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Abstract

The linear-theory assumption is a fundamental approach for the study of waves
in fluids. The governing equations are linearized by assuming the perturbations
are small so that the consequences of nonlinear terms are negligible. Neverthe-
less, if a wave approaches a critical level, in which the wave amplitude grows so
as to create an instability of the background flow, the assumption of linearity may
not hold any longer. In this case, the nonlinear terms are required to be taken into
consideration.

In this thesis, two experimental setups have been proposed for the study of
two scenarios, in which the nonlinear effects become significant and a traditional
linear solution is no longer valid.

The first experiment focuses on an inertially oscillating rotating fluid. Rotating
fluids frequently show nonlinear wave interactions and turbulence, particularly
for non-uniformly rotating systems. One example of such a non-uniform rotating
object is the Earth. Due to its fast rotation, it is not exactly spherical. As a result
of the interaction with the Sun and Moon, the non-spherical Earth cannot rotate
uniformly but shows precession and libration. This has consequences for the fluid
enclosed in the outer Earth core. Due to the forcing, it might become turbulent,
which is one of the key factors in the present theories explaining the generation
of the geomagnetic field.

In the thesis, we present experimental results from a system that is simpler than
classical precession experiments but still shows very similar wave interactions
and a collapse to turbulence. This system consists of a partly filled rotating annu-
lus that rotates about its symmetry axis slightly tilted with respect to the gravity
vector and allows us to explore the Ekman numbers ranging from 7.9 × 10−6 to
3.2× 10−5.

In analogy to the more classical precession experiments, we also find a reso-
nant collapse when the forcing frequency corresponds with a resonant frequency
of the rotating tank. Two types of instability can be triggered: a parametric tri-
adic instability, in which two free Kelvin modes arise and form a triad with the
forced Kelvin mode, and a shear-type instability related to the nonlinearly excited
geostrophic flow. The latter instability gives rise to a barotropic mode that inter-
acts with the forced mode and generates secondary modes. We also observed
dependency of the mode frequencies on the Ekman number, which can, at least
partly, be explained by a Doppler shift due to the mean flow. Finally, we try to
connect our data to a low-order dynamical system based on the weakly nonlinear
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theory that describes the main features of single triad interaction in precession ex-
periments. Although this model is originally not designed for the multiple triads
we observe, it is still useful for a qualitative understanding of mode interactions,
e.g. for the mechanism of geostrophic mode excitation.

The second experiment concerns the study of undular bores (or tidal bores).
Tidal bores are hydraulic jumps caused by an incoming tidal propagating up-
stream in the estuarine zone of a river or a narrow bay against the direction of
current in the river or the bay. Due to the periodic occurrence, tidal bores have
significant impacts on the development of the riverbank, the transport of the sed-
iments and the fishery in the river estuary. The nonlinearity plays an important
role in undular bores. The free-surface nonlinearity increases the surface level at
the propagating wave crests, thus leads to a greater velocity of propagation in
the bore than in the undisturbed fluid. The nonlinearity also results in a steeper
wavefront compared to linear theory and concentrates the undulating waves near
the front of the bore.

An experiment has been performed in which undular bores are produced in an
open circular channel. More specifically, two different cases have been investi-
gated: a single bore case with a rigid boundary setup and a bore colliding case
with a periodic lateral boundary setup. Bores are generated by abruptly releasing
a barrier that separates fluids with different surface levels. Up to our knowledge,
this is the first experimental study of undular bores in a circular channel. For a
setup without barriers, this geometry accomplishes in a natural way the periodic
lateral boundary conditions, which is very often used in numerical simulations.
The experimental results have been compared with the nonlinear numeric simu-
lations and achieved an excellent agreement.
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Zusammenfassung

Die Annahme der linearen Theorie ist ein grundlegender Ansatz für die Unter-
suchung von Wellen in Flüssigkeiten. Die herrschenden Gleichungen werden
linearisiert, indem angenommen wird, dass die Störungen klein sind, so dass
die Auswirkungen der nichtlinearen Terme vernachlässigbar sind. Wenn sich je-
doch eine Welle einem kritischen Niveau nähert, bei dem die Wellenamplitude
so zunimmt, dass eine Instabilität der Hintergrundströmung entsteht, kann die
Annahme der Linearität möglicherweise nicht mehr zutreffen. In diesem Fall
müssen die nichtlinearen Terme berücksichtigt werden.

In dieser Arbeit wurden zwei experimentelle Einrichtungen für die Untersuch-
ung von zwei Szenarien betrachtet, in denen die nichtlinearen Effekte erheblich
werden und eine traditionelle lineare Lösung nicht mehr gültig ist.

Das erste Experiment konzentriert sich auf ein trägheitsschwingendes rotieren-
des Fluid. Rotierende Fluide zeigen häufig nichtlineare Wellenwechselwirkungen
und Turbulenzen, insbesondere bei ungleichförmig rotierenden Systemen. Ein
Beispiel für ein solches ungleichförmig rotierendes Objekt ist die Erde. Aufgrund
ihrer schnellen Rotation ist sie nicht exakt kugelförmig. Infolge der Wechsel-
wirkung mit Sonne und Mond kann sich die nicht kugelförmige Erde nicht gleich-
förmig drehen, sondern weist Präzession und Libration auf. Dies hat Auswirkun-
gen auf die im äußeren Erdkern eingeschlossene Flüssigkeit und die Flüssigkeit
kann turbulent werden. Das ist einer der Schlüsselfaktoren in den gegenwärtigen
Theorien zur Erklärung der Erzeugung des geomagnetischen Feldes ist.

In der Dissertation stellen wir experimentelle Ergebnisse aus einem System
vor, das einfacher ist als klassische Präzessionsexperimente, aber dennoch sehr
ähnliche Wellenwechselwirkungen und auch den Übergang zu Turbulenz zeigt.
Dieses System besteht aus einem teilweise gefüllten rotierenden Ring, der sich um
seine Symmetrieachse leicht geneigt gegenüber dem Gravitationsvektor dreht.
Das Experiment ermöglicht es, die Ekman-Zahl im Bereich von 7, 9 × 10−6 bis
3, 2× 10−5 zu untersuchen.

In Analogie zu den klassischen Präzessionsexperimenten finden wir auch einen
Resonanzkollaps, wenn die erzwungene Frequenz mit einer Resonanzfrequenz
des rotierenden Tanks übereinstimmt. Zwei Arten der Instabilität können aus-
gelöst werden: eine parametrische triadische Instabilität, bei der zwei freie Kelv-
inmoden entstehen und mit der erzwungenen Kelvin-Mode eine Triade bilden,
und eine Scherungsinstabilität, die mit dem nichtlinear angeregten geostrophis-
chen Fluss zusammenhängt. Die letztere Instabilität führt zu einer barotropen
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Schwingungsmode, die mit der direkt angetriebenen Schwingungsmode inter-
agiert und dadurch sekundäre Moden erzeugt. Wir beobachteten auch eine Ab-
hängigkeit der Modenfrequenzen von der Ekman-Zahl, die zumindest teilweise
durch eine Dopplerverschiebung aufgrund der mittleren Strömung erklärt wer-
den kann. Schließlich versuchen wir, unsere Daten mit einem schwach nicht-
linearen dynamischen System nachzubilden, das die Hauptcharakteristiken der
Wechselwirkung einzelner Triaden in Präzessionsexperimenten beschreibt. Ob-
wohl dieses Modell ursprünglich nicht für die von uns beobachteten mehrfachen
Triaden ausgelegt ist, ist es dennoch hilfreich für ein qualitatives Verständnis der
Modenwechselwirkungen, z.B. für den Mechanismus der Anregung der geostro-
phischen Mode.

Das zweite Experiment betrifft die Untersuchung von Gezeitenwellen (d.h. ein
spezielles Soliton). Gezeitenwellen sind hydraulische Sprünge, die durch eine
einströmende Gezeiten verursacht werden, die sich stromaufwärts in der Mün-
dungszone eines Flusses oder einer engen Bucht entgegen der Strömungsrich-
tung im Fluss oder in der Bucht ausbreiten. Aufgrund des periodischen Auftretens
haben Gezeitenwellen erhebliche Auswirkungen auf die Entwicklung des Flus-
sufers, den Transport der Sedimente und die Fischerei im Flussmündungsgebiet.
Bei der Gezeitenwellen spielt die Nichtlinearität eine wichtige Rolle. Die Nicht-
linearität der freie Oberfläche erhöht das Oberflächenniveau an den sich ausbreit-
enden Wellenbergen und führt so zu einer größeren Ausbreitungsgeschwindigkeit
in den nichtlinearen Gezeitwelle als in der ungestörten Flüssigkeit. Die Nichtlin-
earität führt auch zu einer steileren Wellenfront im Vergleich zur linearen Theo-
rie und konzentriert die wellenförmigen Wellen in der Nähe der Vorderseite der
Welle.

Es wurde ein Experiment durchgeführt, bei dem Gezeitenwellen in einem offe-
nen kreisförmigen Kanal erzeugt werden. Insbesondere wurden zwei verschiedene
Fälle untersucht: ein Einzelsoliton mit einer festen Randbedingung und ein Dop-
pelsoliton mit Kollisionen und periodischen Randbedingungen. Gezeitwellen
werden durch abruptes Herausziehen einer Barriere erzeugt, welche die Flüs-
sigkeiten mit unterschied-lichen Oberflächenniveaus voneinander trennt. Nach
unserem Kenntnisstand ist dies die erste experimentelle Untersuchung von Gezeit-
enwellen in einem kreisförmigen Kanal. Für einen Aufbau ohne Barrieren er-
füllt diese Geometrie auf natürliche Weise die periodischen Randbedingungen,
was sehr oft in numerischen Simulationen verwendet wird. Die experimentellen
Ergebnisse wurden mit den nichtlinearen numerischen Simulationen verglichen
und erzielten eine ausgezeichnete Übereinstimmung.
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1 Introduction

1.1 Motivation and Problem Statement

Wave motions in fluids are widely recognized as an essential part in the investiga-
tion of hydrodynamic stabilities and have important applications in the sciences
of meteorology, oceanography and as well in engineering. The study of waves
in fluids, more specifically in water, can be traced back to the early works by Sir
Isaac Newton. In his Prop. XLV of Principia (1687), he deduced that the frequency
of deep-water waves is proportional to the inverse of the square root of the wave
length by proposing “a dubious analogy with oscillations in a U-tube” [30].

The most elementary wave theory is the small-amplitude or linear wave theory,
where the governing equations are simplified by giving a reasonable approxima-
tion of wave characteristics for a wide range of wave parameters. In the late 18th
century, Joseph-Louis Lagrange derived the linearized governing equations for
small-amplitude waves and solved the equation for long plane waves in shal-
low water based on a shallow-water approximation. He found that “the speed of
propagation of waves will be that which a heavy body would acquire in falling
from ... half the height of the water in the canal” (Lagrange 1786), which means
the velocity of the wave is proportional to (gh)1/2, where g is gravitational accel-
eration and h the water depth [30]. The now-standard linear wave theory was
first presented by Sir George Biddell Airy for surface gravity waves in his long
article “Tides and Waves” for the Encyclopaedia Metropolitana in 1841 [3], [30].

The linear wave theory introduced by Airy is one of the simplest possible case
and also the least complicated theory to study waves. The theory utilises a poten-
tial flow (or velocity potential) approach to describe the motion of surface gravity
waves and is often applied in ocean engineering and coastal engineering to in-
vestigate the state of the sea, including shallow water waves, tides and tsunami
waves as well as ship waves [45].

Moreover, Linear wave theory provides the approach to study any kind of
waves such as acoustic waves, internal gravity waves and inertial waves. In linear
theory, the governing equations are linearised by assuming the perturbations are
small so that the consequences of nonlinear terms are negligible. One example of
the application of the linear-theory assumption is given in section 2.3, where the
dispersion relation of plane inertial waves is derived based on the linear theory.

Although the linear theory is only valid for non-breaking waves with small
amplitude, it can still be useful and fundamental for understanding higher order
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theories and for the analysis of irregular waves. Nevertheless, in a dynamical
system, if a wave approaches a critical level, in which the wave amplitude grows
so as to create an instability of the background flow, the assumption of linearity
may not hold any longer. When dealing with problems of the onset of instabilities,
the exponential growth rate of the amplitude of an unstable linear mode can be
altered by the nonlinear interactions [36].

In a rotating fluid with the presence of an inertial oscillation forced by a sin-
gle frequency, the mechanism of instabilities via a parametric triadic resonance
has been extensively studied based on the linear theory [59]. Nevertheless, the
nonlinear evolution of the instability is still an open question. The nonlinear ef-
fects are essential based on the fact that the nonlinear interaction of an inertial
mode with itself in the Ekman layers leads to the generation of a geostrophic
mode [63]. The geostrophic mode can slow down the solid body rotation and
modify the mean flow profile in radial direction, which further influences the
dispersion relation and might detune the frequency of the free Kelvin modes [52].
On the other hand, a sufficiently strong geostrophic mode can also interact with
the present Kelvin modes, give rise to further modes and lead to instabilities [59],
[110]. Nonlinear effects also determine the saturation of the amplitude of a reso-
nant inertial mode together with the viscous damping [64].

For hydraulic jumps, i.e. bores, in an open channel, the nonlinearity has a
significant influence as well. Due to the net increase of the surface level at the
propagating wave crests, free-surface nonlinearity results in a greater velocity of
propagation in the bore than in the undisturbed fluid. Compared to linear theory,
nonlinearity leads to a steeper wave front and also concentrates the undulating
waves near the bore front [13].

For a more realistic prediction of the development of instabilities as well as the
investigation of wave motions in a more unstable regime, the nonlinear terms
should be included. One important method for the study of the hydrodynamic
instability problem is the weakly nonlinear theory, which is based on the linear
theory by treating the leading nonlinear effects of small perturbations. With the
origins in the 19th century, the weakly nonlinear theory has been intensively de-
veloped since 1960s [36]. For a precessing cylinder, a weakly nonlinear model
was developed by Lagrange et al. [64] by taking into account the influence of a
geostrophic mode. The weakly nonlinear model provided a good prediction of
the transition from a steady saturated regime to an intermittent flow. Moreover,
the model is able to estimate the mean flow inside the cylinder correctly even far
from the threshold when the flow is turbulent.
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Another approach for the investigation of the nonlinear waves is to describe the
wave motions by fully nonlinear equations. However, the fully nonlinear wave
equations are more complex for a mathematical analysis and there is no general
analytical method to obtain a solution. Thus, each particular wave equation has
to be treated individually. Closed-form solutions can be obtained by some ad-
vanced methods with a trial-and-error approach, which seeks possible solutions
by deducing from the equation form and then attempts whether they satisfy the
particular equation or not. Nevertheless, it is more common to solve the nonlin-
ear equations with numerical techniques, such as finite difference, finite volume,
finite element, spectral, least squares and many others [49].

Despite the rapid development of the numerical methods in the last decades,
laboratory experiments are still reliable and effective to study the fundamentals
of instabilities in a fluid where nonlinear effects are significant. The gained ex-
perimental data are able to provide a validation for the theoretical and numerical
predictions from a weakly nonlinear model or a fully nonlinear numerical simu-
lation.

In this thesis, results of laboratory experiments are presented with two differ-
ent setups. A series of experiments are performed in a tilted rotating cylindrical
annulus, which mimics the classical precession experiment for the study of the
instabilities under a resonant condition induced by different mechanisms. The
experimental result is connected with the weakly nonlinear model reported in
Lagrange et al. [64]. The second part of experiments are conducted in a circular
channel, in which a single undular bore or two identical and counter-propagating
undular bores are generated for the study of bore propagation and collision with
a periodic boundary condition. The experimental measurements are compared
with the numerical simulation by Bestehorn and Tyvand [13].

1.2 About This Thesis

The main aim and object of the thesis are based on two publications (Xu and Har-
lander [118] and Borcia et al. [16]) with respect to the two different experimental
setups. The thesis consists of eight chapters and is organized as follows.

Chapter 2 introduces the most relevant theoretical aspects. Fundamental equa-
tions of rotating flows including the dispersion relation for inertial waves in a ro-
tating fluid are derived. Several theories that provide the fundamentals to under-
stand experimental observations in the latter chapters, such as the Ekman layer,
are presented. The chapter also introduces the concept of resonant collapse and
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the two types of instabilities that contributes to the resonant collapse: a paramet-
ric triadic instability and a shear instability.

Chapter 3 describes in detail the two experimental setups, including the ba-
sic structures, the technical specifications, and the working principles. The cal-
ibration data are also presented, which ensure the experimental device running
properly.

Chapter 4 depicts the measurement techniques as well as devices applied in
both experiments. For the presented investigations, a rheoscopic fluid is used for
a qualitative understanding of the rotating flow. The quantitative measurement
is realized by particle image velocimetry, which provides the measurement of the
velocity field on a 2D section, and ultrasonic sensors, which measures the surface
profile by the distance from the sensor to the liquid surface.

Chapter 5 gives a brief introduction to the statistical methods that are used to
analyse the experimental data. The Fourier transform and harmonic analysis are
the two essential tools in post-processing the data, where the Fourier transform
is used in detecting significant frequencies of the time series and the harmonic
analysis is able to extract the amplitude and phase information of the known
frequencies from the time series. The bispectra analysis enables the qualitative
detection of nonlinear wave interactions regardless of lacking data in 3D space.

In chapter 6, the experimental observations of fluids in a tilted rotating annulus
with a free surface are presented. This is a setup similar to the classical precess-
ing cylinder experiment but with a simpler configuration. Due to the presence
of the tilted rotating axis and the free surface, a Kelvin mode is forced with the
same frequency as the rotation rate of the cylinder. For a certain depth, the am-
plitude of the forced Kelvin mode grows rapidly, breaks down and gives rise to
further modes. The experimental result shows that the breakdown is related to
two different types of instabilities: a shear-type instability related to the non-zero
mean flow and a parametric instability related to the typical triadic resonance.
Finally, the experimental results are compared with a low-order dynamic model
for classical precessing cylinders.

Chapter 7 presents the investigation of the formation, propagation and colli-
sion of undular bores in a circular channel, which belongs to an experimental
instrument previously developed for studying rotating baroclinic flows. Accord-
ing to our knowledge, this is the first experimental study of undular bores in a
circular channel. For a setup without barriers, this geometry accomplishes in a
natural way the periodic lateral boundary conditions, which have been very of-
ten used in numerical simulations. The experimental results are compared with
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numerical simulations and achieved an excellent agreement, especially for the
spatio-temporal structure of bores in the first few reflections or collisions. More-
over, a sloshing shallow water setup is carried out, in which the circular channel
oscillates longitudinally with a fixed barrier. Hydraulic jumps or cnoidal waves
can be generated depending on the excitation frequency.

The last section provides a discussion and summary of the presented work and
is given in chapter 8 together with some suggestions of future works.
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2 Theoretical Backgrounds

2.1 Equations of Motion in Fluids

To mathematically describe the motion of fluids, a standard beginning of the story
is the Navier-Stokes momentum equation and the continuity equation. For an
incompressible viscous flow of constant material properties without rotation, the
classical form of the equations is

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ g + ν∇2u, (1)

∇ · u = 0, (2)

where u, t, p, ρ, ν and g are respectively the flow velocity, time, the pressure,
the density, the kinetic viscosity and the gravitational force. For the momentum
equation (1), the terms on the left hand side are the inertial term, where the first
and second term describe the time variation and the convection. On the right
hand side are the internal source (pressure), the external source (gravity) and the
diffusion term.

The main problem discussed in the thesis is based on a rotating frame, so that
the Navier-Stokes equation with rotation becomes

∂u

∂t
+ (u · ∇)u+Ω× (Ω× x) = −1

ρ
∇p+ g + 2u×Ω+ ν∇2u, (3)

where we have a new term on the each side of the equation representing two
fictitious forces, i.e. the centrifugal force Ω×(Ω×x) and the Coriolis force 2u×Ω.
Since the centrifugal term is irrotational, there is

Ω× (Ω× x) = −∇
[︃
1

2
(Ω× x)2

]︃
= −∇φc, (4)

where φc is a potential function of the centrifugal force.

In the usual case, the external field, i.e. g, is conservative and there is g =

−∇φg, where φg is a potential term of gravity.

Replacing the centrifugal force term of (3) with (4) and sending it to the right
hand side of (3), we will get the term −∇ (p/ρ+ φg − φc) on the right hand side.
For a simplified expression, the term (p/ρ+ φg − φc) is replaced by a single term
p, which is referred as reduced pressure. Neglecting the viscosity, the equation of
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motion (3) is thus simplified to

∂u

∂t
+ (u · ∇)u = −∇p+ 2u×Ω. (5)

The term p in this equation, as well as the equations in following sections, is the
reduced pressure. The equation (5) is known as the Euler equation.

2.2 Taylor-Proudman Theorem

In a rotating fluid, if L is a typical scale of the motion and U is the characteristic
velocity, the ratio of the inertial force to the Coriolis force is given by the dimen-
sionless number: the Rossby number (Ro), which is defined as Ro = U

fL
, where

f = 2Ω sin(ϕ) is the Coriolis frequency with Ω being the angular frequency of a
planetary rotation and ϕ the latitude. In a rotating cylinder, the Coriolis frequency
f = 2Ω and the Rossby number is simply Ro = U

2ΩL
.

Considering the inviscid fluid in a rapidly and uniformly rotating system with
constant angular velocity Ω so that Ro << 1 and ∂Ω/∂t = 0, the convection term
(u · ∇)u is sufficiently smaller than the Coriolis force and the Euler equation (5)
can be linearized as

∂u

∂t
= 2u×Ω−∇p. (6)

Taking the curl of both side, we have

∂(∇× u)

∂t
= 2(Ω · ∇)u, (7)

If the flow is close to geostrophy, i.e. the fluid is in a steady-state and the pressure
gradient force is balanced by the Coriolis effect, there is ∂(∇× u)/∂t = 0 and we
obtain

(Ω · ∇)u = 0, (8)

which gives
∂u

∂z
= 0. (9)

This equation states that in an inviscid, rapidly rotating and slowly varying fluid,
the velocity components u, v, w cannot vary in the direction of Ω. This implies
that if one velocity component is zero somewhere in the fluid layer it must be
zero everywhere, hence the flow is 2D. This is called Taylor-Proudman theorem.
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2.3 Plane Inertial Waves in Uniformly Rotating System

As a fictitious force, the Coriolis force cannot do work on the fluid ((2u×Ω)·u = 0)
but tends to deflect a particle in a direction perpendicular to its instantaneous
velocity u. This property in fact support the motion of inertial waves.

An inertial wave, which has been studied since developed in the late 19th cen-
tury, is a type of wave in a rotating fluid with the Coriolis force being the restoring
force [111]. Inertial waves exist commonly in geophysical fluid from the surface
of a planet, such as flow in the oceans, to deep inside of a planet, e.g. flow in
the Earth’s liquid core. Moreover, inertial waves also play an important role in
industrial problems, such as fuel tanks in a spinning rocket [105].

Figure 2.1: Sketch of the trajectory of an inertially oscillating particle in a rotating fluid
that restored by the Coriolis force. The black arrows indicate the relative
velocity in the rotating frame and the red arrows indicate the Coriolis force.

The mechanism of the inertial wave is illustrated in fig. 2.1, which shows the
inertial oscillation of a particle in a counter-clockwise rotating fluid. The black
arrows on the sketch indicate the relative velocity in the rotating frame and the
red arrows indicate the Coriolis force. Given an initial velocity at position A by
a perturbation, the fluid particle moves towards the outer circle of the rotating
frame. Since the angular momentum of the fluid particle (rv) is conserved, the
fluid particle has a relatively lower azimuthal velocity compared to the rotating
frame (rΩ) at position B, so that the particle is forced back towards the inner circle
by the Coriolis force, i.e. moves towards its original rotating obit. When the par-
ticle overshoots into the inner region, e.g. at position C in the sketch, the Coriolis
force forces the particle in turn to the outer circle. This repeating process thus
results in the trajectory of an inertially oscillating particle as the dashed curve on
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fig. 2.1 in the non-rotating frame of reference. In the rotating frame of reference,
on the other hand, the path of the particle is remarked the blue circle on fig. 2.1.
When the initial perturbation is induced by periodic forcing, such as a librating
body in the rotating fluid, steady inertial waves can be excited.

2.3.1 Dispersion relation

For a mathematical description of inertial waves, we assume an inviscid homoge-
neous fluid with uniform rotation ((∂Ω/∂t)×r = 0). The fluid motion is assumed
to be slightly departed from the rigid body rotation so that the nonlinear term
(u · ∇)u in the Euler equation (5) can be neglected. Thus we have the momentum
and the conservation equation with respect to the rotating reference frame:

∂u

∂t
+ 2Ω× u = −∇p (10)

∇ · u = 0. (11)

In a Cartesian coordinate system with the rotation axis being parallel to the z-
direction, where u = (u, v, w)T and Ω = (0, 0, Ω)T , equation (10) and (11) can be
written as

∂u

∂t
− fv = −∂p

∂x
,

∂v

∂t
+ fu = −∂p

∂y
,

∂w

∂t
= −∂p

∂z
,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

(12)

where f = 2Ω. This equation set is assumed to have wavelike solutions (u, v, w, p) =
(u0, v0, w0, p0)e

i(k·x−ωt), where k is the wave vector with wavenumber components
(kx, ky, kz) in the (x, y, z) direction.

