitive such as
fences, whereas PGAS Framworks tend to provide SC4DRF guaranties. However, they
often additionally provide relaxed semantics for data transfer. In conclusion, PGAS
applications seem to benefit from hybrid memory models in which they give almost no
guaranties about non-synchronizing accesses, but the ordering semantics of synchronizing
accesses are quite strong.
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6 Shared Data and Replication in PGAS

As remote accesses are costly, replication of read-only data can greatly reduce the global
communication and improve the performance [68]. For example, distributed graph algo-
rithms generate a lot of small remote memory accesses, and benefit from communication
coalescing and caching read-only data [39, 38]. Accesses to read-mostly data should
also benefit from replication, but can harm the programmability, as it must be kept
consistent.

The PGAS programming model itself offers no primitives for replication of data. How-
ever, for performance reasons, is is often desirable to reuse date retrieved from a remote
place or to localize data for fast access. Data can be replicated explicitly in the appli-
cation or transparently by the underlying implementation if the memory model allows
for that. In this section, shared data pattern in PGAS application are reviewed before
discussing replication-based optimizations found in PGAS frameworks.

6.1 Patterns in PGAS Applications

This section looks into patterns in PGAS application. It does not aspire to give a
complete list of existing PGAS application, but give a idea what patterns and problems
might emerge in PGAS applications.

Load Balancing The Scalable Parallel Numerical CSP Solver [76] is a branch-and-
prune algorithm, and uses a domain specific work balancing scheme with search space
approximation. In a later iteration, it used the Global Load Balancing Library [152], for
X10, which employes a workstealing scheme. Another example for using GLB employes
workstealing on a dense matrix multiplication, and argues in favor of using dynamic load
balancing for heterogeneous architectures [129]. Load balancing is also used for Barnes-
Hut algorithms [151] or in the more abstract unbalanced tree search problem [104]. In
respect to productivity of PGAS applications, global load balancing poses a problem:
data used by tasks must be moved, replicated or accessed remotely. Remote access
naturally degrade performance, however, manual data movement or replication may
harm the programmability of the PGAS languages.

Global Containers Another interesting pattern is the use of global containers. For
example, GridPACK [117] is a power grid simulation framework which uses a distributed
hash table in order to distribute data across all places. ScaleGraph [47] uses distributed
arrays as global container, and collective operations in teams.

6.2 Optimizations

Optimizing data access can be potentially be carried out by the programmer, statically
at compile time, or dynamically at runtime.

14



Compile-time optimizations For the retrospective PGAS language ZPL, Sung-Eun
Choi and Snyder [136] discusses three types of optimization that can be applied by a
compiler, but also by a dedicated application programmer: Redundant communication
removal keeps a copy of remote data in a local variable instead of fetching it repeat-
edly. Communication combination coalesces communication to a single host to a single
message. This reduces the number of messages send over the network. Combination
of communication is a pattern often present in PGAS applications, whether it is by
optimizing by hand [62, 38], or by using static analysis [3]. Communication pipelining
sends data before the receiver initiated a receive. This optimization does only make
sense in a two-sided communication model. However, it is closely related to asychronous
communication in a one-sided model, as the data transfer can be initiated before the
data is actually needed, which helps to hide communication latency.

Even if data is local, access through shared pointers can significantly increase the
access latency [62, 35, 23, 68], and potentially prevent compiler optimization. Local-
ization makes data accessible through local / native pointers. In UPC(++), there is
the upc cast() [144, §7.7.2.1] function, respectively the local ()[5, §3.2] method, which
enables casting to a shared/global pointer to a local pointer. For Chapel, a local key-
word [68] has been proposed, which marks all accesses in a code block as local.

The most notable feature of Clang UPC[36] is the representation of global pointers
as a special address space, which allows to use LLVM-based optimisation on remote
accesses. This seems similar to the work of Hayashi et al. [69].

Runtime optimizations Other then compile-time optimizations, most runtime opti-
mizations can only made by online algorithms, hence using incomplete data. Caching [153,
54] keeps an copy of the data after first accessing it. Caching can be used when the same
address, hence also the same remote, is accessed repeatedly. This reduces wait times
for recurring accesses and is conceptually related to redundant communication removal.
Prefetching [62, 81] fetches data before it is needed. As opposed to caching, it reduces
wait times for first accesses. Conceptually, prefetching is losely related to communica-
tion pipeling as it can overlap the data transfer with preceeding computation. Coalacing
bundles multiple accesses into one communication. Communication coalacing bundles
multiple accesses to different addresses on the same remote. This is a very similar concept
to communication combination. I/O vectors like in ARMCI enable explicit accumulation
of requests, however, runtimes may additionally accumulate accesses [110].

