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Summary

In this work, we consider non-reversible multi-scale stochastic processes, described
by stochastic differential equations (SDEs), for which we review theory on the con-
vergence behaviour to equilibrium and mean first exit times. Relations between
these time scales for non-reversible processes are established, and, by resorting to a
control theoretic formulation of the large deviations action functional, even the con-
sideration of hypo-elliptic processes is permitted. The convergence behaviour of the
processes is studied in a lot of detail, in particular with respect to initial conditions
and temperature. Moreover, the behaviour of the conditional and marginal distri-
butions during the relaxation phase is monitored and discussed as we encounter
unexpected behaviour. In the end, this results in the proposal of a data-based
partitioning into slow and fast degrees of freedom. In addition, recently proposed
techniques promising accelerated convergence to equilibrium are examined and a
connection to appropriate model reduction approaches is made. For specific exam-
ples this leads to either an interesting alternative formulation of the acceleration
procedure or structural insight into the acceleration mechanism.
For the model order reduction technique of effective dynamics, introduced in [43], er-
ror bounds for non-reversible slow-fast stochastic processes are obtained. A compar-
ison with the reduction method of averaging is undertaken, which, for non-reversible
processes, possibly yields different reduced equations. For Ornstein-Uhlenbeck pro-
cesses sufficient conditions are derived for the two methods (effective dynamics and
averaging) to agree in the infinite time scale separation regime. Additionally, we pro-
vide oblique projections which allow for the sampling of conditional distributions of
non-reversible Ornstein-Uhlenbeck processes.





Zusammenfassung

In dieser Arbeit betrachten wir nicht-reversible mehrskalige stochastische Prozesse,
beschrieben durch stochastische Differentialgleichungen (SDEs), für die wir die Theo-
rie über das Konvergenzverhalten zum Gleichgewichtszustand und mittlere erste
Austrittszeiten (MFETs) darlegen. Es werden Beziehungen zwischen diesen Zeit-
skalen für nicht-reversible Prozesse hergestellt, und durch Zurückgreifen auf eine
kontrolltheoretische Formulierung des action functionals in der Theorie großer Abwei-
chungen (large deviations theory) wird sogar die Betrachtung von hypoelliptischen
Prozessen ermöglicht. Das Konvergenzverhalten der Prozesse wird sehr genau, ins-
besondere in Bezug auf Anfangsbedingungen und Temperatur, untersucht. Darüber
hinaus wird das Verhalten der bedingten und marginalen Verteilungen während der
Konvergenzphase beobachtet und diskutiert, da wir hierbei auf unerwartetes Ver-
halten stoßen. Aus der Aufteilung in bedingte und marginale Verteilung ergibt sich
letztlich der Vorschlag einer datenbasierten Aufteilung in langsame und schnelle
Freiheitsgrade. Darüber hinaus werden kürzlich vorgeschlagene Techniken, die eine
beschleunigte Konvergenz zum Gleichgewicht versprechen, untersucht und es wird
eine Verbindung zu geeigneten Modellreduktionsansätzen hergestellt. Für spezi-
fische Beispiele führt dies entweder zu einer interessanten alternativen Formulierung
der Beschleunigung oder zu struktureller Einsicht in den Beschleunigungsmechanis-
mus.
Für die in [43] vorgestellte Modellreduktionstechnik der effektiven Dynamik werden
Fehlerschranken für nicht-reversible schnell-langsame stochastische Prozesse her-
geleitet. Es wird ein Vergleich mit der Reduktionsmethode averaging durchge-
führt, die für nicht-reversible Prozesse möglicherweise andere reduzierte Gleich-
ungen ergibt. Für Ornstein-Uhlenbeck-Prozesse werden hinreichende Bedingungen
hergeleitet, unter denen die beiden Verfahren (effektive Dynamik und averaging)
im Grenzwert unendlicher Zeitskalen-Trennung übereinstimmen. Zusätzlich geben
wir schiefe Projektionen, die das Sampling von bedingten Verteilungen für nicht-
reversible Ornstein-Uhlenbeck-Prozesse ermöglichen, an.
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Chapter 1

Introduction

Stochastic processes play a prominent role in a large area of fields, such as statistical
mechanics, financial models and climate models. The field of statistical mechanics,
in particular, benefits from a well-developed mathematical theory. Thermodynamic
averages therein constitute a quantity of great interest. On the one hand, they can
be measured in experiments (and are thus also referred to as observables) and on the
other hand, they can be computed from simulation data. Hence, they build a bridge
between the model and reality. Simulations of complex systems, such as molecular
dynamics, climate models, or socio-economic dynamics, have become increasingly
important as they can provide insight and understanding of the underlying mecha-
nisms. Understanding these intrinsic structures enables the researcher to manipulate
the system’s parameters systematically and thus to reach beyond the status quo in
terms of the system’s properties.
There are two main goals in the simulation of statistical mechanics applications.
The first is the computation of thermodynamic averages, mentioned above, which,
in the context of stochastic processes, amounts to computing averages of some func-
tion with respect to the stationary (equilibrium) measure of the process. This is, for
example, the task of Markov Chain Monte Carlo (MCMC) algorithms and variants
of these, leading to improved sampling speed of the stationary measure.
The second topic concerns the computation of so-called dynamic averages. These
are averages over trajectories of the dynamics of a certain length. This length does
not have to be a deterministic quantity, but can also be defined as the first exit time
from a specified region of the state space. Usually, the interest here lies in deter-
mining exit times from so-called metastable regions, constituting parts of the state
space which are almost stable, i.e., the process spends a lot of time in the region, but
due to the noise eventually leaves it. Examples for such sudden transitions between
metastable regions are climate transitions, e.g., the change from a glacial period to
an interglacial period, or conformational changes in a molecule, possibly involving
a change of the molecules properties.

For reversible processes, there are various well-developed methods towards re-
alising these goals, dealing with challenges such as the high-dimensionality of the
state space (for molecular dynamics R3N or R6N , where N is the number of atoms)
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and complexity of the dynamics. Reversibility can intuitively be understood as the
invariance of the process under time-reversal once it has reached its equilibrium. For
the objective of sampling from high-dimensional probability distributions, there are
many extensions of the MCMC algorithms (see e.g. [16]) building on the idea of find-
ing the best possible transition function. In order to guarantee that the correct dis-
tribution is sampled, the transition function is usually required to satisfy a detailed
balance condition with respect to the equilibrium distribution, meaning the process
is reversible. Recently, various works have proposed to add a non-reversible pertur-
bation to the reversible dynamics, under which the stationary measure is preserved,
resulting in an acceleration of the convergence to equilibrium (see [27, 38, 47]) and
also reduced variance (see [63]). The variance of the estimators requires attention
due to the high-dimensionality and importance sampling provides another approach
for dealing with this issue. Also when computing dynamic quantities, importance
sampling finds its application (see e.g. [29]).
In molecular dynamics, if some prior knowledge about the reaction coordinate, i.e.,
the coordinate along which the molecule usually changes its conformation, is avail-
able, there are well-established tools such, as umbrella or blue moon sampling,
artificially constraining the system to the reaction coordinate, enabling the compu-
tation of so-called free-energy differences, which are believed to provide fundamental
insight of the system at hand (see e.g. [39], [18]). Both sampling methods rely on
the reversibility of the underlying dynamics: umbrella sampling, which limits the
dynamics to a certain region by adding a bias potential (which is often quadratic and
therefore umbrella-shaped), accounts for the bias by appropriate reweighing which
is straightforward for reversible dynamics opposed to non-reversible dynamics. Blue
moon sampling, in turn, requires the computation of conditional expectations. There
are algorithms sampling conditional distributions for reversible processes as well as
for underdamped Langevin dynamics (see e.g. [48]) but general non-reversible pro-
cesses have so far been unexplored. Other mentionable examples for non-reversible
processes are the Lorentz-96 or stochastic triad system that mimic turbulent flows
(see e.g. [50]).
Apart from the high-dimensionality, the multi-scale nature of the processes causes a
huge computational effort for solving these problems through simulation. In molec-
ular dynamics, for example, the movement of a molecule involves the smallest time
scale of femtoseconds (10−15 seconds), whereas conformational changes occur on
the time scale of seconds. In order to resolve all scales appropriately, one needs
to choose a suitable time step for the fastest degrees of freedom, resulting in an
infeasible computational effort for solving the high-dimensional system up to orders
of seconds. Here, model reduction techniques come into play, equipping the user
with a low-dimensional approximation of the dynamics. Also in this context, there
are well-established methods for reversible processes, such as Markov state models
(see e.g. [66]) and effective dynamics [43]. Markov state models comprise a discrete
model capturing the slowest time scales of the process by exploiting the relation be-
tween metastability and the eigenvalues of the process’ generator and this relation
relies reversibility. For systems that admit a time scale separation parameter, the
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theory of averaging and homogenization finds application (see e.g. [62]).
Moreover, for reversible processes, there are results relating mean first exit times
(MFETs) and eigenvalues of the generator, which correspond to relaxation time
scales of the process, in a hierarchical manner (cf. [13]). Specifically, larger exit
times correspond to a smaller absolute value of the eigenvalue, unfolding a lot of the
intrinsic structure of the process.

Contributions of this thesis and related work

In this thesis, we aim at gaining insight on these topics for non-reversible processes.
We will often consider Ornstein-Uhlenbeck processes (OU-processes), which are lin-
ear stochastic differential equations (SDEs). This should be seen as a first step
towards a refined analysis for general non-reversible processes, since OU-processes
can be interpreted as a first order approximation (linearisation) of more complex
dynamics in a metastable region.
This thesis is structured as follows. In order to make this thesis mostly self-
contained, we provide the required mathematical framework in Chapter 2, which
consists of basic theory of stochastic processes described by stochastic differential
equations driven by Brownian motion.
In Chapter 3, we first review results on the equilibration time scale, i.e., the conver-
gence to the stationary distribution. Herein, convergence takes place with respect
to different metrics, which are encoded via appropriate functional inequalities (for
a detailed overview on this topic see e.g. the textbook [9]). Even though these
inequalities are usually formulated for reversible processes only, we will argue that
they naturally extend to non-reversible processes as long as hypo-ellipticity, that
is degeneracy of the diffusion, is excluded. For hypo-elliptic processes, we review
a result by Arnold and co-authors [5] that yields exponential convergence to the
stationary distribution for OU-processes. The study of processes with degenerate
noise and their convergence to equilibrium has been promoted by Villani who also
introduced the corresponding terminology of hypocoercivity, see e.g. [68]. In this
regard, let us also mention the works [2], [20], [33] that are concerned with deter-
mining the rate of convergence to equilibrium for underdamped Langevin dynamics.
In the second part of Chapter 3, we report results on MFETs in the small noise limit
by means of large deviations theory as introduced by Freidlin and Wentzel, see [26]
for a textbook on this topic. Similar to the first part of Chapter 3, only elliptic pro-
cesses, i.e., processes with non-degenerate noise, are allowed. We will bypass this
limitation by turning to a control theoretic formulation of the problem, which has
been introduced by Zabczyk in [69] (ideas in a similar direction were put forward
e.g. in [25]). This enables us to link the MFET and equilibration time scale for
hypo-elliptic OU-processes. Furthermore, we employ the control theoretic formula-
tion of the underdamped Langevin equation, resulting in a description of MFETs
which can be expressed in terms of the associated Hamiltonian by employing a re-
sult on the associated controllability function given in [56]. We show that, under
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certain conditions, there is a relation between the spectral gap and the MFET from
an appropriately chosen domain for the underdamped Langevin equations bearing
the same flavour as the results of Bovier [13] for the overdamped case that we review
in Section 3.3.1.
Chapter 4 is devoted to the topic of model reduction for non-reversible slow-fast
processes. Within the class of model reduction techniques, we focus on the method
of effective dynamics or conditional expectations, introduced in [43], for which path-
wise error estimates for non-reversible dynamics were recently derived in [45]. We
obtain estimates for the time t distributions of the processes, in relative entropy as
well as in Wasserstein distance. Furthermore, we provide error estimates for the
path-measures in relative entropy, which, to our knowledge, are the first results in
this direction. Acquiring error estimates for path-measures is of great importance
for assessing the performance of the reduced model to estimate dynamic averages,
such as exit times.
In Section 4.3 we conduct a comparison of the previously considered method of
effective dynamics and the averaging principle that is also applicable to slow-fast
systems. Interestingly, averaging and conditional expectations agree for reversible
processes which is not true for non-reversible processes. In particular, we show that
for hypo-elliptic processes, the two methods can lead to qualitatively opposite be-
haviour. In Section 4.3.3 we derive a sufficient condition for the conformity of the
two methods which is supported by formal arguments.
Chapter 5 offers analytical results for OU-processes, and its first part, Section 5.1,
continues the comparison of averaging and conditional expectations. We obtain
sufficient conditions for hypo-elliptic OU-processes in terms of drift and diffusion
matrices for the two methods to agree in the limit as the slow and the fast scales
become perfectly separated. We pursue the comparison in Section 5.1.1 by means
of numerical experiments.
The last part of the chapter, Section 5.2, is devoted to the sampling of conditional
distributions, which is required for the computation of conditional expectations.
We construct an oblique projection – opposed to the orthogonal projection used
for reversible dynamics – enabling for the sampling of conditional distributions for
non-reversible OU-processes, when the condition consists of keeping certain degrees
of freedom fixed. This is – to our knowledge – the first result in the direction of sam-
pling conditional distributions for general non-reversible processes. The sampling
of constrained underdamped Langevin dynamics, constituting a special case of con-
strained sampling for non-reversible processes, has been considered e.g. in [48].
In Chapter 6 we discuss some applications and examples, in particular related to
the theory of Chapter 3. In the first part, Section 6.1, we begin with studying the
convergence behaviour of OU-processes in relative entropy in dependence on initial
conditions and temperature. To this end, we introduce a splitting into terms con-
tributing to the relaxation of the mean and the covariance respectively and give
a geometric interpretation of the plateaus which possibly occur in the decay to-
wards equilibrium due to hypo-ellipticity. Moreover, we consider the factorization
of the time t distribution into marginal and conditional distribution, revealing that
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marginal and conditional distributions do not inherit the monotonicity property of
the convergence behaviour. We give a mathematical justification for this observa-
tion. For slow-fast systems, we propose an identification of slow and fast degrees
of freedom, based on the aforementioned splitting into conditional and marginal
distributions, in a data driven fashion.
In Section 6.2 we continue the discussion about convergence, and investigate different
acceleration approaches. In particular, the newly proposed acceleration techniques,
based on adding a non-reversible perturbation, are examined (c.f. [47], [27], [38]).
These techniques usually rely on a parameter, characterising the strength of the
perturbation which can also be interpreted as a time scale separation parameter.
Exploiting this interpretation we derive, for certain examples, the limit equations
corresponding to an infinite acceleration. The limit equation leads in one case to
an alternative proposal of a possible acceleration and in the other unveils structural
insight into the acceleration. We conclude the chapter with an example for MFETs
of underdamped Langevin equations in Section 6.3, as introduced in Chapter 3.
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Summary of contributions

Chapter 3

– Application of the control theoretic approach of Zabczyk to large devi-
ations theory to underdamped Langevin equations, yielding a relation
between the spectral gap and a MFET.

– Relation of the relaxation time scale and MFET for possibly degenerate
OU-processes.

Chapter 4 (joint work with Upanshu Sharma)

– Error estimates for effective dynamics applied to non-reversible processes
with a time scale separation

∗ for the time t distributions in relative entropy,
∗ for the time t distributions in Wasserstein distance,
∗ for the path measures in relative entropy.

– Comparison of averaging and effective dynamics.

A publication containing these results is in preparation.

Chapter 5

– Comparison of averaging and effective dynamics for OU-processes. Deriva-
tion of sufficient criterions for the conformity of averaging and conditional
expectations. This is joint work with Upanshu Sharma. A publication
containing these results is in preparation.

– Derivation of an oblique projection enabling for sampling from condi-
tional distributions for non-reversible OU-processes.

Chapter 6

– Improvement of the understanding of the convergence behaviour for OU-
processes, its dependence on initial condition and temperature using a
splitting into contributions of mean and variance (contained in the pub-
lication [54]).

– Assessment of non-inheritance of the monotonicity property for conver-
gence of conditional and marginal distributions to their invariant distri-
butions (contained in the publication [54]).

– Study of different acceleration techniques for OU-process with respect to
the acceleration parameter. This admits the derivation of an associated
averaged dynamics leading to either an alternative proposal how to accel-
erate the convergence or insight on the effect of the applied acceleration.



Chapter 2

Mathematical background

2.1 Notation

We will use the following notational conventions: a vector x ∈ Rn will always be
column vector, i.e., x ∈ Rn×1. We denote by T the (conjugate) transpose, such
that xT ∈ R1×n is the corresponding row vector. We will not make a notational
distinction between the transpose and the conjugate transpose in case of complex
valued vectors or matrices. For the standard euclidean scalar product we use the
equivalent notations for x, y ∈ Rn

x · y = xTy.

For the euclidean norm we use the notation |x| =
√
x · x =

√
x2, and its weighted

version is |x|A =
√
xTAx for x ∈ Rn, A ∈ Rn×n. For the L2 scalar product we write

〈u, v〉 =

∫
u · v dx

for functions u, v : Rn → Rm and the L2 norm is denoted by |u|L2 =
√∫

u2 dx =
√
〈u, u〉, where dx refers to Lebesgue measure, and its weighted version by |u|L2

ν
=√∫

u2dν =
√
〈u, u〉ν .

The gradient ∇ ∈ Rn×1 contains all partial derivatives and is also assumed to be a
column vector. Accordingly, the divergence of a function u : Rn → Rn is defined by

∇ ·u =
n∑
i=1

∂xiui assuming the partial derivatives exist. For matrix valued functions

A : Rn → Rn×m we deviate from the convention, and ∇·A = (∇ ·Aj)1≤j≤m ∈ Rm×1

is a column vector, where Aj is the jth column. The Hessian matrix, containing all
second derivatives, is denoted by ∇2 ∈ Rn×n. The Frobenius inner product of two
matrices A,B ∈ Rn×n is denoted by A : B = Tr(ATB), where Tr(·) is the trace of
the matrix, and the Frobenius norm by |A|F =

√
A : A. In general, we indicate the

used norm and inner product by the corresponding subscript.

We use the same notation for a density and the corresponding measure, i.e., we
write dρ(x) = ρ(x) dx, where dx refers to Lebesgue measure.
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We need the following classes of functions: denote by Ck(X ,Y) the class of k
times continously differentiable functions f : X → Y and if Y = R we usually
omit it. Accordingly denote by C0 continuous functions vanishing at infinity, by Cb
countinuous bounded functions, by L2 functions f with

∫
f2 dx < ∞ and by L2

ν

functions f with
∫
f2 dν <∞.

Moreover, we use the following special symbols:

H(ν|µ) relative entropy of ν with respect to µ; see Definition 3.7

R(ν|µ) relative Fisher information of ν with respect to µ; see Definition 3.8

W(ν|µ) second Wasserstein distance; see Definition 3.18

L infinitesimal generator of some dynamics

LD,L-D infinitesimal generator of some dynamics,
being of the form L±D = −Γ∇V +∇ · Γ±D + Γ : ∇2

ρt time t measure of the dynamics

µ invariant measure of the dynamics

E Dirichlet form; see Definition 3.1

Dom(L) domain of definition for L
P(X ) space of probability measures on X
N (m,Σ) normal distribution with mean m and covariance Σ

Σt,Σ∞ covariance of an OU-process at time t and in equilibrium respectively

Tr(·) trace operator

rk(A) rank of a matrix A

λmin(A), λmax(A) minimal and maximal eigenvalue of a matrix A
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2.2 Itô stochastic processes

This chapter is devoted to give the basic notions of the formal language we need in
this thesis. The main references we use are [58,61], and we start with the definition
of a stochastic process which is the mathematical object that describes the dynamics
of interest.

Definition 2.1. Let (Ω,F ,Q) be a probability space and T ⊂ R. A stochastic
process is a function X : Ω × T → X , (ω, t) 7→ Xt(ω), where for each fixed t ∈ T
the function Xt : Ω → X is a random variable. We call Ω (equipped with the σ-
algebra F) the sample space and X (equipped with a σ-algebra E) the state space.
The state space becomes a probability space via the measure P induced by the
random variable Xt, i.e., P(Xt ∈ E) = Q(X -1

t (E)), ∀E ∈ E .

Mostly, we will use the notation (Xt)t∈T or in short Xt for the stochastic process
at hand. The state space X is usually X = Rn. Note that, while the definition builds
up on Xt being a random variable for each fixed t ∈ T , it is also possible to fix ω ∈ Ω

which yields a function X(ω) : T → X known as the path of the process (Xt)t∈T
associated to ω ∈ Ω. We will also refer to a path as a realisation or trajectory.

Next, we introduce a specific stochastic process, that is the Brownian motion also
known as the Wiener process. Brownian motion will be the stochastic driver of the
dynamics we consider in this work. In molecular dynamics, Brownian motion can be
thought of as the solvent surrounding the molecule leading to random motion of the
molecule’s atoms through interaction with the solution. The two names originate
from, firstly, the botanist Robert Brown (1773-1858), who was the first to describe
the specific behaviour of the diffusive motion of pollen in a solution, which he was
studying under the microscope. The second contributor is Norbert Wiener (1894-
1964), who first described this motion in a mathematical way and gave proofs for
many of its properties.

Definition 2.2 (Brownian motion).

• The one-dimensional standard Brownian motion is a stochastic process (Bt)t∈R+

taking values in R with the following properties:

(i) The process starts almost surely at zero, i.e. P(B0 = 0) = 1.

(ii) The paths Bt(ω) are continuous functions in t for almost all ω ∈ Ω.

(iii) For 0 ≤ t0 < t1 < . . . ≤ tn, the increments ∆i = Bti+1 − Bti , for
i = 0, . . . , n − 1, are independent and normally distributed with ∆i ∼
N (0, ti+1 − ti).

• The n-dimensional standard Brownian motion (Bt)t∈R+ takes values in Rn and
is a collection of n independent one-dimensional standard Brownian motions
(Bi

t)t∈R+ , i = 1, . . . , n, i.e.,

Bt = (B1
t , . . . , B

n
t )T.
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The existence of the standard Brownian motion can be shown by Kolmogorov’s
extention theorem together with Kolmogorov’s continuity theorem, see e.g., The-
orems 2.1.5 and 2.23 in [58]. There exist different constructions of the Brownian
motion, such as the Karhunen-Loève expansion or random walk approximations,
and also equivalent characterizations to the above definition such as the Lévy char-
acterization of Brownian motion.

Remark 2.3. According to the second property the paths of the Brownian motion
are continuous functions in time, i.e., the paths are elements of C([0,∞),Rn). Hence,
we can introduce the notion of the path space given by the space C([0,∞),Rn). The
measure on C([0,∞),Rn) induced by the Brownian motion is called the Wiener
measure.

Brownian motion will be the stochastic driver of our dynamics, and hence we
will need to describe integration with respect to the Wiener measure, i.e., define

∫ T

0
g(ω, s) dBs(ω) . (2.1)

The problem one encounters here is the irregularity of the paths of the Brownian
motion such that one has to reach beyond the usual integral construction. Specifi-
cally, the paths are not differentiable, in fact they are not even of bounded variation,
and hence we cannot employ the notion of a Riemann-Stieltjes integral directly for
an integration against paths of Brownian motion1. In order to give an intuitive idea
of how the Itô integral is constructed we proceed as follows. Assume that f ∈ C2(R)

is only a function of Bt, and define ∆n =
{
tn0 , . . . , t

n
kn

}
to be a partition of the in-

terval [0, T ], i.e., 0 = tn0 < . . . < tnkn = T , which becomes finer for increasing n, i.e.
∆n ⊂ ∆n+1. By Taylor’s Theorem there exists a ξni ∈ [Btni , Btni+1

] such that

f(Btni+1
) = f(Btni ) + f ′(Btni )(Btni+1

−Btni ) +
1

2
f ′′(ξni )(Btni+1

−Btni )2 ,

which, summing up from i = 0 to i = kn − 1, yields that

f(BT )− f(B0) =

kn−1∑

i=0

f ′(Btni )(Btni+1
−Btni ) +

1

2

kn−1∑

i=0

f ′′(ξni )(Btni+1
−Btni )2 . (2.2)

It can be shown – see Lemma A.3 – that the quadratic variation of the Brownian
motion 〈Bt〉t is

〈Bt〉t := sup
n∈N

kn−1∑

i=0

(Btni −Btni+1
)2 = t

almost surely, which in particular means that 〈Bt〉t is of bounded variation, and
together with f ′′ being continuous this yields convergence to the Riemann-Stieltjes
integral

kn−1∑

i=0

f ′′(ξni , t
n
i )(Btni+1

−Btni )2 n→∞−−−→
∫ T

0
f ′′(Bs) ds

1For more details see the Appendix A.1.
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in L2(P). This implies that also the first term on the right hand side
kn−1∑

i=0

f ′(Btni )(Btni+1
−Btni )

has to converge, since the left hand side of the equation (2.2) is fixed and independent
of n. In fact, it is the discretized version of the Itô integral

∫ T
0 f ′(Bs)dBs and yields

the definition of (2.1) for g(ω, s) = f ′(Bs).

Definition 2.4. Let f : Ω × R+ → R, (ω, t) 7→ f(ω, t) be F × B(R+) measurable
and adapted to the filtration generated by Bt. Further, let E(

∫ t
0 f(·, s)2ds) < ∞.

The Itô stochastic integral

I(t, ω) =

t∫

0

f(ω, s) dBs(ω)

is defined as the limit of the Riemannian sum approximation

I(t, ω) = lim
N→∞

N−2∑

n=0

f(ω, tn)(Btn+1(ω)−Btn(ω))

in L2, where tn = n δt and δt is such that N δt = t. The definition analogously
carries over to the n-dimensional case when f : Ω × [0, T ] → Rn×m and Bt is a
m-dimensional standard Brownian motion.

The construction of the Itô integral builds on simple functions φ : Ω × R → R,
that is, step-functions in time. The definition of the Itô integral for simple functions
follows promptly, by noting that one can resort to the properties of the increments of
the Brownian motion in this case. Making use of the fact that any square-integrable
function can be approximated by simple functions then yields the general definition
of the Itô integral. Note that I(t, ω) is itself a stochastic process. In the following –
for notational simplicity – we omit the explicit dependence on ω. The Itô integral
has many useful properties, such as Itô isometry, which states that

E







t∫

0

f(ω, s) dBs




2

 = E




t∫

0

f(ω, s)2 ds


 .

Also, we should note that due to the third property of the Brownian increments, it
holds that

E




t∫

0

f(ω, s) dBs


 = 0 .

Remark 2.5. There are other versions of stochastic integrals, such as, e.g., the
Stratonovich integral defined by

IS(t, ω) =

t∫

0

f(ω, s) ◦ dBs(ω) = lim
N→∞

N−2∑

n=0

f

(
ω,
tn + tn+1

2

)
(Btn+1(ω)−Btn(ω)) ,
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where tn = n δt, and δt such that N δt = t . Here, the midpoint of each interval
– instead of the left endpoint as in the case of the Itô integral – is used for the
evaluation of f. This leads to different properties of the integral.

We can now give the definition of a stochastic differential equation (SDE) which
describes the time evolution of a stochastic process and is the main object of interest
throughout this thesis.

Definition 2.6. Let b : Rn → Rn and γ : Rn → Rn×m be smooth functions and Bt
a m-dimensional standard Brownian motion. We call

dXt = b(Xt) dt+ γ(Xt) dBt, X0 = x0 (2.3)

an Itô stochastic differential equation (SDE) with drift b and diffusion γ. This
stochastic differential equation should be understood as the differential form of the
Itô stochastic process given by

Xt = x0 +

∫ t

0
b(Xs) ds+

∫ t

0
γ(Xs) dBs , (2.4)

for which we stick to the “incremental” form (2.3) since the time derivative of the
Brownian motion does not exist.

Assuming that, there exists C > 0 such that

• |b(x)|+ |γ(x)|F ≤ C(1 + |x|) , ∀x ∈ Rn ,

• |b(x)− b(y)|+ |γ(x)− γ(y)|F ≤ C|x− y| , ∀x , y ∈ Rn , and

• E(X2
0 ) <∞

hold true, there exists a strong and unique solution to (2.3). The solution is called
strong, if Xt is almost surely continuous and adapted to the filtration generated by
Bt. There exists the notion of a weak solution, in which case the Brownian motion
is not given a priori, but is part of the solution. A strong solution Xt of (2.3) is
called unique if

P(X0 = X̃0) = 1⇒ P(Xt = X̃t) = 1 , ∀t > 0 ,

for any other strong solution X̃t of (2.3). From now on, we will assume that we fulfil
the above assumptions such that we are dealing with processes given by unique and
strong solutions of some SDE.

Associated to the SDE (2.3) introduce its natural filtration

Ft = σ
({
X -1
s (E) : s ≤ t, E ∈ E

})
⊂ F ,

where σ(·) denotes the associated σ-algebra, which intuitively speaking contains all
the information of the process Xt up to time t, given by all the pre-images of Xs

for s ≤ t. A process defined by (2.3) is time-homogeneous, since drift and diffusion
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only depend on the state and not on time. Furthermore, it defines a Markov process,
that is, its behaviour in the future t > s only depends on its current state Xs and
not on all of its history contained in Fs, i.e.,

P(Xt ∈ E|Fs) = P(Xt ∈ E|Xs) ∀ 0 ≤ s < t, E ∈ E .

Next, we state Itô’s formula, which allows to compute functionals of an Itô
process:

Theorem 2.7 (Itô formula). Let Xt ∈ Rn be an Itô stochastic process, g(t, x) ∈
C2([0,∞)×Rn;Rm) and define Y (t) = g(t,Xt). Then Y (t) is an m-dimensional Itô
process and its kth component follows the SDE

dYk(t) =
∂gk
∂t

(t,Xt) dt+∇xgk(t,Xt) · dXt +
1

2
(dXt)

T∇2gk(t,Xt)dXt ,

where the rules dt · dt = dt · dBi
t = dBi

t · dt = 0 and dBi
tdB

j
t = δij dt apply, with δij

being the Kronecker delta and Bi
t being the ith component of Bt.

Example 2.8 (Ornstein-Uhlenbeck process). Employing Itô’s formula and choosing
the right function g, makes it easy to compute the solution of linear SDEs, also
known as Ornstein-Uhlenbeck processes (OU-processes). That is, given the SDE

dXt = AXt dt+ C dBt , X0 = x0 ,

where Xt ∈ Rn, A ∈ Rn×n, C ∈ Rn×m and Bt is a standard m-dimensional Brow-
nian motion, we use Yt = g(t,Xt) = e−AtXt which gives according to Itô’s formula
that

dYt = −e−AtAXt dt+ e−At dXt = e−AtC dBt .

Thus we find

Yt − Y0 =

∫ t

0
dYs =

∫ t

0
e−AsC dBs

and a multiplication from the left by eAt yields

Xt = eAtx0 +

∫ t

0
eA(t−s)C dBs .

2.3 Transfer operator, generator and evolution equations

We now introduce the operators describing the propagation of probabilistic quanti-
ties - expectations and probability density functions - associated to the SDE (2.3)
at hand. For this, we first introduce the transition function p : T × X × E → [0, 1]

of the process Xt which gives the probability to transition from an initial state x to
a part of the state space E in time t, that is,

p(t, x, E) = P(Xt ∈ E|X0 = x) , ∀t ∈ R+.
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Since the process Xt defined by (2.3) is time-homogeneous, i.e., P(Xt+s ∈ E|Xs =

x) = P(Xt ∈ E|X0 = x), the transition function fully characterises the time-
evolution of the process. Furthermore, we mention its fundamental properties: as
a function of x alone, p(t, ·, E) is measurable ∀t ∈ R+ , E ∈ E , whereas as a func-
tion of E alone, p(t, x, ·) is a probability measure ∀t ∈ R+ , x ∈ Rn; finally, the
Chapman-Kolmogorov equation holds, i.e., p(t+ s, x,E) =

∫
p(s, y, E)p(t, x, dy).

The transition function can be used to describe the time-evolution of quantities
related to Xt. Define the transfer operator Tt : Cb(Rn)→ Cb(Rn) by

(Ttf)(x) :=

∫
f(y)p(t, x, dy) = E(f(Xt)|X0 = x) (2.5)

which has the interpretation of propagating the expected value f(x) = E(f(X0)|X0 =

x) in time t to (Ttf)(x) = E(f(Xt)|X0 = x). Associated to the transfer operator,
we introduce the infinitesimal generator L by

Lf(x) := lim
t↘0

E(f(Xt)|X0 = x)− f(x)

t

= b(x) · ∇f(x) +
1

2
γ(x)γ(x)T : ∇2f(x) (2.6)

which is defined to act on the set of functions f : Rn → R for which the limit exists
and will be denoted by Dom(L), and f ∈ C2

0 (Rn) gives a sufficient criterion for this.
Note also that Dom(L) ⊂ L2

µ (cf. Section 1.7 in [9]). Clearly, by its definition it
characterizes the time evolution of the conditional expectation E(f(Xt)|X0 = x) at
time t = 0. Formula (2.6) follows by applying Itô’s formula to the function f(Xt),
taking the conditional expectation for X0 = x, and letting t↘ 0.

Taking the above definition of the generator and employing it to express the
time-evolution of the expectation of a function of the process (and not the con-
ditional expectation), we find the expression for the operator describing the time-
evolution of the associated probability density function. More specifically, let ρt be
the probability distribution of the process Xt at time t starting from some initial
distribution ρ0, i.e., x0 ∼ ρ0 meaning x0 is drawn from the distribution ρ0. We will
always assume the distributions to admit a smooth density with respect to Lebesgue
measure and abuse notation in the sense that we write dρt(x) = ρt(x) dx, i.e., we
do not distinguish between densities and measures explicitly. Observe that, due to
Chapman-Kolmogorov, there are two equivalent expressions for E(f(Xt)|x0 ∼ ρ0),
namely,

E(f(Xt)|x0 ∼ ρ0) =

∫
E(f(Xt)|Xs = x)ρs(x) dx

and E(f(Xt)|x0 ∼ ρ0) =

∫
f(x)ρt(x) dx .



2.4. INVARIANT MEASURES AND (HYPO-)ELLIPTICITY OF THE
GENERATOR 15

With this we calculate for the first expression

d

dt
E(f(Xt)|x0 ∼ ρ0)

∣∣∣∣
t=s

=

∫
∂

∂t
E(f(Xt)|Xs = x)

∣∣∣∣
t=s

ρs(x) dx =

∫
ρs(x)Lf(x) dx

whereas the second yields
d

dt
E(f(Xt)|x0 ∼ ρ0)

∣∣∣∣
t=s

=

∫
f(x)

∂

∂t
ρt(x)

∣∣∣∣
t=s

dx =:

∫
f(x)Aρs(x) dx .

Now, note that A is in fact the L2-adjoint of L which we denote by L∗ and is thus
computable. For the generator L given by (2.6) the L2-adjoint L∗ describing the
propagation of probability densities in time reads

L∗ρt(x) = −∇ · (b(x)ρt(x)) +
1

2
∇2 : (γ(x)γ(x)Tρt(x)) . (2.7)

The above observations are captured in the famous Kolmogorov-backward and
forward (also known as Fokker-Planck) equations. The Kolmogorov-backward equa-
tion hereby comprises the action of the operator L, that is, the time-evolution of ex-
pectations of the process for some given initial condition u(t, x) = E(f(Xt)|X0 = x).

Theorem 2.9 (Kolmogorov backward equation). Let Xt be an Itô stochastic process
in Rn , L the associated generator, f ∈ C2

0 (Rn) and u(t, x) := E(f(Xt)|X0 = x).
Then

∂u

∂t
(t, x) = Lu(t, x) , (t, x) ∈ R+ × Rn ,

u(0, x) = f(x) , (t, x) ∈ {0} × Rn .

For the time evolution of the density that gives the distribution of Xt at each
time t we state the celebrated Kolmogorov forward/Fokker-Planck equation.

