

Parallel Constraint Solving for Combinatorial
Problems

Von der Fakultät 1 - MINT - Mathematik, Informatik, Physik,

Elektro- und Informationstechnik

der Brandenburgischen Technischen Universität Cottbus–Senftenberg

genehmigte Dissertation

zur Erlangung des akademischen Grades eines

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

vorgelegt von

Ke Liu

geboren am 15.11.1984 in Jiangxi, China

Vorsitzende/r: Prof. Dr. habil. Douglas W. Cunningham

Gutachter/in: Prof. Dr. rer. nat. habil. Petra Hofstedt

Gutachter/in: Prof. Salvador Abreu, University of Évora

Tag der mündlichen Prüfung: 20.01.2021

DOI:10.26127/BTUOpen-5437

https://doi.org/10.26127/BTUOpen-5437

Parallel Constraint Solving for
Combinatorial Problems

Ke Liu
bios8086@vip.qq.com

https://orcid.org/0000-0002-5256-9253

Department of Programming Languages and Compilers

Brandenburg University of Technology Cottbus-Senftenberg

Advisor : Prof. Dr. rer. nat. habil. Petra Hofstedt

A dissertation submitted for the degree of
Doctor of Philosophy (Dr.-Ing.)

March 21, 2020

mailto:bios8086@vip.qq.com
https://orcid.org/0000-0002-5256-9253
https://orcid.org/0000-0002-5256-9253

Dedicated to all those who are interested in this topic.

Acknowledgements

First and foremost, I should like to begin by expressing my appreciation to
my Ph.D. advisor, Professor Petra Hofstedt, for her support, understand-
ing, and encouragement throughout this work. I am fortunate to have a
Ph.D. advisor who is nice and supportive. Without her, I would not get a
chance to know that constraint programming is an exciting research area.

Here, I would also like to mention my uncle. He was diagnosed with
advanced liver cancer six years ago. But unbearable pain has not crushed
him, and he is still tenaciously struggling against cancer. No matter what
happens, his courage and optimism will always illuminate the road of my
life.

Finally, I would also like to take this opportunity to thank my parents. I
have several other people I would like to thank, as well. They are Sven
Löffler, Gudrun Pehle, and Katrin Ebert in the department of program-
ming languages and compiler construction of B-TU. I want to thank every
one of them for all the support and help they have given me.

Abstract

Nowadays, it has become increasingly hard for constraint solving to keep
profiting from the performance improvement of uniprocessor due to the
death of Moore’s Law. Consequently, with parallelism becoming the stan-
dard in computer design, research on parallel constraint solving technique
is of vital importance for enhancing the performance of constraint solv-
ing. However, it is not an easy task for constraint solving to exploit par-
allelism effectively. Neither a general solution nor overall guidance is yet
available for parallel constraint solving after more than two decades of
development efforts from the constraints community.

The main objective of this dissertation is to explore how parallel pro-
cessors can be utilized to speed up constraint solving, more specifically, to
find a solution for new instances or for existing instances faster. We review
the literature on exploiting parallelism in constraint solving to help gain
insight into the rationale of different types of parallel constraint solving
approaches. And on this basis, we show theoretically and empirically that
applying parallelism to solving computationally hard problems can hedge
against mistakes made by search strategies near the root of the search
tree, often achieving superlinear speedups. We also propose a new paral-
lel stochastic portfolio search to solve instances that cannot be solved by
the previous parallel portfolio search. Finally, we present a hypergraph
decomposition method to allocate constraints to parallel processors for
parallel constraint solving.

Contents

1 Introduction 1
1.1 Contributions and organization . 2

2 Background Information 5
2.1 Constraint Programming . 5

2.1.1 Constraint Propagation . 7
2.1.2 Backtracking Search . 10
2.1.3 Symmetry in Constraint Programming 16

2.2 Parallel Computing . 21
2.2.1 Amdahl’s Law and Gustafson’s Law 23
2.2.2 The Meaning of Gustafson’s Law for Parallel Constraint Solving 26

3 The Literature Review on Parallel Constraint Solving 28
3.1 Parallel Constraint Propagation . 29
3.2 Parallelizing the Search Process . 32
3.3 Portfolios . 44
3.4 Hybrid Approaches . 46
3.5 Conclusion . 49

4 The Effectiveness of Parallel Constraint Solving 50
4.1 Early Mistakes . 51
4.2 Possible Approaches to Tackle Early Mistakes 53

4.2.1 Restart-Based Search . 54
4.2.2 Limited Discrepancy Search 58
4.2.3 Parallel Portfolio Search . 62
4.2.4 Embarrassingly Parallel Search 64

4.3 Conclusion . 71

i

5 Case Studies of the EPS Approach 72
5.1 Social Golfer Problem . 73

5.1.1 The Introduction of Social Golfer Problem 73
5.1.2 Background Information . 75

5.1.2.1 The Difficulties of Solving the SGP 75
5.1.2.2 Global Constraints for Modelling SGP 76

5.1.3 The Basic Model . 77
5.1.4 Instances Solved Sequentially 80

5.1.4.1 7-7-8 etc. 81
5.1.4.2 9-9-10 . 82
5.1.4.3 13-13-14 etc. 83
5.1.4.4 8-8-9 . 84

5.1.5 Instances Solved in Parallel 85
5.1.5.1 6-3-8 . 86
5.1.5.2 6-4-7 . 88
5.1.5.3 7-3-10 . 89

5.1.6 Experiments . 90
5.1.6.1 Experimental Results on Instance Solved Sequentially 90
5.1.6.2 Experimental Results on Instance Solved in Parallel . 91
5.1.6.3 Discussion . 92

5.1.7 Related Work . 93
5.1.7.1 Methods from the CSP Literature 93
5.1.7.2 Methods from the Metaheuristic Literature 94
5.1.7.3 Summary . 95

5.1.8 Conclusion . 95
5.2 Traveling Tournament Problem with Predefined Venues 97

5.2.1 Introduction to the TTPPV 97
5.2.2 Modeling the TTPPV Based on Perfect Matching (The First

Model) . 100
5.2.2.1 A Model for Perfect Matching 101
5.2.2.2 A Model for the Timetable 102
5.2.2.3 Experimental Results 102
5.2.2.4 A Complete Model 103
5.2.2.5 Executing the Complete Model in Parallel 105
5.2.2.6 Experimental Results 106

ii

5.2.3 An Advanced Modeling Approach for Larger Instances (A Sec-
ond Model) . 107
5.2.3.1 An Advanced Model 107
5.2.3.2 Solving the Model in Parallel for Larger Instances . . 110
5.2.3.3 Experimental Results on the Large Instance Model . 110

5.2.4 Discussion . 112
5.2.5 Conclusion . 113

5.3 Talent Scheduling Problem . 113
5.3.1 The Introduction of the TS 113
5.3.2 The CSP Model of the TS . 115
5.3.3 Solving the TS in Parallel . 119
5.3.4 Numerical Results . 120
5.3.5 Conclusion . 121

5.4 Conclusion . 122

6 Parallel Stochastic Portfolio 124
6.1 Introduction . 124
6.2 The Components of the Current Single-Solver-Based Portfolio Approach125
6.3 The Limitations of the Current Parallel Portfolio Search 130
6.4 A Novel Parallel Stochastic Portfolio Approach 132
6.5 Experimental Results . 134
6.6 Related Work . 136
6.7 Discussion and Conclusion . 136

7 Towards Parallel Constraint Solving by Hypertree Decomposition 138
7.1 Introduction . 138
7.2 Preliminaries . 139
7.3 The algorithm det-k-CP . 142
7.4 Experimental Results . 148
7.5 Conclusion and Future Work . 151

8 Conclusions 152

A The Solutions of Some SGP Instances 154

Bibliography 155

iii

List of Figures

2.1 A possible solution of the 8-queens. 6
2.2 A fragment of the BT search for the constraint network N of Example

2. The potential node which is pruned because it violates constraints
are labeled with ✗. A ✓ sign indicates that a solution is found. 12

2.3 Another fragment of the BT search for the constraint network N of
Example 2. 14

2.4 A fragment of the BT search formed for the constraint network N of
Example 2, using a better value ordering heuristic. 15

2.5 The 8 symmetries of a solution of 8-Queens. 16
2.6 Example of SBDS on a backtrack search tree for the 8-Queens problem. 21

4.1 Unrecoverable fatal mistake because of the large subtrees below to the
mistake B. Nodes B and G are mistakes. 52

4.2 An ideal backtrack search tree formed by an optimal search strategy
for a first solution of the same CSP shown in Figure 4.1. 53

4.3 Comparison between heavy-tailed and non-heavy-tailed runtime distri-
bution. CDF stands for Cumulative Density Function log-log scale. (Fig-
ure adapted from [69].) . 56

4.4 LDS search tree. The text inside of a node stands for the discrepancy
of this node. (Figure adapted from [144].) 58

4.5 The four possible situations for a node and its children. A white node
and a black node stand for a bad node and a good node, respec-
tively. (Figure adapted from [91].) . 59

iv

4.6 Five probes of the one discrepancy iteration on a binary search tree of
height four. Pi above an arrow denotes that the node pointed by the
arrow is visited on probe i. For example, P3, P4 means that a node is
visited by both probe 3 and probe 4. The number i inside of a leaf node
indicates this leaf node visited on probe i. In each probe, the nodes are
numbered for each probe, starting with the root node (numbers in bold
type), from zero to four. 61

4.7 The typical possibilities for speedup in EPS. The good and bad nodes
are still black and white, respectively; the hollow triangles with a
dashed border and the black triangle stand for empty subtrees and
subtree with a solution, respectively. 68

4.8 Other two possibilities for speedup in EPS. 69

5.1 A conversion from solutions generated by the model to the potential
values of columns of T , the number of teams is 8. (Figure reproduced
from [122].) . 101

7.1 The hypergraph for the constraint network. (Figure adapted from [80]
and reproduced from [120].) . 140

7.2 Hypertree decomposition for the hypergraph of Figure 7.1. (Figure
adapted from [80] and reproduced from [120].) 141

7.3 A constraint network is divided into eight parts. An edge between two
nodes is due to the shared variables. (Figure reproduced from [120].) 142

7.4 A new node is prepended to a degenerated tree with 3 nodes. (Figure
reproduced from [120].) . 148

v

List of Tables

5.1 A solution for 7-3-10. The text in bold indicates that the values have
been initialized before search. (Table adapted from [125, 124].) 74

5.2 A solution is obtained by our model for 7-3-10 instance, and it is equiv-
alent to the solution depicted in Table 5.1. The bold-italic text indi-
cates that the values have been initialized before search; the italic text
stands for the values frozen by Constraints (5.2). (Table adapted from
[124, 125].) . 78

5.3 A solution of 5-5-6 expressed by groups. It can be converted to the
solution expressed by players easily. The submatrices GS1 and GS2 are
written in red. (Table adapted from [125, 124].) 80

5.4 The second matrix GS1 for the instance 13-13-14. (Table reproduced
from [125, 124].) . 84

5.5 The second matrix GS1 for a solution 8-8-9. (Table reproduced from
[125, 124].) . 85

5.6 A solution of 6-3-8 expressed by groups. (Table adapted from [125, 124].) 87
5.7 A solution of 6-4-7. The numbers with the same superscript are in

non-decreasing order in the second row. (Table adapted from [125, 124].) 88
5.8 Results on the s-s-(s+1) Instances. A superscript “c” means that the

instance was open for the constraint satisfaction approach; “dom” and
“min” denote the predefined search strategies domOverWDegSearch
and minDomLBSearch in Choco Solver, respectively. (Table repro-
duced from [125, 124].) . 91

5.9 Results on the Instances solved in parallel. A superscript “f” means
that the instance is solved by computer for the first time. A “-” sign
means the program was still running after a period which is equal to
the number of workers multiplied by the execution time in parallel.
(Table adapted from [125, 124].) . 91

vi

5.10 The summary of the most significant results on the SGP from the
computer-science community. (Table adapted from [124].) 95

5.11 A feasible solution for a TTPPV problem with 8 teams. 99
5.12 The predefined venue data for the problem shown in Table 5.11. . . . 99
5.13 The comparison between our timetable model and the timetable model

presented in [161]. The data in parentheses separated by commas were
calculated by our model (left) and the model of [161] (right) respec-
tively. (Table reproduced from [122].) 103

5.14 The experimental results on instance n=10. (Table reproduced from
[122].) . 106

5.15 Comparison of the three models on different size of instances. The data
in parentheses separated by commas were calculated by the first model,
the second model, and the model of [161] respectively. N/A indicates
that our first model cannot handle the instance. (Table reproduced
from [122].) . 110

5.16 The experimental results for 18 teams using the second model.(Table
adapted from [122].) . 111

5.17 The results of simulation parallel executions by executing in sequential
way. (Table adapted from [122].) . 112

5.18 A feasible solution for a given TS in [191]. The Cost and Duration in
the last column and the last row stands for the cost per time unit and
the duration of the pieces, respectively. The overall cost of this solu-
tion is 14,600. See below for calculating the cost of a solution. (Table
reproduced from [126].) . 114

5.19 Solving the TS on a multi-core computer. (Table reproduced from [126].)120
5.20 Using 4 workers to calculate the first part and second part in turn. . . 121
5.21 Optimal solutions with cost 14,600. (Table reproduced from [126].) . . 121

6.1 A possible configuration of portfolio search (PPS). 129
6.2 The comparison between our approach and parallel portfolio search

shown in Table 6.1 (PPS) on 32 cores. 134

7.1 Experimental results for det-k-CP of the benchmark suite from [81]. (Ta-
ble reproduced from [120].) . 149

A.1 The solution for 6-3-8 transformed from the solution Shown in Table
5.6. (Table adapted from [124].) . 154

vii

A.2 A new non-isomorphic solution for the 6-3-8 instance. (Table adapted
from [124].) . 154

A.3 The solution for 6-4-7 transformed from the solution Shown in Table
5.7. (Table adapted from [124].) . 155

A.4 A new non-isomorphic solution for the 7-3-10 instance. (Table repro-
duced from [124].) . 155

A.5 A new non-isomorphic solution for the 7-3-10 instance. (Table adapted
from [124].) . 155

A.6 A new non-isomorphic solution for the 7-3-10 instance. (Table adapted
from [124].) . 156

A.7 A solution of 8-8-9 expressed by groups. (Table adapted from [124].) . 156

viii

Chapter 1

Introduction

It is believed that Artificial Intelligence (AI) is one of the critical drivers of the up-
coming fourth industrial revolution. Its effect has already been seen in every aspect of
society, businesses, and daily life. AI applications, for example, include speech recog-
nition, autonomous vehicles, medical diagnosis, machine translation, game playing,
tutoring systems, robotics, smart house, logistics planning, and scheduling factory
processes, etc. AI encompasses a considerable variety of subfields, ranging from the
general (e.g., perception and learning) to the specific (e.g., autonomous vehicles, etc.
as mentioned earlier).

Among all the subfields of AI, constraint programming (CP) is undoubtedly one
of the most prominent and fundamental research domains. CP is a potent technique
used to tackle combinatorial search problems that naturally arise in most areas of
human endeavor. Numerous computational problems in artificial intelligence, com-
puter science, mathematics, operations research, and even biology can be formulated
as constraint satisfaction problems (CSPs). By declaratively stating a problem as a
set of constraints, a CP solver is employed to find one or all solutions of the prob-
lem automatically. A constraint in CP is essentially a restriction or relation defined
over a number of decision variables. Some simple examples: a person cannot have two
mothers simultaneously; the interior angles of a quadrilateral must add up to 360
degrees; a · b+ c · d = 100, where a, b, c, d ∈ {0, 1, 2, . . . , 200}.

Real-world problems are generally much more complicated than the examples men-
tioned above, involving a few hundred variables and constraints or even more. And
not only that, the problems modeled as a CSP are often computationally intractable
(NP-complete or NP-hard), implying that the computation time required to solve the
problem grows exponentially as the problem size increases. That is to say, if a CSP is
NP-complete or NP-hard, we cannot find such an algorithm that could solve the prob-
lem in polynomial time (assuming NP ̸=P). However, it does not mean that it is totally

1

hopeless trying to solve such a problem. In fact, we can utilize special properties of
the problem to develop general algorithms that are suitable for as many problems as
possible. Over the past three or four decades, much research efforts in the constraints
community have been committed to developing and enhancing general algorithms
for solving CSPs, including adopting general search strategies, designing incremental
filtering algorithms, introducing local search algorithms, identifying tractable sub-
classes of the problem, etc. In addition to improvements in algorithmic efficiency, the
speed of constraint solvers also improves as processors become better developed.

Nevertheless, the recent quick fade of Moore’s Law forces the computer design
to turn to utilize multiple processors rather than to increase the performance of
uniprocessors. And this change makes it impossible for sequential constraint solving
to keep benefiting from the performance improvement of uniprocessors. Hence, the
broad adoption of parallel architectures promotes the urgent need for more com-
prehensive and profound researches on parallel constraint solving. This dissertation is
concerned with how constraint solving can exploit parallelism to attain a first solution
for computationally hard problems that cannot be solved by the traditional sequential
constraint solving. We first look back on the evolution of parallel constraint solving
in the last 20 years and try to identify the most promising design choices. We then
improve the existing parallel approach in order to solve new instances and solve exist-
ing instances faster. Moreover, we propose a new parallel stochastic portfolio search
method that aims at enhancing the current single-solver based portfolio search. Fi-
nally, a dedicated hypergraph decomposition method used to distribute constraints
to parallel processors is presented for parallel constraint solving.

1.1 Contributions and organization

We divide this dissertation into eight chapters. In this section, we sum up the contents
and contributions of each chapter. The rest of the dissertation is organized as follows:

Chapter 2. This chapter reviews the background knowledge required for reading
this dissertation. We give an introduction to constraint propagation and back-
tracking search, two fundamental approaches to constraints processing. We also
discuss symmetry in constraints, including its definition and symmetry-breaking
methods. Finally, some basic notions of parallel computing are discussed, es-
pecially for Amdahl’s Law and Gustafson’s Law. We provide our derivation
showing that the two laws are related by an equation.

2

Chapter 3. This chapter surveys the extensive literature on parallel constraint solv-
ing. These studies are grouped into four categories, including parallel constraint
propagation, parallelizing the search process, portfolios, and hybrid approaches.
In this chapter, we attempt to provide a clear view of the evolution of techniques
of parallel constraint solving while giving a lucid explanation of the idea of these
techniques.

Chapter 4. The backtracking search systematically traverses the search tree of a
given constraint satisfaction problem in a depth-first manner. The advantage
of a backtracking style search is that we can always ensure that the resolution
process finds a solution or determines the unsatisfiability (i.e., no solution). Nev-
ertheless, we may end up missing a potential solution after a time limit that
circumstance allows us to use when solving a computationally hard problem.
Such a situation often implies that the systematic backtracking search gets stuck
in an empty subtree (no solution) that is too large to visit exhaustively. In this
chapter, we summarize the existing techniques for addressing this issue in the
context of sequential solving. Then, the rationale of addressing this issue for
the use of parallel constraint solving is also provided. Finally, we analyze the
situations under which we can expect to gain superlinear speedups.

Chapter 5. In this chapter, we test our theoretical analysis by conducting empir-
ical studies. The way of modeling a problem has a significant effect on how
efficiently the problem can be solved. Hence, we put much effort into improv-
ing or redesigning the constraint models for these problems. Moreover, to apply
the embarrassingly parallel search (EPS) approach to these problems, we design
customized search space splitting methods for each problem. Our approaches al-
lowed us to attain solutions for some open instances of the social golfer problem
(SGP) [89] that can be formulated as a CSP. For the SGP, superlinear speedups
were observed when comparing the EPS approach to sequential constraint solv-
ing with the same improved model, in line with our theoretical analysis in the
previous chapter. The EPS approach could also achieve better performance than
does the sequential run when solving the two constraint optimization problems:
the traveling tournament problem with predefined venues [160] and the talent
scheduling problem [190].

Chapter 6. One way for constraint solving to exploit parallelism is to run multi-
ple sequential solvers with different parameter settings on the same problem

3

simultaneously. This method is often called parallel portfolios, which has the
advantage of requiring no communication and achieving an excellent level of
load balancing. One challenge of applying parallel portfolios is to devise a scal-
able source of diverse sequential solvers that contributes to orthogonal perfor-
mance and complementary interest. In this chapter, we present our new parallel
stochastic portfolio search, which aims to exploit massively parallel process-
ing. We empirically evaluated our new portfolio approach for three problem
classes taken from CSPlib (a benchmark library for constraints), demonstrating
promising results.

Chapter 7. If the hypergraph of a CSP has a hypertree with bounded width, the
initial intractable problem can be partitioned into several tractable subprob-
lems, implying that we can solve the initial intractable problem in polynomial
time [81]. Here, a new dedicated hypergraph decomposition method det-k-CP is
presented for parallel constraint solving. The result of det-k-CP, which conforms
with the four conditions for ensuring that the decomposition of a hypergraph is
a hypertree, can be used to allocate constraints of a given constraint network to
parallel processors. Our benchmark evaluations have shown that det-k-CP can
relatively evenly decompose a hypergraph for the particular scale of constraint
networks.

Chapter 8. This chapter concludes the dissertation.

4

Chapter 2

Background Information

This chapter provides some background information on constraint programming (CP)
and parallel computing required by the subsequent chapters. Section 2.1 introduces
the building blocks in the CP, including constraint propagation and backtracking
search. Special focus is given to symmetry in the CP. In Section 2.2, we briefly review
a classification of parallel computing related to parallel constraint solving presented
in this dissertation and two fundamental laws about theoretical speedup for parallel
computing.

2.1 Constraint Programming

We start with formal definition of Constraint Satisfaction Problems (CSP) that
are problems modeled and solved by CP.

Definition 1. A CSP P is a triple P = ⟨X,D,C⟩ such that the following properties
are satisfied:

• X = {x0, . . . , xn} is a finite set of decision variables,

• D = {D(x0), . . . , D(xn)} contains associated finite domains for each variable in
X, where any variable xi can take on values in its domain D(xi), and

• C = {c0, . . . , ct} is a collection of constraints, where each constraint ci ∈ C

is a relation defined over a subset of X, and restricts the values that can be
simultaneously assigned to these variables.

If a constraint ci is defined on a subset of variables Scope(ci), Scope(ci) ⊆ X, we
call Scope(ci) the scope of constraint ci. A solution of a CSP P is a full instantiation
satisfying all the constraints of P . In a given task, one may need to search a first

5

Figure 2.1: A possible solution of the 8-queens.

solution or all solutions or to determine the problem is satisfiable. A CSP is unsatisfi-
able if there is no solution for it. Please note that we consider only the finite discrete
CSPs in this dissertation, although there are other possible definitions for CSPs that
include variables with infinite, even continuous, domains.

The procedure of finding a solution for a CSP can be generalized to two steps:
modeling and resolution process. In practice, a problem P can be modeled as a CSP
with several global constraints that describe the restrictions and rules defining the
solutions to P . For a CSP P , there are often various modeling approaches, which can
strongly influence the run-time behavior, or whether it can be solved in the amount
of time we actually are willing to wait. Obviously, we typically require a model that
is able to solve the problem in the shortest run-time. Having defined the model of a
CSP P , the resolution process is performed by interleaving backtracking search with
constraint propagation.

Before we introduce constraint propagation and backtracking search, consider a
well-known CSP, the N-Queens problem (i.e., problem 054 in CSPLib [101]). The
problem consists of finding a placement of n queens on an n×n (n > 2) chessboard so
that none of the queens can attack each other. In chess, two queens cannot attack each
other if they are not in the same row, column, or either diagonal as itself. A solution
of the 8-Queens problem is depicted in Figure 2.1. The problem can be represented
as a CSP by using eight variables {x1, . . . , x8}, each having the domain {1, . . . , 8}. A
variable xi can denote the position of a queen put in either ith row or ith column of the
chessboard. For example, if we let variable xj stands for column j, the solution shown
in Figure 2.1 corresponds to the list of values [1, 5, 8, 6, 3, 7, 2, 4]. The constraints

6

derived from the problem definition can be stated mathematically as follows:

∀(i,j∈{1,...,8})∧(i<j) (xi ̸= xj) (2.1)

∀(i,j∈{1,...,8})∧(i ̸=j) (| i− j |̸=| xi − xj |) (2.2)

The simplest and easiest method of solving the N-Queens problem is to search exhaus-
tively by the generate-and-test algorithm (i.e., brute force algorithm). Suppose
that the each of the n variable domains has size d, the overall time complexity of
the generate-and-test algorithm is, therefore, O(dn). Hence, the search space of the
generate-and-test algorithm grows exponentially and thus could not work for instances
with large n in practice.

2.1.1 Constraint Propagation

It is practically impossible to tackle NP-complete or NP-hard problems by using the
generate-and-test algorithm. Constraint propagation1, which is fundamental to the
resolution process of solving a CSP [17], does a specific type of inference that reduces
the search space efficiently.

Most of constraint propagation techniques concentrate on modifications of the
domains of variables, which is called domain-based constraint propagation. The con-
straint propagation can be considered as operating over the network of constraints
determined by a CSP [162]:

• Each variable of the CSP can be treated as a node of the network.

• Each constraint of the CSP can also be treated as a node.

• A set of possible values D(x) is associated with each variable x.

• There exists an arc between every variable x and the constraint c that is stated
over this variable, denoted by ⟨x, c⟩.

where the network of constraints is also called a constraint network. The main
idea of the constraint propagation is to enforce local consistency in each part of
constraint network by removing inconsistent values throughout the entire constraint
network. There are different levels of consistency enforced on the constraint network,

1Depending on authors, periods, and contexts, different names may also refer to the constraint
propagation, including constraint inference, filtering algorithms, narrowing algorithms, rules itera-
tion, local consistency enforcing, consistency-enforcing algorithms, and consistency algorithms (see
for example [40].).

7

including node consistency, arc consistency, path consistency [146], and k-
consistency [54]. A variable is node-consistent if every value in its domain does not
violate any unary constraint of the variable. Similarly, a variable is arc-consistent
if every value in its domain is consistent with the constraints whose scopes cover
this variable and other variables. Higher-order consistency techniques, such as k-
consistency, take into account k variables at a time and thus remove more values
than does arc consistency.

Among all the levels of consistency, arc-consistency plays an essential role in con-
straint inference due to the following reasons: First, almost all the state of the art
constraint solvers have implemented it. Second, improvements in arc-consistency ef-
ficiency can benefit other local consistency algorithms [17]. Hence, we shall look at
arc-consistency in more detail. Also, since a constraint network consisting only of
binary constraints is unusual in practice, the constraint network is non-binary by
default; thus, we do not differentiate between generalized arc consistency (GAC)
and arc consistency.

We now give a formal definition of the GAC, which was proposed by Mack-
worth [130].

Definition 2. Given a constraint network N formed by a CSP P = ⟨X,D,C⟩, a
constraint ci ∈ C, and a variable xj ∈ Scope(ci).

• A value v ∈ Dxj
is consistent with ci iff there are a list of values v0, . . . , vk, such

that ci(xj = v, x0 = v0, . . . , xk = vk) is satisfied. Such a list of values is called a
support for (xj, v) on ci.

• The variable xj is arc-consistent relative to ci, namely, arc ⟨xj, ci⟩ is arc-
consistent, iff ∀v ∈ D(xj) ∧ xj ∈ Scope(ci), there exists a support for (xj, v)

on ci.

• The constraint ci is generalized arc consistent, iff every variable in its scope is
arc-consistent relative to ci.

• The constraint network N is generalized arc consistent iff all its constraints are
generalized arc consistent.

Example 1. Let us consider a simple constraint network N involving three variables
x, y, and z, with domains D(x) = {1, . . . , 6}, D(y) = {1, . . . , 10}, and D(z) = {1, 2},
and the constraints c1 ≡ x − 5 ∗ y ≥ 1, c2 ≡ z ̸= x, and c3 ≡ z ̸= y. The constraint
network is not arc-consistent because for each value v ∈ D(x) = {1, 2, 3, 4, 5} we

8

cannot find a corresponding value for y for which x− 5 ∗ y ≥ 1. Moreover, there are
other inconsistent values; we will discuss them soon.

Constraint propagation is not merely the removal of inconsistent values; it is the
process of propagating the domain reduction of a decision variable to all of the vari-
ables within the scope of the constraints that are stated over this variable. Therefore,
this process can usually result in many more domain reductions. The constraint prop-
agation process continues until no domain of the decision variables can be reduced. Or
all the values in the domain of some variables are filtered out, indicating that a fail-
ure occurs. A CSP has no solution when an empty domain occurs during the initial
constraint propagation.

Going back to the simple constraint network N in Example 1, there are six arcs:
⟨x, c1⟩, ⟨y, c1⟩, ⟨z, c2⟩, ⟨x, c2⟩, ⟨z, c3⟩, and ⟨y, c3⟩. To ensure every constraint arc-
consistent, we maintain a set of arcs to_do. At the beginning of the propagation,
the set has all the arcs of N in Example 1 (cf., to_do in Algorithm 1). Note that
the data structure used here is a set because the processing order of the arcs will not
affect propagation results and solutions of the network. Suppose we first select the arc
⟨x, c1⟩ from to_do. The domain reduction of the constraint c1 shrinks the domain of
x to {6}. No arc related to variable x is needed to be added into to_do because there
is no other arc not in to_do. Suppose that ⟨y, c1⟩ is selected next. The domain of y
is reduced to {1}. Again, no arc is added to to_do. For arcs ⟨z, c2⟩ and ⟨x, c2⟩, there
is no inconsistent value. Marking arc ⟨z, c3⟩ consistent shrinks D(z) to the singleton
{2}. Because the arc ⟨x, c2⟩ has already been calculated before and the scope of
constraint c2 covers the variable z whose domain has been modified, we must replace
the arc ⟨x, c2⟩ into the to_do set. Finally, there are only two consistent arcs ⟨y, c3⟩
and ⟨x, c2⟩ in the to_do set; and no more domain reduction can be achieved. The
constraint propagation ends up with the empty to_do set, and the final domains are:
D(x) = {6}, D(y) = {1}, and D(z) = {2}. Since the domains all have size one, we
obtain a unique solution only by constraint propagation.

In many practical problems, it is uncommon for every domain to become a single-
ton after the initial constraint propagation. We now consider a more general example
in which at least one domain contains multiple values after the initial constraint
propagation.

Example 2. Let N be a constraint network having three variables x, y, and z as-
sociated with the constraints c1 ≡ x > y and c2 ≡ y > z, with D(x) = D(y) = D(z) =

{1, 2, 3, 4, 5}. As with the previous example, all the arcs are included in the to_do

9

set at the beginning of propagation. Suppose arc ⟨x, c1⟩ is considered first. This arc is
not arc-consistent because the value 1 in D(x) is not consistent with any value for y in
D(y). Therefore, the value 1 is pruned from D(x), and D(x) becomes {2, 3, 4, 5}. Sup-
pose arc ⟨y, c1⟩ is considered next; then D(y) is reduced to {1, 2, 3, 4}. Nevertheless, the
arc ⟨z, c2⟩ could be added into the to_do set, but it is already in to_do. Suppose that
⟨y, c2⟩ is selected next, the value 1 is pruned from D(y), and thus D(y) = {2, 3, 4}. Be-
sides, we must put arc ⟨x, c1⟩ back to the to_do set because D(x) might be reduced
further. Suppose arc ⟨z, c2⟩ is considered next, D(z) is reduced to {1, 2, 3}. Finally,
we consider the arc ⟨x, c1⟩. Because the value 2 ∈ D(x) is not consistent with c1, we
prune it from D(x), and thus D(x) becomes {3, 4, 5}. Since x is not involved in any
other constraints, no arcs are added into the to_do set again. At last, the algorithm
terminates with D(x) = {3, 4, 5}, D(y) = {2, 3, 4}, D(z) = {1, 2, 3}.

We have used two examples to illustrate how exactly the generalized arc con-
sistency (GAC) algorithm works. Algorithm 1 represents the main procedure of the
GAC, which is also called AC-3 by the inventor of the algorithm Mackworth since it
is the third version presented in his paper [130]. Some textbooks, such as [182] and
[40], present the GAC-3 algorithm based on pairs of variables. Here, we follow the
way of representing an arc by pair consisting of a variable and a constraint used in
the textbook written by Mackworth [162]. GAC-3 has a O(er3dr+1) time complexity,
where e, r, and d are the number of constraints, greatest arity among constraints,
and largest domain size, respectively [17]. We refer to Chapter 4 of [114] for a more
extensive discussion on GAC-3 and its time and space complexity.

The GAC-3 can be viewed as arc-oriented propagation algorithm [17, 134]. The
constraints community has also developed other ways of propagating constraints,
including AC-4 [142], AC-6 [16, 18], AC-2001 [20], and their non-binary versions,
GAC-4 [143] and GAC-2001 [21], where AC-4 and AC-6 are value-oriented.

2.1.2 Backtracking Search

In Section 2.1.1, we have shown that a unique solution could be obtained by arc
consistency when all the variables of a CSP P becomes a singleton, or disprove the
CSP P has a solution when one domain is wiped out. More generally, however, not
all values remaining in the domains participate in solutions after enforcing GAC. In
that case, we usually resort to the backtrack search.

The naive backtrack search (BT) is the foundation of other more sophisticated
backtracking searches (e.g., Forward checking, Conflict-directed backjumping, etc.). In

10

Algorithm 1: Generalized arc consistency algorithm (GAC-3)
Input: a constraint network N formed by a CSP P = ⟨X,D,C⟩
Output: returns false whenever an inconsistency is detected and true

otherwise
Local variables: revised, to_do
/* add all the arcs in N into the to_do set */

1 to_do = {⟨xj, ci⟩ | xj ∈ Scope(ci) ∧ ci ∈ C ∧ xj ∈ X};
/* Constraint propagation starts */

2 while to_do ̸= ∅ do
3 choose and remove ⟨xj, ci⟩ from to_do ;
4 revised← false ;
5 foreach v ∈ D(xj) do
6 if no support for (xj, v) on ci then

/* remove inconsistent v from D(xj) */
7 D(xj) ← D(xj) \ v ;
8 revised← true ;
9 end

10 end
11 if revised then
12 if D(xj) = ∅ then

/* a domain is wiped out */
13 return false;
14 end

/* add all the related arcs into to_do again */
15 to_do← to_do ∪ {⟨xi, cj⟩ | {xi, xj} ∈ Scope(cj) ∧ cj ̸= ci ∧ xj ̸= xi} ;
16 end
17 end
18 return true;

a BT search tree, the start node at level 0 (the root) is an empty assignment, and
a node at level i stands for a series of assignments {x1 = v1, . . . , xi = vi}. At each
node of the BT search tree, the BT selects an uninstantiated variable and extends this
node by assigning the variable all the possible values in its domain, which leads to the
branches out of this node, each of which stands for a choice for this variable. When-
ever a value in the domain of the current variable is inconsistent with a constraint
in the network, the next value in its domain is checked. If no domain value remains,
the BT backtracks. Furthermore, when none of the variable’s values are consistent
with the current assignment, this situation referred to as a deadend. A solution of
the BT tree is a complete instantiation to all variables with the satisfaction of all
constraints. Figure 2.2 shows a part of the backtrack search tree generated by the BT

11

z=5 z=4 z=3

y=5 y=4

x=5 x=4 x=3 x=2 x=1

y=3 y=2 y=1

z=2 z=1

✗ ✗... ✗

...
...

...✗

✗✗✗✗✓

Figure 2.2: A fragment of the BT search for the constraint network N of Example
2. The potential node which is pruned because it violates constraints are labeled with
✗. A ✓ sign indicates that a solution is found.

for the constraint network N in Example 2 (page 9). In this example, we assume a
static variable ordering [z,y,x], and the value ordering heuristic is to consider upper
bound first.

The backtracking search in CSP is essentially a depth-first search that progres-
sively extends a node at a time and backtracks whenever the domain of a variable is
empty. Theoretically, we could apply a search alone to solve a CSP P . However, the
search space would be too big to handle. For a CSP P having n variables with domain
size d, the branching factor at the top level is n·d since any of d values can be assigned
to any of n variables. At the next level, the branching factor is (n − 1) · d, and so
on for the rest of n − 2 levels. Consequently, naive BT generates a search tree with
n! · dn leaf nodes, even though only dn possible assignments exist. Thus, constraint
solving interleaves backtracking search and a certain level of constraint propagation
rather than performing either search or constraint propagation alone.

In general, the more tight constraint networks are (i.e., enforcing a stronger level of
local consistency), the more restricted search space will be. After applying a stronger
level of consistency, the search encounters fewer deadends and becomes more effi-
cient. But the computational cost is also increased while enforcing a stronger consis-
tency level. To take an extreme example, one would expect that every value in the
domain of every variable participates in solutions of the CSP P after propagation so
that the search would be backtrack-free (i.e., no deadends). Unfortunately, achieving
such a high level of consistency is at least as difficult as solving the CSP P [201],
and frequently too hard, probably requiring an exponential number of additional
constraints [40].

12

Algorithm 2: A simple backtracking search
Input: a constraint network N formed by a CSP P = ⟨X,D,C⟩
Output: return failure when the CSP has no result otherwise a solution

1 backtrackingSearch(N):
2 return backtrack(N ,{}) ;

3 backtrack(N ,assignment):
4 if assignment is a solution then return assignment ;

/* select an uninstantiated variable by an user-specified
variable ordering heuristic */

5 xj ← selVar(N) ;
/* try all values with the priority specified by an

user-specified value ordering heuristic */
6 foreach vj ∈ selVal (D(xj),N) do
7 if vj is consistent with assignment then

/* add { xj = vj } to the assignment */
8 assignment← assignment ∪ {xj = vj};
9 propagation← propagation (N ,xj,vj) ;

10 if propagation ̸= failure then
/* if variables become singleton after propagation */

11 add propagation to assignment ;
12 result← backtrack(N ,assignment) ;
13 if result ̸= failure then
14 return result
15 end
16 end

/* remove value assignments when vj leads to failure,
including propagation and backtrack */

17 assignment← assignment \ {xj = vj, xk = vk, . . . }
18 end
19 end
20 return failure;

Algorithm 2 (adapted from [95, 182]) depicts a simple backtracking search based
on the recursive depth-first search for the CSP. The algorithm iteratively selects an
uninstantiated variable, and then enumerates all the domain values of the variable,
trying to obtain a solution. By varying the functions selVar (line 5) and selVal (line
6), one can specify a variable ordering heuristic and a value ordering heuristic. In
line 8, if a chosen value for the selected variable does not violate any constraint in
the network, we then add that value to the assignment. The function propagation

(line 9) can be used to enforce a certain level of consistency (e.g., arc- or path-
consistency). If the propagation succeeds and at least one domain becomes singleton,

13

x=5

y=5 y=4

z=5 z=4 z=3 z=2 z=1

y=3 y=2 y=1

x=4 x=3 x=2 x=1

...
...

...

...
...

... ✗

✗

✗ ✗ ✓ ✓ ✓

Figure 2.3: Another fragment of the BT search for the constraint network N of
Example 2.

we should also append the value of the fixed variable to the assignment, as shown in
line 11 of Algorithm 2. If either propagation or backtrack encounters failure due to
a value choice, then the assignment must be restored to the previous assignment by
removing that value (line 17); and then a new value is considered in line 6.

Although the order of variable and value does not affect the results of CSPs, the
search strategy, including the variable and value selection heuristic, can be critical to
efficiently solving the CSPs. For the example of the constraint network N of Example 2
(page 9), if the variable selection heuristic is set to a static variable ordering [x,y,z],
and the value selection heuristic always chooses the upper bound of the variable, we
will see the BT tree as shown in Figure 2.3.

In Figure 2.3, the BT search only visits six nodes for obtaining a solution. In
contrast, with changing the variable ordering, the BT search needs to visit much
more nodes to obtain a first solution, as shown in Figure 2.2. This example illustrates
that a better variable selection heuristic can enhance the performance of backtrack
search by reducing the exploration of a great number of nodes early in the search. A
better value selection heuristic can also help reduce the number of nodes visited for
finding a first solution. Let us assume we have a better value selection heuristic for
the example illustrated in Figure 2.3. Even using the same variable ordering, we only
need to explore three nodes to obtain a first solution, as shown in Figure 2.4. However,
the value ordering is irrelevant when our goal is to obtain all solutions. Because in
this case, every value is required to be enumerated.

Yet, it is a non-trivial task for us to find an optimal ordering. Generally, the dy-
namic ordering heuristics are more efficient than the static ordering heuristics. The
static ordering heuristics is relatively simple: the variable ordering is fixed before

14

x=5

y=4

z=3 z=2 z=1 z=4 z=5

y=3 y=2 y=1 y=5

x=4 x=3 x=2 x=1

...
...

...

...
...

... ✗

✗

✗✗✓ ✓ ✓

Figure 2.4: A fragment of the BT search formed for the constraint network N of
Example 2, using a better value ordering heuristic.

search (e.g., lexicographic order). In contrast, the dynamic ordering heuristics decide
which variable to be selected based on a criterion that is calculated during search. In
[201], Van Beek presents a taxonomy that classifies variable ordering heuristics into
two groups: heuristics utilizing the domain sizes of the variables and heuristics uti-
lizing the structure of the CSP. In 1965, Golomb & Baument [67] pioneered the idea
of utilizing domain size for variable ordering, where a variable with the fewest values
left in its domain is always chosen first. More variable ordering heuristics fall into
this category will be discussed in Section 6.2. The second category, structure-guided
variable ordering heuristics, exploits the graphical representation of the constraint
network. For instance, Dechter & Pearl [43] proposed a variable selection heuristic
that first instantiates variables that disconnect cycles in the constraint graph of a
given CSP. Unfortunately, this type of variable ordering tends to be static or nearly
static and cannot compete with domain size based dynamic variable ordering heuris-
tics.

Backtrack search systems are composed of four components [114]: branching (how
and which decisions to take to go forward to a solution), propagation (how and which
consistency level to enforce to prune the search space at each step), backtracking (how
to retreat when encountering a deadend), and nogood learning (what information
to gather during search to facilitate the subsequent search). Much effort from the
constraints community has gone into improving the efficiency of backtracking search,
including more sophisticated application-independent heuristics, exploring the right
combinations of propagation and backtracking techniques, nogood learning during
backtracking search, and non-chronological backtracking. We have introduced the

15

(a) identity (b) r90° (c) r180° (d) r270°

(e) x (f) y (g) d1 (h) d2

Figure 2.5: The 8 symmetries of a solution of 8-Queens.

first three notions in this section. For further reading on these topics, we recommend
[201, 115, 117, 66, 202], and Chapter 8 of [114].

2.1.3 Symmetry in Constraint Programming

Many CSPs exhibit symmetrical and combinatorial nature simultaneously. The CP,
a powerful technique to tackle combinatorial problems, sometimes has to deal with
the amount of extra search space due to symmetry.

To help understand the concept of symmetry in the CP, we first reconsider the
8-Queens problem shown in Figure 2.1 (page 6). Figure 2.5 depicts a solution of
8-Queens (i.e., the identity symmetry shown in Figure 2.5a) and its seven symme-
tries, each of which is also a solution of the 8-Queens. The identity symmetry can be
rotated by 90°, 180°, and 270° in a clockwise direction, as shown in Figures 2.5b, 2.5c,
and 2.5d. Besides, the identity symmetry can also be reflected in the vertical axis,
horizontal axis, as well as two main diagonal axes, as shown in the second row of Fig-
ure 2.5. In the context of group theory, these eight symmetries, four rotational symme-
tries and four reflection symmetries, form the dihedral group D4, since a chessboard
is a regular polygon with four sides.

For the CP, the importance of studying symmetry is that we can avoid exploring
the subtrees that contain the symmetries of the explored subtree so that less search
effort is required to find a solution, or to disprove satisfiability, thereby dramatically
enhancing the performance of constraint solving. The reduced search space comes from

16

two aspects: First, when a solution is found, the symmetric solutions can be obtained
automatically without exploring symmetric subtrees (e.g., any solution in Figure 2.5
can readily lead to the rest of seven solutions without search effort). Hence, the
symmetric fruitful subtrees of the solution can be omitted. Second, when a consistent
instantiation leads to a deadend, the consistent instantiations which are symmetric
to it are bound to lead deadends as well. Similarly, the symmetric fruitless search
subtrees of the partial solutions can also be omitted.

The constraints community has summarized two types of definition for symmetry
on a constraint network: problem symmetry, also known as constraint symmetry, and
solution symmetry [62, 34]. Roughly speaking, problem symmetry defines symmetry
as a property derived from the problem statement; and solution symmetry defines
symmetry as a property based on the solution set.

The notion of solution symmetry is relatively simple, and solution symmetry has
two special cases: variable symmetry and value symmetry. We can often observe value
symmetry in CSPs. The nurse rostering problem is a typical example. To devise a pe-
riodic (e.g., monthly) duty roster for nursing employees; one must assign nurses (i.e.,
values) to shifts (i.e., variables). A feasible solution remains to be feasible when in-
terchanging nurses with the same skills (i.e., interchanging values while keeping the
ordering of variables fixed). Hence, it is not hard to conclude that a value symmetry
is a permutation of the values that preserves solutions. A variable symmetry, on the
other hand, is a permutation of the variables that preserves solutions. For two inter-
changeable variables, both of them must have the same domain, and all constraints
must cove them simultaneously. Consider a simple constraint network with only one
linear constraint (e.g., c1 ·x1+c2 ·x2+, . . . ,+cn ·xn = 100). A solution to this network
preserves when permuting the variables with the same domain and the same coeffi-
cient, i.e., ci = cj ∧D(xi) = D(xj). If we consider both variable and value together as
a ⟨variable, value⟩ pair, variable and value symmetry can be generalized to solution
symmetry. A solution symmetry is a permutation of the ⟨variable, value⟩ pairs that
preserves solutions.

The definition of problem symmetry also acts on ⟨variable, value⟩ pairs, but the
emphasis is on a consequence of leaving the constraints unchanged, rather than pre-
serving solutions. The rigorous definition of problem symmetry proposed by Cohen et
al. [34] is defined over the microstructure complement of a CSP. The microstructure
complement is a hypergraph, the vertices of which have all ⟨variable, value⟩ pairs,
and a hyperedge of which stands for an assignment disallowed by a constraint or con-
sists of a pair of incompatible assignments for the same variable. The constraints are

17

preserved since only an automorphism2 of a microstructure complement is a problem
symmetry. Therefore, for a k-ary CSP instance P (one whose constraints have maxi-
mum arity k), k -ary nogoods, which are consistent assignments of up to k variables
and cannot lead to a solution of P , can cause solution symmetries but not problem
symmetries. The reason is that k -ary nogoods cannot be expressed as a hyperedge of
a microstructure complement since only disallowed assignments can form a hyperedge
of a microstructure complement. But, the hypergraphs containing the hyperedges that
represent these k -ary nogoods are far more than the microstructure complement. So,
in general, solution symmetries far outnumber problem symmetries for a given CSP
P . Interestingly, Cohen et al. [34] show that eliminating problem symmetry can result
in the number of solution symmetry increased for the N-Queens problem. Conversely,
problem symmetries rise sharply for 5-Queens from 8 to 28,880 after applying path
consistency.

In theory, we can generate all the problem symmetries for a given k-ary CSP in-
stance P by finding the automorphism group of the microstructure complement. More-
over, we can also expand the problem symmetries to the solution symmetries by
adding all the nogoods with k or less than k values to the microstructure comple-
ment. By doing so, symmetries can be identified automatically. Unfortunately, iden-
tifying the satisfying k -ary nogoods may itself be intractable for a large CSP instance
P [19, 34]. To the best of our knowledge, symmetry in CSPs is still mostly detected by
applying human insight; and the most published works related to symmetry-breaking
presuppose that symmetries are given.