Introducing the solutions to (12), we get the expression of (u0, v0, w0) as a func-
tion of p0, that

u0 = p0
ωkx + ifky
ω2 − f 2

,

v0 = p0
ωky − ifkx
ω2 − f 2

,

w0 = p0
kz
ω
.

(13)
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Taking (13) into the conservation equation in (12), we finally get

ω2 =
k2
z

k2
x + k2

y + k2
z

f 2 =
k2
z

k2
x + k2

y + k2
z

(2Ω)2. (14)

The equation can be further written as

ω = ±2Ω · k

|k|
= ±2Ω cos θ, (15)

where k = (kx, ky, kz) is the wave vector perpendicular to the wave phase and
θ is the angle of the wave vector with respect to the rotation axis. The equation
(15) is the so-called dispersion relation that describes the dependency of the wave
frequency on the wave vector/wavenumber. The dispersion relation implies that
the frequency of inertial waves is always lower than the Coriolis frequency 2Ω

and the magnitude of the frequency does not depend on the magnitude of the
wave vector but on the propagating direction.

2.3.2 Phase and group velocity

The phase velocity cp, which describes the speed of a given phase of a wave
travelling through space, is defined as

cp =
ω

|k|
k

|k|
= ±2Ω cos θ

k

|k|2
,

=

(︃
2Ωkxkz

(k2
x + k2

y + k2
z)

3/2
,

2Ωkykz
(k2

x + k2
y + k2

z)
3/2

,
2Ωk2

z

(k2
x + k2

y + k2
z)

3/2

)︃
.

(16)

The equation indicates that inertial waves are dispersive and anisotropic, i.e. the
phase velocity is dependent on the wave vector and its direction. The magni-
tude of the phase velocity is inversely proportional to the magnitude of the wave
vector. Longer waves (waves with smaller wavenumbers) propagate faster and
shorter waves propagate slower [47]. This is in contrast to the common non-
dispersive waves, such as acoustic waves, in which the phase velocity depends
only on the properties of the medium the waves pass through.

It is noted that the phase travels in the same direction of the wave vector, but cp
does not equal a vector formed by phase speed components in three directions,
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i.e.

(cx, cy, cz) = (
ω

kx
,
ω

ky
,
ω

kz
)

=

(︄
2Ωkz

kx
√︁

k2
x + k2

y + k2
z

,
2Ωkz

ky
√︁
k2
x + k2

y + k2
z

,
2Ω√︁

k2
x + k2

y + k2
z

)︄
̸= cp.

(17)

The group velocity cg describes the speed of the overall shape of a modulated
wave and also represents the velocity of energy propagation. This is defined by
cg = ∇kω(k) = ( ∂ω

∂kx
, ∂ω
∂ky

, ∂ω
∂kz

) [47]. For inertial waves, the group velocity yields

cg =
Ω

|k|
− cp = ± 2

|k|3
k× (Ω× k) = ±2Ω sin θ

k

|k|2

=

(︃
−2Ωkxkz

(k2
x + k2

y + k2
z)

3/2
,

−2Ωkykz
(k2

x + k2
y + k2

z)
3/2

,
2Ω(k2

x + k2
y)

(k2
x + k2

y + k2
z)

3/2

)︃
.

(18)

Comparing to (16), the direction of the group velocity is perpendicular to the
phase velocity, i.e. the energy of an inertial wave transports 90◦ with respect to
the phase propagating direction.

Some properties of inertial waves are schematically shown in fig. 2.2. An in-
ertial wave beam excited by an oscillating body travels in the direction with an
angle of θg = 90◦ − θ with respect to the rotating axis, whereas the phase propa-
gates in the direction of the wave vector and perpendicular to the group velocity.
The shear layers created by the inertial wave beam forms a double cone propa-
gating upwards and downwards symmetrically from the source of the wave and
only the upper half cone is plotted on fig. 2.2. The thick lines represent the coni-
cal surface formed by constant phase and the distance between two parallel lines
denotes the thickness of the conical wavepacket. The conical surface of a constant
phase travels with the phase velocity cp across the conical wavepacket from the
outer boundary to the inner.

As is known from (15) to (18), the propagation of an inertial wave is depending
on its frequency. For a low-frequency inertial wave, the shear layers form a sharp
cone shape, whereas the cone is dull for high frequencies. Since the frequency of
an inertial wave ranges between 0 and 2Ω, two limit cases should be considered.

For an inertial wave with the frequency much lower than the Coriolis fre-
quency, i.e. ω << 2Ω, θ = arccos(ω/(2Ω)) → 90◦ and θg → 0◦ so that the inertial
wave propagates energy almost parallel to the rotation axis and the phase propa-
gate nearly horizontally, see fig. 2.2(a). In this case, the inertial waves are in fact
Taylor columns since they have 2D structures invariant with respect to the rota-
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(a) (b)

Figure 2.2: Schematic sketches showing some properties of inertial waves with (a) low
(ω << 2Ω) and (b) high (ω → 2Ω) frequencies. The figures are reprinted from
Messio et al. [86]

tion axis. Such inertial waves, which are produced due to large scale geophysical
motions, commonly exist in geophysical fluids.

For higher frequency inertial waves (ω → 2Ω), there is θ = arccos(ω/(2Ω)) →
0◦ and θg → 90◦, the shear layers excited by the inertial wave becomes almost
horizontal, as is depicted in fig. 2.2(b). In this case, the inertial wave propagates
energy horizontally. An inertial wave with frequency ω = 2Ω does not exist,
because the group velocity vanishes due to kx = ky = 0 for ω = 2Ω.

2.4 Inertial Modes in a Rotating Annulus

Being trapped in a closed container, inertial waves can be restricted to a set of
discrete possible frequencies, and the corresponding spatial patterns are called
inertial modes or Kelvin modes. In this section, we follow here the papers by
Borcia and Harlander [17] and Lin et al. [72], in which the dispersion relation of
Kelvin modes in an annulus has been derived.

Assuming a rotating annulus with inner and outer radius Ri and Ro, it is typical
to employ the radius Ro as the length scale, the rotation period Ω−1 as the time
scale, so that the typical velocity and pressure are expressed as U = ΩRo and
P = ρΩ2R2

o. The dimensional variables (marked by ∗) in the system are then
characterised by the following transformation:

t∗ → Ω−1t, r∗ → Ror,u
∗ → (ΩRo)u, p

∗ → (ρΩ2R2
o) p.
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Then the linearised equation (10) becomes

∂u

∂t
+ 2ẑ× u = −∇p, (19)

together with the mass conservation equation

∇ · u = 0, (20)

where ẑ is the unit vector in a cylindrical coordinate (r, θ, z). The boundary con-
dition is defined as

n̂ · u = 0 (21)

at the bounding surface S, where n̂ is the unit normal vector to the surface.

To solve equation (19) and (20), it is mathematically convenient to eliminate
the velocity u and express the problem as a function of the pressure p. For this
purpose, we first assume that (19) has solutions in the form u(r, t) = u(r)eiωt and
p(r, t) = p(r)eiωt, the equation is then transformed into

iωu(r) + 2ẑ× u(r) +∇p(r) = 0. (22)

Taking ẑ·(22) and ẑ×(22), there is

iωẑ · u(r) + ẑ · ∇p(r) = 0 (23)

and
iωẑ× u(r) + 2ẑ(ẑ · u(r))− 2u(r) + ẑ×∇p(r) = 0. (24)

Combining (23) and (24), we have the expression of ẑ× u(r):

ẑ× u(r) =
1

ω

[︃
−2iu(r)− 2

ω
ẑ(ẑ · ∇p(r)) + iẑ×∇p(r)

]︃
. (25)

Finally, we substitute (25) into the divergence of (22), which yields

2∇ · (ẑ× u(r)) +∇2p(r) = 0, (26)

and get

∇2p(r)− 4

ω2
(ẑ · ∇)2p(r) = 0. (27)

This equation is known as the Poincaré equation. Solving the Poincaré equation
gives a set of plane inertial waves. Using the same method, we can get u(r) ex-
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pressed as a function of p(r) by substituting (25) into (22) so that

u(r) =
4i

ω (4− ω2)

[︃
ẑ(ẑ · ∇p(r))− ω2

4
∇p(r)− i

ω

2
ẑ×∇p(r)

]︃
. (28)

In a closed container, the boundary condition n̂ ·u = 0 can be imposed in (28) and
the equation is expressed in terms of the pressure p(r):

(n̂ · ẑ)(ẑ · ∇p(r))− ω2

4
n̂ · ∇p(r)− i

ω

2
(n̂× ẑ) · ∇p(r) = 0. (29)

Assuming p ∼ ei(mθ+kπz/h), in a cylindrical annulus, the Poincaré equation (27)
is supposed to have the general solution

p(r, z, θ) = [C1
mkJm(ξr) + C2

mkYm(ξr)] cos

(︃
kπz

h

)︃
eimθ,m = 0, 1, 2, ..., k = 1, 2, 3, ...,

(30)
where C1

mk, C
2
mk are constants and Jm, Ym are the first and second kind of Bessel

function for integer order m. m and k indicate the azimuthal and vertical wave
number. ξ is radial wave number determined from the boundary conditions.
To satisfy the boundary condition in radial direction at the inner and outer wall
of the annulus, according to (29) there is ω ∂p

∂r
− i2

r
∂p
∂θ

= 0 for r = ri and 1, where
ri is the nondimensional radius at the bound of the inner cylinder. So that for the
solution there is

[ωξJ ′
m(ξ) + 2mJm(ξ)]C

1
mk + [ωξY ′

m(ξ) + 2mYm(ξ)]C
2
mk = 0,

[riωξJ
′
m (riξ) + 2mJm (riξ)]C

1
mk + [riωξY

′
m (riξ) + 2mYm (riξ)]C

2
mk = 0.

(31)

To ensure the equations have non-trivial solution, the constant C1
mk and C2

mk should
not be equal to zero, therefore the determinant of (31) should be zero, i.e.⃓⃓⃓⃓

⃓ ωξJ ′
m(ξ) + 2mJm(ξ) ωξY ′

m(ξ) + 2mYm(ξ)

riωξJ
′
m (riξ) + 2mJm (riξ) riωξY

′
m (riξ) + 2mYm (riξ)

⃓⃓⃓⃓
⃓ = 0 (32)

With some algebra we have

riξ
2 (Pm+1 + Pm−1)− 2ri

ξ2

ω
(Pm+1 − Pm−1) + 2

4− ω2

ω2
m2Pm = 0, (33)

where Pm = Jm(ξ)Ym (riξ) − Jm (riξ)Ym(ξ). For each given mode with frequency
ω, integer azimuthal wavenumber m and axial wavenumber k, solving equation
(33) gives a series of ascending sequenced positive solution ξ that 0 < ξm1k <
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ξm2k < . . . < ξmnk < · · · , where n is the n-th solution and also the wavenumber in
radial direction.
To finally solve the eigenmode problem, the dispersion relation is required, which
is obtained by substituting (30) into the Poincaré equation (27):

ω2
mnk =

4k2π2

(ξmnkh)2 + (kπ)2
. (34)

Combing (33) and (34), we are able to solve the eigenfrequency of a given mode
with wavenumber (m,n, k).

Assuming positive wavenumbers, a positive ωmnk represents a retrograde mode
and negative ωmnk a prograde mode. Imposing the pressure p given by (30) into
(28), we are able to calculate the velocity components of the inertial modes as

r̂ · ûmnk = −i
[︃
ωmnkξmnk

(︁
C1

mnkJm−1(ξmnkr) + C2
mnkYm−1(ξmnkr)

)︁
+
m(2− ωmnk)

r

(︁
C1

mnkJm(ξmnkr) + C2
mnkYm(ξmnkr)

)︁]︃
×
(︃

1

4− ω2
mnk

)︃
cos(kπz/h)eimθ,

(35)

θ̂ · ûmnk =

[︃
2ξmnk

(︁
C1

mnkJm−1(ξmnkr) + C2
mnkYm−1(ξmnkr)

)︁
+
m(2− ωmnk)

r

(︁
C1

mnkJm(ξmnkr) + C2
mnkYm(ξmnkr)

)︁]︃
×
(︃

1

4− ω2
mnk

)︃
cos(kπz/h)eimθ,

(36)

ẑ · ûmnk =
−inπ
hωmnk

[︁
C1

mnkJm(ξmnkr) + C2
mnkYm(ξmnkr)

]︁
sin(kπz/h)eimθ. (37)

2.5 The Ekman Layer

Ekman layers are boundary layers in which there is a balance between the viscous
force and the Coriolis acceleration. An Ekman layer plays an essential role in
geophysical fluid systems and occurs wherever there is horizontal frictional stress
in a rotating fluid, such as in the ocean along the surface, where waters are subject
to wind stress, or at the bottom of the sea, where the frictional stress works against
the flow. The Ekman layer has been first examined in the doctoral thesis by Vagn
Walfrid Ekman after Fridtjof Nansen had noticed during his cruises to northern
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Figure 2.3: A sketch showing the generation of the Ekman layer on the sea surface due
to with wind stress, reprinted from Cushman-Roisin and Beckers [31].

latitudes that icebergs drift not downwind but systematically at an angle of 20◦ -
40◦ to the right of the prevailing wind [31].

The mathematical description of an Ekman layer on the surface of the ocean
induced by the wind stress, such as plotted in fig. 2.3, can be derived based on
the following assumption: (1) steady conditions, (2) a homogeneous fluid and (3)
a geostrophic interior with velocity (ū, v̄) subjected to the wind stress. Thus for
the flow field (u, v) in the surface Ekman layer there is

−f(v − v̄) = νE
∂2u

∂z2
, (38)

+f(u− ū) = νE
∂2v

∂z2
, (39)

with boundary conditions

ρνE
∂u

∂z
= τx, ρνE

∂v

∂z
= τ y at the surface (z = 0), (40)

u = ū, v = v̄ in the interior (z → −∞), (41)

where τx and τ y are wind stresses and νE is the eddy viscosity. The eddy vis-
cosity is a parameterized term adopted in the atmospheric and oceanic contexts
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to analogy the momentum transference due to the near-random motion of small
parcels of fluid in turbulent flows, which might be orders of magnitude larger
than the momentum transference due to the molecular viscosity. In laboratorial
context, on the other hand, a molecular viscosity is usually used for Ekman layer
problems [113].

The solution of the equations is

u = ū+

√
2

ρ0fd
ez/d

[︂
τx cos

(︂z
d
− π

4

)︂
− τ y sin

(︂z
d
− π

4

)︂]︂
, (42)

v = v̄ +

√
2

ρ0fd
ez/d

[︂
τx sin

(︂z
d
− π

4

)︂
+ τ y cos

(︂z
d
− π

4

)︂]︂
, (43)

where d is the Ekman layer thickness and d =
√︁

νE/Ω = Eν
1/2H . Eν

1/2 is the eddy
Ekman number defined as Eν = νE/(ΩH

2) and H is the depth scale of the motion
(the total thickness if the fluid is homogeneous).

Obviously, the solution shows that the velocity departed from the interior flow
is induced by the wind stress and does not depend on the interior flow. The
magnitude of the departure decreases when the distance to the surface increases,
meanwhile it is inversely proportional to the Ekman layer depth. For a flow with
small viscosity, i.e. a thin Ekman layer, large drift velocities can be driven by the
wind stress.

The wind-driven horizontal transport in the surface Ekman layer has compo-
nents given by

U =

∫︂ 0

−∞
(u− ū)dz =

1

ρ0f
τ y, (44)

V =

∫︂ 0

−∞
(v − v̄)dz =

−1
ρ0f

τx. (45)

According to this result, the wind stress induces the horizontal transportation
oriented perpendicular to the wind stress (fig. 2.4). Influenced by the Corio-
lis frequency, the transportation orients to the right in the northern hemisphere
and to the left in the southern hemisphere. This fact explains the observation by
Fridtjof Nansen that the icebergs drift to the right of the wind in the North At-
lantic. To satisfy the mass conservation in the Ekman boundary layer, a vertical
flux of fluid out of the boundary layer into the geostrophic region. This vertical
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Figure 2.4: The structure of an Ekman layer induced by the wind stress on the surface,
reprinted from Cushman-Roisin and Beckers [31].

velocity throughout the interior is given by

w̄ = +

∫︂ 0

−∞

(︃
∂u

∂x
+

∂v

∂y

)︃
dz

=
1

ρ0

[︃
∂

∂x

(︃
τ y

f

)︃
− ∂

∂y

(︃
τx

f

)︃]︃
,

(46)

which is known as Ekman pumping or Ekman suction depending on the direc-
tion of the induced interior vertical velocity, where the Ekman pumping (suction)
causes a downwelling (upwelling) interior flow perpendicular at the boundaries.
Although the induced velocity is quite small comparing with the free stream ve-
locities parallel to the boundary, it can largely influence geostrophic flows.

The Ekman layer and the closely related Ekman transport are very effective
mechanisms in the ocean, by which winds drive subsurface ocean currents. In
laboratory rotating spin-up experiments, Ekman pumping is the mechanism that
accelerates the interior of the fluid to the rotation rate of the container. When
a cylinder containing a fluid spins up abruptly from stationary or a solid-body
rotation, see fig. 2.5, the fluid at the bottom forms an Ekman layer with the thick-
ness of order O(Ek1/2) and moves with the cylinder while the bulk of the fluid
remains unchanged. The fluid in the bottom Ekman layer is propelled radially
outwards by the Coriolis force and leads to a secondary flow circulation along
with the boundary layers and downward in the interior of the cylinder.

Besides the Ekman layer on the horizontal direction, a boundary layer in the
vertical direction, which is known as the Stewartson layer, is established to satisfy
the non-slip boundary condition on the vertical side-wall. The Stewartson layer
has a double-layer structure, which consists of a thickness of order O(Ek1/4) to
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Figure 2.5: Bottom Ekman layer and Ekman pumping in an abruptly spinning up cylindri-
cal container.

satisfy the non-slip condition for azimuthal flow and a thickness of order O(Ek1/3)

for vertical flow [96]. In a nonlinear spin-up, the Stewartson layer might have
considerable influences in the interior fluid motion [10].

2.6 Resonant Collapse

The rotating fluids with the presence of Kelvin modes become unstable for large
Reynolds numbers. The Kelvin modes can be excited with different types of pe-
riodic forcing, such as precessional forcing (Lagrange et al. [63], [64], Manasseh
[78] and Meunier et al. [88]), elliptical deformation (Le Bars et al. [68], Malkus [76]
and Malkus and Waleffe [77]) and longitudinal libration (Borcia et al. [15], Busse
[22] and Klein et al. [60]).

Using a slightly inclined paddle oscillating in a fully filled axially rotating cylin-
der to produce Kelvin modes with particular frequencies, McEwanc [84] first
showed that a Kelvin mode can become resonant if its wavelength matches the
height of the cylinder. He referred to the phenomenon as “resonant collapse”
where the inertial mode breaks down and degenerates into a small scale disor-
dered flow. The occurrence of the resonant collapse is predictable and quite con-
sistent for the same forcing parameters.

Manasseh [78] performed a series of experiments with a fully filled precessing
cylinder and explored the resonant collapse for widely varied parameters. With
the use of visualisation techniques, he reported the presence of different break-
down regimes and categorized them with forcing frequencies, breakdown times
and nutation angles. His observation shows that the resonant collapse is not at-
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tributed to a single model.

In our experiment, we investigated the resonant collapse resulted from two
kinds of instabilities: a parametric triadic instability and a shear-type instability.

2.7 Triadic Instabilities

In rotating flow, the low-amplitude periodic forcing plays as a conveyor that ex-
tracts energy from the background flow and transfers into motions of the fluid.
Triadic resonance is a generic mechanism that increases the efficiency of this pro-
cess [74]. In a typical scenario that a forced Kelvin mode has angular frequency
ωf , azimuthal wavenumber mf and axial wavenumber kf , the two free mode
components in a triadic resonance with the forced mode must satisfy

|ω1 ± ω2| = ωf ,

|m1 ±m2| = mf ,

|k1 ± k2| = kf .

(47)

These conditions ensure that the Fourier component of mode 1 (u1, p1) is the same
as the one of the nonlinear interaction between mode 2 (u2, p2) and the forced
mode (uf , pf ) [64]. The frequencies of the two free modes are able to be predicted
by the dispersion relation based on linear inviscid theory. Although strict con-
straint on the radial wavenumbers is not necessary, two free modes with the same
radial wavenumbers have much larger growth rates than different wavenumbers
[37].

Triadic resonance gives rise to instabilities is a popular idea for elucidating the
mechanism of the breakdown of laminar rotating flow with the presence of a
resonant forcing. One year after McEwan reported his experimental observation
of the resonant collapse in a rotating fluid with the presence of Kelvin waves in
1970, he proposed that the resonant collapse of the inertial modes is caused by
nonlinear interactions of wave triads and experimentally confirmed by exciting
internal gravity waves in a linearly stratified fluid [85].

A physical mechanism has been proposed by Kerswell [59] that a triadic reso-
nance can be triggered by a given Kelvin mode with two other free Kelvin modes
and leads to an instability. In this situation, the nonlinear terms of the distur-
bance can lock the free Kelvin modes and enable the transfer of the energy from
the forced mode into the free modes. As suggested by Kerswell, the Kelvin modes
arising from the triadic resonance are unstable and could lead to secondary insta-
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bilities. This process might continue and eventually lead to a tertiary turbulence.
Such a transition to a sustained chaotic flow has been presented numerically by
Lopez and Marques [74].

2.8 Instabilities Due to Differential Rotation

In a rotating system, a stationary non-zero mean flow in azimuthal direction can
be induced by forced oscillations in the fluid, such as precession, elliptical oscilla-
tion or rotation about an inclined rotating axis. The laminar azimuthal mean flow
can become unstable with a sufficiently strong amplitude. This type of instability
is usually related to two basic mechanisms.

One of the mechanisms is the famous Rayleigh’s criterion for instability, which
distinguishes between stable and unstable distributions of the angular velocity
uθ = rΩ(r) in an inviscid axisymmetric swirling flow. A flow is stable to all
axisymmetric perturbations only if everywhere

d

dr
(r2u2

θ) > 0. (48)

Since the centrifugal force plays an essential role in creating or suppressing the
instability, this type of instability is categorized as centrifugal instability. A typical
example of the centrifugal instability is Taylor vortices in a circular Couette flow.

The second mechanism is shear-type instability that is related to the instabil-
ity of parallel shear flow in a non-rotating system. In this case, the flow can be
destabilized even if the Rayleigh’s criterion is not violated. This instability was
studied by Busse [21] in 1968. Later in 1970 Thompson [110] proposed the theo-
retical prediction of shear instabilities in a partly filled and tilted rotating cylinder
and achieved a good agreement with laboratory experiments. Following Thomp-
son’s method, we derived the equation of shear instability bounds for annular
geometry.

For an annulus with aspect ratio H/R and ri = Ri/Ro, see fig. 2.6, the governing
equations are given in (19) and (20) in Sec. 2.4. Due to the presence of the free
surface and the inclination angle, different boundary conditions are defined as

∂p

∂z
= 0 at z = 0, (49)

∂p

∂r
+

2p

r
= 0 at r = ri or 1, (50)
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Figure 2.6: A sketch showing geometries of a partly filled and tilted rotating annulus.

∂p

∂z
= αr +

pFr

3
− rFr

3

∂p

∂r
at z =

1

4
Fr
(︁
2r2 − 1

)︁
+H/R, (51)

where Fr = Ω2R/g is the Froude number that compares the centrifugal force to
the gravitational force. The invisid interior solution in the order of the forcing
mode is given as

∂2p

∂r2
+

1

r

∂p

∂r
− p

r2
− 3

∂2p

∂z2
= 0. (52)

Using separation of variables, the solution of the (52) is of the form

p =
∞∑︂
n=1

An cos

(︃
λnz√
3

)︃
[C1J1 (λnr) + C2Y1 (λnr)]. (53)

To fulfil the boundary condition (50), there is

riλ [C1J
′
1(riλ) + C2Y

′
1(riλ)] + 2 [C1J1(riλ) + C2Y1(riλ)] = 0, (54)

λ [C1J
′
1(λ) + C2Y

′
1(λ)] + 2 [C1J1(λ) + C2Y1(λ)] = 0. (55)

Similar to (31), nontrivial solutions require the determinant of the coefficient ma-
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trix of C1 and C2 to be equal to zero, this gives

[riλJ
′
1(riλ) + 2J1(riλ)] [λY

′
1(λ) + 2Y1(λ)] = [λJ ′

1(λ) + 2J1(λ)] [riλY
′
1(riλ) + 2Y1(riλ)] .

