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Kurzfassung
In dieser Arbeit werden stochastische Modelle zur Betrachtung von Markt- und

Kreditrisiken untersucht. Der erste Teil befasst sich mit dem Marktrisiko und un-
tersucht optimale Investitions- und Konsumstrategien für einen Investor am Finanz-
markt, der angehalten ist, seine (Anlage-) Strategie so zu wählen, dass das Risiko
für den Verlust eines Teils seines investierten Kapitals beschränkt bleibt. Die Be-
schränkung des Verlustrisikos erfolgt mittels dynamischer Risikomaße, die zu jedem
Zeitpunkt das Risiko unter Berücksichtigung der bis zu diesem Zeitpunkt vorliegenden
Information quantitativ erfassen. Dabei werden die dynamischen Risikomaße Value
at Risk, Tail Conditional Expectation und Expected Loss verwendet. Die entstehen-
den Portfolio-Probleme unter dynamischen Risikonebenbedingungen werden sowohl
in stetiger als auch in diskreter Zeit betrachtet. Zur Lösung der Portfolio-Probleme
werden diese als stochastische Kontrollprobleme formuliert und mit Methoden des
Dynamic Programming gelöst. Der Verlust der Portfolio-Performance infolge der
Beschränkung des Risikos sowie der Verlust durch die Beschränkung auf zeitdiskrete
Investmentstrategien werden untersucht und eine Vielzahl von numerischen Exper-
imenten wird präsentiert. Diese zeigen, dass der Verlust der Portfolio-Performance
nicht erheblich ist, während das Risiko deutlich beschränkt wird. Darüber hinaus
ist der Verlust, der durch die Beschränkung auf zeitdiskrete Investmentstrategien
entsteht, typischerweise größer als der Verlust der Portfolio-Performance durch eine
Risikobeschränkung.
Der zweite Teil dieser Arbeit befasst sich mit dem Kreditrisiko. Zur Modellierung des
Risikos, dass ein Kreditnehmer seinen vertragskonformen Zahlungsverpflichtungen
nicht oder nur teilweise nachkommt, wird ein Modell untersucht, das die beiden klas-
sischen Ansätze zur Modellierung des Kreditrisikos kombiniert. In diesem Modell er-
folgt der Kreditausfall eines Unternehmens bei Unterschreitung eines Schwellenwertes
durch das Unternehmensvermögen. Der Schwellenwert wird dabei als zeitabhängige
Zufallsvariable modelliert, die es erlaubt, Veränderungen in der Wirtschaft oder die
Ernennung einer neuen Unternehmensleitung abzubilden. Es werden in Abhängigkeit
von der verfügbaren Information über das Unternehmensvermögen explizite Formeln
für die Ausfallwahrscheinlichkeit hergeleitet. Der Einfluss asymmetrischer Informa-
tionen auf die Ausfallwahrscheinlichkeit und die (Ausfall-) Risikoprämie wird unter-
sucht. Numerische Ergebnisse werden präsentiert, welche zeigen, dass die Informa-
tionen über den Unternehmenswert einen erheblichen Einfluss auf die Schätzung der
Ausfallwahrscheinlichkeit und der damit einhergehenden Risikoprämie haben.





Abstract
This thesis is concerned with stochastic models to manage financial risks. The

first part deals with market risk and considers an investor facing a classical portfolio
problem of optimal investment in log-Brownian stocks and a fixed-interest bond, but
constrained to choose portfolio and consumption strategies which reduce the corre-
sponding shortfall risk. Risk limits are formulated in terms of Value at Risk, Tail
Conditional Expectation and Expected Loss and are dynamically imposed on the
strategy as a risk constraint. The resulting stochastic optimal control problem is
tackled using the dynamic programming approach. For both continuous-time and
discrete-time financial markets the loss in expected utility of intermediate consump-
tion and terminal wealth caused by imposing a dynamic risk constraint is investigated.
The presented numerical results indicate that the loss of portfolio performance is not
too large while the risk is notably reduced. Furthermore, the loss resulting from in-
frequent trading due to time discretization effects is typically bigger than the loss of
portfolio performance resulting from imposing a risk constraint.
The second part deals with credit risk and sets up a first-passage model of corporate
default risk. The default event is specified in terms of the evolution of the total value
of the firm’s asset and the default barrier. Short-term default risk is incorporated
by modeling the default barrier at which the firm is liquidated as a random variable
which is time-dependent and allowed to switch. This setup combines the two classical
modeling approaches and enables to model changes in the economy or the appoint-
ment of a new firm management. Different information levels on the firm’s assets
are distinguished and explicit formulas for the conditional default probability given
the accessible information are derived. The impact of asymmetric information on
the default probability and credit yield spread is investigated. Numerical results are
presented indicating that the information on the firm value has a considerable impact
on the estimate of the conditional survival probability and the associated credit yield
spread.
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Chapter 1

Introduction

Financial risk management is a process of measuring and mitigating financial risks
and has become a core competence of financial institutions. The challenge is to ef-
fectively manage the risk on the one hand and ensure adequate returns on the other.
Due to globalization financial business is becoming more and more complicated and
there is a great need to expand modeling techniques in the financial industry to man-
age the resulting risks. The first step in risk management is to identify the sources
of potential losses. The broad categories of financial risk are market risk, credit risk,
and operational risk (see McNeil, Frey & Embrechts [58]). Market risk is the
risk of a change in the value of a financial position. Credit risk corresponds to the
risk to each party of a contract that the other will fail to comply with its obligation
to service debt. Operational risk refers to the risk of losses resulting from inadequate
or failed internal processes, people, and systems, or from external events. This thesis
is specifically concerned with market risk and credit risk.

When trading assets in a financial market, one has to consider the risk of fluctu-
ations of asset prices due to market volatility, i.e., market risk. An investor who is
endowed with a certain initial wealth may consume parts of the wealth and contin-
uously invest in different financial assets. His preferences are represented by utility
functions. Given a fixed investment horizon, the investor’s objective is to find an opti-
mal consumption-investment strategy as to maximize the expected utility of wealth at
the terminal trading time and of intermediate consumption. This type of continuous-
time portfolio optimization problem was first studied by Merton [59, 60] in the late
sixties and early seventies by applying standard methods and results from stochastic
control theory.
In [59] the author considers a financial market consisting of one risk-free and sev-
eral risky assets. The prices of the risky assets are modeled by a stochastic process,
namely a geometric Brownian motion, with dynamics evolving according to a linear
stochastic differential equation. This model assumption leads to prices of risky as-
sets that are lognormally distributed random variables and to price processes with
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2 Chapter 1: Introduction

continuous paths. The investor’s utility function is modeled by power utility. Us-
ing methods of stochastic optimal control theory by applying the dynamic program-
ming principle and solving the resulting Hamilton-Jacobi-Bellman (HJB) equation,
a nonlinear partial differential equation, Merton derives an explicit formula for the
consumption-investment strategy. Thus, the Merton approach must be regarded as
the starting point of continuous-time portfolio theory and much recent work deals
with refined models and methods in the field of portfolio optimization. An introduc-
tion to stochastic optimal control theory can be found in Fleming & Soner [33],
Øksendal & Sulem [65], and Pham [67].
The financial crisis has drawn more attention to risk management by traders and
regulators in the past years. Since then, various risk measures like Value at Risk
(VaR) or some tail-expectation-based risk measures like Tail Conditional Expecta-
tion (TCE) or Expected Loss (EL) have been increasingly applied to quantify and
control the risk of a portfolio. VaR is widely used in risk management since it can
be well understood and communicated due to its simplicity. Usually risk constraints
having been considered are static constraints, i.e., they have to hold at the terminal
trading time only (see e.g., Basak & Shapiro [5], Boyle & Tian [21]). In the
seminal paper [5] the authors compute the VaR of the terminal wealth to control
the risk exposure. Their findings indicate that VaR limits, when applied in a static
manner, may actually increase risk. This encouraged researchers to consider a risk
measure that is based on the risk neutral expectation of loss - the Limited Expected
Loss. The work of [5] is extended by Gabih et al. [35] to cover the case of bounded
Expected Loss.
Motivated by the Basel Committee proposals, it is a common practice in the financial
industry to compute and re-evaluate risk constraints frequently using a time window
(e.g., some days or weeks) over which the trading strategies are assumed to be held
constant (see Jorion [49]). Therefore Cuoco et al. [24] apply a risk constraint
dynamically to control the risk exposure. The authors find that VaR and TCE con-
straints, when applied in a dynamic fashion, reduce the investment in the risky asset.
The work of [24] is extended by Shi & Werker [76] to cover the case of stochas-
tic interest rates. The authors analyze the impacts of imposing VaR and expected
shortfall constraints and show that these constraints, when dynamically imposed,
lead to similar optimal portfolios and wealth distributions. Putschögl & Sass
[71] study the maximization of expected utility of terminal wealth under dynamic
risk constraints in a complete market model with partial information on the drift by
using the martingale method. The problem of intertemporal consumption subject
to a dynamic VaR constraint is examined by Yiu [82]. Pirvu [68] and Leippold
et al. [55] investigate an optimal consumption-investment problem with a dynamic
VaR constraint imposed on the strategy. Akume [1] and Akume et al. [2] consider
a similar problem with a dynamic TCE constraint instead of a VaR. Their results
indicate that imposing a dynamic risk constraint is a suitable method to reduce the
risk of portfolios. For recent work on portfolio optimization under dynamic risk con-
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straints we refer to Moreno-Bromberg et al. [69]. The authors study an optimal
investment problem for a general class of risk measures and the optimal trading strat-
egy is characterized by a quadratic backward stochastic differential equation.
For the purpose of dynamic risk measurement, the usual assumption for a tractable
way of calculating risk measures is that the investment and consumption strategies are
kept unchanged over a given time horizon. In the classical consumption-investment
problem, this assumption is typically not fulfilled. An investor who follows the opti-
mal strategy is continuously adjusting the asset holdings and the consumption rate.
Thus, the risk of a portfolio is only approximately calculated. Since continuous-time
trading is impossible in practice and investors want to avoid transaction costs due
to excessive trading a more realistic scenario is that investors only change their as-
set holdings and consumption rate at discrete points in time. In Rogers [74] and
Bäuerle et al. [9] such discrete-time investors are called relaxed investors. It is
shown that the losses due to discretization are surprisingly small.

In all of the above mentioned work in the field of portfolio optimization, only mar-
ket risk is considered. However, another type of risk the financial industry may have
to deal with is credit risk. When a counterparty is involved in a financial transaction,
one has to consider the risk that the counterparty may not fulfill its contractually
agreed payment obligations, i.e., credit risk. A credit risky (or equivalently default
risky) asset is a security that has a nonzero probability of defaulting on its contracted
payments. A typical example of a credit risky asset is a corporate bond. A corporate
bond promises its holder a fixed stream of payments but may default on its promise.
The role of a typical credit risk model is to describe the default of a default risky
asset. The recent financial crisis has impressively demonstrated the need for effective
credit risk management. Since then the evaluation of credit risk has been receiving
increasing attention. For credit risk analysis the modeling of a default event and the
forecasting of a default probability is crucial both from a theoretical and an empirical
point of view. There are two classical types of modeling approaches: the structural
one and the reduced-form one. The structural approach is considered by Black &
Scholes [15], Merton [61] and Black & Cox [14], among others. It provides a
relationship between default risk and capital structure by using the evolution of the
firm’s assets value to determine the time of default, i.e., the default event of a bond is
triggered when the assets of the firm who issued the bond fall below some threshold.
The important feature of the structural model is that it implicitly assumes that the
modeler has complete knowledge about the dynamics of the firm’s assets and the
situation that will trigger the default event (i.e., the firm’s liabilities). Despite the
convincing economic interpretation in terms of the firm’s assets and liabilities there
are shortcomings when the firm’s assets are modeled by a continuous-time asset value
process. One is that credit yield spreads go to zero as maturity goes to zero regard-
less of the riskiness of the firm. This results from the investors’ knowledge about
the firm’s true distance to default. Such credit spreads are uncommon in practice.
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Another disadvantage of the structural approach is that forecast bond prices con-
tinuously converge to their recovery value (the payment which is received if default
occurs before maturity) which contradicts the price jump at default in empirical stud-
ies. These issues do not occur in the second approach, the reduced-form approach,
which is considered by Jarrow & Turnbull [46], Artzner & Delbaen [3], and
Duffie & Singleton [28], among others. It treats the dynamics of default as an
exogenous event. This implies knowledge of a less detailed information set compared
to the structural approach and credit spreads become in general more realistic and are
easier to quantify. Another advantage is that the reduced-form approach has proven
to be very useful for the valuation of credit-sensitive securities. However, the approach
is lacking of economic insights as it does not connect credit risk to underlying struc-
tural variables. To gain both the economic appeal of the structural approach and the
empirical plausibility and the tractability of the reduced-form approach, structural
models can be transformed into reduced-form models by changing its information set
to a less refined one. One way is to model the default barrier as a random variable
which is unobservable by bond investors (see Lando [54], Giesecke & Goldberg
[36], Hillairet & Jiao [41]). Another way is to assume that the firm’s assets are
only partially observable by investors (see Duffie & Lando [27], Jeanblanc &
Valchev [47], Lakner & Liang [53]).

The first part of this thesis focuses on market risk. We consider an investor faced
with the classical consumption-investment problem, but constrained to choose invest-
ment and consumption strategies which reduce the corresponding shortfall risk. Risk
measures are approximately calculated for short time horizons and imposed on the
strategy as a risk constraint. We apply dynamic programming techniques and com-
bine the resulting Hamilton-Jacobi-Bellman equation with the method of Lagrange
multipliers to derive optimal strategies under this constraint. An approximate solu-
tion to the constrained portfolio problem is obtained by using a policy improvement
algorithm. This continuous-time investor is compared to a discrete-time investor who
chooses only to change portfolio and consumption choices at times which are mul-
tiples of ∆ > 0. Within the framework of a discrete-time investor we consider a
discretized standard Black-Scholes market with one risk-free and several risky assets.
The discrete-time investor is, like the continuous-time investor, constrained to limit
the risk exposure. The investor’s aim is to maximize the expected utility of inter-
mediate consumption and of wealth at the terminal trading time. The portfolio risk
is re-evaluated dynamically making use of available conditioning information. Risk
limits are formulated in terms of VaR, TCE, and EL. The optimization problem is
solved by using the theory of Markov Decision Problems and numerical results are
presented which illustrate the impact on the portfolio performance resulting from im-
posing a dynamic risk constraint as well as from infrequent trading in a discrete-time
setting.

