
Run-time Hardware Reconfiguration of Functional Units to Support Mixed-
Critical Applications
Segabinazzi Ferreira, Raphael; Nolte, Jörg; Vargas, Fabian; George, Nevin; Hübner,
Michael

DOI
10.1109/LATS49555.2020.9093692

Publication Date
2020

Document Version
Accepted author manuscript

Published in:
2020 IEEE Latin American Test Symposium (LATS)

Citation
R. Segabinazzi Ferreira, J. Nolte, F. Vargas, N. George and M. Hübner, "Run-time Hardware
Reconfiguration of Functional Units to Support Mixed-Critical Applications," 2020 IEEE Latin-American
Test Symposium (LATS), Maceio, Brazil, 2020, pp. 1-6, doi: 10.1109/LATS49555.2020.9093692.

Important note
To cite this publication, please use the final published version (if applicable). Please check the document
version above.

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Publisher copyright
IEEE
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove
access to the work immediately and investigate your claim.

(Article begins on next page)

https://doi.org/10.1109/LATS49555.2020.9093692

Run-time Hardware Reconfiguration of Functional
Units to Support Mixed-Critical Applications

Raphael Segabinazzi Ferreira¹, Jörg Nolte¹, Fabian Vargas², Nevin George¹, Michael Hübner¹
¹Brandenburg University of Technology, Cottbus, Germany

²Electrical Engineering Dept., Catholic University – PUCRS, Brazil
{R.SegabinazziFerreira, Joerg.Nolte, Nevin.George, Michael.Huebner}@b-tu.de

{vargas}@computer.org

Abstract—System reconfiguration of hardware resources has
been done in multiple system domains. Such systems are usually
found in the context of FPGAs, where reconfiguration is done
usually over its primitives (e.g., LUTs, Flip-Flops). Or even in
the context of MPSoC designs, where core management (e.g.,
lock-step operation in multi-core designs) is the most used
approach. However, recent works have shown that configuration
at Functional Units (FUs) granularity might come with benefits.
For example, it can increase the configuration space due to
its finer granularity, and, as a consequence, the options to
deal with problems (e.g., due to aging) in the units itself.
Within this context, this paper presents a system capable to
configure its FUs (e.g., ALUs, multipliers, dividers) into different
operation modes. The system uses an Operating System to control
HW reconfiguration during process switching time and takes
into account the health state of its units in a mixed-criticality
applications scenario. Results show that, within this scenario,
the system is able to reconfigure itself accomplishing health state
modifications of its HW elements.

Keywords—Reconfiguration, Configuration, Functional Units,
Fine-Grained, Mixed-Criticality, Run-time.

I. INTRODUCTION

Systems targeting reconfigurability appear in different do-
mains and contexts. In the context of FPGAs, mostly primi-
tives (e.g., LUTs, Flip-Flops) and partitions based reconfigu-
ration approaches can be found [1] [2].

In the context of Multi-Processor Systems on Chip (MP-
SoC), monitor elements have been added to designs, and,
according to feedback from these monitors, reconfiguration is
performed at core level (either hard- or soft-cores) [3] [4] [5].
Yet other works, in the same context, disable internal elements
of the processors, in order to minimize the amount of time
critical instructions remain in the CPUs internal buffers, which
are usually unprotected [6].

It is, however, known that units inside processor designs
do not equally execute instructions, and, as consequence, do
not age homogeneously [7]. To compensate these effects, fine-
grained management of Functional Units has been proposed
in prior work [8] [9].

Contribution: In this article, we present different operat-
ing mode configurations created to guarantee system mixed
criticality requirements even in the presence of health state

This project has received funding from the European Union's Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 722325.

degradation of processor Functional Units (e.g., ALU, mul-
tiplier, divider). Switching between these operation modes is
done at run-time. To do so, an Operating System (OS) was
extended to allow this configuration during process switching
time.

The following sections of this article present, respectively:
its related work (II); a description the FUs health states and
the foreseen criticality levels used as the Reconfiguration
Parameters (III); the operation modes configurations (IV);
how the Reconfiguration Parameters are combined with the
Operation Modes to create the reconfiguration platform (V);
the overall design and its internal blocks (VI); the performed
evaluation of the platform with simulation results (VII); and,
finally, the conclusion of the work is tailored (VIII).