The research on symmetry-breaking has been an active area for the CP. There ex-
ist three main categories of approaches for symmetry-breaking: (1) reformulation, (2)
breaking symmetry statically, and (3) breaking symmetry dynamically. The reformu-
lation techniques involve remodeling the problem, introducing set variables, etc. Nev-
ertheless, it is hard to generalize the reformulation techniques, and applying the
reformulation techniques usually requires considerable insight into problems [62]. But
the reformulation techniques have the advantage of combining easily with other
symmetry-breaking approaches.

Adding static constraints before search is perhaps the most natural technique
for symmetry-breaking. Despite its simplicity, it can be challenging to eliminate all
the symmetry by using a constraint or a set of constraints. Sometimes, improperly
imposing symmetry breaking constraints on a model might lose solutions. Several

2In the context of graph theory, an automorphism of a graph or hypergraph is a bijective mapping
of its vertices while preserving the edge-vertex connectivity.

18

types of constraints are commonly used to break symmetry, including the arithm
constraint, and the lexLessEq constraint. For instance, in [126, 191], the arithm
constraint is used to eliminate the reversal of a solution. The lexLessEq constraint
(i.e., ⪯lex, lex-leader, or the lexicographic ordering constraint) lies at the heart of
most static methods for breaking variable symmetries [207, 62]. The constraint is
defined on two vectors −→x = ⟨x1, x2, . . . , xq⟩ and −→y = ⟨y1, y2, . . . , yq⟩ of variables,
and ensures that −→x is lexicographically less or equal than −→y , i.e., −→x ⪯lex

−→y . For-
mally, we have −→x ≺lex

−→y iff ∃1≤i≤q such that ∀1≤j<i, (xj = yj ∧ xi < yi) and
−→x ⪯lex

−→y iff −→x = −→y ∨ −→x ≺lex
−→y . In fact, the lexicographic ordering guaranteed

by the lexLessEq constraint is identical to that of standard in computer science, e.g.,
{12345, 12354, 12435, 12453} ≺lex 12534 and {12345, 12354, 12435, 12453, 12534} ⪯lex

12534. Returning to the 8-Queens problem shown in Figure 2.5, the identity solu-
tion can be written as {⟨x1, 1⟩, ⟨x2, 5⟩, ⟨x3, 8⟩, ⟨x4, 6⟩, ⟨x5, 3⟩, ⟨x6, 7⟩, ⟨x7, 2⟩, ⟨x8, 4⟩}.
We can prune symmetrically-equivalent solutions of the identity solution by posting
−→x ≺lex 15863724 constraint. Thus, the rest of the solutions are ignored by backtrack
search because {36428571, 57263148, . . .} ⊀lex 15863724.

Nevertheless, the lexicographic ordering constraint relies heavily on the variable
and value selection heuristics. More specifically, if the leftmost solution is not canon-
ical, not all symmetrically equivalent solutions are guaranteed to be pruned. For
example, reconsider the 8-Queen problem shown in Figure 2.5, we find the solution
{57263148} first when applying a different value ordering heuristic. Thus, some solu-
tions, such as {36428571, 15863724}, cannot be removed by imposing the lexicographic
ordering constraint since {36428571, 15863724} ⊀lex 57263148. This is in contrast to
the dynamic symmetry breaking methods such as SBDS and SBDD, which do not de-
pend on the heuristic. SBDS, an acronym for symmetry breaking during search, was
named by Gent & Smith in [64]. However, this naming might trick us into thinking
that SBDS is a general technique for symmetry breaking during search. In fact, other
ways for breaking symmetry during search, such as symmetry breaking via dominance
detection (SBDD), have already been proposed.

The idea behind SBDS is to impose symmetry breaking constraints on a model
whenever backtracking from a search decision so as to not revisit the symmetric
equivalent of that search decision. A search decision can be viewed as an assignment
to a variable, i.e., var = val. Let us consider the 8-queen problem again and assume
the first search decision in the search tree is x1 = 1, i.e., the queen is placed on position
1 of the first column of chessboard (see Figure. 2.5a). When search backtracks to the
root of the search tree, all the possible symmetric equivalent to x1 = 1 should be

19

avoided. Thus, we ought to post all the symmetric constraints of x1 ̸= 1, denoted
by (x1 ̸= 1)g, where g = r90°, r180°, r270°, x, y, d1, and d2. Nevertheless, it is
unnecessary to post the symmetric constraints for x, y, d1, and d2 in the group since
these constraints have added by the symmetric constraints for r90°, r270°, and the
branching constraint already (cf. the right branch of Figure 2.6).

Although the notion of SBDS is simple, we should be careful to post constraints
as the search tree expands progressively. According to the solution shown in Fig-
ure 2.5a, we assume that the next search decision is x2 = 5. We do not post sym-
metric constraints for this positive decision. However, if we backtrack from x2 = 5

and before turning into branch x2 ̸= 53, we must post symmetry breaking con-
straints, but not the constraints like (x2 ̸= 5)g. Because posting a constraint such
as x4 ̸= 2 ((x2 = 5)r90 ≡ x4 = 2) might rule out some non-isomorphic solutions
of the current solution in some future states, if the current partial assignments can-
not be extended to a solution. Therefore, we should impose a conditional constraint
x1 = 1⇒ (x2 ̸= 5)g. Furthermore, not all of the possible symmetries in the group exist
for the branches out of the node x1 = 1. Specifically, simply adding constraints, such
as x1 = 1 ⇒ (x2 ̸= 5)x, x1 = 1 ⇒ (x2 ̸= 5)y, and x1 = 1 ⇒ (x2 ̸= 5)d2, is redundant
and incorrect since x8 = 1, x1 = 8, and x8 = 8 are contradicted by the constraints of
the CP model and the branching constraint (i.e., x1 = 1). More precisely, x1 = 1 has
already indicated x8 ̸= 1, x1 ̸= 8, and x8 ̸= 8 in the branches out of the node x2 ̸= 5

because these squares are on the same row, column, diagonal. Besides, we cannot
post the constraint x1 ̸= 1 for the symmetry d1 at the branches out of the node
x1 = 1. Consequently, we actually add conditional constraints x1 = 1⇒ (x2 ̸= 5)r90,
x1 = 1⇒ (x2 ̸= 5)r180, and x1 = 1⇒ (x2 ̸= 5)r270 at the node x2 ̸= 5.

SBDS is sound in that no solution is omitted, and only one solution is obtained
from each symmetric equivalence space. Moreover, in contrast to the lexLessEq con-
straint, SBDS does not conflict with search heuristics. Also, we have to use symmetry
breaking during search, because sometimes we cannot know the search decision before
search. One insurmountable problem with SBDS is that when the CSP P becomes
large, we are required to deal with a great number of symmetry breaking constraints.

SBDD, introduced by [49, 53], checks whether or not every node in the search
tree entails symmetrically equivalent to one already visited. If this is the case, the
branch is pruned. Unlike SBDS, SBDD does not depend on using symmetry breaking

3Both SBDS and SBDD are based on 2-way branching since 2-way branching is exponentially
more efficient than d-way branching [102], and thus 2-way branching is much more frequently used
in the competitive constraint solvers.

20

x1 = 1

x2 = 5 x2 ̸= 5

x1 ̸= 1

(x1 ̸=1)r90≡x8 ̸=1

(x1 ̸=1)r180≡x8 ̸=8

(x1 ̸=1)r270≡x1 ̸=8

(x1 ̸=1)x≡x8 ̸=1

(x1 ̸=1)y≡x1 ̸=8

(x1 ̸=1)d1≡x1 ̸=1

(x1 ̸=1)d2≡x1 ̸=8

✓
✓
✓
✗
✗
✗
✗

x1=1⇒(x2 ̸=5)r90≡(x4 ̸=2)

x1=1⇒(x2 ̸=5)r180≡(x7 ̸=4)

x1=1⇒(x2 ̸=5)r270≡(x5 ̸=7)

x1=1⇒(x2 ̸=5)x≡(x8 ̸=1)

x1=1⇒(x2 ̸=5)y≡(x1 ̸=8)

x1=1⇒(x2 ̸=5)d1≡(x1 ̸=1)

x1=1⇒(x2 ̸=5)d2≡(x8 ̸=8)

✓
✓
✓
✗
✗
✗
✗

Figure 2.6: Example of SBDS on a backtrack search tree for the 8-Queens problem.

constraints but instead stores information about explored sub-trees and utilizes the
dominance detection function to determine if a node is dominated by a previously
explored one under some symmetry. Thus, SBDD never generates the children of
dominated nodes.

We have introduced some basic notions and techniques related to symmetry in
constraint programming. Some advanced and interesting topics (e.g., computational
group theory, automatic symmetry detection, and symmetry and local search) are not
discussed due to limited space. We encourage the interested reader to study [62, 114]
for the missing details.

2.2 Parallel Computing

In 1965 Gordon Moore, who was working as the director of research and development
at Fairchild Semiconductor,4 predicted that the number of transistors in a dense
integrated circuit would double approximately every year, which was amended in
1975 to every two years. This world-famous prediction, so-called Moore’s Law, has
been a roadmap for the semiconductor industry for about 50 years. Unfortunately,

4Fairchild Semiconductor company was a pioneer in the manufacturing of transistors and inte-
grated circuits, and it has an important historical status in the development of the semiconductor
industry. In the 1980s, about half of all the semiconductor companies were direct or indirect descen-
dants of Fairchild, including Intel, AMD, Xilinx, etc. [100].

21

Moore’s Law has almost reached saturation since process scaling has slowed beginning
at the 22 nm feature, and thus cannot continuously reduce feature size. Moreover,
clock speeds have tapered, as well as thermal and power dissipation envelopes have
settled flat [158]. According to Hennessy & Patterson [93], since 2015 single processor
performance improvement has been just 3.5% per year, or doubling every 20 years.

However, the demand for increasing performance of the microprocessor continues;
thus, the microprocessor industry is motivated to shift to multiple cores or proces-
sors instead of a single core. In addition, apart from multi-cores and multi-processors
within a single computer, multiple stand-alone computers can be used to build com-
puting cluster, MPPs (Massively Parallel Processing), and grids to take advantage of
parallelism (namely parallel processing) for improving performance. Parallel com-
puting is to utilize multiple computing resources, such as multi-core microprocessor
or a computing cluster, to solve a computational problem simultaneously. The general
process of parallel computing can be summarized as follows:

1. A problem is partitioned into discrete sub-tasks, which can be solved concur-
rently.

2. Each sub-task is mapped into different processors.

3. Instructions from each sub-task execute simultaneously on different processors.

4. The final result is combined. Besides, an overall control or coordination mech-
anism might be employed during parallel processing.

In [93], the authors classify parallelism as two different types in applications:

• Data-level parallelism (DLP) requires that the problem has a large amount of
data that can be operated at the same time. The parallelism is achieved by
distributing data across processors, and then each processor performs the same
task (e.g., executing the same code) on different data.

• Task-level parallelism (TLP) requires that the problem can be broken apart into
many different tasks. The parallelism is achieved by executing a different task
on the same or different data.

As will be discussed in Chapter 3, the techniques of parallel constraint solving can
fit into the two categories. Besides, parallelism can also be classified according to
the granularity of parallelism, i.e., the size of the computations being performed si-
multaneously between processors [188]. Coarse-grained parallelism works on a small

22

number of large tasks, and communication and synchronization are infrequent among
processors. Fine-grained parallelism, by contrast, executes a large number of small
tasks and often requires frequent communication or synchronization [156]. One ex-
treme case, processors never or rarely communicate or synchronize to each other, is
called embarrassing parallelism. In the following chapters, we will show that tech-
niques based on embarrassingly parallel computation play an essential role in parallel
constraint solving.

Several factors prevent parallelism from obtaining better performance. From the
hardware perspective, the power wall of microprocessors and the slow improvement of
transistors due to the slowing of Moore’s Law cause deceleration in improvements of
processor [93]. Besides, once the communication cost dominates computational cost,
partitioning the workload over more processors will cause performance degradation
instead of improvement.

2.2.1 Amdahl’s Law and Gustafson’s Law

Another reason is the limitation of speedup determined by the task itself, which
is prescribed by Amdahl’s Law [7]. In the context of parallel computing, speedup
measures the performance gain that can be obtained by parallelism. In Amdahl’s
Law, the speedup SA(n) is defined as the ratio between the execution time of a
sequential program Ts(1) and the execution time of a parallel program Tp(n) that
completes the same task on n parallel processors; that is,

SA(n) =
Ts(1)

Tp(n)
(2.3)

For a given task, Amdahl’s Law prescribes the speedup that we could expect on a
multiprocessor computer or system. Assume a task consists of a parallelizable fraction
fAp and a serial fraction (1− fAp). Thus, the time required to process this task by a
single processor and n parallel processors is given by:

Ts(1) = (1− fAp) · τ + fAp · τ (2.4)

Tp(n) = (1− fAp) · τ +
fAp · τ

n
(2.5)

where τ denotes the processing time on a uniprocessor. Hence, the theoretical speedup
SA(n), obtained by using n processors, can be calculated as follows:

SA(n) =
(1− fAp) · τ + fAp · τ
(1− fAp) · τ +

fAp·τ
n

=
1

(1− fAp) +
fAp

n

(2.6)

23

If we can use an unlimited number of parallel processors, the theoretical speedup
SA(n) approaches its limit as the number of parallel processors n approaches to in-
finity, and we write:

lim
n→∞

1

(1− fAp) +
fAp

n

=
1

1− fAp

(2.7)

Equation 2.7 indicates that the theoretical speedup is always limited by the proportion
of the sequential part in a computation. Amdahl’s Law might transmit a pessimistic
view of parallel computing to us. For instance, if the sequential part accounts for 10%
of a given task, the maximal speedup we can gain is 10 times, even if we can use an
arbitrary number of processors for parallelism. Apparently, a speedup of 10 times is
likely to be unsatisfactory. Furthermore, communications will cause further degrada-
tion of performance in reality. The prerequisite of Amdahl’s Law considers only that
the problem size (or the workload) is fixed for both sequential processing and parallel
processing. Hence, we also call Amdahl’s Law the fixed-size speedup model [194].

Nevertheless, if we switch from the fixed problem size to the scalable problem
size perspective, the speedup is no longer limited by the proportion of the sequential
part. Gustafson’s Law [84], which is named after the American computer scientist and
businessman John Leroy Gustafson, states that parallelism increases in an application
when the problem size increases. Gustafson’s Law calculates the speedup by workload,
instead of execution time used by Amdahl’s Law. Specifically, the speedup SG(n) can
be defined as the scaled workload solved in parallel divided by the workload solved
sequentially, and the workloads completed by both sequential processing and parallel
processing are measured in the same amount of time. Thus, SG(n) is given now by:

SG(n) =
Wp(n)

Ws(1)
(2.8)

where Ws(1) is the original workload and Wp(n) is the scaled workload running on
n parallel processors. Again, supposing a task is composed of a scaled parallelizable
fraction fGp and a serial fraction (1− fGp). Besides, the scalable workload is only in
the parallel processing part. Thus, the workload completed by n processors in parallel
is:

Wp(n) = (1− fGp) ·Ws(1) + fGp ·Ws(1) · n (2.9)

Therefore,

SG(n) =
Wp(n)

Ws(1)
=

(1− fGp) ·Ws(1) + fGp ·Ws(1) · n
Ws(1)

= 1− fGp + fGp · n (2.10)

Gustafson’s Law is based on two prerequisites: First, the parallel workload should
scale up (i.e., the scalable computing). Second, both sequential processing and parallel

24

processing with n processors work on the same computational task in the same amount
of time. That is to say, “the problem size scale-up is bounded by the execution time
[194].” Hence, Gustafson’s Law can also be called the fixed-time speedup model. As
implied by Equation (2.10), the fixed-time speedup is a linear function of the number
of parallel processors n if the workload is scaled up in order to maintain a fixed
execution time.

The speedups obtained by the two laws seem contradictory. However, the defini-
tions of the two serial or parallel fractions in the two laws are fundamentally differ-
ent. As Shi pointed out in [189], the parallel processing community had misunderstood
the two serial percentages in nearly three decades, where the two serial percentages
are (1− fAp) in Equation (2.4) and (1− fGp) in Equation (2.9).

The misunderstanding about fAp and fGp is due to the neglect of the prerequisites
of the two laws. We now show that fAp and fGp are not identical, but related by an
equation. Since the problem size is fixed in Amdahl’s Law, fAp can be written as:

fAp =
wAp

wAp + ws

(2.11)

where wAp and ws are non-scaled parallel and serial workload, respectively. To obtain
fGp for Gustafson’s Law, note that the speedup SG(n) can also be expressed as:

SG(n) =
wGp · n+ ws

wGp + ws

(2.12)

where wGp and ws are scaled parallel and serial workload, respectively; and n is the
number of parallel processors. Taking the right-hand sides of Equations (2.10) and
(2.12) gives:

1− fGp + fGp · n =
wGp · n+ ws

wGp + ws

(2.13)

We then solve Equation (2.13) for fGp to obtain:

fGp =
wGp

wGp + ws

(2.14)

The relationship between the non-scaled parallel workload wAp of Equation (2.11)
and scaled parallel workload wGp of Equation (2.14) is:

wAp = n · wGp (2.15)

Equation 2.15 is the root of confusion in which wAp is the parallel workload of the
entire problem, and wGp is the parallel workload for one processor. When we solve the

25

system of equations consisting of Equations (2.11), (2.14), and (2.15), we can express
fAp in terms of fGp by:

fAp =
fGp · n

1 + fGp · (n− 1)
(2.16)

If we convert fGp into fAp (or vice versa) before calculating speedup, the two laws
should give the same answer. For example, for a task with fGp = 0.9 when using four
processors, Gustafson’s Law predicts the speedup = 3.7. In order to use Amdahl’s Law
correctly, we translate fGp = 0.9 into fAp = 0.972973 using Equation (2.16). Finally,
the speedup calculated by Amdahl’s Law is also 3.7.

In conclusion, our derivation has shown that both Amdahl’s and Gustafson’s laws
are correct ways to predict speedup under their own respective prerequisites.

2.2.2 The Meaning of Gustafson’s Law for Parallel Constraint
Solving

Due to the combinatorial nature of CSPs, the size of the search space often grows
exponentially (e.g., the N-Queens problem). Hence, sequential solving cannot scale
efficiently with problem size, and it is often impossible to explore the whole search
tree of a CSP in reasonable execution time. For a parallelizable hard CSP, it would
be no problem to provide sufficient scaled up workload in a fixed time for a large-
scale parallel system. Therefore, as Gustafson’s Law implies, it is beneficial to solve
CSPs by a large-scale parallel system as the speedup can grow linearly with the
problem size. Amdahl’s law, on the other hand, only apply if we do not want to solve
more difficult CSPs (i.e., increase the problem size) when given more computing
power. Thus, since we are always attempting to solve larger and harder instances, we
believe that the scalable computing concept of parallel processing should be applied
to parallel constraint solving.

The theoretical speedup in the fixed-size speedup model and fixed-time speedup
model are bounded by the reciprocal of serial percentage and the number of parallel
processors, respectively. In both cases, the speedup gained by parallelism must be
less than the number of parallel processors. Nevertheless, we sometimes observe that
a speedup S(n) is greater than the number of parallel processors n, or S(n) > n,
which is called superlinear speedup. In [175, 189], the authors use the structural char-
acteristics of the serial algorithm to evaluate a parallel performance. A sequential
algorithm can be classified as either structure persistent (SP) or non-structure persis-
tent (NSP). In both cases, superlinear speedup could be expected. The former means
that the number of instructions executed by the sequential processing is greater than

26

or equal to all its parallel implementations, for all inputs. The latter requires that at
least one of its parallel implementation, for at least one input, needs the less total
number of instructions than the sequential processing. One typical explanation for
superlinear speedup achieved by an SP algorithm is that having more cache mem-
ory in parallel execution reduces the number of clocks per instruction for memory
access. For obtaining a first solution, search algorithms, which terminate the search
when one of the processors finds a solution, and then all the other processors stop
the execution immediately, are the typical SP algorithm. In this case, the number of
executed instructions of parallel processing might be much less than the sequential
processing. And thus superlinear speedup appears. In subsequent chapters, we will
show parallel constraint solving can often achieve superlinear speedups.

In computer science, parallel computing is a relatively mature discipline that has
been developing for several decades. We are unable to cover all the important concepts
of parallel computing in a chapter. For further information, the interested reader can
consult the textbooks such as [93, 82, 60, 199].

27

Chapter 3

The Literature Review on Parallel
Constraint Solving

As we exit the era of Moore’s Law, exploiting parallel processing might be one of the
few effective methods that can still allow us to benefit from hardware improvements for
solving larger and harder CSPs. As discussed in Chapter 2, techniques for processing
constraints can roughly be classified into two main categories: (1) inference and (2)
search [40]. Hence, it is natural to consider parallelizing constraint propagation and
the search process. The constraints community has indeed extensively researched the
parallelization of these two techniques, including parallel constraint propagation and
consistency, and parallelizing the search process. Besides, another category of parallel
constraint solving, parallel portfolio, takes advantage of parallel processors by running
a group of diverse solvers to attack the same problem simultaneously until one of them
obtains a solution.

In this chapter, we concentrate on approaches to parallel processing that belong to
abovementioned three categories proposed by the constraints community only. Two
great surveys about parallel constraint solving [61, 169] have previously appeared,
and thus most of the studies to be surveyed in this chapter are inevitably overlapped
with them. Here, we divide the work on parallel constraint solving into four general
categories: parallel constraint propagation, parallelizing the search process, portfolios,
and hybrid approaches. The literature is presented in chronological order of publishing
time to help the reader grasp the evolution of parallel constraint solving. Besides, we
omit the techniques regarding distributed constraint programming, and parallel SAT
solving. The interested readers are directed to [50, 210] for a detailed introduction
and survey of distributed constraint programming, and the survey of parallel solving
in SAT [132].

28

3.1 Parallel Constraint Propagation

In Section 2.1.1, we have seen AC-3, which might be the most natural technique for
tightening a constraint network. However, we can improve AC-3 by storing infor-
mation to avoid rechecking the same constraint during the propagation of deletions,
which is called AC-4 and proposed by Mohr & Henderson in 1986 [142]. In 1987, Samal
& Henderson [183] gave parallel versions of AC-1, AC-2, AC-3, and AC-4 algorithms
to achieve arc consistency for shared memory parallel computers. The idea of their
parallel arc consistency algorithms is to parallelize the for loop using as many pro-
cessors as iterations in the for loop of the sequential counterparts. They claim that,
for enforcing arc consistency, any parallel algorithm must have O(nd) in the worst
case, where n is the number of variables and d is the largest domain size. Neverthe-
less, the proof for this claim is based on an unlimited number of processors and no
communication overheads, which is unrealistic. They experienced linear speedups on
their undescribed benchmarks with maximal 50 variables by using a BBN Butterfly
computer.1

Kasif [105] in 1990 pointed out that arc consistency is inherently a sequential
process, and parallel arc consistency is unlikely to improve sequential arc consistency
too much. One can only expect a parallel algorithm with time complexity more than
O(nd) by using a polynomial number of processors. Interestingly, Cooper & Swain [35]
proposed a massively parallel digital circuit in 1992, called arc consistency (AC) chip,
to compute the arc consistency problem. AC-4 can be seen as a uniprocessor simu-
lation of the functionality of the AC chip representation. This work is a pioneering
attempt to the “hardware for AI” stream that directly adapts computers architecture
to problems solving. After 27 years of this work, we are experiencing the renaissance
of hardware acceleration for AI applications again, especially neural networks, ma-
chine learning, and computer vision. Also in 1992, Zhang & Mackworth [214, 213] in-
vestigated structure-driven parallel constraint processing algorithms. They proposed
algorithms to compute arc consistency of the CSPs which can be represented by an
acyclic constraint network of bounded width. They also proved that efficient algo-
rithms exist for both sequential and parallel processing in such a network. Then, the
algorithms were tested on a network of transputers.2 For the particular problems, the

1The BBN Butterfly, which was built in the 1980s, is a massively parallel computer with up to
512 Motorola processors.

2The transputer is a series of RISC-like microprocessors from the 1980s, featuring integrated
memory and bidirectional bit serial links, intended for parallel computing [208]. The instruction set
supports communication, concurrent processes and process scheduling [214].

29

speedups gained were close to linear. Nevertheless, the algorithms of this work require
an acyclic constraint network of bounded treewidth as input. The time complexity of
the algorithm for compiling a constraint network into an acyclic one, that is join-tree
clustering algorithm, is O(r ∗ kw∗(d)+1), where k is the maximum domain size of the
variables of a given CSP and w∗(d) is the induced width of the ordered graph for the
CSP [40, 41]. Unfortunately, with the increase in problem size, obtaining an acyclic
network soon becomes unsolvable.

In 1998 Nguyen & Deville [149] presented a distributed AC-4 (DisAC-4) for dis-
tributed memory computers using message passing communication. In the DisAC-4
algorithm, each worker runs the same code but handles its set of variables by main-
taining the AC-4 data structures. When a worker detects an inconsistent value, this
worker must notify this detection to all the other workers and collect inconsistent val-
ues from the other workers. Just like the fixed point of sequential constraint propaga-
tion, every worker halts when no more inconsistent values are removed and generated,
i.e., the entire system reaches the fixed point. The experimental results show that
the speedups gained by DisAC-4 on the 45-Queens problem and reverse 80-Queens
problem were 3 times and 5 times, respectively, when using eight processors. The
DisAC-4 did not consider whether or not the system balance the workload among the
workers. Because even if each worker deals with the same number of variables, the
workloads for deletion and propagation are not guaranteed to be evenly distributed.

Unlike the studies mentioned above that restrict a constraint network to be binary,
Ruiz-Andio et al. [181] (1998) improved the parallel arc consistency to n-ary func-
tional constraints. A constraint is translated into an indexical that can be viewed as
solving an equation for variables. For instance, the arithmetic constraint x1 = x2 + 4

over finite integer domains is translated into two indexicals: (1) I1 ≡ x1 in min(x2)+4

to max(x2)+4, and (2) I2 ≡ x2 in min(x1)−4 to max(x1)−4. The constraint propa-
gation is performed on indexicals. The parallelization is realized by partitioning a CSP
P into n disjoint subsets of constraints statically, and then map these partitions to n

processors. Due to its partitioning method and the complexities of the graph structure
of CSPs, the scopes of constraints allocated to the processors are almost certain to be
overlapped. Therefore, when each processor executes sequential constraint propaga-
tion to its subset of constraints, communication, which is either required by domain
deletions shared among processors or the detection of termination, is unavoidable. The
way of distributing constraints among processors and the frequency of updating shared
variables are critical factors affecting the performance. The former decides the work-
load balancing, and the latter causes the communication overhead. However, there

30

exists a trade-off between the workload distribution and communication overheads;
that is, the improvement of constraints distribution is decreasing the communication
overheads while increasing the unbalanced propagation workloads. The authors stated
that achieving better-balanced workload distribution is more important than mini-
mizing the communication costs to the performance gain. For the two benchmarks
used in the experiments, the maximum speedups were limited to between 2 to 3 times,
even though many more processors were used.

A parallel propagation algorithm for solving numerical problems was introduced
by Granvilliers & Hains in 2000 [83], where the variable domains are sets of reals,
and lowest upper bound and greatest lower bound are floating-point numbers. An im-
mediate adaptation of AC-3 was parallelized. The experimental results evaluated on
a massively parallel system Cray T3E-1200 with 64 processors varies from speedups
1.02 to 5.7 times, depending on the instances of the problems. The parallel efficiency
of this parallel propagation algorithm on a 64-processors parallel system is rather
low. In 2002 Hamadi [86] utilized the bidirectionality property of constraints to re-
duce the communication overheads for distributed arc consistency. More precisely,
an agent avoids unnecessary message passing for constraint propagation by deducing
domain reductions in its acquaintances. The experimental results show that their al-
gorithm DisAC-9 required, in the best case, 6.25% message passing of DisAC-6 when
solving randomly generated problems on an IBM sp2 supercomputer with 15 agents
(processors). However, the maximum speedup that can be gained by using 15 agents
was only 3.64 times. More importantly, negative speedups were observed for all the
problems when using 90 agents, which indicates that scalability is problematic for
DisAC-9.

Campeotto et al. [27] (2014) made the first effort to explore the use of graphics
processing unit (GPU) in constraint propagation. The parallelism is achieved by par-
allelizing constraint propagators. A constraint propagator implemented in a constraint
solver is a software abstraction which by execution performs constraint propagation
[185]. In a constraint propagation system of the state of the art constraint solvers, a
constraint is typically implemented by a set of propagators. Their approach to GPU-
based constraint propagation can be viewed as three different levels of parallelism. The
first level of parallelism is that a thread performs domain reductions for each vari-
able. A block of threads is specified to handle a set of propagators of a constraint at
the second level. At the third level, the propagators of all the constraints for a CSP
are partitioned into two groups. One group is proceeded by CPU and the other by
GPU. If the number of propagators exceeds a given threshold on either GPU or CPU,

31

propagators can be moved between them so as to balance the workloads. Moreover,
to reduce the time required by memory transactions between CPU and GPU, the
CPU is responsible for handling a large number of efficient propagators while GPU
executes few expensive propagators. The algorithm merges the domains states that
are produced by GPU and CPU, respectively, at each iteration of the constraint prop-
agation. Hence, this approach is typical heterogeneous computing since two different
types of processors are employed. It is worth mentioning that significant performance
enhancement arises when involving more complex constraints. When comparing using
GPU working together with CPU to only using CPU, modest speedups were obtained,
with the highest being approximately 7 times.

So far, all the works we have surveyed are based on the algorithms that achieve arc
consistency. There exist stronger consistencies that remove more inconsistent values
than does arc consistency. Singleton arc consistent is one such strong consistency. A
constraint network is singleton arc consistent if every value in the network is singleton
arc consistent. After instantiating any variable, singleton arc consistency imposes
generalized arc consistency on the rest of the constraint network so that the rest of the
constraint network is arc consistent. The Ph.D. work of Gharbi [65] (2015) introduced
a master/workers architecture, where the master is a sequential CSP solver, and the
workers establish a partial singleton arc consistency and send the discovered facts to
the master to avoid useless search space. The author admits that the empirical study
gives inconclusive results since 93% of 876 instances achieve speedup less than 2 times
with eight processors.

3.2 Parallelizing the Search Process

In [61], Gent et al. give a definition of parallelizing the search process for parallel
constraint solving that has the following features: (1) each worker is close to being a
standard sequential constraint process, but (2) they are collectively orchestrated to be
part of the same overall search process. We discuss the techniques in this category in
the following sections, including work-sharing/stealing, parallel local search, parallel
discrepancy search, and problem decomposition.

Work-Sharing/Stealing

Perhaps the first research on parallelizing the search process for constraint solving
was published by Perron [159] (1999). In this work, a collection of workers run on

32

different processes and explore the different regions of the same search tree. The par-
allelism is achieved by distributing open nodes to different workers, where an open
node is a search frontier that leads to individual parts of the search tree. When allo-
cating a new open node to a busy worker, the worker must recompute the maximum
common path between the new open node and the current node, and then backtrack
to the nearest node in the common path. A virtual communication layer manages
to maintain task allocation, load balancing, and termination detection. The parallel
search approach can be combined with limited discrepancy search (LDS). Unfortu-
nately, no implementation details of the architecture and parallel search algorithm
were given. The experiments were conducted on a four processors Pentium Pro 200Mz
computer running Linux. The speedups gained by this parallel search algorithm with
the depth-first search were positive but less convincing.

Schulte [184] presented the architecture of concurrent search engine to exploit par-
allelism in 2000. The engine consists of several workers and a single manager, where
the manager and a worker can be viewed as autonomous agents that communicate
by exchanging messages. A worker explores nodes of the search tree and generates
new nodes. Similar to the virtual communication layer in [159], the manager is re-
sponsible for initialization, finding, termination detection, collecting solutions, and
stopping search. In the phase of initialization, the manager activates workers by send-
ing a message for the root node of the search tree. The finding during the resolution
process refers to an approach to workload balancing achieved by work sharing. Specif-
ically, a node from a busy worker’s work pool is forwarded to an idle worker by the
manager. The author implemented the concurrent search engine on networked com-
puters. Once the manager is created on a networked computer, the manager spawns
the process that are run as a worker on a different networked computer. Again as in
[159], a worker needs to recompute the path from the root to the node when acquiring
a new node. The experiments show substantial speedups using six workers, ranging
from 3.17 to 5.21 times. Besides, the granularity for all combinations of examples
and workers were close to 10%, which means the work-sharing scheme is a coarse
granularity and sufficient for workload balancing.

In 2004 Zoeteweij & Arbab [215] presented a parallel constraint solver constructed
by autonomous component solvers. A time-out mechanism was introduced to provide
implicit load balancing, i.e., one busy solver generates new subproblems and shares the
subproblems to an idle solver when the busy solver time-out elapses. Each component
solver is required to be able to publish its search frontiers for work-sharing. Unlike
the aforementioned two studies [159, 184], the search frontier is maintained explicitly

33

by copying all the search decisions that construct subproblems, rather than recom-
puting. The results of solving three instances are given, showing speedups of between
10 to 15 times on 16 processors and parallel efficiency from 0.75 to 0.97.

Both work-sharing and work-stealing are two scheduling paradigms to re-distribute
work when performing parallel computing [97]. In work sharing, busy workers ac-
tively migrate their pending tasks to idle workers. This strategy is, in principle,
relatively simple to implement; and usually needs a global manager for workload
distribution. For example, as mentioned above, [159] and [184] employ a centralized
manager to mediate work sharing. Also, in [184], the parallel solver implements a
global manager that consists of two components: a Store asynchronously buffers in-
coming subproblems; a R3 synchronously forwards a subproblem to an idle solver. In
work stealing, on the other hand, idle workers attempt to steal tasks from busy
workers. This paradigm has advantages that a busy worker pays little overhead to
enable stealing and better scalability. Besides, distributed task pool is maintained
by each worker, instead of a centralized work pool or manager. Michel et al. [140]
(2007) parallelized constraint solving without changes to the sequential code, using
work-stealing mechanism. Every worker involves only two different types of tasks: ex-
ploring its search tree and generating subproblems to be stolen. Whenever a worker
is starving and requests a subproblem, a busy worker generates subproblems explic-
itly and then returns to its exploration. A subproblem to be stolen is essentially a
search node denoted by a continuation and a semantic path, where the continuation
resumes the execution of the search node by backtracking to the longest common
point and posting all the renaming constraints. Note that a central pool was used
in the experiments; thus, a starving worker does not need to decide which worker
to steal when two workers or even more are capable of providing subproblems. But
the authors claim that a distributed pool can also be used. The parallel implemen-
tations with depth-first search and limited discrepancy search (LDS) were tested on
the N-Queens, Scene Allocation, Graph Colouring, and Golomb Ruler problem. The
speedups were close to linear, varying from 2.21 to 4.76 times when using four pro-
cessors. The superlinear speedups gained with LDS was attributed to the disruption
of the normal search order.

It is difficult to use single work-stealing strategy to handle complex and diverse
CSPs. As an example, assuming that a solution is located in the leftmost part of
the search tree (the bottom left corner), if the work-stealing strategy is stealing high
(near the root), only one worker explores towards to that part of the search tree. Con-
sequently, the total number of visited nodes is increased, leading to low parallel effi-

34

ciency. In this case, the more parallel processors are used, the lower parallel efficiency
we obtain. Another example is when an instance of a CSP is large and hard, the
backtrack search tree must be deep, and a high level (near the root) mistake can-
not be recovered from for hours. When the solution happens to be in the rightmost
part of the search tree, stealing left and low is unlikely to solve the problem. Chu et
al. [31] in 2009, developed confidence-based work stealing, an adaptive work-stealing
strategy, to address this issue by estimating the ratio of solution densities between the
subtrees at each node, where the ratio is formulated as confidence. By dynamically
adjusting the confidence of each node during resolution process, the algorithm can
dynamically decide how to allocate the processing power according to confidences for
two branches, thereby achieving “near-optimal” stealing pattern. The mathematical
model of updating confidence reflects changes to the exploration of a barren subtree
in an intuitive way. That is, if one part of a search tree has been thoroughly searched
without producing a solution, the updated confidence then guides more processing
power to steal from an unexplored subtree that is as different from the previously
explored subtrees as possible. The experimental results demonstrate the effectiveness
of this approach, especially for satisfaction problems. The instances solved by paral-
lel algorithm vastly outnumbered the instances solved by the sequential version by
21 to 7 on the Knights problems, 82 to 15 on the Perfect-square problem, and 100
to 4 on the N-Queens problems. Nevertheless, the experimental results also indicate
the performance of the parallel algorithm (i.e., runtime, solved instances) determined
by the initial setting of confidence, which requires the user’s domain knowledge. For
example, with a poor confidence value, the parallel runs took longer than sequential
runs to solve the N-Queens problems. Although the authors proposed a method to
estimate the confidence, this method needs to be further evaluated.

Xie & Davenport [209] (2010) proposed a framework of implementing a con-
straint programming solver on a massively parallel supercomputer in their position
paper. The basic idea of their parallelization scheme is basically the same as those
studies [159, 184] we mentioned earlier, i.e., every worker explores an independent
part of the search tree; a master maintains a centralized work pool and distributes
the tasks to the workers. The authors claim that, for massively parallel computing,
the master processor can be an obstacle to further improving the performance of
parallelism due to a lot of task requests from workers and consequent task dispatch-
ing. Thus, they proposed that scalability can be improved by introducing multiple
masters. Unfortunately, they have not managed to conduct an experiment that can

35

prove the effectiveness and scalability of the proposed approach on a supercomputer
with more than 1,024 processors.

Kotthoff & Moore [109] (2010) proposed to use additional constraints to parti-
tion search space into parts so that different workers explore independent subtrees
in parallel. The idea behind their approach is to split the domain of a variable into
several intervals via additional constraints. Assume that the domain of variable x2 is
{0, 1, 2, 3} and a current partial instantiation (tuple) −→x = ⟨x0 = 0, x1 = 9⟩. Two
new models can be generated by imposing the constraints x2 < 2 and x2 > 1

on the original model. The problem of this method is obvious, because both tuple
⟨x0 = 0, x1 = 9, x2 = 0⟩ and ⟨x0 = 0, x1 = 9, x2 = 1⟩ may prove to be nogoods soon
in constraint propagation, even if they are consistent tuples now. Thus, it is difficult
to partition the search space evenly by simply posting additional constraints. The
authors suggest addressing this problem by dynamically spawning the new models
for idle workers. The major procedures of the proposed approach are as follows: First,
a breakpoint (e.g., a node x2 = 2) is set on the first worker. Second, start solving
the problem on the first worker. The first worker halts if it finds a solution or proves
that the problem is unsatisfiable. Otherwise, when reaching the breakpoint, the first
worker pauses to generate new models by imposing domain splitting constraints on
the remaining search space. The first worker is then resumed from where it was paused
by adding a set of restart nogoods that help avoid visiting the search space explored
before. Third, whenever a worker becomes idle, the busy workers stops and gener-
ates split models for the idle one. Besides, the split models are submitted to the job
server. To ensure that the search space explored by a worker will not be searched
again, the constraint solver must have the ability to output restart nogoods. The
proposed parallel approach has not been experimentally tested. Workload balancing,
communication overhead, and scalability remain a challenge for this approach. For
instance, for a given variable used to partition the search space, if most of the values
in its domain are proven to lead a small empty subtree in the subsequent search, all
the workers whose search space are allocated by these values have to communicate
with the job server for new tasks simultaneously.3 In this case, apart from the com-
munication overheads and contention, these workers would be lying idle until they
have obtained new tasks. The proposed approach did not consider this situation that
may occur frequently. Recomputation is unnecessary in this approach because of the
restart nogoods. But it is unknown whether in practice nogoods used in this approach
is better than recomputation mentioned earlier.

3In this dissertation, an empty subtree refers to a subtree without a solution.

36

Machado et al. (2013) [129] described a work-stealing based dynamic workload
balancing mechanism developed on top of MPI and pthreads [128], targeted at mas-
sively parallel processing. The basic work-stealing scheme is similar to previous stud-
ies, such as for example [140, 31]. The main novelty of their approach is the introduc-
tion of the shared and private region for work pool, where the shared region is used for
work-stealing, and the private region can only be accessed by the worker itself. When
a worker exhausts its work pool, it attempts to steal work from the shared region of
the victim, which belongs to the neighborhood of the worker, without the victim’s
awareness (i.e, local steal). If this attempt fails, a worker uses one-sided communica-
tion to seek a victim with a surplus of workload without disturbing the victim (i.e.,
remote steal).4 Experimental results on enumerating all the solutions of the N-Queens
problem with n=17 exhibited almost linear speedups with a parallel efficiency of 96%
using 512 cores. Besides, the number of failed steals increases with more cores used
but remained low. The experimental results on a single quadratic assignment problem
optimization instance were similar.

In this dissertation, we mainly focus on the finite discrete CSP, the variables of
which have finite discrete domains. But real-life problems often pose challenges be-
yond finite discrete CSPs. In 2014, Ishii et al. [103] presented a parallel branch and
prune algorithm for numerical constraint problem, which employs search space split-
ting and dynamic workload sharing. The algorithm consists of two main phases: (1)
the preprocess distributes workloads to the workers, and (2) the postprocess balances
the workload of every worker during resolution process. At the beginning of the pre-
process phase, the whole search space is possessed in a queue. Then, the preprocess
divides the queue into two and then dispatches a portion to another worker. At the
end of the preprocess phase, the overall distribution routing is formed as a binary
tree. During the postprocess phase, each worker shares the workloads within a few
predefined neighbor workers. Results are presented on three benchmark problems,
showing speedups up to 32.3 times using 40 cores of the multi-core computer and up
to 119 times using 256 cores of the computer cluster. It can be observed a significant
communication overhead due to a large number of boxes (i.e., a Cartesian product of
intervals [15]) being sent between workers for workload balancing when the problem
size is too big to be handled by a small number of workers.

4One-sided communication is a technique used to simplify programming and reduce the workload
caused by communication. As its name suggests, only the sender involves data transfer, whereas the
receiver does not [128].

37

Parallel Local Search

Local search (LS) starts at an initial position, which is a complete random instantia-
tion for all the variables of a given problem. In each step, a heuristic guides the search
process to move to a position selected from the local neighborhood [96]. LS repeats this
process until a predefined termination criterion is reached. In order to avoid stag-
nation of the search process, local search algorithms usually introduce some kinds
of randomization, including the generation of initial positions as well as many cases
during search. The essential difference between LS and systematic backtracking (BT)
is the strong commitment to variables assignments of BT, whereas LS can reassign
any variable at any point during search when given sufficient randomness [164].

Several different techniques have been proposed in the last two decades to blend
the CP and LS for solving combinatorial problems: by exploring the large neighbor-
hood with CP, by defining the search for the best neighbor as a constrained optimiza-
tion problem, by using global search techniques for exploring the neighborhood defined
by a fragment of the current solution [52]. Besides, another local search method for
constraint solving, adaptive search (AS) [33], was proposed a decade ago. In AS, a
problem is formulated as a CSP; every constraint needs to define an error function
that indicates the violations of constraints for each tuple of variable values. In each
iteration, a variable causing the highest error is chosen; AS then selects a value in
the domain of the variable based on the min-conflict heuristic. To compute the er-
ror for a variable, the errors of all the constraints whose scope covers the variable
are accumulated. By projecting constraint errors onto the relevant variables, the AS
method offers an opportunity to repair the worst variable by changing its current
value to the most promising value. Besides, a short-term memory mechanism and a
reset mechanism are employed to escape stagnation around local minima.

Caniou et al. [28, 29] (2011; 2014) presented a parallel implementation of the AS
method and investigated its performance results on computers with several hundred
or thousand parallel processors. A multi-walk adaptation of AS is used to parallelize
the search process, i.e., running an instance of AS to explore the different parts of
search space using different cores simultaneously. Both multi-walks with communica-
tion (cooperative multi-walks) and without communication (independent multi-walks)
are considered. Independent multi-walks achieved linear speedups up to 8,192 cores
for large instances of the Costas Array Problem (n = 21, n = 22 and n = 23). The
authors explained that the linear speedups achieved by their approach could be at-
tributed to exponential runtime distribution over the search space. Similar to the EPS

38

approach that we will discuss on page 43, the introduction of communication was not
able to improve the performance of the method.

Munera et al. [147] (2013) presented X10 implementations of the AS method.5

Their experiments identified that the data-parallel implementation is an effective
way to exploit parallelism; functional implementations, by contrast, cannot yield
any speedup. Experimental results on the Costas Array Problem is similar to [28, 29],
showing close to linear speedup. However, for other problems (e.g., the magic square),
the speedup tends to flatten out as more cores are used, which confirms the experi-
mental results reported in [28, 29]. In 2014, Munera et al. [148] proposed a parametric
cooperative local search framework aimed at enhancing the performance of parallel in-
dependent multi-walks strategy. In this framework, the available workers are grouped
into several Teams ; communication is required among and inside Teams. Inter-team
communication is required to guarantee diversification of the search space while intra-
team communication is required to ensure intensification that guides the search to a
promising region of the search space. The X10 implementations of the framework were
compared to the independent multi-works version, showing that the former beats the
latter. Nevertheless, it remains unclear if this cooperative search framework is supe-
rior to the cooperative multi-walks presented in [29] since this framework has not been
evaluated on hardware with more than 32 cores, and the metrics used for assessing
the execution process may not be reliable.

Parallelising the AS method has also been explored on GPU. Arbelaez & Codognet
[8] (2014) showed that executing the entire local search process on the GPU achieved
up to 17 times w.r.t. a well-tuned sequential run on a CPU. Notably, results on the
Magic Square Problem with n = 400 showed that using a single GPU can achieve
better performance than using a supercomputer with 64 cores (see [28]). Unfortu-
nately, the detailed description of the GPU implementation was not provided in the
paper. The authors merely stated that their approach exploits parallelism at two
different levels: multi-walk parallelism can be achieved by using different blocks of
a GPU while inside a block, large neighborhoods are evaluated simultaneously in a
single-walk manner.

Parallel Discrepancy Search

We have already mentioned Limited Discrepancy Search (LDS) twice but without
explanation. Limited discrepancy search [92] was developed to offset a small number

5X10 is a programming language specialized in parallel computing and developed by IBM.

39

of “wrong turns” at which search strategy begins to direct the backtracking search
towards an empty subtree. The term discrepancy stands for any decision point which
violates the heuristic’s choice. The effectiveness of LDS is based on the premise that
heuristic has hopefully made only a few mistakes, and LDS offers the opportunity to
bypass these small number of “wrong turns” at a low price. LDS proceeds in a series
of depth-first iterations. On the i-th iteration, LDS explores those root-to-leaf paths
with up to i discrepancies. LDS needs to cooperate with a value ordering heuristic
that sorts the values of a variable to be branched on from the most likely one to
succeed to the least likely one. In other words, from the value ordering heuristic
perspective, the leftmost child is the most likely one to lead to a solution, and the
rightmost child is the least likely one. Thus, when provided with a high-quality value
ordering heuristic, the solution density of the subtrees explored by LDS decreases as
the number of discrepancies increases. Therefore, LDS is likely to explore fewer nodes
to obtain a first solution compared to the backtracking search.