(56)
Let λn(n ∈ N) be the solutions of this equation and C1 in (53) equal to one, the
solution of p is

p =
∞∑︂
n=1

An cos

(︃
λnz√
3

)︃[︃
J1(λnr)−

λnJ
′
1(λn) + 2J1(λn)

λnY ′
1(λn) + 2Y1(λn)

Y1(λnr)

]︃
, (57)

where the amplitudes An are still unknown. They can be determined via the
surface boundary condition. For Fr << 1, the surface boundary condition (51)
can be modified by using Taylor expansion in Fr so that

∂p

∂z
+

Fr

4

(︁
2r2 − 1

)︁ ∂2p

∂z2
= r +

pFr

3
− 1

3
rFr

∂p

∂r
+O

(︁
Fr2
)︁

at z = H/R. (58)

Taking (57) into (58) we get

∞∑︂
n=1

An

[︃
− λn√

3
Bn(r) sin

(︃
λn√
3

H

R

)︃
−Fr

12

(︁
2r2 − 1

)︁
λ2
nBn(r) cos

(︃
λn√
3

H

R

)︃
−Fr

3
Bn(r) cos

(︃
λn√
3

H

R

)︃
+
1

3
rFr

∂Bn(r)

∂r
cos

(︃
λn√
3

H

R

)︃]︃
= r,

(59)

where
Bn(r) = J1(λnr)−

λnJ
′
1(λn) + 2J1(λn)

λnY ′
1(λn) + 2Y1(λn)

Y1(λnr). (60)

Multiplying each side by rBn(r) to make the error of the surface boundary condi-
tion orthogonal to the function Bn(r) in radial direction and integrating from the
inner boundary r = ri to the outer boundary r = 1, we get the linear system that
determines the unknown An. This linear system can be numerically solved as a
function of Fr, Sn, Cn, where Sn = sin

(︂
λn√
3
H
R

)︂
, Cn = cos

(︂
λn√
3
H
R

)︂
. For the given ri,

the solution of the first resonance is

A1 =
0.298

S1 + 0.387FrC1

, (61)

so that the first resonant depth is then

H/R = 1.199− 0.141 ∗ Fr. (62)

The maximum amplitude of the mean motion is limited by the zero-order bound-



2.8 Instabilities Due to Differential Rotation 25

ary solution. Although the viscosity is ignored in the interior for small Ekman
number, the boundary layer should be considered as viscous.

The possible barotropic shear instability, according to Thompson [110], is rel-
evant to the “Rayleigh” stability equation given by Busse [21]. The instability
bound of the inclination α is given as

α =

(︃
3.41

|V0|m∗
nR

)︃ 1
2 Ek

1
4

An

, (63)

where |V0| is the mean amplitude that we know experimentally and m∗
n = 2π/(R/n)

is the dimensional wavenumber for the n-th resonance. Using the amplitude An

from (61), the bounds of instabilities are able to be predicted.
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3 Experimental Setups

The laboratory experiments presented in this thesis have been performed using
two experimental apparatus. This chapter will give some details of the experi-
mental setups.

3.1 The QBO-Wave Tank

The QBO-wave tank, which is built in the years 2011/2012 at the Brandenburg
University of Technology Cottbus - Senftenberg (BTU CS), is originally designed
to study the mechanism of the quasi-biennial oscillation (QBO) of the zonal wind
in the equatorial stratosphere with a variable period averaging 28 months.

The tank consists of two coaxial and independently rotating cylinders. As is
shown in fig. 3.1, the container has an outer cylinder made of borosilicate glass
with a radius Ro = 200 mm and a replaceable inner cylinder of different geome-
tries (see the right side of fig. 3.1) made of anodized aluminium. The optional
inner cylinders include a normal straight cylinder with a radius Ri = 75 mm and
a frustum with the radius ranging from 100 mm at the bottom to 50 mm at the
top, which is designed to capture features of a spherical shell. For the exper-
iments discussed in the thesis, only the straight inner cylinder was employed.
The height of the interior is 500 mm and thus the total volume of the interior is
54 Litres. The inner and outer cylinder are driven by two individual motors and
therefore are able to rotate independently. Being attached with the outer cylinder,
the anodized aluminium bottom rotates simultaneously with the outer cylinder.
An acrylic glass transparent top plate constrained with the outer cylinder is avail-
able when a closed container is required. To reduce the reflection when using a
laser device for measurement, the surfaces of the aluminium bodies, including
the inner cylinder and the bottom plate, are painted in black. Meanwhile, the
transparent outer cylinder and the top lid allow optical measurements from the
side or above.

The roundness of the outer cylinder has been examined with a dial test indi-
cator at three different heights, see fig. 3.2. Due to imperfections in production,
out-of-roundness irregularities exist in the tank wall with a maximum magnitude
of 1.8 mm, less than 1% of the inner radius of the outer cylinder. The out-of-
roundness is worse close to the bottom.

Beside the independently regulated constant rotation rate of the two cylinders,
the controlling system also allows the cylinders rotating with periodical oscilla-
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Figure 3.1: Photographs showing the geometries of the QBO-wave tank and the different
inner cylinders, reprinted from User Guide of the QBO tank.

Figure 3.2: Deviation of inner radius of the outer cylinder for different heights, reprinted
from Seelig [104].
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Table 3.1: Parameters of the QBO tank and the fluid of the experiment.

Geometrical parameters
inner cylinder radius Ri 75 mm
outer cylinder radius Ro 200 mm
gap width d 125 mm
radius ratio a = Ri/Ro 0.375
maximum inner rotation rate Ωi,max 50 rpm
maximum inner rotation rate Ωi,max 50 rpm
Ekman number Ek = ν

ΩoR2
o
≥ 4.26× 10−6

Working fluid properties
working fluid distilled water
density (20◦C) ρ 998.2 kg/m3

kinematic viscosity (20◦C) ν 1.004× 10−6 m2/s

tions, so that the angular velocity of each cylinder can be configured as

Ωin,out = Ω0[1 + ϵ · sin(ωt)], (64)

where ϵ is the oscillation amplitude with 0 < ϵ < 0.49 and ω is the forcing fre-
quency normalized by Ω0.

The motors that drive the cylinders are controlled by the software LabVIEW®and
the user interface is shown in fig. 3.3 as an example. The driving signals for the
motors are transferred to the controlling unit via an SCB-68 digital I/O inter-
face device by National Instruments that converts the digital signal to a control
voltage. Output signals from the I/O device will be inputted in the frequency
inverters by Stöber Antriebstechnik GmbH that directly control the rotation rate
of the two three-phase alternating current (AC) motors, which are also products
from Stöber Antriebstechnik GmbH.

The entire experimental apparatus, including the cylinders, motors and trans-
mission gears, is mounted on a vibration absorbing optical table. To reduce ad-
ditional vibrations, the two motors are mounted on the table to the left and right
side of the experiment cell and drive the cylinders via gear belts. Between the
base plates and the motors, 5 mm robber gaskets are used to inhibit additional
vibrations.

The motors together with bevel gears are surrounded with external tables and
protective grids for safety reasons. The outer cylinder motor has the power of
2.2 kW, speed of 1455 rpm and a rated torque of 14.4 Nm and the inner cylinder
motor with the power of 0.55 kW, speed of 1400 rpm and a rated torque of 3.8 Nm.
Both motors are connected to a power transmission gear unit with a transmission
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Figure 3.3: LabVIEW®controlling interface of the QBO-wave tank. The left block controls
the rotation rate including azimuthal oscillations of the inner and outer cylin-
ders. The middle and right blocks monitor the current status of the apparatus.

ratio of 3569 : 128 (outer) and 1261 : 50 (inner). With this setup, the transmission
gears are able to provide highly accurate rotation rate for 5− 50 rpm. For higher
speeds (50 rpm < Ω < 150 rpm), optional transmission gears are also available
with transmission ratios of 1520 : 273 and 43 : 8 for the outer and inner motors
respectively.

The working status of the motors are monitored by additional temperature sen-
sors (LM19-CIZ) from National Instruments to avoid an overheating of the mo-
tors during long-time experiments. The LM19-CIZ temperature sensor is a preci-
sion analog output complementary metal-oxide-semiconductor (CMOS) integrated-
circuit temperature sensor that operates over a temperature range from −55◦C to
+130◦C with a maximum error of±3.8◦C, which is sufficient to monitor the work-
ing temperature of motors. The temperature sensors are also connected to the dig-
ital I/O interface and their measures are displayed on the LabVIEW®controlling
interface (see fig. 3.3).

To ensure the cylinders rotating with accurate angular velocities, rotation rates
of the inner and outer cylinder have been measured with a tachometer for clock-
wise rotation with different set-values from 5 to 45 rpm. For each set-value of the
rotation rate, the measurement is repeated for 5 times by starting the rotation and
then completely stopping. According to the result listed in tab.3.2, the rotation
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Figure 3.4: A photograph of the QBO-wave tank mounted on a vibration absorbing optical
table showing the mechanical components of the experimental apparatus.
Motor 1 drives the inner cylinder and motor 2 drives the outer.

rate of the outer cylinder is very precise with a maximum relative error of 0.40%.
Repeating the test by completely restarting the rotation shows that the measured
rotation rates are very consistent. The accuracy of the inner cylinder, although
not as good as the outer cylinder, is still acceptable. For lower rotation rate the
relative error is rather high, in particular at 10 rpm, where the relative error is
as high as 1.5% and repeating the tests gives inconsistent measurements with a
deviation of 0.11 rpm. However, for higher rotation rate the inner cylinder works
more accurately.

3.2 MSGWs Tank

The Multi-Scale Gravity Waves (MSGWs) tank is an experimental apparatus built
in 2016 at BTU CS and designed to investigate inertial gravity waves under a
shallow water configuration, where the aspect ratio, i.e. the ratio between the
depth and the radius, is smaller than one. This is a classical setup of a rotating
experiment with its mechanical structure shown in fig. 3.5 and the main parts
marked with numbers.

The whole apparatus is build on a metallic base (1), which supports a syn-
chronous servomotor with a helical-bevel gear unit (2) and rotary index table (3).
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Table 3.2: Measurements of the accuracy of the cylinder angular velocity.

Set value
(rpm)

inner cylinder outer cylinder
average
(rpm)

relative
error (%)

deviation
(rpm)

average
(rpm)

relative
error (%)

deviation
(rpm)

5 4.93 1.40 0.03 5.02 0.40 0.00
10 10.15 1.50 0.11 10.01 0.10 0.00
15 15.09 0.60 0.06 14.99 0.07 0.01
20 20.06 0.30 0.03 19.99 0.05 0.01
25 25.07 0.28 0.02 24.98 0.08 0.01
30 30.03 0.10 0.01 30.00 0 0.00
35 35.04 0.11 0.01 35.03 0.09 0.00
40 40.05 0.13 0.01 40.03 0.08 0.00
45 45.03 0.07 0.00 45.05 0.11 0.00

The motor (model CMPZ100S) and the helical-bevel gear unit (KAF57) are from
SEW-EURODRIVE. The motor has a maximum speed of 3000 rpm and a two-
stage gear system provides a high degree of efficiency of over 90% in both torque
directions and at all input speeds. The rotary index table from AUTOROTOR
Srl transmits the rotation of the inlet shaft to the rotation of an output disk posi-
tioned on top. The rotating disk directly connects to eight metallic arms (4), which
is built to fix the tank (5) to the rotating disk. The tank consists of three concentric
cylindrical gaps enclosed by four side walls made of acrylic glass. The material
was chosen due to its high light transfer of 92% and low density of 1.19 g/cm3 so
that invasive measurement techniques such as PIV and infrared thermography
are possible.

The tank is controlled with software provided by the motor’s manufacturer
SEW-EURODRIVE, which controls the tank rotating with a constant angular ve-
locity as well as a ramp function that allows to set constant acceleration for spin-
up/spin-down. Richer motion control is also available with the use of an addi-
tional digital I/O device from National Instruments and LabVIEW. The digital
I/O device outputs voltage signals to the controlling unit of the motor to regu-
late the rotation rate of the motor, which allows the tank rotating with a time-
dependent motion function, such as sinusoidal oscillation.

With the LabVIEW control system, the oscillation frequency has been calibrated
with ultrasonic sensors. The sensors have been mounted on the oscillating plat-
form and detected the distance to a surface which is stationary relative to the
laboratory frame. As is shown in fig. 3.7, the tank oscillates slower than the
set values, the relation between the real oscillation rate and the set rate follows
Ωreal = 0.962Ωset.
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Figure 3.5: Sketch of the mechanical structure of MSGWs tank. The numbers on the
sketch mark the main components of the tank and detailed descriptions are
given in the text. The figure is reprinted from Rodda [100].

Figure 3.6: Photograph of MSGWs tank showing the experimental setup with ultrasonic
sensors over the outer ring.
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Figure 3.7: Calibration of the oscillation frequency of MSGWs tank, the line represents
the nominal oscillation rate and the crosses represent the actual value.

To study inertial gravity waves, the three cylindrical channels are designed in
a way that the middle channel is filled with working fluid meanwhile the inner
and outer channels are filled with cold and warm water respectively to cooling
down or heating up the working fluid in the middle channel. A number of aux-
iliary devices are required to ensure the functionality of MSGWs tank, such as a
refrigerating device for cooling down the water in outer channel, a heating device
for warming up the water in the inner channel as well as two pumps for the cool-
ing/heating circulations in both channels. The tank is designed and built with a
rather large size, the four circular walls that compose the three channels have the
radius 815 mm, 700 mm, 350 mm and 335 mm respectively from outside to inside.
The rotation rate of the tank ranges from 0.01 rpm up to 20 rpm with a precise
increment of 0.01 rpm.

Nevertheless, for the experimental setup in the thesis, as shown in fig. 3.6,
only the outer gap is required and acts as a circular channel. To measure the
propagation of the bores in this circular channel, multiple ultrasonic sensors have
been mounted along the central line of the outer gap above the tank with a certain
distance from each sensor. The ultrasonic sensors measure the distance from the
sensor to the fluid surface and thus reveal the motion of bores. The data from the
ultrasonic sensors are collected and recorded by the computer on the platform in
the middle of the tank via a digital I/O device from National Instruments.
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4 Measurement Techniques

Plenty of measurement techniques have been developed for measuring the mo-
tions of the fluids. Choosing an appropriate measurement technique is an essen-
tial step for laboratory experiments. To measure the flow motions without intro-
ducing extra disturbances, a non-intrusive measurement technique are usually
preferred.

For the experiments presented in the thesis, several measurement techniques
have been applied for different purposes: rheoscopic flow visualisation, particle
image velocimetry, and supersonic sensors. These techniques will be explained
in the following sections.

4.1 Rheoscopic Flow Visualisation

The rheoscopic flow visualisation is a classical but still commonly used technique
for qualitatively visualising the spatial flow structures by seeding the working
fluid with rheoscopic fluid. The rheoscopic fluid, which means “current show-
ing” fluid, is composed of microscopic, anisotropic and reflective flakes that can
suspend in the working fluid. Due to the anisotropy, the flakes align preferen-
tially with the shear planes in the flow for pure shear flows and reflect differing
intensities of light under appropriate illumination, which makes the movement
of the currents visible [18].

The early application of the rheoscopic fluids can date back to 1785 when Wilcke
used burnt lime particles to visualise the breakdown of the vortex in the fluid un-
der stirring [115]. Since then, many well-known experiments in fluid mechanics
have been done with the use of rheoscopic fluids, such as the visualisation of the
convection patterns in heated fluid layers by Bénard [116], the visualisation of the
flow around a solid body by Prandtl [99] and the visualisation of the wavy vortex
structure of Taylor-Couette flow by Schultz-Grunow [103].

Variations of seeding materials have been used as rheoscopic fluid, such as
mica, metallic flakes, or fish scales in suspension in a fluid. One of the most
popular rheoscopic fluids is Kalliroscope, which is based on suspensions of crys-
talline guanine extracted from fish scales and invented by the artist Paul Matisse
in 1966 for creating kinetic sculptures. The name “Kalliroscope” comes from the
Greek words “Kalos”, “Rheos” and “Skopien” meaning Beauty, Flow and Seeing
[82]. A number of properties contribute to the prevalence of Kalliroscope. Due to
its small platelet size (6 × 30 × 0.07 µm) and relatively low density (1.62 g/cm3),
Kalliroscope flakes have a low sedimentation velocity (≈ 0.1 cm/h in water) com-
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paring to other materials and the spin-up time in most laboratory experiments.
Kalliroscope also has a high refractive index (1.85) and a transparent body, which
makes it effective in visualising the current structure with the help of external
illumination, such as a laser beam [83].

Although Kalliroscope is a powerful tool in flow visualisation, the Kalliroscope
Corporation stopped the production of Kalliroscope because of the scarcity of
raw materials in 2014. Finding a perfect alternative is still an issue for many
researchers [18].

4.2 Particle Image Velocimetry

The particle image velocimetry (PIV) is an indirect and non-intrusive optical mea-
surement technique that uses particles and their images to deliver the velocity
field of the fluid throughout a region quantitatively. The velocity of the flow is
acquired by measuring the displacement of the ensembles of tracer particles be-
tween two images captured at two instants of time. The basic working principle
of PIV includes seeding, illumination, recording, calibration, evaluation and post-
processing [99]. The schematic sketch in fig. 4.1(a) shows the planar PIV or 2D2C
PIV (two-dimensional velocity field and two velocity components) for the present
laboratory experiment.

(a)
(b)

Figure 4.1: (a) The schematic sketch and (b) photography of the laboratory apparatus
showing the installation of the measuring devices.
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4.2.1 Seeding

In most applications in laboratory experiments, extended tracer particles are re-
quired to be added to the flow so that the motion of the particles can be used to
estimate the kinematics of the local fluid. As an indirect measurement technique,
PIV measures the velocity field by the displacement of the tracers instead of the
fluid. In order to avoid significant discrepancies between fluid and particle mo-
tion, the interaction of the particles and the surrounding fluid has to be examined.

An estimation for the velocity lag Us of a spherical particle in a continuously
accelerating fluid, or the particle’s behavior under acceleration, can be derived
from Stokes’s drag law:

Us = d2p
ρp − ρ

19µ
a, (65)

where ρp and ρ denote the density of the particle and the fluid, dp is the diameter
of the particle, µ is the dynamic viscosity of the fluid and a is the acceleration. In
the flow with relatively low velocity accelerations, e.g. the experiments discussed
in the thesis, the lag is induced by the gravitational force, which yields

Ug = d2p
ρp − ρ

19µ
g. (66)

Apparently, both Ug and Us can be avoided if the density of the particles matches
the fluid, i.e. neutrally buoyancy [99]. Therefore, the particles are chosen to be
near neutrally buoyant to reduce the drag lag and also the sedimentation. In ad-
dition, the particles are required to efficiently scatter light for better visualisation.

In the present experiment, the water is seeded with hollow glass spheres (HGS)
from Dantec Dynamics®, see table 4.1, which have the mean particle diameter of
10 µm and the density of 1.1 g/cm3. The tracer gives the gravitationally induced
velocity Ug in the order 10−6 m/s and Us is even smaller than Ug. Hence the lag of
the particles can be neglected and the motion of the tracers matches the current.

4.2.2 Illumination

A laser device is a commonly used solution for the illumination in PIV. Because
the laser has monochromatic light with high energy density, laser devices can be
easily modified with additional optical lens to bundle the laser beams into thin
light sheets for illuminating and recording the trace of the particles without chro-
matic aberrations [99].
According to the operating mode, a laser device can be classified as either contin-
uous laser or pulsed laser, depending on whether the power output is continuous
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Table 4.1: Specifications of hollow glass spheres. Source: www.dantecdynamics.com.

Unit Hollow glass spheres Silver-coated
hollow glass spheres

Mean particle size µm 10 10
Size distribution µm 2-20 2-20
Particle shape spherical spherical
Density g/cm3 1.1 1.4
Melting point ◦C 740 740
Refractive index 1.52 -
Material Borosilicate glass Borosilicate glass

over time. A pulsed laser device usually emits laser with higher energy density
than the continuous laser device and hence can more effectively freeze the images
of tracer particles moving at high speed. On the other hand, the PIV system with
a pulsed laser is generally more complex than a continuous laser system since
the synchronisation between the laser pulse and the camera must be taken into
consideration.

Figure 4.2: MediaLas® Compact line laser kit GREEN 75mW. Source: www.medialas.de.

For the present experiments, due to the relative small velocities, a continuous
laser is already able to fulfil the requirement of the illumination and meanwhile
keeps the measurement system as simple as possible. For this purpose, a green
Diode-pumped solid-state (DPSS) laser from MediaLas®, see fig. 4.2, has been
applied. The laser device has a build-in line generating optic that bundles the
laser beam into a laser sheet with 110◦ projection angle. The compact body size
and lightweight also reduce the possible influence on the rotating container. The
detailed technical specifications are listed in table 4.2.

4.2.3 Recording

With the development of the digital camera and CMOS technology, the applica-
tion of an unconventional camera in PIV becomes possible. Comparing with a
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Table 4.2: Technical specifications of MediaLas® Compact line laser kit GREEN 75mW.

Laser power: 75 mW
Wavelength/Color: 532 nm GREEN
Projection angle: 110 deg
Line length: 3 m @ 1 m distance,

6 m @ 2 m distance, ...
Divergence: typ. < 1 mrad
Power supply: 24 V DC / < 200mA
Connector: Flying leads
Length of wires: Ca. 1 m
Laser class: Class 1/2
Dimensions: 18 × 75 mm
Temperature range +10°C - +30°C
Operating time: 8-12h per day
Typical lifetime: typically >8000 h

scientific high-speed camera, a mobile phone camera is able to provide a reason-
able result even under a relatively high sampling rate (240 Hz) with a significantly
lower cost [29].

In our experimental setup, we use a GoPro Hero 7 black for recording, which
runs at 30 or 60 frames per second (FPS) sampling frequency and 1920×1080 pix-
els resolution. To achieve a better video quality, the GoPro camera is modified by
replacing the original ultra-wide-angle lens with a C-Mount, so that the camera
is compatible with an extended C-Mount lens, which provides an obviously bet-
ter optical quality and smaller optical distortion. In practice, a 12mm f1.6 and an
8mm f1.4 lens are used depending on the distance from the camera to the laser
sheet. Powered by a Lithium-ion battery and controlled by a mobile phone, the
GoPro camera can work wirelessly.

Figure 4.3: Back-bone modified GoPro Hero 7 Black. Source: www.back-bone.ca.

During the PIV measurement, the condition of illumination is limited by the
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power of the laser device. For an optimum recording quality, settings of the Go-
Pro camera should be properly configured, as a result, the settings are a balance
of ISO, lens aperture and shutter speed.

The ISO represents the light sensitivity of a digital image sensor. A high ISO
indicates the sensor more sensitive to the light and meanwhile usually having a
higher noise level on the outputted image. Limited by the size and capability of
the CMOS imaging sensor of the GoPro camera, the ISO should not exceed 6400
for a lower noise level.

The aperture of the lens controls the amount of light received by the sensor
in unit time. A larger aperture allows more light to reach the camera sensor.
Meanwhile, the aperture size also relates to the depth of field or the focus range.
A larger aperture has a shallower depth of field, which only gives a clear view of
particles on the plane laser sheet, when focused properly, and blurs particles not
on the laser plane but still visible due to the refracted or reflected lights. On the
other hand, a shallower depth of field requires the focus to be very accurate to
keep the image sharp.

The shutter speed regulates the total time for the sensor receiving lights. A
longer shutter speed increases the brightness of the image but might not be able
to capture a rapidly moving particle clearly. It also needs to be noticed that the
shutter speed should be faster than the sampling rate, e.g. for a video with 60
FPS, the shutter speed should not longer than 1/60 second.

4.2.4 Calibration

From the camera, the displacement of the particles is recorded in the image plane
in pixel units. Calibration is necessary in order to convert the displacement in
pixel to the physical world. For the planar PIV, a calibration target, e.g. a plate
with a regular pattern, is used by placing the plate into the measurement plane. In
the experiment, we use a checker board with 2×2 cm grid size cut into an annular
form as the calibration target and place the board into the fluid at the position of
the laser sheet, see fig. 4.4. Depending on the distance from the camera to the
measurement plane, the relation of the digital scale to the physical scale ranges
from 35 to 40 pixels/cm.

4.2.5 Evaluation and post-procession

The evaluation and the post-procession are performed in MATLAB® with a free
open-source PIV toolbox called MatPIV, which is developed by the Department of
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Figure 4.4: PIV calibration with a checker board plate.

Mathematics of University of Oslo [108]. Although there are multiple algorithms
in PIV evaluation, the basic principle relies on pattern matching between two
images with cross-correlation.

Figure 4.5: Inversed gray monochromic photo shows the displacement of the particles
during a time interval ∆t = 0.3s. The black and red colour represent particles
of different images. The dots beyond the upper arc are reflections on the
outer cylinder.

Assuming two images separated by a time distance of ∆t, e.g. fig. 4.5. Figure
4.5 is the superposition of two images from the camera, each of them is processed
by converting the colour space from colour into greyscale and inverting the colour
to turn the black background into white. The second image is plotted by replacing
the black colour with red so that particles with different colour indicate positions
at different time.

For further processing, the images are subsequently divided into smaller re-
gions, also referred as sub-windows or interrogation-windows, see fig. 4.6. Each
sub-window in the first image is compared with the corresponding sub-window
in the second image. Denoting the (i, j) sub-window of the two images as I i,j1

and I i,j2 , where I1 and I2 are the samples (e.g. intensity values) extracted from
the images, the best matched sub-window between the two images can be found
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Figure 4.6: Example of a discrete cross-correlation by applying a 4 × 4 sub-window on
an 8× 8 image sample, reprinted from Raffel [99].

statistically with the use of discrete cross-correlation, which is defined as

R(x, y) =
M∑︂

m=−M

N∑︂
n=−N

I i,j1 (m,n) · I i,j2 (m+ x, n+ y). (67)

The maximum value of R(x, y) represents the best match and the respective (x,y)
gives the shift, i.e. the displacement, in pixels in two directions.

During this step, two parameters need to be noticed: sub-window size and
windows overlap.