Theorem 2.10 (Kolmogorov forward/Fokker-Planck equation). Let Xt be an Itô
stochastic process in Rn, let the initial condition be distributed according to the den-
sity ν0, i.e. x0 ∼ ν0, assume that the distribution of Xt at time t has a density
ρ(t, x) = ρt(x) ∈ C1,2(R+ × Rn). Then ρt solves

∂ρt
∂t

(x) = L∗ρt(x) , (t, x) ∈ R+ × Rn ,

ρ0(x) = ν0(x) , (t, x) ∈ {0} × Rn .

2.4 Invariant measures and (hypo-)ellipticity of the gen-
erator

Throughout this thesis, we will assume that there is a unique invariant state of the
process at hand. Working with stochastic processes, the invariant state is given
by an invariant density µ – or invariant measure dµ(x) = µ(x) dx – i.e., a density
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which remains unchanged under the dynamics of the process. Mathematically, this
is rephrased as

∂µ

∂t
= 0 ⇔ L∗µ = 0 .

We will use the names invariant measure, equilibrium, stationary distribution for µ
synonymously.

The assumption of a unique invariant measure equips us with the following
structure for drift and diffusion:

Proposition 2.11 (See Assumption 2.1 in [45]). Assume that the SDE

dXt = b(Xt) dt+
√

2γ(Xt) dBt Xt ∈ Rn

admits a unique invariant measure dµ = 1
Z e
−V (x) dx, where Z-1 =

∫
dµ is the

normalization constant. Then there exists a function D : Rn → Rn with ∇·(µD) = 0

such that the drift b can be rewritten as

b = −Γ(Xt)∇V (Xt) +∇ · Γ(Xt) +D(Xt) , with Γ = γγT . (2.8)

Proof. The proof is taken from [45] and the statement follows by considering the
corresponding Fokker-Planck equation applied to the stationary density µ which
reads

0 = ∇ · (−µb+∇ · (Γµ)) = ∇ · (µ(−b+ Γ · ∇ ln(µ) +∇ · Γ)).

Inserting (2.8) for b together with ∇ ln(µ) = −∇V we conclude by noting that

0 = −∇ · (µD) .

On the other hand we might as well start from some given SDE

dXt = (−Γ(Xt)∇V (Xt) +∇ · Γ(Xt) +D(Xt)) dt+
√

2γ(Xt) dBt ,

and ask under which conditions on the functions Γ, V and D one finds a unique
invariant measure. To this end, introduce the following assumptions.

Assumption A1.

(i) V : Rn → R is a confining potential, that is, it is smooth and grows sufficiently
fast at infinity, such that e−V (x) ∈ L1 ,

(ii) γ : Rn → Rn×m is smooth and Γ(x) = γ(x)γ(x)T is uniformly bounded, i.e.,
∃ 0 < m ≤M <∞ ∈ R such that

∀x1, x2 ∈ Rn : mxT1 x1 < xT1 Γ(x2)x1 < M xT1 x1 ,

(iii) D is such that ∇ · (D(x)e−V (x)) = 0 .
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Rephrasing the Fokker-Planck equation again and writing µ(x) = e−V (x)/Z we
find

L∗f = ∇ · ((Γ∇V −∇ · Γ−D) f) +∇2 : (Γf)

= ∇ · ((Γ∇V −∇ · Γ−D) f +∇ · (Γf))

= ∇ · (f [Γ∇V −D + Γ∇ ln f ])

= ∇ ·
(
f

[
−D + Γ∇ ln

f

µ

])
. (2.9)

Clearly, µ = e−V (x)/Z, Z =
∫
e−V (x)dx is an invariant measure of the process.

Furthermore, under the given assumption that Γ > 0 it is also unique as can be
seen from the last equation and is also referred to as ellipticity of the corresponding
generator. If Γ ≥ 0 the above equation might have several or non-smooth solutions
due to the lack of irreducibility of the state space which in turn is due to the lack of
smoothing properties of the generator L. This can be circumvented by the concept
of hypo-ellipticity which translates the question of smooth solutions of the above
equation to dynamics with possibly degenerate noise.

Let us give the precise definitions of ellipticity and hypo-ellipticity:

Definition 2.12. Let b, γ ∈ C∞. The generator

L = b(x) · ∇+
1

2
Γ(x) : ∇2 , Γ(x) = γ(x)γT(x)

is elliptic if
yTΓ(x)y ≥ 0 and yTΓ(x)y = 0⇔ y = 0 .

It is called hypo-elliptic if Lu ∈ C∞ implies that u ∈ C∞ .

In other words, the operator L is hypo-elliptic if all solutions u to the equation
Lu = f are smooth whenever f is smooth. Note, that we refer to a elliptic or hypo-
elliptic process, if the corresponding generator is elliptic or hypo-elliptic. Now,
by the seminal work of Lars Hörmander [35] there is a criterion which guarantees
hypo-ellipticity. To this end, introduce the Hörmander form of the generator which
reads

L =

n∑

i

X2
i +X0 + c ,

where c ∈ R, Xi =
n∑
j=1

fij∂xj consists of first order partial derivatives and X2
i =

Xi(Xi) is the composition of the same, i.e.,

X2
i =

n∑

k=1

fik∂xk




n∑

j=1

fij∂xj


 .

Identify Xi by the corresponding vector field Xi = (fi1, fi2, . . . , fin)T. Writing the
generator L = b(x) · ∇+ 1

2Γ(x) : ∇2 in this form would, e.g., yield

X0 = b · ∇ − 1

2

n∑

k,j,i=1

γjk(∂xjγik)∂xi , Xi =
1√
2

n∑

j=1

γji∂xi , c = 0.
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Furthermore, introduce the commutator of step 2 of Xi and Xj as

[Xi, Xj ] = XiXj −XjXi ,

the commutator of step 3 as [[Xi, Xj ] , Xk] and proceed analogously for any step
l ∈ N. Define the Lie algebra generated by Xi as the set of vector fields obtained as
linear combination of the fields Xi and their commutators of any finite step. The
condition for hypo-ellipticity is formulated in the following theorem.

Theorem 2.13 (Hörmanders Theorem, see e.g. Theorem 12 in [14]). Let

L =

n∑

i

X2
i +X0 + c

and assume that the coefficients fij of the vectorfields Xi are smooth. If the Lie
algebra generated by the fields Xi has dimension n at every point of an open set
O ⊂ Rn, then L is hypo-elliptic in O.

Let us cite the following remark of the book [14] giving an assessment of the
importance of the theorem for stochastic analysis: “The link between Hörmander’s
operators and Kolmogorov equations is so relevant from the standpoint of stochastic
analysis that a probabilistic proof of Hörmander’s theorem has been developed by
Malliavin, [51], 1976, using the stochastic calculus of variations, also called Malliavin
calculus. In this field, the hypo-ellipticity of Kolmogorov operator is interpreted as
a result of regularity for the probability law of a process. An exposition of Malliavin
calculus, with application to the proof of Hörmander’s theorem, can be found in the
book [57].”

For the case of an OU-process the invariant measure is explicitly computable
and also the Hörmander condition takes a concrete form, as the following example
shows.

Example 2.14 (OU-process continued). Consider the OU-process

dXt = AXt dt+ C dBt X0 = x0 ∈ Rn

with solution Xt = eAtx0 +

∫ t

0
eA(t−s)C dBs = eAtx0 +

∫ t

0
eAsC dBs .

Assume that x0 ∼ N (m0,Σ0) where Σ0 = 0 would refer to the deterministic initial
value x0 = m0. Computing the mean and covariance of Xt yields

mt = E(Xt) = E
(
eAtx0 +

∫ t

0
eAsC dBs

)
= eAtm0 , and

Σt = Cov(Xt) = E
(

(eAt(x0 −m0) +

∫ t

0
eAsC dBs)(e

At(x0 −m0) +

∫ t

0
eAsC dBs)

T

)

= E
(
eAt(x0 −m0)(x0 −m0)TeA

Tt
)

+ E
(∫ t

0
eAsCCTeA

Ts ds

)

= eAtΣ0e
ATt +

∫ t

0
eAsCCTeA

Ts ds .
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Aiming at a process with a well-defined invariant measure, it is immediately clear
that the matrix A has to be Hurwitz, i.e., all eigenvalues should have strictly neg-
ative real part, since else both mean and variance explode for t → ∞. Under the
assumption that A is Hurwitz, it follows that the mean and the covariance of the
invariant measure are well-defined and uniquely determined by the limit

lim
t→∞

mt = 0 and lim
t→∞

Σt =

∫ ∞

0
eAsCCTeA

Ts ds =: Σ∞ ≥ 0.

There is an alternative equivalent characterization of the covariance matrix Σ∞,
derived from noting that

lim
t→∞

Σt = Σ∞ ⇔ lim
t→∞

(
Σ̇t

)
= 0.

Now the time derivative can be expressed as

Σ̇t =
d

dt

(
eAtΣ0e

ATt
)

+ eAtCCTeA
Tt

= AeAtΣ0e
ATt + eAtΣ0e

ATtAT +

∫ t

0

d

ds

(
eAsCCTeA

Ts
)
ds+ CCT

= AeAtΣ0e
ATt + eAtΣ0e

ATtAT +

∫ t

0
A
(
eAsCCTeA

Ts
)

+
(
eAsCCTeA

Ts
)
AT ds+ CCT

= AΣt + ΣtA
T + CCT

and thus the equivalent characterization of Σ∞ is given by Σ∞ being a solution to
the Lyapunov equation

AΣ∞ + Σ∞AT = −CCT .

The remaining question is how to ensure positive definiteness of Σ∞ such that
the invariant measure is not degenerate. This is handled by noting that positive
definiteness of Σ∞, or equivalently hypo-ellipticity of the corresponding Fokker-
Planck equation, is equivalent to either of the following conditions (cf. Theorem 1.2
in [70] and Lemma 2.3 in [5]).

Hypo-ellipticity conditions for OU-processes

(i) The matrix pair (A,C) is controllable

(ii) No eigenvector of AT is in the kernel of CT.

(iii) rk(C,AC,A2C, . . . , An−1C) = n ,

where the matrix (C,AC,A2C, . . . , An−1C) ∈ Rn×nm .

Without giving the proofs – which can be found in the above references – let us
say some intuitive words about the conditions. To this end, consider the controlled
ODE

ẋu(t) = Axu(t) + Cu(t) , xu(0) = xu0 , A ∈ Rn×n , C ∈ Rn×m , m < n ,
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where u : R+ → Rm is is referred to as control. Denote by xu(t) the solution for
a given control u. Controllability of the above dynamics means – we refer to the
definition given in Chapter 1 of [70] – that there is a control u ∈ L2([0, T ],Rm) such
that starting from an arbitrary state xu(0) = y ∈ Rn any other point z ∈ Rn can
be reached in finite time, i.e., xu(T ) = z, T < ∞. This is equivalently referred to
as controllability of the matrix pair (A,C) as given by (i). Indeed, controllability is
equivalent to the other two conditions: they are rephrasing that, even though C may
have rank m < n, the consecutive execution of A enables the system to reach any
direction in Rn and thus rephrases the property of irreducibility for Markov chains.
For the corresponding SDE this means that even though C may be degenerate (m <

n), the noise will spread into the full phase space via the drift A, which is indeed
what makes the invariant measure non-degenerate. This is precisely Hörmander’s
condition.

We summarise the discussed conditions for a unique invariant measure for OU-
processes in the following assumption.

Assumption A2. The drift matrix A is Hurwitz and drift and diffusion (A,C) are
controllable.

2.5 Reversibility and irreversibility

In this section we give the definitions of reversibility and irreversibility of which
there exist many equivalent formulations. Just like in the previous section we will
make things explicit for OU-processes.

Let Xt be a stochastic process with invariant measure dµ(x) = µ(x) dx and let
X−t = XT−t, T ∈ [0,∞) be the time reversed process. We say Xt is reversible iff
starting from the invariant state, the statistics for going forward or backward in
time are the same, i.e.,

X0 ∼ µ ⇒ P(Xt ∈ B,X0 ∈ A) = P(X−t ∈ B,X0 ∈ A)

= P(X0 ∈ B,Xt ∈ A) , ∀ A,B ∈ E , t > 0 ,

where the last equality is due to the time homogeneity of the process. Mak-
ing use of the transition function of Xt and noting that P(Xt ∈ B,X0 ∈ A) =∫
A p(t, x,B) dµ(x) the above equation can be rephrased as what is known as the
detailed balance condition

∫

A
p(t, x,B) dµ(x) =

∫

B
p(t, y, A) dµ(y) , ∀A,B ∈ E

or equivalently

p(t, x, dy)dµ(x) = p(t, y, dx)dµ(y) , ∀ x, y ∈ Rn .
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In terms of the transfer operator the reversibility condition can be expressed as
self-adjointness2 in L2

µ

〈Ttf, g〉µ =

∫
(Ttf)(x)g(x)dµ(x) =

∫ ∫
f(y)p(t, x, dy)g(x)dµ(x)

=

∫ ∫
f(y)p(t, y, dx)g(x)dµ(y) =

∫
f(y)(Ttg)(y)dµ(y) = 〈f, Ttg〉µ.

This can directly be translated to the generator L, such that the reversibility
condition then reads

〈Lf, g〉µ = 〈f,Lg〉µ ,

i.e., self-adjointness of L in L2
µ. In the instance of a non-reversible process, for

which the above equality does not hold, we can introduce the symmetric and anti-
symmetric part of the generator as follows. Denote by L† the adjoint of L in L2

µ

and decompose L in its symmetric and anti-symmetric part via

L = Ls + La , where Ls =
L+ L†

2
and La =

L − L†
2

. (2.10)

Example 2.15. Let us make the decomposition precise for a general SDE of the
form

dXt = (−Γ(Xt)∇V (Xt) +∇ · Γ(Xt) +D(Xt)) dt+
√

2γ(Xt) dBt , (2.11)

where Γ = γγT, for which we assume Assumption A1 to hold such that a unique
invariant measure dµ(x) = e−V (x)/Z dx exists. Recall from (2.9) that we can write
the Fokker-Planck operator as

L∗Df = ∇ ·
(
f

[
−D + Γ∇ ln

f

µ

])
,

where we have introduced the subscript D for L∗D indicating that the function D

enters the SDE with a “+“ sign. Now, observe that

L∗D(fµ) = −∇ · (fµD) +∇ · (fµΓ∇ ln f)

= −µD∇f − f ∇ · (µD)︸ ︷︷ ︸
=0

+∇ · (µΓ∇f)

= −µD∇f − µΓ∇V · ∇f + µ(∇ · Γ) · ∇f + µΓ : ∇2f

= µL-Df ,

where L-D is the generator of the above SDE (2.11) with D being replaced by −D.
In fact, the calculation is the proof to the following theorem:

2In fact we only show that Tt is symmetric here. Self-adjointess requires the agreement of
domains of definition for Tt and its adjoint which requires a more careful analysis.
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Theorem 2.16 (Propositions 4.5 and 4.7 in [61]). For an SDE of the form (2.11)
fulfilling Assumption A1 it holds that

µ-1L∗D(µf) = L-Df

or equivalently
L∗D(f) = µL-D(µ-1f) .

Furtheremore, Xt is reversible iff D = 0 and hence

Ls = (−Γ∇V +∇ · Γ) · ∇ + Γ : ∇2 and La = D · ∇ .

The reversibility can be seen as follows:

〈LDf, g〉µ = 〈LDf, µg〉 = 〈f,L∗D(µg)〉 = 〈f, µL-Dg〉 = 〈f,L-Dg〉µ

and hence LD is self-adjoint in L2
µ if LD = L-D which is equivalent to D = 0.

Summarising, the term D 6= 0 alone makes the process non-reversible. We thus
have the following equivalent conditions for reversibility:

Xt is reversible ⇔ L = (−Γ∇V +∇ · Γ) · ∇ + Γ : ∇2 ⇔ L is self-adjoint in L2
µ .

Another way of defining reversibility is via the law of paths associated to the
forward and the time-reversed process. That is, let Xt be the forward process,
X−t = X−t the time-reversed process, and X0 ∼ µ. Given a time interval [0, T ],
denote the path measure on C([0, T ]) of the forward and time-reversed process by
ν[0,T ] and ν

−
[0,T ], respectively. Reversibility then means that the law of the forward

process coincides with the law of the time-reversed process, i.e., ν[0,T ] = ν−[0,T ] almost
surely. To put it differently, the degree of irreversibility can be measured by the
entropy-production eP , which is defined as the relative entropy between ν[0,T ] and
ν−[0,T ], i.e.,

eP (ν[0,T ]|ν−[0,T ]) =





∫
log

(
dν

[0,T ]

dν−
[0,T ]

)
dν[0,T ] , if ν[0,T ] � ν−[0,T ]

∞ , else.

When starting from the invariant measure µ, the time-reversed process X−t = X−t
is described by the SDE (cf. [30])

dX−t = b−(X−t ) dt+ γ(X−t ) dBt , (2.12)

where b−(x) = −b(x) + 2
µ(x)∇ · (γ(x)γ(x)Tµ(x)).

So yet another way of telling whether a process is reversible or not is by checking
whether b− = b.

Example 2.17. Let us calculate b− for the general class of SDEs given by

dXt = −Γ(Xt)∇V (Xt) +∇ · Γ(Xt) +D(Xt) dt+
√

2γ(Xt) dBt ,
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where Γ(Xt) = γ(Xt)γ(Xt)
T, as always suppose Assumption A1 holds and denote

the invariant measure by dµ(x) = 1/Ze−V (x) dx. Let us first calculate

(∇ · (Γ(x)µ(x)))i =

n∑

j=1

d

dxj
(Γij(x)µ(x))

= µ(x)

n∑

j=1

(
d

dxj
Γij(x)− Γij(x)

d

dxj
V (x)

)

= µ ( (∇ · Γ(x))i − (Γ(x)∇V (x))i ) ,

and hence

b−(x) = − (−Γ(x)∇V (x) +∇ · Γ(x) +D(x)) + 2∇ · Γ(x)− 2Γ(x)∇V (x)

= −Γ(x)∇V (x) +∇ · Γ(x)−D(x)

= b(x)− 2D(x) ,

that is, in agreement with the previous result of Theorem 2.16 we find that D is the
quantity that contains the non-reversibility.

For the OU-processes we can derive explicit expression for D in terms of the drift
matrix A and the invariant measure, which is fully characterised by its covariance
Σ∞.

Example 2.18 (OU-process continued). First note, that the drift matrix A can be
rewritten using the Lyapunov equation as

AΣ∞ + Σ∞AT = −CCT

⇔ A = −(Σ∞AT + CCT)Σ-1
∞ = −(Σ∞AT +

1

2
CCT +

1

2
CCT)Σ-1

∞

Further, introduce the skew symmetric matrix J as

J =
1

2
(−Σ∞AT +AΣ∞) = −Σ∞AT +

1

2
(AΣ∞ + Σ∞AT) = −Σ∞AT − 1

2
CCT .

Thus, the drift can be written as

AX = −1

2
(2J + CCT)Σ-1

∞X = −1

2
CCT∇V (X) + J∇V (X)

where V (X) = 1
2X

TΣ-1
∞X and D(X) = −JΣ-1

∞X.





Chapter 3

Different characterizations
of time scales

Being concerned with multi-scale processes in this work we should first clarify how
we define different scales of a process. Let us consider an Rn-valued stochastic pro-
cess (Xt)t≥0. We are interested in two different notions of time scales, the first being
the equilibration time scale and the second being the mean first exit time (MFET).

We define the equilibration time scale by the exponential rate which describes
the relaxation of the process to its equilibrium or invariant measure. More precisely,
let ρt be the distribution of Xt at time t corresponding to some initial datum ρ0 = ν0

and denote the invariant measure by µ. The relaxation behaviour of ρt to µ can be
phrased as the question asking whether there exists a λ > 0 such that

‖ρt − µ‖ ≤ e−λt‖ρ0 − µ‖

holds. The apparent questions are

• In which norm ‖ · ‖ does the above hold (if, at all)?

• How can the largest possible λ > 0 be determined?

We will address these questions later in more detail, but first introduce the second
notion of time scale that is of interest to us. Assume for now that we start from
some deterministic initial condition, i.e., X0 = x0 ∈ D ⊂ Rn and we are interested
in how long on average it takes for the process to leave the domain D, that is, we
ask, what is the mean first exit time (MFET)

τ = E(inf t > 0 : Xt /∈ D|X0 = x0) .

The mean first exit time can directly be linked to the metastability of the asso-
ciated process. Xt being metastable intuitively means that there are parts of the
state space in which Xt remains for a very long time. Here “very long” is relative
to the time scale of the fluctuations of the process, and hence the respective mean
first exit time from these domains will be very large. At the same time, if τ is large
for some region D, then Xt spends a long time in this region on average, and hence
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we have discovered a metastable region of the process.
Clearly, there is an intuitive connection between the two time scales. If the process
is metastable, there will be regions for which the mean first exit time is large and at
the same time the relaxation to the invariant measure is also slow as it takes very
long for the process to explore the whole state space.

This chapter is meant to give an overview of existing theory on these time scales,
the connections between them and the problems which arise due to non-reversibility
of the process and in particular non-ellipticity of the generator. It is organised as
follows. The first section reviews results on equilibration time scales for elliptic pro-
cesseses corresponding to different norms. We discuss their relation and conditions
to guarantee exponential convergence. Further, we state results by Arnold et. al [5]
for hypo-elliptic OU-processes. In the second section we review results on MFETs
for elliptic processes and their relation to the equilibration time scale. Furthermore,
we state results for hypo-elliptic OU-processes by Zabczyk [70] who employs a for-
mulation of control theory. This technique enables us to relate MFETs and the
equilibration time scale for OU-processes and for underdamped Langevin equation
in a new fashion which we present in the last part of the chapter.

3.1 Exponential convergence to equilibrium for elliptic
processes

In this section we give the definitions of functional inequalities, namley the Poincare
and Logarithmic Sobolev Inequality, which are commonly used tools to deduce ex-
ponential convergence to equilibrium. For both inequalities we make a distinction
between what we call the dynamic version and static version. The dynamic version
is formulated for a pair (µ,L) with µ being the unique invariant measure of a dy-
namics with generator L. The fact that (µ,L) satsifies one of the inequalities with
a given constant α can then be shown to be equivalent to exponential convergence
with rate 2α in some sense.
Alternatively, one can formulate the inequalities as a property of the measure µ
alone, which in fact corresponds to the dynamic version with gradient dynamics
(Γ = In×n) unveiling an interepretation in terms of concentration of measures.

3.1.1 The Poincaré Inequality – convergence in L2
µ-1

We begin this section by giving the definition of a Dirichlet form which is pivotal
for the Poincaré inequality. To this end, assume we are given a general diffusion
described by (2.11), with Γ = Γ(x) ≥ λmin(Γ) > 0, which admits a unique invariant
measure dµ(x) = µ(x) dx such that µ(x) ∈ L1. Denote as usual the corresponding
generator by L given by

L = (−Γ∇V +∇ · Γ +D) · ∇ + Γ : ∇2 . (3.1)
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Definition 3.1. The Dirichlet form associated to L is defined by

EL(f) := 〈−Lf, f〉µ , f ∈ Dom(L) . (3.2)

Actually, the Dirichlet form has a larger domain of definition, see Sections 1.7 and
3.1.4 in [9] being defined by the corresponding limit, but we keep it as simple as
possible here.

First note that by the decomposition of the generator (2.10) in its symmetric
and anti-symmetric part (see (2.10)) with respect to µ we have

〈Lf, f〉µ = 〈Lsf, f〉µ + 〈Laf, f〉µ = 〈f,Lsf〉µ − 〈f,Laf〉µ
which implies that 〈Laf, f〉µ = 0 . Hence, the Dirichlet form only depends on the
symmetric part of the generator, i.e.,

EL(f) = ELs(f)

which can be rewritten using integration by parts and dµ(x) = eV (x)/Z dx as

EL(f) =

∫
f(x)(Γ(x)∇V (x) · ∇f(x)− (∇ · Γ(x)) · ∇f(x)− Γ(x) : ∇2f(x))e−V (x) dx

= −
∫
f(x)∇ · (e−V (x)Γ(x)∇f(x)) dx

=

∫
∇f(x) · Γ(x)∇f(x) e−V (x) dx = 〈∇f,Γ∇f〉µ . (3.3)

The subsequent lemma reveals an even more appealing property of the Dirichlet
form, namely its relation to the time derivative of the variance with respect to the
measure µ. To this end, introduce the variance of f with respect to µ

Varµ(f) =

∫ (
f −

∫
f dµ

)2

dµ ,

for any function f ∈ L2
µ.

Lemma 3.2. Let f ∈ L2
µ and define ft = Ttf , i.e., ft solves ∂

∂tft = Lft , f0 = f.

Then
d

dt
Varµ(ft) = −2EL(ft) .

Proof. Since µ is the invariant measure associated to L we have, recalling that
p(t, x, y) is the transition function,

∫
ft(x) dµ(x) =

∫ ∫
f(y)p(t, x, y)µ(x) dy dx =

∫
f(y) dµ(y) ,

i.e., the mean of ft with respect to µ is constant in time. Computing the time
derivative of the variance immediately yields the result:

d

dt
Varµ(ft) =

∫
2

(
ft −

∫
f dµ

)
∂

∂t

(
ft −

∫
f dµ

)
dµ ,

= 2

∫ (
ft −

∫
f dµ

)
L
(
ft −

∫
f dµ

)
dµ ,

= −2EL(ft) ,
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using that EL(ft + c) = EL(ft) for any constant c according to (3.3).

Remark 3.3. Note that the very same result hold true if ft was instead the solution
to ∂

∂tft = L-Dft , f0 = f , where L-D is (3.1) with +D being replaced by −D. This
is due to EL(f) only depending on the symmetric part of L as discussed above. In
particular, the time derivative of the varianceis determined by the reversible part of
the generator only.

Let us now state the definition of a Poincaré inequality.

Definition 3.4. Let µ ∈ P(Rn) be the unique invariant measure associated to the
dynamics with generator L. We say µ satisfies a dynamic Poincaré Inequality (PI)
with constant αPI > 0 if and only if for all f ∈ Dom(L) it holds that

αPIVarµ(f) ≤ EL(f) . (3.4)

Due to the relation of the variance and the Dirichlet form established in Lemma
3.2 the assumption of a dynamic PI instantly yields exponential convergence of
the variance to zero for any observable f ∈ L2

µ. Furthermore, this also entails
exponential convergence of the time t density ρt to its equilibrium µ in L2

µ-1 as the
next theorem shows.

Theorem 3.5 (Theorem 4.2.5 in [9]). Let µ ∈ P(Rn) be the unique invariant mea-
sure of the dynamics associated to L and let ρt be the corresponding time t density,
i.e., ρt solves ∂

∂tρt = L∗ρt for some given initial datum ρt=0 = ρ0. Then the follow-
ing statements are equivalent:

(i) µ satisfies a dynamic PI.

(ii) ∀ f ∈ L2
µ, ∀t > 0 it holds that Varµ(ft) ≤ e−2αPI tVarµ(f), where ft = Ttf.

(iii) ∀ ρ0 ∈ L2
µ-1 , ∀t > 0 it holds that |ρt − µ|2L2

µ-1
≤ e−2αPI t |ρ0 − µ|2L2

µ-1
.

Proof. The proof of (i) ⇔ (ii) is very easy:

(i)⇒(ii) This follows directly by Lemma 3.2 together with the Lemma of Gronwall.

(ii)⇒(i) Subtracting Varµ(f), dividing by t and finally letting t→ 0 gives the result:

Varµ(ft)− Varµ(f)

t
≤ Varµ(f)

e−2αPI t − 1

t
t→0
==⇒ −2EL(f) ≤ −2αPIVarµ(f) .

Proving the equivalence of (ii) and (iii) is now almost as easy: First note that by
defining ft = ρt

µ , where ρt is the time t density of the dynamics for an initial datum
ρ0, i.e., ρt solves ∂

∂tρt = L∗ρt , ρt=0 = ρ0, we find by Theorem 2.16 that

∂

∂t
ρt = L∗D(ρt) = L∗D(ftµ) = µL-Dft ,
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i.e., ft is the solution to ∂
∂tft = L-Dft , f0 = ρ0

µ . Secondly, note that f0 ∈ L2
µ ⇔ ρ0 ∈

L2
µ-1 . By Remark 3.3 we also have equivalence of (i) and (ii) for ft given by ft = ρt

µ .
It remains to show (ii) ⇔ (iii):
Inserting ft = ρt

µ into (ii) directly yields the equivalence:

Varµ(ft) =

∫ (
ρt
µ
− 1

)2

dµ =

∫
(ρt − µ)2 dµ-1 = |ρt − µ|2L2

µ-1
.

Let us remark that since the right hand side of (3.4) only depends on the re-
versible part of the dynamics, adding any non-reversibility cannot effect the PI
negatively. In other words, adding non-reversibility can only improve convergence
thus making it faster.

Instead of stating a dynamic PI it is also possible to state a PI as a property of
a measure alone and we refer to this as the static PI.

Definition 3.6. A measure µ ∈ P(Rn) satisfies a static PI with constant αPI > 0

if ∀f ∈ L2
µ it holds that

αPIVarµ(f) ≤ |∇f |2L2
µ
.

The static PI can also be interpreted as a dynamic PI, with Γ = In×n, i.e., it
is equivalent to exponential convergence for the associated gradient dynamics with
generator L = −∇V · ∇+ ∆.
If a measure µ satisfies a static PI but convergence to µ under the dynamics asso-
ciated to some other generator L̃ of general form (3.1) is considered, we find – due
to EL(f) = 〈∇f,Γ∇f〉µ ≥ λmin(Γ)〈∇f,∇f〉µ – that the associated time t density ρt
converges at least with rate given by 2αPIλmin(Γ), i.e.,

|ρt − µ|L2
µ-1
≤ e−2αPIλmin(Γ)t|ρ0 − µ|L2

µ-1
.

Conversely, if one observes exponential convergence for any initial condition ρ0 ∈
L2
µ-1 , i.e., the above holds true for all ρ0 ∈ L2

µ-1 and Γ < λmax(Γ) <∞ then µ satisfies
a dynamic PI with constant αPIλmin(Γ)(λmax(Γ))-1 which can easily be deduced by
the inverse estimate EL(f) = 〈∇f,Γ∇f〉µ ≤ λmax(Γ)〈∇f,∇f〉µ.

Often, the PI inequality is also referred to as spectral gap inequality. This is
due to the fact that in certain cases, the spectral gap of the generator equals the PI
constant. For example in the case that the generator admits a discrete spectrum and
the corresponding eingenfunctions form a basis of L2

µ, this is an easy calculation (see
the Appendix A.2). In general, one can resort to properties of the associated semi-
group and we refer the interested reader to the book [24], see in particular Section
3 and Corollary 3.12 for conditions guaranteeing equality of the two constants. Let
us now discuss the relation between the two quantities for non-reversible but elliptic
OU-processes.
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Relation of PI and spectral gap for non-reversible OU-processes

For non-reversible processes the relation of the PI constant and the spectral gap is
not straightforward. Let us discuss the simple example of an n-dimensional OU-
process

dXt = AXt dt+ C dBt , (3.5)

with A, C ∈ Rn×n and A being Hurwitz and C having full rank. For degenerate C
a PI with constant αPI > 0 cannot be derived, since the right hand side of the PI
(3.4) can become 0. Under these assumptions on A and C (see also Assumption A2
and Example 2.14) the process admits a unique invariant measure µ ∼ N (0,Σ∞)

with Σ∞ being the solution to

Σ∞A+ATΣ∞ = −CCT . (3.6)

The associated reversible dynamics (see Example 2.18)

dX̃t = −1

2
CCTΣ-1

∞X̃t dt+ C dBt ,

possess a PI constant that – due to the reversibility – equals the spectral gap and is
in this case given by the smallest eigenvalue of the drift 1

2CC
TΣ-1
∞ (see [53]). This

means, we have

1

2
λmin(CCTΣ-1

∞)Varµ(f) ≤ EL(f) , ∀ f ∈ Dom(L) .

Since CCT and Σ-1
∞ are both symmetric positive definite it follows that

λmin(CCTΣ-1
∞) ≥ λmin(CCT)λmin(Σ-1

∞) and we have an estimate for the dynamic
PI constant associated to the dynamics (3.5): αPI ≥ 1

2λmin(Σ-1
∞)λmin(CCT) =: αPI.

Now, referring to the same reference [53] as above, we know that for (3.5) the
spectral gap is given by the smallest absolute value of the eigenvalues of the drift,
i.e., λ1(−L) = λmin(−A). Employing the Lyapunov equation (3.6) and letting v be
the eigenvector associated to λmin(−A) we find

λmin(CCT)vTv ≤ vTΣ∞Av + vTATΣ∞v = 2λmin(−A)vTΣ∞v ≤ 2λmin(−A)λmax(Σ∞)

which implies by λmax(Σ∞) = 1/λmin(Σ-1
∞) that

αPI =
1

2
λmin(Σ-1

∞)λmin(CCT) ≤ λmin(−A) = λ1(−L) .

Of course this is not a direct relation between αPI and λ1(−L), but only of the
lower bound αPI and λ1(−L). In fact, this simple example reveals already that for
non-reversible processes the relation is not straight-forward.

We should remark again that, even though the Dirichlet form only depends on
the reversible part of the generator, all of the theory presented in this section does
not depend on reversibility or non-reversibility of the underlying dynamics as long
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as Γ > 0. It does heavily rely on the fact that Γ > 0, though, which appears in the
Dirichlet form. If Γ was only positive semi-definite it wouldn’t be possible to derive
exponential convergence by the tools presented in this section, as the right hand
side of the PI – and thus the time derivative of the variance – can become zero. In
this case, one has to rely on the theory of hypocoercivity developed by Villani (see
e.g. [68]) which leads to an additional prefactor c ≥ 1 on the right hand side of the
estimate which describes exponential convergence.

3.1.2 The Logarithmic Sobolev Inequality – convergence in relative
entropy

The equivalence of a PI and convergence in L2
µ-1 is a nice result, but it also has several

drawbacks. First of all, we should note that for finiteness of the right hand side of
the estimate, we require that ρ0 ∈ L2

µ−1 , i.e.,
∫
ρ2

0(x)eV (x)dx < ∞. This is a severe
restriction in the admissible initial states, since V is assumed to grow sufficiently
fast such that

∫
e−V (x)dx < ∞. In addition, convergence in L2

µ-1 is physically not
well-interpretable and a convergence statement in L1 – being the natural space for
probability densities – would be preferable.
In this section we review results which yield exponential decay to equilibrium in
relative entropy and thus in L1.

We start by giving the definitions needed for this section.

Definition 3.7. Let ν, µ ∈ P(Rn). The relative entropy (or Kullback-Leibler diver-
gence) of ν with respect to µ is defined as

H(ν|µ) =





∫
ln
(
dν
dµ

)
dν , if ν � µ

∞ , else.

Note, that relative entropy is not a metric, since it is lacking the properties of
symmetry and subadditivity. Yet, it satisfies H(ν|µ) ≥ 0 by Jensen’s inequality with
equality iff ν = µ ν-almost surely.

Definition 3.8. Let ν, µ ∈ P(Rn), ν � µ and A ∈ Rn×n. The A-weighted relative
Fisher information of ν with respect to µ is defined as

RA(ν|µ) =

∫ ∣∣∣∣∇ ln
dν

dµ

∣∣∣∣
2

A

dν .

If A = In×n the subscript is omitted.

The following lemma reveals the important connection between relative entropy
and the relative Fisher information for our purposes and constitutes the analogue
of Lemma 3.2.

Lemma 3.9. Let µ ∈ P(Rn) be the unique invariant measure associated to L given
by (3.1) and let ρt be the solution to ∂ρt

∂t = L∗ρt for some initial datum ρ0. Then

d

dt
H(ρt|µ) = −RΓ(ρt|µ) .
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Proof. Performing integration by parts twice, the computation is straightforward:

d

dt

∫
ln

(
ρt
µ

)
dρt =

∫
∂t(ρt) ln

(
ρt
µ

)
dz +

∫
∂t(ρt) dz

=

∫
∇ ·
(
ρt

[
−D + Γ∇ ln

(
ρt
µ

)])
ln

(
ρt
µ

)
dz + 0

= −
∫ (

ρt

[
−D + Γ∇ ln

(
ρt
µ

)])
· ∇ ln

(
ρt
µ

)
dz

=

∫
ρtD · ∇ ln

(
ρt
µ

)
dz −

∫
∇ ln

ρt
µ
· Γ∇ ln

(
ρt
µ

)
dρt(z)

= −
∫ ∣∣∣∣∇ ln

(
ρt
µ

)∣∣∣∣
2

Γ

dρt(z) .

