
Applying the Stream Processing

Paradigm to Ultra High-Speed

Communication Systems

Von der Fakultät MINT - Mathematik, Informatik, Physik, Elektro- und

Informationstechnik der Brandenburgischen Technischen Universität

Cottbus-Senftenberg genehmigte Dissertation zur Erlangung des

akademischen Grades eines

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

vorgelegt von

Diplom Informatiker (Dipl.-Inf.)

Steffen Büchner

geboren am 11.09.1982 in Frankfurt Oder

Vorsitzender: Prof. Dr. Michael Hübner

Gutachter: Prof. Dr. J. Nolte

Gutachter: Prof. Dr. R. Kraemer

Gutachter: Prof. Dr. W. Schröder-Preikschat

Tag der mündlichen Prüfung: 03.09.2020





Abstract

In the last 30 years, communication became one of the most important pillars of our

civilization. Every day terabytes of information are moved wired and wireless between

computers. In order to transport this amount of data, researchers and industry increase

the data rates of the underlying communication networks with impressive speed. However,

such ultra-high data rates are unavailable at the communication endpoints.

One reason why ultra-high data rates are still not available for the communication

endpoints is their inability to handle the protocol processing at this data rate. In

order to enable communication endpoints to process high-volume data streams, the

protocol processing has to be parallelized and optimized on all processing levels. However,

parallelization and optimization are cumbersome tasks, which are further complicated as

the protocol processing is traditionally carried out by the operating system.

This thesis aims at circumventing these problems by moving the protocol processing

into external processing hardware and interpreting communication protocols as stream

processing problems. In order to achieve ultra-high data rates at the communication

endpoints, a protocol stream processing design approach was developed and evaluated.

The design process is separated into implementation, soft real-time analysis, parallelization,

and mapping steps, which allow a scalable protocol implementation without paradigm

changes. Furthermore, a data link protocol for 100 Gbit/s wireless was developed and

implemented with the new stream processing design concept, in order to show its feasibility.

The data link protocol is configurable for different communication conditions and easy to

parallelize by providing different granularities of packets. The proposed design-process

has shown to be suitable for uncovering bottlenecks and helping with debugging the

individual stages of the protocol.

c





Zusammenfassung

In den letzten 30 Jahren wurde die ständig verfügbare elektronische Kommunikation

zu einer der wichtigsten Säulen unserer Zivilisation. Jeden Tag werden Terabyte an

Informationen drahtgebunden und drahtlos zwischen Computern übertragen. Um diese

Datenmenge zu transportieren, erhöhen Forscher und Industrie die Datenraten der zu-

grunde liegenden Kommunikationsnetze mit beeindruckender Geschwindigkeit. Solche

ultrahohen Datenraten sind jedoch an den Kommunikationsendpunkten nicht verfügbar.

Ein Grund, warum für die Kommunikationsendpunkte immer noch keine extrem hohen

Datenraten zur Verfügung stehen, ist die Unfähigkeit, die Protokollverarbeitung mit

dieser Datenrate durchzuführen. Damit Kommunikationsendpunkte hochvolumige Daten-

ströme verarbeiten können, muss die Protokollverarbeitung auf allen Verarbeitungsebenen

parallelisiert und optimiert werden. Parallelisierung und Optimierung sind jedoch kom-

plizierte und fehleranfällige Aufgaben. Diese Herausforderung wird weiter verstärkt, da

die Protokollverarbeitung traditionell im Betriebssystemkern durchgeführt wird.

In dieser Arbeit werden diese Herausforderungen gelöst, indem die Protokollverarbeitung

in externe Verarbeitungshardware ausgelagert wird und indem Kommunikationsprotokolle

als Stream Processing Probleme interpretiert werden. Um ultrahohe Datenraten an

den Kommunikationsendpunkten zu erreichen, wurde ein Designansatz für die Verar-

beitung von Protokolldatenströmen entwickelt und bewertet. Der Designprozess ist in

Implementierungs-, Weiche-Echtzeitanalyse-, Parallelisierungs- und Mapping-Schritte un-

terteilt, mit welchen eine skalierbare Protokollimplementierung ohne Paradigmenwechsel

ermöglicht wird. Darüber hinaus wurde ein Datenverbindungsprotokoll für drahtlose 100

Gbit/s Kommunikation entwickelt und mit dem neuen Stream Processing Designkonzept

implementiert, um dessen Leistungsfähigkeit zu demonstrieren. Das Datenverbindungspro-

tokoll ist für verschiedene Kommunikationsbedingungen konfigurierbar und lässt sich

durch unterschiedliche Granularitäten der Pakete leicht parallelisieren. Der vorgeschlagene

Entwurfsprozess hat sich als geeignet erwiesen, Verarbeitungsengpässe aufzudecken und

bei der Fehlersuche in den einzelnen Phasen der Entwicklung zu helfen.

e





Contents

1 Introduction 1

1.1 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Stream Processing and Communication Protocol Processing 7

2.1 Solutions from the Networking Community . . . . . . . . . . . . . . . . . 8

2.1.1 User Space Protocol Processing . . . . . . . . . . . . . . . . . . . 9

2.1.2 Hardware Acceleration by Offloading . . . . . . . . . . . . . . . . 13

2.1.3 Flexible Protocol Processing . . . . . . . . . . . . . . . . . . . . . 18

2.2 Stream Processing Architectures and Approaches . . . . . . . . . . . . . 23

2.3 Real-Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Summary & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Soft Real-Time Stream Processing 37

3.1 Decomposition of Protocols into Processing Stages . . . . . . . . . . . . . 38

3.2 Soft Real-Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Soft Real-Time Requirements . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Performance Measurement . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Adaptation of the Processing Engine and Offloading of Stages . . . . . . 42

3.3.1 Stream Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Offloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 On-Demand Adaptation of Processing Engines . . . . . . . . . . . . . . . 45

3.4.1 Readaptation of a Deployed Processing Engine . . . . . . . . . . 46

3.4.2 Switching Protocols by Entirely Replacing Processing Engines . . 47

3.4.3 Exchanging Processing Engines . . . . . . . . . . . . . . . . . . . 49

4 A 100 Gbit/s Data Link Protocol 51

4.1 The Prototyp Data Link Protocol . . . . . . . . . . . . . . . . . . . . . . 51

i



Contents

4.1.1 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Decomposition of the Protocol into Processing Stages . . . . . . . . . . . 58

4.2.1 Implementation of the Processing Stages . . . . . . . . . . . . . . 61

4.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Soft Real-Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Soft Real-Time Requirements . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Adaptation of the Processing Engine . . . . . . . . . . . . . . . . . . . . 78

4.5 Mapping of the Processing Engine . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Testing of the Implementation and Latency Hiding . . . . . . . . . . . . 84

4.6.1 Integration of external Accelerator Hardware . . . . . . . . . . . 89

4.6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7.1 Processing Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7.3 Beyond Channel Bonding . . . . . . . . . . . . . . . . . . . . . . 102

5 Conclusion 107

5.1 Own Publications used in this thesis . . . . . . . . . . . . . . . . . . . . . 109

A Supplementary Technical Information 111

A.1 Exchanging Processing Engines . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 Offloading of Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B Data Link Protocol 117

B.1 Protocol Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.1 DataChunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.2 Virtual Channel Header . . . . . . . . . . . . . . . . . . . . . . . 118

B.1.3 Frame and SuperFrame . . . . . . . . . . . . . . . . . . . . . . . 118

B.1.4 Sub-Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Description of the Protocol Processing Stages . . . . . . . . . . . . . . . 121

B.2.1 Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2.2 Data-Packet Generator (DG) . . . . . . . . . . . . . . . . . . . . 122

B.2.3 Acknowledgement Processor (AP) . . . . . . . . . . . . . . . . . . 124

ii



Contents

B.2.4 Data-Packet Combiner (DC) . . . . . . . . . . . . . . . . . . . . 131

B.2.5 Acknowledgement Generator (AG) . . . . . . . . . . . . . . . . . 134

B.2.6 Performance measurements for The DA with incoherent memory 138

B.2.7 Service Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.3 Full Protocol Processing Engine Description . . . . . . . . . . . . . . . . 143

Bibliography 155

iii





CHAPTER 1

Introduction

Fast, reliable communication is the backbone of today’s life. However, the ever-increasing

amount of data-traffic is raising challenges. In order to be able to handle the increasing

amount of traffic, the theoretically achievable data rate of modern communication systems

is pushed into new spheres of several hundreds of gigabit per second.

For example, the processing capacity of routers and switches has increased from 52 Gbit/s

in the early 2000 [1] to a staggering 96 Tbit/s half-duplex in 2019 [2]. Likewise, today’s

networks are connected with 100 Gbit/s Ethernet, and 400 Gbit/s Ethernet is about to

be deployed [3]. The Ethernet roadmap envisions line-rates of more than 1 Tbit/s for as

near as mid-2020 [4], and research already showed the feasibility of wireless data rates of

100 Gbit/s and more [5, 6].

However, these data rates stress the capacities of today’s processing hardware to the

utmost limits and beyond. Consequently, these data rates are used almost exclusively at

the network backbone because today’s protocol processing approaches for the endpoints

are not able to handle data streams at these line-rates. The following example from [7]

shall emphasize the problem:

“ A server in a data center is equipped with a 100 Gbit/s network interface

and a state-of-the-art processor, such as the Intel Haswell. To be able to

fully utilize the network interface, the server has to process 100 Gbit/s =

12.5 GB/s of packet data per second. Assuming the packets have a size of

1500 Bytes, the server has to process 8,333,333.33 raw packets per second

respectively a new packet every 120 nano seconds. Putting that in relation

with the 96.4 ns main memory access latency for a 64 Byte cache line (Intel

Haswell [8]), indicates that we have to think of new protocol processing

paradigms.” [7]

1



Contents

This short example outlines the problem faced nowadays in wired networks. The challenge

grows when taking wireless connections into account, because individual wireless commu-

nication channels may provide a lower than necessary data rate and must be combined.

Moreover, because wireless connections are much less stable than wired connections,

the effort for retransmission increases drastically and can render the assigned resources

insufficient. Consequently, the communication system must be reconfigured, for example,

by increasing the assigned processing resources. It is quite clear that a server that is

already at the edge of its processing capacity can not bear the additional processing

costs.

To be able to utilize the theoretically achievable data rates available to the communication

endpoints, one of the main questions for today’s high-speed network research is how to

overcome the mismatch of processing requirements and capacities.

Generally, the answer is threefold: We need new parallelizable protocols, the protocol

processing has to be parallelized on all levels, and special purpose hardware must be

intelligently integrated to decrease the protocol processing costs for the host. These

general answers lead to new questions:

• How much parallelization is necessary and how to minimize synchronization overhead

induced by parallel processing?

• What protocol tasks should be offloaded to dedicated hardware and how can these

parts be integrated into the communication system?

• How can reconfigurable protocols be designed and processed in order to react to

changing communication conditions?

• How can all this be implemented without increasing the design and implementation

complexity?

The central idea proposed in this thesis is that the implementation can be handled in a

structured manner by understanding communication protocols as a stream processing

problem [9]. Generally, all communication systems can be described by a stream process-

ing graph, as shown for a generalized communication system in figure 1.1 (top). Each

communication system consists of a sender, S, which receives a stream of data and trans-

forms it into a stream of Protocol Data Units (PDUs) and a receiver, R, which consumes

this PDU stream and transforms it back into the original data stream. Additionally, the

2





Contents

On that basis, a communication system is designed so that it is parallelized on all

levels and offloads parts of the protocol processing into special purpose hardware, as

depicted in figure 1.1 (bottom). The higher level protocol processing, e.g., the buffer-

and retransmission-management, is processed in parallel by an embedded manycore, that

manages and combines several communication channels for the transmission. Compute-

intensive protocol tasks, such as forward error correction, are offloaded into special purpose

hardware. In case the communication conditions change, the stream processing paradigm

is well suited for readaptation of the protocol processing because the individual protocol

tasks are connected only by streams that can be reconnected.

These corner-points are elaborated and evaluated in this thesis, leading to the following

main contributions:

1. A stream processing based methodology that integrates the design, implementation,

analysis, parallelizing, and offloading of communication protocols without paradigm

changes.

2. A concept for on-demand protocol readaptation at runtime without increasing the

protocol complexity and the demonstration of its feasibility for ultra-high speed

communication.

3. A parallelizable data link protocol for wireless communication that is able to utilize

a data rate of 80 Gbit/s with an overhead of less than 0.35%.

This thesis is organized as follows: In order to establish the necessary features of the

structured protocol implementation approach, the current research efforts regarding the

field of high-speed communication are investigated in chapter two. In addition to the need

for parallelization on all levels, the domain-analysis shows that it is essential to offload

the protocol processing into external accelerators. Furthermore, the investigation lead

to the decision that reconfigurability of the protocol processing has to be a part of the

concept.

In chapter three, the concept of the stream processing design approach is presented.

This concept integrates the design, parallelization, implementation, and offloading of

communication protocols without paradigm changes. Additionally, chapter three shows

how reconfigurable protocol processing can be accomplished without complicating the

protocol design.

4



The design approach is applied step-by-step in chapter four on the example of a data link

protocol for wireless endpoints, in order to showcase the feasibility of the approach. The

proposed prototype data link protocol is explained in detail before the design process is

used to implement, adapt, and offload the protocol. Afterward, chapter four provides

an evaluation that investigates the performance of the designed protocol under different

communication conditions.

Lastly, the main findings and conclusions, as well as an outlook to future work are

highlighted in chapter five.

1.1 Disclaimer

This thesis was written in the context of the project End2End100 (German Research

Foundation Project End2End100, DFG NO 625/9-1). End2End100 is a joint project of

IHP (Innovations for High Performance Microelectronics GmbH) and the Brandenburg

University of Technology Cottbus–Senftenberg and is part of the DFG (German Research

Foundation) priority program "100 Gbit/s Wireless And Beyond" (DFG Schwerpunkt-

program SPP 1655 Drahtlose Ultrahochgeschwindigkeitskommunikation für den mobilen

Internetzugriff). In the scope of the priority program, transmission technologies for 100

Gbit/s wireless communication are investigated. While the priority program focuses on

the transmission technology, the overall goal of End2End100 is to integrate the results

of the priority program within an end-to-end communication solution and to achieve a

wireless throughput of 100 Gbit/s between two endpoints.

5





CHAPTER 2

Stream Processing and Communication

Protocol Processing

The main goal of this thesis is to investigate how the stream processing programming

paradigm can be leveraged for the protocol processing at high data rates. Stream

processing applications can be represented by a graph, where edges are the streams and

the vertices are the data processors. The vertices are independent of each other, i.e.,

the vertices only depend on the streamed data and a potential internal state. Therefore,

streaming applications are inherently parallelizable. The parallelization can be done by

pipelining, as well as by distributing the streamed data to parallel data-processors.

The independence of the vertexes and the possibilities of parallelization can be exploited

for the processing of communication protocols: Protocols rely on communication channels

that can be regarded as data streams. These streams are then processed by the protocol

implementation. By dividing the protocol implementation into tasks with local-only state

and treating these tasks as independent data-processors, the protocol implementation can

be interpreted as a stream processing graph. Each protocol task is then only dependent

on its internal state and the incoming packets. Therefore, the stream processing paradigm

can be further used to parallelize the protocol processing. A coarse example1 is the

OSI-protocol stack, where each layer is responsible for a specific task, connected by

the streams that transport packets between layers. The layers themselves work on the

connection state and the streamed packet.

Stream processing applications are inherently distributed systems because the location

where a streamed data item is processed is arbitrary, due to the independence of the

vertices. This can be leveraged into offloading parts of the protocol processing, such as is

common practice for the Medium Access Control (MAC) layer.

1The example is hampered by the fact that the OSI-Stack consists of several distinct protocols.

7



2.1 Solutions from the Networking Community

This high-level view is, however, idealized: In reality, layers may share states (e.g., for

performance reasons), or are hard to parallelize, which may lead to bottlenecks for high

data rates. Finding these bottlenecks in traditional monolithic protocol implementations

can be cumbersome. The stream processing approach allows the structured analysis of

the stream processing graph in order to identify these bottlenecks: Streams have a data

rate and they expose the dataflow between the processing steps. The processing steps

have performance characteristics, such as the time needed to process a data-item. In

combination, this information can be used to analyze the application for bottlenecks and

performance requirements.

The following domain-overview is used in this thesis to investigate how stream processing

concepts are applied to the protocol processing, how actual stream-processing frameworks

are designed, and how the stream processing approach can be used to analyze the protocol

processing.

2.1 Solutions from the Networking Community

Streaming and pipelining the protocol processing is, of course, not a new idea. It has

been used in order to accelerate the protocol processing since systems with multiple

processors and powerful Network-Interface-Cards (NICs) appeared. The approaches and

goals are diverse: Streaming packets of the same flow between kernel and user space is

used in order to exploit data-locality, whereas pipelining is used in order to accelerate the

protocol processing, and offloading parts of that pipeline can help to reduce the load of

the communication host, to name just three. The following pages will give an insight into

how stream processing concepts are adapted for the protocol processing.

The beginning of this section focuses on user space protocol processing, which allows

reducing overhead by minimizing context-switches and copies between kernel and user

space. In the second part, offloading approaches are investigated. Offloading is used to

relieve the host from the protocol processing effort and for accelerating compute-intensive

protocol tasks. This section finishes with approaches that introduce flexibility into the

protocol processing, which can be used to decrease protocol’s implementation complexity

while increasing maintainability and preserving a high protocol processing performance.

8



2.1.1 User Space Protocol Processing

The communication protocol stack is traditionally located within the operating system’s

kernel and is controlled by a standardized API, such as Sockets in Unix [10]. This is

convenient because general-purpose applications do not need detailed knowledge about

the protocol’s implementation, such as buffer management mechanism, but profit from an

easy to use and standardized interface. Additionally, the operating system kernel isolates

the protocol processing from the application, i.e., different processes can only see and

access "their" data. However, changes at the kernel protocol stack are cumbersome, and

in kernel protocol processing introduces processing overhead, such as system calls and

buffer copying, which may exceed the actual protocol processing costs [11, 12]. In order

to avoid the downsides of the in-kernel protocol processing, researchers are investigating

the feasibility of user space protocol stacks.

MultiEdge

In [13], the authors argue that using standard hardware instead of special High Performance

Computing (HPC) network hardware, such as InfiniBand [14], reduces costs and allows

for easier maintenance. In order to compensate performance drops due to the lack

of hardware support, the authors introduce MultiEdge at the communication system.

The main protocol processing in MultiEdge is done within the Operation System (OS)

kernel, whereas buffers are copied between kernel and user space. MultiEdge allows the

transparent bonding of several physical channels, such as several 10 GbE interfaces into

a single connection, as well as in-order and out-of-order packet processing. However,

100+ Gbit/s communication scenarios are not feasible without heavy optimizations and a

parallel processing approach. Therefore, the authors extended MultiEdge in a parallelized

fashion [15]. The authors identified the copying of payload and headers between user

space and kernel as the main performance bottleneck. In the extended MultiEdge,

copying buffers between kernel and user space is avoided by context-independent2 Virtual

Memory (VM) remapping. Additionally, the processing of the MultiEdge protocol can

be conducted in parallel. However, parallel programming is cumbersome and traditional

thread-based parallelism has its caveats: The access to the receive-queues has to be thread-

safe, i.e., locking and synchronization has to be introduced. As an optimization, the

authors propose the single-threaded processing of in-order packets; however, out-of-order

2The kernel thread that manipulates the page-table can be unrelated to the receiving process.

9



2.1 Solutions from the Networking Community

packets can be processed concurrently. Since all threads that are part of the processing

for a single connection need access to the protocol state and other shared resources

(e.g., buffers), synchronization between threads is still necessary. Their evaluation shows

that parallelization of the protocol processing leads to a data rate of 38.9 Gbit/s out of

maximal 40 Gbit/s one way and 57.6 Gbit/s out of maximal 80 Gbit/s bi-directional.

This is achieved at the cost of an utilizing 3 Central Processing Units (CPUs) (one-way)

respectively 4 CPUs (bidirectional) of overall of 8 CPUs.

NetSlices

NetSlices [16] aims to move the protocol processing into user space in order to ease the

programming of packet processors, such as software switches. However, the authors found

the conventional RAW-socket [17] approach insufficient due to the following reasons:

Firstly, it distributes packets to all open raw sockets which introduces several unnecessary

copies, and secondly, it uses system calls for each receive/send operation. The authors

propose to partition the network hardware into slices, so-called NetSlices, which are

tightly coupled with specific processors in order to minimize contention. A slice consists

of a transmit- and a receive-queue of the NIC, a kernel thread, and one or more parallel

user-level threads that are responsible for packets from the queues they are assigned to.

By assigning incoming packets to their corresponding receive-queues depending on the

packet-flow3, independent flows can be processed in parallel while profiting from cache

locality and reduced synchronization. By additionally assigning the kernel thread and the

user-level thread to CPUs that are close to each other, the processing overhead is further

reduced. In their evaluation, the authors show that their packet processing performance

outperforms conventional user space packet processing and is close to in-kernel processing.

However, while no system calls are necessary to send and receive packets, each packet is

still copied between kernel-thread and user-level thread.

MultiStack

In [18], the authors argue that while the protocol processing within the kernel provides

necessary isolation, it also makes it cumbersome to develop, test, and deploy new protocols

because each change to a protocol implies modifying the operating system. In order to

3Packets in a packet flow that belong to the same context, such as a connection.

10



simplify the protocol development, the authors propose Multistack, which can be used

to provide isolated parallel protocol stacks for individual applications. The isolation of

protocol stacks is achieved on the basis of port-number, IP-address, and protocol type. This

3-tuple is used by an in-kernel software switch that multiplexes and demultiplexes incoming

packets. In the case that no user-level protocol stack could be found, MultiStack provides

a bypass to the traditional kernel protocol stack as a fall-back solution. Additionally,

Multistack allows assigning multiple cores to a single port, i.e., the user space protocol

stacks can be further parallelized on a per packet-flow basis. Their evaluation shows

that, due to their streamlined data paths and by avoiding the (slow) socket library, the

user-level protocol stack outperforms the legacy stack in all benchmarks.

InifiniBand & Message Passing Interface (MPI)

InfiniBand [14] is an open industry standard for low latency communication developed by

a vendor consortium. InfiniBand is based on messages that are sent and received directly

by the target application without the involvement of the operating system. This is done by

connecting two applications with a queue pair that bypasses the network stack. Sending

messages can be done with a send-/receive-semantics or by writing/reading directly from

the remote address-space due to Remote Direct Memory Access (RDMA). The send-

/receive-semantics builds on data structures in the application’s address-space where the

sending application can place messages that have to be sent, and the receiving application

can retrieve messages that were received. These data structures are read and written

by the InfiniBand sub-system, which in turn transmits and receives messages from the

network. While this requires additional copies that increase the message passing latency,

it has the advantage that the communication details are hidden from the application, i.e.,

no additional effort for the developer. In contrast, the RDMA semantics is used to write

messages directly into the receivers address-space. While being faster, the destination

addresses have to be negotiated before a transmission. Being able to deliver messages

directly to the queue’s endpoint allows parallel processing of messages without further

overhead. Being a message-based communication system for HPC, it is most suitable for

use with the Message Passing Interface (MPI).

MPI comes in a variety of implementations, such as OpenMPI [19] and provides point-to-

point and collective communication. MPI uses two protocols for the communication: MPI

Eager for message passing and Rendezvous for the transmission of larger data [20]. The

11



2.1 Solutions from the Networking Community

Eager protocol provides a low message passing latency by sending messages to the receiver

without the need for prior negotiation by the application. Due to InfiniBand’s RDMA

support, the communication performance can be improved even further [20]. Since the

transmission of bigger data is negotiated first with a handshake procedure that is used to

prepare the receiving buffer, the Rendezvous protocol can profit straight forward from

RDMA by negotiating the destination address during the handshake phase. The Eager

protocol can only profit from RDMA when the addresses of the message receive-buffers

are known to the receiver before the transmission takes place. This can be realized by

organizing the message buffers as ring-buffers at the sender and receiver. When both

ring-buffers are synchronized, the receiver always knows at what ring-buffer slot the next

message should arrive, and the sender knows which slot has to be used for the next

message. The flow-control is based on these ring-buffers, i.e., when the sender-buffer is

full, the sender can not send messages with the RDMA approach4. The receiver notifies

the sender about the free space by piggybacking the last possible writing slot of the

ring-buffer to outgoing messages.

Summary

The presented approaches provide efficient and low-overhead network I/O that can be used

to implement user-level protocol stacks, which increases flexibility and eases the protocol

design process. These approaches are suitable for partitioning the protocol processing

based on individual connections or protocol stacks onto distinct processors. However,

none of the approaches use the full potential of the stream-processing paradigm, e.g.,

parallelism by pipelining the protocol processing steps. Instead, the presented approaches

rely on multi-threading and fall back to explicit synchronization between the processing

threads for state manipulation and access to shared resources.

MPI allows parallel processing of messages without constraints. However, it also doesn’t

provide a traditional communication protocol but relies on an underlying communication

system for reliable communication. The combination of InfiniBand and MPI provides an

interesting RDMA flow-control mechanism for the Eager protocol. A similar approach will

be used in this thesis for transmitting bulk-data between the host and protocol processing

system.

4Then the traditional (non-RDMA) InfiniBand’s send/receive mode is used.

12



2.1.2 Hardware Acceleration by Offloading

In order to alleviate the protocol processing load of the host, and therefore freeing its

resources, protocol processing offloading was proposed. Offloading has the premise that

the host is either not capable of the protocol processing or that the host’s resources should

be used for the host’s actual task and not for the protocol processing. This subsection is

divided into offloading of full protocol stacks, offloading of parts of the protocol processing,

and applications that use offloading for faster packet processing.