Moisan et al. [144] (2013) described a variation of LDS, parallel discrepancy-based
search (PDS), which is the first to show how to parallelize LDS. In PDS, the parallel
processors explore the leaf nodes of a search tree in the same order as would the
sequential LDS do. During resolution process, every branching decision made by each
processor selects the node, which can lead to the leaf node that can only be visited by
that processor. Thanks to the round-robin assignation of the processes, the algorithm
can achieve a balanced workload distribution. The authors derived the expression for
calculating the ratio of the number of nodes visited by PDS with ρ processors over the
number of nodes visited by LDS on the same problem with n binary variables, written
as PDSρ(n)

LDS(n)
. The expression implies that the speedup increases linearly with the in-

creasing number of variables. The statistical results show that PDS can always achieve
performance gain with more processors, and the average computation time to obtain a
first solution decreases with the quality of the heuristic improving. The instances of an
industrial problem with 65,142 variables and 50,238 constraints were solved by using
512, 1,024, 2,048, and 4,096 processors. For the scalability of PDS, the experimental
results of the industrial instances are in line with the statistical results. The speedup
was still increasing when using 4,096 processors, where the speedup is calculated by
dividing the number of leaf nodes explored by multiple processors by the number of
leaf nodes explored by one processor. Both theoretical analysis and empirical results
demonstrate that PDS is a successful approach to exploiting parallelism for the CP.

Nevertheless, we believe that the following intrinsic reasons of PDS’s parallel mech-
anism impede its further development and application: (1) PDS demands a deter-

40

ministic search strategy (variable and value ordering heuristics). Because search space
splitting and workload balancing achieved by PDS are guaranteed by a uniform search
strategy and a unique processor ID for every processor, non-deterministic variable or
value ordering heuristics are bound to break predefined search space splitting as well
as workload balancing. (2) The parallel efficiency declines, as either the number of
processors or of variables grows. We can observe this trend from the experiments,
and we can also deduce this trend from the ratio PDSρ(n)

LDS(n)
, i.e., the ratio grows when

increasing either n or ρ, which implies that, for a given problem, more nodes need
to be explored repeatedly when using more processors. (3) We see a frequent fluc-
tuation in speedup for low probability values, where the probability is the chance of
obtaining a solution in the left subtree when the current partial assignment is con-
sistent. It is challenging to ensure the heuristic with high probability for CSPs in
practice, especially maintaining high probability for every branching decision.

LDS does not distinguish all discrepancies to their depth. However, a value order-
ing heuristic is more likely to select higher quality values at lower levels of a search tree
since more information is accumulated. In other words, “wrong turns” are more likely
to occur near the root of the search tree. Depth-bounded Discrepancy Search (DDS)
[203] iteratively increases the depth bound to restrict discrepancies high in a search
tree strictly. More specifically, given a search tree with depth n, at each iteration k,
1 ≤ k ≤ n, DDS respects the value ordering heuristic below level k and explores all
value assignments that violate the value ordering heuristic at level k. Besides, all the
branches in the search tree above level k− 1 are visited at iteration k. Both DDS and
LDS explore the same number of nodes [145] when searching a complete tree, and the
leaves at the bottom of the search tree are visited precisely once.

Moisan et al. [145] (2014) proposed a parallelization of DDS, which is called par-
allel Depth-bounded Discrepancy search (PDDS). The theoretical analysis of PDDS
indicates that the number of nodes visited by PDDS is less than PDS when searching
for a complete binary tree. PDDS can outperform PDS since exploring discrepancies
near the root of the search tree can lead to a solution faster. The experimental result
shows that even the sequential DDS can compete with PDS running on 512 work-
ers. The authors compared the performance of PDDS with PDS on solving datasets
of industrial problem. PDDS spent much less computation time than PDS to obtain
a solution of a given quality when solving the optimization problem. In [145], the
speedups of PDDS were calculated as the ratio of the number of leaf nodes explored
by multiple workers divided by the number of leaf nodes explored by one worker. Both
theoretical analysis and empirical results prove that speedup increases linearly, with

41

the increasing number of processors. We have pointed out the three problems of
PDS. PDDS mitigates the second problem of PDS since fewer nodes are explored
repeatedly by PDDS, compared to PDS. However, we believe that PDDS still need to
face the rest of two problems that exist in PDS since a deterministic search strategy
and good value heuristic are still demanded by PDDS.

Problem Decomposition

The term problem decomposition, as a separate category of parallel constraint solving
approaches, first appeared in the book chapter [169] written by Régin & Malapert. But
we still regard problem decomposition as a subcategory of parallelizing the search
process since the entire search tree is ultimately partitioned into a set of subtrees even
if this is accomplished by decomposing the original problem. A parallel constraint
solving approach can be classified as problem decomposition if the following two
properties hold: (1) No communication or almost negligible communication between
the workers is required. (2) The original problem is decomposed into a set of disjoint
subproblems.

From 2013 to 2016, a series of papers by Régin and co-authors [170, 171, 173, 131]
have introduced the concept of embarrassingly parallel computation for parallel con-
straint solving, which is called embarrassingly parallel search (EPS). The EPS ap-
proach has several advantages, including good scalability, workload balancing, and
simple implementation, which allow it to be competing with the work-stealing ap-
proach and solve hard CSPs.

The problem decomposition of EPS is realized by choosing a subset of variables
and generating the assignments to these variables that are not inconsistent with any
constraint of a CSP P . Each partial assignment represents a subproblem of original
problem. A master is responsible for producing subproblems and adding them to a
queue. Then, an idle worker fetches a subproblem from the queue and solves it. Every
worker repeats this process; the parallel resolution terminates until all the subprob-
lems in the queue have been solved. For some CSPs, it is hard to ensure that each
subproblem lead to a fixed size of search space. For instance, one subproblem may
soon be proved to lead to a fruitless subtree while another subproblem requires a much
longer execution time to terminate. Thus, to balance the workload among workers,
each worker is assigned to many subproblems. Consequently, the active times of all
the workers are close to each other. Besides, since all the subproblems are mutually
independent, and no communication is required during the resolution, embarrass-
ingly parallel computation is automatically achieved. Note that for an optimization

42

problem, sharing the incumbent objective value between workers might improve their
current resolution but also might lead to a decrease in performance due to communi-
cation overhead. According to [169], the authors did not observe any adverse impact
of no communication when using EPS to solve optimization problems.

Two methods are proposed to generate subproblems: a top-down method and
a bottom-up method. The top-down method utilizes Depth-Bounded Depth First
Search (DBDFS) to decompose a CSP P into q subproblems. DBDFS repeatedly
deepens the bound of the depth-first search until |AY | ≥ q where |AY | stands for
the number of subproblems generated by a subset of variables Y . Unlike the iterative
deepening depth-first search of the top-down method, the bottom-up method tries
to identify the depth d in a depth-first manner at which q subproblems can be gen-
erated. More specifically, the procedure of the bottom-up method finds the highest
(near the root) search frontier with roughly q open nodes (i.e., q subproblems) via
sampling and estimation. The procedure consists of three phases. First, the proce-
dure builds a partial search tree by sampling. Second, the level of widths of the real
tree is estimated via the partial search tree. Third, the depth d that can guarantee q

subproblems is decided with a greedy heuristic.
The EPS approach has been verified on three representative parallel computing

platforms: multi-core, data center, and cloud computing. Besides, the authors also
implemented the EPS approach on three constraint solvers, including Choco2 2.1.5
written in Java, Gecode 4.2.1, and OR-tools rev. 3163 written in C++.6 Constraint
satisfaction and optimization problems were considered, and the problems of obtaining
a first solution were ignored. The implementations of EPS were also compared with
the work-stealing approach in Gecode. On the multi-core computer, the EPS approach
showed close to linear speedups for most of the instances, whereas it never happened
for the work-sealing approach. When solving a same problem, Choco2 is slower and
less efficient than Gecode and OR-tools. The similar phenomenon of speedups was
also observed on data center and cloud computing platforms.

Another paradigm called SelfSplit proposed by Fischetti et al. [51] in 2014 can
also be categorized as problem decomposition. The most apparent feature of SelfSplit
is that each worker autonomously decides on its task to process without communi-
cation. The process of SelfSplit can be roughly divided into three phases: (1) every
worker builds the exactly same enumeration tree during the sampling phase; the
sampling phase terminates when sufficient open nodes have been generated, (2) each

6At the time of writing the latest versions of these solvers are Choco solver 4.10.1 [165], Gecode,
6.2.0 [186], and OR-tools 7.0 [195].

43

worker applies a deterministic rule to identify and explore the sub-search space that
belongs to it, and (3) a special worker is in charge of merging the output of the other
workers after finishing its task. For hard computational problems, the sampling phase
requires only a very small proportion of the overall computation. SelfSplit is shown to
achieve linear speedups up to 16 processors and acceptable sublinear speedups up to
64 processors on the selected instances of the problems. Currently, SelfSplit does not
require communication. It is unclear whether or not introducing a limited amount of
communication between workers can improve the performance of solving optimization
problems.

Menouer et al. [138] (2016) showed that mixing problem decomposition and dy-
namic work-sharing could yield better results than either technique on its own. The
mixed parallel approach has two steps: First, the static decomposition generates sub-
trees to be searched by the parallel processors just like the EPS approach. Then, the
second step employs dynamic partitioning to overcome load imbalance between com-
puting cores. The dynamic partitioning is essentially a work-sharing technique that
a busy worker shares the work via a global priority queue whenever idle worker(s)
exist(s). Although this mixed parallel approach is targeted at running on shared and
distributed memory architectures, experiments were performed using two computers
with only 12 cores.

3.3 Portfolios

Parallel portfolio for constraint solving exploit and guard against the variability of
performance, which can be observed between different constraint solvers, different al-
gorithms (i.e., search strategies for CP), or parameter tuning (e.g., parameter settings
of restart strategy). The rationale behind the portfolio search is to execute several
assets of the same problem simultaneously and independently, where each asset typi-
cally uses a distinct search strategy, restart strategy, even model and solver. By doing
so, the likelihood of finding a first solution is increased, or the resolution time of
finding a first solution is shortened. Thus, the search robustness is enhanced. The
idea of portfolio can also be applied to sequential constraint solving. For example,
Gecode [186] supports sequential portfolios that consist of several different assets
being executed in a simple round-robin scheme.

The parallel portfolio usually does not require communication between workers
and can inherently achieve a balanced workload. Moreover, it can be implemented

44

into constraint solvers with little effort. Although this approach can improve the per-
formance of constraint solving, it might result in redundancy between workers. An-
other challenge for a parallel portfolio solver is to devise a scalable source of diverse
assets. The more detailed discussion of the limitations of the current parallel portfolio
search will be presented in Section 6.3.

In CP, we often restart the resolution process when reaching fail-limit to overcome
heavy-tailed distributions [73]. Cire et al. [32] (2014) developed a simple technique
for parallelizing the Luby restart strategy [127] that requires no communication. To
parallelize the Luby restart strategy, each worker has its own local copy of a schedul-
ing class that assigns restarts and their respective fail-limits. The scheduling class of
each worker computes and infers the next Luby restart fail-limit. In this approach,
all the parallel processors execute the Luby restart strategy, as a whole, in paral-
lel. The latest next Luby restart fail-limit computed by the scheduling class is always
assigned to the worker with the lowest number of accumulated fails so far. Random-
ization is introduced along with every restart; thus, each worker almost works on
independent search space. Theoretical analysis indicated this approach achieves lin-
ear speedups. However, experiment results on hard instances (e.g., the Costas Array
n=20) showed sublinear speedups.

There exists one type of parallel portfolio that consists of several different con-
straint solvers. The basic philosophy underlying this approach is “using or adapting
solutions to old problems” [152, 174]. More specifically, this type of parallel portfolio
approach selects the most promising solvers from a candidate pool based on static
features or by learning the dynamic behavior of solvers [169]. Amadini et al. [5] (2015)
introduced a parallel CP portfolio solver, sunny-cp2, incorporating 12 different con-
straint solvers. Given a CSP P , the first step (pre-solving phase) involves running a
static schedule of solvers and detecting the instances similar to the CSP P , called
neighborhood. Sunny-cp2 maintains a knowledge base that includes feature vector
of 5,527 CSPs and the runtime information of each solver of the portfolio on these
instances. In the pre-solving phase, the neighborhood is computed by using one core
through two steps: (1) the numerical attributes (e.g., number of constraints, of vari-
ables, etc.), which characterizes the CSP P , are extracted, and (2) the extracted
numerical attributes is then used for selecting a set of the k nearest neighbours of
the CSP P within that knowledge base. With the neighborhood of P , sunny-cp2
can dynamically compute the sequential schedule, and the solving phase runs the dy-
namic schedule on different cores to solve the problem. The performance of sunny-cp2
was validated on heterogeneous and large benchmarks, showing that the technique

45

outperforms all its constituent solvers, its earlier version sunny-cp [4], and ppfolio
[179]. It should be noted that this type of parallel portfolio approach cannot enhance
the problem-solving ability of an individual constraint solver. The metric for the as-
sessment of the performance on solving CSPs is typically the number of CSPs solved
by at least one constituent solver within a time limit.

Recently, Archibald et al. [10] (2019) parallelize constraint solving by having
each worker perform a search employing the slightly-random value ordering heuristic
with a different random seed and sharing nogoods on restarts. The parallel approach
was evaluated on two different parallel platforms: shared memory architecture and
distributed memory architecture. The gain from using 36 threads on shared memory
computer are modest, giving an aggregate speedup [94] of 12.7 times. When using
distributed, the aggregate speedups are also reported, with speedups ranging from
57.1 times for five hosts and 95.5 times for ten hosts.

All of the parallel techniques we discuss in this dissertation aim at enhancing
constraint solving performance directly. The parallel portfolio approach can also be
used to automatically build an efficient CSP model when given an abstract problem
specification; see for example [2, 151]. Most of the researches on the parallel portfolio
approach are essentially concentrated in SAT solving, and they are beyond the scope
of this dissertation. Thus, please refer to survey article [61] for further information.

3.4 Hybrid Approaches

In the previous sections, we have surveyed the work on the three main categories of
parallel constraint programming, including parallel constraint propagation, paralleliz-
ing the search process, and portfolios. However, some studies in parallel constraint
solving cannot be classified under the three categories since they employ multiple
approaches.

In 2011, Rolf, in his Ph.D. work [176, 177], described an approach that parallelizes
both consistency and search. He introduced two terminologies: parallel consistency
means a collection of constraints of a CSP P is partitioned into subsets then each
subset of constraints is enforced consistency in parallel; parallel search means a do-
main of a variable is divided into subsets and independent search space is explored
in parallel. The parallel approach exploits thread-level parallelism. Parallel search is
performed by a set of search threads, each of which is assisted by several consistency
threads. A search thread is required to switch to a consistency thread after mak-
ing an assignment and before processing to the next level of the search tree. Every

46

consistency thread retrieves a set of constraints from a constraint queue to perform
propagation. When all the constraints have been processed, the algorithm commits
all prunings and resumes the search. The idea to combine parallel consistency and
parallel search is based on the judgment that many CSPs spend a magnitude more
time on constraint propagation than search. However, no quantitative analysis or em-
pirical result about this judgment was provided. There are at least several factors
that have an impact on the execution time of propagation, such as constraint pro-
gramming model, consistency level, filter algorithms used by the constraints in the
model. The author identified the three bottlenecks that can degrade performance: (1)
since independent search spaces do not exchange data during resolution process, the
algorithm repeatedly evaluates constraints, (2) synchronization is performed until the
slowest consistency thread completes its work, and (3) parallel search naturally puts
too much stress on the memory bus [61].

In 2012, Yun & Epstein [211] proposed a hybrid approach (called SPREAD) com-
bining portfolio-based methods and search space splitting. SPREAD is composed of
two phases: a time-limited portfolio search phase followed by a search space split-
ting phase. In the portfolio search phase, all workers execute the same constraint
programming model but with distinct random seeds. The purpose of portfolio search
phase is to collect weights and base to support search space splitting phase, where
weights are the average of the variable weights (i.e., the number of domain wipeouts
by the constraints whose scope contains this variable) obtained from all the work-
ers, and the base is the average of the number of backtracks obtained from all the
workers as well. However, if any worker finds a solution or proves that the problem is
unsatisfiable, the execution terminates. Otherwise, the splitting phase starts to par-
tition the search space by using the variables with the highest weights sorted by the
weights learned during the portfolio phase. If a worker cannot solve the subproblem
within a fixed backtrack count limit, SPREAD recursively separates the returned
subproblems via new splitting variables. The authors divided the 500 instances into
three solving difficulty levels, including the hard problem set, the harder problem
set, and the challenge set. Then, they compared SPREAD with the other paralleliza-
tion methods using a Cray XE6M supercomputer with 160 nodes, and each node
has two octuple-core processors. For the most challenging problem set with 133 in-
stances, given a 30 minutes timeout, SPREAD solved 26 instances, which had not
been addressed by the other methods. For the 248 instances classified as the harder
problem set, given 30 minutes per problem, SPREAD solved around 60 instances com-
pared with about 40 instances solved by the other parallel approaches. It is worth

47

mentioning that the learned knowledge from the portfolio phase improved the per-
formance since SPREAD could solve 24.37% more instances of the hard problem set
than NWSPREAD (i.e., SPREAD without the learned knowledge). The experimen-
tal results show that SPREAD, a complete parallel constraint solving method, offers
an opportunity to solve unsolvable instances. We believe that SPREAD still has po-
tential for enhancements. The authors emphasize that intensification is more critical
than diversification when solving hard CSPs. Therefore, a single search strategy with
small variations was used at the portfolio search phase. As a direct consequence, the
variable selection of the search space splitting phase is prone to be misinformed by
information gathered during the portfolio phase, which is also pointed out by the au-
thors. Here we would like to suggest introducing diversification, i.e., multiple search
strategies during the portfolio search phase, or various criteria for sorting variables
during the splitting phase.

Ehlers & Stuckey [48] (2016) investigated combining portfolio search, search space
splitting, and probing the objective value for optimization problems. Objective prob-
ing is to estimate bounds on the objective, and use some solver processes to probe
whether or not a solution satisfying the estimated bound can be searched. By using
tighter objective bounds, more search space containing solutions with worse objective
bounds can be pruned as soon as possible so that redundant search is avoided. A lazy
clause generation (LCG) solver, which employs SAT-style learning with constraint
propagation, is parallelized. Learned clauses and incumbent objective value can be
exchanged between workers during parallel resolution. Similar to EPS, a subset of
variables is selected to split the search space. The authors claim that the variables,
which do not occur in the minimum unsatisfiable core, are less likely to accelerate
the parallel processing. Hence, they used the Variable State Independent Decaying
Sum (VSIDS) activities to select variables for the search space splitting. Unfortu-
nately, no detailed information about the minimum unsatisfiable core was provided,
and the reason why the variables selected by VSIDS can lead to better speedup was
also ignored. The hybrid solver consists of three groups having the same number of
workers. The first group uses the search space splitting. Workers from the second
group perform portfolio search after estimating the respective estimated objective
values. The remaining workers behave like the second group, but re-estimate bounds
on the objective when reaching the time limit. Modest speedups are reported when
using 64 cores, with the average being 16 times on all instances and 140 times on the
difficult ones.

48

3.5 Conclusion

We have comprehensively surveyed the literature on parallel constraint solving. The
constraints community has extensively studied this area for more than two decades.
Early researches on parallel constraint solving are concentrated mainly in parallelizing
constraint propagation. But unfortunately, parallelizing propagation suffers from low
parallel efficiency and limited scalability since synchronization cannot be avoided. The
parallel approaches related to parallelizing the search process have become the re-
search hotspot for parallel constraint solving since around the 2000s. The state of
the art constraint solvers have already provided the work-stealing architecture for
parallelizing the search process as well as the parallel portfolio search to enhance
search. We can also see the potential of combing the problem decomposition ap-
proach or the parallel local search with massively parallel processing to accelerate
constraint solving.

Parallel computing is now the norm. However, parallel constraint solving is far
from a mature science yet, and its implementations can differ from one solver to
another. We can expect that the techniques for parallel constraint solving will most
likely evolve in the future. We also hope to see more results of parallel constraint
solving in the coming years, and this survey will provide a panoramic review to
future researchers wishing to improve the current situation.

49

Chapter 4

The Effectiveness of Parallel
Constraint Solving

We often experience the situation that the resolution process ends up with no solution
after a very long execution time when solving computationally hard CSP instances
(e.g., some combinatorial problems formulated as CSPs). For these CSPs, the search
space is typically too large to explore exhaustively by current search-based techniques
and hardware. Unfortunately, we are unlikely to address this issue fundamentally, un-
less some disruptive technologies such as quantum computing can replace the current
classical computing.

Nevertheless, one could argue that he/she can rely on better heuristics to accel-
erate the resolution process of finding a solution if he/she does not wish to obtain all
solutions to a CSP. Indeed, if the problem is not difficult and not large, a suitable
heuristic can guide the search to the fraction of the search space with solutions. If the
problem is, however, difficult and large, backtracking search puts too much pressure
on the heuristics early in the search. In other words, the success of the backtracking
search depends on the success of the branching decisions made by the heuristic early
on in the search.

In this chapter, we investigate how to overcome the limitations of the backtracking
search for enhancing its performance. In Section 4.1, we discuss how early mistakes
affect backtracking search. We then focus on techniques that can compensate for
bad branching decisions made by the heuristic early on in the search, in Section
4.2. Specifically, we endeavor to quantify the properties of problem decomposition
and parallel stochastic portfolio search, which leads to a detailed analysis. Finally,
Section 4.3 concludes this chapter.

50

4.1 Early Mistakes

In the context of backtracking search, a bad node is a node such that the subtree below
it does not lead to any solution, and we will encounter deadend(s) in the subtree. If a
node is not a bad node, it is a good node. Furthermore, if a child of a good node is a bad
node, this bad node is called a mistake. More specifically, having branched a mistake
node, the search strategy (i.e., variable and value ordering heuristic) used for guiding
search begins to direct backtracking search towards a subtree without a solution (i.e.,
empty subtree).1 We can also define a mistake using the notion of a backdoor. A
backdoor consists of decision variables, the consistent instantiations of which can
lead to a solvable subproblem (i.e., solved in polynomial time) [70, 71, 201]. Then, a
mistake can be defined as a selection of a variable not included in a minimal backdoor.

Consider a possible backtrack search tree shown in Figure 4.1. The bad and good
nodes are drawn with black text on a white background and white text on a black
background, respectively. The triangles stand for large subtrees, of which the hol-
low triangles with a dashed border stand for empty subtrees, and the black triangle
stands for a subtree with a solution or solutions. By convention, we assume that the
backtracking search iterates from left to right. In this example, the first commitment
at node B is a fatal mistake if the subtree below to it is empty and too large to be
visited exhaustively. Once the search strategy employed in the backtracking search
selects node B and commits to that successor’s subtree, any subsequent decision is in
vain. As a direct consequence of mistake B, the constraint solving is bound to end up
falling into the trap of endless futile backtrack search.2

A mistake made by the search strategy implies that constraint propagation cannot
remove the value of the mistake when making the branching decision. If a mistake
has occurred at the early stage of the backtracking search (i.e., near the root), we
call it an early mistake. A mistake made near the leaf nodes of a search tree is
usually not fatal because the mistake can recover from backtracking quickly. However,
an early mistake can be extremely harmful to constraint solving. Specifically, if the
empty subtree below an early mistake is vast, the backtracking search will commit to

1In chapter 3 (page 36), we have stated that an empty subtree denotes the subtree that cannot
lead to a solution.

2If there is no limitation on the execution time required for the resolution process, the resolution
process of solving any CSP will eventually halt. The execution time can be longer than one hour,
day, week, month, year, decade, century, or even at the time of our solar system’s death. The setting
of the time limit depends on the amount of time one is willing to wait. Thus, strictly speaking, the
word “endless” is improper. Please note that, in this dissertation, we do not consider dynamic CSPs
that are prone to change over time; thus, the CSP is determined and fixed before search.

51

A

B

D E

C

F G

Figure 4.1: Unrecoverable fatal mistake because of the large subtrees below to the
mistake B. Nodes B and G are mistakes.

exploring this vast empty subtree in a very long execution time before returning to the
branching decision that mattered. Consequently, the search effort is wasted on that
empty subtree, and the problem cannot be solved in the amount of time permitted.

The concept of early mistakes dates back at least to the Ph.D. work of Harvey
(1995) that first introduces the techniques of randomization and restarts within a
backtracking search and limited discrepancy search [91, 92]. Besides, the early mistake
has also been identified in the research areas of the propositional satisfiability problem
(SAT). For example, Crawford & Baker [37] pointed out that the early mistake causes
poor performance in solving a scheduling problem using the DPLL algorithm that is
based on backtracking search. Similarly, the same phenomenon is also observed in the
context of the branch and bound algorithm [133].

To improve the efficiency of the backtracking search, one can employ a search
strategy to guide the backtracking search toward the subtrees that are more likely
to contain solutions, if he/she does not wish to find all solutions to a CSP. Ideally,
an optimal search strategy can always select the best candidate variable and assign
the best candidate value to the variable without encountering any deadends (cf., for
example, Figure 4.2). Consider that the probability of success in finding a solution
can be calculated as

∏d
i=1 pi, where pi is the probability of selecting a good node at

level i, and d is the depth of the backtrack search tree. An optimal search strategy
can be viewed as, for every branching decision, the probability of selecting the best
candidate variable and value is a certain event, i.e., pi = 1.

Nevertheless, even determining the first variable for an optimal search strategy is
a nontrivial task [119]. Some effective variable/value ordering heuristics and abstract

52

A’

B’

D’ E’

C’

F’ G’

Figure 4.2: An ideal backtrack search tree formed by an optimal search strategy for
a first solution of the same CSP shown in Figure 4.1.

search strategy, which essentially aims at increasing pi, have been proposed and im-
plemented in most of the state of the art constraint solvers. But, in reality, a low-level
branching decision (near the leaf nodes of search tree) is probably more reliable than
a high-level branching decision (near the root), i.e., pi > pj, for i > j. The reason is
that more information is gathered, and the problem size is reduced due to constraint
propagation and the partial instantiation of variables. It is not uncommon to see that
a large and difficult CSP instance cannot be solved in very long execution time (e.g.,
a week), even if we try all the existing search strategies. This situation implies that
the probabilities of finding good nodes early in the search are rather low, and early
mistakes have occurred.

4.2 Possible Approaches to Tackle Early Mistakes

Recognizing that early mistakes made by search strategy are culprits that might
render a solvable CSP to an insoluble CSP, we naturally think of how we can eliminate
or at least alleviate the effects of early mistakes. In this section, we will investigate the
existing non-systematic techniques that address the problem due to early mistakes,
including discrepancy search, portfolio search, and restart-based search.

One way of dealing with early mistakes is to backjump immediately to the source
of failure that is several decision levels above the current level, instead of chrono-
logical backtracking, i.e., backtrack to the preceding variable in the ordering. This
look-back technique is called non-chronological backtracking [40, 114], which requires
that constraint solver learns the reasons for the failures (i.e., nogoods) and store the
recorded failures (i.e., nogood recording) [201]. Non-chronological backtracking using

53

nogood recording can efficiently reduce the search space while still being a systematic
search approach [114]. However, we do not intend to discuss the non-chronological
backtracking algorithms here since, to the best of our knowledge, it has not been
used for parallelizing constraint solving.

4.2.1 Restart-Based Search

When backtracking search trapped in a barren subspace due to a mistake of ordering
heuristics, a natural and intuitive way to deal with this issue could perhaps abandon
the current search effort and restart with a different search space exploration. The
questions then arise: (1) When to abandon the current search? and (2) How should
a repetitive search space be avoided when commencing a new search? One method
of choice for answering the first question is to use a restart strategy prescribing a
sequence of steps for restarts (i.e., cutoffs). Meanwhile, to address the second ques-
tion, we avoid the search space explored before by introducing randomization to a
deterministic backtracking search.

Restart strategies

If a constraint solver is unable to solve a CSP in ri steps (i.e., cutoffs), then the
solver will be restarted and commence the search with a different region of the search
space. If the solver cannot find a solution after running for the next ri+1 steps, the
solver will be restarted again, and so on. We call this infinite sequence of predefined
steps {r1, r2, r3, . . . , ri, ri+1, . . . } restart strategy, where each cutoff ri could be either
infinity or a positive integer.

By adding randomization to the deterministic backtracking search, we can ob-
serve that the running time for solving a given CSP varies from one run to an-
other. Thus, we can model this problem-solving behavior observed during runs as a
discrete random variable. If we let the random variable T denote the number of back-
track steps required to solve a CSP P using a randomized backtracking algorithm
A, then Pr(T = t) or f(t) denotes the probability that A terminates using exactly t

steps. Moreover, let F (t) be the probability that A terminates using t or fewer steps,
i.e., F is the cumulative distribution function of f . Thus, 1− F (t) is the probability
that A terminates using more than t steps, which is also called the survival function.

Luby et al. [127] show that the optimal restart strategy is a sequence of fixed
cutoffs when the runtime distribution of a randomized algorithm is known (i.e., f is
known), given by Rl = (r, r, r, . . .), where r is a positive integer. They also provide

54

an optimal restart strategy minimizing the expected runtime for the situation that
the runtime distribution is unknown. The optimal restart strategy is called univer-
sal strategy and given by Ru = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1 . . .). Geometrical restart
strategy Rg = (1, r, r2, r3, . . .) [204] restarts constraint solver in a geometric growth
manner. Nevertheless, this restart strategy cannot guarantee its worst-case perfor-
mance, and the expected runtime of the strategy can be arbitrarily longer than the
optimal strategy [201]. However, it has the advantage of being less easily influenced
by the details of the runtime distribution [70].

Both Luby’s and geometrical restart strategies are predefined static restart strat-
egy. By contrast, the dynamic restart strategy [106, 180] employs a Bayesian model
to predict the runtime of the backtracking algorithm on the current instance by con-
sidering the real-time observations about the attributes of problem instances and
solver behavior. The experimental results show that the dynamic restart strategy can
outperform its static counterparts. However, the dynamic restart strategies have not
become prevalent among the state of the art constraint solvers. First, it is computa-
tionally expensive to collect meaningful runtime data of an instance, mainly when its
runtime exhibits enormous variations. Second, the predicted restart strategy could
still be sub-optimal for the given instance, even though the obtained model captures
the overall behavior of the backtracking algorithm on the training set [58].

Carefully examining the runtime distribution of a randomized backtracking algo-
rithm on a CSP P can help us gain insight into the effectiveness of restarting search
and identify the difficulty of the given problem. Gomes et al. [73, 72] pointed out
that different randomized backtracking algorithms on the same problem can exhibit
considerably different behavior between runs, i.e., the variance of runtime distribution
is enormous. For example, one run obtains a solution in a few seconds, whereas an-
other run cannot result in a solution even after a few weeks. These fluctuations in the
runtime of backtracking algorithms are characterized by the heavy-tailed distribution,
which indicates that the trail of the distribution decays polynomially. As mentioned
earlier, the survival function of a randomized algorithm is the probability that the
underlying algorithm requires more steps than given steps t to solve the problem,
given by:

Pr(T > t) = 1− F (t) (4.1)

where F (t) is the cumulative distribution function of random variable T . The random
variable T has heavy-tailed distribution if:

Pr(T > t) ∼ C · t−α, t > 0 (4.2)

55

100 101 102 103 104 105 106 107

10−3

10−2

10−1

100

Non-Heavy Tailed

Heavy-Tailed

Number of Backtracks

Su
rv

iv
al

Fu
nc

ti
on

(1
-C

D
F
)

Figure 4.3: Comparison between heavy-tailed and non-heavy-tailed runtime distri-
bution. CDF stands for Cumulative Density Function log-log scale. (Figure adapted
from [69].)

where C and α are positive constants [73]. This distribution has infinite variance
and finite mean when 1 < α < 2 and infinite variance and mean when 0 < α ≤ 1

[73, 114]. A clear indication of heavy-tailed distribution for a given CSP P is that
the log-log plot of the survival functions exhibits almost linear behavior with slope
determined by α, as shown in Figure 4.3.

Although a CSP P whose runtime distribution is heavy-tailed indicates that back-
track algorithms might run for long execution time, it also suggests that P can be
solved efficiently. By employing restarts, not only does a constraint solver circum-
vent a heavy-tailed long, but also increases the probability of encountering successful
short runs [69]. By comparison, a CSP P that exhibits non-heavy-tailed behavior is
inherently difficult to solve.

Gomes et al. [68, 69] contribute an in-depth study of how heavy-tailed behavior
occurs. They introduce two useful notions to help explain the heavy-tailed distribu-
tion. First, an inconsistent subtree (IST) is a maximal subtree that does not contain
a node that occurs in any solution. Second, the maximum depth of an inconsistent
subtree is referred to as the inconsistent subtree depth (ISTD). They show that “when
the backtrack search heuristic has a good probability of finding relatively shallow IST,
and this probability decreases exponentially as the depth of the inconsistent subtrees
increases, heavy-tailed behavior occurs [69].” Moreover, if the distributions of ISTD
do not decrease exponentially, i.e., the variance of ISTD is not significant (cf., for
example, Figure 3 of [69]), the problem exhibit non-heavy-tailed.

56

In essence, the root of an IST is a mistake defined in Section 4.1. For the heavy-
tailed problems, an exponential decline in the distribution of the depth of early mis-
takes implies that restarts has a chance to circumvent the region of the search space
that early mistakes frequently occur.

The methods of adding randomization to a backtracking search

There exist several possible choices to introduce randomization into complete, sys-
tematic, backtrack search procedures:

1. randomizing the variable ordering;

2. randomizing the value ordering;

3. randomizing tie breaking.

Randomizing the variable and value ordering first appear in the Ph.D. work of Harvey
[164]. For the tie-breaking method, when several choices are ranked equally, the search
strategy selects among them at random. This small adjustment can dramatically alter
the region of the search space, especially when the heuristic makes the branching
decision early on in the search. However, we often see that the search strategy only
grades one choice as the highest score. To handle this situation, Gomes et al. [73]
expand the choice set for random tie-breaking by allowing H -percent of the highest
score to be regarded equivalent.

The methods of adding randomization mentioned above are search strategy in-
dependent. Recently, Demirović et al. [45] use solution-based phase saving to simu-
late local search behavior in complete constraint solvers for constrained optimization
problems (COPs). The phase saving originates from SAT solvers. When phase saving
works with restarts, the last value assigned to a variable in search is given priority
over all other values in the domain of that variable in the next time the variable
is branched on. The solution-based phase saving is a value-selection heuristic that
differs from phase saving in respect: it gives priority to the values of the feasible solu-
tion found by the previous run. Thus, this method is worthless to solving CSPs. For
COPs, however, it is desirable to attain another feasible solution with a better objec-
tive value. The authors note that combing solution-based phase saving, activity-based
search, restarts, and nogood learning can add randomization to the systemic back-
tracking search, thereby increasing the diversification of search. They observe that
the most active variables from the previous run are likely to be branched on first in

57

0

0

0

0 1

1

1 2

1

1

1 2

2

2 3

2

2

2 3

3

3 4

Figure 4.4: LDS search tree. The text inside of a node stands for the discrepancy of
this node. (Figure adapted from [144].)

the current run because the variables selected first in the last run have low activity
values due to involving fewer conflicts directly.3

4.2.2 Limited Discrepancy Search

We have discussed Limited Discrepancy Search (LDS) [91, 92] when reviewing Parallel
Discrepancy Search. In this section, we shall concentrate on its probability model.

LDS is the first non-systematic search approach to be developed against early
mistakes caused by the value-selection heuristic. When using LDS, the search tree
is not traversed in a chronological backtracking manner. Visually, the search jumps
from one region of the search tree to another. This jump phenomenon is the result of
discrepancies that the search disobeys the value-selection heuristic. On kth iteration,
the probes, which can be drawn as paths from the root to leaf nodes, traverse nodes
with up to k discrepancies. For example, the first probe of the 1th iteration is illus-
trated in the black nodes in Figure 4.4 in which the discrepancy occurs at the black
node near the root.

To construct the probability model of LDS, Harvey first defines the heuristic prob-
ability, p, which is the likelihood of selecting a good left child at a good node. Besides,
the mistake probability, m, is the likelihood that a randomly selected child of a good
node is bad. To simplify the analysis, the heuristic probability p is assumed as con-
stant throughout the search tree, although Harvey notes that p increases with depth
since the heuristic is more informed in lower of the search tree.

3To better understand this observation, the reader needs to have an understanding of the activity-
based search strategy [139]. We will also briefly introduce this search strategy in Section 6.2.

58

(a) W (b) X

(c) Y (d) Z

Figure 4.5: The four possible situations for a node and its children. A white node and
a black node stand for a bad node and a good node, respectively. (Figure adapted
from [91].)

For 2-way branching, he summarizes four possible situations, namely W , X, Y ,
and Z shown in Figure 4.5, for a node and its children. Figure 4.5a illustrates situation
W where a bad node leads two bad children. The situations that a good node has at
least one good child are shown in Figures 4.5b, 4.5c, and 4.5d, where situations X

and Y have a good left child but situation Z does not. And the difference between
situations X and Y are whether their left child is good node or not.

As we mentioned above, the heuristic probability p is the likelihood of selecting a
good left child at a good node. Hence, the conditional probability of both situations
X and Y occurred given that the parent node is good (i.e., ¬W) is exactly p because
both of them have a good left child. Thus, we write:

Pr(X ∨ Y | ¬W) = p (4.3)

The mistake probability m is the likelihood a good node has a bad child. Therefore,
the conditional probability of the situations that have a bad child, i.e., Y and Z,
occurred given that is it not W is 2m. Thus, we have:

Pr(Y ∨ Z | ¬W) = 2m (4.4)

The conditional probabilities of other possible combinations X, Y , and Z can be
obtained:

Pr(X | ¬W) = 1− 2m

Pr(Y | ¬W) = p+ 2m− 1

Pr(Z | ¬W) = 1− p

Pr(X ∨ Z | ¬W) = 2− p− 2m
(4.5)

59

The reason for defining the four situations is that the probability that a probe succeeds
can be expressed by using these situations. Given a search tree of height d and on
kth iteration, the probability model can be represented by calculating the likelihood
of finding a solution using i or less than i probes, ai,d, in terms of p and m. The
probability ai,d can be defined by:

ai,d ≡ Pr(∃l<isucceedl) (4.6)

where succeedl denotes a successful run or multiple successful runs in i probes or
fewer. In order to calculate the likelihood of finding a solution in i probes or fewer
(ai,d), it is better to consider its complement, namely the likelihood of not finding a
solution in i probes or fewer, given by:

∀d,i>0, ai,d = 1− (1− ai−1,d) · (1− si−1) (4.7)

where (1 − ai−1,d) is the likelihood of failing to obtain a solution in i − 1 probes or
fewer and (1−si−1) the likelihood of failing to obtain a solution on next probe (probe
i) given that all the previous probes have failed. And si is defined as the product of
probabilities of all the nodes on probe i. That is,

si =
d−1∏
j=0

gi,j (4.8)

where gi,j is the probability of expanding to a good node from j on probe i given that
all earlier probes have failed and is defined by:

gi,j ≡ Pr(goodi,j+1 | goodi,j ∧ ¬(∃l<isucceedl)) (4.9)

where goodi,j denotes that node j of probe i is a good node.
In [203], Walsh pointed out that the combinatorics involved in computing gi,j are

very complex. For instance, in the example illustrated in Figure 4.6, probe 2 (P2) and
probe 3 (P3) share three common nodes in their path, but since their third nodes (i.e.,
node 3) are alternatives. These common nodes imply that the failure of the second
probe decreases the likelihood of the success of the third probe, whereas the alternative
nodes increase the likelihood of the success of the third probe. Since whether or not
a node is good can depend on previous probe, Harvey derives expressions for gi,j for
three cases, j > i, j = i, and j < i.

For j > i the failure of previous probes cannot affect the success probability for the
current node. For example, g1,2 is unrelated to whether or not probe 0 (P0) succeeds
(cf. Figure 4.6). Thus,

∀j>i, gi,j = Pr(goodi,j+1 | goodi,j) = Pr(X ∨ Y | ¬W) = p (4.10)

60

4

P4

3

P3

P3, P4

2

P2

P2

P2, P3, P4

1

P1

P1

P1

P1, P2, P3, P4

0

P0

P0

P0

P0
0

1

2

3

4

Figure 4.6: Five probes of the one discrepancy iteration on a binary search tree of
height four. Pi above an arrow denotes that the node pointed by the arrow is visited
on probe i. For example, P3, P4 means that a node is visited by both probe 3 and
probe 4. The number i inside of a leaf node indicates this leaf node visited on probe
i. In each probe, the nodes are numbered for each probe, starting with the root node
(numbers in bold type), from zero to four.

The case that j = i is also not affected by the failure of the earlier probes. But at
this node, the probe is going to violate the heuristic and visit its left child (e.g.,
node 2 of P2 in Figure 4.6). Thus, situation Y should be replaced by situation Z in
Equation (4.10), given by:

∀j=i, gi,j = Pr(goodi,j+1 | goodi,j) = Pr(X ∨ Z | ¬W) = 2− p− 2m (4.11)

For the case j < i, we should take into consideration the influence of the failure of
previous probes. Let us consider the probability, g3,2, that node 3 of probe 3 is good
(i.e., good3,3) given that its parent in the same probe is good (i.e., good3,2) and probe
2 failed (i.e., ¬(∃l<3succeedl)). In this case, as illustrated in Figure 4.6, the parent,
namely node 2 of probe 3, must be either in situation X or situation Y in order
to guarantee that node 3 of probe 3 is good, denoted by X2,2 ∨ Y2,2. Note that Xi,j

means that node j of probe i is in line with situation X. There are three possibilities
to ensure that node 2 of probe 3 is good and probe 2 failed: X2,2 ∧ Z2,3, Y2,2 ∧W2,3,
and Z2,2 ∧Z2,3. For instance, in probe 2, nodes 2 and 3 are good, but the left child of
node 3 are bad, implying that a solution cannot be found in probe 2 and node 2 will
be good in probe 3. Moreover, since node 3 will be good in probe 3, the situations of
these nodes can be expressed as X2,2 ∧Z2,3. The probability of g3,2 is computed from

61

Equation (4.9), given by:

g3,2 = Pr(good3,3 | good3,2 ∧ ¬(∃l<3succeedl))

= Pr(X2,2 ∨ Y2,2 | X2,2Z2,3 ∨ Y2,2W2,3 ∨ Z22Z2,3)
(4.12)

The process of reasoning of gi,j for j < i is too long to cover due to limited space.4 But
we have already shown the basic idea of how Harvey constructs the probability model
of LDS in terms of p and m. Harvey also gives a recursive definition of the likelihood
of success for backtracking. He then performs a theoretical comparison of LDS with
chronological backtracking (DFS). Given a problem of height 100 with m = 0.1, the
probability of finding a solution for LDS rises steadily as the number of probes grows,
with approximately eight-fold increased likelihood compared with DFS (cf., Figure
3.6 of [91]). As we have mentioned at the beginning of the Chapter, variable ordering
heuristics tend to be less informed and is prone to error near the root of the search
tree. Walsh [203] proposes Depth-bouned Discrepancy Search (DDS) to improve LDS
by exploring more discrepancies at the top of search tree, but visiting fewer redundant
nodes than LDS.

The theoretical analysis and the empirical study shows that the discrepancy strate-
gies like LDS and DDS are effective methods of obtaining better feasible solutions
in optimization problems in large and under-constrained search trees. However, the
discrepancy strategies do not apply to insoluble CSPs, where the backtracking search
tree is required to be traversed completely. In this case, it is completely unneces-
sary to use discrepancy strategies. Moreover, both the theoretical analysis provided
by Harvey and the empirical study given by Walsh neglect to consider domain re-
ductions brought on by constraint propagation. Thus, in practice, considerable large
overheads caused by repeatedly visiting nodes and unbalanced search trees are to be
expected when comparing the number of nodes explored by the discrepancy strategies
and DFS. Just recently, Archibald et al. [10] present empirical comparisons, which
show that DDS is not well-suited for unsatisfiable decision problems.

4.2.3 Parallel Portfolio Search

We have already introduced the parallel portfolio in Section 3.3. Depth-first back-
tracking is in the sense of audacious search strategy, and finding a relatively good
variable orderings to avoid early mistakes is a challenging task. For a given CSP,
especially for problem instances that exhibit heavy-tailed behavior, there exit signif-
icant runtime variance between different search strategies, between the same search

4The interested reader is directed to pages 61-66 of [91] for detailed reasoning.

62

strategy with randomization, between different restart policies, between different con-
straint solvers, between different CSP models, or even between different parameter
settings.

One way to utilize this vulnerability is to run an ensemble of different assets of a
sequential solver to solve the same CSP, simultaneously. As a result, one can expect a
smaller overall runtime and a smaller variance to find a first solution. When a parallel
portfolio consists of assets with deterministic algorithms (e.g., deterministic search
strategy), the expected runtime is determined by the asset that is the first to obtain
a solution.5 In this case, the parallel portfolio cannot improve the performance better
than the the fastest sequential asset; conversely, the parallel execution brings with
unnecessary redundancy.

Nevertheless, if we combine different stochastic algorithms (e.g., adding random-
ization to the search strategy) into a parallel stochastic portfolio, the probability of
finding a first solution increases. Let us assume that we have n workers, and the port-
folio consists of n stochastic assets in which each asset Ai is executed on a different
worker. Thus, Pr(Ai = t) is given by the probability that the worker i (1 ≤ i ≤ n)
uses exactly t backtracking steps. Now, by Equation (4.1), the survival function of
the stochastic algorithm Ai is 1 − Pr(Ai = t) = Pr(Ai > t). Then, the probability
that at least one of the stochastic algorithms find a solution in t steps is given by:

Pr(P = t) = 1−
n∏

i=1

Pr(Ai > t) (4.13)

Before analyzing Equation (4.13), we first let an asset whose probability of finding a
first solution with t steps is greater than zero (i.e., Pr(Ai = t) > 0) call an effective
asset. Although Equation (4.13) is very simple, it indicates the following two benefits
of employing parallel stochastic portfolio:

1. Pr(P = t) is greater than the probability of any its assets of obtaining a solution
with t steps when at least two of its assets are effective assets, which can be
expressed by:

1 ≤ i < j ≤ n, (∃i (Pr(Ai = t) > 0)) ∧ (∃j (Pr(Aj = t) > 0)

⇒ 1 ≤ i ≤ n, ∀i (Pr(P = t) > Pr(Ai = t)))
(4.14)

Therefore, executing a set of effective assets in parallel increases the likelihood
of finding a solution with given steps.

5Please see page 44 for an definition of the asset.

63

2. Pr(P = t) rises as the number of effective assets grows. Further, in the-
ory, Pr(P = t) approaches to 1 as the number of effective assets approaches to
infinity. That is,

lim
k→∞

Pr(P = t) = lim
k→∞

1−
n∏

i=1

Pr(Ai > t) = 1 (4.15)

where k, 1 < k ≤ n, is the number of effective assets. Equation (4.15) implies
that any CSP P could be solved by using the parallel stochastic portfolio when
given an infinite number of processors and effective assets.6 Unfortunately, it is
unrealistic to expect an infinite number of processors. But, it is not a problem to
ensure a sufficient number of distinct assets for massively parallel processors. In
Section 6.4, we will show an approach that generates a sufficient number of
distinct assets.

We have shown theoretically that the parallel stochastic portfolio can be a signif-
icant improvement over sequential solving or a parallel portfolio with deterministic
algorithms. We will discuss parallel stochastic portfolio at length in Chapter 6. In
particular, the experimental results that test the optimistic outlook of Equation 4.13
will be given.