The second part of this thesis deals with credit risk and generalizes previous works
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to a dynamic setting. The default event is specified in terms of the evolution of the
total value of the firm’s assets and the default threshold. Short-term default risk is
incorporated by modeling the default threshold at which the firm is liquidated as a
random variable whose value is chosen by the management of the firm and adjusted
dynamically. In the literature, this generalization of the default model to a dynamic
setting was proposed by Blanchet-Scalliet, Hillairet & Jiao [16]. The au-
thors study the information accessible to the management of the firm and obtain
explicit formulations for the survival probability given the information of the man-
agement by using a successive enlargement framework. Our approach is different and
related to ordinary investors on the market who do not have access to the value of
the threshold and only anticipate the distribution of the threshold. We distinguish
different information levels on the firm’s assets and derive explicit formulas for the
conditional default probability given these information levels. Numerical results are
presented which show the impact of the information level on the estimation of the
default probability and the associated credit yield spread.

The first objective of the thesis refers to market risk and is to analyze how an
investor who is endowed with a certain initial wealth has to consume and invest this
wealth optimally in a financial market when he is subjected to fulfill a given risk con-
straint in a dynamic fashion. For both a continuous-time and a discrete-time financial
market, different dynamic risk constraints are considered and the corresponding opti-
mal consumption and investment strategy is investigated. The second objective refers
to credit risk and is to analyze the impact of information accessibility of an investor
on the estimation of the default probability within a generalized structural model for
credit risk. The main contributions with regard to market risk are:

• We incorporate dynamic risk measures in a discrete-time financial market to
overcome the disadvantage that the risk of a portfolio is only approximately
calculated in a continuous-time setting.

• We implement numerical methods (meshless method, sequential quadratic pro-
gramming, numerical integration) to solve the continuous-time and discrete-
time portfolio optimization problem under dynamic risk constraints.

• We provide extensive numerical experiments to explore the loss of portfolio
performance resulting from imposing a risk constraint in comparison to the loss
resulting from infrequent trading. Furthermore, in a financial market with more
than one stock the impact of the stocks’ correlation coefficient on the optimal
investment strategy is investigated.

The main contributions with regard to credit risk are:

• We extend the traditional structural model for credit risk to a dynamic setting
by relaxing the assumption of a constant default threshold to the case of a piece-
wise constant threshold which is unknown to the investor. Explicit formulas for
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the default probabilities given different information levels on the firm’s assets
are derived.

• We provide numerical examples to compare the survival probability estimated
by an investor who only observes the firm value at discrete dates to the survival
probability estimated by an investor who continuously observes the firm value
and investigate the impact of discrete-time observations.

The thesis is organized in two main chapters. Chapter 2 deals with incorporat-
ing dynamic risk constraints in continuous- and discrete-time financial markets to
quantify and control the risk of fluctuations of asset prices due to market volatility.
This chapter extends the master’s thesis of Redeker [72] by considering discrete-
time financial markets and providing numerical examples for financial markets with
more than one stock. Parts of this chapter have already appeared in Redeker &
Wunderlich [73]. Chapter 3 is devoted to credit risky assets and concerned with
modeling the default event and forecasting the default probability of a credit risky
asset.
In Section 2.1 we start with considering a continuous-time investor facing a classical
consumption-investment problem, but constrained to choose investment and con-
sumption strategies that reduce a corresponding shortfall risk. The investor’s aim is
to maximize the expected utility of intermediate consumption and wealth at a termi-
nal trading time. After considering the continuous-time case of portfolio optimization
under dynamic risk constraints, Section 2.2 is devoted to the discrete-time case. In
Section 2.3 numerical results are presented for both cases and the cost of imposing a
risk constraint is analyzed as well as the loss due to time-discretization. In Section 2.4
we provide proofs omitted from the main text and Section 2.5 presents some results
from dynamic programming in continuous time and discrete time.

In Chapter 3 we proceed as follows. Section 3.1 introduces the structural and
reduced-form modeling approaches for credit risk. Section 3.2 sets up a model for
credit risk based on a structural model but with an unobservable default barrier that
is allowed to switch. In this set up different information structures are distinguished.
Section 3.3 studies the impact of asymmetric information on the default probability.
We derive explicit formulas for the conditional survival probabilities given the different
information structures. Section 3.4 presents numerical results illustrating the impact
of asymmetric information on the default probability. Section 3.5 contains proofs
omitted from the main text.

The thesis concludes with Chapter 4 containing a summary of key findings and
remarks on possible future research.



Chapter 2

Portfolio optimization under dynamic
risk constraints

Market risk comprises the risk of a loss due to price movements in financial secu-
rities. In this chapter, we investigate dynamic risk measures and dynamically impose
risk limits on the trading strategies to control market risk. The associated portfolio
optimization problem of an investor is to find a strategy which optimally allocates
his wealth between different financial securities and consumption on the one hand
and satisfies the imposed risk constraint on the other hand. The investor’s aim is to
maximize the expected utility of the intermediate consumption and wealth at termi-
nal trading time. This portfolio optimization problem is analyzed in continuous-time
and discrete-time financial markets.
We start with considering the portfolio problem in continuous time. In Section 2.1.1
we describe the financial market model, define admissible consumption and invest-
ment strategies and derive the investor’s wealth equation. Afterwards, in Section
2.1.2, we introduce dynamic risk constraints. The portfolio risk in terms of VaR,
TCE, and EL is measured over short time intervals. The risk measure is dynamically
re-evaluated using available conditioning information and imposed on the strategy as
a risk constraint. Section 2.1.3 formulates the portfolio optimization problem under
dynamic risk constraints. Dynamic programming techniques are applied and the re-
sulting Hamilton-Jacobi-Bellman equation is combined with the method of Lagrange
multipliers to derive optimal strategies under risk constraints.
Then, we consider the portfolio problem in discrete time. In Section 2.2.1 we con-
sider a discretized version of the financial market previously introduced. An investor
in this financial market only changes portfolio and consumption choices at discrete
time points. However, the discrete-time investor is, like the continuous-time investor,
constrained to limit the risk exposure. In Section 2.2.2 the dynamic risk constraints
are described in discrete time. We subsequently study the discrete-time portfolio
optimization problem under dynamic risk constraints in Section 2.2.3. The optimiza-
tion problem is solved by using the theory of Markov Decision Problems leading to a

7
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backward recursion algorithm.
Section 2.3 provides some numerical results of the continuous-time and discrete-time
portfolio optimization problem for the case of power utility. The cost of the risk
constraint in terms of the expected utility of intermediate consumption and terminal
wealth is investigated. Furthermore, numerical experiments are performed to study
the losses due to time-discretization.
Proofs omitted from the main text are presented in Section 2.4 and some results
from dynamic programming in continuous time and discrete time are provided for
convenience of the reader in Section 2.5.

2.1 Continuous-time optimization

2.1.1 Model

We consider a continuous-time stochastic financial market with finite trading hori-
zon 0 < T < ∞ and an investor who is endowed with an initial capital x0 > 0.
The investor’s possible actions are to invest in the financial market and/or to con-
sume (parts of) the wealth. The investment opportunities are represented by one
risk-free and d risky securities. The price of the risk-free security at time t is de-
noted by S0

t and the d-dimensional price process of the risky securities is denoted by
S = (St)t∈[0,T ]. Uncertainty is modeled by a filtered probability space (Ω,F ,F,P),
where F = (Ft)t∈[0,T ] is the natural filtration generated by an m-dimensional Brown-
ian motion W = (W t)t∈[0,T ], m ≥ d, augmented by all the P-null sets of Ω.
The risk-free security (the “bond”) behaves like a bank account earning a continuously
compounded interest rate r ≥ 0, i.e., its price at time t is given by

S0
t = ert.

The remaining d securities (the “stocks”) are risky and evolve according to the follow-
ing stochastic differential equations

dSi
t = Si

t

(
µidt+

m∑
j=1

σijdW j
t

)
, i = 1, . . . , d,

Si
0 = si,

where µ = (µi)i=1,...,d ∈ Rd is the mean rate of return and σ = (σij)j=1,...,m
i=1,...,d ∈

Rd×m the matrix-valued volatility which is assumed to consist of linearly independent
rows. Thus, we work on a standard Black-Scholes-Merton model. The bond and the
stocks can be traded continuously and the investor is allowed to sell the stocks or
the bond short. An investment strategy π = (πt)t∈[0,T ] is an F-adapted, real-valued,
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d-dimensional stochastic process satisfying

E
[ ∫ T

0

∥πt∥2dt
]
<∞,

where ∥·∥ denotes the standard Euclidean norm in Rd. The d coordinates of πt

represent the proportions of the current wealth invested in each of the d stocks at
time t.

A negative proportion πi
t corresponds to selling stock i short. The proportion

of wealth invested in the bond at time t is given by 1 −
∑d

i=1 π
i
t. If this quantity

is negative we sell the bond short, i.e., we are borrowing (at interest rate r). The
investor is also allowed to withdraw funds for consumption. The consumption rate
process (for brevity: consumption process) is denoted by C = (Ct)t∈[0,T ]. It is an
adapted, [0,∞)-valued stochastic process satisfying

E
[ ∫ T

0

Ct dt
]
<∞.

Given an investment and consumption strategy the associated wealth process is well
defined and satisfies the stochastic differential equation

dXt = Xt

(
1−

d∑
i=1

πi
t

)
r dt+Xtπ

′
tµ dt− Ctdt+Xtπ

′
tσdW t

= Xt (r + π′
t(µ− 1r)− ct) dt+Xtπ

′
tσdW t,

(2.1)

where π′
t denotes the transpose of πt, 1 := (1, . . . , 1)′ is the d-dimensional vector

with unit components and ct = Ct/Xt is the consumption rate relative to the wealth.
Together with the initial condition X0 = x0, the wealth equation (2.1) admits a
unique strong solution given by

Xt = x0 exp

{∫ t

0

(
r + π′

s(µ− 1r)− cs −
1

2
∥π′

sσ∥2
)
ds+

∫ t

0

π′
sσdW s

}
. (2.2)

Note that (2.2) implies

Xt+∆ = Xt exp

{∫ t+∆

t

(
r + π′

s(µ− 1r)− cs −
1

2
∥π′

sσ∥2
)
ds+

∫ t+∆

t

π′
sσdW s

}
(2.3)

for any ∆ > 0. A pair (πt, ct)t∈[0,T ] = ((πi
t)i=1,...,d, ct)t∈[0,T ] is called a portfolio-

proportion process. We only consider those portfolio-proportion processes u = (π, c)
which achieve a positive wealth over the whole trading period [0, T ] and which are
of Markov type, i.e, ut = ũ(t,Xt) for all t ∈ [0, T ] and some measurable function
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ũ : [0, T ] × R+ → K where K := Rd × [0,∞). Such strategies are called admissible
and the set of admissible strategies is denoted by A0, thus

A0 :=
{
(ut)t∈[0,T ]

⏐⏐⏐u is F-adapted,ut = (πt, ct) ∈ K,ut = ũ(t,Xt),

Xt > 0 for all t ∈ [0, T ] and E
[ ∫ T

0

(
∥πt∥2 + ct

)
dt
]
<∞

}
.

We write in the following Xu instead of X to emphasize that the wealth is controlled
by the portfolio-proportion process u = (π, c).

2.1.2 Dynamic risk constraints

In this section we introduce how the risk of a given portfolio-proportion process
can be quantified. In Artzner et al. [4] risk is defined by the random future value
of the portfolio wealth. In order to relate this definition of risk to the investor’s loss
we use the concept of benchmarks as in Akume [1] and Akume et al. [2].
Given the current time t ∈ [0, T ] a benchmark Yt is prescribed and compared to
the future portfolio value Xu

t+∆ at time t + ∆, where ∆ > 0 is the length of the
risk measurement horizon [t, t + ∆]. Then a shortfall is described by the random
event {Xu

t+∆ < Yt} and Lt := Yt − Xu
t+∆ is the corresponding investor’s loss. The

benchmark Yt is chosen as a function of time t and wealth Xu
t for all t ∈ [0, T ],

i.e., Yt = f̃(t,Xu
t ) for some measurable function f̃ : [0, T ] × R+ → [0,∞). Typical

benchmarks are presented in the following example.

Example 2.1.1. The benchmark may be chosen as

• a constant, i.e., Yt ≡ y for some y ≥ 0,

• a deterministic function, i.e., Yt = y(t),

• a fraction p > 0 of the current wealth, i.e., Yt = pXu
t ,

• the conditional expected wealth, i.e., Yt = E[Xu
t+∆|Ft].

Next, we make precise how the risk of a given portfolio-proportion process is
measured. Let

A :=
{
(ut)t∈[0,T ] ∈ A0 |E[|Lt|] <∞ for all t ∈ [0, T ]

}
and

Nt :=
{
Lt = Yt −Xu

t+∆

⏐⏐u ∈ A
}
.

Then the family (ξt)t∈[0,T ] of maps ξt with

ξt : Nt → L1(Ω,Ft,P)

is called a dynamic risk measure. Common dynamic risk measures are presented in
the next example.
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Example 2.1.2.

• Given a time t and a probability level α ∈ (0, 1), the Dynamic Value at Risk
denoted by VaRα

t is the loss over [t, t+∆] that is exceeded only with the (small)
conditional probability α, thus

ξt(Lt) = VaRα
t (Lt) := inf {l ∈ R |P(Lt > l|Ft) ≤ α} .

