
Training of Artificial Neuronal Networks
with Nonlinear Optimization Techniques

Thierry Tchouto Mbatchou

Cottbus Mathematical Preprints
COMP# 15(2021)

Brandenburg University of Technology
Faculty of Mathematics, Computer Science, Electrical and Information

Technology

Bachelor Thesis

Training of Artificial Neuronal Networks with Nonlinear
Optimization Techniques

Thierry Tchouto Mbatchou

A Thesis submitted in partial fulfilment of the requirements for the degree of
BACHELOR OF SCIENCE IN BUSINESS MATHEMATICS

Supervisor: Prof. Dr. Armin Fügenschuh

Second Assessor: Prof. Dr. Carsten Hartmann

Department of Engineering Mathematics and Numerics of Optimization

January 2021

Contents

List of Figures V

List of Tables VII

1 Introduction 1

2 Modelling a machine learning problem into an optimization problem 3
2.1 Artificial neural networks . 3
2.2 The cost function . 4

3 Minimization of the cost function: the mainstream method 7
3.1 Stochastic gradient descent . 7
3.2 Backpropagation . 9

4 Minimization of the cost function: the AMPL approach 15
4.1 The solvers in AMPL . 15

4.1.1 Conopt . 16
4.1.1.1 GRG algorithm . 16

5 Problems and models 21
5.1 Problems . 21

5.1.1 State of the cell recognition problem 21
5.1.2 The polygon recognition problem . 22
5.1.3 The handwritten digit recognition problem 23

5.2 Models . 23
5.2.1 The basic approach . 24
5.2.2 Variant 1 . 26
5.2.3 Variant 2 . 27
5.2.4 Variant 3 . 29
5.2.5 Variant 4 . 29

6 Experiments and discussion 33
6.1 Experiments on weight initialization schemes 33
6.2 Testing solvers . 36

III

Contents

6.3 Influence of the number of hidden layers and neurons on the performance of
the network . 39

6.4 Trials on activation functions . 42
6.4.1 ReLU . 42
6.4.2 Tanh . 43
6.4.3 Swish . 44
6.4.4 Sigmoid . 45

6.5 Models on trial . 47
6.5.1 Solving the exploding activations issue 47
6.5.2 The basic approach . 50
6.5.3 Variant 2 . 52
6.5.4 Variant 3 . 55
6.5.5 Variant 4 . 56

6.6 Comparing the AMPL approach with the SGD approach 57

7 Summary and conclusion 59

Bibliography 61

IV

List of Figures

2.1 Single neuron illustration [1] . 3
2.2 Single neuron [1] . 3
2.3 Structure of a feedforward neural network [1] 4

5.1 Interphase . 21
5.2 Metaphase . 21
5.3 Interphase . 22
5.4 Metaphase . 22
5.5 Triangle . 22
5.6 Four-sided polygon . 22
5.7 Five-sided polygon . 22
5.8 MNIST data [2] . 23

6.1 Test on initialization schemes: accuracy performance 35
6.2 Test on initialization schemes: computation time 35
6.3 Test on solvers: accuracy performance . 38
6.4 Test on solvers: computation time . 38
6.5 Influence of hidden neurons on accuracy . 40
6.6 Influence of hidden neurons on computation time 41
6.7 ReLU [3] . 42
6.8 Tanh [4] . 43
6.9 Swish [5] . 44
6.10 Sigmoid [6] . 45
6.11 Resizing from center . 51
6.12 Variant 2 with batch size 50 on the state of the cell recognition 53

V

List of Tables

6.1 Summary of weight initialization trials . 34
6.2 Comparing solvers part 1 . 36
6.3 Comparing solvers part 2 . 37
6.4 Influence of the number of hidden layers and neurons on the performance of

the network . 40
6.5 Influence of the activation function on the performance of the network: ReLU 43
6.6 Influence of the activation function on the performance of the network: Tanh 44
6.7 Influence of the activation function on the performance of the network: Swish 45
6.8 Influence of the activation function on the performance of the network: Sigmoid 46
6.9 L2 regularization . 49
6.10 Variant 2 with batch size 500 on the state of the cell recognition 52
6.11 Variant 2 with batch size 500 on the handwritten digit recognition problem . 54
6.12 Variant 2 with batch size 2000 on the handwritten digit recognition problem . 54
6.13 Variant 2 with batch size 3000 on the handwritten digit recognition problem . 55

VII

Declaration in lieu of oath

I herby declare that, to the best of my knowledge this thesis is the product of my own
independent work. All content and ideas drawn from external sources, directly or indirectly,
published or unpublished, are indicated as such. This thesis has neither been previously
submitted in whole or in parts, for a degree at this university or any other university.

Cottbus, 06.01.2021 Signature

IX

1 Introduction

Suppose someone back in the year 1950 wanted to write a computer code that can take
an image as input, and tell whether it is a cat or a dog figuring on the image. Since it is
impossible to model a cat or a dog with a mathematical equation, the task becomes even
more challenging. The quest after a solution to such challenges spawned the birth of machine
learning and artificial intelligence.
Machine learning is a field of computer science that studies algorithms aiming at the au-
tomation of quite intricate problems that conventional programming methods cannot solve.
A conventional programming method is made of two main steps. Given a specification of
the program (what the program is to do and not how it is to do it), the first step would
be to meticulously sketch the design of the program, that is to say, a fixed set of steps or
rules for solving the problem. The next step, would then be to transform this design into a
written code in a given computer language. For many real-world problems, it can be quite
tough to apply this approach, for creating a detail design can be quite puzzling despite clear
specifications.
Suppose using a conventional programming method we wanted to write a computer code to
detect handwritten characters in an image. Moreover, we assume we have a dataset consisting
of a large number of images of handwritten characters at our disposal. In addition, each data
(image) in the dataset is labelled. The goal of using labels is to help the computer know
how it should behave. We recall that the aim is to come forth with a program that is very
likely to recognize characters from any given image (including those not belonging to the
training dataset). The pattern to tackle this challenge using a conventional approach, would
be to first of all study the images in the dataset and try to understand the relation between
the images and the labels. The next step would then be, to spawn a general set of rules to
detect characters in any given image. Due to the fact that, a given character can be written
in many different ways it can be quite tough to establish this set of rules.
In the 1980s there were some quite unsuccessful attempts to tackle complex problems using
the conventional approach. Even if the attempts were successful, the conventional approach
still remains very impractical. There are miscellaneous complex problems out there therefore
using this approach will mean, we will have to handle each problem individually. Machine
learning algorithms actually spare us that effort, because they can solve many of these hard

1

1 Introduction

problems in a quite generic way. They learn the detailed design from the data and their
accuracy is proportional to the dimension of the dataset [7].
The goal of any machine learning algorithm is to figure out a model, in other words, a set
of rules from a labelled dataset, in order to predict with the least error possible the labels
of data points (images for example) not figuring in the dataset. To achieve this, a certain
cost function is to be minimized. That is often done with the stochastic gradient descent
(SGD) and the backpropagation algorithm. Though this approach is a combination of two
algorithms: stochastic gradient descent and backpropagation, for the sake of amenity we
shall be referencing it in our work simply as the SGD approach. The reason why the SGD
approach is often used is because trying to minimize a cost function on large scale data with
common optimization methods like the gradient descent is quite costly. The crux of our work
is testing a different approach with a software called AMPL. It offers a wide range of solvers
to optimize non linear functions. They have gained great standing both in the research sector
as in the industrial domain. This made us quite inquisitive about what the outcome will
eventually be if we utilized them to minimize the cost function of a machine learning problem,
precisely of a classification problem. The peculiarity of the approach we will be testing is
that it neither uses the stochastic gradient descent nor the backpropagation method. So in
the following, we shall firstly take a look at how to model a machine learning problem into
an optimization problem. Then we shall dive into more details about the SGD approach.
After that, we will not only explain in more details our approach (which shall be referenced
in our entire work as the AMPL approach), but we shall also study it to gain some insight
into factors that influence its performance. Finally we shall compare the performance of
both approaches: the AMPL approach and the SGD approach on some few machine learning
problems.

2

2 Modelling a machine learning problem into an
optimization problem

In this section, we shall look at how one can transform a machine learning problem into an
optimization problem using artificial neural networks.

2.1 Artificial neural networks

An artificial neural network is a medley of interconnected neurons, where each neuron takes
in multiple inputs but has a single output. This output is a function of the sum of the inputs
the neuron receives [1], as illustrated in figure 2.1. The function at the output of the neuron
is called the activation function.

Figure 2.1: Single neuron illustration [1]

The symbol seen in figure 2.2 is used to represent a single neuron. The single output of a
neuron is actually a part of the input of many other neurons, that is why many outgoing
arrows can be seen on figure 2.2

Figure 2.2: Single neuron [1]

In a neural network, the input of each neuron is the weighted output of other neurons. In a
feedforward neural network, the neurons are connected in such a way that the data flow is
one-directional. Each neuron receives inputs only from neurons in the preceding layer [1].
Figure 2.3 illustrates the structure of a feedforward neural network.

3

2 Modelling a machine learning problem into an optimization problem

The first layer in such a network is the input layer and the last layer is the output layer. The
other layers are called hidden layers. We can apprehend a neural network as a particular
implementation of a map from Rn to Rm, where n is the number of inputs x1, . . . , xn and m
the number of outputs y1, . . . , ym. The implemented map is a function of the weights and
biases in the network. The bias of a neuron can be understood as the threshold from which
the neuron can send an output. For a given input, the computation of the associated output
is realized by the collective effect of individual input-output characteristics of each neuron
[1].

Figure 2.3: Structure of a feedforward neural network [1]

2.2 The cost function

Given a dataset on which we want to train the network, the main aim is to find the value of
the weights of the interconnections and that of the bias of each neuron so that our model
can predict as good as possible the label of any given image not belonging to the training
dataset. In order to achieve this, we need to minimize a certain loss function.
In section 2.1, we talked about the activation function. To keep it simple we will be considering
the sigmoid function as our activation function

σ(x) = 1
1 + exp(−x) . (2.1)

We can consider the sigmoid function as being a smoothed version of a step function, the
latter actually mimics the behaviour of a neuron in the brain.

4

2.2 The cost function

In the sense that, it fires (gives an output equal to one) when the input is large enough, or
remains inactive otherwise (gives an output equal to zero). Moreover, the amenity in using
the sigmoid function resides in the fact that its derivate takes the simple form

σ′(x) = σ(x)(1− σ(x)). (2.2)

Applying basic calculus formulas leads to the proof of (2.2).

To keep track with the notation, we interpret the sigmoid function in a vectorized sense. For
a given z ∈ Rm, σ : Rm → Rm is defined by applying the sigmoid function componentwisely,
that is:

(σ(z))i = σ(zi).

For a given neural network, in each hidden layer, the output of every neuron is a unique
real number, which is transmitted to each neuron in the next layer. At the next layer, each
neuron forms its own weighted combination of these values, adds its bias to this combination
and then squeezes it into the sigmoid function. We consider a as the output vector of a
given layer, the output vector of the next layer is given through the following mathematical
expression:

σ(Wa+ b). (2.3)

Here, W is a matrix and b is a vector. W contains the weights and b contains the biases. The
number of columns in W is equal to the number of neurons of the previous layer, and the
number of rows in W is equal to the number of neurons present in the actual layer, which is
also the number of components in b. To stress the role of the ith neuron in (2.3), we can
express the value of its output through the following expression:

σ(
∑
j

wijaj + bi),

where the sum runs over all entries in a.

Suppose our network has L layers, with layers 1 and L being respectively the input and
output layers. Moreover, we suppose layer l, for l = 1, 2, 3, . . . , L, contains nl neurons. This
actually means n1 is the dimension of the input data. Overall, the network maps from Rn1

5

2 Modelling a machine learning problem into an optimization problem

to RnL . We use W [l] ∈ Rnl×nl−1 to denote the matrix of weights at layer l. Precisely, w[l]
jk is

the weight that neuron j at layer l applies to the output from neuron k at layer l − 1. In a
quite similar way, b[l] ∈ Rnl is the vector of biases for layer l. So neuron j at layer l uses the
bias b[l]

j [8].
We consider x ∈ Rn1 as the input. Furthermore let a[l]

j denote the output, or activation,
from neuron j at layer l. We can then summarize the action of the network through the
following:

a[1] = x ∈ Rn1 , (2.4a)

a[l] = σ(W [l]a[l−1] + b[l]) ∈ Rnl , for l = 2, 3, . . . , L. (2.4b)

(2.4a) and (2.4b) amount to an algorithm for feeding the input forward through the network,
such as to produce a final output a[L] ∈ RnL . Suppose we have N data {x{i}}Ni=1 ∈ Rn1 in
the training set, the cost function can take the following form:

Cost = 1
N

N∑
i=1

1
2‖y(x{i})− a[L](x{i})‖22. (2.5)

We would like to stress that the cost function is a function of all the weights and biases
present in the network. Furthermore, the cost function used in (2.5) is known as the mean
squared error. There are other loss functions that can be used, like the: log (cross-entropy)
loss, squared log loss, L1 loss [9]. Since the mean squared error is the only loss function we
effectively used in our entire work, we shall focus mainly on it in the other theoretical parts
of our work.

6

3 Minimization of the cost function: the mainstream
method

The mainstream method consists of using a combination of the stochastic gradient descent
and the backpropagation algorithm. Though there is much we can say about these two
algorithms, we will nevertheless restrict ourself in this section to talking about the strict
minimum necessary for the understanding of our work.

