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Abstract

We study convexities designed to characterise some of the most fundamental classes of
graphs. To this end, we present some known results on this topic in a slightly different
form, so as to give a homogeneous representation of a very disparate field. Furthermore,
we present some new results on the Carathéodory number of interval graphs and also give
a more or less exhaustive account of everything that is known in this context on AT-free
graphs, including new results on characterising linear vertex orders and the structure of
the intervals of this class.

We introduce the new class of bilateral AT-free graphs which is motivated by the
linear order characterisation and the convexity used to describe AT-free graphs. We
discuss their relation to other known classes and consider the complexity of recognition.
Furthermore, as a consequence of notions from abstract convexity we present algorithmic
results with regards to some natural subclasses of these.

As an application of notion of an extreme vertex of a convex geometry, we discuss
structural aspects of avoidable vertices in graphs, which form a generalisation of simpli-
cial vertices. This includes a characterisation of avoidable vertices as simplicial vertices
in some minimal triangulation of the graph and a new proof of the existence result.
Furthermore, we discuss the algorithmic issues regarding the problem of efficient com-
putation of avoidable vertices in a given graph. This is complemented by an algorithmic
application of the concept of avoidable vertices to the maximum weight clique problem,
by identifying a rather general class of graphs in which every avoidable vertex is bisimpli-
cial. This leads to a polynomial-time algorithm for the maximum weight clique problem
in this class of graphs. Implications of this approach for digraphs are also discussed. All
of these results lead to a conjecture concerning the generalisation of avoidable vertices
to avoidable paths and we prove this conjecture for paths of length less or equal to two.

Finally, we analyse the properties of many different and widely used forms of graph
search. Here, we discuss the problem of recognising whether a given vertex can be the
last vertex visited by some fixed graph search. Moreover, we present some new aspects
of the problem of deciding whether a given spanning tree of a graph is a graph search
tree of a particular type of search. We generalise the concept of such trees to many
well-known searches and give a broad analysis of the computational complexity of this
problem. Both of these discussions are motivated by the use of graph searches in the
context of computing properties of convexity.
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Zusammenfassung

In dieser Arbeit betrachten wir Konvexitäten, die entworfen wurden, um einige der
grundlegendsten Graphenklassen zu charakterisieren. Dazu präsentieren wir einige be-
kannte Resultate zu diesem Thema in einer abgeänderten Form, um eine homogene
Darstellung eines diversen Felds zu bieten. Außerdem, geben wir neue Resultate über
die Carathéodory Zahl von Intervallgraphen, sowie einen weitestgehend vollständigen
Überblick über alle Ergebnisse bezüglich der charakterisierenden Konvexität von AT-
freien Graphen, welcher auch neue Ergebnisse über charakterisierende Knotenordnungen
und die Struktur der Intervalle dieser Klasse umfasst.

Wir führen die neue Klasse der bilateral AT-freien Graphen ein, welche durch die
charakterisierende Knotenordnung und Konvexität der AT-freien Graphen motiviert ist.
Wir diskutieren das Verhältnis dieser Graphen zu anderen Unterklassen der AT-freien
Graphen und untersuchen die Komplexität ihrer Erkennung. Außerdem geben wir einige
algorithmische Ergebnisse zu Unterklassen von bilateral AT-freien Graphen, welche aus
der Analyse ihrer Konvexität folgen.

Als Anwendung des Begriffs eines Extremknoten einer konvexen Geometrie disku-
tieren wir einige strukturelle Aspekte von vermeidbaren Knoten, welche eine Verallge-
meinerung der simplizialen Knoten darstellen. Dies beinhaltet eine Charakterisierung
von vermeidbaren Knoten als simpliziale Knoten einer minimalen Triangulierung eines
Graphen, sowie einen neuen Beweis über deren Existenz. Wir analysieren die algorith-
mischen Aspekte des Erkennungsproblems von vermeidbaren Knoten eines gegebenen
Graphen. Diese Ergebnisse verwenden wir, um das Konzept eines vermeidbaren Knotens
zur Berechnung von Cliquen maximalen Gewichts algorithmisch auszunutzen, indem ei-
ne Klasse ermittelt wird, für die jeder vermeidbare Knoten bisimplizial ist. Dies führt zu
einem Polynomialzeitalgorithmus zur Berechnung einer Clique maximalen Gewichts auf
dieser Klasse. Die Konsequenzen dieses Ansatzes werden auch für gerichtete Graphen
analysiert. Alle diese Ergebnisse geben den Anlass zu einer Vermutung, die die Existenz
vermeidbarer Knoten zu der Existenz vermeidbarer Pfade ausweitet; diese Vermutung
wird für Pfade der Länge 1 und 2 bewiesen.

Schließlich betrachten wir die Eigenschaften einiger unterschiedlicher und häufig ge-
nutzter Graphensuchen. Wir diskutieren das Problem der Erkennung von Endknoten
dieser Suchen. Außerdem präsentieren wir neue Ergebnisse über die Erkennung von
Suchbäumen verschiedener Graphensuchen. Wir verallgemeinern das Konzept solcher
Suchbäume, um weitere komplexere Suchstrategien abzufangen, und betrachten die Kom-
plexität der Erkennung solcher Bäume. Diese Untersuchungen sind motiviert durch die
häufige Verwendung von Graphensuchen, um Eigenschaften von Konvexitäten algorith-
misch zu ermitteln.
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Introduction

Since its beginnings in the 1960s and especially after the publication of the classical sur-
vey by Golumbic, Algorithmic Graph Theory and Perfect Graphs [75] in 1980, the field
of algorithmic graph theory has grown rapidly. Countless different graph classes have
been introduced, analysed and categorised. In 1999, another survey, Graph Classes
by Brandstädt et al. [22], covered as many as 200 different classes, while the web-
site graphclasses.org counts as many as 1600 in its database (although a significant
amount of these are probably equivalent). These efforts in research have been rewarded
with many striking results and a host of very efficient algorithms for problems that are
NP-hard on general graphs. Some of the most prominent examples are the recognition
of perfect graphs achieved by Chudnovsky et al. [32, 33] and the solution to the colour-
ing problem on these using the ellipsoid method given by Grötschel et al. [78], as well
as the linear time recognition of chordal [126, 136] and interval graphs [18, 102] which
yield very simple linear time algorithms for such optimisation problems as maximum
independent set and colouring [75, 63].

These results have been achieved using a vast amount of different tools, including
forbidden (induced) minor characterisations (see for example Kuratowskis characterisa-
tion of planar graphs [108]), forbidden induced subgraph characterisations (see Gallais
characterisation of comparability graphs [67]), as well as such algorithmic techniques
as modular decomposition (Gallai [67]), or PQ-trees (Booth and Lueker [18]). In this
text, we will concentrate on one particular construction known as a characterising linear
vertex ordering. This can be seen as a linear order σ = (v1, . . . , vn) of the vertices of a
graph, as well as some property PG of a linear ordering, such that a graph G belongs to
a given graph class G if and only if there exists a linear ordering σ of the vertices of G
with property PG .

One of the earliest examples of such an ordering was given by Rose [123] for chordal
graphs, i.e., the class of graphs which do not contain an induced cycle of size greater
or equal four. Rose characterised a graph G as being chordal if and only if it has a
perfect elimination ordering , i.e., an ordering σ = (v1, . . . , vn) of the vertices of G, such
that for any vi, vj and vk with i < j < k the fact that vivk, vjvk ∈ E implies that vi
and vj are adjacent. On a chordal graph a perfect elimination ordering can be found in
linear time by performing a special graph search algorithm based on breadth first search
and it is not only useful to characterise these graphs with a very compact certificate,
but also a crucial ingredient to many different optimisation algorithms. For example, if
we are given a perfect elimination ordering, an optimal colouring of the corresponding
graph can be achieved by a simple greedy colouring strategy from right to left on that
order [75].

The possibility of being able to describe a graph class with a linear vertex order hints at
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an underlying structure of that graph which is best described as some form of convexity.
In fact, there have been several attempts to do just this, as can be seen for example in
the survey on convex geometries by Edelman and Jamison [56] or the book by Korte
et al. [101] which gives an equivalent concept named an anti-matroid.

The concept of convexity is at the heart of mathematical optimisation in all its forms,
whether this be linear or integer programming, non-linear optimisation, multi-criterial
optimisation or optimal control. In all these fields, convexity ensures that optimal solu-
tions need only be searched for in a restricted area of all possible solutions, for example
in linear programming an optimal solution can be found among the vertices of the poly-
hedron underlying a linear program (Dantzig [47]).

Convexity used in this way is motivated through geometry, a certain shape of the
solution space which lends itself to optimisation. However, since this concept was prop-
erly axiomatised in a much more general form throughout the 20th century, it has been
possible to transfer these structural concepts to other areas where a geometric intuition
does not necessarily apply. One of these is the field of combinatorics and, in particular,
graph theory.

Using the example of a particular family of graph classes, we will argue that abstract
convexity can be used to unify several important concepts: chordal graphs, interval
graphs and AT-free graphs form an instructive example to this end. AT-free graphs are
defined as the graphs which do not contain an independent triple of vertices, such that
each two of them are joined by a path that avoids the neighbourhood of the third. The
class of interval graphs forms one of the oldest and most famous graph classes. Defined as
the intersection graph of intervals on the real line, they form the intersection of AT-free
graphs and chordal graphs, i.e., a graph is an interval graph if and only if it is AT-
free and chordal (Lekkerkerker and Boland [109]). This family of classes possesses many
interesting properties and has a very rich algorithmic structure which makes it possible to
solve many classicalNP-complete graph problems on these efficiently. Furthermore, they
are also related to another important class: the comparability graphs. This is the class
of graphs representing some partial order. It can be shown that the intersection between
chordal graphs and cocomparability graphs, those graphs which form the complement
of a comparability graph, is again the class of interval graphs.

Due to the geometric nature of the definition of interval graphs, it is not surprising
that they convey a convex structure. However, we will see that such a structure can
also be found in the much more abstract AT-free graphs. We will present tailor-made
convexities for each of these three classes which can be used to characterise them. Some
of the most important structural properties of these classes will directly correspond to
some of the standard concepts of their respective convexity. In particular, it can be shown
that the convexity defining interval graphs can be constructed by somehow intersecting
the convexities of AT-free graphs and chordal graphs.

While chordal graphs and interval graphs have been studied so exhaustively that one
cannot hope to attain many new insights, we will argue that for AT-free graphs, the study
of their convexity is a useful tool to find further structural properties. In particular, we
present a new vertex order characterisation of this class based on a convexity.

To make algorithmic use of this concept of convexity in a graph, it would be of a great
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advantage to have some standardised routine to compute important structures of the
convexity, such as convex sets and extreme points. For most graph convexities (and for
all discussed in this text), such a routine is given by a graph search. A generalised graph
search can be roughly described as a procedure visiting all vertices of a graph one by
one, while always maintaining a connected induced subgraph on the visited vertices. We
will see that such searches can be constructed to maintain not only connected but also
convex subsets of the vertices by furnishing it with appropriate rules for vertex selection.
Furthermore, it will also be possible to find extreme vertices in the form of the vertices
visited last by such a search.

In the light of such results it becomes important to analyse graph searches very thor-
oughly with regard to their algorithmic properties and the structures which are computed
by them. For example, if a vertex visited last by a search is an extreme point of a con-
vexity, it becomes important to be able to decide whether a given vertex can be such
a vertex visited last by a search. Furthermore, as a graph search is able to maintain
a convex set throughout its run, it is interesting to analyse the structure of these sets
with regard to the performed search. This can be done not only by examining the exact
order of the visited vertices but also by the study of the so-called graph search tree.
This tree can be defined in different ways (and we will discuss some of these possibilities
in a later chapter), but one well-known example can be easily explained in the form
of the BFS-tree. This tree is computed by the breadth-first search algorithm and adds
an edge from every vertex of a graph to its neighbour visited first by the search. This
tree contains all shortest paths between the start vertex (the vertex visited first by the
search) and all other vertices of the graph, where a shortest path is understood to be a
path with the least amount of edges.

Results

In the following we give an overview of the most important new results presented in this
text structured by the respective subject matter. As most of these results have already
been published in some form or other, we clearly state a corresponding reference at the
beginning of each section.

Graph Convexity and Subfamilies of AT-free Graphs

Some of the results stated here can be found in a published extended abstract [6].

1. Graph Convexities Characterising Graph Classes. We give an overview of
results which characterise graph classes with a matching convex geometry and bring this
into context with vertex order characterisations for these. In addition to well known
convexities such as monophonic convexity (used to characterise chordal graphs), we also
present a very recent convex geometry characterising AT-free graphs and a new convex
geometry called the interception convexity. We present all of these results in a uniform
manner using the language of interval convexity and show how this theory can be used
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to give a homogeneous representation of some of the most crucial properties in these
classes.

2. Convexity on Interval Graphs and a Tight Bound for the Carathéodory
Number. Using a Theorem by Lekkerkerker and Boland [109], which characterises the
class of interval graphs as the intersection of AT-free and chordal graphs, we present
a new formulation of a characterising convexity which coincides with the construction
given by Alcón et al. [3] (Theorem 1.4.13). Using this and with the help of a technique
designed by Chvátal [34], we give a new proof that this convexity is in fact a convex
geometry. Furthermore, we show that the Carathéodory number of this convexity is at
most 2 and that this bound is tight (Corollary 1.4.14).

3. Convexity on AT-free Graphs and a new BFS-based Vertex Order Charac-
terisation. Building on the work of Chang et al. [28] who defined a characterising convex
geometry for AT-free graphs, we give new results on the structure of this convexity. We
make some progress towards giving a tight upper bound for the Carathéodory number of
this convexity. Furthermore, we use these results to state a polynomial time BFS-based
algorithm which computes a new characterising vertex order of AT-free graphs that al-
ways coincides with a BFS order, settling an open question due to Corneil and Stacho
[38] (Theorem 1.5.10).

4. The Recognition of Bilateral AT-free Graphs and Subfamilies. Motivated
by vertex order characterisation and the convexity of AT-free graphs, we introduce the
class of bilateral AT-free graphs. After comparing this new class with other well-known
subclasses of AT-free graphs such as cocomparability graphs, we show that the recog-
nition of this class is NP-complete (Theorem 2.2.9). For some subclasses of this class
we give linear time algorithms to compute AT-free and bilateral AT-free orders by using
multisweep graph search algorithms (Theorems 2.3.5 and 2.3.10).

Avoidable Vertices and Paths

The results given here are joint work with Maria Chudnovsky, Vladimir Gurvich, Mar-
tin Milanič and Mary Servatius. A published extended abstract of this work can be
found in [7].

1. Characterisation, existence, and computation of avoidable vertices. Follow-
ing the work of Ohtsuki et al. [117], we revisit the connection between avoidable vertices
and minimal triangulations of graphs by characterising avoidable vertices in a graph G
as exactly the simplicial vertices in some minimal triangulation of G (Theorem 3.1.1).
Using properties of Lexicographic Breadth First Search that follow from works of Berry
and Bordat [13] and Aboulker et al. [1], we show that every graph with at least two ver-
tices contains a diametral pair of avoidable vertices (Theorem 3.2.4). The same approach
shows that a pair of distinct (though not necessarily diametral) avoidable vertices in a
given graph G with at least two vertices can be computed in linear time (Theorem 3.2.5).

2. New polynomially solvable cases of the maximum weight clique problem. A
graph is 1-perfectly orientable if its edges can be oriented so that the out-neighbourhood
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of every vertex induces a tournament, and hole-cyclically orientable if its edges can be
oriented so that each induced cycle of length at least four is oriented cyclically. We
connect the structural and algorithmic properties of avoidable vertices with the concept
of bisimplicial vertices to develop an efficient algorithm for the maximum-weight clique
problem in the class of 1-perfectly orientable graphs and, more generally, in the class
of hole-cyclically orientable graphs (Theorem 3.3.6). These results generalize the well
known fact that the maximum-weight clique problem is polynomial-time solvable in the
classes of chordal graphs and circular-arc graphs.

3. Existence of avoidable edges. We show that for every graph G and every non-
universal vertex v ∈ V (G) there exists an avoidable vertex in the non-neighbourhood
of v (Theorem 3.1.4). While this result clearly follows from Theorem 3.2.4, we give a
direct proof that is not based on any graph search (such as LBFS). We then adapt the
approach to prove the existence of two avoidable edges in any graph with at least two
edges (Theorem 3.4.8). This settles in the affirmative the case k = 2 of Conjecture 3.0.8
and generalizes the case k = 2 of Theorem 3.0.6.

4. Implications for vertex- and edge-transitive graphs. We derive some conse-
quences of existence results for avoidable vertices and edges for highly symmetric graphs.
More specifically, we show that in a vertex-transitive graph every induced two-edge path
closes to an induced cycle (Corollary 3.5.1), while in an edge-transitive graph every 3-
edge path closes to a cycle (Corollary 3.5.2) and every induced 3-edge path closes to an
induced cycle (Corollary 3.5.3). While these structural results are straightforward conse-
quences of the results on avoidable vertices and edges, we are not aware of any statement
of these results in the literature. For all the three statements, we give examples showing
that analogous statements fail for longer paths.

End-Vertices and Graph Search Trees

The results given here have been achieved in joint work with Carolin Denkert, Ekke-
hard Köhler, Matjaž Krnc, Nevena Pivač, Robert Scheffler and Martin Strehler. The
results on end-vertices of graph searches are given in [9]. A published extended abstract
concerning graph search trees can be found in [8].

1. The End Vertex Problem for MCS and MNS. Drawing on work by Corneil
et al. [44] and Charbit et al. [30], we investigate the problem of deciding whether a given
vertex in a graph is the last vertex in some execution of a particular type of graph search.
Complementing the results given there on BFS, LBFS and LDFS, we show that this
problem is alsoNP-complete for Maximum Cardinality Search (Theorem 4.2.1) andNP-
complete on weakly chordal graphs for Maximal Neighbourhood Search (Theorem 4.1.2).

2. Polynomial Algorithms for the End-Vertex Problem on Interval, Unit
Interval and Split Graphs. For the class of Chordal Graphs we give an improved
running time analysis for the end-vertex problem on MNS, reducing it to linear time
(Corollary 4.3.4). Among other results, we present a linear time decision algorithm
for the end-vertex problem of DFS for interval graphs (Corollary 4.3.12), as well as
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linear time algorithms for unit interval and split graphs for LDFS, MCS and MNS
(Proposition 4.3.3, Corollary 4.3.4 and Corollary 4.3.7).

3. The Graph Search Tree Recognition Problem. We give a new formulation for
the problem of deciding whether a given spanning tree is a graph search tree for some
execution of a particular graph search. This formulation distinguishes two different
variants of defining a graph search tree: A first-in tree (F-tree) which is based on the
construction of BFS trees, and a last-in tree (L-tree) which is derived from the DFS
tree. Adding to results by Korach and Ostfeld [100] and Manber [112], who studied this
question for the cases of DFS and BFS, we show that recognising graph search trees is
NP-complete in the case of F-trees for the searches LBFS, LDFS, MCS and MNS even
on the class of weakly chordal graphs (Theorems 5.2.1 and 5.3.1).

4. Polynomial Algorithms for Recognising Graph Search Trees. Giving a
nice boundary of complexity, we present polynomial time algorithms to solve the F-tree
recognition problem for LBFS, LDFS, MCS and MNS on chordal graphs (Theorem 5.4.7
and Corollary 5.4.10) and a linear time algorithm for split graphs for those same searches
(Corollary 5.5.2). In the case of the L-tree recognition, we show that recognition can be
solved in polynomial time for LDFS on all graphs (Theorem 5.1.4). In addition, we give
linear time algorithms for this problem on chordal graphs in the cases of LBFS, LDFS,
MCS and MNS (Theorem 5.4.14 and Corollary 5.4.16).

Structure of the Thesis

In Chapter 0, we give a brief overview of most of the notation and concepts needed in
the course of this work. We begin with some basic notation and definitions on graphs
most frequently used here. Then we proceed to a short summary of some important
decision and optimisation problems which form the basis and motivation for algorithmic
graph theory. This is followed by short introductions to the fields of algorithmic graph
theory, graph classes and graph searching. We conclude Chapter 0 with an elementary
survey of some of the most important concepts (at least in the context of graph theory)
of (discrete) abstract convexity theory.

Chapter 1 is dedicated to the analysis of convexities designed to characterise some of
the most fundamental classes of graphs. Here, we present some known results on this
topic in a slightly different form, so as to give a homogeneous representation of a very
disparate field. Furthermore, we present some new results on the Carathéodory number
of interval graphs and also give a more or less exhaustive account of everything that is
known in this context on AT-free graphs, including new results on characterising linear
vertex orders and the structure of the intervals of this class.

In Chapter 2, we introduce the new class of bilateral AT-free graphs which is moti-
vated by the linear order characterisation and the convexity used to describe AT-free
graphs. We discuss their relation to other known classes and consider the complexity
of recognition. Furthermore, as a consequence of the results of Chapter 1 we present
algorithmic results with regards to some natural subclasses of these.
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In Chapter 3, we discuss structural aspects of avoidable vertices in graphs, which
form a generalisation of simplicial vertices. This includes a characterisation of avoidable
vertices as simplicial vertices in some minimal triangulation of the graph and a new
proof of the existence result. Furthermore, we discuss the algorithmic issues regarding
the problem of efficient computation of avoidable vertices in a given graph. This is
complemented by an algorithmic application of the concept of avoidable vertices to the
maximum weight clique problem, by identifying a rather general class of graphs in which
every avoidable vertex is bisimplicial. This leads to a polynomial-time algorithm for the
maximum weight clique problem in this class of graphs. Implications of this approach for
digraphs are also discussed. Finally, we state a conjecture concerning the generalisation
of avoidable vertices to avoidable paths and prove this conjecture for paths of length less
or equal to two.

Chapters 4 and 5 are concerned with the properties of many different and widely used
forms of graph search. Here, we discuss the problem of recognising whether a given
vertex can be the last vertex visited by some fixed graph search. Moreover, we present
some new aspects of the problem of deciding whether a given spanning tree of a graph is
a graph search tree of a particular type of search. We generalise the concept of such trees
to many well-known searches and give a broad analysis of the computational complexity
of this problem. Both of these discussions are motivated by the use of graph searches in
the context of computing properties of convexity.
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0 Preliminaries

In this chapter, we recall some of the basic notation and definitions used throughout
this text. We give short overviews of some NP-complete graph problems, as well as
introducing some of the most well known graph classes in use throughout this text.
In this context, we also present a selection of the most important graph searches, as
they will be used frequently throughout this text. Finally, we end this chapter with
a brief introduction to the field of abstract convexity with an emphasis on interval
convexity and convex geometry. For anything not defined here or anywhere else in this
text, we refer to classic textbooks in these various fields: for any basic graph theoretic
notions we recommend [48, 147], for topics in algorithmic graph theory [22, 75], for graph
searching [37, 65] and finally, for any questions on abstract convexity [56, 144]

0.1 General Notation

In this section, we summarize the definitions of some of the most frequently used notions
in this text. All graphs in this text will be finite but may be either undirected or directed.
We will refer to an undirected graph simply as a graph and denote it as G = (V,E)
where V is the vertex set and E ⊆ V × V the edge set. A directed graph will be called
a digraph and denoted as D = (V,A) where V is again the set of vertices and A the set
of arcs. Graphs and digraphs in this text will always be simple, that is, without loops
or multiple edges (with pairs of oppositely oriented arcs in digraphs allowed). Given
a graph G = (V,E), we denote by n and m the number of vertices and edges in G,
respectively. Unless stated otherwise we use standard graph and digraph terminology
and notation. In particular, an edge in a graph connecting two vertices u and v will be
denoted as {u, v} or uv and in this case u and v are said to be adjacent . Furthermore,
the vertices u and v are said to be incident to the edge uv. An arc in a digraph pointing
from u to v will be denoted as (u, v) or uv. The set of all vertices adjacent to a vertex
v in G, i.e., its neighbourhood , is denoted by NG(v) and the cardinality of this set, the
degree of v, by dG(v). Similarly, the closed neighbourhood NG(v) ∪ {v} is written as
NG[v]. The minimal degree of the vertices of a graph G is denoted by δ(G) and the
maximal degree by ∆(G). A vertex with degree 0 is said to be isolated . If every vertex
of a graph G is of degree exactly k, then that graph is said to be k-regular .

We say that a graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
Given a graph G and a set S of its vertices, we denote by G[S] the subgraph of G induced
by S, that is, the graph with vertex set S and edge set {uv ∈ E(G) : u, v ∈ S}. By
G−S we denote the subgraph of G induced by V (G)\S, and when S = {v} we also write
G− v. Given an edge set F ⊆ E(G), we denote by G− F the graph (V (G), E(G) \ F );
when F = {f}, we also write G − f . Similarly, if u and v are nonadjacent vertices of
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0 Preliminaries

G, then G + uv is obtained from G by connecting u and v with an edge. A clique in
a graph G is a set of pairwise adjacent vertices and an independent set in G is a set of
pairwise nonadjacent vertices. By Pn, Cn, and Kn we denote the path, cycle, and the
complete graph with n vertices, respectively. A claw is a graph which consists of one
vertex adjacent to exactly three vertices of degree one. A net consists of a C3, whose
vertices are adjacent to three different vertices of degree one.

A walk of length k in a graph G is a sequence of vertices (v1, . . . , vk+1) such that
vivi+1 ∈ E for all i ∈ {1, . . . , k}. This walk is called a trail if all its edges are distinct.
If a trail has the additional property that all vertices vi for i ∈ {1, . . . k} are pairwise
distinct, we call it a path (in G). We will sometimes denote a path (v1, . . . , vk) as
v1 − . . .− vk. A trail whose end-vertices coincide is called a circuit . A walk (v1, . . . , vk)
in G such that all vertices vi for i ∈ {1, . . . k} are pairwise distinct, except that v1 = vk,
is called a cycle (in G). A chord of a path (cycle) is an edge between two vertices on
the path that is itself not part of this path (cycle). A path or a cycle in G is said to
be chordless if it does not have any chords. We say that a path (respectively, induced
path), say (v1, . . . , vk), in a graph G closes to a cycle (respectively, induced cycle) if
there is a cycle (respectively, induced cycle) in G of the form (v1, . . . , vk, u1, . . . , up).
Given a path P in a graph G and vertices x, y ∈ V (P ), we denote by x−P − y or P[x,y]

the subpath of P from x to y. Furthermore, in analogy to open and closed intervals, we
will denote by P(x,y) the subpath of P from x to y excluding x and y, and by P(x,y] and
P[x,y) the subpaths excluding x and y, respectively. Concatenations of such paths into
longer paths or cycles will be denoted similarly, by x− P − y −Q− z, etc. We say that
a path P avoids a vertex v if the intersection of N [v] and V (P ) is empty, and we say
that v intercepts P otherwise.

Two graphs are isomorphic if there is a correspondence between their vertex sets that
preserves adjacency. Thus, G = (V,E) is isomorphic to G′ = (V,E′) if there is a bijection
φ : V → V ′ such that uv ∈ E if and only if φ(u)φ(v) ∈ E′. Given a family of graphs F ,
we say that a graph is F-free if no induced subgraph of G is isomorphic to a graph in
F .

An automorphism of a graph G is a bijection from the vertex set ofG to itself that maps
edges to edges and non-edges to non-edges. A graph G is said to be vertex-transitive if
for every two vertices u, v ∈ V (G) there exists an automorphism of G mapping u to v.
Similarly, G is said to be edge-transitive if for every two edges e, f ∈ E(G) there exists
an automorphism of G mapping e to f .

An orientation of a graph G = (V,E) is a digraph obtained by assigning each edge of
G a direction. A tournament is an orientation of the complete graph. Given a digraph
D = (V,A), the in-neighbourhood of a vertex v in D, denoted by N−D (v), is the set of all
vertices w such that (w, v) ∈ A. Similarly, the out-neighbourhood of v in D, denoted by
N+
D (v), is the set of all vertices w such that (v, w) ∈ A.
A graph is said to be connected if for every pair of distinct vertices u and v there is

a path from u to v and disconnected otherwise. A maximal connected subgraph is a
connected component of the graph. In a connected graph a subset of vertices S ⊆ V is
called an a-b-separator for two nonadjacent vertices a, b ∈ V if a and b are contained in
different components of G−S. Furthermore, a set S ⊆ V is a separator if there is a pair
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of vertices a, b ∈ V such that S is an a-b-separator. In particular, if such a cutset consists
of only one vertex, we call it an articulation vertex , or cutvertex . An a-b-separator is
called minimal if it does not contain any other a-b-separator. A separator S is called
a minimal separator if there is a pair of vertices a, b ∈ V such that S is a minimal
a-b-separator.

Similarly, for two vertices s, t ∈ V of a connected graph G an s-t-cut is a set of edges
such that after their deletion s and t are in different components of the graph. A cut
consisting of just one edge is called a bridge. A graph without any cycles is called a
forest , or an acyclic graph; a tree is a connected forest.

The complement of a graph G is the graph G with the same vertex set as G, in which
two distinct vertices are adjacent if and only if they are not adjacent in G. The line
graph L(G) of G is the graph which has vertex set E(G) and two vertices e and f of
L(G) are adjacent if they have a vertex in common in G. By 2K2 we denote the graph
consisting of two disjoint and independent copies of K2. A graph is bipartite if its vertex
set can be partitioned into two independent sets, which are then said to be a bipartition
of the graph. By Km,n we denote the complete bipartite graph with m vertices on one
side of the bipartition and n on the other one. A graph is cobipartite if its complement
is bipartite.

The distance between two vertices s and t is the length of a shortest path between
these two vertices and will be denoted by distG(s, t). The set of vertices that have
distance k to a vertex s is called the k-th distance layer from s of G and is denoted by
LkG(s). For every vertex v ∈ V we say that Nk

s (v) := LkG(s) ∩ NG(v). A vertex x with
largest distance from s is called eccentric with respect to s and its distance to s is the
eccentricity eccG(s) of s. The diameter of G, denoted diam(G), is the largest such value
among all vertices.

An ordering of vertices in G is a bijection σ : V (G)→ {1, 2, . . . , n}. For an arbitrary
ordering σ of vertices in G, we will denote by σ(v) the position of vertex v ∈ V (G).
Given two vertices u and v in G we say that u is to the left (resp. to the right) of v if
σ(u) < σ(v) (resp. σ(u) > σ(v)) and we will denote this by u ≺σ v (resp. u �σ v). A
vertex v is an end-vertex of an ordering σ of G if σ(v) = n. A subset D ⊆ V is called
a dominating set of G if every vertex in V has a neighbour in D. If the set D forms a
path in G it is called a dominating path. Two vertices s and t of G form a dominating
pair if every path between them is dominating.

We consider a partially ordered set Π to be a pair (X,π) where X is the ground set
and π is a reflexive, antisymmetric and transitive binary relation on X, also called a
partial order . We also denote (x, y) ∈ π by x ≺π y. For a partially ordered set (X,π) we
call x ∈ X an immediate predecessor of y ∈ X if x ≺π y and there is no element z ∈ X
such that x ≺π z and z ≺π y. For a binary relation π′ on X we say that the reflexive
and transitive closure of π′ is the smallest binary relation π′ ⊆ π that is reflexive and
transitive.

For further terms related to graphs and graph classes, we refer the reader to [22, 48,
75, 133, 147].
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0.2 Some NP-Complete Graph Problems

In the following we present some common NP-complete graph problems that are studied
in this work.

Maximum Independent Set and Maximum Clique

A clique in a graph G is a set of pairwise adjacent vertices of G. An independent set ,
on the other hand, is a set of pairwise nonadjacent vertices.

Maximum Clique

Instance: An undirected graph G = (V,E).
Task: Find a clique C of maximum size.

Maximum Independent Set

Instance: An undirected graph G = (V,E).
Task: Find an independent set I of maximum size.

Graph Colouring

A proper vertex colouring of G = (V,E) is a function f : V → N with f(v) 6= f(w) for
all vw ∈ E. The value f(v) for v ∈ V is called the colour of v. A vertex colouring is
said to be optimal if it uses the least amount of colours.

Graph Colouring

Instance: An undirected graph G = (V,E).
Task: Find an optimal colouring of the vertices of G.

Domination

A vertex in a graph is said to be universal if it is adjacent to every other vertex, and
non-universal otherwise. A subset D ⊆ V is called a dominating set of G if every vertex
in V \D has a neighbour in D. If the set D forms a path in G it is called a dominating
path. Two vertices s and t of G form a dominating pair if every path between them is
dominating.

Dominating Set

Instance: An undirected graph G = (V,E).
Task: Find a set S ⊆ V of minimum size such that every v ∈ V \ S has a

neighbour in S.
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Hamiltonian Path and Cycle

Hamiltonian Path and Hamiltonian Cycle are two of the most famous and oldest prob-
lems in graph theory. A hamiltonian cycle of G is a cycle containing all vertices of G.
If G contains a hamiltonian cycle it is called hamiltonian.

Hamiltonian Cycle

Instance: An undirected graph G = (V,E).
Task: Find a hamiltonian cycle C.

A hamiltonian path of G is a cycle containing all vertices of G. If G contains a
hamiltonian path, it is called traceable.

Hamiltonian Path

Instance: An undirected Graph G = (V,E).
Task: Find a hamiltonian path P .

Minimum Fill-In

Following Heggernes [87], graph H = (V,E∪F ) is called a triangulation of G = (V,E) if
H is chordal and we say that it is a minimal triangulation if for every proper subset F ′

of F , the graph (V,E∪F ′) is not chordal. An elimination ordering σ of the vertices of G
is a vertex ordering given as input for the Elimination Game, as defined in Algorithm 1,
to compute a triangulation of G called G+

σ . If G+
σ is a minimal triangulation, we call

σ a minimal elimination ordering . If G+
σ is equal to G, then σ is a perfect elimination

ordering and G is chordal by definition. The deficiency of a vertex v is defined as the
set DG(v) = {uw /∈ E : u,w ∈ NG(v)}. A cardinality-wise smallest triangulation is
called the minimum fill-in.

Algorithm 1: Elimination Game algorithm

Input: A graph G = (V,E) and an ordering σ = (v1, . . . , vn).
Output: The filled graph G+

σ .

1 G0 = G;
2 for i = 1 to n do
3 Let F i = DGi−1(v);
4 Obtain Gi by adding the edges in F i to Gi−1 and removing vi;

5 G+
σ = (V,E ∪

⋃n
i=1 F

i)

Minimum Fill-In

Instance: An undirected graph G = (V,E).
Task: Find a set F ⊂ E of minimum size such that G+ F is chordal.
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0.3 Graph Classes

The problems discussed in the previous section have many applications in such diverse
areas as computer science, biology, logistics, traffic engineering and scheduling. Many
real world (optimisation-) problems can essentially be reduced to such graph problems.
Therefore, it is of significant interest to find correct and efficient algorithms to solve
them.

Typically, these problems can be separated into two classes: problems for which an
efficient algorithm can be found (these problems are said to be in P ) and problems for
which it is conjectured that no efficient algorithm can be found (these problems are said
to be NP-hard).

For the latter class, it is necessary to find different approaches to algorithm design.
These can be roughly separated into three types. We could drop our notion of efficiency
and accept algorithms that do not run in strictly polynomial time. There are different
approaches to this, ranging from the field of exact algorithms [60] to parametrised com-
plexity [50]. Another possibility arises if we accept solutions that are not necessarily opti-
mal, but approximate an optimal solution. The resulting approximation algorithms [145]
are polynomial and yield good results for some of the mentioned problems.

However, if our application demands fast computation times and additionally there
is no margin of error allowed, neither of these two approaches is viable. In this case, it
becomes important to exploit the structure of the given input to give time-efficient and
optimal algorithms. One way to achieve this is by restricting the algorithm to a subclass
of graphs, i.e., a family of graphs with additional structural properties.

This approach has proven to be very effective for such subclasses as interval graphs,
permutation graphs, comparability graphs and many others. Many applications men-
tioned above deliver graph problems on just these graph classes and research in this area
has been fruitful. In the following we will give a short overview of the graph classes that
will be addressed most frequently in this text.

We will give some of the most important characterisations for each class and state
the complexity of their recognition, as well as the complexity of some optimisation
problems. As will be made clear later on in this text, we are particularly interested in
characterisations through linear vertex orderings.

Many of these classes are introduced more thoroughly by Golumbic [75]. Furthermore,
a comprehensive overview of the field is given by Brandstädt et al. [22].

Perfect Graphs

A graph for which every induced subgraph H has the property that the clique number
ω(H) coincides with its colouring number χ(H) is said to be perfect . Perfect graphs
were introduced by Claude Berge in the 1960s, after which a host of interesting results
on their structure were discovered. The most famous of these is the Strong Perfect
Graph Theorem, which was conjectured in 1962 by Berge [11] and finally proven in 2006
by Chudnovsky et al. [33].
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Theorem 0.3.1 (Chudnovsky et al. [33]). (Strong Perfect Graph Theorem) An undi-
rected graph is perfect if and only if it does not contain an induced subgraph isomorphic
to C2k+1 or C2k+1.

Many other important graph classes are perfect. In fact, the concept was motivated by
a result from Gallai [66] which proved that the complement of a bipartite graph is perfect.
Chudnovsky et al. [32] showed that perfect graphs can be recognized in polynomial time.
However, their algorithm has a time complexity of O(n9). The weighted independent set,
weighted clique and colouring problems can be solved in polynomial time using linear
programming [78].

Chordal Graphs

Chordal graphs were introduced by Hajnal and Surányi [82] in 1958 and have been
studied extensively ever since. In essence, they form a natural generalisation of trees,
sharing many similar properties. Chordal graphs form a kind of archetype among graph
classes and the many ways in which they can be characterised will serve as a template
for desired properties in other classes.

Definition 0.3.2. A graph G = (V,E) is chordal if each cycle in G of length at least 4
has at least one chord.

One of the oldest characterisations of chordal graphs can be stated using separators.

Theorem 0.3.3 (Dirac [49]). A graph G = (V,E) is chordal if and only if every minimal
cutset in every induced subgraph of G is a clique.

As will be the case for many of the graph classes studied here, the most fruitful
characterisation, from an algorithmic point of view, is given using a linear order of the
vertices.

Definition 0.3.4. Let G = (V,E) be a graph. A vertex v ∈ V is said to be simplicial
in G if N(v) is a clique in G. The ordering (v1, . . . , vn) of vertices of V is a perfect
elimination ordering (PEO) of G if for all i ∈ {1, . . . , n}, the vertex vi is simplicial in
Gi = G[v1, . . . , vi].

Note that in many texts perfect elimination orderings are defined as exactly the reverse
of these defined here. However, for our purposes this definition of the ordering will be
much more convenient.

Theorem 0.3.5 (Dirac [49], Fulkerson and Gross [64], Rose [123]). A graph is chordal
if and only if it has a perfect elimination ordering.

By computing a perfect elimination ordering Tarjan and Yannakakis [136] showed that
chordal graphs can be recognized in linear time.

Many of the classical problems such as maximum clique [70] can be solved in poly-
nomial time on chordal graphs, and some problems such as maximum independent
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set [69, 126] and graph colouring even admit a linear time algorithm [75]. Most of
these algorithms use a perfect elimination ordering and solve the problem in a greedy
manner.

If neither G nor its complement contains an induced cycle of length 5 or more, then
G is said to be weakly chordal . A two-pair in a graph is a pair of non-adjacent vertices
such that every induced path between the two vertices has exactly two edges. We use
the following fact about weakly chordal graphs:

Lemma 0.3.6 (Spinrad and Sritharan [132]). Let G = (V,E) be a graph with a two-pair
{x, y}. Then G is weakly chordal if and only if G+ xy is weakly chordal.

Similarly, the deletion of some particular vertices does not destroy the property of
being weakly chordal.

Lemma 0.3.7. Let G = (V,E) be a graph and v ∈ V such that v is simplicial or adjacent
to at least n− 2 vertices of V . Then G is weakly chordal if and only if G− v is weakly
chordal.

Proof. If v is simplicial, then it cannot be part of an induced cycle of G of size ≥ 4.
Suppose that v is part of an induced cycle of size ≥ 5 in G. Then there is an edge uw
in this cycle, such that vu, vw /∈ E(G); a contradiction to v being simplicial.

Suppose that v has at least n− 2 neighbours in G. Then v has only one neighbour in
G and, thus, cannot be part of an induced cycle. Suppose v is part of an induced cycle of
size ≥ 5 in G. Then v must be non-adjacent to at least two vertices; a contradiction.

A split graph G is a graph whose vertex set can be divided into sets C and I such that
C is a clique in G and I is an independent set in G. It is easy to see, that every split
graph is chordal, whereas every chordal graph is also weakly chordal. Furthermore, a
graph is split if and only if both the graph itself and its complement are chordal.

Comparability Graphs

The class of comparability graphs comprises those graphs which correspond to some
finite partial order

Definition 0.3.8. Let P = (V,�) be a finite partially ordered set. Then GP = (V,EP )
with xy ∈ EP if x ≺ y or y ≺ x is the comparability graph of the partially ordered set
P . A graph G = (V,E) is a comparability graph if there is a partially ordered set P
such that GP is isomorphic to G. Furthermore, a graph is a cocomparability graph if
G is a comparability graph.

Similarly, comparability graphs can also be defined through an orientation of their
edges which reveals the partial ordering beneath.

Definition 0.3.9. An orientation D = (V,A) of a given undirected graph G = (V,E) is
said to be transitive if for each pair of arcs xy, yz ∈ A it holds that the arc xz is also
contained in A.
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Obviously, a graph is a comparability graph if and only if it has an acyclic transitive
orientation, as such an orientation directly conveys the needed partial ordering. However,
the following stronger characterisation also holds.

Theorem 0.3.10 (Ghouila-Houri [71]). A graph is a comparability graph if and only if
it has a transitive orientation.

This can be simplified by only analysing the odd cycles of a graph.

Theorem 0.3.11 (Gilmore and Hoffman [72], Ghouila-Houri [71]). A graph G = (V,E)
is a comparability graph if and only if there is no sequence (x1, x2, x3, . . . , x2n+1) of (not
necessarily distinct) vertices from V with n ≥ 2 such that xixi+1 ∈ E and xixi+2 /∈ E
(cyclically).

The complements of comparability graphs have even stronger algorithmic properties.
This is mainly due to a useful characterisation through a linear vertex order. This
ordering can be immediately obtained through a linear extension of the partial ordering
underlying the complement graph.

Definition 0.3.12. Let G = (V,E) be a graph and let σ = (v1, . . . , vn) be a linear
ordering of its vertices. The ordering σ is said to be a cocomparability order if for any
i, j, k ∈ {1, . . . , n} with i < j < k we have that vivk ∈ E implies vivj ∈ E or vjvk ∈ E.

Theorem 0.3.13 (Kratsch and Stewart [104]). A graph G = (V,E) is a cocomparability
graph if and only if it has a cocomparability ordering.

Comparability and cocomparability graphs can be recognized in polynomial time [74].
Furthermore, many optimisation problems can be solved efficiently, especially on cocom-
parability graphs. These comprise colouring [74], domination [104] and minimum path
cover [45].

Interval Graphs

Many graph classes are defined as so-called intersection graphs.

Definition 0.3.14. For a given family of sets M, the intersection graph GM of these
sets has M as its vertex set, and two sets are adjacent in GM if the intersection of the
corresponding sets is not empty. The family M is called the model of G.

Most of these classes have a geometric background, i.e., as the intersections of various
geometric objects on a line, in the plane or in space. The most well known such class
by far is the class of interval graphs.

Definition 0.3.15. Let I = {I1, I2, . . . , In} be a finite collection of closed intervals of
the real line and let GI be its intersection graph. Then G is said to be an interval graph
if G is the intersection graph GI of an interval model I.
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Interval graphs were introduced independently by Hajós [83] in a combinatorial setting
and by Benzer [10] in the context of genetics. As each interval can be interpreted as a
different interval in time, these graphs can be used to check for conflicts in the scheduling
of timetables and similar applications.

There are many interesting characterisations of interval graphs and the following the-
orem shows two examples.

Theorem 0.3.16 (Gilmore and Hoffman [72]). Let G = (V,E) be a graph. The following
conditions are equivalent:

1. G is an interval graph.

2. G contains no induced C4 and G is transitively orientable;

3. The maximal cliques of G can be linearly ordered such that for each vertex v ∈ V ,
the maximal cliques containing v occur consecutively.

Interval graphs can also be defined through a set of forbidden induced subgraphs given
by Lekkerkerker and Boland [109]. For algorithmic purposes a characterisation using a
linear vertex ordering is particularly useful.

Definition 0.3.17. Let G = (V,E) be a graph and let σ = (v1, . . . , vn) be a linear
ordering of its vertices. The ordering σ is an interval order if for any i, j, k ∈ {1, . . . , n}
with i < j < k we have that vivk ∈ E implies vivj ∈ E.

Theorem 0.3.18 (Olariu [118]). A graph is an interval graph if and only if its vertex
set admits an interval order.