TCP Offload Engines

In [21], the authors present an FPGA implementation of a fully offloaded TCP/IP stack,

which supports up to 10000 simultaneous connections and that can utilize a 10 Gigabit

Ethernet (GbE) interface. The authors highlight that this is only possible by following the

TCP/IP dataflow, i.e., separating transmit/receive paths and allowing lightweight access

to the connection states. In [22], the same authors adapt their initial implementation

to support low-latency scenarios. This is achieved with application knowledge and fine-

grained optimizations. Furthermore, the authors assume that reordering incoming packets

is an application task. While that assumptions eases the implementation, it also assigns

work back to the host. While the authors achieve 10 Gbit/s, the connections are simulated

on the NIC itself. Since some protocol tasks, such as data transfers between host and

NIC, are omitted, no conclusion about the actual performance can be drawn.

General Hardware Acceleration

The offloading of the complete TCP protocol stack is seen as problematic [23] for reasons

such as the cumbersome process of updating a hardware implementation or the expensive

and error-prone design process. A beneficial compromise is the partial offloading of suited

protocol task into external hardware. TCP Segmentation Offload (TSO) (e.g., [24]) is

a sender-side optimization that offloads the segmentation of bulk data into an external

accelerator, such as a NIC. Instead of segmenting the data at the host, the payload

and the meta data information needed for building the headers is copied to the NIC,

which creates the segments, fills the headers, and transmits them to the network. Hence,

stress on the memory system is reduced because the individual packets do not have to be

13



2.1 Solutions from the Networking Community

touched at the host. Large Receive Offload (LRO) [25] is a hardware supported receiver

side optimization that aggregates consecutively incoming packets that belong to the same

flow into a larger packet. This way the processing overhead for small packets at the host

is reduced. Interrupt coalescing [26] is an optimization technique that reduces the number

of expensive interrupts between NIC and host by only sending an interrupt for the first

packet that is copied into an empty NIC receive buffer. Interrupt coalescing is also used

to avoid livelocks in systems that receive packets faster than the host can maintain [27].

In [28], the authors investigate several protocol processing optimizations related to TCP

offloading. The authors show that measures such as interrupt suppression in case more

data is available, checksum offloading, and zero-copy buffer management allows for higher

throughput and less overhead.

PacketShader

PacketShader [29] is a software router that uses offloading of the packet processing

to an external GPU. PacketShader employs a number of optimizations: Firstly, the

optimized user-level packet I/O engine uses packet-batching for receiving and sending

in order to reduce the offloading overhead. The transmission overhead for the batches

is further decreased by using preallocated and slotted huge buffers instead of individual

buffer allocation/deallocation. Moreover, the memory locations of the packet batches are

chosen depending on the Non-Uniform Memory Access (NUMA) memory-system. Lastly,

interrupt-coalescing (suppressing consecutive interrupts) is used to avoid receive-path

livelocks.

The packet I/O engine employs the parallel processing power of Graphic Processing

Units (GPUs) for the actual packet processing. PacketShader’s workflow is as follows: (1)

the packet I/O engine fetches batches of packets from the NIC and prepares them for

the processing step by dropping malformed packets and extracting meta data, such as IP

addresses, necessary for the packet processing. (2) After pipelining the batch to the thread

that is responsible for the communication with the GPU, this thread copies the data to

the GPU and triggers the packet processing. (3) After the processed batch is given back

to the worker thread, the batch is post-processed depending on the processing results and

split into packets for transmission. The evaluation shows that especially for small packets,

the GPU accelerated packet processing outperforms CPU-only processing.

14



GASPP

GASPP [30] is a packet processing framework relying solemnly on GPUs for the packet

processing. It allows programming the GPU based on module prototypes for common

protocols, such as Ethernet and TCP, as well as stateful protocol processing. The

programmer can then use an Application Programming Interface (API), which provides

support for protocol tasks, such as pattern matching, encryption, and packet manipulation,

for the implementation of the modules. The modules can be chained, i.e., sequent

processing steps can be grouped together. Finally, the modules are compiled into kernels

that allow the execution on a GPU. In GASPP, the GPU’s parallel processing capacities

are used to process one packet per thread/core. However, GPUs are organized in clusters

of threads, whereas each thread in a cluster computes the same kernel.

GASPP uses a set of optimizations in order to reduce overhead and increase utilization

of the GPU. In order to utilize the GPU, GASPP groups packets by length and type

and schedules these groups so that they are processed within the same cluster. In order

to avoid unaligned memory accesses as they happen when accessing fields in a network

header, the header is decoded into meta data that is aligned before processing. Finally,

in order to minimize the per-packet overhead due to copying between the NIC and the

GPU, GASPP collects incoming packets into batches that are transferred between host

and GPU. Additionally, GASPP allocates the same DMA memory area to both devices,

i.e., the NIC copies to the memory and the GPU reads from the same memory area.

The evaluation shows that GASPP outperforms any of the single-CPU implementations,

however, the protocol processing performance depends on the number of batched packets

whereas smaller batch-sizes decrease the performance.

Click Modular Router

The Click Modular Router (Click) [31] is a software router developed in the year 2000

that allows connecting small packet processing tasks (elements) into an application graph

that implements the desired functionality, such as packet routing. The Click Modular

Router used the stream processing paradigm for introducing flexibility in the (back then)

purely hardware dominated network infrastructure. However, when introduced, Click fell

far behind in points of performance compared with the traditional hardware approaches

used at this time. The main reason was the lack of suitable processing hardware, such as

15



2.1 Solutions from the Networking Community

manycores or programmable GPU. Therefore, Click processed the routing application in

a single thread within the kernel. However, the increase in flexibility and maintainability

was seen beneficial, and researchers started adopting the concepts and improving the

performance.

ClickNP [32] is a Field Programmable Gate Array (FPGA) version of the Click Modular

Router. As in Click, the basic processing elements can be connected with each other. An

element has a local-only state, an arbitrary number of inputs and outputs, and three

functions: An initializer, a function that receives data from the inputs and processes

them, and a function that receives signals from the host. Elements are connected by

FIFO buffers in which the sender writes and from which the receiver reads. Additionally,

elements can communicate with each other through messages. Since the elements are

independent from each other, subsequent elements build a pipeline that processes data in

parallel. Additionally, it is possible to split pipelines in case a single processing step has

to be parallelized further. To further increase the throughput, small loops are unrolled, so

that they become a pipeline themselves, and elements that combine fast and slow tasks

are split up. Additionally, ClickNP offers the possibility to compile elements into the host

binary. In this case, the managing thread that is also responsible for the configuration

of the FPGA, creates a worker thread for the host-side element. This way, ClickNP

provides parallel execution on the host and the FPGA. However, while ClickNP is flexible

regarding the configuration of the host and the external FPGA, it provides no on-demand

adaptation.

The Network Balancing Act (NBA) [33] is an extension of the Click Modular Router that

uses batching of packets in combination with offloading work to a GPU. Additionally

to the parallel processing at the external GPU, NBA provides parallelism at the host.

For this, the processing pipelines are replicated and processed independently on parallel

cores, which reduces synchronization overhead. The worker-thread that is responsible

for a pipeline, fetches a batch of packets from the network cards and processes the batch

locally according to the processing pipeline. The authors present a load balancing scheme

for GPU offloading, which implicitly takes the offloading overhead into account. In order

to do so, NBA provides offloadable elements that provide a host and an accelerator im-

plementation. A load-balancer element decides whether the offloadable element should be

processed locally or at an external accelerator. The communication with the accelerators is

conducted with device threads that pass packet batches, sent from a worker-thread’s load

balancer to the GPUs. The authors show that offloading every packet is not necessarily

the most efficient approach. Instead, the authors use a manually estimated threshold

16



which determines the percentages of work that has to be offloaded. Consequently, NBA is

flexible regarding the invocation of the external accelerator, however, it does not provide

on-demand adaptations of the functionality.

Network Processors

The IBM Wire-Speed Processor [34] is a 16 core processor with an integrated network

interface designed for parallel protocol processing in software. Additionally, the processor

is equipped with accelerators for tasks that are unsuited for parallel processing in software.

Such tasks are: Non-parallelizable tasks that would lead to a single-threaded bottleneck,

tasks that have a high memory-bandwidth demand because they have to be executed at

the whole packet (e.g., CRC computation), and last but not least, standardized tasks

with a high computational footprint. These tasks are offloaded into on-chip accelerators.

One of these accelerators, the RXACC [35] (Receive Stack Accelerator), is integrated

into the on-chip Host Ethernet Adapter (HEA). The RXACC reads incoming packets in

16 Byte chunks that can be interpreted individually by a programmable packet parser.

The extracted information is used by the parser to determine the next parsing step and

a processing rule for the packet. The processing rule defines the functional unit that

implements a certain protocol processing task, such as filtering, that is executed on the

packet. Additionally, the accelerator creates a meta data descriptor that summarizes the

results of the hardware packet processing. This information, e.g., the offset of a certain

protocol header or the connection to which a packet belongs, is used by the software

stack to process the packet efficiently. Additionally, the Host Ethernet Adapter provides

several queues that can be assigned to software-threads, allowing per queue parallelism

depending on the results of the parser.

Summary

While offloading complete protocol stacks in special-purpose hardware is cumbersome and

lacks flexibility, offloading parts of the protocol processing improves the overall protocol

processing performance, as well as it significantly reduces the computational effort of

the host. Generally, offloading should be conducted in a streamlined manner to avoid

unnecessary copying, e.g., in the case of FEC computation, the computation should be

the last processing step before directly sending the final frame without additional copies.

17



2.1 Solutions from the Networking Community

Therefore, offloading frameworks that use general-purpose accelerators such as GPUs are

not optimal. While providing significant parallel processing power, GPUs are unsuitable

for endpoint protocol processing because they lack programmability and packet streams

have to be pre-processed for the GPU processing and post-processed for the transmission

which introduces (avoidable) overhead.

2.1.3 Flexible Protocol Processing

Introducing flexibility into a protocol can be beneficial, as it allows the protocol implemen-

tation to react to certain communication conditions. However, flexible protocols also have

disadvantages, e.g., flexibility increases the implementation complexity, which increases

the possibility of errors. In order to achieve flexibility concerning the communication

conditions and keep the negative effects in check, the protocol implementation itself can

be changed in the best case at runtime. That would allow simple low-complexity protocols

that are still tailored for a specific use case.

Multipath TCP

Multipath TCP (MPTCP) [36] is an extension of the Transmission Transport Protocol

(TCP) [37] that allows combining several physical interfaces into a single connection,

consequently providing multiple parallel transmission paths. This is realized in several

steps: Firstly, an initial multipath-capable connection is created. Once the receiver

answers that it supports the multipath option, new TCP sub-streams can be added.

While the general idea and implementation are straight forward, the main problem are

middleboxes, such as Network Address Translations (NATs) and firewalls, since they

may alter TCP packets. For example, unknown TCP options may be stripped from the

packet, or sequence numbers may be rewritten. These problems are solved by adding an

explicit (global) data acknowledgment field to the TCP header that is independent of

the substream sequence number. When an MPTCP connection is created successfully,

additional substreams can be created in order to increase overall throughput. However,

despite the parallel connections, no parallel protocol processing is conducted.

18



Pluginizing QUIC

QUIC [38] is a transport protocol introduced by Google that encrypts almost the complete

frame. In addition to the increased security, encrypting the frame prevents network-

operators to change headers at will, which was a main problem when introducing MPTCP.

Consequently, QUIC can be improved and changed easily. This is leveraged by PQUIC

[39], where the authors argue that QUIC should be adaptable on a per connection basis.

In PQUIC the authors use extended Berkeley Packet Filter (eBPF) [40] functions to

implement plugins that can be attached to the PQUIC implementation in order to

change the QUIC’s behavior. The plugins are attached to the protocol and executed in a

lightweight virtual machine, allowing for a high portability. Furthermore, these plugins

must not be present at the communication hosts because they can be dynamically loaded

from trusted plugin-providers.

At the present state, the flexibility is limited to the QUIC protocol but it is foreseeable that

other protocols can profit from the idea. While the benefits of that take on flexibility are

obvious (e.g., fast and easy testing and deployment of protocol changes), the approach also

comes with considerable overhead rendering it unfeasible for high data rates. Additionally,

the configuration is limited to the start of a connection, because of (no further stated)

synchronization issues during the code-injection. Lastly, no concept of parallel protocol

processing or offloading of protocol tasks were envisioned in PQUIC.

DRoPS

The DRoPS framework [41] provides flexible protocols by combining predefined micropro-

tocols. DRoPS is based on the idea that communication protocols can be decomposed

into disjunct protocol tasks, such as fragmentation or acknowledgement schemes. These

individual tasks can be encapsulated into microprotocols which can be combined into a

communication protocol. All microprotocols implement the same interface that provides

initialization, transmit, and receive functions. Decomposing protocols into individual

microprotocols as such, allows to reconfigure protocols at runtime. DRoPS allows the

reconfiguration at runtime by piggy-backing the changes into the outgoing frames or

by creating a new connection. In the case the changes are encoded within the frame,

the receiving endpoint changes the local protocol accordingly before further processing

the payload. However, this means that incoming frames are stalled until the adaptation

19



2.1 Solutions from the Networking Community

is finished. Depending on the data rate, this may cause dropped frames and a high

overhead.

VirtualStack

VirtualStack [42] is an architecture that uses virtual network interfaces to provide appli-

cations with flexible network stacks to decouple an application from the network stack.

In this way, applications can benefit from different network paths without knowing the

underlying network. In addition, VirtualStack provides rule-based programming to define

thresholds, such as minimum throughput. When the threshold is reached, an additional

channel with a new network stack is transparently created.

While providing flexibility with respect to the used protocols and communication inter-

faces, VirtualStack is executed in user space, therefore, using resources needed by the

host. Furthermore, VirtualStack allows combining several network devices, however, the

achievable goodput is limited by the processing power of a single processor, because no

parallelization is conducted.

Cactus

Cactus [43] is a middleware that allows the composition and configuration of protocols

based on microprotocols. In contrast to the other presented approaches, Cactus’s focus is

resilience against security threads. The authors argue that attacks on the communication

system can be deflected by adapting the communication protocol in case of an attack.

The Cactus framework is event driven and the individual microprotocols do not have

knowledge of each other, but have access to a global state. That global state can be

changed by all microprotocols. In order to avoid synchronization, the processing is not

parallelized and the event handlers are not interruptible. Since the system can be never

in an inconsistent state, the reconfiguration of the protocol can be done by reassigning an

event handler for a certain protocol task, such as a new encryption algorithm. However,

no parallelization disqualifies Cactus for high data rates.

In order to keep sender and receiver consistent, Cactus uses a three step approach:

detection, agreement, and action. After detecting a thread, the sender and receiver have

to agree on the correct adaptation, before the changes are implemented. This approach

20



takes time and in the case of Cactus, it either stalls the transmission or continues using a

protocol for which a threat was already detected.

Flexibility in Networks

Network flexibility is used to handle networks and reduce maintenance costs by Software

Defined Networks (SDNs) [44] and Network Function Virtualizations (NFVs) [45]. SDNs

add flexibility to networks by separating data plane, i.e., physical hardware that follows

network rules, and the control plane that is used to define these rules. The concept of SDNs

emerged in the spotlight with the OpenFlow API [46], which was meant to ease protocol

research within already available production networks without disrupting the regular net-

work traffic. An OpenFlow switch consists of a flow-table that combines each flow with an

action, a secure communication channel for the network controller that deploys and defines

the rules, and an implementation of the OpenFlow protocol. The actions are forwarding

or dropping packets of a known packet flow, sending unknown packets to the controller for

identification or using the original processing pipeline of the hardware. Since OpenFlow

reuses already existing hardware, it was quickly adopted also outside of research [44].

However, traditional network hardware, e.g., switches and routers, are usually limited

to a certain amount of known fixed protocols and their headers that are understood by

the hardware’s chips. Programming Protocol-independent Packet Processors (P4) [47]

is an extension for OpenFlow, that allows describing protocol headers and forwarding

rules in order to increase the variety of supported protocols. P4 relies on five components

for the programming [48]: header, parsers, tables, actions, and a control program. The

headers describe the fields of a packet that can be checked by a parser. The parser uses

the header definitions and identifies headers and stores them in the meta data. The

match- and action-tables, in combination with the meta data, are used to determine the

necessary actions for that packet. If a match is found, the corresponding actions, such as

manipulating headers, are executed. Finally, a control program allows defining the order

in which packets are matched to tables, i.e., a pipeline of tables. Additionally, conditions

can be used to control the packet processing, e.g., the IP header has to be matched and

found as valid before the TCP header is interpreted. While dependencies between tables

serialize the processing of a single packet, the pipeline of match and action tables allows

the processing of several packets in parallel.

21



2.1 Solutions from the Networking Community

This concept is used by [49] for an FPGA accelerated P4 parser. Furthermore, Network

Processing Units (NPUs) aim for OpenFlow and P4 compliance with the goal of providing

hardware-switch line rates with the flexibility of programmable switches [50]. These

processors provide an architecture that supports the P4 programming model. For example,

the NFP-4000 [51] provides parallel packet processing cores specially designed for the

parsing and classification of incoming packets, clusters of parallel flow processing cores

used for the match and actions tables, and an ARM processor used for configuration.

Network Function Virtualization (NFV) is another approach to increase the flexibility

of network processing. NFV aims to provide network functions such as HTTP-caches or

VPN-tunnels, as virtual machines instead of individual middleboxes [52]. These virtual

machines can be grouped together on one powerful server to provide a certain service.

Since no actual machine has to be deployed, the approach brings flexibility. The VMs are

connected with a software switch, such as Open vSwitch [53].

Elastic Scaling (E2) [54] is a management framework for NFVs that uses SDN concepts

and employs them for the description and connection of network functions. The control

plane relies on the description of network functions pipelines called pipelets. Pipelets

describe a directed acyclic graph whose edges describe the traffic and the nodes describe

the network functions. The network functions can be further characterized by replication

constraints, as well as configuration and resource requirements. This description is used

for automatic placement, dynamic scaling, and configuration of the network functions.

Network functions can further support each other with "rich messages" such as an already

reconstructed TCP stream. That byte-stream can be used by several network functions

without the additional reconstruction effort.

Summary

While flexibility in networking gained widespread adoption, flexible protocols did not

receive much research attention. The reasons are low performance and a lack of necessity

in general-purpose endpoints. However, in high-speed communication scenarios, simple

and specialized protocols are needed to achieve the desired data rates with reasonable

design and optimization effort.

22



2.2 Stream Processing Architectures and Approaches

Data parallelism and pipelining are used in many packet processing scenarios. However,

most of the approaches are tailored for a certain use case without concern for generality.

The goal of this thesis, however, is the investigation of the feasibility of a stream processing

approach that integrates the complete implementation process without paradigm changes.

Such stream processing approaches exist for the analysis of unbounded streams of data

items. Stream processing systems can be coarsely divided into Data Stream Processing

and (Complex) Event Stream Processing. Data stream processing is used to handle a

stream of data items which are processed with operations such as aggregation or joining.

The common architectures are Data Stream Management Systems (DSMSs), which are

similar to databases and often even provide a language similar to Structured Query

Language (SQL). (Complex) Event Stream Processing handles event items, such as

11:23 : Temperature in Room 2.11 > 34 ◦C and is used to correlate these events with

each other, in order to extract complex events.

Stream processing systems answer some questions that will probably arise when applying

the stream processing paradigm to communication protocols, such as: How can a stream

be efficiently parallelized? What is a convenient programming abstraction? How is the

data transported and how is the processing scheduled? In the following pages, stream

processing engines developed for different use cases will be presented and investigated.

Twitter Heron

Stream processing systems emerged in mid-2000s as an answer to the question of how the

ever-increasing amounts of gathered data can be handled. Big data, as it is called, uses

stream processing for the analysis of high-volume data streams [55]. These frameworks use

clusters of computers that are "loosely" coupled and managed with a global coordinator,

such as ZooKeeper [56]. The actual analyzing tasks are distributed over the cluster, where

each individual cluster-node processes a partition of the data stream. The main problems

are scalability, fault tolerance, and manageability. A popular large scale stream processing

system is Twitter Heron [57].

Twitter Heron is a stream processing architecture that provides coarse-grained parallelism

on the basis of processes. Heron is used for analytics at Twitter where it replaced Apache

Storm [58], which didn’t provide the needed scalability. As Heron replaced Storm, it

23



2.2 Stream Processing Architectures and Approaches

had to provide the same API and abstractions in order to minimize migration costs.

At the core, it differentiates between data-sources, called spouts and data-processors,

called bolts. Bolts are implemented by the user in Java, and a spout can be connected

to any data source, such as databases or log-files. Bolts and spouts are connected by a

user-defined topology. Topologies are Direct Acyclic Graphs (DAGs) that describe the

logical execution plan of the stream application. A topology is created by the user and is

managed by a topology master.

Each topology is annotated with information about parallelism of individual spouts and

bolts and a plan that describes how the data is distributed. The distribution pattern is

called grouping, as it groups items from the stream to be forwarded to a certain instance.

The grouping of items can be done in several ways: Randomly, by hashing values, and by

broadcasts. Random distribution follows no particular scheme and just assigns data-items

to a sub-stream. Hashing is used in the case a data-item has to be processed by a certain

sub-stream, i.e., the data-item is characterized, and the corresponding sub-stream is

selected accordingly. Lastly, broadcast distribution duplicates all items and forwards

them to all sub-streams.

The topology is instantiated by the scheduler that creates containers which encapsulate

the functionality. A container provides a Stream Manager for the communication, a

Metrics Manager for performance monitoring, as well as the spouts and bolts. Containers

are distributed on the computer cluster depending on the parallelism and data distribution

information given by the topology. Since several containers can be assigned to the same

processing node, cluster nodes can be multiplexed with other containers and even with

topologies. The communication between any individual bolts is handled by the stream

manager, whereas every stream manager is connected with every other stream manager.

This way, the stream manager is responsible for the routing within a container and

between containers. While this seems to be inefficient and poses a possible bottleneck,

this is done in order to ease debugging and to be able to track all performance metrics.

Heron implements a spout-based back pressure flow control mechanism in order to avoid

loosing items in the case that the item data rate is too high for a bolt in a container.

In this case, the stream manager of this container stops reading from the local spouts

and sends a start-back-pressure command to all other stream managers. Eventually,

none of the spouts can send data so that the over-utilized bolts can catch up. When the

over-utilization is resolved, a stop-back-pressure command is used in order to signal that

24



the data-producers can produce tuples again. This information is passed to the topology

master.

After scheduling the topology, users can inspect how topologies work by analyzing the

performance metrics and fine-tune the deployment in order to optimize resource utilization.

Furthermore, Twitter Heron can be extended with an automatic scaling mechanism [59]

that reacts to over- and under-utilization by increasing or reducing the number of Heron

instances.

Stream

Stream [60] is a Database Management System (DBMS) developed at Stanford University.

The authors target high data rate streams with changing characteristics and loads in

a resource constraint environment. Being a DBMS, Stream provides CQL (Continuous

Query Language), a SQL like query-language that deals with the unboundedness of the

input data by differentiating the query output. A query can output a relation that is

bounded by a sliding window, i.e., a snapshot of a stream over a given time or number of

tuples, or a stream, i.e., a continuous sequence of tuples.

Stream’s queries are not parallelized. Instead, operators are executed in one thread and

scheduled in order to minimize memory consumption. The operators that belong to a

query are only dependent on the logical timestamps of the tuples. Thus, the scheduling

does not affect the correctness of the query. Operators are scheduled with a chain-scheduler

that the authors present in detail in [61]. The scheduling creates static chains of operators

based on the expected progress of the query (i.e., how many tuples are removed from

the system), whereas the operator that leads to the highest progress is scheduled first.

However, a single CPU may limit the processing of a stream when the data arrival-rate is

too high, i.e., when not enough CPU cycles are available to process each item of the stream.

The authors propose to gracefully degrade the accuracy of the query by load-shedding.

The items are then dropped by a special sampling operator. Furthermore, individual

queries can be assigned to distinct threads.

25



2.2 Stream Processing Architectures and Approaches

Noria

Dataflow processing is also used as a backend for applications. Noria [62] is a stream

processing based query backend for web applications and provides an SQL like query-

language. In order to reduce the query latency, the authors propose to replace explicitly

pre-computed data-base queries or cached query results with stateful in-memory database

queries. Instead of selectively pre-computing often-used results, the updates at the

database are stored in the operator state, leading to in-memory database-views. However,

this potentially leads to high memory usage and changes at a query could lead to

inconsistent states. The high memory consumption is reduced by partially evicting state.

This is done by notifying the whole query about dropping a certain element when it is

evicted from the operator’s state. In the case a subsequent read has to access the item,

the evicted data item is acquired from an operator that has the latest version of the

tuple.

Noria employs parallel processing on several levels: Firstly, a dataflow can be separated

by hashing the values and process dataflows with different hashes (that do not share state

information) on parallel cluster nodes. Secondly, on a single server, parallelism can be

provided by multiple Noria instances, as well as parallelism within a Noria instance.

StreamBox

StreamBox [63] is stream processing engine designed for low latency processing of out-

of-order streams. The authors propose to organize data items in containers, depending

on the ingress timestamp that is assigned to each data item. The containers basically

subdivide items into buffers that belong to the same processing window, called epoch,

which allows StreamBox to process data items out of order without waiting, while keeping

the item order intact.

StreamBox parallelizes the processing on two levels. Firstly, consecutive processing steps

form a pipeline that processes containers in parallel. Secondly, a single pipeline step

can process all its currently assigned containers in parallel. A new container is created

whenever the first data item of the corresponding epoch is handled by a pipeline step.

A main problem is figuring out whether all items of an epoch were already received or

whether more out of order data items are to be expected. The authors solve this by

including watermarks that are injected at the data source. Assumed, that no tuples are

26



lost during the transmission, it is clear that all other data items belonging to this epoch

were received when the end-watermark is seen. The container for that processing step can

then be discarded. The parallel execution of pipeline steps is handled by parallel threads

that are dynamically allocated from a thread-pool. These threads receive aggregated data-

items on which they process the according pipeline step. The aggregation is configurable

and is used to reduce the item dispatch overhead.