3.1 Stochastic gradient descent

The stochastic gradient descent is a gradient descent based method which consists of computing
iteratively the minimum of a given function. Suppose we want to minimize the cost function:
Cost : Rs → R, and our current vector is p ∈ Rs. We are actually seeking a step ∆p, so that
p+ ∆p represents an improvement. Assuming ∆p is small enough, we can ignore the term of
order ‖∆p‖2 in the Taylor series expansion of Cost(p+ ∆p). We then have the following

Cost(p+ ∆p) ≈ Cost(p) + (∇Cost(p))T∆p. (3.1)

We recall that our goal is finding a step ∆p that minimizes Cost(p + ∆p). Considering
(3.1), we see that we can achieve that in choosing ∆p such that (∇Cost(p))T∆p is as
negative as possible. Using the Cauchy-Schwarz inequality which states that for any given
f, g ∈ Rs we have |fT g| ≤ ‖f‖2‖g‖2. This implies that the most negative value of fT g is:
−‖f‖2‖g‖2. This scenario actually occurs when f = −g. Hence, based on the insight won
from the Cauchy-Schwarz inequality, we know the direction of ∆p is to be the same as that
of −∇Cost(p).

7

3 Minimization of the cost function: the mainstream method

Not obliviating that (3.1) holds only for small ∆p, we shall therefore limit ourself to taking a
little step in that direction [8].
This leads to the following update formula:

p→ p− η∇Cost(p). (3.2)

Note that η in (3.2) is considered in this context as being the learning rate. The steepest
descent method consists in choosing a start vector p0 ∈ Rs and iterating over and over again
using (3.2) till a certain stop criterion is satisfied [8].

We can rewrite (2.5) as:

Cost = 1
N

N∑
i=1

Cx{i} , (3.3)

where Cx{i} denotes the following:

Cx{i} = 1
2‖y(x{i})− a[L](x{i})‖22. (3.4)

This implies:

∇Cost(p) = 1
N

N∑
i=1
∇Cx{i}(p). (3.5)

Dealing with a large number of training points and parameters makes the steepest descent
method quite expensive regarding the computation cost. If we replace the mean of the
individual gradients over the entire training dataset, by the gradient at a single randomly
chosen training point, we can build then a cheaper version of the steepest descent method
known as the stochastic gradient descent. A single step of the SGD may be summarized as
follows:

1. Choose an integer i uniformly at random without replacement from {1, 2, 3, . . . , N}.

2. Update
p→ p− η∇Cx{i}(p). (3.6)

Taking a close look at each step, we notice that the full training set is represented by a single
randomly chosen point at each iteration. The more we iterate and the algorithm sees more

8

3.2 Backpropagation

training data, we actually hope it convergences to a certain minimum. To understand why
this method convergences, we would like to refer to [10].
A representation of the simplest version of the SGD is (3.6). There are more interesting
variants like the mini-batch for example [10].
If we regard the stochastic gradient descent as an approximation of the mean (3.3) over all
training points, then it will be quite interesting to think about a sort of compromise using a
little sample average. That is exactly what the mini-batch is all about. So for some m� N ,
the updates with the mini-batch take the following form:

1. Choose m integers k1, k2, k3, . . . , km uniformly at random without replacement from
{1, 2, 3, . . . , N}.

2. Update

p→ p− η 1
m

m∑
i=1
∇Cx{ki}(p). (3.7)

3.2 Backpropagation

In the previous subsection, we saw that the update formulas to compute each new step
using the SGD always required calculating the gradient of a certain function, see (3.6). This
function is actually a function of p which contains our parameters (weights and biases). For
the sake of clarity we will not be using p anymore, we will henceforth clearly denote the
parameters w[l]

jk when talking of the weights and b[l]
j when talking of the biases.

For a given training point, we consider Cx{i} in (3.4) as being a function of the weights and
biases. We can simply leave out the dependence on x{i} and just write

C = 1
2‖y − a

[L]‖22. (3.8)

The dependence of C on the weights and biases is induced by a[L] alone (output from artificial
neural network). The reason behind this resides in the fact that the vector y, which represents
the label, is a constant that is initialized before training the network. Hence, y cannot be a
function of the weights and biases. We will introduce some additional variables to spawn
some interesting informations from the partial derivatives. That being said let

z[l] = W [l]a[l−1] + b[l] ∈ Rnl for l = 2, 3, . . . , L. (3.9)

9

3 Minimization of the cost function: the mainstream method

We consider z[l]
j as being the weighted input of neuron j at layer l. Now considering (2.4b)

and (3.9) we get the following

a[l] = σ(z[l]) for l = 2, 3, . . . , L. (3.10)

We now define δ[l] ∈ Rnl as the error vector of layer l through the following expression:

δ
[l]
j = ∂C

∂z
[l]
j

for 1 ≤ j ≤ nl and 2 ≤ l ≤ L, (3.11)

where δ[l]
j is a metric for the sensitivity of the cost function to the weighted input of neuron j

at layer l [8].
Before moving a step forward we define the componentwise product of two vectors. For
a, b ∈ Rn then a ◦ b ∈ Rn is given by (a ◦ b)i = aibi. Using then the chain rule, we obtain the
following results:

Lemma 3.2.1.

δ[L] = σ′(z[L]) ◦ (a[L] − y) (3.12a)

δ[l] = σ′(z[l]) ◦ (W [l+1])T δ[l+1] for 2 ≤ l ≤ L− 1, (3.12b)
∂C

∂b
[l]
j

= δ
[l]
j for 2 ≤ l ≤ L, (3.12c)

∂C

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k for 2 ≤ l ≤ L. (3.12d)

Proof. We shall commence by proving (3.12a).

Using the chain rule we can express δ[L]
j as

δ
[L]
j = ∂C

∂z
[L]
j

= ∂C

∂a
[L]
j

∂a
[L]
j

∂z
[L]
j

. (3.13)

With l = L, (3.10) shows that a[L]
j = σ(z[L]

j) therefore

∂a
[L]
j

∂z
[L]
j

= σ′(z[L]
j) (3.14)

10

3.2 Backpropagation

∂C

∂a
[L]
j

= ∂

∂a
[L]
j

1
2

nL∑
k=1

(yk − a
[L]
k)2 = −(yj − a[L]

j). (3.15)

Combining now (3.13), (3.14), and (3.15) we obtain

δ
[L]
j = (a[L]

j − yj)σ
′(z[L]

j), (3.16)

where (3.16) is just the componentwise form of (3.12a).

Now we shall prove (3.12b). We consider δ[l]
j = ∂C

∂z
[l]
j

. We want to differentiate C with respect

to z[l]
j , that is equivalent in this case to differentiating C with respect to all neurons in layer

l + 1. Hence, we can consider C as being a function of neurons from the layer l + 1. Taking
the total derivative with respect to z[l]

j we obtain the following recursive expression for the
derivative. We can actually express δ[l]

j as:

δ
[l]
j = ∂C

∂z
[l]
j

=
nl+1∑
k=1

∂C

∂z
[l+1]
k

∂z
[l+1]
k

∂z
[l]
j

=
nl+1∑
k=1

δ
[l+1]
k

∂z
[l+1]
k

∂z
[l]
j

. (3.17)

From (3.9) we know we can express the following

z
[l+1]
k =

nl∑
s=1

w
[l+1]
ks σ(z[l]

s) + b
[l+1]
k . (3.18)

Deriving then z[l+1]
k with respect to z[l]

j yields the following equation:

∂z
[l+1]
k

∂z
[l]
j

= w
[l+1]
kj σ′(z[l]

j). (3.19)

Combining (3.19) and (3.17) yields the following

δ
[l]
j =

nl+1∑
k=1

δ
[l+1]
k w

[l+1]
kj σ′(z[l]

j).

We can rewrite it as
δ

[l]
j = σ′(z[l]

j)((W [l+1])T δ[l+1])j .

11

3 Minimization of the cost function: the mainstream method

This is nothing other than then componentwise form of (3.12b).

Now let us dive into the proof of (3.12c).

From (3.9) and (3.10) we can express the following

z
[l]
j = (W [l]σ(z[l−1]))j + b

[l]
j . (3.20)

Due to the absence of any dependence between bj and z[l−1], we get the following expression

∂z
[l]
j

∂b
[l]
j

= 1. (3.21)

From the chain rule we can express the following

∂C

∂b
[l]
j

= ∂C

∂z
[l]
j

∂z
[l]
j

∂b
[l]
j

= ∂C

∂z
[l]
j

= δ
[l]
j . (3.22)

Finally we shall prove (3.12d).
We know that we can rewrite (3.9) as

z
[l]
j =

nl−1∑
k=1

w
[l]
jka

[l−1]
k + b

[l]
j .

Deriving z[l]
j with respect to w[l]

jk yields the following:

∂z
[l]
j

∂w
[l]
jk

= a
[l−1]
k . (3.23)

We obtain:

∂z
[l]
s

∂w
[l]
jk

= 0 for s 6= j. (3.24)

12

3.2 Backpropagation

Considering C as a function of the neurons at layer l, we can write the total derivative of C
with respect to w[l]

jk as follows:

∂C

∂w
[l]
jk

=
nl∑
s=1

∂C

∂z
[l]
s

∂z
[l]
s

∂w
[l]
jk

. (3.25)

Using now (3.23) and (3.24) we obtain

∂C

∂w
[l]
jk

= ∂C

∂z
[l]
j

∂z
[l]
j

∂w
[l]
jk

= ∂C

∂z
[l]
j

a
[l−1]
k = δ

[l]
j a

[l−1]
k . (3.26)

Hence, the proof of Lemma 3.2.1 is complete.

We can perform a forward pass in the network thanks to equations (2.4a), (2.4b), (3.9), and
(3.10) then evaluate the final output a[L] in computing successively a[1], z[2], a[2], z[3], . . . , a[L].
That being done, we can now compute δ[L] with (3.12a). (3.12b) yields through a backward
pass the values of δ[L−1], δ[L−2], . . . , δ[2]. Equations (3.12c) and (3.12d) spawn the values of
the desired partial derivatives. Using such an algorithm to compute gradients is known as
backpropagation.
Taking a look at the definition of a partial derivative, we understand that the entity ∂C

∂w
[l]
jk

estimates how much change occurs with the variable C due to a little variation in w[l]
jk.

In the end, training a neural network with the stochastic gradient descent and backpropagation
is all about doing a forward pass in the network using the values of the weights and biases
from the preceding iteration (at the first iteration the values of the weights and biases are
randomly initialized) and then computing the value of the final output a[L]. Hence, we can
perform a backpropagation and readjust the values of the weights and biases keeping in view
the desired output. This readjustment is performed thanks to the equations in Lemma 3.2.1.
These equations actually reveal to us how we are to change the weights and biases in order
to take a step in the right direction (one which minimizes the loss function).

13

4 Minimization of the cost function: the AMPL
approach

The AMPL approach is implemented in a software called AMPL, which actually justifies
the name of the approach. AMPL is a modelling language for mathematical programming
that was conceived in 1985. One of the noteworthy aspects of AMPL is the fact that its
arithmetic expressions are akin to customary algebraic notations. Moreover, AMPL also uses
algebraic notations to express ordinary mathematical programming structures (for example
network flow constraints and piecewise linearities). AMPL offers a quite supple interface,
allowing the user to choose from various solvers the one that fits best to his problem.
The main disparity between our approach with AMPL and the SGD approach is the fact
that, contrary to the SGD approach where the gradient of the cost function is computed at
randomly chosen training points, in our approach with AMPL, we minimize the cost function
either over the entire dataset when it is not too big for the capacity of the computer or we
break down the dataset into small batches and minimize the cost function iteratively over
each batch. In the end, we often average the different values of the weights and biases we
obtained through minimizing the cost function over the different batches. We proposed also
another scheme to combine the weights and biases yielded by the different batches in section
5.2.2.

4.1 The solvers in AMPL

AMPL proffers a wide range of solvers to solve miscellaneous optimization problems. Since
the cost function is nonlinear, we tested some interesting solvers AMPL offers for nonlinear
optimization problems: Baron, Conopt, Knitro, Lgo, Loqo, Minos, and Snopt. In order to
avoid making our work unnecessarily weighty, we shall explain the functioning of just one
solver: Conopt. The choice is based on the fact that it is one of the solvers we used the
most.

15

4 Minimization of the cost function: the AMPL approach

4.1.1 Conopt

AMPL/Conopt is an algorithm that is based on the GRG (generalized reduced gradient)
and was conceived with the main intention to solve large non-linear programming problems.
Suppose we wanted to minimize (or maximize) a function f(x) which is subject to some
constraints that we express through g(x) = b (this is very often a system of nonlinear
equations). Conopt postulates that f and g are differentiable and have smooth first derivatives.
If that is not the case, perhaps because of the use of functions like abs, min, max, round or
trunk, then Conopt will have no idea about that. It will make use of an approximation of
the real model using function values and first-order derivatives and it can easily get stuck in
areas where any of the previously mentioned quantities is not continuous [11]. Some of the
main assumptions under which Conopt properly functions are the following [12]:

1. All functions used in the problem (objective and constraint functions) are at least twice
differentiable.

2. All functions used in the problem are defined for every value of the optimization
variables that satisfies the bounds.

