b.tu
 Brandenburgische Technische Universität Cottbus - Senftenberg

Faculty 1
Mathematics, Computer Science,
Physics, Electrical Engineering and
Information Technology
Institute of Computer Science

Computer Science Reports

Report 01/19
December 2019

Quantum-Based Construction of a Probability Measure

Ingo Schmitt

Ingo Schmitt
ingo.schmitt@b-tu.de
http://www.b-tu.de/fg-dbis

Quantum-Based Construction of a Probability Measure

Computer Science Reports
01/19

December 2019

Brandenburg University of Technology Cottbus - Senftenberg
Faculty of Mathematics, Computer Science, Physics, Electrical Engineering and Information Technology
Institute of Computer Science

Head of Institute:
Prof. Dr. Michael Hübner michael.huebner@b-tu.de
BTU Cottbus - Senftenberg
Institut für Informatik
Postfach 101344
D-03013 Cottbus

Research Groups:
Computer Engineering
Computer Network and Communication Systems
Data Structures and Software Dependability
Database and Information Systems
IT-Security
Programming Languages and Compiler Construction
Software and Systems Engineering
Theoretical Computer Science
Graphics Systems
Security in Pervasive Systems
Systems
Distributed Systems and Operating Systems
Internet-Technology

Headed by:
Prof. Dr. M. Hübner
Prof. Dr. O. Hohlfeld
Prof. Dr. M. Heiner
Prof. Dr. I. Schmitt
Prof. Dr. A. Panchenko
Prof. Dr. P. Hofstedt
Prof. Dr. C. Lewerentz
Prof. Dr. K. Meer
Prof. Dr. D. Cunningham
Prof. Dr. P. Langendörfer
Prof. Dr. R. Kraemer
Prof. Dr. J. Nolte
Prof. Dr. G. Wagner

Computer Science Reports
Brandenburg University of Technology Cottbus - Senftenberg ISSN: 1437-7969

Send requests to: BTU Cottbus - Senftenberg Institut für Informatik
Postfach 101344
D-03013 Cottbus

Quantum-Based Construction of a Probability Measure

Ingo Schmitt
Brandenburgische Technische Universität
ingo.schmitt@b-tu.de
24/12/2019

Abstract

From Gleason's theorem [1] we know that in principle every probability measure can be expressed by Hermitian operators in a separable Hilbert space and the Born rule as part of a quantum mechanical system. However, that theorem is not constructive. For a given discrete and additive probability measure based on a σ algebra we construct a quantum system with projectors expressing that probability measure.

Let us start with the definition of a discrete probability measure following the well-known Kolmogorow axioms.
Let be given a finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ of outcomes of a random process. A σ-algebra $\Sigma \subseteq 2^{\Omega}$ provides a set of events closed under union and negation (realized as set complement). A mapping $P: \Sigma \rightarrow[0,1] \subseteq \mathcal{R}$ is called an additive, discrete probability measure if

1. $P(\Omega)=1$ and
2. for every countable sequence of mutual disjoint sets $\sigma_{1}, \ldots, \sigma_{n}$ from Σ

$$
P\left(\bigcup_{i=1}^{n} \sigma_{i}\right)=\sum_{i=1}^{n} P\left(\sigma_{i}\right)
$$

hold.
Assume, a discrete and additive probability measure P on Σ is given. Next we will show how to construct a quantum system with projectors realizing the probability measure P. Here we use the Dirac notation.
A quantum system state is defined by a density matrix D. We construct our density matrix by performing following steps:

1. Take a Hilbert space \mathcal{H}^{m} over a orthormal basis $B=\{|1\rangle, \ldots,|m\rangle\}$ where $|i\rangle$ refers bijectively to $\omega_{i} \in \Omega$.
2. We construct a ket $|s\rangle \in \mathcal{H}^{m}$ as

$$
|s\rangle=\sum_{\omega_{i} \in \Omega} \sqrt{P\left(\left\{\omega_{i}\right\}\right)}|i\rangle
$$

It is obvious from the Kolmogorow axioms that the ket $|s\rangle$ has length one $(\langle s \mid s\rangle=1)$.
3. Now, we obtain the density matrix D by $D=|s\rangle\langle s|$. It can be easily shown that D is a Hermitian operator with trace one $(\operatorname{tr}(D)=1)$.

