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Abstract

The GeoFlow experiment on the ISS is designed to study convective flows in a spherical gap under microgravity conditions. The main
challenge, however, is the visualization of the fluid flow especially under the safety requirements of the Columbus module. The Wollaston
shearing interferometry unit of the Fluid Science Laboratory works by optical means alone and is therefore utilized as measurement
device for temperature fluctuations. The resulting interferograms in terms of fringe patterns are the base for the presented advanced
post-processing techniques. They are used to identify convective patterns, to track these structures and to reconstruct the inaccessible
three-dimensional temperature field. A comparison between experimentally gained results and numerically calculated interferograms
is given, too. We show that convective patterns are automatically recognized and tracked accurately in experimental images by means
of the generalized structure tensor. Furthermore, generic numerical simulations are used to deduce the internal temperature distribution
by comparison with interferograms from the experiment.
! 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Large-scale structures and mixing times of planetary
convective zones have been subject of intensive geophysical
research in the past decades (Baumgardner, 1985; Ogawa,
2008; Schubert and Bercovivi, 2009). The main driving
mechanisms of thermal convection are a thermodynami-
cally unstable vertical temperature profile reaching from
the inner core to the surface and the buoyancy force. How-
ever, it is challenging to study convective flows in the spher-
ical gap with terrestrial laboratory experiments, since the
unidirectional gravitational acceleration of the Earth over-
lays any artificial radial force field. The most promising
solution to overcome this restriction is an experiment under
microgravity conditions which allows radial force fields.

The first thermal convection experiment under micrograv-
ity conditions was performed by Hart et al. (1986), who
placed an experimental container on the Spacelab 3 in
the year 1986. The complex half-dome design combined a
radial temperature gradient with differentially heating
patches. Columnar cells and even spiral waves could be
observed. The GeoFlow experiment (Egbers et al., 2003;
von Larcher et al., 2008; Futterer et al., 2010) on the ISS
is designed to investigate convective flows, too. In contrast
to Hart’s experiment GeoFlow studies convection in the
full spherical gap. Moreover, the captured parameter
regime is much larger. In order to visualize convection a
Wollaston prism shearing interferometry (WSI) unit is
used. The main objectives are the investigation of the basic
state and its transition to the turbulent regime in the (non-)
rotating spherical shell, the characterization of convective
flows and their symmetries, the determination of critical
Rayleigh numbers and the occurrence of multi-stability.
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The visualization of fluid flows in terms of interferome-
try has a long history. But it was the development of mod-
ern lasers and digital cameras which revived this technique
in the late 1990s. Interferometry has following advantages
compared to other imaging techniques. First, no particles
are needed. Particles tend to cluster, settle and need to be
replaced regulary. Additionally, they can cause spark
overs, if placed in a high voltage field. The WSI is a robust
device and insensitive to external disturbances. It responds
instantaneously and accurately to small fluctuations which
allows for a precise assessment of the temperature field. As
a laser optics device the WSI is characterized by adjustable
sensitivity, which is obtained by modifying the displace-
ment of the interfering beams. Due to these advantages
the measurement of convective flows with a WSI has been
carried out by many authors. Ramesh and Merzkirch
(2001) used a WSI to investigate the convective heat trans-
fer in an open cavity. They measured the local convective
heat transfer coefficient with an overall uncertainty of
±5%. Thermo-capillary flows, measured with a WSI, were
studied by Kassemi and Rashidnia (2000). Their results are
interesting in two respects. The authors combined numeri-
cal simulations with measured data to deduce the flow field.
Additionally, the results were compared with low-g exper-
iments performed on the TEXUS 33 sounding rocket.
However, the low-g experiment utilized particles, instead
of a WSI (Wozniak et al., 1996). In WSI thermal gradients
result fringe patterns. The reconstruction of the tempera-
ture and the flow field asks for an interpretation of these
patterns. Recently, Feng et al. (2015) measured the strain
of an illuminated aluminum plate using a WSI. The dis-
placement of the plate exhibits in ‘butterfly fringes’, which
are similar to patterns found in the GeoFlow experiment.
Numerical simulations helped to interpret their results.
However, pattern recognition was not performed. Auto-
matic pattern recognition has become an important issue
not only in science, but in daily life. On might think about
the recognition of barcodes or finger prints, eye-tracking,
face recognition, smile detection in cameras and traffic sign
localization in cars. The common factor of these examples
is the detection of edges and stripes (cf. Bigun, 2006) which
is the base of the presented algorithm, too. A first compu-
tationally efficient recognition of experimentally gained
stripe patterns in interferograms has been investigated by
Shapiro (1995) using a polar-coordinate transformation.
The authors extracted the slopes of fringes by assuming
that the fringe patterns have two line symmetries. Hiby
et al. (2009) used modern fringe pattern recognition algo-
rithms to identify stripes on tigers. This seems to be far
away from our application, however the structures are sim-
ilar to patterns found in the laminar regime of the Geo-
Flow experiment. An interesting face recognition
algorithm was developed by Guo and Huang (2010). Faces
are recognized by individual fringe patterns, which are sim-
ilar to patterns found in the GeoFlow experiment. Yet, the
automated pattern recognition, tracking and numerical

reconstruction has not been carried out for convective
flows measured with a WSI. The presented pattern recogni-
tion algorithm allows for the detection of generic convec-
tive structures in interferograms and may be extended to
other applications. Furthermore, this routine can track
the identified structures and allows a final numerical recon-
struction of the flow field.

This manuscript is structured as follows: Section 2 gives
an overview of the experimental set-up, the visualization,
the interferometry device and the imaging process. A
detailed view on the calculation of numerically based inter-
ferograms (hereafter called ‘artificial interferograms’) is
given in Section 3. Details of the recognition algorithm as
well as applications are presented in Sections 4 and 5.
Finally, a comparison between numerical and experimental
interferograms is shown in Section 6. A conclusion and dis-
cussion of our method is presented at the end of the manu-
script. Appendix Acontains geometrical and fluid
dynamical properties of the GeoFlow experiment.

2. The GeoFlow experiment

The GeoFlow experiment (Fig. 1a) was performed
between 2008 and 2017 in two missions on the ISS. Both
missions used the same experimental container (EC), but
with different working fluids. GeoFlow I was performed
between 2008 and 2009, GeoFlow II between 2011 and
2017. In the following, we focus on the GeoFlow IIc cam-
paign which is mainly characterized by an acquisition frame
rate of 10 Hz. A detailed overview of all missions and cam-
paigns of the GeoFlow experiment is presented in Appendix
A. Basically, the GeoFlow experiment consists of a heated
inner shell, a cooled concentric outer shell, a fluid filled
gap, a high voltage field for the radial force field and an
optical unit to visualize the fluid flow. The construction is
integrated in an standardized EC of the Fluid Science Lab-
oratory (FSL) which measures 40! 28! 27 cm3. The FSL
is located in the Columbus module of the International
Space Station (ISS), where the influence of any axial force
is reduced to microgravity conditions of g < 10"4 m=s2

and convection develops by the radially implemented force
field only. In order to establish this radial component a
dielectrophoretic force field is applied on the working fluid
(von Larcher et al., 2008; Futterer et al., 2008). The voltage
of 1:8 kV 6 V 0 6 6:5 kV induces an acceleration of
gE ¼ 0:3 m=s2 at the outer shell which increases by the fifth
power of the radius at the inner shell, namely gE ¼ 13 m=s2.

2.1. Geometrical and physical properties

In the following, all reference values (labeled with index
‘ref’) are defined at the outer shell. The radius of the outer
shell is ro ¼ 27 mm, the inner radius measures
ri ¼ 13:5 mm. The dimension has been chosen to guarantee
a sufficient optical access and a maximum thermal time
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scale of svisc ¼ H 2=jref ¼ 40 min where H ¼ ro " ri denotes
the gap width and jref the thermal diffusivity. This time is
needed to set up a conductive, unbiased initial stratification
before an experimental set point is started. Set points are
denominated as runs which are series of increasing incre-
ments of temperature, voltage or rotation. The
parametrization of diffusivities is done in terms of the
Prandtl number Pr ¼ mref=jref , where mref is the kinematic
viscosity. The Rayleigh number Ra parameterizes the
buoyancy and is given by Ra ¼ aEDTgEH 3=ðmrefjrefÞ where
aE names the coefficient of dielectric expansion (compara-
ble with the thermal expansion coefficient) and

gE ¼ ð2!0!r=qrefÞ & ðr2i r20=ð4 & ðr0 " riÞ
4ÞÞV 2

0r
"5er is the accel-

eration induced by the electric field (comparable with the
gravitational acceleration). Moreover, !0 is the vacuum
permittivity, !r is the relative permittivity, qref is the den-
sity, V0 is the voltage, r is the radius, and er is the radial
unit vector. The radial temperature difference DT of up
to 10 K yields Rayleigh numbers between
5:60 & 102 < Ra < 1:43 & 107. The Prandtl number ranges
between 64 < Pr < 178. The values of both non-
dimensional numbers depend on the properties of the
working fluid and two working environments which are
defined by the reference temperatures, T ref ¼ 20 'C and
T ref ¼ 30:5 'C. An interferogram for the conductive state
at T ref ¼ 30:5 'C is depicted in Fig. 3. The GeoFlow I mis-
sion was performed with the iso-viscous working fluid M5,
the GeoFlow II mission used the thermo-viscous fluid 1-
Nonanol, respectively. The viscosity contrast c ¼ mref=mhot
between the cold outer and the hot inner shell parametrizes
this property of the fluid.

The experiment itself rotates in its basic configuration
slowly at X ¼ 0:008 Hz as a stopped tray could result in
an unsteady distribution of temperature, since the cooling
air would always be blowing on the same location. Addi-
tionally, various regions of the fluid cell are captured by
the camera when the tray rotates slowly. Further rotation
rates range between 0:008 Hz 6 X 6 2 Hz. The details of
the experimental parameters, the geometrical properties
and the fluid properties of the GeoFlow experiment are
presented in Appendix A.

2.2. Interferometry and flow visualization

We utilize the Optical Diagnostics Module (ODM) (cf.
Dupont et al., 2004) of the FSL for the visualization of
the fluid flow of the GeoFlow experiment. A main diagnos-
tic component of the ODM is the WSI which measures first
derivatives of the fluid’s refractive index (Fig. 2). The
refractive index of the GeoFlow IIc working fluid
1-Nonanol is n = 1.4338 at 20 "C (source: Merck index)
and decreases linearly with the temperature. Due to this
dependency a thermal gradient yields phase shifts of adja-
cent beams of laser light which result in a interferometry
fringe pattern.

The camera unit is mounted fixed in a meridional angle
of u ¼ 30' relative to the north pole where u ¼ 0'. As
depicted in Fig. 1b and c the camera captures the experi-
ment with an opening angle of u ¼ 88', ranging from the
northern polar region at u ¼ "14' to the equatorial region
at u ¼ 74'. Six interferograms per turn are recorded for
longtime experiments which yields an imaging frame rate
of 0.048 Hz. This frame rate is sufficient to capture station-
ary convective processes accurately. The size of the images
is limited by the ODM to 992! 992 pixels (GeoFlow I, II,
IIb) and 640! 480 pixels (GeoFlow IIc). Short time exper-
imental runs with an imaging frame rate of 10 Hz are per-
formed, too. These are more difficult to handle, since the
size of the video stream is large compared to the available
storage capacity of the hard drive in the Video Monitoring
Unit (VMU). The frame rate of 10 Hz makes it possible to
follow unsteady, turbulent convective flows precisely, albeit
a full rotation at 0.008 Hz results in 1250 images. Lower
frame rates, as available in GeoFlow I, II, IIb, are not sui-
ted to track turbulent flows. However, only two turns can
be recorded at the maximum frame rate until the storage
capacity is exhausted.

So far, 1.641.975 images have been recorded. This
amount of images calls for an automatization of post-
processing. The files are listed in a SQL data base and
can be sorted by telemetry data which are available for
each image, too. The images are stored as single PNG files
or as S-Video streams.

Fig. 1. (a) Breadboard of the GeoFlow experiment as mounted in the FSL on the ISS. (b) Side view of the imaging device, (c) top view of area that is
imaged.
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3. Artificial interferograms

The experimental interferograms represent an integral
value of the radial temperature derivatives which are pro-
jected on the plane circle. Hence, it is not possible to recon-
struct the full three dimensional flow field or the
temperature distribution in the spherical gap directly with
the two-dimensional interferograms. This is caused by
two mechanisms. First, the mapping from 3D to 2D is sur-
jective by definition. Therefore, it is impossible to calculate
a unique reconstruction of the flow based on interfero-
grams alone. Second, the sign of the directional derivative
is unknown which makes it difficult to distinguish between
cold down-wellings and hot up-wellings. The strategy to
determine the temperature distribution in the spherical
gap is based on the so called backward reconstruction.
Three steps are necessary to perform this: (a) a comparable
numerical simulation is calculated, (b) an artificial interfer-
ometry is performed on the numerical temperature field, (c)

the experimental and the numerical interferograms are
compared. The crucial point of this reconstruction is the
comparison. Generic interferograms of thermal plumes or
laminar sheets have to be known. However, they are
achieved with e.g. ground based experiments, numerical
simulations or generic analytic functions. Experimental
investigations have been carried out by Sitte (2004),
Egbers et al. (2003) and von Larcher et al. (2008). These
experiments were conducted under the influence of the
axial gravitational force field of the Earth. The results of
these experiments are very useful, since they show compa-
rable thermal structures as in the lg case. However, the
axial gravitational field limits the number of different con-
vective structures. A typical interferogram performed with
a ground based experiment is depicted in Fig. 4a. The cen-
tral plume at the north pole exhibits in a concentric fringe
structure which is found as thermal plume in the numerical
simulations, too (Fig. 4b). However, analytic functions are
needed to verify the assumption, that plumes exhibit as
interferometric double ring structures.

3.1. Generic convective structures and their interferograms

As shown in Immohr (2006), interferograms of convec-
tive flows show two typical structures: (a) plume-like up-
and down-welling regions are characterized by double ring
structures, (b) sheet-like up- and down-welling regions
exhibit in stripes. Both generic structures can be generated
using a one dimensional temperature profile given by the
spline h : RP0 ! RP0 with

hðuÞ :¼ 1

4

ð2" uÞ3 " ð4" uÞ3 for u 6 1;

ð2" uÞ3 for 1 < u 6 2;

0 for 2 < u:

8
><

>:

Fig. 2. Wollaston shearing interferometry of the FSL as used to visualize refractive index variations: K the camera, L1;2;3 the lenses, PO the polarizer, W
the Wollaston prism, ST the beam splitter, Q the light source, UM the mirror, AO the adaption optics and EM the GeoFlow experiment.

Fig. 3. Fringe pattern of the conductive state at reference temperature
T ref ¼ 30:5 'C.
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We obtain the two-dimensional plume-like temperature
field H P by rotating this cubic spline around the vertical
coordinate axis, i.e.,

H P ðx; yÞ :¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

3

 !

;

and the corresponding sheet-like temperature field H S by
shifting the profile orthogonal to the x-axis, i.e.,

H Sðx; yÞ :¼ h
1

3
jxj

" #
:

Both temperature profiles are depicted in Tables 1 and 2,
respectively.

The calculation of artificial interferograms is based on
the assumption that fringes are generated by a derivative-
sensitive oscillating function. Furthermore, the density of
fringes (distance between two stripes with the same
intensity) should correlate directly with the gradient.

Fig. 4. (a) Typical interferogram conducted under Earth’s conditions (Sitte, 2004). The image shows a ‘double ring’ structure at the north pole for a
thermal convection experiment at Ra ¼ 3:5 & 106 and Pr = 35. The degrees from 20" to 88" visualize various opening angles for the camera. (b) In order to
interpret the pattern, a numerical simulation at the same Rayleigh number was performed. The temperature iso-surface reveals a rising, convective plume.
As presented in this section, this plume can be uniquely assigned to the ring structure in the interferogram. The cylindric structure in the south pole is the
shaft surrounding the rotation spindle and the thermal circuits.

Table 1
(a) Generic sheet-like temperature field H S (upper row) and corresponding artificial interferogram (lower row). The
polarization direction is depicted by the red arrow. Constant regions along the polarization direction generate constant
intensities. (b–c) Rotating the polarization plane exhibits in characteristic stripes where the finest stripes are found, when
the polarization direction is orthogonal with respect to the maximum of the gradient.
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Trigonometric functions are suitable for this task, as the
density can be adjusted by a multiplication factor
afringe with the frequency. We tested the cosine, as this
function is smooth and simple to handle. The ability of
generating fringes is given by the following example:
cosð2xÞ with afringe ¼ 2 is higher frequent and hence pro-
duces more fringes as cosðxÞ with afringe ¼ 1. The artificial
interferogram IðxÞ 2 ½"1; 1*, with x ¼ ðx; yÞ, is finally
obtained by the directional derivative of the radially
averaged temperature field Tmean along the polarization
vector s,

IðxÞ ¼ cos afringe &
@TmeanðxÞ

@s

" #
: ð1Þ

In practice, this derivative is approximated by a finite
difference. The multiplication factor ranges between
1 < afringe < 50 and has to be determined individually for
the given temperature field. The choice of taking the cos-
function is a compromise on the comparability to the
experimental interferograms and the sensibility due to
derivatives. The vector s is defined by the plane of polariza-
tion, the optical path and the surface shape. This has to be
set individually, too. Table 3 shows the calculation of an
artificial interferogram. First, the temperature field
(Table 3a) is integrated and weighted radially. We recom-
mend to interpolate the simulation data onto a finer grid,
as the numerical derivative gets smoother, (Table 3b).
Afterwards, the resulting planar function is derived in
direction of s (Table 3c). Finally, the cosine is applied

which yields the interferogram (Table 3d). The density of
stripes is adjusted by varying the pre-factor which is set
to afringe ¼ 12 in most calculations. We recommend
Immohr (2006) for a detailed view on further calculations
of artificial interferograms especially for microgravity
experiments.

3.2. Comparison of artificial and experimental
interferograms

Using the generic example shown in Tables 1 and 2 we
obtain the following characterization of sheet- and
plume-like structures: the interferogram of a sheet-like flow
consists of parallel lines. The black lines intensify when the
direction of polarization is orthogonal to the temperature
isolines and decreases when the angle between the direction
of polarization and the ‘sheet’ direction is lowered. This
behavior is obtained by changing the direction of polariza-
tion which is depicted in Tables 1 and 2 by the red arrow.
Sheets occurring parallel to the direction of polarization
are not detectable and show constant intensities
(Table 1a). Interferograms of a steep thermal plume are
characterized by double ring structures. These patterns
are often symmetric with respect to the rings, since the ther-
mal plumes are often rotationally symmetric, too. We find
from ground based measurements that the symmetry axis
between the ring pair is orthogonal to the direction of
polarization. Having this behavior in mind we get a rule
of thumb to determine the direction of polarization in
unclassified interferograms.

Table 2
(a) Generic plume-like temperature field H P (upper row) and corresponding artificial interferogram (lower row). The
polarization direction is depicted by the red arrow. (b–c) The rotation of the polarization plane by 45' and 90' changes the
orientation of the interferogram accordingly.
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4. Recognition

It was shown in Section 3 that sheet-like temperature
fields correspond to stripes in the interferogram and
plume-like temperature fields to double ring structures.
The question arises how these two structures are automat-
ically recognized in images. This section presents the math-
ematical background to answer this. For ease of
presentation the section is split into three parts. Firstly,
the image processing pipeline (Fig. 5) will guide the reader
from the input image and input parameters to the output.
Secondly, the mathematical foundations of stripe detection
are given in Section 4.2. Thirdly, the mathematics of fringe
detection are generalized to double ring structures in
Section 4.3.

4.1. Image pipeline

Image primitives such as corners, edges or texture ele-
ments may bedetected by convolving the image IðxÞ with

x ¼ ðx1; x2Þ and appropriate filter masks. Granlund and
Knutsson (1995) elaborated the fundamentals of this low-
level vision theory. A related low-level vision representation
which is closer to our stripes and double ring structures is
expanded by Bigun (2006). In image processing it is good
practice to start the image processing pipeline with 2D con-
volutions which modify the spatial frequency characteris-
tics by weighting each pixel within a well defined
window. Such convolutions are commonly used to sharpen
or blur the image, or – as in our case – to prepare the image
for detecting stripes. However, one looks for small filter
masks (e.g. smaller than 15! 15 pixels), so that the convo-
lution can be efficiently computed in the local space. As a
linear operation a convolution secures stability in terms
of ‘‘Small changes of the filter do not lead to large changes
in the output image”. A binary threshold is an example for
a nonlinear filter introducing instability – a small change of
the threshold can yield a drastic change of the output
image. For this reason binary operations are applied at
the end of image processing pipelines after corners, edges,

Table 3
(a) Numerical simulation of an unsteady convective flow in the spherical shell with Pr = 125, Ra ¼ 3 & 104 and a viscosity
contrast of c ¼ 32. The upper hemisphere shows cold down-wellings, colored dark gray. Hot rising plumes are visible in
the lower hemisphere as light gray spikes. (b) Radially averaged temperature field Tmean. Hot plumes appear as bright
spots, cold down-wellings as black lines. (c) The first derivative of the averaged temperature field in direction s of the
polarization plane. (d) Artificial interferogram. The frequency of the black-white alterations correspond to the first
derivative of the mean temperature field. Plumes correspond to double-ring structures, sheets to stripes.
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or textures have been identified using the gray value and
neighborhood respecting convolutions.

The following recognition process is described by means
of the image processing pipeline as depicted in Fig. 5.
Roman numerals in the text refer to processes which are
labeled with a diamond symbol. The pipeline is used to
abstract the stripe regions of image Table 4c and the dou-
ble ring regions of image Table 4d. However, the same
pipeline is applied on both structures. The ‘‘magic” for
the feature detection (stripes versus double rings) lies in
the second 2D convolution MW , where MW denotes the
structure adapted filter mask, (I). This gives the complex

valued image I20ðxÞ quantifying the occurrence of stripes
or double rings, (II). Table 4e and f display the original
interferogram overlaid with the color-coded feature indica-
tor I20, (III). The representation of I20 may be used for a
first inspection of the feature detection, the tuning of the
Gaussian interpolation with rI and of the window size with
rW . The stripes light up in blue (Table 4e) whereas the cen-
ters of the double rings light up in magenta (Table 4f).

As the color corresponds to the argument argðI20Þ, the
colored regions can be dissected by projecting the complex

number I20 onto the unit vector ðcos a; sin aÞT ;
"p 6 a 6 p, where a denotes the color or angle of interest,

Fig. 5. Image processing pipeline for stripe and double ring detection.
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Table 4
Recognition algorithm to detect patterns in interferograms. The first row shows the target patterns
of (a) stripes and (b) double ring structures. These generic patterns are found in interferograms as (c)
sheet-like and (d) plume-like flows. The complex valued tensor entry I20 marks best fits (blue)
between the original function and the image, as shown in (e) and (f). Local maxima of I20 (colored in
white) correspond to (g) regions of laminar flows and (h) thermal plume centers.
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(IV). The white regions of Table 4g and h are obtained by a
binary threshold of the result with using the value t. So, the
visual inspection of the color-coded representation of I20
allows for the tuning of the input parameters a and t to
reach a binarized highlighting of the structures of interest,
(V). This binarization may be processed further, (VI). In
case of the double rings, the centroids of the whitely pre-
sented foreground regions correspond well with the centers
of the rings, (VII, VIII).

The following two subsections are devoted to the first fil-
ters in the image pipeline, namely MI and MW. The two 2D
convolutions yield the complex valued feature detector I20.
Section 4.2 introduces the concept of the linear structure
tensor (LST), the mathematical background for the stripe
detection.

Harmonic functions pairs can be used to distort lines
into double rings. This trick from complex analysis is used
to generalize the LST. The concept of the generalized struc-
ture tensor (GST) is presented in Section 4.3. Our presenta-
tion of the LST and the GST follows (Bigun (2006),
Chapter 10, 11) tightly. The successful identification of
the double ring centers is the basis for applications which
are presented in Section 5.

4.2. Stripe detection

In the following, we introduce the mathematics of line
detection in the paragraphs (a)–(f). An overview can be
found at the end of paragraph (a).

(a) Table 4a shows a stripe image generated by
IðxÞ ¼ cosðbx2Þ where b > 0 names the parameter to steer
the number of stripes in the image. Using the more general

rule IðxÞ ¼ cosðbk & xÞ with k ¼ cos c
sin c

" #
, the stripes may

be rotated counter-clockwise by the angle c. Replacing
cosðb &Þ by a scalar function g leads to the definition of lin-
ear symmetry.

Definition 4.1 (cf. Bigun, 2006, Definition 10.1). Let k be a
two-dimensional real unit vector. An image I is called linear
symmetric, if its isocurves have a common direction, i.e.,
there exists a scalar function g such that

IðxÞ ¼ gðk & xÞ: ð2Þ

Table 4c illustrates an image where the labeled region is
approximately linear symmetric. The ‘‘common” direction
of the stripes in the red frame is not really ‘‘common”. It is
continuously varying. In the following, we investigate how
linear symmetric regions can be quantified based on Defini-
tion 4.1. For it, we give an energy formulation of a linear
symmetric image in the Fourier domain (b). In the Fourier
domain the linear symmetric energy of a region in direction
k is characterized by the structure tensor S, a 2! 2 matrix.
The eigenvector of S corresponding to the largest
eigenvalue yields the direction k of the pattern. The largest

eigenvalue of S quantifies the linear symmetry energyof the
region (c).

Assuming the particular region of a Gaussian window
with center xC, this structure tensor S can be approximated
for every single pixel with coordinates xC of the image by
switching back to the spatial domain. The mathematical
foundation for this step from the Fourier to the spatial
domain is the Parseval-Plancherel theorem (d). The
gradient rIðxÞ needed for computation of S will be
approximated by Gaussian interpolation (e). An eigenvalue
and eigenvector computation for every Gaussian window
corresponding S can be circumvented by a complex valued
representation Z of the structure tensor (f).

(b) The linear symmetry of an image I results in a con-
centration of its 2D Fourier transformation F to a line with
direction k which can be written as

F ðxÞ ¼ G ðk & xÞ dðk? & xÞ: ð3Þ

Here, x denotes the 2D frequencies. Furthermore, k? , is
orthonormal to k and d is the Dirac distribution in 1D. The
function G is the one-dimensional Fourier transformation
of g. This concentration of the 2D Fourier transformation
can be used to identify stripe patterns and their direction k.

The difference dðx; kÞ of the frequency vector x and its
projection on to k writes as

dðx; kÞ ¼ x" ðx & kÞk:

The error function

eðkÞ ¼
Z

X
jdðx; kÞj2 jF ðxÞj2 dx ð4Þ

weights the squared Euclidean distances jdðx; kÞj2 with the

energy jF ðxÞj2 and integrates over all 2D frequencies
x 2 X. The minimum kmin of the error function e yields
eðkminÞ ¼ 0 for linear symmetric images due to (3).

(c) The matrix S :¼ s11 s12
s21 s22

" #
defined by the

elements

sij ¼
Z

X
xixjjF ðxÞj2dx ð5Þ

is called the linear structure tensor of the image I (LST) (cf.
Bigun, 2006, Definition 10.2). S allows to rewrite the error
as the quadric form

eðkÞ ¼ kT traceðSÞ I " Sð Þk:

As S is symmetric, there exist real valued eigenvalues
and eigenvector pairs ðlmin; vminÞ; ðlmax; vmaxÞ of S. Using
standard calculus, it can be shown the minimum of the
error function e defined by (4) is obtained, if kmin ¼ vmax.

(d) The LST S can be used to look for stripe like struc-
tures and their direction k by applying it to environments
of every single point of the image denoted by the coordi-
nates xc. Usually these environments are given by a win-
dow function centered at xc which weights the grayvalues
at x with a factor 0 or close to 0 when the distance
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jx" xcj exceeds a certain limit. A prominent example of a
window function is the 2D Gaussian l2dxc defined by

l2dxc ðxÞ ¼ exp " 1
2r2W
jx" xcj2

$ %
where rW determines the size

of the window W.
The computational burden combined with the Fourier

transformation in Eq. (5) is avoided by applying the
Parseval-Plancherel theorem which replaces the integration
over the frequency domain X by an integration over the
spatial domain defined by the window W centered at xc

sij ¼
1

4p2

Z

W

@

@xi
IðxÞ @

@xj
IðxÞ dx: ð6Þ

(e) An image provides values on a discrete domain. To
compute the continuous operators @

@xi
; i ¼ 1; 2, andR

W & dx, an approximation of the values on a continuous
domain is needed. Let the discrete image I be given on
the discrete set of points xj;l. Using the 1D Gaussian inter-

polator function lðtÞ ¼ ð2pr2I Þ
"1=2

exp " t2

2r2I

$ %
band-limited

signal theory shows that

ICðx1; x2Þ +
X

j;l

lðx1 " xj;l;1Þlðx2 " xj;l;2ÞIðxj;l;1; xj;l;2Þ ð7Þ

gives a good approximation for a continuous extension of I
for rI , 0:65 which can be computed efficiently by two suc-
cessive 2D convolutions due to the tensor product structure
lðx1 " xj;l;1Þlðx2 " xj;l;2Þ. As l decreases rapidly, a sufficient
approximation is already obtained using only the j; l with
jx1 " xj;l;1j < 3rI and jx2 " xj;l;2j < 3rI . Taking larger rI
reduces high frequencies and is a common method to
reduce noise in images. Detailed analyses of the Gaussian
interpolator may be found in (Bigun, 2006, Chapters 6, 8,
9) and (Lindeberg, 1993).

With (7) one gets the partial derivatives

@

@x1
ICðx1; x2Þ +

X

j;l

l0ðx1 " xj;l;1Þ lðx2 " xj;l;2ÞIðxj;l;1; xj;l;2Þ;

@

@x2
ICðx1; x2Þ +

X

j;l

lðx1 " xj;l;1Þ l 0ðx2 " xj;l;2ÞIðxj;l;1; xj;l;2Þ:

ð8Þ

(f) The computation of the eigenvalues and eigenvectors
of S can be circumvented by switching to the following com-
plex representation of the structure tensor

Z ¼ 1

2

I11 "iI20
iI-20 I11

" #
where

I20 ¼ s11 " s22 þ i2s12;
I11 ¼ s11 þ s22:

ð9Þ

Here, I-20 denotes the complex conjugate of I20. Let

U ¼ 1ffiffi
2

p
1 "i
"i 1

" #
and let UH its Hermitian transposition.

As there holds UH U ¼ I and Z ¼ UH SU; Z and S are sim-
ilar. It follows with standard linear algebra that Z and S
have the same eigenvalues. Furthermore, straightforward
calculation yields

I20 ¼ ðlmax " lminÞ expði2uminÞ and I11 ¼ ðlmax þ lminÞ
ð10Þ

where kmin ¼
cosumin

sinumin

" #
minimizes the error function eðkÞ

defined in (4) (cf. Bigun, 2006, Theorem 10.2).
With this, the essential information of the structure ten-

sor S is already contained in the complex number I20. A pixel
with ideal linear symmetric neighborhood is characterized
by lmin ¼ 0 and lmax . 0. Therefore, the magnitude
jI20j ¼ lmax " lmin quantifies the occurence of stripes. Fur-
thermore, the double angle representation 2umin ¼ argðI20Þ
removes implicitly the ambiguity of the eigenvalue problem
that if k is an eigenvector, then "k is also an eigenvector.
Combining (6) and (9), I20 can be rewritten as

I20 ¼
Z

W
k Ið ÞðxÞdx using the complex differential

operator

k Ið ÞðxÞ ¼ @

@x1
IðxÞ þ i @

@x2
IðxÞ

" #2

: ð11Þ

The above paragraphs (a)–(f) sketched the mathematical
background of line detection. We finish this subsection by
summarizing the operations needed for the computation of
the line detector I20ðxÞ. Inspection of (11) makes it clear
that the derivatives @

@xi
IðxÞ; i ¼ 1; 2, and the integralR

W k Ið Þdx need to be implemented.
The derivatives are obtained by the two 2D convolu-

tions with the masks MIx and MIy realizing the Gaussian
interpolation l with respect to the parameter rI P 0:65
according to (8). The tensor structures (l 0ð&;; 1Þlð&;; 2Þ and

Fig. 6. Tracked paths of automatically identified stationary plumes with a
rotation rate of 0.008 Hz. Green dots mark the centers of plumes and the
red dots show the covered distance. Yellow squares show stationary dust
particles. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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lð&;; 1Þl0ð&;; 2Þ) allow for the efficient implementation of these
convolutions. Increasing rI will suppress high frequency
structures and noise. Using the complex differential opera-
tor k from (11), one sums up the masks and yields the com-
plex valued convolution mask MI ¼ MIx þ iMIy indicated
in Bubble I of Fig. 5.

According to paragraph (d) the integrationR
W k IðxÞð Þdx over a Gaussian window can be realized as
the weighted sum of k IðxÞð Þ over all points x in the neigh-
borhood of xC. Here, a neighborhood given by
jx" xCj < 3rW would be sufficiently accurate. Again, this
weighted sum can be implemented as a 2D convolution.
The entries of the convolution mask MW indicated in Ellip-
sis I of Fig. 5 correspond to the window function l2d0
defined in paragraph (d). The frequency of the detected
stripe pattern corresponds inversely proportional to rW .

4.3. Detection of double ring patterns

In this section the concept of a linear symmetric image is
generalized to patterns which can be generated from stripe
images by a coordinate transformation. We consider the
2D coordinate transformation n : R2 n f0g ! R2 defined by

nðxÞ ¼
nðxÞ
gðxÞ

" #
¼ 1

x21 þ x22
x1
"x2

" #
: ð12Þ

Table 4b shows a pattern generated by
IðxÞ ¼ cos bgðxÞð Þ where b > 0 names the parameter to
steer the number of black-white alternations. As in
Section 4.2 using the more general rule IðxÞ ¼ cos
bk & nðxÞð Þ, the pattern may be rotated counter-clockwise
through the angle c. Analogously to Definition 4.1 replac-
ing cosðb &Þ by a scalar function g leads us to the following
definition.

Definition 4.2 (Bigun, 2006, cf. Definition 11.1). Let k be a
two-dimensional real unit vector. An image I is called linear

symmetric in the coordinates n ¼ ðn; gÞ, if there exists a scalar
function g such that

IðxÞ ¼ g k & nðxÞð Þ:

Analogously to the structure tensor (6) on the window
W, the generalized structure tensor (GST) with respect to
the n coordinates may be defined by

S ¼

R
W

@I
@n

@I
@ndn

R
W

@I
@n

@I
@g dnR

W
@I
@n

@I
@gdn

R
W

@I
@g

@I
@g dn

 !

: ð13Þ

Furthermore, the corresponding complex valued repre-
sentation of the GST Z is defined by (9) with the entries
of the real valued GST from (13). The eigenvalues
lmin; lmax of S and Z, respectively, as well as kmin ¼
cosumin

sinumin

" #
are again obtained from (10) and the

magnitude jI20j quantifies the occurence of the pattern
linear symmetric in the n coordinates.

Adapting (11) to the n coordinates, I20 can be rewritten
as

I20 ¼
Z

W
kn Ið ÞðnÞdn using the complex differential

operator

kn Ið ÞðnÞ ¼
@

@n
IðnÞ þ i @

@g
IðnÞ

" #2

: ð14Þ

Standard calculus allows to switch back to the x coordi-
nates. We obtain

I20 ¼
Z

W

k-x nð ÞðxÞ
jk-x nð ÞðxÞj

kx Ið ÞðxÞdx: ð15Þ

where k-x denotes the conjugated complex of kx (cf. Bigun,
2006, Theorem 11.1).

In terms of complex analysis nðxÞ may be rewritten as
nðxÞ ¼ realz"1 with z ¼ x1 þ ix2. Due to the Cauchy-
Riemann equations, there holds

Fig. 7. (a) Elliptical track of a stationary plume in the northern polar region. The piercing point of the rotation axis (yellow point) is found by weighting
the centers of the ellipses. (b) Localization of the north pole via the secant method where equatorial plumes are tracked. Both methods yield the same
result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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@

@x1
" i @

@x2

" #
nðx1; x2Þ ¼

d

dz
z"1 and further k-x nð ÞðxÞ ¼

d

dz
z"1

" #2

¼ z"4:

We finish this subsection by specifying a discrete
approximation for the GST. Again, as in the case of the
structure tensor in Section 4.2, the discrete approximation
can be computed efficiently using the Gaussian as both
the window function and the interpolator. Let

Cf0;r
2gðxÞ ¼ 1

2pr2
exp " 1

2r2
ðjxj2Þ

" #

be the ordinary 2D Gaussian. We introduce the nth symme-
try derivativeto the Gaussian by

Cfn;r
2gðxÞ ¼ @

@x1
þ i @

@x2

" #n
Cf0;r

2gðxÞ for n > 0:

As the application of the differential operator @
@x1
þ i @

@x2

to Cf0;r
2g results in the multiplication

"r"2ðx1 þ ix2ÞCf0;r
2g, one obtains

Cfn;r
2g ¼ "r"2nðx1 þ ix2ÞnCf0;r

2g:

Let the derivatives @
@x1
I and @

@x2
I be approximated using

the Gaussian interpolator with rI and let the window W
be given by the Gaussian with rW . Taking this discrete ver-

sion of Cf4;r
2
W g as convolution mask, the discrete approxi-

mation of the GST can be written as the two discrete
convolutions - on the grid given by the image I, denoted by

I20 ¼ c C-f4;r
2
W g - Cf1;r

2
I g - I

$ %2

: ð16Þ

Here, C-f&;&g denotes the complex conjugate of Cf&;&g and c
a real constant. (cf. Bigun, 2006, Lemma 11.6). With this,

the convolution mask MI ¼ Cf1;r
2
I g and MW ¼ C-f4;r

2
W g indi-

cated in Ellipsis I of Fig. 5 determine a double ring
indicator.

The coordinate transformation n represents a special
case of a harmonic function pair (HFP) defined by the
complex monomial z"1. As it transforms a stripe image into
a double ring like pattern (cf. Table 4b), the generalization

Fig. 8. (a) Interferogram of a laminar convective flow for Ra ¼ 4000 and Pr ¼ 125. (b) Representative temperature iso-surface of the corresponding
numerical simulation (c) artificial interferogram, based on the numerical simulation. (d–f) A shift in the polarization direction lets the central plume in the
polar region appear as a cross in the interferogram.