• Given a time t and a probability level α ∈ (0, 1), the Dynamic Tail Condi-
tional Expectation denoted by TCEα

t is the conditional expected value of the
loss exceeding VaRα

t , thus

ξt(Lt) = TCEα
t (Lt) := Et [Lt|Lt > VaRα

t (Lt)] ,

where Et[·] denotes the conditional expectation given the information known up
to time t.

• Given a time t, the Dynamic Expected Loss denoted by ELt is the conditional
expected value of “positive” losses, thus

ξt(Lt) = ELt(Lt) := Et

[
L+
t

]
,

where x+ = max(x, 0).

In the following we only consider those risk measures that can be written as
ξt(Lt) = ξ̃(t,Xu

t ,πt, ct) for all t ∈ [0, T ] and some measurable function ξ̃ : [0, T ] ×
R+ × K → R. The risk measures presented in Example 2.1.2 belong to this class of
risk measures. This becomes obvious if we recall that loss is defined by Lt = Yt−Xu

t+∆

and that the benchmark is of the form Yt = f̃(t,Xu
t ). Thus, we have to know the

conditional distribution of Xu
t+∆ given Xu

t at any time t to explicitly compute the
risk measures above. From Equation (2.2) and Equation (2.3) it is easily seen that
the distribution of the investor’s wealth at a future date depends on the portfolio-
proportion process u = (π, c). For the purposes of risk measurement it is common
practice to approximate this distribution (for elaborations see Cuoco et al. [24]).
Let us consider the random variable

X = X (x, π̄, c̄) = x exp
{(
r + π̄′(µ− 1r)− c̄− ∥π̄′σ∥2

2

)
∆

+ π̄′σ (W t+∆ −W t)
}
,

where ∆ > 0, x > 0 and (π̄, c̄) ∈ K are given. It is easily seen that X is log-normally
distributed. More precisely, the law of X (x, π̄, c̄) is the one of xeZ , where Z is a
normally distributed random variable with mean

(
r + π̄′(µ− 1r)− c̄− 1

2
∥π̄′σ∥2

)
∆

and variance ∥π̄′σ∥2∆. We immediately obtain from Equation (2.3) that, given a
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portfolio-proportion process u = (π, c) and the associated portfolio wealth Xu
t at

time t, the random variable X (Xu
t ,πt, ct) is the value of the portfolio wealth at time

t+∆, if the portfolio-proportion process is kept constant at (π̄, c̄) = (πt, ct) between
time t and t+∆. Then, Xu

t+∆ is - conditionally on Ft - distributed as X (Xu
t ,πt, ct).

Using this approximation we obtain the following formulas for the risk measures
introduced in the example above.

Lemma 2.1.3.

1. The Dynamic Value at Risk at time t can be written as

VaRα
t (Lt) = ξ̃(t,Xu

t ,πt, ct),

where

ξ̃(t, x, π̄, c̄) = f̃(t, x)− x exp
[(

π̄′(µ− 1r) + r − c̄− ∥π̄′σ∥2

2

)
∆

+Φ−1(α)∥π̄′σ∥
√
∆
]
.

Here Φ(·) and Φ−1(·) denote the normal distribution and the inverse distribution
functions, respectively.

2. The Dynamic Tail Conditional Expectation at time t can be written as

TCEα
t (Lt) = ξ̃(t,Xu

t ,πt, ct),

where

ξ̃(t, x, π̄, c̄) = f̃(t, x)− x

α

[
exp {(π̄′(µ− 1r) + r − c̄)∆}

Φ
(
Φ−1(α)− ∥π̄′σ∥

√
∆
)]
.

3. The Dynamic Expected Loss at time t can be written as

ELt (Lt) = ξ̃(t,Xu
t ,πt, ct),

where

ξ̃(t, x, π̄, c̄) = f̃(t, x)Φ(d1)− x exp {(π̄′(µ− 1r) + r − c̄)∆}Φ(d2)

and

d1/2 =
1

∥π̄′σ∥
√
∆

[
ln

(
f̃(t, x)

x

)
−
(
π̄′(µ− 1r) + r − c̄∓ ∥π̄′σ∥2

2

)
∆

]
.
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Proof. The first and the second claim are proved in [1, pp. 144-145] and [1, pp.
145-147], respectively. The proof of the third claim is presented in Section 2.4.1.

A risk constraint is imposed on the portfolio-proportion process by requiring that
ut = (πt, ct) takes values in the set KR(t,Xu

t ) at any time t, where KR(t,Xu
t ) is

defined by

KR(t, x) =
{
(π̄, c̄) ∈ Rd × [0,∞)

⏐⏐ ξ̃(t, x, π̄, c̄) ≤ ε̃(t, x)
}
, x > 0.

Here, ε̃ : [0, T ]×R+ → [0,∞) is a measurable function which represents the bound on
the risk constraint and may depend on time and wealth. Then the set of admissible
strategies which continuously satisfy the imposed risk constraint reads as

AR :=
{
(ut)t∈[0,T ] ∈ A |ut ∈ KR(t,Xu

t ) for all t ∈ [0, T ]
}
.

We assume that the benchmark Yt = f̃(t,Xu
t ) and the bound ε̃(t,Xu

t ) in the definition
of the risk constraint are chosen such that AR ̸= ∅ is satisfied, i.e., there exist
admissible strategies. Such problems are examined in Gabih et al. [35], where the
shortfall risk is measured in terms of the expected loss and applied in a static manner.

2.1.3 Optimization under risk constraints

In this section we introduce portfolio optimization problems under dynamic risk
constraints. The investor derives utility from intermediate consumption and from
terminal wealth while a risk constraint is imposed that has to be satisfied. The
investor’s performance criterion is the expected value of the utility of intermediate
consumption and terminal wealth. Thus, the objective is to maximize

E0,x0

[ ∫ T

0

U1(Ct)dt+ U2 (X
u
T )
]

over all portfolio-proportion processes u = (π, c) ∈ AR. Note that Ct = ctX
u
t . Here,

U1 : [0,∞) → R ∪ {−∞} and U2 : [0,∞) → R ∪ {−∞} denote (time-independent)
utility functions (i.e., U1 and U2 are strictly increasing, strictly concave and twice
continuously differentiable on (0,∞)). The term Et,x[·] denotes the conditional ex-
pectation given the information known up to time t and Xt = x.

Remark 2.1.4. We consider time-independent utility functions for the sake of nota-
tional simplicity but time-dependent utility functions can be treated in the same way.
A typical example of a time-dependent utility function U : [0, T ]×[0,∞) → R∪{−∞}
is

U(t, x) = e−θtU1(x), θ > 0.

Thus, discounting might be included.
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We tackle the optimization problem by using dynamic programming techniques
and embed it into a family of optimization problems. Given a portfolio-proportion
process u = (ut)t∈[0,T ] ∈ AR we define the reward function J (·, ·,u) for all (t, x) ∈
[0, T ]× R+ by

J (t, x,u) = Et,x

[ ∫ T

t

U1(csX
u
s )ds+ U2(X

u
T )
]
.

The objective is to maximize the reward function over all admissible processes which
continuously satisfy the imposed risk constraint. We define the value function V for
all (t, x) ∈ [0, T ]× R+ by

V (t, x) = sup
u∈AR

J (t, x,u). (2.4)

A portfolio-proportion process u∗ with V = J (·, ·,u∗) is called optimal. The Ha-
milton-Jacobi-Bellman (HJB) equation for V is derived by applying the dynamic
programming principle (see Section 2.5.1) which yields

∂

∂t
V (t, x) + sup

ū=(π̄,c̄)∈KR(t,x)

{U1(c̄x) +HūV (t, x)} = 0 (2.5)

for (t, x) ∈ [0, T ) × R+ with terminal condition V (T, x) = U2(x) for x ∈ R+. Here,
the operator Hū acting on C1,2([0, T ]× R+) is defined by

Hū = [x (π̄′(µ− 1r) + r − c̄)]
∂

∂x
+

1

2
x2π̄′σσ′π̄

∂2

∂x2
.

Note that Hū is the generator of the controlled wealth process when the portfolio-
proportion process takes the value ū = (π̄, c̄). Unlike many stochastic control prob-
lems our formulation poses a state-dependent set of admissible controls. This difficulty
can be handled by embedding the state-dependent set KR(t,Xu

t ) into a compact set
K̄ (see Shardin & Wunderlich [75]). Using the techniques presented in Fleming
& Soner [33, Chapter III, Theorem 8.1] one can show that if there exists a classi-
cal solution W of the HJB equation (2.5), then W coincides with the value function
V of the control problem (2.4). Furthermore, if there exists a measurable function
ũ∗ : [0, T )×R+ → K satisfying ũ∗(t, x) ∈ KR(t, x) for all (t, x) ∈ [0, T )×R+ and such
that for every (t, x) ∈ [0, T )×R+ the value of ũ∗ at (t, x) is the unique maximizer of
the problem

sup
ū=(π̄,c̄)∈KR(t,x)

{U1(c̄x) +HūV (t, x)}

then one can show that the optimal portfolio-proportion process is given by u∗
t =

ũ∗(t,Xu∗
t ) and satisfies u∗ ∈ AR.
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For the case of power utility, i.e.,

U1(x) = U2(x) =
x1−γ

1− γ
, 0 < γ < 1,

there is a closed-form expression for the optimal portfolio-proportion process when no
risk constraint is imposed, see Korn [50]. We call this process the Merton portfolio-
proportion process and it is given by

πM(t, x) = πM = (σσ′)−1(µ− 1r)
1

γ
and

cM(t, x) = cM(t) =
(
τ−1 + (1− τ−1)e−τ(T−t)

)−1
,

(2.6)

where

τ =
[
− (1− γ)

((µ− 1r)′(σσ′)−1(µ− 1r)

2γ
+ r
)]1
γ
.

An investor using the Merton portfolio-proportion process is called a Merton investor
and the associated value function is denoted by V M(t, x). We write XM when the
wealth is controlled by the Merton portfolio-proportion process uM := (πM , cM).

2.2 Discrete-time optimization

2.2.1 Model

In this section we suppose that the trading interval [0, T ] is divided into N periods
of length ∆ and trading only takes place at the beginning of each of the N periods.
The trading times are denoted by tn := n∆, n = 0, . . . , N−1, and for the time horizon
T we write tN := T = N∆. Uncertainty is modeled by the filtered probability space
(Ω,G,G,P) where the filtration G = (Gtn)n=0,...,N is generated by the (discretized) m-
dimensional Brownian motion (Wtn)n∈{0,...,N} and augmented by all the P-null sets of
Ω. In what follows we will consider an N -period financial market which results from
a discretization of the Black-Scholes-Merton model considered in the continuous-time
case and consists of one risk-free and d risky securities. Thus, the price process of the
bond is given by S0

t0
≡ 1 and

S0
tn+1

= S0
tne

r∆, n = 0, . . . , N − 1.

Recall, r ≥ 0 denotes the continuously compounded interest rate. For all k = 1, . . . , d
the price process of the k-th risky security is given by Sk

t0
= sk and

Sk
tn+1

= Sk
tnR̃

k
tn+1

, n = 0, . . . , N − 1,
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where (R̃tn+1)n∈{0,...,N−1} = (R̃1
tn+1

, R̃2
tn+1

, . . . , R̃d
tn+1

)n∈{0,...,N−1} denotes the return
process and R̃k

tn+1
is defined by

R̃k
tn+1

= exp
{(
µk − 1

2

m∑
j=1

(
σkj
)2 )

∆+
m∑
j=1

σkj
(
W j

tn+1
−W j

tn

)}
for k = 1, . . . , d and n = 0, . . . , N − 1. The random variables R̃k

tn+1
are log-normally

distributed and represent the relative price change of the risky securities in the time
interval [tn, tn+1).
Analogously to the continuous-time case the investor starts with an initial wealth
x0 > 0 and is allowed to invest in the financial market and to consume the wealth. In
contrast to the continuous-time case the investor can adjust only at the beginning of
each of the N periods the amount of wealth invested into the financial market and the
amount of wealth consumed. The amount invested in the d risky securities is denoted
by φ = (φtn)n∈{0,...,N−1} and the amount which is consumed by η = (ηtn)n∈{0,...,N−1}.
Given an investment-consumption strategy ν = (φ, η) the associated wealth process
evolves as follows

Xtn+1 = er∆(Xtn − ηtn −φ′
tn1) +φ′

tn · R̃tn+1

= er∆(Xtn − ηtn +φ′
tn ·Rtn+1),

where (Rtn+1)n∈{0,...,N−1} = (R1
tn+1

, . . . , Rd
tn+1

)n∈{0,...,N−1} denotes the relative discoun-
ted return process and Rk

tn+1
is defined by

Rk
tn+1

= e−r∆R̃k
tn+1

− 1

for k = 1, . . . , d and n = 0, . . . , N − 1. The investment strategy (φtn) and the
consumption strategy (ηtn) are assumed to be G-adapted. Moreover we restrict to
strategies which achieve a positive wealth for all N periods. Thus, in contrast to the
continuous-time case, for an investor who trades only at discrete points in time it is
not admissible to sell stocks short or to take out a loan to buy stocks because in a time
interval of length ∆ the stock price could move unfavorably for the investor, and the
wealth would become negative. Therefore, at any trading time tn, n ∈ {0, . . . , N−1},
the investor must choose the amount φtn of current wealth Xtn that is invested in
the stocks and the amount ηtn of current wealth Xtn that is consumed in such a way
that νtn = (φtn , ηtn) ∈ KD(Xtn) holds, where

KD(x) = {ν̄ = (φ̄, η̄) | 0 ≤ η̄ ≤ x and 0 ≤ φ̄′1 ≤ x− η̄} , x > 0.

