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Summary 

The potential of raw materials for bio-based sectors progressively grows recognition stemming 

from the current efforts to reduce dependence on fossil fuels and greenhouse gas emissions, 

altogether with mitigating climate change. Biomass generated from dedicated energy crops, used 

in short-rotation forestry (SRF) and short-rotation coppices (SRC), is regarded as a flexible 

primary source for the generation of energy, heat, fuel, and bio-based materials and chemicals. 

Agroforestry systems, which integrate trees into agriculturally managed fields, are often 

regarded as an adaptable multi-crop land-use strategy that can provide ecological and economic 

benefits. A variation of agroforestry is represented by the so-called alley-cropping systems 

(ACSs) for the production of woody biomass for energy purposes, in which several hedgerows 

of fast-growing trees are established in parallel strips at varying distances on an agricultural field. 

The tree strips can be managed as SRC, while the alleys between them are managed as 

conventional agricultural areas with annual crops.  

Understanding whether ACSs with SRC are productive and environmentally sustainable 

requires long-term assessments of tree and crop yield production in relation to changes in site-

specific conditions. Empirical data on such systems are scarce and establishing ACSs under a 

gradient of management options, climatic and edaphic conditions would be cumbersome, time-

consuming, and would demand a notable large amount of funding. Therefore, an alternative 

method was crucial for achieving yield predictions in ACSs under wide-ranging scenarios. 

The research aim of the present dissertation has focused on investigating the prospective 

implications of different site-specific conditions and scenarios on tree growth in ACSs with SRC, 

thus incorporating several experimental and simulation-based studies. Through a considerable 

amount of simulations, the main target was to investigate the ability of a process-oriented, eco-

physiological tree growth model to (i) impute missing empirical data, thus securing a reliable 

repository of tree growth characteristics, (ii) simulate the tree growth in terms of woody biomass 

production with satisfactory accuracy, (iii) predict and evaluate the tree growth sensitivity to 

prospective climate changes, thus performing risk assessments for the near and distant future, 

(iv) simulate the tree growth in strong relation to the interactions with adjacent crops and their 

respective resource capture, (v) project the yield of both trees and crops in ACSs under different 
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climatic, soil, and management conditions, and (vi) derive and assess the land equivalent ratio 

(LER) and gross energy yield for different climatic, soil, and management scenarios.  

Establishing a reliable repository of tree growth characteristics is essential for the analysis 

of primary data, forests statistics, land-use strategies, as well as for the calibration/validation of 

tree growth models. However, forest research frequently confronts with missing data in field 

measurements due to sampling infeasibilities, sampling irregularities across years, or failure of 

measurement equipment, to name a few. In order to handle such cases of missing data, several 

models belonging to (i) regression analysis, (ii) statistical imputation, (iii) forest growth 

functions, and (iv) a process-oriented tree growth model have been applied and investigated in 

Chapter 2. Based on the findings of this study, several tools were identified for researchers and 

practitioners dealing with incomplete data sets. Moreover, the role of a process-oriented eco-

physiological tree growth model to bridge the data gaps on several temporal scales has been 

confirmed and discussed. 

Chapter 3 has investigated and evaluated the prospective growth sensitivity of two tree 

species managed as SRC to a considerable spectrum of weather conditions and long-term climate 

change, from 2015 to 2054. Through a combined experimental and simulation study, the analysis 

has employed (i) a process-oriented, eco-physiological model to simulate the daily tree growth 

and (ii) 100 realisations of the statistical regional climate model STAR 2K. The findings have 

corroborated the potential tree growth vulnerability to prospective climatic changes, particularly 

to changes in water availability, and have underlined the importance of coping management 

strategies in SRC for forthcoming risk assessments and adaptation scenarios. 

Chapter 4 has focused on the ability of a process-oriented eco-physiological model to 

adequately simulate the growth of both trees and crops in two ACSs with SRC. Consequently, 

projections of tree and crop yield production have been generated under different climatic and 

edaphic conditions and implementation design scenarios. Furthermore, the yield performance 

and land-use efficiency of two ACSs have been assessed by deriving the land equivalent ratio 

(LER) and gross energy yield for different site-specific conditions and implementation design 

scenarios. Both LER and gross energy yields had resulted in a convex curve where the maximum 

values were achieved when either the tree or crop component was dominant (>75% of the land 

area) and minimum when these components shared similar proportions of land area. 
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Collectively, the implications of different site-specific conditions and scenarios on tree 

growth in ACSs with SRC have been investigated in order to improve the decision-making, 

optimization, and adaptation of such systems. Last but not least, this dissertation has emphasized 

the considerable potential of modelling approaches in ACSs, as they can impute missing data 

from scarce available data and simulate tree and crop yields for specific site-conditions in a non-

intrusive, inexpensive, and prompt way while supporting early site-setup planning. 
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Zusammenfassung 

Das Potenzial von nachwachsenden Rohstoffen gewinnt aufgrund der derzeitigen Bestrebungen, 

die Abhängigkeit von fossilen Brennstoffen und die Emission von Treibhausgasen zu verringern 

und gleichzeitig den Einfluss des Klimawandels zu mildern, zunehmend an Bedeutung. Die aus 

speziellen Energiepflanzen, wie sie in der Kurzumtriebsforstwirtschaft und in 

Kurzumtriebsplantagen (KUP) verwendet werden, gewonnenen Biomasse, gilt als flexible 

Primärquelle für biobasierte Materialien und Chemikalien, sowie für die Erzeugung von Energie, 

Wärme, und Kraftstoff.  

Agroforstwirtschaftliche Systeme, die Bäume in landwirtschaftlich genutzte Flächen 

integrieren, werden oft als anpassungsfähige Multi-Crop-Flächennutzungsstrategie angesehen, 

welche ökologische und wirtschaftliche Vorteile bringen kann. Eine Variante der 

Agroforstwirtschaft stellen die sogenannten Alley-Cropping-Systeme (ACSs) zur Herstellung 

von holzartiger Biomasse für Energiezwecke dar. In ACSs werden mehrere Hecken von schnell 

wachsenden Bäumen, in parallelen Streifen und in unterschiedlichen Abständen auf einer 

Agrarfläche angelegt, wobei die Baumstreifen zum Beispiel als KUP bewirtschaftet werden 

können, während die Alleen zwischen ihnen als konventionelle landwirtschaftliche Flächen mit 

einjährigen Kulturen genutzt werden. 

Um zu verstehen, ob ACSs mit KUPs produktiv und ökologisch nachhaltig sind, müssen 

langfristige Bewertungen der Baum- und Ernteerträge in Bezug auf mögliche Veränderungen der 

standortspezifischen Bedingungen vorgenommen werden. Jedoch sind empirische Daten über 

solche Systeme rar. Des Weiteren ist die Einrichtung von ACSs für eine Reihe von 

Managementoptionen, und für verschiedene klimatische und edaphische Bedingungen 

umständlich, zeitaufwendig und teuer. Daher war es notwendig, eine alternative Methode zu 

finden, welche die Prognose von Erträgen in ACSs unter verschiedensten Szenarien ermöglicht. 

Die vorliegende Dissertation hat sich auf die Untersuchung der prospektiven Auswirkungen 

verschiedener standortspezifischer Bedingungen und Szenarien auf das Baumwachstum in ACSs 

mit KUP konzentriert. Für diesen Zweck wurden mehrere experimentelle und simulationsbasierte 

Studien angefertigt.  
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Das Hauptziel dieser Dissertation war es, die Anwendbarkeit eines prozessorientierten, 

ökophysiologischen Baumwachstumsmodells auf die folgenden Problemstellungen hin zu 

untersuchen: 

i. Ermittlung fehlender empirischer Daten für die Schaffung eines zuverlässigen 

Datenbestandes von Baumwachstumsmerkmalen.  

ii. Simulation des Baumwachstums in Bezug auf die Produktion von holzartiger Biomasse 

mit angemessener Genauigkeit.  

iii. Vorhersage und Bewertung der Empfindlichkeit des Baumwachstums gegenüber 

zukünftigen Klimaänderungen, und die Durchführung von Risikobewertungen für die 

nahe und ferne Zukunft.  

iv. Simulation des Baumwachstums in Zusammenhang mit den Wechselwirkungen 

zwischen benachbarten Ackerkulturen und deren jeweiliger Ressourcennutzung.  

v. Projektion des Ertrages von Bäumen und Ackerkulturen in ACSs unter unterschiedlichen 

Klima-, Boden- und Managementbedingungen. 

vi. Ableitung und Bewertung des Flächenäquivalenzverhältnises (Land Equivalent Ratio; 

LER) und des Bruttoenergieertrages von ACSs für verschiedene Klima-, Boden- und 

Managementszenarien. 

Der Aufbau eines zuverlässigen Datenbestandes von Baumwachstumsmerkmalen ist unerlässlich 

für die Analyse von Primärdaten, Forststatistiken, Landnutzungsstrategien sowie für die 

Kalibrierung/Validierung von Baumwachstumsmodellen. Die Forstwissenschaft ist jedoch 

häufig mit fehlenden Daten bei Feldmessungen konfrontiert. Die Gründe für fehlende Daten sind 

vielfältig und reichen von der Undurchführbarkeit der Probenahme, über Unregelmäßigkeiten 

bei der Probenahme über mehrere Jahre, bis hin zum Ausfall von Messgeräten, um nur einige zu 

nennen. Um mit solchen Fällen von fehlenden Daten umzugehen, wurden mehrere Modelle aus 

den Bereichen (i) Regressionsanalyse, (ii) statistische Imputation, (iii) 

Waldwachstumsfunktionen und (iv) ein prozessorientiertes Baumwachstumsmodell angewendet 

und in Kapitel 2 untersucht. Basierend auf den Erkenntnissen dieser Studie wurden mehrere 

Werkzeuge für Forscher und Praktiker, die sich mit unvollständigen Datensätzen befassen, 

identifiziert. Darüber hinaus wurde die Notwendigkeit eines prozessorientierten 

ökophysiologischen Baumwachstumsmodells zur Überbrückung von Datenlücken für 

verschiedene zeitliche Auflösungen diskutiert und bestätigt. 
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In Kapitel 3 wurde die prospektive Wachstumsempfindlichkeit zweier als KUP bewirtschafteter 

Baumarten für ein breites Spektrum von Wetterbedingungen und für den langfristigen 

Klimawandel von 2015 bis 2054 untersucht und bewertet. In einer kombinierten Experimental- 

und Simulationsstudie wurden (i) ein prozessorientiertes ökophysiologisches Modell zur 

Simulation des täglichen Baumwachstums und (ii) 100 Realisierungen des statistischen 

regionalen Klimamodells STAR 2K für die Analyse verwendet. Die Ergebnisse der Studie haben 

die potenzielle Anfälligkeit des Baumwachstums für künftige klimatische Veränderungen, 

insbesondere hinsichtlich der Entwicklung der Wasserverfügbarkeit, bestätigt. Desweiteren 

wurde die Bedeutung von Bewältigungsstrategien in KUP für bevorstehende Risikobewertungen 

und Anpassungsszenarien durch die Studie hervorgehoben. 

Das vierte Kapitel konzentrierte sich auf die Fähigkeit eines prozessorientierten öko-

physiologischen Modells, das Wachstum von Bäumen zusammen mit Ackerkulturen in zwei 

ACSs mit KUP angemessen zu simulieren. Dafür wurden Prognosen der Baum- und 

Ernteerträge, unter verschiedenen klimatischen und edaphischen Bedingungen, sowie unter 

unterschiedlichen Implementierungsdesigns, erstellt. Darüber hinaus wurden die Ertragsleistung 

und die Landnutzungseffizienz von zwei ACSs, mithilfe des Flächenäquivalenzverhältnis und 

des Brutto-Energieertrages, für verschiedene standortspezifische Bedingungen und 

Implementierungsszenarien untersucht. Sowohl das Flächenäquivalenzverhältnis als auch die 

Brutto-Energieerträge führten zu einer konvexen Kurve, bei der die Maximalwerte erreicht 

wurden, wenn entweder die Baum- oder die Pflanzenkomponente dominant war (>75% der 

Landfläche). Die Minimalwerte wurden erreicht, wenn beide Komponenten ähnliche Anteile der 

Landfläche hatten. 

Zusammenfassend wurden die Auswirkungen verschiedener standortspezifischer 

Bedingungen und Szenarien auf das Baumwachstum in ACSs mit KUP untersucht, um die 

Entscheidungsfindung zu erleichtern, sowie die Optimierung und Adaptierung solcher Systeme 

zu verbessern. Abschließend, unterstrich diese Dissertation das erhebliche Potenzial von 

Modellierungsansätzen in ACSs, da sie fehlende Informationen aus wenigen verfügbaren Daten 

implizieren, und Baum- und Ernteerträge für bestimmte Standortbedingungen auf eine nicht 

intrusive, kostengünstige und schnelle Art und Weise simulieren können, und gleichzeitig eine 

frühzeitige Planung des Standortaufbaus unterstützen. 
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1. General Introduction 

1.1. Domain Analysis 

As outlined by the European Commission in the Energy Roadmap 2050 (European 

Commission, 2011), the share of renewable energy sources must increase in gross final 

energy consumption to at least 55% and in electricity consumption to at least 64%, while 

simultaneously striving for a low-carbon goal. Stemming from these efforts to reduce 

dependence on fossil fuels and greenhouse gas emissions, while mitigating climate change, 

the potential of raw materials for bio-based sectors progressively grows recognition 

(European Commission, 2011).  

Dedicated energy crops 

Since biomass is regarded as flexible primary energy for the generation of energy, heat, 

fuel, bio-based materials, and chemicals, it can play an essential role in achieving the 

renewable energy goal set by 2050 (Strelher, 2000; BWE, 2015). Biomass generated from 

dedicated energy crops such as short-rotation forestry (SRF) and short-rotation coppices 

(SRC) is accompanied by many advantages such as efficient nutrient utilization, low 

erosion potential (Abbasi et al., 2010), and low to no requirement for pesticide and fertilizer 

(Evans et al., 2010). Furthermore, SRCs have shown high biomass yields (Ceulemans et 

al., 1999), adequate fuel properties (Hauck et al., 2014), and low emissions from alternative 

fuels and flexibility to consumer demand (Evans et al., 2010).  

In Europe, the high demand for woody biomass for energy purposes has increased the 

planting popularity of fast-growing tree species belonging to the genera Populus, 

Eucalyptus, Pinus, Acacia, and Salix, (Ceulemans et al., 1996; Aravanopoulos et al., 1999; 

Sims et al., 2001; Walle et al., 2007; Sochacki et al., 2007; Zewdie et al., 2009; Carl et al., 

2017), but has also heightened the pressure on arable lands. In this context, a need to 

redesign the agricultural landscapes towards a multifunctional land-use has been identified 

in order to ensure a sustainable and resilient forest and agricultural production in the 21st 

century (Landis, 2017; Birkhofer et al., 2018). 

Alley-cropping systems 

Agroforestry systems, which integrate trees into agriculturally managed fields, are often 

regarded as a flexible multi-crop land-use strategy to provide ecological and economic 

benefits (Morhart et al., 2014; Veste & Böhm, 2018). Agroforestry systems have been 
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shown to preserve high levels of agricultural yields while delivering ecosystem services, 

hence increasing land-use efficiency (Fagerholm et al., 2016; Paul et al., 2017), and 

concurrently providing effective adaptation measures (Verchot et al., 2007; Schoeneberger 

et al., 2012) and climate change mitigation, such as reducing the atmospheric carbon 

dioxide, and adaptation measures (De Stefano & Jacobson, 2018).  

A variation of agroforestry is represented by the so-called alley-cropping systems 

(ACSs) for the production of woody biomass for energy purposes, in which several 

hedgerows of fast-growing trees are established in parallel strips at varying distances on an 

agricultural field (Morhart et al., 2014). The tree strips can be managed as SRF or SRC, 

while the alleys between them are managed as conventional agricultural areas with annual 

crops (Tsonkova et al., 2012). As an example, Figure 1 depicts the SIGNAL Plot no. 3, 

under a conventional setting (a), as well as under an alley-cropping setting (b), as 

established at Neu Sacro (Brandenburg). 

 

Figure 1. Comparison between a conventional (a) and alley-cropping setting (b) at Neu Sacro (Brandenburg) 

with winter barley and hybrid-poplar trees. The white poles mark some of the measurement points.  

1.2. Problem Statement 

In order to quantify the production of woody biomass, accurate estimates of tree height, 

root height diameter (RHD), and breast height diameter (BHD) are paramount for the forest 

management and research (Diamantopolou et al., 2016). However, this data is oftentimes 

unavailable due to sampling infeasibilities (bad weather, lack of equipment, lack of 

technical expertise), sampling irregularities across years, inaccurate estimations (allometric 
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functions and the vast amount of methods to be used for calculating one parameter), or 

failure of equipment (dendrometers, lysimeters, station maintenance) (Wang et al., 2012).  

Missing data not only represents a loss of information and a source of uncertainty in data 

analysis but a severe drawback from present investigations, as well as for future decision-

making, coping management strategies, risk assessments, and adaptation scenarios.  

Optimizing and adapting the ACSs for energy purposes demands for a considerable 

amount of experimental sites established under different climatic and edaphic conditions, 

with ACSs implemented under different designs, i.e.,, tree arrangement (scattered or lined, 

leeward or windward), the distance between trees, and proportion of land covered by either 

trees or crops. Establishing such experimental sites, however, would be a cumbersome, 

time-consuming process and would demand a notable large amount of funding.  

Understanding whether ACSs with SRF or SRC are economically profitable and 

environmentally sustainable, given their long-time planning horizon, demands for 

systematic assessments of tree and crop biomass production in strong relation to site-

specific climatic and edaphic conditions, as well as to prospective changes in environmental 

conditions like the ongoing climate change (Evans et al., 2010; van Vooren et al., 2016; 

Gerstengarbe et al., 2003). In Central Europe, projections of future climate warn about 

increasing climate variability and number of extreme weather events (Jacob et al., 2014; 

Christensen et al., 2007).  

Moreover, regarding the productivity of ACSs, practitioners have expressed concern 

due to the reduced area covered by agricultural crops (Tsonkova et al., 2018). Through 

negative attributes reported by practitioners, the existence of trees has been perceived to 

decline the crop yield (Graves et al., 2009), to impede farm machinery, and to attract 

diseases (Rois-Díaz et al., 2018). 

1.3. Research Aim and Objectives 

Against this background, the research aim of the present dissertation has focused on 

evaluating the prospective implications of different site-specific conditions and scenarios 

on tree growth in ACSs, thus incorporating several experimental and simulation-based 

studies. Achieving the overall aim has built on a considerable amount of simulations 

investigating the ability of a process-oriented, eco-physiological tree and crop growth 

model, as well as the implications of the resulted output:  
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a) To impute missing empirical data, thus achieving a reliable repository of tree 

growth characteristics for the analysis of primary data, forests statistics, land-use 

strategies, as well as for the calibration and validation of tree growth models. 

b) To simulate tree growth in terms of woody biomass production with satisfactory 

accuracy. 

c) To predict and evaluate the tree growth sensitivity to a variety of weather 

conditions and prospective long-term climate change, from 2015 to 2054, thus 

performing risk assessments for the near and distant future. 

d) To simulate the tree growth in strong relation to the interactions with adjacent 

crops and their respective resource capture. 

e) To project the yield of both trees and crops in ACSs under different climatic and 

edaphic conditions, as well as under several implementation design scenarios. 

f) To derive and assess the land equivalent ratio and gross energy yield for existing 

ACSs schemes and under several implementation design scenarios, thus assessing 

the implications of integrating trees on arable lands, as compared to forestry and 

conventional monocultures with annual arable crops (Figure 2). 

 

Figure 2. Scheme of main investigations emerging as a consequence of the overall research aim. 

1.4. Methodological Approach 

Experimental Sites 

Initially, a database of main parameters, such as trees (species, planting density, 

management, yield, DOYplanting, DOYharvest), crops (species, management, yield, DOYsowing, 

DOYharvest), soil physical characteristics (texture, structure, porosity, bulk density, organic 

matter), and weather conditions (precipitation, temperature, solar radiation) was created for 



5 

 

three existing long-term alley-cropping systems at Dornburg (Thuringia), Wendhausen 

(Lower Saxony), and Neu Sacro (Brandenburg). All sites consisted of fast-growing tree 

strips of hybrid-poplar clone “Max I” (Populus nigra L. x P. maximowiczii Henry) with 

alleys of different annual arable crops and cover a gradient of climatic and edaphic 

conditions (Table 1). While the tree planting density varied between the sites (i.e.,, 2,200 

trees ha-1, 10,000 trees ha-1, and 9,800 trees ha-1 at Dornburg, Wendhausen, and Neu Sacro, 

respectively), the tree strips were around 10m wide (without the so-called buffer zone, a 

distance of about 1.5m allocated between the tree strip and crop alleys for the agricultural 

machinery) and the crop alleys in between the tree strips were 48m wide at all sites.  

Table 1: Climatic and edaphic comparison between the investigated experimental sites. 

Experimental Site Dornburg Wendhausen Neu Sacro 

Latitude; Longitude 51˚00’ N; 11˚38’ E 52˚20’ N; 10˚38’ E 51˚47’ N; 14˚37’ E 

Altitude 280m a.s.l 85m a.s.l. 67m a.s.l. 

Year of planting 
Winter season 

2006/2007 1 

Winter season 

2007/2008 2 

Winter season 

2010/2011 3 

Year of first harvest 
Winter season 

2014/2015 1 

Winter season 

2013/2014 2 

Winter season 

2014/2015 3 

Year of second 

harvest 
- 

Winter season 

2017/2018 

Winter season 

2017/2018 

Soil characteristics 

Soil type 
Luvisol 1, Pseudogley-

Pararendzina 4 
Pelosol 2,4 

Pseudogleysol, 

Gley-Vega 3,4 

Soil texture Clayey silt 1 Silty clay 2 Loamy sand 3 

Clay [%] 26 4 49 4 9 4 

Silt [%] 70 4 36 4 27 4 

Sand [%] 4 4 15 4 64 4 

Meteorological conditions 

Mean annual 

temperature [°C] 
8.9 a 9.8 b 9.6 c 

Average annual 

precipitation [mm] 
612 a 616 b 568 c 

1 Bärwolf et al. (2016); 2 Lamerre et al. (2015); 3 Kanzler & Böhm (2016); 4 Beuschel et al. (2018); 
a Weather station Weimar of the German Weather Service (DWD); b Weather station 

Braunschweig of the German Weather Service (DWD); c Weather station Cottbus of the German 

Weather Service (DWD). 

Tree Growth Characteristics 

Establishing a reliable repository of tree growth characteristics is essential for the analysis 

of primary data, forests statistics, land-use strategies, as well as for the 
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calibration/validation of forest growth models. Paramount for forest research and 

management are accurate estimates of tree heights, root height diameter (RHD), and breast 

height diameter (BHD) for the determination of timber volume (Diamantopolou et al., 

2016). Data cleansing (i.e., the process of detecting and imputing incomplete or inaccurate 

records from the dataset) was, therefore, an intrinsic part of this section. Several models 

belonging to regression analysis, statistical imputation, and forest growth functions were 

applied and investigated in order to retrieve information about the trees from existing 

annual measurements. For this, the analysis employed:  

 The “Curve Fitting Toolbox” from Matlab (version R2017a, Mathworks);  

 The “Amelia II” R-Package (Honaker et al., 2011); 

 The R software (version 3.4.2, R Core Team 2017). 

The Yield-SAFE Model 

Additionally, a parameter-sparse, ecophysiological, process-oriented model was employed, 

and namely the Yield-SAFE model (Yield Estimator for Long-term Design of Silvoarable 

AgroForestry in Europe). Developed for growth processes in forestry, agriculture, and 

agroforestry systems (van der Werf et al., 2007; Graves et al., 2010; Keesman et al., 2011), 

Yield-SAFE has been confirmed to render robust and plausible results under a scarcity of 

data (Graves et al., 2010).  

The concept and algorithm of the Yield-SAFE model were made as simple as possible, 

which allowed the fast identification of parameters and the analysis of uncertainties in 

model predictions (van der Werf et al., 2007). An organigram of the Yield-SAFE model is 

presented in Figure 3.  

 

Figure 3. Organigram of the Yield-SAFE model. 
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The biophysical initialization refers to the setting up of initial tree and crop states (e.g. 

initial biomass, initial leaf area), soil states (e.g. initial soil water content), implementation 

design (e.g. planting density), and management practices (e.g. tree and crop species and 

rotation, day of the year for tree pruning and thinning and for crop planting and harvest). 

Having set this foundation, more specific tree and crop parameters, as well as soil physical 

properties and climatic inputs are required by the model. The simulation is based on 

algorithms and differential equations regarding the tree, crop, and soil rates and the static 

relations and states of the system as a whole. A loop depending on the number of days 

follows, where parameter outputs are determined and stored, on a daily temporal scale.  