The parameter sub-window size is usually a base-2 dimension (e.g. 16, 32, 64 or
128) depending on the displacement of the particles and can be quadratic or non-
quadratic. The reason for the base-2 dimension is that some PIV evaluating al-
gorithms use FFT to perform correlation in the frequency domain and runs faster
with a base-2 dimension. The maximum recoverable displacement range is lim-
ited to the half of the sub-window size. However, increasing displacements will
decrease possible particle matches and thus reduce the signal strength of the cor-
relation peak [99]. In practice, we follow the so-called one-quarter rule that choos-
ing the sub-window size so that the maximum displacement does not exceed 1/4

of the sub-window size [57]. Nevertheless, this requirement is only needed to be
satisfied with the first iteration when using iterative evaluation techniques with
window-shifting.

The windows overlap is a number between 0 and 1 denoting the overlap of the
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interrogation regions (subwindows). Usually this parameter is set to 0.5 or 0.75
which means 50% or 75% overlap of the interrogation windows.
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Figure 4.7: Evaluating the same two images with different final interrogation window
sizes: (a) 16× 16 pixels and (b) 32× 32 pixels.

A comparison of different interrogation window sizes is shown in fig. 4.7 for
sub-window sizes with 16×16 and 32×32 pixels. With a 1920×1080 pixels image
size and a 50% overlap, the evaluation with a 16 × 16 (32 × 32) sub-window size
gives the result in the form of a 2D vector array indicating displacements between
two images with the size of 238× 132 (119× 66).

A smaller size sub-window, such as 16 × 16 in fig. 4.7(a), provides a higher
resolution in the flow field than a larger sub-window (32 × 32 in fig. 4.7(b)). On
the other hand, a 16 × 16 sub-window leads to a dramatic increase in the time
consumption for the PIV processing and the storage size of the final data by as
high as 4 times compared with a 32 × 32 sub-window size. By post-processing,
such as performing a harmonic analysis, a larger size array also requires a more
powerful computer. For the convenience of post-processing, we use an iterative
evaluation technique with the final sub-window size of 32 × 32 and overlap of
50%.

A 2D vector field directly from the evaluation, as shown in fig. 4.8(a), usually
has some imperfections, such as abnormal vectors in fig. 4.8(a) or high-frequency
noises. Therefore it is common to applying a series of filters to enhance the final
result. Such filters include a peak height filter that removes enormous vectors
from the vector field, a Signal-To-Noise ratio filter that removes high-frequency
noises, a global filter that removes vectors significantly larger or smaller than a
majority of the vectors, and a local filter that filters velocities based on the squared
difference between individual velocity vectors and the median or the mean of
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their surrounding neighbours. The removed spurious vectors will be replaced by
interpolations of the neighbouring vectors [109]. A filtered vector field is shown
in fig. 4.8(b), where the outliers have been removed and the field is obviously
smoother.
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Figure 4.8: Comparison of a vector field (a) directly from the evaluation and (b) filtered to
remove outliers.

4.3 Ultrasonic Sensors

An ultrasonic sensor is a contactless measuring instrument that measures the dis-
tance from the sensor to an object using ultrasonic sound waves. The sensor uses
a transducer, which acts as a microphone, to emit sound waves at a frequency
above the range of human hearing, receive the echoes reflected from the surface
of the measured body and convert the reflected sound into an electrical signal. By
measuring time lapses between the sending and receiving of the ultrasonic pulse,
the distance to the target is thus determined.

Ultrasonic sensors are used primarily as proximity sensors in automatic sys-
tems, such as automobile self-parking systems, anti-collision safety systems and
robotic obstacle detection systems, as well as level sensors to detect, monitor, and
regulate liquid levels in closed containers.

Ultrasonic sensors are practical instruments for measuring liquid levels due
to their high accuracy and short response time. In our experiment, we used ul-
trasonic sensors mic+25/IU/TC from microsonic®, see fig. 4.9, with its detailed
technical specifications listed in table 4.3. Figure 4.9(b) shows the detection zone
of the ultrasonic sensor, where the red color indicates the zone in which the sensor
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(a) (b)

Figure 4.9: (a) Microsonic® mic+25/IU/TC ultrasonic sensor and (b) its detection zones
from www.microsonic.de.

is able to detect the distance to a small body-size target (with 27 mm diameter).
For an accurate measurement, the sensors are fixed perpendicular to the fluid
surface with an optimized distance about 250 mm. Co-operating with the digital
I/O device, the ultrasonic sensor works with a sampling rate at 100 Hz, which
is sufficient in tracking the variation of the fluid surface due to surface gravity
waves.
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Table 4.3: Technical specification of Microsonic® mic+25/IU/TC ultrasonic sensor.

measuring range 30 - 350 mm
design cylindrical M30
operating mode analogue distance measurements
ultrasonic-specific
means of measurement echo propagation time measurement
transducer frequency 320 kHz
blind zone 30 mm
operating range 250 mm
maximum range 350 mm
resolution/sampling rate 0.025 - 0.10 mm
reproducibility ± 0.15 %

accuracy ± 1 %
(temperature drift internally compensated)

electrical data
operating voltage 9 - 30 V d.c., reverse polarity protection
voltage ripple ± 10 %
no-load current consumption ≤ 80 mA
type of connection 5-pin M12 initiator plug

output analogue output
current: 4-20 mA / voltage: 0-10 V

response time 32 ms
delay prior to availability <300 ms
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5 Methods of Data Analysis

In this chapter, the methods for analysing the velocity field from PIV data are
briefly introduced. For more detailed information the reader might be referred to
the textbooks such as Emery and Thomson [38] and Wilks [117].

5.1 Discrete Fourier Transform

Fourier analysis is one of the most popular methods in data analysis that trans-
forms the time or spatial data series into signals in frequency or wavenumber
domain or in the other way around. This technique is commonly used for iden-
tifying periodic components in a long time-series data, determining prominently
appearing frequencies and the respective amplitudes in a signal, removing ran-
dom and aperiodic fluctuations from periodic data, filtering high/low frequency
signals from time series (see fig. 5.1), etc. The basic premise of Fourier analysis is
that any periodic time series x(t) with t ∈ [0, T ] can be reproduced with a linear
summation of cosines and sines that

x(t) = x(t) +
∑︂
p

[Ap cos (ωpt) +Bp sin (ωpt)] , p = 1, 2, ... (68)

where x(t) is the mean value of the time series, Ap and Bp are constants called
Fourier coefficients and the specified angular frequencies ωp are integer p multi-
ples of the fundamental frequency ω1 = 2π/T . The decomposition process that
transforms time series into a function of frequency is named as Fourier transfor-
mation.
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Figure 5.1: Removing high frequency noise of data from an ultrasonic sensor by FFT

In practical situations, most of the experimental data are collected and stored in
digital form as non-periodic time-discrete data series, such as velocity fields from
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PIV. To deal with the discrete data, we need to use the discrete Fourier transform
(DFT). For a finite length data set with size N , there is

Xn =
N−1∑︂
k=0

xke
−i2πn k

N for k = 0, 1, ..., N − 1. (69)

The DFT is usually computed with the algorithm fast Fourier transform (FFT),
which reduces the complexity of DFT computation from O(N2) to O(N logN)

and largely improved the data processing efficiency.

5.2 Short Time Fourier Transform

Short-Time Fourier Transform (STFT) (or short-term Fourier transform) is a sim-
ple but effective tool for analysing time-frequency distributions. STFT provides
time-localized information of frequency components of a signal whose spectra
changes over time, whereas the standard Fourier transform provides information
in frequency domain averaged over the entire signal time interval. Due to its
ability that decomposes frequency and time information, STFT is widely used in
sound processing such as audio feature extraction [90]. In geophysical fluid dy-
namics, STFT has also been used to reveal the slowly varying energy cascade as a
function of time [20].

The fundamental concept of STFT is partitioning the signal in time-domain into
a sequence of disjointed or overlapped blocks of shorter duration by multiplying
the signal with a window function, and applying a sequence of Fourier trans-
forms over the windowed signals.

The amplitude temporal evolution is derived by applying a short-time Fourier
transform over the velocity as follows:

A(t, ω) =

⃓⃓⃓⃓∫︂ +∞

−∞
u(τ)hw(τ − t)e−iωτdτ

⃓⃓⃓⃓
/

∫︂ +∞

−∞
hw(τ − t)dτ, (70)

where hw stands for the function of a smoothing Hamming window [9].
Since STFT uses FFT calculating the spectra for each signal block, it is usually

very efficient. The size and type of the window is the most concerned parameter
when performing STFT, since there exists a trade-off between time and frequency
resolution in STFT. A narrow-width window provides a better resolution in the
time domain but leads to a poor resolution in the frequency domain, and vice
versa. Due to the relatively low frequency of the Kelvin modes and the slow-
changing amplitude in terms of the time, a wide window function has been ap-
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plied in processing the experimental data.

In practice, the computation of STFT is performed with the help of the Time-
Frequency Toolbox for MATLAB® developed by CNRS (France) and Rice Univer-
sity (USA) [9].

5.3 Harmonic Analysis

Standard Fourier analysis computes amplitudes in full frequency domain f1, f2, f3,

..., fN (f1 is the fundamental frequency and fN is Nyquist frequency). However,
standard Fourier analysis does not allow to analyse data in terms of predeter-
mined frequencies that often occurs in cases of wave motions. To solve this prob-
lem, we use a signal demodulation method called harmonic analysis, in which
we are able to examine wave motions of predetermined frequencies.

Similar to Fourier analysis (68), the discrete time series x(tn), n = 1, 2, ..., N can
be expressed as

x (tn) = x̄+
M∑︂
q=1

[Aq cos (2πfqtn) +Bq sin (2πfqtn)]+xr (tn) for q = 0, 1, ...,M. (71)

where x̄ is the mean value of the data set, M is the number of prescribed frequen-
cies [f1, f2, ..., fM ] to be analysed, Aq and Bq are harmonic coefficients and xr(tn)

is the residual part of the data set. A0 is the temporal mean of the time series and
B0 = 0. The amplitude Cq and phase ϕq of a specified harmonic component of
frequency fq is determined by harmonic coefficients Aq and Bq that

Cq =
(︁
A2

q +B2
q

)︁1/2
, (72)

ϕq = tan−1 (Bq/Aq) . (73)

The aim of harmonic analysis is to determine the coefficients Aq and Bq in (71)
for the M prescribed frequencies. For this purpose, the variance e2 of the residual
term xr(tn) in (71) is introduced and defined as

e2 =
N∑︂

n=1

x2
r (tn) =

N∑︂
n=1

{︄
x (tn)−

[︄
x̄+

M∑︂
q=1

[Aq cos (2πfqtn) +Bq sin (2πfqtn)]

]︄}︄2

.

(74)
Further a least square method is employed to find the particular Aq and Bq that
minimises the variance e2. The Aq and Bq are then the coefficients with the best
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fit for (71).

5.4 Mode Reconstruction

In the current experimental setup, due to the presence of the non-transparent in-
ner cylinder, a PIV measurement on the full horizontal annulus cross-section with
a single camera is not available. Limited by the view angle of the measuring cam-
era, the measurement of the PIV only gives an annular sector of the full annulus
with a view angle of about 50◦, as shown in fig. 5.2. To obtain the wavenumber of
a mode in the azimuthal direction, a reconstruction of the mode for the complete
annulus gap is required.
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Figure 5.2: Azimuthal velocity field of frequency ω/Ω = 1.165 precessed by harmonic
method from PIV result for H = 24cm, Ek = 1.19× 10−5,Fr = 0.09, α ≈ 1◦.

For this purpose, we first extract the velocity field of a particular mode with the
help of harmonic analysis, such as the azimuthal velocity field of the mode with
frequency ω/Ω = 1.165 (see fig. 5.2). The next step is to decide a particular radius
for detecting the wavenumber, e.g. the black arc in fig. 5.2 with r = (Ri + Ro)/2.
Since the velocity field of the mode is periodic, the evolution of azimuthal velocity
for grids of r = (Ri + Ro)/2 can be plotted as a function of time over several
periods, see fig. 5.3(a).

Considering the mode is continuous and periodic in the azimuthal direction,
the propagation of the wave can be predicted by expanding the contour in fig.
5.3(a) along the wave propagating direction on the θ − t plane. Following this
procedure for all times, we will obtain the temporal velocity evolution for the
complete circumference, as shown in fig. 5.3(b). The azimuthal wavenumber is
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Figure 5.3: The procedure for detecting the wavenumber in azimuthal direction using az-
imuthal velocity. The angle θ is given in degrees. (a) A Hovmöller diagram
shows the time evolution of azimuthal velocity profiles for θ = −24◦ − +24◦;
(b) a Hovmöller diagram expanded from (a) shows the time evolution of az-
imuthal velocity profiles for the full circumference; (c) the azimuthal velocity uθ
as a function of θ for t = 1.3 shows the distribution of uθ on the circumference
for r = (ri + ro)/2.
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easily obtained by simply counting the number of stripes with the same color for
θ = 0−360◦ at a certain time in fig. 5.3(b), or by plotting the azimuthal velocity uθ

as the function of θ for an arbitrary time, see fig. 5.3(c). In practice, such a uθ − θ

diagram as fig. 5.3(c), which shows the wave structure on the full circumference,
might not always give an integral wavenumber. In this case, a close integer will
be taken as the azimuthal wavenumber.

5.5 Bispectra Analysis

Bispectra analysis is part of higher-order spectral analysis (HOSA), which is a
tool for analysing the nonlinearity of a system under a random input. Higher-
order spectra (HOS), which refers to one order greater than two, are defined by
higher-order cumulants of data. Compared to standard Fourier analysis, HOSA
provides several advantages in processing stochastic non-Gaussian signals, e.g.
HOS preserve the phase information of non-Gaussian parametric signals that are
not contained in traditional Fourier analysis and HOSA is able to detect and char-
acterize the nonlinear interactions in a system via phase relations of the harmonic
components. In practice, the analysis is performed with the help of the HOSA
MATLAB® toolbox [92].

Since HOS have an order greater than two, a third-order spectrum is called as
bispectrum. Fundamentals of the bispectrum are introduced as follows.

For a real, stationary, zero-mean random data set x(t), the first-, second- and
third-order cumulants are defined as

C1 = E{x(t)},

C2(τ1) = E{x(t)x(t+ τ1)},

C3(τ1, τ2) = E{x(t)x(t+ τ1)x(t+ τ2)},

(75)

where E is the expectation and τ1, τ2 are lags in cumulants. The first-order cu-
mulant C1 is equal to the mean value of the data set, which is usually subtracted
from the data set if x(t) ̸= 0 so that C1 = 0. The second-order cumulant C2(τ1)

is identical to an autocorrelation function, which provides a measure of how the
sequence is correlated with itself at different time points. A Fourier transform
of the second-order cumulant gives the traditional power spectrum. Applying
Fourier transform to the third-order cumulant C3(τ1, τ2), we get the bispectrum,
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which can be expressed in the form

B (ω1, ω2) =
+∞∑︂

τ1=−∞

+∞∑︂
τ1=−∞

C3 (τ1, τ2) exp {−i (ω1τ1 + ω2τ2)}

= X (ω1)X (ω2)X
∗ (ω1 + ω2)

(76)

where |ω1| ≤ π, |ω2| ≤ π, |ω1 + ω2| ≤ π, X(ω) is the Fourier transform of time
series x(t) and ∗ denotes the complex conjugate.

The definition of the third-order cumulant (75) and the bispectrum (76) reveals
some important properties of third-order spectra analysis:

1. The bispectrum B(ω1, ω2) is a product of three Fourier components, in which
the frequency of one component equals the linear summation of the other two
components. This product can be used to detect and quantify the quadratic phase
couplings of these frequencies.

2. B(ω1, ω2) is generally complex and has magnitude and phase:

B(ω1, ω2) = |B(ω1, ω2)| exp(iϕB(ω1, ω2)). (77)

3. According to (75), the third-order cumulant C3(τ1, τ2) has symmetry condi-
tions in temporal domain that

C3(τ1, τ2) = C3(τ2, τ1)

= C3(−τ2, τ1 − τ2)

= C3(τ2 − τ1,−τ1)

= C3(τ1 − τ2,−τ2)

= C3(−τ1, τ2 − τ1).

(78)

The symmetry conditions can be expressed on the coordinate diagram on fig.
5.4(a), which shows the six symmetric sections of C3(τ1, τ2).

4. Similar to C3(τ1, τ2), the bispectrum also has symmetry properties in fre-
quency domain:

B(ω1, ω2) = B(ω2, ω1) = B∗(−ω2,−ω1)

= B∗(−ω1,−ω2) = B(−ω1 − ω2, ω2)

= B(ω1,−ω1 − ω2) = B(−ω1 − ω2, ω1)

= B(ω2,−ω1 − ω2),

(79)

and the symmetric sections are plotted on fig. 5.4(b).
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(a) (b)

Figure 5.4: Symmetry regions of (a) third-order cumulants and (b) bispectra, reprinted
from Nikias and Raghuveer [92].

5. C3(τ1, τ2) = 0 for all (τ1, τ2) of a stationary zero-mean pure Gaussian process
and the respective B(ω1, ω2) also equals zero.

6. B(ω1, ω2) suppresses linear phase information in a way that for time series
y(t) = x(t+ n), n is a constant integer, there is By(ω1, ω2) = Bx(ω1, ω2).

To quantify the quadratic nonlinearities in time series, the bispectrum can be
normalised by the magnitudes that

b(ω1, ω2) =
X(ω1)X(ω2)X

∗(ω1 + ω2)√︁
|X(ω1)|2|X(ω2)|2|X∗(ω1 + ω2)|2

. (80)

This is the so-called bicoherence, which gives a statistical measure of quadratic
phase coupling. The magnitude of bicoherence ranges form 0 to 1, where 1 rep-
resents perfect phase coupling and 0 means no coupling. With the help of bico-
herence, we have quantitative information about the existence of phase coupling
from the PIV data.
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6 Instabilities in a Tilted Rotating Annulus

6.1 Introduction

The instabilities of the flow in a rotating container have been studied for a long
time. Lord Kelvin (William Thomson) [111] linearised and solved the Euler equa-
tions including rotation by assuming time harmonic perturbations. This solution
is composed by a sum of so-called normal Kelvin modes (i.e. inertial modes),
where the Coriolis force plays the role of the restoring force. The frequency of
each mode is less than two times the solid-body rotation frequency. These modes
are damped when viscosity is added, unless external forcing provides the energy
for their excitation.

Different experimental configurations have been used to excite Kelvin modes in
a rotating container. McEwan [84] performed experiments with a slightly inclined
top end in a fully filled axially rotating cylinder. Thompson [110] excited this
periodic motions in a partly filled and slightly tilted rotating cylinder. Malkus
[76], Malkus and Waleffe [77] and Le Bars et al. [68] used a rotating deformable
elastic cylinder, which produces inertial modes with azimuthal wavenumber 2
or 3, depending on the deformation. Precession and libration are also common
methods for exciting Kelvin modes. Experiments in a precessing cylinder were
performed e.g. by Manasseh [78], Meunier et al. [88], and Lagrange et al. [63], [64]
and in a longitudinal librating cylinder by Busse [22], Borcia et al. [15] and Klein
et al. [60]. The container can also have different shapes, e.g. spherical, rather than
a cylindrical (Aldridge and Toomre [6], Hoff et al. [53], [54]).

When the frequency of the excited Kelvin mode differs from the resonant fre-
quency, the fluid response can be predicted by linear inviscid theory [47]. In con-
trast, when the forced Kelvin mode has the same frequency as one of the reso-
nance frequencies of the rotating fluid, the Kelvin mode becomes unstable above
a threshold amplitude. The instability leads to strong nonlinear effects and re-
sults in a sudden breakdown of the flow into small scale disorder, which was
referred to as “resonant collapse” by McEwan [84]. Later, in 1971 McEwan [85]
suggested that the phenomenon can be explained with a triad resonance model,
where two free modes form a triad in second-order resonant interaction with the
forced mode. Exchanging energy with the forced mode, these free modes can lead
to momentum mixing in localized regions, thus resulting in a breakdown of the
inertial wave, and eventually in the resonant collapse. The breakdown regimes
at various Ekman numbers, precession angles and frequencies were studied and
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characterised by Manasseh [78]. At certain conditions, McEwan [85] and Man-
asseh [78] observed a relaminarization of the chaotic flow field after the break-
down and the rotating flow went into a breakdown-relaminarization cycle.

A series of studies by Lopez and Marques [73], [74], [80], Meunier et al. [63],
[64], [88] investigated triadic resonance in a precessing cylinder. Marques and
Lopez [80] numerically studied the bifurcation of different states of triadic reso-
nance under detailed parametric control and revealed the complex dynamics as-
sociated with weak precessional forcing. They [73] numerically investigated the
influence of the nutation angle α to the flow in a precessionally-forced rotating
cylinder and their work reveals strong nonlinear and detuning effects depending
on α. With increasing α, the system goes through different regimes, from a con-
stant state to a tuned triadic resonance state, and subsequently follows a sequence
of well-characterized bifurcations associated with triadic resonance. In their sim-
ulation, they observed that a mean flow (mode m = 0) arises with increasing α.
Since the energy of the mean flow is provided by nonlinearity, a more inclined ro-
tating cylinder with a stronger nonlinearity generates a stronger mean flow. We
will see that the same is true for our setup. Meunier et al. [88] and Lagrange et
al. [64] used linear stability theory to predict the spatial structure and the thresh-
old for instability due to triadic resonance. They further developed a viscous and
weakly nonlinear model to predict the resonant state and derive low-order am-
plitude equations by coupling the forced Kelvin mode with the two free modes
and the geostrophic mode.

For the rotating cylinder with a non-zero background flow, a barotropic shear
instability, similar to a parallel shear flow instability in a non-rotating system,
might be induced giving rise to an oscillating barotropic shear mode [21]. Thomp-
son [110] has given the analytical prediction of the shear instability for a partly
filled and slightly tilted rotating cylinder. Thompson further verified his theory
experimentally and achieved good agreement. However, the velocity field was
not analysed qualitatively.

In the present research we experimentally study mode interactions in an in-
clined rotating annulus with a free surface. This is a setup of particular interest
since it is simpler than the precessing cylinder but in fact mimics aspects of rotat-
ing fluids forced by precession. This type of forcing is relevant for the dynamics
of planetary bodies but also in the context of vortex dynamics: a rotating mid-
latitude low-pressure system is forced by precession too since it rotates with the
Earth [64]. The excitation and interaction of inertial waves in our study is similar
to the partly filled rotating cylinder experiment by Thompson [110].
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In our experiment, we investigate the dominant features of the free surface
configuration and compare them with the bounded precession counterpart. More
generally, our study is also of interest in the context of the energy cascade in
rotating fluids. The breakdown of the forced large scale mode transfers energy
upscale to the balanced geostrophic mode but also downscale to other free Kelvin
modes. Such interactions are hence relevant for the still poorly understood energy
transfer in geophysical flows.

Our research is also related to an engineering background. Instabilities could
be induced due to the resonant effect in a spin-stabilized projectile with liquid
payloads, which therefore could further disturb the flight stability. To avoid the
resonance, a solution is to include a central rod in the cylindrical container and
therefore to change the eigenfrequency. In this situation the model, as discussed
in Selmi and Herbert [105], can be considered as a spinning and nutating cylin-
drical annulus, sharing similar features with our experimental configuration.

Finally, the study is also of interest in the context of unwanted Kelvin mode
excitation [14], e.g. Rodda et al. [101] performed experiments with a differentially
heated rotating annulus to study baroclinic waves. A global Kelvin mode was
observed with a frequency equal to the annulus rotation, which was very likely
driven by a slight inclination of the rotation axis.

This chapter is structured in the following way: Section 6.2 describes the the-
oretical background of the experiment; Section 6.3 introduces the Kelvin mode
forced due to the inclination of the cylinder and its resonant breakdown; In Sec.
6.4 we discuss the geostrophic mode of the flow and several factors that influence
the mean velocity profile, such as the tilt angle, the wind effect on the free sur-
face and the filling depth; Section 6.5 and 6.6 discuss two types of instabilities,
i.e. a triadic instability and a shear instability, in the tilted rotating annulus; Sec-
tion 6.7 shows a dependency of the mode frequency on Ekman number due to
the Doppler effect; Section 6.8 discusses the mode amplitude as a function of the
Ekman number and Sec. 6.9 compares the mode amplitude with a low-order dy-
namic model for classical precessing cylinders. Finally, conclusions and outlooks
are given in Sec. 6.10 and 6.11.

6.2 Experimental Background

In more classical precession experiments with circular cylinders with radius R,
the cylinder is completely filled with fluid and rotates around its symmetry axis ẑ
with angular velocity Ω. In addition, the cylinder rotates with Ωp around an axis
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that is inclined about an angle α with respect to the cylinder’s rotation axis. In this
setup the direction of gravity does not play a role, and no other modes besides
Kelvin modes can be excited. As is discussed in Zhang and Liao [119], for small
Poincaré number 0 < Po = Ωp/Ω << 1 and Ekman number Ek = ν/(ΩR2) << 1,
and further, a small amplitude of the fluid velocity in the cylinder, |u| = ϵ << 1,
the non-dimensional governing equations in the rotating frame of the cylinder
(the mantle frame) read

∂u

∂t
+ 2ẑ× u+∇p = Ek∇2u− 2ẑrPo sinαei(t+θ), (81)

∇ · u = 0. (82)

The system is normalized by the cylinder radius R and the rotation rate Ω in a
cylindrical coordinate (r̂, θ̂, ẑ). The equations need to be completed by non-slip
boundary conditions. The last term in the first equation is the so-called Poincaré
forcing that drives a Kelvin mode with azimuthal wavenumber m = 1.