Furthermore, we only consider strategies which are of Markov type, i.e,

νtn = ν̃(tn, Xtn) for all n = 0, . . . , N − 1,
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where ν̃ : [0, T ]×R+ → [0,∞)d+1 is a measurable function. Such strategies are called
admissible and the set of admissible strategies is denoted by A0

∆, thus

A0
∆ :=

{
(νtn)n∈{0,...,N−1}

⏐⏐⏐ν is G-adapted,νtn = (φtn , ηtn) ∈ KD(Xtn),

νtn = ν̃(tn, Xtn) and Xtn > 0 for all n ∈ {0, . . . , N − 1}
}
.

It is shown in Hinderer [42, Theorem 18.4] that more general strategies which
depend on the complete history of the process instead of being Markovian ones, do
not increase the value of the maximization problem that we will consider later on.
We write in the following Xν instead of X to emphasize that the wealth is controlled
by the investment-consumption strategy ν = (φ, η).

2.2.2 Dynamic risk constraints

In this section we introduce dynamic risk measures in a discrete-time setting. In
an analogous manner to the continuous-time case the loss over the period [tn, tn+1)
is defined by Ltn := Ytn − Xν

tn+1
with Ytn being a Gtn-measurable benchmark (see

Example 2.1.1) prescribed at time tn. Let N∆
tn :=

{
Ltn

⏐⏐ν ∈ A∆

}
, where

A∆ :=
{
(νtn)n∈{0,...,N−1} ∈ A0

∆ |E[|Ltn |] <∞ for all n ∈ {0, . . . , N − 1}
}
.

A dynamic risk measure (in discrete time) (ψtn)n∈{0,...,N−1} is a family of maps ψtn

with

ψtn : N∆
tn → L1(Ω,Gtn ,P).

We restrict to risk measures of the form ψtn(Ltn) = ψ̃(tn, X
ν
tn ,φtn , ηtn) for all n ∈

{0, . . . , N−1} and some measurable function ψ̃ : [0, T ]×R+× [0,∞)d+1 → R. Lemma
2.2.1 below shows how the dynamic risk measures VaR, TCE, and EL can be computed
explicitly in the discrete-time case if we consider a market with a single stock. In this
case we can benefit from the fact that the wealth Xν

tn+1
at time tn+1 is - conditionally

on Gtn - (shifted) log-normally distributed. In the case d > 1 the wealth Xν
tn+1

at time
tn+1 given Gtn is a sum of dependent log-normally distributed random variables and
closed-form expressions for these risk measures are not available.

Lemma 2.2.1. The following statements hold.

1. Given a probability level α ∈ (0, 1), the Dynamic Value at Risk at time tn,
n = 0, . . . , N − 1 can be written as VaRα

tn(Ltn) = ψ̃(tn, X
ν
tn , φtn , ηtn), where

ψ̃(t, x, φ̄, η̄) = f̃(t, x)− er∆(x− η̄ − φ̄)− exp
{
Φ−1(α)σ

√
∆+

(
µ−σ2

2

)
∆
}
φ̄.

Recall that Φ(·) and Φ−1(·) denote the cumulative distribution function of the
standard normal distribution and its inverse, respectively.
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2. Given a probability level α ∈ (0, 1), the Dynamic Tail Conditional Expectation
at time tn, n = 0, . . . , N−1 can be written as TCEα

tn(Ltn) = ψ̃(tn, X
ν
tn , φtn , ηtn),

where

ψ̃(t, x, φ̄, η̄) = f̃(t, x)− er∆(x− η̄ − φ̄)− 1

α
eµ∆Φ

(
Φ−1(α)− σ

√
∆
)
φ̄.

3. The Dynamic Expected Loss at time tn, n = 0, . . . , N − 1 can be written as
ELtn(Ltn) = ψ̃(tn, X

ν
tn , φtn , ηtn), where

ψ̃(t, x, φ̄, η̄) =
(
f̃(t, x)− er∆(x− η̄ − φ̄)

)
Φ(d1)− eµ∆Φ(d2)φ̄,

d1/2 =
1

σ
√
∆

[
ln
( f̃(t, x)− er∆(x− η̄ − φ̄)

φ̄

)
−
(
µ∓ σ2/2

)
∆
]
.

Proof. The proof is presented in Section 2.4.2.

A risk constraint is imposed on the strategy by requiring that at the beginning
of each period [tn, tn+1), n ∈ {0, . . . , N − 1}, the investor must decide how much of
the wealth is invested in stocks (φtn) and how much is consumed (ηtn) such that
νtn = (φtn , ηtn) ∈ KR

D(tn, X
ν
tn) with

KR
D(tn, x) =

{
ν̄ = (φ̄, η̄) ∈ KD(x)

⏐⏐ ψ̃(tn, x, φ̄, η̄) ≤ ϵ̃(tn, x)
}
, x > 0.

Here, ϵ̃ : [0, T ] × R+ → [0,∞) is a measurable function which represents the bound
on the risk constraint and may depend on time and wealth. The set of admissible
strategies reads as

AR
D :=

{
(νtn)n∈{0,...,N−1} ∈ A∆ |νtn ∈ KR

∆(tn, X
ν
tn), n ∈ {0, . . . , N − 1}

}
.

We assume that the benchmark f̃(tn, Xν
tn) and bound ϵ̃(tn, Xν

tn) are specified in a way
that AR

D ̸= ∅ is satisfied, i.e., there exist admissible strategies.

2.2.3 Optimization under risk constraints

In this section we formulate the investor’s portfolio optimization problem under a
dynamic risk constraint in a discrete-time setting and present a backward induction
algorithm for solving the problem. Given an initial wealth X0 = x0 the investor’s
investment-consumption problem is to decide how much wealth is invested in stocks
and how much is consumed so that the expected value of the utility from consumption
and terminal wealth,

Et0,x0

[
N−1∑
n=0

U1(ηtn) + U2

(
Xν

tN

)]
,
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is maximized over all strategies ν = (φ, η) ∈ AR
∆. This problem can be solved by

using the theory of Markov Decision Processes (see Section 2.5.2). The value function
V is defined by

V (tn, x) = sup
(φ,η)∈AR

D

Etn,x

[N−1∑
k=n

U1(ηtk) + U2

(
Xν

tN

) ]
and the sequence (V (tn, x))n=0,...,N−1 can be computed by solving the optimality equa-
tion

V (tN , x) = U2(x),

V (tn, x) = sup
(φ̄,η̄)∈KR

D(tn,x)

{
U1(η̄) + Etn,x

[
V
(
tn+1, e

r∆
(
x− η̄ + φ̄′ ·Rtn+1

))]}
n = N − 1, . . . , 0.

(2.7)

The optimal strategy ν∗ = (φ∗, η∗) is generated by the sequence of maximizers of
V (t1, x), . . . , V (tN , x).
For the case of power utility, i.e.,

U1(x) = U2(x) =
x1−γ

1− γ
, γ ∈ (0, 1),

we can specify the recursion above. Let ζ and β denote the consumption and invest-
ment proportion respectively, i.e.,

ζtn :=
ηtn
Xν

tn

and βi
tn :=

φi
tn

Xν
tn − ηtn

, for n = 0, . . . , N − 1, i = 1, . . . , d.

Note that ζtn ∈ [0, 1] and βtn ∈ P where P := {p ∈ [0, 1]d | p1+ . . .+pd ≤ 1} denotes
the simplex in Rd. In order to use proportions instead of amounts of consumption
and investment we redefine ψ̃ by

ψ̃rel(tn, X
ν
tn ,βtn , ζtn) = ψ̃(tn, X

ν
tn , (1− ζtn)X

ν
tnβtn , ζtnX

ν
tn).

Then the risk measures can be written as ψtn(Ltn) = ψ̃rel(tn, X
ν
tn ,βtn , ζtn) for all

n ∈ {0, . . . , N − 1} and we obtain by the optimality equation (2.7) the following
backward recursion.

Theorem 2.2.2. The value function for n = 0, . . . , N takes the form

V (tn, x) =
x1−γ

1− γ
· dtn , x > 0,
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where (dtn) satisfies the backward recursion

dtN = 1,

dtn = sup
0≤ζ̄≤1

{
ζ̄1−γ + (1− ζ̄)1−γer∆(1−γ)

×
(

sup
β̄∈B(tn,x,ζ̄)

E
[(
1 + β̄

′ ·Rtn+1

)1−γ])
dtn+1

}
, n = N − 1, . . . , 0

(2.8)

with

B(tn, x, ζ̄) = {β̄ ∈ P
⏐⏐ ψ̃rel(tn, x, β̄, ζ̄) ≤ ϵ̃(tn, x)}.

Proof. The proof is given by mathematical induction. The basic step is to show that
the statement

V (tN , x) =
x1−γ

1− γ
· dtN , dtN = 1

holds. This follows straightforwardly from the optimality equation (2.7). In the
inductive step we assume that the statement

V (tn, x) =
x1−γ

1− γ
· dtn

holds for some n ∈ {1, . . . , N} and show that it also holds for n − 1. This can be
done as follows. From the optimality equation (2.7) we obtain

V (tn−1, x) = sup
(φ̄,η̄)∈KR

D(tn−1,x)

{
Etn−1,x

[
V
(
tn, e

r∆ (x− η̄ + φ̄′ ·Rtn)
)]

+
η̄1−γ

1− γ

}
.

Using the inductive hypothesis, the right-hand side can be rewritten as

sup
(φ̄,η̄)∈KR

D(tn−1,x)

{
Etn−1,x

[ 1

1− γ

(
er∆ (x− η̄ + φ̄′ ·Rtn)

)1−γ
dtn

]
+

η̄1−γ

1− γ

}
.
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Substituting η̄ = ζ̄x and φ̄ = (1− ζ̄)xβ̄ we find

sup
0≤ζ̄≤1

β̄∈B(tn−1,x,ζ̄)

{
Etn−1,x

[
1

1− γ

(
er∆

(
x− ζ̄x+ x(1− ζ̄) · β̄′

Rtn

))1−γ

dtn

]

+
(ζ̄x)1−γ

1− γ

}
= sup

0≤ζ̄≤1
β̄∈B(tn−1,x,ζ̄)

{ x1−γ

1− γ
er∆(1−γ)(1− ζ̄)1−γE

[
(1 + β̄

′
Rtn)

1−γ
]
dtn

+
x1−γ

1− γ
ζ̄1−γ

}
=

x1−γ

1− γ
sup

0≤ζ̄≤1

{
ζ̄1−γ + er∆(1−γ)(1− ζ̄)1−γ

× sup
β̄∈B(tn−1,x,ζ̄)

E
[
(1 + β̄

′
Rtn)

1−γ
]
· dtn

}
.

This shows that indeed it holds

V (tn−1, x) =
x1−γ

1− γ
· dtn−1 .

In the second equation we have used that the relative discounted return Rtn is in-
dependent of Gtn−1 and in the third equation we used that er∆(1−γ)(1− ζ̄)1−γ is non-
negative. Hence, the supremum over (β̄, ζ̄) can be obtained by the iterated supremum
as given. The proof is complete by mathematical induction.

Note that in contrast to the continuous-time case, there is no closed-form solu-
tion to the unconstrained problem in discrete time. The Merton portfolio-proportion
strategy (βM

tn , ζ
M
tn )n=0,...,N−1 also has to be computed by backward recursion as in the

above theorem where the set B is replaced by the simplex P (see Bäuerle & Rieder
[7]). Then, we obtain

βM
tn = argmax

β̄∈P
E
[
(1 + β̄

′
Rtn+1)

1−γ
]

and ζMtn =
[
1 +

(
er∆(1−γ)vtndtn

) 1
γ

]−1

for n = 0, . . . , N − 1 with

vtn := sup
β̄∈P

E
[(
1 + β̄

′ ·Rtn+1

)1−γ]
, n = 0, . . . , N − 1.

The value function and wealth obtained by an investor using the Merton portfolio-
proportion strategy are denoted by V M and XM , respectively.
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2.3 Numerical examples for power utility
In this section we solve the continuous-time optimization problem

sup
(π,c)∈AR

E0,x0

[ ∫ T

0

U1(Ct)dt+ U2

(
X

(π,c)
T

) ]
and the discrete-time optimization problem

sup
(φ,η)∈AR

D

E0,x0

[N−1∑
n=0

U1(ηtn) + U2

(
X

(φ,η)
tN

) ]
numerically for the case of power utility and compare the solutions. In Section 2.3.1
and Section 2.3.2 a numerical approach is presented for solving the continuous-time
and discrete-time optimization problem, respectively. Examples based on a financial
market consisting of one risk-free and one risky security are considered in Section
2.3.3, whereas the financial market considered in Section 2.3.4 consists of one risk-
free and two risky securities.

2.3.1 Continuous-time optimization problem

We start with the continuous-time problem by numerically solving the HJB equa-
tion

∂

∂t
V (t, x) + sup

ū=(π̄,c̄)∈KR(t,x)

{U1(c̄x) +HūV (t, x)} = 0,

for (t, x) ∈ [0, T ) × R+ with terminal condition V (T, x) = U2(x) for x ∈ R+. An
approximation of the value function and of the optimal portfolio-proportion process
is obtained by applying the following policy improvement (PI) algorithm (for a proof
see Bäuerle & Rieder [8]).

Algorithm 2.3.1 (Policy Improvement).

1. Let k = 0. Choose an arbitrary admissible initial strategy u0 = (π0, c0) ∈ AR.

2. Compute the associated reward function for the fixed strategy ūk = (π̄k, c̄k) by
solving the linear partial differential equation (PDE)

0 =
∂

∂t
Jk(t, x) + U1(c̄

kx) +
[
x
(
π̄k

′
(µ− 1r) + r − c̄k

)] ∂

∂x
Jk(t, x)

+
1

2
x2π̄k ′σσ′π̄k

∂2

∂x2
Jk(t, x), (t, x) ∈ [0, T )× R+

(2.9)

with terminal condition

Jk(T, x) = U2(x), x ∈ R+. (2.10)
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3. Compute the succeeding strategy uk+1 = (πk+1, ck+1) by solving the optimiza-
tion problem

uk+1 = arg max
ū=(π̄,c̄)∈KR(t,x)

{
U1(c̄x) +HūJk(t, x)

}
. (2.11)

4. Let k = k + 1 and go back to step 2.

The PI algorithm provides a numerical solution of the HJB equation. In each
iteration we have to solve a linear PDE and a constrained optimization problem.
The linear PDE is solved by using meshless methods and the constrained nonlinear
optimization problem by using sequential quadratic programming methods. Both
methods are elaborated in the following subsections.

