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Abstract

The Lateral-Photovoltage-Scanning-Method (LPS) operates well for Si, Ge and Si1 – x – Gex
for an analysis in defect regions below one part per million, where Secondary Ion Mass

Spectroscopy (SIMS) or X-Ray Fluorescence (XRF) signals fall below its detection limit.

[Tau55, ALR+05, SLR96]

Although LPS is well established since 1999, it is still poorly investigated. We used a computa-

tional simulation finite volume (FVM) approach, solving the van-Roosbroeck equations in three

dimensions using a MUltifrontal Massively Parallel sparse direct Solver MUMPS. The signal

transport is simulated by solving the Maxwell equations in two dimension for different sample

geometries.

It could be shown that a typical LPS-measurement is distorted due to the samples geometry

(except cuboid). This distortion can be simulated, understood and recalculated, as discussed

for trapezoidal or cylindrical samples. Also using the signal generation simulation of this mea-

surement technique it can be shown, that the measurement signal is convoluted depending on

the inherent minority charge carrier life time reducing the local resolution. An investigation of

the local resolution were made using a Gaussian function as the convolution function of this

method. A comparison of simulations to real measurements was discussed on silicon samples

with boron implantation pattern.

In 1955 Tauc already stated that the bulk photovoltaic effect, causative for the LPS measurement

set-up, could be used detecting any quantity, which affects the band structure of a semiconduc-

tor. As strain is coupled to the conduction and valence band profiles by the deformation potential

theory by van-de-Walle [Van89], we investigated the possibility to detect strain variations using

LPS simulations. For an n-type Si sample with an on-top stressor stripe (silicon-nitride) the

strain distribution in Si got calculated by finite elemente simulation (FEM) using solid mechan-

ics module. By directly converting the strain profile to a single conduction and valence band,

FVM LPS simulations were performed. It could be shown, that the LPS voltage can be con-

nected to hole traps caused by the conduction and valence band profile. Therefore we can finally

conclude, that the LPS measurement set-up is suitable measuring conduction and valence band

variations caused by strain.
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Zusammenfassung

Die Lateral-Photovoltage-Scanning-Methode (LPS) ist zur Analyse der Dotierstoffvariatio-

nen von Si, Ge und Si1 – x – Gex in Bereichen unter 1ppm geeignet, in denen die Signale der

Sekundärionen-Massenspektroskopie (SIMS) oder der Röntgenfluoreszenz (XRF) unter ihre

Nachweisgrenze fallen. [Tau55, ALR+05, SLR96]

Obwohl die LPS-Methode seit 1999 etabliert ist, ist sie noch immer wenig erforscht. Um diese

Methode besser zu verstehen, wurde mithilfe eines Finite-Volumen-Ansatz (FVM) simuliert

und die van-Roosbroeck-Gleichungen in drei Dimensionen mit einem MUltifrontal Massively

Parallel Sparse Solver MUMPS gelöst. Um den Signaltransport zu simulieren, werden die

Maxwell-Gleichungen in zwei Dimensionen für verschiedene Probengeometrien gelöst. Durch

diese Arbeit konnte gezeigt werden, dass eine typische LPS-Messung aufgrund der Proben-

geometrie (mit Ausnahme von quaderförmigen Proben) verzerrt ist. Diese Verzerrung kann

simuliert, verstanden und berechnet werden, sowie für trapezförmige oder zylindrische Proben

diskutiert. Mithilfe der Simulation zur Signalerzeugung dieser Messtechnik wird gezeigt, dass

das Messsignal in Abhängigkeit von der inhärenten Minoritätsladungsträger-Lebensdauer gefal-

tet ist, was die lokale Auflösung reduziert. Eine Untersuchung der lokalen Auflösung wurde

unter Verwendung einer Gaußfunktion als Faltungsfunktion durchgeführt. Ein Vergleich von

Simulationen mit realen Messungen wurde an Siliciumproben mit Bor-Implantationsmuster

diskutiert.

Bereits 1955 stellte Tauc fest, dass der photovoltaische Effekt, der für das LPS-Signal ursäch-

lich ist, zum Nachweis jeder Größe, die die Bandstruktur eines Halbleiters beeinflusst, genutzt

werden kann. Da die Dehnung durch Deformationspotentiale nach von van-de-Walle [Van89]

an die Leitungs- und Valenzbandprofile gekoppelt ist, wurde die Möglichkeit untersucht,

Dehnungsvariationen mit Hilfe von LPS-Simulationen zu detektieren. Für eine n-Typ-Si-

Probe mit aufgesetzten Verspannungsstreifen (Siliciumnitrid) wurde die Dehnungsverteilung

in Si mittels Finite-Elemente-Simulation (FEM) unter Verwendung eines Festkörpermechanik-

Moduls in COMSOL berechnet. Durch direkte Umwandlung des Dehnungsprofils in ein

einziges Leitungs- und Valenzband wurden FVM-LPS-Simulationen durchgeführt. Es kon-

nte gezeigt werden, dass die LPS-Spannung mit Lochfallen verbunden werden kann, die durch

das Leitungs- und Valenzbandprofil verursacht werden. Daraus lässt sich schließen, dass der

LPS-Messaufbau geeignet wäre, Leitungs- und Valenzbandvariationen durch Dehnung her-

vorgerufen zu messen.
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¨The great tragedy of Science - the slaying of a beautiful hypothesis by an ugly fact.¨

T. H. Huxley 1870
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Symbol Explanation

Symbol Explanation Unit

ULPS LPS-voltage nV

ULPS,2D simulated LPS-voltage by Maxwell equation nV

n, p electron-, hole density cm−3

N+
D ,N−

A density of ionized impurities cm−3

ND,NA density of donors and acceptors cm−3

σ conductivity S/m

ρ resistivity Ωcm

EF Fermi energy eV

EC,EV conduction/valence band energy eV

NC,NV effective DOS of conduction, valence band cm−3

ni intrinsic carrier density cm−3

T temperature 300 K

kB Boltzmann constant J/K

vth thermal velocity cm/s

q electric charge C

ε dielectric constant F/m

Φ electric potential V

G generation rate s−1cm−3

R recombination rate s−1cm−3

JJJn,JJJp current density of electrons, holes Am−2

JJJDrift,JJJDiff,JJJTh current density caused by drift, diffusion and thermal gradient Am−2

μn,p mobility of electrons, holes cm2/Vs

Dn,p electric displacement field of electrons, holes As/m2

RDir,RSRH,RAug rate for direct, Shockley-Read-Hall and Auger recombination s−1cm−3

CDir direct recombination factor m3/s

γn,p electron, hole degeneracy factor .

τn,p electron, hole life time μs

nd, pd electron, hole density of state d cm−3

Ei intrinsic energy level eV

ET trap energy level eV

Cn,p
Aug Auger recombination factor for electrons, holes m6/s

fmod modulation frequency kHz

Ω volume in 3D space .

uuu continuously differentiable vector field .

∂Ω surface of volume Ω .
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Symbol Explanation Unit

RDir,RSRH,RAug rate for direct, Shockley-Read-Hall and Auger recombination s−1cm−3

nnn outward pointing normal field .

S surface of volume Ω .

ω part of volume Ω .

P(xf,yf) coordinates of the laser spot mm

σeq equilibrium conductivity S/m

S(x) LPS signal V

g associated inverse Fermi integral .

F1/2 Fermi-Dirac integral .

ϕn,p quasi Fermi potentials for electrons and holes V

R reflectivity .

L laser beam shape function m−3

σL standard deviation of the Gaussian beam profile μm

F1 Fletcher mobility coefficients m−1V−1s−1

F2 Fletcher mobility coefficients m−2

L̂,Û upper (lower) triangulation matrix .

fmod modulation frequency of LPS measurement set-up 1 kHz

Γ1,2 boundaries definition .

Φin assumed dipole strength V

Ueff effective value of the LPS voltage nV

γ convolution function .

σi jσi jσi j stress tensor GPa

εi jεi jεi j strain tensor .

Δ spin orbit split off energy eV

Y Young’s modulus GPa

G Shear modulus GPa

η Poissons’s ratio .

Ξ,b,d deformation potentials eV

γ1,2,3 Luttinger parameters .
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Chapter 1

Microelectronics Today

1.1. “More Moore” vs./and “More than Moore”
The current main goals for the development of semiconductor device technology were set by the

’International Technology Roadmap for Semiconductors’ (ITRS) in 2014/15 [ITR15]. The first

roadmap for semiconductors was proposed in the famous paper by Gordon Moore (1965). On

the basis of topical trends he predicted that in an integrated circuit the costs per component will

be kept inversely proportional to their total number of components. Additionally, he forecasted

that the number of transistors in a dense integrated circuit will double every 18 month [Rei17,

Moo65]. Moore’s prediction has been turned into reality for more than forty years as shown in

Fig. 1.1 1, thanks to the continous progress of the semiconductor manufactor technology.

Fig. 1.1: Historical data showing the number of transistors (in a logarithmic scale) fabricated in

a dense integrated circuit as a function of time. The solid curve indicates, that the number of

transistors double every 18 month.

1Picture taken from https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png
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Despite its long lasting accuracy, the Moore prediction was always anticipated to lose validity

due to limitations inherent to the process technology (as for instance the maximum achievable

resolution for lithographic processing) or to the approaching of fundamental physical barriers

when the device size becomes comparable to the atomistic scales. Indeed, since the 1970s, the

general expectation has always been that the technology roadmap would be sustainable for just

ten more years. But there’s life in the old dog yet.

As a matter of fact in the present time Moore’s Law has not lost validity yet. Targetting a

reduction of power, performance, area and cost (PPAC) per unit of component, research efforts

in the field has allowed to keep Moore’s Law on track, following the so called “more Moore”

approach. In particular the main goal is the transistor miniaturization, keeping the compatibility

with the Complementary Metal-Oxide-Semiconductor (CMOS) standard. In this way, scaling

down it’s size, the maximum number of transistors hosted in a single chip can be increased. As

a consequence systems on a single chip (SoC) featuring increasing degree of complexity can

reach the market, as for instance witnessed by the resent release of the Raspberry Pi [RC19].

Following this miniaturization trend, current CMOS transistors feature gate length of the or-

der of 7 nm [WLC+17], which corresponds to an array of just 13 atoms in a silicon lattice.

Therefore, at this length scale further miniaturization seems to be limited by the atomic size

and to an uncontrolled arrangement of their position inducing by the lithographic processes,

which moreover has a resolution limit harshly below 10 nm [CYD+09]. Hence, it is not sur-

prising that Intel and Nvidea among others proclaimed recently the end of Moore’s Law [Tib19].

The approaching of these fundamental limits has driven research efforts toward alternative di-

rections: ¨In the 21st century, the new challenge is not how many transistors can be built on

a single chip, but rather how to integrate diverse circuits together predictably, harmoniously

and cost effectively¨ was already stated in 2000 at the Bell Laboratories [Tai00]. These diverse

integrated circuits has to be connected and are therefore build in packages, applying to the so

called System-in-Package (SiP) procedure. This kind of technologies are usually referred as

the “More than Moore”2 approach since in this cases the performance increase does not rely

on down-scaling but is related to diversification of transistors and circuits. According to ITRS

reports the “More than Moore” approach typically allows non-digital-functionalities (e.g., sen-

sors, actuators, RF communicators) to migrate from the system on board level to a particular

package level (SiP) or chip-level (SoC).

The actual landscape of the semiconductor industry can be represented by the scheme in Fig.

1.2, where the two lines of development high light the fruitful coexistence of the “More Moore”

and “More than Moore” paradigm. In other words, in the next future higher value hybrid sys-

tems are expected to be realized by the combination of SiP and SoC systems thanks to research

progress in miniaturization and diversification.

2IRTS2009
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Fig. 1.2: The ”International Technology Roadmap for Semiconductors” (ITRS) illustrates the

combined need of miniaturization of the digital functions (”More Moore”) and functional di-

versification (”More than Moore”). [Rei17].

The realization of the objectives indicated in Fig. 1.2 places a plethora of challenges in material

science. Of particular relevance for the presented contest, are those related to the improvement

of the substrate material. From this perspective, Silicon has always been the workhorse in the

CMOS technology. Despite silicon substrates have been introduced more than 70 years ago,

driven by advances in PPAC, the growth of the crystal material, the substrate preparation and

the associated characterization techniques are still an active research field. In parallel, and in

line with the ”More than Moore” approach also a lot of new substrate materials are actively

investigated, thus increasing the set of available wafers to chose from, when a specific func-

tionality is targeted. For instance, high power devices are expected to outperform when grown

on β -Ga2O3 [BGW18, HJ18] thanks to the higher break down voltage with respect to silicon

featured by this new material. As another example, chips embedding photonic functionalities

require III-V based substrates due to the poor optical emission properties of group IV crystals

[SPZ07].

Of course of paramount importance in this field is the capability of realizing large atomically

flat substrates featuring an high quality crystal material with an excellent degree of spatial uni-

formity. To this aim we stress that lattice defects, such as misfits dislocations or atomic im-

purity related to (un)intential background doping, may be electrically active and then influence

the transistor performances, especially when their size is reduced. For instance, it is has been

shown that random doping fluctuations occurring in the gate material of an ensamble of < 20nm

transistors, cause a critical broadening of the threshold voltage distribution [BM16, Toc10].

Moreover, due to local differences in the thermal conductivity associated to an inhomogeneous

material, temperature fluctuation may occur along the gate channel, negatively impacting on the

sub threshold leakages.
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1.2. Material Quality Improvements

Motivated by the quest for an increase in substrate quality, the need to explore novel semicon-

ductor materials, or the cost benefits associated to an enlargement of the wafer area, well es-

tablished crystal growth techniques, as for instance the Czochralski approach (Cz), which dates

1918 [Czo18], still attract a considerable amount of research efforts, in line with the PPAC

objectives. As a matter of fact, nowadays, beside continuously improving traditional growth

approaches, innovative procedures are also explored. To this aim new growth machine con-

cepts are introduced, and sophisticate numerical simulations of the crystal dynamics developed

to achieve a deeper understanding of the growth process [DFR13, DBSR17]. Finally, research

effort are also oriented to improve the structural characterization techniques used to asses the

crystal quality and its impact on the electrical or thermal properties [ACC+06, PDLV+99, SB02,

OMTO92, LR97].

Research in crystal growth is historically well established in Berlin, as witnessed by the pres-

ence of the Leibniz Institute for Crystal Growth, a member of the Forschungsverbund Berlin

and a leading player in this field, contributing to keep alive the legacy of Czochralski which set-

tled in the city from Poland at the beginning of the XX century to develop his famous method.

To better appreciate the relevance of the Cz-approach, it’s worth to remember that nowadays

more than 95 % of the silicon single crystals are grown using this technique [Zul01], and diam-

eters up to 450 mm are routinely achieved [LK11]. According to the Cz-method, a seed crystal

is dipped in a melt and slowly pulled out toward a lower temperature region to cool down in

order to crystallize with a lattice orientation controlled by the seed. During this process, the

temperature fields, the rotation and the pulling velocity, together with the overall melt volume

can be tuned in order to optimize the crystal volume and quality [TUT92, KEWH89].

Since the melt and the seed are usually made by the same material, a finite temperature dif-

ference between the melt (liquid phase) and the seed crystal (solid phase) must be maintained

during the growth for thermodynamic reasons, in order to maintain these two separate phases.

This temperature gradient induce a thermal shock in the fuse material which generates lattice

dislocations that in the case of silicon propagate mainly along the [110] crystal direction. With

the scope of exploiting this preferential orientation, in 1958 William Dash engineered the final

crystal shape placing a neck in the growth direction [Das59]. As a result the defect lines were

driven toward the surface and dislocation free silicon single crystals were obtained.

Another technological issue, limiting the crystal quality in the Cz-growth approach is related to

the interaction of the melt with the surrounding crucible. As a matter of fact, due to this inter-

action, crucible particle, usually oxygen and carbon aggregates are incorporated into the melt.

Consequently, Cz-grown materials feature higher concentration of these two elements with re-

spect to crystals grown by means of alternative crucible free approaches [Shi86]. When the

concentration of crucible material in the melt is high enough formation of oxygen and carbon

precipitates are observed, which negatively affect the electrical transport properties, limiting the

mobility and lowering the charge carrier life time [New00]. Due to the current quality standard

required by the semiconductor industry, managing this negative effect represents today an open

challenge, even after more than one hundred years from the introduction of the Cz-technique

[RNM+17].

Mainly to overcome this limitation, a different growth approach for silicon crystals has been

proposed and pioneered in the ’50 by Pfann [Pfa52] in the effort to avoid the presence of the
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crucible. Soon after Theuerer further developed this approach, and patented it in 1962 with the

name of "Floating-Zone-Method" (FZ) [The62]. The core idea is that, a vertical rod made of

high pure poly crystalline material is slowly pulled down towards the center of an horizontal

heating coil. In a neighbour of the coil, the high temperature field partially melts the silicon rod.

The melt, which surrounds the external surface, flows downward without any contact interac-

tion with the coil, and subsequently, when it reaches a lower temperature region below the coil

plane solidifies. Combining the FZ-approach with the necking technique introduced by Dash’s

virtually dislocation free single crystals has been obtained [Syl62]. To figure out the high level

of maturity of this technology, one should consider that nowadays this kind of material, with

diameter up to 200 mm, is commercially available [DNH+14]. On the other hand the floating

zone technique also represents the method of choice to achieve record purity crystals material

needed for very specific applications. For instance we mention that meteorologic applications,

that IKZ FZ-Si28 crystal are used to define the Avogadro constant [BPRA10] and the mass unit

since May 2019. However, the main drawback of the FZ-approach, which prevents its extensive

application, is related to the need of high quality feed rod making the technique too expensive

for the mass market [Zul94].

To avoid both the need for an expensive feed material and the contamination caused by the direct

interaction with a crucible material, a novel method to grow silicon crystals, named "SiGrEt",

has been proposed by the Leibniz Institute for Crystal Growth in 2017 [Lor19, DMZ+17]. As

in the classic Cz-approach, the crystal is pulled out from a furnace using a seed attached to a

rod moving upward. In this case however, the crucible is filled with commercial silicon gran-

ulate which is kept in the solid phase everywhere expect for the central zone. It follows that

contamination in the melt region are avoid since the surrounding solid region prevents a direct

interaction of the fuse with the crucible walls. To achieve this goal, an high frequency electro-

magnetic coil inductor is placed close to the external surface of the crucible in order to produce

an appropriate temperature field by a proper engineering of the inductor shape and penetration

depth of the electro magnetic radiation. The development of such inductor requires numerical

simulations to estimate the resulting temperature field since the local temperature depend in a

complex manner also on the growth kinetics (which of course is influenced by the e.m. field)

and the other growth parameters, such as the rod translation and rotation velocity. The valida-

tion of this numerical estimates and more in general the optimization of the SiGrEt approach,

demand for an accurate experimental technique able to measure the temperature field during the

growth. Notice that the demonstration of such technique would be of great value in a broader

context, since also the optimization of the Cz- and FZ-method would benefit from the capability

of measuring with sufficient spatial resolution the growth temperature.

To probe the temperature field one can try to asses some physical quantity which influences

in a significant manner the crystallization process and at the same time is critically dependent

on the T spatial variation. Variations in the background doping concentration fulfill both these

properties since "temperature fluctuations at the solid-liquid interface lead to unsteady growth

and backmelting. These result in microscopic impurity variations in the crystal, also called

[...] striations" [Zul94]. Detecting these microscopic impurity variation by a fast and cheap

mapping technique, would allow to reconstruct the spatial profile of the solid-liquid interface

which in turn contains the desired information about the temperature field. Moreover, the mea-

sured solid-liquid interface profile could be also direct benchmarked against numerical data

obtained simulating the whole growth kinetics, thus allowing to validate the theoretical models

[KNL+91, CO98, VFM07]. Finally, a precise, fast, cheap and possible non-destructive mea-

surement of the background doping profile is valuable by itself since it can be used to asses the

degree of spatial homogeneity in the final wafer material.
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1.3. The Lateral Photovoltage Scanning Method - LPS

Traditionally, the local doping concentration is measured assessing its effect on the electrical

resistivity after the crystal has been sawed into individual wafers or into a set of longitudinal

cuts by a four-point-probe resistivity set-up [Val54]. The main drawback of this technique is

the relatively poor spatial resolution (few mm [Oss19]) and the rather long acquisition time.

Despite lateral resolution can be improved to approach the micrometer scale by using spread-

ing resistance imaging, this goal is achieved at the expenses of even longer acquisition times

[MD66, Dic66]. Moreover since the probes are put in contact with the wafer surface, the mea-

surement may alter the surface properties. As an alternative to map the dopant distribution in

the wafer material, the secondary ion mass spectroscopy (SIMS) approach can be also adopted.

However, this technique is intrinsically destructive and its sensitivity in detecting light mass

dopants as for instance boron, is limited to the rather high density of about NA > 1×1015 cm−3.
[CNF+85].

To overcome these limitations, an optoelectrical measurement procedure, known as the Lateral-

Photovoltage-Scanning Method (LPS), has been proposed in 1997 [LR97], targeting the non-

destructive detection at room temperature of doping inhomogeneities at the wafer-scale . In-

terestingly, beside being very cost-effective and fast, this tabletop set-up is especially suitable

for low dopant concentrations (1012 cm−3 - 1016 cm−3), thus considerably extending the range

accessible by SIMS.

The LPS technique exploits the phenomenon of the bulk photovoltaic effect, first analytically

investigated by Tauc in 1955 [Tau55]. When a semiconductor layer, featuring a doping concen-

tration gradient, is illuminated by an electromagnetic radiation of an appropriate wavelength,

the photogenerated electrons and holes randomly diffuse and at the same time drift under the

action of an electric field. In fact, the concentration gradient induces a spatially varying internal

electric field, which sets a preferred direction for the movement of the charge carriers. In turn

this drift term produces a voltage difference at the sample boundary which can be easily detect

in an close circuit configuration if ohmic contacts are placed on the sample. Soon after Tauc’s

theory, his predictions were experimentally confirmed using a germanium crystal by Oroshnik

and coworker [OM60]. Some time later Lüdge and Riemann correlated the photovoltaic effect

in a Si sample to striations caused by crystallization interface oscillations occurring during the

crystal growth and gave to their measurement set-up the name of LPS-method [LR97]. The

LPS apparatus, soon became the technique of choice for detecting doping inhomogeneities in

semiconductor wafers [ALR+05, ALRS02].

Remarkably, we believe that the LPS mapping technique could be extended spanning a broader

field of applications than just the probing of doping striations. As a matter of fact, relying on

the theoretical framework developed by Tauc, one can conclude that the LPS method is suitable

to asses the spatial variation at the μm scale of any material property, which affects the band

structure of a semiconductor, triggering in this way a drift force acting on the photogenerated

carriers. Despite this fact was already noted by Tauc in his pioneering paper, no experimen-

tal attempts in this direction have ever been reported in the literature. Just to mention some
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possibilities, it would be very interesting to exploit the benefits in terms of fastness, cheapness

and compactness of the LPS approach, to probe non-uniform lattice strain fields or the spatial

dependence of the excess carrier lifetime.

Applications as a characterization tool can be then envisaged to assess the strain field in micro

structures since the lattice deformation controls the valence and conduction band edge profile

[Van89]. Also spatially dependent variations in the excess carrier lifetime, reducing the sym-

metry of the excess electron and hole carrier density could trigger a charge unbalance, resulting

in a detectable photoinduced voltage difference between the sample boundaries. This may be of

practical relevance to probe radiation-induced crystal damages, which limit the performances

of detector devices used in high energy physics experiments[BDS+91, DHM+06]. Exploiting

the same effect, application of LPS as a tool to measure variations in the excess carrier lifetime

related to a spatial dependence of the crystal quality in a plastically relaxed buffer layer, can

be envisaged. As a matter of fact to grow semiconductor devices, thick buffer material are rou-

tinely used when a lattice mismatch occurring between the active layer and the wafer crystal

need to accommodated [SDML10]. In this situations, especially when a multistep homoepitaxy

growth procedure is adopted [CDB+10], the dislocation density along the growth direction, in-

duced in the buffer layers by plastic relaxation of the elastic energy, is quite inhomogeneous.

As a consequence also the excess carrier lifetime displays a spatial dependence which can be in

principle probed by LPS experiments performed with vertical cut samples.

In order to give to the LPS technique a more robust foundation, and to explore novel application

for this measurement apparatus, a deeper theoretical understanding of the physical effects gov-

erning the relation between the photo-induced voltage and sample inhomogeneities is required.

On the same foot, the ultimate achievable spatial resolution of the method and its connection

with the sample material parameters governing the charge unbalance demands further inves-

tigations. Indeed, the theory of the photovoltaic effect at the basis of the LPS method has

been developed within an analytical approach, with the introduction of a number of simplify-

ing assumptions such as 1D sample geometry, uniform mobility, constant Shockley-Read-Hall

recombination (SRH), and rectangular illumination profile. Notice that the set of these con-

strains is not fully self-consistent, since for instance the doping inhomogeneity may induce

a non-negligible spatial variation of the mobility and of the non-radiative recombination rate.

Moreover, the 1D approximation is obviously inadequate to assess the effects related to the

distribution of the photogenerated excess carriers, which in real application have a non-trivial

decay profile along the in-plane and out-of-plane directions. Consider also that it is not true

apriori that the SRH recombination is always the dominant mechanism governing the recombi-

nation dynamics, since also contributions from the Auger or surface recombination, which have

been excluded in the Tauc analytic theory, may play an important role. For what concerns the

assessment of the LPS spatial resolution, analytical results by Tauc are of little help. On the

other hand from the experimental side a serious investigation has not been reported yet, despite

the fact that shedding light on the relevant physical effects and material parameters which con-

trol the LPS spatial resolution, and understanding its connection with the spatial extension of

the photogenerated excess carrier distribution, represents a valuable piece of information for the

further developments of this characterization technique.

Motivated by the above consideration, the present work aims at filling this knowledge gap.

To achieve this objective a joint theoretical and experimental investigation has been carried out.

This has required the developement from scratch of a numerical finite volume (FV) simulation

model realized using the COMSOL Multiphysics R© environment which will be presented in

chapter 2, where the semiconductor equations adopted to describe the excess carrier dynam-
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ics under steady state optical excitation are reported. This numerical approach allowed us to

consider fully 3D sample geometries, avoiding all the simplifying assumption required by an

analytical treatment. In Chapter 2 a compact description of the experimental LPS set-up used in

this thesis and of the measurement procedure adopted are also provided. Chapter 3 is devoted

to the description of the LPS signal generation both from an experimental and theoretical point

of view. We deeply test the relation occurring between the LPS signal and the value at the illu-

mination spot of the dopant gradient. Geometrical effects associated to the 3D character of the

sample and to the shape of the contacts placed at the two sample boundaries are also discussed.

Finally in Chapter 3 we also investigate the dependance of the LPS signal from the pump laser

power illuminating the sample.

To asses the LPS spatial resolution, a set of inhomogeneous samples, intentionally doped by

means of ion implantation, in order to produce a stripe array profile with sharp undoped/doped

interfaces has been prepared. LPS experimental data from this set of samples, benchmarked

against their numerical counterpart provided by our model, are presented in Chapter 4, together

with a discussion about sample fabrication and structural characterization.

Novel LPS applications are envisaged in Chapter 5 where focus has been given on the case

study of strain detection in silicon micro structures featuring 2D periodic array of external

stressors. The associated strain field has been assessed by means of FV mechanical simulation,

produced starting from the elastic constants of the stressor and strained materials. Relying on

the deformation potential theory, the spatially resolved impact of this strain field on the band

structure has been calculated and these data used to feed the COMSOL simulation in order to

predict the resulting LPS map. To close the loop, a critical comparison of the LPS map with the

input strain field is present at the end of the Chapter.

Our conclusions and perspectives are reported in Chapter 6. More technical details about

the model and Tauc’s theory have been deferred in a dedicated appendix at the end of the

manuscript, while the preface contains a list of adopted symbols, a table of figures and contents.
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Chapter 2

Theoretical Background and LPS set-up

In this chapter, after giving an intuitive picture of the physics at the basis of the bulk photo-

voltaic effect, we summarize the main findings obtained by Tauc to describe analytically the

set up of a voltage difference at the boundary of an optically excited inhomogeneous semi-

conductor crystal. Subsequently we introduce the coupled differential equation system at the

basis of the numerical model developed in this thesis, discussing in detail all the generation and

recombination mechanisms governing the excess carrier dynamics that have been included in

the simulations. Discretization procedures used to solve the model equation system are also re-

ported in some detail, while more technical aspects have been separately presented in Appendix

A. Finally, we illustrate the LPS-measurement set-up used to acquire data discussed in chapter

3 and 4.

2.1. An intuitive picture of the Bulk Photovoltaic Effect

To intuitively illustrate the basic physics underlying the bulk photovoltaic effect, we will refer

to the simplifying case of a 1D geometry. We assume that the spatial variation of some mate-

rial property in a semiconductor, as for instance its doping concentration, affects the band edge

profile. Suppose that at equilibrium, this inhomogeneity produces a bending of the potential

profile, similar to the one shown in Fig. 2.1(a) for the case of an n-type crystal whose dopant

concentration peaks at the center of the sample. This inhomogeneity is accompanied by a non-

uniform resistivity profile, which has been sketched Fig. 2.1(b).

When the system is locally excited with a well-focused continuous wave optical source (red

vertical arrow in the top panel of Fig. 2.1), the photogenerated electron and holes drift toward

opposite directions, due to the presence of a gradient in the band profile which acts as an effec-

tive electrical field for both types of carriers. These opposites drifts are responsible for a charge

separation, which in turn induces an electrical dipole, localized in a neighbor of the laser spot.

The dipole magnitude is expected to be an increasing function of the local value of the band

edge gradient.

It follows that a potential difference U between the two sample edges is generated by the electric

field associated to the photoinduced dipole. Since the sign and intensity of U depends on the lo-

cal band bending, one can be easily convinced that the potential difference, measured sweeping

the laser spot along the x direction, considered as a function of the laser focus position xf has the

qualitative behavior depicted by the blue curve in the bottom panel of Fig. 2.1. It follows that

the spatially integrated photovoltage
∫ x

0 U(xf)dxf, where we have supposed that the left contact

is placed at x = 0, is a function which closely track the resistivity profile. This latter quantity

in turn can be straight-fully related to the doping concentration profile. This fact is the working
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principle of the LPS method.

(a) band structure along the sample

(b) resistivity distribution along the sample

(c) the resulting Photovoltage

Fig. 2.1: Band edge (a) and resistivity (b)

profile along the x-direction of an inhomoge-

neously doped n-type semiconductor bar with

negligible transverse thicknesses. In the top

panel the illuminated portion of the sample (red

vertical arrow) and the drifting of excess elec-

trons (filled circles) and holes (empty circles)

are also sketched. (c) Photogenerated voltage

difference U as a function of the excitation spot

position x f (blue curve). The red curve rep-

resents the spatial integrated photovoltage (see

text).

From the above consideration it is appar-

ent that the photogenerated potential differ-

ence U can be interpreted as resulting from

a screening effect of the internal electrical

field. To this aim we notice also that at

equilibrium, the inhomogeneous material,

being locally neutral, features a zero volt-

age difference at the boundaries. A quanti-

tative description of the bulk photovoltage

effect has been first proposed in 1955 by

Tauc [Tau55], who developed a simple an-

alytic theory, focusing on the case of non-

uniform doping profiles in 1D semiconduc-

tors. Neglecting the spatial variation of the

excess carrier lifetimes and mobility, and

introducing other simplifying assumptions

(discussed in the following), Tauc proved

that the photovoltage U(xf) is directly pro-

portional to the resistivity gradient dρ/dx
evaluated at x = xf. This statement is in

agreement with the intuitive picture dis-

cussed above since in the spatial regions

where dρ is an increasing function of x, the

doping concentration decreases. Assuming

also that the photogenerated carrier distri-

bution is far apart from the sample bound-

aries, Tauc demonstrated that the voltage

for n- and p-type materials Un,p(xf), mea-

sured as the difference between the right

and left contact potential when the illumi-

nated spot is in xf, can be written as:

Un,p(xf) =± 2kBT
q(1+ μn

μp
)
·
∮

Δσ · dρ
dx

dx

(2.1)

where q is the absolute value of the elemen-

tary charge, μn and μp are the electron and

hole mobility, respectively, and the upper

(lower) sign refers to n-(p) type systems.

In Eq. (2.1), Δσ is the photoinduced vari-

ation of the conductance and then the in-

tegral has to be calculated over the narrow

region where the excess carrier distribution is not zero.