The scheduling scheme is based on the "next externalization moment", i.e., the moment the

oldest windows (i.e., the oldest consecutive group of containers) is completely processed.

Therefore, it prioritizes older data items in order to finalize the processing of pending

windows.

StreamIt

StreamIt [64] is a programming language for streaming applications. The C++ like

language organizes the streaming applications into processing steps called filters. Each

filter has an input queue, an output queue, and a work function. Upon the arrival of a

data item, the work function processes the item and pushes the results to the next filter

via the output queue. Each output can be configured as a splitter that produces several

streams and can be used to split or duplicate the stream. Inputs can be configured as

joins that combine incoming streams. Additionally, StreamIt allows sending timed control

messages from within a work-function to other filters. The timing specifies when the

control message will arrive at the receiving filter relative to the streamed items. This is

used, for example, to change a state of a filter with a controlled delay.

While the splitter outputs can be used for manually parallelizing the processing, the

processing can also be parallelized automatically [65] based on the exposed parallelism.

Instead of exploiting the inherent parallelism of each filter individually, filters that form a

pipeline are automatically chained and executed sequentially. However, that may lead

to purely data-parallel execution that eliminates all pipelining. In order to prevent such

degenerated stream processing, the pipelines are separated into (fused) sub-chains. The

ratio between data parallelism and pipelining is determined by a heuristic that tries to

utilize all processors.

27



2.2 Stream Processing Architectures and Approaches

Summary

The presented systems are tailored for their specific use cases. Distributed stream

processing systems, such as Twitter Heron, do not fit the protocol processing scenario

very well. The main problems that were solved are maintainability and fault tolerance.

The SQL-like stream processing abstraction languages in Stream and Noria allow the

designer to describe the problem from a very high level, however, they are unsuited

for implementing communication protocols. Out-of-order stream processing organized

in containers as in StreamBox can be used for hiding processing latencies and will be

necessary for reaching high data rates, especially when packets are lost during transmission.

However, since the communication characteristics depend on the communication scenario,

such latency hiding techniques should not be an implicit part of the processing, but

applied by the developer.

All systems but Stream employ parallelism in order to increase the throughput. The

parallelism is employed on several levels. Firstly, coarse-grained processes are assigned to

parallel cluster nodes [57, 62]. At the process-level, an application-specific scheduler could

select the next data-items to be processed [60, 62, 63, 64]. Most of the investigated stream

processing systems schedule the processing in order to increase the CPU utilization, as this

reduces costs. While the CPU utilization is also important for communication protocol

processing, the main driver is the expected throughput. Additionally, a sophisticated

scheduler (as in StreamBox) can help to avoid pipeline stalling by searching scheduling

lists for the oldest items. While this is important for unpredictable streams, such as

data from user-interactions, it is less crucial for communication protocols in which the

characteristics are commonly known or can be estimated.

In comparison, a scheduling based on a logical execution graph, as used by Twitter Heron,

seems more practical. That graph can be annotated with static scheduling decisions,

e.g., the grouping of messages into sub-streams, as used by Twitter Heron or StreamIt.

The actual schedule can then be derived at design time in case the processing costs are

already known. The resulting schedule can be carried out by a lightweight First In First

Out (FIFO) scheduler.

28



2.3 Real-Time Analysis

Communication protocols are soft real-time problems because missing a deadline, e.g.,

due to lost packets, leads to performance degradation, but seldom ends in a system failure.

Nevertheless, a high communication-performance is crucial for users and applications.

Since protocols can become arbitrarily complicated and communication conditions vary,

the estimation of the resources, needed in order to achieve a certain data rate, can be

cumbersome. In the last part of the domain-analysis, three concepts for dataflow based

performance analysis are briefly investigated. These concepts are used in the field of

system design in order to evaluate the system’s performance or to find resource boundaries

such as minimum buffer sizes, as well as service guarantees, such as the worst-case

throughput.

The Artemis Workbench [66] is a toolchain that allows a high-level modeling and per-

formance analysis of platform-based embedded systems [67]. Platform-based embedded

systems are built from predefined building blocks that are combined in order to form

a special purpose System on Chip (SoC). Each building block fulfills a certain task of

the systems, and their performance parameters are known (e.g., the ram module has 10

KB of RAM). This specification of the system can be used for analysis. The software

that is executed on the specified SoC, e.g., a MATLAB script, is transformed into a

process-network [68] and then mapped onto the specified hardware architecture. The

specified system can then be evaluated by coarse-grained simulations. In the case the

behavior is not as expected, the platform can be refined. At the end of the process, the

specified hardware-software design can be handed to a manufacturer.

Synchronous Dataflow Graphs (SDFGs) [69] are used in signal processing in order to

analyze application behavior. The graphs contain nodes and edges, whereas each node

can have several inputs, and the edges describe the dependencies between the nodes.

Each node produces a fixed number of output items whenever a fixed number of items

are available on all inputs, i.e., the behavior is completely deterministic. This makes a

SDFG decidable and allows deriving static schedules and calculate necessary buffer-sizes.

While being suitable for a signal-processing application, the SDFG model is limited in its

expressiveness: It does not allow any dependency of a node on incoming data. However,

in a real system, data dependencies may define the output behavior, e.g., the number of

items produced by a node at an output depends on the item at its input.

29



2.3 Real-Time Analysis

The authors of [70] argue in favor of analysis instead of simulation for the design of

model-based embedded systems in order to achieve a certain service quality. They propose

to use SDFG for the analysis. In order to specify the applications dynamic behavior

that can lead to different requirements at different times, the authors propose Scenario

Aware Synchronous Dataflows (SADFs) for the analysis instead of actually modeling the

dynamic behavior. The idea is as follows: Different stages of the processing are modeled

as synchronous dataflow graphs that can be analyzed according to throughput, latency,

or buffer requirements. In order to reflect the dynamic behavior, a finite-state-machine

that "switches" between the scenarios, is used.

The Worst-Case-Execution-Time (WCET) analysis has the goal of estimating the maxi-

mum time it takes to finish a certain task. The WCET is needed to define a schedule in hard

real-time systems. In [71] a comprehensive overview of WCET analysis methods and tools

is given. The WCET analysis comprises roughly two problems: Firstly, the input data that

leads to the WCET has to be found, and secondly, the execution time has to be estimated.

Finding the correct input data is not trivial in the general case due to the variety of possible

inputs. However, common inputs are maybe known and can be used for an approximation.

Furthermore, the task can also be separated into smaller tasks to decrease the complexity.

Other approaches analyse the task’s possible execution paths and estimate the WCET

with the help of a hardware model [72]. Moreover, estimating the WCET for a task can be

done by statically analysing the program code [73], or by measuring the execution time on

the target hardware [74]. The analysis can be further assisted by tools such as aiT [75].

Summary

This last part of the domain overview offered a brief insight into real-time analysis

techniques. SDFGs are restricted to static behavior, but allow to derive a static scheduling

with accurate resource estimations. SADFs combine several SDFG in order to model

different behaviour but may increase the number and complexity of the graphs significantly.

Analysis tools, such as the Artemis Workbench, simulate the software and hardware in

order to evaluate the system. However, software protocol processing on general purpose

processors is complex and poses a lot dynamic behavior, which would increase the

graph and analysis complexity to an impracticable level. Of course, the communication

community has its own set of analyzing theory [76]. However, it lacks accessibility for

protocol designers without a strong mathematical background.

30



This thesis aims for an accessible approach that allows a fast and developer-friendly

estimation of the processing performance and requirements of the protocol implementation.

Therefore, a simple and straightforward approach based on scenarios and simulation

is needed. That approach should help the protocol developer to estimate hardware

requirements solemnly based on the protocol implementation. The protocol’s inherent

soft real-time requirements can then be used in combination with a performance indicator

similar to the WCET to derive a schedule for the protocol processing.

2.4 Summary & Conclusion

In the first part of this chapter, the research efforts undertaken in order to utilize the

theoretical data rates of current and future networks were briefly investigated. A tabular

summary is presented in table 2.1. The summary is categorized into parallelization,

flexibility, and offloading. Parallelization is further divided into the parallel processing

paradigm and Channel Bonding5, i.e., parallelizing a transmission over several communica-

tion channels. The parallel processing paradigm is categorized into stream-processing (SP),

pipelining (PL), multi-threading (MT), and single threaded (-). The flexibility category

is further categorized by whether processing resources can be allocated depending on

the load (Processing Resources), whether it is possible to change the number of channels

(Channel Bonding), and whether the behaviour of the executed protocol is adaptable

(Protocol Behaviour). Flexibility is rated as on-demand (O), at initialization (I), and

at compile time (C). The last category, offloading, is rated as stream-lined (S), when

additional copies are avoided, and disruptive (D) otherwise.

Two main directions with the goal of increasing the processing capacity are seen throughout

the presented solutions: Parallel packet processing and processing offloading. Both are

seen individually, as well as in combination. Parallel protocol processing is conducted by

pipelining consecutive tasks, as well as with explicit thread-based parallelism. Thread

parallelism is leveraged by streaming packets along a consistent path, e.g., mapping

a packet flow to a certain processor, in order to reduce copying and synchronization

overhead [16, 18, 21]. Parallelism is exploited on the bases of packet flows [16, 18] for

explicit parallel processing of packets with GPUs [29, 30, 33], with NPUs [34, 51], and

5Channel bonding is only considered for endpoint protocol processing, not for packet pro-
cessing application.

31



2.4 Summary & Conclusion

Parallelization Flexibility

P
a
ra

ll
el

P
a
ra

d
ig

m

C
h

a
n

n
el

B
o
n

d
in

g

P
ro

ce
ss

in
g

R
es

o
u

rc
es

C
h

a
n

n
el

B
o
n

d
in

g

P
ro

to
co

l
B

eh
av

io
r

O
ffl

o
a
d

in
g

D
o
m

a
in

Desired combination of features SP X O O O S

MultiPath TCP[36] - X - O - - Protocol

PQUIC[39] - X - I I - Protocol

MultiEdge[15] MT - - - - - Protocol

InfiniBand[14] & MPI[19] - - - - - S Protocol

Virtual Stack[42] - X - O O - Protocol

DRoPS[41] - - - - O - Protocol

Cactus[43] - - - - O - Protocol

TCP Offload Engines [21, 22] PL - - - - S Protocol

TSO[24] & LRO[25] PL - - - - S Protocol

NetSlices[16] MT1 / - / - - Framework

MultiStack[18] MT1 / - / - - Framework

IBM Wirespeed[34, 35] MT1 / - / O3 S Processor

NFP-4000[51] MT1 / - / O3 S Processor

PacketShader[29] PL / - / - D Packet Processing

GASPP[30] MT / - / - D Packet Processing

Click[31] ST2 / - / - - Packet Processing

ClickNP [32] SP / C / C S Packet Processing

NBA [33] SP / O / C D Packet Processing

P4 [47] PL / - / C S Packet Processing

P4 Parser [49] PL / - / C S Packet Processing

Elastic Scaling [54] DS / O / - - Packet Processing

Table 2.1: Communication solutions from the networking community. The reviewed
approaches encompass communication protocols, processing frameworks, special network
processors, as well as packet processing solutions. The shown categorization was
conducted with respect to Parallelization Paradigm (SP–Stream Processing, MT–
Multi-Threading, PL–Pipelining), whether Channel Bonding is supported, Flexibility
(O–On-Demand, I–On-Initialization, C–Compiletime,/–Not Applicable), and Offloading
(S - Streamlined, D - Disruptive). None of the reviewed concepts fulfilled all of the
desired features.

1Depends on the protocol implementation, however, no concept for parallel processing but

parallel threads.
2Click uses the stream-processing paradigm but not parallel execution.
3Only the packet parser can be configured.

32



for combining of several parallel interfaces for redundancy or increasing the theoretical

data rate [15, 36]. Pipelining is used to overlap copying of bulk data with processing [29],

for consecutive processing steps [47, 51], as well as for handling in- and egress of packets

in parallel [21].

However, while allowing the handling of tremendous data rates of up to several terabits

per second (in the case of network switches), most of the presented approaches focus on

parallel protocol processing of many low-volume flows. The synchronization overhead can

be minimized by partitioning the incoming packets depending on the flow they belong to,

because two flows do not share the same state and hardware resources. The partitioning is

realized by the classification of packets and assigning of packets to the correct destination

queue. Approaches that also focus on high volume flows, such as MultiEdge [15], rely on

optimized synchronization between the processing threads.

Offloading is used mostly in packet processing solutions. It is commonly implemented

seamless, i.e., the accelerator is integrated in a way that reduces the number of copies

[32, 34, 35, 47, 49, 51]. However, a disruptive integration, i.e., the packet data is firstly

received from the NIC and then passed to the accelerator, is also commonly found

[29, 30, 33] especially when GPUs are used as accelerators. Offloading the protocol

processing into custom hardware in order to reduce the load of the communication

endpoints is the exception in the reviewed solutions. This is because of the inflexibility

and complexity of hardware-only solutions such as TCP Offload Engines [21, 22]. However,

two seamlessly integrated TCP specific approaches, which tremendously decrease the

TCP protocol processing effort by reducing the invocations of the host are LRO [25] and

TSO [24].

Flexibility in protocol processing is mostly used for channel bonding [36, 39, 42] and for

adapting protocols for certain communication conditions [41, 43, 39, 15, 77]. However,

the flexibility focuses on the protocols (e.g., changing the acknowledgement scheme),

leaving out questions about resource consumption and parallelism. Flexibility in packet

processing is common nowadays after SDNs were introduced. It is mostly used to increase

the maintainability of networks [31, 32, 33, 47, 49], and the introduction of new network

functions [54]. The highest flexibility of the reviewed solutions is offered by P4 [47, 49],

as it does not only allow to manage the network, but also permits the adaption of the

processed protocols.

Summarizing, none of the reviewed processing concepts fulfill all of the desired features.

33



2.4 Summary & Conclusion

Especially the possibilities of parallel protocol processing are used only rudimentary.

One of the reasons is that communication protocols were not designed with the idea of

parallelization at the endpoints in mind. Furthermore, changes in established protocols

are difficult to deploy, as the example of MPTCP shows. Flexibility is supported to a

certain degree by several of the concepts, however, in all cases that allow on-demand

reconfiguration, the transmission is stalled, and no parallel execution is possible. Offloading

is widely supported, however, not in combination with on-demand reconfiguration and

parallel protocol processing.

The second part of this chapter has focused on stream-processing architectures for data

analysis, which showed that these systems do not fit communication protocols very well.

The main reason is given by the different perspectives: For example, large scale systems

[57] focus on maintainability rather than efficiency. Nevertheless, these systems provided

valuable insights: Static stream distribution as a function of the outputs [64] can be

used to distribute processing tasks efficiently. This can be combined with a simple back

pressure flow-control [60]. However, the back pressure should be applied implicitly without

the additional management overhead.

Altogether, the stream processing paradigm is generally fitting for communication protocol

processing. Furthermore, it allows a structured analysis that provides performance

estimations and hints for the scheduling, as shown in the last part of this chapter.

Summarizing, the following conclusions will guide the remaining of this thesis:

We need to rethink the protocol processing.

In order to process high volume data streams, the protocol processing has to be parallelized.

However, in contrast to processing thousands of individual streams that can be processed in

parallel by partitioning the individual streams to distinct processing units, the processing

of high volume streams itself must be parallelized. A simple multi-threaded approach,

however, would lead to synchronization overhead due to reading/writing shared states or

accessing buffers. While optimized fine-grained synchronization can help to reduce the

overhead, it is error-prone and cumbersome. This thesis proposes a stream processing

based protocol design process that allows implementing scalable protocols without the

need for explicit synchronization.

34



The protocol processing should be offloaded.

While offloading the whole protocol processing to special-purpose hardware is inflexible,

leaving the protocol processing to the host is no alternative either. The golden path is

a heterogeneous offloading in which each part of the protocol processing is conducted

on the most suitable hardware. Therefore, stateless and compute-intensive protocol

tasks, such as Cyclic Redundancy Check (CRC) and Forward Error Correction (FEC)

computation, should be done in special-purpose hardware. The stateful parts of the

protocol processing have to be offloaded to a programmable NIC. The offloading hardware

should be integrated seamlessly and take the natural protocol dataflow into account.

Protocols should be simple and specialized.

As an indirect insight from this chapter’s review, a lot of research was complicated due

to complex protocols and designs, or was undertaken in order to preside over existing

complexity. The protocol design becomes cumbersome and error-prone when the protocol

has to comply with many special cases. This can be avoided by focusing on certain

communication conditions, such as a certain bit error rate, instead of designing a jack-

of-all-trades. However, such narrow focus limits the applicability of the protocols. This

can be circumvented by providing sets of simple and specialized protocols that are used,

adapted, and combined automatically when the need arises. This thesis provides a concept

for switching and adapting protocols on-demand at runtime.

35





CHAPTER 3

Soft Real-Time Stream Processing

This thesis investigates the assumption that interpreting communication protocols as soft

real-time stream processing problems eases the protocol implementation process because

the stream processing paradigm implicitly exposes parallelism, allows straight forward

partial reuse of protocol implementations, and is predestined for partial offloading of

protocol processing tasks. The implementation process envisioned in this thesis is, as

sketched in figure 3.1, divided into five steps, each focusing on a single aspect.

In the design-step, the protocol processing is broken down into the protocol’s processing

tasks, such as the retransmission of lost packets. Each task is an isolated building block

that is represented as a stream processing step, hereafter called stage. The stages are

connected by message streams, which carry the necessary data and control information

between the independent stages. The streams follow the protocol’s inherent dataflow.

The design-step results in a stream processing graph, hereafter called processing engine.

The analysis-step comprises the performance and soft real-time analysis of the processing

engine. The analysis focuses on the processing engine’s soft real-time requirements (what

data rate is required per stage) and the performance characteristics (what data rate can be

handled by the target hardware). The requirements and the performance characteristics

are used to estimate the necessary parallelization that allow a protocol implementation to

handle certain data rates.

The analysis’s outcome, i.e., the processor utilization, is then used to adapt the processing

engine for the target hardware in the adaptation-step. Due to the stream processing

approach, the individual stages are only dependent on their inputs and their internal

state. Therefore, the desired data rate can be achieved by adapting the processing engine

with the help of stream operators that manipulate the path and data rate of streams by

splitting, joining, and duplicating them. The result is a processing engine for the protocol

that can handle the data rate on the targeted processing hardware.

37

















otherwise isolated. After offloading both stages, the final processing engine looks as

presented in figure 3.7b.

The number of necessary Error-Coding stages could be reduced by offloading to one

stage, consequently the output streams of the Framing stages are joined with a stream-join

at the input of the Error-Coding stage.

3.4 On-Demand Adaptation of Processing Engines

The last part of this chapter focuses on how to provide flexibility to the protocol processing,

while still using statically built protocols. Locating and avoiding processing bottlenecks by

employing the planning approach helps to design suitable protocols for static conditions.

However, actual communication systems can not assume static communication conditions

without affecting the quality of service. On one side, the communication requirements,

such as the desired data rate, can change. On the other side, the communication conditions,

such as the channel quality, are not necessarily static either. This can lead to a situation

in which a communication protocol and its implementation is carefully optimized for the

wrong parameters, which, in turn, leads either to wasted resources or to performance

degradation. Such a situation arises when the protocol implementation is not able to

handle the new communication conditions and/or requirements efficiently.

Avoiding wasting resources, as well as performance degradation, can be achieved using

a suitable processing engine at all times, which means that the protocol processing has

to be changed at runtime. Depending on the situation, it can be sufficient to readapt

the currently used processing engine. However, in some cases, a complete processing

engine can be unsuitable and has to be replaced. Both approaches are explained in the

following.

The on-demand adaptation, as well as the replacement of processing engines, use the

Processing Engine Template Language (PETL). The PETL is a graph description language

that describes the stages, as well as the connections, and provides the configuration for the

individual stages. More information about the description language can be found in [81].

45





stages have to be initialized. In order to avoid employing uninitialized stages, the state

distribution, as well as the initialization of the new stages, are conducted atomically.

Afterward, the processing engine can be used.

Removing stages from a processing engine is shown in 3.8b. The removal has to be

done in two steps: Firstly, the stages that are about to be removed are marked as

potentially disposable and all incoming connections are marked as to-be-deleted. However,

all outgoing connections have to stay connected to the remaining processing engine. These

changes are, again, carried out atomically. Since the inbound connections are deleted, the

stages that will be removed have no part in the ongoing protocol processing. However, all

messages that were already sent to these stages will still be processed. When the draining

of the removed parts of the processing engine will be finished, i.e., when all remaining

messages have been processed, the stages will be ready for disposal.

3.4.2 Switching Protocols by Entirely Replacing Processing Engines

In some cases, it is not sufficient to readapt the currently employed processing engine

because the implemented protocol itself becomes unsuitable, e.g., when a different acknowl-

edgment mechanism is better suited for the ongoing transmission. Altering the processing

engine’s protocol for an ongoing transmission is undesirable because the internal protocol

state would then have to be reinterpreted for the new protocol. Alternatively, stopping

the transmission and restarting the communication with a new processing engine that

implements the new protocol is possible, but would severely impact the performance.

These problems can be drastically reduced by applying the adaptation approach to an

entire processing engine that is currently used (published in [82]). Situations that require

a completely different protocol are then handled by replacing the currently used processing

engine with a new, suitable processing engine at runtime.

Nevertheless, employing two processing engines at the same time requires that the data

streams from an underlying layer, such as the Medium Access Control (MAC) layer, are

forwarded to the correct protocol processing engine. Multiplexing different processing

engines for a single transmission is achieved by virtualizing the communication interfaces

with virtual channels. A virtual channel, as shown in figure 3.9a, is an identification

number that is added by the sender to outgoing messages, such as network frames. On

the receiver side, the virtual channel is read by the abstraction of the physical interfaces

47





3.4.3 Exchanging Processing Engines

A communication system always consists of the sender and the receiver. However, the

trigger for a readaptation or replacement may occur only at one of the hosts. For example,

the sender host requests an increase of the data rate to the extent that makes it necessary

to employ an additional communication interface. While the sender can readapt its

processing engine depending on the data rate information, the receiver will continue with

the old processing engine. This problem is usually solved by some negotiation-process, in

which the sender and receiver agree on the terms of their transmission, such as data rate

or the used communication channels and interfaces.

However, the negotiation-process takes time that could be already used for building and

deploying the new processing engine. Skipping the negotiation-phase and "forcing" a

readapted processing engine on the other communication endpoint allows to shorten the

time between adaptation decision and employing the new processing engine. This is done

by sending the specialized processing engine, coded as a PETL description, to the other

communication endpoint for implementation. The "handshake" follows afterward, when

the forced endpoint acknowledges the successful readaptation. In the case the forced

endpoint declines the PETL, it can propose another processing engine.

49





CHAPTER 4

A 100 Gbit/s Data Link Protocol

This chapter is used to apply the proposed design concept to a prototype wireless data link

protocol. The protocol is meant to connect two wireless endpoints, in which the endpoints

have exclusive access to a simplex medium, such as a line-of-sight radio connection [5].

The main objective is providing a goodput that is close to the theoretical maximum.

The goodput is provided to the host as an ordered lossless data stream. Due to the

simplex connection, an additional communication channel from the receiver to the sender

is employed for acknowledgments and control information.

In the first part of this chapter, the 100 Gbit/s wireless data link protocol and its data

structure are presented. Afterward, the protocol design process is applied to the data

link protocol.

4.1 The Prototyp Data Link Protocol

The targeted communication data rate of 100 Gbit/s and beyond can only be reached

when the whole protocol is designed with the communication conditions in mind. The first

challenge of ultra high-speed communication is the high protocol processing costs, which

easily monopolize the processing power of the communication endpoints. Consequently,

the protocol processing has to be offloaded in order to free the host’s resources for its

actual task. Ideally, the host is only responsible for producing and consuming the payload

and passing it on to the processing hardware, whereas the data-transport between host

and protocol processing hardware should cause as little as possible invocations of the

hosts.

The second main challenge is to use the available channel capacity efficiently. In order to

reach a high transmission efficiency, the available channel capacity has to be used primarily

for the transmission of payload. Consequently, meta data and preamble overhead should

51



4.1 The Prototyp Data Link Protocol

be minimized. The preamble overhead can be reduced by using large frames. However,

in a wireless scenario in which bit-errors are to be expected, large frames pose a severe

problem due to their high frame-loss susceptibility. In order to reduce the risk of losing

complete frames, frames are segmented into sub-packets. Each sub-packet has a smaller

size, and therefore the risk of losing the packet is reduced. Furthermore, the protocol

employs Forward Error Correction (FEC) for the correction of faulty sub-packets and

headers.

Figure 4.1 shows the protocol data structures specifically designed for high-speed wireless

communication. The protocol data structure1, their relationship to each other, and their

purpose are explained in the following.

Offloading the protocol processing to an external accelerator alone is not sufficient, as the

number of host-invocations should also be minimized. This is realized by organizing the

host’s input and output data streams in large packets of bulk-data, called datachunks.

Using large datachunks, e.g., 16 MB, allows reducing host invocations drastically, compared

to the standard MTU size of 1500 Byte of TCP. A datachunk is described by a datachunk-

descriptor (DataChunkDesc) that contains the address of the payload, the datachunk’s

size, and a sequence number that is used for (re-)ordering. The datachunk size is a

compromise between latency and host invocations, whereas the larger the datachunk, the

higher the latency, and the fewer the host invocations.

The data link protocol employs three types of sub-packets: DataPacket, AckRequestPacket,

and AckPacket. Each sub-packet starts with the payload. The payload is followed by a

sub-packet specific footer. This order was chosen because it allows a buffer-less "on-the-fly"

FEC/CRC coding in hardware. Each sub-packet contains a flag that states whether the

sub-packet’s payload is valid. The redundancy data for the reconstruction of frames is

appended at the end of the frame. However, segmenting a frame into smaller sub-packets

that all have their own header increases the meta data overhead. The meta data overhead

is reduced by only allowing sub-packets of the same type and size within a frame. The

sub-packet type and the payload size are both stated in the frame’s header, i.e., the

frame-header is shared by all sub-packets. Consequently, the sub-packets have to add only

sub-packet specific meta data, such as CRC, and datachunk identifiers. The semantics of

the shared header depend on the sub-packet type, which is explained in the following.

