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Abstract

In this dissertation I treat questions of asset pricing under the presence of taxes. I present four

published articles. The first three articles are concerned with topics of company valuation when

debt is risky. The first article analyzes the applicable discount rate for the valuation of tax savings

in a simple setting without taxes on cancelled debt. The article concludes that the discount rate

of tax savings is the same as the one for interest payments. Other than frequently assumed, this

discount rate is not necessarily the same as the discount rate for debt as a whole. With the

prioritization of interest or principal payments in case of losses on debt payments, the discount

rates on interest payments and of tax savings are regularly different from the one for the overall

debt issue. Only a pro rata distribution of losses on principal and interest payments generally

leads to equal discount rates for interest payments, principal payments, and, therefore, also for

debt payments as a whole. The second article continues to look at the valuation of tax savings.

It differentiates the case with and the one without the taxation of cancelled debt. For both cases,

the article derives equations for the value of tax savings as well as for risk-adjusted discount

rates and WACC-like equations. A major finding is that the previous corporate finance literature

on this topic usually makes the implicit assumption that cancelled debt is taxed. In this case

valuation equations have a simple form since they are independent from the distribution of losses

between interest and principal payments. Without the taxation of cancelled debt, the distribution

of losses on interest and principal payments becomes important for the valuation procedures and a

differentiation between cases such as interest prioritization, principal prioritization and pro rata loss

distribution is necessary. The third article uses the findings of the first two articles and constructs

equations for a de- and re-levering procedure using the expected return equations from the mean-

variance CAPM. It extends the regularly used procedure that uses the assumption of risk-free debt

to simple settings with risky debt. The forth article looks at two economies, which differ only with

respect to taxation - one features taxes on capital gains and one does not. The analysis leads to

several extensions on prior findings on the question of the conditions under which asset prices are

the same in both economies. The article provides sufficient conditions for unchanged prices for the

case of a zero risk-free rate, which entails that all agents consume exactly the same in each state.

Without a zero risk-free rate, prices are the same in both economies with exponential utility and

normal returns and with linear marginal utility.

xiii



Chapter 1

Introduction

1.1 Tax effects on asset valuation

This dissertation contains four articles that describe tax effects on asset prices. Tax codes are

usually complex and extensive, and many tax rules have significant effects on prices. Ignoring tax

effects in asset pricing is likely to decrease the usefulness of a corporate valuation down to the

point at which it is detrimental for any use.

For a basic example consider a tax rate τ , which, applied to a tax base X, leads to taxes at an

amount of τX. For an investor that receives the after-tax cash flow X(1− τ) the value of this cash

flow should be the discounted expected after-tax cash flow. Using the price of the pre-tax cash

flow for this after-tax cash flow leads to an over overvaluation of the latter one. The investor would

pay for the tax as well even though this amount will not be received and cannot be consumed.1

One can add to this example another asset that pays the same cash flow X, but is tax exempt.

Now the investor not considering taxes would pay the same price for the taxed and the untaxed

asset. The misvaluation becomes even more evident, and a basic law in finance, the law of one

price (compare for example (Cochrane, 2005, pp.62 ff)), is violated.

The tax bases considered herein are corporate profits and capital gains. The taxes on corporate

profits have the direct effect of reducing after-tax profits paid to the owners of the company.

Similarly, a capital gains tax will reduce capital gains to the owner of an asset that has appreciated.

Those taxes will have direct effects on reducing the tax base. But there are also indirect effects of

taxes, which are caused by general equilibrium effects. A simple story here would be the example

of a relative increase of the tax rate on capital gains versus the tax rate on dividends. A possible

equilibrium effect may be that investors buy less assets that pay low or no dividends but are

expected to appreciate more and buy more assets that pay higher dividends but are expected to

1A note of caution here. To be precise, taxes may come back in the form of a public good or distributions and as
such may have value and may not be just "burned money". However, this value is very hard to evaluate on the
individual level. Thus, for corporate valuation taxes are usually treated as "burned money" (for example in the
famous tax CAPM in Brennan (1970)). In turn, macroeconomic models usually include taxes and tax transfers
(as for example in Sialm (2009)).

1



1.2. Contribution to the respective literature

appreciate less.

Through the potentially significant effects on asset pricing, taxes are an important factor in

asset valuation. Due to the complexity and variety of tax rules, a model that includes all of them

is unheard of. However, important features that approximate reality can be incorporated and

improve the model substantially. My contribution to the asset valuation literature is exactly that.

The first three articles are rooted in the works of Modigliani and Miller (1958), Modigliani and

Miller (1963) and the literature that followed them. I analyze the value of corporate tax savings

adding the feature of risky debt. Additionally, I analyze the effect of adding or not adding the

taxation of cancelled debt. I conclude that, with a taxation of cancelled debt, the distribution of

losses on interest and principal payments has no influence on asset pricing. When cancelled debt

is not taxed this distribution is important and the tax savings become interest payments scaled

by the tax rate. A special case is a pro-rata loss distribution on interest and principal payments.

Simple valuation equations without resorting to option pricing can be derived. In the last article,

I extend the work of Kruschwitz and Löffler (2009). It shows cases when two economies exist,

which only differ in that one features capital gains taxes and the other does not, and which have

the same asset prices. That means any payoff in the no-tax economy has the same price as the

taxed payoff in the tax-economy. I turn from the mean-variance CAPM setting as in Kruschwitz

and Löffler (2009) to a setting with expected utility over consumption. I establish conditions and

portfolio rules for price equality in this setting, and I find new cases in which economies with equal

prices exist. I will describe the contribution of each single article more in detail in Section 1.3. I

will first put my work into the context of the respective finance and economics literature.

1.2 Contribution to the respective literature

Modigliani and Miller (1958) make an important breakthrough in the theory of corporate valuation.

Their theorem that the capital structure, i.e., the share of debt and equity, does not influence the

value of the firm, remains an important benchmark. It relies on several assumptions that are not

met in practice. However, knowing those assumptions, and knowing which ones are violated gives

a starting point into the inquiry of whether an optimal capital structure exists. Modigliani and

Miller (1963) realize that corporate taxation and the deductibility of interest payments from pre-tax

profits may add value to the firm through tax savings. More debt means more interest payments

and more tax savings. Thus, tax savings provide a powerful incentive to lever the firm. The

valuation of tax savings, be it theoretical or empirical remains an important research object until

today. The first three articles of my dissertation analyze those tax savings under new perspectives.

Sharpe (1964) published another major breakthrough in corporate finance with what is today

known as the capital asset pricing model (CAPM). Again, it is a theoretical model and its as-

sumptions are not met in practice. But as with the theorems of Modigliani and Miller, it is an

important benchmark model to explain the financial world. Apart from portfolio implications, it

delivers a simple expected return equation, which shows the relationship of individual asset returns

2



1.2. Contribution to the respective literature

to a single risk factor - which is the return on the market portfolio. The expected return equation

can easily be converted into a regression equation, which can be used for statistical analysis. The

sensitivity to the market return is called beta or beta factor. In Krause (2018a), I use the CAPM

expected return equation to derive equations that can be used for a de- and re-levering procedure.

The CAPM came along initially without any considerations for taxes. Brennan (1970) extended

the CAPM including the various investor tax rates and taxes on corporate payouts, such as the tax

rate on dividends, interest payments, and capital gains. Similar models are used until the present

day to analyze asset prices with the presence of taxes. Kruschwitz and Löffler (2009) concentrate

on capital gains taxes in a CAPM and explore cases for which prices may not be changed by the

presence of the tax. They find a zero risk-free rate and constant absolute risk aversion to be cases

in which prices may remain unchanged.2 In Krause (2018b), I pick up this analysis and extend it

to a different pricing framework and to some other cases.

Miller (1977) writes that the benefits from tax savings on interest payments may be greatly

diminished and may even disappear when personal taxes are considered as well. Additionally, he

uses equilibrium arguments of bond supply and demand to establish that firms, in the aggregate,

limit the issuance of debt instruments somehow. He also admits that this does not explain leverage

at the individual firm level.

Myers (1977) points to the inability of the theorems by Modigliani and Miller to explain ob-

served capital structures. He introduces his paper by arguing that finance theory should explain

why the tax savings do not lead to the firm to increasing debt as much as possible, and also what

"as much as possible" actually means. Myers uses option theory to explain why firms issuing risky

debt behave differently than firms issuing risk-free debt.

Brennan and Schwartz (1978) consider asset pricing including the value of tax savings. They use

a continuous time framework and look at optimal leverage for a company that issues a coupon pay-

ing bond. They also include bankruptcy cost in their analysis. However, even without bankruptcy

cost, they find that there is a maximum value for the tax savings below 100% leverage.

Leland (1994) continues the way of Brennan and Schwartz (1978). He uses a continuous time

model to derive closed from pricing equations for firm valuation under the presence of tax savings

and bankruptcy cost. Leland and Toft (1996), Leland (1998) and Goldstein et al. (2001) con-

tinue this work in more sophisticated models. The models result in optimal capital structures for

companies that are below the classical 100% result. They also explain several observations in the

investment grade and junk bond market.

Miles and Ezzell (1980) and Miles and Ezzell (1985) derive equations for weighted average cost

of capital (WACC) including the value of tax savings. They focus on a policy in which firms

maintain a constant leverage ratio. Even though it is not explicitly stated, their analysis only

treats the case of risk-free debt. Harris and Pringle (1985) go on to develop risk-adjusted discount

2I use the word "may" here because the equilibrium in the tax or no-tax economy need not be unique so that a
definite answer cannot be provided.

3
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rates including the value of tax savings.

Compared to the mentioned work of Miles and Ezzel, Sick (1990) goes further in that he includes

the possibility of default in the analysis of tax savings. He derives tax-adjusted discount rates for

defaultable debt under the assumption that a cancellation of debt (COD) is taxed. He finds that

the structure of the derived equations is similar to the ones under risk-free debt. The assumption

of a taxation of cancelled debt is picked up several times in the following literature. It is also the

major research object of the second article herein. Krause and Lahmann (2017) look at several

issues related to this assumption. They derive pricing equations, tax-adjusted discount rates and

WACC-like discount rates with and without a taxation of a COD. With a taxation of a COD this

distribution does not matter for firm valuation. They also point to important issues when there

is no taxation of a COD. In this case the distribution of losses on interest and principal payments

influences the valuation equation. This case is analyzed in detail in the first article presented

herein. As stated in Krause and Lahmann (2016), without taxes on a COD tax savings are interest

payments scaled by the tax rate. Thus, the discount rate on interest payments is also the discount

rate in tax savings.

An attempt to measure the value of tax benefits is made by Graham (2000). He finds the tax

benefit to be 9.7% of a firm’s market value for a typical firm of his sample over 15 years looking

at over 5,000 to over 6,000 firms per year. In contrast to that, the classic measure would have

revealed the higher share of 13.2%. After accounting for personal taxes the tax benefit estimated

by Graham (2000) shrinks to 4.3%.

More on the empirical side, Kemsley and Nissim (2002) use regression methods to estimate the

value of the tax shield. They find that the value of tax shields as about 40% of debt balances and

10% of firm values. This is in line with what the study of Graham (2000) reveals.

The study of Blouin et al. (2010) asks whether tax benefits have been overestimated and whether

firms do not lever enough to maximize tax savings. With a new nonparametric procedure, they

find that tax benefits are much less than previously thought. Adding bankruptcy cost and debt

savings not related to debt, actual capital structures seem plausible.

Furthermore, Lin and Flannery (2013) analyze the 2003 tax cut that only affected individual

investors. They find that the cut decreased leverage of the firms by about five percent. They

conclude that personal taxes strongly affect firms’ optimal leverage.

Arzac and Glosten (2005) elaborate on discount rates for company valuation when leverage is

constant. The issue here is that no assumption on the treatment of a COD is made. They also

make statements about discount rates when debt is risky. They want to use a rate that includes

a risk premium in the equation to value tax savings. However, as Krause and Lahmann (2017)

show, one has to reverse engineer the underlying assumptions to make their statement hold, and

there are several possibilities for them to hold.

Kruschwitz et al. (2005) include defaultable debt into the discounted cash flow model. They

find that the valuation equations with and without default risk are identical. Some of their im-

4
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portant assumptions are that cancelled debt is taxed, interest payments are tax deductible, the

tax authorities always receive the taxes the firm owes, and that the financing policy is exogenously

given. The last item means that after a default, the firm continues with the same financing policy

as before.

Cooper and Nyborg (2008) analyze tax-adjusted discount rates looking especially at the as-

sumption of a taxation of a COD. They state to have identified the assumption that is in line with

discounting interest tax savings at the cost of debt. The assumption is that there is no tax on a

COD. They hold that assumption against the one used in Sick (1990), who obtains that tax savings

should be discounted at the risk-free rate when a COD is taxed. In Krause and Lahmann (2017),

my coauthor and I show that there are several issues with those analyses and the statements made.

The cost of debt needs a precise definition. Naturally, one would expect it to be the conditional

expected return on debt. However, in the analysis it becomes more likely that it is the coupon

rate for single-period debt or the yield rate. Cooper and Nyborg (2008) point at that but there are

still restrictions on that observation. Krause and Lahmann (2017) show that the result depends

on the pro rata loss distribution between interest and principal payments. Cooper and Nyborg

(2008) use a binomial model, in which one state always leads to a complete loss. This is a special

case of a pro rata loss distribution. The model choice of Cooper and Nyborg (2008) does not allow

to see the dependence of their result on the loss distribution. Furthermore, the risk-free rate as a

discount rate in Sick (1990) is not the discount rate of expected tax savings but just a parameter

in the valuation equation.

Molnár and Nyborg (2013) again look at tax-adjusted discount rates, but now they consider

partial losses instead of complete losses in a default. The model remains a two-state model. They

derive an equation for a tax-adjusted discount rate including personal tax rates. Their equation

provides some generality because it includes personal taxes and a parameter for recoveries in the

default state. As in Molnár and Nyborg (2013), Krause and Lahmann (2016) also look at the cases

of an interest and a principal prioritization. However, this analysis is not restricted to a binomial

model, but uses a multistate model to overcome the weaknesses as mentioned above. It also uses

findings from option pricing as in Coval and Shumway (2001) to characterize discount rates on tax

savings instead of applying a single parameter to express losses.

Koziol (2014) derives a WACC that accounts for default risk and bankruptcy cost. He finds

that significant upward shifts from the usual WACC are possible when the additional default

components are included.

Kruschwitz et al. (2011b) find inconsistencies in the de- and re-levering procedure of using the

Modigliani and Miller adjustment equations. In turn they agree to the Miles and Ezzel equations.

A quick discussion arose with Meitner and Streitferdt (2011), who claim that the Modigliani and

Miller equation is valid under the assumptions given in Kruschwitz et al. (2011b). In their reply,

Kruschwitz et al. (2011a) find that their prior result still holds true. However, they find the cause of

the discussion to be in the different definition of the cost of capital used in Meitner and Streitferdt
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(2011). They reject the definition used in Meitner and Streitferdt (2011) as not being useful and

economically not interpretable. Kruschwitz et al. (2011b) provide and discuss the Miles and Ezzel

equation, their Equation (22), which I also restate in Krause (2018a). However, I do not only cover

the case of taxes on cancelled debt but continue the analysis for the case of untaxed cancelled debt

and three different cases of loss distributions between interest and principal payments.

There are several more studies dedicated to valuing tax savings. For example, Liu (2009)

analyzes several misconceptions of the finance literature related to the tax shield. Especially, Liu

(2009) divides into or "slices" the value of the tax shield into an "earned" and an "unearned"

part, in which the first one is the actual value of the tax shield and the second one the value

of leverage return. Qi (2011) responds to the paper of Liu (2009) and refute the results in Liu

(2009). Above all, Liu (2009) refutes the Modigliani and Miller results, and Qi (2011) restores

those results. Furthermore, Couch et al. (2012) take on a barrier options approach to tax shield

valuation. Risky debt is included in the analysis. They derive practical valuation equations for

the scenarios of constant debt, delayed debt, as well as debt refinancing.

Having classified my work into the respective literature, I will continue to describe the articles

that comprise this dissertation more in detail. I will also explain, how they relate to one another.

1.3 Description and integration of the different articles

Table 1.1 summarizes the four articles that will follow after this introductory chapter. All of them

are about asset pricing, and all of them study how assets are priced under the influence of a certain

kind of tax. The tax rate used is always deterministic.

Table 1.1: Article overview

Title Year Journal Authors

Reconsidering the appropriate
discount rate for tax shield valuation

2016 Journal of
Business Economics

Marko Krause
Alexander Lahmann

Valuation effects of taxes
on debt cancellation

2017 Quarterly Review of
Economics and Finance

Marko Krause
Alexander Lahmann

De- and re-levering betas with
risky debt revisited

2018 Business Research Marko Krause

Effects of a capital gains
tax on asset pricing

2018 Business Research Marko Krause

The first three articles presented in Table 1.1 are more corporate finance related. They have

several common assumptions. The analyses are about firm valuation. The firms have taken out

some sort of risky debt. No general equilibrium effects are considered. As in Modigliani and Miller

(1963) and a lot of the following literature only corporate taxes are considered. Interest payments

are deducted from taxable income so that tax savings are generated through taking out interest-

paying debt. Additionally, in the event of a default, the tax savings are not necessarily fully lost.
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Partial interest payments lead to partial tax savings, an assumption used for example in Molnár

and Nyborg (2013). Furthermore, those articles study the effects on asset pricing of different ways

on how to assign losses to principal and interest payments. When there is no default, interest

payments can always be paid. In case of multi-period models, the assumption of identically and

independently distributed returns is used.

The article Reconsidering the appropriate discount rate for tax shield valuation asks, as the

title indicates, for a clarification of the appropriate discount rate for tax savings. With risk-free

debt this is straight forward. Interest payments are risk-free so that tax savings are risk-free as

well.3 Therefore, all tax savings are to be discounted at the risk-free rate. The respective literature

already proposed some discount rates such as the risk-free rate, the yield rate4 or the cost of debt

(compare for example Arzac and Glosten (2005) and Molnár and Nyborg (2013)). But questions

remain unanswered. Especially, the assumptions under which the respective discount rates are to

be used are not always clear. Even terms such as the cost of debt are not being used unambiguously.

In Reconsidering the appropriate discount rate for tax shield valuation, my co-author and I

regard a setting without a taxation of cancelled debt. A default is triggered endogenously when, in

any period, free cash flows and the levered firm value are not sufficient to fully repay contractual

principal and interest payments. We basically use the discounted cash flow method. Discount

factors are defined as conditional expected returns of the respective cash flows. Additionally, we

take on a state-space view and use a stochastic discount factor (SDF)5 to price assets. This

approach is more general than immediately applying the mean-variance CAPM, and it admits to

draw some links to related research on option pricing such as the one by Coval and Shumway

(2001). In the multi-period analysis, we only use single-period debt.

We decompose the full debt payments into principal payments and interest payments. Tax

savings are just scaled interest payments in this setting. That is, when interest payments of all

possible states are incorporated into the vector Int then tax savings are τInt, i.e., the interest

payments scaled by the tax rate τ . We conclude that the discount rate for interest payments must

be the same as the interest payments on tax savings, which is just an application of the law of one

price.6

This discount rate on interest payments (and on tax savings) is equal to the discount rate

on debt when the overall losses on debt are attributed proportionally to interest and principal

payments. Proportional means here at the ratio of contractually agreed upon interest and principal

payments. In cases without this proportional attribution, it is still possible that the discount rates

3This connection can be destroyed by earnings stripping rules or by settings in which insufficient profits are gener-
ated to pay the taxes in the first place. However, we do not consider those settings.

4For single-period coupon-paying debt the yield rate would be the coupon rate.
5The use of stochastic discount factor is relatively general in this paper. It could be the SDF of a single agent to
obtain a valuation of the asset. It could also be the SDF within the payoff space.

6In a simple version the law says that a payoff X with a price p(X) multiplied by a scalar a must have the price
ap(X), that is p(aX) = ap(X). For example, with a = 2, earning double the payoff in any state must mean that
the price of this payoff also doubles.
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are equal. However, this would be more of a coincidence, and one should expect that the discount

rates regularly differ. We analyze the discount rates for two important priority assumptions.

When principal payments have priority, interest payments receive losses first. Only that part

of losses greater than contractual interest payments is assigned to principal payments. Intuitively,

this makes interest payments riskier than principal payments and also riskier than debt payments

as a whole. Again intuitively, we expect the discount rate on interest payments to be higher than

the one for principal payments. The discount rate for debt must be in between them because it

is a weighted average of the discount rate on interest and principal payments, with nonnegative

weights adding up to one.7 However, this intuition may not be correct. Interest payments can be

represented as an option-like payoff with the overall debt payments as the underlying. Using this

view and the results from Coval and Shumway (2001) on expected returns on option payoffs, we

obtain conditions when the discount rate on interest payments is greater than, less than or equal

to the one for debt.

The second priority assumption states that interest payments have priority over principal pay-

ments. In this case losses on debt are first assigned to principal payments. Again using intuition,

that should make interest payments relatively saver versus principal payments. When interest

payments are small relative to principal payments, a case that we see regularly in practice, interest

payments may be close to risk-free in this case. That means the discount rate of interest pay-

ments should be less than the one of debt, which in turn should be less than the one of principal

payments. But also for this case, to be more complete, we translate the results from Coval and

Shumway (2001) for our purposes and obtain cases for which the before-mentioned relation does

not hold.

In an illustrative example, we show discount rates of debt and interest payments (i.e., on tax

savings) for different leverages. We restrict this example to the more intuitive and probably more

likely cases. For interest prioritization much higher values for the tax savings can be obtain at the

same leverage. This is because interest payments remain risk-free for a large range of leverages,

but the coupon rate increases to reflect debt becoming riskier at higher and higher leverages. Thus,

contractual interest payments increase but the discount rate for tax savings remains the risk-free

rate or, at very high leverages, a bit higher than the risk-free rate. For principal prioritization

interest payments become risky at much lower leverages than for interest prioritization. The

discount rate on principal payments increases quickly with increasing leverage, so that the value

of tax savings increases at a slower rate than for interest prioritization.

Turning to a multi-period analysis complicates several factors. One issue is to determine how

the firm will behave after default. We make this analysis convenient through establishing a setting

of independently and identically distributed returns. After a default, whoever is the new owner,

7The discount rate on debt discounts expected overall debt payments, which are the sum of principal and interest
payments. From this one obtains that the discount rate on debt is a weighted average of the discount rates on
interest and principal payments.
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will establish the same leverage as before. In this setting, at any point in time and in any state,

the firms and its cash flows are just scaled versions so that the respective discount rates over any

single period are equal. For this case, which is related to Miles and Ezzell (1985), we find that the

original equation from Miles and Ezzell (1985), which was derived for risk-free debt, can also be

used for risky debt.

The results have practical relevance. I have to admit that the analysis is stylized and ignores

several issues that appear in practice, such as the inclusion of personal tax rates and the question of

a more elaborate debt structure with debt differing in maturity, seniority, etc. This simplification

is usually done, and with this article it is the same, to focus the analysis on a few important issues.

Practitioners, such as valuers and financial analysts know that a practical implementation would be

much messier. But they learn here that they need to know the regulations applicable in a default -

especially how interest payments are treated. Standard textbook equations may implicitly assume

a totally different setting and therefore bias the valuation. Depending on which rule is applicable,

values of tax savings may be significantly higher or lower. Additionally, discounting tax savings

at the risk-free rate, at the cost of debt or some other rate proposed may also bias the valuation

when the underlying assumptions for such a choice are not matched.

This first article answers several questions regarding the discount rate for obtaining the value

of tax savings. However, it also leaves a lot of questions open. Some of them are how a taxation of

cancelled debt changes valuations, and how do actual valuation equations look like. My coauthor

and I tackle those questions in the second article presented herein under the title Valuation effects

of taxes on debt cancellation.

Our questions are how valuation equations differ when the assumption of a taxation of cancelled

debt is used or not used. We also want to know under which of the two assumptions the equations

for prices, tax-adjusted discount rates or WACCs are derived that appear in the respective literature

but do not disclose which assumption is applied.

We restrict the analysis to a single-period setting. We derive valuation equations, adjusted

discount rates, and textbook-like WACC equations for the case with and without cancelled debt.

We keep the method simple in that we use a pricing operator to value cash flows. This way we

do not have to apply a certain pricing model for valuation. Taking basic discount rates, such as

the discount rate of unlevered equity and of debt as given, this is also not necessary. All valuation

equations are derived relative to those basic discount rates.

A first important result is that when cancelled debt is taxed, valuation equations are indepen-

dent from the distribution of losses on interest and principal payments. For example, both cases, a

prioritization of interest and a prioritization of principal payments, lead to the same equation for

the value and for the discount rate. Furthermore, using the same amount of debt, the value itself

as well as the discount rate do not change using different assumptions on loss attribution. When

cancelled debt is not taxed, the loss distribution matters. A simple equation, which also appears

in the respective literature, can be derived for a pro rata (proportional) loss distribution of losses
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to interest and principal payments. In this case the coupon rate shows up as a parameter in the

valuation or discount rate equation. We also discuss prior findings in the literatures such as Sick

(1990), Arzac and Glosten (2005), Cooper and Nyborg (2008) and Molnár and Nyborg (2013).

However, their models were not able to uncover the proportional loss feature or they were silent

on what assumption on the taxation of cancelled debt is used.

For illustrative purposes we also provide an example. It shows how the application of an

incorrect equation could bias the value of tax savings or the tax adjusted discount rate. The

example assumes that interest prioritization is applicable, but instead the equations for a pro rata

loss distribution are used. Differences in the tax shield value can go up to over 30% for very high

leverages in this example.

The article adds some practical implications. It shows that when we ignore personal taxes,

we still cannot rely on some simple equations that are regularly provided by the literature. When

cancelled debt is always taxed, the situation is somehow diffused because there is one equation that

fits all kinds of loss distributions. However, as soon as this is not the case, the loss distribution

matters and needs to be known and to be reflected in the valuation equation.

The first two articles show that a lot can be done picking just a few assumptions. They can be

extended in many ways, some of which I will describe more in detail in the conclusion. I decided

to add an analysis of the beta de- and re-levering procedure. It seems to be a natural next step

because it is very much related to discount rates.

I address the equations used for de- and re-levering in De- and re-levering betas with risky debt

revisited. The procedure is important to obtain discount rates for a firm for which no or not enough

pricing data is available. In this case the beta factor of a firm that is sufficiently equal may be

used. Most of the time those firms use different leverages so that the beta needs to be de- and

re-levered.

Here, I ask the question of how the de- and re-levering equations change for the different cases of

risky debt with and without a taxation of cancelled debt. I want to know what kind of parameters

need to be considered, and I want to get an intuition on how much of an impact the application

of an incorrect procedure would have.

The core part is a single-period analysis. The expected return equation of the mean-variance

CAPM provides the basis for the derivation of beta factors. To start with low complexity and

to show the basic method, I rederive the delevering equation for risk-free debt. Then, I turn to

risky debt and go through the different cases. When cancelled debt is taxed, only one equation is

needed that covers all loss distributions. If that is not the case, one has to look at the type of loss

distribution. I treat proportional loss as well as interest and principal prioritization.

The resulting beta equations suggest that with risky debt usually only the case with a taxation

of cancelled debt is considered. As I point out in the beginning of the article, there are many

exceptions to a taxation of cancelled debt for example in the United States. Thus, it is not

advisable to ignore it. If cancelled debt is not taxed, different equations have to be used for
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different distributions of losses on interest and principal payments. For interest prioritization the

assumption of risk-free interest payments makes sense. This assumption leads to a simple equation.

However, for principal payments one can also use the assumption of risk-free principal payments,

but this is a case that is highly unlikely in practice. For not to refer to more complex mathematics,

I introduce an additional parameter that marks the difference of the price of losses for principal

prioritization versus the one for pro rata prioritization. An illustrative example gives some intuition

on the impact of the different terms in the beta equations. The example suggests that it matters

a lot whether debt is risk-free or risky. Ignoring this and assuming risk-free debt may strongly

bias the de-levered beta. It also matters whether cancelled debt is taxed or not. It matters much

less in the example whether losses are distributed pro rata, or according to interest or principal

prioritization. Unlevered betas do not differ a lot when switching from one to another equation.

A note of caution here, even though the parameterization in the example is realistic, it is just a

single example and not a sensitivity analysis. Thus, it does not claim general validity.

This third article moves along the lines of company and tax shield valuation. I do not want to

limit my research interest on single-firm or single-asset valuation. For this reason, I have extended

my work towards some more macroeconomic settings in which agents solve an optimization problem

and markets clear. In the context of asset pricing and taxes the article Effects of a capital gains

tax on asset pricing continues and extends the work of Kruschwitz and Löffler (2009).

As in Kruschwitz and Löffler (2009) I ask for conditions when two endowment economies,

with the same initial conditions and with the only difference in the existence of a capital gains

tax in one economy (called tax economy), exist, that have the same prices or price vector in

equilibrium. However, I ask this question for a setting in which agents maximize expected utility

over consumption, whereas Kruschwitz and Löffler (2009) look at a mean-variance CAPM.

I write down the agents’ problem, which is the maximization of expected utility over consump-

tion given their initial endowment with assets. Investors’ utility functions, their endowments as

well as assets and their payoffs define the initial situation of the economy. The tax economy only

adds a capital gains tax on all asset returns. Taxes are transferred back to the investors accord-

ing to some predefined rule. Thus, taxes remain in the economy and are not treated as "burned

money" or wasted resources. The tax rate is certain and equal for all assets. The taxation is also

symmetric in that capital gains lead to taxes and losses to a tax return. I derive pricing equations,

which express prices as expected cashflows that are discounted by a stochastic discount factor.

I use those pricing equations to derive conditions for price equality. I go on to look at a model

with consumption at two times and in which the risk-free rate is zero as well as a model with

consumption only at time one.

I find that a sufficient condition for equal prices in the two economies is a zero risk-free rate. I

show that when the consumptions of every single agent in every state is the same in both economies,

the stochastic discount factors of all agents are the same and prices as well. The portfolio rule

that guarantees equal consumption in this expected-utility-over-consumption setting is the same
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as the one in Kruschwitz and Löffler (2009). Capital gains taxes have a zero price with a zero

risk-free rate. When the risk-free rate is not zero, one may not be able to find the tax and the

no-tax economy in equilibrium with equal prices. When marginal utility is linear, i.e., agents have

quadratic utility, prices are never equal in the tax and the no-tax economy.

Kruschwitz and Löffler (2009) actually only look at a CAPM with consumption at time one

and without current consumption. I continue with this type of economies. In this case the risk-free

rate is exogenous, i.e., it can be picked. With a zero risk-free rate, equal price vectors can be

obtained again. When the risk-free rate is not zero, I find two cases for which equal prices can be

obtained. The first case is exponential utility with multivariate normal payoffs. Even with equal

price vectors, aggregate wealth is different in the tax and the no-tax economy. This must be true

because in the tax economy aggregate tax payments (or transfer payments) have now positive value

and add to the aggregate prices of the assets. I obtain the same portfolio rule for risky assets as for

the case with the zero risk-free rate. Only the rule for the risk-free asset differs. The second case

for which equal prices can be obtained is when all investors have linear marginal utility. In this

case the stochastic discount factors of agents are equal in equilibrium. Due to linearity of the SDFs

all of them are in the payoff space, which is also the consumption space. Since there can be only

one SDF in the payoff space, all of them must be equal. They are also equal to the aggregate SDF,

which is just a scaled version of aggregate consumption and aggregate bliss point consumptions.

This way after-tax payoffs in the tax economy and untaxed payoffs in the no-tax economy are

discounted to obtain the same prices. Other types of utility functions do not necessarily produce

SDFs within the payoff space so that one cannot generally find tax and no-tax economies with

equal prices.

I continue to describe the limitations of the analysis. One of them is the symmetry of the

taxation, which we do not see in practice. Usually, gains are taxed but losses can only reduce gains

in the period they both appear or, if losses are greater than gains, losses may be carried forward

for some time. This feature would destroy the observation that the price of a capital gains tax is

zero with a zero risk-free rate. Thus, the article is more a model-theoretic work. The practical

implications remain limited. At the lower end we know that capital gains taxes may well distort

prices versus an economy without taxes. For a modeler those insights may be useful for not only

picking special cases for a further analysis of a capital gains taxation that may lead to convenient

results but give a biased analysis.

This paper closes my analysis on tax effects on asset prices. I am completely aware that they

leave many issues unanswered. I address those that I find most pressing in the last chapter. There,

I give an outlook on how research can be continued in the area of taxes and asset pricing.

In the subsequent four chapters, I will present the four different articles in the order presented

in Table 1.1. Versus the published version, I added a paragraph in front of each article to provide

some context and background. As mentioned before, I summarize my work and give an outlook

for possible continuing research for the topics at hand in the final chapter.
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Chapter 2

Reconsidering the appropriate

discount rate for tax shield

valuation1

1This chapter is based on Krause and Lahmann (2016). Reprinted by permission from Springer Customer Service
Centre GmbH: Springer Nature ZEITSCHRFIT FÜR BETRIEBSWIRTSCHAFT (Reconsidering the appropri-
ate discount rate for tax shield valuation, Marko Volker Krause and Alexander Lahmann), c©Springer-Verlag
Berlin Heidelberg 2015, (2016).
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Bringing this publication into context

Bringing this publication into context

This article is chronologically, but also logically the first academic contribution of this dissertation.

The paper rests on the insight that corporate distributions go to equity holders, debtholders (if

debt is taken out) and to the tax authorities. All these distributions are valuable so that the asset

value of a firm is the sum of the value those distributions. Furthermore, the corporate finance

literature usually takes on the view of equity- and debtholders, i.e., an investor perspective so that

firm value is regularly defined as the sum of the debt and the equity value, without considering

the value of tax payments. However, there is a way to decrease taxes paid to the tax authority

and, therefore, to increase firm value. By taking out debt, interest payments are due. In the

tax jurisdictions we regard, interest payments must be deducted from pre-tax profits so that less

corporate taxes are paid, i.e., tax savings are incurred. Those tax savings are the main object of

this paper. Especially, we look at the discount rate of corporate tax savings, often also called the

tax shield. We define discount rates as the conditional expected return of the respective payoff.

Tax shield valuation is far from being a new thing. However, little has been done for defaultable

debt. We take on this case and look at the discount rate of tax savings under different assumptions

of how losses are assigned to interest and principal payments. When interest payments are priori-

tized, losses are first assigned to principal payments. That keeps interest payments relatively save.

Assuming that also in default tax savings can be incurred, the firm may still enjoy tax savings

on the interest payments made. Due to the relative safety of interest payments versus principal

payments and versus the overall debt payments, the discount rate for interest payments is regularly

not equal to the one for debt. We conclude the following:

In our setting, tax savings are proportional to interest payments. Therefore, tax savings have

the same discount rate as interest payments. Furthermore, only for a pro-rata distribution of

losses between interest and principal payments the discount rates of interest payments, tax savings,

principal payments and the overall debt issue are always equal. For other distributions they may

be equal but are regularly not. A numerical example for interest and principal prioritization gives

an idea of how big differences between discount rates for debt and for tax savings can be. We also

provide some qualitative statements on the relations between discount rates of interest payments,

tax savings, principal payments, and debt payments as a whole. Thereby we draw from conclusions

from option pricing. Finally, we show that, under the usual and very simplifying assumptions in the

corporate finance literature, we can implement the findings into multi-period valuation equations.

This paper marks the starting point for the papers that follow. Naturally, a paper can properly

analyze only a limited amount of issues. That is why we restricted it to a certain set of assumptions

such as assuming that cancelled debt is not taxed. In the next chapter we explicitly look at this

assumption.
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Abstract

This paper aims at identifying the appropriate discount rate for tax shield valuation in a setting

where a partial default is possible and either principal or interest payments are prioritized in

default. As a general valuation framework we use the stochastic discount factor. We assume a

tax framework with corporate taxes, tax-deductible interest payments of the firm, no taxes on

the cancellation of debt and no personal taxes. We strictly decompose the payments owed to the

debtholders into interest and principal payments and analyze discount rates of those claims for the

different priorities. As a result of the single-period analysis we find that the discount rate for tax

savings, i.e., the conditional expected return on tax savings, is always equal to the discount rate

of debt only for a proportional loss distribution on interest and principal payments. If losses are

distributed according to one of the priority assumptions, the discount rate of tax savings behaves

different from the discount rate of debt and both discount rates are equal only in very special

cases. Furthermore, we derive qualitative statements for the relation between the discount rate

of debt and the discount rate of tax savings assuming certain correlations between the stochastic

discount factor and the debt repayments. Finally, we show how the prioritization assumptions can

be implemented in a multi-period setting. We obtain for the presented set of assumptions a pricing

equation equivalent to the one by Miles and Ezzell (1985).

Keywords: Tax shield, Firm valuation, Default Risk, Stochastic Discount Factor
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2.1. Introduction

2.1 Introduction

Since the seminal contribution of Modigliani and Miller (1958) and (1963), the fact that interest

payments on debt reduce the tax base, and firms who partially finance their operations with

debt thereby save taxes, is one of the most prominent results in corporate finance. As a logic

consequence Myers (1974) proposed the direct valuation of these tax savings, the so-called tax

shield, as a separate term in the adjusted present value (APV) approach. The appropriate pricing

of these tax savings heavily depends on the considered setting and is subject to an ongoing academic

discussion. Primarily, the academic debate centered around two major issues: First, the literature

stream which originated from the influencing work by Miles and Ezzell (1980) and (1985) and

deals with the influence of the considered financing policy upon the tax shield (see e.g. Fernandez

(2004), Fieten et al. (2005), Cooper and Nyborg (2006), Massari et al. (2007) and recently Dempsey

(2013)); and second, the literature stream considering the impact of default risk (see e.g. Homburg

et al. (2004), Kruschwitz et al. (2005), Rapp (2006), Cooper and Nyborg (2006), Kruschwitz and

Löffler (2006), Molnár and Nyborg (2013) and recently Koziol (2014)).2 The present study belongs

to this latter literature stream and specifically deals with the impact of a partial default. In case of

a partial default, the debtor might be able to pay a part of the contractually fixed payments owed

to the debtholders. Depending on the legal framework, the debt contract or the decision of the

involved parties, the partial payments are prioritized to pay down either principal or interest first.