If the electron and hole mobilities depend only weakly on the spot position, it follows that inte-

grating both members in Eq. (2.1) from the left contact set at x = 0 up to a given position x, the

function obtained is roughly directly proportional to the resistivity ρ(x). This result supports

the conclusion that the LPS apparatus can be used to relate in a direct manner the spatially

integrated photovoltage maps to the local variations in the doping concentration.
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2.2. Analytical theory of the bulk Photovoltaic Effect
In this Section we summarize the theoretical framework first developed by Tauc [Tau55] and

subsequently adopted by other authors[OM60] to interpret their experimental findings. Focus is

given to inhomogeneities associated to spatial dependent doping concentrations. As a starting

point we assume a 1D ring sample geometry as shown in Fig 2.2, assuming that the area bc is

illuminated with monochromatic light. The sample contacts, where the photoinduce voltage dif-

ference U = Φa′ −Φa is detected, are placed at the two boundaries and in the figure are marked

as a and a′. It is assumed also that the contact positions are far enough from the illuminated

region to prevent the excess carrier density reaching them. Furthermore we suppose that the

sample thickness is sufficiently small compared to the reciprocal of the absorption coefficient

in the direction of the radiating field; on the same foot also the transverse direction is assumed

much thinner with respect to the beam diameter, so that the pump generation rate can be as-

sumed constant in the entire bc volume. In continues wave (CW) illumination condition, excess

electrons and holes are generated with a steady rate, and the related density n and p result to be

enlarged by Δn with respect to the equilibrium values neq and peq.

a a’

b

c

x
a’a

b c

x

Fig. 2.2: 1D adopted sample geometry.The redish region represents the illuminated portion of

the sample; the two contacts are placed at the sample boundaries and are marked as a and a’.

For stationary conditions, in the two channel representation it holds

dJp

dx
=−dJn

dx
=−qΔn

τ
+qG (2.2)

Jp = qμp

(
pE − kBT

q
∇x p
)

(2.3)

Jn = qμn

(
nE +

kBT
q

∇xn
)

(2.4)

p = peq +Δn, n = neq +Δn, (2.5)

the p and n indexes refers to hole and electron respectively, J(x) is the current density, μ the

mobility, q the elementary electric charge, kB the Boltzmann constant, E(x) the total internal
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electric field, and T the lattice temperature. G(x) represents the pump-induced generation rate

while the recombination dynamics controlled by the SRH mechanism with a non-radiative life-

time τ .

Summing Eq. (2.3) to (2.4) since Jp + Jn = 0 one obtains for the electric field

E =
kBT

q

μp∇x p−μn∇xn
μp p+μnn

. (2.6)

As we are interested in the potential difference U =Φa′ −Φa, integration of the former Eq. (2.6)

gives

U =
∮

Edx =
kBT

q

∮ μp∇x p−μn∇xn
μp p+μnn

dx. (2.7)

where in our ring geometry the integral has been performed on a closed circuit from a to a′
Relying on the Eq. (2.7) we now evaluate U for three different situations: i) a non-illuminated

semiconductor; ii) illuminated homogeneous semiconductor; iii) inhomogeneous illuminated

semiconductor. In the first two cases, as one can intuitively expect a zero value for the voltage

difference is found while a detectable photovoltage effect may occur only for iii).

i) non-illuminated semiconductor In the absence of a perturbation that drives the system out

of equilibrium

n(x) = neq(x) , p(x) = peq(x) =
ni(x)2

n(x)
(2.8)

where ni(x) the is the intrinsic charge carrier concentration at T which as neq and peq is a

spatial dependent quantity in non-homogeneous samples. Combining the above relations with

Eq. (2.7) we find

U =
kBT

q

∮ μp∇x
n2

i

neq
−μn∇xneq

μp
n2

i

neq
+μnneq

dx =
kBT

q

∮ −μp
n2

i

n2
eq

∇xneq −μn∇xneq

μp
n2

i

n2
eq

neq +μnneq

dx

=
kBT

q

∮ −∇x(neq)
(

μp
n2

i

n2
eq

+μn

)
neq

(
μp

n2
i

n2
eq

+μn

) dx =
kBT

q

∮ −∇xneq

neq
dx (2.9)

=−kBT
q

(
lnneq|a′a + lnneq|aa′

)
= 0.

This proofs that, a voltage difference in our ring geometry can occur in illuminated samples,

only.

ii) homogeneous semiconductor Now we consider a sample with homogeneous dopant con-

centration:

∇x peq = ∇xneq = 0. (2.10)

Using p(x) = peq +Δn(x) and n = neq +Δn(x), where the notation evidences that now only the

excess carrier density is a spatial dependent quantity, and exploiting the hypothesis that mobility

does not vary in a signification way in the region featuring a non-negligible Δn(x), we find:
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U =
kBT

q

∮ μp∇x(peq +Δn)−μn∇x(neq +Δn)
μp(peq +Δn)+μn(neq +Δn)

dx

= (μp −μn)
kBT

q

∮ ∇xΔn
μp peq +neqμn +(μp +μn)Δn

dx.

By partial fraction decomposition the above integral can be separated into three contributions,

which can easily be integrated:

U = (μp −μn)
kBT

q

(∮ a1

μp peq
dx+

∮ a2

neqμn
dx+

∮ a3

(μp +μn)Δn
dx
)

a1 =
∇xΔn

(μn +μp)μnneqΔn
a2 = a1

μnneq

μp peq
a3 =−a1

(μn +μp)Δn
μp peq

. (2.11)

As a matter of fact, each of this three contribution has the same functional form of Eq. (2.9) with

the substitution Δn(x)→ neq(x). As a consequence also for the case of an illuminated homoge-

neous sample we come to the conclusion that no photovoltage U can be produced independently

of the beam position and profile.

iii) inhomogeneous illuminated semiconductor To discuss the case of an illuminated inho-

mogeneous semiconductor sample we separate the contribution in the spatial dependent electri-

cal conductivity which originates from the presence of an excess carrier density setting σ(x) =
σeq(x)+Δσ(x). Relying on the assumption that mobility is a spatially invariant quantity, unaf-

fected by the excess carrier density, the following relations hold:

σeq =
1

ρeq
= qμnneq +qμp peq, (2.12)

Δσ = q(μn +μp)Δn, neq peq = n2
i → 1

neq

dneq

dx
=− 1

peq

dpeq

dx
. (2.13)

Plugging Eqs. (2.13) into Eq.(2.7) we get for U

U =
kBT

q

∮ μp∇x(peq +Δn)−μn∇x(neq +Δn)
μp(peq +Δn)+μn(neq +Δn)

dx

=−kBT
q

∮ μp
peq

neq
∇xneq +μn∇xneq − (μp −μn)∇xΔn

σeq +Δσ
dx

=−kBT
q

(∮ σeq

σeq +Δσ
∇xneq

neq
dx− μp −μn

μp +μn

∮
1

σeq +Δσ
∇xΔσdx

)
. (2.14)

To proceed further we assume weak illumination condition so that:
σeq

σeq+Δσ ≈ 1− Δσ
σeq

. Using

ρeq = 1/σeq and
∫

1/σeq∇xΔσdx =−∫ Δσ∇xρeqdx, the two integrals in Eq. 2.14 can be recast

as:

U =−kBT
q

(∮
−Δσ

σeq

∇xneq

neq
dx+

μp −μn

μp +μn

∮
Δσ∇xρeqdx

)
. (2.15)

Finally we exploit the relation:

∇xneq

neq
=±∇xσeq

σeq
=∓σeq∇xρeq, (2.16)
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where the upper and lower sign refers to p- and n-type materials, respectively, to get:

Un,p =−kBT
q

(∮
±Δσ∇xρeqdx+

μp −μn

μp +μn

∮
Δσ∇xρeqdx

)
(2.17)

=∓ 2μp,nkBT
q(μp +μn)

·
∮

Δσ · dρeq

dx
dx. (2.18)

The above relation can be conveniently expressed in terms of the equilibrium carrier density

since this allows to link, assuming local quasi neutrality condition, the photogenerated voltage

with the spatial profile of the dopants

Un,p(xf) =± 2μp,nkBT
q(μp +μn)

·
∮

Δσ · dneq

n2
eqdx

dx =∓ 2μp,nkBT
q(μp +μn)

∮
Δσ · 1

N2
D,A

dND,A

dx
dx . (2.19)

From Eq. (2.19), which describes the same relation anticipated in Section 2.1, it is apparent

that scanning the focal position x f , the photogenerated voltage U can be used to probe the local

value of the dopant gradient, with a spatial resolution which is controlled by the narrow region

where the pump induced conductivity variation Δσ(x) is not zero. As a matter of fact, in a LPS

measurement as a first step the pump position xf is scanned along a line connecting the contact

a and a′ and the associated Un,p(xf) voltage difference recorded. Subsequently to assess the

local value of the donor/aceptor density ND,A(x), the LPS algorithm calculate the signal S(x)
performing for each x the spatial integration

S(x) =
∫ x

a
Un,p(x′)dx′ (2.20)

From the Eq. 2.19 we get for S(x)

S(x) ∝
∫ a′

a

∫ a′

a

Δσ(x′,x′′)
N2

D,A(x
′′)

dND,A

dx′′
dx′dx′′ (2.21)

where we used Δσ(x′,x′′) the variation of the conductivity at x′′ due to an illuminated spot cen-

tered in x′. Assuming that Δσ can be approximated with a rectangular shape function according

to Δσ(x′,x′′) = Δσ · [Θ(x′′ − x′ −w/2)−Θ(x′′ − x′+w/2)] where Δσ is an average spatially

constant value and w is the width of the interval centered in the focal spot x′′ where Δσ differs

from zero, the following equation holds:

S(x) ∝ Δσ
∫ x+w/2

x−w/2

1

N2
D,A(x

′)
dND,A(x′)

dx′
dx′ = Δσ

1

ND,A

∣∣∣x+w/2

x−w/2
(2.22)

∝ Δσρeq

∣∣∣x+w/2

x−w/2
= wΔσ∇xρeq (2.23)

This relation represents the theoretical basis of the LPS method and roots back to 1955 when

Tauc first derived the theory of the bulk photovoltaic effect for inhomogeneously doped ma-

terial. However, as already noticed, his analytical approach required different simplifying as-

sumptions as 1D geometry, uniform illumination and weak excitation condition. Moreover, as

shown above, to relate the LPS signal S(x) to the resistivity gradient, quite drastic assumptions

have been made to approximate Δσ(x′,x′′). It worth to notice that the translation invariance

introduced for Δσ(x′,x′′) is somehow not consistent with the material inhomogeneity itself,

since both the spatial extension and the average value of Δσ may significantly depend on the
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local value of the doping density. Furthermore, while Tauc in developing his theory had in

mind the case of an illuminated window featuring a finite width, nowadays in real application

a well focused laser beam is commonly used to excite the material. Therefore the excess car-

rier distribution and the accompanying spatial profile of the conductance variation Δσ(x′,x′′)
may significantly differ from the rectangular profile assumed to derive Eq. (2.23). The fully

numerical approach described in the following sections allowed us to overcome also these lim-

iting assumptions. Nevertheless, the analytical results derived here remains a useful guideline

to interpret numerical data.

For this reason, it worth to elaborate further Eq. (2.14) in order to describe beyond the weak

signal approximation used in the former Section, also the functional dependence of the photo-

generated signal on the power of the pump beam. To this aim for simplicity we focus on the case

of an illuminated n-type inhomogeneously doped material, assuming as above that the excess

carrier distribution has a nearly rectangular profile. We define this excited spatial range as bc.

In Appendix A it is shown that the closed circuit integrals in Eq.2.7 can be recast in terms of

integrals extending over the bc range, only. Therefore, since only the bc interval becomes rele-

vant, in order to achieve an analytical expression for U , a linear approximation for the spatially

varying conductivity can be introduced, assuming σeq = σ0 + ζ x. Under this hypothesis, and

using ∇xneq/neq = ∇xσeq/σeq, in Appendix A it is shown that Eq. (2.14) gives

U =−kBT
q

2
μn

μp
+1

ln

[
1+ Δσ

σ0+ζ c

1+ Δσ
σ0+ζ b

]
=−kBT

q

2
μn

μp
+1

ln

[
1+ Δσ

σ(c)

1+ Δσ
σ(b)

]
(2.24)

=−kBT
q

2
μn

μp
+1

(
ln

[
σ(c)
σ(b)

]
− ln

[
σ(c)+Δσ
σ(b)+Δσ

])
. (2.25)

This result indicates that the photovoltage features a saturation value Umax =
kBT

q
2

μn

μp
+1

ln
[

σ(c)
σ(b)

]
controlled by the resistivity variation in a neighbor of the illuminated spot, as graphically illus-

trated in Fig. 2.3, where U/Umax has been calculated as a function of Δσ/σ(b) for different

values of the ratio σ(c)/σ(b). The asymptotic behaviour of U is explained considering that the

excess carriers tend to screen the local band bending, and then in the limit of Δn → ∞ the contri-

bution to the signal originating from further excess carriers becomes negligible. In the opposite

regime i.e. when Δn � min(neq(b),neq(c)), screening effects are absent and consequently Eq.

(2.23) indicates a linear behavior of the photogenerated signal as a function of the conductivity

variation. If also this latter quantity varies linearly with the pump power the detected signal in

this weak excitation regime is predicted to be proportional to the laser fluency.

2.3. Numerical Model Equations

2.3.1. Equation System
The fully numerical simulation of the LPS measurement is based on the self-consistent solution

of the van-Roosbroeck semiconductor equation system which describes the spatially resolved

electron n and hole p total carrier density and the associated electrical potential Φ [Van50,

Van53]. These quantities are linked by Poisson’s equation

−∇ · (ε∇Φ) = q(p−n+N+
D −N−

A ) (2.26)

where ε is the static permittivity and N−
A (N+

D ) is the numerical concentration of ionized acceptor

(donor) atoms which for our purpose is set equal to the impurity concentration NA (ND). The

15



Fig. 2.3: Photo-voltage in units of the saturation value Umax calculated as a function of Δσ/σ(b)
for different values of the σ(c)/σ(b) ratio.

continuity equations for charge carriers in the two-channel approximation reads

∂n
∂ t

− 1

q
∇ ·JJJn = G−R (2.27)

∂ p
∂ t

− 1

q
∇ ·JJJp = G−R. (2.28)

In the above equations JJJn and JJJp is the current density for electrons and holes, respectively,

and G and R represent the generation and recombination rates. Since all the experiments are

performed at room temperature (RT), we neglect contributions to the current due to the presence

of temperature gradients in a neighbour of the laser spot. Therefore the current results from the

combination of drift JJJDrift and diffusive JJJDiff motion according to

JJJ =JJJDrift +JJJDiff +�
�JJJTh (2.29)

JJJDrift =JJJn,Drift +JJJp,Drift = q(nμn∇EC + pμp∇EV) (2.30)

JJJDiff =JJJn,Diff +JJJp,Diff = q(Dn∇n−Dp∇p), (2.31)

where we have separated the hole and electron terms. The local bending of the conduction ∇EC

and valence ∇EV band edge acts as the drift field driving JJJDrift; the spatial dependent diffusion

constants D are calculated according to the generalized Einstein equations [Com13]:

electrons:
Dn

μn
=

kBT
q

g
(

n
Nc

)
(2.32)

holes:
Dp

μp
=

kBT
q

g
(

p
N

V

)
. (2.33)

In the above expression the function g = g(n/Nc) is associated to the inverse Fermi-Dirac-

integral and N
V

and Nc are the effective density of states in the valence and conduction band,

respectively [Com13].

2.3.2. Recombination Mechanisms
In this section we elucidate the different contribution to the recombination rate R in the right-

hand-side of the Eqs. (2.27) and (2.28). As a matter of fact in our model the total rate R
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contains contributions from radiative RRad, Shockley-Read-Hall RSRH, Auger RAu and surface

recombination RS channels

R = RRad +RSRH +RAu +RS. (2.34)

Preliminary to the description of each channel, it is useful to define the equilibrium intrinsic

carrier density ni as

ni = γnγp

√
NCNV · exp

[
− Eg

2kBT

]
. (2.35)

Here Eg is the (spatially constant) energy gap and γn and γp are given by

γn =
F1/2

(
−Ec−ϕf,n

kBT

)
exp
[
−Ec−ϕf,n

kBT

] γp =
F1/2

(
−ϕf,p−Ev

kBT

)
exp
[
−ϕf,p−Ev

kBT

] ,

where ϕf,n and ϕf,p are the quasi Fermi potentials for electrons and holes, respectively and F1/2

is the Fermi-Dirac integral [Com13].

Radiative Recombination The radiative recombination of excess carriers in an out of equi-

librium semiconductor is governed by the spontaneous photon emission process, accompanied

by the annihilation of an electron/hole pair. The associated rate RRad is a two body process and

can be phenomenologically described introducing a CRad coefficient as

RRad =CRad(np−n2
i ). (2.36)

SRH Recombination The Shockley-Read-Hall recombination mechanism describes the in-

teraction of a charge carrier with a lattice defect, in our case mainly boron/phosphorus impuri-

ties. To evaluate the RSRH rate, four processes are usually considered:

1st trapping of an electron from the conduction band by an empty trap state

2nd emitting of an electron to the conduction band by a filled trap state

3rd emitting of a hole to the valence band by an empty trap state

4th trapping of a hole by filled trap with an electron state

Similar to the radiative recombination, the SRH-mechanism always involve the creation or an-

nihilation of an electron/hole pair. Hence, the recombination rates for electrons Rn
SRH and holes

Rp
SRH have to be equal and can be expressed in terms of electron τe and hole τh trap capture time

as [Com13]

RSRH = Rn
SRH = Rp

SRH =
np−n2

i

τp(n+nd)+ τe(p+ pd)
, (2.37)

where nd and pd are the charged trap densities obtained from

nd = ni exp

[
Et −Ei

kBT

]
, (2.38)

pd = ni exp

[
Ei −Et

kBT

]
, (2.39)
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having indicated with Ei and Et the intrinsic and trap energy levels, respectively. Notice that in

Si, which features very low radiative efficiency due to the indirect character of the fundamental

gap, the SRH channel is often the main mechanism controlling the excess carrier lifetime. Con-

sequently by changing the impurity concentration which influences RSRH, the carrier lifetime

can be varied by several order of magnitude.

Auger Recombination The Auger recombination process is a three particle phenomenon.

In fact, the residual energy associated to the annihilation of an electron/hole pair in an Auger

event is transferred to a third carrier. For this reason the rate RAu, which again must be equal for

electron and holes, is a cubic function in the carrier concentrations and is given by the following

expression

RAu = Rn
Au = Rp

Au = (Cn
Aun+Cp

Au p)(np−n2
i ). (2.40)

In the above equation the two coefficients Cn
Au Cp

Au are effective quantity which depend on the

temperature and the band structure and are related to scattering events involving two electrons

and one hole or two holes and one electron, respectively.

Surface Recombination The surface recombination process is due to the presence of dan-

gling bonds at the crystal boundaries. When carriers reach the surface at a rate controlled by

their thermal velocity, they can be reflected back or alternatively a recombination process may

occur. Therefore the surface recombination rate RS is proportional to the local value of the

excess carrier density Δn. Since the recombination probability depends also on the specific

property of the surface RS obeys

RS = SeffΔn|∂Ω. (2.41)

where ∂Ω indicates the excess carrier density evaluated at the sample boundary and Seff is an

effective parameter known as surface recombination velocity which can greatly vary with the

surface quality. For this reason, while the values of all the other material parameters adopted

in the simulations discussed in the following chapters are taken from the literature, the surface

velocity used in the model have been experimentally determined as reported later.

2.3.3. Generation Rate

To take into account the complete 3D geometry we describe the generation rate G of Eqs. (2.27)

and (2.28) due to the laser pump beam as

G = NphL (x,y,z) (2.42)

where Nph is the rate of impinging photon and L (x,y,z) is a normalized function normalized to

one which reproduces the laser 3D beam profile inside the material. Considering the reflection

coefficient R, the impinging photon rate close to the internal surface as a function of the laser

power P and photon wavelength λ is given by

Nph = (1−R)
Pλ
hc

. (2.43)

At the adopted photon energies we used for the air/Si interface reflectivity the value of 0.34.

As for the beam shape we describe it as a two dimensional Gaussian in-plane (xy) profile,

exponentially decaying in the direction perpendicular to the sample surface (set at z = 0):

L (x,y,z) =
Ac

2πσ2
exp

[
−Ac|z|− (x− xf)

2

2σ2
L

− (y− yf)
2

2σ2
L

]
, (2.44)
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where 4σL = 1/e2 having indicating with e the spot size and with Ac the inverse penetration

depth.

The value of these parameters together with the laser power and wavelength adopted to simulate

our experimental conditions are reported in Tab. 2.1.

laser wave length [nm] laser power [mW] penetration depth [μm] 1/e2-spot size [μm]

830 170 15.4 5

685 20 4.7 5

Table 2.1: Laser beam parameters used in the model to simulate the LPS measurements in Si.

2.3.4. Mobility
Charge carrier mobility is calculated according to the Matthiessen’s rule summing contribu-

tion from different scattering channels. In our model we considered interaction with acous-

tic phonons and ionized impurities, together with electron-electron and hole-hole scattering.

Therefore we have
1

μ
=

1

μar
+

1

μcc
. (2.45)

where μar is the mobility calculated according to the so called Arora model [AHR82] which

takes into account the phonon and charged impurity channels, while μcc is the mobility obtained

considering the carrier-carrier scattering, as reported in Ref.[Fle57].

Evaluating for T = 300K the relation for Si samples reported in [AHR82] which describes the

electron and hole mobility as a function of the doping density and lattice temperature we get

μn,ar

[
cm2

Vs

]
= 89+

1323

1+0.8 ·10−17 ·N+
D [cm−3]

(2.46)

μp,ar

[
cm2

Vs

]
= 55+

429

1+0.4 ·10−17 ·N−
A [cm−3]

. (2.47)

The carrier-carrier limited mobility μcc for Si at RT as a function of the electron and hole

concentrations reads

μcc =
F1√

np ln
[
1+(np)−1/3 ·F2

] , (2.48)

where F1 and F2 are constants, whose value as been reported in Table symbol explanation list.

As a final remark we notice that in the above expression we neglect terms related to interaction

with neutral impurities since no relevant contributions are expected for temperatures above 80K.

2.4. Discretization procedures
In the previous section we have defined the equations implemented in the numerical model that

we have developed to simulate the spatial distribution of the carrier densities and the resulting

electrostatic potential, featured by an optically excited inhomogeneous semiconductor in steady

state conditions. We devote this section to describe how n(r), p(r) and Φ(r) are calculated using

a well established 3D Finite-Volume approach, in the COMSOL Multiphysics 5.4 environment,

relying on numerical routines contained in the module ¨semiconductor¨ [Com13].
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The basis of our model is the system of coupled differential equations (SCDE) given by

Eqs. (2.26-2.31). To numerically solve SCDE usually three main different approaches can

be adopted i.e. the Finite-Volume-Method (FVM), the Finite-Element-Method (FEM), or the

Finite- Difference-Method (FDM). A part form minor differences all these methods rely on

discretization procedures performed in the direct space, and hence requires as a preliminary

step the definition of a proper grid, representing the domain volume where the target variable

are defined. The node density of the grid must be tailored to assure that numerical conver-

gence, taking also into account the required accuracy and the limitations related to unaffordable

simulation times or RAM availability. If the variable have to respect constrains related to the

presence of space invariants, usually the FVM approach is the most convenient choice to exploit

them, resulting in reduced computation times. Since this is our case, in the numerical model we

have implemented the FVM method. Therefore, in the following we briefly present the FVM

approach, directly specialized to the SCDE at the basis of the LPS simulations. The interest

reader can find more details on FVM for instance in Ref. [Mad07].

2.4.1. The Finite Volume Method
As a first step we introduce the notation used to describe the discrete grid. For simplicity but

without loss to generality we focus on the case of a cuboid domain Ω (Fig. 2.4) left panel which

is partitioned by means of a set of N not-overlapping cuboid sub-domains {ωi} with i = 1, ..,N
as shown in Fig. 2.4 right panel. Therefore we have

Ω = ∩N
i=1ωi with ωi ∪ωj = /0 for i �= j (2.49)

Fig. 2.4: Left panel: cuboid domain for a SCDE system. Right panel: discretization with an

homogeneous cuboid grid of the domain shown in the left plot.

Three indices l,m,n are used to identify the spatial coordinates (xl,ym,zn
) of the central point

Pi of ωi. Therefore the notation ωlmn can alternatively be used to indicate the i-th sub-domain.

The boundaries along the three orthogonal directions of the cuboid sub-domain ωlmn centered

in Plmn are defined introducing half-integers as

x ∈[x l− 1
2

x l+ 1
2
] (2.50)

y ∈[ym− 1
2

ym+ 1
2
] (2.51)

z ∈[z n− 1
2

z n+ 1
2
] (2.52)

and its dimension along the three axes of the reference frame shown in Fig. 2.5 are indicated as

Δx, Δy and Δz.
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Fig. 2.5: Schematic of a cuboid sub-domain ωi taken from [Mad07]. Capital and lower letters

are used to define the six orthogonal lines passing through P, and the intersection points with

the corresponding boundary surface, respectively.

In Fig. 2.5 capital letters are used to specify both the six orthogonal orthogonal lines perpen-

dicular to the cuboid faces, passing through P and the central position of the associate neighbor

cuboids. Using them we can indicate also the corresponding boundary cuboid faces. For

instance ∂ωi,W is the boundary face along the West direction of the i-th cuboid, whose central

coordinates are (xl,ym,zn). Using the half-integer notation the same boundary surface can also

be indicated as ∂ωl− 1
2 mn.

We now use the grid to discretize the SCDE at the basis of our model. Preliminary, it is useful

to recall that the divergence theorem applied to the volume integral performed over the ωi sub-

domain of the divergence of a vector field uuu, enclosed by the oriented surface ∂ωi gives∫
ωi

∇ ·uuudω =
∮

∂ωi

uuu ·ηηηdS. (2.53)

where ηηη is the vector orthogonal to the surface element dS.

Using this relation in combination with Eq. (2.26) we get

−
∫
ωi

(
∂ 2Φ
∂x2

+
∂ 2Φ
∂y2

+
∂ 2Φ
∂ z2

)
dω =−

∮
∂ωi

(
∂Φ
∂x

ηx +
∂Φ
∂y

ηy +
∂Φ
∂ z

ηz

)
dS (2.54)

=
∫
ωi

q

ε
(p−n)dω +

∫
ωi

q

ε
(ND −NA)dω (2.55)

=
∫
ωi

q

ε
(p−n)dω +Ci (2.56)

where we have indicated as Ci the integral containing the donor densities to emphasise that it

does not depend on the n(r) and p(r) variables.

Explicitly writing the contribution to the surface flux from the six cuboid faces (see Fig. 2.5 )

one obtains(
∂Φ
∂x

)
w

ΔyΔz+
(

∂Φ
∂y

)
s

ΔxΔz+
(

∂Φ
∂ z

)
b

ΔxΔy

−
(

∂Φ
∂x

)
e

ΔyΔz−
(

∂Φ
∂y

)
n

ΔxΔz−
(

∂Φ
∂ z

)
t

ΔxΔy =
∫
ωi

q

ε
(p−n)dωi +Ci (2.57)
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where the derivative are calculated at the face points specified in Fig. 2.6

Fig. 2.6: Face contributions to the flux of the −∇Φ vector field outgoing through the surface of

the ωi volume.[Mad07].

To the first order in the cuboid dimension the derivatives in Eq. (2.57) can be express in term of

the electrostatic potential Φ at the central points of the neighbor volumes. This linearization is

usually referred to as the Central-Differencing-Scheme (CDS). For instance for the derivative

of the potential at the East face
(

∂Φ
∂x

)
e

it holds (see Fig 2.7)

(
∂Φ
∂x

)
e

≈ ΦE −ΦP

xE − xP
=

ΦE −ΦP

δxe
, (2.58)

where δxe is equal to PE/2 that, for the case of non-uniform grid, is a spatial dependent quan-

tity.

Fig. 2.7: Central difference scheme to evaluate the potential derivative at the central point of

the E cuboid face. The P and E letters represent the x-coordinates of the central points of the

neighbor cuboids.

Plugging Eq. (2.58) into (2.57) gives

aPΦP = aEΦE +aNΦN +aTΦT +aWΦW +aSΦS +aBΦB +bP (2.59)
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with the a and b coefficients defined as

aE :=
ΔyΔz
(δx)e

, aN :=
ΔxΔz
(δy)n

, aT :=
ΔxΔy
(δ z)t

,

aW :=
ΔyΔz
(δx)w

, aS :=
ΔxΔz
(δy)s

, aB :=
ΔxΔy
(δ z)b

,

bP :=
∫
ωi

q

ε
(p−n)dωi +C. (2.60)

with δxj = PJ/2 and aP = aE +aN +aT +aW +aS +aB of the cuboid i.
Eq. (2.59) for the ωi cuboid centered in P can be written in a more compact form

ai
PΦi

P −∑
c

ai
cΦi

c = bi
P, (2.61)

where the c index runs over the six neighbor cells of the ωi volume, Φi
c is the potential calculated

at the center of the c neighbor cuboid, and ai
c is the length factor defined in the above equations,

associated to the cuboid face shared between the i and c cells. The above expression can be

recast in matrix format as Â ·ΦΦΦ = bbb, where the Â is a sparse matrix of the order N ×N. For

instance when the i basis order is chosen so that the i− 1 and i+ 1 elements represent the W

and E neighbors of the ωi volume respectively, the matrix representation can be written as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
P −a1

E 0 . . . 0 −a1
W 0 . . . 0 −a1

FL 0 . . .
−a2

W a2
P −a2

E 0 .
. . .

. . .
−ai

W ai
P −ai

E

. . . .
. . . .

. . . .
−aN

FL −ai
E 0 −aN

W aN
P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Â

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ1
P

.

.

Φi−1
P

Φi
P

Φi+1
P

.

.
ΦN

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ΦΦΦ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
P

.

.

bi−1
P

bi
P

bi+1
P

.

.
bN

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
bbb

where ai
FL represents a generic coupling term of the i-potential with the potential value which

refers to a neighbour cell located along a direction different from the WE one.

Since the value of the bbb vector in the right hand side of Eq. (2.61) is not known, to close the

model equation system we have to derive the discretized version of the relations expressing the

charge conservation condition. For this purpose, it is preliminary necessary to write the local

value of the currents as a function of the drift field and of the charge densities in the neighbor

cells. For stationary condition this has been done relying on the Scharfetter-Gummel scheme

[SG69, Fre04] as detailed in the following where for simplicity we will temporarily refer to an

unipolar 1D system. The starting point is the continuity equation

∂n
∂ t

=−∂J
∂x

= 0 (2.62)

whose discretized version is
∂ni

∂ t
=

Ji−1/2 − Ji+1/2

Δx
. (2.63)
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where again half integer indexes are used to represent physical variables calculated at the cell

boundary surface. Setting v =−μ dΦ
dx , J is given by

J =−D
∂n
∂x

+ vn(x). (2.64)

Multiplying both members of the above relation by exp [−v(x− xi)/D] and integrating over the

[xi,xi+1] one obtains

∫ xi+1

xi

J exp [−v(x− xi)/D]dx =−D
∫ xi+1

xi

∂
∂x

(nexp [−v(x− xi)/D])dx

Ji+1/2

∫ Δx

0
exp
[−vx′/D

]
dx′ =−D(nexp [−v(x− xi)/D]) |xi+1

xi

Ji+1/2

D
v
(exp [−vΔx/D]−1) = D(ni −ni+1 exp [−vΔx/D]) ,

under the assumption that J is practically constant over the integration domain. Thus, consider-

ing also hole conduction we get for the current densities Jn and Jp the relations first derived by

Scharfetter and Gummel:

Jn, i+1/2 = vn
ni −ni+1 exp [−vnΔx/Dn]

1− exp [−vnΔx/Dn]
(2.65)

Jp, i+1/2 = vp

pi − pi+1 exp
[
vpΔx/Dp

]
1− exp

[
vpΔx/Dp

] . (2.66)

where vn =−μn
dΦ
dx and vp = μp

dΦ
dx .