Meshless method

The meshless method is applied to numerically solve the linear PDE (2.9) for the
case of power utility. For an overview of the meshless method we refer to Li & Chen
[56, Chapter 10] and Duffy [29, Chapter 16], respectively.
First, we discretize equation (2.9) in t by applying the Crank-Nicolson method (see
Thomas [78]) while still keeping the variable x continuous. Then we approximate
the solution of the resulting ordinary differential equation (ODE) by using a special
class of functions, the so-called radial basis functions (RBFs, see Chen, Fu & Chen
[23]).
In particular, we partition the interval [0, T ] into nt equal sub-intervals of length ∆t
and define the nodes

tn := n ·∆t, where n ∈ {0, . . . , nt}.

A semi-discretization of equation (2.9) in time using Crank-Nicolson leads to the
following system of ordinary differential equations (where the iteration number k is
omitted to simplify notation):

0 =
Jn(x)− Jn+1(x)

∆t

+
1

2

[ [(
r + (πn(x))′ (µ− 1r)

)
x− cn(x)

] d
dx
Jn(x)

+
1

2
(πn(x))′ σσ′πn(x)x2

d2

dx2
Jn(x) +

(cn(x))1−γ

1− γ

]
+

1

2

[[(
r +

(
πn+1(x)

)′
(µ− 1r)

)
x− cn+1(x)

] d
dx
Jn+1(x)

+
1

2

(
πn+1(x)

)′
σσ′πn+1(x)x2

d2

dx2
Jn+1(x) +

(cn+1(x))
1−γ

1− γ

]
,
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where Jn(x) denotes the approximate value of J at node tn and wealth x, πn(x) :=
π(tn, x) and cn(x) := c(tn, x). Multiplying by ∆t and rewriting yields

Jn+1(x)− ∆t

2

[[(
r +

(
πn+1(x)

)′
(µ− 1r)

)
x− cn+1(x)

] d
dx
Jn+1(x)

+
1

2

(
πn+1(x)

)′
σσ′πn+1(x)x2

d2

dx2
Jn+1(x) +

(cn+1(x))
1−γ

1− γ

]
=Jn(x) +

∆t

2

[ [(
r + (πn(x))′ (µ− 1r)

)
x− cn(x)

] d
dx
Jn(x)

+
1

2
(πn(x))′ σσ′πn(x)x2

d2

dx2
Jn(x) +

(cn(x))1−γ

1− γ

]
or in the differential operator form

Hn+1
− (x)Jn+1(x)− dn+1(x) = Hn

+(x)J
n(x) + dn(x), (2.12)

where we define the operators as

Hn
±(x) = 1± ∆t

2
F n(x), dn(x) =

∆t

2

(cn(x))1−γ

1− γ

and

F n(x) =
[(
r + (πn(x))′ (µ− 1r)

)
x− cn(x)

] d
dx

+
1

2
(πn(x))′ σσ′πn(x)x2

d2

dx2
.

We now assume the solution J of equation (2.9) can be approximated by a linear
combination of radial basis functions

J(t, x) ≈
M∑

m=1

λm(t)ϕ(rm) bzw. Jn(x) ≈
M∑

m=1

λnmϕ(rm), x ∈ R+ (2.13)

where rm denotes the Euclidean distance between point x and xm, i.e.,

rm :=
√
(x− xm)2,

(xm)
M
m=1 are given collocation points, λnm are time-dependent coefficients to be de-

termined and ϕ is the radial basis function. There are a number of types of RBFs
whose characteristic feature is that their values depend only on the distance from
some center point [29]. Four often used RBFs are the multi-quadrics (MQ) function

ϕ(rm) =
(
r2m + (αcdc)

2
)q
,

the Gaussian function

ϕ(rm) = exp

{
−αc

(
rm
dc

)2
}
,
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the thin plate spline (TPS) function

ϕ(rm) = rqm,

and the logarithmic radial basis function

ϕ(rm) = rqm log(rm),

where q and αc are shape parameters of the RBFs (see Liu & Gu [57]). The coefficient
dc is a size coefficient, usually the average nodal spacing of the M collocation points
(see Belinha [10]). In utilizing RBFs, their shape parameters need to be determined,
which can be done by numerical examinations for given types of problems (see, e.g.,
Wang & Liu [80]). Here, the shape parameters can be adjusted by numerical exam-
ination of the Merton investor’s value function for which an explicit formula exists.
Letting the value x in equation (2.13) be a specific collocation point leads to the
expression:

Jn(xi) ≈
M∑

m=1

λnmϕ(rim), (2.14)

where rim :=
√

(xi − xm)2.
The ODEs (2.12) are now approximated at each allocation point by inserting the
above expression (2.14) into equation (2.12), yielding the identity

M∑
m=1

λn+1
m Hn+1

− (xi)ϕ(rim)− dn+1(xi) =
M∑

m=1

λnmH
n
+(xi)ϕ(rim) + dn(xi), 1 ≤ i ≤M

(2.15)

or in matrix form

Bn+1 = Anun, n ∈ {nt − 1, . . . , 0}

where

Bn = (Bn
1 , . . . , B

n
M)′, un = (λn1 , . . . , λ

n
M)′, An =

(
Hn

+(xi)ϕ(rim)
)
1≤i,m≤M

and

Bn
i =

M∑
m=1

λnmH
n
−(xi)ϕ(rim)− dn(xi)− dn−1(xi), i = 1, . . . ,M.

Using the terminal condition (2.10) yields

B = Aunt ,



26 Chapter 2: Portfolio optimization under dynamic risk constraints

where

B = (B1, . . . , BM)′, unt = (λnt
1 , . . . , λ

nt
M)′, A = (ϕ(rim))1≤i,m≤M

and

Bi =
x1−γ
i

1− γ
, i = 1, . . . ,M.

Finally, the above systems of equations can be solved by using matrix solver such as
Gaussian elimination.

Sequential quadratic programming

The sequential quadratic programming (SQP) technique is applied to solve the
constrained nonlinear optimization problem (2.11). We refer to Nocedal & Wright
[64] and Bomze et al. [19] for a comprehensive overview of SQP methods and
only briefly discuss them here. The basic idea of the SQP approach is to model
the constrained nonlinear optimization problem (CNP) by a quadratic programming
(QP) subproblem for a given iterate xk. Then the QP subproblem is solved and
its solution is used to construct a new iterate xk+1 such that the sequence (xk)k∈N
converges to a local minimum x⋆ of the CNP as k → ∞.
For a functional f : Rn → R, we denote by ∇f(x) the gradient of f at x ∈ Rn and
by Hf(x) the Hessian of f at x ∈ Rn, i.e.,

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)′

and Hf(x) =

(
∂2f

∂xi∂xj

)
1≤i,j≤n

.

For vector-valued functions h : Rn → Rm the symbol ∇ is used for the Jacobian of h,
i.e.,

∇h(x) = (∇h1(x),∇h2(x), . . . ,∇hm(x)).

We consider the CNP of finding a local minimizer x ∈ Rn for a nonlinear objective
functional f : Rn → R subject to a set of nonlinear equality and inequality constraints
described by the functions h : Rn → Rm and g : Rn → Rp, respectively, i.e.,

CNP minimize f(x)
over x ∈ Rn

subject to h(x) = 0
g(x) ≤ 0,

where f(x), h(x), and g(x) are smooth functions.
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Definition 2.3.2. Let λ ∈ Rm, µ ∈ Rp
⋆, and L : Rn×m×p → R defined by

L(x,λ,µ) := f(x) + λ′h(x) + µ′g(x).

Then L is called the Lagrangian functional of the CNP and the vectors λ and µ are
referred to as Lagrangian multipliers.

Given a current iterate (xk,λk,µk) of the CNP, the quadratic Taylor series ap-
proximation in x for the Lagrangian functional yields

L(x,λk,µk) ≈ L(xk,λk,µk) +∇L(xk,λk,µk)′d(x) +
1

2
d(x)′HL(xk,λk,µk)d(x)

where d(x) := x − xk. The constraints are approximated with a first-order Taylor
expansion yielding

h(x) ≈ h(xk) +∇h(xk)d(x) and g(x) ≈ g(xk) +∇g(xk)d(x).

Then we can write the quadratic subproblem (QSP) as

QSP minimize ∇L(xk,λk,µk)′d(x) + 1
2
d(x)′HL(xk,λk,µk)d(x)

over d(x) ∈ Rn

subject to h(xk) +∇h(xk)d(x) = 0
g(xk) +∇g(xk)d(x) ≤ 0.

The QSP is equivalent to the minimization of a convex quadratic subproblem with
linear constraints (c.f. Böhme & Frank [18, Chapter 2]), i.e.,

minimize ∇f(xk)′d(x) + 1
2
d(x)′Hf(xk)d(x)

over d(x) ∈ Rn

subject to h(xk) +∇h(xk)d(x) = 0
g(xk) +∇g(xk)d(x) ≤ 0.

It can be solved by active set or interior-point methods. To get more information
about these methods possible references are Nocedal & Wright [64], Fletcher
[34], and Wright [81]. The solution to the quadratic subproblem is regarded as
search direction dk and the next iterate is obtained by applying the update rule

xk+1 = xk + αkdk,

where αk is a positive step-length.
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2.3.2 Discrete-time optimization problem

The value function and optimal portfolio-proportion process of the discrete-time
optimization problem are obtained by applying the following recursive algorithm.

Algorithm 2.3.3 (Backward Induction).

1. For x > 0 compute

V N(x) =
x1−γ

1− γ
.

2. For x > 0 and k ∈ {N − 1, . . . , 0} compute

V k(x) = sup
(φ̄,η̄)∈KR

D(tk,x)

{
E
[
V k+1

(
er∆

(
x− η̄ + φ̄′ ·Rtk+1

))]
+

η̄1−γ

1− γ

}
.

Compute a maximizer νk = (φk, ηk) of V k+1.

3. If k = 0, then the value function is given by V (t0, x) = V 0(x) and the optimal
portfolio-proportion process is given by ν = (ν0,ν1, . . . ,νN−1). Otherwise, go
back to step 2.

Theorem 2.2.2 shows that the backward induction algorithm provides the value
function and optimal portfolio-proportion process. In each iteration we have to evalu-
ate an integral and solve a constrained optimization problem. The integral is numer-
ically evaluated by using the Gauss–Kronrod quadrature formula (see Monegato
[62]) and the constrained nonlinear optimization problem is numerically solved by
using sequential quadratic programming.

2.3.3 Financial market with a bond and a single stock

Our numerical experiments are based on the following model parameters. The
financial market consists of a bond with risk-free interest rate r = 0.1 and a single
stock with drift µ = 0.18 and volatility σ = 0.35 (numerical results for other financial
market parameters are not shown but are qualitatively the same). If not stated
otherwise, the parameter of the power utility function is γ = 0.3 and the terminal
trading time is T = 2 years. In the continuous-time case the dynamic risk measures
are evaluated under the assumption that the portfolio-proportion process is kept
constant between t and t + ∆ with ∆ = 1

24
≈ 2 weeks. The probability level in the

definition of the Value at Risk and Tail Conditional Expectation is given by α = 0.01.
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Figure 2.1: Effect of the VaR constraint on the value function and optimal portfolio-
proportion strategy for the continuous-time problem. The benchmark and
bound are given by Y M

t = E[XM
t+∆|X

(π,c)
t ] and ε̃(t, x) = 0.05x, respectively.

Continuous-time optimization problem

We start with the continuous-time problem by numerically solving the HJB equa-
tion (2.5). Using the PI algorithm described in Section 2.3.1, we obtain an approxima-
tion of the value function and of the optimal portfolio-proportion process. Recall, in
each iteration of the PI algorithm, we have to solve a linear PDE and a constrained op-
timization problem. Both the linear PDE and the constrained optimization problem
are solved numerically. The former by using meshless methods (the multi-quadrics
function is used as radial basis function with parameters q = 1/2, αc = 0.1 and
dc = 10.3), the latter with sequential quadratic programming methods.

Figure 2.1 shows the effect of the VaR constraint on the value function and op-
timal portfolio-proportion process. The benchmark for the VaR is the conditional
expectation of wealth XM

t+∆ obtained by an investor following the Merton portfolio-
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proportion process (πM
t , c

M
t ) (see (2.6)) in [t, t+∆] given the wealth X(π,c)

t at time t,
i.e.,

Y M
t := E[XM

t+∆|X
(π,c)
t ] = X

(π,c)
t exp

{(
r + πM

t (µ− r)− cMt
)
∆
}
.

The bound for the VaR is given by ε̃(t, x) = 0.05x. This is a bound which is relative
to the wealth, i.e., any loss in the interval [t, t + ∆] can be hedged with 5% of the
portfolio value. For comparison, the risk of the Merton portfolio-proportion process
(πM

t , c
M
t ) which is held constant in [t, t+∆] is ε̃(t, x) ≈ 0.31x. A first look at Figure

2.1 indicates that the value function and the relative consumption are not remarkably
affected by the VaR constraint whereas the proportion of wealth invested in the risky
stock is considerably reduced. The top, right-hand panel of Figure 2.1 shows the
relative difference δV (t, x) between the value function of a Merton investor and a
VaR-constrained investor defined by

δV (t, x) =
V M(t, x)− V (t, x)

V M(t, x)
.

In order to facilitate the comparison of the value functions we express the losses of
performance due to the risk constraint in monetary units and introduce the follow-
ing efficiency measure. The efficiency of an investor A relative to an investor B is
the initial amount of wealth that investor B would need to obtain a value function
identical to that of investor A who started at time t = 0 with unit wealth. Figure 2.2
illustrates the efficiency of a VaR-constrained investor relative to a Merton investor
in continuous time for different relative bounds of the VaR-constraint. As expected,
the efficiency increases when the bound of the risk constraint becomes less restrictive.
For the bound ε̃(t, x) = 0.05x used in Figure 2.1 the loss of efficiency is about 9.5%.
For the most restrictive case, where wealth below the benchmark is not tolerated at
all, i.e., the bound is set to ε̃(t, x) = 0, the loss of efficiency is 12.6%.

