
High-performance computing and laboratory
experiments on strato-rotational instabilities

Von der Fakultät für Maschinenbau, Elektro- und Energiesysteme
der Brandenburgischen Technischen Universität Cottbus-Senftenberg

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von

Master of Science (M. Sc.)

Gabriel MALTESE MELETTI DE OLIVEIRA

geboren am 8.Oktober.1988, Rio de Janeiro (Brasilien)

Vorsitzender:

Gutachter :

Gutachter:

Uwe Harlander (BTU CS)

Innocent Mutabazi (Université du Havre)

Christoph Egbers (BTU CS)

Tag der mündlichen Prüfung: 18.Dezember.2020



.



High-performance computing and laboratory
experiments on strato-rotational instabilities
Brandenburg University of Technology Cottbus–Senftenberg
Faculty of Mechanical Engineering, Electrical and Energy Systems
Chair of Aerodynamics and Fluid mechanics

Aix-Marseille University
École doctorale Sciences pour l’Ingénieur: Mécanique, Physique, Micro et
Nanoélectronique
Laboratoire de Mécanique, Modélisation & Procédés Propres (M2P2)

Thesis presented to obtain the academic degree of Doctor of Engineering at
the Brandenburg University of Technology Cottbus–Senftenberg/Ph.D. in

Mechanics and Physics of Fluids at the Aix-Marseille University

presented by

Master of Science (M. Sc.)

Gabriel MALTESE MELETTI DE OLIVEIRA

Born on the 06th of October 1988 in Petropolis, Rio de Janeiro (Brazil)

The defense occurred on the 18/Dec./2020. The committee is composed by:

Reviewer:

Reviewer:

Referee:

Referee:

Invited/Guest:

Invited/Guest:

Supervisor:

Supervisor:

Innocent Mutabazi (Université du Havre)

Christoph Egbers (BTU CS)

Caroline Nore (Université Paris Saclay)

Nikki Verkauteren (FU-Berlin)

Fred Feudel (Universität Potsdam)

Stéphane Abide (Université de Perpignan)

Uwe Harlander (BTU CS)

Stéphane Viazzo (Aix-Marseille Université)



.



Instabilités strato-rotationnelles :
calculs intensifs et expériences

Aix-Marseille Université
École doctorale Sciences pour l’Ingénieur: Mécanique, Physique, Micro et
Nanoélectronique
Laboratoire de Mécanique, Modélisation & Procédés Propres (M2P2)

Université Technique de Brandebourg Cottbus-Senftenberg
École doctorale pour l’Ingénierie mécanique, systèmes électriques et
énergétiques
Laboratoire d’Aérodynamique et mécanique des fluides (LAS)

Thèse présentée pour obtenir le grade universitaire
de docteur en Mécanique et Physique des Fluides

Présentée par

Gabriel MALTESE MELETTI DE OLIVEIRA

né le 06 octobre 1988 à Petropolis, Rio de Janeiro (Brésil)

Thèse soutenue publiquement le 18 décembre 2020 devant le jury composé de:

Rapporteur:

Rapporteur:

Examinatrice:

Examinatrice:

Invité:

Invité:

Directeur de thèse:

Directeur de thèse:

Innocent Mutabazi (Université du Havre)

Christoph Egbers (BTU CS)

Caroline Nore (Université Paris Saclay)

Nikki Verkauteren (FU-Berlin)

Fred Feudel (Universität Potsdam)

Stéphane Abide (Université de Perpignan)

Uwe Harlander (BTU CS)

Stéphane Viazzo (Aix-Marseille Université)



.

.

“C’est véritablement utile puisque c’est joli”
− A. de Saint-Exupéry −



Contents

Abstract xiii

1 Introduction 1
1.1 Introduction to Strato-Rotational Instabilities in Accretion Discs . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Fundamentals 7
2.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Stable density stratification . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Wave propagation in a fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Gravity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Inertial waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Inertial-gravity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Taylor-Couette Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The Strato-Rotational Instability (SRI) . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Ekman boundary layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Turbulence Energy equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Turbulent energy spectra . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Non-dimensional variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Experimental methods 31
3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Particle image velocimetry (PIV) method . . . . . . . . . . . . . . . . . . . . 34

3.2.1 PIV Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Polynomial undistortion Method . . . . . . . . . . . . . . . . . . . . . 37

3.3 PIV error measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Convergence and number of experimental images acquired . . . . . . . 40

3.4 Temperature stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Numerical Methods 43
4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Time discretization and projection method . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Variable layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Compact schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Solution of Poisson/Helmoltz equations . . . . . . . . . . . . . . . . . 51

4.4 High-performance computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



4.4.1 The pencil decomposition . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Parallel Diagonal Dominant . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Numerical code utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.1 Code description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2 Example of a numerical simulation . . . . . . . . . . . . . . . . . . . 57
4.5.3 Flow control parameters . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Numerical and experimental observations 63
5.1 Comparison of experimental and numerical SRI data . . . . . . . . . . . . . . 63

5.1.1 Numerical and experimental observations of the SRI linear stability
marginal curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Pattern formation 71
6.1 Pattern changes associated with the amplitude modulations . . . . . . . . . . . 74

6.1.1 Circulation cells and spiral inclination . . . . . . . . . . . . . . . . . . 77
6.2 Influence of rotation, stratification, and geometry in the SRI spiral patterns . . . 78

6.2.1 The role of stratification . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.2 Influence of the Reynolds numbers in the amplitude modulations . . . . 81
6.2.3 Cavity geometry changes . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.3.1 Smaller height . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.3.2 Larger cavity heights . . . . . . . . . . . . . . . . . . . . . 85
6.2.3.3 Wide gap and critical layer position . . . . . . . . . . . . . . 89

6.3 Energy spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Wavenumbers of upward and downward traveling spirals . . . . . . . . . . . . 99
6.5 Modes and spiral components separation . . . . . . . . . . . . . . . . . . . . . 101
6.6 Toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.7 Impacts of the SRI modulation on momentum transport . . . . . . . . . . . . . 108

7 Conclusions 113

A Appendices 119
A.1 Radon transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References 121

List of Figures

1.1 (a) Image of a circumstellar disk surrounding a young star called HL Tauri, lo-
cated at the Tauri constellation, observed by the Atacama Large Millimeter/sub-
millimeter Array (ALMA) collaboration. Image obtained from (Brogan et al.
2015). (b) Image of an accretion disc around the young AB Aurigae star, ob-
tained by the ESO’s Very Large Telescope (VLT) spotting signs of planet birth
(Boccaletti et al. 2020), highlighting the spiral structure observed in accretion
disks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2



ii List of Figures

1.2 Velocity isosurfaces snapshots of the SRI showing its non-axisymmetric spirals
obtained by numerical simulation with µ = 0.35, η = 0.517, a linear stable
axial temperature gradient with ∂T/∂ z≈ 5.7K/m, Fr≈ 1.5 and Re = 400. The
aspect ratio between cavity height and gap is Γ = H/(rout− rin) = 10. No-slip
and impermeable Dirichlet boundary conditions are imposed (uφ (rin) = Ωinrin,
uφ (rout) = Ωoutrout , uz(z = 0) = 0, uz(z = H) = 0, ur(rin) = 0, ur(rout) = 0),
and the bottom and top lids of the cavity rotate with the outer cylinder rotation
Ωout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 SRI marginal linear stability curves redrawn from Rüdiger et al. (2017) for 3
different values of Rn. Bigger values of Rn (and N) lead to larger instability
regions. The black dashed vertical line in the left represents the Rayleigh limit
µ = η2, which separates stable and unstable non-stratified TC cases (any to the
left of this line in the diagram would be TC unstable). The green dashed vertical
line in the right represents the Keplerian line µ = η3/2. SRI unstable (red cir-
cles) and stable (blue crosses) cases with η = 0.517, Rn ≈ 250, µ = 0.35 with
different Reynolds numbers were investigated numerically and experimentally
in this article. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Cartesian and cylindrical coordinates. . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Schematic representation of wave crests and of the wave package propagating in
the x− y plane, adapted from Kundu and Cohen (2001), Pedlosky (2013). The
crest spacing along the coordinate axes is larger than the wavelength λ = 2π

K
inside the package. The vector diagram on the top left side of the image shows
how the trace velocities cx and cy are combined to give the phase velocity vector
c. In the wave package, it is represented how every individual crests moves with
phase speed c, and how the whole package moves with a different group velocity
cg, of amplitude A(ξ , t) in the direction of the wavenumber K. . . . . . . . . . 11

2.3 Schematic representation of (a) Wavenumber vector (K) direction; (b) Phase
velocity travelling in the direction of the wave number vector and orthogonal
to the group velocity, as observed in internal waves generated by buoyancy and
rotation. Reproduced from Pedlosky (2013). . . . . . . . . . . . . . . . . . . 12

2.4 Schematic representation of Taylor vortices with counter-rotating pair of rolls
reproduced from Cross and Hohenberg (1993). . . . . . . . . . . . . . . . . . 15

2.5 Different Taylor vortex spiral regimes visualized using machine oil with alu-
minum powder, reproduced by Van Dyke (1982). The different regimes are ob-
tained by increasing the inner cylinder angular velocity (from left to right) while
keeping the outer cylinder at rest. Considering the critical Reynolds numbers
Recr where the spirals appear, and the Reynolds numbers based on the inner
cylinder Re (a) Re = 1.16Recr (b) Re = 8.5Recr (c) Re = 1625Recr. . . . . . . 18

2.6 Different Taylor-Couette Regimes in cavities with long cylinders co-axially ro-
tating with a different inner and outer Reynolds numbers (respectively repre-
sented by Ri, in the y-axis and Ro, in the x-axis). The diagram shows regimes
for counter-rotating (Ro < 0) and co-rotating cylinders (Ro > 0), and is repro-
duced from Andereck et al. (1986). . . . . . . . . . . . . . . . . . . . . . . . . 19



List of Figures iii

2.7 Mariginal instability curves obtained by Rüdiger et al. (2017) with linear stabil-
ity analysis for different values of Rn. The horizontal axis shows the ratio be-
tween outer and inner cylinder angular velocity (µ), and the vertical axis shows
the Reynolds numbers. The vertical black dashed line on the left shows the
Rayleigh limit, which separates non-stratified TC unstable and stable regimes,
as indicated in the diagram (rotation rations to the left of the Rayleigh line are
TC unstable). The green vertical dashed line on the right represents the Keple-
rian line. The regions inside the marginal instability curves (for different Rn)
represent SRI unstable solutions according to the linear theory. . . . . . . . . . 21

2.8 Experimental end gap effects visualized with Kalliroscope particles, reproduced
from Shionoya (1987). (a) Inner cylinder at rest (Re = 0) and outer cylinder
rotating with Reout = 1000; Kalliroscope flakes fill only the lower half of the
cylinder as the system is spun up from rest. (b) Laminar TC profile obtained
for cylinders rotating in the same direction with Re = 1124, and µ = 0.89;
(c) Laminar TC profile obtained for cylinders rotating in the same with Re = 4005,
µ = 0.89; (d) Laminar Taylor vortices with Re = 240 and counter-rotating cylin-
ders with µ =−1.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Energy spectra schematically representing (a) High Reynolds number Kolmogorov
turbulence reproduced from Pope (2001); (b) Two-dimensional turbulent flow
with an energy and enstrophy cascade reproduced from Kyushu University (2017).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Schematic representation of energy input in the large scales, where turbulence
production occurs, and its transference along the inertial region to the small-
est scales, where energy it is dissipated. The larger scales correspond to the
small wavenumbers k. The sub-index EI stands for the interface between En-
ergy (E) and Inertial (I) ranges, and DI for the separation of the dissipation D
and I inertial scales of the flow, while `0 represent the larger scales, and η the
Kolmogorov scales. Reproduced from Pope (2001) . . . . . . . . . . . . . . . 26

3.1 Schematic representation of the SRI experimental setup. . . . . . . . . . . . . 32

3.2 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 PIV images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 PIV cross correlation to obtain velocity profiles (Image obtained from Pawar
et al. (2014)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Comparison of analytical TC profile with Re= 1000 and µ = 0.35 (black dashed
curve) with two different experiments acquired with 24 frames per second (fps),
24fps - 1st Exp and 2nd Exp, that show good agreement between each other and
with the TC profile, and the same experiment computed with 12 fps (12fps - 1st Exp),
skipping one frame in the PIV computations, that shows no agreement with the
TC profile, highlighting a poor time resolution. . . . . . . . . . . . . . . . . . 37

3.6 (a) Superposed calibration grid and PIV images, both undistorted using the 5th-
order polynomial method; (b) PIV instantaneous velocity field. Reproduced
from Seelig et al. (2018) with the friendly permission from Torsen Seeling, who
developed the undistortion method here applied together with Andreas Krebs at
the BTU Cottbus-Senftenberg. . . . . . . . . . . . . . . . . . . . . . . . . . . 38



iv List of Figures

3.7 Stable uφ Taylor-Couette profile with Re = 1000 and µ = 0.35 (a) Comparison
of TC analytical solution (black dashed line) and time mean PIV measurements
(continuous red line) (b) Error ε between PIV measurements and analytical
solutions in %. The left hand side of the images represent the region near the
inner cylinder wall, and the right hand side is the region near the outer cylinder.
The smaller figure inserted on the top left side of figure b shows the absolute
error |ε|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 PIV data convergence of time series obtained at mid-height position (z≈ H/2)
and at 3 different radial positions (a) uφ convergence, Re = 400 (b) u′

φ
u′r con-

vergence, Re = 800. The dashed lines indicate the final averaged velocities
obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Experimental temperature profiles at the beginning (blue curve on the right),
and at the end (red curve on the left) of a measurement. The dashed lines are
the linear fits in the center height region where the PIV measurements are per-
formed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Schematic representation of the numerical configuration. . . . . . . . . . . . . 44

4.2 Schematic representation of the 2-D space full staggered grid arrangement with
velocity and pressure shifted in space by half a grid (h/2). . . . . . . . . . . . 49

4.3 (a) Function applied to obtain a non-uniform grid, with β = 5, and different
values of the control parameter γ . Examples of curves obtained with different
values of γ; (b) φ−r grid with a zoom near the cylinder wall to highlight grid
refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Three states of the 2d-pencil decomposition divided in 3× 4 processor grids
(respectively in r and z directions). Reproduced from Abide et al. (2018) with
the friendly permission of Stéphane Abide . . . . . . . . . . . . . . . . . . . . 53

4.5 Matrix partition of the over 4 processors. (a) Tridiagonal matrix Mx = (M̃ +
∆M)x; (b) Inverse of the tridiagonal matrix M̃−1M̃x = (I+ M̃−1∆M)x = M̃−1b.
Reproduced from Abide et al. (2017) with the friendly permission of Stéphane
Abide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Scaling tests on HLRN computers for φ × r× z meshes of sizes 32× 512×
512 and 128× 256× 512. The x-axis is the number of nodes (n) used on the
computations and the y-axis presents (a) the speedup (b) the time (in seconds)
necessary to complete 100 iterations. . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 SRI snapshots showing the azimuthal-radial (φ − r) cross section obtained with
the CS2D-Annular code, with µ = 0.35, η = 0.517, a linear stable axial tem-
perature gradient with ∂T/∂ z ≈ 5.7K/m, Fr ≈ 1.5 and Re = 400. The as-
pect ratio between cavity height and gap is Γ = H/(rout− rin) = 10. No-slip
and impermeable Dirichlet boundary conditions are imposed (uφ (rin) = Ωinrin,
uφ (rout) = Ωoutrout , uz(z = 0) = 0, uz(z = H) = 0, ur(rin) = 0, ur(rout) = 0).
The bottom and top lids of the cavity rotate with the outer cylinder Ωout . The
images are shown in the laboratory frame of reference . . . . . . . . . . . . . . 58



List of Figures v

4.8 Velocity isocontour snapshots of the SRI showing non-axisymmetric spirals ob-
tained by numerical simulation with µ = 0.35, η = 0.517, a linear stable axial
temperature gradient with ∂T/∂ z ≈ 5.7K/m, Fr ≈ 1.5 and Re = 400. The as-
pect ratio between cavity height and gap is Γ = H/(rout− rin) = 10. No-slip
and impermeable Dirichlet boundary conditions are imposed (uφ (rin) = Ωinrin,
uφ (rout) = Ωoutrout , uz(z = 0) = 0, uz(z = H) = 0, ur(rin) = 0, ur(rout) = 0).
The bottom and top lids of the cavity rotate with the outer cylinder Ωout . The
images are shown in a laboratory frame of reference . . . . . . . . . . . . . . . 59

4.9 Comparison of mean time velocity profiles when the number of grid points in
the radial direction increases from 64 to 128, keeping constant the number of
grid points in φ = 32 and z = 200. . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 (a) Convergence obtained from numerical simulations at mid-height position
(Z = H/2) for 3 different radial locations (a) uφ time series convergence, Re =
400 (b) u′

φ
u′r convergence, Re = 800. The dashed lines indicate the final aver-

aged velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 uφ space-time diagram for Re = 400 in a reference frame co-rotating with the
outer cylinder at mid-height axial position (H/2). The horizontal axis shows
time in minutes and the vertical axis, the radius in mm (the bottom of the image
is near the inner cylinder region, and the top, close to the outer cylinder). Both
figures(a),(b) show 12 minutes of measurements. . . . . . . . . . . . . . . . . 64

5.2 Time average azimuthal velocity profiles (uφ ). The lines with star and circle
markers represent two different experimental data performed with Re = 400,
µ = 0.35 and temperature between top and bottom lids ∆T ≈ 4K, leading to
Rn ≈ 250 and Fr ≈ 1.5. The solid red curve was obtained from numerical
simulation, and the black dashed line is the non-stratified analytical TC profile.
The bottom left figure is showing the deviations from the TC profile. . . . . . 65

5.3 Comparison of two different experiments and the numerical simulation spectra
with the ordinate axis shown in logarithmic scale. The spectra are obtained
from uφ time series at axial position z≈ H/2 and radial position r ≈ rin +d/2,
µ ≈ 0.35 and initial temperature between top and bottom lids of ∆T ≈ 4K,
leading to ∂T/∂ z≈ 5.7K/m, Rn≈ 250 and Fr = 1.5. . . . . . . . . . . . . . 66

5.4 Comparison of u′
φ

and u′r at r ≈ (rin + rout)/2 and z ≈ H/2, with ∆T ≈ 4K.
Figures (a),(b) show experimental data and figures (c),(d) show numerical sim-
ulation results with Reynolds numbers Re = 400 (left-hand side images) and
Re = 600 (right-hand side images). . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 uφ space-time diagrams (Hovmöller) showing the SRI stability with Re = 1000,
µ = 0.35 and a temperature difference from top to bottom of ∆T ≈ 4K in the
frame of reference co-rotating with the outer cylinder. On top of the space-time
diagrams, the velocity profile at mid-gap position (r ≈ rin +d/2) in the space-
time diagrams together the analytical TC-profile presented in black dashed line. 68



vi List of Figures

5.6 uφ power spectra obtained from numerical simulations at mid-height (z≈H/2)
and mid-gap (r ≈ rin + d/2) position. The simulations were performed with
µ = 0.35 and initial temperature difference of ∆T = 4K (Rn≈ 250, Fr ≈ 1.5).
The horizontal axis shows frequencies in Hz, and the vertical axis shows spectra
amplitudes P = |FFT (uφ )|2 (a) shows the SRI amplitudes for increasing Re.
Note that the SRI peak is no longer present in the spectrum for Re≥ 1000 (green
dashed line at P≈ 0). The black dashed vertical line on the left corresponds to
the buoyancy frequency for the Re = 400 case, while the dashed vertical line
on the right corresponds to f = 2Ωin for the same case, both corrected by the
Doppler shift due to the azimuthal mean flow. The spectra have been taken from
a reference frame co-rotating with the outer cylinder (b) Spectra for different
Reynolds numbers with the amplitude (P) in logarithmic scale and obtained
from uφ time series in a laboratory frame of reference. For a better display,
the spectra are staggered by multiplying constant exponential functions cte = en

to displace them vertically in the log scale axis, where n is chosen arbitrarily.
Dashed vertical lines are used for highlighting coincident peaks of different
spectra. A small picture showing the spectra normalized by the inner cylinder
rotation (Ωin/2π) is displayed on the bottom right corner. . . . . . . . . . . . 68

6.1 Numerical simulation time series for Re = 400, µ = 0.35 and dT ≈ 4K at mid-
gap position (r≈ rin+d/2) and mid height position (z≈H/2), and their respec-
tive amplitude envelopes highlighting low frequency amplitude variations in
time (a) SRI time series in the time interval 0 < t < 3 hours and their respective
amplitude envelopes, highlighting low frequency amplitude modulations (b) Ve-
locity amplitude envelopes, highlighting regular low frequency amplitude mod-
ulations within the time interval 0 < t < 8hours. Note that the time intervals
are different in figures(a),(b) (respectively, 0 < t < 3hours and 0 < t < 8hours),
so that the SRI oscillations have been included into figure (a) only. (c) Power
spectrum of uφ amplitude envelope (both uφ and ur envelopes present similar
spectra). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 uφ space-time diagrams at mid-height axial position (z≈H/2) during amplitude
modulation transition for Re = 600, µ = 0.35 and ∆T/∆z = 5.71Km−1. The
reference frame co-rotates with the outer cylinder, and the velocities represented
by the colour scales are given in mm/s. The horizontal axis shows time in
minutes, and the vertical axis, the radius in mm, where the bottom region is
closer to the inner cylinder wall, and the top is closer to the outer one. On top
of the space-time diagrams, the velocity time-series at mid-gap position (r ≈
rin +d/2) in the space-time diagrams is displayed that highlights its amplitude
modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Comparison between experimental (blue curve) and numerical simulation (red
curve) uφ time series at mid-gap (rin + d/2) and mid-height position (H/2).
The results are for µ = 0.35 and ∆T/∆z = 5.71Km−1. Please, note that the
time intervals are different in figures (a) and (b). . . . . . . . . . . . . . . . . . 73



List of Figures vii

6.4 uφ comparison obtained from numerical simulations with µ = 0.35 (left hand
side) and µ = 0.3572 (Keplerian line, at the right hand side) in the laboratory
frame of reference, highlighting similar mean flows on the top figures(a),(b),
and similar the amplitude modulations in time in the bottom figures(c),(d). The
results are for for mid-height position (z ≈ H/2) with ∆T = 4K, and the time
series are for a mid-gap radial position (r ≈ rin +d/2). . . . . . . . . . . . . . 74

6.5 uφ structures during amplitude modulation at radial position r = rin + d/2; (a)
Time series with horizontal coloured lines indicating intervals selected before
(black), during (green), and after (red) a local minimum amplitude value; (b) In-
terval 01, from t = 312 to 322 minutes – SRI spiral with downward inclination;
(c) Interval 02, from t = 318 to 338 minutes – transition from a SRI spiral with
downward to upward inclination; (d) Interval 03, from t = 336 to 346 minutes –
SRI spiral with upward inclination. . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Comparison of the simulation time average axial velocity profiles with time
averages taken during an upward traveling spiral period, during a downward
traveling spiral period, and during the transition from an upward to a downward
spiral period. The results are from numerical simulation performed with Re =
400, µ = 0.35 and ∆T/∆z = 5.71Km−1 at a fixed radial position r = rin +d/2. 76

6.7 Time mean stream lines 〈ψ〉 showing the base flow circulation for Re = 400,
µ = 0.35 and ∆T/∆z = 5.71Km−1. The time mean 〈ψ〉 is obtained from ur
and uz averaged over φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.8 Circulation patterns obtained with stream lines 〈ψ〉 averaged over φ (left-hand
side) and background circulation patterns 〈ψ ′〉 = 〈ψ〉− 〈ψ〉 (right-hand side)
in
[
mms−2]. Note that the base flow 〈ψ〉 was removed from the right-hand

side images for taking into account the only background circulation, excluding
Ekman effects. The results are from numerical simulation performed with Re =
400, µ = 0.35 and ∆T/∆z = 5.71Km−1 in the r−Z. . . . . . . . . . . . . . . 80

6.9 v=(ur,uz) snapshots during an upward and downward traveling spiral moment.
The results are from numerical simulation performed with Re = 400, µ = 0.35
and ∆T/∆z = 5.71Km−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.10 Numerical simulation snapshot showing changes in the axial wavenumber in
simulations with temperatures ∆T/∆z = 2.85Km−1 (left-hand side), ∆T/∆z =
5.71Km−1 (middle images) and ∆T/∆z = 11.43Km−1 (right-hand side im-
ages), respectively corresponding to Froude numbers Fr ≈ 2.2, Fr ≈ 1.5, and
Fr ≈ 1.0. Figure (a), on top, show temperature averaged on the azimuth direc-
tion 〈∆T 〉 for one snapshot (in full red line), and the temperature at the mid gap
position r = 110mm (in blue dashed line), highlighting the equivalence of these
profiles. Figure (b), in the middle, show snapshots of uφ in the radial-axial cross
section. The bottom figure (c) show the snapshot of ur in the radial-axial cross
section. The parameters of the simulation are: Re = 400, and µ = 0.35. . . . . 82

6.11 Changes in uφ when different temperature gradients in the axial direction are
imposed. (a) Mean velocity profiles (uφ ). (b)-(d) show the time series near
the mid-gap and mid-height position (r ≈ rin + d/2 and z ≈ H/2), highlight-
ing changes in the low-frequency modulations with the temperature gradient.
The smaller images inserted inside (b)-(d) show smaller time intervals of each
respective time series (intervals where chosen arbitrarily, in regions where am-
plitudes do not vary much), highlighting the SRI oscillations. The velocities are
presented in the laboratory frame of reference. . . . . . . . . . . . . . . . . . 83



viii List of Figures

6.12 Simulation with Re= 400, µ = 0.35, ∆T/∆z≈ 5.71Km−1 and cylinder’s height
half of the experimental height H = 0.35m (case 10 in table 6.3). (a) Temper-
ature time series obtained at mid-gap region r ≈ rin + d/3 and in 3 different
axial positions; (b) uφ space-time diagram at r ≈ rin + d/3 showing the stand-
ing chessboard pattern achieved when the secondary instability is not reached.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.13 Stream lines comparing the base flow circulation to the circulation at a given
time, averaged on the azimuthal direction. The simulations are performed with
half experimental height (H/2) and Re= 400, µ = 0.35 and ∆T/∆z= 5.71Km−1

(case 10 in table 6.3). Note that base flow circulation and instantaneous circu-
lation are almost the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.14 Space-time diagram with Re = 400, µ = 0.35, ∆T/∆z≈ 5.71Km−1 and height
H = 0.35m (half of the experimental cavity). The x-axis show time in minutes,
and the y-axis shows the axial direction (z). (a) uφ time series obtained closer to
the inner cylinder (at r ≈ rin +d/3) and at an axial position z≈H/3. (b)-(d) ur
space-time diagrams on different time intervals. . . . . . . . . . . . . . . . . . 87

6.15 uφ numerical simulations for cavities with large heights (H) compared to the
experimental setup at r ≈ rin + d/3, with µ = 0.35 and ∆T/∆z ≈ 5.71Km−1

(a) time series at z ≈ H/2 for H = 1400mm (b) time series at z ≈ H/2 for
H = 2800mm (c)-(f) Space-time diagrams at different time intervals showing
the occurrence of different spiral patters in time. . . . . . . . . . . . . . . . . 88

6.16 uφ numerical simulations with Re = 400, µ = 0.35 and periodic solutions in the
axial direction z (∆z→∞) (a) Time series obtained at r≈ rin+d/2 and z≈H/2
with temperature gradient ∆T/∆z≈ 5.71Km−1 (case 14 in table 6.3); (b) Time
series obtained at r≈ rin+d/2 and z≈H/2 with temperature gradient ∆T/∆z≈
11.43Km−1 (case 15 in table 6.3); (c) Mean flow (uφ ) comparison of the axial
periodic simulations with ∆T/∆z≈ 5.71Km−1 and ∆T/∆z≈ 11.43Km−1 with
the non-stratified TC profile (black dashed line). . . . . . . . . . . . . . . . . 89

6.17 uφ space-time diagram with Re = 400, µ = 0.35, ∆T/∆z ≈ 5.71Km−1 and
periodic boundary conditions in the axial direction. The x-axis show time in
minutes, and the y-axis shows the axial direction. (a) Simulation starting from
the initial condition described on chapter 4. (b) Simulation using as initial con-
ditions a downward travelling spiral obtained from a bounded top and bottom
lids simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.18 uφ space-time diagram with Re = 400, µ = 0.35, ∆T/∆z ≈ 11.43Km−1 and
periodic boundary conditions in the axial direction at different time intervals,
revealing changes in the spiral pattern in time. (a) Upward spiral propagation;
(b) Downward spiral propagation; (c) Transition from an upward to a downward
spiral propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of Figures ix

6.19 Critical layers position for the mode m = 1, when the mean flow velocity equals
the drift speed

(〈
uφ

〉
= ω/m

)
and

〈
uφ

〉
= ω/m±N/m. The simulation was

performed with Re = 400, µ = 0.35, and the experimental geometry (case 16
in table 6.4). (a) Presents

〈
uφ

〉
space averaged in φ (blue curve). The dashed

black line shows the drift speed c = ω/m, and the red lines show c±N/m. The
intersection of the curves with the mean flow are the critical layer positions.
(b),(c) Present the circulation of the flow at a given time, and the radial position
of the critical layers as vertical dashed lines. The dashed vertical line in the
middle represents the classical critical layer, where

〈
uφ

〉
= ω/m, and the other

two dashed vertical lines represents the radial position where
〈
uφ

〉
= c±N/m.

(b) shows the instantaneous circulation at a given time; and (c) Shows the fluc-
tuation circulation ψ ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.20 ur time series at r ≈ 90mm and z ≈ H/2, with Re = 400, µ = 0.35, and height
H = 700mm, for different values of d = rout − rin, obtained by changing the
outer radii and maintaining rin = 75mm. (a) rout = 170mm, ∆T/∆z= 5.71Km−1;
(b) rout = 180mm, ∆T/∆z= 5.71Km−1; (c)) rout = 180mm, ∆T/∆z= 11.43Km−1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.21 Energy spectra in the azimuthal (Eφ ), radial (Er) and axial (Ez) directions with
different power laws fitting the energy transfer region of the spectra presented
in dashed lines. The spectra were obtained from simulations with µ = 0.35
and ∆T = 4K, and bounded cavity height H = 700mm (same geometry as the
experimental setup). Figure (a) presents a Re= 400 simulation where amplitude
modulations and pattern changes are observed (case 02 in table 6.1); (b) shows a
simulation with Re = 800, where no pattern changes or amplitude modulations
occur (case 08 in table 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.22 Comparison of Eφ (left hand side images) and Er (right hand side images) with
(a,b) different Reynolds number (top images); (c,d) different stratification val-
ues (middle images); (e,f) different cavity heights H (bottom images). The
x-axis in figures 6.22 shows the azimuthal (m) and radial (l) wavenumbers. All
parameters are changed with respect to a standard simulation with Re = 400,
µ = 0.35, H = 700mm and ∆T/∆z = 5.71Km−1. The non-stratified TC flow
is presented as black dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . 97

6.23 Energy spectra in the axial direction (Ez). (a) Different Re, for fixed H =
700mm, ∆T = 4K. (b) Different stratification (∆T ), with fixed Re = 400,
and H = 700mm. (c) Different cylinder’s heights, with fixed Re = 400 and
∆T/∆z ≈ 5.71Km−1; (d) Comparison of axial periodic and non-periodic top
and bottom boundary conditions; The x-axis in all figures present the axial
wavenumber k. The smaller figures inserted on the top right corner of each
image show the spectra arbitrarily dislocated in the y-axis for better visualiza-
tion of the results, and have the inverse wavelength (λ−1) in the x-axis, instead
of the wavenumber k. The non-stratified TC flow is presented in black dashed
line in all figures (with Re = 400, µ = 0.35, H = 700mm and ∆T = 0K). All
simulations were performed with µ = 0.35. . . . . . . . . . . . . . . . . . . . 98



x List of Figures

6.24 2-dimensional power spectra obtained from numerical simulations space-time
diagrams of uφ in the axial direction during (a) upward spiral propagation; (b)
downward spiral propagation (c) transition from a downward an upward prop-
agating spiral. The y-axis represents axial wavenumber k (axial modes), while
the x-axis is the frequency in Hz. The amplitudes of the spectra are normalized
by the maximum amplitude value of the upward (and downward) propagating
spirals P0,max. The spectra are obtained in a frame of reference fixed in the
laboratory. During the transition, the maximum amplitude of the spectra were
half of the maximum amplitude found while the spiral is travelling upward or
downward (P/P0,max = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.25 u′
φ

2D-fft (top images (a),(b)) and space-time diagrams (bottom images (c),(d))
of two simulations that do not change their spiral patterns in time. The left hand
side images (a),(c) show simulations with Re= 400 and half of the experimental
cavity height (H = 350mm). The right hand side images correspond to simula-
tions with the same experimental height (H = 700mm) and Re = 800. Note that
the time interval in the x-axis of figures c (∆t = 400 min) and (d) (∆t = 200 min)
are different. In both simulations, µ = 0.35 and ∆T/∆z≈ 5.71Km−1. . . . . . 101

6.26 Separation of upward and downward axial traveling components in uφ space-
time diagram using the Radon Transform. Figures (a),(c),(e), on the left hand
side, show time intervals when the spiral is traveling downwards. Figures (b),(d),(f),
on the right hand side, show a time interval when the spiral is traveling up-
wards. Figures (a),(b) on top show the 2D-FFT of the upward and down-
ward space-time diagrams. Simulation performed with Re = 400, µ = 0.35,
∆T/∆z≈ 5.71Km−1, and H = 700mm. . . . . . . . . . . . . . . . . . . . . 103

6.27 Separation of upward and downward axial traveling components space-time di-
agram using the Radon Transform. Results are of uφ numerical simulations with
Re = 400, µ = 0.35, ∆T/∆z ≈ 5.71Km−1 and cavity height four times larger
than the experimental setup (H = 2800mm). (a) Space-time diagram showing
the full spiral propagation; (b) 2D-FFT of the full spiral. (c) Space-time dia-
gram of the spiral component traveling upward; (d) Space-time diagram of the
spiral component traveling downward. . . . . . . . . . . . . . . . . . . . . . . 104

6.28 (a) Experimental and (b) numerical power spectra with Re = 400, µ = 0.35
and ∆T/∆z ≈ 5.71Km−1; (c) Experimental and (d) numerical harmonic sig-
nals corresponding to one peak in the different frequency bands selected. The
harmonics were normalized by their maximum amplitude value, and arbitrarily
dislocated in the y-axis, for better visualization and comparison. Note that the
time interval in figures (a) and (b) are different. . . . . . . . . . . . . . . . . . 105

6.29 uφ space-time diagram of the toy model composed of 2 plane waves with si-
nusoidal amplitude modulations with ωA = 7× 10−4, out of phase an angle
θ = π/3, and traveling in opposite axial directions with wavenumbers of wave1
and wave2 respectively (m1, l1,k1) = (1,1,4) and (m2, l2,k2) = (1,1,−4). The
frequency ω = 0.03, and the maximum amplitude of each wave is A = 10. . . 106



6.30 Snapshots with different spiral patterns in the φ -z cross-section comparing u′
φ
=

uφ −uφ obtained from numerical simulations (a,b,c) and the toy model (d,e,f).
The radial position is fixed at r ≈ rin + d/3. Figures (a),(d) on top, show mo-
ments when the spirals are traveling downwards; Figures (b),(e), in the mid-
dle, show the transition from upward to downward spiral propagation; Fig-
ures (c),(f) in the bottom, show spirals traveling upwards. The simulations
were performed with Re = 400, µ = 0.35 and ∆ T = 4K. The toy model is
composed by two plane waves with frequencies ω = 0.01, and wavenumbers
(m1, l1,k1) = (1,1,4) and (m2, l2,k2) = (1,1,−4), maximum amplitude of the
waves is of A = 3mm/s, and the frequency of the sinusoidal amplitude modula-
tions of ωA = 0.001, 90° out of phase (θ = π/2). . . . . . . . . . . . . . . . . 107

6.31 u′
φ

u′r snapshots of numerical simulations with Re = 400 and µ = 0,35 and dif-
ferent stratification values (∆T/∆z). The left hand side show the azimuth-radial
cross section (φ − r) at mid-height position (z ≈ H/2), and the right hand side
shows the radial-axial cross section at φ = 0. . . . . . . . . . . . . . . . . . . 109

6.32 u′
φ

u′r time series for increasing Reynolds number with a fixed temperature gra-
dient ∆T/∆z = 5.71Km−1. The velocities are obtained at position r = 90mm
(near the inner cylinder) and z≈ H/2 (mid-height). Note time of the upper fig-
ures (a),(b) is of 0 ≤ t ≤ 420 minutes, and of the bottom images (c),(d),(e) are
of 0 ≤ t ≤ 220 minutes. The small figures inserted show the SRI oscillations
in a 5 minutes time window. Figure (e) has two inserted figures, when the SRI
occur at the transient phase (t < 90 minutes) and another inserted image after
the flow becomes stable (for t > 90 minutes). . . . . . . . . . . . . . . . . . . 111

6.33 u′
φ

u′r numerical simulations time series at r = 90mm and z ≈ H/2 for differ-
ent stratification values, and with Re = 400, µ = 0.35, and H = 700mm. The
images inserted inside each figure show a smaller time interval of 5 minutes,
highlighting the higher frequency SRI oscillations. . . . . . . . . . . . . . . . 112

6.34 Mean azimuthal space mean
〈

u′
φ

u′r
〉

at a fixed radial position very close to
the inner cylinder wall (r ≈ 76.14mm) and mid-height axial position z≈ H/2.
The results are from numerical simulation with different stratification values
(∆T/∆z) and with the same Re = 400, µ = 0.35 and the same geometry of our
experimental setup (cases 01 and 02 in table 6.1, of section 6.2.1). . . . . . . . 112

List of Tables

3.1 Experimental setup parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 M5 silicone oil properties at 25oC . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Fourth-order compact scheme coefficients for the inner nodes. . . . . . . . . . 50
4.2 Fourth-order compact scheme coefficients of the boundary relations . . . . . . 50
4.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



xii List of Tables

6.1 Parameters of simulations changing stratification . . . . . . . . . . . . . . . . 79
6.2 Parameters of simulations changing Re . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Parameters of simulations changing the cylinder height . . . . . . . . . . . . . 84
6.4 Parameters of simulations changing the gap width . . . . . . . . . . . . . . . 90



Abstract
Stratified vortices can be found from small to large scales in geophysical and astrophysical
flows. On the one hand, tornadoes and hurricanes can lead to devastation and even a large
number of casualties. On the other hand, vortices can distribute heat and momentum in the
atmosphere which is important for a habitable environment on Earth. In the astrophysical con-
text, accretion disks (from which solar systems are formed) can be seen as stratified vortices. In
such systems, understanding the mechanisms that can result in an outward transport of angular
momentum is a central problem. For a planet or star to be formed in a disk, angular momentum
has to be carried away from its center to allow matter aggregation by gravity; otherwise, its
rotation speed would be far too large, avoiding this matter aggregation (and the consequent star
formation) to happen. In such gas systems, turbulence is the most likely mechanism to achieve
such a large angular momentum transport. However, it was shown that the flow profile of accre-
tion disks is stable with respect to purely shear instabilities, and the question arises about how
the turbulence can be generated. Among other candidates, the strato-rotational instability (SRI)
has attracted attention in recent years. The SRI is a purely hydrodynamic instability that can
be modeled by a classical Taylor-Couette (TC) system with stable density stratification due to
axial salinity or temperature gradients.