II. RELATED WORK

Shibin et al. [3] presented a multi-core system attached to
a health monitoring infrastructure capable of monitoring pro-
cessor healthiness due to HW instruments placed in different
parts of the processor. The hardware instruments are attached
to the Internal JTAG (IJTAG) infrastructure, and an Operating
System (OS) keeps a database of the health state of each one
of the monitored HW elements. The authors claim that running
on top of this HW infrastructure, an OS can use this database
to better chose processor cores to run its applications.

The work presented by Sadighi et al. [10] proposes a
self-aware and a self-adaptive methodology for autonomous
systems. It mainly establishes operation points and controllable
deviation spaces for possible next operation points to react in
case of system variations. It also suggests different analysis
methods for critical and non-critical tasks.

Nya et al. [11] proposed a self-aware and a self-expressive
system for fault tolerance. Self-awareness consists of fault
detection and prediction by monitoring systems parameters
such as CPU temperature and execution time of threads. In
addition, the self-expressive part is formed by its recovery
operations.

Segabinazzi and Nolte [8] proposed a mechanism to con-
figure internal processor Functional Units (FUs). It extended
a processor design with new units responsible for catching
specific added commands and configuring its internal units
accordingly. The main advantage of this work is its low latency
necessary to perform this configuration.

The work proposed by Segabinazzi et al. [12] presents
a preliminary work of configurable HW schemes for fault
detection and correction over processor units. The main idea
is to enable awareness of the health state of a processor and
its internal units and, at the same time, due to its awareness,
provide optimal configuration of the HW schemes according
to application requirements.

From the best of our knowledge, there are very few works
proposing system configuration at FU level and, at the same
time, considering a full system integration being able to, not
only monitor, but also configure itself at this level. There-
fore, this paper addresses this topic by proposing an OS-
based management system with different operation modes for
configuration of FU.

III. RECONFIGURATION PARAMETERS: CRITICALITY
LEVELS AND FUNCTIONAL UNITS HEALTH STATES

In this work, we are proposing an Operating System (OS)
controlled fine-grained configuration of processor Functional
Units (FUs). Thus, different FUs configurations were defined,
and Operation Modes address each configuration. These con-
figurations were pre-defined to take into account the health
state of the available FUs and to cover, at least, three different
levels of OS processes criticality: ordinary, medium critical
and high critical.

The considered fault model for health state classification
is the intermittent soft faults (e.g., single event transients and
upsets) that becomes more frequent due to aging of electronics
[13] [14]. Consequently, the FUs’ health state classification is
done according to the number of fault detection events caught
by assumed individual fault monitors in the FUs. For that,
thresholds were set for each health state. Note that, in order
to find appropriate numbers for these thresholds, additional
studies are required. So, this process is beyond the scope
of this paper. Therefore, the health states and their symbolic
thresholds are listed below.

• Healthy (0): No events detected at the
FU, or very few events detection below the
MEDIUM HEALTHY THRESHOLD.

• Medium healthy (1): Only very few events detected
above the MEDIUM HEALTHY THRESHOLD but below
the INTERMITTENT THRESHOLD.

• Intermittent (2): Events detection above the
INTERMITTENT THRESHOLD but below the
FAULTY THRESHOLD.

• Faulty (3): Detection of events above the
FAULTY THRESHOLD.

IV. OPERATION MODES CONFIGURATIONS

As stated in section III, different operation modes were cre-
ated to cover the possible combinations of the Reconfiguration
Parameters. Therefore, the configuration for each operation
mode (OpMode) is defined as the following (Table I):

• OpMode 0 - Generic: the FUs are working as usual, no
redundancy and no other mechanism is enabled.

TABLE I
OPERATION MODES AND ITS MEASURES

Operation Mode d.s. FD FC DMR TMR EA
0 - - - - - -
1 - X - - - -
2 - X X - - -
3 - X X X - -
4 - X - - X -
5 X X - X - X

Degraded service (d.s.); Fault Detection (FD);
Double Modular Redundancy (DMR); Fault Correction (FC);
Triple Modular Redundancy (TMR); Error Analysis (EA);

• OpMode 1 - Generic plus fault detection (FD): FUs
working as usual; however, a fault detection mechanism
is enabled at the working FU.

• OpMode 2 - Generic plus fault detection (FD) and cor-
rection (FC): FUs working as usual, but a fault detection
and correction mechanism is enabled at the working FU.

• OpMode 3 - Double modular redundancy (DMR) plus
fault detection (FD) and correction (FC): DMR scheme
in the FUs plus an extra fault detection and correction
mechanism enabled at the working FUs.