1Further technical details, such as the specific protocol fields and sizes are omitted here, but
are provided in annex B.1.

52





4.1 The Prototyp Data Link Protocol

The first measure that reduces the number of transmitted acknowledgments and minimizes

acknowledgment processing-costs is sending acknowledgments only after an explicit request.

This way, acknowledgments are only sent and processed when the sender actually needs

them. The AckRequest is used to request an acknowledgment/final-acknowledgment from

the receiver, and it does not contain an actual payload. However, when acknowledgments

are only sent on request, a lost AckRequestPacket or AckPacket can seriously degrade

the goodput. For this reason, the acknowledgment request provides a Redundancy field,

stating the redundancy of acknowledgments that have to be sent in response to the

acknowledgment request. This is especially useful when a high packet-loss rate is expected

during the transmission. A frame that transports AckRequestPackets is called Ack-

RequestFrame.

The second measure is reducing the data that has to be transmitted for an individual

acknowledgment by removing internal redundancy. The protocol uses aggregated ac-

knowledgments2 that state all missing packets for a complete datachunk. The individual

data-packets are coded as a bitmap (1 — received / 0 — missing). The bitmap is the

payload of the AckPacket. Additionally, an acknowledgment can be flagged as final, which

means it does not contain further missing data-packets. That allows ignoring the acknowl-

edgment’s payload data and consequently reduces the processing time and, therefore, the

latency. A frame that transports (Final-)AckPackets is called (Final-)AckFrame.

Furthermore, the AckPacket has a field that states to which segment of the datachunk

this acknowledgment packet refers. Consequently, the bitmap of a whole datachunk can

be divided into "sub-bitmaps", which refer to a consecutive section of the datachunk. This

approach is similar to the segmentation of data-frames and reduces the probability of

losing complete acknowledgments due to bit-errors.

The proposed frame-format aggregates sub-packets of the same size and type that belong

to the same datachunk. While this restriction reduces the necessary meta data per

sub-packet, it can again lead to a high meta data overhead (e.g., preamble), in case the

frame cannot be filled completely. This could be avoided by further aggregating frames

into SuperFrames.

2The acknowledgment is a combination of ACK and NACK, however, due to readability
reasons, it will be referred to as acknowledgment.

54





4.1 The Prototyp Data Link Protocol

AckRequestFrame, and waits. Eventually, all data-packets are transmitted correctly, and

the sender receives a FinalAckFrame that states that all data-packets of the current

datachunk were received correctly. Upon receiving such FinalAckFrame, the sender frees

all memory that is related to the now completely processed datachunk and waits for the

next datachunk to be transmitted.

The Receiver

Figure 4.3 shows the FSMs of the receiver-side data link protocol. On initialization,

the receiver prepares a datachunk buffer for the first expected datachunk, and switches

into the Wait for new DC state. The receiver waits in this state for a DataFrame that

contains the first data-packets of the awaited datachunk or an AckRequestFrame for the

last processed datachunk. The further processing depends on the type of the received

frame:

• In the case an AckRequestFrame is received, and it belongs to the last processed

datachunk, the receiver answers with the FinalAckFrame of the last datachunk

and stays in the Wait for new DC state.

• In case a DataFrame is received and the frame belongs to the new datachunk,

the now outdated aggregated acknowledgment of the last datachunk is discarded.

Furthermore, the receiver copies the correctly transmitted data-packets into the

prepared datachunk buffer and marks the correctly transmitted data-packets of the

DataFrame as received in the new aggregated acknowledgment. Finally, the receiver

switches into the Wait for DataPacket (DP) state.

The processing continues similarly in the Wait for DP state. Upon receiving a DataFrame,

the correctly transmitted data-packets that belong to the current datachunk are copied

into the datachunk buffer and are marked accordingly in the current acknowledgment.

When an AckRequestPacket is received, the current AckFrame is built and sent.

Upon receiving the last data-packets of the currently processed datachunk, a FinalAckFrame

is sent and the completed datachunk buffer is forwarded to the host. Afterward, the

receiver allocates and prepares a new buffer for the next datachunk. Finally, the re-

ceiver switches into the Wait for new DC state, in which it keeps answering incoming

AckRequestFrames while waiting for the first DataFrame of the next datachunk.

56











4.2.1 Implementation of the Processing Stages

In order to implement the processing engine, the behavior of the stages has to be defined.

The behavior definition can be done with an EFSM, as shown in Technical Details 1. The

Data-Packet Aggregator (DA), which is used to aggregate data-packets into network

frames, shall serve as an example4.

Figure 4.6 shows the interface of the DA. Each DA is configured with a buffer-pool where

it can allocate network Frames, the maximum number of data-packets per network frame

(DPPerFrame), and the size of the data-packets (DPSize) it aggregates.

The Data-Packet Aggregator (DA) has two inputs: The DataPacketDescIn (DPDIn)

input that receives incoming DataPacketDesc messages, and the FinishFrameIn (FFIn)

input that receives TransmissionStatus messages.

The DataPacketDesc messages describe a consecutive number of data-packets. For that,

it contains a chunk identifier (ChunkNr), the number of consecutive data-packets that

the descriptor refers to, and the memory address and offset in the datachunk of the first

(of these consecutive) data-packet’s. Describing several consecutive data-packets with a

single DataPacketDesc is a measure of reducing message passing load between stages.

The FinishFrameIn (FFIn) input receives TransmissionStatus messages. Transmission-

Status messages are used to forward changes in the transmission state of a datachunk.

Figure 4.7 shows the EFSM that describes the behaviour of the DA. The DA starts in the

Empty Frame state after it allocates its first Frame and configures it (setting the number

and size of data-packets per frame). Upon receiving a DataPacketDesc message at the

DataChunkDescIn (DPDIn) input, the payload of the data-packets is copied into the current

network frame. In the case the frame was empty upon receiving the DataPacketDesc

message, the DataFrame’s header is configured with the DataPacketDesc’s ChunkNr and

SequenceNr. If the DataFrame is not yet full after processing the DataPacketDesc

message, the DA switches to the Non-Empty Frame state, otherwise it forwards the full

frame via its DataFrameOut (FrOut) output, then allocates a new Frame, configures the

corresponding DataFrame, and remains in the state Empty-Frame.

4The implementation of the other protocol stages as EFSMs is provided in annex B

61





4.2.2 Summary

In this section, the data link protocol was transformed into a processing engine. The stage

decomposition was done based on the protocol’s dataflow and the previously identified

protocol tasks. The high level implementation of the individual stages is presented by

state-machines, which allows an easy transformation into compilable code, as well as for

static protocol analysis such as deadlock freeness.

4.3 Soft Real-Time Analysis

After the decomposition of the protocol into a processing engine and implementing the

stages, the soft real-time analysis can be performed. The analysis depends on the imple-

mentation and configuration of the protocol, as well as on the communication conditions.

However, at this moment, only the implementation of the stages is known. The target

data rate is given by the application and the configuration of the protocol depends on the

expected channel conditions. Consequently, the first steps are choosing a target data rate

and estimating the channel conditions. The target data rate for the following analysis

is 40 Gbit/s. The channel conditions can be estimated given the transmission technology

with applied error correction measures.

In this thesis, the expected Bit Error Rate (BER) of the channel is in a range from 10−5

and 10−6 after the FEC processing [84]. Since the protocol has to provide the desired

data rate under the full range of expected channel conditions, the worst-case BER of

10−5 will be used for the configuration of the protocol.

The data link protocol is highly configurable, e.g., the size and number of data-packets per

frame can be adjusted to the expected communication conditions. In order to determine

the best protocol configuration, the actual data loss depending on the BER has to be

calculated. Table 4.1 shows the packet loss probability, as well as the accumulated protocol

overhead per datachunk and the accumulated data-loss per datachunk (overhead + lost

packets), depending on the data-packet size given a BER of 10−5 (see Technical Details

2). Four data-packet sizes from 1024 Bytes5 to 8192 Bytes were selected as candidates.

5For smaller packet sizes, the random number generator used to simulate the BER during
the evaluation becomes a bottleneck.

63



4.3 Soft Real-Time Analysis

Data-Packet size
Packet Loss
Probability

Protocol Overhead
per 16MB Datachunk

Lost Data
per 16MB Datachunk

1024 Byte 8.2 % 139kB 1462kB

2048 Byte 16.4 % 77kB 3210kB

4096 Byte 32.8 % 48kB 7985kB

8192 Byte 65.6 % 46kB 31155kB

Table 4.1: Packet loss probability, protocol overhead (per datachunk), and lost data (per
datachunk), depending on data-packet size for a Bit Error Rate (BER) of 10−5.

The lowest overall data-loss is seen for the 1024 Byte data-packet size. Consequently, a

data-packet size of 1024 Byte is chosen, which leads to a maximum of 8 data-packets per

frame (the maximum number of 1024 Byte data-packets that fit in a 9000 Byte Ethernet6

jumbo-frame [85]). Finally, a datachunk has a size of 16 MB, i.e., it consists of 16384

data-packets.

Since each data-packet is acknowledged by a single bit, the overall acknowledgment size

is 2048 Byte. An acknowledgment is organized in 2× 1024 Byte segments. Since there

is still space for 6 additional AckPackets in the AckFrame, each AckPacket is provided

redundantly four times within an AckFrame. In order to handle completely lost AckFrames,

each AckFrame is provided with a redundancy of two frames.

The analysis is performed in two steps: First, the soft real-time time requirements per

input and stage are established. Second, the performance characteristics are measured.

4.3.1 Soft Real-Time Requirements

The soft real-time requirements state how many messages a particular stage has to process

given a desired data rate for the transmission. The requirements can be calculated by

following the processing engine’s dataflow and depends on the implementation of the

stages, the desired data rate, the configuration of the protocol, and the expected channel

conditions.

6Since no real 100 Gbit/s wireless communication interface exists yet, 10 GbE interfaces are
used as a replacement.

64



Technical Details 2: Bit Error Rate and Packet Loss

The Bit Error Rate (BER) states the percentage of erroneous bits in a transmission.
In order to estimate the impact of an equal distribution of single bit-flips on a
transmission, the BER can to be used to calculate the amount of lost data. This is
done here by transforming the BER into a packet loss probability by multiplying the
packet size in bit with the BER.

Ploss = Packetsize ∗ BER

Ploss states the probability a packet is lost. This can be used to calculate the actual
expected packet loss. The initial transmission is round 0.

PacketsRound0
send = Packetsinitial

The lost packets of the initial transmission have to be retransmitted, i.e., the packet
loss probability has to be applied to the retransmissions:

PacketsRound1
send = PacketsRound0

send ∗ Ploss

This leads to the geometric series:

Packetsall =

inf∑

Round=0

Packetsinitial ∗ Ploss
Round

Which converges to:

Packetsall =
Packetsinitial

1 − Ploss

In which Packetsall is the overall number of transmitted packets. The number of
bytes transmitted can now be calculated by multiplying the number of lost packets
with the packet’s size. Finally, after adding the protocol meta data bytes, the overall
data that has to be transmitted is known, given the BER and protocol configuration.

The estimation of the soft real-time requirements is basically counting the number of

messages each stage has to process. However, a message can have different runtime

requirements depending on the stage’s state and message’s content. For example, the

effort for processing incoming acknowledgments depends on the number of data-packets

that have to be retransmitted. In order to be able to analyze the different runtime

requirements, the soft real-time requirements are further refined by a classification of

messages (see Technical Details 3). The classification depends on the stage’s state and

65







4.3 Soft Real-Time Analysis

During the simulation, two classes of DataPacketDesc messages are counted, 8 DP and 1

DP. The 8 DP messages were received from the DG, and the 1 DP messages were sent by

the AP.

The FinishFrameIn input is used to trigger the finalization and emission of a data-frame

independent of the number of currently aggregated data-packets. Messages received by the

FinishFrameInput input are classified given the current state of the DA. In case the current

frame is empty, the TransmissionStatus message is just forwarded, and no data-frame

is emitted. In this case, the message is classified as Empty Frame. In the case the current

frame has already aggregated at least one data-packet, the data-frame is sent, a new

empty frame is allocated, and the TransmissionStatus message is forwarded. Therefore,

the message is classified as Non-Empty Frame.

Acknowledgement Processor (AP)

The AP has 4 inputs and one timeout: The AcknowledgementIn input receives Ack-

Frames that state which data-packets were not transmitted correctly. The Final-

AcknowledgementIn input receives FinalAckFrames that state that the current datachunk

was completely transmitted. The DataChunkStartedIn input is used to reset the AP and

store the new DataChunkDesc. The TransmissionStatusIn input is used to reset the

AcknowledgementRequestTimeout and finally, the AcknowledgementRequestTimeout is used

to transmit an AckRequestFrame.

The messages received at the FinalAcknowledgementIn input are classified as Valid

and Invalid. Invalid final acknowledgments are outdated, i.e., either their sequence

number was already received, or the final acknowledgment does not belong to the current

datachunk.

The AcknowledgementIn input receives AckFrames that state the data-packets that have

to be retransmitted. The acknowledgment frames are classified as Invalid when the

acknowledgment frame is outdated or when the AckFrame does not belong to the current

datachunk. Valid AckFrames are classified by the number of missing data packets for the

current datachunk and the number of ack-segments7.

7For example, an acknowledgment that states 1325 missing packets (mp) in two ack-packets
(ap) is classifies as "1300 < mp < 1350 / 2 ap"

68



The AcknowledgementIn input and the FinalAcknowledgementIn input show a very high

amount of Invalid messages. The reason is that the (Final-)AckFrame messages are

sent redundantly because the timely receiving of acknowledgments, acknowledgment-

requests, and final acknowledgments is paramount in order to achieve a stable throughput

because in case they are lost, they stall the transmission. However, only the first (final)

acknowledgment is considered valid. The remaining are invalid due to their outdated

sequence number.

Finally, the AP.DataChunkStartedIn and the AP.TransmissionStatusIn inputs always

react the same and no further classification is needed.

4.3.2 Performance Characteristics

The calculation of the performance characteristics is carried out on the Mellanox TileGx72

manycore board [86]. The manycore board is equipped with 72×1 GHz general-purpose

cores and 4× 100Gbit/s memory controllers. Additionally, the TileGx72 provides 8× 10

GbE interfaces, and a PCIe 3.0 interface.

The memory controllers are configured to transparently stripe the memory and provide a

virtual 400 Gbit/s memory interface for the applications. This distributes the memory load,

and it should reduce Non-Uniform Memory Access (NUMA) effects that would complicate

the analysis. While the latency per memory access may be increased, the combined

capacity of the memory-controllers allows for more straightforward implementation. The

protocol processing framework is built upon a Zero-Overhead Linux that allows to disable

the timer-interrupt and prevent preemptive scheduling, giving the protocol processing

framework exclusive access to the computation hardware, while providing a convenient

programming environment.

The measurement of the performance characteristics starts with the measurements re-

garding the message-passing subsystem, followed by the stage-specific benchmarks for the

stage.

In the presented graphs, the outliers were removed by focusing on the 95 percentiles of

the measurement in order to increase the readability. Since the outliers stem mostly from

cold caches that do not reflect the situation during a transmission, they can be ignored.

69





Size
in Byte

Trecv(size)
in ns

Size
in Byte

Trecv(size)
in ns

8 73.35 48 84.69

16 79.55 56 84.46

24 77.47 64 92.45

32 80.17 72 91.17

40 85.34

Table 4.2: Receive and scheduling costs for a message depending on its size. Two message
producers are necessary to fully utilize a message consumer.

DataPacketAggregator (DA)

The Data-Packet Aggregator (DA) shall serve as an example8 for the performance

characteristic measurement. The DA is configured with a data-packet payload size of 1024

Bytes and a DataFrame that can aggregate eight data-packets. Furthermore, the DA can

use a network-frame buffer pool for each 10 GbE interface.

The DA has two inputs, which both have two message classes (MC). The DataPacket-

DescIn (DPDIn) input has to process DataPacketDescs that contain 8 data-packets (MC:

8 DPs), as well as messages that contain 1 data-packet (MC: 1 DP).

The FinishFrameIn input has to process TransmissionStatus messages of two classes:

The Empty Frame message-class states that the DA’s current frame is still empty, and the

Non-Empty Frame message-class states there is already a data-packet aggregated in the

current frame.

The performance characteristics estimation generally consists of two different measure-

ments: Firstly, the TPM is measured depending on the mapping of the stage in order

to estimate the sensitivity of the stage on the mapping. Secondly, the established best

mapping and worst mapping is used to parallelize the stage in order to measure the TPM

in a contention situation.

8The benchmarks for the remaining stages are omitted here for the sake of readability but
are provided in annex B.

71





transmission. In the case of the DA, this is the DPDIn input in combination with the

message class 8 DPs.

The measurement itself is done individually on all processors, i.e., the producer stage

first measures the TPM for the CPU 1, then for CPU 2, and so on. The mapping of

the producer stage and the sender stage is shown in figure 4.10. CPU 0 is used for the

initialization of the manycore (I), CPU 1 is used to set up the benchmark (B), the message

producer (P) is mapped to processor 2, and the consumer is mapped to processor 71.

The benchmarking starts by preparing the stage for the measurements and deciding about

the content of the messages. Since the message class 8 DPs requires the DA to be in the

initial Empty Frame state, the measurement of the DA’s DPDIn input does not need a

particular setup.

However, the messages used for the benchmarking have to be constructed carefully. First,

in order to measure the TPM for the 8 DPs message class, the DataPacketDesc message

has to be configured with 8 consecutive packets. Additionally, the DataPacketDesc

messages have to refer to an actual memory address because the DA will read the packet’s

payload from the specified memory address. Furthermore, the TPM for the DPDIn input is

higher for payload that has to be fetched from memory than for payload that is available

in the cache.

During the transmission phase, any individual data-packet’s payload will most probably

not be available in the processor cache. Therefore, it has to be avoided that the DA can

read the desired payload directly from the cache, which would not reflect the actual

runtime-behavior. In order to avoid that the DA can fetch payload-data from the cache, the

message producer simulates the characteristics of a transmission, i.e., the DataPacketDesc

message’s payload points into an actual datachunk buffer and the message producer

emulates the separation of that datachunk. Therefore, it provides DataPacketDesc

messages with different payload pointers that do not repeat during a single benchmark.

The TPM depending on the mapping of the DA is shown in figure 4.9. The median TPM is

in a range of min. 10878ns to max. 11305ns , i.e., a span of 427ns . Consequently, the DA

is slightly dependent on the mapping. Furthermore, the results also show an interquartile

range between 125ns and 379ns , i.e., the measurement results vary between repetitions,

even on the same Central Processing Unit (CPU).

73







4.3 Soft Real-Time Analysis

the results for best- and worst-case mapping are nearly identical. However, the impact of

the contention due to parallel execution can be clearly seen, as the TPM increases for

the best-case mapping from around 10241ns for a single DA to 14766ns for 20 parallel DA

(worst-case: 10519ns for one DA, 14821ns for 20 DAs). Furthermore, the TPM does not

increase monotonously but shows spikes for even numbers of parallel DA, especially for

powers of two. For example, the highest median TPM (14955ns ) was measured for 16

parallel DAs.

That behaviour is most probably caused by data cache contention due to evicting (and

immediately re-fetching) cache lines that were already prefetched by one core because

another CPU prefetches its own payload to the same cache lines. This occurs because the

data-packets are sent to the DAs with increasing addresses. The effect can be theoretically

avoided by using non-coherent memory for the datachunk buffer (see annex B.2.6).

However, since the Direct Memory Access (DMA) mechanism of the Tilera Gx72 boards

relies on coherent memory, the buffer memory would have to be copied from the coherent

DMA buffer to the incoherent datachunk buffer first. This would negate the positive

effect of using incoherent memory.

The contention benchmark for the message class DPD (1 DP) is realized with a random

order of data-packets. The random order emulates an actual transmission because

DPD (1 DP) messages are only sent by the AP in order to retransmit (randomly) lost

data-packets. Figure 4.12 shows the TPMs for the message class DPD (1 DP) given the

best-case mapping (left) and the worst-case mapping (right). The cache contention effect,

i.e., the spikes, is not seen for the message class DPD (1 DPs). The reason is that the

data-packets (and therefore the payload) handled by the DAs follow a random order, i.e.,

the probability that parallel DAs prefetch data to the same cache lines is lower compared

to sequentially distributed data-packets.

FinishFrame input (FFIn)

The FFIn input has two message classes: Empty Frame and Non-Empty Frame. The

measurement for the Empty Frame message class is straight forward, as no special setup is

necessary. When receiving a TransmissionStatus message while the current frame is still

empty, the DA’s task is only to forward the received message via its TransmissionStatus

76



175

180

185

190

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketAggregator::FinishFrameInput

n
s
 p

e
r 

T
ra

n
s
m

is
s
io

n
S

ta
tu

s
 m

e
s
s
a
g
e

 M
C

: 
e
m

p
ty

 f
ra

m
e
 m

e
s
s
a
g
e

Best Mapping

175

180

185

190

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketAggregator::FinishFrameInput

n
s
 p

e
r 

T
ra

n
s
m

is
s
io

n
S

ta
tu

s
 m

e
s
s
a
g
e

 M
C

: 
e
m

p
ty

 f
ra

m
e
 m

e
s
s
a
g
e

Worst Mapping

Figure 4.13: TPM of the FinishFrame input of the Data-Packet Aggregator (DA)

for the message class TransmissionStatus (Empty Frame) (Best case mapping right
and worst case mapping left).

620

640

660

680

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketAggregator::FinishFrameInput

n
s
 p

e
r 

T
ra

n
s
m

is
s
io

n
S

ta
tu

s
 m

e
s
s
a
g
e

 M
C

: 
n

o
n

−
e
m

p
ty

 f
ra

m
e

 m
e

s
s
a
g
e

Best Mapping

620

640

660

680

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketAggregator::FinishFrameInput

n
s
 p

e
r 

T
ra

n
s
m

is
s
io

n
S

ta
tu

s
 m

e
s
s
a
g
e

 M
C

: 
n

o
n

−
e
m

p
ty

 f
ra

m
e

 m
e

s
s
a
g
e

Worst Mapping

Figure 4.14: TPM of the FinishFrame input of the Data-Packet Aggregator (DA)

for the message class TransmissionStatus (Non-Empty Frame) (Best case mapping
right and worst case mapping left).

output, i.e., no real work has to be done. Therefore, the processing time is expected to be

low, without contention effects, and without an impact of the mapping. This is reflected

in the results shown in figure 4.13. The median TPMs show no sign of contention, as they

are in a range of 180 ns to 185 ns for the best mapping and 177 ns to 185 ns for the worst

mapping.

In order to measure the TPM for Non-Empty Frame messages at the FinishFrameIn

input, the DA has to be in the Non-Empty Frame state. This is done by sending a valid

DataPacketDesc to the DPDIn before each measurement, so that the current frame is not

empty anymore. The DA now performs three tasks: First, it sends the non-empty frame

via the FrameOut output. Second, it acquires a new network frame. Third, it forwards

the received transmission status via the TransmissionStatus output. The results of the

measurement are shown in the figure 4.14.

77



4.4 Adaptation of the Processing Engine

The TPM for the Non-Empty Frame message class stays almost constant for less than

five parallel DAs and then increases moderately for higher numbers of parallel DAs. The

moderate contention effect stems from competition for the network buffer pools, as each

of the DAs tries to allocate new empty frames.

4.3.3 Summary

This section presented the approach for estimating the soft real-time requirements and

the measurement of the performance characteristics for a given processing engine. It

furthermore showed how message classes are used to increase the accuracy of the general

analysis. The different TPMs of the DA’s DataPacketDescIn input for the message classes

8 DP and 1 DPs showed that ignoring message classes may lead to unreliable benchmark

results.

Furthermore, the benchmarks helped to increase the efficiency of the implementation

and understanding of the target hardware. In the case of the DA, the use of cache-

incoherent datachunk buffers would increase the efficiency as cache invalidation could

be controlled fine-grained. However, due to the DMA subsystem of the Tilera manycore

board, cache-coherent memory has to be used. The benchmarks also helped to debug the

implementation of the stages, as the benchmarks rely on the correct implementation of

the interface and the stage’s behavior. In the case the implementation does not reflect

the desired stage-behavior, the benchmark will fail.

The analysis’s results are used in the following to estimate the necessary parallelization

of the processing engine and its adaptation.

4.4 Adaptation of the Processing Engine

The soft real-time analysis provides the protocol designer with insights into processing

requirements and capacities for the whole processing engine. These results are now used

for the adaptation of the processing engine. The adaptation’s goal is to reduce the soft real-

time requirements of all stages by parallelization until the processing capacities of the hard-

ware are sufficient to process the resulting data rate. The soft real-time requirements and

the performance characteristics are used to calculate the processor utilization, which is used

to estimate the necessary parallelization count of the inputs (see Technical Details 6).

78



Technical Details 6: Calculating the Processor Utilization

The soft real-time requirements and the performance characteristics are used for iden-
tifying processing bottlenecks in the processing engine by determining the necessary
adaptation ratios with the equations 4.1 and 4.2.

The functions multiply and sum up the soft-real-time requirements RClass
Input and the

performance characteristics PClass
Input for all inputs and all message-classes of a stage.

The performance characteristics P are the sum of the TPM and the message receive
costs Trecv.

DupInput(#CPU) =

#Class∑

m=0

RClassm

Input × P Classm

Input (#CPU) (4.1)

SplitInput(#CPU) =
1

#CPU
×

#Class∑

m=0

RClassm

Input × P Classm

Input (#CPU) (4.2)

The result is the estimated processor utilization of that input given a parallelization
count #CPU , the soft real-time requirements, and the performance characteristics
when all input streams of Input are split or duplicated. Consequently, the equations
calculate the processor utilization for the input, including contention effects.