In this article, we discuss the impact of this prioritization on the risk structure (i.e., riskiness) and

the valuation of the tax shield.

The literature stream already clarified that the standard discount rate for the tax savings,

assuming a constant leverage and risk-free debt, is the risk-free rate for one period and the discount

rate of unlevered equity for all remaining periods (see e.g. Miles and Ezzell (1985)). For risky debt,

Arzac and Glosten (2005) suggest the expected return on debt, i.e., the cost of debt, instead of

the risk-free rate.3 Several other articles discussed the inclusion of risky debt in firm valuation in

more detail. For example, Kruschwitz et al. (2005) showed under specific assumptions, e.g. the

taxation of cancellation of indebtedness, that default risk has no impact on firm pricing. In contrast

to this, Rapp (2006) starts from the premise of an exemption of a taxation of a cancellation of

indebtedness and demonstrates that ignoring the risk of default might lead to a significant valuation

bias. Several studies such as Cooper and Nyborg (2008) or Couch et al. (2012) prove this effect. In

addition, there is a slightly different literature stream on identifying conditions for default neutral

tax systems (e.g. Bond and Devereux (2003) or Blaufus and Hundsdoerfer (2008)). As a matter of

2This impartial list only contains articles dealing with the discounted cash flow (DCF) approach. Other articles
on the optimal capital structure implicitly consider the effect of default on the tax shield (see e.g. Leland (1994)
or Goldstein et al. (2001)).

3While it is still under discussion whether Miles and Ezzell (1980) considered risky debt (see e.g. Rapp (2006), p.
777, footnote 24), they refer to the term “cost of debt” in their derivations. Koziol (2014), p. 656, uses the cost
of debt for a default-risk adjusted WACC approach. With a respective rearranging the cost of debt would then
represent a part of the discount rate of the tax shield.
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fact, this literature stream touches several tax topics which are relevant for quantifying the effect

of default risk upon the tax shield. More closely related to the present study, only few works, such

as Molnár and Nyborg (2013), considered the impact of partial default and the prioritization of

interest or principal payments. In a simplified two-state framework they derive equations for tax-

adjusted discount rates. In their case, the fraction of debt that is lost in default has to be known

upfront, i.e., it is not a random variable but a given parameter. Besides Molnár and Nyborg (2013),

Swoboda and Zechner (1995) also introduce the prioritization of interest or principal payments but

do not discuss their effect on discount rates.

Our paper aims at identifying the risk structure of the tax savings and deriving the appropri-

ate discount rate based upon the stochastic discount factor (SDF) approach. By acknowledging

that the interest payments are the main driver of the tax savings, we draw upon relevant assump-

tions with respect to the default regime such as the prioritization of interest or principal, the

tax deductibility of interest in the event of default or the taxation of a possible cancellation of

indebtedness. Moreover, we extend the results of the literature dealing with tax shield valuation

considering default by deriving qualitative statements for the relation between the discount rate of

the firm’s debt issue and the tax savings using the results of Coval and Shumway (2001). In order

to reduce complexity, we first discuss the effects of different priority assumptions in a single-period

model and then extend our analysis towards a multi-period setting. Since we regard a classical

(Modigliani-Miller-like) model framework, we do not consider personal taxes. On the one hand,

this enables us to focus on the effects on the firm level, on the other hand, however, it does not

regard the possible effects of a credit default on the level of debt- and equityholders.

We contribute to the literature stream on pricing tax savings in several ways. As a main result,

we find tax savings to have a different risk structure than the overall debt issue. Therefore, we

strictly differentiate between the overall debt issue, the interest and the principal payments. In

contrast to other studies4 we demonstrate the differences between the risk structures of these debt

obligations and show for which case they have a risk equivalent to the one of the overall debt

issue. Moreover, we show the risk equality between the tax savings and the interest payments. An

important consequence is that both should have the same discount rate. Additionally, we derive

qualitative statements of the relation of the discount rate of tax savings and of debt for the different

prioritization assumptions.

This article is organized as follows: In section 2.2 we briefly introduce the basic terms of the

applied SDF approach and firm pricing. A single-period analysis is conducted in section 2.3.

Section 2.4 focuses on the multi-period setting and shows the inclusion of our findings in a typical

Miles-Ezzell framework. Section 2.5 concludes.

4Examples are Molnár and Nyborg (2013) or Koziol (2014).
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2.2 Definition of basic terms

2.2.1 The SDF and its interpretation

Throughout our analysis we use the stochastic discount factor (SDF) approach for pricing the firm

subject to default risk. The SDF is not very often applied for firm valuation.5 Nevertheless, we uti-

lize this approach since the SDF is a very general approach and, by adding few specific assumptions,

enables us to make economic interpretations of the pricing procedure. Therefore, we introduce the

necessary assumptions, show the basic pricing equations and discuss their implications.6

For the definition of the basic terms of the SDF it suffices to regard two points in time t and

t + 1. We use the conditional expectations operator Et[.], where for example Et[xt+1] indicates

the conditional expected value of a discrete N -state random variable xt+1 conditional on the

available information at time t. The state-specific realization is denoted by xt+1(ω), where the

index ω = 1, ..., N describes the state.

The basic SDF-pricing equation is given by

pt(xt+1) = Et[mt+1xt+1], (2.2.1)

where pt(xt+1) denotes the price at time t of the random cash flow xt+1 and mt+1 the investor’s

random discount factor, i.e., the SDF. We assume an arbitrage-free (capital) market, which implies

a strictly positive SDF, i.e., mt+1 > 0. In order to be able to state an economic interpretation we

assume risk-averse investors, who maximize utility over consumption so that the SDF is marginal

utility growth of consumption. Risk-aversion (a concave utility function) and marginal utility

defined over consumption imply a negative correlation between an investor’s SDF and its individual

consumption. Such an investor values cash flows appearing in bad states (low consumption and high

marginal utility growth) higher than cash flows appearing in states with already high consumption

(low marginal utility growth).7

We define the gross return of the uncertain cash flow xt+1 over the period t to t+ 1 by

Rt+1 =
xt+1

pt(xt+1)
, (2.2.2)

and net returns as rt+1 = Rt+1 − 1. A certain cash flow of one unit arriving at t+ 1 has to return

the gross risk-free rate Rft .8 We get the relation pt = 1

Rft
= Et[mt+11] ⇔ Rft = 1

Et[mt+1] . By

5One notable exception is Arzac and Glosten (2005).
6For further expositions and derivations we refer to Cochrane (2005).
7We abstain from further assumptions with regard to the economy. However, let us briefly line out some addi-
tional remarks: For the case of complete markets, all investors have the same unique SDF, there is perfect risk
sharing and the investors’ individual consumption moves in lockstep with aggregate consumption, i.e., moves in
lockstep with business cycles. For the case of incomplete markets, there can be many SDFs but there is a unique
SDF within the payoff space of tradable assets, the projection of every investor’s SDF onto the payoff space of
tradable assets (see for example Cochrane (2005)). In this case, one might be faced with imperfect risk sharing
and individual consumption might not move in lockstep with aggregate consumption.

8Since the risk-free rate is known at time t we use t as subscript as opposed to uncertain returns.
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2.2. Definition of basic terms

taking the conditional expectations of equation 2.2.2 we are able to restate this relation to

Et[Rt+1] =
Et[xt+1]

pt(xt+1)
, (2.2.3)

and define single-period conditional expected returns as discount rates.9 An alternative represen-

tation of conditional expected returns which is applied throughout our analysis is given by

Et[Rt+1] = Rft [1− covt(Rt+1,mt+1)]. (2.2.4)

Equation 2.2.410 shows that conditional expected returns decrease with increasing covariance of

returns with the SDF, i.e., with marginal utility growth of consumption. Thus, investors value

assets higher (higher price and lower conditional expected return) that are more likely to have

relatively high cash flows in states where their consumptions is low and low cash flows in states

where their consumption is already high. The more negative the covariance between returns and

the SDF is, the higher in turn are the conditional expected returns and the lower the prices. These

economic interpretations are useful for the remainder of the analysis and can be regarded as the

main reason for the choice of this pricing concept.11

2.2.2 Basic considerations for firm pricing

In our analysis we differentiate between discrete points in time s = t, t+ 1, t+ 2, ..., T . We regard

a levered firm with limited liability, i.e., the equity value is greater than or equal to zero at any

time. We denote the value of the levered firm by V Ls . At an arbitrary time s the operations of

the firm generate an uncertain unlevered free cash flow stream FCFUs , where its state-dependent

value is given by FCFUs (ω), with ω = 1, ..., N and 0 ≤ FCFUs (1) < FCFUs (2) < ... < FCFUs (N).

Additionally, we require the unlevered free cash flows and the investment program of the firm to be

independent of its financing activities, i.e., of the leverage l, with l ∈ [0, 1). This implies that we

work in a Modigliani-Miller-like framework.12 At an arbitrary time s the value of the outstanding

total amount of debt is denoted by Ds. The firm pays interest Ints and net principal payments

by PPnets = PPs − Ds (PPnets < 0 indicates a (net) issuance of debt and PPnets > 0 a decrease

9Several authors define discount rates as cost of capital (see Kruschwitz and Löffler (2006), Laitenberger and Löf-
fler (2006) or Cooper and Nyborg (2008)). In this literature stream cost of capital are defined as conditional
expected one-period returns with additional assumptions such as cost of capital being deterministic (see Kr-
uschwitz and Löffler (2006)). We keep the term expected return throughout our analysis and add assumptions
when necessary.

10To derive equation 2.2.4 we use the price equation 2.2.1 and expand it to pt(xt+1) = Et[mt+1]Et[xt+1] +

covt(mt+1, xt+1). Now, we divide by the price pt(xt+1), substitue in 1

R
f
t

for E[mt+1] to obtain 1 =
Et[Rt+1]

R
f
t

+

covt(mt+1, Rt+1). Multiplying by Rft and rearranging for Et[Rt+1] we arrive at equation 2.2.4.
11Alternatively, we could have applied the risk-neutral pricing approach, which became famous especially through
its application in derivative pricing. If applied correctly and stating the necessary assumptions, i.e., in this
study an arbitrage-free (capital) market and additionally a complete market, risk-neutral and SDF pricing yield
equivalent results. In this case, the existence of a unique risk-neutral probability measure implies a positive
SDF. However, as stated above and more specifically in footnote (FN) 7, our pricing arguments hold without
the additional assumption of a complete market.

12See Kim et al. (1993), p. 119f., or Kruschwitz and Löffler (2005), p. 223f., for a discussion of these assumptions.
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2.3. Risky debt with partial default - a single-period analysis

(repayments) of debt), where PPs denotes the principal payments of debt issued at time s− 1.13

The market value of a levered firm V Lt conditional on the available information at t can be

determined by using the adjusted present value (APV) approach (see Myers (1974)) according to

V Lt = V Ut + V TSt, (2.2.5)

where V Ut is the value of the otherwise identical but unlevered firm and V TSt the present value of all

future tax savings. Note that V Ut is determined via the SDF by V Ut =
∑T
s=t+1Et[msFCF

U
s ], where

T →∞ is possible (see Arzac and Glosten (2005)). The unlevered free cash flows are defined in the

well-known way FCFUs = EBITs(1−τ)−Invs, where EBITs denotes the earnings before interest

and taxes and Invs the net investments. For simplification purposes we set the net investments

(investments minus depreciation) to zero. The corporate tax rate τ14 is assumed to be constant.

Applied to the EBITs, we obtain the tax payments of an unlevered firm TaxUs = τEBITs.

We define tax savings TSs of a period s as the difference between the taxes of an unlevered

and a levered firm, i.e., TSs = TaxUs − TaxLs , so that the value of the tax savings is determined

by (see e.g. Arzac and Glosten (2005), p. 454)

V TSt =
T∑

s=t+1

Et[msTSs] =
T∑

s=t+1

Et[msTax
U
s ]−

T∑
s=t+1

Et[msTax
L
s ], (2.2.6)

where the taxes of a levered firm TaxLs depend on the corporate tax rate τ15, the EBIT and effects

related to tax payments such as debt related tax savings. For risky debt, the explicit definition of

TaxLs depends on several assumptions that we discuss in section 2.3.1.

2.3 Risky debt with partial default - a single-period analysis

In this section, we derive expressions for the discount rate of tax savings, i.e., the conditional

expected returns on tax savings, and qualitative statements about its relation to the discount rate

of debt. Within our set of assumptions, interest payments are the core variables that determine

tax savings. We expose how the prioritization of principal over interest or interest over principal

payments affects the risk of tax savings when a (partial) default is possible. To reduce complexity,

we regard a simple single-period model where the firm exists from t to t+ 1. At t the firm issues

13Throughout our analysis we regard single-period debt contracts, i.e., the amount of debt issued at time s − 1 is
promised to be repaid at s.

14By excluding an explicit modelling of personal taxes we operate - from a tax perspective - in a simplified frame-
work, which is predominant in the corporate finance literature stream dealing with the tax benefits of debt fi-
nancing (firm valuation literature see e.g. Rapp (2006), Koziol (2014); capital structure theory Titman and Tsy-
plakov (2007) or Hackbarth and Mauer (2012)). Nevertheless, we discuss at the respective points of our analysis
the consequences.

15At this point, disregarding the effects of default, we already can outline one consequence of not considering
personal taxes. While interest payments on the corporate level help to avoid corporate income tax, (1.) interest
income on the personal level has to be taxed, implying a decrease of the tax savings from perspective of the
personal level and (2.) payments to equityholders are taxed on the personal level as well. Here, it is relevant to
note that interest payments reduce the payments to equityholders, which results in lower personal equity taxes.
See for a detailed analysis of the US e.g. Graham (2003).
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an amount of debt Dt. At t + 1 the firm’s operations generate an uncertain unlevered free cash

flow FCFUt+1, and interest Intt+1 as well as principal PPt+1 are paid on the total amount of debt

Dt.16 Depending on whether default occurred or not and the subsequently discussed consequences

of default the firm might realize tax savings. Note that this single-period model has an important

consequence: The levered firm value amounts at t+ 1 in each state to V Lt+1 = 017. Note that some

of our subsequently discussed assumptions are valid for the multi-period case as well.

2.3.1 Assumptions and discussion

We emphasize the possibility of a partial default, in opposition to models where default strictly

implies a full loss.18 Therefore, we have to define the states of no default and (partial) default.

Without a default the firm fully distributes the promised principal and interest payments Dt(1+rct )

to the debtholders. Here, rct is the promised yield for the period t to t + 1.19 In default the

firm is only able to pay an amount smaller than the promised interest and principal payments

Dt(1 + rct ), whereas a partial default means that the amount the firm can pay to debtholders is

greater zero. Without having defined the available cash flows in default yet, we may already state

some conditions regarding the difference between the promised as well the actually paid interest

and principal payments, which we define as loss Lt+1 of the promised debt repayments. Since we

regard a limited liability firm and consider a model framework without possible bankruptcy costs20,

the losses in default maximally amount to the contractually fixed debt payments Lt+1 = Dt(1+rct ),

i.e., the firm is unable to pay anything to the debtholders. The minimum loss coincides with the

no default case, i.e., the promised interest and principal payments are properly rendered, which

implies Lt+1 = 0. Since in a model framework allowing for partial default we regard, besides the

aforementioned extreme scenarios, all cases in between, i.e., the firm may not completely default

on its debt obligations, the loss in any state ω at time t+1 is defined by Lt+1(ω) ∈ [0, Dt(1+rct )].

We denote the actual repayment distributed to debtholders as RPt+1, which is the sum of actually

paid principal and interest payments, i.e., RPt+1 = Intt+1 +PPt+1, or in notation with contractual

payments and losses to debt holders RPt+1 = Dt(1 + rct ) − Lt+1.21 The assignment of the losses

to interest and principal payments depends on their respective prioritization. From an economic

perspective it might be useful for the firm to pay interest in order to achieve tax savings on interest

payments in the period where the default occurs. However, most tax codes claim (see e.g. Swoboda

and Zechner (1995), p. 781) that principal payments have priority over interest payments (Main

16Note that PPt+1 and PPnett+1 coincide in the single-period analysis.
17The perspective is here from the moment in t+ 1 when the cash flow has just been paid out.
18Partial default has been analyzed by Molnár and Nyborg (2013) in a binomial model where the loss in default
is ex ante specified. In comparison, we regard a model with more than two states and without relying on the
assumption of a deterministic loss.

19We use the subscript t for the period from t to t + 1 because the promised yield is already known, i.e., deter-
mined at t.

20Bankruptcy costs could easily be implemented as a factor reducing the firm value in case of default (see e.g.
Koziol (2014)).

21Note that in the single-period case principal and net principal payments are the same, because in t + 1 the firm
ceases to exist.
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assumption 1.1 below). Only some country-specific laws, such as the German civil code (§366

BGB), allow that the debtor chooses how debt payments should be prioritized. Then the debtor

might choose to prioritize interest payments in order to incur the maximum amount of possible tax

savings (Main assumption 1.2). Note that only one prioritization rule can be applied at a time.

Therefore, we split the respective analysis into two sections 2.3.3.1 and 2.3.3.2 where either main

assumption 1.1 or 1.2 is respectively presupposed.

Main assumption 1 (Prioritization of interest payments):

The prioritization of interest payments over principal in the event of default depends on a

respective covenant or the decision of the levered firm.

Main assumption 1.1 (A1): Principal payments are prioritized over interest payments.

Main assumption 1.2 (A2): Interest payments are prioritized over principal payments.

We continue to define the tax payments of a levered firm with a possible (partial) default. In

case of a default, the tax deductibility of the actually paid interest depends on whether the tax

authority allows their deductibility.22 Here, we continue on the assumption that, in the event of

default, the tax authority allows the tax deductibility of the actually paid interest.23

Main assumption 2 (Tax deductability of interest payments):

The tax authority always grants the tax deductibility of the actually paid interest.

As outlined by Cooper and Nyborg (2008), among others, a crucial assumption with respect

to the impact of default on the firm value is the respective treatment of a possible cancellation

of indebtedness (COD) by the tax authority. The fact that the levered firm has to write down

some of its debt might give rise to a tax liability, i.e., a tax on a COD. The treatment depends

on the jurisdiction’s tax code.24 For example, in the United States, the COD gives rise to a tax

liability (IRC Section 61(a)(12)), but an exception for several reasons is possible, such as for a

reorganization under Chapter 11 (see Miller (1991) or for more details USC §108). Other countries

belonging to the G7 allow a tax-free COD as well, e.g. the German tax legislation allows for a

tax-free COD supporting the continuance of the firm’s operations (see §227 AO and BFH decision

22Blaufus and Hundsdoerfer (2008) discuss the impact upon the paid taxes of whether the tax authority allows
for a tax deductibility of interest payments or not.

23Kruschwitz and Löffler (2005), p. 228, proceed on an equivalent assumption in combination with a strict prior-
itization of interest payments. With their assumption of a minimum cash flow for at least paying the taxes this
results - even in default - in a constant tax deductibility of the contractually fixed interest payments. In Rapp
(2006), specifically p. 777, the therein stated assumptions imply that the firm’s contractually fixed interest pay-
ments are always tax-deductible.

24Cooper and Nyborg (2008) elaborate that one of the differences with the highest impact on tax shield valuation
between Sick (1990) and Miles and Ezzell (1980) is the different assumption with respect to the tax treatment
of a COD. This difference has been further analyzed by Blaufus and Hundsdoerfer (2008) by including personal
taxes. They show that the main difference between the aforementioned approaches as well as the ones by Kr-
uschwitz and Löffler (2005) on the one hand and on the other by Homburg et al. (2004) and Rapp (2006) result
from the general tax treatment of a default, i.e., the tax deductibility of interest payments, the taxation of a
possible COD and the taxation of a possible debt write-down on the level of the debtholder.
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as of June 14, 2010 - X R 34/08). As a direct consequence, it is a valid simplifying assumption25

that an exception of the taxation on a COD is granted.

Main assumption 3 (Taxes on cancellation of indebtedness (COD)):

The amount of debt LPPt+1 that is cancelled at an arbitrary time t+ 1 will not be taxed by

the tax authorities.

Main assumption 3 together with our exclusion of taxes on the debtholder and shareholder

level combined with main assumption 2 imply that the period-specific tax savings at an ar-

bitrary period time point t + 1 are always determined by TSt+1 = τIntt+1, i.e., the differ-

ence between TaxUt+1 and TaxLt+1.26 According to our set of assumptions TaxLt+1 is given by

TaxLt+1 = (EBITt+1− Intt+1)τ .27 In case of a COD taxation, the period-specific tax savings have

to include the respective taxation and would therefore amount to TSt+1 = τIntt+1−τLPPt+1.28 The

aforementioned assumptions imply that the levered free cash flows can be generally determined at

an arbitrary time point t+ 1 by

FCFLt+1 = FCFUt+1 + TSt+1 = FCFUt+1 + τIntt+1. (2.3.1)

After having discussed the assumptions for a partial default we are well equipped for obtaining

an expression quantifying the loss Lt+1 in the single-period setting. Since even in default taxes are

saved at τIntt+1, the debtholders obtain the unlevered free cash flows plus possible tax savings,

i.e., the levered free cash flows considering default FCFLt+1. Independent of the prioritization of

payments the losses on the promised debt payments are then defined as the positive difference

between the promised interest and principal payments and the levered free cash flows:

Lt+1 = max(0, Dt(1 + rct )− FCFLt+1). (2.3.2)

25As stated above, assuming no tax on COD is a valid assumption for mapping the case of a reorganization (see
e.g. Miller (1991) or Cooper and Nyborg (2008)). Therefore, at first glance, it might not be reasonable to com-
bine a single period model with the assumption of no taxes on a COD. In a single period setting, the firm is
simply not able to reorganize. However, we have decided to state this assumption with regard to the more gen-
eral setting of the multi-period analysis in section 2.4 which aims at mapping the valuation of a firm that uses
in default the opportunity to reorganize. Notice that no tax on a possible COD is an implicit standard assump-
tion in most works on optimal capital structure (e.g. Leland (1994)), even though most works dealing with opti-
mal capital structure do not consider the case of a reorganization.

26We consider a strict prioritization of the payments to the tax authority (equivalently Kruschwitz and Löffler
(2005)). Thereby, the firm cannot default on its tax payments. With our set of assumptions, we always compare
the unlevered free cash flows with the debt repayments where taxes have been already deducted.

27Typically, TaxLt+1 is defined in terms of the equity cash flows (ECFt+1), with our set of assumptions, by
TaxLt+1 = (ECFt+1 + PPnett+1)

τ
1−τ , where ECFt+1 = (EBITt+1 − Intt+1)(1− τ)− PPnett+1.

28Assuming a taxation of a COD implies a kind of irrelevance of default on the value of tax payments. This tax
effect has already been shown by Sick (1990) and Kruschwitz et al. (2005). Blaufus and Hundsdoerfer (2008), p.
173, show the effects of such a tax system and draw upon the taxation effect of debt write-downs on the cred-
itor level. Combining the case of tax deductibility of interest payments on the corporate level with a taxation
of a COD and the tax deductibility of debt write-downs on the creditor level results in a tax system which does
not distort the effects of a default (credit default neutral tax system). For the assumptions of Homburg et al.
(2004) and Rapp (2006), as already discussed in FN 24, Blaufus and Hundsdoerfer (2008) analyze how the tax
treatment of debt write-downs on the creditor level has to be constructed in order to imply a credit default neu-
tral tax system.

23



2.3. Risky debt with partial default - a single-period analysis

2.3.2 General properties of the single-period model with risky debt

After having discussed the consequences and the tax treatment of default, we turn our attention

towards the calculus of the debtholders to derive a relation for the promised yield rct , which is

contractually fixed at t. Moreover, since we are interested in the appropriate discount rate for

the tax savings we define and analyze the returns for the different debt cash flows - interest and

principal - as well as for the tax savings. We start with the promised yield by representing the

value of debt as discounted promised interest and principal payments subtracted by the loss on

debt repayments:

Dt = Et[mt+1(Dt(1 + rct )− Lt+1)]

=
Dt(1 + rct )

Rft
− Et[mt+1Lt+1],

(2.3.3)

where the second equality uses Rft = 1/Et[mt+1]. We rearrange for the promised yield rct and

obtain

rct = rft +
Et[mt+1Lt+1]Rft

Dt
. (2.3.4)

As a short-hand notation we define the loss ratio φt+1 = Lt+1

Dt
and restate equation 2.3.4 to

rct = rft + Et[mt+1φt+1]Rft

= rft + covt[mt+1, φt+1]Rft + Et[φt+1].
(2.3.5)

This equation shows several intuitive results: In the case of risk-free debt, the loss ratio is zero in

any state so that rct = rft . In the case of risky debt, the promised yield is always greater than the

risk-free rate since with a strictly positive SDF (Et[mt+1φt+1]Rft > 0), the loss ratio is greater zero

in at least one state but cannot become smaller than zero. In case φt+1 is uncorrelated with the

SDF, we can further simplify the expression for the yield rate to rct = rft +Et[φt+1]. Specifically, the

yield rate is just the sum of the risk-free rate and the expected loss ratio. In case the loss ratio φt+1

is correlated with consumption, we have to state an appropriate assumption with respect to their

interrelation. A high loss ratio during times of low consumption and a low loss ratio in times when

the investor’s consumption is already high imply a negative correlation of losses with consumption.

This leads to a positive correlation between the loss ratio and the SDF. Equation 2.3.5 shows that

a stronger positive covariance of the loss ratio with the SDF increases the promised yield.

We define the return on debt as

RDt+1 =
Intt+1 + PPt+1

Dt
=
RPt+1

Dt
. (2.3.6)

By using the promised debt repayments Dt(1 + rct ), the total losses on debt Lt+1 and the loss ratio
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φt+1 we are able to state

RDt+1 =
Dt(1 + rct )− Lt+1

Dt
= 1 + rct − φt+1. (2.3.7)

For the case of risk-free debt, we observe that the absolute loss amounts to zero implying rct =

rDt+1 = rft . In case of risky debt, the net return on debt rDt+1 is smaller than or equal to the

promised yield. Taking expectations, we get the conditional expected return on debt, i.e., the

discount rate for the expected sum of interest and principal payments

Et[R
D
t+1] = 1 + rct − Et[φt+1]. (2.3.8)

For risky debt with Et[φt+1] > 0 we obtain Et[R
D
t+1] < 1 + rct , i.e., Et[rDt+1] < rct . Conditional

expected returns on debt are equal to rft for risk-free debt and for risky debt when the loss ratio is

uncorrelated with the SDF: Et[RDt+1] = 1 + rct −Et[φt+1] = 1 + rft +Et[φt+1]−Et[φt+1] = 1 + rft .29

Before we analyze the effect of the prioritization of debt payments on the tax shield value, it

is useful to regard the interest and principal payments separately, and discuss their prices and

returns as well as their relation to the price and return of the tax savings. We start by defining

the return on interest payments RIntt+1, on principal payments RPPt+1 and on the period specific tax

savings RTSt+1:

RIntt+1 =
Intt+1

pt(Intt+1)
, RPPt+1 =

PPt+1

pt(PPt+1)
, RTSt+1 =

TSt+1

pt(TSt+1)
. (2.3.9)

Taking conditional expectations we get the respective conditional expected returns Et[R
Int
t+1],

Et[R
PP
t+1] and Et[RTSt+1], i.e., the discount rates for conditional expected interest payments, principal

payments and tax savings. Notice that those single payoffs are regularly not separately traded,

even though there are some examples of such debt instruments, such as strip bonds and interest

or principal-only classes of asset-backed securities.30 With our set of assumptions we are able to

state one important result of our analysis: The returns on tax savings are equal to the returns

on interest payments RIntt+1 = RTSt+1. The return on tax savings can be expressed in terms of the

interest payments and their price, and by additionally noting that the tax rate cancels out we get

RTSt+1 =
TSt+1

pt(TSt+1)
=

τIntt+1

pt(τIntt+1)
=

τIntt+1

τpt(Intt+1)
= RIntt+1. (2.3.10)

29For assets that are uncorrelated with the marginal utility growth of consumption of an investor (the SDF)
the investor expects to earn a rate equal to the risk-free rate. Such an asset does not offer risk-reduction ser-
vices and does not insure against bad states, i.e., low consumption, because on average it does not pay more in
such a state. On average, it also does not pay more in good states, i.e., states of high consumption, so that the
volatility of the consumption stream is not increased. See for an extensive treatment Magill and Quinzii (2002),
p. 160.

30If we would have additionally assumed the spanning assumption to hold, it is possible to perfectly duplicate
the single payoffs of principal and interest payments on the capital market. See for a discussion of the spanning
assumption e.g. Kruschwitz and Löffler (2006). However, we have abstained from making further assumptions
with respect to the economy (see FN 7 and 11). As mentioned in Cochrane (2005) the basic pricing equation
can also represent the private evaluation of non-traded assets.
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2.3. Risky debt with partial default - a single-period analysis

A proportional31 loss distribution on principal and interest payments means that losses on

principal payments are given by Lt+1
Dt

Dt(1+rct )
= Lt+1

1
(1+rct )

and losses on interest payments by

Lt+1
rctDt

Dt(1+rct )
= Lt+1

rct
(1+rct )

. In this case the returns of all debt cash flows are equal: RDt+1 = RIntt+1 =

RPPt+1. The return on interest payments is given by RIntt+1 = Intt+1

pt(Intt+1) =
rctDt−Lt+1

rct
(1+rct )

pt(rctDt−Lt+1
rct

(1+rct )
)
. By

multiplying the numerator and denominator by 1+rct
rct

, we obtain RIntt+1 =
Dt(1+rct )−Lt+1

pt(Dt(1+rct )−Lt+1) = RDt+1.

Conducting a similar procedure for the return on principal payments reveals that RDt+1 = RPPt+1.32

Notice that models in which in a default always the full promised amount Dt(1 + rct ) is lost have

by construction a proportional loss distribution on interest and principal payments.33 That is, for

the prioritization assumptions to have any effect we need at least one default state in which a part

of the promised debt repayments is redeemed.

With the prioritization assumptions (and partial default) we cannot expect that the equality

of returns of the different debt cash flows still holds. In the following we analyze those cases.

2.3.3 Partial default and different priorities of payments to debtholders

Subsequently, we analyze the two mutually exclusive assumptions of interest or principal prioriti-

zation and their impact on the discount rate of the tax savings, i.e., the discount rate for interest

payments.

2.3.3.1 Principal with higher priority than interest payments

In case of a prioritization of principal payments, losses on debt Lt+1 are first absorbed by the

promised interest payments rctDt. This implies that the actual interest payments are determined

by

Intt+1 = max(rctDt − Lt+1, 0). (2.3.11)

We provide a graphical representation for the actual interest payments dependent on FCFUt+1 in

Figure 2.1. Therefore, we have to subsequently find a respective expression. Substituting equation

2.3.2 into 2.3.11 and using the definition of the FCFLt+1 leads to Intt+1 = max(rctDt−max(0, Dt(1+

rct ) − FCFUt+1 − τ · Intt+1), 0). It follows, as long as the max-functions do not bind at zero we

have Intt+1 = Dtr
c
t −Dt(1 + rct ) +FCFUt+1 + τ · Intt+1, where the rctDt terms cancel. Rearranging

31Proportional means pro rata according to promised interest and principal payments.

32For returns on principal payments we write RPPt+1 =
PPt+1

pt(PPt+1)
=

Dt−Lt+1
1

(1+rct )

pt(Dt−Lt+1
1

(1+rct )
)
, multiply numerator and

denominator by 1 + rct and arrive at RPPt+1 =
Dt(1+r

c
t )−Lt+1

pt(Dt(1+r
c
t )−Lt+1)

= RDt+1.
33For example Cooper and Nyborg (2008) conduct their analysis based on a full loss of principal and interest in
default. However, without questioning their results, they use the promised yield as discount rate for the tax
savings.
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2.3. Risky debt with partial default - a single-period analysis

for Intt+1 we obtain for the unbounded part of the function:

Intt+1 =
1

1− τ
(FCFUt+1 −Dt). (2.3.12)

The interest payments have their lower bound at zero and their maximum at rctDt. This enables

us to restate Intt+1 using max-functions dependent on FCFUt+1. We find the “strike” of these

functions through first, setting Intt+1 = 0 and rearranging equation 2.3.12 for FCFUt+1, which

yields FCFUt+1 = Dt, and second, setting Intt+1 = rctDt and rewriting the same equation to get

to FCFUt+1 = Dt(1 + rct (1− τ)). This enables us to restate Intt+1 dependent on FCFUt+1 through

two max-functions with the respective strikes:

Intt+1 =
1

1− τ
[max(FCFUt+1 −Dt, 0)−max(FCFUt+1 −Dt(1 + rct (1− τ)), 0)]. (2.3.13)

This payoff function is depicted in Figure 2.1 (solid line), where Intt+1 starts to increase as soon

as FCFUt+1 > Dt and reaches its maximum at rctDt for FCFUt+1 ≥ Dt(1 + rct (1 − τ)). Since paid

interest incur tax savings τIntt+1, the slope of the payoff of the interest is increased by a factor of
1

1−τ in comparison to the FCFUt+1.

Principal payments can be similarly constructed by subtracting the losses on principal from

Dt
34

PPt+1 = Dt −max(Dt − FCFUt+1, 0). (2.3.14)

As shown in Figure 2.1, PPt+1 (dashed line) increases one-to-one with FCFUt+1. As soon as

FCFUt+1 = Dt the promised principal payments are reached, i.e., the maximum value of the payoff

diagram PPt+1 = Dt. Moreover, we observe from Figure 2.1 that the interest and principal

payments are not proportional. As a consequence, their respective returns do not have the same

distributions as in the the case of a proportional loss distribution.

We continue to analyze the expected returns of interest payments, which are at the same

time the expected returns of tax savings, using the results of Coval and Shumway (2001), who

found expected return relations between option expected returns and the expected returns of

their underlying. Therefore, we restate equation 2.3.11 in terms of the total debt repayments

by Intt+1 = max((Dt(1 + rct ) − Lt+1) − Dt, 0) = max(RPt+1 − Dt, 0). This can be regarded

as a call option payoff with strike Dt and underlying RPt+1. In order to obtain an expression

depending on expected returns, we divide equation 2.3.11 by the price of interest payments and

take expectations. This procedure yields Et[RIntt+1] = Et[max(RPt+1−Dt, 0)]
pt(max(RPt+1−Dt, 0)) . By factoring out Dt and

using RDt+1 = RPt+1

Dt
, we obtain35

Et[R
Int
t+1] =

Et[max(RDt+1 − 1, 0)]

pt(max(RDt+1 − 1, 0))
. (2.3.15)

34Notice that principal payments only suffer losses when interest payments are already equal to zero.
35We do not transform the gross return into net returns, i.e., R − 1 into r, because in the following we will regard
the 1 as a strike of a call option. We continue to show an important consequence using this logic.
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Figure 2.1: Payoffs of interest and principal payments dependent on the unlevered free cash flows
for assumption A1.

Notice that with a strike equal to zero we would obtain Et[RDt+1] itself. Using the results of Coval

and Shumway (2001), we can state qualitative relations of expected returns on debt and on interest

payments. To apply their results for our case, we regard equation 2.3.15 with an arbitrary strike

K:

Et[R(K)t+1] =
Et[max(RDt+1 −K, 0)]

pt(max(RDt+1 −K, 0))
. (2.3.16)

Following Coval and Shumway (2001) and using conditional moments, the derivative with respect

to K is given by36

dEt[R(K)t+1]

dK
=
−Et[Et[mt+1|RDt+1](RDt+1 −K)|RDt+1 > K]

(Et[Et[mt+1|RDt+1](RDt+1 −K)|RDt+1 > K])2

+
Et[R

D
t+1 −K|RDt+1 > K]Et[Et[mt+1|RDt+1]|RDt+1 > K]

(Et[Et[mt+1|RDt+1](RDt+1 −K)|RDt+1 > K])2
.

(2.3.17)

The denominator is a square and therefore is always positive. The numerator is the negative of the

conditional covariance −Covt
(
RDt+1 −K,Et[mt+1|RDt+1]|RDt+1 > K). A negative (positive/zero)

correlation yields a positive (negative/zero) numerator in equation 2.3.17, i.e., the expected return

increases (decreases/remains the same) at that strike. With a strike equal to zero Et[R(K = 0)t+1]

the expected return is Et[RDt+1]. Increasing the strike K from zero to one constantly increases

(decreases/keeps the same) the expected return when the conditional covariance is negative (posi-

tive/zero) for all values of K along this range. Furthermore, from equation 2.2.4 we know that a

negative (postive/zero) correlation of RDt+1 with the SDF implies an expected return greater than

(smaller than/equal to) the risk-free rate. Since Et[RDt+1] can be regarded as a weighted average37

36For a full derivation see Coval and Shumway (2001).
37Et[RDt+1] =

Et[Intt+1]+Et[PPt+1]

Dt
= Et[RIntt+1]

pt(Intt+1)

Dt
+ Et[RPPt+1]

pt(PPt+1)

Dt
.

28



2.3. Risky debt with partial default - a single-period analysis

of Et[RPPt+1] and Et[RIntt+1], when any of those expected returns is greater than Et[RDt+1] the other

must be smaller.