• OpMode 4 - Triple modular redundancy (TMR) plus fault
detection (FD): TMR scheme in the FUs plus a fault
detection mechanism at the working FUs.

• OpMode 5 - Degraded service (d.s.) - Double modular
redundancy (DMR) plus fault detection (FD) and error
analysis (EA): DMR scheme in the FUs plus individual
fault detection mechanism in the FUs to help on right
answer decision in case of divergence in the outputs of
the FUs.

V. OPERATION MODES AND THE RECONFIGURATION
PARAMETERS

A configurable system was defined by combining the
Reconfiguration Parameters (process criticality and the FUs
health state) and the Operation Modes configurations. The
possible configurations were outlined in such a way that each
process has a set of possible operation modes to run according
to its critical level and FUs healthy states. A summary of
the possible configurations is presented in Table II. The left
column shows the Operation Mode; the top row states the
process criticality; and the numbers populating the middle of
the table represent the FUs states (healthy (0), medium healthy
(1), intermittent (2) and faulty (3)) required for operating
in each of the parameters combination. First, for Ordinary
processes, the operation mode can be either 0 or 1 in case
the FUs are still in the healthy (0) state. If no more FUs
are in this state, but at least one is in the medium healthy
(1), the process can run in the operation mode 2. However,
once there is no more healthy (0) or medium healthy (1) FUs,
the process must be executed in operation mode 3. Secondly,
medium criticality processes start running in operation mode
3 and keep running in this mode until at least two FUs are
still in the healthy (0) state. If this condition does not satisfy

anymore, then the process must run in operation mode 4. After
switching to operation mode 4, if one of the FUs becomes
faulty (3), the process must run now in operation mode 5.
Finally, High Critical processes must run in operation mode
4. The process will only switch to operation mode 5 if one of
the FUs becomes faulty (3).

TABLE II
FUNCTIONAL UNITS STATES FOR OPERATION MODES AND PROCESS

CRITICALITIES

Process Criticality
Operation Mode Ordinary Medium High
0 (one FU required) (0) - -

FU
s

St
at

e1 (one FU required) (0) - -
2 (one FU required) (1) - -
3 (two FUs required) (2,2) (0,0) -
4 (three FUs required) - (1,1,0),...,(2,2,2) (0,0,0),...,(2,2,2)
5*(two FUs required) - (1,1,3),(2,2,3) (0,0,3),(1,1,3),(2,2,3)
* Degraded service

VI. OVERALL DESIGN

The general design is composed of the HW and the SW
layer, which consists of an OS running over a processor
design (Fig. 1). The processor design was, however, mod-
ified to enable configuration of its Functional Units (FUs).
This configuration can be controlled by the new commands
added as extensions to the original processor Instruction Set
Architecture (ISA). On the top level, there is an OS running its
services and multiple application processes, each of them with
its criticality level. The following sections will go through the
HW and SW layers and explain each block in detail.

Fig. 1. General overview of the design and its internal elements.

A. Hardware Layer
The HW layer in Fig. 1 consists of the processor design and

its extensions. The proposed approach is illustrated directly
on a selected case-study: the Plasma processor, which is a
synthesizable 32-bit RISC microprocessor that runs MIPS
I(TM) user mode instructions except for unaligned load and
store operations [15]. The extensions mentioned earlier are
presented below:

Fig. 2. Status register (stats reg) bits description: bits 0, 1 and 2 indicate
the status of each of the functional units: FU1, FU2 and FU3, respectively;
bit 3 and 4 to fault detection (FD) and correction (FC) mechanism and bit 5
to error analysis (EA) configuration. The remaining bits were left for future
expansions.

TABLE III
OPERATION MODES AND THEIR EQUIVALENT STATUS REGISTER

(stats reg) VALUES.

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Operation Mode EA FC FD FU 3 FU 2 FU 1 stats reg

0 0 0 0 0 0 1 0x0001
0 0 0 0 0 1 0 0x0002
0 0 0 0 1 0 0 0x0004
1 0 0 1 0 0 1 0x0009
1 0 0 1 0 1 0 0x000A
1 0 0 1 1 0 0 0x000C
2 0 1 1 0 0 1 0x0019
2 0 1 1 0 1 0 0x001A
2 0 1 1 1 0 0 0x001C
3 0 1 1 0 1 1 0x001B
3 0 1 1 1 0 1 0x001D
3 0 1 1 1 1 0 0x001E
4 0 0 1 1 1 1 0x000F
5 1 0 1 0 1 1 0x002B
5 1 0 1 1 0 1 0x002D
5 1 0 1 1 1 0 0x002E

Fault detection (FD); Fault correction (FC); Error analysis (EA);

1) Functional Units and its Fault Monitors: The original
design was extended by adding enough Functional Units to
enable, when necessary, Triple Modular Redundancy (TMR)
over them. Also, to enable individual awareness of the health
state, simple fault detection and correction schemes were
added to each functional unit.

