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Abstract
Water injection is investigated for turbocharged spark-ignition engines to reduce knock probability and enable higher
engine efficiency. The novel approach of this work is the development of a simulation-based optimization process com-
bining the advantages of detailed chemistry, the stochastic reactor model and genetic optimization to assess water injec-
tion. The fast running quasi-dimensional stochastic reactor model with tabulated chemistry accounts for water effects
on laminar flame speed and combustion chemistry. The stochastic reactor model is coupled with the Non-dominated
Sorting Genetic Algorithm to find an optimum set of operating conditions for high engine efficiency. Subsequently, the
feasibility of the simulation-based optimization process is tested for a three-dimensional computational fluid dynamic
numerical test case. The newly proposed optimization method predicts a trade-off between fuel efficiency and low knock
probability, which highlights the present target conflict for spark-ignition engine development. Overall, the optimization
shows that water injection is beneficial to decrease fuel consumption and knock probability at the same time. The appli-
cation of the fast running quasi-dimensional stochastic reactor model allows to run large optimization problems with
low computational costs. The incorporation with the Non-dominated Sorting Genetic Algorithm shows a well-
performing multi-objective optimization and an optimized set of engine operating parameters with water injection and
high compression ratio is found.
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Introduction

Water injection in combustion engines is already intro-
duced in 1913 by Hopkinson1 and today we experience
the revival of water injection as a key technology for
highly efficient spark-ignition (SI) engines.2–4 Water
injection enables higher boost pressures and compres-
sion ratios (CRs), which result in increased engine
efficiency.5–7 However, water injection increases the
complexity of the engine since an additional injection
system is needed.2 To avoid frequently water refilling,
water recovery systems are investigated8 that provide
water of high purity during the engine operation but
further increase the engine complexity. The rising num-
ber of engine control parameters pushes the traditional

test bench approach to its limits and demands sophisti-
cated simulation tools to support the engine develop-
ment and pre-calibration.
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Detailed three-dimensional (3D) computational fluid
dynamic (CFD) simulations are a common tool in
engine prototype and combustion system development.
Hence, researchers and engineers used 3D CFD to per-
form detailed studies of water injection in gasoline
engines in the last years. The group of Berni et al.9

focused on the application of 3D CFD to investigate a
port water injection concept. They showed the feasibil-
ity of the simulation approach to evaluate water effects
on thermodynamic conditions and auto-ignition. With
water injection they stated a reduction of brake-specific
fuel consumption of 20% for a gasoline direct injection
engine. Netzer et al.10 emphasize the necessity to use
detailed chemistry in 3D CFD simulations, to separate
physical from chemical water effects. The authors
found that water effects on laminar flame speed and
combustion chemistry are not negligible. Furthermore,
the 3D CFD results state the strong influence of water
injection and vaporization on the local distribution of
temperature and auto-ignition hot spots within the
cylinder. Boldaji et al.11 applied direct water injection
to a thermally stratified compression ignition engine
using 3D CFD with detailed chemistry. They reported a
decreased maximum cylinder pressure and longer com-
bustion duration with increasing amount of injected
water. Furthermore, they stated that NOx emissions are
reduced with water injection because of reduced in-
cylinder temperatures. They concluded that water injec-
tion is feasible for cycle-to-cycle control for these types
of engines.

While 3D CFD simulations are suitable for detailed
investigations of local combustion and emission forma-
tion processes, the user has to accept high computa-
tional costs. Fast running zero-dimensional (0D)/one-
dimensional (1D) simulation tools can be used to
perform large SI engine parameter variations involving
water injection, with low computational costs. Bozza
et al.5 applied a 1D simulation tool to investigate the
effect of cooled external exhaust gas recirculation
(EGR) and water injection in a boosted SI engine. The
results show a reduction of brake-specific fuel con-
sumption for various operating conditions considering
given constraints for turbine inlet temperature, boost
pressure and peak cylinder pressure. The same model
was applied by Bozza et al.12 to analyze the combina-
tion of different technologies to reduce fuel consump-
tion for Worldwide Harmonized Light Vehicles Test
Cycle (WLTC) conditions. The authors stated that low
pressure EGR is beneficial for low-speed and low-load
operating conditions, while water injection improves
fuel consumption at high-speed and high-load operat-
ing conditions enabling stoichiometric air–fuel ratios.