Now, referring again to the 3D geometry we write the charge conservation in the ωP cuboid

0 =
1

ΔxΔyΔz

∫
ω
−1

q
∇ ·JJJdω +

1

ΔxΔyΔz

∫
ω
(G−R)dω. (2.67)

Exploiting the divergence theorem and setting MP = 1
ΔxΔyΔz

∫
ωP
(G−R)dω we get

1

Δx
(Je + Jw)+

1

Δy
(Js + Jn)+

1

Δz
(Jb + Jt) = qMP (2.68)

where Jc represents the normal component of the electron or hole current density JJJ, calculated

at the c boundary surface of the P cuboid. In the case of electron current densities, those latter

quantities, by means Eq. (2.65) can be written as

Je(P → E) =−ve
n

ne −nP exp
(
− ve

n Δx
De

n

)
1− exp

(
−ve

n Δx
De

n

) Jw(P →W ) = vw
n

nP −nw exp
(
− vw

n Δx
Dw

n

)
1− exp

(
−vw

n Δx
Dw

n

)

Js(P → S) =−vs
n

ns −nP exp
(
− vs

nΔy
Ds

n

)
1− exp

(
−vs

nΔy
Ds

n

) Jn(P → N) = vn
n

nP −nn exp
(
− vn

n Δy
Dn

n

)
1− exp

(
−vn

n Δy
Dn

n

)

Jb(P → B) =−vb
n

nb −nP exp
(
− vb

n Δz
Db

n

)
1− exp

(
−vb

n Δz
Db

n

) Jt(P → T ) = vt
n

nP −nt exp
(
− vt

nΔz
Dt

n

)
1− exp

(
−vt

nΔz
Dt

n

)

24



where the adopted notation emphasizes that the currents are calculated along the out-going

directions with respect to the cuboid P, and a superscript has been added to the velocities to

indicate the direction along which the potential derivative is calculated. For instance, for the

east and west direction ve
n =−μ dΦ

dx , and vw
n =+μ dΦ

dx , respectively. Similarly, for the north and

south directions it holds vs
n = −μ dΦ

dy , and vn
n = +μ dΦ

dy . Finally a superscript in the diffusion

constant indicate the P neighbor cell, where the D value is calculated. The corresponding set of

equations for hole current density can be easily obtained using Eq. (2.66). Plugging the above

relations into Eq. (2.65), after a simple but lengthy algebra it can be proven that

αPnP −∑
c

αcnc = qMP (2.69)

with the α coefficients are:

αP =

(
1

Δx
vw

n (1−EX(ve
nΔx))− ve

nEX(ve
nΔx)(1−EX(vw

n Δx))
(1−EX(ve

nΔx))(1−EX(vw
n Δx))

+

+
1

Δy
vn

n (1−EX(vs
nΔy))− vs

nEX(vs
nΔy)(1−EX(vn

nΔy))
(1−EX(vs

nΔy))(1−EX(vn
nΔy))

+

+
1

Δz
vt

n

(
1−EX(vb

nΔz)
)− vb

nEX(vb
nΔz)(1−EX(vt

nΔz))(
1−EX(vb

nΔz)
)
(1−EX(vt

nΔz))

)

αe =
1

Δx
−ve

n (1−EX(vw
n Δx))

(1−EX(vw
n Δx))(1−EX(ve

nΔx))
αw =

1

Δx
vw

n (1−EX(ve
nΔx))

(1−EX(ve
nΔx))(1−EX(vw

n Δx))

αs =
1

Δy
−vs

n (1−EX(vn
nΔy))

(1−EX(vn
nΔy))(1−EX(vs

nΔy))
αn =

1

Δy
vn

n (1−EX(vs
nΔy))

(1−EX(vs
nΔy))(1−EX(vn

nΔy))

αb =
1

Δz
−vb

n (1−EX(vt
nΔz))

(1−EX(vt
nΔz))

(
1−EX(vb

nΔz)
) αt =

1

Δz
vt

n

(
1−EX(vb

nΔz)
)(

1−EX(vb
nΔz)
)
(1−EX(vt

nΔz))

where to achieve a more compact notation we have introduced the function EX(vc
nζ ) =

exp
(
−vc

n ζ
Dc

n

)
The analogous equation system for the hole density in the P and its neighbor cells is

α ′
P pP −∑

c

α ′
c pc = qMP (2.70)

with similar expressions for the α coefficients.

In conclusion, Eqs.(2.61, 2.69 and 2.70) can be regarded as a 3N linear system equations, where

N is the number of cuboids. However, we remember that the values for the electron and hole

diffusion constant and mobility, together with the recombination terms entering the equation

system are also function of the carrier densities. As a consequence, a self-consistent procedure

must be used to calculate n,p, and the electrostatic potential Φ. Therefore, at each discrete

step t of this iterative procedure, the output values from the previous step Φt−1,nt−1, pt−1 are

used to calculate the coefficients of the equation system defined by Eqs.(2.61, 2.69 and 2.70),

whose solution returns the actualized Φt,nt, pt values. To this aim, at each step also the quasi-

Fermi levels in the valence and conduction band need to be evaluated in order to asses the

recombination rate. The iterative procedure stops when the relative variation of Φt,nt, pt with

respect to the previous step in all the cells remains lower than a fixed threshold, usually set at

10−5.

As concluding remarks, we notice that in our simulations the focal position of the pump laser
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beam scans a region of the sample which, referring to the scale given by the excess carrier

diffusion length, is well separated from the rim contacts Γ1 and Γ2, placed at the two sample

boundaries. For this reason we can assume that the carrier densities at the contacts keep their

equilibrium values.

Fig. 2.8: Scheme of the closed circuit configuration.

Moreover, the potential in the contact area must remain constant, and we chose to set it to

zero at the Γ1 side. Under CW illumination and in the closed circuit configuration the current

flows along the Γ1-Γ2 shown in Fig. 2.8 direction while no contribution to J comes from the

other sample surfaces (ΓN). Another consistency check that can be performed at the end of a

simulation is given by the spatial invariance of the
∫

∂ΩJJJ ·nnndS integral, representing the total

current flowing trough any sample section between Γ1 and Γ2.

Finally, for what concerns the mesh geometry, both uniform and inhomogeneous grids

have been tested. In the first case, one can benefit from the fact that once the mesh has been

defined, it can be used to simulate the photo-induced voltage for an entire set of focal spot

positions. However, since the excitation is mainly localized in a neighbor of the laser spot, an

adaptive inhomogeneous mesh, is more suitable to increase the numerical precision. To this

aim non-uniform grids centrosymmetric with respect to the focal point, as the representative

one shown in Fig. 2.9, have been calculated. The cons of this choice is related to the fact that

for each focal point a new mesh must be computed. To precisely describe effects related to

the z- dependence of the excitation density, we rely on 3D grids which in the adaptive case

are chosen finer close to the top surface (see Fig.2.9) since both the penetration depth and the

diffusion length are much smaller than the typical sample thickness.

2.4.2. Matrix Solver
To conclude the discussion of the discretization procedure adopted in our model, we briefly

comment on the numerical recipe adopted to solve the 3N linear equation system. Since

Eqs.(2.61, 2.69 and 2.70) are associated to sparse matrices due to the fact that only neigh-

bor cells are coupled, to efficiently perform the matrix inversion we rely on the MUltifrontal

Massively Parallel Solver-MUMPS[ADLK01, AGLP06]. MUMPS solve linear equations sys-

tems Â ·xxx=bbb using a direct method based on a multifrontal approach which performs a Gaussian

factorization

Â = L̂ ·Û (2.71)

where L̂ is a lower triangular matrix and Û an upper triangular matrix. To this aim three main

steps are required: i) Analysis; ii) Factorization, and iii) Solution.

Analysis In this step an ordering on the symmetrized pattern Â+ÂT and a symbolic factor-

ization takes place. A mapping of the multifrontal computational graph, named elimination
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Fig. 2.9: Schematics of a representative non-uniform grid used in the simulations. Notice that

the grid is more dense in the neighbor of the focal point set at P(4.5mm,0mm,0mm). The

y →−y is exploited to reduce the simulated volume by a factor of two.

tree, will be created during this factorization. Using this elimination tree, the algorithm esti-

mates the number of operations and memory necessary for the factorization and solution. The

preprocessed matrix Âpre is here defined.

Factorization Now Âpre = L̂ · Û is computed with numerical factorization, which are se-

quences of dense factorization on frontal matrices. The following pivoting can be done in

three different ways: standard pivoting, two-by-two-pivoting and static pivoting. For each fac-

torization the algorithm decides which method is chosen according to the associated values of

the elimination tree, hence the name "multifrontal approach".

Solution Using the factor matrices obtained within the factorization process, the solution xxxpre

of L̂ · Û · xxxpre = bbbpre is obtained. Here xxxpre and bbbpre are associated to Âpre. The solution is

calculated by means of a forward elimination step L̂ ·yyy = bbbpre and subsequently a backwards

elimination step Û ·xxxpre = yyy. Through the final post processing of xxxpre, the solution xxx of the

original linear equation system (2.71) is obtained. Finally, an iterative refinement and an er-

ror estimation process of the backward elimination step can be used to increase the numerical

quality of the solution.

2.5. Sample Preparation and Measurement Set-up
The LPS set-up used in this work is schematically illustrated in Fig. 2.10. Measurements are

performed at room temperature in air. The investigated Si samples are prepared to have parallel

top and bottom surfaces lying in the xy plane. Rim ohmic contacts are fabricated at the two

vertical surfaces indicated in Fig. 2.10. To this aim, the Si surfaces are first mechanically

ground to remove the native oxide. Subsequently, an eutectic Ga0.75In0.25 [CWDW08, AA91])

layer is transfered to the surfaces before connecting the Si material with brass contacts. Since

the eutectic Ga0.75In0.25 work function (4.3eV) is similar to the one of Si (4.6eV), almost ohmic
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behaviour is obtained. As will be seen later, it is advisable to always cover the whole Si surfaces

with the indium-gallium eutectic to avoid distorting measurement effects.

The sample is fixed on top of a surface that can be shifted in the xy plane by means of computer

controlled electrical engine and one of the two contact is grounded.

Optical excitation is produced by means of a single mode well focused laser beam, impinging

normal to the top surface with wavelength of 685nm or 830nm. The spot size close to the top

surface is of the order of 5μm and the output power can be increased up to 170mW, corre-

sponding to a maximum power density of 5400W/cm2. Notice that large laser power may be

necessary to achieve a sufficient signal to noise ratio, especially when measuring samples with

very short excess carrier lifetimes. On the other hand, one has to keep in mind that large laser

power negatively affect the LPS spatial resolution as extensively discussed in Chapter 4.

Fig. 2.10: Scheme of the used LPS-measurement set-up.

Moving the spot position (xf, yf) across the sample surface a photogenerated voltage map is

recorded through a customized control software (see Fig. 2.11) using lock-in amplification (see

Fig. 2.12). The associated image features a tunable spatial resolution (Δx, Δy), which has to be

chosen much smaller than the physical resolution of the LPS measurement. The user can define

a time constant Δt, which controls the number of acquired data point N per pixel according

to the relation N = Δt · fmod, where fmod is the frequency of the lock-in amplifier. The shift

velocity along the x-direction of the movable table is then automatically set at v = Δx/Δt and

the map is acquired as an array of 1D x-scan lines, separated by Δy. It follows that each pixel of

the LPS map image represent the average of N different measurements. A typical wafer scale

experiment features Δx = 100 μm, Δy = 100 μm, Δt = 25ms, resulting in a total acquisition

time of 7h to map a surface area of about 10cm×10cm with N = 25 independent data points

for each pixel.

We conclude this chapter showing in the left panel of Fig. 2.13 a typical grey-scale LPS map ac-

quired with a n-type FZ-Si sample featuring an average resistivity of ρ ≈ 80Ωcm. In Fig. 2.13

the resistivity inhomogeneities associated to the dynamics of the solid-liquid interface mani-

fest themselves as striations with lighter (darker) regions corresponding to a positive (negative)

component of the doping gradient along the x-direction. The observed curvature of the stria-

tions can be directly compared with numerical data for the temperature field, obtained when

simulating the FZ growth process Fig. 2.13. As a simplified case we show in the right panel

of Fig. 2.13 the calculated temperature field for a similar FZ-Si sample, where the bold isoline

represents the position of solid-liquid interface at a certain time. This can be compared to the

tracked isolines in the LPS map, as the resistivity variations manifest themselves in the shape

of the solid-liquid-interface (see central panel of Fig. 2.13).
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Fig. 2.11: Graphical interface for the software which controls the acquisition of the LPS voltage

signal. The windows allows to set Δx, Δy, Δt, and the dimensions of the scanned area.

Fig. 2.12: Scheme of the lock-in-technique used to improve the signal-to-noise ratio when

acquiring the photogenerated voltage signal. Sin is the lock-in modulation signal and the ΔU is

the modulated voltage difference between the rim contacts.
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Fig. 2.13: Left panel: LPS map of a FZ-Si n-type sample showing the typical striation pattern

associated to the solid-liquid interface dynamics. Central panel: LPS map with a tracked iso-

lines marked in red. Right panel: simulated temperature field (K) at a given time during the

growth process. The bold isoline represents the position of the solid-liquid interface. Addition-

ally shown in grey is the heat inducing inductor coil.
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Chapter 3

Signal Generation and Transmission

This chapter will show a way to deal with a coming up scaling problem. A typical limiting

factor is the used laser spot, implemented as a 2D Gaussian function with σL = 1.25μm, which

has to be resolved properly by the mesh. On the other hand, the sample sizes can easily reach

length scales of about 30cm. Even using a mesh geometry as introduced in Fig. 2.9, will not

deal with this problem on an effective computational time scale.

Therefore the idea of separating the problem is introduced. A first main program will

deal with the signal generation on a small suitable scale. Signal generation means to solve

the van Roosbroeck Eq. system (2.26-2.28), detecting the potential difference at the edges of

this small sample. Another program, which will be introduced later, will use this potential

difference as an input parameter and will solve for the potential difference at the large sized

sample edges.

3.1. Proof of Principle of the Signal Generation Program
The following section contains measurements, results and figures already published [KLB18].

As basic proof of the model, we show that a voltage difference between the sample edges is

generated in an inhomogeneous Si sample by an applied laser. Therefore discussed is the sim-

plest case, which can be described by using Taucs Eq. (2.19). Here a homogeneous Si sample

is assumed with a linear gradient of the doping distribution. As opposed to the homogeneously

illumination assumed by Tauc, we are investigating a local illumination by a focussed laser in

the shape of a two dimensional Gaussian distribution. Tauc described that the bulk photovoltaic

effect is proportional to conductance variation:

ULPS ∝ ∇x
1

ρ
= ∇xq(μnn+μp p). (3.1)

In the case of an 80Ωcm phosphorous doped sample we can assume that, ND ≈ n  p which

reduces the former formula to:

ULPS ∝ qμn∇xND. (3.2)

For the subsequent analysis, the electron mobility was kept constant.

The crystal is assumed to have a doping profile of phosphorus, caused by segregation ND,seg,

which is characterized by a macroscopic gradient along the sample length and by local fluctua-

tions. This profile is modelled by the formula:

N+
D = ND,seg +ND,fluct = ND,0

(
1+

a
L

x+b · f (x,y,z)
)
, (3.3)
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where ND,0 is the background level of the dopant concentration, L = 2.4mm is the sample

length, x the length coordinate, a a control parameter for setting the macroscopic gradient of

the dopant profile. The fluctuations of the doping concentration caused by temperature inhomo-

geneities are assumed as sinusoidal and reduced by the prefactor b = 1×10−5. The constant

macroscopic gradient of the dopant profile, i.e. the linear behaviour of the profile, is assumed

due to the small sample length: indeed there is a rather exponential distribution due to the

segregation of, e.g., phosphorus in the melt during crystal growth.

The computation of the simulated LPS-voltage is shown in Fig. 3.1 left panel for different

values of the control parameter a. During this, the focus of the laser has moved between xf ∈
0.9 - 1.2 mm. The computation yields a nearly constant LPS-voltage for each a-value when xf

was varied.

(l) (r)

Fig. 3.1: Left panel: result of the simulations of the LPS-voltage relative to the parameter a.

Right panel: dependency of the simulated LPS-voltages on the slope parameter a[KLB18].

Fig. 3.1 right panel shows the proportionality between the simulated LPS-voltage and the gradi-

ent of the dopant profile a. Additionally, Fig. 3.1 right panel reveals an offset of the LPS-voltage

for USim|a=0. In that case only the sin-shaped dopant fluctuations remain, hence, the offset can-

not have physical reasons. Therefore, analysed is whether the offset depends on the model

itself. Accordingly offset voltage will be discussed by enlarged sample width (> 150μm) and

thickness (> 2μm). As shown in Fig. 3.2 left panel, enlarging the sample width by a factor of

10 reduces the offset roughly by the same factor, however, the reduction of the offset is not a

linear function of the sample width.

The effect of the thickness on the offset is more complicated, see Fig. 3.2 right panel: as

long as the sample thickness is below the penetration depth (15.4μm), thickness enlargement

increases the total number of charge carriers and the offset voltage is rising. But even before

reaching the saturation of the total number of charge carriers, which may be reached at a thick-

ness ≈ 3 · 15.4μm, where 95% of the charge carriers are absorbed, the offset decreases. The

enlargement from the rather small thickness (2μm) with maximum offset (≈ 9μm) to a thick-

ness of 200μm reduces the offset by a factor of eight. In the last case, the sample thickness is

much larger than the penetration depth of the laser, hence the non-reflected energy of the laser is

absorbed (99.9998%) by the semiconductor and transmission is highly suppressed. Combining

the increased thickness and width of the sample, the offset is reduced by a factor of 80 and, thus

is negligible. The linear dependency of the simulated LPS-voltage on a and the knowledge that

ULPS ∝ ∇xN+
D allows the following relation:

USim ∝ a ∝ ∇xN+
D ∝ ULPS (3.4)
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Fig. 3.2: Left panel: behaviour of the offset with respect to the width of the simulated sample.

Right panel: dependency of the offset from the sample thickness. After an increase related to

the penetration depth of the laser, a decreasing trend is visible [KLB18].

As could be seen, the simulated LPS-voltage is proportional to the theoretical description

by Tauc. A concern is, that the simulated sample size is in the order of millimetres but

usually sample sizes occur in the order of several centimetres as wafers or plates. Here the

question occurs whether the sample size and/or the shape influence the LPS measurements.

Also interesting is whether there is an influence of the detection of the LPS-voltage to the

measurement signal. Therefore, it is necessary to separate the generation of the LPS-voltage to

its detection, which will be discussed now.

3.2. Signal Transmission
To analyze larger sample sizes, we have to reduce the model. Therefore we assume:

The generation of the LPS-signal takes place in a local area around the focal point.

In this region we have already solved the van-Roosbroeck equation system.

The remaining Si sample behaves as a passive electrical device.

3.2.1. Model
Especially the last point leads to a conductance for n-type Si

σSi(x,y) = q

(
μp

n2
i

n
+μnn

)
= const , (3.5)

which reduces the equation system essentially. We can use electrical circuit equation systems

to solve for. This requires the current conservation ∇JJJ = 0. Here JJJ describes the current density

through all devices in the circuit. The Poisson equation is reduced to EEE =−∇Φ and connected

by the Ohms law to the conductance jjj = σEEE.

A reduced two dimensional model is shown in Fig. 3.3. The Si sample is marked in

blueish colour, the Cu wires in grey and the inner resistance of the volt meter detecting the

LPS-voltage in red. The white central rectangle is the area where we already solved the

van Roosbroeck equations using the method shown in the former section. So the potential
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difference of the generated dipole is known and included as Φin. The potential of the other edge

is set to the ground level. The centre of this area is defined as the former focal point Pf(xf,yf)
of the laser.

The Si sample is connected by ohmic contacts to Cu wires, which closes the electric circuit to

the inner resistance of the volt meter:

ULPS,2D = Φ|Γ1
−Φ|Γ2

. (3.6)

y

x

Source:

Resistance:

Source:Source:

Ground ΦinPf

Resistance:

Γ1 Γ2

Fig. 3.3: Two dimensional model of the LPS measurement setup. The silicon sample is marked

blue, the copper wires in grey and the inner resistance of the volt meter in red.

As boundary condition ohmic contacts between Si, Cu and the inner resistance are assumed.

The electric potential shell be 0 = Φ|Ground and Φin = Φ|Source. The remaining boundaries are

treated as isolated rims 0 = nnn · jjj.

3.2.2. Basic Analysis
We start with basic analysis of the model, which are required for further investigations. At first

we are looking at the influence of the dipole strength represented by the Φin on the ULPS,2D.

In Fig. 3.4 a linear behaviour in a double logarithmic scale already proves for twelve orders of

magnitude a functional dependency like:

ULPS,2D = c1 ·Φc2
in (3.7)

Here c1 and c2 are constants. If we also consider figure (3.5), we can determine c1 ≈ 0.025 and

c2 = 1. This linear behaviour is desirable due to the fact, that influences on the dipole strength

Φin directly influence the measured voltage ULPS,2D and vice versa. The measurability of

ULPS,2D can be considered as a lower boundary of the measurability of the LPS-voltage. In this

way it is preferable to have a large c1, which correlates to the transmission losses Φin →ULPS,2D.

The open questions are:

Where does this losses come from?

What influences this transmission losses?
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Fig. 3.4: Dependency of ULPS,2D on the dipole strength represented

as Φin.

Symbol Value
L 20 cm

B 15 cm

Φin

σSi 7.4 S/m

σCu 6×107 S/m

σR 1×10−6 S/m

xf L/2

yf B/2

shape rectangular

Fig. 3.5: A constant behaviour is visible, which reveals a linear

dependency of Φin to ULPS,2D

Symbol Value
L 20 cm

B 15 cm

Φin

σSi 7.4 S/m

σCu 6×107 S/m

σR 1×10−6 S/m

xf L/2

yf B/2

shape rectangular

.

In Fig. 3.6 there is shown the used 2 dimensional model as a scheme. A voltage measurement

is assumed to be currentless, which is realized by a large inner resistance. This also means, that

in the Si sample closed current lines are formed, which can be seen in the vectorial sketch of

the currents inside of the Si sample in Fig. 3.6. As a current is equalizing potential differences,

this closed current lines diminish the potential difference at the ohmic contacts, which is equal

to ULPS,2D, because of the extremely high conductance of Cu used as contact material.
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This example is shown for a homogeneous conductance for the Si sample, which seems to

oppose the generation of the dipole, which is generated due to conductance inhomogeneities.

As seen before, the inner closed current lines define the measured potential difference at the

ohmic rim contact. With the assumption, that the gradient of the conductance is low in scales of

the dipole length (σSi(x) ≈ σSi(x+ l)), a linear change in conductance does not effect circular

currents inside of the Si sample and hence the ULPS,2D.

So this two dimensional model can be used also for samples with a small macroscopic gradient,

as they often occur in length cuts of doped Si crystals. Here segregation effects in the melt

influence the incorporation of doping atoms, which can be estimated mostly by using linear

functions.

Fig. 3.6: Sketch of the current lines in the Si sample. Here the colour of the vector indicates the

strength of the current at that area. Red is set to a high and dark blue to low current.

With this argumentation, that the inner current lines define the measurable ULPS,2D we expect

no influence by different resistivity of the sample. To verify this assumption, we have to split

the analysis in two parts by numerical reasons:

ULPS,2D
?
= f (σCu) with constant σSi (3.8)

ULPS,2D
?
= f (NA) with constant σSi/σCu. (3.9)

Fig. 3.7 shows the analysis of the dependency described in Eq. (3.8). Just a slight negligible

dependency occurs. This can be described by Fig. 3.6. Here two types of closed inner circle

lines occur, lines which attach the Cu contact, lines which are closed inside of the Si sample.

The ratio of both changes minimally by increasing the conductance of Cu, which is the effect

seen in Fig. 3.7.

The dependency of equation (3.9) is shown in figure (3.8), where a constant behaviour is mani-

fested.
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Symbol Value
L 20 cm

B 15 cm

Φin 1 V

σSi 7.4 S/m

σCu

σR 1×10−6 S/m

xf L/2

yf B/2

shape rectangular

Fig. 3.7: Dependency of the two dimensional LPS-voltage with respect to the Cu conductivity

normalized by the Si conductivity.

Symbol Value
L 20 cm

B 15 cm

Φin 1 V

σSi

σCu 6×107 S/m

σR 1×10−6 S/m

xf L/2

yf B/2

shape rectangular

Fig. 3.8: Dependency of the two dimensional LPS-voltage with respect to the doping concen-

tration of Si. Here also a constant ratio of the conductances Cu/Si was kept constant.

The combined Fig. 3.7 and 3.8 clarify that the resistivity of the Si does not effect the signal

transport, which fits to our assumption.

This shows, that the measurement set up is suited well for the detection of the photovoltaic

effect. In addition the discussed two-dimensional model has been established well describing

the effects. Now we are analysing proportional constant c1, which can also be interpreted as

the transmission coefficient of Eq. (3.7) with respect to the sample size. This means, we are

looking whether some samples are better adapted to the LPS-measurement.
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3.2.3. Sample Geometry Effects
In Fig. 3.9 the dependency of the ULPS,2D with respect to the sample length (black) and width

(red) is shown. In both cases a decreasing behaviour of ULPS,2D with the sample size can

be seen. As the black curve reaches a plateau after ≈ 3mm, the red curve keeps decreasing

constantly. A sample length in the region of the dipole length sets the potential (ground and

source) directly on the ohmic contacts, which results consequently in c1 = 1. Despite that edge

effect no dependency of ULPS,2D of the sample length is detectable.

The red curve also started with c1 ≈ 1 in the millimetre region. This can be understood,

due to the fact, that the two dimensional model then changes to a simple branchless cir-

cuit, where the current is preserved. This preserved current and the fact, that the resistance

in the volt metre is much larger then all other remaining resistances result in the fact, that c1 ≈ 1.

Symbol Value
L
B

Φin 1 V

σSi 7.4 S/m

σCu 6×107 S/m

σR 1×10−6 S/m

xf L/2

yf B/2

shape rectangular

Fig. 3.9: Dependency of the two-dimensional simulated LPS-voltage with respect to the sample

length (black) and the sample width (red).

The functional behaviour of ULPS,2D with respect to the sample width can be seen in Fig. (3.10

left panel). Here BS is the width of the dipole. A linear dependency is fitted with respect to the

inverted sample width, resulting in:

c1 = f (1/B). (3.10)

With small changes to the model, we can also analyze the effect of the sample thickness. There-

fore we have to change the focal point to Pf(L/2,B), now the former y-direction (see Fig. 3.3)

can be assumed as the sample thickness. The results of ULPS,2D depending on the sample thick-

ness are shown in Fig. 3.10 right panel. Here a linear dependency is determinable. Due to

the small region, samples of interest have thickness lower than a millimetre, also a hyperbolic

behaviour comparable to the dependency of the sample width can not be neglected. This can be

shown here:

1−ax =
1

∑
n=0

(−a)nxn →
∞

∑
n=0

(−a)nxn =
1

1+ax
. (3.11)

So the same functional dependency can describe the shown effects. This seems to be logical as

both (sample width and sample thickness) can be transferred into each other by a rotation of 90

degree.
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Fig. 3.10: Left panel: dependency of the simulated two dimensional LPS-voltage with respect

to the sample width. Right panel:dependency of the simulated two dimensional LPS-voltage

with respect to the sample thickness.

That means for a the measurability of LPS, which benefits from a large signal, that:

thin samples are preferred,

a low sample width is preferred

and the sample length does not influence the measurement.

For an analysis of the shape of the solid liquid interface of a grown crystal, sample length and

width are fixed by the crystal diameter and the length. But the thickness of the sample can be

modified freely. So there is no reason for an LPS-measurement using thick samples.

Most samples used for LPS have two-dimensional geometric shapes of a rectangle (as length

cuts of crystal), a circle (as wafers) and a trapeze (as cones of a starting/ending section of a

crystal growth process). Interesting is, whether the geometric structure of the sample leads

to specific characteristics with respect to the LPS-measurement. Also unknown is, whether

the sample geometry will lead to a distorted measurement (c1 = f (xf,yf)). In this case, the

functional behaviour is highly desired to rescale the distortion.

The results of this investigation are shown in Fig. 3.11 for a rectangular shaped sample. Here

we show two central line scans (black yf = B/2, red xf = L/2). Except the region close to the

sample edges we could not determine an influence of c1 with respect to xf or yf, which also

means no distortion in the measurement. But at the edges both dependencies behave differently.

As we can see an increase in the ULPS,2D depending on xf, which is motivated by the fact, that

a whole Cu contact will be set to the corresponding potential. In oppose ULPS,2D decreases

depending on xf. Due to symmetry:

ULPS,2D(B)|edge =ULPS,2D(2B)
ULPS,2D= f (1/B)→ 1

2
ULPS,2D(B). (3.12)

As we have already shown: ULPS,2D = f (1/B). So how does a sample shape such as a symmet-

rical trapezoid (B = f (x)) and circle effect the results shown for a rectangular structure?

To answer this open question we first analysed a wafer-like structure, sketched in Fig. (3.12

left panel). The radius of the shown circle is r = 75mm. The results of ULPS,2D = f (xf) along

the diameter are plotted in black in Fig. (3.12 right panel). Here a monotonically increasing

with respect to |xf − r| can be seen. The red curve is normalized by the actual sample size,

reveals a nearly constant behaviour.This result means for LPS-measurements on wafer, that the

measurement is distorted, but can be rescaled.
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Symbol Value
L 20 cm

B 15 cm

Φin 1 V

σSi 7.4 S/m

σCu 6×107 S/m

σR 1×10−6 S/m

xf

yf

shape rectangular

Fig. 3.11: Dependency of the two-dimensional LPS-voltage with respect to the observation

(focal) point P(xf,yf).

Fig. 3.12: Left panel: Sketch of the wafer-like sample set-up used in the two-dimensional

model. Right panel: a line scan along the horizontal diameter was simulated (black). A LPS-

voltage normalized by the local sample width is shown in red.

Analogously analysed is a trapezoid sample (hatched in grey) in figure (3.13). Here are also

shown the results of ULPS,2D pure (black) and normalized by the actual sample width (red).

A non-linear increasing LPS-voltage width with decreasing sample width can be seen. This

sample geometry leads to distorted LPS-measurements. The normalized results marked in red

used the data point xf = 180mm and normalized the remaining data point width the sample

size. This results in a constant behaviour analogously to the rectangular case. Also the level is

approximately the same as shown before.

To validate our model, we measured this effect. Therefore we used a length cut of an FZ Si

(ρ = 80Ωcm) using the 830nm-laser. To avoid influences correlated to different sample length

we used point-like contacts at the vertical centre of the edge. These LPS-measurements are

shown in Fig. 3.14 left panel before and 3.14 right panel after cutting. Apart from edge effects
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Symbol Value
L 20 cm

B 1cm+0.7 · x
Φin 1 V

σSi 7.4 S/m

σCu 6×107 S/m

σR 1×10−6 S/m

xf

yf 7.5 cm

shape trapezoid

Fig. 3.13: Analysis of a trapezoidal sample (hatched in grey). The dependency of the two-

dimensional LPS-voltage with respect to the observation (focal) point P(xf,yf). The red dots

represents a set of date, which is normalized by the local sample width.

in the left picture differences are hardly visible. This heavily relies on the gray scaling of the

pictures. If we look at the standard deviation of the LPS-measurement along a horizontal central

line, we get a better evaluation mark.

Fig. 3.14: Left panel: LPS-measurement of an 80 Ωcm sample with a rectangular shape

100mm×120mm. Right panel: a repetition ((18mm - 100mm)× 120mm) of this measure-

ment after cutting.

Analogously to the effective voltage of an accelerated current, we define:

Ueff = std(ULPS) =

√
1

n ∑
n

(
ULPS −ULPS

)2
. (3.13)

To get still a local dependent value we evaluated the standard deviation for 80 consecutive

measured LPS-voltages. This analysis is shown in Fig. 3.15 for a rectangular (black) and

a trapezoidal (blue) sample geometry. In the region 30mm - 100mm the black curve stays

constant in opposition to the decreasing behaviour of the blue curve. The red curve is scaled by
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the actual sample width. In this region a good agreement between black and red curve can be

seen. In the remaining regions, which are close to the sample edge the measurement signal is

heavily increasing. This is what we have already shown and described in Fig. (3.11). The area

of effect was some millimetres, here the range is about 20 mm - 30 mm on both edges. The

behaviour at the right sample edge seems to be in good agreement. Also in this edge ranges the

measurement results seem to depend on the y-coordinate. In the vertical centre of the sample,

at the height of the contacts, the measurements seems to have a maximum, and is decreasing to

vertical edges.

Fig. 3.15: Comparison measured LPS-voltage with respect to the sample geometry. The red

curve contains a simulated correction factor described in figure (3.13).

3.2.4. Contacts
Results and considerations presented so far relate to contact applied to a full edge of the sample.

For some sample geometries, dot-like contacts are of interest and their influence presented in

the following. Therefore we adapted the described model as the following. In Fig. 3.16 left

panel is sketched the current lines in the near of a point-like contact. In opposition to Fig. 3.7

the current lines are not closed by passing through the contact anymore. Just the short central

contact, marked by an arrow, connects the sample to the inner resistivity.