Accordingly, the Yield-SAFE model was calibrated with the initial biophysical 

parameters, as well as with tree and crop parameters, soil physical properties, and climatic 

inputs either collected on-site or available from literature and reports, together with 

ecophysiological parameters based on bibliography and expert knowledge, as instructed in 

Graves et al. (2010), Keesman et al. (2011), Burgess et al. (2005), and Wösten et al. (1999). 

Once calibrated, the model output was validated against measured values in order to 

generate projections of energy wood and grain production under several implementation 

designs, climatic, and edaphic scenarios in ACSs. Regarding the adaptations and 

improvements implemented in the Yield-SAFE model, the approach aimed to represent a 

set of realistic situations without expanding the set of variables or equations, and by 

adjusting parameters to site-specific conditions of the experimental sites of our consortium. 

The performance of the Yield-SAFE model was evaluated using the R software 

(version 3.4.2, R Core Team 2017) independently for determining the coefficient of 

determination (R2), sum of squared errors (SSE), root-mean-square error (RMSE), mean 

average error (MAE), and the simulation bias (SB) from the observations, as well a by 

using the package “epiR” (Stevenson et al., 2019) for calculating the concordance 

correlation coefficient (CCC). 

Under reduced sample size, the Yield-SAFE model was used both for imputing 

missing data and generating projections of tree and crop yields under different scenarios, 

while accounting for the competition for resources, interactions, and possible impacts in 

ACSs.   
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Proccesses and Possible Impacts in ACSs 

In order to evaluate the empirical and Yield-SAFE simulations of tree and crop yields in 

ACSs, the processes and possible impacts in such systems were compiled and adapted after 

Young (1989) and Spitters & Schapendonk (1990) (Figure 4). 

 

Figure 4. Processes and possible impacts in alley-cropping systems, adapted after Young (1989) and Spitters 

& Schapendonk (1990). 

1.5. Dissertation Structure and Outline 

The present dissertation is a compilation of  three peer-reviewed journal papers, together 

with several conference papers, inserted in Chapters 2 to 4 and should be regarded as such. 

For adequate readability of the printed version, some of the illustrations were realigned or 

altered where suitable. The general structure of the dissertation follows the investigations 

emerging as a consequence of the overall research aim defined in Section 1.3. with the help 

of the methodological approach described in Section 1.4. (Figure 5). 
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Chapter 1. General Introduction 

- Domain analysis 

- Problem statement 

- Research aim and objectives 

- Methodological approach 

 

Chapter 2. Handling Data Gaps in Reported Field Measurements of Short Rotation 

Forestry 

- Regression analysis 

- Statistical imputation 

- Forest growth functions 

- Process-oriented tree growth model 

 

Chapter 3. Climate Change Impacts on Hybrid-Poplar and Black Locust Short Rotation 

Coppices by a Combined Experimental and Simulation Study 

- Sensitivity analysis of the Yield-SAFE model 

- Parameterization and validation of the Yield-SAFE model 

- Empirical and simulation-based derivation of above-ground woody biomass 

- Evaluation of the woody biomass productivity under prospective climate realisations 

Chapter 4. Trade-Off between Energy Wood and Grain Production in Temperate Alley-

Cropping Systems: An Empirical and Simulation-Based Derivation of Land Equivalent 

Ratio 
- Empirical and simulation-based derivation of tree and crop yields, 

Land equivalent ratio (LER), and gross energy yield 

- Optimum ratios of tree area to crop area 

 

Chapter 5. General Conclusions and Outlook 

- Synthesis of main findings 

- Research limitations 

- Scientific and practical recommendations 

 

 

 

 

 

 

 

 

Figure 5. Structure and overview of present dissertation 
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Abstract: Filling missing data in forest research is paramount for the analysis of primary 

data, forests statistics, land use strategies, as well as for the calibration/validation of forest 

growth models. Consequently, our main objective was to investigate several methods of 

filling missing data under a reduced sample size. From a complete dataset containing yearly 

first-rotation tree growth measurements over a period of eight years we have gradually 

retrieved two and then four years of measurements, hence operating on 100%, 72%, and 

43% of the original data. Secondly, 15 statistical models, five forest growth functions, and 

one biophysical, process-oriented, tree growth model were employed for filling these data 

gap representations accounting for 72%, and 43% of the available data. Several models 

belonging to (i) regression analysis, (ii) statistical imputation, (iii) forest growth functions, 

and (iv) tree growth models were tested in order to retrieve information about the trees from 

existing yearly measurements. Subsequently, the findings of this study can lead to finding 

a handy tool for both researchers and practitioners dealing with incomplete data sets. 

Moreover, we underlined the paramount demand for far-sighted, long-term research 

projects for the expansion and maintenance of a SRF repository. 
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2.1. Background and Summary 

Biomass generated from dedicated energy crops such as short rotation forestry (SRF) is 

growing recognition as a flexible source of energy, heat, fuel, bio-based materials, and 

chemicals (Strelher, 2000; BWE, 2015). SRF refers to growing fast-growing tree species, 

planted at a high-density (Christersson & Verma, 2006), and harvesting the trees in 

rotations of 2-6 years in order to produce woody biomass (Tsonkova et al., 2012). Hence, 

the planting popularity of fast fast-growing tree species belonging to the genera Populus, 

Eucalyptus, Pinus, Acacia, and Salix increased as a result from the progressively higher 

demand for woody biomass for energy purposes (Carl et al., 2017; Ceulemans et al., 1996; 

Walle et al., 2007; Sims et al., 2001; Aravanopoulos et al., 1999; Zewdie et al., 2009; 

Sochacki et al., 2007).  

In order to support such demands, management decisions in the practice of SRF require 

systematic measurements of trees for repository and monitoring databases. Paramount for 

forest managers are accurate estimates of tree heights, root height diameter (RHD), and 

breast height diameter (BHD) for the determination of timber volume (Diamantopolou et 

al., 2016). 

However, forest research oftentimes confronts with missing data in field measurements 

(Diamantopolou et al., 2016) due to sampling infeasibilities (bad weather, lack of 

equipment, lack of technical expertise), sampling irregularities across years, inaccurate 

estimations (allometric functions and the vast amount of methods to be used for calculating 

one parameter), or failure of equipment (dendrometers, lysimeters, station maintenance) 

(Wang et al., 2012). Moreover, the available studies performed on SRF describe annual 

data values, collected over a few years from tens or hundreds of tree measurements, 

occasionally together with the standard deviation and number of samples, which 

nevertheless, leads to condensed annual information about the actual growth 

characteristics. 

Missing data not only represents a loss of information and a source of uncertainty on 

data analysis, but a severe drawback from present investigations, as well as for future 

decision-making, coping management strategies, risk assessments, and adaptation 

scenarios. Therefore, filling missing data in forest research is paramount for the analysis of 

primary data, forests statistics, land use strategies, as well as for the calibration/validation 

of forest growth models. 
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Heretofore, little to no investigation was carried for handling missing forestry data. In a 

study performed by Diamantopolou et al. (2016), tree diameters were inferred with the help 

of a database containing more than 440 measurement points and under several artificial 

neural network models. However, studies on handling missing forestry data under a 

reduced sample size (e.g., yearly values over a five to ten years of growth) and for 

management practices such as SRF are rare. 

Consequently, our main objective was to investigate several methods of filling missing 

data under a reduced sample size. Firstly, we have employed the complete dataset 

containing yearly first-rotation tree growth measurements in an SRF over a period of eight 

years, as reported by Bärwolf et al. (2016). From this complete dataset, we have gradually 

retrieved two and then four years of measurements, hence operating on 100%, 72%, and 

43% of the original data. Secondly, 15 statistical models, five forest growth functions, and 

one biophysical, process-oriented, tree growth model were employed for filling these data 

gap representations accounting for 72%, and 43% of the available data.  

Differences between the investigated models were addressed in order to retrieve 

information about the trees from existing yearly measurements, which could subsequently 

lead to finding a handy tool for both researchers and practitioners dealing with incomplete 

data sets. Moreover, we underlined the paramount demand for far-sighted, long-term 

research projects for the expansion and maintenance of a SRF repository. 

2.2. Data Description 

As a case study, we have employed the reported measurements of first-rotation hybrid-

poplar trees (Populus nigra L. x P. maximowicii A. Henry, clone Max I) established near 

Dornburg, Germany (N51˚01’N, E11˚39’; 260m a.s.l.), on around 2 ha of a total area of 

51.3 ha, and managed as short rotation forestry (SRF), over a time period of eight years 

(Bärwolf et al., 2016). The poplar trees were planted in March 2007, at a planting density 

of 2,200 trees per hectare (i.e., at a tree spacing of 1.5 m x 3 m). With the exception of 

2007, yearly measurements of height (H), root height diameter (RHD, measured at the 

height of 0.1 m above the ground), and breast height diameters (BHD, measured at the 

height of 1.3 m above the ground) were collected by the Thuringian Center for Renewable 

Resources, Thuringian State Institute for Agriculture between end of vegetation period 

2008 and 2014.  
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Therefore, the initially reported data consisted of seven points collected from the end of 

vegetation period 2008 (winter season 2009) to end of vegetation period 2014 (winter 

season 2015). From this original data (100%), we randomly retrieved data accounting for 

two years (28%) and four years (57%) in order to create representations that simulate data 

gaps. The available range of observed data (i.e., n = 869, 975, 1350, and 1357 measurement 

values collected at the beginning of 2009, 2010, 2011, and 2012, respectively) is 

represented by the standard deviation (Figure 6). 

 

Figure 6. Originally reported data set (100%), as well as two data gap representations containing 72% and 

43% of the original data for the tree root height diameter, breast height diameter, and tree height. 

The data is represented by the average value (blue circles and red squares for the existing and 

missing data, respectively), together with the standard deviation (blue and red error bars for the 

existing and missing data, respectively) and the sample size (n), when available. 

In addition to separating the original data into two data gap representations containing 72% 

and 43% of the available data, we have also separated the analysis between the progression 

of an individual parameter in time and the progression of an individual parameter 

depending on another parameter. This way, the analysis has discerned between data missing 

completely at random (MCAR, i.e., values that are randomly missing from an original 

dataset do not relate to each other, and there is no pattern to the actual values of the missing 
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data) and data missing at random (MAR, i.e., values that are randomly missing from an 

original dataset and relate to other variables two by two). Due to physical and physiological 

factors that exist between tree dimensions in forest stands (Pretzsch, 2009), the relationship 

between variables was considered nonlinear throughout the study and numerical. 

2.3. Methods and Materials 

For the objective of this study, we have neglected the listwise deletion, an approach where 

missing observations are removed, and focused on imputing those missing values from the 

existing part of the data. In statistics, imputation is an approach where missing data is 

substituted, thus making this a standard method of handling missing data (Takanaschi, 

2017). Nevertheless, we will not use zero or constant imputation, that replace the missing 

value with either zero or a constant value, respectively. 

However, when filling missing data only through statistical imputations, the temporal 

resolution remains dependent on the existing data. Therefore, we also investigated the 

possibility of retrieving information on a finer temporal resolution (monthly, daily) from 

existing yearly measurements, with the help of a biophysical, process-oriented, tree growth 

model. Collectively, our analysis employed (i) regression analysis, (ii) statistical 

imputation, (iii) forest growth functions, and (iv) a tree growth model, which also takes 

into consideration the competition for resources between trees. 

2.3.1. Regression Analysis 

Regression analysis is a part of inference statistics where relationships between parameters 

are examined. Here, a “best fit” function (curve) with minimum residuals is assigned to the 

existing data points. For conciseness purposes, we recommend some standard textbooks 

for inference biostatistics methods from Linder (1951), Mudra (1958), and Rasch (1987). 

Accordingly, ten regression models (Table 2) were applied to the established data gap 

representations by using the “Curve Fitting Toolbox” from Matlab (version R2017a, 

Mathworks). 
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Table 2. Investigated regression analysis models. 

Model Name General Model 

Exponential a*exp(b*x) 

Fourier a0 + a1*cos(x*w) + b1*sin(x*w) 

Gaussian a1*exp(-((x-b1)/c1)^2) 

Power: 1 term a*x^b 

Power: 2 terms a*x^b+c 

Rational (p1) / (x + q1) 

Sum of Sine a1*sin(b1*x+c1) 

Linear Fit a*(sin(x-pi)) + b*((x-10)^2) + c 

Polynomial: 1st degree p1*x + p2 

Polynomial: 2nd degree p1*x^2 + p2*x + p3 

In this section, only MCAR data was taken into consideration because the data size of the 

response variable had to be the same as for the predictor variable. Accordingly, the 

progression of an individual parameter was investigated in time, together with the 

progression of an individual parameter depending on another parameter. 

2.3.2. Interpolation 

Interpolation is a part of inference statistics where an exact fit to the existing data points is 

identified. Accordingly, four regression models (Table 3) were applied to the established 

data gap representations by using the “Curve Fitting Toolbox” from Matlab (version 

R2017a, Mathworks). 

Table 3. Investigated interpolation models. 

Model Name General Model 

Interpolant: Nearest Neighbor 

piecewise polynomial 

computed from p 

Interpolant: Linear 

Interpolant: Cubic 

Interpolant: PCHIP ((Piecewise Cubic Hermite Interpolation) 
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2.3.3. Multiple Imputation 

Substituting missing data by multiple imputations has been a general-purpose approach of 

handling such data. Just as the name suggests, this approach creates multiple substitutes for 

a missing data point from all the information present in an existing dataset (Honaker et al., 

2011).  

One of the most robust and accessible multiple imputation programs is represented by 

the Amelia II R-Package (Honaker et al., 2011). Here, both MCAR data and MAR data 

were taken into consideration for analyzing the progression of an individual parameter in 

time and the progression of an individual parameter depending on another parameter. For 

this section, we have used the R software (version 3.4.2, R Core Team 2017). 

2.3.4. Forest Growth Functions 

Some of the investigated forest growth functions (Pretzsch, 2009) are presented in Table 4. 

Other functions were not added to this list because they resemble a general model presented 

previously, in Section 2.3.1. For example, the diameter-height relationship proposed by 

Assmann (1943) (H=a0+a1*d+a2*d^2) resembles the 2nd-degree Polynomial, and the 

allometric function (Pretzsch, 2009) (a*x^b) resembles a Power function with one term, as 

presented in Section 2.3.1. For this section, we have used Matlab (version R2017a, 

Mathworks). 

Table 4. Investigated forest growth functions. 

Model Name General Model 

Assmann (1943) H=a+b*lnD 

Korsun (1935) H=exp(a0+a1×ln(D)+a2*ln^2(D)) 

Michailoff (1943) H=a0*exp(−a1/D)+1.3 

Petterson (1955) H= (D/(a0 +a1×D))^3+1.3 

Prodan (1951) H=D^2/(a0+a1*D+a2*D^2)+1.3 

H: Height; D: diameter 

In this case, only MAR data was used and only for analyzing the progression of tree height 

with respect to tree diameter.  
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2.3.5.  Process-Oriented Growth Model 

By a thorough review, Pretzsch et al., (2015) compared 54 forest growth models in terms 

of characteristics and interactions that occur in forests both at an individual tree level and 

stand level. Accordingly, several models were identified as able to simulate the growth of 

poplar trees with respect to the specific tree phenology, light, and water availability. 

However, since our study focuses on retrieving information about the tree growth from 

limited availability of data, the Yield-SAFE model was employed.   

The Yield-SAFE model (Yield Estimator for Long-term Design of Silvoarable 

AgroForestry in Europe) is a parameter-sparse, ecophysiological, process-oriented model, 

developed for growth processes in forestry, agriculture, and agroforestry systems (van der 

Werf et al., 2007; Graves et al., 2010; Keesman et al., 2011). Heretofore, the Yield-SAFE 

model was calibrated and validated for poplar, walnut, cherry, holm oak, and stone pine 

trees in the Atlantic and Mediterranean regions of Europe (Burgess et al., 2004; Burgess et 

al., 2005; Palma et al., 2007; Keesman et al., 2011). 

The main reasoning behind choosing the Yield-SAFE model, as implemented in 

Matlab, stood in its ability to render robust results under a scarcity of data (Graves et al., 

2010). In order to calibrate the model, a set of parameters and inputs was required, namely 

daily weather data (average daily temperature, precipitation, and radiation) over the 

investigated growth period, and site-specific soil and tree parameters.  

The weather data was gathered from the DWD (Deutscher Wetterdienst) station 

Weimar (station ID: 05419). The tree parameters were set according to annual reports 

(Bärwolf et al., 2016) and adapted from literature (Graves et al., 2010; Keesman et al., 

2011). The clay and sand contents were 28, and 8%, respectively (Bärwolf et al., 2016), 

which classified the soil texture as “medium-fine” and hence, the Mualem-van Genuchten 

soil parameters were set accordingly from existing estimations (Wösten et al., 1999). 

Collectively, the tree and soil parameters used in the Yield-SAFE model are shown in 

appendixed Table A.1. In this case, only the progression of the BHD in time was substituted 

as part of MAR data. 

2.3.6. Statistical Analysis 

The performance of the investigated models was evaluated by the coefficient of 

determination (R2), the sum of squared errors (SSE), root-mean-square error (RMSE), 

mean absolute error (MAE), as well a by the concordance correlation coefficient (CCC) 
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and the simulation bias (SB) from the observations. A fit is generally considered useful for 

prediction when R2 values are closer to 1.0 and when SSE, RMSE, and MAE values are 

closer to 0.  

In order to account for the variability of observations, the best fit of the investigated 

models was chosen with respect to the closeness to the average, as a representative for the 

location of the majority of measurements. Regarding the CCC and SB, a study performed 

by Ojeda et al., (2017) proposed the following labels for the model validation: “very good” 

for CCC > 0.90 and SB < 20%, “satisfactory” for 0.75 < CCC < 0.90 and 20% < SB < 30%, 

“acceptable” for 0.60 < CCC < 0.75 and 30% < SB < 40% and “poor” for the rest of the 

cases. Together with these recommendations, we have categorized the performance of the 

models in terms of the CCC and SB, as well as in terms of the R2, SSE, RMSE, and MAE, 

while striving for a normal distribution of the residuals. 

2.4. Results and Discussion 

Regarding the original available data set, the data points for a single year were spread out 

over a wide range of values, especially for the diameter measurements (Figure 6), 

amounting to around ±25% for the tree heights and around ±40% for the tree diameters, as 

compared to their respective average values. This is, however, the case for many fast-

growing tree species such as black locust (Robinia Pseudoacacia L.) (Kanzler & Böhm, 

2016) and poplar (Populus spp.) (Kanzler & Böhm, 2016; Lamerre et al., 2016) that show 

great growth variability, even when planted at the same time and on the same land area. By 

comparison, first-rotation poplar trees established at the experimental site Neißetal reported 

a standard deviation of about ±30% for the tree heights and about ±40% for the root height 

diameter (RHD) over three years of growth (Kanzler & Böhm, 2016 ). At Wendhausen, the 

measurement variability of breast height diameter (BHD) amounted to around 39%, as 

compared to the average of all values and over six growing years at Wendhausen (Lamerre 

et al., 2016). 

2.4.1. Regression Analysis 

Most of the investigated ten regression models were able to fit a curve to the existing 

data within the limits set by the standard deviation, except for the Exponential and the one-

term Power model, due to an inability to fit the progression of tree dimensions in time and 

the Fourier model, due to an inability to fit when subjected to the 43% data gap 
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representation. For the conciseness of the paper, appendixed Table A.2. presents the 

goodness of validation of all applied regression models. 

Generally, the Gaussian model performed the best, being tightly followed by the Power 

model with two terms, Sum of Sine, and the Polynomial of 1st Degree, then the Polynomial 

of 2nd Degree. The lower end was represented by the Rational, Fourier, Exponential, and 

one term Power model in descending order, ending with the Linear Fitting.  

As an example of the capability of the models to infer missing data from the available 

43% data gap representation of RHD, three regression models labelled as “very good” 

(Gaussian), “satisfactory” (Sum of Sine), and “poor” (Linear Fitting), were selected and 

presented in Figure 7.  

 

Figure 7. Linear fitting (black line), Gaussian (green line), and Sum of Sine (orange line) applied on the tree 

root height diameter data gap representation accounting for 43% of the original data set in terms 

of the coefficient of determination (R2), sum of squared errors (SSE), root-mean-square error 

(RMSE), mean absolute error (MAE), as well as the concordance correlation coefficient (CCC) 

and the simulation bias (SB) from the observations. The error bars (blue and red for the existing 

and missing data, respectively) represent the standard deviation of the tree root height diameter 

over the investigated period. 
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Visible differences exist between the three regression models presented in Figure 7 and 

show that even slight differences in SSE, RMSE, and MAE should not be neglected. Even 

if the deviations from the fitted curve to the observations seem small, significant biases can 

later arise from further calculations. 

2.4.2. Interpolation 

All of the investigated interpolation models were capable of finding a fit encompassed in 

the range of observations. However, when striving for the average value, as a central 

tendency for most of the observations, the interpolation models generally performed the 

best to worse in the following sequence: Linear > Cubic > PCHIP > Nearest Neighbor. For 

the conciseness of the paper, appendixed Table A.3. presents the goodness of validation of 

all applied interpolation models.  

However, since the SSE, RMSE, and MAE values were rather high when fitting the 

tree height in time, the 72% data gap representation of tree height is furtherly examined 

(Figure 8). 

Since interpolation techniques find an exact fit to the existing data, they assume no 

measurement errors, suggesting that their applicability to real-life scenarios is limited. 

However, Figure 8 shows rather accurate estimations of tree height in time and under 

limited data availability. Nevertheless, while interpolation is easy and fast, it does not factor 

the correlations between features, and it does not account for the uncertainty in the 

imputations. 
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Figure 8. Interpolation models Linear (black line), Nearest Neighbor (pink line), Cubic (green line), and 

PCHIP (orange line) applied on the tree height data gap representation accounting for 72% of the 

original data set together with the coefficient of determination (R2), sum of squared errors (SSE), 

root-mean-square error (RMSE), mean absolute error (MAE), as well as the concordance 

correlation coefficient (CCC) and the simulation bias (SB) from the observations. The error bars 

(blue and red for the existing and missing data, respectively) represent the standard deviation of 

the tree height over the investigated period. 

2.4.3. Multiple Imputation 

Most of the investigated imputations rendered by Amelia II represented values within the 

whole range of measurements. However, when considering the majority of values, only a 

few results of Amelia II were labeled as delivering more than an “acceptable” performance 

(Table 5). 
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Table 5. Goodness of validation of Amelia II in terms of the coefficient of determination (R2), sum of squared 

errors (SSE), root-mean-square error (RMSE), mean absolute error (MAE), as well as the 

concordance correlation coefficient (CCC) and the simulation bias (SB) from the observations. 

Model Variable 
Data Gap 

Representation 
R2 SSE RMSE MAE SB [%] CCC Label 

A
m

el
ia

 

RHD 

72 1.00 0.2 0.3 0.3 6.4 1.00 Satisfactory 

43 1.00 4.1 1.0 0.8 14.9 0.00 Poor 

BHD 

72 0.99 0.7 0.6 0.6 11.5 0.97 Poor 

43 0.99 0.4 0.3 0.3 5.5 0.99 Acceptable 

Height 

72 0.99 10110.2 71.1 57.3 14.1 0.94 Poor 

43 0.99 24478.6 78.2 70.4 4.3 0.92 Satisfactory 

BHD & 72 1.00 0.9 0.7 0.6 15.1 0.97 Poor 

RHD 43 0.99 5.0 1.1 1.0 3.6 0.44 Poor 

Height & 72 1.00 1627.5 20.5 20.4 10.1 0.98 Poor 

BHD 43 0.98 2986.8 19.6 16.7 7.6 0.98 Poor 

Height & 72 1.00 1214.8 17.7 17.3 3.6 0.99 Poor 

RHD 43 0.99 3065.4 19.8 17.9 4.7 0.49 Poor 

RHD: root height diameter; BHD: breast height diameter 

2.4.4. Forest Growth Functions 

Most of the investigated forest growth functions were labeled as delivering a “very good” 

performance (Table 6). Accounting for all statistical coefficients, the Korsun (1935) model 

fit the best, followed by Michailoff (1943) and Petterson (1955), Prodan (1951), and then 

Assmann (1943). 
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Table 6. Goodness of validation of forest growth functions in terms of the coefficient of determination (R2), 

sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute error (MAE), as well 

as the concordance correlation coefficient (CCC) and the simulation bias (SB) from the 

observations. 