In the following we will introduce some variants of interval graphs, as there are many
different intuitive possibilities to both generalise and strengthen this concept.

Definition 0.3.19. A graph G is a proper interval graph if G is an interval graph with
an interval model where no two intervals Ix, Iy ∈ I contain each other.

Definition 0.3.20. A graph G is a unit interval graph if G is an interval graph with
an interval model of unit-length intervals.

Theorem 0.3.21 (Roberts [122]). The graph G = (V,E) is a proper interval graph if
and only if G is a unit-interval graph.

These graphs can also be characterised using a linear vertex ordering.

Definition 0.3.22. Let G = (V,E) be a graph and let σ = (v1, . . . , vn) be a linear
ordering of its vertices. The ordering σ is a unit interval order if for any i, j, k ∈
{1, . . . , n} with i < j < k we have that vivk ∈ E implies vivj ∈ E and vjvk ∈ E.

Theorem 0.3.23 (Looges and Olariu [110]). A graph is a unit interval graph if and
only if its vertex set admits a unit interval order.
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An important generalisation of the interval graph that we will encounter in this text
is defined as the intersection graph of arcs on a circle.

Definition 0.3.24. A graph G is a circular-arc graph if there is a finite collection of
arcs on a circle such that G is the intersection graph of this model.

Research on circular-arc graphs goes back as far as the 1960’s where Hadwiger et al.
[80] and Klee [96] made first observations on these graphs, culminating in a series of
publications by Tucker [138, 139, 140, 141, 142].

Circular-arc graphs can be recognised in linear time [113] and many optimisation
problems such as domination [29], maximum clique [16] and maximum independent
set [92] can be solved in polynomial or even linear time.

AT-free Graphs

In a classical paper of algorithmic graph theory from the early 1960s by Lekkerkerker
and Boland [109], the authors used a forbidden substructure called an asteroidal triple
to characterise interval graphs. An asteroidal triple is an independent triple of vertices,
such that for any two of them there is a path that avoids the third.

Definition 0.3.25. An asteroidal triple (AT) of a given graph G = (V,E) is a set of
three independent vertices such that there is a path between each pair of these vertices
that does not contain any vertex of the neighbourhood of the third. A graph is called
asteroidal triple free or AT-free if G does not contain an asteroidal triple. Furthermore,
a graph is called coAT-free if G is AT-free.

A vertex z such that there is no pair of vertices a and b, for which there is an induced
a-z-path that avoids b and an induced b-z-path that avoids a, is said to be admissible.

Theorem 0.3.26 (Lekkerkerker and Boland [109]). A graph G is an interval graph if
and only if it is chordal and AT-free.

This characterization gave rise to the introduction of the class of asteroidal triple free
graphs (AT-free graphs) and due to the fact that these graphs form a superclass of both
the interval and cocomparability graphs, there has been considerable research interest
for the last two decades.

We say that two vertices u, v ∈ V of a given graph G = (V,E) form a dominating pair
of G if every path connecting u and v is a dominating set of G.

Theorem 0.3.27 (Corneil et al. [39]). Every connected AT-free graph has a dominating
pair.

With the help of the concept of dominating pairs we can derive another interesting
characterisation of AT-free graphs. To this end, we say that a connected graph G with
a dominating pair satisfies the spine property if for every nonadjacent dominating pair
(a, b) in G there exists a neighbour a′ of a such that (a′, b) is a dominating pair of the
connected component of H \ {a} containing b.
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Theorem 0.3.28. A graph G = (V,E) is AT-free if and only if every connected induced
subgraph of G satisfies the spine property.

Kratsch and Spinrad [103] and Köhler [97] showed that AT-free graphs can be recog-
nised in O(n2.82) or O(nm) by using fast matrix multiplication. In fact, Kratsch and
Spinrad [103] also showed that the complexity of recognition is at least as hard as rec-
ognizing triangles in a graph (see also [133]).

0.4 Graph Searching

Graph search is one of the oldest and most fundamental algorithmic concepts in both
graph theory and computer science. In essence, it is the systematic exploration of the
vertices in a graph, beginning at a chosen vertex and visiting every other vertex of the
graph such that a vertex is visited only if it is adjacent to a previously visited vertex.

Such a general definition of a graph search leaves much freedom for a selection rule
determining which node is chosen next. By restricting this choice with specific rules,
various different graph searches can be defined. Arguably the earliest examples are the
Breadth First Search (BFS) and the Depth First Search (DFS), which were referred to
in the context of maze traversals in the 19th century [58].

Graph searches such as Breadth First Search (BFS) and Depth First Search (DFS)
are, in the most general sense, mechanisms for systematically visiting all vertices of a
graph. Using such simple procedures, a variety of important graph properties can be
tested, many optimisation problems can be simplified and they are sub-routines in many
more algorithms. For example, BFS is an elementary component of several graph al-
gorithms, such as finding connected components, testing for bipartiteness, computing
shortest paths with respect to the number of edges, or the Edmonds-Karp algorithm for
computing the maximum flow in a network [57]. Similarly, DFS is the basis of algorithms
for finding biconnected components in undirected graphs [90], strongly connected com-
ponents in directed graphs [135], topological orderings of directed acyclic graphs [137],
planarity testing [91], or solving mazes [58].

We focus on connected searches, that is, a graph search or graph traversal that starts
at a vertex and explores the graph by visiting a vertex in the neighbourhood of the
already visited vertices. If no further restriction is given, we call such a search a generic
search. The search paradigms of BFS and DFS can be simply characterized by us-
ing a queue or a stack as the data structure for the unvisited vertices in the current
neighbourhood. However, there are more sophisticated searches such as Lexicographic
Breadth First Search (LBFS) [126] and Lexicographic Depth First Search (LDFS) [37].
Furthermore, we also consider Maximum Cardinality Search (MCS) [136] and Maximal
Neighbourhood Search (MNS) [37].

In the following, we will give an overview of some of the most popular graph search-
ing algorithms. In each case we will give an algorithmic characterisation, as well as a
characterisation using the discovery order of the visited vertices. A thorough overview
of this topic can be found in [37].
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a d b c d a b c

(S): Given an ordering σ of V , if a ≺σ b ≺σ c and ac ∈ E and ab /∈ E, then there exists
a vertex d ≺σ b such that db ∈ E.

Generic Search

The most general definition of a connected graph search is known as generic search.
Here, the search algorithm is only restricted at any step to visit some neighbour of the
already visited vertices. This search can be used to check whether a graph is connected
in linear time.

Algorithm 2: Generic Search

Input: Connected graph G and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 S ← {s};
3 for i← 1 to n do
4 Choose and remove an unnumbered vertex v from S;
5 σ(i)← v;
6 foreach unnumbered vertex w adjacent to v do add w to S;

The following condition characterises when a given linear order of the vertices of a
graph is the possible output of a generic search.

Theorem 0.4.1 (Corneil and Krueger [37]). For an arbitrary graph G = (V,E), an
ordering σ of V is a search ordering of G of a generic search if and only if σ has
property (S).

Breadth First Search

The Breadth First Search algorithm, also known as BFS, can be derived from generic
search by using the data structure of a queue. Every time a new vertex is visited, we
scan its neighbourhood and consecutively add its neighbours to the end of the queue.
We then proceed to visit the vertex at the beginning of the queue.

Due to the nature of this search, it can be used to compute a rooted tree in which
any path from the root to some other vertex is shortest, in the sense that it uses the
least number of edges. Therefore, this algorithm can be used to find shortest paths in
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d a b c

(B): Given an ordering σ of V , if a ≺σ b ≺σ c and ac ∈ E and ab /∈ E, then there exists
a vertex d ≺σ a such that db ∈ E.

graphs where all edges have equal (positive) weight and can be generalised to Dijkstra’s
algorithm. Apart from this, it is used as a subroutine in countless other algorithms.

Algorithm 3: BFS

Input: Connected graph G and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 initialize a queue Q with Q← {s};
3 for i← 1 to n do
4 dequeue v from beginning of Q;
5 σ(i)← v;
6 foreach unnumbered vertex w adjacent to v do
7 if w /∈ Q then
8 enqueue w to end of Q;

The following condition characterises when a given linear order of the vertices of a
graph is the possible output of a BFS.

Theorem 0.4.2 (Corneil and Krueger [37]). For an arbitrary graph G = (V,E), an
ordering σ of V is a BFS ordering of G if and only if σ has property (B).

Depth First Search

Depth First Search, also known as DFS, is the other classical graph search method. It
can be used to test for connectivity, to compute topological orderings and is used in
many other algorithms.

Whereas BFS uses a queue to choose new vertices, the defining data structure for
DFS is the stack . Every time a new vertex is visited, we scan its neighbourhood and
consecutively add its neighbours to the top of the stack and then proceed to visit the
vertex at the top of the stack.

In a series of publications, Hopcroft and Tarjan discovered many properties of DFS [90,
135] and found several interesting applications; for example, the testing of planarity [91].

The following condition characterises when a given linear order of the vertices of a
graph is the possible output of a DFS.
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Algorithm 4: DFS

Input: Connected graph G and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 initialize a stack S with S ← {s};
3 for i← 1 to n do
4 pop v from the top of S;
5 σ(i)← v;
6 foreach unnumbered vertex w adjacent to v do
7 if w ∈ S then
8 remove w from S;

9 push w on top of stack S;

a d b c

(D): Given an ordering σ of V , if a ≺σ b ≺σ c and ac ∈ E and ab /∈ E, then there exists
a vertex d with a ≺σ d ≺σ b such that db ∈ E.

Theorem 0.4.3 (Corneil and Krueger [37]). For an arbitrary graph G = (V,E), an
ordering σ of V is a DFS ordering of G if and only if σ has property (D).

Lexicographic Breadth First Search

In 1976, Rose, Tarjan and Lueker defined a linear time algorithm (Lex-P) which com-
putes a perfect elimination ordering, if any exists and thus, forms a recognition algo-
rithm for chordal graphs [126]. This algorithm, since named Lexicographic Breadth First
Search, or LBFS, exhibits many interesting structural properties and has been used as
an ingredient in many other recognition and optimisation algorithms. A thorough survey
on LBFS can be found in [43].

If two vertices have the same label in step 5, we say that they are tied . We call a set
of tied vertices S encountered in step 5 of Algorithm 5 a slice. Given an LBFS order τ
and two vertices u and v with u ≺τ v, we denote the vertex-minimal slice with respect
to τ containing u and v as Γτu,v.

Lemma 0.4.4 (Corneil et al. [43]). Let τ be an arbitrary LBFS of a graph G and let
u, v ∈ V with u ≺τ v. Let w be the τ -first vertex of the connected component Cu of Γτu,v
containing u. There exists a w-u-path in Γτu,v all of whose vertices, with the possible
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Algorithm 5: LBFS

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 label(s)← {n+ 1};
3 foreach vertex v ∈ V \ {s} do assign to v the empty label;
4 for i← 1 to n do
5 pick an unnumbered vertex v with lexicographically largest label;
6 σ(i)← v;
7 foreach unnumbered vertex w ∈ N(v) do append (n− i) to label(w);

d a b c

(LB): Given an ordering σ of V , if a ≺σ b ≺σ c and ac ∈ E and ab /∈ E, then there exists
a vertex d ≺σ a such that db ∈ E and dc /∈ E.

exception of u, are not adjacent to v. Moreover, all vertices on this path, other than u,
occur before u in τ . Such a path is called a prior path.

The following condition characterises when a given linear order of the vertices of a
graph is the possible output of an LBFS.

Theorem 0.4.5 (Brandstädt et al. [21], Corneil and Krueger [37], Golumbic [75]). For
an arbitrary graph G = (V,E), an ordering σ of V is an LBFS ordering of G if and only
if σ has property (LB).

There is a simple implementation of LBFS in linear time [79] using the technique of par-
tition refinement. This is defined as follows. Given a set S, we call Q = (Q1, Q2, . . . , Qk)
a partition of S if for all Qi, Qj with i 6= j we have Qi∩Qj = ∅ and

⋃k
i=1Qi = S. We say

that a set T ⊆ S refines Q if every partition class Qi ∈ Q is replaced with subpartition
classes Ai = Qi ∩ T and Bi = Qi \Ai. The partition refinement scheme for LBFS func-
tions as follows. Beginning with the partition Q = (V ), select a vertex s and refine Q
with N(s) by placing A = V ∩N(s) before B = V \A. The vertex whose neighbourhood
is used to refine the partition classes is called a pivot. Choose the next pivot v among
the vertices of the first set in Q and use N(v) to refine, maintaining the order of the
partition classes created so far, i.e., (A ∩ N(v), A \ N(v), B ∩ N(v), B \ N(v)). This
process is repeated until all partition classes have been refined.
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a d b c

(LD): Given an ordering σ of V , if a ≺σ b ≺σ c and ac ∈ E and ab /∈ E, then there exists
a vertex d with a ≺σ d ≺σ b such that db ∈ E and dc /∈ E.

Lexicographic Depth First Search

In [37], Corneil and Krueger defined Lexicographic Depth First Search as a lexicographic
analogue to DFS. Since then, it has been used for many applications, most notably to
solve the minimum path cover problem on cocomparability graphs [45].

Algorithm 6: LDFS

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 label(s)← {0};
3 foreach vertex v ∈ V \ {s} do assign to v the empty label;
4 for i← 1 to n do
5 pick an unnumbered vertex v with lexicographically largest label;
6 σ(i)← v;
7 foreach unnumbered vertex w ∈ N(v) do prepend i to label(w);

The following condition characterises when a given linear order of the vertices of a
graph is the possible output of an LDFS.

Theorem 0.4.6 (Corneil and Krueger [37]). For an arbitrary graph G = (V,E), an
ordering σ of V is a LDFS ordering of G if and only if σ has property (LD).

Maximum Cardinality Search

Maximum Cardinality Search (MCS) was introduced in 1984 by Tarjan and Yannakakis
[136] as a simple alternative to LBFS for recognising chordal graphs. They noticed
that, instead of remembering the order in which previous neighbours of a vertex had
appeared, it sufficed to just store the number of previously visited neighbours for each
vertex. This observation resulted in an algorithm which has a linear running time and
an easy implementation.

Theorem 0.4.7 (Brandstädt et al. [21]). For an arbitrary graph G = (V,E), an ordering
σ of V is an MCS ordering of G if and only if σ has property (MC).
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Algorithm 7: Maximum Cardinality Search

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 σ(1)← s;
3 for i← 2 to n do
4 pick an unnumbered vertex v with largest amount of numbered

neighbours;
5 σ(i)← v;

d1 dk a1 ak b c
. . . . . .

(MC): Given an ordering σ of V , if a1, . . . , ak ≺σ b and aic ∈ E and aib /∈ E for all
i ∈ {1, . . . , k}, then there exist vertices d1, . . . , dk with d1, . . . , dk ≺σ b such that dib ∈ E
and dic /∈ E for all i ∈ {d1, . . . , dk}.
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a d b c d a b c

(MN): Given an ordering σ of V , if a ≺σ b ≺σ c and ac ∈ E and ab /∈ E, then there
exists a vertex d with d ≺σ b and db ∈ E and dc /∈ E.

Maximal Neighbourhood Search

Maximal Neighbourhood Search (MNS) was introduced by Corneil and Krueger [37] in
2008 as a generalisation of LBFS, LDFS and MCS. Instead of using strings (like LBFS
and LDFS) or integers (like MCS), the algorithm uses sets of integers as labels and
the maximal labels are those sets which are inclusion maximal. Unlike the labels of
LBFS, LDFS and MCS, the labels of MNS are not totally ordered and there can be
many different maximal labels. Corneil and Krueger showed that every search ordering
of LBFS, LDFS and MCS is also an MNS ordering. This result was generalized in 2009
by Berry et al. [12] who showed that the set of MNS orderings is equal to the set of
orderings of Maximum Label Search.

Given the 3-point conditions for LBFS and LDFS, it is intriguing to ask what happens
if we relax the position of d to be simply before b. This property, defined as (MN),
obviously holds for LBFS and LDFS, but also for Maximum Cardinality Search which
will be the subject of the next section. This last fact was first observed by Tarjan and
Yannakakis [136] and they managed to prove that any search with this property returns
a perfect elimination ordering. However, they did not state a proper search paradigm
which is implied by (MN).

In [37] the authors used this property to define a proper search algorithm, stated in
Algorithm 8, which they called Maximal Neighbourhood Search and proved the following:

Theorem 0.4.8 (Corneil and Krueger [37]). For an arbitrary graph G = (V,E), an
ordering σ of V is an MNS ordering of G if and only if σ has property (MN).

Algorithm 8: Maximal Neighbourhood Search

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 label(s)← {n+ 1};
3 foreach vertex v ∈ V \ {s} do assign to v the empty label;
4 for i← 1 to n do
5 pick an unnumbered vertex v with maximal label under set inclusion;
6 σ(i)← v;
7 foreach unnumbered vertex w adjacent to v do add i to label(w);
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Multisweep Searches

A technique that has proven to be very fruitful in recent years is that of “multisweeping”.
This describes the multiple application of some graph searches, where each run of the
search uses the ordering given by the previous application as a so-called “tie-break” rule,
that is, a priority list which decides which vertex can be visited next in those cases where
the given search paradigm allows several different options.

Algorithm 9: Multisweep Search

Input: A search paradigm P, connected graph G = (V,E) and a linear order σ
of the vertices

Output: A vertex ordering τ
1 begin
2 for i← 1 to n do
3 pick an unnumbered vertex v that is rightmost in σ among the feasible

vertices w.r.t. the search paradigm P;
4 τ(i)← v;

Many recognition and optimisation algorithms use this form of search either as the
main algorithm or as a subroutine. Some examples are the following. For AT-free
graphs LBFS provides a linear time algorithm for finding dominating pairs in connected
asteroidal triple-free graphs, where a dominating pair is a pair of vertices such that every
path connecting them is a dominating set in the graph [40]. The first vertex x is simply
the end-vertex of an arbitrary LBFS and the second vertex y is the end-vertex of an
LBFS starting in x. Moreover, one can use five LBFS executions followed by a modified
LBFS to recognize interval graphs [43]. For unit-interval graphs it is even enough to use
three applications of LBFS, as was shown by Corneil [36]. Crescenzi et al. [46] have
shown that the diameter of huge real world graphs can usually be found with only a few
BFS executions. Furthermore, it was shown that (L)BFS can be used to approximate
the diameter of graphs in the classes of chordal graphs [52], HHD-free graphs [51], k-
chordal graphs [41] and hyperbolic graphs [31]. In a recent result, Dusart and Habib [55]
have even shown that applying LBFS to a cocomparability graph at most n times yields
a cocomparability order, giving rise to the question of convergence of this operation.
Sometimes it can even be useful to combine different types of searches in this manner,
as can be seen in [45], where the authors use LDFS and other searches to compute a
minimum path cover on cocomparability graphs.

0.5 Abstract Convexity in Finite Sets

Before we can begin to define a notion of convexity for graphs in Chapter 1, we need
to introduce some elementary concepts and notation from abstract convexity. The field
of abstract or generalised convexity was established in the first half of the 20th century
in a variety of different settings and by many different researchers. The common aim
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of these diverse approaches was to axiomatise the manifold concepts and properties
from geometry, which are known as convexity, in a form that resembles the modern (or
abstract) algebra developed in the late 19th and early 20th century. This is a vast field
and a proper introduction would go far beyond the scope of this text. Therefore, we will
simply introduce the fundamental concepts and some of the basic notation, as well as
short excursions to the subfields of interval convexity and convex geometry. A thorough
overview of abstract convexity and interval convexity is given in the comprehensive (and
slightly overwhelming) book by van de Vel [144]. This survey, however, also covers
convexities over infinite and uncountable sets, making some discussions overcomplicated
for our discrete setting. For the theory of convex geometries Edelman and Jamison [56]
give an extensive survey, while the book on greedoids by Korte et al. [101] covers convex
geometries under the dual structure of anti-matroids.

0.5.1 Abstract Convexity in Finite Sets

We begin by giving a very general definition of a convexity space.

Definition 0.5.1. Let V be a finite set and let C be a collection of subsets of X with
the properties:

(i) ∅ ∈ C and V ∈ C

(ii) A ∈ C and B ∈ C implies A ∩B ∈ C.

We call the pair (V, C) a convexity space on the ground set V . The elements of C are
called convex sets. A convex set whose complement is also convex is called a halfspace.
Given a convexity space (V, C) we define the convex hull of X ⊂ V , namely conv(X), to
be the smallest convex set containing X, or alternatively the intersection of all convex
supersets of X.

The convex hull of a set has many interesting properties.

Lemma 0.5.2 (Edelman and Jamison [56]). For a convexity space (V, C) the convex hull
is a closure operator, i.e., it has the following properties:

(i) X ⊆ conv(X),

(ii) X ⊆ Y implies conv(X) ⊆ conv(Y ),

(iii) conv(conv(X)) = conv(X),

for X,Y ⊆ V .

One of the most important concepts from convexity in a graph theoretic setting is
that of the extreme point.

Definition 0.5.3. Given a convexity space (V, C) we define a basis B of X ⊆ V to be
minimal with B ⊆ X and conv(B) = conv(X). We call a point p ∈ X extreme point of
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X, if p /∈ conv(X − p) and the set of all extreme points of X is denoted by ex(X). A
copoint C attached at p is a maximal convex set in X − p.

We can also define the intersection of convexities (V, C1), . . . , (V, Ck) over the same
ground set to be (V,

⋂k
i=1 Ci). Obviously, this construction is again a convexity space.

The join of a family of convexities C1, . . . , Ck on a common ground set V is the con-
vexity generated by

⋃k
i=1 Ci. This convexity consists of all sets of type

⋂k
i=1Ci, where

Ci ∈ Ci for all i ∈ {1, . . . k}.
The following property describing the interaction between the hull- and the join-

operation will be very important in the study of convex geometries.

Definition 0.5.4. A convexity space (V, C) is said to be join-hull commutative if for
every non-empty convex set C ∈ C and every a ∈ V it holds that conv(C ∪ {a}) =⋃
c∈C conv({c, a}).
In an attempt to somehow quantify the complexity of a given convexity in a similar

way as is done by the concept of dimension in linear algebra and geometry, many different
types of measures have been proposed. We will define a variety of these here. However,
we will mainly be interested in the Carathéodory number.

Definition 0.5.5. Let (V, C) be a convexity space. We say that (V, C) has Carathéodory
number d if d is the smallest positive integer, such that for every X ⊆ V and every
p ∈ conv(X) there is a subset X ′ ⊆ X with p ∈ conv(X ′) and |X ′| ≤ d.

We say that (V, C) has Helly number h(C), if h is the smallest integer such that for
any family F of order h that has pairwise intersecting elements, the intersection of all
elements is not empty.

The Radon number r of (V, C) is defined as the smallest integer such that every set A ⊆
V with r elements has a Radon partition, i.e., a partition A = A1∪̇A2 with conv(A1) ∩
conv(A2) 6= ∅.

All of these concepts are derived from the Carathéodory, Helly and Radon theorems,
respectively, which describe properties of convex combinations in the space Rd. For
example, the Theorem of Carathéodory states that if a point x ∈ Rd lies in the convex
hull of a set X, then x can be written as the convex combination of at most d+ 1 points
in X [27, 134]. In abstract convexity and, in particular, in the case of graph convexity,
we will usually not have a canonic notion of dimension of the ground set underlying a
convexity in the way we have in the standard convexity of Rd. In this setting it will
sometimes make sense to use the Carathéodory number as an indicator of dimension in
that space, in the sense that the structure underlying (V, C) has dimension c − 1 if the
convexity has Carathéodory number c. For this notion to be reasonable, however, the
convexity C must somehow be natural with respect to the structure of the underlying
set V .

As we will frequently use the Carathéodory number to analyse different convexities,
the following result by Duchet [54] will be a very useful tool for its computation.

Definition 0.5.6. Let (V, C) be a convexity space and X ⊂ V . We say that X is
irredundant if there is some element x ∈ X such that x is not contained in the convex
hull of any true subset of X. A set that is not irredundant will be called redundant.
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These irredundant sets are very closely linked to the Carathéodory number of a con-
vexity space.

Lemma 0.5.7 (Duchet [54]). In any convexity space, the Carathéodory number equals
the maximum cardinality of an irredundant set.

Convexity spaces, in the very general sense defined in this section, can be seen more
as an umbrella term for more interesting special spaces. Unless furnished with more
structural properties, very little can be shown or derived from these structures. To be
able to achieve stronger properties that can be useful in a graph theoretic setting, we
need to move to more specific structures, either by using more axioms, as we will do
with the anti-exchange property in Section 0.5.3, or by restricting the ways in which
these spaces are generated, as we will see in the following Section 0.5.2, where we study
convexity spaces derived from intervals.

0.5.2 Interval Convexity

In this text we will mainly be dealing with convexities that will be defined using intervals.
Such convexities have much stronger properties than the general spaces defined in the
previous section. In particular, they will be a very natural concept in the setting of
graph theory, where definitions of intervals using paths or walks are used to give some
form of geometric intuition of the graphs at hand.

Definition 0.5.8. Let V be a set and let I : V × V → P(V ) be a function with the
following properties:

(i) a, b ∈ I[a, b].

(ii) I[a, b] = I[b, a].

We call I an interval operator on V and I[a, b] the interval between a and b. The pair
(V, I) is called an interval space. The extension (or ray) at a away from b is the set
{x : a ∈ I[b, x]} and is denoted as a/b. Furthermore, we will denote the set I[a, b]\{a, b}
as I(a, b).

If it is clear from the context, we will omit the name of the interval operator and,
in analogy to intervals defined on the real line, write I[a, b] as [a, b]. Throughout this
text, we will mainly make use of closed intervals, as this sometimes makes notation of
properties more compact (for example the statement of the Pasch and Peano axioms
given later in this section). However, in Chapter 2 and in Section 1.5.1 we use open
intervals, as this simplifies the notation in those cases. With some adjustments all
results shown for closed intervals can be easily adapted for open intervals as well and
vice versa.

This concept of an interval operator appears in many areas of mathematics under
different names and sometimes in slight variations and forms a strong abstraction of
conventional metric (or geodesic) intervals. For example in [34], the authors define
something called a strict betweenness. This is, in essence, the same thing as an interval
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operator, only that interval ends must be distinct and are not contained in the inter-
vals themselves. Where possible we have adapted these kinds of results to the same
terminology.

In a similar manner to metric spaces, we can now use these intervals to define a
convexity:

Definition 0.5.9. Given an interval space (V, I), the interval convexity induced by I
on V is defined as follows: A subset C of V is interval convex if I[a, b] ⊂ C for all
a, b ∈ C. In addition, we can give a different definition of an extreme point of such a
convexity space by saying that p is an extreme point of X if there are no a, b ∈ X such
that p ∈ I(a, b).

Note that for technical reasons the definition of extreme points uses open intervals.
Interval convexities have many interesting properties and their analysis is usually more

intuitive than the general convexities, as they have a strong relation to geometry. One
such advantage is the following technical lemma by Duchet [54] which furnishes us with
a strong tool to compute the Carathéodory number for interval convexities.

Lemma 0.5.10 (Duchet [54]). In an interval convexity space, the Carathéodory number
is the smallest integer c such that every c+ 1-element set is redundant.

While this definition of interval convexity is very broad and subsumes the most com-
monly known concepts of intervals, the downside is, of course, that it is too general to
accurately describe the types of intervals we will study in later chapters. Therefore, we
would like to define some additional axioms that will lead to different types of interval
spaces, some of which are modelled on classical geometric concepts. In the following, we
will give an overview of some of the most well known axioms and present some of their
implications.

Geometric Interval Spaces

One particularly strong set of axioms yields the geometric interval operator and is an
attempt to capture some more of the properties of metric spaces:

Definition 0.5.11. An interval operator I is said to be geometric if it fulfils the following
three properties:

Idempotent Law: I[a, a] = {a}.
Monotone Law: If a, b, c ∈ V and c ∈ I[a, b], then I[a, c] ⊆ I[a, b].
Inversion Law: If a, b ∈ V and c, d ∈ I[a, b], then c ∈ I[a, d] implies d ∈ I[c, b].

An interval space (V, I) is called a geometric interval space if the operator I is geo-
metric.

Most of the classical interval operators from geometry, such as the geodesic interval,
are in fact geometric in this sense. However, while the Idempotent and Monotone Law
hold for many of the convexities presented in this text, the Inversion Law is too strong
for use in convexities derived from graphs and does not hold in many cases.
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Pasch-Peano Spaces

Moritz Pasch and Giuseppe Peano are two of the originators of modern axiomatic ge-
ometry. Using simple notions such as point and betweenness, they devised a rigorous
axiomatic foundation for euclidean geometry. The following properties of Peano and
Pasch are translations of two of these axioms into the terminology of interval spaces.

Peano Property: For all a, b, c ∈ V and y ∈ I[b, c] and z ∈ I[a, y], there is a point
z′ ∈ I[a, b] such that z ∈ I[c, z′].

Pasch Property: For all p, a, b ∈ V and a′ ∈ I[p, a] and b′ ∈ I[p, b], the intervals
I[a, b′] and I[a′, b] intersect.

The Peano Property, in particular, is very useful in the study of interval convexities,
as it implies join-hull commutativity.

Theorem 0.5.12 (van de Vel [144]). An interval convexity (CI , V ) is join-hull commu-
tative if and only if its interval operator satisfies the Peano Property.

The Chvátal Property

In [34] Chvátal describes two properties that are stronger versions of the Peano Property.
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Figure 0.4: The (Strong) Chvátal Property.

Chvátal Property: For all a, b, c ∈ V and y ∈ I[b, c] and z ∈ I[a, y], it
holds that z ∈ I[a, b] or z ∈ I[a, c] or z ∈ I[b, c].

Strong Chvátal Property: For all a, b, c ∈ V and y ∈ I[b, c] and z ∈ I[a, y], it
holds that z ∈ I[a, b] or z ∈ I[a, c].

As these two properties will be very useful in the study of graph convexities, we will
give a short summary of their consequences on an interval space.

Lemma 0.5.13. The Strong Chvátal Property implies the Chvátal Property which in
turn implies the Peano Property.

Proof. The first implication is obvious. For the second, suppose that the Chvátal Prop-
erty holds and let y ∈ I[b, c] and z ∈ I[a, y]. If z ∈ I[a, c] we can identify z′ with a, as
a ∈ I[a, b] and see that the Peano Property holds. If z ∈ I[b, c] we can set z′ to b as
b ∈ I[a, b], which also implies the Peano Property. If z ∈ I[a, b] we can set z′ to z and
see that z ∈ I[c, z′], proving the statement.

Both Chvátal properties can also be stated differently using extreme points. Note
that the use of open intervals in the following lemmas is important, due to the use of
extreme points.

Lemma 0.5.14 (Chvátal [34]). An interval space (V, I) fulfils the Chvátal Property if
and only if for all subsets X of V and all a, b, z ∈ X such that z ∈ I(a, b), there are
a, b ∈ exI(X) such that z ∈ I[a, b].

Lemma 0.5.15 (Chvátal [34]). An interval space (V, I) fulfils the Strong Chvátal Prop-
erty if and only if for all subsets X of V and all a, b, z ∈ X such that z ∈ I(a, b), there
is a b ∈ exI(X) such that z ∈ I[a, b].

The power of the (Strong) Chvátal property can be seen in the fact that it severely
bounds the Carathéodory number of a convexity.

Lemma 0.5.16 (Chvátal [34]). An interval space (V, I) that fulfils the Chvátal Property
has Carathéodory number 2.
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0.5.3 Convex Geometries

In the context of optimisation the existence and the structural properties of the extreme
points of a convexity are of utmost importance. For example, in linear programming it
suffices to search for an optimal solution of a bounded optimisation problem among the
set of extreme vertices (or simplices as they are known in that context), leading to the
famous simplex algorithm.

One of the strongest statements on extreme points in classical (geometric) convexity
is the Minkowski-Krein-Milman theorem which roughly states that a convex polygon
can be generated by convex combinations of its corners. In the language of abstract
convexity this translates to the following definition.

Definition 0.5.17. A convexity space (V, C) fulfils the Minkowski-Krein-Milman prop-
erty if and only if every convex set is the convex hull of its extreme points.

Another important structural characteristic of classical (geometric) convexities is the
anti-exchange property

Definition 0.5.18 (Edelman and Jamison [56]). We say that a convexity space (V, C)
fulfils the anti-exchange property, if for any given convex set X:

p, q ∈ V \X and q ∈ conv(X + p) implies p /∈ conv(X + q).

A convexity space that fulfils the anti-exchange property is called a convex geometry.

For an abstract convexity space the Minkowski-Krein-Milman property and the anti-
exchange property are, in fact, equivalent. If either of these hold for convexity space,
we call such a space a convex geometry. The following theorem gives an overview of the
many different equivalent definitions of the concept of convex geometry.

Theorem 0.5.19 (Edelman and Jamison [56]). Let (V, C) be a convexity space. Then
the following statements are equivalent:

(i) (V, C) is a convex geometry.

(ii) For every convex set X, there exists a point p ∈ V \X such that X + p is convex.

(iii) Every maximal chain of convex sets C1 ( . . . ( V has exactly length |V |.

(iv) For every point p and C a copoint attached at p, the set C + p is convex.

(v) Every set X ⊆ V has a unique basis.

(vi) We have conv(ex(X)) = X for every convex set X.

(vii) We have p ∈ ex(conv(X + p)) for every convex set X and p /∈ X.

Property (ii) of the above theorem implies the following useful observation.
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Observation 0.5.20. If (V, C) is a convex geometry the elements of V have a linear
ordering σ = (v1, . . . , vn) such that {v1, . . . , vi} is convex for every i ∈ {1, . . . , n}.

Such an ordering will be called a convexity ordering . A convexity ordering σ =
v1, . . . , vn such that {vi, . . . vn} is convex for every i ∈ {1, . . . , n} is a halfspace ordering .
A similar property is stated in the following.

Theorem 0.5.21 (Farber and Jamison [59]). If (V, C) is a convex geometry, then X ∈ C
if and only if there is an ordering (x1, . . . , xk) of V \X such that xi is an extreme point
of X ∪ {xi, . . . , xk} for each i ∈ {1, . . . , k}.

The intersection of two convex geometries need not yield a new convex geometry, as the
following example shows: Let V = {a, b, c} and C1 = {{a}, {b}, {c}, {a, b}, {a, c}, {a, b, c}}
and C1 = {{a}, {b}, {c}, {a, b}, {b, c}, {a, b, c}}. Then (V, C1) and (V, C2) are both convex
geometries. The intersection (V, C1 ∩ C) is not a convex geometry, as for {c} ∈ C1 ∩ C2
there is no element p ∈ V such that {c}+p is convex. However, with another operation,
called a join, it is possible to generate a new convex geometry out of two others

Definition 0.5.22. Given two convexity spaces on the same ground set, (V, C1) and
(V, C2) we define the join of C1 and C2 to be the convexity space:

C1
∨
C2 := {X ⊆ V : X = C1 ∩ C2 for some C1 ∈ C1 and C2 ∈ C2}.

Theorem 0.5.23 (Edelman and Jamison [56]). If (V, C1) and (V, C2) are convex geome-
tries then (V, C1

∨
C2) is also a convex geometry.

In general, it can be very complicated to show that some given convexity space is
a convex geometry. Therefore, we will need some specific sufficient conditions which
in many cases are technically much easier to check. One such condition was given
by Chvátal [34]

Lemma 0.5.24 (Chvátal [34]). Let (V, CI) be a convexity space obtained by an interval
operator I that fulfils the (Strong) Chvátal Property. Then (V, CI) is a convex geometry.

Another sufficient criterion for convex geometry is given by the Peano property com-
bined with the following.

Definition 0.5.25. A convexity space (V, C) is said to be straight if the two following
conditions are fulfilled:

1. For any three distinct points a, b, c ∈ C such that a ∈ conv({b, c}) it holds that
b /∈ conv({a, c}).

2. For any four points a, b, c, d ∈ V such that b ∈ conv({a, c}) and c ∈ conv({b, d}) it
holds that b, c ∈ conv({a, d}).

Theorem 0.5.26. Let (V, C) be a straight convexity space that is join-hull commutative.
Then (V, C) is a convex geometry.
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Proof. Let C be convex and let a, b be elements of V \ C such that a ∈ conv(C ∪ {b}).
Suppose that b ∈ conv(C∪{a}). As (V, C) is join-hull commutative, there exist c1, c2 ∈ C
such that a ∈ conv({c1, b}) and b ∈ conv({c2, a}). If c1 = c2, then there is a contradiction
to the fact that (V, C) is straight. Suppose, therefore, that c1 6= c2. Then the straightness
of (V, C) implies that a, b ∈ conv({c1, c2}). This is a contradiction to the convexity of
C.

Due to Theorem 0.5.12, this yields the following corollary for interval spaces.

Corollary 0.5.27. Let (V, CI) be a straight convexity space obtained by an interval
operator I that fulfils the Peano property. Then (V, CI) is a convex geometry.
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1 Characterising Graph Classes with
Convexity

Many of the most important classes of graphs (such as forests, chordal graphs or in-
terval graphs) can be defined through linear vertex orderings. These characterisations
are typically given in the following way and we have already seen some examples in
Chapter 0.

A graph G = (V,E) is a member of the graph class G if and only if there
is a linear ordering of its vertices (v1, . . . , vn), such that vi satisfies a
given property P in the graph G[v1, . . . , vi].

An analogue to such a characterisation is also possible for convex sets in a convex
geometry.

Theorem 1.0.28 (Farber and Jamison [59]). If (V, C) is a convex geometry, then X is
convex if and only if there is an ordering of the elements of V \X, say (v1, . . . , vk) such
that vi is an extreme point of X ∪ {v1, . . . , vi} for all i ∈ {1, . . . , k}.

This similarity in structure indicates that there is a strong relationship between graph
classes characterised by linear vertex orderings and convex geometries. In fact, all of
the above mentioned classes (forests, chordal graphs and interval graphs) also possess
a characterisation through convex geometries. This is usually done by constructing a
particular convexity (V, CG) for a given class G on the vertices of the graph and proving
a statement of the following type:

The graph G = (V,E) belongs to the class G if and only if (V, CG) is a
convex geometry.

Describing graph classes in such a way has many benefits. Not only does every convex
geometry also imply some form of characterisation using a linear vertex order, as we have
seen in Section 0.5.3, it also makes it possible to apply all distinctive features of such a
structure, such as the existence of extreme points or the concept of the Carathéodory
number.

In the following, we will first present some common methods to construct convexities
on graphs, as well as techniques to prove that these are convex geometries. Then we will
give a summary of some classes that can be described in such a way. This summary will
be comprised of some original results, as well as known results dating back to the 1970s.
However, many of these are given rather implicitly in the literature, as their authors
were more interested in the convexities themselves than in finding new characterisations
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for graph classes. This has made it necessary to “reprove” some of these old results in
order to present everything in a uniform manner. This uniformity is an important part
of the argument that many central definitions and concepts on these graph classes can
be unified using the language of convexity.

For each of the studied classes we will in turn prove that it can be characterised by a
convex geometry, describe the set of extreme vertices, define a characterising linear ver-
tex order derived from the convex geometry and study the Carathéodory number of the
convexity, giving a tight bound for all classes studied apart from AT-free graphs. Fur-
thermore, we will discuss in each case how extreme vertices and vertex order character-
isations can be computed. However, we begin by demonstrating some of the techniques
on the example of a convexity which is a convex geometry for any graph.

1.1 Convexity in all Graphs

Most convexities studied in this chapter will be interval convexities, where the intervals
are usually defined using paths, walks or specific separators. One possibility to define
a convexity by a special type of separator is given in the form of interception convexity
which to the best of our knowledge has not been studied in the literature before.

Definition 1.1.1. Let G = (V,E) be a graph and z, a, b ∈ V . We say that z is in the
interception interval of a and b, denoted as z ∈ Iint[a, b] if and only if there exist vertices
u, v ∈ N(z) such that u and v are in different connected components of G−(N [z]\{u, v}),
where a is in the same component as u and b is in the same component as v. We call
u the witness of a and v the witness of b with regard to z ∈ Iint[a, b]. The interval
convexity (V, Cint) induced by this operator is called the interception convexity.

In the following, we shall show that this convexity forms a convex geometry on any
graph. First however, we wish to analyse the extreme vertices of this convexity. We will
see that the following simple definition is enough to characterise these completely.

Definition 1.1.2. A vertex v in a graph G is said to be avoidable if between any pair x
and y of neighbours of v there exists an x-y-path all the internal vertices of which avoid
v and all neighbours of v. Equivalently, a vertex v is avoidable if every induced P3 with
midpoint v closes to an induced cycle.

As mentioned, the avoidable vertices form the extreme points of interception convexity.

Lemma 1.1.3. Let G = (V,E) be a graph. A vertex x ∈ V is an extreme point of the
interception interval operator Iint if and only if it is avoidable in G.

Proof. Suppose a vertex z ∈ V is not avoidable in G. Then there are vertices a, b ∈ N(z)
such that the path a − z − b does not close to an induced cycle. This implies that a
and b are in different connected components of G − (N [z] \ {a, b}) and therefore, that
z ∈ I[a, b], showing that z is not an extreme point of I.

Suppose a vertex z ∈ V is not an extreme point of I, i.e., there exist a, b ∈ V with
Z 6= a, b such that z ∈ I[a, b]. Then by definition there are u, v ∈ N(z) such that u and v
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are in different connected components of G− (N [z] \ {u, v}). This implies that the path
u− z − v does not close to an induced cycle and therefore, that z is not avoidable.

Avoidable vertices appear in many different contexts throughout algorithmic graph
theory. In Chapter 3 we will give a thorough study of these vertices, as well as a
generalisation of these. The following theorem shows that every graph contains at least
one avoidable vertex.

Theorem 1.1.4. Every graph G = (V,E) contains at least one avoidable vertex.

We will prove this theorem in various ways in Chapter 3. This result is a strong
indicator that interception convexity is a convex geometry and it is possible to extend it
in that way. However, we want to show the even stronger statement that the interception
interval operator fulfils the Strong Chvátal Property.

We say that the interior of a path P avoids a vertex v if none of the interior vertices
of P is contained in N [v]. Similarly, we say that a vertex v intercepts the interior of a
path P if some interior vertex of P is contained in N [v].

Lemma 1.1.5. Let G = (V,E) be a graph and let (V, Cint) be its interception convexity.
If z ∈ Iint[a, b], then z intercepts the interior of any path between a and b.

Proof. Let z ∈ Iint[a, b] and suppose that there is a path P between a and b whose
interior avoids z. In this case, a and b cannot be in distinct connected components of
G−N [z] \ {u, v}, where u and v are the witnesses of a and b, respectively, with regard
to z ∈ Iint[a, b]; a contradiction to z ∈ Iint[a, b].

Using this lemma we can show that the Strong Chvátal Property holds for interception
convexity for any graph.

Theorem 1.1.6. Let G = (V,E) be an arbitrary graph. The interception convexity
(V, Cint) on G fulfils the Strong Chvátal Property.

Proof. Let a, b, c1, c2, c3 ∈ V be distinct vertices such that with b ∈ I[a, c2] and c2 ∈
I[c1, c3]. We need to show that b ∈ I[a, c1] or b ∈ I[a, c3]. By the definition of b ∈ I[a, c2],
we know that there are vertices a′, c′2 ∈ V such that in G− (N [b] \ {a′, c′2}) the vertices
a′ and c′2 are in different connected components, the vertices a and a′ are in the same
connected component and c2 and c′2 are in the same connected component. Furthermore,
there are vertices c′1, c

′
3 ∈ V such that in G − (N [c2] \ {c′1, c′3}) the vertices c′1 and c′3

are in different connected components, the vertices c1 and c′1 are in the same connected
component and c3 and c′3 are in the same connected component.

As c2 ∈ Iint[c1, c3], the interior of any path between c1 and c3 must be intercepted by c2,
due to Lemma 1.1.5. Suppose that both c1 and c3 have paths to the connected component
Ca of G − (N [b] \ {a′, c′2}) that contains a and the interior vertices of those paths are
not contained in N [c2] \ {c′1, c′3}. This leads to a c1-c3-path whose interior vertices are
not contained in N [c2] \ {c′1, c′3}; a contradiction to the fact that c2 ∈ Iint[c1, c3].

Furthermore, suppose that both c1 and c3 have paths to the connected component of
G− (N [b] \ {a′, c′2}) that contains a such that the interior of those paths avoid b. Then
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these paths must also avoid c2 as the contrary would lead to an a-c2-path whose interior
avoids b. Again this is a contradiction to c2 ∈ Iint[c1, c3] and we assume without loss
of generality that c1 has no path to a vertex in Ca whose interior avoids b and no path
whose interior vertices are not contained in N [c2] \ {c′1, c′3}.