In contrast to the precession system, the annulus in our experiment is not com-
pletely filled with fluid but has an upper free surface. It rotates around the sym-
metry axis ẑ which is inclined by a small angle α with respect to the direction of
gravity. Obviously, in such a setup the Poincaré forcing term is missing, however,
a Kelvin mode with m = 1 is now driven by the upper boundary, see fig. 6.1. The
governing equation is

∂u

∂t
+ 2ẑ× u+∇p = Ek∇2u, (83)

∇ · u = 0, (84)

with the upper boundary condition for small angle α

w = dz/dt = α r cos (t+ θ). (85)

Since in our case the Froude number Fr = Ω2R/g, comparing the centrifugal force
to gravity is small, the deformation of the surface has been neglected. As can be
seen, the forcing (85) is similar to the forcing term in (81). Therefore, a strong
analogy between the classical precessing cylinder (or wide gap annulus) experi-
ment and the rotating free surface experiment can be expected when the rotation
axis is tilted with respect to gravity.

Experimental configurations are introduced in detail in Sec. 3 as well as mea-
surement techniques in Sec. 4. In this chapter, the length and time scale are nor-
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Figure 6.1: Sketch of the experiment that rotates with Ω about its axis of symmetry at
angle α from the vertical. This tilt leads to a periodic motion at the surface
that can be assumed to be flat for small Froude number Fr = Ω2R/g.

malized by the radius of the outer cylinder Ro and the rotation period of the
annulus Ω−1 that is

(r, θ, z)→ (r∗/Ro, θ, z
∗/Ro),u→ u∗/(RoΩ), t→ t∗ ·Ω, ω → ω∗/Ω, h→ h∗/Ro, (86)

where h is the filling depth of the water.

Due to the limitation of the PIV technique in the present setup, the PIV mea-
surements only provide quantitative information of velocity components on the
directions subjected to the axial direction, i.e. uθ and ur in a cylindrical coordi-
nate. The amplitude of a mode is referred to as the amplitude on the horizontal
plane, i.e. A =

√︁
u2
θ + u2

r .

Before starting a measurement, the rotating system is required to run for a suf-
ficiently long time to ensure that the rotating flow reaches a statistically steady
state. The waiting time is supposed to be longer than the spin-up time from rest,
which is of the order Ek−1/2Ω−1. For a rotation rate of 20 rpm, the spin-up time
is around 15 minutes. In this chapter, all measurements, if not specifically noted,
are performed after the annulus was rotating for at least 40 minutes.

6.3 Forced Kelvin Mode and Wave Breakdown

As discussed in the previous section, the periodic non-axial-symmetric gravita-
tional torque due to the inclination acts as a force leading to the excitation of a
forced Kelvin mode, which is similar to the precessional force. The periodic forc-
ing does not directly provide energy for the Kelvin mode but plays the role as
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a conveyor that extracts energy from the rotation and converts it into the fluid
motions which then depart from the solid body rotation [67].

The forced Kelvin mode has the angular frequency that equals the rotation fre-
quency of the cylinder/annulus, see fig. 6.2(a). The horizontal structure of this
mode is reconstructed with the help of so-called harmonic method, as shown
in fig. 6.2(c), suggesting that the mode consists of two counter-rotating vortices
and indicates the forced mode having the azimuthal and radial wavenumber
m = n = 1. The structure of the forced Kelvin mode reconstructed from PIV
measurements also shows an excellent agreement with the linear solution of a
m = n = k = 1 mode from (36) (see fig. 6.2(d)).
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Figure 6.2: (a) Amplitude spectrum of azimuthal velocity; (b) temporal evolution of am-
plitude of the forced mode m1 and the geostrophic mode m0 for h = 1.2,
Ek = 2.38 × 10−5,Fr = 0.02, α ≈ 0.1◦, z = 0.75h; (c) reconstruction of the
forced Kelvin mode based on the azimuthal velocity field from PIV measure-
ment and (d) linear solution of the forced Kelvin mode. The colour in (c) and
(d) represents the azimuthal velocity, where yellow (blue) indicates clockwise
(anti-clockwise) direction.

The vertical structure of the forced mode is depending on the filled fluid depth
and can be observed optically with the aid of rheoscopic fluid such as Kalliro-
scope (see fig. 6.3(a)) or by performing PIV in a vertical section. The curving
contour in the middle of fig. 6.3(a) via rheoscopic visualisation indicates the in-
terface of a shear flow. It is noticed that this curving contour does not represent
the amplitude of the forced mode, however, it does indicate that the forced mode
has roughly an axial wavenumber k = 1, where the wavenumber k = 1 means
there are two half lobes in the vertical direction.
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Due to the strong flow in the azimuthal direction, the tracing particles continu-
ously pass through the vertical laser plane perpendicularly to the plane, therefore
a PIV measurement on a vertical cross-section under the current setup is not able
to provide a sufficiently accurate measure of the velocity field. Nevertheless, it is
still a useful tool to qualitatively reveal the structure of the forced Kelvin mode
on a vertical plane, see fig. 6.3(b). Apparently, the PIV measurement is consistent
with the rheoscopic visualisation in fig. 6.3(a) and meanwhile achieves a good
agreement with the linear prediction in fig. 6.3(c).

(a)

0.4 0.6 0.8

r

0.2

0.4

0.6

0.8

1

1.2

z

(b)

0.4 0.6 0.8 1

r

0

0.2

0.4

0.6

0.8

1

1.2

z

(c)

Figure 6.3: (a) Structure of the forced Kelvin mode visualised by Kalliroscope for h = 1.2,
Ek = 1.19 × 10−5,Fr = 0.09, α ≈ 1◦; (b) PIV measurement and (c) linear
solution of radial velocity field in a vertical section of frequency ω = 1 showing
structure of the forced Kelvin mode for h = 1.2, Ek = 2.38 × 10−5,Fr =
0.02, α ≈ 1◦.

In a system with a sufficiently small inclination angle or a non-resonant fluid
depth, the system is in a marginally stable state. The forced Kelvin mode arises
due to the periodic forcing and at the same time damped by the viscosity so that
the amplitude of the forced mode keeps constant in this equilibrium state. The
evolution of the mode amplitude in time is plotted in fig. 6.2(b) with the help of
STFT, where A0 is the amplitude of the geostrophic mode, i.e. the mean flow, and
A1 is the amplitude of the forced mode. In the rest of this chapter, the subscript of
amplitude A and frequency ω denotes the azimuthal wavenumber of the respec-
tive mode so that A1 represents the amplitude of mode m = 1. The time t = 0

in the diagram does not represent the beginning of the rotation but the starting
of the measurement, where the rotating system has been kept running for a time
longer than 400Ω−1. Comparing to the fluctuating A0, the amplitude A1 is very
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stable during the measurement.
For a precessing cylinder, when the rotation rate becomes close to a resonant

frequency of the respective mode, even a weakly precessional forcing can excite a
strongly amplified Kelvin mode [4]. Overcoming the viscous damping, a resonant
collapse is triggered that the forced mode grows over-saturation and breaks down
into small scale disorders accompanied by a sudden decrease of the amplitude
of the forced mode. Under certain circumstances, e.g. a slow rotation rate, the
degenerated flow field can be reorganised or relaminarized and show a smooth
flow structure without completely suppressing the disorders. The reorganised
flow passes through a secondary breakdown and enters a cycle of breakdown
and relaminarization.

(a) (b) (c) (d)

Figure 6.4: A sequence of photographs of a vertical cross section in the annulus showing
the process of the resonant collapse for Ek = 1.19 × 10−5,Fr = 0.09 and
water depth h = 1.2. The first photo (a) is taken at about 100 revolutions after
starting rotation and the following photos are captured within 20 revolutions
after (a). The left edge of the photograph represents the inner cylinder and
the right edge the outer one.

The resonant collapse has been observed in the tilted rotating setup, as shown
by a sequence of photographs in fig. 6.4, that a persisting laminar form (fig. 6.4(a))
abruptly degenerates into disorders (fig. 6.4(d)). In these photographs, left edges
are the wall of the inner cylinder and right edges are the inner wall of the outer
cylinder. In fig. 6.4(a), the fluid is in a laminar state and the forced mode with the
radial and axial wavenumber n = k = 1 is easily observed with illumination. The
breakdown starts close to the inner cylinder, where a local disturbance appears,
see fig. 6.4(b). The localized disorder moves with the crest of the forced mode
and gradually expands to the whole annular gap (see fig. 6.4(d)) within 20 revo-
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lutions. A further relaminarization can be observed for a low rotation rate, where
the small scale disorders merge and the flow field becomes generally smoother
compared with its most chaotic phase shown in fig. 6.4(d).

Despite the fact that in our experiment we have a rotating annulus instead of
a cylinder, the picture shows good agreement with the photography of the ellip-
tically excited inertial wave shown in Malkus [59] and the photographies of the
classical precession experiment presented in Manasseh [78].

The resonant collapse in our experiment might be triggered by two types of
instability: a parametric triadic instability and a shear-type instability. To excite
either type of the instabilities, a resonant forced Kelvin mode is required. In the
tilted rotating annulus, the forced Kelvin mode always has the angular frequency
ω = 1. A forced Kelvin mode is in resonance, if the frequency of the forced mode
matches the eigenfrequency of the container for inertial modes. Since the eigen-
frequency solely depends on the container’s geometry, an advantage of the free
surface system is that the aspect ratio can be easily controlled through changing
the filling depth. Thus the rotating system allows being well-tuned to excite a
resonant forced Kelvin mode in order to investigate the response of the fluid in a
resonant regime.

Table 6.1: The eigenfrequency of the inertial modes with azimuthal wavenumber m = 1
for h = 1.2.

n k ωmnk ξmnk n k ωmnk ξmnk

1 1 0.995 4.579 2 2 0.942 9.824
2 1 0.529 9.564 1 3 1.696 4.912
1 2 1.474 4.820 2 3 1.241 9.941

The eigenfrequencies of inertial modes in a rotating annulus are calculated from
the linear dispersion relation (33) and (34). Solving the equations for the forced
Kelvin mode with the wavenumber m = n = 1 and the forcing frequency ωf = 1

gives the ratio h/k = 1.2. Several eigenmodes with m = 1, h = 1.2 and a low
radial and axial wavenumber are listed in table 6.1. According to the dispersion
relation, the frequency of the forcing ωf = 1 is very close to the frequency of the
eigenmode ω111 = 0.995 for a filling depth h = 1.2, i.e., the forced Kelvin mode is
very close to resonance for this water depth. The space-time diagram in fig. 6.5,
where the green pixels represent bright rheoscopic particles under the illumina-
tion of a green plane laser, illustrates temporal developments of a forced Kelvin
mode with different filling depth ranging from 1.05 to 1.25. Similar to fig. 6.3(a),
the wavy-edge shape of the bright zone in the middle does not directly represent
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the amplitude of the forced Kelvin mode, however, a violent oscillating wavy
shape does indicate a strong forced Kelvin mode. At h = 1.05, the wavy shape
is clearly observed with the period equaling the rotation period of the cylinder.
The amplitude of this wavy edge grows with the increasing filling depth. At
h = 1.2, the forced mode matches with the eigenmode of the container and trig-
gers a resonant collapse, where the forced mode breaks down and degenerates
into small-scale instabilities. In this case, a clear wavy edge can no longer be ob-
served. With deeper water (h = 1.25), the forced mode is away from resonance
and the amplitude decreases. The wavy edge can then be observed again.
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Figure 6.5: Space-time diagrams for experiments with different h and for Ek = 1.19 ×
10−5,Fr = 0.09 indicating the resonant collapse for h = 1.2. x-axis: radius,
left represents inner cylinder and right outer cylinder; y-axis: frame number
(time in 0.1s). The bright pixels are the laser reflected by the Kalliroscope
seeded in the water.

A series of PIV measurements are performed for different fluid depths, as plot-
ted in fig. 6.6, showing the amplitude of the forced Kelvin mode varying with
the filling depth for a constant Ekman number and inclination angle. The am-
plitude A1 is obviously higher for h = 1.2. In fact, the forced mode by h = 1.2

has already reached its saturation limit and broke down before it grows to reach
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a higher amplitude. Comparing with the linear theoretical prediction by (59) (the
red curve in fig. 6.6), the amplitude at h = 1.2 measured in the experiment is
significantly lower than the inviscid theoretical result. On the other hand, the lin-
ear theory seems able to provide a reasonable prediction in mode amplitude for
non-resonant cases.
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Figure 6.6: Amplitude of the forced Kelvin mode as a function of fluid depth h for Ek =
1.19 × 10−5, Fr = 0.09, α ≈ 1◦ and measured at z = 0.75h. The red curve
represents the linear theoretical prediction calculated from (59).

An alternative method to observe the resonant collapse is measuring the light
intensity (intensity of grayscale) of the flow seeded with rheoscopic fluid. Figure
6.7 shows the light intensity sampled at the center of the annulus gap as a function
of time t. The time t is scaled by Ω−1, and t = 0 denotes the starting of the
rotation. The absolute value of the light intensity has actually no clear physical
meaning, however violently fluctuating magnitude in a single video indicates
strongly unstable flow. For t < 110 the light intensity fluctuates at a regular
frequency with a relatively small amplitude, the flow is dominated by the forced
Kelvin mode. The breakdown of the forced mode occurs at t ≈ 110, after which
the magnitude of the fluctuation grows significantly and the flow is no longer
dominated by a single mode. Nevertheless, the increased fluctuation of the light
intensity indicates only a more unstable flow, but not necessarily that the fluid
velocity is increased.

During the constant rotation of the fluid in an unstable state, a typical cycle of
inertial wave breakdown and relaminarization has been observed. An unstable
flow can become stable within a certain period after the breakdown leading to
a repetition of breakdown and relaminarization, as reported by McEwan [84],
Thompson [110] and Manasseh [78]. Due to the limitation of the rotation rate of
the current experimental facility, we are not able to prove whether for smaller Ek
a sustained chaotic state exists, but given the similarity of our experiment with
precessing cylinders, it is likely.
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Figure 6.7: Light intensity measured in the middle of the gap at z = 0.75h for Ek =
1.19× 10−5,Fr = 0.09, α ≈ 1◦ and h = 1.2. The distance between two sharp
peaks is equal to one period of the rotation.

6.4 The Geostrophic Mode

In a rotating fluid with inertial oscillations, a mean flow in the azimuthal direc-
tion, also referred to as steady stream in some contexts, exists due to Reynolds
stresses. The mean flow is supposed to have a geostrophic structure, i.e. the
mean flow is independent of the z-axis.

To verify the z-axis dependency, the average azimuthal velocity uθ departure
from the solid body rotation is measured at different depths for α = 1◦ with
a cover on the top of the annulus to avoid the possible disturb from the wind
on the upper surface during rotation, see fig. 6.8. Each velocity profile is time-
averaged over 200 revolutions and measured after a waiting time much larger
than the Ekman time scale. The gray colour band is the standard deviation based
on repeating the measurement at 0.8h by completely restarting the experiment
three times.

Apparently, the mean flow has a negative velocity with a U-shape profile that
the fluid rotates slower than the container. The maximum magnitude of az-
imuthal velocity locates close to the inner cylinder. Note that due to the limitation
of the PIV settings, the velocity in the boundary layer at the inner cylinder hav-
ing a thickness of a few millimetres is unavailable. However, the turning point
close to the inner cylinder (see black curve in fig. 6.8) might be caused by the Ek-
man pumping in the boundary layer. In general, the velocity profiles at different
depths show good agreement, with only a small deviation with respect to z.

6.4.1 Influence of the wind effect

A common issue for the fluid in a rotating tank with a free surface is the wind
effect. For an unclosed container, the air above the free surface does not co-rotate
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Figure 6.8: Illustration of time-averaged non-dimensional azimuthal velocity measured
over 200 revolutions at different heights. The legend denotes the height of
the laser plane from the bottom. Note that for 0.8h we performed three mea-
surements. The gray shading gives the standard deviation. The tank is tilted
with angle α ≈ 1◦. Ek = 1.19× 10−5,Fr = 0.09 and h = 1.2.

equally with the container. This velocity difference between air and water might
slow down the surface water rotation and hence might influence the flow.

To verify the wind effect, experiments have been performed either with a lid
at the top of the container or without any cover. The top lid forces the air in the
gap to rotate uniformly with the container, thus eliminating the air drag on the
water surface. Measurements are performed at the height of 0.88h that are close
to the surface and the time-averaged azimuthal velocity profiles are shown in fig.
6.9. The red dashed curve represents the profile with the cover on the top while
the black solid curve is without cover. Both experiments are measured with the
same Ek at the same position, and each case was repeated three times. Obviously,
the fluid with the top cover has weaker retrograde flow, which proves that for the
case with a small inclination angle α the air torque is an important reason for the
retrograde flow.

Nevertheless, the velocity close to the inner cylinder boundary still has an ob-
vious deviation from zero, which implies another factor that influences the mean
velocity profile. In fact, this profile is due to the nonlinear self-interaction of the
forced mode mainly in the boundary layers.

6.4.2 Influence of the inclination angle

With respect to a classical precession experiment, Kobine [61] states that the az-
imuthal flow results from the precessionally forced mode and an additional con-
tribution related to nonlinear and viscous effects in the boundary layer. We think
that for non-zero α the mean flow is generated by a similar effect, except that
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Figure 6.9: Illustration of time averaged non-dimensional azimuthal velocity in radial di-
rection measured at 0.88h, each of the dataset is averaged over 600 revo-
lutions for Ek = 1.19 × 10−5, Fr = 0.09 and h = 1.2. Black solid line: Tank
without cover, α ≈ 0.1◦; red dashed line: tank with top cover, α ≈ 0.1◦; blue
dot line: tank without cover, α ≈ 1◦; green cross line: tank with top cover,
α ≈ 1◦. (All other figures in the article are with top cover.)

the normal mode is forced by a gravitational torque on the non-axisymmetric
viscously rotating mass instead of precessional forcing. It can be anticipated from
(85) that the forced mode is stronger by increasing α. Hence the nonlinear effect is
more pronounced for an increased α, which contributes to a stronger geostrophic
mode.

To show this we performed further experiments by increasing α from 0.1◦ to 1◦,
as shown in fig. 6.9. The blue and green curves indicate the mean flow profile
with increased α. The significant difference between the experimental results for
different tilt angles confirms our anticipation.

Nevertheless, referring to the mean flow profiles with α ≈ 1◦, the top cover
also plays an important role, where the experiment without cover and hence with
wind stress (blue curve in fig. 6.9) surprisingly has a significantly weaker retro-
grade flow than that with cover (green curve in fig. 6.9). A possible explanation is
that the wind induced Ekman layer damps the motions. In the previous section,
the eigenfrequency of the cylindrical annulus was calculated from inviscid equa-
tions given in Lin et al. [72], where the Ekman pumping is not considered. This
pumping, however, leads to an exponentially decreasing velocity profile in the
boundary layer, thus influences the effective aspect ratio for resonance [64], [73].
The study of Borcia et al. [15] about the inertial mode in a rotating annulus with
librating side-wall boundaries shows that the Stokes layer can influence the effec-
tive volume inside the container and therefore change the resonance frequency.
Hence, in our experiment, the Ekman layer can also influence the effective vol-
ume and leads to a detuning of the resonant frequency and consequently to a
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weaker forcing.

6.4.3 Influence of the filling depth

Since the generation of the mean flow is directly related to the nonlinear inter-
actions in the Ekman layer, the magnitude of the mean flow depends strongly
on the nonlinearities in the rotating flow. When a forced mode is in resonance,
the nonlinear interactions are stronger, thus give rise to an increased mean flow.
Figure 6.10 shows the mean flow profile with different filling depths, where the
magnitude of the mean flow is significantly higher for h = 1.2 than for the other
depths.
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Figure 6.10: Mean azimuthal flow profile as a function of radius for different fluid depth h
with Ek = 1.19× 10−5,Fr = 0.09 and measured at z = 0.75h.

The strength of the non-zero mean flow is relevant for the instabilities in the
rotating fluid where two types of instability can occur: a parametric triadic insta-
bility and a barotropic shear instability.

6.5 Triadic Instability

In the tilted rotating system, the directly forced Kelvin mode may become un-
stable via a parametric instability, in which two secondary free Kelvin modes are
excited and interact with the forced mode. The triadic resonance requires three
modes in a triad to satisfy the parametric condition: ωi±ω∓j = ω1, mi±m∓j = m1

and ki±k∓j = k1, when the index 1 stands for the forced mode. This type of insta-
bility requires a sufficiently strong forced mode, which can be achieved by e.g. a
perfectly tuned resonant depth or a large inclination angle when the forced mode
does not match the eigenfrequency of the container perfectly.
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The triadic instability can be easily identified from an amplitude spectrum, as
can be seen in fig. 6.11. The diagram shows the amplitude spectra for three Ek-
man numbers, i.e. 2.39 × 10−5, 1.19 × 10−5 and 7.96 × 10−6, with the same α and
h.
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Figure 6.11: Amplitude spectrum for different Ekman numbers measured at z = 0.75h
with α = 0.1◦ and h = 1.2. Ek are respectively 2.39× 10−5, 1.19× 10−5 and
7.96× 10−6 for 10, 20, 30 rpm.

For Ek = 2.39 × 10−5 (10 rpm), the rotating flow is dominated solely by the
forced Kelvin mode with frequency ω = 1. This forced mode, as shown pre-
viously in fig. 6.2(b), is balanced by the effect of the forcing and the viscous
damping and remains a nearly constant amplitude during the measurement. De-
creasing Ek, the effect of viscous damping decreases, which leads to the growth
of the forced mode. When the amplitude of the forced mode A1 exceeds the
saturation of viscosity, a resonant collapse will be induced which gives rise to
two free Kelvin modes that form a triad with the forced mode. The sum of
the frequencies of the two free modes, ω = 0.3461 and 0.6537 respectively for
Ek = 1.19× 10−5 (20 rpm), equals the frequency of the forced mode. This process
is captured with the help of STFT in fig. 6.12, where the two free Kelvin modes
emerge at t = 80 − 130 in fig. 6.12(a) accompanied with the decrease of A1 at
t = 100 − 150. Figure 6.12(b) shows the growth of the free modes at an earlier
time from t = 30 and the two free modes exhibit different growth rates. It need
to be noticed that the forcing is introduced at the beginning of the spin-up, not
after reaching a solid body rotation as in a typical precession experiment. There-
fore the growth rate in the present experiment is not directly comparable with a
growth rate based on solid body rotation.

To confirm the triadic relation for wavenumbers, the Kelvin modes are recon-
structed by harmonic analysis and shown in fig. 6.13. The reconstructions present
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Figure 6.12: Temporal evolution of amplitudes for Ek = 1.19×10−5, α = 0.1◦ and h = 1.2.

the vorticity fields of the prominent modes, i.e. the forced mode and the two free
modes, for Ek = 1.19×10−5. Note that the figure is mainly for a qualitative under-
standing of the mode structure, therefore a colour bar is not provided and hence
the same colour for different reconstructions does not imply the same vorticity
magnitude.

As shown in fig. 6.13a and b, the two free Kelvin modes have azimuthal wavenum-
bers m = 10 and −9 respectively. The negative sign of the wavenumber indicates
the wave propagates in the prograde direction, i.e. the opposite direction of the
mean flow, and hence faster than the annulus rotation. Apparently, the azimuthal
wavenumbers and the frequencies of the two free modes satisfy the rule for the
triadic resonance that read m10 +m−9 = m1 and ω10 + ω−9 = ω1.

(a) ω = 0.346, m = 10 (b) ω = 0.654, m = −9 (c) ω = 1.003, m = 1

Figure 6.13: Reconstruction of Kelvin modes based on the vorticity field for h = 1.2,
Ek = 1.19 × 10−5,Fr = 0.09, α ≈ 0.1◦, z = 0.75h. The colour represents
the vorticity, where yellow (blue) indicates positive (negative) value of the
vorticity.

Due to a strong mean flow in the azimuthal direction, accurate PIV data in
a vertical section are not available for the free modes, the axial wavenumber of
the free modes is in general not known from the horizontal PIV measurement. To
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further verify the presence of triadic interactions, we applied a bispectral analysis
(see sec. 5.5). Particularly in our case, time series from different grid points are
included in the bispectra analysis and gives the bicoherence, which presents a
statistical measure of quadratic phase coupling.

Figure 6.14: Bicoherence spectrum for α ≈ 0.1◦, Ek = 1.19×10−5,Fr = 0.09 and h = 1.2.

Figure 6.14 shows the bicoherence for Ek = 1.19 × 10−5 and α ≈ 0.1◦ of the
azimuthal velocity component. Note that a bicoherence of 1 represents a perfect
triadic coupling of two modes and 0 means no coupling. The red spots in the
diagram highlight the frequencies with strong bicoherence. The strong peaks on
the line with ωx = ωy correspond to the self-correlation of the forced mode or the
free modes. The diagram is symmetric with respect to the line ωx = ωy. Possible
triads that resonate with the forced mode can be identified by connecting a line
with slope −1 between point (0, 1) and (1, 0), the points with high correlation on
this line reveals the components of the triads as ωx, ωy and ωx + ωy [20]. Thus the
mode pair of frequency (0.346, 0.654) form a triplet with the forced mode, which
confirms that the mode m10 and m−9 are indeed free Kelvin modes generated due
to resonant breakdown of the forced Kelvin mode.

The two free Kelvin modes in the triadic resonance are supposed to be equal
or close to the solution of the linear dispersion relation (34). Tab.6.2 lists solu-
tions with azimuthal wavenumber 10 and−9 and low radial wavenumber, which
suggests that the two free Kelvin modes have the wavenumbers (10, 1, 2) and
(−9, 2, 1). However, the frequencies show no perfect match indicating that the
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triad is not precisely tuned. This in fact corresponds to a typical scenario of a
triadic resonance.