7 Conclusion

In this paper, we have surveyed the PGAS ecosystems with a focus on applicability
to manycore and extreme multicore systems. This allowed us to examine the memory
models used for PGAS languages, interfaces for data access, and the use of replication
in the PGAS frameworks.

PGAS is a reasonable programming model for future manycore systems. However,
it can not fully exploit shared memory in these kind of machines. The survey showed
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that application generally benefit from the locality-awareness of the PGAS model and
the descriptiveness of the data access interface, but struggle to offer an easy to use
interface that supports replication. Extending the PGAS model with a shared memory
abstraction is a way out of this dilemma. Applying some the lessons learned in the
previous sections, we can name some desirable properties for a possible shared memory
extention.

Modern PGAS frameworks provide efficient mechanisms for synchronization, remote
access and data distribution. In order to benefit from these mechanisms, a shared mem-
ory extension must integrate into the host framework. A major concern is a integration
into the memory model of the PGAS framework: Ordering primitives must also interact
with the ordering primitives in the PGAS framework.

One factor in success of PGAS frameworks is that they allow to overlap computation
with communications, for example through asynchronous communication or two-phase
barriers. To enable performance comparable to pure PGAS implementations, a shared
memory extension should expose asynchronous interfaces for operations that potentially
cause global communication.

The memory semantics in PGAS frameworks is oriented on the relatively weak memory
semantics of R(D)MA memory access, especially for large data transfers. Analogously,
the shared memory API should allow to implement protocols that exploit the native
memory model of a shared memory machine with zero overhead.

PGAS programming models provide a number of synchronization mechanisms. This
may includes barriers for BSP-style programming model, or fine-granular mechanisms
like synchronisation variables [32, §25.3]. Analogously, a lot of parallel runtimes im-
plement collective operations, as they are an expressive tool for formulating algorithms
and can be highly optimized for distributed and shared-memory systems [31]. Trying
to replace them with shared memory primitives, for example atomic operations, may be
futile.
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[26] Vincent Cavé et al. “Habanero-Java: The New Adventures of Old X10”. In: Pro-
ceedings of the 9th International Conference on Principles and Practice of Pro-
gramming in Java. PPPJ ’11. Kongens Lyngby, Denmark: ACM, 2011, pp. 51–61.
doi: 10.1145/2093157.2093165.

[27] CCIX Consortium. url: https://www.ccixconsortium.com/.

18

https://doi.org/10.1504/IJHPCN.2004.007569
https://doi.org/10.1504/IJHPCN.2004.007569
https://doi.org/10.25344/S4QP4W
https://doi.org/10.1109/PDP.2010.67
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/01-5Monday/03B-tenBruggencate-Paper-2.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/01-5Monday/03B-tenBruggencate-Paper-2.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/01-5Monday/03B-tenBruggencate-Paper-2.pdf
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.127
https://doi.org/10.1109/HIPS.2004.1299190
https://doi.org/10.1109/IPDPS.2005.219
https://doi.org/10.1109/IPDPS.2004.1303318
https://doi.org/10.1145/2093157.2093165
https://www.ccixconsortium.com/


[28] B.L. Chamberlain, D. Callahan, and H.P. Zima. “Parallel Programmability and
the Chapel Language”. In: International Journal of High Performance Computing
Applications 21.3 (2007), pp. 291–312. doi: 10.1177/1094342007078442. eprint:
http://hpc.sagepub.com/content/21/3/291.full.pdf+html.

[29] Brad Chamberlain et al. “Chapel Comes of Age: Productive Parallelism at Scale”.
In: CUG 2018. 2018.

[30] Bradford L. Chamberlain and Cray Inc. Multiresolution Languages for Portable
yet Efficient Parallel Programming. 2007.

[31] Ernie Chan et al. “Collective communication: theory, practice, and experience”.
In: Concurrency and Computation: Practice and Experience 19.13 (Sept. 2007),
pp. 1749–1783. doi: 10.1002/cpe.1206.

[32] Chapel Language Specification. Version 0.984. Cray Inc. Oct. 2017.

[33] Barbara Chapman et al. “Introducing OpenSHMEM: SHMEM for the PGAS
Community”. In: Proceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model. PGAS ’10. New York, New York, USA: ACM,
2010, 2:1–2:3. doi: 10.1145/2020373.2020375.

[34] Philippe Charles et al. “X10: An Object-oriented Approach to Non-uniform Clus-
ter Computing”. In: SIGPLAN Not. 40.10 (Oct. 2005), pp. 519–538. doi: 10.
1145/1103845.1094852.

[35] Wei-Yu Chen et al. “A Performance Analysis of the Berkeley UPC Compiler”.
In: Proceedings of the 17th Annual International Conference on Supercomputing.
ICS ’03. San Francisco, CA, USA: ACM, 2003, pp. 63–73. doi: 10.1145/782814.
782825.