The last equality follows by the divergence-free property of the function D (see
(A1)(iii)) which gives

∫
ρtD · ∇

(
ln
ρt
µ

)
dz =

∫
µD · ∇

(
ρt
µ

)
dz = −

∫
∇ · (µD)

(
ρt
µ

)
dz = 0.

The Logarithmic Sobolev Inequality (LSI) introduced below plays the role of the
PI in this section. As it connects relative entropy and its time derivative via an in-
equality, we can hope for exponential convergence in relative entropy. Equivalently
to the PI, we can also state the LSI as a property of the measure alone or alterna-
tively in its dynamics version by directly associating the measure to some dynamics
generated by L. Let us first state the dynamic LSI and deduce the exponential
convergence in the subsequent corollary.

Definition 3.10. Let µ ∈ P(Rn) be the unique invariant measure associated to
the dynamics with generator L. We say µ satisfies a dynamic Logarithmic Sobolev
Inequality (LSI) with constant αLSI if for all ν ∈ P(Rn) with ν � µ it holds that

H(ν|µ) ≤ 1

2αLSI
RΓ(ν|µ) .

Remark 3.11. An equivalent formulation of the LSI, which is also common in the
literature, is as follows: Let µ ∈ P(Rn) be the unique invariant measure associated
to L. Then µ satisfies a LSI with constant αLSI if for all f ∈ L2

µ it holds that

∫
f2 ln

(
f2

∫
f2 dµ

)
dµ ≤ 2

αLSI
EL(f) .

The equivalence can be seen as follows: let f =
√

dν
dµ such that ν � µ. Then f ∈ L2

µ

since
∫
f2 dµ =

∫
dν = 1. Conversely f ∈ L2

µ implies that ν ∈ P(Rn) since we
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can replace f by its normalized version f/‖f‖L2
µ
which does not affect the above

inequality. Plugging f =
√

dν
dµ into the left hand side we find

∫
f2 ln

(
f2

∫
f2 dµ

)
dµ =

∫
ln

(
dν

dµ

)
dν = H(ν|µ) .

Noticing that EL(f) =
∫
|∇f |2Γ dµ and ∇f = 1

2

√
dµ
dν

(
1
dµ∇dν − dν

dµ2
∇dµ

)
and at the

same time ∇ ln dν
dµ = dµ

dν

(
1
dµ∇dν − dν

dµ2
∇dµ

)
it follows that

EL(f) = 4RΓ(ν|µ)

which yields the equivalence of the two formulations.

Corollary 3.12. Let µ ∈ P(Rn) satisfy a LSI with constant αLSI and let ρ0 � µ.

Then ρt, the solution to ∂ρt
∂t = L∗ρt with initial datum ρ0, converges exponentially

fast to µ in relative entropy with rate αLSI, that is,

H(ρt|µ) ≤ e−2αLSI tH(ρ0|µ) .

Conversely, if the above holds true for all ρ0 with H(ρ0|µ) < ∞ then µ satisfies a
LSI with constant αLSI.

Proof. The exponential convergence follows directly by Lemma 3.9 and the Gronwall
Lemma.
The other direction follows by subtracting H(ρ0|µ) on both sides, dividing by t and
letting t→ 0

H(ρt|µ)−H(ρ0|µ)

t
≤ H(ρ0|µ)

e−2αLSIt − 1

t
t→0
==⇒ −RΓ(ρ0|µ) ≤ −2αLSIH(ρ0|µ) .

We can also formulate a LSI as a property of a measure alone.

Definition 3.13 (Static LSI). Given a measure µ ∈ P(Rn) we say µ satisfies a
static LSI with constant αLSI if for all measures ν � µ it holds that

H(ν|µ) ≤ 1

2αLSI
R(ν|µ). (3.7)

Clearly, if µ is the unique invariant measure associated to a generator with Γ =

In×n then the above is equivalent to exponential convergence in relative entropy with
rate 2α. If instead µ satisfies a static LSI and is the invariant measure associated to
some dynamics with diffusion matrix Γ 6= In×n, it follows by | · | ≤ 1

λmin(Γ) | · |Γ that
exponential convergence in relative entropy takes place at least with rate 2λmin(Γ)α.
Conversely, if we observe exponential convergence to equilibrium in relative entropy
with rate 2α for dynamics with diffusion matrix Γ and invariant measure µ then by
| · |Γ ≤ λmax(Γ)| · | we find a static LSI holds for µ with constant α/λmax(Γ) .
By means of the static LSI we also find a convenient interpretation for large static
LSI constants.
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Remark 3.14. Given a measure µ which satisfies a static LSI with a large con-
stant α � 0 we know that the corresponding gradient dynamics converges fast
– exponentially with rate 2α – to its equilibrium. This means that the gradient
dynamics cannot exhibit strong metastability. If there was metastability in the gra-
dient dynamics then α would not be “as large”. Indeed, the larger α the faster the
corresponding gradient dynamics relax to their equilibrium and by the Bakry-Émery
condition (see Theorem 3.21 below) the steeper is the potential (∇2V ≥ α). At the
same time, a lack of metastability also means that there are no barriers to overcome
in the potential V . Concluding, this means the larger the LSI the more peaked or
concentrated the measure should be. So here, the LSI equips us with a property of
the measure µ alone. See also [46] for a discussion of the connection between the
LSI and metastability for overdamped Langevin dynamics.

Other properties of the LSI

Another appealing property of convergence in relative entropy is that it entails
convergence in L1 (assuming as usual that dν(x) = ν(x) dx and dµ(x) = µ(x) dx)
via the Csiszár - Kullback inequality (see e.g. [64])

∫
|ν(x)− µ(x)|dx ≤

√
2H(ν|µ) .

Thus, even though relative entropy is not a metric itself, we can deduce convergence
in L1.
Moreover, a LSI is stronger than a PI as the following lemma states.

Lemma 3.15. Let µ ∈ P(Rn) satisfy a LSI with constant αLSI. Then µ satisfies a
PI with constant αPI = αLSI.

Proof. For a proof see the Appendix A.2 Lemma A.5.

The next theorem states, that once we have found a measure which satisfies a
LSI it is possible to modify it by adding a bounded perturbation to the potential
and we still get an estimate on the LSI constant.

Theorem 3.16 (Holley-Stroock Lemma [34]). Let (µ,LV ) satisfy a LSI with con-
stant αLSI, where µ ∼ e−V and the superscript in LV clarifies the dependence of the
generator on the potential V . Let V̄ = V + U , where U is a smooth and bounded
potential, i.e., m ≤ U(x) ≤M ∀x ∈ Rn. Then (µ̄,LV̄ ), where µ̄ ∼ e−V̄ , also satisfy
a LSI with constant ᾱLSI = αLSIe

M−m.

3.1.3 The Talagrand Inequality – convergence in Wasserstein dis-
tance

In this section relative entropy will be related to the second Wasserstein distance
by the so-called Talagrand inequality. We will employ the Talagrand inequality in
Chapter 4 deriving error estimates for the reduced model. To this end, recall the
definition of a coupling of two measures and the Wasserstein distance.
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Definition 3.17. Let ν, µ ∈ P(Rn). A measure π ∈ P(Rn×Rn) is called coupling of
ν and µ if its marginals are ν and µ respectively, that is, for any bounded continuous
test functions φ, ψ its holds that

∫

Rn×n
φ(x1) + ψ(x2) dπ(x1, x2) =

∫

Rn
φ(x1) dν(x1) +

∫

Rn
ψ(x2) dµ(x2) .

Definition 3.18. Let ν, µ ∈ P(Rn). The second Wasserstein distance of ν with
respect to µ is given by

W(ν|µ) = inf
π∈Π(ν,µ)

√∫

Rn×Rn
|x− y|2 dπ(x, y) ,

where Π is the set of all couplings of ν and µ.

We will omit the supplement second and will simply talk about the Wasserstein-
distance from now on. The Wasserstein distance admits a vivid interpretation:
assuming that ν, µ ∈ P(R2), we can picture both measures as sand piles in the
plane whose height is the value of the associated density. Being asked to transfer
the sand pile associated to ν to the one belonging to µ, the set Π captures all possible
ways of achieving this goal. The transfer which costs the least among all possible
transfers with respect to some metric – in our case L2 and else e.g. Lp – yields the
corresponding Wasserstein distance.

Definition 3.19. A measure µ ∈ P(Rn) satisfies as Talagrand inequality (TI) with
constant αTI > 0 if for all ν ∈ P(Rn) with ν � µ it holds that

W(ν|µ)2 ≤ 2

αTI
H(ν|µ) .

Lemma 3.20. Let µ satisfy a static LSI (i.e. Γ = In×n ) with constant αLSI. Then
µ also satisfies a TI with constant αTI = αLSI.

Proof. For the proof we refer to [59].

3.1.4 The Bakry-Émery criterion

Being mostly concerned with convergence in relative entropy together with the fact
that a LSI implies a PI, we only present the famous Bakry-Émery condition here,
constituting a sufficient condition to guarantee a LSI. A sufficient criterion for a PI
only – building on Lyapunov functions – can be found in the appendix in Theorem
A.6.

Theorem 3.21 (The Bakry-Émery criterion). Let Γ(x) ≡ Γ > 0 be constant and
dµ(x) = 1

Z e
−V (x) dx the invariant measure associated to L = −Γ∇V ·∇+ Γ : ∇2. If

yT∇2V (x)y ≥ α yTΓ-1y , ∀x, y ∈ Rn (3.8)

holds true, then (µ,L) fulfils a dynamic LSI with constant α.
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Sketch of proof. We outline the idea of the proof and refer to it as the Bakry-Émery
procedure as it is reused in the subsequent results.

1. Show: ∇2V ≥ αΓ-1 ⇒ RΓ(ρt|µ) ≤ − 1
2α

d
dtRΓ(ρt|µ)

This is the main step of the proof and the difficulty lies within computing
the time derivative of the relative fisher information (for the computations see
e.g. [4, 6]) which in the end yields

− d

dt
R(ρt|µ) = 2

∫ ∣∣∣∣∇ ln
ρt
µ

∣∣∣∣
2

Γ∇2V Γ

dρt + r ,

where r ≥ 0 is a positive remainder. By assumption (3.8) it readily follows

that
∣∣∣∇ ln ρt

µ

∣∣∣
2

Γ∇2V Γ
≥ α

∣∣∣∇ ln ρt
µ

∣∣∣
2

Γ
which yields the result of the first step.

2. Show: RΓ(ρt|µ) ≤ − 1
2α

d
dtRΓ(ρt|µ)⇒ RΓ(ρt|µ) ≤ e−2αtRΓ(ρ0|µ).

This follows directly by integrating the above inequality in time from 0 to t.

3. Show: RΓ(ρt|µ) ≤ e−2αtRΓ(ρ0|µ)⇒ 2αH(ρ0|µ) ≤ RΓ(ρ0|µ)

This follows directly by integrating the first inequality in time from 0 to ∞
together with noting that

∫∞
0 RΓ(ρt|µ) = −H(µ|µ) +H(ρ0|µ) = H(ρ0|µ) .

Multiplicative non-degenerate noise

If Γ = Γ(x) > 0 the procedure is exactly as above, only condition (3.8) is replaced by
Γ(x)Ric(x) ≥ αIn×n, where Ric(x) is the Ricci-tensor of the Fokker-Planck operator
induced by Γ(x) (cf. Section 6 in [7] or Section 2.3 in [6]), which is interpreted as
a metric tensor. The term on the left hand side will show up in the calculation of
the time derivative of the relative Fisher information and hereby replace ∇2V (step
1 above). Calculating the time derivative of the relative Fisher information as well
as the remainder becomes a lot harder in this setting, but in general the procedure
does not change.

3.2 Exponential convergence to equilibrium for hypo-
elliptic OU-processes

We have seen in the previous section that the Bakry-Émery condition for the poten-
tial V plus bounded perturbations suffice to guarantee exponential convergence to
equilibrium. This heavily relies on the positive definiteness of the diffusion matrix. If
the diffusion Γ was only positive-semidefinite, i.e., there if there existed a v ∈ ker Γ,
the relaxation towards equilibrium in relative entropy can lose the property of strict
monotonicity which is replaced by monotonicity. To make this point clear, assume
that the initial condition ρ0 is such that ρt = (v · x)µ , where v, x ∈ Rn , v ∈ ker Γ.
Then

RΓ(v · xµ|µ) =

∫
|∇ ln v · x|2Γ dµ =

∫
(v · x)−2vTΓv dµ = 0 .
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In particular, this prohibits the first step in the Bakry-Émery procedure (Γ is not
invertible), such that proving exponential convergence of the relative Fisher infor-
mation with the usual tools is not possible.

OU-processes

In [5] Arnold et al. have modified the Bakry-Émery procedure to be able to deal
with OU-processes with degenerate noise. To this end, consider an OU-process given
by

dXt = AXt dt+
√

2C dWt , (3.9)

where (A,C) fulfill assumption A2 such that we have a unique invariant measure
µ ∼ N (0,Σ∞). Instead of working directly with the relative Fisher information RΓ,

where Γ = CCT, they introduce a modified Fisher information RS which does
decay exponentially and at the same time yields an upper bound for RΓ such that
exponential decay for RΓ follows. To be more precise, they prove existence of a
positive definite matrix S such that S ≥ cΓ, c > 0 and

SÃ+ ÃTS ≥ 2λ∗S , (3.10)

where Ã = Σ∞ATΣ-1
∞ and λ∗ = min {Re(λ) : −Av = λv, v 6= 0} . If A and thus also

Ã is diagonalisable the matrix S is constructed from the eigenvectors of Ã, else it is
constructed from the generalized eigenvectors of Ã which leads to the replacement
of λ∗ by λ∗−ε, ε > 0 . Step 1 in the Bakry-Émery procedure is then replaced by the
computation of the time derivative of the modified Fisher information which gives

− d

dt
RS(ρt|µ) =

∫
∇
(

ln
ρt
µ

)
(SÃ+ ÃTS)∇ ln

(
ρt
µ

)
dρt + r ,

where r ≥ 0 is a positive remainder and equation (3.10) plays the role of the Bakry-
Émery condition (3.8). This implies exponential decay of RS with rate 2λ∗ which
– after some more involved estimates – also entails exponential convergence of the
relative entropy. The statement of their theorem is as follows.

Theorem 3.22 (Theorem 4.9 in [5]). Consider the SDE (3.9) where the coefficients
satisfy assumption A2 and let ρt be the solution to the associated Fokker-Planck
equation with initial condition ρ0. Define λ∗ = min {Re(λ) : −Av = λv, v 6= 0} > 0

as the smallest eigenvalue of −A and suppose that H(ρ0|µ) <∞.

(i) If all eigenvalues of A are non-defective, then there exists a constant c ≥ 1

such that
H(ρt|µ) ≤ cH(ρ0|µ)e−2λ∗ t ∀t ≥ 0 .

(ii) If one or more eigenvalues are defective, then there exists a constant cε > 1

for all ε ∈ (0, λ∗), such that

H(ρt|µ) ≤ cεH(ρ0|µ)e−2(λ∗−ε)t ∀t ≥ 0 .
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The actually observed relaxation behaviour is explored in Section 6.1 where we
investigate the influence of temperature and the choice of initial conditions. Further,
we study the occurrence of plateaus in the decay and processes with multiple time
scales.

Remark 3.23. Observe that even though Theorem 3.22 establishes exponential
convergence to equilibrium this does not imply a LSI for the measure: If we proceed
as in the proof of Theorem 3.12 subtracting H(ρ0|µ) from both sides and dividing
by t we find

H(ρt|µ)−H(ρ0|µ)

t
≤ cH(ρ0|µ)

e−2λ∗t − 1/c

t

and while the left-hand side tends to −R(ρ0|µ) as t → 0 the right-hand side does
not have a well-defined limit except if c = 1 which amounts to Γ > 0 and hence we
are back in the non-degenerate case.
This is precisely the constant c ≥ 1 mentioned before, which is due to the hypo-
ellipticity and thus hypocoercivity of process.
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3.3 Mean first exit times in the small diffusion limit for
elliptic processes

In this section, results on the second time scale of interest – given by mean first
exit times – will briefy be reviewed. Similar to the previous section, we first treat
the non-degenerate case Γ > 0 and in the second part dedicate ourselves to the
degenerate case Γ ≥ 0. Mathematically, the degenerate case needs different tools
than the standard ones from the first part of the chapter, and control theory will
turn out to be a useful tool.

We start by reviewing the approach of determining the mean first exit time by
means of large deviation theory as introduced by Freidlin and Wentzell (for more
details we refer to [26]). To this end, consider the Rn-valued SDE

dXt = b(Xt) dt+ εγ dWt , (3.11)

where b is assumed to be Lipschitz, Γ = γγT ∈ Rn×n is constant and has full rank
and ε > 0 determines the strength of the noise. Let D ⊂ Rn be a bounded domain
with smooth boundary ∂D and consider the mean of the first exit time τ from the
domain D given the dynamics start in x0 ∈ D, that is,

Ex0(τ) := E(τ |X0 = x0) , x0 ∈ D, where τ = inf {t > 0 : Xt /∈ D} .

Note, that τ depends on ε, which we will omit in the following. We will now touch
the theory of large deviations, which could also be named theory of improbable or
rare events. We start with the main result which the theory offers for this problem.

Theorem 3.24 (Theorem 4.1, Chapter 4 in [26]). Let z ∈ D be an asymptotically
stable equilibrium for the deterministic dynamics ẋt = b(xt) and assume that D is
attracted to z. Further assume that n(x) · b(x) < 0 ∀x ∈ ∂D, where n(x) is the
outward normal vector of the boundary ∂D at the point x (that is D is invariant
under the dynamics). Then, for any x ∈ D it holds that

lim
ε→0

ε2 lnEx(τ) = min
y∈∂D

V q(z, y) , where

V q(x, y) = inf
φ

{
1

2

∫ T

0

∣∣∣φ̇(t)− b(φ(t))
∣∣∣
2

Γ-1
dt , φ(0) = x, φ(T ) = y, T > 0

}
,

where the infimum is taken over all functions φ that are absolutely continuous and
V q is called the quasipotential of the dynamics (3.11).

The theorem states that in the small-noise limit the mean first exit time scales
exponentially in 1/ε2 with rate given by the quasipotential. The functional

STφ =
1

2

∫ T

0

∣∣∣φ̇(t)− b(φ(t))
∣∣∣
2

Γ-1
dt

is referred to as rate function or action functional, where the first denomination is
due to the fact that in the small noise limit

P(Xt ≈ φ(t), t ∈ [0, T ]) ' e−STφ/ε2 .
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This means the probability that a trajectory Xt of (3.11) follows some prescribed
path φ(t) for small ε, scales exponentially in 1/ε2 and the rate is given by STφ.
Observe that STφ ≥ 0 and STφ = 0 ⇔ φ̇(t) = b(φ(t)), i.e., in the small noise limit
the dynamics follow the corresponding deterministic dynamics with probability 1.

The second name originates from physics nomenclature, where
∣∣∣φ̇(t)− b(φ(t))

∣∣∣
2

Γ-1

would be termed Lagrangian. We can further interpret the rate function as follows:
if we wanted to follow a prescribed path φ(t) with the stochastic dynamics (3.11),
then STφ measures the amount of noise which makes it possible to do so, i.e., it
measures the amount of energy needed such that Ẋt = φ̇(t) could hold true.

3.3.1 Diffusion in potential energy landscape

Consider now a diffusion in a potential energy landscape, i.e.,

dXt = −∇V (Xt) dt+ ε dWt ,

denote by V0 = V (x0) a local minimum of V such that x0 ∈ D ⊂ Rn, where D
is a domain fulfilling the assumptions of Theorem 3.24. We will first give explicit
expressions for the quasipotential in this situation – which turns out to be a scalar
multiple of the true potential V – and close the section by making the connection
to the first part of the chapter relating mean first exit times and equilibration time
scales by the seminal work of Bovier [13].

Theorem 3.25 (Theorem 3.1, Chapter 4 in [26]). Let V ∈ C2. The rate function
STφ subject to φ(0) = x0, φ(T ) = y, y ∈ ∂D is minimised by φ = φ∗ solution to
φ̇∗(t) = ∇V (φ∗(t)) and for any y ∈ ∂D the quasipotential takes the form V q(x0, y) =

2(V (y)− V0).

Proof. The short proof can be found in the appendix in Theorem A.7.

This result is known as Arrhenius law by physicists and chemists stating that
the mean time it takes for a chemical reaction to take place is exponential in the
activation energy scaled by the inverse temperature. Kramer’s law in turn also
contains the prefactor of the exponential thus giving more precise asympotics and
there are various works concerning the calculation of these. We are not particularly
interested in the prefactors, but the relation to the eigenvalues of the generator. To
this end, assume that the potential V fulfils lim inf

x→∞
V (x) =∞ , lim inf

x→∞
|∇V (x)| =∞,

lim inf
x→∞

(|∇V (x)| − 2∆V (x)) =∞. These conditions bear a close resemblance of the

conditions for a PI (see Theorem A.6) and in fact yield that the resolvent (L−λI)-1

is compact for small enough ε and hence also L is compact and admits a dicrete
spectrum (cf. [31]).

Further assume that V possesses n local minima at M = {x∗1, . . . , x∗n} which
will be ordered according to the barrier height that needs to be overcome in order
to reach any minima with a lower index. To be more precise, denote by p(a, b) =
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{γ : [0, 1]→ R, γ(0) ∈ a, γ(1) ∈ b} the set of paths from a ⊂ Rn to b ⊂ Rn. Also
introduce

V̂ (a, b) = inf
γ∈p(a,b)

sup
t∈[0,1]

V (γ(t))

which is the minimal height (or minimal saddle) that has to be crossed on the way
from a to b. It will be assumed that the minimal saddle between any two minima
is unique. The unique argument corresponding to the minimal saddle is denoted by
z(a, b) =

{
z : V (z) = V̂ (a, b)

}
. The ordering is done as follows: the first minimum

is the global minimum, i.e.,
x1 = arg minV (x)

and the next ones are listed according to barrier height – starting with the highest
– for reaching any minima with lower index, i.e.,

xj = arg max
x∗k∈M\{x1,...,xj−1}

(
V (z(x∗k,∪j−1

i=1xi))− V (x∗k)
)
, j ∈ {2, . . . , n} .

Introduce Sj = ∪j−1
i=1Bε(xi) as the union of ε-balls around the minima with lower

index than j, i.e., the union of minima corresponding to the j highest energy barriers,
and τ(Sj) = inf {t > 0 : Xt ∈ Sj} which is the associated first passage time into the
set Sj and also introduce the shorthand zk = z(xk+1,∪ki=1xi) for the kth barrier
height.

Theorem 3.26 (Proposition 4.10 in [13]). Let the above assumptions hold true.
Then the first n eigenvalues λ1 = 0 > λ2 > . . . > λn are simple and satisfy, for
small enough ε and k = 2, . . . , n,

λk ≈ −
1

Exk(τ(Sk))

≈ −|λ
−(∇2V (zk−1))|

2π

√
| det(∇2V (xk))|
| det(∇2V (zk−1))| exp

(
−2

V (zk−1)− V (xk)

ε

)
,

where λ−(∇2V (zk)) is the unique negative eigenvalue of the Hessian of V at the
minimal saddle point.

This theorem provides well-interpretable insight to the problem at hand: it es-
tablishes a connection between the eigenvalues of the generator and the slowest time
scales of the dynamics – given by transitions from metastable states to states being
energetically even more stable – in a hierarchical manner. That is, a larger eigen-
value corresponds to a larger transition time. At the same time, larger transition
times correspond to overcoming higher energy barriers, as given by large devia-
tions theory, but here we learn something about the prefactor which depends on the
curvature of the potential at the minimum and at the saddle.

The proof of the above result is based on potential theory and the analysis
of Witten Laplacians. There are also other approaches, such as e.g. the work
by Schlichting and Menz [52], who give an estimate for λ1 and the LSI constant
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αLSI in the same setting as above (Langevin dynamics) but with other techniques
based on mean-difference estimates, leading to the same result as above for λ1.
Generalizations of the result have been proven by Nectoux and others in [19] where
they derive results on exit times from a metastable state with boundary that does
not necessarily admit a unique minimal saddle. In the context of non-reversible
elliptic diffusions there is work by Bouchet and Reygner (cf. [12]) concerning also
the prefactors of the associated MFET. In this case the quasipotential takes the role
of the potential above and there is an extra term accounting for the non-reversibility
of the dynamics. Even though all approaches are more general in the sense that they
either allow for non-unique saddles or non-reversibility, the non-degeneracy of the
noise – guaranteeing uniform ellipticity of the generator – is still most essential.
Surprisingly enough, this fundamental assumption becomes redundant in the next
section by employing a control theoretic formulation of the action functional.

3.4 Mean first exit times in the small diffusion limit for
hypo-elliptic processes

3.4.1 The action functional and the controllability gramian

In this section we review results obtained by Zabczyk in 1985 in [69] which are
based on rephrasing the large deviations action functional in the language of control
theory. To this end, recall the definition of the action functional

STφ =
1

2

∫ T

0

∣∣∣φ̇(t)− b(φ(t))
∣∣∣
2

Γ-1
dt , Γ = γγT > 0 .

associated to the SDE

dXt = b(Xt) dt+ εγ dWt , (3.12)

where Xt ∈ Rn, b : Rn → Rn, ε > 0, γ ∈ Rn×n. Further introduce the correspond-
ing controlled ODE (for ε = 1)

ẋut = b(xut ) + γu(t) , (3.13)

where xut ∈ Rn, b as above, γ ∈ Rn×m and u ∈ L2([0, T ],Rm) is the control which
replaces the noise. For a given control u denote by xut the associated solution to
(3.13). The cost functional is defined as the total energy provided to the system by
the control

S̃Tx
u =

1

2

∫ T

0
|u(t)|2 dt .

Observe that if Γ = γγT has full rank then by (3.13)

S̃Tx
u =

1

2

∫ T

0
|ẋut − b(xut )|2Γ-1 dt = STx

u ,
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i.e., the cost function equals the rate function. Taking the infimum over the controls
such that the cost functional is minimised with xu(0) = 0 and xu(T ) = b for some
T > 0 (or equivalently xu(−∞) = 0 and xu(0) = b) yields the definition of the
controllability function, i.e.,

Lc(b) = inf
u

{
1

2

∫ T

0
|u(t)|2 dt, xu0 = 0, xuT = b, T > 0

}
.

In fact, the controllability function does not only agree with the action functional
in the case when the diffusion is non-degenerate, but yields a generalisation of the
action functional in the sense that the admissible systems for which a large deviations
principle can be derived is augmented in several aspects. Most importantly, it allows
for treating systems with degenerate noise. Other assumptions of Theorem 3.24
concerning the domain D and the quasipotential

Ṽ q(a, b) = inf
φ

{
S̃Tφ, φ(0) = a, φ(T ) = b, T > 0

}

also change:

Assumption A3. We say assumption A3 holds if the following conditions are
satisfied.

(i) Let ż(t) = b(z(t)) and z(t, z0) the solution to the initial condition z(0) = z0.
Assume that there is a domain G ⊃ D̄ such that z∗ ∈ D is an asymptotically
stable fixed point for this domain. That is, ∀z0 ∈ G, ∀δ > 0, ∃t0 > 0 such
that |z(t, z0)− z∗| < δ, ∀t ≥ t0.

(ii) Assume that the linearization of b around z∗ given by the Jacobian A = ∇b(z∗)
together with γ fulfils the Hörmander or Kalman rank condition
rk[γ,Aγ, . . . , An−1γ] = n.

(iii) There exist neighbourhoods N1, N2 of z∗ and ∂D respectively such that the
quasipotential Ṽ q is continuous on these neighbourhoods.

Further introduce the notation

D0 =

{
x ∈ D : inf

y∈∂D
|z(t, x)− y| > 0 ∀ t > 0

}
. (3.14)

Let us comment on these assumptions: the first one relaxes the previous condition,
which asked for z∗ being asymptotically stable as well as for D being invariant and
the latter is omitted in the new assumptions. The second assumption basically
compensates for the possible degeneracy of the noise: it guarantees that through in-
teraction of drift and noise, the noise will eventually spread into all space directions
(compare also with the Hörmander condition in Theorem 2.13 and the conditions for
existence and uniqueness of an invariant measure for OU-processes in Example 2.14).

We have the following theorem which yields that the novel quasipotential Ṽ q

determines the corresponding rate for the exit from the domain.
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Theorem 3.27 (Theorem 4 and 5 in [69]). Let A3 hold true. Then, for all x ∈ D0

it holds that
lim
ε→0

ε2 lnEx(τ) = inf
y∈∂D

Ṽ q(z∗, y) =: ∆Ṽ q .

Further, denoting by E =
{
y ∈ ∂D : Ṽ q(z∗, y) = ∆Ṽ q

}
the set of points for which

the infimum on the boundary ∂D for Ṽ q is attained, it holds that for any δ > 0

lim
ε→0

Px(|Xτ − E| < δ) = 1 .

3.4.2 OU-processes

We now come to the nice result, that for OU-processes the controllability gramian
– and thus also the rate function as well as E the exit direction – is explicitly
computable.

Theorem 3.28 (Proposition 1.1 in [70] or [42]). Consider the linear control system

ẋu = Axu + γu, (3.15)

where A ∈ Rn×n, γ ∈ Rn×m, u ∈ Rm and assume that rk[γ,Aγ, . . . , An−1γ] = n.
Then, the control

û(s) = −γTBT
T−sQ

-1
T (BTa− b) , where Bt = eAt, Qt =

∫ t

0
Brγγ

TBT
r dr

transfers any state a ∈ Rn to b ∈ Rn in time T , i.e., xû(0) = a, xû(T ) = b.
Furthermore,

Qt1 > Qt2 , for t1 > t2

and

û(s) = arg min
u∈L2([0,T ],Rm)

T∫

0

|u(s)|2 ds

is the unique minimiser of the cost function.

Proof. By the variation of constants formula the solution to (3.15) is

xu(t) = etAxu(0) +

t∫

0

e(t−s)Aγu(s) ds = Btx
u(0) +

t∫

0

Bt−sγu(s) ds . (3.16)

Further note that by the rank condition Qt is invertible for all t > 0. In fact Qt = QT
t

and Qt > 0, t > 0. Let xû(0) = a, then by the definition of Qt

xû(T ) = Bta−
T∫

0

BT−sγγTBT
T−s ds Q

-1
T (Bta− b) = b .
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Also, for t1 > t2 we have Qt1 − Qt2 =
∫ t1
t2
Brγγ

TBT
r dr > 0 by the Kalman rank

condition.
Now compute the cost associated to û

T∫

0

|û(s)|2 ds =

T∫

0

∣∣γTBT
T−sQ

-1
T (BTa− b)

∣∣2 ds

=

T∫

0

(
BT−sγγTBT

T−s Q
-1
T (BTa− b)

)
·
(
Q-1
T (BTa− b)

)
ds

=




T∫

0

BT−sγγTBT
T−sds Q

-1
T (BTa− b)


 ·

(
Q-1
T (BTa− b)

)

= (BTa− b)TQ-1
T (BTa− b)

Let u be any other control such that xu(0) = a, xu(T ) = b which implies by (3.16)

−
T∫
0

BT−sγu(s) ds = BTa− b. Then

T∫

0

u(s)Tû(s)ds = −
T∫

0

u(s)TγTBT
T−sQ

-1
T (BTa− b)ds

= −




T∫

0

BT−sγu(s) ds




T

Q-1
T (BTa− b)

= (BTa− b)TQ-1
T (BTa− b) =

T∫

0

|û(s)|2 ds

which implies that

0 ≤ |u− û|2 = u2 − 2uû+ û2 = u2 − û2

and thus u2 ≥ û2 which concludes the proof.

By means of this theorem, the upcoming theorem, which will provide results for
MFET for OU-processes, is an easy corollary.

Theorem 3.29 (Theorem 6 in [69]). Consider the SDE

dXt = AXt dt+ εγ dWt , X0 = x0 .

Let A, γ satisfy assumptions A2, define D = {x ∈ Rn : |x| ≤ r} to be the ball with
radius r around the origin and

τ = inf {t > 0 : Xt /∈ D}
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to be the first exit time from the ball. It then holds that ∀ x0 ∈ D0 (with D0 as in
Theorem 3.27)

lim
ε↘0

ε2 logEx0(τ) =
1

2λmax(Σ∞)
r2 , with Σ∞ = Q∞.

Furthermore, the set of most probable exit points (as defined in Theorem 3.27) is
given by the corresponding eigenvectors

E = {x ∈ Rn : Σ∞x = λmax(Σ∞)x, |x| = r} .

Proof. This follows by the definition of the quasipotential Ṽ q, Theorems 3.27 and
3.28 which gives Ṽ q(0, a) = 1

2a
TΣ-1
∞a. This implies Ṽ q(0, a) ≥ 1

2λmin(Σ-1
∞)|a|2 such

that inf
a:|a|=r

Ṽ q(0, a) = 1
2λmin(Σ-1

∞)r2 = 1
2λmax(Σ∞)r

2.

This in turn enables us to establish a relation between MFETs and the relaxation
time scale for possibly hypo-elliptic OU-processes. The following result can be found
in our publication [54].

Proposition 3.30. Let v ∈ Rn be the normalised eigenvector of −AT corresponding
to the eigenvalue with the minimum real part given by λ∗ = min {Re(λ) : −Ax = λx,

x 6= 0}. Introduce the splitting of v = vKer + vIm, where vKer ∈ ker(Γ),Γ = γγT ,
v ∈ Im(Γ) and let λmin(Γ) = {λ > 0 : Γx = λx} . Then

λ∗ ≥ λmin(Γ)

2λmax(Σ∞)
|vIm|

Proof. Note that by Assumption A2 vIm 6= 0. We multiply the Lyapunov equa-
tion AΣ∞ + Σ∞AT = Γ from left and right by vTand v respectively which gives
2λ∗ vTΣ∞v = vTΓv. Now, vTΣ∞v ≤ λmax(Σ∞) and vTΓv = vT

ImΓvIm ≥ λmin(Γ)|vIm|
which yields the assertion.

Thus, for hypo-elliptic OU-processes, we can determine the rate of convergence
to equilibrium, which is given by the smallest realpart of the eigenvalue λ∗ of −A,
as well as the rate with which the MFET scales as ε → 0 being proportional to
1/(2λmax(Σ∞)). Even the spectral gap is known, which is also given by λ∗ (see [53]).

3.4.3 Underdamped Langevin dynamics

In this paragraph we derive concrete expressions for MFETs for underdamped
Langevin dynamics by means of the previously reviewed theory. To this end, we
rely on results by Newman and Krishnaprasad [56], who computed the associated
controllability function.

Consider the underdamped Langevin dynamics in R2n

dZt =

(
0 In×n

−In×n −γ

)
∇H(Zt)dt+ ε

(
0

σ

)
dBt , (3.17)
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where Z = (q, p), with q, p ∈ Rn and H : R2n → R being the system’s Hamiltonian,
γ, σ ∈ Rn×n comprising the friction and forcing coefficients respectively and let the
following fluctuation-dissipation relation hold

γij
(σσT)ij

= l, ∀ i, j, where l > 0. (3.18)

We begin with stating the result which provides us with the controllability func-
tion for underdamped Langevin dynamics. To this end, introduce the to (3.17)
associated controlled ODE

Żut =

(
0 In×n

−In×n −γ

)
∇H(Zt) + ε

(
0

σ

)
ut , (3.19)

for which the noise is again replaced by the control ut.
Different to the case of linear SDEs one cannot hope to find an explicit expression

for the optimal control, steering the system from a to b within time T . Instead one
has to resort to solving the associated Hamilton-Jacobi-Bellman (HJB) equation
by which we obtain the minimum of the associated cost directly (for a proof of this
result see, e.g., Theorem 3.2 in [65]): the HJB equation corresponding to (3.19) with
ε = 1, seeking the optimal control u such that

∫ 0
−∞ |ut|

2 dt subject to zu(−∞) =

0, zu(0) = x is minimised, reads

(
0 In×n

−In×n −γ

)
∇H · ∇Lc +

1

2
(∇Lc)T

(
0 0

0 σσT

)
∇Lc = 0 , Lc(0) = 0

and its solution Lc satisfies indeed

Lc(x) = inf
u

{
1

2

∫ 0

−∞
|ut|2 dt , zu(−∞) = 0, zu(0) = x

}
,

i.e., Lc(z) gives the minimum energy needed to steer from w.l.o.g. 0 to any other
state x in arbitrary time. Now, this result has been used in [56] and equips us with
the following convenient form of Lc.