In this thesis, a combined experimental and high-performance computing study of new spe-
cific behaviors of the strato-Rotational Instability (SRI) is performed. The density stratification
causes a change in the marginal instability transition when compared to classical non-stratified
TC systems, making the flow unstable in regions where – without stratification – it would be
stable. This characteristic makes the SRI a relevant phenomenon in planetary and astrophysical
applications, particularly in accretion disk theory.

Despite many advances in the understanding of strato-rotational flows, the confrontation
of experimental data with non-linear numerical simulations remains relevant, since it involves
linear aspects and non-linear interactions of SRI modes which still need to be better understood.
These comparisons also reveal new non-linear phenomena and patterns not yet observed in the
SRI, that can contribute to our understanding of geophysical flows.

The experiment designed to investigate these SRI related phenomena consists of two con-
centric cylinders that can rotate independently, with a silicon oil confined between both vertical
cylinders. For obtaining a stable density stratification along the cylinder axis, the bottom lid
of the setup is cooled, and its top part is heated, with temperature differences varying between
3K < ∆T < 4.5K, establishing an axial linear gradient, leading to Froude numbers Fr = Ωin/N
between 1.5 < Fr < 4.5, where Ωin is the inner cylinder rotation, and N is the buoyancy fre-
quency. The flow field resulting from the cylinder’s rotation interacting with the stable density
stratification is measured using Particle Image Velocimetry (PIV). This thesis focuses on cases
of moderate Reynolds numbers (Re, based on the inner cylinder radius and angular velocities),
varying between Re = 300 and Re = 1300, with a fixed rotation ratio between outer and inner
cylinders of µ = Ωout/Ωin = 0.35, a value slightly smaller than the Keplerian velocity profile,
but beyond the Rayleigh limit. Direct numerical simulations are performed using the same
configuration as the experimental setup. The numerical method consists of a parallel high-
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order compact scheme incompressible code, that solves the Boussinesq equations combining
a 2D-pencil decomposition and the reduced Parallel Diagonal Dominant spectral-like method
for efficient parallelization. Both simulations and experiments show, in agreement with recent
linear stability analyses, the occurrence of a return to stable flows with respect to the SRI when
the Reynolds numbers increase. Low-frequency velocity amplitude modulations related to two
competing spiral wave modes are found which have not been reported yet. These modes are
observed in the experiment and numerical simulations. These modulations are associated with
spirals in the axial direction formed due to the instability. Such modulations are associated
with changes in the spiral axial direction of propagation in time, and the activation of different
wavenumbers in time. Recent astronomical observations also captured spirals in an accretion
disk at an early stage of a star formation in the center of the disk, making the study of these
spiral signatures and dynamics a recent and relevant topic to astrophysical applications, since
they might play an important role on our further understanding of planets and stars formations
in accretion disks.



Résumé

Les vortex en écoulements stratifiés peuvent se manifester à petite et grande échelles dans les
applications géophysique et astrophysique. Les tornades et les ouragans peuvent entraîner de
nombreux dommages à la fois matériels et humains. En effet, les tourbillons distribuent la
chaleur et la quantité de mouvement dans l’atmosphère et sont donc très importants afin de
garantir un environnement habitable sur Terre. Dans le contexte astrophysique, les disques
d’accrétion (à partir desquels les systèmes solaires sont formés) peuvent être considérés comme
des tourbillons en milieux stratifiés. En ce qui concerne la formation des planètes, la com-
préhension des mécanismes qui peuvent entraîner un transport vers l’extérieur du moment ciné-
tique constitue par conséquent un problème central. Pour qu’une planète ou une étoile se forme
dans un disque, le moment angulaire doit être transporté loin de son centre afin de permettre
l’agrégation de matière par gravité; sinon, sa vitesse de rotation serait beaucoup trop grande
pour permettre cette agrégation de matière (et la formation d’étoiles qui en résulte). Dans de
tels systèmes constitués de gaz, la turbulence est le mécanisme le plus probable permettant de
réaliser un transport de moment angulaire aussi important. Cependant, il a été montré que le
profil des écoulements des disques d’accrétion est stable et la question se pose de savoir com-
ment la turbulence peut être générée. Parmi les autres candidats, l’instabilité strato-rotationnelle
(SRI) a attiré l’attention ces dernières années. SRI est une instabilité purement hydrodynamique
qui peut être modélisée par un système classique de Taylor-Couette (TC) avec une stratification
stable due à un gradient axial de salinité ou de température.

Dans cette thèse, nous proposons une étude à la fois expérimentale et numérique en se
focalisant sur la mise en évidence de nouveaux comportements spécifiques à l’instabilité strato-
rotationnelle (SRI). La stratification axiale provoque un changement de la transition de l’instabilité
marginale par rapport au système classique non stratifié TC, rendant l’écoulement instable dans
les régions où sans stratification il resterait stable. Cette caractéristique fait de l’instabilité SRI
un phénomène pertinent dans les domaines planétaire et astrophysique, en particulier dans la
théorie de la formation des disques d’accrétion.

Malgré de nombreuses avancées dans la compréhension des écoulements strato-rotationnels,
la confrontation de données expérimentales avec des simulations numériques non linéaires est
pertinente, car elle implique à la fois les aspects linéaires ainsi que les interactions non linéaires
des modes SRI qui doivent encore être mieux compris. Ces comparaisons révèlent également de
nouveaux phénomènes et motifs non linéaires encore jamais observés pour les SRI, contribuant
ainsi à une meilleure compréhension des écoulements géophysiques.

Le dispositif expérimental conçu pour étudier ces phénomènes liés à l’instabilité SRI con-
siste en deux cylindres qui peuvent tourner indépendamment, la cavité étant remplie avec de
l’huile de silicone. Afin d’obtenir une stratification stable le long de l’axe du cylindre, le cou-
vercle inférieur de l’installation est refroidi tandis que sa partie supérieure est chauffée. Les
différences de température varient dans l’intervalle 3K < ∆T < 4.5K, générant un gradient
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linéaire axial, conduisant à des nombres de Froude Fr = Ωin/N compris entre 1,5 < Fr < 4,5,
où Ωin est la vitesse de rotation interne du cylindre et N est la fréquence de flottabilité (Brunt-
Väisälä). Le champ résultant de la rotation des cylindres interagissant avec la stratification
de densité stable est mesuré en utilisant la technique de vélocimétrie par image de particules
(PIV). Dans cette thèse, nous nous sommes concentrés sur des cas à nombres de Reynolds
modérés (Re, basé sur le rayon du cylindre intérieur et les vitesses angulaires), variant entre
Re = 300 et Re = 1300. Le rapport de rotation entre cylindres extérieur et intérieur est fixé
à µ = Ωout/Ωin = 0.35, une valeur légèrement inférieure au profil de vitesse képlérien, mais
au-delà de la limite de Rayleigh. Cette configuration expérimentale est également étudiée par
simulations numériques directes à l’aide d’un code parallèle incompressible avec une approx-
imation de Boussinesq, basé sur des schémas compacts d’ordre élevé et des séries de Fourier.
D’un point de vue algorithmique, une décomposition bi-dimensionnelle est mise en oeuvre afin
d’obtenir une parallélisation efficace.



Zusammenfassung

Geschichtete Wirbel können mit unterschiedlichen Skalen in geophysikalischen und astro-
physikalischen Strömungen gefunden werden. Einerseits können Tornados und Hurrikane zu
Verwüstungen und sogar zu einer großen Anzahl von Opfern führen und andererseits trans-
portieren Wirbel Wärme und Impuls in der Atmosphäre und sind daher für eine bewohnbare
Umwelt auf der Erde wichtig. Im astrophysikalischen Kontext können Akkretionsscheiben (aus
denen Sonnensysteme gebildet werden) als geschichtete Wirbel angesehen werden. Der Im-
pulstransport in einer solchen Scheibe ist bei der Bildung von Planeten noch nicht vollständig
verstanden. Planeten oder Sterne können in einer Scheibe gebildet werden, wenn der Drehim-
puls vom Scheibenzentrum weggetragen wird, um eine Materieansammlung durch Schwerkraft
zu ermöglichen, da sonst die Rotationsgeschwindigkeit der Scheibe viel zu groß für eine Aggre-
gation von Materie wäre. In solchen Gassystemen ist Turbulenz der wahrscheinlichste Mech-
anismus für den notwendigen Drehimpulstransport. Es wird jedoch gezeigt, dass das Strö-
mungsprofil von Akkretionsscheiben stabil ist und es stellt sich somit die Frage, wie die Tur-
bulenz erzeugt werden kann. In den letzten Jahren hat die Strato-Rotationsinstabilität (SRI)
viel Aufmerksamkeit erregt, da diese ein rein hydrodynamische Instabilität ist. Sie kann mit
einem klassisches Taylor-Couette (TC) -System, welches jedoch eine axiale Dichteschichtung
aufweist, relativ einfach experimentell und numerisch modelliert werden.

In dieser Arbeit wird eine kombinierte experimentelle und numerische Studie zum Ver-
ständnis von strömungmechanischen Phänomenen im Bereich der Strato-Rotations-Instabilität
durchgeführt. Im Allgemeinen bewirkt eine Dichteschichtung eine Änderung des Übergangs
zur Instabilität im Vergleich zum klassischen, nicht geschichteten TC-System. Ohne Schich-
tung wäre die Strömung in nun instabilen Bereichen stabil. Diese Eigenschaft kann mit der
SRI untersucht werden, um Phänomene in planetarischen und astrophysikalischen Anwendun-
gen zu erforschen, insbesondere mit dem Fokus auf die Akkretionsscheibentheorie. Trotz
vieler Fortschritte beim Verständnis der Impulsflüsse in Strato-Rotations-Systemen bleibt die
Gegenüberstellung experimenteller Daten mit nichtlinearen numerischen Simulationen rele-
vant, da sie beides, lineare Aspekte und nichtlineare Wechselwirkungen von SRI-Moden bein-
haltet, die noch besser verstanden werden müssen. Diese Vergleiche zeigen neue nichtlineare
Phänomene und Muster, die bei der SRI bislang noch nicht beobachtet wurden und können zu
unserem Verständnis von geophysikalischen Strömungen beitragen.

Das von uns verwendete System besteht aus zwei konzentrischen Zylindern, die sich un-
abhängig voneinander drehen können, wobei sich zwischen beiden vertikalen Zylindern ein
Silikonöl befindet. Um eine stabile Dichteschichtung entlang der Zylinderachse zu erhalten,
wird der Boden des Aufbaus gekühlt und der Deckel erwärmt, wobei der Temperaturunter-
schied zwischen 3K < ∆T < 4,5K beträgt. Die differentielle Heizung ergibt Froude-Zahlen
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Fr = Ωin/N zwischen 1,5 < Fr < 4,5, wobei Ωin die Drehung des inneren Zylinders und N
die Auftriebsfrequenz ist. Das Strömungsfeld ergibt sich aus den Rotationen der Zylinder und
durch Wechselwirkung mit der Schichtung. Mit Hilfe der PIV-Technik (Particle ImageVel-
ocimetry) wird die Strömung experimentell gemessen. Diese Arbeit konzentriert sich auf die
Fälle mit moderater Reynolds-Zahl (Re, basierend auf dem inneren Zylinderradius und der
Zylinderdrehzahl), die zwischen Re = 300 und Re = 1300 variiert. Das Rotationsverhältnis
von innerem und äußerem Zylinder, µ = Ωout/Ωin = 0,35, ist kleiner als das einer Kepler-
Rotation, liegt jedoch über der sogenannten Rayleigh-Grenze. Direkte numerische Simulatio-
nen werden mit derselben Konfiguration wie beim Experiment durchgeführt. Die numerische
Methode basiert auf einem inkompressiblen Code mit einem parallelen Kompaktschema hoher
Ordnung. Sie löst die Boussinesq-Gleichungen durch Kombination einer 2D-Pencil Zerlegung
und einem für die Parallelisierung optimierten Verfahren. Sowohl Simulationen als auch Ex-
perimente zeigen in Übereinstimmung mit den linearen Stabilitätsanalysen das Auftreten von
stabilen Strömungen, wenn die Reynolds-Zahl zu stark erhöht wird. Es wurden auch nieder-
frequente Geschwindigkeitsamplitudenmodulationen gefunden, die durch zwei konkurrierende
Spiralwellenmoden zustande kommen und die bislang unbekannt waren. Diese Moden wurden
im Experiment und den numerischen Simulationen beobachtet. Solche Modulationen sind mit
zeitlichen Schwankungen der spiralförmigen Wellen in axialer Richtung verbunden. Kürzlich
gemachte astronomische Beobachtungen haben solche Spiralen in einem frühen Stadium der
Sternentstehung in der Mitte einer Akkretionsscheibe nachgewiesen. Diese Beobachtung macht
die SRI zu einem aktuellen und relevanten Thema für astrophysikalische Anwendungen.



Chapter 1
Introduction

“We are all in the gutter, but some of us are looking at the stars.”

− Oscar Wilde −

1.1 Introduction to Strato-Rotational Instabilities in Accre-
tion Discs

Understanding the hydrodynamical mechanisms that can result in an outward transport of an-
gular momentum is a central problem regarding stars and planets formation, particularly in the
theory of accretion discs (Fromang and Lesur 2017). Accretion disks are astrophysical disk-
like shape objects composed of gas and dust that rotate around a central object, like a star or a
planet. One example of such astrophysical objects is the one observed by the Atacama Large
Millimeter/submillimeter Array (ALMA) collaboration (Brogan et al. 2015), shown in figure
1.1(a), which is an ideal system for the study of disk instabilities and early planet formation
since it consists of a young star surrounded by a disk with high mass. The disk mass Md is esti-
mated between 0.03M� < Md < 0.14M� , and its outer radius is estimated to be rout ≈ 130AU ,
with Keplerian velocity profile. At a radius of r ≈ 25AU , |u| ≈ 7.0km/s. The mass of the HL
Tauri star found in the center of the disk is estimated to be 30% higher than the solar mass
(M∗ ≈ 1.3M� ), enclosed in a radius r ≤ 25AU .

Central objects in accretion disks, as the HL Tauri star and the AB Aurigae shown in fig-
ure 1.1(a),(b) are formed by the gravitational collapse of the disk matter. The large mass and
size values in these systems show that even the slight rotations lead to too much angular mo-
mentum (Fromang and Lesur 2017), large enough to overcome gravitational forces that would
allow the formation of massive central objects. Since astrophysical observations show these
massive bodies in the center of accretion disks, the gas flow surrounding the objects should
be turbulent. Turbulence, unlike viscous diffusion, can efficiently transport these high angu-
lar momenta away from the center of the disk. By removing energy from the disk during this
process, turbulence allows gravity to become stronger than the outer-radial angular momentum
component, collapsing matter to form the observed astrophysical bodies.

The gas-dust region of the accretion disks can be approximated as a simple differentially ro-
tating shear flow – known as Taylor-Couette (TC) flows – with near-Keplerian velocity profiles
(Dubrulle et al. 2004). A classic TC system consists of two concentric cylinders rotating with
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(a) Protoplanetary disk around the young
HL Tauri star

(b) Inner region of the protoplanetary
disk around AB Aurigae star

Figure 1.1: (a) Image of a circumstellar disk surrounding a young star called HL Tauri, lo-
cated at the Tauri constellation, observed by the Atacama Large Millimeter/submillimeter Array
(ALMA) collaboration. Image obtained from (Brogan et al. 2015). (b) Image of an accretion
disc around the young AB Aurigae star, obtained by the ESO’s Very Large Telescope (VLT)
spotting signs of planet birth (Boccaletti et al. 2020), highlighting the spiral structure observed
in accretion disks.

angular velocities Ωin and Ωout , and has a mean azimuthal velocity profile uφ given by:

uφ (r) = Ωinr(µ−η
2)+

r2
inΩin(1−µ)

r(1−η2)
, (1.1)

where µ = Ωout/Ωin is the rotation ratio between inner and outer cylinders, and η = rin/rout
is the aspect ratio between inner and outer cylinder radius (r). Equation (1.1) is the analytical
solution of the Navier-Stokes equations in cylindrical coordinates (φ , r, z) for incompressible
Newtonian fluids in infinite long cylinders. When the first term of the right-hand side of (1.1)
is zero, the velocity is a potential field, therefore curl-free. This defines the Rayleigh limit,
µ = η2, which separates stable from unstable flows.

When µ < η2, uφ (r) is unstable, and Taylor vortices can be observed. If µ > η2, uφ (r)
remains stable. In accretion disks, the Keplerian azimuthal angular velocity profile Ω(r)∝ r−3/2

(Dubrulle et al. 2004) leads to µ = η3/2, and hence to stable velocity profiles (µ > η2). This
raises the question of which mechanisms could destabilize these rotating gas flows, generating
the turbulent outward angular momentum transport.

Among other candidates, the strato-rotational instability (SRI) has attracted attention in re-
cent years as a possible instability leading to turbulent motion in accretion disks (Dubrulle et al.
2004, Lyra and Umurhan 2019). In contrast to the Magnetorotational Instability (MRI), the
SRI is a purely hydrodynamic instability consisting of a classical Taylor-Couette (TC) system
with stable density stratification due to, for example, salinity (Withjack and Chen 1974, Boub-
nov et al. 1995, Park and Billant 2013, Le Bars and Le Gal 2007), or to a vertical temperature
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(a) uφ (b) ur (c) uz

Figure 1.2: Velocity isosurfaces snapshots of the SRI showing its non-axisymmetric spirals
obtained by numerical simulation with µ = 0.35, η = 0.517, a linear stable axial temperature
gradient with ∂T/∂ z≈ 5.7K/m, Fr≈ 1.5 and Re= 400. The aspect ratio between cavity height
and gap is Γ = H/(rout− rin) = 10. No-slip and impermeable Dirichlet boundary conditions
are imposed (uφ (rin) = Ωinrin, uφ (rout) = Ωoutrout , uz(z = 0) = 0, uz(z = H) = 0, ur(rin) = 0,
ur(rout) = 0), and the bottom and top lids of the cavity rotate with the outer cylinder rotation
Ωout .

gradient (Rüdiger et al. 2017, Seelig et al. 2018). Dubrulle et al. (2004) concludes that, in as-
trophysical disks, stable stratification due to temperature differences is the rule rather than the
exception. When a stable stratification is imposed on the TC system, the flow can be destabi-
lized for µ > η2 leading to the SRI.

Experiments performed by Withjack and Chen (1974) found that, unlike the axisymmetric
rolls in classic TC flows, the SRI presents non-axisymmetric spirals, confirmed by later exper-
iments performed by Boubnov et al. (1995), as an example. Figure 1.2 shows isocontours of
azimuthal (uφ ), radial (ur), and axial (uz) velocity components where these non-axisymmetric
SRI spiral structures can be observed. Note that the spirals in figure 1.2 were obtained in a
region where the flow is stable with respect to the non-stratified TC regime.

Due to new astronomical observations, as the one shown in figure 1.1.(b), the role of spirals
in the planet formation mechanisms have been attracting attention recently (Brogan et al. 2015,
Muro-Arena et al. 2020).

Caton et al. (2000) showed by linear stability analysis and experimental observations that
the first SRI transition happens via a supercritical Hopf bifurcation that destabilizes purely
azimuthal flows. Rüdiger et al. (2017) obtained marginal stability curves using linear stability
analysis for different values of Rn, the Reynolds number based on the buoyancy frequency,
defined as:

Rn = Nrin(rout− rin)/ν . (1.2)

where ν is the kinematic viscosity of the fluid, and N is the buoyancy frequency, also known as
Brunt-Väisälä frequency

N =

√
αg

∂T
∂ z

. (1.3)
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Figure 1.3: SRI marginal linear stability curves redrawn from Rüdiger et al. (2017) for 3 dif-
ferent values of Rn. Bigger values of Rn (and N) lead to larger instability regions. The black
dashed vertical line in the left represents the Rayleigh limit µ = η2, which separates stable and
unstable non-stratified TC cases (any to the left of this line in the diagram would be TC unsta-
ble). The green dashed vertical line in the right represents the Keplerian line µ = η3/2. SRI
unstable (red circles) and stable (blue crosses) cases with η = 0.517, Rn≈ 250, µ = 0.35 with
different Reynolds numbers were investigated numerically and experimentally in this article.

Here, α is the coefficient of thermal expansion, g is the gravity constant, and ∂T/∂ z is the axial
temperature gradient. Note that, higher temperature gradients lead to higher values of N, and
consequently, of Rn.

The Reynolds number of the stratified Taylor-Couette flows, based on the inner cylinder
rotation (Ωin), is defined as:

Re = Ωinrin(rout− rin)/ν . (1.4)

The Froude number measures the relative importance of rotation and stratification, being
defined as:

Fr =
Re
Rn

=
Ωin

N
. (1.5)

Figure 1.3 shows marginal stability curves redrawn from Rüdiger et al. (2017) for different
Rn values, and for the configurations we studied numerically and experimentally. Flows inside
(outside) these curves are predicted to be SRI unstable (stable). Note that the SRI unstable
regions increase with Rn. Obviously, stratified flows with µ > η2 can be unstable (to the right
of the Rayleigh limit, shown by the black vertical dashed line). Most important, the Keplerian
profile relevant for accretion disks can be unstable for all chosen Rn. The unstable regions
in figure 1.3 were confirmed by experiments (Rüdiger et al. 2017, Seelig et al. 2018), but the
upper transition back to stable regimes was not captured clearly in the previous experiments
in the region 0.3 < µ < 0.4. On the other hand, Edlund and Ji (2014, 2015) and Lopez and
Avila (2017) studied the turbulent boundary layer instabilities in quasi-Keplerian flows, and
observed numerically and experimentally which increased Reynolds numbers relaminarize the
flow, in agreement with the predictions of linear stability theory (Rüdiger et al. 2017). Follow-
ing Lyra and Umurhan (2019), these uncertainties show the importance of understanding the
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characteristics of stratified TC flows at increasingly higher Re values, highlighting the dangers
of deriving conclusions regarding the behavior of protoplanetary disks based on relatively low
Re quasi-Keplerian experiments and numerical simulations.

The SRI spirals are different from the ones observed in non-stratified TC flows. Yim and
Billant (2015) investigated the reasons why the columnar vortex shape of strato-rotating fluids
is different from the shear, centrifugal, or radiative instabilities. Leclercq et al. (2016) investi-
gated connections between TC flows, radiative instabilities, and the SRI. Hoffmann et al. (2009)
showed changes in the Taylor vortices of non-stratified TC systems when a low Reynolds num-
ber flow is forced in the axial direction. In these cases, the rolls assume inclination and shape
similar to the ones observed in the SRI, traveling along the axial axis in the same direction as the
flow imposed. These TC spiral propagation and inclination are affected by non-linear defects
that are also observed in the SRI. When the external axial flow is stopped, there is a break of
symmetry associated with a Hopf bifurcation, and a pattern change occurs, with changes in the
spiral inclination, but keeping the same spiral shape observed in the SRI flow.

1.2 Outline

In this thesis, the strato-rotational instability is investigated both numerically and experimen-
tally. Throughout this thesis, the SRI phenomena are studied in a temperature stratified Taylor
Couette system. We focus on the astrophysical application of the SRI, mainly related to the
theory of proto-planetary star development in accretion disks, composed of a gas and dust disk,
where both differential rotation and stable thermal stratification can influence the fluid mo-
tion. The theoretical description of phenomena related to the investigation, the experimental
setup, the numerical methods, the comparison of numerical and experimental investigations,
and observations of physical pattern formation phenomena associated with the SRI are treated
in different chapters, which will be described hereafter.

In chapter 2, the fundamental theory to describe the strato-rotational instabilities (SRI) will
be presented. This chapter intends to provide the reader with a basic understanding of concepts
that will be addressed in the following chapters, with further supplementary references indicated
at the beginning and along with the chapter. The concepts addressed start with a presentation of
the governing equations for the fluid motion on a stratified rotating media.; Then, internal wave
phenomena are presented, followed by the description of the Taylor Couette instability. In the
following, an overview of strato-rotational instability focusing on accretion disk applications
will be presented. Then, the Ekman boundary layer effects are discussed and followed by the
phenomena related to the turbulent kinetic energy distribution within the flow, and the turbulent
energy spectra; Finally, a resume of non-dimensional numbers mentioned throughout the text is
presented, so that the reader can easily consult their definitions while reading the text.

In chapter 3, the experimental setup designed at the Department of Aerodynamics and Fluid
Mechanics (LAS) of the Brandenburg University of Technology Cottbus–Senftenberg (BTU) to
study the SRI will be described. We will also present the methods implemented for measuring
the velocity profiles that develop from the inner and outer cylinder rotation using a co-rotating
mini-PIV system. Since the PIV camera has a tilted angle with respect to the laser sheets, an
undistortion technique developed by Seelig et al. (2018) was applied to the images obtained,
based on a polynomial distortion method, and will also be described. The experimental errors
in the experimental velocity profiles are also evaluated in chapter 3, including a study of how
many experimental measurements are necessary for the data to converge to average values. The
procedure to establish an approximately linear temperature gradient in the axial direction, which
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leads to a stable density stratification in the experimental setup, is also presented.
In chapter 4, the description of the CS2D-Annular numerical code is addressed. Since the

SRI is an instability that develops different time-scale phenomena, the use of numerical meth-
ods, therefore, is not easy. It needs to comprehend fine meshes to solve all the scales involved
in the problem, and long integration times are also required to fully develop all features of the
instability evaluated. To overcome these difficulties, a direct numerical simulation (DNS) solver
combining fourth-order accuracy space discretization and high-performance parallel computing
(HPC) was developed by Abide et al. (2018) and was used in this thesis to investigate the SRI
dynamics. The mathematical model, the time and space discretizations, as well as the strategies
for the code parallelization will be presented in chapter 4.

In chapter 5, we will discuss physical phenomena observed in the SRI both numerically and
experimentally with Reynolds number between 200 ≤ Re ≤ 1300, µ = 0.35 (slightly smaller
than the Keplerian line, at µ ≈ 0.375 in the experiments here presented), and temperature differ-
ence between top and bottom lids of ∆T ≈ 4K. These values were chosen due to their possible
practical implication on accretion disk theory. The results comparing experimental and nu-
merical simulation data will be presented in the radial-azimuthal (r− φ ) cross-section, with
values of Re = 400, Re = 600 and Re = 800, Re = 1000, respectively corresponding to inner
cylinder angular velocities of Ωin(Re = 400)≈ 0.381rad/s, Ωin(Re = 600)≈ 0.571rad/s, and
Ωin(Re = 1000)≈ 0.952rad/s. The objective of this comparison is not only the numerical code
validation, since it has already been validated in previous works (Abide et al. 2017, 2018),
but also to explore new physical phenomena associated with the SRI that can lead to a better
understanding of this still not fully comprehended hydrodynamic instability.

The new high-performance computing numerical code allowed for the first time to observe
long period phenomena of the SRI flow. This was not possible with comparatively much slower
scalar codes, or with experiments performed during short periods. In chapter 6, we will evalu-
ate the pattern formation in the SRI spiral structures, and slow varying phenomena associated
with the changes in these patterns. We will also investigate how the secondary SRI instabilities
associated with the pattern formation establishes in the flow. The effects of the pattern changes
in the circulation and how it affects the SRI base flow will also be addressed in chapter 6.
The relation of critical layer positions with the circulation cells and the flow structure will also
be investigated. Different factors that could influence the SRI features, such as the Reynolds
number, the geometrical parameter of the cavity (such as its height or gap size), and stronger
or weaker stratification, will be explored numerically in separated sections of chapter 6. The
energy spectra for different SRI regimes will also be investigated. This chapter also brings an
evaluation of the SRI turbulent momentum transport in space and time, which will be related
to important issues regarding how the SRI outwards transport of momentum in accretion disks.
This will be related to the secondary instabilities found, and we will discuss how this could in-
fluence the aggregation of matter by gravity in the center of the disks, leading to proto-planetary
star formation.

Finally, in chapter 7, the conclusions of the thesis are presented, including a summary of
the work developed, and some suggestions of future works based on the results and questions
raised throughout the thesis.



Chapter 2
Fundamentals

“Von den vielen Welten, die der Mensch nicht von der Natur geschenkt bekam, sondern sich aus
eigenem Geist erschaffen hat, ist die Welt der Bücher die größte. 1”

− Hermann Hesse −

In this chapter, the fundamental theory used to describe the strato-rotational instabilities
(SRI) studied with a temperature stratified Taylor Couette system will be presented, providing
the reader with a basic understanding of concepts that will be addressed in the following chap-
ters. In this thesis, we focus on the astrophysical application of the SRI, mainly related to the
theory of proto-planetary star development in accretion disks, composed of a gas and dust disk,
where both differential rotation and stable thermal stratification can influence the fluid motion.
The full description of the topics addressed in this chapter is beyond the scope of this thesis.
Therefore, the reader is referred to the works indicated in the literature for a more complete
explanation of the phenomena presented in each section.

In section 2.1 the governing equations for the fluid motion on a stratified rotating media will
be briefly presented. A complete derivation of the equations presented can be found in the text-
books Landau and Lifshitz (1959), Batchelor (2000), Kundu and Cohen (2001). In section 2.2,
internal waves phenomena are presented, and the reader is encouraged to look at Sutherland
(2010), Pedlosky (2013) for a complete description. The Taylor Couette instability is presented
in section 2.3, and the supplementary text indicated are Taylor (1923), Drazin (2002), Kundu
and Cohen (2001). Section 2.5 presents the Ekman boundary effects, and the supplementary
textbooks indicated are Flor (2010), Childs (2011). Section 2.6 present phenomena related to
the turbulent kinetic energy distribution within the flow and turbulent energy spectra, and the
reader is encouraged to look at Pope (2001) and Dubrulle (2019) for more detailed discussions.
Finally, the strato-rotational instability focusing on accretion disk applications will be presented
in section 2.4. A review of instabilities in proto-planetary accretion disks can be found in Ar-
mitage (2019). Further supplementary references will be indicated along with this chapter, as
more specific phenomena are addressed.

2.1 Equations of motion
Stable stratified rotating fluids are commonly found in nature, such as in the oceans and seas,
which can be stratified due to an uneven distribution of salinity or due to temperature strat-

1Among the many worlds which man did not receive as a gift of nature, but which he created with his own mind,
the world of books is the greatest.
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ification, when the bottom part gets colder than the surface due to smaller sun irradiation.

Figure 2.1: Cartesian and cylindrical
coordinates.

The stable density stratification also occurs in the
stratosphere region of the earth’s atmosphere, in the
earth’s boundary layer at night, or in accretion disks,
composed by a stable temperature stratified disk of gas
and dust rotating in space (Dubrulle et al. 2004, Lyra
and Umurhan 2019). Since these fluids are rotating,
it is natural to write the momentum equations that de-
scribe their movements in a rotating coordinate. Due
to the geometry of the problems that are investigated in
this thesis, the equations are also presented in cylindri-
cal coordinates. When the vertical length scales investi-
gated are smaller than the density variation, density can
be treated as constant in both continuity and momen-
tum equations, except in the gravity term, to take into account buoyancy effects. This consid-
eration is known as the Boussinesq approximation (Kundu and Cohen 2001). The Boussinesq
approximation also takes into account the incompressibility of the flow, which can be consid-
ered in the cases addressed in this thesis, since the velocities involved in the problems evaluated
are much smaller than the sound speed, leading to small Mach numbers (Mach<< 0.3). The
Navier-Stokes equations under the Boussinesq approximation in cylindrical coordinates on a
reference frame rotating around the z axis with angular velocity Ω = |~Ω| read

Du
Dt

+2~Ω×u =− 1
ρ0

∇p+
ρ

ρ0
g+ν

(
∇

2u
)
+F,

∇ ·u =
1
r

∂uφ

∂φ
+

1
r

∂ (rur)

∂ r
+

∂uz

∂ z
= 0,

(2.1)

where u = (ur,uφ ,uz) is the velocity vector field respectively in the radial, azimuthal and axial
directions, p is the pressure,ν is the kinematic viscosity, ρ is the fluid density, ρ0 is a constant
reference density, g is the gravity acceleration, and F account for other body forces, such as the
influence of magnetic fields, surface tensions, etc, that will not be considered here, therefore,
we assume F = 0. Note that, in other astrophysical and geophysical applications, such as mag-
netic excited regions on accretion disks, F would play an important role. D/Dt is the material
derivative, defined in cylindrical coordinates (figure 2.1) as

D
Dt
≡ ∂

∂ t
+

uφ

r
∂

∂φ
+ur

∂

∂ r
+uz

∂

∂ z
. (2.2)

The Laplacian operator is defined in cylindrical coordinates as

∇
2 ≡ 1

r2
∂ 2

∂φ 2 +
1
r

∂

∂ r

(
r

∂

∂ r

)
+

∂ 2

∂ z2 . (2.3)

The term f = 2~Ω×u in (2.1) is the Coriolis acceleration.
Defining a characteristic length L, and a characteristic velocity U , we can introduce the

following scaling

u =U ũ, r = Lr̃, t = t̃/Ω,

p = ρ0ΩULp̃, ρ = ρ̃ρ0,

T = T̃ T0, ρ̃ = α(∆T )T̃
(2.4)
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where the tilde (∼) indicates non-dimensional variables. Substituting (2.4) in (2.1), we obtain
the non-dimensional momentum equations that read

∂ ũ
∂ t̃

+Ro
(
ũ · ∇̃

)
ũ+2k× ũ =−∇̃p̃+

1
Fr2Ro

T̃ k+E∇̃
2ũ, (2.5)

where k≡ ~Ω/|~Ω|, ∇̃ is the non-dimensional gradient operator. Ro in (2.5) is the Rossby num-
ber, which measures the ratio between the non-linear advective and the Coriolis terms, defined
as

Ro≡ |(u ·∇)u|
|~Ω×u|

=
U
ΩL

. (2.6)

E in (2.5) is the Ekman number, that gives the relation between advection and viscous forces,
and reads

E ≡ ν

ΩL2 . (2.7)

The quantity Fr is the Froude number, that gives a ratio of inertial and gravitational forces,
measures the relative importance of rotation compared to stratification, and reads

Fr ≡ Ω

N
, (2.8)

where N is the buoyancy frequency, defined in equation (2.15).

2.1.1 Stable density stratification
We will now discuss the influence of stable density stratification due to a temperature gradient
in the axial direction. In a stably stratified fluid, the density gradient ∂ρ/∂ z decreases with the
height, i.e., the density increases in the direction of the gravity acceleration. The flow is consid-
ered to be stably stratified because no natural convection occurs, since the less dense particles
are placed on top of the “heavier” ones, and the system is stable with respect to Rayleigh-
Bernard instabilities. The energy equation that governs the temperature evolution in stratified
flow reads

DT
Dt

= κ∇
2T, (2.9)

where κ is the is the fluid thermal diffusivity. The density variation with temperature follows
the equation of state

ρ = ρ0(1−α∆T ) (2.10)

where α is the thermal expansion coefficient.
If we consider a stationary flow and neglect effects of viscosity on (2.1), we obtain an

equation where the equilibrium is given by the hydrostatic balance between gravity and pressure
forces that read

∂ p
∂ z

=−ρ(z)g (2.11)
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where ∂ p
∂ z and−ρ(z)g are the density and vertical pressure distributions respectively. The z-axis

is taken vertically upward, leading to a stably stratified fluid with the density linearly increasing
with depth.