Next we define a projector $P r_{\sigma}$ (a Hermitian operator with $P r_{\sigma} \cdot P r_{\sigma}=P r_{\sigma}$) for every $\sigma \in \Sigma$ by

$$
\operatorname{Pr}_{\sigma}=\sum_{\omega_{i} \in \sigma}|i\rangle\langle i| .
$$

Using Borns rule we obtain

$$
P(\sigma)=\operatorname{tr}\left(\operatorname{Pr}_{\sigma} D\right)
$$

That equivalence can be derived from

$$
\begin{aligned}
\operatorname{tr}\left(\operatorname{Pr}_{\sigma} D\right) & =\operatorname{tr}\left(\left(\sum_{\omega_{i} \in \sigma}|i\rangle\langle i|\right) \cdot|s\rangle\langle s|\right) \\
& =\sum_{\omega_{i} \in \sigma} \operatorname{tr}(|i\rangle\langle i| \cdot|s\rangle\langle s|) \\
& =\sum_{\omega_{i} \in \sigma} \operatorname{tr}(\langle i \mid s\rangle\langle s \mid i\rangle) \\
& =\sum_{\omega_{i} \in \sigma}\langle i \mid s\rangle\langle s \mid i\rangle \\
& =\sum_{\omega_{i} \in \sigma} \sqrt{P\left(\left\{\omega_{i}\right\}\right)} \sqrt{P\left(\left\{\omega_{i}\right\}\right)} \\
& =\sum_{\omega_{i} \in \sigma} P\left(\left\{\omega_{i}\right\}\right) \\
& =P\left(\bigcup_{\omega_{i} \in \sigma}\left\{\omega_{i}\right\}\right) \\
& =P(\sigma) .
\end{aligned}
$$

In that way, we mapped concepts of probability theory to concepts of geometry. Further relations exist:

- The probability of the conjunction of two events $\sigma_{1}, \sigma_{2} \in \Sigma$ corresponds to the intersection of the vector subspace of their corresponding projectors. That intersection reduces to the intersection of the underlying sets of basis kets:

$$
P\left(\sigma_{1} \wedge \sigma_{2}\right)=\operatorname{tr}\left(P_{\sigma_{1} \wedge \sigma_{2}} D\right)
$$

with

$$
P_{\sigma_{1} \wedge \sigma_{2}}=\sum_{\omega_{i} \in \sigma_{1} \cap \sigma_{2}}|i\rangle\langle i| .
$$

Analogously, the disjunction refers to the union and the negation to the set complement. Therefore, they obey the rules of Boolean algebra.

- For two probability measures P_{1} on Σ_{1} and P_{2} on Σ_{2} a product probability measure $P_{\sigma_{1} \wedge \sigma_{2}}$ refers to the tensor product of their quantum mappings. Every pair of events $\left(\sigma_{1} \in \Sigma_{1}, \sigma_{2} \in \Sigma_{2}\right)$ of a product probability measure over $\left(P_{1}, \Sigma_{1}\right)$ and $\left(P_{2}, \Sigma_{2}\right)$ are independent. The property $P_{\sigma_{1} \wedge \sigma_{2}}\left(\sigma_{1} \wedge \sigma_{2}\right)=P_{1}\left(\sigma_{1}\right) \cdot P_{2}\left(\sigma_{2}\right)$ is the consequence from the tensor product and the inner product: $\left\langle i_{1} i_{2} \mid j_{1} j_{2}\right\rangle=\left\langle i_{1} \mid j_{1}\right\rangle\left\langle i_{2} \mid j_{2}\right\rangle$.

References

[1] Gleason, A.: Measures on the Closed Subspaces of a Hilbert Space. Indiana Univ. Math. J., 6:885-893, 1957.