From the stated relations we can derive the following proposition:38

Proposition 1 Considering the case of a prioritization of principal payments and the aforemen-

tioned set of assumptions, in particular the tax deductibility of actually paid interest is always

granted (main assumption 2), a possible COD will not be taxed by the tax authority (main

assumption 3) the following relations between the expected return on tax savings and the

expected return on debt always hold:

(i) For a negative conditional covariance Covt(RDt+1 − K,Et[mt+1|RDt+1]|RDt+1 > K) for all K ∈

[0, 1]

Et[R
TS
t+1] = Et[R

Int
t+1] > Et[R

D
t+1] > Rft , (2.3.18)

(ii) for a positive conditional covariance Covt(RDt+1 − K,Et[mt+1|RDt+1]|RDt+1 > K) for all K ∈

[0, 1]

Et[R
TS
t+1] = Et[R

Int
t+1] < Et[R

D
t+1] < Rft , (2.3.19)

(iii) for a zero conditional covariance Covt(RDt+1 −K,Et[mt+1|RDt+1]|RDt+1 > K) for all K ∈ [0, 1]

Et[R
TS
t+1] = Et[R

Int
t+1] = Et[R

D
t+1] = Rft . (2.3.20)

Aggregate asset prices form the value of the market portfolio. That has to imply that the major

part of the assets’ individual values must move with the market, even though some might have a

zero or a negative correlation with the aggregate market level. Coval and Shumway (2001) point

out that existing asset pricing theory does not allow a positive correlation of the SDF with the

market level. This indicates that the case of a negative correlation of the SDF with an individual

asset’s price is the dominant case (Proposition 1 (i)). Notice also that the propositions are “if”

statements and not “if and only if” statements. For example the consequence of Proposition 1

(i) might still be true if the conditional covariance is not negative for all K ∈ [0, 1] but only for

parts of the interval. The propositions identify the cases where the results (the expected return

relations) are always true.

38Coval and Shumway (2001) assume no restrictions regarding the differentiability of the expected return with re-
spect to K. We have discrete returns such that with increasing K at K = RDt+1(ω) the function is not smooth,
i.e., it is not differentiable (max(RDt+1(ω) −K, 0) = 0 in this state). But the expected return is still continuous
in K along the range of RDt+1, i.e., there are no jumps, and therefore the expected return will not suddenly de-
crease or increase. When we know that before and after such a point the derivative is positive, expected returns
always increase with K.
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2.3. Risky debt with partial default - a single-period analysis

2.3.3.2 Interest payments have priority over principal payments

The prioritization of interest payments implies that losses are first incurred on principal. By pro-

ceeding on this assumption, the interest payments dependent on the losses on debt are determined

by

Intt+1 = rctDt −max(Lt+1 −Dt, 0), (2.3.21)

where the max-function expresses the losses on interest payments. In comparison to the case of

principal prioritization (e.g. equation 2.3.11), the actual interest payments start to decrease with

increasing Lt+1 if, and only if, the total losses Lt+1 exceed the promised principal Dt. Rearranging

equation 2.3.21 to a function depending on FCFUt+1 (see Figure 2.2 for a graphical representation)

yields

Intt+1 = rctDt −max(rctDt −
FCFUt+1

1− τ
, 0). (2.3.22)

Observation of equation 2.3.22 reveals that losses on interest only emerge (at an amount of

max(rctDt −
FCFUt+1

(1−τ) , 0)) if EBIT =
FCFUt+1

1−τ is smaller than the promised interest payments rctDt.

For completeness we state the formula for the principal payments. Here, considering the fact

that prioritized interest generates tax savings, principal can be paid as soon as FCFUt+1 > rctDt(1−

τ) holds. Therefore, the payoff of the principal payments is given by

PPt+1 = max(FCFUt+1 − rctDt(1− τ), 0)

−max(FCFUt+1 −Dt(1 + rct (1− τ)), 0).
(2.3.23)

Figure 2.2 illustrates that interest payments (solid line) increase with increasing EBITt+1 =
FCFUt+1

1−τ . As a consequence, interest payments have a steeper slope than the unlevered free cash

flows (dotted line). As soon as EBITt+1 = rctDt the actually incurred interest payments equal

their promised value, i.e., FCF
U
t+1

1−τ = rctDt. Afterwards, principal (dashed line) can be paid.

To make a qualitative statement regarding the expected returns on interest payments it is

easier to get an expression for expected returns on principal payments first. From the alternative

representation of principal payments, PPt+1 = max(RPt+1−rctDt, 0), and taking out Dt we obtain

the following expected return equation:

Et[R
PP
t+1] =

Et[max(RDt+1 − rct , 0)]

pt(max(RDt+1 − rct , 0))
. (2.3.24)

Again we follow Coval and Shumway (2001). Since Et[RDt+1] can be regarded as a weighted average

of Et[RPPt+1] and Et[RIntt+1], when any of those expected returns is greater than Et[RDt+1] the other

must be smaller. This implies the following proposition:

Proposition 2 Considering the case of a prioritization of interest payments and the aforemen-
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Figure 2.2: Payoffs of interest and principal payments relative to unlevered free cash flows for
assumption A2.

tioned set of assumptions, in particular main assumption 2 and 3, the following relations

between the expected return on tax savings and the expected return on debt always hold:

(i) For a negative conditional covariance Covt(RDt+1 − K,Et[mt+1|RDt+1]|RDt+1 > K) for all K ∈

[0, rct ]

Et[R
TS
t+1] = Et[R

Int
t+1] < Et[R

D
t+1], (2.3.25)

(ii) for a positive conditional covariance Covt(RDt+1 − K,Et[mt+1|RDt+1]|RDt+1 > K) for all K ∈

[0, rct ]

Et[R
TS
t+1] = Et[R

Int
t+1] > Et[R

D
t+1], (2.3.26)

(iii) for a zero conditional covariance Covt(RDt+1−K,Et[mt+1|RDt+1]|RDt+1 > K) for all K ∈ [0, rct ]

Et[R
TS
t+1] = Et[R

Int
t+1] = Et[R

D
t+1] = Rft . (2.3.27)

In contrast to Proposition 1 (i), Proposition 2 (i) shows for the case of a prioritization of interest

payments that the expected return on interest and in turn on the tax savings is smaller than the

one of the overall debt issue. For this case interest payments carry less risk than the overall debt

issue. Interest are paid first, i.e. losses are applied to interest last.

Overall, comparing our findings summarized in Propositions 1 and 2 with the case of risk-free

debt or risky debt combined with a taxation of a COD (see e.g. Sick (1990) or Kruschwitz et al.

(2005)) the prioritization assumptions have an important impact on the appropriate discount rate

(expected return) of the tax savings. Moreover, our findings indicate given that the debtor aims at

maximizing its firm value, a prioritization of interest payments has a favorable discount rate effect

on the value of tax savings. To get a sense for the consequences on discount rates, promised yield

rates and the value of the tax shield of applying either one or the other assumption on the same
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2.3. Risky debt with partial default - a single-period analysis

firm in terms of its assets we provide an illustrative example.

2.3.3.3 Illustrative example

We construct a numerical example with a correlation between the debt repayments and the SDF,

so that the results of Proposition 1 (i) and 2 (i) hold. We model N = 100 states with uniform

probabilities π(ω) = 1/100 for ω = 1, 2, ..., 100. The state-dependent values for EBITt+1 range

from 5 to 30, with the in-between values being evenly spaced. The corporate tax rate amounts

to τ = 25% and the gross risk-free rate to Rft = 1.05. We vary the debt value Dt stepwise (50

steps) from 0 to Dt = V Lt , i.e., a leverage of one. The correlation between EBIT and the SDF39 is

−0.812.

For the following exemplary analysis, we will first show how to determine several necessary

values which is followed by a step-by-step analysis of the discount rates of tax savings, the promised

yield and the value of the tax shield. In order to be able to compare the results, we use for the

presented figures as ratio for the abscissa Dt/V
U
t . Notice that V Ut remains constant with increasing

debt levels, whereas V Lt does not. The levered firm value V Lt implied by the two assumptions is

not equivalent for the same total amount of debt and in turn would result in different Dt/V
L
t for

the same debt level. Using Dt/V
U
t additionally enables us to observe how much the firm can be

levered above the unlevered firm value under the different assumptions.

Using the pricing equation V Ut = Et[mt+1FCF
U
t+1] we determine for the unlevered firm a value

rounded to three digits of V Ut = 11.312 and Et[R
U ] = 1.16. We find this value by multiplying

the state-dependent SDF (as discussed in FN 39), mt+1(ω), with the respective unlevered free

cash flows, FCFUt+1(ω), summing up all values and dividing by the number of states, here 100, to

account for probabilities. Moreover, we can determine the maximum debt level Drfmax
t that can

still be regarded as (default-) risk-free, i.e., in every state the firm is able to fully repay interest

and redemption. By using equation 2.3.2, setting Lt+1|Dt=Drf max
t

=! 0, noting that in this case

rct = rft has to hold and rearranging for Drf max
t , the maximum risk-free debt level is determined

by Drfmax
t = EBIT (ω=1)(1−τ)

1+(1−τ)rft
, where EBIT (ω = 1) = 5 are the lowest possible earnings in

this example. The maximum risk-free debt level is given by Drfmax
t = 3.615. For values of

Dt/V
U
t ≤ 3.615/11.312 = 31.953% debt is risk-free. Therefore, we observe in the subsequently

discussed figures that debt starts to carry default-risk for Dt/V
U
t > 31.953%.

39The EBIT increases linearly from 5 to 30 from state 1 to state 100. We assume that the investor’s consump-
tion increases linearly from state 1 to 100, so that we can replace the ω indicating states with consumption
Ct+1, i.e., Ct+1(ω = 1) = 1, Ct+1(ω = 2) = 2, ..., Ct+1(ω = 100) = 100. We assume an SDF of

the form mt+1 = β
u′(Ct+1)

u′(Ct)
, where β = 1

R
f
t

and u′(·) is the first derivative of a utility function u(·) (see

Cochrane (2005) for a basic treatment). We use the power utility u(Ct+1) =
C

1−γ
t+1

1−γ , where the first derivative

is u′(Ct+1) = C−γt+1. Thus, the SDF is mt+1 = β
(
Ct+1

Ct

)−γ
. The constant γ is the coefficient of risk-aversion

and must be positive for risk-averse investors. We set γ = 0.25 and Ct = 33.686. With numeric values the SDF

is mt+1 = 1
1.05

(
Ct+1

33.686

)−0.25
. The SDF is a convex function over states and consumption with values from

mt+1(ω = 1) = 2.294 to mt+1(ω = 100) = 0.726.
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Irrespective of the assumed priority assumption, for determining the discount rate for the tax

savings according to Et[RTSt+1] = Et[R
Int
t+1] = Et[Intt+1]

pt(Intt+1) we have to obtain values for Et[Intt+1] and

pt(Intt+1). Et[Intt+1] depends on the promised yield, rct , and the loss, Lt+1. Since Lt+1 depends

on rct and Intt+1 while rct itself depends on Lt+1 we observe a feedback, where one cannot solve for

one variable due to the max-functions. Therefore, we solve numerically. The results of the analysis

are presented and discussed subsequently.

Figure 2.3 depicts the discount rate for the tax savings and debt issue implied by either as-

suming a principal (Et[RIntt+1](A1), solid line / Et[RDt+1](A1), long dashes) or interest prioritization

(Et[RIntt+1](A2), dotted line / Et[RDt+1](A1), short dashes) dependent on Dt/V
U
t . By assuming a

prioritization of principal payments we observe at a value of approximately 31.95% for Dt/V
U
t

that the discount rate for the tax savings starts to increase above the risk-free rate rft . Moreover,

we observe a very steep increase of the discount rate for the tax savings with increasing values

for Dt/V
U
t . In states with a comparably low EBIT, where the promised debt repayments cannot

be paid anymore, losses are first incurred on interest payments. With increasing leverage, in an

increasing number of states, interest cannot or not fully be paid. The negative covariance of returns

on interest payments with the SDF decreases even more implying an increase of the discount rate

of the tax savings. Assuming a prioritization of interest payments (Figure 2.3, dotted line) reveals

a completely different picture. We observe that interest payments and thereby the tax savings only

become risky for very high values of Dt/V
U
t . Obviously, this is a direct result of the fact that losses

are first assigned to principal payments. Only if losses exceed the principal of Dt, tax savings due

to interest payments are affected.

The example also underlines the qualitative results made in the prior two subsections. The

negative correlation between the SDF and the EBIT leads here also to a negative correlation

between the debt repayments and the SDF. First, as soon as debt becomes risky, the discount

rates of debt for the different prioritization rules start to differ. This is a direct consequence of the

fact that the incurred state-dependent tax savings differ as well. Second, we observe for principal

prioritization a discount rate of the tax savings strictly exceeding the one for the overall debt issue

(long dashes). In contrast to this, for a prioritization of interest the discount rate of the tax savings

is strictly lower than the corresponding one for debt (small dashes).

Additionally, we analyze the promised yield implied by the prioritization rule (see Figure 2.4).

On the one hand, the promised yield affects the interest payments and, in turn, the upper bound

of the tax savings. On the other hand, it is indirectly affected by the actually incurred interest and

tax savings since both influence the losses on the debt repayments. Figure 2.4 depicts the promised

yields implied by principal (curve A1, solid line) or interest prioritization (curve A2, dotted line).

Both yield rates exceed the risk-free rate at the same value for Dt/V
U
t and increase with increasing

Dt/V
U
t . We observe a constantly lower promised yield for the case of interest prioritization than

for principal prioritization. In contrast to the latter case, with interest prioritization the firm is still

able to generate tax savings at higher values of Dt/V
U
t , which in turn can be used to pay principal.
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Figure 2.3: Discount rates of tax savings depending on Dt/V
U
t .

This leads to comparably lower losses and to a lower promised yield. Moreover, similar to Figure

2.3, we observe that for the case of interest prioritization (A2) the firm is able to maintain debt

financing for values Dt/V
U
t > 1 since higher tax shield values are generated. This leads us to the

next step of our analysis.
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Figure 2.4: Promised Yield for principal and interest prioritization dependent on Dt/V
U
t .

Figure 2.5 shows the effect of the prioritization rules on the tax shield value. Obviously,

with increasing values for Dt/V
U
t both tax shield values increase. Approximately, at a value for

Dt/V
U
t of 31.95%, i.e., when debt becomes risky, the implied tax shield values start to differ. By

assuming interest prioritization (curve A2, dotted line) the value is strictly higher than in the case

of principal prioritization (curve A1, solid line). Even though the promised yield for the case of

interest prioritization is comparably lower at equivalent values of Dt/V
U
t (see Figure 2.4), interest

are paid in more states and therefore, tax savings are generated in more states. The effect of the

relatively lower discount rate for interest prioritization is much stronger on the tax shield value

than the one of lower promised interest payments. The relatively small tax shield value for the

case of principal prioritization is a direct result of the high interest payments in states when a unit

of cash flow has a low value and low interest payments in states when a unit of cash flow has a high
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value. Higher discount rates and a lower value compared to the case with interest prioritization are

the consequence (compare Figure 2.3 and 2.5). Finally, due to the higher tax shield value under

the assumption of interest prioritization, it is possible to lever the firm far more over its unlevered

firm value.
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Figure 2.5: Value of the tax shield for principal and interest prioritization dependent on Dt/V
U
t .

2.4 Risky debt and partial default on interest payments - a multi-period analysis

2.4.1 Additional assumptions and definitions for the multi-period case

We extend our time frame from two points in time, t and t+ 1, towards T , with s = t, t+ 1, ..., T

points in time. Therefore, we have to adjust and extend our current set of assumptions with some

remaining valid for the extended time frame, e.g. the main assumptions 1 to 3. The considered

firm exists until period T . The firm pursues a constant leverage financing policy, which implies

that the firm issues or redeems a corresponding debt amount (net principal payments PPnets ) at

an arbitrary time point s in order to keep leverage constant. We regard only single-period debt

contracts. The promised yield is determined by the debtholders at the beginning of each period.

In a multi-period setting, we have to state an adequate assumption for the capital structure

imposed after the occurrence of a default. Typically, we could differentiate between three possibil-

ities: Either the firm is liquidated for its salvage value, sold to a new investor and/or restructured

to be able to carry debt again. With respect to this, we assume that after a default, independent

of the new owner, the same capital structure is established as ex ante to default. This implies that

a constant leverage is reestablished.40

By extending our model framework towards a multi-period setting we have to discuss the

reason of default. In the single-period analysis the firm defaulted when it was unable to pay

the contractually fixed interest and principal payments. In a multi-period setting we have to

40See for example Leland (1994), Goldstein et al. (2001) or Koziol (2014), who discuss this in more detail. Kr-
uschwitz and Löffler (2005), p. 228, and Rapp (2006), p. 778, build their analysis on the equivalent assumption.
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additionally consider the value of the firm which could be used to satisfy the debtholders. Several

bankruptcy codes distinguish between two types of default: illiquidity (cash flow insolvency) and

overextension (balance sheet insolvency). The bankruptcy code of the USA in section 101 (32)(A)

defines the term “insolvency” as default, where the entity’s debt exceeds its property measured at

fair value. Nevertheless, the United States Court of Appeals for the Ninth Circuit recently noted

in the matter of Marshall III, No. 09-55573, 2013 WL 3242478 (9th Cir. June 28, 2013) that if

insolvency was a prerequisite to a chapter 11 filing, the cash flow test would be an appropriate

default criterion as well (see section 101 (32)(C)).41 Due to this differentiation, we define both

default triggers based upon our set of assumptions, discuss their implications and choose the most

appropriate one for our analysis.

Based upon our assumptions that the tax authority always grants the deductibility of the

actually paid interest payments and that after default the firm pursues again the ex ante default

financing policy, we can conclude that the firm is supposed to be illiquid according to the following

definition.42

Definition of illiquidity: The levered firm is illiquid at an arbitrary time s + 1 if the levered cash

flows plus debt issued at time s + 1 are not sufficient to cover the sum of promised interest

and principal payments of the prior debt issue:

FCFLs+1 +Ds+1 < (1 + rcs)Ds. (2.4.1)

In the presented model illiquidity will be resolved by refinancing as long as the firm is not overex-

tended. Basically, illiquidity could be financed by a sale of assets or issuance of equity. In case of

an additional equity issue the raised amount is directly paid to the debtholders. The liquidation of

assets decreases the unlevered free cash flows by selling some of the productive assets. Obviously,

the last consequence is not compatible with our assumption that the unlevered free cash flows are

independent of the pursued financing policy of the firm.43 Here, we proceed on the assumption

that illiquidity is always resolved by refinancing. Having noted this we concentrate on the default

trigger for overextension.

Definition of overextension: The levered firm defaults due to overextension if the promised debt

payments Ds(1 + rcs) are greater than the current levered free cash flows FCFLs+1 and the

value of all future levered free cash flows V Ls+1:

FCFLs+1 + V Ls+1 < (1 + rcs)Ds. (2.4.2)

41Other bankruptcy codes as for example in Germany distinguish between overextension and illiquidity as well. In
the UK the Supreme Court clarified in a decision published 9th of May 2013 UKSC 28 that the cash flow and
balance sheet test are both applicable for testing insolvency.

42See for an equivalent definition of illiquidity Kruschwitz et al. (2005). Additionally, note that this condition can
be rearranged to ECFt < 0. This implies that the firm defaults as soon as the cash flows distributed to equity
holders turn negative, i.e., the equityholders have to inject cash into the firm in order to prevent a default.

43See for a discussion on this issue Kim et al. (1993).
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The default trigger has to be consistent with the assumption of the financing policy after default.

Since we assumed that the leverage will be kept after default, the firm defaults as soon as the levered

value of the firm and the respective cash flow is exceeded by the promised debt repayments.

The subsequent two sections show how the multi-period setting affects the payoffs of the interest

and principal payments dependent on the prioritization assumptions. Since we use single-period

debt, we can keep all the results of 2.3.2 just using s and s + 1 as time subscripts. Furthermore,

we adjust the payoff equations of the single-period analysis conducted in 2.3.3.

2.4.2 Principal with higher priority than interest payments

The equations for interest 2.4.3 and principal payments 2.4.4 differ from the single-period equations

only with respect to the future levered firm value V Ls+1, which is added to the unlevered free cash

flows. The extended equation for interest payments is then

Ints+1 =
1

1− τ
[
max(FCFUs+1 + V Ls+1 −Ds, 0)

−max(FCFUs+1 + V Ls+1 −Ds(1 + rcs(1− τ)), 0)
]
,

(2.4.3)

and for principal payments

PPs+1 = Ds −max(Ds − (V Ls+1 + FCFUs+1), 0). (2.4.4)

In comparison to the single-period setting the levered firm value V Ls+1 can be interpreted as an

increase of FCFUs+1, i.e., V Ls+1 can cover losses as well, whereas V Ls+1 is a mix of debt Ds+1 = lV Ls+1

and equity Ss+1 = (1− l)V Ls+1. Figure 2.6 shows the payoffs for interest (Int∗s+1, dash-dotted line)

and principal payments (PP ∗s+1, long dashed) for the multi-period and single-period (Ints+1, solid

line / PPs+1, short-dashed line) analysis in order to highlight the differences. The levered firm

value V Ls+1 causes both payoffs to shift to the left by the dashed area. For ease of presentation

and to show the principle, we assign the same levered firm value to each unlevered free cash flow.

Note that with different state-dependent unlevered free cash flows the implied levered firm values

should differ respectively.44

2.4.3 Interest with higher priority than principal payments

The payoff functions only change through the additional V Ls+1. The equation for interest payments45

is

Ints+1 = rcsDs −max(rcsDs −
FCFUs+1 + V Ls+1

1− τ
, 0), (2.4.5)

44Notice that putting FCFUs+1 + V Ls+1 on the axes leads to the same graph as in the single-period case.
45In equation 2.4.5 V Ls+1 is also divided by (1 − τ) because within the range of zero and rcsDs interest payments
are Ints+1 = FCFLs+1 + V Ls+1 = FCFUs+1 + τInts+1 + V Ls+1. Rearranging this for interest payments leads to
Ints+1 = 1

1−τ (FCF
U
s+1 + V Ls+1).
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Figure 2.6: Interest and principal payments with principal priority (single-period and multi-
period case).

and for principal payments

PPs+1 = max(FCFUs+1 + V Ls+1 −Dsr
c
s(1− τ), 0)

−max(FCFUs+1 + V Ls+1 −Ds(1 + rcs(1− τ)), 0).
(2.4.6)

Figure 2.7 illustrates for interest prioritization the payoff functions for the multi-period setting

for interest (Int∗s+1, dash-dotted line) and principal payments (PP ∗s+1, long dashed) depending

on FCFUs+1. Again, in order to compare the multi-period and single-period payoffs we depict the

latter as well (Ints+1, solid line / PPs+1, short-dashed line) and are able to note that the payoff

functions shift to the left by the amount of V Ls+1 (dashed area), which is held constant across states.

With respect to the shift, the explanation is equivalent to the case of principal prioritization.
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Figure 2.7: Interest and principal payments with interest priority (single-period and multi-period
case).
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2.4.4 Priority assumptions and the Miles and Ezzell result

Miles and Ezzell (1985) (ME) regard the valuation of the tax savings for the case of constant

leverage and risk-free debt. They found that the value of tax savings at time t is obtained by

discounting the expected tax savings over one period at the risk-free rate and for the remaining

periods until t at the same discount rate as for the unlevered free cash flows. Subsequently, we will

show that an equivalent result can be obtained for risky debt and the discussed priority assumptions

for interest and principal payments.

For the herein discussed analysis we keep the assumptions already made in this section. Addi-

tionally, we assume independently and identically distributed (i.i.d.) returns on unlevered free cash

flows RU and an i.i.d. SDF. We drop time subscripts for i.i.d. random variables. We define RU

as single period returns by

RU =
pi+1(FCFUs+1)

pi(FCFUs+1)
, (2.4.7)

for s = t, t+ 1, ..., T − 1, i = t, t+ 1, .., s. In Appendix 2.6 we establish that the i.i.d. assumptions

for the SDF and the returns of the unlevered free cash flows are in line with the assumptions of

the multi-period model of Miles and Ezzell (1985).

As the first step, we specify the objective of the subsequent analysis. The value of the tax shield

can be determined as the sum of prices of the period specific tax savings V TSt =
∑T−1
s=t pt(TSs+1).

For the period from the time s+ 1 when a tax saving TSs+1 is incurred to time s we can use the

results obtained in our single-period analysis. For this period the tax savings are proportional to

interest payments and are therefore discounted by Es[RInts+1], i.e., ps(TSs+1) = Es[TSs+1]

Es[RInts+1]
. For the

ME-result to remain valid, we have to additionally show that pt(ps(TSs+1)) = Et[ps(TSs+1)]
Et[RU ]s−t

for

s = t, t+ 1, ..., T − 1, or restated

Et[ps(TSs+1)]

pt(ps(TSs+1))
= Et[R

U ]s−t. (2.4.8)

Furthermore, for equation 2.4.8 to hold, it is sufficient to demonstrate that

ps(TSs+1)

pt(ps(TSs+1))
= (RU )s−t (2.4.9)

holds46. If ps(TSs+1) is proportional to a variable that has to be discounted by RU over any period

(denote this value ps(CFR
U

s+1)), then ps(TSs+1) also has to be discounted by RU over any period.47

46Notice that with i.i.d. RU we can write Et[(RU )s−t] = Et[RU ]s−t

47To see that we write ps(TSs+1) = cps(CFR
U

s+1), where c is a constant, and take prices pt(·) for t < s to obtain

pt(ps(TSs+1)) = cpt(CFR
U

s+1), which is pt(TSs+1) = cpt(CFR
U

s+1). Since
cps(CF

RU

s+1)

cpt(CF
RU
s+1)

= (RU )s−t, where the

constants cancel out, ps(TSs+1)

pt(TSs+1)
= (RU )s−t must hold as well.
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Thus, it is sufficient to show that

ps(TSs+1)

ps(CFR
U

s+1)
= constant (2.4.10)

holds for s = t, .., T − 1.

As the second step, we include the constant leverage assumption and introduce an adjusted

leverage. The leverage l is given by

l =
Ds

V Ls
=

Ds

V Us + V TSs
=

Ds

V Us + ps(V TSs+1) + ps(TSs+1)
. (2.4.11)

Additionally, we define an adjusted leverage ratio, for any s = t, t+ 1, ..., T − 1, by

l∗s =
Ds

V Us + ps(V TSs+1)
. (2.4.12)

This ratio excludes the price of TSs+1 from the denominator of leverage. We work with ratios

because they are independent from level values such as FCFU and V U , which can have different

distributions over any single period, so that we would have to consider many different cases.

Instead, we work with RU , which has only a single distribution over any single period due to the

i.i.d. assumption, so that we only have to consider one case. The adjusted leverage will come

handy for converting level values such as V Us and FCFUs into ratios48. We use this conversion in

the period specific analyses below.

As the third step, we analyze period T − 1 to T for both prioritization assumptions. For

this period, the unlevered firm value is given by V UT−1 = pT−1(FCFUT ) and pT−1(V TST ) = 0.

Therefore, the adjusted leverage is given by l∗T−1 = DT−1

pT−1(FCFUT )
. By dividing the numerator and

denominator of the leverage ratio l = DT−1

pT−1(FCFUT )+pT−1(TST )
by pT−1(FCFUT ) we obtain

l =
l∗T−1

1 + pT−1(TST )

pT−1(FCFUT )

. (2.4.13)

Since pT−1(FCFUT ) has to be discounted by RU over any single period, according to relation

2.4.10 we have to show that pT−1(TST ) is proportional to pT−1(FCFUT ), i.e., pT−1(TST )

pT−1(FCFUT )
=

constant. Since l is a constant per assumption, with pT−1(TST )

pT−1(FCFUT )
being a constant, l∗T−1 must

be a constant as well. Or conversely, given constant leverage l and given constant l∗T−1 the ratio
pT−1(TST )

pT−1(FCFUT )
must be a constant. We have to show that the other direction works as well, i.e.,

with given i.i.d. RU , i.i.d. m, and constant l, l∗T−1 is a constant, i.e., is unique. With several

l∗T−1 possible for a single leverage the ratio pT−1(TST )

pT−1(FCFUT )
can have several values as well. We will

continue to show that l and l∗T−1 have a one-to-one relation, i.e., for one leverage there is a single

adjusted leverage from which follows that pT−1(TST )

pT−1(FCFUT )
= constant.

48Notice that returns are also ratios.
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Subsequently, we analyze the prioritization of principal payments for the period T − 1 to T .

Using l∗T−1 = DT−1

pT−1(FCFUT )
we rewrite the equation for the ratio pT−1(TST )

pT−1(FCFUT )
as

pT−1(TST )

pT−1(FCFUT )
= τ l∗T−1

pT−1(IntT )

DT−1
= τ l∗T−1

DT−1 − pT−1(PPT )

DT−1
(2.4.14)

and use equation 2.4.4 and FCFUT
DT−1

=
pT−1(FCFUT )FCFUT
pT−1(FCFUT )DT−1

= RU

l∗T−1
to write

pT−1(PPT )

DT−1
= pT−1

(
1−max

(
1− RU

l∗T−1

, 0

))
= pT−1

(
RU

l∗T−1

−max

(
RU

l∗T−1

− 1, 0

))
. (2.4.15)

We rewrite equation 2.4.13 to

l =
l∗T−1

1 + τ l∗T−1

(
1− pT−1

(
RU

l∗T−1
−max

(
RU

l∗T−1
− 1, 0

))) , (2.4.16)

and divide by l∗T−1 and simplify to obtain

l =
1

1
l∗T−1

(1− τ) + τ + τpT−1

(
max

(
RU

l∗T−1
− 1, 0

)) . (2.4.17)

We observe that there are only positive constants connected to the 1
l∗T−1

terms. We conclude that

for l∗T−1 ∈ (0, l∗T−1,max], where l∗T−1,max is the adjusted leverage at which leverage is 100%, leverage

strictly monotonously increases with adjusted leverage, i.e., the two variables have a one-to-one

relation. For one leverage there is one adjusted leverage and vice versa, and the ratio pT−1(TST )

pT−1(FCFUT )

is a constant given leverage l. That means pT−1(TST ) has to be discounted by RU over any period

from T − 1 back to t.

Next, we analyze the prioritization of interest payments for the period T − 1 to T . We use

l∗T−1 = DT−1

pT−1(FCFUT )
and equation 2.4.5 to write the ratio pT−1(TST )

pT−1(FCFUT )
as

l∗T−1

pT−1(TST )

DT−1
= l∗T−1τpT−1

(
rcT−1 −max

(
rcT−1 −

RU

l∗T−1(1− τ)
, 0

))
. (2.4.18)

After taking similar steps as in the prior case, i.e., rearranging equation (2.4.13) using (2.4.18),

the leverage for interest prioritization is given by

l =
1

1
l∗T−1

+ pT−1(TST )
DT−1

=
1

1
l∗T−1

+ τpT−1

(
rcT−1 −max

(
rcT−1 −

RU

l∗T−1(1−τ) , 0
)) . (2.4.19)

One cannot immediately observe the relation between adjusted leverage and leverage since this

equation includes the promised yield rate as well, which also depends on l∗T−1. This implies, that

we additionally have to find out how a change of adjusted leverage changes the promised yield.
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From equation 2.3.5 we state the equation for the promised yield for the respective period:

rcT−1 = rf +RfET−1[mφT ]. (2.4.20)

We have to look for a representation of rcT−1 in terms of l∗T−1. By using equation 2.3.2 for the

losses and dividing them by DT−1 we obtain the loss ratio:

φT = max

(
1 + rcT−1 −

FCFUT
DT−1

− TST
DT−1

, 0

)
. (2.4.21)

Using again FCFUT
DT−1

= RU

l∗T−1
we obtain

φT = max

(
1 + rcT−1 −

RU

l∗T−1

− TST
DT−1

, 0

)
. (2.4.22)

We substitute in the equation for the ratio TST
DT−1

that we know from equation 2.4.18

φT = max

(
1 + rcT−1 −

RU

l∗T−1

− τ
(
rcT−1

−max

(
rcT−1 −

RU

l∗T−1(1− τ)
, 0

))
, 0

)
,

(2.4.23)

and simplify to

φT = max

(
1 + rcT−1(1− τ)− RU

l∗T−1

+τ max

(
rcT−1 −

RU

l∗T−1(1− τ)
, 0

)
, 0

)
.

(2.4.24)

The loss ratio is greater than zero, i.e., does not bind, in default states only. The more default

states there are the higher is the impact of a change of l∗T−1 on rcT−1. We regard the limiting

case when leverage is one and a change of l∗T−1 changes the loss ratio in every state and therefore

has the biggest impact on rcT−1. That means we can leave out the outer max-function in 2.4.24

because the term inside this max-function is never smaller than zero. There is no state in which a

cash flow goes to equityholders. The inner max-function describes the losses of interest payments

divided by DT−1. Interest will not be in default in every state at a leverage of one since losses are

first applied to principal payments49. Thus, we leave out the outer max-function and use equation

2.4.20 to obtain

rcT−1 = Rf + rcT−1(1− τ)− Rf

l∗T−1

+ τRfpT−1

(
max

(
rcT−1 −

RU

l∗T−1(1− τ)
, 0

))
. (2.4.25)

49The converse is always true: When interest payments experience losses, the loss ratio must not bind, i.e., must
not be zero.
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We rearrange and simplify to

τrcT−1 = Rf
(

1− 1

l∗T−1

)
+ τRfpT−1

(
max

(
rcT−1 −

RU

l∗T−1(1− τ)
, 0

))
. (2.4.26)

By substituting equation 2.4.26 into 2.4.19 we observe that the prices of the max-functions cancel

out and we obtain:

l =
1

1
l∗T−1

+ pT−1(TST )
DT−1

=
1

1
l∗T−1

+
(

1− 1
l∗T−1

) = 1. (2.4.27)

At the highest possible leverage of one a change in 1
l∗T−1

is exactly offset by the change of the term
pT−1(TST )
DT−1

from equation 2.4.19. With respect to equation 2.4.13 that means that a change of l∗T−1

is exactly offset by the change in 1 + pT−1(TST )

pT−1(FCFUT )
at l = 1. At lower leverages and lower adjusted

leverages there will be at least one state without losses, i.e., states where the outer max-function

of the loss ratio binds so that the loss ratio is zero. Thus, with a lower leverage than one, changes

of 1
l∗T−1

will not be fully offset by changes of the term pT−1(TST )
DT−1

. Any decrease of 1
l∗T−1

, i.e., an

increase in l∗T−1, leads to a smaller increase of the term pT−1(TST )
DT−1

, so that the denominator of l

decreases and l increases. Thus, leverage strictly monotonously increases with adjusted leverage for

l∗T−1 ∈ (0, l∗T−1,max]. Again, the ratio pT−1(TST )

pT−1(FCFUT )
is a constant given leverage l, and pT−1(TST )

has to be discounted by RU over any period from T − 1 back to t.

As the fourth and last step, we conduct the analysis for the periods T − 2 to T − 1 and prior

periods. Again, we have to consider both prioritization assumptions. We state the leverage ratio

as

l =
l∗T−2

1 + pT−2(TST−1)

V UT−2+pT−2(pT−1(TST ))

. (2.4.28)

Since we have learned that pT−1(TST ) has to be discounted by RU over any single period from

T − 1 to t, we observe that the expression in the denominator of the ratio pT−2(TST−1)

V UT−2+pT−2(pT−1(TST ))

has to be discounted by RU . The objective is to show that this ratio is a constant, which again

implies that l∗T−2 is a constant or conversely, with constant l∗T−2 the ratio is a constant, for given

l.

Again, we start with the case of a prioritization of principal payments. Using

l∗T−2 = DT−2

V UT−2+pT−2(pT−1(TST ))
= DT−2

V UT−2+pT−2(V TST−1)
we rewrite the equation for the ratio

pT−2(TST−1)

V UT−2+pT−2(V TST−1)
as

pT−2(TST−1)

V UT−2 + pT−2(V TST−1)
=

τ l∗T−2pT−2(IntT−1)

DT−2

= τ l∗T−2

DT−2 − pT−2(PPT−1)

DT−2
. (2.4.29)

We again use equation 2.4.4 and FCFUT−1+V LT−1

DT−2
=

FCFUT−1+pT−1(FCFUT )+pT−1(TST )

DT−2
=
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RU (V UT−2+pT−2(pT−1(TST )))

DT−2
= RU

l∗T−1
to write

pT−2(PPT−1)

DT−2
= pT−2

(
1−max

(
1− RU

l∗T−2

, 0

))
= pT−2

(
RU

l∗T−2

−max

(
RU

l∗T−2

− 1, 0

))
. (2.4.30)

We obtain exactly the same equation as for the last period except for a change of subscripts. That

means the analysis from period T − 1 to T can be applied similarly. The equation for leverage for

the respective period is then

l =
1

1
l∗T−2

(1− τ) + τ + τpT−2

(
max

(
RU

l∗T−2
− 1, 0

)) . (2.4.31)

Since there is a one-to-one relation between leverage and adjusted leverage plus constants, distri-

butions are the same as in the last period which implies that adjusted leverage must have the same

value as in the last period for the same leverage. Therefore, the ratio pT−2(TST−1)

V UT−2+pT−2(V TST−1)
must

also be the same as in the last period. Similarly, one can go back until the period t to t+ 1.

We conclude that constant leverage, i.i.d. RU and i.i.d. SDF imply a constant adjusted leverage

over all states and also over time as well as a constant ratio ps(TSs+1)
V Us +ps(V TSs+1)

over all states and over

time.

Let us finally regard the case of a prioritization of interest payments for the periods T − 2

to T − 1 and prior. We use equation 2.4.5 and l∗T−2 = DT−2

V UT−2+pT−2(V TST−1)
to write the ratio

pT−2(TST−1)

V UT−2+pT−2(V TST−1)
as

l∗T−2

pT−2(TST−1)

DT−2
= l∗T−2τpT−2

(
rcT−2 −max

(
rcT−2 −

RU

l∗T−2(1− τ)
, 0

))
. (2.4.32)

Again, we face the same expression as in the period T − 1 to T ; only the subscripts changed.

Substituting the aforementioned equation into the equation for leverage also yields the same equa-

tion as in the last period. The conclusions are the same: The ratio pT−2(TST−1)

V UT−2+pT−2(V TST−1)
as well as

adjusted leverage are constant across states for a given leverage. Furthermore, following the same

reasoning as for the prior case adjusted leverage is constant over time and across states and so is

the ratio ps(TSs+1)
V Us +ps(V TSs+1)

.