If we now consider the vertical displacement δ z of a particle initially at a vertical position
z0 in this stratified medium, a restoring force pushes this particle back to its original position.
Newton’s third law gives that this restoring force follows

ρ0
d2z
dt2 = (ρ(z)−ρ0)g. (2.12)

The Taylor expansion of ρ around z0 on the right-hand side of (2.12) leads to

(ρ(z)−ρ0)g = g
dρ

dz

∣∣∣∣
z=z0

δ z+O(δ z2) (2.13)

If we consider the vertical displacement δ z to be small, we can linearize (2.13) by neglect-
ing terms of O(δ z2). Substituting then the linearized Taylor expansion on the right hand side
of (2.12), we obtain the equation

d2δ z
dt2 +N2

δ z = 0, (2.14)

where N is known as the Brunt-Väisälä or buoyancy frequency, defined as

N2 ≡− g
ρ0

dρ

dz

∣∣∣∣
z=z0

. (2.15)

The buoyancy frequency is associated with how a particle would oscillate around z0 when
it is displaced from its rest position in the vertical. When the particle is displaced, the density
gradient accelerates it back to the z0 position, which is indicated by the minus sign on the right-
hand side of 2.15. Due to inertia, this particle would pass z0, and the buoyancy restoring force in
the opposite vertical direction would force it back to z0 again, leading to an oscillation around
z0 with frequency N. The oscillations of the particles displaced can also be observed by the
fact that 2.14 is a harmonic oscillator equation, with solution δ z = Zsin(Nt +θ) where Z is the
amplitude of the oscillation, and θ is the phase.

2.2 Wave propagation in a fluid

In a stably stratified fluid with the density linearly increasing with depth, internal waves can
propagate in any direction and at any angle with respect to the vertical (Kundu and Cohen 2001),
with the direction indicated by their wave number vector components K = (m, l,k). In geophys-
ical stratified rotating fluids, internal waves can be generated by the flow over topography, by
convection, and by spontaneous imbalance due to perturbations in the geostrophic equilibrium,
when the pressure terms are balanced by Coriolis effects (Rodda 2019). Baroclinic processes,
where surfaces of constant pressure do not coincide with the surfaces of constant density, can
also create vortices that excite Internal waves in a rotating and continuously stratified fluid.
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Figure 2.2: Schematic representation of wave crests and of the wave package propagating in
the x− y plane, adapted from Kundu and Cohen (2001), Pedlosky (2013). The crest spacing
along the coordinate axes is larger than the wavelength λ = 2π

K inside the package. The vector
diagram on the top left side of the image shows how the trace velocities cx and cy are combined
to give the phase velocity vector c. In the wave package, it is represented how every individual
crests moves with phase speed c, and how the whole package moves with a different group
velocity cg, of amplitude A(ξ , t) in the direction of the wavenumber K.

The crest (or trough) of a propagating wave moves a distance ∆xcrest = (ω/k)∆t on a time
increment ∆t with the phase velocity c, that specifies the travel speed of a constant-phase wave.
The phase speed is then defined as

c = ω/k = λν . (2.16)

Figure 2.2 shows a schematic representation of how wave crests propagate with the phase ve-
locity c on a x− y plane, reproduced from Kundu and Cohen (2001). Note that, although the
representation is made in 2 dimensions, in general, waves may propagate in any direction.

When waves propagate, the dynamics of the phenomena impose a relation between the
wave vector and frequency (Pedlosky 2013) that shows if waves are dispersive. When the
speed of propagation depends on wave number K, the wave is dispersive, which means that a
concentrated wave packet, composed of many different wavelengths (or frequencies), does not
maintain a constant waveform (or shape). This makes waves spread out (disperse) as it travels,
with longer wavelength components traveling faster than the shorter ones, so that an initial
impulse evolves into a wide wave train. This spreading out can be observed, for example, when
we throw a rock in a river, and a train of waves propagating separately arise (Kundu and Cohen
2001, Collard et al. 2009). This relation between frequency and wavenumber is therefore called
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(a) (b)

Figure 2.3: Schematic representation of (a) Wavenumber vector (K) direction; (b) Phase veloc-
ity travelling in the direction of the wave number vector and orthogonal to the group velocity,
as observed in internal waves generated by buoyancy and rotation. Reproduced from Pedlosky
(2013).

the dispersion relation and can be written as

ω = ω(m, l,k) (2.17)

highlighting that the wave frequency may depend on all three components of the wavenumber
vector K = (m, l,k), shown in figure 2.3(a). Note that each wave vector has its own frequency,
that often depends only on the magnitude of the wave vector, rather than on its orientation, but
this is not always the case (Pedlosky 2013). For a specific wave number k and frequency ω , the
phase of the wave propagating on an ξ spacial direction can be written as θ = kξ −ωt, leading
to the differential equation

∂k
∂ t

+
∂ω

∂ξ
= 0. (2.18)

Applying the chain rule to the dispersion relation presented in (2.17), the space derivative can
be written as ∂ω/∂x =

(
∂ω

∂k

)(
∂k
∂x

)
, and (2.19) can be re-written as the wave equation

∂k
∂ t

+ cg
∂k
∂x

= 0 (2.19)

where

cg =
dω

dk
(2.20)

is called group velocity. Equation (2.19) shows that the group velocity is the speed at which
wave numbers are advected in the flow. The energy of the wave also propagates with the group
velocity cg. Figure 2.2 schematically shows that, while the wave crests travel with a phase ve-
locity c, a wave package travels with the group velocity cg. Note that, although the phase speed
and the group velocities are represented travelling in the same direction, this does not neces-
sarily occur. In fact, for internal gravity waves (IGW), c is orthogonal to cg, as schematically
represented in figure 2.3(b). Note also that, if the waves propagate in a fluid that is moving
at velocity u (with respect the observer frame of reference), the phase speed is measured as
c0 = c+u, and the wave frequency ω0 is Doppler shifted by the mean flow as

ω0 = ω +u ·K (2.21)

where ω is the intrinsic frequency measured by an observer moving with the flow with velocity
u.



2.2. Wave propagation in a fluid 13

2.2.1 Gravity waves
In stably stratified fluids, gravity waves can be generated, for example, by the restoring buoy-
ancy effects acting on a fluid particle that has been displaced from its original stable position
by a perturbation (Gostiaux et al. 2007), as well as by oscillations in the cavity where a stably
stratified fluid exists (Maas et al. 1997). The linearized non-rotating Boussinesq equations (2.1)
for a fluid stably stratified has a solution in the form of a plane wave that can be written as

u = u0ei(kξ−ωt), (2.22)

and dispersion relation (ω), without taking into account the effects of rotation, given by

ω
2 =

N2K2
H

K2 = N2cos2
θ , (2.23)

where K = (m, l,k) and ξ = ξi,ξ j,ξk are respectively the wavenumber and the space vector
with components in the coordinates ex,ey,ek. K2

H = m2 + l2 and K2 = m2 + l2 + k2, and u0 is
its amplitude. The angle θ in (2.23) is inclination of the wavenumber vector with respect to the
horizontal plane, as shown on figure 2.3(a). Writing the dispersion relation of these waves in
terms of the angle θ on (2.23) makes it more clear that their direction of propagation will not
depend on the spatial scale, but only on the wave frequency and the stratification (Sutherland
2010).

The phase velocity c of the gravity waves without rotation is given by

c =
ω

|K|2
K = Ncosθ

K
|K|2

(2.24)

and the group velocity cg is

cg = ∇kω =

(
∂ω

∂m
,
∂ω

∂ l
,
∂ω

∂k

)
=

(
Nk2m
K3KH

,
Nk2l
K3Kh

,−NkKH

K3

)
.

(2.25)

Note that, for these gravity waves, the group velocity is orthogonal to the phase velocity, since

k · cg = 0,
k× c = 0,

(2.26)

which means that the group velocity propagates with a 90° angle with respect to the phase speed
of the waves, as schematically represented in figure 2.3(b).

2.2.2 Inertial waves
When internal waves are generated in purely rotating flows, the Coriolis component f k× u
in (2.1) acts as the restoring force, where f = 2Ω is the Coriolis parameter. In these cases,
the waves are called inertial waves, and the linearized Boussinesq equations also lead to plane
wave solutions, that was experimentally observed to propagate obliquely through the fluid, with
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a fixed angle with respect to the rotation axis (Maas 2001). The dispersion relation of these
gravity waves is given by

ω
2 = f 2 k2

K2 = f 2sin2
θ , (2.27)

Note from (2.27) that, since ω/ f = sinθ , these waves only exist when the dispersion relation is
smaller than the Coriolis parameter (ω < f ) (Batchelor 2000). The phase speed of the inertial
waves is given by

c =
ω

K
K
K

=± f k
K

K
K2 (2.28)

while the group velocity reads

cg = ∇kω =

(
∂ω

∂m
,
∂ω

∂ l
,
∂ω

∂k

)
=

(
− f mk

K3/2 ,−
f lk

K3/2 ,
f K2

H

K3/2

) (2.29)

Note that, again, the group and phase velocities propagate perpendicular to each other for
gravity waves that arise from rotation, since cg ·c= 0, as schematically represented in figure 2.3.

2.2.3 Inertial-gravity waves
Internal waves that are generated by the combined effect of rotation and stratification are known
as Inertial-gravity waves (IGW). These waves propagate shear within the flow, with both the
Coriolis and buoyancy forces affecting their propagation (Maas 2001, Sutherland 2010). For
IGW, the dispersion relation is given by

ω
2 = N2 m2 + l2

K2 + f 2 k2

K2 = N2cos2
θ + f 2sin2

θ (2.30)

Note that (2.30) implies that IGW can only exist in the interval N < |ω| < f if N < f , or
f < |ω|< N if f < N.

For IGW, considering c in equation (2.28), the magnitude of phase velocity c = |c| reads

c =
ω

(m2 + l2 + k2)1/2 =

√
N2(m2 + l2)+ k2 f 2

m2 + l2 + k2 , (2.31)

and the group velocity is given by

cg = ∇kω =

(
∂ω

∂m
,
∂ω

∂ l
,
∂ω

∂k

)
=

N2− f 2

(m2 + l2 + k2)

(
mk2

ω
,
lk2

ω
,−k(m2 + l2)

ω

)
.

(2.32)

Note that the group velocity is normal to the wavevector, but travels on an opposite vertical
direction since the ez (vertical) component of the group velocity in (2.32) assumes a negative
sign. Again, we can see that cg · c = 0, i.e., that the group and phase velocities propagate
perpendicular to each other.
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Figure 2.4: Schematic representation of Taylor vortices with counter-rotating pair of rolls re-
produced from Cross and Hohenberg (1993).

The Coriolis parameter ( f ) was here considered to be constant, as we will not deal specif-
ically with cases of varying Ω in this thesis, but it worth mentioning that, when f varies, the
equations of motion allow another type of wave motion called Rossby waves, that are also im-
portant in several geophysical and astrophysical applications (Kundu and Cohen 2001, Pedlosky
2013).

2.3 Taylor-Couette Instability

To investigate the general hydrodynamic stability of a protoplanetary disk, we can approximate
the gas flux as a circular shear flow known as Taylor-Couette (Klahr et al. 2018, Dubrulle et al.
2004). Taylor–Couette (TC) systems consist of two concentric cylinders that rotate with differ-
ent angular velocities. Between the two cylinders, there is a fluid of density ρ that, depending
on the amount of shear provided by the cylinder’s rotation, can develop an instability in the
form of counter-rotating pairs of rolls known as Taylor vortices, as schematically represented in
figure 2.4.

To understand the instability of TC systems, we will present the linear stability analysis
following Kundu and Cohen (2001), Drazin and Reid (1981), Drazin (2002) and Klahr et al.
(2018). Using the cylindrical coordinates φ , r and z (see figure 2.1), that are convenient to deal
with the cylindrical geometry of the problem, and assuming axial symmetry, the 3 components
of the incompressible inviscid momentum equations Du/Dt =−∇p/ρ read

∂uφ

∂ t
+ur

∂uφ

∂ r
+

uφ

r
∂uφ

∂φ
+

uφ ur

r
+uz

∂uφ

∂ z
=− 1

ρr
∂ p
∂φ

,

ur

∂ t
+ur

∂ur

∂ r
+

uφ

r
∂ur

∂φ
−

u2
φ

r
+uz

∂ur

∂ z
=− 1

ρ

∂ p
∂ r

,

∂ ruz

∂ t
+ur

∂uz

∂ r
+

uφ

r
∂uz

φ
+uz

∂uz

∂ z
=− 1

ρ

∂ p
∂ z

,

(2.33)
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with the continuity equation Du/Dt = 0 in cylindrical coordinates written as

1
r

∂uφ

∂φ
+

1
r

∂ (rur)

∂ r
+

∂uz

∂ z
= 0. (2.34)

Note that the equations of motion (2.33) are not written here under the Boussinesq approxi-
mation as previously presented in (2.1), and no density stratification is considered. Using the
Reynolds decomposition to separate variables corresponding to the base flow (capital letters)
and the perturbation (primed variables), we can re-write the velocity and pressure terms as

u = U+u′,
p = P+p′.

(2.35)

In the TC system, the base state is given by

Uφ =V (r), Ur =Uz = 0,

1
ρ

dP
dr

=
V 2

r
,

(2.36)

where

V (r) = Ar+
B
r
, with

A =
Ωoutr2

out−Ωinr2
in

r2
out− r2

in
, and

B =
(Ωout−Ωin)r2

outr
2
in

r2
out− r2

in
.

(2.37)

We can then substitute (2.35) into (2.33) and (2.34), and subtracting then the base flow from
the results, we obtain the equations for the fluctuations, that read

∂u′
φ

∂ t
+

(
dV (r)

dr
+

V (r)
r

)
u′r +

V (r)
r

∂u′
φ

∂φ
=− 1

rρ

∂ p′

∂φ
,

∂u′r
∂ t

+
V (r)

r

(
∂u′r
∂φ
−2u′φ

)
=− 1

ρ

∂ p′

∂ r
,

∂u′z
∂ t

+
V (r)

r
∂v′z
∂φ

=− 1
ρ

∂ p′

∂ z
,

1
r

∂u′
φ

∂φ
+

u′r
r
+

∂u′r
∂ r

+
∂u′z
∂ z

= 0.

(2.38)

Note that non-linear terms in (2.38) (containing products of fluctuations) were neglected be-
cause these perturbations are assumed to be infinitesimally small. Therefore, second-order
terms are too small compared to the other terms in the equation and are dropped. Note that
equations (2.38) admit plane wave solutions of the form

(
u′φ ,u

′
r,u
′
z, p′
)
=
(
uφ (r),ur(r),uz(r), p(r)

)
ei(ωt+mφ+kz). (2.39)
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Substituting (2.39) in the perturbation equations (2.38), we obtain

i
(

ω +
V (r)

r

)
u′φ −

(
V (r)

r
+

dV (r)
dr

)
u′r =−

imp′

rρ

i
(

ω +m
V (r)

r

)
u′r−

2V (r)
r

u′φ =− 1
ρ

d p′

dr
,

i
(

ω +m
V (r)

r

)
u′z =−ik

p′

ρ
,

du′r
dr

+
u′r
r
+

imu′
φ

r
+ iku′z = 0.

(2.40)

Drazin and Reid (1981) derived the equation for the perturbed flows in a Lagrangian frame
of reference that allowed them to define the stability criteria for the Taylor-Couette-flow un-
der an axisymmetric perturbation neglecting viscous effects called the Rayleigh discriminant,
which is defined as

Φ = 2
Ω(r)

r
d
(
r2Ω(r)

)
dr

< 0 Unstable, (2.41)

where Ω(r) = V (r)/r is the flow angular velocity as a function or the radial position. Equa-
tion (2.41) shows that when Φ < 0, the motion becomes unstable, with epicyclic oscillations
around the equilibrium state that make the perturbations grow exponentially, and the Taylor
columns appear. When Φ > 0, on the contrary, the instabilities decrease and the flow becomes
stable. This criterion was demonstrated by Rayleigh to be a necessary and sufficient condition
for the instability to occur (Kundu and Cohen 2001). Note that the circulation for inviscid flows
is constant according to Kelvin’s circulation theorem, and will be given by

Γ = 2πrV (r) = constant, (2.42)

which means that perturbations will be conserved if an axissymetric ring of radius r is perturbed,
therefore, also V (r) in equation (2.42) will be conserved. The horizontal swirls will then mani-
fest themselves in the fluid due to a centrifugal force density ρV 2

r = ρV 2(r)
r acting in the radial di-

rection with a potential energy density 1
2

ρ(rV (r))2

r2 = 1
2ρu2

φ
(r) (Drazin 2002). If we then consider

the exchange of position of two rings with equal masses and arbitrary radial positions r2 > r1,

the increase in kinetic energy after the exchange will be given by r2
2V 2(r2)−r2

1V 2(r1)
2

(
1
r2
1
− 1

r2
2

)
.

This exchange can only occur if ((r2
1V (r1))

2 > (r2
2V (r2))

2), otherwise, there will be no sufficient
centrifugal force to drive the changes. Therefore, the Rayleigh criterion for the TC instability
can also be written as

Ra≡ d(r2V 2(r))
dr

< 0, Unstable. (2.43)

For a TC experiment with concentric cylinders rotating with different inner (Ωin) and outer
(Ωout) cylinders angular velocities (see chapter 3), the Rayleigh limit is found at η2, where
η = rin

rout
it the ratio between inner and outer cylinder radii. Applying the Rayleigh criterion

presented in equation (2.43), the instability of the fluid occurs when µ = Ωout
Ωin

assume values of

µ < η
2, unstable,

µ > η
2, stable.

(2.44)
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(a) Taylor-vortices (b) Wavy vortices (c) Turbulent sprirals

Figure 2.5: Different Taylor vortex spiral regimes visualized using machine oil with aluminum
powder, reproduced by Van Dyke (1982). The different regimes are obtained by increasing
the inner cylinder angular velocity (from left to right) while keeping the outer cylinder at rest.
Considering the critical Reynolds numbers Recr where the spirals appear, and the Reynolds
numbers based on the inner cylinder Re (a) Re = 1.16Recr (b) Re = 8.5Recr (c) Re = 1625Recr.

In accretion disks the gas of a protoplanetary disk orbits the star with an angular frequency close

to Ω≈
√

GM∗
r3 , with M∗ being the stellar mass, and G≈ 6.6710−11m3kg−1s−2 is the gravitation

constant, leading to a Keplerian azimuthal angular velocity of Ω ∝ r−3/2 (Dubrulle et al. 2004).
Note that, since µ ∼ η3/2 > η2, the flow is stable with respect to the Rayleigh criterion.

For viscous flows, a similar linear stability analysis of the momentum equations and the
control parameter obtained is the Taylor number, which reads

Ta≡ 4Ωind4

ν2

(
Ωinr2

in−Ωoutr2
out

r2
out− r2

in

)
, (2.45)

where the critical Taylor number defines that the flow will be stable until reaching the Tacr
value. Note that viscosity tends to stabilize the flow with respect to the inviscid Rayleigh so-
lution, i.e., viscosity makes the flow remain stable with higher shear rates. That is why, in
this thesis, we say that a system is stable concerning the TC instability when it is beyond the
Rayleigh limit since this implies that the system is also stable considering viscous effects, there-
fore, making Ra a more conservative parameter than Ta to evaluate if the system is stable with
respect to centrifugal instabilities.

Figure 2.5 shows Taylor spirals with different Reynolds numbers visualized by Van Dyke
(1982) on a TC experimental setup with rotating inner cylinder and keeping the outer cylin-
der at rest. Note that the Taylor vortices become unstable themselves at higher values of Ta
(higher Re). In figure 2.5(a), the Reynolds number value is close to the critical Reynolds num-
bers where the TC instability first appears (Recr), and asymmetric standing rolls in the form
of counter-rotating toroidal vortices are observed. When the Reynolds number increases from
Re= 1.16Recr in 2.5(a) to Re= 8.5Recr in figure 2.5(b), the axisymmetric structure changes into
a wavy vortices regime, where ∂/∂φ 6= 0, associated to the next higher mode of the instability.
When the Reynolds number is increased to Re = 1625Recr, turbulent features can be then ob-
served superimposed to the Taylor vortices. Increasing the Reynolds numbers even more leads
to fully turbulent flows, without a clear presence of the Taylor vortices. The transition of the
Taylor rolls themselves is analogous to the primary TC flow transition from the stable regime to
the appearance of Taylor vortices, therefore, they are called secondary instabilities. A marginal
instability map for different TC regimes, obtained by Andereck et al. (1986), is presented in
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Figure 2.6: Different Taylor-Couette Regimes in cavities with long cylinders co-axially rotating
with a different inner and outer Reynolds numbers (respectively represented by Ri, in the y-axis
and Ro, in the x-axis). The diagram shows regimes for counter-rotating (Ro < 0) and co-rotating
cylinders (Ro > 0), and is reproduced from Andereck et al. (1986).

figure 2.6. As we will see further, the strato-rotational instabilities (SRI) also present secondary
instabilities, which will be investigated in chapter 6.

2.4 The Strato-Rotational Instability (SRI)

When the Taylor-Couette system presented in section 2.3 has a stable density stratification in
the axial direction, the strato-rotational instability (SRI) can occur. This stratification is said
to be stable when density increases in the direction of the gravity acceleration, and the flow
is stable with respect to Rayleigh-Bernard instabilities, i.e., the flow is stable with respect to
convection.

In nature, stable density stratification can be observed in many systems, such as in the strato-
sphere region of the atmosphere, or in the atmospheric boundary layer during the night, when
the air is cooled near land bottom surfaces. In oceans and seas, salinity can lead to the stratifi-
cation, or solar irradiation, that warms up the surface of the waters, decreasing the fluid density
(see equation state (2.10)). As temperature decreases with depth in these cases, the water den-
sity increases towards the bottom, in the direction of gravity acceleration, creating then a stable
density stratification. When stable density stratification establishes, a parcel of fluid that would
be displaced upwards from its original position would be heavier than its surrounding envi-
ronment and would tend to come back to its original position. Because this displaced parcel of
fluid has inertia, it will pass again its original position and reach a surrounding environment that
will now push it upwards due to buoyancy, since the surrounding fluid is now colder, therefore,
denser than the displaced fluid parcel. The fluid pushed upwards would again pass its original
position due to inertia. This mechanism makes a disturbed parcel of fluid oscillate in the direc-
tion of the stratification with a natural frequency N, that is the buoyancy frequency, presented
in eq. (1.3).

In accretion disks, stable density stratification occurs along the axial direction, between the
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outer and mid region of the disks. In the more external region of the disk, since matter becomes
more sparse, opacity becomes smaller, and light can penetrate this region. Interactions of the
gas that forms the disks with cosmic microwave background (CMB) radiation can then lead to
the ionization of a thin layer in the outer regions of the disk (Gammie 1996). Since gravity
tends to accumulate more matter in the mid regions of the disks, when we move towards the
mid-plane region of the disks, the matter becomes more compact due to gravitational effects,
and so that the CMB radiation can no longer ionize matter in a large inner region of the disks
(Turner and Drake 2009), known as the ’dead zone’ (Marcus et al. 2015). Although photons
can not ionize the dead zone of the disks, the ionization in the bother of the disks increases
the temperature in these outward regions, leading to stable density stratification in the axial
direction. Stable density stratification in the axial direction, then, is expected to be the rule in
accretion disks Dubrulle et al. (2004).

When stratification and rotation are present in a system, such as in the atmosphere, oceans,
or in accretion disks, the interaction of inertia and buoyancy effects can lead to the hydrodynam-
ical instability called the Strato rotational Instability (SRI). This instability manifests itself in
the form of non-axisymmetric spirals (see figure 1.2), different from the axisymmetric Taylor-
Couette vortices presented in section 2.3. This instability was first experimentally observed by
Le Bars and Le Gal (2007). Although the SRI can arise from the interaction and resonances
of internal waves within the fluid, that is generated in the presence of density stratification, the
mechanisms that lead to the SRI, and how these resonances and interactions of waves can lead
to the instabilities, remain to be better comprehended.

Marcus et al. (2013) propose that instabilities on flows that have shear and stratification can
arise when critical layers are excited and transfer energy from the background shear to growing
vortices. These vortices would then excite new critical layers themselves, that would replicate
new self-similar vortices in a feedback process that can destabilize stratified Couette flows, as
the dead zones of protoplanetary disks with Keplerian flows. Critical layers correspond to a
particular region where singularities in the linear stability equations appear. A classical critical
layer occurs when the phase speed (c) of a normal mode (of waves traveling in the azimuthal
direction) would equal the mean flow (uφ − c = 0) (Acheson 1976), while for stratified flows,
critical layers that depend on the stratification can also exist, as when the phase speed equals
a characteristic gravity-wave speed (c = |N/m|) (Wang and Balmforth 2018), with N being
the buoyancy frequency, and m is the azimuthal wave number. Lesur (2007) considers that a
rigid boundary could be necessary for the SRI to develop, if we consider it arising from the
superposition of two Kelvin waves that result from the interaction between the Coriolis and the
pressure terms, traveling in opposite directions in the near-wall region of stratified fluids. Park
(2012), on the contrary, considers that the SRI could arise from the spontaneous radiation of
internal waves that reflect and resonate interacting with critical layers that develop within the
cavity, giving rise to the instability independently of the presence of a rigid outer boundary
(Dizès and Riedinger 2010, Wang and Balmforth 2018).

Dubrulle et al. (2004) proposed that shear and stratification can onset the instability in a
typical accretion disk by the spontaneous generation of linear modes when critical values of
Reynolds numbers and stratification are combined, especially in weakly ionized regions of ac-
cretion disks, that would transit from stable to unstable SRI regimes via Hopf bifurcations.
Furthermore, Dizès and Riedinger (2010), Park (2012), Armitage (2019) have shown that the
instability depends upon the radiative properties of the disk.

In 2017, Rüdiger et al. (2017) presented marginal instability curves for the SRI obtained us-
ing linear stability results, reproduced in figure 2.7. The linear results show that stably stratified
flows can become unstable beyond the Rayleigh critical values. These results showed how the
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Figure 2.7: Mariginal instability curves obtained by Rüdiger et al. (2017) with linear stability
analysis for different values of Rn. The horizontal axis shows the ratio between outer and
inner cylinder angular velocity (µ), and the vertical axis shows the Reynolds numbers. The
vertical black dashed line on the left shows the Rayleigh limit, which separates non-stratified
TC unstable and stable regimes, as indicated in the diagram (rotation rations to the left of
the Rayleigh line are TC unstable). The green vertical dashed line on the right represents the
Keplerian line. The regions inside the marginal instability curves (for different Rn) represent
SRI unstable solutions according to the linear theory.

SRI can destabilize the fluid outside the regime of the centrifugal instability, i.e., to the right
of the black dashed vertical line in figure 2.7, including for the Keplerian azimuthal angular
velocity of Ω ∝ r−3/2 observed in accretion disks (Molemaker et al. 2001, Yavneh et al. 2001,
Dubrulle et al. 2004).

Note that the SRI can also present secondary instabilities in the form of upwards and down-
wards traveling spirals in the axial direction that will be further investigated in chapter 6. Ben-
gana and Tuckerman (2019) investigated numerically counter-rotating Taylor-Couette flows in
which a Hopf-bifurcation also gives rise to branches of upwards and downwards traveling spi-
rals, qualitatively similar to what was observed for the SRI in the present dissertation. Other
upward and downward axial traveling spiral regimes were observed by Hoffmann et al. (2009)
on co-rotating Taylor-Couette flows with a low Reynolds number flow imposed in the axial di-
rection. When the axial flow is interrupted, changes in spiral directions of propagation occur
spontaneously, also via Hopf-bifurcation, with similar features that will be presented here for
the SRI.

2.5 Ekman boundary layers

Near the top and bottom boundaries of a rotating closed cavity, an Ekman boundary layer
is established, where viscous forces are stronger and balanced by the pressure gradients and
Coriolis force. Considering flows with small Rossby number in non-stratified media (as the TC
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system), the non-dimensional momentum equation (2.5) can be written as

2k×u =−∇p+E∇
2u (2.46)

where the term E∇2u represents viscous effects. Note that this term becomes important when
large velocity gradients are present somewhere in the flow domain (Flor 2010), which is the
case for the near lid regions of closed rotating cavities. The thickness δEk of Ekman boundary
layers is given by

δE ∼
√

ν

Ω
(2.47)

leading to δE ∼ 3mm in the experimental setup and numerical simulations presented in chap-
ters 3 and 4.

Equation (2.46) shows that within the Ekman layer near a solid surface, a three-way balance
among the Coriolis, pressure, and viscous forces will result in a component of flow directed
toward the lower pressure, and frictional forces can then cause the flow around a low-pressure
center to spiral inwards (Kundu and Cohen 2001). Considering these mechanisms, the Ekman
layer produces not only azimuthal velocity gradients near the end gaps of a cavity, but it can also
lead to the development of radial and axial velocity components depending on the net horizontal
convergence/divergence values. Although the radial and axial velocity components are small
(Coles and Van Atta 1966), they can lead to momentum transport within the fluid, creating a
non-azimuthal circulation. Such circulation may become significant under some conditions,
generating large (and relatively weak) horizontal vortices that may extend from each end until
the mid-plane of the system (Shionoya 1987, Coles and Van Atta 1966). When the fluid in the
Ekman region can exchange momentum with the surrounding fluid outside the boundary layer,
this is called Ekman pumping, and it can lead to Ekman instabilities in the flow (Lilly 1967,
Aelbrecht et al. 1999). Figure 2.8 shows visualization using Kalliroscope particles performed
by Shionoya (1987) of the Ekman layer in a TC experiment, with different inner and outer
cylinder velocities, and with the upper and lower rigid boundaries attached to the outer cylinder
(as in the experimental setup and numerical simulations presented in chapters 3 and 4). In
figure 2.8(a), the outer cylinder rotation was spun from rest, with the Kalliroscope particles
sedimented at the bottom of the cavity, showing how the Ekman cells can transport the particles
in the flow until the mid-height position, and how it does not go beyond it. Figures 2.8(b),(c)
show two different stable counter-rotating TC profiles with increasing Reynolds numbers, and
the same rotation ratio µ = Ωout/Ωin. Note that larger Re increase the Ekman influence in the
axial direction, even if δEk decreases, according to (2.47). Figure 2.8(d) shows how the Ekman
effects can eventually impact the Taylor rolls outside the boundary layer, leading to an axial
asymmetry of the spirals.

2.6 Turbulence Energy equations
Turbulence is a phenomenon that can efficiently transport and dissipate energy within a fluid
(compared to diffusive processes). The analysis of how energy in a flow is affected by turbu-
lence can be made by investigating the terms that govern the turbulent kinetic energy equations.
Considering a turbulent flow in Cartesian coordinates under the Boussinesq approximation, with
mean quantities in the flow indicated by an overbar, and fluctuations indicated by primed vari-
ables (considering the Reynolds decomposition in 2.35), the variation of kinetic energy in the
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(a) (b) (c) (d)

Figure 2.8: Experimental end gap effects visualized with Kalliroscope particles, reproduced
from Shionoya (1987). (a) Inner cylinder at rest (Re = 0) and outer cylinder rotating with
Reout = 1000; Kalliroscope flakes fill only the lower half of the cylinder as the system is spun
up from rest. (b) Laminar TC profile obtained for cylinders rotating in the same direction with
Re = 1124, and µ = 0.89; (c) Laminar TC profile obtained for cylinders rotating in the same
with Re = 4005, µ = 0.89; (d) Laminar Taylor vortices with Re = 240 and counter-rotating
cylinders with µ =−1.25.
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where Si j is the strain rate tensor, given by
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The term on the left-hand side of (2.48) represents the variations of kinetic energy in the mean
flow, and the right-hand side shows the mechanisms that lead to these variations. Other field
forces, such as electromagnetic or surface tension forces, were not included in equation (2.48),
since they will not be explored in this work, but they could be added when dealing with other ap-
plications, such as in studies of Magneto-Hydro Dynamics (MHD), also relevant for the theory
of accretion disks.

The first three terms on the right-hand side of (2.48), inside the brackets, represent the
mean transport of kinetic energy in the flow driven by pressure

(
−ui p

ρ0

)
, by viscous forces,(

2νuiS̄i j
)
, and due to turbulent shear

(
−u′iu

′
jui

)
. These terms are not responsible for the

turbulent production or dissipation, only for the transport and redistribution of kinetic energy
from one region of the flow to another.

The fourth term on the right side of (2.48) is the product of viscous stresses and the mean
shear stresses in the flow, and represents the kinetic energy dissipation, which is basically
transformed to heat, given by

ε =
(
2ν S̄i jS̄i j

)
. (2.50)
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The fifth term on the right side of (2.48) is known as the turbulence production, and reads

P =

(
u′iu
′
j
∂ui

∂x j

)
. (2.51)

This term represents the interaction (transfer) of energy from the mean flow and the turbulent
velocity fluctuations that are driven by shear, resulting in the increase of turbulent kinetic energy.
Note that P is analogous to ε in the sense that they are both the product of the Reynolds stress by
the shear rate. A region of the flow is then said to be in local equilibrium when the turbulence
dissipation (2.50) and production (2.51) are equal in module, i.e., when all the energy that is
being produced at the largest flow scales is being transferred to the smallest scales, where it is
dissipated.

The influence of stable density stratification reflects in the last term on the right-hand side
of (2.48), called the buoyancy turbulent production, and reads(

g
ρ0

ρ ūk

)
= gαu′kT ′, (2.52)

where the right-hand side was written considering the equation of state (2.10), so the buoyancy
effect appears in terms of temperature fluctuations.

The equation for the mean kinetic energy fluctuations
(
e = u′i
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)

is given by
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with the strain rate tensor S′i j now given by
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1
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)
. (2.54)

Note that the density fluctuations term appears with a negative sign in (2.48), and with a positive
sign in (2.53), showing how buoyancy removes energy from the mean flow and transfer it to
the instability, increasing the buoyant generation of turbulent kinetic energy. The ratio of the
buoyant term of turbulent kinetic energy (2.52) and the turbulence production by shear (2.51) is
given by the flux Richardson number, defined as

R f ≡ gρ ūk/ρ0(
u′iu
′
j

∂ui
∂x j

) . (2.55)

The tensor correlation u′iu
′
j that appear in (2.48), (2.53), and in the flux Richardson num-

ber (2.55) is called the Reynolds stress tensor. This term is responsible for increasing momen-
tum transfer in turbulent flows, which is often much larger than viscous stresses (except very
near rigid and impermeable surfaces, where the fluctuations go to zero and mean flow gradients
are large). The diagonal components of the Reynolds stress tensor u′i

2 are normal stresses that
augment the mean pressure, while its off-diagonal components u′iu

′
j are shear stresses (Kundu

and Cohen 2001). The average flux of turbulent momentum in the flow is then be given by
−ρu′iu

′
j, with i 6= j. Note that, when the R f values become large, buoyancy can remove tur-

bulence at a larger rate than its production by shear. Instead of using R f to measure the ratio
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(a) Kolmogorov isotropic turbulence (b) 2-D turbulence

Figure 2.9: Energy spectra schematically representing (a) High Reynolds number Kolmogorov
turbulence reproduced from Pope (2001); (b) Two-dimensional turbulent flow with an energy
and enstrophy cascade reproduced from Kyushu University (2017).

between stratification and shear in a flow, it may be more convenient to measure the gradient
Richardson number (Kundu and Cohen 2001), which is defined as

Ri≡ N2

(dū/dz)2 =
αg(dT̄/dz)

(dū/dz)2 , (2.56)

where N is the buoyancy frequency and the right-hand side of the equality follows for stratifica-
tion by thermal variations (Kundu and Cohen 2001). The instabilities that lead to turbulence on
a stratified flow can only occur for 0< Ri< 0.25 (Panofsky and Dutton 1984). When the critical
Richards numbers Ricr ≈ 0.25 is reached, the turbulent motion driven by shear is suppressed by
the stratification.

2.6.1 Turbulent energy spectra
The turbulent energy cascade was initially based on the ideas of Richardson (1922), later quan-
tified by Kolmogorov (1941), that turbulence can be considered as a composition of eddies with
different sizes (Kundu and Cohen 2001). In turbulent flows, most of the energy is contained
in large-scale vortices within the fluid, i.e., in the larger structures, corresponding to smaller
wavenumbers (k), therefore, this is called the energy region of the spectrum. The energy is
transferred from the larger scales to the smallest scales (where it is dissipated) along the so-
called inertial region, which has a decay rate proportional to k−5/3 in the classic Kolmogorov
turbulent cascades (figure 2.9(a)). The energy transfer from the larger to the smallest scales is
schematically represented in figure 2.10, reproduced from Pope (2001), with the length scales
` decreasing from the right to the left-hand side of the figure. The sub-index EI indicates the
transition between the larger-scale energy region and the inertial region, while the DI indicates
the separation between the inertial (I) and the dissipation (D) regions. `0 represents the typical
length scale of the largest structures in the flow, where turbulence is produced, and η represents
the Kolmogorov scale, which accounts for the smallest scales in the flow, where turbulent en-
ergy tends to be dissipated by viscous effects. At the Kolmogorov scales, turbulence tends to be
isotropic.
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Figure 2.10: Schematic representation of energy input in the large scales, where turbulence
production occurs, and its transference along the inertial region to the smallest scales, where
energy it is dissipated. The larger scales correspond to the small wavenumbers k. The sub-
index EI stands for the interface between Energy (E) and Inertial (I) ranges, and DI for the
separation of the dissipation D and I inertial scales of the flow, while `0 represent the larger
scales, and η the Kolmogorov scales. Reproduced from Pope (2001)

Although astrophysical, climate and weather models are performed on an everyday basis
for the most diverse applications, such as meteorological forecasts, climate modeling, or the
study of turbulence in the astrophysical context, turbulence in these large scale flows is still
not fully understood from a fundamental point of view. In particular, questions related to how
the energy contained in the largest scales (where most of the turbulence production occurs
due to energy input from sources such as solar or stars radiation, ocean dynamics, etc.) is
transferred to the smallest scales of turbulence in geophysical and astrophysical flows, and
where the energy is dissipated in these systems, remain largely without answer (Müller et al.
2005). Atmospheric and ocean dynamics, for example, are dominated by planetary rotation and
the effects of stable density stratification, but the influence of these factors vary according to
the scale of the structures present in the fluid. On larger scales, the effects of both rotation and
density stratification are quite relevant in geophysical and astrophysical contexts, which can
generate essentially two-dimensional flows, known as quasi-geostrophic. On small scales, the
fluid motion is not strongly influenced by rotation and stratification and, in this way, turbulence
becomes practically isotropic. Between the largest and the smaller scales, where there it is
dissipated by viscosity, there are intermediate-scales on which the effects of rotation are weak
while the stratification effects remain relevant. At these intermediate scales, the flows start to
show relevant three-dimensional effects, and turbulence becomes highly anisotropic (Billant
and Chomaz 2001).