Figure 2.2: Efficiency of a VaR-constrained investor relative to a Merton investor in
continuous time for different relative bounds ε̃(t, x) = λx.
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Using a relative bound leads to a constant proportion of wealth invested in the risky
stock as in the unconstrained case. If we change the relative bound to an absolute
one, e.g., ε̃(t, x) ≡ 0.05, the optimal proportion of wealth invested in the risky stock
is no longer independent of the wealth level (see Figure 2.3). This results from the
fact that for x < 1, the absolute bound is less restrictive and for x > 1, it is more
restrictive than the relative one. For the optimal relative consumption no remarkable
differences between an absolute and a relative bound are observed. The top panels

Figure 2.3: Effect of an absolute bound for the VaR constraint on the value func-
tion and optimal investment proportion strategy for the continuous-time
problem. The benchmark and bound are given by Y M

t = E[XM
t+∆|X

(π,c)
t ]

and ε̃(t, x) = 0.05, respectively. For comparison, the optimal investment
proportion strategy for ε̃(t, x) = 0.05x is presented in semitransparent
color.

of Figure 2.4 illustrate that a more restrictive bound leads to a smaller investment
in the risky stock and a smaller value function. Another interesting observation can
be made from the bottom panels of Figure 2.4. The value function at time t = 0
is plotted against the wealth level for different terminal trading times T . The left
panel shows the value function of a Merton investor (solid line), of a VaR-constrained
investor (dashed line) and a TCE-constrained investor (asterisk). In the right panel,
the value function of a Merton investor (solid line) and of a EL-constrained investor
(dashed line) is plotted. We observe that the value function is not noticeably affected
by the choice of different risk constraints and that there are almost no differences
between the VaR constraint and the TCE constraint. This confirms similar results
by Cuoco et al. [24]. Even though a static VaR constraint has been found to
induce an increased probability of extreme losses and an increased allocation to risky
assets in some states (see Basak & Shapiro [5]), these shortcomings vanish if a
VaR constraint is imposed dynamically (see [24]).

For longer trading horizons the effects of a risk constraint on the value function
become more noticeable. We obtain comparable results if we change the benchmark
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Figure 2.4: Top panels: Effect of different relative bounds (ε̃(t, x) = 0.15x, 0.05x) for the
VaR constraint on the value function and optimal investment proportion strat-
egy in the continuous-time case. The benchmark and terminal trading time are
given by Y M

t = E[XM
t+∆|X

(π,c)
t ] and T = 2, respectively.

Bottom panels: Effect of different terminal trading times (T = 1, 2, 5) and dif-
ferent risk constraints (VaR, TCE, EL) on the value function in the continuous-
time case. The benchmark is given by Y M

t = E[XM
t+∆|X

(π,c)
t ].

Bottom left panel: Value function of the Merton investor (solid line), the
VaR-constrained investor (dashed line) and the TCE-constrained investor (as-
terisk) for ε̃(t, x) = 0.05x.
Bottom right panel: Value function of the Merton investor (solid line) and
the EL-constrained investor (dashed line) for ε̃(t, x) = 0.01x.

to the wealth an investor will obtain at time t+∆ starting with X(π,c)
t at time t and

only investing in the bond (and not in the stock) and consuming the wealth with the
rate cMt in [t, t+∆], i.e. Yt = X

(π,c)
t · e(r−cMt )∆.

Remark 2.3.4. We also performed numerical experiments for the case γ > 1 instead
of γ = 0.3 which led to smaller differences between the value function of a Merton
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investor and a risk-constrained investor. This results from the fact that for a larger
γ an investor is more risk-averse even without an imposed risk constraint.

Discrete-time optimization problem

We now consider the discrete-time problem and apply the backward induction
algorithm described in Section 2.3.2. The expectation in (2.8) can be written as

E
[(
1 + β̄ ·Rtn+1

)1−γ
]

=

∫ ∞

0

[(
1 + β̄(u− 1)

)1−γ · 1√
2π∆σu

exp
{
−
(
lnu− (µ− r − σ2

2
)∆
)2

2σ2∆

}]
du,

where we used that Rtn+1 = R̃tn+1/e
r∆ − 1 and R̃tn+1 is log-normally distributed.

Figure 2.5 shows the effect of the VaR constraint on the value function and optimal

Figure 2.5: Effect of the VaR constraint on the value function and optimal portfolio-
proportion strategy in the discrete-time case. The benchmark and bound
are given by Y M

tn = E[XM
tn+1

|X(φ,η)
tn ] and ϵ̃(tn, x) = 0.05x, respectively.
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strategy. The benchmark for the VaR is the conditional expectation of wealth XM
tn+1

obtained by an investor following the (discrete-time) Merton strategy (φM
tn , η

M
tn ) given

the wealth X(φ,η)
tn at time tn, i.e.,

Y M
tn = E[XM

tn+1
|X(φ,η)

tn ] = er∆
(
X

(φ,η)
tn − ηMtn − φM

tn

)
+ eµ∆φM

tn .

The bound for the VaR constraint was given by ϵ̃(tn, x) = 0.05x. In comparison,
the risk of the Merton strategy (φM

tn , η
M
tn ) is ϵ̃(t, x) ≈ 0.16x. It can be observed that

the value function is not remarkably affected by the VaR constraint. Moreover, the
effects on the value function are even less notable than in the continuous-time case.
This results from the fact that even without an imposed risk constraint short-selling
the stock or bond is not allowed, thus the proportion invested in the stock is al-
ways in [0, 1]. Note that in the above example for the continuous-time problem we
have for the Merton fraction πM ≈ 2.18, i.e., it exceeds one. Furthermore, it can
be observed from Figure 2.5 that the fraction of wealth invested in the risky stock
is considerably reduced when the VaR constraint is imposed, whereas the differences
in the consumption rate between a VaR-constraint investor and a Merton investor
are hard to be visually distinguished. If we use an absolute bound ϵ̃(t, x) ≡ 0.05 for
the VaR constraint instead of a relative bound, the optimal investment strategy is no
longer a constant proportion of wealth and the results are similar to Figure 2.3 for
the continuous-time case. Numerical results for varying the terminal trading time or
the risk measure are not shown here, but they are comparable to the continuous-time
case (see Figure 2.4).
As in the continuous-time case we now express the losses of performance of a risk-
constrained investor relative to the performance of a Merton investor in monetary
units using the efficiency measure. The left panel of Figure 2.6 illustrates the effi-
ciency of a VaR-constrained investor relative to a Merton investor in discrete time for
different relative bounds of the VaR-constraint. As expected and already observed
in Figure 2.2, the efficiency increases when the bound of the risk constraint becomes
less restrictive. The loss of efficiency is at most 7.2% which is attained for the most
restrictive bound, i.e., ϵ̃(t, x) = 0. For the bound ϵ̃(t, x) = 0.05x used in Figure 2.5
the loss of efficiency is about 4.2%.

We finish this section with a numerical comparison of the continuous-time and
discrete-time case. The availability of solutions to the risk-constrained portfolio prob-
lem both for discrete and continuous time allows us to quantify the losses of portfolio
performance resulting from time discretization, i.e., from restricting to finite trad-
ing frequencies. First observe that the loss of efficiency resulting from imposing a
risk-constraint is higher in continuous time than in discrete time (see Figure 2.2 and
left panel of Figure 2.6). This arises from the fact that short-selling is allowed in
continuous time leading to πM ≈ 2.18 > 1 whereas it is not allowed in discrete time
leading to βM = 1. For a fair comparison we do not allow for short-selling in both
cases. Since the parameters of the financial market shall remain the same, we change
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Figure 2.6: Efficiency for different bounds ϵ̃(t, x) = λx (left panel) and for different
risk measurement horizons ∆ (right panel). The benchmark is given by
Y M
t .

Left panel: Efficiency of a VaR-constrained investor relative to a Merton
investor in discrete time for γ = 0.3 and ∆ = 1/24.
Right panel: Efficiency of a discrete-time relative to a continuous-time
Merton investor and efficiency of a discrete-time relative to a continuous-
time VaR-constrained investor for γ = 0.9 and ϵ̃(t, x) = 0.05x.

the investors’ preferences represented by the utility functions by setting γ = 0.9. This
leads to πM , βM ∈ [0, 1], i.e., there is no short-selling in both cases. Furthermore, the
expected utility from consumption in the time interval [tn, tn+1), n = 0, . . . , N − 1, is
given by E[

∫ tn+1

tn
U1(Cs)ds] in the continuous-time case. However, in the discrete-time

case we have E[U1(ηtn)], which approximately corresponds to E[U1(
∫ tn+1

tn
Csds)]. The

related maximization problem

Et0,x0

[
U1

(∫ T

0

Ctd t
)
+ U2(X

u
T )
]

is not only different from the economic interpretation, but also from the mathematical
point of view (see Grandits et al. [38]). Since we want to quantify the losses of
portfolio performance resulting solely from restricting to finite trading frequencies,
we set U1(x) ≡ 0. Again, we use the efficiency to compare the portfolio performance
of a discrete-time investor relative to a continuous-time investor with and without
imposing a risk constraint. For this experiment, we compute the VaR risk measure
for the continuous-time investor under the assumption that the number of shares
remains constant between t and t+∆. In Rogers [74] the continuous-time investment
problem is compared to the discrete-time investment problem when no risk constraint
is imposed. The author shows that there is only a small difference between the
continuous-time and discrete-time problem if the additional restriction is imposed
that the continuous-time investor is not allowed to sell short the stock or the bond.
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Bäuerle et al. [9] show that this remains true for models where the drift is modeled
by a random variable which is not directly observable and has to be estimated from
observed stock prices. However, the authors found that if the short-selling restriction
for the continuous-time investor is omitted, then the discrete-time investor cannot
in general do as well as the continuous-time one and a discretization gap remains.
The right panel of Figure 2.6 shows the efficiency of a discrete-time relative to a
continuous-time Merton investor (cyan) and the efficiency of a discrete-time relative
to a continuous-time VaR-constrained investor (red). We observe that the values of
the efficiency are very close to unity; even for a quite large ∆ in the range of 2.5
years, the loss of efficiency is at most 0.35% in both cases. This is in line with the
results obtained in [74] for the Merton investor. In addition to the results in [74] our
numerical results for the risk-constrained case indicate that the losses due to time
discretization are of comparable (small) magnitude.

2.3.4 Financial market with a bond and two stocks

In this section we consider a continuous-time financial market consisting of one
bond and two stocks. We start with investigating the impact of the correlation
coefficient on the optimal investment proportion strategy of the Merton investor.
The prices of the stocks are modeled by the SDEs

dSi
t = Si

t

(
µidt+

2∑
j=1

σijdW j
t

)
, i = 1, 2

Si
0 = si,

where

µ =

(
µ1

µ2

)
and σ =

(
σ11 σ12
σ21 σ22

)
are the drift and volatility, respectively. We assume that the volatility matrix is
positive definite and we denote the covariance matrix of the log returns of the stocks
by Σ which is given by

Σ =

(
σ2
11 + σ2

12 σ11σ21 + σ12σ22
σ11σ21 + σ12σ22 σ2

21 + σ2
22

)
.

The volatility matrix σ equals the square root of the covariance matrix Σ and a
typical choice for σ is the Cholesky decomposition matrix of Σ, i.e., σ̄σ̄′ = Σ, where
σ̄ is lower triangular. Hence, we define the volatility matrix as

σ̄ =

(
σ1 0

σ2ρ σ2
√
1− ρ2

)
, (2.16)
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where σ1 :=
√

(σ11)2 + (σ12)2, σ2 :=
√

(σ22)2 + (σ21)2 and ρ ∈ (−1, 1) denotes the
correlation coefficient of the stocks. We denote the optimal investment proportion
strategy of the Merton investor by πM

ρ and by Equation (2.6) we have

πM
ρ =

(
πM,1
ρ

πM,2
ρ

)
=

1

(1− ρ2)γ

⎛⎝µ1−r
(σ1)2

− ρ (µ2−r)
σ1σ2

µ2−r
(σ2)2

− ρ (µ1−r)
σ1σ2

⎞⎠ . (2.17)

For ρ = 0 we obtain

πM
0 =

(
πM,1
0

πM,2
0

)
=

(
πM,1
d=1

πM,2
d=1

)
,

where

πM,i
d=1 =

µi − r

γσ2
i

.

It holds that πM,i
d=1 equals the optimal investment proportion strategy of the Merton

investor given a financial market consisting of a bond and stock i. Thus, if the two
stocks are uncorrelated, the optimal investment proportion in stock i equals the pro-
portion invested in stock i given a financial market only consisting of a bond and
stock i, for i = 1, 2.

For the limiting cases ρ = +1, i.e., the stocks have a perfect positive correlation, and
ρ = −1, i.e., the stocks have a perfect negative correlation, the volatility matrix is no
longer positive definite and the market model as well as the optimal control problem
degenerate. However, it is interesting to study the limiting behavior for ρ→ +1 and
ρ→ −1. For ρ ∈ (−1,+1) we can rewrite Equation (2.17) as

πM
ρ =

(
πM,1
ρ

πM,2
ρ

)
=

1

(1− ρ)(1 + ρ)γ

⎛⎜⎝µ1−r
σ2
1

(
1− ρ (µ2−r)σ1

(µ1−r)σ2

)
µ2−r
σ2
2

(
1− ρ (µ1−r)σ2

(µ2−r)σ1

)
⎞⎟⎠ .