4.2.4 Embarrassingly Parallel Search

We have briefly introduced the embarrassingly parallel search (EPS) approach in the
survey of Problem Decomposition (see Section 3.2). The EPS approach generates
consistent partial assignments over a set of variables, each of which can be viewed
as a subproblem that is not inconsistent with the constraint propagation. The ra-
tionale behind EPS is to achieve a balanced workload by assigning a larger number
of subproblems to each worker because the differences in resolution times between
subproblems cannot affect the total workload distribution. The simplest and most
basic method of problem decomposition can be divided into three phases:

1. We select a static ordering of the variables.

2. We perform Depth-Bounded Depth First Search (DBDFS) to generate the right
number of subproblems.

6Alternatively, put another way, if all the possible variable and value orderings for a given CSP
are exhaustively tried in parallel, then the optimal search strategy is bound to be used, thereby
finding a solution with n steps, where n is the number of variables of the given CSP.

64

3. We send the subproblems to the workers; each work receives the same number
of subproblems.

The main challenge for problem decomposition is to identify the depth at which the
frontier of depth bounded DFS contains the right number of subproblems. As intro-
duced in Section 3.2, Malapert et al. [131, 169] proposed two methods for generating
a correct number of subproblems: The top-down decomposition starts from the root
node, and incrementally explores the next levels. In contrast, the bottom-up decom-
position starts from a level deep enough and climbs back to the previous levels.

The EPS approach was intentionally developed for obtaining all the solutions of
a given CSP P [170, 171, 131, 169]. Nevertheless, the EPS approach is also useful for
obtaining a first solution. In this section, we first build a probability model to explain
why the EPS approach can increase the likelihood of finding a first solution. Then,
we show how EPS can offset early mistakes of ordering heuristic and why superlinear
speedup can be expected when applying EPS to constraint solving.

The probability model

The underlying principle of accelerating constraint solving is the same for different
variants of EPS, no matter what workload distribution mechanism or problem decom-
position approach is employed. To illustrate the benefits of applying EPS to constraint
solving, suppose that our goal is to find a first solution for a given CSP. As we will
show, the probability of finding a first solution using EPS is increased compared to
the sequential solving.

Let us assume that we have m processors (or workers), and the CSP P to be solved
has only one solution and n variables in which k variables are used to decompose the
original problem. Besides, EPS is a deterministic algorithm. In this case, Pr(Wi = t)

denotes that workeri obtains the solution using exactly t backtracks when given a
distinct set of subproblems, and the following expression gives the probability function
for EPS:

m∑
i=1

Pr(Wi = t) (4.16)

Each term Pr(Wi = t) can be computed by:

Pr(Wi = t) =
k∏

j=1

psj ·
n∏

j=k+1

prj (4.17)

where psj is the probability of the subproblems assigned to workeri containing a value
that participates in a solution. Furthermore,

∏k
j=1 psj is the probability of having a

65

subproblem (i.e., partial assignments) that can be extended to a solution, while prj
is similar to the probability we defined in Equation (4.8), which is the probability of
extending to a good node under the subspaces defined by the given subproblems. Let
us further assume that both parallel run and sequential run use the same variable
ordering to compare the probability of EPS against that of sequential solving. As
mentioned in Section 4.1 (page 52), the probability of finding a solution can be com-
puted by taking the product of the probability that the search strategy selects a good
node to be branched on, given by:

Pr(Seq = t) =
n∏

j=1

pj (4.18)

The EPS approach decomposes the CSP P into q subproblems that are consistent with
constraint propagation, and then each worker works on its own q

m
subproblems. Thus,

if the CSP P to be solved has one solution, there must be one worker obtained the
subproblem that can lead to the solution. To this worker, psj > pj because the
variables used for problem decomposition have reduced domain size and prj > pj

because the domain values for these variables that are inconsistent with assigned
subproblems are removed by constraint propagation.7 Therefore, this worker has a
higher probability of finding a solution in exactly t backtracks relative to sequential
run:

k∏
j=1

psj ·
n∏

j=k+1

prj >
n∏

j=1

pj (4.19)

As long as one worker increases the likelihood of finding a first solution, EPS can
obtain a solution faster than sequential solving can, even though the rest of the
workers have no probability of solving the problem. The foregoing analysis then allow
us to make the following statement:

m∑
i=1

Pr(Wi = t) > Pr(Seq = t) (4.20)

Consider an extreme case that every worker is assigned only one subproblem of a
computationally hard problem, and this subproblem is a partial assignment of a large
set of variables (e.g., 20 variables) that can be extended to a solution. Then

k∏
j=1

psj ·
n∏

j=k+1

prj ≫
n∏

j=1

pj (4.21)

7Our discussion is based on general cases, i.e., most of heuristics tend to be more accurate in a
narrower domain. Indeed, an optimal heuristic can always select the best node no matter how large
the domain size is. However, finding optimal heuristic is a computationally difficult task, and it is
unnecessary to employ parallelism for a first solution if we really have such optimal heuristic.

66

Because the terms psj in Equation (4.21) are equal to one. Note that all this would
require a sufficiently large number of workers. In this case, EPS has a much higher
probability of obtaining a solution than does a sequential run. That is,

m∑
i=1

Pr(Wi = t)≫ Pr(Seq = t) (4.22)

Indeed, each worker in the EPS approach is supposed to deal with a large number of
subproblems to avoid unbalanced workload (e.g., mostly between 10 and 100 subprob-
lems per worker [131]). But, when given the same set of subproblems, a first solution
is more likely to be obtained in less time by more workers (q

m
≤ 1), if we ignore load

balancing.

The Potential for Speedup

We have shown theoretically that the EPS approach can be a significant improve-
ment over sequential solving when the goal is to find a first solution. In the following,
we discuss the possibilities that we can expect to gain a speedup or even superlin-
ear speedup. As mentioned in Section 3.2, we view EPS as a parallel method that
explores different subtrees in parallel since different subproblems lead to explore dif-
ferent subtrees. With problem decomposition, we cannot predict whether or not a
subproblem can lead to a solution. Also, we cannot predict the resolution time of
each subproblem. Thus, it is difficult to ensure a fixed amount of work between work-
ers, even though each worker is assigned many subproblems. We should not always
expect to gain a linear speedup. Instead, the speedup obtained will depend not just
on the number of processors used, but also on the way of distributing subproblems.

If our goal is to obtain a first solution, there exist various possible outcomes, as
illustrated in Figures 4.7 and 4.8. Here, we assume the search space being partitioned
among four workers and the depth-first search iterating over children from left to
right. To simplify the analysis, we assume that both the sequential run and parallel
run employ the same search strategy and consistency-enforcing algorithm. Moreover,
the parallel search preserves the sequential search order, e.g., we do not distribute sub-
problems in an out-of-order manner. However, it may be possible to further improve
the performance by also introducing randomness for workload distribution or other
techniques such as different search strategies for different workers in practice. Note
that the nodes in Figures 4.7 and 4.8 are not eliminable for the given constraint
propagation level.

67

⋆

31 2 4

(a) Superlinear Speedup

⋆

31 2 4

(b) Linear Speedup

⋆

31 2 4

(c) Sublinear Speedup

Figure 4.7: The typical possibilities for speedup in EPS. The good and bad nodes are
still black and white, respectively; the hollow triangles with a dashed border and the
black triangle stand for empty subtrees and subtree with a solution, respectively.

68

⋆

31 2 4

(a) No Speedup

⋆

31 2 4

(b) Slowdown

Figure 4.8: Other two possibilities for speedup in EPS.

We can gain a superlinear speedup because one of the extra workers obtains a first
solution that is in the leftmost part of the subtree, with possibly an order of mag-
nitude speedup from the sequential run or even more, as depicted in Figure 4.7a. In
this situation, the sequential run usually gets stuck in a barren subtree first due to
early mistakes made by the search strategy. Whereas the strong commitments to the
variable selections made by a search strategy at the early stages in the search (i.e.,
early mistakes) can be avoided by exploiting parallelism. Moreover, the parallelism
can prune the search for a first solution in comparison to sequential solving. In other
words, the parallel run finds a solution after exploring fewer nodes than the sequential
run, making it possible to obtain superlinear speedup. The irregularity of subproblem
4 has no impact on the parallel execution time of EPS. That is to say, even if the res-

69

olution time required by completely searching subproblem 4 takes much longer than
other subproblems do, we can still achieve a superlinear speedup since the solution is
in the leftmost of the search tree of subproblem 4 (see ✪ in Figure 4.7a). By contrast,
if the solution is in the very rightmost part of the subtree and the subtree is too large
to search thoroughly (cf. Figure 4.7b), the extra workers end up contributing nothing
to find a first solution.

We may also achieve a linear speedup (speedup of n with n processors) or a
sublinear speedup (1 < speedup < n with n processors), as shown in Figures 4.7b
and 4.7c. In both cases, the first solution is located at the rightmost part of the
subtree (see subtree 4 of Figure 4.7b and subtree 3 of Figure 4.7c). The location of
the solution in the subtrees implies that all the nodes of the subtree are required to
be visited before obtaining the solution in the parallel run. Besides, the sequential
run also need explore all the subtrees with a smaller number (e.g., subtrees 1, 2, and
3 in Figure 4.7b) if the parallel search preserves the sequential search order.

Not only may the extra workers contribute nothing to find a first solution, but
they may also decelerate the resolution process, as depicted in Figure 4.8. Applying
parallelism to solving such problems is meaningless since the sequential run can al-
ready solve the problems in a reasonable time. Especially for the situation given in
Figure 4.8b, the search strategy can always select the most suitable candidate vari-
able and value (i.e., good node). Thus, parallelism leads to a slowdown due to the
execution time of the non-parallelizable part. However, as the probability product
indicated in Equation (4.18), even if the search strategy makes mistakes very rarely,
the early mistakes in the search can still cause the failure of the search, especially
when solving a large computationally hard problem. Thus, we should not expect the
situation given in Figure 4.8b to occur when solving a large computationally hard
problem.

In summary, the location of the solution in the subtrees after problem decompo-
sition is the key to success in finding a solution when solving a large computationally
hard problem. If we can find a solution for such a problem in parallel and the sequen-
tial run fails, we probably would have gained a superlinear speedup. This is because
heuristics tend to be less informed and make more mistakes at the top of the search
tree. The EPS approach address this problem from two aspects: First, parallelism can
hedge against weak heuristic choices. Second, since the values that are inconsistent
with assigned subproblems are removed, and the variables used for problem decompo-
sition have reduced domain sizes, the heuristics must be more reliable in the parallel
run than in sequential run.

70

4.3 Conclusion

Four main techniques for addressing the failure of DFS caused by early mistakes have
been investigated. Although these techniques are orthogonal, the rationale for them
is to introduce diversity to avoid commitment to the wrong branching decisions made
by the heuristic early on in the search. In our analysis of parallel portfolio search and
problem decomposition, we have attempted to provide explanations on why they can
lead to performance improvements.

We are optimistic about the applicability of parallel portfolio search and problem
decomposition to finding the first solution of computationally hard problems. Thus, we
argue that parallel constraint solving, including the parallel stochastic portfolio and
the EPS approach, is an effective approach to tackle computationally hard problems
not only because more nodes are explored simultaneously, but also because it can
remedy the early mistakes caused by search strategies.

71

Chapter 5

Case Studies of the EPS Approach

The idea of the original EPS approach is to partition a problem into many sub-
problems using a Depth-Bounded Depth-First Search (DBDFS). The decomposition
method automatically decides the depth of DBDFS according to the number of work-
ers and the expected number of subproblems per worker. Then, each worker solves
the same number of subproblems that are not trivially detected as inconsistent so
that workload balancing can be achieved when searching for all the solutions to the
problem.

Nevertheless, we can also apply the EPS approach to solve a computationally hard
problem to obtain a first solution. Indeed, it might seem self-evident that the EPS
approach can be used to tackle many large and hard problem instances encountered
in real-life applications and combinatorics. However, as mentioned in the previous
chapter, there are various possible outcomes when applying EPS on such problems,
and we have analyzed the search space properties that lead to different possibilities.

In this chapter, we verify the theoretical arguments by solving three hard problems
taken from the Problem Library for Constraints (i.e., CSPLib [38]), including the So-
cial Golfer Problem (SGP) [89], the Traveling Tournament Problem with Predefined
Venues (TTPPV) [160], and the Talent Scheduling Problem (TS) [190]. We chose
them for a number of reasons. These problems are related to scheduling problems
with apparent practical significance and have been widely studied in the constraints
community. Besides, we can increase the difficulty of these problems infinitely by in-
creasing the size of the instances, which is valuable for future research. To tackle larger
and harder instances for these problems in parallel, we provide customized decom-
position methods for generating subproblems. Moreover, we improve or redesign the
CSP models since the formulations of a problem can significantly affect the problem
solving efficiency [192].

72

In order to make this chapter more self-contained, we report the detailed problem-
solving process and our findings for the three problems separately, given in Sections
5.1 through 5.3. Finally, we conclude in Section 5.4.

5.1 Social Golfer Problem

In this section, we show how to attain solutions for some open instances of the Social
Golfer Problem (SGP); the emphasis is on building the CSP model and exploiting
parallelism (i.e., the EPS approach) to solve new instances. Besides, we survey the
extensive literature on solving the SGP, including the best results they have achieved,
and analyse the cause of difficulties in solving the SGP. This section is a revised
version of our previous works [125, 124] and is organized as follows. Section 5.1.1
analyses the causes of the difficulties of solving the SGP in the context of the CSP
and introduces the constraints required to encode the model. A modeling approach
improved on the model proposed by [13] are described in Section 5.1.3, and some
instance-specific constraints are presented in Section 5.1.4. In addition, we elaborate
on how to employ the EPS approach to solve the SGP in Section 5.1.5. We then
present the experimental results in Section 5.1.6. In Section 5.1.7, we classify the
researches on the SGP and also survey the studies relevant to the SGP outside the
context of the CSP. We finally conclude in Section 5.1.8.

5.1.1 The Introduction of Social Golfer Problem

The SGP, i.e., problem 010 in CSPLib [89], is a typical combinatorial optimization
problem that has attracted significant attention from the constraints community be-
cause of its highly symmetrical and combinatorial nature. The original SGP, which
was posted to sci.op-research in May 1998 [89, 197], can be stated as follows: In
a golf club, 32 golfers wish to play in foursomes for 10 weeks. Is it possible to find
a schedule for maximum socialization; that is, each golfer can only meet any other
no more than once? In fact, the SGP dates back to Thomas Penyngton Kirkman's
1850 query [108] in which the number of golfers and the size of a group are 15 and 3,
respectively.

Hence, we can readily generalize the SGP to the following: The SGP consists
of scheduling n=g ∗ s players into g groups of s players for w weeks so that any
two players are assigned to the same group at most once in w weeks. According to
the constraints community's convention on this problem, an instance of the SGP is
denoted by a triple g-s-w, where g is the number of groups, s is the number of players

73

within a group, and w is the number of weeks in the schedule. In addition, we can
also regard the SGP as a discrete optimization problem that maximizes the number
of weeks w∗ for a given g and s, where w∗ ≤ g·s−1

s−1
. Clearly, a solution for an instance

g-s-w∗ indicates itself as the solution for all instances g-s-w with 0 < w < w∗ by
deleting any row(s) of the solution of g-s-w∗. In practice, the computational difficulty
of solving the g-s-w∗ and g-s-w instance is often not in the same order of magnitude
due to the huge difference in the solution density of two instances. For example, the
8-4-9 instance can be solved in a second on a state-of-the-art constraint solver. The
8-4-10 instance, by contrast, is still unsolvable for constraint approach at the time of
writing, although at least three non-isomorphic solutions are known to exist [197]. In
light of this, this research concentrates on solving the g-s-w∗ instances with maximal
number of weeks, which we call the full instance. For instance, Table 5.1 depicts one
solution for the full instance 7-3-10, where each row is a permutation of 21 (7 ·3 = 21)
golfers and consists of 7 groups, and every group comprises 3 golfers. Since no two
golfers play in the same group more than once, any two groups from different rows in
Table 5.1 can share at most one golfer.

Week
Group 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 3 6 1 9 12 2 15 18 4 7 16 5 10 13 8 11 19 14 17 20
2 0 9 13 1 3 16 2 8 10 4 6 20 5 11 15 7 14 18 12 17 19
3 0 16 20 1 5 18 2 3 11 4 9 19 6 14 15 7 10 12 8 13 17
4 0 7 11 1 4 15 2 6 12 3 13 20 5 8 14 10 16 19 9 17 18
5 0 8 15 1 10 14 2 9 20 3 7 19 4 13 18 5 12 16 6 11 17
6 0 12 18 1 8 20 2 5 19 3 10 17 4 11 14 7 9 15 6 13 16
7 0 4 10 1 7 17 2 14 16 3 8 18 5 6 9 13 15 19 11 12 20
8 0 5 17 1 6 19 2 7 13 3 9 14 4 8 12 10 15 20 11 16 18
9 0 14 19 1 11 13 2 4 17 3 12 15 5 7 20 8 9 16 6 10 18

Table 5.1: A solution for 7-3-10. The text in bold indicates that the values have been
initialized before search. (Table adapted from [125, 124].)

The research on the SGP is not only meaningful to itself, but also for other
Constraint Satisfaction Problems (CSPs) that exhibit symmetrical and combinato-
rial nature. For example, balanced incomplete block design (BIBD), problem 028 in
CSPLib [163], is a standard combinatorial problem from design theory and also a test
bed for symmetry breaking methods. Moreover, steel mill slab design [141], which is
a real industry problem, can also benefit from the SGP. The reason is that we are
likely to face the same difficulties as the SGP when solving other CSPs through the
constraint satisfaction approach.

74

5.1.2 Background Information

In this section, we first explain why it is challenging to solve the SGP in the context
of the CSP. Then we review some constraints relevant to our model of the SGP.

5.1.2.1 The Difficulties of Solving the SGP

At first sight, the SGP is a simple-sounding question. And indeed, one can model the
problem by using several frequently-used constraints derived from the problem defi-
nition. The constraint satisfaction approach, however, still has enormous difficulties
in obtaining the solution even for some small instances (e.g. 7-4-9, 8-4-10, etc.).1 We
believe that the following two reasons result in the difficulties of the SGP:
The Difficulty Caused by Symmetries. The inherent highly symmetrical nature
of the SGP cannot be entirely known before solving process. There exist four types
of symmetries: (1) We can permute the w weeks, that is, arbitrarily ordered weeks
(w! symmetries). (2) Within each week, we can (separately) permute the g groups,
that is, interchangeable groups inside weeks (g! symmetries). (3) Within each group,
we can permute the s players, that is, interchangeable players inside groups (s! sym-
metries). (4) Finally, we can also permute the n players (n! symmetries), which can
also be viewed by renumbering n golfers. The first three types of symmetries can
be relatively easy removed through model reformulation or static symmetry breaking
constraints. Nevertheless, it is difficult to eliminate all the symmetries among players
caused by the fourth type of symmetry. For example, if players [16, 17, 18, 19, 20, 21]

in Table 5.1 replace with [19, 20, 21, 16, 17, 18] in turn, an isomorphism of the solution
depicted in Table 5.1 will be generated even if the first row of the solution is fixed
with [1, . . . , 21]. Apparently, we are unable to foresee this symmetry before search.
Consequently, the unnecessary symmetrical search space is explored redundantly.
The Difficulty Caused by Early Mistakes. It is common to observe that some
unfortunate choices of variables early on are to blame for a long-running search pro-
cess [73]. The SGP has also been experienced such phenomena. More precisely, invalid
partial assignments lead to the backtrack search to trap in a barren part of the search
space since no consistent assignment can be found. More importantly, it is often
hard to determine the usefulness of a partial assignment until almost all variables are
instantiated; and these invalid partial assignments predominate in the overall search
space.

1By a “small instance”, we mean the number of golfers rather than the time complexity.

75

5.1.2.2 Global Constraints for Modelling SGP

We now briefly introduce the global constraints involved in the CSP model of the
SGP. The allDifferent2 constraint is the most influential global constraint in con-
straint programming and widely implemented in almost every constraint solver, such
as Choco solver [165] and Gecode [186]. Formally, let Xa denote a subset of variables
of X, the allDifferent(Xa) constraint can be defined as:

∀xi∈Xa∀xj∈Xa (i ̸= j =⇒ xi ̸= xj)

The global cardinality constraint GCC(Xg, V, O) is defined using two lists of vari-
ables Xg and O, and an array of integer values V , where Xg = {xl, . . . , xm} ⊆ X

and O is a list of variables not defined in X and predefines the range of the number
of occurrences for each value in V . The GCC constraint restricts each value vi ∈ V

appearing exactly oij times in Xg, where oij is in the domain of oi and oi ∈ O. More
formally:

{(dl, . . . , dm)| dl ∈ D(xl)∧, . . . ,∧dm ∈ D(xm) ∧ ∀i∀oj∈Oi
(occur(vi, (dl, . . . , dm)) = oj)}

where occur counts the number of occurrences of vi in (dl, . . . , dm).
The count constraint is similar to the GCC, but with the restriction for only

one value. More precisely, the count(v,Xc, O) constraint only restricts the number of
occurrences of value v for the list of variables Xc = {xl, . . . , xm}, given by:

{(dl, . . . , dm)| dl ∈ D(xl)∧, . . . ,∧dm ∈ D(xm) ∧ ∀oj ∈ O (occur(v, (dl, . . . , dm) = oj)}

The table constraint is another one of the most frequently-used constraints in prac-
tice. For an ordered subset of variables Xo = {xi, . . . , xj} ⊆ X, a positive (negative)
table constraint defines that any solution of the CSP P must (not) be explicitly as-
signed to a tuple in the tuples that consists of the allowed (disallowed) combinations
of values for Xo. For a given list of tuples T , we can state the positive table constraint
as: {

(di, . . . , dj) | di ∈ D(xi), . . . , dj ∈ D(xj)

}
⊆ T

Finally, the arithm constraint is used to enforce arithmetical relations between
integer variables or between integer variables and integer values. For example, an
integer value v ∈ D(xi) can be assigned to an integer variable xi by using the arithm
constraint, i.e., xi = v.

2This dissertation follows the naming convention and order of the arguments of constraints in
Choco solver.

76

5.1.3 The Basic Model

There are various ways of modeling the SGP as a CSP proposed in the literature,
which is one of the reasons why the problem is so compelling. Here, we use a model
improved on the model presented in [13] due to its untapped potential. Specifically,
we can add more constraints into the model to tackle larger instances piece by piece.

The decision variables of our model is a w×n matrix G in which each element Gi,j

of the matrix G represents that player j is assigned to group Gi,j in week i. Hence,
the domain of decision variable Gi,j is a set of integers {1 . . . g}, where 0 ≤ i < w, 0 ≤
j < n.3 The major advantage of the decision variables defined in this model is that
the range of the variables are reduced from {1 . . . n} to {1 . . . g} while keeping an
unchanged number of variables, compared with the naive model the derived from the
problem definition.

We mentioned, in Section 5.1.2.1, that symmetries among players are difficult
to handle and only dynamic checks can remove them completely. However, we can
partially eliminate the symmetries among players by fixing the first week, namely the
first row of the matrix G, defined by:

∀j∈J (G0,j = j/s+ 1), J = {j ∈ Z| 0 ≤ j < n} (5.1)

where the operator “/” denotes integer division (cf. Table 5.2). Equation (5.1) pro-
duces a sequence of integers from 1 to g in non-descending order, and every integer
continuously repeats itself exactly s times. Moreover, we can also freeze the first s

columns by assigning the first s players to the first s groups after the first week
(cf. Table 5.2), given by:

∀i∈I∀j∈J (Gi,j = j + 1)

I = {i ∈ Z| 0 < i < w} , J = {j ∈ Z| 0 ≤ j < s}
(5.2)

By applying Equation (5.2) to the model, we can significantly reduce the search space.
Note that, in the implementation, we can realize Equations (5.1) and (5.2) by either
restricting the domain of the variables or using the arithm constraint. Therefore, we
use the term equation instead of constraint.

By the definition of the SGP, n different players are divided into g groups, which
implies that each group includes exactly s players. Thus, the constraints required by

3In Section 5.1, we follow the Zero-based index.

77

Week
Player 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7
1 1 2 3 1 4 5 1 4 6 2 5 6 2 5 7 3 4 7 3 6 7
2 1 2 3 2 4 5 4 6 3 1 3 5 7 1 6 5 2 7 6 7 4
3 1 2 3 3 4 2 5 6 7 4 6 3 6 7 5 5 1 7 2 4 1
4 1 2 3 4 2 5 3 1 5 7 6 1 3 4 5 2 6 7 7 6 4
5 1 2 3 4 5 6 7 4 1 3 2 7 6 5 2 1 6 7 5 4 3
6 1 2 3 4 5 3 7 6 2 6 4 5 1 7 5 6 7 4 1 3 2
7 1 2 3 4 1 5 5 2 4 5 1 7 7 6 3 6 3 2 4 6 7
8 1 2 3 4 5 1 2 3 5 4 6 7 5 3 4 6 7 1 7 2 6
9 1 2 3 4 3 5 7 5 6 6 7 2 4 2 1 4 6 3 7 1 5

Table 5.2: A solution is obtained by our model for 7-3-10 instance, and it is equivalent
to the solution depicted in Table 5.1. The bold-italic text indicates that the values
have been initialized before search; the italic text stands for the values frozen by
Constraints (5.2). (Table adapted from [124, 125].)

this property, which are imposed on the rows of the matrix G, can be stated as:

∀i∈I (GCC(Gi,∗, V, O))

I = {i ∈ Z| 0 < i < w} , V = [1, . . . , g]

∀j∈J (oj ∈ O = [s, s]), J = {j ∈ Z| 0 ≤ j < g}

(5.3)

where the length of O is g. The constraints (5.3) ensure that every value in the array
of integers [1 . . . g] must occur exactly s times in all the rows of the matrix G (cf. Table
5.2).4

The restriction that no player meets any other player more than once can be
interpreted as saying that no two columns of the matrix G have the same value at
the same row more than once, given by:∑

0≤i<w

| Gi,j1 −Gi,j2 = 0 |≤ 1

j1 ∈ Z, j2 ∈ Z , 0 ≤ j1 < j2 < n

(5.4)

Constraints (5.3) and (5.4) are the only two constraints presented in [13]. In partic-
ular, unlike [13], we implement Constraint (5.4) in a different way to avoid using the
reified constraints because these constraints often slow the resolution speed down in
solvers like Choco [122, 165]. Specifically, the need for the reified constraints can be
bypassed by introducing a w×m matrix C. We subtract every column from all other
columns in the matrix G and the differences between two columns of the matrix G

are assigned to a column of the other matrix C. Therefore, the number of columns of
4For the globalCardinality constraint in Choco solver, we can ensure that a value vj ∈ V occurs

exactly s times by setting the upper bounder and lower bounder of oj ∈ O to s.

78

matrix C must be m =
(
n
2

)
. Having defined the matrix C, the two matrices G and C

are linked by the equations expressed by arithm constraints, given by:

∀i∈I∀j1∈J1∀j2∈J2 (Gi,j1 −Gi,j2 = Ci,j3)

(j1 < j2) ∧ (0 ≤ j3 < m) ∧ (j3 ∈ Z)

I = {i ∈ Z| 0 ≤ i < w}

J1 = {j1 ∈ Z| 0 ≤ j1 < n}

J2 = {j2 ∈ Z| 0 ≤ j2 < n}

(5.5)

Next, we impose the count constraint on every column of the matrix C so that the
number of occurrences of value 0 on each column is no more than once due to the
requirement that no two players can meet twice. So the constraints are defined by:

∀j∈J (count(0, C∗,j, occ))

J = {j ∈ Z| 0 ≤ j < m} , occ = [0, 1]
(5.6)

where occ is an integer variable whose domain is {0, 1}. Thus, the conjunction of
Constraints (5.5) and (5.6) can logically realize the restrictions required from Con-
straint (5.4). Not only that, Constraints (5.5) and (5.6) can avoid the performance
degradation that would be introduced by the use of the reified constraints.

So far, all the constraints as mentioned earlier have fully satisfied all the restric-
tions defined by the definition of the SGP and can be used to solve some small
instances (e.g., 3-3-4, 5-3-7).5 Nevertheless, we can further shrink the search space
by placing logically redundant implied constraints without changing the set of solu-
tions [192]. Equation (5.1) has already fixed the first row of the matrix G, which
implies that those players who have met in the first week cannot play in the same
group in the subsequent weeks. Therefore, the allDifferent constraint can be used to
enforce the groups of these players are pairwise distinct after the first week, and we
express these allDifferent constraints by:

∀i∀(j ̸=j′)∧(j/s=j′/s) (Gi,j ̸= Gi,j′)

i ∈ {i ∈ Z| 0 ≤ i < w}

j, j′ ∈ {x ∈ Z| 0 ≤ x < n}

(5.7)

In summary, the basic model comprises Equations (5.1), (5.2), and Constraints (5.3),
(5.5), (5.6), and (5.7). Nevertheless, the problem-solving ability of this model can be

5Our experiments showed that the model consisting of only these constraints were not able to
solve the instances larger than 5-3-7.

79

greatly improved by the introduction of additional constraints, such as static symme-
try breaking constraints, and the constraints derived by instance-specific pattern. In
the subsequent sections, we will present the additional constraints dedicated to dif-
ferent types of instances based on this model and discuss how to solve the instances,
which cannot be solved sequentially, in parallel.

5.1.4 Instances Solved Sequentially

For a given number of groups g and a group size s, our goal is to compute a first
solution for a full instance g-s-w∗, where w∗ represents the maximum number of
weeks. In this section, we consider a particular type of instance s-s-(s+1), which
means that the number of groups in each week is the same as the number of players
in the groups, and the number of weeks is equal to the number of groups within
each week plus one. Moreover, the number of weeks is maximized because s·s−1

s−1
=

s + 1. The specific properties of the instances of the form s-s-(s+1) enable us to
discover instance-specific constraints. Furthermore, we utilize observed patterns from
the relatively small instances to deduce more instance-specific constraints for the
instances of the form odd -odd -(odd+1) (henceforward, o-o-(o+1)), especially for the
form prime-prime-(prime+1) (henceforward, p-p-(p+1)), and the form even-even-
(even+1) (henceforward, e-e-(e+1)).

Before introducing the constraints, we first define submatrices of the matrix G

formed by removing the first row of G and selecting columns [j . . . (j + s− 1)], where
j must be divisible by s, i.e., j%s = 0.6 Thus, G has exactly s such (w − 1)×s
submatrices, each of which has w − 1 rows and s columns. The i-th submatrix of G
is denoted by GSi, where 0 ≤ i ≤ s-1 (cf. Table 5.3).

Week
Player 0 1 2 3 4 5 6 7 8 9 10 12 13 13 14 15 16 17 18 19 20 21 22 23 24

0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
2 1 2 3 4 5 2 5 1 3 4 3 1 4 5 2 4 3 5 2 1 5 4 2 1 3
3 1 2 3 4 5 3 1 4 5 2 2 5 1 3 4 5 4 2 1 3 4 3 5 2 1
4 1 2 3 4 5 4 3 5 2 1 5 4 2 1 3 3 1 4 5 2 2 5 1 3 4
5 1 2 3 4 5 5 4 2 1 3 4 3 5 2 1 2 5 1 3 4 3 1 4 5 2

Table 5.3: A solution of 5-5-6 expressed by groups. It can be converted to the solution
expressed by players easily. The submatrices GS1 and GS2 are written in red. (Table
adapted from [125, 124].)

6The % (modulo) operator yields the remainder from the division of the first operand by the
second.

80

5.1.4.1 7-7-8 etc.

For the instances of the form s-s-(s+1), every player must play with every other
exactly once since s ∗ s-1 is divisible by s-1. Thus, players whose number is greater
than s must meet every player whose number is less than s exactly once in every week
except the first week since the first row and the first s columns of the matrix G are
frozen by Equation (5.1) and (5.2). To put it another way, since the first s players,
in turn, are assigned to the first s groups after the first week and there are only s

groups within each week, all the rest of n-s players have to be assigned to these s

groups to avoid meeting the first s players more than once. Based on this analysis,
we place the following constraints on the columns of the matrix G:

∀(i∈I)∧(i′∈I)∧(i ̸=i′)∀j∈J (Gi,j ̸= Gi′,j)

I = {x ∈ Z| 0 < x < w} , J = {x ∈ Z| s ≤ x < n}
(5.8)

Constraint (5.8) states that starting with submatrix GS1 of the matrix G, every col-
umn in the matrix GSi (i ≥ 1) must be pairwise distinct, which can be implemented
by the allDifferent constraint (cf. Table 5.3). Therefore, all the possible values of
columns (column space) of the matrix GSi (i ≥ 1) is reduced from ss to s! by intro-
ducing the Constraint (5.8), which is a significant search space reduction.

In Section 5.1.3, we have presented Equation (5.1) to fix the first row of the
matrix G. We can also fix the second row of the instances of the form s-s-(s+1) for
the following reason. In Constraint (5.7), we have explained that s players assigned
in the same group in the first week cannot meet again in the subsequent weeks.
Besides, for the form s-s-(s+1), there are only s different groups, which implies that
the possible groups assigned to these s players must be a permutation of the set of
integers {1 . . . s}. Thus, every row of the submatrix GSi (i ≥ 1) is a permutation
of the set of integers {1 . . . s}. Moreover, arbitrary swapping two columns in the
submatrix GSi (i ≥ 1) leads to an isomorphism even when the first row of the matrix
G is fixed by Equation (5.1). Therefore, for the instances of the form s-s-(s+1), we
fix all the first rows of the submatrix GSi (i ≥ 1) with the array [1 . . . s] (cf. the
second row of Table 5.3), which can be expressed as:

∀j∈J (G1,j = j%s+ 1), J = {x ∈ Z| s ≤ x < n} (5.9)

Thus, the symmetries caused by renumbering players in the second row can be elim-
inated by imposing Constraint (5.9).

In summary, the model used to tackle 5-5-6, 6-6-7, and 7-7-8 consists of the con-
straints of the basic model and the additional constraints including Constraint (5.8)
and (5.9).

81

5.1.4.2 9-9-10

The additional constraints for 7-7-8 are insufficient to solve 9-9-10 within a reasonable
time since the size of the problem grows significantly. One possible way to tackle the
larger instance is to shrink the overall search space by imposing more instance-specific
constraints.

We considered the solutions of the 4-4-5, 5-5-6, and 7-7-8 instance and discover
that GS1 can always be a symmetric matrix, namely GS1 = GST

1 . Hence, we conjec-
ture that 9-9-10 can also have a symmetric submatrix and then impose the following
constraints on the decision variables G:

∀i∈I∀j∈J (Gi,j = G(j−s),(i+s))

I = {x ∈ Z| 0 ≤ x < w} , J = {x ∈ Z| s ≤ x < 2 ∗ s}
(5.10)

Constraint (5.10) states that the entries of GS1 are symmetric with respect to the
main diagonal. Besides, the main diagonal of the submatrix GS1 is pairwise distinct
for 5-5-6 and 7-7-8, given by:

∀i∈I∀j∈J (Gi,j ̸= G(i+1),(j+1))

I = {x ∈ Z| 0 ≤ x < w} , J = {x ∈ Z| s ≤ x < 2 ∗ s}
(5.11)

Apart from the fixed pattern of GS1, there is also a fixed pattern among the
submatrices of G. Because the second row has already been fixed by Constraint (5.9),
we can impose the allDifferent constraints on the subsequent rows for those players
who have played together in the second week since any two columns of G can only
have identical values in exactly one row (e.g., allDifferent(G3,5, G3,10, G3,15, G3,20) in
Table 5.3). These constraints are implied constraints and can be expressed as:

∀i∈I∀(j∈J)∧(j′∈J)∧(j%s=j′%s)∧(j ̸=j′) (Gi,j ̸= Gi,j′)

I = {x ∈ Z| 1 ≤ x < w} , J = {x ∈ Z| s ≤ x < n}
(5.12)

We also notice that for 5-5-6 and 7-7-8, there is always a type solution in which the
second row of GS1 is fixed by the array [2, s, 1, 3, 4, . . . , s − 1] (cf. the second row of
GS1 Table 5.3). We, therefore, assume that for 9-9-10 also exists such solution and
solve 9-9-10 by fixing the second row of GS1 with [2, 9, 1, 3, 4, 5, 6, 7, 8].

In conclusion, we solve 9-9-10 by adding Constraints (5.10), (5.11), and (5.12) to
the model of 7-7-8, as well as the fixed values for the second row of GS1.

82

5.1.4.3 13-13-14 etc.

We have discovered some common features of the instances of the form s-s-(s+1), par-
ticularly for the instances of the form o-o-(o+1) when expressing a solution by groups;
and these common features are mostly focused on the second submatrix GS1 of G. It
is also interesting to observe that the submatrix GSi, 1 < i < s, consists of s s-tuples
that are derived from the second submatrix GS1 on 5-5-6 and 7-7-9 but not from
9-9-10 (cf. Table 5.3). Simply put, the rest of submatrices can be obtained by inter-
changing rows of GS1 on these instances. Thus, we expect to solve larger instances
of the form p-p-(p+1) by restricting row space of the submatrix GSi (1 < i < s) to
the rows of the submatrix GS1. Formally:

PT = {(Gi,j, Gi,j+1, ..., Gi,j+s−1)| s ≤ j < 2 ∗ s ∧ 2 ≤ i < w ∧ i, j ∈ Z} (5.13)

(Gi,j, Gi,j+1, ..., Gi,j+s−1) ∈ PT, 2 ≤ i < w, 2 ∗ s ≤ j < n, j%s = 0, i, j ∈ Z (5.14)

where Constraint (5.13) defines the potential combination of values of columns of
GS1 as PT. Then we can limit the row space of the submatrices except GS0 and GS1

to PT by Constraint 5.14, which can be implemented by the table constraint. So the
question then is, how to find the submatrix GS1 that can lead to a solution of the
instance (e.g., 13-13-14).

To find the correct GS1, we create a separate model defined on an s×s matrix
(s must be a prime number), which comprises Constraints (5.10) and (5.11), and
the allDifferent constraint imposed on each row and each column of the matrix.
We also fix the first row and the second row with [1 . . . s] and [2, s, 1, 3, 4, . . . , s − 1]

respectively, as we did for the 9-9-10 instance. Incidentally, GS1 is a Latin square since
it is a s×s matrix filled with s distinct numbers and every row and column of the
matrix is all different. Moreover, for the last row (i = s−1) of GS1, starting with the
third element (j = 2) to the last element is fixed with the array [2, 1, 3, 4, 5, . . . , s−2].
Along with decrementing the row (i--), the element at the tail of the array is removed
and the starting position of the first element of the array incrementing (j++) until the
array is reduced to containing exactly one element {2}, as illustrated in Table 5.4.

Having this observed pattern and aforementioned separated model, we can obtain
exactly one GS1 for the instance of the form p-p-(p+1), and then utilize it as an input
for Constraint (5.14) with the model of 7-7-8 to solve 11-11-12 and 13-13-14. Note
that since GS1 has already initialized before solving process, we do not use the model
of 9-9-10 because it is redundant to impose Constraints (5.10), (5.11), and (5.12) on
the model.

83

1 2 3 4 5 6 7 8 9 10 11 12 13
2 13 1 3 4 5 6 7 8 9 10 11 12
3 1 4 5 6 7 8 9 10 11 12 13 2
4 3 5 6 7 8 9 10 11 12 13 2 1
5 4 6 7 8 9 10 11 12 13 2 1 3
6 5 7 8 9 10 11 12 13 2 1 3 4
7 6 8 9 10 11 12 13 2 1 3 4 5
8 7 9 10 11 12 13 2 1 3 4 5 6
9 8 10 11 12 13 2 1 3 4 5 6 7
10 9 11 12 13 2 1 3 4 5 6 7 8
11 10 12 13 2 1 3 4 5 6 7 8 9
12 11 13 2 1 3 4 5 6 7 8 9 10
13 12 2 1 3 4 5 6 7 8 9 10 11

Table 5.4: The second matrix GS1 for the instance 13-13-14. (Table reproduced from
[125, 124].)

5.1.4.4 8-8-9

So far, all the instances we have discussed conform to the form of o-o-(o+1). We
now consider the form of instances e-e-(e+1). The 8-8-9 is solved by the following
conjectures derived from 4-4-5 with the model for 7-7-8:

∀i∈I (Gi,(i+s−1) = 1), I = {x ∈ Z| 0 < x < w} (5.15)

∀(j ̸=j′)∧(i ̸=i′)∧(j/s=j′/s)∧(j%s+1=i)∧(j′%s+1=i′) (Gi,j ̸= Gi′,j′)

i, i′ ∈ {x ∈ Z| 0 < x < w} , j, j′ ∈ {x ∈ Z| 2 ∗ s < x < n} (5.16)

Constraint (5.15) states that the main diagonal of the matrix GS1 consists of the fixed
values [1,1,. . . ,1]; and the rest of submatrices have the main diagonal whose values
must be pairwise distinct (Constraint (5.16)).

Table 5.5 depicts the submatrix GS1 of the solution of 8-8-9 we solved. It is
interesting to observe that the GS1 matrix of 4-4-5 and 8-8-9 are composed of four
symmetric matrices. Moreover, we discover that their solutions also satisfy the Con-
straints (5.13) and (5.14), and it is still unclear whether or not the 10-10-11, 12-12-13,
and 16-16-17 instances share these common features with 4-4-5 and 8-8-9.7

7In Section 5.1.6.3, we will discuss the larger instances of the form e-e-(e+1), such as 10-10-11,
12-12-13, etc.

84

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 5 6 3 4 1 2
8 7 6 5 4 3 2 1

Table 5.5: The second matrix GS1 for a solution 8-8-9. (Table reproduced from
[125, 124].)

5.1.5 Instances Solved in Parallel

In the previous section, we have presented the instances that can be solved sequen-
tially via our modeling approach. We now turn to more difficult instances that must
deal with by way of parallel processing to obtain one solution. The difficult instances
(e.g., 7-3-10) refer to no fixed pattern discovered so far, which implies no instance-
specific constraints to shrink search space for these instances and hence there are
large search spaces even for relatively small size.

Our idea is to partition the search tree of the SGP into independent subtrees;
then each worker that is associated with a thread works on distinct subtrees using
the same CP model. Thus, this approach can be classified as data-level parallelism
based on the taxonomy for parallelism in applications from [93]. Furthermore, since
no communication is required during the solving process, to some extent, our parallel
approach can also be seen as Embarrassingly Parallel Search (EPS) [170]. The original
EPS approach is defined as decomposing the problem into many subproblems and
assigning the subproblems to workers dynamically [155]. By contrast, our parallel
approach differs from EPS due to the use of a separate model that is used to generate
the subproblems instead of Depth-bounded Depth First Search [170]. The generic
procedure can be summarized as follows:

1. A subset of the decision variables of the model is selected.

2. A separate model generates all the partial assignments over the selected vari-
ables in the subset before the search process.

3. The partial assignments are mapped to the workers so that each worker can
work on its own independent search space by using its constraint solver.

85

4. Once a solution is found, the worker that finds the solution notifies the other
workers to stop.

Step 1 is crucial to the search space splitting because it determines the subtrees ex-
plored by each worker. The selection of the subset of the decision variables adhere
to the following rules: First, they should be easy to generate by a separate model.
Second, each worker should not be assigned too many partial assignments because
one partial assignment might take a long time to evaluate for a large instance. Be-
cause of the usage of the separate model, the partial assignments are consistent with
the propagation (i.e., running the propagation mechanism on them does not detect
any inconsistency). Besides, the number of solutions of the separate model can help
us decide the workload of each worker and workload distribution. In the following
sections, we will gradually describe CP models for generating partial assignments for
search-space splitting and the constraints imposed on the basic model for the 6-3-8,
6-4-7, and 7-3-10 instances in detail.

5.1.5.1 6-3-8

The 6-3-8 instance is a representative example to illustrate the effectiveness of our
parallel approach for the SGP since the instances smaller than it can be solved quickly
and the instances bigger than it are difficult to be solved sequentially by constraint
solving (cf. the experimental results given in Section 5.1.6). When switching the target
instance from 5-3-7 to 6-3-8, the number of decision variables grows from 5∗3∗7 = 105

to 6 ∗ 3 ∗ 8 = 144, and the domain size of each variable is incremented by one for our
modeling approach, which indicates the overall underlying search space significantly
increased from 5105 to 6144 ≈ 4.6e38 if we do not take account of the search space
pruned by constraint propagation.

The idea behind the parallel approach is to freeze a part of the decision variables
so that the size of the subproblem is shrunk to solvable, thereby solving the original
problem. For the 6-3-8 instance, we select the second row of the matrix G for the
search space splitting since the first row of the matrix G is fixed by Constraint (5.1). A
separate model is used to generate the solutions for the second row of the matrix G

as the partial assignments for the search space splitting, which is composed of the
following constraints:

∀j∈J (Fj = j + 1), J = {x ∈ Z| 0 ≤ x < s} (5.17)

GCC(F, V,O), V = [1, . . . , g]

∀k∈K (ok ∈ O = [s, s]), K = {k ∈ Z| 0 ≤ k < g} (5.18)

86

∀(j ̸=j′)∧(j/s=j′/s) (Fj ̸= Fj′), j′ ∈ J (5.19)

∀j%s=0 (Fj ≤ F(j+s)) (5.20)

∀j/s=(j+1)/s (Fj < F(j+1)) (5.21)

where F is an array of decision variables for the separate model used to generate the
second row of the matrix G, and the domain of each variable is also {1 . . . g}. Con-
straints (5.17), (5.18), and (5.19) are identical to Constraints (5.1), (5.3), and (5.7)
stated in the basic model (see Sec. 5.1.3) respectively. Constraints (5.20) and (5.21),
which are not included in the basic model, are static symmetry breaking constraints.
Constraint (5.20) removes the symmetries caused by interchangeable submatrices GSi,
0 < i < s. We eliminate these symmetries by arranging the values assigned to the
first column of the first row of all the submatrices GSi in non-decreasing order. Please
refer to the numbers with superscript a in the second row of Table 5.6. Additionally,

Week
Player 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
1 1 a 2 3 1a 4 5 1a 3 6 2a 5 6 2a 4 5 3a 4 6
2 1 2 3 2a 1 3 3 4 6 5 6 4 6 2 5 1 4 5
3 1 2 3 3a 2 1 5 6 3 1 6 4 5 6 4 4 5 2
4 1 2 3 4a 3 5 6 5 2 6 3 1 1 6 4 2 4 5
5 1 2 3 4a 5 2 6 4 5 3 6 2 4 1 5 6 3 1
6 1 2 3 4a 5 6 2 5 1 5 4 3 6 3 2 6 1 4
7 1 2 3 4a 5 6 5 1 6 4 2 5 3 6 1 4 2 3

Table 5.6: A solution of 6-3-8 expressed by groups. (Table adapted from [125, 124].)

interchanging any two columns of a submatrix GSi generates a solution symmetrical
with the original one, which entails Constraint (5.21) to remove these symmetries.
Because of Constraint (5.21), the players played together in the first week must be in
ascending order of groups in the second week (cf. the second row of Table 5.6).

In addition to the constraints of the separate model, we also place the constraints
to break the symmetries caused by interchangeable weeks partially. The idea is to
restrict the groups of the 4th player in non-decreasing order from week two, given by:

∀i∈I (Gi,s ≤ G(i+1),s), I = {x ∈ Z| 0 < x < w − 1} (5.22)

Please note that Constraint (5.22) cannot fully remove the symmetries among weeks
because there are still symmetries whenever Gi,s = G(i+1),s. For example in Table 5.6,
interchanging the 6th week with 7th week results in a symmetrical solution.

Finally, 424 solutions for the second row of the matrix G generated by the above
model are equally distributed to each worker that runs the basic model.