In the case DupInput(#CPU) <= 1, the input streams can be duplicated. In the
case that DupInput(#CPU) > 1, the processor utilization is too high and has to be
reduced by a stream-split or changing the implementation.

In the case that SplitInput(#CPU) < #CPU , the desired data rate can be pro-
cessed by the input when a stream-split with #CPU is used. In the case that
SplitInput(#CPU) > #CPU , the streams have to be split more #CPU times.

The adaption depends on the processor-utilization, which takes the results of the soft real-

time analysis and the performance measurements into account. The processor-utilization

states how often a stream that is connected to an input has to be split. Figure 4.15a

shows the processor-utilization for the two inputs of the Data-Packet Aggregator (DA).

The DA’s DataPacketDescIn input has to be parallelized nine times in order to reduce its

processor utilization to 0.8284. The second input shows a processor-utilization of 0.0008

for 1 CPU, i.e., it is most probably neglectable.

This information is used in figure 4.15b for the adaptation of the DA, which is carried

out with the Stream-Split, Stream-Duplicate, and Stream-Join operators. What operator

79





can be used depends on the semantics of the streams. In the case of the DA, the input

streams of the DataPacketDescIn input can be split, whereas the input streams of the

FinishFrameIn input have to be duplicated.

The stream-split operator can be used for the DataPacketDescIn because the DG and

AP only expect that data-packets, which were sent over that stream, are aggregated into

a frame. Which DA processed a data-packet and the order of data-packets does not matter.

Consequently, a stream-split can be used to distribute the DataPacketDesc messages in

order to reduce the soft real-time requirements. By splitting the DataPacketDesc streams

from the DG and AP, the soft real-time requirements of the DA::DataPacketDescIn input

are reduced by a factor of nine.

In contrast, the TransmissionStatus messages, sent by DG and AP, are directed to all DAs,

because the DG and the AP expect that all DAs receive the TransmissionStatus message

in order to finish and send their current DataFrame. Consequently, the TransmissionStatus

stream has to be duplicated. By duplicating the TransmissionStatus streams, the data

rate was not reduced, i.e., the soft real-time requirements of the TransmissionStatusIn

input are unaffected by the stream-operator.

Sender

Stage #CPUs
Per-Processor

Utilization in %

Data-Packet Generator (DG) 1 6.16 X

Data-Packet Aggregator (DA) 9 82.92 X

Acknowledgement Processor (AP) 1 7.86 X

PCIe (Sender) 2 147.00 E

Both

Communication (COM) 5 88.00 X

Receiver

Data-Packet Combiner (DC) 5 94.33 X

Acknowledgement Generator (AG) 1 38.11 X

PCIe (Receiver) 2 70.00 X

Table 4.3: Predicted per-processor-utilization and parallelization ratios of the stages for
a desired data rate of 40 Gbit/s and a BER of 10−5.

81



4.5 Mapping of the Processing Engine

The processor utilization of the DA (UDA) after the adaptation (see figure 4.15b) is:

UDA = SplitDPDIn
(9) + DupFFIn

(9) = 0.8284 + 0.0008 = 0.8292

That is, the ninefold parallelization of the DataPacketDescIn input and the duplication

of the FinishFrameIn input lead to an utilization per processor 83%. Consequently, the

adaptation was successful. However, sometimes the processor utilization of a stream that

has to be duplicated is too high. In this case, the split has to be carried out earlier in

the protocol pipeline.

All remaining stages are handled in the same way, depending on their processor-utilization,

as shown in table 4.3. However, when the adaptation procedure reached the PCI Expresss

(PCIes) interfaces, the analysis revealed that 40 Gbit/s are not achievable with the given

system, because the sender-side PCIe interface is not able to provide the desired data

rate (UPCIe (Sender)(2) = 1.47). The reason is that the sender host is equipped with a

PCIe 2.1 interface, which can reach a maximum theoretical throughput of 32 Gbit/s

[87]. The bottleneck is caused by the datachunk transfer between host and embedded

manycore board. Therefore, the actual transfer of the payload is omitted in the following

benchmarks. An example that allows reaching the 40 Gbit/s by parallelizing the protocol

processing over several devices follows later in this chapter.

Adaptation and Scheduling

The assigned stream operators define the parallelization, as well as the distribution of

messages. Since messages have to be processed in the streamed order, the scheduling of

message can be done locally per CPU with a simple FIFO scheduler. In order to avoid

message drops caused by short term over-utilization of CPUs, a back pressure flow control

mechanism is used to automatically limit the data rate in such a case.

4.5 Mapping of the Processing Engine

The last step of the protocol implementation is the mapping of the processing engine

onto the communication system. The processing engine will usually be mapped on

several devices, such as the host, an embedded manycore, and an additional external

82





4.6 Testing of the Implementation and Latency Hiding

finding such an optimal mapping is a research topic on its own, and was not investigated

in this thesis, but a possible approach is outlined in the following.

After offloading the FEC/CRC stages, the remaining stages are mapped to dedicated CPUs

on the embedded manycore. All stages that abstract hardware resources, such as COM or

PCIe interfaces, are assigned to a CPU where they can access the hardware the fastest. The

protocol processing stages are mapped to CPUs with the help of the mapping sensitivity,

measured during the performance analysis, i.e., the mapping starts with assigning CPUs

to stages according to their best mapping. Without any claim to generality, the stages

with the highest parallelization count are mapped to a CPU first. Furthermore, the

mapping of stages to CPUs follows the same considerations as in other high-performance

applications, such as NUMA-awareness [88].

4.6 Testing of the Implementation and Latency Hiding

The final step in the protocol design process is testing the implementation. For the testing

and the evaluation, the following restrictions were applied due to shortcomings of the

evaluation hardware.

1. The offloaded FEC stages were not used for the majority of the evaluation. Instead,

the reduction of the BER that would result from the integration of the FEC/CRC

stages was implicitly assumed. This measure was taken due to the lack of hardware.

Besides, the FEC/CRC calculation adds a small overhead that does not influence

the conclusions of this thesis. However, an evaluation in which two external FPGAs

are integrated in communication system is provided at the end of this section.

2. The wireless communication technology was replaced by 8 × 10 GbE interfaces and

the expected BER was simulated. This measure was taken due to the lack of 100

Gbit/s wireless transmission technology.

3. The transport of payload from the host to the embedded manycore and vice-versa

is omitted. Unfortunately, one of the hosts of the communication system provides

only a PCIe 2.1 interface, which limits the throughput to around 32 Gbit/s. A

benchmark that actually transmits the payload end-to-end is provided later in this

chapter.

84









4.6 Testing of the Implementation and Latency Hiding

Measured Utilization (in %)

Stage
Predicted

Utilization (%)
Singlechannel Multichannel

DG.DCDIn 6.16 54.41 58.40

DA.DPDIn 82.85 76.32 81.98

DA.FinishFrameIn 0.01 0.07 0.09

AP.AckFrameIn 7.57 11.44 12.52

AP.FinalAckFrameIn 0.04 0.18 0.22

AP.AckRequestTimeout 0.2 0.32 0.36

AP.DCSIn 0.00049 0.02 0.02

AP.TSIn 0.04 0.08 0.08

Table 4.4: Predicted processor utilization for a desired data rate of 40 Gbit/s and a bit
error rate of 10−5

Accuracy of the Analysis

The predicted and measured processor utilization for the 40 Gbit/s adaptation of the

data link protocol is shown in table 4.4.

The DataPacketGenerator.DataChunkDescIn (DG.DCDIn) input and the AckProcessor.-

AckFrameIn (AP.AckFrameIn) input show a far higher processor utilization than predicted.

This is a result of the back pressure flow-control, which stalls the DG’s and AP’s processing

in the case the receive-buffers of the Data-Packet Aggregator (DA) are full.

Furthermore, the effect of the transmission gap for the singlechannel version of the

protocol can be seen, as the measured processor utilization of the DA is 5.66% lower for

the singlechannel version, compared to the multichannel version. The lower processor

utilization of the singlechannel protocol leads to a calculated goodput of 37.26 Gbit/s

( 81.92%
77.32%

= 40Gbit/s
XGbit/s , X = 37.26Gbit/s) compared to a measured singlechannel goodput of

37.29 Gbit/s.

88





4.7 Evaluation

At the time of the evaluation, only two FPGAs were available. Therefore, only the goodput

for one 10 GbE interface could be measured. However, due to the implementation as

an individual and independent stage, the goodput scales linearly with the number of

employed 10 GbE interfaces and FPGAs.

All remaining benchmarks presented in this thesis, are performed without

FEC stages and the decreased BER that would result in using FPGAs is

accepted as given.

4.6.2 Summary

This section showed how processing latencies, e.g., due to the acknowledgment mechanism,

can reduce the actual goodput. This can lead to a situation in which processors are idle

because the system is waiting for the correct transmission of the last missing packets that

allows them to continue their work. However, during the soft real-time analysis, it was

assumed that all stages are constantly processing messages. These processing-gaps can be

hidden with parallel processing engines that are used in an overlapped manner. This is

achieved by providing parallel protocol pipelines that share a channel by virtualization.

In order to estimate whether an additional parallel processing engine is necessary, the

achievable data rate of the adapted processing engine has to be measured.

The experimental integration of the external FPGAs, responsible for the FEC calculation

showed that the integration via standard 10 GbE interfaces is feasible. Using standard

hardware allowed for using existing drivers without additional implementation effort, i.e.,

tremendously reducing time and costs.

4.7 Evaluation

The final part of this chapter evaluates the approach with respect to overhead, flexibility,

and scalability. The overhead of the processing approach is measured in subsection 4.7.1

by setting the BER to zero and measuring the goodput for different data-packet sizes

and numbers of interfaces. The flexibility is evaluated with two real-world scenarios. The

first scenario adapts the processing engine automatically to changing channel conditions,

by dynamically selecting and combining the channels depending on the BER as well as

the desired data rate. This is particularly useful for wireless communication as channel

90



conditions are known to change over time. In the second scenario, the user has different

data rate requirements over the cause of the transmission. Finally, the scalability of the

approach is shown by parallelizing the protocol processing over two manycore boards.

4.7.1 Processing Overhead

An interesting question is how much overhead introduces the processing approach depend-

ing on the desired data rate and the number of stages. Table 4.5 shows the static protocol

overhead that stems from the protocol headers (without taking redundancy into account).

In the worst case (8 × 1kB DataPackets per DataFrame), 1.074 % of the transmitted

data is static protocol overhead. This can be reduced to 0.391% in the case only one 8kB

DataPacket is used to fill the frame. The maximum possible Ethernet throughput for

9000 Byte jumbo frames is 9.97 Gbit/s. The difference of 0.03% to 10 Gbit/s stems from

the 14 Byte MAC header, 5 Byte inter-frame-gap, 8 Byte preamble, and 4 Byte CRC.

The protocol overhead and the maximum Ethernet throughput are used to calculate

theoretical max achievable goodput, also shown in table 4.5.

Communication Interfaces

Raw-Ethernet

throughput 9.97 Gbit/s

ProtocolItem Size

VirtualChannelHeader 8 Byte

FrameHeader 16 Byte (without FEC redundancy)

SubPacket 8 Byte

ProtocolItem
Protocol
Overhead

Payload
Overhead
in percent

Max. 10 GbE
Goodput (Gbit/s)

DataFrame (1kB) 88 Byte 8 × 1kB 1.074 % 9.863

DataFrame (2kB) 56 Byte 4 × 2kB 0.684 % 9.902

DataFrame (4kB) 40 Byte 2 × 4kB 0.488 % 9.921

DataFrame (8kB) 32 Byte 1 × 8kB 0.391 % 9.931

Table 4.5: Protocol overhead of the data-frame for different payload-sizes and maximum
raw Ethernet throughput.

.

91



4.7 Evaluation

Additional to the static protocol overhead, the processing itself imposes overhead that

can reduce the goodput. The processing overhead was measured individually for all four

packet sizes (1kB, 2kB, 4kB, 8kB), with 1 to 8 10 GbE interfaces and a BER of 0. Since

the goal was to fully reach the theoretical data rates, the multichannel version of the

protocol was used.

Table 4.6 shows the number of configured DAs and DCs (all other stages did not need to be

parallelized), the measured goodput, the theoretical maximum throughput depending on

the number of interfaces, as well as the overhead in Gbit/s and percent. As to be expected,

the overhead increases in general with a higher desired data rate and larger processing

engines, i.e., the parallelization has an impact on the protocol processing. However, the

measured processing overhead stays consistently below 0.4% of the theoretically possible

throughput, i.e., it is neglectable.

The measurements were carried out with the parallelization counts established during the

analysis. In case the results were lower than expected, the predicted processor utilization

was investigated.

For a payload size of 1024 Bytes, this was the case for 7 × 10 GbE interfaces. For 7 × 10

GbE interfaces, the analysis proposed 14 parallel DAs with a processor utilization of

99.29%, which resulted in a goodput of 67.247 Gbit/s. Increasing the number to 15

parallel DAs reduced the processor utilization to 92.22% and increased the goodput to

68.994 Gbit/s.

For the payload size of 8192 Bytes, the adaptation was corrected for 8×10 GbE interfaces,

where the DA processor utilization was stated as 98.97% for 13 DAs. The corresponding

adaptation of the processing engine resulted in a goodput of 78.414 Gbit/s. By increasing

the amount of parallel DAs to 14, the processor utilization was reduced to 95.66% and the

achieved goodput increased to 79.176 Gbit/s.

Summary

The theoretical data rate was consistently reached in all cases. The maximum protocol

processing overhead of 0.342% was measured for the protocol configuration with 8192

Bytes payload for a target data rate of 80 Gbit/s. In two cases, the analysis lead to an

adaptation that did not allow to utilize the provided communication channels fully. In

92



Data-Packet Size: 1024

# of 10 GbE 1 2 3 4 5 6 7 8

# of DA 2 4 5 7 9 11 15 17

# of DC 2 3 4 6 7 8 10 11

Measured Goodput (Gbit/s) 9.858 19.72 29.588 39.447 49.303 59.155 68.994 78.828

Theo.Max. Goodput (Gbit/s) 9.863 19.726 29.589 39.452 49.315 59.178 69.041 78.904

Overhead (Gbit/s) 0.005 0.006 0.001 0.005 0.012 0.023 0.047 0.076

Overhead in % 0.051 0.030 0.003 0.013 0.024 0.039 0.068 0.096

Data-Packet Size: 2048

# of 10 GbE 1 2 3 4 5 6 7 8

# of DA 2 3 5 7 9 10 13 15

# of DC 1 2 3 4 6 6 8 8

Measured Goodput (Gbit/s) 9.896 19.785 29.702 39.6 49.465 59.351 69.245 78.972

Theo.Max. Goodput (Gbit/s) 9.902 19.804 29.706 39.608 49.51 59.412 69.314 79.216

Overhead (Gbit/s) 0.006 0.019 0.004 0.008 0.045 0.061 0.069 0.244

Overhead in % 0.061 0.096 0.013 0.020 0.091 0.103 0.100 0.308

Data-Packet Size: 4096

# of COM interfaces 1 2 3 4 5 6 7 8

# of DA 2 3 5 6 9 9 11 14

# of DC 1 2 3 3 4 6 7 8

Measured Goodput (Gbit/s) 9.915 19.836 29.739 39.675 49.581 59.403 69.261 79.12

Theo.Max. Goodput (Gbit/s) 9.921 19.842 29.763 39.684 49.605 59.526 69.447 79.368

Overhead (Gbit/s) 0.006 0.006 0.024 0.009 0.024 0.123 0.186 0.248

Overhead in % 0.060 0.030 0.081 0.023 0.048 0.207 0.268 0.312

Data-Packet Size: 8192

# of 10 GbE 1 2 3 4 5 6 7 8

# of DA 2 3 5 6 7 9 11 14

# of DC 1 2 3 3 4 5 6 8

Measured Goodput (Gbit/s) 9.925 19.855 29.788 39.701 49.601 59.467 69.346 79.176

Theo.Max. Goodput (Gbit/s) 9.931 19.862 29.793 39.724 49.655 59.586 69.517 79.448

Overhead (Gbit/s) 0.006 0.007 0.005 0.023 0.054 0.119 0.171 0.272

Overhead in % 0.060 0.035 0.017 0.058 0.109 0.200 0.246 0.342

Table 4.6: The achieved goodput when fully utilizing up to 8×10 GbE interfaces. The
overhead is measured without any packet-loss and for different data-packet sizes.
Additionally, the table shows the number of Data-Packet Aggregators (DAs) and
Data-Packet Combiners (DCs) that were used for the transmission.

93



4.7 Evaluation

both cases, the predicted processor utilization of the original adaptation was close to

100%. In such cases, a safety margin could be applied to the processor utilization in order

to avoid the performance drop.

4.7.2 Scenarios

In any real-world scenario, the communication parameters, e.g., BER and the desired data

rate, will not be static, as assumed until now. In order to achieve the desired goodput,

the employed processing engine could be designed for the worst-case scenario, e.g., the

desired data rate of 80 Gbit/s and a BER of 10−5. However, that would waste resources

in case the channel conditions change for the better or the data rate decreases. Instead, in

this thesis, it was proposed to readapt/replace the employed processing engine on-demand

at runtime in order to fit to the communication parameters.

This is possible because the stages are only dependent on their inputs and internal

state, and the parallelization of a processing engine is independent of the streamed items.

Therefore, by adding or removing stages, the processing engine can be readapted at

runtime without actually changing the implementation.

The adaptation of the following two scenarios are handled by the EndpointManager (for

more details please refer to annex A.1), which monitors the communication parameters.

After the endpoint manager notes that the desired data rate cannot be reached under

the current conditions, the endpoint manager selects the necessary channels for the

transmission. After the channels have been selected, the processing engine is automatically

adapted. The automatic adaptation is based on the Processing Engine Template Language

(PETL)-description and the adaptation pattern (see Technical Details 7).

Changing Channel Conditions

Whenever the BER reduces the channel capacity to a service quality that results in the

desired data rate not being met anymore, the processing engine has to be adapted in

order to fit the new conditions. To be able to adapt the processing engine to fit the

channel conditions, the channel BER has to be monitored. Therefore, the current BER

for all channels is continuously reported to the EndpointManager, which compares the

94







0

10

20

30

40

50

60

70

80

0 1 2

Time (s)

G
b

it
/s

Goodput (black) and Overall Transmission (grey)

Figure 4.23: Throughput and goodput of a static version of the multichannel protocol that
was adapted (5× Data-Packet Aggregator (DA), 4×Data-Packet Combiner (DC))
for 30 Gbit/s, but was also given access to all channels. The desired data rate for the
transmission was 29 Gbit/s.

0

10

20

30

40

50

60

70

80

0 1 2

Time (s)

G
b

it
/s

Goodput (black) and Overall Transmission (grey)

Figure 4.24: Throughput and goodput of a static version of the multichannel protocol
that uses all eight 10 GbE interfaces and was also adapted (17× Data-Packet -

Aggregator (DA), 12×Data-Packet Combiner (DC)) in order to be able to utilize all
interfaces. The desired data rate for the transmission was 29 Gbit/s.

0

10

20

30

40

50

60

70

80

0 1 2

Time (s)

G
b

it
/s

Goodput (black) and Overall Transmission (grey)

Figure 4.25: Throughput and goodput of the multichannel protocol that was continuously
adapted to the channel conditions. The protocol is adapted and deployed every 10ms,
when the changed BER is noted by the EndpointManager. The adaptation is based
on the minimum number of necessary channels and the resulting theoretical data rate.
The desired data rate for the transmission was 29 Gbit/s.

97



4.7 Evaluation

0

2

4

6

8

10

12

14

0 1 2

Time (s)

m
s

Latency per Datachunk

Figure 4.26: Latency per datachunk of the static multichannel protocol that uses all
eight 10 GbE interfaces and was also adapted (17× Data-Packet Aggregator (DA),
12×Data-Packet Combiner (DC)) in order to be able to utilize all interfaces.

0

2

4

6

8

10

12

14

0 1 2

Time (s)

m
s

Latency per Datachunk

Figure 4.27: Latency of the adapting multichannel protocol. The protocol is adapted and
deployed every 10ms, when the changed BER is noted by the EndpointManager. The
adaptation is based on the minimum number of necessary channels and the resulting
theoretical data rate.

however, with a lower channel utilization and less jitter compared to static PE80. Due

to the immediate adaptation to the new channel conditions, the resource consumption

could be significantly reduced. Table 4.7 shows the resources used by the adapting

processing engine depending on the capacity of the communication interfaces. Given that

the non-adapting variant uses all eight 10 GbE interfaces and 30 CPUs at the receiver

and 38 CPU at the sender, the resource consumption can be reduced significantly.

Additionally to the goodput, the latency per datachunk also profits from the on-demand

adaptation as seen in 4.26 (static) and figure 4.27 (adapting). This is because of the

higher amount of retransmission when using the PE80 processing engine, which lead to a

higher amount of necessary acknowledgments and therefore, to a higher latency.

In order to be able to profit from changing the communication interfaces, the adaptation

98



Time →

Resource
↓

0ms 10ms 20ms 30ms 40ms

Receiver CPUs 20 21 20 21 23

Sender CPUs 24 25 24 25 28

10 GbE Interfaces 0,3,5,7 2,3,6,7 0, 2, 4, 6 2, 3, 6, 7 2, 3, 4, 6, 7

Time →

Resource
↓

50ms 60ms 70ms 80ms 90ms

Receiver CPUs 21 21 21 21 20

Sender CPUs 25 25 25 25 24

10 GbE Interfaces 1, 3, 4, 7 1, 2, 4, 7 1, 5, 6, 7 1, 2, 3, 6 0, 1, 3, 4

Table 4.7: CPUs and COM interfaces used by the adapting PE on the sender- and
receiver-side, depending on the channel quality. The channel quality changed every 10
ms (please refer to figure 4.22 for the corresponding channel capacities).

has to be fast. Figure 4.28a shows the duration of a full adaptation cycle, i.e., from

the moment the receiver decides to adapt the processing engine until it receives the

acknowledgment from the sender that it finished its adaptation. As one can see, this

adaptation Round Trip Time (RTT) is around 2ms, which accounts for roughly 20% of

the timespan during which channels are stable. Consequently, one would expect to see an

0

1

2

3

4

0 1 2

Transmisison Time (s)

A
d

a
p

ti
o

n
 R

T
T

 (
m

s
)

(a) Time between start and acknowledge-
ment of protocol adaptation in ms.

0
100
200
300
400
500
600
700
800
900

1000
1100

Build
Connect

ProtocolPatch
Remove

Start

Building Phase

T
im

e
 (

m
ic

ro
s
e
c
o

n
d

s
)

 Receiver

 Sender

(b) Building times of the protocols in µs.

Figure 4.28: The costs of the on-demand readaptation of the processing engine.

99



4.7 Evaluation

impact on the achieved goodput. The reason why the adaptation RTT does not affect

the overall goodput is threefold:

Firstly, the combined communication interfaces have (usually) slightly higher capacity

than necessary for the transmission. This has the effect that losing transmission time due

to the adaptation can be caught up in the remaining 8 ms (before the interface’s capacity

changes again).

Secondly, the communication channels do not always have to be changed entirely, i.e.,

while one channel may break down completely, the other channels can be used further.

That further reduces the negative impact of the adaptation RTT.

Thirdly, the adaptation RTT is the time until the adaptation has been acknowledged.

However, neither the receiver nor the sender waits for an acknowledgment. Instead, after

sending the adaptation command, the receiver already starts its own adaptation, assuming

that the sender will be able to follow immediately. Furthermore, the old processing engine

is still available until all stages are idle. Consequently, the actual time spent for adaption

on the sender/receiver is crucial.

The adaptation costs11 (separated into the adaptation phases) for the sender and receiver

are shown in figure 4.28b. As one can see, the actual adaptation costs are significantly

lower than the adaptation RTT suggests, meaning that the adapted processing engine is

employed before the acknowledgment arrives at the receiver. Please note that the phases

ProtocolPatch, Build, Remove, and Connect are carried out in parallel to the transmission,

i.e., only the commit phase may stall the transmission. The comparably high costs for

the start-phase at the sender are caused by the readaptation of the DA. Every time a DA

is configured, it frees the currently used network-buffers, acquires a new network-buffer

pool and a new network-buffer. These costs could be avoided by preparing DAs before

the transmission. However, that would complicate the protocol building process because

instead of just building a new DA, a fitting DA with the correct configuration would have

to be found.

11Benchmarks and technical details for the replacement and readaptation were published in
[82].

100





4.7 Evaluation

interfaces without protocol replacements. The results show that the measured goodput

for the experiments with replacement and without replacements are basically identical,

i.e., the replacement has no negative effect on the transmission. Furthermore, it shows

that the approach can be used to react to changing communication parameters without a

significant delay.

Summary

Both scenarios took the possibility of changing communication conditions over the course

of a transmission into account. The adaptation and replacement showed to be a better

alternative to the worst-case adaptation as the resource utilization can be reduced

significantly by on-demand readaptation.

The first scenario focused on changing channel conditions for which a constant data

rate of 29 Gbit/s was desired. The goal was to provide the desired data rate, while

minimizing the resource consumption during the transmission, however, without touching

the protocol implementation or increasing the protocol’s complexity. This was achieved by

adapting the protocol processing engine automatically to combine the necessary number

of communication channels. The results showed that readapting the processing engine

spontaneously is possible at runtime for high data rates without degrading the quality of

service.

The second scenario focused on changing data rate requirements that were solved by the

replacement of the complete protocol. In this example, the transmission was optimized

for latency when data rates lower than 70 Gbit/s were required. However, when the

desired goodput increased over 70 Gbit/s, this requirement was dropped in favor of a

higher maximum throughput. Again, the on-demand replacement did not show negative

side effects, while reducing the resource consumption.

4.7.3 Beyond Channel Bonding

A single device may not be sufficient for the protocol processing. In this thesis, homoge-

neous, as well as heterogeneous systems, are supported. In order to be able to employ

several devices, the processing engine has to be distributed over several parts of the

communication system.