Theorem 3.31 (Theorem 3.2 in [65], Theorem 2.5 in [56]). Assume that (3.18) and
∇H(0) = 0 hold true. Further assume there exists a domain D with 0 ∈ D such
that ∇2H(z) > 0 ∀z ∈ D holds. Then the unique controllability function of system
(3.17) with ε = 1 is given by

Lc(z) = 2lH(z) + C ∀z ∈ D,

where C is chosen such that Lc(0) = 0.

The combination of Theorem 3.31 and Theorem 3.27 directly establishes the
following corollary.
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Corollary 3.32. Let the assumptions of Theorem 3.27 for b(z) =
(

0 In×n
−In×n −γ

)
∇H(z)

together with the fluctuation-dissipation relation (3.18) hold true and choose the do-
main D ⊂ R2n accordingly. Assume that w.l.o.g. 0 ∈ D is the asymptotically stable
fixed point.
Then, for any z ∈ D0, with D0 as in (3.14), it holds that

lim
ε→0

ε2 logEz(τ) = inf
y∈∂D

2lH(y) + C. (3.20)

Proof. This follows directly by employing Theorem 3.31 and Theorem 3.27.

Remark 3.33. If rk(σ) = n and ∇2
qH(0) 6= 0 the rank condition (ii) of A3 is

fulfilled.

We illustrate the results of Corollary 3.32 in Section 6.3 on the example of a
double pendulum.

3.4.4 A relation between the spectral gap and a MFET for under-
damped Langevin dynamics

Now, let the Hamiltonian H be given by H(q, p) = 1
2 |p|2 + V (q). Provided that

V satisfies certain assumption, we can apply our previous result, Corollary 3.32,
and establish a relation between a MFET and the spectral gap, bearing the same
structure known from Theorem 3.26 that relates MFETs and eigenvalues of the
generator for overdamped Langevin dynamics.
To this end, we state a result by [32], giving a description of the generators spectrum
for underdamped Langevin.

Theorem 3.34 ( [32], also see Theorem 4.9 in [66]). Let the Hamiltonian H be
given by H(q, p) = 1

2 |p|2 + V (q), where V is smooth and satisfies the conditions of
Theorem 3.26. Then ∃ ε∗ > 0 such that for all 0 < ε < ε∗ the associated generator
L has n simple eigenvalues λ1 = 0 > λ2 > . . . > λn which satisfy for k = 2, . . . , n,

λk ≈ −
|λ−|
2π

√
| det(∇2V (xk))|
| det(∇2V (zk−1))| exp

(
−2

V (zk−1)− V (xk)

ε2

)
,

where λ− is the unique negative eigenvalue of the matrix
(

0 In×n
∇2V (zk−1) γ

)
and

we use the same notation as in Theorem 3.26.

The following corollary establishes a connection between the spectral gap of
the generator and a MFET for underdamped Langevin dynamics, which – to our
knowledge – is new, dealing with an instance of a hypo-elliptic process here.
We use the same notational conventions as in Theorem 3.26 and we recall that
z1 is the maximum of all minimal saddles, where each minimal saddle connects a
minimum of V with the global minimum x1 of V . The minimum which corresponds
to the minimal saddle z1 in order to reach the global minimum x1 is denoted by x2.
For a more detailed detailed definition of these quantities see Section 3.3.1.
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Corollary 3.35. Consider the Langevin dynamics (3.17), let w.o.l.g. x2 = 0, V (x2) =

0 and assume that x2 is an asymptotically stable fixed point for the domain D ={
z ∈ R2n : |z| ≤ |z1|

}
. Assume that D satisfies conditions A3 and that the fluctuation-

dissipation relation (3.18) holds with l = 1. If inf
y∈∂D

H(y) = V (z1) then, for all

z0 ∈ D0 (with D0 as in (3.14)) and small enough ε it holds that

λ2 ' −1/Ez0(τ) ,

where τ = inf {t > 0 : Zt /∈ D} .

Here ' is used for the logarithmic equivalence of the two quantities (also see the
proof below).
Let us comment on the condition inf

y∈∂D
H(y) = V (z1). Note that

{
z ∈ R2n : z = (q, 0), |q| = |z1|

}
⊂
{
z ∈ R2n : H(z) = inf

y∈∂D
H(y)

}
,

for H(q, p) = 1
2 |p|2 + V (q). We do not need the minimum of H in ∂D to be unique,

hence the required condition inf
y∈∂D

H(y) = V (z1) can be rephrased as V (q) ≥ V (z1)

for all q ∈ Rn with |q| = |z1|.

Proof of Corollary 3.35. The proof is a mere combination of the results of Theorem
3.34 and Corollary 3.32 which hold under the assumptions: the first one states

that for small enough ε we have λ2 ≈ −c e−2
V (z1)

ε2 such that lim
ε→0

ε2 log(−λ2) =

lim
ε→0

ε2
(

log(c)− 2V (z1)
ε2

)
= −2V (z1) and the second one gives lim

ε→0
ε2 logEz0(τ) =

2V (z1). Thus, for small enough ε we have −λ2 ≈ 1/Ez0(τ).

Remark 3.36. This result can straightforwardly be extended to relate the kth

eigenvalue with the exit from the kth minimum, where k = 2, . . . , n, as long as the
corresponding domain fulfils the required assumptions.

Remark 3.37. Note that even though this result has the same flavour as the one
for the overdamped Langevin dynamics, Theorem 3.26, there is the difference of the
first exit time from the domain corresponding to the minimum x2 versus the first
passage time into the domain around the global minimum x1. Intuitively speaking,
the exit and passage time should be differ by a factor of 2, since once the process
has left the domain around x2, meaning it has reached the minimal saddle z1, the
dynamics will quickly either reach the domain around global minimum x1 or return
to the local minimum x2 (also see [19] for a discussion).

Admittedly, we are not providing a relation to the relaxation behaviour here.
There are various works concerned with the rate of convergence for underdamped
Langevin dynamics: in [2] convergence in relative entropy is derived, whereas con-
vergence in L2 has been proven in [33] and [20].





Chapter 4

Model reduction

Working with complex multi-scale processes requires a lot of computational power
in order to treat these problems simulation-wise. For example, the simulation of the
motion of a single protein involves three spatial variables – and sometimes, addition-
ally, three momentum variables – for thousands of atoms. Moreover, the smallest
time scale involved has usually the order of femtoseconds, that is, 10−15 seconds.
Aiming at simulating the dynamics of the protein up to the order of a second, which
is the time scale on which conformational changes occur, this is hardly feasible.
Since the main interest usually lies exactly in the simulation of the slow processes,
in this case the conformational changes of the molecule, some help is needed. This is
where model reduction techniques come into play, providing us with models that live
on a much lower dimensional space, e.g., in the case when the conformational change
is described by a change in some dihedral angle this can even be a one-dimensional
torus. Furthermore, the simulation step can now be increased, since the fast degrees
of freedom, such as quickly vibrating bonds, have been eliminated. Hence, model
reduction techniques are important tools to study long time properties of complex
multi-scale dynamics. Obviously, this postulates that the model reduction yields a
good approximation of the original dynamics in some sense.

In this chapter the focus lies on the model reduction technique of effective dynam-
ics also referred to as conditional expectations which has been introduced in [43]. In
the first works on this technique, error bounds for reversible gradient systems were
proven (see [43, 44]). These have recently been augmented in [45] to non-reversible
processes for which the authors prove pathwise, i.e. trajectorial error bounds if the
reduced models variable is an affine function of the full dynamics. Here, we extend
the results of [43], by considering non-reversible two-scale processes for which effec-
tive dynamics yields a reduced model for the slow degrees of freedom only. After
introducing the concept of effective dynamics, Section 4.2 is devoted to the deriva-
tion of different error bounds for the reduced dynamics. Since two-scale processes
are the natural objects for the model reduction technique named averaging, we will
compare the two methods in Section 4.3. Again, we find that irreversibility plays
a crucial role in the analysis and we derive sufficient conditions which guarantee
conformity of the two approaches for OU-processes in the limit of infinite time scale
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separation. In the last section of the chapter, Section 5.2, we devote ourselves to the
issue of sampling conditional distributions for non-reversible processes, which are for
example needed for computing effective dynamics coefficients. Once more the usual
approach for reversible processes fails for non-reversible ones and we design a pro-
jection for possibly non-reversible dynamics, which yields the correct distribution.

Let us now start by giving the precise definition of a two-scale process followed
by a teaser for Section 4.3 dealing with the comparison.
We refer to a two-scale process if the corresponding SDE is of the form

dXt = f1(Xt, Yt) dt+ γ1(Xt, Yt) dWt, Xt=0 = X0

dYt =
1

ε
f2(Xt, Yt) dt+

1√
ε
γ2(Xt, Yt) dUt, Yt=0 = Y0 ,

(4.1)

where 0 < ε � 1 is the time scale separation parameter, X ∈ Rnx , Y ∈ Rny , f1 :

Rn → Rnx , γ1 : Rn → Rnx×nx , f2 : Rn → Rny , γ2 : Rn → Rny×ny , n = nx + ny and
W,U are standard nx, ny-dimensional Brownian motions respectively. Let us also
introduce the more compact form of (4.1) by writing Z = (X,Y ) ∈ Rn and

dZt = f ε(Zt) dt+ γε(Zt) dBt, (4.2)

with f ε =
(

f1
f2/ε

)
, γε =

(
γ1 0
0 γ2/

√
ε

)
, B =

(
W
U

)
.

Note, that the time of the fast variable Y is indeed accelerated by a factor of 1/ε

compared to the slow dynamics X.

A reversible example

Before we learn the precise methodologies of what we refer to as averaging and
conditional expectations let us present a simple example given by the reversible
dynamics

dXt = ∇xV (Xt, Yt) dt+ dWt, Xt=0 = X0

dYt =
1

ε
∇yV (Xt, Yt) dt+

1√
ε
dUt, Yt=0 = Y0 ,

assuming that the potential V grows sufficiently fast such that we have a unique
invariant measure µ ∼ e−V . The method of conditional expectations computes the
effective dynamics

dX̄t = ∇V̄ (X̄t) dt+ dWt ,

where

V̄ (x) =

∫
V (x, y) dµx(y) and µx(y) =

µ(x, y)∫
µ(x, y) dy

is the conditional of µ for given X = x. Clearly, µx ∼ e−Vx(y) where the subscript
x indicates that x is not a variable any more, but fixed. The method of conditional
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expectations is based on the idea of optimal prediction for the variable of interest
in an L2 sense (see [17]) together with the idea that the conditional measure of the
fast variable, given the slow variable, will quickly relax to its equilibrium and thus
computes averages of the slow process’ coefficients with respect to the conditional
of the invariant measure of the full process.
On the other hand, the averaging principle, yields the equation

dXav
t = V av(Xav

t ) dt+ dWt , where V av(x) =

∫
V (x, y) dνx(y)

and νx is the invariant measure of the fast dynamics Yt in which the slow Xt is
treated as constant. This method is based on the decomposition of the generator
into orders of 1/ε and deducing the action of the lowest order or slowest time scale
by solution methods for the associated PDE. For our example, the invariant measure
of Yt for fixed Xt = x is νx ∼ e−Vx(y), where again the subscript x indicates that x
is not a variable any more, but fixed.
Thus, for reversible dynamics, the two methods agree, which is not necessarily the
case for non-reversible dynamics, as the upcoming example shows.

A non-reversible example

In order to make the differences in averaging and conditional expectations obvious
at the same time motivating the relevance of our work, we next give a simple non-
reversible example.
To this end, consider the two-dimensional SDE

dXt = (−Xt + Yt) dt

dYt = −1

ε
Yt dt+

1√
ε
dBt , ε > 0 ,

which is an OU-process fulfilling assumption A2 for any fixed ε > 0 and its invariant

measure is µ ∼ N (0,Σ), where Σ =

(
ε

2(ε+1)
ε

2(ε+1)
ε

2(ε+1)
1
2

)
.

Averaging will give that Xε
t → Xav

t as ε → 0, with Xav
t being the solution to the

ODE
Ẋav
t = −Xav

t .

On the other hand, the method of conditional expectations yields, for any ε > 0,
the approximation Xce

t solution to the ODE

Ẋce
t = 0 .

Clearly, the behaviour of the two equations is qualitatively very different: the
solution of the averaged equation will - independent of the initial value - always
decay towards 0, whereas the effective dynamics will constantly stay at the initial
value. This example is meant to serve as an appetizer and will be discussed in more
detail in Section 4.3.2.
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4.1 Conditional expectations

We now derive the first model reduction technique, which we refer to as conditional
expectation or effective dynamics. The idea of using conditional expectations in or-
der to formulate equations for certain variables of interest has first been put forward
by Chorin and Kupferman in the article [17], and they refer to the method as opti-
mal prediction. The idea is to resolve only certain variables of interest, while using
available statistical information of the other unresolved variables in order to make an
optimal prediction for the dynamics of the resolved variables in an L2-sense. That
is, the functions in x and y describing the full dynamics are approximated by the
corresponding functions in x which minimise the L2 distance between the two. In
other words, the approximation is performed by computing conditional expectations
for which the available statistical information enters.
These ideas have been formalised and further developed by Legoll and Lelièvre
in [43].

Throughout this chapter we assume that drift and diffusion coefficients of (4.1)
are such that (Zt)t≥0 admits a unique invariant measure dµ(z) = 1

Z̃
e−V (z) dz, where

Z̃ is the normalisation constant, which entails by Proposition 2.11 that f ε can be
recast as

f ε(z) = −Γε(Zt)∇V ε(Zt) +∇ · Γε(Zt) +Dε(Zt) , (4.3)

with Γε = γε(γε)T =
(
γ1γT1 0

0 γ2γT2 /ε

)
, ∇ · (Dεµ) = 0 .

Derivation of the effective dynamics

Looking at (4.1) the first equation describes the dynamics for Xt alone but it clearly
depends on Yt. Following the work of Gyöngy [28] we introduce the closed dynamics
by taking expectations with respect to the conditional time marginal ρt,x - the
subscript x indicating the condition Xt = x - that is,

dX̂t =f̂(t, X̂t)dt+ γ̂(t, X̂)dWt, where (4.4)

f̂(t, x) := E [f1(Xt, Yt)|Xt = x] =

∫

Rny
f1(x, y) dρt,x(y), and

γ̂(t, x) := E [γ1(Xt, Yt)γ1(Xt, Yt)
T|Xt = x]1/2

=

(∫

Rny
γ1(Xt, Yt)γ1(Xt, Yt)

T dρt,x(y)

)1/2

.

By the work of Gyöngy it is known that the marginals (i.e. push-foward under the
coarse graining map ξ(z) = x) of Xt and X̂t coincide for each t, i.e.,

ρ̂t := law(Xt) = law(X̂t).
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In particular this means that ρ̂t solves the Fokker-Planck equation that corre-
sponds to (4.4)

∂tρ̂t = −∇ · (f̂ ρ̂t) +∇2 : (Γ̂ρ̂t), ρ̂t=0 = ρ̂0, where Γ̂ = γ̂γ̂T . (4.5)

For a proof see [43, Lemma 2.3] or [21, Proposition 2.8].
Now, computationally (4.4) is still not a big improvement to the original equation

(4.1), as the functions f̂ and γ̂ are time dependent and hence have to be recomputed
at each time t. In particular, they depend on ρt,x which is the conditional of ρt,
the solution of the original Fokker-Planck equation, and computing ρt and ρt,x (or
averages with respect to it) is not an easy task itself. Assuming that for each fixed
x the conditional density ρt,x converges fast to its equilibrium µx – where again the
subscript x indicated the condition X = x – the next approximation unfolds and
equips us with the time independent SDE, the so-called effective dynamics

dX̄t =f̄(X̄t) dt+ γ̄(X̄) dWt, where (4.6)

f̄(x) =

∫

Rny
f1(x, y) dµx(y) , and

γ̄(x) =

(∫

Rny
γ1(x, y)γ1(x, y)T dµx(y)

)1/2

.

Along with the dynamics, we introduce the notation

ρ̄t := law(X̄t).

In the following, we will compare ρ̄t to ρ̂t, that is, the distribution of the effective
to the distribution of the original process.

Remark 4.1 (Optimal prediction). The functions f̄ , γ̄ are optimal approximations
of f1, γ1 in the L2

µ-sense, i.e.,

f̄(X) = Eµ(f1(Z)|X) = arg min
f∈L2

µ

Eµ
(
(f1(Z)− f(X))2

)

and γ̄(X) = Eµ(γ1(Z)|X) = arg min
γ∈L2

µ

Eµ
(
(γ1(Z)− γ(X))2

)
.

4.2 Error estimates

Aiming at deriving reduced models that approximate the original dynamics well, this
section furnishes the reader with error estimates in different norms for model reduc-
tion, conducted via conditional expectations, as explained in the previous section.
We will start comparing the time t marginals of the original and effective dynamics,
given by ρ̂t and ρ̄t respectively, which are useful when computing averages with re-
spect to the time t distribution of the process. We will derive the estimates first in
relative entropy in Section 4.2.1 and second in Wasserstein distance in Section 4.2.2.
The latter distance is weaker by the Talagrand Inequality (see Definition 3.19), but
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the estimate has one favourable property, which is that, even for diffusion matrices
Γ = Γ(X,Y ) depending on both slow and fast variables, the errorbound is linear
in the time scale separation parameter ε and thus the error vanishes as ε → 0. In
Section 4.2.3 we finally state results on the error between the law of the paths which
is useful when computing averages over the paths, as done e.g. for mean first exit
times or other dynamic properties of the dynamics.

Apart from using the definitions of Chapter 3, we need one more inequality that
will be of central importance to the proofs. It is given by the following proposition.

Proposition 4.2 (Theorem 1.1 in [11]). Let T > 0 be fixed. Let νt, µt ∈ P(Rn) be
smooth solutions to the Fokker-Planck equations

∂tνt = −∇ · (b1νt) +∇2 : (A1νt),

∂tµt = −∇ · (b2µt) +∇2 : (A2µt),

where bi : Rn → Rn and Ai : Rn → Rn, i = 1, 2. Define

ht = (b1 − b2) + (∇ ·A1 −∇ ·A2) + (A1 −A2)∇ lnµt

and assume that |ht|A−1
1
∈ L2

µt(R
n × [0, T ]). Further let the coefficients fulfil the

following conditions:
(1 + |z|)−2|(A1)ij |, (1 + |z|)−1|b1|, (1 + |z|)−1|ht| ∈ L1

µt(R
n × [0, T ]). Then

H(µT |νT ) ≤ H(µ0|ν0) +

∫ T

0

∫

Rn
|ht|2A−1

1
dµt dt.

Due to the considerations of the thesis [67], we will refer to the last inequality
as the Free-energy–rate-functional–relative-Fisher-Information Inequality or in short
FIR inequality.

Since we want to compare conditional expectations and averaging, we keep ε-
dependency of the functions at hand. Yet, for notational simplicity we drop the
ε-superscript throughout the section, since possibly all functions of interest - that
is f, D, V, ρt, ρt,x, µ, µx - depend on ε. Only the diffusion matrix retains the
previous notation, i.e., we write

Γε =

(
Γ1 0

0 Γε2

)
, Γε2 =

1

ε
Γ2 .

Further, introduce the notation D =
(
D1
D2

)
, D1 : Rn → Rnx , D2 : Rn → Rny .

The following assumptions are needed in both estimates, the relative entropy esti-
mate as well as the Wasserstein estimate.
(B1) The diffusion coefficients Γ1, Γ2 are uniformly bounded from below, i.e.,

∃λmin(Γ1), λmin(Γ2) ∈ R+ : ∀ z ∈ Rn Γ1 ≥ λmin(Γ1) , Γ2 ≥ λmin(Γ2) .
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(B2) The conditional measure µx satisfies a static Logarithmic-Sobolev-Inequality
(LSI) uniformly for all x ∈ Rnx with constant αLSI. In particular it holds that

H(ρt,x|µx) ≤ 1

2αLSI
R(ρt,x|µx) , ∀x ∈ Rnx .

Assumption A4. We say that Assumption A4 holds true if (B1)-(B2) together
with the assumptions of Proposition 4.2 hold.

4.2.1 Relative Entropy

In this section we state and prove estimates for the time t marginals of the law of
the effective (4.6) and original dynamics (4.4) given by ρ̄t and ρ̂t respectively.
We begin by stating the assumptions of this section. In the case that the diffusion
coefficient of the slow process is constant these assumptions boil down to the drift
f1 being Lipschitz continuous in y and the diffusion coefficients of the slow process
being non-degenerate (see Corollary 4.6). In the general case, when Γ1 = Γ1(x, y),
the assumptions read:

(H1) The function C(x, y) := Γ̄(x)−1/2D1(x, y) − Γ̄(x)1/2∇xV (x, y) is Lipschitz in
the second argument, i.e. |C(x, y1)− C(x, y2)| ≤ LC |y1 − y2|

(H2) Γ̄−1/2(Γ1 − Γ̄) is uniformly bounded from above, i.e., ∃κ < ∞ such that
∀x ∈ Rnx , y ∈ Rny : Γ̄−1/2(x)(Γ1(x, y)− Γ̄(x)) ≤ κ In×n.

Remark 4.3. If the diffusion is uniformly bounded from above and below, i.e.,
∃m,M such that 0 < m < Γ(z) < M <∞, then (H2) holds true.

Remark 4.4. The results also include generalised reversible processes, which cor-
respond to C = 0 in the above decomposition. The case C = 0 and Γ = In×n
corresponds to the overdamped Langevin dynamics and has also been treated in [21].

Let us now state the main result of the section.

Theorem 4.5. Consider the dynamics given by (4.1) and the approximation for
the slow dynamics given by (4.6). Let A4, (H1) and (H2) hold true. If the initial
distributions agree, i.e., ρ̂0 = ρ̄0 then for any t > 0 it holds that

H(ρ̂t|ρ̄t) ≤
(
ε

L2
C

α2
LSIλmin(Γ2)

+
κ2

λmin(Γ1)

)
H(ρ0|µ).

If Γ1 = Γ1(x), i.e., the diffusion only depends on the slow variable, the result
simplifies to:

Corollary 4.6. Let Γ1 = Γ1(x) and assume the conditions of Theorem 4.5 hold
true. Then

H(ρ̂t|ρ̄t) ≤ ε
L2

α2
LSIλmin(Γ2)λmin(Γ1)

H(ρ0|µ),

where L is the Lipschitz constant of f1 −∇x · Γ1 = −Γ1∇xV +D1 in y.
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Note that in particular L is independent of ε, since f1 and Γ1 are independent
of ε by the structure of the equation.

For the proof we will make use of the following useful lemma.

Lemma 4.7. Let (B1)-(B2) hold true, then
∫

Rnx
H(ρt,x|µx)ρ̂t(x)dx ≤ − ε

2αLSIλmin(Γ2)

d

dt
H(ρt|µ) .

Proof of Lemma 4.7. According to assumption (B1), (B2) and using the notation
Γε2 = 1

εΓ2 we have

H(ρt,x|µx) ≤ 1

2αLSI
R(ρt,x|µx) =

1

2αLSI

∫

Rny

∣∣∣∣∇y ln
ρt,x
µx

∣∣∣∣
2

dρt,x(y)

≤ ε

2αLSIλmin(Γ2)

∫

Rny

∣∣∣∣∇y ln
ρt,xρ̂t
µxµ̂

∣∣∣∣
2

Γε2

dρt,x(y)

≤ ε

2αLSIλmin(Γ2)

∫

Rny

∣∣∣∣∇y ln
ρt
µ

∣∣∣∣
2

Γε2

+

∣∣∣∣∇x ln
ρt
µ

∣∣∣∣
2

Γ1

dρt,x(y)

=
ε

2αLSIλmin(Γ2)

∫

Rny

∣∣∣∣∇ ln
ρt
µ

∣∣∣∣
2

Γε
dρt,x(y) .

Integrating the inequality with respect to ρ̂t and using Lemma 3.9 yields
∫

Rnx
H(ρt,x|µx)ρ̂t(x) dx ≤ ε

2αLSIλmin(Γ2)

∫

Rn

∣∣∣∣∇ ln
ρt
µ

∣∣∣∣
2

Γε
dρt(z)

= − ε

2αLSIλmin(Γ2)

d

dt
H(ρt|µ) .

Proof of Theorem 4.5 and Corollary 4.6. The densities ρ̂t and ρ̄t of the Gyöngy and
effective dynamics solve the Fokker-Planck equations corresponding to (4.4) and
(4.6), i.e.

∂tρ̂t = −∇x · (f̂ ρ̂t) +∇2
x : (Γ̂ρ̂t), ρ̂t=0 = ρ̂0, where Γ̂ = γ̂γ̂T

∂tρ̄t = −∇x · (f̄ ρ̄t) +∇2
x : (Γ̄ρ̄t), ρ̄t=0 = ρ̄0, where Γ̄ = γ̄γ̄T.

We will mostly omit the arguments of the functions for compactness of notation.
Whenever a function has a ·̄ or ·̂ on it, it is a function of x. If there is subscript x it
is a function of y and if there is no marking it will in general be a function of both
x and y unless stated differently.
According to Proposition 4.2 it holds that

H(ρ̂T |ρ̄T ) ≤ H(ρ̂0|ρ̄0) + IL̄(ρ̂T ) =

∫ T

0

∫

Rnx
|ht(x)|2Γ̄-1 dρ̂t(x) dt, where

ht(x) = −f̄(x) +∇x · Γ̄(x)− (−f̂(x) +∇x · Γ̂(x)) + (Γ̄(x)− Γ̂(x))∇x(ln ρ̂t(x)).

Hence, the aim is to estimate the right hand side of the inequality.
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Corollary 4.6

Let us start with the calculation for the corollary since it is a lot easier but already
reveals the structure of the proof. So Γ1 = Γ1(x) and thus Γ̄ = Γ̂ which implies

ht = −f̄ + f̂ =

∫
g(x, y)(ρt,x − µx) dy ,

where we introduce g(x, y) = −Γ1(x)∇xV (x, y) + D1(x, y). Let Π be any coupling
of ρt,x and µx (see Definition 3.17) and use again the same notation for density
and measure dΠ(y1, y2) = Π(y1, y2) dy1 dy2. By applying (B1) in the first, Jensen’s
inequality in the second and the Lipschitz assumption for g in the last step, we find

|ht|2Γ̄-1 ≤ 1

λmin(Γ1)

∣∣∣∣
∫
g(x, y1)− g(x, y2) dΠ(y1, y2)

∣∣∣∣
2

≤
∫
|g(x, y1)− g(x, y2)|2 dΠ(y1, y2)

≤ L2

λmin(Γ1)

∫
|y1 − y2|2 dΠ(y1, y2) ,

and taking Π to be the measure which minimises the last expression, we find by
assumption (B2) and the TI (Lemma 3.20) that

|ht|2Γ̄-1 ≤
L2

λmin(Γ1)
W(ρt,x|µx)2 ≤ 2L2

αLSIλmin(Γ1)
H(ρt,x|µx).

Employing this estimate together with Lemma 4.7 and the FIR inequality yields the
result, since

H(ρ̂T |ρ̄T ) ≤
∫ T

0

∫

Rnx
|ht(x)|2Γ̄-1 dρ̂t(x) dt

≤ 2L2

αLSIλmin(Γ1)

∫ T

0

∫

Rnx
H(ρt,x|µx) dρ̂t(x) dt

= − 2L2

αLSIλmin(Γ1)

ε

2αLSIλmin(Γ2)

∫ T

0

d

dt
H(ρt|µ) dt

= −ε L2

α2
LSIλmin(Γ1)λmin(Γ2)

(H(ρt|µ)−H(ρ0|µ))

≤ ε L2

α2
LSIλmin(Γ1)λmin(Γ2)

H(ρ0|µ) .

The calculation for the general case follows the same line, only the estimation of ht
becomes more involved.

The calculation for the general case: Theorem 4.5

First, we calculate the terms appearing in ht and start with∇x·Γ̄ =

(
nx∑
i=1

∂xi
(
Γ̄
)
ji

)

1≤j≤nx
,

where
(
Γ̄
)
ji

=
(
Γ̄
)
ij
is the (j, i)-th entry of Γ̄. To make the calculation more trans-
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parent consider the ith summand first:

∂xi
(
Γ̄
)
ji

= ∂xi

∫

Rny
(Γ1)ji dµx =

∫

Rny
∂xi

(
(Γ1)ji µx(y)

)
dy

=

∫

Rny
∂xi

(
(Γ1)ji

µ

µ̂(x)

)
dy

=

∫

Rny

(
∂xi (Γ1)ji + (Γ1)ji ∂xi(lnµ)− (Γ1)ji ∂xi(ln µ̂)

)
µx dy

Now, noting that
nx∑
i=1

∂xi (Γ1)ji + (Γ1)ji ∂xi(lnµ) = (f1 −D1)j , it follows that

∇x · Γ̄ =

∫

Rny
f1 −D1 dµx(y)− Γ̄∇(ln µ̂) = f̄ − Γ̄∇x(ln µ̂)−

∫

Rny
D1 dµx .

Similarly - exchanging µx by ρt,x - we compute

∂xi

(
Γ̂
)
ji

=

∫

Rny

(
∂xi (Γ1)ji + (Γ1)ji ∂xi(ln ρt)− (Γ1)ji ∂xi(ln ρ̂t)

)
dρt,x(y)

=

∫

Rny

(
∂xi (Γ1)ji + (Γ1)ji ∂xi(lnµ) + (Γ1)ji ∂xi(ln

ρt
µ

)− (Γ1)ji ∂xi(ln ρ̂t)

)
dρt,x(y)

and hence by the same reasoning as above

∇x · Γ̂ = f̂ − Γ̂∇x(ln ρ̂t)−
∫

Rny
D1 + Γ1∇x(ln

ρt
µ

) dρt,x(y).

Combining the terms we arrive at

ht =

∫

Rny
D1(ρt,x − µx) dy + Γ̄∇x ln

ρ̂t
µ̂
−
∫

Rny
Γ1∇x(ln

ρt
µ

) dρt,x(y).

Let us take a closer look at the second term

∇x ln
ρ̂t
µ̂

=
1

ρ̂t
∇x
(∫

Rny
ρt dy

)
− 1

µ̂
∇x
(∫

Rny
µdy

)

=
1

ρ̂t

∫

Rny
∇xρt dy −

1

µ̂

∫

Rny
∇xµdy

=

∫

Rny

ρt
ρ̂t
∇x (ln ρt) dy −

∫

Rny

µ

µ̂
∇x(lnµ) dy

=

∫

Rny
∇x (ln ρt) dρt,x(y)−

∫

Rny
∇x (lnµ) µx dy

=

∫

Rny
∇x
(

ln
ρt
µ

)
dρt,x(y)−

∫

Rny
∇x (lnµ) (µx − ρt,x) dy ,

and hence we rewrite ht as

ht =

∫

Rny
(D1 − Γ̄∇xV )(ρt,x − µx)dy −

∫

Rny
(Γ1 − Γ̄)∇x

(
ln
ρt
µ

)
dρt,x(y) ,
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and split it up accordingly into

|ht|Γ̄−1 ≤
∣∣∣∣
∫

Rny
(D1 − Γ̄∇xV )(ρt,x − µx) dy

∣∣∣∣
2

Γ̄−1

+

∣∣∣∣
∫

Rny
(Γ1 − Γ̄)∇x(ln

ρt
µ

) dρt,x(y)

∣∣∣∣
2

Γ̄−1

=: I1 + I2 .

Recall the definition C(x, y) := Γ̄(x)−1/2D1(x, y) − Γ̄(x)1/2∇xV (x, y) which is as-
sumed to be Lipschitz in the second argument (see (H1)). Let Π be any coupling of
ρt,x and µx (see Definition 3.17) . By Jensen’s inequality and (H1) we find

I1 =

∣∣∣∣Γ̄−1/2

∫

Rny
(D1 − Γ̄∇xV )(ρt,x − µx) dy

∣∣∣∣
2

=

∣∣∣∣
∫

Rny×Rny
C(x, y1)− C(x, y2) dΠ(y1, y2)

∣∣∣∣
2

≤ L2
C

∫

Rny×Rny
|y1 − y2|2 dΠ(y1, y2)

and taking Π to be the measure which minimises the last expression, we find by
assumption (B2) and Lemma 3.20 that

I1 ≤ L2
CW(ρt,x|µx)2 ≤ 2L2

C

αLSI
H(ρt,x|µx).

We estimate the second term, using assumption (H2) in the first, Jensen’s inequality
in the second and (B1) in the third step, which gives

I2 =

∣∣∣∣Γ̄−1/2

∫

Rny
(Γ1 − Γ̄)∇x

(
ln
ρt
µ

)
dρt,x(y)

∣∣∣∣
2

≤
∣∣∣∣
∫

Rny
κ∇x

(
ln
ρt
µ

)
dρt,x(y)

∣∣∣∣
2

≤ κ2

∫

Rny

∣∣∣∣∇x ln
ρt
µ

∣∣∣∣
2

dρt,x(y)

≤ κ2

λmin(Γ1)

∫

Rny

∣∣∣∣∇x ln
ρt
µ

∣∣∣∣
2

Γ1

dρt,x(y)

≤ κ2

λmin(Γ1)

∫

Rny

∣∣∣∣∇ ln
ρt
µ

∣∣∣∣
2

Γε
dρt,x(y).

Together with Lemma 4.7 this yields the final result

IL̄(ρ̂T ) =

∫ T

0

∫

Rnx
|ht(x)|Γ̄−1 dρ̂t(x)dt

≤ −
(
ε

L2
C

α2
LSIλmin(Γ2)

+
κ2

λmin(Γ1)

)∫ T

0

d

dt
H(ρt|µ)dt

≤
(
ε

L2
C

α2
LSIλmin(Γ2)

+
κ2

λmin(Γ1)

)
H(ρ0|µ).
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Numerical examples

We numerically illustrate that the ε-scaling we find for the relative entropy estimate
in Theorem 4.5 is correct. We consider two different OU-processes whose drift and
diffusion matrices read

Example 1: Aε =

( −3/2 1/2

1/(2ε) −3/(2ε)

)
, Cε =

(
1 0

0 1/
√
ε

)

Example 2: Aε =



−4 7 −4

−1 3 −3

−1/ε 5/ε −5/ε


 , Cε =




1 0 0

0 1 0

0 0 1/
√
ε


 .

For these two examples we compute max
t>0
H(ρ̂εt |ρ̄εt ) for ε ∈

{
100, 10−1, 10−2, 10−3, 10−4

}
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Figure 4.1: Top: Plot of max
t>0
H(ρ̂εt |ρ̄εt ) against ε for Example 1 (left) and Example

2 (right) which is compared to the right hand side of Corollary 4.6. Bottom: Plot
of H(ρ̂εt |ρ̄εt ) over time for Example 1 (left) and Example 2 (right).

which we plot on a doubly-logarithmic scale and we find indeed that the error scales
linearly in ε. We also depict the time evolution of H(ρ̂εt |ρ̄εt ) for different ε and ob-
serve that it first increases, but afterwards monotonously relaxes towards 0. Note
that for the second example the effective dynamics is two-dimensional.
Computing the parameters in the estimate for the examples yields for the first
example: L = 1/2, λmin(Γ1) = λmin(Γ2) = 1, αLSI = 3. For the second example
L = 4, λmin(Γ1) = λmin(Γ2) = 1, and the LSI constant becomes larger with decreas-
ing ε: αεLSI ∈ {3.8162, 8.7479, 9.8547, 9.9852, 9.9985}.
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4.2.2 Wasserstein distance

In this section we also derive estimates for the time t marginal of Xt and the effective
X̄t, this time in Wasserstein distance. To this end, we replace the assumptions (H1)
and (H2) by:

(W1) The drift of the slow process f1 is Lipschitz continuous in the second argu-
ment with constant Lf1 uniformly in x, i.e. |f1(x, y1) − f1(x, y2)| ≤ Lf1 |y1 −
y2| ∀x, y1, y2 and the effective drift f̄ = Eµx(f) is Lipschitz continuous with
constant Lf̄ .