Let P be a path between c1 and c′1 that lies in G−(N [c2]\{c′1, c′3}). If this path avoids
b, then, as c′1c2 ∈ E, we see that c1 is in the same component of G− (N [b] \ {a′, c′2}) as
c2 and b ∈ Iint[a, c1]. Therefore, we assume that x is the last neighbour of b before c1 –
note that x can be equal to c1. We claim that in G− (N [b] \ {a′, x}) the vertices x and
a′ are in distinct connected components and c1 is in the same component as x and a′ is
in the same component as a. The connected component containing a must contain all
vertices of Ca, as all paths connecting these vertices are also in G− (N [b] \ {a′, x}). Due
to the path P , we also see that x and c1 are in the same component. It remains to be
shown that these components are distinct. To this end, suppose that a and c1 are in the
same connected component of G− (N [b]\{a′, x}). However, this implies a path between
c1 and a vertex of Ca whose interior vertices contain no vertices of N [b] apart from x. If
such a path does not contain x, then we have a contradiction to the fact that there are
no paths from c1 to Ca whose interior avoids b. If such a path Q does contain x, then
the path c1−P −x−Q−v with v ∈ Ca cannot contain any vertices of N [c2]\{c′1, c′3}, as
such a vertex would have to be on Q− x, implying a path from c2 to Ca whose interior
avoids b; again a contradiction. Altogether, we see that b ∈ Iint[a, c1], which proves the
theorem.

Using Lemma 0.5.24, we can see that interception convexity is a convex geometry.

Corollary 1.1.7. Let G be an arbitrary graph. The interception convexity on G is a
convex geometry.

As discussed in Section 0.5.3, the interception convexity implies a linear vertex order-
ing of a graph.

Definition 1.1.8. Let G = (V,E) be a connected graph and let σ = (v1, . . . , vn) be a
linear order of its vertices. We say that σ is an interception convexity order if {v1, . . . vi}
is interception convex for every i ∈ {1, . . . , n}.

In Chapter 3, we will discuss how to compute such an order efficiently. We sum up
these results as follows.

Theorem 1.1.9. For any graph G = (V,E) the following properties are equivalent:

(i) The interception interval operator Iint of G fulfils the Strong Chvátal Property;

(ii) The interception convexity of G is a convex geometry;

(iii) G possesses a interception-convexity order.

Due to Lemma 0.5.16, we can also state the following.

Corollary 1.1.10. The interception convexity of any graph G = (V,E) has a Cara-
théodory number of at most 2.
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If we look back at Section 0.5.3 in which we introduced convex geometries, we can sum
up two different approaches to prove that a given interval convexity is a convex geometry.
The first has been described here, i.e., proving the (Strong) Chvátal Property. This
should always be the favoured option, as it immediately yields a strong tight bound
on the Carathéodory number, and it can be achieved by either showing the property
directly or by proving the equivalent properties in Lemma 0.5.14 and Lemma 0.5.15. If
none of the Chvátal properties hold, then a second option is to show that the convexity
is straight and the interval operator fulfils the Peano Axiom. In this case, we can use
Theorems 0.5.12 and 0.5.26 to prove that the convexity is a convex geometry. If both
of these attempts fail, then it can be very hard to give a characterisation with a convex
geometry, as can be seen in the example of AT-free graphs [28].

1.2 Convexity in Trees

One of the most natural characterisations of a graph class with a convex geometry is
given for the class of trees and was first defined by Farber and Jamison [59] in 1986.
In the following, we will elaborate on this definition and adapt it to our notation and
setting, as well as proving some of the most important properties.

Definition 1.2.1. Let G = (V,E) be a graph and let z, a, b ∈ V . We say that z is in
the path interval of a and b, denoted as z ∈ Ipath[a, b] if and only if z is on an a-b-path.
The interval convexity (V, Cpath) induced by this operator is called the path convexity.

The extreme points of this convexity can easily be seen to be the leaves of a graph.

Lemma 1.2.2. Let G = (V,E) be a graph and let (V (G), Cpath) be the corresponding
path convexity. For any X ∈ Cpath a vertex x ∈ X is an extreme point of X if and only
if x is a leaf in G[X].

Proof. Suppose x is a leaf in G[X] and x is contained on a path P between two vertices
in X. Then all vertices on P must also be in X, as it is convex. This is a contradiction
to x being a leaf in G[X].

Let x be an extreme point of X. Suppose x has two neighbours v1 and v2 in G[X].
As v1 − x− v2 is a path in G we know that x ∈ Ipath[v1, v2]. This is a contradiction to
x being extreme in X and x must be a leaf.

Obviously, these extreme vertices can be computed in linear time, as they are just the
vertices of degree one in the graph.

Definition 1.2.3. Let G = (V,E) be a connected graph and let σ = (v1, . . . , vn) be a
linear order of its vertices. We say that σ is a path convexity order if {v1, . . . vi} is path
convex for every i ∈ {1, . . . , n}.

As all vertex sets X ⊂ V of a forest G = (V,E) for which it holds that G[X] is con-
nected are path-convex, these orderings can be easily computed by any form of connected
search.
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Lemma 1.2.4. Let G = (V,E) be a forest and let σ = (v1, . . . , vn) be the linear vertex
order returned by a generic search. Then σ is a path convexity order.

Corollary 1.2.5. For any forest G = (V,E) a path convexity order can be computed in
linear time.

Using the previous lemmas, it is straightforward to show that path convexity is in fact
a convex geometry on a forest. The following theorem gives a full characterisation of
forests in several different forms. Parts of this theorem have been mentioned in passing
in the literature (for example, the equivalence of i) and ii) in [59]), however, usually
without explicit proofs.

Theorem 1.2.6. For every graph G = (V,E) the following statements are equivalent:

i) G is a forest.

ii) The path interval operator Ipath fulfils the Strong Chvátal Property;

iii) The path convexity (V (G), Cpath) is a convex geometry;

iv) G possesses a path convexity order.

Proof. Let G = (V,E) be a forest, X ⊆ V and x2 ∈ Ipath[x1, x3]. Note that any extreme
point of conv(X) is contained in X and an extreme point of X. As conv(X) is path
convex, a vertex x ∈ conv(X) is extreme in conv(X) if and only if it is a leaf G[conv(X)]:
If it is not a leaf, then it is obviously in an interval between any two neighbours. If it
is a leaf in G[conv(X)], then it cannot be on any path between two vertices in X, as
all vertices on this path are contained in conv(X); a contradiction to the fact that x
is a leaf. Let C be the connected component of G[conv(X)] that contains x1, x2 and
x3 (they are in the same component as conv(X) is convex). Then G[C] is a tree and
deleting the last edge on the unique path from x2 to x3 splits G[C] into two connected
components, one containing x2 and the other containing x3, which we call C ′. If x3 is
the only vertex in its component, then it was a leaf in G[C] and thus extreme in X.
Otherwise, there is a unique path from x3 to a leaf x3 in C ′, which is also a leaf in G[C],
and due to construction we see that x2 ∈ I[x1, x3]. Thus the interval operator I fulfils
the Chvátal Property.

If the interval operator Ipath fulfils the Chvátal Property then (V (G), Cpath) is a convex
geometry by Lemma 0.5.24.

Let (V, Cpath) be a convex geometry. SupposeG contains a cycle C = (x1, x2, . . . , xk, x1)
with k ≥ 3. This implies that x2 ∈ Ipath[x1, x3] and x3 ∈ Ipath[x1, x2] which is a contra-
diction to (V, Cpath) being a convex geometry.

If G is a forest, then its path convexity is a convex geometry. Due to Corollary 0.5.20
it possesses a path convexity order.

Suppose G possesses a path convexity order and is not a forest. Then G must contain
a cycle C = (x1, x2 . . . , xk) of size k ≥ 3. This implies that x1 ∈ Ipath[xk, x2], x2 ∈
Ipath[x1, xk] and xk ∈ Ipath[x1, x2]. This is in contradiction to the existence of a path
convexity order, as these elements cannot be ordered accordingly.
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1.3 Convexity in Chordal Graphs

As the path convexity fulfils the Strong Chvátal Property, we can state the following
corollary due to Lemma 0.5.16.

Corollary 1.2.7. The path convexity of any tree T = (V,E) has a Carathéodory number
of at most 2.

Another interesting property of path convexity concerns the existence of a halfspace
ordering.

Theorem 1.2.8. Any forest G = (V,E) has a halfspace ordering if and only if it has
maximum degree ≤ 2, i.e., is claw-free.

Proof. One can easily check that the claw graph does not have a halfspace ordering with
respect to path convexity. Conversely, if the maximum degree of G is ≤ 2, the forest is
a collection of induced paths. The halfspace ordering is achieved by sorting the vertices
in the order of their path and concatenating these orders arbitrarily.

1.3 Convexity in Chordal Graphs

One of the first graph convexities to be studied is the monophonic convexity. It was
introduced by Jamison-Waldner [94] in 1982 to describe chordal graphs. It was shown
very early on by Farber and Jamison [59] that it is a convex geometry as well as having
other interesting properties. Dragan et al. [53] then generalized the results on mono-
phonic convexity to larger classes of graphs. Furthermore, Chvátal [34] used monophonic
convexity as an example of a convexity that possesses the Strong Chvátal Property. In
this section, we give a brief overview of results concerning monophonic convexity. These
will be important later on when we analyse other chordal graph classes such as interval
graphs.

Definition 1.3.1. Let G = (V,E) be a graph and let z, a, b ∈ V . We say that z is in
the monophonic interval of a and b, denoted as z ∈ Imon[a, b] if and only if z is on an
induced a-b-path. The interval convexity (V, Cmon) induced by this operator is called the
monophonic convexity.

The extreme points of monophonic convexity coincide with the simplicial vertices of
a graph. As in the case of trees where the extreme points are the leaves of a graph, this
shows up a close connection between this convexity and the already known structural
properties of chordal graphs.

Lemma 1.3.2. Let G = (V,E) be a graph and X ∈ Cmon. A vertex x ∈ X is an extreme
point of X if and only if x is simplicial in G[X].

Proof. Suppose x is not simplicial in X. Then x is an inner vertex of a P3 in G[X]. This
is a contradiction to x being extreme.

Suppose x is simplicial in G[X] and there are vertices u, v ∈ X, such that x is on an
induced path P between u and v. As X is monophonically convex, all vertices on P are
in X, especially both neighbours of x on P . This yields a contradiction, as x is simplicial
and P is an induced path.
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1 Characterising Graph Classes with Convexity

Simplicial vertices can be found in linear time on chordal graphs, as they are the last
vertices visited by an LBFS [126]. Again, we can define a convexity order which will
lead to a characterising linear vertex order.

Definition 1.3.3. Let G = (V,E) be a connected graph and let σ = (v1, . . . , vn) be a
linear order of its vertices. We say that σ is a monophonic convexity order if {v1, . . . vi}
is monophonically convex for every i ∈ {1, . . . , n}.

It is easy to see that every monophonic convexity order is a perfect elimination order.
The following lemma shows that the converse also holds.

Lemma 1.3.4. For any graph G = (V,E) a linear vertex order σ = (v1, . . . , vn) is a
monophonic convexity order if and only if it is a perfect elimination order.

Proof. Suppose that σ is a monophonic convexity order. Then {v1, . . . vi} is monophon-
ically convex for every i ∈ {1, . . . , n}. In particular, vi cannot be in an interval between
two elements that are to the left in σ. This implies that vi is simplicial in G[v1, . . . , vi]
and thus, that σ is a perfect elimination order.

Suppose, on the other hand, that σ is a perfect elimination order and that for some
i ∈ {1, . . . n} the set {v1, . . . , vi} is not convex. In this case, there exist indices l, k ≤ i
and j > i such that vj is on an induced path P between vk and vl. As both of vl and
vk are to the left of vj in σ, there must be a vertex x on P , such that both neighbours
of x on P are to the left of x in σ. As P is an induced path, these neighbours are not
adjacent. This is a contradiction to the fact that σ is a perfect elimination ordering, as
all neighbours to the left of a vertex must be adjacent.

As Rose et al. [126] showed that LBFS performed on a chordal graph returns a perfect
elimination order, we can state the following corollary.

Corollary 1.3.5. For any chordal graph a monophonic convexity order can be found in
linear time.

While it was already shown by Farber and Jamison [59] that monophonic convexity
forms a convex geometry on chordal graphs, in [34] Chvátal shows that monophonic
convexity also fulfils the Strong Chvátal Property. Again, we can summarise all the
studied characterising properties of chordal graphs in the following theorem.

Theorem 1.3.6 (Chvátal [34], Farber and Jamison [59]). For any graph G = (V,E) the
following properties are equivalent:

i) G is chordal;

ii) The monophonic interval operator of G fulfils the Strong Chvátal property;

iii) The monophonic convexity of G is a convex geometry;

iv) G possesses a monophonic convexity (perfect elimination) order.
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1.4 Convexity in Interval Graphs

As the monophonic convexity fulfils the Strong Chvátal Property, we can state the
following corollary due to Lemma 0.5.16.

Corollary 1.3.7. The monophonic convexity of a chordal graph G = (V,E) has a Cara-
théodory number of at most 2.

This result has already been shown by Farber and Jamison [59] in a different way.
Duchet [54] gives an even stronger statement.

Theorem 1.3.8 (Duchet [54]). Let G = (V,E) be a connected graph which is not a
clique. Then the monophonic convexity (V, Cmon) has Carathéodory number at most 2.

As in the case of path convexity, we can completely characterise the existence of a
halfspace ordering with regard to monophonic convexity.

Theorem 1.3.9. Any chordal graph G = (V,E) has a halfspace ordering if and only if
it is claw-free, net-free and 3-sun-free, i.e., it is a unit interval graph.

Proof. It is easy to ascertain that neither the claw graph nor the net nor the 3-sun
possess a halfspace ordering with regard to monophonic convexity. Conversely, any unit
interval order of G is a halfspace ordering, as both a unit interval order and its reverse
form a perfect elimination order.

1.4 Convexity in Interval Graphs

In order to describe interval graphs with a convexity, we recall a classical result by
Lekkerkerker and Boland [109] that links interval, chordal and AT-free graphs:

Theorem 1.4.1 (Lekkerkerker and Boland [109]). A graph is an interval graph if and
only if it is chordal and AT-free.

Therefore, an interval operator that captures the properties of an interval graph must
ensure chordality and forbid asteroidal triples. This can be achieved by forming the
union of the monophonic interval and an interval operator which we will later use to
characterise asteroidal triple free graphs.

Definition 1.4.2. Let G = (V,E) be a connected graph and let a, b ∈ V . For z, a, b ∈ V ,
we say that z is in the domination interval of a and b, denoted as z ∈ Idom[a, b] if and
only if there is an induced a-z-path that avoids b and an induced b-z-path that avoids a.
We define the line interval between a and b as Iline[a, b] = Idom[a, b] ∪ Imon[a, b]. The
interval convexity (V, Cline) induced by this operator is called the line convexity.

As in the case of chordal graphs, the extreme vertices of the line convexity in an interval
graph have already been described in the study of these graphs: They form the set of
vertices that are rightmost for some interval representation (or in other words rightmost
for some interval order). Gimbel [73] proved that these vertices can be characterised
as the simplicial and admissible vertices of an interval graph. The following lemma
shows that these two properties are enough to characterise extreme vertices of the line
convexity in general graphs.

47



1 Characterising Graph Classes with Convexity

a
b

c2

c1

c3

Figure 1.1: An interval graph whose line convexity does not fulfil the Strong Chvátal
Property: While b ∈ Iline[a, c2] and c2 ∈ Iline[c1, c3] we see that b is not
contained in Iline[a, c1] or Iline[a, c3].

Lemma 1.4.3. Let G = (V,E) be a connected graph. A vertex x ∈ X is an extreme
vertex of the line-convex set X ⊆ G if and only if it is simplicial and admissible in G[X].

Proof. Let x ∈ X be simplicial and admissible in G[X]. Suppose, x is not extreme in X,
i.e., there are vertices u, v ∈ X distinct from x such that x ∈ Iline[u, v]. If x ∈ Imon[u, v],
then, just as in Lemma 1.3.2, the vertex x is on an induced path between u and v.
Obviously all other vertices on that path must also be part of Iline[u, v] and are, thus, in
X, as it is convex. Therefore, we see that x ∈ Iline[u, v] in G[X] which shows that it is
not simplicial; a contradiction

On the other hand, if x ∈ Idom[u, v], then there must be an induced u-avoiding x-v-
path P and an induced v-avoiding x-u-path P . As a result, all of the vertices on P are
in Imon[a, v] and all of the vertices on Q are in Imon[a, u]. Thus, they are in X, as it is
convex and x ∈ Idom[u, v] in G[X]. This again implies a contradiction, as x was assumed
to be admissible in G[X].

For the other direction, let x be an extreme vertex in X. If x is not simplicial in G[X],
then it must be the inner vertex of a P3, say (u, x, v) in G[X] and thus, x ∈ Imon[u, v] in
G[X]. If x is not admissible in G[X], then there must be u, v ∈ X such that x ∈ Idom[u, v]
in G[X]. Both of these cases form a contradiction to the assumption that x is extreme
in G[X].

Note that the end-vertices of LBFS on interval graphs are simplicial and admissi-
ble [44], making it possible to compute an extreme vertex of the line convexity in linear
time.

Having defined the most important concepts for this convexity, we wish to formulate a
characterising theorem of the type already given for trees and chordal graphs. However,
this will need to take a slightly different form. The example given in Figure 1.1 shows that
the Strong Chvátal Property does not hold for the line convexity in every interval graph.
Therefore, we will at least aim to prove the weaker Chvátal Property which still yields
that the convexity is a convex geometry and gives a bound of 2 on the Carathéodory
number.

To this end we will again define a linear vertex order based on the convexity.

Definition 1.4.4. Let G = (V,E) be a connected graph and let σ = (v1, . . . , vn) be a
linear order of its vertices. We say that σ is a line convexity order if {v1, . . . vi} is
line-convex for every i ∈ {1, . . . , n}.
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1.4 Convexity in Interval Graphs

a b c d e

Figure 1.2: The linear vertex order σ = (c, b, d, a, e) forms a line convexity order that is
not an interval order.

In the following, it will be convenient to have a characterisation of a line convexity
order given by the monophonic and domination intervals. The following concept has
already been introduced by Corneil and Stacho [38] and will be analysed thoroughly in
Section 1.5.

Definition 1.4.5. Let G = (V,E) be a connected graph and let σ = (v1, . . . , vn) be
a linear order of its vertices. We say that σ is a domination convexity order (or an
AT-free order) if for every triple a, b, z ∈ V with z ∈ Idom[a, b] it holds that z ≺σ a or
z ≺σ b.

Lemma 1.4.6. Let G = (V,E) be a connected graph and let σ = (v1, . . . , vn) be a linear
order of its vertices. Then σ is a line convexity order if and only if it is a monophonic
convexity order and a domination convexity order.

Proof. If σ is a monophonic convexity order, then Theorem 1.3.6 implies that G is
chordal. Suppose that G contains an asteroidal triple {x, y, z}. Then we know that
x ∈ Idom[y, z], y ∈ Idom[x, z] and z ∈ Idom[x, y]. This is a contradiction to the fact
that σ is a domination convexity order, as there is no possible order of these three
vertices that is allowed. Consequently, the graph is chordal and AT-free and, according
to Theorem 1.4.1, it is an interval graph.

Note that while any interval order of an interval graph is, in fact, a line convexity
order, the reverse must not be the case (see Figure 1.2). The following theorem shows
that line convexity orders can be found by a simple application of LBFS. Thus, as in
the case of monophonic and tree convexity, these orders can be found in linear time by
using this search. This is not the case for interval orders, where it has been shown by
Ma [111] that for every constant c there is an interval graph for which c sweeps of LBFS
do not yield an interval order.

Lemma 1.4.7 (Corneil et al. [40]). Let G = (V,E) be an asteroidal triple free graph and
let σ = (v1, . . . , vn) be a linear order of its vertices computed by LBFS. Then the vertex
vi is admissible in G[v1, . . . , vi].

Theorem 1.4.8. Let σ = (v1, . . . , vn) be an arbitrary LBFS order of an interval graph
G. Then σ is a line convexity order.

Proof. As every LBFS of a chordal graph is a perfect elimination order and every per-
fect elimination order is a monophonic convexity order, it remains to show that σ is a
domination convexity order.

Suppose that z ∈ Idom[a, b] and without loss of generality a ≺σ b ≺σ z. As σ is an
LBFS order, due to Lemma 1.4.7, z is both simplicial and admissible in G[{v1, . . . , vi}],
where vi = z.
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1 Characterising Graph Classes with Convexity

Let P be an induced a-avoiding z-b-path. As σ is a monophonic convexity order we
know that X = {v1, . . . , vi = z} is monophonically convex. As P is an induced path
and both b, z ∈ X, by definition all vertices of P must be elements of X. Analogously,
the same holds for some induced b-avoiding z-a-path. This is a contradiction to the fact
that z is admissible in G[X], proving that σ is also a domination convexity order.

By showing that LBFS always maintains a convex set, wherever it is started or what
choices are made at ties, this theorem goes some way to explaining why this search is
such a successful tool when applied to interval graphs. In fact, if it were possible to
decide whether a given vertex order is a line convexity order in linear time, this would
yield another linear time algorithm for recognising interval graphs.

Theorem 1.4.9. Any interval graph G = (V,E) has a halfspace ordering with regard to
its line convexity if and only if it is claw-free, i.e., if it is a unit interval graph.

Proof. It is a straightforward exercise to show that the claw graph does not have a
halfspace ordering with regard to its line convexity. Conversely, any unit interval graph
has an example of a halfspace order in its unit interval order.

In the proof of Theorem 1.4.13 we will make frequent use of the following lemmas.

Lemma 1.4.10. For any graph G = (V,E) it holds that z ∈ Iline[a, b] if and only if a
and b are not adjacent and there is an induced path from z to b whose inner vertices
avoid a and an induced path from z to a whose inner vertices avoid b.

Proof. For one direction, let there be an induced path P from z to b whose inner vertices
avoid a and an induced path Q from z to a whose inner vertices avoid b.

If either of a or b is adjacent to z, without loss of generality let this be a, then it is
easy to see that a − z − P forms an induced path from a to b that contains z. This
implies that z ∈ Imon[a, b] ⊆ Iline[a, b]. Otherwise, a, b and z form an independent triple
such that there is an induced a-z-path that avoids b and an induced b-z-path that avoids
a and thus, z ∈ Idom[a, b] ⊆ Iline[a, b].

Now, let z ∈ Iline[a, b]. Then z is contained in Imon[a, b] or Idom[a, b]. Either way, we
see that there is an induced path from z to b whose inner vertices avoid a and an induced
path from z to a whose inner vertices avoid b, proving the statement.

Lemma 1.4.11. Let G = (V,E) be an interval graph and let z ∈ Iline[a, b]. Then there
is no path between a and b whose inner vertices avoid z.

Proof. Suppose that z ∈ Idom[a, b]. If there is a z-avoiding path between a and b, then a,
b and z form an asteroidal triple; a contradiction to the fact that G is an interval graph.

On the other hand, if z ∈ Imon[a, b] \ Idom[a, b], then we can assume without loss of
generality that az ∈ E, as otherwise there must be an a-avoiding path from b to z and a
b-avoiding path from a to z which implies z ∈ Idom[a, b]. Let P be an induced a-b-path
whose inner vertices avoid z. Furthermore, let Q be an induced a-avoiding b-z-path.
Let b′ be the vertex closest to z in Q that is adjacent to a vertex of P (note that this
could be b itself) and let a′ be a vertex that is closest to a in P such that a′ and b′ are
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1.4 Convexity in Interval Graphs

adjacent. Note that a′ and a cannot be equal, as Q is a path whose inner vertices avoid
a and the vertices a and b are not adjacent.

We claim that the cycle a− z−Q− b′− a′−P − a is an induced cycle of length larger
or equal 4. It is easy to see that the cycle has more than four vertices. To see that it
is induced, it is enough to note that both P and Q were chosen to be induced and a′

and b′ were chosen to not be adjacent to any vertices on Q[z,b′) and P[a,a′) respectively.
Furthermore, a is not adjacent to any vertices on Q(z,b′] and z is not adjacent to any
vertices on P(a,a′]. Therefore, the cycle cannot contain any chords and is induced; a
contradiction to the fact that the interval graph G is chordal.

As an easy implication, we show that every line interval in an interval graph is in fact
a line convex set.

Lemma 1.4.12. Let G = (V,E) be an interval graph. Then every line interval Iline[a, b]
is line convex, i.e., for x, y ∈ Iline[a, b] and z ∈ Iline[x, y] it holds that z ∈ Iline[a, b].

Proof. Note that if both a and b are adjacent to z, then z ∈ Imon[a, b] ⊆ Iline[a, b].
Therefore, we can assume that without loss of generality a is not adjacent to z. Let
P be an a-x-path whose inner vertices avoid b and let Q be an a-y-path whose inner
vertices avoid b. Then R := x− P −Q− y is an x-y-path whose inner vertices avoid b.
Due to Lemma 1.4.11, the inner vertices of R cannot avoid z, as z ∈ Iline[x, y]. Thus, z
intercepts R which implies that z − R − a is an a-z-path whose inner vertices avoid b.
Analogously, it can be shown that there is a b-z-path whose inner vertices avoid a. By
Lemma 1.4.10, we see that z ∈ Iline[a, b], proving the statement.

Using these results, we can prove the desired characterising theorem.

Theorem 1.4.13. For any graph G = (V,E) the following properties are equivalent:

i) G is an interval graph;

ii) The line interval operator Iline of G fulfils the Chvátal Property;

iii) The line convexity of G is a convex geometry;

iv) G possesses a line-convexity order.

Proof. We prove the theorem by showing that i)⇒ ii)⇒ iii)⇒ iv)⇒ i).

i)⇒ ii) : Let b ∈ Iline[a, c2] and c2 ∈ Iline[c1, c3]. To prove that Iline fulfils the Chvátal
Property we need to show that b ∈ Iline[a, c1], b ∈ Iline[a, c3] or b ∈ Iline[c1, c3].

If both c1 and c3 are adjacent to b, then we see that b ∈ Imon[c1, c3] ⊆ Idom[c1, c3]
and we are done. Therefore, we assume without loss of generality that c1 and b are not
adjacent.

Let P be a path between a and b whose internal vertices avoid c2. Suppose both c1
and c3 intercept P[a,b). This would imply a c1-c3-path whose internal vertices avoid c2;
a contradiction to Lemma 1.5.16. Hence, we can assume that c1 does not intercept P ,
implying that P is a c1-avoiding a-z-path. Let Q be a c1-c2-path whose internal vertices
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avoid c3 and let R be a z-c2 path whose internal vertices avoid a. If Q avoids a, then
there is a z-c1 path in form of z−R−c2−Q−c1 whose internal vertices avoid a, implying
that b ∈ Iline[a, c1] and the statement. Thus we assume that a intercepts Q which yields
a c3-avoiding path from a to c1.

If c3 intercepts P , then there is a c1-avoiding a-c3 path in form of c3 − P − a which
implies that a ∈ Iline[c1, c3]. Using Lemma 1.4.12, we see that b ∈ Iline[c1, c3], as both
a, c2 ∈ Iline[c1, c3] and b ∈ Iline[a, c2].

Therefore, we assume that P avoids c3. In this case, we can construct an a-c3-path
whose inner vertices avoid c1 in the same way that we constructed a c3-avoiding path
from a to c1. Again this implies that a ∈ Iline[c1, c3] and using Lemma 1.4.12 we see
that b ∈ Iline[c1, c3], as both a, c2 ∈ Iline[c1, c3] and b ∈ Iline[a, c2]. Thus, the Chvátal
Property holds.

ii)⇒ iii) : This follows from Lemma 0.5.24.

iii)⇒ iv) : If the line convexity of G is a convex geometry, then, due to Corol-
lary 0.5.20, it possesses a line convexity order.

iv)⇒ i) : Suppose G possesses a line-convexity order and is not an interval graph.
Then G must contain an induced cycle C = (x1, x2, x3 . . . , xk) of size k ≥ 4 or an
asteroidal triple {x, y, z}. In the first instance we have x1 ∈ Iline[xk, x2], x2 ∈ Iline[x1, x3]
and x3 ∈ Iline[x2, xk], in the second y ∈ Iline[x, z], z ∈ Iline[x, y] and x ∈ Iline[y, z]. Both
cases are in contradiction to the existence of a line-convexity order, as these elements
cannot be ordered accordingly.

As the line convexity fulfils the Chvátal Property, we can state the following corollary
due to Lemma 0.5.16.

Corollary 1.4.14. The line convexity of an interval graph G = (V,E) has a Cara-
théodory number of at most 2.

Note that Alcón et al. [3] also constructed a convex geometry characterising interval
graphs, where the authors use so-called tolled-walks to define the intervals used for the
convexity.

Definition 1.4.15 (Alcón et al. [3]). Let G = (V,E) be a connected graph. A tolled
walk between u and v is a walk T = (u,w1, . . . , wk, v) with k ≥ 1 such that uwi ∈ E if
and only if i = 1 and vwi ∈ E if and only if i = k.

Let the toll interval Itoll[a, b] contain all vertices z such that z is on a tolled walk
between a and b. The interval convexity (V, Ctoll) induced by this operator is called the
toll convexity

Their convexity is equivalent to the one defined here. However, the use of tolled walks
is not very intuitive and does not show up the importance of asteroidal triples in interval
graphs. Furthermore, as they did not prove the Chvátal Property for their convexity,
they were not able to give a bound for the Carathéodory number in interval graphs.
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1.5 AT-Free Convexity

1.5 AT-Free Convexity

AT-free graphs are widely believed to exhibit a “linear structure” [98] akin to the interval
graphs and two results in particular corroborate this claim: In [39] it was shown that ev-
ery AT-free graph contains a dominating pair , i.e., a pair of vertices such that every path
between them forms a dominating set for the whole graph. This result was strength-
ened in the same paper [39] which characterised AT-free graphs with the so-called spine
property : A graph H has the spine property if for every non-adjacent dominating pair
s and t there exists a neighbour of t, say t′, such that s and t′ are a dominating pair
in the connected component of H − t that contains s. As shown in [39], a graph G is
an asteroidal triple free graph if and only if every connected induced subgraph of G has
the spine property. This can be seen as a generalisation of the fact that the maximal
cliques of interval graphs form a chain. In this section, we will analyse how this “linear
structure” is related to a convex geometry on AT-free graphs.

In Section 1.4, we have already seen that the structure of AT-free graphs can be
captured through an interval operator which we called the domination interval. In this
section, we will expand this operator to a proper convexity and show that this is, in fact,
a convex geometry. The domination interval was introduced by Broersma et al. [26] as a
tool to solve the independent set problem on AT-free graphs. Many years later, Corneil
and Stacho [38] used these same intervals to define a characterising linear vertex order
for AT-free graphs (called AT-free orders), which in turn motivated the construction of
a convexity for AT-free graphs by Chang et al. [28]. In this paper, the authors show that
the constructed convexity is, in fact, a convex geometry and used this result to generate
all the AT-free orders.

In this section, we will give an overview of the results for convexity in AT-free graphs
and use these to define a new vertex order characterisation of AT-free graphs. Further-
more, we study the Carathéodory number of this convexity and attempt to bound it
with a constant number.

In the following, we repeat and expand on Definitions 1.4.2 and 1.4.5.

Definition 1.5.1. Let G = (V,E) be a graph and z, a, b ∈ V . We say that z is in
the domination interval of a and b, denoted as z ∈ Idom[a, b] if and only if there is
an induced a-z-path that avoids b and an induced b-z-path that avoids a. The interval
convexity (V, Cdom) induced by this operator is called the domination convexity.

One of the first results shown for domination intervals was the following characterisa-
tion of AT-free graphs.

Theorem 1.5.2 (Broersma et al. [26], Köhler [99]). A graph G = (V,E) is AT-free if
and only if for any a, b, z ∈ V such that z ∈ Idom[a, b] it holds that Idom[a, z] ⊆ Idom[a, b]
and Idom[z, b] ⊆ Idom[a, b].

The extreme vertices of domination convexity, i.e., those not included in any domina-
tion interval of which it is not an endpoint, are known as admissible vertices. Corneil
et al. [39] have shown that the last vertex visited by an arbitrary LBFS on an AT-free
graph is admissible, making it possible to compute such vertices in linear time.
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c1

a c3

b

dc2

Figure 1.3: An AT-free graph that fulfils neither the strong nor the regular Chvátal
Property: One can see that b ∈ Idom[a, c2], while c2 ∈ Idom[c1, c3]. However,
the vertex b is contained neither in Idom[c1, c3] nor in Idom[a, c1], nor in
Idom[a, c3]. As the intervals Idom[a, c1] and Idom[a, c3] only contain their
respective endpoints, this example does not even fulfil the Peano-Property.
Furthermore, given the convex set C = {d, c3} and vertex c1, one can see
that this convexity is not join-hull commutative.

In Figure 1.3 one can see that none of the techniques presented here can be used to
show that (V, Cdom) is a convex geometry. The domination convexity of the graph given
there does not fulfil the Peano Property and thus, it also does not fulfil the (Strong)
Chvátal Property. Furthermore, that convexity is not join-hull commutative. Therefore,
it is necessary to use a non-standard technique to show that the domination convexity
is a convex geometry in an AT-free graph. Recently, this was achieved by Chang et al.
[28] who use a complicated construction to verify the anti-exchange property.

Theorem 1.5.3 (Chang et al. [28]). Let G = (V,E) be a graph and let (V, Cdom) be its
domination convexity. Then G is AT-free if and only if (V, Cdom) is a convex geometry.

Now that it has been established that we are dealing with a convex geometry, we will
take a closer look at the corresponding linear vertex characterisation which is implied
by the convex geometry.

1.5.1 A New Linear Vertex Order Characterisation

An important algorithmic tool in the theory of algorithmic graph theory has been the
use of linear vertex orderings which characterise particular graph classes. It was long
conjectured that such a characterising linear vertex ordering must also exist for AT-
free graphs. In a recent result, Corneil and Stacho [38] answered this conjecture in the
positive by showing that AT-free graphs can be characterised by the following linear
vertex order. Note that in this section we will mainly use open domination intervals to
make notation simpler.

Definition 1.5.4. Let G = (V,E) be a connected graph and let σ = (v1, . . . , vn) be
a linear order of its vertices. We say that σ is a domination convexity order (or an
AT-free order) if for every triple a, b, z ∈ V with z ∈ Idom(a, b) it holds that z ≺σ a or
z ≺σ b.

Theorem 1.5.5 (Corneil and Stacho [38], Chang et al. [28]). A graph is AT-free if and
only if it has an AT-free order.
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1 2 3

4

5

6 7 8

Arbitrary AT-free: (4, 5, 2, 7, 3, 6, 1, 8)
LexComp: (4, 5, 3, 6, 2, 7, 1, 8)
BFSconv(G, 1): (1, 2, 3, 4, 5, 6, 7, 8)

Figure 1.4: Graph with its various AT-free orders

However, the notion of these orderings leaves quite a bit of freedom. Ideally, such an
ordering would somehow capture the structure given in the spine property in [39] (as it is
in the case of interval orderings which immediately gives us the chain of maximal cliques).
However, the so-called LexComp ordering that is constructed in [38] has one significant
drawback: For some graphs the resulting ordering is ”folded” in a way that seems to
contradict our notion of linear behaviour. For example, given the path graph with 2n+1
vertices, the P2n+1, where the vertices are numbered from left to right along the path, we
would expect any viable linear vertex ordering to be (1, 2, . . . , 2n+1) or its inversion. The
algorithm in [38], on the other hand, might output (n+1, n, n+2, n−1, . . . , 1, 2n+1). In
addition, this construction can even yield vertex orders σ := (v1, . . . , vn) such that there
are i ∈ {1, . . . , n} for which G[v1, . . . , vi] is not connected, for example the chordless
cycle in five vertices. More examples can be found in Figure 1.4.

In an attempt to remedy this issue, the authors of [38] investigate whether it is possible
to find AT-free orderings that coincide with search orders. After proving that there are
graphs G such that no LBFS ordering of G is an AT-free order, they conjecture that
every AT-free graph has an AT-free order that is a BFS order.

Conjecture 1.5.6 (Corneil and Stacho [38]). Let G = (V,E) be an AT-free graph. Then
there exists a BFS ordering σ = (v1, . . . , vn) that is an AT-free order.

Using the concepts of convex geometry presented here, we will prove an even stronger
version of this conjecture and show how such an order can be used to wed the notion of
an AT-free ordering to the spine property. We will also give a polynomial time algorithm
to compute such an order that takes at most the time needed to compute all domination
intervals, which is possible in time O(n3) by [26]. This can be done by showing that
BFS can be executed such that at every step the search chooses a vertex, such that the
set of visited vertices forms a domination convex set.

Theorem 1.5.7. Let G be a connected AT-free graph. Then for any vertex s ∈ V there
is a linear vertex order σ := (s = v1, . . . , vn) that is an AT-free order and a BFS order.

Proof. Let σ be a BFS order starting in an arbitrary vertex s of G with the following
tie-break rule: At each step i, choose the vertex vi such that conv({s = v1, . . . , vi})
has smallest cardinality among all allowed choices at step i. We will show, that {s =
v1, . . . , vi} is convex for i ∈ {1, . . . , n}, which implies that σ is an AT-free order. The
proof will be by induction on the BFS steps.

For k = 1 the claim is true, as every one element set is convex in C.
We show the claim for step k, assuming it is true for k−1. Suppose vk is chosen. Then
{v1, . . . , vk−1} is convex and vk is such that conv({v1, . . . , vk−1, vk}) is smallest among
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all vertices that can be chosen by the search in step k. As we are conducting a BFS,
there is a vertex y ∈ {v1, . . . vk−1} that is adjacent to all possible choices, but no others.
Assume that {v1, . . . , vk} is not convex. Then there is a vertex p ∈ V \ {v1, . . . , vk},
such that p ∈ Idom(v, vk) for some vertex v ∈ {v1, . . . vk−1}. As (V, Cdom) is a convex
geometry, we can deduce that conv({v1, . . . , vk−1, p}) ( conv({v1, . . . vk−1, vk}). This
implies that yp /∈ E, due to the choice of vk. Let w be the vertex that forced v into
the BFS ordering (it may be that y = w). Due to the definition of BFS, we see that
distG(s, w) ≤ distG(s, y) < distG(s, p). We can assume that wp /∈ E, as otherwise p
would have been chosen before vk. Therefore, the vertices v, vk and p form an asteroidal
triple, due to the p-avoiding walk from v to vk along w, s and y; a contradiction to the
fact that G is AT-free.

This theorem implies an algorithm for computing an AT-free BFS order which will be
denoted by BFSconv.

Algorithm 10: BFSconv

Input: Connected graph G and a distinguished vertex s ∈ V
Output: A vertex ordering σ

1 begin
2 Compute Idom(v, w) for every pair of vertices v, w ∈ V ;
3 Q← {s};
4 S ← ∅;
5 for i← 1 to n do
6 Dequeue the first vertex v from beginning of Q such that there are no

u ∈ S and z ∈ V − S with z ∈ Idom(u, v);
7 σ(i)← v;
8 S ← S ∪ {v};
9 foreach unnumbered vertex w adjacent to v do

10 if w /∈ Q then Enqueue w to end of Q;

Any such ordering σ := (v1, . . . , vn) obviously has the property that for every i ∈
{1, . . . , n} the induced subgraph G[{v1, . . . , vi}] is connected. This is already an im-
provement on the orders produced by the algorithm given in [38] and in Figure 1.4 we
compare orders computed by the different algorithms. On the other hand, returning to
the example given in the introduction, the P2k+1 path graph, we can see that starting
the BFSconv in vertex k + 1 still yields an undesirable order.

Starting in an admissible vertex, which in the case of P2k+1 will be one of the endpoints
or one of their neighbours, is an easy remedy of this problem. However, with a little
modification to our search routine we can not only solve this issue, but make an intriguing
link with the AT-free graphs characterisation through the spine property. We shall
call a vertex ordering σ = (v1, . . . , vn) a monotone dominating pair order if for every
i ∈ {1, . . . , n} the vertices v1 and vi form a dominating pair in the induced subgraph
G[v1, . . . , vi].
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G:
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G′:

v1 v2 v3 1
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BFSconv(G, 1): (1, 2, 3, 4, 5) BFSconv(G′, v1): (v1, v2, v3, 1, 2, 3, 5, 4)

Figure 1.5: Graph for which BFSconv does not necessarily output a monotone dominating
pair ordering and the graph G′ constructed from G as in Theorem 1.5.10.

Theorem 1.5.8 (Corneil et al. [40]). Let G = (V,E) be a connected AT-free graph and
suppose that s is an admissible vertex. Let σ = (v1, . . . , vn) be a vertex order produced
by LBFS (G, s). Then for any i ∈ {1, . . . , n} the vertices v1 and vi form a dominating
pair of G[v1, . . . , vi], i.e., σ is a monotone dominating pair order.

In the following, we will prove an analogous result for BFSconv.

Lemma 1.5.9. Let G = (V,E) be an AT-free graph and let s be an admissible vertex
of eccentricity k > 2. If σ := (s = v1, . . . , vn = t) is the output of BFSconv(G, s), then s
and t form a dominating pair.

Proof. Suppose s and t are not a dominating pair. Then there is an s-t-path P and a
vertex w ∈ V such that P avoids w. W.l.o.g. we can assume that P is induced. As s is
admissible and sw, st /∈ E we must assume that t intercepts every w-s-path. Therefore,
w must be in the distance layer LkG(s) and Nk−1

s (w) ⊆ Nk−1
s (t). As k > 2, we can

deduce that t ∈ Idom(w, s) which is a contradiction to σ being an AT-free order.

However, applying a BFSconv with an admissible start vertex must not always result
in a monotone dominating pair order, as can be seen in Figure 1.5.

Corneil et al. [39] showed that for an AT-free graph G and an admissible vertex s the
graph G′ obtained by adding a pendant vertex v to s is also AT-free and v is admissible
in G′. With this operation we can artificially raise the eccentricity of our starting vertex
and generalise Lemma 1.5.9 to all AT-free graphs.

Theorem 1.5.10. Let G be a connected AT-free graph. For every admissible vertex s
there is a vertex ordering σ beginning in s that is both AT-free and a monotone domi-
nating pair ordering.

Proof. We construct an auxiliary graph by adding a three vertex path to s in the
following way: G′ = (V ∪ {v1, v2, v3}, E ∪ {v1v2, v2v3, v3s}). As s is admissible, the
graph G′ is again AT-free and v1 is admissible in G′ with eccG′(v1) > 2. The order
σ′ = (v1, v2, v3, w1, . . . , wn) that is generated by BFSconv(G′, v1) is an AT-free order and
with Lemma 1.5.9 it is easy to see that σ = (w1, . . . , wn) is a monotone dominating pair
order for G.
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c1

a c3

b

c2

Figure 1.6: An AT-free graph that fulfils neither the strong nor the regular Chvátal
Property: One can see that b ∈ Idom[a, c2], while c2 ∈ Idom[c1, c3]. How-
ever, the vertex b is contained neither in Idom[c1, c3] nor in Idom[a, c1], nor
in Idom[a, c3]. Furthermore, the domination convexity on this graph has
Carathéodory number at least 3, as {a, c1, c3} form an irredundant set of
size 3.

All the characterising properties of AT-free graphs presented here can be summed
up in a structure theorem of the type given for the other graph classes studied in this
chapter.

Theorem 1.5.11. For any graph G = (V,E) the following properties are equivalent:

(i) The graph G is AT-free;

(ii) For any a, b, z ∈ V such that z ∈ Idom[a, b] it holds that Idom[a, z] ⊆ Idom[a, b] and
Idom[z, b] ⊆ Idom[a, b];

(iii) The domination convexity of G is a convex geometry;

(iv) G possesses a domination-convexity (AT-free) order;

(v) G possesses a domination-convexity (AT-free) order that is a BFS order and a
monotone dominating pair order.

1.5.2 The Carathéodory Number of Domination Convexity

While Chang et al. [28] show that domination convexity is in fact a convex geometry for
AT-free graphs, they also give an example showing that both the strong and the regular
Chvátal Property, which we have used previously to bound the Carathéodory number,
do not hold (see Figure 1.6). Furthermore, they also give an example of an AT-free graph
whose domination convexity has Carathéodory number 3 (see Figure 1.6). While it is
disappointing that AT-free graphs do not possess the type of 1-dimensional structure
which a Carathéodory number of 2 implies, we were not able to construct examples of
graphs with higher Carathéodory number than 3 and in fact, we conjecture that this is
the upper bound for AT-free graphs.

Conjecture 1.5.12. Let G = (V,E) be an AT-free graph. Then (V, C) has a Cara-
théodory number of at most 3. This bound is tight.
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In the following, we will discuss several properties of domination intervals on AT-free
graphs that will hopefully help to serve as a first step in the proof of Conjecture 1.5.12.
The main drift of the following arguments can be summarised as follows: As we wish to
show that the Carathéodory number does not exceed 3, we can use Lemma 0.5.10 which
states that a convexity has Carathéodory number c if c is the smallest number such that
every set of size c+ 1 is redundant. Therefore, our goal is to prove that every 4-element
subset of the vertex set of an AT-free graph is redundant with regard to domination
convexity.