For the further analysis we use the same set of parameters as used in Fig. 3.11. A central dot-

like contact Pc(0mm,75mm)is located at the left edge. We first of all describe the horizontal

behaviour at the same height as the contact, so yf = 75mm. The results of ULPS,2D = f (xf)
along this line are shown in Fig. 3.16 right panel. The region of effect, where ULPS,2D �= const ,

can be estimated with 0mm - 40mm. Compared to Fig. 3.11, the region of effect has heavily

enlarged just by changing to a point-like contact. In comparison to the measurements shown in

Fig. 3.15, where we measured this region to be approximately 0mm - 30mm, the simulation

and measurements are in good agreement.

Finally we are looking at the measurement signal ULPS,2D = f (yf). Therefore we are using a

vertical line xf = 25mm. The results of this investigation are shown in Fig. 3.17 left panel.

Here a maximum is reached, at the centre of the sample, in which horizontal line the point-like
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Fig. 3.16: Left panel: Sketch of a rectangular sample with a point-like contact. Right panel:

horizontal line scan of the simulated LPS-voltage.

contact is located. This fits to the observation of the measurements in Fig. 3.11, where we have

seen at the sample edges a decrease of ULPS,2D with increasing distance to the sample centre.

Fig. 3.17: Left panel: Vertical line scan of the simulated LPS-Voltage. Right panel: dependency

of the two-dimensional simulated LPS-voltage depending on the path length, the shortest way

connecting the focal points to both contacts.

We shortly introduce the path length as a value, which we define as the shortest path, connecting

Pc via Pf to the area contact, which is located xf = 200mm. Numerically this means:

path length = L− xf +
√

x2
f +(B/2− yf)2 = 175mm+

√
(25mm)2 +(75mm− yf)

2 (3.14)

Using this value, we get an exponential function connecting the ULPS,2D to the path length,

which can be seen in Fig. 3.17 right panel. This means, that using a point-like contact adds

also distortion to the measurement, which can easily be avoided.

3.3. Doping striations and model validation
We are now in a position, were we are able to describe the photovoltaic effect locally and we

know, how this signal is transmuted to a voltmeter. So the next step is to connect both to verify

the used models.
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To validate our model, in this Section we compare the measured and simulated LPS data,

obtained from sample S0 at different laser pump power. The n-type sample (sample S0,

ρ = 20Ωcm, ND = 6.5×1014 cm−3) was studied to demonstrate the effectiveness of the LPS

approach for the characterization of crystal striation and to benchmark our numerical model. To

this aim the charge carrier lifetime of S0 was measured using a commercial MDP-map system

finding τS0 = 900μs; this value drops to 240μs when the surface is not passivated. Relying on

this results we obtained a realistic estimation of material parameters governing the recombina-

tion velocity and the SRH rate in this sample.

In Fig. 3.18(a) we show the LPS signal, acquired from sample S0 with line scans along the

x-direction, using four different laser pump powers. We find that at low laser power the main

spatial wavelength component of the LPS signal of 910μm matches quite well with the spatial

periodicity of dopant striation, expected for the adopted growth conditions; on the other hand,

at larger pump power this spatial scale is not resolved [LR97], due to the lowering of the LPS

resolution triggered by the increased fluency (see discussion in the next Section).

Moreover, to test the validity of our numerical model, we used the integrated experimental LPS

signal shown in Fig. 3.18 left panel as an n-type doping profile to simulate the LPS voltage

reported as red curve in Fig. 3.18 right panel , assuming uniform concentration along the y-

and z- directions. As expected, the simulated LSP signal closely reproduces the spatial depen-

dence of the input dopant gradient, since for an n-type material the photoinduced voltage is

directly proportional (upper sign in Eq. (2.19 )) to this quantity. Indeed, a spectral analysis of

both the experimental and numerical signal reveals that the five main frequencies are correctly

reproduced.

Fig. 3.18: Left panel: ULPS line scan along the x-direction from sample S0 at different laser

power, as reported in the legend. Right panel: simulated LPS voltage obtained from the dopant

profile derived from the ULPS signal shown in the left plot (red curve 5.5mW). For comparison

also the profile of the dopant gradient used in the simulation is reported (black curve).

We now analyze the dependence of the LPS voltage on the pump excitation density. For this

purpose, in Fig. 3.19 we show for the n-type S0 sample at fixed excitation position the experi-

mental (black squares) and simulated (red circles) ULPS voltage as a function of the laser power

close to the sample surface. Our numerical data are in very good agreement with measure-

ments, and indicate a sublinear increasing behaviour. This trend can be interpreted considering

that the photogenerated carriers tend to screen the driving force field associated to the dopant

gradient. Therefore, upon increasing the laser power, the spatial displacement of the electron

and hole excess carrier density, responsible for the photogenerated voltage, is controlled by a

force whose intensity decreases due to the increased effectiveness of the screening effect, as-

sociated to larger excess carrier concentrations. This in turn results in a sublinear dependence

of the LPS voltage from the laser power, despite the fact that our simulations indicate that the
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excess carrier density is linearly proportional to the pump fluency. This would be in line with a

dominant SRH-recombination.

Fig. 3.19: Measured and simulated LPS voltages at fixed (xf,yf) as a function of laser pump

power for the unimplanted n-type sample.

3.4. Conclusion
In this section we have looked at the signal transmission between a generated photovoltage

inside of a Si sample and the measured voltage difference at the inner resistance of a voltmeter.

For a rectangular sample with area contacts a linear transmission function could be analysed.

The transmission coefficient c1 depends on sample geometry factors. So far a low transition

coefficient limits the measureability of the sample.

For sample geometries such as a circle or a trapezoid the transition function becomes non-linear

and this leeds to distorted measurements. These have to be corrected for an analysis of the

strength of the photovoltaic effect. Even by an integration to get the resistivity shape, this

distortion has to be corrected.

In addition we investigated the influence of the contact (point-like or area). Here a point-like

contact adds also a distortion to the measurement, which can be avoided by using area contacts.

In conclusion, the good agreement between numerical data and experimantal observations de-

scribed in this section validates our numerical model, and indicates that the integrated LPS

signal is proportional to the local value of the dopant gradient. Indeed, the proportionality be-

tween the ULPS and the dopant gradient, first predicted with simplifying assumptions by Tauc

(see Fig. 3.19), has been confirmed here relying on a numerical model which takes into account

in-plane and out-of-plane carrier diffusion, a mandatory prerequisite to describe realistic 3D

sample geometries. Moreover, our model correctly addresses the spatial profile of the excess

carrier distribution, which in our experimental conditions is much wider than the laser spot size,

in contrast to the opposite working hypothesis assumed in the original analysis by Tauc. [Tau55]
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Chapter 4

Local Resolution of the LPS
Measurements

At this stage it is worth to notice that the spatial resolution of the LPS measurement is usually

limited by the diffusive motion of the photogenerated carriers rather than by the spot size.

Indeed in Si the diffusion length can be as large as few millimeters i.e. much more than the

typical optical beam diameter. The introduction of a convolution function for the LPS signal is

the most straightforward approach to phenomenologically model this smearing effect. In other

words we assume that the LPS-voltage can be written as

ULPS(xf,yf) ∝ (∇xNA,D ∗ γ)(xf,yf), (4.1)

where NA,D is the spatially dependent acceptor/donator concentration and γ represents an ap-

propriate convolution profile centered in (xf,yf), whose spatial extension controls the resolution

of the LPS measurement. Notice also that in writing the above equation we have implicitly as-

sumed that the photovoltage associated to the y-component of the dopant concentration gradient

is not detected. As a consequence, integrating along the x-direction we obtain:∫ x

0
ULPS(xf,yf)dxf ∝ (NA,D ∗ γ)(x,y). (4.2)

The main scope of the present chapter is the quantitative estimation of the LPS spatial resolu-

tion, which can be assumed equal to the width of the convolution profile γ , as a function of the

material parameters affecting the excess electron/hole distribution.

4.1. Sample preparation and SIMS characterization
In this Section we present samples, used for our analysis (see Table 4.1). A set of three boron

implanted FZ wafers (S1-S3) have been fabricated and measured to estimate the LPS spatial

resolution.

To explore the spatial resolution of the LPS method we prepared three p-type samples featuring

a spatial variation of the resistivity, starting from homogeneous commercial 4” FZ Si wafers,

with resistivity in the 7 Ωcm - 5000 Ωcm range, associated to a acceptor concentrations NA,1

(see Table 4.1). To this aim on the top surface we have defined by B implantation a resistivity

matrix using a lithographic mask to irradiate stripe-like regions only, which are oriented along

the y-direction and with transverse dimension in the 2.5 μm - 600 μm range. Spatial inter-stripe

distances were chosen in the 100 μm - 400 μm interval. The achieved B concentrations in the

implanted regions NA,2 are listed in Table 4.1.
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No. ρ1 [Ωcm] NA/D,1

[
cm−3

]
NA,2

[
cm−3

]
ρ2 [Ωcm]

S1 7 1.9×1015 B 5.7×1015 B 2.4
S2 200 6.5×1013 B 3.8×1015 B 3.5
S3 5000 2.5×1012 B 3.8×1015 B 3.5

Table 4.1: Sample characteristics: background (NA/D,1) and implanted (NA,2) dopant concen-

tration, corresponding to resistivity ρ1 and ρ2, respectively, obtained with a 2D B dose of

1×1011 cm−2.

Fig. 4.1: SIMS measurement of the 11B-concentration in the implanted region after RTA for

sample with NA,2 = 1×1017 cm−3, compared with the theoretical estimation discussed in the

text (red curve). Notice that the model properly describes the asymmetry of the measured

profile.

SIMS data were also used to estimate the B concentration profile along the z-direction as

shown in Fig. 4.1. For measurement reasons we had to use a comparison sample with

NA,1 = 1×1017 cm−3 keeping the same NA,1-NA,2 ratio as sample S3. For comparison in Fig.

4.1 we also plot the expected distribution, where diffusion effects, associated to the annealing

treatment were not taken into account. This result allow us to conclude that the RTA does not

significantly contribute to the spatial extension of the concentration profile along the z-direction,

which is typically in the order of 100 nm, in line with data reported for similar samples by Cho

et al. [CNF+85].

Since the sharpness of the implanted/not-implanted interface at the stripe boundary can be re-

sponsible for larger diffusion effects of the B atoms during the RTA treatment, we performed

dynamic SIMS measurements to evaluate the in-plane concentration profile, as shown in Fig.

4.2 for a sample with nominal stripe width of 90 μm. In the inset of Fig. 4.2 also a line scan

along the x-direction is reported. Those results confirm the presence of doped stripe regions,

featuring a constant plateau, separated by the non-implanted regions by sharp interfaces, whose

characteristic length is in the order of 30 μm. This number is approximately equal to the in-plane

SIMS spatial resolution, which is limited by the diameter of the probe beam (about 24 μm). This

fact does not allow us to assess the impact of the RTA on the in-plane diffusion. Nevertheless,

we notice that, as demonstrated in the following, the 30 μm scale is one order of magnitude
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Fig. 4.2: SIMS map of the in-plane doping profile acquired after RTA with a penetration depth

of 650 nm i.e. at the peak of the z-distribution of dopants, from a sample with nominal stripe

width of 90 μm. In the inset a line scan along the transverse x-direction is also shown together

with a rectangular profile convolved with Gaussian functions with σ = 12 mm (red curve).

lower than the standard deviation of the LPS convolution function of Eq. (4.2). For this reason,

in our simulation we have taken into account the proper spatial distribution of dopants in the

vertical plane, but in-plane diffusion effects have been neglected.

An LPS grey scale map is reported in Fig. 4.3 for the example of sample S1 where the implanted

matrix, superimposed to the typical doping striation pattern is clearly distinguishable.

Fig. 4.3: LPS grey-scale map acquired from sample S1. Darker (brighter) grey corresponds to

negative (positive) x-component of the gradient of the dopant concentration.

A convincing measurement of the LPS resolution requires steps in the doping profile along the

x-direction of our samples, characterized by a spatial scale smaller with respect to the typical

width of the convolution function γ reported in Eq. (4.2).
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Symbol Explanation Value

λ wave length of the laser 685nm

P maximum power of the laser 20mW

AC absorption coefficient in Si 1/4.7μm−1 [PS72]

R reflection coefficient for Si 0.34

σ standard deviation of the Gaussian laser spot 1.25μm

CRad coefficient for radiative recombination 1×10−14 cm3/s [GSM72]

Et trap level of B impurities 0.044eV [SK69]

τn SRH lifetime for electrons 400ns

τp SRH lifetime for holes 400ns

τS1,S2,S3 measured life time for sample S1, S2 and S3 0.3μs - 1.8μs

Cn
Au Auger recombination coefficient for electrons 2.8×10−31 cm6/s [DS77]

Cp
Au Auger recombination coefficient for holes 9.9×10−32 cm6/s [DS77]

Seff eff. surface recombination coefficient 300000cm/s

F1 Coefficient for Fletcher mobility model 1.04×1021 1/cmVs [DL81]

F2 Coefficient for Fletcher mobility model 7.45×1012 cm−2 [DL81]

Table 4.2: Table of simulation parameters

4.2. Spatial resolution of the LPS measurements
After having validated our simulation platform, in the former chapter we combine experimental

and numerical data obtained from the B implanted FZ-wafers (S1-S3) to investigate the LPS

spatial resolution. To this aim no free tune-able parameters have been introduced in our mod-

elling since input data used to describe the laser characteristic, the dopant profile, the SRH

trap level and lifetime, and the surface recombination velocity, are taken from the literature or

directly measured (see Table 4.2).

To give an intuitive picture of the spatial resolution achieved in our LPS experiments with B

implanted Si samples, we show in Fig. 4.4 a scan along the x-direction of the ULPS signal

acquired from S2 before (black curve) and after (red curve) spatial integration.

The superimposed B profile (blue dashed curve), that at this spatial scale is practically a rect-

angular function, indicates that the LPS measurement properly assess the stripe positions and

evidences its spatial resolution (notice that in agreement with Eq. (2.1) for the case of p-type

materials, spatial regions featuring a positive dopant gradient are associated with positive values

of the photogenerated voltage).

For a quantitative estimation of the LPS resolution, in line with Eq. (4.2), we have compared the

peak line shape of the integrated LPS signal with doping profiles N(x), obtained by convolution

along the x-direction of the rectangular function with Gaussian distributions, featuring different

standard deviations. By a regression of these convolved doping profiles to the integrated LPS

signal, we obtain from the best fitting profile, our estimation of the LPS resolution, defined in

terms of the associated standard deviation σs (see Supplementary Material for details on the

fitting procedure). As an example we show in Fig. 4.5 the LPS signal from S2 at P = 2.4mW

which can be quite faithfully reproduced by our best fitting profile obtained for σs = 200μm.

We underline that the LPS resolution is related to the spatial extension of the photogenerated

carrier distribution, which in S1-S3, using a spot size of about σL =1.25 μm at the adopted

pump fluency, is estimated to be of the order of 10 μm. In other words, the LPS resolution
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Fig. 4.4: LPS (black curve) and integrated (red curve) LPS signal from S2 measured at P =
20mW. The blue dashed curve refers to the right vertical axis and represents the doping profile.

The large period modulation of the LPS signal and its inter-stripe secondary peaks are to be

attributed to the contribution stemming from background doping striation.

Fig. 4.5: Integrated LPS signal measured in S2 at different laser powers P (symbols). The solid

red curve represents the dopant profile, convolved with a Gaussian function whose standard

deviation σs is used as a fitting parameter to estimate the LPS spatial resolution at P = 2.4mW.

depends both on the material parameters governing the spatial extension of the carrier dynam-

ics, and on the peculiar experimental conditions adopted to optically excite the sample. In

general however, LPS spatial resolution is also influenced by the intensity of the driving force

field, associated to the sample inhomogeneities which, controlling the spatial separation of

the excess electron and holes distributions, governs the signal intensity associated to the bulk
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photovoltaic effect. It follows that the LPS resolution may be found at a scale length different

from the one describing the excess carrier diffusion length in an homogeneous portion of the

sample (up to several mms in pure Si). These considerations motivate our operative procedure

for the assessment of the LPS resolution in terms of the best fitting convolved doping profile.

To this aim, we notice that the fact, that the reconstructed doping profile is well described by a

Gaussian smoothing, is not in conflict with the non-Gaussian character of the photogenerated

carrier distribution. Indeed in our simulations we observe for the excess electrons and hole

concentration a strong deviation from the Gaussian shape, as one can expect considering that

the material is not isotropic and that in our simulations we include non-linear recombination

terms.[Gie14]

In line with the above considerations, our numerical simulations indicate that the in-

plane spatial distribution of the electron/hole excess carriers may not only depend on the laser

spot intensity but also on the spot position. As a matter of fact, when calculated for xf located

at the stripe boundary, the excess carrier distributions are characterized by a strong asymmetry.

In Fig. 4.6 top left panel, we report the excess electron and hole distribution for sample S2

at different laser powers, estimated setting the laser spot at the left interface of the implanted

stripe, i.e. in a region featuring a strong positive dopant gradient. In this case the standard

deviation of the excess carrier distribution is typically one order magnitude larger then of the

laser spot size, i.e. far from the LPS resolution that is about two orders of magnitude larger.

Moreover, the LPS resolution is found to be a decreasing function of P, ranging between

σs = 95μm - 165μm, while the standard deviation for the excess electron and hole distribution

is only weakly affected by P.

In order to see the bulk photovoltaic effect at “work”, we plot in Fig. 4.6 top right panel the

net ρ = p−n photoinduced charge density for P = 2.5×10−3 mW - 2.5mW, together with the

static donor concentration profile NA. The associated equilibrium conduction and valence band

edge profiles are shown in Fig. 4.6 bottom left panel and evidence the screening character of

the photoinduced electric field, shown in Fig. 4.6 bottom right panel. In line with Eq. (2.1) and

with the sign of the photoinduced electric field shown in Fig. 4.6 bottom right panel, we obtain

a positive value for the LPS voltage (see Fig. 4.4 at x = 64mm).

Before comparing simulated and experimental data for the LPS resolution, we numerically

investigate the impact of the doping profile along the out-of plane direction z on σs. To this aim

we compare results obtained using z−dependent and z− independent dopant concentrations.

Integrated LPS voltages reported in Fig. 4.7 leftand central panel have been evaluated both

accounting for the z-dependence in the B concentration as measured by SIMS experiments

and considering only the dopant variation occurring along the x-direction, i.e. assuming an

homogeneous dopant concentration along the z−axis throughout the whole wafer thickness

central panel. In the latter case the dopant profile along the x-direction is set equal to the one

measured by SIMS at the z-value where the dopant concentration peaks. To benchmark the

measured LPS resolution with our theoretical prediction, we have applied the same procedure

for the evaluation of the standard deviation of the convolved doping profile, which has been

obtained fitting numerical LPS data. In Fig. 4.7 left and center panel we show the simulated

integrated ULPS signal and the rectangular doping profile along the x-direction for different

laser powers. Also for numerical data the integrated signals are well described by a doping

profile convolved with appropriate Gaussian functions (dashed curves in Fig. 4.7 left and

central panel).

Indeed, this z-homogeneous configuration properly describes doping fluctuations associated to

striations, since their spatial scale along the z-direction is usually much larger with respect to
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Fig. 4.6: Top left panel: numeric excess electron and hole carrier distribution, simulated at

different pump powers for sample S2 with laser spot at the left interface of an implanted region

(x = 64mm) i.e. in a region featuring a positive dopant gradient. The distributions are plotted as

a function of x at the sample surface along a line passing through the laser spot center. Top right

panel: the corresponding distribution for the net excess charge density ρ = p− n are shown

for P = 2.5×10−3 mW - 2.5mW (left vertical axis) together with the static acceptor density

NA (black curve, right vertical axis). Bottom left panel: valence (red curve) and conduction

(black curve) band edge at equilibrium. Bottom right panel: the photoinduced screening field,

calculated as a function of x is shown.

both the laser penetration depth and the photocarrier diffusion along the out-of-plane axis. In the

z-homogeneous case we obtain a ULPS signal increased by a factor of about 110 for P = 20mW,

which considers that the extension of the excess carrier distribution in the z−direction is larger

than the laser penetration depth 4.7μm and so broader than the thickness of the doped region

of about 400nm. For this reason, when assuming a uniform dopant distribution along the z-

direction, a larger portion of the sample contributes to the ULPS signal.

Nevertheless, from the comparison of normalized ULPS data reported in Fig. 4.7 left and central

panel, we find that the shape of the ULPS signal and then its in-plane resolution, is practically

unchanged whether a z−dependent (Fig. 4.7 left panel) or a z−independent dopant profile (Fig.

4.7 central panel) is adopted.

This is apparent also from Fig. 4.7 right panel where σs is plotted as a function of the laser

power. In the two cases: the spatial resolution in x-direction features very similar increasing

behaviour. The slightly smaller value of σs obtained for the z-homogeneous configuration is

to be attributed to the lower excitation density achieved in this material due to the increased

non-radiative recombination rate associated to the larger amount of dopants.
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Fig. 4.7: Left and central panel: numerical simulation for sample S1 of line scans along the

x-direction of the integrated LPS voltage, calculated at different laser powers. Plot (left panel)

and (central panel) have been obtained considering and neglecting variations in the dopant con-

centration profile occurring along the z-direction, respectively (see text). For each pump power,

the dashed line represents the best fitting convolution of the in-plane dopant distribution (black

solid line) with a Gaussian function whose standard deviation σs is reported in the legend. Right

panel: standard deviation for the best fitting Gaussian convolution profile as a function of the

pump power, obtained with a z-dependent doping profile (red circles) and with an homogeneous

doping profile along the z-direction (black square). The inset displays the z− dependence of the

dopant concentration used in the simulations.

In conclusion, the LPS spatial resolution in the x−direction is not very sensitive to variations of

the doping profile in the z−direction. Indeed, in our experimental condition, this last quantity

controls only the magnitude of the LPS signal. It also follows that the precise shape of the

doping profile along the z−direction does not represent a critical variable, which may limit the

validity of a comparison between numerical and experimental LPS data.

For the investigated S1-S3 samples the measured and simulated LPS resolutions as a

function of the laser pump power in the 2.5×10−2 mW - 25 mW range, are reported in

Fig. 4.8. We find σs in the 85 μm - 350 μm interval with an overall satisfactory quantitative

agreement between experimental and numerical values. Also the measured qualitative trends

shown in Fig. 4.8 are correctly reproduced by the model.

As mentioned before, the σs ≥ 85μm spatial scale results to be much larger with respect to

both the laser spot size (σL = 1.25μm) and the in-plane width of the excess carrier distribution

(≈ 10μm). We notice also that the LPS resolution improves in samples featuring greater

doping concentrations. Indeed σs in the S3 sample, which features a dopant concentration in

the unimplanted region of NA,1 = 2.5×1012 cm−3, spans the 190 μm - 350 μm interval, while

in the S1 sample, where the dopant concentration is NA,1 = 1.9×1015 cm−3, σs remains below

150 micron.

This fact can be explained in terms of an increase of the driving force, caused by larger

dopant gradients, rather than being attributed to lower electron and hole mobilities, or faster

non-radiative recombination rates, which at larger doping densities may limit the spatial

extension of the photogenerated carrier distribution. On the other hand, the moderate increase

of σs with P is happening because larger pump powers are associated to greater spatial widths

of the excess carriers.

54



Fig. 4.8: Measured (full symbols) and simulated (empty symbols) LPS resolution σs as a func-

tion of pump power P for S1 (black squares), S2 (red circles), and S3 (blue triangle).

4.3. Conclusion
Our results are in agreement with data reported by Lüdge et al.[LR97], which, by means of LPS

experiments with high pure FZ wafer, showed that the LPS resolution can be up to two orders of

magnitude higher than the laser spot profile (i.e. in the same range as here obtained). Moreover,

as empirically found also by Lüdge et al., we obtain that the spatial resolution can be improved

by lowering the pump power. Of course one has to take in mind that the lowest pump power

suitable for practical applications is limited by the signal to noise level.

As a final remark we briefly comment on the relatively large discrepancy between numerical

and experimental data observed for S3 (blue symbols) in Fig. 4.8. This discrepancy can be

attributed to the fact that, at the adopted pump power the carrier concentration generated in S3

(of the order of 1015 cm−3) is much larger than the background and implanted one. For this

reason, the driving force associated to the dopant gradient in S3 can be regarded as extremely

small and therefore unavoidable parameter uncertainties have in this case a larger impact on the

estimation of σs. Similar considerations explain why for the S3 and S2 samples we could not

simulate the LPS resolution in the high laser power region. In fact, due to the relative weakness

of the driving field, associated to the lower dopant concentration featured by these samples, the

CPU time required for convergency in the high excitation density regime becomes unaffordably

long.
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Chapter 5

Strain-field Measurement Simulation

In the last two decades, strain engineering in semiconductors has emerged as a very powerful

approach in the control of mechanisms that are routinely applied to both electronics and pho-

tonics. As an example, the in-plane electron or hole mobility of Si is significantly increased

when uniaxial or biaxial stress is applied, enhancing the performance of the modern transis-

tors based on CMOS ( Complementary Metal Oxide Semiconductor) technology [BBC+13]. In

addition, breaking the centro-symmetry of the crystal lattice of Si may induce a second-order

optical susceptibility, offering an open space for second-order non-linear processes (e.g. second

harmonic generation) and improvement in terms of electro-optic modulation in the direction of

high speed and low absorption loss. Strain engineering is also trying to change the paradigm of

integrated light emitters that are now mainly based on III-V materials. In this direction, Ge has

been selected as a promising material for integrating laser light source. This happens exploiting

its nature of quasi-direct band gap material in combination with tensile strain that decrease the

energy difference between the fundamental and direct gap.

Several established techniques exist to measure the strain/stress in a semiconductor sample,

such as Raman and defect induced stress imaging by Scanning Infrared Stress Explorer

(SIREX). Raman measurements have a high sample preparation effort and can difficultly pro-

vide information about strain gradients. SIREX technology has still a high vertical resolution

of 3 μm, but integrates the signal over the whole sample thickness. [HWK+18]. This is rather

inefficient for most sample geometries, were a stressor-layer induces the stress mainly close to

the sample surface.

As formerly stated, Tauc [Tau55] predicted that the bulk photovoltaic effect might be

used to detect any effect that introduces spatial inhomogeneities in the band edges of semi-

conductors. In this chapter, we investigate the potentiallity of Lateral-Photovoltage-Scanning

method (LPS) for detection of the presence of strain gradients, exploiting the associated

variation in the conduction Ec and valence band Ev edge. To this aim, we simulated the

three-dimensional strain profile a Si nitride (Si3N4) stressor causes, when it is deposit on-top

of a Si sample. Afterwards, using the deformation potential theory, we calculate the band edge

profile of the Si sample, which is the starting point for the LPS simulation.

From computational point of view with suitable assumptions for a stripe-like stressor

layer, we achieved to directly couple the solid mechanics module and the semiconductor

module in COMSOL Multiphysics [Com13] without any further data transmission and/or

storage, which allows a great flexibility in sample and mesh designing.
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5.1. Theoretical Model

Fig. 5.1: Scheme of the strain tensor notation system chosen for the further investigations

5.1.1. Strain simulation model

Si is the most widely used material for electronics and microelectro-mechanical systems

(MEMS) applications. For those reasons, several efforts have been done to investigate and

to measure accurately its mechanical properties. Elastic features such as the elastic modulus,

the shear modulus and the Young’s modulus, depend on the crystalline structure. Consequently,

the wafer orientation has a strong effect on the micro-fabrication and a wrong estimation of

those characteristics can significantly influence the result of the device performance. In our

investigation, we focus on Si-on-insulator (SOI) wafer (100) oriented, which means that the

top surface of the wafer is perpendicular to the [100] Si crystal axis. To better describe the

mechanical deformation in Si, let us start from stress-strain relations. Stress rise from density

force applied per unit area on the crystal

σ =

⎛
⎝σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ . (5.1)

The strain is modeled as a two indexed tensor in the equation shown above. The first index

defines the direction of the applied force, while the second refers to the normal to the plane

where the force is applied (see Fig. 5.1). In the linear regime, we can assume the Hooke’s law

and the relationship between the stress (σij) and the strain (εkl) assumes the following form

σij =Cijklεkl (5.2)

where Cijkl is the stiffness matrix and where both the stress (σij) and the strain (εkl) have only

six independent components as a direct consequence of the Hooke’s law. In the case of Silicon,

a more convenient description, that avoids tensorial transformation, is the one that makes use

of the orthotropic model. A material is said to be orthotropic when it has least two orthogonal

planes of symmetry and its elasticity can be described by a matrix that takes into account the
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fundamental elasticity quantities in the axes of interest: the Youngâs modulus (Y), the Poissonâs

ratio (Î1
2) and the shear modulus (G). For this, the stress/strain relation reduces to:

⎛
⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σyz

σzx

σxy

⎞
⎟⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1−νyzνzy

YyYzΔ
νyx+νyzνzy

YyYzΔ
νzx+νyxνzy

YyYzΔ 0 0 0
νxy+νxzνzy

YzYxΔ
1−νzxνxz

YzYxΔ
νzy+νzxνxy

YzYxΔ 0 0 0
νxz+νxyνyz

YxYyΔ
νyz+νxzνyx

YxYyΔ
1−νxyνyz

YxYyΔ 0 0 0

0 0 0 Gyz 0 0

0 0 0 0 Gzx 0

0 0 0 0 0 Gxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

εyz

εzx

εxy

⎞
⎟⎟⎟⎟⎟⎟⎠ . (5.3)

Here

Δ =
1−νxyνyx −νyzνzy −νzxνxz −2νxyνyzνxz

YxYyYz
(5.4)

is used. The elastic constant of Si in case of crystal coordinate axis at [100], [010], and [001]

are:

Yx = Yy = Yz = 130GPa (5.5)

νyz = νzx = νxy = 0.28 (5.6)

Gyz = Gzx = Gxy = 79.6GPa. (5.7)

We selected the letter ”Y” for the Young’s module instead of the more common ”E” to avoid

misinterpretations with the symbol for the electric field. The deformation of the Si stripes has

been computed using COMSOL Multi-Physics tool. Assuming a compressive in-plane initial

pressure of 4 GPa on the Si nitride cladding (defined as an amorphous material featuring an

internal stress, which will then be transferred to the under-laying Si) the elastic strain has been

computed on the Si stripes under the orthotropic approximation.[Hop07, MPB15]

The mechanical deformation calculations on the stripe show that the components εxy and εyz
identically vanish and εyy is presenting a negligible contribution with respect to εxx, εzz and εxz
and the strain profile will be described in detail in the following sections.

5.1.2. Deformation potential theory

The description of the band alignment in the model is based on the deformation potential theory

and the ¨model-solid approach¨. The predictions in terms of lattice mismatch and pseudo-

morphic strained layer interfaces. This predicts the band offsets at both lattice-matched and

pseudomorphic strained-layer interfaces. In this section, we will show the behavior of valence

and conduction bands under the effect of strain.

Conduction Band As a general remark, direct conduction bands (at Γ) are non-degenerate

and therefore only subject to hydrostatic strain shifts. In indirect semiconductors, however, the

strain induced shift and splitting of fundamental conduction-band minima needs to be analyzed

case by case. As an example, in Si the minima occur close to the X point (along the (001)-

direction), in Germanium at the L point ((111)-direction). Because there are six equivalent

(001)-directions, and eight (111) directions, the conduction-band valleys are degenerated in the

cubic configuration, but can be split by the application of strain in appropriate directions.
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The general formulation by van de Walle [Van86] is Ei
c = Ec,0 +ΔEi

c where Ei
c is the i−th con-

duction band (according to the unit cell vector direction i), Ec,0 is the unstrained band minimum

and ΔEi
c is the strain dependent correction of the i−th conduction band given by:

ΔEi
c = [Ξd1+Ξu{aiai}] : εεε. (5.8)

Here Ξd and Ξu are deformation potentials, whose values for Si are reported in Table 5.1, 1 and

εεε are tensors (unit tensor and strain tensor (εεε i, j with i, j ∈ x,y,z), respectively), whereas ai is the

unit cell vector in the i-direction and {} denotes the dyadic product

{aiai}=

⎛
⎝ 1 0 0

0 0 0

0 0 0

⎞
⎠ in [100]-direction⎛

⎝ 0 0 0

0 1 0

0 0 0

⎞
⎠ in [010]-direction⎛

⎝ 0 0 0

0 0 0

0 0 1

⎞
⎠ in [001]-direction.

(5.9)

The double inner product (:) is the equivalent of a scalar product for vectors.1. When the

crystallographic [100] axis is aligned parallel to the x-direction, Eq. 5.8 can be written as:

ΔE [100],[010],[001]
c = Ξdtr(εεε)+Ξuεεεxx,yy,zz. (5.10)

As a consequence for the Δ valley along the [100]-direction only the strain component εxx

contributes to the energy shift controlled by Ξu ( analogously for [010] εyy and for [001] εzz).