87

5.1.5.2 6-4-7

The separate model described in the previous section produces 351 solutions for the
second row of 6-4-7, compared to 424 for 6-3-8. However, 6-4-7 is much harder than
6-3-8 due to increased search space (6168

6144
= 624 ≈ 4.7e18). Thus, we add the following

constraints based on the separate model for 6-3-8 to produce less number of solutions
for the second row of 6-4-7:

∀j∈J (Fj+1 ≤ Fj+s+1)

J =
{
j ∈ Z| 0 ≤ j < n− s ∧ j%s = 0 ∧ j = (s− 1) ∗ s⇒ j + s ̸= s2

}
(5.23)

∀j∈J (Fj+1 = Fj+s+1 ⇒ Fj+2 ≤ Fj+s+2) (5.24)

∀j∈J (Fj+1 = Fj+s+1 ∧ Fj+2 = Fj+s+2 ⇒ Fj+3 ≤ Fj+s+3) (5.25)

In short, Constraints (5.23)-(5.25) ensure that the values occupying the same posi-
tions in the first row of the first s submatrices (GS0, GS1, GS2, GS3) and the last two
submatrices (GS4, GS5) are in non-decreasing order respectively (see Table 5.7). The
reason why the submatrices are divided into two groups is that numeral 1 always
takes up the first row of the first column in the first s submatrices due to the restric-
tions from Constraint (5.20) and (5.21). Thus, if a constraint enforces G1,13 ≤ G1,17,
the solution shown in Table 5.7 will not be obtained. These additional constraints
also reduce search space by removing symmetries. For example, if we do not impose
Constraint (5.23) on the separate model, a second row such as [1 2 3 4 1 4 5 6 1 2
3 4 1 4 5 6 2 3 5 6 2 3 5 6] will be generated. In that case, we will require more
workers to work on these symmetrical search spaces.

Week
Player 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 1 a 2 b 3 c 4 d 1a 2b 3c 4d 1a 4b 5c 6d 1a 4b 5c 6d 2e 3f 5g 6h 2e 3f 5g 6h

2 1 2 3 4 2 4 6 5 5 3 6 1 6 2 4 5 3 4 1 2 5 1 3 6
3 1 2 3 4 3 6 4 5 4 2 1 3 6 1 5 2 5 1 2 6 3 6 4 5
4 1 2 3 4 4 6 1 2 3 5 2 6 5 6 3 1 1 5 4 3 5 2 6 4
5 1 2 3 4 6 3 5 1 2 6 3 4 4 5 6 3 4 2 5 1 5 6 1 2
6 1 2 3 4 6 1 2 3 5 1 4 2 3 5 2 6 5 6 3 4 4 5 6 1

Table 5.7: A solution of 6-4-7. The numbers with the same superscript are in non-
decreasing order in the second row. (Table adapted from [125, 124].)

Having executed the separate model for obtaining the possible second row, we
can evenly distribute the 48 solutions of it to different workers before solving pro-
cess. Then, to solve the 6-4-7 instance, we further reduce the search space by adding

88

the following constraints onto the basic model:

∀j∈J (GCC(G∗,j, V, O))

J = {j ∈ Z| s ≤ j < 3s} , V = {v ∈ Z| 1 ≤ v ≤ s}

O = {(o0, o1, . . . , oi)|i < s, ∀oi = [1, 1]} , 0 < ∗ < w

(5.26)

where G∗,j denotes the columns from the s th column to the (3s-1)th column of the ma-
trix G with removed first element. More particularly, every value in the set {1, 2, 3, 4}
can appear only once in all the columns of the submatrices GS1 and GS2. We impose
Constraint (5.26) on only the columns of GS1 and GS2 because each player only plays
with other 21 players since (24− 1)%(4− 1) = 2; thus not every column contains the
set {1, 2, 3, 4}. Though Constraint (5.26) does not enforce all columns containing the
values {1,2,3,4}, it reduces much search space; our experiments show that we cannot
solve 6-4-7 without these constraints.

5.1.5.3 7-3-10

The 7-3-10 instance is much more difficult than 6-4-7 and 6-3-8 due to more variables
and larger domain size, we must harness more instance-specific constraints, which are
given by:

∀i∈I (Gi,s = i+ 1), I = {i ∈ Z| 0 < i ≤ s} (5.27)

∀i∈I′ (Gi,s = s+ 1), I ′ = {i ∈ Z| s+ 1 < i < 2} (5.28)

GCC(G∗,(s+1), V, O), 0 < ∗ < w, V = [1, 2, 3, 6, 7], OCC = [1, 1, 1, 0, 0]

∀j∈J (oj ∈ O = [OCCj, OCCj]), J = {j ∈ Z| 0 ≤ j < 5 = |V |} (5.29)

GCC(G∗,(s+2), V
′, O′), V ′ = [1, 2, 3, 6], OCC ′ = [1, 1, 1, 0]

∀j′∈J ′ (o′j′ ∈ O′ = [OCC ′
j′ , OCC ′

j′]), J ′ = {j′ ∈ Z| 0 ≤ j′ < 4 = |V ′|} (5.30)

∀s+s≤j<n (GCC(G∗,j, V
′′, O′′)), V ′′ = [1, . . . , s]

∀j′′∈J ′′ (o′′j′′ ∈ O′′ = [1, 1]), J ′′ = {j′′ ∈ Z| 0 ≤ j < s = |V ′′|} (5.31)

We strictly limit the positions of player 3 so that he/she will never be assigned to
groups 5, 6, and 7. The reason is that player 3 must meet players 0, 1, and 2 in the
first week, and the groups of the first three (s) players are frozen by Equation 5.2
after the first week, which implies that player 3 must stay in the first three groups
from week 2 to week 4. Hence, player 3 can only play in the groups that are greater
than or equal to 4 (s+1) from week 4. Moreover, player 3 is always the smallest
player number starting from the 9th column of a solution (cf. Table 5.1). Therefore,

89

player 3 cannot appear in groups 5, 6, and 7, and only stay in group 4 from week
4. Consequently, the 4th column of Table 5.2 is the result by imposing Constraint
(5.27) and (5.28). These two constraints not only shrink the search space but also
remove the symmetries caused by swapping the group containing player 3 with other
groups after week 3.

Since player 3 can only play in group 4 after week 3, player 4 is impossible to stay
in groups 6 and 7, because then there will be no player assigned in group 5. Similarly,
player 5 cannot appear in group 7 and can only appear in group 6 once. Thus, we use
Constraints (5.29) and (5.30) to limit the number of occurrences of the values 6 and
7.

Furthermore, because (21-1)%(3-1) = 0, each player must play with other players
exactly once. Hence, we guarantee the first s players must meet the rest of players
once, which are ensured by Constraints (5.29), (5.30), and (5.31). Incidentally, Con-
straint (5.31) can be applied to any full instance that satisfies (n-1)%(s-1) = 0 in
our modeling approach (e.g., 7-4-9).

In the implementation of parallelism for 7-3-10, we also use the same separate
model as the model for 6-4-7 and we can generate 5,953 solutions of the second row.

5.1.6 Experiments

In this section, we report the experimental results on instances discussed in Section
5.1.4 and Section 5.1.5 separately since different hardware were used.

5.1.6.1 Experimental Results on Instance Solved Sequentially

To confirm our theoretical discussion and the conjecture for the instances discussed
in Section 5.1.4, we implemented the basic model as described in Section 5.1.3 and
the instance-specific constraints in Section 5.1.4 via the Choco Solver 4.0.6 [165] with
JDK version 10.0.1. All experiments were performed on a laptop with an Intel i7-
3720QM CPU, 2.60GHz with 4 physical and 8 logical cores, and 8 GB DDR3 memory
running Linux Mint 18.3.

Table 5.8 summarizes the experimental results on the instances solved sequentially,
including the total CPU time, the number of visited nodes, backtracks, and fails. It
also provides search strategies we used. By using our approach, we were able to prove
the nonexistence of the solution of 6-6-7 and solved six open instances for constraint
satisfaction approach but not for metaheuristic approach [46].

90

Instance Time(s) Nodes Backtracks Fails Strategy
5-3-7 0.095 111 179 94 dom
5-5-6 0.069 7 1 0 min
6-6-7c 25 1.38e5 2.77e5 1.38e5 min
7-7-8c 111 3.62e5 723e5 3.62e5 min
8-8-9c 12 15,370 30,680 15,350 min
9-9-10c 2559 2.08e6 4.16e6 2.08e6 min

11-11-12c 62 3,150 6,279 3,144 min
13-13-14c 2563 5.80e4 1.16e5 5.79e4 min

Table 5.8: Results on the s-s-(s+1) Instances. A superscript “c” means that the in-
stance was open for the constraint satisfaction approach; “dom” and “min” denote the
predefined search strategies domOverWDegSearch and minDomLBSearch in Choco
Solver, respectively. (Table reproduced from [125, 124].)

5.1.6.2 Experimental Results on Instance Solved in Parallel

To validate our parallel approach for the SGP, we switch to a computer with 250
GB DDR3 1066 memory and 4 Intel Xeon CPU E7-4830 2.13GHz processors running
on Linux CentOS 6.5, where each processor has 8 physical cores. The versions of
Choco Solver and the JDK are unchanged. Table 5.9 reports the experimental results

Instance Workers Time(s) Nodes Backtracks Fails Strategy

6-3-8c
1 2.95e4 2.91e8 5.83e8 2.91e8 min
8 50.2 2.09e5 4.18e5 2.09e5 min
16 2.62e4 2.50e8 5.13e8 2.31e8 min

6-4-7f 1 - - - - min
48 8.59e3 1.66e7 3.32e7 1.66e7 min

7-3-10f 1 - - - - dom
32 7.61e4 1.86e8 3.73e8 1.86e8 dom

Table 5.9: Results on the Instances solved in parallel. A superscript “f” means that
the instance is solved by computer for the first time. A “-” sign means the program
was still running after a period which is equal to the number of workers multiplied
by the execution time in parallel. (Table adapted from [125, 124].)

for comparing parallel and sequential execution when using the same model to solve
the same instance. For parallel execution, the number of workers we used varies from
instance to instance. For 6-3-8, we specified 8, 16 and 32 workers to execute in parallel,
but super-liner speedup was only observed when using 8 workers, because the partial
assignment that can lead to a solution does not happen to be evaluated first.

Then, for 6-4-7, we used 48 workers because there are only 48 solutions generated
by the separate model. Finally, the result of 7-3-10 is given by selecting the first 8

91

solutions of the separate model, and every solution is allocated to 4 different work-
ers, each of which employs their respective search strategies that are predefined in
Choco Solver, including minDomUBSearch, minDomLBSearch, defaultSearch and do-
mOverWDegSearch. Besides, we also performed three more experiments in which the
separate model was specified with above mentioned search strategies. As a conse-
quence, the first 8 solutions are different from the first experiment, and we obtained
three more non-isomorphic solutions for the 7-3-10 instance. The solutions of the in-
stances in Table 5.9, which are not given in the main body of this thesis, are provided
in Appendix A.

5.1.6.3 Discussion

It is interesting to observe the results for the instances of the form s-s-(s+1) (s =

{5, 7, 8, 11, 13}) consisting of s-1 mutually orthogonal s×s Latin squares (cf. GS1,
GS2, GS3, and GS4 of Table 5.3).8 The results of these instances are consistent with
the basic correspondence of affine planes and Latin squares, which proves that there
exist n-1 mutually orthogonal Latin squares (MOLS) of order n iff there exists an
affine plane of order n [157, 12], i.e., there are affine planes of order 5, 7, 8, 11, and
13. It is also not difficult to relate no solution for 6-6-7 to no MOLS of order 6 [14].
And we argue that the solution of 10-10-11 is nonexistent because there is no set of 7
or more MOLS of order 10 [135] and thereby no affine plane of order 10 [111]. More
generally, we speculate that the solutions for the form np-np-(np+1) (e.g., np = 14,
21, 22, 30, 33) do not exist because of the nonexistence of projective planes9 for them
according to the Bruck-Ryser-Chowla theorem [12], where np ≡ 1 or 2 (mod 4) and
the square-free part of np contain at least one prime p ≡ 3 (mod 4).10 Moreover, the
12-12-13 instance is hard for the CP approach, which corresponds to searching an
affine plane of order 12 — an unsettled case [3].

In addition to the results of the instances, we also show that more instance-specific
constraints can shorten the execution time even if the size of instances increases. For
example, 11-11-12 took much less time than 9-9-10 since more constraints are posted.
The experimental results also show that parallel constraint solving through search
space splitting is a very effective means to prevent backtrack search from getting stuck

8Two Latin squares are mutually orthogonal if, they have the same order n and when super-
imposed, each of the possible n2 ordered pairs occur exactly once. Leonhard Euler (1707-1783)
famously conjectured that there does not exist two orthogonal Latin squares for any oddly even
number n ≡ 2 (mod 4). However, in 1959, Bose & Shrikhande disproved Euler’s conjecture by
showing that there exist at least two orthogonal Latin squares for all n > 6 [24, 23].

9An affine plane of order n exists iff a projective plane of order n exists.
10For instance, 14 = 2 ∗ 7 ≡ 2 (mod 4), and the primes in the square-free part are 2 and 7.

92

into a fruitless search area. Without surprise, the superlinear speedup was observed
since only one invalid partial assignment is enough to cause instances such as 6-4-7 to
be unsolvable for sequential solving and one valid partial solution can easily lead to
backtrack search into a search area with a solution. Note that observed superlinear
speedups are not in contradiction with Amdahl's law since our goal is to obtain a first
solution instead of all solutions.

5.1.7 Related Work

There is a substantial body of work available on symmetry breaking for the SGP from
the constraints community, including model reformulation, static symmetry breaking
constraints, and dynamic symmetry breaking.

5.1.7.1 Methods from the CSP Literature

Smith [193] presented the integer set model with extra auxiliary variables that au-
tomatically eliminates the symmetries inside of groups, which is probably one of the
first works that break the symmetry of the SGP via model reformulation. Besides,
symmetry breaking during search (SBDS) with symmetry breaking constraints is em-
ployed to break renumbering symmetry but not entirely, where SBDS is essentially a
search space reduction technique that adds constraints to remove symmetrical search
space during search. Law & Lee [113] developed the Precedence constraint to break
the symmetries of groups inside of weeks for the integer model and the symmetries
caused by renumbering players for the set model. Symmetry breaking via dominance
detection (SBDD), another dynamic symmetry breaking technique, was developed
separately by Focaci & Milano [53] and by Fahle et al. [49, 63]. The main idea of
SBDD is to utilize nogood learning to avoid exploring search space that is symmetri-
cal of previously explored nodes recorded on the nogoods. By using SBDD, Fahle &
Milano discovered seven non-symmetric solutions for the 5-3-7 instance in less than
two hours on a computer with an UltraSparc-slowromancapii@ 400 MHz processor.

Barnier & Brisset [13] proposed SBDD+ for the SGP, which computes isomor-
phisms not only for leaves of the search tree but also on current non-leaves nodes. The
experimental results showed that SBDD+ only took around eight seconds to compute
all the seven non-symmetric solutions for 5-3-7, which is a significant improvement
compared with [49]. However, they also pointed out that SBDD+ has to tackle the
explosion of node store and the time overhead due to nodes dominance checking for a
larger instance. Puget [166] combined SBDD with symmetry breaking using stabiliz-
ers (STAB) to obtain a solution of 5-5-6 in 38 seconds on a laptop with a Pentium M

93

1.4 GHz processor, where STAB is a variant of SBDS that adds symmetry breaking
constraints without changing specified partial assignment.

All of the above mentioned works aim at eliminating the symmetries of the SGP,
which is the first difficulty mentioned in Section 5.1.2.1. To tackle the second difficulty,
Sellmann & Harvey [187] developed the vertical constraints and horizontal constraints
for propagation, which can check whether a given partial assignment is extensible
to a solution. They obtained all unique solutions of the 5-3-7 instance in 393.96
seconds on a computer with Pentium slowromancapiii@ 933 MHz processor by using
the dedicated constraints. However, the dedicated constraints are developed for the
original naive model, and no efficient algorithm for finding the players who have
conflicting residual graphs is given.

5.1.7.2 Methods from the Metaheuristic Literature

Despite having elegant and sophisticated search space reduction techniques such as
SBDS, SBDD, etc., the constraint satisfaction approach, a systematic search method,
cannot compete with the metaheuristic approaches on the SGP when the goal is to
obtain one solution instead of all non-symmetric solutions. Dotú & Van Hentenryck
[46] employed tabu search with a constructive seeding heuristic and good starting
points to achieve significant results on the instances of the form p-p-(p+1) (e.g. 43-
43-44, 47-47-48). Dotú & Van Hentenryck also solved 9-9-10 and 6-3-8 by using tabu
search with a good starting point in 0.01 second and 51.93 seconds on a computer
with Pentium slowromancapiv@ 3.06 GHz processor [47]. Besides, the 6-3-8 instance
was also solved by the evolutionary approach on a Pentium slowromancapiv@ 3.06
GHz processor [36]. Unfortunately, the total CPU time is not reported in [47].

Triska & Musliu [197] are the first to solve the 8-4-10 instance reported in the
literature, although one solution of 8-4-10 had already been published before [1] but
without any explanation. The idea behind their metaheuristic approach is to employ
a greedy heuristic for tabu search with the well-designed greedy initial configuration.
The first solution of 8-4-10 instance was obtained in 11 minutes on a computer with
an Intel Core 2 Duo 2.16 processor. Moreover, after varying the randomization factor
of the greedy heuristic, they obtained two new non-isomorphic solutions for 8-4-
10. In addition to the metaheuristic approach, they also explored a SAT encoding
for the SGP [198]. Unfortunately, their SAT encoding is not competitive with other
approaches.

Generally, solving the q-q-(w+2) instance of the SGP amounts to finding w MOLSs.
In addition to these approaches mentioned above that address the SGP head-on, Har-

94

vey & Winterer [90] exploited MOLS (in practice, mutually orthogonal Latin rectan-
gles (MOLR)) solutions found to construct solutions to the SGP. The most notable
instance they solved is 20-16-6, which indicates that this is probably the most effi-
cient method so far. However, no full instance g-s-w∗ was resolved since this method
heavily relies on the construction of MOLR.

5.1.7.3 Summary

Most of the research from the constraints community focus on search space reduc-
tion techniques, mainly dynamic symmetry breaking. The metaheuristic approach, by
contrast, aims at finding a first solution as quickly as possible. For example, the 6-3-8
instance could be solved within reasonable time via the metaheuristic approach but
not the constraint satisfaction approach. Note that the problem grows much faster
even from 5-3-7 to 6-3-8 than the performance boost out of the processors. Table
5.10 summarizes the main accomplishments in the SPG from the computer-science
community, including both the constraints and metaheuristics communities.

Instance Year Authors Method Description
4-3-4 2001 Smith [193] SBDS 42 solutions found

5-3-7 2001 Fahle & Milnano [49] SBDD 7 unique solutions in 2 h
5-3-7 2001 Barnier & Brisset [13] SBDD+ 7 unique solutions in 8 s
5-3-7 2002 Sellmann &Harvey [187] Specific Constraints 7 unique solutions in 394 s

5-5-6 2005 Puget [166] SBDD & STAB a solution in 38 s

20-16-6 2005 Harvey & Winterer [90] MOLR tabu search for MOLR

47-47-48 2005 Dotú et al. [46] Tabu-search efficient for p-p-(p+1)

6-3-8 2007 Dotú et al. [47] Tabu-search a solution in 52 s

8-4-10 2011 Triska & Musliu [197] Tabu-search 2 new unique solutions found

Table 5.10: The summary of the most significant results on the SGP from the
computer-science community. (Table adapted from [124].)

Finally, some instances that have not been solved by computer at present have
already been constructed by combinatorics (e.g., 7-4-9, 9-3-13). For a detailed intro-
duction, please refer to [39, 167].

5.1.8 Conclusion

In this section, we have presented a combination of techniques which allows us to find
solutions for nine open instances, where six of these instances are solved sequentially,

95

and three of these instances are solved in parallel. In particular, we have shown that
the constraints derived from the relatively small instances can be used to solve larger
instances that are in the same form as the smaller ones. In other words, we explore the
properties of the instances of the form s-s-(s+1) from the perspective of constraint
programming. Besides, we have also shown that it is not uncommon for solving the
SGP in parallel via search space splitting to gain superlinear speedups and parallel
solving the SGP can be an effective method to address the instances that cannot be
solved sequentially. The results show that our method is much more successful, even
if we consider that the computers used for the other methods are up to 10 times
slower than ours.

Unlike the earlier researches on the SGP which mainly focus on dynamic symmetry
breaking, we attribute the success of our approach to the effectiveness of the instance-
specific constraints and parallelism due to mitigating the two problems of solving the
SGP mentioned in Section 5.1.2.1. Specifically, the instance-specific constraints im-
posed on the second submatrix of the decision variables matrix prune a large number
of the sub-search trees near the root, including some symmetries. And since many
partial assignments are extended simultaneously, fruitless partial assignments have no
impact on overall execution time. Not only that, but search space splitting can result
in the partial assignments that can lead to a solution to be proceeded much earlier
than the sequential search, which is the reason for superlinear speedup. Furthermore,
we can conclude that early diversity brought by search space splitting before search
can effectively alleviate the strong commitment due to the early decisions made by
search strategy. Besides, we also remove the symmetries of the second row in the
decision variables matrix when generating the partial assignments, which is helpful
because nodes near the root contain much more symmetries than the nodes near the
leaves of the search tree [166]. Therefore, with mainstream computers turning into
parallel architectures, we believe that parallel constraint solving through search space
splitting is a promising approach to solving more significant instances of the SGP.

Indeed, there is still a lot of potential to improve the performance of our approach.
In particular, Constraint (5.22) is unable to eliminate the symmetries among weeks
after week s when solving 6-3-8, 6-4-7, and 7-3-10. In fact, we can resolve it by enforc-
ing the indices of the second “1” of all the weeks in ascending order, which means that
the second golfer assigned in the first group are in ascending order. Unfortunately the
performance is not satisfactory due to the use of the IfThen constraints or the Rei-
fied constraints. Besides, Constraints (5.5) and (5.6) introduce too many auxiliary

96

variables that inevitably slow down the resolution process; thus, we have also imple-
mented a specialized constraint to replace them. However, our constraint increases
the difficulty of variable-selection since the constraint requires an additional variable
to record the equality relationship among rows of the matrix G. To solve larger in-
stances, in addition to using more processors and discovering more instance-specific
constraints, we would like to consider combining the dynamic symmetry breaking and
parallel constraint solving for the SGP.

In the end, we must regretfully admit that even if we have made some progress,
some interesting instances are are still open (e.g. 7-4-9, 8-3-11, and 9-3-13); notably,
the original SGP 8-4-10 [89] is still unsolved for the CP approach, despite many
efforts from the constraint programming community. Constraint technology should
solve these instances to demonstrate itself as the first choice for solving combinatorial
problems.

5.2 Traveling Tournament Problem with Predefined
Venues

The Traveling Tournament Problem with Predefined Venues (TTPPV) is a practical
problem arising from sports scheduling. In this section, we describe two different
modeling approaches for this problem, each of which is suitable for different sizes
of instance. Besides, we present the details of how to exploit the EPS approach to
discover a feasible solution with much better objective value.

This section is a revised version of our previous work [122] and is organized as fol-
lows: Section 5.2.1 gives a short introduction to the TTPPV, Section 5.2.2 gradually
describes the first CP model and its parallelization with empirical results. Afterwards,
in Section 5.2.3, we present the second model, how to run this model in parallel and
the experimental results by comparing models. Next, we discuss and analyze the
experimental results in Section 5.2.4. Finally, we conclude in Section 5.2.5.

5.2.1 Introduction to the TTPPV

The Traveling Tournament Problem with Predefined Venues (TTPPV), i.e., problem
068 in CSPLib [160], was originally presented in [137] and seeks a compact single
round-robin schedule for a sports tournament that minimizes the total distance trav-
eled by all teams participating in the tournament. The Traveling Tournament Problem
(TTP) and the TTPPV have been studied in the constraint programming and integer
programming communities [107], where TTPPV is a special case of TTP by adding

97

predefined venues for each particular game. The predefined venues denote that the
home-away assignment of each game is known beforehand. Specifically, i.e., team A
plays against team B at team A’s home or B’s home is already determined before
the scheduling. The problem of scheduling TTP usually consists of two subproblems,
the construction of the timetable, which schedules that each team plays against other
teams in which round, and the home-away pattern (HAP) table that determines home
and away games for each team in each round. Hence, a complete scheduling of TTP
and TTPPV is composed of the timetable and the HAP. Moreover, since home-away
assignment rules out some HAPs that are incompatible with predefined venues, the
overall search space of TTPPV is much smaller than TTP for the same number of
teams.

Table 5.11 depicts a feasible solution of the TTPPV problem for eight teams,
consisting of a timetable and a HAP table. The timetable in Table 5.11 is an 8×8
square matrix in which each row denotes a schedule for a team (cf. the square matrix
beneath the horizontal line of Table 5.11). For instance, the entry in the 4th row
and 3th column of the matrix stands for team 4 must play against team 7 in round
3. Meanwhile, this game should also be indicated on the entry in the 7th row and
3th column of the matrix, i.e., team 7 must play against team 4 in round 3. A HAP
table in the TTPPV problem is a (0,1) matrix in which every entry is either 0 or
1. A home game and an away game are denoted by 1 and 0. The HAP table of the
feasible solution, namely an 8×7 (0,1) matrix, is superimposed on a submatrix of the
timetable consisting of the columns from the second column to the last column.11 For
convenience, we let a “∗” prefix denote an away game in Table 5.11, and thus no prefix
means a home game. For the example mentioned previously, team 4 is playing away
against team 7 in the third round, which implies that team 7 is playing home against
team 4 in the third round.

As already mentioned, the predefined venues consisting of home-away assignments
for a tournament have been determined before scheduling, which can also be expressed
as a (0,1) matrix. As an example, the home-away assignments for the problem de-
scribed above are defined in Table 5.12, the values 1, 0, and -1 of which denote a
home game, an away game, and no game, respectively.

We now formally define the problem. For a tournament with n teams, the timetable
in a feasible solution of TTPPV is an n×n matrix T with a fixed first column

11In the given example, the first and the second column are [1,2,3,4,5,6,7,8] and [7,4,5,2,3,8,1,6],
respectively.

98

Team

Round 1 2 3 4 5 6 7

1 7 ∗6 ∗5 4 3 ∗2 ∗8
2 ∗4 3 ∗8 ∗6 5 1 ∗7
3 ∗5 ∗2 6 8 ∗1 ∗7 4
4 2 5 ∗7 ∗1 8 6 ∗3
5 3 ∗4 1 7 ∗2 ∗8 6
6 8 1 ∗3 2 7 ∗4 ∗5
7 ∗1 ∗8 4 ∗5 ∗6 3 2
8 ∗6 7 2 ∗3 ∗4 5 1

Table 5.11: A feasible solution for a TTPPV problem with 8 teams.

Team 1 2 3 4 5 6 7 8
1 -1 0 1 1 0 0 1 0
2 1 -1 1 0 1 0 0 0
3 0 0 -1 1 0 1 0 1
4 0 1 0 -1 1 1 0 1
5 1 0 1 0 -1 1 1 0
6 1 1 0 0 0 -1 1 1
7 0 1 1 1 0 0 -1 0
8 1 1 0 0 1 0 1 -1

Table 5.12: The predefined venue data for the problem shown in Table 5.11.

[1, . . . , n]. An element of the matrix T must satisfy the following property12:

∀i,j,k∈Z, 1 ≤ i ≤ n, 2 ≤ j ≤ n, 1 ≤ k ≤ n, Tij = k ⇐⇒ Tkj = i (5.32)

where Tij is an opponent variable which means that team i has to play against the
team assigned to variable Tij in round j. Index j starts at 2 because the first column
(j = 1) denotes teams [1, . . . , n]. Property (5.32) states that if the opponent of i in
round j is k then the opponent of k in round j must be i. Furthermore, each row of T
takes on distinct values from {1, . . . , n} because no team would play against another
team more than once, given by:

∀i,j,j′∈Z, 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ n, Tij ̸= Tij′ (5.33)

We denote the HAP table of a timetable as an n×(n− 1) matrix H. An element of
HAP is denoted by Hij, the matrix H has the following property:

∀i,j′∈Z, 1 ≤ i ≤ n, 1 ≤ j′ ≤ n− 1, Hij′ ∈ {0, 1}, Hij′ ⊕HTi(j′+1)j
′ = 1 (5.34)

12For brevity’s sake, the index of an array starts from 1 in Section 5.2.

99

The above property means that if team i has to play against team Ti(j′+1) away in
round j′ + 1, then team Ti(j′+1) is playing against team i at home in the same round,
and vice versa. Please note that in a feasible solution the HAP table must overlap
the timetable by starting at its second column; therefore, the number of columns
of HAP is n − 1. The HAP table of a feasible solution must meet two conditions,
given by the original problem description in [137]: First, the number of home games
and the number of away games must be equal or differ by one for each team, which
is the balance condition for TTPPV. Second, the consecutive condition is that the
number of consecutive away games or home games for each team cannot exceed a
fixed value.

The traveling distance of a team is calculated in the following way: First, for a
single away game, the team travels to and from the venue of the opponent. Second,
for a sequence of consecutive away games, the team travels from the venue of one
opponent to that of the next, without returning home. Following [160], the distance
between any two team i and j is defined as:13

∀i,j∈Z, i ≥ j, dij = dji = min(i− j, j − i+ n) (5.35)

5.2.2 Modeling the TTPPV Based on Perfect Matching (The
First Model)

In this section, we present and compare our first model with another model from the
literature [161] in an empirical approach. A CP model for TTPPV problem can be di-
rectly derived from its problem definition as we have stated in the introduction. There-
fore, in [161, 212], Properties (5.32) and (5.34) are guaranteed by the element(v,T,i)
constraint, which ensures that value v is assigned to the i th variable in an array of
variables T. Because the value of Tij cannot be determined when modeling, one must
employ the ifThen constraint or the reified constraint combined with the element con-
straint to express Property (5.32). Similarly, to ensure Property (5.34), the element
constraint and the reified constraint may be used together again since Property (5.34)
depends on Property (5.32). However, our observations on Choco solver show that
these constraints are likely to slow down the resolution process of CSPs. Thus, we
present an alternative modeling approach to avoid using these constraints.

13Note that we could use a matrix that predefines the real distances between teams. Equation
(5.35) is just a possible way to define the distances between teams and has no particular meaning.

100

5
6

1 5 7
2 6 → 8
3 7 1
4 8 2

3
4

2
1

1 2 5
3 5 → 6
4 6 3
7 8 4

8
7

8
7

1 8 6
2 7 → 5
3 6 4
4 5 3

2
1

Figure 5.1: A conversion from solutions generated by the model to the potential
values of columns of T , the number of teams is 8. (Figure reproduced from [122].)

5.2.2.1 A Model for Perfect Matching

In order to avoid using the ifThen constraint and the element constraint, we use
another model to generate the potential combination of values of columns of the
matrix T . The idea behind the model is to generate all possible matches of the n

teams directly. Then, we convert the results of the model to possible columns of the
matrix T . The variables of this model are defined as an n

2
×2 matrix P in which each

row denotes a match between two teams. The model can be expressed as:

∀i,i′,j,j′∈Z, 1 ≤ i ≤ i′ ≤ n

2
, 1 ≤ j ≤ j′ ≤ 2

∀(i ̸=i′)∨(j ̸=j′), Pij ̸= Pi′j′ (5.36)

∀((i<i′)∧(j=j′=1))∨((i=i′)∧(j<j′)), Pij < Pi′j′ (5.37)

Constraint (5.36) guarantees all elements in P are pairwise distinct, which can be
implemented by the allDifferent constraint. Then, Constraint (5.37) ensures that
both the first column and each row of P must be in ascending order, which can be
enforced by the arithm constraint. With 8 teams (i.e., n = 8) we exemplarily show 3
solutions generated by this model depicted on the left side of every arrow in Figure 5.1
(the overall number of solutions generated by this model for 8 teams is 105).

The above model generates all possible games ensured by Constraint (5.36), and
rules out all the isomorphisms realized through Constraint (5.37), which is a static
symmetry breaking constraint. If we treat every row of a solution of the model as
an edge of a graph and the two values in each row as two vertices, each solution
of the model can be viewed as a perfect matching for the complete graph with
n vertices. Thus, the number of solutions of the model is equal to the number of
perfect matchings for a complete graph with n vertices, which can be calculated
Np =

∏n/2
k=1 (

2k
2)/(n/2!), where n must be even. Nevertheless, the solutions of the model

101

cannot be used directly as the potential values of columns of T . Therefore, we must
convert each solution of the matrix P for the model to an array A with length n, as
shown in Figure 5.1. The transformation rule for a solution of the model to the array
can be stated as:

∀i∈Z, 1 ≤ i ≤ n

2
, APi1

= Pi2, APi2
= Pi1 (5.38)

where A is the array starting at 1 to n. For each solution of the model, the transfor-
mation assigns Pi2 (Pi1) to the element with index Pi1 (Pi2) in the array A that is a
potential solution of columns of timetable T . For example, for the leftmost solution
in Figure 5.1, A[1]=5, A[5]=1, and A[2]=6 etc. Afterwards, an element of array A is
the opponent of the team which is the index of the element. Finally, all solutions of
the model (e.g., 105 for n = 8) are stored into tuples denoted with TP .

5.2.2.2 A Model for the Timetable

After obtaining the tuples (TP) filled with all arrays converted from the perfect
matchings, the constraint imposed on each column of the matrix T can be stated as:

{(T1j, T2j, ..., Tnj) | j ∈ Z, 2 ≤ j ≤ n} ⊆ TP (5.39)

Constraint (5.39) and Property (5.33) can codetermine the feasible solutions of the
timetable without the involvement of constraints imposed by Property (5.32). The
implementation of the model utilizes the table constraint specified with TP to limit
possible combinations of values for each column of T other than the first column.

5.2.2.3 Experimental Results

Before elaborating the entire model for TTPPV, we would like to first compare the
part of our model completed so far with the corresponding parts of the model pre-
sented in [161, 212]. In this section, all the models were implemented in Choco Solver
4.0.6 [165] with JDK version 9.0.4 and all experiments were performed on a com-
puter with an Intel i7-3720QM CPU, 2.60GHz and 8 GB DDR3 memory running
Ubuntu 17.10. Both models are used to generate timetables of n teams satisfying
Properties (5.32) and (5.33). Note that there is no HAP table being generated in
this comparison; therefore, it is not problem-specific and requires neither predefined
venues nor distances between these predefined venues.

102

Instances Solutions Time (s) Nodes/s
n=8 15,724,800 (147, 2062) (214521, 15671)
n=10 15,724,800 (193, 3863) (163849, 9037)
n=12 15,724,800 (238, 7326) (133194, 4928)
n=14 15,724,800 (314, 17470) (101161, 2035)

Table 5.13: The comparison between our timetable model and the timetable model
presented in [161]. The data in parentheses separated by commas were calculated by
our model (left) and the model of [161] (right) respectively. (Table reproduced from
[122].)

Table 5.13 reports the execution times for generating 15,724,800 timetables from
n = 8 to n = 14.14 Our model outperformed the model presented in [161] for all the
listed instances in the table in terms of execution time (s) and node processing speed
(nodes/s). Moreover, the advantage becomes more obvious with each increase in the
size of the instance.

5.2.2.4 A Complete Model

We are now going to present a complete model for TTPPV. Having calculated the
number of perfect matchings Np, we can derive the upper bound of the overall search

space for the complete model, given by (Np
n−1)
2

. As mentioned, the first column of the
matrix T is always fixed with [1, . . . , n]. Thus, the number of combinations of the rest
of n− 1 columns from Np possible columns is

(
Np

n−1

)
and can be reduced by half due

to the symmetries reflected in the horizontal axis. Nevertheless, this upper bound is
not tight enough because each row of the timetable must take on the distinct values
from {1, . . . , n}, required by Property (5.33). Moreover, if the variables representing
timetable and HAP table are tied together and evaluated simultaneously, restrictions
imposed on the HAP table can also rule out some unqualified timetables. For instance,
the timetable which results in a HAP table with more than 3 consecutive away games
are filtered out. The predefined venues and the round information (values assigned
to a column of the timetable) together determine the home-away pattern for the
round, and both of them are available after executing the model that generates all
perfect matchings presented in Section 5.2.2.1. Therefore, we are able to construct the
potential values of columns composed of the round information and its home-away
pattern together for the complete model.

14The total number of solutions for instance n=8 is 15,724,800. For the larger instances, the total
number of instances are much greater than 15,724,800, we still use it for the convenience of comparing
two models.

103

In light of these considerations, we define the decision variables of the complete
model as an 2n×(n − 1) matrix C with integer variables, where the first n rows of
the matrix represent the timetable, each of which has domain {1, . . . , n} and the last
n rows of the matrix represent the HAP table, each of which has domain {0, 1}.

We have elaborated how to generate the potential values of columns for timetable
matrix T in Section 5.2.2.1. For the complete model, we also generate the potential
values of columns for the matrix C. For instance, potential values of a column for the
matrix C for 8 teams could be [2 1 6 5 4 3 8 7 0 1 1 1 0 0 0 1] in which the first
8 elements are the opponents of teams [1, . . . , 8] in a round and the last 8 elements
are the home-away assignments for the corresponding games. Since the first n rows
of the matrix C stand for a timetable, we use the solutions generated by the perfect
matching model and the transformation rule defined in Constraint (5.38) to obtain
the potential values of the first n rows of the columns for the matrix C. We rewrite
Constraint (5.38) since the length of the array is changed, given by:

∀i∈Z, 1 ≤ i ≤ n

2
, A′

Pi1
= Pi2, A′

Pi2
= Pi1 (5.40)

where the length of the array A′ is 2n. In addition, the last n rows of the columns
for the matrix C are home-away assignments with the corresponding teams decided
by Constraint (5.40) and predefined venues. The last n elements of the array A′ are
defined by:

∀j∈Z, n ≤ j ≤ 2n, A′
j = PV(j−n)A′

j−n
(5.41)

where PV is the predefined venue table (see for example Table 5.12) in which each
element at row i′ and column j′ is a home-away assignment ({0, 1}) for team i′ and
team j′. Hence, any last n element A′

j is the home-away assignment for the team A′
j−n

and team j − n which are calculated by Constraint (5.40).
Having defined Constraints (5.40) and (5.41), all solutions of the perfect matching

model are converted to arrays of length 2n with round information and home-away
assignments and these arrays are stored into tuples denoted with TPC. As with the
Constraint (5.39) for the timetable model, the constraint imposed on each column of
the matrix C can be stated as:

{(C1j, C2j, ..., Cnj) | j ∈ Z, 1 ≤ j ≤ n− 1} ⊆ TPC (5.42)

As a result of Constraint (5.42), Properties (5.32) and (5.34) can be satisfied simul-
taneously and the ifThen constraint and the element constraint are avoided.

104

Additionally, since a feasible solution and its reversed solution have the same cost
function value, we can shrink the search space through static symmetry breaking by
adding a simple constraint, given by:

C11 < C1(n−1) (5.43)

After applying Constraint (5.43), the search space is reduced by half.
For the consecutive condition required by the HAP table (i.e., a fixed upper bound

for the number of consecutive away games or home games for every team), the regular
language membership (regular) constraint is used here to impose on the last n rows of
G. We also use the small DFA presented in [161] as the input of the regular constraint
to filter out the set of bit strings that contain more than two consecutive 0 or 1 for
the last n rows of C.

In summary, the complete model is composed of Constraints (5.42), (5.43), the reg-
ular constraint mentioned in this section, and the constraints imposed by Prop-
erty (5.33).

5.2.2.5 Executing the Complete Model in Parallel

The EPS approach is well-suited for solving the TTPPV problem in parallel since
disjoint partial solutions can be easily obtained before constraint solving and then
mapped to different workers. There are two basic kinds of EPS in terms of the map-
ping method for parallel computing. The static decomposition method implies that
a few subproblems for EPS are generated. In contrast, the dynamic decomposition
method splits the problem into a large number of subproblems during evaluation,
which ensures each worker has equivalent activity time. We use EPS with static de-
composition to accelerate the solving process of TTPPV because our goal is to obtain
a feasible solution with a better objective value and the problems are too large to
search exhaustively. The generic procedure can be summarized as follows:

1. A subset of the decision variables of the model is selected.

2. All the partial assignments over selected variables in the subset are generated,
which can be extended to a feasible solution of the TTPPV problem.

3. The partial assignments are mapped to the workers so that each worker can
work on its own independent search space by using its own constraint solver.

4. The last step is to merge the results calculated by each worker.

105

In order to run this model in parallel, we can obtain all candidate partial as-
signments before the problem-solving process. For n teams, we generate all possible
permutations of the set {2, . . . , n} in which the first element is less than the last
element due to the static symmetry breaking, as the partial assignments for the first
row of its decision variable matrix C. Then each worker receives the same number
of partial assignments, and also utilizes the table constraint with the received partial
assignments as its input tuples. By doing so, each worker can work on its own search
space by using the same model presented in Section 5.2.2.4, and therefore data-level
parallelism (see Section 2.2 for the definition of data-level parallelism) is achieved.

5.2.2.6 Experimental Results

In this section, we give results of our experiments on the complete model described
in Section 5.2.2.4 with different number of workers. The comparison between the
complete model and other models will be presented in Section 5.2.3.3.

Before running the models in parallel, we investigated the most suitable filter-
ing algorithms for the table constraints used to partition the search space and the
complete model (i.e., Constraint 5.42). The result shows that (FC,CT+) was the
best among all candidates algorithms on instance n=8, 10, and 12 for all numbers of
workers, where FC and CT+ stand for the forward checking [11] and compact-table
algorithm [44] for the table constraint.

Time(m)

Workers 1 2 4 8

1 (7.48e4,20982,166) (1.65e5,22409,166) (3.78e5,20390,162) (5.08e5,12511,162)
10 (1.16e6,20512,162) (2.68e6,21166,156) (5.19e6,17719,156) (6.48e6,10458,156)
100 (1.46e7,20665,156) (2.72e7,19333,154) (4.96e7,16582,154) (6.25e7,10081,152)
1000 (1.61e8,20324,154) (3.14e8,19231,154) (5.51e8,16044,152) (7.31e8,10438,152)

Table 5.14: The experimental results on instance n=10. (Table reproduced from
[122].)

We summarize the experimental results in Table 5.14 in which the parentheses of
each cell presents the number of feasible solutions, average node processing speed, and
optimal value when using different numbers of workers and execution time. Table 5.14
shows that the theoretical speedup can be achieved when running two or four complete
models in parallel. Moreover, the optimal values for the travel distance were improved
with additional workers involved.

106

5.2.3 An Advanced Modeling Approach for Larger Instances
(A Second Model)

In this section, we first present another modeling approach dedicated for larger in-
stance (n ≥ 14). Afterwards, we also exploit parallelism in solving these instances for
gaining speedup. The experiment results are also given.

5.2.3.1 An Advanced Model

The model presented in Section 5.2.2.4 (the first model) works well for small in-
stances (n < 12) since it sacrifices memory space to improve efficiency. However, it
suffers from memory usage explosion for large instances such as n ≥ 20. Thus, we
cannot bypass the ifThen constraint by using the first model. We improve the model
presented in [161, 212] that still involves the ifThen constraint and the element con-
straint. Therefore, due to the use of the ifThen constraint, the model presented in
this section (the second model) performs worse than the model presented in Sec-
tion 5.2.2.4 (the first model) when solving the small instances (n ≤ 14). However,
our model achieves better performance by more effective search space reduction. The
basic idea behind our improved model is to utilize the predefined venues when con-
structing timetables, that is, we filter out the timetables whose corresponding HAP
table does not meet balance condition and consecutive condition. Roughly speaking,
this model is also logically equivalent to the Properties (5.32), (5.33), and (5.34),
where Property (5.34) must rely on Property (5.32) as discussed previously.

Since we know predefined venue tables before modeling (e.g., Table 5.12), a set
of k consecutive opponent teams (tuples) whose corresponding HAP table does not
violate the consecutive condition can be generated directly for each team. Then, we
restrict that every k consecutive variables in the row of the timetable for a team must
take k consecutive values from its corresponding consecutive opponent teams. Any
allowed k consecutive opponent teams are composed of k− i values taken from away
set and i values taken from home set, where 1 ≤ i ≤ k − 1, and away set consists of
all away games for the team, otherwise home set. If every k consecutive variables in
each row (team) of matrix T (timetable) is assigned to allowed values, the timetable
satisfies the consecutive condition automatically. And the search space is reduced by
avoiding the timetables that do not satisfy the consecutive condition.

Example 1. Let us consider a predefined venue table as shown in Table 5.12. Team
1 has to play against teams {2, 5, 6, 8} away, {3, 4, 7} at home. Thus the sets {2, 5, 3},

107

Algorithm 3: Generate an array of allowed tuples
Input : n, k, arr2_PredefinedVenue
Output: Tuples[] arr_Tuples

1 Create lists list_AwaySet, list_HomeSet, sets_Permutations and
sets_AllowedSet;

2 for i← 1 to n do
3 for j ← 1 to n do
4 if arr2_PredefinedVenue[i][j]==0 then
5 add j to list_AwaySet;
6 if arr2_PredefinedVenue[i][j]==1 then
7 add j to list_HomeSet;
8 end
9 getAllAllowedSets(k, 1, list_AwaySet, list_HomeSet, sets_AllowedSet);

10 getPermutations(sets_AllowedSet, sets_Permutations);
11 forall permutation ∈ sets_Permutations do
12 add the permutation to arr_Tuples[i];
13 end
14 clear list_AwaySet, list_HomeSet, sets_AllowedSet,

sets_Permutations;
15 end
16 return arr_Tuples;

Algorithm 4: getAllAllowedSet(k,i,list_AwaySet,list_HomeSet,sets_AllowedSet)
Input : i, k, list_AwaySet, list_HomeSet, sets_AllowedSet

1 if i==k then
2 return;
3 sets_SubsetAway = getAllSubsets(list_AwaySet, k − i);
4 sets_SubsetHome = getAllSubsets(list_HomeSet, i);
5 forall set_Away ∈ sets_SubsetAway do
6 forall set_Home ∈ sets_SubsetHome do
7 add set_Away ∪ set_Home to sets_AllowedSet;
8 end
9 end

10 getAllowedSet(k, i+ 1, list_AwaySet, list_HomeSet, sets_AllowedSet);

{2, 5, 4}, {2, 5, 7}, {5, 6, 3}, {6, 8, 7}, and {8, 4, 7} etc. are the allowed values if the
maximal number of consecutive away games is 3 (i.e., k = 3).

We now present how to generate allowed consecutive opponent teams for each
team. Algorithms 3 and 4 depict how k consecutive allowed values for each team are
generated and added to an array of tuples when given a predefined venue table. In
lines 3–7 of Algorithm 3, list_AwaySet and list_HomeSet are created and added

108

the away set and home set for each team. In line 9, Algorithm 3 invokes the method
described in Algorithm 4 that recursively adds the sets into sets_AllowedSet, each
of which contains exactly k elements that are allowed for k consecutive variables of
the timetable. Afterwards, all permutations of each element in sets_AllowedSet are
obtained and stored by sets_Permutations in line 10. Finally, these permutations
are added to the tuple corresponding to the row (team) in line 12.

Algorithm 4 can only be invoked by Algorithm 3 and is a recursive method that
generates sets consisting of k − i values taken from a given away set and i values
taken from a given home set. The result sets for a given team, which is similar to
the sets shown in Example 1, are added to sets_AllowedSet on each recursive call in
line 7. When the base case is reached in line 1, sets_AllowedSet includes all allowed
set containing exactly k elements taken from both away set and home set.