Table 6.2: The eigenfrequency of the inertial modes with azimuthal wavenumber m = 10
and −9 for h = 1.2.

m n k ωmnk ξmnk m n k ωmnk ξmnk

10 1 2 0.699 13.993 -9 1 1 0.376 13.637
10 2 2 0.558 17.962 -9 2 1 0.294 17.557
10 3 2 0.468 21.691 -9 3 1 0.243 21.327

This resonant triad can be identified from a diagram of dispersion relations
between the frequencies ω and the axial wavenumbers k for the two free Kelvin
modes, see fig. 6.15. The diagram is plotted in a similar way as done by Albrecht
et al. [4], in which the curves are shift vertically and horizontally according to the
frequency and the axial wavenumber of the forced mode respectively. A cross in
such a diagram, as marked by the blue circle in fig. 6.15, indicates the modes that
in a resonant triad with the forced Kelvin mode. In this case, the resonant modes
are (10, 1, 2) and (−9, 2, 1).
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Figure 6.15: The dispersion relations showing the frequencies ω and the axial wavenum-
bers k of two free Kelvin modes for azimuthal wavenumbers m9 (dashed
lines) and m10 (solid lines). For each wavenumber, upper/lower branches
are for prograde/retrograde modes in the rotating frame and the lines suc-
cessively represent n = 1, 2, 3 from the outer to inner side. The blue circle
marks the resonant triad with the forced mode, where the frequency of the
Kelvin mode (−9, 2, 1) is equal to the frequency of the Kelvin mode (10, 1, 2).
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6.6 Shear Instability

Due to the presence of a strong non-zero mean flow, i.e. the geostrophic mode,
a shear-type instability might be triggered. Fundamentals of this instability are
introduced in the previous section 2.8. In the tilted rotating system, a geostrophic
mode with a large amplitude is generated due to strong nonlinear interactions.
The geostrophic mode gives rise to a barotropic shear mode, which interacts with
the forced Kelvin mode and results in the generation of further modes that fulfill
triadic relations with the shear mode and the forced mode.

The shear instability requires a sufficiently strong mean flow, which is pro-
duced with a large inclination angle (α = 1◦) and a resonant fluid depth (h = 1.2).
With the help of STFT, the onset of the shear instability is captured and shown
in fig. 6.16 for Ek = 1.59 × 10−5, α = 1◦ and h = 1.2. The figure presents the
evolution of amplitudes as a function of time after a very short spinning up time
for 45Ω−1. The barotropic mode, which has a wavenumber m = 3 and frequency
ω = 0.146 in this case, grows from t = 30, see fig. 6.16(b), with its amplitude
increases by two orders. Shortly after the emergence of m3, a second mode with
frequency ω = 2ω3 arises and has a similar growth rate as mode 3. This mode
has the azimuthal wavenumber m = 6 and is considered as a harmonic mode of
mode 3. The amplitude of the forced mode A1 drops down at t = 50 − 70 after a
continuous rise for t < 50, this might be in accordance with the overshooting and
breakdown of an oversaturated forced mode.
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Figure 6.16: Temporal evolution of amplitudes for Ek = 1.59× 10−5, α = 1◦ and h = 1.2.

The distribution of the modes in frequency domain is acquired from the am-
plitude spectrum for Ek = 1.19 × 10−5, see fig. 6.17, with the structures of the
respective modes shown in fig. 6.18, which is presented in a similar way as fig.
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6.13. In this case the barotropic mode has an azimuthal wavenumber m = 3 and
a frequency ω3 = 0.162 with its harmonic mode m = 6 and ω6 = 2ω3 = 0.327.
Several less prominent free modes are identified from the spectrum. Their fre-
quencies and wavenumbers, according to the reconstructions in fig. 6.18, satisfy
the triadic relation with m1, m3 and m6:
m3 +m−2 = m1,m4 −m3 = m1,m6 +m−5 = m1,
ω3 + ω−2 = ω1, ω4 − ω3 = m1, ω6 + ω−5 = m1.

Beside the triadic interactions between the forced mode, the barotropic modes
and the free modes, we noticed such relations also exist even without the partici-
pation of the forced mode, e.g. m6 +m−2 = m4,m3 +m−5 = m−2,
ω6 + ω−2 = ω4, ω3 + ω−5 = ω−2.
This might indicate a further step of the energy cascade, that the energy transfers
from a less prominent mode to a secondary mode through the triads.
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Figure 6.17: Amplitude spectrum for Ek = 1.19× 10−5, α = 1◦, h = 1.2 and z = 0.8h.

The triadic interactions are confirmed by the bicoherence spectrum in fig. 6.19,
where we see the mode pair of frequency (0.162, 0.838) form a triplet with the
forced mode. The red spot at (0.162, 0.162) on fig. 6.19 suggests a strong self-
interaction of the m3 mode, which gives rise to the m6 mode. This m6 mode
also interacts with the forced mode in the triplet (0.327, 0.676, 1.003). Further-
more, similar triplets can be found for the modes with frequency (0.838, 0.327)
and (1.003, 0.162) with mode ω = 1.165 as well as the triplet (0.162, 0.676, 0.838),
which indicates the presence of strong nonlinear interactions between the modes.

An essential question with respect to the shear-type instability is whether the
low-frequency m3 mode is a barotropic mode or not. The low frequency of m3

suggests that this mode is unlikely a Kelvin mode, since the eigenfrequencies for
Kelvin modes with wavenumbers (3, 1, 1) and (3, 2, 1) are respectively 0.799 and
0.485, which is far away from ω3.

Although a PIV on a vertical plane is not sufficiently reliable for giving an ac-
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(a) ω = 0.162, m = 3 (b) ω = 0.327, m = 6 (c) ω = 0.676, m = −5

(d) ω = 0.838, m = −2 (e) ω = 1.003, m = 1 (f) ω = 1.165, m = 4

Figure 6.18: Reconstruction of wave modes based on the velocity field for h = 1.2, Ek =
1.19× 10−5,Fr = 0.09, α ≈ 1◦, z = 0.8h. The colour represents the vorticity,
where yellow (blue) indicates positive (negative) value of the vorticity.

Figure 6.19: Bicoherence spectrum for α ≈ 1◦ with Ek = 1.19 × 10−5,Fr = 0.09 and
h = 1.2.
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curate measurement of the flow velocity, it is possible to use PIV to simply show
the structure of the modes in the vertical direction. Such results are presented in
fig. 6.20 only for a qualitative understanding of the flow structure in the radial-
axial plane. Despite the imperfect match in frequencies, we consider the mode
with ω = 0.159 being identical to m3 in fig. 6.18 and the mode ω = 1.165 as the
mode m4. Figure 6.20 confirms the relation of the three modes in axial direction
that k4 − k3 = k1.
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Figure 6.20: Radial velocity field of modes with frequencies (a) 0.159, (b) 1.003 and (c)
1.165 from PIV on a vertical plane for h = 1.2, Ek = 1.19 × 10−5,Fr =
0.09, α ≈ 1◦. The yellow colour represent a positive radial velocity and blue
is negative.

The axial wavenumber of m3 and m4 is further verified by performing a se-
ries of PIV measurement at different positions in vertical direction for different
values of the Ekman number, as shown in fig. 6.21. Figure 6.21(a) shows mode
amplitudes A0, A1 and A3 measured at two different z as a function of Ek. As is
known previously, the geostrophic mode has an axial wavenumber k = 0 so that
the amplitude A0 is invariant with z, whereas the forced mode has k = 1 so that
A1 at z = 0.75h is larger than A1 at z = 0.5h. The distributions of A0 and A1 in
fig. 6.21(a) achieve an excellent agreement with this fact that A0(z = 0.75h) =

A0(z = 0.5h) for all Ekman numbers while A1(z = 0.75h) > A1(z = 0.5h). The
amplitudes of mode 3, as indicated with red marks in fig. 6.21(a), show no obvi-
ous dependency on z and indeed confirms our assumption that the mode 3 has a
barotropic structure, i.e. k = 0.

The amplitudes of mode 2 and 4 are presented in fig. 6.21(b). Both of the modes
form a triplet with mode 1 and mode 3. Their amplitudes A−2 and A4 have dis-
tinguished magnitudes at 0.75h and 0.5h that A(z = 0.75h) > A(z = 0.5h) for A−2

and A4 except for Ek = 7.95×10−6, where the Ekman number is small and the sys-
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Figure 6.21: Amplitudes of modes (a)A0, A1, A3 and (b) A−2, A4 as a function of Ek mea-
sured at different z for h = 1.2 and α ≈ 1◦.

tem is more unstable. This result agrees with fig. 6.20(c) that the axial wavenum-
bers of mode 2 and 4 satisfy the triadic relation: k3 + k−2 = k1, k4 − k3 = k1.

A similar shear instability as the one described above has been reported by
Herault et al. [52] where a low-frequency mode resulted from a destabilized
azimuthal mean flow in a precessing cylinder. Herault et al. further related
this instability to the theoretical prediction by Kerswell [59] that the dominant
geostrophic mode interacts with the forced mode and gives rise to two subdom-
inant Kelvin modes. The frequencies of the two sub-dominant Kelvin modes are
equal to the linear combination of the forced mode and the geostrophic mode,
which explains the presence of the triplets (m1,m3,m−2) and (m1,m3,m4) in our
experiment.

Repeating the experiment for shear instabilities, we noticed a bifurcation in
the azimuthal wavenumber of the barotropic mode. Instead of a barotropic mode
with an azimuthal wavenumber 3, the shear instability excites a m = 4 mode with
its structure shown in fig. 6.22(a). With a higher wavenumber, the frequency of
this mode is also increased from 0.162 to 0.195 (see fig. 6.18). Meanwhile, since
the excitation of the other modes is related to the barotropic mode, frequencies
and wavenumbers of the other modes are also changed corresponding to the
barotropic mode. To keep the text concise, in the following we still refer to the
barotropic mode as m3.

As discussed in this section, the shear instability is excited due to the velocity
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(a) ω = 0.195, m = 4 (b) ω = 0.39, m = 8 (c) ω = 0.613, m = −7

(d) ω = 0.807, m = −3 (e) ω = 1.003, m = 1 (f) ω = 1.198, m = 5

Figure 6.22: Reconstruction of wave modes based on the velocity field for h = 1.2, Ek =
1.19×10−5,Fr = 0.09, α ≈ 1◦, z = 0.75h. The colour represents the vorticity,
where yellow (blue) indicates positive (negative) value of the vorticity.

gradient of the shear flow. On the other hand, the instability can be suppressed by
properly manipulating the velocity gradient. A benefit of the annulus container
is that the rotation rate of the inner and outer cylinder can be controlled individ-
ually. By slowing down the rotation rate of the inner cylinder so that Ωi/Ωo < 1,
we are able to modify the profile of the background flow, as shown in fig. 6.23. As
can be seen from the diagram, a slight differential rotation does not have much
influence on the velocity profile. A significant modification of the velocity pro-
file is observed for Ωi/Ωo ≤ 0.85, where the velocity gradient du/dr is constantly
negative for r < 0.8.
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Figure 6.23: Azimuthal mean flow profile for differential rotation with Ek = 1.19 ×
10−5,Fr = 0.09 and h = 1.2.

According to the amplitude spectra presented in fig. 6.24, the shear instability
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has been suppressed by the artificially modified mean flow profile. The peaks
excited by shear instabilities (fig. 6.24(c) and 6.24(d)) are no longer visible with
stronger differential rotations (fig. 6.24(a) and 6.24(b)).
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Figure 6.24: Amplitude spectrum of differential rotation with Ek = 1.19× 10−5,Fr = 0.09
and h = 1.2.

6.7 Doppler Shift

We noticed the dependency of the mode frequencies on the Ekman numbers for
α ≈ 1◦. Figure 6.25 shows the variation of the mode frequency with Ek ranging
from 2.39× 10−5 to 7.96× 10−6. For the reader’s convenience, we multiplied each
two neighboring energy spectra by a factor of 105. Obviously, we find similar
peaks according to the energy spectra for the given Ek and the harmonic analysis
indicates that the wavenumbers corresponding with the peaks are invariant of
Ek for 2.39 × 10−5 ≤ Ek ≤ 7.96 × 10−6. On the other hand, the frequencies of
the peaks vary with Ek. The frequency of the m3 mode constantly increases with
the decrease of Ek, meanwhile the frequencies of the other modes changes re-
spectively so that the linear relation of the mode frequencies is robustly sustained
during the considered range of Ek. The frequencies of the free modes are plotted
in fig. 6.26(a) for a broader range of Ek. The frequency of mode m3 increases
from a very low frequency (0.066) to 0.189 when Ek decreases from 3.2 × 10−5 to
7.9 × 10−6, whereas mode m2, which fulfills the relation ω3 + ω−2 = ω1, shows a
contrary tendency.



6.7 Doppler Shift 81

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-10

10
-5

10
0

10
5

10
10

10
15

E

Figure 6.25: Non-dimensional kinetic energy spectrum at different angular velocity mea-
sured at 0.8h with α ≈ 1◦. The curves in the diagram from bottom to top
represent respectively Ek = 2.39 × 10−5 − 1.59 × 10−5 − 1.19 × 10−5 −
9.55 × 10−6 − 7.96 × 10−6. To separate the curves in y-direction, a factor
of 105 is multiplied for the visualisation. The black dashed line indicates the
frequency variation of the respective mode with Ek.
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Figure 6.26: Frequency distribution of the respective mode as a function of Ek at 0.75h
for h = 1.2. (a) measured frequency; (b) frequency corrected by the Doppler
effect.
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Since the camera system is fixed with the rotating frame, the influence of the
Doppler effect on the measured frequency should be considered due to the pres-
ence of the mean flow in the azimuthal direction. An Ek-dependent frequency
change was observed by Hoff et al. [54] when investigating inertial modes of
spherical Couette flow. A frequency shift of the triad was discovered after the
transition from a weakly turbulent regime to a regular-inertial-mode regime. The
authors attributed the frequency shift to the abrupt change of the mean flow
through regime transition.

The shift of the frequency caused by the Doppler effect is estimated by

∆ω = ∆Ωθm =
Uθ

Ro

m, (87)

where ∆ω is the frequency change for different Ekman numbers, m is the nondi-
mensional azimuthal wavenumber and Uθ is the mean azimuthal velocity in the
rotating frame [54].

By considering the Doppler effect, the corrected intrinsic frequency as a func-
tion of Ek is plotted in fig. 6.26(b). Generally speaking, the Doppler effect pro-
vides a reasonable correction to the frequency variation that reduces the change
of the mode frequencies with regard to the Ekman numbers.

6.8 Mode Amplitude

The amplitudes of the modes, which is defined as Am = (u2
θ,m + u2

r,m)
1/2, are

plotted as a function of Ek in fig. 6.27 for 7.79× 10−6 < Ek < 3.18× 10−5.

It must be noticed that the measured amplitude is not necessarily equal to the
real amplitude of the mode due to the complex wave structure in the vertical
direction. However, assuming the vertical structure of the respective mode keeps
constant for different values of Ek, the relative size of the mode amplitude can be
measured using data at a single depth.

For small Ek, the viscosity can be ignored in the interior of the rotating flow,
however, this term has to be considered close to the boundary due to the pres-
ence of the Ekman layer. The nonlinear and viscous theory developed by Meu-
nier et al. [88] shows that the mode amplitude is saturated by the viscous or the
nonlinear effects or both. For high Ekman numbers, the mode amplitude is satu-
rated by the viscous boundary layers and scales as Ek−1/2. With the decrease of
the Ekman number, the saturation due to the nonlinear effects becomes stronger
and eventually dominant. Specifically, the nonlinear effects lead to the generation



6.9 Low-Order Amplitude Equation 83

of the geostrophic mode, which in fact plays an important role in saturating the
amplitude of the Kelvin modes. In fact, this mean flow related saturating effect is
more significant than the saturation due to the nonlinear self-interaction of Kelvin
modes.
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Figure 6.27: The mode amplitude as a function of Ek at 0.75h, h = 1.2.

In our experiment, the amplitude of the mean flow A0 (black crosses in fig.
6.27) gets larger with decreasing Ek, whereas the forced mode A1 (red circles in
fig. 6.27) shows the opposite trend. The red and black dashed curves denote the
scaling Ek1/2 and Ek−1/2 respectively. The presence of the free Kelvin modes in-
dicates that the rotating fluid is in a nonlinear regime. This implies a possibly
weaker viscous saturation comparing with the saturation due to the nonlinear
effects. The change of A0 as a function of Ek suggests a strong dependency on
the nonlinear effects on the Ekman number. For lower Ek, the nonlinear effect be-
comes stronger, promotes the generation of the mean flow and therefore increases
the saturation effect on the forced mode.

6.9 Low-Order Amplitude Equation

A weakly nonlinear model has been developed by Lagrange et al. [64] to describe
the flow which couples the forced Kelvin mode to two free Kelvin modes and
a geostrophic mode in a classical precessing cylinder. For the Ekman numbers
of our experiment, this model shows irregular and possibly chaotic dynamics.
However, we know that this is not the common route to turbulence for rotating
fluids. On this route not a single triad becomes chaotic but a cascading process
leads to more and more triads and eventually to wave chaos [20]. From fig. 6.19
we have learnt that this process has started in our experiment. However, the
single triad model by Lagrange et al. [64] is still useful to understand certain
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aspects of the flow in our experiment.
In this weakly nonlinear model, the evolution of the geostrophic mode ampli-

tude is given by

∂A0

∂t
= Ek1/2

(︃
−2

h
A0 + χ2 |A2|2 + χ3 |A3|2

)︃
, (88)

where A0, A2 and A3 are respectively the amplitude of the geostrophic mode and
two free Kelvin modes and χ2 and χ3 are tuning constants. The first term on the
right-hand-side represents the viscous damping of the geostrophic mode and the
second and third terms represent the nonlinear self-interaction of the two free
Kelvin modes driving the geostrophic mode. This equation suggests that the
generation of the mean flow is due to nonlinear self-interactions of the excited
Kelvin modes and meanwhile damped by the viscous effects. The geostrophic
mode grows slowly in time since it is O(Ek1/2) smaller than O(A0), which creates
a delay between the growth of the free modes and the geostrophic mode.

50 100 150 200 250 300

t

10
-2

10
-1

10
0

A

A
0

A
10

A
-9

A
1

(a)

50 100 150 200 250 300

t

10
-2

10
-1

10
0

A

A
0

A
10

2
+A

-9

2

(b)

Figure 6.28: (a) Amplitude of the modes and (b) comparison between A0 and χ(A2
10 +

A2
−9) (χ = 35) as a function of the dimensionless time t for α = 0.1◦. The

data are measured at 0.75h with Ek = 7.95× 10−6,Fr = 0.09 and h = 1.2.

Figure 6.28(a) shows the evolutions of amplitudes of the geostrophic, the forced
and the free Kelvin modes as a function of time for the experiment with the triadic
resonance, i.e. α = 0.1◦ and Ek = 7.95× 10−6.

Temporal evolutions of amplitudes of the free Kelvin modes A10, A−9 and the
geostrophic mode A0 exhibit a similar pattern in fig. 6.28(a). According to (88), we
further compare the temporal evolution of A0 and χ(A2

10+A2
−9), where χ = 35, see

fig. 6.28(b). A high correlation can be seen between the evolutions of χ(A2
10+A2

−9)

and the geostrophic mode.
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Comparing this to triadic instabilities, wave interactions in a shear instability
seem to satisfy triadic relations in a similar way. Therefore we attempt to sim-
ply fit the weakly nonlinear model to the scenario of shear instabilities. Tem-
poral evolutions of the mode amplitudes are shown in fig. 6.29(a) for α = 1◦

and Ek = 1.19 × 10−5. The geostrophic mode, the blue curve in fig. 6.29(a),
shows only a rather weak fluctuation in time (i.e. a small standard deviation).
In fact the ratio between the data based ∂A0

∂t
and Ek1/2 is in the order 10−2, i.e.

∂A0

∂t
<< Ek1/2. Assuming χ2 equals χ3 in (88), in a dynamical system with slow

varying A0 (∂A0

∂t
/Ek1/2 << 1), A0/(|A2|2 + |A3|2) should remain nearly constant so

that
(︁
− 2

h
A0 + χ2 |A2|2 + χ3 |A3|2

)︁
is close to 0.

For (88) this means that the ratio between A0 and |A2|2 + |A3|2 should be close
to a constant. Obviously, for our experiment not only two free modes are excited.
The Ek in our case is more than one order of magnitude smaller and the flow is
closer to a turbulent state than the one observed by Lagrange et al. [64]. However,
their model, heuristically fitted to our case, is still useful in understanding some
characteristics of wave interactions. Hence, we try to extend (88) by introducing
nonlinear self-interactions of all the prominent modes except the forced Kelvin
mode. In this case, it is expected that A0/Σ |Afree|2 remains nearly constant in
time. Figure 6.29(b) shows the ratio between A0 and a number of squared ampli-
tudes as a function of dimensionless time. It can be seen that indeed A0/Σ |Afree|2

is nearly constant. In contrast, just using one triad leads to stronger variations
(red curve).
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Figure 6.29: (a) Amplitude of the modes and (b) ratios between A0 and nonlinear effects
of different modes as a function of the dimensionless time t. Measured at
0.8h with α = 1◦, Ek = 1.19× 10−5,Fr = 0.09 and h = 1.2.
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Table 6.3: The ratio of A0/Σ |Afree|2 for different Ek from experimental data measured
at 0.8h and A0/Σ

2
i=1 |Afree|2 from the model by Lagrange et al. [64] (at the

fourth row) but for Ro = 30RoL = 30Ωp sinα/(Ω + Ωp cosα), where Ωp is the
precession frequency, h = 1.2, χ = 0.003χL, where the index L denotes the
values used by Lagrange et al. [64].

Ek (×10−5) 2.39 1.59 1.19 0.955 0.796

A0/Σ |Afree|2 33.82 24.28 28.02 24.98 21.25
A0/Σ

2
i=1 |Afree|2 18.18 18.03 18.25 17.85 17.50

Another information from (88) suggests, that since h and χ are independent of
Ek, the ratio A0/Σ |Afree|2 should also not depend on Ek. This ratio taken from
the experimental data as well as the numerical runs is compared in table 6.3. The
second row in the table is from the experimental measurements at 0.8h and the
third row shows the numerical result from the model by Lagrange et al. [64] when
all the parameters are kept fix but the ones given in the caption are adapted to our
model. This means that we use h and Ek from our experiment. Note that the forc-
ing in our experiment is stronger since in contrast to the precession experiment
there is no small Poincaré number in the forcing term (see (83) and (85)). We used
a value for Ro that is 30 times larger than the one by Lagrange et al.. The tuning
parameter χ was adapted in the following way: from fig. 6.29(b) we read off the
constant for A0/Σ |Afree|2. Then we determined χ by χ = 2

h
A0/Σ|Afree|2, which

gives a χ that is a factor 3 × 10−3 smaller than the value by Lagrange et al. [64].
Note again that the experimental measurements give the amplitude of the modes
at a certain depth, which might not necessarily be equal to the mode amplitude
when we would have access to the full axial structure of the mode. However, we
only compare the dependency of A0/Σ |Afree|2 with respect to Ek, the magnitude
of this ratio is not relevant here.

Although, as discussed in the previous section, we find a disagreement be-
tween our free surface and the classical precessing experiment, namely that the
strength of the nonlinear effects is influenced by Ek in our case, the experimental
results reveal that A0/Σ |Afree|2 depends only very weakly on the Ekman num-
bers, which is consistent with the weakly nonlinear model designed for the pre-
cessing cylinder [64]. Therefore this analysis confirms, that for the tilted rotat-
ing annulus with a free surface, the nonlinear self-interaction of the free Kelvin
modes becomes stronger for decreasing Ek and implies an increase of mean flow
amplitude. This amplitude increase is such that the ratio A0/Σ |Afree|2 remains
constant.
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6.10 Discussion and Conclusion

A series of experiments have been performed to investigate the mode interaction
in a tilted rotating annulus with a free surface. In the experiments, two modes
play a major role in the dynamics: a forced Kelvin mode, which is driven by
the gravitational torque on the non-axisymmetric viscously rotating mass, and a
geostrophic mode, i.e. a mean flow, generated by nonlinear wave-wave interac-
tions. Free Kelvin modes and shear modes are given rise by instabilities of the
forced mode and the geostrophic mode, respectively.

Due to the inclination of the annulus, a forced Kelvin mode with wavenumber
m = n = k = 1 and frequency ω = 1 is excited. The amplitude of the forced
Kelvin mode grows rapidly when the mode is close to an eigenmode of the an-
nulus. Once the amplitude of the forced mode exceeds a threshold value, the
mode becomes oversaturated, breaks down and leads to a resonant collapse as
described for the precessing cylinder experiment by McEwan [84] and Manasseh
[78]. Two well-tuned subdominant free Kelvin modes are excited during this pro-
cess and form a triad with the forced Kelvin mode. This corresponds to a typical
scenario of the triadic resonance.

Besides the parametric triadic instability, we also observed a shear-type insta-
bility that is related to the non-zero mean flow, i.e. the geostrophic mode. The
experimental result confirms, that similar to the precessing cylinder experiment
carried out by Kobine [61], the mean flow increases with the tilt angle α (see (85)).
For a sufficiently strong mean flow, a shear-type instability is excited and gives
rise to a low-frequency barotropic shear mode. This shear mode interacts with the
forced Kelvin mode and generates two free Kelvin modes that satisfy the triadic
relation with the shear mode and the forced mode.