Fig. 9. (a) Transient convective flow for Ra ¼ 16; 000 and Pr ¼ 125. (b) The representative temperature iso-surface of the corresponding numerical
simulation (priv. comm. A.-C. Plesa, DLR) reveals an octahedral structure (c) artificial interferogram based on the numerical simulation.
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of the linear structure tensor with respect to the transfor-
mation n permits the identification of double ring struc-
tures in images. An analytical function w : C n X ! C
with a finite set X of exceptions defines a HFP by
ðreal w; imag wÞ. Definition 4.2 works for arbitrary coordi-
nate transformations given by HFPs. A detailed analysis of
patterns generated by harmonic monomials zn; n is integer,
as well as of the discrete approximation of the GST for
their detection can be found in (Bigun, 2006, Chapter 11).

5. Tracking

Besides recognition, the tracking of the convective struc-
tures is one of the aims of this study. This task can be car-
ried out with little effort, if (a) the acquisition frame rate is
high with respect to the fluid velocity, and if (b) the convec-
tive structures are stable in their shape. The frame rate of
the experiment is fixed to two values, namely 0.048 Hz (long
term runs) and 10 Hz (short term runs), but only the latter
case is suitable for tracking. The plume tracking algorithm
starts with the pre-calculated centers ðxðtÞ; yðtÞÞ of convec-
tive plumes which are saved for each image and each time
step in an external array. Based on this sequence the paths
of convective structures can be extracted. However, this is
somewhat superficial, since convective processes underlie
merging, vanishing or formation. The plumes are captured
and labeled individually, but it is difficult to identify segre-
gated paths. To overcome this problem we analyze the
neighborhood of each plume and define a probability radius
R, where the plume will most likely appear in the next
image. This radius depends on the rotation rate, on the
imaging frame rate and on the velocity of the convective
structure. For testing purposes we use stationary cells (cf.
Section 6.3) with an angle velocity of x ¼ 1:4 mm=s. The
radius is set to a maximum of R = 6 px, keeping in mind
that the slow rotation moves a stationary plume with about
1 px per frame. This value is obtained from a full rotation
with 1250 images and a resolution of 992 ! 992 pixels.
The unique tracking of each plume is ensured by introduc-
ing the Euclidian norm of the transport vector
vt ¼ ðxiþ 1 " xi; yiþ 1 " yiÞ and fulfilling the inequality,

kvtk2 < R: ð17Þ

The transport vector vt measures the spatial change of
the plume location over two images. This method calculates
connected paths for segregated plumes as shown in Fig. 6.
The tracking has been applied on the low resolution images
of the GeoFlow IIc, too, where connected path could be
extracted by adjusting the radius R. We mention this here
because the successful low resolution test was mandatory
for the start of the campaign. Several applications can be
deduced from this type of recognition and tracking, e.g.
the calculation of fluid velocities, the measurement of merg-
ing time scales or the determination of invariants such as the
unknown coordinates of the north pole.

5.1. Identification of reference points

The calibration of the camera is used to quantify the geo-
metrical and optical properties which affect the imaging
process. This is essential for the reconstruction of the world
model, in our case the flow velocities. Commonly, well
defined checkerboard patterns are used to auto-calibrate a
camera. This option is not available at the ODM.
However, the camera properties can be reconstructed with
reference points, too. The GeoFlow experiment rotates
slowly which reduces the amount for these markers. Only
the north pole is a fixed point in the experiment and the
interferogram. The pole is the piercing point of the rota-
tional axis which intersects with the optical axis. As already
mentioned, the visualization of the GeoFlow experiment is
limited to the northern hemisphere. Therefore, the south
pole cannot be captured and does not contribute to the cal-
ibration process. The coordinates of the north pole are
deduced from closed elliptical tracks. Each plume creates
two ellipse-shaped curves which comes from the fact that
one single plume appears as double-ring structure with
two centers. The tracks form shifted, overlaying curves,
where the common center of the structures gives the desired
coordinates of the north pole. Two pole-surrounding
ellipses as well as the calculated coordinates (colored in
yellow) are shown in Fig. 7a. A second way of locating
the north pole is utilizing stationary equatorial plumes.
These plumes appear as elliptical curves too, but these are
not closed (Figs. 6 and 7b). The area bounded by the
perpendicular bisectors (yellow lines) approximates the

Fig. 10. (a) Turbulent convective flow for Ra ¼ 64; 200 and Pr ¼ 125. (b) The representative temperature iso-surface of the corresponding numerical
simulation (priv. comm. A.–C. Plesa, DLR) shows various steep convective plumes, surrounded by cold down-wellings. (c) Artificial interferogram based
on the numerical simulation.
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coordinates of the north pole and are within the uncertainty
margin of the coordinates found by the tracking method.

Other markers may be obtained by fixed dust particles in
the experimental gap (see yellow squares in Fig. 6). Some of
them stick at the shell and move with the rotational veloc-
ity. They become noticeable as tiny double ring patterns,
which lie on perfect ellipses. However, they have to be
tracked manually, as they are too tiny to be recognized
automatically by our algorithm. The optical distortion of
the interferograms is another source of coordinates. By
comparing the image point with the covered area in the
experiment, it is possible to obtain enough coordinates
for the exact calibration of the camera. This task is planned
for future work.

6. Comparison of experimental- and artificial interferograms

The identification of plume-like and sheet-like convec-
tive structures by means of generic examples was shown
in the previous sections. We are now able to deduce the
temperature field from a comparison between experimen-
tally gained interferograms and artificial interferograms
based on numerical simulations. This approach bears
uncertainties since the interferometric mapping is not
unique. However, the basic structures, e.g. octahedral,
axisymmetric or n-fold, can be determined. These flows
are stationary and unique in their shape. Turbulent, time-
depending structures are more difficult to aline with numer-
ical simulations. Long simulation times and merged pat-
terns request more post-processing effort. Depending
whether the regime is expected to be laminar or turbulent
two numerical codes are used. The laminar regime is cov-
ered by the spectral code of Hollerbach (2000). Turbulent
flows are calculated with the finite element code GAIAA
from the DLR (priv. comm. A.-C. Plesa). The spectral
solution converges significantly faster in the laminar regime
and is therefore more efficient than GAIAA. Otherwise,
GAIAA is parallelized and hence faster in the turbulent
regime. Currently, a new finite volume code, based on
OpenFOAM, is in preparation which will cover both
regimes for the dimensional set of equations. The following
non-dimensional equations describe the temporal evolution
of the three-dimensional flow field u and the temperature
field T. This numerically solved set of equations is scaled
with respect to the thermal time scale, the gap width, the
diffusion velocity and the temperature difference because
as these values are known from the GeoFlow IIc experi-
ment at the reference temperature T ref ¼ 30:5 'C. The
resulting non-dimensional numbers are the Rayleigh num-
ber Ra and the Prandtl number Pr,

Pr"1
Du

Dt
¼ "rp þ r & mðT Þ

mref
ðru þ ruTÞ

" #
þ Ra & T

r5
er ð18Þ

DT
Dt
¼ r2T ð19Þ

r & u ¼ 0: ð20Þ

The left hand side of the Navier-Stokes equation
(Eq. (18)) describes the advection of the flow field in terms
of the material derivative D=Dt. The right hand side models
the forces acting on the flow. These are the pressure, the
viscosity and the radial dependent buoyancy. The temper-
ature equation (Eq. (19)) is explained analogously. The left
hand side is the advection of temperature, the right hand
side models the influence of thermal diffusion. Both equa-
tions are coupled via the buoyancy force. The incompress-
ible assumption is fulfilled with the divergence-free velocity
field, Eq. (20). The temperature dependent viscosity is
modeled with the Arrhenius law,

mðT Þ ¼ mref e"ln mref =mhotð ÞT : ð21Þ

The viscosity contrast is set to c ¼ 32 and Pr = 125 (see
Appendix A for all relevant physical properties). The tem-
perature equation is coupled strongly with the Navier-
Stokes equation which might be used to reconstruct the
velocity field using the temperature distribution. In the fol-
lowing, we compare the experimental interferograms and
the numerical simulations for three representative cases
(laminar, transient, turbulent) qualitatively.

6.1. Laminar convective flow

The onset of convection and hence the laminar regime
starts at Ra ¼ 498:15. This value is independent from the
high voltage or the temperature difference, and obtained
by a linear stability analysis for c ¼ 32. The steady flow
regime switches to the transition regime at about
Ra ¼ 104 which is observed in the numerical simulations
and the experiment, too. However, the onset itself cannot
be studied directly with our experiment, because the resolu-
tion of the interferometry unit is too low to capture temper-
ature gradients below DT = 0.01 K. The critical Rayleigh
number is exceeded for a voltage V 0 > 10; 700 V at the
threshold value of DT = 0.01 K, but this voltage is beyond
the safety limit of the EC. Evaluable interferograms are
obtained for Ramin > 4000. The flow field is dominated by
sheet-like, regular, threefold and fourfold structures. While
the threefold (m ¼ 3) mode is dominant, the fourfold
(m ¼ 4) mode exhibits in more distinct interferograms.
Fig. 8a and d show a fourfold symmetry, which is clearly
identified as convective sheet. The numerical simulation
confirms this internal structure in the 3D reconstruction
(Fig. 8b), as well as in the artificial interferogram
(Fig. 8c). Additional structures appear by shifting the
polarization direction, which is depicted in Fig. 8d–e. The
pattern recognition algorithm localizes the areas of high
frequent stripes corresponding to this type of flow
precisely.

6.2. Transient convective flow

The transient regime separates laminar from turbulent
flows. In terms of the Rayleigh number, we find this region
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approximately between104 < Ra < 3 & 104. This regime
shows time-dependent structures which are found in both
the experiment and simulations. However, the flows are
still smooth compared to the turbulent regime. The given
range is not defined by clear-cut values, but is based on
observations of the GeoFlow experiment and numerical
results. The interferogram in Fig. 9a is dominated by
ridged structures surrounding single, unconnected plumes.
We observe weakly unsteady octahedral structures in the
numerical simulation (Fig. 9b), which exhibit as single dou-
ble rings in the artificial interferogram (Fig. 9c). Again,
these structures are accurately found as in the laminar case.

6.3. Turbulent convective flow

The turbulent regime ðRa > 3 & 104Þ is characterized by
highly unsteady convective flows in most cases. The inter-
ferogram in Fig. 10 shows rapidly changing patterns which
are difficult to track at high rotation rates. Merging effects
and interpenetration dominate this regime which inhibit
the recognition with only one harmonic function pair. This
gets visible in the top left corner of Fig. 10a, where several
plumes merge and form an unclassified new pattern. Inter-
estingly, we found an ‘island of stability’ (Table 4d) in the
low turbulent regime (Ra + 5 & 104) which delivers weakly
unsteady, but distinct plumes. These interferograms are
used to test the presented algorithm. As laminar stripes
are not visible, but low fluid flows exists, the recognition
is tested under conditions close to reality.

7. Conclusion and discussion

The measurement of convective flows with interferome-
try is a common and robust experimental technique.
Nowadays, fast digital cameras and modern lasers give
the opportunity to investigate fluid flows with high spatial
and temporal resolution. However, measured interfero-
grams are mostly processed manually. This works for small
data sets, but gets exhausting for large series as they occur
for time-dependent fluid flows. The presented automatic
recognition of patterns in interferograms delivers the
chance to reduce the post-processing costs for such flows.
Basically, experimentally gained results are compared with
artificial interferograms to interpret the convective flows.
These artificial interferograms are based on numerical sim-
ulations, performed with two different codes. Laminar
flows exhibit in symmetric configurations which change
to unsteady octahedral structures in the transient regime.
Turbulent flows appear are unsteady convective and plume
dominated process. The comparison of experimentally
gained interferograms and artificial interferograms is only
qualitatively, but delivers sufficient indications about the
structural processes. So far, we could not test our results
against other existing numerical results or experiments.
The physical model of GeoFlow IIc, using the r"5 depen-

dency and the temperature dependent viscosity, is very
specific and not investigated by other authors. However,
Feudel et al. (2011) studied iso-viscous convection in the
spherical shell with the same radial dependency. Besides a
seven-cell and an axisymmetric structure, they found a
stable octahedral state for the transient regime. The inter-
ferograms at low temperature difference which are only
weakly effected by the thermo-viscous influence, show this
symmetry, too. The viscosity contrast of c ¼ 32 gives rea-
sonable alignments between the experiment and the numer-
ical simulations for the GeoFlow II mission. However, the
origin of this high contrast cannot be explained by the
physical properties of the fluid alone. It is assumed that
the high voltage has a non-linear effect on the relative per-
mittivity !r. This has to be tested under laboratory condi-
tions and needs further investigations. The thermo-
viscous case is covered by codes modeling the Earth’s man-
tle and similar objects. However, the stagnant-lid convec-
tion with infinite Prandtl numbers and viscosity contrasts
of c. 104 are far away from our parameter space. Any-
how, the utilized GAIAA code (DLR) and the spectral
code of Hollerbach (2000) are consistent in their results
and reproduce the experimental interferograms.

The informative value of the interferograms is enhanced
by the localization and the tracking of convective plumes.
Tracks of stationary plumes are used to determine refer-
ence points like the north pole. The coordinates of these
points can, for instance, be used to calibrate the camera.
This challange is already in preparation. The aim of this
calibration is the correct calculation of plume velocities.

The recognition algorithm can be applied to any interfer-
ometric image with patterns generated by the presented
class of harmonic function pairs. This class covers many
convective fringe patterns. The plume-like interferograms
found in experiments of Kassemi and Rashidnia (2000) or
Feng et al. (2015) might be tested with our routines. Addi-
tionally, these convective processes are unsteady, which
could be used to apply our tracking routine, too. The inter-
ferometric stripes, as shown in Hiby et al. (2009) or Guo
and Huang (2010), have qualitative similarities with pat-
terns found in the laminar regime of the GeoFlow experi-
ment. Again, these images can be used with our algorithm.

The pattern recognition algorithm processes the interfer-
ograms also fast. Images with resolutions comparable to
ours are processed within several seconds. All steps of the
image processing pipeline can be parallelized. The convolu-
tions needed to generate the complex valued tensor can be
computed on GPUs, too. With this, real-time applications
are feasible.

Limitations of the technique are given by fast changing
structures e.g. convective merging processes, and by low
acquisition frame rates. In order to capture shape chang-
ing, turbulent thermal structures with the algorithm an
adaptive exchange of the harmonic function pairs would
be required. This is not considered here, but conceivable
for future research.
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Interferograms deliver information about the tempera-
ture field, but the velocity field can only be approximated
from the temperature field indirectly. The direct assessment
of the flow field requires further techniques, as PIV or
LDA. However, particles are needed to determine the fluid
flow, but might cause safety problems on the ISS and an
unforeseeable working-load for astronauts.

The algorithm was only tested for very low rotation
rates. As many GeoFlow experiments were carried out at
high rotation, the adaption of the image processing pipe-
line to interferograms from these runs will be the next step
of the GeoFlow evaluation.
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Appendix A

Tables A1 and A2.

Table A2
Physical and geometrical properties of the GeoFlow experiments.

Parameter Unit GeoFlow I GeoFlow II GeoFlow II

Physical properties
Environmental temp. T ref "C 25.0 20.0 30.5
Density qref kg/m3 920 820 822
Kinematic viscosity mref m2/s 5:00 & 10"6 1:42 & 10"5 9:73 & 10"6
Relative permittivity !r 1 2.70 8.60 8.83
Dielectric expansion aE 1/K 1:07 & 10"3 2:95 & 10"3 2:46 & 10"3
Thermal conductivity k W/(m&K) 1:16 & 10"1 1:63 & 10"1 1:58 & 10"1
Thermal diffusivity jref m2/s 7:78 & 10"8 7:94 & 10"8 7:76 & 10"8
Prandtl number Pr 1 64 178 125
Ra number Ra 1 1:43 & 105 " 1:43 & 107 5:60 & 102 " 1:75 & 105 7:15 & 102 " 2:24 & 105

Parameter Unit Property

Geometrical properties
Inner radius ri mm 13.5
Outer radius ro mm 27.0
Gap width H mm 13.5
Radius ratio ri/ro 1 0.5
Weight kg 34
EC size m3 0:40! 0:28! 0:27

Table A1
Overview of the GeoFlow missions and the parameter space.

Unit GeoFlow I GeoFlow II GeoFlow IIb GeoFlow IIc

Execution
Date 08/2008–01/2009 03/2011–05/2012 12/2012–05/2013 11/2016–02/2017
Scientific time h n.a. 1.377 507 639
Performed vs. defined runs 10/30 43/52 12/48 63/63

Variation of experiment parameters
Working fluid Silicone oil M5 Alcohol 1-Nonanol Alcohol 1-Nonanol Alcohol 1-Nonanol
Viscosity contrast c 1 c ¼ 1 c ¼ 32 c ¼ 32 c ¼ 32
Temp. difference DT K 0:1 < DT 6 10 0:2 < DT 6 10 0:2 < DT 6 10 0:4 < DT 6 9:6
Voltage V0 kV 10 6.5 1:8 6 V 0 6 6:5 1:8 6 V 0 6 6:5
Rotation rate X Hz 0.008 0.008 0.008; 0.8; 1.6 0.008; 0.8; 1.6

Imaging
Frame rate Hz 0.048 0.048 0.048; 10 10
Images recorded 114.697 273.771 156.466 1.097.041
Telemetry data sets Lines 342.698 4.810.834 1.736.502 2.219.021
Data GB 92 263 176 290
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Influence of the temperature-dependent viscosity on convective flow in the radial force field
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The numerical investigation of convective flows in the radial force field caused by an oscillating electric field
between spherical surfaces has been performed. A temperature difference (T1 > T2) as well as a radial force
field triggers a fluid flow similar to the Rayleigh-Bénard convection. The onset of convective flow has been
studied by means of the linear stability analysis as a function of the radius ratio η = R1/R2. The influence of
the temperature-dependent viscosity has been investigated in detail. We found that a varying viscosity contrast
β = ν(T2)/ν(T1) between β = 1 (constant viscosity) and β = 50 decreases the critical Rayleigh number by a
factor of 6. Additionally, we perform a bifurcation analysis based on numerical simulations which have been
calculated using a modified pseudospectral code. Numerical results have been compared with the GeoFlow
experiment which is located on the International Space Station (ISS). Nonturbulent three-dimensional structures
are found in the numerically predicted parameter regime. Furthermore, we observed multiple stable solutions in
both experiments and numerical simulations, respectively.

DOI: 10.1103/PhysRevE.96.023108

I. INTRODUCTION

Buoyancy driven convective flows play a crucial role in
geophysical and astrophysical research, and furthermore in
the understanding of dynamos in the core of planets. Radial
fields induced by means of an artificial electric force field in
the spherical gap and coupled with temperature can be used
to investigate convective flows in geophysics and astrophysics
numerically and experimentally as well. Furthermore, a mech-
anism of the artificial gravity is useful for the flow control and
heat transfer. To trigger such flows the influence of the Earth’s
gravity must be eliminated and heating source has to be placed
to enable the artificial buoyancy force. The first condition can
be satisfied by performing the experiment under microgravity
conditions, e.g., on the International Space Station (ISS). A
possibility to realize the second one is to set a temperature
difference between surfaces, say the inner surface is warmer
than the outer one (T1 > T2). The radial force field is created
by an electric field E which induces three forces. The force
density generated byE imposed on a dielectric fluid is obtained
by [1]

fe = ρeE−
1
2
E2∇ϵ(T ) + ∇

!
1
2
ρ

"
∂ϵ
∂ρ

#

T

E2
$
, (1)

where the first term is the Coulomb force with free charge
ρe. This force can be neglected as the inherent frequency
is several magnitudes higher than characteristic process fre-
quencies found in convective flows. The third one, namely
electrostrictive force, is combined with the pressure gradient
in the Navier-Stokes equation. The remaining second term
corresponds to the dielectrophoretic force fdep. In principle,
the electric permittivity ϵ is a tensor of rank 2, depending on
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temperature and frequency. In the case of small temperature
fluctuations the electric permittivity is approximated by a
linear function

ϵ(T ) = ϵ0ϵr [1− γ (T − T2)]. (2)

The force fdep can be written after small algebra as follows:

fdep = −γ (T − T2)ge, ge = ϵ0ϵr

2ρ
∇E2, (3)

where ge is the electric field due to the induced artificial gravity
field and γ is the thermal coefficient of the permittivity. The
electric field can be found by solving the Gauss equation [2].
An expression for the gravity is simplified for large frequency
ω of the applied electric field approximation: ω ≫ τ−1

e = σ/ϵ,
with electrical conductivity σ . A period averaged relation for
the gravity reads

ge = −2V 2
rms

ϵ0ϵr

ρ

R2
1R

2
2

(R2 − R1)2

1
r5
er . (4)

Because the dielectrophoretic force fdep and the induced
artificial gravity have opposite directions the problem can be
compared with the classical Rayleigh-Bénard problem.

This specific problem has been considered by many authors
in the case of the constant viscosity. The linear stability
analysis for the radius ratios η = R1/R2 = 0.1–0.7 has been
performed in [3] to investigate the onset of convection. It
was found that in the nonrotating case critical Rayleigh
number, obtained by means of the linear stability analysis,
RacL, increases with increasing in η. Moreover, the basic flow
becomes unstable with respect to steady perturbations and
does not depend on the Prandtl number. Perturbations have
been represented in terms of spherical harmonics, Ym

ℓ , and
because of the spherical symmetry the linear stability analysis
is performed in terms of the degree ℓ and not of the azimuthal
wave number m as it occurs in rotating systems. Therefore, it is
particularly important to perform nonlinear three-dimensional
calculations to detect which patterns the system prefers. Busse
[4] solved the pattern selection problem of the convective
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flow in the nonrotating case analytically, in which degree
ℓ plays a crucial role. He found solutions with ℓ = 4 and
ℓ = 6. Recently, the multiplicity of supercritical states has
been detected in [5] by means of numerical simulations,
using a pseudospectral code, developed by Hollerbach [6].
Octahedral and axisymmetric structures have been observed in
the interval 2491 < Ra < 5000 (RacL = 2491), for the radius
ratio η = 0.5 and Prandtl number Pr = 64.64. Further increase
in Rayleigh number up to Ra = 17450 leads to the appearance
of a seven-cell structure and periodic flow. Experimental
investigations of the convective flow under the influence
of the artificial gravity in the form of ge ∼r−5 have been
performed in [7] for fluids with constant viscosity like silicon
oil. Spatiotemporal irregular structures have been observed for
Ra = 6.0× 104. We expect that the use of working fluids with
temperature-dependent viscosity enables the occurrence of
new fluid structures which can have an important geophysical
application [8,9].

The microgravity experiment GeoFlow is designed to
capture convective flows with these properties. This is a
motivation for our numerical efforts. First experimental and
numerical results [10,11] show that sheetlike flows can be
observed for moderate Rayleigh numbers, and that plumelike
thermal flows develop if the Rayleigh number increases.
Numerical three-dimensional solutions have been obtained
by using the finite-volume method. But only recently we
have developed a pseudospectral numerical code which is
able to perform the linear stability analysis and evaluation
of three-dimensional flows as well.

Solomatov [12] characterized convection with temperature
dependent viscosity as follows. Isoviscous situations and small
contrasts (β < 102) in the viscosity belong to the mobile-lid
type. Here, convective plumes reach the colder boundaries. For
102 < β < 104 the sluggish-lid regime dominates the flow.
The viscous boundary layer at the colder side is significantly
larger than at the hotter boundaries. This reduces the velocity
of convective plumes. Situations where β > 104 develop a
stagnant lid. Convective plumes are not able to reach the
cold solid boundary. Recently, Curbelo and Mancho [13,14]
published results for the transient sluggish lid case. Their
simulations showed traveling waves, heteroclinic connections,
and chaotic regimes in a two-dimensional setup in the presence
of the O(2) symmetry.

This paper is organized as follows. After discussion of
governing equations in Sec. II we formulate briefly the
numerical method (Sec. III) with which the problem under
consideration is solved. Stability of the basic flow has been
investigated by means of the linear stability theory in Sec. IV.
Some examples of three-dimensional flows are presented
in Sec. V A, two bifurcation scenarios and diagrams are
discussed in Sec. V B, the behavior of the Nusselt number
which describes the heat transfer is shown in Sec. V C, and
comparison between numerical calculation and experimental
results has been performed in Sec. VI.

II. EQUATIONS

We consider an incompressible viscous dielectric fluid in
the spherical gap of width d = R2 − R1. The inner surface
is maintained at the warmer temperature than the outer one

(T1 > T2). Introducing the following scaling ,T = T1 − T2
for the temperature, ρ0(κ/d)2 for the pressure, d for the length,
κ/d for the velocity, and tκ = d2/κ for the time, and using the
Boussinesq approximation, the Navier-Stokes equation, the
energy equation, and the continuity equation can be written in
the dimensionless form as follows:

Pr−1
!
∂U
∂t

+ (U · ∇)U
$

= −Pr−1∇P + Ra
η2

(1− η)4

T

r5
er

+∇ ·
!
ν(T )
νref

[∇U+ (∇U)T ]
$
,

(5)

∂T

∂t
+ (U · ∇)T = ∇2T , (6)

∇ · U = 0. (7)

The flow depends on the radius ratio η = R1/R2, the Prandtl
number Pr = νref/κ = 125 (1-Nonanol, GeoFlow II [10]), and
the Rayleigh number

Ra = 2ϵ0ϵrγ

ρνrefκ
V 2

rms,T ,

where ϵr is the relative permittivity, γ is the permittivity,
V 2

rms = V 2
0 /2 is the voltage, ρ is the density, and νref is

the viscosity on the outer and colder surface. The velocity
should obey the no-slip boundary conditions u = 0 and T = 1,
T = 0 for the temperature on the surfaces r = η/(1− η)
and r = 1/(1− η), correspondingly. The influence of the
temperature-dependent viscosity is the focus of the research
presented. The kinematic viscosity varies according to the
Arrhenius law

ν(T ) = νrefe
−(lnβ)T , (8)

where β = νref/νhot = νcold/νhot is the viscosity contrast that
varies between β = 1 (constant viscosity) and β = 50 and
must be taken into account by solving the Navier-Stokes
equation. The equations (5)–(8) with the boundary conditions
have to be solved numerically.

III. NUMERICAL METHOD

The fully three-dimensional pseudospectral numerical code
for the spherical geometry has been developed by Hollerbach
[6] for the case of the constant viscosity. We expanded this
tool on the situation when the viscosity varies according to the
Arrhenius law Eq. (8). The poloidal-toroidal representation of
the velocity field

U = ∇ ×∇ × (.er ) + ∇ × (/er ) (9)

obeys the continuity equation. Separated equations for poloidal
. and toroidal / potentials are presented in the Appendixes.
After performing the mapping r = 1

2 [z + 1+η
1−η

], where z ∈
[−1,+1] each scalar function can be expanded in terms of
Chebychev polynomials Tk−1(z) in radial direction and in
terms of spherical harmonics Ym

ℓ (θ,φ) = P m
ℓ (θ )eimφ for the

angular dependence. Expressions for poloidal and toroidal
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potentials can be written as follows:

.(t,r,θ,φ) =
MU%

m=0

LU%

ℓ=ℓ
′

KU+4%

k=1

(gckℓm(t) cos(mφ)

+gskℓm(t) sin(mφ))Tk−1(z)P m
ℓ (θ ), (10)

/(t,r,θ,φ) =
MU%

m=0

LU%

ℓ=ℓ
′

KU+2%

k=1

(fckℓm(t) cos(mφ)

+ fskℓm(t) sin(mφ))Tk−1(z)P m
ℓ (θ ), (11)

where ℓ
′ = max(1,m), and KU, LU, and MU are cutoff

parameters that vary between 20–30, 30–40, and 20–30,
correspondingly. Time-dependent spectral coefficients have
been calculated by means of the predictor-corrector method.
The smallest time step was ,t = 2× 10−5. Note that four
boundary conditions for . and two for / are necessary (see
the Appendixes).

IV. LINEAR STABILITY ANALYSIS

The system of equations (5)–(8) has basic flow solution u =
u0 = 0 , Tcond = η

(1−η)2
1
r
− η

1−η
. In contrast to the Rayleigh-

Bénard convection, the artificial gravity is not constant and
depends on r according to ge ∼r−5. Stability of the basic
flow is investigated by means of linear stability theory, which
is used to find such critical Rayleigh numbers, RacL, above
which the flow becomes unstable with respect to infinitesimal
perturbations.

To calculate the critical Rayleigh numbers in frames of
the linear stability theory the Navier-Stokes equation as well
as the energy equation have to be linearized. Furthermore,
the eigenvalue problem for the radius ratios between η =
0.1–0.7, for different viscosity contrasts β = 1–50 needs to be
solved, too. The basic flow is subjected to small perturbations
ũ(t,r,θ,φ) for the velocity, p̃(t,r,θ,φ) for the pressure, and
2(t,r,θ,φ) for the temperature. Substituting the perturbed
functions U = u0(= 0) + ũ, P = p0 + p̃, and T = Tcond + 2
in Eqs. (5)–(8) and neglecting nonlinear terms results in

Pr−1 ∂ũ
∂t

= − Pr−1∇p̃ + Ra
η2

(1− η)4

2

r5
er

+ f̃0 + ν(Tcond)
νcold

∇2ũ, (12)

∂2

∂t
− ũr

η

(1− η)2

1
r2

= ∇22, (13)

∇ · ũ = 0, (14)

with

f̃0 =

⎛

⎜⎜⎝

νr (Tcond)
νcold

D̃rr

νr (Tcond)
νcold

D̃rθ

νr (Tcond)
νcold

D̃rφ

⎞

⎟⎟⎠,

where D̃ij are components of the rate-of-strain tensor for the
perturbed velocity field multiplying by 2. Equations can be
formulated in terms of the poloidal-toroidal decomposition.
The potential .̃ obeys Eq. (A2) with force F̃ = Ra η2

(1−η)4
2
r5 er .

TABLE I. Critical Rayleigh numbers RacL.

η ℓc β = 1 β = 6 β = 32 β = 50

0.10 1 836.55 372.57 178.72 147.08
0.20 2 1162.12 491.43 232.97 191.55
0.25 2 1283.95 544.15 257.85 212.42
0.30 2 1483.25 628.39 296.49 243.92
0.40 3 1897.87 801.22 379.34 312.33
0.50 4 2491.03 1052.10 498.15 409.96
0.56 5 2967.24 1254.15 594.14 488.79
0.62 6 3591.17 1519.08 719.35 591.59
0.65 7 3984.94 1686.66 799.02 656.92

The right hand side in Eq. (A3) is zero. Therefore, taking into
account the boundary conditions for the toroidal potential,
we get /̃ = 0. Hence we have to solve the system of two
equations for .̃ and 2 to derive the critical Rayleigh number.
The stability problem has been solved by two methods: the
first one by solving a generalized eigenvalue problem [15] and
the second one by the time integration of linear Eqs. (12)–(14).
Both methods enable the calculation of the leading eigenvalue,
σ , which has the largest real part. Numerical analysis shows
that the basic flow becomes unstable with respect to steady
perturbations, i.e., Im(σ ) = 0 for all radius ratios and viscosity
contrasts considered. Therefore, as in the case of the Rayleigh-
Bénard convection, the first instability does not depend on
the Prandtl number. The leading eigenvalue is the growth
rate in linear regime, calculated according to σ = 1

,t
ln2(t+,t)

2(t)
because the time dependency of perturbation is proportional
to eσ t . The critical Rayleigh number corresponds to σ = 0.
Results of both methods coincide with accuracy much less than
1%. Furthermore, the critical Rayleigh number at the onset of
convection does not depend on the azimuthal wave number m.
Hence the linear stability equations can be separated for each
number ℓ. Summarizing, the critical Rayleigh number obeys

RacL(η,β) = min
ℓ

Raℓ(η,β). (15)

Results of the linear stability analysis are presented in Fig. 1
(note the logarithmic scale for RacL) and in Table I. Critical
Rayleigh numbers and ℓc have been calculated as function
on radius ratio for η ∈ [0.1,0.7] and for viscosity contrasts
β = 1,6,32,50. A stability analysis for the constant viscosity
case (β = 1) has been performed too and discussed in [3]. Note
that critical Rayleigh numbers and ℓc increase with increasing
in η for fixed β. But the temperature-dependent viscosity leads
to the remarkable decreasing of the critical Rayleigh numbers
RacL. Indeed, whereas the onset of convection occurs at
RacL = 836.55 for η = 0.1 and at RacL = 2491 for η = 0.5 in
the case of the constant viscosity, the critical Rayleigh number
shifts to RacL = 147.08 for η = 0.1 and RacL = 409.96 for
η = 0.5 for the viscosity contrast β = 50 (Table I). But,
generally, shapes of stability curves for temperature-dependent
viscosity (β > 1) and constant viscosity (β = 1) are similar.
Even intervals, in which the number ℓc is critical, shift only
slightly from one β to the other. The next important feature
is that the intervals with higher critical numbers ℓc become
very narrow if η increases. This provides a multiplicity of the
three-dimensional supercritical states.
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FIG. 1. Critical Rayleigh numbers RacL as function on η.

V. 3D DYNAMICS SIMULATION

Solutions of the fully three-dimensional nonlinear problem
are necessary for the identification of the three-dimensional
structure of the flow. Moreover, results obtained in frames
of the linear stability theory can be checked by means of
three-dimensional calculations. However, only two bifurcation
scenarios are analyzed, since the full analysis of the bifurcation
branches would go beyond the scope of this study. The analysis
of the three-dimensional flow begins with the presentation of
slightly supercritical states. Furthermore, we investigate the
behavior of the Nusselt number which is important for the
description of the heat transfer. Additionally, experimental
results allow one to corroborate numerical simulations. A
comparison of numerical and experimental results form the
GeoFlow experiment for the case η = 0.5 and β = 32 is
presented in Sec. VI and ends this study.

A. Onset of convection

We present the bifurcated branches of solution near the
onset of convection using results of local bifurcation analysis
with spherical symmetry and time integration. The spherical
symmetry of the problem gives information of the kind of
bifurcations near the onset of convection [16]. For generic
conditions (codimenion-1 bifurcation), the possible bifurcated
branches depend only on the ℓc critical mode [16]. In particular,
the bifurcation is (supercritical or subcritical) pitchfork for
odd modes and transcritical for even modes. Because of
the spherical symmetry, the solution branch belongs to an
orbit of solutions obtained by rotation around the centroid.
Moreover, note that the pitchfork bifurcation breaks the
antipodal symmetry (r→−r) noted S. However, the solution
X and its opposite S(X) belong to the same orbit so, in this
paper, we represent only one branch. Moreover, the theory
of bifurcation with symmetry allows one to characterize the
symmetry of the bifurcated branches at least for ℓ ! 4 [17].

The definition of symmetry groups relevant for the paper are
given in Appendix B. We list the bifurcated branch for ℓc ! 4
as follows.

(i) ℓc = 1. One axisymmetric branch [O(2)− symmetry].
(ii) ℓc = 2. One axisymmetric branch [O(2)⊕ Zc

2]. This
branch crosses the bifurcation point and it is unstable.

(iii) ℓc = 3. Three branches with the symmetries: O(2)−,
Dd

6 (threefold rotations), and O− (tetrahedron symmetry).
The axisymmetric solution is unstable and there is one stable
branch among the Dd

6 and O− branches.
(iv) ℓc = 4. Two unstable transcritical branches with the

symmetries O(2)⊕ Zc
2 and O− cross the bifurcation point.

Therefore, the direct time integration is required to deter-
mine the stable branch for ℓc = 3, on the one hand, and, on the
other, for ℓc = 2 or 4 to find the attractor near the onset since
all bifurcated branches are unstable. We present two samples
of the slightly supercritical three-dimensional flow for radius
ratios η = 0.1 and η = 0.5 to examine results given by the
linear stability analysis. Dynamic features are characterized by
the total kinetic energy of the fluid E that can be represented
as summation over the energies Eℓ, corresponding to the wave
modes ℓ,

E = 1
2

,

V

u2dV =
%

ℓ

Eℓ =
%

ℓ

ℓ%

m=0

εℓm. (16)

In all cases the conducting state has been used as an initial
condition. To produce a three-dimensional flow some spectral
coefficients with m > 0 [see Eq. (11)] have been perturbed.
No symmetry has been assumed. The nonlinear analysis
confirms that the basic state [u0 = 0 and T0 = Tcond(r)]
loses stability, if the Rayleigh number exceeds the critical
one (Ra > RacL = 147.08) for η = 0.1 and β = 50 (Fig. 2).
Calculation of energies Eℓ show that the degree ℓ = 1 is
dominant (Table II), which is in good agreement with the linear
stability (Table I). Modes ℓ = 1, m = 1 (ε11 = 0.2968) and
ℓ = 2, m = 2 (ε22 = 2.1459× 10−2) have a most significant
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FIG. 2. Radial velocity component for η = 0.1, Ra = 150, Pr =
125, and β = 50 in the middle of the gap.

influence on the three-dimensional structure (Fig. 2). Please
note that to make the influence of the mode ℓ = 1, m = 1
visible the axisymmetric mode has been eliminated.

In case of radius ratio η = 0.5 nonlinear calculations,
performed with small values of the spectral coefficients that
have been used as initial conditions, are in very good agreement
with linear stability results, too. The radial component of
the three-dimensional steady flow obtained just above RacL

has an octahedral (Fig. 3) form as in the case of con-
stant viscosity β = 1 [5]. But, in case of the temperature-
dependent viscosity, e.g., β = 50, the flow becomes unstable
much earlier at RacL = 409.96 (Table I). According to the
three-dimensional calculations this pattern has two dominant
modes (Table III), corresponding to ℓ = 4, m = 0 (ε40 =
26.6964) and ℓ = 4, m = 4 (ε44 = 19.0688) in qualitative
agreement with the analytical result obtained by Busse [4] and
Bercovici et al. [18].

B. Bifurcation diagrams

Before we start discussion of the bifurcation diagrams, it
is useful to introduce some definitions that are important for
the description of the system under consideration. Because the
basic flow is absent (u0 = 0) it is convenient to define the value

a =
√

E (17)

as the amplitude of the flow. The behavior of the amplitude is
controlled by the supercriticality, δ = (Ra− RacL)/RacL, or
Rayleigh number control parameter.