To this end, we will proceed to analyse the convex hulls of all sets of size ≤ 4. An
important tool in this analysis is the concept of the index of a vertex with regard to the
convex hull of a subset of V .

Definition 1.5.13. Let (C, V ) be an interval convexity with interval operator I and let
X be a subset of V . The index of an element z ∈ conv(X) with regard to X is defined
inductively in the following way: For all x ∈ X we have indX(x) = 0 and for z ∈ conv(X)
we say that indX(z) is the smallest number k such that there exist a, b ∈ conv(X) with
max(indX(a), indX(b)) ≤ k − 1 and z ∈ I[a, b].

The index describes, in a way, how deep a vertex is nested in the convex hull of a set
and is closely linked to redundant sets.

Observation 1.5.14. Let (C, V ) be an interval convexity with interval operator I and
let X be a subset of V . If the largest index of an element of conv(X) is k and |X| > 2k,
then X is redundant.

We will use the analysis of the highest index of some vertex in a convex hull to decide
whether a given set is redundant. The following two lemmas show properties of the
domination intervals that will be important tools in the following.

Lemma 1.5.15. Let G = (V,E) be an AT-free graph, with y ∈ Idom[x, z] and z ∈
Idom[w, y] for w, x, y, z ∈ V . Then y ∈ Idom[w, x] and z ∈ Idom[w, x].

Proof. We can assume that wx /∈ E as otherwise {y, x, z} form an asteroidal triple. Let
P be a z-avoiding x-y-path. If w is adjacent to a vertex on P , then {w, y, z} form an
asteroidal triple. Joining P to the w-avoiding y-z-path yields a w-avoiding x-z-path.

Let Q be a y-avoiding w-z-path. If x is adjacent to a vertex on Q, then {x, y, z} form
an asteroidal triple. Joining Q to the x-avoiding y-z-path yields an x-avoiding w-y path.
Therefore, y ∈ Idom[w, x] and z ∈ Idom[w, x].

As we have already shown for some other graph convexities, the domination intervals
of AT-free graphs are, in fact, domination convex sets.

Lemma 1.5.16. Let G = (V,E) be an AT-free graph and X = {x1, x2} ⊆ V of cardi-
nality 2. Then every interval is convex, i.e., any v ∈ conv(X) has index at most 1 with
regard to X.
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Figure 1.7: Explanatory figure for Lemma 1.5.16. The dashed lines are non-edges and
the waved lines are paths. A grey edge-labelling symbolizes that this vertex
misses the path.

Proof. Suppose, there is a vertex v ∈ V with index 2. Then there are y1, y2 ∈ conv(X)
with v ∈ Idom[y1, y2] such that without loss of generality y1 has index 1. Suppose,
y2 has index 0. Then again without loss of generality y2 = x1. As y1 ∈ Idom[x1, x2]
Theorem 1.5.2 implies v ∈ Idom[x1, x2] which is a contradiction to the assumption that v
has index 2. Therefore, y2 also has index 1, i.e., y1 ∈ Idom[x1, x2] and y2 ∈ Idom[x1, x2].

If v is adjacent to x1, then {y1, y2, x1} form an asteroidal triple, as there are a y1-v-
path avoiding y2 and a y2-v-path avoiding y1 and there are x1-avoiding paths from both
y1 and y2 to x2. The same argument holds for x2 and we can assume that vx1 /∈ E and
vx2 /∈ E. Let P be a y2 avoiding v-y1-path. Without loss of generality x1 is not adjacent
to any vertex on P , as otherwise there is a y2-avoiding x1-x1-path and as y2 ∈ Idom[x1, x2]
the vertices {x1, x2, y2} form an asteroidal triple.

Suppose x2 intercepts a y1-avoiding y2-v-path. Then for the same reason as above x1
does not intercept this path and, as there are x2-avoiding paths from both y1 and y2 to x1,
we see that y2 ∈ Idom[y1, x2]. As v ∈ Idom[y1, y2] Theorem 1.5.2 implies v ∈ Idom[y1, x2]
which is a contradiction to v being of index 2, as shown above.

Therefore, there are both x1-avoiding x2-v and x2-avoiding x1-v-paths implying v ∈
Idom[x1, x2]. This is a contradiction to the assumption.

Hence, there are no vertices in conv(X) with index 2 with regard to X. Due to the
definition of the index, this implies that every vertex has index less or equal to 1.

The following lemma forms a restricted version of the Chvátal Property which only
holds when all vertices are independent.

Lemma 1.5.17. Let G = (V,E) be an AT-free graph, and let a, c1, c3 ∈ V be in-
dependent. Then for c2 ∈ Idom[c1, c3] and b ∈ Idom[a, c2], either b ∈ Idom[a, c1] or
b ∈ Idom[a, c3] or b ∈ Idom[c1, c3].

Proof. Without loss of generality, we can assume that c1 is not adjacent to the c2-
avoiding a-b-path, as otherwise {c1, c2, c3} would be an asteroidal triple. If there is an
a-avoiding c1-c2-path, then b ∈ Idom[a, c1] and we are done. Suppose there is an a-
avoiding c1-c2-path. If c3 is adjacent to any vertex on the c2-avoiding a-b-path, then
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c3 ∈ Idom[a, c2]. As a is adjacent to the c3-avoiding c1-c2-path, the set {a, c2, c3} forms
an asteroidal triple. If c3 is not adjacent to any vertex on the c2 avoiding a-b-path,
then z ∈ Idom[a, c3] and we are done. Therefore, we can assume that a is adjacent to
the c1-avoiding c2-c3 path. Therefore, a is in the interval between c1 and c3 and by
Lemma 1.5.16 we have b ∈ Idom[c1, c3].

This property can be used to analyse the index of vertices generated in the convex
hull of independent sets. First we shall study the case of sets of size 3.

Lemma 1.5.18. Let G = (V,E) be an AT-free graph and let x1, x2, x3 ∈ V be indepen-
dent. Then any vertex in conv({x1, x2, x3}) has index at most 1.

Proof. Suppose there is a vertex z in conv({x1, x2, x3}) with index 2. Then there are
vertices y1 and y2 such that without loss of generality y1 ∈ Idom[x1, x2] and y2 is of index
less or equal 1.

If y2 ∈ Idom[x1, x2], then z ∈ Idom[x1, x2] by Lemma 1.5.16; this is a contradiction
to the assumption. If y2 is, in fact, x3, then by Lemma 1.5.17 z must have index 1.
Therefore, we can assume without loss of generality that y2 ∈ Idom[x1, x3].

Case 1 (x2y2 /∈ E): By Lemma 1.5.17 we see that z ∈ Idom[x1, x2] or z ∈ Idom[x1, y2]
or z ∈ Idom[x2, y2]. The first two cases imply by Theorem 1.5.2 that the index of z is
1; a contradiction. Therefore, z ∈ Idom[x2, y2] and y2 ∈ Idom[x1, x3] and Lemma 1.5.17
again implies that the index of z is 1.

Case 2 (x3y1 ∈ E): By symmetry to the above case this also yields a contradiction.

Case 3 (x2y2 ∈ E and x3y1 ∈ E): The vertex x1 cannot be adjacent to z, as otherwise
y1, x1, x2 form an asteroidal triple. If zx2 /∈ E, then z must be in the interval between
x2 and x1. By symmetry the same must hold for x3. Hence, we can assume that both
x2 and x3 are adjacent to z. Altogether, this implies that {x1, x2, x3} form an asteroidal
triple.

As all cases lead to a contradiction, there cannot be a vertex in conv({x1, x2, x3}) with
index 2, and thus every vertex has index less or equal 1.

This result can be generalised to independent sets of arbitrary size.

Theorem 1.5.19. Let G = (V,E) be an AT-free graph and let {x1, x2, . . . , xk} ∈ V be
independent. Then any vertex in conv({x1, x2, . . . , xk}) has index at most 1.

Proof. We will prove this theorem by induction over k. The induction basis is given for
k = 2 and k = 3 in Lemmas 1.5.16 and 1.5.18, respectively. Now let us assume that the
statement holds for all l < k.

Let X = {x1, x2, . . . , xk} ∈ V be an independent set. Let y ∈ conv(X) be a vertex of
index 2. Hence, y ∈ Idom[a, b] for some a, b ∈ conv(X) with index(a), index(b) ≤ 1. By
the induction hypothesis, we know that every vertex in conv(X ′) for X ′ ( X has index at
most 1. Therefore, y is not in the convex hull of a true subset of X. Suppose that without
loss of generality a ∈ X. Note that not both can be elements of X, as index(y) = 2.
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Figure 1.8: Explanatory figure to proof of Theorem 1.5.19. The waved lines form paths.
A grey edge-labelling symbolizes that the pass avoids this vertex.

However, then we see that y ∈ conv(xi, xj , xr) with xr = a and b ∈ Idom[xi, xj ]; a
contradiction, as k ≥ 4.

This implies that index(a) = index(b) = 1 and without loss of generality, we can
assume that a ∈ Idom[x1, x2] and b ∈ Idom[x3, x4], due to the fact that y is not contained
in the convex hull of a true subset of X.

Suppose that both x3 and x4 are not adjacent to a. Then a, y, b, x3 and x4 together
fulfil the prerequisites of Lemma 1.5.17, as a, x3 and x4 are independent. This implies
that y is contained in either Idom[x3, x4], Idom[a, x3] or Idom[a, x4]. Either way, the vertex
y is contained in the convex hull of a true subset of X, which is a contradiction.

On the other hand, if without loss of generality x3 is adjacent to a, then there is an
x1-avoiding x2-x3-path and an x2 avoiding x1-x3 path. As a result, x3 is contained in
Idom[x1, x2]. Therefore, we see that conv(X) ⊆ conv(X − x3); this is a contradiction to
our assumptions, proving the theorem.

As every vertex of index 1 is generated by at most two vertices, Theorem 1.5.19 implies
that any independent set of size ≥ 3 is redundant.

Corollary 1.5.20. If G is an AT-free graph, then any independent set of vertices of G
of size ≥ 3 is redundant with regard to domination convexity.

This corollary implies that were we to restrict the definition of the Carathéodory
number to only independent sets X, this modified Carathéodory would be bounded by
2, just as is the case in the graph classes studied before. However, we have seen in
Figure 1.6 that problems arise when a set X contains at least one edge.

For sets of size 3 we can even show a bit more.

Lemma 1.5.21. Let G = (V,E) be an AT-free graph and let x1, x2, x3 ∈ X be such that
G[X] is an induced P3. Then any vertex in conv({x1, x2, x3}) has index at most 1.

Proof. Suppose without loss of generality that x1x3 /∈ E and let y ∈ Idom[x1, x3]. If y and
x2 are not adjacent, then x1−x2−x3 forms a y-avoiding x1-x3-path, asG[X] is an induced
P3. This implies that {x1, y, x3} form an asteroidal triple; a contradiction. Therefore,
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any vertex in Idom[x1, x3] is adjacent to x2 and conv(x1, x2, x3) = conv({x1, x3}). Due
to Lemma 1.5.16, every vertex in conv(x1, x2, x3) has index at most 1.

This implies that a set of size 3 is redundant both if it is independent and if it contains
≥ 2 edges. With the example given in Figure 1.6 we see that the following holds.

Corollary 1.5.22. Let G be an AT-free graph. If a set X ⊆ V of cardinality 3 is
irredundant, then it contains exactly one edge.

This fact makes it difficult to characterise redundant and irredundant sets of cardi-
nality 4. It has already been shown that independent sets are redundant. The following
lemma shows that sets containing ≥ 5 edges are also redundant.

Lemma 1.5.23. Let G = (V,E) be an AT-free graph and let {x1, x2, x3, x4} ⊆ X be
such that G[X] contains ≥ 5 edges. Then any vertex in conv({x1, x2, x3, x4}) has index
at most 1.

Proof. If G[X] contains 6 edges, then it must be the complete graph and therefore,
all intervals between the vertices of X contain only their endpoints. This implies that
conv(X) = X and we are done. Hence, we assume that G[X] contains exactly 5 edges.
Without loss of generality let x1 and x2 be the unique pair of nonadjacent vertices of
X. Just as in the proof of Lemma 1.5.21, any vertex in the interval between x1 and x2
must be adjacent to both x3 and x4, as these are adjacent to both x1 and x2.

Therefore, all vertices of index 1 are in the interval between x1and x2 and there can
be no vertices of index 2, due to Lemma 1.5.16.

There are essentially two different graphs with four edges that can be induced by four
vertices: This can either be a triangle with a pendant or an induced C4. For the second
case we get the following result.

Lemma 1.5.24. Let G = (V,E) be an AT-free graph and let {x1, x2, x3, x4} ⊆ X be
such that G[X] is an induced C4. Then any vertex in conv({x1, x2, x3, x4}) has index at
most 1.

Proof. Let y ∈ conv(X) be of index 2. Then there exist vertices a, b ∈ conv(X) with
indX(a) ≤ 1 and indX b ≤ 1. Suppose that without loss of generality indX(b) = 0 and
b = x1. Furthermore, we can assume without loss of generality that a ∈ Idom[x2, x3], as
otherwise y is in the convex hull of two vertices of X and cannot have index 2. As G[X]
is an induced C4 and x2 and x3 are not adjacent, both x2 and x3 are adjacent to x1.
Similarly to the previous lemmas, this implies that a is adjacent to x1, as otherwise x2,
x3 and b form an asteroidal triple. This is a contradiction to the fact that y ∈ Idom[x1, b],
proving the statement.

For a set X ⊆ V we call a vertex v ∈ conv(X) critical with regard to X if v is not
contained in any convex hull of a true subset of X. Obviously, any irredundant set must
contain at least one critical vertex. Therefore, we need to examine what properties must
hold for a 4-element set to contain a critical vertex.
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Lemma 1.5.25. If G = (V,E) is an AT-free graph and X = {x1, x2, x3, x4} ⊆ V is a
set of cardinality 4, such that conv(X) contains a critical vertex of index 2, then G[X]
contains exactly one edge.

Proof. Let y ∈ conv(X) have index 2. Hence, y ∈ Idom[a, b] for some a, b ∈ conv(X)
and as y is critical and thus, not in the convex hull of a true subset of X we see that
index(a) = index(b) = 1. Without loss of generality, we can assume that a ∈ Idom[x1, x2]
and b ∈ Idom[x3, x4], again due to the fact that y is critical.

Suppose that Pa,y(b) is a b-avoiding a-y-path and that Pb,y(a) is an a-avoiding b-y-
path. If both x3 and x4 see Pa,y(b), then there is a b-avoiding x3-x4-path and G contains
an asteroidal triple in {b, x3, x4}; a contradiction. Without loss of generality x3 misses
Pa,y(b). With the same argument we can assume that without loss of generality x1 misses
Pb,y(a). Suppose a misses an x3-b path. Then y ∈ Idom[a, x3]; a contradiction to y /∈ X∗.
Therefore, a intercepts every x3-b-path. By symmetry b intercepts every x1-a path. By
a similar argument, y must see every x3-b-path and every x1-a-path.

Case 1 (x4a /∈ E and x4y ∈ E): This implies a ∈ Idom[x4, x3]; a contradiction to y /∈
X∗.

Case 2 (x4a ∈ E and x4y /∈ E): This implies y ∈ Idom[x3, x4]; a contradiction to y /∈
X∗.

Case 3 (x4a /∈ E and x4y /∈ E): Suppose there is a y-avoiding x4-b-path. Then b ∈
Idom[x4, y] and as y ∈ Idom[a, b] by Lemma 1.5.15 we have y ∈ Idom[a, x4]; again a
contradiction to y /∈ X∗. Therefore, y intercepts every x4-b-path and y ∈ Idom[x3, x4];
another contradiction.

As a result x4a ∈ E and x4y ∈ E and by symmetry x2y ∈ E and x2b ∈ E must hold.
Only one of x1 and x2 can be adjacent to x3, as otherwise {x1, a, x2} form an asteroidal

triple.

Case 1 (x2x3 ∈ E and x3x1 /∈ E): Then y ∈ Idom[b, x1]; a contradiction to y /∈ X∗.
Case 2 (x1x4 ∈ E and x3x1 /∈ E): Then y ∈ Idom[a, x3]; a contradiction to y /∈ X∗.
Case 3 (x3x1 ∈ E and x2x3 /∈ E): Then a ∈ Idom[x3, x2]; a contradiction to y /∈ X∗.
As a result, we can assume that x1x3 /∈ E and x2x3 /∈ E and therefore, {x1, x2, x3} forms
an independent set. Furthermore, we see that x4 is adjacent to neither x1 nor x3. As we
have already shown in Theorem 1.5.19 that for independent sets X there are no vertices
of index 2 with regard to X, we see that x2 and x4 must be adjacent. Altogether, this
proves the statement of the lemma.

In order to prove Conjecture 1.5.12 in the way attempted here, a few more steps are
needed. One would need to show that in any AT-free graph and any set X, a vertex
v cannot have index larger than 2 with regard to X. This fact in combination with
Lemma 1.5.25 could then be used to show that a set of cardinality 4 cannot contain any
critical vertices and must therefore be redundant.

Should it turn out that there are vertices of index larger than 2, then these partial
results could be used in a complete case analysis of all possible combinations of 4 element
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Figure 1.9: Explanatory figure to Theorem 1.5.25. The dashed lines are non-edges and
the waved lines are paths. A grey edge-labelling symbolizes that this vertex
misses the path. A grey edge from a vertex to a path symbolizes that this
vertex intercepts every such path.

sets. However, we have already made some attempts to this end and it seems unlikely
that such an approach will be successful without some new techniques.

1.6 Conclusion

We have given an overview of some of the most important graph classes that can be
characterised with a convex geometry. Comparing these characterisations, we see that
many concepts such as leaves, simplicial vertices and admissible vertices can be defined
in a standard way as extreme points of these convexities. Furthermore, all of these
convex geometries yield interesting new vertex order characterisations that should be
compared in more detail with their known counterparts.

With this overview we have attempted to show that the language of convexity can
be very useful to compare analogous structures among different graph classes. We have
seen that many results, such as the characterisation of interval graphs as chordal AT-free
graphs, can be transferred to results on convexities. This indicates that convexity might
be used as a unifying structure in order to better classify the many diverse concepts of
algorithmic graph theory.

In an attempt to find a most general convexity that is a convex geometry for all
graphs, we have introduced the notion of interception convexity. This convexity has as
its extreme points the set of avoidable vertices in a graph, a concept that we will study
in greater detail in Chapter 3 and which we will see to be very useful.

Using a result by Chvátal [34], we have given a characterisation of interval graphs with
a convex geometry. Using this approach, it was possible to show that the Carathéodory
number of this convexity is bounded by 2, settling a question stated in [3]. Furthermore,
this convex geometry yields a new vertex order characterisation of interval graphs. It
remains to be shown that this vertex order characterisation can be checked in linear
time. As such an order can be computed in linear time, this would imply a new linear
recognition algorithm for interval graphs.
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While studying the convexity of AT-free graphs, we resolved an open question from [38]
by proving that any given AT-free graph has an AT-free order that coincides with a BFS
order. The proof implies a polynomial time algorithm for the computation of such an
order that is at least as fast as the computation of the domination intervals of that
graph. As a result, we were able to show that there is a close link between the vertex
order characterisation of AT-free graphs, and their characterisation through the spine
property. As checking whether a vertex order is an AT-free order is, in fact, as difficult
as recognising AT-free graphs, it should still be possible to find AT-free orders in linear
time. This could be done by giving a linear time implementation of BFSconv, or by
constructing another search scheme with similar structural properties.

Linear vertex orderings of other graph classes, such as interval orderings or cocom-
parability orderings, have found many applications in optimisation algorithms on these
classes. To the best of our knowledge, no such results are known with respect to AT-free
orderings. By using AT-free BFS orderings, such results might be easier to attain. Two
of the most likely candidates are the independent set problem and the vertex colouring
problem. Should it be possible to compute AT-free orders in linear time, it might even be
possible to develop robust optimisation algorithms (see [133]) on AT-free graphs, similar
to the maximum clique algorithm on comparability graphs. It is still an open question
whether every AT-free graph admits a DFS order whose reversal is AT-free [38].

Finally, we analysed the the Carathéodory number of the convexity on AT-free graphs.
While we were not able to give a bound on this number, our results suggest that this
bound is 3. We have made some progress in proving this conjecture. However, there
still remains much to be shown. Due to the nature of the Carathéodory number, this
would imply that AT-free graphs are in some way “two-dimensional”, in the same sense
that interval graphs are “one-dimensional” as intersection graphs of intervals on a line.
This raises the question whether AT-free graphs can be characterised using some form
of intersection model which mirrors this “two-dimensionality”.
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We have seen in the previous chapter that for nearly all of the presented graph convexities
the class of graphs having a corresponding halfspace ordering is easily characterised. For
trees it was shown that these graphs are exactly the claw-free trees, i.e., the paths. For
chordal and interval graphs this defines exactly the class of unit interval graphs. In the
case of AT-free graphs, however, this question is not as easy to resolve.

In this chapter, we will show that the class of graphs having an AT-free halfspace
ordering, which from now on will be called bilateral AT-free, is difficult to characterise
and is, in fact, NP-hard to recognise. Note that in this chapter we will use mainly open
domination intervals, as it makes notation easier here.

Definition 2.0.1. A graph G = (V,E) is bilateral asteroidal triple free if and only if
there exists an ordering σ of V such that for any triple a, b, c where a ∈ Idom(b, c), we
have b ≺σ a ≺σ c.

We will show how this class relates to other known subclasses of AT-free graphs.
Furthermore, using results from the previous chapter, we present some subclasses of AT-
free graphs which we show to be bilateral AT-free. For these classes, we present linear
time algorithms to compute a bilateral AT-free ordering.

2.1 Subfamilies of AT-free Graphs

Before we turn to the problem of recognising bilateral AT-free graphs, we will first
compare this class to other known subfamilies of AT-free graphs. Figure 2.1a shows a
graph which is AT-free and not bilateral AT-free. This shows that the family of bilateral
AT-free graphs is a true subset of AT-free graphs. However, this class still contains
important subclasses of AT-free graphs.

Lemma 2.1.1 (Mouatadid [116]). Every cocomparability ordering is a bilateral AT-free
ordering, i.e., every cocomparability graph is also a bilateral AT-free graph.

Proof. Suppose there exists a graph G which has a cocomparability ordering σ that is not
a bilateral AT-free ordering. In particular, there exist z, a, b ∈ V (G) with z ∈ Idom(a, b)
such that z ≺σ a ≺σ b. Let Q be the z − a path avoiding b and let P be the z − b
path avoiding a. As P is a b-z path and z ≺σ a ≺σ b, there exists an edge uv ∈ E such
that u ≺σ a ≺σ v and ua, va /∈ E. This contradicts the fact that σ is a cocomparability
ordering.

As, for example, the C5 is bilateral AT-free but not a cocomparability graph, we can
state the following corollary.
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2 Bilateral AT-free Graphs and Orders

(a) Graph that is AT-free but not bilateral AT-free.

(b) Graph that is bilateral AT-free but
neither path-orderable nor strong
asteroid free.

Figure 2.1: Examples of AT-free graphs that differentiate between the subclasses.

Corollary 2.1.2. The class of cocomparability graphs is strictly contained in the class
of bilateral AT-free graphs.

In an attempt to characterise AT-free graphs using linear vertex orderings, Corneil
et al. [42] introduced the following subfamily of AT-free graphs.

Definition 2.1.3. A graph G = (V,E) is path-orderable if and only if there exists an
ordering σ of V , such that for any three vertices a, b, c ∈ V , where a ≺σ b ≺σ c and
ac /∈ E, any a-c-path contains at least one neighbour of b. Such an ordering is called a
path order.

This family can also be shown to be a subfamily of bilateral AT-free graphs.

Lemma 2.1.4 (Mouatadid [116]). Every path-ordering is a bilateral AT-free ordering,
i.e., every path-orderable graph is bilateral AT-free

Proof. Suppose there exists a graph G which has a path-ordering σ that is not a bilateral
AT-free ordering. In particular, there exist z, a, b ∈ V (G) with z ∈ Idom(a, b) such that
z ≺σ a ≺σ b. Since σ is a path-ordering, any z-b-path must contain a neighbour of a;
this is a contradiction to the fact that z ∈ Idom(a, b).

The graph shown in Figure 2.1b is not a path orderable graph, but it does have a
bilateral AT-free ordering, implying the following.

Corollary 2.1.5. The class of path orderable graphs is strictly contained in the class of
bilateral AT-free graphs.

Furthermore, we wish to compare bilateral AT-free graphs with the class of strong
asteroid free graphs, a class that was defined by Corneil et al. [42] as a polynomially
recognisable superclass of path orderable graphs. The definition of these graphs is quite
involved and probably best understood in context. Therefore, we will defer it to Sec-
tion 2.2.1. Summing up the relations between the analysed graph classes, we get:

• cocomparability ( path orderable ( strong asteroid free ( AT-free

• cocomparability ( path orderable ( bilateral AT-free ( AT-free
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• strong asteroid free
?
( bilateral AT-free

This leaves us with the following question.

Question 2.1.6. Does the class of bilateral AT-free graphs contain strong asteroid free
graphs or are the two classes incomparable?

To answer this question we first present a characterisation of bilateral AT-free graphs
which will also lead to a proof of the NP-completeness of their recognition.

2.2 The Recognition of Bilateral AT-free Graphs

In order to characterise bilateral AT-free graphs, we closely follow two sources: Gallai’s
paper on transitively orientable (or comparability) graphs [67] and a paper by Corneil
et al. [42] which proves that the recognition of path-orderable graphs is NP-complete.
In both of these papers, the properties of the graph class is captured by a respective
form of orientation of the complement of the graph, i.e., a claim of the following type is
made: a graph G belongs to the graph class G if and only if its complement G has an
orientation O that fulfils the properties P. If the structure of the graph class is defined
through a particular linear vertex ordering, in this example a bilateral AT-free ordering,
such an orientation is given in a very natural way. Given a characterising linear vertex
ordering, an edge uv in the complement is directed from u to v if and only if u appears
before v in that ordering. From the properties of such an orientation one can derive the
concept of a forcing relation which describes in what way the orientation of one edge
influences the orientations of other edges. Here we will use the same approach, i.e., we
will use a forcing-relation to describe an orientation on the complement graph whose
existence is equivalent to G being bilateral AT-free.

To be pertinent, the desired orientation will need to reflect the bilateral AT-free order,
i.e., if an edge uv is directed from u to v we want u to be before v in the linear order.
This immediately implies that the orientation needs to be acyclic.

In fact, locally directing the edges in the order that they would appear in the bilateral
AT-free order yields a simple rule that is already strong enough to characterise bilateral
AT-free graphs. Let G = (V,E) be a graph and let uv and vw be edges of G. We define
a relation F ⊆ E(G) in the following way: If u ∈ Idom(v, w) or w ∈ Idom(u, v), then
uvF ′vw. As this relation is symmetric, the reflexive transitive closure of F ′, say F , is an
equivalence relation. We call F the forcing relation and say that e, f ∈ E(G) force each
other if they are in the same equivalence class of F . This terminology is motivated by
the fact that the orientation of one of the edges in an equivalence class of F determines
the orientation of all other edges of that class. These equivalence classes will be called
forcing classes of G. We say that an orientation O of G agrees with the forcing if for
any vertex v ∈ V such that uv, vw ∈ E(G) and u ∈ Idom(v, w) or w ∈ Idom(u, v) both
vw and vu are oriented in the same direction with regard to v (an example can be seen
in Figure 2.2).

The existence of an acyclic orientation that agrees with the forcing is already charac-
terising for bilateral AT-free graphs.
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G :

a b c d

e G :

b d a c

e

Figure 2.2: A graph G together with its complement which is partly oriented in accor-
dance to the forcing rule. In G one can see that e ∈ Idom(a, d). Assuming
without loss of generality that in the complement ad is oriented towards a,
this implies that the edge de is oriented towards e and that ea is oriented
towards a.

Lemma 2.2.1. A graph G = (V,E) has a bilateral AT-free ordering if and only if there
is an acyclic orientation of G that agrees with the forcing.

Proof. Suppose G has a bilateral AT-free ordering σ. We orient the edges of the com-
plement according to this ordering. Suppose uv, vw ∈ E(G) such that u ∈ Idom(v, w).
Then, without loss of generality, w ≺σ v and therefore, w ≺σ u ≺σ v. This implies that
both uv and wv are directed towards v and the orientation agrees with the forcing. As
σ is a linear order, the orientation is acyclic.

Suppose there is an acyclic orientation that agrees with the forcing. Then a topological
sort yields a linear ordering σ of the vertices. For u ∈ Idom(v, w) we know that in the
complement uv and wv are oriented in the same direction with respect to v; also uw and
vw are oriented in the same direction with respect to w. This implies that v ≺σ u ≺σ w
or w ≺σ u ≺σ v, i.e., that σ is a bilateral AT-free order.

To further understand the forcing relation, we will first need to study some properties
of bilateral AT-free orders.

Lemma 2.2.2. Suppose G has a bilateral AT-free order σ and u, v, w ∈ V , such that
Idom(u, v) ∩ Idom(u,w) 6= ∅. Then, either u ≺σ v ∧ w ≺σ v or v ≺σ u ∧ v ≺σ w. In
particular, this implies that uvFuw.

Proof. Let z ∈ Idom(u, v)∩Idom(u,w). Suppose u ≺σ v. Then u ≺σ z ≺σ v which in turn
implies w ≺σ z ≺σ v due to σ being bilateral AT-free. The case where v ≺σ u follows
analogously. Furthermore, let z ∈ Idom(u, v)∩ Idom(u,w). Then uzFuv and uzFuw. By
transitivity of F we can imply that uvFuw.

This implies a more general statement.

Corollary 2.2.3. Let Idom(a1, b), . . . , Idom(ak, b) be a set of intervals such that for i ∈
{1, . . . , k − 1} we have Idom(ai, b) ∩ Idom(ai+1, b) 6= ∅. Then either a1, . . . , ak ≺σ b or
b ≺σ a1, . . . , ak.

Using Lemma 2.2.2, it is possible to force orientations of edges along induced paths.
As can be seen in Figure 2.3, the orientation of the edge vw is forced by the orientation
of vu
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u
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e f

z1 z2 z3 z4

Figure 2.3: On the left we see an example where z ∈ Idom(u, v) ∩ Idom(u,w) in the
complement. Due to Lemma 2.2.2 the orientation of e forces the orientation
of f . This idea can be used to force orientations along induced paths, as can
be seen in the graph on the right.

Lemma 2.2.4. Let G = (V,E) be a graph such that there are a1, . . . , a2k+1 ∈ V (G) with
Idom(a1, a2) ∩ Idom(a2, a3) 6= ∅, . . . , Idom(a2k+1, a1) ∩ Idom(a1, a2) 6= ∅. Then G does not
have a bilateral AT-free order.

Proof. As any reverse of a bilateral AT-free order σ is also bilateral AT-free, we can
assume without loss of generality that a1 ≺σ a2. Using the previous claim, this implies
that a3 ≺σ a2. By repeatedly applying Lemma 2.2.2, we see that a2k+1 ≺σ a1. Due to
the fact that Idom(a2k+1, a1) ∩ Idom(a1, a2) 6= ∅, this implies a2 ≺σ a1 by Lemma 2.2.2;
this is a contradiction to the assumption that a1 ≺σ a2.

Using all the gathered information about forcings, we can turn our attention to the
recognition of bilateral AT-free graphs. If a given graph has only one forcing class, it
is easy to see that one can decide in polynomial time whether a bilateral AT-free order
exists. We orient one of the edges arbitrarily and use the forcing rules to derive the orien-
tations of all the other edges. These rules can be attained by computing all domination
intervals of the graph, which can be done in polynomial time. Similarly, if the graph has
a constant number k of forcing classes, we compute both possible orientations for each
class in polynomial time and for each of the 2k different combinations of orientations of
these classes we check whether there is an oriented cycle (also in polynomial time).

Problems arise when the number of forcing classes is dependent on the size of the graph.
A related approach to the one taken here was used in [67] to recognise comparability
graphs. In that case, it was possible to break the interdependence of the different forcing
classes using modular decomposition and, as a result, the number of forcing classes
was not relevant to the complexity of recognition. For bilateral AT-free graphs this,
unfortunately, is not the case. In fact, we will show that these graphs are NP-complete
to recognise. This is shown by giving a reduction to the well known NP-complete decision
problem NOT-ALL-EQUAL 3-SAT [128]. We use the problem description given in [68].

NOT-ALL-EQUAL 3-SAT

Instance: An instance I consisting of a set X of variables and a collection C of
clauses over X such that each clause c ∈ C has |c| = 3.

Task: Find a truth assignment for U such that each clause in C has at least
one true literal and at least one false literal.
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Figure 2.4: Gadget for the clause c = x ∨ y ∨ z

Given an instance I of NOT-ALL-EQUAL 3-SAT, we construct a corresponding graph
G(I) whose complement is bilateral AT-free if and only if I has a truth assignment such
that each clause in C has at least one true literal. In principal, the construction works
as follows: For every variable there is a vertex labelled by that variable. For every clause
x ∨ y ∨ z ∈ C we introduce a gadget as shown in Figure 2.4. Each of these gadgets
consists of two C4s and for each of these, three of the edges correspond to the three
literals in the clause. For the variable x the example in Figure 2.4 shows how the gadget
is attached to the variable-vertices. The vertex of the edge labelled x that is adjacent
to the vertex labelled x is called the base of that edge.

Depending on whether all incident edges to this vertex are outgoing (ingoing), the
variable is set to true (false). Due to construction, any orientation adhering to the
forcing will fall into one of these cases. Given an orientation, a positive literal will be
deemed to be true if it is directed towards its base. If it is directed away from its base,
it will be false. A negative literal behaves in the opposite way.

Due to construction, the edges that are not labelled will always be directed in opposite
directions, in the sense that one will be directed away and one towards the vertices
connecting the two C4s. Thus, a truth-assignment in which all three literals are either
all true or all false will always yield a directed cycle in exactly one of the two C4s. Vice
versa, an orientation that agrees with the forcing always yields a truth assignment that
has at least one true and at least one false literal.

Coming to the details of our construction, we first have to clarify how the variable
vertices are connected to the clause-gadgets. To this end, we say that each edge has one
positive and one negative vertex (where it must be added that a vertex can be positive
for one edge and negative for another). In the example in Figure 2.4, the positive vertices
are white and the negative vertices are white. If a variable v occurs in a clause we will
add an edge between that variable and the positive (negative) vertex of the literal-edge
if v if that literal is positive (negative).

We have claimed that, in an orientation agreeing with the forcing, all variable vertices
have either only ingoing or only outgoing edges. To this end, for every variable vertex
x we add an auxiliary vertex vx that is adjacent to all of N [x] in G. To make sure that
every literal lix is assigned the appropriate truth value with regard to the variable x, we
add an auxiliary vertex that is adjacent to x and both vertices of the edge for lix. These
auxiliary vertices ensure that the attached edges force each other, thus transferring the
truth assignments along the edges. The full construction for a sample clause with the
attachments to the variable vertices can be seen in Figure 2.5a.

72



2.2 The Recognition of Bilateral AT-free Graphs

As all incident edges of a variable-vertex are oriented in the same direction, i.e., ingoing
or outgoing, we also assure that a variable-vertex transfers the same truth assignment
to all clauses in which it is contained as a literal; Figure 2.5b illustrates this fact by
showing two gadgets joined at a variable-vertex.

We call the set of all auxiliary vertices defined as above A. These are denoted as the
smaller grey vertices in all figures and play an important role in forcing an orientation of
one edge to another. In the following, we wish to show that the construction described
above is the complement of an asteroidal triple free graph. In order to do this, we need
to describe all triangles in the complement, as these form all possible asteroidal triples.
Then it is possible to show that all vertices contained in domination intervals of the
graph are, in fact, auxiliary vertices.

Lemma 2.2.5. Let z, a, b ∈ V (G(I)) such that z ∈ IGdom(a, b). Then z is an element of
A and a, b /∈ A.

Proof. First, we will show that any triangle of G(I) contains exactly one vertex of A.
It is easy to see that at most one of the vertices of A is contained in every triangle, as
A forms an independent set in G(I). To show that at least one of these is used, let v
be an arbitrary vertex in V (G(I)) \A. As none of the clause gadgets contain a triangle
without the vertices of A, assume that v ∈ X. However, any two neighbours of x cannot
be adjacent, as x only has exactly one neighbour for each edge belonging to a literal
using the variable represented by x. Thus, any triangle in G(I) contains exactly one
edge of A.

Now, let z, a, b ∈ V (G(I)) such that z ∈ IG(a, b). Obviously, {z, a, b} form a triangle
in G(I). If z is an element of A, we are done. Therefore, assume without loss of
generality that a ∈ A. As there is an a-avoiding path from z to b in G(I), there must be
a neighbour of z and a neighbour of b in G(I) that are not adjacent to a (these need not
be distinct). However, the vertex a has only three non-neighbours in G(I) that form an
induced P3 in G(I); this yields a contradiction, proving the statement.

This also shows that the complement of our construction is AT-free, as in any asteroidal
triple each vertex is both an endpoint of an interval, as well as contained in on itself.

Corollary 2.2.6. the graph G(I) is asteroidal triple free.

The following observation can be easily checked and shows that all auxiliary vertices
are contained in some interval.

Observation 2.2.7. If z is an element of A and u, v and w are its three neighbours in
G(I), where u-v-w forms an induced P3 in G(I), then z ∈ IGdom(u, v) and z ∈ IGdom(v, w).
In particular, if u-v-w forms an induced P3 in G(I) all of whose vertices are adjacent
to a vertex z ∈ A, then uvFvw in G.

Now we are in a position to show that any fulfilling assignment of a given instance of
the NOT-ALL-EQUAL 3-SAT problem yields an acyclic orientation of the constructed
graph that agrees with the forcing and vice versa.
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Lemma 2.2.8. The graph G(I) has an acyclic orientation that agrees with the forcing if
and only if I has a truth assignment that solves the NOT-ALL-EQUAL 3-SAT problem.

Proof. Suppose we have a solution to the NOT-ALL-EQUAL 3-SAT problem for a given
instance I with variables {x1, . . . , xn} and clauses c1, . . . , cm. For all i ∈ {1, . . . , n}, if
xi is set to false, we will orient one of the edges between xi and one of the literal
gadgets inwards, i.e., towards xi and outwards otherwise. Of the two edges fcj and hcj
in the clause-gadget for the clause cj , we orient one in an arbitrary direction for all
j ∈ {1, . . . ,m}. Using Lemma 2.2.2 and the forcing relation, this yields an orientation
that respects the forcing for the whole graph. Suppose this orientation creates a directed
circuit. Due to the construction of G(I), this circuit can only be in one of the C4s in
the clause-gadgets. Such a directed circuit would imply, that all literals of this clause
are set to the same truth value, which is a contradiction to our using a solution of the
NOT-ALL-EQUAL 3-SAT problem. Therefore, our orientation agrees with the forcing
and is acyclic and thus, yields a bilateral AT-free ordering, due to Lemma 2.2.1.

Suppose we are given a bilateral AT-free ordering of this graph. Then this ordering
yields an acyclic orientation of our graph that agrees with the forcing. This orientation
in turn yields a solution for the NOT-ALL-EQUAL 3-SAT problem by setting a variable
xi to true, if it has only ingoing edges, and to false otherwise.

This lemma implies the desired result.

Theorem 2.2.9. The problem of deciding whether a graph is bilateral AT-free is NP-
complete.

Proof. This problem is in NP, as checking whether a given linear vertex ordering is
bilateral with regard to a given graph G = (V,E) can be checked in polynomial time by
computing all the domination intervals.

As the construction used in Lemma 2.2.8 is polynomial in the size of the input and
NOT-ALL-EQUAL 3-SAT is NP-complete, the problem of deciding whether a graph is
bilateral AT-free is also NP-complete.

2.2.1 Strong Asteroid Free Graphs

Using the results from the previous section, we are finally equipped to answer Ques-
tion 2.1.6 which asked whether the the families of bilateral AT-free graphs and Strong As-
teroid free graphs are comparable. To this end, we introduce some notions due to Corneil
et al. [42].

Definition 2.2.10. For a graph G = (V,E) and a vertex v ∈ V let C1, . . . , Ck be the
connected components of G − N [v] and let B1

i , . . . , B
l
i be the connected components of

the graph induced by the vertices of Ci in G for 1 ≤ i ≤ k; the Bj
i are called the blobs

of v in G.

For a graph G = (V,E) the altered knotting graph is given by K∗[G] = (VK∗ , EK∗),
where VK∗ and EK∗ are defined as follows: For each vertex v ∈ V there are copies
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(a) A complete construction of the gadget for x1∨x2∨x3.
The auxiliary interval vertices and their edges are grey.
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(b) A sketch of two gadgets joined at
the vertex representing x1. The
auxiliary interval vertices and their
edges are grey.
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Figure 2.6: A sketch of the construction for the instance I = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨
x4) ∧ (x1 ∨ x3 ∨ x4), where the auxiliary interval vertices are omitted.
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v1, . . . , viv in VK , where iv is the number of blobs of v in G. For each edge vw of E
there is an edge viwj in EK∗, where w is contained in the i-th blob of v in G and v is
contained in the j-th blob of w in G.

Figure 2.7: A graph G together with its altered knotting graph K∗[G].

An example of a graph together with its altered knotting graph can be found in
Figure 2.7. We can use domination intervals to give a sufficient criterion for when two
edges are knotted in K∗[G]: If two edges in G both represent domination intervals in the
original graph G and share a vertex, then this implies that these two edges are knotted.

Lemma 2.2.11. If Idom(a, b) and Idom(b, c) share a vertex z ∈ V , then ab ∈ E(G) and
bc ∈ E(G) are knotted at b in K∗[G].

Proof. Suppose ac ∈ E(G). Then a and c are in the same connected component of
G − N [b]. As they are both adjacent to z in G, which is also in the same connected
component, they are even in the same blob and thus the edges are knotted at b. If they
are not adjacent, they both have a b-avoiding path to z and are therefore in the same
connected component of G−N [b]. As they are not adjacent in G, we can assume they
are in the same blob and the edges are again knotted at b.

Corneil et al. [42] showed that the odd cycles in the altered knotting graph K∗[G]
correspond to a particular configuration in the original graph G which we call an odd
strong asteroid.

Definition 2.2.12. An odd strong asteroid of size 2k+ 1 in a graph G is a sequence of
vertices v0, v1, . . . , v2k+1, where v1, . . . , v2k+1 are distinct, v0 = v2k+1, and vi and vi+1

are in the same blob of v(i+k+1) in G for all 0 ≤ i ≤ k, where addition is taken modulo
k.

A graph is strong asteroid free if it does not contain an odd strong asteroid.

Using Lemmas 2.2.11 and 2.2.1, we can construct a graph which is asteroid free and
not bilateral AT-free.

Proposition 2.2.13. There is a graph that is strong asteroid free, but which does not
have a bilateral AT-free order.

Proof. We claim that the complement of the graph shown in Figure 2.8a is as desired.
Let z be a grey vertex of the graph and let a and b be two black vertices, such that z, a, b
form a triangle. It is easy to see that this implies z ∈ Idom(a, b). Using the forcing, we
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create an oriented cycle along the outer edges and due to Lemma 2.2.1 the complement
of this graph does not have a bilateral AT-free ordering.

On the other hand, one can use Lemma 2.2.11 to construct the altered knotting graph
K∗[G] which is given in Figure 2.8b. This graph does not contain an odd cycle, implying
that G is strong asteroid free.

(a) Complement of a graph which is strong as-
teroid free, but not bilateral AT-free.

(b) The according altered knotting graph where
the grey vertices are only depicted in one of
the slices of the cycle.

This resolves Question 2.1.6, by showing that there are both strong asteroid free graphs
that are not bilateral AT-free (Figure 2.8a) and bilateral AT-free graphs are not strong
asteroid free (Figure 2.1b).

Corollary 2.2.14. The classes of bilateral AT-free graphs and strong asteroid free graphs
are not comparable.

2.3 AT-free Orders in Subclasses of AT-free graphs

After having established the existence of AT-free BFS orders and a polynomial-time
algorithm for their computation in Chapter 1, we are, of course, interested in finding a
simple linear time algorithm for this problem.

2.3.1 Claw-free AT-free Graphs

In many graph classes, forbidding induced claw-graphs yields strong structural properties
for BFS searches. For example, in [36] and in [115] the authors use these structural
properties to generate unit interval respectively minimal triangulation orderings. In the
following, we will show that by forbidding induced claws in AT-free graphs it is possible
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2 Bilateral AT-free Graphs and Orders

to use three sweeps of BFS to compute a bilateral AT-free order, also proving that
claw-free AT-free graphs are bilateral AT-free.

As an overview of the proof, we will show that the first application of BFS ends in an
admissible vertex. Using this fact, we can then proceed to show that a BFS starting in
this admissible vertex yields an AT-free order. Finally, using this order as a tie-breaker
in a third run of BFS outputs a bilateral AT-free order.