Assuming it holds that

µ1 − r

σ1
=
µ2 − r

σ2
, (2.18)

we obtain

πM
ρ =

(
πM,1
ρ

πM,2
ρ

)
=

1

1 + ρ

(µ1−r
γσ2

1

µ2−r
γσ2

2

)
=

1

1 + ρ

(
πM,1
d=1

πM,2
d=1

)
. (2.19)
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The term (µi − r)/σi in Equation 2.18 is called the Sharpe ratio of stock i and can
be interpreted as a performance measure examining how well the return of stock i
compensates the investor for the risk taken. In Equation 2.18 we assume that the
two stocks have the same Sharpe ratio.

If ρ tends to 1, we obtain from Equation (2.19)

πM
1 =

(
πM,1
1

πM,2
1

)
→ 1

2

(
πM,1
d=1

πM,2
d=1

)
,

whereas if ρ tends to −1, we obtain

πM,i
−1 → sgn(µ1 − r)∞ for i = 1, 2.

Thus, if the correlation of the two stocks goes to 1 (i.e., a perfect positive correlation),
the optimal investment proportion in stock i tends to half of the proportion invested
in stock i given the financial market only consists of a bond and stock i. If the
correlation of the two stocks goes to −1 (i.e., a perfect negative correlation), the
optimal investment proportion in each stock tends to infinity. The latter can be
explained as follows. By setting ρ = −1 in Equation (2.16), we obtain

σ̄ =

(
σ1 0
−σ2 0

)
,

and from Equation (2.1) follows that the associated wealth equation satisfies

dXt = Xt

(
r + π̃1(µ1 − r) + π̃2(µ2 − r)

)
dt+Xt(π̃

1σ1 − π̃2σ2)dW 1
t ,

where we have set c ≡ 0 for simplicity and π̃ = (π̃1, π̃2) denotes the investment
strategy. By assuming that

π̃1

π̃2
=
σ2
σ1
,

we obtain that the wealth is governed by the following deterministic ordinary differ-
ential equation (ODE)

dXt = Xt

(
r + π̃1(µ1 − r) + π̃2(µ2 − r)

)
dt. (2.20)

A solution to the ODE (2.20) starting from x0 at 0 is given by

Xt = x0 exp
[(
r + π̃1(µ1 − r) + π̃2(µ2 − r)

)
t
]
.

By sending π̃1 → sgn(µ1 − r)∞ and π̃2 → sgn(µ2 − r)∞, we have Xt → ∞ and also
U(Xt) → ∞ with U a utility function. Hence, for a perfect negative correlation of the
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stocks the risk (i.e., the stochastic change) can be perfectly eliminated and unlimited
profit is possible. Thus, if the correlation of the two stocks goes to −1, the optimal
investment proportion in each stock tends to infinity.

In the following we present some numerical experiments similar to those in Pfützner
[66]. First we investigate the impact of the stocks’ correlation coefficient on the value
function and the portfolio-proportion strategy of a Merton investor and a risk con-
strained investor, respectively. Then, we examine the impact of various benchmarks,
and finally we study the impact of various bounds.
The parameters of the securities are r = 0.1 for the bond, µ1 = 0.18, σ1 = 0.35 and
µ2 = 0.20, σ2 = 0.45 for the first stock and the second stock, respectively. Note that

(µ1 − r)/σ1 ≈ (µ2 − r)/σ2.

The dynamic risk measures are evaluated under the assumption that the portfolio-
proportion process is kept constant between t and t + ∆ with ∆ = 1

24
≈ 2 weeks.

The probability level in the definition of the Value at Risk and Tail Conditional
Expectation is given by α = 0.01. The parameter of the power utility function is
γ = 0.3 and the terminal trading time is T = 2 years.

Variation of the correlation coefficient

In this section the effect of the correlation coefficient of the stocks is examined
by numerical examples presented in the following figures. The VaR is used as a risk
constraint with benchmark and bound given by

Y M
t := E[XM

t+∆|X
(π,c)
t ] and ε̃(t, x) = 0.05x.

Figure 2.7 shows the effect of the VaR constraint on the value function and optimal
investment proportion strategy for different values of ρ. The left panels present the
value function of a Merton investor and a VaR-constrained investor, whereas the
right panels show the associated optimal investment proportion strategies. It results
from the considerations above that the risk can be perfectly eliminated if the stocks
have a perfect negative correlation and πM,1

−1 /π
M,2
−1 = σ2/σ1 holds. Hence, by sending

the investment proportion in each stock to infinity unlimited profit is possible. This
is illustrated by the top panel of Figure 2.7. If the stocks have a strong negative
correlation the Merton investor puts large proportions into both stocks such that

πM,1
−0.999

πM,2
−0.999

= 1.2857 =
σ2
σ1
.

Thus, the associated value function of the Merton investor also has high values. The
VaR-constrained investor chooses the same investment proportion strategy as the
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Merton investor because the risk constraint is not binding due to the eliminated
stochastic change. Hence the value function of a VaR-constraint investor equals the
value function of a Merton investor. If the correlation coefficient increases, the Mer-
ton investor and the VaR-constrained investor put less large proportions into both
stocks. Furthermore, the VaR-constrained investor invests smaller proportions into
both stocks compared to the Merton investor in order to satisfy the risk constraint.
If the stocks are uncorrelated we have (see also Figure 2.1)

πM
0 =

(
πM,1
0

πM,2
0

)
=

(
πM,1
d=1

πM,2
d=1

)

and if the stocks have a strong positive correlation we obtain

πM
0.999 =

(
πM,1
0.999

πM,2
0.999

)
≈ 1

2

(
πM,1
d=1

πM,2
d=1

)
.

The numerical results also show that there is no analogue for a risk-constrained
investor, i.e.,

π⋆
0 =

(
π⋆,1
0

π⋆,2
0

)
̸=

(
π⋆,1
d=1

π⋆,2
d=1

)
and π⋆

0.999 =

(
π⋆,1
0.999

π⋆,2
0.999

)
̸= 1

2

(
π⋆,1
d=1

π⋆,2
d=1

)
,

where π⋆,i
d=1, i = 1, 2, equals the optimal investment proportion strategy of the VaR-

constrained investor given a financial market only consisting of a bond and stock i.
The effect of the correlation coefficient on the value function and optimal investment
proportion strategy at t = 0 and x = 1 is presented in more detail in the top panel
of Figure 2.8. The left panel presents the value function of a Merton investor and
a VaR-constrained investor, whereas the right panel shows the associated optimal
investment proportion strategies. As already shown, if the correlation coefficient
tends to −1 the proportion invested into both stocks by a Merton investor tends to
infinity, as well as the associated value function. The optimal investment proportion
strategy and associated value function of a VaR-constrained investor also tend to
infinity if ρ tends to −1, since the risk can be perfectly eliminated and unlimited
profit is possible. However, if ρ is about −0.9 we already observed from the above
figures that the Merton investor puts a large proportion into both stocks, whereas
the VaR-constrained investor only puts a small proportion in both stocks to satisfy
the risk constraint. This leads to large differences between the value functions. If ρ
increases to +1 the Merton investor puts smaller proportions into both stocks yielding
smaller differences between the value functions. The corresponding efficiency of a
VaR-constrained investor relative to a Merton investor for different values of ρ is
presented in the bottom panel of Figure 2.8. If the stocks have a perfect negative
correlation, the efficiency is one because the value function of the VaR-constrained
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investor equals the value function of the Merton investor. However, if the stocks have a
strong negative correlation the efficiency is close to zero. The efficiency considerably
increases, if the correlation coefficient increases yielding an efficiency of 0.9 if the
stocks have a strong positive correlation.
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(a) ρ = −0.999

(b) ρ = −0.99

(c) ρ = −0.9
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(d) ρ = −0.5

(e) ρ = 0

(f) ρ = 0.5
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(g) ρ = 0.9

(h) ρ = 0.99

(i) ρ = 0.999

Figure 2.7: Effect of the VaR constraint on the value function and optimal investment
proportion strategy for different values of ρ. The benchmark and bound
are given by Y M

t := E[XM
t+∆|X

(π,c)
t ] and ε̃(t, x) = 0.05x, respectively.
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(a) Value function and optimal investment proportion strategy at t = 0 and x = 1 for
different values of ρ.

(b) Efficiency of a VaR-constrained investor relative to a Merton investor for different values
of ρ.

Figure 2.8: Effect of the VaR constraint on the value function, optimal investment
proportion strategy, and efficiency for different values of ρ. The bench-
mark and bound are given by Y M

t := E[XM
t+∆|X

(π,c)
t ] and ε̃(t, x) = 0.05x,

respectively.
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Variation of the benchmark

In the following numerical examples we investigate the effect of the benchmark of
a risk constraint on the value function and optimal investment proportion strategy.
The TCE is used as a risk constraint with the relative bound ε̃(t, x) = 0.05x. The
correlation coefficient of the stocks is given by ρ = 0.5.
Figure 2.9 shows the effect of the TCE constraint on the value function and opti-
mal investment proportion strategy for different benchmarks. The left panels present
the value function of a Merton investor and TCE-constrained investor, whereas the
right panels show the associated optimal investment proportion strategies. The
considered benchmarks are Y M

t := E[XM
t+∆|X

(π,c)
t ], Y B

t := E[X(0,cM )
t+∆ |X(π,c)

t ], and
Y 0.95
t := 0.95X

(π,c)
t . The investor who is constrained to the benchmark Y 0.95

t puts
the largest proportion into both stocks, whereas the investor who is constrained to
the benchmark Y M

t puts the smallest proportion into both stocks. The differences
between the value function of a Merton investor and a TCE-constrained investor are
larger for the benchmark Y M

t than for the benchmarks Y B
t and Y 0.95

t . The effect of
the benchmark on the value function and optimal investment proportion strategy is
presented in more detail in Figure 2.10. The top panel shows the value function for
the Merton investor and the value function of a TCE-constrained investor with the
benchmarks Y M

t , Y B
t and Y 0.95

t , respectively. The bottom panels show the associated
optimal investment proportion strategies. We observe that the benchmarks affect
the value function. However the difference between the value functions due to the
different benchmarks is small.
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(a) Y M
t := E[XM

t+∆|X
(π,c)
t ]

(b) Y B
t := E[X(0,cM )

t+∆ |X(π,c)
t ]

(c) Y 0.95
t := 0.95X

(π,c)
t

Figure 2.9: Effect of the TCE constraint on the value function and optimal investment
proportion strategy for different benchmarks Y . The bound is ε̃(t, x) =
0.05x.
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Figure 2.10: Effect of the TCE constraint on the value function at t = 0 and optimal
investment proportion strategy at t = 0 for different benchmarks. The
bound is ε̃(t, x) = 0.05x.
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Variation of the bound

In the following numerical examples we investigate the effect of the bound of a
risk constraint on the value function and optimal investment proportion strategy.
The correlation coefficient is given by ρ = 0.5 and the EL is used as a risk constraint
with the benchmark Y M

t = E[XM
t+∆|X

(π,c)
t ]. Figure 2.11 shows the effect of the EL

constraint on the value function and optimal investment proportion strategy for dif-
ferent relative bounds. The left panels present the value function of a Merton investor
and a EL-constrained investor, whereas the right panels show the associated optimal
investment proportion strategies. It is illustrated that a more restrictive bound is
associated with smaller proportions invested into the stocks. Figure 2.12 displays the
effect of the EL constraint on the value function and optimal investment proportion
strategy for different absolute bounds. Similar to the model with a single stock, we
observe that for an absolute bound the optimal investment proportion is no longer
independent of the wealth level x.

The effect of the bound on the value function and optimal investment propor-
tion strategy is presented in more detail in Figure 2.13. The top panels show the
value function and optimal investment proportion strategy for an absolute bound
of ε̃(t, x) = 0.03 and a relative bound of ε̃(t, x) = 0.03x, whereas in the bottom
panels the effect of an absolute bound of ε̃(t, x) = 0.01 and of a relative bound of
ε̃(t, x) = 0.01x are shown. For a small initial capital, i.e., x < 1, the investor who is
constrained to a relative bound puts a larger proportion into both stocks compared to
the investor who is constrained to an absolute bound. Thus, for x < 1 the associated
value function of the investor who is constrained to a relative bound is above the value
function of the investor who is constrained to an absolute bound. The opposite holds
true for x > 1, whereas for x = 1 the value function and the investment proportion
strategy are the same for the investor who is constrained to a relative bound and the
investor who is constrained to an absolute bound.
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(a) ε̃(t, x) = 0.04x

(b) ε̃(t, x) = 0.02x

Figure 2.11: Effect of the EL constraint on the value function and optimal investment
proportion strategy for different relative bounds ε̃(t, x). The benchmark
is Y M

t = E[XM
t+∆|X

(π,c)
t ].
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(a) ε̃(t, x) = 0.04

(b) ε̃(t, x) = 0.02

Figure 2.12: Effect of the EL constraint on the value function and optimal investment
proportion strategy for different absolute bounds ε̃(t, x). The benchmark
is Y M

t = E[XM
t+∆|X

(π,c)
t ].
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(a) − ε̃(t, x) = 0.04x - - ε̃(t, x) = 0.04

(b) − ε̃(t, x) = 0.02x - - ε̃(t, x) = 0.02

Figure 2.13: Effect of the EL constraint on the value function at t = 0 and optimal
investment proportion strategy at t = 0 for different bounds ε̃(t, x). The
benchmark is Y M

t = E[XM
t+∆|X

(π,c)
t ].
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2.4 Proofs

2.4.1 Proof of Lemma 2.1.3

Under the assumption that the portfolio-proportion strategy (π, c) is kept constant
and equal to (π̄, c̄) between time t and t+∆ the wealth at time t+∆ is given by

Xt+∆ = exp
{
ln
(
Xt

)
+
(
π̄′(µ− 1r) + r − c̄− ∥π̄′σ∥2

2

)
∆

+ π̄′σ(W t+∆ −W t)
}
.

From the equation above we obtain that Xt+∆ is – conditionally on Ft – distributed
as eZ , where Z is normally distributed with mean m and variance s2. Here,

m := ln (Xt) +
(
π̄′(µ− 1r) + r − c̄− 1

2
∥π̄′σ∥2

)
∆ and s2 := ∥π̄′σ∥2∆.