3. The functions are sparse, that is to say, there are manifold zero Jacobian elements in
each equation.

In the following subsection, we will dive into the GRG which is the gist of the algorithm used
by Conopt.

4.1.1.1 GRG algorithm

The generalized reduced gradient is an algorithm to solve nonlinear problems having a general
structure. Suppose the nonlinear problem one wanted to solve had the form

minimize f(X) (4.1)

subject to gi(X) = 0 , i = 1, . . . ,m (4.2)

lj ≤ Xj ≤ uj , j = 1, . . . , n (4.3)

16

4.1 The solvers in AMPL

where X is a n dimensional vector and uj , lj are given lower and upper bounds such that
uj > lj . The Form (4.1)-(4.3) is entirely general because we can always transform inequality
constraints to equalities as in (4.2), simply by adding some slack variables. Hence the
components of the vector X are both the original variables of the problem and the previously
mentioned slack variables [13].

We suppose m < n. The main idea of the GRG is to use the equalities in (4.2) to express m
of the variables, called basic variables, in terms of the remaining n−m nonbasic variables.
This is also exactly how the simplex method of linear programming works (see [14]). Suppose
X̄ is a feasible point, ȳ the vector of basic variables and x̄ that of the nonbasic at X̄, so that
X is partitioned as

X = (y, x), X̄ = (ȳ, x̄) (4.4)

then (4.2) can be written as
g(y, x) = 0, (4.5)

where
g = (g1, . . . , gm). (4.6)

We suppose that the objective f and constraint functions gi are differentiable. Hence, making
use of the implicit function theorem [15], a sufficient prerequisite for (4.5) to have a solution
y(x) for all x in some neighborhood of x̄, is that the m×m Jacobian matrix ∂g

∂y , evaluated
at X̄ is nonsingular [13]. If we assume the previously mentioned condition is fulfilled, then
we may express the objective as a function of x only:

F (x) = f(y(x), x). (4.7)

Hence the nonlinear problem is transformed into a reduced problem having only upper and
lower bounds for x close to x̄:

minimize F (x) (4.8)

subject to
lNB ≤ x ≤ uNB (4.9)

where lNB and uNB are the vectors of bounds for x. The GRG algorithm solves the initial
problem (4.1)-(4.3) by solving a series of problems of the form (4.8)-(4.9). One can solve such

17

4 Minimization of the cost function: the AMPL approach

problems by applying some simple modifications to unconstrained minimization algorithms
[13].

So that the reduced problem (4.8)-(4.9) yields useful results, x should freely vary about the
current point x̄. It is true the bounds in (4.9) restrain x, but it is not difficult to move x in
directions which keep these bounds satisfied. The bounds on the basic variables raise a more
grave problem. Suppose some components of ȳ are already at their bounds, then any slight
change in x from x̄ may cause the violation of some bounds. To impede this from occurring
and to ensure the beinghood of the function y(x), we postulate that the following, which we
name nondegeneracy assumption holds:
At any given point X satisfying (4.2)-(4.3), there is a partition of X into m basic variables y
and n−m non-basic variables x such that

lB ≤ y ≤ uB (4.10)

where lB and uB are the vectors of bounds on y and B = ∂g
∂y is nonsingular [13].

Suppose we tried solving the reduced problem (4.8)-(4.9) starting from some feasible point
X = X̄ with basic variables y and nonbasic variables x. Considering (4.7), to evaluate the
function F (x) it is fundamental we know the values of the basic variables y(x). It is true that
apart from linear cases and a few nonlinear scenarios, the function y(x) cannot be determined
in closed forms. Nevertheless, we can use an iterative scheme that solves (4.5) to compute
y(x) for any given x. Hence an algorithm to solve the reduced problem starting from a point
X0 ≡ X̄, is [13]

1. Set i = 0.

2. Replace xi into (4.5) and determine the corresponding values of yi through an iterative
method for solving nonlinear equations.

3. Find a motion direction di for the nonbasic variables x.

4. Select a step size αi such that
xi+1 = xi + αidi

This is quite often accomplished by solving the following one dimensional search problem

minimize F (xi + αdi)

18

4.1 The solvers in AMPL

with α restrained such that xi + αdi does not violate the bounds on x. This one
dimensional search will require that we reiteratively apply step (2) to evaluate F for
various values of αi.

5. Test the actual point Xi = (yi, xi) for optimality. If not optimal, set i = i + 1 and
return to (2)

If in step (2) the value of at least one component of yi exceeds its bound, the procedure
must be interrupted. Let us consider the simple case in which only one basic variable is out
of its bounds. Hence this variable is to be transformed into a nonbasic variable and some
component of x which is not on a bound is to be transformed into a basic variable. After this
basis altering, we obtain a new function y(x), a new F (x), and a new reduced problem [13].

It is possible to implement the GRG without making use of either derivatives of f or of
the functions gi. This requests schemes for solving nonlinear equations and minimizing
nonlinear functions subject to bounds using no derivatives. Though there is no doubt about
the beinghood of such methods, there are rather many more schemes which work using
derivatives. Their efficiency is better comprehended and they could establish themselves over
the years in the solving of large problems [13].

Hence we will be considering GRG algorithms that request first derivatives of f and g.
If we consider minimizing F using derivatives we therefore need a formula for ∇F . F is most
certainly differentiable if f and g are and if ∂g

∂y is nonsingular, which also entails that the
implicit function y(x) is differentiable [13]. From (4.7) we get

∂F

∂xi
= ∂f

∂xi
+ (∂f

∂y
)ᵀ ∂y
∂xi

. (4.11)

In order to evaluate ∂y
∂xi

we use the fact that, if

gj(y(x), x) = 0 , j = 1, . . . ,m (4.12)

for all x in some neighbourhood of x̄, then

dgj
dxi

= 0 = (∂gj
∂y

)ᵀ ∂y
∂xi

+ ∂gj
∂xi

, j = 1, . . . ,m (4.13)

or, in matrix form
(∂g
∂y

)(∂y
∂xi

) + ∂g

∂xi
= 0. (4.14)

19

4 Minimization of the cost function: the AMPL approach

(∂g∂y) being nonsingular at X̄ (nondegeneracy assumption) entails that

(∂y
∂xi

) = −(∂g
∂y

)−1 ∂g

∂xi
≡ −B−1 ∂g

∂xi
. (4.15)

Using (4.15) in (4.11)

∂F

∂xi
= ∂f

∂xi
− (∂f

∂y
)ᵀB−1 ∂g

∂xi
. (4.16)

Let
π = (∂f

∂y
)ᵀB−1. (4.17)

Using (4.17), the components of ∇F are

∂F

∂xi
= ∂f

∂xi
− πᵀ ∂g

∂xi
(4.18)

If X̄ is optimal for (4.1)-(4.3), and if the gradients of all tethering constraints are linearly
independent (see [16]), then the Kuhn-Tucker conditions (see [17]) hold at X̄ [13]. In other
words we can use the Kuhn-Tucker conditions to check how good our current point is
and therefore search further or stop the search if the current point satisfies the previously
mentioned conditions.

20

5 Problems and models

During our entire work, we tried to model three different machine learning problems with
AMPL and solve them with some solvers that AMPL offers. In this section, in a first step,
we present the different machine learning problems we modelled using AMPL. Practical
implementation issues like which activation function or which network structure was used
will not be handled in this chapter, but in the next chapter. In a second step we shall talk
about the various approaches we used in order to solve these problems.

5.1 Problems

5.1.1 State of the cell recognition problem

In this problem, we trained a network that could predict if a given image of a cell was either
in the interphase state (period between two successive cell divisions [18]) or the metaphase
state (stage of mitosis and meiosis in which chromosomes become arranged in the equatorial
plane of the spindle [18]).
The images from the training set and test set are of size 60×60 pixels. We received them from
the department of multi-parameter diagnostics of the Brandenburg University of Technology
Cottbus-Senftenberg.

Figure 5.1: Interphase Figure 5.2: Metaphase

On both images above, the cell concerned is the cell in the center. The peculiarity of this
problem is that, contrary to the others (polygon recognition and handwritten digit recognition,
on a given image, we do not only have the relevant element. Cropping the picture, or taking

21

5 Problems and models

just part of the center of the image (considering every pixel found in a l×w rectangle sharing
the same center with the picture), does not always help to isolate the relevant cell. Firstly,
because this cell is not all the time perfectly fitted in the center of the image (figure 5.3
and figure 5.4 portray some extreme cases). Secondly, because the surrounding cells are
sometimes too close to it (figure 5.1). Moreover, resolving to work with the entire image is
not a very good option, for the images are of size 60×60. This implies our input layer will
have 3600 neurons. Our system will therefore have a huge amount of variables and hence the
computational cost will be tremendous.

Figure 5.3: Interphase Figure 5.4: Metaphase

5.1.2 The polygon recognition problem

In the polygon recognition problem, we aimed at training the computer to predict accurately
if a given image is a triangle, a four-sided polygon, or a five-sided polygon. We used a Python
script to generate our dataset. The images are of size 10×10, see figures (5.5)-(5.7).

Figure 5.5: Triangle Figure 5.6: Four-sided polygon

Figure 5.7: Five-sided polygon

22

5.2 Models

The reason why we went for such a small image size lies in the fact that we wanted a dataset
such that we could train the neural network at once on the entire training set without
dreading high computational costs.

5.1.3 The handwritten digit recognition problem

The handwritten digit recognition problem is a well-known problem in the machine learning
community. The aim is to train a neural network that can predict if a given image is an
integer between 0 and 9. The data used for that purpose is called the MNIST dataset from
the National Institute of Standards and Technology. In the training set, we have a collection
of handwritten numbers from 250 different people, of which 50% are high school students and
50% are from the Census Bureau. The MNIST dataset amounts to a total of 60,000 images
in the training set and 10,000 in the test set, each of size 28×28 pixels with 256 gray levels
[2]. One can download it online. Figure 5.8 displays some extracts from it.

Figure 5.8: MNIST data [2]

5.2 Models

In this subsection, we shall present the different models, approaches we tested in order to
solve the various machine learning problems we mentioned in the previous subsection.

23

5 Problems and models

5.2.1 The basic approach

The "basic approach" is the most intuitive approach one could conceive in order to model
machine learning problems with AMPL and then solve them with one of the solvers AMPL
offers. All our other approaches are derived from it. In the following, we describe the main
steps of the basic approach.

1. In the .mod file:

1.1. Declaration of the different variables that will be used in the model: the number
of hidden layers, number of neurons in each hidden layer, weights, and biases etc.

1.2. Defining the cost function. In our case, we always used the mean squared er-
ror. We nevertheless tried other loss functions such as the binary cross-entropy:
cost = − 1

nL

∑nL
i=1 y(x{i}) log

(
a[L](x{i})

)
+ (1− y(x{i})) log

(
1− a[L](x{i})

)
and the

categorical cross entropy [19]: cost = −
∑nL
i=1 y(x{i}) log

(
a[L](x{i})

)
. We recall

that all the terms used in both sums above (nL,x{i}, a[L] etc.) are to be understood
as defined in section 2.2. The issue with these loss functions is that in our case
(AMPL), the elements of the output vectors of hidden layers are somehow very
close to zero (sometimes even equal to zero) and hence the logarithms of these
elements are too great to be evaluated. So AMPL always prints out an error
notification.

1.3. Defining the constraints in our model. We do this by implementing the algorithm
of a forward pass (2.4a and 2.4b) as a restriction to our model. That is to say we
implement it preceded by the AMPL keyword subject to.

2. In the .dat file:

2.1. Assignation of values to some parameters, for example, number of neurons per
layer, the number of hidden layers, etc.

3. In the .run file:

3.1. Loading the data. Beforehand the pixels of the images are saved in Excel sheets.
In this step, we simply read from the sheets row by row and store the values in the
corresponding variables we created in the .mod file. Actually, each row corresponds
to the entire pixels of an image, and in the case of the MNIST dataset, the first
element of a row corresponds to the label of the image.

24

5.2 Models

3.2. Normalizing the input data. We do this by multiplying each pixel by 0.99
255 and

adding to it 0.01. We divide by 255 because we assume that our images have
an 8-bit depth. Hence, the value of each pixel is found in the interval [0.01,
1]. Suppose we were using the sigmoid function as activation function. Then
for quite big pixel values, the activation function begins to flatten since 1 is an
asymptotic value of the sigmoid function. This is quite problematic because it
leads to saturation in the neural network [20]. Saturation can be understood as
the state in which neurons in hidden layers of a neural network more than often
output values close to the asymptotic ends of the activation function range. This
results in a very slow and inefficient learning [21]. The reason why we added the
offset of 0.01 after scaling the input pixels with 0.99

255 is because zero input values
(pixels) stifle the learning rate of the neural network [20].

3.3. Initializing the label tensor y(x{i}) for every i ∈ 1, . . . , N , see (2.5). For example
in the case of the polygon recognition problem, where our images are either
triangles, four-sided polygons, or five-sided polygons our label vector y will be a
three-dimensional vector since we just have three classes. Normally it is proposed
to do the following: For example, each time the image x{i} is a triangle we set
y(x{i}) = (1, 0, 0), each time it is a four-sided polygon we set y(x{i}) = (0, 1, 0),
and each time it is a five-sided polygon we set y(x{i}) = (0, 0, 1). Suppose we
were using the sigmoid function as activation, 0 and 1 are asymptotic values and
therefore impossible to attain, this might lead to very high values of the weights
and biases in the network because it will be trying to attain this asymptotic values.
In the the end, it will result in saturation in our Network [21]. That is why we
use 0.99 instead of 1 and 0.01 instead of 0.