Lemma 2.3.1. Let G be claw-free and AT-free. Then the last vertex of a BFS is ad-
missible.

Proof. Let s be the first and z the last vertex of the BFS and let k := distG(s, z).
Suppose there are a, b ∈ V such that z ∈ I[a, b]. As G is AT-free, at least one of a or
b must be in the last layer LkG(s) of the BFS, without loss of generality this is a. If
distG(s, b) < distG(s, z), then Nk−1

s (a) ⊆ Nk−1
s (z), as otherwise there is a z-avoiding

a-b-path. If distG(s, b) = distG(s, a) = distG(s, z), then either Nk−1
s (a) ⊆ Nk−1

s (z) or
Nk−1
s (b) ⊆ Nk−1

s (z), as G is AT-free, and without loss of generality we can assume this
to be true for a. Therefore, a and z have a common neighbour c in Lk−1G (s). If c is not

the start vertex of the BFS, then c has a neighbour d in Lk−2G and a, z, c, d form a claw.
If c is the start vertex, then b must also be adjacent to c and a, b, c, d form a claw.

For the second step in this proof, we need a technical lemma which characterises the
distance layers given by a BFS starting in an admissible vertex.

Lemma 2.3.2. Let G be a claw-free, AT-free graph and let s ∈ V be admissible in
G and t eccentric with respect to s. Then all but the first distance layers of s, i.e.,
L0
G(s), L2

G(s), . . . , LkG(s), with k = eccG(s), are cliques and s and t form a dominating
pair.

Proof. For L0
G(s) this is obvious. Let i ≥ 2 and suppose there are a, b ∈ LiG(s) with

ab /∈ E. As s is admissible, without loss of generality N i−1
s (a) ⊆ N i−1

s (b). Therefore, a
and b have a common neighbour c ∈ Li−1G . This c in turn has a neighbour d ∈ Li−2G and
a, b, c, d form a claw, which is a contradiction to the assumption.

As any path P between s and t has one vertex from each distance layer LiG(s) and s
is adjacent to all vertices in L1

G(s), they must form a dominating pair.

The following statement is a simple application of Lemma 2.3.2.

Lemma 2.3.3. Let G be an AT-free, claw-free graph. Then a BFS starting in an
admissible vertex yields an AT-free order that is a monotone dominating pair order.

Proof. Let σ be such a BFS on G starting in an admissible vertex s. Suppose z ∈
Idom(a, b) and a, b ≺σ z. We can assume that a, b and z do not have the same distance
to s (otherwise we can construct a claw as above). As G is AT-free, on the other hand,
at least one of a or b must be in the same layer as z. Without loss of generality we can
assume that b and z are in the same layer LiG(s) and a is in layer LjG(s) with j < i.
As b and z are independent of each other, they must be in the first layer of the BFS.
As a cannot be the start vertex (it is not adjacent to the other two); a contradiction.
Lemma 2.3.2 states that σ must be a monotone dominating pair order.
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2.3 AT-free Orders in Subclasses of AT-free graphs

Given a dominating pair, we will need to compare the distances of any two no-adjacent
vertices to this dominating pair.

Lemma 2.3.4. Let G = (V,E) be a connected graph with a dominating pair s and t. Let
u and v be two vertices with uv /∈ E and distG(s, u) < distG(s, v). Then distG(t, u) ≥
distG(t, v).

Proof. As s and t form a dominating pair, we see that for every vertex x ∈ V it holds that
distG(s, x) + distG(x, t) ≤ distG(s, t) + 2. Suppose distG(u, t) < distG(v, t). This implies
distG(s, t) + 2 ≤ distG(s, u) + distG(u, t) + 2 ≤ distG(s, v) + distG(v, t) ≤ distG(s, t) + 2.
Therefore, distG(s, u) + distG(u, t) = distG(s, t) and there must be a shortest s-t-path P
that contains u. As P is dominating and uv /∈ E; this is a contradiction to distG(s, u) <
distG(s, v) and distG(t, u) < distG(t, v).

Using all of the above lemmas, we can finally show the main theorem of this section.

Theorem 2.3.5. Let G be a claw-free AT-free graph. Then G has a bilateral AT-free
ordering that is a monotone dominating pair order and this order can be found in linear
time.

Proof. Let y be an admissible vertex of G and σ1 := BFS(G, y) as well as σ2 =
BFS+(G, σ1). We have already shown that s := σ1(n) = σ2(1) is admissible and that
both σ1 and σ2 are AT-free orders that are monotone dominating pair orders. Thus,
suppose there is a z ∈ Idom(a, b) such that z ≺σ2 a, b. Again we can assume that
1 = distG(s, a) = distG(s, z) < distG(s, b).

Case 1 (distG(y, b) > distG(y, z)): We also know that distG(s, b) > distG(s, z); this is a
contradiction to the statement of Lemma 2.3.4.

Case 2 (distG(y, b) < distG(y, z)): Then b ≺σ1 z which in turn implies z ≺σ1 a; this is
a contradiction, as it would imply that a ≺σ2 z, because a, z ∈ L1

G(s).

Case 3 (distG(y, b) = distG(y, z)): As before, we can assume that 1 = distG(y, b) =
distG(y, z) < distG(y, a) and thus z ≺σ1 a; again a contradiction.

Corollary 2.3.6. Any claw-free AT-free graph is bilateral AT-free.

2.3.2 AT-free Graphs without Bad Claws

In the proof of Lemma 2.3.3 we can see that the main obstacles are triples of vertices
a, b, z ∈ V (G) with z ∈ Idom(a, b) that form the prongs of a claw. Therefore, it is not
necessary to forbid all induced claws in the graph to avoid these difficulties. Rather, it
suffices to forbid just those claws which have this property with regard to the intervals.
This justifies the following definition:

Definition 2.3.7. Let G be a graph and let a, b, z, c ∈ V induce a claw with base c. We
will call such a claw a bad claw, if z ∈ Idom(a, b).
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BFS: σ1: (1, 2, 3, a′, 4, 5, a, 6, 7, z′, b′, b, z)
BFS(σ1): σ2: (z, 7, 6, 3, b, a, 1, 2, 5, 4, a′, b′, z′)
BFS(σ2): σ3: (z′, 4, 5, 2, b′, a′, 1, 3, a, 6, 7, b, z)

Figure 2.9: A bad-claw-free graph for which BFS does not yield an AT-free order

It seems reasonable to expect that by forbidding such bad claws we will be able to
get similar results to the ones above. On the other hand, there are examples of AT-free
bad-claw-free graphs for which the above procedure does not yield either an AT-free
order nor a bilateral AT-free ordering (see Figure 2.9). In particular, Lemma 2.3.1 does
not hold in general for these graphs. Therefore, we will use LBFS which guarantees us
an admissible vertex as its end-vertex.

Lemma 2.3.8 (Corneil et al. [40]). Let G = (V,E) be an AT-free graph and let σ be an
ordering of V produced by an LBFS. Then the vertex t := σ(n) is admissible in G.

In fact, the properties of LBFS even make up for the absence of the strong struc-
tural property of Lemma 2.3.2 and we can prove analogues to both Lemma 2.3.3 and
Theorem 2.3.5.

Lemma 2.3.9. Let G be AT-free and bad-claw-free. Then an LBFS starting in an
admissible vertex yields an AT-free order that is a monotone dominating pair order.

Proof. Let σ be an LBFS order starting in an admissible vertex s. Suppose z ∈ Idom(a, b)
and a, b ≺σ z. Without loss of generality, we see that i := distG(s, b) = distG(s, z), as
G is AT-free. For that same reason either N i−1

s (b) ⊆ N i−1
s (z) or N i−1

s (a) ⊆ N i−1
s (z) or

both.
Now suppose distG(s, a) = i. As s is admissible, and a, b and z are independent, they

must have a common neighbour c with distG(s, c) = i− 1 and therefore a, b and z and
c form a bad claw; a contradiction.

Therefore, we can assume that j := distG(s, a) < i. With the above we see that
N i−1
s (b) ⊆ N i−1

s (z) and there is a b-avoiding a-z-path P . Let x be the σ-last vertex of
P . As b ≺σ z �σ x, due to Theorem 1.5.8 the vertex b must see every s-x-path and thus
also every x-a-path; a contradiction. Thus, every LBFS starting in an admissible vertex
yields an AT-free order.

Finally, Theorem 1.5.8 states that every LBFS order of an AT-free graph starting in
an admissible vertex is a monotone dominating pair order.

Analogously to claw-free AT-free graphs, a final third sweep of LBFS yields the desired
bilateral AT-ordering.

Theorem 2.3.10. Let G be an AT-free graph that does not have a bad claw as an induced
subgraph. Then G has a bilateral AT-free ordering that is a monotone dominating pair
order and such an order can be found in linear time.
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z

LBFS: σ1: (1, 2, 4, z, 3, b, a, c)
LBFS(σ1): σ2: (c, a, b, z, 4, 3, 2, 1)
LBFS(σ2): σ3: (1, 2, 3, 4, z, b, a, c)

Figure 2.10: Example of a graph with a bad claw. On the right, one can see that the
second σ2 is not an AT-free order and σ3 is not a bilateral AT-free order. In
fact, this is an example of an AT-free graph that does not possess a bilateral
AT-free ordering.

Proof. Let σ1 be an order given by LBFS starting in an arbitrary vertex of G. Let
σ2 := LBFS+(G, σ1) with y := σ1(n) = σ2(1) and let σ3 := LBFS+(G, σ2).

We have already shown that y and s := σ2(n) = σ3(1) are admissible and that both
σ2 and σ3 are AT-free orders.

Suppose σ3 is not a bilateral AT-free ordering. Then there is a z ∈ Idom(a, b) with
z ≺σ3 a, b, as σ3 is AT-free. Let a, z and b be such that z is σ2-leftmost with this
property. Without loss of generality we can assume that a and z have the same distance
to s, due to s being admissible. Also, a, z and b cannot all have the same distance to s,
as this would imply a bad claw. Thus, distG(s, z) = distG(s, a) < distG(s, b).

Case 1 (distG(z, y) < distG(b, y)): We also know that distG(s, b) > distG(s, z) and that
y and s form a dominating pair; this is a contradiction to the statement of Lemma 2.3.4.

Case 2 (dist(b, y) < distG(z, y)): As σ2 is AT-free, we can deduce that b ≺σ2 z ≺σ2 a.
Let z′ be the σ3-first vertex in the connected component C of Γσ3z,a. Due to the Prior
Path Theorem there is a z′-z path P in C such that P avoids a. As z ≺σ3 a we can
assume that a ≺σ2 z′. If z′b /∈ E we see that z′ ≺σ3 a ≺σ3 b and z′ ∈ Idom(a, b); a
contradiction to the choice of z. Therefore, let z′b ∈ E. With distG(b, y) < distG(a, y)
this implies that l := distG(z′, y) ≤ distG(a, y). Because z′b ∈ E and y is admissible
N l−1
y (a) ⊂ N l−1

y (z′); a contradiction to a ≺σ2 z′.
Case 3 (distG(z, y) = distG(b, y)): AsG is bad-claw-free, distG(a, y) 6= distG(b, y). Sup-
pose distG(a, y) < distG(b, y). As distG(s, a) < distG(s, b) and y and s are a dominating
pair; a contradiction to Lemma 2.3.4. Suppose distG(a, y) > distG(b, y). Then z ≺σ2 a
and with the argument from Case 2, which uses the Prior Path Theorem, we receive a
contradiction.

Corollary 2.3.11. Let G = (V,E) be an AT-free graph that does not contain a bad
claw. Then G is bilateral AT-free.

These results indicate that a linear time algorithm to construct AT-free orders could
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also exist for the general case of AT-free graphs. However, none of the techniques used for
the (bad-)claw-free graphs can be transferred. Corneil and Stacho [38] already showed
that there are AT-free graphs which do not possess AT-free orders that are also LBFS
orders. In addition, Figure 2.10 shows a graph which does not possess a bilateral AT-free
ordering. Therefore, it will be necessary to use a different search algorithm, possibly a
BFS-derivative based on BFSconv. We summarise these suppositions in the following
conjecture.

Conjecture 2.3.12. Let G = (V,E) be an AT-free graph. There is a linear time algo-
rithm that computes an AT-free (BFS) order.

2.4 Conclusion

We have introduced the class of bilateral AT-free graphs which was motivated by the
characterising convex geometry for AT-free graphs. These are defined to be the graphs
that possess a halfspace ordering with respect to domination convexity. This class is
shown to contain some important subclasses of AT-free graphs, such as cocomparability
graphs and path orderable graphs. Furthermore, bilateral AT-free graphs are proven to
be incomparable to the strong asteroid free graphs.

We have shown that the recognition of bilateral AT-free graphs is NP-complete by
giving a reduction from NOT-ALL-EQUAL 3-SAT. For the special case of claw-free AT-
free graphs, we have shown that multiple applications of BFS yield AT-free orders with
additional structural properties. In fact, if we exchange generic BFS with LexMinBFS,
a derivative of BFS defined in [115], we can construct an AT-free, monotone dominating
pair order that is also a minimal interval completion order.

This is a surprising result, as it was shown in [88] that the recognition of claw-free
AT-free graphs is at least as hard as triangle recognition. This dichotomy is of striking
resemblance to the case of comparability graphs, where a characterising linear ordering
in the form of a transitive orientation can be found in linear time, while there is no known
recognition algorithm that is faster than matrix multiplication [133]. Furthermore, we
conjecture that it is possible to generate an AT-free order for any AT-free graph in
linear time using some form of BFS (Conjecture 2.3.12). As is the case for comparability
graphs, such a linear ordering might then be used for linear time optimisation algorithms
that are robust for AT-free graphs, i.e., which can be applied without solving recognition
first (for further information on robust algorithms see [133]). In this context, the results
on bad-claw-free graphs can be seen as a first step towards a resolution of this conjecture,
and give us a strong notion where the algorithmic difficulties lie.
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Chordal graphs are well-known to possess many good structural and algorithmic prop-
erties [17, 49, 64, 75]. The main goal of this chapter is to study certain concepts related
to chordal graphs in the framework of more general graph classes. The starting point for
our research is a result due to Dirac [49] stating that every minimal cutset in a chordal
graph is a clique, which implies that every chordal graph with at least one vertex has a
simplicial vertex, that is, a vertex whose neighbourhood is a clique [64]. Denoting by Pk
the k-vertex path, this result can be formulated as follows.

Theorem 3.0.1. Every chordal graph with at least one vertex has a vertex v such that
v is not the midpoint of any induced P3.

This theorem was generalised in the literature in various ways, see, e.g., [35, 93, 106,
117, 133]. Two particular ways of generalising Theorem 3.0.1 include:

(i) proving a property of general graphs that, when specialized to chordal graphs,
results in the existence of a simplicial vertex, and

(ii) generalising the ‘simpliciality’ property from vertices, which are paths of length
0, to longer induced paths, and proving the existence of such paths for graphs
excluding suitably longer cycles.

Let us explain in more detail the corresponding results.

First generalisation – from chordal graphs to all graphs

A generalisation of the first kind is given by the following theorem, which follows
from [117, Theorem 3] as well as from [13, Main Theorem 4.1] and [1, Lemma 2.3].

Theorem 3.0.2. Every graph G with at least one vertex has a vertex v such that every
induced P3 having v as its midpoint is contained in an induced cycle in G.

The above property of vertices will be one of the central concepts for this chapter and
we formalize it as follows.

Definition 3.0.3. A vertex v in a graph G is said to be avoidable if between any pair x
and y of neighbours of v there exists an x, y-path, all the internal vertices of which avoid
v and all neighbours of v. Equivalently, a vertex v is avoidable if every induced P3 with
midpoint v closes to an induced cycle.
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This terminology is motivated by considering a setting where G represents a symmetric
acquaintance relation on a group of people. In this setting, the property of person
(equivalently, vertex) a being avoidable can be interpreted as follows: whenever two
acquaintances of a need to share some information that they would not like to share
with a, they can do so by passing the information along a path completely avoiding both
a and all her other acquaintances. Thus, a is in a sense avoidable, as information can
be passed around in her immediate proximity without her knowledge.

Note that every simplicial vertex in a graph is avoidable. If we analyse avoidable
vertices in graph classes, rather than in general graphs, we see that this definition is a
generalisation of many well known concepts. For example, in a tree a vertex is avoidable
if and only if it is a leaf, while in a chordal graph a vertex is avoidable if and only if it is
simplicial. With this terminology, Theorem 3.0.2 can be equivalently stated as follows.

Theorem 3.0.4. Every graph with at least one vertex has an avoidable vertex.

The notion of avoidable vertices has appeared in the literature (with different termi-
nology) in a variety of settings. To our knowledge, the earliest appearance was in the
paper from 1976 by Ohtsuki et al. [117], where avoidable vertices were characterized as
exactly the vertices from which a minimal elimination ordering can start. Here, a min-
imal elimination ordering of a graph G = (V,E) is a procedure of eliminating vertices
one at a time so that before each vertex is removed, its neighbourhood is turned into a
clique, and the resulting set F of edges added throughout the procedure is an inclusion-
minimal set of non-edges of G such that (V,E ∪ F ) is a chordal graph (in other words,
(V,E ∪F ) is a minimal triangulation of G). Given a graph G, an avoidable vertex in G
can be found in linear time using graph search algorithms such as Lexicographic Breadth
First Search (LBFS) [126] (see also [79]) or Maximum Cardinality Search (MCS) [14].
The presentation closest to our setting is the one used by Ohtsuki et al. [117]. In fact,
Berry et al. [14, 15] named avoidable vertices OCF-vertices, after the initials of the three
authors of [117].

Second generalisation – from vertices to longer paths

In order to generalize the notion of simplicial vertices to longer paths, the next definition,
partially following Chvátal et al. [35], will be useful.

Definition 3.0.5. Given an induced path P in a graph G, a two-sided extension of P
is any induced path in G obtained by adding to P one edge at each end. An induced path
is said to be simplicial if it has no two-sided extension.

In this terminology, Theorem 3.0.1 can be stated as follows: every graph with at least
one vertex and without induced cycles of length more than 3 has a simplicial induced
P1. Chvátal et al. [35] generalized this result as follows.

Theorem 3.0.6 (Chvátal et al. [35]). For each k ≥ 1, every {Ck+3, Ck+4, . . .}-free graph
that contains an induced Pk also contains a simplicial induced Pk.
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A common generalisation?

Theorems 3.0.4 and 3.0.6 suggest that a further common generalisation might be possible,
based on the following generalisation of Definition 3.0.3 (definition of avoidable vertices)
to longer paths.

Definition 3.0.7. An induced path P in a graph G is said to be avoidable if every
two-sided extension of P is contained in an induced cycle.

Thus, in particular, a vertex v in a graph G is avoidable if and only if the corresponding
one-vertex path is avoidable. Moreover, every simplicial induced path is (vacuously)
avoidable.

We conjecture that the following common generalisation of Theorems 3.0.4 and 3.0.6
holds.

Conjecture 3.0.8. For every k ≥ 1, every graph that contains an induced Pk also
contains an avoidable induced Pk.

Theorem 3.0.4 implies the conjecture for k = 1, while Theorem 3.0.6 implies it for every
positive integer k, provided we restrict ourselves to the class of graphs without induced
cycles of length more than k + 2. Indeed, if G is a {Ck+3, Ck+4, . . .}-free graph that
contains an induced Pk, then by Theorem 3.0.6 graph G contains a simplicial induced
Pk, and every simplicial induced path is avoidable.

The results given in this chapter are joint work with Maria Chudnovsky, Vladimir Gur-
vich, Martin Milanič and Mary Servatius. A published extended abstract of this work
can be found in [7].

3.1 Characterisation and Existence of Avoidable Vertices

The proof of Theorem 3 in the paper [117] by Ohtsuki, Cheung, and Fujisawa (which
itself relied on earlier works of Rose [123, 124, 125]) leads to the characterisation of
avoidable vertices given by the following theorem. Since we are not aware of any explicit
statement of this result in the literature, we state it here and give a short self-contained
proof that does not rely on the concept of minimal elimination orderings.

Theorem 3.1.1. Let G = (V,E) be a graph and let v ∈ V . Then v is avoidable in G if
and only if v is a simplicial vertex in some minimal triangulation of G.

Proof. Let G′ = (V,E∪F ) be a minimal triangulation of G and let v ∈ V be a simplicial
vertex in G′. Suppose for a contradiction that v is not avoidable in G. Then, v contains
two neighbours, say x and y, such that x and y belong to different connected components
of the graph G − S, where S = NG[v] \ {x, y}. Since v is simplicial in G′, set S is a
clique in G′. Let F ∗ be the set of all pairs {u,w} ∈ F such that u and w are in different
connected components of the graph G − S and let G∗ be the graph (V,E ∪ (F \ F ∗)).
Since S is a clique in G∗, no induced cycle of G∗ contains vertices from two different
components of G∗−S. It follows that every induced cycle in G∗ is also an induced cycle
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in G′, and the fact that G′ is chordal implies that G∗ is chordal. However, since the set
F ∗ is non-empty (note that it contains {x, y}), the fact that G∗ is chordal contradicts
the assumption that G′ = (V,E ∪ F ) is a minimal triangulation of G. This shows that
v is avoidable in G.

For the converse direction, let v ∈ V be an avoidable vertex in G and let S = NG(v).
Let F0 denote the set of non-adjacent vertex pairs in S and let G′ = (V ′, E′) be the
graph obtained from G − v by turning S into a clique (that is, V ′ = V \ {v} and
E′ = E(G − v) ∪ F0). Moreover, let G′1 = (V ′, E′ ∪ F ′) be a minimal triangulation of
G′ and let G1 = (V,E ∪ (F ′ ∪ F0)). Note that S is a clique in G′ and therefore also
in G′1. Since G1 can be obtained from the chordal graph G′1 by adding to it vertex v
and making it adjacent to all vertices of clique S, graph G1 is chordal. Furthermore,
since v is a simplicial vertex in G1, to complete the proof it suffices to show that G1

is a minimal triangulation of G, or, equivalently, that for every edge f ∈ F ′ ∪ F0 the
graph G1 − f is not chordal. Suppose first that f ∈ F ′. Since G′1 = (V ′, E′ ∪ F ′) is
a minimal triangulation of G′, the graph G′1 − f is not chordal, and thus it contains
an induced cycle C of length at least 4. As G′1 = G1 − v, we see that C is also an
induced cycle in G1 − f . Finally, suppose that f ∈ F0. Then f = {x, y} where x and
y are two non-adjacent neighbours of v in G. Let S′ = NG[v] \ {x, y}. Since v is an
avoidable vertex in G, vertices x and y are in the same component of the graph G− S′,
and consequently, since G is a spanning subgraph of G1−f , also in the same component
of the graph (G1−f)−S′. Let P be a shortest x, y-path (G1−f)−S′. Then V (P )∪{v}
induces a cycle of length at least four in the graph G1 − f , which implies that G1 − f is
not chordal, as claimed. This completes the proof.

Remark 3.1.2. Sets of vertices of a graph G that are maximal cliques in some minimal
triangulation of G were studied in the literature under the name potential maximal
cliques. This concept was introduced by Bouchitté and Todinca in [19] and has already
found many applications in algorithmic graph theory (see, e.g., [20, 61, 62]). In this
terminology, Theorem 3.1.1 states that given a vertex v ∈ V (G), its closed neighbourhood
NG[v] is a potential maximal clique in G if and only if v is avoidable.

Since every graph has a minimal triangulation, Theorems 3.0.1 and 3.1.1 imply The-
orem 3.0.4. An application of Theorem 3.0.4 to vertex-transitive graphs will be given in
Section 3.5.

We now discuss the consequence of Theorem 3.0.4 when the theorem is applied to the
line graph of a given graph. An edge e in a graph G is said to be pseudo-avoidable if the
corresponding vertex in the line graph L(G) is avoidable. It is not difficult to see that
an edge e in a graph G is pseudo-avoidable if and only if any (not necessarily induced)
3-edge path having e as the middle edge closes to a (not necessarily induced) cycle in
G. Note that the concepts of avoidable edges (considered as induced P2s, in the sense of
Definition 3.0.7) and of pseudo-avoidable edges are incomparable, see Fig. 3.1. Assuming
notation from Fig. 3.1, one can see that e is not an avoidable edge in G. However, it is
pseudo-avoidable, as e is an avoidable vertex in L(G). On the other hand, f is avoidable
(even simplicial) in G. However, it is not pseudo-avoidable.

Applying Theorem 3.0.4 to the line graph of the given graph yields the following.
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Figure 3.1: A graph G and its line graph L(G).

Corollary 3.1.3. Every graph with an edge has a pseudo-avoidable edge.

An application of Corollary 3.1.3 to edge-transitive graphs will be given in Section 3.5.

Recall that Theorem 3.0.4 coincides with the statement of Conjecture 3.0.8 for the
case k = 1. We now reprove this statement in a slightly stronger form, using an approach
that we will adapt in Section 3.4 for the proof of the case k = 2 of the conjecture. A
vertex in a graph is said to be universal if it is adjacent to every other vertex, and
non-universal otherwise.

Theorem 3.1.4. For every graph G and every non-universal vertex v ∈ V (G) there
exists an avoidable vertex a ∈ V (G) \N [v].

Proof. Suppose that the theorem is false and take a counterexample G with the smallest
possible number of vertices and, subject to that, with the largest possible number of
edges. The minimality of |V (G)| implies that G is connected. Since G is a counterex-
ample, it has a non-universal vertex v ∈ V (G) such that no vertex not adjacent to v is
avoidable.

Let b ∈ V (G) \ N [v]. Since b is not avoidable in G, it is the midpoint of an induced
P3, say x − b − y, that is not contained in any induced cycle. Observe that vertices x
and y are in different components of the graph G − (N [b] \ {x, y}), since any induced
path P from x to y in G − (N [b] \ {x, y}) would imply the existence of an induced
cycle x − b − y − P − x closing the 3-vertex path x − b − y. It follows that the graph
G−(N [b]\{x, y}) is disconnected. In particular, there exists an inclusion-minimal subset
S of N(b) such that G− (S ∪ {b}) is disconnected. Note that v 6∈ N [b], and, hence, v is
a vertex of G − (S ∪ {b}). Let C be the component of G − (S ∪ {b}) containing v. It
follows from the minimality of S that every vertex in S has a neighbour in C.

Suppose first that b is not universal in G−C. The minimality of |V (G)| implies that
G − C is not a counterexample to the theorem. Therefore, there exists an avoidable
vertex a in the graph G− C that is neither equal nor adjacent to b. Since a is a vertex
of G − (S ∪ {b}) not contained in C, it is not adjacent to v. We claim that a is also
avoidable in G, which will contradict the assumption that no vertex not adjacent to v
in G is avoidable. Let P be an induced P3 in G with midpoint a. Since a belongs to a
component of G− (S ∪{b}) different from C, no vertex of C is adjacent to a. Therefore,
P is an induced P3 in the graph G − C. Since a is avoidable in G − C, there exists an
induced cycle in G − C containing P . Since G − C is an induced subgraph of G, we
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conclude that there exists an induced cycle in G containing P . Since P was arbitrary,
it follows that a is avoidable in G; a contradiction.

Therefore, we may assume that b is universal in G−C. Let G′ be the graph obtained
from G−C by adding a new vertex d and making d adjacent to every vertex in S ∪{b}.
Note that if C 6= {v}, then G′ has strictly fewer vertices than G. If, on the other hand,
C = {v}, then G′ has the same number of vertices as G but strictly more edges, since
NG(C) ⊆ S, while NG′(d) = S ∪ {b}. Denoting by C ′ any component of G − (S ∪ {b})
other than C, we see that every vertex of C ′ is not adjacent to d in G′. Hence, d is not
universal in G′ and the choice of G implies that G′ has an avoidable vertex a that is not
d and not adjacent to d. This shows that a ∈ V (G) \ (C ∪ S ∪ {b}).

We claim that a is avoidable in G. Suppose that x, y ∈ NG(v) are not adjacent.
We need to show that the path x − a − y closes to an induced cycle. We have x, y ∈
NG′(a)\{b}. Since a is avoidable in G′, there exists an induced path P from x to y in G′

such that a has no neighbours in V (P )\{x, y}. If d 6∈ V (P ), then a−x−P −y−a is the
required cycle in G. Therefore, we may assume that d ∈ V (P ). Observe that d 6= x, y.
Let p and q be the two neighbours of d in V (P ). Then p, q ∈ V (G). Since b is universal
in G′ and b 6= a, it follows that b 6∈ V (P ). Since p and q are adjacent to d and b 6∈ V (P ),
it follows that p, q ∈ S. Moreover, notice that V (P ) \ {p, q} is disjoint from S ∪ {b}. By
the minimality of S and, since C is connected, there is an induced path Q in G from p
to q such that V (Q)\{p, q} ⊆ C. However, in this case a−x−P −p−Q− q−P −y−a
is the required cycle in G. This shows that a is an avoidable vertex in G not adjacent
to v. This contradicts the assumption on v and completes the proof of the theorem.

3.2 Computing Avoidable Vertices

Knowing that every graph with at least one vertex has an avoidable vertex, the next
question is how to compute one efficiently. The obvious polynomial-time method would
be to decide for each vertex v of the graph G whether it is avoidable. For this we have
to check for each pair of nonadjacent neighbours x and y of v, whether they are in the
same connected component of (G − N [v]) ∪ {x, y}. If we use a breadth first search or
depth first search to compute the connected components, this gives a running time of
O(|V (G)||E(G)|(|V (G)| + |E(G)|)). The same method can be used to compute the set
of all avoidable vertices. However, if we are only interested in computing one or two
avoidable vertices, we show next that this can be done in linear time.

We have already seen that in chordal graphs the avoidable vertices are exactly the
same as the simplicial vertices. Therefore, any graph search algorithm that can com-
pute simplicial vertices in a chordal graph is a good candidate for computing avoidable
vertices. We have already seen that Rose et al. [126] defined a linear-time algorithm
(Lex-P), which computes a perfect elimination ordering if there is one, and is thus a
recognition algorithm for chordal graphs. This algorithm, since named Lexicographic
Breadth First Search (LBFS), exhibits many interesting structural properties and has
been used as an ingredient in many other recognition and optimisation algorithms on
graphs. Any vertex ordering of G that can be produced by LBFS is called an LBFS
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ordering (of G).

The pseudocode of Lexicographic Breadth First Search given in Algorithm 5 is pre-
sented for connected graphs. However, the method can be generalized to work for arbi-
trary graphs by executing the search component after component (in an arbitrary order)
and concatenating the resulting vertex orderings.

In this context, we will be mainly interested in the properties of the vertices of a given
graph G visited last by some execution of LBFS, also called end-vertices. The essential
claim of the following lemma can be found in many papers, for example in [13].

Lemma 3.2.1 (Aboulker et al. [1]). Let G = (V,E) be a graph and let σ = (v1, . . . , vn) be
an LBFS ordering of G. Then for all triples of vertices a, b, c ∈ V such that a ≺σ b ≺σ c
and ac ∈ E, there exists a path from a to b whose internal vertices are disjoint from
N [vn].

Corollary 3.2.2. Let G = (V,E) be a graph with at least one vertex and let σ =
(v1, . . . , vn) be an LBFS ordering of G. Then vn is avoidable in G. In fact, for any
i ∈ {1, . . . , n} the vertex vi is avoidable in G[v1, . . . , vi].

Note that Lexicographic Breadth First Search is a breadth-first search, that is, when
LBFS is executed beginning in a vertex s, it orders the vertices of G according to their
distance from the starting vertex s. In particular, this implies the following strengthening
of Theorem 3.1.4.

Corollary 3.2.3. For every graph G = (V,E) and every vertex v ∈ V there is an
avoidable vertex a ∈ V that is eccentric to v.

This corollary generalizes the fact that for every vertex v in a chordal graph G, there is
a simplicial vertex in G that is eccentric to v [146, 59]. Moreover, with Corollary 3.2.3 at
hand we can strengthen Theorem 3.0.4 to the following generalisation of Dirac’s theorem
on chordal graphs (Theorem 3.0.1).

Theorem 3.2.4. Every graph G = (V,E) with at least two vertices contains two avoid-
able vertices whose distance to each other is the diameter of G.

Proof. Let s ∈ V be a vertex of maximum eccentricity in G and let σ = (s = v1, . . . , vn =
a) be the ordering given by an LBFS starting in s. By Corollary 3.2.2, vertex a is
avoidable. On the other hand, if τ = (a = w1, . . . , wn = b) is an LBFS of G starting
in a, then b is avoidable due to Corollary 3.2.2. Moreover, a 6= b and distG(a, b) =
eccG(a) = eccG(s) = diam(G).

Since LBFS can be implemented to run in linear time (see, e.g., [75]), employing the
same approach as in the proof of Theorem 3.2.4, except that vertex s is chosen arbitrarily,
we obtain the announced consequence for the computation of avoidable vertices.

Theorem 3.2.5. Given a graph G with at least two vertices, two distinct avoidable
vertices in G can be computed in linear time.
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It is important to note that while every LBFS end vertex is avoidable, the converse is
not necessarily true. In the graph depicted in Figure 3.2(a), vertex a is avoidable, as it
is not contained in any P3. On the other hand, a cannot be the end vertex of an LBFS,
as it is not of farthest distance from any of the other vertices.

a

(a)

x1 x2

(b)

Figure 3.2: Two graphs having avoidable vertices that cannot be the end vertices of an
LBFS, resp. an MCS.

We can therefore not use LBFS to find all avoidable vertices of a given graph. In
fact, while it is possible to check whether a vertex is avoidable in polynomial time (as
explained above), it is NP-complete to decide whether an arbitrary vertex of a given
graph can be the end vertex of an LBFS [44]. This holds true even for restricted graph
classes such as bipartite graphs [77] and weakly chordal graphs [44].

Berry et al. [14] give another possibility to compute avoidable vertices in linear time
using maximum cardinality search (MCS) as defined in Algorithm 7. They show that,
analogously to LBFS, the last vertex visited by an MCS is always avoidable (or in their
notation an OCF-vertex).

It is easy to see that in the graph given in Figure 3.2(a) the set of avoidable vertices
is equal to the set of MCS end vertices. However, this is not always the case. In the
graph depicted in Figure 3.2(b), every vertex is avoidable, but neither x1 nor x2 can be
the end vertex of an MCS. Furthermore, just as in the case of LBFS, deciding whether
a vertex is an end vertex of MCS is NP-complete [9].

Further analysis on graph searches and avoidable vertices can be found in [15].

3.3 Implications for the Maximum Weight Clique Problem

In this section, we present an application of the concept of avoidable vertices to the
maximum weight clique problem: given a graph G = (V,E) with a vertex weight function
w : V → R+, find a clique in G of maximum total weight, where the weight of a set
S ⊆ V is defined as w(S) :=

∑
x∈S w(x). We will show that this problem, which is

NP-hard in general, is solvable in polynomial time in the class of 1-perfectly orientable
graphs, and even more generally in the class of hole-cyclically orientable graphs. The
importance of these two graph classes, the definitions of which will be given shortly, is
due to the fact that they form a common generalisation of two well studied graph classes,
the chordal graphs and the circular-arc graphs.

The link between avoidable vertices and the classes of 1-perfectly orientable or hole-
cyclically orientable graphs will be given by considering particular orientations of the
input graph. Many important graph classes, like chordal graphs, comparability graphs,
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or proper circular-arc graphs (see, e.g., [131]), can be defined with the existence of a
particular kind of orientation on the edges. One such class is the class of cyclically
orientable graphs, first introduced by Barot et al. [5]. This is the class of graphs that
admit an orientation such that every chordless cycle is oriented cyclically. If we allow
triangles to be oriented arbitrarily, while all other chordless cycles must be oriented
cyclically, we obtain the class of hole-cyclically orientable graphs. More formally, we say
that a hole in a graph is a chordless cycle of length at least four, that an orientation D
of a graph G is hole-cyclic if all holes of G are oriented cyclically in D, and that a graph
is hole-cyclically orientable if it admits a hole-cyclic orientation.

While the class of hole-cyclically orientable graphs does not seem to have been studied
in the literature, it generalizes the previously studied class of 1-perfectly orientable
graphs, defined as follows. We say that an orientation of a graph is an out-tournament , or
1-perfect [95], if the out-neighbourhood of every vertex induces a tournament. Similarly,
we call a digraph an in-tournament [4], or fraternal [143], if the in-neighbourhood of
every vertex induces a tournament. A graph is said to be 1-perfectly orientable if it
admits a 1-perfect orientation. Using a simple arc reversal argument, it is easy to see
that the existence of a 1-perfect orientation implies a fraternal orientation and vice versa.

The class of 1-perfectly orientable graphs forms a common generalisation of the classes
of chordal graphs and of circular-arc graphs [131, 143]. While 1-perfectly orientable
graphs can be recognized in polynomial time via a reduction to a 2-SAT [4], their struc-
ture is not understood (except in some special cases, see [4, 85, 24, 84]) and the com-
plexity of many classical optimisation problems such as maximum clique, maximum
independent set, or k-colouring is still open for this class of graphs.

In this section, we show that the maximum weight clique problem is solvable in poly-
nomial time in the class of 1-perfectly orientable graphs. We do so in the more general
context of hole-cyclically orientable graphs. The fact that every 1-perfectly orientable
graph is hole-cyclically orientable is a consequence of the following simple lemma (see,
e.g., [85]).

Lemma 3.3.1. Every 1-perfect orientation of a graph G is hole-cyclic.

On the other hand, not every hole-cyclically orientable graph is 1-perfectly orientable,
as can be seen in Figure 3.3.

Figure 3.3: A graph with a hole-cyclic orientation that is not 1-perfectly orientable.

Our algorithm for the maximum weight clique problem in the class of hole-cyclically
orientable graphs will be based on the fact that the classes of 1-perfectly orientable and
hole-cyclically orientable graphs coincide within the class of cobipartite graphs, where
they also coincide with circular-arc graphs. The equivalence between properties 1, 3 and
4 in the lemma below was already observed in [85]. Due to Lemma 3.3.1, the list can be
trivially extended with the hole-cyclically orientable property.
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Lemma 3.3.2. For every cobipartite graph G, the following properties are equivalent:

1. G is 1-perfectly orientable.

2. G is hole-cyclically orientable.

3. G has an orientation in which every induced 4-cycle is oriented cyclically.

4. G is a circular-arc graph.

Another important notion for the algorithm is that of bisimplicial elimination order-
ings. A vertex v in a graph G is bisimplicial if its neighbourhood is the union of two
cliques in G (or, equivalently, if the graph G[N(v)] is cobipartite). Let G = (V,E) be a
graph and let σ = (v1, . . . , vn) be a vertex ordering of G. We say that σ is a bisimpli-
cial elimination ordering of G if vi is bisimplicial in the graph G[{v1, . . . , vi}] for every
i ∈ {1, . . . , n}.

Theorem 3.3.3 (Ye and Borodin [148]). The maximum weight clique problem is solvable
in time O(|V (G)|4) in the class of graphs having a bisimplicial elimination ordering.

The algorithm can be summarized as follows.

Algorithm 11: Solving the maximum weight clique problem in graphs with
a bisimplicial elimination ordering

Input: A graph G = (V,E), a weight function w : V → R+, and a bisimplicial
elimination ordering σ = (v1, . . . , vn)

Output: A maximum weight clique C∗ of G

1 C∗ := ∅;
2 for i = 0 to n− 1 do
3 v := σ(n− i);
4 Compute a maximum weight clique Cv of G[N(v)];
5 if w(Cv) > w(C∗) then C∗ := Cv;
6 G := G− v;

The polynomial involved in the running time of the algorithm given in [148] was not
estimated; it was based on polynomial-time solvability of the maximum weight clique
problem in the class of perfect graphs. However, the algorithm can be implemented to
run in time O(|V (G)|4), as follows. Suppose first that the input graph G is equipped
with a bisimplicial elimination ordering (v1, . . . , vn). Letting Gi = G[{v1, . . . , vi}] for
every i ∈ {1, . . . , n}, at each step of the algorithm, the maximum weight of a clique in
Gi is computed by comparing the (recursively computed) maximum weight of a clique in
Gi−1 with the maximum weight of a clique containing the current vertex vi. This latter
value is computed by solving the maximum weight clique problem in the graph Gi[N [vi]],
which is a cobipartite graph. The maximum weight clique problem in a cobipartite graph
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G is equivalent to the maximum weight independent set problem in its complement G,
which is bipartite. The maximum weight independent set problem in a bipartite graph
with n′ vertices and m′ edges can by reduced to solving an instance of the maximum flow
problem [89] and can thus be solved in time O(n′(n′+m′)), see, e.g., [119]. It follows that
the maximum weight clique problem is solvable in time O(n3) in an n-vertex cobipartite
graph. Consequently, the maximum weight clique problem is solvable in time O(n4)
in the class of n-vertex graphs equipped with a bisimplicial elimination ordering. If a
bisimplicial elimination ordering of the input graph is not known, at each step of the
algorithm a bisimplicial vertex vi is first computed in Gi. Testing if a vertex v in Gi is
bisimplicial can be done in time O(|V (Gi)|2) by testing whether Gi[N(v)] is bipartite;
hence, in time O(|V (Gi)|3) a bisimplicial vertex vi in Gi can be found, and a bisimplicial
elimination ordering of G can be computed in time O(n4).

As shown by Addario-Berry et al. [2], every graph with at least one vertex and without
even holes has a bisimplicial vertex. We show next that this property also holds for hole-
cyclically orientable graphs. This fact, instrumental to the polynomial-time solvability
of the maximum-weight clique problem in this class of graphs, is based on a simple
argument involving avoidable vertices.

Lemma 3.3.4. Every avoidable vertex in a hole-cyclically orientable graph is bisimpli-
cial.

Proof. Let G = (V,E) be a hole-cyclically orientable graph, let D be a hole-cyclic
orientation of G, and let a ∈ V be an avoidable vertex in G. Suppose that v, w ∈ N+

D (a)
and v and w are not adjacent in G. As a is avoidable, the path v − a−w can be closed
to an induced cycle C in G. Since D is a hole-cyclic orientation of G and C is a hole in
G, we infer that C is oriented cyclically in D. This is a contradiction to the fact that
v, w ∈ N+(a). It follows that N+

D (a) is a clique in G. The same argument also holds for
N−D (a). Since NG(a) = N+

D (a) ∪N−D (a), this implies that a is bisimplicial in G.

Lemma 3.3.4 and Corollary 3.2.2 lead to the following.

Theorem 3.3.5. Every hole-cyclically orientable graph with at least one vertex has
a bisimplicial vertex. Moreover, a bisimplicial elimination ordering of a given hole-
cyclically orientable graph can be computed in linear time.

Proof. By Lemma 3.3.4 and Corollary 3.2.2, every LBFS ordering of a hole-cyclically
orientable graph is a bisimplicial elimination ordering. Given any graph G, an LBFS
ordering of G can be computed in linear time (see, e.g., [75]).

Theorems 3.3.3 and 3.3.5 imply that the maximum weight clique problem is solvable
in time O(|V (G)|4) in the class of hole-cyclically orientable graphs. This running time
can be improved further using the structure of cobipartite graphs in this class given by
Lemma 3.3.2.1

1In the unweighted case, the same approach as that used in the proof of Theorem 3.3.6 results in
O(|V (G)|(|V (G)| log |V (G)| + |E(G)|)) algorithm for the maximum clique problem in the class of
hole-cyclically orientable graphs.
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Theorem 3.3.6. The maximum weight clique problem is solvable in time
O(|V (G)|(|V (G)| log |V (G)| + |E(G)| log log |V (G)|)) in the class of hole-cyclically ori-
entable graphs.

Proof. A bisimplicial elimination ordering of a given hole-cyclically orientable graph can
be computed in linear time by Theorem 3.3.5. Thus, we can apply Algorithm 11.

Due to Lemma 3.3.2, a cobipartite hole-cyclically orientable graph is always a circular-
arc graph. Solving the maximum weight clique problem in a given circular-arc graph G
equipped with a given circular-arc model can be done in time n O(|V (G)| log |V (G)| +
|E(G)| log log |V (G)|) [130, 16]. A circular-arc model of a given circular-arc graph G can
be found in time O(|V (G)| + |E(G)|) [113]. Using these algorithms as subroutines in
Algorithm 11 we obtain the stated running time.

Since every 1-perfectly orientable graph is hole-cyclically orientable, Theorem 3.3.6
has the following consequence.

Corollary 3.3.7. The maximum weight clique problem is solvable in time
O(|V (G)|(|V (G)| log |V (G)|+ |E(G)| log log |V (G)|)) in the class of 1-perfectly orientable
graphs.

A small digression to digraphs

We conclude this section by showing that the existence of avoidable vertices of graphs
with at least one vertex, along with the approach used in the proof of Lemma 3.3.4, can
be applied not only to orientations of simple graphs but also to digraphs in which pairs
of oppositely oriented edges are allowed. This leads to results that can be interpreted in
the context of information passing in communication networks.