Valence Band For the strain dependent deformation, we select the approach introduced by

Luttinger and Kohn and improved by Bir and Pikus. Here we solve for their Hamiltonian

operator H.[KL54],[Lut56],[CC92]. The basis functions | j,ml〉 denote the Bloch-wave functions

at the zone center [CC92] (where j is the total angular momentum quantum number and ml is the

magnetic quantum number). In the following, we will describe the electronic states including

the coupling of heavy holes (HH |3/2,±3/2〉), light holes (LH, |3/2,±1/2〉) and the split-

off (SO, |1/2,±1/2〉) bands. The effect of strain is to remove the degeneracy between HH

and LH band; the variation of the valence band energy induced by strain will be defined by

ΔEv,LH,ΔEv,HH and ΔEv,SO for LH, HH and SO, respectively. The general formulation of the

Bir-Pikus-Hamiltonian for a strained bulk semiconductor is:

H=−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P+Q −S R 0 − 1√
2
S

√
2R

−S† P−Q 0 R −√
2Q

√
3
2S

R† 0 P−Q S
√

3
2S†

√
2Q

0 R† S† P+Q −√
2R† − 1√

2
S†

− 1√
2
S† −√

2Q
√

3
2S − 1√

2
R P+Δ 0

√
2R†

√
3
2S†

√
2Q − 1√

2
S 0 P+Δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1Given two 3×3 matrix a and b, the double inner product is a : b = ∑i, j aijbij
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where we used:

P = Pk +Pε , R = Rk +Rε ,

Q = Qk +Qε , S = Sk +Sε ,

Pk =
h̄2

2m0
γ1(k2

x + k2
y + k2

z), Pε = −av(εxx + εyy + εzz),

Qk =
h̄2

2m0
γ2(k2

x + k2
y −2k2

z), Qε =
b
2(εxx − εyy)− id2εxy,

Rk =
√

3 h̄2

2m0

[−γ2(k2
x − k2

y)+2iγ3kxkz

]
, Rε = −

√
3

2 (εxx + εyy −2εzz),

Sk = 2
√

3 h̄2

2m0
γ3(kx − iky)kz Sε = −d(εzx − iεyz),

and the basis set: ∣∣3
2 ,

3
2

〉∣∣3
2 ,

1
2

〉∣∣3
2 ,−1

2

〉∣∣3
2 ,−3

2

〉∣∣1
2 ,

1
2

〉∣∣1
2 ,−1

2

〉
.

For clarification we denote the wave vector k, the Luttinger parameters γi, the Pir Bikus defor-

mation potentials as av,b,d and Δ as the spin-orbit split-off energy.

All parameters (P,R,S,T ) can be split in a strain dependent (index ε) and a wave vector depen-

dent (index k) part.

parameter value reference

Ξd 8.7 eV [Van86]

Ξu 7.3 eV [Van86]

b −2.1 eV [Van86]

d −4.8 eV [Van86]

av 2.46 eV [Van86]

Δ 0.044 eV [SG89]

γ1 4.285 [VN19]

γ2 0.339 [VN19]

γ3 0.446 [VN19]

Table 5.1: Parameter list for Si used for the strain calculation

The diagonalization of the Luttinger-Kohn Hamiltonian defines the band edge profiles as a func-

tion of strain and wave number. In the rest of this chapter, we are describing the band edge at

k = 0m−1. In order to have a complete overview of the effect of strain on valence bands, it is

worthed to focus on the most frequent cases in the literature about the strain dependent band

edges are reported for the case of the effect of biaxial strain in the xy-plane and uniaxial strain

in the [001] direction. An achieved analytical expression for the conduction, valence and split

off band can be found in Appendix A.

In the evaluation of the strain-dependent variation of the valence edge (supposing to fix the de-

generate edge of HH and LH at ε = 0), we can clearly see (Fig. 5.2 ) that in-plane biaxial strain
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and [001] uniaxial strain have opposite behavior with respect to the strain nature (compressive

or tensile).2 For a tensile biaxial strain, the LH band edge is increasing and the HH band edge

is decreasing, while for compressive biaxial it is vice versa. In case of tensile uniaxial strain,

the LH-band edge is decreasing and HH-band edge is increasing, while for compressive biaxial

strain the HH-band edge is decreasing and the LH-band edge is increasing.

Fig. 5.2: Behaviour of the strain dependent band edge variation for HH, LH and SO as a function

of strain in the hypothesis of in-plane biaxial strain (left panel) and [001] uniaxial strain (right

panel).

Without loss of generality we set εxy and εyz to zero motivated by our stripe geometry and

hence, we achieved an analytical expression for the eigenvalues. The results obtained with

numerical diagonalization (solid lines) are in line with our analytically achieved results (dashed

line).

Even milestone papers [CC92] still neglect the εxz, but due to our sample geometry, we believe,

that εxz might have a significant and not negligible role. In the left panel of Fig. 5.3, we

can notice that the band edge variation is symmetric with respect to the strain sign variation.

Moreover, fixing the value of the uniaxial strain to εxx = 1% and ranging εxz = 0% - 1%, a

variation in the valence band edge can even reach a value of 140meV, confirming our hypothesis

that εxz is not negligible, for simulations with |εxz ≥ 0.1%|.
In the right panel of Fig.5.3 the resulting variation of the conduction and valence band edge

depending on biaxial strain is shown. Here the conduction bands in different directions are

calculated according to Eq. (5.11-5.13). Eq. 5.13 is in line with the Varshni rule, that the band

gap varies according to the temperature [Var67]. The valence band edge for HH and LH is

calculated by Eq. 5.14.

5.1.3. LPS simulation model
In order to evaluate the measurability of strain related effects, contrary to the previously chap-

ters, we use a spatial homogeneous doping concentration (ND = 1×1016 cm−3). The strain

2Special thanks to Dr. C. L. Manganelli for these calculations.

62



Fig. 5.3: Left panel: effect of non-diagonal component εxz on valence band edge in presence

of [001] tensile strain of 1 %. The dashed lines are the valence band edge for [001] tensile

strain of 1 % without non-diagonal components, the full lines are the band profile with diagonal

components. Right panel: resulting band edge variations depending on biaxial strain.

parameter value reference

Egv −7.03 eV [Van86]

Δ 0.044 eV [SG89]

Egap, ind 1.12 eV [Van86]

α −4.73×10−4 e/K ioffe

β 636 K ioffe

Ei
c = Ec,0 +ΔEi

c (5.11)

Ec,0 = Egv +
Δ
3
+Eg (5.12)

Eg = Egap, ind +
αT 2

β +T
(5.13)

EHH,LH
v = Egv +

Δ
3
+ΔEHH,LH

v (5.14)

field of a structure (will be introduced in the next section) is calculated by FEM using the solid

mechanics module of COMSOL Multiphysics. The so achieved spatially resolved strain map is

used to define the local value of the conduction and valence bands according to the deformation

potential theory, as shown in the previous section. Those band maps are set as an input

parameter for the COMSOL Multiphysics LPS simulation, (Ec(x) and Eg(x) = Ec(x)−Ev(x))
The former calculated space dependent conduction and valence bands are introduced in

a single band approach (needed in the actual version of the COMSOL Multiphysics semi-

conductor module) at room temperature, neglecting heating effects originated by the laser beam:

Ec = min
(

E [100]
c ,E [010]

c ,E [001]
c

)
. (5.15)

For the valence band the situation appears to be more clear, as the density of states in the HH-

band is much higher then in the LH-band at room temperature. So we chose:

Ev = EHH
v = Egv +

Δ
3
+ΔEHH

v . (5.16)

For the LPS simulation we are using the Arora[AHR82] and Fletcher[Fle57] model describing

the charge carrier mobility with respect to scattering by ionized impurities, acoustic phonons

and the charge carriers themselves. We are not taking into account, the influence of strain

on mobility. Considered recombination mechanisms are: Shockley-Read-Hall (SRH), Auger

(Au), radiative recombination (Rad) and the effective surface recombination.
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An adaptive mesh, which is centrosymmetric to the actual laser spot location, is used

for all simulations. In z-direction we used a swept mesh with increasing size by increasing

distance to the Si/Si3N4-interface, to achieve a periodic modulation of the strain filed.

5.2. Results and Discussion
As a sample set-up we chose a Si sample covered with an array of Si3N4 stripes (along y-

direction), top panel Fig. 5.4. The pressure originated from the deposition process is applied

on the Si3N4 stripes and subsequently propagating in Si. A cross section (xz-plane) of a Si

sample stressed by a single Si3N4 stripes is shown in left bottom panel of Fig. 5.4. Motivated

by the sample geometry, εxx is assumed to be dominant, while εxy and εyz are vanishing. On the

left the strain trace field is shown by a colormap (right axis) and the presence of compressive

lobes at sides of the Si3N4 stripes are clearly visible. On the right the behaviour of the domi-

nant strain component (εxx) profile at different vertical distances from the Si-Si3N4 interface is

demonstrating a non negligible strain profile even 2 μm below the stressor.

In Fig. 5.5 we show the non-negligible strain components at a depth level of 100nm as a

function of the transverse direction x. In opposition to the εxx and εzz component, which

are even functions, the εxz component features an odd symmetry. The antisymmetric nature

of the non-diagonal components derive from the hypothesis of absence of internal forces,

which is directly determining from Hooke’s law by the absence of angular acceleration and

the symmetry of the strain tensor. Therefore not only the shear stress component σxy is

flipping sign with respect to x, hence also the shear strain component εxy [JHAP95] flips. The

observation of εxx and εzz components shows, that the strain almost vanishes in-between two

stripes, hence the array of stripes can be seen as multiple single stripes placed next to each

other allowing no cross talk.

Due to this configuration we are allowed to describe the effects of the strain to the band edges

on a single stripe (located at x = 1.37mm - 1.39mm) giving a full representation for the whole

array of stripes. In Fig. 5.6 we see the overall stripe like shape in the top most panel and the

strain, conduction and valence bands in proximity to the stripe boundaries. As stated before,

εyy, εyz and εxy components are vanishing due to the sample geometry. Following Eq. (5.15) the

strain induced variation on the conduction bands is presenting a common off-set linked to the

strain trace in all directions, however E [100]
c is mainly reproducing the profile of εxx (analogously

E [001]
c and εzz). Due to the absence of εyy, E [010]

c shows significantly smaller variations. For the

minimum conduction band marked as purple line, it can be seen, that every conduction band

component according to [100], [010] and [001] direction is contributing, and hence none of them

are negligible.

The valence band profiles are obtained according to the former introduced model of the Bir-

Pikus-Hamiltonian and its diagonalization resulting in Eq. (5.16). It is worth noticing, that the

non-diagonal strain components (εxz =−ε−xz) feature an odd nature, while the band-edges are

symmetric for the sign variation. The peak for ELH
v is located outside of the stressor covered

region in opposition to the peak for EHH
v , which is located inside.

Simulated LPS profiles will be compared to conduction and valence band variations caused by

strain variations. For this, we remind the reader to the former definition of ULPS:

ULPS = Φxend
−Φx = 0. (5.17)
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Fig. 5.4: Top panel: three dimensional sample geometry assuming an infinite length in the y-

direction. Bottom left panel: strain trace field generated by a Si3N4 stressor with 4GPa initial

in plane stress on top of a Si sample. Bottom right panel: strain profiles of the dominant εxx

component evaluated at different depth levels.

We used the 2D calculated strain dependent conduction and valence band values of Fig. 5.6

(bottom panels) as input for LPS simulations. It is worth to notice that the optical transmission

of Si3N4 is not only depending on the used laser wavelength, but also on the layer thickness

itself. So the laser beam is assumed to be only absorbed by the under-laying Si sample. In our

simulation we neglect effects associated to different interfaces (Si – Si3N4, Si-air). This could

also be avoided by using an homogeneous top on non-stressed Si3N4. Here only one overall

interface Si – Si3N4 exists, which should not interfere with our simulation.

The presence of n-type doping (ND = 1×1016 cm−3) adds a screening effect to the conduction

band, but not the valence band. The screening effect is linked to the electrostatic potential eΦ,

which is flattening the conduction band profile Ec,eff = Ec + eΦ = const . As the band gap is

not effected by the screening, the effective valence band Ev,eff = Ev + eΦ contains information

of its former definition, Ev, and of the conduction band variation via eΦ.

By an illumination, simulated by a Gaussian laser profile using a standard deviation of

1.25 μm and an exponential decay in the z-direction (4.8 μm penetration depth), the generated
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Fig. 5.5: Single strain components for the geometry taken 100nm below the top surface.

electrons (holes) will drift accordingly to their effective conduction (valence) band. Hence, for

the electrons, beside coulomb interactions due to the inhomogeneous hole distribution, only

rotational symmetric diffusion occurs. On the other hand, the holes will additionally drift as

the effective valence band is not constant. This drift motion of the holes is majorly determining

for the LPS-voltage, by means of generating charge carrier dipole.

Fig. 5.7 left panel shows a profile of the effective valence band (right vertical axis) and a profile

of the LPS-voltage as a function of the laser spot position. Analogously to the previously shown

figures, the on top stressor is depoit in the range 1.37mm - 1.39mm. The profile of the effective

valence band indicates two hole confining potentials located directly at the stressor stripe edges.

The LPS-voltage shows the same periodicity as the causative effective valence band modulation.

Before discussing the profile in detail, we can still see an logarithmic functionality of the LPS-

voltage depending on the laser pump power (see Fig.5.7 right panel).

We now want to simplify and decouple the presented system for a more intelligible picture of

the LPS- voltage profile (shown in Fig.5.7 left panel) by keeping comparable Ev,eff profiles.

Therefore we made case studies in a quasi one dimensional model by thinning the sample
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Fig. 5.6: Behavior of strain profile (top), conduction band (middle) and valence band (down) at

both sides of the stripe.

Fig. 5.7: Left panel: LPS-voltage profile (left axis) and the therefore simulated effective valence

band edge profile extracted at z = 100nm. Right panel: LPS-voltage depending on the laser

pump power at x = 1.3705mm

thickness (less then 1 μm). As in this case the sample thickness is much smaller than the

penetration depth, we assume a constant generation rate in the z-direction. The out-coming

LPS-voltage might differ in comparison to a full two dimensional approach, just by reducing

the model dimension. To get better inside we intentionally chose a small laser pump power

injection to increase the local resolution (chapter IV.)

For the first analyses we wanted to describe the effect of a single symmetrical hole con-
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fining potential. Therefore we assumed a constant conduction band edge profile and a

Gaussian shaped hole confining potential for the valence band edge. As a constant doping

ND = 1×1016 cm−3 is assumed, the shape of Ev,eff is preserved as Ec is spatially invariant.

We simulate Ev as an artificial Gaussian function (see Fig.5.8 left panel) keeping its width

comparable to the profile used in Fig. 5.7 left panel. If we directly illuminate at the center

of the hole confining potential that electric potential generated by the laser pump power does

not influence the Gaussian behaviour significantly and the effective valence band extracted at

equilibrium and excited conditions overlap.

Fig. 5.8: Left panel: effective valence band edge profile for a (non)-illuminated sample marked

in red (black). Right panel: calculated LPS-voltage with respect to the laser spot position.

In the right panel of Fig.5.8, we see the corresponding LPS-voltage with respect to the laser

spot position. The LPS-voltage decreases, as expected to completely vanish far away from

the hole confining potential. Responsible for this is the diffusion length (approx 5 μm) of the

excess charge carriers. If excess charge carrier can not reach the location of the hole confining

potential by drift and/or diffusion, they will not generate a dipole and so a potential difference at

the sample edges. As a conformation of this status, the symmetry of the hole confining potential

is determining no LPS-voltage by illuminating at the center of the trap. Due to the symmetry

of the trap, charge carriers will be pushed (in case of electrons) away or pull (in case of holes)

towards the center of the trap symmetrically and hence, can not result in an effective dipole ,

which is in line with our results.

To better understand the LPS-voltage we investigate two cases with different excess charge

carrier distribution, where the laser spot position were at 1.365mm and 1.375mm. For the next

six figures an illumination at 1.365mm (1.375mm) is always indicated as a black (red) solid

line.

By looking at the charge carrier distributions for electrons (holes) in Fig. 5.9 left (right) panel,

it is clear, that low injection conditions are fulfilled, as Δn = Δp are two orders of magnitude

smaller than the doping of ND = 1×1016 cm−3. Every line has two peaks, one located at the

laser spot positions and one located at the hole confining potential. By reminding of the fact,

that the conduction band profile is assumed constant and the valence band profile is assumed as

an artificial Gaussian shaped function, it is clear, that the band gap in this region is smaller in

comparison to the surrounding area. As the intrinsic charge carrier distribution ni depends on

the band gap Eg:

ni ∝ exp
(−Eg

)
, (5.18)
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Fig. 5.9: Charge carrier densities for electrons (holes) are shown in the left (right) panel.

a lowering in the band gap results in a larger intrinsic charge carrier distribution. Hence, a

larger equilibrium value for the charge carriers (n, p) can be observed in the hole confining

potential region. Also the Coulomb attraction of electrons and holes in this hole confining

potential region causes a peak in the electron distribution. The central peak in Fig. 5.9 is

nearly independent on illumination. This can be seen in the results as, even for two different

located laser spot positions, the charge carrier density in this region is perfectly overlapping.

If the effect is majorly depending on the excess charge carrier density and so on the laser spot

position, we would see a change at least in the flank region of the peak.

Fig. 5.10 left panel shows the net charge carrier concentration ρ = q(p − NA − n + ND).
At first glance this figure appears like a normal beam spot profile, as electrons can diffuse

further then holes, which creates a central positive region flanked by two negative areas.

However, this is not the correct interpretation, as the center of this peak is independent on

laser spot position. As previously stated we can directly see the effect of the hole confining

potential located at x = 1.37mm affecting the total amount of inherent charge carriers. The

hole confining potential attracts holes, therefore we see a strong positive concentration in the

center and a negative depletion zone in its surrounding area.

Fig. 5.10: Left panel: net charge carrier concentration profiles. Right panel: shows the differ-

ence between the shown net charge carrier distributions.

The right panel of Fig. 5.10 shows the difference between the net charge carrier densities
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obtained with illuminations at different laser spot positions (black and red line of the left panel).

Here we see two broad peaks located at the two described laser spot positions. In case of

electrons and holes with the same mobility, these two peaks would be vanishing. Moreover we

can clearly see the presence of the central peaks in proximity of the hole confining potential.

On a quantitative way, by comparing Δρ and ρ values, we can conclude, that the variation of

Δρ is at least one order of magnitude smaller then the variation of ρ . Therefore we can state

that the profile of the charge carrier density is not majorly affected by the two different laser

spot positions in proximity of the hole confining potential.

In chapter IV, we discussed the local resolution of the LPS method by a Gaussian con-

volution function. Therefore it might be intuitive, that a sequence of alternative heavily charged

regions might have a smaller effect then a broadened region with a small but defined charge.

Applying this concept on the Δρ profile, the variation in proximity to the hole confining

potential may play a subordinate role in comparison to the peaks located at the illumination

spots.

The full picture is captured with a detailed analysis of the behaviour of the electric field,

as in Fig. 5.11 left panel the x-component is described . To have a better picture, we can

separate it in three parts, region (I) in grey: 1.35mm - 1.365mm and 1.375mm - 1.39mm,

region (II) in yellow: 1.3675mm - 1.3725mm and region (III) in white: the remaining part

between the hole confining potential (region (II)) and the laser spot positions. In region (I) the

differences between the red and black line are hardly visible. Still on the left (right) side the

black (red) line has a non-zero electric field components as a consequence of the proximity

to the laser spot. In the hole confining potential region (II), the red and black curve are again

matching perfectly. This confirms that there is no effective LPS-voltage if the electric field

component is not effected by the excess charge carriers generated by illumination. In region

(III) the differences between the shown graphs are the largest. The generated excess carriers,

explicitly the holes, will move towards the hole confining potential generating an electric

field. Due to the different directions the holes are moving, the peaks values in this area have a

different sign, generating dipoles differently oriented. This variation of orientation is mainly

responsible of voltage changes, bringing us to the conclusion that region (III) is the most

relevant for the observation of the LPS-voltage.

Fig. 5.11: Left panel: lateral electric field. Right panel: its integration.

On the right panel in Fig. 5.11 we integrated the electric field component shown in the left panel.

70



Due to the quasi one dimensional approach, the potential is only connected to the electric field

component along this direction: Φ =
∫ −Edx. The LPS-voltage is assumed to be the difference

between the potential evaluated at the two sample edges, hence:

ULPS = Φxend
−Φx = 0 =

∫ end

0
−(Eill −Enon− ill )dx. (5.19)

The right panel of Fig. 5.11 is showing only a selection of the total integral of Eq. (5.19). For

graphical reasons we set Φx = 1.35mm = 0V resulting in a positive shift of the black line and in

a non-negative value of Φx = 1.39mm. As a further consequence of this approximation is that

black and red line match perfectly in the region of the hole confining potential, indicating, that

this region does not have an significant impact to the LPS-voltage.

After discussing a single isolated hole confining potential in detail, we want to discuss

two asymmetric hole confining potentials separated by 20 μm, which is the same distance as the

pit length in Fig. 5.7, also shown for better comparison in the right panel of Fig. 5.12. In order

to have the mentioned strong asymmetry as the simulated profile of Fig. 5.7, we chose two half

Gaussian profiles for the valence band edge (shown in right axis the left panel of Fig. 5.12

with black and red lines). On the left axis we show the LPS-voltage with respect to the laser

spot position. The maxima of the LPS-voltage resulting from the two different semi-Gaussian

valence band profiles are only slightly shifted. Using one semi-Gaussian profile or the other

may be translated in a small shift of the hole confining potential position. However, despite

this small shift both LPS profiles fulfill the requirement of the periodicity shown in the full

simulation (right panel).

Moreover, we have to state that the semi-Gaussian shape is influencing the LPS-voltage inten-

sity. Indeed, if the laser spot position is located closer to the Gaussian flank, the LPS-voltage

is higher than in the case of a laser spot located closer to the cut flank. Although the intuitive

erroneous explanation for this is that the gradient of the Gaussian flank is smaller than the

gradient of the cut flank, the higher intensity in proximity of the Gaussian flanks is presenting

a wider trap width attracting more holes and so increasing the intensity of the LPS-voltage.3

Before concluding this section, we want to stress again the differences in the simulation

set-ups generating these results shown in 5.12 left and right panel. The results on the left

side were achieved using a quasi one dimensional set-up, resulting in no laser penetration

in the z-direction. Moreover, the effective valence band edge profile is independent on the

z−direction. Results on the right side were achieved by two dimensional calculation of a strain

profile generated from a top Si3N4 stressor, affecting the conduction and valence band. Due

to the doping, the effective conduction band edge gets completely flat and the information on

the strain induced variation is basically stored in the effective valence band edge profile. The

difference in the laser power used for these calculations had a distinct purpose. On the left

side we intentionally decreased the laser power significantly to increase the local resolution. In

contrast, on the right side, we made sure, that the resulting LPS-voltage is larger then 100 μV.

This value most likely guarantees the measurability by keeping track of realistic laser pump

power values.

3This case is analogously to a brachistochrone motion of balls, where not the trajectory with the largest gradient

let the balls, get to the end of the trajectory first.
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Fig. 5.12: Left panel: calculated LPS-voltage with respect to the laser spot position in quasi

one dimensional sample geometry. As an inlay a semi-Gaussian profile is shown. Right panel:

calculated LPS-voltage with respect to the laser spot position in two dimensional sample geom-

etry.

Despite all these mentioned differences, the signals feature several equal properties. The

peaks inside of a stripe are basically located at the same spots, close to the hole confining

potential. Also the sign of the signal is varying in the same way, giving a clear sign, that the

interpretation using the effective valence band edge distribution (responsible of the LPS-results)

is reasonable. The peaks outside of the stripes do not feature a similar dependency. However,

it has to be kept in mind, that the simulation set-up related to the graph on the right side

includes a stripe array. As a consequence, considering the relatively large diffusion length

5 μm in comparison to the pit distance 20 μm, a ¨cross talk¨ between the stripes is unavoidable.

We stress again, that the sample geometry was chosen to have realistic and obtainable strain

conditions and is not designed for an optimal LPS-result.

5.3. Conclusion

We implemented a simulation tool in COMSOL Multiphysics connecting the solid-mechanics

and semiconductor module. The coupling was realized by implementing the effects of strain

to the conduction and valence band in line with the deformation potential theory, by using an

analytic approach for the eigenvalues of the Lutting-Kohn-Hamiltonian. Here we do not ne-

glect the non-diagonal strain component εxy, which we showed to have a significant impact on

the calculated eigenvalues. Despite having solved the Bir-Pikus Hamiltonian for three different

eigenvalue pairs, heavy hole, light hole and the split of band, COMSOL Multiphysics is only

able to calculate in a single band approach. Therefore still the most reasonable band has to be

selected.

By using a realistic set-up for a Si sampled stressed by a top Si3N4 stressor, we were able to

calculate the correlated conduction and valence band profiles testing Tauc’s prediction, that the

bulk photovoltaic effect might be used detecting any quantity affecting the conduction and va-

lence band on a level of strain. We could clearly see a varying LPS-voltage with respect to the

effective valence band variation. This proves Tauc’s theory and gives the opportunity to mea-

sure the strain related conduction and valence band profiles using the LPS-technology.

Additionally we build a simplified quasi one dimensional simulation model probing for several
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features in detected LPS-voltage. Here we showed that the peaks in the LPS-voltage can be in-

terpreted by the existence of hole confining potentials. In general this means that the detectable

LPS-voltage in a doped semiconductor is heavily depending on the effective band profile of

the minority charge carriers, which might contain information from the conduction and valence

band edge profile. Due to this inside, a new sample geometry might be designed increasing the

LPS-voltage and thus offering a higher likelihood to measure this effect directly.

We showed, that stripe width of 20 μm might be sufficient probing for peaks underlying the

stripe geometry. Also an inter-stripe width of 20 μm was not sufficient to avoid ¨cross talk¨. For

real measurements it is highly recommended to increase this value.

The perspectives of this activity are clearly located in the framework of a complete analysis

of strain and strain gradient effect in semiconductors. On the one hand, the LPS approach

can probe strain non-uniformity, on the other hand, the approach shown in this chapter can

be extended to other semiconductor micro-structures. As an example, suspended Germanium

structures can be analyzed and further designed to improve their potential as integrated light

emitters on Si photonics platforms.
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Summary and Outlook
We implemented COMSOL Multiphysics program model simulating LPS measurement using

FVM. Due to a model separation into a signal transmission and a signal generation part 1©, it

was possible to directly compare simulation and measurement results. Interestingly a distortion

of the LPS signal could be measured and simulated by investigating the signal transmission.

Here rectangular sample usually, occurring by cutting the main part of an ingot along the growth

direction, are preferred for an LPS measurement, as no distortion is observed 2©. In opposition

circular (usually wafers) or trapezoidal (cone of an ingot) generate distorted measurement, with

respect to the actual sample with. Due to this physical dependency, undistorted LPS maps can

be achieved by post-measurement rescaling. This allows, just by knowing the sample size to

use the absolute value of the LPS voltage as well-defined quantity. Formerly just the shape of

the striation could be used for a quality investigation of the samples. By investigating the signal

generation, we observed 3©:

that the LPS voltage is proportional to the doping gradient,

that the LPS-voltage saturates with respect to the laser pump power and

a logarithmic dependency of the LPS voltage for small laser pump powers.

All those observations were theoretically discussed by Tauc using a simplified model and

not self-consisting assumptions. Still our investigations show their validity even in a full

3D sample geometry using, with standard semiconductor assumptions. Nevertheless, those

investigation are a validation for our model, which now is ready to use the advantages of the

three-dimensional sample geometry for further analysis, which where not able in the model

introduced by Tauc.

Using this set-up, we were able to analyzed the local resolution of this method. For-

merly as a benchmark for the local resolution was used the laser spot diameter, which neglects

the sample inherent charge carrier motion by drift and diffusion. Still frequency analyses of

the measured signal were made by Ludge et al. [LR97], showing for a specific Si sample, that

wavelength smaller 100 μm are heavily suppressed. Hence, they assumed the local resolution

to be in this order of magnitude. Unfortunately, they could not completely distinguish whether

these low wavelength are occurring in a FZ Si crystal, or whether the method itself suppresses

those.

By using our introduced full three-dimensional FVM simulation, we can directly define the

structure investigating for. Additionally, we used ion deposition to directly define a patterned

structure in commercially FZ Si wafers. The stripe structure got verified by using SIMS

technology and so we reduced the uncertainty of the stripe structure to the local detection limit

of the used SIMS method. Now we could use Tauc’s first prediction to compare integrated LPS

scans with the doping profile.

Here we could see that the integrated LPS signal does not follow the rectangular shaped

doping profile and is smeared out 4©. For further investigations we defined a Gaussian

convolution function and applied it on the doping profiles varying the standard deviation

of the Gaussian convolution function. For every integrated LPS profile we achieved a very

good agreement, with the convolved doping profiles. As integration (LPS profiles) and

convolution are commutative, it suggested that the LPS profiles themselves are convolved

by a Gaussian function and not just its integration. By further analyses of the standard
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deviation of the so achieved Gaussian convolution function, we were able to directly compare

measurements and simulations. Here we could detect a more ambivalent result, as for high

doped (1.9×1015 cm−3) a nearly perfect agreement could be shown. A slowly increasing

behavior of the standard deviation, representing a decrease in the local resolution with respect

to the laser pump power. This is in agreement with Ludge et al. , where they suggested to

always measure with the lowest possible laser pump power 5© to increase the local resolution.

For the lower doped samples larger deviation between measurement and simulation was

detectable, up to a factor of two. Still the same tendency between local resolution and laser

pump power could be seen. The difference between measurements and simulation might be

caused by several reasons. In the simulation we kept the SRH-recombination lifetime constant

for all three samples. Measurements of the lifetime show, that the mean value is equal for

all three samples, but the local variation on the wafers is varying much stronger in the low

doped wafers. Here our simulation might have underestimated the charge carrier lifetime,

which causes a better local resolution. Also, the dose of implanted boron ions kept the same

for all three samples, which causes different step height in the doping concentration, as the

background level is different. Therefore, it can be assumed that the samples having the largest

step height, so the highest non-steady profile causing the largest difficulties in semiconductor

computation. Hence, former small variations in the wafers with high doping profile jumps

might cause higher deviations between simulation and measurements.

It must be said that, these large unsteady jumps in the doping concentration do not oc-

cur in naturally grown FZ or Cz Si even assuming a central facet. As we now know, that a

Gaussian function might be causative describing the local resolution, it might be worth trying to

deconvolve the measured LPS profiles to reconstruct the inherent doping profile. Then, the LPS

measurement set-up might be used as a resistivity measurement tool avoiding the large tip-to-tip

distance (≈ 0.6mm), which results in a poor local resolution. This add on to the set-up inherent

modifications of an LPS-measurement (fast, cheap and non-destructive). A first and easy test

could be done by using the common OriginPro 9.1 software, which is able to deconvolve

signals with respect to a known Gaussian convolution function. Here the problem occurs, that

the standard deviation of the Gaussian convolution function is sample dependent and has to be

detected in advance. The shown results might not be used for common FZ or Cz- Si samples,

because the charge carrier life time dropped due to the ion implantation significantly. To avoid

this detection of the Gaussian convolution function, a self-learning artificial intelligence AI

might be trained by simulated data achieved by COMSOL Multiphysics. Hence, after training,

the AI could deconvolve the measured data.

The possible usage of LPS as a resistivity measurement tool is still limited. Up to now,

LPS is only measurable on Si, Ge and SixGe1 – x, and so limited to indirect semiconductor

materials. In case of direct semiconductors, the recombination time and so the total amount

for free charge carriers is heavily reduced. As we have seen is the LPS voltage assumed to be

proportional to the logarithm of the laser pump power, hence the total amount of free charge

carriers. This suggests that only materials featuring a large charge carrier lifetime might be

candidates for further investigation increasing the pool of material LPS can be used. As the

COMSOL Multiphysics code can be easily adapted to different sample material, it guides fur-

ther investigations. For the analysis of Tauc’s thesis, that the bulk photovoltaic effect, causative

for the LPS voltage, might be used detecting any physical quantity, which is depending on

the band structure profile, we combined FEM strain simulations by the deformation potential

theory to connect local strain variations to conduction and valence band variation. We could

theoretically proof that the LPS voltage is suitable to detect band profile variations, caused by
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an unisitropic strain profile. Eventhough we took cake of the measurability by using a realistic

geometry and reasonable parameters, a final measurement verifying our results, is still missing.

Due to the fact, that we combined the solid mechanics and semiconductor model directly in one

program, this code gained more degrees of freedom. For example, different sample geometries

and stressor material can be included in the strain simulation using the solid mechanics model.