3.4. Defining the training set. We select simply elements from the training set on
which we want effectively to train the network.

3.5. Initialization of variables.

3.6. Choosing a solver with the AMPL command option solver "solver name".

3.7. Solving the optimization problem with the AMPL solve command.

25

5 Problems and models

5.2.2 Variant 1

In the basic approach, we assume all the data from the training set is used in order to train
the model (step 3.4). The problem behind this approach is, when the training set is quite
huge, training the network at once on all the images in the training set is impossible. We
actually noticed that either the solver computes endlessly or it displays an error notification.
Therefore we came forth with another variant in which we do not train the network at once
on the entire training set, but rather train it progressively on little subsets of the training
set (mini-batches). It enables us to attain higher computation speed. We implement this by
placing steps 3.4 to 3.7 in a for loop (we shall call this loop, loop1 for ulterior references). At
the end of each iteration, we save the new values of the weights and biases. Once the program
is done running, we combine the values of the weights and biases from each mini-batch to get
the final values of the weights and biases of our model. We had two approaches to combine
weights and biases yielded by the mini-batches.
Approach 1 : It is a quite intuitive method, where we just multiple by 1

Nb
each weight and

bias yielded by each mini-batch. Nb denotes the number of mini-batches used.
Approach 2 : Suppose we used Nb mini-batches to train the network. Let fi be the loss
function that was minimized while training the network on the ith mini-batch. The loss
function varies from mini-batch to mini-batch even though it is always the mean squared
error we use for each mini-batch. Before the forward pass in the network, we can consider
the loss function (the general expression of the loss function) as being a function of the
weights and biases and of a set of parameters that represent the pixel values of the images in
the mini-batch. Once the forward pass is done, those parameters take real values and the
only unknown remain the weights and biases. Therefore it is obvious that for two different
mini-batches different expressions of the loss function will be spawned. Now let us assume
that F is the loss function (expression of the loss function) we would have obtained, had we
trained the network over the entire data set at once without splitting it into mini-batches.
It is easy to notice that: F (x) =

∑Nb
i fi(x) with x being a representation of the weights

and biases. Let v(i)
min be the value of a local minimum of fi. Without making any strong

assumptions on our functions, there is no mathematical theorem we can use to prove that
1
Nb

∑Nb
i v

(i)
min is close enough to a local minimum of F . To stress this, we shall consider a

simple one dimensional case (x is a scalar) with Nb = 2 and F (x) = f1(x) + f2(x) = x2 + 1.
f2(x) and f1(x) respectively being equal to 1 and x2. 0 and 10100 are respectively local
minimums of f1 and f2, but x = 0+10100

2 is far from being a local minimum of F . This led us
to conceive a second approach to combine the different weights and biases yielded by the
various mini-batches. Firstly, we recall that a forward pass in our final neural network (after

26

5.2 Models

the combination of the weights and biases from the different mini-batches) looks like the
following:

a[1] = x ∈ Rn1 , (5.1a)

a[l] = σ(W [l]a[l−1] + b[l]) ∈ Rnl , for l = 2, 3, . . . , L. (5.1b)

Written with more details, equation (5.1b) looks like the following: a[l] = σ(
∑
j w

[l]
ij a

[l−1]
j +b[l]

i).
Each weight and bias is a combination of weights and biases from all the Nb mini-batches.
It entails that for a given weight wij (we unheed the layer from which the weight or the
bias is) and a given bias bi we have the following: wij =

∑Nb
l=1 λlw

(l)
ij and bi =

∑Nb
l=1 βlb

(l)
i ,

with λl and βl ∈ R , l ∈ {1, . . . , Nb}. We want to underline here that w(l)
ij is the value we

obtain for the weight wij after training the network on the lth mini-batch, the same goes
for b(l)

i . Suppose cost1 is the value of the loss function, see (2.5), for λl = 1
Nb

and βl = 1
Nb

,
l ∈ {1, . . . , Nb}. In this approach, we aim at choosing λl and βl, l ∈ {1, . . . , Nb} such that the
value of the corresponding loss function cost2 fulfills : cost2 ≤ cost1. We want to underline
that the values of cost2 and cost1 are computed over the union of all the mini-batches that
were used in the training process.

5.2.3 Variant 2

In the basic approach, we said, in step 3.5 that the variables are to be initialized, but we did
not disclose how they were to be initialized. During our different experiments, we used two
initialization methods. In the first method (constant initialization), we initialized the variables
(weights and biases) with the same constant. In the second method (random initialization)
we used two well-known schemes in the machine learning community: Xavier initialization
and He initialization. The goal behind the Xavier initialization is to preserve the variance of
the activation and the back-propagated gradient as one moves forward and backward in the
network [22]. Hence the back-propagated signal is preserved and the activation signal is kept
from exploding to a high value or vanishing to zero as it moves through the hidden layers.
Concretely the Xavier initialization works as following: The biases are initialized with zeros
and each weight between layer l and layer l + 1, l = 1, . . . , L− 1 (keeping with the notation
in section 2.2) is initialized with a random number chosen from the uniform distribution
U(−

√
6√

nl+nl+1
,

√
6√

nl+nl+1
) [22] .

27

5 Problems and models

In order to derive the Xavier initialization, Glorot and Bengio [22] postulated that the
activations are linear, which is quite untrue for the ReLU activation. The goal of the He
initialization is to propose a more sound weight initialization scheme taking into account the
ReLU (rectified linear unit) activation, defined as f(x) = max(0, x). The principle used to
achieve that remains nevertheless the same as the one used in the Xavier initialization, that
is to say, the preservation of the variance of the activation and the back-propagated gradient.
Furthermore, it was experimentally put into evidence that the He initialization could enable
convergence in extremely deep convolutional neural network, while the Xavier initialization
could not [23] . Concretely this is how the He initialization works, just as with the Xavier
initialization every bias is initialized with zero, but each weight between layer l and layer
l+ 1, l = 1, . . . , L− 1 is initialized with a random number taking from a zero-mean Gaussian
distribution with variance 2

nl
[23].

We used the vantages of random weight initialization schemes (namely that at each program
run we obtain a different solution) to spawn a new variant to solve machine learning problems
with AMPL. These are the following adjustments we brought to variant 1 so as to obtain
this variant.

1. In step 3.5 a random initialization method is used. We use either the He initialization
or the Xavier initialization depending on which activation function we opted for.

2. In loop 1 after the selection of the mini-batch on which the network will be trained, we
include a second for loop (loop 2) in which we train the network t times on the same
mini-batch. Since the variables (weights) are initialized randomly, we always obtain
new values for our variables each time we enter loop 2. In each iteration in loop 2, we
save the yielded values of the weights and biases and test the accuracy of the network
on a validation set and save the result of the test. At the end of loop 2, we retain the
values of the weights and biases of the iteration that had the best performance on the
validation set. When that is done, we move to the next iteration in loop 1, where we
select a new mini-batch and repeat the process all over again (loop 2).

3. At the end of loop 1 we combine the different values of the weights and biases that
were retained (they correspond somehow to the best result of each mini-batch) using
approach 1 described in variant 1. We made no use of approach 2 for we dreaded that
the entire variant (variant 2) will become in the end computationally too expensive.

4. A change is also brought to step 1.3. We bring in some further constraints on the
variables. Let v be a variable (either weight or bias) in our network. We denote as vprev

28

5.2 Models

the value of v from the previous iteration in loop 1. Furthermore, vact denotes the value
of v in the actual iteration (loop 1). It is actually chosen from the best iteration at
the end of loop 2. Hence we request that |vact − vprev| ≤ ε. The motivation behind this
constraint is to keep the system working with the same neural network and not with
another permutation of the network. It strongly helped to enhance the performance of
the network.

In summary, what we do in this variant is to train the network on several mini-batches using
loop 1, and on each mini-batch we train the network several times using loop 2, seeking the
best result (with respect to the validation set) the batch can offer. At the end of loop 2, we
retain the best result we could obtain and move to the next mini-batch and do the same
(move to the next iteration in loop 1). At the end of loop 1, we combine the different values
of the weights and biases retained at each iteration in loop 1 using approach 1 described in
variant 1.

5.2.4 Variant 3

This variant is not really a variant on its own, but rather a slight altering we can bring
into the previous variants. This change is all about imposing some restrictions on the cost
function, thus telling the system how good we want the cost function to be. Taking for
example the case of variants where we work with mini-batches, we can either request that,
for a given real number ε1, we want the value of the loss function fi for every mini-batch i
to be such that: |fi| ≤ ε1, or else we can require that: |fi+1 − fi| ≤ ε1, i = 1, . . . , Nb, with
Nb being the total number of mini-batches we used and fi is the value of the loss function
associated with the ith mini-batch. The inequality is given under the assumption that the
neural network was minimized in an ascending order over the mini-batches with respect to
their indices.

5.2.5 Variant 4

This variant was conceived specially for the handwritten digit recognition problem, but it
is also possible to generalize it so that it is applicable to similar problems, namely in cases
where the dimension of the input layer is quite big (greater than 500) and that of the output
layer is greater than three. We will be presenting and explaining this variant based on the

29

5 Problems and models

handwritten digit recognition problem. In the following we shall try to explain the approach
step by step:

1. We split the handwritten digit recognition problem into ten sub-problems. For more
clarity, we represent each sub-problem with an index between zero and nine. In the
sub-problem number i, with i ∈ {0, . . . , 9}, we try to train a neural network that can
predict if a given image is number i or not. This implies that the output vector y of
the neural network is such that y ∈ R2. Suppose y = (a, b), for a > b, we consider that
the prediction of the neural network regarding the input image was in favor of number
i, or else we consider it was in disfavour of number i.
For each sub-problem i, we write a subscript i (subprogram i) that solves it. We can
solve each of these sub-problems using any of the approaches we described previously.
For the sake clarity, we will consider that, each time the subprogram i, i ∈ {0, . . . , 9}
predicted that an image of a given number between zero and nine was number i, the
output of the neural network was 1, else we consider the output to be 0. This actually
means that we map the output y = (a, b) of the neural network to 1, when a > b, else
we map it to 0.

2. After solving each sub-problem i, we test the neural network that was trained in it, on
a validation set. The results of this different tests are saved in a matrix A ∈ R10×10,
such that sii = Ai,i, i ∈ {0, . . . , 9} holds the value of the success rate of subprogram
i in recognizing number i. In Ai,j , i ∈ {0, . . . , 9}, j ∈ {0, . . . , 9} with i 6= j we save
γij = 1− sij , where sij is the success rate of subprogram i in predicting that an image
of number j is not number i. We can also understand γij as the error subprogram i

commits in recognizing an image of number j as not being i. In other words, we mean
the error it commits in differentiating number j from number i.

3. Our final program is a medley of the ten subprograms we previously presented. The
final program functions as following, when we present it an image of a given number
between zero and nine, we pass the image to the ten different subprograms we mentioned
earlier. There are actually several possible outcomes, which we will like to analyze in
details in the following.

3.1. Only one subprogram returned a 1 as output. The output of our final program
in this case will simply be the index of that subprogram. Our decision is based
on the fact that we assume that the sii = Ai,i ≥ 0.9 (which is actually what we

30

5.2 Models

observed during our experiments), that being said, it would be very likely that
our output was actually the right prediction.

3.2. All the ten subprograms returned zero as output. Actually, in this scenario, we
know that the outputs of nine of the ten subprograms are correct and that just
one subprogram yielded a wrong output. This subprogram will most likely be
the subprogram j, such that Aj,j = mini∈{0,...,9}Ai,i. Hence we return j as output
(prediction) of the final program.

3.3. More than one subprogram returned a 1 as output . Let J = {l1, . . . , lp}, with
p ≤ 10, be the set that holds the indices of those subprograms. Moreover, we
assume that among those subprograms there is exactly one that made a correct
prediction. The challenge now is to try to figure out which subprogram it could
be. We consider G to be a set holding the possible values of the label of our input
image. Because of our previous assumption we set G := J (initialize G with J).
For j ∈ J : if ∃g ∈ G such that γjg = Aj,g = 0, because of the definition of γ in (2),
it is impossible for g to actually be the right prediction of the label of our input
image. Hence we delete g from G. That is to say, we set G := G\{g}. Now let us
analyze the possible outcomes after this operation.

3.3.1. If card(G) = 1, then we return as prediction the unique element found in G

3.3.2. If card(G) = 0, then this implies our assumption according to which the label
p of the input image was in the set G was wrong. The fact that it was deleted
from the set makes it impossible to have been the right prediction just as we
explained in 3.3. Since the label p of the input image was not in the set G,
it implies that the subprogram p gave a 0 as output after reading the image.
It will therefore very likely be that, among all the existing subprograms,
the subprogram p has the lowest spp value. In other words, p is such that
Ap,p = mink∈{0,...,9}Ak,k.

3.3.3. If card(G) > 1, then we conceive two decision-making schemes.
Method 1 : we return p such that: p = arg max{mink∈G\{j}Ak,j , j ∈ G}, where
arg max returns the value of the index of the column holding the maximum
value.
Method 2 : We create a real vector t with the length 10. If j ∈ G, then
t[j] = {mink∈G\{j}Ak,j}, else t[j] = 0. In addition we create a random number
generator which returns a number j from G with the probability t[j]∑

n∈G
t[n] .