2) Status Registers: These registers reflect the overall status
of the system. For that, first, a status register was created
(stats reg), this register represents the running operation
mode and shows the current status of the HW mechanisms
and the FUs (’1’ - on, ’0’ - off). As can be noticed from
Fig. 2, bits 0, 1 and 2 save, respectively, the status of the
FU 1, 2 and 3; bits 3 and 4 represent, respectively, the fault
detection (FD) and correction (FC) mechanism; and finally, bit
5 represents the error analysis (EA). Thereby, each operation
mode is represented by a set of values in this 16-bit status
register which is translated in Table III. Finally, one additional
register per FU was also created (units regs), which is used
to keep track of fault detection and correction events.

3) Reconfiguration Logic: This is the control logic to
perform FUs configuration. It consists of the prior reconfigu-
ration mechanism proposed in [8]. Its logic is responsible for
catching reconfiguration commands and enable or disable FUs
according to the captured command. The mechanism extends
the original processor design by adding new elements, such
as the Pre-Decoder which is responsible for decoding the
added commands (ISA-extensions) and perform the adequate
action. Due to the considerably low latency required for FU
reconfiguration, this mechanism becomes suitable for run-time

usage.

B. Software Layer
Any Operating System configured to run over the architec-

ture of the described design can be enabled to operate the
Reconfiguration Mechanism explained in the section VI-A,
only very few extensions are required for that. Therefore, the
Plasma-RTOS was configured and, with less than a hundred
lines of code in ”C” programming language, extended to oper-
ate the mechanism. This operating system was prior created by
Steve Rhoads to run over the Plasma CPU. Its implementation
supports interrupts, threads, semaphores, mutexes, message
queues, timers, heaps, and pre-emptive context switching [15]
[16].

The result of this implementation is presented in the SW
layer of the Fig. 1, and the main components of the extended
operating system that participate in the reconfiguration process
are the following:

1) Process Data Structures: These are operating system
structures which were extended to save the process criticality
and its required operation mode.

2) Operating System Processes Interface: To be able to
save criticality level and operation mode of the processes,
the operating system interface to create new processes was
extended. So, a criticality and an initial operation mode can be
individually attributed at the process creation time. Moreover,
an interface to read and update the processes operation mode
at run-time was also created.

3) Process switching mechanism: within the operating sys-
tem services, the mechanism to switch processes was extended
to check the operation mode attributed to the process which
is going to be resumed, and send the command to the Recon-
figuration Mechanism to configure the HW appropriately.

4) Monitor Process: The purpose of this process is to keep
track of any change which may happens in the health state of
the FUs due to, for instance, wear out caused by normal aging
or by harsh environment conditions (e.g. high temperature
and humidity). As a consequence, the time interval between
two executions of this process can be relaxed. Therefore, this
process will quickly run time to time, by definition set to one
process time slice (⇠ 25ms), and check the FUs health state
by reading the FUs Status Registers (units regs) available
under the HW extensions. If any change is detected, a new high
priority process is triggered to update the attributed Operation
Modes of each application process.

5) Update OpMode Process: This process is triggered by
the Monitor Process to update the operation mode of the other
processes upon a detection of any change in the FUs health
state.

6) Application Processes: These are application processes
running on top of the operating system. As already mentioned,
each one of these processes has an individual attributed
operation mode due to its criticality level.

7) OS context and ISR Operation mode: Every routine
executed within the OS context is considered as high critical.
Therefore, the very beginning of the Interrupt Service Routine

(ISR) was modified to reconfigure the system to the OpMode 4
(the one with TMR and FD scheme), and, after the execution,
reconfigure the design again to the upcoming process.

It is important to notice that the Monitor and the Update
OpMode process are also considered critical, therefore, exe-
cuted in OpMode 4.