For substrate materials we are at the moment limited to Si, as the deformation potentials are

only implemented for Si. But in the deformation potential theory Ge, GaAs, InP are also well

described and can be implemented as substrate materials. Up to now, we would be able to

simulate complex geometries using any on top stressor on different substrate materials gaining

its non-uniform band profiles. Due to the semiconductor model those achieved band profiles

can directly be used simulating measurements, e.g. as shown for the LPS-voltage. Also suitable

measurements to be simulated are the resistivity profile or the temperature dependent hall

effect. Hence, we build a multi flexible simulation program for analyzing physical quantities in

stressed semiconductors.

Stressed Ge semiconductors became focus of the semiconductor community as a popula-

tion inversion could be measured [BKO+17, LSP+07] in 2007. Therefore Ge on Si lasers

have been performed [CACP+12], which are assumed to fill the gap of an effective laser

source on Si [ZYM15, Sor06], making fully functional photonic-integrated circuits (PICs)

possible [BKO+17]. Several miniaturizations such as light detection and ranging (LIDAR)

for autonomous vehicles [STY+13], bio-chemical sensors [Sor10] and chip-level optical

communication [Mil10] are driven by PICs development. Theoretical simulations predict

for altering band structures by strain a significant reduction in lasing threshold through

tensile strain [VMG+13, PTG+15] and therefore improving PICs in line with the more then

Moore approach. At the moment several innovative platforms inducing large strain are in

discussion [CKY+13, BKO+17] showing the demand for also innovative strain measurement

and simulation tools. Therefore the shown possibility for LPS to measure strain-related

conduction/valence band effects might contribute to this development. Additionally the

flexible COMSOL Multiphysics simulation program, which calculates strain-related con-

duction and valence band profiles and directly connect those to classical semiconductor

measurements/simulation, opens new possibilities for investigations.
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Appendix A

Notes to the main text

Derivation of Equation (2.14)

In Section 1.2 when discussing the Tauc theory of the bulk photovoltaic effect, we stated that

if excess carriers are present only in the bc interval, contributions to the photovoltage from the

closed circuit integrals in the right hand side of Eq. (2.7), can be recast to restrict the integration

domain inside the bc range only. To demonstrate this statement, we write U in our close 1D

ring geometry as

U =
∮

Edx =
∫ b

a
Edx+

∫ c

b
dx︸ ︷︷ ︸

excited

+
∫ a‘

c
Edx (A.1)

where we have evidenced the contribution from the excited region. From the above equation,

adding and subtracting a contribution from a non-excited bc region, follows

U =
∫ b

a
Edx+

∫ c

b
Edx︸ ︷︷ ︸

excited

+
∫ a‘

c
Edx+

∫ c

b
Edx−

∫ c

b
Edx

=
∮

Edx+
∫ c

b
Edx︸ ︷︷ ︸

excited

−
∫ c

b
Edx (A.2)

Therefore since the first term in the right hand side vanishes, the photoexcited voltage can be

calculated considering only the bc interval, provided that the contribution in this range to the

potential associated to equilibrium condition is also considered.

We now focus on an n-type system (neq  peq), and introduce the approximate expression for

the spatially varying equilibrium conductivity σeq = σ0 +ζ x, which is supposed to hold in the

bc interval. Exploiting Eq. (A.2), and relying on Eq.(2.14) we obtain

U =−kBT
q

⎛
⎜⎜⎜⎜⎝
∫ c

b

ζ
σ0 +ζ x+Δσ

−
∫ c

b

ζ
σ0 +ζ x︸ ︷︷ ︸∫

1

−μp −μn

μp +μn

∮ ∇xΔσ
σeq +Δσ

dx︸ ︷︷ ︸∮
2

⎞
⎟⎟⎟⎟⎠ (A.3)

where we have named
∫

1 the bc contribution where the linearized expression for the conductivity

90



holds, and
∮

2 the term involving a closed circuit integral. We first address the evaluation of
∫

1:

∫
1
=
∫ c

b

ζ
σ0 +ζ x+Δσ

dx−
∫ c

b

ζ
σ0 +ζ x

dx

= ln [σ0 +ζ x+Δσ ]cb − ln [σ0 +ζ x]cb

= ln

[
1+

Δσ
σ0 +ζ c

]
− ln

[
1+

Δσ
σ0 +ζ b

]
(A.4)

The integrand in
∮

2 vanishes everywhere expect for x= b and x= c where it diverges. Therefore,

to calculate it is useful to adopt a limiting procedure, substituting the rectangular shape of δσ as

a function of x with a symmetric trapezoidal profile, with the slope in x = b and x = c controlled

by a δ0 parameter:

∮
2
= lim

δ→0

∫ b+δ

b−δ

∇x

(Δσ
2δ x− Δσ

2δ (b−δ )
)

σ0 +ζ x+ Δσ
2δ x− Δσ

2δ (b−δ )
dx︸ ︷︷ ︸∫

b

+ lim
δ→0

∫ c+δ

c−δ

∇x

(−Δσ
2δ x+ Δσ

2δ (c+δ )
)

σ0 +ζ x− Δσ
2δ x+ Δσ

2δ (c+δ )
dx︸ ︷︷ ︸∫

c

(A.5)

For
∫

b it holds

∫
b
=

Δσ
2δ

Δσ
2δ +ζ

∫ b+δ

b−δ

(Δσ
2δ +ζ

)
σ0 +

(Δσ
2δ +ζ

)
x− Δσ

2δ (b−δ )
dx

=
1

1+ 2ζ δ
Δσ

ln

[
σ0 +

(
Δσ
2δ

+ζ
)

x− Δσ
2δ

(b−δ )
]b+δ

b−δ
=

1

1+ 2ζ δ
Δσ

ln

[
σ0 +ζ (b+δ )+Δσ

σ0 +ζ (b+δ )

]
(A.6)

Letting δ → 0 we end up with

lim
δ→0

∫
b

1

1+ 2ζ δ
Δσ

ln

[
σ0 +ζ (b+δ )+Δσ

σ0 +ζ (b+δ )

]
= ln

[
1+

Δσ
σ0 +ζ b

]
(A.7)

Analogously the
∫

c gives

lim
δ→0

∫
c
=− ln

[
1+

Δσ
σ0 +ζ c

]
(A.8)

In conclusion we have

U =−kBT
q

2
μn

μp
+1

ln

[
1+ Δσ

σ0+ζ c

1+ Δσ
σ0+ζ b

]
=−kBT

q

2
μn

μp
+1

ln

[
1+ Δσ

σ(c)

1+ Δσ
σ(b)

]
(A.9)

=−kBT
q

2
μn

μp
+1

(
ln

[
σ(c)
σ(b)

]
− ln

[
σ(c)+Δσ
σ(b)+Δσ

])
. (A.10)

which is the same as Eq. (2.25) reported in Chapter 2.
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Analytic expressions for LH,HH and SO band
HH and LH band:

Part1 = Part1(HH) = Part1(LH) = Part1(SO) = Pε +SO/3 (A.11)

Part2(HH) = Part2(LH) = (((3PεQ2
ε)/2+(3PεR2

ε)/2− (P2
ε SO)/2+(3PεS2

ε)/2−3QεR2
ε

+(Q2
εSO)/2+(3QεS2

ε)/2+(R2
εSO)/2+(SOS2

ε)/2− ((3Pε +SO)(3Q2
ε −2SOPε

−3P2
ε +3R2

ε +3S2
ε))/6−P3

ε /2+Q3
ε − (3Pε +SO)3/27+(3∗31/2RεS2

ε)/2)2

− (Q2
ε −P2

ε − (2PεSO)/3+R2
ε +S2

ε +(3Pε +SO)2/9)3) (A.12)

Part5(HH) = Part5(LH) = ((P2
ε SO)/2− (3PεR2

ε)/2− (3PεQ2
ε)/2− (3PεS2

ε)/2+

3QεR2
ε − (Q2

εSO)/2− (3QεS2
ε)/2− (R2

εSO)/2− (SOS2
ε)/2+

((3Pε +SO)(3Q2
ε −2SOPε −3P2

ε +3R2
ε +3S2

ε))/6

+P3
ε /2−Q3

ε +(3Pε +SO)3/27− (3∗31/2RεS2
ε)/2 (A.13)

A = A(HH) = A(LH) = A(SO) = (Q2
ε −P2

ε − (2PεSO)/3+R2
ε +S2

ε +(3Pε +SO)2/9) (A.14)

Part3(HH) = Part3(LH) = ((Part2(HH))1/2 +Part5(HH))1/3 (A.15)

Part4(HH) = Part4(LH) = A/(2Part3(HH)) (A.16)

E(HH)=Part1−0.5(Re(Part3(HH)))−Rε(Part4(HH))+
√
(3)Im(0.5Part3(HH)−Part4(HH))

(A.17)

E(LH)=Part1−0.5(Re(Part3(HH)))−Rε(Part4(HH))−
√

(3)Im(0.5Part3(HH)−Part4(HH)).
(A.18)

SO band:

Part1 = Part1(HH) = Part1(LH) = Part1(SO) = Pε +SO/3 (A.19)

A = A(HH) = A(LH) = A(SO) = (Q2
ε −P2

ε − (2PεSO)/3+R2
ε +S2

ε +(3Pε +SO)2/9) (A.20)
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Part2(SO) = (((3PεQ2
ε)/2+(3PεR2

ε)/2− (P2
ε SO)/2+(3PεS2

ε)/2−3QεR2
ε +(Q2

εSO)/2

+(3QεS2
ε)/2+(R2

εSO)/2+(SOS2
ε)/2− ((3Pε +SO)(3P2

ε

−2SOPε +3Q2
ε +3R2

ε +3S2
ε))/6−

P3
ε /2+Q3

ε − (3Pε +SO)3/27+(3∗31/2RεS2
ε)/2)2−

(Q2
ε −P2

ε − (2PεSO)/3+R2
ε +S2

ε +(3Pε +SO)2/9)3) (A.21)

Part5(SO) = Part5(LH) = ((P2
ε SO)/2− (3PεR2

ε)/2− (3PεQ2
ε)/2− (3PεS2

ε)/2+

3QεR2
ε − (Q2

εSO)/2− (3QεS2
ε)/2− (R2

εSO)/2− (SOS2
ε)/2+

((3Pε +SO)(3P2
ε −2SOPε +3Q2

ε +3R2
ε +3S2

ε))/6

+P3
ε /2−Q3

ε +(3Pε +SO)3/27− (3∗31/2RεS2
ε)/2 (A.22)

Part3(SO) = ((Part2(SO))1/2 +Part5(SO))1/3 (A.23)

Part4(SO) = A/(Part3(SO)) (A.24)

E(SO) = Re(Part1+Part3(SO)+Part4(SO)). (A.25)

93



Appendix B

Code

Presented is a simulation code used for the calculation of the local resolution of an LPS-

measurement. Steady state solved for are the electric potential Φ and the charge carrier

densities n,p. The focal point is at a defined spot Pf(xf,yf). Here usually a parametric sweep of

the focal point can simulate a line scan. For the laser power and the dopant concentration an

auxiliary sweep is used. The benefit is, that a solution containing a parameter set will be used

as a configuration for the next parameter set. Just for illustration two laser powers and three

main donor levels were chosen. After the simulation, the code was saved as a MATLAB file,

which is shown below.

1 f u n c t i o n o u t = model

2 %

3 % t h e s i s .m

4 %

5 % Model e x p o r t e d on Sep 16 2019 , 10 :43 by COMSOL 5 . 4 . 0 . 2 4 6 .

6

7 i m p o r t com . comsol . model . ∗
8 i m p o r t com . comsol . model . u t i l . ∗
9

10 model = Mode lUt i l . c r e a t e ( ’ Model ’ ) ;

11

12 model . modelPa th ( ’D : \ S t e f a n \ Desktop ’ ) ;

13

14 model . l a b e l ( ’ t h e s i s . mph ’ ) ;

15

16 model . comments ( [ ’ 20160829 15 uhr33 kboe FV Wafer 2p430mm s i n ab 1 5 \ n \ n g e s t o p p t b e i 0 . 6 sec , w e i l

r a n d e f f e k t b i s 0 . 8 s e c n i c h t w i c h t i g ’ ] ) ;

17

18 model . param . s e t ( ’L ’ , ’ 9 . 0 0 0 [mm] ’ , ’ ’ ’ Wafer l e n g t h ’ ’ ’ ) ;

19 model . param . s e t ( ’B ’ , ’ 0 . 5 0 [mm] ’ , ’ ’ ’ Wafer wid th ’ ’ ’ ) ;

20 model . param . s e t ( ’ Lz ’ , ’ 0 . 0 5 [mm] ’ , ’ ’ ’ Wafer t h i c k n e s s ’ ’ ’ ) ;

21 model . param . s e t ( ’ x0 ’ , ’ 0 . 0 [mm] ’ , ’ ’ ’ p a t h c e n t e r x−coord ’ ’ ’ ) ;

22 model . param . s e t ( ’ y0 ’ , ’ 0 [mm] ’ , ’ ’ ’ p a t h c e n t e r y−c c o r d ’ ’ ’ ) ;

23 model . param . s e t ( ’ d0 ’ , ’ 5 [um] ’ ) ;

24 model . param . s e t ( ’ z _ o f f ’ , ’ 0 [mm] ’ ) ;

25 model . param . s e t ( ’Z_R ’ , ’ p i ∗d0 ^ 2 / 4 / lambda00 ’ ) ;

26 model . param . s e t ( ’ s i g x ’ , ’ 1 /4∗ d0 ∗ ( 1 + ( z _ o f f / Z_R ) ^2 ) ^ ( 1 / 2 ) ’ , ’ ’ ’ p u l s e x s t a n d a r d dev ’ ’ ’ ) ;

27 model . param . s e t ( ’ s i g y ’ , ’ 1 /4∗ d0 ∗ ( 1 + ( z _ o f f / Z_R ) ^2 ) ^ ( 1 / 2 ) ’ , ’ ’ ’ p u l s e y s t a n d a r d dev ’ ’ ’ ) ;

28 model . param . s e t ( ’ Bor0a ’ , ’ Bor0 ∗1[cm^−3] ’ , ’ ’ ’ b a s i c Bor−Doping ’ ’ ’ ) ;

29 model . param . s e t ( ’ Bor0b ’ , ’ 0 . 05∗ Bor0a ’ , ’ ’ ’ Bor−Doping G r a d i e n t ’ ’ ’ ) ;

30 model . param . s e t ( ’ D e l t a B o r ’ , ’ 0∗0 .3∗ Bor0a ’ , ’ ’ ’ Bor f l u c t u a t i o n ’ ’ ’ ) ;

31 model . param . s e t ( ’ n i ’ , ’ 1 e10 [ 1 / cm^3] ’ , ’ ’ ’ i n t r i n s i c ’ ’ ’ ) ;

32 model . param . s e t ( ’ BorWaveLength ’ , ’ 500[um] ’ ) ;

33 model . param . s e t ( ’ x000002 ’ , ’ 1 ’ ) ;

34 model . param . s e t ( ’ x000003 ’ , ’ 1 ’ ) ;

35 model . param . s e t ( ’WaveNo ’ , ’ ( L ) / BorWaveLength ’ ) ;

36 model . param . s e t ( ’ s i n u s F a k t o r ’ , ’WaveNo / L ’ , ’ ’ ’ f o r Bor_Doping−s i n u s ’ ’ ’ ) ;

37 model . param . s e t ( ’ v e l o ’ , ’ 3 [mm/ s ] ’ ) ;

38 model . param . s e t ( ’ t ime_end ’ , ’ ( L−s i g y ) / v e l o ’ ) ;

39 model . param . s e t ( ’ p u l s e ’ , ’ 0 . 0 0 2 5 [ s ] ’ ) ;
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40 model . param . s e t ( ’ t i m e _ s t e p ’ , ’ p u l s e / 1 0 ’ , ’ ’ ’ t i m e s t e p ’ ’ ’ ) ;

41 model . param . s e t ( ’ x000000 ’ , ’ 1 ’ ) ;

42 model . param . s e t ( ’ x000001 ’ , ’ 1 ’ ) ;

43 model . param . s e t ( ’ p r e f a c t o r ’ , ’ 0 ’ ) ;

44 model . param . s e t ( ’ P0 ’ , ’ p r a e f a k t ∗1 / 1 0 0 0∗0 . 0 2 5 [W] ’ , ’ ’ ’ t o t a l l a s e r power , p u l s e d ’ ’ ’ ) ;

45 model . param . s e t ( ’Rc ’ , ’ 0 . 3 4 ’ , ’ ’ ’ r e f l e c t i o n ’ ’ ’ ) ;

46 model . param . s e t ( ’Ac ’ , ’ 1 / 4 . 7 [ um] ’ , ’ ’ ’ a b s o r p t i o n c o e f f ’ ’ ’ ) ;

47 model . param . s e t ( ’ lambda00 ’ , ’ 685[nm] ’ , ’ ’ ’ w a v e l e n g t h o f l a s e r ’ ’ ’ ) ;

48 model . param . s e t ( ’ f0 ’ , ’ c _ c o n s t / lambda00 ’ ) ;

49 model . param . s e t ( ’ omega0 ’ , ’ 2∗ p i ∗1[ r a d ]∗ f0 ’ ) ;

50 model . param . s e t ( ’ E_ph ’ , ’ f0 ∗ h _ c o n s t ’ , ’ ’ ’ pho ton en e r gy ’ ’ ’ ) ;

51 model . param . s e t ( ’ cp ’ , ’ 1 ’ ) ;

52 model . param . s e t ( ’ Pdens ’ , ’ P0 ’ , ’ ’ ’ a r e a l d e n s i t y o f power ’ ’ ’ ) ;

53 model . param . s e t ( ’ Ph i ’ , ’ Pdens / E_ph ’ , ’ ’ ’ pho ton f l u x ’ ’ ’ ) ;

54 model . param . s e t ( ’ a ’ , ’ ( p i ∗ s i g x ∗ s i g y ) / 4 ’ ) ;

55 model . param . s e t ( ’ Ph i2 ’ , ’ Ph i ’ , ’ ’ ’ Ra te a t f o c u s a r e a ’ ’ ’ ) ;

56 model . param . s e t ( ’ p r a e f a k t ’ , ’ 500 ’ , ’ ’ ’ sweep p a r a m e t e r ’ ’ ’ ) ;

57 model . param . s e t ( ’ t ime_end2 ’ , ’ t ime_end ∗1 [ 1 / s ] ’ , ’ ’ ’ e n d z e i t ohne e i n h e i t ’ ’ ’ ) ;

58 model . param . s e t ( ’ y_end2 ’ , ’ ( 0 . 0 1 5 [mm]+ v e l o ∗ t ime_end ) ∗1 [ 1 /mm] ’ , ’ ’ ’ e n d o r t ohne e i n h e i t ’ ’ ’ ) ;

59 model . param . s e t ( ’ g a u s s _ d i a ’ , [ ’ 280[ ’ n a t i v e 2 u n i c o d e ( hex2dec ( { ’ 00 ’ ’ b5 ’ } ) , ’ u n i c o d e ’ ) ’m] ’ ] , [ ’

’ ’ S t ’ n a t i v e 2 u n i c o d e ( hex2dec ( { ’ 00 ’ ’ f6 ’ } ) , ’ u n i c o d e ’ ) ’ r s t e l l e ’ ’ ’ ] ) ;

60 model . param . s e t ( ’ x2 ’ , ’ 0 [mm] ’ , [ ’ ’ ’ Or t S t ’ n a t i v e 2 u n i c o d e ( hex2dec ( { ’ 00 ’ ’ f6 ’ } ) , ’ u n i c o d e ’ ) ’

r s t e l l e ’ ’ ’ ] ) ;

61 model . param . s e t ( ’ y2 ’ , ’ 4 . 5 [mm] ’ , [ ’ ’ ’ Or t S t ’ n a t i v e 2 u n i c o d e ( hex2dec ( { ’ 00 ’ ’ f6 ’ } ) , ’ u n i c o d e ’ )

’ r s t e l l e ’ ’ ’ ] ) ;

62 model . param . s e t ( ’ Size_max ’ , ’L / WaveNo / 1 5 0∗1 . 9∗2 ’ ) ;

63 model . param . s e t ( ’ S ize_min ’ , ’L / WaveNo / 1 7 0∗1 . 9∗2 ’ ) ;

64 model . param . s e t ( ’k_B ’ , ’ 1.3806∗10^ −23[ J /K] ’ ) ;

65 model . param . s e t ( ’ q ’ , ’ 1.602∗10^ −19[A∗ s ] ’ ) ;

66 model . param . s e t ( ’RT ’ , ’ 2 9 3 . 1 5 [K] ’ ) ;

67 model . param . s e t ( ’ geschw ’ , ’ v e l o ’ ) ;

68 model . param . s e t ( ’ t s c h r i t t ’ , ’ 1 . 5 [ s ] ’ ) ;

69 model . param . s e t ( ’ y02 ’ , ’ v e l o ∗ t s c h r i t t ’ ) ;

70 model . param . s e t ( ’ x02 ’ , ’ 0 [m] ’ ) ;

71 model . param . s e t ( ’ Se ’ , ’ 3∗100000[cm / s ] ’ ) ;

72 model . param . s e t ( ’ Sh ’ , ’ 3∗100000[cm / s ] ’ ) ;

73 model . param . s e t ( ’ tau_SRH ’ , ’ 900[ us ] ’ ) ;

74 model . param . s e t ( ’Geom ’ , ’ 0 .016 ’ ) ;

75 model . param . s e t ( ’ pen ’ , ’ 2 [um] ’ ) ;

76 model . param . s e t ( ’ z1 ’ , ’ 6 . 6 E−7[m] ’ ) ;

77 model . param . s e t ( ’ z2 ’ , ’ 6 . 3 E−7[m] ’ ) ;

78 model . param . s e t ( ’ z3 ’ , ’ 5E−7[m] ’ ) ;

79 model . param . s e t ( ’ s11 ’ , ’ 7E−8 [m] ’ ) ;

80 model . param . s e t ( ’ s12 ’ , ’ 1 . 4 E−7[m] ’ ) ;

81 model . param . s e t ( ’ s13 ’ , ’ 1 . 9 E−7[m] ’ ) ;

82 model . param . s e t ( ’ Bor0 ’ , ’ 6 . 5 E13 ’ ) ;

83 model . param . s e t ( ’SRH2 ’ , ’ 400 ’ ) ;

84 model . param . l a b e l ( ’ P a r a m e t e r s 1 ’ ) ;

85

86 model . component . c r e a t e ( ’mod1 ’ , f a l s e ) ;

87

88 model . component ( ’mod1 ’ ) . geom . c r e a t e ( ’ geom1 ’ , 3 ) ;

89

90 model . component ( ’mod1 ’ ) . l a b e l ( ’ Model 1 ’ ) ;

91

92 model . component ( ’mod1 ’ ) . d e f i n e L o c a l C o o r d ( f a l s e ) ;

93

94 model . f u nc . c r e a t e ( ’ an1 ’ , ’ A n a l y t i c ’ ) ;

95 model . f u nc . c r e a t e ( ’ an2 ’ , ’ A n a l y t i c ’ ) ;

96 model . component ( ’mod1 ’ ) . f unc . c r e a t e ( ’ i n t 1 ’ , ’ I n t e r p o l a t i o n ’ ) ;

97 model . component ( ’mod1 ’ ) . f unc . c r e a t e ( ’ i n t 2 ’ , ’ I n t e r p o l a t i o n ’ ) ;

98 model . f u nc . c r e a t e ( ’pw1 ’ , ’ P i e c e w i s e ’ ) ;

99 model . f u nc . c r e a t e ( ’ an4 ’ , ’ A n a l y t i c ’ ) ;

100 model . f u nc . c r e a t e ( ’ an5 ’ , ’ A n a l y t i c ’ ) ;

101 model . f u nc . c r e a t e ( ’ an6 ’ , ’ A n a l y t i c ’ ) ;

102 model . f u nc . c r e a t e ( ’ an7 ’ , ’ A n a l y t i c ’ ) ;

103 model . component ( ’mod1 ’ ) . f unc . c r e a t e ( ’ i n t 3 ’ , ’ I n t e r p o l a t i o n ’ ) ;

104 model . f u nc . c r e a t e ( ’ an8 ’ , ’ A n a l y t i c ’ ) ;

105 model . f u nc . c r e a t e ( ’ an9 ’ , ’ A n a l y t i c ’ ) ;

106 model . f u nc . c r e a t e ( ’ an10 ’ , ’ A n a l y t i c ’ ) ;

107 model . component ( ’mod1 ’ ) . f unc . c r e a t e ( ’ an12 ’ , ’ A n a l y t i c ’ ) ;

108 model . component ( ’mod1 ’ ) . f unc . c r e a t e ( ’ s t e p 1 ’ , ’ S t e p ’ ) ;

109 model . f u nc . c r e a t e ( ’wv1 ’ , ’Wave ’ ) ;

110 model . f u nc . c r e a t e ( ’wv2 ’ , ’Wave ’ ) ;
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111 model . f u nc . c r e a t e ( ’ r e c t 1 ’ , ’ R e c t a n g l e ’ ) ;

112 model . component ( ’mod1 ’ ) . f unc . c r e a t e ( ’ an13 ’ , ’ A n a l y t i c ’ ) ;

113 model . f u nc . c r e a t e ( ’ an14 ’ , ’ A n a l y t i c ’ ) ;

114 model . f u nc ( ’ an1 ’ ) . l a b e l ( ’ Doping−s i n u s−p r o f i l e ’ ) ;

115 model . f u nc ( ’ an1 ’ ) . s e t ( ’ exp r ’ , ’ s i n ( s i n u s F a k t o r ∗2∗ p i ∗ ( y [m] −0.000015[m] ) ) ’ ) ;

116 model . f u nc ( ’ an1 ’ ) . s e t ( ’ a r g s ’ , { ’ y ’ } ) ;

117 model . f u nc ( ’ an1 ’ ) . s e t ( ’ a r g u n i t ’ , ’m’ ) ;

118 model . f u nc ( ’ an1 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

119 model . f u nc ( ’ an1 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ y ’ ’ 0 .0006 ’ ’ 0 .001425 ’ } ) ;

120 model . f u nc ( ’ an2 ’ ) . l a b e l ( ’ A n a l y t i c 2 ’ ) ;

121 model . f u nc ( ’ an2 ’ ) . s e t ( ’ funcname ’ , ’ f o c u s ’ ) ;

122 model . f u nc ( ’ an2 ’ ) . s e t ( ’ exp r ’ , ’ exp ( − ( ( a−a0 ) ^ 2 / ( 2∗ s i g a ^2 ) ) −((b−b0 ) ^ 2 / ( 2∗ s i g b ^2 ) ) ) ’ ) ;

123 model . f u nc ( ’ an2 ’ ) . s e t ( ’ a r g s ’ , { ’ a ’ ’ a0 ’ ’ s i g a ’ ’ b ’ ’ b0 ’ ’ s i g b ’ } ) ;

124 model . f u nc ( ’ an2 ’ ) . s e t ( ’ a r g u n i t ’ , ’m,m,m,m,m,m’ ) ;

125 model . f u nc ( ’ an2 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

126 model . f u nc ( ’ an2 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ a ’ ’ 0 ’ ’B ’ ; . . .

127 ’ a0 ’ ’ 0 ’ ’ 0 ’ ; . . .

128 ’ s i g a ’ ’ 2 . 5 [ um] ’ ’ 2 . 5 [ um] ’ ; . . .

129 ’ b ’ ’−L / 2 ’ ’L / 2 ’ ; . . .

130 ’ b0 ’ ’ 0 ’ ’ 0 ’ ; . . .

131 ’ s i g b ’ ’ 2 . 5 [ um] ’ ’ 2 . 5 [ um] ’ } ) ;

132 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 1 ’ ) . l a b e l ( ’x−Koord−Z e i t l a u f ’ ) ;

133 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 1 ’ ) . s e t ( ’ t a b l e ’ , { ’ 0 .000000 ’ ’ 0 .000000 ’ ; . . .

134 ’ 1 .600000 ’ ’ 0 .000000 ’ } ) ;

135 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 1 ’ ) . s e t ( ’ a r g u n i t ’ , ’ s ’ ) ;

136 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 1 ’ ) . s e t ( ’ f u n u n i t ’ , ’mm’ ) ;

137 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 2 ’ ) . l a b e l ( ’y−Koord−Z e i t l a u f ’ ) ;

138 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 2 ’ ) . s e t ( ’ t a b l e ’ , { ’ 0 ’ ’ 0 . 0 1 5 ’ ; ’ t ime_end2 ’ ’ y_end2 ’ } ) ;

139 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 2 ’ ) . s e t ( ’ a r g u n i t ’ , ’ s ’ ) ;

140 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 2 ’ ) . s e t ( ’ f u n u n i t ’ , ’mm’ ) ;

141 model . f u nc ( ’pw1 ’ ) . l a b e l ( ’ P i e c e w i s e 1 ’ ) ;

142 model . f u nc ( ’pw1 ’ ) . s e t ( ’ smooth ’ , ’ c o n t d 2 ’ ) ;

143 model . f u nc ( ’pw1 ’ ) . s e t ( ’ smoothends ’ , t r u e ) ;

144 model . f u nc ( ’pw1 ’ ) . s e t ( ’ p i e c e s ’ , { ’ 0 ’ ’ 0 . 8 ’ ’ 1 ’ } ) ;

145 model . f u nc ( ’pw1 ’ ) . s e t ( ’ a r g u n i t ’ , ’ s , s ’ ) ;

146 model . f u nc ( ’pw1 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

147 model . f u nc ( ’ an4 ’ ) . l a b e l ( ’ Doping−s i n u s−p r o f i l e 1 ’ ) ;

148 model . f u nc ( ’ an4 ’ ) . s e t ( ’ exp r ’ , ’ s i n ( s i n u s F a k t o r /2∗2∗ p i ∗ ( y [m] −0.000015[m] ) ) ’ ) ;

149 model . f u nc ( ’ an4 ’ ) . s e t ( ’ a r g s ’ , { ’ y ’ } ) ;

150 model . f u nc ( ’ an4 ’ ) . s e t ( ’ a r g u n i t ’ , ’m’ ) ;

151 model . f u nc ( ’ an4 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

152 model . f u nc ( ’ an4 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ y ’ ’ 0 .0006 ’ ’ 0 .001425 ’ } ) ;

153 model . f u nc ( ’ an5 ’ ) . l a b e l ( ’ Doping−s i n u s−p r o f i l e 1 . 1 ’ ) ;

154 model . f u nc ( ’ an5 ’ ) . s e t ( ’ exp r ’ , ’ s i n ( s i n u s F a k t o r / 1 . 5∗2∗ p i ∗ ( y [m] −0.000015[m] ) ) ’ ) ;

155 model . f u nc ( ’ an5 ’ ) . s e t ( ’ a r g s ’ , { ’ y ’ } ) ;

156 model . f u nc ( ’ an5 ’ ) . s e t ( ’ a r g u n i t ’ , ’m’ ) ;

157 model . f u nc ( ’ an5 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

158 model . f u nc ( ’ an5 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ y ’ ’ 0 .0006 ’ ’ 0 .001425 ’ } ) ;

159 model . f u nc ( ’ an6 ’ ) . l a b e l ( ’ Doping−s i n u s−p r o f i l e 1 . 1 . 1 ’ ) ;

160 model . f u nc ( ’ an6 ’ ) . s e t ( ’ exp r ’ , ’ s i n ( s i n u s F a k t o r /3∗2∗ p i ∗ ( y [m] −0.000015[m] ) ) ’ ) ;

161 model . f u nc ( ’ an6 ’ ) . s e t ( ’ a r g s ’ , { ’ y ’ } ) ;

162 model . f u nc ( ’ an6 ’ ) . s e t ( ’ a r g u n i t ’ , ’m’ ) ;

163 model . f u nc ( ’ an6 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

164 model . f u nc ( ’ an6 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ y ’ ’ 0 .0006 ’ ’ 0 .001425 ’ } ) ;

165 model . f u nc ( ’ an7 ’ ) . l a b e l ( ’ Doping−s i n u s−p r o f i l e 1 . 1 . 1 . 1 ’ ) ;

166 model . f u nc ( ’ an7 ’ ) . s e t ( ’ exp r ’ , ’ s i n ( s i n u s F a k t o r / 1 . 7∗2∗ p i ∗ ( y [m] −0.000015[m] ) ) ’ ) ;

167 model . f u nc ( ’ an7 ’ ) . s e t ( ’ a r g s ’ , { ’ y ’ } ) ;

168 model . f u nc ( ’ an7 ’ ) . s e t ( ’ a r g u n i t ’ , ’m’ ) ;

169 model . f u nc ( ’ an7 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

170 model . f u nc ( ’ an7 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ y ’ ’ 0 .0006 ’ ’ 0 .001425 ’ } ) ;

171 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 3 ’ ) . l a b e l ( ’y−Koord−Z e i t l a u f 1 ’ ) ;

172 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 3 ’ ) . s e t ( ’ t a b l e ’ , { ’ 0 .000000 ’ ’ 0 .015000 ’ ; . . .