A simple digraph D = (V,E) is semi-complete if for every two distinct vertices u, v ∈ V
we have (u, v) ∈ E or (v, u) ∈ E, and out-semi-complete (resp., in-semi-complete) if for
every vertex v ∈ V , the subdigraph of D induced by its out-neighbourhood N+

D (v) (resp.,
in-neighbourhood N−D (v)) is semi-complete. We say that a set of vertices in a digraph is
semi-complete if it induces a semi-complete digraph. The underlying graph of a digraph
D is the graph G with vertex set V (D) and uv ∈ E(G) if and only if (u, v) ∈ E(D) or
(v, u) ∈ E(D).

Lemma 3.3.8. Let D be an out-semi-complete digraph, let G be its underlying graph,
and let v be an avoidable vertex in G. Then, the in-neighbourhood of v in D is semi-
complete.

Proof. Suppose for a contradiction that N−D (v) is not semi-complete. Then, there is a
pair x, y ∈ N−D (v) of non-adjacent vertices in G. Since v is avoidable in G, the induced
path x−v−y extends to an induced cycle C in G. Let (v = v1, y = v2, v3, . . . , vk = x, v1)
be a cyclic order of vertices on C. Then k ≥ 4.

We claim that for every i ∈ {2, . . . , k} we have (vi, vi−1) ∈ E(D). We show this by
induction on i. The base case, i = 2, holds since v2 = y is an out-neighbour of v1 = v.
Suppose that (vi, vi−1) ∈ E(D) for some i ≥ 2. If (vi+1, vi) 6∈ E(D), then, since G is the
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underlying graph of D, we must have (vi, vi+1) ∈ E(D). But then vi−1 and vi+1 are two
non-adjacent vertices in the out-neighbourhood of vi, contradicting the assumption that
D is out-semi-complete. This establishes the inductive step and the claim.

But now, since (vk, v1) ∈ E(D) and (vk, vk−1) ∈ E(D), vertices v1 and vk−1 are two
non-adjacent vertices in the out-neighbourhood of vk, contradicting the assumption that
D is out-semi-complete.

Lemma 3.3.8 and Theorem 3.0.4 imply the following.

Theorem 3.3.9. Every out-semi-complete digraph D with at least one vertex contains
a vertex whose in-neighbourhood is semi-complete. In addition, if |V (D)| ≥ 2, then D
contains at least two vertices whose in-neighbourhoods are semi-complete.

The contrapositive statement is the following.

Corollary 3.3.10. Every digraph with at least two vertices in which at most one in-
neighbourhood is semi-complete has an out-neighbourhood that is not semi-complete.

A digraph can be viewed as a communication network, where each vertex is both
an information source (passing information to its out-neighbours) and an information
recipient (receiving information from its in-neighbours). We say that two information
sources / receivers are independent if the corresponding vertices are non-adjacent. Thus,
Theorem 3.3.9 and Corollary 3.3.10 can be interpreted as follows:

• If no participant passes information to at least two independent recipients, then
at least two participants each get information from sources that are not pairwise
independent.

• If each participant (but possibly one) gets information from at least two indepen-
dent sources, then there exists a participant who sends information to at least two
independent recipients.

3.4 Avoidable Edges in Graphs

We will call an edge e in a graph G avoidable (resp., simplicial) if the path P2 induced by
its endpoints is avoidable (resp., simplicial). In particular, if an edge e in a graph G is not
the middle edge of any induced P4, then e is simplicial and thus avoidable. A sufficient
condition for an edge e = uv in a graph G to be simplicial is that it is bisimplicial , i.e.,
that N(u) ∪ N(v) induces a complete bipartite graph. Bisimplicial edges are relevant
for perfect elimination bipartite graphs, defined as bipartite graphs whose edges can be
eliminated by successively removing both endpoints of a bisimplicial edge, and for their
subclass chordal bipartite graphs, defined as bipartite graphs without induced cycles of
length more than 4, see [76, 75]. Note that an edge in a bipartite graph is simplicial if
and only if it is bisimplicial. Thus, the fact that every chordal bipartite graph is perfect
elimination bipartite can be equivalently stated as follows: every chordal bipartite graph
with an edge has a simplicial edge.
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The case k = 2 of Conjecture 3.0.8 states that every graph with an edge has an
avoidable edge. Theorem 3.0.6 settles this case of the conjecture for {C5, C6, . . .}-free
graphs; in fact, it asserts that every {C5, C6, . . .}-free graph with an edge has a simplicial
edge. Since every chordal bipartite graph is {C5, C6, . . .}-free, this generalizes the above
result for chordal bipartite graphs. A related result is that of Hayward [86] stating that
a graph is weakly chordal (that is, both the graph and its complement are {C5, C6, . . .}-
free) if and only if its edges can be eliminated one at a time, where each eliminated edge
is simplicial in the subgraph consisting of the remaining edges.

In this section, we prove the case k = 2 of Conjecture 3.0.8 for all graphs. Given a
graph G, two edges will be called independent in G if their endpoints form an induced
2K2 in G. We first consider the case when the graph contains no two independent edges.

Lemma 3.4.1. Let G be a graph with at least two edges but with no two independent
edges. Then G contains at least two avoidable edges.

Proof. Suppose that the lemma is false and let G be a counterexample minimising the
number of vertices. We may assume that G is not complete, since otherwise any two
edges in G are simplicial and thus avoidable. Let S be a minimal cutset of G.

Case 1: Graph G− S consists of isolated vertices.
As S is a minimal cutset, every one of these (at least two) isolated vertices must be

adjacent to every vertex in S. Let c be such a vertex and let s be an arbitrary vertex
in S. Suppose there is an induced P4, say P = x − c − s − y with cs as a middle
edge. Clearly, vertex x must be in S and thus y also has to be in S, as x is adjacent to
every vertex outside of S. This is a contradiction as c is adjacent to every vertex in S.
Therefore, cs is avoidable and as there are at least two isolated vertices in G−S we can
find two such avoidable edges.

Case 2: Some connected component of G− S contains an edge.
As there are no independent edges in G there can be only one such connected compo-

nent, which we will denote with C. Also, in G − S there must be at least one isolated
vertex c′. Note that c′ is adjacent to every vertex in S. We analyze two further subcases.

Case 2a: Component C has exactly two vertices.
Let c1 and c2 be the two vertices of C. Any P4 with c1c2 as its middle edge must be

of the form x − c1 − c2 − y with x and y in S. Since c′ is adjacent to every vertex in
S but to none in C, we can close this path to an induced cycle using c′. Thus, c1c2 is
avoidable. Let s1 be a an arbitrary vertex in S. Then either c′s1 is avoidable or it is the
middle vertex of an induced P4 that does not close to an induced cycle. Without loss of
generality such a path is of the form P = s2 − c′ − s1 − c1 where s2 is an element of S,
as every isolated vertex of G− S is adjacent to every vertex of S. Since edges c1c2 and
c′s2 are not independent in G, we infer that s2 is adjacent to c2. As P does not close
to an induced cycle, c2 must be adjacent to s1. We claim that in this case edge s2c

′ is
avoidable. Suppose s2c

′ is the middle edge of an induced P4. This path must be of the
form P ′ = c2−s2−c′−s3 with s3 ∈ S \{s1}. Since S is a minimal cutset in G, vertex s3
is adjacent to a vertex in C. Thus, s3 is adjacent to c1 and path P ′ closes to an induced
cycle. As a result G has two avoidable edges.

Case 2b: Component C has more than two vertices.
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Then C has at least two edges, but no two independent edges. Since G is a minimal
counterexample, C has at least two avoidable edges e = vw and f = xy which are not
necessarily disjoint. We claim that e and f are also avoidable in G. By symmetry, it
suffices to show the claim for e. Since e is avoidable in C, every P4 with e as a middle
edge that is completely contained in C can be closed to an induced cycle in C and thus
in G as well. Suppose that e is the middle edge of an induced P4, say P = t1−v−w− t2,
that is not completely contained in C. First we assume that t1 ∈ S and t2 /∈ S. Then
c′ is adjacent to t1, which implies that edges c′t1 and wt2 are independent in G; a
contradiction. Thus, both t1 and t2 are in S, and we can close P to an induced cycle
using the isolated vertex c′, which is adjacent to t1 and t2 but not to any endpoint of e.
It follows that G contains two avoidable edges.

Clearly, if a graph has a single edge, this edge is avoidable. Thus, Lemma 3.4.1 has
the following consequence.

Corollary 3.4.2. Every graph with at least one edge but with no two independent edges
contains an avoidable edge.

To consider the case not settled by Lemma 3.4.1, we first introduce some more termi-
nology. Two distinct edges will be called weakly adjacent if they are not independent.
The set NE

G (e) will denote the set of edges of G that are weakly adjacent to e. The
members of NE

G (e) are the edge-neighbours of e. An edge e ∈ E(G) will be called uni-
versal in G if every edge of G other than e is weakly adjacent to e. We say that an
edge e = uv is adjacent to a vertex w in G (and vice versa) if w /∈ {u, v} and uw or vw
is an element of E(G). The set of vertices that are adjacent to an edge e is called the
vertex-neighbourhood of e and is denoted by NV

G (e), while the set of edges adjacent to a
vertex v is called the edge-neighbourhood of v and is denoted by NE

G (v). Note that the
edge-neighbourhood of any edge e = uv is exactly the set of all edges having at least one
endpoint in the vertex-neighbourhood of e.

The case not considered by Lemma 3.4.1 is settled in the next lemma.

Lemma 3.4.3. For every graph G and every non-universal edge e ∈ E(G) there is an
edge f ∈ E(G) independent of e which is avoidable.

Proof. Suppose that the lemma is false and take a counterexample G with the smallest
possible number of vertices. Since G is a counterexample, it has a non-universal edge
e ∈ E(G) such that no edge independent from e is avoidable.

We first prove a sequence of claims.

Claim 3.4.4. Every edge that is independent of e is adjacent to all vertex-neighbours of
e in G.

Proof: Suppose that the claim is false and let f ∈ E(G) be an edge that is independent
of e and non-adjacent to at least one vertex-neighbour p of e in G. Let G′ be the graph
resulting from contracting the edge e in G. If e′ denotes the vertex obtained from e in
G′, then pe′ ∈ E(G′) is independent of f in G′. Since G is a minimal counterexample and
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as f is independent of pe′ in G′, there must be an edge g ∈ E(G′) that is independent of
pe′ and avoidable in G′. It is easy to see that g is also an edge in G that is independent
of e and avoidable in G; a contradiction. �

Let f = vw be an edge that is independent of e and which has the fewest edge-
neighbours among all such edges. By Claim 3.4.4, f is adjacent to every neighbour of e
and is not avoidable, i.e., it is the middle edge of an induced P4, say P = x− v−w− y,
that cannot be closed to an induced cycle. This implies in particular that x and y cannot
both be adjacent to e.

Suppose that x is adjacent to e. Then y is not adjacent to e. It follows that edge wy is
independent of e and thus adjacent to all neighbours of e, including x; a contradiction.
Therefore, x is not adjacent to e and, by symmetry, neither is y.

Note that NV
G (e) ⊆ NV

G (f)\{x, y}. Moreover, the set NV
G (e)∪{v, w} separates e from

x, that is, e and x belong to different components of the graph G − (NV
G (e) ∪ {v, w}).

It follows that we can find a minimal set S ⊆ NV
G (e) (possibly S = ∅) such that the set

S ∪ {v, w} separates e from x. Let C be the connected component of G − (S ∪ {v, w})
containing e.

Claim 3.4.5. Edge f is universal in G− C.

Proof: Suppose not. Then, due to the minimality assumption made on G, there must
be an edge h ∈ E(G − C) that is independent of f and avoidable in G − C. As shown
above, every vertex in S is adjacent to v or w. Therefore, edge h must be fully contained
in a connected component C ′ of G− (S ∪{v, w}). As there are no edges between C ′ and
C in G, any induced P4 that has h as a middle edge is contained in G − C and can be
closed to an induced cycle. Thus, h is also avoidable in G as well as being independent
of e. �

Claim 3.4.5 has the following consequence.

Claim 3.4.6. Every edge g ∈ E(G − C) that does not have vertex-neighbours in C is
universal in G − C and adjacent to every vertex in S. In particular, this holds for any
edge that is completely contained in a connected component of G− (S∪{v, w}) not equal
to C.

Proof: Let g be an edge in G−C that does not have vertex-neighbours (in G) outside of
G−C. Then g is independent of e. Recall that edge f was chosen to be independent of
e with the smallest number of edge-neighbours. By Claim 3.4.5, f is universal in G−C.
Note that each edge-neighbour of g is either contained in G − C or contains a vertex
from S ∪ {v, w}. This means that each edge-neighbour of g is either equal to f or is an
edge-neighbour of f . The choice of f implies NE

G (g) = (NE
G (f) \ {g}) ∪ {f}, showing

that g is universal in G− C.
Let s be an arbitrary vertex in S. Due to the choice of S, vertex s must have a

neighbour in e, say t, and is adjacent to f . Thus, edge st is an edge-neighbour of f . As
this edge is also an edge-neighbour of g and g cannot be adjacent to t, it follows that g
is adjacent to s. �
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The next claim restricts the structure of components of the graph G− (S ∪ {v, w}).

Claim 3.4.7. Exactly one component of G−(S∪{v, w}) other than C contains an edge.

Proof: Suppose first that at least two connected components of G − (S ∪ {v, w}) other
than C contain edges. Consider two such components and one edge in each. By Claim
3.4.6, each of these edges is universal in G− C. This contradicts the fact that they are
independent. It follows that at most one component of G − (S ∪ {v, w}) other than C
contains an edge.

Suppose for a contradiction that no component of G − (S ∪ {v, w}) other than C
contains an edge, that is, all such components are trivial. In particular, the component
of G− (S ∪{v, w}) containing vertex x is trivial. Consider the edge g = xv. We already
know that g is independent of e. This implies that g is not avoidable in G. Thus, there
exists an induced P4 in G having g as the middle edge, say Q = t1 − x − v − t2, that
does not close to an induced cycle. Clearly, t1 must be in S and thus adjacent to e. It
follows that t2 cannot be adjacent to e, since otherwise we could close Q to an induced
cycle. But now, edge t2v is independent of e and hence, by Claim 3.4.4, adjacent to
every neighbour of e, including t1; a contradiction. �

By Claim 3.4.7, exactly one component of G− (S ∪ {v, w}) other than C contains an
edge. Let C ′ be this component. We complete the proof by considering three exhaustive
cases.

Case 1: Both v and w have neighbours outside of S ∪ V (C ′) ∪ {v, w}.
It follows from Claim 3.4.6 that every edge in C ′ is universal in C ′. Therefore, Corol-

lary 3.4.2 implies that C ′ contains an avoidable edge g. Since g is independent of e, it
is not avoidable in G. This means that there exists an induced P4 in G having g as the
middle edge, say Q = t1 − g1 − g2 − t2, that does not close to an induced cycle. Since g
is avoidable in C ′, path Q cannot be fully contained in C ′. Without loss of generality,
we may assume that t1 6∈ V (C ′). It follows that t1 ∈ S ∪ {v, w}.

Suppose that t2 ∈ V (C ′). If t1 ∈ S, then t2 or g2 must be adjacent to t1, due to Claim
3.4.6, as g2t2 is an edge contained in C ′; this is a contradiction. Therefore, t1 ∈ {v, w}.
As both v and w have neighbours outside of S ∪ V (C ′) ∪ {v, w}, similar arguments as
those used in the proof of Claim 3.4.6 can be used to show that either t2 or g2 must be
adjacent to t1; a contradiction. This shows that t2 6∈ V (C ′) and therefore t2 ∈ S∪{v, w}.

If both t1 and t2 are in S, then Q can be closed to an induced cycle through e, as
all vertices in S are adjacent to e. Therefore, we may assume without loss of generality
that t1 ∈ {v, w} and t2 ∈ S. By the assumption of Case 1, vertex t1 has a neighbour z
outside of S ∪ V (C ′)∪ {v, w}. If z is in C, then there is a path from t1 to t2 through C,
and if z is not in C, then z is an isolated vertex of G− (S ∪ {v, w}) and t1 − z − t2 is a
path in G. In either case, using such a path, Q can be closed to an induced cycle in G;
a contradiction.

Case 2: Exactly one of v and w has a neighbour outside of S ∪ V (C ′) ∪ {v, w}.
We may assume without loss of generality that v does not have any neighbours outside

of S ∪ V (C ′)∪ {v, w}, but w does. Claim 3.4.6 implies that every edge in G[C ′ ∪ {v}] is
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universal. Hence, we infer, using Corollary 3.4.2, that G[C ′ ∪{v}] contains an avoidable
edge g. Since v does not have any neighbours outside of S ∪ V (C ′) ∪ {v, w}, edge g
(which might contain v as an endpoint) is independent of e. This implies that g is not
avoidable in G, i.e., there exists an induced P4 in G having g as the middle edge, say
Q = t1 − g1 − g2 − t2, that does not close to an induced cycle. Since g is avoidable in
G[C ′∪{v}], path Q cannot be fully contained in G[C ′∪{v}]. Without loss of generality,
we may assume that t1 6∈ V (C ′) ∪ {v}. It follows that t1 ∈ S ∪ {w}.

Suppose that t2 ∈ V (C ′)∪ {v}. If t1 ∈ S, then t2 or g2 must be adjacent to t1, due to
Claim 3.4.6; this is a contradiction. Therefore, t1 = w. As w has a neighbour outside of
S ∪ V (C ′) ∪ {v, w}, similar arguments as those used in the proof of Claim 3.4.6 can be
used to show that either t2 or g2 must be adjacent to t1, leading again to a contradiction.
This shows that t2 6∈ V (C ′) ∪ {v} and therefore t2 ∈ S ∪ {w}.

If both t1 and t2 are in S, then Q can be closed to an induced cycle through e, as all
vertices in S are adjacent to e. Therefore, we may assume without loss of generality that
t1 = w and t2 ∈ S. By the assumption of Case 2, vertex w has a neighbour z outside of
S ∪ V (C ′) ∪ {v, w}. If z is in C, then there is a path from t1 to t2 through C. On the
other hand, if z is not in C, then z is an isolated vertex of G−(S∪{v, w}) and t1−z− t2
is a path in G. In either case, using such a path Q can be closed to an induced cycle in
G; a contradiction.

Case 3: Neither v nor w has a neighbour outside of S ∪ V (C ′) ∪ {v, w}.
Claim 3.4.6 implies that every edge in G[C ′ ∪ {v, w}] is universal, hence, by Corol-

lary 3.4.2, there is an avoidable edge g in G[C ′ ∪ {v, w}]. The assumption of Case 3
implies that edge g is independent of e. This implies the existence of an induced P4 in
G having g as the middle edge, say Q = t1 − g1 − g2 − t2, that does not close to an
induced cycle. Since g is avoidable in G[C ′ ∪ {v, w}], path Q cannot be fully contained
in G[C ′∪{v, w}]. Without loss of generality, we may assume that t1 6∈ V (C ′)∪{v, w}. It
follows that t1 ∈ S. Moreover, t2 ∈ S, since otherwise t2 would belong to V (C ′)∪{v, w}
and Claim 3.4.6 would imply that one of t2 or g2 is adjacent to t1; a contradiction. Since
both t1 and t2 are in S, path Q can be closed to an induced cycle through e, as all
vertices in S are adjacent to e; a contradiction.

This completes the proof of the lemma.

Lemmas 3.4.1 and 3.4.3 imply the following.

Theorem 3.4.8. Every graph with an edge has an avoidable edge. Every graph with at
least two edges has two avoidable edges.

Proof. Clearly, if G has a single edge, that edge is avoidable. So let G be a graph with at
least two edges. If G does not have two independent edges, then Lemma 3.4.1 applies and
the desired conclusion follows. If, on the other hand, G does have a pair of independent
edges, say e and e′, then e is not universal in G and hence by Lemma 3.4.3 there is an
edge f ∈ E(G) independent of e which is avoidable. Since f is independent of e, it is
not universal. Applying Lemma 3.4.3 again, we find that G contains an avoidable edge
f ′ that is independent of f . Clearly, the edges f and f ′ are distinct.
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An application of this theorem to edge-transitive graphs is given in the next section.

3.5 Consequences for Highly Symmetric Graphs

In this section we summarize the consequences of existence results for avoidable vertices
and edges for vertex- and edge-transitive graphs. An automorphism of a graph G is a
bijection from the vertex set of G to itself that maps edges to edges and non-edges to
non-edges. A graph G is said to be vertex-transitive if for any two vertices u, v ∈ V (G)
there exists an automorphism of G mapping u to v. Similarly, G is said to be edge-
transitive if for any two edges e, f ∈ E(G) there exists an automorphism of G mapping
e to f .

By Theorem 3.0.4, the midpoint of any induced P3 in a vertex-transitive graph is
avoidable. This implies the following consequence for vertex-transitive graphs.

Corollary 3.5.1. Every induced P3 in a vertex-transitive graph closes to an induced
cycle.

As shown by the example in Figure 3.4, a statement analogous to that of Corol-
lary 3.5.1 fails for longer paths.

G :

a
cd

f

eb

L(G) :

a b

c d

e f

Figure 3.4: The graph L(G) is vertex-transitive and contains an induced four-vertex path
(a, c, d, f) that does not close to an induced cycle.

A similar consequence can be derived for edge-transitive graphs, by considering avoid-
able vertices in the line graph of a graph. By Corollary 3.1.3, the middle edge of any
3-edge path in an edge-transitive graph is pseudo-avoidable.

Corollary 3.5.2. Every 3-edge path in an edge-transitive graph closes to a cycle.

A statement analogous to that of Corollary 3.5.2 fails for longer paths. The graph
shown in Figure 3.4 is the line graph of the complete bipartite graph K2,3, which is
edge-transitive. The 4-vertex induced path depicted bold in the figure corresponds to a
4-edge path in K2,3 that does not close to a cycle.

By Theorem 3.4.8, the middle edge of any induced P4 in an edge-transitive graph is
avoidable. This implies the following consequence for edge-transitive graphs.

Corollary 3.5.3. Every induced P4 in an edge-transitive graph closes to an induced
cycle.
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As shown by the example in Figure 3.5, a statement analogous to that of Corol-
lary 3.5.3 fails for longer paths. This 13-vertex example was found using a computer-
assisted search based on a catalogue of vertex-transitive graphs due to McKay and
Royle [114] (which has been extended in the years since then) and performed using
SageMath [127]. Once the graph was found, a drawing of it given in the figure was
identified with the help of House of Graphs [25].

v1

v2

v3

v4 v5

Figure 3.5: An edge-transitive graph with an induced five-vertex path (v1, v2, v3, v4, v5)
that does not close to an induced cycle.

3.6 Conclusion

We have introduced the notion of avoidability in graphs, a concept that has been im-
plicitly used in a variety of contexts in algorithmic graph theory. We discussed both
structural and algorithmic aspects of avoidable vertices, including a characterisation of
avoidable vertices as simplicial vertices in some minimal triangulation of the graph, a
new proof of the existence of avoidable vertices in graphs with at least one vertex, and
the fact that one or two avoidable vertices in a graph can be found in linear time using
a simple application of lexicographic breadth first search. This approach was then used
to construct a polynomial-time algorithm for the maximum weight clique problem in
the class of 1-perfectly orientable graphs and a superclass of these, the graphs admitting
an orientation in which every hole is oriented cyclically. We suggested a generalisation
of the concept of avoidability from vertices to nontrivial induced paths and proposed a
conjecture about their existence (Conjecture 3.0.8). In this respect we showed the va-
lidity of the conjectures for edges, that is, two-vertex paths. Many interesting questions
remain.

The main open question related to this work is to resolve the status of Conjecture 3.0.8.
Theorems 3.0.4 and 3.4.8 imply that the conjecture is true for k ∈ {1, 2}. In turn, this
fact and Theorem 3.0.6 imply that the conjecture is true for the class of {C6, C7, . . .}-free
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graphs, which includes several well studied graph classes such as weakly chordal graphs,
cocomparability graphs, and AT-free graphs.

While we have given a linear-time algorithm to compute two distinct avoidable ver-
tices in any nontrivial graph (Theorem 3.2.5), it would also be of interest to devise
an algorithm to compute all avoidable vertices that is more efficient than the näıve
approach.

Having introduced the class of hole-cyclically orientable graphs as a generalisation of
1-perfectly orientable graphs, we can ask for structural properties of these graphs. In
particular, it is not known whether they can be recognized in polynomial time. The
complexity of the maximum independent set and k-colouring problems (for fixed k ≥ 3)
is also open both for 1-perfectly orientable and for hole-cyclically orientable graphs.
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4 Recognising End-Vertices of Graph
Searches

Usually, the outcome of a graph search is a search order, i.e., a sequence of the vertices in
order of visits. There are many results using such orders. For instance, by reversing an
LBFS order of a chordal graph, one finds a perfect elimination order of this graph [126].
A perfect elimination order in G = (V,E) is an ordering of the vertices such that for
every vertex v ∈ V the neighbours of v that occur after v in the order form a clique.
This not only yields a linear recognition algorithm for chordal graphs, but also a greedy
colouring algorithm for finding a minimum colouring for this graph class [75]. As most
graph searching paradigms can be implemented in linear time, these algorithms are
typically as efficient as possible.

Interestingly, the end-vertices of graph searches, i.e., the last vertices visited in the
search, are crucial for several algorithms. Their properties are the key for many multi-
sweep algorithms on graphs. For instance, one can use six LBFS runs to construct the
interval model of an interval graph. Here, the end-vertices correspond to the end vertices
of the interval model and the next search starts in an end-vertex of the previous one.
This also yields a linear time recognition algorithm for this graph class [43].

Additionally, end-vertices may have strong structural properties. For example, as a di-
rect consequence of the results mentioned above, the end-vertex of an LBFS on a chordal
graph is always simplicial. Moreover, if a cocomparability graph is hamiltonian, then
the end-vertex of an LDFS is the start vertex of a hamiltonian path in this graph [45].

LBFS also provides a linear time algorithm for finding dominating pairs in connected
asteroidal triple-free graphs [40]. Here, a dominating pair is a pair of vertices such that
every path connecting them is a dominating set in the graph. The first vertex x is
simply the end-vertex of an arbitrary LBFS and the second vertex y is the end-vertex of
an LBFS starting in x. Furthermore, the end-vertex of an LBFS in a cocomparability
graph is always a source/sink in some transitive orientation of its complement [79].

The end-vertices of BFS are also helpful for fast diameter computation. Crescenzi et
al. [46] have shown that the diameter of large real world graphs can usually be found
with only a few applications of BFS. Furthermore, it was shown that the end-vertices

ts

Figure 4.1: Vertex t cannot be the end-vertex of any BFS although it is in the last layer
if the BFS starts in s.
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4 Recognising End-Vertices of Graph Searches

of (L)BFS can be used to approximate the diameter of graphs in the classes of chordal
graphs [52], HHD-free graphs [51], k-chordal graphs [41] and hyperbolic graphs [31].
Intuitively, the potential end-vertices can be seen as peripheral or extremal vertices of
the graph whereas all other vertices appear more centrally and are of greater importance
to the connectivity. For example, no search can end on a cut vertex [30]. However, even
for BFS finding such vertices is not as trivial as it might seem. Figure 4.1 shows a graph
in which the vertex t appears in the last layer of a BFS starting in s. Nevertheless, it
cannot be an end-vertex.

In this context, the decision problem arises, whether a vertex can be the end-vertex
of a graph search, i.e., the last vertex visited by this search.

End-vertex Problem
Instance: A connected graph G = (V,E) and a vertex t ∈ V .
Task: Decide whether there is a graph search such that t is the end-vertex of

this search on G.

Obviously, this problem is in NP for any of the searches considered here, since a full
search order provides a certificate which can be checked in polynomial time.

Although the problem of checking whether a given tree is a BFS or DFS tree can be
decided efficiently (see [81, 100, 112]), surprisingly this does not hold for the end-vertex
problem. Corneil, Köhler, and Lanlignel [44] have shown that it is NP-hard to decide
whether a vertex can be the end-vertex of an LBFS. Charbit, Habib, and Mamcarz [30]
have shown that the end-vertex problems for BFS and DFS are also NP-complete.
Furthermore, they extended these results to several graph classes. In this chapter, we
address the end-vertex problem for MCS and MNS; for some other related results see
Table 4.1.

In the following, we give an overview of graph searching algorithms, especially Maxi-
mum Cardinality Search and Maximal Neighbourhood Search. We presentNP-complete-
ness results for the end-vertex problem of MNS on weakly chordal graphs and of MCS
on general graphs. For some chordal graph classes we give linear time algorithms for
several different graph searches. An overview of our results can be found in Table 4.1.
We conclude the chapter with some open problems related to our results.

The results given in this chapter have been achieved in joint work with Carolin Denkert,
Ekkehard Köhler, Matjaž Krnc, Nevena Pivač, Robert Scheffler and Martin Strehler and
can be found in [9].

4.1 NP-Completeness for Maximal Neighbourhood Search

The complexity of the end-vertex problem of MNS was studied by Berry et al. [15] in
2010 resulting in the following characterisation.

Lemma 4.1.1 (Berry et al. [15]). Let G = (V,E) be a chordal graph and let t ∈ V . Then
t can be an end-vertex of MNS if and only if t is simplicial and the minimal separators
included in N(t) are totally ordered by inclusion.
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4.1 NP-Completeness for Maximal Neighbourhood Search

BFS LBFS DFS LDFS MCS MNS

All Graphs NPC NPC NPC NPC NPC NPC
Weakly Chordal NPC [30] NPC [44] NPC NPC [30] ? NPC
Chordal ? ? NPC ? ? P [15] → L
Interval ? L [44] L ? ? P → L
Unit Interval ? L L L L P → L
Split L [30] P [30] → L NPC [30] P [30] → L L P → L

Table 4.1: Complexity of the end-vertex problem. Bolded results are made in this text.
The big L stands for linear time algorithm. The term P → L describes the
improvement from a polynomial algorithm to a linear time algorithm. Non-
bolded results without references are direct consequences of other results, e.g.,
NPC of DFS on split graphs implies NPC on weakly chordal, chordal and
general graphs. On the other hand, the linear time algorithm for interval
graphs is also a linear time algorithm for the subclass of unit interval graphs.

Since this property can be checked efficiently, they conclude that the end-vertex prob-
lem of MNS on chordal graphs is solvable in polynomial time. In Section 4.3.1 we provide
an approach which solves this problem in linear time (see Corollary 4.3.4).

Charbit et al. [30] conjectured that the problem can be solved efficiently on general
graphs. However, in this section we will present an NP-completeness proof for the
end-vertex-problem of MNS on weakly chordal graphs.

Theorem 4.1.2. The end-vertex-problem of MNS is NP-complete for weakly chordal
graphs.

To prove this we use a reduction from 3-SAT. Let I be an instance of 3-SAT. We
construct the corresponding graph G(I) as follows (see Figure 4.2 for an example). Let
X = {x1, . . . , xk, x1, . . . , xk} be the set of vertices representing the literals of I. The
edge-set E(X) forms the complement of the matching in which xi is matched to xi for
every i ∈ {1, . . . , k}. Let C = {c1, . . . , cl} be the set of clause vertices representing the
clauses of I. The set C is independent in G(I) and every ci is adjacent to every vertex
of X, apart from those representing the literals of the clause associated with ci for every
i ∈ {1, . . . , l}. Additionally, we add the vertices s, b and t. The vertex b is adjacent to
all literal vertices. The vertices s and t are adjacent to all literal and all clause vertices.
Finally, we add the edge bt.

The following two lemmas provide some properties that an MNS ordering must fulfil
if t is its end-vertex. Let I be an arbitrary instance of 3-SAT and G = G(I) with
n = |V (G)|.

Lemma 4.1.3. Let σ be an MNS ordering of vertices in G, ending with t. Then:

1. The vertex b is on the left of any clause vertex in ordering σ;

2. The vertex s is on the left of b in ordering σ.
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s

x1

x1

x2

x2

x3

x3

x4

x4

x1 ∨ x2 ∨ x3 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

t

b

Figure 4.2: The NP-completeness reduction for the end-vertex problem of MNS on
weakly chordal graphs. The depicted graph is G(I) for I = (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4). In both boxes only non-edges are dis-
played by dashed lines. The connection of a vertex with a box means that
the vertex is adjacent to all vertices in the box.

Proof. We prove both claims separately. Assume that there is a clause vertex ci that is
visited before the vertex b, i.e., ci ≺σ b. By the construction we know that N(b) ⊂ N(t)
and C ⊆ N(t) while N(b) ∩ C = ∅. If vertex ci is visited in σ before the vertex b, then
the label of vertex t will contain the label ci, while for b this is not the case. This implies
that at any step of the search process in G, the label set of b will be a proper subset of
the label set of t, and the algorithm will take vertex t before b.

Assume now that the vertex b is on the left of s in the ordering σ. Since N(s) ⊂ N(t)
and b is in the neighbourhood of t and s is not, the label set of s will be a proper subset
of the label set of t. Thus, the search algorithm will visit t before s.

Lemma 4.1.4. Let σ be an MNS ordering of vertices in G, ending in t. Then the
first k + 1 vertices in σ are s, as well as an arbitrary assignment of I (not necessarily
satisfying).

Proof. It follows from Lemma 4.1.3 that the first vertex in σ is s or one of the literal
vertices. Assume that we are at some step of an MNS search and until now we have only
chosen at most one literal vertex per variable, possibly including the vertex s. Further
assume that there is at least one variable whose two literal vertices have not been chosen
so far. These vertices are adjacent to all the vertices which have been chosen before.
Lemma 4.1.3 implies that a clause vertex cannot be next in the MNS ordering. For the
same reason, if s has not been visited so far, we cannot take b next. If s has already been
chosen, then the labels of literal vertices of the non-chosen variables are proper supersets
of the label of b; again we cannot choose the vertex b. The same holds for literal vertices
of variables, for which the other literal vertex has already been visited. Thus, we know
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4.1 NP-Completeness for Maximal Neighbourhood Search

that we have to take s or a literal vertex of an unvisited variable. Notice that each of
these vertices is a possible choice in an MNS, since they all have maximum label. This
proves the statement.

So far we have proven some necessary conditions that have to be satisfied in order
for t to be an MNS end-vertex in G. In what follows, we will prove that t can be the
end-vertex of MNS in G whenever the corresponding 3-SAT instance I has a satisfying
assignment.

Lemma 4.1.5. If the 3-SAT instance I has a satisfying assignment A, then t is an
end-vertex of MNS on G.

Proof. Let I be an instance of 3-SAT and A a satisfying assignment of I. We now
construct the MNS ordering which ends in t.

From Lemma 4.1.4 it follows that we can start an MNS search on G in the vertex
s and then take all the literal vertices that belong to A. Since each clause vertex is
not adjacent to its corresponding literals, it follows that for each clause vertex there is
at least one label missing among the labels produced by the assignment vertices. The
same holds for the unvisited literal vertices, since their negated literal label is missing.
Furthermore, since b is adjacent to all literal vertices, labels of unvisited literal vertices
as well as of clause vertices do not contain the label set of vertex b. Therefore, we can
take b as the next vertex. Since all remaining literal vertices and clause vertices are
adjacent to s, while t is not, these remaining vertices can be visited before t.

We now show that t cannot be the end-vertex of an MNS if there is no satisfying
assignment of I.

Lemma 4.1.6. If the 3-SAT instance I has no satisfying assignment, then t cannot be
the end-vertex of MNS on G.

Proof. Let I be an instance of 3-SAT which does not have a satisfying assignment.
Suppose that there exists an MNS ordering σ of G which ends in t. It follows from
Lemma 4.1.4 that MNS has to take the vertex s and an arbitrary assignment of I at the
beginning. Since the assignment that was chosen is not satisfying, there is at least one
clause vertex that has been labelled by all vertices chosen so far. Hence, the labels of
these clause vertices properly contain the labels of all remaining literal vertices, as well
as the labels of b and t. As a result, MNS has to take one of these clause vertices next.
Lemma 4.1.3 implies that then t cannot be an end-vertex, since one clause vertex was
chosen before b.

To complete the proof of Theorem 4.1.2 we have to show, that G(I) is weakly chordal
for any choice of I.

Lemma 4.1.7. The graph G(I) is weakly chordal for any instance I of 3-SAT.
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Proof. By contradiction assume that there exists an induced cycle of length ≥ 5 in G(I)
or its complement. We start with G(I). Vertex t cannot be part of such a cycle, since
there is only one vertex which is not adjacent to t. Thus, s also cannot be part of such
a cycle, since it is adjacent to all vertices but t and b. Note, if the cycle contains four or
more vertices that are not clause vertices there must be a chord in the cycle. Therefore,
the cycle contains at least two clause vertices ci and cj . The neighbours of ci and cj
in the cycle are literal vertices. If the neighbours are four different vertices, then there
exists at least four edges between them. Therefore, there must be a chord. If both share
one neighbour, then there is also a chord between these shared neighbours and one of
the other two. The clause vertices cannot share both neighbours, since the cycle has
more than four vertices. Thus, there is no induced cycle with more than four vertices in
G(I) .

Consider now G(I). Since t is only adjacent to s, it is not part of a cycle. The same
holds for s, since it is only adjacent to t and b. As the clause vertices build a clique, there
are at most two of them in a cycle which must be consecutive. Between literal vertices of
different variables and between b and a literal vertex must lie at least one clause vertex
in the cycle. This leads to a contradiction, since we need at least two non-consecutive
clause vertices.

Theorem 4.1.2 follows from the Lemmas 4.1.5, 4.1.6 and 4.1.7.

4.2 NP-Completeness for Maximum Cardinality Search

To the best of our knowledge, the end-vertex problem for Maximum Cardinality Search
has not been studied in the literature. It is easy to see that for trees the end-vertices
correspond exactly to the leaves.

However, in this section, we will prove that the end-vertex problem is NP-complete
on general graphs, by giving a reduction from 3-SAT.

Theorem 4.2.1. The MCS end-vertex problem is NP-complete.

For each instance I of 3-SAT we construct a corresponding graph G(I) as follows (see
Figures 4.3, 4.4 and 4.5 for an example): Each literal is represented by an edge, and each
clause by a triangle. The triangles representing the clauses together form a clique C of
size 3l. We also define start vertices s and s′, where s is adjacent to all vertices of x1
and x1 and s′ is just adjacent to s. Two consecutive literals xj−1 and xj are connected
using two auxiliary vertices in the way described in Figure 4.4. For each literal one of its
two vertices is adjacent to all three vertices of each clause which contains the negation
of that literal, as depicted in Figure 4.5.

Additionally, the graph contains a clique K with 3(4k+8(k−1))+4 vertices, i.e., three
vertices for each literal and auxiliary vertex, as well as 4 connector vertices. Every vertex
among the literal vertices and the auxiliary vertices is adjacent to exactly 3 vertices in K
such that every vertex in K apart from the 4 connector vertices are adjacent to exactly
one vertex outside of K. Two of the connector vertices are then completely connected
to all vertices of xk and the other two to all vertices of xk.
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K
s′ s

x1

x1

x2

x2

x3

x3

. . .

. . .

xk−1

xk−1

xk

xk

c1 c2 c3 cl−1 cl

. . .

t

Figure 4.3: This represents a general construction of G(I) for an arbitrary instance I.
The double edges denote a construction linking the various literals and are
explained in Figure 4.4

xi xj xi xj

Figure 4.4: Each double edge in the construction shown in Figure 4.3 is to be replaced
by the construction on the right-hand side. Furthermore, each node, in
particular the auxiliary vertices in the middle, is assigned to three exclusive
neighbours in the clique K.

Finally, we add a vertex t, for which we wish to decide whether it is an end-vertex,
and this is adjacent to all clause vertices.

Lemma 4.2.2. If I has a satisfying assignment A, then there is a maximum cardinality
search on G(I) that ends in t.

Proof. Let A = (b1, b2, . . . , bl) be a satisfying assignment of I. We can construct a
corresponding MCS order σ ending in t as follows: As σ(1) we use the root s′ and
σ(2) = s. If b1 = 1 we choose the vertices of x1 next; if b1 = 0 we choose the vertices of
x1. In the next step we use the construction described in Figure 4.4 to choose either x2
or x2, depending on the value of b2. We proceed in this way, until we have visited every
literal given by A, that is until we reach xk or xk. This is possible, because we have
chosen a satisfying assignment and the label of every clause vertex is at most 2, while
there is always an auxiliary vertex or a literal vertex with label that is at least 2.

At the point where we have visited both vertices in the k-th literal, one pair of connec-
tor vertices of the clique K will have label 2. As we have chosen a fulfilling assignment in
the manner described above, those connector vertices have maximal label at this point.
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xi ∨ xj ∨ xm

xi

xj

xm
. . . . . .

Figure 4.5: Each clause block consists of three nodes and each of these nodes is connected
to one specific node of the corresponding literals.

Hence, it is possible to visit the whole clique K next. Note that after every vertex in K
has been chosen, each vertex that has not been visited and that is neither a clause vertex
nor t has a label larger or equal to 3, as each has three neighbours in the clique. On the
other hand, every clause vertex can only have label at most 3, unless t is visited, as it
has only three neighbours in G− (C ∪ {t}). Thus, we can visit every vertex apart from
the clause vertices and t first, then choose all the clause vertices in any order possible
and finally visit t last.

Lemma 4.2.3. If I does not admit a satisfying assignment, then t cannot be an MCS
end-vertex of G(I).

Proof. Suppose that I does not admit a satisfying assignment and there is an MCS
ending in t. First observe that any maximum cardinality search that ends in t must
begin in s or s′. If we start in an arbitrary vertex that is neither s nor s′, then at any
point of the search there will always be a vertex with label larger or equal to 2 until s′

is the only vertex left. Without loss of generality, it begins in s′, as otherwise we can
choose s′ as the second vertex. It is enough to show that it is not possible to reach K
before visiting vertex t. First, note that K can only be entered through the connector
vertices, which in turn are only adjacent to xk or xk, as at any point of the MCS there
is a vertex with label ≥ 2, while a vertex in K has label ≤ 1 until the connector vertices
are chosen.

Suppose that at any point in the search a clause vertex is chosen for the first time
before we have reached K. Then either all of the vertices of that clause are visited
consecutively, or the remaining vertices of that clause will be labelled with 3 before we
reach K (they must have had label 2 before the clause was entered and the choice of one
clause vertex increased the label to 3). In this case, therefore, t cannot be chosen last in
the search, as at least three clause vertices, and as a consequence also t, must be chosen
before we can enter K.

It remains to be shown, that a clause vertex has to be visited before entering K. We
have already argued that one of the literals of xk must be visited before we can enter K,
as we can only enter through the connector vertices. If we disregard the clause vertices
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and K, then the vertex set corresponding to a given variable xi with i < k forms a
separator between s and the vertices corresponding to the variable xk. Therefore, any
search must traverse at least one vertex of each variable. Furthermore, as soon as the
first vertex belonging to a literal is chosen, the other vertex in that literal has the largest
label and must be chosen next. Hence, at least one literal for every variable must be
visited, before the search reaches xk (note that it is possible to visit both literals of a
variable). As a result, we need to traverse at least a whole assignment A of the literals
before entering K. However, as I does not admit a satisfying assignment, this implies
that by the time we have visited one literal of xk, at least one of the clause vertices must
have label 3, as all its literals have been assigned in the negative, and we must visit this
vertex before entering the clique K.

Therefore, it is impossible to reach K before we have chosen a clause vertex and t
cannot be an end-vertex of an MCS.

The following corollary concludes the proof of Theorem 4.2.1.

Corollary 4.2.4. Let I be an instance of 3-SAT. Then I has a satisfying assignment
if and only if t is a possible MCS end-vertex of G(I).

4.3 Linear Time Algorithms for some Chordal Graph Classes

While the end-vertex problem of MCS is NP-complete on general graphs, we will now
present linear time algorithms for the end-vertex problem on split graphs and unit in-
terval graphs. With the used approaches we were also able to improve some polynomial
results for the other searches to linear time algorithms. We begin with the following
lemma which we will use repeatedly throughout.

Lemma 4.3.1. Given a graph G = (V,E) and a vertex t ∈ V . There is a linear time
algorithm which decides whether t is simplicial.

Proof. At first, we mark each neighbour of t with a special bit. Now for every neighbour
v of t we count, how many neighbours of v are also neighbours of t. Because of the
special bits this can be done in O(|N(v)|). If for every neighbour of t this number is
equal to the degree of t, t is simplicial. Otherwise it is not. The overall running time is
linear in the size of G, since we visit each edge only a constant number of times.

4.3.1 Split Graphs

As split graphs are chordal, we know that Lemma 4.1.1 yields a necessary condition for
being an MCS end-vertex. In Figure 4.6 we present an example which shows that this
condition is not sufficient. However, in the following, we show that a slight strengthening
of this condition is enough for a complete characterisation.

Theorem 4.3.2. Let G = (V,E) be a split graph. Then t ∈ V is the last vertex of some
MCS-ordering σ of G if and only if
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v

Figure 4.6: Vertex v is an MNS end-vertex, since it fulfils the conditions of Lemma 4.1.1.
However, by enumerating all possible searches one can see that v is not an
MCS end-vertex.