[36] Clang UPC Tool Set. url: https://clangupc.github.io/.

[37] Compute Express Link consortium. url: https://www.computeexpresslink.
org/.

[38] Guojing Cong, George Almasi, and Vijay Saraswat. “Fast PGAS Implementa-
tion of Distributed Graph Algorithms”. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’10. IEEE Computer Society, 2010, pp. 1–11. doi: 10.1109/
SC.2010.26.

[39] Guojing Cong, Gheorghe Almasi, and Vijay Saraswat. “Fast PGAS Connected
Components Algorithms”. In: Proceedings of the Third Conference on Partitioned
Global Address Space Programing Models. PGAS ’09. Ashburn, Virginia, USA:
ACM, 2009, 13:1–13:6. doi: 10.1145/1809961.1809979.

[40] Cray C and C++ Reference Manual (S-2179) 8.6. June 2017.

[41] D. E. Culler et al. “Parallel Programming in Split-C”. In: Proceedings of the
1993 ACM/IEEE Conference on Supercomputing. Supercomputing ’93. Portland,
Oregon, USA: ACM, 1993, pp. 262–273. doi: 10.1145/169627.169724.

19

https://doi.org/10.1177/1094342007078442
http://hpc.sagepub.com/content/21/3/291.full.pdf+html
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/782814.782825
https://doi.org/10.1145/782814.782825
https://clangupc.github.io/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://doi.org/10.1109/SC.2010.26
https://doi.org/10.1109/SC.2010.26
https://doi.org/10.1145/1809961.1809979
https://doi.org/10.1145/169627.169724


[42] David Culler et al. “Generic active message interface specification”. 1994.

[43] David Cunningham et al. “Resilient X10: Efficient Failure-aware Programming”.
In: SIGPLAN Not. 49.8 (Feb. 2014), pp. 67–80. doi: 10.1145/2692916.2555248.

[44] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-
memory programming”. In: IEEE Computational Science and Engineering 5.1
(Jan. 1998), pp. 46–55. doi: 10.1109/99.660313.

[45] J. Daily et al. “On the suitability of MPI as a PGAS runtime”. In: 2014 21st
International Conference on High Performance Computing (HiPC). Dec. 2014,
pp. 1–10. doi: 10.1109/HiPC.2014.7116712.

[46] Andrei Marian Dan et al. “Modeling and Analysis of Remote Memory Access
Programming”. In: Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications.
OOPSLA 2016. Amsterdam, Netherlands: ACM, 2016, pp. 129–144. doi: 10.

1145/2983990.2984033.

[47] Miyuru Dayarathna, Charuwat Houngkaew, and Toyotaro Suzumura. “Introduc-
ing ScaleGraph: An X10 Library for Billion Scale Graph Analytics”. In: Proceed-
ings of the 2012 ACM SIGPLAN X10 Workshop. X10 ’12. Beijing, China: ACM,
2012, 6:1–6:9. doi: 10.1145/2246056.2246062.

[48] Mattias De Wael et al. “Partitioned Global Address Space Languages”. In: ACM
Comput. Surv. 47.4 (May 2015), 62:1–62:27. doi: 10.1145/2716320.

[49] James Dinan et al. “An implementation and evaluation of the MPI 3.0 one-
sided communication interface”. In: Concurrency and Computation: Practice and
Experience 28.17 (2016). cpe.3758, pp. 4385–4404. doi: 10.1002/cpe.3758.

[50] M. Driscoll et al. PyGAS: A Partitioned Global Address Space Extension for
Python. Poster in the PGAS Conference. 2012. url: https://people.eecs.
berkeley.edu/~driscoll/pdfs/pgas2012.pdf.

[51] Kemal Ebcioglu et al. “An experiment in measuring the productivity of three
parallel programming languages”. In: In Proceedings of the Workshop on Pro-
ductivity and Performance in High-End Computing (P-PHEC’06). IEEE, Los
Alamitos, CA, 2006.

[52] Nick Edmonds, Douglas Gregor, and Andrew Lumsdaine. “Extensible PGAS Se-
mantics for C++”. In: Proceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model. PGAS ’10. New York, New York, USA: ACM,
2010, 12:1–12:10. doi: 10.1145/2020373.2020385.

[53] Thorsten von Eicken et al. “Active Messages: A Mechanism for Integrated Com-
munication and Computation”. In: SIGARCH Comput. Archit. News 20.2 (Apr.
1992), pp. 256–266. doi: 10.1145/146628.140382.

[54] M. P. Ferguson and D. Buettner. “Caching Puts and Gets in a PGAS Language
Runtime”. In: 2015 9th International Conference on Partitioned Global Address
Space Programming Models. Sept. 2015, pp. 13–24. doi: 10.1109/PGAS.2015.10.

