
A 2D Layered Graph Approach for
Scheduling Delivery Robots

Fabian Gnegel
Stefan Schaudt
Uwe Clausen

Armin Fügenschuh

Cottbus Mathematical Preprints
COMP# 17(2021)

A 2D Layered Graph Approach for Scheduling Delivery

Robots

Fabian Gnegel∗†, Stefan Schaudt‡, Uwe Clausen‡, Armin Fügenschuh†

April 2021

Abstract

In recent years parcel volumes reached record highs. The logistics industry is
seeking new innovative concepts to keep pace. For densely populated areas delivery
robots are a promising alternative to conventional trucking. These electric robots drive
autonomously on sidewalks and deliver urgent goods, such as express parcels, medicine,
or meals. The limited cargo space and battery capacity of these vehicles necessitates a
depot visit after each customer served. The problem can be formulated as an electric
vehicle routing problem with soft time windows and a single unit capacity. The goal
is to serve all customers such that the quadratic sum of delays is minimized and each
vehicle operates within its battery bounds. To solve this problem, we formulate an
MIQP and present an expanded formulation based on a layered graph. For this layered
graph we derive two solution approaches based on relaxations, which use less nodes and
arcs. The first, Iterative Refinement, always solves the current relaxation to optimality
and refines the graph if the solution is not feasible for the expanded formulation. This
is repeated until a proven optimal solution is found. The second, Branch and Refine,
integrates the graph refinement into a branch and bound framework avoiding restarts.
Computational experiments performed on modified Solomon instances demonstrate
the advantage of using our solution approaches and show that Branch and Refine
outperforms Iterative Refinement in all studied parameter configurations.

Keywords: delivery robots; electric vehicle routing problem; exact algorithm; graph
refinement; last-mile; layered graphs; partial recharging

1 Introduction

In the last decade, e-commerce has changed consumer markets world-wide. The global e-
commerce revenue reached 2,415 billion US$ in 2020, which is an increase of 25% compared
to 2019 [19]. The growing e-commerce market increases the number of parcels to be
delivered. In 2019, the global amount of parcels surpassed 100 billion [14]. This growth
is adding to the already existing traffic challenges of congestion, noise, and air pollution.
Authorities in all over Western Europe try to regulate emissions of transportation and some
cities already established pedestrian-only, low-, or zero-emissions zones. These regulations
effect the way people get around, how to order goods, and how logistics companies deliver.
Due to these regulations and to create a better reputation, logistics companies started

∗Corresponding author
†Brandenburg University of Technology Cottbus-Senftenberg,
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany,
{gnegel,fuegenschuh}@b-tu.de

‡Institute of Transport Logistics, TU Dortmund University,
Leonhard-Euler-Str. 2, 44263 Dortmund, Germany,
{schaudt,clausen}@tu-dortmund.de

1

environmental protection programs to increase their carbon efficiency and reduce local air
pollution emissions. Some of them already committed to be net zero carbon at some point
in the future. To reach these goals, the logistics industry is seeking new efficient ways for
transportation with a focus on the last-mile. The last-mile is the most challenging and at
the same time most costly part in transportation. It is estimated that 50% of the total
transportation costs are incurred in the last-mile [13]. One promising concept for good
distribution in urban areas is the use of a two-tiered approach. In this structure, the goods
are first transported in bundles into the city by traditional trucking and temporarily stored
at decentralized micro-depots. The delivery from these micro-depots is than performed
with environmental friendly solutions. One option is to use electrically-assisted freight
bicycles. The distribution with these bicycles is flexible and can reduce traffic, noise, and
air pollution [16]. However, it is weather dependent and the capacity is limited. Another
concept is the use of small autonomous parcel robots for transportation on the last-mile.
These robots are equipped with the same technology used for autonomous vehicles. The
main differences to self-driving cars is in size and speed. Many startups and established
companies started building delivery robots in recent years such as Starship Technologies,
Nuro, Amazon, JD.com, or Alibaba. These electric robots are designed to travel on side-
walks or pedestrians zones at walking speed. Compared to conventional trucking, delivery
robots over a high level of service. A customer can select a time-slot in advance at which
the parcel should be delivered. Delivery robots are particularly suitable for the delivery
of goods that are small in size and time-critical. The capacity and range is designed to
operate in the urban environment. These robots can deliver almost everything that fits
inside their compartment. Some robots are equipped with heating or refrigeration. Fields
of application are the delivery of parcels, food, clothes, groceries, or medicine. To get a
better understanding of delivery concepts with robots, we give a exemplary description
of such a concept. Assume some customer orders a good. In a first step, this good is
transported to a micro-depot, which is close to the customers location. At this micro-
depot a fleet of robots is located. To offer a high level of service, the customer is able to
select a delivery time-slot. To deliver the good, a robot is loaded at the micro-depot and
starts its journey to the customer. After arriving at its destination, the robot is unlocked,
unloaded and drives back to its micro-depot. Back at the micro-depot, the robot is either
recharged or prepared for the next delivery.

In this publication we study the optimal routing, scheduling and charging strategy for
a fixed number of battery powered vehicles with single unit capacity. The optimization
goal is to minimize the sum of the squared differences between the start of service at
the customers and their desired delivery times, i.e. the delays. Our formulation of the
problem is based on the classical vehicle routing problem (VRP), but it incorporates
additional variables and constraints, which are necessary to model arrival times, states of
charge (SoC), and delays. Since the delays are squared in the objective, this formulation is
a mixed-integer quadratic program (MIQP). As we will demonstrate in the computational
approach, using state-of-the-art MIQP solvers is only a suitable solution approach for
relatively few vehicles or customers. As an alternative approach we derive a formulation
based on a layered graph, in which nodes not only represent customers, but a combination
of customer ID, arrival time and SoC at arrival. This formulation is of theoretical nature
only, since applying it in practise might be as hard as solving the problem itself, but it
allows for very strong relaxations. These relaxations are relatively easy to solve and we
derive an iterative approach that refines the relaxations until its solution can be converted
to a solution of the original problem with equal cost, proving its optimality. For using
these relaxations we propose two algorithms: Iterative Refinement in which the relaxations
are refined in an outer loop and Branch and Refine in which the relaxations are refined
during the exploration phase of a branch and bound algorithm.

2

The outline of this paper is as follows: In Section 2, we give an overview of existing
literature in the field of last-mile logistics and on refinement algorithms. Section 3 gives
a mathematical problem formulation and different mixed-integer formulations. Besides,
the concept of a time- and battery-expanded graphs is presented. In Section 4, we discuss
relaxation techniques of a completely time- and battery-expanded graph. The theoretical
background is used to define a refinement algorithm in Section 5. In Section 6, the results
of computational experiments are presented. Finally, Section 7 concludes and provides an
outlook on future research.

2 Literature review

The delivery of parcels with innovative concepts such as drones or delivery robots is a
relatively new topic. A recent overview on current and future concepts is presented by
Boysen et al. [6] and an overview on trends in transportation is given by Speranza [27].

The literature concerning the optimization of a last-mile network with delivery robots
is relatively small and can be divided into two categories. Firstly, literature that involves a
mobile van capable of transporting robots and secondly, literature that considers stationary
micro-depots. For the first category Boysen et al. [5] consider the scheduling of a delivery
truck with robots on board. The truck can load robots at micro-depots and launches
them at predefined locations along the route. The goal of this problem is to minimize the
weighted number of late deliveries. The authors present an MILP formulation and a multi-
start local search heuristic to solve the resulting scheduling problem. A similar problem is
considered by Ostermeier et al. [18] with some differences in the objective function. The
authors consider a multi-objective function involving the minimization of the tour length of
the truck, the distances travelled by the robots, and the lateness of the deliveries. To solve
this optimization problem, an MILP formulation and a heuristic that solves this problem
in two stages is presented. For the second category, where micro-depot locations are fixed,
Poeting et al. [21] present a simulation framework that depicts the parcel delivery of a
parcel delivery company for a city with 1 Million inhabitants. Up to 3 % of the parcels
are delivered with delivery robots in a two-tiered system and the rest with conventional
delivery vehicles. In a follow-up publication Poeting et al. [20] investigate the number of
delivery robots needed to supply a city center with parcels. Two different delivery slot
selections are considered. In the first case, each customer has selected a delivery time slot
in advance and delays are minimized with a simulated annealing approach. In the latter
case, customers trigger their delivery on-demand and in such an event, an available robot
is loaded at a micro-depot that is close to the customer location. In a contribution given
by Sonneberg et al. [26] a location routing problem for delivery robots is considered. The
authors try to minimize the delivery costs of urban shipments with parcel robots. The
problem is modeled as an MILP and solved with an optimization software. In a case study
the effect of a varying number of compartments is examined.

The optimization of unmanned aerial vehicles (UAV) or drones is a wider discussed
topic in the literature. An overview on routing problems with UAVs is presented by
Viloria et al. [28]. However, only a few publications consider the battery management
and recharging processes. In most publications, where batteries are mentioned, they only
function as a range limitation and recharging processes are assumed to be performed
instantaneously. This process is represented by a battery swap at the micro-depot, where
the empty battery is exchanged for a fully charged battery (see [4, 22, 30]).