1. The vertex t is simplicial;

2. The neighbourhoods of the vertices with a smaller degree than t are totally ordered
by inclusion.

Proof. As G is a split graph, we can assume that its vertex set can be partitioned into
a clique C and an independent set I such that C is a maximal clique in G, i.e., the
neighbourhood of each vertex in I is a proper subset of the neighbourhood of each
vertex in C.

Let t be an end-vertex of MCS on G. As G is chordal, we see that t must be simplicial.
Now, assume the second condition does not hold. Then there are two vertices v and w
with smaller degrees than t whose neighbourhoods are incomparable with regard to
inclusion. Without loss of generality assume that v is taken before w in σ in the MCS
where t is an end-vertex.

We first show that v and w have to be elements of I. If t is an element of I, then this
is easy to see, as every vertex in C has a higher degree than the vertices in I. If t is an
element of C, then t does not have any neighbour in I, as it is simplicial. Therefore, v
and w cannot be elements of C, since otherwise their degree would not be smaller than
the degree of t.

Now observe that all neighbours of v are visited before w. Indeed, after we have taken
the vertex v in σ, the remainder of N(v) has a larger label than the other vertices in
C \N(v). Since there is at least one neighbour of v which is not a neighbour of w, the
remainder of C will always have larger label than w after we have taken all neighbours
of v. Hence, all vertices of C have to be visited before w in σ. However, this is a
contradiction, since from the moment where all the vertices in C have been visited, the
label of t is always greater than the label of w and, thus, t has to be chosen before w in
σ.

Let us now assume that both conditions hold for t. We claim that the following order-
ing is a valid MCS search that has t as an end-vertex. We choose the neighbourhoods of
all vertices with lower degree than t in the order of the inclusion ordering. Every time
the complete neighbourhood of such a vertex u has been visited, we choose u next. If
t is an element of C, there are no remaining vertices of I and we take the remaining
vertices of C in an arbitrary ordering, where t is the last vertex. If t is an element of
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I we take the remaining vertices of C first. Since the neighbourhood of t is not greater
than the neighbourhood of any remaining vertex, we can visit t last.

Proposition 4.3.3. The MCS end-vertex problem can be decided in linear time if the
given input is a split graph.

Proof. By Lemma 4.3.1 the simpliciality of t can be checked in linear time. To check
the second condition, we first sort the vertices with degrees smaller than t by their
degree. This can be done in linear time using counting sort. Let v1, . . . , vk be this order,
where deg(v1) ≥ . . . ≥ deg(vk). Then we create an array A of size n, whose elements
correspond to the vertices of G. At first we mark each element of A which corresponds
to a neighbour of v1 with one. For each vi with 1 < i ≤ k we check, whether all elements
corresponding to a neighbour of vi are marked with i − 1. If this is not the case, the
neighbourhoods of vi−1 and vi are incomparable with regard to inclusion. Otherwise, we
mark each neighbour of vi with i. The overall running time of this algorithm is O(n+m),
since we visit each edge a constant number of times.

Note, that the same approach can be used to improve the results of Charbit et al. [30]
for the end-vertex problems of LBFS and LDFS on split graphs to linear running time.
Furthermore, we can use it to improve the complexity of the end-vertex problem of MNS
on chordal graphs. To decide this problem, we can check the conditions of Lemma 4.1.1.
As the minimal separators of a chordal graph can be determined in O(n + m) using
MCS [107], the technique of Proposition 4.3.3 leads to a linear time algorithm.

Corollary 4.3.4. The end-vertex problem of LBFS and of LDFS on split graphs can be
solved in linear time. Furthermore, the end-vertex problem of MNS on chordal graphs
can be solved in linear time.

4.3.2 Unit Interval Graphs

As any MCS (and also every LDFS) is an MNS, we know that in a chordal graph
G = (V,E) a necessary condition for a vertex t ∈ V being an MCS (or LDFS) end-
vertex is that t is simplicial and that the minimal separators in its neighbourhood can
be ordered by inclusion (as seen in Lemma 4.1.1). In the following we will proceed to
show that in unit interval graphs this is also a sufficient condition.

In [64] Fulkerson and Gross showed that a graph G is an interval graph if and only
if the maximal cliques of G can be linearly ordered such that, for each vertex v, the
maximal cliques containing v occur consecutively. We will call such an ordering a linear
order of the maximal cliques. It is possible to find such a linear order in linear time, as
can be seen, for example, in [43] or [102].

This property of the maximal cliques can also be expressed through a linear ordering
of the vertices. It has been shown by numerous authors (for example by Olariu [118])
that a graph G = (V,E) is an interval graph if and only if it has an interval order, i.e.,
an ordering σ of its vertices such that for u ≺σ v ≺σ w, the existence of uw ∈ E implies
the existence of the edge uv ∈ E.

For unit interval graphs, Looges and Olariu [110] proved a similar result:
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a
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d e

Figure 4.7: The graph depicted here is a unit interval graph for which the orderings of
MNS, LDFS and MCS differ. The order (b, c, d, a, e) is an MCS order that is
not an LDFS order, while (b, c, d, e, a) is an LDFS order that is not an MCS
order. Furthermore, the order (d, b, c, e, a) is an MNS order that is neither
an MCS nor an LDFS order.

Lemma 4.3.5 (Looges and Olariu [110]). A graph G = (V,E) is a unit interval graph if
and only if it has an ordering σ = (v1, . . . , vn) of its vertices such that for u ≺σ v ≺σ w,
the existence of uw ∈ E implies the existence of the edges uv ∈ E and vw ∈ E. Conse-
quently, for two indices i < j such that vivj ∈ E the set of vertices {vi, vi+1, . . . vj−1, vj}
forms a clique.

We call such a linear vertex order a unit interval order. Both an interval order as well
as a unit interval order can be computed in linear time [36, 43, 102, 110]. Note that
even in unit interval graphs MNS, MCS and LDFS can output different search orders.
In Figure 4.7 we give an example of a unit interval graph for which there is an MCS
order that is not an LDFS order and vice versa. Furthermore, this example gives an
MNS order that is neither an MCS nor an LDFS order. However, the following theorem
shows that the end-vertices of these searches are the same.

Theorem 4.3.6. Let G = (V,E) be a unit interval graph and let t be a vertex of G.
Then the following statements are equivalent:

(i) Vertex t is simplicial and G−N [t] is connected.

(ii) Vertex t is the last vertex of some unit interval order.

(iii) Vertex t is an end-vertex of MNS (MCS, LDFS).

Proof. To prove that (i) implies (ii), let σ = (v1, . . . , vn) be a unit interval order of
G and let t = vl. As t is simplicial, the closed neighbourhood of t forms a maximal
clique of G. Thus, all vertices of N [t] must appear consecutively in σ, i.e., N [t] =
{vi, vi+1, . . . vj−1, vj} for some i ≤ l ≤ j, due to Lemma 4.3.5. Suppose that i 6= 1 and
j 6= n. Then G−N [t] is disconnected, as there can be no edge between a vertex left of vi
and a vertex to the right of vj , again due to Lemma 4.3.5. This is a contradiction to the
choice of t. Therefore, we can suppose without loss of generality that j = n. Because
{vi, vi+1, . . . vj−1, vj} is a clique, it is easy to see that σ′ = (v1, . . . , vl−1, vl+1, . . . vn, vl =
t) is also a unit interval order.

To prove that (ii) implies (iii), let σ = (v1, . . . , vn) be a unit interval order of G and
let t = vn. Let σ′ = (w1, . . . , wn) be an MNS (MCS, LDFS) order such that the first
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index k at which vk 6= wk is rightmost among all such search orders. This implies that
at moment k − 1 in the search the vertex wk must have a larger label than vk. In other
words, there is a vertex vi with i < k such that vi is adjacent to wk but not vk. Since
vk ≺σ wk this is a contradiction to the fact that σ is a unit interval order.

To show that (iii) implies (i) assume that G −N [t] is not connected. Let C1 and C2

be distinct connected components of G−N [t]. Suppose there is a vertex w in N(t) that
is adjacent to a vertex c1 ∈ C1 and a vertex c2 ∈ C2. Then t, w, c1 and c2 form an
induced claw in G which is a contradiction to the fact that G is a unit interval graph [23].
Therefore, the neighbourhood of C1 in N(t), say N1, and the neighbourhood of C2 in
N(t), say N2 are disjoint. Both N1 and N2 form separators of G and, thus, each of
these must contain a minimal separator. Therefore, the minimal separators in N(t) are
not totally ordered by inclusion. As t is an MNS end-vertex, this is a contradiction to
Lemma 4.1.1.

Since Condition i) in Theorem 4.3.6 can be decided in linear time, we can state the
following corollary.

Corollary 4.3.7. The MCS and LDFS end-vertex problem can be decided in linear time
on unit interval graphs.

For DFS there is a simple characterisation of the end-vertices of (claw, net)-free graphs
using hamiltonian paths. This also holds for unit interval graphs, as they form a subclass
of (claw, net)-free graphs [23].

Theorem 4.3.8. Let G = (V,E) be a (claw, net)-free graph. Then t ∈ V is the end-
vertex of some DFS if and only if t is not a cut vertex.

Proof. It is clear, that a cut vertex cannot be an end-vertex of a DFS, since it cannot be
an end-vertex of the generic search [30]. It remains to show, that every other vertex t
can be an end-vertex. Let G′ = G− t. G′ is still a (claw, net)-free graph. Furthermore,
it contains a hamiltonian path P since it is connected [23]. Thus, we can start the DFS
in G with P and then take t as the last vertex.

Corollary 4.3.9. The end-vertex problem of DFS can be decided in linear time on (claw,
net)-free graphs, and, in particular, on unit interval graphs.

4.3.3 Interval graphs

In the same vein as for unit interval graphs, we can use a result by Kratsch et al. [105]
to characterise DFS end-vertices on interval graphs using hamiltonian paths.

Lemma 4.3.10 (Kratsch et al. [105]). Let G = (V,E) be a connected graph, and let t
be a vertex of G. Then t is an end-vertex of DFS if and only if there is a set X ⊆ V
such that N [t] ⊆ X and G[X] has a hamiltonian path with endpoint t.

On interval graphs this characterisation can be simplified to the following.
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t t

Figure 4.8: Both graphs are interval graphs, but not unit interval graphs, since both
contain an induced claw. On the left hand side the MCS end-vertex t is such
that G − N [t] is disconnected. On the right hand side vertex t is an MNS
end-vertex but not an MCS end-vertex.

Theorem 4.3.11. Let G be an interval graph. Then t ∈ V is the end-vertex of a DFS
if and only if G[N(t)] contains a hamiltonian path.

Proof. Suppose t ∈ V such that G[N(t)] contains a hamiltonian path. Then G[N [t]]
must contain a hamiltonian path ending in t and by Lemma 4.3.10 t is a DFS end-vertex
of G.

Now assume that t is a DFS end-vertex. By Lemma 4.3.10 there exists a set X ⊆ V
such that N [t] ⊆ X and G[X] has a hamiltonian path with endpoint t. Let X be the set
of smallest cardinality that fulfils these properties. We claim that X = G[N [t]].

Let P = (v1, . . . , vl) be the hamiltonian path of G[X] with endpoint t, i.e., vl = t.
Suppose there is a vertex vi ∈ X \ N [t] and let vi be the leftmost such vertex in P .
If i = 1, then P ′ = (v2, . . . vl) is a hamiltonian path in X \ vi with endpoint t, in
contradiction to the minimality of X.

Therefore, let j < i < k such that vj is the rightmost vertex of N [t] to the left of
vi in P and vk is the leftmost vertex of N [t] to the right of vi, i.e., vj+1, . . . , vk−1 ∈
X \ N [t]. If t is equal to vk, then vjvk ∈ E and P ′ = (v1, . . . , vj , vk) is a hamiltonian
path of X \ {vj+1, . . . , vk−1}; this is a contradiction to the minimality of X. Otherwise,
(t, vj , . . . , vk, t) forms a cycle of length ≥ 4 in G. As vj+1, . . . , vk−1 are not adjacent to t,
there must be an edge between some non-consecutive vertices in (vj , . . . , vk). As above,
this is a contradiction to the minimality of X.

As the hamiltonian path problem can be solved on interval graphs in linear time, as
was shown by Rao Arikati and Pandu Rangan [121], we can state the following corollary.

Corollary 4.3.12. The end-vertex problem of DFS can be decided in linear time on
interval graphs.

The end-vertex problem for MCS on the class of interval graphs, however, appears to
be more complicated than in the case of unit interval graphs, as implication iii) ⇒ i)
from Theorem 4.3.6 does not necessarily hold here. As a result, not only simplicial
vertices that are end-vertices of an interval order are candidates for being an MCS end-
vertex. Furthermore, in interval graphs MCS is able to “jump” between non-consecutive
cliques, making an analysis much harder. Figure 4.8 contains an example where an
end-vertex t is such that G−N [t] is disconnected.

The lemma below gives a relaxed necessary condition which covers the cases similar
to the one given in Figure 4.8.
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Lemma 4.3.13. Let G = (V,E) be an interval graph and let C1, C2, . . . , Ck be a linear
order of the maximal cliques of G. Suppose t ∈ V satisfies the following conditions:

1. t is simplicial.

2. If Ci is the unique clique containing t, then i = 1 or i = k or

Ci−1 ∩ Ci ⊆ Ci ∩ Ci+1

and
|Ci ∩ Ci+1| ≤ |Cj ∩ Cj+1| for all j > i,

or the same holds for the reverse order Ck, Ck−1, . . . , C1.

Then t is the end-vertex for some MCS on G.

Proof. AsG is an interval graph, we can assume that there is a linear order C1, C2, . . . , Ck
of the maximal cliques of G, in the sense that for any vertex v ∈ V all cliques containing
v are consecutive. Also, it is easy to see that any vertex is simplicial if and only if it is
contained in exactly one of these maximal cliques.

We assume that t fulfils both properties. We now construct an MCS search ordering
which starts in a simplicial vertex of C1 and ends in the vertex t. Without loss of
generality, we assume that the second property holds for C1, C2, . . . , Ck, as otherwise we
can just begin our search at Ck and use the same arguments.

We proceed by visiting the maximal cliques of G consecutively – choosing the vertices
of each clique in an arbitrary order – until we have completely visited Ci−1. As Ci−1 ∩
Ci ⊆ Ci ∩ Ci+1, we can visit a vertex of Ci+1 \ Ci next, ignoring the simplicial vertices
of Ci. Due to the fact that |Ci ∩ Ci+1| ≤ |Cj ∩ Cj+1| for all j > i we can then visit all
vertices of Ci+1 and the vertices of all other maximal cliques apart from Ci. Finally, we
visit the remaining simplicial vertices of Ci, choosing t last.

Note that the sufficient condition given by Lemma 4.3.13 may not be necessary in
general. For example, Figure 4.9 shows an example of a graph where the second condition
from Lemma 4.3.13 is not true for vertex t, however it is still an MCS end-vertex.
Nonetheless, we believe that it is still possible to give a characterisation of MCS end-
vertices for the family of interval graphs which may be checked efficiently.

Conjecture 4.3.14. The MCS end-vertex problem can be decided in polynomial time if
the given input is an interval graph.

4.4 Conclusion

We have shown that the end-vertex problem is NP-complete for MNS on weakly chordal
graphs and for MCS on general graphs. Moreover, we have given linear time algorithms
to compute end-vertices for LDFS and MCS on unit interval graphs as well as for DFS
on interval graphs and for MCS on split graphs. Using the same techniques, we were
able to improve the analyses of running times of various previous results from polynomial
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a b c d e f g h i

u t

Figure 4.9: An example of an interval graph G and a vertex t ∈ V (G), where t is an
MCS end-vertex of the search (a, b, u, h, i, c, d, e, f, g, t). However, it is easy
to see that for the linear order of the maximal cliques of the form C1 =
{a, b}, C2 = {b, u}, C3 = {c, d, u}, C5 = {d, e, u}, C6 = {e, t, u}, C7 =
{e, f, u}, C8 = {f, g, u}, C9 = {u, h} and C10 = {h, i} the second condition
of Lemma 4.3.13 is not fulfilled. In fact, this condition is false for any linear
order of the maximal cliques.

time to linear time. A complete list of the achieved results can be found in Table 4.1.
However, many open questions still remain.

For all the searches investigated here, apart from DFS, the complexity of the end-
vertex problem on chordal graphs is still open. This is especially interesting, as nearly
all of these problems are already hard on weakly chordal graphs. Even on interval graphs
the complexity for some end-vertex problems is open.

Besides the complexity results for the end-vertex problem on graphs with bounded
chordality, there are further results on bipartite graphs. Charbit et al. [30] showed,
that it is NP-complete for BFS. Gorzny and Huang [77] showed the same result for
LBFS. Furthermore, they present a polynomial time algorithm for the LBFS end-vertex
problem on AT-free bipartite graphs. It is an open question, whether these results can
be extended to the end-vertex problems of MCS and MNS.

As mentioned in the introduction, the recognition of search trees of BFS and DFS
is easy [81, 100, 112], although the corresponding end-vertex problems are hard. In
the following chapter, we will show that LDFS-trees can be recognized in polynomial
time, while the recognition of LBFS-trees is NP-complete on the class of weakly chordal
graphs. Furthermore, we will show that recognition of both MNS and MCS-trees is NP-
complete. However, it remains an interesting question, whether there exists a search and
a graph class, such that recognition of the search trees on that class is hard, whereas the
end-vertex problem is polynomial.
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A structure that is closely related to a graph search is the corresponding search tree.
Such trees can be of particular interest, as for instance the tree obtained by a BFS
contains the shortest paths from the root r to all other vertices in the graph. The trees
generated by DFS can be used for fast planarity testing of graphs [91]. Moreover, if
a cocomparability graph has a hamiltonian path, then such a path can be found by a
combination of various graph searches [45]. First, one can use at most n LBFS runs,
where n is the number of vertices, to find a cocomparability ordering [55]. Afterwards,
the last visited vertex of an LDFS on this cocomparability ordering is the first vertex
of a hamiltonian path. Finally, the search tree of a rightmost neighbour search on the
LDFS ordering is a hamiltonian path.

So far, there is no satisfactory answer as to why graph searching works so well. Interest-
ing examples are multi-sweep algorithms, such as finding dominating pairs in connected
asteroidal triple-free graphs [40]. One can prove that these algorithms are correct. How-
ever, it is not clear why multiple runs of a simple algorithm could give such a strong
insight into graph structure. Indeed, there seem to be some hidden structural properties
of graph searches, which are waiting for discovery and algorithmic exploitation.

As a step in this direction, we study the problem of whether a given tree can be
a search tree of a particular search. For BFS-like searches, one usually connects each
vertex v ∈ V to its neighbour which appeared first in the BFS order. Furthermore, for
DFS-like searches, one connects each vertex v ∈ V to the last neighbour visited before
v. However, there is no such obvious definition of a tree for MCS or MNS. Thus, we
define F- and L-trees: given an ordering, in an F-tree each vertex v is connected to
its neighbour which appeared first in the ordering before v, whereas in an L-tree each
vertex is connected to its neighbour which appeared last before v. A proper definition
will be given in Section 5.0.1. This motivates the decision problem, where we are given
a connected graph G = (V,E) and a spanning tree T , and we need to decide whether
there is a graph search of the given type such that T is the F-tree (L-tree) of G. We
call this problem the F-Tree (L-Tree) Recognition Problem.

Already in 1972, Tarjan [135] gave a complete characterisation of DFS trees as so-
called palm trees. However, no algorithm that determines if a given spanning tree of
a graph G is a DFS tree of G was specified in that work. Using the concept of palm
trees, Hopcroft and Tarjan developed a linear time algorithm for testing planarity of
a graph [91]. Exploiting properties of DFS and BFS trees, the problem of checking
whether a given spanning tree of G can be obtained by a DFS on G was formulated
by Hagerup and Novak [81]. A few years later, Korach and Ostfeld gave a linear time
algorithm for the proposed problem of recognition of DFS-trees [100]. A similar result
for the recognition of BFS-trees was given by Manber in 1990 [112].
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A problem that is closely related to the search tree recognition problem is the so-
called end-vertex problem, i.e., the problem of determining whether a given vertex v in
a graph G can be visited last by some graph search method. As a result of numerous
new applications in algorithms, the end-vertex problem has received some attention in
recent literature. In particular, the end-vertex of an LBFS on a chordal graph is always
simplicial [126]. Furthermore, the end-vertex of an LBFS on a cocomparability graph is
always a source/sink in some transitive orientation of its complement [79]. End-vertices
are of particular interest for multi-sweep algorithms, as every consecutive search starts
at the end vertex of the previous search. Here, LBFS provides a linear time algorithm for
finding dominating pairs in connected asteroidal triple-free graphs, where a dominating
pair is a pair of vertices such that every path connecting them is a dominating set in
the graph [40]. The first vertex x is simply the end-vertex of an arbitrary LBFS and
the second vertex y is the end-vertex of an LBFS starting in x. Moreover, one can use
five LBFS executions followed by a modified LBFS to recognize interval graphs [43].
Crescenzi et al. [46] have shown that the diameter of large real world graphs can usually
be found with only a few BFS executions.

Surprisingly, the problem of deciding whether a vertex can be an end-vertex of a
graph search is hard. In 2010, Corneil, Köhler, and Lanlignel [44] have shown that it is
NP-hard to decide whether a vertex can be the end vertex of an LBFS. Later, Charbit,
Habib, and Mamcarz generalized this result to BFS, DFS, and LDFS. Furthermore, they
extended these results to several graph classes. Recently, Beisegel et al. [9] proved NP-
hardness results for MCS and MNS, and they also provided linear time algorithms for
this problem on split graphs and unit interval graphs. Some of the results given here
can be found in [8] as an extended abstract.

Although research initially began with the recognition of search trees, the results on
the end-vertex problem are currently more extensive. In the light of the new results on
the end-vertex problem, we fill in the gaps in the analysis of the complexity of the search
tree recognition problem. In this chapter, we show that the tree recognition problem
of LBFS, LDFS, MCS and MNS for F-trees is NP-complete on weakly chordal graphs.
By showing that F-trees for these searches are equivalent on chordal graphs we give
a polynomial time algorithm for the recognition problem on this graph class. In the
special case of split graphs these trees even coincide with F-trees of BFS, yielding a
linear time recognition algorithm. We give a summary of our results and the previous
work on F-tree recognition in Table 5.1.

Tree results BFS LBFS DFS LDFS MCS MNS

All Graphs L [112] NPC ? NPC NPC NPC
Weakly Chordal L NPC ? NPC NPC NPC
Chordal L P ? P P P
Split L L ? L L L

Table 5.1: Complexity of the F-tree recognition problem. Our results are denoted by
bold letters and L denotes linear time algorithms.

122



For L-trees we present a polynomial time recognition algorithm for LDFS on general
graphs and a linear time algorithm for the L-tree problem on chordal graphs for LBFS,
LDFS, MCS and MNS by proving that all these searches share the same set of L-trees.
Table 5.2 summarizes the known and the new results on L-tree recognition.

Tree results BFS LBFS DFS LDFS MCS MNS

All Graphs ? ? L [81, 100] P ? ?
Weakly Chordal ? ? L P ? ?
Chordal ? L L L L L

Table 5.2: Complexity of the L-tree recognition problem. Our results are denoted by
bold letters and L denotes linear time algorithms.

The results given in this chapter have been achieved in joint work with Carolin Denkert,
Ekkehard Köhler, Matjaž Krnc, Nevena Pivač, Robert Scheffler and Martin Strehler.
Some of these results can be found in a published extended abstract [8].

5.0.1 The Search Tree Recognition Problem

The definition of the term search tree varies between different paradigms. However,
typically, it consists of the vertices of the graph and, given the search order (v1, . . . , vn),
for each vertex vi exactly one edge to a vj ∈ N(vi) with j < i. By specifying to which
of the previously visited neighbours a new vertex is adjacent in the tree, we can define
different types of graph search trees. For example, in a BFS a vertex is typically adjacent
to the leftmost neighbour in the search order, while in DFS a vertex v is adjacent to the
rightmost neighbour to the left of v. This motivates the following definition.

Definition 5.0.1. Given a search discovery order σ := (v1, . . . , vn) of a given search
on a connected graph G = (V,E), we define the first-in tree (or F-tree) to be the tree
consisting of the vertex set V and an edge from each vertex to its leftmost neighbour
in σ.

The last-in tree (or L-tree) is the tree consisting of the vertex set V and an edge from
each vertex vi to its rightmost neighbour vj in σ with j < i.

As explained above, if σ and T are the output of a classical BFS, then T is an F-tree
with respect to σ, while for a classical DFS the tree T is an L-tree with respect to σ.
Given this definition, we can state the following decision problem.

F-Tree (L-Tree) Recognition Problem
Instance: A connected graph G = (V,E) and a spanning tree T .

Task: Decide whether there is a graph search of the given type such that T is
its F-tree (L-tree) of G.

Note that we have defined the F-tree (L-tree) Recognition Problem without a given
start vertex for the search. It is also possible to define this problem with a fixed start
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vertex and we call this the rooted F-tree (L-tree) Recognition Problem. It is easy to
see that a polynomial-time algorithm for the rooted Tree Recognition Problem yields a
polynomial-time algorithm for the general problem by simply repeating the procedure
for all vertices. The other direction, however, is not necessarily true. For all results
given here we show that either there is a polynomial algorithm for the rooted version, or
that the problem is NP-complete for the general case, making a distinction insignificant
for the examined cases.

One can also consider the unlabelled case of the Tree Recognition Problem where
we have to decide whether there is a search tree of G which is isomorphic to the tree
of the input. We call this problem the unlabelled F-tree (L-tree) Recognition Problem.
Obviously, this problem is NP-hard for L-trees of DFS, since it includes the hamiltonian
path problem. The following theorem shows that for many graph classes this problem
is at least as hard as the labelled version.

Theorem 5.0.2. Let C be a graph class which is closed under insertion of leaves. Then
the unlabelled F-Tree (L-Tree) Recognition Problem on C is at least as hard as the
labelled F-Tree (L-Tree) Recognition Problem on C .

Proof. Let G and T be an input instance of the F-Tree (L-Tree) Recognition Problem
of graph class C and let V (G) = {v1, . . . vn}. We create a graph G′ and a tree T ′ as
follows. For every vi ∈ V (G) we add i · n vertices to G and to T . These vertices are
adjacent to vi both in G′ and in T ′. Therefore, for every 1 ≤ i ≤ n the vertex vi is the
only vertex of G′ and T ′ with a degree i · n ≤ dT ′(vi) ≤ dG′(vi) < (i + 1) · n. Let L be
the set of these inserted leaves of G′.

We will show that T is a search tree of G of a given type of search if and only if T ′ is
isomorphic to a search tree of G′. This will then imply that if we can solve the unlabelled
F-Tree (L-Tree) Recognition Problem on G′ with T ′ in polynomial time, then we can
solve the labelled F-Tree (L-Tree) Recognition Problem on G with T in polynomial time
as well.

Assume T is an F-tree (L-tree) of the given type on G. Note that a leaf in a graph
cannot influence the order of the search and must be adjacent to its neighbour in the
search tree. Therefore, T ′ is isomorphic to an F-tree (L-tree) of the given type on G′.

On the other hand, assume that T ′ is isomorphic to a search tree of G′ of the given
search. If this search tree is rooted in a leaf of G′, then the same tree rooted in the
unique neighbour of that leaf is also a valid search tree that is isomorphic to G′. Due
to the degree condition above we know that in every isomorphism of T ′ vertex vi must
be mapped to itself. Furthermore, we can assume that T ′ is not rooted in a leaf, i.e., it
is rooted in one of the vertices of G. Hence, the tree resulting from deleting all leaves
from T ′ is a search-tree of G which is equal to T .

When comparing the different searches, one can see that graph search trees behave
very similarly to the searches themselves, in the sense that, for example, an LBFS tree
is also a BFS tree, but not vice versa. Some examples of graph search trees illustrating
these relationships can be found in Figure 5.1.
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a) b) c) d)

Figure 5.1: Four examples of graphs with their search trees denoted by the thick edges.
The graph in a) depicts a search tree of BFS that is not an F-tree for LBFS
or MNS. The graph in b) depicts an F-tree of MNS and BFS that is not an
F-tree for LBFS. The graph in c) shows a search tree that is an F-tree of
MNS, BFS and LBFS that is not an F-tree of MCS. Finally, the graph in
d) gives an example of a search tree that is an L-tree for DFS, but not for
LDFS.

5.1 A Polynomial Algorithm for L-trees of LDFS

As Lexicographic Depth First Search is a special case of DFS, the most natural search tree
to be considered here is the L-tree. We give a polynomial-time algorithm (Algorithm 12)
which, given a graph G and a spanning tree T , decides whether T is an L-tree of LDFS
on G. This is an interesting contrast to the fact that it isNP-complete to decide whether
a given vertex is an end-vertex of LDFS, as shown by Charbit et al. [30].

In essence, Algorithm 12 runs an LDFS and at every step checks whether there is still
a possible choice of vertex which does not contradict the search tree.

To prove that Algorithm 12 works correctly, we first state a few lemmas about L-trees
of DFS.

Lemma 5.1.1 (Tarjan [135]). Let G = (V,E) be a graph and let T be a spanning tree
of G. Then T is an L-tree of G generated by DFS if and only if for each edge uv ∈ E it
holds that either e ∈ E(T ) or u is an ancestor of v in T or v is an ancestor of u in T .

Lemma 5.1.2 (Korach and Ostfeld [100]). Let G = (V,E) be a graph with spanning tree
T . Let Gi be a connected subgraph of G with a spanning tree Ti which is the restriction
of T to Gi. If T is an L-tree of DFS on G, then Ti is an L-tree of DFS on Gi.

We can give an analogous result for LDFS, which just considers induced subgraphs of
G.

Lemma 5.1.3. Let G = (V,E) be a graph with spanning tree T . Let Gi be a connected
induced subgraph of G with a spanning tree Ti which is the restriction of T to Gi. If T
is an L-tree of LDFS on G, then Ti is an L-tree of LDFS on Gi. In particular, if T is
rooted in r ∈ V and r ∈ V (Ti), then Ti is also rooted in r.
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5 The Recognition of Graph Search Trees

Algorithm 12: Algorithm which decides whether T is an L-tree of LDFS on
G rooted in r.

Input: Graph G = (V,E), spanning tree T of G, and a vertex r ∈ V .
Output: T is an L-tree of LDFS on G or not.

1 begin
2 S ← {r};
3 foreach vertex v ∈ V − r do label(v)← ∅;
4 foreach vertex v ∈ N(r) do
5 prepend 0 to label(v);
6 pred(v)← r;

7 while S 6= V do
8 choose a node v ∈ V − S with lexicographic largest label, such that

{pred(v), v} ∈ E(T ) ;
9 if no such v exists then return T is not an L-tree of LDFS on G;

10 S ← S ∪ {v};
11 for w ∈ N(v) \ S do
12 prepend i to label(w);
13 pred(w)← v;

14 return T is an L-tree of LDFS on G.

Proof. Let Gi be a connected induced subgraph of G and let Ti be the restriction of T
to Gi. Suppose that T is an L-tree of LDFS on G. We will show that in this case Ti is
an L-tree of LDFS on Gi.

Let σ be an LDFS search order of G that results in the search tree T and let σ(1) := r.
We run an LDFS on Gi by always choosing the vertex with largest label which is leftmost
in σ and call the new search order τ . Suppose that the resulting search tree R does not
coincide with Ti. Let v be the leftmost vertex in τ that does not have the same parent
in R as it does in T . Let u be the parent of v in R.

Because v was chosen to be leftmost in τ such that it has a different parent in R than
in T , the unique path P from u to r in R is identical to that in T . Therefore, we can see
that u must be an ancestor of v in T , due to Lemma 5.1.1. Let w be the unique child of
u in T that is an ancestor of v; in particular v 6= w and w ≺σ v.

Suppose that w ≺τ v. This implies that w is adjacent to u in R, as v was chosen to
be the first vertex of τ with different parents in T and R. As u and w are ancestors of v
in T , the path from u to v in T must be completely contained in Gi (otherwise Ti would
not be connected). Because w and v are both children of u, somewhere on this path
there must be a pair of vertices that are adjacent in Gi none of which is an ancestor of
the other in R. Due to Lemma 5.1.1, this is a contradiction to the fact that R is a DFS
tree of Gi.

Therefore, we can assume that v ≺τ w. This implies that at the point where v was
chosen, the label of v was strictly larger than that of w; this is a contradiction, as all
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vertices that have labelled v are on P , due to Lemma 5.1.1. Therefore, it is identical to
the label v had at the point when w was chosen over v in σ.

Theorem 5.1.4. The (rooted) L-tree recognition problem for LDFS can be solved in
polynomial time.

Proof. Algorithm 12 tests for a fixed r ∈ V whether T can be an L-tree for LDFS on
G that is rooted in r. Therefore, assuming the Algorithm 12 works correctly and in
polynomial time, it is enough to apply it to all vertices in G to decide whether T is, in
fact, an L-tree of LDFS. As we begin the search in r we from now on assume that T is
rooted in a fixed vertex r.

First suppose that the algorithm returns “T is an L-tree of LDFS on G”. In this
case, the algorithm has successfully executed an LDFS and it remains to show that the
resulting search order has T as its L-tree. This, however, is safeguarded by the fact that
at every point at which we have added a vertex v to our search order, the predecessor
of v, i.e., its parent in the resulting search tree, is also adjacent to v in T .

Now assume that the algorithm returns “T is not an L-tree of LDFS on G”. This
implies that at some point of Algorithm 12 there is no vertex x of lexicographically
largest label, such that the predecessor of x is adjacent to x in T . Let v be such a vertex
of lexicographically largest label, whose predecessor is not its parent in T . Note that the
tree R constructed thus far by Algorithm 12 is a subtree of T .

Assume that T is, in fact, an L-tree of G generated by LDFS. Let u be the predecessor
assigned to v by the algorithm. Thus, due to Lemma 5.1.1, u must be an ancestor of v
in T . Let w be the unique child of u in T that is also an ancestor of v and let P be the
unique path from v to r in T ; in particular, u,w ∈ V (P ). As a result of Lemma 5.1.3,
P is an L-tree of LDFS on G[V (P )] since T is an L-tree of LDFS on G.

However, Algorithm 12 and Lemma 5.1.1 imply that P cannot be an L-tree of LDFS
on G[V (P )]. As we start in r and as P is a path, we must choose all vertices up to u in
the order of the path. Due to Lemma 5.1.1, the vertices have the same labels as they
did when Algorithm 12 halted. Therefore, v has a lexicographically larger label than w.
As a result, P and, thus, T cannot be L-trees of LDFS.

5.2 NP-completeness for F-trees of LBFS

It was shown in [44] that the LBFS end-vertex problem is NP-complete. In the following
we show that the same holds for the tree-recognition problem.

Theorem 5.2.1. The F-tree-recognition problem of LBFS is NP-complete on weakly
chordal graphs.

We prove Theorem 5.2.1 by giving a reduction from 3-SAT. Let I be an instance
of 3-SAT. We construct the corresponding graph G(I) and the spanning tree T (I) as
follows (for an example see Figure 5.2). Let X = {x1, . . . , xk, x1, . . . , xk} be the set of
vertices representing the literals of I. The edge set E(X) forms the complement of the
matching in which xi is matched to xi for every i ∈ {1, . . . , k}. For each clause Ci of I
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Figure 5.2: The NP-completeness construction for the tree-recognition problem of
LBFS. The depicted graph is G(I) for I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨
x4)∧ (x1∨x3∨x4). In the box containing the literal vertices, only non-edges
are displayed by dashed lines. The connection of a vertex with a box im-
plies, that the vertex is connected to all vertices in this box. Tree edges are
depicted by thick edges.

we have a triangle consisting of vertices ai, ci and ti. For every triangle representing a
clause Ci, the vertex ci is adjacent to each literal of the clause Ci.

In addition, we have vertices r, p, q and u. Vertex r is adjacent to every vertex
apart from the ti and u, while u is adjacent to all vertices apart from the ti and r.
Vertex p has additional edges to each vertex in X and to q, while q is also adjacent
to all vertices in X and each of the ai. Altogether, G(I) consists of the vertex set
V (G(I)) := X ∪ {r, p, q, u} ∪ C1 ∪ . . . ∪ Cl, where Ci represents the vertices of the
clause-gadget of Ci and the edge set is defined as above.

The corresponding spanning tree T (I) consists of the edges incident to r, an edge
between u and p and the edges citi for all i ∈ {1, . . . l}; they are denoted as thick lines
in Figure 5.2.

We proceed to prove Theorem 5.2.1 by showing that T (I) is an F-tree of LBFS of
G(I) if and only if I has a satisfying assignment A.

Lemma 5.2.2. If I admits a satisfying assignment A, then T (I) is a possible F-tree of
LBFS on G(I).

Proof. Let A be a satisfying assignment of I. The following valid search order produces
T (I) as its search tree. We begin in r and then choose p. Next, we can choose vertices
from X according to the assignment A in an arbitrary order, i.e., we choose xi or xi
corresponding to whether the variable xi is set to 1 or 0 in A. We are then forced to visit
the vertex q, as each remaining vertex of X is not adjacent to one of the visited vertices
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5.2 NP-completeness for F-trees of LBFS

of X. After choosing the remaining vertices of X we proceed to the vertices of the clause
gadgets. As a fulfilling assignment sets at least one literal to 1 in each clause, every ci
has a neighbour that appears earlier in the search order than q which is the leftmost
neighbour of ai in the search order. Hence, for each clause gadget Ci we must choose ci
before ai. Therefore, we can choose all vertices ci and then all vertices ai. Finally, we
can choose u and then all the ti.

It is easy to see that all edges incident to r belong to the search tree of the constructed
order, as well as pu. On the other hand, citi must be in the search tree for every
i ∈ {1, . . . , l}, as ci was always chosen before ai. Therefore, the search tree of the
constructed order coincides with T (I).

We now show the other direction of the proof.

Lemma 5.2.3. If I does not admit a satisfying assignment, then T (I) cannot be an
F-tree of LBFS on G(I).

Proof. We show that for at least one clause gadget Ci the vertex ai is visited before ci,
thus making T (I) an infeasible search tree.

To prove this, we analyze the order in which the vertices of X are visited in any feasible
LBFS search. It is easy to see that any LBFS must begin in r, as r is the only vertex
whose incident edges are all tree edges. Next, we are forced to choose p, as otherwise pu
cannot be a tree edge. If q is chosen next, then, as a result, ai must be visited before ci
for every i ∈ {1, . . . , l} and T (I) cannot be the resulting search tree. Therefore, a subset
of the vertices of X must be chosen before the vertex q.

If a vertex xi is visited, then q receives a larger label than xi, as they otherwise share
the same set of neighbours among the visited vertices up to that point (and analogously
if xi is visited before q). Thus, q must be chosen between any literal vertex and its
negation. The largest subset of X that can be visited before q must, therefore, be an
assignment of I. As I is not satisfiable, any such assignment must leave at least one
clause unfulfilled. If Ci is such a clause, then at the point at which q is chosen, ci does
not contain any neighbours among the visited literal vertices. As a result, ai receives a
larger label than ci and is visited earlier.

Consequently, in any LBFS there must be a clause Ci such that ai is visited before ci
and citi cannot be in the search tree. This shows that T (I) cannot be a F-tree of an
LBFS.

Corollary 5.2.4. Let I be an instance of 3-SAT. Then I has a satisfying assignment
if and only if T (I) is a possible F-tree of LBFS on G(I).

To conclude the proof of Theorem 5.2.1, it remains to show that G(I) is weakly chordal
for every 3-SAT instance I.

Lemma 5.2.5. For each instance I of 3-SAT, the graph G(I) is weakly chordal.

Proof. We need to show that both G(I) and G(I) do not contain a cycle of length ≥ 5.
As all the ti are simplicial, we can disregard them, due to Lemma 0.3.7. In the remaining
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graph, both r and u are adjacent to all vertices apart from each other and can, thus, be
deleted, due to Lemma 0.3.7.

Let H ′ be the graph resulting from deleting r, u and all the ti; it suffices to show that
H ′ is weakly chordal. In addition, it is easy to see that every non-edge xixi forms a
two-pair in H ′, i.e., the longest induced path between these two vertices is of length 2.
Using Lemma 0.3.6, we see that H ′ is weakly chordal if and only if H ′ + xixi is weakly
chordal. Furthermore, if we add the edges xixi for all i ∈ {1, . . . , k} to H ′, the vertex p
becomes simplicial. Therefore, it remains to show that the graph H which is constructed
from H ′ by adding the edges xixi for all i ∈ {1, . . . , k} and then deleting p is weakly
chordal.

It is sufficient to show that H is weakly chordal. To this end, we apply Lemma 0.3.7.
We can delete q from H as it is simplicial. In the remaining graph, all the ai are adjacent
to all but one vertex and can, thus, also be deleted. The remaining graph is a split graph,
as the ci form a clique and the literal vertices form an independent set, and, as a result
it is weakly chordal.

Since T (I) can only be an F-tree of LBFS on G(I) if it is rooted in r, the above also
proves the NP-completeness of the rooted F-tree recognition problem of LBFS. It is
easy to see that the construction used can be adapted to trees T (I) of arbitrary height
≥ 2 by simply adding a path of desired length to r. This yields the following corollary.

Corollary 5.2.6. For every integer h ≥ 2 the rooted F-tree-recognition problem of LBFS
is NP-complete on weakly chordal graphs for spanning trees of height h.

Note that for spanning trees of height 1 the F-tree recognition problem is trivial for
any search. As the class of weakly chordal graphs is closed under the insertion of leaves,
Theorem 5.0.2 implies the following corollary.

Corollary 5.2.7. The unlabelled F-tree-recognition problem of LBFS is NP-complete
on weakly chordal graphs.

5.3 NP-Completeness for F-trees of MNS, MCS and LDFS

As we have done for LBFS, we will show that the F-tree problems for MNS, MCS and
LDFS are NP-complete.

Theorem 5.3.1. The F-tree-recognition problem of MNS, MCS and LDFS is NP-
complete on weakly chordal graphs.

For the proof we construct a polynomial reduction from 3-SAT. Let I be an instance
of 3-SAT. We construct the corresponding graph G(I) as follows (see Figure 5.3 for an
example): Let X = {x1, . . . , xk, x1, . . . , xk} be the set of vertices representing the literals
of I. The edge-set E(X) forms the complement of the matching in which xi is matched
to xi for every i ∈ {1, . . . , k}. Let C = {c1, . . . , cl} be the set of vertices representing
the clauses of I. The set C is independent in G(I) and every ci is adjacent to each
vertex of X, except those representing the literals of the clause associated with ci for
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Figure 5.3: The NP-completeness construction for the tree-recognition problem of MNS.
The depicted graph is G(I) for I = (x1∨x2∨x3)∧(x1∨x3∨x4)∧(x1∨x2∨x3).
In both boxes only non-edges are displayed by dashed lines. The connection
of a vertex with a box means that the vertex is connected to all vertices in
this box. Tree edges are depicted by thick edges.

every i ∈ {1, . . . , l}. Additionally, we add the vertices r, p, q, a, b and t. The vertices
r, p, q and a are adjacent to all literal vertices and all clause vertices and b is adjacent
to all literal vertices. Finally, we add the edges ab, ap, aq, bq, br, bt, pr, qr and qt. The
spanning tree T (I) of G(I) consists of all edges incident to r and the edges pa and bt.

We first state two lemmas which specify properties that must hold for any search order
of MNS (MCS) that produces T (I) as an F-tree of G(I).

Lemma 5.3.2. If MNS (MCS, LDFS) generates the F-tree T (I) on G(I), it chooses b
before every clause vertex ci.

Proof. If we take the vertex q before b, we will insert the edge qt to the search tree,
which is not an element of T (I). Thus, this is not allowed in a search that generates
the F-tree T (I). The neighbourhood of b is properly contained in the neighbourhood of
q. Furthermore, q is adjacent to each clause vertex, while b is adjacent to none of them.
Hence, if vertex ci is taken before b, then the label of q will always be greater than the
label of b in both MNS and MCS and both searches will take q before b.

Lemma 5.3.3. Let σ be an MNS (MCS, LDFS) ordering of G(I) that generates the
F-tree T (I). Then σ(1) = r, σ(2) = p and σ(i) for 3 ≤ i ≤ k + 2 forms an arbitrary
assignment of the variables (not necessarily satisfying).

Proof. Any MNS resulting in the search tree T (I) must start in r, since every other
vertex is incident to an edge in G(I) which is not an element of T (I). Since a is
adjacent to every neighbour of r in G(I) but only to p in T (I), the search has to choose
p as the next vertex. Now the literal vertices and the clause vertices have the unique
maximal label, since they were labelled both by r and p and every other vertex was
labelled by at most one of these two vertices. Because of Lemma 5.3.2, we cannot take
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a clause vertex. Thus, we have to take a literal vertex. With the same argumentation
it follows that we have to take a whole assignment, since the literal vertices of variables
whose two literal vertices have not yet been chosen always have the unique maximal
label.