173 ’ 1 .600000 ’ ’ 4 .815000 ’ } ) ;

174 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 3 ’ ) . s e t ( ’ a r g u n i t ’ , ’ s ’ ) ;

175 model . component ( ’mod1 ’ ) . f unc ( ’ i n t 3 ’ ) . s e t ( ’ f u n u n i t ’ , ’mm’ ) ;

176 model . f u nc ( ’ an8 ’ ) . l a b e l ( ’ A n a l y t i c 3 ’ ) ;

177 model . f u nc ( ’ an8 ’ ) . s e t ( ’ funcname ’ , ’ d o t i e r s t o f f ’ ) ;

178 model . f u nc ( ’ an8 ’ ) . s e t ( ’ exp r ’ , ’ 1 / 2 / p i / s i g a / s i g b ∗ exp ( − ( ( a−a0 ) ^ 2 / ( 2∗ s i g a ^2 ) ) −((b−b0 ) ^ 2 / ( 2∗ s i g b

^2 ) ) ) ’ ) ;

179 model . f u nc ( ’ an8 ’ ) . s e t ( ’ a r g s ’ , { ’ a ’ ’ a0 ’ ’ s i g a ’ ’ b ’ ’ b0 ’ ’ s i g b ’ } ) ;

180 model . f u nc ( ’ an8 ’ ) . s e t ( ’ a r g u n i t ’ , ’m,m,m,m,m,m’ ) ;

181 model . f u nc ( ’ an8 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 ’ ) ;

182 model . f u nc ( ’ an8 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ a ’ ’−L ’ ’L ’ ; . . .

183 ’ a0 ’ ’ x0 ’ ’ x0 ’ ; . . .
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184 ’ s i g a ’ ’ s i g x ’ ’ s i g x ’ ; . . .

185 ’ b ’ ’−L ’ ’L ’ ; . . .

186 ’ b0 ’ ’ y0 ’ ’ y0 ’ ; . . .

187 ’ s i g b ’ ’ s i g y ’ ’ s i g y ’ } ) ;

188 model . f u nc ( ’ an9 ’ ) . l a b e l ( ’mue ’ ) ;

189 model . f u nc ( ’ an9 ’ ) . s e t ( ’ funcname ’ , ’ an10 ’ ) ;

190 model . f u nc ( ’ an9 ’ ) . s e t ( ’ exp r ’ , ’ (88+1323 / (1+0 .8∗10^( −17) ∗N) ) ’ ) ;

191 model . f u nc ( ’ an9 ’ ) . s e t ( ’ a r g s ’ , { ’N’ } ) ;

192 model . f u nc ( ’ an9 ’ ) . s e t ( ’ a r g u n i t ’ , ’cm^(−3) ’ ) ;

193 model . f u nc ( ’ an9 ’ ) . s e t ( ’ f u n u n i t ’ , ’cm ^ 2 /V/ s ’ ) ;

194 model . f u nc ( ’ an9 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’N’ ’ 10^12 [ cm^−3] ’ ’ 10^16 [ cm^−3] ’ } ) ;

195 model . f u nc ( ’ an10 ’ ) . l a b e l ( ’muh ’ ) ;

196 model . f u nc ( ’ an10 ’ ) . s e t ( ’ funcname ’ , ’ an11 ’ ) ;

197 model . f u nc ( ’ an10 ’ ) . s e t ( ’ exp r ’ , ’ (55+429 / (1+0 .4∗10^ ( −17) ∗N) ) ’ ) ;

198 model . f u nc ( ’ an10 ’ ) . s e t ( ’ a r g s ’ , { ’N’ } ) ;

199 model . f u nc ( ’ an10 ’ ) . s e t ( ’ a r g u n i t ’ , ’cm^(−3) ’ ) ;

200 model . f u nc ( ’ an10 ’ ) . s e t ( ’ f u n u n i t ’ , ’cm ^ 2 /V/ s ’ ) ;

201 model . f u nc ( ’ an10 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’N’ ’ 10^18 ’ ’ 10^26 ’ } ) ;

202 model . component ( ’mod1 ’ ) . f unc ( ’ an12 ’ ) . s e t ( ’ funcname ’ , ’ an13 ’ ) ;

203 model . component ( ’mod1 ’ ) . f unc ( ’ an12 ’ ) . s e t ( ’ exp r ’ , ’ s t e p 1 ( x ) ’ ) ;

204 model . component ( ’mod1 ’ ) . f unc ( ’ an12 ’ ) . s e t ( ’ a r g u n i t ’ , ’m’ ) ;

205 model . component ( ’mod1 ’ ) . f unc ( ’ an12 ’ ) . s e t ( ’ f u n u n i t ’ , ’ 1 /m’ ) ;

206 model . component ( ’mod1 ’ ) . f unc ( ’ an12 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ x ’ ’−1e−6 ’ ’ 1e−6 ’ } ) ;

207 model . component ( ’mod1 ’ ) . f unc ( ’ s t e p 1 ’ ) . s e t ( ’ from ’ , 1 ) ;

208 model . component ( ’mod1 ’ ) . f unc ( ’ s t e p 1 ’ ) . s e t ( ’ t o ’ , 0 ) ;

209 model . component ( ’mod1 ’ ) . f unc ( ’ s t e p 1 ’ ) . s e t ( ’ smooth ’ , 0 . 0 1 ) ;

210 model . f u nc ( ’wv1 ’ ) . s e t ( ’ t y p e ’ , ’ s q u a r e ’ ) ;

211 model . f u nc ( ’wv1 ’ ) . s e t ( ’ smooth ’ , 0 . 2 ) ;

212 model . f u nc ( ’wv1 ’ ) . s e t ( ’ f r e q ’ , ’ 2∗ p i ’ ) ;

213 model . f u nc ( ’wv1 ’ ) . s e t ( ’ phase ’ , ’ p i / 2 ’ ) ;

214 model . f u nc ( ’wv2 ’ ) . s e t ( ’ f r e q ’ , ’ 2∗ p i ∗1000 ’ ) ;

215 model . component ( ’mod1 ’ ) . f unc ( ’ an13 ’ ) . l a b e l ( ’ A n a l y t i c 14 ’ ) ;

216 model . component ( ’mod1 ’ ) . f unc ( ’ an13 ’ ) . s e t ( ’ funcname ’ , ’ an14 ’ ) ;

217 model . component ( ’mod1 ’ ) . f unc ( ’ an13 ’ ) . s e t ( ’ exp r ’ , ’ ( exp ( − ( ( x−x1 ) / s1 ) ^2 ) +exp ( − ( ( x−x2 ) / s2 ) ^2 )

/ 1 . 2 + exp ( − ( ( x−x3 ) / s3 ) ^2 ) / 2 ) / 2 . 0 5 ’ ) ;

218 model . component ( ’mod1 ’ ) . f unc ( ’ an13 ’ ) . s e t ( ’ a r g s ’ , { ’ x ’ ’ x1 ’ ’ x2 ’ ’ x3 ’ ’ s1 ’ ’ s2 ’ ’ s3 ’ } ) ;

219 model . component ( ’mod1 ’ ) . f unc ( ’ an13 ’ ) . s e t ( ’ a r g u n i t ’ , ’m,m,m,m,m,m,m,m’ ) ;

220 model . component ( ’mod1 ’ ) . f unc ( ’ an13 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ x ’ ’ 0 ’ ’ 1E−5 ’ ; . . .

221 ’ x1 ’ ’ z1 ’ ’ z1 ’ ; . . .

222 ’ x2 ’ ’ z2 ’ ’ z2 ’ ; . . .

223 ’ x3 ’ ’ z3 ’ ’ z3 ’ ; . . .

224 ’ s1 ’ ’ s11 ’ ’ s11 ’ ; . . .

225 ’ s2 ’ ’ s12 ’ ’ s12 ’ ; . . .

226 ’ s3 ’ ’ s13 ’ ’ s13 ’ } ) ;

227 model . f u nc ( ’ an14 ’ ) . l a b e l ( ’ f o r Mesh ’ ) ;

228 model . f u nc ( ’ an14 ’ ) . s e t ( ’ funcname ’ , ’ an19 ’ ) ;

229 model . f u nc ( ’ an14 ’ ) . s e t ( ’ exp r ’ , ’ s q r t ( 1 / 2 / p i ) / d0∗ exp ( − ( ( y−y02 ) ^ 2 / ( 2∗ d0 ^2 ) ) ) ’ ) ;

230 model . f u nc ( ’ an14 ’ ) . s e t ( ’ a r g s ’ , { ’ y ’ } ) ;

231 model . f u nc ( ’ an14 ’ ) . s e t ( ’ a r g u n i t ’ , ’m’ ) ;

232 model . f u nc ( ’ an14 ’ ) . s e t ( ’ p l o t a r g s ’ , { ’ y ’ ’ 0 ’ ’ 3E−3 ’ } ) ;

233

234 model . component ( ’mod1 ’ ) . mesh . c r e a t e ( ’ mesh3 ’ ) ;

235

236 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . l a b e l ( ’ Geometry 1 ’ ) ;

237 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . geomRep ( ’ comsol ’ ) ;

238 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . r e p a i r T o l T y p e ( ’ r e l a t i v e ’ ) ;

239 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . c r e a t e ( ’ b lk 1 ’ , ’ Block ’ ) ;

240 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ b lk 1 ’ ) . l a b e l ( ’ Block 1 ’ ) ;

241 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ b lk 1 ’ ) . s e t ( ’ pos ’ , { ’B/ 2 ’ ’L / 2 ’ ’−Lz / 2 ’ } ) ;

242 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ b lk 1 ’ ) . s e t ( ’ ba se ’ , ’ c e n t e r ’ ) ;

243 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ b lk 1 ’ ) . s e t ( ’ s i z e ’ , { ’B ’ ’L ’ ’ Lz ’ } ) ;

244 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ b lk 1 ’ ) . s e t ( ’ l aye rname ’ , { ’ Layer 1 ’ } ) ;

245 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ b lk 1 ’ ) . s e t ( ’ l a y e r ’ , [ ] ) ;

246 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . c r e a t e ( ’ p o l 1 ’ , ’ Polygon ’ ) ;

247 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ p o l 1 ’ ) . s e t ( ’ s o u r c e ’ , ’ t a b l e ’ ) ;

248 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ p o l 1 ’ ) . s e t ( ’ t a b l e ’ , { ’ 0 ’ ’ 0 ’ ’ 0 ’ ; ’ 0 ’ ’L ’ ’ 0 ’ } )

;

249 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . c r e a t e ( ’ p o l 2 ’ , ’ Polygon ’ ) ;

250 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ p o l 2 ’ ) . a c t i v e ( f a l s e ) ;

251 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ p o l 2 ’ ) . s e t ( ’ s o u r c e ’ , ’ t a b l e ’ ) ;

252 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ p o l 2 ’ ) . s e t ( ’ t a b l e ’ , { ’−B/ 2 ’ ’ 0 . 6 5∗L ’ ’ 0 ’ ; ’B/ 2 ’

’ 0 .6 5∗L ’ ’ 0 ’ } ) ;

253 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . c r e a t e ( ’ p t 1 ’ , ’ P o i n t ’ ) ;

254 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ p t 1 ’ ) . l a b e l ( ’ P o i n t 1 ’ ) ;
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255 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ p t 1 ’ ) . s e t ( ’ p ’ , { ’ 0 ’ ’ y02 ’ ’ 0 ’ } ) ;

256 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ f i n ’ ) . l a b e l ( ’ Form Union ’ ) ;

257 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ f i n ’ ) . s e t ( ’ r e p a i r t o l t y p e ’ , ’ r e l a t i v e ’ ) ;

258 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . run ;

259 model . component ( ’mod1 ’ ) . geom ( ’ geom1 ’ ) . run ( ’ f i n ’ ) ;

260

261 model . v a r i a b l e . c r e a t e ( ’ va r2 ’ ) ;

262 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ BorGef ’ , ’ Bor0a−Bor0b /2+ y∗Bor0b / L ’ , ’ b a s i c Bor + y∗ g r a d i e n t ’ ) ;

263 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ BorSin ’ , ’ 0∗ D e l t a B o r ∗ ( f l u c t ) ’ , ’ Bor f l u c t u a t i o n ’ ) ;

264 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ B o r T o t a l ’ , ’ BorGef + BorSin ’ , ’ Bor t o t a l ’ ) ;

265 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ ElAnf ’ , ’ n i ∗ n i / B o r T o t a l ’ , ’ i n i t i a l e l e c t r o n ( n o t used ) ’ ) ;

266 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ x01 ’ , ’ 0 [mm] ’ ) ;

267 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ y01 ’ , ’ 0 . 3 2 5 [mm] ’ ) ;

268 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ Ph iFokus ’ , ’ Ph i ∗ f o c u s ( x , x01 , s igx , y , y01 , s i g y ) ’ , ’ f o r pos t−
p r o c e s s i n g ’ ) ;

269 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ f l u c t ’ , ’ s i n ( s i n u s F a k t o r ∗2∗ p i ∗ ( y−L / 2 ) ) ’ , ’ f l u c t u a t i o n ’ ) ;

270 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ f l u c t 2 ’ , ’ 0∗ s i n ( s i n u s F a k t o r / 1 . 7∗2∗ p i ∗ ( y−0.000015[m] ) ) + s i n (

s i n u s F a k t o r / 2 . 2∗2∗ p i ∗ ( y−0.000015[m] ) ) + s i n ( s i n u s F a k t o r / 3 . 1∗2∗ p i ∗ ( y−0.000015[m] ) ) + s i n (

s i n u s F a k t o r / 1 . 4∗2∗ p i ∗ ( y−0.000015[m] ) ) ’ , ’ f l u c t u a t i o n 2 ’ ) ;

271 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’mue0 ’ , ’ an10 ( Bor0a ) ’ ) ;

272 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’muh0 ’ , ’ an11 ( Bor0a ) ’ ) ;

273 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ s i g 1 ’ , ’mue0∗Bor0a∗q ’ ) ;

274 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ s i g 2 ’ , ’muh0∗ n i ^ 2 / Bor0a∗q ’ ) ;

275 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ rhoo ’ , ’ 1 / ( s i g 1 + s i g 2 ) ’ ) ;

276 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’Geh ’ , ’Ac∗ P h i _ f o c u s ∗ exp(−Ac∗ abs ( z ) ) ’ ) ;

277 model . v a r i a b l e ( ’ va r2 ’ ) . s e t ( ’ P h i _ f o c u s ’ , ’ Ph i / 2 / p i / s i g x / s i g y ∗ f o c u s ( x , x02 , s igx , y , y02 , s i g y ) ’ ) ;

278 model . component ( ’mod1 ’ ) . v a r i a b l e . c r e a t e ( ’ va r3 ’ ) ;

279 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ x02 ’ , ’ 0 . 0 ’ ) ;

280 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ y02 ’ , ’ 0 . 0 0 [mm] + v e l o ∗ t s c h r i t t ’ ) ;

281 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ s w i t c h ’ , ’pw1 ( t ) ’ ) ;

282 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ Q_in ’ , ’ P0∗(1−Rc ) ∗Ac ∗ ( 1 / ( p i ∗ s i g x ∗ s i g y ) ) ∗ f o c u s ( x ,

x01 , s igx , y , y01 , s i g y ) ∗ exp(−Ac∗ abs ( z ) ) ’ , ’ f o r h e a t s o u r c e ’ ) ;

283 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ P h i _ f o c u s ’ , ’ Ph i / 2 / p i / s i g x / s i g y ∗ f o c u s ( x , x02 , s igx

, y , y02 , s i g y ) ’ ) ;

284 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ P h i _ f o c u s _ g r a p h ’ , ’ Ph i / 2 / p i / s i g x / s i g y ∗ f o c u s ( x ,

x02 , s igx , y , y02 , s i g y ) ’ ) ;

285 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’Geh ’ , ’Ac∗ P h i _ f o c u s ∗ exp(−Ac∗ abs ( z ) ) ’ ) ;

286 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ max_gauss ’ , ’ d o t i e r s t o f f ( x2 , x2 , g a u s s _ d i a , y2 , y2 ,

g a u s s _ d i a ) ’ ) ;

287 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ s w i t s c h ’ , ’−1∗z−1E−7[m] ’ ) ;

288 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . s e t ( ’ s w i t s c h 2 ’ , ’ an13 ( s w i t s c h ) ’ ) ;

289

290 model . view . c r e a t e ( ’ view2 ’ , 3 ) ;

291 model . view . c r e a t e ( ’ view3 ’ , 3 ) ;

292 model . view . c r e a t e ( ’ view4 ’ , 3 ) ;

293 model . view . c r e a t e ( ’ view5 ’ , 2 ) ;

294 model . view . c r e a t e ( ’ view6 ’ , 3 ) ;

295

296 model . component ( ’mod1 ’ ) . m a t e r i a l . c r e a t e ( ’ mat1 ’ , ’Common ’ ) ;

297 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ Aro raMob i l i t yMode l ’ , ’ Arora

m o b i l i t y model ’ ) ;

298 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ PowerLawMobil i tyModel ’ , ’ Power

law m o b i l i t y model ’ ) ;

299 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ Auger ’ , ’ Auger r e c o m b i n a t i o n ’ ) ;

300 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ D i r e c t ’ , ’ D i r e c t r e c o m b i n a t i o n ’

) ;

301 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’SRH ’ , ’ Shockley−Read−H a l l

r e c o m b i n a t i o n ’ ) ;

302 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ F l e t c h e r M o b i l i t y M o d e l ’ , ’

F l e t c h e r m o b i l i t y model ’ ) ;

303 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ CaugheyThomasMobil i tyModel ’ , ’

Caughey−Thomas m o b i l i t y model ’ ) ;

304 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ S e m i c o n d M a t e r i a l ’ , ’

S em ico nduc to r m a t e r i a l ’ ) ;

305 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ,

’ Lombardi s u r f a c e m o b i l i t y model ’ ) ;

306 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ I m p a c t I o n i z a t i o n ’ , ’ Impac t

i o n i z a t i o n ’ ) ;

307 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ SlotboomModel ’ , ’ Slotboom model

’ ) ;

308 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ J a i n R o u l s t o n M o d e l ’ , ’ J a i n−
R o u l s t o n model ’ ) ;

309 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p . c r e a t e ( ’ R e f r a c t i v e I n d e x ’ , ’ R e f r a c t i v e

i n d e x ’ ) ;
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310

311 model . component ( ’mod1 ’ ) . c p l . c r e a t e ( ’ i n t o p 1 ’ , ’ I n t e g r a t i o n ’ ) ;

312 model . component ( ’mod1 ’ ) . c p l . c r e a t e ( ’ aveop1 ’ , ’ Average ’ ) ;

313 model . component ( ’mod1 ’ ) . c p l . c r e a t e ( ’ aveop2 ’ , ’ Average ’ ) ;

314 model . component ( ’mod1 ’ ) . c p l ( ’ i n t o p 1 ’ ) . s e l e c t i o n . geom ( ’ geom1 ’ , 2 ) ;

315 model . component ( ’mod1 ’ ) . c p l ( ’ i n t o p 1 ’ ) . s e l e c t i o n . s e t ( [ 5 ] ) ;

316 model . component ( ’mod1 ’ ) . c p l ( ’ aveop1 ’ ) . s e l e c t i o n . geom ( ’ geom1 ’ , 2 ) ;

317 model . component ( ’mod1 ’ ) . c p l ( ’ aveop1 ’ ) . s e l e c t i o n . s e t ( [ 2 ] ) ;

318 model . component ( ’mod1 ’ ) . c p l ( ’ aveop2 ’ ) . s e l e c t i o n . geom ( ’ geom1 ’ , 2 ) ;

319 model . component ( ’mod1 ’ ) . c p l ( ’ aveop2 ’ ) . s e l e c t i o n . s e t ( [ 5 ] ) ;

320

321 model . component ( ’mod1 ’ ) . p h y s i c s . c r e a t e ( ’ semi2 ’ , ’ Semiconduc to r ’ , ’ geom1 ’ ) ;

322 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . i d e n t i f i e r ( ’ semi2 ’ ) ;

323 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f i e l d ( ’ e l e c t r i c p o t e n t i a l ’ ) . f i e l d ( ’V2 ’ ) ;

324 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f i e l d ( ’ n u m b e r d e n s i t y _ n ’ ) . f i e l d ( ’Ne2 ’ ) ;

325 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f i e l d ( ’ n u m b e r d e n s i t y _ p ’ ) . f i e l d ( ’ Ph2 ’ ) ;

326 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . c r e a t e ( ’mmar1 ’ , ’ Aro raMob i l i t yMode l ’ ,

3 ) ;

327 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . c r e a t e ( ’ mmfl1 ’ , ’

F l e t c h e r M o b i l i t y M o d e l ’ , 3 ) ;

328 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’ adm1 ’ , ’ Ana ly t i cDopingMode l ’ , 3 ) ;

329 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ adm1 ’ ) . s e l e c t i o n . a l l ;

330 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’ d i s c 1 ’ , ’ D i s c r e t i z a t i o n ’ , −1) ;

331 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’ au r1 ’ , ’ AURecombination ’ , 3 ) ;

332 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ au r1 ’ ) . s e l e c t i o n . s e t ( [ 1 ] ) ;

333 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’ udg1 ’ , ’ UDGenerat ion ’ , 3 ) ;

334 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udg1 ’ ) . s e l e c t i o n . a l l ;

335 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’ t a r 1 ’ , ’ T r a p A s s i s t e d R e c o m b i n a t i o n ’ , 3 ) ;

336 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . s e l e c t i o n . a l l ;

337 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’mc1 ’ , ’ M e t a l C o n t a c t ’ , 2 ) ;

338 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc1 ’ ) . s e l e c t i o n . s e t ( [ 2 ] ) ;

339 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’mc2 ’ , ’ M e t a l C o n t a c t ’ , 2 ) ;

340 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc2 ’ ) . s e l e c t i o n . s e t ( [ 5 ] ) ;

341 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’ udr1 ’ , ’ UDRecombination ’ , 3 ) ;

342 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udr1 ’ ) . s e l e c t i o n . a l l ;

343 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . c r e a t e ( ’ d i r 1 ’ , ’ DIRecombina t ion ’ , 3 ) ;

344 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ d i r 1 ’ ) . s e l e c t i o n . a l l ;

345

346 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . c r e a t e ( ’ f t r i 1 ’ , ’ F r e e T r i ’ ) ;

347 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . c r e a t e ( ’ swe1 ’ , ’ Sweep ’ ) ;

348 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ f t r i 1 ’ ) . s e l e c t i o n . s e t ( [ 4 ] ) ;

349 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ swe1 ’ ) . c r e a t e ( ’ d i s 1 ’ , ’ D i s t r i b u t i o n ’ ) ;

350

351 model . capeopen . l a b e l ( ’ Thermodynamik−P a k e t ’ ) ;

352

353 model . v a r i a b l e ( ’ va r2 ’ ) . l a b e l ( ’ V a r i a b l e s 2 ’ ) ;

354 model . component ( ’mod1 ’ ) . v a r i a b l e ( ’ va r3 ’ ) . l a b e l ( ’ V a r i a b l e s 3 ’ ) ;

355

356 model . component ( ’mod1 ’ ) . view ( ’ view1 ’ ) . l a b e l ( ’ View 1 ’ ) ;

357 model . component ( ’mod1 ’ ) . view ( ’ view1 ’ ) . s e t ( ’ s c e n e l i g h t ’ , f a l s e ) ;

358 model . component ( ’mod1 ’ ) . view ( ’ view1 ’ ) . l i g h t ( ’ l g t 1 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 1 ’ ) ;

359 model . component ( ’mod1 ’ ) . view ( ’ view1 ’ ) . l i g h t ( ’ l g t 2 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 2 ’ ) ;

360 model . component ( ’mod1 ’ ) . view ( ’ view1 ’ ) . l i g h t ( ’ l g t 3 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 3 ’ ) ;

361 model . view ( ’ view2 ’ ) . l a b e l ( ’ View 3D 2 ’ ) ;

362 model . view ( ’ view2 ’ ) . s e t ( ’ l o c k e d ’ , t r u e ) ;

363 model . view ( ’ view2 ’ ) . a x i s . l a b e l ( ’ Axis ’ ) ;

364 model . view ( ’ view2 ’ ) . l i g h t ( ’ l g t 1 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 1 ’ ) ;

365 model . view ( ’ view2 ’ ) . l i g h t ( ’ l g t 2 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 2 ’ ) ;

366 model . view ( ’ view2 ’ ) . l i g h t ( ’ l g t 3 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 3 ’ ) ;

367 model . view ( ’ view3 ’ ) . l a b e l ( ’ View 3D 3 ’ ) ;

368 model . view ( ’ view3 ’ ) . a x i s . l a b e l ( ’ Axis ’ ) ;

369 model . view ( ’ view3 ’ ) . l i g h t ( ’ l g t 1 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 1 ’ ) ;

370 model . view ( ’ view3 ’ ) . l i g h t ( ’ l g t 2 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 2 ’ ) ;

371 model . view ( ’ view3 ’ ) . l i g h t ( ’ l g t 3 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 3 ’ ) ;

372 model . view ( ’ view4 ’ ) . l a b e l ( ’ View 3D 4 ’ ) ;

373 model . view ( ’ view4 ’ ) . a x i s . l a b e l ( ’ Axis ’ ) ;

374 model . view ( ’ view4 ’ ) . l i g h t ( ’ l g t 1 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 1 ’ ) ;

375 model . view ( ’ view4 ’ ) . l i g h t ( ’ l g t 2 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 2 ’ ) ;

376 model . view ( ’ view4 ’ ) . l i g h t ( ’ l g t 3 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 3 ’ ) ;

377 model . view ( ’ view5 ’ ) . l a b e l ( ’ View 2D 5 ’ ) ;

378 model . view ( ’ view5 ’ ) . a x i s . l a b e l ( ’ Axis ’ ) ;

379 model . view ( ’ view5 ’ ) . a x i s . s e t ( ’ xmin ’ , −7.823700434528291E−5) ;

380 model . view ( ’ view5 ’ ) . a x i s . s e t ( ’xmax ’ , 2 .0453293109312654E−4) ;

381 model . view ( ’ view5 ’ ) . a x i s . s e t ( ’ ymin ’ , −1.5517087012995034E−4) ;
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382 model . view ( ’ view5 ’ ) . a x i s . s e t ( ’ymax ’ , 1 .271647197427228E−4) ;

383 model . view ( ’ view6 ’ ) . l a b e l ( ’ View 3D 6 ’ ) ;

384 model . view ( ’ view6 ’ ) . a x i s . l a b e l ( ’ Axis ’ ) ;

385 model . view ( ’ view6 ’ ) . l i g h t ( ’ l g t 1 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 1 ’ ) ;

386 model . view ( ’ view6 ’ ) . l i g h t ( ’ l g t 2 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 2 ’ ) ;

387 model . view ( ’ view6 ’ ) . l i g h t ( ’ l g t 3 ’ ) . l a b e l ( ’ D i r e c t i o n a l L i g h t 3 ’ ) ;

388

389 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . l a b e l ( ’ S i − S i l i c o n ’ ) ;

390 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ d e f ’ ) . l a b e l ( ’ B a s i c ’ ) ;

391 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ d e f ’ ) . s e t ( ’ r e l p e r m i t t i v i t y ’ , { ’ 1 1 . 7 ’ ’

0 ’ ’ 0 ’ ’ 0 ’ ’ 1 1 . 7 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 1 1 . 7 ’ } ) ;

392 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ d e f ’ ) . s e t ( ’ t h e r m a l c o n d u c t i v i t y ’ , { ’

131[W/ (m∗K) ] ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 131[W/ (m∗K) ] ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 131[W/ (m∗K) ] ’ } ) ;

393 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ d e f ’ ) . s e t ( ’ d e n s i t y ’ , ’ 2329[ kg /m^3] ’ ) ;

394 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ d e f ’ ) . s e t ( ’ h e a t c a p a c i t y ’ , ’ 700[ J / ( kg∗K

) ] ’ ) ;

395 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . l a b e l ( ’ Arora

m o b i l i t y model ’ ) ;

396 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

m u n 0 _ r e f _ a r o r a ’ , ’ ’ ) ;

397 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

m u p 0 _ r e f _ a r o r a ’ , ’ ’ ) ;

398 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

mun_min_re f_a ro ra ’ , ’ ’ ) ;

399 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

mup_min_re f_a ro ra ’ , ’ ’ ) ;

400 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

N n 0 _ r e f _ a r o r a ’ , ’ ’ ) ;

401 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

N p 0 _ r e f _ a r o r a ’ , ’ ’ ) ;

402 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ a l p h a 0 _ a r o r a

’ , ’ ’ ) ;

403 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 1 _ a r o r a ’

, ’ ’ ) ;

404 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 2 _ a r o r a ’

, ’ ’ ) ;

405 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 3 _ a r o r a ’

, ’ ’ ) ;

406 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 4 _ a r o r a ’

, ’ ’ ) ;

407 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ T r e f _ a r o r a ’ ,

’ ’ ) ;

408 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

m u n 0 _ r e f _ a r o r a ’ , ’ 1252[cm ^ 2 / (V∗ s ) ] ’ ) ;

409 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

m u p 0 _ r e f _ a r o r a ’ , ’ 407[cm ^ 2 / (V∗ s ) ] ’ ) ;

410 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

mun_min_re f_a ro ra ’ , ’ 88[cm ^ 2 / (V∗ s ) ] ’ ) ;

411 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

mup_min_re f_a ro ra ’ , ’ 5 4 . 3 [ cm ^ 2 / (V∗ s ) ] ’ ) ;

412 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

N n 0 _ r e f _ a r o r a ’ , ’ 1 . 2 6 e17 [ 1 / cm^3] ’ ) ;

413 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’

N p 0 _ r e f _ a r o r a ’ , ’ 2 . 3 5 e17 [ 1 / cm^3] ’ ) ;

414 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ a l p h a 0 _ a r o r a

’ , ’ 0 . 8 8 ’ ) ;

415 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 1 _ a r o r a ’

, ’ −0.57 ’ ) ;

416 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 2 _ a r o r a ’

, ’ −2.33 ’ ) ;

417 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 3 _ a r o r a ’

, ’ −2.33 ’ ) ;

418 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ b e t a 4 _ a r o r a ’

, ’ −0.146 ’ ) ;

419 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Aro raMob i l i t yMode l ’ ) . s e t ( ’ T r e f _ a r o r a ’ ,

’ 300[K] ’ ) ;

420 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . l a b e l ( ’ Power

law m o b i l i t y model ’ ) ;

421 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ mun0_pl ’ ,

’ ’ ) ;

422 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ mup0_pl ’ ,

’ ’ ) ;

423 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ a l p h a n _ p l

’ , ’ ’ ) ;
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424 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ a l p h a p _ p l

’ , ’ ’ ) ;

425 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ T r e f _ p l ’ ,

’ ’ ) ;

426 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ mun0_pl ’ ,

’ 1448[cm ^ 2 / (V∗ s ) ] ’ ) ;

427 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ mup0_pl ’ ,

’ 473[cm ^ 2 / (V∗ s ) ] ’ ) ;

428 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ a l p h a n _ p l

’ , ’ 2 . 3 3 ’ ) ;

429 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ a l p h a p _ p l

’ , ’ 2 . 2 3 ’ ) ;

430 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ PowerLawMobil i tyModel ’ ) . s e t ( ’ T r e f _ p l ’ ,

’ 300[K] ’ ) ;

431 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Auger ’ ) . l a b e l ( ’ Auger r e c o m b i n a t i o n ’ ) ;

432 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Auger ’ ) . s e t ( ’Cn ’ , ’ ’ ) ;

433 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Auger ’ ) . s e t ( ’Cp ’ , ’ ’ ) ;

434 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Auger ’ ) . s e t ( ’Cn ’ , ’ 2 . 8 e−31[cm ^ 6 / s ] ’ ) ;

435 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ Auger ’ ) . s e t ( ’Cp ’ , ’ 9 . 9 e−32[cm ^ 6 / s ] ’ ) ;

436 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ D i r e c t ’ ) . l a b e l ( ’ D i r e c t r e c o m b i n a t i o n ’ )

;

437 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ D i r e c t ’ ) . s e t ( ’C ’ , ’ 1e−20[cm ^ 3 / s ] ’ ) ;

438 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’SRH ’ ) . l a b e l ( ’ Shockley−Read−H a l l

r e c o m b i n a t i o n ’ ) ;

439 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’SRH ’ ) . s e t ( ’ t a u n ’ , ’ ’ ) ;

440 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’SRH ’ ) . s e t ( ’ t a u p ’ , ’ ’ ) ;