Shear instabilities in a partially filled and tilted rotating full cylinder have been
studied by Thompson [110], who presented a theoretical prediction of the insta-
bility bounds. Following Thompson, we predicted the bounds of the shear insta-
bility for our experiment with annular geometry and experimentally verified the
existence of the shear instability for different aspect ratios (fluid depths). The re-
sult is shown in fig. 6.30. The shaded areas represent shear instabilities calculated
from (59) and the shade at H/R = 1.2 is the first resonance corresponding to (61).
The symbols show the number of triads we find experimentally in the frequency
range 0 < ω ≤ 1. In this range, the most prominent triads can be found.

The open circle indicates that more than one triad emerges, where the shear in-
stability not only induced a low-frequency geostrophic mode m3 but also its har-
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Figure 6.30: Theoretical prediction of the shear instability in the annulus for Ek = 1.19×
10−5 and Fr = 0.09. The symbols show whether mode triads exist for 0 <
ω ≤ 1 from experimental results. The figure should be compared with figure
4 by Thompson [110].

monic mode m6, as discussed in section V. Both modes interact with the forced
Kelvin mode and give rise to additional free Kelvin modes. The shear instability
necessitates a sufficiently strong mean flow, which requires a large forcing, e.g.
large inclination angle of the annulus. A resonant fluid depth helps to strengthen
the mean flow by a coupling to free modes. On the other hand, when the forcing
is weak (α = 0.1◦) and hence the nonlinearly driven shear flow is too weak for
becoming unstable, the forced Kelvin mode can still become unstable due to res-
onance, e.g. when H/R is close to 1.2 (see the cross above H/R = 1.2 in fig. 6.30).
As shown by crosses in fig. 6.30, if H/R is close enough to the resonance depth
(e.g. for H/R = 1 or H/R = 1.4), a triadic resonant instability occurs and induces
two free Kelvin modes satisfying the triadic relation with the forced Kelvin mode.
Finally, if we are outside the depths for shear instability and too far away from
the resonant depth, only the forced mode can be observed.

We further observed that the Ekman number has a prominent impact on the
frequencies of the excited modes, except the frequency of the forced Kelvin mode.
The frequencies of the retrograde modes increase with decreasing Ek, whereas
the frequencies of the prograde modes have an opposite trend. The Doppler shift
due to the strong background flow is found to be mainly responsible for this
behaviour. A recent paper by Herault et al. [52] also points out that the non-zero
background flow modifies the dispersion relation and thus detunes the frequency
of Kelvin modes.

In fact, our experiment exhibits some similar characteristics when compared to
the precessing cylinder experiment by Herault et al. [52], where they reported the
presence of the parametric triadic resonance as well as a low-frequency barotropic
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mode interacting with the forced Kelvin mode. Moreover, in our experiment with
a free surface, a higher harmonics of the barotropic shear mode has been noticed
that is also part of the triads with the forced mode.

The bicoherence spectrum further confirms triadic interactions between the
modes and reveals also triads between three free Kelvin modes for the multi-
ple triad case. We also attempt to connect the low-order dynamical system by
Lagrange et al. [64] to our data. Although in our case more modes are active than
contained in the low-order model, we could confirm that the geostrophic mode is
balanced by a forcing due to self-interacting free modes and viscous damping. In
future work, we will try to better adapt the dynamical system to our experiment
so that we could have a simple tool for understanding the nonlinear interactions
between the excited modes and to find thresholds for regime transitions.

Aside from the common phenomena that have been observed in classical pre-
cessing experiments, we also observed some remarkable characteristics that de-
viate from what has been found in the precession setups. For example, in our ex-
periment the amplitudes of the forced Kelvin mode and the geostrophic mode are
saturated mainly due to the nonlinear effects. For the classical precession setup,
theoretical and experimental results show that nonlinear effects are independent
of the Ekman numbers. However, our experiment shows that the nonlinear ef-
fects significantly depend on Ek which seems to scale roughly with Ek−1/2 (see
the red dashed curve in fig. 6.27). The nonlinear dependency further influences
the amplitude of the mean flow and the saturation of the forced Kelvin mode.

Presently, our experiments are conducted within a relatively narrow range of
Ekman numbers and a fixed inclination angle, which leaves plenty of space for
further explorations. The existence of a free surface introduces extra complexity
to the rotating system. Nevertheless, it is useful for further study, since it pro-
vides a convenient approach to investigate wave interactions and the influence
of the aspect ratio on resonance. As suggested by Meunier [87], the open surface
rotating cylinder might also be important for technical applications. This system
might improve bioreactors since mixing due to the resonant collapse is much less
destructive than mixing with rotating blades.

6.11 Outlook

To further explore the mode excitation in the rotating annulus, experiments with
a modified bottom, as shown in fig. 6.31, have been planned and performed. The
bottom has an inner and outer radius of 7.6/19.9 cm, a height of 9 cm and the angle
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of the slope is 36.19◦. On the upper side of the bottom irregularly distributed
a number of screw holes, which are used for installing small obstacles on the
surface of the bottom to produce small scale disturbances. Beside these screw
holes, there are two smaller size screw holes for pull-down or pull-up the bottom
block in the container.

(a) (b)

Figure 6.31: (a) Photography of the extended slope bottom and (b) a sketch showing its
geometry

With the extra bottom, the closed container is indeed equipped with a sloping
wall, the oscillating gravitational torque will thus generate an inertial beam. The
beam reflects at the inner wall of the closed container. At certain fluid depth, the
inertial wave ray is confined in a closed path and forms wave attractors. Figure
6.32 shows the different behaviour of the inertial wave with the help of Kalliro-
scope and EOF. For a normal closed annulus, as shown in fig. 6.32(a), the trapped
inertial wave forms a global inertial mode. With the slope at the bottom, see the
left-hand side of fig. 6.32(b), the inertial wave is emitted from the corner in the
form of wave beams. This inertial wave ray can be numerically computed using
a ray-tracing code and shown in the right-hand side of fig. 6.32(b).

A similar phenomenon has been experimentally observed in the early inves-
tigation by McEwan [84], where inertial waves were excited by an inclined top
plate rotates relative to the cylinder. Inertial beams can be observed at particular
filling depth when a resonant inertial mode was not excited. The numerical study
by Lopez and Marques [74] suggests that the retracing beams have a stabilizing
effect on the forced mode. With the beams retracing themselves, it appears that
the symmetric breakdown of the forced mode is delayed by the nonlinear and
viscous interactions with the forced mode to a much higher rotation rate.

In our experiment, we did observe that a resonant collapse requires a higher
rotation rate with the same filling depth h = 1.2 as in previous sections. However,
this might be also related to a different resonant condition due to the change of
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container geometry. Further investigations are needed to draw a conclusion.
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Figure 6.32: The first EOF component of light intensity of a r-z plan for (a) the normal
annulus and (b) the annulus with the extended slope bottom. On the right
hand side of (b) is a numerical ray-tracing result of the wave attractor.
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7 Undular Bores in a Circular Channel

7.1 Introduction

A tidal bore is a natural tidal phenomenon in which the leading edge of an in-
coming tidal forms a series of waves propagating upstream in the estuarine zone
of a river or a narrow bay against the direction of the river’s or the bay’s current.
Tidal bores are usually formed during the flood tide in spring or autumn and
have been observed in over 400 river estuaries in all continents except Antarc-
tica. Representative rivers with tidal bores are e.g. Baie du Mont Saint Michel in
France, Colorado River in Mexico and Qiantang River in China [24].

Tidal bores have wave heights ranging from tens of centimetres to as high as
5 to 9 metres under some conditions. Although they are usually weaker and
less destructive than Tsunamis, their periodic occurrence (twice a day for semi-
diurnal tidal bores) can lead to unpredictable developments near the riverbank,
such as the transfer of sediments, as well as strong influences on the fishery in the
river estuary.

A photograph in fig. 7.1 shows one of the world’s largest bore, the Qiantang
River tidal bore in China, which is resulted from the funnelling of the flood tidal
wave into Hangzhou Bay and is formed twice a day. The tidal bore that occurs in
spring causes waves is usually ranging from 1 to 3 m, with a maximum height of
about 4 m, and travels upstream along the river to a distance of exceeding 100 km

at a speed of 20−30 km/h [95]. Due to the human deaths caused by the tidal bore,
a large number of tidal bore warning signs have been erected on the river banks
[70].

Figure 7.1: A photography showing the tidal bore flows upstream (i.e. from right to left
in the photo) on China’s Qiantang River by Michael Greshko from National
Geographic [48].

Field measurements of tidal bores have been extensively performed in the past
years, such as the ones performed on Qiantang River [55], [70] and on Garrone
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River at different locations like Podensac or Arcins channel [58], [81]. On the
other hand, despite the importance of the bore collision for the suspended sedi-
ment transport, bedload, scour and erosion, the collision of tidal bores has been
observed in a small number of rivers only due to the special conditions for oc-
currences. This phenomenon occurs for special local river geometry where the
flow of the incoming flood tide has been split and remerged. An example is the
Garone River, which splits into two branches near Arcins. A “backward bore” is
produced when the tidal bore approaches to the end of the main channel, propa-
gates backward in the Arcins channel and collides with the forward propagating
bore, as presented in fig. 7.2. For further records of bore collisions the reader
might refer to Keevil et al. [58].

Figure 7.2: Plan view showing the collision of the tidal bore in Arcins channel on 19
October 2013, reprinted from Keevil et al. [58].

According to visual observations and free-surface measurements, several flow
patterns are identified and characterized by the tidal bore Froude number, which
is defined as

Frb =
V0 + U√

gD0

(89)

where U denotes the absolute propagation speed of the wavefront referred to
the channel bank, g is the gravity acceleration, D0 and V0 are the initial steady
flow depth and velocity. For Frb < 1, the tidal wave is not able to form a tidal
bore; for 1 < Frb < 1.5 to 1.8, the undular bore is formed by a propagating front
followed with a train of well-formed, quasi-periodic undulations; for Frb > 1.5 to
1.8, a breaking tidal bore is produced that the bore front shows a breaking roller
associated with air entrainment and turbulent mixing [23].

In a long open channel, undular bores occur when a constant mass flux is fed
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into the channel filled with water which is stationary initially. The bores propa-
gate as a train of changed water level [26], [66], [107], [112]. Similar to solitary
waves, the travelling wave train slowly depends on time [13]. Undular bores
produced by a submerged line source or sink were first modelled by Sozer and
Greenberg using a vortex sheet method, where they traced the nonlinear evolu-
tion of the free surface and explored the possible existence of steady-state solu-
tions [106]. Positive bores are induced by source flows whereas negative bores by
sink flows, see fig. 7.3(a).

(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Simulation results from Bestehorn and Tyvand [13] showing bore generation
with different methods: (a) by injecting (solid line) or sucking (dot line) the
fluid; (b) - (f) by abruptly removing the wall separating water with different
levels.

To produce undular bores in laboratory experiments, a usual method is abruptly
changing the height of fluids in two regions with different levels, such as sud-
denly removing a barrier that separates fluids with different depths. Although
undular bores produced by an abrupt change of fluid depth are not identical to
tidal bores generated by a constant pumping (source term), the differences are
insignificant if the length of the two zones with different levels is sufficiently
large compared to the bore wavelength. Compared with bore production with a
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source/sink, where only a positive/negative bore is generated, an abrupt change
of the fluid depth generates a pair of positive and negative bores, that originate
from the middle of the height difference and propagate in different directions, as
can be seen in fig. 7.3(b)-7.3(f).

This process is depicted with a simple model, as presented in fig. 7.4, showing
the formation of the bore pair by abruptly changing the fluid depth. Assuming
that the water surface outside the bore front is flat at the onset of the bore forma-
tion, due to mass and momentum conservation and the fact that the wave speed
is proportional to

√
h, the rupture point is given by

hr =
hmax + hmin

2
+

(hmax − hmin)
2

8hmin

+O((hmax − hmin)
3), (90)

where hmin and hmax are the fluid levels before the bore formation. The equation
suggests that the two bores rupture not at the halfway point of two water levels
(hmax + hmin)/2 but slightly above the halfway point. In practice, the magnitude
of the second-order term in (90) yields a value of two orders smaller than (hmax +

hmin)/2 for present experimental parameters, which is in fact not resolved in the
experimental measurements and numerical simulations.

Figure 7.4: Sketch of the idealized model of bore generation by abruptly changing the
height of fluids in two regions with different levels. The solid line indicates
a step function as the initial profile and the dashed line represents the front
splits into two step fronts after a short time t. The sketch is reprinted from
Borcia et al. [16].

A considerable number of systematic laboratory studies on bores have been
performed over the last two decades [25], [33], [75], [102]. All the laboratory stud-
ies on tidal bores have been conducted in horizontal rectangular open channels
with lateral boundaries. In contrast, we have designed an experiment in which
undular bores are produced in an open circular channel. More specifically, two
different cases have been investigated: a single bore case with a rigid boundary
setup and a bore colliding case with a periodic lateral boundary setup. For the
latter case, according to our knowledge, we have realized for the first time the
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bore generation in a circular and hence periodic channel. This geometry accom-
plishes in naturally the periodic lateral boundary conditions, very often used in
numerical simulations. On the other hand, the circular geometry permits a good
and efficient deployment of the measurement equipments along the experimental
channel.

In the present chapter, we experimentally and numerically investigate the in-
fluence of the initial fluid depth difference on an undular bore and the interaction
between two colliding identical bores. The chapter is organized as follows: sec-
tion 7.2 describes the experimental setups; section 7.3 discusses the experimental
results and the properties of the generated bores; section 7.4 presents the theo-
retical formulation of the problem in the frame of an inviscid irrotational fluid
including comparisons between the numerical and the experimental results; sec-
tion 7.5 presents an experiment with a sloshing shallow water setup by switching
on the longitudinal oscillation of the circular channel; finally, the conclusions are
given in Sec. 7.6.

7.2 Experimental Setups

The experiment takes advantage of the outer circular channel of the MSGWs tank,
which has the circumference of L = 4.76 m and the gap width D = 8.5 cm. A de-
tailed introduction of the tank has been given in chapter 3. The measurement of
a bore is realized by measuring the position of the water surface with the help of
ultrasonic sensors (acoustic sensors), which are placed along the centerline of the
channel with certain distances from each other. For the distribution of ultrasonic
sensors, as shown in fig. 7.5, we have different options depending on the particu-
lar requirement of the measurements. In order to produce bores, two rectangular
plates are used as barriers and placed in the channel. The broadside of both barri-
ers are enveloped by single-sided EVA (Ethylene-vinyl acetate copolymer) foam
tape to enhance the sealing of the barriers and reduce the leakage of the fluid due
to the different fluid levels.

When the two barriers are placed in the channel, as marked with red colour in
fig. 7.5, the circular gap is divided into two parts: a shorter arc channel with a
length of 140 centimetres and a longer channel with 334 centimetres. By pumping
the water from the longer channel into the shorter, we create regions with differ-
ent water levels separated by a rigid wall. A single bore or two bores are able
to be generated when suddenly removing one barrier (fig. 7.5(a)) or lifting two
barriers simultaneously (fig. 7.5(b) and 7.5(c)). For the single bore setup, since
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Figure 7.5: Position of ultrasonic sensors for different experimental setups. For (a) only
the right barrier is removed to produce bores, whereas for (b) and (c) the two
barriers are removed simultaneously to produce colliding bores.

one barrier is fixed, the boundary condition is not periodic. If the curvature is
neglected, the system is equivalent to a straight channel with two rigid walls at
each end.

For the investigation of single bore generation, only two ultrasonic sensors (S.1,
S.2) have been placed at about 20 cm above the liquid surface with a separation
distance of 81 cm one from the other. For the study of colliding bores six or eight
different sensors (S.1–S.6) have been mounted in the collision zone (fig. 7.5(b)
and 7.5(c)). In fig. 7.5(b) the sensor S.5 is placed on the symmetry axis at the bore
collision point. The sensors S.4 and S.6 are placed symmetrically over S.5 and
are used to verify the synchronicity of clockwise and anticlockwise propagating
bores. To assure the formation of two identical bores, the two barriers should be
simultaneously removed. In this case, the configuration in fig. 7.5(b) has been
chosen in order to reconstruct the bore propagation before and after the collision
based on the symmetry condition. The sensor S.8 is located on the symmetric axis
and all other sensors (S.1 - S.7) are arranged on the right side of S.8 for a higher
resolution of the elevation.

The experiments are controlled by two parameters: the undisturbed water level
h0 ranging from 30 to 160 mm and the difference of water levels ∆h ranging from
5 to 60 mm. The difference of water levels between the two sides of the removable
barrier describes the “source strength” of the tidal bore and ∆h/h0 is the equiv-
alent to the Froude number for small surface elevations. In our experiments, the
ratios ∆h/h0 are kept lower than 0.4 in order to avoid breaking waves (turbulent
processes) [13]. For the main part of the experiments, we kept this limit even
under 0.28, thus assuring the formation of undular bores [11], [98]. With these
parameters, we are able to produce undular bores with the tidal bore Froude
number of 1.11 < Frb < 1.43.
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7.3 Experimental Results

7.3.1 Single bore

The free surface profile of undular bores excited in the circular channel of the
MSGWs tank is presented in fig. 7.6. The data were measured by sensors S.1 and
S.2 with the setup of fig. 7.5(a) for two different heights h0 and two height level
differences ∆h. Figure 7.6 shows a train of waves travelling through the positions
of the two sensors after releasing the barrier. The y-coordinate h represents the
surface level relative to the bottom.

To quantify the experimental results, the following parameters are defined and
compared: bore propagation velocity vf , bore wavelength λ and front height Hf .
The propagation velocity vf is calculated by dividing the distance between S.1
and S.2 with the time difference after detecting the arrival of the first crest at the
sensors (tv on fig. 7.6(b)). The wavelength λ, according to Berry [12], is defined as
the distance between the first two crests. Considering the variation of the prop-
agation velocity is slow, λ can be calculated by simply multiplying vf and tλ, i.e.
the time interval between the first and second crest, as noticed on fig. 7.6(b). The
front height Hf , as marked on fig. 7.6(b), is the height of the first crest relative to
the water level before releasing the barrier.
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Figure 7.6: Undular bores excited in the circular channel for two different heights and
height level differences: (a) h0 = 5 cm,∆h/h0 = 0.2 (b) h0 = 16 cm,∆h/h0 =
0.125. The value 0 on y-axis represents the level of undisturbed water.
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Compared to fig. 7.6(a), the bore in fig. 7.6(b) has a higher front height Hf .
Meanwhile, the bore in the latter figure spends a shorter time travelling from
the position of S.1 to S.2, which suggests the latter case has a faster propagation
velocity vf . For a systematic study on the propagation velocity and bore wave-
length versus the depth of the undisturbed water layer h0 and the difference of
water level ∆h (before the removing of the rigid wall), a series of experiments
have been performed with different combinations of h0 and ∆h. The result is
elucidated in fig. 7.7.

(a) (b)

(c) (d)

Figure 7.7: (a) The propagation velocity vf , (b) the wavelength λ and (c) the front height
Hf of undular bores as functions of the depth of the undisturbed water layer
h0 and difference of surface level ∆h before removing the barrier; (d) Com-
parisons of vf for the same h0 and ∆h between experiments and numerics.
The squares in (d) denote experimental results, the red line corresponds to
the shallow water theory for small perturbations around h0, and the triangles
are the calculated velocities for shallow water but with finite bore height ∆h
as in [7]. The figures are reprinted from Borcia et al. [16].

According to fig. 7.7(a) - 7.7(c), the propagation velocity, the wavelength and
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the front height show different dependencies on the average liquid depth and the
initial height difference. The wavelength mainly depends on the average depth
and less on ∆h (see fig. 7.7(b)), whereas the front height Hf depends mainly on
the initial height difference ∆h (see fig. 7.7(c)). The propagation velocity, in con-
trast, depends on both the average liquid depth and the initial height difference.
For a smaller height difference, the undular bore propagates with a slower veloc-
ity.

The measured phase velocities are plotted with square symbols in fig. 7.7(d)
showing that vf asymptotically approaches the shallow water value vf =

√
gh0

for ∆h→ 0, which actually agrees with Ali and Kalisch [7]. In the same figure, the
results using equation (2.6) from Ali and Kalisch [7] without base flow are plotted
for the same values of h0 and ∆h using the same colour but with a triangle sym-
bol. In view of the experimental errors, the tendency showed by the experiment
is retrieved also in the theoretical results. Although we are at the validity limit of
the long-wave approximation (h0/λ ranging between 0.1 and 0.2), the propaga-
tion velocity still satisfies the model as prescribed by the shallow water limit.

Tracking a bore travelling over a longer time period in the channel, we observed
decay of the bore amplitude, which is not the case for all surface waves (for exam-
ple for a class of capillary gravity solitary waves [56]). In the experiment, the bore
front moves with a spatially constant velocity during the bore propagation except
for thin boundary layers near the lateral walls. The decay of the bore amplitude is
equivalent to the decay of the internal fluid velocity. The propagation of the bore
can be regarded as a Poiseuille flow in an open channel. Since the laws of flow
resistance in open channels are essentially the same as those in closed pipes [51],
the loss of the velocity can be estimated by the Darcy-Weisbach equation using
the friction factor for a rectangular pipe. In the experiment, the utilised acoustic
sensor can return random errors and produce deviations in the measured value.
These deviations may lead to a high relative error for a long duration measure-
ment. Therefore the acoustic sensors are not suitable for precisely measuring the
decay of the surface elevation of the bore for long travel time. For this reason, a
PIV measurement were performed for a more reliable measure of the decay of the
flow velocity.

The PIV applied a typical setup that a line laser (MediaLas® Compact line laser
kit GREEN 75mW) was placed over the channel and projected a laser plane per-
pendicular to the surface and along the centerline of the channel in the stream-
wise direction. To ensure the laser plane corresponding to the circular shape of
the channel, an additional tilted convex cylindrical lens was added to the system
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so that the laser plane is slightly bent into a curved laser sheet [79]. The camera
was placed perpendicular to the laser sheet outside the outer wall, which allows
recording the video with a 1920×1080 resolution at 120 frames per second. To en-
sure that the velocity field in the wave crest is measured by PIV, the field of view
is required to capture the entire bore. Since the boundary between the fluid and
the air changes continually during the propagation of the bore, the evaluation of
the PIV inevitably contains the region of the air, where no tracers are distributed,
and produces spurious vectors, such as the upper region in fig. 7.14. An appro-
priate solution is creating a dynamic mask based on the surface profile measured
by ultrasonic sensors to ensure that the PIV evaluation is only executed in the in-
terior of the fluid [32]. However, since the errors in the air region do not influence
the measurement in the flow interior as well as the data presented in the thesis, a
dynamic mask was not applied for our experiment.
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Figure 7.8: The streamwise velocity u as a function of time measured at h = 60 mm for a
single bore with h0 = 75 mm, ∆h = 20 mm compared with the surface profile
of a single bore with h0 = 80 mm, ∆h = 20 mm. The red dashed curve
indicates the decay of velocity due to the friction.

The blue curve in fig. 7.8 elucidates the temporal evolution of the streamwise
velocity u measured at a fixed point 60 mm above the bottom by PIV. The positive
velocity indicates that the bore propagates in an anticlockwise direction, whereas
the negative velocity represents a clockwise propagating bore, i.e. the bore re-
flected after an odd number of times. The green curve in fig. 7.8 represents the
surface profile measured by an acoustic sensor and the sign is independent of the
propagation direction of a bore. The red dashed curve in the figure indicates the
decay of velocity due to the friction.

The velocity profile shows a good agreement with the surface profile measured
at a similar position. Compared to the frictional decay, the velocity appears to
have a slightly faster damping rate. One reason for the difference is that the sim-
ple empirical equation for a rectangular pipe may be not perfectly appropriate for
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Figure 7.9: Signals from the symmetrically positioned sensors S.4 and S.6 for h0 =
75 mm, ∆h = 20 mm verifying the symmetry condition of colliding bores.

the case with a propagating bore. A further reason might be due to the nonlinear
effects during the reflection at the barrier. Nevertheless, the friction loss provides
a reasonable explanation for the damping of the fluid velocity.

In addition, a group of weak fluctuations of the surface profile (the green curve)
at t = 12− 15 s is noticed on fig. 7.8. The group of fluctuations might correspond
to the backward propagating bore (i.e. the negative bore) as elucidated in fig.
7.3. This negative bore is not stably generated for each individual experiment,
since the release of the barrier is manually controlled and thus can influence the
production of the negative bore.

7.3.2 Colliding bores

Releasing the two rigid walls in fig. 7.5(b) simultaneously, two groups of bores
are produced and propagate symmetrically in clockwise and anti-clockwise direc-
tions. Due to the periodic boundary condition of the circular channel, the bores
collide repetitively at the 6 and 12 o’clock position in the channel. The odd col-
lisions (i.e. the first collision, the third collision and so on) can be observed by
sensor S.5 and the even ones (the second collision, the fourth collision, etc.) occur
in the diametrically opposite region of the circular channel.

Figure 7.9 and 7.10 show the signals of a bore collision experiment with the ini-
tial condition h0 = 75 mm and ∆h = 20 mm. Signals in fig. 7.9 are measured from
the symmetrically positioned sensors S.4 and S.6, which demonstrates the sym-
metry condition of colliding bores. Since the two barriers are released manually,
the synchronisation between S.4 and S.6 is an essential quantity that is directly
related to the quality of a measurement.