Model Variable 
Data Gap 

Representation 
R2 SSE RMSE MAE SB [%] CCC Label 

A
ss

m
an

n
 (

1
9

4
3

) 

Height 72 0.99 3.68 0.73 0.64 3.8 0.97 Poor 

BHD 43 0.98 4.77 0.83 0.66 7.5 0.96 Poor 

Height 72 0.99 5.49 0.89 0.79 1.8 0.75 Poor 

RHD 43 0.99 7.10 1.01 0.84 6.1 0.70 Poor 

P
ro

d
an

 (
1

9
5
1

) 

Height 72 0.98 1.51 0.46 0.34 4.3 0.99 Satisfactory 

BHD 43 0.98 91.19 3.61 2.22 25.1 0.68 Poor 

Height 72 1.00 0.10 0.12 0.10 -0.3 1.00 Very good 

RHD 43 1.00 0.13 0.14 0.10 0.2 1.00 Very good 

P
et

te
rs

o
n

 (
1

9
5
5

) 

Height 72 0.97 1.70 0.49 0.33 4.2 0.99 Acceptable 

BHD 43 0.97 1.65 0.49 0.34 4 0.99 Acceptable 

Height 72 1.00 0.10 0.12 0.08 -0.5 1.00 Very good 

RHD 43 1.00 0.10 0.12 0.09 0.3 1.00 Very good 

K
o

rs
u

n
 (

1
9

3
5
) 

Height 72 1.00 0.11 0.13 0.08 1.1 1.00 Very good 

BHD 43 1.00 0.11 0.13 0.07 1 1.00 Very good 

Height 72 1.00 0.12 0.13 0.11 -0.2 1.00 Very good 

RHD 43 1.00 0.11 0.13 0.09 1.1 1.00 Very good 

M
ic

h
ai

lo
ff

 (
1
9

4
3
) Height 72 0.99 0.92 0.36 0.23 3.5 0.99 Satisfactory 

BHD 43 0.98 0.90 0.36 0.25 3.2 0.99 Satisfactory 

Height 72 0.99 0.62 0.30 0.25 -1.7 1.00 Very good 

RHD 43 0.99 0.76 0.33 0.27 -1.2 1.00 Satisfactory 

RHD: root height diameter; BHD: breast height diameter 
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2.4.5. Process-Oriented Growth Model 

If not for a high simulation bias from observations in the first years (Figure 9), the 

performance of the Yield-SAFE model would have been generally labelled as “very good” 

for this experimental site (Table 7). 

 

Figure 9. The tree root height diameter, as simulated with the Yield-SAFE model (green line) given the 

existing data (blue circles) and the missing data (red squares). The error bars (blue and red for the 

existing and missing data, respectively) represent the standard deviation of the root height diameter 

over the investigated period. 

Table 7. Goodness of validation of Yield-SAFE in terms of the coefficient of determination (R2), sum of 

squared errors (SSE), root-mean-square error (RMSE), mean absolute error (MAE), as well as the 

concordance correlation coefficient (CCC) and the simulation bias (SB) from the observations. 

Model Variable 
Data Gap 

Representation 
R2 SSE RMSE MAE SB [%] CCC Label 

Yield-

SAFE 
RHD 

72 1.00 3.7 1.0 0.9 12.4 0.99 Satisfactory 

43 1.00 4.0 1.1 1.1 15.1 0.99 Satisfactory 

RHD: root height diameter 

Nevertheless, the Yield-SAFE model rendered “satisfactory” correspondences with the 

measured tree root height diameter under 43% availability of data, with deviations between 

17% and 51% in the first three years and between 1% and 4% in the later years. 

Notable to this section is that, by using a biophysical, process-oriented model, there is 

the possibility of retrieving information on a finer temporal resolution (monthly, daily) 
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from existing yearly measurements and even information about other parameters, such as 

woody biomass and soil water content (Figure 10). 

 

Figure 10. The tree woody biomass (a) and soil water content (b), as simulated with the Yield-SAFE model 

(green lines) from the day of planting (2007) to the day of harvest (2015). 

The tree woody biomass and the soil water content, as simulated by the Yield-SAFE model 

were broadly corroborated by on-site assessments. According to reported values, an 

average tree woody biomass of around 52 Mg ha-1 was harvested from the poplar SRF at 

the end of vegetation period 2014 (winter season 2015) (Bärwolf et al., 2016). Regarding 

the soil water content, between 13% and 24% water was reported at the tree strips at the 

beginning of June 2012, and between 15% and 35% at the end of November 2012.  

Notable would be that, while tree growth models are widely used for prediction 

purposes, either for future risk assessments, or under different climatic, edaphic, and 

management scenarios, this study emphasizes another role of such models and namely for 

imputing the gaps in knowledge. 

2.5. Conclusions 

This paper presented and analyzed the performance of several models belonging to (i) 

regression analysis, (ii) statistical imputation, (iii) forest growth functions, and (iv) tree 
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growth models to retrieve information about the trees from existing yearly measurements. 

Taking into consideration the entire range of measured data deemed the performance of all 

investigated models as “very good”. However, focusing on the area comprising most of the 

observations, or central tendency of the data, as shown by the average, arose significant 

differences between the models.  

From the curve-fitting models, the Gaussian model performed the best, being tightly 

followed by the Power model with two terms, Sum of Sine, and the Polynomial of 1st 

Degree, then the Polynomial of 2nd Degree. Nearing this performance, the interpolation 

models Linear, Cubic, and PCHIP have also shown good correspondences with the 

measurements, both under 72% and 43% data gap representations. The forest growth 

functions rendered good results, following the sequence: Korsun (1935) > Michailoff 

(1943) and Petterson (1955) > Prodan (1951) > Assmann (1943). Unsurprisingly, most of 

these models performed better under higher data availability, i.e., under 72% of existing 

data, as compared to 43% of existing data. 

The Yield-SAFE model simulated the daily growth of hybrid-poplar clone “Max I” in 

terms of root height diameter with satisfactory accuracy, responding sensitively to changes 

in the edaphic and climatic conditions. Additionally, the performance of the model is 

sustained by other parameters, such as the tree woody biomass and soil water content, 

which matched reported values. Last but not least, this study showed that a process-oriented 

model such as Yield-SAFE could provide with descriptions of tree growth and soil water 

content on a finer, daily temporal scale from scarce availability of data.   

Therefore, the findings of this study could subsequently lead to finding a handy tool 

for both researchers and practitioners dealing with incomplete data sets. In the future, for a 

better understanding and reproducibility of studies, box plots should be increasingly used, 

showing minimums, maximums, medians, means, outliers, and the interquartile range. 

Moreover, we underlined the paramount demand for far-sighted, long-term research 

projects for the expansion and maintenance of a SRF repository. 
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Abstract: In Brandenburg, north-eastern Germany, climate change is associated with 

increasing annual temperatures and decreasing summer precipitation. Appraising short 

rotation coppices (SRCs) given their long-time planning horizon demands for systematic 

assessments of woody biomass production under a considerable spectrum of climate change 

prospects. This paper investigates the prospective growth sensitivity of poplar and black 

locust SRCs, established in Brandenburg to a variety of weather conditions and long-term 

climate change, from 2015 to 2054, by a combined experimental and simulation study. The 

analysis employed (i) a biophysical, process-based model to simulate the daily tree growth 

and (ii) 100 realisations of the statistical regional climate model STAR 2K. In the last 

growing rotation, the simulations showed that the assumed climate change could lead to a 

decrease in the woody biomass of about 5 Mg ha-1 (18%) for poplar and a decrease of about 

1.7 Mg ha-1 (11%) for black locust trees with respect to the median observed in the 

reference period. The findings corroborate the potential tree growth vulnerability to 

prospective climatic changes, particularly to changes in water availability and underline the 

importance of coping management strategies in SRCs for forthcoming risk assessments and 

adaptation scenarios. 
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3.1. Introduction 

As outlined by the European Commission in the Energy Roadmap 2050 (European 

Commission, 2011), the share of renewable energy sources must increase in gross final 

energy consumption to at least 55% and in electricity consumption to at least 64%, while 

simultaneously striving for a low-carbon goal. Stemming from these efforts to reduce 

energy wastage, fossil fuels, and greenhouse gas emissions, to mitigate climate change and 

the availability of natural resources, the potential of raw materials for bio-based sectors 

progressively grows recognition (European Commission, 2011). 

Since biomass is regarded as a flexible primary energy for the generation of energy, 

heat, fuel, bio-based materials, and chemicals, it can play an important role in achieving 

the renewable energy goal set by 2050 (Strelher, 2000; BWE, 2015). Biomass generated 

from dedicated energy crops such as short rotation coppices (SRCs) is accompanied by 

many advantages such as efficient nutrient utilization, low erosion potential (Abbasi et al., 

2010), and low to no requirement for pesticide and fertilizer (Evans et al., 2010). 

Furthermore, SRCs have shown high biomass yields (Ceulemans et al., 1999), adequate 

fuel properties (Hauck et al., 2014), and low emissions from alternative fuels and flexibility 

to consumer demand (Evans et al., 2010). In Europe, the high demand for woody biomass 

for energy purposes increased the planting popularity of fast-growing tree species 

belonging to the genera Populus, Eucalyptus, Pinus, Acacia, and Salix (Carl et al., 2017; 

Ceulemans et al., 1996; Walle et al., 2007; Sims et al., 2001; Aravanopoulos et al., 1999; 

Zewdie et al., 2009; Sochacki et al., 2007). 

Understanding whether SRCs are economically profitable and environmentally 

sustainable requires long-term assessments of woody biomass production in strong relation 

to changes in environmental conditions like the ongoing climate change (Evans et al., 2010; 

van Vooren et al., 2016; Gerstengarbe et al., 2003). During the past decade, increasing 

annual temperature and tendencies towards decreasing summer and increasing winter 

precipitation were reported in north-eastern Germany (Gädeke et al., 2017; Rauthe et al., 

2013). In Central Europe, projections of future climate assume increasing climate 

variability and number of extreme weather events (Jacob et al., 2014; Christensen et al., 

2007).  

However, evaluating the climate change impacts on the tree woody biomass from 

observational and experimental studies has been subject to various limitations in what 
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regards the influence of interacting factors. Moreover, potential future climate changes 

have been reported to go beyond historical observations (Ruane et al., 2016).  

Therefore, simulation studies have been widely applied to model the tree growth in 

relation to environmental factors (Horeman et al., 2017; de Vries et al., 2017), assessing 

climate change impacts on the growth performance of aspen (Populus tremula L.), Norway 

spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.), European beech (Fagus 

sylvatica L.), oak (Quercus robur L. x Quercus petraea Liebl.), and Douglas fir 

(Pseudotsuga menziesii (Mirb.) Franco) (Lasch et al., 2010; Lasch-Born et al., 2015; Reyer 

et al., 2014; Wang et al., 2017). Field experiments for short rotation forestry were carried 

for Populus and Salix and for breeding of clones (Monclus et al., 2005; Calfapietra et al., 

2010). However, long-term studies on the variability of woody biomass production under 

different climatic conditions for certain tree species such as black locust (Robinia 

pseudoacacia L.) and for management practices such as short-term forestry are rare (Carl 

et al., 2017). 

The objective of this paper was to evaluate the potential growth vulnerability of two 

fast-growing tree species established in Brandenburg, Germany and managed as short 

rotation coppices (SRCs), to a considerable spectrum of weather conditions and long-term 

climate change. By a combined experimental and simulation study, we investigated the 

prospective growth of hybrid-poplar clone “Max I” (Populus nigra L. x P. maximowiczii 

Henry) and black locust (Robinia pseudoacacia L.) trees in terms of above-ground woody 

biomass production, from 2015 to 2054. 

Based on the implications of this study, it will be possible to develop and optimize the 

designs of SRCs and to provide with a reliable estimation of achievable woody biomass 

yields according to tree species, management, and climate change effects. 

3.2. Materials and Methods  

In order to handle uncertainties in assessing the climate change impacts on tree growth due 

to interrelations between various factors, Medlyn et al. (2011) suggested an integration of 

experimental and simulation studies. Thus, our methodology to investigate the impacts of 

weather conditions and long-term climate change on the above-ground woody biomass of 

hybrid-poplar and black locust trees employed (i) an experimental site with SRCs in 

Brandenburg, Germany, (ii) a biophysical, process-based model to simulate the daily tree 

growth on the basis of tree parameters, soil physical characteristics, and weather data (van 
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der Werf et al., 2007), and (iii) 100 realisations of a scenario of the statistical regional 

climate model STAR, which assumed an increase in annual temperature of 2K, as well as 

a decreasing annual precipitation by 30–40 mm, between 2000 and 2055 (Gerstengarbe et 

al., 2003; Werner & Gerstengarbe, 1997; Orlowsky et al., 2008). 

3.2.1. Site Description 

The study site at Neu Sacro (N 51˚46’54’’, E 14˚37’18’’, 67 m a.s.l.) is situated in Lower 

Lusatia, in the south of the German Federal State of Brandenburg. The SRC is established 

500 m away from the Lusatian Neisse river, comprising around 5 ha, out of which black 

locust trees (planted in spring 2010) spread over 2 ha and poplar trees (re-planted in spring 

2011) spread over 2.5 ha. These two tree species were planted in double rows, resulting in 

a planting density of about 8700 trees per hectare (0.75 m x 0.90 m spacing with a 1.80 m 

tree strip along the tree row) (Kanzler & Böhm, 2016). 

The climate in the area has an average temperature of about 8.9°C and an average 

annual precipitation of 563 mm a-1 (standard reference period: 1960–1990; weather station 

Cottbus of the German Weather Service, about 25 km west of the site) and an average 

temperature of about 9.9°C and an average annual precipitation of 577 mm a-1 (current 

period: 1990–2015).  

The site is characterized by a Gley-Vega and Pseudogley-Vega soil with a sandy loam 

texture. The ploughing horizon (0–30 cm depth) is characterized by a mean particle size 

distribution of 65% sand, 29% silt, and 6% clay, a content of soil total organic carbon of 

10.44%, a content of total nitrogen of 0.95%, and a pH (CaCl2) value of 5.75. The 

groundwater level varies between 0.8 m and 2.0 m below the surface (Kanzler & Böhm, 

2016). 

3.2.2. Yearly Measurements of Above-Ground Woody Biomass 

The rotations were five years (2010-2014) for black locust and four years (2011-2014) for 

poplar. These growing periods correspond to the length of a medium rotation cycle 

(Bielefeldt et al., 2008). Tree shoot basal diameters were measured at the end of every year. 

At the end of the vegetation period, in 2014, fifty poplar and fifty black locust trees were 

harvested about 10 cm above the ground for the measurement of fresh weight. The stem 

and branches of these trees were shredded into wood chips, and sub-samples of every 
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shredded tree were taken to the laboratory for the determination of above-ground tree dry 

woody biomass by drying at 105˚C until constant weight (Verwijst & Telenius, 1999).  

Subsequently, the above-ground woody biomass was estimated for the earlier years by 

using an allometric equation, as given in Equation (1) (Zianis & Mencuccini, 2003; Böhm 

et al., 2011):  

𝐵 = 𝑎 ∙ 𝐷𝑏, Eq.(1) 

where B is the above-ground tree dry woody biomass [kg], D is the shoot basal diameter 

[cm], and a and b are constants. By applying a least-square linear regression of natural-

logarithmic-transformed data for the diameter and tree biomass measured in 2014, a and b 

were determined as the intercept and slope of the regression, respectively. Thus, the 

obtained values were a = 0.0551, b = 2.2963 for poplar (R2 = 0.98) and a = 0.0396, b = 

2.5594 for black locust (R2 = 0.96). 

For comparison purposes, this study focused on the above-ground woody biomass over 

the growing period of four years from 2010 to 2013 for black locust and from 2011 to 2014 

for poplar. 

3.2.3. Modelling the Above-Ground Woody Biomass 

3.2.3.1. Description of the Yield-SAFE model 

For the simulations of site-specific, long-term tree yields under competitive conditions, we 

used the Yield-SAFE model (Yield Estimator for Long-term Design of Silvoarable 

AgroForestry in Europe), a parameter-sparse, eco-physiologically based model (Stappers 

et al., 2003; van der Werf et al., 2007; Keesman et al., 2011), as implemented in Matlab 

(Graves et al., 2010). 

Heretofore, the performance of the Yield-SAFE model was evaluated with respect to 

long-term tree yields measured across 19 landscape test sites in Spain, France, and the 

Netherlands (Burgess et al., 2005). Yield-SAFE was parameterized and validated for 

cherry, poplar, walnut, and oak trees given data from the Atlantic and Mediterranean 

regions of Europe (Stappers et al., 2003; Burgess et al., 2005; van der Werf et al., 2007; 

Keesman et al., 2011; Palma et al., 2007; Palma et al., 2014). 

The model requires information about the trees (species, dimensions, planting density, 

day of bud-burst, day of leaf-fall), soil physical characteristics (soil texture, bulk density), 



34 

 

and daily weather data (global radiation [W m-2], air temperature [°C], and precipitation 

[mm]). The potential tree growth is modelled in terms of resource use efficiency of 

primarily air temperature (due to the developmental and phenological processes), global 

radiation (as the main driver for photosynthesis), and, to a lesser extent, water (van der 

Werf et al., 2007). Under this potential growth assumption, nutrient availability is not 

considered to be a yield-limiting factor (van der Werf et al., 2007). 

Consequently, the Yield-SAFE simulations require four state equations regarding: (1) 

the tree biomass, used to derive temporally-integrated timber volumes by means of tree 

harvest index, dry wood density, and a factor accounting for the proportion of biomass that 

produces timber; (2) the tree leaf area, for the regulation of the radiation capture, thus of 

the dry matter production and the water losses through transpiration; (3) the number of 

shoots per tree, for the annual potential leaf area, and (4) the soil water content, with respect 

to the water holding properties of the given soil and the degree of water limitation (such as 

precipitation, soil depth). 

In the Yield-SAFE model, the water uptake is implemented by means of a root inter-

zone between trees. The model assumes one soil layer, homogeneous in its physical 

characteristics, whose volumetric water content is calculated in terms of precipitation, 

drainage of soil water below the potential tree rooting zone, and the actual soil evaporation. 

The evaporation is calculated in terms of heat of vaporization, radiation incident on the soil, 

and a factor that accounts for the reduction in soil evaporation. Altogether, the water used 

by the trees per unit area per day is implemented so that it accounts for the biomass 

reductions due to respiration losses or senescence and is calculated by multiplying the 

water-limited growth rate per tree with the tree density and the transpiration coefficient 

(van der Werf et al., 2007; Keesman et al., 2011). 

A detailed description of the assumptions, equations, and parameters embodied in the 

Yield-SAFE model can be found in van der Werf et al. (2007) and Keesman et al. (2011), 

together with default parameter values for a substantial range of tree species, as determined 

by Burgess et al. (2005).  

3.2.3.2. Sensitivity analysis of the Yield-SAFE model 

In order to minimize uncertainties and gain insight into which parameters influence the 

model output the most, a one-at-a-time sensitivity analysis was conducted (Equation (2)). 

This meant that the nominal value of each previously calibrated parameter was changed by 
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± 10% while fixing the other parameters at their default values (Keesman et al., 2011). The 

sensitivity, S was calculated by:  

𝑆 =
𝐵𝑡(+10)−𝐵𝑡(−10)

𝑋(+10)−𝑋(−10)
 , Eq.(2) 

where Bt is the modelled tree biomass (g tree-1) obtained through Yield-SAFE simulations 

with a ±10% change in parameter X. In order to compare the parameter sensitivity 

independently of scale, a relative, normalized sensitivity was computed (Equation (3)): 

𝑆𝑛𝑜𝑟𝑚. = 𝑆 ·
𝑋

𝐵𝑡
 , Eq.(3) 

Accordingly, all parameters with an absolute normalized sensitivity higher than 0.1 were 

labelled as dominant, as they exhibited a comparative high influence on the model output. 

3.2.3.3. Parameterization and validation of the Yield-SAFE model 

The Yield-SAFE model was parametrized separately for poplar and black locust trees, 

given their distinct growth behaviour and the site-specific conditions, such as weather and 

edaphic conditions. Initial estimates of tree and soil parameters were adapted from field 

measurements and studies performed by Keesman et al. (2011), Graves et al. (2010), and 

Wösten et al. (1999) (appendixed Table B.1.). 

The start and end of vegetation period were given as static inputs (poplar: DOYbud-burst 

= 105, DOYleaf-fall = 280; black locust: DOYbud-burst = 125; DOYleaf-fall = 310 (Küppers et al., 

2017). Therefore, the weather data have been analysed for the distinctive vegetation periods 

of the tree species. 

The historical weather data were taken from the weather station Cottbus. As global 

radiation was not measured at this weather station, it was estimated for the years 2010 – 

2015, according to the Ångström regression equation modified by Page (1964) (Equation 

(4)): 

𝐻 = 𝐻0 (𝑎 + 𝑏 ∙
𝑛

𝑁
) , Eq.(4) 

where 𝐻 is the monthly average daily radiation on the horizontal surface, 𝐻0 is the monthly 

average daily extra-terrestrial solar radiation, 𝑛  is the monthly mean daily sunshine 

duration, and 𝑁 is the monthly mean maximum possible sunshine duration. The empirical 
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coefficients a and b were derived from the German Weather Service station Lindenberg 

(52°20’85’’N, 14°11’80’’E; 98m a.s.l., about 90 km north-west of the experimental site) 

and transferred to the weather station Cottbus. Accordingly, a = 0.14 and b = 0.47 for the 

months between November and February, a = 0.24 and b = 0.40 for June, July, and August, 

and a = 0.36 and b = 0.23 for the rest of the months. 

The resulted values for the modelled tree woody biomass were validated against the 

measured values in order to test the applicability of the Yield-SAFE model to simulate and 

subsequently project the tree woody biomass production under various prospective weather 

conditions. The performance of the model was evaluated visually by comparing the 

measured and modelled tree woody biomass, as well as by the normalized root-mean-

square error (NRMSE) and the coefficient of determination (R2).  

3.2.4. Prospective Climate Change 

Once validated, the Yield-SAFE model simulated the tree woody biomass production under 

prospective weather conditions from the statistical regional climate model Statistical 

Analogue Resampling scheme (STAR, scenario STAR 2K) (Werner & Gerstengarbe, 1997, 

Orlowsky et al., 2008). 

STAR generates daily time series of meteorological variables by stochastically 

resampling segments of daily observations at climate stations. The resampling is 

conditioned by a predefined air temperature increase. The scenario STAR 2K assumes a 

linear increase of the mean annual temperature of 2 K from 2000 to 2055 (Gerstengarbe et 

al., 2003; Orlowsky et al., 2008). Under the assumption that the relationships between 

meteorological variables will persist in the future, the scenario is associated with decreases 

of the mean annual precipitation in the wider region of the experimental site of interest for 

this study. In a comparison study on the Lusatian river catchments of Spree, Schwarze 

Elster, and Weißer Schöps in North-Eastern Germany (Gädeke et al., 2014), the outcomes 

of STAR have been evaluated as warm and dry, compared to results of dynamical regional 

climate models, such as REMO or CCLM. STAR has been widely applied as climate input 

to simulate potential climate change impacts on hydrology and plant growth (Lasch et al., 

2010; Pohle et al., 2015). 

We performed model simulations driven by air temperature, global radiation, and 

precipitation of 100 realisations of STAR 2K for the time period from 2015 to end of 2054, 

with respect to the vegetation period of both tree species, and taking into consideration a 



37 

 

rotation of four years. As a reference basis, a growing period from 2010 to end of 2013 for 

black locust and from 2011 to end of 2014 for poplar was simulated. Additionally, ten 

hypothetical four-year growing periods from 2015 to end of 2054 were created and 

simulated under the assumption that shoots and seedlings were replanted at the beginning 

of each growing period in the same system and under the same management and soil 

conditions. 

Consequently, the 100 realisations were adjusted given the specific vegetation period 

of each tree species and arrayed according to their intent as follows: identifying realisations 

with minimum, mean, and maximum (1) average precipitation sum and (2) mean 

temperature values for the timeframe 2015-2054 compared to 1974-2014, as a base period, 

and analyzing the correspondences with the tree woody biomass; identifying realisations 

with minimum and maximum (3) average precipitation sum and (4) mean temperature 

values with respect to the ten hypothetical four-year growing periods, and analyzing the 

correspondences with the tree biomass; (5) identifying the main realisations that rendered 

minimum and maximum woody biomass after each of the ten growing periods, and (6) 

identifying realisations that rendered minimum and maximum woody biomass increments 

over the 2015-2054 timeframe. 

3.3. Results 

3.3.1. Observed Woody Biomass Productivity of Poplar and Black Locust Trees 

The woody biomass observations showed considerable differences between the tree species 

over the investigated four years of growth (Table 8). The number of measured trees was 

also taken into consideration for the determination of the standard deviation. 

Table 8. Mean (± standard deviation) woody biomass for poplar and black locust trees with respect to the 

planting density and number of samples (n). 

Species 
Biomass after  

1 Year [Mg ha-1] 

Biomass after  

2 Years [Mg ha-1] 

Biomass after  

3 Years [Mg ha-1] 

Biomass after  

4 Years [Mg ha-1] 

Poplar 0.4 ± 0.1 (n=333) 2.0 ± 0.5 (n=150) 12.9 ± 0.1 (n=242) 28.2 ± 2.7 (n=50) 

Black Locust 0.1 ± 0.1 (n=360) 3.6 ± 0.5 (n=306) 9.1 ± 1.4 (n=152) 15.3 ± 3.4 (n=219) 

The growth difference between the two tree species in terms of woody biomass varied inter-

annually, but after four years, poplar trees grew almost twice as much as black locust trees 
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in terms of woody biomass. The standard deviations obtained for each year and with respect 

to the number of samples showed large differences, underlying the variability of 

observations. 