The physics-based quasi-dimensional (QD) SI
stochastic reactor model (SRM) accounts for the
mixture and temperature in-homogeneities within the
cylinder.13–16 This approach allows to predict local

effects of fuel composition on flame propagation, auto-
ignition and emission formation. The QD SRM was
already applied to investigate the effect of different
octane number fuels on auto-ignition in the unburned
gas as shown by Netzer et al.17 The detailed chemistry
for multi-component fuels used in that work as well as
in the presented work is based on the methodology of
reaction mechanism development and reduction intro-
duced by Seidel and colleagues.18,19 To reduce the com-
putational cost of the QD SRM simulations,
Matrisciano et al.20,21 proposed a reaction-progress-
variable-based tabulation strategy. Thereby, the
detailed chemistry is pre-compiled in a look-up table
based on thermodynamic conditions and reaction prog-
ress variable.

The multi-objective genetic optimization is applied
to optimization problems with more than one objective
and yet unknown range of the operating parameters.22

Amani et al.23 applied multi-objective optimization to
improve the water injection spray in a gas-turbine com-
bustor. They generated response surface models
(RSMs) of their optimization objectives depending on
various physical parameters. Subsequently, they used
the Non-dominated Sorting Genetic Algorithm
(NSGA-II) together with the RSMs to perform the
optimization. They stated that the optimized water
spray improves the temperature non-uniformity by
19%, while the NOx emissions are reduced by 87%
minimum. Atashkari et al.24 performed multi-objective
optimization using neural networks of variable valve-
timing SI engines and the NSGA-II. They concluded
that the multi-objective optimization using neural net-
works is a promising approach to find optimum solu-
tions for engine valve-timing. Ma et al.25 presented a
multi-objective optimization strategy using a mean-
value model of a gasoline direct injection engine to pre-
dict fuel consumption and soot emissions together with
the Strength Pareto Evolutionary Algorithm (SPEA).
Their results showed an improvement of 3.2% of the
indicated specific fuel consumption (ISFC) with the
optimized engine control parameters.

The novel approach of this work is the development
of a simulation-based optimization process combining
the advantages of the tabulated chemistry and the
NSGA-II developed by Deb et al.26,27 implemented in
the modeFRONTIER software package.28 The optimi-
zation objectives are the reduction of fuel consumption
and knock probability of a SI engine operating point
with water injection. The first section of this article
introduces the fundamentals of the QD SRM and the
tabulated chemistry. Then, the numerical test case from
3D CFD simulation is presented. The simulation-based
optimization process is outlined in the subsequent sec-
tion, which contains a description of the calculation of
the scalar mixing time using turbulent kinetic energy
from 3D CFD and the modeling of the port water
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injection. Finally, the optimization results are dis-
cussed, followed by the conclusions and outlook of
future work.

SRM

The QD SRM is based on a probability density func-
tion (pdf) approach for reactive flows.29–31 The trans-
port equation (1) of the pdf contains on the left side the
accumulation term and various source terms Qi(c).
These source terms include the piston work, convective
heat transfer, chemical reactions, direct injection and
vaporization. Therein, F is a vector of random vari-
ables, c is its realization in the sample c-space and t is
the time. The term on the right side P2 describes the
molecular mixing due to turbulence and is in a non-
closed form

∂

∂t
FF c, tð Þ+ ∂

∂ci

Qi cð ÞFF c, tð Þð Þ=P2FF c, tð Þ ð1Þ

The Curl32 mixing model is incorporated to close the
term P2 in equation (2). The mixing model contains the
turbulent mixing time t, to account for turbulence–
chemistry interaction,13,14 the calibration parameter CF

and the decay parameter b, which is set to 1

P2FF c, tð Þ= CFb

tð
Dc

FF c� Dc, tð ÞFF c+Dcð Þd Dcð Þ � FF c, tð Þ

2
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3
75:
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To solve the pdf transport equation, the gas within
the cylinder is discretized in notional particles, each
containing its own composition and temperature (see
Figure 1).