In the last step we make some final remarks. With constant leverage, i.i.d. SDF and i.i.d.

RU adjusted leverage is constant and prices of tax savings have always to be discounted at RU .

We can write any debt related return (RD, RPP , RInt) as functions of i.i.d. SDF, i.i.d. RU and

constants. Any such function must also be i.i.d. With i.i.d. RInt, we can write E[RInt] without

time subscripts as the constant expected return of interest payments over any period. Finally, we
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can state a valuation equation similar to equation 19 of Miles and Ezzell (1985):

V Lt =
T−t∑
i=1

Et[FCF
U
t+i]

E[RU ]i
+
T−t∑
i=1

Et[TSt+i]

E[RU ]i−1E[RInt]
. (2.4.33)

Even though there are nonlinearities introduced through the prioritization of either interest or

principal payments, assuming an i.i.d. SDF and i.i.d. unlevered returns still allow us to use a

valuation equation that shows a structure similar to the one of Miles and Ezzell (1985).

2.5 Conclusion

We aimed at analyzing how tax savings have to be discounted under the assumption of a partial

default on debt. We identified the risk structure of the tax savings by finding factors influencing

its major driver the tax-deductible interest payments. Therefore, we have focussed on corporate

taxation and relied on a set of assumptions that aims at approximating the current tax settings in

legislations such as the US or Germany. By separating the payments to debtholders into interest

and principal, we first analyzed the impact of default on the tax savings in a single-period setting.

We generally found under the presented set of assumptions the tax savings to have a risk structure

equivalent to the one of the interest payments, and therefore both should have the same discount

rate (i.e., conditional expected return). As a major factor driving the risk of the interest payments

and in turn the tax savings we identified the prioritization of either principal or interest in case

of a partial default. In contrast to Molnár and Nyborg (2013), who differentiated between the

prioritization rules as well, simple assumptions regarding the SDF enabled us to derive qualitative

statements for the discount rate of the tax savings, (interest,) principal payments, the overall debt

issue and their interrelation.

With a negative conditional covariance of debt repayments with the SDF over certain ranges

of debt repayments, a prioritization of principal payments implied a higher discount rate of the

tax savings than the one of the principal payments and the overall debt issue. For a prioritization

of interest payments the contrary is true: The tax savings showed a comparably lower risk and in

turn a lower discount rate. Only in the very narrow case of a proportional loss distribution the

discount rates of the tax savings, the debt issue, the interest and principal payments were always

equivalent, independent of any assumption about correlations with the SDF.

By using the results of the single-period analysis, we have extended our analysis towards a

multi-period setting. Assuming i.i.d. returns, i.i.d. SDF and a constant leverage we derived a tax

shield pricing equation considering the risk of default which shows a structure equivalent to the

one obtained by Miles and Ezzell (1985). There is just one difference. Instead of discounting the

tax savings one period by the risk-free rate one has to discount one period by the expected return

on interest payments.

Summarizing, equivalent to works like Rapp (2006) or Cooper and Nyborg (2008) we find

default to have a non-neglectable impact on the discount rate of the tax savings and in turn on the
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overall tax shield value. Extending the aforementioned works we demonstrate how to include both

prioritization possibilities. In contrast to other works such as Molnár and Nyborg (2013) we do

not rely on a two-state model where the recovery rate in default has to be known with certainty.

More generally, our result depends on the distributions and correlations with the SDF.

These findings enable us to draw several implications for topics related to the pricing of tax

savings. Our findings imply that simply using the “cost of debt” for discounting the tax savings

when faced with a prioritization rule might bias the tax shield value significantly. Though, when

the use of the “cost of debt” for valuation purposes is desired we have shown the proportional loss

distribution to be in most of the cases the necessary precondition. Without a proportional loss

distribution the appropriate discount rate for the tax savings is equivalent to the one for the overall

debt issue only in special cases. This implies that either the legal practice concerned with defining

the bond conditions accounts for this respectively or the business practice of valuing tax savings

has to draw more attention to using the appropriate discount rate for the tax savings.

Nevertheless, we have to explicitly draw upon the limitations of the presented framework. For

example, as already outlined above, we do not include personal taxes in our analysis. Therefore,

we do not regard the consequences of a default on the level of debtholders and equityholders. On

the side of the debtholder a debt write-down might be tax-deductible to a certain extent. Since

this lowers the debtholders loss in the event of a default, comprising this tax consequence into the

debtholder’s calculus might have an impact on the promised yield and in turn on the discount rate

of the tax savings. Differentiating between commercial banks and private debtholders is desirable.

In this respect, additional research should be conducted. Furthermore, since the tax savings are a

relevant factor for analyzing the optimal capital structure of the firm, it might be an interesting

issue to analyze the impact of interest or principal prioritization.

2.6 Appendix - Cash flow and return processes in the multi-period model

To obtain single-period discount rates for unlevered equity that are constant over time and constant

among different cash flows Miles and Ezzell (1985) assume an expectation revision process (see also

Fama (1977)) for the unlevered free cash flows given by

Eu+1[FCFUs+1] = Eu[FCFUs+1](1 + εu+1), (2.6.1)

where Eu[εu+1] = 050, for s = t, t+ 1, ..., T − 1 and t ≤ u ≤ s. For u = s, i.e., the period s to s+ 1,

we obtain FCFUs+1 = Es[FCF
U
s+1](1 + εs+1). The single-period expected return for u = s can be

determined by dividing the right-hand side of equation 2.6.1 and its expectation, respectively, by

50Take conditional expectations Eu[.] of both sides of equation 2.6.1.
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its price51:

RUs+1 =
1 + εs+1

ps(1 + εs+1)
, Es[R

U
s+1] =

1

ps(1 + εs+1)
. (2.6.2)

Miles and Ezzell (1985) assume a constant covariance between ε and the SDF52 over time. Together

with a constant risk-free rate and constant conditional expectations of ε the price ps(εs+1) is

constant over time53. This implies for Es[RUs+1] to be constant over time and across different cash

flows.

Miles and Ezzell (1985) make no explicit assumptions about the distributions of returns. Since

they price with a multi-period CAPM Fama (1977) states that returns have to be independent and

investment opportunities have to be constant over time to not invalidate the pricing process of the

CAPM.54 Therefore we assume that ε and the SDF are independently and identically distributed

(i.i.d.).55 RU is also i.i.d. since it is a function of i.i.d. ε and i.i.d. SDF. We drop the time subscripts

of these variables in the following. I.i.d. processes have constant conditional expectations so that

in the case of i.i.d. returns single-period conditional expected values can be used as single-period

discount rates.56 Discounting a cash flow FCFUs over two periods leads to

FCFUs+1

ps−1(FCFUs+1)
=

(1 + ε)(1 + ε)

p((1 + ε)(1 + ε))
=

(1 + ε)

p(1 + ε)

(1 + ε)

p(1 + ε)
= RURU , (2.6.3)

whereas one can similarly go further back in time. We can write the second equality due to the

i.i.d. assumption. Taking expected values leads to constant single-period discount rates. An i.i.d.

SDF implies constant single-period risk-free rates.57

51The Es[FCFUs+1] terms cancel out.
52Miles and Ezzell (1985) base their analysis on the CAPM. In case the covariance of the market return and ε is
constant over time, the SDF is a linear combination of the market return.

53Using equation 2.2.1 we are able to state ps(εs+1) = Es[ms+1εs+1] = Es[ms+1]Es[εs+1] + covs(ms+1, εs+1) and
observe that with constant Es[ms+1], Es[εs+1] and covs(ms+1, εs+1) the price of ε is constant over time.

54They refer to the traditional Sharpe-Lintner-Black CAPM.
55A sequence of a random variable Xs, for s = t, t + 1, ..., T , is i.i.d. if any term in the sequence has the
same cumulative probability distribution function, i.e. FXs (x) = FXv (x) for all realisations x and all s, v ∈
[t, t + 1, ..., T ], and if the joint cumulative distribution function of the sequence equals the product of all single
cumulative distribution functions, i.e. FX(xt, xt+1, ..., xT ) = FXt (xt)FXt+1

(xt+1)...FXT (xT ).
56For a further discussion of discount rates in a multi-period CAPM setting see Fama (1977).
57Notice that Rf = E[m].

47



2.6. Appendix - Cash flow and return processes in the multi-period model

48



Chapter 3

Valuation effects of taxes on debt

cancellation1

1This chapter is based on Krause and Lahmann (2017).
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Bringing this publication into context

Bringing this publication into context

This article follows chronologically and logically the first article on the discount rates of tax savings.

The main focus is now on an additional assumption. When debt is cancelled in a default, the

cancelled amount may be subject to taxes. That is, the cancelled amount may be seen as corporate

income and therefore is taxed at the tax rate of corporate profits. Throughout the work on this

article, we found that the corporate finance literature usually assumes that cancelled debt is always

taxed. In some cases, this assumption is not stated but implicitly used. We give a detailed

discussion on those issues. However, for example in the U.S., both cases are possible, so that

presupposing a taxation of cancelled debt gives a wrong picture. With an eye on practical issues

of valuation, we derive tax-adjusted discount rates and WACC-like discount rates for both cases, a

taxation of cancelled debt and no taxation of cancelled debt. In the second case, the usual textbook

equations can only generally be used for a proportional (pro-rata) distribution of losses on interest

and principal payments.

As mentioned, this paper follows naturally from the first one, in that it extends some of the

issues of tax shield valuation. The third paper of this dissertation, which is on the de- and re-

levering procedure of betas, finds a new field of application for the conclusions made herein.
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Abstract

Standard models on firm valuation regard a simplified default setting, often not revealing relevant

implicit assumptions. In this paper, we analyze the impact of risky debt and of taxes on a cancel-

lation of indebtedness (COD) on tax savings. For the case of a taxation of a COD, we explicitly

show that the risky components in the pricing equation of tax savings cancel out so that the tax

shield pricing is similar to the case of risk-free tax savings. Furthermore, assuming no tax on

a COD, we show the standard textbook equations for the tax shield, the Tax-adjusted discount

rates and WACC subject to risky debt to be generally valid only for a pro-rata loss distribution

between interest and principal payments. Using standard equations for the case of no taxes on a

COD in case of a non-proportional loss distribution can lead to substantial misvaluations, which

we illustrate with an example.

Keywords: Default Risk, Tax Treatment of Default, Tax Savings, Tax-adjusted Discount Rates
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3.1 Introduction

The appropriate pricing of interest tax savings is a relevant element in firm valuation. Many articles

show (e.g., Graham, 2000; Kemsley and Nissim, 2002) the interest tax shield to be a significant

factor of the enterprise value. Therefore, identifying the value drivers of the interest tax shield is

generally important.

In the light of the long history of the discounted cash flow (DCF) literature discussing the

pricing of levered firms (e.g., using tax-adjusted discount rates or the weighted average cost of

capital) or separately of interest tax shields, it might be surprising that the impact of default, or

in other terms, risky debt, is still under discussion. When faced with risky debt, the pricing of

the tax savings differs substantially from the procedure introduced by the classic works, such as

Modigliani and Miller (1958) / (1963) and Miles and Ezzell (1980) / (1985), with respect to the

assumptions, the tax treatment of a default, and its structural modelling. More recently, some

authors discuss one of the most important value drivers in tax shield pricing, the tax treatment of

a cancellation of indebtedness (COD) (see e.g., Kruschwitz and Löffler, 2006; Cooper and Nyborg,

2008; Blaufus and Hundsdoerfer, 2008).

A COD might give rise to a certain tax liability: The tax authority might regard the written-

down amount of debt, i.e., the cancelled amount of debt or COD, as an extraordinary income

which is subject to corporate taxes. Whether a COD is taxed or not depends on the tax code

and whether the firm seeks for reorganization or not. Each case has a specific implication on the

pricing of tax savings.

Sick (1990) already considers the impact of risky debt on the pricing of levered firms assuming

a taxation of a possible COD. He shows the tax-adjusted discount rates (TADR) for risky debt to

have an equivalent structure as for the case of risk-free debt.2 Cooper and Nyborg (2008) revive

the discussion with a specific focus on the pricing of the interest tax savings for risky debt and

the tax treatment of a COD. In contrast to Sick (1990), they focus on the derivation of TADRs

assuming that a possible COD is not taxed. Particularly, they regard a two-state binomial model

where the firm completely defaults in one state (i.e., the debtholders incur a full loss on their

promised interest and principal payments) and remains solvent in the other. Both results are

important for practical valuation settings because the correct tax treatment of a COD depends on

the tax jurisdiction. Quite clearly, this may be one of the reasons why we observe a clear cut in

the literature stream in articles favoring the taxation of a COD (e.g., Sick, 1990; Kruschwitz and

Löffler, 2006) and those favoring the contrary assumption (e.g., Cooper and Nyborg, 2008; Molnár

and Nyborg, 2013; Krause and Lahmann, 2015). Several articles address the impact of default on

the tax savings and their pricing (e.g., Couch et al., 2012; Koziol, 2014) and implicitly assume a

certain tax treatment of a COD. Still, there are some works proposing pricing equations which are

not consistent to the possible cases of a tax treatment of default. However, Arzac and Glosten

2Kruschwitz and Löffler (2006) obtain an equivalent result.
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(2005) touch this important aspect but propose a pricing equation that is not consistent with all

of their mentioned special cases for risky debt because the COD tax treatment is not clear.

The aim of our paper is threefold. First, we consider a setting with risky debt where we model

both cases of the COD tax treatment. We explicitly show that the risky elements in the tax shield

pricing equation cancel out for the case that taxes on a COD are applicable. Second, for the case

of no taxes on a COD, we emphasize the often disregarded fact that the pricing of interest tax

savings directly depends on the loss distribution among interest and principal payments. Thereby,

we reveal the well-known and established pricing equations for the tax savings to be generally

valid only for a proportional or pro-rata loss distribution. Third, we derive a WACC pricing

equation that is consistent to the often regarded case of no taxes on a COD and that substantially

differs from the standard textbook formulas. Moreover, we carefully test under which conditions

the expected return on debt (often referred to as cost of debt) proposed by several authors (e.g.,

Modigliani and Miller, 1963; Myers, 1974; Miles and Ezzell, 1980) could be used as a parameter

within tax-adjusted discount rates and the WACC equation. We find that this is only possible for

risk-free debt or for debt without systematic risk, i.e., only cases in which the expected return on

debt equals the risk-free rate.

The remainder of this article is structured as follows. In Section 3.2 we briefly outline the

model basics. Section 3.3 analyzes the effects of the tax treatment of a COD and a proportional

loss distribution on the pricing of the interest tax shields. The effect on the structure of tax-

adjusted discount rates is derived in Section 3.4. Besides this, we aim at uncovering the effect on

the textbook WACC. In Section 3.5, we numerically show the bias occurring when the standard

equations implicitly assuming a pro-rata loss distribution are applied for the case of an interest

prioritization. Section 3.6 concludes our analysis.

3.2 Model basics

We regard a single-period model with only two points in time, t and t + 1. Limiting the time

horizon enables us to focus on the effects of a COD. In a multi-period setting we would have to

discuss other issues such as the optimal bankruptcy level, the possible continuance of the firm after

default, or the recapitalization / liquidation strategy following a default. Since we regard only t

and t+ 1, we maintain a simple notation by omitting time subscripts.

A firm generates an uncertain and unlevered cash flow stream at time t+1. The state-dependent

free cash flow values are given by FCF (ω), where ω denotes the state with ω ∈ [0, N ] and 0 <

FCF (0) < FCF (1) < ... < FCF (N). We assume an arbitrage-free capital market and the

existence of a price for the subsequently discussed cash flows, i.e., all cash flows are tradable. By

stating this assumption, we abstain from discussing the pricing of non-tradeable cash flows with

different valuations among market participants. This allows us to use a single pricing operator,

p(·), denoting the price at time t of a future, t + 1, cash flow. For example, p(FCF ) denotes the

price of the unlevered free cash flow and thus, constitutes the unlevered firm value at t. Applying
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the pricing operator on a risk-free, i.e., deterministic, cash flow of one yields the inverse of the gross

risk-free rate, i.e., p(1) = 1
Rf

. We either state returns as gross R or net values r, where R = 1 + r.

E[·] denotes the expected value operator contingent on the available information at time t.

At time t the firm issues debt at par with a value of D and is obliged to pay at t + 1 interest

payments amounting to rcD, where rc denotes the promised yield rate contractually fixed at time

t, and D the promised principal payments. In case of risk-free debt, the debtholders’ contractually

fixed promised yield is equivalent to the risk-free rate, i.e., rc = rf . At this point of our analysis,

we omit the case of risky debt and refer to Section 3.3.

The corporate tax rate, τ , is assumed to be constant and deterministic and the corporate

tax allows for an immediate full loss offset. We only consider corporate taxes and abstain from

modelling personal taxes (as for example, Modigliani and Miller, 1958; Miles and Ezzell, 1980;

Cooper and Nyborg, 2008; Krause and Lahmann, 2015). Introducing personal taxes does not

contribute to our analysis, which aims at uncovering the effect-relationship of the tax treatment of

a COD. The simplified tax setting avoids mixing up our result with other issues as for example the

tax treatment of a COD on the level of the debtholders. Finally, regardless of a possible default,

we assume that the tax authority grants the tax deductibility of the actually paid interest at time

t+ 1.3

The value of an otherwise identical but levered firm, V L, whose assets generate at time t + 1

an unlevered cash flow, FCF (ω), can be represented as the sum of the equity and debt value

V L = S +D, (3.2.1)

where S denotes the value of equity. Alternatively, we may determine the levered firm value

according to the adjusted present value (APV) approach (see e.g., Modigliani and Miller, 1963;

Myers, 1974), by

V L = V U + V TS, (3.2.2)

where V U denotes the unlevered firm value and V TS the value of the interest tax shield. Note

that we retain the classic Modigliani and Miller assumption that the EBIT is independent of the

firm’s financing decisions and of a possible default.

In line with several representatives of the tax shield literature (e.g., Kruschwitz and Löffler,

2006; Arzac and Glosten, 2005; Krause and Lahmann, 2015), we define the tax savings as difference

between the taxes of an unlevered firm, TaxU , and the taxes of a levered firm, TaxL. Formally, in

3This assumption has been explicitly stated by Kruschwitz and Löffler (2005) and implicitly by Molnár and Ny-
borg (2013).
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our single period framework, the tax savings at time t+ 1 are determined by

TS = TaxU − TaxL. (3.2.3)

First, note that the unlevered firm pays taxes amounting to TaxU = τEBIT , where EBIT denotes

the earnings before interest and taxes. With the aforementioned assumptions, FCF and EBIT

relate by FCF = EBIT (1− τ)− Inv, where Inv are the net investments. Now, we focus on the

taxes paid by a levered firm, TaxL. So far, without having discussed the consequences of a default,

we can only show the result for risk-free debt. In this case, the interest payments reduce the EBIT

such that TaxL = τ(EBIT − rfD) holds. Thus, the tax savings generated at time t+ 1 amount to

TS = τrfD. (3.2.4)

By using the price operator p(·) and noting the fact that Equation (3.2.4) only comprises certain

quantities, we determine the price of the tax savings, i.e., the tax shield (value), as p(TS) =

p(τrfD) =
τrfD
1+rf

. Without stating any further assumptions for the case of risky debt, we can only

acknowledge that the tax savings depend on the interest payments in case of default and the tax

treatment of a possible COD.

3.3 Tax shield, tax treatment of a COD and proportional loss distribution

In the following sections, we discuss the impact of risky debt on the tax savings. More precisely,

we focus on the tax treatment of a COD and explicitly show the relation to the distribution of

losses among interest and principal payments that debtholders may face. For the often implicitly

regarded case (e.g., Cooper and Nyborg, 2008) of a proportional loss distribution, we show how to

calculate the tax shield values.

3.3.1 The impact of the tax treatment of a COD

Subsequently, we regard the case of a default and its impact on tax savings. In our single-period

analysis, the firm defaults as soon as the available cash flows are insufficient to cover the promised

interest and principal payments at time t+ 1. The firm either partially or completely defaults on

its debt obligations. In case of a default, the actual interest payments amount to

Int = rcD − LInt, (3.3.1)

where LInt denotes the losses on interest payments with LInt ∈ [0, rcD], and the actual principal

payments to

PP = D − C, (3.3.2)
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where C ∈ [0, D] denotes the losses on principal payments, i.e., the COD. Adding both yields the

total losses on debt L = LInt + C.

The cancelled amount of principal payments might induce a certain tax consequence. Basically,

the tax authority might regard the cancelled amount, C, as taxable income. For example, in the

United States (US) a COD gives rise to a tax liability according to IRC section 61(a)(12).4 But the

US tax code also grants an exemption. In the case of liabilities exceeding assets, i.e., the typical

balance sheet insolvency, the firm is able to avoid the tax liability by reorganizing through chapter

11. Other tax jurisdictions such as the United Kingdom have similar rules (see CTA (2009) section

354). In Germany, the income tax code explicitly states that even in the case of an insolvency, the

cancellation of indebtedness gives rise to a tax liability (§11 KStG Nr. 7). Nevertheless, according

to a letter of the German Ministry of Finance on the 27th of March 2003 and the BFH decision as

of the 14th of June 2010, X R 34/08, an exemption from taxation of a COD might be granted if the

firm aims for restructuring. Summarizing, depending on whether the firm aims at a restructuring

process or not, a COD is taxable or not.5 Therefore, we analyze the impact of both cases on the

tax shield.

Following the aforementioned discussion, in case taxes are not applicable on a COD, the levered

firm pays at time t+ 1 taxes equal to TaxL = τEBIT − τInt. Whenever taxes on a COD apply,

the tax payments amount to TaxL = τEBIT − τInt + τC, where τC represents the taxes on a

COD. By substituting these tax payments in Equation (3.2.3), we obtain the tax savings for the

case of no taxes on a COD (NC) and for the case of taxes on a COD (C):

TSNC = τInt, (3.3.3)

TSC = τInt− τC. (3.3.4)

Table 3.1 provides an overview of the state-dependent interest and principal payments as well as

the tax savings depending on the tax treatment of a COD.

Our pricing technique allows us to determine the value of the tax savings at time t+ 1 by

V TS(·) = p(TS(·)), (3.3.5)

where the superscript (·) is a placeholder for the two cases: No taxation of a COD (NC) and

taxation of a COD (C). By applying the price operator on the Equations (3.3.3) and (3.3.4), we

4See Miller (1991) for an extensive discussion of the tax consequences of corporate restructuring. Cooper and
Nyborg (2008) discuss this issue in context of deriving tax-adjusted discount rates.

5Notice that both cases have been already separately discussed in the literature. For example, Kruschwitz and
Löffler (2006) proceed on the assumption of a taxation of a possible COD according to §11 KStG Nr. 7. In con-
trast to this, Cooper and Nyborg (2008), Molnár and Nyborg (2013) and Krause and Lahmann (2015) regard
the case of no taxes on a COD. In particular, Cooper and Nyborg (2008) and Molnár and Nyborg (2013) use as
underlying justification the exemption by the US tax code (IRC section 61(a)(12)). According to Cooper and
Nyborg (2008), the result obtained by Sick (1990) implicitly proceeds on the assumption of a taxation of a possi-
ble COD and therefore is not consistent with the results of Miles and Ezzell (1980).
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Payments: State-dependent payoffs:
No default Default

Interest rcD rcD − LInt
Principal D D − C
Total (1 + rc)D (1 + rc)D − LInt − C

No tax on COD Tax on COD
Tax savings τrcD τ(rcD − LInt) τ(rcD − LInt)− τC

Table 3.1: State-dependent Debt and Tax Savings

obtain the respective tax shield values

V TSNC = τp(Int) (3.3.6)

and

V TSC = τp(Int)− τp(C). (3.3.7)

Both tax shield values include the price of interest payments, p(Int). Equation (3.3.7) additionally

comprises the price of the loss on principal payments, p(C). To quantify the effect of the tax

treatment of a COD, we perform the following steps: First, we regard the price of debt at t to

find an expression for p(Int). Second, by using the obtained expression we simplify the Equations

(3.3.6) and (3.3.7) which is followed by analyzing the price of the cancelled amount p(C).

The value of debt at time t is the sum of the prices of interest and principal payments considering

a possible default. Incorporating the cancelled amount as in Equation (3.3.2) yields

D = p(Int) + p(PP ) = p(Int) + p(D − C). (3.3.8)

The firm issues debt at par so that D is at the same time value and principal payment. By noting

that D is a certain quantity at time t + 1 and rearranging, we obtain the price of the interest

payments

p(Int) = D − D

Rf
+ p(C) =

rfD

Rf
+ p(C). (3.3.9)

Having found an expression for the interest payments in Equation (3.3.9) we restate the pricing

equations (3.3.6) and (3.3.7) for both COD tax treatments to

V TSNC = τp(Int) = τp(rfD + C) = τ
rfD

Rf
+ τp(C), (3.3.10)

V TSC = τp(Int)− τp(C) = τp(rfD + C − C) = τ
rfD

Rf
. (3.3.11)

The value decomposition of the cash flows to debtholders in interest and principal payments allows

us to state our first result: In the case of a taxation of a COD, the terms τp(C) cancel out.
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3.3. Tax shield, tax treatment of a COD and proportional loss distribution

Independent of the riskiness of debt, the value of the tax savings is always determined as in the

case for risk-free debt, i.e., the risk-free interest payments multiplied by the tax rate. As we

observe from Equation (3.3.9), the interest payments compensate for the value of the losses on

principal payments p(C) above the value of risk-free interest payments p(rfD). Moreover, due to

the (mathematical) cancellation of p(C), Equation (3.3.11) is independent of the loss distribution

between interest and principal payments or, stated in other words: Any assumption of losses on

debt would lead to the same result for the value of tax savings. This case is equivalent to the case

with debt being risk-free and consequently, the risk-free rate rf would be paid on the principal D.

For the case of no taxes on a COD, Equation (3.3.10) depends on p(C) and is therefore sensitive

to the loss distribution among interest and principal payments.

Notice that the analysis is similar for zero coupon bonds. In this case, the firm does not

explicitly pay interest. Zero coupon bonds comprise an implicit interest payment which is the

difference between the face value and the price. In the presented framework, the face value of a

zero coupon bond is D(1+rc) and the price D. The implicit contractual interest payments amount

to rcD. Thus, the above analysis applies.6

3.3.2 Proportional loss distribution

In the preceding section, we found the pricing of the tax shield in case of no taxes on a COD to

depend on the loss distribution among interest and principal payments. Subsequently, we consider

the case of a proportional loss distribution and highlight which discount rate should be used within

the interest tax shield valuation framework.

A proportional (or pro rata) loss distribution means that losses are distributed among interest

and principal payments pro rata according to the respective promised payments. We represent the

losses on interest by

LInt = L
rcD

(1 + rc)D
= L

rc

1 + rc
, (3.3.12)

and losses on principal payments, i.e., a cancellation of indebtedness, by

C = L
D

(1 + rc)D
= L

1

1 + rc
. (3.3.13)

In order to find the pricing equation for the tax savings, we substitute Equation (3.3.12) into (3.3.1)

and the combined terms in Equation (3.3.10):

V TSNC = τp(rcD − L rc

1 + rc
) =

τrcD

1 + rc
p(1 + rc − L

D
). (3.3.14)

6For instance, IRS (IRS, 2016, p.13) refers to zero coupon bonds as discount debt instruments, where discounts
are regarded as a form of interest.
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3.3. Tax shield, tax treatment of a COD and proportional loss distribution

We use the representation for the promised yield, rc = rf + Rf p(L)
D

7, i.e., 1 + rc = Rf (1 + p(L)
D ),

and observe that the term p(1 + rc − L
D ) equals one. Finally, using these preparations, we obtain

for the tax shield value

V TSNC =
τrcD

1 + rc
. (3.3.15)

Our approach considers the general case of a proportional loss distribution with N states. Notice

that a loss distribution is always proportional as long as no partial loss is possible. For instance

Cooper and Nyborg (2008), regard a special case of our general approach where either the firm

does not default or suffers a full default. We conclude that Equation (3.3.15) generally holds for

no taxes on a COD and a proportional loss distribution.

To obtain Equation (3.3.15), we need the price relation

p(LInt) =
rc

1 + rc
p(L) (3.3.16)

to hold8. This is always true as soon as the losses on interest payments are represented by Equation

(3.3.12). This might also hold for special cases of non-proportional loss distributions. We could

redistribute losses L starting from the proportional solution rc

1+rcL through adding a vector of cash

flows ε with p(ε) = 0 to obtain

p(LInt) =
rc

1 + rc
p(L) = p

(
rc

1 + rc
L+ ε

)
, (3.3.17)

under the constraint 0 ≤ rc

1+rcL+ ε ≤ min(Drc, L)↔ − rc

1+rcL ≤ ε ≤ min(rcD,L)− rc

1+rcL for each

state. Trivially, ε must be non-zero in at least one state to change the loss distribution to interest

payments. With positive state prices, the price of ε can be zero only if ε is smaller than zero in

at least one state and greater than zero in at least one state. Thus, examples of loss distributions

other than proportional ones can be constructed so that the derived valuation equation holds as

shown above. But the steps taken to arrive at such a result, i.e., to construct a payoff ε with the

properties outlined above and add it to the proportional loss distribution, have no practical value.

Eventually, loss distributions that do not fulfill the mentioned conditions, i.e., that have p(ε) 6= 0,

cannot be properly valued with Equation (3.3.15).

7We determine the promised yield by using D = p((1 + rc)D − L) =
(1+rc)D

Rf
− p(L), where we divide by D,

multiply by Rf and rearrange for rc to obtain rc = rf +Rf
p(L)
D

.
8To find Equation (3.3.16), note V TSNC = τp(Int) = τrcD

1+rc
= τp(rcD − LInt) and rearrange to p(LInt) =

p(Drc)(1+rc)−Drc
1+rc

= rc

1+rc
(p(D)(1 + rc)−D) = rc

1+rc

(
D
Rf

(
1 + rf +Rf

p(L)
D

)
−D

)
= rc

1+rc
p(L).
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3.4 Tax-adjusted discount rates, tax treatment of a COD and proportional loss dis-

tribution

In most business valuation settings, appraisers use tax-adjusted discount rates rather than the

APV approach. Hence, it is important to outline how the tax-adjusted discount rate is affected by

the tax treatment of a COD and a proportional loss distribution. Moreover, we discuss the role of

the “cost of debt”, i.e., the expected return on debt within these valuation equations.

We start the subsequent analysis by defining the discount rates as (conditional) expected re-

turns. Tax-adjusted discount rates are used to discount the expected unlevered free cash flows

E[FCF ] in order to determine the levered firm value by

V L =
E[FCF ]

E[R∗,(·)]
, (3.4.1)

where E[R∗,(·)] denotes the tax-adjusted discount rate and (·) is again the placeholder for the case

of the tax treatment of a COD.

There are two representations for discount rates as defined in Equation (3.4.1) that yield the

levered firm value when applied on the unlevered free cash flows. First, and recently more often

discussed, tax-adjusted discount rates (TADRs) that are directly derived from the APV. Second,

the standard-textbook WACC which is a straightforward derivation from Equation (3.2.1). For

both, we discuss the combined effect of the tax treatment of a COD and a proportional loss

distribution.

3.4.1 Tax-adjusted discount rates

In this section, we analyze the impact of the tax treatment of a COD on the TADR assuming

a proportional loss distribution. We start with Equation (3.2.2) and divide by V L to obtain

1 − V TS
V L

= V U

V L
. Using Equation (3.4.1) and the fact that V U = E[FCF ]

E[RU ]
, where E[RU ] is the

discount rate for the unlevered return on equity, we obtain 1− V TS
V L

= E[FCF ]
E[RU ]

E[R∗]
E[FCF ] . Notice that

the E[FCF ] terms cancel out. Thus, the general representation for the TADRs is

E[R∗,(.)] = E[RU ]

(
1− V TS

V L

)
, (3.4.2)

or, by using the leverage9 ratio l = D
V L

,

E[R∗,(.)] = E[RU ]

(
1− l V TS

D

)
. (3.4.3)

According to Equation (3.4.3), the TADR depends on the tax shield value. By referring back to

our results obtained in Section 3.3, we state the tax treatment-dependent relations:

9Notice that for a possible extension to a multiperiod setting the WACC needs the assumption of constant lever-
age l.
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1. For the case of no taxes on a COD, we use Equation (3.3.15) and obtain

E[R∗,NC ] = E[RU ]

(
1− τrcl

1 + rc

)
. (3.4.4)

2. To find an expression for the case of taxes on a COD, we substitute Equation (3.3.11) into

(3.4.3):

E[R∗,C ] = E[RU ]

(
1− τrf l

Rf

)
. (3.4.5)

As stated above, in the case of taxes on a COD, the loss distribution has no effect on the tax

shield value and therefore no effect on the TADR (Equation (3.4.5)) either. In contrast to this,

the TADR with no taxes on a COD (Equation (3.4.4)) is a function of the promised yield and

generally holds only for a proportional loss distribution.10

As mentioned by Sick (1990), the results of several authors (e.g., Modigliani and Miller, 1963;

Myers, 1974; Miles and Ezzell, 1980) might be interpreted such that the interest tax savings should

be discounted by the bond rate or the expected return on debt, E[rD], often referred to as cost of

debt11. Here, we examine this statement carefully and test whether a TADR equation comprising

the cost of debt such as

E[R∗] = E[RU ](1− τ lE[rD]

E[RD]
) (3.4.6)

holds for one of the two assumptions on the tax treatment of a COD. Therefore, in comparison to

Equation (3.3.8) we use an alternative representation of the return on debt:

RD =
(1 + rc)D − L

D
. (3.4.7)

Equation (3.4.7) maps the return on debt as a function of the promised debt payments considering

a possible loss. Since the promised yield and the debt value are certain quantities, we determine

the expected return on debt by

E[RD] = 1 + rc − E[L]

D
. (3.4.8)

As we observe from Equation (3.4.8), the expected return on debt depends on the expected value

of the loss on debt. In case of risk-free debt, the loss on debt is zero and the promised yield as

well as the expected return on debt are equal to the risk-free rate. In fact, there is no difference

between the promised yield and the expected return on debt. In case of risky debt, the expected

10As a recent example, in appendix 4.5 we show that Equation (M&N19), a main result in Molnár and Nyborg
(2013), leads back to Equation (3.4.2) when losses are proportionally distributed.

11Sick (1990) also states that besides the expected return on debt, the rate could even be the promised yield. But
there is no further argument under which conditions which rate applies.
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3.4. Tax-adjusted discount rates, tax treatment of a COD and proportional loss distribution

loss is different from zero. Thus, the expected return on debt is always smaller than the promised

yield by the term E[L]
D . In turn, the promised yield reflects the maximum the debtholders can earn

since in some states the return will be lower. Therefore, in the case of risky debt one cannot simply

replace the promised yield by the expected return on debt.

We continue our analysis by discussing our results with a prominent example of the literature

on TADRs by relating the return on risky debt with systematic risk, i.e., risk that cannot be

diversified away. In the simplest case, returns on debt are uncorrelated with systematic risk

implying an equivalence between the expected return on debt and the risk-free rate. This is due

to the fact that standard asset pricing models such as the CAPM assume that only systematic

risk is priced and idiosyncratic risk is not, since it can be diversified away. Therefore, debt with

only idiosyncratic risk is expected to return only the risk-free rate. In case of taxes on a COD (see

Equation (3.4.5)) one could replace rf by E[rD] and Rf by E[RD] because they would be equal in

this case. For instance, Arzac and Glosten (2005) assume at the beginning of their analysis a debt

issue without systematic risk and use the respective applicable rate in their Equation (A&G 13)12.

For debt carrying systematic risk they further state that one can use a rate that includes a risk

premium instead of the risk-free rate. Such a rate will be generally understood as the expected

return on debt E[RD]. As discussed above, if we consider risky debt, this rate is smaller than the

promised yield and with debt carrying systematic risk, expected returns on debt are not equal to

the risk-free rate. However, Arzac and Glosten do not state any assumption on the tax treatment

of a possible COD or about the loss distribution. If we refer to our obtained results for risky

debt with or without the taxation of a COD, a replacement of the risk-free rate with the expected

return on debt is not possible for debt with systematic risk. When we understand the promised

yield as the rate intended by Arzac and Glosten in their Equation (A&G 13), they would implicitly

switch assumptions from taxes on a COD to the case with no taxes on a COD. However, in this

case, the general validity of Equation (A&G 13) would require the proportional loss distribution

assumption. This allows us to state an important remark. When considering risky debt one has

to be clear about what is meant with notions such as “cost of debt”, “borrowing costs” etc.

3.4.2 Textbook WACC-like discount rates

It is clear from the tax shield and tax-adjusted discount rate equations that the assumed tax

treatment of a COD affects the pricing of levered firms. Thus, the standard WACC should be

affected by the tax treatment of a COD as well because it is just another representation of the

equations above. For analyzing the textbook WACC, we start with rearranging Equation (3.2.1).