A field of research, where recharging processes are modelled, is the Electric Vehicle
Routing Problem (EVRP). This problem is an extension of the standard VRP to electric
vehicles requiring recharging stations. A survey on the EVRP is presented by Erdelić and
Carić [9]. Schneider et al. [24] extend the EVRP by time windows (EVRPTW) at the

3

customer locations. The authors formulate an MILP and present a Variable Neighborhood
and Tabu Search heuristic to solve the problem. However, this contribution only considers
full recharges. Keskin and Çatay [15] extend the EVRPTW and allow partial recharges.
In their publication, an MILP formulation and an Adaptive Large Neighborhood Search
heuristic is presented. An exact algorithm for the EVRPTW is presented by Desaulniers et
al. [8]. The authors discuss variants of this problem with either fully or partial recharging
strategies and present a Branch-Price and Cut algorithm to solve it.

The problem considered in this publication is closely related to the EVRPTW, but
differs in two major aspects. Firstly, we relax the time window constraints and allow late
deliveries, which are penalized. A reason for this objective function is the autonomy of
the delivery vehicles, as the operational costs do not depend significantly on the operating
time. The selected objective function puts a higher focus on the customer satisfaction.
Another difference is the limited cargo space of autonomous delivery vehicles. This requires
to model the problem with a single unit capacity and makes a depot/recharging station
visit mandatory between each pair of customers.

Our modeling approach is based on layered graphs. This idea has recently been gaining
traction in the literature and has been applied to a variety of problems. The nodes of a
layered graph usually are derived from the set of nodes of some graph. For each original
node there is a set of nodes in the layered graph, which are referred to as copies of the
node. Each copy of a node represents a different state of some commodity (or some
commodities) at the original node and arcs between copies model a feasible transition
between those states. This allows to incorporate constraints on the commodities into the
structure of the graph. Gouveia et al. [11] provide a survey on models derived from layered
graphs and solution approaches for those. Maybe the most commonly used layered graph
is the well-known time-expanded graph or time expanded-network, in which the nodes of
a graph which usually represent locations are expanded into sets of copies which represent
arrival times. Refinement algorithms have been proposed for a variety of problems in
the literature, which can be modeled by time-expanded graphs. Boland and Savelsbergh
[3] give a perspective on the opportunities these kinds of algorithms provide for solving
time-dependent problems. The general concept here is to find partially expanded graphs,
i.e., graphs which have less nodes and arcs than necessary to guarantee a correct problem
formulation. Depending on whether travel times are under- or overestimated, these graphs
can provide either lower or upper bounds. They are then dynamically refined to improve
the bounds and close the gap between them. Boland et al. [2] successfully apply this
strategy to a delivery problem, in which shipments can be consolidated if they share the
same route and departure time. Other examples are Vu et al. [29] who apply it to a
time-dependent variant of the traveling salesman problem, He et al. [12] who use it to
solve the minimum duration shortest path problem, and Riedler et al. [23], who in their
approach for solving for the traveling salesman problem with time windows also carry out
refinement steps based on the linear relaxation of an MILP formulation. As an example
of an application to a layered graph with nodes that do not represent arrival times, we
mention here Gnegel et al. [10], who use refinement techniques in a graph whose copies
represent the number of arrivals to the location. The works of Bärmann et al. [1] and
Clautiaux et al. [7] show that this technique is not restricted to formulations derived from
layered graphs, but can be generally applied to problems were node contractions can be
used to obtain relaxed formulations. Branch and Refine is actually strongly related to one
of the approaches presented by Bärmann et al. [1]. They are, to our knowledge, the first
who incorporate the graph refinement into a branch and bound algorithm and thereby
avoid solving MILPs in a loop to obtain better and better bounds.

4

3 Problem description and mathematical formulation

In the following, we present a detailed problem description of the time- and battery-
constrained vehicle routing problem (TB-VRP). Let V = {0, . . . , n, n + 1} denote a set
of locations, where location 0 and n + 1 are copies of the depot and set C = {1, . . . , n}
denotes the locations of the customers. Additionally we define the following set of ordered
pairs of locations:

A = {(i, j) ∈ C × C | i 6= j} ∪ {(0, i) | i ∈ C} ∪ {(i, n+ 1) | i ∈ C}.

There are m identical vehicles available at the depot. Each vehicle has a single unit
capacity and each customer has a single unit demand. Thus, a depot visit is required
between each two consecutively visited customers.

Each location i ∈ V has a soft time window [ti, ti], where ti ∈ R+ denotes the lower
bound and ti ∈ R+ the upper bound of the time window. Given a time horizon T , we
set [ti, ti] = [0, T] for the depot locations i = 0, n + 1. Additionally, we assume that the
service at each customer i ∈ C takes a known duration of si.

An early visit at a customer location is not allowed and a tardy arrival results in a
penalty, which is the squared delay. Let di denote the travel time from the depot to a
customer i ∈ C and vice versa. Let dij = si + di + dj denote the service time at customer
i plus the traveling time between the visits at customers i, j ∈ C. For ease of notation, we
additionally define d0j = dj and djn+1 = dj + sj for j ∈ C.

The depot functions not only as a storage for goods, but also as a recharging station
for the vehicles. We assume that the capacity of this station is sufficiently large to charge
all vehicles at the same time. As the vehicles are battery powered, let B denote the
battery capacity. The battery should be measured in travel time units. For simplification,
we assume that the SoC increases linearly while charging and also decrease linearly while
driving, although in real-world applications the charging rate decreases for the last 10%
to 20% of the battery capacity (Marra et al. [17]). Moreover, we assume that other
processes, such as loading, unloading, or waiting do not effect the SoC. Let α be the travel
time units obtained when charging one unit of time. Let bij = di + dj denote the battery
units consumed, when travelling between customers i and j, with i, j ∈ C. Again for ease
of notation, we also introduce b0j = dj and bjn+1 = dj for j ∈ C. Each customer i ∈ C
can be associated with a battery window [bi, b], with bi = di and b = B − di, in which the
vehicles SoC should be upon arrival.

The optimization problem involves finding m routes that minimize the sum of squared
delays, such that (i) each customer is visited exactly once by any of the vehicle, (ii) no
customer is served earlier than its lower time window bound ti and (iii) the the vehicles
SoC should always be within the bounds [0, B].

3.1 Exact mixed-integer formulations

In this subsection, we provide an MIQP formulation to solve the TB-VRP. Since the
vehicles only have capacity of a single unit, they always have to return to the depot
before making the next delivery. In our formulations we adjust the traveling times and
battery consumption and model these return trips implicitly, which leads to the following
definition. Given k ∈ N locations P1, . . . , Pk ∈ V with 2 ≤ k ≤ n + 1, we call the tuple
P = (P1, . . . , Pk) a tour, if they are pairwise disjoint and if P1 = 0 and Pk = n + 1.
We introduce binary decision variables xij for (i, j) ∈ A. If i, j ∈ C the values of these
variables indicate whether or not customer i precedes customer j, i.e. xij = 1 if and only
if a vehicle returns from i to the depot and then serves customer j next. The values of
x0j with j ∈ C indicate whether or not j is the first customer of a tour and the values of
xin+1 with i ∈ C indicate that i is the last customer of a tour. We introduce continuous

5

Decision variables

xij indicator if location i precedes location j for (i, j) ∈ A
ϑi start of the service at location i ∈ V
βi SoC at location i ∈ V
γi delay at location i ∈ V

Parameters

m number of vehicles
n number of customers
si service time at customer i ∈ C
di travel time from the depot to customer i ∈ C
dij traveling plus service time for (i, j) ∈ A
bij battery consumption for (i, j) ∈ A
T time horizon
[ti, ti] time window of location i ∈ V
B battery capacity

[bi, bi] battery window of location i ∈ V
α recharging rate

Table 1: Decision variables and parameters.

variables ϑi ∈ R+ for the starting time of the service at location i ∈ V . Additionally,
for each location i ∈ V the SoC at the start of the service is captured with a continuous
variable βi ∈ R+ and the potential delay by a continuous variable γi ∈ R+. An overview
of all decision variables and parameters is given in Table 1. Using these variables, the
TB-VRP can be modeled by the MIQP:

minimize
∑
i∈C

γ2i (1a)

subject to
∑
i∈C

x0i ≤ m (1b)∑
j∈V :(i,j)∈A

xij = 1 i ∈ C (1c)

∑
j∈V :(j,i)∈A

xji = 1 i ∈ C (1d)

ϑi + dij ≤ ϑj + (1− xij)T (i, j) ∈ A (1e)

βi + α(ϑj − ϑi − dij)− bij ≥ βj − (1− xij)B (i, j) ∈ A (1f)

bi ≤ βi ≤ bi i ∈ V (1g)

ti ≤ ϑi ≤ ti + γi i ∈ V (1h)

0 ≤ γi ≤ T − ti i ∈ V (1i)

xij ∈ {0, 1} (i, j) ∈ A (1j)

In the objective (1a) the delays are squared, so that large individual delays are penalized
more heavily than few short delays. Constraint (1b) guarantees that at most m vehicles are
used. With the constraints (1c) and (1d) it is ensured that each customer is visited once.
Given two consecutively visited locations i and j, constraints (1e) ensure that the difference
between the arrival times is sufficiently large. Similarly, constraints (1f) guarantee that
the difference of the SoC’s accounts for battery consumption and the time spent charging.
Additionally, constraints (1e) implicitly impose an ordering of the customers assigned to
the same tour, which ensures that no cycles are contained in a solution. Finally, the

6

domains of the individual variables are imposed by (1g),(1h) and (1j). Here, the time
window of a location i ∈ V can only be violated if a positive value is assigned to γi. This
guarantees that the delay variables are set correctly.