The QD SRM uses a two-zone approach and the
auto-ignition in the end gas and chemistry in the burned
zone for emission formation are retrieved using tabu-
lated chemistry. The flame front propagates based on
turbulent flame speed sT, which is calculated retrieving
the laminar flame speed sL from the pre-compiled look-
up tables. The turbulent flame speed is calculated with
equation (3) based on the model by Kolla et al.33 and
introduced for the QD SRM by Bjerkborn et al.34

sT
sL

=
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Therein, b0, K�
C, Cm, Cm, C4 and C3 are model con-

stants. t is a coefficient defined as t=((Tad � Tub)=Tub)
with the adiabatic temperature Tad and the temperature
of the unburned zone Tub. lL is the integral length scale
and dL is the thickness of the flame front. u0 is the tur-
bulence intensity. In addition, the flame front is
traced based on a polygonal approach to account for

flame–wall interactions (see Q-3D geometry and flame
growth in Figure 1). The QD SRM accounts for cycle-
to-cycle variations in the cylinder gas composition and
temperature induced by stochastic mixing and heat
transfer processes. The Woschni heat transfer correla-
tion in equation (4) with base parameters and wall tem-
peratures of 450K is used to calculate the heat transfer
coefficient a

a=Cpre � d�0:2 � p0:8 � T�0:53�

C1 � cm +C2
V � T0

p0 � V0
� p� pmotð Þ

� � ð4Þ

Therein, Cpre, C1 and C2 are model constants; d is the
engine bore; p is the cylinder pressure; T is the cylinder
temperature; cm is the mean piston speed; pmot is the
motored cylinder pressure; and V is the cylinder vol-
ume. The index 0 highlights parameters at reference
conditions. The QD SRM final model setup used for
the multi-objective optimization is shown in Table 1.

The pdf transport equation (1) is solved using a
operator split method outlined in Figure 2.16 At the
end of each operator split loop, a pressure correction is
performed.

Tabulated chemistry

The tabulated chemistry is based on the detailed ETRF
(ethanol toluene reference fuel) reaction scheme

Figure 1. Concept of the two-zone stochastic reactor model
for spark-ignition engines.13

Table 1. QD SRM model setup.

Number of particles 200
Time step size 1 �CA
Number of cycles 5
Cf 0.83
Cpre 1.0
Woschni C1 2.28
Woschni C2 0.0035

QD: quasi-dimensional; SRM: stochastic reactor model.
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developed by Seidel18 consisting of 475 species and
5160 reactions. The detailed reaction scheme is vali-
dated for different experiments and for engine relevant
conditions, which is highlighted for one set of experi-
ments from Jerzembeck et al.35 in Figure 3.

The influence of water vapor on the laminar flame
speed is outlined in Figure 4. Therein, the experimental
results by Mazas et al.36 using methane as fuel are com-
pared with flame speed simulations using the detailed
reaction scheme developed by Seidel.18 With increasing
amount of water vapor, the flame speed is reduced,
which is accurately predicted by the simulations.
Similar trends of the laminar flame speed are reported
by Liang et al.37 for ethanol–water mixtures and by
Vancoillie et al.38 for methanol–water mixtures. The
sensitivity of the detailed reaction scheme toward water

vapor is investigated in the publication by Netzer
et al.10 Therein, the influence of water on the thermo-
dynamics and chemistry is analyzed before, during and
after the combustion process. The authors concluded
that water vapor has a distinct impact on the laminar
flame speed, the ignition delay time and the equilibrium
of the chemical reactions. Thus, water vapor influences
need to be accounted for by a suitable reaction scheme.

The laminar flame speeds and the combustion chem-
istry are stored in pre-compiled look-up tables (see table
ranges in Tables 2 and 3). A dual fuel approach for the
ETRF surrogate and water is used. The first fuel stream
is composed of 5.3% ethanol, 49.2% iso-octane, 9.1%

Figure 3. Comparison of predicted laminar flame speeds using
the detailed reaction scheme by Seidel18 and experiments with
gasoline as fuel from Jerzembeck et al.35 at 373K and different
pressures, with air as oxidizer. Measurement accuracy is within
64 cm/s. The symbols highlight the experiments and the lines
show the simulations.