12Equation (A&G 13) in Arzac and Glosten (2005) shows the tax shield pricing assuming a constant leverage
and a multi-period analysis. To compare their result with our single-period results, one can just leave out the
rho-terms in their equation to obtain Equation (3.3.11) in this paper. For a multi-period setting with a con-
stant leverage notice that in Equation (A&G 13) needs to be adjusted to correctly map the tax treatment of
a COD and the prioritization assumption. For taxes on a COD, rD needs to be replaced by the risk-free rate.
To correctly map the case of no taxes on a COD and a pro-rata loss distribution, rD should be replaced by the
promised yield.
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Generally, the levered free cash flows equal the sum of the unlevered cash flows and tax savings, or

algebraically FCFL = FCF+TS (see e.g., Kruschwitz and Löffler, 2006). We further define equity

cash flows as the residual of levered free cash flows after debtholders have received their payments:

ECF = FCFL − Int − PP . Thus, levered free cash flows comprise the flows to equityholders

and to debtholders: FCFL = ECF + (Int + PP ). Taking expectations and subtracting the tax

savings yields the unlevered free cash flows E[FCF ] = E[ECF ] + E[Int + PP ] − E[TS]. The

cost of equity and debt are the expected returns on the respective cash flow. Thus, we can write

V LE[R∗] = SE[RE ] + DE[RD] − E[TS], divide by V L and obtain the weighted average cost of

capital

E[R∗,(·)] =
S

V L
E[RE ] +

D

V L
E[RD]− E[TS]

V L
, (3.4.9)

where E[RE ] is the expected return on levered equity. Using the leverage ratio l = D/V L and

factoring out we rewrite the WACC equation to

E[R∗,(·)] = (1− l)E[RE ] + l

(
E[RD]− E[TS]

D

)
. (3.4.10)

Assuming risk-free debt, the expected return on debt is equivalent to the risk-free rate, i.e.,

E[RD] = Rf , and the tax savings are determined according to E[TS] = τrfD. Having noted

these equivalences for risk-free debt we obtain the standard textbook WACC13

E[R∗,(·)] = (1− l)E[RE ] + l(1 + rf (1− τ)). (3.4.11)

Although not apparent from this standard textbook equation, as shown in Equation (3.4.10), the

WACC actually depends on the expected value of the tax savings, E[TS]. Hence, for the case

of risky debt the tax treatment of a COD affects the WACC equation. Regarding the case that

taxes are applicable on a COD, the tax savings depend on the corporate tax rate, the actually

paid interest and the cancelled amount of debt, i.e., TSC = τ(Int − C). Since interest payments

can be restated in terms of promised interest payments, the loss on the overall debt issue and the

cancelled amount, Int = rcD− (L−C), the tax savings can be rearranged to TSC = τ(rcD−L).

Using the alternative statement of returns on debt (3.4.7), we rearrange Equation (3.4.10) to

E[R∗,C ] = (1− l)E[RE ] + l(1 + E[rD](1− τ)). (3.4.12)

The first term in Equation (3.4.12) is the levered cost of equity. The second term represents the

after-tax cost of debt. Besides the well-known financing effects and the tax-deductibility of interest

13More commonly, the WACC is represented by net rates: E[r∗] = (1− l)E[rE ] + lrf (1− τ).

63



3.5. A numerical example of the valuation bias for no taxes on a COD

payments, the last term additionally reflects the impact of the tax treatment of a COD.14

Now we focus on the case of no taxes on a COD. Here, we substitute the result for the tax

savings subject to no taxes on a COD, TS = τInt = τ(Drc − LInt) into Equation (3.4.10) and

obtain

E[R∗,NC ] = (1− l)E[RE ] + l

(
1 + E[rD](1− τ)− τ E[C]

D

)
. (3.4.13)

In addition to the levered cost of equity and the cost of debt, the last term in Equation (3.4.13)

represents the cancelled amount of principal payments. As a direct consequence, the loss distribu-

tion among interest and principal payments has an effect on the final equation of the WACC. As

in the previous sections, we assume a proportional loss distribution with C = L
1+rc . We may write

the second term in brackets in Equation (3.4.13) to

1 + E[rD](1− τ)− τ E[C]

D
=
D + (Drc − E[L])(1− τ)− τ E[L]

1+rc

D

=
D(1 + rc)− E[L]− τ

(
Drc − E[L]

(
1− 1

1+rc

))
D

= E[RD]− τrc
(

1 + rc − E[L]
D

1 + rc

)

= E[RD]

(
1− τrc

1 + rc

)
.

Equation (3.4.13), i.e., the WACC for no taxes on a COD, simplifies to

E[R∗,NC ] = (1− l)E[RE ] + lE[RD]

(
1− τrc

1 + rc

)
. (3.4.14)

Notice that the term τrc

1+rc is equivalent to V TSNC

D . Since the discount rates for all debt cash flows

and for the tax savings are all the same with a proportional loss distribution (see Krause and

Lahmann, 2015), we can find a simple adjustment term multiplied with the expected return on

debt for the case of no taxes on a COD. Summarizing, for the two assumption combinations: (1.)

taxes on a COD and an arbitrary loss distribution or (2.) no taxes on a COD and a proportional

loss distribution, we derived expressions comprising the cost of debt.

3.5 A numerical example of the valuation bias for no taxes on a COD

The previous analysis reveals the pro-rata loss distribution to be an implicit assumption of the

standard tax shield pricing equations and in turn of the TADRs. In practice, other prioritization

schemes might be relevant for the specific valuation setting. For example, consider the case of

interest prioritization in default. In such a situation, losses on debt are first assigned to principal

payments. Only if losses exceed the principal amount, interest payments are affected. Algebraically,

14Assuming no taxes on a COD Kruschwitz and Löffler (2006) find an equivalent result in terms of net rates and
refer to it as textbook WACC formula.
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we may express the actually paid interests by Int = rcD − max(0, rcD − EBIT ),15 where rcD

represents the promised interest and the max-function triggers the losses. Only if the EBIT is

smaller than the contractually fixed payments, losses reduce the actually paid interest.

To show the differences for no taxes on a COD arising from an application of Equation (3.3.15)

assuming a pro-rata loss distribution in contrast to a setting with an interest prioritization, we

outline a numerical example below. We compute the values for an interest prioritization based

upon Equation (3.3.6) using state prices and apply Equation (3.3.15) implicitly assuming a pro-

rata loss distribution. For both calculations, we determine the promised yield based upon rc =

rf + Rf p(L)
D and assuming an interest prioritization. Thus, we use the correct yield rate for both

valuations. Equation (3.3.6) yields the “non-biased” values strictly reflecting the premise of the

outlined scenario, henceforth termed as V TS, and Equation (3.3.15), termed as V TS(b), creates

“biased” values implicitly assuming a proportional loss distribution.16

We regard a setting with 20 states. The state-dependent EBIT values are evenly spaced from

5 to 10. The corporate tax rate is set to τ = 30% and the risk-free rate to rf = 5%. We generate 20

state prices consistent to the determination of the risk-free rate with p(1) = 1
1.05 . The state prices

decrease from state one (with an EBIT of 5) to state 20 (EBIT = 10). The expected unlevered

free cash flows are E[FCF ] = 5.25 and the unlevered firm value V U = 4.13. We numerically

determine for increasing debt levels the tax shield values for no tax on COD, V TSNC , based on

the Equations (3.3.6) and (3.3.15), the promised yield, rc, and the leverage, l.

Figure 3.1 depicts the tax shield values V TSNC (dotted line) and V TSNC(b) (dashed line)

depending on the leverage l. First, observe the standard result that both tax shield values increase

with increasing leverage. As soon as debt becomes risky at a leverage of 82%, i.e., the firm defaults

at least in one state, the tax shield values start to differ. The value for interest prioritization,

V TSNC , is always greater than the one based on Equation (3.3.15), V TSNC(b). Second, we

show the percentage difference calculated as %Diff = V TSNC(b)−V TSNC
V TSNC

. Note that the difference

increases with leverage as well and at a leverage of 100% shows a substantial value of −33%, i.e.,

V TSNC(b) is 33% lower than V TSNC .

In Figure 3.2, we numerically analyze the implied TADRs based upon the non-biased (V TSNC)

and biased (V TSNC(b)) tax shield values as well as their differences in value. While Equation

(3.4.4) enables us to directly calculate the biased TADRs implicitly assuming a pro-rata loss dis-

tribution, E[r∗,NC(b)], we determine the non-biased TADR based upon V TSNC using the basic

equation for TADR (3.4.2). While the expected free cash flows, E[FCF ], and in turn the unlevered

firm value, V U , are invariant to the leverage, the tax shield value changes as shown in Figure 3.1

15We obtain Int = rcD −max(0, rcD − EBIT ) by noting that, for interest prioritization, whenever Drc ≥ EBIT
interest payments are equal to EBIT they also equal the levered free cash flows FCFL. Retain the levered free
cash flows to be defined as FCFL = FCF + TS = EBIT (1 − τ) + τInt. Due to interest prioritization, if
FCFL ≤ Int, all levered free cash flows are used to pay interest: Int = EBIT (1 − τ) + τInt. Rearranging and
cancelling out 1 − τ leads to Int = EBIT . Thus, in any state with interest losses Int = EBIT and LInt =
rcD − EBIT . For further reference, see also Krause and Lahmann (2015)

16In the following, we denote the biased values for the TADRs and the WACC with an additional (b).
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Figure 3.1: Tax shield values as a function of leverage, when interest prioritization is applicable.

The dotted and dashed line plot the tax shield value calculated by V TSNC = τp(Int) (dotted line) and
V TSNC(b) = τrcD

1+rc
(dashed line) at varying levels of leverage. The tax shield values are given on the left

vertical axis. The percentage differences (full line) relative to the correct values are computed by %Diff =
(V TSNC(b)− V TSNC)/V TSNC . The differences are mapped on the right vertical axis. Notice that the scale
of the right axis is switched starting at zero and ending at negative 100%.

resulting in decreasing TADRs with increasing leverage. Figure 3.2 shows the non-biased TADRs

for interest prioritization (dotted line), E[r∗,NC ], the biased TADRs (dashed line), E[r∗,NC(b)],

and their absolute difference (solid line), Diff = E(r∗,NC)−E[r∗,NC(b)], as a function of leverage.

For the relevant area, i.e., for risky debt, the biased TADR (dashed line) always exceeds the non-

biased values (dotted line) because the tax shield value for a pro-rata loss distribution, V TSNC(b),

is always smaller than the one for interest prioritization, V TSNC . As above, the difference (solid

line) has its maximum with 6.94% at a leverage of 100%. Figure 3.3 resembles similar results for

the WACC. The correct WACC is the same as the correct TADR, as it should be since both are

different ways of computing the same value. But the biased value for the WACC differs from the

one for the TADR through the usage of the different pricing equations.

To further explain the differences between the curvature of the biased TADR (see Figure 3.2)

and WACC (see Figure 3.3), we focus on the algebraic relation between the non-biased and biased

values. Based on the Equations (3.4.3) and (3.4.4), determine the difference of the TADR by

E[R∗,NC ]− E[R∗,NC(b)] = −lE[RU ]

(
V TSNC

D
− τrc

1 + rc

)
. (3.5.1)

Using Equations (3.4.13) and (3.4.14) for the WACC, we compute the difference between the biased

and non-biased WACC as

E[R∗,NC ]− E[R∗,NC(b)] = −lE[RD]

(
E[TS]/E[RD]

D
− τrc

1 + rc

)
. (3.5.2)
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3.5. A numerical example of the valuation bias for no taxes on a COD
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Figure 3.2: Biased and Non-biased TADR as a function of leverage, when interest prioritization
is applicable.

The dotted and dashed line plot the non-biased (E[r∗,NC ]) and biased TADRs (E[r∗,NC(b)]) according to
Equation (3.4.2) and (3.4.4) at varying levels of leverage. The differences (full line) are computed by Diff =
E[r∗,NC ] − E[r∗,NC(b)]. Both, the values for the TADRs and the differences, are mapped on the left vertical
axis.

Focus on the terms in brackets of both of the preceding Equations. Whenever the biased and

non-biased calculations regard the case of a proportional loss distribution, the terms in brackets

disappear and the difference vanishes. When losses are not proportionally distributed, the equations

are not generally equal to zero and the result is also not generally the same. As for our example

with interest prioritization, we regard the case of leverages when debt starts to become risky so

that losses are attributed to principal payments but not yet to interest payments. Thus, the

value of the tax shield is V TSNC = τrcD/Rf . Since the expected return on debt is greater

than the risk-free rate: E[RD] > Rf implying V TSNC > E[TS]/E[RD], we obtain the relation(
V TSNC

D − τrc

1+rc

)
>
(
E[TS]/E[RD]

D − τrc

1+rc

)
which explains the difference between the biased TADR

and WACC. Furthermore, again for most practical cases and also in our example, the expected

return on debt is less than the return on unlevered equity for any leverage ratio. In this case, the

absolute value of the bias is smaller for the WACC than for the TADR.

From an economic perspective, the above results stem from the fact that with interest prioriti-

zation, fewer losses are assigned to interest payments than with a pro-rata loss distribution. For the

latter, losses are assigned to both, principal and interest payments, from the very first loss while

for an interest prioritization the principal amount needs to be exceeded by losses before interests

are reduced. Thus, everything else equal, a pro-rata loss distribution creates smaller tax shields

and in turn higher TADRs than a loss distribution with interest prioritization. Thus, applying
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Figure 3.3: Biased and Non-biased WACC as a function of leverage, when interest prioritization
is applicable.

The dotted and dashed line plot the non-biased (E[r∗,NC ]) and biased WACC (E[r∗,NC(b)]) according to Equa-
tion (3.4.13) and (3.4.14) at varying levels of leverage. The differences (full line) are computed by Diff =
E[r∗,NC ] − E[r∗,NC(b)]. Both, the values for the WACC and the differences, are mapped on the left vertical
axis.

the above derived standard equations implicitly assuming a pro-rata loss distribution results in a

significant valuation bias when applied for other prioritization schemes.

3.6 Discussion and conclusion

Motivated by the fact that the tax treatment of a COD in case of a default implies possible

negative effects on the tax shield, we aim at developing a simplified framework that illustrates the

effect of taxes on a COD or their exemption in a concise style. Thereby, we abstain from stating

manifold definitions regarding the pricing technique of certain cash flow streams. For our analysis

it suffices to acknowledge that there is no arbitrage. Based on this, we show that the tax shield

value is independent from any loss distribution between interest and principal payments for the

case when taxes on a COD are paid. However, the tax shield value is not independent from the

loss distribution when no taxes on a COD are paid.

We are able to show that a taxation of a COD renders the tax shield value equivalent to the

value of a tax shield for risk-free debt at the same debt level. This value equivalence does not

mean that tax savings become risk-free, but only that the pricing implication reflects the case of

otherwise risk-free debt.

While this effect has been already shown by Sick (1990) and discussed for a special case by
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3.6. Discussion and conclusion

Cooper and Nyborg (2008), we show that it stems from the risky components in the pricing

equation of tax savings cancelling out when taxes on a COD are paid. For the case of no taxes on a

COD, the tax-adjusted discount rate depends on the loss distribution among interest and principal

payments. In contrast to Cooper and Nyborg (2008) with a two-state model and one state with a

complete default, we regard the more general case of a proportional loss distribution.

We derive tax-adjusted discount rates for the case with taxes on a COD, where the loss distri-

bution does not matter, and for the case without taxes on a COD, where we assume a proportional

loss distribution. The derived equation for the tax-adjusted discount rate is the same as the one

for the case of taxes on a COD, whereas only the risk-free rate is replaced by the promised yield

rate. The equation in the case of no taxes on a COD is only generally true for a proportional

loss distribution. For example, for a sequential loss distribution between interest and principal

payments as in Molnár and Nyborg (2013) and Krause and Lahmann (2015), the equation will

regularly give incorrect results. Moreover, our findings suggest that the use of the “cost of debt”,

i.e., the expected return on debt, as a parameter accounting for risky debt within the tax-adjusted

discount rate is appropriate only when debt has no systematic risk and a COD is taxed, so that

there is no difference between the risk-free rate and expected returns on debt. If debt includes

systematic risk, the cost of debt or expected return on debt is greater than the risk-free rate and

cannot be a parameter in the tax-adjusted discount rate. Thus, the usage of the cost of debt is

very limited under this assumption. For the case of no taxes on a COD, we need the promised

yield rate as a parameter in the tax-adjusted discount rate. The cost of debt is only equal to the

promised yield rate for risk-free debt, which is not the issue here since we want to analyze risky

debt.

Summarizing, when analyzing the impact of default risk on business valuation or specifically on

the tax shield, it is important to be aware of inconsistencies within the derived framework. For the

valuation practice, we highlighted a possible pitfall when faced with mapping the risk of default.

Certainly, knowing the relation between the prerequisites and the valuation equations limits the

possibility of biased valuations.
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3.7 Appendix - Comparison of the TADR to recent literature

We compare Equation (3.4.4) to another recent result for TADR in Molnár and Nyborg (2013).

One of their main results is formula (M&N 19), which also considers personal taxes, such as taxes

on capital gains and interest income. To obtain comparability, we set all personal tax rates to

zero. Their result differs from our expression (3.4.4). In order to highlight the differences, we

depict their Equation (M&N 19) only incorporating corporate tax rates and adjust their notation

by adding a prime to avoid notation conflicts:

R′L = R′U −
L′Y ′DT

′
C(1 +R′U )((1− δ′)R′F + δ′Y ′D − α′)

(1 +R′F )(Y ′D − α′)
. (3.7.1)

Restating Equation (3.7.1) in terms of our notation yields

E[R∗NC ] = E[RU ]

(
1−

lrcτ((1− δ)rf + δrc − rc − L
D )

Rf LD

)
, (3.7.2)

where δ is defined as in Molnár and Nyborg (2013) as the share of promised interest Drc that is

paid in the default state.17 We show that Equation (3.7.2) only takes the form of Equation (3.4.4)

for a proportional loss distribution. For such a loss distribution the interest paid in the default

state is Drc
(

1− L
D(1+rc)

)
= δDrc, where L

D(1+rc) is the share of loss relative to promised debt

payments and 1− L
D(1+rc) is the share of promised debt payments that the debtholder can recover.

This implies

δ = 1− L

D(1 + rc)
. (3.7.3)

We set Equation (3.4.4) equal to (3.7.2), rearrange for δ and check for the equivalence with (3.7.3).

E[RU ], l, and τ cancel out, leaving us with

1

1 + rc
=

(1− δ)rf + δrc − rc − L
D

Rf LD
. (3.7.4)

We rearrange for δ and obtain

δ =

RfL
D(1+rc) −

L
D + rc − rf

rc − rf
, (3.7.5)

which we simplify to

δ =

L
D

Rf

(1+rc) −
L
D

rc − rf
+ 1 = 1 +

L
D

1+rf−1−rc
(1+rc)

rc − rf
= 1− L

D(1 + rc)
, (3.7.6)

17The term 1 + α′ in Molnár and Nyborg (2013) is the return on debt in the default state: 1 + α′ = D(1+rc)−L
D

=

1 + rc − L
D
, i.e., α′ = rc − L

D
.
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which is equivalent to Equation (3.7.3), the delta for a proportional loss distribution. That means

given a proportional loss distribution, Equation (M&N 19) leads to (3.4.4). Since in Molnár and

Nyborg (2013) the loss happens only in one state, there cannot be another loss distribution that

leads from (M&N 19) to (3.4.4) for partial losses. Particularly in this case, any other distribution

must lead to another price of losses on interest payments. That means (M&N 19) only leads to

(3.4.4) for a proportional loss distribution.
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Chapter 4

De- and re-levering betas with risky

debt revisited1

1This article is based on Krause (2018a) and used in this dissertation under the Creative Commons Attribution
4.0 International License.
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Bringing this publication into context

Bringing this publication into context

This article transfers the results of the two preceding articles to a related field. For assets that are

not actively traded, one may use beta factors of traded asset, with otherwise similar characteristics.

However, the companies may show different leverages so that betas need to be de- and re-levered.

Usually, the expected return equation from the mean-variance CAPM is used for this exercise.

The usual assumption made is that debt is risk-free. Even when risky debt is assumed, all the

issues related to tax shield valuation are usually simplified. I close this gap in that I use the results

from the first two articles to obtain equations that can be used for de- and re-levering betas. An

example shows that using equations that rely on incorrect assumptions may substantially bias a

valuation. As opposed to the second article on the taxation of cancelled debt, I also include the

case of principal prioritization in a default and a multi-period analysis.
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Abstract

De- and re-levering betas is important to obtain discount rates for assets that are not publicly

traded. A de- and re-levering procedure is around for the case of risk-free debt. The procedure for

risky debt is much less clear even under very simplifying assumptions. In this paper, I concretize

and extend the procedure for de- and re-levering of betas for companies with risky debt. I derive

procedures for different assumptions on the taxation of a cancellation of debt (COD) and for

different assumptions regarding the distribution of losses on interest and principal payments. With

a tax on the COD I obtain known results. However, without taxes on a COD, the distribution

of losses on interest and principal payments matters and equations differ markedly for different

assumptions on the assignment of losses to interest and principal payments. Furthermore, using a

procedure that does not fit the COD treatment is likely to lead to substantial deviations for de-

and re-levered betas from their correct values.

Keywords: Default Risk, Tax Treatment of Default, Betas, Leverage
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4.2. Levered and unlevered beta in a single-period setting

4.1 Introduction

I build on the work of Krause and Lahmann (2017) and use it to extend their analysis for a de- and

re-levering procedure for equity betas. I include interest and principal prioritization as additional

cases, and I also discuss the case of constant leverage and an infinite horizon.

The main objective and contribution of this paper is to show how betas can be de- and re-

levered when debt is risky and when different assumptions on the treatment of a cancellation of

debt (COD) are made. The usual equations on de- and re-levering betas with risky debt implicitly

assume that a COD is taxed as for example in Arzac and Glosten (2005). But as Krause and

Lahmann (2017) mention, there are cases in which a COD remains untaxed. Furthermore, the

assumption of a taxed COD is often not formally stated. However, presented equations change

significantly when the assumption of taxes on a COD is dropped and when debt is risky.

The pricing framework builds mainly on the findings of Modigliani and Miller (1958) and

Modigliani and Miller (1963). Additionally, Miles and Ezzell (1980) and Miles and Ezzell (1985)

derive risk-adjusted discount rates in a multiperiod setting with corporate taxes and with constant

leverage. In the more recent literature, several authors include the taxation of a COD into their

analyses of corporations with risky debt (see e.g., Kruschwitz and Löffler, 2006; Cooper and Nyborg,

2008; Blaufus and Hundsdoerfer, 2008).

Eventually, the de- and re-levering procedure relies on an expected return equation from an

asset pricing model. This model does not need to be the classic mean-variance CAPM. A more

general framework that relies on a stochastic discount factor is presented in Cochrane (2005) and

can also be used.

I continue to introduce the basic notation for the single-period case. I present the beta equation

for risk-free debt. Continuing with risky debt, I divide into the case of a taxation of a COD and

the one without a taxation of a COD. At the end of the next section, I summarize the equations,

discuss them and give a short example on possible miscalculations through applying the incorrect

equation. In section 4.3, I briefly discuss the infinite horizon case with constant leverage, which,

under simplifying assumptions, is similar to the single-period case. Section 4.4 summarizes the

paper.

4.2 Levered and unlevered beta in a single-period setting

4.2.1 On COD taxation

According to Schwartzman and Brandstetter (2015), a U.S. company’s forgiven or cancelled amount

of debt from a bankruptcy or insolvency has to be recognized as gross income.2 The COD is

included in taxable income. However, there are several important exceptions from the general

rule, most importantly bankruptcy and insolvency exclusions.

2See also the publication of the IRS (IRS, 2012, p. 26).
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4.2. Levered and unlevered beta in a single-period setting

For bankruptcy, which is defined as a case under Title 11 of the U.S. Code, discharges of in-

debtedness under "Chapter 11 reorganization, Chapter 7 liquidations, and Chapter 13 bankruptcy

proceedings" (see Schwartzman and Brandstetter (2015)) are excluded from taxable COD income.

The discharge has to be ordered by a court or approved by a court. The COD is not included in

gross income, but so called tax attributes "certain losses, credits, and basis of property must be

reduced by the amount of excluded income (but not below zero)" (IRS, 2012, p. 26).

Insolvency, defined as liabilities in excess of the company’s market value at the time right before

the discharge, is also excluded from COD income. Only the insolvent amount can be excluded,

and, again, certain tax attributes must be reduced. The reduction of tax attributes leads to a

partial postponment of the tax on a COD instead of a full forgiveness (IRS, 2012, p. 26 ff).

The items mentioned above can only give a general picture. For more information please

refer to the documentation from the Internal Revenue Service, for example, to IRS (2012) or to

Schwartzman and Brandstetter (2015). Following the prior literature on pricing with and without

a COD taxation, I will separately analyze the two extreme cases, the one in which a COD is taxed

whenever debt is cancelled and the one in which it is never taxed. More elaborate models can be

developed upon what is provided here.

4.2.2 Basic equations

I start with a simple setting with two points in time as in Krause and Lahmann (2017). I use

the same notation and assumptions as in the mentioned paper. The single-period analysis has the

advantages that additional assumptions on what happens after default are not necessary and that

a simple notation without time subscripts is sufficient. Using simplifying assumptions, the infinite

horizon version does not differ from the single period results as will be shown later. The starting

point of the single-period analys is the identity of (expected) cash flows:

E[FCFL] = E[ECF ] + E[Int+ PP ] = E[FCF ] + E[TS]. (4.2.1)

Levered free cash flows FCFL are equal to the sum of equity cash flows ECF , as well as debt cash

flows, which, in turn, consist of interest payments Int and principal payments PP . Alternatively,

levered free cash flows are equal to unlevered free cash flows FCF and tax savings TS. Taking

expected values through the operator E[·] keeps the identity. Equation (4.2.1) can be restated

using values and returns

S × E[RE ] +D × E[RD] = (S +D − V TS)× E[RU ] + E[TS], (4.2.2)

in which

V U = V L − V TS = S +D − V TS. (4.2.3)
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4.2. Levered and unlevered beta in a single-period setting

Here V L is the value of the levered firm, V U the value of the unlevered firm3, S the value of equity,

D the value of debt, and V TS the value of tax savings. Furthermore, RE is the return on (levered)

equity, RD is the return on debt, and RU is the return on unlevered equity. In the expected value

operator they are the respective expected returns. I use R for gross returns and r for net returns,

where R = 1 + r. Values can be obtained by discounting expected cash flows, with S = E[ECF ]
E[RE ]

for equity, D = E[Int+PP ]
E[RD ]

for debt and V U = E[FCF ]
E[RU ]

for the value of the unlevered firm. Having

defined the basic notation and relations, I turn to the risk-free case.

4.2.3 Risk-free debt and risk-free tax savings

I start with the simple but least relevant practical case for corporate valuations: risk-free debt.

Since a COD will never happen with risk-free debt, its tax treatment does not play a role. I assume

that the firm generates enough taxable income before interest payments to be able to fully deduct

interest payments and to qualify for full interest tax savings. Then, all tax savings are equal to the

risk-free interest payments times the tax rate on corporate profits τ : TS = τ × Int = τ × rf ×D.

Debt yields the risk-free interest rate rf . I stress here that risk-free debt is a very special case, in

which the firm is able to pay off all of its debt obligations in any future state. Leverage potentially

affects the firms profitability so that, with higher leverage, risk-free debt becomes more and more

unlikely. Compare Krause and Lahmann (2015) for a numerical example.

When debt is risk-free and the mean-variance CAPM is used to obtain expected returns, the

following equation shows the relation of the levered and unlevered beta, i.e., of βE,M and βU,M :

βE,M =

(
1 +

D

S
× 1 + rf × (1− τ)

Rf

)
× βU,M . (4.2.4)

Appendix 4.5 shows the derivation Equation (4.2.4). Equation (32) in Arzac and Glosten (2005)

is similar to Equation (4.2.4) when their rD, a discount rate for debt, is replaced by rf . Their

derivation is actually done in an infinite horizon setting. However, Equation (4.2.4) is the result

of a single-period analysis. Adding periods does not add much to the analysis.

The term 1+rf×(1−τ)
Rf

is due to tax savings. With a zero tax rate this term equals one. For

rf > 0 and with the tax rate between zero and one (inclusive) this term is less than one. For

rf < 0 the term is greater than one.

Equation (4.2.4) also shows that higher debt relative to equity, i.e., a higher leverage scales

up the levered beta. With higher leverage relatively more debt payments have to be made from

the cash flows coming from the firm’s assets. The remaining diminished cash flows go to equity

holders. The return of those cash flows have a higher absolute value of the beta than before the

increase in leverage. For positive unlevered beta the levered beta increases. If the unlevered beta

is negative, the levered beta decreases. Appendix 4.6 shows how this occurs.

3The assets of the unlevered firm are the same as in the levered case, just the financing is different.
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A higher tax rate decreases the levered beta. A higher tax rate increases tax savings and the

value of them, which counters the effect of leverage, i.e., systematic risk is decreased through the

presence of risk-free tax savings. Given that debt is risk-free, the risk-free tax savings are earned

by equity holders. Therefore, tax savings increase the value of equity.

Equation (4.2.4) can also be stated in terms of leverage. This gives

βE,M =
1

1− l
×
(

1− l × τ × rf

Rf

)
× βU,M . (4.2.5)

A zero risk-free rate would also take out the tax effect. In this case interest payment would be

zero so that there are no tax savings - just as for a zero tax rate:

βE,M =
1

1− l
× βU,M . (4.2.6)

After this introduction for risk-free debt, I turn to the more relevant case in the coprorate

world, the case of risky debt.

4.2.4 Risky debt

For risky debt the COD treatment is important. From Krause and Lahmann (2017), I restate the

pricing equations for the value of the tax savings V TS for the different cases. Without (superscript

NC) and with (superscript C) a tax on debt cancellation the tax savings are, respectively,

TSNC = τ × Int (4.2.7)

TSC = τ × Int− τ × C. (4.2.8)

Here τ is the deterministic tax rate on corporate profits, and C is the amount of debt that is

cancelled, i.e., the losses on the principal D - the COD. When C is taxed, the whole tax savings

are reduced by τ × C. Here it is assumed that τ × C can actually be paid by the defaulting firm.

Furthermore, interest payments can be expressed as

Int = rc ×D − (L− C), (4.2.9)

in which L are the total losses on debt, i.e., losses on interest LInt and on principal payments

C, and rc is the coupon rate.4 According to Krause and Lahmann (2017), the values of the tax

savings are then

4For a zero coupon bond it is the implicit coupon rate.
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V TSNC = τ × rf ×D
Rf

+ τ × p(C) (4.2.10)

V TSC = τ × rf ×D
Rf

. (4.2.11)

The term p(C) is the price of the COD, i.e., p(·) is used as a pricing operator. The basis for

further derivations is the identity

S × E[RE ] +D × E[RD] = (S +D − V TS)× E[RU ] + E[TS]. (4.2.12)

I continue with the case of taxation of a COD.

4.2.4.1 Taxes on debt cancellation

I use Equation (4.2.12) and substitute in the respective expression for the value of the tax shield

and the tax savings from Equation (4.2.11) and Equation (4.2.8):

S × E[RE ] +D × E[RD] =

(
S +D − τ × rf ×D

Rf

)
× E[RU ] + τ × (rc ×D − E[L− C])− τ × E[C].

(4.2.13)

The τ ×E[C] terms cancel on the rhs and rc ×D −E[L] = D ×E[rD] so that the equation turns

to

S × E[RE ] +D × (1 + E[rD]× (1− τ)) =

(
S +D − τ × rf ×D

Rf

)
× E[RU ]. (4.2.14)

I use the expected return equation for the mean-variance CAPM5 of the form

E[Ri] = Rf + βi,M × (E[RM ]−Rf ) (4.2.15)

for the expected return, in which i stands for the return on levered equity, on unlevered equity, on

tax savings or on debt. The return RM is the return on the market portfolio. I obtain

S × (Rf + βE,M × (E[RM ]−Rf )) +D × (1 + (Rf + βD,M × (E[RM ]−Rf )− 1)× (1− τ))

=

(
S +D − τ × rf ×D

Rf

)
× (Rf + βU,M × (E[RM ]−Rf )).

(4.2.16)

5In (Cochrane, 2005, p.17 and p.19) a more general equation for an expected return equation using a stochastic
discount factor is presented. In this case, the beta factor depends on how the stochastic discount factor is speci-
fied as a function of market data. The CAPM is a special case in which the stochastic discount factor is a linear
function of the market return.
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This expression can be simplified to

S × βE,M +D × βD,M × (1− τ) =

(
S +D − τ × rf ×D

Rf

)
× βU,M . (4.2.17)

Rearranging yields

βE,M =

(
1 +

D

S
× 1 + rf × (1− τ)

Rf

)
× βU,M − βD,M ×

D

S
× (1− τ). (4.2.18)

When debt has no systematic risk, i.e., when βD,M = 0, the equation reduces to the one with

risk-free debt. Again, Arzac and Glosten (2005) have the same result in their equation (32).

However, there is no reference to the treatment of debt cancellation. The following will show

that the assumption of taxes on a COD is crucial to obtain this equation. Without it, valuations

change and with them the de- und re-levering procedure. It is reasonable to expect the beta for

debt to have the same sign as the one for equity. Furthermore, we usually expect positive equity

betas together with positive debt betas. That means when the market is doing well as whole, debt

contracts will also do better. When the market is not doing well, for example in recessions, there

will be more defaults and the return on debt will also be lower. With a positive beta for debt,

the additional debt-related term in Equation (4.2.18) reduces the levered beta, which counters the

effect of the first term on the rhs of the equation, which increases the levered beta with more

leverage.

4.2.4.2 No taxes on debt cancellation

Proportional loss distribution according to contractual debt payments. Krause and

Lahmann (2017) derive an equation for the tax shield value for the case of a proportional loss

distribution. Proportional loss distribution means that total losses L are distributed proportionally

or pro rata according to the contractually agreed debt payments. Losses on interest and principal

payments are, respectively, LInt = L × rc

Rc and C = L × 1
Rc . The equations for the value of the

tax shield is

V TSNC = τ × rc ×D
Rc

. (4.2.19)

Tax savings are given by

TS = τ ×
(
rc ×D − L× rc

Rc

)
. (4.2.20)

I substitute both equations into Equation (4.2.12) and obtain:

S × E[RE ] +D × E[RD] =

(
S +D − τ × rc ×D

Rc

)
× E[RU ] + τ × rc ×D − τ × E[L]× rc

Rc
.

(4.2.21)
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I rewrite the term on the rhs: τ × rc ×D− τ ×E[L]× rc

Rc = τ × rc ×D× E[RD]
Rc . I substitute this

into the prior equation to obtain

S × E[RE ] +D × E[RD]×
(

1− τ × rc

Rc

)
=

(
S +D − τ × rc ×D

Rc

)
× E[RU ]. (4.2.22)

Now, I use the expected return equations for the mean-variance CAPM:

S × (Rf + βE,M × (E[RM ]−Rf )) +D × (Rf + βD,M × (E[RM ]−Rf ))×
(

1− τ × rc

Rc

)
=

(
S +D − τ × rc ×D

Rc

)
× (Rf + βU,M × (E[RM ]−Rf )).

(4.2.23)

This simplifies to

S × βE,M +D × βD,M ×
(

1− τ × rc

Rc

)
=

(
S +D − τ × rc ×D

Rc

)
× βU,M . (4.2.24)

Rearranging for the levered beta I obtain

βE,M =

(
1 +

D

S
× 1 + rc × (1− τ)

Rc

)
× βU,M − βD,M ×

D

S
× 1 + rc × (1− τ)

Rc
. (4.2.25)

or

βE,M = βU,M + (βU,M − βD,M )× D

S
× 1 + rc × (1− τ)

Rc
. (4.2.26)

In most cases, the beta for the unlevered firm is bigger than the one for debt because of priorities

of debt cash flows to be paid to debt holders. That means βU,M−βD,M is usually positive and with

that the levered beta is greater than the unlevered beta - something that one would intuitively

expect. In the less likey case, if βU,M < βD,M , then βU,M − βD,M < 0, and the levered beta is less

than the unlevered beta.

Loss distribution not proportional to contractual debt payments. As Krause and

Lahmann (2015) show, with a pro rata loss distribution according to contractual interest and

principal payments, the expected rate of return on debt, i.e., the discount rate on debt E[RD],

is equal to a weighted average of the expected rates of return on its components, i.e., the one

on interest E[RInt] and the one on principal payments E[RPP ]. Notice that p(Int) = E[Int]
E[RInt]

and p(PP ) = E[PP ]
E[RPP ]

define the discount rates for interest and principal payments. Krause and

Lahmann (2015) show that, with interest or principal prioritization, expected rates of return on

debt, interest and principal payments regularly differ. Without a COD taxation, tax savings are

just interest payments scaled by the tax rate. Thus, the rate of return and the expected rate of
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return on interest payments and on tax savings are equal: E[RTS ] = E[RInt].6 The expected

return on debt as a weighted average of the expected returns on interest and principal payments is

E[RD] =
E[Int] + E[PP ]

D

= E[RInt]× p(Int)

D
+ E[RPP ]× p(PP )

D
. (4.2.27)

Since D = p(Int) + p(PP ) and values are positive, the weights p(Int)
D and p(PP )

D are positive and

add up to one. Due to this relation, possible relations of the three expected returns on debt cash

flows are:

E[RTS ] = E[RInt] < E[RD] < E[RPP ] (4.2.28)

E[RTS ] = E[RInt] = E[RD] = E[RPP ] (4.2.29)

E[RTS ] = E[RInt] > E[RD] > E[RPP ]. (4.2.30)

In the mean-variance CAPM, the only parameter that leads to different expected returns between

different assets is the beta of an asset. The risk-free rate and the equity premium are do not depend

on what kind of asset is regarded. Therefore, the respective betas must follow the same ordering

as the expected returns7:

βTS,M = βInt,M < βD,M < βPP,M (4.2.31)

βTS,M = βInt,M = βD,M = βPP,M (4.2.32)

βTS,M = βInt,M > βD,M > βPP,M . (4.2.33)

To derive equations for betas, I use Equation (4.2.12). I write it down in the form

S × E[RE ] +D × E[RD] = (S +D − V TS)× E[RU ] + V TS × E[RTS ]. (4.2.34)

Rearranging, simplyfying, and using the CAPM equations leads to

βE,M =
S +D

S
× βU,M −

D

S
× βD,M +

V TS

S
× (βTS,M − βU,M ). (4.2.35)

This equation allows the beta of the tax savings to be different than the one for total debt payments.