3.3.2. Sensitivity Analysis of the Yield-SAFE Model 

Parameters with an absolute value of the normalized sensitivity in the model output higher 

than 0.1 were considered as main influencing parameters and are presented in Figure 11. 

Reversely, all parameters with a normalized sensitivity < 0.1 were considered as minor 

important due to a comparably small influence on the model output and thus were not 

included in a deeper evaluation. 

 

Figure 11. The normalized sensitivity of the model’s output to tree and soil parameters, as well as to climatic 

inputs for both poplar and black locust. 

The model output displayed high sensitivities to the tree parameters: initial number of 

shoots (nShoot0), radiation use efficiency (εt), radiation extinction coefficient (kt), and 

maximum leaf area for a single shoot (LAss
max) in descending order. Dominant soil 

parameters in descending order were: pF value at field capacity (pF(FC)), potential 

evaporation (η), saturated volumetric water content (θs), and soil depth. Regarding the 

climate inputs, the modelled output was highly sensitive to global radiation (TR) and 

precipitation (TP) but unresponsive to changes in average air temperature. 

3.3.3. Model Validation 

In what concerns the above-ground tree woody biomass production accumulated after four 

years of growth, the Yield-SAFE model rendered good correspondences with the measured 

tree woody biomass (Figure 12). 
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Figure 12. Measured woody biomass (dots) and modelled accumulated woody biomass (line) for: (a) poplar 

over a rotation period from 2011 to the end of 2014, and with regard to the planting density and 

number of samples (n=50:333) and (b) black locust over a rotation period from 2010 to the end of 

2013, and with regard to the planting density and number of samples (n=50:360). 

The modelled tree woody biomass values accumulated during the four years of growth 

nearly matched the measured biomass values for both tree species, except for a higher 

deviation in the second growing year of poplar. However, at the end of the investigation 

period, the deviation of measured to modelled biomass values accounted for +0.3% for 

poplar and +2.8% for black locust, implying very small overestimations of modelled 

accumulated tree woody biomass. 

The relative errors of the modelled fits were low (NRMSE values of 4.6% and 5.5% 

for the Yield-SAFE validations of poplar and black locust, respectively, always with a P 

value < 0.0001) and the fit was highly significant (R2 values of 0.99 and 0.97 for poplar 

and black locust, respectively). 
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3.3.4. Modelled Woody Biomass under STAR 2K Weather Realisations 

3.3.4.1. A forty-year comparison with respect to the average precipitation sum 

The main realisations with minimum, mean, and maximum average precipitation sum and 

air temperature for the timeframe 2015-2054 compared to the values for the timeframe 

1974-2014, which served as a base period in this study, and with respect to the vegetation 

period of each tree species are presented in Table 9. 

Table 9. Realisations (highlighted in parenthesis) that rendered minimum, mean, and maximum average 

precipitation sum and air temperature values with respect to the vegetation period of both tree 

species and under a timeframe of forty years. 

Average 

Values for 

the 

Vegetation 

Period 

Poplar Black Locust 

Base 

Period 

(1974- 

2014) 

Min. 

(2015- 

2054) 

Mean 

(2015- 

2054) 

Max. 

(2015- 

2054) 

Base 

Period 

(1974- 

2014) 

Min. 

(2015- 

2054) 

Mean 

(2015- 

2054) 

Max. 

(2015- 

2054) 

P [mm] 324 
254 

(R13) 

296 

(R4,R27) 

327 

(R41) 
336 

271 

(R13) 

303 

(R28,R58) 

335 

(R82) 

T [°C] 16.0 
17.0 

(R35) 

17.2 

(R15,R86) 

17.5 

(R38) 
15.3 

16.2 

(R84) 

16.6 

(R43) 

16.9 

(R32,R41) 

The average precipitation sum during the vegetation period of the base period corresponded 

to the maximum values indicated by the projected time period in the case of both poplar 

and black locust. This would suggest that, taking into account all 100 realisations over a 

forthcoming timeframe of forty years, a maximum of 2.5 mm more precipitation would be 

achieved in the vegetation period of poplar and only 0.8 mm less in the vegetation period 

of black locust. The long-term average precipitation of the realisations representing mean 

values is about 10% lower than the base period (28 mm in case of poplar, 33 mm in case 

of black locust). Also, it was noticed that the values for the average precipitation sum were 

revealed by different realisations for the two considered tree species, which made the usage 

of vegetation periods specific to each tree species relevant. The long-term average 

precipitation in the vegetation period for the driest realisation, R13, is approximately 20% 

lower than the average of the base period (poplar: 70 mm, black locust: 65 mm).  
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Simulations of tree growth under the aforementioned realisations with minimum, mean, 

and maximum average precipitation sum values were performed in terms of woody biomass 

for poplar (Figure 13) and black locust (Figure 14) in order to visually analyze the 

correspondences with the tree woody biomass accumulated after four years of growth. 

 

Figure 13. Projected accumulated woody biomass of poplar trees under realisations that rendered minimum 

(R13, orange), mean (R4, light green; R27, dark green), and maximum (R41, blue) average 

precipitation sum values during the vegetation period from 2015 to the end of 2054. 

 

Figure 14. Projected accumulated woody biomass of black locust trees under realisations that rendered 

minimum (R13, orange), mean (R28, light green; R58, dark green), and maximum (R82, blue) 

average precipitation sum values during the vegetation period from 2015 to the end of 2054. 

While it could be generally said that a lack of precipitation leads to lower woody biomass 

and that a higher amount of precipitation leads to a higher woody biomass accumulated in 

four growing years, it was not always the case. Realisation 13, for example, had the lowest 

average precipitation sum in the forty-year timeframe but rendered the maximum 

accumulated biomass in the first period (2015-2018) for both tree species as well as in the 

fourth (2027-2030) and fifth period (2031-2034) for black locust. This result implied that 

in order to find a clear correlation between a climatic input and the production of tree woody 

biomass, the established growing periods or even the individual vegetation periods should 

be evaluated. 
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3.3.4.2. A forty-year comparison with respect to the mean temperature 

The mean temperature during the vegetation period of the base period (poplar: 16°C, black 

locust: 15.3°C) was 1.2 K lower than the mean values and 1.5 K lower than the maximum 

values indicated by the 100 realisations under the projected time period, in the case of both 

poplar and black locust (Table 9). Also, it was noticed that the values for the mean, 

minimum, and maximum temperature were revealed by different realisations each for the 

two considered tree species, which made the usage of vegetation periods specific to each 

tree species relevant. 

Consequently, simulations of tree growth under aforementioned realisations with 

minimum, mean, and maximum mean temperature values were performed in terms of 

woody biomass for poplar (Figure 15) and black locust (Figure 16) in order to visually 

analyse the correspondences with the tree woody biomass accumulated after four years of 

growth. 

 

Figure 15. Projected accumulated woody biomass of poplar trees under realisations that rendered minimum 

(R35, orange), mean (R15, light green; R86, dark green), and maximum (R38, blue) average 

temperature values during the vegetation period from 2015 to the end of 2054. 

For poplar, it seemed that medium average temperature values during the vegetation period 

rendered the highest woody biomass, with the exception of the sixth period (2035-2038), 

where the realisation with a maximum value for temperature also achieved a maximum 

accumulated woody biomass. Generally, the results showed that extremities in mean 

temperature rendered lower accumulated woody biomass. 
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Figure 16. Projected accumulated woody biomass of black locust trees under realisations that rendered 

minimum (R84, orange), mean (R43, light green), and maximum (R41, dark blue; R32, light blue) 

average temperature values during the vegetation period from 2015 to the end of 2054. 

For black locust, there seemed to be no explicit pattern correlating mean temperature with 

the production of tree woody biomass, as the highest woody biomass was achieved in 

different periods by realisations rendering both extreme and mean temperature values. 

3.3.4.3. Comparison between the ten year growing periods in terms of average 

precipitation sum 

In this step, ten hypothetical four-year growing periods from 2015 to 2054 were simulated 

under the assumption that shoots and seedlings were replanted at the beginning of each 

growing period, in the same system, and under the same management and soil conditions. 

Accordingly, two reference periods were created in terms of average precipitation sum, 

mean temperature, and global radiation accounting for the distinct vegetation period and 

planting year of poplar (2011) and black locust (2010) trees. 

The main realisations with minimum and maximum values for the average radiation 

sum, precipitation sum, and temperature for the established growing periods from 2015-

2054 are presented in Table 10 with respect to the vegetation period of each tree species. 
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Table 10. Realisations (highlighted in parenthesis) that rendered minimum and maximum average 

precipitation (Pmin, Pmax), air temperature (Tmin, Tmax), and global radiation (Rmin, Rmax) values in 

the established ten growing periods with respect to the vegetation period of both tree species. The 

reference period for poplar (2011-2014) and black locust (2010-2013) trees accounted for their 

distinct vegetation period. 

Average 

Values 

R
ef

er
en

c
e 

P
er

io
d

 

2015- 

2018 

2019- 

2022 

2023- 

2026 

2027- 

2030 

2031- 

2034 

2035- 

2038 

2039- 

2042 

2043- 

2046 

2047- 

2050 

2051- 

2054 

  Poplar 

Pmax. 

[mm] 

3
6

6
 

389 

(R31) 

435 

(R7) 

413 

(R43) 

378 

(R41) 

442 

(R98) 

450 

(R96) 

376 

(R60) 

406 

(R10) 

413 

(R78) 

416 

(R39) 

Pmin. 

[mm] 

225 

(R26) 

201 

(R56) 

211 

(R11) 

184 

(R2) 

212 

(R10) 

205 

(R79) 

203 

(R69) 

176 

(R2) 

197 

(R8) 

190 

(R79) 

  Black Locust 

Pmax. 

[mm] 

3
9

5
 

400 

(R79) 

440 

(R7) 

423 

(R43) 

408 

(R50) 

459 

(R98) 

445 

(R96) 

390 

(R60) 

413 

(R82) 

422 

(R78) 

429 

(R39) 

Pmin. 

[mm] 

226 

(R19) 

207 

(R56) 

222 

(R11) 

188 

(R2) 

205 

(R10) 

209 

(R79) 

192 

(R79) 

196 

(R2) 

188 

(R46) 

200 

(R13) 

  Poplar 

Tmax. 

[°C] 1
6

.6
 17.5 

(R16) 

17.6 

(R33,R69) 

18.0 

(R55) 

17.9 

(R98) 

18.2 

(R62) 

18.3 

(R1,R17) 

18.3 

(R97) 

18.3 

(R36,R81) 

18.6 

(R37) 

18.5 

(R47) 

Tmin. 

[°C] 
 

15.2 

(R71) 

15.9 

(R7,R79) 

16.1 

(R75) 

15.9 

(R1) 

16.1 

(R3) 

16.5 

(R42,R95) 

16.5 

(R26) 

16.8 (R10, 

R30,R94) 

16.4 

(R66) 

17.1 

(R91) 

  Black Locust 

Tmax. 

[°C] 

1
5

.6
 

16.6 

(R64,R74) 

17.1 

(R41) 

17.1(R27, 

R55,R83) 

17.4 

(R4) 

17.3 

(R96) 

17.4 

(R26,R65) 

17.6 

(R22) 

17.7 

(R4) 

17.8 

(R51) 

17.8 

(R73) 

Tmin. 

[°C] 

14.6 

(R71) 

15.3 

(R84) 

15.6 

(R67) 

15.4 

(R1) 

15.2 

(R3) 

15.9 

(R81) 

16.0 

(R26) 

16.1 

(R31) 

16.0 

(R66) 

16.5 

(R91) 

  Poplar 

Rmax. 

[W m-2] 

3
1

1
9
 

2926 

(R64) 

3002 

(R53) 

3017 

(R22) 

3016 

(R4) 

3069 

(R13) 

3133 

(R17) 

3082 

(R24) 

3165 

(R100) 

3146 

(R37) 

3158 

(R79) 

Rmin. 

[W m-2] 

2497 

(R71) 

2640 

(R34) 

2709 

(R60) 

2701 

(R1) 

2593 

(R3) 

2653 

(R95) 

2741 

(R26) 

2745 

(R67) 

2789 

(R3) 

2738 

(R3) 

  Black Locust 

Rmax. 

[W m-2] 

2
9

6
6
 

2812 

(R11) 

2932 

(R51) 

2887 

(R22) 

2913 

(R4) 

2898 

(R6) 

2952 

(R46) 

2958 

(R79) 

3045 

(R100) 

2981 

(R13) 

3003 

(R79) 

Rmin. 

[W m-2] 

2379 

(R71) 

2560 

(R79) 

2538 

(R67) 

2573 

(R41) 

2419 

(R3) 

2517 

(R95) 

2621 

(R8) 

2597 

(R67) 

2632 

(R3) 

2559 

(R3) 
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A directly proportional relationship can be noticed between the average radiation sum and 

the mean temperature, as averaged over the vegetation period.  

Subsequently, four compound-realisations were created by using realisations that 

rendered either a minimum or a maximum average precipitation sum in the given growing 

period. For example, the first compound-realisation, which contained the highest 

precipitation values for poplar, was made by putting together R31, R7, R43, R41, R98, 

R96, R60, R10, R78, and R39, from the first period (2015-2018) to tenth period (2051-

2054), respectively. Simulations were carried under these four compound-realisations for 

poplar (Figure 17) and black locust (Figure 18). 

 

Figure 17. Projected woody biomass of poplar trees under special realisations describing either the highest 

precipitation values (blue) or the lowest precipitation values (orange) with respect to the ten 

established growing periods. 

 

Figure 18. Projected woody biomass of black locust trees under special realisations describing either the 

highest precipitation values (blue) or the lowest precipitation values (orange) with respect to the 

ten established growing periods. 

A strong, directly-proportional correlation between the average precipitation sum and the 

woody biomass accumulated after four years of growth was noticed for both tree species. 

However, even if the base period for both tree species had an average precipitation sum 

lower than any of the maximum values found for the projected periods, the accumulated 
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biomass after four years of growth was sometimes higher in the base period rather than in 

the projected timeframes.  

Additionally, it was noticed that R79 has a strong intra-annual variability of 

precipitation shown by a shift between the minimum and maximum values for precipitation 

over the vegetation period. However, this realisation does not seem to render marginal 

values for accumulated tree biomass, except for black locust, in period 6 (2035-2038). 

Therefore, a compilation of climographs was made for realisation 79 with respect to the 

established growing periods and according to the vegetation period (appendixed Figure 

B.1.). The average radiation sum and the accumulated biomasses for both tree species were 

added for comparison purposes.  

Regarding the mean monthly temperature, it seemed that those growing periods with 

a warm April (≈12°C) rendered lower biomass values than those periods that had a colder 

April (≈9°C). This happened perhaps due to late April frosts that can affect tree growth. 

Alternatively, no strong influence of mean temperature on the accumulated tree biomass 

could be seen over the years. In what concerns the average monthly precipitation, 

meaningful shifts were noticed, especially between earlier growing periods (2015-2018) 

and later growing periods (2047-2050). Accumulated tree biomass also seemed to have a 

noticeable increase in those periods where precipitation was high between May and July. 

The average radiation increased from period to period, but to no avail for the biomass 

accumulated after four growing years.  

3.3.4.4. Comparison between the ten year growing periods in terms of mean temperature 

Similarly to Section 3.3.4.3, four compound-realisations were created by using realisations 

that offered either a minimum or a maximum mean temperature in the given growing period 

(Table 10). The tree growth was simulated in terms of woody biomass under these four 

compound-realisations for poplar (Figure 19) and black locust (Figure 20). 
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Figure 19. Projected woody biomass of poplar trees under special realisations describing either the highest 

temperature values (blue) or the lowest temperature values (orange) with respect to the ten 

established growing periods. 

 

Figure 20. Projected woody biomass of black locust trees under special realisations describing either the 

highest temperature values (blue) or the lowest temperature values (orange) with respect to the ten 

established growing periods. 

3.3.4.5. Comparison between the ten year growing periods in terms of accumulated woody 

biomass 

Table 11 presents the minimum and maximum woody biomass accumulated after four 

growing years for both tree species, with respect to the established growing periods, and 

together with their corresponding realisation. Highlighted in red are those realisations that 

rendered low accumulated woody biomass while having a low precipitation input or on the 

contrary, that rendered a high accumulated woody biomass while having a high 

precipitation input. 
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Table 11. Realisations that rendered minimum and maximum accumulated woody biomass values for both 

tree species with respect to the ten established growing periods. Highlighted in red are those 

realisations that rendered low accumulated woody biomass while having a low precipitation input 

or on the contrary, that rendered a high accumulated woody biomass while having a high 

precipitation input. 

Accumulated 

Woody Biomass 

[Mg ha-1] 

2015- 

2018 

2019- 

2022 

2023- 

2026 

2027- 

2030 

2031- 

2034 

2035- 

2038 

2039- 

2042 

2043- 

2046 

2047- 

2050 

2051- 

2054 

Poplar 

Max. 24.7 31.3 34.7 33.8 39.4 34.5 30.6 33.1 33.5 38.8 

Realisation 13 27 6 49 100 37 75 82 75 62 

Min. 15.0 14.6 15.9 12.9 13.7 15.3 13.5 10.9 12.9 12.9 

Realisation 26 56 18 2 10 35 69 2 16 90 

 Black Locust 

Max. 15.3 18.3 16.8 17.9 20.6 19.1 18.0 19.61 18.2 21.8 

Realisation 51 27 6 74 100 96 75 82 75 63 

Min. 9.4 8.9 10.0 7.9 8.6 9.3 8.5 7.1 8.0 8.2 

Realisation 19 56 18 2 10 79 87 2 16 24 

According to these results, Figure 21 was created for poplar and black locust, respectively, 

as a bandwidth of accumulated woody biomass from all realisations from 2015 to the end 

of 2054. 

An initial decrease in accumulated woody biomass was noticed between the reference 

and the first projected period for both tree species (Figure 21). However, this was expected, 

as the realisations that rendered maximum values for accumulated biomass (R13 and R51 

for poplar and black locust, respectively) had lower average values than those of the 

reference period for all climatic inputs.  
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Figure 21. The range of possible accumulated woody biomass shown by maximum (blue) and minimum 

(red) values obtained after four years of growth with respect to the ten established growing periods 

for (a) poplar and (b) black locust. Trend lines for the woody biomass are described by dash-dotted 

lines. The dashed lines represent the woody biomass, as per reference period. 

Following the trend lines of biomass increase for poplar, it could be said that in the most 

optimistic case, an increase of about 10 Mg ha-1 (35%) would be achieved in the last period 

(2051-2054) compared to the reference period and in the most pessimistic case a decrease 

of about 15 Mg ha-1 (54%). For black locust, the accumulated woody biomass in the last 

period would be subjected to either an increase of about 7 Mg ha-1 (43%), in the most 

optimistic case, or a decrease of 7 Mg ha-1 (47%), in the most pessimistic case. However, 

when accounting for the variability of observations, the simulations showed that the 

assumed climate change could lead to a decrease in the median woody biomass 

accumulated in the last period of about 5 Mg ha-1 (18%) for poplar and 1.7 Mg ha-1 (11%) 

for black locust trees with respect to the median observed in the reference period.   

Additionally, it was noticed that in the first period (2015-2018), the maximum 

accumulated biomass of poplar was given by realisation R13 (i.e., a woody biomass value 
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of 24.7 Mg ha-1; average radiation sum of 3284 W m-2), whereas the maximum precipitation 

input for the first period is given by realisation R31 (i.e., a biomass value of 23.2 Mg ha-1; 

average radiation sum of 3023 W m-2). In order to establish what other climatic factors 

were involved in the tree woody biomass production, appendixed Figure B.2. was created. 

As also observed in appendixed Figure B.1., the accumulated tree woody biomass 

seemed to have a noticeable increase in those periods where precipitation was high between 

May and July. Also, the average monthly radiation sum was significantly higher in 

realisation R13 than R31 with respect to the vegetation period, except for 2017, where 

values dropped slightly behind for realisation R13 than R31. Likewise, the average monthly 

temperature was significantly higher in realisation R13 than R31 with respect to the 

vegetation period, except for 2017, where values dropped slightly behind for realisation 

R13 than R31. 

3.3.4.6. Comparison between the ten year growing periods in terms of woody biomass 

increment 

The minimum and maximum woody biomass increments for both tree species under a 

timeframe of forty years are presented in Table 12, together with their corresponding 

realisation. Taking into consideration the average values for precipitation and temperature 

of all realisations under the entire projected timeframe of forty years, an overall mean 

temperature and precipitation sum were established and highlighted.  

Table 12. Realisations that rendered minimum, mean, and maximum average woody biomass increment 

values for both tree species under a timeframe of forty years, together with their climatic 

characteristics in terms of average annual values for precipitation sum and air temperature. 

Average 

Woody 

Biomass 

Increment 

[Mg ha-1 a-1] 

Projected 

Period  

(2015-2054) 

R2 R44 R45 R70 R62 R25 

Poplar 
Black 

locust 
Poplar 

Black 

locust 
Poplar 

Black 

locust 
Poplar 

Black 

locust 

Black 

locust 
Poplar 

Black 

locust 

- - 4.5 2.8 5.4 3.3 5.4 3.3 3.3 6.5 3.8 

P [mm a-1] 296 303 270 279 313 316 304 301 310 306 313 

T [°C a-1] 17.2 16.6 17.3 16.9 17.1 16.5 17.3 16.7 16.6 17.3 16.6 
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Furthermore, labels were given to the realisations presented in Table 12 by comparing their 

average annual precipitation and temperature values with those values obtained for the 

entire projected timeframe from 2015 to the end of 2054. Consequently, R2 was regarded 

as dry-warm for both tree species, R44 as wet-cold, R45 as wet-cold, R70 as wet-warm for 

poplar and dry-warm for black locust, R62 as wet-medium, and R25 as wet-warm for poplar 

and wet-medium for black locust. The yearly woody biomass increments were projected for 

poplar (Figure 22) and black locust (Figure 23) trees under these realisations with respect 

to the ten established growing periods. 

 

Figure 22. Projected minimum (orange), mean (green), and maximum (blue) yearly woody biomass 

increment of poplar trees with respect to the ten established growing periods. 

 

Figure 23. Projected minimum (orange), mean (green), and maximum (blue) yearly woody biomass 

increment of black locust trees with respect to the ten established growing periods. 

The empirical data for the yearly woody biomass increment, regarded as the reference 

period values, were significantly higher than the maximum values achieved under the 

timeframe of forty years. However, given the established growing periods, an increase in 

biomass increment was noticed after the fifth period. For poplar, this increase exceeded the 

reference period value with merely 1.7 Mg ha-1 a-1 (24%), whereas for black locust it 

decreased with at least 0.6 Mg ha-1 a-1 (11%). Regarding the mean temperature obtained for 
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the given growing period, it seemed that realisations labelled as both cold and warm 

rendered minimum, medium, and maximum biomass increments. 

3.4. Discussion 

The results of this study corroborated the growth vulnerability of poplar and black locust 

trees in terms of woody biomass to prospective climate change and particularly to changes 

in water availability. Similar results were obtained by Weemstra et al. (2013), who found 

that summer drought decreased tree growth of ten deciduous tree species at an experimental 

forest setting in The Netherlands. Using climate-tree-growth relationships for study sites in 

Mecklenburg-Vorpommern, north-eastern Germany, Scharnweber et al. (2011) have 

identified a strong dependency of growth of common European beech (Fagus sylvatica L.) 

and pedunculated oak (Quercus robur L.) on water availability, especially during early 

summer. Comprehensive studies were conducted with Populus and Salix in field 

experiments for short-rotation forestry and for breeding of clones (Monclus et al., 2005; 

Calfapietra et al., 2010). 

In contrast to the previously mentioned tree species, information about the implication 

of environmental and climatic factors on the growth performance of black locust is rare. As 

a pioneer tree, black locust is regarded as a drought-adapted tree species, showing high 

morphological and physiological plasticity and therefore, it is planted even in regions with 

annual precipitation sum values below 600 mm a-1 (Veste et al., 2018). Subjected to water 

limitation, the leaf area of black locust reduces drastically in order to minimize 

transpiration, although affecting the growth performance (Veste & Kriebitzsch, 2013; 

Mantovani et al., 2015a), whereas the production of nodules for biological nitrogen fixation 

increases in order to overcome the limitation of nitrogen uptake from the soil (Mantovani 

et al., 2015b).  

Field investigations at our study site in Neu Sacro during a summer heat period in 2015 

indicated that both poplar and black locust tree species maintained a high photosynthesis 

and growth performance under maximum daily temperatures of 30-34°C due to the fact 

that water uptake from the groundwater was guaranteed (Veste & Halke, 2017). Under such 

well-watered conditions, black locust did not down-regulate the transpiration and was 

regarded as water-saving tree species (Mantovani et al., 2014). However, long-term studies 

aiming to understand the biomass production under different climatic conditions do not 

exist for black locust and for management practices such as short-term forestry. 
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3.4.1. Parameterization and Validation of the Yield-SAFE Model 

The low relative errors of the woody biomass fits and the high coefficient of determination 

suggested a satisfactory agreement between the modelled and observed woody biomass 

yields and thus, a high model performance, accounting for a great proportion of the 

variance. 