(W2) The diffusion of the slow process is Lipschitz continuous in the second ar-
gument with constant Lγ1 uniformly in x, i.e. |Γ1(x, y1) − Γ1(x, y2)|F ≤
Lγ1 |y1 − y2| ∀x, y1, y2 and the effective diffusion γ̄ = Eµx(γ1γ

T
1 )1/2 is Lips-

chitz continuous with constant Lγ̄ .

The main result of this section then reads:

Theorem 4.8. Consider the dynamics given by (4.1) and the approximation for
the slow dynamics given by (4.6). Let A4, (W1) and (W2) hold true. If the initial
distributions agree, i.e., ρ̂0 = ρ̄0 then for any t > 0 it holds that

W2(ρ̂t|ρ̄t) ≤ ε
L2
f1

+ L2
γ1

α2
LSI

H(ρ0|µ)ecW t, where cW =

(
1 + Lγ̄ +

1

2
Lf̄

)
.

Even though it seems like the estimate is weaker, since the right hand side is
growing exponentially in time, it has one advantageous property compared to the
estimate in relative entropy: even though the diffusion of the slow process Γ1 is a
function of both, slow and fast, all terms on the right hand side contain the factor ε
and hence for ε→ 0, that is in the infinite time scale separation regime, the error in
Wasserstein distance vanishes. This is a desirable property since we want to provide
a good reduced model for the slow dynamics which is in particular important when
the time scale separation between slow and fast increases, as the treatment of the
fast becomes more and more expensive.
Besides, the proof is based on a coupling method and we choose the simplest coupling
here, namely the synchronous coupling. Employing instead other couplings, such
as, e.g., a reflection coupling or other clever choices, might enable an improvement
the estimate (see e.g. [22]).

Proof. The densities ρ̂t and ρ̄t solve the Fokker-Planck equations corresponding to
(4.4) and (4.6), i.e.

∂tρ̂t = −∇x · (f̂ ρ̂t) +∇2
x : (Γ̂ρ̂t), ρ̂t=0 = ρ̂0,

∂tρ̄t = −∇x · (f̄ ρ̄t) +∇2
x : (Γ̄ρ̄t), ρ̄t=0 = ρ̄0.
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According to Lemma 2.25 in [21] there exists a time-dependent coupling θt of ρ̂t and
ρ̄t, which is a solution to the Fokker-Planck equation

∂tθt = −∇ ·
[(
f̂

f̄

)
θt

]
+∇2 :

[(
Γ̂ γ̂γ̄T

γ̄γ̂T Γ̄

)
θt

]
, θt=0 = θ0, (4.7)

where θ0 is the optimal Wasserstein coupling of ρ̂0 and ρ̄0. The main ingredient of the
proof is to estimate ∂t

∫
Rnx×Rnx

1
2 |x̂− x̄|

2 θt(x̂, x̄) dx̂ dx̄ and then apply Gronwall’s
lemma in the end. We begin by calculating

∂t

∫

Rnx×Rnx

1

2
|x̂− x̄|2 dθt(x̂, x̄) =

∫

Rnx×Rnx

1

2
|x̂− x̄|2 ∂tθt(x̂, x̄) dx̂ dx̄

In order to conduct this calculation we will substitute for ∂tθt the right-hand side
of the Fokker-Plank equation and perform integration by parts for the two terms
separately. For this purpose note in advance that

∇1

2
|x̂− x̄|2 =

(
(x̂− x̄)

−(x̂− x̄)

)
, ∇2 1

2
|x̂− x̄|2 =

(
Inx×nx −Inx×nx
−Inx×nx Inx×nx

)
.

With this in mind and performing integration by parts twice, we find

∂t

∫

Rnx×Rnx

1

2
|x̂− x̄|2 dθt(x̂, x̄)

=

∫

Rnx×Rnx

1

2
|x̂− x̄|2

(
−∇ ·

[(
f̂

f̄

)
θt

]
+∇2 :

[(
Γ̂ γ̂γ̄T

γ̄γ̂T Γ̄

)
θt

])
dx̂dx̄

=

∫

Rnx×Rnx

(
(x̂− x̄)

−(x̂− x̄)

)
·
(
f̂

f̄

)
+

(
Inx×nx −Inx×nx
−Inx×nx Inx×nx

)
:

(
Γ̂ γ̂γ̄T

γ̄γ̂T Γ̄

)
dθt(x̂, x̄)

=

∫

Rnx×Rnx

(
f̂ − f̄

)
· (x̂− x̄) dθt(x̂, x̄) +

∫

Rnx×Rnx
|γ̂ − γ̄|2F dθt(x̂, x̄) =: I1 + I2.

Let us consider these terms separately. For both terms, we first add a zero, after-
wards apply Young’s inequality, such that in the last step we can then employ (W1)
and (W2) respectively. This gives

I1 =

∫

Rnx×Rnx

(
f̂(t, x̂)− f̄(x̄)

)
· (x̂− x̄) dθt(x̂, x̄)

=

∫

Rnx×Rnx

((
f̂(t, x̂)− f̄(x̂)

)
· (x̂− x̄) +

(
f̄(x̂)− f̄(x̄)

)
· (x̂− x̄)

)
dθt(x̂, x̄)

≤
∫

Rnx×Rnx

(
1

2
|f̂(t, x̂)− f̄(x̂)|2 + |x̂− x̄|2 +

1

2
|f̄(x̂)− f̄(x̄)|2

)
dθt(x̂, x̄)

≤
∫

Rnx

1

2
|f̂(t, x̂)− f̄(x̂)|2 dρ̂t(x̂) +

(
1 +

Lf̄
2

)∫

Rnx×Rnx
|x̂− x̄|2 dθt(x̂, x̄).

I2 =

∫

Rnx×Rnx
|γ̂(t, x̂)− γ̄(x̄)|2F dθt(x̂, x̄)

≤
∫

Rnx×Rnx

(
|γ̂(t, x̂)− γ̄(x̂)|2F + |γ̄(x̂)− γ̄(x̄)|2F

)
dθt(x̂, x̄)

≤
∫

Rnx
|γ̂(t, x̂)− γ̄(x̂)|2F dρ̂t(x̂) + Lγ̄

∫

Rnx×Rnx
|x̂− x̄|2 dθt(x̂, x̄).
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Letting Π be any coupling of ρt,x with t > 0 and µx, we estimate the term |f̂(t, x)−
f̄(x)|2 by employing Jensen’s inequality and (W1)

|f̂(t, x)− f̄(x)|2 =

∣∣∣∣
∫

Rny×Rny
f1(x, y1)− f1(x, y2) dΠ(y1, y2)

∣∣∣∣
2

≤
∫

Rny×Rny
|f1(x, y1)− f1(x, y2)|2 dΠ(y1, y2)

≤ L2
f1

∫

Rny×Rny
|y1 − y2|2 dΠ(y1, y2)

Estimating the second term
∫
|γ̂(t, x)− γ̄(x)|2F dρ̂t(x) we make use of the fact that

the function φ : Rn×n×Rn×n → R, (A,B) 7→
∣∣A1/2 −B1/2

∣∣2
F

= Tr(A−2
√
A
√
B+B)

is convex for A,B > 0 (this is where we need (B1) to guarantee that Γ̄, Γ̂ > 0) by
Lieb’s concavity theorem (cf. Theorem IX.6.1 in [10]) and we can hence employ the
two-sided Jensen’s inequality in the first, together with (W2) in the second step,
which yields

|γ̂(t, x)− γ̄(x)|2F =

∣∣∣∣∣

√∫
Γ1 dρt,x(y)−

√∫
Γ1 dµx

∣∣∣∣∣

2

F

≤
∫

Rny×Rny
|Γ1(x, y1)− Γ1(x, y2)|2F dΠ(y1, y2)

≤ Lγ1
∫

Rny×Rny
|y1 − y2|2 dΠ(y1, y2).

Since the coupling Π for t > 0 was arbitrary, we can in particular choose Π to be
the coupling, which minimises the last expression. By this choice it follows that

|f̂(t, x)− f̄(x)|2 + |γ̂(t, x)− γ̄(x)|2F ≤ (L2
f1 + L2

γ1)W(ρt,x|µx) ≤ 2
L2
f1

+ L2
γ1

αLSI
H(ρt,x|µx).

Putting all the terms together and employing Lemma 4.7 we arrive at

∂t

∫

Rnx×Rnx

1

2
|x̂− x̄|2 dθt(x̂, x̄)

≤ −ε
L2
f1

+ L2
γ1

α2
LSI

d

dt
H(ρt|µ) +

(
1 + Lγ̄ +

Lf̄
2

)∫

Rnx×Rnx

1

2
|x̂− x̄|2 dθt(x̂, x̄)

and integration in time from 0 to t yields
∫

Rnx×Rnx

1

2
|x̂− x̄|2 dθt(x̂, x̄)

≤ ε
L2
f1

+ L2
γ1

α2
LSI

H(ρ0|µ) +

(
1 + Lγ̄ +

Lf̄
2

)∫ t

0

∫

Rnx×Rnx

1

2
|x̂− x̄|2 dθs(x̂, x̄)ds

where we used that ρ̂0 = ρ̄0. Finally, applying Gronwall’s inequality gives
∫

Rnx×Rnx

1

2
|x̂− x̄|2 dθt(x̂, x̄) ≤ ε

L2
f1

+ L2
γ1

α2
LSI

H(ρ0|µ)ecW t, cW =

(
1 + Lγ̄ +

Lf̄
2

)



66 CHAPTER 4. MODEL REDUCTION

which implies the result

W2(ρ̂t|ρ̄t) ≤ ε
L2
f1

+ L2
γ1

α2
LSI

H(ρ0|µ)ecW t.

4.2.3 Estimates for the path measures

In this section our aim is to compare ρ̂ := law((Xt)0≤t≤T ) ∈ P(C([0, T ];Rnx))

with ν̂ := law((X̄t)0≤t≤T ) ∈ P(C([0, T ];Rnx)), where T > 0 is fixed. That is, we
want to compare the law of the paths, contrary to the previous sections where we
only considered the marginals at time t of these objects. This kind of estimate
is important, aiming at making statements about the reproducibility of dynamic
properties by the reduced model, such as transition rates.

Throughout this section let T > 0 be fixed and assume that:

(P1) The diffusion of the slow variable Xt is independent of the fast variable Yt,
i.e., Γ1 = Γ1(x) and there is no coupling of the noise, i.e., γ12 = 0

(P2) The first component of the drift f1 is Lipschitz in the second argument with
constant L. Furthermore, ρt,x has finite second moments uniformly in x ∈
Rnx , t ∈ [0, T ], i.e.,

sup
t∈[0,T ]

sup
x∈Rnx

∫

Rny
|y|2dρt,x(y) <∞ .

This entails that

Varρt,x(f1) := sup
t∈[0,T ]

sup
x∈Rnx

∫ (
f1(x, y)−

∫
f1(x, y′) dρt,x(y′)

)2

dρt,x(y) <∞ .

(P3) f1 − f̄1 satisfies the Novikov’s condition, i.e., E[exp(
∫ T

0 |f1 − f̄1|2Γ-1
1
ds)] <∞.

The main result of this section is the following theorem.

Theorem 4.9. Suppose that assumptions A4 and (P1)-(P3) hold. Let ρ̂ := law((Xt)0≤t≤T ) ∈
P(C([0, T ];Rnx)) and ν̂ := law((X̄t)0≤t≤T ) ∈ P(C([0, T ];Rnx)), where Xt, X̄t are
solutions to (4.1), (4.6) respectively. Then

H(ρ̂|ν̂) ≤ H(ρ0|ν0) + T
Varρt,x(f1)

2λmin(Γ1)
+ ε

L2

2α2
LSIλmin(Γ1)λmin(Γ2)

H(ρ0|µ).
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Proof. First note that by assumption (P2) we have that

Varρt,x(f1) = sup
t∈[0,T ]

sup
x∈Rnx

∫ (∫
f1(x, y′)− f1(x, y) dρt,x(y)

)2

dρt,x(y′)

≤ sup
t∈[0,T ]

sup
x∈Rnx

∫ ∫
(f1(x, y′)− f1(x, y))2 dρt,x(y) dρt,x(y′)

≤ L sup
t∈[0,T ]

sup
x∈Rnx

∫ ∫
(y − y′)2 dρt,x(y) dρt,x(y′)

≤ 2L sup
t∈[0,T ]

sup
x∈Rnx

∫

Rny
|y|2 dρt,x(y) .

Instead of directly working with ρ̂ and ν̂, we will compare (4.1), which we recall
here for readability

dXt = f1(Xt, Yt) dt+ γ1(Xt) dWt,

dYt =
1

ε
f2(Xt, Yt) dt+

1√
ε
γ2(Xt, Yt) dUt,

with

dX̄t = f̄1(X̄t) dt+ γ1(X̄t) dWt,

dȲt =
1

ε
f2(X̄t, Ȳt) dt+

1√
ε
γ2(X̄t, Ȳt) dUt.

Note that ρ̂ and ν̂ are the marginals of ρ = law((Xt, Yt)0≤t≤T ) and ν = law((X̄t, Ȳt)0≤t≤T )

with respect to the coarse graining map ξ(x, y) = x. Denoting by ρ̃ and ν̃ the cor-
responding conditionals, we will later make use of the so-called chain rule

H(ρ|ν) = H(ρ̂|ν̂) + Eρ̂(H(ρ̃|ν̃))

which follows by ρ = ρ̂ρ̃, ν = ν̂ν̃ (also see the computation (6.7) in Section 6.1.3)
and implies that if we bound H(ρ|ν) we also find a bound for H(ρ̂|ν̂) since by the
positivity of all the terms

H(ρ̂|ν̂) ≤ H(ρ|ν) . (4.8)

Writing f =
(

f1
1
ε
f2

)
, f̄ =

(
f̄1
1
ε
f2

)
and using Girsanov’s Theorem (see e.g. [58] or [23])

together with the notation Z = (X,Y ) we find

dρ

dν
(Z[0,T ]) =

dρ0

dν0
(Z0) exp

(∫ T

0
(f(Zt)− f̄(Zt))γ dWt +

1

2

∫ T

0
|f(Zt)− f̄(Zt)|2Γ-1 dt

)
.

Noting that f(z)− f̄(z) =
(
f1(z)−f̄1(z)

0

)
, where we write f̄1(z) even though f̄1(z) =
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f̄1(x) is effectively only a function of x and the same applies to f̄ , we have

H(ρ|ν) = Eρ
(

ln
dρ

dν

)

= H(ρ0|ν0) + Eρ
(∫ T

0
(f(Zt)− f̄(Zt))γ dWt +

1

2

∫ T

0
|f(Zt)− f̄(Zt)|2Γ-1 dt

)

= H(ρ0|ν0) +
1

2
Eρ
(∫ T

0
|f(Zt)− f̄(Zt)|2Γ-1 dt

)

= H(ρ0|ν0) +
1

2

∫ T

0
Eρt(|f1(Zt)− f̄1(Zt)|2Γ-1

1
) dt

≤ H(ρ0|ν0) +
1

2

∫ T

0
Eρt(|f1(Zt)− f̂1(Zt)|2Γ-1

1
) + Eρt(|f̂1(Zt)− f̄1(Zt)|2Γ-1

1
) dt ,

with f̂1 =
∫
f1 dρt,x as introduced in (4.4). Using (P2) and (B1), the first term in

the integral can be estimated by

Eρt(|f1(Zt)− f̂1(Zt)|2Γ-1
1

) ≤ 1

λmin(Γ1)
Eρ̂t(Eρt,x |f1(Zt)− f̂1(Zt)|2) ≤ Varρt,x(f1)

λmin(Γ1)
.

Controlling the second term in the right hand side as in the proof of Corollary 4.6,
we arrive at

H(ρ|ν) ≤ H(ρ0|ν0) + T
Varρt,x(f1)

2λmin(Γ1)
+ ε

L2

2α2
LSIλmin(Γ2)

(H(ρ0|µ)−H(ρt|µ)) . (4.9)

By (4.8) and H(ρt|µ) ≥ 0 we arrive at the final result

H(ρ̂|ν̂) ≤ H(ρ0|ν0) + T
Varρt,x(f1)

2λmin(Γ1)
+ ε

L2

2α2
LSIλmin(Γ1)λmin(Γ2)

H(ρ0|µ) .

The estimate suggests that the main contribution, especially for large times, is
due to how much f1 varies in y for given x, i.e., how large Varρt,x(f1) is. Let us
investigate this conjecture with a simple numerical example.

Numerical example

We present a numerical example for which we can explicitly compute the quantity
Eρt(|f1(Zt)− f̄1(Zt)|2Γ-1

1
). Since this requires the knowledge of the times t distribu-

tion of the process, we once more consider OU-processes for which this is viable.
Specifically, we employ the following lemma:

Lemma 4.10. Let A,C ∈ Rn×n, assume (A,C) satisfy condition A2 and consider
the linear SDE in Rn

dZt = AZt dt+ C dBt , A =
(
A11 A12
A21 A22

)

and dZ̄t = ĀZ̄t dt+ C dBt , Ā =
(
Ā11 0
Ā21 Ā22

)
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where Ā11 = A11 + A12Σ21Σ-1
11, Ā21 = A21, Ā22 = A22 and Σ is the unique solution

to
AΣ + ΣAT = CCT .

Then

Eρt(|f1(Zt)− f̄1(Zt)|2Γ-1
1

) =Tr(V ar(Yt)AT
12Γ-1

1 A12)− 2Tr(Cov(Xt, Yt)A
T
12Γ-1

1 Σ21Σ-1
11)

+ Tr(V ar(Xt)Σ
-1
11Σ12A

T
12Γ-1

1 A12Σ21Σ-1
11)

+ |my
t − Σ21Σ-1

11m
x
t |2AT

12Γ-1
1 A12

.

where Γ1 = C11C
T
11 .

Proof. Note that f1(Zt) = A11Xt + A12Yt and f̄1(Zt) = (A11 + A12Σ21Σ−1
11 )Xt and

thus

Eρt(|f1(Zt)− f̄1(Zt)|2Γ-1
1

)

= Eρt
[
|(A12Yt −A12Σ21Σ−1

11 Xt)|2Γ-1
1

]

= Eρt
[
|(Yt −my

t +my
t − Σ21Σ−1

11 (Xt −mx
t +mx

t ))|2
AT

12Γ-1
1 A12

]

= Eρt
[
(Yt −my

t )
TAT

12Γ-1
1 A12(Yt −my

t )
]

+ Eρt
[
(Xt −mx

t )TΣ-1
11Σ12A

T
12Γ-1

1 A12Σ21Σ-1
11(Xt −mx

t )
]

− 2Eρt
[
(Xt −mx

t )TΣ-1
11Σ12A

T
12Γ-1

1 A12(Yt −my
t )
]

+ (my
t − Σ21Σ−1

11 m
x
t )TAT

12Γ-1
1 A12(my

t − Σ21Σ−1
11 m

x
t )

= Tr(V ar(Yt)AT
12Γ-1

1 A12)− 2Tr(Cov(Xt, Yt)A
T
12Γ-1

1 A12Σ21Σ-1
11)

+ Tr(V ar(Xt)Σ
-1
11Σ12A

T
12Γ-1

1 A12Σ21Σ-1
11) + |my

t − Σ21Σ-1
11m

x
t |2AT

12Γ-1
1 A12

Let us exemplify our result on a simple example, which is determined by the
following drift and diffusion matrices

A =

(−3/2 a

a/ε −3/(2ε)

)
and C1 =

(
1 0

0 1/
√
ε

)

for which we can choose the coupling constant a and time scale separation ε = 0.05.
In figure 4.2, we illustrate the dependence of the estimate (4.9) on the variance term
κ = Varρt,x(f1) by varying the coupling a from a = 1 in the left to a = 0.2 in the
right panel. We observe that the error H(ρ|ν) (in red) depends on the coupling as
sensitive as the variance itself, which is contained in the right hand side of (4.9) and
shown in blue, since the slopes of the lines change in the same way when varying the
coupling parameter a. This means the influence of the variance of the fast degrees
of freedom does have a strong influence on the error as suggested by our estimate.
Note that we are only depicting the error H(ρ|ν) here and the “true” error satisfies
H(ρ̂|ν̂) ≤ H(ρ|ν) for which we would expect that H(ρ̂|ν̂)→ 0 as ε→ 0, as suggested
by corresponding averaging results (see Section 4.3).
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Figure 4.2: Plot of the error H(ρ|ν) (red), as in the left hand side of (4.9), and
H(ρ0|ν0) + T

Varρt,x (f1)

2λmin(Γ1) + ε L2

2α2
LSIλmin(Γ2)

H(ρ0|µ) (blue) for the dynamics described
by A and C, where ε = 0.05. Left: a = 1. Right: a = 0.2.

4.3 Comparison of averaging and conditional expecta-
tions

4.3.1 Review of averaging

We will shortly introduce the method of averaging here, more details on this topic
can be found, e.g., in Chapter 7 of [26], the review [1], or in the book [62]. In the
latter the analysis is mainly restricted to the case of compact domains.
Consider dynamics described by

ẋεt = b(xεt , yt/ε) , x0 = x0 ,

where x ∈ Rnx , y ∈ Rny , ε > 0 for which we assume that b : Rnx+ny → Rnx is
bounded, continuous and Lipschitz in x. The basic idea is, intuitively speaking,
that if

lim
T→∞

1

T

∫ T

0
b(x, ys) ds = bav(x) (4.10)

holds in some sense, it is possible to approximate the dynamics for xεt by

ẋav
t = bav(xav

t ) , xav
0 = x0 .

It is clear that assumption (4.10) plays a crucial part here. In the case of ys being
an ergodic stochastic process with unique invariant measure νx the limit (4.10) can
be rewritten as

lim
T→∞

1

T

∫ T

0
b(x, ys) ds =

∫

Rny
b(x, y) dνx(y) = bav(x) .

If this is true for each x ∈ Rnx , then (4.10) holds true with probability one ∀x ∈ Rnx
and thus convergence of xεt to xav

t follows uniformly in time with probability one as
ε→ 0 (see [41]). Here, the limit ε→ 0 justifies keeping x in (4.10) fixed, since ε→ 0

is equivalent to an infinite time scale separation between the slow variable x and
the fast variable y. This means, working with the natural time scale of x, since time
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is accelerated by 1/ε for the fast variable, y attains its equilibrium while x remains
constant.
Also under milder assumptions, e.g. convergence in probability of (4.10), it is pos-
sible to deduce results for the convergence of trajectories xεt → xav

t which then holds
in probability (see e.g. Chapter 7, Theorem 2.1 in [26], or Theorem 1.1 in [41]).
When traversing from an ODE for xt to an SDE, i.e., the right hand side is no
longer deterministic but stochastic itself, convergence in distribution or weak con-
vergence of (xεt )t∈[0,T ] → (xav

t )t∈[0,T ] in C([0, T ],Rnx) becomes the natural object.
That is, xεt converges weakly to xav

t in C([0, T ],Rnx), if for any bounded functional
f : C([0, T ],Rnx)→ R it holds that

lim
ε→0

E(f((xεt )0≤t≤T )) = E(f((xav
t )0≤t≤T )) ,

where the expectation E should be understood as an expectation with respect to
the path measure of (xεt )(0≤t≤T ) and (xav

t )(0≤t≤T ) respectively.

Recall our setting which is

dXε
t = f1(Xε

t , Y
ε
t ) dt+ γ1(Xε

t , Y
ε
t ) dWt, X

ε
t=0 = X0

dY ε
t =

1

ε
f2(Xε

t , Y
ε
t ) dt+

1√
ε
γ2(Xε

t , Y
ε
t ) dUt, Y

ε
t=0 = Y0 ,

with f, γ satisfying A4. Assume now that for any fixed x ∈ Rnx , the fast dynamics
admits a unique invariant measure νav

x ∈ P(Rny), i.e., its density satisfies

∇y · (f2(x, ·)νav
x ) +∇2

y : (Γ2(x, ·)νav
x ) = 0

or equivalently

L∗2νav
x = 0 , where L2 = f2 · ∇y + Γ2 : ∇2

y

is the generator of the fast dynamics whose coefficients f2,Γ2 are here evaluated at
a fixed x. Further introduce

dXav
t =f av

1 (Xav
t ) dt+ γav

1 (Xt, Yt) dWt, X
av
t=0 = X0 (4.11)

f av
1 (x) =

∫

Rny
f1(x, y) dνav

x (y) , γav
1 (x) =

(∫

Rny
Γ1(x, y) dνav

x (y)

)1/2

which is assumed to admit a unique strong solution.
When working on compact domains the proofs showing convergence of Xε → Xav

are simpler and less assumptions are needed. We still present the general result
here, since also the results for conditional expectations are derived for Xε

t ∈ Rnx .
Let us state the assumptions needed for the upcoming theorem stating convergence
of Xε to Xav, which are taken from [60].

(Ha) There exist 0 < m < M <∞ such that m ≤ γ2γ
T
2 ≤M
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(Hb) lim
|y|→∞

sup
x
f2(x, y)y = −∞

(H2+α,1) f2, γ2 both have bounded first derivative in x and second derivatives in y

and all derivatives ∂iy∂
j
x·, i ∈ {0, 1, 2} , j ∈ {0, 1} are Hölder continuous with

respect to the y variable with exponent 0 < α < 1 uniformly in x.

Here, (Ha) and (Hb) guarantee existence of a unique invariant measure for the fast
variable. Together these assumptions are used to derive bounds on derivatives of
the solution of the Poisson equation and the transition probability density. Finally
the main result for our purpose in [60] is:

Theorem 4.11 (Theorem 4 in [60]). Let (H2+α,1), (Ha), (Hb) hold. Further assume
that f1, γ1 are Lipschitz and they fulfil the growth conditions: ∃K,m1,m2 > 0 such
that f1(x, y) ≤ K(1 + |y|)(1 + |x|m1) and γ1(x, y) ≤ K(1 +

√
|y|)(1 + |x|m2). Then

for any T > 0

law((Xε
t )0≤t≤T )

ε→0−−−→ law((Xav
t )0≤t≤T )

weakly in C([0, T ],Rnx).

In what follows, we refer to the limit dynamics (4.11) as the averaged dynamics.

Remark 4.12. Methods for proving these kind of results rely on associated Pois-
son equations whose solutions yield the effective coefficients. Requiring bounds on
the coefficients thus requires bounds on the Poisson equations, which is doable for
compact state spaces but becomes a lot harder when working in Rny . Still, under a
lot of technical assumptions, Pardoux and Veretennikov prove in [60] convergence in
distribution – they even prove it for a homogenization scaling, which we omit here.

4.3.2 Some examples

We first discuss the standard example of Langevin equation in gradient form for
which the difference in the two approaches does not show up. Afterwards we return
to the example from the very beginning of the chapter and discuss it in more detail.

Reversible dynamics

Consider the reversible dynamics

dXε
t = −(Γ1∇xV −∇x · Γ1)(Xε

t , Y
ε
t ) dt+

√
2γ1(Xε

t , Y
ε
t ) dWt

dY ε
t = −1

ε
(Γ2∇yV −∇x · Γ2)(Xε

t , Y
ε
t ) dt+

√
2

ε
γ2(Xε

t , Y
ε
t ) dUt

(4.12)

where Xε ∈ Rnx , Y ε ∈ Rny , V : Rnx+ny → R, γ1 : Rnx+ny → Rnx×nx , γ2 :

Rnx+ny → Rny×ny and Γ1 = γ1γ
T
1 , Γ2 = γ2γ

T
2 and Wt, Ut are nx, ny-dimensional

standard Brownian motions respectively. This dynamics possesses the generator

L = (−Γ1∇xV +∇x · Γ1) · ∇x + Γ1 : ∇2
x︸ ︷︷ ︸

L1

+
1

ε
(−Γ2∇yV +∇y · Γ2) · ∇y + Γ2 : ∇2

y︸ ︷︷ ︸
L2
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which we decompose into L1 and L2 and further we assume the coefficients to be
such that this dynamics admits a unique invariant measure µ. Now, the averaging
measure νx will be the one satisfying

L∗2νx = 0

where the coefficients of L∗2, i.e., Γ2 and ∇yV are evaluated at a given x. This
means νx(y) ∼ e−Vx(y) where Vx(y) is supposed to express that the potential is
evaluated at a fixed x thus treated as a parameter and the dependence is only in y.
In turn, computing the conditional µx from the invariant distribution yields exactly
the same. Conditioning on X = x means fixing x in µ ∼ e−V (x,y) thus turning it into
a parameter of the conditional distribution µx ∼ e−Vx(y). Hence, in the instance of
reversible dynamics we never observe any distinction between the two approaches.
Note that when considering reversible dynamics of a slow fast structure, the above
example (4.12) is in the most general form. If we had a diffusion matrix which
coupled the noise of the slow and fast equation, the time scale separation parameter
would inevitably also show up in the slow equation, hence giving a different kind of
scaling such that a comparison to averaging would not be appropriate.

Non-reversible dynamics

Let us discuss in more detail the example from the beginning of the chapter where
we introduce an additional parameter δ ≥ 0 which was set equal to 0 previously.
More precisely, we consider the two-dimensional linear SDE given by

dXt = (−Xt + Yt) dt+
√
δ dWt

dYt = −1

ε
Yt dt+

1√
ε
dUt ,

(4.13)

with W,U being independent standard Brownian motions. Solving the correspond-
ing Lyapunov equation

(−1 1

0 −1/ε

)
Σ(ε) + Σ(ε)

(−1 0

1 −1/ε

)
= −

(
δ 0

0 1/ε

)

equips us with the invariant measure µε ∼ N (0,Σ(ε)), with

Σ(ε) =
1

2

(
[ε+ δ(1 + ε)] /(1 + ε) ε/(1 + ε)

ε/(1 + ε) 1

)
.

Hence, the conditional measure for given x reads µεx ∼ N (mc(ε),Σc(ε)), with

mc(ε) =
ε

ε+ δ(1 + ε)
x, Σc(ε) =

1

2
− ε

2(1 + δ(1/ε+ 2 + ε) + ε)
.

On the other hand, the invariant measure for the fast variable Y which in this
example is independent of x reads νx ∼ N (mav,Σav) with

mav = 0, Σav =
1

2
.
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Observe that for δ = 0 we have mc(ε) ≡ x and hence µεx 9 νx as ε→ 0 whereas
for δ = 1 we find µεx → νx as ε→ 0 . This raises the idea to study the convergence
of µεx as ε → 0 as a function of δ. More specifically, we let δ = εp, p ≥ 0 which
implies that we can still do averaging and the relation to the averaging result holds
up to a time of O(1) (but not O(ε−p)!). Computing the limit of the mean mc(ε) as
ε→ 0 yields

mc(ε)
ε→0−−−→





x , p > 1 ,
1
2x , p = 1 ,

0 , 0 ≤ p < 1 .

This means for 0 ≤ p < 1 the reduced dynamics obtained by averaging and con-
ditional expectations coincide in the infinite time scale separation limit. We will
discuss this observation in a more systematic way for linear diffusions in the next
section, where we also discuss the degree of irreversibility and its relation to the
agreement of averaging and conditional expectation in the limit as ε→ 0.

Further note that Σc(ε)→ 1
2 for any p ≥ 0, that is, the variance always agrees.

4.3.3 Sufficient conditions for the conformity of averaging and con-
ditional expectations

In this section we aim at giving a general idea how differences in averaging and
conditional expectations can arise in the limit ε→ 0. To this end, recall the general
setting of this section given by (4.1). The associated generator L can be decomposed
into a slow and a fast part as follows

L = L1 +
1

ε
L2 , where L1 = f1 · ∇x + Γ1 : ∇2

x

L2 = f2 · ∇y + Γ2 : ∇2
y .

Assume that Zεt admits a unique invariant distribution µε, i.e.,

L∗µε = 0.

Decompose µε into its marginal and conditional part as follows

µε(x, y) = µεx(y) µ̂ε(x) ,

i.e., µ̂ is the marginal distribution of X and µx is the conditional distribution of y
for given X = x. Suppose that the fast process is ergodic, i.e., ∀x ∈ Rnx there exists
a unique νx such that

L∗2νx = 0 .

Further assume that µ̂ and µx admit the perturbation expansions

µ̂ = µ̂0 + εµ̂1 +O(ε2) and µx = µ0
x + εµ1

x +O(ε2) .

We can then state the following conjecture which is supported by formal calcu-
lations below.
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Conjecture 4.13. If µ̂0 = lim
ε→0

µ̂ε has full support, that is, µ̂0(x) > 0 ∀x ∈ Rnx ,
then

∀x ∈ Rnx : µεx → νx , as ε→ 0 .

Proof. We write

µ = µ0
xµ̂

0 + ε (µ1
xµ̂

0 + µ0
xµ̂

1) +O(ε2) . (4.14)

Since µ is the invariant distribution of Zεt it holds that

L∗µ = 0 ,

which we rewrite with the perturbation Ansatz. The leading order term, that is the
O(1/ε)-term, reads

L∗2(µ0
xµ̂

0) = 0 .

Since L∗2 is a differential operator in y only, it does not act on µ̂0 which only depends
on x. Hence, we have that

L∗2(µ0
xµ̂

0) = 0 ⇔ µ̂0L∗2(µ0
x) = 0 .

Finally, observe that µ̂0L∗2µ0
x = 0, ∀x ∈ Rnx then either L∗2µ0

x = 0 or µ̂0 = 0. Since
by assumption µ̂0(x) > 0, ∀x ∈ Rnx it follows that

L∗2µ0
x = 0 ∀x ∈ Rnx ,

which is precisely the statement that the O(1)-term of µεx agrees with νx, i.e., µεx →
νx .

Connection to the guiding example

Establishing a relation of the above result to the example (4.13) recall that here
µε ∼ N (0,Σ(ε)) where

Σ(ε) =
1

2

(
[ε+ εp(1 + ε)] /(1 + ε) ε/(1 + ε)

ε/(1 + ε) 1

)
ε→0−−−→





(
1/2 0

0 1/2

)
, p = 0

(
0 0

0 1/2

)
, p > 0 .

Hence the condition µ0(x) > 0 is clearly fulfilled if p = 0 and this includes the con-
formity of the two approaches. Yet, again we find that this can only be a sufficient
condition, since for 0 < p < 1 due to the above considerations the assumption of
the conjecture µ0(x) > 0 are not met – in fact x and y decouple and in x we find a
dirac at 0 – still µεx → νx holds true.





Chapter 5

Analytical results for
OU-processes

This chapter is devoted to OU-processes for which it is possible to make the analysis
of the previous chapter precise. In particular, in the first part of the chapter, we dis-
cuss the conformity of averaging and conditional expectations in the limit ε→ 0 and
establish conditions on the drift and diffusion matrices A and C for the conformity
to hold. Our analysis involves the study of the arising distributions with respect to
which the averages of the coefficients are computed. Moreover, we consider a mea-
sure attributing the degree of irreversibility and summarise our conjectures at the
end of Section 5.1. Furthermore, we extend the comparison of the two approaches
by studying numerical examples for finite values of ε > 0.
The second part of the chapter deals with the issue of sampling conditional distribu-
tions for non-reversible processes, which is, for example, needed in order to compute
the coefficients of the effective dynamics by MCMC. While this is an easy task when
conditioning on certain degrees of freedom of a reversible process, which amounts to
keeping these degrees of freedom fixed, things become involved when working with
a non-reversible process instead. Our contribution should be seen as a first step to-
wards sampling from conditional distributions of non-reversible processes. We find
that an oblique projection – in contrast to a orthogonal projection for the reversible
case – yields the correct sampling scheme for OU-processes. In Section 5.2.3 we
propose a scalar product, provided the drift matrix fulfils certain conditions, with
respect to which the considered projection becomes orthogonal and is further hoped
to provide structural insight on the problem at hand.