In what follows, I establish equations that are comparable to the case with the pro rata loss

6This is true for a certain tax rate, which is assumed herein.
7This assumes a positive equity premium. However, a negative premium does not make sense for risk-averse in-
vestors.
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distribution. I write the equation for the tax savings as

V TS = p(TS) = τ × p(Int)

= τ × p(Drc − LInt)

= τ ×
(
Drc

Rf
− p(LInt)

)
= τ × Drc

Rc

(
Rc

Rf
− p(LInt)

D
× Rc

rc

)
= τ × Drc

Rc
+ τ ×

(
p(L)

rc

Rc
− p(LInt)

)
. (4.2.36)

The first term in the last equality is the equation for the value of the tax savings for a pro rata loss

distribution according to contractual debt payments. In case of a pro rata loss distribution, the

second term is always zero because then p(LInt) = p(L)R
c

rc . With loss distributions not proportional

to contractual debt payments, the second term is usually not zero. Using that in Equation (4.2.35),

I obtain

βE,M =

(
1 +

D

S
× 1 + rc × (1− τ)

Rc

)
× βU,M −

D

S
× βD,M +

D

S
× τ × rc

Rc
× βTS,M

+
F

S
× (βTS,M − βU,M ), (4.2.37)

with F = τ ×
(
p(L)× rc

Rc − p(L
Int)

)
. It turns out that additional information is needed. The beta

of the returns on tax savings, i.e., on interest payments is needed as well as the price of losses on

interest payments.8 I define β∆TS,M = βTS,M − βD,M . I use this relation and restate Equation

(4.2.37) as

βE,M =

(
1 +

D

S
× 1 + rc × (1− τ)

Rc

)
× βU,M − βD,M ×

D

S
× 1 + rc × (1− τ)

Rc

+

(
D

S
× τ × rc

Rc
+
F

S

)
× β∆TS,M +

F

S
× (βD,M − βU,M ). (4.2.38)

This allows for a better comparability with Equation (4.2.26), i.e., the equation for the pro rata

loss distribution according to contractual principal and interest payments. I continue with two

prominent cases of loss distributions: interest and principal prioritization.

Loss distribution not proportional to contractual debt payments - Interest prior-

itization. A reasonable non-proportional loss distribution is the case of interest prioritization.

Interest prioritization means that principal payments will incur losses first. Only if losses are

greater than principal payments, interest will incur losses as well. Relation (4.2.28) is usually

what we expect in this case.9 I simplify further. I assume that interest payments will never incur

8The price of losses p(L) can be stated in terms of the debt value, the risk-free rate and the coupon rate.
9The other two relations are possible as well but unlikely in practice. For further information refer to Krause and
Lahmann (2015)
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losses. This is a reasonable assumption as long as interest payments are small relative to principal

payments, which is what we mainly observe in practice. Under this assumption, interest payments

are risk-free so that LInt = 0 in any state. The price of losses on interest payments must be zero

as well. It follows that the beta of tax savings is zero. The equation for interest payments turns to

Int = rc ×D. (4.2.39)

and tax savings are

TSNC = τ × rc ×D. (4.2.40)

I discount this risk-free quantity at the risk-free rate, i.e., E[RTS ] = Rf , to obtain the value of the

tax savings

V TSNC = τ × rc ×D
Rf

. (4.2.41)

Equation (4.2.37) condenses to

βE,M =

(
1 +

D

S
× Rf − τ × rc

Rf

)
× βU,M − βD,M ×

D

S
. (4.2.42)

As for the pro rata distribution the levered beta is also a combination of the unlevered beta

and a scalar as well as the debt beta and a scalar. However, the scalars differ here.

Loss distribution not proportional to contractual debt payments - Principal prior-

itization. The other extreme in terms of prioritization is principal payment prioritization. In this

case losses are first assigned to interest payments. Only if loses are greater than interest payments,

the excess amount of losses is assigned to principal payments. In this case a sensible assumption

such as for interest prioritization is not available. Instead, I use Equation (4.2.38) and assumptions

on F and the betas 10.

Given total losses on debt L, the losses on interest payments LInt must be greater than the

pro rata share of total losses: L rc

Rc < LInt. Since this is true for any state in which losses occur,

the factor F is less than zero: F = τ ×
(
p(L) r

c

Rc − p(L
Int)

)
< 0. To parameterize, I assume that

the price of losses on interest payments is equal to p(LInt) = p(L)( r
c

RC
+ α), with α ∈ (0, 1− rc

Rc )

as the percentage that the price of interest losses is higher than the pro rata share of the price of

total losses. Using this parameter in the equation for F , I obtain

F = −τ × αp(L) (4.2.43)

= −τ × α×D × rc − rf

Rf
. (4.2.44)

10For further discussion on principal prioritization see Krause and Lahmann (2015)
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The second equalitiy follows from the equation for the coupon rate11, which can be rearranged for

the price of losses. Equation (4.2.38) turns to

βE,M =

(
1 +

D

S
× 1 + rc × (1− τ)

Rc

)
× βU,M − βD,M ×

D

S
× 1 + rc × (1− τ)

Rc

+ τ × D

S
×
(
rc

Rc
− α× rc − rf

Rf

)
× β∆TS,M + τ × α× rc − rf

Rf
× D

S
× (βU,M − βD,M ).

(4.2.45)

Notice that with α ∈ (0, 1 − rc

Rc ), it follows, for the term attached to β∆TS,M , that rf

Rf
<(

rc

Rc − α×
rc−rf
Rf

)
< rc

Rc .
12 Furthermore, it is reasonable to assume that β∆TS,M > 0, i.e., the

beta of the returns on tax savings is greater than the one for the returns on debt. Since the return

on tax savings and on interest payments are the same, the betas of the two figures are the same

as well. With losses first assigned to interest payments, their returns will regularly have a higher

beta than the beta for returns on principal payments and the one for returns on debt payments as

whole.13

In the next subsection, I will compare the differences of the equations more in detail.

4.2.5 Overview and discussion

Table 5.1 shows an overview of the different cases treated in this paper. Some remarks are in order.

For debt returns uncorrelated with market returns βD,M = 0, the expected return on debt is equal

to the risk free rate: E[RD] = Rf . However, with risky debt, the coupon rate must be greater than

the risk-free rate because the coupon rate must account for the default risk: rc > rf . This can

also be restated as rc = rf + κ, in which κ > 0 is a credit risk premium. Thus, for βD,M = 0, the

equations for the risk-free case and for the risky case with taxes on a COD are the same. Krause

and Lahmann (2017) found that the value of the tax savings for risky debt with taxed COD is the

same as if debt is risk-free. However, without taxes on a COD the equations to adjust betas differ

through the involvement of the coupon rate and possible other parameters.

A comparison of the equations in Table 5.1 makes most sense for the purpose of picking the

correct equation given the case of the tax treatment and loss distribution. Then, one can evaluate

the bias of picking an incorrect equation.

It does not make sense to pick a set of parameters and then try out all of the equations for the

different cases intending to evaluate what the outcome would be given the parameters. The reason

is that the different cases may be consistent only with different sets of inputs such as leverage and

11The equation is rc = rf +Rf
p(L)
D

, which is just D = p(D(1 + rc)− L) rearranged for the coupon rate.
12Notice that for risky debt rf

Rf
< rc

Rc
. To see this multiply by Rf and Rc, which are both positive, and simplify.

The result is rf < rc, which must hold for risky debt due to a positive credit risk premium.
13This is the likely case. Theoretically, it is also possible that this does not hold. The prioritization rules can be
transformed into option-like payments. For a more detailed analysis of expected returns on options see Coval
and Shumway (2001), and for an analysis with respect to tax savings see Krause and Lahmann (2015).
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Table 4.1: Summary of cases and equations

Risk Tax Loss distr. Equation

None NA NA βE,M =
(

1 + D
S ×

1+rf×(1−τ)
Rf

)
× βU,M

Risky

Yes Indifferent βE,M =
(

1 + D
S ×

1+rf×(1−τ)
Rf

)
× βU,M − βD,M × D

S × (1− τ)

No

Pro rata βE,M =
(

1 + D
S ×

1+rc×(1−τ)
Rc

)
× βU,M − βD,M × D

S ×
1+rc×(1−τ)

Rc

Int. prio. βE,M =
(

1 + D
S ×

Rf−τ×rc
Rf

)
× βU,M − βD,M × D

S

Pri. prio. βE,M =
(

1 + D
S ×

1+rc×(1−τ)
Rc

)
× βU,M − βD,M × D

S ×
1+rc×(1−τ)

Rc

+τ × D
S ×

(
rc

Rc − α×
rc−rf
Rf

)
× β∆TS,M

+τ × α× rc−rf
Rf
× D

S × (βU,M − βD,M )
The table shows the equations for de- and re-levering betas for the different cases. The column "Risk" indicates
whether debt is risk-free or risky. The column "Tax" indicates whether a tax on a COD is paid or not. The

column "Loss distr." indicates how total losses are assumed to be allocated to interest and principal payments.
Pro rata loss distribition means that total losses of debt are distributed to interest payments and principal

payments according to contractual interest and principal payments. Interest prioritization means that all losses
are first assigned to principal payments. The equation for interest prioritization presented here relies on the

additional assumption that interest payments never incur losses. Principal prioritization means that all losses are
first assigned to interest payments before principal payments are affected.

the coupon rate, because the tax assumption may influence the loss distribution.

I look at the factors scaling up and down the unlevered equity betas and the debt betas.

For the first three equations and the fifth equation notice that 1 + D
S ×

1+rf×(1−τ)
Rf

> 1 +

D
S ×

1+rc×(1−τ)
Rc . To see that I rewrite the equations to −τ × rf

Rf
> −τ × rc

Rc and divide by

−τ to obtain rf

Rf
< rc

Rc . I multiply by Rf and Rc, which are both positive. That leads to

rf × (Rf +κ) < (rf +κ)×Rf which simplifies to 0 < κ. The credit risk premium must be positive

so that the inequality always holds.

Regarding equations three and four, the inequality 1 + D
S ×

1+rc×(1−τ)
Rc > 1 + D

S ×
Rf−τ×rc

Rf

holds only for rc > 0.

Regarding the first two equations and the forth one, the inequality 1 + D
S ×

1+rf×(1−τ)
Rf

>

1 + D
S ×

1+rc×(1−τ)
Rf

always holds. This can be seen using the same simplifying steps as before.

I continue with the terms attached to the debt betas in equation two and three. For those

equations −DS × (1− τ) > −DS ×
1+rc×(1−τ)

Rc . To see this, I simplify to τ > τ × rc

Rc , divide by τ and

multiply by Rc to obtain Rc > rc or 1 > 0, which always holds. Regarding equations three and

four, for rc > 0 the inequality −DS < −DS ×
1+rc×(1−τ)

Rc holds.

Thus, for a positive coupon rate

1 +
D

S
× 1 + rf × (1− τ)

Rf
> 1 +

D

S
× 1 + rc × (1− τ)

Rc
> 1 +

D

S
× Rf − τ × rc

Rf
(4.2.46)

and

−D
S
× (1− τ) > −D

S
× 1 + rc × (1− τ)

Rc
> −D

S
. (4.2.47)
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That means for a positive coupon rate and for positive betas for debt and unlevered equity, the

levered beta will be smaller going down the equations in Table 5.1 until the forth equation.

For positive betas debt betas may be larger than unlevered equity betas. For high debt betas

and since the term including the debt beta is subtracted, the beta for levered equity may even be

less than the one for unlevered equity, i.e., βE,M < βU,M . I will have a quick look at βD,M when

βE,M = βU,M . For the second case, the case with a taxation of a COD, I obtain

βD,M = βE,M
1 + rf × (1− τ)

Rf (1− τ)
, (4.2.48)

in which 1+rf×(1−τ)
Rf (1−τ)

> 1. For example for rf = 0.02 and τ = 0.3 the term is about 1.4 so that

βD,M has to be more than 1.4 times bigger than βE,M to obtain βE,M < βU,M .

For the pro rata case the debt beta for βE,M = βU,M is

βD,M = βE,M , (4.2.49)

so that βD,M has to be greater than βE,M to obtain βE,M < βU,M .

For interest prioritization with the assumption of certain interest payments, I obtain

βD,M = βE,M
Rf − τ × rc

Rf
, (4.2.50)

in which Rf−τ×rc
Rf

= 1 − τrc/Rf less than one for rc > 0. For example, for rf = 0.02, τ = 0.3

and rc = 0.06 the term is 0.98. Thus, βD,M does not even have to be greater than the beta of

unlevered equity for βE,M < βU,M .

The fifth equation treats principal prioritization. The equation requires the additional param-

eters α and β∆TS,M . It was constructed so that the first line of the equation is the same as the

equation for the pro rata case. Thus, the two additional terms in the equation for principal prior-

itization versus the equation for the pro rata case determine whether the resulting levered equity

beta is greater, less than or equal to the levered equity beta for the pro rata distribution, when

equal inputs are used. As was mentioned earlier, β∆TS,M > 0 is a reasonable assumption for prin-

cipal prioritization. Furthermore, for a positive risk-free rate the term τ × D
S ×

(
rc

Rc − α×
rc−rf
Rf

)
is always positive. Assuming that βU,M > βD,M , makes the two additional terms positive. This

leads to a levered equity beta that is greater than the one under the assumption of a pro rata

distribution.

I provide a simple numerical example with the objective to observe the potential error from

picking the incorrect procedure, i.e., the incorrect equation, given that the betas for unlevered

equity and for debt are known. For the example, I choose the following parameters: τ = 0.3,

l = 0.6 (implying D/S = 1.5), βU,M = 0.9, βD,M = 0.4, rf = 0.02, α = 0.2, β∆TS,M = 0.3

and rc = 0.06. Table 5.2 shows that the betas for levered equity vary from 2.24 down to 1.63.

That would imply expected returns for unlevered equity from 15.45 % down to 11.76 % for this

88



4.3. Levered and unlevered beta in an infinite period setting with constant leverage

example. The table shows that picking the incorrect equation has the potential for substantial

errors in discount rates and thus for substantial misvaluations. Especially assuming risk-free debt

when debt is actually risky has a big impact in this example because the additional term with the

debt beta, which reduces the levered beta, is not used for risk-free debt. The assumption of a COD

taxation also has a significant impact on the beta and the associated expected return. In turn,

the figures presented without a COD taxation do not differ markedly. The reason is that for those

equations and for a moderate risk-free rate as well as coupon rate, all the factors multiplied with

βE,M and with βD,M do not differ a lot. Furthermore, the two additional terms in the equation for

principal prioritization are small for reasonable parameters, such as the ones used in the example.

Table 4.2: Summary of cases and equations

Risk COD tax Loss distrib. βE,M E[RE ]

Risk-free NA NA 2.24 15.45%

Risky

Yes Does not matter 1.82 12.93%

No
Pro rata 1.64 11.82%
Interest prio. 1.63 11.76%
Principal prio. 1.65 11.87%

4.3 Levered and unlevered beta in an infinite period setting with constant leverage

I take a simple approach and assume constant leverage and independently and identically dis-

tributed (i.i.d.) returns. At any point in time and in any state debt and equity cash flows have

the same return distribution. The risk-free rate is assumed to be constant. The firm issues only

single-period debt. It adjusts debt and equity at each point in time to keep leverage constant.

Even after a default leverage is kept constant by whoever is the (new) owner of the company.

The returns are now defined as REt+1 = ECFt+1+St+1

St
for the return on levered equity, RUt+1 =

FCFt+1+V Ut+1

V Ut
for the return on unlevered equity, and RDt+1 = DCFt+1+Dt+1

Dt
for the return on debt.

The following identity must hold at any time:

ECFt+1 + St+1 +DCFt+1 +Dt+1 = FCFt+1 + V Ut+1 + TSt+1 + V TSt+1. (4.3.1)

The identity holds the same way taking conditional expectations:

Et[ECFt+1] + Et[St+1] + Et[DCFt+1] + Et[Dt+1] =

Et[FCFt+1] + Et[V
U
t+1] + Et[TSt+1] + Et[V TSt+1]. (4.3.2)
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I use the definitions of returns to obtain

St × Et[REt+1] +Dt × Et[RDt+1] = (St +Dt − V TSt)× Et[RUt+1] + Et[TSt+1] + Et[V TSt+1],

(4.3.3)

I represent the value of the tax savings as discounted next period’s tax savings and discounted

next period’s value of all future tax savings, in which I assign two different discount rates to the

respective figures:

V TSt =
Et[TSt+1]

Et[RTSt+1]
+
Et[V TSt+1]

Et[RV TSt+1 ]
. (4.3.4)

The first part, Et[TSt+1]

Et[RTSt+1]
, is the value of the tax savings of the next period. This value can be

represented through the equations presented in the single-period model - only the time subscripts

need to be adjusted. The second part, Et[V TSt+1]

Et[RV TSt+1 ]
, is the value at time t of all tax savings incurred

after t+1. An important result of Miles and Ezzell (1985) is that for constant leverage the value of

the tax shield is discounted at the discount rate for unlevered equity. Krause and Lahmann (2015)

find that this is due to the tax shield value being proportional to the value of the unlevered firm

when leverage is constant. They also find that the result holds in an i.i.d. setting with risky debt.

Since I assume constant leverage here, the equation for the tax shield value can be restated

with Et[RV TSt+1 ] = Et[R
U
t+1].

St × Et[REt+1] +Dt × Et[RDt+1] =(
St +Dt −

[
Et[TSt+1]

Et[RTSt+1]
+
Et[V TSt+1]

Et[RUt+1]

])
× Et[RUt+1] + Et[TSt+1] + Et[V TSt+1], (4.3.5)

Simplifying, the equation condenses to the same equation as for the single period (Equation

(4.2.12)):

St × Et[REt+1] +Dt × Et[RDt+1] =

(
St +Dt −

Et[TSt+1]

Et[RTSt+1]

)
× Et[RUt+1] + Et[TSt+1]. (4.3.6)

Thus, the same equations for the de- and re-levering procedures of betas must follow for the

infinite horizon case with constant leverage in an i.i.d. world. Equations of Table 5.1 can also be

applied for this case.

4.4 Conclusion

I provide equations to re- and de-lever betas under different assumptions regarding the riskiness of

debt and the taxation of a COD. When a COD is not taxed, the distribution of losses on interest

and principal payments becomes important. I look at five cases: the risk-free case, the risky case

with a taxed COD, the risky case without a taxed COD and pro rata distributed losses, the risky

case without a taxed COD and interest prioritization, and the risky case without a taxed COD
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and principal prioritization. I find that equations differ substantially so that the application of the

incorrect procedure potentially leads to big errors in determining the discount rate. Additionally,

the same equations for de- and re-levering betas for a single-period setting hold for a simple i.i.d.

infinite horizon setting with constant leverage.
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4.5 Appendix - Derivation of de- and re-levering of betas with risk-free debt in a

single period setting

For risk-free debt

V TS = τ × rf ×D
Rf

(4.5.1)

and RD = Rf as well as TS = τ ×D × rf . Cash flows turn to

S × E[RE ] +D ×Rf =

(
S +D − τ × rf ×D

Rf

)
× E[RU ] + τ ×D × rf . (4.5.2)

I use the expected return equation from the mean-variance CAPM for levered equity, i.e., E[RE ] =

Rf + βE,M × (E[RM ]−Rf ), and for unlevered equity with E[RU ] = Rf + βU,M × (E[RM ]−Rf ).

I substitute both into Equation (4.5.2) to obtain

S × (Rf + βE,M × (E[RM ]−Rf )) +D ×Rf =(
S +D − τ × rf ×D

Rf

)
× (Rf + βU,M × (E[RM ]−Rf )) + τ ×D × rf . (4.5.3)

Simplification leads to

S × βE,M × (E[RM ]−Rf ) =

(
S +D − τ × rf ×D

Rf

)
βU,M × (E[RM ]−Rf ). (4.5.4)

I divide by the equity premium and by S, which yields

βE,M =

(
1 +

D

S
× 1 + rf × (1− τ)

Rf

)
× βU,M . (4.5.5)

4.6 Appendix - Higher beta with higher leverage under risk-free debt

I add a prime symbol to the symbols of cash flows, values and returns after the debt increase.

Assets remain the same. There are no taxes. I scale equity down by ∆ so that S′ = S − S ×∆,

with 1 > ∆ > 0, and debt increases accordingly so that D′ = D + ∆× S. After the increase debt

still remains risk-free. Equity cash flows change to ECF ′ = ECF −∆ × S × Rf . That means a

risk-free part of the equity cash flow goes away. It actually adds to debt cash flows. Debt cash flows

change to DCF ′ = (D+ ∆×S)×Rf . The return on equity before the change was RE = ECF/S.

Now it turns to RE′ = (ECF − ∆ × S × Rf )/(S × (1 − ∆)). Now, I look at the numerator of

the equity beta which is a covariance of the form Cov(RE , RM ). The denominator is the variance

of the return on the market portfolio V ar(RM ) and does not change with the change in leverage.
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With the new return on equity the covariance turns to

Cov(RE′, RM ) = Cov

(
ECF −∆× S ×Rf

S × (1−∆)
, RM

)
(4.6.1)

= Cov

(
ECF

S × (1−∆)
− ∆× S ×Rf

S × (1−∆)
, RM

)
(4.6.2)

= Cov

(
RE

(1−∆)
, RM

)
(4.6.3)

=
1

1−∆
× Cov

(
RE , RM

)
. (4.6.4)

The term 1/(1 − ∆) is greater one so that the covariance is scaled up. That means, with a

positive beta, increasing leverage increases the beta. A negative beta would be even more negative.

However, this case is very unlikely for equity. This case would be like an insurance against market

risk.
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Chapter 5

Effects of a capital gains tax on asset

pricing1

1This article is based on Krause (2018b) and used in this dissertation under the Creative Commons Attribution
4.0 International License.
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Bringing this publication into context

Bringing this publication into context

This paper departs from the view of a single firm that is to be valued, to issues of valuation of all

assets in an economy. It is an extension of the work of Kruschwitz and Löffler (2009), who show

cases when a capital gains tax in a mean-variance CAPM may lead to the same prices as if there

were no capital gains taxes.

I go away from the mean-variance framework using stochastic discount factors and expected

utility instead. I derive conditions for price equality in a tax and a no-tax economy. As in

Kruschwitz and Löffler (2009) I look at the case of a zero risk-free rate. For that case I obtain the

same portfolio rule as Kruschwitz and Löffler (2009). This rule leads to all agents consuming exactly

the same in every state in both economies. I use their CARA setting in my expected utility setting

and find that exponential utility with multivariate normal returns also leads to similar prices. As

an additional case, I find that linear marginal utility also leaves prices unchanged. This is because

with linear marginal utility discount factors of all agents are equal even in incomplete markets,

and they are also equal to a discount factor of aggregate consumption. Aggregate consumption

between the two economies is the same because in the tax economy all taxes are transferred back

to the agents. It follows that the agents’ individual discount factors must also be the same in the

two economies.
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Abstract

I extend and generalize the work of Kruschwitz and Löffler (2009). I find that, with a zero risk-free

rate, the implicit price of capital gains tax payments is zero. I provide conditions in stochastic

discount factor language when a capital gains tax has no effect on asset prices for the case of a

zero risk-free rate. A sufficient condition for price equality with a zero risk-fee rate is that agents

consume the same in any state with and without taxes. Equilibria exist that guarantee equal

consumptions, and they imply the same portfolio rules that Kruschwitz and Löffler (2009) find

for the CAPM. Furthermore, for an exogenous non-zero risk-free rate, I show that exponential

utility with multivariate normal payoffs, as well linear marginal utility leave prices unchanged.

Equilibrium prices are independent of capital gains taxes in those cases. However, total wealth of

agents is different between the tax and the no-tax economy.

Keywords: Capital gains tax, Stochastic discount factor, Portfolio theory, Constant absolute risk

aversion, Linear marginal utility
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5.1 Introduction

I build on the work of Kruschwitz and Löffler (2009) who assumed a single-period mean-variance

capital asset pricing model (CAPM) with a flat tax on capital gains and tax transfers back to

investors. They find that prices in a world with taxes on returns are the same as prices in a world

without taxes if the risk-free rate is zero or investors have constant absolute risk aversion mean-

variance utility. Instead of regarding a mean-variance CAPM as in Kruschwitz and Löffler (2009),

I construct a model with agents that value expected utility over consumption, i.e., a consumption

CAPM with heterogeneous agents. The fundamental results from Kruschwitz and Löffler (2009)

also hold for such economies, but I find important extensions.

First, I look at economies with consumption at two times, and I examine the effect of the

risk-free rate on asset pricing. I find that a non-zero risk-free rate leads to non-zero prices of tax

payments. Even though not traded, prices of tax payments can be constructed from tradeable

assets. For a zero risk-free rate capital gains taxes and the respective transfer payments have a

zero (implicit) price. I construct two economies that have agents with equal endowments with

shares of financial assets and consumption goods, equal utility functions and payoffs. I impose a

tax on capital gains on one economy. I show that, for any tax economy, there is a no-tax economy

with equal prices. This holds for two economies in which individual consumption of agents in one

economy is the same as the consumption in the other economy in every state. Then, stochastic

discount factors in the no-tax economy of any agent is the same as in the tax economy. Since

taxes are not priced this leads to the same asset prices in both economies. Furthermore, I obtain

the same portfolio rule as in Kruschwitz and Löffler (2009). This rule makes consumption profiles

of investors equal in both economies with a zero risk-free rate. It follows that this rule is not

just applicable to mean-variance CAPM economies but also to economies with expected utility

maximizing agents, and in which a risk-free asset is traded and has a zero return. Without a zero

risk-free rate price equality does not generally hold. For linear marginal utility it can be shown

that it never holds.

I also regard the case of economies with consumption only in the future. In this case the

risk-free rate is exogenous. For a zero risk-free rate price equality can be obtained again. For a

non-zero risk-free rate, I show that exponential utility and multivariate normal payoffs lead to a

pair of economies with equal prices. It is only necessary to pick equal prices of the risk-free assets

in both economies. In contrast to Kruschwitz and Löffler (2009), who use mean-variance utility

argmuments, I use SDF arguments to derive this result. Furthermore, I show that aggregate wealth

after initial consumption in the no-tax economy is different to the one in the tax economies - even

though prices are the same. In the tax economy aggregate wealth is different from wealth in the

no-tax economy by the price of aggregate transfer payments, which do not have zero prices as with

a zero risk-free rate. The portfolio rule for risky assets is again the same as the one proposed in

Kruschwitz and Löffler (2009). However, the rule for the risk-free asset differs. Furthermore, I find

that utility functions that lead to marginal utility linear in consumption also lead to price equality.
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The reason here is that individual pricing equations can easily be aggregated to a pricing equation

that does not depend on the tax rate. With nonlinear marginal utility prices cannot generally be

obtained since aggregation regularly does not lead to a pricing equation that is independent from

the tax rate.

I contribute to the asset pricing literature that is especially concerned with tax effects on

asset pricing. Much of the literature is concerned with the classic mean-variance CAPM such as

Kruschwitz and Löffler (2009) and Eikseth and Lindset (2009), who consider tax transfers back

to the investors. Sialm (2006), in turn, uses a representative agent model with an uncertain tax

on consumption and tax transfers. He finds that aggregate consumption and therefore marginal

utility growth is not affected when all taxes are transferred back. With certain and constant taxes

there would not be an effect on asset prices versus no taxes. Brennan (1970) is a classic paper

that incorporates various personal tax rates into the CAPM to arrive at pre-tax expected returns,

but it does not consider transfers. Wiese (2007) builds on Brennan’s work to develop a model

that reflects the German tax code. I especially include SDF and consumption arguments into my

analysis in the fashion of Cochrane (2014).

In Section 5.2, I introduce the basic economy without taxes and the economy with a flat and

certain tax rate on capital gains. In the following Section 5.3, I show that for every no-tax economy

there is a tax economy with equal asset prices in the cases when the risk-free rate is zero. When

consumption only takes place in the future and therefore the risk-free rate is exogenous, equal

prices are obtained when agents have exponential utility with normal consumption or when they

have linear marginal utility. I continue to discuss the results and the limitations of the analyses in

Section 5.4, where I also provide a simple numerical example. I conclude in Section 5.5.

5.2 The two basic economies

5.2.1 The basic finance economy without taxes

Payoff space. I model an endowment economy with financial assets. The economy exists at dates

t = 0, when decisions are made and initial consumption takes place, and at t = 1, when payoffs

are paid out and consumed. I add to the model of Kruschwitz and Löffler (2009) consumption at

t = 0. I denote Xr as an N×S matrix of tradeable, risky and elementary payoffs, in which N is the

number of payoffs and S the number of possible states at t = 1. With elementary or basic payoffs,

I mean non-redundant payoffs. Non-redundant, in turn, means that any single elementary payoff

cannot be constructed through linear combinations of other payoffs. This matrix is augmented by

a risk-free payoff X0, which is also non-redundant, so that X = (X0 Xr)
′ is an N + 1× S matrix

of non-redundant payoffs. Thus, the payoff space is spanned by N elementary risky asset payoffs

and a risk-free payoff. The number of states S can be greater than the number of assets so that

an incomplete market is possible. I use the subscript s for individual states and the subscript j

for the different financial assets so that the payoff j pays Xjs in state s. To simplify notation, I
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put time subscripts only when necessary, such as for consumption, which is possible at t = 0 and

at t = 1. I use all random variables as row vectors of dimension 1 × S. Constants such as prices

of a single asset j, denoted pj , can also be written as a 1× S vector of constant values.

Characterization of the agents and their maximization problems. There are i = 1, ..., I

agents in the economy. Agents are rational and have the same complete set of information, i.e.,

they know the distributions of the payoffs. They are characterized through a time separable utility

function ui(·) over consumption and through initial (pre-trade) portfolio holdings n̄i. At date

t = 1 and in state s agent i consumes cis units of a composite consumption good. One unit of a

consumption good has a price of one at all times so that a payoff of one can buy exactly one unit

of the consumption good. To address random variables such as agent i’s consumption or the j’th

payoff at t = 1, I leave out the subscript s for states and write ci1 and Xj , respectively. I denote

c̄i0 the endowment of agent i with consumption goods at time t = 0.

Agents maximize expected utility of consumption

max
ci0,ci1

E [βiui(ci1)] + ui(ci0), (5.2.1)

subject to the budget constraints at t = 0,

n̄′ip + c̄i0 = n′ip + ci0 (5.2.2)

and at t = 1

cis = n′iXs, (5.2.3)

for s = 1, .., S. I use all collections of prices and asset weights as column vectors. I denote E[·]

the expected value at time zero of its argument, p = (p0 p1 ... pj ... pN )′ is the price vector of

the N + 1 assets, ni = (ni0 ni1 ... nij ... niN )′ is a vector of after-trade portfolio weights (I use

n̄i for pre-trade portfolios.), βi the subjective time discount factor (or impatience factor), and

ui(·) the utility function. The expected value operator with a single random variable means a

probability inner product. With a random variable z that means E[z] =
∑S
s=1 πszs, in which πs

is the probability of state s. For prices I mostly use the short notation so that pj is the price of a

payoff Xj . When necessary, I also use prices as operators to make more clear what is priced, for

example pj = p(Xj) is again the price of the payoff j. Furthermore, I use the subscript r to refer

only to the risky assets pr = ( p1 ... pj ... pN )′ and nir = (ni1 ... nij ... niN )′, the subscript zero

is related to the risk-free asset.2 The utility function is differentiable and strictly monotonously

increasing at a decreasing rate. Therefore, any additional unit of consumption adds to utility,

and it is optimal to consume all of the payoffs, which justifies to write the budget constraints as

2Without too much abuse of notation, I also use the subscript zero for consumption at t = 0.
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equalities (Lengwiler, 2004, p.52). The equality of the budget constraints allows to substitute out

consumption and to restate the maximization problem with respect to the portfolio weights and

initial consumption.

The risk-free asset is in zero net supply
∑I
i=1 ni0 = 0. Therefore, I define a vector of aggregate

asset holdings n =
∑I
i=1 ni, which is n′ = (0 1 1 ... 1) because the risk-free asset is in zero net

supply.

Equilibrium. The equilibrium is given through a vector of prices p, consumption profiles

ci0, ci1 and portfolios ni for i = 1, .., I so that each agent maximizes utility subject to his budget

constraint, given prices p. Furthermore, the market for the consumption good clears:
∑I
i=1 c̄i0 =∑I

i=1 ci0 and
∑I
i=1 cis = n′Xs for s = 1, .., S. Financial assets are in positive net supply and

markets clear so that
∑I
i=1 nij =

∑I
i=1 n̄ij = 1 for j = 1, .., N and

∑I
i=1 ni0 = 0 for the risk-free

asset. I assume that at least one equilibrium exists. Notice that equilibrium prices imply the

absence of arbitrage opportunities (Lengwiler, 2004, p.50).

Pricing equations. I write the agent’s optimization problem in terms of a Lagrangian

Li = E [βiui(ci1)] + ui(ci0)− λi(n′ip + ci0 − n̄′ip− c̄i0), (5.2.4)

where λi is a Lagrange multiplier. I substitute in Equation (5.2.3) and take the partial derivatives

with respect to portfolio weights and to initial consumption. Combining the results I obtain

p = E

[
Xβi

u′i(ci1)

u′i(ci0)

]
. (5.2.5)

I denote more compactly

mi = βi
u′i(ci1)

u′i(ci0)
(5.2.6)

as agent i’s stochastic discount factor (SDF). Using this, I can price any single payoff Xj through:

pj = E [miXj ] . (5.2.7)

Here the expected value means that probabilities are induced to the inner product of Xj and mi:

E[miXj ] =
∑S
s=1 πsmiXjs. Through trading, agents find a price vector on which everyone agrees,

i.e., p = E[miX] for i = 1, .., I, and which maximizes utility.

In complete markets, X is a square matrix with full rank, i.e., there are as many basic assets as

states. The equation p = E[miX] can be written as p = Xκi, in which state prices are κis = misπs

for s = 1, .., S and πs are objective probabilities of states s. When X has full rank, there is a unique

solution for κi. Since probabilities are objective probabilities, there is a unique SDF, i.e., every

agent has the same SDF. It also follows that the state price vector can be expressed as a linear
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combination of basis assets and therefore lies in the payoff space. The same is true for the SDF.3

With incomplete markets, i.e., with S > N + 1, X does not have full rank. The system of

equations p = Xκi has less equations than unknowns so that there is more than one solution to

the system. That means state prices and SDFs among agents may differ.

Pricing a risk-free payoff of one, I define the risk-free rate as Rf = 1/E[mi] = 1/p0 for i = 1, .., I.

The term Rf is the gross risk-free rate: Rf = 1 + rf . Thus, the pricing Equation (5.2.7) can be

restated as

pj =
E(Xj)

Rf
+ Cov(mi, Xj), (5.2.8)

in which Cov(mi, Xj) is the covariance between the SDF and the payoff. As stated in Cochrane

(2014), in incomplete markets the SDFs of agents mi can differ and do not have to be within the

payoff space. But there is one SDF m within the space of tradeable assets that prices all assets.

This SDF is the probability induced projection of all of the agents’ SDFs onto the payoff space. The

relation between the unique SDF within the payoff space and any individual SDF is mi = m+ εi,

where εi is an error term orthogonal to the (probability induced) payoff space and therefore does

not influence prices: pj = E(miXj) = E((m + εi)Xj) = E(mXj), because E(εiXj) = 0 holds for

all payoffs of the payoff space (Cochrane, 2005, p.66). The unique SDF within the payoff space

can be used to price all payoffs but it will not necessarily lead to a possible portfolio rule for all

agents, i.e., to a consumption profile that is within the payoff space. In complete markets the SDF

is the same for every agent. In the standard CAPM, which does not require complete markets, the

SDF is a linear combination of the market return: m = a+ bRM , where RM is the return on the

market portfolio and a and b are constants (Cochrane, 2005, p.152). In those two cases the single

SDF leads straightforwardly to consumption rules within the payoff space.

5.2.2 The finance economy with taxes

I introduce another economy that has, compared to the no-tax economy, equal utility functions of

agents ui(·), equal impatience factors βi, and an equal (pre-tax) distribution of payoffs of financial

assets X. The initial or pre-trade portfolios of agents with shares of assets are also the same, as

well as the agents’ perfect information about the payoff distributions. I introduce taxes on capital

gains. To account for possible differences in prices, after-trade portfolios, and consumption profiles

from the ones in the no-tax economy, I add an asterisk to them. Prices of taxed payoffs are denoted

as p∗τj = p∗(Xτ
j ) and prices of pre-tax payoffs are denoted as p∗j = p∗(Xj).

Taxes. I define the tax base as the difference between the payoff and the price of the payoff:

Xjs − p∗τj , in which p∗τj is the price of the after-tax payoff, i.e., of the payoff Xτ
js = Xjs − Tjs =

Xjs − τ(Xjs − p∗τj ), in which Tjs are taxes on the asset j = 0, 1, ..., N in states s = 1, ..., S. Any

3For properties of the SDF under different assumptions such as market incompleteness see (Cochrane, 2005,
pp.61-73).
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observed prices reflect possible tax effects. Investors consider the taxes they have to pay on the

payoff when pricing the asset. I use τ ∈ (0, 1) as the tax rate and also as a superscript to denote

after-tax figures when necessary. The tax rate is certain, constant, and the same for all agents.

This is a simplification since tax rates can be observed to have an uncertain element and they often

depend on certain characterisitics of agents such is their income.4 Introducing an uncertain tax

rate may introduce an additional covariance as well as an expectation into the pricing equation.

An agent i pays capital gains taxes at the amount Tis = τ
∑N
j=0 n

∗
ij(Xjs − p∗τj ) = τn∗′i (Xs −p∗τ ),

and they receive transfer payments Qis = τωin
′(Xs − p∗τ ) for i = 1, .., I , in which ωi is the

share of total tax revenues that is transferred to agent i with
∑I
i=1 ωi = 1. Transfer payments

are predetermined amounts, i.e., they cannot be influenced by the agents. Positive and negative

capital gains are taxed the same way. I discuss issues of this simplified tax system versus more

realistic tax systems in Section 5.4. Aggregate tax payments are Ts =
∑I
i=1 Tis. They must be

equal to aggregate transfer payments: Ts = Qs. Individual transfer payments can also be written

as Qis = ωiTs.5

The introduction of taxes and transfers does not introduce any new basic asset so that the

payoff space is the same as in the no-tax economy. Any tax payment Tjs = Xjs − τ(Xjs − p∗τj ) =

Xjs(1− τ) + τp∗τj is just a linear combination of the pre-tax payoff Xj and a risk-free payoff.