However, some differences existed between the modelled biomass and the measured 

one, which could be reduced by revising those parameters which influenced the modelled 

output the most. One of the parameters that would need a better appraisal would be the 

initial biomass, which was assumed to be 0.87 Mg ha-1 in the Yield-SAFE model, whereas 

the measured biomass was of 0.4 Mg ha-1 for poplar and 0.001 Mg ha-1 for black locust 

after the first year of growth. Evidently the initial biomass of the cuttings (poplar) and 

rooted seedlings (black locust) should be adjusted in the future to a more realistic situation. 

Another solution would be to improve the Yield-SAFE model by a dynamic vegetation 

period determination depending on weather conditions rather than the static approach using 

tabulated values of the day of budburst and leaf-fall of the year. The adaptation could be 

based on a weighting model determined by the atmospheric drivers (i.e., daily values for 

air temperature, precipitation, and global radiation), in order to boost or hinder the tree 

vegetation period to a more realistic situation. Shifts in the phenological phases have 

already been observed in the region (Chmielewski et al., 2005; Menzel et al., 2006) and 

further changes are expected for the future. Since this solution would use existing 

parameters, it would not increase the parameter range in the Yield-SAFE model and 

therefore, the model would remain parameter-sparse.  

3.4.2. Evaluating the Woody Biomass Productivity under Prospective Climate Realisations 

The above-ground woody biomass, as simulated by the Yield-SAFE model, was highly 

sensitive to global radiation and precipitation but to a lesser extend to changes in average 

air temperature. This was also supported by the results of the sensitivity analysis. However, 

strong correlations were detected between global radiation and air temperature and 

therefore, the variations noticed in the tree woody biomass production were attributed to 

various extents to all three climatic inputs.  

In our comparison between realisations R13 and R31 under the first growing period 

(2015-2018) for example, a higher woody biomass production was provided by R13 than 

by R31. We firstly linked this difference to the monthly precipitation sum values, which 
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were higher in R13 than in R31. This was especially important for the months May, June, 

and July, where the modelled output increased with increasing precipitation values, as also 

observed in experimental studies by Gallardo (2014) for poplar trees and Mantovani et al. 

(2014) for black locust trees.  

Additionally, the average monthly radiation was significantly higher in realisation R13 

than R31 with respect to the vegetation period, except for 2017, where values dropped 

slightly behind for realisation R13 than R31. Likewise, the average monthly temperature 

was significantly higher in realisation R13 than R31 with respect to the vegetation period, 

except for 2017. This indicated that the tree growth depended somewhat on global 

radiation, but most predominantly on precipitation. 

Water availability during the main vegetation period has been confirmed to be an 

important factor in the determination of the eco-physiological and growth performance of 

trees (Scharnweber et al., 2011; Leuzinger et al., 2015; Gessler et al., 2007; Kriebitzsch & 

Veste, 2012; Weemstra et al., 2013). Especially when subjected to extreme summer 

droughts, as expected for the ongoing climate change, the soil water availability can imprint 

a long-lasting effect on tree growth performance, forest functioning and management 

(Lindner et al., 2010; Anderegg et al., 2013; Bolte et al., 2017). 

Numerous studies have emphasized the complex effects of climate change on common 

forest trees (Anderegg et al., 2013, Anderegg et al., 2015). The increasing air temperature 

was reported to alter the plant phenology and length of the vegetation period, which in turn 

affects plant productivity (Chmielewski et al., 2005; Menzel et al., 2006). Bud phenology 

of many temperate trees depends on air temperature and photoperiod (Körner & Basler, 

2010; Vitasse & Basler, 2013; Malyshev et al., 2018). Regional warming might increase 

the length of the growing period, albeit increasing evaporative demand, especially in 

combination with decreasing precipitation, may limit growth (Ceulemans et al., 1996; 

Lasch et al., 2002). 

The climate change impacts on short rotation coppices with aspen were assessed by 

Lasch et al. (Lasch et al., 2010) across Eastern Germany and increasing growth rates were 

reported on most sites together with high ranges based on three selected realisations of 

STAR 2K. A European-wide simulation study showed inconsistent tendencies of changes 

in tree growth in Central Europe with high uncertainties of climate change impacts on tree 

growth arising from climate models (Reyer et al., 2014).  
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Due to the non-linear responses of tree growth to interacting factors such as global 

radiation, air temperature, precipitation, and soil moisture, estimating climate change 

impacts on tree growth is challenging and subject to large uncertainties (Medlyn et al., 

2011; Asseng et al., 2013; Lindner et al., 2014).  

As noted by Medlyn et al. (2011), the comparability of simulation results of tree 

growth under climate change can be hampered by various uncertainties, many of those 

related to the underlying assumptions in the tree growth model. Our results also indicated 

that climate changes, as assumed in STAR 2K, may result in high uncertainties of the 

simulated tree growth, even for the same scenario and regional climate model. This might 

be attributed to the fact that different realisations of one scenario may cause more 

pronounced differences in forest productivity than different regional climate models or 

emission scenarios, as found by a European-wide comparison study (Reyer et al., 2014). 

STAR 2K has been used in several studies to estimate the potential climate change 

effects on hydrology whereby the direction of change was in agreement towards increasing 

potential evapotranspiration and declining discharge and groundwater recharge (Gädeke et 

al., 2014; Pohle et al., 2015; Huang et al., 2010), but only the magnitude of change showed 

high differences between individual realisations. The potential tree growth might also be 

subjected to hindrance by the declining groundwater recharge, as investigated by Pohle et 

al. (2015) for bio-energy crops in the wider study region under STAR and WettReg. 

These results are in line with the findings of our study in what concern the uncertainties 

in climate variability implications on the growth performance of poplar and black locust 

trees, both in terms of direction and magnitude of potential future changes. 

3.5. Conclusions and Outlook 

By a combined experimental and simulation study, we investigated the potential growth 

vulnerability of two fast-growing tree species managed as short rotation coppices (SRCs) 

to a considerable spectrum of weather conditions and long-term climate change. We 

achieved this by means of field measurements in an SRC established in Brandenburg, 

Germany, and simulations using the Yield-SAFE model and 100 realisations of the regional 

climate model Statistical Analogue Resampling scheme STAR, scenario 2K. 

The Yield-SAFE model simulated the daily above-ground woody biomass of hybrid-

poplar clone “Max I” and black locust with satisfactory accuracy and responded sensitively 

to changes in the meteorological input data. The model showed a strong sensitivity to tree 
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parameters such as the initial number of shots, the radiation use efficiency and the radiation 

extinction coefficient, as well as the maximum leaf area per shot and to a lesser extent, to 

soil parameters. In terms of climatic inputs, the modelled output was highly sensitive to 

global radiation and precipitation but to a lesser extend to changes in average temperature. 

Our findings showed that the tree yields in an SRC were positively impacted by air 

temperature increase and negatively by decreasing precipitation. Additionally, the notion 

that climate change impacts cannot be categorized as solely positive or negative was 

reinforced, as tree yield productivity has shown to react diametrically contrary to shifts in 

climate: higher temperature values might boost tree growth due to a prolonged vegetation 

period, or contrarily, it might hinder tree growth due to higher evapotranspiration and lower 

soil water availability. 

However, as the extreme events are to be intensified in their frequency and intensity 

within the framework of the anticipated climate changes, the investigation of the effects of 

extreme weather conditions will be given more prominence in the future. Also, there may 

be some restrictions on production as groundwater levels might decline under climate 

change (Pohle et al., 2015), restricting the future possibilities for the use of groundwater 

for irrigation, especially of agricultural land. 

Based on the implications of this study, it will be possible to furthermore develop and 

optimize the SRC designs with respect to the specific field conditions, spatial arrangement, 

and planting density and to provide with a reliable estimation of achievable woody biomass 

yields according to tree species, management, and climate change effects. 

In the future, the model of this study could be extended to situations that demand more 

details such as different nutrient levels, different species of trees and arable crops and 

interactions between plants. This is especially relevant with the current need for 

diversification of land-use and the generation of not only food, feed and fibre on arable 

land, but also fuel with respect to the water-energy-food nexus. 
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Abstract: The alley-cropping systems (ACSs), which integrate parallel tree strips at 

varying distances on an agricultural field can result, complementarity of resource use, in an 

increased land-use efficiency. Practitioners’ concerns have directed towards the 

productivity of such systems given a reduced area covered by agricultural crops. The land 

equivalent ratio (LER) serves as a valuable productivity indicator of yield performance and 

land-use efficiency in ACSs, as it compares the yields achieved in monocultures to those 

from ACSs. Consequently, the objective of this combined experimental and simulation 

study was to assess the tree- and crop yields and to derive the LER and gross energy yield 

for two temperate ACSs in Germany under different design scenarios, i.e., tree 

arrangements (lee- or windward) and ratios of tree area to crop area. Both LER and gross 

energy yields resulted in a convex curve where the maximum values were achieved when 

either tree or crop component was dominant (> 75 % of the land area) and minimum when 

these components shared similar proportions of land area. The implications of several 

design scenarios have been discussed in order to improve the decision-making, 

optimization, and adaptation of the design of ACSs with respect to site-specific 

characteristics. 
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4.1. Introduction 

As a consequence of the industrialisation and specialization of the agricultural production, 

field sizes across Europe have expanded with negative implications for the environment, 

particularly for landscape diversity and biodiversity (Wesche et al., 2012; Meyer et al., 

2013; Tsiafouli et al., 2015). The increased biomass demand for a bio-based economy will 

only heighten the pressure on arable lands, which will eventually compete with other land-

uses in terms of food and feed production (Zscheischler et al., 2016). In this context, a need 

to redesign the agricultural landscapes towards a multifunctional land-use has been 

identified in order to promote ecosystem services and to ensure a sustainable and resilient 

agricultural production in the 21st century (Landis, 2017; Birkhofer et al., 2018).  

Agroforestry systems, which integrate trees into agriculturally managed fields, are 

often regarded as a flexible multi-crop land-use strategy to provide ecological and 

economic benefits (Morhart et al., 2014; Veste & Böhm, 2018). Agroforestry systems have 

been shown to preserve high levels of agricultural yields while delivering ecosystem 

services, hence increasing land-use efficiency (Fagerholm et al., 2016; Paul et al., 2017), 

and concurrently providing effective climate change mitigation, such as reducing the 

atmospheric carbon dioxide (De Stefano & Jacobson, 2018), and adaptation measures 

(Verchot et al., 2007; Schoeneberger et al., 2012).  

A variation of agroforestry is represented by the so-called alley-cropping systems for 

the production of woody biomass (ACSs) for energy purposes, in which several hedgerows 

of fast-growing trees are established in parallel strips at varying distances on an agricultural 

field (Morhart et al., 2014). The tree strips can be managed as short-rotation coppices and 

repeatedly harvested every 2–6 years, while the alleys between them are managed as 

conventional agricultural areas with annual crops (Tsonkova et al., 2012).  

Practitioners have expressed concern about the productivity of such systems due to the 

reduced area covered by agricultural crops (Tsonkova et al., 2018). Through negative 

attributes reported by practitioners, the existence of trees has been perceived to decline the 

crop yield (Graves et al., 2009), to impede farm machinery, and to attract diseases (Rois-

Díaz et al., 2018). In order to improve the design of ACS, research focused on identifying 

optima for the tree arrangement (scattered or lined, leeward or windward), the distance 

between trees, and proportion of land covered by the tree strips (Böhm, 2017). 
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In this context, the land equivalent ratio (LER) can serve as a valuable productivity 

indicator of yield performance and land-use efficiency in ACSs. LER is defined as the ratio 

of the area needed under monocultures compared to the area under intercropping, at the 

same management level and over the same period, that is required to provide an equivalent 

yield (Mead & Willey, 1980).  

However, calculating the LER is a retrospective assessment and experiments with 

different ACS designs aiming at finding an optimum proportion of land covered by either 

trees or crops, while considering the specific site-conditions, would be time-consuming and 

would demand a notable large funding. Moreover, empirical data on these systems are 

scarce and therefore, an alternative method is crucial for achieving yield predictions under 

different implementation scenarios. Such a method is given by simulations capable of 

predicting the yield of both trees and crops in ACSs under different climatic, soil, and 

management conditions.  

Consequently, the objective of this combined experimental and simulation study was 

to determine the potential energy wood and grain (winter wheat and winter barley) or seed 

(winter rapeseed) production, as well as to derive the LER, for two temperate ACSs in 

northern and north-eastern Germany, under different design scenarios. The emphasis of the 

design was set on tree arrangement (lee- or windward) and ratio of tree area to crop area. 

By evaluating these empirical and simulation-based responses, we have pursued optima in 

the design of ACSs comprising of most advantageous ratios of tree area to crop area with 

respect to tree arrangement, potential energy wood and grain or seed production, as well as 

LER values and gross energy yield. 

4.2. Materials and Methods  

4.2.1. Experimental Sites 

Data used for this study was gathered in 2016 and 2017 at two short-rotation alley-cropping 

systems (ACSs) established near Wendhausen (Lower Saxony) and Neu Sacro 

(Brandenburg), Germany. The ACS at Wendhausen consists of nine tree strips having a 

width of 10 m (without the so-called buffer zone, a distance of about 1.5 m allocated 

between the tree strip and crop alleys for the agricultural machinery) and a length of 225 

m, with agricultural alleys of 48 m and 96 m width between the tree strips (Swieter et al., 

2018). The ACS at Neu Sacro consists of seven tree strips having a width of 10 m (without 

the buffer zone of 1.5 m) and a length of 660 m, with agricultural alleys of 24 m, 48 m, and 
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96 m width between the tree strips (Kanzler & Böhm, 2016). The information for both sites 

is summarised in Table 13. 

Table 13. Description of the experimental sites at Wendhausen and Neu Sacro. 

Experimental site Wendhausen Neu Sacro 

Latitude; Longitude 52˚19’54’’ N; 10˚37’52’’ E 51˚46’54’’ N; 14˚37’18’’ E 

Altitude 85m a.s.l. 67m a.s.l. 

Year of planting Winter season 2007/2008 a Winter season 2010/2011 b 

Year of first harvest Winter season 2013/2014 a Winter season 2014/2015 b 

Year of second harvest Winter season 2017/2018 Winter season 2017/2018 

Soil characteristics   

Soil type Pelosol a Pseudogleysol b 

Soil texture Silty clay a Loamy sand b 

Meteorological conditions   

Mean annual 

temperature [°C] 
9.8 c 9.6 d 

Average annual precipitation 

[mm] 
616 c 568 d 

Monoculture system   

Tree species Poplar (Populus nigra L. x P. maximowicii Henry, clone “Max I”) 

Tree rotation cycle 3-year a 
4-year (1st rotation) [21] 

3-year (2nd rotation) 

Tree row orientation North-South North-South 

Area trees [m2] 70 x 70 a,e 11 x 25 

Tree spacing [m] 2 x 0.5 a 1.3 x 0.9 b 

Tree planting density [ha-1] 10,000 a 8,700 b 

Crop species (2016; 2017) 

Winter rapeseed  

(Brassica napus L.); 

Winter wheat  

(Triticum aestivum L.) 

Winter wheat  

(Triticum aestivum L.); 

Winter barley  

(Hordeum vulgare L.) 

Area cropped [ha] 3 f 30 b 

Alley-cropping system   

Tree species Poplar (Populus nigra L. x P. maximowicii Henry, clone “Max I”), 
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with cultivated cropped alleys 

Tree rotation cycle 6-year 
4-year (1st rotation) 

3-year (2nd rotation) 

Tree row orientation North-South North-South 

Area tree strips [m2] * 10 x 225 f 10 x 660 b 

Tree spacing [m] 2 x 0.5 a,f 2.6 x 0.4 

Tree planting density [ha-1] 10,000 a,f 9,800 

Crop species (2016; 2017) 

Winter rapeseed  

(Brassica napus L.); 

Winter wheat  

(Triticum aestivum L.) 

Winter wheat  

(Triticum aestivum L.); 

Winter barley  

(Hordeum vulgare L.) 

Area cropped alleys [m2] 48 x 225 f 48 x 660 b 

a Lamerre et al. (2015); b Kanzler & Böhm (2016); e Lamerre et al. (2016); f Swieter et al. (2018); 

c Weather station Braunschweig of the German Weather Service (DWD), 15 km west of the site; 

d Weather station Cottbus of the German Weather Service (DWD), about 25 km west of the site. 

Monthly values for mean air temperature and total rainfall during the two years of 

investigation were used for creating Walter-Lieth climate diagrams (appendixed Figure 

C.1.) in order to gain insight into the compound effects that influence the growth of trees 

and crops. 

4.2.2. Plot Design and Yield Assessment 

Four alley-cropping-plots (APs) and four monoculture-plots (MPs) representing an ACS 

and monoculture, respectively, were established at Wendhausen and Neu Sacro in winter 

season 2015/2016. At both sites, the APs were 24 m wide, placed on half of the 48 m 

agricultural alleys, and included half of the 10 m tree strips, hence accounting for a size of 

29 m x 30 m. Furthermore, as the tree strips were perpendicular to the main wind direction 

at both sites, and in order to account for the yield variability in the tree-crop competition 

zone, two APs were arranged leeward and two APs windward.  

Annual measurements of breast height diameter (i.e., at a height of 1.3 m above the 

ground) were taken from the short rotation coppices in winter season 2016/2017 and 

2017/2018. In addition, 25 shoots were chosen, cut manually 10 cm above the ground, 

chipped and weighted. An allometric equation of the form M = a ∙D b was used in order to 

derive the dry matter of all measured diameters, where M is the tree biomass [kg], D is the 
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shoot basal diameter [cm] and a and b are the intercept and slope of a least-square linear 

regression of ln-transformed data. The above-ground tree woody biomass production per 

hectare was estimated using the average number of shoots per hectare and the average dry 

weight of the shoots according to the mean stool method (Hytönen et al., 1987). 

Regarding the crop grain yield, winter rapeseed (Brassica napus L.) was harvested in 

the summer of 2016 and winter wheat (Triticum aestivum L.) in summer 2017 at 

Wendhausen, whereas at Neu Sacro, winter wheat was harvested in summer 2016 and 

winter barley (Hordeum vulgare L.) was harvested in summer 2017. Crop yields in the APs 

of 29 m x 30 m were harvested with a plot combine harvester with a cutting width of 2 m 

x 10 m, centred at 1 m, 4 m, 7 m, and 24 m distance from the tree strips (Figure 24). 

 

Figure 24. To-scale design of the leeward (a) and windward (b) alley-cropping-plots, together with the 

harvest points set at 1 m, 4 m, 7 m, and 24 m away from the tree strips. The supplemented distances 

(i.e., 2 m, 3 m, 10 m, and 8.5 m) sum up half of the neighboring distances of the harvest points and 

represent the weights used for calculating the overall crop yield. The buffer zone represents a 

distance of 1.5 m between the tree strip and crop alleys. 

Additional information on the location, design, and harvest points of the APs is presented 

in appendixed Figure C.2.(a) for Wendhausen and Figure C.2.(b) for Neu Sacro. 

For the overall crop yield in the APs, weighted averages were used (Equation 5), where 

the weights were determined assuming half of the distance between the harvest points. 

Thus, the weight for the harvest point located 7 m away from the tree strip, for example, 

considered half of the distance between the points set at 4 m and 7 m (i.e., 1.5 m), and half 

of the distance between points 7 m and 24 m (i.e., 8.5 m), leading to an overall distance of 

10 m. 
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𝐺𝑟𝑎𝑖𝑛𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐺𝑟𝑎𝑖𝑛1𝑚 ∙ (0.5 + 1.5) + 𝐺𝑟𝑎𝑖𝑛4𝑚 ∙ (1.5 + 1.5) + 𝐺𝑟𝑎𝑖𝑛7𝑚 ∙

(1.5 + 8.5) + 𝐺𝑟𝑎𝑖𝑛24𝑚 ∙ 8.5      Eq.(5) 

The crop yields in the MPs with a size of 10 m x 10 m were harvested with the same plot 

combine harvester with a cutting width of 2 m x 10 m centred in the middle of the plot. The 

measurements in the tree MPs underwent some changes due to lacking an identical planting 

scheme.  

At Wendhausen, the available control field for trees contrasted with the APs by the age 

of the rotation cycle (i.e., 3-years instead of 6-years). Although this meant that the tree 

harvest at Wendhausen occurred in the winter season 2013/2014 (Lamerre et al., 2015) for 

the control field and in the winter season 2017/2018 for the APs, we opted for this control 

field as representative for a tree MP in order to analyse poplar trees belonging to the same 

rotation and planted at the same density as the trees in APs. Moreover, the weather data 

observed in the two growing periods (i.e., from 2011 to 2013 for the MPs and from 2014 

to 2016 for the APs) displayed a relatively low interannual variation of + 0.8 °C in mean 

annual air temperature and of -19 mm in average precipitation sum. At Neu Sacro, we 

assumed that the trees belonging to a double-row plot of the ACS would be comparable to 

those in an MP and therefore, measurements were collected from poplar trees grown at the 

same time as the trees from the APs, although the tree density varied somewhat, albeit 

insignificantly due to a different mortality rate of the two areas. 

In order to avoid the border edge effect (Langton, 1990) reported at Wendhausen by 

Lamerre et al. (2015) and at Neu Sacro by Veste et al. (2018), we employed the dry matter 

woody biomass values obtained from the middle rows of the tree MPs to compare with the 

rows of their counterpart APs. Accordingly, the dry matter woody biomass value at 

Wendhausen was set at 9.4 Mg DM ha-1 a-1 (Lamerre et al., 2015) and 9.0 Mg DM ha-1 a-1 

at Neu Sacro (own measurements). 

For gaining insight into the significance of our measurements, the coefficients of 

variation were calculated for the measured dry matter woody biomass values, either 

between APs and MPs, in order to confirm the differences in production stemming from 

the chosen two systems, as well as within plots belonging to the same system (i.e., 

separately for APs and MPs) in order to check whether meaningful differences exist 

between lee- and windward arranged plots. Additionally, t-tests were performed, where p 

values were compared to a significance level of 0.05 in order to determine whether 
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significant differences existed between the lee- and windward APs, as well as between APs 

and MPs. For this, the Analysis ToolPak from Excel (Microsoft) was employed.  

Furthermore, the dry matter woody biomass values recorded over the investigated 

period of two years were converted to energy units in order to better compare the overall 

production from ACSs with monocultures. This was done by using the gross heat of 

combustion for each component as proposed by Kaltschmitt et al. (2016) and namely 18.5 

GJ Mg-1 for the poplar woody biomass, 17.0 GJ Mg-1 for the grains of winter wheat, 17.5 

GJ Mg-1 for the grains of winter barley, and 26.5 GJ Mg-1 for the seeds of winter rapeseed. 

4.2.3. Empirically Determined Land Equivalent Ratio 

The LER was determined for each system and scenario with respect to the area covered by 

both trees and crops in a land area and under the assumption that the yields of both trees 

and crops are of equal economic importance, after Mead & Wiley (1980) (Equation 6):  

LER =
𝑌𝑇𝑟𝑒𝑒

𝐴𝑃

𝑌𝑇𝑟𝑒𝑒
𝑀𝑃⁄ ∙ 𝐴𝑟𝑒𝑎𝑇𝑟𝑒𝑒 +

𝑌𝐶𝑟𝑜𝑝
𝐴𝑃

𝑌𝐶𝑟𝑜𝑝
𝑀𝑃⁄ ∙ 𝐴𝑟𝑒𝑎𝐶𝑟𝑜𝑝         Eq.(6) 

where 𝑌𝑇𝑟𝑒𝑒
𝐴𝑃  [Mg DM ha-1 a-1] and 𝑌𝐶𝑟𝑜𝑝

𝐴𝑃  [Mg DM ha-1 a-1] are respective dry matter yields 

of wood and grains (winter wheat and winter barley) or seeds (winter rapeseed) per cropped 

area in APs and 𝑌𝑇𝑟𝑒𝑒
𝑀𝑃  [Mg DM ha-1 a-1] and 𝑌𝐶𝑟𝑜𝑝

𝑀𝑃  [Mg DM ha-1 a-1] are dry matter yields 

of wood and grains or seeds per cropped area in MPs.  

In order to express these yields per alley-cropping system and not per cropped area, a 

weighted ratio was used for both tree and crop components depending on their land area 

proportion [%]. While LER ≤ 1 would mean that there is no productivity advantage of an 

ACS over a monoculture, a LER > 1 would suggest that the production in the ACS is higher 

than the one in a monoculture system (Mead & Willey, 1980). 