Along the turbulence spectrum of stratified flows, between the production and dissipation re-
gions, different flow regimes occur. These “paths” in the turbulent energy spectrum can involve
processes of about eight different orders of magnitude that separate the scales of generation
and dissipation. Until recently, these different regimes have generally been studied separately,
using appropriate approaches valid for each of them. The quasi-geostrophic turbulence was
first described by Charney (1971). In this regime, the force generated by the pressure gra-
dient is balanced by the Coriolis and buoyancy forces, and two quadratic invariant quantities
are conserved independently: the total energy and the potential enstrophy, which is defined
as the square of the vorticity and is related to the dissipation effects of turbulent kinetic en-
ergy (Dubrulle 2019). Using these invariant quantities, and considering the geostrophic balance
of buoyancy, rotational, and Coriolis forces mentioned, it is possible to predict that, in atmo-
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spheric, oceans, and astrophysical flows, energy flows both in the direction of small scales,
called direct cascade, and also in the direction of large scales, called the inverse cascade, as
shown in figure 2.9(b). This is consistent with the idea that strong rotations lead to an inverse
energy cascade, while strong stratification favors a cascade of energy towards small scales, but
it is not clear how these two regimes are connected in strato-rotational flows. Note that the iner-
tial range of quasi-geostrophic inverse energy cascades have decay rates proportional to K−5/3,
as in the Kolmogorov turbulence, and the enstrophic region follows a power law of K−3, while
other phenomena can lead to different slopes of the inertial region in the energy spectra. Other
decay rates will be later explored in this work in section 6.3.

The inverse energy transfer seems to be inconsistent with the dissipation of energy in the
region of the smallest scales, raising issues concerning the balance between the turbulent energy
production and dissipation, with energy being accumulated at the larger scales. Vallgren et al.
(2011) performed high-order numerical simulations that contemplate the quasi-geostrophic
regime (and other regimes). They showed that for small and finite Rossby numbers (when the
Coriolis terms in the momentum equations are larger than the advective terms) a direct energy
cascade can coexist with an enstrophy cascade in the opposite direction. This could explain how
part of the energy contained in the largest scales could indeed be transferred and dissipated in
the small scales, solving the apparent contradiction associated with the absence of dissipation
of the quasi-geostrophic turbulence. In addition to numerical simulations, ocean measurements
performed by Ménesguen et al. (2009) have revealed the presence of layers and structures of
small scales in large scale vortices.

2.7 Non-dimensional variables

Throughout this thesis, some non-dimensional quantities are frequently mentioned. These vari-
ables are used in the evaluation of the results obtained, or for analyzing concepts associated with
the phenomena investigated. This section intends to provide the reader with a fast description
of non-dimensional variables that can be consulted while reading the text, mentioning which
quantities they relate.

• The Reynolds number (Re) is the most common dimensionless number in fluid mechan-
ics. Low Re flows involve small sizes, low speeds, and high kinematic viscosity such as
bacteria swimming through mucous. High Re flows involve large sizes, high speeds, and
low kinematic viscosity such as an ocean liner steaming at full speed (Kundu and Cohen
2001). The Reynolds number of the stratified Taylor-Couette flows, based on the inner
cylinder rotation (Ωin), is defined as:

Re≡ inertia forces
viscous forces

=
Ωinrin(rout− rin)

ν
, (2.57)

where ν is the kinematic viscosity of the fluid, Ωin is the angular velocity, and rin rin and
rout are respectively the inner and outer cylinder radii.

• The Reynolds number based on the buoyancy frequency (Rn) can be defined in a
density-stratified fluid. Instead of considering the angular frequency Ωin in the Reynolds
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numbers, that takes into account inertia effects, we then consider the buoyancy frequency
N to measure the relative importance of buoyancy with respect to viscous effect, as:

Rn≡ Buoyancy forces
viscous forces

=
Nrin(rout− rin)

ν
, (2.58)

where N is the buoyancy frequency, also known as Brunt-Väisälä frequency

N ≡
√

αg
∂T
∂ z

, (2.59)

where α is the coefficient of thermal expansion, g is the gravity constant, and ∂T/∂ z is
the axial temperature gradient.

• The Froude number (Fr) measures the relative importance of rotation and stratification,
being defined as:

Fr =
Inertia forces

buoyancy forces
=

Re
Rn

=
Ωin

N
. (2.60)

• The Richardson number (Ri) can alternatively replaced the Froude number, explicitly
showing the relation between the buoyancy frequency (N) and shear stresses on a space
direction z (Kundu and Cohen 2001). Ri is here defined as:

Ri≡ Buoyancy
shear

≡ N2(z)

(∂u/∂ z)2 (2.61)

• The Prandtl number (Pr) measure the ratio between momentum and thermal diffusivity,
therefore, it is related to intrinsic properties of the fluid, and is computed as:

Pr ≡ momentum diffusivity
thermal diffusivity

=
ν

k/(cpρ)
. (2.62)

• The Mach number (Ma) represents the ratio between flow velocity and the local speed
of sound and is given by

Ma≡ flow velocity
speed of sound

=
u
c
. (2.63)

A flow is considered to be incompressible if the flow speeds are low enough compared to
the speed of sound, for Mach numbers < 0.3.

• The Rossby number presents the ratio between inertial to Coriolis forces and is given by

Ro≡ Nonlinear acceleration
Coriolis forces

=
U
ΩL

(2.64)

A small Rossby number represents a system strongly affected by Coriolis forces, while a
large Rossby number implies a system in which inertial and centrifugal forces are domi-
nant.
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• The Ekman number describes the ratio of viscous to Coriolis forces and is given by

E ≡ viscous forces
Coriolis forces

=

√
Ro
Re

=
ν

ΩL2 . (2.65)

Small Ekman numbers imply low frictional effects, and disturbances in the flow are able
to propagate before decaying due to viscous dissipation. The Ekman number also de-
scribes the order of magnitude of the Ekman layer thickness, that is the boundary layer in
which viscous diffusion is balanced by Coriolis effects, rather than the usual convective
inertia (Kundu and Cohen 2001).

• The Rayleigh criterion indicates when an inviscid Taylor-Couette flow is unstable and is
given by

Ra≡ d(r2u2(r))
dr

< 0, unstable. (2.66)

For a TC experiment with concentric cylinders rotating with different inner (Ωin) and
outer (Ωout) cylinders angular velocities (see chapter 3), the Rayleigh limit is found at
η2, where η = rin

rout
it the ratio between inner and outer cylinder radii. Applying the

Rayleigh criterion presented in equation (2.66), the instability of the fluid occurs when
µ = Ωout

Ωin
assume values of

µ < η
2, unstable,

µ > η
2, stable.

(2.67)





Chapter 3
Experimental methods

“Sanity is not statistical.”

− George Orwell, 1984 −

In this chapter, the experimental setup used to study the SRI is described. The experiment
was designed at the Department of Aerodynamics and Fluid Mechanics (LAS) of the Bran-
denburg University of Technology Cottbus–Senftenberg (BTU). The methods implemented for
measuring the velocity profiles that develop from the inner and outer cylinder rotation will also
be presented.

Among different experimental techniques used to measure fluids velocity profiles, a few
most common could be considered to investigate the SRI phenomena, such as Hot Wire
Anemometry (HWA), Laser-Doppler Anemometry (LDA), particle tracking velocimetry (PTV),
or Particle Image Velocimetry (PIV) (Ponchaut et al. 2005, Arroyo and Hinsch 2007).

Although hot wire measurements (HWA) have been successfully performed to obtain ve-
locity profiles in fluids for a long time (Kovasznay 1949), being especially suitable to the study
of turbulent with high Mach numbers for allowing high sampling rates, they bring the par-
ticular inconvenience of being an intrusive measurement technique, that can cause undesired
perturbations in the flow. Also, among other problems, intrusive probes are more sensitive to
multi-variable effects (temperature, humidity, etc.), and breakage (Jensen 2004). The Laser-
Doppler Anemometry (LDA) is a non-intrusive optical point measurement technique that uses
two laser beams superposed on a spatial point of the fluid, and the velocity is measured by the
Doppler shift in the lasers caused by the flow. The LDA has several advantages, such as no
calibration requirement, low noise in the data obtained, and high-frequency response, but it is
more suitable to measure time varying phenomena at specific point locations in the fluid. With
the fast developments of camera and laser technologies, techniques of particle tracking (PTV)
started developing, where a particle in the fluid is followed on different images of the flow con-
secutively obtained in time. A particular way of dealing with the recognition of particles in the
fluid, though, consists not of tracking one single particle, but of computing cross-correlations
of groups of particles that can be observed in consecutive images. This method is called the
Particle Image Velocimetry (PIV), and it has become one of the most popular techniques for
flow measurements in numerous applications since it consists of a robust technique to evaluate
space and time structures in fluids that are difficult be measured using other techniques.

A co-rotating mini-PIV system was used to measure the SRI instantaneous velocity profiles.
Since the PIV camera has a tilted angle with respect to the laser sheets, an undistortion technique
developed by Seelig et al. (2018) was applied to the images obtained, based on a polynomial
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distortion method, and will also be described. The experimental errors in the velocity profiles
obtained are also evaluated, including a study of how many experimental measurements are nec-
essary for the data to converge to average values. The procedure to establish an approximately
linear temperature gradient in the axial direction, which leads to a stable density stratification
in the experimental setup, is also presented.

3.1 Experimental Setup

The experimental setup for studying the SRI was designed at the Department of Aerodynamics
and Fluid Mechanics (LAS) of the Brandenburg University of Technology Cottbus-Senftenberg
(BTU) and consists of a Taylor-Couette system (see section 2.3) where the top lid is heated, and
the bottom lid is cooled for obtaining a stable density stratification in the axial (z) direction. A
schematic drawing is shown in figure 3.1, and a photograph of the setup in figure 3.2. The outer

  

Warm

Cold

PIV Laser sheet

Figure 3.1: Schematic representation of the
SRI experimental setup.

Figure 3.2: Experimental Setup.

cylinder, with radius rout (inner wall of the outer cylinder), is made of transparent glass material
to allow optical access to the flow that develops within the cavity.

The distance between inner and outer cylinders, also simply called gap, is given by
d = rout− rin, where rin is the (out wall) radius of the inner cylinder. Given the cylinders height
H, the experimental geometric parameters are the aspect ratio Γ = H/(rout − rin), and the radii
ratio η = rin/rout . The geometrical parameters of the experimental setup are listed in table 3.1.

The inner and outer cylinders of the setup are concentric and rotate independently, respec-
tively with angular velocities Ωin and Ωout , driven by two different DC motor units that can be
remotely controlled during operation by servo amplifiers. The energy of the system is provided
by power banks also co-rotating with the camera and the laser. The energy provided to the
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Table 3.1: Experimental setup parameters

inner cylinder radius rin 75mm
outer cylinder radius rout 145mm
gap size d 70mm
cylinders height H 700mm
aspect ratio Γ 10
radii ratio η ≈ 0.52

camera and laser are provided by two charged 5V power banks, while one 12V power bank
provides energy for the motors, RC-controllers, and the servo amplifiers.

The top and bottom parts are closed and connected to the outer cylinder, so both lids rotate
with angular velocity Ωout .

The rotation ratio between the angular velocity of outer and inner cylinders µ = Ωout/Ωin
can be set to different values in the experiments, from counter-rotation regimes (µ < 0) to
co-rotating cases (µ > 0). Since the rotation ratio in accretion disks should be slightly sub-
Keplerian (Visser and Dullemond 2010, Lyra and Umurhan 2019), the investigations were
mainly focused at µ ≈ 0.35. This value is smaller than the pseudo-Keplerian line, found at
µ = η3/2 ≈ 0.372 for the experimental setup, and greater than the Rayleigh line at µ = η2 ≈
0.275 (see section 2.3). Therefore, for the µ value chosen, the flow is stable with respect to
non-stratified TC (see figure 1.3). Note that similar results have been obtained for µ ≈ 0.372,
i.e. at the Keplerian-line.

The gap between inner and outer cylinders is filled with a Newtonian M5 silicon oil of
viscosity (ν) 5 times higher than the viscosity of water and has a similar density ρ ≈ ρH2O. The
higher viscosity of the oil allows us to achieve smaller Reynolds number values compared to
water. The coefficient of thermal expansion (α) of the M5 oil at 25°C is used to compute the
buoyancy frequency N. Using the density ρ , the thermal conductivity (k) and the specific heat
at constant pressure (cp), the Prandtl number is computed as

Pr =
ν

k/(cpρ)
. (3.1)

The physical properties of the M5 oil can be seen on table 3.2.

Table 3.2: M5 silicone oil properties at 25oC

kinematic viscosity ν 5×10−6 m2 s−1

density ρ 923kgm−3

coefficient of thermal expansion α 1.04×10−3 K−1

thermal conductivity k 0.133WK−1 m−1

specific heat cp 1630Jkg−1 K−1

Prandtl number Pr ≈ 57

Stable density stratification can be obtained by adding salinity to the system (Withjack and
Chen 1974, Boubnov et al. 1995, Shalybkov and Rüdiger 2005, Le Bars and Le Gal 2007), as
occurs in the salty water of oceans and seas, for example, or also by imposing a temperature
gradient to the fluid, that is more likely to happen in accretion disks (lyr, Dubrulle et al. 2004)
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and also in the oceans when the surface of the waters are warmer than the bottom regions due
to the highest solar irradiation. In the experiments, a stable density stratification is obtained by
warming up the upper lid with twelve TEC263 Peltier elements installed equidistant from each
other, six of them acting as heat sources, while the 6 other elements working as a cooling sys-
tem were placed between them. The relation between temperature differences ∆T and density
variation for incompressible fluids follow the approximate state equation (Pedlosky 2013)

ρ = ρ0 (1−α∆T ) . (3.2)

The results were obtained with the temperature differences between top and bottom lids of
3K < ∆T < 7K.

The advantage of using temperature stratification for experimentally investigating the SRI,
instead of salt stratification, is that the boundary condition can restore the stratification after
turbulent mixing effects. The disadvantage is the time required for establishing a near-linear
temperature profile to have a constant buoyancy frequency N. The process of heating and
mixing the flow (by fast rotating the inner cylinder) takes between 2 and 5 hours, which makes
measurements more time consuming compared to salt stratified experiments.

3.2 Particle image velocimetry (PIV) method
The PIV is an experimental technique that measures local velocity on a flow field using a cam-
era, a laser source, and tracer particles that are carried by the fluid and have their displacement
measured at consecutive images.

A mini-PIV system is used in the experimental setup to acquire instantaneous velocity fields
in an azimuth-radial cross-section (r− φ ). Note that there are 2 mini-PIV mounted, one for
evaluating the φ−r, and the other for the radial-axial (r−z) cross-section, but unfortunately the
radial velocities have higher orders of magnitude compared to the axial velocity components,
and it was not possible to set a proper camera frequency acquisition suitable to correctly measure
both simultaneously, so the PIV measurements in the r−z cross-section could not be performed.

The mini-PIV system was developed at a lower cost than commercial PIV systems available,
and all its structure has small dimensions when compared to a regular PIV system, which makes
it also lighter and easier to be attached to rotating parts of the experiment avoiding unwanted
vibrations in the system and reducing the technical difficulties involved on the fixation of the
PIV system to rotating parts. The cheaper and lighter mini-PIV system was possible to be
implemented because the instantaneous velocities involved in the SRI measurements are slow
enough to be captured with the acquisition time of simpler commercial cameras, different from
studies that measure faster varying phenomena, such as high Reynolds number shear turbulence.
The experiment images are then obtained with a GoPro Hero 4 black edition camera with spatial
resolution of 1080×1920px, with frequency of 24 frames per second. Figure 3.3(a) shows an
example of a PIV image obtained with the GoPro camera.

Since the time between two images acquired is not too small, a continuous laser was em-
ployed for performing the measurements, instead of a pulsating laser synchronized with the im-
age acquisition, necessary in fast varying phenomena. A continuous green laser (λ = 532nm)
that produces a 2mm thick horizontal light sheet (in the r− φ plane) was used. All the ex-
perimental results that will be presented in this thesis were obtained with the laser sheet at the
mid-height axial position z = H/2 = 345mm, but the camera and laser were attached to a train
that can move in the axial direction to measure the flow at other heights. The camera field of
view (set in the option ’medium’ field of view (FOV)) allows the observation of ∆φ ≈ 65° angle
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(a) Example of an image obtained dur-
ing the measurements.

(b) Calibration grid inside the experi-
mental setup.

Figure 3.3: PIV images

in the azimuthal direction, i.e., approximately 18% of the full horizontal cross-section. The
camera and the laser sets are mounted on a structure that co-rotates with the outer cylinder, so
all experimental results are obtained in a reference frame moving with angular velocity Ωout
with respect to the laboratory. The energy for the PIV system is provided by 2 charged power
banks.

The inner cylinder of the experimental setup is made of aluminum and anodized to minimize
undesired laser reflections at the inner wall. Even with the dark color of the ionized aluminum,
and because of laser reflection and refraction when the light passes from the acrylic material
to the oil at the outer cylinder, the PIV measurements near the walls become spurious, so that,
from the full gap (75mm<r<145mm), PIV data are only considered in the interval 80mm < r <
143mm.

For performing the PIV measurements, tracer particles that reflect the incident laser light
were added to the fluid, and their displacement between images acquired and the consecutive
ones was measured, with a time interval ∆t between the images obtained. These particles are
called passive tracers, since they have a similar density to the fluid evaluated, allowing them to
be carried by the flow without perturbing it.

Different types of particles can be added to the flow for evaluating a flow field. among
others, it is possible to cite the commonly used Kalliroscope particles, which are elongated fil-
aments, being more suitable for the flow visualization than to PIV measurements, since they
reflect more light due to their striped like shapes, leading to a relatively poor contrast be-
tween reflected light and the background that are important to obtain good PIV measurements
in comparison to more spherical shaped particles. Another possible choice could be fluores-
cent particles such as Rhodamine, which re-emit the incident light on a specific frequency, but
special filters that filter the specific frequency re-emitted become also necessary. Furthermore,
Rhodamine particles demand a more frequent cleaning of the internal parts of the experimental
setup because they deposit on the surfaces of the cylinders, which involve many time-consuming
steps, such as the cleaning process itself, and the re-calibration of the system. Therefore, hollow
glass spherical particles with mean diameters between 10µm < d < 20µm and density of 1.05
(with respect to the density of water) were employed as PIV passive tracing particles, since they
provide good contrast between the light reflected by the particles and the background flow, and
can also remain in the system for longer times without the necessity of frequently opening and
cleaning the experimental setup.

To estimate the ideal amount of tracer particles added in the experiment, it was considered
as a general rule that, in regions of 1mm×1mm on the acquired images, there should be counted
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approximately 10 particles. This is because, a too big amount of particles in the fluid would lead
to large laser reflected areas in clusters of particles, worsening the recognition of where a group
of particles moved decreases, due to poor color contrast in the images. Very few particles to be
traced in the flow, otherwise, leads to many ’holes’ in the velocity vectors obtained. Note that
these images are transformed to grayscale using FFmpeg package before computing the PIV
velocity fields.

3.2.1 PIV Cross-correlation
Knowing how far the particles have moved between two consecutive images, i.e., the space
covered by a set of particles in a given interrogation window, and the time interval between the
acquisitions, it is possible to obtain the flow velocity profiles. Interrogation windows are the
division of the full image obtained into smaller regions, containing a certain number of pixels
(e.g. 32px× 32px, 64px× 64px, 32px× 64px, etc.). The particle displacement is measured
by computing the cross correlation between two consecutive images obtained at given time
intervals. The cross correlation can be computed as (Thomson and Emery 2014)

1
M

M

∑
i=1

f (t)g(t +∆t), (3.3)

where M is the number of interrogation windows measured at discrete times
ti,{i ∈ N}, i = 1, ...,M. An adaptive cross-correlation interrogation windows with
[128px×128px,64px×64px,32px×32px,32px×32px] and 50% of overlap is used,
that corresponded to a final spatial resolution of 0.11mm.

By computing the cross-correlation between all interrogation areas (IA), the particles fields
of displacement for several flow regions are obtained, with the maximum correlation (peak)
corresponding to the most likely displacement of the tracers, as schematically presented in
figure 3.4.

Figure 3.4: PIV cross correlation to obtain velocity profiles (Image obtained from Pawar et al.
(2014)).

As the time interval ∆t between two images is known, by dividing the displacements of the
particles by this time interval between frames, the instantaneous velocity fields are obtained. ∆t
must be big enough so that particles move between the images acquired, but small enough for
the same set of particles to be observed in the IA of both consecutive images considered. In
these measurements, a good time resolution was obtained with ∆t = 1/24 seconds. Figure 3.5
shows how convergence of measured uφ and analytical TC-profile for ∆t = 1/24s.
Note that the experiment 1st Exp in figure 3.5, computed with 12 fps and 24 fps, refers to the
same measurement, and not different data sets. The difference between them is how many



3.2. Particle image velocimetry (PIV) method 37

Figure 3.5: Comparison of analytical TC profile with Re = 1000 and µ = 0.35 (black dashed
curve) with two different experiments acquired with 24 frames per second (fps), 24fps - 1st Exp
and 2nd Exp, that show good agreement between each other and with the TC profile, and the
same experiment computed with 12 fps (12fps - 1st Exp), skipping one frame in the PIV com-
putations, that shows no agreement with the TC profile, highlighting a poor time resolution.

images were considered for computing the PIV velocity profiles, using less (more) images, in-
creasing (decreasing) the time interval between consecutive images, until a good time resolution
(of 24 fps) was found. Note that, for other Reynolds numbers (≤ Re = 600), a time resolution
of 12 fps was already sufficient for obtaining convergence of uφ PIV measurements and the
analytical TC-profile, but a time resolution of 24 fps was used in all computations since it was
found to correctly measure the instantaneous velocity profiles for all measurements.

Since the PIV particle displacement has an error of approximately 0.1 pixel (Nobach and
Bodenschatz 2009), a moving average with 25 vector fields window size is implemented after
the final instantaneous velocity fields are obtained. As the displacements of the particles are then
obtained in pixels, it needs to be transformed to meters (or mm). A 1× 1mm2 squares chess-
board grid, shown in figure 3.3(b), is used for converting non-dimensional displacements, and
consequently, non-dimensional velocities into dimensional. With this, the velocity components
are initially obtained in Cartesian coordinates. The origin of the PIV segment is determined
using the calibration grid of figure 3.3(b)to transform the results into polar coordinates.

3.2.2 Polynomial undistortion Method

The top and bottom end-plates that close the experimental apparatus are made of aluminum,
therefore they cannot be optically accessed during the PIV measurements, so the images are
obtained through the transparent glass outer cylinder wall, with the camera inclined about 45°
with respect to the laser sheet, as represented in figure 3.1. This 45° tilted field of view, as well
as other factors, distorts the PIV images. Some of the reasons for the PIV images distortion are:

• The curvature of the outer cylinder wall;

• The camera lens curvature;

• The differences in the index of refraction of the air, the glass wall, and the oil inside the
cylinder;

• The parallax effect from the camera inclination with respect to the laser plane sheet.
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To correct the image distortions related to all these factors, the calibration grid of square
chessboard structure presented in figure 3.3(b) is used. The calibration grid is placed at the
laser sheet position inside the tank filled with oil, with the angle φ = 0 at the center of the
images obtained. By correcting the distorted squares on the raw calibration image into their
correct square shapes, an undistortion map is created and can be applied to all PIV images.
To obtain the undistortion maps, a 5th-order polynomial method is applied in a parallel code
developed by Seelig et al. (2018), that transforms control points and each pixel in the distorted
images (xd ,yd) into undistorted control points and pixels (xu,yu). The control points (xd ,yd) used
are basically the nodes (corners) in the chessboard grid. The method uses pairs of control points
to calculate the appropriate fitting coefficients (Cnx,Cny) in equation 3.4, with n = 0,1,2, ...,21,

xu =C0x +C1xxd +C2xyd +C3xxdyd + ...+C20xx5
d +C21xy5

d,

yu =C0y +C1yxd +C2yyd +C3yxdyd + ...+C20yx5
d +C21yy5

d,
(3.4)

where the sub-indexes d and u refer respectively to points in the distorted and undistorted im-
ages. The undistortion of the PIV images and of the calibration grid using this method can be
seen in figure 3.6(a) The undistortion maps obtained from the transformation of the distorted

(a) (b)

Figure 3.6: (a) Superposed calibration grid and PIV images, both undistorted using the 5th-order
polynomial method; (b) PIV instantaneous velocity field. Reproduced from Seelig et al. (2018)
with the friendly permission from Torsen Seeling, who developed the undistortion method here
applied together with Andreas Krebs at the BTU Cottbus-Senftenberg.

chessboard grid to its undistorted shape is then applied to undistort all the PIV images using the
convert library of ImageMagick’s software package. From the undistorted PIV images, a par-
allelized version of MatPIV (Sveen 2004) was used to compute the instantaneous flow velocity
fields. Note that the origin (x,y) = (0,0) is established at the center of the inner and outer con-
centric cylinder walls in the undistorted images (figure 3.6). This segment is used to transform
the velocity fields obtained in Cartesian coordinates in (3.4) to polar coordinates as

r =
√

x2
u + y2

u,

θ = tan−1
(

yu

xu

)
.

(3.5)

Eliminating spurious vectors is also an important procedure to remove values obtained with
the cross-correlations that do not make physical sense. To determine the vectors that will be
discarded, those values that are too different compared to their neighborhood are verified by
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applying a median filter that iteratively removes and replaces outlier values. If a vector has, for
example, a magnitude greater than 1.5 times the median of surrounding vectors, it is discharged,
and these discarded values are recalculated by interpolating the values of neighboring vectors.
The tolerance of the standard deviation that excludes a spurious vector can be chosen arbitrarily,
assuming values that properly eliminate spurious vectors, keeping the correct measurements.

3.3 PIV error measurements

Although it is difficult to determine accurately the uncertainty associated to each of the mea-
surement steps, by comparing stable TC azimuthal velocity measurements (u) with analytical
solutions (uTC), it is possible to compute the final PIV percentage error as (Seelig et al. 2018)

ε =
u−uTC

uTC
. (3.6)

An example of such comparison can be seen in figure 3.7. Note that, in figure 3.7, the deviations

(a) (b)

Figure 3.7: Stable uφ Taylor-Couette profile with Re = 1000 and µ = 0.35 (a) Comparison of
TC analytical solution (black dashed line) and time mean PIV measurements (continuous red
line) (b) Error ε between PIV measurements and analytical solutions in %. The left hand side
of the images represent the region near the inner cylinder wall, and the right hand side is the
region near the outer cylinder. The smaller figure inserted on the top left side of figure b shows
the absolute error |ε|.

from Taylor-Couette profiles become larger near the inner and outer cylinders, due to higher
laser parasite light reflections. For high Reynolds numbers, the Ekman circulation at the top
and bottom lids (see section 2.5) can induce a redirecting flow along the vertical boundaries
that can perturb the measurements (see figure 3.7,Avila et al. (2008) and sec. 2 of Seelig et al.
(2018)). Far from the inner cylinder, the relative error observed was of 2% < |ε|< 3%.

Seelig et al. (2018) made a similar and detailed study to estimate the experimental error (ε)
on the experimental setup, several TC flows with different values of Reynolds numbers, varying
between 200 < Re < 800, and rotation ratios 0.3 < µ < 0.6, that agrees with the evaluation
here presented. After obtaining these PIV measurements and comparing them to the respective
analytical TC profiles (as in figure 3.7), probability distributions were adjusted to the differences
measured, and with the computation of their standard deviations, the final error obtained was of
ε ≈ 2% of the velocities measured (far from the inner and outer cylinders).
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3.3.1 Convergence and number of experimental images acquired

The number of instantaneous velocity fields that must be measured experimentally (number of
pairs of images obtained) should be sufficient for the results to statistically converge to their
average values, according to the central limit theorem. These values can vary with parameters
such as the number of tracer particles used, the intensity of the laser brightness, the size of the
interrogation window used, the Reynolds number, etc. To evaluate the data convergence, the
quantity C was defined, given by

C(n) =
n

∑
i=1

u(i)
n

=
u(1)+u(2)+ ...+u(n)

n
, (3.7)

where u(i) is the velocity in the ith point evaluated, i.e., on a data set of size n, the convergence
of the first point evaluated will be C(1) =U(1)/1; of the second point is C(2) = [u(1)+u(2)]/2;
until the nth point, that will have its convergence given by C(n)≈ u(n)

n = arithmetic mean. When
the convergence values stop varying significantly with n, the measurements are considered to
be converged.

Figure 3.8(a) shows the data convergence of the azimuthal velocity profiles (uφ ) with
Re = 400, µ = 0.35 and ∆T ≈ 4K at mid-height location (z≈ H/2), on 3 different radial posi-
tions: r = 83mm (closer to the inner cylinder), r = 101mm (closer to the mid-gap region), and
r = 120mm (closer to the outer cylinder). In general, uφ PIV data converges to its mean value
between 4×104 . n . 6×104 instantaneous velocity fields acquired, (between 30 and 50 min-
utes of measurements), as observed on figure 3.8(a).

(a) uφ , Re = 400 (b) u′
φ

u′r, Re = 800

Figure 3.8: PIV data convergence of time series obtained at mid-height position (z≈ H/2) and
at 3 different radial positions (a) uφ convergence, Re = 400 (b) u′

φ
u′r convergence, Re = 800.

The dashed lines indicate the final averaged velocities obtained.

For second-order parameters, such as u′
φ

u′r (as presented in figure 3.8(b)), the experiments
converge after 3×104 . n . 6×104 pairs of images computed (between 20 and 50 minutes of
measurements). Although the convergence of u′

φ
u′r values show larger fluctuations around the

mean values than the uφ data converged to the azimuthal mean flow, these variations are small
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compared to the SRI amplitude oscillations (at least 50 times smaller than the variations in the
velocity amplitudes).

To guarantee converged data for both first and second-order parameters measured, all the
experiments were performed at least until n ' 6×103 pairs of images were obtained.

3.4 Temperature stratification
After a quasi-linear temperature profile is established in the axial direction, the outer cylinder
is rotated while the inner cylinder is kept at rest to eliminate perturbations generated during
the temperature mixing process. After stopping the outer cylinder rotation, one should wait
at least 20 minutes before starting each measurement to guarantee that the flow is at rest. No
relevant heat losses or changes in the temperature linearity are observed at this moment. This
is because there is almost no convective fluid motion, and the heat transfer happens mainly by
conduction, which is a slow process due to the small thermal conductivity of the fluids used in
the experiments.

For cooling the bottom end-plate of the experimental setup, a hose is connected to the lid
and attached to an external cooler. Cold water leaving the cooler is pumped to the hose, re-
moving heat from the bottom part of the experimental apparatus. Since the bottom plate is
connected to the outer cylinder, and the hose is attached to the external cooler, which is fixed
at the laboratory, the experimental setup cannot be cooled while the outer cylinder is moving.
The Peltier elements for heating can still work while the experiment is running, but this makes
the temperature control less precise. Therefore, the fluid heat up is stopped during the experi-
ment, without affecting much the temperature gradient. Each experiment typically runs between
30 and 70 minutes. The temperature values along the vertical axis are measured with a PT-100
(Platinum Resistance Temperature Detector) probe, that has a precision δT = 0.1K. The tem-
perature profile values and their linearity are also verified with an infrared camera IR-TCM
640hr, of 640px× 480px resolution. The maximum temperature differences between top and
bottom lids obtained at the beginning of the experiment are of ∆T = 7K, but in the present mea-
surements, it is kept between 3K < ∆T < 4.5K. An example of the temperature profiles before
and after the measurements is shown in figure 3.9. After the stable linear temperature gradient

Figure 3.9: Experimental temperature profiles at the beginning (blue curve on the right), and
at the end (red curve on the left) of a measurement. The dashed lines are the linear fits in the
center height region where the PIV measurements are performed.

in the axial direction is established, the experiment is started by rotating the outer cylinder until
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its final Ωout value, avoiding initial perturbations that would occur by starting the experiment
rotating the inner cylinder. When the outer cylinder reaches its final rotation, the inner cylinder
rotation is gradually increased from rest until the desired Re and µ values are achieved.

After finishing the PIV measurements, the temperature profile is once again measured. In
a one hour experiment, losses of ≈ 1K in the ∆T initially established are observed due to tem-
perature mixing in the axial direction and to losses into the surrounding environment. Despite
these temperature changes, the quasi-linearity of the profile is kept, and changes in N values are
considered small (see figure 3.9).



Chapter 4
Numerical Methods

The SRI is an instability that develops different time scale phenomena. The use of numerical
methods therefore is not easy, as it needs to comprehend fine meshes to solve all the scales
involved in the problem. Long time integration is also required to fully develop all features of
the instability evaluated. To overcome these difficulties, a direct numerical simulation (DNS)
solver combining fourth-order accuracy space discretization and high-performance computing
(HPC) has been developed. In this chapter, the description of the C2D-Annular, the research
code recently developed by Abide et al. (2018) to investigate the SRI dynamics, is addressed.

Hereafter, the mathematical model, the time and space discretizations, as well as the strate-
gies for the code parallelization will be presented.

4.1 Problem formulation
The physical model solved by the CS2D-Annular code in this thesis consists of the Taylor-
Couette configuration filled with an incompressible fluid. A temperature gradient is imposed
in the axial direction with a higher temperature prescribed at the top boundary than the bottom
one. The physical model is schematically presented in figure 4.1. Note that this is the same
configuration used to study the SRI experimentally, schematically presented in figure 3.1, on
chapter 3.

The SRI flow is modeled as an incompressible fluid, since all velocities involved in the prob-
lem are much smaller than the sound speed, leading to small Mach numbers (Mach<< 0.3).
Since the temperature gradients obtained in the experiments (and simulated numerically) are
not too large, density can be considered constant in the continuity and momentum equations,
except in the gravity term, to take into account buoyancy effects. This consideration is known
as the Boussinesq approximation (Kundu and Cohen 2001). Comparisons with simulations us-
ing other approximations (as the low Mach number approximation (Raspo et al. 2018)) indicate
that the temperature gradients here investigated are sufficiently small for using the Boussinesq
approximation. The good agreement of numerical and experimental results also indicates that
the approximation is valid for the problems investigated (see chapter 5).
The Navier-Stokes equations (NS) under the Boussinesq approximation on a fixed (non-
rotating) frame of reference read

∇ ·u = 0, (4.1)
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Figure 4.1: Schematic representation of the numerical configuration.

∂tu+(u ·∇)u =−∇p+ν∆u+F, (4.2)

∂tT +(u ·∇)T = κ∇
2T, (4.3)

where κ is the fluid thermal diffusivity, p is the pressure, T is the temperature field, and ν is
the kinematic viscosity. u = (ur,uφ ,uz) is the velocity vector field in radial, azimuthal and axial
directions, respectively. The reference fluid density ρ0 is included in the pressure term p

ρ0
on

the right-hand side of the equation 4.2. The reference fluid properties are considered constant,
obtained at a temperature of T = 25°C. In cylindrical coordinates, ∆u is given by

∆u =

∇
2ur−ur/r2−

(
2/r2)

∂φ uφ

∇
2uφ −uφ/r2 +

(
2/r2)

∂φ ur

∇
2uz

 , (4.4)

where ∇2 is the Laplacian scalar operator, defined in polar coordinates as

∇
2 = ∂

2
r +(1/r)∂r +

(
1/r2)

∂
2
φ +∂

2
z . (4.5)

To account for the buoyancy effect under the Boussinesq approximation, the body force F is the
buoyancy force driven by density variations:

F =−αg
∂T
∂ z

H, (4.6)

where α is the coefficient of thermal expansion, g is the gravity acceleration, ∂T
∂ z is the approx-

imate linear temperature gradient at the center region of the cavity, and H is the cavity height.
Note that, using the Boussinesq approximation, the fluid properties such as ν , κ , and α are
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treated as constant (Kundu and Cohen 2001). Note that Lopez and Marques (2020) attribute
centrifugal buoyancy to the instability although the relevant term in the equations is small. For
the experiments and simulations presented in this thesis, centrifugal buoyancy is even one order
of magnitude smaller than in Lopez and Marques (2020). Hence, centrifugal buoyancy was as-
sumed to not play a significant role in the experiments and it was not included in the numerical
model.