102







combined by providing an additional data stream to the second device, whereas the

necessary modifications to the host are minimal: It only needs the additional stages for

the PCIe interfaces in order to connect to two devices. The processing engines on the

embedded manycores do not need to be changed either, as both of them work individually

and see only their part of the transmission.

This concept is used to build a communication system that is able to transmit 40 Gbit/s

with a BER of 10−5. In prior experiments, the maximum throughput of a single PCIe

2.1 interface was measured with 27.84 Gbit/s [87]. Consequently, the combined devices

should be able to deliver a goodput of 55.68 Gbit/s. Each of the devices will have to

process a data rate of 20 Gbit/s. Consequently, the adaptation has to be redone. After

adapting and testing, the individual processing engines were adapted with 5×DA, 3×DC,

and 3×COM.

The combined goodput as seen by the host and the goodput/channel utilization of the two

devices given a desired data rate of 40 Gbit/s and a BER of 10−5 is shown in the figures

4.31a-4.31c. Firstly, one can see that the usage of two devices leads to a stable goodput of

40 Gbit/s as seen by the host. Furthermore, the figures show that the transmission was

equally distributed between the two embedded manycore, each transmitting 21.9 Gbit/s,

which lead to a goodput of 20 Gbit/s for each.

Summary

This scenario showed how to use the stream processing protocol processing approach to

scale up the protocol processing beyond the capacities of a single device. Since individual

devices work independently, the combined goodput scales linear and is only limited by

the capacity of host’s memory- and PCIe interfaces.

105





CHAPTER 5

Conclusion

This thesis proposed that communication protocols should be understood as soft real-time

stream processing problems. The protocol processing was separated into independent

processing stages that were connected to a processing graph, which can be analysed for

its soft real-time requirements given a certain data rate. However, such analysis can be

cumbersome when done manually, mainly because stages behave differently depending

on the message’s content and the stage’s state. Therefore, a simulation environment was

conceived that allows for a straightforward simulation of the protocol implementation.

During the simulation, messages can be classified depending on their content and the

stage’s state, in order to retrieve fine-grained, soft real-time requirements.

In order to identify bottlenecks and gather insights on the necessary parallelization count

of the individual stages, these stages were benchmarked on the target hardware. While the

individual benchmarks increased the implementation effort, it was shown that by including

the target hardware at an early design stage, the stream processing analysis allowed the

identification of processing bottlenecks. Furthermore, the benchmarks gave insights into

the parallelization of the protocol and also helped to find bugs in the implementation.

It was shown that the analysis leads to useful performance predictions that could be

further used for the parallelization of the protocol processing. The parallelization it-

self proved unusually straightforward. Due to the stream processing approach which

decomposes the protocol into independent stages, the parallelization was possible by

stream operators. The stream operators split, duplicated, or joined the streams in order

to distribute individual messages and consequently parallelize the processing. Since all

protocol processing tasks are isolated from each other and only triggered by receiving

a message, no further synchronization was necessary.

Following the stream processing paradigm, up to the mapping step, allowed to easily

distribute protocol processing tasks over different processing hardware, such as host,

107



4.7 Evaluation

embedded manycore, and external Field Programmable Gate Arrays (FPGAs). Further-

more, it was shown that the theoretically achievable data rate could be increased over

the possibilities of a single device by adding more devices and mapping the protocols

accordingly.

However, the static schedule also presented itself as a caveat in the context of end-to-end

communication, since the communication conditions and requirements are usually not

static in a wireless scenario. Either the schedule was based on the worst-case requirements

and wasting resources, or more stressing communication conditions could not be met.

That problem was alleviated by extending the concept with the ability to alter processing

engines at runtime, while they are heavily used. It was shown that the presented approach

was able to react to requirement changes as fast as in a 10 ms interval without impacting

the quality of service.

The main goal of the thesis, i.e., processing ultra-high volume data streams, was achieved.

It was shown that data rates up to the processing hardware’s theoretical maximum of 80

Gbit/s could be processed. The stream processing based protocol processing imposed a

maximum overhead of 0.342%. Furthermore, a multi-device parallelization strategy was

presented that allows to process communication protocols on disjunct devices in order to

further increase the possible data rate.

However, more research questions arose. Firstly, the mapping of the processing engines

in this thesis was static but, in a multi-user scenario, dynamic resource management is

needed. While first investigations on dynamic resource management for protocol stream

processing were conducted in the master thesis Zuzana Gabonayová [89], more research

on the integration has to be conducted.

Secondly, the concept developed in this thesis may allows the generation of hardware

implementations with the same design process. While there are already approaches to

synthesize hardware descriptions from Extended Finite State Machines (EFSMs), the

feasibility of hardware implementation should be further investigated. Primarily the

question, how can performance characterization, extracted from a software implementation,

be used in order to conceive parallelized hardware implementation?

Thirdly, this thesis focused on high-volume data streams, however, in concerns of most

internet communication, the connections are short-lived and have a low volume. The

presented protocol would not be suitable for short connections because it focuses on large

108



packets. It would be interesting to investigate a stream processing protocol for short

connections.

Finally, protocols are traditionally not designed with parallelization of the processing in

mind. Therefore, it would be interesting to investigate the applicability of the design

process to a general-purpose protocol such as TCP/IP.

5.1 Own Publications used in this thesis

S. Büchner, J. Nolte, R. Kraemer, L. Lopacinski and R. Karnapke, "Chal-

lenges for 100 Gbit/s end to end communication: Increasing throughput

through parallel processing", 2015 IEEE 40th Conference on Local Computer

Networks (LCN), Clearwater Beach, FL, 2015, pp. 398-401

In this publication, I developed the initial idea of using the stream-processing paradigm

for protocol processing. Furthermore, the concept of stream-operators and adaptation of

the processing engine was presented in this publication. Finally, the initial frame-format

idea that is the bases of the protocols presented in this thesis was introduced as joint

work with Dr.-Ing. Lukasz Lopacinski.

S. Büchner, L. Lopacinski, J. Nolte and R. Kraemer, "100 Gbit/s End-to-End

Communication: Designing Scalable Protocols with Soft Real-Time Stream

Processing", 2016 IEEE 41st Conference on Local Computer Networks (LCN),

Dubai, 2016, pp. 129-137.

In this publication, I used the concept to design scalable communication protocols. The

protocol I presented in this paper is an early version of the protocol presented in this

thesis. Furthermore, two different versions of the protocol were developed. A low-latency

version, similar to the singlechannel protocol presented in this thesis, and a multilane

protocol version, that provided a distinct pipeline for each communication interface. Both

protocols were evaluated in order to show the feasibility of the processing approach.

Furthermore, the integration of the FPGAs was presented in this paper as a joint work of

Dr.-Ing. Lucasz Lopacinski and my self.

Büchner, S., Lopacinski, L., Kraemer, R., et al. (2017). "Protocol Processing

for 100 Gbit/s and Beyond – A Soft Real-Time Approach in Hardware and

Software.", Frequenz, 71(9-10), pp. 427-438.

109



5.1 Own Publications used in this thesis

In this journal paper the authors jointly described a full communication system meant

for 100 Gbit/s wireless communication. The main aspects such as the stream processing

concept and Forward Error Correction (FEC) calculation and parallelization were sum-

marized. Furthermore, the integration of the external accelerator was discussed in this

publication.

S. Büchner, J. Nolte, A. Hasani and R. Kraemer, "100 Gbit/s End-to-End

Communication: Low Overhead On-Demand Protocol Replacement in High

Data Rate Communication Systems," 2017 IEEE 42nd Conference on Local

Computer Networks (LCN), Singapore, 2017, pp. 231-234.

In this paper, I introduced the concept of virtual channels as a tool for the on-demand

replacement of complete communication protocols. Furthermore, the general replacement

process was presented here. The concept was evaluated by replacing the currently used

protocol with a newly build version of itself.

S. Büchner, A. Hasani, L. Lopacinski, R. Kraemer and J. Nolte, "100 Gbit/s

End-to-End Communication: Adding Flexibility with Protocol Templates",

2018 IEEE 43rd Conference on Local Computer Networks (LCN), Chicago,

IL, USA, 2018, pp. 263-266.

In this publication, I introduced the Processing Engine Template Language (PETL) as

a tool to describe a family of communication protocols with protocol templates. I used

PETL to describe a template of the multilane protocol presented in 2016. The feasibility

of the idea was evaluated with a channel hopping hopping protocol that switched to

a new channel in case the channel quality became insufficient. The channel hopping

was achieved by dynamically building a new protocol that uses a different channel and

replacing the old protocol.

110







APPENDIX A

Supplementary Technical Information

A.1 Exchanging Processing Engines

All parts of the communication system need to implement their part of the desired pro-

cessing engine. Since the layout of a suitable processing engine depends on the application

and communication conditions and is, therefore, not known before the transmission,

the communication system is firstly initialized with a minimal processing engine called

ProtocolStub. The protocol stub, shown in figure A.1, consists of an EndpointManager,

a host-to-NIC interface, such as PCIe, a management protocol, and additional communica-

tion interfaces, such as Ethernet. The EndpointManager is responsible for managing the

local ProtocolStub, for the communication between host and NIC, and for monitoring

the communication parameters, such as the desired data rate. The management proto-

col is responsible for the management-communication with the remote communication

endpoint.

The ProtocolStub has two main objectives: Firstly, establishing a connection between

the host and the NIC and setting up a communication interface for the management

protocol. Secondly, the EndpointManager waits for a PETL description. Upon receiving

a PETL description, the ProtocolStub is patched with the new processing engine. The

PETL connection can originate from the local host or from the remote endpoint.

The protocol management is responsible for exchanging states, PETL descriptions, and

commands between two endpoints. The management protocol is a simple retransmission

protocol that employs its own virtual channel to separate itself from other processing

engines.

111









strategy because the remote copy-destination is known at all times. The zero-copy buffer

transport approach is depicted in figure A.3 and explained in the following.

After acquiring a buffer, stage A will work with the buffer until eventually passing the

buffer-handle to (remote) stage B on the remote device. The copy-process starts by

sending the buffer-handle from stage A to proxy-stage B’. The receiving input (configured

as a buffer input), will marshal the message into a special BufferMessage before passing

the message to the MsgServerlocal. Upon receiving the message, the MsgServerlocal will

firstly copy1 the buffer’s memory-area to the remote side’s buffer slot of this buffer and

will secondly transmit the BufferMessage to the remote device. On the remote-side, the

MsgServerremote will replace the base address of the buffer with the local base address,

before passing the buffer-handle to the actual stage B. From now on, stage B can work

with the buffer until it is eventually freed. Freeing the buffer is accomplished by sending

a FreeBufferMessage back, which causes MsgServerlocal to pass the buffer back to the

BufferPool.

1The DMA buffer transport was developed in the master thesis of Leonard Förster in the
context of this dissertation [87].

115





APPENDIX B

Data Link Protocol

The following pages are used to explain details of the data link protocol that were omitted

in the main body of this thesis for sake of readability.

B.1 Protocol Data Structure

The prototype data link protocol uses the following frame format. The sizes of payload,

headers, and footers are chosen to be a multiple of 64 bit, which is the memory bus width

of the targeted processing hardware (Mellanox TileGx72 [90]).

B.1.1 DataChunk

The datachunk is used for the transport of bulk-data between the protocol processing

engine and the host. The latency per datachunk and the number of host invocations1

depend on the size of the datachunk. Considering that a large datachunk causes fewer

host invocations but also a higher latency and vice versa, the size has to be a compromise.

A datachunk is described by a datachunk descriptor DataChunkDesc that contains the

address of the payload, the payload’s size, and a sequence number that is used for

reordering.

1Handling incoming and outgoing packets.

117









B.2 Description of the Protocol Processing Stages

The following pages are used to describe the behaviour of the processing stages. The

section starts with an explanation of the used message types, and is followed by the

behavior and performance measurements of the individual protocol processing stages. This

section finishes with an explanation of the complete processing engine of the prototype

data link protocol.

B.2.1 Message Types

Additionally to the protocol data types (that also act as messages), the following message

types are used by the implemented stages.

TransmissionStatus

The TransmissionStatus contains information about the transmission status of a dat-

achunk. The most important states are:

1. AllPacketsTransmittedOnce – The data packets of the datachunk were transmit-

ted and the acknowledgement phase can start.

2. AcknowledgementProcessed – The acknowledgement was completely processed,

all missing data packets were retransmitted.

3. WaitForNewChunk – A protocol pipeline is ready to process a new datachunk.

DataChunkDesc

The DataChunkDesc describes a datachunk, i.e., the chunk number (ChunkNr), the se-

quence number (SequenceNr), and size (SizeOfChunk), and it provides information about

the assigned buffer, e.g. the buffer’s pointer and its size.

121



QueueStatus

The QueueStatus is used to to coordinate the communication between host and DataChunk

Distributor (DD). It provides the number of started and finished datachunks as well as

the remaining space in the datachunk queue.

DataPacketDesc

The DataPacketDesc describes a data sub-packet, i.e., the chunk number (ChunkNr)

and the sequence number (SequenceNr) of the datachunk it belongs to. Additionally,

it provides a pointer to the data within the datachunk buffer (Address), and the data

packets id (Id).

AckDesc

The AckDesc message describes data packets that were copied into data chunk buffer.

Additionally to the data packet ids, the AckDesc contains the ChunkNr it refers to.

B.2.2 Data-Packet Generator (DG)

Figure B.1 shows the interface and the state-machine of the DG. It is configured with the

data packet size and the number of consecutive data packets to which a DataPacketDesc

message refers. The behavior of the DG’s DataChunkDescIn (DCDIn) input is described by

the state-machine. The input behavior is explained in the following.

The DG’s task is to transform a datachunk into a stream of data packets. Upon receiving

a DataChunkDesc message, the datachunk counter DG:ChunkNr of the DG is stored in

the ChunkNr field of the DataChunkDesc, i.e., the datachunk’s internal identifier is as-

signed. After forwarding the DataChunkDesc via the DG’s DataChunkStartedOut output,

the datachunk-buffer is cut into data packets according to the configured data packet

size (DG::DPSize). Each DataPacketDesc message is sent over the DataPacketDescOut

(DPDOut) output. Finally, a transmission status message with the status AllPackets-

TransmittedOnce is sent via TransmissionStatusOut (TSOut) output and the DG’s dat-

achunk counter DG::ChunkNr is increased.

122





200000

202500

205000

207500

7
66

60
19

38
22

31
8

34
16

23
15

43
3

24
11

4
17

9
10

29
33

47
30

28
13

27
6

12
18

25
49

37
26

14
21

5
20

45
59

41
56

61
70

46
50

54
32

67
57

63
35

68
44

69
55

48
36

52
51

64
65

42
40

53
62

58
39

Cpu − DataPacketGenerator::DataChunkDescInput)
Message Class: DataChunkDesc

n
s
 p

e
r 

D
a
ta

C
h
u
n
k
D

e
s
c
 m

e
s
s
a
g
e

Figure B.2: Time-Per-Message (TPM) in ns per DataChunk message depending on the
mapping of the DGs.

200,000

250,000

300,000

350,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketGenerator (DataChunkDesc input)

n
s
 p

e
r 

D
a

ta
C

h
u

n
k
D

e
s
c
 m

e
s
s
a
g
e

Figure B.3: Contention TPM of the DataChunkDescIn input of the Data-Packet -

Generator (DG).

DataChunkDesc message, the contention measurements are conducted with 8 consumer-

stages. The results for the contention measurements are shown in figure B.3 for the

(inconclusive) best case mapping. As the DG is purely CPU bound and does not compete for

any resources but the message passing subs-system, the DG does not show any contention

effects. However, the dependency of the DG on a sufficient amount of consumers can

be seen clearly, as the TPM stays constant for up to 18 parallel DGs, but once all

message-consumers are utilized the TPM starts increasing significantly due to the back

pressure flow control.

B.2.3 Acknowledgement Processor (AP)

The behavior of the AP is described by the interface and the state-machine shown in figure

B.4. The AP combines several tasks. However, retransmitting missing packets is its main

responsibility. Additional tasks are: Requesting acknowledgements from the receiver,

124





as well as notifying other stages about the complete transmission of a datachunk. The

AP is configured with a bufferpool of network frames, the amount of redundantly sent

AckRequestFrame messages (APRedundancy), and the data packet payload size (DPSize).

The input behaviour is as follows:

The AP starts in the WaitForDC state in which it waits for a DataChunkDesc. In this

state all messages but a DataChunkDesc message received at DataChunkStartedIn (DCSIn)

input are ignored. Upon receiving a DataChunkDesc message at the DCSIn input, the

DataChunkDesc is stored and the AP switches into the WaitFinish state.

In the WaitFinish state the AP waits for a message that signals that a prior (re)-

transmission of data packets or a whole data chunk was finished. This happens either by

a TransmissionStatus message received at the TransmissionStatusIn (TSIn) input, or

a FinalAckFrame received at the FinalAckFrameIn (FAckIn) input, that states that the

current datachunk was completely transmitted. In the case of a received Transmission-

Status::AllPacketsTransmittedOnce or TransmissionStatus::AcknowledgementPro-

cessed message at the TSIn, the AP arms the ARTimeout and switches into the Wait For Ack

state. In the case a FinalAckFrame is received at the FAckIn input, the AP switches into

the Wait For Data Chunk (DC) state, disarms the ARTimeout, and sends a Transmission-

Status::DataChunkComplete per its TransmissionStatusOut (TSOut) output.

In the Wait For Ack state, the AP waits for AckFrame, FinalAckFrame, and Timestamp

messages, where FinalAckFrame messages are handled the same as in the Wait Fin-

ish state. Upon receiving a Timestamp message at the ARTimeout, APRedundancy ×

AckRequestFrame are sent over the AcknowlegdementRequestOut (AROut) output and

the ARTimeout is rearmed. When an AckFrame is received at the AcknowledgementIn in-

put, the acknowledgement is scanned for missing packets. For each missing packet a

DataPacketDesc is created and sent via the DataPacketDescOut output. After sending all

missing packets, a TransmissionStatus::AcknowledgementProcessed message is sent

per APOut.

Performance Characteristics

The AP has four inputs and one timeout. While the measurement of the DataChunk-

StartedIn, TransmissionStatus, and AckRequestTimeout inputs is straight forward, the

AcknowledgementIn and FinalAcknowledgementIn inputs need a special measurement

126



setup because their inputs expect network Frame messages that have to be emulated.

During the measurements, the network interfaces are simulated for incoming network-

frames, i.e., the network-frame’s memory addresses are set up as they would have been by

the network interface. Additionally, the costs for freeing a network-frame are simulated

by waiting for 144 cycles (as it would take to free a network-frame) instead of actually

freeing a network frame. Furthermore, the framework’s timeout mechanism is disabled in

order to avoid unwanted influence by timeouts.

Sensitivity to the mapping

The dominant input of the AP is the AckFrameIn input, in combination with the AckFrame

(1500 mp/2 ap) message class, i.e., 1500 missing packets in two ack-packets.

In order to measure the AckFrameIn input, the acknowledgment frames have to be prepared

with the corresponding number of missing packets and valid ack-packets, as classified

during the simulation. The missing packets are evenly distributed over all valid ack-

packets. Before the AckFrameIn input can be measured, the AP has to be set up with

a valid DataChunkDesc, and then switched into the Wait For Ack state by sending a

TransmissionStatus::AllPacketsTransmittedOnce message.

The TPMAckFrame (1500 mp/2 ack-packets)
AckFrameIn

sensitivity to the mapping is shown in figure B.5.

The results show a minor increase of the median TPM from 401041 ns to 401568 ns ,

which means that the AP is not sensitive on its mapping to a certain Central Processing

Unit (CPU). Additionally, the results also show a high interquartile range, which is caused

most probably by different memory-access costs due to the location of the received network

395000

400000

405000

20
51

13
28

34
44

50
52

37
24

32
26

36
58

35
43

14
10

30
42

67
15

61
65

59
22

38
64

60
33

48
39

41
46

57
49

66
62

69
40

55
53

68
31

16
27

12
5

9
4

70
45

6
17

56
23

3
25

18
47

21
7

11
54

19
29

63
8

Cpu − AckProcessor::AckFrameInput

n
s
 p

e
r 

A
c
k
F

ra
m

e
M

C
: 
1
5
0
0
 m

is
s
in

g
 p

a
c
k
e
ts

/2
 s

e
g
m

e
n
ts

) 
m

e
s
s
a
g
e

Figure B.5: TPM in ns per AckFrame (1500 mp/2 ack-packets) message depending
on the mapping of the APs.

127



frame. Consequently, the AP is sensitive to the mapping, however, on a per-message basis.

Since the APs will have to process network frames whose payload are possibly located on

all memory controllers, no conclusive answer on the mapping-sensitivity can be given.

Acknowledgement input (AckIn):

The AckFrameIn input receives messages of 10 different classes, depending on the num-

ber of missing packets and valid ack-packets, as discussed earlier for the simulation

results. The following performance analysis shows only the results for AckFrame (50

missing packets (mp)/1 ack-packets (ap)), i.e., 50 missing packets in 1 ack-packet,

and AckFrame (1500 mp/2 ap), i.e., 1500 missing packets in two ack-packets. However,

the analysis was, of course, performed for all message classes.

In order to avoid that the message consumers become a bottleneck, seven parallel

consumers will be used during the measurements. The TPMs for parallel processing

are shown in figure B.6 for the message classes AckFrame (50 mp/1 ack-packet) and

AckFrame (1500 mp/2 ack-packets). The results show that up to 20 AP are not able

to saturate 12 consumers, i.e., the results are not affected by contention due to the

back-pressure flow-control.

The median TPMs for both message classes follow the same pattern, however, have

different ranges. The results for the message class AckFrame (1500 mp/2ap) are in a

range from 441114 ns to 450489 ns , whereas the range for the message class AckFrame

(50 mp/1ap) is from 23478ns and 26392ns . The results are nearly constant, with an

exception for just 1 AP for which the TPM is lower than for 2+ AP. Taking only actual

parallel execution into account, i.e., parallelization counts of greater than 1, the range

shrinks to medians between 438580 ns and 441664 ns (AckFrame (1500 mp/2ap)) and

25025 ns and 25212 ns (AckFrame (50 mp/2ap)), respectively. This means, no actual

contention exists.

FinalAcknowledgement input (FinalAckIn):

The FinalAcknowledgementIn (FinalAckIn) input receives messages of two classes: Final-

AckFrame (Valid) and FinalAckFrame (Invalid). In the case the FinalAckFrame is

128



23500

24000

24500

25000

25500

26000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckProcessor::AckFrameInput

n
s
 p

e
r 

A
c
k
F

ra
m

e
M

C
: 

5
0
 m

is
s
in

g
 p

a
c
k
e
ts

 /
 1

 a
c
k
−

p
a
c
k
e
ts

 m
e
s
s
a
g
e

400000

420000

440000

460000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckProcessor::AckFrameInput

n
s
 p

e
r 

A
c
k
F

ra
m

e
M

C
: 

1
5
0
0
 m

is
s
in

g
 p

a
c
k
e
ts

 /
 2

 a
c
k
−

p
a
c
k
e
ts

 m
e
s
s
a
g
e

Figure B.6: Performance Characteristics of the AckFrame input of the Acknowledge-

ment Processor (AP) for the message classes: AckFrame (50 mp/1 ap) (left), and
AckFrame (1500 mp/2 ap) (right).

600

610

620

630

640

650

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckProcessor::FinalAckFrameInput

n
s
 p

e
r 

F
in

a
lA

c
k
F

ra
m

e
M

C
: 
va

lid
 F

in
a

lA
c
k
F

ra
m

e
 m

e
s
s
a
g
e

168

169

170

171

172

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckProcessor::FinalAckFrameInput

n
s
 p

e
r 

F
in

a
lA

c
k
F

ra
m

e
M

C
: 
in

va
lid

 A
c
k
F

ra
m

e
 m

e
s
s
a
g
e

Figure B.7: TPM of the FinalAck input of the Acknowledgement Processor (AP) for
valid (left) and invalid (right) FinalAckFrames.

valid, i.e., it belongs to the current datachunk and the AckFrame’s sequence number is

not outdated, the AP forwards the current datachunk via the DataChunkDoneOut output

and switches into the Wait for DC state. In order to measure the FinalAckIn input for

the message class FinalAckFrame (Valid), the AP has to be brought into the Wait For

Ack state before each measurement.

The TPM for parallel execution of the AP is shown in figure B.7 (left). The measured

median TPMFinalAckFrame (Valid)
FinalAckFrameIn

span from 612ns to 633 ns per message, whereas no

influence of the parallelization on the TPM is seen.

The measurement for the FinalAckFrame (Invalid) message class does not need any

prior setup. The AP is initialized in the Wait For Datachunk, which will render any

incoming FinalAck message invalid. The resulting medians (see B.7/right) are constant

at 170ns , i.e., the parallelization does not have any impact on the TPM.

129



DataChunkStartedIn (DCSIn) input and TransmissionStatusIn (TSIn) input:

The DataChunkStartedIn input and the TransmissionStatusIn input are used to alter

the state of the AP, such as bringing the AP into the Wait For Ack state in which it

receives and processes incoming acknowledgements.

In the case a DataChunkDesc message is received at the DCSIn input, the DataChunkDesc

is stored and the AP switches to the Wait Finish state. Since this is done for any incoming

DataChunkDesc message regardless of the current state, no setup of the AP is necessary.

The TPMDataChunkDesc
DCSIn

for the parallel execution are shown in figure B.8 (left). The results

show low TPMs that are not affected by higher parallelization counts. That was to be

expected, because changing the internal state and storing the new DataChunkDesc in a

local variable is neither costly, nor exists any competition for shared resources.

The TSIn input is used to change the AP’s state from Wait Finish into Wait For Ack,

as long as the received TransmissionStatus::AllPacketsTransmittedOnce message

belongs to the currently stored DataChunkDesc. Therefore, in order to measure the

TPMTransmissionStatus
TSIn

, the AP has to be set up with a valid DataChunkDesc by using the

DCSIn input. The results are shown in figure B.8 (right). The results show slightly higher

TPMs, which are caused by forwarding the incoming TransmissionStatus message.