3.2 The time and battery-expanded formulation

For fractional values of the x-variables the right hand side of (1e) can be large and the right
hand side of (1f) can be small, making them very weak constraints in the linear relaxation
of (1). This can lead to a large gap between the objective of (1) and its linear relaxation,
which is known to impede branch and bound algorithms for solving it. As an alternative
to the MIQP formulation proposed before, we propose to model the problem by using
layered graphs, which we call partially time- and battery-expanded graphs (TBEG), which
are known to have much stronger linear relaxations (see for example Gouveia et al. [11]).
To do so, for a location i ∈ V we define a tuple (i, t, b) to be a node representative of i, if
it is an element of {i}× [ti, T − di− si]× [bi, bi]. In this case, we also call (t, b) the arrival
state of the node representative (i, t, b). Then, given an arc (i, j) ∈ A, we further call a
tuple (i, ti, bi, j, tj , bj) an arc representative of (i, j), if (i, ti, bi) is a node representative of
i and (j, ti, bj) is a node representative of j. A TBEG is a graph G = (V,A), where the set
of nodes V consists of node representatives and the set of arcs A of arc representatives.
Furthermore, for any location i ∈ V there has to be at least one node representative in V,
and for each node representative (i, t, b) and each arc (i, j) ∈ A there has to be at least one
arc representative of (i, j) in A with (i, t, b) as its tail. For the location i ∈ V we denote
the subset of V which contains all the node representatives of i by Vi, and for (i, j) ∈ A
we denote the subset of A containing all arc representatives of (i, j) by Aij .

For any TBEG G we can derive a model, which depending on G can be an exact
formulation of the TB-VRP. We use variables xij for all (i, j) ∈ A in the same way as they
were used in (1). Instead of the other continuous variables we only need to use binary
variables ya for a ∈ A, take the value 1 if and only if a vehicle transitions from the arrival
state of the tail of a to the arrival state of the head of a. With these variables, we propose
the following MILP for any TBEG G:

minimize
∑

a=(i,ti,bi,j,tj ,bj)∈A

max(0, tj − tj)2ya (2a)

subject to
∑
j∈C

x0j ≤ m (2b)

∑
j∈V :(i,j)∈A

xij = 1 i ∈ C (2c)

∑
a∈Aij

ya = xij (i, j) ∈ A (2d)

∑
a∈δ+((i,t,b))

ya =
∑

a∈δ−((i,t,b))

ya (i, t, b) ∈ V (2e)

xij ∈ {0, 1} (i, j) ∈ A (2f)

ya ∈ {0, 1} a ∈ A. (2g)

We refer to this MILP as MG to indicate the TBEG it is derived from. Its objective
function (2a) realizes the squared delay of the arrival states indicated by the heads of
the arcs of the TBEG. Constraint (2b) limits the number of vehicles and the constraints
(2c) guarantee that each customer is visited exactly once. The constraints (2d) guarantee
that the values assigned to the x- and y-variables are consistent. Constraints (2e) are
flow conservation constraints, in which we use δ+((i, t, b)) for the set of outgoing and
δ−((i, t, b)) for the set of ingoing arcs of the node (i, t, b) ∈ V . We note here, that, for

7

now, it is possible for the solutions to contain cycles, which will we will have to take into
account in our algorithms later on.

Algorithm 1: transform(x, y)

1 Input: Solutions vectors x and y of MG for some TBEG G;
2 for (i, j) ∈ A do
3 xij ← xij ;

4 for a = (i, ti, bi, j, tj , bj) ∈ A do
5 if ya = 1 then
6 ϑj ← tj ;
7 βj ← bj ;
8 γj ← max(0, tj − tj);

9 Output: Vectors x, ϑ, β, γ;

Since the nodes in G model arrival states at the locations, we can use Algorithm 1 with
a solution of MG as its input and check if its output fulfills the constraints of (1). For all
nodes (j, t, b) for which the flow described by the y-variables of (2) is non-zero, it assigns
t to the variable ϑj , b to the variable βj and max(0, t− tj) to the variable γj of (1). The
objective function (2a) is then exactly the squared delay given by the γ-variables in (1a).
Based on this, we can then make the following observation.

Proposition 1. Let G be a TBEG, with a set of arcs that guarantees that for any input
to Algorithm 1 the output of Algorithm 1 fulfills the constraints (1h) and (1g). Then the
solution vectors of MG can be transformed by Algorithm 1 into vectors that fulfill all the
constraints of (1). Furthermore, if additionally it is guaranteed that at least one optimal
solution of (1) can be expressed as a tour in G, the solution of MG can be transformed by
Algorithm 1 into a solution of (1).

In the remainder of this section, we are going to derive a TBEG Gexp = (Vexp,Aexp)
that does fulfill the abstractly given conditions of Proposition 1. We call this graph the
completely time- and battery-expanded graph.

We start by introducing the matrix

M =

(
1 α
0 −1

)
.

It holds M−1 = M and it will be helpful to consider arrival states in a different coordinate
system.

For (i, j) ∈ A, we call a node representative (j, tj , bj) of j reachable from a node repre-
sentative (i, ti, bi) of i and an arc representative (i, ti, bi, j, tj , bj) of an arc (i, j) realizable
if there exist θ, τ ≥ 0, such that(

tj
bj

)
=

(
ti
bi

)
+

(
dij
−bij

)
+ θ

(
1
α

)
+ τ

(
0
−1

)
=

(
ti
bi

)
+

(
dij
−bij

)
+ Mᵀ

(
θ
τ

)
.

A possible interpretation of θ is the charging time, but non-zero values of τ cannot be
realized in practice. It can be interpreted as some amount of instantaneously lost charge
or an overestimation of battery consumption. This is allowed in constraint (1g), although
energy stored in the battery cannot simply disappear. This choice will be helpful later,
when it is preferable to have the area of reachable arrival states as large as possible. Note
here, that there is no downside to including the possibility to overestimate the battery
consumption, when it comes to feasibility of transitions.

8

We can deduce that if the arcs in Aexp are realizable, all tours in Gexp are guaranteed
to fulfill the time and battery constraints. So, if we could include node representatives
with all arrival states of the locations and all realizable arc representatives, the conditions
of Proposition 1 would be fulfilled by Gexp. The set of node representatives, however, are
defined as a rectangle (for each customer index). This means that we cannot include them
all in a finite graph. To use the described approach, we first have to show, that it suffices
to only consider a finite set of node representatives, i.e., for Vexp to contain a finite number
of nodes. We do this by introducing a concept of domination based on a certain partial
order � of the states.

A closer look at the definition of reachable arrival states shows that they are part of
a shifted convex cone. Furthermore this convex cone only depends on the recharging rate
α. It is therefore a natural choice to use the partial order induced by this cone. The cone
is given by

C =

{
θ

(
1
α

)
+ τ

(
0
−1

) ∣∣∣∣ θ, τ ≥ 0

}
.

For two node representatives (i, t1, b1) and (i, t2, b2) of some location i ∈ V then holds
(i, t1, b1) � (i, t2, b2) if and only if (t2, b2) − (t1, b1) ∈ C. For the arrival states we then
similarly write (t1, b1) � (t2, b2). An easy way to check if two node representatives can be
compared by our partial order is presented in the following lemma.

Lemma 1. Given two node representatives (i, t1, b1) and (i, t2, b2) of some location i ∈ V
we define (θ1, τ1) = (t1, b1) ·M and (θ2, τ2) = (t2, b2) ·M. It then holds (t1, b1) � (t2, b2),
if and only if θ1 ≤ θ2 and τ1 ≤ τ2.

Proof. We note, that by the definition of M and C, any point (t, b) ∈ C can be written
as (θ, τ) ·M for some θ, τ ≥ 0. The result then directly follows from the definition of the
partial order �.

With the previously outlined interpretation of θ and τ in mind, (t1, b1) � (t2, b2) for
two arrival states of the same location, means that less time has to be spent charging and
the battery consumption has to be overestimated by a smaller amount to reach (t1, b1)
instead of (t2, b2). For this reason we now use the partial order to say a node representative
(i, t1, b1) dominates a node representative (i, t2, b2) of some location i ∈ V , if (i, t1, b1) �
(i, t2, b2), which is further justified by the following observation.

Proposition 2. Let (i, t1i , b
1
i), (i, t2i , t

2
i) be node representatives of some location i ∈ V

such that (i, t1i , b
1
i) � (i, b2i , t

2
i) and let (j, tj , bj) be a node representative of some other

location j ∈ V , such that (i, j) ∈ A. If (j, tj , bj) is reachable from (i, t2i , t
2
i), then (j, tj , bj)

os also reachable from (i, t1i , b
1
i).

Proof. This is a direct consequence of the definition of arrival states.

The following result shows that our concept of domination is useful to reduce the
number of node representatives that we have to include in Gexp.