4.2 Time discretization and projection method

The first step for numerically solving equations 4.1-4.3 consists in the time discretization. In
the CS2D-Annular code, a semi-implicit scheme is considered to overcome the restrictive time
step associated with time explicit treatment of the diffusive terms. Since the semi-discretized
system of equations obtained leads to a coupling of the velocity and pressure, a strategy for
splitting both terms, called Improved projection scheme (IPS), is also implemented. These two
steps for solving the unsteady Navier-stokes equations are presented hereafter.

4.2.1 Time discretization

The choice of a time discretization method needs to take into account an appropriate time reso-
lution. The time step chosen must be small enough to resolve all the physical scales related to
the problem, but should also take into account the computational costs involved.

The time discretization can be made fully explicitly, fully implicitly, or semi-implicitly.
A fully time-implicit scheme is unconditionally stable, i.e., its numerical instability does not
depend on the time step. These specific solvers are then well suitable for the simulation of per-
manent regimes, where ∆t can become large without the problem of not resolving all time scales
involved in transient regimes, with relatively fast variations in time. When the method is fully
explicit, the discretization of the linear viscous terms leads to a quadratic stability constraint.
This restriction means that the time step chosen is restricted to be, at maximum, of the same or-
der as the square of the space discretization (∆t ∼O(∆x2)) for the simulation to be numerically
stable. With the fully explicit scheme, because of the grid refinement required in the vicinity of
walls, this limit becomes too restrictive.

The SRI physics demands simulations with small time steps to accurately describe its dy-
namic, but also need to cope with the time step constraint regarding the solutions of the non-
linear convective terms. In this case, both full-implicit or full-explicit alternatives are not suited,
and a semi-implicit method is indicated (Keyes et al. 2013). Using a semi-implicit scheme,
the time step restriction applies exclusively to the non-linear terms of the equations, and a
good compromise between complexity and the computational cost of the DNS can be achieved.
Common temporal schemes that use an implicit discretization for the diffusive terms are Crank-
Nicolson, backward Euler, or and backward difference (BDF2) methods (Press et al. 2007,
Moukalled et al. 2016). Explicit schemes that could be cited as examples are the 3rd order
Runge Kutta methods (RK3) (Williamson 1980), and the Adams-Bashforth method (Press et al.
2007, Karniadakis et al. 1991).

In this work, the time discretization is the combination of a second-order Backward Euler
scheme to solve the linear diffusive terms implicitly, and the Adams-Bashforth scheme for
explicitly solving the non-linear convective terms, as used in Raspo et al. (2002) and Abide
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et al. (2018). The time discretization of equations (4.1), (4.2), and (4.3) then read

∇ ·un+1 = 0
1

2∆t

(
3un+1−4un +un−1)+2H (un)−H (un−1) =−∆pn+1 +ν∇

2un+1 +Fn+1

1
2∆t

(
3T n+1−4T n +T n−1)+2H (T n)−H (T n−1) = κ∇

2T n+1,

(4.7)

where the terms H (u) and H (T ) are the convective terms on equations (4.2) and (4.3).
This set of semi-discretized equations lead to time-evolution equations for the momentum

and the temperature while imposing a constraint on the divergence of the velocity field at each
time step ∇ ·un+1 = 0. Note that the Laplacian operator ∇2, in cylindrical coordinates (equa-
tion 4.5), leads to derivatives of the diffusive terms with coupled variables in the radial and
azimuthal directions. These terms are also treated explicitly on time, as the non-linear terms
(Kuo and Ball 1997, Abide et al. 2018).

Note also that the discretized NS equations presented in 4.7 has a coupled velocity/pressure
system, that requires specific methods to solve equation 4.7 efficiently. This method will be
addressed in the following section 4.2.2.

4.2.2 Projection method
The pressure velocity decoupling is an important step for reducing the computational costs in-
volved in the numerical solution of incompressible Navier-Stokes equations. One can cite dif-
ferent algorithms that efficiently perform the velocity/pressure decoupling, such as the UZAWA
algorithms (Arrow et al. 1958), or the SIMPLE method (Patankar and Spalding 1967), that is
implemented in different commercial fluid mechanics solvers, or the projection methods, that
are widely used in research codes for the simulation of the Navier-Stokes equations (Temam
1969, Chorin 1968).

Projection methods consist of techniques to separate the coupled velocity/pressure terms
after the time discretization of the NS equations, and involves two stages (Goda 1979, Raspo
et al. 2002):

1. In the first stage, a provisional velocity u? is computed from the time discretized momen-
tum equations.

2. In the second stage, the provisional velocity is corrected to fulfill the incompressibility
constraint. This step requires the solution of a Poisson equation which is a crucial point
of this approach.

Projection methods are known to introduce a boundary layer error at the domain boundaries
because the tangential velocity is not explicitly imposed. According to Brown et al. (2001),
Guermond et al. (2006), one can define incremental or non-incremental projections method,
where each variant of the projection methods tries to reduce the numerical errors in the vicinity
of the boundaries. Kim and Moin (1985), Shen (1990) proposed projection schemes that solved
the pressure boundary conditions mentioned, but that introduced a slip velocity on the bound-
aries. A splitting method that solved the velocity and pressure boundary conditions constraint
was proposed by Karniadakis et al. (1991), but the method did not maintain the incompress-
ibility of the flow within the whole domain. Hugues and Randriamampianina (1998) proposed
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an incremental projection method that reduces error obtained by introducing the calculation of
a preliminary pressure p?. Provisional quantities are here indicated by the index ?. The steps
implemented in this work for obtaining the preliminary pressure are described hereafter:

1. Computing a preliminary pressure as

∆p? = ∇ ·
[
−2H (un)+H (un−1)+Fn+1] in ζ , (4.8)

with the following Neumann boundary conditions obtained by Gresho and Sani (1987)
for the pressure terms at the cylinders walls

∂ p
∂n

= n ·
[
−∂u

∂ t
−H (u)+ν∆(u)+F

]
on ∂ζ , (4.9)

where ∂ζ is the boundary of the computational domain. Note that pressure at the bound-
aries, presented in equation 4.9 is numerically computed as

∂ p?

∂n
=n ·

(
−3un+1

in +4un−un−1

2∆t
−2H (un)+H (un−1)

+ν
[
2∇(un)−∇

(
un−1)]+Fn+1

)
on ∂ζ ,

(4.10)

where uin is the velocity at the inner cylinder, H is the convective term, ζ is the compu-
tational domain, and ∂ζ its boundary.

2. Computing a predictor velocity u?

Using the discretized momentum equation (4.7) and the preliminary pressure obtained
from (4.8), the predictor velocity u? is given by

1
2∆t

(
3u?−4un +un−1)+2H (un)−H (un−1) =

−∆p?+ν∇u?+Fn+1.
(4.11)

3. Computing the pressure correction variable δ . This intermediate variable δ defined by
Hugues and Randriamampianina (1998) is used to correct the preliminary pressure p?,
and reads

δ =
2∆t
3

(pn+1− p?). (4.12)

That will be obtained from the mass conservation equation (4.1), evaluating the distance
of the predictor terms from a divergence free solution, and computed as

∆δ = ∇ ·u? in ζ , (4.13)

with the Neumann boundary condition

∂δ

∂n
= 0 on ∂ζ . (4.14)
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4. Performing the velocity and pressure correction.

Finally, δ is used to correct the predictor term and to obtain explicitly the pressure at time
step n+1

pn+1 = p?+
3

2∆t
δ , (4.15)

and the velocity at the time step n+1

un+1 = u?−∇δ , (4.16)

with pressure and velocity in equations 4.15 and 4.16 now decoupled.

Note that, concerning the accuracy of the time discretization, the IPS leads to a second-order
approximation both in velocity and pressure.

In most projection methods, a homogeneous Neumann boundary condition is prescribed for
the pressure correction and, therefore, for the pressure itself. This leads to a normal derivative
of the pressure

(
∂ p
∂n

)
that remains constant as the one initially imposed. Using the IPS allows a

time-dependent normal derivative of the pressure, consistently with the Navier-stokes equations
(Karniadakis et al. 1991).

As in most projection methods, the main steps of the IPS consist of solving three Helmholtz
equations to compute the velocity components, and two Poisson equations to compute the pre-
liminary pressure and the δ terms in equation 4.11. These solutions are closely related to the
space discretization, which will be detailed in the following section.

4.3 Spatial discretization
In the CS2D-Annular code, the spatial discretization of equations (4.7) is based on fourth-order
compact scheme developed by Lele (1992), defined on a full staggered arrangement (Harlow
and Welch 1965).

4.3.1 Variable layout
The variable layout consists of defining how the variables are located in the discrete domain.
For structured grids, collocated or staggered arrangements are commonly used. Using collo-
cated methods, all three components of velocity and the pressure are located at the same grid
position (Olafadehan et al. 2018). The collocated layout is popular with spectral methods. How-
ever, for finite differences or finite volume methods, this arrangement is known to introduce a
pressure uncoupling, and in the presence of nonlinear terms, it requires special treatments to
correctly solve the equations (Ferziger et al. 2002). With staggered grids, the velocity and pres-
sure components are shifted half a space grid (Cioranescu and Lions 2002), as schematically
represented in figure 4.2, which reassures the decoupling of the velocity and pressure terms ob-
tained with the projection method described in section 4.2.2. More precisely, the pressure and
the velocity components are shifted in space by half a space grid as reported in figure 4.2, with
velocity components ur, uφ and uz located respectively at nodes (xi+1/2,y j,zk), (xi,y j+1/2,zk),
and (xi,y j,zk+1/2), while pressure nodes are located at nodes(xi,y j,zk). h is the distance between
two nodes, and the sub-indexes of i, j, and k indicate each respective node. In addition to en-
forcing the pressure/velocity decoupling, the staggered layout allows to ensure the conservation
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Figure 4.2: Schematic representation of the 2-D space full staggered grid arrangement with
velocity and pressure shifted in space by half a grid (h/2).

of the kinetic energy in a discrete sense (Morinishi et al. 1998, Viazzo et al. 2001, Brazzoli et al.
2007). In this work, the staggered layout was then considered given the advantages mentioned
above.

4.3.2 Compact schemes

Unlike the explicit standard finite difference methods, compact schemes are finite difference
methods that are implicitly defined. These methods have better formal accuracy and resolution
for high wavenumbers than standard finite differences (Lele 1992).

The staggered approximation of the first derivative at node i
(

f ′i ≈ ∂

∂x f (xi)
)

using the 4th or-
der compact scheme proposed by Lele (1992) on staggered grid reads

α f ′i−1 + f ′i +α f ′i+1 =
a( fi+1/2− fi−1/2)

h
(4.17)

The coefficients α and a in equation (4.17) are obtained by matching the Taylor series
coefficients as such manner that fourth-order approximation accuracy is retrieved (Lele 1992,
Abide et al. 2018). The numerical scheme and coefficients for the staggered derivative at the
inner nodes of the domain and the interpolation between the staggered nodes using the 4th order
compact scheme proposed by Lele (1992) are presented in table 4.1. The operators Dξ and Iξ

stand respectively for the first derivative with respect to ξ , while Iξ stands for the interpolation.
The index c f stands for the evaluation of center-to-face positions and represents the nodes
where the function is known. The indexes f c stand for face-to-center, and indicate the location
where the numerical evaluation holds (the node where we want to obtain p or u). For example,
this means that D f c

r is the first derivative operator in the r direction, evaluated at the center-
node from face-nodes. In the CS2D-Annular code, second derivatives are currently obtained by
applying successively two times the first derivative.

In order to close the system of equations formed by the previous approximations of deriva-
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operator scheme α a

D f c
ξ

α f ′i−1 + f ′i +α f ′i+1 = a
fi+1/2− fi−1/2

h 1/22 12/11

Dc f
ξ

α f ′i−1/2 + f ′i+1/2 +α f ′i+3/2 = a fi+1− fi
h 1/22 12/11

Ic f
ξ

α fi−1 + fi +α fi+1 =
a( fi+1/2+ fi−1/2)

2 1/6 2/3

I f c
ξ

α fi−1 + fi +α fi+1 =
a( fi+1/2+ fi−1/2)

2 1/6 2/3

Table 4.1: Fourth-order compact scheme coefficients for the inner nodes.

tives and interpolations, boundary relations are given by

f (q)1 +α f (q)2 = a f−1/2 +b f1/2 + c f3/2

α f (q)n−1 + f (q)n = a fn+1/2 +b fn−1/2 + c fn−3/2,
(4.18)

where q = 0 means interpolation and q = 1 means derivation. The coefficients α , a, b, and c
and the discretization schemes at the boundary nodes in (4.18) are summarized in table 4.2.

Using these notations, the boundary conditions can be inserted together in the in-
ner nodes relations, leading to a linear system M f (q) = B f where M is a tridiagonal
matrix. Multiplying from the left both sides by the inverse matrix M−1, we obtain
M−1M f (q) = M−1B f −→ f (q) = M−1B f , leading to

f (q) = D f (4.19)

Note that D is no longer be a sparse matrix as M.

operator scheme α a b c
Dc f

ξ
f ′0 +α f ′1 = a f−1/2 +b f1/2 + c f3/2 -1 -1 2 -1

D f c
ξ

α f ′−1/2 + f ′1/2 = a f0 +b f1 + c f2 23 -25 26 -1

Ic f
ξ

f0 +α f1 = a f−1/2 +b f1/2 + c f3/2 5 15/4 5/2 -1/4

I f c
ξ

α f−1/2 + f1/2 = a f0 +b f1 + c f2 1 1/4 3/2 1/4

Table 4.2: Fourth-order compact scheme coefficients of the boundary relations .

Close to the annular walls and the lids, it is necessary to refine the mesh to account for
strong velocity gradients. For this purpose, an analytic mesh transformation is used here to con-
trol the grid size where no-slip boundary conditions are prescribed. Consequently, evaluations
of derivatives on non-uniform grids with better resolution near the boundaries (where smaller
scales need to be accurately resolved) are achieved by multiplying the derivatives on the equally
spaced nodes by a function proportional to an hyperbolic tangent (Knikker 2009), given by

x(X) = β

[
1− tanhγ(β −X)

tanhγβ

]
(4.20)

where γ in the stretching factor, and β is a control parameter. An example of grid refinement
obtained with equation 4.20 is presented in figure 4.3(a), and an example of the grid refinement
in the azimuth-radial (φ − r) cross section near the boundary layers is shown in 4.3(b).
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(a) (b)

Figure 4.3: (a) Function applied to obtain a non-uniform grid, with β = 5, and different values
of the control parameter γ . Examples of curves obtained with different values of γ; (b) φ−r grid
with a zoom near the cylinder wall to highlight grid refinement.

The use of compact schemes to evaluate the explicit terms arising from the time discretiza-
tion is done without further difficulties, applying the method described in each non-periodic
space direction. The solutions of the Helmholtz/Poisson equations that arise from the pro-
jection methods are less straight-forward, due to the implicit nature of compact schemes. It
requires to write the discrete second-order operators as D = M−1B. In the next section, the
method implemented to solve the Poisson equation (4.11) will be described.

4.3.3 Solution of Poisson/Helmoltz equations
In section 4.2.2, the solution of the incompressible Navier-Stokes equations was reduced to
solving Helmholtz and Poisson equations, and evaluating the leading explicit terms. The method
of solution to solve the Poisson equation is described hereafter.

Let us consider the Poisson equation written in cylindrical coordinates :

1
r

∂

∂ r
r

∂

∂ r
Φ+

1
r2

∂ 2Φ

∂φ 2 +
∂ 2Φ

∂ z
= s (4.21)

This is the required equation to compute the pressure correction (eq. 4.15), or the preliminary
pressure (eq. 4.8). Using periodic boundary conditions in the azimuthal direction allows to use
pseudo-spectral discretization. Consequently, the 3D problem is reduced in the Fourier space to
a sequence of 2D problems for each wavenumber as

1
r

∂

∂ r
r

∂

∂ r
Φ̂m−

m2

r2 Φ̂m +
∂ 2

∂ z2 Φ̂m = ŝm (4.22)

where m stands for the azimuthal wavenumbers that arises from the decomposition Φ =

∑m Φ̂meim. Noted that each mode in (4.22) is independent of each other. Using the tensorial
notation the discrete form for ( 4.22) can be re-written in a more concise way as

(D2
mr⊗ Iz + Ir⊗D2

z )Φ̂m = ŝm, 0≤ m≤ nφ/2+1, (4.23)

with the operators D2
mr and D2

z in equation 4.23 given by

D2
mr =

1
r

δ
f c

r rδ
c f
r −

m2

r2 ,

D2
z = δ

f c
z δ

c f
z

(4.24)
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where δ c f and δ f c are the staggered derivatives, defined in the previous section (4.3.2).
The solution of the linear system presented in (4.24) is computed using the diagonalization

method, which consists of solving D2
mr and D2

z on each respective eigenspace, which can be
formulated as D2

mr = MmrΛmrM−1
mr and D2

z = MzΛzM−1
z . In this way, the solution is given by

(Λmr⊗ Iz + Ir⊗Λz)Φ̃m = S̃m, 0≤ m≤ nφ/2+1, (4.25)

Φ̃m = M−1
mr Φ̂mM−1

z S̃m = M−1
mr ŜmM−1

z (4.26)

After a preprocesssing step, that is performed to compute the eigenvectors and eigenvalues of
the D2

mr and D2
z operators, the main steps of the diagonalization method are

1. compute FFT of the right-hand-side Ŝm

2. perform the tensor product S̃m =
(
M−1

mr ⊗M−1
z
)

Ŝm

3. compute the elementwise solutions Φ̃m,i j = S̃m,i j/
(
λmr,i +λz, j

)
4. perform the tensor product Φ̂m = (Mmr⊗Mz)Φ̃m

5. compute Φ = FFT−1(Φ̂m)

Note that Neumann boundary conditions (as presented in equation 4.9) introduce a zero
eigenvalue for the mode m = 0. Thus, the compatibility condition plays an important role to
ensure that the problem will admit a solution that leads to an additive constant. In the present
case of closed cavities, no renormalization of the velocity is required.

The main computational costs involved in the diagonalization methods are related to the
computation of the tensorial products, in transforming them to the eigenspace and back. One
strategy to reduce the simulation time is implementing adequate methods to perform the com-
putations in parallel. This strategy will be addressed in the following section.

4.4 High-performance computing
In the framework of the SRI simulations, the purpose of HPC is to reduce the wall clock time
of the simulations. The numerical methods described in the previous sections show that the
main components to solve efficiently the Navier-Stokes equations are the evaluations of com-
pact scheme derivatives or interpolations (mainly due to non-linear terms) and the solutions of
Helmholtz/Poisson equations (algebraic linear systems). This corresponds to the time explicit
and time implicit terms of the NS equations. In Abide et al. (2018) two different strategies have
been proposed to benefit from parallel computing. The first one is specific for the parallel solu-
tion of the diagonalization method, while the second one focuses on the parallel calculations of
compact schemes. These two strategies are presented hereafter.

4.4.1 The pencil decomposition
The core of the diagonalization method is the tensorial products and the FFT successively ap-
plied in each space direction. Thus, a strategy to distribute the computational load over differ-
ent processors can be inspired in strategies from parallel computing of fast Fourier transforms
(2decomp&FFT or P3DFFT). The key point is to dynamically distribute a 3D-array over a two-
dimensional grid of processors. Note that there will always be one rank for which the full range
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indices are not divided to be computed in parallel in the MPI-processors. The three-dimensional
array configurations available, called r-pencil, φ -pencil and z-pencil decompositions are pre-
sented in figure 4.4. In each of these configurations, the original serial algorithm can be applied
to the spatial direction that is not divided into the MPI-processors.

(a) φ -pencil (b) r-pencil (c) z-pencil

Figure 4.4: Three states of the 2d-pencil decomposition divided in 3×4 processor grids (respec-
tively in r and z directions). Reproduced from Abide et al. (2018) with the friendly permission
of Stéphane Abide

In the simulations performed here, the FFT is applied along the φ -pencil state, the tensorial
product Mz⊗Ir is computed when the data are distributed over the r-pencil, and Iz⊗Mmr is com-
puted on the z-pencil. One switch from one state to another applying global transposed func-
tions, which performs MPI all-to-all global communications to redistribute the arrays. The 2d-
pencil decomposition library implemented was the 2decomp&fft library (Li and Laizet 2010).

The algorithm to solve the linear terms using the parallelized diagonalization method con-
sists of the following steps (Abide et al. 2018):

1. computing FFT of the source term Ŝm = FFTφ (S) on the φ−pencil state (figure 4.4.(a));

2. distributing Ŝm from φ to r-pencil and computing F̂m = (M−1
rm ⊗ Iz)Ŝm;

3. distributing F̂m computed in the previous step (step 2) from r to z−pencil then computing
Gm = (Ir⊗M−1

z )Fm;

4. computing Ĝmi j =
Ĝmi j

λrmi+λz j
;

5. computing F̂m = (Ir⊗Mz)Ĝm;

6. transposing F̂m form z−pencil to r−pencil, and computing Ŝm = (Mrm⊗ Iz)Ĝm;

7. transposing Ŝm form r−pencil to φ−pencil, and computing the inverse FFT to obtain the
solutions back in the physical space.

It is worth mentioning that the serial algorithm of the diagonalization method detailed in the
section 4.3.3 is easily implemented using the pencil decomposition. This method relies on a
large volume of communications due to the dynamical redistribution. It still remains efficient,
since this leads to a significant reduction of the total simulation time (Abide et al. 2017, Li and
Laizet 2010).
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(a) Mx = (M̃+∆M)x (b) M̃−1M̃x = M̃−1b

Figure 4.5: Matrix partition of the over 4 processors. (a) Tridiagonal matrix Mx = (M̃ +
∆M)x; (b) Inverse of the tridiagonal matrix M̃−1M̃x = (I+ M̃−1∆M)x = M̃−1b. Reproduced
from Abide et al. (2017) with the friendly permission of Stéphane Abide.

4.4.2 Parallel Diagonal Dominant

A parallel strategy can be implemented to evaluate the compact scheme derivatives and interpo-
lations described in section 4.3.2 using the pencil decomposition presented in the previous sec-
tion. To reduce the computationally expensive global communications when compact scheme
operators are evaluated, it is possible to take advantage of the diagonal dominance of the matri-
ces. The Parallel Diagonal Dominant algorithm (PDD) allows us to efficiently solve tridiagonal
linear systems on distributed architectures (Sun 1995, Polizzi and Sameh 2007). The PDD al-
gorithm is based on the diagonal dominance assumption, where some matrix entry elements
are dropped during the factorization procedure to increase the number of independent compu-
tational tasks, and so, to improve the parallelism efficiency. The accuracy of this approximate
solver depends on the degree of the diagonal dominance (Sun 1995). Thus, for achieving an effi-
cient approximation, one should take into account the accuracy of the compact finite difference
schemes, but also the other DNS-code features such as the conservation properties. A detailed
description of this approach for cartesian and cylindrical coordinate systems can be found in
Abide et al. (2017, 2018). Hereafter, the main ingredients of the PDD method are presented.

The compact scheme evaluation of the derivatives and interpolations presented in sec-
tion 4.3.2 involves the solution of multiple tridiagonal linear systems. For simplicity, we can
focus only on the evaluation of the generic tridiagonal linear system. In the resulting alge-
braic linear system Mx = b, M is a tridiagonal matrix of size n, where x = (x1, ...,xn) and
b = (b1, ...,bn). The original matrix M is then split into two parts M = M̃ +∆M and thus dis-
tributed over q processors. M̃ is a block diagonal matrix composed of tridiagonal matrices M(k),
and ∆M is composed of the off block-diagonal entries. Considering the q number of processors,
this partition leads then to x = (x1, ...,xq) with x(k) = (x(k)1 , ...,x(k)n/q), where 1 ≤ k ≤ q. The
matrix M distributed over q processors is schematically represented in figure 4.5.

The product between the original tridiagonal linear system and the inverse matrix M̃−1 leads
to a block identity matrix surrounded by two-column vectors v(k) and w(k), denoted as spike
by Polizzi and Sameh (2007). Figure 4.5(b) schematically shows the structure of the matrix
M̃−1M. Adding the first and the last nodes of each partition (respectively x(k)1 and x(k)n/q) leads to
a pentadiagonal linear system called the reduced system (Sun 1995). Note that, independently of



4.5. Numerical code utilization 55

the diagonal dominance assumption, the parallel algorithm to solve Mx = b can be implemented
using the following steps:

1. Compute a guessed solution for the system x̃ = M̃−1b on each processor independently.

2. To solve the pentadiagonal reduced system to compute the first and last nodes of each
partition, x(k)1 and x(k)m .

3. use the spikes to correct the guessed solution x(k) = x̃k− x(k)1 v(k)− x(k)n/qw(k)

Depending on the degree of the diagonal dominance, a truncated version of this algorithm
can be implemented, which allows achieving a higher level of parallelism. In fact, in this
case, the entries of the spikes v(k) and w(k) decrease as we move away from the diagonal. By
dropping the spike entries that are far from the diagonal, the reduced system degenerates into
independent linear systems of dimension 2, involving only the unknowns x(k)1 and x(k−1)

n/q at each
interface. Abide et al. (2018) showed that this truncation does not deteriorate the accuracy nor
any conservation properties, since it is an inherited feature of the diagonal dominance of the
compact schemes. Note that the diagonalization of each modified operator is carried out only
once during pre-processing stages (Abide and Viazzo 2005).

This reduced Partial Diagonal Dominant (rPDD) strategy (Sun 1995) thus constitutes a
powerful tool in terms of reducing CPU-time cost, since the computations require only sim-
ple matrix−matrix products, that involves only neighbor-to-neighbor communications, instead
of all-to-all parallel communications (Sun 1995, Abide et al. 2017).

4.5 Numerical code utilization
To carry out the SRI numerical investigations, Direct Numerical Simulations (DNS) were per-
formed using the CS2D-Annular code, dedicated to high-performance computing based on
Message Passing Interface (MPI) parallelization, developed by Abide et al. (2018).

Parallel strategies are implemented to reduce the large execution times demanded by scalar
codes, which can often bring limitations to the numerical investigations of the SRI. Especially
when slow occurring phenomena are investigated, that requires long integration times to be
evaluated. Furthermore, the SRI configurations investigated have very long transient regimes,
that demand time-consuming simulations. The algorithm presented introduces strategies to
strongly reduce wall-clock times to study not-yet observed phenomena related to the SRI. The
code description is presented hereafter.

4.5.1 Code description
To carry out the SRI numerical investigations, Direct Numerical Simulations (DNS) were per-
formed using the CS2D-Annular code, written in Fortran90, dedicated to high-performance
computing based on Message Passing Interface (MPI) parallelization, reported in Abide et al.
(2018). The MPI strategies implemented can reduce the large execution times demanded by
scalar codes from months to hours. The numerical data outputs are written out in HDF5 format
that makes them easy to be stored, and post-processed mainly based using Matlab scripts.

The CS2D-Annular code ran on several parallel computer centers (eos CALMIP, muse
HPC@LR, occigen CINES), different incompressible flow applications, and a good scaling
was observed by Abide et al. (2017) up to 104 processors.
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Figure 4.6: Scaling tests on HLRN computers for φ × r× z meshes of sizes 32×512×512 and
128×256×512. The x-axis is the number of nodes (n) used on the computations and the y-axis
presents (a) the speedup (b) the time (in seconds) necessary to complete 100 iterations.

The SRI simulations here presented were all performed in the High-performance Comput-
ing in Northern Germany (HLRN) computers, where strong scaling tests were also performed.
Figure 4.6 shows the speedup and the scalability with respect to the number of processors on
two different φ × r× z meshes, with sizes 32×512×512 and 128×256×512, considering the
time to complete 100 iterations. The speedup evaluates how the number of nodes used during
the computations will make the processing speed increase. The scalability is the ability to main-
tain the average unit speed (Sun and Rover 1994), i.e., it shows the relation between the final
computation time decrease and the number of processors (or nodes) n used in the computations.

The speedup depends on the number of processors involved in the computations, which must
be chosen considering a good distribution of tasks among the processors. If the tasks are not
distributed in a balanced way, it is possible that a load balancing occurs, i.e., a long time to com-
plete the processing of a single task before proceeding with the program. An important aspect
that should be observed for the good speedup of the code is the granularity, which is the ratio
between computing time and the time spent on the communication between processors. A too
large number of processors involved in the computations would lead to a performance decrease
due to the time spent in the communication between the processors. An ideal parallelization
would have a linear decrease in the simulation time with n (e.g., using 2 processors should de-
crease the total computation time using one processor in half; using 3 processors should make
time decrease by a factor of 3, etc., leading to a linear relation), but the time demanded for
the communication between the processors make the actual computational time bigger than this
ideal situation. Form figure 4.6, we can see that the code speedup increases significantly with
the number of nodes and that it scales practically linearly until at least 288 nodes, with a mesh
of 128×256×512. The meshes used for testing the scalability have more grid points than the
usual meshes chosen for the simulations.

As an example, the φ × r× z number of grid points used for the SRI considering the same
geometry of the experimental setup here presented was of 32×64×200. In such simulations,
computations are performed for approximately 12 hours to obtain 4 hours of results in physical
time.
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4.5.2 Example of a numerical simulation
An example of the numerical results obtained are presented in figures 4.7 and 4.8. These figures
show snap shots of uφ , ur, uz, and T respectively at the φ − r and r− z cross sections, where the
SRI structures can be observed.

The φ × r× z number of grid points used for the SRI in figures 4.7 and 4.8 was of 32×
64× 200. For choosing sufficiently well-resolved mashes, the convergence of the time-mean
velocity profiles is observed changing the number of grid points in one direction while keeping
the other two directions constant. To exemplify, figure 4.9 shows the convergence of time-mean
velocity profiles when the number of grid points on the radial direction changes from 64 to 128,
keeping constant the number of grid points in φ = 32 and z = 200.

In the same way as in the experimental procedure, the numerical simulations convergence
can be investigated to evaluate how many instantaneous velocity fields must be computed and
stored to obtain statistically converged results. To evaluate the data convergence, the quantity C
defined on equation 3.7 is also computed for the numerical data as C(n) = ∑

n
i=1

u(i)
n , where u(i)

is the velocity in the ith point evaluated, and n is the number of instantaneous velocity fields
computed.

Figure 4.10 shows the data convergence for numerical simulations with µ = 0.35 and
∆T ≈ 4K at mid-height location (z≈ H/2), at 3 different radial positions: at r = 84mm (closer
to the inner cylinder ), at r = 106mm (close to the mid-gap region), and at r = 125mm (closer to
the outer cylinder). Figure 4.10(a) shows the convergence of the azimuthal velocity (uφ ) with
Re = 400, and figure 4.10(b) shows the convergence of u′

φ
u′r for a simulations with Re = 800.

In the numerical simulations, the data completely converges to their mean values after n &
5×103 terms computed, equivalent to approximately 3 hours of simulation (in physical time),
therefore, all results presented were obtained in simulations performed for a minimum physical
time of 4 hours. Note that, for such long computations, the parallelization strategies described
in this section become crucial to analyze the SRI phenomena numerically.

Note that, the final convergence values of simulations presented in figure 4.10 are of the
same order as the convergence obtained experimentally (figure 3.8), showing a consistency in
the results obtained with both methods are consistent. The numerical results obtained will be
compared with experimental data in chapter 5.

4.5.3 Flow control parameters
In the numerical simulations, the control parameters of the flow are given by the boundary
conditions imposed. In the simulations presented here, velocity is prescribed at the lateral
cylinder walls by applying Dirichlet no-slip boundary conditions, so the velocities imposed at
the inner and outer cylinders are, respectively, uφ (rin) = Ωinrin and uφ (rout) = Ωoutrout .

Non-permeability boundary conditions at the cylinder walls lead to ur(rin) = 0 and
ur(rout) = 0, while impermeability at the top and bottom end gaps lead to uz(rin) = 0 and
uz(rin) = 0. Also, at the top and bottom lids, the azimuthal and radial velocity components are
submitted to no-slip boundary conditions, therefore, uφ rotates with the same angular velocity
as the outer cylinder (as in the experiments), i.e., uφ (z= 0) = rΩout and uφ (z=H) = rΩout . The
radial velocity component at the top and bottom lids become ur(z = 0) = 0 and ur(z = H) = 0.
The axial velocity at the top and bottom end caps, due to non-permeability boundary conditions,
are uz(z = 0) = 0 and uz(z = H) = 0. The vertical temperature gradient results from the temper-
ature difference ∆T imposed between the top and bottom lids, generating the buoyancy force
in equation 4.6. Since the experiment outer cylinder wall is made of glass material, that has
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(a) uφ [mm/s] (b) ur [mm/s]

(c) uz [mm/s] (d) T [K]

Figure 4.7: SRI snapshots showing the azimuthal-radial (φ − r) cross section obtained with the
CS2D-Annular code, with µ = 0.35, η = 0.517, a linear stable axial temperature gradient with
∂T/∂ z ≈ 5.7K/m, Fr ≈ 1.5 and Re = 400. The aspect ratio between cavity height and gap is
Γ = H/(rout− rin) = 10. No-slip and impermeable Dirichlet boundary conditions are imposed
(uφ (rin) = Ωinrin, uφ (rout) = Ωoutrout , uz(z = 0) = 0, uz(z = H) = 0, ur(rin) = 0, ur(rout) = 0).
The bottom and top lids of the cavity rotate with the outer cylinder Ωout . The images are shown
in the laboratory frame of reference
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(a) uφ [mm/s] (b) ur [mm/s]

(c) uz [mm/s] (d) T [K]

Figure 4.8: Velocity isocontour snapshots of the SRI showing non-axisymmetric spirals ob-
tained by numerical simulation with µ = 0.35, η = 0.517, a linear stable axial temperature gra-
dient with ∂T/∂ z ≈ 5.7K/m, Fr ≈ 1.5 and Re = 400. The aspect ratio between cavity height
and gap is Γ = H/(rout− rin) = 10. No-slip and impermeable Dirichlet boundary conditions
are imposed (uφ (rin) = Ωinrin, uφ (rout) = Ωoutrout , uz(z = 0) = 0, uz(z = H) = 0, ur(rin) = 0,
ur(rout) = 0). The bottom and top lids of the cavity rotate with the outer cylinder Ωout . The
images are shown in a laboratory frame of reference
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(a) uφ (b) ur

(c) uz

Figure 4.9: Comparison of mean time velocity profiles when the number of grid points in the
radial direction increases from 64 to 128, keeping constant the number of grid points in φ = 32
and z = 200.

(a) (b)

Figure 4.10: (a) Convergence obtained from numerical simulations at mid-height position
(Z = H/2) for 3 different radial locations (a) uφ time series convergence, Re = 400 (b) u′

φ
u′r

convergence, Re = 800. The dashed lines indicate the final averaged velocities.
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Condition Location

No-slip

uφ (rin,θ ,z) = ωinrin Inner cylinder
uφ (rout ,θ ,z) = ωoutrout Outer cylinder
ur(rin,θ ,z) = 0 Inner cylinder
ur(rout ,θ ,z) = 0 Outer cylinder
uz(rin,θ ,z) = 0 Inner cylinder
uz(rout ,θ ,z) = 0 Outer cylinder
uφ (r,θ ,z = 0 or H) = ωoutr Top and bottom lids
ur(r,θ ,z = 0 or H) = 0 Top and bottom lids
uz(r,θ ,z = 0 or H) = 0 Top and bottom lids

Prescribed temperature
T (z = 0) = T0 Bottom lid
T (z = H) = T0 +(∂T/∂ z)H Top lid

Adiabatic lateral walls ∂T/∂n = 0
Inner cylinder
Outer cylinder

Table 4.3: Boundary conditions

a thermal conductivity of κglass ≈ 0.8Wm−1 K−1, while the top and bottom walls are made of
aluminum, with thermal conductivity κaluminum ≈ 210Wm−1 K−1 (more than 250 times higher
than the acrylic), heat losses can be neglected compared to the thermal forcing at the top and
bottom lids, therefore, adiabatic boundary conditions are imposed at the lateral walls.

A summary of the boundary conditions prescribed can be seen in table 4.3.
Due to the cylindrical configuration, the solutions of u and p in the azimuthal direction

are 2π−periodic. Note that periodic simulations in the axial direction were also performed to
isolate the SRI phenomena from end-cap and Ekman boundary layer effects.

To conclude, the numerical stability of the simulations are also controlled using the Courant-
Friedrichs-Lewy number (CFL) defined by

CFL =
|u|∆t
∆x

, (4.27)

where |u| is a typical velocity (currently the maximum absolute value of the three components
of velocity), ∆t is the time step, and ∆x is the grid size. Although it is not easy to define an
analytical CFL criterion that ensures the stability of the present scheme, previous empirical
observations showed that a CFL≤ 0.3 leads to numerically stable simulations.





Chapter 5
Numerical and experimental observations

“Tenho pensamentos que, se pudesse revelá-los e fazê-los viver, acrescentariam nova luminosidade às
estrelas, nova beleza ao mundo e maior amor ao coração dos homens1.”

− Fernando Pessoa −

In this chapter, we will discuss physical phenomena observed in the SRI both numeri-
cally and experimentally with Reynolds number between 200≤ Re≤ 1300, µ = 0.35 (slightly
smaller than the Keplerian line, at µ ≈ 0.375 in the experiment here presented), and temper-
ature difference between the top and bottom lids of ∆T ≈ 4K. These values were chosen by
their possible practical implication on accretion disk theory, as discussed in chapter 1. The
results comparing experimental and numerical simulation data are here presented in the radial-
azimuthal (r−φ ) cross-section, with values of Re = 400, Re = 600 and Re = 800, Re = 1000,
respectively corresponding to inner cylinder angular velocities of Ωin(Re = 400)≈ 0.381rad/s,
Ωin(Re = 600)≈ 0.571rad/s, and Ωin(Re = 1000)≈ 0.952rad/s. The objective of this compar-
ison is not only the numerical code validation, since it has already been validated in previous
works (Abide et al. 2017, 2018), but also to explore new physical phenomena associated with
the SRI that can lead to a better understanding of this still not fully comprehended hydrody-
namic instability.