Figure 4. Comparison of predicted laminar flame speeds using
the detailed reaction mechanism by Seidel18 and experiments
from Mazas et al.36 with methane as fuel and different steam
content at 1 atm, 373K, with air as oxidizer. The symbols
highlight the experiments and the dashed lines show the
simulations.

Figure 2. QD SRM numerical solution method.

Table 2. Laminar flame speed dual fuel table specifications.

Range Steps

Temperature 350–1200K 50K
Pressure 1–100 bar 1 bar
Equivalence ratio 0.5–1.5 0.05
Water/fuel ratio 0%–60% 10%
EGR 0%–20% 10%

EGR: exhaust gas recirculation.

Table 3. Combustion chemistry dual fuel table specifications.

Range Steps

Temperature 250–1400K 25K
Pressure 1–200 bar 2.5 bar
Equivalence ratio 0.2–4.0 0.2
Water/fuel ratio 0%–50% 10%
EGR 0%–30% 10%

EGR: exhaust gas recirculation.
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n-heptane and 36.4% toluene in mass percent. The sec-
ond fuel stream is composed of 100% water. During
the simulation, laminar flame speeds and chemistry
sources are retrieved from the look-up tables based on
the current thermodynamic conditions.

Furthermore, a progress variable approach is used
for the chemistry table look-up.20,21,39,40 The progress
variable C is defined as follows

C=
h298 � h298, 0
h298, eq � h298, 0

ð5Þ

where h298 is the current chemical enthalpy, h298, 0 is the
enthalpy of formation at standard state and h298, eq is
the chemical enthalpy in equilibrium.41 The fuel–water–
air mixture is initialized homogeneously mixed at the
start of the QD SRM simulation, assuming an idealized
port-injection.

Numerical test case

The 3D CFD test case for a boosted SI engine operat-
ing point at 2500 r/min and 16.2 bar indicated mean
effective pressure (IMEP) from Netzer et al.10 is used
to perform the multi-objective optimization with the
QD SRM and tabulated chemistry. The engine geome-
try and operating conditions are listed in Table 4. The
base case without water presence is used for calibration
of the QD SRM mixing time. In addition, three operat-
ing points with different spark timings, water/fuel (w/f)
ratios (20%, 50% and 80% w/f ratio) and IMEPs are
used to validate the QD SRM.

Simulation-based optimization process

The novel approach of this work is the development of
a simulation-based optimization process combining the
advantages of the tabulated chemistry, the QD SRM
and the NSGA-II. The optimization process is outlined
in Figure 5.

The detailed ETRF reaction scheme was used for
the 3D CFD simulations and is further used to gener-
ate the tabulated chemistry for the QD SRM simula-
tions. The turbulent kinetic energy kCFD shown in
Figure 6 is extracted from the 3D CFD simulation
and used in conjunction with the integral length scale

function42 to calculate the QD SRM mixing time t in
equation (6)

t=
6�V
p

� �1
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3 � kCFD

q ð6Þ

where V is the instantaneous cylinder volume and Cf is
the calibration parameter for the QD SRM mixing
time. To account for the changes of thermodynamic
conditions due to water injection and vaporization, a
simplified approach is used.43,44 The water mass
and vaporization enthalpy of water at 100 �C
(qvap,water =2264 kJ=kg)45 are used to calculate the
energy Qwater needed to vaporize the liquid water.
Then, based on the isobaric heat capacity of air
(cp, air=1:008 kJ=kgK)45 and trapped mass mtrapped,
the temperature drop DT of the cylinder gas tempera-
ture is calculated in equation (7)

DT=
Qwater

cp, air �mtrapped
ð7Þ

To evaluate the knock probability, the knock limit is
defined as 6 J/�CA maximum heat release rate in the
unburned zone in the QD SRM (see Figure 7). The
engine case used is found to be at the knock limit in the
previous study published by Netzer et al.10 The authors
used the Detonation Diagram to evaluate the auto-igni-
tion.17,46–48 Therefore, the heat release rate in the
unburned zone of this case is used as threshold. The
base case without knock is highlighted with the bold
red line, which shows the characteristic heat release rate
profile with the low temperature heat release at 15 �CA
aTDC and the auto-ignition heat release rate at 37 �CA
aTDC. In comparison, the significantly higher
unburned zone heat release rate of a knocking case is
shown with the thin red line.