VII. EVALUATION

As already explained in the previous sections, the HW layer
of the proposed system was implemented over the Plasma
processor design. And the extended Operating System running
over the platform is the Plasma-RTOS, which was previously
created to run over the Plasma-CPU [15]. The platform took
advantage of the low latency inherited by the previous work
to perform the reconfiguration of the FUs [8]. The one clock
cycle of latency was decisive in this platform since recon-
figuration is performed in run-time. Moreover, the Plasma-
RTOS kernel needed to be extended by less than a hundred
lines of code to support the Reconfiguration Mechanism. Thus,
extending other OSs would also be possible with very little
effort.

The full system was simulated, and part of this simulation is
in the wave chart presented in Fig. 3. This simulation consists
of three application processes and the Monitor process. The
signals represent, from top to bottom, the clock signal (clk),
the status register (stats reg[15 : 0]), and the remaining
signals mean when each of the equivalent processes is running.
As can be noticed, the application processes are running in
sequence and under its own configured operation mode: the
ordinary process (Process1 ordinary) is running in the Op-
Mode 1; the medium criticality process (Process2 medium)
in the OpMode 3; and the high critical one (Process3 High)
in the OpMode 4 (the one with TMR and FD scheme). The
process to update the operation modes (UpdateOpMode) does
not run in this simulation due to no error events. Finally,
the Monitor process (Monitor process) runs shortly between
every process switching as it is highlighted by the red arrows
in the Fig. 3, the detail of this situation is illustrated by
Fig. 4. At the process switching time, the Interrupt Service
Routine (ISR) first switches to OpMode 4, executes its internal
operations and resumes the Monitor process, which is also
executed in OpMode 4. After checking the state of the FUs,
the process sleeps, and the system switches again to the OS
context. In this context, it checks and configures the design to
the required operation mode of the process that is going to be
resumed. After finished the HW configuration, the next process
is resumed (in the case observed in Fig. 4: the Ordinary
process is then configured to run in the OpMode 1).

Reconfiguration is done at every process switch operation,
and the proper operation mode for each process is maintained
up to date by the Monitor process, which wakes up, by def-
inition, every ⇠ 25ms (equivalent to one process time slice).
This time is very programmable, and can be even more relaxed
to match any scenario conditions, since this Monitor process
aims to track health state changes of the FUs mainly caused
by wear-out induced by normal aging or severe environment

Fig. 3. Full system execution, it is running 3 different application processes and 1 monitor process.

Fig. 4. Process switching time: switching between two application process
and the Monitor process.

conditions (e.g., high temperature and humidity). However,

once we have implemented interrupt-driven error signaling (as

foreseen future work), reconfiguration and operation modes

update can be performed at ISR level. Thus, it will enable the

system to react on faults within few (3 to 4) clock cycles

to rise Interrupt Request signal (IRQ) and approximately a

hundred clock cycles depending on the processor to manage

a fault at OS level.

A further evaluation was performed, and Fig. 5 shows

the platform simulation for a series of simulated errors

by increments in the units status registers (units regs[<
FU index >]) which account for fault detection events. As

already explained, in this work we are considering interment

soft faults which increases in number as the electronics

start to age [13]. Moreover, the error simulation is done

in such a way that the FUs change their attributed health

states, so the operation mode attributed to each process

also changes following the modes stated in Table II. For

this simulation, the thresholds were configured as follows:

the MEDIUM HEALTHY THRESHOLD to 10 (0x0A) faults,

the INTERMITTENT THRESHOLD to 100 (0x64) and the

FAULTY THRESHOLD to 1000 (0x3E8). The signals in the

figure represent, from top to bottom, the clock signal (clk),

the status registers (stats reg), the processes Monitor, Update

Operation Mode, application processes Ordinary, Medium and

High, and, finally, the units registers: units regs[0] represent-

ing the events in the FU 1, the units regs[1] in the FU 2

and the the units regs[2] in the FU 3. As it is highlighted

in the figure by the arrows and the dotted squares, once

the events detected in a specific FU reach one of the health

state thresholds, the UpdateOpmode process is triggered to

attribute a new operation mode to each of the application

processes taking into account the new FU state. As a result, the

further execution of the application processes is executed using

this new operation mode configuration. The corresponding

operation mode for each stats reg value shown in the Fig. 5

is translated in Table III.

VIII. CONCLUSION

This article presented a fully integrated platform capable of

performing OS controlled reconfiguration of processor internal

Functional Units (FUs) within a mixed-criticality processes

scenario. As stated in the Evaluation section (VII), the system

was able to configure its FUs according to the criticality

requirements of processes running over the Plasma-RTOS.

Moreover, the SW routines were capable of, in run-time, evalu-

ate FUs healthiness and, upon an FU health state modification,

update the operation mode and the FUs attributed to each

process.