TABLE II. Kinetic energy of the first four modes for η = 0.1,
Ra = 150, Pr = 125, and β = 50.

ℓ Eℓ ℓ Eℓ

1 0.3151 3 8.631× 10−4

2 0.0322 4 3.090× 10−5

FIG. 3. Radial velocity component for η = 0.5, Ra = 412, Pr =
125, and β = 50 in the middle of the gap.

We present only two bifurcation scenarios occurring in gaps
with radius ratios η = 0.1 and η = 0.5 and for fixed Prandtl
number Pr = 125.

Numerical calculations, performed for wide gap (η =
0.1), show that critical Rayleigh numbers, given by three-
dimensional analysis, coincide with RacL, obtained by means
of the linear stability analysis for all viscosity contrasts consid-
ered. The next confirmation of the linear stability results is that
the three-dimensional flow is steady. The bifurcation diagram
for this situation is presented in Fig. 4. The Navier-Stokes
equation has a stable conductive solution at δ < 0. Convection
sets in at the bifurcation point δ = 0. If the Rayleigh number
exceeds the critical one, δ > 0, the conductive solution loses
its stability with respect to infinitesimal perturbations. The
instability sets in as a pitchfork supercritical bifurcation,
because the conductive solution becomes unstable only at
δ > 0. Note that the critical degree is ℓc = 1 in agreement with
theoretical results. According to the Landau equation [19] the
amplitude at the vicinity of the critical Rayleigh number can
be approximated by the expression

a = Ca(β)
√

δ. (18)

Values of the constant Ca are located between Ca = 4 and
Ca = 5 (Table IV). It it interesting to note that this kind of
bifurcation is usual in the case of the constant viscosity, e.g.,
in the box with free-slip boundaries [20] and in the cylindrical
gap [21,22].

TABLE III. Kinetic energy of the most dangerous modes for
η = 0.5, Ra = 412, Pr = 125, and β = 50.

ℓ Eℓ ℓ Eℓ

4 45.7652 8 2.5291
6 3.0104 10 0.1732
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FIG. 4. Amplitude of the supercritical flow for η = 0.1.

A different bifurcation scenario occurs at η = 0.5 (Fig. 5).
We present the case with β = 50 in detail. The basic flow loses
its stability suddenly at Ra = RacL = 409.96. A branch where
a = 0 (dotted line in Fig. 5) becomes unstable with respect
to infinitesimal perturbations. The transition occurs with a
jump into the branch, corresponding to the convective flow
(bold line in Fig. 5). The fundamental difference to the above
considered case is that the conductive state becomes unstable in
the interval RaG < Ra < RacL (RaG is the Rayleigh number,
corresponding to the global stability) if the perturbation is
large enough. From the other side, the conductive solution
remains stable to infinitesimal perturbations in this region. The
transition from the convective branch on the conductive one
occurs at Rac = 402.4 again with a jump. Hence the subcritical
instability leads to the hysteresis effect. It suggests that the
unstable transcritical branch possesses a turning point in the
subcritical region for which the branch gains stability as it
is observed in the isoviscous case [5,23]. Note that the same
bifurcation scenario takes place for other β, too. But whereas
the difference , = (RacL − Rac)/RacL = 0.06% is very small
in the case of constant viscosity β = 1 (RacL = 2491, Rac =
2489.4), the hysteresis effect becomes more remarkable in
fluids with high viscosity contrast, e.g., for β = 32 (RacL =
498.15, Rac = 492.8) we have numerically found that , =
1.21% and for β = 50, , = 1.84% (Fig. 5).

C. Behavior of the Nusselt number

The Nusselt number is a global characteristic of the heat
transfer that is defined as the ratio between the heat flux of
the convective flow and the heat flux of the pure conduction
regime, Tcond(r). Expressions for the Nusselt number on the
inner and outer surfaces can be formulated as follows:

TABLE IV. Constants Ca and CNu for η = 0.1.

β Ca CNu

1 5.02 0.4300
6 4.25 0.3871
32 4.06 0.4037
50 4.19 0.4562
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FIG. 5. Amplitude of the flow for η = 0.5 and β = 50.

Nuin = − (1− η)2

4πη

,

Sin

"
∂T

∂r

#

in
dSin, (19)

Nuout = − (1− η)2

4πη

,

Sout

"
∂T

∂r

#

out
dSout. (20)

Beginning with the case η = 0.1 (supercritical bifurcation),
we note that if the Rayleigh number is smaller than the
critical one (Ra < RacL) the Nusselt number is unity and
increases if the Rayleigh number exceeds RacL (Fig. 6). It is
worth noting that according to the linear stability analysis the
threshold of convection does not depend on the Prandtl number.
Nevertheless, this dependence appears in the nonlinear case.
We concentrate on the influence of the parameter β on
the flow and heat transfer, because of our interest on the
temperature-dependent viscosity in frames of the GeoFlow
experiment on the ISS. The behavior of the Nusselt number
for slightly supercritical states has a linear shape and changes
according to

Nu = 1 + CNu(β)δ. (21)

Constants CNu(β) have almost the same value for all β
considered (Table IV). Moreover, it is worth noting that the
influence of the dielectrophoretic effect on the heat transfer in
the wide spherical gap is weaker than in the cylindrical one
where Nu = 1 + 0.92δ for η = 0.1 [22]. The behavior of the
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FIG. 6. Behavior of the Nusselt number for η = 0.1.
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FIG. 7. Behavior of the Nusselt number for η = 0.5 and β = 50.

Nusselt number changes drastically for η = 0.5. A subcritical
bifurcation is responsible for the jump of the Nusselt number
at Ra = 409.96. Furthermore, the Nusselt number undergoes a
remarkable increase in comparison to η = 0.1 (Fig. 7). Indeed,
whereas an increase of the Rayleigh number of 10% for the
wide gap leads to a change of the Nusselt number solely in
3%–4%, the same growth of the Rayleigh number for η = 0.5
causes an enhancement of the Nusselt number of 18% which is
interesting from a practical point of view for possible technical
applications.

VI. COMPARISONWITH EXPERIMENT

The GeoFlow experiment [11,24] on the ISS is designed
to study convective flows under the influence of a radial
force field. The specific experimental setup follows strictly
the spherical gap geometry presented in Sec. I. A gap between
two concentric spherical shells is filled with a highly viscous
dielectric working fluid, namely the straight chain fatty alcohol
1-Nonanol. The radius ratio of η = 0.5 is in good agreement
with geometrical properties of the Earth’s outer core and even
the Earth’s mantle. Convection is triggered by heating the
inner shell in steps of Tcold + ,T , where (,T )min = 0.4 K
and the maximum temperature difference is ,T = 10 K.
The experiment is performed at two working environments,
Tcold = 20 ◦C and Tcold = 30.5 ◦C, respectively. The lower
working environment has a Prandtl number of Pr = 179,
whereas the higher temperature level lowers the viscosity
and hence the Prandtl number to Pr = 125. The Rayleigh
number is changed according to the working environment
by a factor of about 20% to higher values. The radial force
field is established by utilizing the dielectrophoretic effect,
which brings radial accelerations between 0.1 m/s2 < ge <
13 m/s2. In consequence of the low acceleration at the
outer shell it is necessary to perform the experiment under
microgravity conditions. The viscosity contrast of β = 32
exhibits from the temperature dependent relative permittivity
of the working fluid.

The visualization of the fluid flow is a crucial point.
However, the safety requirements of the Columbus module
make it difficult to work with particles in the fluid. Therefore,
a Wollaston sharing interferometry unit is utilized which
works by optical means alone. The analysis, interpretation, and

postprocessing of these specific interferograms are discussed
by various members of the GeoFlow topical team. Depending
on the GeoFlow campaign, the interferograms were recorded at
different frame rates. In the presented study we use 10 Hz video
streams which allow tracking of fluid flows quite accurately.
However, this frame rate is more than sufficient for the
laminar regime. The recorded period per experimental set
point is 2 min, resulting in about 1200 images. In total, 240
parameter variations have been performed during the GeoFlow
campaign. The resulting fringe patterns are the base of the
following comparisons between numerical simulations and
experiments. The experimentally gained Rayleigh numbers
are in the range of 102 < Ra < 106, but in the following we
focus on experiments for Ra < 1.4× 104, which are covered
by numerical simulations. This regime is dominated by steady
laminar flows and conductive states. Due to limitations of
the sensitivity in the Wollaston shearing interferometry it
is not possible to visualize the onset of convection itself.
The lowest technically reachable Rayleigh number is Ra =
560, which is just above the theoretical onset of Ra =
498.15. However, evaluable interferograms are achieved for
Ra " 4200. The high voltage is set to Vrms = 1800 V and
the reference temperature to Tcold = 30.5 ◦C. This gives a
Prandtl number of Pr = 125, which is used for the numerical
simulations, too. Changes in the Rayleigh numbers are only
due to temperature variations which are ,T = 1.7 K. To lower
statistical anomalies, we performed all experimental set points
twice.

A. Comparison of numerical and experimental results

In order to validate the theoretical results, we compare
numerical interferograms with the experimentally gained
images (Fig. 8). The numerical interferograms are calculated
by means of the temperature field alone. The radially integrated
and weighted temperature field needs to be differentiated
directionally in the polarization plane. The resulting tem-
perature fluctuations are visualized by applying a cosine on
this field. This gives fringe patterns which are similar to the
experimental images [25]. Generic analytical interferograms
are subsequently used to distinguish between convective rising
plumes and sheetlike flows. The parameter regime of time-
dependent convective plumes is above Ra = 1.4× 104 and not
covered by this study. In principle, we observe only threefold
and fourfold symmetries of the m mode in the interferograms.
These structures exhibit in regular, star-shaped patterns. The
detection of ℓ mode is not unique, since the optical access
does not allow one to investigate the whole lateral elongation.
However, we can utilize symmetries in the angles between
the sheetlike plumes. The angles between the stripes measure
theoretically 120◦ in the threefold case and 90◦ in the fourfold
case. This geometrical property can be used to identify the m
modes. Optical distortions lower and raise the observed angles
by 20%–30%, depending on the interferometry direction. The
angles between the rays are helpful, but not sufficient for the
unique identification. As the experiment rotates very slowly
(0.008 Hz, Taylor number Ta < 1), the fringe lines change their
relative shape, too. Only by tracking the structures individually
is it possible to identify them. Figure 9, first column, presents
four experimental set points, namely Ra = 3040, Ra = 4200,

023108-7



TRAVNIKOV, ZAUSSINGER, BELTRAME, AND EGBERS PHYSICAL REVIEW E 96, 023108 (2017)

FIG. 8. Comparison of experimental and numerical results for various Rayleigh numbers. From left to right: (1) experimental interferograms
from the GeoFlow experiment on the ISS; (2) artificial interferograms calculated by numerical simulations; (3) top view of numerical simulation;
(4) side view of numerical simulation. Temperature isosurfaces are calculated at T = 0.7. The artificial interferograms show the same modes
as the experiments. Even the transition from (ℓ = 4,m = 4) at Ra = 4200 to (ℓ = 3,m = 3) at Ra = 5365 is observed. Due to limitations of
the interferometry unit, the case of Ra = 3040 shows a false conductive solution.

Ra = 5365, and Ra = 7689. A false (in the sense of in-
terferometry) conductive state is observed: the experimental
interferograms do not show significant fringe patterns for
Ra = 3040, while according to the stability analysis we expect
convective flow. The case Ra = 4200 displays a fourfold mode
m = 4 which is in good agreement with the numerical analysis
that shows that modes (ℓ = 4, m = 0) and (ℓ = 4, m = 4)
with energies ϵ40 = 1458.2 and ϵ44 = 5900 are dominant. As
found in the numerical simulations, we identify a transition
from m = 4 to m = 3 as the Rayleigh number is increased
from Ra = 4200 to Ra = 5365. Indeed, according to the nu-
merical investigation mode (ℓ = 3, m = 3) becomes dominant
(ϵ33 = 7354.52) for Ra = 5365. These patterns are dominant
up to Ra = 1.4× 104. Higher values exhibit in transient,
time-dependent flows. We summarize that the m = 4 and
the m = 3 modes are predominant in the convective laminar
regime for η = 0.5 and β = 32 in the GeoFlow experiment.
In the following, we analyze the symmetry classes in more
detail.

B. Extended analysis of symmetry classes

If the interferometry method allows only identification of
the m modes, it is interesting to retrieve the ℓ-spherical mode
of these solutions using DNS. Five cases are analyzed in detail
and compared with experimental results. For Ra = 4000 we
found two stable states which differ in the ℓ mode. The cases
of Ra = 3000, Ra = 5365, and Ra = 7000 exhibit in unique
states. More specifically, we list the symmetry analysis as
follows.

(i) Ra = 3000 and Ra = 4000 (ℓ = 4). The steady states
are a pure ℓ = 4 mode with the symmetry D4⊕Zc

2, i.e., the
full group symmetry of a prism with a square basis. This group
being a subgroup of the cube symmetry group then, this branch
is a secondary branch of the cube symmetric branch (Fig. 5).

(ii) Ra = 4000 (ℓ = 3). The symmetry group is Dd
6 ; this

threefold symmetric branch bifurcates from the onset of
convection of the mode 3. However, according to our numerical
results, it is unstable near the onset of convection. Therefore,
the stability of the steady state suggests that at least a
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FIG. 9. Hysteresis in the laminar experimental regime: threefold
and fourfold symmetries are observed; however, the unstable fourfold
symmetry class is more likely in this experiment. In order to lower
statistical anomalies, we performed experiments with nonunique
patterns several times at different days.

bifurcation occurs and this solution could be a mixed mode
(3,4). Therefore, near the bifurcation the mode 4 remains till
Ra = 4000. Beyond the mode 3 is in competition with the
mode 4.

(iii) Ra = 5365. Almost symmetries of the steady state are
broken except a plane reflexion. It is then the Z−2 symmetry.
It is easy to recognize approximatively the threefold rotation
and other plane reflexion, so the symmetry of the solution is
close to theDz

3 orDd
6 symmetries. The observed mode can be a

secondary branch from Dd
6 or Dz

3 branches. All these solutions
are possible steady states of the pure mode ℓ = 3. However, it
is possible that the mode 4 coexists. Moreover, note that this
Z−2 symmetry was not observed near the onset for the (3,4)
mode interaction for the isoviscous case (see [15]).

(iv) Ra = 7000. The steady state has the symmetry Dz
2

which corresponds to a twofold reflexion and a plane reflection
symmetry. This steady state does not exist for the pure mode
ℓ = 3 but rather for the mode interaction (3,4) (see, e.g.,
Ref. [15]). Other symmetries are clearly broken, so this steady
state is clearly a mixed mode between ℓ = 3 and ℓ = 4.
The experimental example differs in the Rayleigh number;
however, the (3,4) mode is still assumed.

We summarize that the ℓ = 3 and ℓ = 4 modes are predom-
inant in the convective laminar regime for 3000 < Ra < 8000.
By increasing the Ra number, we have the main steps of
bifurcation scenario: (a) pure mode 4 steady state; (b) almost
“pure” mode 3 steady state; (c) mixed modes 3 and 4.

C. Hysteresis effect in experiment

The experiments show the existence of multiple stable
patterns. This behavior is restricted to a few experiments for
104 < Ra < 1.4× 104. At first, the experimental data seemed

to be biased by preceding runs. Therefore, we repeated specific
set points randomly which reinforced the suspicion that this
parameter space exhibits in multiple stable laminar flows. We
found the m = 3 and the m = 4 wave modes at the same
Rayleigh number, but in different set points. First results are
displayed in Fig. 9. The angles between the rays as well
as the (not presented) time lapse are strong evidence that
both modes are stable. However, the flow with wave number
m = 4 mode is less frequent than the flow with m = 3. It
is assumed that the basin of attraction of the mode m = 4
is smaller than for m = 3. Similar results are observed in
the numerical simulations, where the initial conditions trigger
different dominant modes. The randomly initialized flows are
an appropriate way to lower these uncertainties.

VII. CONCLUSION

The presented study deals with the numerical investigation
of the convective flow between two spherical surfaces. The
inner one is warmer then the outer one. An applied oscillating
electrical field produces an artificial radial gravity due to
the dielectrophoretic effect. Hence the situation is similar
to the Rayleigh-Bénard convection. The influence of the
temperature-dependent viscosity has been taken particularly
into account. The onset of the convective flow is investigated by
means of the linear stability theory that enables one to calculate
the critical Rayleigh number, RacL, above which the basic flow
is always unstable. We found that the temperature-dependent
viscosity leads to significant decrease of the critical Rayleigh
number. A pseudospectral code developed by Hollerbach
[6] and modified for the case of the temperature-dependent
viscosity has been used to calculate three-dimensional flows.
We present two bifurcation scenarios that occur in spherical
gaps with η = 0.1 and η = 0.5. Whereas the instability sets
in as a supercritical pitchfork bifurcation in the wide gap, if
the Rayleigh number exceeds the critical one, the conductive
state bifurcates into the convective one with jump, if the gap
becomes narrower. The occurring subcritical bifurcation leads
to the hysteresis effect. The behavior of the Nusselt number
shows that the heat transfer in the wide spherical gap is
essentially weaker in comparison to the cylindrical one. Nev-
ertheless the heat transfer grows remarkably if the radius ratio
increases. Besides numerical simulations, we compared our re-
sults with data from the GeoFlow experiment which is located
on the ISS. In order to investigate convection under micrograv-
ity conditions, the dielectrophoretic effect is used to maintain
an artificial radial force field. The experimental set points reach
down to the onset of convection. Evaluable results where
found for Ra > 4020, where m = 4 and m = 3 modes are
found. Experimental and numerical interferograms are in good
agreement in the presented parameter space. Even regimes
with multiple stable structures are observed, where both wave
numbers (m = 3 and m = 4) occur at the same Rayleigh
number. Especially the experimental validation confirms the
theoretical and numerical results presented in this study.

It is planned to extend the presented study to the rotating
case. The GeoFlow experiment has been performed for three
rotation rates, 0.008 Hz, 0.8 Hz, and 1.6 Hz. The resulting
Taylor numbers Ta = (6d2/ν)2 are below Ta = 6× 104 for
Ra < 1.4× 104, which can be covered by the presented code.
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APPENDIX A: DERIVATION OF EQUATIONS IN THE
POLOIDAL-TOROIDAL FORM

In this Appendix we explain how the equations for the
poloidal and toroidal potentials in the case of the temper-
ature dependent viscosity can be carried out. Furthermore,
we clarify technical details concerning implicit usage of some
terms that originally were a part of the friction force. The
last term in the Navier-Stokes equation (5) can be written
in more useful form. Indeed, introducing the notation f =
∇ · [ ν(T )

νcold
[∇u+ (∇u)T ]], we have after small algebra

f = f0 + ν(Tcond)
νcold

,u+ f1 + ν(T )− ν(Tcond)
νcold

,u, (A1)

where

f0 =

⎛

⎜⎜⎝

νr (Tcond)
νcold

Drr

νr (Tcond)
νcold

Drθ

νr (Tcond)
νcold

Drφ

⎞

⎟⎟⎠,

f1 =

⎛

⎜⎜⎝

νr (T)−νr(Tcond)
νcold

Drr + 1
r

νθ (T)
νcold

Drθ + 1
r sin θ

νφ (T)
νcold

Drφ

νr (T)−νr(Tcond)
νcold

Drθ + 1
r

νθ (T)
νcold

Dθθ + 1
r sin θ

νφ (T)
νcold

Dθφ

νr (T)−νr(Tcond)
νcold

Drφ + 1
r

νθ (T)
νcold

Dθφ + 1
r sin θ

νφ (T)
νcold

Dφφ

⎞

⎟⎟⎠,

with Tcond = η
(1−η)2

1
r
− η

1−η
. This decomposition of the friction

term is useful from the numerical point of view because the first
two terms in (A1) can be embraced implicitly which increases
the numerical convergence. An application of operations ∇ ×
∇× and ∇× not only eliminates the pressure but also allows
one to obtain separated equations for potentials . and /,

,s

r2

!
1
Pr

∂

∂t

"
∂2

∂r2
+ ,s

r2

#
− ν(Tcond)

νcold

"
∂2

∂r2
+ ,s

r2

#2$
.

−νr (Tcond)
νcold

,s

!
2
r2

∂3

∂r3
− 2

r3

∂2

∂r2
+ 2

r4

∂

∂r
+ 2

r4
,s

∂

∂r
− 4

r5
,s

$
.

−νrr (Tcond)
νcold

,s

!
1
r2

∂2

∂r2
− 2

r3

∂

∂r
− ,s

r4

$
.

= ∇ ×∇ × F, (A2)

−,s

r2

!
1
Pr

∂

∂t
− ν(Tcond)

νcold

"
∂2

∂r2
+ ,s

r2

#$
/

+νr (Tcond)
νcold

,s

"
1
r2

∂

∂r
− 2

r3

#
/ = ∇ × F, (A3)

with

,s = 1
sin θ

∂

∂θ

!
sin θ

∂

∂θ

$
+ 1

sin2 θ

∂2

∂φ2
, (A4)

F = Ra
η2

(1− η)4

T

r5
er

+Pr−1u× (∇ × u) + f1

+ν(T )− ν(Tcond)
νcold

∇2u. (A5)

There are four boundary conditions for the poloidal potential
. = 0, ∂.

∂r
= 0 and two for the toroidal one / = 0 at r = η

1−η

and r = 1
1−η

.

APPENDIX B: SYMMETRY GROUPS

In this section we detail the symmetry groups used in this
paper. Let us note S the antipodal symmetry r→−r and K(δ)
the reflection through a plane containing the line δ. Then, we
define the following.

(i) The central symmetry group Zc
2: generated by S. Note,

it acts trivially on the even modes.
(ii) The symmetry of the cube O⊕ Zc

2: generated by the
direct symmetries of the octahedron and S.

(iii) The symmetry O−: generated by the direct symmetries
of a tetrahedron and by the reflection K(δ), where δ is the axis
of a threefold rotation of the tetrahedral group.

(iv) Axisymmetric group O(2)⊕Zc
2 (even modes): gener-

ated by the rotations about an axis δ and by S.
(v) Axisymmetric group O(2)− (odd modes): generated by

the rotations about an axis δ and K(δ).
(vi) n-fold rotation groups (odd modes): Dz

n, generated by
the n-fold rotation about an axis δ and K(δ); Dd

2n contains the
Dz

n group and additionally it possesses a rotation by π around
an axis perpendicular to δ.

[1] I. Mutabazi, H. N. Yoshikawa, M. T. Fogaing, V. Travnikov, O.
Crumeyrolle, B. Futterer, and C. Egbers, Fluid Dyn. Res. 48,
061413 (2016).

[2] I. Yavorskaya, N. Fomina, and Y. Belyaev, Acta Astronaut. 11,
179 (1984).

[3] V. Travnikov, C. Egbers, and R. Hollerbach, Adv. Space Res.
32, 181 (2003).

[4] F. Busse, J. Fluid Mech. 72, 67 (1975).
[5] F. Feudel, K. Bergemann, L. S. Tuckerman, C. Egbers, B.

Futterer, M. Gellert, and R. Hollerbach, Phys. Rev. E 83, 046304
(2011).

[6] R. Hollerbach, Int. J. Numer. Meth. Fluids 732, 773 (2000).
[7] B. Futterer, C. Egbers, N. Daley, S. Koch, and L. Jehring, Acta

Astronaut. 66, 193 (2010).

023108-10

https://doi.org/10.1088/0169-5983/48/6/061413
https://doi.org/10.1088/0169-5983/48/6/061413
https://doi.org/10.1088/0169-5983/48/6/061413
https://doi.org/10.1088/0169-5983/48/6/061413
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2009.05.027


INFLUENCE OF THE TEMPERATURE-DEPENDENT . . . PHYSICAL REVIEW E 96, 023108 (2017)

[8] J. Ratcliff, G. Schubert, and A. Zebib, Physica D 97, 242 (1996).
[9] S. Androvandi, A. Davaille, A. Limare, A. Foucquier, and C.

Marais, Phys. Earth Planet. Inter. 188, 132 (2011).
[10] B. Futterer, N. Daley, S. Koch, N. Scurtu, and C. Egbers, Acta

Astronaut. 71, 11 (2012).
[11] B. Futterer, A. Krebs, A.-C. Plesa, F. Zaussinger, R. Hollerbach,

D. Breuer, and C. Egbers, J. Fluid Mech. 735, 647 (2013).
[12] V. S. Solomatov, Phys. Fluids 7, 266 (1995).
[13] J. Curbelo and A. M. Mancho, Phys. Rev. E 88, 043005 (2013).
[14] J. Curbelo and A. M. Mancho, Phys. Fluids 26, 016602 (2014).
[15] P. Beltrame and P. Chossat, Eur. J. Mech. B: Fluids 50 , 156

(2015).
[16] P. Chossat, R. Lauterbach, and I. Melbourne, Arch. Ration.

Mech. Anal. 113, 313 (1990).
[17] C. Geiger, G. Dangelmayr, J. Rodriguez, and W. Güttinger,

in Pattern Formation: Symmetry Methods and Applications,
Fields Institute Communications, edited by W. L. J. Chadam,
M. Golubitsky, and B. Wetton (American Mathematical Society,
Providence, RI, 1996), Vol. 5, pp. 225–237.

[18] D. Bercovici, G. Schubert, and G. Glatzmaier, Geophys. Astro-
phys. Fluid Dyn. 61, 149 (1991).

[19] L. Landau and E. Lifshitz, Electrodynamics of Continuos Media,
2nd ed. (Elsevier Butterworth-Heinemann, Burlington, MA,
1984), Vol. 8.

[20] V. Solomatov and A. Barr, Phys. Earth Planet. Inter. 165, 1
(2007).

[21] H. Yoshikawa, O. Crumeyrolle, and I. Mutabazi, Phys. Fluids
25, 024106 (2013).

[22] V. Travnikov, O. Crumeyrolle, and I. Mutabazi, Phys. Fluids 27,
054103 (2015).

[23] P. Beltrame, V. Travnikov, M. Gellert, and
C. Egbers, Nonlin. Process. Geophys. 13, 413
(2006).

[24] J. M. E. Navarro, J. J. Fernández, J. Rodríguez, A. Laverón-
Simavilla, and V. Lapuerta, Microgravity Sci. Technol. 27, 61
(2015).

[25] F. Zaussinger, A. Krebs, V. Travnikov, and Ch. Egbers, Adv.
Space Res. 60 , 1327 (2017).

023108-11

https://doi.org/10.1016/0167-2789(96)00150-9
https://doi.org/10.1016/0167-2789(96)00150-9
https://doi.org/10.1016/0167-2789(96)00150-9
https://doi.org/10.1016/0167-2789(96)00150-9
https://doi.org/10.1016/j.pepi.2011.07.004
https://doi.org/10.1016/j.pepi.2011.07.004
https://doi.org/10.1016/j.pepi.2011.07.004
https://doi.org/10.1016/j.pepi.2011.07.004
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1063/1.868624
https://doi.org/10.1063/1.868624
https://doi.org/10.1063/1.868624
https://doi.org/10.1063/1.868624
https://doi.org/10.1103/PhysRevE.88.043005
https://doi.org/10.1103/PhysRevE.88.043005
https://doi.org/10.1103/PhysRevE.88.043005
https://doi.org/10.1103/PhysRevE.88.043005
https://doi.org/10.1063/1.4850296
https://doi.org/10.1063/1.4850296
https://doi.org/10.1063/1.4850296
https://doi.org/10.1063/1.4850296
https://doi.org/10.1016/j.euromechflu.2014.11.014
https://doi.org/10.1016/j.euromechflu.2014.11.014
https://doi.org/10.1016/j.euromechflu.2014.11.014
https://doi.org/10.1016/j.euromechflu.2014.11.014
https://doi.org/10.1007/BF00374697
https://doi.org/10.1007/BF00374697
https://doi.org/10.1007/BF00374697
https://doi.org/10.1007/BF00374697
https://doi.org/10.1080/03091929108229041
https://doi.org/10.1080/03091929108229041
https://doi.org/10.1080/03091929108229041
https://doi.org/10.1080/03091929108229041
https://doi.org/10.1016/j.pepi.2007.06.007
https://doi.org/10.1016/j.pepi.2007.06.007
https://doi.org/10.1016/j.pepi.2007.06.007
https://doi.org/10.1016/j.pepi.2007.06.007
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4921156
https://doi.org/10.1063/1.4921156
https://doi.org/10.1063/1.4921156
https://doi.org/10.1063/1.4921156
https://doi.org/10.5194/npg-13-413-2006
https://doi.org/10.5194/npg-13-413-2006
https://doi.org/10.5194/npg-13-413-2006
https://doi.org/10.5194/npg-13-413-2006
https://doi.org/10.1007/s12217-015-9413-5
https://doi.org/10.1007/s12217-015-9413-5
https://doi.org/10.1007/s12217-015-9413-5
https://doi.org/10.1007/s12217-015-9413-5
https://doi.org/10.1016/j.asr.2017.06.028
https://doi.org/10.1016/j.asr.2017.06.028
https://doi.org/10.1016/j.asr.2017.06.028
https://doi.org/10.1016/j.asr.2017.06.028




PHYSICAL REVIEW FLUIDS 3, 093501 (2018)

Dielectrically driven convection in spherical gap geometry

Florian Zaussinger,1 Peter Haun,1 Matthias Neben,1 Torsten Seelig,1 Vadim Travnikov,1

Christoph Egbers,1 Harunori Yoshikawa,2 and Innocent Mutabazi3,*

1Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology
Cottbus-Senftenberg, Siemens-Halske-Ring 14, 03046 Cottbus, Germany

2Laboratoire J.-A. Dieudonné, UMR No. 7351, CNRS, Université Côte d’Azur, Parc Valrose,
06108 Nice Cedex 02, France

3Laboratoire Ondes et Milieux Complexes, UMR No. 6294, CNRS, Université du Havre,
Normandie Université, 53 Rue de Prony, CS 80540, 76058 Le Havre Cedex, France

(Received 4 January 2018; published 5 September 2018)

Dielectric heating occurs in situations where an alternating electric field is applied on
an insulating dielectric material. This effect can produce thermal convection in dielectric
fluid through the thermoelectric coupling by the dielectrophoretic (DEP) force. The onset
and the flow properties of the convection are investigated in a spherical gap geometry.
The thermoelectrohydrodynamical equations often adopted in the modeling of the DEP-
force-driven thermal convection are extended by an additional source term arising from the
dielectric heating in the energy equation. Three-dimensional direct numerical simulations
are performed, under microgravity conditions and without any imposed temperature
gradient to highlight the effects of dielectric heating. In the conduction state, dielectric
heating creates a parabolic temperature profile with a maximum in the interior of the
spherical gap. In the convection state, the temperature distribution is more homogeneous
with a lower maximum temperature. Numerical results are compared with interferograms
from the GeoFlow II experiment performed on the International Space Station to validate
the model. For the comparison, a numerical interferogram is applied to temperature fields
obtained in the simulation. The onset of convection and basic spatial properties of the
resulting internally heated convective zone are in good agreement with the experiment.
The computed velocity fields reveal strong downdrafts which lead to recognizable fringe
patterns in the interferograms.

DOI: 10.1103/PhysRevFluids.3.093501

I. INTRODUCTION

Heating materials by applying an electric field or by irradiating an electromagnetic field is a
common practice in industry. The Ohmic effect and the dielectric loss are often used to generate
heat energy inside materials. In the glass industry, electric glass furnaces are more frequently used
because of the high efficiency, the smallness of apparatus, and the eco-friendliness [1]. Electric fields
of 10–103 Hz in frequency are applied to glass materials (soda lime and sodium borate glasses) to
melt by Ohmic heating. The heating generates temperature gradients to produce the convective
motion in the melt. This convection is often modeled as thermal convection driven by the thermal
Archimedean buoyancy force. The velocity and temperature fields of the melt are coupled with
each other through an Ohmic heat generation term in the energy equation as well as in the thermal
variations of fluid properties.
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FIG. 1. Sketch of the convection experiment GeoFlow in a spherical geometry performed on the ISS.
Red arrows depict the heating circuit and blue arrows the cooling circuit. Interferograms to visualize the
temperature field are recorded in the region spanning from the north pole to the equator (yellow area). The
depicted temperature field represents a typical convection zone induced by dielectric heating.

Dielectric heating plays an important role in many industrial and chemical applications where
materials are thermally processed [2]. The most common application would be the domestically
used microwave stove. While the physical process itself has been known since the late 19th century,
it has become important with the work of von Hippel [3], which provides a database of properties of
dielectric materials. This database was extended in the second half of the 20th century especially for
many biological substances which are used in biochemistry and process engineering. The dielectric
properties of important aqueous fluids were reviewed in Ref. [4] and more recently for biofuels (e.g.,
alcohols and their mixtures) in Ref. [5]. Dielectric heating is generated by a high-frequency electric
field acting on a dielectric material. The field polarizes nonmotile charges in the material. There are
two known types of polarization: (i) induced polarization due to the displacement of electrons inside
atoms or molecules and (ii) orientation polarization due to permanent molecular dipoles aligned
along the applied field. Heat energy is generated through the second type of polarization when the
dipoles cannot respond to the temporal variation of an applied field with a phase delay.

The manifold influence of electric field on a fluid is a subject of thermoelectrohydrodynamics
(TEHD). We refer to Refs. [6–9] for the theoretical background. Several laboratory experiments in
the scope of TEHD have been reported in the literature. These experiments often use the dielec-
trophoretic (DEP) force to induce flows under microgravity conditions [e.g., on the International
Space Station (ISS) or on parabolic flights]. The GeoFlow experiment (see Fig. 1) on the ISS
represents such an experiment in the absence of earth’s gravity field (see Ref. [10]). The main
objective of the GeoFlow experiment was the investigation of thermal convection in the spherical
gap, which is an analog of convection in planets or stars, under an imposed temperature gradient.
However, the experimental setup also allows the study of dielectric heating and the influence of this
process on thermal convection.

The investigation of convection induced by dielectric heating has been the object of many
experimental and numerical works. Microwave-driven convective flows have been analyzed by
different authors. Ayappa et al. [11] investigated water in a squared cavity and analyzed the
uniformity of heating as a function of the power distribution. Detailed numerical simulations of
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the coupled Maxwell and hydrodynamical equations have been performed by Zhang et al. [12] and
Ratanadecho et al. [13]. More recently, Cherbański and Rudniak [14] investigated dielectrically
driven convection in water. They showed with three-dimensional (3D) numerical simulations that
dielectric heat-driven convection is not able to homogenize the temperature field, but produces
temperature peaks. In the present paper, however, dielectric heat-driven convection is investigated
in spherical gap geometry.

Natural convection in spherical gap geometries has been studied recently for the GeoFlow
project, where centripetal gravity fields are simulated by the DEP force. We refer to Refs. [15,16] for
details about the GeoFlow experiment. Theoretical and numerical investigations on the fundamental
aspects of the DEP force-driven convection have been performed by Yoshikawa et al. [17], Fogaing
et al. [18], Mutabazi et al. [19], Kang et al. [20], and Travnikov et al. [21] in different geometries.
This paper extends these works by including the effects of dielectric heating and explains the
occurrence of atypical convective patterns observed in the GeoFlow experiments.

The paper is organized as follows. The theoretical background of dielectric heating and extended
TEHD equations are presented in Secs. I A and I B, respectively. The properties of the considered
dielectric fluid and the experimental setup of GeoFlow are also given. Section II A is devoted to
the basic conductive state of the system. The full set of TEHD equations is numerically treated
in Sec. II B. A comparison between experimental interferograms and the numerical simulations is
given in Sec. III. This paper ends with a detailed discussion and a summary.

A. Dielectric heating

Dielectric materials are electrical insulators with or without permanent molecular dipoles. In the
case in which the material is placed in an electric field E, permanent or induced dipoles are aligned
along the electric field lines and can yield a macroscopic body force. In a dielectric fluid, the DEP
force is induced by the application of an electric field. The force is proportional to the field squared
and to the gradient of the permittivity ϵ:

FDEP = − 1
2E

2∇ϵ. (1)

The permittivity of a dielectric fluid is given by ϵ = ϵ0ϵr , where ϵ0 = 8.854× 10−12 F/m is the
vacuum permittivity and ϵr is the relative permittivity. The permittivity ϵ is in general a decreasing
function of the fluid temperature, so a temperature gradient in a fluid leads to a DEP force. A high
voltage and a strong thermal variation of ϵ are needed for a DEP force to be comparable to the
gravitational force on earth. If a fluid in a spherical capacitor is subjected to a radial temperature
gradient, the resulting DEP force is also radial and enables one to investigate thermal convection in
a central force field.

Among other fluid properties, the permittivity has the most important influence on TEHD
processes. The effects of fluid polarization in an alternating electric field can be treated conveniently
in terms of the complex permittivity, which depends on the field frequency as well as on the fluid
temperature:

ϵr = ϵ′ − iϵ′′. (2)

The real part Re[ϵr ] = ϵ′ is called dielectric constant. The imaginary part Im[ϵr ] = ϵ′′ represents the
loss rate according to the conductance of the fluid. In an ac electric field E the electric displacement
field is given by D = ϵ0E+ P = ϵ0ϵrE for a linear isotropic dielectric, with P = (ϵr − 1)E the
polarization. The polarization current density is J pol = ∂D

∂t
. Dielectric heating occurs in situations

where the displacement D has a nonzero phase lag δ to the applied electric field E. The tangent of
δ, called the energy dissipation factor, is expressed as the ratio of the imaginary to real part of the
permittivity

tan δ = ϵ′′

ϵ′
. (3)
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The power dissipation due to the dielectric loss per unit volume is

P = 2πf ϵ0ϵ
′ tan δ|E|2, (4)

where f is the frequency of the electric field. For a given dielectric the energy loss depends mainly
on the electric field strength and the frequency. For convenience, we define the rate of dielectric
heating SDH = P/ρCp, with Cp the specific-heat capacity at constant pressure:

SDH =
2πf ϵ0ϵ

′ tan δ|E|2

ρCp
. (5)

The rate of dielectric heating SDH must be included in the law of energy conservation in order to
simulate the influence of dielectric heating on a fluid.