20

https://doi.org/10.1145/2692916.2555248
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/HiPC.2014.7116712
https://doi.org/10.1145/2983990.2984033
https://doi.org/10.1145/2983990.2984033
https://doi.org/10.1145/2246056.2246062
https://doi.org/10.1145/2716320
https://doi.org/10.1002/cpe.3758
https://people.eecs.berkeley.edu/~driscoll/pdfs/pgas2012.pdf
https://people.eecs.berkeley.edu/~driscoll/pdfs/pgas2012.pdf
https://doi.org/10.1145/2020373.2020385
https://doi.org/10.1145/146628.140382
https://doi.org/10.1109/PGAS.2015.10


[55] K. Fuerlinger, T. Fuchs, and R. Kowalewski. “DASH: A C++ PGAS Library for
Distributed Data Structures and Parallel Algorithms”. In: 2016 IEEE 18th In-
ternational Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS). Dec. 2016,
pp. 983–990. doi: 10.1109/HPCC-SmartCity-DSS.2016.0140.

[56] Gary Funck and Nenad Vukicevic. UPC Runtime Design UtilizingPortals-4. Revi-
sion: 1.2. Oct. 2012. url: http://gccupc.org/documents/portals4/portals4-
upc-runtime-design.pdf.

[57] Karl Fürlinger et al. “DASH: Data Structures and Algorithms with Support for
Hierarchical Locality”. In: Euro-Par 2014: Parallel Processing Workshops: Euro-
Par 2014 International Workshops, Porto, Portugal, August 25-26, 2014, Revised
Selected Papers, Part II. Springer International Publishing, 2014, pp. 542–552.
doi: 10.1007/978-3-319-14313-2_46.

[58] G.R. Gao and V. Sarkar. “Location consistency - a new memory model and cache
consistency protocol”. In: Computers, IEEE Transactions on 49.8 (Aug. 2000),
pp. 798–813. doi: 10.1109/12.868026.

[59] GASNet-EX API Description. accessed 20.05.2019. url: https://gasnet.lbl.
gov/docs/GASNet-EX.txt.

[60] GASPI: Global Address Space Programming Interface – Speciation of a PGAS
API for communication. Tech. rep. Version 17.1. 2017. url: https : / / raw .

githubusercontent.com/GASPI- Forum/GASPI- Forum.github.io/master/

standards/GASPI-17.1.pdf.

[61] Kourosh Gharachorloo et al. “Memory Consistency and Event Ordering in Scal-
able Shared-memory Multiprocessors”. In: Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture. ISCA ’90. Seattle, Washington,
USA: ACM, 1990, pp. 15–26. doi: 10.1145/325164.325102.

[62] T. El-Ghazawi and S. Chauvin. “UPC benchmarking issues”. In: International
Conference on Parallel Processing, 2001. Sept. 2001, pp. 365–372. doi: 10.1109/
ICPP.2001.952082.

[63] P. Ghosh, Y. Yan, and B. Chapman. “Support for Dependency Driven Executions
among OpenMP Tasks”. In: 2012 Data-Flow Execution Models for Extreme Scale
Computing. Sept. 2012, pp. 48–54. doi: 10.1109/DFM.2012.16.

[64] GNU Unified Parallel C (GUPC). url: https://gcc.gnu.org/projects/gupc.
html.
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[156] Huan Zhou, Kamran Idrees, and José Gracia. “Leveraging MPI-3 Shared-Memory
Extensions for Efficient PGAS Runtime Systems”. In: Euro-Par 2015: Parallel
Processing: 21st International Conference on Parallel and Distributed Computing,
Vienna, Austria, August 24-28, 2015, Proceedings. Springer Berlin Heidelberg,
2015, pp. 373–384. doi: 10.1007/978-3-662-48096-0_29.

[157] Andreas Zwinkau. “A Memory Model for X10”. In: Proceedings of the 6th ACM
SIGPLAN Workshop on X10. X10 2016. Santa Barbara, CA, USA: ACM, 2016,
pp. 7–12. doi: 10.1145/2931028.2931031.

29

https://doi.org/10.1109/TPDS.2014.2331243
https://doi.org/10.1145/2567634.2567639
https://doi.org/10.1109/PDP.2006.16
https://doi.org/10.1109/PDP.2006.16
https://doi.org/10.1145/1809961.1809976
https://doi.org/10.1109/IPDPS.2014.115
https://doi.org/10.1007/978-3-662-48096-0_29
https://doi.org/10.1145/2931028.2931031

	Introduction
	Manycore and Massive Multicore Systems
	PGAS
	Data Access
	PGAS Frameworks
	Communication Libraries

	Memory Models in PGAS
	Frameworks
	Communication Libraries
	Abstract Models
	Conclusion

	Shared Data and Replication in PGAS
	Patterns in PGAS Applications
	Optimizations

	Conclusion

