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QUANTUM-BASED CONSTRUCTION OF A PROBABILITY MEASURE

Ingo Schmitt

Brandenburgische Technische Universität
ingo.schmitt@b-tu.de

24/12/2019

Abstract: From Gleason’s theorem [1] we know that in principle every probability
measure can be expressed by Hermitian operators in a separable Hilbert space and
the Born rule as part of a quantum mechanical system. However, that theorem is not
constructive. For a given discrete and additive probability measure based on a σ -
algebra we construct a quantum system with projectors expressing that probability
measure.

Let us start with the definition of a discrete probability measure following the well-known Kol-
mogorow axioms.

Let be given a finite set Ω = {ω1, . . . ,ωm} of outcomes of a random process. A σ -algebra
Σ⊆ 2Ω provides a set of events closed under union and negation (realized as set complement).
A mapping P : Σ→ [0,1]⊆R is called an additive, discrete probability measure if

1. P(Ω) = 1 and

2. for every countable sequence of mutual disjoint sets σ1, . . . ,σn from Σ

P(
n⋃

i=1

σi) =
n

∑
i=1

P(σi)

hold.

Assume, a discrete and additive probability measure P on Σ is given. Next we will show how to
construct a quantum system with projectors realizing the probability measure P. Here we use
the Dirac notation.

A quantum system state is defined by a density matrix D. We construct our density matrix by
performing following steps:

1. Take a Hilbert spaceHm over a orthormal basis B = {|1〉, . . . , |m〉} where |i〉 refers bijec-
tively to ωi ∈Ω.

2. We construct a ket |s〉 ∈ Hm as

|s〉= ∑
ωi∈Ω

√
P({ωi})|i〉.

It is obvious from the Kolmogorow axioms that the ket |s〉 has length one (〈s|s〉= 1).



3. Now, we obtain the density matrix D by D = |s〉〈s|. It can be easily shown that D is a
Hermitian operator with trace one (tr(D) = 1).

Next we define a projector Prσ (a Hermitian operator with Prσ ·Prσ = Prσ ) for every σ ∈ Σ by

Prσ = ∑
ωi∈σ

|i〉〈i|.

Using Borns rule we obtain
P(σ) = tr(Prσ D).

That equivalence can be derived from

tr(Prσ D) = tr(

(
∑

ωi∈σ

|i〉〈i|

)
· |s〉〈s|)

= ∑
ωi∈σ

tr(|i〉〈i| · |s〉〈s|)

= ∑
ωi∈σ

tr(〈i|s〉〈s|i〉)

= ∑
ωi∈σ

〈i|s〉〈s|i〉

= ∑
ωi∈σ

√
P({ωi})

√
P({ωi})

= ∑
ωi∈σ

P({ωi})

= P(
⋃

ωi∈σ

{ωi})

= P(σ).

In that way, we mapped concepts of probability theory to concepts of geometry. Further rela-
tions exist:

• The probability of the conjunction of two events σ1,σ2 ∈Σ corresponds to the intersection
of the vector subspace of their corresponding projectors. That intersection reduces to the
intersection of the underlying sets of basis kets:

P(σ1∧σ2) = tr(Pσ1∧σ2D)

with
Pσ1∧σ2 = ∑

ωi∈σ1∩σ2

|i〉〈i|.

Analogously, the disjunction refers to the union and the negation to the set complement.
Therefore, they obey the rules of Boolean algebra.

• For two probability measures P1 on Σ1 and P2 on Σ2 a product probability measure
Pσ1∧σ2 refers to the tensor product of their quantum mappings. Every pair of events
(σ1 ∈ Σ1,σ2 ∈ Σ2) of a product probability measure over (P1,Σ1) and (P2,Σ2) are inde-
pendent. The property Pσ1∧σ2(σ1 ∧σ2) = P1(σ1) ·P2(σ2) is the consequence from the
tensor product and the inner product: 〈i1i2| j1 j2〉= 〈i1| j1〉〈i2| j2〉.
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