B. Theoretical model

An electric field, applied on a dielectric fluid, induces three force densities

F = ρVE︸︷︷︸
FC

+∇
[

1
2
ρ

(
∂ϵ

∂ρ

)

T

E2
]

︸ ︷︷ ︸
Fes

+FDEP. (6)

The first term, called electrophoretic force, represents the Coulomb forces on free charges in the
fluid. In an ac electric field with a frequency higher than all other characteristic frequencies involved
in the flow dynamics, this force has no net effect on the fluid motion, since the force averaged over a
period of field variation vanishes [17]. The second term is the electrostrictive force density Fes. This
force is a gradient force, so it has no effect on the motion of incompressible fluids with no mobile
boundary. In the case of free surfaces or moving walls this force has to be taken into account. The
dielectrophoretic force density FDEP [see Eq. (1)] remains as the prevailing force field. It is radially
inward oriented and can be compared with a gravitational field. The TEHD equations governing the
spatial and temporal evolution of the velocity field u, the electric field E, and the temperature field
T are [19]

∇ · u = 0, (7)

∂u
∂t
+ (u ·∇)u = −∇!+∇ · τ + ρ−1

0 FDEP, (8)

∂T

∂t
+ (u ·∇)T = κT∇2T + SDH, (9)

∇ · E = 0, (10)

where we have adopted the electrohydrodynamic Boussinesq approximation [22]. Equation (7) is
the mass conservation for incompressible flows. Equation (8) is the Navier-Stokes equation, with
τ being the viscous stress tensor. The electrostrictive force Fes is lumped with the pressure [19],
resulting in an effective pressure term ! = 1

ρ0
[P − 1

2ρ( ∂ϵ
∂ρ

)T · |E|2]. Equation (9) is the energy
equation, which describes the evolution of temperature, with κT the thermal diffusion coefficient.
The rate of dielectric heating Ssh is included in this equation for examining the effects of dielectric
heating on the flow field. Equation (10) is the Gauss equation. We have assumed that the free charge
density of the dielectric is negligible. We have also neglected the thermal variation of the permittivity
in the Gauss equation. In a geometry with a large curvature, as considered in the present work, the
spatial variation of the electric field arises primarily from the geometry curvature.

The governing equations (7)–(10) are completed by the equation of state for the permittivity ϵ.
For a small temperature deviation from a reference value T0, it is given by

ϵ = ϵref [1− αE (T − T0)], (11)
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where αE is the dielectric expansion factor and ϵref is the permittivity at T = T0 [15,17,19]. We
apply Eqs. (7)–(11) to a dielectric fluid in the gap of two concentric electrodes. Each electrode is
maintained at a constant temperature and a high-frequency ac electric voltage is imposed over the
gap. The temperature field in the conduction state is given [19] by

Tb(r ) = T2 +
η(T1 − T2)

1− η

(
R2

r
− 1

)
, (12)

where (R1, T1) and (R2, T2) are the radius and the temperature of the inner and outer electrodes,
respectively. The radius ratio is defined by η = R1/R2. In an electric voltage of a frequency higher
than the reciprocal of the viscous timescale, only the time-averaged component of the DEP force
can affect the fluid motion. This component can be calculated from the effective electric field, which
is given in the conduction state [19] by

Eb(r ) = −
ηVrms

R2 − R1

B

ln(1− B )

(
R2

r

)2[
1− B Tb(r )

"T

]−1

er , (13)

where B = αE"(T1 − T2) is the thermoelectric parameter, Vrms = V0/
√

2 is the effective voltage,
and er is the radial unit vector. In the present work, we will focus on the case where no temperature
gradient is imposed, i.e., B → 0, and in the electrode geometry of η = 0.5 (R2 = 2R1). The
effective electric field is then given by

E = R1R2

R2 − R1

V0√
2

1
r2
er . (14)

Neither temperature nor the velocity field influence the electric field (14) in this model. In the case
of strong temperature-dependent permittivity or low curvatures η > 0.7 the coupling between the
momentum, energy, and Gauss equation has to be taken into account. The effects of the DEP force
are comparable to those of the thermal Archimedean buoyancy force in earth’s gravity field. The
wording electric gravity has been established for the effective acceleration of the dielectric origin,

ge =
αE

ρ0αT
∇

(
ϵ0ϵ

′E2

2

)
. (15)

Further, this motivates the electric Rayleigh number as given in [19],

Ra = αT"T ge(R2 − R1)3

νκT
, (16)

with ν the kinematic viscosity and "T a representative value of the temperature variation inside the
fluid.

The governing TEHD equations are analyzed in two ways. First, we focus on the conductive
base state for a given electric field E in the spherical capacitor. This gives a rough estimate about
timescales and the spatial temperature profiles. Second, the equations are solved numerically in
three-dimensional space. Both issues require detailed information about the experimental setup, the
geometry, the resulting parameter space, and the fluid properties. These properties are presented in
the following.

C. Fluid properties and flow conditions

The present investigation is performed for the flow conditions realized in the GeoFlow ex-
periments, which can provide results for comparison. The GeoFlow experiments were performed
in the Fluid Science Laboratory of the Columbus module on the ISS between 2008 and 2017.
Two missions have been accomplished. The first mission GeoFlow I (2008) was performed using
the isoviscous silicon oil M5, which is a nonpolar liquid. Hence, the fluid is not susceptible
for dielectric heating. The second mission GeoFlow II (2011–2017) examined the effects of the
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TABLE I. Properties of 1-Nonanol for two reference temperatures at a frequency of 1.0650× 104 Hz.

Property T0 = 293.0 K T0 = 303.5 K

Energy dissipation factor tan δ 6.12 × 10−2 7.45 × 10−2

Relative permittivity ϵ ′ 9.3 8.44
Density ρ (kg/m3) 8.29 × 102 8.22 × 102

Specific-heat capacity Cp (J/K) 2.47 × 103 2.47 × 103

Thermal diffusivity κT (m2/s) 7.94 × 10−8 7.76 × 10−8

temperature-dependent viscosity on convection with adopting 1-Nonanol as the working fluid. The
molecules of the 1-Nonanol have a strong dipole moment due to a hydroxyl group. This makes
the fluid susceptible to dielectric heating. All relevant fluid properties are listed in Table I. They
are based on measurements of the electrical properties provided by Airbus Defense and Space
(formally EADS Astrium). The experiment consists of two concentric shells, which can rotate
around a central axis. The inner and outer spherical electrodes have radii of R1 = 0.0135 m and
R2 = 0.027 m (radius ratio is η = 0.5), respectively (see Fig. 1). Electrodes are maintained at
constant temperatures. The temperature at the outer shell was considered as the reference value T0,
adjusted to either 293.0 K or 303.5 K. Electric voltage is limited by a maximum value V0 = 6500 V.
The peak value of the electric gravity is reached at the inner sphere, where ge ≈13 m/s2. The lowest
value is measured at the outer sphere where ge ≈0.3 m/s2. The Rayleigh number is varied over five
magnitudes, 5.6× 102 < Ra < 1.43× 107.

For a given fluid, control parameters are the temperature difference T1 − T2 between the
electrodes, the applied voltage V0, and the rotation rate #. In the present investigation, we consider
only initially isothermal experimental runs (T1 = T2) with no rotation of the electrodes (# = 0). In
the GeoFlow II experiment, the maximum electric field strength varies between 1.9× 105 V/m for

D
H

FIG. 2. Radial profiles of the dielectric heating rate SDH [Eq. (5)] for 1-Nonanol at different values of the
electric voltage. The fluid properties are listed in Table I. Thin lines correspond to T0 = 293.0 K, and thick
lines to T0 = 303.5 K. The highest heating rate is found for V0 = 6500 V at the inner shell.
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FIG. 3. Temporal evolution of the maximum temperature in the conduction state for T0 = 293.0 K(thin
lines) and for T0 = 303.5 K(thick lines). The inset depicts the saturated maximum temperature as a function of
the voltage for both reference temperatures.

V0 = 1800 V and 6.9× 105 V/m for V0 = 6500 V. Figure 2 depicts SDH, calculated from Eqs. (5)
and (13), for various voltages and reference temperatures examined in the experiment. A maximum
of 0.085 K/s is obtained for V0 = 6500 V at the inner electrode. The resulting temperature profile is
obtained by solving Eq. (9) under the boundary condition of constant temperatures at the electrodes.

II. NUMERICAL SIMULATIONS

A. Conductive state

In the conduction state (u = 0 ), the energy equation (9) reads

∂T

∂t
= κT

(
∂2T

∂r2
+ 2
r

∂T

∂r

)
+ SDH(ϵ′(T ), V0, r ). (17)

The calculation of the source term SDH(ϵ′(T ), r ) is based on the thermal variation of the permittivity
and the energy dissipation factor measured in the laboratory (Sec. I C),

ϵ′(T ) = −0.511 03T + 97.467+ 7.1429× 10−4T 2, (18)

tan δ(T ) = −4.606× 10−1T + 47.37− 1.594× 10−6T 3 + 1.488× 10−3T 2, (19)

where the temperature is given in kelvins. Equation (17) has been solved by a simple, explicit
finite-difference scheme. To guarantee a stable solution a Courant-Friedrichs-Lewy number of 0.25
was chosen for 100 cells. Both reference temperatures T0 = 293.0 and 303.5 K, and five values of
V0 have been tested. The boundaries are kept at the reference temperature T1 = T2 = T0. In contrast
to the heating rate plotted in Fig. 2, the maximum temperature is not obtained at the inner shell.
Within the first thermal timescale τ = (R2 − R1)2/κT = 2603 the temperature profile becomes
stationary. This is shown for both reference temperatures in Fig. 3, where the difference of the
maximum temperature Tmax and the reference temperatures is plotted over the thermal timescale.
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FIG. 4. Radial temperature profiles in the spherical gap with dielectric heating. The conductive solution
obtained from Eq. (17) (thin lines) and latitude- and longitude-averaged temperature profiles computed from
the 3D simulations (thick lines) are shown for T0 = 293.0 K. The black long-dashed line connects temperature
maxima. The profiles for V0 = 1800 V coincide.

The conductive case reveals a paraboliclike temperature profile where the minima are located at the
boundaries and the maxima are found in the interior (see Figs. 4 and 5). In all 1D solutions the
position of Tmax is found at rmax = 0.0179 m, or rmax/R2 = 0.665. The slope dTmax/dV0 increases
with the reference temperature (Fig. 3, inset).

B. Three-dimensional simulations

The governing equations (7)–(9), incorporating the electric field given by Eq. (14), are solved
numerically with the finite-volume method using the open source software suite OpenFOAM® [23].
A cubed sphere grid is used for all simulations. No-slip boundary conditions are imposed on the
velocity field at the electrode surfaces. The thermal boundary conditions are of Dirichlet type, i.e.,
constant temperatures. The code solves dimensional equations in three dimensions with the PISO
algorithm. Time integration is performed with an implicit Crank-Nicolson method. The spatial
derivatives are approximated in second order. Subgrid scales are modeled using a one-equation
ansatz for the turbulent kinetic energy. The accuracy of the results is given with a maximum residual
of 10−6. Several tests have been performed to guarantee converged solutions. A detailed grid study
showed that the total energy converges towards a fixed value for 4× 106 cells. This resolution
also resolves the thermal boundary layers with at least five cells. In addition, the latitude- and
longitude-averaged temperature profiles are analyzed. These profiles (see Fig. 4) do not change
for more than 4× 106 cells.

The GeoFlow experiment visualizes results as interferograms. They are obtained by a Wollaston
shearing interferometry which measures first derivatives of the fluid refractive index. These deriva-
tives are identified as temperature derivates through nearly identical slopes. Advanced numerical
postprocessing techniques are necessary to reconstruct the underlying temperature and velocity
field. An approved approach is the backward reconstruction, where numerical interferograms are
compared with experimental ones. In the case in which the interferograms match in predefined
characteristics (e.g., size, number, and speed of convective plumes), the internal field in the
experiment is assumed to be identical to the numerical simulations. To compare simulations and the
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FIG. 5. Radial temperature profiles in the spherical gap with dielectric heating. The conductive solution
obtained from Eq. (17) (thin lines) and latitude- and longitude-averaged temperature profiles computed from
the 3D simulations (thick lines) are shown for T0 = 303.5 K. The black long-dashed line connects temperature
maxima.

experimental images, numerical interferograms I (x, y ) are calculated according to the algorithm
presented in Ref. [24]. We define the numerical interferometry function

I (x, y ) = − cos
(
afringe

∂Tmean

∂s
+ bx + cy

)
, (20)

where afringe is a control parameter for the density of fringes, Tmean is the radially averaged
temperature, and s is the direction of polarization. The interferometric base pattern is implemented
by a linear extension of the mean-temperature derivative function with constants b and c. By
changing these values, the amount and direction of the base pattern are controlled. For our
simulations we use afringe = 0.05, b = −200, and c = 600. The numerical interferograms are
evaluated in the same area as the experimental interferograms. This is shown in Fig. 6, where
the patch of the numerical interferogram is spanned over the outer shell of the experiment. The
interferograms show two typical patterns: first, double-ring structures which originate from thermal
plumes, and second, parallel lines of fringes which are caused by sheetlike structures. A detailed
analysis of these structures is presented in Ref. [24].

All simulations follow the exact timeline of the experiment as shown in Fig. 7. A high voltage
and a uniform temperature field at a predefined reference temperature are applied for at least 61 min
before the interferograms are recorded. We have also taken into account the initial temperature
distribution in the fluid, which is estimated from the ambient temperature of the ISS. Our numerical
study covers ten parameter sets, including five voltages V0 = 1800, 3000, 4200, 5400, and 6500 V
as well as two reference temperatures T0 = 293.0 and 303.5 K.

C. Thermal stratification and heat transfer

The conductive solutions show parabolic profiles at the temperature where the maxima are found
in the interior of the gap and the minima are located at the boundaries. This stratification is also
found in the 3D simulations. The results of the 1D and 3D calculations are compared in Fig. 4 for
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FIG. 6. Area of the numerical interferogram congruent with the experimental interferogram of GeoFlow
for V0 = 6500 V and T0 = 293.0 K.

T0 = 293.0 K and in Fig. 5 for T0 = 303.5 K. Thin lines are stationary solutions for the conductive
case and thick lines are latitude- and longitude-averaged temperature profiles of 3D simulations.
The long-dashed black line connects peak values of the temperature. The location of the temperature
peak moves towards the outer shell for increasing voltages, contrary to the conductive case, where
the location of the peak is always found at rmax/R2 = 0.665 for both reference temperatures. For
V0 = 1800 V and T0 = 293.0 K the 1D and the 3D profiles coincide (black lines). It follows that this
case is also conductive in three dimensions, even though the profile shows a negative temperature
gradient in the outer half of the gap. The case of V0 = 1800 V and T0 = 303.5 K differs. Here the
profile from the 3D simulation is always above the 1D conductive solution. The onset of convection
will be found within 1800 V < V0 < 3200 V, where an octahedral convective structure is observed
for V0 = 3000 V in the numerical simulations.

The heat transfer is described in terms of the Nusselt number

Nu = Ftot

Fcond
, (21)

where Ftot is the total heat flux, incorporating the convective and the conductive flux. To calculate the
total heat flux at the electrodes the temperature field is averaged in the latitude and in the longitude
and then differentiated in the radial direction. The conductive flux Fcond is given by the solutions
of the extended heat (17). Figure 8 shows the Nusselt number calculated at the inner (subscript i)
and the outer (subscript o ) shells for both reference temperatures and as a function of the voltage.

FIG. 7. Time line of experimental runs of GeoFlow II. Two series of reference images (Ref1 and Ref2)
are recorded with "T = 0 and high voltage V0. Ref1 is recorded after 61 min and Ref2 after 85 min. Both
reference series are used to measure the influence of dielectric heating on the conductive state.
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FIG. 8. Nusselt number as a function of the voltage. Closed and open symbols show the Nusselt numbers
measured at the outer shell Nuo and the inner shell Nui , respectively.

The value of Nui is always decreasing with the voltage, while Nuo increases with the voltage. The
slopes of both graphs are opposite, resulting in a nearly constant averaged arithmetic mean value of
Nu (not shown). The Nusselt numbers differ between the reference temperatures. Their values for
T0 = 303.5 K are always higher than those for T0 = 293.0 K. Even the assumed conductive case of
V0 = 1800 V reveals a Nusselt number of Nu = 1.5. In contrast to the classical Rayleigh-Bénard
(RB) convection, the Nusselt numbers at the inner shell are also less than unity. This comes from
the fact that the convective flux becomes negative in the inner part of the spherical gap. This is
a distinctive feature of the TEHD convection under dielectric heating. In the RB convection, the
convective flux is always greater than (convection state, Nu > 1) or equal to (conduction state,
Nu = 1) the conductive flux. In the TEHD convection under dielectric heating, therefore, the onset
of convection cannot be detected anymore with the criterion Nu > 1.

A strong influence of the convective flow on the temperature profile is observed for V0 > 3000 V.
The maxima are “eroded” by the velocity field towards the outer shell, where the convective flux is
positive and greater than the conductive flux. This explains the differences between the inner and
the outer Nusselt numbers. It is observed that convective cells penetrate the stably stratified bottom
region, which results in convection cells extending over the whole gap.

III. COMPARISONWITH EXPERIMENT

A. Temperature field

A comparison of experimental interferograms and the numerical results for different values of
the voltage is shown in Figs. 9 and 10. The first row depicts the experimental interferograms and
the second row the numerical interferograms. The third and fourth rows show the temperature and
velocity fields in a meridian plane.

In all experimental interferograms the base pattern of the Wollaston shearing interferometry
unit is visible as stripes. This pattern is produced because of the manufacturing tolerance of the
shells. The first column (V0 = 1800 V) does not exhibit any convective structures for both reference
temperatures. Three explanations are possible: First, the interferometry is not sensitive enough to
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V0 = 1800V V0 = 3000V V0 = 4200 V V0 = 5400 V V0 = 6500 V

Experimental

interferogram

∆T = 0 K

T0 = 293.0 K (a) (b) (c) (d) (e)

Numerical simulation

∆T = 0 K

T0 = 293.0 K (f) (g) (h) (i) (j)

temperature slice (k) (l) (m) (n) (o)

radial velocity (p) (q) (r) (s) (t)

FIG. 9. (a)–(e) Experimental interferograms of the GeoFlow II experiment for T0 = 293.0 K and "T =0.
(f)–(j) Numerically calculated interferograms based on 3D simulations. Both rows show interferograms
recorded after t = 2603 s. Dielectric heating is visible for V0 ! 4200 V as thermal plumes which exhibit
characteristic double-ring structures. Conductive cases (a) and (b) show only the base fringe pattern. (k)–(o)
Temperature distribution in a vertical slice. (p)–(t) Streamlines colored by the radial velocity field. Blue regions
are downdrafts and red regions are updrafts.

resolve weak temperature gradients; second, the experiment timescale is too short for convective
flow to develop; third, the conduction state is stable at this voltage.

Convective plumes at V0 = 3000 V show weak gradients and are hard to identify in the
interferograms. They are indicated by sightly distorted fringes. On the other hand, the plumes are
visible in the numerical simulations as regular octahedral structures. These structures have also
been observed by Zaussinger et al. [24] and Feudel et al. [25]. For V0 ! 4200 V convective plumes
are visible as double rings in the experiment and in the numerical simulations. The number of
rings is positively correlated to the voltage and to the reference temperature. Due to the increased
acceleration at higher voltages, the thermal gradients steepen and the frequency of fringes in
double-ring packages increases. This holds for both reference temperatures. It may be worth
mentioning that sheetlike structures are never observed under the isothermal condition T1 = T2.
The size of convective plumes decreases with increasing voltage. See, for instance, the results for
T0 = 303.5 K and V0 = 4200–6500 V. The observed behavior of plumes is in good agreement with
RB convection, where convective plumes are described as thermal boundary layers separated from
walls. The boundary layers get thinner with increasing Rayleigh number. The thermal gradients then
become steeper. In addition, the size of the plumes depends on the reference temperature. Plumes
are larger for T0 = 293.0 K. By comparing the temperature field [Figs. 9(o) and 10(o)] or the radial
velocity field [Figs. 9(t) and 10(t)] observed at different temperatures, one finds steeper plumes at
the higher temperature T0 = 303.5 K.

The selected images are representative of the amount of convective cells found. They are obtained
by manually counting. For both reference temperatures we find a positive correlation between
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V0 = 1800V V0 = 3000V V0 = 4200V V0 = 5400V V0 = 6500V

Experimental

interferogram

∆T = 0 K

T0 = 303.5 K (a) (b) (c) (d) (e)

Numerical simulation

∆T = 0 K

T0 = 303.5 K (f) (g) (h) (i) (j)

temperature slice (k) (l) (m) (n) (o)

radial velocity (p) (q) (r) (s) (t)

FIG. 10. (a)–(e) Experimental interferograms of the GeoFlow II experiment for T0 = 303.5 K and "T =0.
(f)–(j) Numerically calculated interferograms based on 3D simulations. Both rows show interferograms
recorded after t = 2603 s. Dielectric heating is visible for V0 ! 4200 V as thermal plumes which exhibit
characteristic double-ring structures. Conductive cases (a) and (b) show only the base fringe pattern. (k)–(o)
Temperature distribution in a vertical slice. (p)–(t) Streamlines colored by the radial velocity field. Blue regions
are downdrafts and red regions are updrafts.

plumes and voltage. Up to 20 plumes are found per hemisphere in the case of V0 = 6500 V. In
the statistical mean we find 38% more convection cells in the numerical simulations than in the
experiment. This aberration will be discussed in Sec. IV. The numerical simulations reveal that
the convective plumes emerge irregularly in the spherical gap. They are not stationary, but are
moving and relocated within 10–20 min over the distance of the interferogram. As the experimental
interferogram measurement lasts only 3 min, it is not possible to estimate the velocities of plumes
for comparisons with the numerical results.

B. Size of double-ring structures

The inner structure of double rings depends on the temperature gradients inside the convective
plume. In addition, the temperature distribution in the midgap spherical surface looks Gaussian
around a plume. As the interferometry delivers narrower stripes at higher gradients, the two centers
of the double rings represent inflection points. These points are located at µ ± σ , where µ is the
bisection point of the double-ring centers. The temperature takes its local maximum or minimum
there. The length between two centers (lc = 2σ ) gives a quantitative value for the width of a
convective plume which is used to calibrate numerical interferograms. Additionally, lc depends on
the velocity field and the thermal distribution due to dielectric heating. We calculate the mean value
of all visible plumes to calibrate the numerical interferograms. The variation of this mean value is
within 10%, which indicates that the lateral elongation of the plumes is nearly identical. We find the
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FIG. 11. Velocity vectors and associated streamlines along a convective downdraft. The double-eye pattern
occurs from a downward stream, where cold material is transported towards the inner shell. The red box shows
an experimental interferogram.

same result in the numerical simulations by analyzing the temperature field in the meridian surface.
Double-ring structures at T0 = 303.5 K are generally wider than for T0 = 293.0 K.

C. Velocity field

Interferograms do not deliver direct quantitative information about the velocity field. By careful
confrontation of the experimental and numerical interferograms, however, it is possible to deduce
some properties of the flow velocities. The simulations show that the convective flow is enhanced
by the increase of the applied electric voltage, as expected from the analogy to the classical RB
convection. Furthermore, the simulations show peak velocities at the locations of downdrafts,
underneath double-ring structures. The mean velocity in updraft regions is about halved. The
last rows in Figs. 9 and 10 show this behavior. Blue regions, where the radial velocity points
inward, coincide with steep thermal plumes. This observation differs from earlier publications
about GeoFlow II, where updrafts were predicted in the same situations. We will discuss this
point in Sec. IV. The velocity field in such a downdraft region is shown in Fig. 11 in more detail,
where streamlines are superimposed on the velocity vectors. The colors of the vectors indicate
the temperature values. One can see that the velocities are larger in the inner half layer than in
the outer half layer. This would be a consequence of (i) an increased radial acceleration due to
the dielectrophoretic force field and (ii) the channel-like acceleration between the counterrotating
vortices. In addition, the fluid could be heated up by passing the middle of the gap (small, deep red
colored vectors).

IV. DISCUSSION

Although the GeoFlow experiment delivers only interferograms and hence an integrated value
of the mean temperature, we are able to deduce some basic properties of the velocity field with
accompanying numerical simulations. We find that cold fluid is transported downward underneath
channel-like plumes. This is in strong contrast to earlier publications where steep updrafts have
been found. Futterer et al. [16] explained the specific convective plumes with a massively
increased viscosity contrast of νmin/νmax = 32. Although the numerical simulations reproduced
well experimentally determined interferograms, the physical process of the viscosity contrast has
never been justified. Travnikov et al. [26] also analyzed laminar convection in the same numerical
and experimental setup for various viscosity contrasts. Very good alignment of sheetlike structures
has been found for Ra < 14 000. The turbulent convective case was not in the scope of this study.
Zaussinger et al. [24] recognized a “stability island” between the conductive and the convective
case. The plumes, now known that they are dielectrically produced, have been studied according
to their automatized recognition in images. The presented experimental setup is unique for two
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reasons. First, the dielectric properties of 1-Nonanol are user friendly. This means that the frequency
of the electric field is reasonable low (f = 10 650 Hz) and the loss rates are high (tan δ ≈0.07).
Second, the given spherical geometry with radius ratio η = 0.5 delivers a stationary electric field.
This favors the numerical solution [15] as the Gauss equation does not have to be solved in each
time step. Although the comparison of numerical and experimental interferograms shows many
similarities, it reveals one significant issue. We find 38% more plumes in the simulations than in
the experiment. Three reasons could explain this discrepancy. First, the numerical simulations have
been performed without the cylindrical shaft. Egbers et al. [10] examined the influence of the shaft
during the construction phase of GeoFlow and estimated a region of influence of 30◦ around the
shaft in the southern hemisphere. However, the influence of the shaft might extend over a wider
zone in convective flows. Second, the experimental interferograms do not show all plumes, as the
visibility depends on the polarization plane. Plumes occur and vanish depending on their position
according to the polarization plane. This also reduces the amount of actually counted experimental
plumes and implies that we find all plumes in the numerical simulations, but only a fraction of them
in the experiment. Third, the plumes observed in the simulation are undergoing merging processes
(see [25]) and the number of plumes converges towards the experimental amount.

V. CONCLUSION

The behavior of a liquid layer in the gap between two concentric spherical electrodes has been
investigated by means of numerical simulations and the microgravity experiment GeoFlow. The
liquid was heated internally by dielectric heating, which leads to thermal convection. The isothermal
conductive case was analyzed with a simple 1D temperature equation, which involves a source term
arising from the dielectric heating. We found that dielectric heating leads to a parabolic-shaped
thermal profile, where the maximum was found in the middle of the gap.

Three-dimensional numerical simulation showed that convection does not set in for V0 =
1800 V, but for V0 ! 3000 V. The onset of convection is expected in between. In addition, we
found Nusselt numbers less than unity, which was explained by a negative convective flux in the
inner part of the spherical gap. Incorporating the dielectric heating in the equations governing the
TEHD convection delivered the best match between numerical and experimental interferograms for
GeoFlow II. With increasing voltage, a series of experimental interferograms could be reproduced
by numerical simulations.

The GeoFlow experiment does not deliver direct information about the temperature field.
Additionally, the velocity field is not accessible, except drift rates of plumes. The temperature
distribution is given as an interferogram which represents a radially averaged temperature value
and therefore a projection of the full temperature field on the 2D plane. The loss of information
is intrinsic owing to the measurement technique. However, the present numerical simulation can
complete the experimental measurements. Confronting experimental interferograms with those
produced by the simulation, we can deduce basic features of the temperature fields and identify
convective plumes and laminar structures in the flow. The simulation also provides associated
velocity fields.

Future work could apply the presented TEHD model in situations with an initial temperature
contrast. This could explain further inconsistencies in similar experiments. The extension to
rotational cases is also in the scope of envisaged work.
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Abstract
The main objective of the AtmoFlow experiment is the investigation of convective flows in the spherical gap geometry.
Gaining fundamental knowledge on the origin and behavior of flow phenomena such as global cells and planetary waves
is interesting not only from a meteorological perspective. Understanding the interaction between atmospheric circulation
and a planet’s climate, be it Earth, Mars, Jupiter, or a distant exoplanet, contributes to various fields of research such as
astrophysics, geophysics, fluid physics, and climatology. AtmoFlow aims to observe flows in a thin spherical gap that are
subjected to a central force-field. The Earth’s own gravitational field interferes with a simulated central force-field with the
given parameters of the model which makes microgravity conditions of g < 10−3 g0 (e.g. on the ISS) necessary. Without
losing its overall view on the complex physics, circulation in planetary atmospheres can be reduced to a simple model of a
central gravitational field, the incoming and outgoing energy (e.g. radiation) and rotational effects. This strongly simplified
assumption makes it possible to break some generic cases down to test models which can be investigated by laboratory
experiments and numerical simulations. Varying rotational rates and temperature boundary conditions represent different types
of planets. This is a very basic approach, but various open questions regarding local pattern formation or global planetary
cells can be investigated with that setup. A concept has been defined for developing a payload that could be installed and
utilized on-board the International Space Station (ISS). This concept is based on the microgravity experiment GeoFlow,
which has been conducted successfully between 2008 and 2016 on the ISS. This paper addresses the scientific goals, the
experimental setup, the concept for implementation of the AtmoFlow experiment on the ISS and first numerical results.

Keywords Microgravity conditions · Rotating convection · Atmospheric flows · Dielectrophoresis · Dielectric heating

Introduction

In a first approximation planetary atmospheres are confined
fluid layers between two spherical shells. Hence, the fluid
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flow is determined by the boundaries of the system, which
are the inner and outer shell. The inner shell represents
the planetary surface or deep, blocking atmospheric layers
of e.g. gas giants. The outer shell represents the upper
boundary of the climate-relevant atmosphere or, in case
of the gas giant, a region, where the gas concentration
decreases significantly. This simplified setup makes it
possible to break some generic cases to test models, which
can be investigated in laboratory experiments and numerical
simulations. The main advantage of such an experiment is
the reproducibility and the ability to resolve scales, which
are parameterized by semi-empirical closure models, see
e.g. Scolan and Read (2017).

However, such laboratory experiments are difficult to
establish. Earth’s gravity field would dominate or at
least significantly contribute to any radial force field of
a spherical experiment, which makes it very difficult
to deduce meaningful results because of the relative
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magnitude. The centrifugal force can be used as radial force
field to mimic buoyancy. However, this works only for the
fast rotating case, see e.g. Busse and Carrigan (1976), and
needs an inverted thermal gradient (outer shell heated, inner
shell cooled) to establish a convectively unstable system.
This setup cannot be used to investigate non-rotating cases
and fluid flows with complex boundary conditions. The
projection of a hemisphere onto a cylinder is one way to
overcome some of the the problems e.g. to make use of a
baroclinic wave tank (Borcia and Harlander 2013; Vincze
et al. 2015), though various phenomena such as equatorial
waves cannot be investigated with this setup. The most
promising solution is to set up a spherical gap experiment
with a radial force field in a microgravity environment. By
applying laterally varying temperature boundary conditions
and differential rotation it is possible to simulate a deep
planetary atmosphere, where features like planetary waves
and complex pattern formation can be studied. Indeed, the
main advantage of the experiment proposed in this paper is
the full sphere setup, which allows investigating equatorial
zonal flows and also allows to distinguish equatorially
symmetric and antisymmetric contributions.

Various experiments under microgravity conditions have
been performed in the scope of fluid dynamics and
convection. The half-dome experiment by Hart et al.
(1986) on SpaceLab mission in 1986 was the first
microgravity experiment utilizing the dielectrophoretic
effect (DEP). Hart’s experiment used lateral heating
sources, corresponding to planetary atmosphere boundary
conditions. Additionally, the experiment was mounted on
a rotating table. They investigated columnar cells and their
interaction with mid-latitude waves. Even spiral waves and
non-axisymmetric convection zones were observed.

Channel flow experiment were conducted by Smirnov
et al. (2004), where a Hele-Shaw cell was exposed to micro-
gravity conditions on parabolic flight campaigns. They
investigated the displacement of viscous fluid and showed
that the increase of the viscosity ratio between two miscible
fluids increases the fingering instability. Flow rate limita-
tions in single phase and two phase open capillary channel
flows were examined in an experiment setup on the ISS
in addition to examining the effect of the geometry of the
channel on the stability of the free surface (Canfield et al.
2013; Conrath et al. 2013). The investigators also focused
on bubble formation (Canfield 2018), surface-tension driven
bubble migration, and passive phase separation (Jenson
et al. 2014). The mission lasted multiple months and yielded
video material for thousands of data points within a wide
range of parameters (Bronowicki et al. 2015).

The first german experiment investigating convective
flows in microgravity conditions was conducted on a
parabolic flight campaign in 1991, Liu et al. (1992). In the
following, similar experiments had been performed on the

TCM Volna ballistic rocket, see e.g. Egbers et al. (1999),
Kuhl et al. (2005). During the flight of this rocket the
experiment was able to be conducted for about 20 min under
microgravity conditions. Based on this first experiment the
spherical gap experiment GeoFlow (geophysical flow) was
developed in the early 2000s and successfully run on the ISS
between 2008 and 2016, (Egbers et al. 2003; Beltrame et al.
2003; Travnikov et al. 2003; Ezquerro Navarro et al. 2015).
The GeoFlow experiment was designed to study convective
flows whilst applying a radial temperature gradient. Two
missions were successfully completed in the scope of this
experiment, GeoFlow I (GFI) and GeoFlow II (GFII).

Both experiments have been conducted on the ISS
within the Fluid Science Laboratory (FSL) of the Columbus
module, but, with differing working fluids. The main
advantage of GeoFlow is its full sphere geometry, where
basic features of iso-viscous convection (GFI: Futterer et al.
(2008); Jehring et al. (2009)) and flows with temperature-
dependent viscosity (GFII: Futterer et al. (2013); Zaussinger
et al. (2017, 2018b); Travnikov et al. (2017)) have been
studied.

Besides the GeoFlow experiments, an experimental setup
dedicated to parabolic flight campaigns (PFC) has been
developed, too, see Futterer et al. (2016) and Meier et al.
(2018). Based on the same physical mechanism, thermo-
electric convection is studied inside a cylindrical annulus
(Meyer et al. 2017, 2018). Between 2016 and 2018,
four campaigns successfully displayed the occurrence of
convective instability caused by DEP-force during low
gravity phases (22 sec of 10−2 g0) with different fluids,
aspect ratios and control parameters.

While thermo-electric convection in a cylindrical gap is a
simplified model for the GeoFlow and AtmoFlow spherical
geometries, it has also direct applications such as cylindrical
heat exchangers for electronic devices, see e.g. Evgenidis
et al. (2011), Lotto et al. (2017).

The proposed experiment AtmoFlow differs much from
the previous GeoFlow-setups. First, the inner and the outer
boundaries will both be heated/cooled locally. Additionally,
a differential rotating unit is foreseen, to simulate deep
shells, as they occur in giant planets. Figure 1 depicts
such a simplified atmosphere, where incoming radiation
and rotation lead to global cell formation. These cells
(Hadley cell, Ferrel cell or mid-latitude cell, polar cell) are
well known from the Earth and co-responsible for global
atmospheric dynamics. In contrast to Hart’s experiment,
AtmoFlow is designed as a (nearly) full sphere. The
advantage of this design is apparent, when equatorial flows
and global patterns are investigated. AtmoFlow will be the
first experiment under microgravity conditions, which will
be able to study simplified global fluid flows, planetary
waves and complex patterns in the full spherical shell
geometry under atmospheric-like boundary conditions.

Microgravity Sci. Technol. (2019) 31:569–587570



Fig. 1 Simplified planetary atmosphere as found on the Earth. Not to
scale.

The empirical study of planetary waves, global cell
formation and fluid dynamical instabilities are in the focus
of the experiment. The experiment results will provide
benchmark data for a rich variety of numerical problems,
which are still a challenge for scientific research in various
fields.

This paper is structured as follows. Section “Objectives
and Scientific Program” gives an overview of the objectives
and the scientific program of the AtmoFlow experiment. A
brief description of the experiment is presented in Section
“Brief Description of the Experiment”. The experimen-
tal methods and diagnostics are presented in Section
“Experimental Methods and Diagnostics”. This includes a
g0 testing facility on ground, where g0 = 9.81 m/s2. The
physics of thermo-electro hydrodynamics and the dielec-
trophoretic effect are described in Section “Thermo-Electro
Hydrodynamics”. Results from accompanying numerical
simulations are presented in Section “Numerical Simu-
lations”. We summarize the content of our findings in
Section “Conclusions and Outlook”.

Objectives and Scientific Program

The AtmoFlow experiment makes it possible to investi-
gate flows, which are driven by internal heating, boundary
temperature difference, rotation or complex boundary con-
ditions. It will enable deep insights into EHD driven fluid
flows, which can be used for validating simple convection

models of planetary atmospheres. The extension of semi-
empirical parameterizations of unresolved atmospheric pro-
cesses, e.g. large-scale / small-scale coupling will be inves-
tigated, too. Furthermore, precise parametrization of cell
formation will be tested with respect of e.g. Rhines scal-
ing, Read et al. (2004); Heimpel et al. (2005). This includes
the investigation of the heat transfer from the tropics to
the stably stratified mid-latitudes, Scolan and Read (2017).
In addition, the findings of AtmoFlow are expected to be
of benefit for validation and development of models that
deal with climate change. Various initial temperature dis-
tributions will be tested to investigate connections between
external forcing and climate variability.

The main goal is the elucidation of basic aspects of
convection in the rotating spherical shell. This allows the
testing of linear stability analysis regarding base flows,
convective onsets and bifurcation scenarios in rotating and
non-rotating scenarios. Planned applications are presented
subsequently:

Non-Rotating Case

The non-rotating case is mainly used to test physical
models of electro-hydrodynamics. Especially, the role of
mixed heating (internal heating and temperature difference
across the gap) is not well understood in the spherical
gap geometry, see .e.g. Vilella and Deschamps (2018).
Even though the non-rotating case has no direct geo- or
astrophysical counterpart, it is of importance for planned
technical applications. The construction of optimized heat
exchangers, EHD-based pumps and nozzles will profit from
this research. Furthermore, the enhancement of convective
heat transfer in absence of gravity (e.g. on space stations or
spacecrafts) will benefit from from a deeper understanding
of EHD driven fluid flows.