Characterization of the agents and their maximization problems. Any agent maxi-

mizes expected utility of after-tax (and transfers) consumption

max
c∗i0,c

∗
i1

E[ui(c
∗
i1)] + ui(c

∗
i0), (5.2.9)

subject to the budget constraints at t = 0

n̄′ip
∗τ + c̄i0 = n∗′i p∗τ + c∗i0 (5.2.10)

and at t = 1

c∗is = n∗′i (Xs − τ(Xs − p∗τ )) +Qis, (5.2.11)

for s = 1, .., S. The variable n∗i is a vector of after-trade portfolio weights. I denote financial

wealth that is left after initial consumption as W ∗Fτi = n∗′i p∗τ and total financial wealth after

initial consumption, i.e., financial wealth including transfers as W ∗Fi = W ∗Fτi + p∗(Qi).

4See for example Sialm (2006) for a theoretical treatment of tax rate uncertainty on asset prices and Sialm (2009)
for an econometric treatment.

5A case when agents receive transfers exactly at the amount they pay taxes is when Tis = Qis or τn∗′i (Xs −
p∗τ ) = τωin

′(Xs − p∗τ ). This implies (n∗′i − ωin′)(Xs − p∗τ ) = 0. Since (Xs − p∗τ ) includes risky assets, it
cannot be a zero matrix. The vector n∗′i − ωin′ is a vector of zeros for n∗′i = ωin

′, which is a very special case.
With the risk-free asset in zero net supply this requires the first element of n∗i be zero and all of the remaining
elements be equal to the constant ωi. If the risk-free asset is in positive net supply, all elements of n∗i must be
equal to ωi.
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Equilibrium. The equilibrium is given through a vector of prices p∗τ , consumption profiles

c∗i0, c
∗
i1 and portfolios n∗i for i = 1, .., I so that each agent maximizes utility subject to his budget

constraint, given prices p∗τ . Furthermore, the market for the consumption good clears:
∑I
i=1 c̄i0 =∑I

i=1 c
∗
i0 and

∑I
i=1 c

∗
is = n∗′Xs for s = 1, .., S. That this holds comes from the fact that taxes are

just redistributions and do not change aggregate values. Financial assets are in positive net supply

and clear so that
∑I
i=1 n

∗
ij =

∑I
i=1 n̄ij = 1 for j = 1, .., N , and

∑I
i=1 n

∗
i0 = 0 for the risk-free asset.

Pricing equations. The first order conditions lead to a similar pricing equation as for the

no-tax economy, except that after-tax payoffs are priced:

p∗τj = E
[
m∗iX

τ
j

]
. (5.2.12)

The after-tax risk-free payoff is Xτ
0 = X0 − τ(X0 − p∗τ0 ) = 1 − τ(1 − p∗τ0 ), and the after-tax

risk-free rate is

R∗τf =
1− τ(1− p∗τ0 )

E [m∗i (1− τ(1− p∗τ0 ))]
=

1

E[m∗i ]
=

1− τ(1− p∗τ0 )

p∗τ0
. (5.2.13)

The second equality follows from the fact that 1 − τ(1 − p∗τ0 ) is a constant, which can be taken

out of the expectations in the denominator and therefore cancels with the term in the numerator.

The third equality just restates that the denominator is actually the price of the cash flow Xτ
0 =

1− τ(1− p∗τ0 ). The pre-tax risk-free rate is then

R∗f =
1

E [m∗i (1− τ(1− p∗τ0 ))]
=

1

p∗τ0
. (5.2.14)

Using R∗f = 1/p∗τ0 the after-tax return can also be written as R∗τf = 1 + r∗f (1− τ). If the risk-free

rate is not taxed, it is R∗f = 1/E[m∗i ]. Notice that since the risk-free asset is traded, every agent

agrees upon the risk-free rate. It follows that the expected individual SDFs must be equal, which,

in turn, are equal to the expected SDF within the payoff space: E[m∗] = E[m∗i ] for i = 1, .., I.

In an economy with capital gains taxes, the expectations of the SDFs E[m∗i ] play a special role.

This is summarized in the following proposition.

Proposition 5.2.1. Assume an asset j with a pre-tax payoff Xj , and with an after-tax payoff Xτ
j

with positive prices. Capital gains are taxed at a certain tax rate τ ∈ (0, 1). Assume further that

1/E[m∗i ] > τ . The prices of the pre-tax payoff p∗j and of the after-tax payoff p∗τj are only equal as

long as E[m∗i ] = 1 for i = 1, ..., I . With E[m∗i ] greater (less) than one the price of the after-tax

payoff p∗τj is greater (less) than the price of the pre-tax payoff p∗j .

Proof. After tax payoffs are defined as Xτ
j = (1− τ)Xj + τp∗τj . The respective price of this payoff
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is

p∗τj = E[m∗iX
τ
j ] = E[m∗i ((1− τ)Xj + τp∗τj )]

= (1− τ)E[m∗iXj ] + τp∗τj E[m∗i ]. (5.2.15)

This can be rewritten as

p∗τj = p∗j (1− τ) + τp∗τj E[m∗i ], (5.2.16)

which can be rearranged to

p∗τj =
p∗j (1− τ)

1− τE[m∗i ]
. (5.2.17)

Thus, when E[m∗i ] = 1, the tax terms cancel and prices of the pre-tax payoff and the one of the

after-tax payoff are the same. In any other case the prices are not the same. Equation (5.2.17)

shows further that for E[m∗i ] > 1, it follows that (1 − τ)/(1 − τE[m∗i ]) > 1 so that p∗τj > p∗j and

vice versa. Equation (5.2.17) also shows that, given E[m∗i ], i.e., the price of a payoff of one in

every state, one can derive prices of pre-tax from after-tax payoffs and vice versa. The condition

1/E[m∗i ] > τ ensures that the denominator of Equation (5.2.17) is postive.

I assume that 1/E[m∗i ] > τ holds throughout the paper.

Notice that those pre-tax-after-tax price relations use an SDF of the tax economy m∗i . Any

relations to the SDFs of the no-tax economy, i.e., to mi, are still to be obtained.

Notice also that E[m∗i ] = 1 implies that E
[
u′i(c

∗
i1)

u′i(c
∗
i0)

]
= 1/βi. Expected growth of marginal

utility of consumption is exactly equal to the inverse of the impatience factor. Higher growth

implies a lower risk-free rate und lower growth a higher one. A simple log-normal model such

as in Cochrane (2005, pp.10-12) allows for more interpretations of the risk-free rate in terms of

consumption growth. In this case the risk-free rate is low when expected consumption growth is

low or impatience is low, i.e., when beta is high.

The prior proposition has several implications.

Corollary 5.2.1. When the risk-free rate is not taxed, then, according to Equation (5.2.13),

R∗f = 1/E[m∗i ], and it follows that E[m∗i ] = 1 and r∗f = 0 are equivalent for all i = 1, ..., I .

Furthermore, E[m∗i ] greater (less) than one is equivalent with the risk-free rate r∗f being less

(greater) than zero.

Corollary 5.2.2. When the risk-free rate is taxed, then, according to Equation (5.2.13), R∗τf =

1/E[m∗i ], and E[m∗i ] = 1 and r∗τf = 0 are equivalent for all i = 1, ..., I . Furthermore, E[m∗i ] greater

(less) than one is equivalent with the after-tax risk-free rate r∗τf being less (greater) than zero.

Corollary 5.2.3. In the case of a zero risk-free rate, the tax on capital gains has a zero price. From

the above proposition follows that pre- and after-tax prices are the same, i.e., p∗τj = p∗j − p∗(Tj) =
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p∗j , so that p∗(Tj) = 0. Furthermore, whether the risk-free rate of return is taxed as well does not

matter when it is zero because taxes on that asset would also be zero.

In the following section, I continue to analyze equilibrium effects, i.e., how taxes affect prices

and quantities in the no-tax and the tax economy.

5.3 Asset prices and portfolios in the no-tax and the tax economy

5.3.1 General conditions for price equalitiy

I use the endowment economies, the one without and one with a tax on capital gains, that I have

outlined in the prior section. I explore the general conditions under which prices are the same in

the two economies.6

I continue to state the general conditions for asset prices be equal. I start with indiviudal

pricing equations and then continue with aggregate pricing equations and projections.

5.3.1.1 Individual pricing equations

Proposition 5.3.1. Asset prices in the no-tax and in the tax economy are equal, i.e., p = p∗τ , if

and only if

E[miX] = E

[
m∗iX

R∗τf
R∗f

]
, (5.3.1)

for i = 1, .., I.

Proof. I start with the vector of after-tax prices. Similar to the derivation of Equation (5.2.17) for

a single price, the price vector is given by

p∗τ = E[m∗iX
τ ] = E[m∗i ((1− τ)Xτ + τp∗τ )]

= (1− τ)E[m∗iX] + τp∗τE[m∗i ]. (5.3.2)

This can be rearranged to

p∗τ =
1− τ

1− τE[m∗i ]
E[m∗iX]. (5.3.3)

From Equations (5.2.13) we know that R∗τf = 1/E[m∗i ]. Substituting that into the prior equa-

tion I obtain

p∗τ =
1− τ

1− τ/R∗τf
E[m∗iX]. (5.3.4)

6Notice that price equality concerns the tradeable financial assets. Transfer payments are not tradeable and do
not belong to financial assets.
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I multiply the numerator and the denominator by R∗τf , which yields

p∗τ =
R∗τf (1− τ)

R∗τf − τ
E[m∗iX]. (5.3.5)

The denominator is R∗τf − τ = 1 + r∗f (1 − τ) − τ = (1 − τ) + r∗f (1 − τ) = R∗f (1 − τ), so that the

1− τ terms cancel. This leads to

p∗τ = E

[
m∗iX

R∗τf
R∗f

]
, (5.3.6)

which I set equal to p = E[miX] to obtain the condition in the proposition.

Corollary 5.3.1. From Equation (5.2.14), i.e., from the fact that R∗f = 1/p∗τ0 , and from Rf = 1/p0

as well as from price equality of the risk-free assets follows that the risk-free rate in the no-tax

economy is equal to the pre-tax risk-free rate in the tax economy: Rf = R∗f . Furthermore, Rf = R∗f

implies E[mi] = E[m∗i ] and vice versa, which follows from the definition of the risk-free rates.

For example from a pre-tax risk-free gross rate of return greater one, i.e., R∗f > 1, follows that

the after-tax rate is less than the pre-tax rate: R∗τf < R∗f = Rf . After accounting for taxes agents

would require less return than they would in the no-tax economy. They value a unit payoff more

than in the no-tax economy. For a zero risk-free rate pre- and after-tax rates are the same so that

the valuation of a unit payoff would not change.

Corollary 5.3.2. Equation (5.3.1) can also be rewritten in terms of covariances:

E[X]

Rf
+ Cov(mi,X) =

E[X]

R∗f
+ Cov(m∗i ,X)

R∗τf
R∗f

. (5.3.7)

With Rf = R∗f from Corollary 5.3.1, I simplify to obtain

Cov(mi,X) = Cov(m∗i ,X)
R∗τf
R∗f

, (5.3.8)

for i = 1, ..., I .

Furthermore, Proposition 5.3.1 implies a condition that guarantees that the proposition holds.

Corollary 5.3.3. The relation of the individual SDFs

m∗i
R∗τf
R∗f

= mi (5.3.9)

for i = 1, .., I is sufficient to obtain price equality for all assets.

This relation constitutes a strong assumption in that the SDF of any agent in the tax economy

is proportional to the SDF of an equal agent in the no-tax economy in every state. I assume the

agents’ preferences to be the same in both economies so that a comparison makes sense. That

107



5.3. Asset prices and portfolios in the no-tax and the tax economy

means the agents’ individual impatience factors and the parameters and functional form of their

utility functions are the same. That also means it is consumption at t = 0 and consumption in the

different states at t = 1 that determine the SDFs and possible differences in the SDFs of the two

economies. Equation (5.3.9) can be restated as

u′i(ci1) = ζu′i(c
∗
i1), (5.3.10)

in which ζ = u′i(ci0)/u′i(c
∗
i0)R∗τf /R

∗
f is a constant that collects the ratio of the risk-free rates and

the first derivatives of the utility functions of consumption at t = 0. This relation shows that

Equation (5.3.9) implies that marginal utility at t = 1 be proportional.

With a zero risk-free rate the condition in Equation (5.3.1) simplifies to

E[miX] = E [m∗iX] , (5.3.11)

and m∗i = mi is sufficient to fulfill this condition, which is the same as condition (5.3.9) for a

zero risk-free rate. Notice that the above conditions are derived from the price equations, which,

in turn, are the rearranged first order conditions, i.e., the optimality conditions, of the agents.

Thus making those equations hold guarantees optimality. Together they form an aggregate pricing

equation.

5.3.1.2 Aggregate pricing equation

To obtain an aggregate demand function, I sum the individual equations of the form p∗τu′i(c
∗
i0) =

E[βiu
′
i(c
∗
i1)Xτ

r ] over all agents. Rearranging for prices I obtain:

p∗τ = E

[∑I
i=1 βiu

′
i(c
∗
i1)Xτ

r∑I
i=1 u

′
i(c
∗
i0)

]
. (5.3.12)

The aggregate SDF is then

ma∗ =

∑I
i=1 βiu

′
i(c
∗
i1)∑I

i=1 u
′
i(c
∗
i0)

. (5.3.13)

This aggregate SDF prices all assets just as good as the individual SDFs. Given utility functions,

it may help to find an aggregate pricing function.

Consumption, be it individual or aggregate, must lie within the payoff space. Even with taxes,

when there are non-tradeable transfer payments, those payments can be replicated by tradeable

payments because they are linear functions of tradeable payments. If marginal utility is linear

in consumption, the quadratic utility case, all individual SDFs must lie within the payoff space.

Since there can only be one SDF within the payoff space, all individual SDFs must be the same.

Furthermore, it is well-known that this SDF can be written as a linear function in terms of aggregate

consumption c0 and c1, when all agents have the same time discount factor. Appendix 5.7 shows
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a derivation. I come back to this important special case later.

5.3.1.3 Projections of SDFs

As pointed out in Section 5.2.1, there is a unique SDF within the payoff space that prices all

assets, and which is related to the individual SDFs through m = mi + εi, with εi being an error

term orthogonal to the probability induced payoff space (for the tax economy with an asterisk,

respectively).

Proposition 5.3.2. Asset prices in the no-tax and in the tax economy are equal, i.e., p = p∗τ , if

and only if

E[mX] = E

[
m∗X

R∗τf
R∗f

]
, (5.3.14)

in whichm andm∗ are the SDFs in the payoff space in the no-tax and the tax economy, respectively.

Proof. I use the relations m = mi + εi and m∗ = m∗i + ε∗i with errors orthogonal to the probability

induced payoff space, i.e., E[εiX] = 0 and E[ε∗iX
τ ] = 0 for all i. The price vector of the tax

economy is

p∗τ = E[m∗iX
τ ] = E[(m∗ − ε∗i )Xτ ]

= E[m∗Xτ ]− E[ε∗iX
τ ]

= E[m∗Xτ ].

The term E[ε∗iX
τ ] is zero since the error term is orthogonal to the payoff space. For the no-tax

economy the derivation is similar. The remainder is similar to the proof of Proposition 5.3.1.

Since the error terms do not affect the pricing of the assets, the corollaries follow just as before.

Corollary 5.3.4. Corollaries 5.3.1 to 5.3.3 also follow for the SDF within the payoff space, i.e.,

for m and m∗.

5.3.1.4 Budget constraints and market clearing

So far I have found a necessary and sufficient condition for price equality in Proposition 5.3.1 and

a sufficient condition in Corollary 5.3.3. For an actual equilibrium allocation, bugdet constraints

have to be met and markets need to clear as well. In the following, a tax and an equivalent no-tax

economy will compared, which are in equilibrium. Thus, apart from meeting conditions of price

equality the budget constraints and market clearing need to hold, so that this step is also included

in the following analyses.

I will continue as follows: Under the assumptions that the no-tax economy is in equilibrium, I will
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derive sufficient conditions for the existence of a tax equilibrium with prices equal to the ones in

the no-tax economy. To do that, I will draw on the conditions established herein.

5.3.2 Economies with consumption at t = 0 and t = 1

5.3.2.1 A zero risk-free rate and equal consumptions in both economies

In the following I will show that, with a zero risk-free rate, for an equilbrium in the no-tax economy

there exists an equilibrium in the tax economy in which agents circumvent redistribution through

the capital gains tax and through the transfer payments using the same portfolio rule as in Kr-

uschwitz and Löffler (2009). As Kruschwitz and Löffler (2009) point out, equilibria need not be

unique so that other equilibiria may exist that are not consistent with such an allocation.

From the prior section it is obvious that with a zero risk-free rate R∗τf /R
∗
f = 1. Then, the

equality m∗i = mi for i = 1, ..., I is sufficient to obtain price equality, since Corollary 5.3.3 is met.

Since consumption at the different dates are the only variable arguments in the SDFs of the agents,

it is clear that equal consumption of agents in both economies leads to equal SDFs. This follows

from observation of Equation (5.3.10).

It remains to show that there is a portfolio rule that makes equal consumption possible. Budget

constraints have to hold and markets have to clear. I show that the portfolio rule that ensures

equal consumption is the same as the one in Kruschwitz and Löffler (2009).

Before I turn to the portfolio rule, I will make some remarks. With equal individual SDFs,

i.e., with m∗i = mi for i = 1, ..., I , and with a zero risk-free rate, which makes prices of taxes and

transfers zero, asset prices in both economies must be the same and pre-tax prices are equal to after-

tax prices: p = p∗τ = p∗. Asset prices in the tax economy are p∗τ = E[m∗iX
τ ] = E[m∗i (X−T)].

Using this and noting that E[miT] = 0, it follows that p∗τ = E[m∗iX
τ ] = E[m∗i (X − T)] =

E[miX] = p. With equal initial portfolios equal prices imply that agents have the same financial

wealth after initial consumption in both economies: WF
i = W ∗Fτi = W ∗Fi .

Agents receive the same utility as in the no-tax economy. With a zero price of taxes the initial

budget constraints of the agents are also equal to the ones of the no-tax economy. Thus, agents

maximize utility and obey their budget constraints.

I continue to construct the portfolio rule so that consumption is equal in both economies and

that markets clear. With equal initial portfolios and wealth, i.e., agents have the same initial char-

acteristics in both economies, equal consumption means that an optimum in the no-tax economy

is equivalent to an optimum in the tax economy.

Initial consumption is just a constant, which is set equal for any agent in both economies.

Consumption at t = 1 needs more attention.

Proposition 5.3.3. Given equal prices in the tax and the no tax economy, consumptions at t = 1

of all agents i = 1, ..., I are the same in both economies if and only if risky portfolios of all agents
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i for the no-tax and the tax economy are related through

nir = n∗ri(1− τ) + ωiτnr, (5.3.15)

and weights on the risk-free assets are related through

n0i = n∗0i(1− τ) + τ(WF
i − ωiWF ). (5.3.16)

Proof. Consumption of any agent i at t = 1 in the no-tax economy is simply ci1 = n′iX. Consump-

tion in the tax economy is

c∗i1 = n∗′i (X− τ(X− p)) + ωiτn
′(X− p). (5.3.17)

I use the no-tax price notation because p = p∗τ must hold for the portfolios that are implied.

Every investor consumes the same in both economies if ci1 = c∗i1 or

n′iX = n∗′i (X− τ(X− p)) + ωiτn
′(X− p). (5.3.18)

Since WF
i = n∗′i p and WF = n′p, I restate the equation as

n′iX = n∗′i (1− τ)X + τWF
i + ωiτn

′X− ωiτWF . (5.3.19)

For complete markets given n∗i there is a unique solution for ni since X is a square matrix of

full rank. For incomplete markets the system of equations is overdetermined, i.e., a system with

more equations (number of states) than unknowns (number of portfolio weights). Overdetermined

systems need not have a perfect solution at all.7 However in this case there is a unique perfect

solution, which will be verified below. I separate into risky and constant parts, which leads to

ni0 + n′irXr = n∗′i0(1− τ) + τWF
i − ωiτWF + (n∗′ir(1− τ) + ωiτn

′
r)Xr. (5.3.20)

Now, simple observation shows that

n′ir = n∗′ir(1− τ) + τωin
′
r, (5.3.21)

in which the vector n′r is the same as n′ without the first element, i.e., a vector of ones, and

ni0 = n∗i0(1− τ) + τ(WF
i − ωiWF ) (5.3.22)

is a solution to the system of equations. Systems of linear equations can have zero, one or infinitely

7One can still obtain an approximate solution in the least squares sense (see also Williams (1990)).
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many solutions. I found that there is at least one solution to this system of linear equations. It is

also exactly one since the payoffs in the matrix X are linearly independent, so that infinitely many

solutions are not possible.

This is the same relation of shares of risky assets that Kruschwitz and Löffler (2009) propose

for the mean-variance CAPM with taxes on capital gains, with transfers, and with a zero risk-free

rate, to obtain equilibria at equal prices in a tax and a no-tax economy. Since I do not assume

any specific utility function that would imply the mean-variance CAPM, I conclude that their

proposition for portfolio weights is not limited to the mean-variance CAPM.

In the CAPM, I can further simplify because every investor holds the market portfolio8 so that

all elements within the vectors nir and n∗ir are equal, i.e., ni1 = ni2 = ... = nij = ... = niN and

n∗i1 = n∗i2 = ... = n∗ij = ... = n∗iN .

5.3.2.2 The case of linear marginal utility

A special case is marginal utility linear in consumption of all agents, i.e., something like u′i(ci1) =

ai + bici1, and equal time discount factors β = βi for all i. Then, all individual SDFs are equal

and lie within the payoff space. With equal time discount factors, the SDF depends on aggregate

consumption in t = 0 and t = 1 and some constants (see Appendix 5.7). In equilibrium agents

consume all what they have since it is optimal to do that. Aggregate consumption must be the

same in the no-tax and the tax economy, because agents are given the same endowments, and

pre-tax payoffs are the same. Thus, for linear marginal utility and equal time discount factors the

SDF(s) are the same in the no-tax and the tax economy. Given zero risk-free rates, asset prices

must be the same as well. An example of this case for quadratic utility is given in Section 5.4.2.1.

Furthermore, with equal SDFs in both economies, if the risk-free rate is not zero, there is no price

equality, because Proposition 5.3.1 does not hold anymore.9

5.3.3 Economies with consumption only at t = 1

5.3.3.1 General remarks

I continue to look at economies that have no time zero consumption. Kruschwitz and Löffler

(2009) limit their analysis to this kind of economies. In this case the risk-free rate is assumed to be

exogenous to the economy. It is not the result of the trade-off of current and future consumption

as in the model with consumption at t = 0 and at t = 1, because consumption at t = 0 does not

8Kruschwitz and Husmann (2012, pp.186-189) present the Tobin Separation Theorem together with the Mutual
Fund Theorem, which state that every investor holds a share of the market portfolio and of the risk-free asset.

9With m = m∗, in which I leave out the subscript since all individual SDFs are the same, the equation in Propo-

sition 5.3.1 turns into E[mX] = E

[
mX

R∗τf
R∗
f

]
, a statement which is not true for non-zero r∗f .
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take place.10 I also simplify to assume that all of the agents have a time discount factor of one.

An agent’s maximization problem is

max
c∗i1

E[ui(c
∗
i1)], (5.3.23)

subject to the budget constraints at t = 0

n̄i0p
∗τ
0 + n̄′irp

∗τ
r = n∗i0p

∗τ
0 + n∗′irp

∗τ
r (5.3.24)

and at t = 1

c∗i1 = n∗i0(X0 − τ(X0 − p∗τ0 )) + n∗′ir(Xr − τ(Xr − p∗τr )) + ωiτn
′
r(Xr − p∗τr ). (5.3.25)

As in Kruschwitz and Löffler (2009), I rearrange the time zero budget constraint for the quantity

of the risky asset to obtain

n∗i0 = 1/p∗τ0 (n̄i0p
∗τ
0 + n̄′irp

∗τ
r − n∗′irp

∗τ
r ), (5.3.26)

and substitute this expression into the one for consumption and solve the maximization problem

to obtain:

E[u′i(c
∗
i )((X0(1− τ) + τp∗τ0 )p∗τr /p

∗τ
0 (−1) + Xr(1− τ) + τp∗τr )] = 0. (5.3.27)

The equation can be restated as

E[u′i(c
∗
i )(X

τ
r − p∗τr R

∗τ
f )] = 0 (5.3.28)

so that rearrangement leads to

p∗τr =
E[u′i(c

∗
i )X

τ
r ]

R∗τf E [u′i(c
∗
i )]
, (5.3.29)

with the SDFs m∗i =
u′i(c

∗
i )

R∗τf E[u′i(c∗i )]
. An apparent question is whether and in which cases ci = c∗i for

all i would lead to price equality. In this case the SDFs can be rewritten as m∗i =
u′i(ci)

R∗τf E[u′i(ci)]
. Mul-

tiplying by R∗τf /R
∗
f gives m∗i

R∗τf
R∗f

=
u′i(ci)

R∗fE[u′i(ci)]
. SDFs in the no-tax economy are mi =

u′i(ci)

RfE[u′i(ci)]
.

Since the risk-free rate is exogenous, I set R∗f = Rf , i.e., p∗τ0 = p0 as it is done in Kruschwitz and

Löffler (2009). Now the condition in Equation (5.3.9) holds and prices must be equal. Notice that

with consumption only at t = 1, equal consumption does not lead to equal SDFs, but rather to

10The definitions in terms of prices of a pre- or after tax cash flow of one still hold: R∗τf =
1−τ(1−p∗τ0 )

p∗τ0
and R∗f =

1
p∗τ0

.
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proportional SDFs.

However, in equilibrium, the budget constraints have to hold as well. If and only if the portfolio

rules derived in the prior part hold, will there be equal consumptions in both economies. It turns

out that this only holds for a zero risk-free rate. To show this, I start with the budget constraint

in the no-tax economy denoted as in Equation (5.3.26), and I substitute in Equation (5.3.15). This

leads to

n0i = n̄0i + (n̄′ir − n∗′ri(1− τ) + ωiτn
′
r)

pr
p0

(5.3.30)

Now, I use the budget constraint n∗0i = n̄0i + (n∗′ir − n̄′ir)pr/p0 rearranged to n̄0i = n∗0i − (n∗′ir −

n̄′ir)pr/p0 and WF = n′rpr and substitute both into the prior equation, which leads to

n0i = n∗0i + τ(n∗′ripr − ωiWF )
1

p0
(5.3.31)

= n∗0i(1− τ) + τ(WF
i − ωiWF )

1

p0
. (5.3.32)

Notice that this is different from Equation (5.3.16) when p0 is not one, i.e., when the risk-free rate

is not zero. Thus, portfolio rules consistent with equal consumptions of agents cannot be obtained

when prices are equal in both economies.

Even though this path is closed, there are some cases when price equality can be obtained.

However, consumptions are not equal anymore. Notice that for a zero risk-free rate the equal

consumption approach still leads to price equality the same way as in the model with initial

consumption.

5.3.3.2 Multivariate normal payoffs and exponential utility

If the risk-free rate is not zero, condition (5.3.1) has to hold to make prices in the no-tax and the tax

economy equal. Kruschwitz and Löffler (2009) discover that for the CAPM with constant absolute

risk aversion (CARA), for every no-tax economy there is a tax economy with equal prices. They

use arguments from a mean-variance utility approach. I use exponential utility, which is a CARA

utility, and normal consumption, which lead to the CAPM (Cochrane, 2005, pp.154-155), and SDF

arguments to derive the result that CARA utility together with multivariate normal payoffs works

to obtain for every no-tax economy a tax economy with the same prices. I will keep the risk-free

asset in zero net supply. With multivariate normal payoffs, I have to relax the assumption of a

finite and discrete payoff space.

I use exponential utility of the form

ui(ci) = −exp(−αici)
αi

, (5.3.33)

in which αi > 0 is agent i’s coefficient of absolute risk aversion.

Consumption is a linear combination of multivariate normal payoffs so that consumption is
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normal as well. Therefore, I rewrite the expected value in the maximization condition as

E[ui(c
∗
i1)] = −exp(−αiE[c∗i1] + 0.5α2

iV ar(c
∗
i1))

αi
, (5.3.34)

with the budget constraints as in Equations (5.3.24) and (5.3.25). I maximize with respect to asset

weights to obtain the first order conditions. For risky assets I obtain

(1− τ)E[Xr] + τp∗τr − p∗τr
X0 − τ(X0 − p∗τ0 )

p∗τ0
− αi(1− τ)Ω((1− τ)n∗ri + ωiτnr) = 0, (5.3.35)

in which Ω is the covariance matrix of the payoffs of risky assets. Using R∗τf =
X0−τ(X0−p∗τ0 )

p∗τ0
and

cancelling the 1− τ terms leads to

E[Xr]− p∗τr R
∗
f − αiΩ((1− τ)n∗ri + ωiτnr) = 0, (5.3.36)

which can be rearranged for portfolio weights

n∗ri =
1

1− τ

(
1

αi
Ω−1(E[Xr]− p∗τr R

∗
f )− ωiτnr

)
. (5.3.37)

The equation shows that individual portfolio weights depend on the tax rate τ , the coefficient

of absolute risk aversion αi, and the share in transfer payments ωi. Rearranging and summing

Equation (5.3.36) over all agents leads to

(
E[Xr]− p∗τr R

∗
f

) I∑
i=1

1

αi
= Ωnr. (5.3.38)

This is the same as Equation (26) in Kruschwitz and Löffler (2009) when −
∑I
i=1

2
αi

=
∑I
i=1

UiE[c]

UiV ar(c)

holds, in which UiE[c] is the derivative of a mean-variance utility function with respect to the

expected value of consumption and UiV ar(c) is the first derivative of a mean-variance utility function

with respect to the variance of consumption.11 Notice that Equation (5.3.34) is a mean-variance

utility function. The derivatives with respect to the expected value and the variance of consumption

are UiE[c] = exp(−αiE[c∗i1]+0.5α2
iV ar(c

∗
i1)) and UiV ar(c) = − exp(−αiE[c∗i1]+0.5α2

iV ar(c
∗
i1))0.5αi.

It follows that UiE[c]

UiV ar(c)
= − 2

αi
. Summing this expression over agents shows that −

∑I
i=1

2
αi

=∑I
i=1

UiE[c]

UiV ar(c)
holds. It turns out that the ratio UiE[c]

UiV ar(c)
only depends on the coefficient of absolute

risk aversion αi. Notice that Kruschwitz and Löffler (2009) state that this ratio depends on the

individual agents’ variances of consumption and that this is also stated in Meyer (1987) and Lajeri-

Chaherli and Nielsen (1993). However in those two sources the ratios presented are a bit different

in that the denominator uses the derivative of the mean-variance utility function with respect to

11There is a minor typo in Equations (25) and (26) in Kruschwitz and Löffler (2009). In Equation (25) the math-
ematical sign in front of the variance term should be positive as in Equations (13) and (16). Equation (26) has
to be adjusted accordingly.
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standard devation, i.e., UiE[c]

UiStd(c)
, in which Std(·) stands for standard deviation. For the case at

hand this derivative yields UiStd(c) = − exp(−αiE[c∗i1] + 0.5α2
iV ar(c

∗
i1))Std(c∗i1)αi. It follows that

UiE[c]

UiStd(c)
= − 1

Std(c∗i1)αi
, which actually does depend on the standard deviation of consumption.

It turns out that for exponential utility with multivariate normal payoffs, capital gains taxes

under the tax system described herein do not influence asset prices at all. As Equation (5.3.38)

shows, all of the tax terms and dependencies on the tax rate disappear in the aggregate pricing

equation. That leads to the following proposition:

Proposition 5.3.4. In the tax-economy set up above, in which agents have exponential utility

and in which consumption only takes place at t = 1, the product p∗τr R
∗
f , i.e., the ratio p∗τr /p

∗τ
0 ,

does not depend on the tax rate. Furthermore, the corresponding no-tax economy will have the

same product as the tax-economy p∗τr R
∗
f = prRf , i.e., the same ratio p∗τr /p

∗τ
0 = pr/p0.

Proof. I rearrange Equation (5.3.38) to

p∗τr R
∗
f = E[Xr]−

Ωnr∑I
i=1

1
αi

. (5.3.39)

The rhs of this equation is exactly the same for the no-tax economy. The same rhs for both

economies must lead to the same lhs.

Notice that the relation p∗τr R
∗
f = prRf just follows from the model. However, price equality

is only there if the R∗f = Rf . Otherwise, prices would only be proportional but not equal. Since

consumption takes place only at t = 1 the risk-free rate does not say something about the trade-off

of consumption today versus consumption tomorrow. It is exogenous to the economy and will be

chosen so that prices of risk-free assets are equal.

Corollary 5.3.5. Asset prices are equal in the tax and the no-tax economy set up above, with

exponential utility, multivariate normal payoffs and with consumption only at t = 1, when R∗f =

Rf , i.e., when p∗τ0 = p0.

Proposition 5.3.5. Given equilibrium prices, risky portfolios of all agents i for the no-tax and

the tax economy are related through

nir = n∗ri(1− τ) + ωiτnr, (5.3.40)

and risk-free weights are related through

n0i = n∗0i(1− τ) + τ(WF
i − ωiWF )

1

p0
. (5.3.41)

Proof. Equation (5.3.37) for a zero tax rate shows that the equation for the no-tax case is

nri =
1

αi
Ω−1(E[Xr]− prRf ). (5.3.42)
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Regarding the tax case, Equation (5.3.37) can be rearanged to

n∗ri(1− τ) + ωiτnr =
1

αi
Ω−1(E[Xr]− p∗τr R

∗
f ). (5.3.43)

From Proposition 5.3.4 we know that p∗τr R
∗
f = prRf , and it follows that the rhs of Equation

(5.3.42) and (5.3.43) are equal. Thus, the lhs of the two equations are equal as well.

For the weight on the risk-free asset, I use the budget constraint of Equation (5.3.26) but for

the no-tax economy, and I substitute in Equation (5.3.15). This leads to

n0i = n̄0i + (n̄′ir − n∗′ri(1− τ)− ωiτn′r)
pr
p0

(5.3.44)

I use the relations n̄0i + n̄′irpr/p0 = WF
i /p0 and WF = n′rpr and substitute both into the prior

equation, which leads to:

n0i = WF
i

1

p0
− n∗′ri(1− τ)

pr
p0
− ωiτWF 1

p0
(5.3.45)

Now, I add a constructive zero in the form of n∗0i(1− τ)p0/p0−n∗0i(1− τ) and rearrange to obtain

the weight on the risk-free asset from the proposition

n0i = n∗0i(1− τ) + τ(WF
i − ωiWF )

1

p0
. (5.3.46)

The portfolio rule for risky assets is the same as for the case with the zero risk-free rate and

equal consumption and it is the same as the one presented in Kruschwitz and Löffler (2009) for

the constant absolute risk aversion case. Different from Kruschwitz and Löffler (2009) I find that

one only needs equal prices of the risk-free assets and price equality of risky assets follow. The

weight on the risk-free assets is now different from the one presented before (Equation (5.3.16)) in

that the price of the risk-free asset appears in the equation. That means individual consumptions

of agents are not equal in the no-tax and the tax economy. The budget constraints are used in

constructing portfolio rules and the resulting portfolio rules sum over agents to one for risky assets

and to zero for the risk-free assets. It follows that budget constraints are met and markets clear.

From Equation (5.3.9) we know that m∗i
R∗τf
R∗f

= mi is a sufficient condition to obtain price

equality for the tax and the no-tax economy. However, the converse does not have to be true. There

may be other relations of SDFs that also lead to price equality. However, under the specifications

made in this section price equality also leads to m∗i
R∗τf
R∗f

= mi.

Proposition 5.3.6. For the type of economy set up herein, given equality of prices of a tax and

a no-tax economy, the condition in Equation (5.3.9) holds.