Lemma 2. Let (i, ti, bi) be a node representative of some location i ∈ V and let j ∈ V be
another location such that (i, j) ∈ A. Then there exists at most one node representative
(j, tj , bj) of j that is reachable from (i, ti, bi) and is not dominated by another reachable
node representative of j.

Proof. Assume that there are two different node representatives (t1j , b
1
j) and (t2j , b

2
j) of j

that are reachable from (i, ti, bi) and not dominated by another node representative that

9

is also reachable from (i, ti, bi). Then we can find θ1, θ2, τ1, τ2 ≥ 0, such that(
t2j
b2j

)
=

(
ti
bi

)
+

(
di + dj
−di − dj

)
+ θ1

(
1
α

)
+ τ1

(
0
−1

)
, (3)(

t1j
b1j

)
=

(
ti
bi

)
+

(
di + dj
−di − dj

)
+ θ2

(
1
α

)
+ τ2

(
0
−1

)
. (4)

Since they are both not dominated by another node representative, they can in particular
also not dominate each other, which implies (t1j , b

1
j)− (t2j , b

2
j) /∈ C and (t2j , b

2
j)− (t1j , b

1
j) /∈ C.

For this to be true, it has to hold either (θ1 − θ2) ≥ 0 or (τ1 − τ2) ≥ 0, but not both of
those inequalities. W.l.o.g, let θ1 ≥ θ2 and τ1 < τ2. The point (t3j , b

3
j) given by(

t3j
b3j

)
=

(
ti
bi

)
+

(
di + dj
−di − dj

)
+ θ2

(
1
α

)
+ τ1

(
0
−1

)
, (5)

then dominates both (t1j , b
1
j) and also (t2j , b

2
j). However, since t3j = t2j and b2j ≤ b3j ≤ b1j , then

(j, t3j , b
3
j) fulfills the conditions to be a node representative of i, if (j, t1j , b

1
j) and (j, t2j , b

2
j)

are node representatives. Furthermore, (j, t3j , b
3
j) also fulfills the condition to be reachable

from (i, ti, bi). So, we found a node representative of j that is reachable from (i, ti, bi) and
dominates (j, t1j , b

1
j) and (j, t2j , b

2
j), a contradiction to the initial assumption.

Lemma 2 shows that we do not have to consider the whole set of node representatives,
we just need to be able to find the reachable node representative that dominates all others.
While we could for example use an LP formulation to find this point, the geometry of the
reachable node representatives is simple enough to find this point by distinguishing some
special cases. The steps for that are given in Algorithm 2. In this strategy the time that

Algorithm 2: recharge(i, t, b, j)

1 Input: A node representative (i, t, b) of some location i ∈ V and another location
j, such that (i, j) ∈ A;

2 tc ← max(bj + bij − b), 0)/α; (forced charging time)

3 tw ← max(tj − dij − t), 0) ; (forced wait time)

4 td ← max(tct, twt); (time at depot)
5 tj ← t+ td + dij ; (arrival time at j)
6 bj ← min(B, b− di + αtd)− dj ; (SoC at j)
7 Output: A node representative (j, tj , bj) of j;

has to be spent at the depot is calculated first. It is the maximum of the time that the
vehicle has to wait at the depot in order to not arrive too early at the next customer and
the time required to charge sufficient battery for the tour to the next customer and back.
Based on this the arrival time and the SoC of the vehicle at the next customer can be
calculated. Using this strategy guarantees that the vehicles spend as little time as possible
at the depot. Therefore, using this strategy for a given tour assignment there exists no
recharging strategy by which a customer is reached at an earlier time, while guaranteeing
feasibility of the transition. This implies that using this strategy enforces minimal delays.

Let (i, ti, bi, j, tj , bj) ∈ A be an arc representative and let (t, t̂j , b̂j) be the output of
recharge(i, ti, bi, j). This implies that t̂j ≥ tj holds and that t̂j is a better estimation of
the arrival time than tj . So, we can replace tj by t̂j in (2a) to get a better estimation of
the delays. More explicitly using t̂j for the arrival time calculated in this way, we replace
the objective (2a) of the MILP MG by∑

a=(i,ti,bi,j,tj ,bj)∈A

max(0, t̂j − tj)− ya. (2a’)

10

This objective function provides better bounds in our algorithms, but has no effect on the

Algorithm 3: expand(P)

1 Input: A tour P in G ;
2 (i, t, b)← (0, 0, B);
3 for j = 1, . . . , k − 1 do
4 Pj ← (i, t, b);
5 (i, t, b)← recharge(i, t, b, Pj+1);

6 Pk ← (i, t, b);
7 Output: A tour representative P = (P1, . . . ,Pk) of P ;

discussions, because the two objective functions are identical for the time- and battery-
expanded graph Gexp.

The next step is to be able to convert tours in G into tours of node representatives.
We first extend the term representatives to tours by calling a tour P in a TBEG G a tour
representative of a tour P in G, if all of the nodes in P are node representatives of the
nodes in P .

Given two tours P, P̂ in G, which are both tour representatives of some tour P in G,
we write P � P̂, if the relation � holds true between all the node representatives in P
and P̂. With this we can now prove the following result for Algorithm 2.

Lemma 3. Given a tour P of length k in G, then Algorithm 3 returns a tour representative
of P , for which arcs between subsequent nodes are realizable. Furthermore, it holds P � P̂
for all other tour representatives P̂ of P .

Proof. Since the subsequent nodes in the output P of Algorithm 3 are calculated by
Algorithm 2, the transition between them has to be realizable. Now, by Lemma 2 its second
node P2 is the unique node representative of P2 that is non-dominated and reachable from
P1. In particular this holds for P̂2 of some other tour representative P̂ of P . Inductively
this holds true for all nodes in P, which concludes the proof.

Now, interpreting the tours P as graphs (VP ,AP) with nodes VP = P and arcs between
subsequent nodes, by Lemma 3, Algorithm 3 can be used to convert tours in G into tour
representatives of it, which contain only realizable arc representatives. Furthermore, there
exists no other tour representative with realizable arc representatives whose nodes are
non-dominated by the nodes of the output of Algorithm 3.

Based on this we can define Vexp =
⋃
P∈P VP and Aexp =

⋃
P∈PAP , where P denotes

the set of all tours in G. By construction, any tour (including those contained in a solution
of the TB-VRP) has a tour representative in the graph Gexp = (Vexp,Aexp). Further,
since all arc representatives in it are realizable, each tour representative in Gexp can be
transformed into vectors that fulfill all time and battery constraints. Therefore, Gexp fulfills
the conditions formulated in Proposition 1 and hence MGexp is an exact formulation of the
TB-VRP. For this reason it is justified to now call MGexp the time- and battery-expanded
formulation of the TB-VRP.

We note, that it should be clear from the derivation of Gexp that this formulation is
not suitable for finding solutions of the TB-VRP in practise. It would require to enlist all
tours in G, whose number grows exponentially with the size of the graph. However, as we
will show in the following section, it is possible to use other TBEGs G for which MG is a
relaxation of the TB-VRP. For any TBEG G, it is straightforward to test if a solution of
MG is also contained in MGexp , simply by applying Algorithm 3 to the tours in G described
by the x-variables and comparing it to the tour described by the y-variables. If they are

11

the same, we have found an optimal solution of MGexp . If they are not the same, then we
can still use the output of Algorithm 3 to obtain feasible solution candidates.

4 Relaxations of the time and battery-expanded formula-
tion

As outlined before, the first step in deriving an algorithm making use of the time and
battery-expanded formulation is to find TBEGs G = (V,A) for which MG is a good
relaxation relaxation of MGexp . We start by introducing the TBEG Ginit = (V init,Ainit),
where

V init = {(i, ti, bi), i ∈ V },
Ainit = {(i, ti, bi, j, tj , bj), (i, j) ∈ A}.

This is the TBEG with the smallest possible number of nodes and arcs. We call arc repre-
sentatives (i, ti, bi, j, tj , bj) of an arc (i, j) ∈ A underestimating if (j, tj , bj) � recharge(i, ti, bi, j).
We additionally say it is minimally underestimating in a TBEG G if there exists no node
representative (j, t̂j , b̂j) ∈ V , with (j, t̂j , b̂j) 6= (j, tj , bj) such that (j, t̂j , b̂j) � recharge(i, ti, bi, j)

and (j, t̂j , b̂j) � (j, tj , bj).

ar
ri

va
l

ti
m

e

SoC

(a)

SoC

(t1, b1)

(t2, b2)ar
ri

v a
l

ti
m

e

(b)

SoC

(t1, b1)

(t2, b2)(t12, b12)ar
ri

va
l

ti
m

e

(c)

Figure 1: Arrival states at some customer j.

Let us illustrate this definition by giving a simplified example. Consider a situation,
in which the set of node representatives in Vj for some customer j ∈ C is given by the
black dots in Figure 1a and we want to include an arc from a node (i, ti, bi) to a node
representative of j. Even if the node representative given by the output of Algorithm 2 is
not an element of V, it is guaranteed to be in one of the colored areas. Since all points in any
of the areas are dominated by its bottom right corner (the apex of a shifted C), connecting
(i, ti, bi) to the node representative with arrival state equal to the bottom right corner
of this area, leads to a graph that underestimates the arrival states. Arc representatives
chosen in this way are minimally underestimating. Constructing the whole set of arcs
in this way, leads to a graph in which the nodes do not only represent a single arrival
state, but a whole section of the rectangle of arrival states. Note that the graph Gexp
can be interpreted in the same way, but it is designed in such a way, that the outputs of
Algorithm 2 used in the definition of underestimating arcs are already present Vexp.