4.2.4. Calibration and Validation of the Yield-SAFE Model 

For the site-specific yield production of trees and crops in ACSs under competitive 

conditions, we employed the Yield-SAFE model (Yield Estimator for Long-term Design 

of Silvoarable AgroForestry in Europe), a parameter-sparse, eco-physiological, and 

process-based simulation model developed for predicting resource capture, growth, and 

production in forestry, arable, and agroforestry systems (van der Werf et al., 2007). The 

reasoning behind choosing the Yield-SAFE model stays in its capacity to render credible 

yield estimates of trees and crops in relation to different weather, soil, and management 
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conditions from available, but scarce data (Graves et al., 2010). In this version of the model, 

the potential tree and crop growth is simulated in terms of primarily air temperature (for 

the developmental and phenological processes), global solar radiation (for the derivation of 

photosynthesis), and water availability. Under this growth assumption, the nutrient 

availability is not considered to be a yield-limiting factor (van der Werf et al., 2007). 

Improvements proposed by Palma et al. (2016) were integrated into the model, notably 

being the effect of trees on microclimate (temperature, wind speed, and 

evapotranspiration). 

The assumptions and equations embodied in the Yield-SAFE model are extensively 

detailed by Burgess et al. (2004), van der Werf et al. (2007), and Keesman et al. (2011) 

regarding the states, rates and static relationships, and management of the tree growth, crop 

growth, and soil water dynamics. Moreover, a comprehensive description of the Yield-

SAFE model, along with default parameter values for a substantial range of tree and crop 

species is provided by Burgess et al. (2005).  

Heretofore, the Yield-SAFE model was calibrated and validated for poplar, walnut, 

cherry, holm oak, and stone pine trees, planted at low densities, alongside wheat, forage 

maize, grain maize, sunflower, and oilseed, leading to appraisals of both tree and crop 

yields and LER values in Atlantic and Mediterranean regions of Europe (Burgess et al., 

2004; Burgess et al., 2005; van der Werf et al., 2007; Palma et al., 2007; Keesman et al., 

2011; Palma et al., 2014). 

In this paper, two sets of data were reserved, one for calibration of the Yield-SAFE 

model and one for validation of the model output. Initially, distinctions were made between 

the four APs, two arranged leeward and two windward. However, since the woody biomass 

measurements showed no significant differences between the two lee- and two windward 

plots, the woody biomass was analyzed considering four replicates. For the model 

calibrations, we retrieved information about the trees (planting density, management, yield, 

DOYplant, DOYharvest), crops (management, yield, DOYsow, DOYharvest), and soil 

physical characteristics (texture, structure, porosity, bulk density, organic matter) reported 

by Lamerre et al. (2016) and Swieter et al. (2018) for the site at Wendhausen and by 

Kanzler and Böhm (2016) at Neu Sacro. This information, together with model 

ecophysiological parameters based on bibliography and expert knowledge, as instructed in 

Graves et al. (2010), Keesman et al. (2011), Burgess et al. (2005), and Wösten et al. (1999), 

created the data set used for the calibration of the model. For example, the reported soil 
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characteristics helped achieve the Mualem-van Genuchten parameters as instructed by 

Wösten et al. (1999), used for the calibration of the Yield-SAFE model. Altogether, the 

tree parameters are presented in appendixed Table C.1., the crop parameters in Table C.2., 

and the soil parameters in Table C.3.. The daily climate input was obtained through the 

German Weather Service, stations Braunschweig and Cottbus, for the sites at Wendhausen 

and Neu Sacro, respectively. The validation data set encompasses the measured woody 

biomass values, as averaged between the APs. Therefore, the model output was validated 

against measured values in order to test the ability of the Yield-SAFE model to generate 

potential energy wood and grain or seed production, as well as to derive the LER, under 

different ratios of tree area to crop area.  

The performance of the Yield-SAFE model was evaluated visually, by comparing the 

simulated tree and crop yields with measured ones, as well as by determining the 

normalized root-mean-square error (NRMSE), the coefficient of determination (R2), the 

concordance correlation coefficient (CCC) (Ojeda et al., 2017), which measured the 

agreement between the simulated and measured yields, and the bias function of the 

simulated yields (SB). Statistical analysis was performed using the R software (version 

3.4.2, R Core Team 2017) independently for determining the NRMSE, R2, and SB and 

using the package “epiR” (Stevenson et al., 2019) for calculating the CCC.  

4.2.5. Yield-SAFE Simulations of Tree and Crop Yields and Land Equivalent Ratio 

The experimental, calibration, and validation sections of this study considered APs with a 

ratio of tree area to crop area of 17:83, i.e., the trees were planted on 17 % and the arable 

crop on 83 % of the land area. Once validated, the Yield-SAFE model was used to simulate 

the potential dry matter woody biomass and crop yield for the considered ACSs, as well as 

to derive the LER, under ratios of tree area to crop area of 20:80, 25:75, 40:60, 50:50, 

60:40, 75:25, and 80:20 (appendixed Figure C.2.(c)). Throughout these simulations, the 

planting density remained constant. 

By evaluating these empirical and simulation-based responses, optimum ratios of tree 

area to crop area in the design of the investigated ACSs were identified with respect to the 

potential energy woody and grain production, as well as LER values and gross energy yield. 

Conversely, designs not belonging to these ratio optima were considered ineffective in 

ACSs compared to other design options. Furthermore, key factors influencing the 

considered design of ACSs were discussed.  
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4.3. Results 

4.3.1. Yield Assessment 

The dry matter yields of wood and grains (winter wheat and winter barley) or seeds (winter 

rapeseed) per cropped area are presented in Table 14, together with the inferred gross 

energy yield, coefficient of variation, as well as the results of t-tests where p-values were 

compared to a significance level of 0.05. 

Table 14. Dry matter yields of wood and grains (winter wheat and winter barley) or seeds (winter rapeseed) 

per cropped area obtained from alley-cropping- (AP) and monoculture-plots (MP) at Wendhausen 

and Neu Sacro for the investigated years and their inferred gross energy yield. APs 1 and 2 were 

arranged leeward and APs 3 and 4 windward. The coefficient of variation (CV) and level of 

significance are included. 

  Location Wendhausen Neu Sacro 

  Species WR WW Poplar WW WB Poplar 

  Year 2016 2017 
2016/20

17 

2017/2

018 
2016 

201

7 

2016/20

17 

2017/20

18 
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ts
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ry
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r 

y
ie

ld
 

[M
g

 D
M

 h
a-1

 a
-1

] 

AP1 3.1 6.0 10.3 12.9 6.5 4.5 13.8 12.8 

AP2 2.9 5.7 10.7 12.6 6.0 5.0 13.4 12.6 

AP3 2.7 6.8 10.9 14.0 6.3 6.0 13.9 12.5 

AP4 3.0 6.0 10.3 12.9 6.4 4.6 14.6 13.0 

Average 

AP 
2.9 6.1 10.5 13.1 6.3 5.0 13.9 12.8 

Energy 

[GJ ha-1] 
619 689 

CV AP [%] 7 – 8 – 3 – 5 – 3 – 13 – 4 – 2 – 

M
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u
re
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ts
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ry
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y
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ld
 

[M
g

 D
M

 h
a

-1
 a

-1
] 

M1 3.5 7.0   4.2 3.2   

M2 3.9 6.8   4.2 3.5   

M3 3.9 7.6   5.5 3.7   

M4 3.5 7.4   6.3 4.5   

Average 

MP 
3.7 7.2 9.4 5.1 3.7 9.0 

Energy 

[GJ ha-1] 
221 348 151 333 

CV MP [%] 6 5   20 16   

CV AP vs. MP [%] 14* 10* 6* 18* 17 – 21* 23* 19* 

WR: winter rapeseed, WW: winter wheat, WB: winter barley; * p < 0.05, – p > 0.05. 
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At Wendhausen, the APs were generally less productive than their counterpart MPs, 

especially in 2016. This, however, was only true for the dry matter yield obtained for the 

crops and not for the trees. At Neu Sacro, the APs were more productive than the MPs in 

both years and for all investigated species.  

In 2016, the dry matter woody biomass increment resulted from the APs at 

Wendhausen was significantly lower (-25%) than that at Neu Sacro, whereas in 2017, 

similar values were obtained between the two sites. However, the dry matter woody 

biomass resulted from the MPs at Wendhausen was slightly higher (+5%) than that at Neu 

Sacro.  

Worth mentioning would also be fact that the dry matter yields of winter wheat grains 

at the two locations produced similar values from the APs, while the yields from MPs were 

considerably higher at Wendhausen than at Neu Sacro. 

Regarding the energy production over the investigated two years at Wendhausen, 221 

GJ ha-1 would be achieved from crop MPs or 348 GJ ha-1 would be achieved from tree MPs, 

but an overall gross energy yield of 619 GJ ha-1 from the APs. Likewise, the crop- and tree 

MPs established at Neu Sacro would deliver a gross energy yield of 151 GJ ha-1 or 333 GJ 

ha-1, respectively, over the two years, whereas the APs would provide with an overall gross 

energy yield of 689 GJ ha-1.   

The coefficients of variation within the APs at both locations were rather low, except 

for the one at Neu Sacro, in 2017, of 13%. The level of variation within the MPs was also 

minor at Wendhausen, contrasting to the one at Neu Sacro with 20% and 16% in 2016 and 

2017, respectively. The yield variation between APs and MPs was relatively high for most 

of the investigated cases except for the dry matter woody biomass at Wendhausen in 2016.  

Regarding the lee- and windward arranged APs, none of our investigations showed 

positive statistical significance, implying no effect of tree arrangement in relation to wind 

on the dry matter yield. Significant differences were found between the yields from APs 

and MPs, except for the dry matter yield of winter wheat grains at Neu Sacro (Table 14). 

The measurements at Wendhausen and Neu Sacro were converted to relative yields, 

referring to the yield of each AP against its counterpart MP (Figure 25). 
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Figure 25. Relative tree and crop yields obtained from lee- and windward arranged poplar strips with cropped 

alleys at Wendhausen and Neu Sacro, over the investigated years. 

The relative yield of the tree component was above 1.0 at both locations and in both years, 

suggesting that trees in APs were more productive than in MPs. Similar results were found 

for the relative yield of the crop component at Neu Sacro in both years, contrary to the one 

obtained at Wendhausen, which remained below 1.0, suggesting that both winter wheat and 

winter rapeseed were more productive in the MPs than in the APs. 

In 2016, the relative crop yields from the leeward plots observed at Neu Sacro rendered 

values of 1.4 and 1.5, whereas the windward plots had values of 1.0 and 1.2. Otherwise, no 

concrete pattern was noticed for the lee- and windward plots at the two locations in the 

investigated years. 

4.3.2. Empirically Determined Land Equivalent Ratio 

The annual LER of each AP against its counterpart MP is presented in Figure 26, as 

determined for each experimental site and for both investigated years. 
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Figure 26. Annual land equivalent ratio (LER) obtained in 2016 and 2017 at Wendhausen and Neu Sacro. 

The grey line serves as a threshold above which the alley-cropping-plots have a greater 

productivity than the monoculture-plots. 

The APs at Wendhausen rendered LER values from 0.8 (plots 2 and 3, in 2016) to 1.0    

(plot 2, in 2017), whereas at Neu Sacro, LER values from 1.1 (plot 4, in both years) to 1.6 

(plot 3, in 2017) were obtained. 

4.3.3. Validation of the Yield-SAFE Model 

Throughout the investigated timeframe, the Yield-SAFE model was able to simulate the 

tree and crop dry matter yields from the ACSs at Wendhausen (Figure 27(a)) and Neu Sacro 

(Figure 27(b)) with satisfactory accuracy. 

At Wendhausen, the deviations of the simulated tree woody biomass accounted for 

0.00%, 0.01%, and 0.05% from the tree woody biomass observed at the beginning of 2016, 

2017, and 2018, respectively. Between the simulated and the observed crop yields, 

deviations of -0.02% and 0.08% were rendered for 2016 and 2017, respectively.  

At Neu Sacro, the deviations of the simulated tree woody biomass accounted for -46%, 

1%, and 1% from the tree woody biomass observed at the beginning of 2016, 2017, and 

2018, respectively. Between the simulated and the observed crop yields, deviations of -3% 

and -8% were rendered for 2016 and 2017, respectively. 
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Figure 27. Above-ground tree woody biomass and crop yields accumulated at Wendhausen (a) and Neu 

Sacro (b) over the investigated period, as simulated with the Yield-SAFE model (lines) and as 

observed for the trees (circles) and crops (triangles; winter rapeseed and winter wheat in 2016 and 

2017, respectively at Wendhausen; winter wheat and winter barley in 2016 and 2017, respectively 

at Neu Sacro). 

The relative errors of the simulated fits were generally low, with normalized root-mean-

square error (NRMSE) values of 5% and 8% for the Yield-SAFE tree and crop validations, 

respectively, at Wendhausen and NRMSE values of 8% and 6% for the Yield-SAFE tree 

and crop validations, respectively, at Neu Sacro. For both locations, the fit was highly 

significant (i.e., the R2 values were more than 0.99 for both tree and crop validations). The 

concordance correlation coefficient (CCC) was 0.99 and 0.97 for the Yield-SAFE tree and 

crop validations, respectively, at Wendhausen and 0.99 and 0.89 for the Yield-SAFE tree 

and crop validations, respectively, at Neu Sacro.    

4.3.4. Yield-SAFE Simulations of Tree and Crop Yields and Land Equivalent Ratio 

Once satisfyingly validated for APs with a ratio of tree area to crop area of 17:83, the Yield-

SAFE model was used to simulate the dry matter yields of wood and grains or seeds per 
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cropped area emerging from APs with ratios of tree area to crop area of 20:80, 25:75, 40:60, 

50:50, 60:40, 75:25, and 80:20 at Wendhausen (Figure 28) and Neu Sacro (Figure 29). 

 

Figure 28. Above-ground tree woody biomass and crop yields, as simulated by the Yield-SAFE model at 

Wendhausen, under different ratios of tree area to crop area. 

A clear downfall in the simulated grain (winter wheat) and seed (winter rapeseed) yield 

was noticed after the ratio of tree area to crop area of 25:75 at Wendhausen, whereas a 

rather small decline was noted for the woody biomass beyond the same point. Subjected to 

the ratio of tree area to crop area of 80:20, the Yield-SAFE simulations for both years 

rendered about 93% less crop yield and 4% less yearly tree woody biomass compared to 

the values obtained for a ratio of tree area to crop area of 20:80.  
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Figure 29. Above-ground tree woody biomass and crop yields, as simulated by the Yield-SAFE model at 

Neu Sacro, under different ratios of tree area to crop area. 

The simulated grain yield at Neu Sacro was subjected to a downfall after the ratio of tree 

area to crop area of 25:75, although an upward surge was observed in the yearly woody 

biomass beyond the same point, until the ratio of tree area to crop area of 40:60, where a 

rather protracted yearly woody biomass was noticed. Between the first and the last design 

scenarios, about 93% less crop yield and 6% more yearly woody biomass were rendered 

by the Yield-SAFE model for both years. 

These values simulated for the dry matter yields of wood and grains or seeds per 

cropped area and per alley-cropping system are presented in appendixed Table C.4. 

together with their respective relative yields and hence, the LER and gross energy yield 

determinations. Furthermore, Figure 30 presents the LER values as simulated by the Yield-

SAFE model under ratios of tree area to crop area of 20:80, 25:75, 40:60, 50:50, 60:40, 

75:25, and 80:20 for both locations and investigated years. 
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Figure 30. The effect of different ratios of tree area to crop area on the land equivalent ratio (LER), as 

simulated by the Yield-SAFE model for the ACSs at Wendhausen and Neu Sacro, in 2016 and 

2017. The grey line serves as a threshold above above which the alley-cropping system has a 

greater productivity than the monoculture system. 

The LER values simulated for different ratios of tree area to crop area follow a convex 

curve where the maximum values are achieved when either tree or crop component was 

dominant (i.e., when one of these components occupy at least 75% of the land area) and 

minimum when these components shared similar proportions of land area. At Wendhausen, 

aside from very few cases, the LER remained below 1.0 no matter the ratio of tree area to 

crop area, suggesting that the simulated alley-cropping system was less productive than the 

monoculture system. Conversely, at Neu Sacro integrating trees and crops under all area 

proportions caused the simulated LER to be above 1.0, hence the alley-cropping system to 

be more productive than the monoculture system.  
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Figure 31. The effect of different ratios of tree area to crop area on the gross energy yield, calculated with 

simulated yields for the ACSs at Wendhausen and Neu Sacro, in 2016 and 2017. 

The gross energy yields over the two investigated years (Figure 31; appendixed Table C.4.) 

at Wendhausen would follow a softer curve by decreasing slightly, with 5% from the ratio 

of tree area to crop area of 20:80, and increasing thereafter up to 40% more gross energy 

yield achieved in the ratio of tree area to crop area of 80:20, compared to that of 20:80. 

Similar results were observed for Neu Sacro, i.e., a slight decrease of 5% followed by an 

upward surge up to 60% more gross energy yield achieved in the ratio of tree area to crop 

area of 80:20, compared to that of 20:80.  

At the highest simulated proportion of land area covered by the crop (i.e., 20:80), the 

ACS at Wendhausen and Neu Sacro rendered 11% and 74% more gross energy yield, 

respectively, compared to the crop monoculture (i.e., 0:100). Similarly, compared to the 

tree monoculture (i.e., 100:0), the highest simulated proportion of land area occupied by 

the trees (i.e., 80:20) rendered 27% more gross energy yield at Neu Sacro, albeit 2% less 

gross energy yield at Wendhausen. 

4.3.5. Optimum Ratios of Tree Area to Crop Area 

According to the simulated energy wood and grains (winter wheat and winter barley) or 

seeds (winter rapeseed) at our considered ACSs, the ratios of tree area to crop area from 

20:80 to 25:75 would be the most advantageous to the design of such systems. The 
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accretion accounting for the highest potential tree and crop yields emerged from these ratios 

regardless of the tree arrangement of the APs.  

The simulated LER values inferred two main ratios of tree area to crop area, i.e., from 

20:80 to 25:75, but also from 75:25 to 80:20. While the implication at Wendhausen was 

that the productivity of the ACS was below a monoculture’s regardless of the proportion 

of area covered by either trees or crops, these main ratios were preferable compared to other 

design options, and quite favourable in 2017. 

The gross energy yield values suggested that all ratios of tree area to crop area above 

75:25 would be advantageous at Wendhausen, but only from 75:25 to 80:20 at Neu Sacro, 

since the values decreased thereafter (Figure 31). 

4.4. Discussion 

4.4.1. Yield Assessment 

Although the annual increment of tree woody biomass reported for poplar can vary with 

tree clone of choice, weather, and other growth-limiting factors such as mortality and 

seasonal variation of light, studies performed on second rotation poplar trees planted at 

around 10,000 cuttings ha-1 recorded biomass values in the range of 2.8–9.0 Mg DM ha-1 

a-1 (Mitchell et al., 1999), 2.0–9.6 Mg DM ha-1 a-1 (Aylott et al., 2008), and sometimes 

above 20 Mg DM ha-1 a-1 (Calfapietra et al., 2010). In a study made on 6-year, second 

rotation cycle poplar trees planted at 11,000 cuttings ha-1, Bemmann et al. (2007) reported 

woody biomass values between 11.5 Mg DM ha-1 a-1 and 19.0 Mg DM ha-1 a-1 obtained at 

vigorous locations and between 4.5 Mg DM ha-1 a-1 and 9.0 Mg DM ha-1 a-1 achieved at 

less vigorous site types. 

The poplar tree yields found in the present study were in line with findings from 

literature, although significant differences arose between APs compared to their 

corresponding MPs. A tree yield advantage from the tree strips in APs would stem from 

additional space and higher light availability thanks to the crop alleys. The tree yield from 

MPs purposefully did not consider these border edges so that a fair resemblance to a 

monoculture forestry was ensured (Langton, 1990), despite the reported lower yields. 

According to the yield potential tables for energy crops in Germany proposed by 

Döhler (2005), the crop yields measured at our study sites would be classified as medium 

to low, which we would attribute to the weather conditions, but also to waterlogging during 
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the winter months (Lamerre et al., 2015), extreme heterogeneity in water content (Lamerre 

et al., 2016; Kanzler & Böhm, 2016), and soil texture reported at Wendhausen by Lamerre 

et al. (2015, 2016) and at Neu Sacro by Kanzler & Böhm (2016). 

Regarding the weather conditions, the results presented in Table 14 indicate towards 

unfavourable growing conditions for trees and crops in 2016, compared to 2017, at 

Wendhausen, whereas at Neu Sacro, the tree and crop growth were similar, albeit more 

prosperous for trees in 2016 than in 2017. This implication was corroborated by the Walter-

Lieth climate diagrams (appendixed Figure C.1.), revealing 314 mm less annual average 

precipitation in 2016 than in 2017 at Wendhausen and only 28 mm less in 2016 than in 

2017 at Neu Sacro. Moreover, the rainfall in 2016 in both locations was subjected to a 

drastic decline precisely in those months essential for tree and crop growth. The mean 

annual temperatures were around 10.3°C in both years and for both locations. Since even 

minor changes in average precipitation sum, global solar radiation, and mean air 

temperature have been reported to significantly alter the growth of poplar trees (Seserman 

et al., 2018), oilseed rape (Pohle et al., 2015), winter wheat, and barley (Gerstengarbe et 

al., 2003), the auspicious weather conditions from 2017 might explain why tree and crop 

yields at Wendhausen were lower in 2016 than in 2017. 

At Wendhausen, small variation was noticed within crop yields from APs and MPs, 

although the absolute values would indicate a slight yield advantage stemming from the 

windward arranged plots, caused mainly by the leaf litter deposition (Swieter et al., 2018). 

Significant differences at Wendhausen were observed between the APs and MPs, with crop 

yield advantages inclining toward the latter plots. The reduced crop yield in APs was 

correlated with tree height (i.e., more than 6 m), hence, higher tree shading causing crop 

developmental delays up to 7 m away from the tree strips (Swieter et al., 2018). 

At Neu Sacro, the crop yields particularly varied within MPs, but also within APs, in 

2017. This might have been the result of extreme temperatures throughout the day, 

heterogeneity in water content and soil texture, as well as remarkable differences in relative 

humidity and water evaporation rates between MPs and APs reported at the site (Kanzler 

et al., 2018). Consequently, the crop yields from the MPs were significantly lower than the 

ones from APs, highlighting the contribution of tree strips to crop yield production in terms 

of increased soil moisture and relative humidity, temperature regulation, wind protection, 

and hence, a reduced evapotranspiration, as also reported by Kanzler & Böhm (2016) and 

Kanzler et al. (2018) at the Neu Sacro site. 
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According to studies, the yield production of winter cereals benefits from the presence of 

tree strips in dry conditions but is hindered by them in well-watered conditions (Kanzler et 

al., 2018; Bruckhaus & Büchner, 1995). This could explain why the winter wheat yield 

from MPs at Wendhausen reached 7.2 Mg DM ha-1 a-1 in 2017 and only 5.1 Mg DM ha-1 

a-1 in 2016 at Neu Sacro, whilst the APs at both locations rendered similar results, around 

6.0 Mg DM ha-1 a-1. The amount of rainfall in 2017 was relatively high at Wendhausen, 

theoretically allowing for a considerable crop yield production in the MPs, but under the 

presence of trees in the APs, crops might have suffered from waterlogging, as well as from 

the height of the trees and a lack of litter coverage, which resulted in lower planting density 

and hence, lower crop yield (Swieter et al., 2018). At Neu Sacro, on the other hand, the 

crops in the APs might have benefitted from the drier conditions of 2016, along with the 

above-mentioned contribution of tree strips.  

Regarding the lee- and windward arranged APs, none of our investigations showed 

high variance or a positive statistical significance between the tree and crop DM yields. 

Therefore, the implication was either that no windbreaking effect of tree strips existed in 

relation to the crop DM yield or that, while the main wind direction pointed from South-

West, it changed throughout the year at Wendhausen (Swieter et al., 2018) and Neu Sacro 

(Kanzler et al., 2018), thus affecting all APs in a similar way. 

Lastly, the appropriateness of using winter crops at high latitudes (i.e., more than 50° 

latitude North) in ACS should be further examined, since the sun irradiance reaching the 

crop can be hindered by the trees leafing precisely at key phenological stages for winter 

crops, i.e., in December (when crop germination and early growth occurs), March (for crop 

flowering), and June (when grain filling is concerned) (Dupraz et al., 2018). By 

comparison, poplar trees open their buds in April and drop their leaves in November. Given 

our establishment (i.e., 24 m wide crop alleys with North-South tree strip orientation), trees 

can capture more than 50 % of the sun irradiation that would have reached the crop, strongly 

affecting the crop yields (Dupraz et al., 2018). 