5.1 Comparison of experimental and numerical SRI data

Figure 5.1 shows a comparison between numerical and experimental space-time diagrams us-
ing a 12 minutes time-slice, for Reynolds number Re = 400 and µ = 0.35 at mid-height axial
position (z≈H/2)2. The initial temperature difference imposed between top and bottom lids is
∆T ≈ 4K, leading to ∂T/∂ z≈ 4K

0.7m ≈ 5.7K/m, Rn≈ 250 and Fr ≈ 1.5. The reference frame is
co-rotating with the outer cylinder for a direct comparison with the experiment results since the
PIV data have been obtained in this frame of reference. When the results presented in this chap-
ter will be obtained in a reference frame fixed in the laboratory, it will be explicitly indicated
in the text. Figures 5.1(a),(b) demonstrate the good agreement between numerical simulations
and PIV data, presenting SRI oscillations with a period of approximately 90 seconds in the

1“I have thoughts which, if I could bring them forth and make them living, would add a new lightness to the
stars, a new beauty to the world and a greater love to the heart of men.”

2The indication of radial and axial position is written as approximated in the text (≈) since it was not interpo-
lated to obtain the precise position indicated, but taken from its closest point in the discrete data sets.
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(a) Experiment (b) Numerical Simulation

Figure 5.1: uφ space-time diagram for Re = 400 in a reference frame co-rotating with the outer
cylinder at mid-height axial position (H/2). The horizontal axis shows time in minutes and the
vertical axis, the radius in mm (the bottom of the image is near the inner cylinder region, and
the top, close to the outer cylinder). Both figures(a),(b) show 12 minutes of measurements.

co-rotating frame of reference. This time scale is relevant to be noticed since it is associated
with the SRI most energetic frequency. When compared to the SRI lower frequency oscillations
that will be later presented (in chapter 6), the SRI frequency is considered to be high. Note that
in spite of the good agreement, there are small qualitative differences in the shape of the red
spikes in figure 5.1(a),(b). In the simulation the spikes seem to become somewhat broader and
more symmetric at later times, but no explanation was yet found for this slightly different shape
at later times. In figure 5.2, the time mean azimuthal velocity profiles uφ from two different
experiments are compared with the corresponding numerical simulations (the bar on top of a
variable is used to indicate time average).

The TC profile (equation 1.1) is represented by a dashed black line. It should be noted that
for all unstable SRI profiles observed, the flow is slower near the inner cylinder (r ≈ 80mm)
when compared to the non-stratified TC case, and slightly faster near the outer cylinder
(r ≈ 143mm), showing how the stratification affect the mean flow, transferring energy to the
instability.

Figures 5.3(a),(b) show a comparison of uφ spectra between the two experiments (per-
formed at different days with the same parameters) and the numerical simulation, respectively
for Re = 400 and Re = 600. The dominant SRI frequencies in the outer cylinder co-rotating
frame of reference are fSRI(Re = 400) ≈ 0.011Hz and fSRI(Re = 600) ≈ 0.015Hz. The am-
plitude of the spectra is computed as the square of the Fourier transformed azimuthal velocity
(P = |FFT (uφ )|2) at a fixed azimuthal and radial position φ = 0,r ≈ rin + d/2, and height
z ≈ H/2. For both Re, the SRI peak corresponds to the mode m = 1 azimuthal wave number.
To find out the mode m of each respective peak in the spectra, we can apply the transformation

flab = frot +m
Ωout

2π
(5.1)

where flab is the frequency in the laboratory frame of reference, frot is the frequency in an
outer cylinder co-rotating frame, Ωout is the angular velocity of the outer cylinder, r is the
radial position at which the time series have been measured. Then, to know which mode m
corresponds to each peak, equation (5.1) can be applied with frot obtained from the experiments
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Figure 5.2: Time average azimuthal velocity profiles (uφ ). The lines with star and circle markers
represent two different experimental data performed with Re = 400, µ = 0.35 and temperature
between top and bottom lids ∆T ≈ 4K, leading to Rn ≈ 250 and Fr ≈ 1.5. The solid red
curve was obtained from numerical simulation, and the black dashed line is the non-stratified
analytical TC profile. The bottom left figure is showing the deviations from the TC profile.

(which co-rotates with the outer cylinder) and flab from the numerical spectra (which is in
obtained in the laboratory frame of reference). For a chosen m, only the peak associated with
the mode of flab fulfils (5.1), while all the other peaks (6= m) remain uncorrelated.

The spectra in figure 5.3 show good agreement between experimental and numerical data,
although the experimental results have the tendency of showing slightly smaller frequencies
than the ones obtained numerically. This might come more from small errors on controlling the
experimental inner and outer cylinder velocities since slightly lower values in the experimental
mean velocity profiles of figure 5.2 when compared to the numerical data were also observed.
Besides showing the good agreement between numerical and experimental data, the log-scale
FFTs presented here also reveal harmonics of the SRI’s most energetic frequency, showing that
non-linearities are starting to set in for the chosen parameters.

In figure 5.4, we can observe that the SRI oscillations are well captured in azimuth and radial
velocity components. Similar frequencies and amplitudes are captured in uφ and ur of both
experiments and numerical simulations. Note also that independent changes in the amplitude
of u′

φ
and u′r occur in time, both in experiments and numerical simulations. The phenomena

related to the amplitude changes in the SRI will be better investigated in the next chapter (6).
For comparing the m = 1 SRI oscillations directly (called here simply the SRI oscillations),

the mean flow is removed from the signals so that the amplitudes vary around zero, allowing a
better visualization and an easier comparison, therefore, figure 5.4 show perturbation velocity
time series, being the perturbation velocities

u′φ = uφ −uφ ,

u′r = ur−ur.
(5.2)
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(a) Re = 400. (b) Re = 600.

Figure 5.3: Comparison of two different experiments and the numerical simulation spectra with
the ordinate axis shown in logarithmic scale. The spectra are obtained from uφ time series
at axial position z ≈ H/2 and radial position r ≈ rin + d/2, µ ≈ 0.35 and initial temperature
between top and bottom lids of ∆T ≈ 4K, leading to ∂T/∂ z≈ 5.7K/m, Rn≈ 250 and Fr = 1.5.

(a) Re = 400, Experiment (b) Re = 600, Experiment

(c) Re = 400, Numeric (d) Re = 600, Numeric

Figure 5.4: Comparison of u′
φ

and u′r at r ≈ (rin + rout)/2 and z ≈ H/2, with ∆T ≈ 4K. Fig-
ures (a),(b) show experimental data and figures (c),(d) show numerical simulation results with
Reynolds numbers Re = 400 (left-hand side images) and Re = 600 (right-hand side images).
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5.1.1 Numerical and experimental observations of the SRI linear stability
marginal curves

For increasing Reynolds numbers with µ = 0.35 and Fr≈ 1.5, the experiments and simulations
give the same critical Re ≈ 1000 as found by Rüdiger et al. (2017) (see figure 1.3). Stable
SRI flows – when the stratification exists, but no SRI oscillations in the space-time diagram are
observed – have the same uφ

t-profile as a classic TC flow with no stratification. This can be
observed in figure 5.5 for Re = 1000 with µ = 0.35 and a temperature difference from top to
bottom ∆T ≈ 4K, leading to Rn≈ 250 and Fr ≈ 1.5.

The symbols in figure 1.3 show where stable and unstable flows were found experimentally
and numerically for constant values of Rn = 250 and µ = 0.35. We found agreement with
the linear stability analysis by Rüdiger et al. (2017). For Re ≤ 200, with µ = 0.35 and ∆T =
4K, numerical simulations show that the flow is also stable, also in good agreement with the
linear stability analysis performed by Rüdiger et al. (2017). Unfortunately, due to technical
limitations, it was not possible to achieve such small angular velocities in the experimental
setup, so this latest result could not be confirmed experimentally.

SRI stability for Reynolds numbers larger than 1000 may be counter-intuitive if we establish
an analogy with other turbulent flows driven by shear, as such flows are turbulent above a critical
Re. However, since the SRI flow investigated is above the Rayleigh limit, it can be expected
that when rotation effect becomes more significant than stratification, i.e., for increasing Fr,
the physics is approximately the same as non-stratified TC flows. From this point of view,
it is quite clear that the flow should become stable when Fr becomes too large, i.e., when
increase the Reynolds numbers is increased keeping the values of Rn constant (see figure 1.3
and figure 4 and 8 of Rüdiger et al. (2017)). Note that, in figure 5.5(a), there is high-frequency
noise in the velocity time-series, while the numerical space-time diagram does not show these
fluctuations (see figure 5.5(b)). The particular reasons for the noise are unknown, but they
might be related to mechanical vibrations related to the cylinder’s rotation, or either because
the velocities become large enough so that some PIV particles start leaving the interrogation
window, generating a noisier velocity in this range. However, the signal-to-noise ratio is small
and it is obvious that neither in the experiment nor the simulation SRI oscillations are excited.

Figure 5.6(a) highlights how the SRI frequency increases with the Reynolds number until it
disappears at Re = 1000. Note that the SRI frequencies are closer to the buoyancy frequency
N than to the inertial frequency f = 2Ωin, and they become closer to f when the inner cylinder
rotation increases. Furthermore, all peaks in the spectra are inside the interval N − f . This
is an important remark because inertia-gravity waves (IGW) can not exist outside the interval
N− f , where f = 2Ωin (bigger than N in the cases presented). The dispersion relation of IGW
with frequencies outside the N− f interval assumes complex eigenvalues (Gill 1982), therefore,
waves cannot exist.

Although it seems instructive to see that the SRI peak in the frequency domain increases
with the Reynolds number in figure 5.6(a), where the amplitudes are presented in linear scale
and the SRI peak amplitude is much higher than the amplitudes of its harmonics, this is not true
at all different heights in the cavity. In other axial positions, the Re = 600 spectra can exhibit
the most energetic peak, for example.

Figure 5.6(b) shows power spectra for different Reynolds numbers with the vertical axis
in logarithmic scale, better showing the harmonics of each SRI spectrum. The spectra in fig-
ure 5.6(b) are in a reference frame fixed in the laboratory since the higher harmonics are better
resolved than in the reference frame co-rotating with the outer cylinder as in figure 5.6(a).

Dashed vertical lines in figure 5.6(b) are used to highlight harmonics with the same fre-
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(a) Experiment (b) Numerical Simulation

Figure 5.5: uφ space-time diagrams (Hovmöller) showing the SRI stability with Re = 1000,
µ = 0.35 and a temperature difference from top to bottom of ∆T ≈ 4K in the frame of reference
co-rotating with the outer cylinder. On top of the space-time diagrams, the velocity profile at
mid-gap position (r ≈ rin +d/2) in the space-time diagrams together the analytical TC-profile
presented in black dashed line.

(a) (b)

Figure 5.6: uφ power spectra obtained from numerical simulations at mid-height (z ≈ H/2)
and mid-gap (r ≈ rin + d/2) position. The simulations were performed with µ = 0.35 and
initial temperature difference of ∆T = 4K (Rn ≈ 250, Fr ≈ 1.5). The horizontal axis shows
frequencies in Hz, and the vertical axis shows spectra amplitudes P= |FFT (uφ )|2 (a) shows the
SRI amplitudes for increasing Re. Note that the SRI peak is no longer present in the spectrum for
Re≥ 1000 (green dashed line at P≈ 0). The black dashed vertical line on the left corresponds
to the buoyancy frequency for the Re = 400 case, while the dashed vertical line on the right
corresponds to f = 2Ωin for the same case, both corrected by the Doppler shift due to the
azimuthal mean flow. The spectra have been taken from a reference frame co-rotating with the
outer cylinder (b) Spectra for different Reynolds numbers with the amplitude (P) in logarithmic
scale and obtained from uφ time series in a laboratory frame of reference. For a better display,
the spectra are staggered by multiplying constant exponential functions cte = en to displace
them vertically in the log scale axis, where n is chosen arbitrarily. Dashed vertical lines are
used for highlighting coincident peaks of different spectra. A small picture showing the spectra
normalized by the inner cylinder rotation (Ωin/2π) is displayed on the bottom right corner.
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quencies in spectra of different Reynolds numbers. For example, if f j
Re is the jth harmonic of an

experiment for a certain Reynolds number Re (also equivalent to the m = nth azimuthal mode),
then we have

f j
Re
/

f i
(Re× j/i) = 1. (5.3)

For instance, note that the second harmonic of the SRI with Re = 300 coincides with the first
peak of the Re = 600 spectrum ( f 2

300 = f 1
600), or that ( f 4

300 = f 3
400 = f 2

600) and m8(Re = 300) =
m6(Re = 400) = m4(Re = 600) = m3(Re = 800). When the spectra are normalized by the inner
cylinder rotation (therefore, also by the Reynolds numbers), all the frequencies collapse to the
same values, i.e., all the spectra become coincident, as seen in the smaller figure inserted in the
bottom right-hand side of 5.6(b).





Chapter 6
Pattern formation

“Ora penso invece che il mondo sia un enigma benigno, che la nostra follia rende terribile perché
pretende di interpretarlo secondo la propria verità. 1”

− Umberto Eco −

The efficiency of the implemented parallel high-performance code, described in chapter 4,
reduced long computational times of DNS scalar codes previously employed to investigate the
SRI (Raspo et al. 2002, Von Larcher et al. 2018, Abide and Viazzo 2005, Abide et al. 2018),
which makes it convenient for evaluating low frequency (long time occurring) SRI phenomena.
When velocity profiles are observed during long time simulations, strong amplitude modula-
tions become evident (figure 6.1). These modulations are considered to have low frequency
because they are more than 30 times smaller than the SRI frequency (for the experiments with
Re = 400, µ = 0.35, and ∆T ≈ 4K, the ratio between the low-frequency modulation period PL
and the higher frequency SRI oscillations period PH was of PL/PH ≈ 31). Note that, when the
power spectra of the amplitude envelopes are obtained (figure 6.1(c)), harmonics of the most
energetic peak appear, suggesting that the amplitude modulations arise from week non-linear
processes. Note also that the low-frequency peaks are found outside the interval N− f men-
tioned previously in chapter 5 and, therefore, the amplitude modulations cannot be interpreted
as low-frequency gravity wave modes. Note that similar amplitude modulation spectra are ob-
tained from both uφ and ur time series (with peaks corresponding to the same frequencies), but
with different amplitudes only in the most energetic peak of the spectra. The same he harmonic
peaks have the same amplitudes in both uφ and ur amplitude modulation spectra.

The modulations observed numerically in figure 6.1 are also observed experimentally.
Space-time diagrams of uφ for Re = 600 showing amplitude modulation numerically and ex-
perimentally are displayed in figures 6.2 and 6.3. In numerical simulations, these amplitude
modulations are observed for all velocity components (uφ , ur, and uz), and in the temperature
T , and hence also in the Brunt-Väisälä frequency variations in time. It is also possible to see in
figure 6.1 that the amplitude variations need approximately 100 minutes to achieve a permanent
regime. During the transient regime (t . 100 minutes), amplitude variations also exist, but they
are not regular in time. It is important to highlight that this mentioned transient regime is re-
lated to the amplitude modulations, and not to the SRI oscillations. The SRI oscillations show
the mode m = 1 peak in the Fourier space presented in figures 5.3(a),(b) and 5.6, and they are

1“I have come to believe that the whole world is an enigma, a harmless enigma that is made terrible by our
own mad attempt to interpret it as though it had an underlying truth.”
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(a) (b)

(c)

Figure 6.1: Numerical simulation time series for Re = 400, µ = 0.35 and dT ≈ 4K at mid-
gap position (r ≈ rin +d/2) and mid height position (z≈ H/2), and their respective amplitude
envelopes highlighting low frequency amplitude variations in time (a) SRI time series in the time
interval 0 < t < 3 hours and their respective amplitude envelopes, highlighting low frequency
amplitude modulations (b) Velocity amplitude envelopes, highlighting regular low frequency
amplitude modulations within the time interval 0 < t < 8hours. Note that the time intervals
are different in figures(a),(b) (respectively, 0 < t < 3hours and 0 < t < 8hours), so that the
SRI oscillations have been included into figure (a) only. (c) Power spectrum of uφ amplitude
envelope (both uφ and ur envelopes present similar spectra).
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(a) Experiment (b) Numeric

Figure 6.2: uφ space-time diagrams at mid-height axial position (z ≈ H/2) during amplitude
modulation transition for Re = 600, µ = 0.35 and ∆T/∆z = 5.71Km−1. The reference frame
co-rotates with the outer cylinder, and the velocities represented by the colour scales are given in
mm/s. The horizontal axis shows time in minutes, and the vertical axis, the radius in mm, where
the bottom region is closer to the inner cylinder wall, and the top is closer to the outer one. On
top of the space-time diagrams, the velocity time-series at mid-gap position (r ≈ rin + d/2) in
the space-time diagrams is displayed that highlights its amplitude modulation.

(a) Re = 400 (b) Re = 600

Figure 6.3: Comparison between experimental (blue curve) and numerical simulation (red
curve) uφ time series at mid-gap (rin + d/2) and mid-height position (H/2). The results are
for µ = 0.35 and ∆T/∆z = 5.71Km−1. Please, note that the time intervals are different in
figures (a) and (b).
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(a) uφ (µ = 0.35) (b) uφ (µ = 0.3752)

(c) uφ (µ = 0.35) time series (d) uφ (µ = 0.3752) time series

Figure 6.4: uφ comparison obtained from numerical simulations with µ = 0.35 (left hand side)
and µ = 0.3572 (Keplerian line, at the right hand side) in the laboratory frame of reference,
highlighting similar mean flows on the top figures(a),(b), and similar the amplitude modulations
in time in the bottom figures(c),(d). The results are for for mid-height position (z≈ H/2) with
∆T = 4K, and the time series are for a mid-gap radial position (r ≈ rin +d/2).

already prominent approximately 10 minutes after starting the rotation for all SRI unstable Re
investigated.

Note that the same pattern changes associated with the amplitude modulations described
here for Re = 400 and µ = 0.35 were also observed for other values of µ (e.g., µ = 0.3752
– Keplerian line) and for different Reynolds numbers. A comparison of results obtained for
µ = 0.35 and µ = 0.3752 are presented in figure 6.4. Note that similar mean flow behavior, are
observed for the Keplerian profile (figure 6.4(b)) or for sub-Keplerian velocities (figure 6.4(a)),
with similar amounts of energy being transferred from the base flow to the instabilities.

6.1 Pattern changes associated with the amplitude modula-
tions

The analysis of the SRI flow during the amplitude modulations reveals particular flow patterns
that are correlated with the modulations. In figure 6.5(a), 3 different time intervals have been
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(a) uφ time series (b) (black) Interval 01

(c) (green) Interval 02 (d) (red) Interval 03

Figure 6.5: uφ structures during amplitude modulation at radial position r = rin+d/2; (a) Time
series with horizontal coloured lines indicating intervals selected before (black), during (green),
and after (red) a local minimum amplitude value; (b) Interval 01, from t = 312 to 322 minutes –
SRI spiral with downward inclination; (c) Interval 02, from t = 318 to 338 minutes – transition
from a SRI spiral with downward to upward inclination; (d) Interval 03, from t = 336 to 346
minutes – SRI spiral with upward inclination.

selected, indicated by colored horizontal lines. In each of these selected intervals, a different
flow pattern is observed in the axial-time frame, shown in figures 6.5(b)-(d). The patterns
represent different SRI spiral inclination and propagation in the axial direction, here named
downward inclination (figure 6.5(b)) and upward inclination (figure 6.5(d)).

During the transition from the upward (downward) to the downward (upward) pattern, both
spirals are activated and superposed. This leads to the chessboard type structure pattern in
figure 6.5(c). The transition region is characterized by small SRI amplitudes.

Observations of the 3-dimensional structures obtained from numerical simulations show that
not only the inclination changes during the amplitude modulation but also does the spiral prop-
agation in the axial direction. The downward spiral inclination (figure 6.5(b)) travels from the
top to the bottom lid in the axial direction, while the upward spiral (figure 6.5(d)) travels in the
opposite axial direction. During the transition (figure 6.5(c)), the SRI spirals do not travel in the
axial direction, and its angular velocity becomes smaller. When we evaluate longer time inter-
vals than those presented in figure 6.5, or 3D-animations of the spirals, it is possible to observe
the spiral rotation accelerating in the region where the amplitude grows, and decelerating when
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(a) uφ (b) ur

(c) uz

Figure 6.6: Comparison of the simulation time average axial velocity profiles with time aver-
ages taken during an upward traveling spiral period, during a downward traveling spiral period,
and during the transition from an upward to a downward spiral period. The results are from
numerical simulation performed with Re = 400, µ = 0.35 and ∆T/∆z = 5.71Km−1 at a fixed
radial position r = rin +d/2.

the amplitude decreases. Note that the pattern changes also happen in the transition region of
non-regular amplitude modulations (before 100 minutes in figure 6.1). Note also that, on aver-
age, uφ and ur velocity profiles time-averaged during the up of downward traveling spiral time
windows do not vary considerably from the full averaged signal (see figure 6.6). Therefore,
investigating the time evolution of the SRI, and not only its average values, is particularly rele-
vant for a proper understanding of certain aspects of this instability. Note also that, near the top
and bottom boundaries of figure 6.6(b), there is a strong radial inward flow due to the Ekman
circulation. We can also observe a strong upward flow near the bottom wall, and downward
near the top wall, also arising from Ekman effects (figure 6.6(c)).

The average spiral drift in the axial direction takes to travel from the bottom to the top of the
cavity was compared with the period of the amplitude modulation (of approximately 50 min-
utes). the spiral drift was observed to be at least 10 times smaller than low-frequency modulation
period. Furthermore, no clear correlation was noticed between the two periods. Therefore, since
no relation was deduced, the possibility of wave reflecting on the lids to generate the amplitude
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modulations was discarded. Furthermore, simulations with periodic boundary conditions at the
bottom and top lids also developed amplitude modulations associated with pattern changes (see
section 6.2.3.2), showing that the presence of lids is not a condition for the modulations and
the pattern transitions to occur. Another possible explanation for the amplitude modulations
observed in figure 6.1(b) could be a wave break process. In this case, the amplitudes of Inertia-
gravity waves that lead to the SRI would grow to reach values that are large enough so that
wave break would occur, dissipating the energy in a non-linear process, until reaching again a
local minimum where the energy could again be extracted from the re-established base flow for
the instabilities to start growing again. One argument against this possibility, when analyzing
figure 6.1(b), is that more than one value of local maxima and minima amplitudes occur in the
time series. As we can observe, two different values of consecutive local maxima (minima) am-
plitudes occur before the amplitude starts decreasing (increasing). Hence, something needs to
trigger the wave break before reaching the maximum amplitude at the smaller local maximum
values. Although this could still be considered as a possible mechanism for the modulations to
occur, it was not yet possible to be confirmed. The influence of linear superposition of waves
traveling out of phase in the cavity leading to a constructive/destructive interference pattern will
be explored in sections 6.4 and 6.5.

6.1.1 Circulation cells and spiral inclination
When the SRI amplitude grows, it influences the flow circulation in the r− z plane. This con-
nects the modulations to the study of Hoffmann et al. (2009) for non-stratified TC flows with
small Reynolds numbers forced additionally by an axial throughflow (with Reaxial = 2). The
TC vortices with the forced axial flow exhibit shape and inclination similar to the ones observed
for the SRI, and in general, travels along the axial axis in the same direction as the axial flow
imposed, i.e., with the flow in the upward axial direction, the spirals exhibit an upward inclina-
tion. The TC vortices propagation described by Hoffmann et al. (2009) arises from non-linear
defects. A structure qualitatively similar to the defects described by Hoffmann et al. (2009)
were also observed in the numerical simulations presented in this thesis. These ’defects’ in
the SRI spirals can be easily observed, for instance, in the radial velocity profile, near the top
lid in figure 1.2(b). In the study of Hoffmann et al. (2009), a change in the spiral inclination
propagating upward occurs when the external axial flow is removed. At this moment, there is
a spontaneous break of symmetry leading to a Hopf bifurcation, which implies a change to a
downward inclined spiral propagating from the top to the bottom lid, similar to the changes in
the SRI spiral observed. Note that the transition from stable SRI to an unstable SRI regime is
also a Hopf-bifurcation (Dubrulle et al. 2004). One of the differences between the non-stratified
TC flows observed by Hoffmann et al. (2009) and the SRI is that, for the SRI, no external flow in
the axial direction is required for the pattern changes to occur, and the SRI spirals are naturally
inclined due to the stratification.

When we evaluate time mean SRI streamlines (ψ), we observe that a strong base flow es-
tablishes near the inner cylinder, and a weaker anti-clockwise circulation exists near the outer
cylinder, presented in figure 6.7, where the circulation (ψ) has a positive value when moving in
the clockwise direction, and a negative value when it circulates in the anti-clockwise direction.
The stream function used to compute the streamlines were obtained as

ur =
1
r

∂ψ

∂ z
, uz =−

1
r

∂ψ

∂ r
. (6.1)

Note that the same qualitative results were observed when the steam functions was computed
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in Cartesian coordinates using ur =
∂ψ

∂ z and uz =−∂ψ

∂ r .
Figure 6.8 shows how background circulation cells behave while the spirals travel upward,

downward and during the transition, after subtracting the mean base flow (in figure 6.7) to obtain
ψ ′ = ψ−ψ . Figure 6.8(a) shows that, for a spiral traveling downward, a stronger background
circulation in the clockwise direction is established near the inner cylinder, while a weaker
anticlockwise circulation cell forms near the outer wall. This configuration of background cir-
culation cells should force the spirals upwards in the region between the two circulation cells
(80mm . r . 140mm). Since the forcing is asymmetric, the stronger circulation near the inner
cylinder wall should lead to a stronger forcing near the inner wall cell, causing the spiral inclina-
tion. During the upward traveling spiral moment (figure 6.8(b)), the direction of the background
circulation cells are inverted, but the circulation near the inner cylinder remains stronger than
the one near the outer wall. The direction of the background circulations would now force the
flow in the middle of the cavity upwards, with more intensity around the inner cylinder cir-
culation, which also agrees with the changes in the spiral inclination observed. Snapshot of
v = (ur,uz) at φ = 0 during downward and upward traveling spirals moments is presented in
figure 6.9(a),(b). These images show how the changes in the circulation cells are reflected in
the velocity profiles. Note that the flow direction is practically inverted from figure 6.9(a) to fig-
ure 6.9(b). During spiral transition (figure 6.8(c)), no strong ψ ′ circulation pattern establishes in
the cavity, and we see a few weak irregular elongated horizontal streamlines appearing between
inner and outer cylinders. These investigations reveal that the SRI modifies the background cir-
culation. The modified background circulation itself modifies the SRI inclination. The modified
SRI inclination, again, interacts with the background circulation, in a feedback process.

The low-frequency pattern changes in the SRI spirals could therefore be interpreted as an
oscillation of the system between two slightly unstable fixed points, one fixed point standing
for the upward, the other for the downward spiral, associated with these asymmetric circulation
cells. Furthermore, the stratification values were observed to be important for the secondary in-
stability and the amplitude modulations to occur, as will be shown in the following section (6.2).
Note that the spontaneous break of symmetries in the SRI spiral patterns happen irregularly dur-
ing the transient phase (time < 100 minutes), and regularly after the modulation patterns are
well established.

Note that, from figure 6.6(c), the circulation patterns observed here are associated with
changes in the mean flow structure. When the spirals are traveling upward, the mean flow axial
velocity travels upwards, and circulation cells have the configuration presented in figure 6.8(a).
When the circulation changes directions to the configuration presented in figure 6.8(b), the mean
axial velocity of the base flow is negative.

6.2 Influence of rotation, stratification, and geometry in the
SRI spiral patterns

In the previous section, amplitude modulations associated with spiral pattern changes were
observed numerically and experimentally for Reynolds numbers Re = 400 and Re = 600, with
µ = 0.35 and ∆T/∆z = 5.71Km−1, but several factors can change the behavior of these axial
traveling spirals, as the Reynolds number, the geometrical parameter of the cavity (such as its
height or gap size), and stronger or weaker stratification in the axial direction. In this section,
we will investigate how changes in these parameters can influence the spiral behavior, leading
to amplitude modulations or suppressing it. The evaluation of axially periodic results, with no
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Figure 6.7: Time mean stream lines 〈ψ〉 showing the base flow circulation for Re = 400, µ =
0.35 and ∆T/∆z = 5.71Km−1. The time mean 〈ψ〉 is obtained from ur and uz averaged over φ .

influence of Ekman effects, is also explored.

6.2.1 The role of stratification
To investigate how the stratification can influence the SRI flow, different simulations were com-
pared changing the temperature differences between top and bottom lids, keeping Re = 400
fixed, and the same geometrical parameters of the experimental setup (H = 700mm, rin = 75mm,
and rout = 145mm). The changes in the parameters investigated are presented in table 6.1.

Case Re µ H [mm] rin [mm] rout [mm] Rn Fr ∆T [K] ∆T
∆z [Km−1]

01)
400 0.35 700 75 145

182.7 2.2 2 2.86
02) 258.4 1.5 4 5.71
03) 365.4 1.1 8 11.43

Table 6.1: Parameters of simulations changing stratification

When the axial temperature stratification is modified, we observe changes in the axial
wavenumber k, as shown in figure 6.10. For the case 01 in table 6.1, with temperature dif-
ferences between top and bottom walls of ∆T = 2K, the flow has axial wavenumber k = 3. For
case 02 (∆T = 4K) and case 03 (∆T = 8K), the axial wavenumbers increase respectively to
k = 4 and k = 7. This shows that changes in the stratification leads to relevant changes in the
spirals axial structure.

On figure 6.11(a), we see how the mean flow also changes with the stratification, reach-
ing larger deviations from the TC profile for higher temperature differences (smaller Fr).
The deviations form the TC profile (black dashed line) are similar for ∆T/∆z = 5.71Km−1

and ∆T/∆z = 11.43Km−1 (respectively cases 02 and 03 in table 6.1), but slightly higher for
∆T/∆z = 5.71Km−1 (case 02). The deviations from the base flow drop to approximately half
its values when the stratification drops to ∆T/∆z = 2.86Km−1 (cases 01 in table 6.1)), indicat-
ing that more energy is transferred from the base flow to the instability when the stratification
becomes stronger (smaller Fr, and larger Rn). Evaluating the impact of the stratification in
the SRI time series (figure 6.11(b)-(d)), we observe that the higher energy transferred from the
base flow to the instability is related to the activation of amplitude modulations. By reducing
the stratification to half its value, i.e., when ∆T = 2K (case 01) instead of ∆T = 4K (case 02),
keeping all the other parameters constant, the modulation vanished, although the primary SRI
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〈ψ〉 〈ψ ′〉

(a) Downward traveling spiral

〈ψ〉 〈ψ ′〉

(b) Upward traveling spiral

〈ψ〉 〈ψ ′〉

(c) Transition

Figure 6.8: Circulation patterns obtained with stream lines 〈ψ〉 averaged over φ (left-hand side)
and background circulation patterns 〈ψ ′〉= 〈ψ〉−〈ψ〉 (right-hand side) in

[
mms−2]. Note that

the base flow 〈ψ〉 was removed from the right-hand side images for taking into account the only
background circulation, excluding Ekman effects. The results are from numerical simulation
performed with Re = 400, µ = 0.35 and ∆T/∆z = 5.71Km−1 in the r−Z.
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(a) Downward traveling spiral (b) Upward traveling spiral

Figure 6.9: v = (ur,uz) snapshots during an upward and downward traveling spiral moment.
The results are from numerical simulation performed with Re = 400, µ = 0.35 and ∆T/∆z =
5.71Km−1.

instability still exists (see the SRI oscillations in the bottom right figure inside 6.11(b)). This
shows that the SRI can occur without the low frequency the amplitude modulations. For an
increased temperature difference of ∆T = 8K (case 03), the modulations are again observed
(figure 6.11(d)). Note that stronger amplitude modulations are achieved for an imposed tem-
perature difference of ∆T = 4K than for ∆T = 8K. Note also that uφ deviations from the TC
profile are also slightly larger for ∆T = 4K than for ∆T = 8K when the uφ −uTC < 0 (in the
region between 85mm . r . 125mm on figure 6.11(a)). Values of ∆T ≥ 10K can no longer
be reached in the experimental setup. Moreover, simulations performed comparing the Boussi-
nesq to low Mach number approximation using water as the fluid between the cavities (Raspo
et al. 2018) showed that, in this case, the Boussinesq approximation would be no longer valid if
∆T/∆z gets too large. Therefore, values of ∆T/∆z > 11.43Km−1 were not investigated under
the Boussinesq approximation.

6.2.2 Influence of the Reynolds numbers in the amplitude modulations
In the previous section, we saw that increasing ∆T/∆z values allowed more energy to be trans-
ferred from the base flow to the instability, which coincides with the appearance of the amplitude
modulations. This gives the idea that the spiral propagation in the axial direction depends on
Rn, i.e., that a stronger stratification provides enough energy for this secondary instability to oc-
cur. That is not what we observe when keep the stratification is kept constant but the Reynolds
number increase. The parameters of the simulations chosen to investigate the Reynolds number
influence in the secondary instabilities are presented in table 6.2.

When the Reynolds number is increased from Re = 400 to Re = 800 (case 06 to case 08
in table 6.2), keeping ∆T/∆z and µ unaltered, the modulations disappear, even if the higher
frequency SRI oscillations are still present. Note that the amplitude modulations are observed
for the same stratification value (but smaller Re), and the amount of energy in the system for
higher Re should increase since velocities are higher, leading to bigger energy input in the
system. What leads to the secondary instability, then, should not the amount of rotation energy
and stratification in the system, but the interaction and balance between them (rotation and
stratification), allowing enough energy to be transferred from the base flow so that the spiral
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∆T/∆z = 2.86Km−1 ∆T/∆z = 5.71Km−1 ∆T/∆z = 11.43Km−1

(a) ∆T

uφ (∆T/∆z = 2.86Km−1) uφ (∆T/∆z = 5.71Km−1) uφ (∆T/∆z = 11.43Km−1)

(b) uφ = f̂ (∆T )

ur(∆T/∆z = 2.86Km−1) ur(∆T/∆z = 5.71Km−1) ur(∆T/∆z = 11.43Km−1)

(c) ur = f̂ (∆T )

Figure 6.10: Numerical simulation snapshot showing changes in the axial wavenumber in sim-
ulations with temperatures ∆T/∆z = 2.85Km−1 (left-hand side), ∆T/∆z = 5.71Km−1 (mid-
dle images) and ∆T/∆z = 11.43Km−1 (right-hand side images), respectively corresponding to
Froude numbers Fr ≈ 2.2, Fr ≈ 1.5, and Fr ≈ 1.0. Figure (a), on top, show temperature av-
eraged on the azimuth direction 〈∆T 〉 for one snapshot (in full red line), and the temperature
at the mid gap position r = 110mm (in blue dashed line), highlighting the equivalence of these
profiles. Figure (b), in the middle, show snapshots of uφ in the radial-axial cross section. The
bottom figure (c) show the snapshot of ur in the radial-axial cross section. The parameters of
the simulation are: Re = 400, and µ = 0.35.
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(a) uφ (b) uφ (∆T/∆z = 2.85Km−1)

(c) uφ (∆T/∆z = 5.71Km−1) (d) uφ (∆T/∆z = 11.43Km−1)

Figure 6.11: Changes in uφ when different temperature gradients in the axial direction are
imposed. (a) Mean velocity profiles (uφ ). (b)-(d) show the time series near the mid-gap and
mid-height position (r ≈ rin + d/2 and z ≈ H/2), highlighting changes in the low-frequency
modulations with the temperature gradient. The smaller images inserted inside (b)-(d) show
smaller time intervals of each respective time series (intervals where chosen arbitrarily, in re-
gions where amplitudes do not vary much), highlighting the SRI oscillations. The velocities are
presented in the laboratory frame of reference.

propagation occurs. uφ SRI time series is similar for Re = 400 with ∆T/∆z = 2.86Km−1

(case 01 in table 6.1) and with Re = 800 and ∆T/∆z = 5.71Km−1 (case 08 in table 6.2). In
both cases, we are near the transition between stable and unstable SRI regimes in presented
in figure 1.3. These cases also present similar behavior during the transient phase, including
similar periods of time before reaching the permanent regime of the secondary instability. After
reaching the permanent regime, no amplitude modulations are observed in these cases, although
the first SRI instability exists. Note that, in both cases, the flow is closer to the non-stratified TC
flow with respect to SRI linear marginal instability curve presented in figure 1.3. This means
that the unstable modes related to the secondary instabilities can be activated when we are more
inside the instability diagram, and they can not be activated at regions closer to stable SRI
regimes.
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Case Re µ H [mm] rin [mm] rout [mm] Rn Fr ∆T [K] ∆T
∆z [Km−1]

05) 300

0.35 700 75 145 258.4

1.2

4 5.71
06) 400 1.5
07) 600 2.3
08) 800 3.1
09) 900 3.5

Table 6.2: Parameters of simulations changing Re

6.2.3 Cavity geometry changes
To understand how the cylinder geometry impacts the SRI and the spiral patterns observed,
the cylinder height H is modified, from smaller values until an infinitely long cavity (axial
periodic boundary condition). Then we will look at the influence of the cylinder walls in the
SRI development, by increasing the cavity gap size d. The parameters of the simulations chosen
to investigate the impact of changing the cylinder height are presented in table 6.3.