Another reason for using TBEGs in which the arc representatives are underestimating
is given by the following result.

12

(0,0,120)

(1,45,75)

(2,100,29) (2,100,109)

(3,132,90)

(4,0,120)

0

0

26 0

0

(a) The TBEG G1.

(0,0,120)

(1,45,75)

(2,100,29) (2,101,109)(2,100,109)

(3,132,90)

(4,0,120)

0

0 0

26 00

0

(b) The TBEG G2.

Figure 2: Illustrations of two TBEGs.

Proposition 3. Let G = (V,A), in which all arcs are minimally underestimating, P a
tour, P a tour representative of P in G and Pexp a tour representative of P in Gexp, then
Pi � Pexp

i holds for i = 1, . . . , |P |.

Proof. Assume the assertion does not hold, then there exists a minimal index 2 ≤ k ≤ |P |
such that Pk � Pexp

k . It then has to hold Pk−1 � Pexp
k−1. Since the output of recharge is

always reachable from its input, by Proposition 2 this implies

recharge(Pk−1, Pk) � recharge(Pexp
k−1, Pk).

However, since the arcs in G are underestimating and by the construction of Gexp, it then
holds

Pk � recharge(Pk−1, Pk) � recharge(Pexp
k−1, Pk) = Pexp

k ,

which is a contradiction to the initial assumption.

Since our concept of domination implies that the arrival times are underestimated, a
direct consequence of Proposition 3 is that for any chosen tour the objective of the MILP
MG is always smaller than or equal to the objective of MGexp . This implies that we can use
a TBEG MG as a relaxation of MGexp , if all of its arcs are minimally underestimating. For
this reason, we will from now on only consider TBEGs, in which every arc is minimally
underestimating.

The situation in Figure 1a, where all nodes can be strictly ordered with respect to the
partial order � is a special case, since this implies that there always is only one minimally
underestimating arc for a given node and a fixed other location. A more complicated
situation is illustrated in Figure 1b, where there are two nodes (j, t1, b1) and (j, t2, b2)
and none of them dominates the other. If the output of recharge(i, ti, bi, j) for a node
(i, ti, bi) ∈ V is within the area striped vertically and horizontally, there are two choices
for minimally underestimating arcs. In this situation two problems occur, which we will
demonstrate with a simple example. The TBEGs G1 and G2 depicted in Figure 2 were
derived for an instance of the TB-VRP given by the parameters in Table 2 with a service
time of 0 minutes for all locations, and include all minimally underestimating arcs. The
numbers next to the arcs are the delays that occur when an arc is used. Starting at
the node (1, 45, 75), the output of recharge(1, 45, 75, 2) is (2, 101, 29). So, in G1 the node
(1, 45, 75) is only connected to (2, 100, 29) and not to (2, 100, 109), because (100, 29) �
(100, 109). Now, consider G2 which contains the nodes of G1 and an extra node (2, 101, 109).
Because (2, 101, 109) � (2, 100, 29) and 2, 100, 29) � ((2, 101, 109) both are successors of
(1, 45, 75). Since the arc to (2, 101, 109) immensely underestimates the correct battery
consumption, customer 3 can be reached without any delay. Both TBEGs could be used
to obtain relaxations of the time and battery expanded formulation, but the problem is

13

Customer Time window Depot Distance Battery Interval

1 [45, 55] 45 [45, 75]
2 [100, 110] 11 [11, 109]
3 [132, 142] 30 [30, 90]

Table 2: Parameters of a VRPTB instance.

that G2 can be obtained from G1 by adding a node, the MILP MG2 has a smaller objective
than MG1 . So, in this case the graph with less nodes is a better relaxation than the one
with more nodes. In an algorithm that dynamically expands the set of nodes, however,
the quality of the relaxation should only improve in order for it to provide tight bounds.

In addition to this, there is another problem that we will shortly discuss. In G2,
there are two different tour representatives of the tour (0, 1, 2, 3, 4). For Gexp and also
Ginit, however, there is a one-to-one correspondence. One of the goals in designing our
refinement strategy is to maintain this one-to-one correspondence between tours in G and
their tour representatives in G, since it makes it easy to check if a certain tour in our graph
underestimates the delays or if its arrival states are represented correctly.

Our approach to prevent both of the previously mentioned problems is to expand the
set of nodes more carefully, so that it is guaranteed that there is always only one minimally
underestimating arc to choose. The idea we are going to use is illustrated in Figure 1c.
We add the bottom right corner of the intersecting areas as nodes. As depicted there,
the node representatives with arrival states in the blue and orange striped area can be
connected to (j, t12, b12) and this is now the only minimally underestimating arc. In order
to formalize this idea, we start by giving an algorithm for finding the bottom right corner
of the intersecting areas, which in the illustration is denoted by (t12, b12). Algorithm 4
formalizes this idea. Here, a location j and two node representatives (j, t1, b1) and (j, t2, b2)

Algorithm 4: intersect(j, t1, b1, t2, b2)

1 Input: Node representatives (j, t1, b1) and (j, t2, b2) of some location j ∈ V ;
2 (θ1, τ1) = (t1, b1) ·M ;
3 (θ2, τ2) = (t1, b1) ·M;
4 (θ12, τ12) = (max(θ1, θ2),max(τ1, τ2));
5 (t12, b12) = (θ12, τ12) ·M;
6 Output: A node representative (j, t12, b12) of j;

of j are used as an input. Then we use the matrix M to transform their arrival states into
a different coordinate system given, i.e., a coordinate system using the same vectors as the
ones defining C. In this coordinate system the coordinates of the new points can be simply
calculated with the maximum function. Finally, we go back to the original coordinate
system and return the calculated point.

Based on this algorithm, we call a TBEG G = (V,A) intersection complete, if for any
node representatives (j, t1, b1), (j, t2, b2) ∈ V of some location j ∈ V the node representative
intersect(j, t1, b1, t2, b2) is also an element of V.

The following two results show that intersection complete TBEGs avoid the previously
illustrated problem of multiple minimally intersecting arcs.

Lemma 4. Let G = (V,A) be an intersection complete TBEG and let (j, t, b) be a node
representative of a location j ∈ V . If there are two node representatives (j, t1, b1) ∈ V and
(j, t2, b2) ∈ V such that (j, t1, b1) � (j, t, b) and (j, t2, b2) � (j, t, b), then there exists a node
representative (j, t12, b12) ∈ V, such that (j, t1, b1) � (j, t12, b12), (j, t2, b2) � (j, t12, b12)
and (j, t12, b12) � (j, t, b).

14

Proof. Let (j, t12, b12) = intersect(j, t1, b1, t2, b2) and let

(θ, τ) = (t, b) ·M,

(θ1, τ1) = (t1, b1) ·M,

(θ2, τ2) = (t2, b2) ·M,

(θ12, τ12) = (j, t12, b12) ·M.

By Lemma 1, it then holds (j, t1, b1) � (j, t12, b12) and (j, t2, b2) � (j, t12, b12). Furthermore
by the same lemma it also holds θ ≥ θ1, θ2 and τ ≥ τ1, τ2, so θ ≥ max(θ1, θ2) and
τ ≥ max(τ1, τ2). Then since (θ12, τ12) = (max(θ1, θ2),max(τ1, τ2)) again by Lemma 1
holds (j, t12, b12) � (j, t, b), which concludes the proof.

Proposition 4. Given a tour P in G and an intersection complete TBEG G, in which all
arc representatives are minimally underestimating, there exists a unique tour representa-
tive P of P in G.

Proof. Assume there are two different tour representatives P̂ and P of P in G. Then there
exists a minimal index k with 2 ≤ k ≤ |P |, for which P̂k 6= P. Let Pk−1 = (i, ti, bi),
Pk = (j, t1, b1), and P̂k = (j, t2, b2), then holds P̂k−1 = (i, ti, bi). Furthermore it holds
(i, ti, bi, j, t1, b1) ∈ V and (i, ti, bi, j, t2, b2) ∈ V , which both have to be underestimating
arcs. This implies (j, t1, b2), (j, t2, b2) � recharge(i, ti, bi, j) and we are in the situation of
Lemma 4. The existence of the state from Lemma 4 (j, t12, b12) now yields a contradiction
to the arcs (i, ti, bi, j, t1, b1) and (i, ti, bi, j, t2, b2) being minimally underestimating unless
(t1, b1) = (t2, b2) = (t12, b12), which is a contradiction to our initial assumptions.

In the remainder of this section, we demonstrate how intersection complete TBEGs
can be found in practise. We note that Ginit is an intersection complete TBEG, because
each location has only one node representative and it holds intersect(j, t, b, t, b) = (j, t, b)
for any (j, t, b) ∈ V init. In the following, we will show that we can use Algorithm 5 to
obtain refined intersection complete graphs. Algorithm 5 takes a TBEG G, and a node
representative (i, t, b) of a location i ∈ V as its input. The output is a larger TBEG in
which (i, t, b) and some additional nodes are included in its set of nodes.