4.4.2. Empirically Determined Land Equivalent Ratio 

Aside from one case in 2017, the LER values at Wendhausen were lower than 1.0, 

indicating that the ACS was consistently less productive than the monoculture system 

within the observed two years. Conversely, at Neu Sacro, all LER values were higher than 

1.0, favouring the ACS by comparison to the monoculture system. 
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Nevertheless, since the border edge effects can influence the DM woody biomass in an MP 

to different extents, it can produce favouring of a certain system when determining the 

LER. For example, at Wendhausen the reported DM woody biomass from the middle rows 

was 9.4 Mg DM ha-1 a-1, but 13.7 Mg DM ha-1 a-1 in the leeward border of the tree 

monoculture system (Lamerre et al., 2015). Similarly, at Neu Sacro, 9.0 Mg DM ha-1 a-1 

were determined from the middle rows, by comparison to 11.0 Mg DM ha-1 a-1 from the 

leeward border of the tree monoculture system (own measurements). However, given the 

proportion of the total area that these values account for and for the purpose of this study, 

it was paramount to ensure a fair resemblance to a monoculture forestry, despite the 

reported lower yields. In a comprehensive study on different types of edge effects and their 

disadvantages to the overall yield estimations, Langton (1990) recommended eliminating 

edge effects, hence improving accuracy of yield estimation. 

Shortcomings of the LER approach include the lack of consideration for by-products 

and their revenue, the rectangularity of the planting scheme, the assumption that the 

production is constant, reliable, and happens in a static temporal context, and the idea that 

the interactions between trees and crops would automatically lead to either benefits or 

competition (Terreaux & Chavet, 2004). 

4.4.3. Yield-SAFE Simulations of Tree and Crop Yields and Land Equivalent Ratio 

The concordance correlation coefficient (CCC) and the simulation bias (SB) were also used 

to assess the model performance of APSIM (Agricultural Production Systems Simulator) 

to predict the dry matter (DM) yield of switchgrass (Panicum virgatum L.) and Miscanthus 

(Miscanthus x giganteus) and classifications were introduced pertaining to these two 

parameters (Ojeda et al., 2017). Accordingly, the Yield-SAFE model rendered “very-good” 

(CCC > 0.90 and SB < 20%; Ojeda et al., 2017) correspondences with the observed above-

ground DM yields of woody biomass and crop yield, which implied that the Yield-SAFE 

model was able to capture the crucial aspects of the crop-tree interactions in our ACSs over 

the investigated period.   

The crop yield simulations showed a steady decline in crop yield as the ratio of tree 

area to crop area increased, which was expected since the area occupied by the crops 

decreased. Additionally, our results were corroborated by measurements performed from 

2008 to the end of 2014 at Wendhausen on ACSs with ratios of tree area to crop area of 

20:80 and 27:73 (Lamerre et al., 2016). Comparing the compound yields of trees and crops 
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stemming from these two ratios of tree area to crop area, Lamerre et al. (2016) reported less 

crop yield in the 27:73 ratio than in 20:80 one, albeit higher tree yield.  

Our tree yield simulations showed slight differences between the first and the last 

design scenarios, i.e., 4% less tree yield at Wendhausen and 6% more tree yield at Neu 

Sacro. In the Yield-SAFE model, a higher tree area on the total land area did not presume 

a higher planting density of the trees, but rather wider tree strips with narrower crop alleys 

in between, as presented in appendixed Figure C.2.(c). This increase in tree yield observed 

at Neu Sacro would be plausible since the poplar trees planted at a planting density of 8700 

tree ha-1 would be able to intercept the major proportion of the incoming light early in the 

tree rotation during well-watered conditions. At higher planting densities, however, the 

competition for incoming light could hamper the potential yield increase even during well-

watered conditions, similar to an edge effect. In the Yield-SAFE model, these soil water 

conditions are given by the water balance equation, but also in terms of the ground water 

levels (i.e., 0.9m at Wendhausen (Lamerre et al., 2016) and 1.4m at Neu Sacro (Kanzler & 

Böhm, 2016)).  

Progressively higher tree yields in the APs than in the MPs, together with the gradually 

increasing percentage of total land area occupied by trees, caused an initial descent 

followed by an upraise in the simulated LER values. Similarly, the gross energy yields 

increased progressively with the percentage of total land area occupied by trees, as the 

energy derived from the dry matter yields of wood largely matched the energy lost from 

grains (winter wheat and winter barley) or seeds (winter rapeseed).  

Compared to their corresponding tree and crop monocultures, the investigated ACSs 

rendered higher simulated energy yields. This is largely because, compared to the 

monoculture simulations of tree and crop yields, the ACS simulations accounted for the 

competition for water availability and incoming light, but also considered the algorithms 

for tree effects on microclimate, hence conserving soil moisture (Palma et al., 2016; Palma 

et al., 2017). This was important since previous studies did not include such effects in 

Yield-SAFE, albeit the need was clearly stated (Crous-Duran et al., 2018).  

Nevertheless, simulating the energy wood and grain or seed production in ACSs with 

respect to the monoculture systems can be hampered by various uncertainties, many of 

those related to the underlying assumptions in the model, which do not account for plant 
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mortality, nutrients, and pests, but also because of the difficulty in discriminating between 

intra- and inter-specific plant competition. 

4.4.4. Optimum Ratios of Tree Area to Crop Area 

Considering the highest potential tree and crop yields, LER values, and gross energy yields, 

optimum ratios in the design of our investigated ACSs would encompass the ratios of tree 

area to crop area from 20:80 to 25:75, but also from 75:25 to 80:20. While this later uprise 

in the simulated LER values would assume that certain ACSs might favour narrower crop 

alleys, difficulties would appear in reality in terms of machinery use and expenses required 

for establishing a narrow crop alley at the outcome of a virtually insignificant production. 

The empirical and simulation-based approaches of this study have not taken into 

account the environmental benefits brought by the presence of trees on an agricultural land, 

such as the reduction in plant mortality, due to disease or wind-throw (Calfapietra et al., 

2010), the reduction of atmospheric carbon dioxide (De Stefano & Jacobson, 2018), and 

reduced nutrient leaching (Mitchell et al., 1999). These factors should be calculated in the 

future and summed to the whole nexus of advantages and disadvantages of integrating trees 

on an agricultural land. 

4.5. Conclusions 

Based on the measurements and simulations of dry matter yields of energy wood and grains 

(winter wheat and winter barley) or seeds (winter rapeseed) in ACSs, we derived the land 

equivalent ratio (LER) and the gross energy yield for two years, locations, and several ratios 

of tree area to crop area. 

Optima in the design of ACSs comprising of most advantageous tree arrangement and 

ratio of tree area to crop area were identified with respect to tree arrangement, potential 

energy wood and grain or seed production, as well as LER values and gross energy yield. 

Furthermore, the implications of several ratios of tree area to crop area have been discussed 

in order to improve the decision-making, optimization, and adaptation of the design of 

ACSs with respect to site-specific characteristics. 

The notion that the trade-off between wood and grain production does not solely 

implicate the production of ACSs was reinforced, as the presence of trees can also bring 

many environmental benefits to the agricultural land that should be calculated and summed 
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to the whole nexus of advantages and disadvantages of ACSs before establishing such 

systems or choosing against it. 

Last but not least, this study emphasized the considerable potential of modelling 

approaches in ACSs, as they can simulate tree and crop yields for specific site-conditions 

in a non-intrusive, inexpensive, and prompt way while supporting an early site-setup 

planning. 
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5. General Conclusions and Outlook 

The central resolution of the present dissertation was to evaluate the prospective 

implications of different site-specific conditions and scenarios on tree growth in ACSs. By 

several experimental and simulation-based studies, the ability of a process-oriented, eco-

physiological tree and crop growth model was investigated, concluding the following: 

a) The role of several modelling approaches in imputing missing empirical data from 

existent but scarce availability of data was confirmed. While some of the investigated 

modelling approaches imputed the missing data with satisfactory accuracy, simulating 

tree growth required a holistic approach, equivalently incorporating the components of 

the soil-plant-atmosphere nexus. Accordingly, a process-oriented, eco-physiological 

model, capable of simulating the growth of hybrid-poplar trees from scarce availability 

of data and with respect to the specific tree phenology and light and water availability, 

was identified in the Yield-SAFE model. 

b) Based on the growth characteristics of poplar and black locust trees measured over a 

growing period of four and five years, respectively, together with climatic inputs and 

soil and tree parameters adapted from literature, the Yield-SAFE model has been 

calibrated and validated with satisfactory accuracy. 

c) Once calibrated and validated, the Yield-SAFE model has projected the growth 

sensitivity of poplar and black locust trees to a variety of weather conditions and 

prospective long-term climate change, from 2015 to 2054. 

d) By enabling the crop module in the Yield-SAFE model, the growth of poplar trees was 

simulated in strong relation to the interactions with different adjacent crops and their 

respective resource capture. 

e) Based on climatic inputs and tree, crop, and soil measurements, reports, and 

adaptations from literature, the Yield-SAFE model has simulated the yield of both trees 

and crops in ACSs under different climatic and edaphic conditions, as well as projected 

the tree and crop yields under several implementation design scenarios. 

f) Consequently, the LER and gross energy yield were derived for two existing ACSs 

schemes and under several implementation design scenarios, thus assessing the 

implications of integrating trees on an arable land, as compared to forestry and 

conventional monocultures with annual arable crops. 
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5.1. Synthesis of Main Results 

Understanding whether and to which degree is tree growth affected by external factors 

demands for systematic monitoring and inventorying of tree growth characteristics. 

However, in cases where missingness is unavoidable and simply disposing of the data 

points is not an option, modelling approaches can be effective.  By applying several models 

belonging to (i) regression analysis, (ii) statistical imputation, (iii) forest growth functions, 

and (iv) a process-oriented tree growth model, insight has been provided into finding a 

handy tool for both researchers and practitioners dealing with incomplete data sets.  

From the curve-fitting models, the Gaussian model performed the best, being tightly 

followed by the Power model with two terms, Sum of Sine, and the Polynomial of 1st 

Degree, then the Polynomial of 2nd Degree. Nearing this performance, the interpolation 

models Linear, Cubic, and PCHIP have also shown good correspondences with the 

measurements, both under 72% and 43% data gap representations. The forest growth 

functions rendered good results, following the sequence: Korsun (1935) > Michailoff 

(1943) and Petterson (1955) > Prodan (1951) > Assmann (1943). Unsurprisingly, most of 

these models performed better under higher data availability, i.e., under 72% of existing 

data, as compared to 43% of existing data. 

The Yield-SAFE model, a process-oriented, eco-physiological model, was identified 

as able to simulate the growth of poplar trees from limited availability of data and with 

respect to the specific tree phenology and light and water availability. The Yield-SAFE 

model imputed the data gaps with satisfactory accuracy by simulating the daily growth of 

poplar trees over the entire investigated timeframe. Additionally, the performance of the 

model was sustained by other parameters, such as the tree woody biomass and soil water 

content, which matched reported values. While tree growth models are widely used for 

prediction purposes, either for future risk assessments, or under different climatic, edaphic, 

and management scenarios, the findings of this dissertation have emphasized another role 

of such models and namely for filling the gaps in field measurements.  

Furthermore, the Yield-SAFE model simulated the daily above-ground woody 

biomass of hybrid-poplar and black locust with satisfactory accuracy and responded 

sensitively to changes in the climatic and edaphic conditions. The model output displayed 

high sensitivities to the tree parameters: initial number of shoots, radiation use efficiency, 

radiation extinction coefficient, and maximum leaf area for a single shoot in descending 
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order. Dominant soil parameters in descending order were: pF value at field capacity, 

potential evaporation, saturated volumetric water content, and soil depth.  

Regarding the climate inputs, the modelled output was highly sensitive to changes in 

global radiation and precipitation, but the responses to changes in air temperature were 

mostly attributed to the directly proportional relationship between global radiation and air 

temperature. Accordingly, the findings of this dissertation showed that the tree yields in an 

SRC were positively impacted by increasing air temperature and negatively by decreasing 

precipitation. Additionally, the notion that climate change impacts cannot be categorized 

as solely positive or negative was reinforced, as tree yield productivity has shown to react 

diametrically contrary to shifts in climate. This was evidenced, for example, by the fact that 

higher average annual temperatures could either increase the tree growth due to a prolonged 

vegetation period or, on the contrary, decrease the tree growth due to higher potential 

evapotranspiration.  

Once the appropriateness of the Yield-SAFE model to simulate and predict tree growth 

under different site-specific conditions and scenarios was conclusive, the crop module was 

also enabled. Accordingly, the Yield-SAFE model was calibrated and validated to simulate 

the growth of poplar trees in strong relation to the interactions with different adjacent crops 

and their respective resource capture. The yield of both trees and crops stemming from two 

existing ACSs were simulated under different climatic and edaphic conditions, as well as 

projected under several implementation design scenarios. 

Optima in the design of two existing ACSs comprising of most advantageous tree 

arrangement and ratio of tree area to crop area were identified. The LER and gross energy 

yields were derived for two ACSs schemes and under several implementation design 

scenarios, thus assessing the implications of integrating trees on an arable land, as 

compared to forestry and conventional monocultures with annual arable crops.  

The notion that the trade-off between wood and grain production does not solely 

implicate the production of ACSs was reinforced, as the presence of trees can also bring 

many environmental benefits to the agricultural land that should be calculated and summed 

to the whole nexus of advantages and disadvantages of ACSs before establishing such 

systems or choosing against it. 

Collectively, the considerable potential of process-oriented tree and crop growth 

models, such as Yield-SAFE, was highlighted. At all times, the simulations were performed 
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under scarce availability of data, for a gradient of site-specific conditions, and in a non-

intrusive, inexpensive, and prompt way. This, together with the appropriateness of the 

Yield-SAFE model to project tree and crop yields on different temporal scales, can 

progressively support early and sustainable site-setup plannings of ACSs, as well as 

upcoming risk assessments, and adaptation scenarios in the near and distant future. 

5.2. Research Limitations 

Throughout the studies encompassed in this dissertation, the ability to provide with robust 

projections of tree and crop yields under scarce availability of data was a very desirable 

modelling feature, heavily weighting in the final decision towards the Yield-SAFE model. 

However, this same feature can hold disadvantages when higher accuracy in projecting the 

overall tree and crop yield is required (e.g., accounting for leaves and below-ground 

biomass) or when additional ecosystem services need to be considered (e.g., nutrient cycle 

and carbon sequestration).  

As a negative consequence of this feature, for example, the simulation assumed a one-

dimensional soil layer, homogeneous in its physical characteristics, above which lay the 

horizontal extents of trees and arable crops (van der Werf et al., 2007). On a daily temporal 

scale, the model projected the above-ground woody biomass (i.e., from the tree stems and 

crop grains) accounting for the plant and atmospheric factors, as well as for the water 

limitations stemming from the water balance model, microclimate, and soil water 

dynamics. Therefore, in terms of potential, limited, and actual production of plant yield, 

the Yield-SAFE model accounted for half the processes succinctly describedby Figure 32. 
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Figure 32. Potential, limited, and actual production in ACSs, adapted after Young (1989) and van Ittersum 

et al., (2013) 

Except for the below-ground woody biomass, which accounts for the root development, the 

simulations performed in the current dissertation took into consideration all processes and 

rates presented in Figure 32, under the potential production section. Regarding the limited 

production section, the present studies accounted for the water-limited production, together 

with the effect of trees on microclimate (i.e., temperature, wind speed, and 

evapotranspiration). From the actual production, the Yield-SAFE model considered 

management factors (e.g., early / late planting, sowing, bud-burst, leaf-fall), together with 

several implementation designs in ACSs. 

Withing the AGFORWARD project, improvements were added to the Yield-SAFE 

model in order to better account for the ecosystem services delivered by agroforestry 

systems (Palma et al., 2016). While increasing the number of required parameters, the 

model was, hence, enhanced with new state variables and equations pertaining to (i) trees 

(leaf-fall, leaf biomass, fine root mortality and biomass, water assimilation by roots, tree 

effects on microclimate and livestock, cork production, fruit production and its energy 

content), (ii) crops (straw and roots as residues, water uptake, carbon inputs to soil), (iii) 

grass (maintenance respiration), (iv) livestock (utilisable metabolisable energy 

requirement, manure), and (v) soil (carbon dynamics, nitrogen leaching). 
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However, the Yield-SAFE version employed by the present dissertation did not account for 

the nutrient states, rates, and processes, nor for the majority of other reducing factors 

existent in the soil-plant-atmosphere nexus presented in Figure 32. 

5.3. Scientific and Practical Recommendations and Outlook 

Predictive accuracy could be added to the Yield-SAFE model by integrating a dynamic 

vegetation period determination depending on weather conditions rather than the static 

approach using tabulated values of the day of budburst and leaf-fall of the year. The 

adaptation could be based on a weighting model determined by the atmospheric drivers 

(i.e., air temperature, precipitation, and global radiation), in order to boost or hinder the 

vegetation period to a more realistic situation. 

Monitoring and systematically updating an ACS repository with a focus on the second, 

third, and following rotations of the SRC would be paramount for validating the 

performance of multi-rotation growth models. In future works, the model of this study 

could also be extended to situations that demand more details such as the different 

processes and rates pertaining to the nutrient-limited production and actual production, as 

shown in Figure 32. 

With the advent of artificial neural network models, imputing incomplete or inaccurate 

parts of the data could largely be automated in the future. However, vast repositories of tree 

and crop growth characteristics would be needed for this, in strong relation to the age of 

plants, the latitude, and longitude of the site, implementation design, and site-specific 

conditions. 

For future investigations into the existing soil-plant-atmosphere interrelations, as well 

as for prospective impacts assessments of such nexus, there is a paramount demand for far-

sighted, long-term research projects. Repositories of tree and crop growth characteristics 

covering a gradient of climatic and edaphic conditions should systematically be maintained, 

expanded, and, if possible, made available.  

For practical purposes and based on experimental findings, the Yield-SAFE model 

could henceforth allow for the upscaling of the simulated outputs from plot- to farm- to 

landscape-scale by employing soil maps and local meteorological stations. Accordingly, 

the soil layer, currently integrated into the Yield-SAFE model as a one-dimensional, 

homogeneous soil layer, could be adapted to more realistic situations by means of multiple, 

two-dimensional cells. The soil maps could be integrated into the model in the shape of 
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meshed grids and triangulation, or kriging methods could be used for gridding climatic 

inputs from meteorological stations. Considerations of distances between trees and crops, 

as well as intra- and inter-specific plant resource allocation would also require a two-

dimensional soil layer. 

Upscaling the tree and crop yield production in ACSs from a plot-scale to landscape 

would be indispensable for an early site-specific planning considering most advantageous 

locations for an ACSs establishment. Additionally, landscape simulations would allow for 

investigating whether and under which conditions could ACSs furtherly expand, magnify, 

or hinder their effects on agricultural production, soil erosion, or carbon storage. 

In turn, upscaling the simulated outputs of the Yield-SAFE model would allow for 

furtherly optimizing the implementation design of ACSs, identifying new management 

strategies that promote landscape multifunctionality, and predicting the landscape-level 

impacts of prospective climatic and edaphic changes. This would be especially relevant 

with the ongoing need for diversification of land-use and the generation of not only food, 

feed and fibre on arable land, but also fuel, with respect to the water-energy-food nexus. 
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Appendix A 

Table A.1. Tree and soil parameter values used for the parametrization of the Yield-SAFE model for the SRF 

in Dornburg (Thuringia, Germany). 

Symbol Description Unit Value Source 

nShoots0
 Initial number of shoots per tree tree-1 1 

Own 

data 

Bt0 Initial tree biomass g tree-1 40 1 

LAt0 Initial tree leaf area 
m2 

tree-1 
0 2, 3 

εt
 Radiation use efficiency g MJ-1 1.04 

Own 

data 

kt Light extinction coefficient – 0.5 
Own 

data 

tt 
The number of days after bud-burst at which the leaf area has 

reached 63.2% of its maximum leaf area LAss
max 

d 10 2, 3 

LAss
max Maximum leaf area for a single shoot m2 0.05 2, 3 

nShoots
max Maximum number of shoots per tree tree-1 10000 2, 3 

Kmain Relative attrition rate of tree biomass d-1 10-4 2, 3 

γt Transpiration coefficient of the trees m3 g-1 0.0002 1 

(pFcrit)t Critical pF value for trees 
log 

(cm) 
4.0 2 

(pFpwp)t pF value at permanent wilting point 
log 

(cm) 
4.2 2 

DOYbudburst, 

DOYleaf-fall 
Day of year for bud-burst and leaf-fall DOY 

105, 

300 
1 

ρt Planting density 
trees 

ha-1 2200 4 

θ0 Initial volumetric water content m3 m-3 0.35 5 

δ eva Potential evaporation per unit energy 
mm 

MJ-1 
0.15 2 

D Depth of the soil compartment mm 1000 5 

α Van Genuchten parameter – 0.0083 5 

nsoil Van Genuchten parameter – 1.2539 5 

δ Parameter affecting the drainage rate below root zone – 0.07 5 

PWP Permanent wilting point 
log 

(cm) 
4.2 2, 3 

(pFcrit)E Critical pF value for evaporation 
log 

(cm) 
2.3 2, 3 

pFFC Water tension at field capacity 
log 

(cm) 
2.3 2, 3 

Ks Soil hydraulic conductivity at saturation mm d-1 2.272 5 

θs Saturated volumetric water content m3 m-3 0.43 5 

θr Residual volumetric water content m3 m-3 0.01 5 

1 Crous-Duran et al. (2018); 2 Graves et al. (2010); 3 Keesman et al. (2011); 4 Bärwolf et al. (2016);  

5 Wösten et al. (1990) 
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Table A.2. Goodness of validation of all applied regression models in terms of the coefficient of 

determination (R2), sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute error 

(MAE), as well as the concordance correlation coefficient (CCC) and the simulation bias (SB) from the 

observations.  