Case Re µ H [mm] rin [mm] rout [mm] Rn Fr ∆T
∆z [Km−1]

10)

400 0.35

350

75 145 258.4 1.5

5.71
11) 700 5.71
12) 1400 5.71
13) 2800 5.71
14) periodic 5.71
15) periodic 11.43

Table 6.3: Parameters of simulations changing the cylinder height

6.2.3.1 Smaller height

Figure 6.12 shows results of numerical simulations with H = 350mm (case 10 in table 6.3),
a cavity half as long as the experimental setup schematically presented on figure (3.1). Fig-
ure 6.12(a) presents the temperature time series at a mid-gap position (r ≈ H/2) and at 3 dif-
ferent cavity heights (z ≈ H/3, z ≈ H/2, and z ≈ 2H/3). Note that, as mentioned before, the
SRI amplitude modulations can be equivalently observed in the temperature or in any of the
3 velocity components. It is possible to observe from the time series in 6.12(a) that, even if
∆T/∆z≈ 5.71Km−1 and Fr≈ 1.5 in case 10, after a transient phase (t & 100min), the first SRI
instability is established, but the secondary instabilities do not develop. This results are simi-
lar to what was observed when the stratification values were reduced to ∆T/∆z ≈ 2.86Km−1

(case 01, in table 6.1, figure (6.11(b))). This behavior was also observed when Reynolds num-
ber was increased to Re = 800 keeping other parameters constant (case 08 in table 6.2). In this
cases, once the instability was established, the spiral pattern (observed on figure 6.12(b)) did
not change anymore (for the considered simulation time). This suppression of the modulations
are related to the fact that larger scales of the flow can not fit in a cavity with length H = 350mm
(this will be better described in section 6.3). The circulation patterns established in the smaller
cavities are presented in figure 6.13. Note that, the circulation at a given time, presented in
figure 6.13(a), is almost the same as its time average ψ , presented in figure 6.13(b). This occurs
because strong background circulation can no longer establish and change the spiral inclination
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(a) Temperature time series (b) uφ space-time diagram

Figure 6.12: Simulation with Re = 400, µ = 0.35, ∆T/∆z ≈ 5.71Km−1 and cylinder’s height
half of the experimental height H = 0.35m (case 10 in table 6.3). (a) Temperature time series
obtained at mid-gap region r ≈ rin + d/3 and in 3 different axial positions; (b) uφ space-time
diagram at r≈ rin+d/3 showing the standing chessboard pattern achieved when the secondary
instability is not reached.

and axial propagation. The intensity of the fluctuation circulation (ψ ′) observed at cavities with
H = 350mm (case 10) is more than 50 times smaller than the base flow circulation presented in
figure 6.13(b).

When the temperature time series of the simulation with H = 350mm is observed (case 10)
on figure 6.12(a), we notice that one strong amplitude oscillation occur during a transient
regime, for 35 . t . 50 minutes. On figure 6.14(a), uφ time series at r≈ rin+d/3 and z≈H/2
is presented for a time interval between 0 ≤ t ≤ 85 minutes, highlighting the transient region
where a strong amplitude modulation occurs. Figure 6.14(b)-(d) shows in ur space-time dia-
grams how the spiral patterns are different before (figure 6.14(c)) and after (figure 6.14(d)) the
amplitude modulation, when it achieves the permanent regime. Note that on figures 6.12 and
6.14, the modulation patterns in temperature, in T , uφ and in ur, to indicate how the modula-
tions impact any of those parameters. The presence of this one modulation during the amplitude
transient phase shows that they are not necessarily forbidden in smaller cavities, but that the ac-
tivation of the spiral propagation does not occur during the permanent regime.

6.2.3.2 Larger cavity heights

Differently from the cavity with reduced length, when the cylinder’s height becomes larger
than H = 700mm, amplitude modulations once again re-appear. Figure 6.15(a),(b) show uφ

time series at r ≈ rin +d/3 and z ≈ H/2 respectively to cylinders lengths 2× ((H = 1400mm)
and 4× (H = 2800mm) larger than the experimental setup height (cases 12 and 13 in table 6.3
respectively). Note that the amplitude modulations become less regular in both time series
(6.15(a),(b)), and the associated spiral patters (figure 6.15(c)-(f)) also exhibit more complicated
behavior than those observer for a H = 700mm cavity, with different spiral inclinations existing
along the cavities’ axial direction. The comparison between different time intervals selected in
the space-time diagrams in figures 6.15(c)-(f) clearly shows that changes in the spiral patterns
occur. The pattern changes observed are also associated with the more irregular amplitude
modulations observed on figures 6.15(a),(b).



86 Chapter 6. Pattern formation

(a) Circulation, 〈ψ〉 (b) Base flow circulation, 〈ψ〉

Figure 6.13: Stream lines comparing the base flow circulation to the circulation at a given time,
averaged on the azimuthal direction. The simulations are performed with half experimental
height (H/2) and Re = 400, µ = 0.35 and ∆T/∆z = 5.71Km−1 (case 10 in table 6.3). Note that
base flow circulation and instantaneous circulation are almost the same.

To study the flow in "infinitely long cavities", axially periodic simulations were performed.
These are relevant for different reasons, including that many studies investigating the SRI ana-
lytically considering infinitely long cylinders (Dubrulle et al. 2004, Dizès and Riedinger 2010,
Rüdiger et al. 2017). Note that axially periodic boundary conditions are not necessarily equiv-
alent to infinitely long cavities, but it removes the boundary layer influence on the SRI and
amplitude modulations development, showing if Ekman effects could be responsible for the
modulations to occur. Furthermore, periodic boundary conditions can also eliminate the pos-
sibility of waves and spiral reflections at the top and bottom boundaries leading to the upward
and downward traveling spirals, although it is not likely that this is the mechanism to change
the spirals propagation direction, since the time scale of the spiral drift traveling from bottom to
top lid (and vice-versa) is far smaller than the amplitude modulations observed, and they have
no clear relation, as mentioned previously in section 6.1.

Figure 6.16 presents uφ time series obtained from axially periodic numerical simulations
with Re = 400, µ = 0.35, and different stratification values in 6.16(a) ∆T/∆z ≈ 5.71Km−1

(case 14 in table 6.3); and 6.16(b) with ∆T/∆z≈ 11.43Km−1 (case 15 in table 6.3). The simu-
lations show that the flow is still unstable when the top and bottom boundaries are removed, and
irregular amplitude modulations are still observed in the temporal velocity behavior. Although
amplitude modulations are still observed for the axially periodic simulations with both ∆T/∆z
imposed (in figure 6.16), we do not observe similar behavior in their spiral patterns. Figure 6.17
shows that the space-time pattern of the axial periodic simulations with ∆T/∆z ≈ 5.71Km−1

(case 14 in table 6.3). When the axial periodic simulations were initialized without the top and
bottom boundaries, and with ∆T/∆z≈ 5.71Km−1, an upward spiral pattern was activated, and
no changes in the propagation direction was observed after 8 hours of simulations, i.e., the pat-
tern observed in figure 6.17(a) was never altered once established. To evaluate if a preferential
spiral direction was being selected by the stable stratification forcing, another simulation start-
ing from a downward traveling spiral solution was performed. The simulation, in this case, used
as initial conditions the results obtained from the top and bottom bounded solution (case 11 in
table 6.3), at the moment when the spiral was traveling in the downward axial direction. With
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(a) uφ time series (b) ur during modulation

(b) ur before modulation (b) ur after modulation

Figure 6.14: Space-time diagram with Re = 400, µ = 0.35, ∆T/∆z ≈ 5.71Km−1 and height
H = 0.35m (half of the experimental cavity). The x-axis show time in minutes, and the y-
axis shows the axial direction (z). (a) uφ time series obtained closer to the inner cylinder (at
r ≈ rin + d/3) and at an axial position z ≈ H/3. (b)-(d) ur space-time diagrams on different
time intervals.

this downward initial forcing, the downward traveling spiral presented in figure 6.17(b) does not
change to an upward traveling regime. This shows that no preferential direction of propagation
is selected in unbounded systems, i.e., the spiral continued to travel in the direction it started
propagating. Note that this is a different regime than those observed in the chessboard pattern
of the previous non-modulated cases. In figure 6.17, the spirals are propagating in the axial
direction instead of standing.

When the temperature gradient increases from ∆T/∆z ≈ 5.71Km−1 to ∆T/∆z ≈
11.43Km−1 (change from case 14 to case 15 in table 6.3), spiral pattern changes are again
observed, shown in figure 6.18. The pattern changes are again related to the amplitude mod-
ulations in figure 6.16(b). These axially periodic results demonstrate that the base flow and
secondary instabilities associated with amplitude modulations do not depend on the top and
bottom boundaries to exist. They also show that modulations and pattern changes do not result
from Ekman pumping effects, since it also occurs without the presence of the lids.

Although top and bottom boundaries do not lead to the modulations, they do have an impact
on the spiral propagation phenomenon, since stronger stratification is necessary for the spiral
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(a) H = 1400mm, time series (b) H = 2800mm, time series

(c) H = 1400mm, interval 01 (d) H = 2800mm, interval 01

(e) H = 1400mm, interval 02 (f) H = 2800mm, interval 02

Figure 6.15: uφ numerical simulations for cavities with large heights (H) compared to the ex-
perimental setup at r ≈ rin + d/3, with µ = 0.35 and ∆T/∆z ≈ 5.71Km−1 (a) time series at
z ≈ H/2 for H = 1400mm (b) time series at z ≈ H/2 for H = 2800mm (c)-(f) Space-time di-
agrams at different time intervals showing the occurrence of different spiral patters in time.
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(a) ∆T/∆z≈ 5.71Km−1 (b) ∆T/∆z≈ 11.43Km−1

(c) uφ

Figure 6.16: uφ numerical simulations with Re = 400, µ = 0.35 and periodic solutions in the
axial direction z (∆z→ ∞) (a) Time series obtained at r ≈ rin + d/2 and z ≈ H/2 with tem-
perature gradient ∆T/∆z ≈ 5.71Km−1 (case 14 in table 6.3); (b) Time series obtained at r ≈
rin +d/2 and z≈ H/2 with temperature gradient ∆T/∆z≈ 11.43Km−1 (case 15 in table 6.3);
(c) Mean flow (uφ ) comparison of the axial periodic simulations with ∆T/∆z≈ 5.71Km−1 and
∆T/∆z≈ 11.43Km−1 with the non-stratified TC profile (black dashed line).

to change its pattern. The reason for this is still unclear, since the energy transferred from
the mean flow is practically the same for axial periodic simulations (cases 14 and 15 in table
6.3) with both ∆T/∆z values imposed (see figure 6.16(c)). Note that the deviations from the
mean flow in axially periodic simulations are smaller than the differences observed in top and
bottom bounded systems with H = 700mm (case 11 in table 6.3), but larger than the differences
obtained in simulations with H = 350mm (case 10 in table 6.3).

6.2.3.3 Wide gap and critical layer position

Simulations performed with increased gap size are intended to contribute to the discussion about
the importance of a rigid boundary for the SRI to exist, or if critical layers could be activated
and generate the instabilities without the need of a rigid outer cylinder wall. The idea to verify if
a rigid outer boundary is relevant for the SRI development was simply to increase d = rout−rin,
and to observe if this would lead to the suppression of the instability. The parameters of the
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(a) (b)

Figure 6.17: uφ space-time diagram with Re = 400, µ = 0.35, ∆T/∆z ≈ 5.71Km−1 and pe-
riodic boundary conditions in the axial direction. The x-axis show time in minutes, and the
y-axis shows the axial direction. (a) Simulation starting from the initial condition described on
chapter 4. (b) Simulation using as initial conditions a downward travelling spiral obtained from
a bounded top and bottom lids simulation.

simulations performed to investigate the impact of a larger gap width in the SRI are presented
in table 6.4.

Case Re µ H [mm] rin [mm] rout [mm] d [mm] Rn Fr ∆T
∆z [Km−1]

16)

400 0.35 700 75

145 70

258.4 1.5

5.71
17) 170 95 5.71
18) 180 105 5.71
19) 180 105 11.43
20) 290 215 11.43

Table 6.4: Parameters of simulations changing the gap width

The critical layers to be considered are the traditional critical layer and the baroclinic crit-
ical layers. The traditional critical layer occurs when uφ = ω/m, where c = ω/m is the drift
velocity, which consists on the wave frequency ω divided by the azimuthal wavenumber m. The
baroclinic critical layers occur when uφ = ω/m±N/m, where m in the buoyancy frequency.
Figure 6.19 shows the the critical layer position for a numerical simulation with Re = 400,
µ = 0.35, and considering our experimental configuration (case 16 in table 6.4) at a given time.
Considering the first mode m = 1, the traditional critical layer position in figure 6.19 is found
slightly below the mid gap position (at r ≈ 106mm). The velocity profile (blue curve in fig-
ure 6.19(a)) is averaged in the azimuthal direction. The drift velocity is shown as a dashed
line in figure 6.19(a), and the full straight red lines represent the curves c/m±N/m. In fig-
ure 6.19(b), the critical layer’s position is displayed together with streamlines ψ at a given time,
showing the circulation patterns. Figure 6.19(c) shows the background circulation pattern when
the mean circulation is subtracted by the instantaneous circulation. Note that, qualitatively, the
classical critical layer position seems to play an important role in the process of generating
vortices and internal waves in the fluid, since its position coincides with the propagation of dis-
turbances in the circulations in 6.19(a). Note also that this influence seems to be impacting the
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(a) Upward (b) Downward

(c) Transition

Figure 6.18: uφ space-time diagram with Re = 400, µ = 0.35, ∆T/∆z ≈ 11.43Km−1 and pe-
riodic boundary conditions in the axial direction at different time intervals, revealing changes
in the spiral pattern in time. (a) Upward spiral propagation; (b) Downward spiral propagation;
(c) Transition from an upward to a downward spiral propagation.

base flow, as these waves emissions are not seen in the perturbation circulation in figure 6.19(c).
This is an indication that the base flow may be interacting with the traditional and baroclinic
boundary layers to generate the instabilities observed. The baroclinic critical layers also seem
to be interacting with the circulation cells, since they seem to be confined between these critical
layers and cylinder walls. Therefore, the effect of the baroclinic critical layers seems to affect
both the base flow and the perturbation. Naturally, since this is a qualitative observation, further
investigations are necessary for a more conclusive understanding of the impact of the critical
layer in the SRI development.

The impact of the outer cylinder wall in the SRI development is investigated as the cir-
culations seem to be confined between the walls and the baroclinic critical layer. To do so,
the inner cylinder radius rin = 75mm was kept unchanged, and the outer radius was increased
(rout > 145mm) (see table 6.4), keeping other parameters constant. A suppression of the SRI
was observed when an outer cylinder radius of rout = 180mm was reached (case 18 in table 6.4),
as shown in figure 6.20(b). Note that, in this case, small oscillations occur at the very begin-
ning of the simulations, but they soon vanish into a stable flow and do not develop the SRI
oscillations after more than 3 hours of simulations evaluated.

Although increasing the external radius to rout ≥ 180mm led to stable SRI flows, when the
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(a) (b) ψ

(c) ψ ′

Figure 6.19: Critical layers position for the mode m = 1, when the mean flow velocity equals
the drift speed

(〈
uφ

〉
= ω/m

)
and

〈
uφ

〉
= ω/m±N/m. The simulation was performed with

Re = 400, µ = 0.35, and the experimental geometry (case 16 in table 6.4). (a) Presents
〈
uφ

〉
space averaged in φ (blue curve). The dashed black line shows the drift speed c = ω/m, and the
red lines show c±N/m. The intersection of the curves with the mean flow are the critical layer
positions. (b),(c) Present the circulation of the flow at a given time, and the radial position of
the critical layers as vertical dashed lines. The dashed vertical line in the middle represents the
classical critical layer, where

〈
uφ

〉
= ω/m, and the other two dashed vertical lines represents

the radial position where
〈
uφ

〉
= c±N/m. (b) shows the instantaneous circulation at a given

time; and (c) Shows the fluctuation circulation ψ ′.
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(a)

(b) (c)

Figure 6.20: ur time series at r ≈ 90mm and z ≈ H/2, with Re = 400, µ = 0.35, and height
H = 700mm, for different values of d = rout − rin, obtained by changing the outer radii and
maintaining rin = 75mm. (a) rout = 170mm, ∆T/∆z = 5.71Km−1; (b) rout = 180mm, ∆T/∆z =
5.71Km−1; (c)) rout = 180mm, ∆T/∆z = 11.43Km−1.

stratification was increased from ∆T/∆z = 5.71Km−1 to ∆T/∆z = 11.43Km−1 (from case
18 to case 19 in table 6.4), the SRI oscillations were again observed (figure 6.20(c)). Note
that early amplitude modulations in the velocity profile also start to develop in figure 6.20(c).
These results are different for those observed by Rüdiger and Shalybkov (2009) related to linear
analysis of the SRI, where a wider gap demanded a rather weak stratification to support the
SRI, but it agrees with their results when variations in the Froude number lead to a stable SRI
solution. Note that, the changes in rout led to a delay in the instability development. Note
also that the evaluation presented here takes into account the influence of non-linearities in the
simulations, differently from Rüdiger and Shalybkov (2009). Simulations with the experimental
gap-size d = 70mm (case 16 in table 6.4) fully developed SRI oscillations in t ≈ 10 minutes.
Simulations with d = 95mm (case 17 in table 6.4) develops the SRI only after t > 50 minutes
(figure 6.20(a)). And when d = 105 and ∆T/∆z = 11.43Km−1 (case 19), the time necessary for
the first SRI oscillations to occur increases to t > 100 minutes (figure 6.20(c). Therefore, it is not
possible to say from this investigation if for case 19 (figure 6.20) the instability is suppressed,
or if it will develop at a later time. Note that, when the outer cylinder wall was increased to
rout = 290mm keeping the higher ∆T/∆z = 11.43Km−1 (case 20), the SRI oscillations were
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once again suppressed. Therefore, it was not possible to conclude from this simple qualitative
investigation if the SRI will no longer occur in larger gap widths, or simply if its development
will be delayed, but it is possible to conclude that the presence of the outer wall can affect
the SRI development. A more complete study of the SRI parameters would be important to
obtain a better understanding of the outer cylinder wall and on critical layer influences in the
development of these instabilities.

6.3 Energy spectra
In section 6.2, we evaluated how stratification, the Reynolds number, and the cylinder geometry
changes the SRI structure and leads to amplitude modulations (or to its suppression). It was
possible to observe that the pattern changes are related to a higher deviation of mean azimuthal
velocity (uφ ) from non-stratified TC profiles, considering the comparison of the TC velocity
profile (uTC) and the SRI velocity profile when the first and second instabilities occur. Larger
deviations from the TC profile occur when the secondary instability establishes, compared to
cases where only the first instability occurs, showing that more energy is transferred from the
base flow. In this section, we will study how the kinetic energy spectra are modified by the
different parameters addressed in section 6.2.

The energy spectra are here considered in different spatial directions. To obtain each spec-
trum, the Fourier transform of the velocity components is computed in each space direction
(equivalent to the spectra of the velocity fluctuations u′

φ
, u′r, and u′z). The energy spectra are

then computed as

Eφ =
1
2

ρ

(
Cφ (uφ )C∗φ (uφ )+Cφ (ur)C∗φ (ur)+Cφ (uz)C∗φ (uz)

)
dφdφ ,

Er =
1
2

ρ
(
Cr(uφ )C∗r (uφ )+Cr(ur)C∗r (ur)+Cr(uz)C∗r (uz)

)
drdr,

Ez =
1
2

ρ
(
Cz(uφ )C∗z (uφ )+Cz(ur)C∗z (ur)+Cz(uz)C∗z (uz)

)
dzdz,

(6.2)

where Cφ (uξ ), Cr(uξ ) and Cz(uξ ) are the fast Fourier transform of uξ = uφ , ur, and uz, with the
sub-index indicating respectively the space directions ξ = φ , r, and z, and C∗

ξ
is the complex

conjugate. In equation (6.2), dφ , dr, and dz are the space resolution respectively in the azimuth,
radial and axial directions. Three different energy spectra are then obtained as function of the
wavenumber K = m, l,k: one for the azimuthal, another for the radial, and a third one for the
axial direction, respectively called Eφ , Er, and Ez, keeping fixed the other 2 space coordinates.
The spectra in the azimuth direction (Eφ ) were computed at fixed radial and axial position
r≈ rin+d/2 and z≈H/2. In the radial direction, Er was computed for fixed φ = 0 and z≈H/2,
and in the axial direction, φ = 0 and r ≈ rin +d/2 are fix. The power density spectra presented
in this section are computed at each time step, and then temporally averaged. Additionally, the
transition region of the amplitude modulation was not taken into account. Figure 6.21 shows
Eφ , Er and Ez for simulations with µ = 0.35, ∆T/∆z≈ 5.71Km−1. Figure 6.21(a) corresponds
to Re = 400 (case 06 in table 6.2) and figure 6.21(b) to Re = 800 (case 08 in table 6.2), with
power laws fitting the inertial region of the energy spectra in dashed lines. Note that in the case
presented in figure 6.21(a) the flow develops amplitude modulations, while the case presented
in figure 6.21(b) is simply SRI unstable.

On figure 6.21 we observe different slopes in Ez with Re = 400, that has a decay rate pro-
portional to a power law k−3, and on figure 6.21(b) with Re = 800, a power law with decay rate
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(a) Re=400 (b) Re=800

Figure 6.21: Energy spectra in the azimuthal (Eφ ), radial (Er) and axial (Ez) directions with dif-
ferent power laws fitting the energy transfer region of the spectra presented in dashed lines. The
spectra were obtained from simulations with µ = 0.35 and ∆T = 4K, and bounded cavity height
H = 700mm (same geometry as the experimental setup). Figure (a) presents a Re = 400 simu-
lation where amplitude modulations and pattern changes are observed (case 02 in table 6.1); (b)
shows a simulation with Re = 800, where no pattern changes or amplitude modulations occur
(case 08 in table 6.2).

−5/3. An energy spectrum (Ez) with power-law −3 was observed on vertical measurements
of the atmosphere performed by Dewan and Good (1986), Cot (2001) and was confirmed by
numerical simulations of strongly stratified fluids by Lindborg (2006). A k−3 spectrum decay
is interpreted as occurring on enstrophic cascades (Charney 1971, Nastrom and Gage 1985),
which transfers energy from larger to smaller scales in quasi-geostrophic turbulence. In these
cases, the spectrum may also allow an inverse cascade, i.e., the energy transfer from smaller
to the larger scales. For the case with higher Reynolds number and no amplitude modula-
tion (Re = 800) in figure 6.21(b), a k−5/3 power-law fits the Ez decay rate, similar to three-
dimensional isotropic Kolmogorov turbulence spectra (Pope 2001, Dubrulle 2019). This means
that, compared to the -3 power law, the energy transfer within the fluid is driven by shear, and
the stronger anisotropies imposed by stratification become less important.

The power spectra in the radial direction on figures 6.21 (Er), have slope with a decay
rate proportional to l−2. This is the same slope observed by ocean measurements performed
by Garrett and Munk (1972, 1975), related to a random superposition of linear internal waves
(i.e., that exist between the inertial frequency f and the buoyancy frequency N) known as the
Garrett and Munk (GM) model, or related to a weakly nonlinear wave turbulence (Lvov et al.
2004, Allen and Joseph 1989). Note that, although the GM spectra decay rate of l−2 and the
Kolmogorov slope of l−5/3 are similar, the l−5/3 slope fits very poorly the Er slope.

A power law m−11/3 fits well the slope measured in Eφ on figures 6.21(a),(b). This decay
has already been associated with different phenomena, such as the influence of potential en-
ergy available in turbulent diffusion of quasi-geostrophic cascades (Smith et al. 2002), or with
Kelvin waves propagating along a vortex line (L’vov and Nazarenko 2010). Curiously, in an as-
trophysics context, m−11/3 power law was measured over a broad length-scale domain in energy
spectra of diffuse molecular clouds surrounding young stars, where turbulent pressure largely
exceeds the system’s thermal pressure (Falgarone et al. 2011). These astrophysical observations
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were performed in the North Celestial Pole loop, which has a cylindrical gap morphology, with
a cylindrical radial velocity profile fitting its radial expansion (Meyerdierks et al. 1991).

The power laws that fit the energy decay in Eφ and Er do not change when we compare
figures 6.21(a) and (b), i.e., no changes in their decay rates are observed. On figures 6.22, we
can see that no relevant changes in Eφ and Er were observed for changes in any of the different
parameters investigated in section 6.2, i.e., from numerical simulations with different Reynolds
number (top images), with different stratifications (different ∆T and Rn) in the middle images,
and for different cavity heights H (bottom images). For Er, the SRI spectra were also confronted
with the stable TC spectrum with Re = 400, µ = 0.35, H = 700mm and ∆T = 0K (right hand
side images on 6.22). This comparison shows that stratification slightly reduces the energy
in large scales compared to the non-stratified flow in the radial spectra (Er). The differences
are small but systematically observed in all experiments. For mid and larger wavenumbers
(respectively associated with the energy transfer within the flow, and with the energy dissipation
in direct isotropic energy cascades), no relevant changes in Er compared to the non-stratified
spectrum were observed. The stable energy spectra in the azimuthal direction (Eφ ) with no
stratification was not confronted with the different unstable Eφ SRI spectra because, when ∆T =
0, Eφ drops to zero, since no velocities variations occur, i.e., u′ = ∂u/∂φ = 0. Besides the
small deviation in the large scale region of Er comparing SRI with the non-stratified TC flow,
we can observe a small increase in the Eφ and Er total energy with the Reynolds number (top
images on 6.22), that dislocate the spectra in the y-axis without changing their shapes. No other
relevant changes in the radial and azimuthal energy spectra were noticed with changes in the
stratification, height or Re, and the spectra decay rates of Eφ and Er remain similar to those
observed in figures 6.21(a),(b).

Besides the changes in Ez decay rates, the presence of a peak in the spectra with Re =
400, that is not observed with Re = 800, is another difference that can be observed in the
axial energy spectra of figures 6.21(a) and 6.21(b). On figures 6.23, axial energy spectra Ez
changes with stratification, Reynolds number, and with the cavity height are shown. thus, we
can evaluate which signatures of the SRI and of the spiral propagation in z (and modulations)
can be observed, i.e., which modes are activated in Ez when the spiral propagation occurs, and
how the different parameters investigated in section 6.2 can change the energy transfer from
the base flow to the unstable modes. On figures 6.23, the x-axis presents the axial wavenumber
k. Smaller figures were introduced on the top right corner of each image showing the inverse
wavenumber (λ−1) in the x-axis, and with the spectra arbitrarily dislocated the y-axis for better
visualization of the results. The relation between λ and the wave numbers are given by

m =
2π

λφ

, l =
2π

λr
, k =

2π

λz
. (6.3)

On figure 6.23(a), the changes Ez with the Reynolds number are evaluated, maintaining a
constant stratification Rn ≈ 258.4. It is possible to observe that, for Re = 300, Re = 400, and
Re = 600, where the amplitude modulations and pattern changes are observed, a peak in Ez
is also observed. This peak is associated with an injection of energy from the base flow to
the instability at a certain wavenumber. As the Froude number increases and rotation becomes
stronger compared to the stratification, the peak dislocates to smaller wavenumbers (and to
larger scales), until it disappears for Re = 800, where no modulation is observed. The peak
is also not observed on stable TC spectra (black dashed lines on figure 6.23). Reducing the
stratification leads to similar results, i.e., reducing ∆T and making Fr larger also leads to a
dislocation of the peaks in the direction of the larger scales (smaller wavenumbers).
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(a) Eφ , changing Re (b) Er, changing Re

(c) Eφ , changing ∆T (d) Er, changing ∆T

(e) Er, changing H (f) Er, changing H

Figure 6.22: Comparison of Eφ (left hand side images) and Er (right hand side images) with
(a,b) different Reynolds number (top images); (c,d) different stratification values (middle im-
ages); (e,f) different cavity heights H (bottom images). The x-axis in figures 6.22 shows the az-
imuthal (m) and radial (l) wavenumbers. All parameters are changed with respect to a standard
simulation with Re = 400, µ = 0.35, H = 700mm and ∆T/∆z = 5.71Km−1. The non-stratified
TC flow is presented as black dashed lines.
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(a) Changing Re (b) Changing ∆T

(c) Changing H (d) Changing ∆T and
top/bottom BC

Figure 6.23: Energy spectra in the axial direction (Ez). (a) Different Re, for fixed H = 700mm,
∆T = 4K. (b) Different stratification (∆T ), with fixed Re = 400, and H = 700mm. (c) Different
cylinder’s heights, with fixed Re = 400 and ∆T/∆z ≈ 5.71Km−1; (d) Comparison of axial
periodic and non-periodic top and bottom boundary conditions; The x-axis in all figures present
the axial wavenumber k. The smaller figures inserted on the top right corner of each image
show the spectra arbitrarily dislocated in the y-axis for better visualization of the results, and
have the inverse wavelength (λ−1) in the x-axis, instead of the wavenumber k. The non-stratified
TC flow is presented in black dashed line in all figures (with Re = 400, µ = 0.35, H = 700mm
and ∆T = 0K). All simulations were performed with µ = 0.35.
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In figure 6.23(c), we observe Ez changes with the cylinder’s height, and the peaks in Ez are
observed when the changes in spiral patterns occur. For H = 350mm, where the SRI is ob-
served with no amplitude modulations (section 6.2.3.1), the peak in Ez is not present. Although
the wavenumber increases with the cylinder’s height, the image on the top right corner of fig-
ure 6.23(c) shows that changing H did not change the wavelength, and also that larger scales are
not able to develop in the smaller height cavity (of H = 350mm), leading to the suppression of
the spiral pattern changes in z. When "infinite heights" are simulated, i.e., axial periodic bound-
ary conditions on figure 6.23(d)), weak non-linearities start to appear, with harmonics in the Ez
spectra. Note that, although no pattern changes are observed in the periodic simulations with
∆T/∆z ≈ 5.71Km−1 in section 6.2.3, relatively strong amplitude modulations were present,
and peaks in the Ez spectrum are also observed in this case. Also note that the simulation with
Re = 400, µ = 0.35, ∆T = 4K, and H = 700mm (similar conditions to the experimental con-
figuration), has a peak associated to the wavenumber k = 4, as well as the unbounded axially
periodic simulations (also with H = 700mm).

The influence of rotation, stratification, and height in the SRI axial structure, observed as a
peak in the energy spectra on figures 6.23 that dislocates towards smaller axial wavenumbers
k when the Froude number increases, can be explained by the work of Rüdiger et al. (2017),
where it is shown that the SRI axial length scale (λz), normalized by the gap size d, follows the
relation

λz

d
' π

4
Fr. (6.4)

Equation 6.4 (eq. (19) in Rüdiger et al. (2017)) shows that the length-scale of the SRI axial
structure grows linearly with the Reynolds number, and is inversely proportional to the buoy-
ancy frequency. Larger Fr, therefore, will make λz increase, corresponding to a dislocation
towards smaller axial wavenumbers, as observed in figure 6.25(a),(b), until no pattern changes
occur in simulations with Re = 400 and half of the experimental cavity height (H = 350mm)
(figure 6.25(c)), or with Re = 800 and the same experimental cavity height (H = 700mm) (fig-
ure 6.25(a)), when λz reaches the same order of H. Note that, differently from what is proposed
by Rüdiger et al. (2017), a suppression of the SRI first instability was not observed here when
λz ∼ O(H), but a suppression of the amplitude modulations.

In the next session, we will investigate how the wavenumbers associated with the peaks in
Ez are related to upward and downward spiral components traveling in the axial direction.

6.4 Wavenumbers of upward and downward traveling spi-
rals

To investigate if a linear superposition of waves travelling with different frequencies and
wavenumbers could explain the amplitude modulations observed. Figure 6.24 shows the 2D-
Fast Fourier Transform (2D-FFT) obtained from uφ space-time diagrams is the axial direc-
tion (figure 6.5) associated with the spiral traveling upwards (figure 6.24(a)), downwards (fig-
ure 6.24(b)), and during the transition from the upward to the downward propagation (fig-
ure 6.24(c)). The simulations are performed with Re = 400, µ−0.35, ∆T = 4K and the same
geometry of our experimental setup (case 02 in table 6.1). The diagrams in figure 6.24 present
the frequencies f on the x-axis, and the axial wavenumber k in the y-axis. Note that the peaks
have the same frequencies f = 0.032 Hz (in laboratory frame of reference) independently of the



100 Chapter 6. Pattern formation

(a) (b)

(c)

Figure 6.24: 2-dimensional power spectra obtained from numerical simulations space-time di-
agrams of uφ in the axial direction during (a) upward spiral propagation; (b) downward spiral
propagation (c) transition from a downward an upward propagating spiral. The y-axis represents
axial wavenumber k (axial modes), while the x-axis is the frequency in Hz. The amplitudes of
the spectra are normalized by the maximum amplitude value of the upward (and downward)
propagating spirals P0,max. The spectra are obtained in a frame of reference fixed in the labora-
tory. During the transition, the maximum amplitude of the spectra were half of the maximum
amplitude found while the spiral is travelling upward or downward (P/P0,max = 0.5).

spiral propagation in the axial direction, but they show changes in their wavenumbers from pos-
itive to negative values, with different modes activated and suppressed. During the transition
(figure 6.24(c)), both modes are selected by the instability with half of the maximum ampli-
tude observed during the upward or downward spiral propagation

(
Pmax(transition) = P0,max

2

)
.

During the upward travelling spiral, the wavenumber activated in figure 6.24(a) is kup = 4,
with maximum amplitude P0,max, and the downward mode has wavenumber kdown =−4 is non
activated. The wavenumber activated with P0,max in figure 6.24(b), related to the downward
propagating spiral, is kdown =−4, while kup = 4 has smaller amplitude. On figure 6.24(c), both
modes kup = 4 and kdown =−4 are activated, with half of the maximum amplitude of the spiral
traveling upward or downward (P0,max/2). Note that results (frequencies and wavenumbers)
presented obtained in the 2D-FFT are the same for uφ and for u′

φ
.

Figures 6.25 show the 2D-FFT of simulations where the spiral propagation no longer occurs.
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(a) 2D FFT, Re = 400, H = 350mm (b) 2D FFT, Re = 800, H = 700mm

(c) Re = 400, H = 350mm (d) Re = 800, H = 700mm

Figure 6.25: u′
φ

2D-fft (top images (a),(b)) and space-time diagrams (bottom images (c),(d)) of
two simulations that do not change their spiral patterns in time. The left hand side images (a),(c)
show simulations with Re = 400 and half of the experimental cavity height (H = 350mm).
The right hand side images correspond to simulations with the same experimental height (H =
700mm) and Re = 800. Note that the time interval in the x-axis of figures c (∆t = 400 min) and
(d) (∆t = 200 min) are different. In both simulations, µ = 0.35 and ∆T/∆z≈ 5.71Km−1.

In these cases, both the spiral axial propagation or the amplitude modulations are not observed,
but the SRI can still develop, and a standing chessboard pattern with no changes in time is
established in the axial direction (figures 6.25(c),(d)) associated to a simultaneous positive and
negative mode activation, respectively with kup = 2 and kdown = −1. Note that, doubling the
Reynolds number led to a similar SRI pattern as obtained by decreasing the height in half its
original length.

6.5 Modes and spiral components separation

In this section, we will investigate how the wavenumbers of the axially propagating spirals can
be separated in two waves of positive and negative wavenumbers, and how each of these two
waves is modulated themselves in time, i.e., how the wavenumbers of the different parts that
compose the axial traveling spirals are periodically activated and suppressed, depending on the
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final spiral direction of propagation.
To better understand the process of mode selection, the up− and downward propagating

wave were separated by applying the Radon Transform (RT) to a full simulation capturing
phases of dominating up, downward, and mixed spiral propagation. The Radon transform is a
Fourier technique to select wave components having different directions of propagation. The
RT is particularly suited for finding individual waves that compose noisy or irregular fields
(Almar et al. 2014). These techniques are interesting to evaluate the results directly using the
data obtained, without knowing the wave’s dispersion relation, and without the necessity of
an analytical model of the SRI. The description of the Radon transforms can be found in the
appendix A.1

Figure 6.26 shows the separation of the upward and downward components of uφ on a
space-time diagram while the spiral is traveling downward (left-hand side) and upward (right-
hand side) using the RT. The results are from a simulation with Re = 400, µ = 0.35 and ∆T =
4K. After the two wavefields have been separated, the 2D-FFT spectra from the corresponding
space-time diagrams are again compute.

In figure 6.26(a), we can observe that the 2D-FFT of the downward spiral component is the
same as the bottom wavenumber in the full 2D-FFT spectrum presented in figure 6.24 (see sec-
tion 6.4), and the positive frequency is no longer observed, as expected. The upward wavenum-
ber in figure 6.24 (section 6.4) was also captured in figure 6.26(b), where the downward travel-
ing spiral component is removed. Therefore, the wavenumbers we observe on figures 6.24 can
be associated with a superposition of one upward and one downward spiral of axial wavenumber
k = 4 and k = −4 propagating in time with the SRI frequency. While the spiral is propagat-
ing downwards, we see in figure 6.26 that the spiral traveling upwards is suppressed, reaching
smaller amplitudes and a more vertical inclination (figure 6.26(c)). The same occurs with the
downward component when the spiral is propagating upwards (figure 6.26(f)). This approach
fully confirms the results shown in figure 6.24, namely that each separated mode is indeed as-
sociated with the spiral components traveling upward and downwards without any changes in
the frequency, but with changes in their wavenumbers. This implies that the two spiral compo-
nents travel with slightly different phase speeds, and a linear superposition of the waves could
explain some part of the amplitude modulation. However, this linear dynamics cannot explain
the reversals of spiral propagation associated with the modulation.