Algorithm 5: addNode(G, i, t, b)
1 Input: A TBEG G, and a node representative (i, t, b) of some location i ∈ V ;
2 Vnew ← {(i, t, b)};
3 for (i, t̂, b̂) ∈ Vi do

4 (tnew, bnew)← intersect(i, t, b, t̂, b̂);

5 if bnew ∈ [bi, bi] then
6 Vnew ← Vnew ∪ {(i, tnew, bnew)};

7 A ← {a ∈ V × V | a is minimally underestimating};
8 Output: A larger TBEG Gnew= (Vnew,Anew);

For the returned TBEG we can prove the following result.

Lemma 5. Given an intersection complete TBEG G, a location i ∈ V and a node repre-
sentative (i, ti, bi) of i, the output of Algorithm 5 given by Gnew = addNode(G, i, ti, bi) is
an intersection complete TBEG.

Proof. Assume that the output is not intersection complete. Then there exists a j ∈ C and
two node representatives (j, t1, b1) 6= (j, t2, b2), such that the intersect(j, t1, b1, t2, b2) /∈

15

Vnew. We set

(θ1, τ1) = (t1, b1) ·M,

(θ2, τ2) = (t2, b2) ·M,

(θ12, τ12) = (max(θ1, θ2),max(τ1, τ2)),

(t12, b12) = (θ12, τ12) ·M.

We note that j = i has to hold because otherwise G is not intersection complete. For the
same reason at least one of (j, t1j , b

1
j) and (j, t2j , b

2
j) is not an element of V. Without loss

of generality, let (j, t1j , b
1
j) /∈ V . Now, both (θ12, τ12) = (θ1, τ1) and (θ12, τ12) = (θ2, τ2)

directly lead to a contradiction. Again without loss of generality, let (θ12, τ12) = (θ2, τ1).
This implies τ1 ≥ τ2 and θ1 ≤ θ2. Since (j, t1j , b

1
j) was added during the execution of

Algorithm 5 there has to be a node representative (j, t3, b3) ∈ Vi∪{(i, t, b)} such that θ3 =
θ2 and τ3 ≤ τ2, where (θ3, τ3) = (t3, b3) ·M. Similarly, we can find a node representative
(j, t4, b4) ∈ Vi ∪ {(i, t, b)} such that θ4 = θ1 and τ4 ≤ τ1, where (θ4, τ4) = (t4, b4) ·M
(if already (j, t1, b1) ∈ V holds, we can choose (t4, b4) = (t1, b1)). Since G is intersection
complete, it has to hold intersect(j, t3, b3, t4, b4) ∈ Vnew. Since τ3 ≤ τ2 ≤ τ1 = τ4 and
θ4 ≤ θ1 ≤ θ2 = θ3 holds (max(θ3, θ4),max(τ3, τ4)) = (θ2, τ1) = (θ12, τ12). This implies
(j, t12, b12) ∈ Vnew, a contradiction.

Finally, we present Algorithm 6, which takes a TBEG and a tour as its input, and
returns a TBEG, in which the tour representative of P is unique and is also contained
in Gexp. The input consists of a tour P in G. If some of the transitions in the tour

Algorithm 6: refine(G, P)

1 Input: A TBEG G and a tour P in G of length k;
2 P ← expand(P);
3 for (i, t, b) ∈ P do
4 Gnew ← addNode(G, i, t, b);
5 A ← {a ∈ V × V | a is minimally underestimating};
6 Output: A larger TBEG Gnew = (V,A);

representative of P in G were underestimating the arrival states, then the following result
shows that this algorithm guarantees that its tour representative in the output models the
arrival states correctly.

Proposition 5. Given an intersection complete TBEG G and a tour P in G, then the
output Gnew of Algorithm 6 is an intersection complete TBEG. Furthermore, there is a
unique tour representative P of the tour P in Gnew and this tour representative is the
same as the tour representative of P in Gexp.

Proof. The first statement is a direct consequence of Lemma 5, since the output is created
by iteratively applying Algorithm 5 to an intersection complete graph. The uniqueness
of the tour representative follows from Proposition 4 and the final assertion from the fact
that we use Algorithm 3 for both deriving Gexp and in Algorithm 5 to determine the added
nodes.

With this we obtained a strategy to construct practically useful TBEGs. We take Ginit
as the initial TBEG and keep correcting the tour representatives of tours in G, until the
solution of the MILP from the current TBEG are the same as in Gexp. In the following
section we convert this strategy into two different algorithms for solving the TB-VRP.

16

5 Refinement algorithms

Based on the results of the previous section, we can derive refinement algorithms for
solving the TB-VRP. For ease of notation we denote the linear relaxation of an MILP M
by M∗. We further use opt(M) for the optimal value of an MILP and feas(M) for the set
of feasible points of an MILP. Furthermore for a subtour S in G we refer to the constraint∑

(i,j)∈A:i,j∈S

xij ≤ |S| − 1

as the subtour elemination constraint (SEC) for S.

We start with Iterative Refinement given in Algorithm 7. In theory he initial TBEG

Algorithm 7: Iterative Refinement Algorithm

1 Input: An instance of the TB-VRP;
2 G ← Ginit (current TBEG), S← {} (pool of subtours);
3 (x, y)← solution of MG ;
4 while (x, y) /∈ feas(MGexp) do
5 if x describes a subtour S then
6 S← S ∪ {S};
7 else
8 P ← a tour described by x;
9 G ← refine(G, P);

10 (x, y)← solution of MG with additional SECs for the subtours in S;

11 Output: Vectors x, y describing a solution of the TB-VRP instance.

of this algorithm could be any intersection complete TBEG, but for the sake of simplicity
we choose to start with Ginit. This graph is then refined, until its solution is feasible for
the time- and battery-expanded formulation. In addition to that the case of the solution
containing subtours is taken care of, by adding subtour elimination constraints instead of
refining the graph. Since upon termination of the algorithm the solution of a relaxation
was found to be feasible, the returned values (x, y) are proven optimal solutions of the
TB-VRP. Because after each iteration there is either one more tour that is represented
correctly (due to Proposition 5) or a subtour is excluded, the algorithm has to terminate
after a finite number of iterations.

An alternative approach, following the Branch and Refine strategy, is presented in
Algorithm 8. Here, in line 23 branch represents a function that performs the usual
branching step in a branch and bound algorithm. Since the integer variables are all binary
variables, it returns two MILPs: one in which a variable that had a fractional value in the
solution set to 0, and one in which it is set to 1. Furthermore, in line 20 exchange is used
to express a function that takes the list of open problems, the old graph and the new graph
as its input, and returns an adapted list of open problems in which the constraints and
the objective derived from the old graph are exchanged with those from the new graph.

This algorithm is very similar to usual branch and bound algorithms applied to solve
MILPs. The only difference is that the graph refinement is integrated into the exploration
of the branch and bound search tree. Branch and bound algorithms follow the idea to
divide the problem into subproblems and use relaxations to find valid bounds for reducing
the number of subproblems that have to be considered. In most cases the linear relaxation
of the MILP is used to do this, however it is not the only possibility. In Branch and
Refine we use the linear relaxation of another MILP MG instead and adjust this MILP
during its execution. Since any of the used MILPs MG are relaxations of MGexp , we can

17

Algorithm 8: Branch and Refine

1 Input: A TB-VRP instance;
2 G ← Ginit (current TBEG), S← {} (pool of subtours), LO ← {MG} (list of open

nodes), LC ← ∅, (list of closed nodes) U ←∞ (upper bound);
3 while LO 6= ∅ do
4 Choose M ∈ LO;
5 if feas(M∗) = ∅ or opt(M∗) ≥ U then
6 Move M from LO to LC ;

7 else
8 (x, y)← a solution of M∗ with additional SECs for the subtours in S;
9 if (x, y) is integer then

10 if (x, y) ∈ feas(MGexp) then
11 U ← opt(M∗);
12 (x̂, ŷ)← (x, y);
13 Move M from LO to LC ;

14 else
15 if x describes a subtour S then
16 S← S ∪ {S};
17 else
18 P ← a tour described by x;
19 Gold ← G;
20 G ← refine(G, P);
21 LO ← exchange(LO,Gold,G);

22 else
23 LO ← LO ∪ branch(M∗, x);

24 Output: Vectors x̂, ŷ describing a solution of the TB-VRP instance.

18

conclude that Branch and Refine fits the branch and bound paradigm for solving MGexp

and therefore returns a solution of it.

Note that this algorithm is actually very similar to Iterative Refinement. However,
in Iterative Refinement the exploration of the branch and bound search tree is hidden,
because we directly use the solutions of the MILPs. So, the exploration of the branch and
bound search tree is carried out in every iteration while in Branch and Refine it has to be
explored only once. This does not have to be an advantage, since the branching decisions
made early on during the exploration of the search tree highly impact the runtimes of
branch and bound algorithms. We therefore carried out a computational study, for which
we implemented these algorithms.