5.1 Comparison of averaging and conditional expecta-
tions

In this section we make the comparison between averaging and conditional expec-
tations explicit for the general class of Ornstein-Uhlenbeck processes described by
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the following SDEs

dZt =

(
dXt

dYt

)
=

(
A11 A12
1
εA21

1
εA22

)(
Xt

Yt

)
dt+

(√
εpC11 0

0 1√
ε
C22

)(
dWt

dUt

)
, (5.1)

here 0 < ε � 1 is the time scale separation parameter, p ≥ 0, A11, C11 ∈
Rnx×nx , A12, C12 ∈ Rnx×ny , A21, C21 ∈ Rny×nx , A22, C22 ∈ Rny×ny and Wt, Ut
are nx, ny-dimensional standard Brownian motions respectively.
We denote by

Aε =

(
A11 A12
1
εA21

1
εA22

)
, Cε =

(√
εpC11 0

0 1√
ε
C22

)

the ε-dependent matrices. We make the usual assumptions which guarantee exis-
tence and uniqueness of the invariant measure of the full process (and hence of the
conditional measure) as well as of the fast process Y :

Assumption A5. Assume that ∀ε > 0 the matrices Aε and A22 are Hurwitz and
the matrix pairs (Aε, Cε) and (A22, C22) are controllable.

The corresponding Lyapunov equation of the full process Zt reads

AεΣε + Σε(Aε)T = −Cε(Cε)T . (5.2)

The measure conditioned on X = x is denoted by µεx = N (mc(ε),Σc(ε)) and is well
defined for all ε > 0. The mean and covariance read

mc(ε) = Σε
21(Σε

11)-1x , Σc(ε) = Σε
22 − Σε

21(Σε
11)-1Σε

21 .

Similarly, under the above assumptions on A22 and (A22, C22) we denote the
invariant measure of the fast process (Yt)t≥0 by νx = N (mav,Σav), where

mav = −A-1
22A21x, A22Σav + ΣavAT

22 = −C22C
T
22 .

The following proposition states a sufficient condition to assure that the two
measures agree as ε → 0, which – since we a are dealing with Gaussians here – is
equivalent to mc(ε)

ε→0−−−→ mav and Σc(ε)
ε→0−−−→ Σav as ε→ 0.

Proposition 5.1. Let A5 hold true. Further assume that A11−A12A
-1
22A21 is Hur-

witz and the pair (A11 −A12A
-1
22A21, C11) is controllable and 0 ≤ p < 1 then

mc(ε)
ε→0−−−→ mav and Σc(ε)

ε→0−−−→ Σav .

As an immediate consequence, the LSI constant αεLSI remains bounded as ε→ 0

and is given by the LSI constant of νx:

Corollary 5.2. Under the same assumptions of Proposition 5.1 the conditional
measure lim

ε→0
µεx =: µ0

x satisfies a static LSI with constant α0
LSI determined by

(Σav)-1 ≥ α0
LSIIny×ny .
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Proof of Corollary 5.2. The proof is an immediate consequence of the Bakry-Emery
criterion (see Theorem 3.21): we know that νx(y) ∼ e−V (y) dy with V (y) = 1

2y
T(Σav)-1y

and thus ∇2
yV (y) = (Σav)-1 and the corresponding LSI constant α0

LSI is given by the
smallest eigenvalue of (Σav)-1 or equivalently by the inverse of the largest eigen-
value.

Proof of Proposition 5.1. Our intention is to compare νx ∼ N (−A-1
22A21x,Σ

av) to
the conditional measure µx = N (Σε

21(Σε
11)-1x,Σε

22−Σε
21(Σε

11)-1Σε
12). Here Σε

ij refers
to the (i, j)th block of Σε solution to (5.2).
Writing out the equation for Σε in its different components yields the following three
equations

A11Σε
11 +A12Σε

21 + Σε
11A

T
11 + Σε

12A
T
12 = −εpC11C

T
11 (5.3)

A11Σε
12 +A12Σε

22 +
1

ε
(Σε

11A
T
21 + Σε

12A
T
22) = 0 (5.4)

A21Σε
12 +A22Σε

22 + Σε
21A

T
21 + Σε

22A
T
22 = −C22C

T
22 . (5.5)

Due to the structure of the above equations we make the following perturbation
Ansatz for Σε:

Σε = Σ(0) + εp Σ(p) + εΣ(1) +O(ε2).

Case 1: 0 < p < 1

Collecting the same powers of ε in (5.4) we find that

O(ε-1) : Σ
(0)
12 = −Σ

(0)
11 A

T
21A

-T
22 (5.6)

O(εp−1) : Σ
(p)
12 = −Σ

(p)
11 A

T
21A

-T
22 . (5.7)

Observe that if A21 = 0 then by (5.6)-(5.7) Σε
12 = O(ε). Furthermore, if A21 = 0

and C11 = 0 then by (5.3) also Σε
11 = O(ε).

Plugging (5.6) and (5.7) into (5.3) respectively and collecting the same powers of ε
again we find that

O(εp) :
(
A11 −A12A

-1
22A21

)
Σ

(p)
11 + Σ

(p)
11

(
A11 −A12A

-1
22A21

)T
= −C11C

T
11 (5.8)

O(1) :
(
A11 −A12A

-1
22A21

)
Σ

(0)
11 + Σ

(0)
11

(
A11 −A12A

-1
22A21

)T
= 0 . (5.9)

The last equation (5.9) implies that Σ
(0)
11 = 0 and hence by (5.6) also Σ

(0)
12 = 0. This

holds independent of specific choices for A or C, hence we conclude that

Σ
(0)
11 = 0 and Σ

(0)
12 = 0 . (5.10)

Equation (5.8) together with the assumption that (
(
A11 −A12A

-1
22A21

)
, C11) is con-

trollable implies that Σ
(p)
11 is invertible (cf. [70, Theorem 1.2]). Comparing the means

and noting – since Σ
(0)
11 = 0 – we have, for small ε, that

(Σε
11)-1 = ε−p(Σ(p)

11 + ε1−pΣ(1)
11 +O(ε2))-1

≈ ε−p(Σ(p)
11 )-1 − ε1−p(Σ(p)

11 )-1(Σ
(1)
11 )(Σ

(p)
11 )-1 +O(ε2(1−p))
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and using (5.7) we find

mc(ε) = Σε
21(Σε

11)-1x = −A-1
22A21x+O(ε1−p) ε→0−−−→ mav = −A-1

22A21x . (5.11)

Note that the above consideration remain unchanged if A21 = 0 and thus mav = 0.
Only in the case that C11 = 0, such that both Σ

(p)
12 = Σ

(p)
11 = 0, the O(ε) terms

can lead to a non-trivial change of the mean for the conditional measure and this is
indeed what we observe in the example from the beginning of the chapter.

Regarding the variance we note that since

Σc(ε) = Σε
22 − Σε

21(Σε
11)-1Σε

12 = Σ
(0)
22 − εpΣ

(p)
21 (Σ

(p)
11 )-1Σ

(p)
12 +O(ε)

ε→0−−−→ Σ
(0)
22

and the O(1)- term equation of (5.5) reads

A22Σ
(0)
22 + Σ

(0)
22 A

T
22 = −C22C

T
22 ,

which has a unique positive definite solution by our assumption, also the variances
agree as ε→ 0 since Σ

(0)
22 and Σav are solutions to the same Lyapunov equation.

Case 2: p=0

If p = 0 then equations (5.6)-(5.7) and (5.8)-(5.9) collapse into one equation respec-
tively, i.e., the corresponding equations read

O(ε-1) : Σ
(0)
12 = −Σ

(0)
11 A

T
21A

-T
22

O(εp) :
(
A11 −A12A

-1
22A21

)
Σ

(0)
11 + Σ

(0)
11

(
A11 −A12A

-1
22A21

)T
= −C11C

T
11

which means Σ
(0)
11 > 0 and the inverse can be expressed as (Σ

(0)
11 )-1 ≈ (Σ

(0)
11 )-1 −

ε(Σ
(0)
11 )-1(Σ

(1)
11 )(Σ

(0)
11 )-1 + O(ε2) . Thus the calculations for the mean remain valid:

mc(ε) = Σε
21(Σε

11)-1x = −A-1
22A21x + O(ε)

ε→0−−−→ mav = −A-1
22A21x and for the

variance we have
Σc(ε) = Σ

(0)
22 − Σ

(0)
21 (Σ

(0)
11 )-1Σ

(0)
12 +O(ε)

but also the O(1)- term equation of (5.5) now reads

A22(Σ
(0)
22 − Σ

(0)
21 (Σ

(0)
11 )-1Σ

(0)
12 ) + (Σ

(0)
22 − Σ

(0)
21 (Σ

(0)
11 )-1Σ

(0)
12 )AT

22 = −C22C
T
22 ,

i.e., our conclusions are unchanged.

Remark 5.3. By Proposition 5.1 we find that a sufficient condition for averaging
and conditional expectations to agree in the limit ε → 0 is the controllability as-
sumption of the pair (A11−A12A

-1
22A21, C11) which matches the observations of the

example: For p = 0 we have C11 = 1 and the condition is fulfilled. Yet, even for
p > 0 we have C11 → 0, i.e., the conditions are not met, still for 0 < p < 1 the
approaches agree.
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Other conditions, for example the degree of irreversibility, would also be reason-
able candidates to find necessary or sufficient criterions for the (non-)conformity
of the approaches, since only for non-reversible processes conditional expectations
and averaging possibly differ (see Section 4.3.2). The degree of irreversibility can
be measured, e.g., by the entropy production rate defined as the relative entropy
between the path-measure ρ+

[0,T ] of the forward process described by (5.1) and the
path-measure of the time-reversed process associated to (5.1) ρ−[0,T ] (see e.g. [40];
for a definition of the time-reversed process see (2.12)). Computing the degree of
irreversibility for the Example 4.13 and letting δ = εp, we find that

lim
T→∞

1

T
H(ρ+

[0,T ]|ρ
−
[0,T ]) =

2

εp(1 + ε)

ε→0−−−→
{
∞ , p > 0

2 , p = 0 .

This means, also the degree of irreversibility being finite can only serve as a sufficient
condition for the two approaches to agree. Conversely, taking the value infinity seems
to be a necessary condition for them to disagree.

Summarising, we find the following conjectures for a sufficient condition
for the conformity of the approaches. The first two offer formal calculations
supporting them, the last one is a pure conjecture.

• for OU processes: controllability of drift and diffusion for all ε > 0 together
with controllability of the Schur complement of the drift and the diffusion of
the slow variable (A11 −A12A

−1
22 A21, C11) (see Proposition 5.1),

• hypo-ellipticity of the full generator, which guarantees strict positivity of the
invariant measure (see Conjecture 4.13),

• finiteness of the degree of irreversibility given by the entropy production rate
between the forward and backward process (see Remark 5.3).

5.1.1 Numerical comparison for ε > 0

In this section we compare averaging to effective dynamics for finite values of ε > 0.
We will compute on the one hand the path-wise error of the averaged and effective
dynamics, respectively. On the other hand, we compute the relative entropy of
the time t marginals. The path-wise error requires the numerical solution of the
respective SDE and will be approximated by Monte Carlo, i.e.,

E

(
sup
t∈[0,T ]

|Xt −Xav/eff
t |

)
≈ 1

N

N∑

j=1

max
i∈{1,...,M}

|xj(i)− xav/eff
j (i)|

where xj(i) corresponds to the jth sample – with j ∈ {1, . . . , N}and N is the number
of samples – at time step i ∈ {1, . . . ,M} and M is the number of time steps, for
which Mh = T where h the step size of the numerical method.
We consider the following examples with averaging scaling, choose the parameters
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T = 1, h = 5 · 10−5, N = 100 and let the dynamics evolve from x(0) = (1, 1)T for
Examples 1 and 3, x(0) = (1, 1, 1)T for Example 2:

Example 1: Bε =

(−2 −1
−1
ε

−1
ε

)
, Aε =

(
1 0

0 2√
ε

)
,

Example 2: Bε =



−2 −1 −1
−1
ε

−3
ε

3
ε−1

ε
−1
2ε

−1
ε


 , Aε =




1 0 0

0 1√
ε

0

0 0 1√
ε


 ,

and additionally one example with a third time scale suitable for homogenization.

Example 3: Bε =

(
−2 −1√

ε
1√
ε
−1
ε

)
, Aε =

(
1 0

0 1√
ε

)
.

Let us first discuss the results for for Examples 1 and 2, which correspond to the

Path-wise error
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Figure 5.1: Top: Plot of the path-wise error of the averaged/effective dynamics
against ε on a doubly-logarithmic scale. Bottom: Plot of max

t>0
H(ρ̂εt |νt) (aver-

aged/homogenized) and max
t>0
H(ρ̂εt |ρ̄εt ) (effective). Left: Example 1, middle: Ex-

ample 2, right: Example 3.

first and middle column of Figure 5.1. The path-wise error (top row in Figure
5.1) decreases for ε → 0 and the two methods become indistinguishable matching
the theory of Section 5.1. For ε of order one, averaging performs slightly better
in path-wise sense, but this can change if the initial conditions are altered. Mea-
suring the error instead in relative entropy of the time t marginals yields a similar
picture. Summarising, these results suggest that for an averaging scaling there is
no clear judgement possible, which of the methods is preferable for finite ε. Let
us remark that considering non-linear examples would be desirable, unfortunately
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non-linearity together with an averaging scaling renders the computation of the ef-
fective dynamics impossible. We refrain from using approximation methods for the
effective coefficients here, since they would introduce additional numerical errors
hence making the comparison too involved.
Contrary to the averaging scaling, the third example, which suffices a homoge-
nization scaling, gives a completely different picture: for the path-wise error the
homogenized approximation clearly outperforms effective dynamics as ε → 0. In-
terestingly, considering relative entropy of the time t marginals instead, the roles
change. Even though there seems to be no ε-dependency of the error, effective dy-
namics yields a better approximation in this case. This is presumably due to the fact
that by construction the effective dynamics approach the same invariant measure as
the original process, i.e., for t→∞ we have that H(ρ̂εt |ρ̄εt )→ 0 and this is not true
for the homogenized dynamics, which admits a different stationary distribution.
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5.2 Sampling from conditional distributions

We have already learned that for non-reversible processes averaging does not neces-
sarily give the same result as conditional expectations. This involves in particular
the fact that the fast process, while fixing the slow one, does not sample the con-
ditional measure. In this section we will introduce projections which enable us to
sample from conditional distributions for non-reversible OU-processes. To make the
problem clearly visible and to fix the notation for the section, consider the process
Z = (X,Y )T, X ∈ Rnx , Y ∈ Rny , n = nx+ny whose dynamics written in blockform
are given by

(
dXt

dYt

)
=

(
A11 A12

A21 A22

)(
Xt

Yt

)
dt+

√
2

(
C11 C12

C12 C22

)(
dBx

t

dBy
t

)
, (5.12)

where A11 ∈ Rnx×nx , A12 ∈ Rnx×ny , A21 ∈ Rny×nx , A22 ∈ Rny×ny , C11 ∈
Rnx×nx , C12 ∈ Rnx×ny , C21 ∈ Rny×nx , C22 ∈ Rny×ny . Here Bx

t , B
y
t are nx, ny-

dimensional standard Brownian motions respectively.
Under the usual assumptions A2 on A and C the process has a unique invariant
measure µ ∼ N (0,Σ) where Σ solves the Lyapunov equation

AΣ + ΣAT = −2CCT , (5.13)

which can also be formulated in a block wise fashion giving three equations (since
the off diagonal equations are the same) and we will exploit this formulation in the
proofs of the consecutive sections.

The conditional distribution

For a normally distributed random variable Z = (X,Y ) ∼ N ((µ1, µ2)T,Σ) it is
easy to compute the distribution of the conditioned variable (X|Y = y) which –
employing completion of the square – turns out to be also normally distributed with
mean µ1 + Σ12Σ−1

22 (y − µ2) and variance Σ11 − Σ12Σ-1
22Σ21. Hence, the conditional

distribution we want to sample from is given byN (Σ12Σ−1
22 y,Σ11−Σ12Σ-1

22Σ21) . Note
that, opposed to the previous section where we considered conditional expectations
with respect to the condition X = x, we change the role of X and Y here and
consider now the condition Y = y.

The constrained dynamics

The aim is to constrain the dynamics in such a way that the invariant measure
equals the target conditional distribution. Obviously y should be fixed, i.e., Ẏt = 0

and Y0 = y. Employing a projection given by

P =

(
Inx×nx α

0 0

)

and thus replacing A by PA and C by PC in the dynamics (5.12) we achieve that
that Ẏt = 0. The choice for the projection lies within α and the question is how to
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choose α such that the projected dynamics produce the correct conditional distri-
bution. If the dynamics are reversible and C is block diagonal it will turn out that
the orthogonal projection, i.e., α = 0 yields the correct the distribution.
Note that the replacement of A and C by its projected versions is not a transforma-
tion of the original dynamics (5.12), but defines a new process (Ẑt)t≥0 = (X̂t, Ŷt)t≥0

given by the original one plus constraints. The corresponding SDE reads

dẐt = PAẐt dt+ PC dBt ,

or equivalently with Ã-1
1 = A11 + αA21, C1 = (C11 , C12), C2 = (C21, C22), B =

((Bx)T, (By)T)T:

dX̂t = Ã-1
1

(
X̂t + Ã1 (A12 + αA22) Ŷt

)
dt+

√
2(C1 + αC2) dBt (5.14)

dŶt = 0 .

5.2.1 A covariance preserving projection

Let us state the first result that yields the correct covariance but not yet the correct
mean.

Theorem 5.4. Let α = −Σ12Σ-1
22 and assume that (A11 + αA21) is Hurwitz and

((A11 + αA21) , C1 + αC2) is controllable.
Then X̂ defined by (5.14) has a unique positive stationary distribution given by a nor-
mal distribution N (µ̂, Σ̂) where Σ̂ = Σ11−Σ12Σ-1

22Σ21 and µ̂ = (A11 + αA21)-1 (A12 + αA22) y.

Proof. The Lyapunov equation for the covariance of the invariant distribution of the
process (X̂)t≥0 given by (5.14) is

(A11 + αA21) Σ̂ + Σ̂ (A11 + αA21)T = −2(C1 + αC2)(C1 + αC2)T , (5.15)

and we note that the right hand side is the first block of the projected diffusion, i.e.,

(PCCTPT)11 = (C1 + αC2)(C1 + αC2)T .

Thus, we can make use of the first block of the Lyapunov equation (5.13) to which
is multiplied by P and PT from the left and right respectively. Using that ΣT

12 +

Σ22α
T = 0 for α = −Σ12Σ-1

22 the left hand side of this equation yields

(PAΣPT + PΣATPT)11

= (A11 + αA21) (Σ11 + Σ12α
T) + (A12 + αA22) (ΣT

12 + Σ22α
T)

+ (Σ11 + αTΣT
12) (A11 + αA21)T + (Σ12 + αTΣ22) (A12 + αA22)T

= (A11 + αA21)
(
Σ11 − Σ12Σ-1

22ΣT
12

)
+
(
Σ11 − Σ12Σ-1

22ΣT
12

)
(A11 + αA21)T

and so Σ̂ = Σ11 − Σ12Σ-1
22ΣT

12 is indeed the solution to (5.15).
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5.2.2 A mean and variance preserving projection

In this section we derive a projection which additionally yields the correct mean.
To state the next result we introduce the block wise notation for the inverse of A

A-1 =

(
A−11 A−12

A−21 A−22

)
.

Theorem 5.5. Let condition A2 hold and assume that either A11 or A22 is invert-
ible. Further assume that

α = −
(
A11Σ12Σ-1

22 +A12

) (
A22 +A21Σ12Σ-1

22

)-1

exists, that (A11 + αA21) is invertible and that C1C
T
1 + αC2C

T
2 α

T > 0.
Then (A11 + αA21) is Hurwitz and the pair ((A11 + αA21) , C1+αC2) is controllable.
Further X̂, the solution to (5.14), has a unique positive stationary distribution given
by a normal distribution N (µ̄, Σ̄) where Σ̄ = Σ11 −Σ12Σ-1

22Σ21 and µ̄ = −Σ12Σ−1
22 y.

Proof. We start with the calculation for the mean which is the easy part of the
proof.

The mean

Recall that the aim is to find µ̄ = −Σ12Σ−1
22 y. By the virtue of the equation

(5.14) we know that µ̄ = (A11 + αA21)-1 (A12 + αA22) y. Hence we check whether
(A11 + αA21)-1 (A12 + αA22) = −Σ12Σ−1

22 . This is indeed the case by our assump-
tions and we compute straightforwardly:

(A11 + αA21)-1 (A12 + αA22) = −Σ12Σ−1
22 | (A11 + αA21) ·

⇔ A12 + αA22 = − (A11 + αA21) Σ12Σ-1
22 |+ αA21Σ12Σ-1

22 −A12

⇔ α
(
A22 +A21Σ12Σ-1

22

)
= −

(
A11Σ12Σ-1

22 +A12

)
| ·
(
A22 +A21Σ12Σ-1

22

)-1

⇔ α = −
(
A11Σ12Σ-1

22 +A12

) (
A22 +A21Σ12Σ-1

22

)-1
. (5.16)

The covariance

The harder part is to check that this choice of α also gives the correct covariance
Σ̄ = Σ11 − Σ12Σ-1

22Σ21. For this we need to check that

(A11 + αA21) Σ̄ + Σ̄ (A11 + αA21)T = −2(C1 + αC2)(C1 + αC2)T (5.17)

such that Σ̄ = Σ11 − Σ12Σ-1
22Σ21.

First note that in general

AΣ + ΣAT = −2CCT ⇔ A-1Σ + ΣA-T = −2A-1CCTA-T . (5.18)

We profit from the calculation (5.16) in the proof of Theorem 1 which we exploit here
for the last equation (5.18) to which we refer as the reciprocal Lyapunov equation (see
e.g. [49]). In this auxiliary calculation we employ the previously chosen projection

P̃ =

(
Inx×nx −Σ12Σ-1

22

0 0

)
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since we know that this gives the correct covariance. This yields
(
P̃A-1ΣP̃T + P̃ΣA-TP̃T

)
11

= −2
(
P̃A-1CCTA-TP̃T

)
11
⇔ Ã1Σ̂ + Σ̂ÃT

1 = −2C̃C̃T

(5.19)

where we introduce the auxiliary variables

Ã1 =
(
A−11 − Σ12Σ-1

22A
−
21

)
, C̃ = Ã1C1 + Ã2C2, Ã2 =

(
A−12 − Σ12Σ-1

22A
−
22

)
(5.20)

and we know that Σ̂ = Σ11 − Σ12Σ-1
22Σ21 is the correct variance. Hence our aim is

to show that equations (5.19) and (5.17) are equivalent. To this end, we transform
equation (5.19) to its equivalent reciprocal version, i.e.,

Ã1Σ̂ + Σ̂ÃT
1 = −2C̃C̃T ⇔ Ã-1

1 Σ̂ + Σ̂Ã-T
1 = −2

(
C1 + Ã-1

1 Ã2C2

)(
C1 + Ã-1

1 Ã2C2

)T

and hence if we can show that

(i) Ã-1
1 = A11 + αA21

(ii) Ã-1
1 Ã2 = α

we know that Σ̂ is a solution to (5.17).

Version 1: Assume that A22 is invertible

First note, that if A22 is invertible and A is stable it follows that T = A11 −
A12A

-1
22A21 is also invertible. This follows from noting that

0 6= det

((
A11 A12

A21 A22

))
= det

((
T A12A

-1
22

0ny×nx Iny×ny

)(
Inx×nx 0nx×ny
A21 A22

))
= det(A22) det(T )

which implies det(T ) 6= 0 which is equivalent to T being invertible.

Step 1: (i) Show Ã-1
1 = A11 + αA21.

By block inversion of matrices we have A−11 = T -1, A−21 = −A-1
22A21T

-1 such that Ã
defined in (5.20) can be rewritten as

Ã-1
1 = A−11 − Σ12Σ-1

22A
−
21 =

(
Inx×nx + Σ12Σ-1

22A
-1
22A21

)
T -1 . (5.21)

Also α can be rewritten as

α = −
(
A11Σ12Σ-1

22 +A12

) (
A22 +A21Σ12Σ-1

22

)-1

= − (A11Σ12 +A12Σ22) (A22Σ22 +A21Σ12)-1 .
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With this we calculate - using the definition of Ã by (5.21) and T in the first step,
rearranging terms in the second and third step, employing the definition of α in the
forth and finally rearranging terms in the last step - we find

Ã-1
1 = A11 + αA21

⇔
(
A11 −A12A

-1
22A21

) (
Inx×nx + Σ12Σ-1

22A
-1
22A21

)-1
= A11 + αA21

⇔A11 −A12A
-1
22A21 = (A11 + αA21)

(
Inx×nx + Σ12Σ-1

22A
-1
22A21

)

⇔− (A11Σ12 +A12Σ22) Σ-1
22A

-1
22A21 = αA21

(
Inx×nx + Σ12Σ-1

22A
-1
22A21

)

⇔Σ-1
22A

-1
22A21 = (A22Σ22 +A21Σ12)-1A21

(
Inx×nx + Σ12Σ-1

22A
-1
22A21

)

⇔A21 +A21Σ12Σ-1
22A

-1
22A21 = A21

(
Inx×nx + Σ12Σ-1

22A
-1
22A21

)
.

Step 2: (ii) Show Ã-1
1 Ã2 = α.

Again - using block inversion of matrices - we rewrite Ã2 defined in (5.20) as

Ã2 = A−12 − Σ12Σ-1
22A

−
22

= −
(
T -1A12 − Σ12Σ-1

22

(
Iny×ny +A-1

22A21T
-1A12

))
A-1

22. (5.22)

Using (5.22) and (5.21) a straightforward calculation gives

Ã-1
1 Ã2 = α

⇔ − Ã-1
1

(
T -1A12 + Σ12Σ-1

22

(
Iny×ny +A-1

22A21T
-1A12

))
= αA22

⇔ − Ã-1
1

(
Iny×ny +A-1

22A21

)
T -1A12 − Ã-1

1 Σ12Σ-1
22 = αA22

⇔ −A12 − (A11 + αA21)Σ12Σ-1
22 = αA22

⇔ −A12Σ22 −A11Σ12 = α(A21Σ12 +A22Σ22)

which is true by the definition of α.

Version 2: Assume that A11 is invertible

This proof is similar to version 1 given above. It mainly differs in replacing the
Schur complement T = A11 − A12A

-1
22A21 by the other Schur complement S =

A22 − A21A
-1
11A12 since here we assume that A11 is invertible and modifying the

computations appropriately.
First note that since A11 is invertible and A is stable it follows that S = A22 −

A21A
-1
11A12 exists and is invertible. This follows from

0 6= det

((
A11 A12

A21 A22

))
= det

((
A11 0nx×ny
A21 Iny×ny

)(
Inx×nx A-1

11A12

0nx×ny S

))
= det(A11) det(S)

which means again that det(S) 6= 0 such that S is invertible.
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Step 1: (i) Show Ã-1
1 = A11 + αA21.

Let us rewrite Ã1 with the Schur complement S which gives

Ã1 = A−11 − Σ12Σ-1
22A

−
21 =

(
Inx×nx +A-1

11A12S
-1A21 + Σ11Σ-1

22S
-1A21

)
A-1

11 (5.23)

Multiplying the fourth block of the Lyapunov equation (5.13) from the right by Σ-1
22

we have

A21Σ12Σ-1
22 = −A22 − (ΣT

12A
T
21 + Σ22A

T
22 + C2C

T
2 )Σ-1

22

and adding A21A
-1
11A12 we find

A21(A-1
11A12 + Σ12Σ-1

22) = −S − (ΣT
12A

T
21 + Σ22A

T
22 + C2C

T
2 )Σ-1

22

= −S − (A21Σ12Σ-1
22 +A22) . (5.24)

With this - using (5.23) in the first step, rearranging terms in the second step,
inserting (5.24) in the third and applying the definition of α in the last step - we
calculate

Ã-1
1 = A11 + αA21

⇔ A11 = (A11 + αA21)
[
A-1

11A12 + Σ12Σ-1
22

]
S-1A21 +A11 + αA21

⇔ 0 = α(A21A
-1
11A12 +A21Σ12Σ-1

22 + S)S-1A21 + (A12 +A11Σ12Σ-1
22)S-1A21

⇔ 0 = α(A22 +A21Σ12Σ-1
22)S-1A21 + (A12 +A11Σ12Σ-1

22)S-1A21

⇔ 0 = −(A12 +A11Σ12Σ-1
22)S-1A21 + (A12 +A11Σ12Σ-1

22)S-1A21 .

Step 2: (ii) Show Ã-1
1 Ã2 = α.

Rewriting Ã2 in terms of S gives

Ã2 = A−12 − Σ12Σ-1
22A

−
22 = −

(
A-1

11A12 − Σ12Σ-1
22

)
S-1

which together with the previous step yields

Ã-1
1 Ã2 = α

⇔ (A11 + αA21)
(
−A-1

11A12 − Σ12Σ-1
22

)
= αS

⇔−A12 − αA21A
-1
11A12 −A11Σ12Σ-1

22 − αA21Σ12Σ-1
22 = α

(
A22 −A21A

-1
11A12

)

⇔−A12 −A11Σ12Σ-1
22 − αA21Σ12Σ-1

22 = αA22

⇔−A12Σ22 −A11Σ12 = α (A21Σ12 +A22Σ22) ,

which is true by the definition of α.
Now, since Σ̂ = Σ̄ > 0 and by assumption C1C

T
1 + αC2C

T
2 α

T > 0 it follows by
Theorem 6.17 in [3] that A11 + αA21 is stable.
Hence (A11 +αA21, C1C

T
1 +αC2C

T
2 ) is controllable and the process X̂t has a unique

invariant distribution given by N (0, Σ̄).
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Alternative representation for α

Since we can always express A via

A = 2(−D + J)Σ-1, where D = CCT, J = −JT

we can also get an alternative representation of α in terms of D and J alone.
Using the blockwise notation for the inverse of Σ and the Schur complements S =

Σ22 −Σ21Σ-1
11Σ12 and T = Σ11 −Σ12Σ-1

22Σ21 we get the following representations of
the blocks of A:

A11 = (−D11 + J11)T -1 + (D12 − J12)Σ-1
22Σ21T

-1

A12 = (D11 − J11)T -1Σ12Σ-1
22 + (−D12 + J12)(Σ-1

22 + Σ-1
22Σ21T

-1Σ12Σ-1
22)

A21 = (−D21 + J21)(Σ-1
11 + Σ-1

11Σ12S
-1Σ21Σ-1

11) + (D22 − J22)S-1Σ21Σ-1
11

A22 = (D21 − J21)Σ-1
11Σ12S

-1 + (−D22 + J22)S-1 .

With this we see that

A11Σ12Σ-1
22 +A12 =

[
(−D11 + J11)T -1 + (D12 − J12)Σ-1

22Σ21T
-1]Σ12Σ-1

22

+ (D11 − J11)T -1Σ12Σ-1
22 + (−D12 + J12)(Σ-1

22 + Σ-1
22Σ21T

-1Σ12Σ-1
22)

= (−D12 + J12)Σ-1
22 , (5.25)

A22 +A21Σ12Σ-1
22 = (D21 − J21)Σ-1

11Σ12S
-1 + (−D22 + J22)S-1

+
[
−((D21 − J21)Σ-1

11Σ12 −D22 + J22)S-1Σ21Σ-1
11 + (−D21 + J21)Σ-1

11

]
Σ12Σ-1

22

= (D21 − J21)(Σ-1
11Σ12S

-1 − Σ-1
11Σ12Σ-1

22 − S-1Σ21Σ-1
11Σ-1

11Σ12)

+ (−D22 + J22)S-1(Iny×ny − Σ21Σ-1
11Σ12Σ-1

22)

= (D22 − J22)Σ-1
22 . (5.26)

In the last step we used that

Σ-1
11Σ12S

-1 − S-1Σ21Σ-1
11Σ-1

11Σ12 = Σ-1
11Σ12S

-1(Σ22 − Σ21Σ-1
11Σ12)Σ-1

22 = Σ11Σ12Σ-1
22

and
S-1(Iny×ny − Σ21Σ-1

11Σ12Σ-1
22) = S-1(Σ22 − Σ21Σ-1

11Σ12)Σ-1
22 = Σ-1

22 .

Consequently

α = −(A11Σ12Σ-1
22 +A12)(A22 +A21Σ12Σ-1

22)-1

= −(−D12 + J12)(D22 − J22)-1. (5.27)

Remark 5.6. We find that α exists if D22 − J22 is invertible and that α = 0 if
D12 = J12. If additionally to D12 = J12 it holds that A11 is invertible then by (5.25)
A-1

11A12 = −Σ12Σ-1
22. This means, in this case the canonical orthogonal projection

will yield the correct conditional distribution.
If A = AT (and hence can interpreted as the Hessian of a quadratic potential) and
C = In×n we are clearly in the case that α = 0 and still we arrive at the correct
constrained distribution by our choice of projecting.
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5.2.3 A scalar product with respect to which the projection be-
comes orthogonal

In this section we shortly discuss the introduction of an appropriately chosen scalar
product with respect to which the projection

P =
(
Inx×nx α

0 0

)

is orthogonal. To this end, recall that a projection P : Rn → U ⊂ Rn is orthogonal
with respect to the scalar product (x, y)R = xTRy if

(Pv − v, u)R = 0 ∀v ∈ Rn, u ∈ U .

We write v = ( vxvy ) ∈ Rn with vx ∈ Rnx , vy ∈ Rny . Then orthogonality in our case
requires that

(
αvy
−vy

)T

R

(
ux
0

)
=
(
vT
yα

TR11 − vT
yR21

)
ux = 0 ∀vy ∈ Rny , ux ∈ Rnx ,

where we use the same notation for the blocks of the matrix R as in the previous
section. This means we need R to be such that

αTR11 = R21 ⇔ α = R-T
11R

T
21.

Since α is of the form

α = −(A11Σ12Σ-1
22 +A12)(A22 +A21Σ12Σ-1

22)-1 ,

assuming that A11 is invertible, we can choose

R11 = −A-T
11

RT
21 = (Σ12Σ-1

22 +A-1
11A12)(A22 +A21Σ12Σ-1

22)-1 .

Now, in order for R to define a scalar product R = RT > 0 has to hold, which
means that besides A11 being invertible also symmetry of A11 is required. Further-
more, we choose R12 = RT

21 and since the choice of R22 is free, it should be chosen
such that R is indeed positive definite. The interpretation of this scalar product is
– similar to the interpretation of the projection – not obvious.





Chapter 6

Applications and examples

In this chapter we will probe the theoretical findings of the previous chapters, espe-
cially Chapter 3, by means of various examples and applications.

6.1 Convergence to equilibrium in relative entropy for
OU-processes

This section comprises the practical counterpart to the theoretical considerations of
Chapter 3 dealing with convergence to equilibrium in relative entropy for possibly
degenerate OU-processes, see in particular Section 3.2. Theorem 3.22 constitutes the
first result for exponential convergence in relative entropy for degenerate diffusions
with a rate that solely depends on the drift. This is surprising, in the sense that it
seems to imply that the temperature of the system does not play a role at all for
convergence rate. This will be the starting point of our analysis of the convergence
behaviour. A splitting into terms which contribute to the relaxation of the mean
and the covariance will be suggested in order to put the numerical observations on a
theoretical basis. Further, we will examine the influence of the initial condition on
the convergence and therein the occurrence of plateaus. In Section 6.1.3 we inves-
tigate the splitting into marginal and conditional terms, which later on allows for a
data-based division into slow and fast degrees of freedom.

The dynamics of interest for this section is described by the SDE

dXt = AXt dt+
√
β-1C dBt , (6.1)

where A ∈ Rn×n, C ∈ Rn×m are assumed to fulfil the usual Assumption A2, which
guarantees a unique positive invariant measure which we denote again by µ. Ad-
ditionally, we introduce β ∈ R+ which represents the inverse temperature, i.e., the
strength of the noise. Recall that under Assumption A2 the unique invariant mea-
sure µ is a mean zero Gaussian with covariance

Σβ
∞ = β-1Σ∞

where Σ∞ is the unique solution to

AΣ∞ + Σ∞AT = −CCT .
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We use this notation to make the dependence on the temperature explicit. In the
following we will study the effect of the initial conditions and the temperature on
the convergence behaviour. Further we investigate in more detail the occurrence of
plateaus and in later sections the possibility of accelerating the convergence.

To this end, we first compute the relative entropy between two Gaussian distri-
butions, for which we employ the following useful lemma.