31

5 Problems and models

Our final output will be the output of our random number generator. We
shall take a look at an example to explain the two methods: method 1 and
method 2. Suppose G = {1, 2, 4}. Furthermore, we suppose that for i, j ∈ G,
our matrix A looks like the following (we only included the relevant rows and
columns of A):

Ai,j j = 1 j = 2 j = 4
i = 1 0.99 0.01 0.06
i = 2 0.09 0.95 0.02
i = 4 0.03∗ 0.05 0.98

The first thing we do, regardless the method we are using is to visit each
column j, and mark the row i which makes j most unlikely to be the right
output label, in other words, we highlighted i such that Ai,j = mini∈G\{j}Ai,j ,
j ∈ G. Once we have this bottleneck values, what we do in method 1 is to
choose the column with the less restrictive (highest) bottleneck value. We
recall that γij = Ai,j for i 6= j is the probability that the subprogram i

mistakes number j for number i. Taking a look at our example: If we suppose
that the right output label was 2. It implies that subprogram 1 mistook a
2 for a 1, since it gave out an output equal to 1 after reading an image of a
"supposed" 2. This happens only with a probability of 0.01.
If we suppose the right output label was 4, it means subprogram 2 mistook a
4 for a 2. This happens with a probability of 0.02. Finally, if we suppose that
the right output label was a 1 it means subprogram 4 mistook a 1 for a 4,
this happens with a likelihood of 0.03. We recall that we only mentioned the
bottleneck values since they are the problematic ones. We notice therefore
that the last scenario is the one that is most likely to occur. That is why if
we used method 1 we would return 1 as output.
The truth is, the fact that γ12 = A1,2 = 0.01 < 0.03 = γ41 = A4,1 only makes 2
less unlikely to be the right output label compared to 1 that has a higher (less
restrictive) bottleneck value. It is not impossible that it could actually be the
right label (the same goes for 4). The likelihood that it could actually be the
right output label is 0.01

0.01+0.02+0.03 = 0.16. In the same way, we can compute
the likelihood that 4 or 1 is the right output label and we get respectively
0.33 and 0.5. In method 2, we take what we just explained previously into
consideration. We do this by creating a random number generator that returns
either 1,2 or 4 with the probabilities that were computed above.

32

6 Experiments and discussion

In this chapter, we aim at presenting the manifold experiments we conducted and analyze
their various outcomes. In our first four experiments, we wanted to bring answers to questions
like: what is the best solver to solve machine learning tasks using AMPL as modelling
language? Is there any activation function that outstandingly performs better than the
others? Do more hidden layers and neurons lead necessarily to a better performance? Are
random weight initialization schemes better than initialization schemes with a constant?
Our first wave of experiments aims at bringing answers to all these and more. It is true
that some of the questions we raised previously may seem trivial to folks from the machine
learning community. Since our approach is quite different from the mainstream approach to
solve machine learning problems, that is to say, the stochastic gradient descent combined
with the backpropagation algorithm, we wanted to probe if the conclusions drawn regarding
some of those questions would be experimentally valid in our case also. The second wave of
experiments is mainly to test and evaluate the different models (variants) we presented in
section 5.2. All our first four experiments (section 6.1-6.4) were conducted on the polygon
recognition problem. We used a training set holding 540 images and a test set with 47 images
of each of the three classes, hence amounting to a total of 141 images. Furthermore, we used
the basic approach (see section 5.2.1) in all our first four experiments.

6.1 Experiments on weight initialization schemes

We proposed in section 5.2.3 two main weight initialization schemes: constant weight initial-
ization and random weight initialization (Xavier and He initialization). In this section, we
wanted to put into evidence which scheme experimentally offers the best results in terms
of accuracy of the network. We tested each of the initialization schemes on networks with
different structures (different number of hidden layers and neurons). We realized all the
various trials using Conopt as solver. Regarding the constant weight initialization scheme, in
all our experiments in this subsection we always used zero as initialization constant (that is
to say, we initialized all our weights with zero). The reason behind this resides in the fact
that when we used other real numbers very often the accuracy of the network was very poor.

33

6 Experiments and discussion

We utilize the following notation to describe the structure of the network: (p, n1, . . . , np),
where p is the number of hidden layers and ni, i ∈ {1, . . . , p} the number of neurons in the
hidden layer number i. We summarized the results of our various trials in table 6.1.

Table 6.1: Summary of weight initialization trials

Activation function: Sigmoid
Initialization: Xavier initialization

Structure of
the network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 16 97.87 95.74 100 97.87
(1, 6) 20 97.87 97.87 100 98.58
(1, 10) 126 100 95.74 100 98.58
(2, 3, 3) 32 97.87 97.87 100 98.58
(3, 4, 3, 5) 103 97.87 97.87 97.87 97.87

Initialization: He initialization
Structure of
the network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 8 100 97.87 100 99.29
(1, 6) 26 97.87 95.74 100 97.87
(1, 10) 182 97.87 97.87 100 98.58
(2, 3, 3) 72 97.87 97.87 100 98.58
(3, 4, 3, 5) 141 97.87 100 89.36 95.74

Initialization: Constant initialization
Structure of
the network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 9 87.23 95.74 89.36 90.77
(1, 6) 9 87.23 95.74 93.61 92.19
(1, 10) 391 87.23 97.87 93.61 92.90
(2, 3, 3) 1 0 0 100 33.33
(3, 4, 3, 5) 2 0 0 100 33.33

We used the total number of hidden neurons in a given network structure as parameter
to represent our results graphically since it is difficult to come forth with a graphical
representation that takes into consideration the structure of the network. In case we have
several structures with the same number of hidden neurons with simply average their results,
which could be either the time performance or the overall success rate. We utilized this
method as our default method for the graphical representation of our results.
To be candid the previously mentioned representation scheme does not unveil fine details of

34

6.1 Experiments on weight initialization schemes

the experiments, precisely the disparities in terms of performances that arise in the different
network structures. It is nevertheless a good means to offer a fast-comprehensible upshot of
the experiments.

Figure 6.1: Test on initialization schemes: accuracy performance

Figure 6.2: Test on initialization schemes: computation time

From table 6.1 it is clear that random weight initial schemes like Xavier or He outclass the
constant weight initialization. In addition, we also noticed in other experiments that the
constant weight initialization performs very poorly (overall success rate less than 40%) when
one uses an activation function other than the sigmoid function. All these lead us to think
that the constant weight initialization is no good choice because initializing all the weights
with the same constant makes all the weights have the same value and the activation of the

35

6 Experiments and discussion

neurons identical. Hence, the derivative of the loss function is selfsame for every weight in a
weight matrix of a given layer. All the weights having the same value in every iteration leads
to symmetric hidden layers. Since each neuron of a given hidden layer computes the same
function, we hence have a model that likens a linear model [24]. Hence, the model cannot
handle complex, non-linear data and is effective only one layer deep. That is exactly why
each time we utilized a multi-hidden layer structure we always observed very poor results
(see table 6.1). Random weight initialization schemes hence help to impede this symmetry
problem [25]. Therefore it is strongly recommended to make use of them [26].

6.2 Testing solvers

In this subsection, we tried comparing some of the various solvers AMPL offers (Baron,
Conopt, Knitro, Lgo, Loqo, Minos, Snopt) to see how well they perform at the task of solving
machine learning challenges. Just as we said at the beginning of this chapter our test problem
is the polygon recognition problem. We used four different layer structures and tested each of
the solvers previously mentioned on them. For each solver, we recorded its computation time
and the accuracy of the network. We used as activation function the sigmoid function and
we chose the Xavier initialization as initialization scheme. A Summary of the various trials
is found in tables 6.2 and 6.3. A graphical representation is found in figures 6.3 and 6.4.

Table 6.2: Comparing solvers part 1

Activation function: Sigmoid
Initialization: Xavier initialization

Solver: Baron
Structure of
the network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 5) 595 0 0 100 33.33
(1, 10) 777 100 0 0 33.33
(2, 4, 4) 516 97.87 97.87 100 98.58
(3, 4, 3, 4) 518 97.87 97.87 100 98.58

Solver: Conopt
(1, 3) 8 100 97.87 100 99.29
(1, 10) 182 97.87 97.87 100 98.58
(2, 4, 4) 68 100 97.87 100 99.29
(3, 4, 3, 5) 244 95.74 95.74 100 97.16

36

6.2 Testing solvers

Table 6.3: Comparing solvers part 2

Activation function: Sigmoid
Initialization: Xavier initialization

Solver: Knitro
Structure of
the network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 5) 0 0 0 0 0
(1, 10) 0 0 0 0 0
(2, 4, 4) 0 0 0 0 0
(3, 4, 3, 4) 0 0 0 0 0

Solver: Lgo
(1, 5) 1 0 100 0 33.33
(1, 10) 2 100 0 0 33.33
(2, 4, 4) 1 0 0 100 33.33
(3, 4, 3, 4) 8 0 0 100 33.33

Solver: Loqo
(1, 5) 100 97.87 97.87 100 98.58
(1, 10) 1281 97.87 95.74 100 97.87
(2, 4, 4) 113 100 97.87 100 99.29
(3, 4, 3, 4) 196 97.87 97.87 97.87 97.87

Solver: Minos
(1, 5) 43 97.87 91.48 78.72 89.35
(1, 10) 75 78.72 93.61 91.48 88.17
(2, 4, 4) 27 100 97.87 68.08 88.65
(3, 4, 3, 4) 38 97.87 93.61 0 63.82

Solver: Snopt
(1, 5) 270 100 95.74 100 98.58
(1, 10) 1334 97.87 93.61 100 97.16
(2, 4, 4) 508 97.87 97.87 100 98.58
(3, 4, 3, 5) 6 0 100 0 33.33

37

6 Experiments and discussion

Figure 6.3: Test on solvers: accuracy performance

Figure 6.4: Test on solvers: computation time

From table 6.2 and table 6.3, we notice that Knitro and Lgo performed miserably compared to
the other solvers. Hence, we will not recommend them for the task of solving machine learning
problems. Though Baron performed very well on multi-hidden layer structures, it seems not
to be efficient on single-hidden layer structures and is therefore disqualified from the league
of the recommendable solvers. Minos performed quite averagely compared to top-ranking
solvers like Conopt and Loqo. In some further experiments we conducted, we nevertheless
noticed that it was among the three solvers that returned good results using the ReLU

38

6.3 Influence of the number of hidden layers and neurons on the performance of the network

as activation function, since it uses some special schemes to deal with almost everywhere
differentiable functions. The other solvers are Loqo and Snopt. Snopt performed on all the
network structures we used in our trials except for the last one (3,4,3,5), in terms of accuracy,
almost as well as Conopt and Loqo. But just as the last network setup revealed, Snopt is not
really good at handling multi-hidden layers structures, especially when the number of hidden
layers is greater than two. Another downside of Snopt is its heavy computation time. For
example, on the setup (1,10) it was seven times slower than Conopt. We noticed that this
difference increases even more when we consider more complex problems like the handwritten
digit recognition or the state of the cell recognition problem. The upside of Snopt is that just
like Loqo and Minos it performs well in terms of accuracy of the network with the ReLU as
activation function. In terms of accuracy, it is noteworthy that Conopt and Loqo yielded
exceptionally good results in every network setup we tested. Compared to its fiercest rival
Loqo, Conopt has the foredeal that it computes faster. On the setup (1,3) it was 12 times
faster and on the setup (1,10) it was 7 times faster. Just as we mentioned previously this
difference in the computation speed increases even more when the problem at hand is of
larger size. Nevertheless, Loqo has the advantage that it performs well with the ReLU as
activation function.

Taking into consideration all that we mentioned previously, we would draw as conclusion
that there is no best solver. Nevertheless, we would strongly recommend the use of Conopt
for most activation functions apart from the ReLU, since it has a lower computation time
compared to the other solvers and yields very good results. In case one opts for the ReLU as
activation function we would recommend the use of either Minos, Loqo or Snopt.

6.3 Influence of the number of hidden layers and neurons on the
performance of the network

It is always quite puzzling to figure out the optimal number of neurons and hidden layers one
should choose for a neural network. With optimal we mean the computation time is as small
as possible and the results are as good as possible. Intuitively one will want to use a network
with a great number of neurons and hidden layers to attain the best possible results the
network can offer. In this subsection, we wanted to check experimentally if this intuitive idea
is correct, that is to say, if more hidden layers and neurons often improve the accuracy of the
network. For the tests we conducted in this subsection we used networks with an increasing
number of hidden layers and neurons. We chose Conopt as solver, the sigmoid function as

39

6 Experiments and discussion

activation, and the Xavier initialization as initialization method. We summarized our trials
in table 6.4 and graphical illustrations of the outcome of the experiments are found in figures
6.5 and 6.6.