Rotating Case

AtmoFlow captures only a small range of realistic geo-
and astrophysical parameters. Here, we refer to Section
“Thermo-Electro Hydrodynamics” where all dimension-
less numbers are defined. The size and weight of the
payload limits the Rayleigh number to Ra < 106, the Taylor
number to Ta < 107, the Ekman number to 10−2 < Ek <

10−3, the Prandtl number to Pr = 8 and the Rossby number
to |Ro| < 4. However, many rotating flows can be studied
with this setup. In the following, typical applications,
limitations and the parameter regimes for proposed research
scenarios of rotating AtmoFlow experiments are presented:

– Convection, more precisely the convective onset,
transitions to the turbulent regime and symmetry-
breaking bifurcations (Mamun and Tuckerman 1995;
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Feudel et al. 2015) are compared with linear stability
analysis and numerical simulations in the super-critical
range of Ra/Racrit < 20 and the entire given Taylor
number regime. These experiments will be conducted
either with internal heating and/or a temperature
difference across the gap.

– Torsional oscillations and resulting radial equatorial
jets (Vorontsov et al. 2002; Hollerbach et al. 2002)
can be investigated in the entire parameter range for
Re> 100. Such experiments depend only on inner
sphere dynamics and not on the thermal distribution.

– Several questions arise in the scope of zonal wind sys-
tems like those found on Jupiter or Saturn. AtmoFlow
represents a deep-seated experiment with geometric
properties and Ekman numbers comparable to early 3d-
simulations by e.g. Christensen (2001) and laboratory
experiments e.g. Manneville and Olson (1996). The
direction of the jets (super-rotation and retrograde equa-
torial flows) are found to correlate with the convective
Rossby number RoT =

√
Ra/Pr Ek. According to defi-

nitions by Julien et al. (2012) and Gastine et al. (2013a),
the AtmoFlow experiment ranges between 10−1 <

RoT < 10. The lower limits of RoT cover roughly
flow regimes as found on planets of our solar system
(Wang and Read 2012) e.g. RoT = 0.5 on Jupiter’s
surface, (Gastine et al. 2013a). Hence, the basic inves-
tigation of zonal winds and the role of RoT regarding
super-rotation as found on Jupiter or Saturn (Gastine
et al. 2013b) as well as retrograde equatorial jets known
from Uranus and Neptune (Dietrich et al. 2017) can be
conducted by AtmoFlow.

Differential Rotating Case

The basic spherical Couette flow consists of a rotating
inner shell and a fixed outer shell. In the context of this
setup the excitation of inertial modes (Kelley et al. 2010;
Rieutord et al. 2012) will be studied for the Rossby number
range of −4 < Ro < 4. Limitations are only given
by high Ekman numbers, which are caused by the small
outer radius. In geophysics, differential rotation plays an
important role, when a solid planetary core rotates with a
different rate than the surrounding atmosphere or mantle.
It produces internal mixing, which proceeds on dynamical
time-scales, Maeder (1995). For instance, the inner core
of the Earth is assumed to super-rotate with 1◦ per year,
Waszek et al. (2011). Comparable situations are found
in Mercury, Jupiter, Earth’s moon and Galilean moons.
Hereby, the Richardson criterion (Ri > 0.25) parameterizes
the condition whether the shear instability is dominant over
e.g. buoyancy driven instabilities, or not. For the case of

thermo-EHD this criterion is not tested and still an unsolved
problem.

Brief Description of the Experiment

The development of the AtmoFlow experiment benefits
from the heritage of the GeoFlow experiments that were
performed between 2008 and 2016 in the Fluid Science
Laboratory on the ISS. Similarities in the setup are apparent,
such as the rotating spherical gap geometry, the central
dielectrophoretic force field, and various diagnostic and
analytical methods. In particular, AtmoFlow will utilize
the same visualization techniques as GeoFlow albeit with
some additional and/or modified functionalities. Currently,
as of 2018, the AtmoFlow experiment payload is in Phase
A/B and the focus of the development work is on the
systematic identification and assessment of requirements
and consolidation of the concept. The current development
baseline assumes accommodation of the payload within the
European Drawer Rack Mk II (EDR2, see Fig. 2 and www.
esa.int), which should be launched to the ISS and installed
in the European Columbus module in the near future.

The ISS provides a microgravity environment that
is adequate for the purpose of this experiment. Other
microgravity platforms (e.g. drop tower or sounding
rockets) are not considered as it is expected that the duration
of a single experiment point must last around an hour, which
corresponds to the double of a thermal time scale. EDR2
provides interfaces for payloads in terms of mechanical
accommodation, access to the stations water cooling loop,
various data communication methods, power supply, etc.
The concept for the AtmoFlow payload currently consists of
a hermetically sealed payload that contains the entire setup
including auxiliary systems that are required to perform the
experiment. The core of the payload is the fluid cell (see
Fig. 3), which is composed of an inner sphere (diameter
0.0378m), an outer sphere (diameter 0.054m) and a cooling
shell.

The gap between the inner sphere and the outer sphere
is filled with the test liquid 3MTMNovecTM 7200 and
represents the region of interest for the acquisition of
science data. Local temperature boundary conditions are
imposed on the poles by cooling plates in the outer shell
and at the equator of the inner shell. The mean temperature
in the intermediate regions is obtained by a thermalization
circuit. Figure 4 depicts the temperature distribution at both
shells. A detailed list of all geometrical aspects and the fluid
properties is presented in Table 1.

Sensors are located throughout the fluid cell to monitor
the temperatures of the thermalization zones and within
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Fig. 2 aaccommodation of
AtmoFlow payload in EDR2, b
payload with rotating carousel
(red) and spherical gap unit
(purple). source: Airbus Defence
and Space

the gap between the cooling shell and the outer sphere.
The inner sphere and the outer sphere also function as
the electrodes for alternating high voltage electrical field,
which generates the dielectrophoretic force on the liquid in
the spherical gap to simulate a planet’s gravity. Here, we
refer to Section “Thermo-Electro Hydrodynamics” where
details about the radial force generation are presented.
The entire fluid cell is supported by a rotating carousel
that imposes the rotational velocity !2. In addition, the
inner sphere can be rotated by a separate drive unit
(!1) to impose a differential rotation boundary condition.
Visualization of the fluid phenomena is performed using
shearing interferometry, see e.g. Zaussinger et al. (2017).
The entire optical setup co-rotates with the outer sphere and
observes the test section in a circular region between the
polar region of the upper hemisphere and the equator of
the inner sphere. The field of view stretches across 80◦ of
the northern hemisphere. The metallic surface of the inner
sphere acts as a mirror in the optical path while the outer
sphere and the cooling shell are transparent in the field
of view. Local temperature gradients cause changes in the
refractive index of the liquid in the optical path which in turn
are visualized as fringes in the resulting interferograms. A
dual camera setup including a beam splitter and dedicated
Wollaston prisms allows for simultaneous interferometry
in perpendicular planes. In addition to the fluid cell,
the payload must accommodate all subsystems that are
required to perform the experiment such as avionics and
power distribution, cooling and thermalization, mechanical
structure and mechanisms, optical diagnostics, actuators and

drives, etc. A data downlink function ensures that the images
acquired by the interferometer cameras and data acquired
by the various sensors within the experiment setup are
transferred to ground for analysis.

Geometry and Thermal Boundary Conditions

The experimental cell, depicted in Fig. 3, will rotate as a
complete assembly and the inner sphere will be equipped
with an additional drive unit to rotate relative to the
experimental cell. The geometry and dimensions of the
experiment cell are defined to fulfill the objectives stated in
Section “Objectives and Scientific Program”. The radius of
the outer sphere R2 is determined by the size and weight
of the optical setup as well as the optical accessibility. This
trade-off leads to a radius of outer sphere at R2 = 0.027 m,
a radius of inner sphere at R1 = 0.0189 m, resulting in a
radius ratio of η = R1/R2 = 0.7. The radius of the inner
sphere is further chosen to reach a radius ratio in between
thin and thick atmospheres.

The key feature of AtmoFlow is the thermal boundary
condition. Realistic atmospheric boundary conditions are
very complex, however, it is possible to break them down to
follow three regions: a) a solar-heated equatorial region with
absorption of re-radiated infrared radiation; b) heat sinks
in the upper atmosphere of the poles and mid-latitudes, c.f.
Chan and Nigam (2009); c) moderate temperature regions
between the polar and the equatorial regions. Imposing these
idealized boundary conditions results in a global circulation,
which is convectively unstable in the tropics and stable in
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Fig. 3 Vertical cut through the AtmoFlow experiment. Blue lines
depict the cooling loop, red lines show the heating circuit. Inner and
outer rotation is labeled by !1 and !2, respectively. The maximum
temperature is found at the equator T1, the minimum temperature at
the poles T2.

the mid-latitudes. Hence, the heat transfer from the tropics
to the stably stratified mid-latitudes and sub-tropics can be
investigated with this setup. A baroclinic wave tank with
the same specifications has been investigated by Scolan and
Read (2017). They observed the interaction and coexistence

of convective and baroclinic zones. Hence, this experiment
can be used as validator to study equilibrium processes
as they occur in planetary atmospheres. For AtmoFlow
the thermal boundaries are imposed by heating plates and
cooling loops, which results in Dirichlet type boundary
conditions as depicted in Fig. 4. Convection is controlled
by varying the temperature at the outer shell. Dielectric
heating (see Section “Dielectric Heating”) does not change
the temperature at the boundaries as it acts only on the
fluid in the spherical gap and not in the cooling loops. The
temperatures at the boundaries are controlled by thermal
sensors. See Section “Temperature Measurement” for a
detailed description of the thermal measurements.

The idealized thermal boundary condition used for the
numerical simulations represents a conductive solution,
when the equator is heated, the upper polar region cooled
and the mid-latitudes are insulated. It’s the same approach
as found in Scolan and Read (2017). Figure 4 depicts these
regions in terms of the temperature as function of the lateral
angle θ for the maximum temperature difference between
the poles and the equator of 20 K, which are used for the
accompanying numerical simulations. The imposed thermal
distribution at the surface Tin and the upper shell Tout can
be approximated by,

Tout(θ) =
Thot + Tcold

2
+ Thot − Tcold

2
sinn(θ) (1)

Tout(θ) = Tcold +
Thot − Tcold

2
cosh(A cos(θ)) − cosh(A)

1 − cosh(A)
.

(2)

Here, θ = 0◦ is the north pole and θ = 180◦ is the south
pole. The constant factor A = 50 increases the tempera-
ture at the poles from Tcold to

Thot−Tcold
2 within θ = 10◦, see

Fig. 4 regions 1a, 1b. In the following, the reference temper-
ature is defined at the equator, Tref = Thot = 313 K. All

Fig. 4 Imposed thermal
boundary conditions used for
the numerical simulations of the
AtmoFlow experiment for a
maximum temperature
difference of 20 K. Tin specifies
the temperature at the inner
shell, Tout at the outer shell
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Table 1 Geometrical
parameters and fluid properties
for 3MTMNovecTM 7200 (at
313 K , 105 Pa and 104 Hz
frequency

parameter symbol unit value

inner radius R1 m 1.89 × 10−2

outer radius R2 m 2.7 × 10−2

radius ratio η - 0.7

min. temperature Tmin K 293

max./ref. temperature Tmax, Tref K 313

temperature difference $ T K (Tmax − Tmin)/2

rotation rate !1,2 Hz 0-2

max. voltage U V 104

high voltage frequency fHV Hz 104

kinematic viscosity ν m2/s 3.68 × 10−7

thermal conductivity k W/(mK) 6.61 × 10−2

spec. heat capacity c J/(kg K) 1.241 × 103

thermal diffusivity κT m2/s 3.83 × 10−8

thermal exp. coefficient αT 1/K 1.6 × 10−3

electric exp. coefficient@10.000Hz αE K−1 1.383 × 10−3

density ρ kg/m3 1.389 × 103

boiling point Tboil K 349

relative permittivity ϵr F/m 7.4

loss factor tan δ - 9.73 × 10−2

refractive index@293K n - 1.281

dimensionless numbers refer to this value. The reference
length scale is the gap width d = 0.0081 m, the reference
temperature difference $T = Tref −Tm, where the interme-
diate temperature is defined as Tm = Thot−Tcold

2 . The width
of the temperature peak at the equator Thot is controlled by
the factor n=100 and covers 20◦, see Fig. 4 region 3a, 3b.
Regions except the poles (outer shell regions 2a, 3a, 3b, 2b)
and except the equator (inner shell regions 1a, 2a, 2b, 1b) are
thermally insulated (dT/dr = 0), see Fig. 4. Due to the insu-
lating regions, the gradient of the permittivity has a non-zero
value, which enables the dielectrophoretic force field every-
where in the fluid cell. The specific thermalization of the
fluid is realized by two individual cooling/heating circuits,
which are integrated in the experimental container.

Working Fluid

The working fluid plays a crucial role and has to ful-
fill various functions. First, the electric permittivity needs
to be as high as possible. This benefits the acceleration
based on the dielectrophoretic effect as the voltage can
be lowered. Second, the viscosity needs to be low which
supports comparisons with realistic atmospheres and water
tank experiments. The test liquid requires specific properties
especially when used onboard of the ISS in a high voltage envi-
ronment. It has to be non-flammable, non-toxic, insulating
and thermally and chemically stable. Next to silicone oils,
per-fluorinated compounds are possible candidates satisfy-
ing these requirements. The primary candidate is 3MTM

NovecTM 7200 (ethoxy-nonafluorobutane) C4F9OC2H5. It
is a clear, colorless and low-odor fluid. Furthermore, the
viscosity is comparable to water Pr(40 ◦C) = 9.61. Water
would be also a candidate with its much larger permittiv-
ity as 3MTM NovecTM 7200. However, it is not suitable for
long-duration TEHD-experiments since even small amounts
of ions coming from e.g. the fluid loop materials dissolute in
the ultra-pure water and increase the electrical conductivity
drastically.

Experimental Methods and Diagnostics

Interferometry

The direct data analysis methods will be based on the
interferograms (Dubois et al. 1999; Egbers et al. 2003;
Zaussinger et al. 2017) and telemetry data (Jehring et al.
2009) and consist of the following aspects:

– Tracking and recognition of convective flow pattern
using image processing tools.

– Calculation of the mean temperature field using two
perpendicular orientated interferometric images.

The indirect analysis methods are based on a comparison
of the experimental results with numerical simulations.
Hereby, numerical simulations are performed with identical
conditions, whose results can be converted into artificial
interferograms. If the interferograms match qualitatively,
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the flow state can be analyzed in much more detail with
respect to the determination of the temperature field and the
three dimensional velocity field, including cell-formation,
turbulence, interaction of planetary waves, statistics and
extreme value analysis.

The methods described above have already been devel-
oped and applied to the GeoFlow experiment data with great
success (Egbers et al. 2003; Zaussinger et al. 2017) and
is being modified and applied to the AtmoFlow parame-
ters in a separate scientific program funded by DLR Space
Administration.

To investigate the flow in the gap between the inner
and outer sphere, a Wollaston Shearing Interferometer
(WSI) shall be used, which co-rotates with the outer
sphere. As minimum field of view, an angular region of
80◦ between the north pole and the equator is required.
To enable measurements of the density gradient in two
perpendicular directions simultaneously, the illuminated
flow shall be recorded with two cameras each outfitted
with a dedicated Wollaston prism. The cameras should
have a minimum image acquisition frequency of 1 fps
(exposure time 1/500 s), a minimum image dynamic range
of 8Bit grayscale and a minimum optical resolution of
1024x1024 px, which leads to 10 px per fringe in the
interferograms.

The triggering of the cameras will be synchronized with
the inner sphere, which therefore would require an image
acquisition frequency higher than 1 fps. As the cameras
are co-rotating with the outer sphere, markers are required
on the inner sphere within the field of view, to determine
the relative position of the inner and outer sphere in
the recorded images. This allows to track and measure
convective structures in post processing tools.

The illumination of the flow shall be realized by a laser
light source, whose intensity will be variable by command
uplink and whose wavelength has to be optimized for use
with the materials in the optical path. A possible solution
is a wavelength of 532 nm. Further, the Wollaston prisms
will allow to record two interferograms simultaneously.
The sensitivity of the interferometer strongly depends on
the temperature gradient inside the field of view and
has to be determined within ground experiments, see
Section “Laboratory Experiments”.

Experimental Runs and Data Handling

To capture the whole parameter space, experimental points
are defined. They can be divided into one non-rotating
scenario, three rotation scenarios (15 values solid body
rotation, 10 values differential rotation at low rotation,
10 values differential rotation at high rotation) and by
20 different electric Rayleigh numbers RaE. In total, 12

experimental runs are defined which account for 720
experimental points. Each run has a duration of 60 min
which results in 10242 × 1byte× 1fps× 3600s× 720 EP =
2.7 TB of image data. The amount of telemetry data is low
compared to images and does not contribute much to the
total amount of data.

Temperature Measurement

In the AtmoFlow experiment, temperature measurements
are needed to monitor the thermal boundary conditions.
Therefore, the temperature has to be recorded near the poles
of the outer sphere, near the equator of the inner sphere and
in the southern or northern half sphere of the cooling liquid
volume outside the field of view of the optical diagnostics.
In the latter case, three sensors at θ = 22.5◦, θ = 45◦

and θ = 67.5◦ are sufficient. In addition, the temperature
is monitored in the outflow region of the cooling liquid
volume. The installed temperature sensors will have a
temperature range of 283K − 353K, an accuracy of 0.2K
(poles and equator), 0.5K (north or south hemisphere) and
a frequency of 1Hz.

Velocity Measurement

Common techniques to measure fluid velocities are digital
holographic velocimeter (Prodi et al. 2006), Particle Image
Velocimetry (Meier et al. 2018) and Laser Doppler
Anemometry. However, particles for these methods need
special treatment or would require the involvement of
astronautical staff members. Furthermore, difficulties in
connection with tracer based diagnostics in a high voltage
environment are assumed. In summary, no direct velocity
measurements will be performed. The velocity field will be
reconstructed by comparing interferograms with numerical
simulations. This has been performed successfully for
GeoFlow II as demonstrated in Zaussinger et al. (2018b).

AccelerationMeasurement

Long time scale and diffusion driven experiments under
microgravity conditions depend on the g-jitter. Trajectories
show loops and can cause trembling, see e.g. Shevtsova
et al. (2004). To capture these uncertainties acceleration
measurements are required. The ISS provides two systems,
the Space Acceleration Measurement System II (SAMS-
II) and the Microgravity Acceleration Measurement System
(MAMS), see e.g. Jules et al. (2004) and Rice et al. (1999),
respectively. However, to capture acceleration events near
the payload these measurements will be done independently
from the mentioned accelerometers near by the experiment
in three directions with an accuracy of 10−5 g0 and an
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acquisition rate with at least doubled image acquisition
frame rate. Hereby, a frequency range of 5 to 100 Hz
is covered. The acceleration amplitude is averaged over a
duration of one second. The quality of microgravity shall be
better than 10−3 g0 during the collection of the science data
at all experimental data points.

Laboratory Experiments

Within the AtmoFlow project, a laboratory experiment is
planned in the so-called ‘baroclinic wave tank’ facility at
the BTU Cottbus-Senftenberg, which can give reasonable
results for the flow in the mid-latitudes of a spherical
shell (Vincze et al. 2015). Thereby, basic flow phenomena
like the baroclinic instability can be analyzed on Earth.
While the space experiments are restricted to the use of the
Wollaston Shearing Interferometry (WSI), in the wave tank
setup, we can combine the WSI technique together with
Infrared-thermography (IR). Accordingly, the aim of the
experiments in the baroclinic wave tank is to characterize
specific interference pattern in the parameter space of the
AtmoFlow project. Especially interferograms of waves are
in the focus of this experiment. So far, only convective
patterns like sheet-like upwellings or steep downdrafts
can be identified clearly in the with Wollaston shearing
interferometry, Zaussinger et al. (2017). The baroclinic
wave tank gives the possibility to develop post-processing
routines which can be used to identify waves and related
wave numbers. Furthermore, interferograms depicting the
interaction of convection and waves can be identified clearly
using further imaging methods. The tank will also be
used to calibrate the interferometry unit for AtmoFlow.
Interferograms of the GeoFlow experiment showed many
artifacts, which increased the post-processing. Testing the
interferometry unit on the baroclinic wave tank will reduce
the risk of interferograms with reduced quality.

Table 2 Geometrical and experimental parameters of the baroclinic
wave tank experiment

parameter symbol unit value

radius inner cylinder R1c m 0.45
radius outer cylinder R2c m 0.12
fluid height H m 0.135
angular velocity ! rpm 0.1-30

A database of common flow patterns consisting of
IR images, interferograms and numerical simulations is
planned. This database will be the basis for the post-
processing phase of AtmoFlow, where machine learning
algorithms are trained on reference patterns. Furthermore,
an algorithm will be developed to reconstruct the average
temperature field from the interference images by use of
the additional IR data. The proposed ground experiment is
depicted in Fig. 5.

The baroclinic wave tank consists of two concentric
cylinders, which are mounted on a rotation table. The
measurement gap between the cylinders is filled with
distilled water, which has comparable Prandtl number of
the AtmoFlow working fluid 3MTM NovecTM 7200. The
inner cylinder is made of anodized aluminum and the outer
one of borosilicate glass. While the bottom end of the
experiment is enclosed by an opaque end plate, the top
side has a free surface. The outer cylinder is surrounded
by a second borosilicate glass cylinder, which is filled with
distilled water and equipped with heating coils. Thus, the
outer cylinder can be heated. Further, the inner cylinder
features cooling channels and is cooled via a thermostat.
Therefore, a radial temperature gradient adjusts with an
accuracy of ±0.1 K/m. The angular velocity of the rotation
table as well as the temperatures of the cylinders are
controlled by LabView©. The geometrical parameters of the
baroclinic wave tank are summarized in Table 2. To enable

Fig. 5 Sketch of the g0
experiment ‘baroclinic wave
tank’ and the planned set up of
the measurement technique,
which is considered in the
AtmoFlow experiment
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simultaneous measurements of WSI and IR thermography,
the experiment is revised. The upper end of the experimental
gap is enclosed by an IR transparent top plate, to prevent
possible surface waves, which would distort the interference
images. Furthermore, the IR camera as well as the WSI
components are mounted with a stiff connection to the turn
table of the experiment in order to measure in a co-rotating
frame. Data and power supply connections are realized by
means of a slip ring.

The WSI set up consists of a laser beam (λ = 532 nm),
which is expanded to cover a circular area of 80 mm2, and
enters into the measurement gap through the top plate. At
the bottom of the experiment the laser beam is reflected and
split into two beams. These two light beams are captured
by two cameras, each equipped with orthogonal oriented
Wollaston prisms and a polarizer. The Wollaston prisms
cause an interference of light rays, separated by the distance
e. The focal length f of the lens collimating the light beam
at the prism and the separation angle of the prism α define
the ray distance ftanα. The light intensity distribution I of
the interference images is a function of the local gradient of
refractive index n in the direction s of the Wollaston prism
orientation which is strongly temperature dependent. The
intensity variations in s-direction are obtained by

$I
I
= cos

(
2π e

λ

∂n
∂s

)
. (3)

In the following, we demonstrate the reconstruction of the
temperature field by the usage of two perpendicular WSI

units. This example is based on a temperature measurement
of the baroclinic wave tank with a gap width of 0.1 m, at
214 rpm and a temperature difference of 9 K between the
inner and outer shell, see Fig. 6. Numerical interferograms
are calculated by Eq. 3 for the x-direction and the y-
direction, see Fig. 6a and b, respectively. Combining both
interferograms reveals the global structures as found in
the temperature field, see Fig. 6c, d. The same approach
is considered for the AtmoFlow experiment, where two
interferograms will be captured simultaneously.

Thermo-Electro Hydrodynamics

Dielectrophoretic Effect

The force F of the electric field exerting on the fluid is given
by the Coulomb force FC, the electro-strictive force FES and
the dielectrophoretic force FDEP,

F = ρVE︸︷︷︸
FC

+∇
[
1
2
ρ

(
∂ϵ

∂ρ

)

T
E2

]

︸ ︷︷ ︸
FES

− 1
2
E2∇ϵ

︸ ︷︷ ︸
FDEP

. (4)

The working fluid 3MTM NovecTM 7200 does not carry
free charges, resulting in FC = 0. Furthermore, the electro-
strictive pressure force FES = ∇pES does not contribute
to the flow field in the incompressible formulation and is
combined with the pressure, Castellanos (1998), Mutabazi

Fig. 6 Numerical
interferograms calculated for the
temperature distribution in a
baroclinic wave tank in athe x-
direction and b the y-direction. c
combination of both
interferograms, d experimental
temperature distribution used for
the calculations. Data provided
by Früh (2018)
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et al. (2016). The dielectrophoretic force of a spherical
capacitor with hot inner shell and cold outer shell is mainly
radial directed r. Horizontal components are about five
magnitudes smaller than the radial component and are
neglected in the following. This enables a radial acceleration
field called electric gravity,

gE =
αE

ρ0αT
∇

(
ϵ0ϵrE2

2

)
. (5)

For homogeneously thermalized boundaries (T1 inner shell,
T2 outer shell) it has (or assumes) its maximum |gE| = 3.82
m/s2 for Urms = 5 kV at the inner shell and its minimum
|gE| = 0.15 m/s2 for Urms = 1.0 kV at the outer shell,
respectively, see Fig. 7a. The magnitude of the acceleration
gE depends on the electric properties of the fluid and the
geometry. The direction of the electric gravity is mainly
determined by the gradient in the temperature dependent
electric permittivity ϵ = ϵ0ϵr , where ϵ0 is the vacuum
permittivity and ϵr is the relative permittivity ϵr(T) = A ·
T2 + B · T + C and A = 7.1429 × 10−4, B = −5.1103 ×
10−1 and C = 9.7467 × 102. This function is a second
order polynomial approximation to a measurement provided
by Airbus Defense and Space. The electric expansion
coefficient αE and the thermal expansion coefficient αT
are available by measurements, too. The direction of the
electric gravity coincides with the temperature gradient in
the defined temperature regime.

Microgravity conditions are required due to the low
acceleration at the outer shell, which is much lower than
the Earth’s gravity. The corresponding electric Rayleigh
number is obtained by,

RaE =
αT gE $Td3

νκT
. (6)

where $T = (Tref − Tmin)/2 and d = R2 − R1.
This Rayleigh number is defined for R1 = 0.0189 m
at constant equatorial temperature of Tref = 313 K. It
covers about three magnitudes, 2.47 × 103 < RaE <

6.17 × 106, see Fig. 7b. All transitions between conductive,
laminar and turbulent flows are observed in this parameter
range. Additionally, the parameter range is accessible by
accompanying direct numerical simulations.

Furthermore, two dimensionless numbers corresponding
to rotation are introduced. The Taylor number,

Ta =
(
2!d2

ν

)2

(7)

ranges between 2 × 101 < Ta < 2 × 107, see Fig. 8a. The
Rossby number is a dimensionless number parameterizing
differential rotation,

Ro = !1 − !2

!2
(8)

and ranges between −3.59 < Ro < 3.59, see Fig. 8b.

Dielectric Heating

Dielectric heating plays a crucial role for the fluid flow
which is under the influence of an a.c. electric field.
The microwave stove is based on this physical process
causing water molecules to rotate and releasing heat at a
frequency of 2.45 GHz. The same situation occurs for the
polar working fluid 3MTM NovecTM 7200. The heating as
function of the electric field strength is higher at the inner
shell than at the outer shell. It scales with the square of the
electric field strength and linearly with the frequency of the
electric field, see e.g. Zaussinger et al. (2018b). The rate of
dielectric heating SDH[K/s]is obtained by,

SDH =
2π fHVϵ0ϵ

′ tan δ|E|2
ρCp

. (9)

where ϵ′ is the real part of the relative permittivity and
tan δ is the dielectric loss rate. Both values are obtained
by measurements. In the following, we show the impact of
dielectric heating on the temperature distribution in the case
where the boundaries are kept isothermally (Fig. 9a), for an

Fig. 7 aelectric gravity gE as
function of high voltage at the
inner shell and out shell,
respectively. b electric Rayleigh
number RaE as function of
temperature difference
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Fig. 8 aTaylor number Ta as
function of inner shell rotation
rate !2. b Rossby number Ro as
function of the rotation rates !1
and !2

applied temperature contrast (Fig. 9b) of $T = 10 K and
various high voltages Urms. The temperature profile in the
stationary case can be described by a parabola shape, where
the peak value is in the bulk and not at the boundaries. The
parabola profile of the temperature distribution reaches its
final shape within one thermal time scale (τ = 1713 sec).
It is found that the peak value is stationary as depicted
in Fig. 10 for various voltages. The boiling point of the
working fluid is 349K. This allows a maximum difference
between the reference temperature and the maximum of
the temperature due to dielectric heating of |?? − ??ref| =
|249 − 313| = 36K . The highest temperature found with
dielectric heating is |T − Tref| = 29K for Urms = 5.0 kV.
This is seven degrees lower than the boiling temperature.
In case of isothermally heated boundaries the maximum
temperature due to dielectric heating is about 20 degrees
below the boiling point. Based on these calculations it is

considered to limit the voltage to Urms = 5000 V and the
frequency to f≤ 104 Hz.

Numerical Simulations

Accompanying numerical simulations are performed for
the AtmoFlow experiment. They are used to reconstruct
the velocity field, which is not accessible by measurement
techniques used in AtmoFlow. The reconstruction is
based on a comparison of experimental and numerical
interferograms. Matching structures in both interferograms
correlate with similar temperature and velocity fields. Based
on this assumption, the three-dimensional fluid flow gets
accessible. However, drift velocities of convective structures
are used to support the comparison. Drift rates are calculated
directly from interferograms by identifying markers and

Fig. 9 Conductive thermal distribution in the spherical gap under the influence of dielectric heating for fHV = 10.000 Hz and Tref = 313 K for
the case of aan iso-thermal case and b a temperature contrast of 20K between the inner and the outer shell
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Fig. 10 Temporal evolution of
the thermal peak value Tmax
near the middle of the gap for
fHV = 10.000 Hz and
T0 = 313 K. (inlet) temperature
peak Tmax as function of voltage

slowly moving convection cells. They have to be identical
in the numerical simulations and in the experiment. In
principle, the parameter range of AtmoFlow can be captured
by direct numerical simulations. However, they cannot
replace the experiment. This is based on the thermo-EHD
model, which has still many open questions, Mutabazi et al.
(2016). It is e.g. unclear if the Boussinesq approximation
is valid for dielectrophoretic driven convection, when
temperature differences exceed 3K. Additionally, dielectric
heating has been identified as important term in the model,
which is under active research. AtmoFlow shall be used as
validator for physical models of EHD regarding convection
and internal heating. The governing equations are based
on the EHD model presented in Section “Thermo-Electro
Hydrodynamics” and the conservation equations of fluid
mechanics (Platten and Legros 2012). A comprehensive

∇ · u = 0 (10)

ρ0
∂u
∂t
+ (u · ∇)u = −∇p+ ∇ · ¯̄σ − 2ρ0! × u

−ρ(T)! × (! × r)+ ρFDEP (11)
∂T
∂t
+ (u · ∇)T = κT∇2T+ SDH (12)

∇ · (ϵ(T)∇φ) = 0 (13)

∇φ = E (14)

∇ × E = 0. (15)

Here, u is the velocity field, ! is the angular velocity vector,
r is the position vector, p is the pressure, ¯̄σ is the viscous
stress tensor, ρ = ρ(T ), ρ0 is the reference density, FDEP
is the dielectrophoretic force, T is the temperature, κT is the
thermal diffusion coefficient, SDH is the dielectric heating
term and ϵ is the permittivity. Fluid properties are provided
in tabulated form. The electric field is expressed in terms of
the scalar potential φ,where φ(R1) = 0 and φ(R2) = Urms.
This relation results in a non-linear Helmholtz equation
which is solved iteratively in each numerical time step,

∇ · (ϵ(T)∇φ(T)) = 0 (16)

The governing equations are solved numerically with the
finite volume method (FVM) using the open source soft-
ware suite OpenFOAM, Weller et al. (1998). A cubed
spherical grid with 4 × 106 cells is used for all sim-
ulations, where the radial resolution is 60 cells. The
velocity boundary conditions are kept no-slip. The ther-
mal boundaries are of Dirichlet type, according Eq. 2.
The code solves the governing equations dimension-
ally in 3D with the PIMPLE algorithm. This algo-
rithm is based on the SIMPLE approach for the
solution of incompressible flows, but iterates the pressure
loop several times to increase the precision of the solution.
The time integration is performed with an implicit Crank-
Nicolson method, the space derivatives are approximated in
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second order. Turbulent cases in the high Rayleigh number
regime are modeled with the one-equation turbulence model
‘dynamic-k’. The accuracy of the results is guaranteed by
the velocity residual of < 10−6. We refer to Zaussinger
et al. (2018b) for a detailed description of the numerical
setup. The main numerical study consists of 72 numerical
simulations which are located in the RaE−Ta−Ro parame-
ter space. In the following, three representative simulations
with a temperature difference of 20 K between the equa-
tor and the poles are presented. The high voltage is set to
Urms = 2800 V in all cases. Additionally, all fluid properties
are interpolated from the fluid’s data sheet and tempera-
ture dependent. Here, the maximum electric gravity gE =
1.2 m/s2 is found at the inner sphere and the minimum gE =
0.2 m/s2 at the outer sphere. The corresponding Rayleigh
number is RaE = 1.9×106. Rotation is applied in the solid-
body rotation case with a rate of !1 = !2 = 0.8 Hz. In
case of differential rotation the inner shell rotates with!1 =
0.88 Hz and the outer shell with !2 = 0.8 Hz, respectively.
This results in Ta = 3.2×106 and Ro = 0.1. Hammer-Aitoff
projections are calculated using the interpolation program
TOMS661 (Renka 1988). Hereby, the Cartesian grid of
OpenFOAM is interpolated onto a grid in spherical coordi-
nates with the same amount of data points. For reasons of
visibility the temperature and radial velocity are averaged
along the radius. The artificial interferograms are calculated
by superimposing two orthogonal interferograms, one in

x-direction and one in the z-axis, respectively. The intensity
I of the interferograms is calculated according Eq. 3 with
fluid properties of the working fluid and specifications of
the optical path which have been used for GeoFlow.

Non-Rotating Case

The non-rotation case is depicted in Fig. 11. Besides the
equatorial up-welling region and the polar down-welling
plumes, the overall temperature field is dominated by small,
local plumes. These plumes are spread in a band-like
structure along the latitudes. The Hammer-Aitoff projection
Fig. 11a and especially the thermal contour lines of the
radially averaged temperature highlight this global cell
formation. Interestingly, the numerical interferogram in
Fig. 11b shows these plumes as alined ’string of pearls’
structure. A closer look on the velocity field (not depicted)
shows many small vortices spread irregularly over both
hemispheres. The only up-welling region is found around
the equator. This results in a well mixed temperature field
with low gradients.

Solid Body Rotation Case

Figure 12 depicts a representative solid body rotation case.
This case reveals new fluid structures, which are based on
rotational effects. The overall temperature distribution is

Fig. 11 Numerical simulations
of the non-rotation case at time
stamp t=5650 sec for
RaE = 1.9 × 106: aradially
averaged temperature field as
Hammer-Aitoff projection, b
superposition of two orthogonal
artificial interferograms
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Fig. 12 Numerical simulations
of the solid body rotation case at
time stamp t = 2180 sec for
RaE = 1.9 × 106 and
Ta = 3.2 × 106: aradially
averaged temperature field as
Hammer-Aitoff projection, b
superposition of two orthogonal
artificial interferograms

Fig. 13 Numerical simulations
of the differential rotation case
at time stamp t=420 sec for
RaE = 1.9×104, Ta = 3.8×105

and Ro = 0.72: aradially
averaged temperature field as
Hammer-Aitoff projection, b
superposition of two orthogonal
artificial interferograms
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dominated by broad up-welling and down-welling regions at
the equator and the poles, respectively. However, in contrast
to the non-rotating case only a few large vortices are visible.
Local plumes are not found, except in the polar region. The
equatorial region reveals a dominant planetary wave with
mode m= 9. This wave is visible in the velocity field, the
Hammer-Aitoff projection and in the interferogram, too.
Hence, this specific simulation can be used as benchmark
test for the comparison between the numerical model and
the experiment. The poles are characterized by cold fronts
reaching deep into the mid-latitudes. These ’fingers’ are
not symmetrically arranged over both hemispheres, which
emphasize the time-dependent and turbulent character of
this fluid flow. The interferogram shown in Fig. 12b reveals
all mentioned flow structures. Concentric rings at the poles
indicate the polar plumes and cold fronts are clearly visible
as fringes, too. The equatorial wave can be identified clearly
in distorted fringes.

Differential Rotation Case

Figure 13 depicts the case when the inner shell rotates
40% faster than the outer shell. For inner shell rotation
f1 = 0.278 Hz and outer shell rotation f2 = 0.2 Hz
the Rossby number is Ro = 0.72. The temperature
difference of $T = 0.2 K and the low voltage if Vrms =
2800V results in an electric Rayleigh number of RaE =
19400. Small temperature difference across the gap and low
Taylor/Rossby numbers originate in band-like structures
and zonal flows as known from gas giants. This specific
structure is based on dielectric heating (see temperature
legend in Fig. 13a) which dominates the thermal distribution
in the bulk. Strong convective flows, aligned with the
rotation axis result from the internal heating process.
Boundary driven convection is secondary and does not
contribute much. The meridional velocity field shows two
global thermal plumes in each hemisphere. Furthermore,
the interferogram depicted in Fig. 13b reveals these cells.
One broad belt in the tropics and one narrow belt in the
mid-latitudes.

Conclusions and Outlook

In summary, this paper gives an overview of the current sta-
tus of the AtmoFlow experiment development. AtmoFlow
has been planned for long-term investigation of thermal
convection in rotating spherical shells under the influence
of a central force field with complex boundary condi-
tions. This setup represents a simplified deep atmosphere as
found in giant planets. Microgravity conditions e.g. on the
ISS are needed to overcome superpositions of the Earth’s
gravity and the radial acceleration by the dielectrophoretic

effect. The experiment consists of three main parts: a) two
concentric spherical shells filled with the test liquid and
thermalized by atmospheric like boundary conditions. b) a
rotation tray with two perpendicular co-rotating visualiza-
tion units, and c) high voltage supply for the radial force
field. The payload will be designed for accommodation in
the European Drawer Rack Mk II.