Having the set of allowed values for each team generated by Algorithm 3, the
constraints imposed by the consecutive condition can be expressed as:

{(Tij, Ti(j+1), ..., Ti(j+k−1)) | i, j ∈ Z, 1 ≤ i ≤ n, 2 ≤ j ≤ n− k} ⊆ ALi (5.44)

where ALi stands for all the sets of k allowed consecutive values for team i, storing
in arr_Tuples[i] (cf. Algorithm 3). Note that in the above constraint j starts at 2
because the first column of any feasible solution of TTPPV always contains the fixed
values {1, . . . , n} in our model.

As already pointed out in [161], we also add implied constraints [192] to accelerate
resolution process without changing the set of solutions of the model. The implied
constraints for the model can be stated as:

∀i,i′,j∈Z, 1 ≤ i < i′ ≤ n, 2 ≤ j ≤ n, Tij ̸= Ti′j (5.45)

These implied constraints are the instances of the allDifferent constraint. As with
the first model (Section 5.2.2.4), the static symmetry breaking constraint is also
introduced:

T12 < T1n (5.46)

In summary, Constraints (5.44), (5.45) and (5.46), together with constraints en-
tailed by Properties (5.32) and (5.33), form the model used to tackle large instances
(n ≥ 12). With a balanced predefined venue table, a solution of the model is a feasible
solution of TTPPV.

109

5.2.3.2 Solving the Model in Parallel for Larger Instances

In Section 5.2.2.5, we have presented the approach to partition the overall search
space for the TTPPV problem. However, that approach cannot be applied to the large
instances model because of the following factors. First, it is impossible to generate
all the possible first rows (e.g., (18 − 1)! when n = 18) for a large instance in a
reasonable execution time. Second, it is impossible to store all the possible first rows
in memory because out of memory exceptions would occur. Thus, we generate all
possible assignments for elements starting at index 2 to k + 1 (0 < k ≤ n) in the
first row of T instead of the entire first row. As mentioned, we generate k consecutive
allowed values for each team and store them in sets_Permutations in Algorithm 3.
Thus, we decide to use the k consecutive allowed values of the first team to partition
the search space. For a worker with a unique ID, id, the k elements starting at index
2 to k + 1 in the first row (team 1) can be calculated as:

{(T12, T13, ..., T1(k+1)) | ∀i∈I , (Pi), T12 ̸= n}

I = {i ∈ Z | i mod #W = id}
(5.47)

where #W stands for the number of workers to be used, and id is the unique ID of
each worker with domains {0, . . . ,#W − 1}. And P is an array of tuples generated in
Algorithm 4 and storing k consecutive allowed values for team 1. To satisfy the static
symmetry breaking constraint, the variable T12 cannot be equal to n.

5.2.3.3 Experimental Results on the Large Instance Model

We first conducted a comparison of our first model (the model presented in Sec-
tion 5.2.2.4), the large instances model (the second model) and the model presented
in [161].

Instances Time(s) Solutions Optimum value Speed(n/s) Nodes
n=8 (9,42,115) (80822,80822,80822) (76,76,76) (36946,8739,4820) (3.56e5,3.69e5,5.59e5)
n=10 (300,300,300) (4.55e5,3.45e5,5.98e4) (162,164,168) (20675,6734,3796) (6.20e6,2.02e6,1.14e6)
n=12 (300,300,300) (7.21e4,3.57e5,1.00e5) (312,296,292) (15718,4758,1964) (4.72e6,7.13e5,5.89e5)
n=14 (300,300,300) (2.85e3,1.01e5,1.93e4) (508,490,502) (9883,3316,1795) (2.96e6,9.95e5,5.38e5)
n=16 (N/A,300,300) (N/A,3.3e4,2.79e3) (N/A,752,780) (N/A,2855,1658) (N/A,8.56e5,4.98e5)
n=18 (N/A,300,300) (N/A,4.05e4,8.18e3) (N/A,1140,1162) (N/A,1643,977) (N/A,4.93e5,2.93e5)
n=20 (N/A,300,300) (N/A,874,777) (N/A,1640,1566) (N/A,1085,929) (N/A,3.25e5,2.79e5)

Table 5.15: Comparison of the three models on different size of instances. The data
in parentheses separated by commas were calculated by the first model, the second
model, and the model of [161] respectively. N/A indicates that our first model cannot
handle the instance. (Table reproduced from [122].)

110

Times(m) # workers # feasible solutions processing speed objective value

1

1 7545 1711 1154
2 8026 1576 1130
4 8856 1131 1130
8 4652 685 1116

10

1 7.60e4 1717 1138
2 9983 2114 1128
4 70702 1229 1104
8 34213 595 1100

100

1 65e5 1562 1128
2 2.05e5 1866 1104
4 2.51e5 1248 1102
8 7.03e5 661 1084

1000

1 8.90e6 1636 1110
2 3.3e6 1700 1098
4 6.41e6 1153 1096
8 3.89e6 652 1078

Table 5.16: The experimental results for 18 teams using the second model.(Table
adapted from [122].)

Table 5.15 shows the experimental results calculated in 5 minutes by three models
from instances size n = 8 to n = 20, where the exceptional instance n = 8 could be
finished in a shorter time by all models. For the small instances (n = 8.10), our first
model outperforms the other two models in terms of node processing speed and the
number of feasible solutions. By contrast, the second model can find a better objective
value and process nodes faster for instances larger than 10. Indeed, for instance n =20,
the objective value obtained by our second model is worse than that of the model
presented in [161]. We argue this is because the solution distribution in the models
and the experimental results of parallel runs will support our argument.

We also carried out the experiment that selects the best filtering algorithms for
the table constraints that are used for partitioning search space and k consecutive
variables. The best results were selected based on the sum of the number of feasible
solutions of all workers. We obtained (MDD+, GAC3rm), (FC, GAC3rm), and (FC,
GAC3rm) for 2, 4, and 8 workers respectively, where the first algorithm was specified
in the table constraint for partitioning the search space and the second one is for
the table constraint used for k consecutive allowed values.

Table 5.16 reports the results of parallel runs using 2, 4, and 8 workers as well
as the sequential runs. With more workers, a better objective value is attained. We
observed that the number of solutions and the speed of processing nodes declined

111

Times(m) # workers # feasible solutions processing speed objective value

1
2 2024 2279 1132
4 9021 2310 1130
8 23648 2187 1082

10
2 17961 2292 1122
4 89174 2188 1118
8 2.07e5 2273 1080

100
2 5.40e5 2068 1120
4 5.68e5 2222 1104
8 1.75e6 2260 1066

1000
2 1.64e6 2328 1096
4 8.14e6 2300 1096
8 2.03e7 2216 1066

Table 5.17: The results of simulation parallel executions by executing in sequential
way. (Table adapted from [122].)

approximately by half, with the number of workers doubled from 4 to 8 (cf. Table
5.16). To confirm the effectiveness of the search space approach for the EPS approach,
we simulated the parallel execution by executing the tasks received by parallel work-
ers sequentially. Table 5.17 shows that the number of solutions and the speed of
processing nodes remained stable as the number of workers increases, which means
that the performance degradation observed in Table 5.16 is not due to our parallel
approach. And given the same number of workers, we experienced the improvement
in objective values when comparing the simulation and the previous parallel runs.

5.2.4 Discussion

As shown in Table 5.15, the first model achieved the best performance on the instance
n = 8 due to its shortest execution time. And the first model has the least total
number of search nodes among the three models. The use of the ifThen constraint
introduces extra internal variables created by constraint solvers, thereby increasing
the search space and degrading the performance of constraint solving. We argue that
one should avoid using the ifThen constraint by reformulating CSP models. Moreover,
we should develop new techniques to deal with the situation that requires the ifThen
constraint.

For the parallel execution, the parallel efficiency decreases with the number of
workers increased from four to eight. We believe that hyperthreading on a single
processor causes decreased parallel efficiency due to limited cache size. Thus, we
simulated the execution of parallel runs on a single core. The experimental results

112

reported in Table 5.17 indicates that the EPS approach itself scales efficiently with
the number of processors.

5.2.5 Conclusion

We have presented two distinct models for different sizes of TTPPV problems, as well
as utilizing data-level parallelism to execute models in parallel. On the same instances
of realistic size, our models outperformed the previous model [161] under their own
best search strategy. The advantage of our models is decided by the strategy that
trades time for space. Specifically, the search space is reduced by predefined tuples
with the possible combinations of values. We also observed that concerning the object
value, the search space splitting with more parallel processors can lead to a feasible
solution with better object value.

5.3 Talent Scheduling Problem

The Talent Scheduling problem (TS) is a practical problem entailed by devising a
schedule for shooting a film, which is a typical Constraint Optimization Problem
(COP). As we did for the SGP problem and the TTPPV problem, we first present
a concise and efficient modeling approach for the problem, and then exploit TS as a
case study to explore how to utilize the EPS approach to speedup constraint solving.

This section is a revised version of our previous work [126], and the remaining
part of this section is structured as follows: In Section 5.3.1, we briefly introduce
the definition of the problem. Then, in Section 5.3.2, we gradually describe the
modeling approach for the problem in detail. Next, in Section 5.3.3, we examine how
the EPS approach solves this problem in parallel, experimental results are given in
Section 5.3.4. Finally, we conclude in Section 5.3.5.

5.3.1 The Introduction of the TS

The talent scheduling problem (TS) is an interesting NP-hard problem originally
presented in [30] and is problem No.039 in CSPLib [190]. The problem can be de-
scribed as follows: the process of making a film is partitioned into n individual pieces,
each of which may require a different subset of the resources such as actors, props
and costumes, etc. that can be viewed as a set whose members are m different re-
sources. Besides, the duration of pieces varies according to the requirement of the film
shoot; the cost of different resources is paid at different rates. For a given piece, the

113

Piece 4 1 11 10 13 12 3 2 6 8 7 9 5 20 15 14 17 18 16 19 Cost/100
resource 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10
resource 2 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 4
resource 3 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 5
resource 4 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
resource 5 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 5
resource 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 40
resource 7 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 4
resource 8 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 20
Duration 1 2 1 2 2 1 1 1 3 1 1 1 1 1 2 1 1 2 1 1

Table 5.18: A feasible solution for a given TS in [191]. The Cost and Duration in
the last column and the last row stands for the cost per time unit and the duration
of the pieces, respectively. The overall cost of this solution is 14,600. See below for
calculating the cost of a solution. (Table reproduced from [126].)

cost incurred by one resource is equal to the product of the duration of the piece and
the cost of the resource. A feasible solution of a TS problem can be represented as
a table (see for example Table 5.18), in which each column stands for a fixed set of
resources required by a piece, while each row represents the demand for the resource
for all the pieces of the film.

One feasible solution of the TS problem differs from another only due to their
different permutations of pieces (i.e., columns) because interchanging any two columns
of the solution might alter the overall cost of the film. By contrast, the order of
resources (i.e., rows) can always be fixed since interchanging any two rows does not
lead to a different feasible solution. Thus, the order of the columns (pieces) in a
feasible solution is vital to the cost of a film. A cell of a feasible solution is assigned to
one if the resource is required by the piece, otherwise zero. For example, in Table 5.18,
piece 4 requires resource 1 and does not require resource 2; hence, the corresponding
cells are 1 and 0.

The cost of a resource only depends on the interval between the first piece in which
it is involved and the last piece in which it is involved, which implies that the idle
times of the resource in the interval also need to be paid. Here, if a resource lies idle in
such an interval, we call it idle resource. For instance, resource 1 required from piece 4
to piece 8 lies idle for pieces 13 and 12 in the feasible solution shown in Table 5.18. In
this case, resource 1 still needs to be paid even if not required by pieces 13 and 12.
Thus, the additional expense incurred by resource 1 is calculated by 10 · 2 + 10 · 1,
where 10 is the cost of resource 1, and 2 and 1 are the durations of pieces 13 and 12
respectively. The objective of the TS problem is to find a feasible solution that has

114

the lowest cost incurred by all the idle resources of the feasible solution. Given the
above, the TS problem is a typical constraint optimization problem (COP).

Consider the making process of a film composed of n pieces and m kinds of re-
sources, dj (j ∈ {1, . . . , n}) denotes the duration for piece j, while ci (i ∈ {1, . . . ,m})
denotes the costs of resource i. Thus, we denote a feasible solution to the TS problem
by an m×n (0,1) matrix T . To calculate the overall film cost, we define a function
τ(i, j) as follows:

τ(i, j) = 1− Ti,j (5.48)

where Ti,j denotes the value in row i and column j of the given feasible solution (i.e.,
Ti,j indicates whether resource i is required by piece j or not.), and the domain of
j is over the interval between the first occurrence of “1” (fi) and the last occurrence
of “1” (li) in row i. Therefore, the total cost function for all the idle resources in a
feasible solution s is:

cost(s) =
m∑
i=1

li∑
j=fi

τ(i, j) · dj · ci (5.49)

where the feasible solution s determines fi, li, and τ(i, j). Therefore, the objective of
the TS problem can be stated as finding a feasible solution that has the minimum
value of the cost function, which is given by:

Minimize
s∈P

cost(t) (5.50)

where P is all the permutations of the columns of the feasible solution s, namely the
total solution space of the given TS problem.

5.3.2 The CSP Model of the TS

We are now going to introduce our model in detail. Any feasible solution for the TS
problem is a permutation of {1, 2, . . . , n}, where n is the number of pieces involved
in film shooting. Hence, the problem can be viewed as to assign n values to n slots.
We define the decision variables as X = {x1, x2, ..., xn}, each of which has domain
{1, 2, . . . , n}, where xi = j if slot i is assigned to piece j in the sequence. Therefore,
the basic constraint of the model can be described as:

∀i,j (xi ̸= xj) (5.51)

where 1 ≤ i < j ≤ n. Constraint (5.51) can be realized by the allDifferent con-
straint [112], which is implemented in almost all constraint solvers.

115

Although a TS problem can be solved by only using the allDifferent constraint,
the search space would be immense even for a small number of pieces in practice,
and consequently, we would not obtain a feasible solution in a reasonable time. For
example, given a problem with 20 pieces (cf. Table 5.18), 20! permutations on the
sequence {1, . . . , 20} causes that iterating over all the possible permutations is im-
possible in reasonable execution time. Thus, we have to reduce the search space by
imposing additional constraints.

A feasible solution and the solution in its reverse order have the same cost function
value because the expenses incurred by the idle resources in both solutions are the
same. Thus, it is unnecessary to re-explore the symmetrical search region. The static
symmetry breaking constraint in our model is relatively simple and can be stated as:

x1 < xn (5.52)

The arithm constraint can be used to express Constraint (5.52), and the overall search
space is reduced by half.

We can also take advantage of the intrinsic characteristics of the data to shrink the
search space further. Specifically, if there is a fixed pattern for the optimal solutions,
a set of optimality constraints can restrict the search space to the solutions contain-
ing such fixed pattern. An optimal solution remains unchanged by interchanging two
pieces that require the same set of resources. However, as we can see from Table 5.18,
there are some pairs of pieces in which two pieces request almost the same set of
resources except for one difference. For example, piece 1 and piece 3 require almost
the same resources apart from resource 3. As a result, only resource 3 affects the
positions of pieces 1, 3 with other pieces in an optimal solution since any two pieces
requiring the same set of resources are interchangeable in an optimal solution. More-
over, piece 3 must be closer to the pieces (e.g., piece 13) requiring resource 3 than
piece 1 in an optimal solution because this arrangement of pieces will incur a lower
overall cost. Based on this observation, we first find all the pairs of pieces (pieces i

and j) requiring a set of resources with only one different resource and then find a
piece (we call this resource benchmark) that requires that different resource as well
(piece bm). The relationship between these pieces is restricted as:

|idxi − idxbm| < |idxj − idxbm| (5.53)

where idxi, idxj, and idxbm denote the index of pieces i, j, and bm, respectively. All

116

the possible pieces satisfying this relationship can be defined as follows:

{(i, j, bm) | i ̸= j ̸= bm, |Ri ∪Rj| − |Ri ∩Rj| = 1,

(Ri ∪Rj) \ (Ri ∩Rj) ∈ Rbm}
(5.54)

where Ri, Rj, and Rbm represent the set of resources required by pieces i, j, and bm,
respectively (e.g., R1 = {1, 2}, R3 = {1, 2, 3}, R13 = {2, 3, 4} in the given problem
shown in Figure 5.18). The equation |Ri ∪ Rj| − |Ri ∩ Rj| = 1 ensures the resources
required by idxi and idxj with only one difference. Piece bm entails the different
resource between resources required by piece i and piece j, guaranteed by (Ri ∪Rj) \
(Ri ∩ Rj) ∈ Rbm. For example, piece 13 can be the benchmark of pieces 3 and 1,
and piece 3 must be closer to the benchmark than piece 1 is. Thus, we have the
constraint: |idx3 − idx13| < |idx1 − idx13|. Note that piece 13 is not the only choice
of the benchmark. All the pieces requiring resource 3 (e.g., pieces 2, 8 etc.) can be
the benchmark for piece 3 and piece 1.15

Constraint (5.53) can be realized by the inverseChanneling, the distance con-
straint, and the arithm constraint. For a specific example of Constraint (5.53), we
first use the inverseChanneling constraint to record the indices of the decision vari-
ables X by introducing new auxiliary variables IDX, given by:

∀i,j∈{1,...,n} (X[i] = j ⇔ IDX[j] = i) (5.55)

Having auxiliary variables IDX, we can restrict the distance between given val-
ues (pieces) in a output of a sequence easily. For given pieces i, j, and bm, Con-
straint (5.53) can be converted to:

distance | IDX[i]− IDX[bm] |< distance | IDX[j]− IDX[bm] | (5.56)

For the implementations using Choco solver, two extra auxiliary variables (aux1, aux2)
must be introduced to store the resulting variables of the distances since Choco cannot
directly represent Constraint (5.56). Thus, we have

distance | IDX[i]− IDX[bm] |= aux1 (5.57)

distance | IDX[j]− IDX[bm] |= aux2 (5.58)
15Indeed, applying Constraints 5.53 to a CSP model of the TS problem entails the given problem

having the characteristic that requires the same resources except for one difference. It is common
for TS problems to have such a characteristic since pieces usually share most of resources during a
film shoot. Thus, even without two pieces sharing the same resources with one difference, we can
relax the restriction by allowing more differences between the two pieces.

117

Then, the arithm constraint can be used to restrict the relation between the two
auxiliary variables, given by:

arithm (aux1 < aux2) (5.59)

An instance of Constraint (5.53) might reduce more than half of the entire search space
because the solutions satisfying |idxi − idxbm| ≥ |idxj − idxbm| are ruled out. Before
implementation, we should find all the pairs of pieces that only have one different
resource, then impose the instances of Constraint (5.53) for these pairs on the model.

Local search (LS), an incomplete search method for finding an optimal solution,
is often the method of choice to solve COPs because it can obtain feasible solu-
tions with better objective value efficiently compared to complete systematic search
[96]. Several ways to combine CP and local search have been proposed in the litera-
ture [52, 161, 96]. One way to utilize LS for CP is to freeze a fragment of the variables
specified with fixed values and to solve the subproblem defined by the uninstantiated
variables. This type of local search is essentially the same as the EPS approach we
used to solve the SGP and TTPPV problems since both approaches require a subset
of variables to be fixed. The only difference is that parallelism is exploited by the
EPS approach. Hence, analogous to the SGP and TTPPV problems, we should care-
fully decide which variables should be frozen. For the problem given in Table 5.18,
resources 6 and 8 cost much more than other resources, and there is no intersection
between pieces requiring resources 6 and the pieces requiring resources 8; therefore,
we presume that pieces involving resource 6 or resource 8 are more likely to arrange
together within an optimal solution. Note that this method cannot ensure that no
optimal solution will be ruled out, but the experimental result shows that the best
solution we obtained is the same as that one provided in [191].

In our implementation, we treat pieces 6, 7, 8, and 9 as an entirety, say, piece 21,
and also treat pieces 14, 15, 16, 17, and 18 as another entirety, say, piece 22. Conse-
quently, the entire search space is reduced from 20! to 13! · 5! · 4! by this way. Indeed,
the more freezing variables are, the more search space reduction is. But, there is a
trade-off between search space reduction and the loss of optimal solutions. In prin-
ciple, when applying LS to solve TS problem, we should consider freezing the pieces
entailing the highest cost of the resource, the second-highest cost of the resources,
and so on. Then, we treat these pieces as entireties. We select variables for LS using
an automated way in three steps:

1. We sort resources based on their cost in descending order.

118

2. We freeze pieces requiring the current highest cost resource.

3. If the number of frozen pieces can lead the computation ends in predefined
execution time, say, 20 mins, then the selection procedure stops. Otherwise, we
set the next resource in the sorted resources as the current resource and then
repeat step 2.

In summary, Constraints (5.51) and (5.52), together with constraints entailed by
Constraint (5.53) and LS form the model used to tackle the TS problem.

5.3.3 Solving the TS in Parallel

As with the SGP and the TTPPV problems, the EPS approach is also well suited
for solving the TS problem in parallel since disjoint partial solutions can be easily
obtained before the solving process and then mapped to workers. Hence, we use EPS
with static decomposition to accelerate the solving process of TS problem.

To parallelize the constraint solving for TS, we first select a subset of decision
variables. One viable way is to select the pieces that do not belong to any entirety, i.e.,
pieces frozen by LS are excluded. For the given problem in Table 5.18, we chose pieces
PS = {1, 2, 3, 4, 5, 10, 11, 12, 13, 19, 20} to generate around billion partial solutions.

Then, the model presented in Section 5.3.2 is applied to the decision variables for
PS, where the model used to generate the partial solutions includes Constraints (5.51),
(5.52), and constraints entailed by Constraint (5.53). Please recall that all the pairs
of pieces that only have one different resource are identified, and then we impose the
instances of Constraint (5.53) for these pairs on the model in the sequential version. In
the parallel version, to generate partial solutions, the instances of Constraint (5.53)
would not involve the decision variables entailed by the pieces that are not being
contained in PS. There are two advantages by doing so: First, the partial solutions
can be generated in a reasonable time. Second, solutions that cannot be extended to
an optimal solution will not be generated.

After generating the partial solutions, each worker receives the same number of
partial solutions and works on its own independent partial solutions in parallel. Em-
barrassingly parallel execution works as follows on each worker:

1. We replace the entireties on all possible positions of a partial solution to obtain
a feasible solution (i.e., no piece would be left out).

119

2. The cost function (Equation 5.49) is evaluated for each permutation. The constraint-
based branch-and-bound approach is used here to reduce the nodes that are
impossible to be extended as an optimal solution.

Note that PS does not include all the possible pairs of pieces that only have one
different resource. Thus, we should impose Constraint (5.53) on the remaining part
of such pairs of pieces to further shrink the search space of each worker. Due to no
communication between workers, a new lower bound discovered by a worker cannot
be used by other workers for improving their current resolution. The final step is to
obtain the permutation with the smallest value of the cost function.

5.3.4 Numerical Results

In order to confirm our theoretical discussion, we implemented the model as de-
scribed in Section 5.3.2 and Section 5.3.3 and its parallel version in the Choco Solver
4.0.6 [165] with JDK version 9.0.1. All experiments were performed on a computer
with an Intel i7-3720QM CPU, 2.60GHz with 4 physical and 8 logical cores, and 8
GB DDR3 memory running Ubuntu 17.10.

All the techniques of solving the TS problem in reasonable execution time are
essentially to reduce search space. The constraints regarding search space reduction
allowed us only to evaluate 1,027,403,520 out of 20! feasible solutions, reducing ap-
proximately 99.99% of the total search space. The following experiments were carried
out to test the effectiveness of the search space reduction sequentially and its parallel
version.

Number of Workers 1 2 4 8
Execution time (s) 451.68 250.56 137.64 119.82

Speedup 1 1.8 3.28 3.77
Efficiency 1 0.9 0.82 0.47125

Table 5.19: Solving the TS on a multi-core computer. (Table reproduced from [126].)

As can be seen from Table 5.19, the efficiency dropped rapidly as the number of
workers increasing from 4 to 8. Theoretically, we would not have experienced this
result since no communication is required. Thus, to eliminate the factors such as
the limit number of physical cores and the limited size of the cache, we partitioned
the partial solutions into two parts, as did we for the TTPPV problem. Then we
separately solved the first part of the partial solutions by parallel execution, and the
second part of the partial solution. As given in Table 5.20, the execution times for

120

the first and the second part of partial solutions are 83.34s and 81.42s. A speedup of
5.42 (451.68

83.34
) with 8 physical cores was obtained, which is higher than the speedup of

8 threads with hyperthreading. The parallel efficiency is improved from 0.47 to 0.68
(5.42

8
).

Four Workers First Part Second Part
Execution time (s) 83.34 81.42

Table 5.20: Using 4 workers to calculate the first part and second part in turn.

The execution time of the sequential part for generating the partial solutions was
25 seconds in the parallel version; therefore, by using Amdahl’s law, we can calculate
that the theoretical speedup of our approach is around 18.1 for the given problem
shown in Table 5.18.16 Additionally, one benefit of parallel constraint solving for the
TS is that we may gain more optimal solutions in a shorter time. For the problem
shown in Table 5.18, we obtained the following optimal solutions:

4 1 11 10 13 3 12 2 6 8 7 9 5 20 15 14 17 18 16 19
4 1 11 10 13 12 3 2 6 8 7 9 20 5 15 14 17 18 16 19
4 1 11 10 3 13 12 2 6 8 7 9 20 5 15 14 17 18 16 19
4 1 11 10 13 3 12 2 6 8 7 9 20 5 15 14 17 18 16 19

Table 5.21: Optimal solutions with cost 14,600. (Table reproduced from [126].)

5.3.5 Conclusion

We have presented a model for the TS problem, as well as utilizing data-level par-
allelism to speed up the execution. Besides, our approach also employs local search
to reduce the search space. The experimental results indicate that the EPS approach
is an appropriate choice for solving such COPs. But we believe there is still the
potential to improve the performance of our approach. Although it has performed
well, Constraint (5.53) and the dual variables could be replaced by a customized con-
straint. Besides, the theoretical speedup can still be improved when solving larger
instances because the non-parallelizable part is negligible for these instances.

16We can predict the theoretical speedup of a given parallel algorithm by using Equation 2.7 (page
24). For this question, the theoretical speedup is 1/1− 451.68−25

451.68 .

121

5.4 Conclusion

In this chapter, we have presented detailed solving processes for three computationally
hard problems in which the SGP problem is a constraint satisfaction problem, and the
TTPPV and TS problems are constraint optimization problems. The improvements
in node processing speed and solvable instances size can be attributed to the two
aspects: the well-designed customized CSP models and the EPS approach. We have
demonstrated that reformulating CSP with a better model can reduce the number of
variables and or the domain size of variables, thereby shrinking search space. Further-
more, the EPS approach also brings benefits to constraint solving, i.e., more nodes
processed simultaneously and early diversity. For the SGP problem, the obtained
solutions of new instances and the observed superlinear speedups confirm our theo-
retical analysis conducted in Section 4.2.4. That is, by exploiting parallelism to search
different subspaces simultaneously, we introduce early diversity into the backtracking
search to avoid a strong commitment due to early mistakes made by search strategies
at early stages in search. For the COPs, higher-quality feasible solutions could be
obtained with linear speedup, although superlinear speedup was not achieved since
parallelism cannot enhance the efficiency of sequential solving.

Although we can solve new instances or solve existing instances faster by means
of reformulating and modeling constraint models as well as exploiting parallelism,
the inadequacies of our approaches are clearly evident and reveal two research top-
ics. First, reformulating and modeling a problem as a CSP still relies on the constraint
programmer’s insight, skill, and ingenuity. As pointed out by Freuder & Mackworth
(2005), “constraint programming is still somewhat of an art [55].” Now, more than a
decade later, the challenge remains though much progress has been made on providing
more general and powerful modeling tools for constraint programming. There exist
many ways of automatic enhancing constraint models, such as aggregation algorithms
(see, e.g., Frisch et al. [57]), flattening and identical common subexpression elimina-
tion (see, e.g., Nightingale et al. [151, 150], Rendl et al. [172]), automated symmetry
breaking (see, e.g., Mears et al. [136]), etc. However, to the best of our knowledge,
the state of art constraint solvers provide little support for automated reformulating
and modeling, and research on automated reformulating and modeling for constraint
solving is still in its infancy. Second, the choice of variables for search space splitting
still depends on the constraint programmer’s insight into a given problem as well.
Indeed, the original EPS approach provides an automated decomposition method,

122

namely DBDFS (cf. page 72). However, we are likely to generate many invalid sub-
problems (i.e., partial assignments that cannot lead to a solution) if the variables
for problem decomposition are selected randomly or chronologically. For instance, for
the SGP problem, if we select a column instead of a row for the search space split-
ting, more invalid subproblems would be generated because a column in our model
is less restricted. In short, future work will be required to develop more generalized
techniques to utilize the EPS approach.

123

Chapter 6

Parallel Stochastic Portfolio

It is not uncommon to observe that the performance of constraint solving on a par-
ticular problem can be easily influenced by altering the search strategy, restart policy
and their parameter settings, etc. In the multicore era, this lack of robustness can
be exploited to speed up the constraint solving by devising a parallel portfolio search
that simultaneously executes different incarnations of a sequential solver on the same
problem. In this chapter, we first investigate the techniques of existing single-solver-
based portfolio approach in detail. On this basis, we gain insight into how to improve
the portfolio approach. We then present the parallel stochastic portfolio search that
benefits from the explicit early diversity resulted from randomization and parallelism.

This chapter is a revised version of our previous work [123]. We organize the rest
of the chapter as follows: We start by briefly reviewing the parallel portfolio search
and the proposed approach. We then provide an overview of the components of the
current single-solver-based portfolio approach in Section 6.2. From this overview,
we sum up the limitations of the current portfolio approach in Section 6.3. Then,
Section 6.4 introduces and justifies our new parallel approach in detail. Experimental
results and a discussion are presented in Section 6.5. Before concluding, related work
is discussed in Section 6.6. Finally, conclusion is given in Section 6.7.

6.1 Introduction

The shift in processor design from increasing the clock speed to parallel architectures
has become an irreversible trend. The constraints community has developed various
techniques to embrace this change. As we have surveyed in Chapter 3, the techniques
for parallel constraint solving can be categorized under four main types: parallel
consistency and propagation, parallelizing the search process, parallel portfolio, and

124

hybrid approaches. In recent years, the majority of the researches on parallel con-
straint solving focus on parallelizing the search process such as search space splitting,
or local search. The most notable feature of these parallel approaches is that workers
are collectively orchestrated to be part of the same overall search process [61]. Thus,
the main challenge of this type of approach is to balance the workload distribution
between workers.

By contrast, parallel portfolio search [99] does not need to consider this issue. The
idea of parallel portfolio search is to solve the same constraint model with different
combinations of search strategies, restart strategies, nogood recording, and their pa-
rameter setting. Hence, communication is not required during resolution process. By
using portfolio search, the likelihood of finding a first solution within a timeout is in-
creased. The enhancement is attributable to the diversification of exploration of the
search tree in comparison with the sequential solver. But, as discussed in Section 3.3,
there is also another broader way to define portfolio search. For example, Amadini et
al. [6, 5] developed a portfolio solver consisting in 12 different types of constraint
solvers, which tries to predict the most suitable solver for a given problem by exploit-
ing machine learning techniques.

Nevertheless, we are concerned with improving the problem-solving ability of par-
allel portfolio approach on hard computational problems using only one type of solver,
i.e., single-solver-based parallel portfolio approach. We propose a new parallel portfo-
lio approach that aims at exploring the effective use of massively parallel architectures
for constraint solving. Its key idea is to utilize explicit early diversity to avoid strong
commitment to unfortunate variable choices due to the search strategies. Our port-
folio approach has three advantages. First, it is easy to be implemented and solver-
independent. Second, it can obtain excellent scalability due to the mechanism of the
parallelism. Third, it can solve harder instances than the previous single-solver-based
portfolio approach (e.g., the parallel portfolio implemented in Choco [165]).

6.2 The Components of the Current Single-Solver-
Based Portfolio Approach

In this section, we give an introduction about the details of the parallel portfolio
search in the state of the art constraint solvers, such as Choco [165] and Gecode [186].
Generally, portfolio means to exploit some different algorithms to obtain an overall
better algorithm. In the context of CSP, a typical parallel portfolio might consist of
different combinations of search strategies, abstract search strategies, nogoods, and

125

restart strategies. We are now going to review the essential components of a parallel
portfolio search implemented in Choco and Gecode in more detail.

Adaptive search strategies

Adaptive search strategies compute the score for each candidate variable during res-
olution process on the basis of a specific criterion that takes account of information
concerning the search space already explored, and then decide the next variable ac-
cording to the score. The basic principle of these adaptive search strategies is to choose
variables occurring in the difficult parts of the constraint network, which is called the
fail-first principle [88]. The main difference among adaptive search strategies is the
way of computing the scores. Now, we review the adaptive search strategies related
to our approach.

1. WDEG [25] is widely implemented in most of the competitive constraint solvers [165,
186, 110].1 The WDEG algorithm maintains a counter to record the weight degree
for every variable. For a variable xi, its counter (i.e., weight, denoted by wdeg[xi])
increments whenever a constraint cj covering xi leads to a domain wipe-out in the
scope of cj. The score of each variable is computed by |D(xi)|

wdeg[xi]
, where |D(xi)| denotes

the domain size of variable xi; wdeg[xi] denotes the weighted degree of variable xi,
defined by:

wdeg[xi] =
∑
cj∈C

weight[cj] s.t. xi ∈ Scope(cj) ∧ |FutScp(cj)| > 1 (6.1)

where weight[cj] is associated with each constraint cj whose scope covers variable
xi and |FutScp(cj)| > 1 restricts that the number of uninstantiated variable in the
scope of cj must be greater than one.

2. Activity-Based Search (ABS) [139] chooses the variable based on the activities in
which it is involved. In the context of ABS, activity refers to the removal of incon-
sistent values of a variable domain affected by constraint propagation. The activity
of variable xi, denoted by A(xi), is updated at each node of the backtracking search
tree by the following two equations:

∀xi∈X s.t.|D(xi)|>1 : A(xi) := γ ∗ A(xi)

∀xi∈X′ : A(xi) := 1 + A(xi)
(6.2)

1In [25], the full name of WDEG was not given. We believe it means weighted degree.

126

where γ ∈ [0, 1] represents a decay parameter that helps forget the oldest statistics
progressively and X

′ ⊆ X denotes the subset of affected variables defined by:

∀xi∈X′ : D′(xi) ⊂ D(xi)

∀xi∈X\X′ : D′(xi) = D(xi)
(6.3)

For the value selection, ABS selects the value with the least activity, where the activity
of assigning a value (a) to a variable (xi) is counted by the number of variables (|X ′ |)
affected by constraint propagation, defined by:

A(xi = a) = |X ′ | (6.4)

ABS has two phases. The first phase is the probe execution during which ABS calcu-
lates and accumulates activities for each variable without aging. The number of probs
(probe executions) guarantees that the 95% confidence interval of the mean value of
activities constructed by the Student's t-distribution for all variables is sufficiently
small. Having the accumulated activities for all variables after the probs, the ABS
selects the variable xi with the greatest ratio A(xi)

|D(xi)| (the score of the ABS).

3. For Impact-Based Search (IBS), we refer to [168].

The following two search strategies do not belong to adaptive search strategies: First
fail picks the variable with the smallest number of remained values. Occurrence
chooses the variable with the largest number of attached propagators.2

Abstract search strategy

Abstract search strategy is a class of auxiliary search strategies that cannot work
alone. That is to say, they have to be applied on top of other search strategies (e.g.,
ABS, WDEG, etc.). The purpose of abstract search strategies is to help underlying
search strategy reduce thrashing [40],3 while still being a look-ahead algorithm. More
precisely, it simulates a backjumping effect by a type of lazy identification of culprit
variables, instead of using a look-back algorithm such as conflict-directed backjump-
ing. Last conflicts (LC) [116] and Conflict ordering search (COS) [59] are effective
and widely implemented abstract search strategies.

2Occurrence is the naming in Choco, it is called largest degree in Gecode.
3Thrashing is a phenomenon that repeats the exploration of failing subtrees of the backtracking

search tree.

127

Restarts

Restarts is one of the major techniques to introduce the randomization into com-
plete, systematic, backtrack search procedures.4 The effectiveness of restart is due
to the fact that the variance of the runtime distribution of the different variable or-
derings for the same model of some problems is considerable large [201, 73, 114],
which is called the heavy-tailed phenomenon. Harvey [91] observed that restarting a
backtracking search periodically with different variable orderings could mitigate the
adverse effect caused by poor choices of variables at the early stage of the search.
When using restart, we must consider a restart strategy that defines how we restart
the backtrack search. A restart strategy R = (r1, r2, r3, ...) is an infinite sequence
where each ri is a cutoff, which means if no solution is found within cutoff ri, the
backtrack search starts again for the next cutoff ri+1. Luby et al. [127] show that
the fixed cutoff strategy R = (r∗, r∗, r∗, ...) is optimal when knowing the complete
knowledge of the runtime distribution. In addition to this, they presented a univer-
sal restart strategy (Luby’s restart strategy) that minimizes the expected overheads
when the runtime distribution is unknown.

Nogoods

A nogood is a partial instantiation of variables for a given CSP P that cannot occur
in any solution of P. Moreover, nogoods can also be branching constraints [201] since
an instantiation can be expressed in constraints. nogoods have a variety of uses for
enhancing constraint solving. One approach to using nogoods is to obtain the back-
jump point (node) for the conflict-directed backjumping to reduce thrashing, where
nogoods are discovered during the search process [178, 114]. Besides, for a CSP P
containing symmetry, a symmetry mapping applied to nogoods can effectively prune
the redundant search space [56]. Another important application of nogoods is to avoid
exploring the same search space on restart. In competitive CSP solvers such as Choco
solver [165] and Gecode [186], the nogoods are learned from failures during search and
encoded as constraints. However, the two solvers follow two different nogood learning
mechanisms. Gecode employs the reduced nld-nogoods for restarts that is originally
proposed by Lecoutre et al. [115]. By contrast, Choco solver borrows the idea of the
deductive proofs from the Proof-Producing CSP solver (PCS solver) [202].

4We have provided a more comprehensive introduction about the rationale and techniques of
restarts in Section 4.2.1.

128

No. Configuration No. Configuration
1 Default 17 dom/wdeg+nogood+restart+COS
2 dom/wdeg 18 dom/wdeg+nogood+restart+LC
3 ABS 19 ABS+nogood+restart
4 ABS + restart 20 First fail+COS
5 IBS 21 ABS+nogood+restart+LC
6 First fail 22 ABS+nogood+restart+COS
7 IBS + restart 23 IBS+nogood+restart+LC
8 First fail+LC 24 IBS+nogood+restart+COS
9 Occurrence+LC 25 Occurrence+COS
10 Input order+LC 26 Input order+LDC
11 Random Selection+LC 27 Random Selection+COS
12 Random Selection 28 dom/wdeg+restart+LC
13 dom/wdeg+restart+COS 29 ABS+restart+LC
14 ABS+restart+COS 30 IBS+restart+LS
15 IBS+restart+COS 31 IBS+nogood+restart
16 dom/wdeg+nogood+restart 32 dom/wdeg+restart

Table 6.1: A possible configuration of portfolio search (PPS).

Summary

We have reviewed how a parallel portfolio search is constituted and the technical
details of its components. Table 6.1 gives a configuration of parallel portfolio search
(PPS), which includes the default parallel portfolio search of Choco solver.5 Fur-
thermore, one can devise a portfolio search with more design options, such as differ-
ent consistency levels of the constraint network, different filtering algorithms for the
same constraint, different parameter settings for restart, and different restart strate-
gies. Any changes to these options might significantly alter the potential search tree,
thereby affecting the total number of searched nodes for finding one solution. More-
over, as far as we know, no generic algorithm can optimize these design options (e.g.,
search strategy, restart strategy, consistency level, etc.) before resolution process for
CSP until now. In light of this, Gecode advocates for “always use parallel portfo-
lios” [186], so long as the hardware supports multithreading.

5Gecode might have a different name for the same search strategy in Choco. This thesis follows
the naming convention of Choco solver.

129

6.3 The Limitations of the Current Parallel Portfolio
Search

In this section, we will investigate the potential limitations of the current parallel
portfolio search implemented in Choco solver whose components have been discussed
in Section 6.2.

In most cases, adaptive search strategies are deterministic. This means that the
variable ordering determined by an adaptive search strategy, given the model of a
CSP P with the same parameter setting (e.g., filtering algorithm, consistency level
etc.), is always fixed. The only non-determinism comes from two or more than two
variables with the same score, where the adaptive search strategy must choose one
variable out of them at random. The determinism of adaptive search strategies implies
that a problem, which is unmanageable because of its size, still cannot be solved
even after many attempts. Nevertheless, if the score of all variables is not reset after
restart, all adaptive search strategies exhibit learning ability when combined with
restart (e.g., the configurations 4, 7, and 14, etc. in Table 6.1). In practice, Choco
solver [165] and Gecode [186], encourage the use of restart combined with adaptive
search strategies, because the resolutions are improved by sometimes restarting the
search exploration from the root node. The basic principle of this technique is to
utilize accumulated scores from adaptive search strategies in the previous round before
restarting to increase the likelihood of the better choice of variables in the current
or future rounds after restarting. However, since the constraint network structure,
the filtering algorithm, and the consistency level remain unchanged after restart,
the accumulated score of variables at each round keeps constant. Consequently, the
combination of restart and adaptive search strategies may not be able to alter the
variable ordering after a certain number of times restarts. Given a restart strategy, our
empirical study proves that the variable ordering tends to be stable after some times
of restart, for both ABS and dom/wdeg.6

For a restart strategy, it is generally hard to predict in advance which restart
strategy and its parameter setting (e.g., scale factor) is the most suitable for a given
problem [98, 87]. One possible remedy to this problem is to increase the number of
workers for the parallel portfolio in which different restart strategies are executed
simultaneously. In [87], Hamadi et al. examine this approach in the context of a SAT
solver, which shows that using four different restart strategies can achieve about a

6The experiment was conducted by outputting and recording the scores of variables during restart-
based searches with search strategies such as ABS and dom/wdeg.

130

factor 2 speed-up on eight processors. The result indicates a low parallel efficiency of
this approach. Besides, we could also apply the dynamic restart strategy to different
adaptive search strategies in parallel. The dynamic restart strategy aims at finding an
optimal restart search strategy since the performance might be boosted over several
orders magnitude by tuning the cutoff parameter [73]. The existing dynamic restart
strategies [180, 106] utilize a Bayesian model to predict the runtime behavior of the
algorithm on a problem instance. Unfortunately, this method is not widely imple-
mented in the popular constraint solvers. We believe that the reason is the prior
probability corresponding to a heterogeneous ensemble of instances is required, and
it might be problematic to find such a training set for an arbitrary CSP P.

In addition to the above mentioned two factors, another restriction is the adaptive
search strategy. It is true that determining the optimal search strategy for a given
CSP P is a non-trivial task. Furthermore, even obtaining the first variable of an
optimal variable ordering is at least as difficult as proving whether the CSP P has a
solution [119, 178]; even so, the black-box search strategies, such as ABS and IBS, can
achieve better performance than their previous search strategies on many problems.
But it might be far from the optimal search strategies in most cases. One direct
evidence is that black-box strategies can be augmented with restarts, and we will show
the stochastic mixed search strategy can outperform these black-box search strategies
on parallelism. Indeed, some hyper-heuristics can select the best strategy from a set of
strategies by applying given properties for a given problem on the fly (e.g., machine-
learning-based method of [9, 153], evolutionary-computation based method of [196,
154]), and recombination multiple strategies such as [26, 118]). However, we believe
that no state of the art constraint solvers have implemented these methods; thus, it
takes time to assess their effectiveness.

To sum up, we suppose that the following four main reasons hinder the current
single-solver-based portfolio approach to solve hard computational problems in par-
allel:

1) As an essential constituent part of a single-solver-based portfolio approach, the
combination of restarts and adaptive search strategy renders the variable order-
ing converging after a certain number of restarts.

2) A more sophisticated solution is required to find an optimized restart strategy
for a given problem, and the result of parallelism in restart strategies is not
encouraging.

131

3) The current search strategies, including static and dynamic search strategies,
have difficulties handling complex and diverse CSPs.

4) Beyond all that, the power of parallel machines is not fully utilized because the
search effort made by one worker cannot support other workers due to lack of
a comprehensive set of orthogonal yet complementary search strategies without
communication. Furthermore, it is hard to scale to an arbitrarily high number of
processors because of the limited number of search strategies, let alone effective
use of the processors.

6.4 A Novel Parallel Stochastic Portfolio Approach

So far, we have concluded four reasons which impede the current parallel portfolio
search towards solving hard computational problems. In this section we present our
novel parallel stochastic portfolio approach and carry out theoretical analysis for the
approach.

Our parallel portfolio approach is simple to implement. It is composed of two
search strategies in conjunction with nested restart strategies. Every worker executes
the same constraint model with the same brancher consisting of two different search
strategies and the same restart strategies. Roughly speaking, given a constraint model
with n variables, k variables (k < n) are selected uniformly at random. The first search
strategy is used to compute the candidate variable from the k variables. After branch-
ing on the k variables, the second search strategy guides the search by selecting from
the rest of the n − k variables. Concerning the restart strategies, the inner restart
strategy is used to augment the search guided by the second search strategy, which
means the inner restart strategy is only for learning purpose. Meanwhile, the outer
restart strategy is responsible for terminating the current tree search, then commenc-
ing a new tree search from the root node, where the randomization is introduced by
the first k randomly selected nodes (variables) in the search tree.

According to the heavy-tailed phenomena in CSPs, some unfortunate choices of
variables early on are to blame for a long-running search process [74, 73, 201]. Because
no consistent assignment to the early “wrongly chosen variables” can be found, the
resolution process is led into a barren part of the search space, especially for hard
search problems. Various researches have already confirmed that restarting a depth-
first backtracking search with randomized search strategies (e.g., variable orderings)
can eliminate heavy-tailed behavior to boost the performance of constraint solving
[73, 74, 92, 201, 114]. As for random variable orders, complete random variable

132

ordering is ineffective for tackling structured instances [114]. However, it may suffice
to begin the search with a different variable on each run to have separate search
spaces when employing dynamic variable ordering heuristics [92, 91, 114]. Thus, it
is natural to think of utilizing parallel computing to diversify at the top of a search
tree by generating a random set of variables with cardinality k for the first search
strategy on each worker so that the poor early variable choices can be offset. A main
feature of the approach is that there is no need for communication when solving a
large instance of a hard computational problem because each worker processes an
almost independent search space exploration by setting k.

We now look in more detail at our work-splitting mechanism to justify our claim
about zero-communication cost. Formally, let nw be the number of workers and as-
suming that each worker restarts exactly nr times. Besides, the first search strategy
always determines the same variable ordering for given k variables, which implies no
need to consider the permutations of k variables. For a given model with n variables
and the first k variables of the first search strategy on each worker, we let P (Eo)

denote the probability of generating nw ∗ nr pairwise distinct sets, each of which has
k variables. Thus

P (Eo) =

(
n
k

)
∗ (

(
n
k

)
− 1) ∗ (

(
n
k

)
− 2) ∗ . . . ∗ (

(
n
k

)
− nw ∗ nr + 1)(

n
k

)nw∗nr

=
nw∗nr∏
w=1

(
n
k

)
− w + 1(

n
k

) (6.5)

where k < n, and 0 < nw ∗ nr < 1 +
(
n
k

)
. If we specify a probability threshold value

T (e.g., 99%) for P (Eo), we can calculate the minimum integer value of k for the
inequality P (Eo) > T for given nw and nr. In reality, hard CSPs often have hundreds
variables or even more, thus, it does not need a big k to guarantee P (Eo) > 99%.
For instance, a model of a CSP P has 800 variables, then k = 6 is sufficient to ensure
P (Eo) > 99% for 320 workers within 1000 restarts.