Table 6.4: Influence of the number of hidden layers and neurons on the performance of the
network

Activation function: Sigmoid
Initialization: Xavier initialization

Solver: Conopt
Structure of the
network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 8 100 97.87 100 99.29
(1, 6) 26 97.87 95.74 100 97.87
(1, 10) 182 97.87 97.87 100 98.58
(1, 15) 43 97.87 97.87 100 98.58
(1, 26) 254 97.87 97.87 100 98.58
(2, 3, 3) 68 100 97.87 100 99.29
(2, 10, 15) 644 97.87 100 100 99.29
(3, 4, 3, 5) 244 95.74 95.74 100 97.16
(3, 10, 15, 20) 2380 100 95.74 100 98.58
(4, 16, 22, 18, 14) 15571 100 97.87 100 99.29

Figure 6.5: Influence of hidden neurons on accuracy

40

6.3 Influence of the number of hidden layers and neurons on the performance of the network

Figure 6.6: Influence of hidden neurons on computation time

We notice from table 6.4 that the best performance of the network could be attained using
just a single hidden layer holding only three hidden neurons. Nevertheless, we could also
achieve the same performance using more hidden layers and neurons (2,10,15). It is also
noteworthy that though we used a structure of three hidden layers we could not attain an
overall accuracy of 99%. The same goes for a single hidden layer structure with 26 hidden
neurons. We could notice experimentally that more hidden layers and neurons do not always
improve the accuracy of the network. This leads us to believe that the idea according to
which more hidden neurons often improve the performance of the network is false. There is
an optimal number of hidden neurons for each artificial neural network [27]. Furthermore,
from a certain number of hidden neurons, the network tends to overfit the data and hence
performs poorly [28].

41

6 Experiments and discussion

6.4 Trials on activation functions

There are miscellaneous functions one can use as activation. In this subsection, we wanted to
probe some popular activation functions and find out if perhaps there are any that perform
outstandingly well compared to others. We considered as in our previous experiments the
polygon recognition problem. We tried solving it using several setups (artificial neural
networks with various number of hidden layers and neurons). On each setup, we tried the
following activation functions: ReLU, sigmoid, softmax, tanh, and swish.

6.4.1 ReLU

In the year 2010 Nair and Hinton proposed the rectified linear unit (ReLU) as activation
function. Hitherto it has been the mainstream activation function in the domain of deep
learning applications with state-of-the-art results [29]. The ReLU activation function performs
a threshold operation, setting input elements with negative values to zero, or else leaves them
untouched. For a given vector x ∈ Rn the ReLU can be express by [30]

f(x) = max(0, x) =

xi, if xi ≥ 0

0, else

A graphical representation of the ReLU function looks like the following image

Figure 6.7: ReLU [3]

In table 6.5 is found a summary of our experiments using the ReLU as activation function.

42

6.4 Trials on activation functions

Table 6.5: Influence of the activation function on the performance of the network: ReLU

Activation function: ReLU
Initialization: He initialization

Solver: Minos
Structure of the
network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 197 95.74 95.74 100 97.16
(1, 6) 422 95.74 97.87 97.87 97.16
(1, 10) 816 95.74 97.87 100 97.87
(2, 3, 3) 154 95.74 97.87 97.87 97.16

6.4.2 Tanh

Simply defined the hyperbolic tangent (tanh) function is the ratio between the hyperbolic
sine and the cosine function [31]. It is a smooth zero-centered function whose values reside
between -1 and 1 [30]. For a given real number x, the tanh function can be expressed by the
following [4]

tanh(x) = sinh

cosh
= exp(x) − exp(−x)

exp(x) + exp(−x) .

The curve of the tangent hyperbolic looks like the following image

Figure 6.8: Tanh [4]

In section 5.2.1 we said that we initialize the label tensor with 0.01 and 0.99 because 0 and 1
are asymptotic values of the sigmoid function. As we can notice in figure 6.8, -1 and 1 are
asymptotic values of the tanh. Hence, we initialize the label tensor with -0.99 and 0.99.
In table 6.6 is found a summary of our experiments using the tanh as activation function.

43

6 Experiments and discussion

Table 6.6: Influence of the activation function on the performance of the network: Tanh

Activation function: Tanh
Initialization: He initialization

Solver: Conopt
Structure of the
network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 18 97.87 95.74 100 97.87
(1, 6) 52 97.87 97.87 100 98.58
(1, 10) 79 100 95.74 100 98.58
(2, 3, 3) 129 97.87 97.87 100 98.58

6.4.3 Swish

Ramachandran et al. from the Google brain team presented in the year 2017 a newly
conceived activation function under the name swish which was to present an alternative to
the ReLU [32]. The swish function is a smooth non-monotonic function which is bounded
at its lower limit and unbounded at its upper limit [30]. This function also known as the
sigmoid weighted linear unit or Silu, given a real number x, is defined by [33]

x

1 + exp(−x)

A graphical representation of the swish function is shown in figure 6.9.
In table 6.7 is found a summary of our experiments using the Silu as activation function.

Figure 6.9: Swish [5]

44

6.4 Trials on activation functions

Table 6.7: Influence of the activation function on the performance of the network: Swish

Activation function: Swish
Initialization: He initialization

Solver: Conopt
Structure of the
network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 38 95.74 97.87 100 97.87
(1, 6) 168 97.87 91.48 100 96.45
(1, 10) 494 95.74 97.87 100 97.87
(2, 3, 3) 39 97.87 95.74 97.87 97.16

6.4.4 Sigmoid

The sigmoid is a nonlinear activation function often used in feed-forward neural networks
[30]. It is bounded, differentiable and defined for all real values. Furthermore, it has positive
derivatives and some degree of smoothness [34]. For a given real value x we can express it
through the following

f(x) = σ(x) = 1
1 + exp(−x)

A graphical representation of the sigmoid is as shown in figure 6.10.

Figure 6.10: Sigmoid [6]

We summarized the various outcomes of our trials with the sigmoid function in table 6.8.

45

6 Experiments and discussion

Table 6.8: Influence of the activation function on the performance of the network: Sigmoid

Activation function: Sigmoid
Initialization: He initialization

Solver: Conopt
Structure of the
network

Computation
time [s]

Success rate
triangle[%]

Success rate
four-sided
polygon[%]

Success rate
five-sided
polygon[%]

Overall suc-
cess rate

(1, 3) 8 93.61 95.74 100 96.45
(1, 6) 10 100 97.87 100 99.29
(1, 10) 62 97.87 97.87 100 98.58
(2, 3, 3) 67 100 95.74 100 98.58

From what we can observe from tables 6.5 - 6.8, in terms of overall success rate there is
no major difference between the various activation functions we probed. Even though the
sigmoid seems to slightly perform better than the rest, we do not want to make any fast and
hard conclusion regarding which activation is the best, because for a given setup there is
no "definite" result. The reason behind this is the fact that if we reprise the tests for each
activation function we would get different results due to the random initialization schemes
we used.

There are nevertheless two important remarks we will like to make. The first is quite
noteworthy. In terms of computation time the ReLU makes the network very slow. For
example, compared to the scenario with the sigmoid function, the network with the ReLU
was 13 times slower on the setup (1,10) and 42 times slower on the setup (1,6). This becomes
a very serious issue when we handle larger problems like the handwritten digit recognition,
because even Conopt takes hours, see days to handle such problems (see section 6.5). On the
other hand, exponential activation functions like the sigmoid or the tanh are not flawless. We
noticed something strange (exploding activations) during our various trials using this class of
activation functions. We heeded that sometimes the weights and biases the solvers yield are
such that when we try performing a forward pass in the network (or when we try to test a
given data point) the weighted inputs of some neurons are such that their exponential values
cannot be computed because they are too large.
This problem is even more recurrent when we try tackling larger problems like the handwritten
digit recognition. This exploding activations problem recalls us a well-known problem in
the machine learning community: the exploding gradient problem. The exploding gradient
problem as introduced in [35], denotes a drastic increase of the norm of the gradient during
the training [36]. The consequence of this is a very large update of the weights in the network.

46

6.5 Models on trial

Though the exploding gradient issue is not quite identical to the exploding activations
problem, they nevertheless have some common traits: the weights are somehow too large.
We noticed in some experiments we conducted and in which we were confronted with the
exploding activations issue that though there were a great many weights with absolute values
less than one, there were nevertheless some few with absolute values above a hundred. This
prodded us to test some solutions for the exploding gradient in our own case. We discuss the
outcome of these tests in section 6.5.

6.5 Models on trial

In this subsection, our aim is to see how good our different models perform on medium
size machine learning problems like the handwritten digit recognition and the state of cell
recognition. To achieve this, we realized multiplicious tests to put in evidence the performance
of each of the models we presented in section 5.2.

6.5.1 Solving the exploding activations issue

Handling medium size machine learning challenges was not without hurdles. One of the
greatest snags we confronted was the exploding activations problem. We observed it most
often on the handwritten digit recognition problem independently of the size of the training
set and the model used. We mentioned in section 6.4.4 that this problem likens the exploding
gradient issue for which there is already a wide range of solving schemes.

A quite onefold solution is redesigning the network model to have fewer hidden layers [37].
This was actually of no help in our case for we trained our models generally with single-hidden
layer structures and used in most of the cases less than 20 hidden neurons. Even when we
tried altering the structure of the network by reducing the number of hidden neurons the
problem was still not solved.

Another way to solve the exploding gradient problem is using gradient clipping [38]. We
represented in section 3.1 the update formula of the stochastic gradient descent with (3.6).
Gradient clipping imposes an upper bound on the update of p, by placing a constraint on the
norm of the gradient [39]:

47

6 Experiments and discussion

p→ p− ηhc∇Cx{i}(p), (6.1a)

hc = min{ ηc
‖∇Cx{i}(p)‖

, 1}. (6.1b)

ηc is a hyperparameter that is to be cautiously chosen. We want to mention that (6.1a) and
(6.1b) present a clip by norm scheme and not a clip by value, where values of the gradient
vector are scaled if they exceed a certain threshold. In the clip by norm, the whole gradient
vector is scaled if its norm goes beyond a certain pre-set value. In the stochastic gradient
descent this places a bound on the possible values of the step size during the training, hence
preventing too large updates [39].
The previously mentioned scheme is actually not applicable in our case because we can’t
easily manipulate the gradient of the cost function. Even if that was possible making use
of this method entails that for it to function properly we need to alter the algorithm with
which Conopt works. That is actually not possible for end-users.

It is also proposed to use weight regularization to forestall the exploding gradient issue.
There are two genres of weight regularization schemes: the L1 (absolute weights) and the L2

(squared weights) weight penalty [40]. When applying either of these weight regularization
schemes the new loss function of the neural network is the sum of an unregularized objective
and a regularization term. Considering a general form of the loss function expressed by f(x),
where x represents the weights in our model, the modified loss function fλ(x) using a weight
penalty of type L2 is given by the following expression [41]

fλ(x) = f(x) + λ‖x‖22, (6.2)

where λ is a regularization parameter which should be properly chosen from (0, 1). We want
to mention that (6.2) is also known as the Tikhonov regularization [42]. In the same way,
we can express the modified loss function using a weight penalty of type L1 utilizing the L1

norm in (6.2) rather than the L2 norm. We hence obtain

fλ(x) = f(x) + λ‖x‖1, (6.3)

which is also known under the name of Lasso regularization [43].
We tested the L2 regularization with values of λ from the set Sλ = {0.1, 0.2, 0.3, . . . , 0.9}.

48

6.5 Models on trial

The problem we tried solving was the handwritten digit recognition. Hence, we trained a
neural network using the basic approach on a training set of 3000 images and tested it on a
set holding 40 images of each number from zero to ten, thus amounting to a total of 400
images. A summary of our trials is found in table 6.9.

Table 6.9: L2 regularization

Activation function: Sigmoid
Initialization: Xavier initialization

Solver: Conopt
Structure of the network: (1,12)

Value of λ Computation
time [s]

Overall suc-
cess rate [%]

λ = 0.1 1876 58.75
λ = 0.2 3751 41.50
λ = 0.3 1689 37.75
λ = 0.4 1425 37.75
λ = 0.5 2672 40
λ = 0.6 2063 48
λ = 0.7 2423 44
λ = 0.8 2407 20
λ = 0.9 1945 45

We did not observe the exploding activations problem for any value of λ in Sλ but the
accuracy of the neural network was very poor.
We also tried the L1 regularization for λ = 0.1 on the same setup we mentioned previously.
The test ran for roughly 24h and yielded no results. We can notice from table 6.9 that for
every λ ∈ Sλ the trials we conducted were always in a specific time range (1424s, 3752s). It
will be very likely that trying the L1 regularization for another value of λ might also run for
24h and yield no result. Hence, we did not probe the L1 regularization for any other value of λ
bar 0.1. A reason behind the very poor performance of both the L1 and the L2 regularization
could be that the values of λ we probed were not optimal. There are miscellaneous methods
proposed to tune hyperparameters, one of them is cross-validation [44]. It is thought to
be a good way to determine an optimal value of λ [41]. Using cross-validation would still
require that we choose our regularization parameter over a discrete set {λ1, . . . , λm} and still
train our network with these different values of λ. Having probed already a good number
of interesting values λ can take, we were very pessimistic regarding the outcome of the
cross-validation method. Hence, we did not implement it.

49

6 Experiments and discussion

The last method we tried in order to solve the exploding activations issue is an approach
we conceived on our own and it is quite heuristic. The idea was spawned by the fact that
normalizing the data can help ward off the exploding gradient issue [45]. It is true we
proposed in section 5.2.1 an approach to normalize the data. Since this approach did not
help prevent the exploding activations issue we decided to try another data normalization
scheme. Suppose x ∈ Rn is the pixel vector of an image in our data and n the total number
of pixels contained in the image. For i = 1, . . . , n we set

xi =
xi −

∑n

k=1 xk

n

max{x1, . . . , xn} −min{x1, . . . , xn}
.