REFERENCES

[1] B. Janßen, F. Kästner, T. Wingender, and M. Huebner, “A dynamic
partial reconfigurable overlay framework for python,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10824 LNCS,
pp. 331–342, Springer Verlag, 2018.

[2] P. M. B. Rao, A. Amouri, S. Kiamehr, and M. B. Tahoori, “Altering
LUT configuration for wear-out mitigation of FPGA-mapped designs,”
in 2013 23rd International Conference on Field Programmable Logic
and Applications, FPL 2013 - Proceedings, 2013.

[3] K. Shibin, S. Devadze, A. Jutman, M. Grabmann, and R. Pricken,
“Health Management for Self-Aware SoCs Based on IEEE 1687 In-
frastructure,” IEEE Design & Test, vol. 34, pp. 27–35, 12 2017.

[4] A. Baldassari, C. Bolchini, and A. Miele, “A dynamic reliability
management framework for heterogeneous multicore systems,” in 2017
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pp. 1–6, IEEE, 10 2017.

[5] A. Kulkarni, D. Stroobandt, A. Werner, F. Fricke, and M. Hübner,
“Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable Ar-
rayfor high performance image processing applications,” CoRR,
vol. abs/1705.01738, 2017.

[6] X. Iturbe, B. Venu, J. Penton, and E. Ozer, “Work-in-progress: A ”high
resilience” mode to minimize soft error vulnerabilities in ARM Cortex-
R CPU pipelines,” in Proceedings of the 2017 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems Com-
panion, CASES 2017, Association for Computing Machinery, Inc, 10
2017.

[7] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “DaemonGuard:
Enabling O/S-Orchestrated Fine-Grained Software-Based Selective-
Testing in Multi-/Many-Core Microprocessors,” IEEE Transactions on
Computers, vol. 65, pp. 1453–1466, 5 2016.

[8] R. Segabinazzi Ferreira and J. Nolte, “Low latency reconfiguration
mechanism for fine-grained processor internal functional units,” in 2019
IEEE Latin American Test Symposium (LATS), (Santiago/CL), 2019.

[9] F. Muhlbauer, L. Schroder, and M. Scholzel, “A fault tolerant dynam-
ically scheduled processor with partial permanent fault handling,” in
2018 IEEE 19th Latin-American Test Symposium, LATS 2018, vol. 2018-
January, pp. 1–6, 4 2018.

Fig. 5. Faults simulation performed over the platform, the units status register (units reg) is incremented time to time simulating fault detection in the FUs.
Numbers in the wave chart are is hexadecimal notation.

[10] A. Sadighi, B. Donyanavard, T. Kadeed, K. Moazzemi, T. Muck,
A. Nassar, A. M. Rahmani, T. Wild, N. Dutt, R. Ernst, A. Herkersdorf,
and F. Kurdahi, “Design methodologies for enabling self-awareness in
autonomous systems,” in Proceedings of the 2018 Design, Automation
and Test in Europe Conference and Exhibition, DATE 2018, 2018.

[11] T. D. Nya, S. C. Stilkerich, and C. Siemers, “Self-aware and self-
expressive driven fault tolerance for embedded systems,” in 2014 IEEE
Symposium on Intelligent Embedded Systems (IES), pp. 27–33, 1 2014.

[12] R. Segabinazzi Ferreira, N. George, J. Chen, M. Hübner, M. Krstic,
J. Nolte, and H. T. Vierhaus, “Configurable Fault Tolerant Circuits and
System Level Integration for Self-Awareness,” in 2019 22nd Euromicro
Conference on Digital System Design (DSD) (Work in Progress Session),
2019.

[13] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique,
M. Tahoori, and N. Wehn, “Reliable On-chip systems in the nano-era:
Lessons learnt and future trends,” in Proceedings - Design Automation
Conference, 2013.

[14] H. Hong, J. Lim, H. Lim, and S. Kang, “Lifetime reliability enhancement
of microprocessors: Mitigating the impact of negative bias temperature
instability,” ACM Computing Surveys, vol. 48, 9 2015.

[15] OpenCores.org, “Plasma - most MIPS I(TM) Overview,” in
https://opencores.org/projects/plasma, visited Dec. 6th, 2019.

[16] S. Rhoads, “Plasma Real-Time Operating System,” in
http://plasmacpu.no-ip.org:8080/rtos.htm, visited Dec. 6th, 2019.