Again, the results were to be expected due to the low processing costs of the performed

task.

AcknowledgementRequestTimeout (ARTimeout)

The AcknowledgementRequestTimeout is technically not an input but a timeout. However,

each timeout can also be used as an input, and be measured as such. The ARTimeout is

used to trigger the sending of an AckRequestFrame to the receiver in the case the AP is in

the Wait For Ack state. In order to measure the TPM for a timeout, the AP is set up with

a DataChunkDesc and a TransmissionStatus::AllPacketsTransmittedOnce message.

The timeout itself is triggered manually by sending a Timestamp message to the ARTimeout.

Additionally, in order to prevent contention at the message consumer due to freeing the

outgoing AckRequestFrames, this benchmark uses 8 consumers. The TPMTimestamp
ARTimeout

is

shown in figure B.9.

130



80

82

84

86

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckProcessor::DataChunkStartedInput

n
s
 p

e
r 

D
a
ta

C
h
u
n
k
D

e
s
c
 m

e
s
s
a
g
e

210

220

230

240

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckProcessor::TransmissionStatusInput

n
s
 p

e
r 

T
ra

n
s
m

is
s
io

n
S

ta
tu

s
 m

e
s
s
a
g
e

Figure B.8: TPM of the DataChunkStarted input (left) and the TransmissionStatus

input (right) of the Acknowledgement Processor (AP).

2000

4000

6000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckProcessor::AckRequestTimeout

n
s
 p

e
r 

T
im

e
s
ta

m
p

 m
e
s
s
a
g
e

Figure B.9: Performance Characteristics of the AcknowledgementRequest Request

timeout.

The parallelization shows a clear contention effect on the TPM when 6 or more AP process

Timestamp messages in parallel. This is due to contention on the message passing sub

system and the NetworkOutBuffer pools which have to provide 2 network-buffers (2

because of AckRequest redundancy) for each incoming Timestamp message. Furthermore,

these network-frames are freed immediately afterward by one of the consumers which

increases the contention. The additional work done by the consumers lead to over-

utilization that stall the processing due to the back-pressure flow control. However, the

analysis stated that only one AP is needed, therefore, it was not necessary to repeat the

measurements.

B.2.4 Data-Packet Combiner (DC)

The Data-Packet Combiner (DC) is responsible for copying data packets from a data

frame into the destination position within the datachunk. The interface and EFSM are

shown in figure B.10.

131





6200

6300

6400

6500

6600

6700

25
50

42
11

19
43

37
33

35
49

41
47

34
51

30
20

31
39

57
58

13
52

46
54

12
59

38
4

28
14

44
27

15
21

66
62

36
22

29
55

24
26

67
23

18
32

17
53

16
56

45
65

8
6

61
70

48
60

9
64

40
63

7
10

5
68

69

Cpu − DataPacketCombiner::DataFrameInput

n
s
 p

e
r 

D
a
ta

F
ra

m
e
 m

e
s
s
a
g
e

 M
C

: 
8
 d

a
ta

−
p
a
c
k
e
ts

 m
e
s
s
a
g
e

Figure B.11: Time-Per-Message (TPM) in ns per DataFrame (8 DP) message depending
on the mapping of the DCs.

sending. The results of the mapping analysis are shown in figure B.11. The results show

that the mapping has a minor effect on the processing time as the median TPMs are in a

range between min. 6121 ns and max. 6300 ns .

DataFrameIn input

The contention measurements employ 16 DataFrame producers because building a DataFrame

is expensive, which reduces the maximum message output of the data producer. In the

case the message output is to low the benchmark does not create a contention situation

and the measurements are maybe faulty.

The measured contention TPMs for the message classes DataFrame (8 data packets

(DP)) (up) and DataFrame (1 DP) (down) of the DC are shown in figure B.12. The results

for the message class DataFrame (8 DP) show no sign that the mapping has an impact

on the TPM. However, they also show clearly that the DC suffers from contention, which

was to be expected because all parallel DCs compete for the memory controllers.

The results for the message class DataFrame (1 DP) show the contention effect only up

to 6 parallel DCs. However, this is no reason for celebration, as it is a consequence of

the used benchmark. The message producers need more time to build a DataFrame than

7 DCs need to process them, consequently, the latency between two DataFrame (1 DP)

messages increases until no contention exists anymore. Generally, this is a reason to

increase the number of producers, however, in the case of the 40 Gbit/s example (see 4.6)

five parallel DC are sufficient to fulfill the soft real-time requirements. Consequently, there

is no need for contention results, for parallelization counts higher than 5. Furthermore,

133



5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

15,000

16,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketCombiner::DataFrameInput

n
s
 p

e
r 

D
a
ta

F
ra

m
e
 m

e
s
s
a
g
e

 M
C

: 
8
 d

a
ta

−
p
a
c
k
e
ts

 m
e
s
s
a
g
e

best mapping

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

15,000

16,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketCombiner::DataFrameInput

n
s
 p

e
r 

D
a
ta

F
ra

m
e
 m

e
s
s
a
g
e

 M
C

: 
8
 d

a
ta

−
p
a
c
k
e
ts

 m
e
s
s
a
g
e

worst mapping

1,100

1,150

1,200

1,250

1,300

1,350

1,400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketCombiner::DataFrameInput

n
s
 p

e
r 

D
a
ta

F
ra

m
e
 m

e
s
s
a
g
e

 M
C

: 
1
 d

a
ta

−
p
a
c
k
e
ts

 m
e
s
s
a
g
e

best mapping

1,100

1,150

1,200

1,250

1,300

1,350

1,400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel DataPacketCombiner::DataFrameInput

n
s
 p

e
r 

D
a
ta

F
ra

m
e
 m

e
s
s
a
g
e

 M
C

: 
1
 d

a
ta

−
p
a
c
k
e
ts

 m
e
s
s
a
g
e

worst mapping

Figure B.12: TPM for the DC.DataFrameIn input in ns under parallel execution. The
best mapping is shown left and the worst mapping is shown right.

the simulation for the overhead measurements in section 4.7.1 identified only DataFrames

of the message class DataFrame (8 DP) for which the latency problem does not exist.

DataChunkDescIn input

Measuring the TPM for the DataChunkDescIn (DCDIN) input is straightforward and does

neither need a special setup of the DataChunkDesc message, nor any setup of the DC.

The results of the contention measurements are shown in figure B.13. As expected (the

DataChunkDesc message is only stored), no contention effects or influence of the mapping

can be seen.

B.2.5 Acknowledgement Generator (AG)

The AG is configured with the number of data packets per datachunk, the number of

acknowledgement segments per AckFrame, and a buffer pool for network frames. The AG

134





The AG is now in the Wait for AD state and waits for further AckDesc messages, as well

as AckRequestFrame messages. For each received AckDesc message that is received at the

AckDescIn input, the AG checks whether the data packet was already marked as received.

The new data packets are marked in the acknowledgement and the data packet counter is

increased.

In the case the data packet counter reaches the number of data packets per datachunk

(DPPerDC), a FinalAckFrame is sent via the FinalAckOut output. Additionally, the current

DataChunkDesc of the finished datachunk is forwarded via the DataChunkFinishedOut

output, and a new DataChunkDesc is prepared and distributed via the DataChunkDescOut

output. Finally, the AG switches back into the DC finished state. However, the current

acknowledgement is kept for future AckRequestFrame messages, until the first AckDesc

of the new datachunk arrives.

Upon receiving an AckRequestFrame message at the AckRequestIn input, the current

acknowledgement is sent no matter the current state of the AG.

Sensitivity to the Mapping

The dominant input of the AG is the AckDescIn input that receives AckDesc messages.

Measuring the AckDescIn input is straight-forward because the only requirement is that

the AckDesc messages belongs to the current datachunk and that the data packets, referred

to by the AckDesc are not yet marked as received. Therefore, the message producer

provides unique AckDesc messages for each measurement.

The sensitivity of the AG on its mapping is shown in figure B.15. The median TPM are in

a range from 200 ns to 215 ns , i.e., there is no sensitivity to the mapping.

AckDescIn input

The parallel measurements for the AckDescIn input are shown in figure B.16. As to be

expected no difference between best- and worst-case mapping can be identified. Further-

more, there is no measurable contention under parallel execution. That also was expected

136



200

205

210

215

51
44

14
9

10
12

13
16

38
41

56
62

3
4

15
19

34
52

58
63

66
7

8
18

20
21

22
24

27
28

29
30

31
33

35
37

42
46

47
55

61
64

68
69

17
25

26
32

40
45

48
54

57
60

67
70

6
11

23
36

39
43

49
50

53
59

65
5

Cpu − AckGenerator (AckDesc input)

n
s
 p

e
r 

A
c
k
D

e
s
c
 m

e
s
s
a
g
e

Figure B.15: Processing time in ns per AckDesc message depending on the mapping of
the AGs.

200

205

210

215

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckGenerator::AckDescInput

n
s
 p

e
r 

A
c
k
D

e
s
c
D

e
s
c
 m

e
s
s
a
g
e

Best Mapping

200

205

210

215

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parallel AckGenerator::AckDescInput

n
s
 p

e
r 

A
c
k
D

e
s
c
D

e
s
c
 m

e
s
s
a
g
e

Worst Mapping

Figure B.16: Contention measurements for the AckDescIn input for the best mapping
(left) and the worst mapping (right).

since marking newly received data packets in the acknowledgement is done on the local

acknowledgement that is most probably available in the local cache.

AckRequestIn input

Two message classes were identified for the AckRequestIn input: AckRequest (Invalid)

and AckRequest (Valid). Measuring the TPM for the message class AckRequest

(Invalid) does not need any setup or special attention to the AckRequest message.

All incoming AckRequest messages with an outdated sequence number or AckRequests

that do not belong to the current datachunk are considered invalid. The results of the

measurement for the message class AckRequest (Invalid) are shown in figure B.17. The

results show no difference between best case and worst case mapping and no sign of

contention.

137









Frame Distributor (FD)

The FD needs no configuration because all necessary information are stated in the network-

frame. The FD’s interface (figure B.20c) has one input and four outputs, one fore each

frame type. Upon receiving a valid Frame on its FrameIn input, the frame is forwarded to

the specified output.

DataChunk Distributor (DD)

The DD (figure B.20d) is responsible for the flow control between host and processing

engine. This is done by buffering datachunks that are received at the DataChunkDescIn

(DCDIn) input when the processing engine is not yet ready for a new datachunk.

In order to determine whether the processing engine is ready, the DD receives Transmission-

Status messages on its TransmissionStatusIn (TSIn) input and monitors the status of the

transmission. Upon receiving a TransmissionStatus::WaitingForDatachunk message,

the oldest buffered datachunk is sent by using the DataChunkDescOut (DCout) output. Ad-

ditionally, it distributes the current QueueStatus, i.e, the number of waiting datachunks,

of the datachunk queue via the QueueStatusOut (QSout) output.

Channel Manager (CM)

The CM (figure B.20e) is responsible for selecting a virtual channel for a datachunk

that is received at the DataChunkDescIn input. In order to determine the status of

the channels, the CM monitors the status of all connected protocol pipelines with the

help of incoming TransmissionStatus messages. Once, a protocol pipeline (i.e., virtual

channel) is free, the CM sends a TransmissionStatus::WaitForNewChunk message via its

TransmissionStatusOut (TSOut) output. Additionally, the CM stores the DataChunkDescs

that are currently processed by a protocol pipeline, and frees the corresponding datachunks

upon receiving the TransmissionStatus::WaitForNewChunk message.

141





B.3 Full Protocol Processing Engine Description

The Data Producer (DP) represents the host and allocates buffers and fills the buffers

with data to be transmitted. These buffers are passed to the DataChunk Distributor

(DD), which provides a buffer-queue that contains datachunks that have to be transmitted.

The DD informs the DP about the fill-level of the queue. Each buffer in the queue is passed

to the Channel Manager (CM) which chooses a free virtual channel for that buffer. For

that purpose, the CM notifies the DD when a virtual channel is free to process the next

datachunk.

The actual protocol processing starts with the Data-Packet Generator (DG) that re-

ceives a DataChunkDesc and cuts the corresponding buffer into DataPackets and forwards

the individual data packets to the Data-Packet Aggregator (DA). After cutting the

datachunk into pieces, the DG notifies the DA that all data packets were forwarded. Ad-

ditionally, the DG notifies the Acknowledgement Processor (AP) what datachunk is

currently processed. The DA receives the individual data packets and aggregates them into

a network frame. Upon receiving the notification from the DG (that all data packets are pro-

cessed), the DA finishes the current network frame and forwards the notification to the AP,

which then knows that all packets of the current datachunk went through the DA. Conse-

quently, it sends an AcknowledgementRequest and switches into the retransmission mode

in which it accepts incoming acknowledgments. Before any frame is transmitted by the

Communication (COM) interface, the Forward-Error-Correction/Cyclic-Redundancy-

-Check (FEC/CRC) stage processes the frame and the Output Channel (OutCH) assigns

the virtual channel number to the VirtualChannelHeader.

On the receiver side, the Input Channel (InCH) inspects the VirtualChannelHeader

of the network frame and forwards the frames to the corresponding protocol pipeline.

Afterward, each incoming network frame is checked for errors that are corrected if

possible by the FEC/CRC stage. The corrected network frame is then passed to the

Frame Distributor (FD). The FD reads the frame-type and forwards DataFrames to the

Data-Packet Combiner (DC) and AcknowledgementRequests to the Acknowledgement

Generator (AG). The DC copies the payload from the individual data packets into the

current datachunk-buffer, which was received from the AG. The IDs of the data packets are

passed to the AG that marks each of the packets as correctly received. In case all packets are

received, the AG forwards a FinalAcknowledgement to the FEC stage and acquires a new

datachunk buffer that is given to the DC. Upon receiving an AcknowledgementRequest

the AG answers with the current Acknowledgement.

143



After being forwarded to the corresponding protocol pipeline (InCH) and checked by

the sender sides FEC/CRC stage, this FinalAcknowledgement/Acknowledgement is fi-

nally received by the FD on the sender side. The sender-side FD reads the frame-

type and forwards AcknowledgementFrames to the AP’s acknowledgement input and

FinalAcknowledgements to the final-acknowledgement input. Upon receiving a Final-

Acknowledgement, the AP notifies the CM, which frees the corresponding datachunk buffer,

marks the virtual channel as free and notifies the DD. The DD can now forwards the first

waiting datachunk to the CM. In case an Acknowledgement with missing data packets

was received, the missing packets are forwarded by the AP to the DA. After all missing

data packets from the Acknowledgement were transmitted, the AP notifies the DA that it

should finish the current frame. This notification is sent back to the AP which in turn

requests a new acknowledgement.

144



Time →

Channel
↓

0ms 10ms 20ms 30ms 40ms

Channel 0 2.3 × 10−4 1.4 × 10−4 9.5 × 10−5 7.1 × 10−4 7.0 × 10−4

Channel 1 2.4 × 10−2 1.5 × 10−4 3.6 × 10−3 2.1 × 10−1 8.0 × 10−4

Channel 2 8.5 × 10−3 9.6 × 10−5 1.5 × 10−5 6.0 × 10−5 3.9 × 10−4

Channel 3 7.9 × 10−6 8.8 × 10−5 1.0 × 10−3 9.5 × 10−5 4.2 × 10−4

Channel 4 9.2 × 10−4 9.3 × 10−5 4.0 × 10−5 9.9 × 10−4 5.0 × 10−5

Channel 5 2.8 × 10−4 3.0 × 10−4 2.1 × 10−3 9.0 × 10−4 5.0 × 10−4

Channel 6 3.2 × 10−4 3.0 × 10−5 9.0 × 10−5 9.3 × 10−5 3.8 × 10−4

Channel 7 8.0 × 10−5 7.1 × 10−5 9.7 × 10−4 7.1 × 10−5 3.7 × 10−4

Time →

Channel
↓

50ms 60ms 70ms 80ms 90ms

Channel 0 9.0 × 10−4 5.0 × 10−4 6.4 × 10−4 9.0 × 10−4 5.6 × 10−5

Channel 1 2.2 × 10−5 3.2 × 10−5 9.4 × 10−5 9.0 × 10−5 2.7 × 10−5

Channel 2 5.5 × 10−3 7.2 × 10−5 6.4 × 10−3 2.2 × 10−4 1.6 × 10−3

Channel 3 2.1 × 10−4 2.0 × 10−4 4.0 × 10−3 9.0 × 10−5 5.0 × 10−5

Channel 4 1.2 × 10−5 1.7 × 10−5 3.4 × 10−3 2.2 × 10−2 9.6 × 10−5

Channel 5 9.0 × 10−4 9.9 × 10−5 9.0 × 10−5 4.0 × 10−4 6.0 × 10−3

Channel 6 9.0 × 10−4 4.0 × 10−3 4.4 × 10−5 9.0 × 10−5 9.3 × 10−5

Channel 7 5.0 × 10−5 9.2 × 10−5 9.4 × 10−5 4.2 × 10−3 5.6 × 10−2

Table B.1: Channel BER for the dynamic channel bonding scenario.

145



List of Figures

1.1 A soft real-time stream processing representation for communication

protocols with retransmissions (top). A "smart" network interface card

consisting of a manycore processor and Field Programmable Gate Array

(FPGA) for the protocol processing (bottom). . . . . . . . . . . . . . . . 3

3.1 Stream processing based protocol implementation (adapted from [78]). . 38

3.2 The refining process for the sender-side processing engine depending on

the dataflow of the protocol from the general protocol to a coarse grained

protocol separation finally resulting in a fine-grained processing engine. . 39

3.3 Soft real-time requirements for the example processing engine. . . . . . . 40

3.4 Simplified measuring setup for the estimation of the performance char-

acteristics, e.g., necessary processing time per message, of stage B. The

Input Message Producer sends messages with the maximum possible data

rate and the Output Message Consumer receives and consumes the output

messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Soft real-time requirements and performance characteristics of the pro-

cessing engine. The Framing, Error-Coding and Error-Handling stages

pose bottlenecks because the soft real-time requirements are higher than

the measured performance characteristics. . . . . . . . . . . . . . . . . . . 42

3.6 The stream operators manipulate the message stream without concern

for the message’s content. The possible operators are: a) Stream-Split b)

Stream-Duplicate, and c) Stream-Join . . . . . . . . . . . . . . . . . . . . 43

3.7 Soft real-time requirements and performance characteristics of the pro-

cessing engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Readaptation process for a processing engine: a) When the stages C1 and

C2 are over-utilized, the a re-adaption adds more stages of type C to the

processing engine. b) When the stages C1 to C4 are under-utilized, then

a readaptation may remove stages of type C. . . . . . . . . . . . . . . . . 46

146



3.9 a) A virtual channel (CH) is used to distinguish the data streams between

two processing engines that are using the same communication interface. b)

Replacement procedure (adapted from [82]) of a processing engine. Virtual

channels are used to multiplex the original processing engine (red) and

the new processing engine (green) on the same communication interface.

The old processing engine is drained, while the new processing engine is

already used for the ongoing transmission in order to avoid disruptions in

the protocol processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 The data structures of the prototype link layer protocol (further developed

from [7]). Each frame is segmented into smaller sub-packets of three

types: Data-Packets carry data-payload that belongs to a datachunk, Ack-

Request-Packets are used to trigger the receiver to (re-)send an aggregated

acknowledgment, and Ack-Packets carry parts of an acknowledgment.

Since each frame can only contain sub-packets of the same type, super-

frames can be used to further aggregate frames of different types. . . . . 53

4.2 Coarse-grained EFSM of the sender-side protocol. . . . . . . . . . . . . . 55

4.3 Coarse-grained EFSM of the receiver-side protocol. . . . . . . . . . . . . 57

4.4 The sender side processing engine of the presented data link protocol. The

processing tasks mentioned in the protocol’s sender and receiver EFSM

are assigned to the corresponding stages. . . . . . . . . . . . . . . . . . . 58

4.5 The receiver side processing engine of the presented data link protocol.

The processing tasks mentioned in the protocol’s sender- and receiver

EFSM are assigned to the corresponding stages. . . . . . . . . . . . . . . 59

4.6 The interface of the Data-Packet Aggregator (DA). . . . . . . . . . . . 62

4.7 The EFSM of the Data-Packet Aggregator (DA). The EFSM describes

the behaviour of the DA depending on its internal state and the messages

received at its inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 The results of soft real-time requirement estimation. The processing engine

was used in a simulated transmission with a BER of 10−5. . . . . . . . . 67

4.9 TPM in ns per DataPacketDesc message with the message class 8 DPs

depending on the mapping of the DAs. . . . . . . . . . . . . . . . . . . . . 74

4.10 Heat-map of the TPM in ns per DataPacketDesc message with the mes-

sage class 8 DPs showing the effect of the memory striping. The lowest

TPMs were measured in the case the distance to the memory controllers

is similar, i.e., in the middle of the CPU grid. . . . . . . . . . . . . . . . 75

147



4.11 Performance Characteristics of the DataPacketDescIn input of the DA for

the message class DataPacketDesc (8 data-packets), depending on the

mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Performance Characteristics of the DataPacketDescIn input of the DA for

the message class DataPacketDesc (1 data-packet), depending on the

mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.13 TPM of the FinishFrame input of the Data-Packet Aggregator (DA)

for the message class TransmissionStatus (Empty Frame) (Best case

mapping right and worst case mapping left). . . . . . . . . . . . . . . . . 77

4.14 TPM of the FinishFrame input of the Data-Packet Aggregator (DA)

for the message class TransmissionStatus (Non-Empty Frame) (Best

case mapping right and worst case mapping left). . . . . . . . . . . . . . 77

4.15 The analysis focuses on the processing engine subset Data-Packet -

Generator (DG), Data-Packet Aggregator (DA), and Acknowledgement

Processor (AP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.16 A possible mapping of the processing engine to the processing hardware.

The FEC/CRC stages are offloaded to external FPGAs. . . . . . . . . . . . 83

4.17 Goodput, throughput, and latency of the adapted processing engine, given

a BER of 10−5. The grey line shows the throughput, i.e., the complete

channel utilization with transmission and retransmission, the black line

shows the goodput per datachunk. The average goodput per transmission

is 37.29 Gbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.18 a) The singlechannel protocol monopolizes the communication-channel

for transmission of single datachunk at a time. b) The multichannel

protocol interleaves the communication-channel with the transmission of

two datachunks simultaneously. . . . . . . . . . . . . . . . . . . . . . . . 86

4.19 The multichannel protocol interleaves the communication channel with two

parallel transmissions. The transmission of a datachunk on one virtual

channel is interleaved with the retransmissions of the second virtual

channel, therefore fully utilizing the communication channel’s capacity. . 86

4.20 Goodput, throughput, and latency of the double-pipeline processing engine

given a BER of 10−5. The grey line shows the throughput,i.e., the complete

channel utilization with transmission and retransmission, the black line

shows the goodput per datachunk. The average goodput per transmission

is 39.99 Gbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

148



4.21 Goodput and latency of the communication system with and without

attached FPGAs [7]. The stated packet-loss was simulated at the FPGA. 89

4.22 Per-channel capacity in Gbit/s given a data-packet payload size of 1024

Bytes and the BER from table B.1. The BER changes every 10ms, the

pattern repeats after 100 ms. The interfaces are ordered descending by

their capacity. The interfaces that are framed in the graph are used

(channel bonded) by the adapting processing engine. . . . . . . . . . . . . 96

4.23 Throughput and goodput of a static version of the multichannel protocol

that was adapted (5× Data-Packet Aggregator (DA), 4×Data-Packet

Combiner (DC)) for 30 Gbit/s, but was also given access to all channels.

The desired data rate for the transmission was 29 Gbit/s. . . . . . . . . . 97

4.24 Throughput and goodput of a static version of the multichannel proto-

col that uses all eight 10 GbE interfaces and was also adapted (17×

Data-Packet Aggregator (DA), 12×Data-Packet Combiner (DC)) in

order to be able to utilize all interfaces. The desired data rate for the

transmission was 29 Gbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.25 Throughput and goodput of the multichannel protocol that was continu-

ously adapted to the channel conditions. The protocol is adapted and de-

ployed every 10ms, when the changed BER is noted by the EndpointManager.

The adaptation is based on the minimum number of necessary channels

and the resulting theoretical data rate. The desired data rate for the

transmission was 29 Gbit/s. . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.26 Latency per datachunk of the static multichannel protocol that uses

all eight 10 GbE interfaces and was also adapted (17× Data-Packet -

Aggregator (DA), 12×Data-Packet Combiner (DC)) in order to be able

to utilize all interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.27 Latency of the adapting multichannel protocol. The protocol is adapted

and deployed every 10ms, when the changed BER is noted by the EndpointManager.

The adaptation is based on the minimum number of necessary channels

and the resulting theoretical data rate. . . . . . . . . . . . . . . . . . . . 98

4.28 The costs of the on-demand readaptation of the processing engine. . . . . 99

149



4.29 The sending host changes the desired data rate over time. This leads

to readaptation of the singlechannel protocol as long as the desired data

rate is below 70 Gbits/s. In the case, the desired data rate increases over

70 Gbit/s, the whole protocol is replaced with the multichannel version.

The goodput-graph is annotated with the number of combined interfaces

and the protocol version (e.g., 2s – 2 interfaces/singlechannel, 8m – 8

interfaces, multichannel). . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.30 The protocol processing engine is distributed over two devices per endpoint.103

4.31 The goodput and throughput of a multi device transmission. . . . . . . . 104

A.1 a) The host and the Network-Interface-Card (NIC) start with a minimal

ProtocolStub. After connecting the stubs via a communication interface,

such as PCI Express, the host sends the Processing Engine Template

Language (PETL) description to the other ProtocolStub. b) Upon

receiving a PETL description, the ProtocolStub patches itself with the

new processing engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.2 Address information lookup and cross-device message delivery with the

help of proxy messages and proxy-stages. The steps are as follows: 1.