Based on the presented parameter space and test matrix,
it is intended to investigate approximately 720 individual
experiment data points during the scientific test campaign.
The data generated from the experiment will be exploited
for the following scientific purposes which are related to
meteorology, geophysics, astrophysics and engineering:

– The stability of the basic flow states and its transitions
with and without rotation

– Interaction of free convection and global wave modes.
– The characteristics of the convective flows and in

particular their symmetries.
– Atmospheric cell formation as function of rotation and

temperature.
– The critical Rayleigh numbers and wave numbers,

which denote linear stability and marks the onset of
thermal convection.

– The stability diagram for the different flow states.

The development of AtmoFlow is accompanied by a labora-
tory experiment and numerical simulations. The baroclinic
wave tank experiment is used to evaluate the double inter-
ferometry unit and to create a reference database with
patterns as they are found in convective fluid flows. Numer-
ical simulations are needed to reconstruct the velocity field,
which is not directly accessible by the experiment. Hereby,
experimental and numerical interferograms are compared
automatically in the post-processing phase of the mis-
sion. Stability analysis helps to expound the parameter
space, especially the critical dimensionless parameters as
the Rayleigh number, the Taylor number or the Rossby
number.

Understanding and controlling fluid flow in a spher-
ical geometry under the influence of rotation will be
useful in a variety of engineering applications, such
as improving spherical gyroscopes, bearings, and cen-
trifugal pumps. Furthermore, study of effects related to
the electro-hydrodynamic force, which serves to simulate
the central gravity field, will find applications in high-
performance heat exchangers, and in the study of electro-
viscous phenomena e.g. dielectric heating. Even though
fluid properties, geometry and boundary conditions dif-
fer in industrial applications, the AtmoFlow experiment
may provide useful fundamental research in the dynamics
of rotating thermo-EHD devices. It will help to under-
stand the motion of liquids in industrial applications,
where e.g. injected ions are a source of charge, e.g. in

Microgravity Sci. Technol. (2019) 31:569–587584



EHD-pumps, EHD nozzles, electrostatic precipitators or
ion-drag pumps. In summary, it is expected that this exper-
iment will deliver results in fluid mechanics, engineering,
geophysics, astrophysics, meteorology and fluid transport.

The AtmoFlow experiment payload is currently in
development for operation on the ISS.
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We present results of numerical and experimental investigations of thermal convection induced by internal
heating in both a nonrotating and a rotating spherical gap filled with dielectric fluid. The inner and outer
surfaces are maintained at constant temperatures Tin and Tout, respectively. A radial force field is produced
due to the dielectrophoretic effect. The buoyancy force in the Navier-Stokes equation and the source term
in the energy equation depend on the imposed oscillating electric field according to V 2

rmsr
−5 and V 2

rmsr
−4,

respectively, where Vrms is the root mean squared value of the voltage between spherical surfaces and r is
the radial distance. Beginning with the nonrotating case, we perform linear instability analysis in the case of
purely internal heating, i.e., both surfaces are maintained at the same temperature !T = Tin − Tout = 0. Next,
we consider a situation in which there is not only internal heating but also a temperature difference !T > 0.
While the spherical gap rotated, the occurring two-dimensional steady basic flow was calculated numerically.
The stability of the basic flow was investigated by means of linear instability theory. The critical Rayleigh
numbers and the critical azimuthal wave numbers are presented in dependence on the Taylor number. We
calculate supercritical three-dimensional flows for comparison with experimentally obtained patterns in frames
of the GeoFlow experiment on the International Space Station.

DOI: 10.1103/PhysRevE.101.053106

I. INTRODUCTION

Because of the geophysical relevance the exploration of the
convective flows in the spherical gap was the subject of inten-
sive theoretical and numerical studies. If the inner surface is
warmer than the outer one and a fluid is influenced by a central
force, then the situation occurs that can be compared with the
Rayleigh-Bénard convection. The flow patterns occurring in
such simplified configuration have been investigated by Busse
and his coworkers in both nonrotating and rotating cases.
Whereas the flow patterns in the rotating case are defined by
the Coriolis force and the critical azimuthal wave numbers
mc can be derived due to the linear instability theory [1,2],
we have completely other situation in the nonrotating case
because of the symmetry of the problem under considera-
tion. Patterns of the supercritical flow [3–5] and bifurcation
scenarios [6] have been formulated in terms of parameter
ℓ (degree of corresponding Legendre polynomial) in this
case. The next important motivation for the implementation
of the numerical analysis of the convective flows under the
influence of the radial force field is the world-wide recognized
GeoFlow experiment [7] that takes place on the International
Space Station (ISS). The most important advantage of this
experiment is that the influence of the Earth’s gravity can
be eliminated. Hence, if the fluid is heated from within and
we find the possibility to produce the central force field, then
the Rayleigh-Bénard convection in the spherical geometry can
be realized under the microgravity conditions. To produce the
radial force field the electric field is imposed on a dielectrical
incompressible fluid of density ρ and permittivity ϵ(T ), where
T is the temperature. The force density, generated by electric

field E can be expressed as follows [8]:

fe = ρeE− 1
2

E2∇ϵ(T )+∇
!

1
2
ρ

"
∂ϵ

∂ρ

#

T
E2
$
, (1)

where the first term is the density of the Coulomb force
with a free charge ρe. The second term represents the di-
electrophoretic force density, fdep. The third term, correspond-
ing to the electrostriction force, can be combined with the
pressure gradient. The Coulomb force is negligible if the
frequency of the imposed electric field f is much higher than
all frequencies that are responsible for the fluid behavior, e.g.,
the inverse of the charge relaxation time τe = ϵ0ϵr/σe (ϵ0 is
the vacuum permittivity, ϵr is the dielectric constant σe is the
electrical conductivity), the inverse of the viscous relaxation
time tν = d2/ν, and the inverse of the thermal relaxation time
tκ = d2/κ , where ν is the kinematic viscosity, κ is the thermal
diffusivity, and d = R2 − R1 is the width of the spherical
gap. The next condition that must be satisfied to neglect
the Coulomb force is d ≫ δD, where δD is the thickness of
the Debye layer on the electrodes [9,10]. Because all these
conditions fulfilled only the dielectrophoretic force influences
the flow and must be taken into account.

The behavior of the electric permittivity can be approxi-
mated by a linear function of the temperature T :

ϵ(T ) = ϵ0ϵr[1− γ (T − Tout)]. (2)

The force fdep can be written after a little algebra as follows:

fdep = −γ (T − Tout)ge, ge =
ϵ0ϵr

2ρ
∇E2, (3)
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where ge is due to the electric field-induced artificial gravity
field, and γ is the coefficient of thermal permittivity. Because
the dielectrophoretic force fdep and the induced artificial grav-
ity have opposite directions, the problem can be compared
with the classical Rayleigh-Bénard (RB) problem, with one
important difference. Whereas in RB convection the gravity
does not change and the flow is controlled due to the tem-
perature gradient, in our case !T = Tin − Tout is maintained
at constant value and the flow is triggered by varying the
voltage or artificial gravity. Furthermore, volumetric heating
is involved in the energy equation due to the source term
according to the relation

HE =
2π f ϵ0ϵrhdiss

ρCp
E2, (4)

where hdiss is the energy dissipation factor, and Cp is a specific
heat capacity. Therefore, we have electric-field-dependent (via
voltage) gravity ge ∼V 2

rmsr
−5 in the Navier-Stokes equation

[11] and source HE ∼V 2
rmsr

−4 in the energy equation. In other
words, the source term and the gravity are coupled parameters
(HE ∼ge).

This situation completely differs from the situation in
which source and the gravity are independent. In our case the
gravity is a source. Hence, it is necessary to construct control
parameters such that only one depends on the voltage. These
specific parameters for the problem under consideration are
discussed in the next section.

The work presented is a numerical support for the well-
known GeoFlow experiment [12–14] on the ISS. Whereas the
GeoFlow I experiment was performed with fluid of constant
viscosity (silicon oil M5), a fluid with temperature-dependent
viscosity (1-nonanol) was used during the GeoFlow II experi-
ment. Although the temperature-sensitive viscosity plays an
important role, we found that the influence of the internal
heating is much more significant and becomes crucial if the
frequency of the imposed electric field increases from f =
50 Hz (GeoFlow I) to f = 10650 Hz (GeoFlow II). Thus, the
source term Eq. (4) must be involved in the energy equation.
This paper is a sequel to Ref. [15], where the problem under
investigation was solved numerically in framework of the
GeoFlow I experiment in which the effect of the internal
heating is negligible.

The paper is organized as follows. After the governing
equations are formulated in Sec. II, we present the numer-
ical method in Sec. III. The structure of the basic flow for
different Rayleigh numbers and Taylor numbers is discussed
in Sec. IV. Linear instability analysis is performed in Sec. V.
Nonlinear calculations of the supercritical three-dimensional
flows, analysis of the heat transfer and bifurcation analysis in
the nonrotating and rotating cases are presented in Secs. VI A
and VI B, correspondingly. Experimental results are discussed
in Sec. VI C.

II. EQUATIONS

We consider an incompressible viscous dielectric fluid
in the Boussinesq approximation in the spherical gap. In
the common form, the problem under consideration can be

described due to the Navier-Stokes equation for the velocity

∂U
∂t
+ (U∇)U = −∇peff − γ (T − Tout)ge + ν!U

− 2"× U− ρ(T )
ρ0

"× ("× r), (5)

where U is the velocity field, t is the time,

peff =
p
ρ0
− γ ϵ0ϵr (T − Tout)E2

2ρ0
− 1

2

"
∂ϵ

∂ρ

#

T
E2, (6)

ρ0 = ρ(Tout), " is the rotation rate, the energy equation for
the temperature

∂T
∂t
+ (U ·∇)T = κ∇2T + HE , (7)

the continuity equation

∇ · U = 0, (8)

and the Gauss equation

∇ · (ϵ(T )∇υ ) = 0, (9)

where υ is the electric potential: E = −∇υ. Whereas no-slip
boundary conditions for the velocity field are used in the study
presented, we consider two kinds of boundary conditions for
the temperature. If both surfaces are maintained at the same
temperature Tin = Tout = Tb, then only the internal heating
due to the source HE is responsible for the heat transfer. The
situation changes if the inner surface is maintained at a higher
temperature than the outer one Tin > Tout. In this case the
heat transfer is produced not only because of internal heating
but also due to conduction. The boundary conditions for the
velocity, the temperature and electric potential are

U = 0, T = Tin, υ = Vrms (10)

on the inner surface r = R1,

U = 0, T = Tout, υ = 0. (11)

on the outer surface r = R2. Note that real-time-dependent
voltage V (t ) = V0 cos 2π f t was replaced by the root mean
squared value Vrms =

%
< V 2(t ) > = V0/

√
2 according to the

time-averaged relation over a period of the voltage varia-
tion Te = f −1 < V 2(t ) >= 1

Te

& Te

0 V 2(t )dt . Conditions of this
replacement were numerically derived in [16,17] and can
be briefly formulated as follows. First, the Prandtl number
of the working fluid must be large (Pr ≫ 1). Furthermore,
the frequency f must obey two conditions: f ≫ t−1

ν and
f ≫ τ−1

e . Taking into account that f = 10650 Hz, Pr = 176,
ν = 1.3970× 10−5 m2s−1, d = R2 − R1 = 135 mm, where
R1 and R2 are the inner and outer radii, correspondingly, all
these conditions are fulfilled (Table I).

Now we have to formulate the governing equations in
detail. The first case corresponds to a situation in which only
dielectrical heating without rotation (!T = 0 K, . = 0) is
considered. The second one describes not only the effect
of dielectrical heating but also a convective effect triggered
by the temperature difference between the spherical surfaces
and the rotation of the spherical system (!T > 0, . ! 0).
Because we have different boundary conditions for the tem-
perature, it is useful to formulate two sets of equations to
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TABLE I. List of constants.

Nomenclature Tout = 293 K

Energy dissipation factor hdiss 6.2423× 10−2

Volume expansion coefficient α(K−1) 8.2343× 10−4

Coefficient of thermal permittivity γ (K−1) 0.010209
AC frequency f(Hz) 1.0650× 104

Permittivity ϵr 9.05629
Density ρ (kgm−3) 828.16
Specific heat capacity Cp (JK−1) 2470
Kinematic viscosity ν (m2s−1) 1.3970× 10−5

Thermal diffusivity κ (m2s−1) 7.94× 10−8

be solved. Beginning with the purely dielectrical heating case
and writing the equation for ϵ(T ) in the form

ϵ(T ) = ϵ0ϵr[1− γ (T − Tb)], (12)

We can introduce the dimensionless temperature T ∗ us-
ing T − Tb = TbT ∗. Introducing d for the length, κ/d for
the velocity and tκ = d2/κ for the time, E = E∗ Vrms

d for the
electric field the Navier-Stokes equation, the energy equation,
and the Gauss equation can be written, dropping stars, in the
dimensionless form:

Pr−1
!
∂U
∂t
+ (U∇)U

$

= −Pr−1∇p+!U− 1
4

RH · T ·∇[∇υ0(r)

+∇υ1(r, θ ,φ)]2, (13)

∂T
∂t
+ (U ·∇)T = ∇2T + RH

RT
[∇υ0(r)+∇υ1(r, θ ,φ)]2,

(14)

∇2υ1(r, θ ,φ) = γ Tb

1− γ TbT
∇T · [∇υ0(r)+∇υ1(r, θ ,φ)],

(15)

where RH = 2ϵ0ϵrγ TbV 2
rms

ρνκ
is the Rayleigh-Roberts number, RT =

Cpγ T 2
b

πν f hdiss
. Note that it is useful to divide the electric field E into

two parts (θ is polar angle and φ is azimuthal angle)

E = E0(r) + E1(r, θ ,φ), (16)

E0(r) = −∇υ0(r), (17)

E1(r, θ ,φ) = −∇υ1(r, θ ,φ). (18)

Whereas the field E0(r), which satisfies an expression ∇ ·
E0(r) = 0, can be calculated analytically,

E0(r) = η

(1− η)2

1
r2

er, (19)

where η = R1
R2

is a radii ratio, the field E1(r, θ ,φ) has a more
complex form because it generally depends on all three coor-
dinates and must be found numerically by solving Eq. (15).
The velocity field U, the temperature T , and the electric

potential υ1 obey

U = 0, T = 0, υ1 = 0 (20)

on the both surfaces r = η/(1− η) and r = 1/(1− η).
Substituting E0(r) in Eq. (3) we obtain the well-known

r−5 dependence [11]. It is clear that the second field occurs
because of the temperature-dependent function ϵ(T ). In the
second case, the equation for the permittivity Eq. (2) and the
equation of state

ρ(T ) = ρ0[1− α(T − Tout)] (21)

have been substituted in the Navier-Stokes equation. The
dimensionless temperature T ∗ can be expressed in the form
T − Tout = !T T ∗, where !T = Tin − Tout. If the same scale
is retained for the length, for the velocity, for the time, and
for the electric field, then the governing equations can be
expressed as follows (omitting stars):

Pr−1
!
∂U
∂t
+ (U∇)U

$

= −Pr−1∇p+!U− 1
4

RaE · T ·∇[∇υ0(r)

+∇υ1(r, θ ,φ)]2 −
√

Taez × U+ A · Tr sin θs,

(22)

∂T
∂t
+ (U ·∇)T = ∇2T + RaE

RaT
[∇υ0(r)+∇υ1(r, θ ,φ)]2,

(23)

∇2υ1(r, θ ,φ) = B
1− B · T

∇T · [∇υ0(r)+∇υ1(r, θ ,φ)],

(24)

where ez = cos θer − sin θeθ , s = −(sin θer + cos θeθ ),

RaE = 2ϵ0ϵrγ
ρνκ

V 2
rms!T is the Rayleigh number, Ta = ( 2.d2

ν
)
2

is

the Taylor number, RaT = cpγ!T 2

πν f hdiss
, A = α!T

4 PrTa, B = γ!T .
The boundary conditions for the velocity field U, the
temperature T and the electric potential υ1 are

U = 0, T = 1, υ1 = 0 (25)

on the r = η/(1− η) and

U = 0, T = 0, υ1 = 0 (26)

on the r = 1/(1− η). Note that parameters RaT and B does
not change at fixed !T . The parameter A depends only on
the Taylor number (for fixed Prandtl number). Hence, we
can investigate convective flow that depends on the Rayleigh
number (or voltage Vrms) and the Taylor number (or rotation
rate .). We list the values of constants for the working fluid
1-Nonanol in this study used in Table I.

III. NUMERICAL METHOD

The fully three-dimensional pseudospectral numerical
code for the spherical geometry was developed by Hollerbach
[18]. The poloidal-toroidal representation of the velocity field

U = ∇ ×∇ × (3er )+∇ × (4er ) (27)
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FIG. 1. The base temperature (a) and the base electric field (b) for η = 0.5, !T = 0 K, RH = 1.605× 106.

automatically obeys the continuity equation. Separated equa-
tions for poloidal 3 and toroidal 4 potentials can be ob-
tained applying operators ∇ ×∇× and ∇×, correspondingly.
After the mapping r = 1

2 [z + 1+η
1−η

] is performed, where z ∈
[−1,+1], each scalar function can be expanded in terms of the
Chebyshev polynomials in the radial direction and in terms of
spherical harmonics, Y m

ℓ (θ ,φ), according to

3(t, r, θ ,φ) =
MU'

m=0

LU'

ℓ=ℓ′

KU+4'

k=1

[ fckℓm(t ) cos(mφ)

+ fskℓm(t ) sin(mφ)]Tk−1(z)Pm
ℓ (cos θ ), (28)

4(t, r, θ ,φ) =
MU'

m=0

LU'

ℓ=ℓ′

KU+2'

k=1

[eckℓm(t ) cos(mφ)

+ eskℓm(t ) sin(mφ)]Tk−1(z)Pm
ℓ (cos θ ), (29)

ℓ′ = max(1, m). A similar expression is valid for the temper-
ature

T (t, r, θ ,φ) =
MT'

m=0

LT'

ℓ=m

KT+2'

k=1

[tckℓm(t ) cos(mφ)

+ tskℓm(t ) sin(mφ)]Tk−1(z)Pm
ℓ (cos θ ). (30)

Twenty Chebyshev polynomials (KU = KT = 20) and 30
Legendre polynomials (LU = LT = 30) were enough to get
the grid-independent solution for the two-dimensional basic
flow and linear onset calculations for all Taylor numbers and
Rayleigh numbers considered. Whereas the same resolution
in the radial direction was used for the fully three-dimensional
calculations, a values of LU, LT vary between 30 and 40 and
MU and MT alter between 20 and 40. The time-dependent
spectral coefficients have been calculated by means of the
predictor-corrector method. Because we deal with the oscillat-
ing bifurcation the perturbed flow depends on time in contrast
to the steady two-dimensional basic flow. Therefore, we use
such a time step !t that for all smaller !t no changes in
critical Rayleigh number and drift velocity occur. This time
step depends on the Taylor number and varies between !t =
10−4 and !t = 2× 10−5.

IV. BASIC FLOW

From Eqs. (12)–(19) and Eqs. (2), (21)–(24) it follows
that the electric field is coupled directly not only with the
velocity field due to the buoyancy term in the Navier-Stokes
equation but also with the temperature, due to the dielectrical
heating in the energy equation. This means that the model

under investigation differs from other cases in the literature
where the dielectrical heating or other kinds of heating are
negligible. This fact makes it slightly complicated to calculate
the basic state. In the case of pure heating (!T = 0 K),
the basic flow is zero in the nonrotating case. To find the
temperature, Eq. (14) must be solved numerically together
with the Gauss equation, Eq. (15). The base temperature T0(r)
and the base electric field E(r) = E0(r)+ E1(r) have a radial
one-dimensional structure, see Figs. 1(a) and 1(b),

∇2T0(r) = −RH

RT
[∇υ0(r)+∇υ1(r)]2, (31)

∇2υ1(r) = γ Tb

1− γ TbT
∇T0(r) · [∇υ0(r)+∇υ1(r)]. (32)

However, in the case of purely dielectrical heating, an
additional field E1(r) has such a small value [Fig. 1(b)] that
it does not influence the temperature. Therefore, the base
temperature can be calculated analytically,

T0I (r) = −1
2

RH

RT

η2

(1− η)4

!
(1− η)2

η
− (1− η2)

η

1
r
+ 1

r2

$
.

(33)

The analytical form of the temperature is particularly
useful for calculating the Nusselt number of the basic state,
defined as follows:

Nuanalyt
in0 =

(

Sin

dT0I (r)
dr

dSin, (34)

Nuanalyt
out0 = −

(

Sout

dT0I (r)
dr

dSout, (35)

where dSin,out = r2
in,out sin θdθdφ. After a little algebra, we

obtain

Nuanalyt
in0 = Nuanalyt

out0 = 2πη

(1− η)2

RH

RT
. (36)

The energy balance equation in terms of the Nusselt num-
ber reads

−Nuanalyt
in0 − Nuanalyt

out0 + RH

RT

(

V
E2

0 dV = 0, (37)

i.e., the energy is produced due to the dielectrical heating and
leaves the domain under consideration through the inner and
outer surfaces.

In the second case (!T > 0) without rotation (Ta = 0) and
neglecting E1(r) the analytical solution for the temperature
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FIG. 2. The basic temperature (a) and the electric field (b) for η = 0.5.

is

T0II (r) = − η

1− η
+ η

(1− η)2

1
r

− 1
2

RaE

RaT

η

(1− η)2
+ 1

2
RaE

RaT

η(1+ η)
(1− η)3

1
r

− 1
2

RaE

RaT

η2

(1− η)4

1
r2

. (38)

Note that the solution can be divided into two parts. The first
part occurs because the inner surface is warmer than the outer
and is responsible for the energy transport from the warmer
inner surface into the volume entirely due to conduction. The
second one is associated with dielectrical heating (∼RaE

RaT
). Two

examples of the base temperature are presented in Fig. 2(a).
Whereas the influence of the dielectrical heating is partic-
ularly significant for small !T (RaT = 138.28 for !T =
0.4K), conduction prevails for large !T (RaT = 78 000 for
!T = 9.5K). Both effects influence heat transfer, which can
be expressed in the following form in terms of the Nusselt
number:

Nuanalyt
in0 = −

(

Sin

dT0II (r)
dr

dSin,
RaE

2RaT
" 1, (39a)

Nuanalyt
in0 =

(

Sin

dT0II (r)
dr

dSin,
RaE

2RaT
! 1, (39b)

Nuanalyt
out0 = −

(

Sout

dT0II (r)
dr

dSout. (39c)

Hence, whereas the energy flux through the outer surface
does not change its sign, the definition of Nuanalyt

in0 depends
upon which effect is stronger, the dielectrical heating, asso-
ciated with the imposed electrical field, or the energy transfer
because of the conduction. The Nusselt number can be calcu-
lated analytically, as in the case of purely dielectrical heating

Nuanalyt
in0 = 4πη

(1− η)2

"
1− 1

2
RaE

RaT

#
,

RaE

2RaT
< 1, (40a)

Nuanalyt
in0 = 4πη

(1− η)2

"
1
2

RaE

RaT
− 1
#

,
RaE

2RaT
> 1, (40b)

Nuanalyt
out0 = 4πη

(1− η)2

"
1+ 1

2
RaE

RaT

#
. (40c)

The energy balance equation in terms of the Nusselt num-
ber reads

Nuanalyt
in0 − Nuanalyt

out0 + RaE

RaT

(

V
E2

0 dV = 0 (41)

RaE

2RaT
< 1,

−Nuanalyt
in0 − Nuanalyt

out0 + RaE

RaT

(

V
E2

0 dV = 0 (42)

RaE

2RaT
> 1.

If RaE/2RaT < 1, then the heat flux caused by conduction
prevails and the system obtains more energy than it loses
because of the internal heating. This situation changes if
the Rayleigh number exceeds 2RaT (e.g., 2RaT = 276.55
if !T = 0.4 K). Therefore, the Nusselt number has the V-
shaped structure.

The influence of E1(r) becomes important for large values
of !T , e.g., !T = 9.5 K. The difference between E(r) and
E0(r) has a value of 5% at the vicinity of the inner surface
[Fig. 2(b)]. Taking E1(r) into account decreases the critical
Rayleigh number from RaEcL = 2487 (if the field E(r) =
E0(r) is considered) to RaEcL = 2353.29.

The situation becomes much more complex if the spherical
system is rotating (Ta > 0). The centrifugal force causes a
two-dimensional axisymmetrical and equatorially symmet-
rical steady basic flow [U0(r, θ )] that must be calculated
numerically. Some examples of the basic flow are presented
in Fig. 3 in terms of the stream function χ that is connected
with velocity components according to U0r (r, θ ) = 1

r2 sin θ
∂χ
∂θ

,
U0θ (r, θ ) = − 1

r sin θ
∂χ
∂r . The basic flow is presented for the ex-

perimentally relevant radii ratio η = 0.5, Prandtl number Pr =
176, !T = 0.4 K, !T = 1.7 K, !T = 3 K, and for Taylor
numbers Ta = 17 200 and Ta = 68 800; see Sec VI C. The
first row shows the meridional flow or the stream function, the
second one depicts the angular velocity and the third row is
the temperature. All flows are presented at the critical
Rayleigh number RaE = RaEcL.

If !T increases, then the centrifugal force becomes more
and more important and the meridional flow [Figs. 3(a)–3(f),
first row] concentrates in the vicinity of the inner surface. The
main part of the angular velocity field [Figs. 3(a)–3(f), second
row] concentrates near the inner surface, building the bound-
ary layer. The maximum temperature [Figs. 3(a)–3(f), third
row] is located within the gap, emphasizing the importance
of the internal heating. These features of the basic flow are
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FIG. 3. Basic flow (presented at the critical RaEcL): first row contours of the meridional circulation χ with (a) χmax = 0.36, (b) χmax = 0.9,
(c) χmax = 0.48, (d) χmax = 0.96, (e) χmax = 0.76, (f) χmax = 1.2. Second row contours of the angular velocity with maximal and minimal
values (a) +2.8,−1.2, (b) +12.6,−4.8, (c) 3.6,−2, (d) +14,−6.4, (e)+ 5,−3.42, (f) +15,−8.0. Third row contours of the temperature
with (a) Tmax = 3.1, (b) Tmax = 6.4, (c) Tmax = 1.0, (d) Tmax = 1.6, (e) Tmax = 1.0, (f) Tmax = 1.05.

crucial for understanding of the origin of the instability as
discussed in the next section.

The Nusselt number can be calculated numerically only
in the rotating case because of the existence of the basic
flow. We present the Nusselt number as a function of RaE
(Fig. 4) for fixed Taylor number Ta = 17 200. The shape of
the Nuin0(RaE), corresponding to the heat transfer through
the inner surface in the case of the basic flow (for the fixed
!T = 0.4 K and !T = 1.7 K) is similar to the nonrotating
case. Interestingly, the zero-flux point, RaE0, in which Nuin0 =
0, i.e., heat fluxes produced due to the imposed electrical
field and applied !T are the same, almost coincides with
2RaT for !T = 0.4 K (RaE0 = 276.27, 2RaT = 276.55) and
differs only slightly within a range of 0.5% for !T = 1.7 K
(RaE0 = 5016, 2RaT = 4995.27). Whereas Nuout0(RaE) can
be approximated by means of linear law [Eq. (40c)] with
very good accuracy (less than 0.01%) for !T = 0.4 K and

!T = 1.7 K, Eqs. (40a) and (40b) can be used to calculate
the value Nuin0(RaE) only for !T = 0.4 K. Detailed analysis
shows that numerically obtained Nusselt number, Nuin0(RaE),
can be approximated by (Fig. 4, left)

Nuapprox
in0 = −0.005025RaE + 25.20,

RaE

RaE0
< 1, (43)

Nuapprox
in0 = 0.004989RaE − 25.03,

RaE

RaE0
> 1 (44)

for !T = 1.7 K.
If the !T increases, then the zero-flux point RaE0 does

not occur because the heat flux due to conduction through the
inner surface prevails over the heat flux caused by the source
HE . Therefore, the Nusselt number for !T = 3 K and Ta =
17 200 must be calculated numerically and the analytically
obtained expressions Eqs. (40a)–(40c) are no longer valid.

FIG. 4. Nusselt number vs. Rayleigh number for !T = 1.7 K (a) and !T = 3.0 K (b), η = 0.5 and Ta = 17 200. Numerically obtained
Nusselt number is presented in solid, the approximated Nusselt number Eqs. (44)–(47) is presented with stars.
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FIG. 5. Critical Rayleigh-Roberts numbers in the case of purely dielectrical heating (!T = 0 K).

Nevertheless, numerically obtained Nusselt number can be
approximated according to (Fig. 4, right).

Nuapprox
in0 = −0.001537RaE + 25.17, (45)

Nuapprox
out0 = 0.001694RaE + 25.17. (46)

V. LINEAR INSTABILITY ANALYSIS

Stability of the basic flow was investigated in frames of
linear theory. This is a useful tool to derive such critical
Rayleigh-Roberts, RHcL, or Rayleigh number, RaEcL, above
which the basic flow becomes unstable with respect to in-
finitesimal perturbations u for the velocity, 6 for the tem-
perature, p̃ for the pressure, and υ̃ for the electric potential.
Because of the continuity Eq. (8) the poloidal-toroidal decom-
position Eq. (27) can be used for the field u,

u = ∇ ×∇ × (3̃er )+∇ × (4̃er ), (47)

too. Furthermore, the expressions Eqs. (28)–(30) are valid
for the perturbations in which the spectral coefficients, e.g.,
fckℓm have been replaced by f̃ckℓm. The eigenvalue problem
was solved by means of direct numerical integration. Because
the basic flow is steady the temporal structure of the solution
of the linearized equation system has form of eσ t , where
σ = ζ + iω is the dominant eigenvalue, the real part of the
eigenvalue ζ is the growth rate, and ω is the frequency of the
perturbation. The goal of the linear analysis is to find such
value of the control parameter (RHcL and RaEcL) at which
ζ = 0. Frequency ω defines a kind of bifurcation. If ω = 0,
then the basic flow becomes unstable with respect to the
stationary perturbations. If ω > 0, then the instability sets in
as an oscillating bifurcation.

A. Nonrotating case

Note that the linearized equations, formulated in the spec-
tral space, do not depend on the azimuthal wave number m
in the nonrotating case. Furthermore, the linear instability
equations can be separated for each number ℓ. Numerical

analysis shows that the basic flow becomes unstable with
respect to steady perturbations for all radius ratios considered,
i.e., ω = 0. This numerical result is in accordance with the
analytical results obtained for the case of the plane and
cylindrical geometries [19–21]. The growth rate is calculated
according to σ = 1

!t ln |gkℓ(t+!t )|
|gkℓ(t )| , where gkℓ(t ) is the arbitrary

spectral coefficient ( f̃c,s or t̃c,s) with fixed subscript k and
tested number ℓ. Note that in the linear approach the toroidal
potential vanishes 4̃ = 0 in the nonrotating case. The critical
Rayleigh-Roberts number and the critical Rayleigh number,
defined as

RHcL(η) = min
ℓ

RH(ℓ, η), RaEcL(η) = min
ℓ

RaE(ℓ, η),

(48)

obey σ = 0.
Critical Rayleigh-Roberts numbers for the case of purely

dielectric heating are presented in Fig. 5. We see that the
critical Rayleigh-Roberts number is RHcL = 1.6049× 106,
which corresponds to the voltage Vrms,crit. = 1754 V. The
critical wave number is ℓc = 4. The influence of the imposed
!T is presented in Fig. 6. Although the critical Rayleigh
number increases from RaEcL = 1511.32 for !T = 0.4 K to
RaEcL = 2411.29 for !T = 3 K, the corresponding values of
the voltage decrease drastically from Vrms,crit. = 1456 V to
Vrms,crit. = 671 V. Hence, increasing !T destabilizes the basic
state: A lower voltage is needed for the transition into the
three-dimensional flow.

B. Rotating case

If the spherical system rotates with the rotation rate ., then
the Coriolis force and the centrifugal force must be taken into
account. Additionally to the Rayleigh number RaE, the flow
is characterized by the Taylor number, Ta, and the parameter
A = 1

4α!T PrTa. As in the nonrotating case, the linearized
Navier-Stokes equation, the energy equation and the Gauss
equation were solved directly to derive the critical Rayleigh
number. The basic feature of the equations, describing the
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FIG. 6. Critical Rayleigh numbers for the dielectrical heating and !T > 0.

stability problem, is that they can be formulated for each
azimuthal wave number m. In other words, we have to solve
M two-dimensional problems, where M is the maximum of
the all wave numbers under consideration. Furthermore, be-
cause of the equatorial symmetry of the basic flow, the linear
system of equations to be solved can be divided into two sets,
corresponding to the two symmetry classes. Perturbations of
the first class satisfy the relation

{ur, uθ , uφ,6}(r, θ ,φ) = {ur,−uθ , uφ,6}(r,π − θ ,φ),

(49)

which is symmetric with respect to the equator, and perturba-
tions of the second class,

{ur, uθ , uφ,6}(r, θ ,φ) = {−ur, uθ ,−uφ,−6}(r,π − θ ,φ),

(50)

are equatorially antisymmetric.
The first class is responsible for the instability of the

problem under consideration. The critical Rayleigh number
is calculated according to

RaEcL(Ta) = min
m

RaE(m, Ta) (51)

for the fixed Prandtl number and radii ratio η.
Unfortunately, far more numerical effort is needed to per-

form the stability analysis in the rotating case in contrast to
the nonrotating case considered above. Therefore, we limit
the stability investigations to cases with η = 0.5, Pr = 176,
!T = 0.4 K, !T = 1.7 K, and !T = 3 K, which are rel-
evant for the GeoFlow experiment. The critical Rayleigh
numbers as a function of the Taylor number are presented
in Fig. 7. The basic flow becomes unstable with respect to
the nonaxisymmetric perturbations with mc > 0: the critical

FIG. 7. Critical Rayleigh numbers vs. Taylor number for η = 0.5 and Pr = 176. The numbers in the vicinity of the stability curves are the
critical azimuthal wave numbers mc.
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FIG. 8. Drift velocity vs. Taylor number. The numbers in the vicinity of the drift velocity curves are the critical azimuthal wave numbers mc.

azimuthal wave number varies between mc = 4 for small
Taylor numbers and mc = 7, 8 for Taylor numbers in the order
of 104. Note that for Ta > 2.0× 104 the critical Rayleigh
number can be be approximated according to linear law, i.e.,
RaEcL ∼Ta. The instability sets in as an oscillating bifur-
cation. The perturbative flow drifts with a velocity (Fig. 8)
of ωdrift = ωc/mc, where ωc is the frequency of the dom-
inant perturbation, corresponding to the wave number mc.
An interesting feature of the drift can be detected for small
Taylor numbers. Whereas the spherical gap rotates counter-
clockwise, the perturbative flow drifts clockwise (Fig. 8). An
increase in Ta leads to the change of direction and the higher
magnitude of the drift velocity.

It is useful to express the nondimensional parameters such
as the Rayleigh number, Taylor number, and drift velocity,
ωdrift, in terms of the voltage, Vrms, rotation rate ., and
ωdim

drift (Table II). This makes it more convenient to compare
the results with the GeoFlow experiment. The rotation has a
strongly stabilizing effect: If the Taylor number rises, then
there is an increase in the critical voltage at which the tran-
sition from the basic flow into the three-dimensional flow
occurs. The drift velocity of the perturbation ωdim

drift is much
lower than the rotation rate ..

The next issue is to follow why and where the instability
occurs. Although the instability can be located by calculating

the eigenvectors, i.e., the velocity field, corresponding to
RaEcL, it can also be located using the azimuthally integrated
kinetic energy of the perturbation e(r, θ ) = 1

2

&
u2r sin θdφ,

which is a more convenient tool for analyzing the origin of
the instability (Fig. 9). It is important to note that although
we deal with the oscillatory bifurcation, the kinetic energy
of the perturbative flow remains constant. Therefore, one
snapshot is sufficient to determine that there are two regions
where the instability concentrates. The first one is the shear
instability that appears within the meridional flow (Fig. 9). In
the next section we will see that the radial and the longitudinal
velocity components of the perturbation are responsible for
this instability. The second one occurs in the vicinity of
the equator and is associated with the azimuthal velocity
component. Although it is impossible to derive amplitudes of
the supercritical flow in frames of the linear stability analysis,
we are able to predict its patterns. An example of the critical
perturbation with mc = 5 is presented in Fig. 10.

VI. THREE-DIMENSIONAL ANALYSIS

Besides the linear instability analysis, we present also
simulations of the nonlinear three-dimensional flow. Because
the computational effort increases considerably with RaE, we
consider only slightly supercritical states.

TABLE II. Connection between nondimensional characteristics (RaEcL, ωdrift) of the instability and dimensional characteristics (Vrms, ωdim
drift).

mc indicate the critical azimuthal wave numbers.

!T (K) Ta . (s−1) RaEcL Vrms,crit. (V) mc ωdrift ωdim
drift (s−1)

0.4 17 200 0.8 2 800 1 982 5 0.2901 1.264× 10−4

0.4 68 800 1.6 5 940 2 887 8 6.067 2.643× 10−3

1.7 17 200 0.8 6 149 1 425 5 0.6670 2.905× 10−4

1.7 68 800 1.6 18 006 2 438 8 7.868 3.428× 10−3

3 17 200 0.8 7 513 1 186 5 1.394 6.073× 10−4

3 68 800 1.6 19 773 1 923 7 9.104 9.325× 10−3
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FIG. 9. As in Figs. 3(a)–3(f), the basic meridional circulation is shown. The gray shading indicates the location of the azimuthally integrated
kinetic energy e(r, θ ) of the perturbation. Both the basic meridional circulation and e(r, θ ) are shown at the critical Rayleigh number.

The goals of the three-dimensional investigation are as
follows. First, we check the results of the linear instability
analysis. If the Rayleigh number exceeds the critical value,
then the basic flow must become unstable and take on the 3D
structure according to the results predicted in the previous
section with the same characteristics: ℓc in the nonrotating
case and mc and ωc for Ta > 0. Second, we have to investi-
gate whether we are dealing with subcritical or supercritical
bifurcation by analyzing the behavior of the amplitude. The
third reason, why the nonlinear equilibration is essential, is
the possibility to follow how the internal heating influences
the heat transfer.