Model Variable 

Data Gap 

Representation 

R2 SSE RMSE MAE SB [%] CCC Label 

E
x

p
o

n
en

ti
al

 

RHD 
72 0.90 10.3 1.2 1.1 1.0 0.93 Acceptable 

43 -3.31 * 534.3 8.7 7.9 na na na 

BHD 
72 -3.32 * 287.1 6.4 5.6 na na na 

43 -2.19 * 287.1 6.4 5.6 na na na 

Height 
72 0.90 51868 86 78 0.7 0.94 Satisfactory 

43 -3.58 * 3013195 656 602 na na na 

BHD & 

RHD 

72 0.97 2.4 0.6 0.5 1.3 0.99 Very good 

43 0.97 2.8 0.6 0.5 2.7 0.98 Satisfactory 

Height & 

BHD 

72 0.93 4.0 0.8 0.6 1.9 0.97 Poor 

43 0.92 4.1 0.8 0.6 1.0 0.95 Satisfactory 

Height & 

RHD 

72 0.96 3.0 0.7 0.5 0.3 0.99 Very good 

43 0.96 3.0 0.7 0.5 1.4 0.99 Satisfactory 

F
o

u
ri

er
 

RHD 
72 1.00 0.3 0.2 0.2 0.3 0.99 Very good 

43 na na na na na na na 

BHD 
72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory 

43 na na na na na na na 

Height 
72 1.00 185 5.0 5.0 0.0 1.00 Very good 

43 na na na na na na na 

BHD & 

RHD 

72 1.00 0.1 0.1 0.1 1.4 1.00 Very good 

43 na na na na na na na 

Height & 

BHD 

72 1.00 0.2 0.1 0.1 1.4 0.99 Satisfactory 

43 na na na na na na na 

Height & 

RHD 

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good 

43 na na na na na na na 

G
au

ss
 

RHD 
72 0.99 0.4 0.2 0.2 0.1 0.99 Very good 

43 1.00 1.4 0.4 0.3 2.3 1.00 Very good 

BHD 
72 0.98 1.2 0.4 0.4 2.9 0.99 Very good 

43 1.00 7.1 1.0 0.7 5.5 0.96 Acceptable 

Height 
72 1.00 1627 15 15 0.3 1.00 Very good 

43 1.00 4578 26 18 1.1 1.00 Very good 
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BHD & 

RHD 

72 1.00 0.4 0.2 0.2 1.4 1.00 Very good 

43 1.00 0.6 0.3 0.2 1.7 0.99 Satisfactory 

Height & 

BHD 

72 0.99 0.8 0.3 0.3 2.0 0.99 Very good 

43 1.00 1.9 0.5 0.4 0.6 0.98 Acceptable 

Height & 

RHD 

72 1.00 0.3 0.2 0.2 0.2 1.00 Very good 

43 1.00 0.4 0.3 0.2 0.1 1.00 Very good 

P
o

w
er

: 
1
 t

er
m

 

RHD 
72 na na na na na na na 

43 na na na na na na na 

BHD 
72 na na na na na na na 

43 na na na na na na na 

Height 
72 na na na na na na na 

43 na na na na na na na 

BHD & 

RHD 

72 0.98 1.2 0.4 0.3 1.8 0.99 Very good 

43 0.99 1.6 0.5 0.4 1.8 1.00 Satisfactory 

Height & 

BHD 

72 0.99 0.7 0.3 0.3 2.1 0.99 Acceptable 

43 0.99 0.7 0.3 0.3 1.2 0.99 Satisfactory 

Height & 

RHD 

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.0 1.00 Very good 

P
o

w
er

: 
2
 t

er
m

s 

RHD 
72 0.98 2.5 0.6 0.6 1.3 0.99 Satisfactory 

43 0.97 2.6 0.6 0.6 2.2 0.98 Very good 

BHD 
72 0.96 2.4 0.6 0.5 0.0 0.98 Acceptable 

43 0.96 2.6 0.6 0.6 2.7 0.96 Satisfactory 

Height 
72 0.97 12883 43 38 1.0 0.99 Very good 

43 0.97 15558 47 41 3.1 0.98 Very good 

BHD & 

RHD 

72 1.00 0.2 0.1 0.1 1.4 1.00 Very good 

43 1.00 0.2 0.2 0.1 1.0 1.00 Very good 

Height & 

BHD 

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory 

43 1.00 0.4 0.2 0.1 2.5 0.98 Acceptable 

Height & 

RHD 

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.1 1.00 Very good 

R
at

io
n

al
 

RHD 
72 1.00 0.8 0.3 0.3 0.3 0.99 Satisfactory 

43 1.00 1.5 0.5 0.3 2.3 0.99 Acceptable 

BHD 
72 0.99 0.8 0.3 0.3 1.5 0.98 Poor 

43 1.00 1.7 0.5 0.3 4.0 0.98 Poor 

Height 
72 0.00 479485 262 231 3.1 0.00 Poor 

43 0.00 480081 262 236 3.2 0.00 Poor 
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BHD & 

RHD 

72 1.00 0.2 0.2 0.1 1.2 1.00 Very good 

43 1.00 0.1 0.1 0.1 0.0 1.00 Very good 

Height & 

BHD 

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory 

43 1.00 0.3 0.2 0.1 2.4 0.99 Acceptable 

Height & 

RHD 

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.2 1.00 Very good 

S
u

m
 o

f 
S

in
e 

RHD 
72 1.00 0.4 0.2 0.2 0.3 0.99 Very good 

43 1.00 0.6 0.3 0.2 2.1 0.99 Satisfactory 

BHD 
72 1.00 0.3 0.2 0.2 1.5 0.98 Acceptable 

43 1.00 0.6 0.3 0.2 3.5 0.98 Acceptable 

Height 
72 1.00 921 11 11 0.0 1.00 Very good 

43 1.00 1421 14 9 0.9 1.00 Very good 

BHD & 

RHD 

72 1.00 0.2 0.2 0.1 1.3 1.00 Very good 

43 1.00 0.1 0.1 0.1 0.0 1.00 Very good 

Height & 

BHD 

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory 

43 1.00 0.3 0.2 0.1 2.2 0.99 Satisfactory 

Height & 

RHD 

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.2 1.00 Very good 

L
in

ea
r 

F
it

 

RHD 
72 0.98 1.0 0.4 0.3 1.0 0.99 Very good 

43 1.00 6.0 0.9 0.7 0.0 0.97 Poor 

BHD 
72 0.98 1.2 0.4 0.4 0.6 0.99 Very good 

43 1.00 7.1 1.0 0.8 3.5 0.98 Poor 

Height 
72 0.99 6198 30 27 0.6 0.99 Satisfactory 

43 1.00 33105 69 51 1.1 0.97 Poor 

BHD & 

RHD 

72 0.95 6.4 1.0 0.8 3.9 0.97 Poor 

43 1.00 6552 30 21 45 -0.03 Poor 

Height & 

BHD 

72 0.97 1.8 0.5 0.4 2.0 0.98 Acceptable 

43 1.00 65.9 3.1 2.2 17.6 0.55 Poor 

Height & 

RHD 

72 0.98 1.7 0.5 0.4 0.4 0.99 Satisfactory 

43 1.00 60.3 2.9 2.1 11.6 0.68 Poor 

P
o

ly
n

o
m

ia
l:

 1
st

 d
eg

re
e RHD 

72 0.98 2.6 0.6 0.6 1.3 0.99 Satisfactory 

43 0.97 2.7 0.6 0.6 2.2 0.98 Very good 

BHD 
72 0.96 2.4 0.6 0.5 0.0 0.98 Acceptable 

43 0.96 2.7 0.6 0.6 2.7 0.96 Satisfactory 

Height 
72 0.97 13187 43 39 1.0 0.99 Very good 

43 0.97 15939 48 42 3.2 0.98 Very good 
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BHD & 

RHD 

72 1.00 0.2 0.2 0.1 1.3 1.00 Very good 

43 1.00 0.1 0.1 0.1 0.0 1.00 Very good 

Height & 

BHD 

72 1.00 0.2 0.2 0.1 1.3 0.99 Satisfactory 

43 1.00 0.2 0.2 0.1 1.4 0.99 Acceptable 

Height & 

RHD 

72 1.00 0.1 0.1 0.1 0.3 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.1 1.00 Very good 

P
o

ly
n

o
m

ia
l:

 2
n

d
 d

eg
re

e 

RHD 
72 1.00 0.6 0.3 0.2 0.3 0.99 Satisfactory 

43 1.00 0.9 0.4 0.2 2.1 0.99 Satisfactory 

BHD 
72 1.00 0.5 0.3 0.2 1.5 0.98 Acceptable 

43 1.00 0.9 0.4 0.2 3.6 0.98 Poor 

Height 
72 1.00 1774 16 15 0.0 1.00 Very good 

43 1.00 2636 19 13 0.9 1.00 Very good 

BHD & 

RHD 

72 1.00 0.1 0.1 0.1 1.4 1.00 Very good 

43 1.00 0.1 0.1 0.1 0.8 1.00 Very good 

Height & 

BHD 

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory 

43 1.00 0.3 0.2 0.1 2.3 0.99 Acceptable 

Height & 

RHD 

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.1 1.00 Very good 

* A negative R-square is possible if the model does not contain a constant term and the fit is poor 

(worse than just fitting the mean); na: not available; RHD: root height diameter; BHD: breast 

height diameter 
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Table A.3. Goodness of validation of all applied regression models in terms of the coefficient of 

determination (R2), sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute error 

(MAE), as well as the concordance correlation coefficient (CCC) and the simulation bias (SB) from the 

observations. 

Model Variable 

Data Gap 

Representation 

R2 SSE RMSE MAE SB [%] CCC Label 

In
te

rp
o
la

n
t:

 N
ea

re
st

 N
ei

g
h
b

o
r 

RHD 

72 1.00 4.8 0.8 0.5 2.3 0.97 Poor 

43 1.00 12.6 1.3 0.9 0.4 0.93 Poor 

BHD 

72 1.00 4.0 0.8 0.4 1.0 0.97 Poor 

43 1.00 8.9 1.1 0.8 0.0 0.92 Poor 

Height 

72 1.00 32985 69 36 1.5 0.97 Poor 

43 1.00 71174 101 71 1.4 0.93 Poor 

BHD & 

RHD 

72 1.00 6.0 0.9 0.5 6.8 0.97 Poor 

43 1.00 12.6 1.3 0.9 0.4 0.93 Poor 

Height & 

BHD 

72 1.00 6.3 0.9 0.5 8.7 0.95 Poor 

43 1.00 8.9 1.1 0.8 0.0 0.92 Poor 

Height & 

RHD 

72 1.00 6.5 1.0 0.5 5.2 0.97 Poor 

43 1.00 12.6 1.3 0.9 0.4 0.93 Poor 

In
te

rp
o
la

n
t:

 L
in

ea
r 

RHD 

72 1.00 0.3 0.2 0.1 0.8 1.00 Very good 

43 1.00 0.5 0.3 0.2 0.4 0.99 Very good 

BHD 

72 1.00 0.1 0.1 0.1 0.9 0.99 Satisfactory 

43 1.00 0.4 0.2 0.2 0.0 0.98 Satisfactory 

Height 

72 1.00 211 5.0 2.0 0.4 1.00 Very good 

43 1.00 3154 21 13 1.4 1.00 Very good 

BHD & 

RHD 

72 1.00 0.3 0.2 0.1 1.5 1.00 Very good 

43 1.00 0.0 0.1 0.0 0.2 1.00 Very good 

Height & 

BHD 

72 1.00 0.1 0.1 0.1 1.3 0.99 Satisfactory 

43 1.00 0.2 0.2 0.1 1.6 0.99 Satisfactory 

Height & 

RHD 

72 1.00 0.2 0.2 0.1 0.5 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.1 1.00 Very good 

In
te

rp
o
la

n
t:

 

C
u

b
ic

 

RHD 

72 1.00 0.3 0.2 0.1 1.2 1.00 Very good 

43 1.00 0.9 0.4 0.2 2.1 0.99 Satisfactory 
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BHD 

72 1.00 0.1 0.1 0.1 0.7 0.99 Very good 

43 1.00 0.9 0.4 0.2 3.6 0.98 Poor 

Height 

72 1.00 594 9.0 4.0 0.3 1.00 Very good 

43 1.00 2636 19 13 0.9 1.00 Very good 

BHD & 

RHD 

72 1.00 0.7 0.3 0.2 2.6 1.00 Satisfactory 

43 1.00 0.1 0.1 0.1 0.8 1.00 Very good 

Height & 

BHD 

72 1.00 0.1 0.1 0.1 1.0 0.99 Very good 

43 1.00 0.3 0.2 0.1 2.3 0.99 Acceptable 

Height & 

RHD 

72 1.00 0.4 0.2 0.1 1.8 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.1 1.00 Very good 

In
te

rp
o
la

n
t:

 P
C

H
IP

 

RHD 

72 1.00 0.2 0.2 0.1 0.8 1.00 Very good 

43 1.00 1.0 0.4 0.2 2.1 0.99 Satisfactory 

BHD 

72 1.00 0.1 0.1 0.1 1.2 0.99 Satisfactory 

43 1.00 1.1 0.4 0.2 3.6 0.98 Poor 

Height 

72 1.00 60 3.0 2.0 0.0 1.00 Very good 

43 1.00 3398 22 16 0.9 1.00 Very good 

BHD & 

RHD 

72 1.00 0.4 0.2 0.1 1.8 1.00 Very good 

43 1.00 0.1 0.1 0.1 0.8 1.00 Very good 

Height & 

BHD 

72 1.00 0.1 0.1 0.1 1.3 0.99 Satisfactory 

43 1.00 0.3 0.2 0.1 2.3 0.99 Acceptable 

Height & 

RHD 

72 1.00 0.2 0.2 0.1 0.8 1.00 Very good 

43 1.00 0.1 0.1 0.1 1.1 1.00 Very good 

RHD: root height diameter; BHD: breast height diameter 
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Appendix B 

Table B.1. Tree and soil parameter values used for the parametrization of the Yield-SAFE model for the SRC 

in Forst (north-eastern Germany). 

Symbol Description Unit Tree Species Value Source 

Tree Parameters 

Initial Conditions 

nShoots0
 Initial number of shoots per tree tree-1 

Poplar 0.3362 Own 

data Black Locust 0.2520 

Bt0 Initial tree biomass g tree-1 
Poplar 

100 1, 2 

Black Locust 

LAt0 Initial tree leaf area m2 tree-1 
Poplar 

0 1, 2 
Black Locust 

Parameters 

εt
 Radiation use efficiency g MJ-1 

Poplar 0.2137 Own 

data Black Locust 0.4820 

kt Light extinction coefficient – 
Poplar 

0.8 1, 2 
Black Locust 

tt 

The number of days after bud-burst at which 

the leaf area has reached 63.2% of its 

maximum leaf area LAss
max 

d 

Poplar 

10 1, 2 
Black Locust 

LAss
max Maximum leaf area for a single shoot m2 

Poplar 0.05 1, 2 

Black Locust 0.025 3 

nShoots
max Maximum number of shoots per tree tree-1 

Poplar 
10000 1, 2 

Black Locust 

Kmain Relative attrition rate of tree biomass d-1 
Poplar 

10-4 1, 2 
Black Locust 

γt Transpiration coefficient of the trees m3 kg-1 
Poplar 0.35 2 

Black Locust 0.42 3 

(pFcrit)t Critical pF value for trees log (cm) 
Poplar 

4.0 

1 

Black Locust 3 

(pFpwp)t pF value at permanent wilting point log (cm) 
Poplar 

4.2 1 
Black Locust 

Tree Leaf Phenology 

DOYbudburst, 

DOYleaf-fall 
Day of year for bud-burst and leaf-fall DOY 

Poplar 
105, 

280 
4 

Black Locust 
125, 

310 
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Management Tree Density 

ρt Planting density trees ha-1 
Poplar 

8700 5 
Black Locust 

Soil Parameters 

Initial Conditions 

θ0 Initial volumetric water content m3 m-3 
Poplar 

0.552 1, 2 
Black Locust 

Parameters 

δ eva Potential evaporation per unit energy mm MJ-1 
Poplar 

0.15 2 
Black Locust 

D Depth of the soil compartment mm 
Poplar 

1500 6 
Black Locust 

α Van Genuchten parameter – 
Poplar 

0.0383 6 
Black Locust 

nsoil Van Genuchten parameter – 
Poplar 

1.3774 6 
Black Locust 

δ 
Parameter affecting the drainage rate below 

root zone 
– 

Poplar 
0.07 6 

Black Locust 

PWP Permanent wilting point log (cm) 
Poplar 

4.2 1, 2 
Black Locust 

(pFcrit)E Critical pF value for evaporation log (cm) 
Poplar 

2.3 1, 2 
Black Locust 

pFFC Water tension at field capacity log (cm) 
Poplar 

2.3 1, 2 
Black Locust 

Ks Soil hydraulic conductivity at saturation mm d-1 
Poplar 

60 6 
Black Locust 

θs Saturated volumetric water content m3 m-3 
Poplar 

0.403 6 
Black Locust 

θr Residual volumetric water content m3 m-3 

Poplar 

0.025 6 
Black Locust 

1 Keesman et al. (2011); 2 Graves et al. (2010); 3 Mantovani et al. (2015a); 4 Küppers et al. (2017);  

5 Kanzler & Böhm (2016); 6 Wösten et al. (1990) 
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Figure B.1. Walter-Lieth climate diagrams for realisation 79 in terms of average annual air temperature, 

precipitation and global radiation, according to the established periods and with respect to the vegetation 

period and accumulated woody biomass for both tree species. 
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Figure B.2. Comparison between realisation 31 and realisation 13 in terms of average monthly air 

temperature, precipitation and global radiation according to growing period 1 (2015-2018) and with respect 

to the accumulated biomass obtained by poplar. 
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Appendix C 

Table C.1. Tree parameter values used for the parametrization of the Yield-SAFE model. 

Symbol Description Unit Location Value Source 

Tree Parameters 

Initial Conditions 

nShoots0
 Initial number of shoots per tree tree-1 

Wendhausen 1.256 Own 

data Neu Sacro 1.086 

Bt0 Initial tree biomass g tree-1 
Wendhausen 

40 1 
Neu Sacro 

LAt0 Initial tree leaf area m2 tree-1 
Wendhausen 

0 1, 2, 3 
Neu Sacro 

Parameters 

εt
 Radiation use efficiency g MJ-1 

Wendhausen 1.1100 Own 

data Neu Sacro 0.9912 

kt Light extinction coefficient – 
Wendhausen 

0.8 2, 3 
Neu Sacro 

tt 

The number of days after bud-burst at 

which the leaf area has reached 63.2 % of 

its maximum leaf area LAss
max 

d 

Wendhausen 

10 2, 3 
Neu Sacro 

LAss
max Maximum leaf area for a single shoot m2 

Wendhausen 
0.04 1 

Neu Sacro 

nShoots
max Maximum number of shoots per tree tree-1 

Wendhausen 
10000 2, 3 

Neu Sacro 

Kmain Relative attrition rate of tree biomass d-1 
Wendhausen 

10-4 2, 3 
Neu Sacro 

γt Transpiration coefficient of the trees m3 kg-1 
Wendhausen 

0.2 1 
Neu Sacro 

(pFcrit)t Critical pF value log (cm) 
Wendhausen 

4.0 2 
Neu Sacro 

(pFpwp)t pF value at permanent wilting point log (cm) 
Wendhausen 

4.2 2 
Neu Sacro 

Tree Phenology 

DOYbudburst, 

DOYleaf-fall 
Day of year for bud-burst and leaf-fall DOY 

Wendhausen 105, 

300 
1 

Neu Sacro 

Management Parameters 

ρt Planting density trees ha-1 
Wendhausen 10,000 4 

Neu Sacro 8,700 5 

1 Crous-Duran et al. (2018); 2 Keesman et al. (2011); 3 Graves et al. (2010); 4 Lamerre et al. (2016);  

5 Kanzler & Böhm (2016) 
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Table C.2. Crop parameter values used for the parametrization of the Yield-SAFE model. 

Symbol Description Unit Crop Location Value Source 

Crop Parameters 

Initial Conditions 

Bc0 Initial crop biomass g m-2 All All 10 1 

LAc0 Initial crop leaf area m2 m-2 All All 0.1 1 

Pleaves Partitioning factor to leaves – All All 0.8 1 

Parameters 

εc
 Radiation use efficiency g MJ-1 

ww NS 1.690 

Own 

data 

wb NS 1.033 

wr WH 1.017 

ww WH 0.907 

kc Light extinction coefficient – All All 0.7 1 

(pFcrit)c Critical pF value 
log 

(cm) 

wb 
All 

2.9 
1, 2 

ww, wr 3.2 

(pFpwp)c 
pF value at permanent wilting 

point 

log 

(cm) 
All All 4.2 1 

SLA Specific leaf area m2 g-1 

ww, wb NS 0.005 

2 wr WH 0.020 

ww WH 0.005 

T0 Base temperature °C All All 5 1 

Tsum emerge Heat sum at emergence °Cd All All 
57 

1 
79 

Tsum RB 
Heat sum when partitioning to 

leaves starts to decrease 
°Cd All All 

456 
1 

500 

Tsum RE 
Heat sum when partitioning to 

leaves ceases 
°Cd All All 

464 
1 

1300 

Tsum harvest Heat sum at harvest °Cd All All 
1312 

1 
2000 

Management Parameters 

DOYsow Day of sowing DOY 

ww NS -65 4 

wb NS -60 1 

wr WH -116 1 

   ww WH -95 5 

DOYharvest Day of harvest DOY 
ww, wb NS 245 5 

wr WH 225 1 

   ww WH 300 1 

1 Graves et al. (2010); 2 Crous-Duran et al. (2018); 3 Kanzler et al. (2018); 4 Swieter et al. (2018) 
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Table C.3. Soil parameter values used for the parametrization of the Yield-SAFE model. 

Symbol Description Unit Crop Location Value 

Soil Parameters 

Initial Conditions 

θ0 Initial volumetric water content m3 m-3 
Wendhausen 

0.552 1, 2 

Neu Sacro 

Parameters 

δ eva Potential evaporation per unit energy 
mm 

MJ-1 

Wendhausen 
0.15 1, 2 

Neu Sacro 

D Depth of the soil compartment mm 
Wendhausen 900 3 

Neu Sacro 1400 4 

α Van Genuchten parameter – 
Wendhausen 0.0083 

5 
Neu Sacro 0.0383 

nsoil Van Genuchten parameter – 
Wendhausen 1.2539 

5 
Neu Sacro 1.3774 

δ 
Parameter affecting the drainage rate below 

root zone 
– 

Wendhausen 
0.07 5 

Neu Sacro 

PWP Permanent wilting point 
log 

(cm) 

Wendhausen 
4.2 1, 2 

Neu Sacro 

(pFcrit)E Critical pF value for evaporation 
log 

(cm) 

Wendhausen 
2.3 1, 2 

Neu Sacro 

pFFC Water tension at field capacity 
log 

(cm) 

Wendhausen 
2.3 1, 2 

Neu Sacro 

Ks Soil hydraulic conductivity at saturation 
mm d-

1 

Wendhausen 24.8 
5 

Neu Sacro 60.0 

θs Saturated volumetric water content m3 m-3 
Wendhausen 0.520 

5 
Neu Sacro 0.403 

θr Residual volumetric water content m3 m-3 
Wendhausen 0.010 

5 
Neu Sacro 0.025 

1 Keesman et al. (2011); 2 Graves et al. (2010); 3 Lamerre et al. (2016); 4 Kanzler & Böhm (2016); 

5 Wösten et al. (1990) 
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Table C.4. Tree and crop yields per cropped area and per alley-cropping system, their corresponding relative yields, the inferred LER and gross energy yield values, as 

projected by the Yield-SAFE model at Wendhausen and Neu Sacro in 2016 and 2017 and under different ratios of tree area to crop area. 

  Wendhausen  Neu Sacro  

  

Yield per 

cropped area 

Yield per 

ACS (Yi) 
Relative 

yields 

(Yi/Y100) 
 

LER 

(Eq. 2) 
Gross 

energy 

yield  

[GJ ha-1] 

Yield per 

cropped 

area 

Yield per 

ACS (Yi) 
Relative 

yields 

(Yi/Y100) 
 

LER 

(Eq. 2) 
Gross 

energy 

yield  

[GJ ha-1] 
[Mg DM ha-1 yr-1] [Mg DM ha-1 yr-1] 

Plant 
Area 

[%] 
2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 

Tree 0 - - - - - - 
1 1 220 

- - - - - - 
1 1 151 

Crop 100 3.7 7.2 3.7 7.2 1.0 1.0 5.1 3.7 5.1 3.7 1.00 1.00 

Tree 20 10.6 13.5 2.1 2.7 0.2 0.3 
0.9 1.0 244 

14.0 12.9 2.8 2.6 0.3 0.3 
1.3 1.5 264 

Crop 80 3.2 6.4 2.6 5.1 0.7 0.7 6.1 5.8 4.9 4.6 1.0 1.3 

Tree 25 10.5 13.4 2.6 3.4 0.3 0.4 
0.8 0.9 232 

14.4 13.1 3.6 3.3 0.4 0.4 
1.2 1.2 250 

Crop 75 2.5 5.6 1.9 4.2 0.5 0.6 5.3 4.2 4.0 3.2 0.8 0.9 

Tree 40 10.4 13.3 4.2 5.3 0.4 0.6 
 0.7 0.9 235 

14.8 13.5 5.9 5.4 0.7 0.6 
 1.0 1.0 270 

Crop 60 1.5 3.5 0.9 2.1 0.2 0.3 3.2 2.7 1.9 1.6 0.4 0.4 

Tree 50 10.3 13.1 5.2 6.6 0.5 0.7 
0.7 0.8 248 

14.9 13.5 7.5 6.8 0.8 0.8 
1.0 1.0 298 

Crop 50 1.0 2.2 0.5 1.1 0.1 0.2 2.2 1.9 1.1 1.0 0.2 0.3 

Tree 60 10.3 13.0 6.2 7.8 0.7 0.8 
0.7 0.9 274 

14.9 13.6 8.9 8.2 1.0 0.9 
1.1 1.0 334 

Crop 40 0.6 1.3 0.2 0.5 0.1 0.1 1.4 1.2 0.6 0.5 0.1 0.1 

Tree 75 10.2 12.9 7.7 9.7 0.8 1.0 
0.8 1.0 324 

14.9 13.6 11.2 10.2 1.2 1.1 
1.3 1.2 401 

Crop 25 0.3 0.4 0.1 0.1 0.0 0.0 0.6 0.6 0.2 0.2 0.0 0.0 

Tree 80 10.2 12.8 8.2 10.2 0.9 1.1 
0.9 1.1 342 

14.9 13.5 11.9 10.8 1.3 1.2 
1.3 1.2 423 

Crop 20 0.2 0.3 0.0 0.1 0.0 0.0 0.4 0.4 0.1 0.1 0.0 0.0 

Tree 100 9.4 9.4 9.4 9.4 1.0 1.0 
1 1 348 

9.0 9.0 9.0 9.0 1.00 1.00 
1 1 333 

Crop 0 - - - - - - - - - - - - 
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Figure C.1. Walter-Lieth climate diagrams for the weather stations at Braunschweig (Wendhausen; a,c) and 

Cottbus (Neu Sacro; b,d). Monthly values from 2016 (a,b) and 2017 (c,d) were used to represent the mean 

air temperature (red) and average precipitation sum (blue). If the average monthly precipitation sum lies under 

the mean monthly air temperature, the period is considered arid (filled in dotted red vertical lines), otherwise 

it is considered wet (filled in blue lines). Minimum and maximum annual temperatures are located on the far-

left side and annual mean temperatures are located atop, together with the annual precipitation sum. Frost 

months (when the absolute monthly temperature minimums are equal or lower than 0°C) are shown in solid 

blue boxes along the x-axis. 
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Figure C.2. To-scale sketch of the 29 m x 30 m alley-cropping-plots (APs) design at Wendhausen (a) and 

Neu Sacro (b). At both sites, AP1 and AP2 are arranged leeward and AP3 and AP4 windward. The solid-

coloured areas correspond to the tree strips and the shaded areas to the cropped surfaces. The orange bars 

represent the 2 m x 10 harvest transects located 1 m, 4 m, 7 m, and 24 m away from the tree strips. As the 

experimental part of this study focused on a ratio of tree area to crop area of 17:82, the simulations considered 

design scenarios with ratios of tree area to crop area of 20:80, 25:75, 40:60, 50:50, 60:40, 75:26, and 80:20 

(c). 

 

 

 

 

 

 



 

 