6 Computational experiments and implementation details

In this section, we compare the two refinement algorithms presented in this work not only
to each other, but also to a direct approach of solving the MIQP (1) with a state-of-
the-art solver. In order to make the comparison as objective as possible the goal was to
find a framework in which all three approaches could be implemented without favoring
one approach. The problem here is that not all state-of-the-art solvers are suitable for
implementing Branch and Refine. To implement Branch and Refine efficiently the solver
would have to not only allow for constraints and variables (i.e., rows and columns) to be
added to the representation of the MILP in the storage, but also to change the coefficients
of some variables in some of the constraints. This is because after adding nodes some of
the arcs used before might not be minimally underestimating anymore. Instead of adding
a cutting plane, which sets the associated variables to zero, an efficient implementation
should remove the variable from the flow constraint of its old head and add it to the new
head. However, non of the state-of-the-art solvers we tried allowed for this kind of change
during the solving process, because in general removing a variable from a constraint can
in general make previously found bounds invalid. So, we dropped this requirement and
decided the aforementioned procedure of adding cutting planes that set these variables to
zero and add new variables instead. With this workaround it was possible to implement
Branch and Refine in the SCIP Optimization Suite maintained by the Zuse Institute
Berlin. For a fair comparison, we also used the SCIP Optimization Suite 6.0.1 to solve
the MIQP formulation given in (1) and the MILPs that have to be solved during the
Iterative Refinement. Within SCIP the solver SoPlex 4.0.1. was used to solve the linear
relaxations at the nodes of the search tree. All experiments were executed on a single core
of a computer using a 3.30GHz CPU running Windows 10 as the operating system.

For testing the performance of the implementations, we present an extensive compu-
tational study on variety of different instances. All instances we used are based on the
benchmark set introduced by Solomon [25]. This set contains instances for the capacitated
VRP and is divided into six classes. These classes contain problems with a short or a long
scheduling horizon for randomly distributed customers, for clustered customers and for a
mixed version of those two. Important to note is that within one class the positions of
the customers are fixed and only the time windows are varied. Since the vehicles in the
TB-VRP always have to return to the depot, the distance between the customers is not
relevant, just the distance to the depot. Therefore, distinguishing between clustered or
non-clustered customers is not relevant in our case. In preliminary tests we also observed
very little variety of the solutions within the classes of instances. So, we decided to derive
new instances from these. We used all unique customer location and time window combi-
nations that could be found in any of the instances and randomly chose 50 different of these
to obtain one instance. These instances can be obtained via DOI 10.26127/BTUOpen-
5493. The time limit for all instances was 1 hour. One of the goals of the computational

19

Figure 3: Computation times for different customer numbers and 3 vehicles.

experiments was to be able to evaluate the effectiveness of the three presented solution
methods.

Figure 4: Computation times for different customer numbers and 10 vehicles.

In the first experiment, we study the influence of an increasing number of customers
on the computation time, while keeping the number of vehicles fixed. We ran two sets
of experiments, one with m = 3 vehicles and one with m = 10 vehicles. In both cases,
the B = 120 was used for the battery capacity and the recharging rate α was set to 2.5.
For the experiments with 3 vehicles, we started by using the first 10 to 27 customers of
20 different instances. The results of the experiments can be seen in Figure 3, where we
introduce the abbreviations IR for Iterative Refinement and BaR for Branch and Refine.
For the experiments with 10 vehicles we proceeded analogously, but the lowest amount of
customers was 30 and the largest instances contained 50 customers. The results are shown
in Figure 4. The x-axes of the graphs in these figures gives the number of customers. In
both plots the y-axis is divided into two parts. A lower section for instances that could
be solved within 3600 seconds and an upper section in which the gap of the instances that
timed out are given. Here, we calculated the gap by dividing the best known lower bound
by best known upper bound (if the upper bound is zero there cannot be a gap). This

20

kind of division of the y-axis is possible, since a non-zero gap and a method solving an
instance to proven optimality are mutually exclusive. For each run of a solution method
for an instance there is a marker in the plot with a transparency of 40%, whose color
and shape indicate the solution method. Additionally we included a line connecting the
points representing are the median of the instances for a fixed customer amount (ranked
first by solution time and then by the size of the gap). In both figures it is clearly visible
that the approach of directly solving an MIQP formulation is not competitive to the
approaches presented in this work. In the case of 3 vehicles the MIQP timed out on more
than half of the instances for 17 customers, whereas it was still possible to solve all of the
instances to optimality for up to 19 customers using the other two approaches. Comparing
Iterative Refinement and Branch and Refine for 19 to 24 customers, Branch and Refine
is clearly performing better, but for more customers they are almost equally effective and
the trend of the medians indicates that Iterative Refinement might even perform better
if more customers would be added. Note that only a few instances were solved to global
optimality by any of the approaches above 25 customers. Moreover, it should be mentioned
that Iterative Refinement is finding smaller gaps within 3600 seconds does not allow the
conclusion that an optimal solution can be found faster compared to Branch and Refine.

The results for the experiments with 10 vehicles indicates a similar behavior. From the
problem instances with more than 33 customers the majority of the instances remained
unsolved within the time limit when using the MIQP formulation. For the other two
methods this was not the case for any of the customer amounts. For 40 to 49 customers it
is visible that Branch and Refine outperforms Iterative Refinement, which again suggests
that the Branch and Refine approach is more effective. The results for 50 customers again
suggest, that when more than half of the instances cannot be solved to optimality anymore
it is not clear, which algorithms performs better.

Figure 5: Computation times for different recharging rates.

In another computational experiment we want to study the impact of the recharging
rate on the difficulty of the instances. The recharging rate α influences, how much impact
the presence of the battery constraints have. For a very small value almost all time is spent
charging at the depot, while a large value for α makes charging almost instantaneous, so
that the battery constraints imposed almost no restrictions on the routes. The results
for the instances with 3 vehicles and customer amounts between 20 and 22 are given in
Figure 5. The layout of the plot is very similar to the previous one except that on the
x-axis the different values of α used in the experiments are given and a log scale is used.

21

The results show that the instances become easier to solve for Iterative Refinement and
Branch and Refine the larger α is. We do not expect the computation times to become
much smaller for larger values than 40, since for this value the routing choices seem to have
the largest impact on the delays. It is also observable that Branch and Refine performed
better than Iterative Refinement and interestingly this seems to be the case even for
instantaneously recharges.

The final set of computational tests was performed to study the influence of the time
window width on the computation time. We used instances with 20 to 22 customers, a
recharging rate of 2.5 and 3 vehicles. For the time windows we kept the lower bounds ti
and then set the due date ti to the lower bound plus a varying constant determining the
time window width. The results are given Figure 6 in the same kind of plot as before.
Here, the time window width of the instances is given on the x-axis. As expected for the
number of customers used in the instances the MIQP formulation was only able to solve
very few instances and most had a remaining optimality gap of 100% after one hour. Again
it is visible that Branch and Refine performs better than Iterative Refinement. It is worth
noting that while Branch and Refine seems to benefit from a larger time window width,
Iterative Refinement and also the direct approach for the MIQP formulation performed
worst on the instances with the largest time window width.

Figure 6: Computation times for different time window widths.

7 Conclusions and future work

We introduced a variant of the VRP, which imposes soft time windows together with con-
straints concerning the battery consumption of the vehicles. For this problem we proposed
two formulations, one MIQP formulation that can be solved directly with state-of-the-art
solvers and a formulation based on a two-dimensional layered graph. The latter formula-
tion is not suitable for a direct solution approach, but allows for relaxations, which not
only provide lower bounds, but can also be solved in a relatively short time. We used
these relaxations in two structurally similar algorithms, Branch and Refine and Iterative
Refinement. These algorithms start with a coarse layered graph in which traveling times
are underestimated and battery consumption overestimated. This graph is then dynam-
ically refined based on the solutions it provides. The results of the computational study
suggest that both of the algorithms outperform the direct approach using an MIQP formu-
lation by a large margin. Furthermore, the results suggest that Branch and Refine which

22

incorporates graph refinement into a branch and bound framework performs better than
Iterative Refinement.

In the future, we want to investigate if similar techniques can be applied in more
general settings. A natural extension is to consider multiple depots. If each vehicle is
strictly assigned to one depot and can only recharge and pick-up parcels at that depot, it
is possible to use a layered graph for each depot. The more difficult, but maybe also more
realistic case, is a variant, where the assignment between parcels and depot is not given.
In this case, the vehicles would choose a depot to pick up a parcel and decide if charging
is necessary. Note, that even if the next customer is known, the obvious choice of going
to the depot inducing the shortest detour might not be optimal. The current SoC can be
insufficient to reach this depot, while another depot might still be in range. Also, another
depot can be closer to the next customer and therefore the maximally possible SoC at the
next customer can be increased by using this depot, if there is sufficient time to recharge.
An even more complicated situation arises when those aforementioned situations occur
simultaneously. In this case visiting two depots can be an optimal choice. In a layered
graph approach all these possibilities would somehow have to be incorporated into the
topology of the graph.

Another direction is to investigate whether layered graph approaches are effective for
the EVRPTW. In this VRP variant, similar to a multi-depot variant of the TB-VRP,
the routes between customers are not predetermined, necessitating more sophisticated
modeling techniques for obtaining the correct layered graph.

We also see possibilities for improving our methodology, especially Branch and Re-
fine. So far, we used the preimplemented node selection strategy of SCIP. However, this
strategy was implemented for branch and cut or branch and price algorithms, since our
implementation uses the functions of SCIP in a non-standard way, it would be interesting
to investigate if a customized node selection strategy can improve Branch and Refine.
Furthermore, we always enforce the graph refinement for all nodes of the search tree. The
theory we presented here does not require this, a local refinement is sufficient. Whether
local refinements are beneficial in practice, is another interesting topic worth a deeper
analysis.