A. Three-dimensional analysis: Nonrotating case (Ta = 0)

Beginning with the purely dielectrical heating (!T = 0 K)
without rotation, we choice a total kinetic energy as a control
parameter of the supercritical flow. The amplitude a is defined
according to

a2 = E = 1
2

(

V
U2dV =

LU'

ℓ=1

Eℓ =
LU'

ℓ=1

ℓ'

m=0

ϵℓm. (52)

Introducing expressions

f̂c,sℓm[t, r(z)] =
KU+4'

k=1

fc,skℓm(t )Tk−1(z), (53)

êc,sℓm[t, r(z)] =
KU+2'

k=1

ec,skℓm(t )Tk−1(z), (54)

energies ϵℓm have been calculated analytically,

ϵℓm(t ) =
)

ℓ2(ℓ+ 1)2
( 1/(1−η)

η/(1−η)

f̂ 2
ℓm(t, r)

r2
dr

+ ℓ(ℓ+ 1)
( 1/(1−η)

η/(1−η)
ê2
ℓm(t, r)dr

+ ℓ(ℓ+ 1)
( 1/(1−η)

η/(1−η)
f̂ ′2ℓm(t, r)dr

#
Cℓm, (55)

where f̂ 2
ℓm(t, r) = f̂ 2

cℓm(t, r)+ f̂ 2
sℓm(t, r) [the same relations

are valid for ê2
ℓm(t, r) and f̂ ′2ℓm(t, r)], and Cℓ0 = 2π

2ℓ+1 for m =
0, Cℓm = π

2ℓ+1
(ℓ+m)!
(ℓ−m)! for m > 0.

The behavior of the amplitude a2(RH) for η = 0.5 and
Pr = 176 is presented in Fig. 11 (left). According to the three-
dimensional calculations, the basic flow suddenly becomes
unstable with respect to the infinitesimal perturbations if the
Rayleigh number exceeds the critical value RH > RHcL in
agreement with the results given by linear instability theory.
If RHc < RH < RHcL, then the basic flow remains stable re-
garding small perturbations but becomes unstable with respect
to the perturbations with finite amplitude. The transition from
the convective branch on the branch, corresponding to the ba-
sic state a = 0, occurs at RHc = 1.566× 106. The instability
sets in as subcritical bifurcation, which causes the hysteresis
effect.

Let us consider the bifurcation diagram in detail (Fig. 11,
left). The conducting state has been used as the initial con-
dition. Furthermore, the mode corresponding to the critical
one is perturbed to obtain the three-dimensional flow. If the
Rayleigh-Roberts number is less than RH < 1.7× 106, then

FIG. 10. Velocity components of perturbation ur , uθ at r = 1.6 and uφ at the equator for RaEcL = 2800, Ta = 17200, !T = 0.4 K, and
mc = 5.
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FIG. 11. The bifurcation diagram for the purely dielectrical heating flow is shown left. Arrows detect the hysteresis loop and transition
between branches. The Nusselt number behavior is presented right.

we obtain the steady 3D flow in octahedral form (bifurcation
branch 1). Starting at RH > 1.7× 106 we again obtain a
steady three-dimensional flow but with a pentagonal structure
(bifurcation branch 2). Moving along this branch and decreas-
ing RH, we jump on the first bifurcation branch at RH = 1.6×
106. This transition is shown with small arrow. Hence, an
important feature of the flow caused by the purely dielectrical
heating is the nonuniqueness of the solution. An example of
two different flows at RH = 1.75× 106 is presented in Fig. 12.
Energies Eℓ that make the greatest contribution are listed in
Table III.

Note that the mode with ℓc = 4 is dominantly in agreement
with linear stability theory. A similar result has been detected
in the case of convection (HE = 0) [6].

The heat transfer results are summarized in (Fig. 11, right).
Whereas the Nusselt number is the same for the basic flow
for both surfaces Nuin0 = Nuout0, in the three-dimensional
case the heat transfer is divided into two branches. Although

FIG. 12. Nonuniqueness of the solution: the temperature distri-
bution for RH = 1.75× 106 at r = 1.5.

the Nusselt number, Nuin3D, increases with RaE, the energy
flux decreases considerably compared to the basic state. The
behavior of the Nuout3D completely differs from Nuout0. The
system loses the energy from the outer surface much faster if
the flow becomes a three-dimensional structure.

The subcritical bifurcation scenario is detected in the case
of convection, also influenced by the dielectrical heating with
the applied !T = 0.4 K between spherical surfaces (Fig. 13,
left). As in the case of the purely dielectrical heating, the
basic flow becomes abruptly unstable for RaE > RaEcL =
1 511.32 in accordance with lines stability theory. The three-
dimensional flow is stable with the interval 1 507 = RaEc <
RaE < RaEcL. The hysteresis effect is much weaker in contrast
to the purely dielectrical heating. Indeed, the difference ! =
(RaEcL − RaEc)/RaEcL = 0.26% is much smaller than !H =
(RHcL − RHc)/RHcL = 2.1% In contrast to the purely dielec-
trical heating case, only one flow structure, the octahedral
structure, is found. The similar Nusselt number shape, cor-
responding to the three-dimensional flow, has been observed
in the convective case (Fig. 13, right).

B. Three-dimensional analysis: Rotating case (Ta > 0)

We shall now present the results in the rotating case,
comparing them with the results given by linear stability
theory. Some examples are shown in Figs. 14(a)–14(c). The
longitudinal velocity component of the three-dimensional
flow, Uθ , with the m = 8 structure is presented in Fig. 14
a for a slightly supercritical Rayleigh number (RaEcL =
5904). The flow drifts with ω3D

drift = 6.1511, which is in good
agreement with stability results (ωdrift = 6.0672). The kinetic
energy E (r, θ ) = 1

2

&
U 2r sin θdφ [Fig. 15(b) mode m = 0,

corresponding to the axisymmetric basic flow and nonlinear
interactions because of the nonlinear term in the Navier-
Stokes equation, is substracted] is concentrated within the
meridional flow, confirming the spatial characteristics of the
stability analysis [Fig. 9(b)]. Interestingly, the distribution

TABLE III. Most dominant kinetic energies for η = 0.5, RH =
1.75× 106, and Pr = 176 for the octahedral structure (left) and the
pentagonal structure (right).

ℓ Eℓ ℓ Eℓ

4 299.15 4 186.68
6 18.81 5 101.97
8 8.089 7 8.5822
10 0.1724 8 4.7228
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FIG. 13. Left-bifurcation diagram for the flow, caused by the dielectrical heating with convection, right-Nusselt numbers for η = 0.5 and
!T = 0.4 K.

of E (r, θ ) (Emax = 68) almost coincides with Erθ (r, θ ) =
1
2

&
(U 2

r +U 2
θ )r sin θdφ (Erθmax = 66), emphasizing that the

radial and longitudinal velocity components make a most
essential contribution into the shear instability.

Two further examples of the supercritical flows are pre-
sented in Figs. 14(b) and 14(c). The m = 5 and m = 7 solu-
tions drift with ω3D

drift = 0.6561 (ωdrift = 0.6662) and ω3D
drift =

9.1776 (ωdrift = 9.1044), correspondingly (Fig. 8). The 3D su-
percritical solution is symmetrical with respect to the equator
and obeys Eq. (50) in accordance with stability results.

The maximum kinetic energy for the mc = 5 solution is
now located in the boundary layer in the vicinity of the equator
[Fig. 15(c)], which is in accordance with linear stability analy-
sis [Fig. 9(c)]. The instability is associated with the azimuthal
component Uφ and can be expressed in terms of Eφ (r, θ ) =
1
2

&
U 2

φ r sin θdφ (Emax = 16.5, Eφmax = 14.5 at the equator).
The kinetic energy for the mc = 7 solution has two maxima

[Fig. 15(f)]. Hence, the instability locates in both places
described above as linear analysis predicts [Fig. 9(f)]. The
corresponding values of the energies are Emax = 37, Eφmax =
30.5 at the equator, Emax = 33.5, Erθmax = 32.5 within the
meridional flow.

The bifurcation scenario in the rotating case differs from
the scenario considered above. Introducing an amplitude ac-
cording to the expression

a2 = E = 1
2

(

V
U2dV =

'

m=1

E (m) =
'

m=1

'

ℓ=m

ϵℓm (56)

and calculating the amplitude as a function of the supercriti-
cality δ = (RaE − RaEcL)/RaEcL, which is more useful as the
control parameter in the rotating case, we note that now we are

dealing with the supercritical bifurcation. The basic steady
flow loses its stability when δ > 0. The amplitude of the
supercritical flow can be expressed according to the Landau
equation

a2 = Cδ, (57)

with C(!T = 0.4K ) = 2420.64, C(!T = 1.7K ) = 1624.09,
and C(!T = 3K ) = 1892.25 [Fig. 16(a)].

The Nusselt number shape undergoes a break in the
RaEcL, confirming that the stability results are correct
[Figs. 16(b)–16(d)]. The numerically obtained Nusselt num-
bers Nuin3D(RaE) and Nuout3D(RaE) can be approximated for
the fixed Taylor number Ta = 17 200 and !T = 0.4 K, !T =
1.7 K, and !T = 3 K as follows:

Nuin3D = ain3DRaE + bin3D,

Nuout3D = aout3DRaE + bout3D. (58)

The constants are presented in Table IV.

C. Comparison with experiment

The critical voltages Vrms,crit are compared with outcomes
of the GeoFlow experiment (2008–2018). The experimental
setup is based on a spherical capacitor with a radius ra-
tio η = 0.5, where convective flows are investigated under
micro-gravity conditions on the ISS [7,22]. By reason of
design constraints, the outer radius of the fluid cell measures
0.027 m and the inner radius 0.0135 m. GeoFlow utilizes the
dielectrophoretic force to establish a radial force field with
voltages between the minimum value of Vrms = 1272 V and
the maximum value of Vrms = 4596 V. Figure 17 depicts a
vertical cut through the GeoFlow experiment. A numerical

FIG. 14. (a) Uθ at r = 1.67 for !T = 0.4 K, Ta = 68 000, RaE = 6 000; (b, c) Uφ at the equator for !T = 1.7 K, Ta = 17 200, RaE =
6 220 and !T = 3 K, Ta = 68 800, RaE = 20 050, correspondingly.
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FIG. 15. Azimuthally integrated kinetic energy E (r, θ ) of the three-dimensional flow: (a) !T = 0.4 K, Ta = 17 200, RaE = 2 830,
(b) !T = 0.4 K, Ta = 68 800, RaE = 6 000, (c) !T = 1.7 K, Ta = 17 200, RaE = 6 220, (d) !T = 1.7 K, Ta = 68 800, RaE = 18 200, (e)
!T = 3 K, Ta = 17 200, RaE = 7 620, (f) !T = 3 K, Ta = 68 800, RaE = 20 050.

simulation visualizes the fluid cell. Heating and cooling cir-
cuits thermalize the inner and outer shells, respectively.

The working fluid 1-Nonanol is strongly susceptible to di-
electric heating with rates up to 0.1 K/s. The temperature dif-
ference across the gap can be adjusted between 0.4K " !T "
10K. In total, 160 experimental points with five different volt-
ages (V0 = 1 800 V, 3 000 V, 4 200 V, 5 400 V, 6 500 V), two
reference temperatures (Tb = 293 K, 303.5 K) and eight tem-
perature differences (0.4 K < !T < 9.5 K) were conducted.
Each experimental point was repeated for three rotation sce-
narios. The rotation tray is capable of maintaining rotation
frequencies of f = 0.008 Hz (in the following denoted as the
“nonrotating case”), f = 0.8 Hz (medium rotation case) and
f = 1.6 Hz (high rotation case).

A separate set of experimental points were also conducted
without a temperature difference (!T = 0 K) across the gap.
In these cases RT ≈ 8.4× 107 [cf. Eq. (14)] for both ref-
erence temperatures. The Rayleigh-Roberts number which
parametrizes internal heating ranges between 8.46× 105 <
RH < 1.10× 107.

In the case of !T > 0, the Rayleigh number RaE [cf.
Eq. (22)] ranges between 1.155× 103 and 4.471× 105. The

convective parameter RaT ranges between 1.427× 102 and
4.962× 104. We find 21 experimental points where convec-
tion is dominated by the temperature difference across the
gap (RaE/(2RaT) < 1) and 139 experimental points where
internal heating is dominant (RaE/(2RaT) > 1).

In the following, theoretical values of the onset of convec-
tion are compared with experimental data. Interferograms of
the GeoFlow experiment are used, which are able to highlight
even small deviations in the refractive index and hence in the
temperature field. A Wollaston shearing interferometry unit
is used to visualize flows. The field of view covers about 90
degrees from the north pole to the equator, cf. Fig. 17 (yellow
line and camera icon). Here, we refer to Ref. [23] for a detailed
description of the interferometry unit of GeoFlow. The inter-
ferograms show a base fringe pattern, cf. Figs. 18(a) and 18(d)
in the conductive case. Deviations in terms of distorted lines
(highlighted in yellow) indicate convection. Two prevailing
structures can be observed: (a) a butterfly pattern as result of
steep convective downdrafts and (b) narrow parallel structures
from sheetlike up- or downwelling. However, arbitrary combi-
nations of both are omnipresent, especially for high Rayleigh
numbers.

FIG. 16. (a) The amplitude of the supercritical flow and the Nusselt numbers for (b) !T = 0.4K, (c) !T = 1.7K, and (d) !T = 3K for
η = 0.5, Ta = 17 200.
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TABLE IV. Constants for the Nusselt numbers from Eq. (58).

!T (K ) ain3D bin3D aout3D bout3D

0.4 0.03905 119.80 0.1427 −119.80
1.7 −0.001760 16.46 0.01181 −16.41
3.0 0.003785 −14.77 0.007052 −15.06

Figure 18 shows interferograms of the nonrotating case
with !T = 0 K, !T = 0.4 K and increasing voltages. The
corresponding Rayleigh-Roberts numbers in the first case
are RH = 8.4× 105 for Vrms = 1272 V, RH = 2.3× 106 for
Vrms = 2121 V and RH = 4.6× 106 for Vrms = 2969 V. The
critical value of RHcL = 1.6× 106 takes place between
Figs. 18(a) and 18(b), occurring at Vrms,crit. = 1754 V. Fig-
ure 18(b) shows a clear distortion from the base pattern,
which changes to a convective plume for higher voltages, cf
Fig. 18(c). Accompanying numerical simulations [22] confirm
the existence of convective cells for Vrms = 2121 V.

In the case of !T = 0.4 K the onset is predicted at
RaEcL = 1511, which corresponds to Vrms,crit. = 1456 V. The
transition from the conductive state to the convective regime
is depicted in Figs. 18(d) and 18(e), which capture the onset
by experimental points with RaE = 1155 and RaE = 3208, re-
spectively. As in the case of pure internal heating, a convective
plume is found for higher voltages. The onset of convection in
the case of !T = 3 K at Vrms,crit = 671 V cannot be verified
as the lowest voltage available in the experiment is Vrms =
1272 V.

The theoretical onset of convection in the two rotating
cases is validated experimentally using the interferograms
presented in Fig. 19 for !T = 0.4 K, !T = 1.7 K, and
!T = 3 K.

FIG. 17. Sketch of the GeoFlow experiment. The working fluid
is thermalized through an inner and outer heating/cooling loop.
Interferometry is used to visualize fluid flows (yellow field of view).
High voltage is applied to enforce a dielectrophoretic force field,
which mimics a radial gravity field. The fluid cell is visualized with
a numerical simulation.

FIG. 18. Experimental interferograms for the nonrotating case
for !T = 0 K (left-hand column) and !T = 0.4 K (right-hand col-
umn). The onset of convection is found between (a, b) and (d, e),
respectively. While conductive cases show only a base fringe pattern
(a, b) the convectively unstable flows appear as butterfly patterns
(c, f) for Vrms = 2969 V and as distorted fringe lines (b, e) for
Vrms = 2121 V. Structures are highlighted in yellow to emphasize the
thermal structure.

Figure 19 depicts 12 cases, showing 11 interferograms. For
the case f = 0.8 Hz, !T = 3 K, no conductive experimental
point is present. Here, the onset voltage is below the mini-
mum voltage. Over the entire parameter range, the onset of
convection is located within the predicted limits. However,
the coarse grid of experimental points of GeoFlow makes it
difficult to make more accurate statements about the convec-
tive onset. This is based on voltage increments of 921 V and
temperature increments of 1.3 K. Hence, the onset cannot
be captured more precisely with this setup, but with a mean
deviation of 177 V. This is based on the investigation of the
42 interferograms used for this study.
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FIG. 19. Experimental interferograms for the rotating case for !T = 0.4 K, !T = 1.7 K, !T = 3 K, f = 0.8 Hz (Ta = 17 200), and
f = 1.6 Hz (Ta = 68 800); see Table II. The upper row depicts convectively unstable flows, the lower row depicts conductive cases. The onset
of convection is located in between the two rows.

VII. SUMMARY AND CONCLUSIONS

Our purpose in this paper has been to investigate the
influence of dielectrical heating on a convective flow under
a radial force field in a nonrotating and rotating spherical gap
numerically.

First, we consider the base state in the nonrotating spheri-
cal gap with !T = Tin − Tout ! 0. As in the Rayleigh-Bénard
convection the basic flow is U0 = 0 and the temperature is
radially dependent. The heat transfer analysis has been per-
formed in terms of the Nusselt number. Whereas in the case of
the purely dielectrical heating, i.e., !T = 0, the Nusselt num-
bers or the energy fluxes that leave the domain under consider-
ation through the surfaces are same, the situation is more diffi-
cult if the inner surface is warmer than the outer one !T > 0.
The energy flux that comes from the warmer surface due to the
conduction and the energy flux, produced due to the source,
have opposite directions that influences the heat transfer.

If the spherical gap rotates (we consider !T > 0 only),
then the influence of the centrifugal force leads to the forma-
tion of a steady, axisymmetric and equatorially symmetrical
basic flow that must be calculated numerically. Linear stability
theory is used to derive the critical Rayleigh-Roberts number
(!T = 0 K) and critical Rayleigh number (!T > 0) at which
the transition from the basic flow into the three-dimensional
flow occurs. The first instability does not depend on the
Prandtl number in the nonrotating case, as it does in RB
convection, because the basic flow becomes unstable with
respect to the steady perturbations. In the rotating case, the
instability sets in as Hopf bifurcation. Moreover, the basic

flow, loses its stability with respect to the three-dimensional
perturbations with positive azimuthal wave numbers mc > 0.

Calculating the three-dimensional flows reveals the dif-
ferent behavior of the amplitude. Whereas the bifurcation is
subcritical in the nonrotating case, the supercritical one is
responsible for the transition if the system rotates.

The numerical results have been compared with outcomes
of the GeoFlow experiment. The critical Rayleigh numbers,
more precisely the critical voltages, coincide well with obser-
vational data within 177 V. Interferograms are analyzed for
convection, which are highlighted as distortions in base fringe
patterns.

Both numerical and experimental results show that the
internal heating plays a crucial role and must be taken into
account if the dielectrical fluid is subjected into the fast os-
cillated electric field. Further numerical investigations should
clarify how the high Taylor numbers Ta = 105 ÷ 107 influ-
ence the flow structure and the heat transfer. This issue has
relevance for the geophysical applications.

ACKNOWLEDGMENTS

The GeoFlow research has been funded by the European
Space Agency (ESA) Grant No. AO-99-049 and by the DLR
Grants No. 50 WM 0122 and No. 50 WM 0822. Furthermore,
one of us (V.T.) is supported by Deutsche Forschungsgemein-
schaft (DFG, Grant No. TR 986/6-1). Numerical simulations
have been performed at the Heraklit cluster at the BTU
Cottbus-Senftenberg.

[1] G. Geiger and F. Busse, Geophys. Astrophys. Fluid Dyn. 18,
147 (1981).

[2] J. W. M. Ardes and F.H. Busse, Phys. Earth. Planet. Inter. 99,
55 (1993).

[3] F. Busse, J.Fluid Mech. 72, 67 (1975).

[4] W. Hirsching and F. Busse, Geophys. Astrophys. Fluid Dyn. 72,
145 (1993).

[5] D. Bercovici, G. Schubert, and G. Glatzmaier,
Geophys. Astrophys. Fluid Dyn. 61, 149
(1991).

053106-15

https://doi.org/10.1080/03091928108208777
https://doi.org/10.1080/03091928108208777
https://doi.org/10.1080/03091928108208777
https://doi.org/10.1080/03091928108208777
https://doi.org/10.1016/S0031-9201(96)03200-1
https://doi.org/10.1016/S0031-9201(96)03200-1
https://doi.org/10.1016/S0031-9201(96)03200-1
https://doi.org/10.1016/S0031-9201(96)03200-1
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1017/S0022112075002947
https://doi.org/10.1080/03091929308203610
https://doi.org/10.1080/03091929308203610
https://doi.org/10.1080/03091929308203610
https://doi.org/10.1080/03091929308203610
https://doi.org/10.1080/03091929108229041
https://doi.org/10.1080/03091929108229041
https://doi.org/10.1080/03091929108229041
https://doi.org/10.1080/03091929108229041


TRAVNIKOV, ZAUSSINGER, HAUN, AND EGBERS PHYSICAL REVIEW E 101, 053106 (2020)

[6] F. Feudel, K. Bergemann, L. S. Tuckerman, C. Egbers, B.
Futterer, M. Gellert, and R. Hollerbach, Phys. Rev. E 83,
046304 (2011).

[7] C. Egbers, W. Beyer, A. Bonhage, R. Hollerbach, and P.
Beltrame, Adv. Space Res. 32, 171 (2003).

[8] L. Landau and E. M. Lifshitz, Electrodynamics of Continuos
Media, Landau Lifshitz Course of Theoretical Physics, Vol.
8, 2nd ed. (Elsevier Butterworth-Heinemann, Burlington, MA,
1984).

[9] R. J. Turnbull and J. R. Melcher, Phys Fluids 12, 1160
(1969).

[10] J. Melcher, Continuum Electromechanics (MIT Press, Cam-
bridge, MA, 1981).

[11] I. Yavorskaya, N. Fomina, and Y. Belyaev, Acta Astronautica
11, 179 (1984).

[12] B. Futterer, C. Egbers, N. Dahley, S. Koch, and L. Jehring, Acta
Astronautica 66, 193 (2010).

[13] B. Futterer, N. Dahley, S. Koch, N. Scurtu, and C. Egbers, Acta
Astronautica 71, 11 (2012).

[14] B. Futterer, A. Krebs, A.-C. Plesa, F. Zaussinger, R.
Hollerbach, D. Breuer, and C. Egbers, J. Fluid Mech. 735, 647
(2013).

[15] V. Travnikov, C. Egbers, and R. Hollerbach, Adv. Space Res.
32, 181 (2003).

[16] B. L. Smorodin, Tech. Phys. Lett. 27, 1062 (2001).
[17] B. L. Smorodin and V. G. Velarde, J. Electrostat. 50, 205

(2001).
[18] R. Hollerbach, Int. J. Numer. Meth. Fluids 732, 773 (2000).
[19] P. Roberts, Q. J. Mech. Appl. Math 22, 211 (1969).
[20] H. Yoshikawa, O. Crumeyrolle, and I. Mutabazi, Phys Fluids

25, 024106 (2013).
[21] V. Travnikov, O. Crumeyrolle, and I. Mutabazi, Phys Fluids 27,

054103 (2015).
[22] F. Zaussinger, P. Haun, M. Neben, T. Seelig, V. Travnikov, C.

Egbers, H. Yoshikawa, and I. Mutabazi, Phys. Rev. Fluids 3,
093501 (2018).

[23] F. Zaussinger, A. Krebs, V. Travnikov, and C. Egbers, Adv.
Space Res. 60, 1327 (2017).

053106-16

https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1103/PhysRevE.83.046304
https://doi.org/10.1016/S0273-1177(03)90248-1
https://doi.org/10.1016/S0273-1177(03)90248-1
https://doi.org/10.1016/S0273-1177(03)90248-1
https://doi.org/10.1016/S0273-1177(03)90248-1
https://doi.org/10.1063/1.1692646
https://doi.org/10.1063/1.1692646
https://doi.org/10.1063/1.1692646
https://doi.org/10.1063/1.1692646
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/0094-5765(84)90106-1
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2009.05.027
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1016/j.actaastro.2011.08.005
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1017/jfm.2013.507
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1016/S0273-1177(03)90249-3
https://doi.org/10.1134/1.1432371
https://doi.org/10.1134/1.1432371
https://doi.org/10.1134/1.1432371
https://doi.org/10.1134/1.1432371
https://doi.org/10.1016/S0304-3886(00)00036-X
https://doi.org/10.1016/S0304-3886(00)00036-X
https://doi.org/10.1016/S0304-3886(00)00036-X
https://doi.org/10.1016/S0304-3886(00)00036-X
https://doi.org/10.1093/qjmam/22.2.211
https://doi.org/10.1093/qjmam/22.2.211
https://doi.org/10.1093/qjmam/22.2.211
https://doi.org/10.1093/qjmam/22.2.211
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4792833
https://doi.org/10.1063/1.4921156
https://doi.org/10.1063/1.4921156
https://doi.org/10.1063/1.4921156
https://doi.org/10.1063/1.4921156
https://doi.org/10.1103/PhysRevFluids.3.093501
https://doi.org/10.1103/PhysRevFluids.3.093501
https://doi.org/10.1103/PhysRevFluids.3.093501
https://doi.org/10.1103/PhysRevFluids.3.093501
https://doi.org/10.1016/j.asr.2017.06.028
https://doi.org/10.1016/j.asr.2017.06.028
https://doi.org/10.1016/j.asr.2017.06.028
https://doi.org/10.1016/j.asr.2017.06.028


PHYSICAL REVIEW FLUIDS 5, 063502 (2020)

Rotating spherical gap convection in the GeoFlow International
Space Station (ISS) experiment

Florian Zaussinger ,* Peter Haun , Peter S. B. Szabo, Vadim Travnikov,
Mustafa Al Kawwas, and Christoph Egbers

Brandenburg University of Technology Cottbus-Senftenberg,
Department of Aerodynamics and Fluid Mechanics, D-03046 Cottbus, Germany

(Received 25 March 2019; accepted 27 May 2020; published 19 June 2020)

Thermal convection in a rotating spherical gap is investigated using numerical simula-
tions and compared with results of the GeoFlow ISS experiment. To induce convection,
a radial buoyancy force field is established by using the dielectrophoretic effect from a
high-frequency alternating electric field. Two heating sources are implemented. One source
is a temperature difference across the gap and the other is the internal dielectric heating of
the working fluid. To distinguish both heating sources a heating parameter, λ, is introduced
that is varied together with the electric Rayleigh number, L, and Ekman number, Ek≈10−3.
The governing thermoelectro hydrodynamic equations are analyzed via a linear stability
analysis and by three-dimensional numerical simulations. The results are compared with
experimental data of the GeoFlow experiment which show that the threshold of convection
and the occurrence of global columnar cells agreed with the theoretical predictions. In
addition the observed fluid flow showed non-Gaussian characteristics which are described
by the quasinormal approximation. The overall flow phenomena are based on polar plumes
and equatorial confined columnar cells and in addition are influenced by internal dielectric
heating.

DOI: 10.1103/PhysRevFluids.5.063502

I. INTRODUCTION

Internal heating processes in rotating spherical gaps are of great interest for geophysical and
astrophysical applications. Important sources of internal heating are thermonuclear reactions (e.g.,
in stars), tidal heating, and gravitational heating (e.g., in moons and gas giants) or radioactive decay
in terrestrial planets. Internal heating is an important component of hydrostatic equilibrium within
stars which establishes the radiative pressure and determines the evolution of the entire body. For
example, tidal heating is assumed to increase the heat flux of Jupiter’s moon Europa. This leads to
the possibility of fluid-filled basins and even of cryovulcanism [1]. The thermal energy release of
planets is a key feature which can also be observed in the core of the Earth [2] or Venus [3].

Theoretical and numerical analysis of internal heating in spherical gap geometries has been
intensively studied with particular focus on convection in the Earth’s mantle [4,5]. However, large
Prandtl numbers and large viscosity contrasts render it complicated to capture geophysically relevant
convection in laboratory experiments. To overcome these limitations, results are based mainly on
fluids with moderate Prandtl numbers (Pr < 200) and extrapolated to the geophysically relevant
regime of Pr →∞ [6–8].

So far, only a few convection experiments have been performed under the influence of internal
heating. Limare et al. [9] studied highly viscous fluids over three orders of magnitudes of the
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Rayleigh-Roberts number, RaH , and over two orders of magnitudes of Pr. Their work provided the
first cross validation of convection with internal heating. Fourel et al. [10] improved this experiment
by introducing a compositional gradient to study heterogeneities assumed to be in the Earth’s lower
mantle [11]. The interaction between the two internally heated layers provide a vast variety of
convective patterns. Internal heating is not only interesting from an academic point of view, it is
also used in several industrial applications such as microwave ovens, mixed convection devices for
cooking, to melt glass, process food or even to dry items.

Internal heating-induced convection in the spherical gap geometry has been studied by
Zaussinger et al. [12] using numerical simulations and experimentally measured data from the
GeoFlow IIc experiment [13]. Experimental and numerical interferograms of GeoFlow provided
information to test properties of the electrohydrodynamical (EHD) model. They also observed a
thermal plumelike distribution and a parabolic mean temperature profile in the radial direction.
However, an analysis of rotational effects and a temperature difference between the inner and
outer shell were not included in the study. Nonetheless, both of these properties are important for
convection in stellar interiors [14] and in planets [15]. An extension to the cylindrical geometry was
performed by Travis and Olson [16] that studied a temperature difference across the annulus in the
presence of a dielectric internal heating source. A large parameter regime was investigated focusing
on fluid flow that was characterized by RaH . A scaling law in planar geometry for mixed heating was
studied by Vilella and Deschamps [17]. However, these results cannot be directly transferred to the
EHD model where the sign of the temperature gradient may change the direction of the buoyancy
term.

Thermo-EHD establishes a force field with the dielectrophoretic acceleration as consequence.
This acceleration can be used to drive and control fluid motion. The pioneering work on the EHD
model in a rectangular cavity was published by Roberts [18] and Turnbull [19] in the late 1960s.
Both investigated the stability of the conductive state even in the absence of buoyancy which is an
important limitation for space applications. Since then, this theoretical work has been extended and
tested by laboratory experiments, see Refs. [20–22]. Heat transfer in a planar EHD system under
microgravity conditions was investigated by Yoshikawa et al. [23] and Fogaing et al. [24]. They
compared the heat flux of Rayleigh-Bénard (RB) convection with EHD convection for a large range
of Prandtl numbers and explained that differences are due to thermal perturbations induced by the
electric field. EHD convection in a spherical capacitor was studied without rotation [12,25] and
finally, in the AtmoFlow experiment, with rotation [26]. The GeoFlow experiment was performed
over eight years (from 2008 to 2016) on the ISS. The first mission, GeoFlow I, used a silicon oil,
M5, to investigate the dynamics of an idealized Earth’s core [27]. The second mission, GeoFlow
II, operated on the ISS from 2011 to 2018 and studied mantellike dynamics of an idealized Earth
with 1-Nonanol as a working fluid. It operated over three scientific campaigns: GeoFlows IIa, IIb,
and IIc. However, only the GeoFlow IIc campaign operated with a frame rate of 10 Hz. All other
campaigns used 1 Hz or less.

The analogy between the EHD model instability and the RB model instability is violated by
two processes: first, the thermoelectric feedback, which generates perturbation components in the
electric gravity [28]. This feedback is a result of the Gauss equation which couples the temperature-
dependent permittivity and the electric field. The second process is dielectric heating, a result of the
rotation of molecules under a quickly alternating electric field. While dielectric heating occurs in
many working fluids, it has not yet been investigated in detail in the EHD models. Dielectric heating
is not yet fully controllable and can lead to unpredictable hot spots and damage [29,30].

The main objective of this work is the investigation of convection due to the dielectrophoretic
force in a rotating spherical gap with the focus on the influence of dielectric heating. This paper is
an extension of the authors’ previous work presented by Zaussinger et al. [12] which investigated
the nonrotating case. For this purpose, the higher statistical moments of numerical simulations are
analyzed to reveal the influence of rotation and internal heating. The findings are then compared
with the experimental data of the GeoFlow II mission.
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FIG. 1. Schematic cross section of the GeoFlow experimental setup showing a numerically calculated
temperature distribution over the gap.

This paper is outlined as follows: The general EHD model and governing equations for the
rotating spherical gap are presented in Sec. II, whereas the GeoFlow experiment and numerical
methods are described in Sec. III. Analytic results and a detailed statistical description of the
fluid flow in the rotating spherical gap are given in Secs. IV and V, respectively. This includes a
comparison between numerical simulations and experimental interferograms. A critical discussion
of the results and some concluding remarks are given at the end.

II. MODEL FORMULATION

A spherical capacitor with gap width d = Rout − Rin, with the same physical specifications
as the GeoFlow experiment is filled with a dielectric fluid. The temperature field is imposed
(a) with a temperature difference between the inner and outer shell with "T = Tin − T0 > 0 and
(b) by an internal heat source which includes dielectric heating. A cross-section schematic of the
experiment is shown in Fig. 1. We assume an electrically linear quasielectrostatic field acting on
an incompressible dielectric fluid such that the net force on each dipole is given by the Kelvin
polarization force density F = (ϵ − ϵ0)E · ∇E, where ϵ is the temperature dependent permittivity,
ϵ0 the vacuum permittivity, and E the electric field.

Thus, the electric Korteweg-Helmholtz force density describes the force acting on the fluid and is
valid for the given assumptions according to Refs. [12,28,31,32] and written as

FKH = ρ f E− 1
2
|E|2∇ϵ + ∇

(
1
2
ρ

∂ϵ

∂ρ
|E|2

)
. (1)

where ρ is the density. The first term on the right-hand side of the equation represents the Coulomb
force, the second term the dielectrophoretic force FDEP, and the last term the electrostrictive force
defining the electrostrictive pressure. A detailed description of the derivation of FKH is given in
Melcher [33].
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The fluid is considered to not carry free charges, so that ρ f = 0 and the Coulomb force
vanishes. The electrostrictive pressure will be combined with the hydrodynamic pressure in the
incompressible momentum equation.

An alternating electric field with potential &(t ) = 2Vrms cos(2 π f t ) is applied at one electrode
where f is the ac frequency and Vrms the root-mean-square capacitor voltage. This model of the
electrostatic equilibrium is justified for τ−1

e ≪ f ≪ d/c, where τe is the charge relaxation time and
c is the speed of light [18].

The dielectric loss is given by the power dissipation per unit mass, written as

H = 2π f ϵ tan δ|E|2

cpρ
, (2)

where tan δ is the ratio between the imaginary and the real part of the permittivity and called the
dielectric loss factor [34] and cp is the specific heat capacity at constant pressure.

A. Governing equations

The equations describing the fluid flow are based on the Oberbeck-Boussinesq approximation
(OBA). The OBA assumes low expansion rates with temperature α"T ≪ 1, where α is the thermal
expansion coefficient with a low thermoelectric parameter e"T ≪ 1, where e = − 1

ϵ
∂ϵ
∂T is the ther-

mal permittivity coefficient that decreases with increasing temperature [28]. Under these conditions,
the OBA is valid for density ρ = ρ0[1− α(T − T0)] and permittivity ϵ = ϵ0ϵr[1− e(T − T0)],
where ϵr is the relative permittivity at reference temperature T0.

The problem can now be described with the Navier-Stokes equation by considering the above
formulations as

∂u
∂t

+ (u · ∇)u = − 1
ρ0

∇p− 1
2ρ0

|E|2∇ϵ − 2!× u− ρ

ρ0
!× (!× r) + ν∇2u, (3)

where u is the velocity, p the pressure, ! the rotation vector, r the position vector, and ν the
kinematic viscosity. The temperature equation is

∂T
∂t

+ (u · ∇)T = κT∇2T + H, (4)

where T is the temperature and κT the thermal diffusivity. Mass conservation is given by the
continuity equation ∇ · u = 0. The nonuniform electric field and the thermoelectric feedback is
calculated via the Gauss equation [23],

∇ · (ϵ E) = 0. (5)

Following Eq. (5) above, the direction of the FDEP is toward the permittivity gradient and is therefore
collinear with the electrostatic energy stored in the fluid [28].

We now derive the dimensionless governing equations which are obtained by applying the scaling
length r = r∗ d , velocity u = u∗ κT /d , time t = t∗ d2/κT , electric field E = E∗Vrms/d , temperature
difference T = T ∗"T + T0, and pressure p = p∗ ρ0κ

2
T /d2, where the superscript ∗ denotes the

value as a dimensionless quantity. The fluid and electric properties are considered constant and
taken at the outer shell. Thus, we obtain the dimensionless Navier-Stokes equation,

Pr−1
[
∂u∗

∂t∗
+ (u∗ · ∇)u∗

]
= −Pr−1∇p∗ + ∇2u∗ − 1

4
B · - · L · T ∗ · ∇|E∗|2

−Ek−1ez × u∗ + L · Fr · T ∗ r sin θ s, (6)

where Pr = ν/κT is the Prandtl number, B = e/α the ratio of both thermal expansion coefficients,
Ek = ν/(2/d2) the Ekman number, r the radial distance, θ the poloidal direction, s is the unit vector
in the equatorial plane, Fr = /2d/|ge,Rout | is the Froude number measuring the relative strength of
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TABLE I. Dimensionless parameter range of the GeoFlow
experiment. Parameters with asterisks are defined in the Appendix.

Dimensionless parameter Value

Ekman number (Ek) 2.64× 10−3–7.62× 10−3

Froude number (Fr) 5.1× 10−2–2.66
Prandtl number (Pr) 1.24× 102–1.75× 102

Electric Rayleigh number (L) 3.73× 102–1.59× 105

Dielectric loss parameter (CT )∗ 9.06× 103–2.27× 106

Convective parameter (CE )∗ 2.02× 10−7–3.54× 10−6

Expansion ratio (B) 11.20–12.40
Heating parameter (λ) 0.16–60

the centrifugal and the electric gravity force [35], and

L = α"T |ge,Rout |d3/(νκT ) (7)

is the electric Rayleigh number given as a ratio of buoyancy to heat diffusion and viscous dissipation.
The expression of the electric gravity, ge, is suitable for substituting gravitational acceleration with
the assumption derived in Appendix by neglecting the fluctuation of E and the electric feedback
effect. Hence ge is defined as

ge(r) = −2V 2
rms

ϵ0ϵr

ρ0

R2
inR2

out

(Rout − Rin )2

1
r5

(8)

at r = Rout. Values of defined dimensionless parameters for the GeoFlow experiment are summa-
rized in Table I.