441 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’SRH ’ ) . s e t ( ’ t a u n ’ , ’ 10[ us ] ’ ) ;

442 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’SRH ’ ) . s e t ( ’ t a u p ’ , ’ 10[ us ] ’ ) ;

443 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ F l e t c h e r M o b i l i t y M o d e l ’ ) . l a b e l ( ’

F l e t c h e r m o b i l i t y model ’ ) ;

444 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ F l e t c h e r M o b i l i t y M o d e l ’ ) . s e t ( ’ F 1 _ f l ’ , ’

’ ) ;

445 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ F l e t c h e r M o b i l i t y M o d e l ’ ) . s e t ( ’ F 2 _ f l ’ , ’

’ ) ;

446 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ F l e t c h e r M o b i l i t y M o d e l ’ ) . s e t ( ’ T r e f _ f l ’ ,

’ ’ ) ;

447 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ F l e t c h e r M o b i l i t y M o d e l ’ ) . s e t ( ’ F 1 _ f l ’ , ’

1 . 0 4 e21 [ 1 / ( cm^1∗V∗ s ) ] ’ ) ;

448 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ F l e t c h e r M o b i l i t y M o d e l ’ ) . s e t ( ’ F 2 _ f l ’ , ’

7 . 4 5 e13 [ 1 / cm^2 ] ’ ) ;

449 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ F l e t c h e r M o b i l i t y M o d e l ’ ) . s e t ( ’ T r e f _ f l ’ ,

’ 300[K] ’ ) ;

450 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . l a b e l ( ’

Caughey−Thomas m o b i l i t y model ’ ) ;

451 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

a l p h a n 0 _ c t ’ , ’ ’ ) ;

452 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

a l p h a p 0 _ c t ’ , ’ ’ ) ;

453 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

v n 0 _ c t ’ , ’ ’ ) ;

454 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

v p 0 _ c t ’ , ’ ’ ) ;

455 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a n 1 _ c t ’ , ’ ’ ) ;

456 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a p 1 _ c t ’ , ’ ’ ) ;

457 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a n 2 _ c t ’ , ’ ’ ) ;

458 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a p 2 _ c t ’ , ’ ’ ) ;

459 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

T r e f _ c t ’ , ’ ’ ) ;

460 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

a l p h a n 0 _ c t ’ , ’ 1 . 1 1 ’ ) ;

461 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

a l p h a p 0 _ c t ’ , ’ 1 . 2 1 ’ ) ;

462 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

v n 0 _ c t ’ , ’ 1 e7 [ cm / s ] ’ ) ;

463 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

v p 0 _ c t ’ , ’ 8 . 3 7 e6 [ cm / s ] ’ ) ;

464 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a n 1 _ c t ’ , ’ 0 . 6 6 ’ ) ;

465 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a p 1 _ c t ’ , ’ 0 . 1 7 ’ ) ;
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466 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a n 2 _ c t ’ , ’ −0.87 ’ ) ;

467 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

b e t a p 2 _ c t ’ , ’ −0.52 ’ ) ;

468 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ CaugheyThomasMobil i tyModel ’ ) . s e t ( ’

T r e f _ c t ’ , ’ 300[K] ’ ) ;

469 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . l a b e l ( ’

S em ico nduc to r m a t e r i a l ’ ) ;

470 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’ Eg0 ’ , ’ ’ ) ;

471 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’ c h i 0 ’ , ’ ’ ) ;

472 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’Nv ’ , ’ ’ ) ;

473 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’Nc ’ , ’ ’ ) ;

474 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’mun ’ , ’ ’ ) ;

475 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’mup ’ , ’ ’ ) ;

476 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’ Eg0 ’ , ’ 1 . 1 2 [V]

’ ) ;

477 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’ c h i 0 ’ , ’ 4 . 0 5 [V

] ’ ) ;

478 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’Nv ’ , ’ ( T / 3 0 0 [K

] ) ^ ( 3 / 2 ) ∗1 .04 e19 [ 1 / cm^3] ’ ) ;

479 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’Nc ’ , ’ ( T / 3 0 0 [K

] ) ^ ( 3 / 2 ) ∗2 . 8 e19 [ 1 / cm^3 ] ’ ) ;

480 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’mun ’ , ’ 1450[cm

^ 2 / (V∗ s ) ] ’ ) ;

481 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . s e t ( ’mup ’ , ’ 500[cm

^ 2 / (V∗ s ) ] ’ ) ;

482 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ S e m i c o n d M a t e r i a l ’ ) . a d d I n p u t ( ’

t e m p e r a t u r e ’ ) ;

483 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . l a b e l ( ’

Lombardi s u r f a c e m o b i l i t y model ’ ) ;

484 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

d e l t a n _ l s ’ , ’ ’ ) ;

485 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

d e l t a p _ l s ’ , ’ ’ ) ;

486 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mun1_ls ’ , ’ ’ ) ;

487 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mup1_ls ’ , ’ ’ ) ;

488 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mun2_ls ’ , ’ ’ ) ;

489 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mup2_ls ’ , ’ ’ ) ;

490 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

a l p h a n _ l s ’ , ’ ’ ) ;

491 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

a l p h a p _ l s ’ , ’ ’ ) ;

492 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

T r e f _ l s ’ , ’ ’ ) ;

493 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

E r e f _ l s ’ , ’ ’ ) ;

494 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

N r e f _ l s ’ , ’ ’ ) ;

495 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

d e l t a n _ l s ’ , ’ 5 . 8 2 e14 [V/ s ] ’ ) ;

496 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

d e l t a p _ l s ’ , ’ 2 . 0 5 e14 [V/ s ] ’ ) ;

497 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mun1_ls ’ , ’ 4 . 7 5 e7 [ cm ^ 2 / (V∗ s ) ] ’ ) ;

498 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mup1_ls ’ , ’ 9 . 9 3 e7 [ cm ^ 2 / (V∗ s ) ] ’ ) ;

499 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mun2_ls ’ , ’ 1 . 7 4 e5 [ cm ^ 2 / (V∗ s ) ] ’ ) ;

500 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

mup2_ls ’ , ’ 8 . 8 4 e5 [ cm ^ 2 / (V∗ s ) ] ’ ) ;

501 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

a l p h a n _ l s ’ , ’ 0 . 125 ’ ) ;

502 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

a l p h a p _ l s ’ , ’ 0 .0317 ’ ) ;

503 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

T r e f _ l s ’ , ’ 1 [K] ’ ) ;

504 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

E r e f _ l s ’ , ’ 1 [V/ cm ] ’ ) ;

505 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ L o m b a r d i S u r f a c e M o b i l i t y M o d e l ’ ) . s e t ( ’

N r e f _ l s ’ , ’ 1 [ 1 / cm^3] ’ ) ;
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506 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . l a b e l ( ’ Impac t

i o n i z a t i o n ’ ) ;

507 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ an ’ , ’ ’ ) ;

508 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ ap ’ , ’ ’ ) ;

509 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ bn ’ , ’ ’ ) ;

510 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ bp ’ , ’ ’ ) ;

511 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ c n i i ’ , ’ ’ ) ;

512 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ c p i i ’ , ’ ’ ) ;

513 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ dn ’ , ’ ’ ) ;

514 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ dp ’ , ’ ’ ) ;

515 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ an ’ , ’ 0 . 4 2 6 ’ ) ;

516 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ ap ’ , ’ 0 . 2 4 3 ’ ) ;

517 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ bn ’ , ’ 4 . 8 1 E5 [V

/ cm ] ’ ) ;

518 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ bp ’ , ’ 6 . 5 3 E5 [V

/ cm ] ’ ) ;

519 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ c n i i ’ , ’ 3 . 0 5 E

−4 ’ ) ;

520 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ c p i i ’ , ’ 5 . 3 5 E

−4 ’ ) ;

521 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ dn ’ , ’ 6 . 8 6 E−4 ’

) ;

522 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ I m p a c t I o n i z a t i o n ’ ) . s e t ( ’ dp ’ , ’ 5 . 6 7 E−4 ’

) ;

523 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ SlotboomModel ’ ) . l a b e l ( ’ Slotboom model ’

) ;

524 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ SlotboomModel ’ ) . s e t ( ’ E r e f _ s b ’ , ’ ’ ) ;

525 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ SlotboomModel ’ ) . s e t ( ’ Nre f_sb ’ , ’ ’ ) ;

526 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ SlotboomModel ’ ) . s e t ( ’ a l p h a _ s b ’ , ’ ’ ) ;

527 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ SlotboomModel ’ ) . s e t ( ’ E r e f _ s b ’ , ’

0 . 0 0 6 9 2 [V] ’ ) ;

528 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ SlotboomModel ’ ) . s e t ( ’ Nre f_sb ’ , ’ 1 . 3 e17

[ 1 / cm^3] ’ ) ;

529 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ SlotboomModel ’ ) . s e t ( ’ a l p h a _ s b ’ , ’ 0 . 5 ’ )

;

530 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . l a b e l ( ’ J a i n−
R o u l s t o n model ’ ) ;

531 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ An_j r ’ , ’ ’ ) ;

532 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Bn_ j r ’ , ’ ’ ) ;

533 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Cn_ j r ’ , ’ ’ ) ;

534 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Ap_j r ’ , ’ ’ ) ;

535 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Bp_ j r ’ , ’ ’ ) ;

536 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Cp_ j r ’ , ’ ’ ) ;

537 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ N r e f _ j r ’ , ’ ’ )

;

538 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ a l p h a _ j r ’ , ’ ’

) ;

539 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ An_j r ’ , ’ 3 . 5 e

−8[V] ’ ) ;

540 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Bn_ j r ’ , ’ 0 [V]

’ ) ;

541 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Cn_ j r ’ , ’ 0 [V]

’ ) ;

542 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Ap_j r ’ , ’ 3 . 5 e

−8[V] ’ ) ;

543 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Bp_ j r ’ , ’ 0 [V]

’ ) ;

544 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ Cp_ j r ’ , ’ 0 [V]

’ ) ;

545 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ N r e f _ j r ’ , ’

1 [ 1 / cm^3] ’ ) ;

546 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ J a i n R o u l s t o n M o d e l ’ ) . s e t ( ’ a l p h a _ j r ’ , ’

0 . 5 ’ ) ;

547 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ R e f r a c t i v e I n d e x ’ ) . l a b e l ( ’ R e f r a c t i v e

i n d e x ’ ) ;

548 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ R e f r a c t i v e I n d e x ’ ) . s e t ( ’ n ’ , ’ ’ ) ;

549 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ R e f r a c t i v e I n d e x ’ ) . s e t ( ’ k i ’ , ’ ’ ) ;

550 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ R e f r a c t i v e I n d e x ’ ) . s e t ( ’ n ’ , { ’ 2 .2222222

’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 2 .2222222 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 2 .2222222 ’ } ) ;

551 model . component ( ’mod1 ’ ) . m a t e r i a l ( ’ mat1 ’ ) . p r o p e r t y G r o u p ( ’ R e f r a c t i v e I n d e x ’ ) . s e t ( ’ k i ’ , { ’

3 .3333333 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 3 .3333333 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 3 .3333333 ’ } ) ;

552

553 model . component ( ’mod1 ’ ) . c p l ( ’ i n t o p 1 ’ ) . l a b e l ( ’ I n t e g r a t i o n s t i r n s e i t e ohne vorgabe ’ ) ;

554
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555 model . component ( ’mod1 ’ ) . coordSys tem ( ’ sys 1 ’ ) . l a b e l ( ’ Boundary System 1 ’ ) ;

556

557 model . common ( ’ cminp t ’ ) . l a b e l ( ’Common model i n p u t s 1 ’ ) ;

558

559 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . l a b e l ( ’ Semiconduc to r 2 ’ ) ;

560 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . p rop ( ’ M o d e l P r o p e r t i e s ’ ) . s e t ( ’ C a r r i e r S t a t i s t i c s ’ , ’

F e r m i D i r a c ’ ) ;

561 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . p rop ( ’ C o n t i n u a t i o n ’ ) . s e t ( ’

D o p i n g T r a p D e n s i t y C o n t i n u a t i o n ’ , ’ Use rDef ined ’ ) ;

562 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . p rop ( ’ C o n t i n u a t i o n ’ ) . s e t ( ’ c p _ d t d _ i n p u t ’ , ’ cp ’ ) ;

563 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . s e t ( ’mun ’ , ’ an10 ( semi2 . Na+semi2 . Nd ) ’ )

;

564 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . s e t ( ’mup ’ , ’ an11 ( semi2 . Na+semi2 . Nd ) ’ )

;

565 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . l a b e l ( ’ Se mic o nd u c to r M a t e r i a l Model 1

’ ) ;

566 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’ m u n 0 _ r e f _ a r o r a ’

, ’ 1323[cm ^ 2 / (V∗ s ) ] ’ ) ;

567 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’ m u p 0 _ r e f _ a r o r a ’

, ’ 429[cm ^ 2 / (V∗ s ) ] ’ ) ;

568 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

mun_min_re f_a ro ra ’ , ’ 89[cm ^ 2 / (V∗ s ) ] ’ ) ;

569 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

mup_min_re f_a ro ra ’ , ’ 55[cm ^ 2 / (V∗ s ) ] ’ ) ;

570 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . l a b e l ( ’ Arora

M o b i l i t y Model ( LI ) 1 ’ ) ;

571 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) .

l a b e l ( ’ E q u a t i o n View ’ ) ;

572 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’ mmfl1 ’ ) . l a b e l ( ’ F l e t c h e r

M o b i l i t y Model (C) 1 ’ ) ;

573 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’ mmfl1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) .

l a b e l ( ’ E q u a t i o n View ’ ) ;

574 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

575 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i n s 1 ’ ) . l a b e l ( ’ I n s u l a t i o n 1 ’ ) ;

576 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i n s 1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

577 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ zc1 ’ ) . l a b e l ( ’ Zero Charge 1 ’ ) ;

578 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ zc1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

579 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i i 1 ’ ) . l a b e l ( ’ I n s u l a t o r I n t e r f a c e 1 ’ ) ;

580 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i i 1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

581 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ c o n t 1 ’ ) . l a b e l ( ’ C o n t i n u i t y / H e t e r o j u n c t i o n 1 ’ )

;

582 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ c o n t 1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

583 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i n i t 1 ’ ) . s e t ( ’V’ , ’ PotAnf ’ ) ;

584 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i n i t 1 ’ ) . s e t ( ’N’ , ’ ElAnf ’ ) ;

585 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i n i t 1 ’ ) . s e t ( ’P ’ , ’ BorGes ’ ) ;

586 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i n i t 1 ’ ) . l a b e l ( ’ I n i t i a l Va lues 1 ’ ) ;

587 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ i n i t 1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

588 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ adm1 ’ ) . s e t ( ’NAc ’ , ’ B o r T o t a l +an14 ( abs ( z ) , z1 ,

z2 , z3 , s11 , s12 , s13 ) ∗ ( 3 . 8 E15 [ 1 / cm ^ 3 ] ) ∗ ( r e c t 1 ( ( y−y2 ) / g a u s s _ d i a ) ) +Bor0a /1000∗wv2 ( y / 1 [m] ) ’ ) ;

589 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ adm1 ’ ) . s e t ( ’NDc ’ , ’ B o r T o t a l ’ ) ;

590 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ adm1 ’ ) . l a b e l ( ’ A n a l y t D o p i n g M o d e l _ c o n s t a n t p

Doping ’ ) ;

591 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ adm1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

592 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ d i s c 1 ’ ) . l a b e l ( ’ D i s c r e t i z a t i o n 1 ’ ) ;

593 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ d i s c 1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

594 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ au r1 ’ ) . l a b e l ( ’ Auger Recombina t ion 1 ’ ) ;

595 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ au r1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

596 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udg1 ’ ) . s e t ( ’Gn ’ , ’Geh∗ cp∗(1−Rc ) ’ ) ;

597 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udg1 ’ ) . s e t ( ’Gp ’ , ’Geh∗ cp∗(1−Rc ) ’ ) ;

598 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udg1 ’ ) . l a b e l ( ’ User−Def ined G e n e r a t i o n 1 ’ ) ;

599 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udg1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

600 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . s e t ( ’ D e l t a _ E t ’ , ’ semi2 . Ei −0.046[V] ’ ) ;

601 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . s e t ( ’ t a u n ’ , ’SRH2∗1[ ns ] ’ ) ;

602 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . s e t ( ’ t a u p ’ , ’SRH2∗1[ ns ] ’ ) ;
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603 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . l a b e l ( ’ Trap−A s s i s t e d Recombina t ion

SRH ’ ) ;

604 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

605 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc1 ’ ) . s e t ( ’ Phi_B ’ , ’ 0 . 1 [V] ’ ) ;

606 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc1 ’ ) . s e t ( ’V0 ’ , 0 ) ;

607 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc1 ’ ) . s e t ( ’ V 0 _ i n i t ’ , ’ 0 . 0 [V] ’ ) ;

608 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc1 ’ ) . l a b e l ( ’ Meta l C o n t a c t on z e r o V o l t a g e ’ )

;

609 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

610 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc2 ’ ) . s e t ( ’ Phi_B ’ , ’ 0 . 0 1 [V] ’ ) ;

611 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc2 ’ ) . s e t ( ’ Termina lType ’ , ’ C i r c u i t ’ ) ;

612 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc2 ’ ) . s e t ( ’V0 ’ , ’ 0 . 0 ’ ) ;

613 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc2 ’ ) . l a b e l ( ’ Meta l C o n t a c t S i g n a l _ n o t a t

z e r o V o l t a g e ’ ) ;

614 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’mc2 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

615 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udr1 ’ ) . s e t ( ’Rn ’ , ’ Se ∗ ( semi2 . N−semi2 . n_eq ) ∗
s w i t s c h 2 ’ ) ;

616 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ udr1 ’ ) . s e t ( ’Rp ’ , ’ Sh ∗ ( semi2 . P−semi2 . p_eq ) ∗
s w i t s c h 2 ’ ) ;

617 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ d i r 1 ’ ) . l a b e l ( ’ D i r e c t Recombina t ion 1 ’ ) ;

618 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ d i r 1 ’ ) . f e a t u r e I n f o ( ’ i n f o ’ ) . l a b e l ( ’ E q u a t i o n

View ’ ) ;

619

620 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . l a b e l ( ’ Mesh 3 ’ ) ;

621 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ s i z e ’ ) . l a b e l ( ’ S i z e ’ ) ;

622 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ s i z e ’ ) . s e t ( ’ custom ’ , ’ on ’ ) ;

623 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ s i z e ’ ) . s e t ( ’hmax ’ , ’ Size_max ∗10 ’ ) ;

624 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ s i z e ’ ) . s e t ( ’ hmin ’ , ’ S ize_min /10000 ’ ) ;

625 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ s i z e ’ ) . s e t ( ’ hg rad ’ , 1 . 1 ) ;

626 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ f t r i 1 ’ ) . l a b e l ( ’ F ree T r i a n g u l a r 1 ’ ) ;

627 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ swe1 ’ ) . l a b e l ( ’ Swept 1 ’ ) ;

628 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ swe1 ’ ) . f e a t u r e ( ’ d i s 1 ’ ) . l a b e l ( ’ D i s t r i b u t i o n 1 ’ ) ;

629 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ swe1 ’ ) . f e a t u r e ( ’ d i s 1 ’ ) . s e t ( ’ t y p e ’ , ’ p r e d e f i n e d ’

) ;

630 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ swe1 ’ ) . f e a t u r e ( ’ d i s 1 ’ ) . s e t ( ’ e l emcoun t ’ , 22) ;

631 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ swe1 ’ ) . f e a t u r e ( ’ d i s 1 ’ ) . s e t ( ’ e l e m r a t i o ’ , 100) ;

632 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . f e a t u r e ( ’ swe1 ’ ) . f e a t u r e ( ’ d i s 1 ’ ) . s e t ( ’ method ’ , ’ g e o m e t r i c

’ ) ;

633 model . component ( ’mod1 ’ ) . mesh ( ’ mesh3 ’ ) . run ;

634

635 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . s e t ( ’ mun_mat ’ , ’ r o o t . mod1 . semi2 .

mun_fl ’ ) ;

636 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . s e t ( ’ mup_mat ’ , ’ r o o t . mod1 . semi2 .

mup_fl ’ ) ;

637 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

mun0_re f_a ro ra_ma t ’ , ’ u s e r d e f ’ ) ;

638 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

mup0_re f_a ro ra_ma t ’ , ’ u s e r d e f ’ ) ;

639 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

mun_min_re f_a ro ra_mat ’ , ’ u s e r d e f ’ ) ;

640 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

mup_min_re f_a ro ra_mat ’ , ’ u s e r d e f ’ ) ;

641 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

N n 0 _ r e f _ a r o r a _ m a t ’ , ’ u s e r d e f ’ ) ;

642 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’mmar1 ’ ) . s e t ( ’

N p 0 _ r e f _ a r o r a _ m a t ’ , ’ u s e r d e f ’ ) ;

643 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’ mmfl1 ’ ) . s e t ( ’ mun_in_s rc ’ , ’

r o o t . mod1 . semi2 . mun_ar ’ ) ;

644 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’ mmfl1 ’ ) . s e t ( ’ mup_in_s rc ’ , ’

r o o t . mod1 . semi2 . mup_ar ’ ) ;

645 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’ mmfl1 ’ ) . s e t ( ’ F1_ f l_ma t ’ , ’

u s e r d e f ’ ) ;

646 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’ mmfl1 ’ ) . s e t ( ’ F2_ f l_ma t ’ , ’

u s e r d e f ’ ) ;

647 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’smm1 ’ ) . f e a t u r e ( ’ mmfl1 ’ ) . s e t ( ’ T r e f _ f l _ m a t ’ , ’

u s e r d e f ’ ) ;

648 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . s e t ( ’ t aun_mat ’ , ’ u s e r d e f ’ ) ;

649 model . component ( ’mod1 ’ ) . p h y s i c s ( ’ semi2 ’ ) . f e a t u r e ( ’ t a r 1 ’ ) . s e t ( ’ t aup_mat ’ , ’ u s e r d e f ’ ) ;

650

651 model . s t u d y . c r e a t e ( ’ s t d 1 5 ’ ) ;

652 model . s t u d y ( ’ s t d 1 5 ’ ) . c r e a t e ( ’ param ’ , ’ P a r a m e t r i c ’ ) ;
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653 model . s t u d y ( ’ s t d 1 5 ’ ) . c r e a t e ( ’ s t a t ’ , ’ S t a t i o n a r y ’ ) ;

654 model . s t u d y ( ’ s t d 1 5 ’ ) . c r e a t e ( ’ s t a t 2 ’ , ’ S t a t i o n a r y ’ ) ;

655

656 model . s o l . c r e a t e ( ’ s o l 1 2 5 ’ ) ;

657 model . s o l ( ’ s o l 1 2 5 ’ ) . s t u d y ( ’ s t d 1 5 ’ ) ;

658 model . s o l ( ’ s o l 1 2 5 ’ ) . l a b e l ( ’ P a r a m e t r i c S o l u t i o n s 4 ’ ) ;

659

660 model . b a t c h . c r e a t e ( ’ p1 ’ , ’ P a r a m e t r i c ’ ) ;

661 model . b a t c h ( ’ p1 ’ ) . c r e a t e ( ’ so1 ’ , ’ S o l u t i o n s e q ’ ) ;

662 model . b a t c h ( ’ p1 ’ ) . s t u d y ( ’ s t d 1 5 ’ ) ;

663

664 model . r e s u l t . d a t a s e t . c r e a t e ( ’ d s e t 9 ’ , ’ S o l u t i o n ’ ) ;

665 model . r e s u l t . d a t a s e t . c r e a t e ( ’ c l n 1 2 ’ , ’ CutLine3D ’ ) ;

666 model . r e s u l t . d a t a s e t ( ’ c l n 1 2 ’ ) . s e t ( ’ d a t a ’ , ’ d s e t 9 ’ ) ;

667 model . r e s u l t . d a t a s e t . remove ( ’ d s e t 1 ’ ) ;

668 model . r e s u l t . n u m e r i c a l . c r e a t e ( ’ gev1 ’ , ’ E v a l G l o b a l ’ ) ;

669 model . r e s u l t . n u m e r i c a l ( ’ gev1 ’ ) . s e t ( ’ p r o b e t a g ’ , ’ none ’ ) ;

670

671 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ param ’ ) . l a b e l ( ’ P a r a m e t r i c Sweep ’ ) ;

672 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ param ’ ) . s e t ( ’ pname ’ , { ’ t s c h r i t t ’ } ) ;

673 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ param ’ ) . s e t ( ’ p l i s t a r r ’ , { ’ r a n g e

( 1 . 3 5 , 0 . 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 / 4 0 , 1 . 5 5 ) ’ } ) ;

674 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ param ’ ) . s e t ( ’ p u n i t ’ , { ’ s ’ } ) ;

675 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t ’ ) . s e t ( ’ useparam ’ , t r u e ) ;

676 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t ’ ) . s e t ( ’ sweep type ’ , ’ f i l l e d ’ ) ;

677 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t ’ ) . s e t ( ’ pname ’ , { ’ p r a e f a k t ’ ’ Bor0 ’ } ) ;

678 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t ’ ) . s e t ( ’ p l i s t a r r ’ , { ’ 1 0 , 2 0 , 4 8 , 5 0 , 9 6 , 1 0 0 , 2 0 0 , 5 0 0 , 5 6 0 , 8 0 0 , 1 0 0 0

’ ’ 1 . 9 E15 , 6 E14 , 2 E14 , 6 . 5 E13 ’ } ) ;

679 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t ’ ) . s e t ( ’ p u n i t ’ , { ’ ’ ’ ’ } ) ;

680 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t ’ ) . s e t ( ’ p c o n t i n u a t i o n m o d e ’ , ’ no ’ ) ;

681 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t ’ ) . s e t ( ’ p r e u s e s o l ’ , ’ yes ’ ) ;

682 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t 2 ’ ) . a c t i v e ( f a l s e ) ;

683 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t 2 ’ ) . l a b e l ( ’ S t a t i o n a r y 2 ’ ) ;

684 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t 2 ’ ) . s e t ( ’ useparam ’ , t r u e ) ;

685 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t 2 ’ ) . s e t ( ’ pname ’ , { ’ p r a e f a k t ’ } ) ;

686 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t 2 ’ ) . s e t ( ’ p l i s t a r r ’ , { ’ 100 ,300 ,500 ,700 ,1000 ’ } ) ;

687 model . s t u d y ( ’ s t d 1 5 ’ ) . f e a t u r e ( ’ s t a t 2 ’ ) . s e t ( ’ p u n i t ’ , { ’ ’ } ) ;

688

689 model . b a t c h ( ’ p1 ’ ) . l a b e l ( ’ P a r a m e t r i c Sweep 1 ’ ) ;

690 model . b a t c h ( ’ p1 ’ ) . s e t ( ’ pname ’ , { ’ t s c h r i t t ’ } ) ;

691 model . b a t c h ( ’ p1 ’ ) . s e t ( ’ p l i s t a r r ’ , { ’ r a n g e ( 1 . 3 5 , 0 . 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 / 4 0 , 1 . 5 5 ) ’ } ) ;

692 model . b a t c h ( ’ p1 ’ ) . s e t ( ’ p u n i t ’ , { ’ s ’ } ) ;

693 model . b a t c h ( ’ p1 ’ ) . s e t ( ’ e r r ’ , t r u e ) ;

694 model . b a t c h ( ’ p1 ’ ) . f e a t u r e ( ’ so1 ’ ) . s e t ( ’ s t o r e ’ , t r u e ) ;

695 model . b a t c h ( ’ p1 ’ ) . f e a t u r e ( ’ so1 ’ ) . s e t ( ’ p s o l ’ , ’ s o l 1 2 5 ’ ) ;

696 model . b a t c h ( ’ p1 ’ ) . f e a t u r e ( ’ so1 ’ ) . s e t ( ’ param ’ , { ’ " t s c h r i t t " , " 1 . 3 5 " ’ ’ " t s c h r i t t " , " 1 . 3 5 5 " ’ ’ "

t s c h r i t t " , " 1 . 3 6 " ’ ’ " t s c h r i t t " , " 1 . 3 6 5 " ’ ’ " t s c h r i t t " , " 1 . 3 7 " ’ ’ " t s c h r i t t " , " 1 . 3 7 5 " ’ ’ " t s c h r i t t

" , " 1 . 3 8 " ’ ’ " t s c h r i t t " , " 1 . 3 8 5 " ’ ’ " t s c h r i t t " , " 1 . 3 9 " ’ ’ " t s c h r i t t " , " 1 . 3 9 5 " ’ . . .

697 ’ " t s c h r i t t " , " 1 . 4 " ’ ’ " t s c h r i t t " , " 1 . 4 0 5 " ’ ’ " t s c h r i t t " , " 1 . 4 1 " ’ ’ " t s c h r i t t " , " 1 . 4 1 5 " ’ ’ " t s c h r i t t

" , " 1 . 4 2 " ’ ’ " t s c h r i t t " , " 1 . 4 2 5 " ’ ’ " t s c h r i t t " , " 1 . 4 3 " ’ ’ " t s c h r i t t " , " 1 . 4 3 5 " ’ ’ " t s c h r i t t " , " 1 . 4 4 "

’ ’ " t s c h r i t t " , " 1 . 4 4 5 " ’ . . .

698 ’ " t s c h r i t t " , " 1 . 4 5 " ’ ’ " t s c h r i t t " , " 1 . 4 5 5 " ’ ’ " t s c h r i t t " , " 1 . 4 6 " ’ ’ " t s c h r i t t " , " 1 . 4 6 5 " ’ ’ " t s c h r i t t

" , " 1 . 4 7 " ’ ’ " t s c h r i t t " , " 1 . 4 7 5 " ’ ’ " t s c h r i t t " , " 1 . 4 8 " ’ ’ " t s c h r i t t " , " 1 . 4 8 5 " ’ ’ " t s c h r i t t " , " 1 . 4 9 "

’ ’ " t s c h r i t t " , " 1 . 4 9 5 " ’ . . .

699 ’ " t s c h r i t t " , " 1 . 5 " ’ ’ " t s c h r i t t " , " 1 . 5 0 5 " ’ ’ " t s c h r i t t " , " 1 . 5 1 " ’ ’ " t s c h r i t t " , " 1 . 5 1 5 " ’ ’ " t s c h r i t t

" , " 1 . 5 2 " ’ ’ " t s c h r i t t " , " 1 . 5 2 5 " ’ ’ " t s c h r i t t " , " 1 . 5 3 " ’ ’ " t s c h r i t t " , " 1 . 5 3 5 " ’ ’ " t s c h r i t t " , " 1 . 5 4 "

’ ’ " t s c h r i t t " , " 1 . 5 4 5 " ’ . . .

700 ’ " t s c h r i t t " , " 1 . 5 5 " ’ } ) ;

701 model . b a t c h ( ’ p1 ’ ) . a t t a c h ( ’ s t d 1 5 ’ ) ;

702 model . b a t c h ( ’ p1 ’ ) . run ;

703

704 model . r e s u l t . l a b e l ( ’ R e s u l t s ’ ) ;

705 model . r e s u l t . d a t a s e t ( ’ c l n 1 2 ’ ) . l a b e l ( ’ Cut Line 3D 12 ’ ) ;

706 model . r e s u l t . d a t a s e t ( ’ c l n 1 2 ’ ) . s e t ( ’ g e n p o i n t s ’ , { ’ 0 ’ ’ 1 . 3 [ s ]∗ v e l o ’ ’ 0 ’ ; ’ 0 ’ ’ 1 . 4 [ s ]∗ v e l o ’ ’ 0 ’ } )

;

707 model . r e s u l t . d a t a s e t ( ’ c l n 1 2 ’ ) . s e t ( ’ bndsnap ’ , t r u e ) ;

708 model . r e s u l t . n u m e r i c a l ( ’ gev1 ’ ) . s e t ( ’ exp r ’ , { ’ aveop1 ( V2 )−aveop2 ( V2 ) ’ ’Geom∗ ( aveop1 ( V2 )−aveop2 (

V2 ) ) ’ ’ Bor0a ’ ’ rhoo ’ ’ ( ( y02−y2 ) ^2 ) ^ ( 1 / 2 ) ’ } ) ;

709 model . r e s u l t . n u m e r i c a l ( ’ gev1 ’ ) . s e t ( ’ u n i t ’ , { ’mV’ ’uV ’ ’ 1 / cm^3 ’ [ ’ohm ’ ’∗cm ’ ] ’um ’ } ) ;

710 model . r e s u l t . n u m e r i c a l ( ’ gev1 ’ ) . s e t ( ’ d e s c r ’ , { ’ ’ ’ ’ ’ ’ ’ b a s i c Bor−Doping ’ ’ ’ ’ ’ ’ ’ } ) ;

711

712 o u t = model ;

106