Lemma 6.1. Let X ∼ N (m,Σ), m ∈ Rn, Σ ∈ Rn×n and let A ∈ Rn×n, c ∈ Rn be
fixed. Then

E((X − c)TA(X − c)) = (m− c)TA(m− c) + Tr(AΣ).

Proof. A straightforward calculation yields

E[(X − c)TA(X − c)] = E[((X −m) + (m− c))TA((X −m) + (m− c))]
= E[(X −m)TA(X −m)] + 2E[(X −m)TA(m− c)]

+ (m− c)TA(m− c)
= E[Tr((X −m)(X −m)TA)] + (m− c)TA(m− c)
= Tr(ΣA) + (m− c)TA(m− c)

Lemma 6.2. Let ρ1, ρ2 be two Gaussian densities on Rn,

ρi(x) = ((2π)n det(Σi))
−1/2 e

1
2

(x−mi)TΣ-1
i (x−mi) , i = 1, 2.

The relative entropy of ρ1 with respect to ρ2 is then given by

H(ρ1|ρ2) =
1

2

[
Tr(Σ-1

2 Σ1)− Tr(log(Σ-1
2 Σ1)) + (m1 −m2)TΣ-1

2 (m1 −m2)− n
]
.

Proof. Denote by X1 the random variable with distribution ρ1

H(ρ1|ρ2) =

∫
ρ1(x) log

(
ρ1(x)

ρ2(x)

)
dx

=

∫
ρ1(x) log

(
e−0.5(x−m1)TΣ-1

1 (x−m1)
√

det Σ2

e−0.5(x−m2)TΣ-1
2 (x−m2)

√
det Σ1

)
dx

= −1

2
E((X1 −m1)TΣ-1

1 (X1 −m1))

+
1

2
E((X1 −m2)TΣ-1

2 (X1 −m2)) + log

(√
det Σ2

det Σ1

)

= −n
2

+
1

2

(
Tr(Σ-1

2 Σ1) + (m1 −m2)TΣ-1
2 (m1 −m2)

)
+ log

(√
det Σ2

det Σ1

)

=
1

2

[
Tr(Σ-1

2 Σ1)− Tr(log(Σ-1
2 Σ1)) + (m1 −m2)TΣ-1

2 (m1 −m2)− n
]

where in the second to last step we used Lemma 6.2 and in the last step that by
Jacobi’s identity log(det(A) det(B)) = Tr(log(AB)).
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Let us use this result to investigate the convergence behaviour of the dynamics
(6.1) with respect to initial conditions and temperature. To this end, we exploit the
splitting into terms which cover the relaxation of the covariance and terms which
cover the relaxation of the mean.

From Example 2.14, recall that for an initial value X0 with E(X0) = m0 and
Var(X0) = Σ0 we have that Xt ∼ N (mt,Σt) with

mt = eAtm0 ,

Σt = eAtΣ0e
ATt + β-1

∫ t

0
eAsCCTeA

Ts ds = Σβ
∞ + eAt(Σ0 − Σβ

∞)eA
Tt ,

The relative entropy of ρt with respect to µ can thus be written in terms of these
quantities as

H(t) := H(ρt|µ) =
1

2

[
βmT

t Σ-1
∞mt + βTr(ΣtΣ

-1
∞)− Tr(log(βΣtΣ

-1
∞))− n

]
. (6.2)

Note that we could also investigate the convergence behaviour by looking atH(µ|ρt) =
1
2

[
mT
t Σ-1

t mt + β-1Tr(Σ∞Σ-1
t )− Tr(log(β-1Σ∞Σ-1

t ))− n
]
, but we refrain from doing

this, as the H(ρt|µ) is the quantity which is usually considered in the literature in
this context.

6.1.1 Dependence on temperature and initial conditions

We know by the theory of Section 3.2 that convergence for a system of form (6.1)
is exponential with rate given by the smallest real part of the eigenvalues of the
drift matrix A. In particular the temperature does not show up in the theoretical
results concerning the convergence behaviour. Whether the system’s convergence
behaviour is indeed independent of the temperature and how it can aditionally be
influenced by the choice of the initial conditions is the subject of this section.
To this end, we split up H(t) given by (6.2) into three different terms

H(t) =
1

2
(a(t) + b(t) + c(t))

for which we study the convergence behaviour in more detail. The terms are given
by

(i) a(t) = βTr(ΣtΣ
-1
∞)− n = Tr(eAt(βΣ0 − Σ∞)eA

TtΣ-1
∞)

= Tr((βΣ0 − Σ∞)
1
2 eA

TtΣ-1
∞e

At(βΣ0 − Σ∞)
1
2 )

(ii) b(t) = −Tr(log(βΣtΣ
-1
∞))

= −Tr(log(In×n + (βΣ0 − Σ∞)
1
2 eA

TtΣ-1
∞e

At(βΣ0 − Σ∞)
1
2 ))

(iii) c(t) = βµT
t Σ-1
∞µt = βxT

0e
ATtΣ-1

∞e
Atx0

with a, b capturing the convergence of the covariance, whereas c describes the con-
vergence of the mean. Clearly, we find the same structure in all of the terms a, b
and c which is

zTeA
TtΣ-1

∞e
Atz . (6.3)
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For the covariance terms a(t) and b(t), we find that z is given by the differ-
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Figure 6.1: Temperature dependency of H(t) for the dynamics given by A and C

for the initial condition x0 = (−7.5,−1)T, Σ0 = 0. Left: low temperature regime,
β = 103, c(t) dominates. Right: high temperature regime, β = 10−2, a+b dominate.

ence of the initial condition for the covariance to the equilibrium covariance, i.e.,
z = (βΣ0 − Σ∞)

1
2 . Similarly, for c(t) representing the mean, we have z = x0 which

is the difference of the initial condition for the mean (x0) to the mean in equilibrium
which is 0. This means (6.3) and its structure is the object of interest.
In general, we can say that if the temperature is low, i.e. β is large, the term c(t)

contributes most to the relative entropy. For a(t) and b(t) there is no dependence
on the temperature if Σ0 = 0, i.e., deterministic initial conditions. Otherwise, both
the terms a(t) and b(t) can have the largest contribution to the relative entropy,
depending on how Σ0 is chosen.

Let us now discuss the possible scenarios more closely:

• If m0 = x0 = 0 then c(t) ≡ 0.

• If Σ0 = Σβ
∞ then a(t) ≡ b(t) = 0.

• If Σ0 < Σβ
∞ then a(t) < 0 and b(t) > 0, else if Σ0 > Σβ

∞ then a(t) < 0 and
b(t) > 0.

• If x0 6= 0 and Σ0 6= Σβ
∞ then the dominance of the single terms and the overall

convergence behaviour depends on β and the initial conditions x0, Σ0.

Let us discuss the last case in more detail and demonstrate the expected be-
haviour exemplarily for the dynamics determined by the drift an diffusion matrices

A = −
(

1 3

0 2

)
, C =

(
0

1

)
.

In the low temperature regime, i.e., when β is large, the convergence of the mean
given by c(t) dominates, see the left panel of Figure 6.1. Contrary, in the high
temperature regime, i.e., when β is small, the covariance terms a + b contribute
most, see the right panel of Figure 6.1.
If we fix β and vary only the initial conditions we find that this has a great impact



6.1. CONVERGENCE TO EQUILIBRIUM FOR OU-PROCESSES 97

0 0.5 1 1.5 2 2.5 3

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

(t
)/

H
0

H(t)

e
-2  t

a(t)+b(t)

c(t)

0 0.5 1 1.5 2

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
(t

)/
H

0

H(t)

e
-2  t

a(t)+b(t)

c(t)

Figure 6.2: Dependence of H(t) on the initial conditions for the dynamics given by
A and C with β = 20. Left: x0 = (3, 1)T,Σ0 = 0, x0 is eigenvector of A to the eigen-
value 2, ν = 1. Right: x0 ∼ N ((0.6638,−0.6325)T,Σ0), Σ0 =

(
1.5700 −1.1353
−1.1353 0.8573

)
.

on the convergence as can be seen in Figure 6.2. In particular, if m0 is chosen as
an eigenvector of A the observed convergence of c(t) to 0 is exponential with rate
given by two times the corresponding eigenvalue, see the left panel of Figure 6.2. If
other initial conditions are chosen it is possible to observe a plateau in the decay
which can also lead to the prefactor in Theorem 3.22 being strictly greater than 1,
compare right panel of Figure 6.2.

Remark 6.3. We should remark that our analysis is restrictive in the way that
the invariant measure changes with β, that is Σβ

∞ = 1
βΣ∞ with Σ∞ being the

covariance in equilibrium for β = 1. But since by Theorem 3.22 the convergence is
only limited by the drift A, the aim here is to see whether the convergence behaviour
is indeed independent of the temperature. We find that the temperature plays an
important role in which terms contribute most, e.g., that a+ b dominate for larger
temperature. At the same time a + b admit faster convergence than c such that
H(t) decreases faster with increasing temperature. Hence, we might argue that
larger temperatures are favourable for convergence properties. If, contrary to our
previous considerations, we constrained ourselves to keeping Σ∞ fixed while playing
with β we would have to rescale A by 1/β. Indeed: for decreasing β, the eigenvalues
of A/β increase, but doing this is nothing else than rescaling the time, and for β < 1

this yields an acceleration.

6.1.2 Structural properties of a, b and c

We aim at giving some structural insight on the properties of the terms a, b and c.
Since we have exponential convergence ofH(t), we could also expect this to hold true
for a, b and c. Trying to derive this characteristic, we compute the corresponding
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time derivatives, which yields the following result.

c(t) = mT
0e
ATtΣ-1

∞e
Atx0

⇒ ċ(t) = xT
0e
ATt(ATΣ-1

∞ + Σ-1
∞A)eAtx0

a(t) = Tr((βΣ0 − Σ∞)
1
2 eA

TtΣ-1
∞e

At(βΣ0 − Σ∞)
1
2 ) = βTr(ΣtΣ

-1
∞)− n

⇒ ȧ(t) = Tr((βΣ0 − Σ∞)
1
2 eA

Tt
(
ATΣ-1

∞ + Σ-1
∞A
)
eAtST(βΣ0 − Σ∞)

1
2 ) = Tr(βΣ̇tΣ

-1
∞)

= Tr((ATeA
T

(βΣ0 − Σ∞)eAt + eA
T

(βΣ0 − Σ∞)eAtA)Σ-1
∞)

= 2Tr((βΣt − Σ∞)AΣ-1
∞) = 2Tr(A(−In×n + βΣ-1

∞Σt))

b(t) = −Tr(log(In×n + (βΣ0 − Σ∞)
1
2 eA

TtΣ-1
∞e

At(βΣ0 − Σ∞)
1
2 ))

= log(det(β-1Σ∞) det(Σ-1
t ))

= log(det(β-1Σ∞))− log(det(Σt))

⇒ ḃ(t) = −Tr(Σ̇tΣ
-1
t )

= −Tr((ATeA
T

(βΣ0 − Σ∞)eAt + eA
T

(βΣ0 − Σ∞)eAtA)Σ-1
t )

= −Tr((AT(Σt − β-1Σ∞) + (Σt − β-1Σ∞)A)Σ-1
t )

= −2(Tr(AT(In×n − β-1Σ∞Σ-1
t ))

Unfortunately, these calculations do not yield any insight on the behaviour of the
terms. Only in the special case when A = AT it is possible to derive some estimates.
Instead of pursuing this route for some special cases, we rather shed light on the
general structure given by the expression (6.3).

Studying the behaviour of c(t) and a geometric interpretation of plateaus

We perform our investigations on the term c(t) but as explained above the argu-
ments carry over to the other terms, since the structure is the same for all of them.

The simplest case is when A is diagonalizable, i.e., when there exists an invertible
matrix S such that S-1AS = −Λ, Λ = diag(λ1, . . . , λn). We will assume that this
is the case for the rest of this analysis. We can perform a basis transformation
X̃ = S-1X which yields

dX̃ = −ΛX̃ dt+
√
β-1C̃ dBt, where C̃ = S-1C.

The Lyapunov equation transforms into

ΛΣ̃∞ + Σ̃∞Λ = C̃C̃T, where Σ̃∞ = S-1Σ∞S-T.

It is important to note that Σ∞ does not undergo a similarity transformation when
applying the basis transformation to the SDE. Still, the representation of c(t) in the
eigenbasis of A reads

c̃(t) = x̃T
0e

-ΛtΣ̃-1
∞e

-Λtx̃0

= xT
0S

-TSTeA
TtS-TSTΣ-1

∞SS
-1eAtSS-1x0 = c(t),
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Figure 6.3: Left: Evolution of H(t) over time for the same initial conditions as in
the right panel of figure 6.2 with a coloured circle being drawn after a fixed time
step of 0.005 being marked. Right: Contour lines of the potential p(x1, x2) in grey
with x̃(t) plotted according to the time step colouring of the right panel.

i.e. the term c(t) does not change when changing the basis. Writing c(t) in the
eigenbasis of A allows for better understanding and hence we stick to the represen-
tation

c(t) = x̃T
0e

-ΛtΣ̃-1
∞e

-Λtx̃0 =
〈
x̃T

0e
-Λt, e-Λtx̃0

〉
Σ̃-1∞

.

In this notation we can see that each component (x̃0)i, 1 ≤ i ≤ n decays
exponentially to 0 with the respective rate given by λi but is weighted according to
Σ̃-1
∞. One could think of this as a process given by

˙̃xi = −λix̃i, x̃i(0) = (x̃0)i (6.4)

for each component i = 1, . . . , n. This describes the evolution of the expected value
mt in each component in the eigenbasis of A. Even though the evolution is an expo-
nential decay in each component, due to the movement within the potential induced
by Σ-1

∞, the term c(t) can intermittently become constant if it moves on contour
lines of the potential as we will discover in the following.

We make the computation for the two dimensional case first. We denote the two
dimensions of the process (6.4) by (x̃1(t), x̃2(t)), the entries of the inducing potential
and the potential itself by

σij =
(

Σ̃-1
∞
)
ij
, p(x, y) = (x, y)Σ̃-1

∞(x, y)T , (6.5)

respectively such that we can write

c(t) = p(x̃1(t), x̃2(t)) .

A necessary and sufficient condition to find a plateau

In Section 3.1.2 we have learned that for H(t) = H(ρt|µ) we have

Ḣ(t) = −R(t) = −
∫ ∣∣∣∣∇ ln

ρt
µ

∣∣∣∣
2

CCT
dρt .
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If C has full rank, then Ḣ(t) < 0, else it is possible that Ḣ(t) becomes zero whenever
∇ ln ρt

µ is in the kernel of CT. Thus, Ḣ(t) = 0 is a necessary and sufficient condition
for a plateau. Restricting ourselves to the term c, we compute the time derivative
of c(t) which yields

ċ(t) = ṗ(x̃1(t), x̃2(t)) = ( ˙̃x1(t), ˙̃x2(t)) · ∇p(x̃(t), ỹ(t)) .

This implies that the observation of a plateau is equivalent to the trajectory moving
perpendicular to the gradient of p or in other words moving on a contour line of the
potential p at these times. This can be verified in Figure 6.3 in which the orange
colouring correspond to c(t) ≈ const and x̃(t) moving on a contour line of p.
More explicitly, we compute, using the representation (6.5)

ċ(t) = −2λ1σ11x̃1(t)2 − 2λ2σ22x̃2(t)2 − 2σ12(λ1 + λ2)x̃1(t)x̃2(t)

such that for fixed t and and ċ(t) = 0 we compute x̃2(t) as the solution to

σ11λ1x̃1(t)2 + σ12(λ1 + λ2)x̃1(t)x̃2(t) + σ22λ2x̃2(t)2 = 0

⇒ x̃2(t) = −1

2

σ12(λ1 + λ2)

λ2σ22
x̃1(t)± x̃1(t)

√
1

4

(
σ12(λ1 + λ2)

λ2σ22

)2

− σ11λ1

σ22λ2
.

Looking for real initial conditions which result in ċ(t) = 0 this is only possible if
σ12 6= 0, i.e., A and Σ∞ must not be simultaneously diagonalizable. Additionally,
we need to fulfil the following condition

1

4

(
σ12(λ1 + λ2)

λ2σ22

)2

− σ11λ1

σ22λ2
≥ 0⇔ (λ1 + λ2)2

λ1λ2
≥ 4

σ11σ22

σ2
12

.

At the same time we know that

A = −1

2
(CCT + J)Σ-1

∞ ⇔ Λ =
1

2
(C̃C̃T + J̃)Σ̃-1

∞ . (6.6)

Solving for the entries of C̃C̃T and J̃ for given A,Σ∞3 we find that the positive
semi-definiteness of CCT in the two-dimensional case, expressed by Λ, Σ̃-1

∞, reads

CCT ≥ 0 ⇔ (λ1 + λ2)2

λ1λ2
≤ 4

σ11σ22

σ2
12

.

Thus, only rk(CCT ) < 2, i.e., (λ1+λ2)2

λ1λ2
= 4σ11σ22

σ2
12

, enables us to find real initial
conditions such that ċ(t) = 0.

3the computation can be found in the appendix Lemma B.1
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Remark 6.4. Asking for ċ(t) = 0 in the n-dimensional case we can express x1(t)

by x2(t), . . . xn(t) accordingly:

x1(t) = − 1

2λ1σ11

n∑

i=2

(λ1 + λi)σ1ixi(t)

±

√√√√
(

1

2λ1σ11

n∑

i=2

(λ1 + λi)σ1ixi(t)

)2

− 1

λ1σ11

n∑

i=2

λiσiix2
i (t) .

Remark 6.5. If A is not diagonalizable but only admits a Jordan normal form,
i.e., ∃S : S-1AS = −Λ + N , with N ∈ Rn×n being nilpotent. Exemplarily
pick one Jordan block Λm + Nm where m refers to the size of the Jordan block,
i.e., there is one eigenvector corresponding to the eigenvalue λ and m − 1 corre-
sponding generalized eigenvectors. Then (x̃k, . . . , x̃k+1)eΛmt+Nmt = (x̃ke

λt, x̃kte
λt +

x̃k+1e
λt, . . . ,

∑m
i=1 x̃k+It

m−ieλt). This means, convergence does not take place expo-
nentially in each component but depending on the order of the generalized eigen-
vector the corresponding component is slowed down by a multiplication with a
polynomial in t of that order.

Remark 6.6. As long as Λ = diag(λ1, . . . , λn) is such that λi ∈ R ∀ i = 1, . . . , n

the above geometric interpretation is valid, even if A admits only a Jordan normal
form (see the previous remark). However, if there is a complex eigenvalue, then even
though Σ̃∞ remains in Rn×n, x̃i will complex. The interpretation of the movement
of a complex-valued process in a potential is not clear to me.

6.1.3 Convergence of marginal and conditional distributions

In the previous sections a splitting into terms describing the relaxation of the mean
and covariance respectively was considered and the contribution of each term was
studied. In this section a different splitting, namely the one into conditional and
marginal terms, will be analysed. To this end, we consider a process (Zt)(t≥0) ∈ Rn
which consists of two components Z = (X,Y ), where X ∈ Rnx , Y ∈ Rny , n =

nx + ny. We will later think of X as being the slow component and Y the fast one.
Denote by ρ(z) the density of the joint process, by ρ̂(x) the marginal density of
X and by ρx the conditional density of Y where X = x is given. The following
computation yields a partition of the relative entropy into conditional and marginal
terms:

HZ(t) : = H(ρt|µ)

=

∫ ∫
ρ̂t ρt,x log

(
ρ̂t
µ̂

)
dy dx+

∫ ∫
ρ̂t ρt,x log

(
ρt,x
µx

)
dy dx

= H(ρ̂t|µ̂) +

∫
H(ρt,x|µx)ρ̂t dx

= HX(t) + Eρ̂t(HY |X=x(t)). (6.7)
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In the example of this section we investigate the contribution of the two terms,
namely the conditional and the marginal term, to the overall decay in relative en-
tropy. Note that a splitting into a marginal term HY and a conditional term HX|Y=y

is possible in the same way.

Consider the example from the previous section with A = − ( 1 3
0 2 ) , C = ( 0

1 ) ,

for which some exemplary decay is shown in Figure 6.4.
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Figure 6.4: Left: Overall decay of the relative entropy H(t) over time and contri-
bution of the conditional E(HY |X=x(t)) and marginal HX(t) respectively for the
deterministic initial condition m0 = (−1, 5). Middle: plot of the marginal term
HX(t) over time and the respective contribution of the covariance a(t) + b(t) and
mean c(t) for which distinct times in the decay are marked by coloured circles.
Right: Evolution of the mean mt = (m1(t),m2(t)) over time.

Monotonicity of H(ρt|µ) is not inherited by the conditional and marginal
terms

We provide a separate section for this subject as we believe this has not yet been
discussed in the literature and also elucidates possible false interpretations of a
LSI for measures (see Definitions 3.10 and 3.13). The main observation is that even
thoughH(t) is monotonically decreasing in time this is not necessarily true for either
HX or HY |X=x as can be seen in Figure 6.4. In fact, we witness an increase of HX(t)

over a significant time interval and E(HY |X=x(t)) also increases over some interval,
but the increase has smaller magnitude. In order to explain this phenomenon, note
that in the right panel of Figure 6.4 we monitor a monotonous convergence of the
mean to zero with respect to the metric induced by Σ-1

∞. However, this does not entail
monotonous convergence of, e.g., the mean of the marginal in X given by m1(t) to
zero, for which we first encounter an increase of the distance to zero. On a theoretical
level this is due to the fact that when computing the time derivative of e.g. H(ρ̂t|µ̂)

one finds – as usual – the Fisher information, but additionally another term appears
which can be estimated by the empirical measure large deviations rate functional.
Let us shortly explain this for two families of measures (νt)t∈[0,T ], (ηt)t∈[0,T ] ∈ P(Rn)



6.1. CONVERGENCE TO EQUILIBRIUM FOR OU-PROCESSES 103

which are solutions to the Fokker-Planck equations

∂νt
∂t

= ∇ · (b1νt) +∇2 : (Γ1νt), νt=0 = ν0, Γ1 > 0

∂ηt
∂t

= ∇ · (b2ηt) +∇2 : (Γ2ηt), ηt=0 = η0 ,

respectively. The time derivative of the relative entropy of νt with respect to ηt can
then be estimated by (see [67, Chapter 2])

d

dt
H(νt|ηt) ≤ −(1− τ)R(νt|ηt) +

1

4τ

d

dt
I(νt|ηt) τ > 0

where the empirical measure large deviations rate functional 4 reads

I(νt|ηt) =

∫ T

0

∫
|(b2 − b1) +∇ · (Γ2 − Γ1) + (Γ2 − Γ1)∇νt|2Γ-1

1
dνt dt .

If νt and ηt are solutions to the same Fokker-Planck equation, i.e. b1 = b2 and
Γ1 = Γ2 then I(νt|ηt) = 0. In fact, I(νt|ηt) = 0 is equivalent to νt and ηt solving
the same Fokker-Planck equations which is also known as the variational formulation
of the Fokker-Planck equation.
Clearly, if we are concerned with the converge to equilibrium of the time tmeasure ρt
to the invariant measure µ of the dynamics associated to the drift A and diffusion C
then both ρt and µ are solutions to the same Fokker-Planck equation and calculating
the time derivative of H(ρt|µ) yields d

dtH(ρt|µ) = −RCCT(ρt|µ).
On the contrary, if ρ̂t and µ̂ do not solve the same Fokker-Planck equation then the
empirical measure large deviations rate functional of ρ̂t and µ̂ is in general non-zero.
Also the time derivative of the relative entropy might experience a change of sign
over time. To be more precise, we shortly repeat some of the derivations of Section
4.1. To this end, consider the process Zt = (Xt, Yt) described by the SDE

dXt = f1(Zt) dt+ σ1(Zt) dW
1
t

dYt = f2(Zt) dt+ σ2(Zt) dW
2
t .

Due to the work of Gyöngi [28] it is known that ρ̂t, the marginal in x, is solution to
the Fokker-Planck with coefficients

b1(x) = E(f1(Xt, Yt)|Xt = x), Γ1(x) = E(σ1σ
T
1 (Xt, Yt)|Xt = x) ,

that is, we compute conditional expectations with respect to the time t measure ρt,
or, more precisely its conditional ρt,x(y). On the other hand, µ̂ is solution to the
Fokker-Planck equation with coefficients

b2(x) = Eµ(f1(X,Y )|X = x), Γ2(x) = Eµ(σ1σ
T
1 (X,Y )|X = x),

i.e., we compute expectations with respect to the conditional µx. Clearly, as long
as ρt 6= µ the coefficients b1, b2 and Γ1, Γ2 will differ in general.

4Note that this is the same quantity appearing in Proposition 4.2.
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The same reasoning holds for the evolution of the conditional ρt,x to µx where not
even an evolution equation for the time t measure ρ̄t,x is available. This entails that
a LSI assumption for a measure, being the conditional of the invariant measure of
some process, does not imply exponential convergence to the equilibrium conditional
measure with rate given by twice the LSI constant.

Note that the increase of the relative entropy in time cannot be traced back to
the irreversibility of the process, but can also be observed for reversible processes
with appropriate initial conditions.

We want to emphasize that in the case of the example displayed in the left panel
of Figure 6.4, no time scale separation is present and thus no clear judgement is
possible as to which of the terms displays a fast or slow relaxation behaviour. This
is true for both splittings and will be contrasted with the case of a clear time scale
separation below.

6.1.4 Multiple time scales: partitioning into slow and fast degrees
of freedom

In this section, we consider the same splitting into conditional and marginal terms
as in the previous section with the difference that now the system admits a slow
and a fast time scale and the splitting is conducted accordingly. This will lead to a
significant change the of convergence behaviour of the individual contribution in the
infinite time scale separation limit, which we discuss below. To this end, introduce
the time scale separation parameter 0 < ε ≤ 1 such that the coefficients now read

A = −
(

1 3ε−1

0 2ε−2

)
, C =

(
0

ε−1

)
.

This is an instance of a homogenization scaling (cf. [62]) and for ε→ 0, the solution
of the first component of the dynamics converges weakly to the solution of an SDE
with effective coefficients Ā = 1 and C̄ = 3

2 .
Let us also establish the connection to Chapter 2 and the relation between the
constants corresponding to the convergence and exit time behaviour of the system,
as described in Section 3.2 and 3.4.1 in Proposition 3.30, which gave

λ∗ ≥ λmin(CCT)

2λmax(Σ∞)
|vIm| ,

where vIm is the part of v which lies not in the kernel of CCT and v being the
eigenvector of −ATv = λ∗v, with λ∗ = 1 here. vIm is determined by the second
component of v and reads vIm = 3ε

ε4+5ε2+4
. The covariance matrix of the stationary

solution to the corresponding Lyapunov equation is given by

Σ∞ =

(
9

4(2+ε2)
− 3ε

4(2+ε2)

− 3ε
4(2+ε2)

1
4

)
,
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and its largest eigenvalue is λmax(Σ∞) = 11+ε2+
√

49+22ε2+ε4

8(2+ε2)
. Thus, the inequality for

our example reads

1 ≥ 4(2 + ε2)

11 + ε2 +
√

49 + 22ε2 + ε4
· 3

ε4 + 5ε2 + 4

and the right hand side can be shown to be monotonically increasing as ε→ 0 with
the well-defined limit 2/3 confirming the validity of the inequality.
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Figure 6.5: From top to bottom: ε decreases from ε = 0.5 in the top, ε = 0.1 in the
middle to ε = 0.05 in the lower row. Left: Overall decay of the relative entropy H(t)

over time and contribution of the conditional E(HY |X=x(t)) and marginal HX(t)

respectively for the deterministic initial condition m0 = (−1, 5). Middle: plot of the
marginal term HX(t) over time and the respective contribution of the covariance
a(t)+b(t) and mean c(t) for which distinct times in the decay are marked by coloured
circles. Right: Evolution of the mean mt = (m1(t),m2(t)) over time.

Time scale separation We introduce a time scale separation by setting ε < 1 and
now refer to X as the slow process and Y as the fast one. The a priori assignment of
slow and fast degrees of freedom agrees with the observation in the plots (see Figure
6.5): for ε→ 0 the conditional term HY |X=x(t) relaxes almost instantaneously to its
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equilibrium. Accordingly, the marginal term HX(t) governs the long term behaviour
of the overall relaxation. If we use the other splitting into a marginal term in Y

and conditional in X for fixed y we observe the same behaviour. The marginal of Y
converges very fast whereas the conditional of X dominates the long term relaxation.
This observation suggests that we can use the partitioning of relative entropy into
conditional and marginal terms as a definition for fast and slow degrees of freedom.
Both splittings seem reasonable in our setting, but this is due to the linearity of our
system. With the aim of applying this idea to non-linear diffusions we propose to
use the marginal term for the slow and the conditional term for the fast variable.
In order to explain this let us consider the non-linear example given by the SDE

dZt = −∇V (Zt)dt+ dBt, Z = (X,Y ) ∈ R2,

V (x, y) = (x2 − 1)2 + ε−1 (1 + ex)−1 y2.

This SDE describes the diffusive motion of a particle in the potential energy land-
scape V . In x direction, there are two metastable states, given by the domains
around the minima at x = ±1 and in between there is a barrier to overcome. In
y direction the motion is confined by a quadratic potential with varying slope. We
expect that for each fixed x the conditional distribution of Y will quickly approach
its equilibrium, contrary to the marginal of Y which needs the slow variable X to
cross the barrier of the potential at x = 0 in order to converge to its equilibrium
distribution.

Furthermore, we observe that as ε→ 0 all terms become monotonically decreas-
ing which is due to the fact that the Fokker-Planck equation becomes decoupled as
ε→ 0 (see Section 4.3.3 for a formal derivation).

6.2 Accelerating the convergence to equilibrium

Having studied the convergence behaviour for OU-processes in a lot of detail in the
previous section, we now come to the aspect of accelerating it. There are already
various works in this direction and we will shortly review their ideas and results.
Starting from some reversible dynamics the main ingredient will turn out to be the
perturbation by a non-reversible Hamiltonian part effectively resulting in an equal-
isation of the potential energy landscape for the dynamics. Since this perturbation
admits a parameter, which has to be large enough in order for the equalisation to
work, we will relate this parameter to a time scale separation. This, in turn, enables
us to resort to corresponding averaging or homogenization results. We examine this
kind of relation in Section 6.2.2 for two-dimensional dynamics whose slow variable
is the system’s energy. Here, the averaged equation admits an interesting interpre-
tation in terms of time rescaled versions of the original process. In Section 6.2.3
we employ the acceleration for a system which already has an intrinsic time scale
separation and find that effectively this only leads to a time acceleration for the
slow variable.



6.2. ACCELERATING THE CONVERGENCE TO EQUILIBRIUM 107

6.2.1 A general idea

We are still concerned with linear diffusions, that is we consider the SDE

dXt = AXt dt+ C dBt , (6.8)

under the usual Assumptions A2 on A and C. Accelerating the convergence to
equilibrium in the sense of relative entropy consists of the very basic idea which is
to maximise the minimum of the absolute value of the real part of the eigenvalues
of the drift A (cf. [27, 36, 37, 47])5. This is due to Theorem 3.22 which tells us that
convergence is exponential with rate given by the real part of A being closest to
zero, i.e.,

Re(λmin(−A)) .

There are different approaches in how to alter A and we discuss them below. For
the ones which admit an interpretation as multi-scale dynamics we also establish
the connection to the corresponding homogenized dynamics and the interpretation
coming along with it in the subsequent sections.

Let us start with shedding some light on the possible ways of accelerating the
convergence to the invariant measure µ ∼ N (0,Σ∞) in the sense of relative entropy
H(ρt|µ). Here, Σ∞ is, as usual, the unique positive definite solution to the Lyapunov
equation

AΣ∞ + Σ∞AT = −CCT .

Consider the special case of Re(λmax(−A)) < 1 and replace A by A-1, C by A-1C

in (6.8) which yields the minimal convergence rate

Re(λmin(−A-1)) = (Re(λmax(−A)))-1 > 1.

The resulting system still has the correct invariant measure since (A,C) controllable
and A being Hurwitz is equivalent to (A-1, A-1C) controllable and A-1 being Hurwitz.
Moreover, and more importantly,

AΣ∞ + Σ∞AT = −CCT ⇔ A-1Σ∞ + Σ∞A-T = −A-1CCTA-T ,

hence the invariant measure ist unchanged.

The most straightforward idea is to replace −A by −(A+B) such that
Re(λmin(−A)) < Re(λmin(−(A + B))) and Σ∞ is unchanged. Assuming that A is
diagonalizable, we have ∃S : S-1AS = ΛA = diag(λ1, . . . , λn), Re(λi) < 0 where
w.l.o.g. λ1, . . . , λk are the eigenvalues which need improvement. Hence, a matrix B
is added such that S-1BS = ΛB = diag(ν1, . . . , νk, 0, . . . , 0), Re(νi) < 0. Clearly,
Re(λmin(−A)) < Re(λmin(−(A + B))), but since B and Σ∞ do not commute in
general, the right hand side of the Lyapunov equation, given by −(CCT − BΣ∞ −
Σ∞BT), will not necessarily be positive semi-definite but can be negative definite
or indefinite. Fortunately there are more systematic answers to this problem. We
state them in the subsequent propositions.

5This is in fact also true for convergence in L2
µ-1 , but we will stay with relative entropy here.
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Proposition 6.7 (Proposition 4 in [47]). Let Σ∞ = ΣT
∞ > 0 ∈ Rn×n be given. Then

there exists J ∈ Rn×n with JT = −J such that

Re(λmin((In×n + J)Σ-1
∞)) =

Tr(Σ-1
∞)

n
.

The interpretation of the above theorem is the following: starting from some
reversible dynamics with −A = Σ-1

∞ and C =
√

2 In×n it is possible to add a non
reversible perturbation to the drift which is given by JΣ-1

∞ with JT = −J , which
does not change the invariant measure. The work [47] is concerned with finding the
optimal J∗ which yields the optimal convergence rate of

Re(λmin((In×n + J∗)Σ-1
∞)) = Re(λmax((In×n + J∗)Σ-1

∞)) =
Tr(Σ-1

∞)

n
.

The construction uses a matrix equation similar to the Lyapunov equation which
allows for an algorithmic search of J∗. Adding this non-reversible perturbation to
the drift means that - instead of having some directions that are slow and some that
are fast which entails minσ(A) < maxσ(A) - all directions are evened by the skew
symmetric term J which makes the system rotate on the level sets of the potential
1
2x

TΣ-1
∞x. In order to truly achieve a balance between the slow and fast directions

it has to be assured that the rotation is constructed according to the underlying
geometry given by Σ-1

∞ and is fast enough. We will come back to this point in
Section 6.2.2. A similar idea has already been put forward by [36].

Instead of only looking for the best possible drift, it is also possible to optimise
both drift and diffusion with respect to the convergence rate as done in [27]. To
this end, recall the notation

dXt = −(D + J)Σ-1
∞Xt dt+ C dWt , with D =

1

2
CCT, JT = −J

which – keeping Σ∞ fixed and varying C and J – equips us with all possible choices
for a linear process with invariant measure µ ∼ N (0,Σ∞).

Proposition 6.8 (Theorem 1 in [27]). Let Σ∞ = ΣT
∞ > 0 ∈ Rn×n be given. Then

there exists J,D ∈ Rn×n with JT = −J , D = DT ≥ 0 and Tr(D) = n such that

Re(λmax((D + J)Σ-1
∞)) = Re(λmax(Σ

-1
∞)) .

The constraint Tr(D) = n with D = 1
2CC

T is introduced in order to keep
the total amount of noise injected to the system constant and comparable to the
preceding approach. The idea builds up on the previous considerations which in the
first step yield that

max
J :JT=-J

Re(λmax((D + J)Σ-1
∞)) =

Tr(Σ-1
∞D)

n

Using that Σ∞ is orthogonally diagonalizable, i.e. ∃Q : Q-1 = QT and QΣ-1
∞Q

T =

ΛΣ-1∞ = diag(λ1(Σ-1
∞), . . . , λn(Σ-1

∞)), it follows that

Tr(Σ-1
∞D) = Tr(ΛΣ-1∞QDQ

T) ≤ Re(λmax(Σ
-1
∞))Tr(D) .
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The crucial point is to construct D such that Tr(Σ-1
∞D) = nRe(λmax(Σ

-1
∞)). Assume

that the kth eigenvalue is the maximal eigenvalue, i.e., Re(λk(Σ
-1
∞)) = Re(λmax(Σ

-1
∞))

and denote the associated normalised eigenvector by vk. LetD = nvkv
T
k which yields

Tr(Σ-1
∞D) = nTr(Σ-1

∞vkv
T
k ) = nTr(Re(λk(Σ

-1
∞))vkv

T
k ) = nRe(λmax(Σ

-1
∞))

since vk being normalised implies Tr(vkvT
k ) = 1.