Now we present both directions of the proof of Theorem 5.3.1 in two separate lemmas.

Lemma 5.3.4. If I has a satisfying assignment A, then T (I) is an F-tree of MCS on
G(I) and therefore, also an F-tree of MNS.

Proof. In the following, we give a search order which results in the desired search tree
T (I). We start with r and then we take p. By doing this, we insert every edge of T (I)
apart from bt to the search tree. Next, we take the literal vertices which correspond to
the assignment A in an arbitrary order. As a result, the labels of all literal vertices and
of the vertices a, b and q are equal to k + 1. Since A is satisfying, each clause vertex
was not labelled by at least one of the chosen literal vertices. Hence, it has a label
≤ k + 1 and we can take b as the next vertex and insert the last missing edge of T (I).
The remaining vertices can be chosen in any possible order, as they do not influence the
search tree.

Lemma 5.3.5. If I has a satisfying assignment A, then T (I) is an F-tree of LDFS on
G(I).

Proof. As in proof of Lemma 5.3.4, we present a search order of LDFS which results
in the search tree T (I). We start with r and then we take p. By doing this, we insert
every edge of T (I) apart from bt to the search tree. Next, we take the literal vertices
which correspond to the assignment A in an arbitrary order. Now the vertex a is the
only vertex that was labelled by the last k + 1 chosen vertices. Thus, we have to take
a as the next vertex. Afterwards b and q are the only vertices that were labelled by the
last k+ 1 chosen vertices. Furthermore, the labels of b and q are identical at this point.
Thus, we can take b as the next vertex inserting the last missing edge of T (I). The
order of the remaining vertices has no influence on the search tree.

Lemma 5.3.6. If I does not have a satisfying assignment, then T (I) is not an MNS
F-tree of G(I) and therefore, also not an MCS or LDFS F-tree.

Proof. Assume that T (I) is an MNS F-tree of G(I). By Lemma 5.3.3 we have to start
with r, then p and next, the literal vertices that correspond to an arbitrary assignment.
Since this assignment cannot be satisfying, there is at least one clause vertex which was
labelled by every vertex chosen up till now. In the label of every non-clause vertex at
least one chosen vertex is missing. Thus, we have to visit a clause vertex next. This
contradicts Lemma 5.3.2.

To conclude the proof of Theorem 5.3.1, it remains to show that G(I) is weakly chordal
for every 3-SAT instance I.

Lemma 5.3.7. For every instance I of 3-SAT the graph G(I) is weakly chordal.
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Proof. To begin with, we will use Lemma 0.3.7 to delete some vertices which cannot be
part of a cycle of length ≥ 5 in G(I) or its complement. We can delete t, since it is
simplicial. Now the vertices r and a are adjacent to every other vertex and therefore,
we can delete these as well. In the resulting graph we can use the same argumentation
to delete q and p. The remaining graph only contains the literal vertices, the clause
vertices and b. Since xi and xi form a two-pair for every 1 ≤ i ≤ k, we can add the edges
xixi, due to Lemma 0.3.6. The resulting graph is a split graph, where X ∪{b} forms the
clique and C forms the independent set. Thus, it is weakly chordal.

Theorem 5.3.1 follows immediately from Lemma 5.3.4, Lemma 5.3.5, Lemma 5.3.6
and Lemma 5.3.7. Using the same arguments as in the case of the F-tree recognition
problem of LBFS, this also yields the NP-completeness of the rooted problem.

Corollary 5.3.8. For every integer h ≥ 2 the rooted F-tree-recognition problem of MNS,
MCS and LDFS is NP-complete on weakly chordal graphs for spanning trees of height h.

As the class of weakly chordal graphs is closed under the insertion leaves, we can also
give the following corollary.

Corollary 5.3.9. The unlabelled F-tree-recognition problem of MNS, MCS and LDFS
is NP-complete on weakly chordal graphs.

5.4 Search Trees on Chordal Graphs

In the previous sections, we have seen that the recognition of F-trees is hard for almost
all studied searches apart from BFS, even if the input is restricted to weakly chordal
graphs. This raises the question whether the same is true if we restrict the input of the
problem to chordal graphs. In fact, we will show that for chordal graphs it is possible to
state a polynomial time algorithm for the F-tree recognition problem for most searches.
This yields a nice boundary of complexity between the classes of weakly chordal and
chordal graphs.

Furthermore, when restricting to chordal graphs, it is also possible to give some pos-
itive algorithmic results regarding the recognition of L-trees for searches other than
(L)DFS and BFS. We will see that in chordal graphs the search trees turn out to be
DFS-trees with additional properties. All of these results are based on the fact that
in chordal graphs all MNS-type searches compute elimination orders, as was shown by
Corneil and Krueger [37]. As this fact will be the defining feature of the search trees com-
puted by these searches on chordal graphs, we will gather some information on perfect
elimination orders in the following.

In [129], Shier defines a graph search (MEC) which is able to compute all perfect
elimination orderings of a chordal graph. The MEC search forms a generalisation of
MNS that chooses an element with maximal label in some connected component of the
subgraph induced by the remaining vertices. This not only shows that on a chordal
graph a perfect elimination ordering behaves like a graph search, in the sense that if
(v1, . . . , vn) is a perfect elimination order of G, then for any i ∈ {1, . . . , n} the graph
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G[v1, . . . , vi] is connected, the analysis of this algorithm also yields the following useful
lemma which is taken from the proof of Theorem 2 in [129].

Lemma 5.4.1 (Shier [129]). Let G = (V,E) be a chordal graph and let σ = (v1, . . . , vn)
be a PEO of G. Let C be the connected component of G−{v1, . . . , vi−1} which contains
vi. Then for every w ∈ C it holds that N(w) ∩ {v1, . . . , vi−1} ⊆ N(vi).

The next lemma shows that in any perfect elimination order of a chordal graph the
vertices of an induced path occur in exactly the order of the path.

Lemma 5.4.2. Let G = (V,E) be a chordal graph and let σ = (v1, . . . , vn) be a perfect
elimination order of G. Let vi1 , . . . , vik be an induced path of G with i1 = min{i1, . . . , ik}.
Then it holds that i1 < i2 < . . . < ik.

Proof. By definition we see that i1 < i2. Assume ij is the first index for which ij > ij+1.
Then vij is to the right of vij−1 and vij+1 which are not adjacent. This is a contradiction,
as it implies that vij is not simplicial in the graph that is induced by vij and the vertices
to the left of it in σ.

We will see that most searches which compute a perfect elimination ordering have a
strong property concerning the connected components of unvisited vertices.

Definition 5.4.3. A connected graph search A is said to have the component-neighbour
property if the following holds: Let σ∗ = (v1, . . . , vk) be the prefix of a search order σ
of A on the chordal graph G = (V,E) and let x and y be two vertices of G which lie in
the same component of G− {v1, . . . , vk}. If (v1, . . . , vk, y) is the prefix of a search order
of A on G and (v1, . . . , vk, x) is not, then there is a vertex vi with 1 ≤ i ≤ k such that
viy ∈ E but vix /∈ E.

Lemma 5.4.1 implies the following observation.

Observation 5.4.4. The search defined by perfect elimination orders, as well as LBFS,
LDFS, MCS and MNS fulfil the component-neighbour property on chordal graphs.

The results in the next sections hold not only for PEOs and MNS-type searches,
but for all searches which compute a PEO and which fulfil the component-neighbour
property. This motivates the following definition: we call a graph searching scheme A
whose output is a perfect elimination order for any chordal graph and which fulfils the
component-neighbour property an edge-forced PEO-finder (EFPF).

5.4.1 F-Trees on Chordal Graphs

As the a perfect elimination order is a connected search order on a chordal graph, we can
define an F-tree for these orders in the same way we have done for other graph searches.
We will proceed to show that these trees are equivalent to the F-trees of LBFS, LDFS,
MCS and MNS on chordal graphs, as well as those of any search which is an EFPF.
This is surprising, due to the fact that even on the class of split graphs (a subclass of

134



5.4 Search Trees on Chordal Graphs
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Figure 5.4: This is an example of a split and thus chordal graph in which all examined
searches differ in the same way as they do on general graphs. Note that
(b, e, c, d, g, f, a) is an MNS order which is neither a BFS, MCS nor LDFS
order. On the other hand, one can see that (b, c, d, e, f, g, a) is an MCS order
that is neither a BFS nor an LDFS order, while (b, c, d, e, g, f, a) is an LDFS
order which is neither an MCS nor a BFS order, and (b, c, d, e, a, f, g) is an
LBFS order that is neither an MCS nor an LDFS order. Furthermore, it
holds that (b, c, a, d, e, f, g) is a BFS order that is not an MNS order, while
(b, e, c, d, f, g, a) is both an MCS and an LDFS order that is not a BFS order.

chordal graphs) the search orders of all of these search schemes differ, as can be seen in
Figure 5.4.

The following characterisation of these trees is an important ingredient for the recog-
nition algorithm.

Lemma 5.4.5. Let G = (V,E) be a connected chordal graph and let T be a spanning
tree of G with root r. Let σ = (r = v1, . . . , vn) be the a perfect elimination order of G.
Then T is the F-tree of σ if and only if every edge incident to r in G is part of T and σ
is the linear extension of a partial order π that is defined as the reflexive and transitive
closure π of the binary relation π′ constructed as follows:

1. Let w 6= r be a vertex of G and v its parent in T . Then v ≺π′ w.

2. If xy is an edge in G− T and v is the parent of x, then v ≺π′ y. Furthermore, if
v and y are not adjacent, then x ≺π′ y.

Proof. Assume σ is the linear extension of π and all edges incident to r are part of T .
Assume for contradiction that T ′ 6= T is the F-tree of σ. Then there must be an edge
xy in G− T which is part of T ′ and this is edge is not incident to r. Therefore, x has a
parent v and y has a parent w. By definition of π it follows that both v and w are left
to x and y in σ. Thus, the first neighbour of x in σ cannot be y and the first neighbour
of y in σ cannot be x. This is a contradiction to xy being part of the F-tree of σ.

Now assume that T is the F-tree of σ. It is clear that every edge incident to r must
be in T , since σ(1) = r. Furthermore, it is also clear that the parent v of x must be to
the left of x in σ per definition. Let xy be an edge in G− T and let v be the parent of
x in T . If v is to the right of y in σ, then v cannot be the parent of x. Furthermore, if
vy /∈ E it is not possible that v and y are to the left of x since otherwise σ would not be
a PEO. Therefore, x must be to the left of y.
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Now we are in a position to fully characterize F-trees for any search scheme that is
an EFPF.

Theorem 5.4.6. Let G = (V,E) be a connected chordal graph, let T be a spanning tree
of G and let r be the root of T . If the search scheme A is an EFPF, then T is an F-tree
of A of G rooted in r if and only if:

1. Every edge incident to r in G is part of T .

2. There is a partial order π of the vertices of G which fulfils the conditions of
Lemma 5.4.5.

3. The partial order π can be extended to a partial order π∗ such that the following
holds: If x is the immediate predecessor of y in π∗ and there is a vertex z ∈ V with
yz ∈ E but xz /∈ E then y ≺π∗ z.

Proof. Assume that there is a partial order π∗ of the vertices and a spanning tree T
of G which fulfil Conditions 1, 2 and 3 of the theorem. We will show that there is a
search order σ of A on G which is a linear extension of π∗. Due to Lemma 5.4.5, the
F-tree of σ must then be T . Due to construction, r is a minimal element of π∗, and we
can start our A-search in r. In the following, we modify A such that under all vertices
it is allowed to take next it takes a minimal element of π∗. If there always is such an
element, it is clear that the constructed search order is a linear extension of π∗. Assume
for contradiction that there is a step in A where there is no such vertex. Consider the
first step in which this occurs and let y be a vertex that can be chosen by A in this step
which is as small as possible in π∗. Since y is not minimal in π∗, there is a vertex x which
is an immediate predecessor of y in π∗ and which cannot be taken by A. Note that in
the construction of π and π∗ a relation between two vertices is only added to the partial
order if these two vertices are adjacent, or if there is at least one vertex between them
in the order already. Furthermore, by taking the reflexive and transitive closure we only
add a relation between two vertices that are not immediate predecessors of each other.
This implies that any immediate predecessor in π∗ is always adjacent to its successor
and thus x must be adjacent to y. Therefore, by the component-neighbour condition
there must be a vertex z which was already taken by A and which is adjacent to y but
not to x. However, this is a contradiction, as in this case Condition 3 would imply that
the relation y ≺π∗ z is in the partial order, and z would not have been minimal in π∗

when it was taken by A. Therefore, A can always take a minimal element of π∗, creating
T as its F-tree.

For the other direction of the proof, we assume that T is the F-tree of the search order
σ of A on G rooted in r. We need to check the three conditions of the theorem. Due to
Lemma 5.4.5, T fulfils Condition 1 and σ is a linear extension of the partial order π of
Condition 2. We will show that σ must also be a linear extension of π∗. Assume there are
vertices x and y such that x is an immediate predecessor of y in π and there is a vertex
z to the left of y in σ such that yz ∈ E but xz /∈ E. As explained in the previous case,
by the construction of π, the vertex y must be a neighbour of its immediate predecessor
x. Furthermore, since σ is a linear extension of π we know that x is also to the left of y
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in σ. This is a contradiction to the fact that σ is a PEO of G, since y is not simplicial in
the graph induced by the vertices to the left of y in σ. Therefore, y must be to the left
of z in σ. Since there is an edge between the two vertices y and z, after the insertion of
y ≺π∗ z it still holds that every vertex is adjacent to its immediate predecessors. Hence,
this argument can be repeated recursively. It follows that σ must be the linear extension
of a partial order π∗ that fulfils Condition 3.

Using this characterisation we can decide the F-tree problem for any EFPF in poly-
nomial time.

Theorem 5.4.7. On chordal graphs the rooted F-tree recognition problem of every
EFPF, in particular of LBFS, LDFS, MCS and MNS, can be solved in time O(nm).

Proof. We have to check the conditions of Theorem 5.4.6. It is obvious that Condition 1
can be checked in linear time. We find the partial order π of Condition 2 by creating a
directed graph Gπ. At first for every tree edge vw, where v is the parent of w we insert
v → w to Gπ. For every non-tree edge we can check Condition 2 of Lemma 5.4.5 in time
O(n) and insert the corresponding edges to Gπ. Thus, we can construct Gπ in O(nm).
Note, that Gπ has only O(m) edges. Now we can check whether Gπ is acyclic in linear
time. If it is not, there is no partial order π that fulfils the conditions of Lemma 5.4.5
and T is not an F-tree of A. Otherwise we check whether Condition 3 of Theorem 5.4.6
holds. For this we have to check for every edge x → y in Gπ whether there is a vertex
z that is adjacent to y but not to x in G. If so we insert the edge y → z to Gπ. This
costs us O(n) many steps. This we repeat as long as there is still such an edge. At the
end we still know that Gπ has only O(m) edges and we can again check whether it is
acyclic. If so T is an F-tree of A of G, otherwise it is not. By the explanation above
the running time of the algorithm is in O(nm).

Note that the described algorithm does not use the search A. Thus, it can be possible
to solve the F-tree recognition problem of A faster than we can compute an arbitrary
search order of A. Furthermore, it holds that all EFPFs compute the same F-trees.

Corollary 5.4.8. For all EFPFs the set of rooted F-trees of a chordal graph is the same.

One can also consider connected searches that compute PEOs on chordal graphs but
are not EFPFs. An example would be a version of MNS with a special tie breaking rule,
as can be seen in Figure 5.5a). However, as the search defined by PEOs is an EFPF,
every search algorithm that computes PEOs on chordal graphs, always has an F-tree
that can also be computed by any EFPF.

We conclude this section by showing that the unrooted F-tree recognition problem of
EFPFs on chordal graphs can be solved with the same time complexity as the rooted
problem. In contrast to MNS-type searches, BFS does not necessarily compute a PEO
on a chordal graph and is thus not an EFPF. In fact, Figure 5.1a) shows an example of
a chordal graph with a spanning tree that is an F-tree for BFS and that is not an F-tree
for LBFS or MNS. However, if it is known that a given spanning tree of a chordal graph
is an F-tree for LBFS, one can show that this tree is an F-tree for LBFS with a fixed
root r if and only if this is also the case for BFS.
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1

2 3

4

a) b)

r2

r1
r3

Figure 5.5: The graph in a) is an example of a chordal graph with a valid F-tree for any
EFPF. However, using MNS, with the added tie-break that vertices with
lower numbering are prioritized, it is impossible to achieve this search tree,
as the vertex labelled with 2 is always chosen before 3. The graph in b) is
not chordal and the denoted spanning tree is an F-tree of BFS for the roots
r1, r2 and r3, while for LBFS the only possible F-tree is rooted in r1.

Proposition 5.4.9. Let G = (V,E) be a chordal graph. Under the condition that T is
an F-tree of LBFS of G, it is an F-tree of LBFS rooted in r if and only if it is an F-tree
of BFS rooted in r.

Proof. In the proof of Theorem 4) in [112] Manber showed that the potential roots of an
F-tree of BFS tree T induce a subtree of T in G. We call this subtree the core subtree TC
of T . For every vertex v in TC the subtree Tv of T which is induced by the descendants
of v of T rooted in v which are not part of TC is called the side subtree of v. We claim
that all non-tree edges of G lie within some side subtree. Assume there is an edge xy
between the two side subtrees Tv and Tw. Manber [112] showed that v and w must be
adjacent and x and y must have the same distance to the root in Tv and Tw, respectively.
Assume that x and y are the adjacent vertices of Tv and Tw with the smallest distance
to the root. Then the edges xy and vw together with the paths between v and x in Tv
and w and y in Tw build an induced cycle of length at least four. This is a contradiction
to G being chordal.

Since every non-tree edge is part of a side subtree, it holds for every r ∈ TC that T is
an F-tree of LBFS of G rooted in r.

Note that this proposition does not hold for all graphs in general. In Figure 5.5b) we
see a graph that is not chordal with a spanning tree whose possible roots for being a
BFS F-tree are different to those for LBFS.

Since the roots of an F-tree of BFS can be found in linear time [112], we can solve the
unrooted tree recognition problem of LBFS and, due to Corollary 5.4.8, also of every
other EFPF, with the same time complexity as the rooted problem.

Corollary 5.4.10. On chordal graphs the F-tree recognition problem of every EFPF, in
particular of LBFS, LDFS, MCS and MNS, can be solved in time O(nm). Furthermore,
it is possible to compute all roots of such a tree in linear time.
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r

Figure 5.6: The tree denoted by the thick edges is an L-tree of LBFS, MCS and MNS
rooted in r. However, it is not an L-tree of DFS.

5.4.2 L-Trees on Chordal Graphs

In this section, we will show that the L-tree recognition problems of LBFS, LDFS, MCS
and MNS can be solved in linear time on chordal graphs. Furthermore, as in the previous
section, we will prove that all these searches compute the same L-trees. We begin by
showing that L-trees of perfect elimination orderings and, therefore, L-trees constructed
by the four searches fulfil a strong structural property.

Lemma 5.4.11. Let T be an L-tree of the chordal graph G = (V,E) constructed by the
search order σ = (v1, . . . , vn) which is a perfect elimination order. Let vi be arbitrary
and C be the component of G−{v1, . . . , vi−1} which contains vi. Then every component
of C − vi contains exactly one child of vi in T .

Proof. We first show that there is at most one child of vi in every component of C − vi.
Assume there are two children u and w in the same component C ′ of C−vi. Without loss
of generality, we assume that u is the σ-leftmost vertex in C ′. Since C ′ is a connected
component, there is an induced path between u and w in C ′. Due to Lemma 5.4.2, the
neighbour of w in this path is to the left of w but to the right of vi in σ. Therefore, w
cannot be connected to vi in the L-tree T of σ and there is at most one child of vi in C ′.

Due to the fact that C is a connected component, we see that vi has a neighbour in
every component C ′ of C − vi.

This lemma implies that every edge not in the L-tree must connect a vertex to one of
its ancestors. Due to Lemma 5.1.1, the tree is an L-tree of DFS.

Corollary 5.4.12. Let σ be a perfect elimination ordering of a chordal graph G and
let T be the L-tree of σ. Then for every edge xy ∈ G − T it holds that either x is an
ancestor of y or y is an ancestor of x, i.e., T is an L-tree of DFS on G.

Since LBFS, MCS and MNS compute perfect elimination orderings on chordal graphs,
we know that their L-trees on chordal graphs are L-trees of DFS. Note that the converse
is not true in general. Furthermore, this does not hold for graphs in general, as the
example in Figure 5.6 shows.

As in the result for F-trees of chordal graphs, we will show that all EFPFs compute
the same L-trees on chordal graphs.

Theorem 5.4.13. For all EFPFs the set of rooted L-trees of a chordal graph is the
same.
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Proof. Let G = (V,E) be a chordal graph, let σ = (v1, . . . , vn) be a perfect elimination
ordering and let T be the L-tree of σ. Furthermore, let A be an arbitrary EFPF. Assume
A has chosen vertex vi and the path from v1 to vi in the L-tree of A is the same as in T .
Let x be a child of vi in T and let C be the component of G−{v1, . . . , vi} which contains
x. Note that, due to Corollary 5.4.12, all neighbours of C lie on the path between v1
and vi and are elements of the set {v1, . . . , vi}. Assume for contradiction that x cannot
be the first vertex of C which is taken by A and let y be a vertex which can be the
first vertex of C. Since A fulfils the component-neighbour property, there must be a
vertex vj ∈ {v1, . . . , vi} which is adjacent to y but not to x. This is a contradiction to
Lemma 5.4.1. Therefore, there is a search order of A which has T as its L-tree.

We will now show that there is a simple algorithm that solves the L-tree recognition
problem of all EFPF searches.

Theorem 5.4.14. On chordal graphs the rooted L-tree recognition problem of all EFPFs,
in particular of LBFS, LDFS, MCS and MNS, can be solved in linear time.

Proof. Due to Theorem 5.4.13, it is sufficient to present an algorithm for the L-tree
problem of one EFPF. We will use a special version of LBFS to solve the problem:
under all vertices which have maximal label in LBFS choose a vertex whose last visited
neighbour is its parent in T . If there is no such vertex, we will show that T is not an
L-tree of LBFS rooted in r. To this end, consider the first step of LBFS where this
happens and let v be a vertex with maximal label whose distance to the root of T is
minimal.

Case 1: The parent of v in T , say w, has already been visited by LBFS.
Let Gw be the graph which is constructed by deleting w and all vertices that were taken

before w and let C be the component of Gw which contains v. Since the neighbour of v
visited last is not w, there must be a vertex in C which is visited before v. Let x be the
vertex visited first in C. Due to Lemma 5.4.1, this implies that N(v)∩S ⊆ N(x), where
S is the set of vertices visited before x. Hence, x is adjacent to w in G. Furthermore,
by assumption the search has always chosen a vertex whose last visited neighbour is its
parent in T , up until the choice of v. This implies that x is a child of w in T . Therefore,
w has two children in T which lie in the same component of Gw. Due to Lemma 5.4.11,
T cannot be an L-tree of LBFS on G.

Case 2: The parent of v in T , say w, has not yet been visited by LBFS.
Then, due to the minimality of the distance of v to the root, the label of w is not

maximal. Therefore, there is a vertex x that has labelled v and not w. Due to Corol-
lary 5.4.12, all neighbours of v that have been taken so far must be an element of the
path between the root and v in T . Therefore, they must be taken by every search of
LBFS starting in r which constructs T as its L-tree. This means v will always be taken
before w and, therefore, T cannot be constructed by LBFS.

Thus, we have shown that the modified LBFS decides the L-tree recognition problem
of LBFS on chordal graphs. It remains to show that its running time is linear in the size
of the graph. We use the standard implementation of LBFS with partition refinement.
For every vertex we save its parent in T and its last visited neighbour in the run of
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a b

Figure 5.7: The path denoted by the thick edges is an L-tree of DFS on this biconnected
chordal graph. Both a and b can be the root of the tree. The path is also an
L-tree of a perfect elimination ordering of the graph. However, in this case
only a can be the root of the tree, since a is not simplicial.

LBFS. After the neighbourhood of the last chosen vertex v refined the partition we
iterate through the neighbours of v a second time. If v is the parent of the neighbour w
in the tree T , w is pulled to the front of its partition class. Therefore, if there is a vertex
with maximal label whose last visited neighbour is its parent in T , then the first vertex
of our partition must be such a vertex. This can be checked in constant time. Since the
neighbourhood of every vertex is visited only a constant number of times, the algorithm
has an overall running time which is linear in the size of the graph.

It remains to show that also the unrooted problem can be solved in linear time. For
this we adapt the idea which Korach and Ostfeld [100] have used to recognize L-trees of
DFS. They showed that an L-tree of DFS on a biconnected graph has either exactly one
vertex which can be the root of the tree or it is a path. In that case, both end points of
the path can be the root of the tree. Due to Corollary 5.4.12, the L-trees of EFPFs are
also L-trees of DFS. Therefore, an L-tree of an EFPF on a biconnected graph can have
at most two roots. Note that for L-trees of EFPFs which are paths it does not hold that
both endpoints can be the root. We present a counterexample in Figure 5.7.

The idea of the algorithm is as follows. We first identify the maximal biconnected
components (blocks) of the graph G. For every block Gi we consider the subtree Ti of
T which is induced by Gi and check in time linear in the size of the block whether Ti is
an L-tree of DFS. If this is not the case, then, due to Corollary 5.4.12, Ti cannot be an
L-tree of an EFPF and, therefore, T cannot be an L-tree of an EFPF. If Ti is an L-tree
of DFS then we can find all possible roots of Ti in linear time [100]. Since there can be
at most two roots, we only have to solve the rooted recognition problem of L-trees of
EFPFs on Ti a constant number of times. If this fails for all roots, we know that Ti is
not an L-tree for any EFPF and, therefore, T is not an L-tree of any EFPF. If for all
Gi it holds that Ti is an L-tree of EFPFs, we construct a directed graph B = (VB, EB)
as follows. For every block Gi of G there is vertex vi ∈ VB. Furthermore, for every cut
vertex v of G there is a vertex v in VB. For an arbitrary block Gi of G and a cut vertex
v of G which is an element of Gi we add the directed edge vi → v to EB. If v can be
the root of Ti we additionally insert the direct edge v → vi to EB. We can show the
following lemma.

The following lemma is essentially the same as Lemma 3.3 in [100] and has just been
adapted to our current setting.

Lemma 5.4.15 (based on Lemma 3.3 in [100]). Let G = (V,E) be a graph, T be a
spanning tree of G and G1, . . . , Gk the blocks of G. T is an L-tree of some EFPF rooted
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in the vertex r ∈ Gi if and only if there is directed path from vi to every vertex vj in B.

We can find all vertices of B which fulfil this property in linear time [100]. Therefore,
the following holds.

Corollary 5.4.16. On chordal graphs the L-tree recognition problem of every EFPF, in
particular of LBFS, LDFS, MCS and MNS, can be solved in linear time. Furthermore,
it is possible to compute all roots of such a tree in linear time.

5.5 Recognising F-trees on Split Graphs in Linear Time

We have seen in the previous section that on chordal graphs the set of F-trees is the
same for any EFPF, in particular for LBFS, LDFS, MCS and MNS, even though this
does not hold for the respective search orders (see Figure 5.4). For split graphs, however,
this also holds for BFS and we exploit this fact to derive a linear time algorithm for split
graphs from the recognition algorithm for F-trees of BFS [112].

Theorem 5.5.1. A tree T is an F-tree of BFS on a split graph G if and only if it is an
F-tree of an EFPF, in particular of LBFS, LDFS, MCS and MNS.

Proof. Let G = (V,E) be a split graph and let T be an F-tree for BFS on G, generated
by the order τ . Let I = {i1, . . . , i`} be the independent set and C = {c1, . . . , ck} be the
clique of G. We show that there is an MNS ordering σ that generates a search tree that
coincides with T which resolves the question for all EFPFs, due to Corollary 5.4.8.

Suppose τ starts with a clique vertex, without loss of generality c1, that is, c1 is the
root of the search tree. Then, all other clique vertices c2 to ck are in the first layer of the
F-tree, and additionally, all independent set vertices which are adjacent to c1 are in the
first layer as well. Without loss of generality, i1 to iq are adjacent to c1. Then iq+1 to i`
are in the second layer of the tree T . Furthermore, suppose c2 to ck are indexed in the
order of occurrence in the BFS order. Note that BFS may choose i1 to iq in arbitrary
order before the last clique vertex is chosen.

Now, we construct an MNS order σ, such that the F-tree of σ is T . We simply pick c1
to ck in ascending order, that is, we start with the same root c1, followed by the clique
vertices in unchanged order. Since all vertices in the clique have the same neighbourhood
of visited vertices at every step and none of the ix has a larger neighbourhood, this does
not contradict the MNS search paradigm. Finally, we add the independent set vertices
to σ. Here, we have to choose the independent vertices with larger neighbourhoods first.
As the whole neighbourhood of each of these vertices is already chosen, this does not
change the edges of the tree, i.e., the first visited neighbour. Since the neighbours of the
independent set vertices are visited in the same order as in the BFS, the same F-tree T
is generated.

Now suppose that τ starts with an independent vertex and, without loss of generality,
we label the root of the search tree T by i1. Then the neighbours of i1, say c1 to cq
are in the first layer of the search tree. All other clique vertices and all independent set
vertices which are neighbours of c1 to cq are in the second layer of the F-tree T . Finally,
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all remaining independent set vertices are the in third layer. Again, note that c1 to ck
are assumed to be indexed in the order of occurrence in the BFS order.

Again, a similar order σ, now starting with i1, followed by c1 to ck in order of the
indices, and afterwards followed by i2 to i`, respecting neighbourhood inclusions, yields
the same tree T and it is an MNS order analogous to the above argumentation.

Due to Corollary 5.4.8, every F-tree of MNS is also an F-tree of LBFS, and thus also
of BFS. As the F-trees for all EFPFs are the same on any chordal and thus split graph,
due to Corollary 5.4.8, this concludes the proof of the theorem.

Note that the F-trees of DFS differ from the F-trees of BFS on split graphs. Both
the rooted and the unrooted F-tree problem can be solved in linear time for BFS [112],
and, therefore, this also holds for the other searches.

Corollary 5.5.2. The (rooted) F-tree problem of any EFPF, in particular for LBFS,
LDFS, MCS and MNS, can be solved in linear time on split graphs.

5.6 Conclusion

We have shown that the F-tree problem is NP-complete for LBFS, LDFS, MCS and
MNS. Furthermore, we have given polynomial time algorithms for the L-tree problem
of LDFS and for both the F-tree and the L-tree problems of LBFS, LDFS, MCS and
MNS on chordal graphs. To the best of our knowledge, no hardness results for the L-tree
problem are known. Thus, the question arises whether the L-tree recognition problem
is easy in general for every graph search.

If we compare the complexity of both search tree problems with the end-vertex problem
(results here can be found in [9]), we see that in some cases the end-vertex problem is
harder than recognising graph search trees; for example the end-vertex problem is hard
for DFS on split graphs. However, there is no known combination of graph class and
search for which the end-vertex problem is easy, but the tree-recognition problem is hard.

Moreover, we have also considered the rooted search tree problem. As we have already
seen in Sections 5.0.1 and 5.1, if we can solve the rooted problem in polynomial time,
we can also solve the unrooted problem efficiently by solving it for every vertex as
the starting point of the search. Nevertheless, it could be possible that the unrooted
problem is easier than the rooted problem, i.e., maybe it is easy to find a search order
with arbitrary root that generates the tree, but it is NP-hard to find one that uses the
given root. For all cases discussed in this chapter, the results imply that both problems
have the same complexity status. However, there might be a combination of graph class
and search algorithm for which this is not the case.

As a second variant, we have considered the unlabelled problem, i.e., no labelled
spanning tree is given, but an unlabelled tree with a matching number of vertices. Thus,
we are looking for a search tree which is isomorphic to the given tree. Obviously, this
problem is NP-hard for L-trees of DFS, since it includes the hamiltonian path problem.
We have shown that this is not the case for graph classes closed under the insertion
of leaves. However, many important classes such as interval graphs or comparability
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graphs do not fulfil this property, and it remains open whether there is a non-trivial
combination of a search and a graph class where the unlabelled case is easy or even
easier than the labelled one.

Finally, the search tree recognition problem can be easily translated to the setting of
directed graphs and it is an interesting question whether this would lead to results that
differ significantly from the undirected case.

In the literature, spanning trees with special properties and corresponding optimisa-
tion problems are well studied. Examples are the maximum leaf spanning tree prob-
lem [68] and distance approximating spanning trees [120]. Are there graph classes where
search trees of the investigated graph searches solve or at least lead to an approximate
solution of such problems?
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powers of graphs. In Fabrizio d’Amore, Paolo Giulio Franciosa, and Alberto
Marchetti-Spaccamela, editors, Graph-Theoretic Concepts in Computer Science,
pages 166–180, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[53] Feodor F. Dragan, Falk Nicolai, and Andreas Brandstädt. Convexity and HHD-
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[78] Martin Grötschel, László Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. IIASA Collab. Proc. Ser. CP-81-S1,
511-546 (1981)., 1981.

[79] M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition re-
finement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing. Theor. Comput. Sci., 234(1-2):59–84, 2000. ISSN
0304-3975.

[80] Hugo Hadwiger, Hans Debrunner, and Victor Klee. Combinatorial geometry in the
plane. Courier Corporation, 2015.

[81] Torben Hagerup and Manfred Nowak. Recognition of spanning trees defined by
graph searches. Technical Report A 85/08, Universität des Saarlandes, 1985.
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1958. ISSN 0524-9007.
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Michel Morvan, editors, STACS 97, pages 499–510, Berlin, Heidelberg, 1997.
Springer. ISBN 978-3-540-68342-1.

153



5 Bibliography

[121] Srinivasa Rao Arikati and C. Pandu Rangan. Linear algorithm for optimal path
cover problem on interval graphs. Inf. Process. Lett., 35(3):149–153, 1990. ISSN
0020-0190.

[122] F. S. Roberts. Indifference graphs. Proof Tech. Graph Theory, Proc. 2nd Ann
Arbor Graph Theory Conf. 1968, 139-146 (1969)., 1969.

[123] D. J. Rose. Triangulated graphs and the elimination process. J. Math. Anal. Appl.,
32:597–609, 1970. ISSN 0022-247X.

[124] Donald J. Rose. Symmetric elimination on sparse positive definite systems and
the potential flow network problem. ProQuest LLC, Ann Arbor, MI, 1970. Thesis
(Ph.D.)–Harvard University.

[125] Donald J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. Graph Theory Comput., 183-217 (1972)., 1972.

[126] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM J. Comput., 5:266–283, 1976. ISSN 0097-5397;
1095-7111/e.

[127] Inc. SageMath. CoCalc Collaborative Computation Online, 2018.
https://cocalc.com/.

[128] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
10th annual ACM symposium on theory of computing, STOC’78, Dan Diego, CA,
USA, May 1–3, 1978, pages 216–226. New York, NY: Association for Computing
Machinery (ACM), 1978.

[129] D. R. Shier. Some aspects of perfect elimination orderings in chordal graphs.
Discrete Appl. Math., 7:325–331, 1984. ISSN 0166-218X.

[130] Wei-Kuan Shih and Wen-Lian Hsu. An 0(n log n+m log log n) maximum weight
clique algorithm for circular-arc graphs. Inf. Process. Lett., 31(3):129–134, 1989.
ISSN 0020-0190.

[131] Dale J. Skrien. A relationship between triangulated graphs, comparability graphs,
proper interval graphs, proper circular-arc graphs, and nested interval graphs. J.
Graph Theory, 6:309–316, 1982. ISSN 0364-9024; 1097-0118/e.

[132] Jeremy Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs.
Discrete Appl. Math., 59(2):181–191, 1995. ISSN 0166-218X.

[133] Jeremy P. Spinrad. Efficient graph representations., volume 19. Providence, RI:
American Mathematical Society (AMS), 2003. ISBN 0-8218-2815-0/hbk.

[134] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. (Teil I.). J. Reine
Angew. Math., 143:128–175, 1913. ISSN 0075-4102; 1435-5345/e.

154



5 Bibliography

[135] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1:146–160, 1972. ISSN 0097-5397; 1095-7111/e.

[136] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J. Comput., 13:566–579, 1984. ISSN 0097-5397; 1095-7111/e.

[137] Robert Endre Tarjan. Edge-disjoint spanning trees and depth-first search. Acta
Inf., 6:171–185, 1976. ISSN 0001-5903; 1432-0525/e.

[138] Alan Tucker. Characterizing circular-arc graphs. Bull. Am. Math. Soc., 76:1257–
1260, 1970. ISSN 0002-9904; 1936-881X/e.

[139] Alan Tucker. Matrix characterizations of circular-arc graphs. Pac. J. Math., 39:
535–545, 1971. ISSN 0030-8730.

[140] Alan Tucker. Structure theorems for some circular-arc graphs. Discrete Math., 7:
167–195, 1974. ISSN 0012-365X.

[141] Alan Tucker. Circular arc graphs: New uses and a new algorithm. Theor. Appl.
Graphs, Proc. Kalamazoo 1976, Lect. Notes Math. 642, 580-589 (1978)., 1978.

[142] Alan Tucker. An efficient test for circular-arc graphs. SIAM J. Comput., 9:1–24,
1980. ISSN 0097-5397; 1095-7111/e.

[143] J. Urrutia and F. Gavril. An algorithm for fraternal orientation of graphs. Inf.
Process. Lett., 41(5):271–274, 1992. ISSN 0020-0190.

[144] M. L. J. van de Vel. Theory of convex structures. Amsterdam: North-Holland,
1993. ISBN 0-444-81505-8/hbk.

[145] Vijay V. Vazirani. Approximation algorithms. Berlin: Springer, 1999. ISBN 3-
540-65367-8/hbk.

[146] V. I. Voloshin. Properties of triangulated graphs. Operations research and pro-
gramming, Interuniv. Collect., Kishinev 1982, 24-32 (1982)., 1982.

[147] Douglas B. West. Introduction to graph theory. 2nd ed. New Delhi: Prentice-Hall
of India, 2nd ed. edition, 2005. ISBN 81-203-2142-1.

[148] Yuli Ye and Allan Borodin. Elimination graphs. ACM Trans. Algorithms, 8(2):23,
2012. ISSN 1549-6325; 1549-6333/e.

155





Index

a-b-separator, 10

k-regular, 9

1-perfect graph, 91

1-perfectly orientable graph, 91

F-free, 10

F-Tree recognition problem, 123

F-tree, 123

L-Tree recognition problem, 123

L-tree, 123

acyclic, 11

adjacency of edges, 97

adjacent, 9

admissible vertex, 19, 53

agree with forcing, 69

altered knotting graph, 74

anti-exchange property, 35

anti-matroid, 29

articulation vertex, 11

asteroidal triple, 19

asteroidal triple free, 19

AT-free, 19

AT-free order, 49, 54

automorphism of a graph, 10

avoid, 10

avoid interior of a path, 41

avoidable edge, 95

avoidable path, 85

avoidable vertex, 40, 83

bad claw, 79

basis, 29

BFS, 21, 22

bilateral asteroidal triple free graph, 67

bipartite, 11

bipartition, 11

bisimplicial edge, 95

bisimplicial elimination ordering, 92

bisimplicial vertex, 92

blobs, 74

breadth first search, 21

bridge, 11

Carathéodory number, 30

chord, 10

chordal bipartite graphs, 95

chordal graph, 15

chordless, 10

Chvátal Property, 34

Chvátal property, 34

circuit, 10

circular-arc graph, 19

claw, 10

clique, 10, 12

close a cycle, 10

closed neighbourhood, 9

coAT-free, 19

cocomparability graph, 16

cocomparability order, 17

comparability graph, 16

complement of a graph, 11

component-neighbour property, 134

connected, 10

connected component, 10

convex geometry, 35

convex hull, 29

convex set, 29

convexity ordering, 36

convexity space, 29

copoint, 30
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core subtree, 138
critical vertex, 63
cut, 11
cutvertex, 11
cycle, 10
cyclically orientabel graphs, 91

deficiency, 13
degree, 9
depth first search, 22
DFS, 22, 23
diameter, 11
digraph, 9
disconnected, 10
distance, 11
distance layer, 11
dominating pair, 11, 12, 19, 53
dominating path, 11, 12
dominating set, 11, 12
domination convexity, 53
domination convexity order, 49, 54
domination interval, 47, 53
domination problem, 12

eccentric, 11
eccentricity, 11
edge neighbours, 97
edge-forced PEO-finder, 134
edge-neighbourhood, 97
edge-transitive, 10, 101
EFPF, 134
elimination game, 13
end-vertex, 11, 89, 106
end-vertex problem, 106
extension, 31
extreme point, 29, 32

first-in tree, 123
force, 69
forcing class, 69
forcing relation, 69
forest, 11
fraternal graph, 91

generic search, 20, 21

geometric interval, 32

geometric interval operator, 32

geometric interval space, 32

graph, 9

graph automorphism, 101

graph colouring, 12

greedoid, 29

halfspace, 29

halfspace ordering, 36

hamiltonian cycle, 13

hamiltonian graph, 13

hamiltonian path, 13

Helly number, 30

hole, 91

hole-cyclic orientation, 91

hole-cyclically orientable, 91

idempotent law, 32

immediate predecessor, 11

in-neighbourhood, 10

in-semi-complete digraph, 94

in-tournament, 91

independent edges, 96

independent set, 10, 12

index, 59

induced subgraph, 9

intercept, 10

intercept the interior of a path, 41

interception convexity, 40

interception interval, 40

interceptionc convexity order, 42

intersection graph, 17

intersection of convexities, 30

interval, 31

interval convex, 32

interval convexity, 32

interval graph, 17

interval operator, 31

interval order, 18

interval space, 31

inversion law, 32

irredundant set, 30

isolated, 9
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isomorphic, 10

join, 30, 36
join-hull commutative, 30

last-in tree, 123
LBFS, 23, 24
LDFS, 25
lexcomp order, 55
lexicographic breadth first search, 23
lexicographic depth first search, 25
line convexity, 47
line convexity order, 48
line interval, 47

maximal degree, 9
maximal neighbourhood search, 27
maximum cardianlity search, 25
maximum clique, 12
maximum independent set, 12
maximum label search, 27
MCS, 25, 26
minimal degree, 9
minimal elimination ordering, 13
minimal separator, 11
minimal triangulation, 13
minimum fill-in, 13
Minkowski-Krein-Milman property, 35
MNS, 27
model of an intersection graph, 17
monophonic convexity, 45
monophonic convexity order, 46
monophonic inteval, 45
monotone dominating pair order, 56
monotone law, 32
multisweep search, 28

neighbourhood, 9
net, 10
NOT-ALL-EQUAL 3-SAT, 71

OCF-vertex, 84
odd strong asteroid, 76
optimal vertex colouring, 12
orientation, 10

out-neighbourhood, 10
out-semi-complete digraph, 94
out-tournament, 91

partial order, 11
partially ordered set, 11
Pasch Property, 33
Pasch property, 33
path, 10
path convexity, 43
path convexity order, 43
path inteval, 43
path order, 68
path-orderable graph, 68
Peano Property, 33
Peano property, 33
PEO, 15
perfect, 14
perfect elimination bipartite graphs, 95
perfect elimination ordering, 1, 13, 15
potential maximal clique, 86
prior path, 24
proper interval graph, 18
proper vertex colouring, 12
pseudo-avoidable edge, 86

queue, 21

Radon number, 30
Radon partition, 30
ray, 31
redundant set, 30
reflexive closure, 11
reflexive transitive closure, 11
rooted F-tree recognition problem, 124
rooted L-tree recognition problem, 124

search tree, 123
semi-complete digraph, 94
semi-complete vertex set, 94
separator, 10
side subtree, 138
simplicial, 15
simplicial edge, 95
simplicial path, 84
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slice, 23
spine property, 19, 53
split graph, 16
stack, 22
straight, 36
strict betweenness, 31
strong asteroid free, 76
Strong Chvátal Property, 34
strong Chvátal Property, 34
subgraph, 9

tied, 23
to the left, 11
to the right, 11
toll convexity, 52
toll interval, 52
tolled walk, 52
tolled-walk, 52
tournament, 10
traceable, 13
trail, 10
transitive closure, 11
transitive orientation, 16
tree, 11
triangulation, 13
two pair, 16
two-sided extension, 84

underlying graph, 94
unit interval graph, 18
unit interval order, 18
universal edge, 97
universal vertex, 12, 87
unlabelled F-tree recognition problem,

124
unlabelled L-tree recognition problem, 124

vertex ordering, 11
vertex-neighbourhood, 97
vertex-transitive, 10, 101

walk, 10
weakly adjacent edges, 97
weakly chordal, 16
witness, 40
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