Figure 7.10 shows the shape of bores measured by S.3 before and after the first
and third collisions. The sensor S.3 is positioned sufficiently far from the colliding
point with a longer distance than the length of a bore so that the anticlockwise
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propagating wave train does not overlap with the clockwise propagating wave
train.

Assuming the experiment is axisymmetric and considering the fact that the
shape and propagation velocity of bores change slowly in time, a plot of bores
shortly before and after the collision using the surface height as a function of
time, is equivalent to a plot using the surface height as a function of azimuthal
coordinate. Following this rule, a plot in fig. 7.10(a) shows the structure of the
anticlockwise bore before the first collision and the clockwise bore after the first
collision, whereas fig. 7.10(b) is plotted in the same way for the third collision.
According to the symmetric condition (fig. 7.9), fig. 7.10 can be considered as the
structure of the same bore before and after a collision. It is obvious that the shape
of the bore is slightly changed after a collision and for the first collision the change
in shape is more significant. One of the reasons responsible for the change is that
the fluid depth is slightly increased after the collision. Since the propagation of
an undular bore is accompanied by volume flux, the liquid after a bore is deeper
than that in front of the bore. After a few collisions, the small scale structures are
damped and only the major bore structures retain, meanwhile the height of bore
crests is also gradually decreased.
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Figure 7.10: Signals from the sensor S.3 showing the bores before and after the first (a)
and third (b) collisions for h0 = 75 mm, ∆h = 20 mm. For both cases, the
left side of the signal (t < 4s in (a) and t < 14.5s in (b)) gives the bore shape
before collision and the right side the bore shape after.
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7.4 Comparisons Between Simulations and Experiments

7.4.1 Introduction of the numerical model

Direct numerical simulations of the Euler equations have been performed at BTU
Cottbus-Senftenberg in the group of Michael Bestehorn. As given in Bestehorn
and Tyvand [13], a 2D irrotational flow of an incompressible and inviscid fluid
with free surface is considered. The velocity field of the fluid v can be described
by the scalar flow potential Φ that

v(x, z, t) = ∇Φ(x, z, t). (91)

Due to the incompressibility condition, the continuity equation becomes

∆Φ = 0. (92)

The length and time scale are normalized by the undisturbed water level h0 and
the gravitational acceleration g so that

(x, z)→ (h0 · x̃, h0 · z̃) , t→
√︁
h0/g · t̃. (93)

Letting the location of the free surface be described by h(x, t), the boundary condi-
tion on the free surface is given by the Bernoulli equation (momentum equation)
and reads

∂Φ

∂t z=h
= 1− h− 1

2

[︄(︃
∂Φ

∂x

)︃2

+

(︃
∂Φ

∂t

)︃2
]︄
z=h

, (94)

where h is calculated from the kinematic boundary condition at the deformable
surface in the form

∂h

∂t
=

∂Φ

∂z

⃓⃓⃓⃓
z=h

− ∂h

∂x

∂Φ

∂x

⃓⃓⃓⃓
z=h

. (95)

The equations (90)–(94) have been numerically solved in two spatial dimensions
for a laterally closed geometry with impermeable side walls, following the scheme
described in detail in Bestehorn and Tyvand [13].

7.4.2 Single bore

Figure 7.11 compares the experimental measurement and numerical simulation of
the temporal evolution of the surface at two fixed positions, i.e. S.1 and S.2 in fig.
7.5(a). The diagram shows a very good agreement with a rather perfect overlap
between the theoretical curve and the experimental curve even after three reflec-
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Figure 7.11: Comparison of experiment and simulation for undular bore generation and
reflection, reprinted from Borcia et al. [16].

tions from the fixed wall. However, the slowly decreasing amplitude in terms of
time for the experimental result is not revealed by the numeric simulation, since
the simulation is applying inviscid conditions so that the viscous friction inside
the liquid is not taken into account in the numerical model.

7.4.3 Colliding bores

Furthermore, a comparison of the experiment and numerical simulation for the
bore collision problem has been performed with the same initial condition h0 =

75 mm, ∆h = 24 mm. As plotted in fig. 7.12, we focus only on the first collision
and on the region where the sensors are placed.

Figure 7.12(a) is a 2D contour plot interpolated from measured data of the six
sensors (fig. 7.5(b)) showing the evolution of the free surface. In the plot, the
positions of the sensors and their symmetrical positions are marked with dashed
lines. The plot shows two opposite propagating bores colliding in the middle and
travelling sequentially afterwards. However, due to the not sufficiently dense dis-
tributed ultrasonic sensors, the evolution at the free surface is not fully captured.
The numerical result is shown in fig. 7.12(b). Comparing to fig. 7.12(a), the nu-
merical simulation provides more information of the free surface evolution. For
a better comparison of experimental and numerical results, only those numerical
data that are at the positions that correspond to the position of the sensors are
extracted and plotted in fig. 7.12(c) using the same interpolation. These positions
in the circular channel are elucidated in fig. 7.12(a). Despite the stripes at the bot-
tom of fig. 7.12(a) due to the systematic errors of the acoustic sensors, fig. 7.12(a)
and 7.12(c) show a very good agreement, especially in the region of the collision.
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(a)

(b)

(c)

Figure 7.12: Comparison between experimental data (a) and numerical simulations (b)
and (c) in the bore collision region for h0 = 75 mm, ∆h = 24 mm. The
position of the sensors are marked with dashed lines. Note that also the
symmetry of the problem is taken into account. Plot (b) shows the complete
information from the numerical simulation where as in (c) only the data cor-
responding to the position of the sensors has been used.
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Since the numerical simulation was conducted with an inviscid fluid, the slow
decrease of the bore amplitude cannot be resolved in the numerical result, there-
fore the bore amplitude in the numerical simulation is higher than the amplitude
from the experimental measurement. However, the propagation of the wavefront
in experiments and numerics is still comparable.

The time-space diagram of fig. 7.13 shows the composition of the surface level
from the numerical result and the experimental measurement for a longer dura-
tion (six collisions). The central region with position from -1 to 1 is plotted based
on the experimental data and shows the collision with odd numbers, whereas the
rest part of the diagram is based on the numerical result and shows the collision
with even numbers. It is noticed that both the experiment and the numerical sim-
ulation have a periodic boundary condition, therefore the time-space diagram is
periodic in the y-axis.

Figure 7.13: A Hovmöller plot showing the surface profile of the first six bore collisions.
Odd collisions happen around the origin of the position axis. In this region,
ultrasound sensors are placed and the plotted water level corresponds to
the measurements. For the even collisions no sensors are placed, the plot-
ted water level is provided by computer simulations. Blue points are maxima
from the numerical simulation. The red and black lines are the fitting of the
bore front position before and after a collision.

Again, numeric and experiment achieve a very good agreement in the bore
propagation in fig. 7.13. Based on this result we can focus on the numerical sim-
ulation since it provides data of the full circular channel with a spatial resolution
of 1000 gridpoints.

Tracing the trajectory of the wave peaks, we can find out the influence of the
collision on the velocity and phase of the bore. As one can see in fig. 7.13, the blue
dots indicate the trajectory of the two highest wave peaks of a bore from the nu-
merical data and several solid lines are plotted based on a linear regression of the
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blue dots, which gives a linear prediction or retrospect of the bore propagation.
The red lines represent the bore before a collision and the black lines are after a
collision.

A tiny change in the bore velocity during the first collision is observed, where
the slopes of the lines are slightly different before and after the first collision, but
for the further collisions, a change in the bore velocity is not obvious. This fact can
be correlated with the change of bore shape (see fig. 7.10) during the first collision,
which is also more significant than for the following collisions. The velocity after
the collision is slightly increased since the bore propagates in deeper water after
the collision.

A slight shift of the lines before and after a bore collision has been observed.
The slight shift suggests that there is a small delay in the bore propagation, which
results from the nonlinear effects during the collision.

7.4.4 Influence of the centrifugal force

Since the bores propagate in a circular channel whereas the simulation applies a
straight channel with an equivalent length, the influence of the centrifugal forces
should be evaluated in case the centrifugal force leads to different surface heights
in the radial direction during the propagation of the wave.

By performing a PIV measurement on a vertical section along the centerline of
the channel, the evolution of the streamwise velocity u during a travelling bore
is acquired and shown in fig. 7.14 for the single bore setup with h0 = 75 mm,
∆h = 20 mm. The outliers on the upper part of the diagram above h = 60 mm to
80 mm are errors due to executing a PIV evaluation on part of the images above
the fluid surface, where there are in fact no PIV tracers. The PIV data show that
the maximum velocity locates at the first wave crest of the bore and its magnitude
is around 0.33 m/s, which is significantly slower than the propagation of the bore
(around 1 m/s for the same parameter).

In the circular channel, the velocity with the magnitude 0.33 m/s has the cen-
trifugal acceleration of 0.14 m/s2, which results in a 1 mm difference (1.5% of
the water height) in the surface level in the radial direction between the outer
and inner side of the channel. The PIV data in fact show a very good agreement
with the numerical simulations. As listed in table 7.1, the velocity of the fluid for
h0 = 80 mm,∆h = 20 mm is well predicted by the simulations. Consider the best
and worst scenario in the range of the parameters, the liquid height difference in
the radial direction due to the centrifugal force ranges from 0.5% to 3.5% of the
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Figure 7.14: A Hovmöller diagram showing the streamwise velocity u as a function of
time for a single bore with h0 = 75 mm, ∆h = 20 mm.

mean liquid height and can thus be ignored.

Table 7.1: The maximal value of the centrifugal acceleration acf,max and the surface
elevation due to the centrifugal force during the bore propagation from nu-
merical simulations. The effect of the curvature is measured by the liq-
uid height difference in radial direction due to the centrifugal force acf,max

g D
(D = Rmax−Rmin, D ≪ Rmin) relative to the mean liquid height h0. The table
is adapted from Borcia et al. [16].

case h0 ∆h umax acf,max
acf,max

g
· D
h0

(mm) (mm) (m/s) (m/s2) (%)
maximum 160 60 0.7 0.65 3.5
minimum 30 5 0.12 0.019 0.5
typical 80 20 0.32 0.14 1.5

7.5 Sloshing Shallow Water

Based on the present experimental setup, another type of sloshing flow is inves-
tigated, in which the channel is equipped with a fixed barrier and filled with
shallow water and the tank oscillates longitudinally with Ω sin(ωt), where ω is
the oscillation angular frequency and Ω is the oscillation amplitude with the unit
in rpm. Depending on the oscillation amplitude, the sloshing barrier is able to
produce waves or hydraulic jumps (i.e. bores) travelling to and fro periodically
in the channel [65].

This setup is related to the liquid sloshing in a closed basin, which has been
studied in many engineering fields such as coastal engineering [27], aerospace en-
gineering [1], and earthquake engineering. The mechanism is also closely related
to the so-called tuned liquid damper (TLD), which changes the dynamic charac-
teristics of a structure and dissipates its vibration energy relying on the motion
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Figure 7.15: Configuration of the oscillating experiment.

of shallow liquid inside a rigid tank [43]. The TLDs have been used for suppress-
ing the structural vibrations of large buildings, towers and bridges resulting from
external impacts such as earthquakes [44].

In the shallow water setup, the natural sloshing frequencies can be predicted
by using the linear theory

ωn
r =

2π(2n− 1)
√
gh0

L
, n = 1, 2, 3, ... (96)

where L is the length of the channel and h0 is the still water depth. The lowest nat-
ural frequency (n=1) is simply denoted by ωr. Violent surface wave response may
take place, when the forcing frequency close to resonance, i.e. close to ωr, even
for small forcing amplitudes. At a critical frequency ωf close to ωr, the resonant
excitation ceases due to a bifurcation phenomenon [40]. For forcing frequency
around higher natural frequencies (i.e. n > 1), primary resonances also arises,
although the induced wave response is generally weaker [19].

Due to the strong nonlinear effects in a resonant sloshing flow, the linear theory
is no longer valid. In this case, the effects of dissipation and dispersion also play
a significant role in determining the form of the oscillating surface. In a sloshing
flow with a sufficient strong forcing, when the dissipation becomes dominant
compared to the dispersion, the sloshing flow forms a weak bore that travels back
and forth while continuously reflected from the barrier in the channel, whereas
the surface profile behaves like a series of cnoidal waves when the dispersion is
dominant [27].

The resonance response of sloshing shallow water was studied by Bouscasse et
al. [19], Chester [27], Chester and Bones [28], Faltinsen and Timokha [41], Lepel-
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letier and Raichlen [69], Ockendon et al. [93] and Ockendon and Ockendon [94].
Nevertheless, the experimental studies explored only the characteristic depth, i.e.
the ratio of the water depth and the channel length, h0/L > 0.03. In the presented
experimental setup, we investigated the resonant response of the sloshing water
for a very small ratio h0/L = 0.01, where the effect of the dissipation in dominant
and travelling bores are generated by the periodic forcing.

Figure 7.16(a) shows the response amplitude (h − h0)/h0 as a function of the
forcing frequency ω/ωr measured by different sensors. It is noticed that the forc-
ing amplitude A/L is not constant but inverse proportional to the forcing fre-
quency ω with the relation A/L = 2πΩR/(60Lω) = 0.0058/ω, where ω ranges
from 0.3 to 3.6 so that 0.0192 > A/L > 0.0016.

As shown in fig. 7.16(a), four primary resonances can be observed at around
ω/ωr = 1, 3, 5, 7, where the response amplitude of the first resonance is magni-
fied in fig. 7.16(b). The resonant response amplitudes for higher resonances are
significantly lower. The main reason is attributed to the decreasing forcing am-
plitude when the forcing frequency increases. Although higher resonances gen-
erally induce weaker responses [19], this effect is not obvious in our case due to
the dramatic decrease of the forcing amplitude.

According to the nonlinear theory, the response amplitude is not symmetric
over the resonant frequency but increases gradually with the forcing frequency
and drops abruptly after reaching the maximum amplitude. The maximum am-
plitude is achieved at a frequency detuned from the resonant frequency (ω > ωr)
due to nonlinear effects. An example of this effect is presented in fig. 7.16(c),
which shows the response amplitude as a function of forcing frequency under
the effect of different forcing amplitudes for a sloshing shallow water setup with
h0/L = 0.03. The data are taken from the numerical simulations reported in Bous-
casse et al. [19].

This characteristic can be also identified in fig. 7.16(b). However, due to the
small forcing (A/L = 0.0192 − 0.01 for ω/ωr = 0.7 − 1.3), the nonlinear effects in
the experiment are very weak. In fact, the experimental result can be compared
with the numerical data from Bouscasse et al. [19], see fig. 7.16(c). In this figure,
the curve of the experimental result is given by the maximum values of the six
acoustic sensors for each ω/ωr. Despite the lower response amplitude, the ex-
perimental result appears to have a certain agreement with the numerical data.
However, due to the inconstant forcing amplitude, such a comparison is not very
strict.

In the shallow water setup, the dissipation is stronger than the dispersion, the
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Figure 7.16: (a) The response amplitude (h − h0)/h0 as a function of the forcing fre-
quency ω/ωr measured by different sensors. The dark red curve indicates
the forcing amplitude A/L in accordance with ω/ωr. (b) is the magnification
of the amplitude response around the first resonance. (c) shows the com-
parison between our experimental data to the numerical data reported in
Bouscasse et al. [19]. The numerical data give the response amplitude for
different forcing amplitudes in a shallow water setup h0/L = 0.03.
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sloshing flow generated by the periodic forcing propagates as an undular bore,
which travels to and fro in the channel. The surface profile of the bore is shown
in fig. 7.17 for ω/ωr = 1.12. Increasing the forcing frequency, we noticed that the
bore does not exist for ω/ωr > 1.2 and the surface profile behaviours like a cnoidal
wave, see red curve in fig. 7.17.
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Figure 7.17: The surface elevation as a function of time measured by sensor 3 for ω/ωr =
1.12 (blue curve) and ω/ωr = 1.22 (red curve) showing the sloshing flow
propagating with different behaviour.

7.6 Conclusions and Outlook

Taking advantage of the outer circular channel of the MSGWs tank with a cir-
cumference of about 5 m, we have designed an experiment for bore formation
and propagation. By sudden releasing a barrier separating fluid with different
surface levels ranging between 5 cm and 15 cm, we were able to produce undular
bores with tidal Froude numbers ranging between 1.11 and 1.43 and wavelengths
ranging between 10 mm and 80 mm. The produced undular bores travel in the
channel with a velocity of about 0.6 to 1.4 m/s.

With the present experimental setups, one single bore or a pair of counter-
propagating identical bores can be produced by removing one of the two barriers
or removing the two barriers simultaneously. As a benefit from the circular geom-
etry, we were able to use the symmetry and periodicity of the problem to study
multiple reflection processes. Using multiple acoustic sensors, the surface pro-
files are captured and recorded. The experimental measurements were compared
with the numerical simulations performed by Sebastian Richter in the group of
Prof. Bestehorn using the model reported in Bestehorn and Tyvand [13].

An excellent agreement has been achieved by comparing the numerical simu-
lations to the experimental measurements: the surface profiles are perfectly pre-
dicted both for the single bore case (fig. 7.11) and for the colliding bore case (fig.
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7.12); the fluid velocity in the wave crest measured by PIV agrees with the numer-
ical result; the propagation of the colliding bores are well reproduced even after
several collisions (fig. 7.13).

A decay of the wave amplitudes, as well as the fluid velocities, has been ob-
served in the laboratory experiment. The decay rate can be partly explained by a
simple open channel flow model in which the decay results from friction. Nev-
ertheless, the damping cannot be validated with the present numerical method
since viscosities and frictions have not been included in the numerical model.

Taking advantage of the oscillating MSGWs tank, we have performed a slosh-
ing shallow water experiment with a very small characteristic depth h0/L. The
response amplitude has been observed for a wide range of forcing frequencies
that cover four primary resonant frequencies. Our results show some agreement
with the numerical simulations from Bouscasse et al. [19]. However, due to the
small forcing amplitude, the nonlinear effects are rather weak. For forthcom-
ing studies, further experiments have been planned with a few improvements,
such as a constant forcing amplitude regardless of the oscillation rate and a better
arrangement of the ultrasonic sensors, where e.g. one sensor is monitoring the
surface elevation close to the barrier.
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8 Summary

In this work, we presented laboratory experiments with two different setups: a
rotating cylindrical annulus setup, which focused on the instability of a rotating
and inertially oscillating flow, and a circular channel setup, which investigated
the propagation, reflection and collision of undular bores.

In the first experiment, we investigated the rotating fluid in a tilted rotating an-
nulus with the presence of a free surface. Since the rotating axis was subjected to
the direction of gravitational acceleration, a Kelvin mode was forced by the grav-
itational torque on the non-axisymmetric rotating mass. The forced Kelvin mode
had the same frequency as the rotation rate of the annulus and the wavenumber
1 in the azimuthal and radial direction. By controlling the rotation rate and the
inclination angle of the container, we have explored the rotating flow for the Ek-
man numbers ranging from 7.9× 10−6 to 3.2× 10−5 and two different inclination
angles, namely α = 0.1◦ and 1◦.

When the depth of the filling water is adjusted to a particular value so that the
forced Kelvin mode matches or is close to the natural frequency of the rotating
fluid, the forced Kelvin mode becomes resonant. The amplitude of the resonant
forced mode rapidly grows oversaturated, breaks down and gives rise to small
scale disturbances, which is also referred to as “resonant collapse”. In this pro-
cess, we identified two types of instabilities.

For a small inclination angle (α = 0.1◦), the instability corresponds to a typical
scenario of the triadic resonance, which is similar to the precessing cylinder ex-
periment reported in McEwan [84] and Manasseh [78]. Two well-tuned subdom-
inant free Kelvin modes are given rise and form a triad with the forced Kelvin
mode. The frequency and wavenumber of the two free Kelvin modes match the
eigenmodes from the linear dispersion relation.

Increasing the inclination angle (α = 0.1◦), a stronger retrograde mean flow
generated due to the nonlinear interactions in the Ekman layer was observed.
When the mean flow is sufficiently strong, a shear-type instability is given rise
and leads to the generation of a low-frequency barotropic shear mode. The shear
mode interacts with the forced Kelvin mode and excites two free Kelvin modes
that satisfy the triadic relation with the shear mode and the forced Kelvin mode.
The shear instability in fact confirms the theory presented by Kerswell [59], for
which a shear instability with a dominant geostrophic component can be trig-
gered before the triadic resonance when the resonant triad is imperfectly tuned
and the amplitude of the forced mode is relatively large [52]. Following the shear



118

instability theory presented by Thompson [110], we achieved a good agreement
between the theoretical prediction of the shear instability bounds and our exper-
imental data.

We have observed that the frequencies of the excited modes, except the forced
Kelvin mode, are related to the Ekman numbers. The frequencies of the retro-
grade modes increase with decreasing Ek, whereas the frequencies of the pro-
grade modes have the opposite tendency. The main reason is attributed to the
Doppler shift due to the presence of a strong background flow. This agrees with
the work by Herault et al.[52]. Moreover, the authors pointed out that the non-
zero background flow can modify the dispersion relation, which also influences
the frequency of Kelvin modes.

Furthermore, we attempted to adapt the experimental data to a low-order dy-
namical system developed by Lagrange et al. [64] based on weakly nonlinear
theory. Although in our experiment more modes were active than in the low-
order model, it was confirmed that the geostrophic mode is balanced by the self-
interactions of free modes and viscous damping.

Overall, the presented experimental setup mimics the classical precessing ex-
periments with only one rotating axis and the result suggests that the two systems
do share many common characteristics. Nevertheless, we also observed some sig-
nificant characteristics that differ from the observations in the precession setups.
In our experiment, the nonlinear effects were more dominant for the saturation of
the forced Kelvin mode and the geostrophic mode. Theoretical and experimental
results in Lagrange et al. [64] indicated that nonlinear effects are independent of
the Ekman numbers in the classical precession setup. However, our experiment
suggested that the nonlinear effects are related to Ek with a scaling of roughly
Ek−1/2. The relation between the nonlinear effect and the Ekman numbers fur-
ther influences the amplitude of the mean flow and the saturation of the forced
Kelvin mode.

The present experiment has been conducted within a relatively narrow range of
Ekman numbers, two fixed inclination angles and only a few fluid depths, which
leaves plenty of space for further explorations to achieve a more plausible insta-
bility diagram. Limited by the current measurement techniques, an accurate ob-
servation of the velocity in a vertical plane is absent. It would be very helpful for
understanding the mode structure in the vertical direction as well as confirming
the mode interactions if the velocity field in a vertical plane could be measured.
A modified bottom with an oblique upper side has been equipped in the rotating
annulus. Due to the slope at the bottom of the tank, inertial beams have been
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observed for particular filling depths and rotation rates. A further investigation
is worthwhile to explore the influence of the inertial beams on the instabilities of
the flow in the tilted rotating annulus with an oblique bottom.

In the second experiment, we studied the formation, reflection and collision of
undular bores in a circular channel with a circumference of about 5 m. In the cir-
cular channel, two plane barriers were inserted into the channel, thus separated
the circular channel into two arc sections. The water was filled into two sec-
tions with different surface levels. By abruptly removing one barrier or removing
the two barriers simultaneously, a single undular bore or two identical counter-
propagating undular bores were generated. The measurement of the bores was
realized by measuring the surface profile using acoustic sensors. PIV has also
been performed for a single bore case showing the velocity field of the fluid in a
vertical plane in the streamwise direction.

Observations of the single bore experiment indicated that the average liquid
depth and the initial height difference influence the propagation velocity, the
wavelength and the front height in different ways. The wavelength mainly de-
pends on the average depth and less on the initial height difference, whereas the
front height depends mainly on the initial height difference. The propagation ve-
locity, in contrast, depends on both the average liquid depth and the initial height
difference. Due to the surface elevation in the hydraulic jumps, the bore propa-
gates faster than

√
gh. For the propagation with a longer duration, a decay of

the wave amplitude and the fluid velocity has been observed. The decay can be
partly explained by the frictions using a simple Poiseuille flow model.

For the experiment with colliding bores, due to the circular geometry, we were
able to use the symmetric and periodic condition to study the problem with mul-
tiple reflected colliding bores. The surface profiles are measured by multiple dis-
tant distributed acoustic sensors.

The experimental measurements were compared with numerical simulations
performed by Sebastian Richter in the group of Prof. Bestehorn using the model
reported in Bestehorn and Tyvand [13] and achieved an excellent agreement for
both cases. The surface profiles measured in the experiment were perfectly repro-
duced in the numerical simulations, even after several collisions in the colliding
cases. The fluid velocity in the wave crest measured by PIV also agreed with the
numerics.

Moreover, we have performed an experiment for sloshing shallow water with
a very small characteristic depth ratio between the average water depth and the
channel length. The experiment has been conducted by adding a fixed barrier in
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the longitudinally oscillating circular channel. With a wide range of the forcing
frequency, four resonances were observed with frequencies matching the natural
frequencies of the system. A simple comparison to the numerical simulations
by Bouscasse et al. [19] showed a good agreement. Nevertheless, the nonlinear
effects were not sufficiently strong for having a significant impact on the sloshing
flow due to the small forcing amplitude.

Currently, numerical simulations for the sloshing shallow water experiment are
still in progress based on the same code as used for the bores. For the next step
of the investigation, the experimental result will be compared with the numerical
simulation.
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