This yields in fact an even larger exponential convergence rate, but due to the
diffusion being highly degenerate (rank 1) also the prefactor becomes large. For
details see [27].

6.2.2 Hamiltonian systems with energy as coarse graining map

Let us return to the idea of [47], i.e., acceleration via adding a non-reversible per-
turbation to the drift. We extend the idea by examining the proposed construction
using the perspective of averaging. To this end consider the SDE

dXε
t = −(∇V (Xε

t ) +
1

ε
J∇V (Xε

t )) dt+
√

2β-1 dBt (6.9)

with V (X) =
1

2

(
λ1x

2
1 + λ2x

2
2

)
, J =

(
0 1

−1 0

)
, (6.10)

X ∈ R2 , λ1, λ2 > 0 and Bt is 2-dimensional Brownian motion. In our previous
notation −Aε = (I2×2 + 1

εJ)Σ-1
∞ with Σ-1

∞ =
(
λ1 0
0 λ2

)
, i.e., we have chosen the

coordinates such that the reversible part of the drift is already in diagonal form. For
a two dimensional example it is easy to compute the eigenvalues of the perturbed
drift which are

ν1,2 =
λ1 + λ2

2
±
√

(λ1 − λ2)

4
− 1

ε2
.

In order to have a pair of complex conjugate eigenvalues whose real part Re(λmin((I2×2+

ε-1J)Σ-1
∞)) = λ1+λ2

2 the condition

(λ1 − λ2)

4
<

1

ε2
(6.11)

has to hold true which is certainly the case for ε → 0. At the same time, letting
ε→ 0, we are in an averaging scenario.

Following the work of [63] and [26] it is known that the system’s energy V (Xε
t ) =:

Y ε
t can be used to define a slow variable of the system, and the fast variable is the

one moving on the level sets of V , i.e., the one described by J∇V . Employing
homogenization theory [63] and [26] show that

(Y ε
t )0≤t≤T −−−→

ε→0
(Yt)0≤t≤T weakly in C ([0, T ] ,R) .

Here, Yt is the process which corresponds to the SDE

dYt = λ̄
(
β-1 − Yt

)
dt+

√
2λ̄β-1Yt dBt, with λ̄ = λ1 + λ2 ,
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which is known as the square-root process (cf. e.g. [15]). For a calculation of the
averaged equation see the appendix Proposition B.2. The interesting finding is the
following:

Proposition 6.9. The homogenized process Yt can again be expressed as the energy
of two OU-processes, i.e., Yt = V (X1

t , X
2
t ) with Xi being the solution to

dX i
t = − λ̄

2
Xi
t dt+

√
λ̄β-1

λi
dBi

t , (6.12)

respectively. Furthermore, the invariant measures of
(
X1,ε, X2,ε

)
and (X1, X2) agree

and are given by µ ∼ N
(

0, β-1
(
λ-11 0

0 λ-12

))
.

β = 0.1
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Figure 6.6: Left: plot of (Xε,1
t , Xε,2

t ) solution to (6.9) and (X1
t , X

2
t ) solution to

(6.12) where the colouring corresponds to the evolution of time t ∈ (0, 0.5) and the
contourlines correspond to the potential induced by βΣ-1

∞. Right: Plot of H(t) =

H(ρt|µ) for the dynamics (Xε
t )t (red) and (Xt)t (blue). Parameter values: λ1 =

1, λ2 = 20, X0 = (1, 1)T, β = 0.1(upper panel) β = 10 (lower panel) ε = 15.

Let us first discuss the interpretation offered by the proposition before providing
the proof on the next page. Employing homogenization theory we find a new process
Xt with the same invariant measure as the initial process Xε

t but its drift A only
admits the real eigenvalue −λ̄/2, whereas Aε contains a pair of complex conjugate
eigenvalues.
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Furthermore, going from the original dynamics (6.9), which do not contain the
acceleration term J∇U(X), to the dynamics (6.12), which correspond to the ho-
mogenized energy, we effectively observe a rescaling of time by the factor λ̄/2λi for
the ith variable. This means for one variable time is accelerated, whereas for the
other variable time will be slowed down. The rescaling of time acts here on both
drift and diffusion, opposed to the non-reversible perturbation, which only affects
and balances the time scales of the drift. The numerical experiments show that both
processes serve well to sample from the invariant measure, as can be seen in Figure
6.6, as they nearly converge in the same way. Still, it might be advantageous, from
a numerical perspective, to choose the homogenized process (6.12), since for (Xε

t )

one has to choose ε small enough such that (6.11) is fulfilled. For the numerical
example of Figure 6.6 with λ1 = 1, λ2 = 20 we have, that ε−1 > 9.5 and choosing
ε−1 = 10 yields the drift Aε = −

(
1 −200
10 20

)
. That is, the entries of Aε become large,

which becomes even more problematic as the time scale separation becomes larger.
Contrary, for the homogenized dynamics we have A = − ( 10.5 0

0 10.5 ) which admits a
larger time step. Only if one of the time scales becomes very slow, e.g. λ1 close to
0, the diffusion coefficient can cause problems since the diffusion in this component
becomes larger and larger as λ1 → 0.

Proof of Proposition 6.9. Let Yt = V (X1
t , X

2
t ) with V as in (6.10). Itô’s formula

gives

dYt = λ1X
1
t


− λ̄

2
X1
t dt+

√
λ̄β-1

λ1
dB1

t


+ λ̄β-1 dt+ λ2X

2
t


− λ̄

2
X2
t dt+

√
λ̄β-1

λ2
dB2

t




= λ̄
(
β-1 − Yt

)
dt+

√
λ̄β-1

(√
λ1X

1
t dB

1
t +

√
λ2X

2
t dB

2
t

)
.

Now define the process Zt by

dZt =

∫ t

0

√
λ1X

1
s dB

1
s +

√
λ2X

2
s dB

2
s

which is a martingale.
Its quadratic variation is given by

〈Z〉t =

∫ t

0
λ1

(
X1
s

)2
+ λ2

(
X2
s

)2
ds =

∫ t

0
2Ysds.

Hence

B̃t =

∫ t

0

1√
2Ys

(
√
λ1X

1
s dB

1
s +

√
λ2X

2
s dB

2
s )

equips us with a new Brownian motion according to Lévy’s characterization theorem.
Altogether this yields that

dYt = λ̄
(
β-1 − Yt

)
dt+

√
λ̄β-1

√
2Yt dB̃t .
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Furthermore, it is easy to check that the Lyapunov equations of the matrix pairs

Aε = −
(

λ1 λ2/ε
−λ1/ε λ2

)
, Dε = 2β-1In×n

and

A = −
(

λ1+λ2
2

0

0
λ1+λ2

2

)
, D = β-1

( λ1+λ2
λ1

0

0
λ1+λ2
λ2

)

have the same unique solution Σβ
∞ = β-1

(
1/λ1 0

0 1/λ2

)
.

6.2.3 Hamiltonian systems with soft constraints and coordinate
projection as coarse graining map

In the previous section we have learned that for a system described by the SDE

dZεt = −
(
∇V (Zεt ) +

1

ε
J∇V (Zεt )

)
dt+ dBt

where V is a potential that is sufficiently fast growing at infinity, J is a skew sym-
metric matrix and Bt is standard Brownian motion, the energy V (Z) can be inter-
preted as the slow variable of the system. Furthermore, for ε → 0 we have that
V (Zε)→ V (Z0) weakly6, where V (Z0) is the energy of a different process Z0, con-
sisting of two processes which are time rescaled versions of the original dynamics.
The applied time rescaling yields in fact a balancing of the intrinsic time scales
given by the eigenvalues of the drift, resulting in an accelerated convergence to the
equilibrium distribution.

In this section the aim is to investigate whether the same kind of acceleration also
works in the case when we have an intrinsic time scale separation in the dynamics.
To be more precise, we will consider an instance of a slow fast dynamics with a
time scale separation parameter 0 < ε� 1 and for ε→ 0 we compare the effective
dynamics of the unperturbed with the effective dynamics of the perturbed dynamics.

A system with intrinsic time scale separation

We introduce the process Z = (X,Y ), where X will be the slow and Y will be the
fast variable, described by the SDE

dZt = −∇V (Zt) dt+
√

2 dBt ,

where we use the same notation as in the previous chapter and V , given by,

V (x, y) = U(x) +
1

ε2
(y −m(x))TA(x)(y −m(x)), (6.13)

where A(x) = A(x)T > 0 is a positive definite symmetric matrix and m : Rdx → Rdy
determines the mean of the fast process, such that we are able to compute the

6We assume here that V is quadratic, else the limiting process also contains a variable which
gives the segment of the graph the process is moving in.
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effective dynamics for X. We can picture this process as (X,Y ) moving slowly
through the energy landscape given by U surrounded by a tube whose shape at
the point x is determined by the quadratic potential yTA(x)y. For ε → 0 the tube
becomes more and more narrow.
Introduce the rescaled variable

ξ =
Y

ε

in terms of which the dynamics translate to, using dξ = 1
εdY and ∂y = 1

ε∂ξ,

dXt = −∇xV (Xt, ξt) dt+
√

2 dBx
t

dξt = − 1

ε2
∇ξV (Xt, ξt) dt+

√
2

ε
dBξ

t .

For ease of notation we now restrict ourselves to the case that X and ξ are one
dimensional variables and m(x) = 0, but the calculation proceeds analogously in
the general case. For our choice of V given by (6.13) we have

dXt = −(U ′(Xt) +
1

2
A′(Xt)ξ

2)dt+
√

2dBx
t

dξt = − 1

ε2
A(Xt)ξtdt+

√
2

ε
dBξ

t .

The fast variable ξ admits, for fixed Xt = x, the invariant distribution νx ∼
N (0, A(x)−1), with which we arrive at the averaged dynamics for the slow vari-
able

dX̄t = −(U ′(X̄t) +
1

2
∂x̄ log(A(X̄t))) dt+

√
2 dBx

t . (6.14)

This will be the reference solution to which we compare the solution accelerated by
a non-reversible perturbation.
In order to accelerate the convergence of the dynamics we add a skew symmetric
term again, which for our choice of V yields

dX̃t = −(U ′(X̃t) +
1

2
A′(X̃t)ξ̃

2
t +

1

ε
A(X̃t)ξ̃t) dt+

√
2 dBx

t

dξ̃t = −(
1

ε2
A(X̃t)ξ̃t −

1

ε
(U ′(X̃t) +

1

2
ξ̃2A′(X̃t))) dt+

√
2

ε
dBξ

t .

(6.15)

Proposition 6.10. Given a system of type (6.15), homogenization theory applies
and the effective dynamics for the slow variable X̃t are given by a time rescaled
version of (6.14), that is, time is accelerated by a factor of two and the dynamics
read

dX̂t = −2(U ′(X̂t) +
1

2
∂x̂ log(A(X̂t))) dt+ 2 dBx

t . (6.16)

Proof. The calculation is transferred to the appendix, see Proposition B.3.
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The proposition implies that adding a skew symmetric term in order to accelerate
the convergence to equilibrium, in the case where one variable of the dynamics
determines the slow process, does not actually speed up the relaxation. Instead,
adding such a skew symmetric term, making the dynamics irreversible, leads to
a time-rescaled version of the original effective dynamics which will not yield any
computational improvement.

6.3 Mean first exit times for underdamped Langevin dy-
namics

In this section, we test the theoretical findings of Section 3.4.3 on the example of
a double pendulum which we take from [56]. For more details on the example see
Chapter 4.6 in [55].

Figure 6.7: Illustration of a planar double pendulum system with massless shafts,
linear torsional damping, linear torsional stiffness and torque input applied at the
rotary points. Copied from [55], p.194.

The dynamics of the double pendulum, which are illustrated in Figure 6.7, are
given in the variables q = (q1, q2) and q̇ = (q̇1, q̇2) which refer to the joint angles
and the angular velocities respectively.
The kinetic, potential and dissipation energies for this system are given respectively
by

K(q, q̇) =
1

2

(
m1L

2
1q̇

2
1 +m2L

2
1q̇

2
1 +m2L

2
2(q̇1 + q̇2)2 + 2m2L1L2 cos(q2)q̇1(q̇1q̇2)

)

U(q, q̇) =
1

2

(
k1q

2
1 + k2q

2
2

)
− (m1 +m2)GL1 cos(q1)−m2GL2 cos(q1 + q2)

R(q, q̇) =
1

2
b1q̇

2
1 +

1

2
b2q̇

2
2,



6.3. MEAN FIRST EXIT TIMES FOR UNDERDAMPED LANGEVIN
DYNAMICS 115

and the system’s Lagrangian is L = K − U . The equations of motion follow from
the Euler-Lagrange equation

d

dt

∂L

∂q̇
− ∂L

∂q
= F − ∂R

∂q̇
. (6.17)

Here, F is the force excerted to the system, which in our case is randomized. That is,
F is mimicked by a Brownian motion with prefactor chosen such that the fluctuation-
dissipation relation (3.18) holds with parameter l = 1. We set all constants equal
to 1 except for the gravitational force G = 10. The controllability function can be
computed – using that the Hamiltonian is the Legendre transform of the Lagranian
– to be

Lc(q, q̇) = 2q̇2
1 + (q̇1 + q̇2)2 + 2 cos(q2)q̇1(q̇1 + q̇2)

+ q2
1 + q2

2 − 40 cos(q1)− 20 cos(q1 + q2) + 60 .

MFETs from domains around the origin. Clearly, by physical intuition, the
origin yields a stable stationary point for the corresponding deterministic dynamics.
We will thus compute MFETs from domains around the origin given by

D1 =
{

(q, q̇) ∈ R2n : |(q, q̇)| ≤ 1
}

and
D2 = {q ∈ Rn : |q| ≤ 0.5} .

Note that D2 is not bounded in R2n and thus the assumptions for Corollary 3.32 are
not met in this case. Recall, that according to Corollary 3.32, the rate describing
the MFET in the small noise limit, is given by the right hand side of

lim
ε→0

ε2 logEz(τ) = inf
(q,q̇)∈∂D

Lc(q, q̇).

We compute the analytical values for the minimum on the boundaries of the do-
mains, using the constrained minimisation function fmincon implemented in Matlab,
which yields inf {Lc(q, q̇) : (q, q̇) ∈ ∂D1} = 0.1715 and inf {Lc(q, q̇) : q ∈ ∂D2} =

1.7075.
Let us now compute the rate, yielding the MFET in the small noise limit, by

means of numerical simulations. For the estimation of the rate we generate n = 100

trajectories according to the dynamics (6.17) using an Euler-Maruyama scheme. The
mean first exit times are computed for different β > 0, (ε =

√
2β−1) via a Monte

Carlo estimation over the trajectories and we denote these estimates by Ê(τβ). Let
us remark, that we choose the range for β as large as possible for each domain,
while already being in a regime for which the exits are rare, but not too rare, so we
can still compute the MFETs by means of standard Monte Carlo. We perform 10
independent runs and average in the end over the results. A plot of β against the
estimate Ê(τβ) of each run and the mean over the runs are shown in Figure 6.8.
Using these estimates, we perform a linear interpolation of β2 against log(Ê(τβ)) by
which we obtain the numerical estimates of the corresponding rate.
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The numerical results yield an estimate of 0.1547 for the exit rate from domain
D1, which results in a relative error of 0.0980.
For the domain D2 we get the estimate 1.7288, and the relative error is 0.0125.
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Figure 6.8: Illustration of the results for the estimation of MFET rates for the
double pendulum. Each colored line corresponds to one of the 10 single runs and
shows log(Ê(τβ) as a function of β. The dashed black line is the mean of all the
polynomial fits for this data. The left figure corresponds to the domain D1 and the
dashed black line has a slope of 0.1547, the right figure corresponds to the domain
D2 and the dashed black line has a slope of 1.7288.

Remark 6.11. Even though the assumptions of Corollary 3.32 are not met for the
domain D2 which is unbounded, the numerics suggest that the theory is still appli-
cable. Presumably, this is due to the fact that the systems energy is approximately
constant due to the fluctuation-dissipation relation and thus also the angular veloc-
ities q̇ remain in a bounded region. This suggests the following conjecture: as long
as the potential grows sufficiently fast such that the dynamics dwell in a bounded
domain, also exit times from unbounded domains can be treated.



Chapter 7

Outlook

In this thesis we presented various results regarding time scales and model reduction
for non-reversible SDEs. Let us now summarise the open questions emerging from
this work.

Regarding MFETs for dynamics with degenerate noise, the use of the control
theoretic formulation of the action functional seems promising and should be ap-
plied for determining MFETs of more general non-reversible dynamics than the ones
considered here. Furthermore, our numerical example in Section 6.3 suggests that
boundedness of the domain from which the exit is considered is not a necessary con-
dition to hold as long as the dynamics is naturally bounded by its potential energy
landscape. Hence the requirement of boundedness of the domain is an open question
to be investigated.
Concerning the discussed model reduction of effective dynamics, the existing meth-
ods for proving error bounds rely on non-degeneracy of the diffusion. This raises the
question whether error estimates can also be derived for dynamics with degenerate
noise. We conjecture that this should indeed be possible, which is supported by our
results for OU-processes and Section 4.3.3 providing formal calculations for effective
dynamics and averaging to agree. Developing tools for proving corresponding error
estimates is thus another open question.
Obtaining sharp error bounds for path measures is important when the effective
dynamics are used for computing dynamic quantities, such as exit times and our
result as given in Theorem 4.9 should be probed in more detail. Moreover, in order
to improve the reduced model, a memory term or additional degrees of freedom
could be incorporated.
With regard to sampling from conditional distributions, the possibility of deriv-
ing projections for non-linear dynamics which are based on our results should be
investigated.





Appendix A

Background and theory

A.1 Definition of the Itô integral

In this chapter we provide some supplementary theory needed for the definition of
the Itô integral .

Definition A.1. Introduce the partition ∆n =
{
tn0 , . . . , t

n
kn

}
such that 0 = tn0 <

. . . < tnkn = T for some T > 0. A refinement of the partition fulfils that

max
i
|tni+1 − tni |

n→∞−−−→ 0 and ∆n+1 ⊃ ∆n.

A function g : [0, T ]→ R is of

• bounded variation if sup
n∈N

kn−1∑
i=0
|g(tni )− g(tni+1)| <∞ for all sequences of refine-

ment partitions (∆n)n∈N.

• bounded quadratic variation if 〈g〉t = sup
n∈N

kn−1∑
i=0
|g(tni ) − g(tni+1)|2 < ∞, ∀t ∈

[0, T ] for all sequences of refinement partitions (∆n)n∈N.

Definition A.2. For a continuous function f : [0, T ] → R and a function g :

[0, T ]→ R of bounded variation the Riemann-Stieltjes integral is defined as

∫ T

0
f(s)dg(s) := lim

n→∞

kn−1∑

i=0

f(ξni )(g(tni+1)− g(tni ))

which converges to a unique limit for any sequence of refinement partitions (∆n)n∈N
and independent of the choice of ξni ∈ [tni , t

n
i+1] in L2.

Lemma A.3. Let Bt be a standard Brownian motion. Then 〈Bt〉t = t almost surely.

Proof. We have to show that E(〈Bt〉t) = t and Var(〈Bt〉t) = 0.

Let (∆n)n∈N be a sequence of refinement partitions of the interval [0, t]. Then

E(〈Bt〉t) = E(sup
n∈N

kn−1∑

i=0

|Btni −Btni+1
|2) = sup

n∈N

kn−1∑

i=0

Var(Btni −Btni+1
) = t ,
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by the properties that the increments (Bti−Bti+1) and (Btj−Btj+1) are independent
for i 6= j and (Bti−Bti+1) ∼ N (0, ti+1−ti). Furthermore, using the independence of
the increments again in the first step, the relation between squared standard normal
random variables and the χ2 distribution in the second step, and the fact that the
quadratic variation of continuous functions is zero in the last step, we calculate

Var(〈Bt〉t) = Var(sup
n∈N

kn−1∑

i=0

|Btni −Btni+1
|2)

= sup
n∈N

kn−1∑

i=0

Var(|Btni −Btni+1
|2)

= sup
n∈N

kn−1∑

i=0

2(tni+1 − tni )2 = 2〈t〉t = 0 .

Corollary A.4. Bt is not of bounded variation.

Proof. This is an immediate consequence following from the observation that if
g : [0, T ] → R is continuous and of bounded variation, then 〈g〉t = 0. Indeed, due
to continuity and the property of bounded variation, we have

0 ≤ 〈g〉t = sup
n∈N

kn−1∑

i=0

|g(tni )− g(tni+1)|2

= lim
n→∞

kn−1∑

i=0

|g(tni )− g(tni+1)|2

≤ lim
n→∞

sup
i∈{1,...,n}

|g(tni )− g(tni+1)|
kn−1∑

i=0

|g(tni )− g(tni+1)|

A.2 PI and LSI

Equivalence of the dynamic PI and the existence of a spectral gap

Equation (3.3) shows that −L is a positive operator on L2
µ and if D = 0 then by

(2.16) L is self-adjoint on L2
µ. Assume now that −L admits a discrete spectrum

with eigenvalues λi > 0, i ∈ N and eigenfunctions φi providing a basis of L2
µ, such

that the spectral decomposition reads

−L · =
∞∑

i=0

λi〈φi, ·〉µφi ,
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By means of the spectral decomposition, we find that for any f ∈ DomL with∫
f(x) dµ(x) = 0 we have, using fi = 〈f, φi〉µ,

EL(f) = −
∫
fLf dµ = −

∫
fL

∞∑

i=0

fiφi dµ =

∫
f

∞∑

i=0

λifiφi dµ ≥ λ1

∫
f2 dµ.

The last inequality follows by noting that expressing f as f =
∑
j≥0

fjφj , due to the

orthogonality of the eigenvectors, only the quadratic terms remain.
Conversely, assume a PI holds with constant αPI > 0. Denote by φ0 ≡ 1 the
eigenvector corresponding to the eigenvalue 0 and by φi, i > 0 all eigenvectors
corresponding to eigenvalues λi > 0 and note that

∫
φi dµ = 〈1, φi〉µ = 0 due to the

orthogonality of the eigenvectors. Then

EL(φi) = λi

∫
φ2
i dµ

and since by assumption EL(φi) ≥ αPI

∫
φ2
i dµ it follows that λi ≥ αPI , ∀i ≥ 1

meaning there is a gap between λ0 = 0 and λ1 = αPI.

Lemma A.5. Let µ ∈ P(Rn) satisfy a LSI with constant αLSI. Then µ satisfies a
PI with constant αPI = αLSI.

Proof. Let f ∈ L2
µ with

∫
f dµ = 0. Then (1 + εf)µ is still a probability density for

small enough ε . By assumption

H((1 + εf)µ|µ) ≤ 1

2αLSI
RΓ((1 + εf)µ|µ)

⇔
∫

(1 + εf) ln(1 + εf) dµ ≤ 1

2αLSI

∫
(1 + εf) |∇ ln(1 + εf)|2Γ dµ =

ε2

2αLSI

∫
1

1 + εf
|∇f |2Γ dµ

Expanding the left and right-hand side around ε = 0 yields
∫
εf +

ε2

2
f2 +O(ε3) dµ ≤ ε2

2αLSI

∫
|∇f |2Γ (1 +O(ε)) dµ .

Noting that f is centered with respect to µ, dividing the above equation by ε2 and
letting ε→ 0 leads to

1

2

∫
f2 dµ ≤ 1

2αLSI

∫
|∇f |2Γ dµ .

We state some results which guarantee existence of a spectral gap and are taken
from [8].

Theorem A.6. Assume there exists a Lyapunov functionW , that is,W ∈ C2, W ≥
1 and ∃a, r > 0, b ≥ 0 such that

LW (x) ≤ −aW (x) + b1B0(r)(x) .

Then (µ,L) satisfy a PI with constant αPI = (1+bαr)/a, where αr is the PI constant
of µ restricted to B0(r), where B0(r) is the open ball around 0 with radius r (αr exists
since V is locally bounded).
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Sufficient criterions to apply the theorem are

• ∃ c > 0, r ≥ 0 such that ∇V (x) · x ≥ r|x| for |x| ≥ r

• ∃ d ∈ (0, 1), e > 0, r ≥ 0 such that d|∇V (x)|2 −∆V (x) ≥ c for |x| ≥ r

The first criterion states that V has to grow sufficiently fast at infinity and the
second is reminiscent of the spectral analysis for Schrödinger operators.

Supplementaries on the rate function for gradient dynamics

Theorem A.7 (Theorem 3.1 in [26]). Let V ∈ C2. The rate function STφ is
minimised by φ = φ∗ solution to φ̇∗(t) = ∇V (φ∗(t)) and the quasipotential takes the
form V q(x, y) = 2(V (y)− V0).

Proof. Assume that φ(t) ∈ D ∀t ≤ T . Else, if there was a t̄ with 0 < t̄ < T such
that φ(t̄) /∈ D then STφ ≥ St̄φ. Instead of considering STφ one would then consider
St̄φ for which φ hasn’t left the domain ∀t ≤ t̄. Note that

∫ T
0

d
dt∇V (φ(t)) dt =∫ T

0 φ̇(t) · ∇V (φ(t)) dt and hence

STφ =
1

2

∫ T

0

∣∣∣φ̇(t) +∇V (φ(t))
∣∣∣
2
dt

=
1

2

∫ T

0

∣∣∣φ̇(t)−∇V (φ(t))
∣∣∣
2
dt+ 2

∫ T

0
φ̇(t) · ∇V (φ(t)) dt

≥ 2(V (φ(T ))− V (φ(0))) .

If φ̇(t) = ∇V (φ(t)) then STφ = 2(V (φ(T ))−V (φ(0))). Together with the constraint
that φ(0) = x0 and φ(T ) = y and noting that V ∈ C2 implies uniqueness of the
solution, the claim follows.



Appendix B

Applications and examples

B.1 Convergence behaviour

Lemma B.1. Let A,C ∈ R2×2 fulfil assumption A2 and let S ∈ R2×2 be such that
S-1AS = −Λ. Then Λ = 1

2(C̃C̃T + J̃)Σ̃-1
∞ with S-1C = C̃, J̃ = S-1JS−t, Σ̃∞ =

S-1Σ∞S−T and Σ∞ being the unique solution to AΣ∞ + Σ∞AT = −CCT. The
entries of the matrices by dij = (C̃C̃T)ij , jij = (J̃)ij , (Σ̃

-1
∞)ij = σij are given by

j12 =
1

4
(λ2 − λ1)

σ12

σ11σ22 − σ2
12

d11 = λ1
σ22

2(σ11σ22 − σ2
12)

d12 = −1

4
(λ1 + λ2)

σ12

σ11σ22 − σ2
12

d22 = λ2
σ11

2(σ11σ22 − σ2
12)

.

Proof. Diagonalizing A we have Λ = 1
2(C̃C̃T+ J̃)Σ̃-1

∞. Assuming that we are given Λ

and Σ̃∞ we can rewrite the diagonalized system of equations as a system which we
solve for the unknowns dij , jij . In the two dimensional case we have four equations
and the unknowns are d11, d12, d22, j12 (the other entries can be computed by d21 =

d12, j11 = j22 = 0 and j21 = −j12) altogether we arrive for the two-dimensional case
at




σ11 σ21 0 σ21

σ12 σ22 0 σ22

0 σ11 σ21 −σ11

0 σ12 σ22 −σ12







d11

d12

d22

j12


 =




λ1

0

0

λ2


 (B.1)

Solving for d11, d12, d22 and j12 in the 2-dimensional case: We solve the
system of linear equations (B.1) and use the numbering (I)− (IV ) of the equations



124 APPENDIX B. APPLICATIONS AND EXAMPLES

which for each transformation gain a ()′. Rewrite (B.1) as

(I)

(II)

(III)

(IV )




σ11 σ21 0 σ21 λ1

σ12 σ22 0 σ22 0

0 σ11 σ21 −σ11 0

0 σ12 σ22 −σ12 λ2




(II)′ =
(

(II)− σ12

σ11
(I)

)
σ11 :




σ11 σ21 0 σ21 λ1

0 σ22σ11 − σ2
12 0 σ22σ11 − σ2

12 −λ1σ12

0 σ11 σ21 −σ11 0

0 σ12 σ22 −σ12 λ2




(III)′′ = (III)′ − σ11

σ22σ11 − σ2
12

(II)′ and (IV )′′ = (IV )′ − σ12

σ22σ11 − σ2
12

:




σ11 σ21 0 σ21 λ1

0 σ22σ11 − σ2
12 0 σ22σ11 − σ2

12 −λ1σ12

0 0 σ21 −2σ11
λ1σ11σ12
σ22σ11−σ2

12

0 0 σ22 −2σ12 λ2 +
λ1σ2

12

σ22σ11−σ2
12




(IV )′′′ = (IV )′′ − σ22

σ21
(III)′′ :




σ11 σ21 0 σ21 λ1

0 σ22σ11 − σ2
12 0 σ22σ11 − σ2

12 −λ1σ12

0 0 σ21 −2σ11
λ1σ11σ12
σ22σ11−σ2

12

0 0 0 2
σ11σ22−σ2

12
σ12

λ2 − λ1




With this the obtained values follow.

B.2 Accelerations

Proposition B.2. Consider

dXε
t = −(∇U(Xε

t ) +
1

ε
J∇U(Xε

t )) dt+
√

2β-1 dBt

with U(X) =
1

2

(
λ1x

2
1 + λ2x

2
2

)
, J =

(
0 1

−1 0

)
,

X ∈ R2 and Bt is 2-dimensional Brownian motion. Let Yt = U(Xε
t ), then

Y ε −−−→
ε→0

Y weakly in C ([0, T ] ,R) .

with Y being the solution of the SDE

dYt = µ
(
β-1 − Yt

)
dt+

√
2µβ-1Yt dBt, with µ = λ1 + λ2 ,
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Proof. We omit the formal proof which can be found in [26, 63] and only present
the calculation of the effective coefficients. According to [63] (see the calculations
below Theorem 3.5) the effective drift and diffusion read

b(y) =
−M(y) + β-1M ′(y)

T (y)
, γ(y) =

√
2β-1M(y)

T (y)

respectively with M(y) =

∫

int(d(y))

∆U(x) dx , T (y) =

∮

d(y)

|J∇U(x)|-1 dx ,

and d(y) =
{
x ∈ R2 : U(x) = y

}
being the corresponding level set. For M(y) we

have to integrate the constant function ∆U(x) = λ1 + λ2 over the interior of the
ellipse described by

λ1

2
x2

1 +
λ2

2
x2

2 = y . (B.2)

In general, the interior area of a two-dimensional ellipse with semi-major and semi-
minor axis a, b respectively, is given by πab. In our case

a =

√
2y

λ1
, b =

√
2y

λ2
,

which implies

M(y) =
2π√
λ1λ1

(λ1 + λ2)y .

For the calculation of T (y) we have to parametrise the level set d(y), i.e., the ellipse
B.2 which can be done using f(t) = (a cos(t), b sin(t)) with a, b as above. Then

T (y) =

∮

d(y)

|J∇U(x)|-1 dx =

∫ 2π

0

|f ′(t)|
|J∇U(x)| dt

=

∫ 2π

0

√
λ-11 sin2(t) + λ-12 cos( t)

λ2 sin2(t) + λ1 cos2(t)
dt

=

∫ 2π

0

√
λ-11 sin2(t) + λ-12 cos( t)

λ1λ2(λ-11 sin2(t) + λ-12 cos2(t))
dt = 2π

1√
λ1λ2

,

which results in the drift b(y) = −M(y)+β-1M ′(y)
T (y) = µ(β-1 − y) and diffusion γ(y) =√

2β-1M(y)
T (y) =

√
2β-1µy .

Proposition B.3. Given the dynamics

dX̃t = −(U ′(X̃t) +
1

2
A′(X̃t)ξ̃

2
t +

1

ε
A(X̃t)ξ̃t) dt+

√
2 dBx

t

dξ̃t = −(
1

ε2
A(X̃t)ξ̃t −

1

ε
(U ′(X̃t) +

1

2
ξ̃2A′(X̃t))) dt+

√
2

ε
dBξ

t .

(B.3)
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homogenization theory applies and the effective dynamics for the slow variable X̃t is
given by a time rescaled version of (6.14), that is, time is accelerated by a factor of
two and the dynamics read

dX̂t = −2(U ′(X̂t) +
1

2
∂x̂ log(A(X̂t))) dt+ 2 dBx

t . (B.4)

Proof. We only do formal perturbation theory expansions and follow the presenta-
tion in [62]. In the following, for ease of notation, replace x̃, ξ̃ by x, ξ respectively.
Homogenization theory applies since the fastest process admits for each fixed x a
unique invariant distribution given by νx ∼ N (0, A(x)-1) and the centring condition
holds, i.e., the O(1

ε ) term in the slow dynamics averages out with respect to νx :

∫
ξA(x) νx(ξ) dξ = 0. (B.5)

The generator of (B.3) is given by L = 1
ε2
L0 + 1

εL1 + L2 where, recalling that
V (x, ξ) = U(x) + ξTA(x)-1ξ,

L0 = −∇ξV · ∇ξ + ∆ξ

L1 = ∇xV · ∇ξ −∇ξV · ∇x
L2 = −∇xV · ∇x + ∆x.

Also expanding the solution to the Kolmogorov backward equation Lv = ∂v
∂t formally

in terms of ε gives v = v0 +εv1 +ε2v2 +O(ε2). Equating terms of same power yields

O
(

1

ε2

)
: L0v0 = 0 (B.6)

O
(

1

ε

)
: L1v0 = −L0v1 (B.7)

The first equation (B.6) implies – noting that L0 is a differential operator in ξ only –
that v0 = v0(x). The second equation (B.7) possesses – by the Fredholm alternative
– a solution v1 iff L1v0 = −∇ξV · ∇xv0 is orthogonal to the kernel of L0 given by
νx, i.e., ∫

−∇ξV · ∇xv0 νx(ξ) dξ = 0

which is precisely the centring condition (B.5) The cell problem corresponding to
(B.7) reads

∇ξV (X, ξ) · ∇ξφ+ ∆ξφ = −∇ξV (X, ξ)

with solution φ = −ξ and thus v1 = φ · ∇xv0 = −ξ · ∇xv0.

On the O(1) time scale we have

L0v2 = −∂v0

∂t
+ L2v0 + L1v1.
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In order to guarantee the existence of a solution v2, again it is required that the
right hand side averages to zero under νx, that is we compute for the O(1) time
scale solution v0:

∂v0

∂t
=

∫
(L2v0 + L1v1) dνx(ξ) = I1 + I2.

We compute the terms separately,

I1 =

∫
L2v0 dνx(ξ)

=

∫
−U ′(x) · ∇xv0 −

1

2
A′(x)ξ2 · ∇xv0 + ∆xv0 dνx(ξ)

= −U ′(x) · ∇xv0 −
1

2
A(x)−1A′(x) · ∇xv0 + ∆xv0

I2 =

∫
L1v1 dνx(ξ)

=

∫
(U ′(x) · ∇ξ(−ξ · ∇xv0) +

1

2
A′(x)ξ2 · ∇ξ(−ξ · ∇xv0)−A(x)ξ · ∇x(−ξ · ∇xv0)) dνx(ξ)

=

∫
(−U ′(x) · ∇xv0 −

1

2
A′(x)ξ2 · ∇xv0 +A(x)ξ2∆xv0) dνx(ξ)

= −U ′(x) · ∇xv0 −
1

2
A(x)−1A′(x) · ∇xv0 + ∆xv0.

With this the Kolmogorov backward equation for v0 reads

∂v0

∂t
= −2U ′(x) · ∇xv0 − ∂x(log(A(x)) · ∇xv0 + 2∆xv0

which in turn corresponds to the SDE

dX̂t = −2

(
U ′(X̂t) +

1

2
∂x̂ log(A(X̂t))

)
dt+ 2 dBx

t .
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