The RT was used to separate the upward and downward traveling spirals in the more com-
plicated patterns observed in a cavity four times larger than the experimental setup. On fig-
ures 6.27, the separation of the more complicated patterns in the H = 2800mm cavity height
also leads to two spirals with similar wavelengths traveling in opposite axial directions, with
the final spiral pattern formed by a linear superposition of these 2 separated components. Note
that the separation of the spiral components using uφ and u′

φ
= uφ −uφ are equivalent, since the

base flow propagates in the azimuth direction, therefore, it is filtered out by the RT in the axial
direction. From figures 6.27, it gets clear that the changes in the final spiral direction are associ-
ated with the amplitude of each separated axial spiral component, that are enhanced in different
regions of the axial axis. Note that, when the amplitudes in the upward traveling component are
enhanced, the amplitude in the downward component becomes smaller, and the opposite is also
true, maintaining constant the energy contained in both amplitudes, with A1 +A2 = constant.
Adding the upward (figure 6.27(c)) and downward (figure 6.27(d)) spiral components, the initial
spiral pattern in figure 6.27(a) is reconstructed, showing that the spiral patterns arise from the
linear superposition of these two upward and downward spiral components with different wave
numbers, traveling in time with the same frequencies ω .

Note that the modulations occur in the amplitude of each upward and downward spiral
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(a) 2D FFT Down component (b) 2D FFT up component

(c) Upward signal of downward spiral (d) Upward signal of upward spiral

(e) Downward signal of downward spi-
ral

(f) Downward signal of upward spiral

Figure 6.26: Separation of upward and downward axial traveling components in uφ space-
time diagram using the Radon Transform. Figures (a),(c),(e), on the left hand side, show time
intervals when the spiral is traveling downwards. Figures (b),(d),(f), on the right hand side,
show a time interval when the spiral is traveling upwards. Figures (a),(b) on top show the 2D-
FFT of the upward and downward space-time diagrams. Simulation performed with Re = 400,
µ = 0.35, ∆T/∆z≈ 5.71Km−1, and H = 700mm.
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(a) Space-time diagram, H = 2.8m (b) 2D FFT

(c) Upward component (d) Downward component

Figure 6.27: Separation of upward and downward axial traveling components space-time di-
agram using the Radon Transform. Results are of uφ numerical simulations with Re = 400,
µ = 0.35, ∆T/∆z≈ 5.71Km−1 and cavity height four times larger than the experimental setup
(H = 2800mm). (a) Space-time diagram showing the full spiral propagation; (b) 2D-FFT of the
full spiral. (c) Space-time diagram of the spiral component traveling upward; (d) Space-time
diagram of the spiral component traveling downward.

components, since each mode individually present different patterns at different time periods,
with strengthened or weakened amplitudes in different spacial regions of the separated com-
ponents. Since the amplitude modulations show harmonics in their spectra themselves (see
figure 6.1(c)), and affects each separated spiral component, the modulations should come from
a weak non-linear interaction between the base flow and the SRI, or from a wave-wave inter-
action process, and not simply from a linear interaction of two waves traveling with different
frequencies. On both experimental and numerical results, each individual frequency associated
with an azimuthal wavenumber in the power spectra, at a fixed point in space, is also indi-
vidually modulated. Figures 6.28 shows the separation of the signal related to each azimuthal
wavenumber in the power spectra of numerical simulations and experiments with Re = 400,
µ = 0.35, ∆T ≈ 4K and H = 700mm. The separation of each mode was performed by apply-
ing a top-hat filter in the Fourier space, where the values inside a band containing (separately)
one individual peak are kept intact (as well as its complex conjugated values), and all values out-
side this band are set to zero. After separating the frequencies corresponding to each azimuthal



6.5. Modes and spiral components separation 105

(a) FFT experiment (c) Harmonics experiment

(b) FFT numerics (d) Harmonics numerics

Figure 6.28: (a) Experimental and (b) numerical power spectra with Re = 400, µ = 0.35 and
∆T/∆z ≈ 5.71Km−1; (c) Experimental and (d) numerical harmonic signals corresponding to
one peak in the different frequency bands selected. The harmonics were normalized by their
maximum amplitude value, and arbitrarily dislocated in the y-axis, for better visualization and
comparison. Note that the time interval in figures (a) and (b) are different.

wavenumber, the inverse FFT can be applied to evaluate the signal in time, corresponding to
each mode selected. Figure 6.28(a),(b) show the bands that selected each azimuthal wave num-
ber in the numerical and experimental power spectra (left-hand side figures), and the signals
associated to each mode in the physical space on the left-hand side (figures 6.28(c),(d)). When
this filtering is performed, we note that each peak in the spectrum is modulated itself. Note that
the band is chosen to be small enough so that only one peak with a certain width remains. Note
also that there is a small phase shift among the modulation of each individual harmonic. These
individually modulated harmonics show that waves should be non-linearly interacting with the
mean flow so that the modulations can occur in each peak with different phases. Since a linear
interaction alone possibly does not explain the amplitude modulations observed, it seems that
waves/mean-flow interaction leads to an alternating strengthening and weakening of each of the
SRI wave components, leading to alternating upward and downward propagating modes that
have different amplitudes. Although this process is still not yet fully understood, an investiga-
tion of how these two individually modulated components could lead to the pattern formations
observed will be addressed in the following section 6.6.
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Figure 6.29: uφ space-time diagram of the toy model composed of 2 plane waves with si-
nusoidal amplitude modulations with ωA = 7× 10−4, out of phase an angle θ = π/3, and
traveling in opposite axial directions with wavenumbers of wave1 and wave2 respectively
(m1, l1,k1) = (1,1,4) and (m2, l2,k2) = (1,1,−4). The frequency ω = 0.03, and the maximum
amplitude of each wave is A = 10.

6.6 Toy model
Although the reason for the amplitude modulations to occur in each separated spiral is still
not comprehended, a toy model of two waves traveling in opposite axial directions was im-
plemented to understand how this could lead to the pattern changes observed in the previous
section, based on the numerical and experimental results previously presented. The plane wave
equations read

wave1 = A1cos((m1x+ l1y+ k1z)−ωt) ,
wave2 = A2cos((m2x+ l2y+ k2z)−ωt) ,
utoy = wave1 +wave2,

(6.5)

with 0≤ x,y,z≤ 2π , and amplitudes A1 and A2. The values of 0 < x,y,z < 2π are after normal-
ized for the size of the experimental cavity (e.g., 0mm < z < 700mm). The amplitude of each
plane wave is modulated, and they must be out of phase to achieve the inclined spirals with
constructive and destructive interference while they propagate. In the toy model, sinusoidal
amplitude modulations A1 and A2 are considered out of phase with an angle θ , written as

A1 = Asin(ωAt),
A2 = Asin(ωAt +θ),

(6.6)

where A is a given real value, and ωA << ω is the amplitude modulation of each wave, here
considered to be the same for A1 and A2.

Figure 6.29 shows the space-time diagram obtained with the toy model, with wavenumbers
in the azimuthal, radial and axial directions (m = 1, l = 1,k = 4) and (m = 1, l = 1,k = −4),
similar to the ones observed in the numerical simulations with Re= 400, µ = 0.35, and the same
geometric parameters the experimental setup. It is possible to see that the linear superposition
of both upward and downwards waves traveling out of phase could lead to the final spiral pattern
transitions observed in the previous sections. The amplitude modulations of the waves are out
of phase with an angle θ = π/3, but other different phase shifts and wavenumbers produce
similar pattern changes.
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(a) Simulation downward (d) Toy model downward

(b) Simulation transition (e) Toy model transition

(c) Simulation upward (f) Toy model upward

Figure 6.30: Snapshots with different spiral patterns in the φ -z cross-section comparing
u′

φ
= uφ − uφ obtained from numerical simulations (a,b,c) and the toy model (d,e,f). The ra-

dial position is fixed at r≈ rin+d/3. Figures (a),(d) on top, show moments when the spirals are
traveling downwards; Figures (b),(e), in the middle, show the transition from upward to down-
ward spiral propagation; Figures (c),(f) in the bottom, show spirals traveling upwards. The
simulations were performed with Re = 400, µ = 0.35 and ∆ T = 4K. The toy model is com-
posed by two plane waves with frequencies ω = 0.01, and wavenumbers (m1, l1,k1) = (1,1,4)
and (m2, l2,k2) = (1,1,−4), maximum amplitude of the waves is of A = 3mm/s, and the fre-
quency of the sinusoidal amplitude modulations of ωA = 0.001, 90° out of phase (θ = π/2).
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The toy model and the numerical simulation snapshots while the spirals are traveling up-
ward, downward and during the transition also show good qualitative agreements in figure 6.30,
except for the fact that the spirals in the simulations are confined in a smaller region, due to
Ekman effects. The good qualitative agreement of the toy model and numerical simulations, as
well as the possibility of reproducing the spiral pattern changes previously investigated using
similar wavenumbers and frequencies obtained from numerical simulations and experimental
measurements, indicate that this can be the mechanism that drives the spiral pattern changes.
In this case, each up and downward component should be interacting with the mean flow, that
in times provide more energy to the upward traveling spiral, and in other times, provides more
energy to the downward component, but the reason for the amplitude modulations of each in-
dividual wave to occur still is not clear. It is clear though, that the spiral propagation direction
affects the mean flow structure (see figure 6.6), and its total circulation (see 6.1.1). Therefore,
each spiral component must be interacting with the mean flow for achieving its individual mod-
ulation, and the linear superposition of these two modulated components will lead to the reversal
spiral direction as presented in the toy model. Since the modulations presented harmonics (see
figure 6.1(c))

6.7 Impacts of the SRI modulation on momentum transport
In this section, we will investigate the SRI turbulent momentum transport behavior in space
and time, that is an important issue regarding how the SRI could transport momentum outwards
from the center of accretion disks, allowing matter to aggregate by gravity in the center, leading
to proto-planetary star formation.

Figures 6.31 shows the spatial structure of u′
φ

u′r for different stratification values (∆T , or Rn),
where we can observe that momentum transport in the SRI should be carried by the SRI spirals.
This can be observed by characteristics of u′

φ
u′r behavior such as increasing axial wavenumbers

with the stratification, in similar patterns as those observed for the velocity and temperature
axial spiral profiles (see section 6.2.1). Note that the axial u′

φ
u′r structure observed on the right

hand side of figure 6.31 are similar to those observed by Gellert and Rüdiger (2009) (see figure 4
in Gellert and Rüdiger (2009)).

Since momentum transfer within the flow is related to the spiral structure, it is relevant
to show how the previously observed amplitude modulations, associated with the spiral axial
propagation, will also affect u′

φ
u′r temporal behavior. The results are presented for the numer-

ical simulations, since longer time series with more than one hour can be evaluated, i.e., after
the transient low frequency amplitude modulated regimes. Figures 6.32 shows u′

φ
u′r time se-

ries for numerical simulations obtained with constant stratification (∆T/∆z = 5.71Km−1) and
different Reynolds number, while figures 6.33 shows different stratification values (∆T = 2K
and ∆T = 8K) with fixed Re = 400. The values of µ = 035 and H = 700mm are kept con-
stant in all results presented in this section, and the time series are obtained on a fixed space
position at mid-height cavity (z = H/2), and near the inner cylinder, because we are interested
on understanding how momentum could be affected near the center regions of accretion disks
(associated to the inner cylinder region). Note that the top figures 6.32(a),(b) present the time
interval 0≤ t ≤ 400 minutes, while the time interval on figures 6.32(c)-(e) are smaller, varying
from 0 ≤ t ≤ 220 min. For Reynolds numbers Re = 300, Re = 400, and Re = 800 and fixed
∆T/∆z = 5.71Km−1 (figures 6.32(a)-(c)), and for higher stratification values with Re = 400
and ∆T = 8K (figure 6.33(b)), low frequency amplitude modulations in u′

φ
u′r are observed, in-

dicating that, for smaller values of the Froude number, momentum can indeed be transferred in
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(a) ∆T = 2K, ∆T/∆z≈ 2.86Km−1

(b) ∆T = 4K, ∆T/∆z≈ 5.71Km−1

(c) ∆T = 8K, ∆T/∆z≈ 11.43Km−1

Figure 6.31: u′
φ

u′r snapshots of numerical simulations with Re= 400 and µ = 0,35 and different
stratification values (∆T/∆z). The left hand side show the azimuth-radial cross section (φ − r)
at mid-height position (z≈H/2), and the right hand side shows the radial-axial cross section at
φ = 0.
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bursts. The frequency of the amplitude modulations increase with the Froude number, until it
reaches a regime where no amplitude modulation occurs, leading to a continuous momentum
transfer, as seen in figures 6.33(a) and 6.32(d). Intervals of 5 minutes in u′

φ
u′r time series are

presented inside each image on figures 6.32 and 6.33, to highlight the SRI higher frequency
oscillations in time.

The modulations observed in the momentum transport may have an impact on accretion
disk theory since a constant or an intermittent regime might play different roles if they lead to
different conditions to aggregate matter in the center of the disks. Note that intermittent mo-
mentum transport was already measured in astrophysical contexts, such as in the measurements
of molecular clouds in the north Celestial pole loop performed by Falgarone et al. (2011), where
the turbulent energy dissipation was reported to occur in bursts (Meyerdierks et al. 1991). These
systems guard some similarities with the SRI geometry, such a cylindrical gap morphology, and
energy spectra of dust clouds surrounding young stars with decay rates of k−11/3 (the same
decay rate of Eφ obtained in the numerical simulations here presented (see section 6.3)).

Other time-dependent momentum transfer regimes are observed in the amplitude modu-
lation transient regions on figures 6.32 and 6.33, for t . 100 minutes, before a more regular
amplitude modulation is established. In figure 6.33(e), when Froude number reaches approx-
imately 3.5, the transition region has a relevant impact in the momentum transfer, since for
time & 90 minutes, the flow is stable but in the interval 50 . t . 90 minutes, a burst of mo-
mentum transfer occurs. This phenomenon can be important on accretion disks applications,
as that might allow a proto-planetary star to form at the early stages of the SRI development,
even in cases where the regime achieve the stability for t → ∞. According to Shtemler et al.
(2010), shear flow mechanisms may give rise to transiently growing perturbations in accretion
disks, while the work of Rebusco et al. (2009) shows that there would be enough time for these
small perturbations to grow significantly by few orders of magnitude and for secondary SRI
instabilities to develop (such as the amplitude modulations) before viscous or non-linear effects
take over and suppress the instability. Yecko (2004) examined viscous three-dimensional linear
disturbances associated with Keplerian accretion disks-like flows, and predicted that non-modal
disturbances can lead to large transient amplification factors, that can make asymptotically sta-
ble flows transiently unstable. In figure 6.34, the temporal behavior of

〈
u′

φ
u′r
〉

spacial mean in
the azimuthal direction is presented. The average is performed at a fixed radial position very
near the radial cylinder, and at an axial position far from the end-gap boundaries. these results
show how the outward flux of momentum at a given radial position near the inner cylinder will
also occur in bursts when the amplitude modulations are activated, and continuously when no
pattern changes occur.

As can be seen, there are many interesting, although preliminary, findings concerning the
momentum transport in the SRI systems and its relation to observed accretion disks. These
aspects deserve a deeper investigation, that will be performed in upcoming projects.
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(a) Re = 300 (b) Re = 400

(c) Re = 600 (d) Re = 800

(e) Re = 900

Figure 6.32: u′
φ

u′r time series for increasing Reynolds number with a fixed temperature gradient
∆T/∆z = 5.71Km−1. The velocities are obtained at position r = 90mm (near the inner cylin-
der) and z≈H/2 (mid-height). Note time of the upper figures (a),(b) is of 0≤ t ≤ 420 minutes,
and of the bottom images (c),(d),(e) are of 0 ≤ t ≤ 220 minutes. The small figures inserted
show the SRI oscillations in a 5 minutes time window. Figure (e) has two inserted figures, when
the SRI occur at the transient phase (t < 90 minutes) and another inserted image after the flow
becomes stable (for t > 90 minutes).
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(a) ∆T/∆z = 2.85Km−1 (b) ∆T/∆z = 11.43Km−1

Figure 6.33: u′
φ

u′r numerical simulations time series at r = 90mm and z ≈ H/2 for different
stratification values, and with Re = 400, µ = 0.35, and H = 700mm. The images inserted
inside each figure show a smaller time interval of 5 minutes, highlighting the higher frequency
SRI oscillations.

(a) ∆T/∆z≈ 2.86Km−1 (b) ∆T/∆z≈ 5.71Km−1

Figure 6.34: Mean azimuthal space mean
〈

u′
φ

u′r
〉

at a fixed radial position very close to the
inner cylinder wall (r≈ 76.14mm) and mid-height axial position z≈H/2. The results are from
numerical simulation with different stratification values (∆T/∆z) and with the same Re = 400,
µ = 0.35 and the same geometry of our experimental setup (cases 01 and 02 in table 6.1, of
section 6.2.1).



Chapter 7
Conclusions

“No llores porque ya se terminó, sonríe porque sucedió.”
(“Don’t cry because it’s over. Smile because it happened. ”)

− Gabriel García Márquez −

In this thesis, the phenomena related to the strato-Rotational Instability (SRI) were investi-
gated using PIV experimental data and high-performance computing Direct Numerical Simula-
tions (DNS). The SRI occurs in a fluid between two concentric boundaries rotating at different
angular velocities, and with a stable density stratification due to a temperature gradient in the
axial direction. The SRI manifests itself in the radial-axial direction as non-axisymmetric spi-
rals that were first experimentally observed by Le Bars and Le Gal (2007), which provided
quantitative experimental evidence of the strato-rotational instability and its expected helicoidal
modes. In the radial-azimuthal direction, the SRI is associated with a peak in the spectrum with
an azimuthal wavenumber m = 1.

The experimental setup to study the SRI was designed at the Department of Aero-
dynamics and Fluid Mechanics (LAS) of the Brandenburg University of Technology Cot-
tbus–Senftenberg (BTU). It consists of a Taylor-Couette system where the top lid is heated,
and the bottom lid is cooled for obtaining a stable density stratification in the axial (z) direc-
tion. The experimental setup has concentric inner and outer cylinders that rotate independently,
with different angular velocities. The gap between the cylinders is filled with a Newtonian M5
silicon oil of viscosity (ν) 5 times higher than the viscosity of water. The outer cylinder wall,
with radius rout , is made of transparent glass material to allow optical access to the flow that
develops within the cavity. A co-rotating mini-PIV system was then used to measure the SRI
instantaneous velocity profiles. Peltier elements are installed for heating the experiment’s upper
lid and creating a temperature gradient along the axial axis, and consequently, imposing a stable
density stratification. The bottom part of the cavity can be cooled using a chiller.

To carry out numerical investigations of the SRI, Direct Numerical Simulations were per-
formed using the finite differences method reported in Abide et al. (2018), dedicated to high-
performance computing. The physical model solved by the code is the Taylor-Couette flow con-
figuration filled with an incompressible fluid endowed with a vertical temperature gradient. The
numerical code then solves the Navier-Stokes equations under the Boussinesq approximation to
account for the buoyancy forces that arise from the stable density stratification. The efficiency
of the implemented parallel high-performance code reduced long computational times of DNS
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scalar codes previously employed to investigate the SRI (Raspo et al. 2002, Abide and Viazzo
2005, Abide et al. 2018, Von Larcher et al. 2018), which made it convenient for evaluating these
low frequency (long time occurring) SRI phenomena.

The comparison between numerical simulations and experimental results show good agree-
ments, with similar phenomena captured using both approaches. The investigations were con-
centrated on Reynolds number between 200≤ Re≤ 1300, and µ = 0.35 (slightly smaller than
the Keplerian line, at µ ≈ 0.375 in the experimental setup). These values were chosen due
to their possible practical implication on accretion disk theory. The temperature differences
between top and bottom lids were maintained at 2K . ∆T . 8K.

The comparison of mean velocity profiles and power spectra of numerical simulations and
PIV experimental data present SRI oscillations with the same period in both cases. When the
mean SRI velocity profile is compared to the non-stratified TC profile, the flow is slower near
the inner cylinder and slightly faster near the outer cylinder. This shows how the stratifica-
tion affects the mean flow, transferring energy to the instability, and implying a mean outward
momentum flux. Besides showing the good agreement between numerical and experimental
data, the power spectra of the data also reveal harmonics of the SRI’s most energetic frequency,
showing that non-linearities are starting to set in for the chosen parameters. The transition to
stable regimes can be observed in the velocity profiles by the absence of SRI oscillations, and
by achieving the same uφ time mean profile as a classic TC flow with no stratification. The
velocity power spectra also attest to the stability since the SRI peak disappears. The SRI insta-
bility was well described by linear stability analysis both in numerical and experimental results,
as they confirmed linear-stability marginal curves, with increasing moderate Reynolds numbers
making the flow return to a stable regime as described by Ibanez et al. (2016), Rüdiger et al.
(2017) and Seelig et al. (2018).

The SRI frequencies observed are closer to the buoyancy frequency (N) than to the inertial
frequency ( f = 2Ωin), and they become closer to f when the inner cylinder rotation increases.
Furthermore, the most energetic SRI frequencies are found inside the interval N− f . This is
an important remark because inertia-gravity waves (IGW) can not exist outside this range. The
power spectra of experiments and numerical simulations highlight harmonics with the same
frequencies in spectra of different Reynolds numbers. When the spectra are normalized by the
inner cylinder rotation (therefore, also by the Reynolds numbers), all the frequencies collapse
to the same values, i.e., all the spectra become coincident.

The new high-performance computing numerical code allowed for the first time to observe
long period phenomena in the SRI flow. This was not possible with comparatively much slower
scalar codes, or with experiments performed during short periods. This is, in particular, due
to the large time demanded to establish SRI solutions, clearly showing the suitability of the
present numerical tool to treat such problems. These longer simulations revealed that the SRI
velocity profiles present strong low-frequency amplitude modulations, also observed in the ex-
perimental measurements. The amplitude modulations are related to pattern changes of the
m = 1 SRI mode. This means that the SRI spiral inclination in the radial-axial (r− z) cross-
section changes coupled with a change in the direction of the axial drift speed of the spiral. In
contrast to the most unstable non-stratified Taylor-Couette modes that have the structure of rolls,
SRI modes have a nonzero azimuthal wavenumber where the phase of the wave depends on the
axial direction, and hence show a spiral structure. For SRI spirals in the non-turbulent flow
regime, the connection to amplitude modulations has not yet been described in the literature.
The SRI spirals observed have some similarities with those found in experiments performed by
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Flór et al. (2018) and discussed in numerical simulations by Lopez and Marques (2020). In
these studies, two spirals are moving upward and downward resulting in a standing pattern with
low-frequency modulations. The latter seems to come from differences in the axial drift speed
of the two waves. In this study, the drift speed shows some variations but the mean upward
and downward speeds are the same. It should be noted that Flór et al. (2018) and Lopez and
Marques (2020) use a very different geometry, with a radius ratio of just η = 1/15 and Γ = 1,
much smaller than, for instance, the values of η = 0.52 and Γ = 10 for the experimental and
numerical setup. Moreover, in contrast to the investigations presented in this thesis, they use a
smaller Froude number Fr < 1 and a larger Reynolds number Re > 6000. The SRI modulations
observed are considered to have low frequency because they are more than 30 times smaller
than the SRI frequency.

When the power spectra of the amplitude envelopes are obtained, harmonics of the most
energetic peak appear, suggesting that the amplitude modulations arise from week non-linear
processes. The low-frequency peaks are found outside the interval N− f , therefore, the ampli-
tude modulations cannot be interpreted as low-frequency gravity wave modes. Similar ampli-
tude modulation spectra are obtained from both uφ and ur time series (with peaks corresponding
to the same frequencies), but with different amplitudes only in the most energetic peak of the
spectra. The harmonic peaks, though, have the same amplitudes in both uφ and ur amplitude
modulation spectra. Note that the SRI first instability shows a mode m = 1 peak in the Fourier
space, and they are already prominent approximately 10 minutes after starting the rotation for
all SRI unstable Re investigated. The secondary instabilities associated with the amplitude vari-
ations, on the other hand, needs approximately 100 minutes in the cases investigated to achieve
a permanent regime. During the transient regime (t . 100 minutes), amplitude variations also
exist, but they are not regular in time.

The analysis of the SRI flow during the amplitude modulations reveals three particular flow
patterns that are correlated with the modulations. In different time intervals selected, a differ-
ent flow pattern is observed in the axial-time frame. The patterns represent different SRI spiral
inclination and propagation in the axial direction. During the transition from the upward (down-
ward) to the downward (upward) pattern, both spirals are activated and superposed. This leads
to the chessboard type structure pattern. The transition region is characterized by small SRI
amplitudes. Observations of the 3-dimensional structures obtained from numerical simulations
show that not only the inclination changes during the amplitude modulation but also does the
spiral propagation in the axial direction. The downward spiral inclination travels from the top
to the bottom lid in the axial direction, while the upward spiral travels in the opposite axial
direction. When the SRI amplitude grows, it influences the flow circulation in the r− z plane,
which causes the SRI spiral inclination. The low-frequency pattern changes in the SRI spirals
can be interpreted as an oscillation of the system between two slightly unstable fixed points,
one fixed point standing for the upward, the other for the downward spiral.

Critical layers position were qualitatively associated with the circulation patterns established
in the SRI. This is the case since circulation cells seem to be confined between the baroclinic
critical layers and the cylinder’s walls. The traditional critical layer also seems to play an im-
portant role in the process of generating internal waves in the fluid that leads to the instabilities
observed. But this is a qualitative observation, and further investigations are necessary for a
more conclusive understanding of the critical layers’ impacts in the SRI development and on
its circulation patterns. Note that increasing the cylinder gap showed to have an impact on the
time demanded for the SRI to develop, but this phenomenon is not yet well comprehended and
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needs further investigation.

For the cases investigated in this thesis, there are approximately 5 minutes of delay between
uφ amplitude minima and those of ur or uz (ur and uz pattern transitions occur at the same mo-
ment). The reason why the minimum amplitude does not happen at the same moment for the
different velocity components was not yet understood, but it indicates that theoretical models
to describe these modulations should take into account such amplitude phase-shifts. The SRI
oscillations, otherwise, do not show any phase shift between uφ , ur, and uz. The average time
that one point in the spiral takes to travel from the bottom to the top of the cavity was also
investigated (or vice-versa, in case of the downward pattern). The axial period of the spiral
was observed to be at least 10 times smaller than the period of the amplitude modulation (of
≈ 50 minutes), and no clear correlation was noticed between these two periods. Therefore,
since no relation was deduced, the possibility of waves reflecting on the lids to generate the
amplitude modulations was discarded. Furthermore, simulations with periodic boundary con-
ditions at the bottom and top lids also showed amplitude modulations associated with pattern
changes, showing that the presence of lids is not a condition for the modulations and the pattern
transitions to occur.

Several factors were able to change the behavior of the axial traveling spirals, such as the
Reynolds number, the geometrical parameter of the cavity (such as its height or gap size), and
stronger or weaker stratification in the axial direction. The secondary instability associated
with the low-frequency amplitude modulations and spiral pattern changes were observed to be
suppressed depending on the parameters evaluated, independently of the occurrence of first
SRI instability. Larger deviations from the TC profile occur when the secondary instability
establishes, compared to the case where only the first instability occurs, showing more energy
being transferred from the base flow.

The energy spectra in the azimuthal, radial, and axial directions were investigated for dif-
ferent SRI regimes. The power laws that fit the energy decay in Eφ and Er do not change with
the SRI regime, i.e., no relevant changes in their decay rates are observed. For the axial energy
spectra, changes in the axial kinetic energy spectra (Ez) slope were observed when the secondary
instability occurs. When the modulations are established, the decay rate of the inertial range
of Ez is proportional to a power law k−3. When only the first SRI instability is achieved, and
no amplitude modulations occur, a power law with a decay rate −5/3 is observed. An energy
spectrum (Ez) with power-law −3 was observed on vertical measurements of the atmosphere
performed by Dewan and Good (1986), Cot (2001) and was confirmed by numerical simula-
tions of strongly stratified fluids by Lindborg (2006). A k−3 spectrum decay is interpreted as
occurring on enstrophic cascades (Charney 1971, Nastrom and Gage 1985), which transfers en-
ergy from larger to smaller scales in quasi-geostrophic turbulence. For the axial kinetic energy
spectra Ez, besides the changes in their decay rates, the presence of a peak is observed when
the secondary instability occurs. As the Froude number increases and rotation becomes stronger
compared to the stratification, the peak dislocates to smaller wavenumbers (and to larger scales),
until it disappears when no modulation is observed. When "infinite heights" are simulated by
applying axial periodic boundary conditions, weak non-linearities start to appear in the kinetic
energy spectra, with harmonics in Ez.

The power spectra in the radial direction (Er) have slope with a decay rate proportional to
l−2. This is the same slope observed by ocean measurements performed by Garrett and Munk
(1972, 1975), related to a random superposition of linear internal waves known as the Garrett
and Munk (GM) model, or related to weakly nonlinear wave turbulence (Lvov et al. 2004, Allen



117

and Joseph 1989).

A power law m−11/3 fit well the slope measured in the azimuthal kinetic energy spectra
(Eφ ). This decay has already been associated with different phenomena, such as the influence
of potential energy available in turbulent diffusion of quasi-geostrophic cascades (Smith et al.
2002), or with Kelvin waves propagating along a vortex line (L’vov and Nazarenko 2010). In
the astrophysics context, a m−11/3 power law was measured over a broad length-scale domain
in energy spectra of diffuse molecular clouds surrounding young stars, where turbulent pressure
largely exceeds the system’s thermal pressure (Falgarone et al. 2011).

To investigate if a linear superposition of waves traveling with different frequencies could
explain the amplitude modulations observed, the power spectra during the upward and down-
ward axial spiral propagation, and during the transition, were analyzed separately. They were in-
vestigated using 2D-FFT diagrams that present the frequencies on the x-axis, and the wavenum-
ber on the y-axis. The SRI frequencies do not change with the spiral propagation regime, but
the wavenumbers of the most energetic peaks change from positive to negative values, with
different modes activated and suppressed. During the transition spiral regimes, both modes are
selected by the instability with half of the maximum amplitude observed during the upward or
downward spiral propagation (Pmax(transition)=P0,max/2).

To better understand the process of mode selection, the up− and downward propagating
waves were separated by applying the radon transform (RT) to simulations capturing phases
of dominating up, downward, and mixed spiral propagation. This approach fully confirms that
each separated mode is indeed associated with the spiral components traveling upward and
downwards without any changes in the frequency, but with changes in their wavenumbers. The
RT was also used to separate the upward and downward traveling spirals in more complicated
patterns observed in longer cavities. In these cases, it became clear that when the amplitudes
in the upward traveling component are enhanced, the amplitude in the downward component
becomes smaller, and the opposite is also true. this leads to a constant energy contained in both
amplitudes, with A1+A2 = constant. Adding the upward and downward spiral components, the
initial spiral pattern is reconstructed, showing that the spiral patterns arise from the linear super-
position of these two upward and downward spiral components with different wave numbers,
traveling in time with the similar frequencies ω . However, this linear dynamics cannot explain
the reversals of spiral propagation associated with the modulation.

On both experimental and numerical results, each mode in the power spectra was also sepa-
rated and it was observed to be individually modulated. Since the amplitude modulations show
harmonics in the spectra themselves, the modulations of these separated components should
come from a weak non-linear interaction between the base flow and the SRI. As a linear inter-
action alone possibly cannot explain the amplitude modulations observed, it seems that wave
mean flow interactions lead to an alternating strengthening and weakening of each of the SRI
wave components, creating alternated upward and downward propagating modes that have dif-
ferent amplitudes. A toy model of two waves traveling in opposite axial directions was im-
plemented to understand how the pattern changes could occur from the interaction of the in-
dividually modulated components observed. The model considers two individual plane waves,
linearly superposed and, traveling in different axial directions. The amplitude of each plane
wave is individually modulated, and they are phase-shifted to achieve the inclined spiral pat-
terns with constructive and destructive interference while they propagate. It was observed that
a linear superposition of both upward and downward modulated waves traveling out of phase
could lead to the final spiral pattern transitions observed. The good qualitative agreement of the
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toy model and numerical simulations, as well as the possibility of reproducing the spiral pattern
changes previously investigated using similar wavenumbers and frequencies obtained from nu-
merical simulations and experimental measurements, indicate that this can be the mechanism
that drives the spiral patter changes, but the reason for the amplitude modulations of each in-
dividual wave to occur still is not clear. The possibility of describing the modulations using
the complex Ginzburg-Landau equation is an interesting route that should be followed in the
future (Deissler 1985, Bekki and Nozaki 1985, Landamn 1987, Bartuccelli et al. 1990, Lopez
and Marques 2020).

The SRI turbulent momentum transport behavior in space and time is an important issue
regarding how the SRI could transport momentum outwards, allowing matter to aggregate by
gravity in the center of accretion disks, leading to proto-planetary stars formation. The spa-
cial structure of u′

φ
u′r for different stratification values (∆T , or Rn), shows that the momentum

transport in the SRI should be carried by the spirals. Since momentum transfer within the flow
is related to the spiral structure, the amplitude modulations are also associated with the spiral
axial propagation. This affects u′

φ
u′r temporal behavior. Low-frequency amplitude modulations

in u′
φ

u′r were observed, indicating that, for smaller values of Froude numbers, momentum can
indeed be transferred in bursts. The frequency of the amplitude modulations increases with
the Froude number until it reaches a regime where no amplitude modulation occurs, leading to
a continuous momentum transfer. A continuous momentum transport regime or a momentum
transport occurring in bursts might play different roles and have different impacts on accretion
disk theory. Note that different time-dependent momentum transfer regimes were also observed
in the amplitude modulation transient regions, for t . 100minutes, before a more regular ampli-
tude modulation is established. When Froude number reaches Fr ≈ 3.5, this transition region
showed to have a relevant impact in the total momentum transfer, since for time& 90 minutes,
the flow is stable but in the interval 50 . t . 90 minutes, a burst of momentum transfer occurs.
This phenomenon could also be important on accretion disk applications, as that might allow
proto-planetary stars to form at the early stages of the SRI development, even in cases where
the regime becomes stable for t→ ∞.

Finally, the experimental setup at the BTU laboratories also gives the opportunity of ex-
ploring counter-rotation SRI regimes. Although counter-rotating regimes may have no direct
application in the accretion disk theory, it can also give relevant information about the physics
of the SRI (Park et al. 2018), therefore, these regimes should be explored in future investiga-
tions.
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Appendices

A.1 Radon transforms

The Radon transform R(r,φ) consists on a Fourier-like technique developed by Radon (1917).
This technique that transforms a function defined on a given plane η(z, t) into a line domain
(Radon 2005). These lines are inside the original 2-d space, with the values of a particular line
being equal to the line integral of the original function (over that projected line). Therefore, the
Radon transform consists on an angular projection given by:

R(r,φ) =
{

η(z, t)δ (zcosφ + tsinφ − r)dzdt, (A.1)

where δ the Dirac delta function. r = zcosφ +zsinφ and φ are respectively the radius and angle,
in polar coordinates, that define the line where the 2-D space will be projected. φ can vary
from 0 to π . The use of the Dirac delta function forces the integration of η(x, t) along the line
on which the plane will be projected. If we consider a two-dimensional spatiotemporal wave
signal η(z, t), traveling in the z direction, the angle φ can be converted into a wave drift velocity
c through the transformation (Almar et al. 2014)

c = tan(φ)
dz
dt

, (A.2)

where dz and dt are respectively the spatial and temporal resolution. If the η(z, t) signal contains
multiple waves, multiple local peaks (r,φ ) will appear in the Radon spectra. Each propagating
crest in the spatiotemporal η(z, t) field is detected from their signatures in the Radon space
corresponding to a peak value, where the φ angle indicates the direction of propagation with
respect to the z spatial direction considered. The phase speed of a wave propagating in the
z direction will then be obtained using equation A.2. In the case of a spatiotemporal wave
field containing incoming (ηup) and outgoing (ηdown) waves, such that η(z, t) = ηup(z, t) +
ηdown(z, t), each component can be separated using the inverse RT. The inverse RT is a back-
projection of R(r,φ) at given angles φ . The total initial wave signal η(z, t) can be reconstructed
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from the Radon space to the physical space as (Almar et al. 2014)

η =
{

R(r,φ)dφdr, (A.3)

therefore, the separated wave components can be obtained by applying the limits of integration
to the inverse Radon transform as

ηup(z, t) =
+∞∫
−∞

∫ 89

1
R(r,φ)dφdr,

ηup(z, t) =
+∞∫
−∞

∫ 179

91
R(r,φ)dφdr.

(A.4)

Note that the Radon transforms have been successfully applied for separating wave compo-
nents in different fields, such as surface or internal ocean wave dynamics, to pressure fluctuation
concerning aeroacoustic applications (Copeland et al. 1995, Challenor et al. 2001, Yoo et al.
2011, Zhang et al. 2009, Martarelli et al. 2013, Almar et al. 2014).
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