For the multi-objective optimization the NSGA-II
coupled with RSMs and the uniform Latin hypercube
(ULHC) space filler algorithm is applied28 (see Figure 8).
The RSMs including neural networks, Kriging models
and polynomial functions are trained based on the
already existing design database and the best performing
RSM is selected. The RSM is used to perform additional
internal exploration and optimization tasks during the
multi-objective optimization. With that approach, the
number of optimization steps is increased, without
additional QD SRM runs, leading to a well-defined
Pareto Front and less computational costs. The
Pareto Front is a result of the multi-objective optimi-
zation, which contains the optimum solutions of the
objectives, where no better solutions exist.28 The
RSM-coupled optimization process is repeated for
each new generation.

The number of designs is set to 10 and the number of
generations is set to 150. In total, 1500 designs are eval-
uated during the multi-objective optimization. The opti-
mization objectives are the reduction of the fuel mass
and the maximum heat release rate in the unburned

Table 4. Engine geometry and operating conditions for the
base case without water presence.

Bore 3 stroke 86mm 3 90mm
Rod 180mm
Compression ratio 10:1
Intake valve closure –100.5 �CA aTDC
Exhaust valve opening 120 �CA aTDC
Spark timing –4 �CA aTDC
Fuel mass 57mg/cycle
Equivalence ratio 1.02

aTDC: after top dead center.
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zone. The optimization input parameters and their
ranges are shown in Table 5. To compare the cases at
the same engine load, the IMEP is constrained to devi-
ate within a range of63%.

Results and discussion

The QD SRM calibration and validation results for
cylinder pressure, heat release rate and exhaust emis-
sions (CO2, H2O, CO and NOx) compared to 3D CFD
are shown in Figure 9. The calibration case (a) shows a
good agreement with the 3D CFD results. For the first
validation case (b) with 20% w/f ratio, the spark timing
was shifted to earlier crank angles in 3D CFD; there-
fore, the maximum cylinder pressure is as high as for
the base case. For the validation cases (c) with 50% w/f
ratio and (d) with 80% w/f ratio, the maximum

Figure 5. QD SRM and 3D CFD simulation-based optimization process with tabulated chemistry.

Figure 6. Mass-averaged turbulent kinetic energy of 3D CFD. Figure 7. Knock limit definition in QD SRM for multi-objective
optimization.

Figure 8. Multi-objective optimization with the NSGA-II and
RSMs.
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cylinder pressure is decreasing due to a longer combus-
tion duration in QD SRM and 3D CFD. All cases
show a good agreement for the predicted exhaust emis-
sions at exhaust valve opening (EVO). Overall, the QD
SRM matches the 3D CFD results accurately and the
applicability of the proposed mixing time modeling
approach is proven. Subsequently, the validated QD

SRM is used for the multi-objective optimization of the
3D CFD SI engine operating point.

The overall optimization time for the one operating
point and the 1500 designs is 6 h and 45min on three
cores of an Intel i7-7820HQ CPU at 2.90GHz. The
multi-objective optimization is able to find an optimum
solution and the resulting Pareto Front is shown in
Figure 10. On the x-axis, the fuel mass and on the y-
axis the maximum heat release rate (uHRR) in the
unburned zone are plotted. The designs of the Pareto
Front are highlighted with the black circle symbol
showing the trade-off between fuel mass and uHRR.
The designs are grouped into two clusters (low knock
probability and low fuel consumption), highlighted by
the dark and light gray colored ellipses. The designs
within these clusters share similar optimized engine
operating parameters. The engine operating parameters
are highlighted in Figure 11, which shows the two

Table 5. Multi-objective optimization design parameter ranges.