We tested this other normalization scheme to see if it could help against the exploding
activations issue and we noticed it was unsuccessful. Finally, we came up with the idea of
combining both normalization schemes. That is to say, we normalize every image in our
data set firstly with the normalization scheme proposed in section 5.2.1 and secondly with
the recently proposed scheme in this subsection. We noticed in several experiments that
it greatly contributed to ward off the exploding activations issue and contrary to the L2

regularization yielded very good results in terms of accuracy of the network. It was thanks
to it that we could successfully train neural networks on the handwritten digit recognition
problem. We conducted a great many experiments with this double normalization scheme
and could count just around 15 trials in which it was unsuccessful. That is not surprising
since even the well-known schemes mentioned in this subsection are not always successful.

6.5.2 The basic approach

We tested the basic approach on the handwritten digit recognition problem training the
network on a set of 3000 images. We tested the results on a set of 400 images holding 40
images of each number from zero to ten. We used the double normalization scheme presented
in the previous subsection and the Xavier initialization. Furthermore, we used a network
with 1 hidden layer and 12 hidden neurons. We chose the Sigmoid function as activation and
Conopt as solver. We ran the test 5 times. It took around 10h and the best iteration yielded
an overall success rate of 93.25% on the test set.

The network was trained just on 3000 data because we heeded that when we use more data
for example 4000 the solver either yields very poor results (overall success rate of around
10%) because it computes for a very short period of time, or it aborts the test (training)

50

6.5 Models on trial

in less than 5 minutes without yielding any result. Though Conopt can handle successfully
models with 1000000000 equations and variables [46] the previously mentioned case seems to
overwhelm it.

The basic approach was also tested on the state of the cell recognition problem. In section
5.1.1, we talked about our strife to isolate the relevant element in the image. We tried two
different methods. In the first method, we simply resize the images to a 28× 28 format using
the resize function from the PIL library in Python. In the second approach, we hew the
original image into a 28× 28 format by selecting every pixel found in a 28× 28 square sharing
the same center with the image.

Figure 6.11: Resizing from center

We tested the basic approach on both image scaling schemes. We used a training set holding
3000 images and a test set with 200 images per category (interphase and metaphase), hence
amounting to a total of 400 images. We used the standard normalization scheme proposed
in section 5.2.1 since we never observed the exploding activations issue in this case study.
The neural network we used had the structure (1,12). In addition, we selected the Xavier
initialization as initialization scheme, Conopt as solver, and the sigmoid as activation function
. Using the first scaling scheme we trained the network twice. The test ran for around 10h
and the best accuracy rate we observed was roughly 81%. Regarding the second scaling
method (resize from center) we trained the network 5 times. It lasted roughly 8h and the
best result we observed was an overall success rate of 91.5%. The poorest iteration yielded
an overall success rate of around 89%. It is noticeable that the second image scaling scheme
is better than the first for it seems faster and yields far more better results. It is actually
not surprising since with the second scaling scheme the rescaled images have fewer pixels of

51

6 Experiments and discussion

neighboring cells and are therefore cleaner and more optimal for training. Hence, it was set
as our default scaling scheme for the state of the cell recognition problem.

6.5.3 Variant 2

We recall that variant 2 is an extension of variant 1 and under given circumstances is selfsame
to variant 1. It is mentioned in section 5.2.3 that the approach we use to combine the values
of weights and biases yielded by the different batches is approach 1 described in variant
1. It is because we realized that using approach 2 not only yielded very poor results but
was also computationally much more expensive. Most of the existing solvers for nonlinear
optimization problems return as optimal value a local optimum and not a global. Hence, it
is critical to initialize the variables properly [47]. This is actually the case of Conopt. It is
therefore very likely that the reason why we did not observe good results with approach 2
though it is theoretically a better approach, resides in the failure to find the right way to
initialize the variables in the nonlinear optimization problem spawned by approach 2.

We tested variant 2 on the state of the cell recognition problem. We used Conopt as solver,
the Xavier initialization, and the sigmoid as activation function. The neural network we used
had a single hidden layer and 12 hidden neurons. The data were normalized with the first
normalization scheme (the one proposed in section 5.2.1). Let Ni (loop 2) be the number of
times we go through a given batch and Nb (loop 1) the number of batches. The validation
set as mentioned in section 5.2.3 held a total of 200 images (100 images per class).

Table 6.10: Variant 2 with batch size 500 on the state of the cell recognition

Nb = 5, Ni = 2, batch size = 500
Batch num-
ber

Best overall
success rate
[%]

1 81
2 77
3 80
4 85.5
5 81.5

The entire test ran for roughly 2h30min. Using approach 1 to combine the values of the
different weights, we could attain an accuracy of 90.75% on a test set of 400 images (200
images per class). Using the same main setup mentioned previously and changing the batch

52

6.5 Models on trial

size, reducing it to 50 and setting Nb = 50, we conducted a second test and the results are
represented in figure 6.12.

Figure 6.12: Variant 2 with batch size 50 on the state of the cell recognition

The entire test ran for around 3 hours. After combining the values of the different weights,
we obtained an overall success rate of 74% on a test set holding 400 images (200 images per
class).

On the handwritten digit recognition problem, we used the same setup we described in our
first test in this subsection with some slight modifications. Namely the fact that we used the
double normalization to ward off the exploding activations issue and our validation set held
400 images (40 per class). The final test set held 1000 images (100 per class).

53

6 Experiments and discussion

Table 6.11: Variant 2 with batch size 500 on the handwritten digit recognition problem

Activation function: Sigmoid
Nb = 5, Ni = 2, batch size = 500
Batch num-
ber

Best overall
success rate
[%]

1 10
2 10
3 10
4 10
5 10

The test ran for roughly 155s and the overall success rate on the final test set was 10%. To
investigate why the results were so poor we did some further testing. We increased the batch
size to 1000 and ran a similar test but the results were still the same (10% on each batch and
10% overall success rate on the final test set). We then reduced the batch size to 50 and the
results were still the same. We mentioned in section 5.2.3 (4th adjustment) that we brought
some further restrictions on the variables. In our attempt to get the variant to perform
better we took out these restrictions and altered also the way we initialized the variables.
The random values that are used to initialize the weights on the first batch are exactly the
same that are used on every further batch, we do not generate new random values for each
batch. With these minor changes we could get variant 2 working on the handwritten digit
recognition problem. Hence, using the recently mentioned test setup with a batch size of
2000 we obtained the following results

Table 6.12: Variant 2 with batch size 2000 on the handwritten digit recognition problem

Nb = 5, Ni = 2, batch size = 2000
Batch num-
ber

Best overall
success rate
[%]

1 78.75
2 78
3 80.5
4 86.25
5 79.75

The entire test ran for around 24h and on the final test set of 1000 images, we could attain

54

6.5 Models on trial

an overall success rate of 78%. We performed another similar test using this time a batch
size of 3000 images and 6 batches. A summary of the test is contained in table 6.13.

Table 6.13: Variant 2 with batch size 3000 on the handwritten digit recognition problem

Nb = 6, Ni = 5, batch size = 3000
Total run time: 22h

Result on final test set: 86.1%
Batch num-
ber

Best overall
success rate
[%]

1 86.5
2 86.75
3 87
4 89.5
5 88.25
6 87.25

We performed a further test, this time using a batch size of 500 and 10 batches. The test ran
for around 3h and we had on the final test set an accuracy of 80.8%.

In the end, it is noteworthy that in order for variant 2 to function properly in some cases we
need to bring in some slight adjustments to it which we mentioned in this subsection. It is
also remarkable that the accuracy of the network increases with the batch size and thus the
computation time. Though we can train the network on more data with this approach we do
not observe a better performance than when we use the basic approach. For example, in the
last two tests we presented in this subsection regarding the handwritten digit recognition
problem, we trained the network respectively on a total of 18000 and 5000 data. The accuracy
on a test set of 1000 data was respectively 86.1% and 78%. On the other hand, we could
also observe an overall success rate of around 86% using the basic approach and training
the network on just 3000 images. We will conclude by saying that this variant left our
expectations of attaining better accuracy rates on larger test sets after training the network
on a greater amount of data unfulfilled.

6.5.4 Variant 3

We tested the two methods proposed in variant 3, that is to say : |fi| ≤ ε1 for every batch i
and |fi+1 − fi| ≤ ε1.

55

6 Experiments and discussion

We tried both approaches for different values of ε1 ∈ Sε := {10−3, 10−2, 10−1, 1, 101, 102}. We
tested this variant on the state of the cell recognition problem. We mentioned previously
that variant 3 was not a variant on its own. Hence, we combined it with variant 2 setting
Nb = 10 and Ni = 1. We used batches of size 100. We utilized the Xavier initialization,
Conopt as solver, and the sigmoid as activation function. The data were normalized with
the normalization scheme proposed in section 5.2.1. The tests lasted a few seconds only and
we could further observe that the objective function was in the order of thousands for the
first method and in the order of millions for the second. The computed weights led to the
exploding activations problem since they were quite large. The reason why the results were
so poor is that Conopt was unable to find a feasible point during the optimization of the loss
function. It actually computed in most of the cases just two iterations.

6.5.5 Variant 4

We trained each of the ten subprograms using Variant 2 with the slight adjustments we
mentioned in section 6.5.3. We set Nb = 1 and the size of the batch varied from subprogram
to subprogram (in between 3200 and 3800). Ni varied from 1 to 5 and the computation
time ranged from 2h to 8h. We used a neural network with a single hidden layer holding
12 hidden neurons. We chose Conopt as solver, the sigmoid as activation, and ran the test
using the Xavier initialization. The data were normalized using the double normalization
scheme presented in section 6.5.1. To obtain the values of the matrix A we used a validation
set holding 1000 images (100 images per class).

Ai,j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9
i = 0 0.95 0 0.04 0 0 0.03 0.08 0 0 0
i = 1 0 1 0.08 0.01 0.01 0 0.03 0.06 0.05 0.01
i = 2 0.03 0.01 0.92 0.07 0.04 0 0.06 0.08 0.13 0.03
i = 3 0.04 0.07 0.16 0.94 0.05 0.14 0.01 0.19 0.11 0.08
i = 4 0.03 0.05 0.09 0.07 0.93 0.11 0.10 0.04 0.12 0.18
i = 5 0.06 0 0.04 0.19 0.08 0.92 0.2 0.07 0.10 0.05
i = 6 0.04 0 0.06 0.05 0.02 0.02 0.93 0.02 0.01 0
i = 7 0.05 0 0.05 0.05 0.04 0.05 0.04 0.93 0.05 0.17
i = 8 0 0.09 0.02 0.06 0.10 0.14 0.09 0.05 0.93 0.07
i = 9 0.05 0.01 0.03 0.09 0.15 0.13 0.02 0.13 0.16 0.89

56

6.6 Comparing the AMPL approach with the SGD approach

We tested the variant on 400 images probing the two methods proposed under 3.3.3 in section
5.2.5. With method 1 we observed an accuracy of 80.75 %. Using method 2 we observed an
accuracy of 79.5%. We recall that method 2 uses random numbers, it entails therefore that
we get a different test accuracy each time we run the same test. The value we reported is the
best accuracy we observed after running the test around 5 times.

It is noteworthy that this variant is computationally very expensive and in terms of accuracy
unimpressive. We observed far much better results (93.25%) using the basic approach and a
training set of just 3000 data. A reason behind the poor performance of the model is the
fact that the decision-making scheme we presented in section 5.2.5 is based on the likelihood
of events. Unfortunately, the fact that an event has a great likelihood does not mean it
necessarily occurs. Hence, many extra errors flow into the model.

6.6 Comparing the AMPL approach with the SGD approach

In this subsection, we compare the performance of the AMPL and the SGD approach on the
three different case studies we handled so far in our work. We used a Python implementation
of the SGD approach, precisely with libraries as Keras and TensorFlow. We strove to make
the comparison as fair as possible. Hence, we did not utilize many extra features python
offers like data augmentation, Max-Pooling [48], dropout [49], convolutional neural networks
[50]. In all the tests we present in this subsection, let it be for the SGD approach or AMPL
approach, we always used as activation function the sigmoid and as initialization scheme
the Xavier initialization. The loss function we used was always the mean squared error.
Regarding the AMPL approach, we always used the basic approach and Conopt as solver.

Concerning the polygon recognition problem, we trained the network on 540 images and tested
it on 141 images. For both approaches, we used the data normalization scheme proposed
in section 5.2.1. Furthermore, we made use of a neural network with 1 hidden layer and 10
hidden neurons. Concerning the SGD approach, we set the batch size to 200 and the number
of epochs to 1000. The test ran for 126s with the AMPL approach and we could observe an
overall success rate of 98.58%. Regarding the SGD approach, the test ran for 324s and we
could also observe an overall success rate of 98.58%.

On the handwritten digit recognition problem, we trained the network on 3000 images and
tested it on 400. We used the normalization scheme proposed in section 5.2.1 for the SGD
approach. For the AMPL approach, we used the double normalization scheme proposed in

57

6 Experiments and discussion

section 6.5.1. In addition, we utilized a neural network with 1 hidden layer and 12 hidden
neurons. Regarding the AMPL approach, we repeated the test 5 times. It all lasted around
10h and the best overall success rate we could observe was 93.25%. Concerning the SGD
approach, we used a batch size of 200 and tested several numbers of epochs ranging from
100 to 500. The best result we observed was for a number of epochs equal to 200. The test
lasted 14s and the overall success rate was 89%.