The dimensionless equation for temperature is

∂T ∗

∂t∗
+ (u∗ · ∇)T ∗ = ∇2T ∗ + CT

B - L
|E∗|2. (9)

We now introduce the heating parameter, λ, written as

λ = 1
2

CT

B-L
, (10)

which is used to quantify the heating source in the system. The heating parameter is in fact a result
of the energy balance in terms of Nusselt numbers, Nuin and Nuout, evaluated at the inner and outer
shells, respectively. Their relationship is written as

Nuin − Nuout + 2λ

∫

V
E2

0 dV = 0 for λ < 1, (11)

−Nuin − Nuout + 2λ

∫

V
E2

0 dV = 0 for λ > 1. (12)

The strength of the internal heating is measured by λ, where λ > 1 indicates strong internal
heating and λ < 1 indicates weak internal heating. For λ = 1 internal heating increases the fluid’s
temperature inside the spherical gap geometry until the heat flux through the surfaces is balanced
with the internal heating rate. When λ > 1, the temperature difference across the gap does not
contribute significantly to the global energy transport and results in a parabolic mean temperature
profile. Figure 2(a) provides an overview of different thermal profiles for various internal heating
parameters.

After introducing the internal heating parameter one need also to define a quantitative parameter
for the strength of convection. To investigate the flow we therefore define a further dimensionless
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FIG. 2. Analytic solutions for (a) radial temperature distribution, (b) dielectrophoretic acceleration, and
(c) Brunt-Väisälä frequency for varying λ in conductive and nonrotating case for η = 0.5. Red crosses (“x”)
present solutions for a three-dimensional numerical simulation with λ = 11. Values for λ are chosen according
to the GeoFlow experiment. (d) Sketch of convection in the spherical gap geometry when N2 < 0 in the
complete gap and λ < 1). (e) Sketch of layered convection in the spherical gap geometry where N2 ! 0 at
the middle of the gap and N2 < 0 elsewhere with λ > 1.

quantity the dielectrophoretic acceleration, a∗e , written as

a∗e = − 1
2 |E|2∇ϵ/

[
d3/(

V 2
rmsϵ0ϵr

)]
, (13)

which is used to provide an indication of how strong an infinitesimal fluid element is forced at a
certain location in the gap. In the next sections dimensionless parameters are used and the asterisk
are omitted.

III. METHODS

A. The GeoFlow experiment

The GeoFlow experiment on the ISS consists of a concentric spherical gap capacitor that is used
for the investigation of thermal convection. The experimental system has a gap width of 0.0135 m,
with an outer radius of Rout = 0.027 m resulting in an aspect ratio of η = 0.5 (- = 0.25). Figure 1
shows a numerically calculated temperature distribution over the spherical gap. Two external
temperature controlled fluid circuits established a temperature difference of 0.4 K " "T " 9.5 K
between both shells. To induce a dielectrophoretic forcing and hence a radial buoyancy force a fast
alternating electric field is applied. The strength of the force can be controlled by the applied thermal
forcing and the amplitude of the electric field. The electric field can be adjusted between 1273 V and
4596 V to study a variety of convection phenomena. To account for rotational forcing, the sphere is
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able to rotate with three different angular velocities, /, namely with / = 0.05, 5, or 10 rad/s. The
dielectric loss of the working fluid, 1-Nonanol, is caused by the high electric field frequency which
generates dielectric internal heating and is also investigated.

The GeoFlow experiment can simulate three different rotation rates, five voltages Vrms and eight
temperature differences, where two reference temperatures, T0, are measured at the outer shell.
These input properties define 240 experimental points (EP). The present study includes 160 EPs,
summarized in Table I, which presents the full parameter range. However, the weakly rotating
case of / = 0.05 rad/s with Ek ≈ 1 and Fr < 10−4 is excluded in this study. All numerical results
presented are based on EPs defined in the GeoFlow Experimental Scientific Requirements (ESR)
document. A set of eight temperature differences is called a “run” and can be set for a sequential
increase of voltages and rotation rates. Five runs are grouped into four clusters. An overview of the
each cluster is given in Figs. 4(a)–4(d).

The model formulation in Sec. II suggests that the electric Rayleigh number cannot be chosen
independently from CT as this would lead to inhomogeneous distributed sequences in the λ-L plane,
where the heating parameter λ [see Eq. (10)] more intuitively parametrizes the influence of internal
heating than CT . Hence, for the analysis of the dynamics, we group the EPs in such a way that
electric Rayleigh number varies only within a predicted dynamical range depending on the critical
electric Rayleigh number Lc, but the heating parameter λ remains as strong as possible.

The EPs were visualized by a Wollaston Shearing Interferometry (WSI) system which measures
the gradient of the refractive index [13,36]. While the refractive index gradient varies with the
thermal distribution within the spherical gap, certain fringe patterns can be observed where the
thermal gradient changes the (temperature-dependent) refractive index of the fluid. For example,
single convective cells appear as butterfly patterns and sheetlike flows appear as parallel lines [see
Fig. 5(c)]. Unfortunately, other visualizations of convective flow could not be performed for ISS
safety reasons. The recording plane of the camera of the WSI is mounted at a meridional angle of
θ = 30◦ with the North Pole located at θ = 0◦. Thus, the recorded interferograms cover a range
of 88◦, ranging from θ = −14◦ to θ = 74◦, see Fig. 1. From a series of images it is possible to
reconstruct the entire northern hemisphere. While the temporal resolution of the images enables a
satisfactory analysis for the laminar flow regime, it causes imprecise reconstructions in the transient
and turbulent regimes. To overcome these restrictions, only single interferograms are analyzed.

B. Numerical methods

The governing equations are studied using two methods: (a) a linear stability analysis which
provides the critical electric Rayleigh numbers Lc and threshold values of the convective onset and
(b) three-dimensional large eddy simulations (LES) and interferograms calculated with the software
package OpenFoam. The numerical simulations provide the temperature and electric field for the
statistical evaluation which are compared with interferograms. For the linear stability analysis, a
pseudospectral numerical method is used to solve the dimensionless governing equations [37]. Here
the velocity field is decomposed into poloidal and toroidal potentials ψ1 and ψ1,

u = ∇ ×∇ × (ψ1er ) + ∇ × (ψ2er ), (14)

obeying the continuity equation. By using the pseudospectral method and applying ∇ ×∇× and
∇× to Eq. (6) (which separates the potentials), one can solve the hydrodynamic equations with a
high accuracy in the spherical geometry. This results in a fourth-order equation for the potential
ψ1 and a second-order equation for the potential ψ2. The critical electric Rayleigh numbers, Lc,
are calculated using linearized equations [38]. The corresponding eigenvalue problem is solved by
direct numerical integration, where the spectrum is analyzed for growth rates σ = 0.

For the three-dimensional numerical simulations an incompressible, second-order finite volume,
transient buoyancy solver of OpenFoam 4.1 is used which is expanded to include the nonuniform
electric field as derived in Appendix. In addition, the solver includes the source terms for the
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dielectric heating, H , in the temperature equations and the volumetric body force, FDEP, in
momentum equation.

The boundary condition for velocity is no-slip, in a moving reference frame, and Dirichlet
for temperature. To mimic the GeoFlow experiment in all aspects, the experimental time scales
are set consistent with Zaussinger et al. [12]. This included the heating-up periods and the idle
periods between each EP. The electric field is defined as a negative gradient of the electric potential
and is calculated via the Gauss equation, ∇ · (ϵ∇&) = 0, by taking the electrical fluctuations and
thermoelectric feedback effect into account. The boundary condition of the electric potential is set
at the outer shell with & = Vrms and & = 0V at the inner shell.

The mesh of the spherical gap is generated by radially extruding a spherical two-dimensional
(2D) surface grid with 40.950 faces to 1.843.290 honeycomb shaped cells in 3D with a radial
resolution of 45 cells. The dimensionless wall distance y+ is smaller than 0.2 and corresponds
to a mesh resolution of at least five cells in the viscous boundary layer. The OpenFoam “Pimple”
algorithm solves subsequently the LES model with top-hat filtered versions of Eqs. (3)–(5). The
filter width is the cube root volume of each cell. VanDriest damping in distance to the boundary
layer ensures that the “dynamic k” turbulence model is applied only in the bulk flow [39].

C. Statistical evaluation

The statistical interpretation is based on snapshots of temperature and dielectrophoretic force.
These snapshots are averaged over shells (θ ,φ) of equidistant radii and over 30 time stamps
providing 300 s of the fully developed flow. Hence, the calculated profiles of the first four statistical
moments are functions of the radius.

Turbulence and intermittency lead to rare, but intense peaks in the temperature field. As a result,
in such intermittent systems especially the higher-order moments depart significantly from the
Gaussian distribution. In particular, the evaluation of the third and the fourth statistical moments
provide information of rarely occurring events. For convective processes these events are commonly
related to thermal plumes.

The first statistical moment, ⟨T ⟩, is the mean thermal distribution. Temperature fluctuations are
described by the variance which is the second statistical moment ⟨T ′2⟩.

An asymmetry of the temperature distribution around the mean value ⟨T ⟩ is parametrized by
the temperature skewness ⟨S⟩ = ⟨T ′3⟩/(⟨T ′2⟩)3/2. Large positive values of S characterize locally
higher values of T which cover a smaller surface area. Hence, the values deviate further from the
mean value than locally lower values. The same holds for large negative values of S for cold areas
embedded in a hot surrounding [40]. In particular, for S > 0 the fluid flow is dominated by strong
uprising thermals and for S < 0 by strong downdrafts, respectively.

Intermittency is evaluated by the kurtosis (flatness) ⟨K⟩ = ⟨T ′4⟩/(⟨T ′2⟩)2. The kurtosis provides
a scale of a certain “tailedness” and describes rarely occurring and very spiky events in intermittent
systems [41]. For the present study, high values of the kurtosis indicate localized regions with
plumes of large magnitude, and large areas with slow ascending and descending flow. However,
the direction of the fluid flow in the plumes is given by the sign of the skewness.

The higher statistical moments are very sensitive to rare events. They are indicating in this
particular case thermal structures with steep gradients.

IV. BASE FLOW AND THRESHOLD OF CONVECTION

We assume that the toroidal and poloidal components of E1(r, θ ,φ) in the conductive case
have only small contributions to the initial electric field E0(r). This justifies the assumption of a
one-dimensional electric field E(r). The Gauss equation and the temperature equation are solved
analytically for a constant permittivity with the electric field equation presented in Eq. (A6) and the
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FIG. 3. (a) experimental interferogram for Ek = 5.2× 10−3 and λ = 1 for the conductive case. The base
flow structures are outlined in yellow, with a sinusoidal distortion around the North Pole labeled with a
green dot. The equator is in the lower part of the interferogram. (b) Numerical interferograms with the same
parameters evaluated by a three-dimensional simulation. (c) Vertical plane of the temperature distribution
through both poles.

temperature condition imposed in the form of

T (r) = − η

1− η
+ η

(1− η)2

1
r
− λ

[
η

(1− η)2
− η(1 + η)

(1− η)3

1
r

+ η2

(1− η)4

1
r2

]
. (15)

This solution is the sum of the base temperature profile, − η
1−η

+ η
(1−η)2

1
r , and the contribution

from the dielectric heating whose amplitude is λ.

1. Thermal profile

To investigate the base state of the experiment the conductive reference case of run “C20” (λ =
11) of the GeoFlow experiment is studied. This includes a range of values for the heating parameter,
λ, to study the transition state (λ = 1) where internal and external heating is balanced, where
internal heating is absent (λ = 0), and the smallest achievable value of the GeoFlow experiment
(λ = 0.16). The analytical solutions of the temperature fields are shown in Fig. 2(a) together with
the 3D numerical simulation for λ = 11 indicated by red crosses which present good agreement
with the corresponding analytic solution. In the case where λ < 1, the internal heating is negligible
and convection is triggered by "T . For λ > 1, the temperature field reaches a maximum at the inner
shell at rmax = 4λ/(1 + 3λ). In this case, the stability of the system depends on the interaction of
the signs of the dielectrophoretic acceleration that is influenced by the temperature gradient. In the
limiting case of λ≫ 1, the temperature converged to the maximum at approximately rmax = 4/3.
For λ " 1, the maximum is always found at the inner shell with rmax = 1 and radius ratio η = 0.5.
In the absence of rotation (Fr = 0) the isothermal surfaces take the form of concentric spheroids
with radially dependent temperature distributions. However, for small voltages (Vrms " 2121 V), the
Fr exceeds 0.5 and influences the thermal stratification [42].

In the presence of rotation a two-dimensional axisymmetric and equatorially symmetric steady
base flow appears (ur, uθ , 0). Warm fluid is displaced radially outward at the poles whereas cold
fluid is transported inward close to the equatorial plane. When the observed flow exhibits such
complex motion it cannot be solved analytically and has to be calculated numerically. A meridional
flow is observed in a two-cell structure at Ek, Fr∼10−3 where the temperature maximum is found in
the gap for internal heating. However, at the poles there is a radial shift of the temperature maxima
toward the outer shell [see Fig. 3(c)]. The base flow of the GeoFlow experiment shows a plumelike
structure at the North Pole and wave distortions in the conductive steady state case. Figure 3(a)
shows these structures with yellow lines. Numerical simulations and the corresponding numerically
evaluated interferograms agreed well with the experimental observation, see Figs. 3(b) and 3(c).
However, the numerical reconstruction of the interferograms shows a more pronounced fringe
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pattern in the polar region. This, however, is a result of the differently calibrated interferometry
unit that is used for the calculation.

2. Dielectrophoretic acceleration and buoyancy

In the conductive case the electric field follows the solution of E0 ∼r−2 [see Eq. (A6)] where
E0 is independent of λ. However, the dielectrophoretic acceleration ae [obtained from Eq. (A2)]
depends on λ and is strictly negative for λ " 1 [see Fig. 2(b)]. The dielectrophoretic acceleration
can be calculated by the analytic solution of the temperature by using the OBA for the permittivity
and the scaling relation β = e "T ϵr the radial component of the dielectrophoretic acceleration is
written as

ae(r) = −1
2
|E0|2

d ϵ

d r
= −1

2

(
1
-

1
r2

)2

β

[
2
r2

+ λ

(
6
r2
− 8

r3

)]
(16)

for η = 0.5. Figure 2(b) depicts the radial component of the dielectrophoretic acceleration ae(r) for
four different values of λ. For ae(r) < 0, the sign of dielectrophoretic acceleration is negative and
points radially inward toward the center of the spherical gap. This generates an induced force field
comparable to the gravitational force field. However, for λ > 1, the dielectrophoretic acceleration
changes its sign at rmax and can separate the spherical gap into two layers. A deeper insight into the
stability of the thermal stratification is given by the Brunt-Väisälä (BV) frequency written as

N2 = −ae

T
d T
d r

. (17)

An unstable fluid column is observed at λ > 1 where N2 < 0, except at a region around the
temperature maximum where N2 = 0. The absence of buoyancy indicates two convectively unstable
layers separated by a stable conductive interface, see Fig. 2(e). While the strong forcing of the
dielectrophoretic acceleration is present in the lower shell, a long-time separation is unlikely and a
fully mixed spherical gap is expected. When λ < 1 the entire fluid column is unstable and presents
convective patterns reminiscent of an RB cell see Fig. 2(d).

In the rotating case the threshold of the convective onset is characterized by the destabilization
of the base flow which is observed by the interferometry unit when the fringe pattern is distorted.
For all four clusters [see Figs. 4(a)–4(d)] the onset of convection is observed within a margin of
±177 V. However, for L ∼Lc, ambiguous interferograms are recorded in which a clear distinction
between the base flow and the convective flow was not possible.

V. THREE-DIMENSIONAL SIMULATIONS AND COMPARISON
WITH THE GEOFLOW EXPERIMENT

The Geoflow experiment provides only interferograms which show the radially averaged
temperature distribution of the gap and not the flow. Thus, we use three-dimensional simulations to
reconstruct the flow field and temperature. Numerical results are used to explain the interferograms
and to evaluate how significantly the dielectric heating parameter, λ, influences the flow and
temperature distribution.

Of 160 analyzed EPs we find 22 (14%) with λ < 1 and 138 (86%) with λ ! 1 with a mean value
of λ = 5.6 and median of λ = 2.1. The minimum value is λ = 0.16 at Vrms = 1273 V with temper-
ature difference of "T = 9.5 K. The maximum value of λ = 60 is found for the highest available
voltage Vrms = 4596 V and the lowest temperature difference "T = 0.4 K. All cases with λ < 1 are
found at low voltage (Vrms = 1273 V) in combination with high temperature differences "T > 3 K.
All 160 EPs of the GeoFlow experiment are grouped into four clusters with respect to four Ekman
numbers and two Prandtl numbers, (Ek = 7.6× 10−3, Pr = 176), (Ek = 5.2× 10−3, Pr = 125),
(Ek = 3.8× 10−3, Pr = 176), and (Ek = 2.6× 10−3, Pr = 125). Figures 4(a)–4(d) visualize these
clusters. To provide an adequate overview, the experimentally recorded interferograms are analyzed
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FIG. 4. Experimental points (EP) of the GeoFlow experiment in the λ-L plane for (a) Ek = 7.6× 10−3,
Pr = 175; (b) Ek = 3.8× 10−3, Pr = 175; (c) Ek = 5.2× 10−3, Pr = 125; and (d) Ek = 2.6× 10−3, Pr =
125. Dark gray dots represent the conductive cases, red dots the columnar flows, blue dots the transition and
green dots the turbulent cases. Black lines with ! symbols mark the onset of convection, and with ▽ symbols
the transition to the turbulent regime.

and categorized into several separate cases where the conductive states are colored in dark gray,
columnar flows in red, transitional cases with remnants of columnar cells in blue and turbulent cases
in green. The black line with ! symbols represents the result of linear stability analysis with the
critical Rayleigh number Lc, whereas the black line with ▽ symbols separates the weakly nonlinear
regime from the transitional regime. The vertical dashed line represents the transition between
convection where the temperature difference across the gap dominates the energy transport (λ < 1)
and the internal heating dominates convection (λ > 1). In the subsequent section, the dynamics of
rotating convection are investigated in more detail, regarding the influence of the heating parameter,
λ, the electric Rayleigh number, L. The Prandtl number, Pr, and the Ekman number, Ek, vary only
little in the experiment which makes it difficult to deduce meaningful influences on the fluid flow.

A. Weakly nonlinear regime

The weakly nonlinear regime is defined as the region where L # 6 Lc [43]. In this regime, the
dynamics follow approximately the Proudman-Taylor (PT) theorem with ∂u

∂z ≈ 0, where z denotes
any line parallel to the z axis of rotation. Within this regime, the pressure force is balanced by the
Coriolis force and leads to the formation of columnar cells which are aligned with the rotation axis
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FIG. 5. Columnar cells visualized by automatic pattern recognition, Zaussinger et al. [13]. The North Pole
is located in the center and the equator at the outline. The colors refer to angles of identified fringe lines.
(a) Spiraling columnar cells with m = 4 for L = 8849, Ek = 7.6× 10−3, and λ = 0.16, (b) slightly spiraling
columnar cells with m = 5 for L = 7217, Ek = 5.2× 10−3, and λ = 0.33, (c) almost straight cells with m = 6
for L = 12243, Ek = 5.2× 10−3, and λ = 0.19. Animations of all three cases are available as Supplemental
Material files in Refs. [46–48]. (d) Sketch of columnar cells aligned with the rotation axis in the spherical shell.

and confined by the tangent to the inner sphere. Spirals occur for impermeable boundaries that tilt
the columnar cells. These spirals are well known to occur for moderate Prandtl numbers and are
visible in equatorial cuts of the corresponding numerical simulations (see Ref. [44]). The azimuthal
wave numbers of the columnar cells are estimated using m ∼Ek−1/3 [43,45] which corresponds to
m ∼5–7 for the parameter range of the GeoFlow experiment. Deviations from the theoretical values
by one wave number can be explained by the influence of the supply shaft at the South Pole of the
experiment (Fig. 1) and by the nonuniform buoyancy force. The regime in which columnar cells
occur is delimited by the 6 Lc criterion, but does not depend on λ, Ek, or Pr.

Figure 5 shows columnar cells with a fourfold, fivefold, and sixfold symmetry. The correspond-
ing experimental points are labeled with wave numbers in Figs. 4(a)–4(d). The starlike structures
show steep thermal upwelling and large down-welling regions. Columnar cells can be identified as
butterfly patterns which are observed in the upper part of Fig. 5(c). Spiral structures are found for
cases as presented in Fig. 5(a) and 5(b).

1. Thermal profile

To analyze the fluid flow in the weakly nonlinear regime of GeoFlow we carried out numer-
ical simulations with the parameters of two representative runs, with L/Lc = 1.15 (“C17”) and
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L/Lc = 2.25 (“C20”). Both runs differ only in the high voltage and cover fairly wide ranges in
the heating parameter. Figure 4(a) shows these EPs, where L/Lc = 1.15 and λ = 10 is labeled as
“1,” L/Lc = 1.15 and λ = 0.5 is labeled as “2,” L/Lc = 2.25 and λ = 2.5 is labeled as “3,” and
L/Lc = 2.25 and λ = 0.16 is labeled as “4.” In all four cases the mean temperature profiles ⟨T ⟩ do
not show strong convective mixing in the bulk of the fluid [see Fig. 6(a)]. This is to be expected as
the onset of convection is close to the threshold. When convective mixing appears, the profiles in
the bulk flatten and the boundary layers compress toward the shell’s boundaries.

According to the PT theorem columnar cells are expected in the rotating case. Consistent to
this, our numerical simulations found columnar cells with wave numbers between m = 4 and
m = 8 which are visible for both heating scenarios, as shown in Figs. 6(g) and 6(h). When λ < 1,
the variance is significantly smaller and shows peaks in the vicinity of the boundaries caused by
homogeneously thermalized, rising and/or falling plumes, see Fig. 6(b). The maxima of the thermal
fluctuations is observed between 1.5 < r < 1.8 and coincides with the heating activities in the
interior of the polar plumes.

Figures 6(c) and 6(d) shows the averaged skewness and kurtosis in the radial direction. The
skewness has a flat profile with values |S| "

√
2 and K " 3 for 1 < r < 1.3. This region can be

described by the quasinormal approximation where the realizability condition [49], K > 1 + S2,
provides an upper boundary for the skewness. Furthermore, the observed values of S and K are in
good agreement with the elevator model of convective cells which shows a similar sub-Gaussian
behavior (1 < K < 3). In the upper half of the gap (r > 1.5) we found |S| !

√
2 and K > 3. The

positive sign of S and the increase in S and K originates from the centrifugal force. In GeoFlow, the
centrifugal force leads to the formation of two dominant up-flows in polar regions.

2. Stability and N2

The dielectrophoretic acceleration shows behavior similar to that of the conductive case (see
Fig. 2). For λ < 1, the dielectrophoretic acceleration is strictly negative due to the negative radial
temperature gradient. A change of sign in the dielectrophoretic acceleration is found for λ > 1.
However, this did not influence the global stability. The BV frequency N2 is always negative or
zero which indicates convective mixing over the entire gap [see Fig. 6(e) and 6(f)]. Far from
the boundaries a layering such as two convectively layers separated by a diffusive interface [see
Fig. 2(e)] was not observed.

B. Transitional regime for λ " 1

For L > 6 Lc the regular columnar cells disperse and the flow becomes more turbulent. Fig. 10(a)
shows a representative EP where the columnar cells are visible, but not regular any more.
Consequently, Gastine et al. [50] denoted this parameter regime as the “transitional regime.” A
set of five representative EPs were analyzed for L > 6 Lc and λ < 1 and are shown in Fig. 4(a) as
four blue circles and the red circle inside the region defined as “set 1.”

1. Thermal profile

The electric Rayleigh number L is in the range of 1.1× 104 " L " 2.4× 104 which corresponds
to values slightly above the weakly nonlinear regime with heating parameters between 0.16 "
λ " 1.01. The averaged temperature field ⟨T ⟩ and the corresponding variance ⟨T ′2⟩ are shown in
Figs. 7(a) and 7(b). For the entire parameter range, the mean temperature shows a well mixed bulk
between r = 1.1 and r = 1.7.

Just as in the weakly nonlinear regime, the centrifugal force leads to a non-Gaussian thermal
distribution for r > 1.5. Polar plumes are detached toward the upper boundary to form a cell
covering the entire gap. Columnar cells confined by the tangent cylinder are only weakly connected
to the outer shell. This results in a broad upper boundary layer, but an increase in S and K due to
polar plumes, see Fig. 7(c) and 7(d). The skewness is bounded by

√
2 for r < 1.75 due to columnar
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FIG. 6. Averaged thermal properties for simulations with L/Lc = 1.15 (black) and L/Lc = 2.25 (red), for
λ < 1 and λ > 1, respectively. (a) The mean temperature, (b) the temperature variance, (c) the skewness of
the temperature, (d) the kurtosis of temperature, (e) the dielectrophoretic acceleration, (f) the Brunt-Väisälä
frequency, (g) the a 3D simulation for L/Lc = 2.25 and λ = 2.5, and (h) a 3D simulation for L/Lc = 1.15 and
λ = 0.16.
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FIG. 7. Averaged (a) temperature, (b) temperature variance, (c) skewness of temperature, and (d) kurtosis
of temperature for λ " 1 and 1.4× 104 < L < 2.4× 104.

cells and this leads to a sub-Gaussian (K ∼2) distribution. In contrast to the weakly nonlinear
regime, this region is more strongly mixed due to higher convective fluxes.

2. Stability and N2

Figure 8(a) shows an additional effect of the centrifugal force. A steep gradient exhibits in the
dielectrophoretic acceleration, ae, at the equatorial region close to the inner shell with r < 1.1.
The steep gradients at the inner shell are caused by the boundary layers formed by the columnar
cells. As shown in Fig. 8(a), the dielectrophoretic acceleration as well as the BV frequency nearly
vanish for r > 1.1. The confinement of columnar cells by the tangent cylinder and the resulting
stable stratification above r = 1.6 reduce the thermal gradients and hence the dielectrophoretic
acceleration. In summary, the upper boundary regions of the midlatitudes are nearly adiabatically
stratified with N2 ∼0. In the polar regions, the dielectrophoretic acceleration and the BV frequency
are nonzero at the outer shell which agree with the results shown in Fig. 2(c). The mean
dielectrophoretic acceleration shows a small peak around r = 1.8 which is due to the boundary
layer. The horizontal components of ae does not contribute to the dynamics [see Fig. 8(b) and 8(c)].
The absolute values are two to three orders of magnitudes smaller than the radial component which
justifies the use of Eqs. (A8) and (A9) for the parameter range investigated.

C. Transitional regime for λ > 1

A set of seven representative EPs with 2.0× 103 < L < 3.5× 104 are analyzed for the parameter
regime λ > 1, Pr = 175, and Ek = 3.8× 10−3. The heating parameters range between 1.2 < λ "
21 and are shown in Fig. 4(a) as four green circles and three blue circles labeled as “set 2.”
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FIG. 8. Averaged (a) radial component of dielectrophoretic acceleration, (b) meridional component of
dielectrophoretic acceleration, (c) azimuthal component of dielectrophoretic acceleration, and (d) Brunt-
Väisälä frequency for λ < 1 and 1.4× 104 < L < 2.4× 104.

1. Thermal profile

The maximum of the mean temperature is found in the middle of the gap [see Fig. 9(a)] and
shifted toward the outer shell located at r = 1.5 which represents a higher value than that of the
conductive case rmax = 4/3. This shift was also observed in Zaussinger et al. [12] and can be
explained by an “eroding” convective flow.

The observed thermal fluctuations [see Fig. 9(b)] in the outer gap region are higher than in the
case of λ < 1. This leads to statistical outliers and therefore high values in the kurtosis. This is
well observed for the case where −1 < S # 0 and 2 < K # 3 and is indicated in Fig. 9(c) and
9(d). In contrast to the cases with low internal heating, the skewness is negative in the lower gap
region, but showed a steeper ascent for r < 1.75. A closer look to the three-dimensional temperature
field reveals the negative sign of S and shows strong pointwise down-welling plumes. Four distinct
pointwise plumes are highlighted and occurred as double-eye structures as shown in Fig. 10(b)
where white rectangles highlight these structures. However, columnar cells are not observed for
L > 5× 104 which is a result of the internal heating process. The columnar cells vanish by the
convective flux that reversed the sign of the dielectrophoretic acceleration.

2. Stability and N2

For λ ! 5.0 the dielectrophoretic acceleration is positive between r = 1.1 and r = 1.4 [see
Fig. 11(a)]. However, near the outer boundary, the dielectrophoretic acceleration is small or zero.
The inversion of the sign of the dielectrophoretic acceleration would lead to a separation of the
flow into two unstable layers separated by a stable, diffusive interface. However, layering is not
observed in the numerical simulations. This can be explained by the buoyancy force in the gap.
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FIG. 9. Averaged (a) temperature, (b) temperature variance, (c) skewness of temperature, and (d) kurtosis
of temperature for λ ! 1 and 2.0× 103 < L < 3.5× 104.

The dielectrophoretic acceleration is at least an order of magnitude higher at the inner shell than in
the bulk or in the upper shell. This destabilized the diffusive interface where the dielectrophoretic
acceleration changes sign and is able to form a convection cell which fills the entire gap. The

FIG. 10. Interferograms of the GeoFlow experiment with the North Pole at the center of the circle:
(a) Remnants of columnar cells for L = 2.4× 104 and λ = 0.7. (b) Equatorial, pointwise plumes for L = 6000
and λ = 60 with highlighted structures after postprocessing.

063502-17



FLORIAN ZAUSSINGER et al.

FIG. 11. Averaged (a) radial component of dielectrophoretic acceleration and (b) Brunt-Väisälä frequency
for λ ! 1 and 2.0× 103 < L < 3.5× 104.

negative sign of the BV frequency over the entire gap confirms this and is shown in Fig. 11. The
horizontal components of the dielectrophoretic acceleration are of comparable magnitude to those
in the case of λ < 1 and do not contribute to the flow.

VI. DISCUSSION AND CONCLUDING REMARKS

In contrast to other spherical shell experiments (see Refs. [51,52]) the GeoFlow experiment
provides a platform for investigating convection triggered by the dielectrophoretic effect with
two heating sources; dielectric heating (λ > 1) caused by a fast alternating electric field and
a temperature difference across the gap (λ < 1). Furthermore, it is the first study of rotating
convection which includes both heating sources and a micro-gravity environment.

We predicted a separation of the flow into two layers in the absence of Earth’s gravity. However,
we were unable to find evidence of stable flow separation in the experiments or numerical
simulations. One reason might be the electric buoyancy force which supports rapid mixing over
the entire gap.

Internal heating in rotating RB systems was studied numerically, e.g., by Zhang and Busse [53].
They showed columnar convection for Pr > 10 and Ek < 10−3, a parameter regime that coincides
well with the above-presented results, although a temperature difference "T was not included
in their work. A direct comparison with their results was difficult as the underlying governing
equations differ in many aspects, e.g., the thermoelectric feedback or the centrifugal force term.
However, a valid expression of the Taylor-Proudman theorem for the EHD model and columnar
cells in the weakly nonlinear regime was found. The case of pure internal heating was analyzed
by, e.g., Simitev and Busse [54] and showed results consistent with those found in the GeoFlow
experiments in terms of spiral and overlapped columnar convection cells in the weakly nonlinear
regime. Deschamps et al. [55] investigated volumetrically heated spherical gap convection in the
nonrotating case. Numerical simulations showed steep down-welling thermal plumes and broad
upwelling regions which agree with the GeoFlow experiments for λ≫ 1 in the transient regime.

The statistical evaluation showed that the EHD convection in the spherical gap can be described
by the quasinormal approximation. Results provided good agreement to studies in the RB cell by
Emran and Schumacher [56] where the first four statistical moments showed the same behavior in
the plane geometry.

The most limiting feature of the GeoFlow experiment is its inaccessibility regarding visual
measurement techniques. Due to safety and weight reasons, it was not possible to use tracer particles
or larger adaption optics. Even though the interferograms showed only a projection of the thermal
structure it was possible to extract basic properties of the convective flow. The onset of convection
and generic convective patterns in the interferometry were compared with the linear stability
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analysis and the regimes as defined in Gastine et al. [43]. The pointwise plume regime for λ≫ 1
where internal heating dominates over the centrifugal force was a limiting case in Zaussinger et al.
[12]. In a first attempt, velocity and drift rates were determined by a machine learning algorithm.
However, numerical simulations and measured velocities differed by up to a factor of four. In the
future, it is planned to increase the number of measurement points to lower the statistical uncertainty.

Bifurcations and hysteresis effects in the rotating spherical gap were investigated by Feudel et al.
[57] and Feudel et al. [58], respectively. Unfortunately, these effects cannot be confirmed with the
experimental points of the GeoFlow IIc mission. The time scales of these experiments were only
in the range of a few minutes. However, the GeoFlow IIb mission provided several studies with
an experimental time of up to four hours. This data could be used in the future to investigate the
above-mentioned bifurcations and hysteresis effects.

The GeoFlow experiment was performed at two reference temperatures, namely 293 K and
303.5 K. This experimental setup resulted in two Prandtl numbers, four Ekman numbers and ten
Froude numbers. Each dimensionless value varied between its minimum and maximum by a factor
of 1.41, 2.88, and 53, respectively. Differences were mainly found in the onset of convection
and the wave numbers of the observed columnar cells. The wave numbers of the columnar cells
in the GeoFlow experiment coincide with RB results (see Refs. [43,59]). However, no structural
differences between the sets of four different Ekman numbers were found. The influence of the
Froude number was not investigated. The complex interaction of all forces made it difficult to focus
on this single influence. The weakly rotating case, Ek ∼1, was not included in this study and
will be used for future investigations. For the weakly rotating case, regular geometric structures
such as tetrahedrons and octahedrons are expected [25]. Unfortunately, the GeoFlow experimental
container was withdrawn from service aboard the ISS in December 2018 which makes a resumption
of experimental work impossible.

The launch of the follow-up experiment AtmoFlow is planned for 2024. This experiment is
designed to investigate atmospheric-like fluid flows [26].
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APPENDIX: DERIVATION OF DIMENSIONLESS THERMOEHD EQUATIONS

We use the OBA for permittivity ϵ and the identity ∇(ϵ|E|2) = ϵ∇|E|2 + |E|2∇ϵ, to rewrite the
dielectrophoretic force FDEP as

FDEP = − 1
2 |E|2∇ϵ = 1

2∇[|E|2ϵrϵ0e(T − T0)]− 1
2ϵrϵ0e(T − T0)∇|E|2, (A1)

where the first term on the far-right-hand side is a gradient force and is included in the pressure
gradient. The remaining term can be written as a electrical thermal buoyancy force, F = −ρ0α (T −
T0) ge with

ge = e
ρ0α

∇
(

ϵ0ϵr |E|2

2

)
. (A2)

This term is known as the electric gravity which represents a mean acceleration omitting spatial
variations in the permittivity. Hence, ge alone is not suitable for the analysis of buoyancy related
phenomena. In this study, the corresponding dielectrophoretic acceleration ae = FDEP/ρ0 is instead
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used which counts for all spatial variations of the permittivity and the temperature. This includes
the consideration of the sign change of the dielectrophoretic acceleration under certain conditions
which will also change the sign of the buoyancy term. A comparable approach is used by Mutabazi
et al. [28] where the electric gravity is split into a base state and a fluctuating part.

Since the electric field has to fulfill the Gauss equation ∇ · (ϵE) = 0 or rather the dimensionless
formulation Eq. (A3), it is split into two parts and calculated via the gradient of electric potential #,

∇ ·
[

(ϵ0ϵr − eT ∗"T )
Vrms

d
E∗

]
= 0, (A3)

E∗ = E∗0(r∗) + E∗1(r∗, θ ,ϕ), (A4)

E∗0(r∗) = −∇&∗
0(r∗), E∗1(r∗, θ ,ϕ) = −∇&∗

1(r∗, θ ,ϕ). (A5)

where poloidal and toroidal angles are denoted by θ and ϕ, respectively. Thus, the field E∗0(r∗)
satisfies ∇ · E∗0(r∗) = 0 which can be calculated analytically

E∗0(r∗) = 1√
-

1
r∗2

er∗ , (A6)

where - = (1− η)4/η2 is a geometrical factor for the spherical shell and η = Rin/Rout is the radius
ratio. The electric potential is calculated via

"&∗
1 = CE - L

1−CE - L T ∗
∇T ∗ · [∇&∗

0(r) + ∇&∗
1(r, θ ,ϕ)], (A7)

with the dielectric loss parameter CT = 4π f eϵ2
0ϵ

2
r tan δV 4

rms/(cpρ
2νκ ) and the convective parameter

CE = ρνκ/(2ϵ0ϵrV 2
rms).

For |E∗1|≪ |E∗0| [cf. Figs. 8(a)–8(c) where the horizontal components of the dielectrophoretic
acceleration are three order of magnitudes smaller than the radial component] the Navier-Stokes
equation and the temperature equation read,

Pr−1
[
∂u∗

∂t∗
+ (u∗ · ∇)u∗

]
= −Pr−1∇p∗ + ∇2u∗ + B · L · T ∗ · 1

r∗5 er − Ek−1ez × u∗

+ L · Fr · T ∗ r∗ sin θ s (A8)

and

∂T ∗

∂t∗
+ (u∗ · ∇)T ∗ = ∇2T ∗ + CT

B -2 L
1

r∗4 , (A9)

respectively. Apart from the internal heating term and the geometrical aspects, this set of equations
is identical with the governing equations presented in Feudel et al. [25] [Eq.(1a)–(1c)] and for the
rotating case shown by Curbelo et al. [35] [Eqs. (1) and (2)]. This model is not suitable for describing
pure internal heating. For completeness, we refer to Travnikov et al. [60].
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