Minimum Maximum

Compression ratio 9:1 13:1
Water/fuel ratio 0% 40%
Pressure at IVC 1.7 bar 2.7 bar
Spark timing 225 �CA aTDC 5 �CA aTDC

IVC: intake valve closure; aTDC: after top dead center.

Figure 9. 3D CFD and QD SRM with detailed chemistry. Calibration results for case (a) with 0% w/f ratio and 16.2 bar IMEP and
the validation results for the cases (b) with 20% w/f ratio and 16.2 bar IMEP, (c) with 50% w/f ratio and 15 bar IMEP and (d) with 80%
w/f ratio and 14.1 bar IMEP.
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clusters in dark and light gray and the base case in red
color. In addition, the variation ranges of each operat-
ing parameter are shown for the two clusters.

The low fuel consumption cluster consists of designs
with high CRs, high w/f ratios, low pressure at intake
valve closure (IVC), advanced spark timing and low
temperature at IVC compared to the base case. In the
literature, it is well stated49 that due to the increase in
the CR, the thermal efficiency of the engine is improved
and the ISFC is decreased. The pressure at IVC is
decreased since it controls how much mass, containing
the air mass and port injected fuel mass, is trapped in
the cylinder. The equivalence ratio is kept constant for
all optimization designs, using the value from Table 4.
The high w/f ratio limits the further increase of uHRR,
which in average is already higher compared to the base
case. The high amount of water leads to a cool down of
the intake air and lower temperatures at IVC. In addi-
tion, the spark timing is further advanced and the crank
angle of 50% mass fraction burned is found at 8 �CA
aTDC in the region of highest thermal efficiency.

The low knock probability cluster includes designs
with moderate CR, high w/f ratio, close-to-base pres-
sure at IVC, retarded spark timing and low tempera-
ture at IVC. The moderate CR and the retarded spark
timing are beneficial for low knock probability because
they favor low gas temperatures in the unburned zone.
Furthermore, the high w/f ratios cool down the
unburned gas temperature and slow down the chemical
reactions in the unburned zone, which decreases the
knock probability. As a consequence, the thermal effi-
ciency is decreased and the fuel consumption is slightly
increased compared to the base case.

In the next step, four cases are selected from the
Pareto Front, which are highlighted in Figure 10 and
these points are analyzed more in detail. The cylinder
pressure, the heat release rate in the unburned zone
and the deviation of exhaust emission masses compared
to the base case are shown in Figure 12. The optimized
engine parameters of the five cases including the CR,
the w/f ratio, the spark timing (uST) and the tempera-
ture at IVC (TIVC) are summarized in Table 6.

The best case is depicted in Figure 12(a) showing a
higher compression pressure due to a higher CR (see
Table 6), an advanced spark timing and increased peak
cylinder pressure of 130bar. The optimized parameters
increase the thermal efficiency of the engine and as a
result decrease the fuel consumption. Due to the
improved combustion, the heat release rate in the
unburned zone is increased, which leads to a higher
knock probability. The heat release rate in the
unburned zone exceeds the knock limit, defined in
Figure 7, and is therefore not feasible. The increased w/
f ratio in this case limits the increase of the heat release
rate in the unburned zone to a higher level. Similar
trends are also reported by Worm et al.50 and Teodosio
et al.51 With the best case the CO2 and NOx emissions
are predicted to decrease, while the CO emissions are

increased. Compared to the results reported by
Marchitto et al.52 and Teodosio et al.,53 the emission
trends are opposite. The group by Iacobacci et al.54

measured the same emission trends as presented in this
work. It has to be noted that the engine settings in these
cases differ, which can lead to the differences in the
emission trends. The low knock case in Figure 12(b)
shows a delayed combustion because of retarded spark
timing and moderate CR. Together with the increased
w/f ratio, the heat release rate in the unburned zone is
almost zero and the knock probability is low. The CO2

and CO emissions are increased, while the NOx emis-
sions are decreased due to the delayed combustion and
the reduced maximum cylinder temperatures. The low
ISFC case in Figure 12(c) indicates similar settings as
the best case with the difference that the w/f ratio is
lower. This reduction and the increase in temperature
at IVC promote a strong increased heat release rate in
the unburned zone with a high potential of knocking
combustion. Furthermore, the NOx and CO emissions
are increased for the low ISFC case, while the CO2

emissions are decreased because of less fuel consump-
tion. The base case without knocking combustion in
Figure 12(d) has a retarded spark timing compared to
the best case; therefore, the heat release rate in the
unburned zone is reduced and the knock probability is
low. The emission trends are similar compared to the
best case, with decreased CO2 and NOx emissions and
increased CO emissions.