Regarding the state of the cell recognition problem, We trained the network on 3000 images
and tested it on 400. We used the first normalization scheme (the one proposed in section
5.2.1.) for both approaches. Furthermore, we used a neural network with the structure (1,12).
Using the AMPL approach we repeated the test 5 times. It lasted around 8h and the best
overall success rate was 91.5%. Regarding the SGD approach, we used a batch size of 200
and tested a various number of epochs ranging from 100 to 500. The best result we observed
was for 400 epochs. The test lasted 41s and the overall success rate was 84%.

From what we reported previously, it should be noted that under the same conditions the
AMPL approach performs in terms of accuracy as well as the SGD approach and sometimes
even better. There is nevertheless a chasm in between the computation speed of both
approaches. The explanation to this is onefold. We mentioned in chapter 4 that the algorithm
Conopt uses is gradient-based. Hence, when we train the network on n images Conopt
computes the gradient at every iteration (step) over the entire n images whereas the SGD
computes the gradient just over a single randomly chosen image from the n images [51],
reason for which it is far much faster compared to Conopt.

58

7 Summary and conclusion

The objective of this work was to investigate another scheme that we called AMPL approach
for the solving of machine learning problems. It was implemented in a software called
AMPL. Hence the name AMPL approach. In the first part of this work, we highlighted the
theoretical disparities between the AMPL approach and the SGD approach in pellucidly
presenting for each scheme the theory that governs its functioning. In a further step, we
showed practically through the various models, variants, and techniques we presented how
the solvers in AMPL can be used to tackle machine learning challenges, which in the context
of this work were: the polygon, state of the cell, and handwritten digit recognition problem.
After presenting the AMPL approach and practical implementations thereof, we dived into
a series of experiments, in which our first aim was to gain some insight on key thematics
like the proper weight initialization scheme, the right solver, and activation function. In the
end, we found out that random weight initialization schemes like the Xavier initialization
or the He initialization lead to far much better results than what we called constant weight
initialization. Moreover, we also noticed that Conopt stood out from the other solvers due to
its outstanding performance in terms of accuracy of the neural network and computation
time. The only noteworthy flaw of Conopt is the fact that it cannot function with the ReLU
as activation function. Regarding the activation functions we probed, we noticed that on
little scale problems like the polygon recognition problem, in terms of accuracy there is no
great discrepancy between them, but in terms of computation time, we heeded that the ReLU
lagged behind the other activation functions. Moreover, our attention was drawn to the fact
that the several exponential activation functions (swish, sigmoid, tanh) we scrutinized in our
work were not without liabilities. They often tend to lead to what we called the exploding
activations problem which we could notwithstanding tackle applying a double normalization
to the data. Though the solution is not flawless as it is unsuccessful sometimes, it greatly
helps nevertheless quite often to forestall the problem without any tradeoff regarding the
accuracy of the network.

After this first wave of tests, we went on to testing our different models (variants). We noticed
that though the basic approach has a constraint on the amount of data we can train the
network on, it performs nevertheless as well as variant 2 with which we can train the network
on much more data. After taking a deep look into our models and gaining much insight

59

7 Summary and conclusion

into how they work, we put our models on trial with the mainstream method (SGD). We
paid heed that though our models perform in terms of accuracy as well as the SGD method
and sometimes slightly better they are nevertheless very far from rivalling the outstanding
computation speed of the SGD method, which is more than a 1000 times faster.

It is quite fascinating to see that we could attain such interesting performances in terms
of accuracy with the AMPL approach without utilizing miscellaneous intricate schemes
like convolution neural networks, the combination of different activation functions in the
same network, max-pooling, and dropout which are often used along with the SGD method.
This actually brings a glimpse of hope in the possibility of this approach challenging the
mainstream approach. Notwithstanding, it will still require that much research be done on
how to drastically reduce the computation time of the solvers that AMPL offers such as
Conopt when it comes to solving machine learning challenges. This will ease the finding
of better schemes to train neural networks effectively on larger amounts of data. Then the
implementation of convolutional neural networks in order to solve even more interesting
machine learning challenges shall have no hurdle on its way.

60

Bibliography

[1] E. K. Chong and S. H. Zak, An introduction to optimization. John Wiley & Sons, 2004,
pp. 248-249.

[2] F. Chen, N. Chen, H. Mao, and H. Hu, “Assessing four neural networks on handwritten
digit recognition dataset (MNIST),” arXiv preprint arXiv:1811.08278, 2018.

[3] A. F. Agarap, “Deep learning using rectified linear units (ReLU),” arXiv preprint
arXiv:1803.08375, 2018.

[4] G. Castaneda, P. Morris, and T. M. Khoshgoftaar, “Evaluation of maxout activations in
deep learning across several big data domains,” Journal of Big Data, vol. 6, no. 1, p. 72,
2019.

[5] B. Harshanand and A. K. Sangaiah, “Comprehensive analysis of deep learning methodol-
ogy in classification of leukocytes and enhancement using swish activation units,” Mobile
networks and applications, pp. 1–19, 2020.

[6] Arunava, “Derivative of the sigmoid function.” https://towardsdatascience.com/

derivative-of-the-sigmoid-function-536880cf918e. Accessed: 05-01-2021.

[7] G. Rebala, A. Ravi, and S. Churiwala, An introduction to machine learning. Springer,
2019, pp. 1-2.

[8] C. F. Higham and D. J. Higham, “Deep learning: An introduction for applied mathe-
maticians,” SIAM Review, vol. 61, no. 4, pp. 860–891, 2019.

[9] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in
classification,” arXiv preprint arXiv:1702.05659, 2017.

[10] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014, pp. 184-200.

61

Bibliography

[11] A. Consulting and Development, “Using Conopt with AMPL.” https://ampl.com/

SOLVERS/conopt3.pdf. Accessed: 19-10-2020.

[12] A. Drud, “Conopt: A GRG code for large sparse dynamic nonlinear optimization
problems,” Mathematical programming, vol. 31, no. 2, pp. 153–191, 1985.

[13] L. S. Lasdon, R. L. Fox, and M. W. Ratner, “Nonlinear optimization using the generalized
reduced gradient method,” Revue française d’automatique, informatique, recherche
opérationnelle. Recherche opérationnelle, vol. 8, no. V3, pp. 73–103, 1974.

[14] R. J. Vanderbei, Linear programming: foundations and extensions, vol. 285. Springer
Nature, pp. 12-23, 2020.

[15] O. Rio Branco de Oliveira, “The implicit and the inverse function theorems: easy proofs,”
arXiv, pp. arXiv–1212, 2012.

[16] D. G. Luenberger, Introduction to linear and nonlinear programming, vol. 28. Addison-
Wesley Reading, MA, 1973.

[17] M. French, Fundamentals of Optimization: Methods, Minimum Principles, and Applica-
tions for Making Things Better. Springer, pp. 143-157, 2018.

[18] studyflix, “Mitose.” http:https://studyflix.de/biologie/mitose-1807. Accessed:
28-12-2020.

[19] Wikipedia contributors, “Cross entropy — Wikipedia, the free encyclopedia.” https://

en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=993705172, 2020. [On-
line; accessed 31-December-2020].

[20] T. Rashid, Neuronale Netze selbst programmieren: ein verständlicher Einstieg mit Python.
O’Reilly, 2017.

[21] A. Rakitianskaia and A. Engelbrecht, “Measuring saturation in neural networks,” in
2015 IEEE Symposium Series on Computational Intelligence, pp. 1423–1430, IEEE,
2015.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artificial

62

Bibliography

intelligence and statistics, pp. 249–256, 2010.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

[24] H. Li, M. Krcek, and G. Perin, “A comparison of weight initializers in deep learning-based
side-channel analysis,”

[25] Z. C. Lipton, “Stuck in a what? adventures in weight space,” arXiv preprint
arXiv:1602.07320, 2016, p. 1.

[26] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural
networks: Tricks of the trade, pp. 9–48, Springer, 2012.

[27] N. Wanas, G. Auda, M. S. Kamel, and F. Karray, “On the optimal number of hidden
nodes in a neural network,” in Conference Proceedings. IEEE Canadian Conference on
Electrical and Computer Engineering (Cat. No. 98TH8341), vol. 2, pp. 918–921, IEEE,
1998.

[28] W. Zou, Y. Li, and A. Tang, “Effects of the number of hidden nodes used in a structured-
based neural network on the reliability of image classification,” Neural Computing and
Applications, vol. 18, no. 3, pp. 249–260, 2009.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,”
in ICML, 2010.

[30] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions: Compari-
son of trends in practice and research for deep learning,” arXiv preprint arXiv:1811.03378,
2018.

[31] T. Herawan, R. Ghazali, and M. M. Deris, “Recent advances on soft computing and
data mining,” Sl: Springer, 2017.

[32] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv
preprint arXiv:1710.05941, 2017.

[33] W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Engineering

63

Bibliography

in Dependability of Computer Systems and Networks: Proceedings of the Fourteenth
International Conference on Dependability of Computer Systems DepCoS-RELCOMEX,
July 1–5, 2019, Brunów, Poland, vol. 987. Springer, pp. 499-500, 2019.

[34] J. Han and C. Moraga, “The influence of the sigmoid function parameters on the speed
of backpropagation learning,” in International Workshop on Artificial Neural Networks,
pp. 195–201, Springer, 1995.

[35] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166,
1994.

[36] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding gradient problem,”
CoRR, abs/1211.5063, vol. 2, p. 417, 2012.

[37] J. Brownlee, “A gentle introduction to exploding gradients in neural networks.” https:

//machinelearningmastery.com/exploding-gradients-in-neural-networks/#:

~:text=Exploding%20gradients%20are%20a%20problem,learn%20from%20your%

20training%20data. Accessed: 28-10-2020.

[38] Y. Goldberg, “Neural network methods for natural language processing,” Synthesis
Lectures on Human Language Technologies, vol. 10, no. 1, pp. 1–309, 2017.

[39] P. Seetharaman, G. Wichern, B. Pardo, and J. Le Roux, “Autoclip: Adaptive gradient
clipping for source separation networks,” in 2020 IEEE 30th International Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1–6, IEEE, 2020.

[40] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in International conference on machine learning, pp. 1310–1318, 2013.

[41] T. Van Laarhoven, “L2 regularization versus batch and weight normalization,” arXiv
preprint arXiv:1706.05350, 2017.

[42] L. Oneto, S. Ridella, and D. Anguita, “Tikhonov, ivanov and morozov regularization for
support vector machine learning,” Machine Learning, vol. 103, no. 1, pp. 103–136, 2016.

[43] M. Wang, Y. Sun, E. Yang, and K. Song, “Consistent model combination of lasso

64

Bibliography

via regularization path,” in Chinese Conference on Pattern Recognition, pp. 551–562,
Springer, 2016.

[44] R. Tibshirani, “Model selection and validation 1: Cross-validation.” http://

www.stat.cmu.edu/~ryantibs/datamining/lectures/18-val1.pdf. Accessed: 30-10-
2020.

[45] J. Brownlee, “How to avoid exploding gradient with gradient clipping.”
https://machinelearningmastery.com/how-to-avoid-exploding-gradients-in-

neural-networks-with-gradient-clipping/#:~:text=Exploding%20gradients%

20can%20be%20avoided,number%20of%20input%20time%20steps. Accessed: 10-11-
2020.

[46] A. Drud, “Using Conopt with AMPL.” https://www.gams.com/latest/docs/

S_CONOPT.html. Accessed: 28-10-2020.

[47] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson,
and J. D. Siirola, Pyomo-optimization modeling in python, vol. 67. Springer, pp. 111-112,
2017.

[48] Z. Qian, L. Yawei, Z. Mengyu, Y. Yuliang, X. Ling, X. Chunyu, and L. Lin, “Max-pooling
convolutional neural network for chinese digital gesture recognition,” in Information
Technology and Intelligent Transportation Systems, pp. 79–89, Springer, 2017.

[49] C. Garbin, X. Zhu, and O. Marques, “Dropout vs. batch normalization: an empirical
study of their impact to deep learning,” Multimedia Tools and Applications, pp. 1–39,
2020.

[50] H. Wu and X. Gu, “Max-pooling dropout for regularization of convolutional neural
networks,” in International Conference on Neural Information Processing, pp. 46–54,
Springer, 2015.

[51] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings
of COMPSTAT’2010, pp. 177–186, Springer, 2010.

65

IMPRESSUM

Brandenburgische Technische Universität Cottbus-Senftenberg
Fakultät 1 | MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik
Institut für Mathematik
Platz der Deutschen Einheit 1
D-03046 Cottbus

Professur für Ingenieurmathematik und Numerik der Optimierung
Professor Dr. rer. nat. Armin Fügenschuh

E fuegenschuh@b-tu.de
T +49 (0)355 69 3127
F +49 (0)355 69 2307

Cottbus Mathematical Preprints (COMP), ISSN (Print) 2627-4019
Cottbus Mathematical Preprints (COMP), ISSN (Online) 2627-6100

www.b-tu.de/cottbus-mathematical-preprints
cottbus-mathematical-preprints@b-tu.de
doi.org/10.26127/btuopen-5404