We are now in the position to explain why we employ the combination of two
search strategies and the nested restart strategies. As mentioned before, the variables
in our approach are divided into two groups. Indeed, both of them could use the same
search strategy. In that case, then, it might be inappropriate for a small number of k
variables to use sophisticated adaptive search strategies (e.g., ABS, IBS etc.) because
these strategies need costly probe execution before search. Hence, we can employ a
relatively simple search strategy (e.g., dom/wdeg). On the other hand, keeping k as
small as possible means the vast majority of the variables are selected by the second

133

search strategy, which offers us an opportunity to take advantage of complex adaptive
search strategies, such as ABS and IBS, since they are more robust and often produce
performance improvements. In addition to this, the second search strategy can work
hand in hand with the inner restart strategy to augment the search.

Finally, because of the way of exploiting the variability, we are able to generate a
portfolio of arbitrary size on demand when applied to an arbitrarily high number of
processors. Moreover, since the state of the art constraint solvers support the use of
combining two search strategies 7 and the restart mechanism, one can readily integrate
our approach into most of the constraint solvers.

6.5 Experimental Results

To confirm our theoretical discussion, we implemented our single-solver-based port-
folio approach as described in Section 6.4 via the Choco solver 4.10.0 [165], then we
compared our proposed approach with the parallel portfolio search described in Ta-
ble 6.1 (PPS) on three distinct problems in the CSPLib [38]: Magic Squares [205],
Sports Tournament Scheduling [206], and Costas Arrays [104]. The reason we chose
these problems is that they do not require any third party benchmark (e.g., the Trav-
elling Salesman Problem needs maps of instances). Thus, it is more convenient for
other authors to make comparisons. Besides, we used the CSP models of these prob-
lems given by the examples of Gecode. The environment is JDK 10 under CentOS
6.5 (a Linux distribution) with four Intel Xeon CPU E7-4830 2.13GHz processors (32
cores total) and 250 GB DDR3 1066 memory.

Magic Squares Sports Tournament Scheduling Costas Arrays

Order 24 25 26 27 28 29 20 22 24 21 22
#vars. 577 626 677 730 785 842 442 485 783 949 1131
pps(s) 8.36e3 3.00e4 3.27e4 5.52e4 - - 5.83e2 - - 1.18e4 1.63e5
avg.(s) 4.78e3 5.04e3 1.10e4 4.20e3 2.42e4 2.28e4 4.79e2 4.06e3 2.10e4 1.38e4 9.41e3
short.(s) 2.80e3 1.73e2 6.34e2 9.60e1 1.42e4 1.47e3 6.79e1 1.57e3 2.10e4 4.51e3 1.28e3
long.(s) 6.98e3 1.15e4 1.44e4 1.65e4 3.42e4 4.42e4 1.87e3 6.54e3 2.10e4 1.11e4 3.38e4
%sol.(s) 100 100 100 100 40 40 100 40 20 100 100
%imp.(s) 43 83 66 92 - - 18 - - -6 94

Table 6.2: The comparison between our approach and parallel portfolio search shown
in Table 6.1 (PPS) on 32 cores.

7For instance, Gecode [186] supports executing several branchers in order of creation, and these
branchers represent a branching. More specifically, search branches first on a group of variables
are assigned to the first brancher, and then on the other group of variables assigned to the second
brancher, etc.

134

Table 6.2 summarizes the results of the experiments which compares our single-
solver-based portfolio approach with the portfolio search shown in Table 6.1 on 32
processors. We denote the number of variables of the CSP model of the instance
by (#vars.) and execution time of PPS by (pps). Besides, the results of our ap-
proach are also given in the table, including the average time (avg.), shortest time
(short.), longest time (long.), success rate of our approach for the problems (%sol.) in
five consecutive runs, and improvement rate of execution time on average (%imp.)
with respect to PPS. The CPU time are in seconds and a “-” sign indicates that the
program was still running without solution after about 6.05e5 seconds (one week). The
parameter settings of the solver are as follows: The first search strategy for k vari-
ables and the second search strategy for the rest of the variables are dom/wdeg and
ABS, respectively. The inner restart strategy is set to Luby’s restart strategy with
scale factor 500 and base 1000, while the outer restart strategy employs periodically
restarting with the constant cutoff which is a 1800-second time limit. (One may use
the number of backtracks as well.)

For Magic Squares, we start with instance order 24 since the instances smaller than
it can be easily solved by the PPS. We see that our technique on average outperformed
the PPS for all the instances of Magic Squares in Table 6.2. The worst-case running
times of our technique for order 25 and 26 are much shorter than the PPS. For
order 27, the best-case of our technique shortened the runtime by three orders of
magnitude, and we were able to obtain a solution for the order 28 and 29, which
was not able to be solved by the PPS, in reasonable execution time. However, with
a timeout set to one day, we also had three failures not to solve the order 28 and
29. The results for Sports Tournament Scheduling confirm the observations made on
magic squares problem. Our technique provided a possibility to solve the unsolvable
instances of sports tournament scheduling and to reduce the runtime on the solvable
problem. Please note that the number of teams in sports tournament scheduling must
be even. We next considered the Costas Arrays, the runtime of order 22 was reduced
by orders of magnitude on average. Interestingly, our technique performed worse for
order 21 and could not solve the larger instance than the PPS.

Discussion. Several possible reasons might cause that order 23 of the Costas Ar-
rays remains unsolved to us and the performance degradation of order 22. First,
though order 23 is not an open problem, it is still a computationally hard problem for
constraint approach. In [29], the authors employed constraint-based local search on
8,192 cores of the IBM Bluegene/P supercomputer at Jülich to obtain a solution in
approximately three minutes and could not solve it when using 1,024 cores. Second,

135

the model we used contains a large percentage of auxiliary variables, which slows down
the resolution process. It is unclear whether or not auxiliary variables have an adverse
effect on our approach. Third, the parameter settings for our nested restart strategies
are likely not to be optimized. Fourth, according to [29], the runtime distribution of
the large order instances of the Costas Arrays exhibits the exponential behavior (cf.
[200]) instead of the heavy-tailed behavior. Thus, it is hard to say whether or not our
parallel approach performs better on problems with the heavy-tailed behavior than
the exponential behavior. Clearly, more work is needed to clarify these issues.

6.6 Related Work

As far as we are aware, the approach of Bordeaux et al. [22] is the most up-to-date
work related to our proposed technique. The authors also aim at developing a mas-
sively parallel portfolio approach for CSP. Interestingly, however, all the techniques
are presented in the context of SAT, and they conducted experiments on the SAT
solver MiniSat. Their study shows that the most effective way to introduce random-
ization is to fix the variable ordering partially, where a small quantity q of variables
are randomly selected, and then the variables are branched on first. But the way to
set q is not given, and restart mechanism is also not discussed.

In the context of parallel branch-and-bound algorithm, which is also based on
backtracking search, McCreesh et al. [133] pointed out that early diversity is critical
to avoid a strong commitment to the most vulnerable heuristic advice. They observed
that parallelism by introducing early diversity can often lead to superlinear speedups,
and in this case, the workload balance is not the determining factor for performance.

Cire et al. [32] presented parallel restart search that executes Luby’s restart as
a whole in parallel. In their approach, the way of adding randomization is also to
select a few variables uniformly at random. Similar to [22], the number of random
variables is fixed for all different problems. For Magic Squares, the approach cannot
ensure that order 16 can be solved every time by using Gecode and Intel Xeon 2.4
GHz computers with 32 cores, which cannot even compete with PPS.

6.7 Discussion and Conclusion

We have presented a simple technique for parallelizing portfolio search in CSP, which
is based on diversifying the search near the root of search tree. The experimental
results confirm that early diversity can effectively alleviate the strong commitment due

136

to the early decisions made by a search strategy, which is concluded by researches from
different areas [22, 133, 32, 114, 91, 74, 73, 178]. And not only that, they demonstrate
that our novel parallel stochastic portfolio is a promising approach to exploit large-
scale parallel processing for CSP, verifying our theoretical expectations about its
performance that we argued in Section 4.2.3. In addition, the design choices of our
parallel stochastic portfolio search adds credence to the argument of [32] that “parallel
algorithm design should not be performed independently of the underlying sequential
algorithm”.

Finally, we believe that we can do much better by tuning the parameter settings
of the restart strategies and the restart strategies themselves. However, this may not
lead to general improvements in our parallel stochastic portfolio approach, and we
believe this will be improved when introducing a new and better adaptive restart
policy in the future.

137

Chapter 7

Towards Parallel Constraint Solving
by Hypertree Decomposition

As shown in the previous chapters, parallelism is a promising way to enhance the
performance of constraint solving. In this chapter we explore the use of hypergraph
decomposition to distribute constraints to parallel processors for exploiting parallel
constraint solving. Besides, we explain why and how the hypergraph decomposition
can be employed to relatively evenly distribute workload for parallel constraint solv-
ing.

This chapter is a revised version of our previous works [120, 121] and organized as
follows. The introduction of decomposition methods and related notions are presented
in Section 7.1 and Section 7.2, respectively. Section 7.3 describes the new method det-
k-CP in detail, and then analyzes its time complexity. In Section 7.4, we present our
experimental results. Finally, we conclude in Section 7.5.

7.1 Introduction

Many NP-complete and NP-hard problems can be solved in polynomial time if the
corresponding hypergraph has the bounded hypertree-width, which indicates that
the original intractable problem can be divided into a number of tractable subprob-
lems [81]. In addition, the tree structure for a constraint network implies that each
node of the tree decomposition can be solved simultaneously, which makes us natu-
rally think of utilizing parallel computing to solve constraint sanctification problem
(CSP). In other words, the acyclic structure of constraint networks implies that the
given CSP P is tractable and parallelizable [75, 76, 78]. Several decomposition meth-
ods have been developed to transform cyclic constraint networks to acyclic ones,
although these methods apply to different types of graph for the given constraint

138

network. For example, join-tree-clustering transforms the primal graph of the given
constraint network into the equivalent acyclic network [40]. Cycle-cutset decompo-
sition [42] also works on the primal graph by removing the vertexes that prevent
the hypergraph to be acyclic. Some decomposition methods (e.g., hinge decomposi-
tion [85], hypertree decomposition [79, 81]), on the other hand, use the hypergraph as
its input, and the output of these methods is at least in accord with the conditions
for hypertree decomposition defined in [79].

Nevertheless, the decomposition methods, which have been proposed in the liter-
ature during the last decades, aim at obtaining as small hypertree width as possible
for the hypergraph, because the smaller width of a hypertree decomposition we ob-
tained, the faster the original CSP problem can be solved [81]. Moreover, previous
structural decomposition methods, such as det-k-decomp, which is the most general-
ized decomposition method so far [77], cannot ensure a relatively even distribution of
constraints based on our observation of results after running det-k-decomp. The al-
gorithm det-k-decomp only guarantees the greatest node width of the decomposition
tree is k, and fairly often, the width of most nodes is far less than k. This characteristic
of det-k-decomp impedes its application in parallel constraint solving.

In the following sections, we will present a new decomposition det-k-CP method
with stochastic search procedure for parallel constraint solving. The goal is to provide
a mapping algorithm for parallel constraint solving. The idea behind det-k-CP is to
utilize the property of the dual graph that a redundant arc can be removed between
two nodes of the graph if there is an alternative path that ensures the two nodes still
being connected. After applying det-k-CP, the hypertree structure of a constraint
network can be used to parallelize the constraint solving.

7.2 Preliminaries

Any constraint network can be graphically represented by a hypergraph. A hypergraph
H is a tuple (V,E), where V is a set of vertexes and E is a set of hyperedges. A hyper-
edge of a hypergraph is composed of two or more vertexes, which makes hyperedges
fundamentally different from normal edges in a graph. Any constraint in a given con-
straint network corresponds to a hyperedge in a hypergraph, and the variables of a
constraint can be seen as vertexes of a hyperedge.

A hypertree of a hypergraph H is a triple (T, χ, λ), where T = (VT , ET) is a tree, χ
and λ are labeling functions. We denote a set of variables for a given node (nodei) in a
hypertree by vi. Therefore, vi = χ(nodei) and vi ⊆ 2vertexes(H), where vertexes(H) are

139

x1 x2 x3

x4

x5 x6

x7
x8 x9

x10

allDifferent1 arithm2 table1 allDifferent2

table2

arithm1

atLeastNV alues

Figure 7.1: The hypergraph for the constraint network. (Figure adapted from [80]
and reproduced from [120].)

vertexes of hypergraph H. Similarly, we denote a set of edges of nodei by ei. Therefore,
ei = λ(nodei) and ei ⊆ 2edges(H), where edges(H) are the hyperedges of hypergraph
H. By root(T) we denote the root of a tree T , for every p ∈ VT , let Tp denote the
subtree of T with root p.

The width of a hypertree is the maximum number of hyperedges among the nodes
of it, which is given by hw(T) = max | λ(nodei) |. Hypertree decomposition is a proce-
dure that converts a hypergraph into a hypertree. In order to demonstrate hypertree
decomposition on a given constraint network, assume we have a simple problem over
a set of variables {x1, . . . , x10} ⊆ X modeled by the following constraints:

• allDifferent1 (x3, x4, x5, x7) • table1(x5, x8, x10)

• allDifferent2 (x1, x4, x6, x9) • table2(x7, x8, x9)

• atLeastNvalues(x1, x2, x3) • arithm1(x5, x6)

• arithm2(x6, x8)

The hypergraph for this constraint network is depicted in Figure 7.1, where the vari-
ables xi, i ∈ {1, . . . , 10} are the vertexes, while the edges are represented by the

140

{allDifferent1 , allDifferent2},{x1, x4, x6, x9, x3, x5, x7}

{atLeastNV alues}, {x1, x2, x3} {table2, arithm1}, {x5, x6, x7, x8, x9}

{arithm2, table1}, {x5, x6, x8, x10}

Figure 7.2: Hypertree decomposition for the hypergraph of Figure 7.1. (Figure
adapted from [80] and reproduced from [120].)

enclosing ellipses. Figure 7.2 illustrates a possible hypertree decomposition of this
hypergraph. Note that the hypertree decomposition (Figure 7.2) can also be viewed
as a dual graph for the hypergraph (Figure 7.1). The nodes of a dual graph consist of
a set of hyperedges of the corresponding hypergraph, and an edge of the dual graph is
due to existing shared variables between two nodes of the dual graph. Formally, Hdual

for a given H can be represented as a tuple (S,E) in which S = {s1, ..., si, ..., sj} ⊆
edges(H) and ∀e ∈ E = edges(Hdual) : si ∩ sj = e⇔ var(si) ∩ var(sj) ̸= ∅.

Gottlob et al. [79, 81] defined four conditions, which must be satisfied by a hyper-
tree after hypertree decomposition:

1. Every hyperedge of the hypergraph is contained in at least one node of the
hypertree, which can be mathematically expressed as:

∀e∈edges(H), ∃p ∈ vertexes(T) : e ⊆ χ(p) (7.1)

2. Nodes of a hypertree that contain the same vertex in the hypergraph form a
subtree of the hypertree. For all v ∈ vertices(H), the set

{p ∈ vertexes(T) | v ∈ χ(p)} (7.2)

induces a connected subtree of T (This is also called connectedness property [40]).

3. For any node of the hypertree, the vertexes of χ are included in the vertexes of
λ, given by:

∀p∈vertexes(T) : χ(p) ⊆ vertexes(∪λ(p)) (7.3)

141

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8

Figure 7.3: A constraint network is divided into eight parts. An edge between two
nodes is due to the shared variables. (Figure reproduced from [120].)

4. For a vertex of a hypergraph in node p of the hypertree, if the vertex is included
in both λ(p) and χ(Tp), where χ(Tp) stands for the subtree of T rooted at p,
this vertex must also be included in the χ(p), which can be expressed as:

∀p∈vertexes(T) : vertexes(∪λ(p)) ∩ χ(Tp) ⊆ χ(p) (7.4)

7.3 The algorithm det-k-CP

In this section, we present our new algorithm det-k-CP that is designed to decompose
a hypergraph for parallel constraint solving. The k of det-k-CP denotes the number
of nodes in the decomposition tree. Roughly speaking, the goal of det-k-CP is to
decompose a given constraint network N to a degenerate tree in which each internal
node has exactly one child. The solutions of N can be found in time linear after each
node is solved independently because an acyclic constraint network can be solved
efficiently [40]. For example, Figure 7.3 depicts a target degenerate decomposition
tree with eight nodes decomposed by det-k-CP for a multi-core processor with eight
cores.

For a given ordering of nodes of a degenerate decomposition tree T generated
by det-k-CP, there is an edge between two nodes because there exist shared variables
between two nodes. Additionally, we only keep the edges between two adjacent nodes
and eliminate the edges between any pair of non-adjacent nodes.1 The mechanism
of elimination of det-k-CP, which guarantees the decomposition tree is equivalent to
the original one, is based on the property of which any edge on a circuit formed by
common shared variables of a dual graph can be removed without changing the set
of all solutions for the constraint network [40]. For instance, in Figure 7.2, the edge
between the root node and the right leaf node caused by shared variables (x5, x6)
is inexistent because there are shared variables (x5, x6) between the root node and
its child node, as well as the right leaf node and its parent node respectively. The
positional relationship between two nodes in T is either adjacent or non-adjacent;
thus a pair of nodes in T can be denoted as (Ni, Nj) for non-adjacent or (Np, Np+1)

1Please note that the verb “eliminate” does not mean an edge is deleted, it means that we can
ignore the join selection for the nodes connected by this edge.

142

for adjacent respectively, where |i − j| ≥ 2, 0 ≤ i < j ≤ k and p ∈ {i, ..., j − 1}. A
decomposed graph T after decomposition by det-k-CP must meet the following two
conditions:

∀p∈{i,...,j−1} : χ(Ni) ∩ χ(Nj) ⊆ χ(Np) ∩ χ(Np+1) (7.5)

∀Ni∈T : ∪ χ(Ni) = χ(H), and ∪ λ(Ni) = λ(H) (7.6)

where the first condition means that the shared variables between any pair of nodes
(Np, Np+1) must contain the shared variables between (Ni, Nj), i ≤ p ≤ j, whereas
the second condition ensures that the union of vertexes on each node of T is equal to
the set of the vertexes of the original hypergraph H, and the union of edges on each
node of T is equal to the set of the edges of H. In other words, the decomposition
method det-k-CP does not lose any constraint or variable.

Having these two conditions we can easily validate whether a given decomposition
tree is successfully decomposed by det-k-CP. Besides, if a decomposition tree satis-
fies the conditions for det-k-CP, it must meet the four conditions defined in [79] for
hypertree decomposition (see Section 7.2).

Proposition 1. A degenerate decomposition tree T of a hypergraph H generated by
det-k-CP is a hypertree decomposition of the hypergraph H.

Proof of Proposition 1. To prove this proposition, we are going to check and confirm
the four conditions of hypertree decomposition one by one.

i Since det-k-CP does not remove any constraint, as mentioned in the second
condition of det-k-CP, for every constraint e in the hypergraph H, we can find
a node p in the degenerate decomposition tree T , where χ(p) contains e.

ii The second condition of hypertree decomposition ensures that all nodes that
share a common vertex v of H induce a connected subtree of T . To prove it by
contradiction, we assume there is a vertex v in T , where all nodes that contain
v cannot induce a subtree of T . Therefore, in that case, these nodes result in a
circuit which indicates there exist edges induced by a set of vertexes that cannot
be eliminated by an alternative edge. This is contradicted by the first condition
of det-k-CP in which the shared variables between any pair of adjacent nodes
must contain the shared variables between non-adjacent nodes.

iii Because det-k-CP does not remove any variable (vertex), for any node p in T ,
χ(p) = (vertexes)(∪λ(p)), which satisfies χ(p) ⊆ (vertexes)(∪λ(p)).

143

Algorithm 5: det-k-CP(N ,k)
Input: A Constraint Network N , and the desired number of nodes k.
Output: A degenerate hypertree with k nodes

1 Set list_LN = a list which contains sorted constraints of N based on weight ;
2 Set i_size = the size of list_LN ;
3 Initialize an array array_Nodes with k nodes ;
4 for i← 1 to i_size do
5 add list_LN [i] into array_Nodes[i%k] ;
6 end
7 while true do
8 getPotentialSolution(array_Nodes);
9 if array_Nodes pass test conditions (1) and (2) then

10 break;
11 end
12 Swap nodes in array_Nodes;
13 end
14 return array_Nodes;

iv For a given node p in T , (vertexes)(∪λ(p))∩χ(Tp) = (vertexes)(∪λ(p)) = χ(p),
satisfying the fourth condition of hypertree decomposition.

Algorithm 5 We are now going to explain the det-k-CP in more detail. In order to
relatively evenly distribute workloads, line 1 of Algorithm 5 sorts the constraints based
on its computational requirements (weight) that could perhaps depend on many fac-
tors (e.g., the time complexity of constraint propagator used by the constraint solver,
the number of variables of the constraint, and the range of each of these variables,
etc.). Then, after the sorting procedure, the constraints are inserted into an array
(array_Nodes) with length k in turn in line 5 so that each node of the array con-
tains the same amount of workload. Algorithm 5 runs into the loop in lines 7-13 until a
qualified solution is found. Since sometimes a qualified solution cannot be obtained in
one iteration, we use the heuristic for a swap procedure in line 12 of Algorithm 5. The
heuristic has many choices, for example, random exchange, switching two nodes that
have the fewest and the most number of constraints, or exchanging nodes based on
the permutation in lexicographic order of the indexes of array_Nodes in turn. For
instance, if the length of array_Nodes is 4, we might first use the permutation
(0,1,2,3), then (0,1,3,2) and so on.
Algorithm 6 Let us now consider the function getPotentialSolution (called in Al-
gorithm 5, line 8) defined by Algorithm 6, which exhaustively invokes Algorithm 7
for all the edges between non-adjacent nodes. To this aim, the starting point of the

144

Algorithm 6: getPotentialSolution(array_Nodes)
Input: array_Nodes
Output: A potential solution

1 Set i_len = the length of array_Nodes ;
2 Set i_start = i_len-3 ;
3 while i_start ≥ 0 do
4 for i_end← i_start+ 2 to i_len− 1 do
5 eliminateEdge(i_start, i_end, array_Nodes) ;
6 end
7 Set i_start = i_start− 1 ;
8 end

non-adjacent edge (i_start) is specified as the third to last index in line 2 of Algo-
rithm 6, which should be the first disconnected node with the last node (with index
i_len − 1). Then, it is decremented on each iteration until it reaches the first index
of the array in the outer loop, and the ending point of the non-adjacent edge is ini-
tialized as i_end = i_start + 2, then the inner loop continues to iterate to the end
of the array (i_len− 1).
Algorithm 7 The function eliminateEdge plays an important role in det-k-CP. For
two non-adjacent nodes Ni_start and Ni_end, Algorithm 7 might add constraints to
the nodes between Ni_start and Ni_end so that a potential edge between Ni_start and
Ni_end could be covered. In line 2 of Algorithm 7, list_2Eliminated is set to all shared
variables between non-adjacent nodes Ni_start and Ni_end. For each edge, which exists
due to shared variables between Ni_start and Ni_end, eliminateEdge checks whether
or not every edge between adjacent nodes Ni and Nj, istart ≤ i ≤ iend − 1, j = i+ 1,
contains all variables that are also included in the input edge between nodes Ni_start

and Ni_end, as shown in line 5 of Algorithm 7. If an edge between Ni and Nj contains
all the shared variables that are also included in the edge between Ni_start and Ni_end

(line 5), then the for loop runs into the next iteration for the next edge between
Ni+1 and Nj+1; otherwise, line 6 removes all the shared variables of Ni and Nj on
list_2Eliminated.

The function getMinimumSetConstraints4Share, which will be presented in
Algorithm 8, returns the minimum number of constraints that covers all the variables
on the list list_2Eliminated. In lines 8-12, we loop through all constraints obtained
by Algorithm 8, if the constraint is not contained in Nj, the constraint will be added
into Nj. By doing so, the edges between non-adjacent nodes Ni_start and Ni_end can
be eliminated since the shared variables between Ni_start and Ni_end are now covered

145

Algorithm 7: eliminateEdge(i_start, i_end, array_Nodes)
Input: i_start, i_end, array_Nodes

1 for i← i_start to i_end− 1 do
2 Set list_2Eliminated = getSharedVariables(i_start, i_end,

array_Nodes) ;
3 Set j = i+ 1 ;
4 Set list_SharedOnMainPath = getSharedVariables(i, j, array_Nodes);
5 if list_SharedOnMainPath.notContainsAll(list_2Eliminated) then
6 list_2Eliminated.removeAll(list_SharedOnMainPath);
7 Set list_2beAddedConstraints =

getMinimumSetConstraints4Share(i, array_Nodes,
list_2Eliminated);

8 foreach constraint cs ∈ list_2beAddedConstraints do
9 if array_Nodes[j] notContained cs then

10 add cs into array_Nodes[j];
11 end
12 end
13 end
14 end

by all the edges between adjacent nodes Ni and Nj, istart ≤ i ≤ iend − 1, j = i+ 1.
Algorithm 8 The idea behind Algorithm 8 is to search the constraints covering
as many variables as possible on (list_2Eliminated) for each variable in the differ-
ence of sets (list_2Eliminated) and (list_SharedOnMainPath) in each iteration,
whereas the constraints themselves contain as few variables as possible. In line 12 of
Algorithm 8, the covered variables on (list_2Eliminated) are added into the HashSet
variable (HashSet_IsCovred), which helps avoid rechecking covered variables at the
beginning of the for loop (lines 5-7).

So far we have discussed the detailed process of det-k-CP. The reason why we
introduce randomness into the Swap method in line 12 of Algorithm 5 is that back-
tracking to the eliminated edges would cause a large number of loops due to the
newly added constraints making the edges appear again. For instance, in Figure 7.3,
we added some constraints onto node 4 due to the elimination process for the edge be-
tween nodes 3 and 5. Then the edge between nodes 4 and 7, which had been removed
before, happened to be generated again. In this case, this generated edge would force
us to add new constraints onto nodes 5 and 6. However, an edge between nodes 3 and
5 would be generated again. Consequently, we would fall into a repeated elimination
process until the worst case happened, i.e., each node filled up with all the constraints

146

Algorithm 8: getMinimumSetConstraints4Share(i,array_Nodes,list_2Eliminated)
Input: endPoint, array_Nodes, list_2Eliminated
Output: A set of constraints that has minimal number of variables to cover

the list_2Eliminated
1 Set list_SharedConstraints = add all constraints which covers the variables

in the list_2Eliminated and remove duplicates;
2 Initialize list_Result ;
3 Initialize HashSet HashSet_IsCovred ;
4 foreach Variables v ∈ list_2Eliminated do
5 if HashSet_IsCovred contains v then
6 continue;
7 end
8 foreach Constraint c ∈ list_SharedConstraints do
9 add the constraint c′ into list_Result, which covers the maximum

number of variables in the list_2Eliminated and the constraint itself
contains minimum number of variables;

10 foreach Variables v′ ∈ c′ do
11 if v′ /∈ HashSet_IsCovred then
12 add v′ into HashSet_IsCovred;
13 end
14 end
15 end
16 end
17 return list_Result;

of the given constraint network.
Now, we would like to analyze the time complexity of det-k-CP. If we combine the

loops in Algorithm 6 with the loop in Algorithm 7 to form a triple-nested loop, the
total number of iterations for the triple-nested loop can be calculated by the following
recurrence relation:

n3 = 2 (7.7)

n4 = 3 + 2 + n3 (7.8)

n5 = 4 + 3 + 2 + n4 (7.9)
...

nk = (k − 1) + (k − 2) + · · ·+ 2 + nk−1 =
(k2−k−2)

2
+ nk−1 (7.10)

where nk denotes the number of iterations for the triple-nested loop for k number
of nodes of the target decomposition tree. A recurrence relation for {nk} can be
obtained by considering the following: Whenever one node is added to a tree with

147

Node0 Node1 Node2 Node3

4-1=3

3-1=2

Figure 7.4: A new node is prepended to a degenerated tree with 3 nodes. (Figure
reproduced from [120].)

k − 1 nodes, new non-adjacent nodes are generated, and we have to eliminate these
edges. The number of these edges can be summed by (k − 1) + (k − 2) + · · ·+ 2. For
instance, as can be seen in Figure 7.4, when node 0 is added to the tree, the number
of edges required to be eliminated is increased by 5. To obtain the explicit formula
for this recurrence relation, we solve it with the initial conditions n3 = 2, n2 = 0 and
n1 = 0. The solution of the recurrence relation is nk = k3−7k+6

6
, which means the

number of loops of the triple-nested loop is exactly k3−7k+6
6

.
At each iteration of the triple-nested loop, in lines 2 to 13 of Algorithm 7, the

number of executions can be bounded by the number of constraints (Nc) plus the
complexity of method getMinimumSetConstraints4Share, denoted by O(Nc) +

O(getMinimumSetConstraints4Share). The implementation of getMinimumSetCon-
straints4Shar (i.e., Algorithm 8) is bounded by O(Nv ·Nc), where Nv is the number of
variables. Thus, Algorithm 6 is bounded by O(k

3−7k+6
6
· (Nv ·Nc +Nc)). Algorithm 5,

which can be viewed as the outermost loop of the entire algorithm, can be bounded by
O(k · (Nc− Nc

k
)). This is because the loop of Algorithm 5 terminates eventually when

every node is filled with the whole constraint network. The overall time complexity
is, therefore, O(k · (Nc− Nc

k
) · k3−7k+6

6
· (Nv ·Nc+Nc)). Therefore, the asymptotic time

complexity is O(k4 ·N2
c ·Nv). Note that the runtime may be significantly smaller in

practice since we take into account the worst cases for Algorithm 5 and 7.

7.4 Experimental Results

In this section, we present our experimental results of the algorithm det-k-CP when
applied to the benchmark suite provided by Gottlob et al. used in [81]. Note that
we do not compare det-k-CP with det-k-decomp because these two algorithms aim
at two different decomposition targets, as mentioned before. However, this should
not place an obstacle for us since the hypergraphs in the benchmarks are extracted

148

from practical industrial constraint satisfaction problems. All the experiments are set
up on an iMac computer having an Intel i7-3770 CPU, 3.40GHz, with 8 GB 1600
MHz DDR3 and running under macOS Sierra version 10.12.5. The algorithms are
implemented in Java under JDK version 1.8.0_131.

Table 7.1: Experimental results for det-k-CP of the benchmark suite from [81]. (Table
reproduced from [120].)

k = 4 k = 8 k = 16
Instance T Min Max σ2 T Min Max σ2 T Min Max σ2

●adder_75 75 94 201 1501 309 47 180 1832 3.7s 24 162 1874

●adder_75 9 94 173 1053 134 47 160 1734 3.9s 23 162 1881

●adder_75 10 94 208 1815 192 47 207 3201 3.6s 24 217 3608

●adder_99 75 124 262 2341 406 62 236 3062 5s 31 207 3050

●adder_99 10 124 261 4430 242 62 204 2098 12s 31 303 7291

●adder_99 14 124 272 3050 263 62 264 5008 5.9s 31 84 5724

●bridge_50 59 113 211 1323 277 57 209 2517 3s 29 185 2032

●bridge_50 7 113 221 2760 165 56 207 3160 3s 28 149 2633

●bridge_50 9 113 227 1830 207 57 219 2841 3.3s 29 209 3017

●bridge_75 82 170 314 2934 511 85 294 4968 7.8s 43 267 4938

●bridge_75 14 169 303 2729 639 84 347 7046 9s 42 322 5869

●bridge_75 17 170 336 4065 402 85 321 6796 8s 43 332 8396

●bridge_99 172 224 420 5168 13 112 376 7484 16.7s 56 358 8983

●bridge_99 38 223 435 6166 782 111 430 16265 14s 55 387 13914

●bridge_99 33 224 442 6727 737 112 424 11258 17s 56 428 12717

●NewSystem2 54 50 102 341 159 25 88 387 1.13 53 86 450

●NewSystem2 5 50 91 249 81 25 116 723 1.5 12 110 1000

●NewSystem2 3 50 102 341 72 25 111 729 979 13 97 636

●NewSystem3 84 70 133 343 268 35 134 1046 15s 18 157 1709

●NewSystem3 5 69 145 1370 150 34 141 1824 3.9s 12 159 2242

●NewSystem3 7 70 149 899 115 35 141 1240 2m 18 146 1681

●NewSystem4 71 105 211 1467 391 53 185 1610 4.5s 27 166 1717

●NewSystem4 11 104 210 1629 328 52 235 5516 75s 26 264 3585

●NewSystem4 10 105 211 1467 286 53 219 3102 5s 27 228 3778

▲grid2D_40 97 200 332 2630 777 100 311 4949 13S 50 300 6002

▲grid2D_40 28 200 335 2755 695 100 320 8010 15S 50 302 6269

▲grid2D_40 31 200 338 3079 592 100 318 5297 14S 50 337 7957

▲grid2D_75 486 703 1149 29669 7.8s 352 1093 62397 3.7m 176 1057 77453

▲grid2D_75 277 703 1192 35509 9.4s 351 1149 66461 3.7m 175 1078 59942

▲grid2D_75 298 703 1186 35874 7.9s 352 1131 68936 3.5m 176 1154 91808

■s953 71 106 204 1299 313 53 195 2286 3s 27 172 1965

■s953 8 106 211 2756 225 53 217 2776 3.2s 26 194 3226

■s953 6.9 106 204 1298 170 53 205 2724 3.5s 27 218 3638

Continued on next page

149

Table 7.1 – continued from previous page
k = 4 k = 8 k = 16

Instance T Min Max σ2 T Min Max σ2 T Min Max σ2

■s1494 78 164 335 3859 523 82 291 4489 6.6s 41 249 3938

■s1494 15 163 350 8079 380 81 345 11411 7.6s 40 348 13751

■s1494 17.5 164 348 4832 340 80 332 7630 7.6s 41 339 9316

■s5378 507 740 1461 70147 5.8s 370 1338 101431 3m 185 1220 103192

■s5378 209 739 1347 57433 13.2s 369 1642 153866 5.3m 184 1568 167284

■s5378 183 740 1461 70148 6.8s 370 1614 176602 3.8m 185 1565 178186

Table 7.1 reports the experimental results for det-k-CP of the benchmark suite
from [81]. The symbols ●, ▲, and ■ denote the benchmark packages DaimlerChrysler,
Grid2D, and ISCAS89 as used in [81], respectively.2 The capital letter “T” represents
execution time in ms (unless other specified), and Min, Max stands for the minimal
and maximal number of constraints among all nodes, respectively. The variance of
the number of constraints of all nodes is denoted σ2. We use three different back-
ground colors to denote three types of heuristics for the swap procedures used when
decomposing the instances, including permutation, random exchange, and switching
nodes according to the number of constraints.3

As shown in Table 7.1, the execution time of instances is affordable even for
the largest instance s5378 with 2,958 constraints and 2,993 variables. But, for these
large-scale instances, the algorithm det-k-CP does not achieve one principal goal of
decomposition, i.e., each node has relativity balanced workload distribution. The de-
composition results for the medium-scale instances, such as adder_75, bridge_75,
NewSystem3, NewSystem4, and S953 with a number of constraints from around 400
to 700, might be suitable for parallel constraint solving. After applying det-k-CP,
the node with the maximum number of constraints among these instances is slightly
higher than 200, implying that the node for these instances can be solved in rea-
sonable execution time. For example, instances adder_75 and NewSystem4 have 677
and 418 constrains, respectively. The largest nodes we obtain after decomposition in
terms of the number of constraints are 201 and 210 for adder_75 and NewSystem4,
respectively. Besides, the relatively small variance of these instances indicates that

2We do not include small instances such as adder_15, adder_25, etc. from the benchmark suite
because it turns out that these small constraint networks are solvable for mainstream constraint
solvers and thus do not require parallel solving.

3The term permutation is explained in Algorithm 5.

150

the number of constraints distributed to nodes for these instances is not spread out
from their mean.

The results also indicate that the method of heuristics has a significant impact
on the outcomes of decomposition. In most cases, exchanging nodes by permuta-
tion order (as shown in white background color in Table 7.1) gets smaller variances,
but with exceptions (e.g., bridge_75 and NewSystem4). It should be noted that all
instances in the benchmark suite are decomposable by both det-k-CP and by det-k-
decomp. Remember that in the proof of Proposition 1, we have already shown that if
a hypertree decomposition meets the two conditions of det-k-cp, then it also satisfies
the four conditions of det-k-decomp. Besides, based on our observation, an instance
that can be decomposed by det-k-CP implies the instance can also be decomposed
by det-k-decomp and vice versa.

In summary, we can conclude that det-k-CP can decompose a given constraint
network within a reasonable execution time except for very large instances (e.g., s5378
with 2,958 constraints and 2,993 variables) and a big k (e.g., k = 16). For the
application of parallel constraint solving, the algorithm can be applied to medium
scale constraint networks with the number of constraints from around 400 to 700.

7.5 Conclusion and Future Work

We have presented the new algorithm det-k-CP to construct a degenerate decompo-
sition tree for parallel constraint solving, and we have also evaluated det-k-CP by a
benchmark suite from previous research det-k-decomp. Our results have shown that
det-k-CP can evenly distribute a constraint network with around 400 to 700 con-
straints onto parallel processors. However, we believe that there is a lot potential
to improve det-k-CP. For instance, the algorithm should take into consideration an
estimate of the amount/complexity of computation for the constraints. Furthermore,
local search methods such as tabu search can be employed to replace the existing
stochastic strategies in Algorithm 5 for better decomposition outcomes. Besides, for
balanced workload distribution, we can add constraints from other nodes to one node
after decomposition while still preserving the decomposition tree. Finally, the key
indicator of the value of this research depends on whether we can obtain speedup or
even superlinear speedup when using det-k-CP for parallel constraint solving, which
is to be researched in detail.

151

Chapter 8

Conclusions

Moore’s Law has powered the information technology revolution since the 1960s, but
unfortunately, the age of Moore’s Law has almost come to an end. This change in-
dicates that it is becoming more and more difficult to achieve increased uniprocessor
performance. Hence we are forced to switch to parallel processors from uniproces-
sors. At the same time, we still have to cope with the challenge raised by the demand
for solving larger and harder constraint satisfaction problems. Indeed, the constraints
community endeavors to develop more efficient and sophisticated techniques, such
as randomization, restarts, search heuristics, consistency algorithms, nogood learn-
ing, etc., to boost the performance of problem-solving for constraint solvers. How-
ever, exploiting parallelism is one of the few means that allows constraint solving
still to benefit from the performance improvement of hardware. Thus, research on
parallel constraint solving is an essential subfield in constraint programming. Much
progress has been made on effectively utilizing parallelism for constraint program-
ming, such as work-stealing for constraint solving [31], parallel constraint-based local
search [28, 29], embarrassingly parallel search (EPS) method for constraint solving
[170, 171, 173, 131], etc.

This dissertation analyzed the effectiveness of parallel constraint solving, with
the focus on obtaining a first solution when solving computationally hard combina-
torial problems. We have shown that a well-designed search space splitting method
and constraint programming model can enable the EPS approach to solve some open
instances of the social golfer problem that have not been solved by a sequential al-
gorithm. We also observed superlinear speedups when solving these instances, which
confirms our theoretical analysis. Besides, we examined two practical constraint op-
timization problems, including the traveling tournament problem with predefined
venues and the talent scheduling problem. Our proposed constraint models outper-
formed the existing models on the same instances, and the EPS approach could always

152

attain better feasible solutions in terms of the optimal objective value by using more
parallel processors. To explore the use of massively parallel processing, we proposed
the parallel stochastic portfolio search, which is a simple and non-intrusive way to
parallelize different incarnations of a sequential solver. When comparing the existing
portfolio to our portfolio approach by solving the same constraint satisfaction prob-
lems using the same constraint models, our technique could solve harder and larger
instances. The successes of our new parallel approaches are attributed to early di-
versity; i.e., some diversity early in the search introduced by parallelism can offset
early mistakes caused by weak heuristic choices. Unlike the other techniques (e.g.,
limited discrepancy search) used to overcome early mistakes, the studied two parallel
constraint solving approaches not only can visit more nodes simultaneously but also
does not sacrifice the guarantee of completeness.

In this dissertation, we also attempted to explore a new paradigm to exploit paral-
lelism for constraint programming. We presented a hypertree decomposition method
that builds a degenerate decomposition tree for a given constraint network, in which
each node of the decomposition tree possesses and executes a subset of constraints
of the given constraint network. The usefulness of our proposed parallel technique
depends on whether we can find an efficient way to join the results of each node.

153

Appendix A

The Solutions of Some SGP Instances

Week
Group 1 2 3 4 5 6

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 3 6 1 9 12 2 7 15 4 13 16 5 10 14 8 11 17
2 0 4 15 1 3 13 2 5 6 7 11 16 8 10 12 9 14 17
3 0 5 9 1 4 17 2 3 8 6 12 16 7 10 13 11 14 15
4 0 7 14 1 10 16 2 12 17 3 9 15 4 6 11 5 8 13
5 0 8 16 1 6 14 2 11 13 3 10 17 4 7 9 5 12 15
6 0 11 12 1 8 15 2 4 10 3 14 16 5 7 17 6 9 13
7 0 13 17 1 5 11 2 9 16 3 7 12 4 8 14 6 10 15

Table A.1: The solution for 6-3-8 transformed from the solution Shown in Table 5.6.
(Table adapted from [124].)

Week
Group 1 2 3 4 5 6

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 3 6 1 4 7 2 5 9 8 12 15 10 13 16 11 14 17
2 0 4 15 1 3 14 2 6 11 5 7 13 8 9 16 10 12 17
3 0 5 8 1 9 17 2 3 10 4 11 12 6 13 15 7 14 16
4 0 7 17 1 11 15 2 8 14 3 12 16 4 9 13 5 6 10
5 0 9 12 1 6 16 2 13 17 3 7 11 4 8 10 5 14 15
6 0 10 14 1 8 13 2 7 12 3 9 15 4 6 17 5 11 16
7 0 11 13 1 5 12 2 4 16 3 8 17 6 9 14 7 10 15

Table A.2: A new non-isomorphic solution for the 6-3-8 instance. (Table adapted
from [124].)

154

Week
Group 1 2 3 4 5 6

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 4 8 12 1 5 16 20 2 6 17 21 3 7 9 13 10 14 18 22 11 15 19 23
2 0 5 9 23 1 6 11 14 2 7 12 18 3 10 19 20 4 15 17 22 8 13 16 21
3 0 6 15 16 1 7 10 21 2 8 14 19 3 4 18 23 5 11 13 22 9 12 17 20
4 0 7 19 22 1 8 17 23 2 5 10 15 3 11 12 16 4 9 14 21 6 13 18 20
5 0 10 13 17 1 9 15 18 2 4 11 20 3 6 8 22 5 12 19 21 7 14 16 23
6 0 11 18 21 1 4 13 19 2 9 16 22 3 5 14 17 6 10 12 23 7 8 15 20

Table A.3: The solution for 6-4-7 transformed from the solution Shown in Table 5.7.
(Table adapted from [124].)

Week
Group 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2 1 4 7 2 5 10 3 8 11 6 13 16 9 14 19 12 17 20 15 18 21
3 1 5 18 2 8 15 3 17 19 4 14 20 6 9 11 7 12 13 10 16 21
4 1 6 19 2 7 16 3 5 12 4 13 17 8 14 21 9 10 18 11 15 20
5 1 8 17 2 4 11 3 9 16 5 13 21 6 14 18 7 10 20 12 15 19
6 1 9 15 2 13 19 3 4 21 5 8 20 6 10 17 7 11 18 12 14 16
7 1 10 14 2 12 18 3 6 15 4 8 16 5 7 19 9 13 20 11 17 21
8 1 11 13 2 14 17 3 18 20 4 9 12 5 15 16 6 7 21 8 10 19
9 1 12 21 2 6 20 3 7 14 4 10 15 5 9 17 8 13 18 11 16 19
10 1 16 20 2 9 21 3 10 13 4 18 19 5 11 14 6 8 12 7 15 17

Table A.4: A new non-isomorphic solution for the 7-3-10 instance. (Table reproduced
from [124].)

Week
Group 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 3 6 1 4 9 2 7 10 5 12 15 8 13 18 11 16 19 14 17 20
2 0 4 17 1 7 14 2 16 18 3 13 19 5 8 10 6 11 12 9 15 20
3 0 5 18 1 6 15 2 4 11 3 12 16 7 13 20 8 9 17 10 14 19
4 0 7 16 1 3 10 2 8 15 4 12 20 5 13 17 6 9 19 11 14 18
5 0 8 14 1 12 18 2 3 20 4 7 19 5 9 16 6 10 17 11 13 15
6 0 9 13 1 11 17 2 5 14 3 7 15 4 6 18 8 12 19 10 16 20
7 0 10 12 1 13 16 2 17 19 3 8 11 4 14 15 5 6 20 7 9 18
8 0 11 20 1 5 19 2 6 13 3 9 14 4 8 16 7 12 17 10 15 18
9 0 15 19 1 8 20 2 9 12 3 17 18 4 10 13 5 7 11 6 14 16

Table A.5: A new non-isomorphic solution for the 7-3-10 instance. (Table adapted
from [124].)

Thank you for copying the solutions. The world is yours. The world is yours. The
world is yours. The world is yours. The world is yours. The world is yours. The world
is yours. The world is yours.

155

Week
Group 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 3 6 1 4 9 2 5 10 7 11 12 8 15 18 13 16 19 14 17 20
2 0 4 18 1 12 15 2 9 14 3 17 19 5 7 13 6 10 16 8 11 20
3 0 5 17 1 8 10 2 7 20 3 9 13 4 12 19 6 14 15 11 16 18
4 0 7 14 1 5 16 2 8 17 3 12 18 4 10 20 6 9 19 11 13 15
5 0 8 16 1 14 19 2 3 11 4 7 15 5 9 18 6 13 20 10 12 17
6 0 9 15 1 3 20 2 12 16 4 8 13 5 11 14 6 17 18 7 10 19
7 0 10 13 1 7 18 2 15 19 3 8 14 4 11 17 5 6 12 9 16 20
8 0 11 19 1 13 17 2 4 6 3 7 16 5 15 20 8 9 12 10 14 18
9 0 12 20 1 6 11 2 13 18 3 10 15 4 14 16 5 8 19 7 9 17

Table A.6: A new non-isomorphic solution for the 7-3-10 instance. (Table adapted
from [124].)