Acknowledgements

The authors Fabian Gnegel and Armin Fügenschuh acknowledge the funding by the Ger-
man Research Association (DFG) grant number FU 860/1-1. The authors Stefan Schaudt
and Uwe Clausen acknowledge the funding by the German Research Association (DFG)
grant number CL 318/26-1.

References

[1] Andreas Bärmann, Frauke Liers, Alexander Martin, Maximilian Merkert, Christoph
Thurner, and Dieter Weninger. Solving network design problems via itera-
tive aggregation. Mathematical Programming Computation, 7(2):189–217, 2015.
doi:10.1007/s12532-015-0079-1.

[2] Natashia Boland, Mike Hewitt, Luke Marshall, and Martin Savelsbergh. The
continuous-time service network design problem. Operations Research, 65(5):1303–
1321, 2017. doi:10.1287/opre.2017.1624.

[3] Natashia L Boland and Martin WP Savelsbergh. Perspectives on integer programming
for time-dependent models. Top, 27(2):147–173, 2019. doi:10.1007/s11750-019-00514-
4.

23

[4] Nils Boysen, Dirk Briskorn, Stefan Fedtke, and Stefan Schwerdfeger. Drone delivery
from trucks: Drone scheduling for given truck routes. Networks, 72(4):506–527, 2018.
doi:10.1002/net.21847.

[5] Nils Boysen, Stefan Schwerdfeger, and Felix Weidinger. Scheduling last-mile deliveries
with truck-based autonomous robots. European Journal of Operational Research, 271
(3):1085–1099, 2018. ISSN 03772217. doi:10.1016/j.ejor.2018.05.058.

[6] Nils Boysen, Stefan Fedtke, and Stefan Schwerdfeger. Last-mile delivery concepts:
a survey from an operational research perspective. OR Spectrum, 43(1):1–58, 2020.
doi:10.1007/s00291-020-00607-8.

[7] François Clautiaux, Säıd Hanafi, Rita Macedo, Marie-Emilie Voge, and Cláudio Alves.
Iterative aggregation and disaggregation algorithm for pseudo-polynomial network
flow models with side constraints. European Journal of Operational Research, 258(2):
467–477, 2017. doi:10.1016/j.ejor.2016.09.051.

[8] Guy Desaulniers, Fausto Errico, Stefan Irnich, and Michael Schneider. Exact algo-
rithms for electric vehicle-routing problems with time windows. Operations Research,
64(6):1388–1405, 2016. doi:10.1287/opre.2016.1535.

[9] Tomislav Erdelić and Tonči Carić. A survey on the electric vehicle routing problem:
Variants and solution approaches. Journal of Advanced Transportation, 2019:1–48,
2019. doi:10.1155/2019/5075671.

[10] Fabian Gnegel and Armin Fügenschuh. An iterative graph expansion approach for the
scheduling and routing of airplanes. Computers & Operations Research, 114:104832,
2020. ISSN 0305-0548. doi:10.1016/j.cor.2019.104832.

[11] Luis Gouveia, Markus Leitner, and Mario Ruthmair. Layered graph approaches for
combinatorial optimization problems. Computers & Operations Research, 102:22–38,
2019. ISSN 0305-0548. doi:10.1016/j.cor.2018.09.007.

[12] Edward He, Natashia Boland, George Nemhauser, and Martin Savelsbergh. A dy-
namic discretization discovery algorithm for the minimum duration time-dependent
shortest path problem. In International Conference on the Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research, pages 289–297.
Springer, 2018. doi:10.1007/978-3-319-93031-2 21.

[13] Gerrit Heinemann. Der neue Online-Handel. Springer Fachmedien Wiesbaden, 2018.
doi:10.1007/978-3-658-20354-2.

[14] Pitney Bowes Inc. Pitney bowes parcel shipping index reports continued growth
as global parcel volume exceeds 100 billion for first time ever, 2020. URL http:

//news.pb.com/article_display.cfm?article_id=5958. Accessed April 2021.

[15] Merve Keskin and Bülent Çatay. Partial recharge strategies for the electric vehi-
cle routing problem with time windows. Transportation Research Part C: Emerging
Technologies, 65:111–127, 2016. ISSN 0968-090X. doi:10.1016/j.trc.2016.01.013.

[16] Felix Kreuz and Uwe Clausen. Einsatzfelder von eLastenrädern im städtischen
Wirtschaftsverkehr, pages 323–333. Springer Fachmedien Wiesbaden, Wiesbaden,
2017. ISBN 978-3-658-18613-5. doi:10.1007/978-3-658-18613-5 20.

[17] F. Marra, G. Y. Yang, C. Træholt, E. Larsen, C. N. Rasmussen, and S. You.
Demand profile study of battery electric vehicle under different charging options.

24

In 2012 IEEE Power and Energy Society General Meeting, pages 1–7, 2012.
doi:10.1109/PESGM.2012.6345063.

[18] Manuel Ostermeier, Andreas Heimfarth, and Alexander Hübner. Cost-optimal
truck-and-robot routing for last-mile delivery. Networks, page 1–26, 2021.
doi:10.1002/net.22030.

[19] Statista Digital Market Outlook. ecommerce report 2020, 2020. URL https://www.

statista.com/study/42335/ecommerce-report/. Accessed April 2021.

[20] Moritz Poeting, Stefan Schaudt, and Uwe Clausen. A comprehensive case study in
last-mile delivery concepts for parcel robots. In 2019 Winter Simulation Conference
(WSC). IEEE, 2019. doi:10.1109/wsc40007.2019.9004811.

[21] Moritz Poeting, Stefan Schaudt, and Uwe Clausen. Simulation of an Optimized
Last-Mile Parcel Delivery Network Involving Delivery Robots. In Uwe Clausen, Sven
Langkau, and Felix Kreuz, editors, Advances in Production, Logistics, and Traffic –
Proceedings of the 4th Interdisciplinary Conference on Production Logistics and Traf-
fic 2019, Lecture Notes in Logistics, pages 1–19, Cham, Switzerland, 2019. Springer
Nature Switzerland AG. ISBN 978-3-030-13535-5. doi:10.1007/978-3-030-13535-5 1.

[22] Stefan Poikonen, Xingyin Wang, and Bruce Golden. The vehicle routing prob-
lem with drones: Extended models and connections. Networks, 70(1):34–43, 2017.
doi:10.1002/net.21746.

[23] Martin Riedler, Mario Ruthmair, and Günther R Raidl. Strategies for iteratively
refining layered graph models. In International Workshop on Hybrid Metaheuristics,
pages 46–62. Springer, 2019. doi:10.1007/978-3-030-05983-5 4.

[24] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing
problem with time windows and recharging stations. Transportation Science, 48(4):
500–520, 2014. doi:10.1287/trsc.2013.0490.

[25] Marius M Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations Research, 35(2):254–265, 1987.
doi:10.1287/opre.35.2.254.

[26] Marc-Oliver Sonneberg, Max Leyerer, Agathe Kleinschmidt, Florian Knigge, and
Michael H. Breitner. Autonomous unmanned ground vehicles for urban logistics:
Optimization of last mile delivery operations. In Proceedings of the 52nd Hawaii
International Conference on System Sciences. Hawaii International Conference on
System Sciences, 2019. doi:10.24251/hicss.2019.186.

[27] M. Grazia Speranza. Trends in transportation and logistics. European Journal of
Operational Research, 264(3):830–836, 2018. doi:10.1016/j.ejor.2016.08.032.

[28] Daniela Rojas Viloria, Elyn L. Solano-Charris, Andrés Muñoz-Villamizar, and
Jairo R. Montoya-Torres. Unmanned aerial vehicles/drones in vehicle routing prob-
lems: a literature review. International Transactions in Operational Research, 2020.
doi:10.1111/itor.12783.

[29] Duc Minh Vu, Mike Hewitt, Natashia Boland, and Martin Savelsbergh. Dynamic
discretization discovery for solving the time-dependent traveling salesman problem
with time windows. Transportation Science, 54(3):703–720, 2020.

[30] Zheng Wang and Jiuh-Biing Sheu. Vehicle routing problem with drones. Trans-
portation Research Part B: Methodological, 122:350–364, 2019. ISSN 0191-2615.
doi:10.1016/j.trb.2019.03.005.

25

IMPRESSUM

Brandenburgische Technische Universität Cottbus-Senftenberg
Fakultät 1 | MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik
Institut für Mathematik
Platz der Deutschen Einheit 1
D-03046 Cottbus

Professur für Ingenieurmathematik und Numerik der Optimierung
Professor Dr. rer. nat. Armin Fügenschuh

E fuegenschuh@b-tu.de
T +49 (0)355 69 3127
F +49 (0)355 69 2307

Cottbus Mathematical Preprints (COMP), ISSN (Print) 2627-4019
Cottbus Mathematical Preprints (COMP), ISSN (Online) 2627-6100

www.b-tu.de/cottbus-mathematical-preprints
cottbus-mathematical-preprints@b-tu.de
doi.org/10.26127/btuopen-5493