Proof. To use the SDF language I use the budget constraint (5.3.26) in the consumption part of

Equation (5.3.23) and take derivatives with respect to n∗ir. I obtain 0 = E[u′i(c
∗
i1)(Xτ

r −R∗τf p∗τr )].
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I rearrange the expression to

p∗τr = E

[
u′i(c

∗
i1)

R∗τf E[u′i(c
∗
i1)]

Xτ
r

]
, (5.3.47)

in which m∗i =
u′i(c

∗
i1)

R∗τf E[u′i(c
∗
i1)] is the stochastic discount factor. Without taxes the SDF is mi =

u′i(ci1)
RfE[u′i(ci1)] . I start with the SDFs of the tax economy and rewrite them to obtain

m∗i =
u′i(c

∗
i1)

R∗τf E[u′i(c
∗
i1)]

=
exp(−αic∗i1)

R∗τf E[exp(−αic∗i1)]

=
exp(−αic∗i1)

R∗τf exp(−αiE[c∗i1] + 0.5α2
iV ar(c

∗
i1))

. (5.3.48)

The second equality uses the first derivative of the utility function (5.3.33) with respect to con-

sumption. The third equality uses the fact that consumption is normally distributed. Consumption

from Equation (5.3.25) consists of a risky part c∗i1r and a risk-free part c∗i1f : c
∗
i1 = c∗i1r + c∗i1f , in

which c∗i1r = (n∗′ir(1−τ)+ωiτn
′
r)Xr and c∗i1f = n∗0(X0−τ(X0−p∗τ0 ))+ τn∗′irp

∗τ
r −ωiτn′rp∗τr . From

Equation (5.3.15) we know that the risky part of consumption in the tax and the no-tax economy

are equal for any agent: c∗i1r = ci1r. That also means that V ar(c∗i1) = V ar(ci1). Using that I

rewrite the SDF to

m∗i =
exp(−αici1r) exp(−αic∗i1f )

R∗τf exp(−αiE[ci1r]) exp(−αiE[c∗i1f ]) exp(0.5α2
iV ar(ci1))

=
exp(−αici1r)

R∗τf exp(−αiE[ci1r]) exp(0.5α2
iV ar(ci1))

. (5.3.49)

In the second equality the exp(−αiE[c∗i1f ]) terms cancel out. That leads to

R∗τf
R∗f

m∗i =
exp(−αici1r)

R∗f exp(−αiE[ci1r]) exp(0.5α2
iV ar(ci1))

. (5.3.50)

The SDF of the no-tax economy can be written as

mi =
u′i(ci1)

RfE[u′i(ci1)]

=
exp(−αici1)

RfE[exp(−αici1)]

=
exp(−αici1)

Rf exp(−αiE[ci1] + 0.5α2
iV ar(ci1))

=
exp(−αici1r) exp(−αici1f )

Rf exp(−αiE[ci1r]) exp(−αiE[ci1f ]) exp(0.5α2
iV ar(ci1))

=
exp(−αici1r)

Rf exp(−αiE[ci1r]) exp(0.5α2
iV ar(ci1))

. (5.3.51)

With price equality Rf = R∗f so that Equation (5.3.51) is equal to Equation (5.3.50).
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Some remarks on wealth are appropriate. It turns out that aggregate consumptions are the

same in both economies because aggregate payoffs are the same. However, individual consumptions

differ as was noted before. Consumption is also valued differently so that wealth differs between

the economies. For example an agent i would value aggregate wealth as follows:

W ∗F = E(m∗i c1) = E(mic1)
R∗f
R∗τf

= WF
R∗f
R∗τf

. (5.3.52)

Equation (5.3.52) shows that, with a positive risk-free rate, wealth in the tax economy is greater

than in the no-tax economy. Individually, equal initial portfolio holdings and price equality imply

that the values of the pre-trade portfolios are the same in the tax-economy and the no-tax economy:

n̄′ip
∗τ = n̄′ip. (5.3.53)

The increased aggregate wealth in the tax economy is due to transfer payments. I price the sum

of the after-tax portfolio payoff n∗
′

i Xτ and transfer payments Qi = ωiτn
′
r(Xr − pr), which is an

agent’s total wealth, i.e., the tradeable and the nontradeable part of wealth:

W ∗Fi = n′ip
∗τ + ωiτn

′
r

(
p∗τr R

∗
f

R∗τf
− p∗τr
R∗τf

)
= W ∗Fτi +W ∗Fτ

ωiτr
∗
f

R∗τf
(5.3.54)

= W ∗Fτi +WF
ωiτr

∗
f

R∗τf
(5.3.55)

Notice that due to price equality n′rp
∗τ
r = WF = W ∗Fτ .

To obtain price equality agents must value the after-tax payoffs in the tax economy equally

to the untaxed payoffs in the no-tax economy. For this reason the different values of total wealth

must result.

5.3.3.3 Marginal utility linear in consumption

I treat the case of marginal utility linear in consumption, i.e., marginal utility of the form u′i(ci) =

ai + bici. That implies a quadratic utility function. Integration yields ui(ci) = aici + 0.5bic
2
i + di,

in which di is a constant. The constant di just shifts the utility function up or down and has no

impact on marginal utility. To have risk-averse agents the second derivative has to be negative,

which leads to u′′i (ci) = bi < 0.12 I additionally assume that consumption is nonnegative (ci ≥ 0)

and less than or equal to bliss point consumption at ci ≤ cbi = −ai/bi, which is the extremum of

the utility function. Since bi < 0, for a positive bliss point, ai must be positive as well. Those

conditions also ensure positive marginal utility (ai + bici > 0).

For an important special case of marginal utility bi = −1, so that ai = cbi is the bliss point

12With risk-loving agents it is hard to ensure the exitence of equilibrium because of non-convexity of prefer-
ences.Araujo et al. (2014) show examples of equibilibria of economies with risk-averse and risk-loving agents.
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consumption. Agents have quadratic utility of the form

ui(ci) = −0.5(ci − cbi )2. (5.3.56)

This leads to marginal utility linear in consumption of the form

u′i(ci) = cbi − ci. (5.3.57)

I use this specification for the tax economy in Equation (5.3.27) and simplify to obtain

E[(cbi − c∗i )(Xr − p∗τr /p
∗τ
0 )] = 0. (5.3.58)

Summing over agents leads to

E[(cb − c∗)(Xr − p∗τr /p
∗τ
0 )] = 0. (5.3.59)

This leads to the following proposition:

Proposition 5.3.7. In the tax-economy set up above, in which agents have quadratic utility and

in which consumption only takes place at t = 1, the product p∗τr R
∗
f , i.e., the ratio p∗τr /p

∗τ
0 , does

not depend on the tax rate. Furthermore, the corresponding no-tax economy will have the same

product as the tax-economy p∗τr R
∗
f = prRf , i.e., the same ratio p∗τr /p

∗τ
0 = pr/p0.

Proof. Since aggregate consumptions are the same in the tax and the no-tax economy, i.e., c∗ = c,

the term p∗τr /p
∗τ
0 in Equation (5.3.59) also does not depend on a tax rate.

Quadratic utility implies a mean-variance utility function and the CAPM. It was not mentioned

in Kruschwitz and Löffler (2009) as producing equilibria with equal prices. However, the term∑I
i=1

UiE[c]

UiV ar(c)
is also independent from the tax rate for quadratic utility. Taking expectations of

Equation (5.3.56) and expanding the quadratic expression leads to

E[ui(ci)] = −0.5E[c2i ] + cbiE[ci]− 0.5cb2i (5.3.60)

= −0.5V ar(ci)− 0.5E[ci]
2 + cbiE[ci]− 0.5cb2i . (5.3.61)

It follows that UiE[c]

UiV ar(c)
= 2(E[ci] − cbi ) and

∑I
i=1

UiE[c]

UiV ar(c)
= 2(E[c] − cb). Aggregating c∗i this way

would lead to aggregate consumption in the tax economy, i.e., to c∗. But aggregate consumptions

are the same so that
∑I
i=1

UiE[c]

UiV ar(c)
=
∑I
i=1

UiE[c∗]
UiV ar(c∗)

or 2(E[c]− cb) = 2(E[c∗]− cb).

This can be generalized to any function with marginal utility linear in consumption:

Proposition 5.3.8. In the tax-economy set up above, in which agents have utility that leads to

linear marginal utility and in which consumption only takes place at t = 1, the product p∗τr R
∗
f ,

i.e., the ratio p∗τr /p
∗τ
0 , does not depend on the tax rate. Furthermore, the corresponding no-tax

120



5.4. Discussion of the results and limitations of the analyses

economy will have the same product as the tax-economy p∗τr R
∗
f = prRf , i.e., the same ratio

p∗τr /p
∗τ
0 = pr/p0.

Proof. A single agent’s pricing equation is

p∗τr /p
∗τ
0 =

E[(ai + bic
∗
i )Xr]

ai + biE[c∗i ]
. (5.3.62)

I aggregate in a fashion similar to Appendix 5.7

p∗τr /p
∗τ
0 = E

[
Xr

∑I
i=1

ai
bi

+ c∑I
i=1

ai
bi

+ E[c]

]
, (5.3.63)

The remainder is the same as in the proof of Proposition 5.3.7.

For the portfolio rule it suffices to look at consumption, since marginal utility is a simple linear

function of consumption. I use the budget constraint (5.3.26) in Equation (5.3.25), which leads to

c∗i = n̄i0X
τ
0 +

(
1

p∗τ0
(1− τ)(n̄′ir − n∗′ir) + τ n̄′ir

)
p∗τr + (n∗′ir(1− τ) + ωiτn

′
r)Xr − ωiτn′rp∗τr

(5.3.64)

The term n∗′ir(1− τ) + ωiτn
′
r attached to Xr shows that the portfolio rule for risky asset shares is

the same as in Proposition 5.3.5. Substituting that into the budget constraint also leads to one for

the risk-free asset as in Proposition 5.3.5. Thus, budget constraints are considered and markets

clear as before.

5.3.4 Other utility functions

The cases presented before led to aggregate pricing functions that were independent from the

tax rate. Therefore, together with the convenience that the price of the risk-free asset can be

chosen, asset prices are the same in the tax and the no-tax economy. For other utility functions,

which lead to nonlinear marginal utility, aggregation does not generally lead to an aggregated

SDF that is linear in aggregate consumption. For example for power utilty of the form ui(ci) =

(ci)
1−αi/(1−αi) marginal utility is c−αii . Aggregation leads to

∑I
i=1 c

−αi
i , which does not generally

allow a statement in terms of aggregate consumption. Thus, if I use consumption in the tax

economy c∗i , the tax terms remain in the pricing equation, and prices remain dependent on taxes.

5.4 Discussion of the results and limitations of the analyses

5.4.1 Some general remarks

I begin with a general discussion of the results especially with regard to the results derived in

Kruschwitz and Löffler (2009). I show in particular that the results in Kruschwitz and Löffler
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(2009), which are derived for mean-variance optimizing agents, also hold for agents maximizing

expected utility over consumption. I additionally stress the result, that a zero risk-free rate leads

to tax payments with a price of zero. That makes pre- and after-tax prices as well as wealth before

and after taxes and transfers equal. For expositional reasons, I chose to compare an economy with

a tax rate of zero and one with a non-zero tax rate. However, the argumentation above can be

carried out for any pair of different tax rates. There is no need that one has to be zero. That should

be already clear from the fact that to obtain price equality in the tax and the no-tax economy it

does not matter what the value of τ is.

A zero risk-free rate leads to zero prices of captial gains taxes.13 By the same token, one

could argue that a risk-free rate going to zero makes prices of tax payments going to zero as

well. This suggests that price distortions through the tax can be reduced and even be eliminated

through changing the risk-free rate towards to zero. However, there are some problems with this

argumentation. First, when there is the possibility of more than one equilibrium, one cannot

be sure that the introduction of capital gains taxes or a change of the tax rate will lead to the

equilibrium that corresponds to the equilibrium before the change and therefore leaves prices

unchanged. Kruschwitz and Löffler (2009) also mention that the CAPM typically has several

equilibria with different price vectors. They show that there exists at least one equilibrium with an

unchanged price vector when taxes are introduced. The CAPM does not rely on complete markets

so that there is no market completeness that would contribute to a unique solution. For the case

herein, if there is a single solution, the portfolio changes derived herein are consistent with price

equality and with the same consumption streams of agents before and after the tax rate change.

The second problem is that the argumentation of making the risk-free rate zero leaves the question

open on how this is done. If the risk-free rate is exogenous to the economy, one can leave all else

equal and change the rate towards zero to reduce price distortions. However, if the risk-free rate is

endogenous one cannot just change the risk-free rate leaving all else equal. Then, there exist some

more fundamental causes that change the risk-free rate.

In practice, the tax system is much more complex than the one set up here. For example, the

tax system outlined here is symmetric in the way that positive and negative capital gains are taxed

equally. This is crucial to obtain the result of a zero price of taxes with a zero risk-free rate. In

the U.S. negative capital gains can be deducted from taxes only up to 3000 USD and there need

to be taxes paid in the first place to have something to deduct the losses from.14 Introducing more

periods and tax losses that can be carried forward complicates the analysis even more. Thus, a

more realistic tax system at least weakens the conclusions drawn here. The consequences of a more

realistic tax code show scope for future research on the topic.

13A zero risk-free rate is difficult to obtain. Even though rates are currently very low especially in Europe, this
is not the usual condition. There are many further issues such as that we only observe proxies of risk-free rates
and that those rates usually have a non-flat term structure.

14For further reference on rules for the treatment of capital gains and losses in the U.S. see https://www.irs.
gov/taxtopics/tc409.html.
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For the model with consumption at t = 0 and t = 1 the risk-free rate is endogenous. I show that

with linear marginal utility, there can never be price equality for a risk-free rate not equal to zero.

This is because the prices of the risk-free assets differ in the tax and the no-tax economy. However,

when consumption takes place only at t = 1 so that the risk-free assets’ prices are exogenous and

chosen to be equal, price equality can be established for linear marginal utility as well.

Without a zero risk-free rate but with exponential utility (CARA utility) and multivariate

normal payoffs there is again an equilibrium that is constistent with unchanged prices. Expo-

nential utility implies constant absolute risk aversion and increasing relative risk aversion (IRRA)

(Lengwiler, 2004, p.92). This utility specification is convenient because together with the nor-

mality assumption it leads to the CAPM. But it is not how we think about the characteristics of

economic agents. Decreasing absolute risk aversion (DARA) and constant relative risk aversion

(CRRA) seem intuitively and empirically to be more realistic (Lengwiler, 2004, p.87).

Having noted this, and looking at the current situation with relatively low real and nominal

rates in Europe and the U.S., I will provide a simple numerical example on asset price distortions

through different capital gains tax rates and different risk-free rates.

5.4.2 A simple example with quadratic utility and consumption at t = 0 and t = 1

5.4.2.1 Model specification and base case with a zero risk-free rate

I use a simple model with two agents I = 2, two risky assets N = 2, and a risk-free asset. There

are three states and the payoffs are not redundant so that the asset market is complete. I set the

time discount factors of the agents to one, so that I do not have to consider them explicitly here.

I summarize the characteristics of the two agents in Table 5.1.

Table 5.1: Characteristics of agents

Parameter Agent 1 Agent 2 Aggregate

cbi 1.5 2 3.5
c̄i0 0 1 1
n̄′i (0 1 1) (0 0 0) (0 1 1)

The payoff space is specified as follows:

X =


1 1 1

0.4 2 0

0 0 3

 . (5.4.1)

As before rows are assets and columns are states. Since the risk-free asset is in zero net supply,

aggregate consumption in the three states is c1 = (0.4 2 3). The linear marginal utility of the
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agents leads to simple expressions for the SDFs with

mi =
cbi − ci1
cbi − ci0

, (5.4.2)

for i = 1, 2. Due to market completeness the SDFs of the two agents are equal. Furthermore, due

to the linearity of marginal utility of consumption, the SDF can be represented through aggregate

consumption and aggregate bliss point consumption:

mi =
cbi − ci1
cbi − ci0

=
cb − c1
cb − c0

, (5.4.3)

for i = 1, 2. To see that one can write down the vector of prices in the form

p = E

[
cbi − ci1
cbi − ci0

X

]
(5.4.4)

and multiply both sides by cbi − ci0. The resulting expression is (cbi − ci0)p = E
[
(cbi − ci1)X

]
for

i = 1, 2. Now, one can simply add up those expressions for the two agents to obtain (cb1 − c10 +

cb2− c20)p = E
[
(cb1 − c11 + cb2 − c21)X

]
, which is the same as (cb− c0)p = E

[
(cb − c1)X

]
, and can

be rearranged to

p = E

[
cb − c1
cb − c0

X

]
. (5.4.5)

I summarize statewise the probabilities πs, the elements of the SDF ms and state prices κs for

s = 1, 2, 3 in Table 5.2. The SDF is given through aggregate consumption and the aggregate

bliss points. I choose the probabilities so that I obtain a zero risk-free rate, i.e., a gross risk-

free rate of one. This can be verified through summing up the state prices in the table, which

sum up to one. That allows to compute the asset prices, which are p′ = (1.00 0.63 0.05). To

Table 5.2: Summary of pricing components

States s πs ms κs

1 0.67 1.24 0.83
2 0.25 0.60 0.15
3 0.08 0.20 0.02

obtain portfolio weights I use the fact that m = (cbi − ci1)/(cbi − ci0). I substitute ci1 = n′iX and

ci0 = (n̄′ip + c̄i0)− n′ip into this expression and rearrange for portfolio weights. This yields

n′i = (cbi + ((n̄′ip + c̄i0)− cbi )m)(pm+ X)−1. (5.4.6)

I use this equation to compute portfolio weights ni, initial consumption ci0, wealth after initial

consumption WF
i , and consumption at t = 1 for the different states ci1. Table 5.3 summarizes this

information. The table shows that the agents put equal weights on the risky assets. Quadratic
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5.4. Discussion of the results and limitations of the analyses

Table 5.3: Summary of agents’ portfolios, consumption and wealth in the no-tax economy

Agent i ni ci0 WF
i ci1

1 (−0.03 0.44 0.44) 0.41 0.27 (0.15 0.85 1.28)
2 (0.03 0.56 0.56) 0.59 0.41 (0.25 1.15 1.72)

1+2 (0.00 1.00 1.00) 1.00 0.68 (0.40 2.00 3.00)

utility implies the CAPM (Cochrane, 2005, p. 153), which, in turn, implies that every agent holds

a share of the portfolio of risky assets. Thus, every agent must hold the same share of every risky

asset.

In the tax economy the SDF does not change because aggregate consumption does not change.

I again use the fact that m∗ = m = (cbi − c∗i1)/(cbi − c∗i0). The tax rate τ is 40%. I substitute

c∗i1 = n∗′i (X− τ(X− p∗τ )) + ωiτn
′(X− p∗τ ) and ci0 = (n̄′ip

∗τ + c̄i0)− n′ip
∗τ into this expression

and rearrange for portfolio weights. This yields

n∗′i =(cbi + ((n̄′ip
∗τ + c̄i0)− cbi )m− ωiτn′(X− p∗τ ))

(p∗τm+ X(1− τ) + τp∗τ )−1. (5.4.7)

I use this expression to compute portfolio weights n∗i , initial consumption c∗i0, wealth after

consumption W ∗Fτi , and consumption at t = 1 for the different states. The results are presented

in Table 5.4. Expectedly, the only change compared to the result in Table 5.2 is the change in the

Table 5.4: Summary of agents’ portfolios, consumption and wealth in the tax economy

Agent i n∗i c∗i0 W ∗Fi c∗i1

1 (−0.09 0.53 0.53) 0.41 0.27 (0.15 0.85 1.28)
2 (0.09 0.47 0.47) 0.59 0.41 (0.25 1.15 1.72)

1+2 (0.00 1.00 1.00) 1.00 0.40 (0.40 2.00 3.00)

portfolio weights. Alternatively to Equation (5.4.7), one can also use the expression in Proposition

5.3.3 rearranged for n∗′i , which yields exactly the same portfolios weights, which, in turn, imply

equal consumption in both economies. I continue to look at effects of changes in the risk-free rate

on prices.

5.4.2.2 Price distortions through a non-zero risk-free rate

In the constructed model the risk-free rate is endogenous. Thus, there must be a change in the

basic economy to induce a change in the risk-free rate. I alter the risk-free rate through using

different probabilities of the states, and I hold the remaining parameters constant. This leaves the

SDF unchanged but leads to new state prices. Notice that with quadratic utility and βi = 1 for

all i, E[m] = 1 means that

E

[
cb − c1
cb − c0

]
= 1, (5.4.8)
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which implies that E[c1] = c0 or zero expected consumption growth. Changing bliss point con-

sumption changes prices but will eventually not lead to a zero risk-free rate. With an impatience

factor β equal for all agents and not equal to one, it is possible to change bliss point consumption

so that a zero risk-free rate can be obtained.

The endogeneity of the risk-free rate makes clear that a change in the risk-free rate is triggered

by some fundamental change in the economy. Thus, it is not instructive to compare the pair of a

no-tax and a tax economy at a zero risk-free rate with a pair of economies at a different risk-free

rate. Furthermore, the same value for the risk-free rate can be obtained through different changes

of fundamental parameters, leading to different prices and price differences in both economies.

Therefore, I restrict the analysis to changes in the probabilities of states one and three.

To compute a target risk-free rate RTf , I use the fact that 1/RTf = E[m] = m1π1 +m2π2 +m3π3,

where the subscripts in the last equality are states. Probabilities must sum to one so that 1/RTf =

m1π1 +m2π2 +m3(1− π1 − π2). I rearrange for π1:

π1 =
1/RTf −m2π2 −m3 +m3π2

m1 −m3
. (5.4.9)

Probability π2 remains unchanged and π3 = 1− π1 − π2.

The model with quadratic utility is very convenient to compute price differences because the

discount factor does not change when going from the no-tax to the tax economy. Since the SDF

does not change, the pre-tax price in the tax economy is equal to the price in the no-tax economy:

p∗ = p. That holds for any risk-free rate, but it is special to the quadratic utility. Therefore, I

can use Equation (5.2.17), in which I substitute in pj for p∗j and 1/R∗τf for E[m∗]:

p∗τj =
pj(1− τ)

1− τ/R∗τf
. (5.4.10)

I rearrange Equation (5.4.10) to an expression that yields the price difference in percent of price

in the tax economy:

pj − p∗τj
p∗τj

=
1− τ/R∗τf

1− τ
− 1. (5.4.11)

Thus, for quadratic utility the percentage change in price versus the no-tax case is the same for

any asset j. As the prior equation shows, the rhs does not depend on any asset specific parameter.

The unchanged SDF between the no-tax and the tax economy also means that the risk-free rate

in the no-tax economy is equal to the after-tax risk-free rate in the tax economy: Rf = 1/E[m] =

1/E[m∗] = R∗τf . I show the results for some ranges of the after-tax risk-free rate and the tax rate

in Table 5.5. I also provide the implied pre-tax risk-free rates on the rhs of the table.

The table shows that a higher risk-free rate increases the price difference between prices in the

tax economy and those in the no-tax economy. For example for r∗τf = 20% and a tax rate of 5%

the prices in the no-tax economy are 0.9% higher than in the tax economy. For r∗τf = −5% the
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Table 5.5: Price changes through capital gains taxes for different risk-free rates

Price changes pj−p∗τj
p∗τj

Implied pre-tax risk-free rate r∗f

r∗τf = r∗τf =

-5 0 5 10 15 20 -5 0 5 10 15 20

5 -0.3 0.0 0.3 0.5 0.7 0.9 -5.3 0.0 5.3 10.5 15.8 21.1
10 0.6 0.0 0.5 1.0 1.4 1.9 -5.6 0.0 5.6 11.1 16.7 22.2

τ = 20 -1.3 0.0 1.2 2.3 3.3 4.2 -6.3 0.0 6.3 12.5 18.8 25.0
30 -2.3 0.0 2.0 3.9 5.6 7.1 -7.1 0.0 7.1 14.3 21.4 28.6
40 -3.5 0.0 3.2 6.1 8.7 11.1 -8.3 0.0 8.3 16.7 25.0 33.3

All numbers are in percent and rounded to one decimal.

prices in the no-tax economy are 0.3% less than the ones in the tax economy. The columns of the

table show that the magnitudes increase with an increasing tax rate.

I show the effects of the combination τ = 40% and r∗τf = 20% a bit more in detail. The price

vector in the no-tax economy is then p′ = (0.83 0.55 0.14), which means that assets are worth

0.69 (the last two prices). In the tax economy the price vector is p∗τ ′ = (0.75 0.50 0.13), so that

the total value of financial assets amounts to 0.63. The differences of the values reflect the 11.1%

given in Table 5.5.

Table 5.6: Summary of agents’ portfolios, consumption and wealth in the no-tax and the tax
economy

No-tax economy

Agent i ni ci0 WF
i ci1

1 (−0.02 0.44 0.44) 0.41 0.28 (0.15 0.85 1.28)
2 (0.02 0.56 0.56) 0.59 0.41 (0.25 1.15 1.72)

Tax economy

Agent i n∗i c∗i0 W ∗Fi c∗i1

1 (−0.13 0.54 0.54) 0.39 0.24 (0.12 0.83 1.28)
2 (0.13 0.46 0.46) 0.61 0.39 (0.28 1.17 1.72)

The assumed tax rate is 40% and r∗τf = 20%.

Consumption in t = 0 and t = 1 as well as wealth are different between the economies. Notice,

however, that the agents’ consumption does not change a lot (Table 5.6). They try to stick to

the pattern that was optimal without taxes. The tax transfers, which now have a non-zero price,

cannot be traded at t = 0 so that agents have to rearrange what they want to consume now

and what they want to save for the next period. With quadratic utility they can do that without

changing the SDF. In the no-tax economy agents can trade all of the claims on future consumption,

which leads to a different division of endowments into intial consumption and wealth, as well as to

a changed future consumption.

Still with a complete asset market but with a more demanding utility function such as power

utility, aggregation of marginal utilities is more complicated and does not involve just summing up
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consumption of agents. It involves summing over nonlinear functions of consumption. That means

introducing taxes will likely not leave the SDF unchanged, which in turn can lead to different

risk-free rates in the two economies. Then, something like Table 5.5 needs a new interpretation

because r∗τf = rf is not likely to hold anymore.

5.5 Conclusion

I extend the analysis of Kruschwitz and Löffler (2009) about the effects of capital gains taxes

on asset pricing. Specifically, they analyze cases when taxes do not change prices in a mean-

variance CAPM with consumption only at one future point in time. I extend the analysis to

agents who maximize expected utility over consumption. I construct two economies that have

equal endowments, utility functions of investors and payoffs. I look at economies with consumption

at t = 0 and t = 1. I find that, with a risk-free rate of zero, taxes on returns have zero value.

Using this result, I can show that for a no-tax economy there exists a tax economy with the same

asset prices. This is the case when investors change their portfolios to consume the same in the tax

economy in every state as in the no-tax economy. This implies the same portfolio rule as proposed

in Kruschwitz and Löffler (2009). With a non-zero risk-free rate equilibria with equal prices and in

which agents consume the same in the tax as in the no-tax economy do not generally exist. In the

case of linear marginal utility, prices are always different in both economies for a non-zero risk-free

rate.

Furthermore, I show that with exponential utility, multivariate normal payoffs, and consump-

tion only in t = 1, prices are equal when the risk-free rate in both economies are the same. But this

time taxes do not have zero value so that aggregate wealth after initial consumption is different in

both economies. Individual consumption profiles as well as SDFs are different in the two economies.

I find that the portfolio rule for risky assets is the same as in Kruschwitz and Löffler (2009) and

the same is true for the case with a zero risk-free rate and in which all agents consume the same in

both economies in every state. Additionally, utility functions that lead to linear marginal utility

also have equilibria with equal prices. Aggregation makes the pricing equation independent from

the tax rate. With nonlinear marginal utility, price equality cannot generally be obtained since

aggregation will keep the tax rate terms in the aggregate pricing equation. Eventually, also in the

case with consumption only at t = 1, a zero risk-free rate leads equal price vectors for the two

eocnomies.
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5.6 Appendix - Alternative derivation for the exponential utility case with multi-

variate normal payoffs

Another approach to obtain the same the pricing equation but to keep more track of the SDF

language is to use Stein’s lemma. The SDF is a function of consumption, which, in turn, is normally

distributed. The vector Xτ
r still contains the tax expression so that I can rearrage p∗τr = E [m∗iX

τ
r ]

to obtain the known equation p∗τr = E
[
m∗iXr

R∗τf
R∗f

]
.

I use the definition for the SDF, i.e., m∗i =
u′i(c

∗
i )

R∗τf E[u′i(c∗i )]
. Assuming multivariate normal payoffs,

I use Stein’s Lemma for the pricing equation:

p∗τr = E

[
m∗iXr

R∗τf
R∗f

]
=
E[Xr]

R∗f
+ Cov(m∗i ,X)

R∗τf
R∗f

=
E[Xr]

R∗f
+ Cov(u′i(c

∗
i ),Xr)

1

R∗fE[u′i(c
∗
i )]

=
E[Xr]

R∗f
+ E[u′i(c

∗
i )]Cov(c∗i1,Xr)

1

R∗fE[u′i(c
∗
i )]

=
E[Xr]

R∗f
+ E[u′i(c

∗
i )]Ω(n∗ri(1− τ) + ωiτnr)

1

R∗fE[u′i(c
∗
i )]
. (5.6.1)

Maringal utility of consumption at t = 1 is

u′i(c
∗
i1) = exp(−αic∗i1). (5.6.2)

The second derivative with respect to c∗i1 is

u′′i (c∗i1) = −αi exp(−αic∗i1) = −αiu′i(c∗i1). (5.6.3)

I substitute this back into Equation (5.6.1) to obtain

p∗τr =
E[Xr]

R∗f
− α

R∗f
Ω(n∗ri(1− τ) + ωiτnr). (5.6.4)

This is the same as Equation (5.3.36), which can be aggregated to Equation (5.3.38). For the

no-tax economy using Stein’s Lemma gives

p =
E[X]

Rf
+− αi

Rf
Ωnri. (5.6.5)

With equal prices so that also R∗f = Rf , Equations (5.6.1) and (5.6.5) lead to

n∗ri(1− τ) + ωiτnr = nri, (5.6.6)

which is expectedly the same portfolio rule derived earlier. Using the budget constraints leads to

the same rule for the risk-free asset as before.
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5.7 Appendix - Linear marginal utility and aggregation

I denote a general form of linear marginal utility as u′(ci1) = ai+ bici1, so that the individual SDF

for the model with consumption at times t = 0 and t = 1 is

mi1 = β
ai + bici1
ai + bici0

. (5.7.1)

Putting that into Equation (5.2.5) and multiplying by (ai + bici0), I obtain

p(ai + bici0) = E [Xβ(ai + bici1)] . (5.7.2)

I divide by bi and and sum over all i to obtain

p(
I∑
i=1

ai
bi

+ c0) = E

[
Xβ(

I∑
i=1

ai
bi

+ c1)

]
, (5.7.3)

in which c0 =
∑I
i=1 ci0 and c1 =

∑I
i=1 ci1. Rearrangig again leads to

p = E

[
Xβ

∑I
i=1

ai
bi

+ c1∑I
i=1

ai
bi

+ c0

]
. (5.7.4)

Aggregate values for consumption can be used in the SDF. For the form of quadratic utility that

is used in Cochrane (2014) and also herein, i.e., for u(cit) = −0.5(cit − cbi )2, marginal utility is

cit− cbi , so that bi = −1 for all i and ai = cbi . Notice that the time discount factors β are equal for

all agents. With different time discount factors the equation changes to

p = E

[
X

∑I
i=1

ai
bi

+ c1∑I
i=1

1
βi

(aibi + c0i)

]
, (5.7.5)

which shows that aggregate consumption at t = 0 cannot generally be used in the SDF.
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Chapter 6

Conclusion

6.1 Summary

I will give a quick summary here and then focus on possible future research in the next section. I

provide four articles that analyze how taxes affect asset prices. The first article investigates the

applicable discount rate to discount (expected) tax savings, when a company has risky debt. The

article makes clear that the usual discount rates such as the risk-free rate or the cost of debt are only

correct in very special cases. Without taxing cancelled debt, tax savings are proportional to interest

payments and the discount rate for tax savings has to be the same as for interest payments. Priority

of interest over principal payments or vice versa strongly affects the discount rate on tax savings.

Only with a proportional loss distribution on principal and interest payments are tax savings also

to be discounted at the discount rate for debt. The second article investigates the pricing of

tax savings and further focusses on the effects of taxes on cancelled debt. Taxing cancelled debt

decreases tax savings, but it also makes pricing more convenient. The resulting pricing equation

for tax savings is independent from the distribution of losses on interest and principal payments.

Without the tax on cancelled debt the loss distribution matters. A convenient equation with the

coupon rate as a parameter can be obtained for pro rata losses. For other distributions, additional

assumptions are needed to simplify the pricing equation or one has to use more elaborate pricing

techniques. The third article uses the results from the first two articles to extend the de- and

re-levering procedures that are already around to more cases. I derive the procedure for situations

when cancelled debt is not taxed and losses are distributed proportionally, through prioritizing

interest over principal payments, and through prioritizing principal over interest payments. In the

last article I look at an endowment economy as a whole. I investigate situations in which the

introduction of a capital gains tax may lead to an equilibrium with the same price vector as before

the introduction of taxes. I do this in a framework of agents maximizing expected utility over

consumption. As was found before for the mean-variance CAPM, a zero risk-free rate leads to an

unchanged price vector as well as CARA utility in the form of exponential utility with multivariate

normal payoffs. Additionally, quadratic utility also leads to an unchanged price vector.
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The first three articles illuminate especially the corporate finance literature. They show, for

example, that the usual WACC textbook equations are derived under a special set of assumptions

on taxes that may or may not be applicable to the economy one is looking at. Thus, there is much

scope for practical application here. The last article shades light on more theoretic questions. The

results may be more important for a modeler to know the behavior of the usual economic models

under certain specifications. Having stated this, I will turn to the potential for future research in

the field of asset pricing and tax effects.

6.2 Potential future research

The first three articles are mainly, but with some important extensions, based on assumptions that

I would call the usual corporate finance textbook assumptions. They include the independence of

investment and financing decisions, constant discount rates and constant tax rates over time, as

well as the exclusion of personal tax rates. The constant discount rate assumption could further

be justified by additional assumptions such as independently and identically distributed returns on

the relevant assets. All of this helps practitioners to reduce complexity and to perform valuations.

Even though a model is per definition a simplification of reality, it should consider all of the factors

that have a substantial impact on the value of an asset. Including more of those important factors

may be a fruitful field for future research. I will mention several of those factors, and I will detail

the ones that are close to the topics of the respective articles.

From a more macro perspective, one could abandon the i.i.d. world assumption and condition

expected returns on business cycle stages and capital market expectations. That also means to

leave the assumption of a constant risk-free rate, i.e., a flat yield curve in favor of a sloped yield

curve that expresses market expectations on future yields. In an i.i.d. world, which has a flat yield

curve, an investor is indifferent in holding long- or short-term debt. They have both the same risk

and expected return characteristics. When this assumption is relaxed decisions between long- and

short-term debt become relevant.

Furthermore, tax rates are not constant over time. Instead, tax legislation changes with some

frequency that one may measure in years. Expectations can also be formed on the applicable tax

rate and its behavior over business cycles. Such models could be based on Sialm (2006), who

develops a simple dynamic general equilibrium model based on log-normal growth of output. He

finds that stochastic tax rates may increase the equity premium and may partly explain the equity

premium puzzle. More on the modelling of stochastic tax rates can be found in Niemann (2004)

and Niemann (2011). Krause (2017) also investigates asset pricing under tax rate uncertainty. In

a first model, tax rate cyclicality is analyzed. When taxes are transferred back to the investor

countercyclical tax rates regularly lower discount rates and increase asset prices. However, those

patterns do not hold anymore when taxes are not transferred back. Furceri and Karrast (2011)

actually test three theories on fiscal policy and the effective average tax rate along the business

cycle. They find that the correlation of tax rates with cyclical output is relatively small and
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statistically insignificant. Furthermore, they find that to be in line with the hypothesis that

propagates tax smoothing. Sialm (2009) also carries out an empirical study of the effect of tax

changes on asset prices. He only looks at taxes that are closely related to asset prices such as

taxes on dividends and on long- and short-term capital gains. He finds evidence that taxes are

capitalized into pre-tax asset prices to compensate investors for higher taxes. In a much earlier

study, Poterba and Summers (1984) look at three different hypotheses about the effects of dividend

taxation for Great Britain. Their findings do not support the tax capitalization view or the view

that marginal investors remain untaxed. Instead they see the traditional view as more consistent

with their results. In this view, dividend taxes reduce investment of the firm and lead to distortions

in the allocation of capital. Sialm (2009) agrees to the tax capitalization and Poterba and Summers

(1984) reject it. This suggests that empirical work on tax effects should be continued and extended

to obtain a more general view from more time periods and markets about how taxes impact prices.

Economy-wide effects of taxes, such as effects on the risk-free rate and the equity premium

are often studied in dynamic stochastic general equilibrium models. Santoro and Wei (2011)

build on the work of Jermann (1998) and analyze corporate taxes and dividend taxes. They find

corporate taxes do distort investment decisions but proportional taxes on dividends do not because

dividends are taxed after investment decisions are made. They find an amplification mechanism

through which corporate taxes increase reactions of consumption and investment to shocks. This

can lead to a decrease in the risk-free rate and an increase in the equity premium. Croce et al.

(2012) also concentrate on corporate taxes but additionally introduce tax rate uncertainty, which

leads to significant risk premia in their model.

The literature, including the articles herein, separate cases in which cancelled debt is taxed and

which it is not in such a way that only one case is applicable for a company and the other can never

occur. However, for example in the U.S., a company may or may not be subject to a taxation of

cancelled debt depending on the circumstances or state in which the company is in. That means

that the cancelled-debt treatment can be refined. There may be defaults requiring cancelled debt

to be taxed and other types of default when this is not true. Attaching probabilities to those cases,

it is possible to combine them into a single valuation model.

With the introduction of earnings stripping rules (ESR) and thin cap rules, interest payments

may not be fully deductible anymore. Those rules impose limits on how much interest can be

deducted from taxable income. When this limit is exceeded, some part of the tax savings are lost

and the value of tax savings shrink. The literature has treated ESRs for example in Förster et al.

(2009), Eberl (2009), Maßbaum et al. (2012) and Buettner et al. (2012). There is still a lot of

potential for continuing work on ESRs and thin cap rules. First, it can be unified with traditional

valuations with risk-free and risky debt. Second, interest carry forward rules can be included in

the analysis. Eventually, economy-wide effects of ESRs may be interesting for a closed but also for

an open economy.

The study of different assets taxed differently is also interesting and valid for some markets.
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For example, some assets may be exempt from certain kinds of taxes but others may not. Benninga

and Sarig (2003) and Eikseth and Lindset (2009) provide some theoretical considerations on this.

Redundant assets with different taxes may also be a good object of study for tax capitalization

hypotheses.

The forth article is very theoretical in its nature. It is intended to widen one’s horizon on the

behavior of asset prices in certain economic models. Since it does not feature a representative agent,

it also allows to study portfolio decisions in an equilibrium context. The economies presented are

very simple endowment models regarding only two points in time, which is usually necessary when

heterogeneous agents are regarded in incomplete markets. An idea to continue the analysis of

portfolio decisions in multi-period models would be to look at complete market models as in Judd

et al. (2003). The inclusion of taxes in this model may be a first step to an analysis of tax effects

on portfolio decisions in a multi-period setting, general equilibrium and heterogeneous agents.
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