Configure message. 2. Send lookup-request. 3. Forward lookup request to

remote lookup server. 4. Retrieve stage B’s address information. 5. Send

lookup-answer. 6. Forward lookup answer to proxy B’. 7+. Send message

from A to B by using the configured proxy B’. . . . . . . . . . . . . . . . 113

A.3 Transparent zero-copy buffer transport using slotted buffer-pools and a

proxy concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.1 The interface (i.e., inputs and outputs) and EFSM of the Data-Packet

Generator (DG) stage. The DG is responsible for cutting a datachunk

into data packets, and forwarding the corresponding DataPacketDesc

messages via its DataPacketDescOut output. . . . . . . . . . . . . . . . . 123

B.2 Time-Per-Message (TPM) in ns per DataChunk message depending on

the mapping of the DGs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3 Contention TPM of the DataChunkDescIn input of the Data-Packet -

Generator (DG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.4 The interface and state machine of the Acknowledgement Processor

(AP). The AP is used to process segmented acknowledgements and retrans-

mit any missing data packet it encounters. . . . . . . . . . . . . . . . . . 125

150



B.5 TPM in ns per AckFrame (1500 mp/2 ack-packets) message depending

on the mapping of the APs. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.6 Performance Characteristics of the AckFrame input of the Acknowledge-

ment Processor (AP) for the message classes: AckFrame (50 mp/1 ap)

(left), and AckFrame (1500 mp/2 ap) (right). . . . . . . . . . . . . . . . 129

B.7 TPM of the FinalAck input of the Acknowledgement Processor (AP)

for valid (left) and invalid (right) FinalAckFrames. . . . . . . . . . . . . 129

B.8 TPM of the DataChunkStarted input (left) and the TransmissionStatus

input (right) of the Acknowledgement Processor (AP). . . . . . . . . . 131

B.9 Performance Characteristics of the AcknowledgementRequest Request

timeout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.10 The interface and EFSM of the Data-Packet Combiner. . . . . . . . . . . 132

B.11 Time-Per-Message (TPM) in ns per DataFrame (8 DP) message depend-

ing on the mapping of the DCs. . . . . . . . . . . . . . . . . . . . . . . . . 133

B.12 TPM for the DC.DataFrameIn input in ns under parallel execution. The

best mapping is shown left and the worst mapping is shown right. . . . . 134

B.13 The TPM for the DataChunkDescIn input given the best mapping (left)

and the worst mapping (right). . . . . . . . . . . . . . . . . . . . . . . . . 135

B.14 The interface and behaviour EFSM of the Acknowledgement Generator

(AG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.15 Processing time in ns per AckDesc message depending on the mapping of

the AGs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.16 Contention measurements for the AckDescIn input for the best mapping

(left) and the worst mapping (right). . . . . . . . . . . . . . . . . . . . . . 137

B.17 Performance Characteristics of the AckRequestFrameIn input of the Ack-

nowledgement Generator (AG) for the message class AckRequestFrame

(Invalid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.18 Performance Characteristics of the AckRequestFrameIn input of the Ack-

nowledgement Generator (AG) for the message class AckRequestFrame

(valid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.19 Performance Characteristics of the DataPacketDescIn input of the DA

for the message class DataPacketDesc (8 DPs) with coherent (left) and

(incoherent) memory as payload for the DataPacketDescs. . . . . . . . . 139

B.20 The interfaces of the a) Output Channel (OUT-CH), the b) Input Channel

(IN-CH), c) Frame Distributor (FD), d) Datachunk Distributor (DD),and

e) Channel Manager (CM). . . . . . . . . . . . . . . . . . . . . . . . . . . 140

151



B.21 The fully connected processing engine. . . . . . . . . . . . . . . . . . . . 142

152



List of Tables

2.1 Communication solutions from the networking community. The reviewed

approaches encompass communication protocols, processing frameworks,

special network processors, as well as packet processing solutions. The

shown categorization was conducted with respect to Parallelization Paradigm

(SP–Stream Processing, MT–Multi-Threading, PL–Pipelining), whether

Channel Bonding is supported, Flexibility (O–On-Demand, I–On-Initialization,

C–Compiletime,/–Not Applicable), and Offloading (S - Streamlined, D

- Disruptive). None of the reviewed concepts fulfilled all of the desired

features. 1Depends on the protocol implementation, however, no concept for

parallel processing but parallel threads. 2Click uses the stream-processing

paradigm but not parallel execution. 3Only the packet parser can be configured. 32

4.1 Packet loss probability, protocol overhead (per datachunk), and lost data

(per datachunk), depending on data-packet size for a Bit Error Rate (BER)

of 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Receive and scheduling costs for a message depending on its size. Two

message producers are necessary to fully utilize a message consumer. . . 71

4.3 Predicted per-processor-utilization and parallelization ratios of the stages

for a desired data rate of 40 Gbit/s and a BER of 10−5. . . . . . . . . . . 81

4.4 Predicted processor utilization for a desired data rate of 40 Gbit/s and a

bit error rate of 10−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Protocol overhead of the data-frame for different payload-sizes and maxi-

mum raw Ethernet throughput. . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 The achieved goodput when fully utilizing up to 8×10 GbE interfaces.

The overhead is measured without any packet-loss and for different data-

packet sizes. Additionally, the table shows the number of Data-Packet

Aggregators (DAs) and Data-Packet Combiners (DCs) that were used

for the transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

153



4.7 CPUs and COM interfaces used by the adapting PE on the sender- and

receiver-side, depending on the channel quality. The channel quality

changed every 10 ms (please refer to figure 4.22 for the corresponding

channel capacities). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.1 Channel BER for the dynamic channel bonding scenario. . . . . . . . . . 145

154



Bibliography

[1] Alcatel 7652 PDR (datasheet), Alcatel, 2001.

[2] Nokia 7950 Extensible Routing System (Release 19) (datasheet), Nokia, 2019.

[3] DE-CIX first Internet Exchange worldwide to offer 400-Gigabit Ethernet access

technology (press release), DE CIX, 2019.

[4] Ethernet Roadmap 2019 (press release), Ethernet Alliance, 2019.

[5] I. Kallfass, F. Boes, T. Messinger, J. Antes, A. Inam, U. Lewark, A. Tessmann, and

R. Henneberger, 64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz

Carrier Frequency Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36,

pp. 221–233, Feb 2015.

[6] T. Nagatsuma, Y. Fujita, Y. Yasuda, Y. Kanai, S. Hisatake, M. Fujiwara, and J. Kani,

Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band

wireless link in 2016 IEEE International Topical Meeting on Microwave Photonics

(MWP), pp. 27–30, Oct 2016.

[7] S. Büchner, L. Lopacinski, J. Nolte, and R. Kraemer, 100 Gbit/s End-to-End Com-

munication: Designing Scalable Protocols with Soft Real-Time Stream Processing in

41st Annual IEEE Conference on Local Computer Networks (LCN 2016), (Dubai,

United Arab Emirates (UAE)), Nov. 2016.

[8] D. Molka, D. Hackenberg, R. Schöne, and W. E. Nagel, Cache Coherence Protocol

and Memory Performance of the Intel Haswell-EP Architecture in Parallel Processing

(ICPP), 2015 44th International Conference on, pp. 739–748, Sept 2015.

[9] S. Büchner, J. Nolte, R. Kraemer, L. Lopacinski, and R. Karnapke, Challenges for

100 Gbit/s End to End Communication: Increasing Throughput Through Parallel

Processing in 40th Annual IEEE Conference on Local Computer Networks (LCN

2015), (Clearwater Beach, USA), pp. 607–610, Oct. 2015.

[10] I. Vessey and G. Skinner, Implementing Berkeley Sockets in System V Release 4 in

Proceedings of the Winter 1990 USENIX Conference, pp. 177–193, 1990.

155



[11] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, An analysis of TCP processing

overhead IEEE Communications Magazine, vol. 27, pp. 23–29, June 1989.

[12] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier, TCP

performance re-visited in Performance Analysis of Systems and Software, 2003.

ISPASS. 2003 IEEE International Symposium on, pp. 70–79, IEEE, 2003.

[13] S. Karlsson, S. Passas, G. Kotsis, and A. Bilas, MultiEdge: An Edge-based Com-

munication Subsystem for Scalable Commodity Servers 2007 IEEE International

Parallel and Distributed Processing Symposium, pp. 1–10, 2007.

[14] P. Grun, Introduction to InifiniBand for End Users tech. rep., InifiniBand.

[15] S. Passas, K. Magoutis, and A. Bilas, Towards 100 Gbit/s Ethernet: Multicore-based

Parallel Communication Protocol Design in Proceedings of the 23rd International

Conference on Supercomputing, ICS ’09, (New York, NY, USA), pp. 214–224, ACM,

2009.

[16] T. Marian, K. S. Lee, and H. Weatherspoon, NetSlices: Scalable Multi-core Packet

Processing in User-space in Proceedings of the Eighth ACM/IEEE Symposium on

Architectures for Networking and Communications Systems, ANCS ’12, (New York,

NY, USA), pp. 27–38, ACM, 2012.

[17] S. McCanne and V. Jacobson, The BSD Packet Filter: A New Architecture for

User-level Packet Capture in Proceedings of the USENIX Winter 1993 Conference

Proceedings on USENIX Winter 1993 Conference Proceedings, USENIX’93, (Berkeley,

CA, USA), pp. 2–2, USENIX Association, 1993.

[18] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo, Rekindling Network Protocol

Innovation with User-level Stacks SIGCOMM Comput. Commun. Rev., vol. 44,

pp. 52–58, Apr. 2014.

[19] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,

V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,

R. L. Graham, and T. S. Woodall, Open MPI: Goals, Concept, and Design of a Next

Generation MPI Implementation in Recent Advances in Parallel Virtual Machine

and Message Passing Interface (D. Kranzlmüller, P. Kacsuk, and J. Dongarra, eds.),

(Berlin, Heidelberg), pp. 97–104, Springer Berlin Heidelberg, 2004.

156



[20] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, High performance RDMA-

based MPI implementation over InfiniBand in ICS, 2003.

[21] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley, Scalable

10Gbps TCP/IP Stack Architecture for Reconfigurable Hardware in 2015 IEEE

23rd Annual International Symposium on Field-Programmable Custom Computing

Machines, pp. 36–43, May 2015.

[22] D. Sidler, Z. István, and G. Alonso, Low-latency TCP/IP stack for data center

applications 2016 26th International Conference on Field Programmable Logic and

Applications (FPL), pp. 1–4, 2016.

[23] J. C. Mogul, TCP Offload Is a Dumb Idea Whose Time Has Come in HotOS, 2003.

[24] D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum, P. Pradhan, and J. Tracey, Server

Network Scalability and TCP Offload in Proceedings of the Annual Conference on

USENIX Annual Technical Conference, ATEC ’05, (Berkeley, CA, USA), pp. 15–15,

USENIX Association, 2005.

[25] L. Grossman, Large Receive Offload Implementation in Neterion 10GbE Ethernet

Driver in Ottawa Linux Symposium, 2005.

[26] P. Druschel, L. L. Peterson, and B. S. Davie, Experiences with a High-Speed Network

Adaptor: A Software Perspective in SIGCOMM, 1994.

[27] J. C. Mogul and K. K. Ramakrishnan, Eliminating Receive Livelock in an Interrupt-

driven Kernel ACM Trans. Comput. Syst., vol. 15, pp. 217–252, Aug. 1997.

[28] J. S. Chase, A. J. Gallatin, and K. G. Yocum, End-System Optimizations for

High-Speed TCP 2000.

[29] S. Han, K. Jang, K. Park, and S. Moon, PacketShader: A GPU-accelerated Software

Router SIGCOMM Comput. Commun. Rev., vol. 40, pp. 195–206, Aug. 2010.

[30] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, Design and Imple-

mentation of a Stateful Network Packet Processing Framework for GPUs IEEE/ACM

Transactions on Networking, vol. 25, pp. 610–623, Feb 2017.

[31] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, The Click Modular

Router ACM Trans. Comput. Syst., vol. 18, pp. 263–297, Aug. 2000.

157



[32] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and

E. Chen, ClickNP: Highly Flexible and High Performance Network Processing with

Reconfigurable Hardware in Proceedings of the 2016 ACM SIGCOMM Conference,

SIGCOMM ’16, (New York, NY, USA), pp. 1–14, ACM, 2016.

[33] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, NBA (Network Balancing Act):

A High-performance Packet Processing Framework for Heterogeneous Processors in

Proceedings of the Tenth European Conference on Computer Systems, EuroSys ’15,

(New York, NY, USA), pp. 22:1–22:14, ACM, 2015.

[34] H. Franke, J. Xenidis, C. Basso, B. M. Bass, S. S. Woodward, J. D. Brown, and C. L.

Johnson, Introduction to the wire-speed processor and architecture IBM Journal of

Research and Development, vol. 54, p. 3, 2010.

[35] F. Abel, C. Hagleitner, and F. Verplanken, Rx Stack Accelerator for 10 GbE Inte-

grated NIC 2012 IEEE 20th Annual Symposium on High-Performance Interconnects,

pp. 17–24, 2012.

[36] C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, F. Duchene, O. Bonaventure,

and M. Handley, How hard can it be? designing and implementing a deployable

multipath TCP in NSDI 2012, 2012.

[37] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols 1994.

[38] M. Thomson and J. Iyengar, QUIC: A UDP-Based Multiplexed and Secure Transport

2019.

[39] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson, A. Legay,

O. Pereira, and O. Bonaventure, Pluginizing QUIC in Proceedings of the ACM

Special Interest Group on Data Communication, SIGCOMM ’19, (New York, NY,

USA), pp. 59–74, ACM, 2019.

[40] “1.3. bpf() syscall for ebfp virtual machine programs.” https://kernelnewbies.org/

Linux_3.18#bpf.28.29_syscall_for_eBFP_virtual_machine_programs. Ac-

cessed: 2019-11-17.

[41] R. S. Fish, J. M. Graham, and R. J. Loader, DRoPS: kernel support for runtime adapt-

able protocols in Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204),

vol. 2, pp. 1029–1036 vol.2, Aug 1998.

158

https://kernelnewbies.org/Linux_3.18#bpf.28.29_syscall_for_eBFP_virtual_machine_programs
https://kernelnewbies.org/Linux_3.18#bpf.28.29_syscall_for_eBFP_virtual_machine_programs


[42] J. Heuschkel, A. Frömmgen, J. Crowcroft, and M. Mühlhäuser, VirtualStack: Adap-

tive Multipath Support through Protocol Stack Virtualization in Eleventh Inter-

national Network Conference, INC 2016, Frankfurt, Germany, July 19-21, 2016.

Proceedings, pp. 73–78, 2016.

[43] M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte, and G. T. Wong, Survivability

through customization and adaptability: the Cactus approach in DARPA Information

Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings, vol. 1,

pp. 294–307 vol.1, 2000.

[44] N. Feamster, J. Rexford, and E. Zegura, The Road to SDN: An Intellectual History

of Programmable Networks SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–98,

Apr. 2014.

[45] "Network Functions Virtualization— Introductory White Paper" tech. rep., ETSI,

Oct 2013.

[46] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L. Peterson,

J. Rexford, S. Shenker, and J. S. Turner, OpenFlow: enabling innovation in campus

networks Computer Communication Review, vol. 38, pp. 69–74, 2008.

[47] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker, P4: Programming Protocol-

independent Packet Processors SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–

95, July 2014.

[48] The P4 Language Specification Version 1.0.5 tech. rep., The P4 Language Consortium,

2018.

[49] J. Santiago da Silva, F.-R. Boyer, and J. P. Langlois, P4-Compatible High-Level

Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs in Proceedings

of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, FPGA ’18, (New York, NY, USA), pp. 147–152, ACM, 2018.

[50] I. Netronome Systems, Programming NFP with P4 and C tech. rep., Netronome

Systems, Inc, 2017.

[51] I. Netronome Systems, NFP-4000 Theory of Operation tech. rep., Netronome Systems,

Inc, 2016.

159



[52] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba,

Network Function Virtualization: State-of-the-Art and Research Challenges IEEE

Communications Surveys & Tutorials, vol. 18, pp. 236–262, 2016.

[53] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross,

A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, The Design and

Implementation of Open vSwitch in NSDI, 2015.

[54] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker,

E2: A Framework for NFV Applications in Proceedings of the 25th Symposium on

Operating Systems Principles, SOSP ’15, (New York, NY, USA), pp. 121–136, ACM,

2015.

[55] W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter, Real-time stream processing

for Big Data it - Information Technology, vol. 58, pp. 186–194, 2016.

[56] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ZooKeeper: Wait-free Coordination

for Internet-scale Systems in USENIX Annual Technical Conference, 2010.

[57] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,

K. Ramasamy, and S. Taneja, Twitter Heron: Stream Processing at Scale in Proceed-

ings of the 2015 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’15, (New York, NY, USA), pp. 239–250, ACM, 2015.

[58] Q. L. Anderson, Storm Real-Time Processing Cookbook 2013.

[59] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy, Dhalion: Self-

regulating Stream Processing in Heron Proc. VLDB Endow., vol. 10, pp. 1825–1836,

Aug. 2017.

[60] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,

U. Srivastava, and J. Widom, STREAM: The Stanford Data Stream Management

System in Data Stream Management, 2016.

[61] B. Babcock, S. Babu, M. Datar, and R. Motwani, Chain : Operator Scheduling for

Memory Minimization in Data Stream Systems in SIGMOD Conference, 2003.

160



[62] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo, M. Ek, E. Kohler, M. F.

Kaashoek, and R. Morris, Noria: dynamic, partially-stateful data-flow for high-

performance web applications in 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18), (Carlsbad, CA), pp. 213–231, USENIX

Association, 2018.

[63] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin, Stream-

Box: Modern Stream Processing on a Multicore Machine in Proceedings of the 2017

USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’17,

(Berkeley, CA, USA), pp. 617–629, USENIX Association, 2017.

[64] W. Thies, M. Karczmarek, and S. Amarasinghe, StreamIt: A Language for Streaming

Applications in Compiler Construction (R. N. Horspool, ed.), (Berlin, Heidelberg),

pp. 179–196, Springer Berlin Heidelberg, 2002.

[65] M. I. Gordon, W. Thies, and S. Amarasinghe, Exploiting Coarse-grained Task, Data,

and Pipeline Parallelism in Stream Programs SIGPLAN Not., vol. 41, pp. 151–162,

Oct. 2006.

[66] A. D. Pimentel, The Artemis workbench for system-level performance evaluation of

embedded systems IJES, vol. 3, pp. 181–196, 2008.

[67] G. Smith, Platform Based Design: Does It Answer the Entire SoC Challenge? in

Proceedings of the 41st Annual Design Automation Conference, DAC ’04, (New York,

NY, USA), pp. 407–407, ACM, 2004.

[68] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. F. Deprettere, System

design using Khan process networks: the Compaan/Laura approach Proceedings

Design, Automation and Test in Europe Conference and Exhibition, vol. 1, pp. 340–

345 Vol.1, 2004.

[69] E. A. Lee and D. G. Messerschmitt, Static Scheduling of Synchronous Data Flow

Programs for Digital Signal Processing IEEE Transactions on Computers, vol. C-36,

pp. 24–35, 1987.

[70] S. Stuijk, M. Geilen, B. D. Theelen, and T. Basten, Scenario-aware dataflow: Mod-

eling, analysis and implementation of dynamic applications 2011 International

Conference on Embedded Computer Systems: Architectures, Modeling and Simulation,

pp. 404–411, 2011.

161



[71] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,

C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-

lat, and P. Stenström, The Worst-case Execution-time Problem&Mdash;Overview of

Methods and Survey of Tools ACM Trans. Embed. Comput. Syst., vol. 7, pp. 36:1–

36:53, May 2008.

[72] Y. . S. Li and S. Malik, Performance analysis of embedded software using implicit path

enumeration IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 16, pp. 1477–1487, Dec 1997.

[73] R. Wilhelm, S. Altmeyer, C. Burguière, D. Grund, J. Herter, J. Reineke, B. Wachter,

and S. Wilhelm, Static Timing Analysis for Hard Real-Time Systems in Verification,

Model Checking, and Abstract Interpretation (G. Barthe and M. Hermenegildo, eds.),

(Berlin, Heidelberg), pp. 3–22, Springer Berlin Heidelberg, 2010.

[74] S. Edgar and A. Burns, Statistical analysis of WCET for scheduling Proceedings 22nd

IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420), pp. 215–224,

2001.

[75] J. Souyris, E. Pavec, G. Himbert, G. Borios, V. Jégu, and R. Heckmann, Computing

the Worst Case Execution Time of an Avionics Program by Abstract Interpretation

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET)

Analysis, 01 2005.

[76] C.-S. Chang, Performance guarantees in communication networks European Transac-

tions on Telecommunications, vol. 12, pp. 357–358, 2001.

[77] M. Jung, E. W. Biersack, and A. Pilger, Implementing network protocols in java

- a framework for rapid prototyping in In International Conference on Enterprise

Information Systems, pp. 649–656, 1999.

[78] S. Büchner, L. Lopacinski, R. Kraemer, and J. Nolte, Protocol Processing for 100

Gbit/s and Beyond - A Soft Real-Time Approach in Hardware and Software Frequenz,

vol. 71, pp. 427–438, Sept. 2017.

[79] L. Lopacinski, J. Nolte, S. Büchner, M. Brzozowski, and R. Kraemer, Parallel RS

Error Correction Structures Dedicated for 100 Gbps Wireless Data Link Layer

in 15th IEEE International Conference on Ubiquitous Wireless Broadband 2015:

162



Special Session on Wireless Terahertz Communications (IEEE ICUWB 2015 SPS

02), (Montreal, Canada), oct 2015.

[80] M. Dobrescu, K. Argyraki, and S. Ratnasamy, Toward Predictable Performance

in Software Packet-Processing Platforms in Presented as part of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 12), (San Jose,

CA), pp. 141–154, USENIX, 2012.

[81] S. Büchner, A. Hasani, L. Lopacinski, R. Kraemer, and J. Nolte, 100 Gbit/s End-

to-End Communication: Adding Flexibility with Protocol Templates in 2018 IEEE

43rd Conference on Local Computer Networks (LCN), pp. 263–266, Oct 2018.

[82] S. Büchner, J. Nolte, A. Hasani, and R. Kraemer, 100 Gbit/s End-to-End Com-

munication: Low Overhead On-Demand Protocol Replacement in High Data Rate

Communication Systems in 2017 IEEE 42nd Conference on Local Computer Networks

(LCN), pp. 231–234, Oct 2017.

[83] N. Bombieri and F. Fummi, Automatic Transactor Generation in TLM by Exploiting

EFSMs 2007.

[84] L. Lopacinski, Improving goodput and reliability of ultra-high-speed wireless com-

munication at data link layer level. Doctoral thesis, BTU Cottbus - Senftenberg,

2017.

[85] IEEE, Ethernet Jumbo Frames (standard), IEEE Computer Society, 3855 SW 153rd

Drive, Beaverton, OR 97006, 11 2009.

[86] Mellanox, 350 Oakmead Parkway, Suite 100, Sunnyvale, CA 94085, TILEncore-Gx72

Intelligent Application Adapter, 53461pb/rev 1.5 ed.

[87] L. Förster, Optimising DMA Streams for Soft Real-Time Stream Processing. Master

thesis, BTU Cottbus - Senftenberg, 2017.

[88] M. Diener, E. H. M. da Cruz, and P. O. A. Navaux, Locality vs. Balance: Exploring

Data Mapping Policies on NUMA Systems 2015 23rd Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing, pp. 9–16, 2015.

[89] Z. Gabonayová, Resource Management for Soft Real-Time Stream Processing on

Many-Core Systems. Master thesis, BTU Cottbus - Senftenberg, 2019.

163



[90] Mellanox R© Technologies, Product Brief Rev 1.4, TILEncore-Gx72 Intelligent Appli-

cation Adapter, 2016.

[91] IEEE, IEEE Standard for Ethernet - IEEE Std 802.3(TM)-2012 (standard), IEEE

Computer Society.

164 ,


	Applying the stream-processing paradigm to ultra high-speed communication systems 
	Contents
	Introduction
	Disclaimer

	Stream Processing and Communication Protocol Processing
	Solutions from the Networking Community
	User Space Protocol Processing
	Hardware Acceleration by Offloading
	Flexible Protocol Processing

	Stream Processing Architectures and Approaches
	Real-Time Analysis
	Summary & Conclusion

	Soft Real-Time Stream Processing
	Decomposition of Protocols into Processing Stages
	Soft Real-Time Analysis
	Soft Real-Time Requirements
	Performance Measurement

	Adaptation of the Processing Engine and Offloading of Stages
	Stream Operators
	Adaptation
	Offloading

	On-Demand Adaptation of Processing Engines
	Readaptation of a Deployed Processing Engine
	Switching Protocols by Entirely Replacing Processing Engines
	Exchanging Processing Engines


	A 100 Gbit/s Data Link Protocol
	The Prototyp Data Link Protocol
	Protocol Description
	Summary

	Decomposition of the Protocol into Processing Stages
	Implementation of the Processing Stages
	Summary

	Soft Real-Time Analysis
	Soft Real-Time Requirements
	Performance Characteristics
	Summary

	Adaptation of the Processing Engine
	Mapping of the Processing Engine
	Testing of the Implementation and Latency Hiding
	Integration of external Accelerator Hardware
	Summary

	Evaluation
	Processing Overhead
	Scenarios
	Beyond Channel Bonding


	Conclusion
	Own Publications used in this thesis

	Supplementary Technical Information
	Exchanging Processing Engines
	Offloading of Stages

	Data Link Protocol
	Protocol Data Structure
	DataChunk
	Virtual Channel Header
	Frame and SuperFrame
	Sub-Packet

	Description of the Protocol Processing Stages
	Message Types
	Data-Packet Generator (DG)
	Acknowledgement Processor (AP)
	Data-Packet Combiner (DC)
	Acknowledgement Generator (AG)
	Performance measurements for The DA with incoherent memory
	Service Stages

	Full Protocol Processing Engine Description

	Bibliography