Week
Player 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 1 2 3 4 5 6 7 8 2 1 4 3 6 5 8 7 3 4 1 2 7 8 5 6
3 1 2 3 4 5 6 7 8 3 4 1 2 7 8 5 6 6 5 8 7 2 1 4 3
4 1 2 3 4 5 6 7 8 4 3 2 1 8 7 6 5 8 7 6 5 4 3 2 1
5 1 2 3 4 5 6 7 8 5 6 7 8 1 2 3 4 2 1 4 3 6 5 8 7
6 1 2 3 4 5 6 7 8 6 5 8 7 2 1 4 3 4 3 2 1 8 7 6 5
7 1 2 3 4 5 6 7 8 7 8 5 6 3 4 1 2 5 6 7 8 1 2 3 4
8 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 7 8 5 6 3 4 1 2

Week
Player 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

0 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 4 3 2 1 8 7 6 5 5 6 7 8 1 2 3 4 6 5 8 7 2 1 4 3
3 8 7 6 5 4 3 2 1 2 1 4 3 6 5 8 7 4 3 2 1 8 7 6 5
4 5 6 7 8 1 2 3 4 6 5 8 7 2 1 4 3 7 8 5 6 3 4 1 2
5 6 5 8 7 2 1 4 3 7 8 5 6 3 4 1 2 3 4 1 2 7 8 5 6
6 7 8 5 6 3 4 1 2 3 4 1 2 7 8 5 6 8 7 6 5 4 3 2 1
7 3 4 1 2 7 8 5 6 8 7 6 5 4 3 2 1 2 1 4 3 6 5 8 7
8 2 1 4 3 6 5 8 7 4 3 2 1 8 7 6 5 5 6 7 8 1 2 3 4

Week
Player 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 1 1 1 1 1 1 1

0 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1
2 7 8 5 6 3 4 1 2 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1
3 5 6 7 8 1 2 3 4 7 8 5 6 3 4 1 2 1 1 1 1 1 1 1
4 3 4 1 2 7 8 5 6 2 1 4 3 6 5 8 7 1 1 1 1 1 1 1
5 8 7 6 5 4 3 2 1 4 3 2 1 8 7 6 5 1 1 1 1 1 1 1
6 2 1 4 3 6 5 8 7 5 6 7 8 1 2 3 4 1 1 1 1 1 1 1
7 4 3 2 1 8 7 6 5 6 5 8 7 2 1 4 3 1 1 1 1 1 1 1
8 6 5 8 7 2 1 4 3 3 4 1 2 7 8 5 6 1 1 1 1 1 1 1

Table A.7: A solution of 8-8-9 expressed by groups. (Table adapted from [124].)

156

Bibliography

[1] Alejandro Aguado. A 10 days solution to the social golfer problem. Math games:
Social Golfer problem. MAA Online, 2004.

[2] Ö Akgün, Ian Miguel, and Chris Jefferson. Refining portfolios of constraint
models with conjure. In Doctoral Programme Proceedings, The 16th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP
2010), pages 1–6, 2010.

[3] Kenzi Akiyama and Chihiro Suetake. On projective planes of order 12 with a
collineation group of order 9. Australasian J. Combinatorics, 43:133–162, 2009.

[4] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. SUNNY: a lazy
portfolio approach for constraint solving. TPLP, 14(4-5):509–524, 2014.

[5] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. A multicore tool
for constraint solving. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 232–238, 2015.

[6] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Portfolio approaches
for constraint optimization problems. Annals of Mathematics and Artificial
Intelligence, 76(1-2):229–246, 2016.

[7] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In American Federation of Information Processing
Societies: Proceedings of the AFIPS ’67 Spring Joint Computer Conference,
April 18-20, 1967, Atlantic City, New Jersey, USA, pages 483–485, 1967.

[8] Alejandro Arbelaez and Philippe Codognet. A GPU implementation of parallel
constraint-based local search. In 22nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP 2014, Torino, Italy,
February 12-14, 2014, pages 648–655, 2014.

157

[9] Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Online heuristic se-
lection in constraint programming. In Proceedings of the 4th International Sym-
posium on Combinatorial Search, 2009.

[10] Blair Archibald, Fraser Dunlop, Ruth Hoffmann, Ciaran McCreesh, Patrick
Prosser, and James Trimble. Sequential and parallel solution-biased search for
subgraph algorithms. In Integration of Constraint Programming, Artificial In-
telligence, and Operations Research - 16th International Conference, CPAIOR
2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings, pages 20–38, 2019.

[11] Fahiem Bacchus and Adam J. Grove. On the forward checking algorithm. In
Principles and Practice of Constraint Programming - CP’95, First International
Conference, CP’95, Cassis, France, September 19-22, 1995, Proceedings, pages
292–308, 1995.

[12] Simeon Ball. Finite geometry and combinatorial applications, volume 82. Cam-
bridge University Press, 2015.

[13] Nicolas Barnier and Pascal Brisset. Solving the kirkman’s schoolgirl problem
in a few seconds. In Principles and Practice of Constraint Programming - CP
2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September
9-13, 2002, Proceedings, pages 477–491, 2002.

[14] JG Benadé, AP Burger, and JH van Vuuren. The enumeration of k-sets of
mutually orthogonal latin squares. In Proceedings of the 42th Conference of the
Operations Research Society of South Africa, Stellenbosch, pages 40–49, 2013.

[15] Frédéric Benhamou and Laurent Granvilliers. Continuous and interval con-
straints. In Handbook of Constraint Programming, chapter 16, pages 571–603.
Elsevier, 2006.

[16] Christian Bessière. Arc-consistency and arc-consistency again. Artificial Intel-
ligence, 65(1):179–190, 1994.

[17] Christian Bessiere. Constraint propagation. In Handbook of Constraint Pro-
gramming, chapter 3, pages 29–83. Elsevier, 2006.

[18] Christian Bessière and Marie-Odile Cordier. Arc-consistency and arc-
consistency again. In Proceedings of the 11th National Conference on Artificial
Intelligence. Washington, DC, USA, July 11-15, 1993., pages 108–113, 1993.

158

[19] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. The
tractability of global constraints. In Principles and Practice of Constraint
Programming - CP 2004, 10th International Conference, CP 2004, Toronto,
Canada, September 27 - October 1, 2004, Proceedings, pages 716–720, 2004.

[20] Christian Bessière and Jean-Charles Régin. Arc consistency for general con-
straint networks: Preliminary results. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya, Japan,
August 23-29, 1997, 2 Volumes, pages 398–404, 1997.

[21] Christian Bessière, Jean-Charles Régin, Roland H. C. Yap, and Yuanlin Zhang.
An optimal coarse-grained arc consistency algorithm. Artificial Intelligence,
165(2):165–185, 2005.

[22] Lucas Bordeaux, Youssef Hamadi, and Horst Samulowitz. Experiments with
massively parallel constraint solving. In IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009, pages 443–448, 2009.

[23] Raj Chandra Bose, Sharadchandra S Shrikhande, and Ernest T Parker. Further
results on the construction of mutually orthogonal latin squares and the falsity
of euler’s conjecture. Canadian Journal of Mathematics, 12:189–203, 1960.

[24] Raj Chandra Bose and Sharadchandra Shankar Shrikhande. On the falsity of
euler’s conjecture about the non-existence of two orthogonal latin squares of
order 4t+ 2. Proceedings of the National Academy of Sciences of the United
States of America, 45(5):734, 1959.

[25] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais.
Boosting systematic search by weighting constraints. In Proceedings of the 16th
Eureopean Conference on Artificial Intelligence, ECAI’2004, including Presti-
gious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August
22-27, 2004, pages 146–150, 2004.

[26] Daniel Brélaz. New methods to color the vertices of a graph. Communications
of the ACM, 22(4):251–256, 1979.

[27] Federico Campeotto, Alessandro Dal Palù, Agostino Dovier, Ferdinando
Fioretto, and Enrico Pontelli. Exploring the use of gpus in constraint solving.
In Practical Aspects of Declarative Languages - 16th International Symposium,

159

PADL 2014, San Diego, CA, USA, January 20-21, 2014. Proceedings, pages
152–167, 2014.

[28] Yves Caniou, Philippe Codognet, Daniel Diaz, and Salvador Abreu. Experi-
ments in parallel constraint-based local search. In Evolutionary Computation
in Combinatorial Optimization - 11th European Conference, EvoCOP 2011,
Torino, Italy, April 27-29, 2011. Proceedings, pages 96–107, 2011.

[29] Yves Caniou, Philippe Codognet, Florian Richoux, Daniel Diaz, and Salvador
Abreu. Large-scale parallelism for constraint-based local search: the costas
array case study. Constraints, 20(1):30–56, 2015.

[30] TCE Cheng, JE Diamond, and BMT Lin. Optimal scheduling in film production
to minimize talent hold cost. Journal of Optimization Theory and Applications,
79(3):479–492, 1993.

[31] Geoffrey Chu, Christian Schulte, and Peter J. Stuckey. Confidence-based work
stealing in parallel constraint programming. In Principles and Practice of Con-
straint Programming - CP 2009, 15th International Conference, CP 2009, Lis-
bon, Portugal, September 20-24, 2009, Proceedings, pages 226–241, 2009.

[32] André A. Ciré, Serdar Kadioglu, and Meinolf Sellmann. Parallel restarted
search. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 842–848,
2014.

[33] Philippe Codognet and Daniel Diaz. Yet another local search method for con-
straint solving. In Stochastic Algorithms: Foundations and Applications, In-
ternational Symposium, SAGA 2001 Berlin, Germany, December 13-14, 2001,
Proceedings, pages 73–90, 2001.

[34] David A. Cohen, Peter Jeavons, Christopher Jefferson, Karen E. Petrie, and
Barbara M. Smith. Symmetry definitions for constraint satisfaction problems.
Constraints, 11(2-3):115–137, 2006.

[35] Paul R. Cooper and Michael J. Swain. Arc consistency: Parallelism and domain
dependence. Artificial Intelligence, 58(1-3):207–235, 1992.

[36] Carlos Cotta, Iván Dotú, Antonio J. Fernández, and Pascal Van Hentenryck.
Scheduling social golfers with memetic evolutionary programming. In Hybrid

160

Metaheuristics, Third International Workshop, HM 2006, Gran Canaria, Spain,
October 13-15, 2006, Proceedings, pages 150–161, 2006.

[37] James M. Crawford and Andrew B. Baker. Experimental results on the appli-
cation of satisfiability algorithms to scheduling problems. In Proceedings of the
12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31
- August 4, 1994, Volume 2., pages 1092–1097, 1994.

[38] CSPLib: A problem library for constraints, 1999. http://www.csplib.org/.
Accessed 9 Jan 2020.

[39] Marialuisa J de Resmini. There exist at least three non-isomorphic s (2, 4,
28)’s. Journal of Geometry, 16(1):148–151, 1981.

[40] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[41] Rina Dechter. Tractable structures for constraint satisfaction problems. In
Handbook of Constraint Programming, chapter 7, pages 209–244. Elsevier, 2006.

[42] Rina Dechter and Judea Pearl. The cycle-cutset method for improving search
performance in ai applications. In Third IEEE Conference on AI Applications,
pages 224–230. IEEE, 1987.

[43] Rina Dechter and Judea Pearl. Network-based heuristics for constraint-
satisfaction problems. Artificial Intelligence, 34(1):1–38, 1987.

[44] Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez,
Laurent Perron, Jean-Charles Régin, and Pierre Schaus. Compact-table: Effi-
ciently filtering table constraints with reversible sparse bit-sets. In Principles
and Practice of Constraint Programming - 22nd International Conference, CP
2016, Toulouse, France, September 5-9, 2016, Proceedings, pages 207–223, 2016.

[45] Emir Demirovic, Geoffrey Chu, and Peter J. Stuckey. Solution-based phase
saving for CP: A value-selection heuristic to simulate local search behavior
in complete solvers. In Principles and Practice of Constraint Programming -
24th International Conference, CP 2018, Lille, France, August 27-31, 2018,
Proceedings, pages 99–108, 2018.

[46] Iván Dotú and Pascal Van Hentenryck. Scheduling social golfers locally. In
Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, Second International Conference, CPAIOR 2005,

161

http://www.csplib.org/

Prague, Czech Republic, May 30 - June 1, 2005, Proceedings, pages 155–167,
2005.

[47] Iván Dotú and Pascal Van Hentenryck. Scheduling social tournaments locally.
AI Communications, 20(3):151–162, 2007.

[48] Thorsten Ehlers and Peter J. Stuckey. Parallelizing constraint programming
with learning. In Integration of AI and OR Techniques in Constraint Program-
ming - 13th International Conference, CPAIOR 2016, Banff, AB, Canada, May
29 - June 1, 2016, Proceedings, pages 142–158, 2016.

[49] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking.
In Principles and Practice of Constraint Programming - CP 2001, 7th Inter-
national Conference, CP 2001, Paphos, Cyprus, November 26 - December 1,
2001, Proceedings, pages 93–107, 2001.

[50] Boi Faltings. Distributed constraint programming. In Handbook of Constraint
Programming, chapter 20, pages 699–729. Elsevier, 2006.

[51] Matteo Fischetti, Michele Monaci, and Domenico Salvagnin. Self-splitting of
workload in parallel computation. In Integration of AI and OR Techniques in
Constraint Programming - 11th International Conference, CPAIOR 2014, Cork,
Ireland, May 19-23, 2014. Proceedings, pages 394–404, 2014.

[52] Filippo Focacci, François Laburthe, and Andrea Lodi. Local search and con-
straint programming. In Handbook of Metaheuristics, chapter 13, pages 369–403.
Kluwer Academic Publishers, first edition, 2003.

[53] Filippo Focacci and Michela Milano. Global cut framework for removing sym-
metries. In Principles and Practice of Constraint Programming - CP 2001, 7th
International Conference, CP 2001, Paphos, Cyprus, November 26 - December
1, 2001, Proceedings, pages 77–92, 2001.

[54] Eugene C. Freuder. A sufficient condition for backtrack-free search. Journal of
the ACM (JACM), 29(1):24–32, 1982.

[55] Eugene C. Freuder and Alan K. Mackworth. Constraint satisfaction: An emerg-
ing paradigm. In Handbook of Constraint Programming, chapter 2, pages 13–27.
Elsevier, 2006.

162

[56] Eugene C. Freuder and Richard J. Wallace. Generalizing inconsistency learning
for constraint satisfaction. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, Au-
gust 20-25 1995, 2 Volumes, pages 563–571, 1995.

[57] Alan M. Frisch, Ian Miguel, and Toby Walsh. CGRASS: A system for trans-
forming constraint satisfaction problems. In Recent Advances in Constraints,
Joint ERCIM/CologNet International Workshop on Constraint Solving and
Constraint Logic Programming, Cork, Ireland, June 19-21, 2002. Selected Pa-
pers, pages 15–30, 2002.

[58] Matteo Gagliolo and Jürgen Schmidhuber. Learning restart strategies. In IJ-
CAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages 792–797, 2007.

[59] Steven Gay, Renaud Hartert, Christophe Lecoutre, and Pierre Schaus. Conflict
ordering search for scheduling problems. In Principles and Practice of Con-
straint Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings, pages 140–148, 2015.

[60] Fayez Gebali. Algorithms and parallel computing. Wiley & Sons, 2011.

[61] Ian P. Gent, Ian Miguel, Peter Nightingale, Ciaran McCreesh, Patrick Prosser,
Neil C. A. Moore, and Chris Unsworth. A review of literature on parallel
constraint solving. TPLP, 18(5-6):725–758, 2018.

[62] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint
programming. In Handbook of Constraint Programming, chapter 10, pages 329–
376. Elsevier, 2006.

[63] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in con-
straint programming. In Francesca Rossi, Peter van Beek, and Toby Walsh,
editors, Handbook of Constraint Programming, chapter 10, pages 329–376. El-
sevier, 2006.

[64] Ian P. Gent and Barbara M. Smith. Symmetry breaking in constraint program-
ming. In ECAI 2000, Proceedings of the 14th European Conference on Artificial
Intelligence, Berlin, Germany, August 20-25, 2000, pages 599–603, 2000.

163

[65] Nebras Gharbi. On compressing and parallelizing constraint satisfaction prob-
lems. PhD thesis, Artois University, 2015.

[66] Gael Glorian, Frédéric Boussemart, Jean-Marie Lagniez, Christophe Lecoutre,
and Bertrand Mazure. Combining nogoods in restart-based search. In Principles
and Practice of Constraint Programming - 23rd International Conference, CP
2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings,
pages 129–138, 2017.

[67] Solomon W Golomb and Leonard D Baumert. Backtrack programming. Journal
of the ACM (JACM), 12(4):516–524, 1965.

[68] Carla P. Gomes, Cèsar Fernández, Bart Selman, and Christian Bessiere. Sta-
tistical regimes across constrainedness regions. In Principles and Practice of
Constraint Programming - CP 2004, 10th International Conference, CP 2004,
Toronto, Canada, September 27 - October 1, 2004, Proceedings, pages 32–46,
2004.

[69] Carla P. Gomes, Cèsar Fernández, Bart Selman, and Christian Bessière. Statis-
tical regimes across constrainedness regions. Constraints, 10(4):317–337, 2005.

[70] Carla P. Gomes, Henry A. Kautz, Ashish Sabharwal, and Bart Selman. Sat-
isfiability solvers. In Handbook of Knowledge Representation, chapter 2, pages
89–134. Elsevier, 2008.

[71] Carla P. Gomes and Ashish Sabharwal. Exploiting runtime variation in com-
plete solvers. In Handbook of Satisfiability, chapter 9, pages 271–288. IOS Press,
2009.

[72] Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions in
combinatorial search. In Principles and Practice of Constraint Programming -
CP97, Third International Conference, Linz, Austria, October 29 - November
1, 1997, Proceedings, pages 121–135, 1997.

[73] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry A. Kautz. Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems. Journal of
Automated Reasoning, 24(1/2):67–100, 2000.

164

[74] Carla P. Gomes, Bart Selman, and Henry A. Kautz. Boosting combinatorial
search through randomization. In Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence and Tenth Innovative Applications of Artificial
Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wis-
consin, USA., pages 431–437, 1998.

[75] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hy-
pertree decompositions: Questions and answers. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
57–74, 2016.

[76] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Advanced paral-
lel algorithms for acyclic conjunctive queries. Technical report, Technical
Report DBAI-TR-98/18, http://www.dbai.tuwien.ac.at/staff/gottlob/

parallel.ps, 1998.

[77] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of struc-
tural CSP decomposition methods. Artificial Intelligence, 124(2):243–282, 2000.

[78] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic
conjunctive queries. J. ACM, 48(3):431–498, 2001.

[79] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decom-
positions and tractable queries. Journal of Computer and System Sciences,
64(3):579–627, 2002.

[80] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and
guards: game theoretic and logical characterizations of hypertree width. Journal
of Computer and System Sciences, 66(4):775–808, 2003.

[81] Georg Gottlob and Marko Samer. A backtracking-based algorithm for hypertree
decomposition. ACM Journal of Experimental Algorithmics, 13, 2008.

[82] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction
to Parallel Computing. Addison Wesley, second edition, 2003.

[83] Laurent Granvilliers and Gaétan Hains. A conservative scheme for parallel
interval narrowing. Information Processing Letters, 74(3-4):141–146, 2000.

165

http://www.dbai.tuwien.ac.at/staff/gottlob/parallel.ps
http://www.dbai.tuwien.ac.at/staff/gottlob/parallel.ps

[84] John L. Gustafson. Reevaluating amdahl’s law. Communications of the ACM,
31(5):532–533, 1988.

[85] Marc Gyssens and Jan Paredaens. A decomposition methodology for cyclic
databases. In Advances in Data Base Theory, Vol. 2, Based on the Proceedings
of the Workshop on Logical Data Bases, December 14-17, 1982, Centre d’études
et de recherches de Toulouse, France, pages 85–122, 1982.

[86] Youssef Hamadi. Optimal distributed arc-consistency. Constraints, 7(3-4):367–
385, 2002.

[87] Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. Manysat: a parallel SAT
solver. Journal on Satisfiability, Boolean Modeling and Computation, 6(4):245–
262, 2009.

[88] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence, 14(3):263–313, 1980.

[89] Warwick Harvey. CSPLib problem 010: Social golfers problem, 2002. http:

//www.csplib.org/Problems/prob010, Accessed 9 Jan 2020.

[90] Warwick Harvey and Thorsten Jan Winterer. Solving the MOLR and so-
cial golfers problems. In Principles and Practice of Constraint Programming
- CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October
1-5, 2005, Proceedings, pages 286–300, 2005.

[91] William D Harvey. Nonsystematic backtracking search. PhD thesis, stanford
university, 1995.

[92] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In
Proceedings of the Fourteenth International Joint Conference on Artificial In-
telligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes,
pages 607–615, 1995.

[93] John L. Hennessy and David A. Patterson. Computer Architecture - A Quan-
titative Approach. Morgan Kaufmann, sixth edition, 2019.

[94] Ruth Hoffmann, Ciaran McCreesh, Samba Ndojh Ndiaye, Patrick Prosser, Craig
Reilly, Christine Solnon, and James Trimble. Observations from parallelising
three maximum common (connected) subgraph algorithms. In Integration of
Constraint Programming, Artificial Intelligence, and Operations Research - 15th

166

http://www.csplib.org/Problems/prob010
http://www.csplib.org/Problems/prob010

International Conference, CPAIOR 2018, Delft, The Netherlands, June 26-29,
2018, Proceedings, pages 298–315, 2018.

[95] Petra Hofstedt and Armin Wolf. Einführung in die Constraint-Programmierung
- Grundlagen, Methoden, Sprachen, Anwendungen. eXamen.press. Springer,
2007.

[96] Holger H. Hoos and Edward P. K. Tsang. Local search methods. In Handbook
of Constraint Programming, chapter 5, pages 135–167. Elsevier, 2006.

[97] Benny Van Houdt. Randomized work stealing versus sharing in large-scale
systems with non-exponential job sizes. CoRR, abs/1810.13186, 2018.

[98] Jinbo Huang. The effect of restarts on the efficiency of clause learning. In
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages 2318–2323, 2007.

[99] Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. An economics ap-
proach to hard computational problems. Science, 275(5296):51–54, 1997.

[100] Willem Hulsink, Dick Manuel, and Harry Bouwman. Clustering in ict: From
route 128 to silicon valley, from dec to google, from hardware to content. ERIM
Report Series Reference No. ERS-2007-064-ORG, 2007.

[101] Bilal Syed Hussain. CSPLib problem 054: N-queens. http://www.csplib.

org/Problems/prob054/, Accessed 19 May 2019.

[102] Joey Hwang and David G. Mitchell. 2-way vs. d-way branching for CSP. In
Principles and Practice of Constraint Programming - CP 2005, 11th Interna-
tional Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings,
pages 343–357, 2005.

[103] Daisuke Ishii, Kazuki Yoshizoe, and Toyotaro Suzumura. Scalable parallel nu-
merical CSP solver. In Principles and Practice of Constraint Programming -
20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, pages 398–406, 2014.

[104] Serdar Kadioǧlu and Özgür Akgün. CSPLib problem 076: Costas arrays, 2001.
http://www.csplib.org/Problems/prob076, Accessed 9 Jan 2020.

167

http://www.csplib.org/Problems/prob054/
http://www.csplib.org/Problems/prob054/
http://www.csplib.org/Problems/prob076

[105] Simon Kasif. On the parallel complexity of discrete relaxation in constraint
satisfaction networks. Artificial Intelligence, 45(3):275–286, 1990.

[106] Henry A. Kautz, Eric Horvitz, Yongshao Ruan, Carla P. Gomes, and Bart
Selman. Dynamic restart policies. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence and Fourteenth Conference on Innovative
Applications of Artificial Intelligence, July 28 - August 1, 2002, Edmonton,
Alberta, Canada, pages 674–681, 2002.

[107] Graham Kendall, Sigrid Knust, Celso C. Ribeiro, and Sebastián Urrutia.
Scheduling in sports: An annotated bibliography. Computers and Operations
Research, 37(1):1–19, 2010.

[108] Thomas P Kirkman. Note on an unanswered prize question. Cambridge and
Dublin Math. J, 5:255–262, 1850.

[109] Lars Kotthoff and Neil C. A. Moore. Distributed solving through model split-
ting. CoRR, abs/1008.4328, 2010.

[110] Krzysztof Kuchcinski and Radoslaw Szymanek. JaCoP Documentation. Lund
University, 2017. Available from http://www.lth.se/jacop/.

[111] Clement WH Lam, Larry Thiel, and Stanley Swiercz. The non-existence of finite
projective planes of order 10. Canadian Journal of Mathematics, 41(6):1117–
1123, 1989.

[112] Jean-Louis Laurière. A language and a program for stating and solving combi-
natorial problems. Artificial Intelligence, 10(1):29–127, 1978.

[113] Yat Chiu Law and Jimmy Ho-Man Lee. Global constraints for integer and set
value precedence. In Principles and Practice of Constraint Programming - CP
2004, 10th International Conference, CP 2004, Toronto, Canada, September 27
- October 1, 2004, Proceedings, pages 362–376, 2004.

[114] Christophe Lecoutre. Constraint Networks: Targeting Simplicity for Techniques
and Algorithms. John Wiley & Sons, 2009.

[115] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal.
Recording and minimizing nogoods from restarts. JSAT, 1(3-4):147–167, 2007.

168

http://www.lth.se/jacop/

[116] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Rea-
soning from last conflict(s) in constraint programming. Artificial Intelligence,
173(18):1592–1614, 2009.

[117] Jimmy H. M. Lee, Christian Schulte, and Zichen Zhu. Increasing nogoods
in restart-based search. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages
3426–3433, 2016.

[118] Hongbo Li and Zhanshan Li. A novel strategy of combining variable ordering
heuristics for constraint satisfaction problems. IEEE Access, 6:42750–42756,
2018.

[119] Paolo Liberatore. On the complexity of choosing the branching literal in DPLL.
Artificial Intelligence, 116(1-2):315–326, 2000.

[120] Ke Liu, Sven Löffler, and Petra Hofstedt. Hypertree decomposition: The
first step towards parallel constraint solving. In Declarative Programming and
Knowledge Management - Conference on Declarative Programming, DECLARE
2017, Unifying INAP, WFLP, and WLP, Würzburg, Germany, September 19-
22, 2017, Revised Selected Papers, pages 81–94, 2017.

[121] Ke Liu, Sven Löffler, and Petra Hofstedt. Using hypertree decomposition for
parallel constraint solving. In Maximilian Eibl and Martin Gaedke, editors,
47. Jahrestagung der Gesellschaft für Informatik, Informatik 2017, Chemnitz,
Germany, September 25-29, 2017, volume P-275 of LNI, pages 615–622. GI,
2017.

[122] Ke Liu, Sven Löffler, and Petra Hofstedt. Solving the traveling tournament
problem with predefined venues by parallel constraint programming. In Mining
Intelligence and Knowledge Exploration - 6th International Conference, MIKE
2018, Cluj-Napoca, Romania, December 20-22, 2018, Proceedings, pages 64–79,
2018.

[123] Ke Liu, Sven Löffler, and Petra Hofstedt. Parallel stochastic portfolio
search for constraint solving. In 2019 IEEE Intl Conf on Parallel & Dis-
tributed Processing with Applications, Big Data & Cloud Computing, Sus-
tainable Computing & Communications, Social Computing & Networking,
ISPA/BDCloud/SocialCom/SustainCom 2019, Xiamen, China, December 16-
18, 2019, pages 697–704. IEEE, 2019.

169

[124] Ke Liu, Sven Löffler, and Petra Hofstedt. Social golfer problem revisited. In
Agents and Artificial Intelligence - 11th International Conference, ICAART
2019, Prague, Czech Republic, February 19-21, 2019, Revised Selected Papers,
pages 72–99, 2019.

[125] Ke Liu, Sven Löffler, and Petra Hofstedt. Solving the social golfers problems by
constraint programming in sequential and parallel. In Proceedings of the 11th
International Conference on Agents and Artificial Intelligence, ICAART 2019,
Volume 2, Prague, Czech Republic, February 19-21, 2019, pages 29–39, 2019.

[126] Ke Liu, Sven Löffler, and Petra Hofstedt. Solving the talent scheduling prob-
lem by parallel constraint programming. In Artificial Intelligence Applications
and Innovations - 15th IFIP WG 12.5 International Conference, AIAI 2019,
Hersonissos, Crete, Greece, May 24-26, 2019, Proceedings, pages 236–244, 2019.

[127] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las
vegas algorithms. Information Processing Letters, 47(4):173–180, 1993.

[128] Rui Machado and Carsten Lojewski. The fraunhofer virtual machine: a com-
munication library and runtime system based on the RDMA model. Computer
Science - R&D, 23(3-4):125–132, 2009.

[129] Rui Machado, Vasco Pedro, and Salvador Abreu. On the scalability of con-
straint programming on hierarchical multiprocessor systems. In 42nd Interna-
tional Conference on Parallel Processing, ICPP 2013, Lyon, France, October
1-4, 2013, pages 530–535, 2013.

[130] Alan K. Mackworth. Consistency in networks of relations. Artificial intelligence,
8(1):99–118, 1977.

[131] Arnaud Malapert, Jean-Charles Régin, and Mohamed Rezgui. Embarrassingly
parallel search in constraint programming. Journal of Artificial Intelligence
Research, 57:421–464, 2016.

[132] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. An overview of parallel
SAT solving. Constraints, 17(3):304–347, 2012.

[133] Ciaran McCreesh and Patrick Prosser. The shape of the search tree for the
maximum clique problem and the implications for parallel branch and bound.
TOPC, 2(1):8:1–8:27, 2015.

170

[134] J. J. McGregor. Relational consistency algorithms and their application in
finding subgraph and graph isomorphisms. Information Sciences, 19(3):229–
250, 1979.

[135] Brendan D McKay, Alison Meynert, and Wendy Myrvold. Small latin squares,
quasigroups, and loops. Journal of Combinatorial Designs, 15(2):98–119, 2007.

[136] Christopher Mears, Todd Niven, Marcel Jackson, and Mark Wallace. Proving
symmetries by model transformation. In Principles and Practice of Constraint
Programming - CP 2011 - 17th International Conference, CP 2011, Perugia,
Italy, September 12-16, 2011. Proceedings, pages 591–605, 2011.

[137] Rafael A. Melo, Sebastián Urrutia, and Celso C. Ribeiro. The traveling tour-
nament problem with predefined venues. Journal of Scheduling, 12(6):607–622,
2009.

[138] Tarek Menouer, Mohamed Rezgui, Bertrand Le Cun, and Jean-Charles Régin.
Mixing static and dynamic partitioning to parallelize a constraint programming
solver. International Journal of Parallel Programming, 44(3):486–505, 2016.

[139] Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-
box constraint programming solvers. In Integration of AI and OR Techniques
in Contraint Programming for Combinatorial Optimzation Problems - 9th In-
ternational Conference, CPAIOR 2012, Nantes, France, May 28 - June1, 2012.
Proceedings, pages 228–243, 2012.

[140] Laurent Michel, Andrew See, and Pascal Van Hentenryck. Parallelizing con-
straint programs transparently. In Principles and Practice of Constraint Pro-
gramming - CP 2007, 13th International Conference, CP 2007, Providence, RI,
USA, September 23-27, 2007, Proceedings, pages 514–528, 2007.

[141] Ian Miguel. CSPLib problem 038: Steel mill slab design, 2012. http://www.

csplib.org/Problems/prob010, Accessed 19 May 2019.

[142] Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28(2):225–233, 1986.

[143] Roger Mohr and Gérald Masini. Good old discrete relaxation. In ECAI, pages
651–656, 1988.

171

http://www.csplib.org/Problems/prob010
http://www.csplib.org/Problems/prob010

[144] Thierry Moisan, Jonathan Gaudreault, and Claude-Guy Quimper. Parallel
discrepancy-based search. In Principles and Practice of Constraint Program-
ming - 19th International Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013. Proceedings, pages 30–46, 2013.

[145] Thierry Moisan, Claude-Guy Quimper, and Jonathan Gaudreault. Parallel
depth-bounded discrepancy search. In Integration of AI and OR Techniques
in Constraint Programming - 11th International Conference, CPAIOR 2014,
Cork, Ireland, May 19-23, 2014. Proceedings, pages 377–393, 2014.

[146] Ugo Montanari and Francesca Rossi. Constraint relaxation may be perfect.
Artificial Intelligence, 48(2):143–170, 1991.

[147] Danny Munera, Daniel Diaz, and Salvador Abreu. Towards parallel constraint-
based local search with the X10 language. In Declarative Programming and
Knowledge Management - Declarative Programming Days, KDPD 2013, Unify-
ing INAP, WFLP, and WLP, Kiel, Germany, September 11-13, 2013, Revised
Selected Papers, pages 169–184, 2013.

[148] Danny Munera, Daniel Diaz, Salvador Abreu, and Philippe Codognet. A para-
metric framework for cooperative parallel local search. In Evolutionary Com-
putation in Combinatorial Optimisation - 14th European Conference, EvoCOP
2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers, pages 13–24,
2014.

[149] T. Nguyen and Yves Deville. A distributed arc-consistency algorithm. Science
of Computer Programming, 30(1-2):227–250, 1998.

[150] Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, and Ian
Miguel. Automatically improving constraint models in savile row through
associative-commutative common subexpression elimination. In Principles and
Practice of Constraint Programming - 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings, pages 590–605, 2014.

[151] Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian
Miguel, and Patrick Spracklen. Automatically improving constraint models
in savile row. Artificial Intelligence, 251:35–61, 2017.

172

[152] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry
O’Sullivan. Using case-based reasoning in an algorithm portfolio for constraint
solving. In Irish conference on artificial intelligence and cognitive science, pages
210–216, 2008.

[153] José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, and Santiago Enrique
Conant-Pablos. A supervised learning approach to construct hyper-heuristics
for constraint satisfaction. In Pattern Recognition - 5th Mexican Conference,
MCPR 2013, Querétaro, Mexico, June 26-29, 2013. Proceedings, pages 284–293,
2013.

[154] José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, and Santiago Enrique
Conant-Pablos. Combine and conquer: an evolutionary hyper-heuristic ap-
proach for solving constraint satisfaction problems. Artificial Intelligence Re-
view, 46(3):327–349, 2016.

[155] Anthony Palmieri, Jean-Charles Régin, and Pierre Schaus. Parallel strategies
selection. In Principles and Practice of Constraint Programming - 22nd Inter-
national Conference, CP 2016, Toulouse, France, September 5-9, 2016, Pro-
ceedings, pages 388–404, 2016.

[156] Behrooz Parhami. Introduction to parallel processing: algorithms and architec-
tures. Springer Science & Business Media, 2006.

[157] Ernest Tilden Parker. Construction of some sets of mutually orthogonal latin
squares. Proceedings of the American Mathematical Society, 10(6):946–949,
1959.

[158] Jeff Parkhurst, John A. Darringer, and Bill Grundmann. From single core to
multi-core: preparing for a new exponential. In 2006 International Conference
on Computer-Aided Design, ICCAD 2006, San Jose, CA, USA, November 5-9,
2006, pages 67–72, 2006.

[159] Laurent Perron. Search procedures and parallelism in constraint programming.
In Principles and Practice of Constraint Programming - CP’99, 5th Interna-
tional Conference, Alexandria, Virginia, USA, October 11-14, 1999, Proceed-
ings, pages 346–360, 1999.

173

[160] Gilles Pesant. CSPLib problem 068: Traveling tournament problem with pre-
defined venues (ttppv), 2009. http://www.csplib.org/Problems/prob068,
Accessed 9 Jan 2020.

[161] Gilles Pesant. A constraint programming approach to the traveling tourna-
ment problem with predefined venues. Practice and Theory of Automated
Timetabling, pages 303–316, 2012.

[162] David Poole and Alan K. Mackworth. Artificial Intelligence - Foundations of
Computational Agents. Cambridge University Press, second edition, 2017.

[163] Steven Prestwich. CSPLib problem 028: Balanced incomplete block designs,
2001. http://www.csplib.org/Problems/prob010, Accessed 9 Jan 2020.

[164] Steven Prestwich. Local search and backtracking vs non-systematic backtrack-
ing. In AAAI 2001 Fall symposium on using uncertainty within computation,
pages 109–115, 2001.

[165] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Docu-
mentation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S., 2017. Available
from http://www.choco-solver.org.

[166] Jean-Francois Puget. Symmetry breaking revisited. Constraints, 10(1):23–46,
2005.

[167] Rolf S Rees and WD Wallis. Kirkman triple systems and their generalizations:
A survey. In Designs 2002, pages 317–368. Springer, 2003.

[168] Philippe Refalo. Impact-based search strategies for constraint programming. In
Principles and Practice of Constraint Programming - CP 2004, 10th Interna-
tional Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004,
Proceedings, pages 557–571, 2004.

[169] Jean-Charles Régin and Arnaud Malapert. Parallel constraint programming. In
Handbook of Parallel Constraint Reasoning, chapter 9, pages 337–379. Springer,
2018.

[170] Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Embarrassingly
parallel search. In Principles and Practice of Constraint Programming - 19th
International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013.
Proceedings, pages 596–610, 2013.

174

http://www.csplib.org/Problems/prob068
http://www.csplib.org/Problems/prob010
http://www.choco-solver.org

[171] Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Improvement of
the embarrassingly parallel search for data centers. In Principles and Practice
of Constraint Programming - 20th International Conference, CP 2014, Lyon,
France, September 8-12, 2014. Proceedings, pages 622–635, 2014.

[172] Andrea Rendl, Ian Miguel, Ian P. Gent, and Christopher Jefferson. Automat-
ically enhancing constraint model instances during tailoring. In Eighth Sym-
posium on Abstraction, Reformulation, and Approximation, SARA 2009, Lake
Arrowhead, California, USA, 8-10 August 2009, 2009.

[173] Mohamed Rezgui, Jean-Charles Régin, and Arnaud Malapert. Using cloud
computing for solving constraint programming problems. In First Workshop
on Cloud Computing and Optimization, a conference workshop of CP 2014.
Citeseer, 2014.

[174] Christopher K Riesbeck and Roger C Schank. Inside case-based reasoning.
Lawrence Erlbaum Associates, 1989.

[175] Sasko Ristov, Radu Prodan, Marjan Gusev, and Karolj Skala. Superlinear
speedup in HPC systems: why and when? In Proceedings of the 2016 Feder-
ated Conference on Computer Science and Information Systems, FedCSIS 2016,
Gdańsk, Poland, September 11-14, 2016., pages 889–898, 2016.

[176] Carl Christian Rolf. Parallelism in Constraint Programming. PhD thesis, Lund
University, Sweden, 2011.

[177] Carl Christian Rolf and Krzysztof Kuchcinski. Parallel solving in constraint pro-
gramming. In MCC 2010: Third Swedish Workshop on Multi-Core Computing,
2010.

[178] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Con-
straint Programming, volume 2 of Foundations of Artificial Intelligence. Else-
vier, 2006.

[179] Olivier Roussel. Description of ppfolio. Lens Computer Science Research
Lab, 2017. Available from https://www.cril.univ-artois.fr/~roussel/

ppfolio/.

[180] Yongshao Ruan, Eric Horvitz, and Henry A. Kautz. Restart policies with de-
pendence among runs: A dynamic programming approach. In Principles and

175

https://www.cril.univ-artois.fr/~roussel/ppfolio/
https://www.cril.univ-artois.fr/~roussel/ppfolio/

Practice of Constraint Programming - CP 2002, 8th International Conference,
CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, pages 573–586,
2002.

[181] Alvaro Ruiz-Andino, Lourdes Araujo, Fernando Sáenz-Pérez, and José J. Ruz.
Parallel arc-consistency for functional constraints. In Proceedings of the Inter-
national Workshop on Implementation Technology for Programming Languages
based on Logic, held in conjunction with the Joint International Conference
and Symposium on Logic Programming, Manchester, UK, Saturday 20th June,
1998, pages 86–100, 1998.

[182] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach.
Pearson Education, third edition, 2010.

[183] Ashok Samal and Tom Henderson. Parallel consistent labeling algorithms. In-
ternational Journal of Parallel Programming, 16(5):341–364, 1987.

[184] Christian Schulte. Parallel search made simple. In Proceedings of TRICS: Tech-
niques foR Implementing Constraint programming Systems, a post-conference
workshop of CP, pages 41–57, 2000.

[185] Christian Schulte and Mats Carlsson. Finite domain constraint programming
systems. In Handbook of Constraint Programming, chapter 14, pages 495–526.
Elsevier, 2006.

[186] Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. Modeling and program-
ming with gecode. Gecode Team, 2017. Available from https://www.gecode.

org/.

[187] Meinolf Sellmann and Warwick Harvey. Heuristic constraint propagation–using
local search for incomplete pruning and domain filtering of redundant con-
straints for the social golfer problem. In CPAIOR’02. Citeseer, 2002.

[188] Charles Severance and Kevin Dowd. High performance computing. Rice Uni-
versity, 2012.

[189] Yuan Shi. Reevaluating Amdahl’s law and Gustafson’s law. Computer Sciences
Department, Temple University (MS: 38-24), 1996.

[190] Barbara Smith. CSPLib problem 039: The rehearsal problem, 2001. http:

//www.csplib.org/Problems/prob039, Accessed 9 Jan 2020.

176

https://www.gecode.org/
https://www.gecode.org/
http://www.csplib.org/Problems/prob039
http://www.csplib.org/Problems/prob039

[191] Barbara Smith. Constraint programming in practice: Scheduling a rehearsal.
Re-search Report APES-67-2003, APES group, 2003.

[192] Barbara M. Smith. Modelling. In Handbook of Constraint Programming, chap-
ter 11, pages 377–406. Elsevier, 2006.

[193] Barbara M. Smith. Reducing symmetry in a combinatorial de-
sign problem. In CPAIOR’01, pages 351–359, April 2001.
http://www.icparc.ic.ac.uk/cpAIOR01.

[194] Xian-He Sun and Yong Chen. Reevaluating amdahl’s law in the multicore era.
Journal of Parallel and Distributed Computing, 70(2):183–188, 2010.

[195] Google AI team. Google’s OR-Tools. Google LLC, 2019. Available from https:

//developers.google.com/optimization/.

[196] Hugo Terashima-Marín, José Carlos Ortiz-Bayliss, Peter Ross, and Manuel
Valenzuela-Rendón. Hyper-heuristics for the dynamic variable ordering in con-
straint satisfaction problems. In Genetic and Evolutionary Computation Con-
ference, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12-16, 2008, pages
571–578, 2008.

[197] Markus Triska and Nysret Musliu. An effective greedy heuristic for the social
golfer problem. Annals of Operations Research, 194(1):413–425, 2012.

[198] Markus Triska and Nysret Musliu. An improved SAT formulation for the social
golfer problem. Annals of Operations Research, 194(1):427–438, 2012.

[199] Roman Trobec, Bostjan Slivnik, Patricio Bulic, and Borut Robic. Introduction
to Parallel Computing - From Algorithms to Programming on State-of-the-Art
Platforms. Undergraduate Topics in Computer Science. Springer, 2018.

[200] Charlotte Truchet, Florian Richoux, and Philippe Codognet. Prediction of
parallel speed-ups for las vegas algorithms. In 42nd International Conference
on Parallel Processing, ICPP 2013, Lyon, France, October 1-4, 2013, pages
160–169, 2013.

[201] Peter van Beek. Backtracking search algorithms. In Handbook of Constraint
Programming, chapter 4, pages 85–134. Elsevier, 2006.

177

https://developers.google.com/optimization/
https://developers.google.com/optimization/

[202] Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Proceed-
ings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

[203] Toby Walsh. Depth-bounded discrepancy search. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya,
Japan, August 23-29, 1997, 2 Volumes, pages 1388–1395, 1997.

[204] Toby Walsh. Search in a small world. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden,
July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages 1172–1177, 1999.

[205] Toby Walsh. CSPLib problem 019: Magic squares and sequences, 2002. http:

//www.csplib.org/Problems/prob019, Accessed 9 Jan 2020.

[206] Toby Walsh. CSPLib problem 026: Sports tournament scheduling, 2002. http:
//www.csplib.org/Problems/prob026, Accessed 9 Jan 2020.

[207] Toby Walsh. Breaking value symmetry. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois,
USA, July 13-17, 2008, pages 1585–1588, 2008.

[208] Wikipedia contributors. Transputer — Wikipedia, the free encyclopedia, 2019.
[Online; accessed 11-August-2019].

[209] Feng Xie and Andrew J. Davenport. Massively parallel constraint programming
for supercomputers: Challenges and initial results. In Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems, 7th International Conference, CPAIOR 2010, Bologna, Italy, June 14-18,
2010. Proceedings, pages 334–338, 2010.

[210] Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint
satisfaction: A review. Autonomous Agents and Multi-Agent Systems, 3(2):185–
207, 2000.

[211] Xi Yun and Susan L. Epstein. A hybrid paradigm for adaptive parallel search.
In Principles and Practice of Constraint Programming - 18th International Con-
ference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings,
pages 720–734, 2012.

178

http://www.csplib.org/Problems/prob019
http://www.csplib.org/Problems/prob019
http://www.csplib.org/Problems/prob026
http://www.csplib.org/Problems/prob026

[212] Alessandro Zanarini and Gilles Pesant. More robust counting-based search
heuristics with alldifferent constraints. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, 7th In-
ternational Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Pro-
ceedings, pages 354–368, 2010.

[213] Ying Zhang and Alan K. Mackworth. Parallel and distributed algorithms for
finite constraint satisfaction problems. In Proceedings of the Third IEEE Sym-
posium on Parallel and Distributed Processing, SPDP 1991, 2-5 December 1991,
Dallas, Texas, USA, pages 394–397, 1991.

[214] Ying Zhang and Alan K. Mackworth. Parallel and distributed finite constraint
satisfaction: Complexity, algorithms and experiments. Technical Report 92-30,
Department of Computer Science, The University of British Columbia, Vancou-
ver, B.C. Canada, November 1992.

[215] Peter Zoeteweij and Farhad Arbab. A component-based parallel constraint
solver. In Coordination Models and Languages, 6th International Conference,
COORDINATION 2004, Pisa, Italy, February 24-27, 2004, Proceedings, pages
307–322, 2004.

179

	Introduction
	Contributions and organization

	Background Information
	Constraint Programming
	Constraint Propagation
	Backtracking Search
	Symmetry in Constraint Programming

	Parallel Computing
	Amdahl's Law and Gustafson's Law
	The Meaning of Gustafson's Law for Parallel Constraint Solving

	The Literature Review on Parallel Constraint Solving
	Parallel Constraint Propagation
	Parallelizing the Search Process
	Portfolios
	Hybrid Approaches
	Conclusion

	The Effectiveness of Parallel Constraint Solving
	Early Mistakes
	Possible Approaches to Tackle Early Mistakes
	Restart-Based Search
	Limited Discrepancy Search
	Parallel Portfolio Search
	Embarrassingly Parallel Search

	Conclusion

	Case Studies of the EPS Approach
	Social Golfer Problem
	The Introduction of Social Golfer Problem
	Background Information
	The Difficulties of Solving the SGP
	Global Constraints for Modelling SGP

	The Basic Model
	Instances Solved Sequentially
	7-7-8 etc.
	9-9-10
	13-13-14 etc.
	8-8-9

	Instances Solved in Parallel
	6-3-8
	6-4-7
	7-3-10

	Experiments
	Experimental Results on Instance Solved Sequentially
	Experimental Results on Instance Solved in Parallel
	Discussion

	Related Work
	Methods from the CSP Literature
	Methods from the Metaheuristic Literature
	Summary

	Conclusion

	Traveling Tournament Problem with Predefined Venues
	Introduction to the TTPPV
	Modeling the TTPPV Based on Perfect Matching (The First Model)
	A Model for Perfect Matching
	A Model for the Timetable
	Experimental Results
	A Complete Model
	Executing the Complete Model in Parallel
	Experimental Results

	An Advanced Modeling Approach for Larger Instances (A Second Model)
	An Advanced Model
	Solving the Model in Parallel for Larger Instances
	Experimental Results on the Large Instance Model

	Discussion
	Conclusion

	Talent Scheduling Problem
	The Introduction of the TS
	The CSP Model of the TS
	Solving the TS in Parallel
	Numerical Results
	Conclusion

	Conclusion

	Parallel Stochastic Portfolio
	Introduction
	The Components of the Current Single-Solver-Based Portfolio Approach
	The Limitations of the Current Parallel Portfolio Search
	A Novel Parallel Stochastic Portfolio Approach
	Experimental Results
	Related Work
	Discussion and Conclusion

	Towards Parallel Constraint Solving by Hypertree Decomposition
	Introduction
	Preliminaries
	The algorithm det-k-CP
	Experimental Results
	Conclusion and Future Work

	Conclusions
	The Solutions of Some SGP Instances
	Bibliography