To highlight the advantage of the QD SRM simula-
tion with tabulated chemistry, the computational times
of three different cases are compared. The computa-
tional time of the 3D CFD simulation for one closed-
engine-cycle is 16 h on 24 cores. The QD SRM with
online chemistry (chemical reactions are solved during
the simulation run) takes 3min for one closed-engine-
cycle on 16 cores. Finally, the QD SRM with tabulated
chemistry takes 3 s for one closed-engine-cycle on one

Figure 10. QD SRM optimization results with tabulated
chemistry. The dark and light gray colored ellipses highlight
clusters of designs sharing similar sets of engine parameters.
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core, while the prediction accuracy is similar to the
online chemistry case.20

Conclusion

A novel simulation-based optimization process using a
genetic algorithm with different constraints and targets
was successfully applied for the assessment of water
injection in turbocharged SI engines. The process
includes tabulated chemistry, the QD SRM and the
NSGA-II for multi-objective optimization of fuel con-
sumption and knock probability. The 3D CFD simula-
tion results of a 2500 r/min and 16.2 bar IMEP
operating point are used as reference. The following
conclusions are drawn from the optimization results:

� The QD SRM with tabulated chemistry is a fast
running simulation tool, which can be used for large
optimization problems. It incorporates physics-
based sub-models, detailed chemistry and accounts
for mixture and temperature inhomogeneity, which
improves its predictive capability for combustion
and emissions compared to common mean-value
models.

� The NSGA-II coupled with RSMs and using the
ULHC space filler algorithm is a robust and well-
performing multi-objective optimization tool. It
allows to reduce the number of optimization steps
with the QD SRM, while the prediction of the
Pareto Front is still accurate.

� The general knowledge from SI engine development
could be confirmed by the QD SRMmulti-objective
optimization. The reduction of fuel consumption is
favored by increased CR and earlier spark timing.
In contrast, the lower knock probability is influ-
enced by low CRs and later spark timings.

� The presence of water is beneficial for reducing fuel
consumption and knock probability at the same
time. An optimum w/f ratio in the range of 40% is
determined from the QD SRM optimization.

The future work includes the following items:

� Currently running single-cylinder SI engine experi-
ments will be used to further validate the integrated
simulation-based optimization process.

� The QD SRM with tabulated chemistry will be
applied to other engine cases and its predictive

Figure 11. QD SRM optimization results with tabulated chemistry. The red line shows the base engine parameter values. The black
and gray colored lines highlight the average engine parameter values for Cluster-1 and Cluster-2.

Table 6. Optimized engine operating parameters.

CR WF uST TIVC

Base 10.0 0% –4.0 �CA 445K
Best 14.0 42.5% –16.88 �CA 385K
Low ISFC 14.0 28.2% –15.38 �CA 405K
Low knock 9.6 43% 4.61 �CA 384K
Best case without knock 14.0 43% –14.4 �CA 384K

CR: compression ratio; WF: water/fuel ratio; ISFC: indicated specific fuel consumption; IVC: intake valve closure.
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capability of exhaust emissions will be
evaluated.

� The water injection and vaporization model in
QD SRM will be extended for direct water injec-
tion. The thermodynamic equations in the model
will be improved to account for the different calo-
ric properties of the liquid and vaporized water
for different thermodynamic conditions and
include the water vapor saturation described by
Vaudry.44

� A phenomenological K-k-e turbulence model55–57

will be implemented in QD SRM to predict the sca-
lar mixing time for different engine operating con-
ditions without using information from 3D CFD
simulations.
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