Recall, the Expected Loss at time t is defined by

ELt (Lt) := E
[
(Yt −Xt+∆)

+
⏐⏐⏐ Ft

]
= E

[ (
Yt − eZ

)+ ⏐⏐⏐ Ft

]
.

This expectation can be calculated as follows. Let

fZ(z) =
1√
2πs

exp
(
− (z −m)2

2s2

)
denote the probability density function of Z. Then

ELt (Lt) =

∫ ∞

−∞
(Yt − ez)+ fZ(z)dz =

∫ ln(Yt)

−∞
(Yt − ez) fZ(z)dz = YtI1 + I2,

where I1 :=
∫ ln(Yt)

−∞ fZ(z)dz and I2 := −
∫ ln(Yt)

−∞ ezfZ(z)dz.
For the integral I1 an appropriate change of variables yields

I1 =

∫ d1

−∞

1√
2π
e−

y2

2 dy = Φ(d1),

where

d1 : =
ln(Yt)−m

s
=

1

∥π̄′σ∥
√
∆

[
ln
( f̃(t,Xt)

Xt

)
−
(
π̄′(µ− 1r) + r − c̄− ∥π̄′σ∥2

2

)
∆
]

and Φ(·) denotes the cumulative distribution function of the standard normal distri-
bution. The integral I2 can be written as

I2 = −
∫ ln(Yt)

−∞

1√
2πs

exp
(
z − z2 − 2zm+m2

2s2

)
dz

= −e
s2

2
+m

∫ ln(Yt)

−∞

1√
2πs

exp
(
− (z − (m+ s2))

2

2s2

)
dz.
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Using the change of variables technique yields

I2 = −e
s2

2
+m

∫ d2

−∞

1√
2π
e−

y2

2 dy = −e
s2

2
+mΦ(d2),

where

d2 : =
ln(Yt)− (m+ s2)

s

=
1

∥π̄′σ∥
√
∆

[
ln
( f̃(t,Xt)

Xt

)
−
(
π̄′(µ− 1r) + r − c̄+

1

2
∥π̄′σ∥2

)
∆

]
.

Note, exp{s2/2 +m} = Xt exp ((π̄
′(µ− 1r) + r − c̄)∆). Finally we obtain

ELt (Lt) = YtI1 + I2 = f̃(t,Xt)Φ(d1)−Xt exp ((π̄
′(µ− 1r) + r − c̄)∆)Φ(d2).

2.4.2 Proof of Lemma 2.2.1

Given an investment-consumption strategy (φ, η) the wealth process X evolves as
follows

Xtn+1 = er∆(Xtn − ηtn − φtn) + φtn · exp
{(
µ− σ2

2

)
∆+ σ

(
Wtn+1 −Wtn

)}
.

Note that given a probability level α ∈ (0, 1) the Value at Risk at time tn is defined
by VaRα

tn(Ltn) := inf {l ∈ R |P(Ltn ≥ l|Gtn) ≤ α} . We have

Ltn = Ytn −Xtn+1 = f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

− φtn · exp
{(
µ− σ2

2

)
∆+ σ

(
Wtn+1 −Wtn

)}
and

P (Ltn ≥ l|Gtn) = P
(
exp

{(
µ− σ2

2

)
∆+ σ

(
Wtn+1 −Wtn

)}
≤ f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)− l

φtn

⏐⏐⏐Gtn

)
= P

(
∆− 1

2

(
Wtn+1 −Wtn

)
≤ z
⏐⏐Gtn

)
= Φ(z),

where

z =
1

σ
√
∆

(
ln
{ f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)− l

φtn

}
−
(
µ− σ2

2

)
∆
)
.
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We have used that the random variable ∆− 1
2 (Wtn+1 − Wtn) is standard normally

distributed and independent of Gtn . Thus, P (Ltn ≥ l|Gtn) = Φ(z) ≤ α is satisfied for
z ≤ Φ−1(α) yielding

l ≥ f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)− exp
{
Φ−1(α)σ

√
∆+

(
µ− σ2

2

)
∆
}
φtn .

Since the Dynamic Value at Risk is the smallest l satisfying the above inequality we
obtain VaRα

tn(Ltn) = ψ̃(tn, Xtn , φtn , ηtn), where

ψ̃(t, x, φ̄, η̄) =f̃(t, x)− er∆(x− η̄ − φ̄)− exp
{
Φ−1(α)σ

√
∆+

(
µ− σ2

2

)
∆
}
φ̄.

The Tail Conditional Expectation at time tn is defined by

TCEα
tn(Ltn) = Etn

[
Ltn |Ltn ≥ VaRα

tn(Ltn)
]

=
E
[
LtnI

(
Ltn ≥ VaRα

tn(Ltn)
) ⏐⏐Gtn

]
P
(
Ltn ≥ VaRα

tn(Ltn)
⏐⏐Gtn

)
=

1

α
E
[
LtnI

(
Ltn ≥ VaRα

tn(Ltn)
) ⏐⏐Gtn

]
,

where I(A) denotes the indicator function of the set A. Using

Ltn = Ytn −Xtn+1 =f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

− φtn exp
{(
µ− σ2

2

)
∆+ σ

(
Wtn+1 −Wtn

)}
and

VaRα
tn(Ltn) =f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

− φtn exp
{(
µ− σ2

2

)
∆+Φ−1(α)σ

√
∆
}

yields that the above inequality VaRα
tn(Ltn) ≤ Ltn is equivalent to ∆− 1

2 (Wtn+1−Wtn) ≤
Φ−1(α). Thus,

E
[
LtnI

(
Ltn ≥ VaRα

tn(Ltn)
) ⏐⏐Gtn

]
=E
[
LtnI

(
(Wtn+1 −Wtn)∆

− 1
2 ≤ Φ−1(α)

)⏐⏐⏐Gtn

]
=
(
Ytn − er∆ (Xtn − ηtn − φtn)

)
E
[
I
(
(Wtn+1 −Wtn)∆

− 1
2 ≤ Φ−1(α)

)⏐⏐⏐Gtn

]
− φtn exp

{(
µ− σ2

2

)
∆
}
E
[
eσ(Wtn+1−Wtn)

· I
(
(Wtn+1 −Wtn)∆

− 1
2 ≤ Φ−1(α)

)⏐⏐⏐Gtn

]
=
(
f̃(tn, Xtn)− er∆ (Xtn − ηtn − φtn)

)
α− φtn exp

{(
µ− σ2

2

)
∆
}

· E
[
eσ(Wtn+1−Wtn)I

(
(Wtn+1 −Wtn)∆

− 1
2 ≤ Φ−1(α)

)⏐⏐⏐Gtn

]
.
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We obtain

E
[
eσ(Wtn+1−Wtn)I

(
(Wtn+1 −Wtn)∆

− 1
2 ≤ Φ−1(α)

)⏐⏐⏐Gtn

]
=

∫ Φ−1(α)

−∞
eσ

√
∆z 1√

2π
e−

1
2
z2dz,

where we have used that the random variable (Wtn+1 −Wtn)∆
− 1

2 is standard normally
distributed and independent of Gtn . We calculate the above integral by making an
appropriate change of variables∫ Φ−1(α)

−∞
eσ

√
∆z 1√

2π
e−

1
2
z2dz = e

σ2∆
2

∫ Φ−1(α)−σ
√
∆

−∞

1√
2π
e−

1
2
y2dy

= e
σ2∆
2 Φ

(
Φ−1(α)− σ

√
∆
)
.

Finally, the Dynamic Tail Conditional Expectation can be written as
TCEα

tn(Ltn) = ψ̃(tn, Xtn , φtn , ηtn), where

ψ̃(t, x, φ̄, η̄) = f̃(t, x)− er∆(x− η̄ − φ̄)− 1

α
eµ∆Φ

(
Φ−1(α)− σ

√
∆
)
φ̄.

In order to prove the statement for the Dynamic Expected Loss we use that the wealth
at time Xtn+1 is distributed as er∆(Xtn − ηtn − φtn) + φtn · eZ , where Z is normally
distributed with mean m and variance s2, where m := (µ − σ2/2)∆ and s2 := σ2∆.
From the definition of the Dynamic Expected Loss we find

ELtn (Ltn) = E
[(
Ytn −Xtn+1

)+⏐⏐⏐ Gtn

]
= E

[(
f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)− φtn · eZ

)+⏐⏐⏐ Gtn

]
.

This expectation can be calculated as follows. Let

fZ(z) =
1√
2πs

exp
(
− (z −m)2

2s2

)
denote the probability density function of Z, then

ELtn (Ltn) =

∫ ∞

−∞

(
f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)− φtn · ez

)+
fZ(z)dz

=

∫ d̃

−∞

(
f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)− φtn · ez

)
fZ(z)dz

=
(
f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

)
I1 − φtnI2,
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where I1 =
∫ d̃

−∞ fZ(z)dz, I2 =
∫ d̃

−∞ ezfZ(z)dz and

d̃ = ln
( f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

φtn

)
.

The integral I1 can be calculated by making an appropriate change of variables and
we obtain

I1 =

∫ d1

−∞

1√
2π
e−

y2

2 dy = Φ(d1),

where

d1 : =
1

s

(
ln
( f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

φtn

)
−m

)
=

1

σ
√
∆

[
ln
( f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

φtn

)
−
(
µ− σ2

2

)
∆
]
.

The integral I2 can be written as

I2 =

∫ d̃

−∞

1√
2πs

exp
(
z − z2 − 2zm+m2

2s2

)
dz

= e
s2

2
+m

∫ d̃

−∞

1√
2πs

exp
(
− (z − (m+ s2))

2

2s2

)
dz.

Using the change of variables method yields

I2 = e
s2

2
+m

∫ d2

−∞

1√
2π
e−

y2

2 dy = e
s2

2
+mΦ(d2),

where

d2 =
1

s

[
ln
( f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

φtn

)
− (m+ s2)

]
=

1

σ
√
∆

[
ln
( f̃(tn, Xtn)− er∆(Xtn − ηtn − φtn)

φtn

)
−
(
µ+

σ2

2

)
∆

]
.

Note, es2/2+m = eµ∆, thus we obtain ELtn (Ltn) = ψ̃(tn, Xtn , φtn , ηtn), where

ψ̃(t, x, φ̄, η̄) =
(
f̃(t, x)− er∆(x− η̄ − φ̄)

)
Φ(d1)− eµ∆Φ(d2)φ̄.
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2.5 Results from dynamic programming
In Subsection 2.5.1 and Subsection 2.5.2, we briefly introduce the dynamic pro-

gramming approach for solving stochastic control problems in continuous time and
discrete time, respectively. Possible references for a more comprehensive introduction
to optimal stochastic control are Davis [25], Fleming & Rishel [32], Fleming &
Soner [33], Korn & Korn [51], Krylov [52], Øksendal & Sulem [65], Pham
[67], Touzi [79], or Yong & Zhou [83] for continuous-time problems and Bäuerle
& Rieder [7], Bellman [11], [12], [13], Boudarel, Delmas & Guichet [20],
Hinderer [42], howard [43], or Jacobs [44] for discrete-time problems.

2.5.1 Continuous time

We begin this subsection with formulating the stochastic control problem in con-
tinuous time by using the framework of controlled diffusion processes. Then we intro-
duce the dynamic programming principle initiated by Bellman in the 1950s to solve
the control problem. The basic idea of this approach is to embed the control problem
into a family of control problems by varying the initial state values of the controlled
diffusion process. It yields a nonlinear partial differential equation (PDE) of second
order which is called the Hamilton-Jacobi-Bellman (HJB) equation. Supposing the
existence of a regular solution to the HJB equation, its optimality is validated by the
verification theorem.

We fix a finite horizon 0 < T < ∞ and consider a control model on a filtered
probability space (Ω,F ,F = (Ft)t∈[0,T ],P) satisfying the usual conditions. The state
of the control model is governed by the following stochastic differential equation (SDE)
valued in Rd:

dXs = a(Xs,us)ds+ b(Xs,us)dW s, s ∈ [t, T ]

X t = x,
(2.21)

where W is a m-dimensional Brownian motion and u = (ut)t∈[0,T ] is a progressively
measurable (with respect to F) control process, valued in K ⊂ Rn. The functions
a : Rd × K → Rd and b : Rd × K → Rd×m are measurable and satisfy a uniform
Lipschitz condition, i.e., ∃C ≥ 0, ∀x, y ∈ Rd, ∀k ∈ K such that

∥a(x, k)− a(y, k)∥+ ∥b(x, k)− b(y, k)∥ ≤ C∥x− y∥.

Definition 2.5.1. The set of control processes u satisfying

E
[∫ T

0

∥a(0,us)∥2 + ∥b(0,us)∥2ds
]
<∞

is denoted by A.
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Remark 2.5.2. For all controls u ∈ A and for any initial condition (t, x) ∈ [0, T ]×Rd,
there exists a unique strong solution to the SDE (2.21) satisfying

Et,x

[
sup

s∈[t,T ]

∥Xs∥2
]
<∞ and lim

h↓0
Et,x

[
sup

s∈[t,t+h]

∥Xs − x∥2
]
= 0, (2.22)

where the term Et,x[·] denotes the conditional expectation given the information
known up to time t and X t = x. A proof can be found in Krylov [52, Chap-
ter 2].

Definition 2.5.3. Let f : [0, T ] × Rd × K → R a measurable function. The set of
control processes u ∈ A satisfying

Et,x

[∫ T

t

|f(s,Xs,us)|ds
]
<∞

is denoted by A(t,x).

Given a control process u = (ut)t∈[0,T ] ∈ A(t, x) we define the reward function
J (·, ·,u) : [0, T ]× Rd for all (t,x) ∈ [0, T ]× Rd by

J (t,x,u) = Et,x

[ ∫ T

t

f(s,Xs,us)ds+ g(XT )
]
, (2.23)

where g : Rd → R is a measurable function which is either lower-bounded or satisfies
a quadratic growth condition for some constant C, i.e., |g(x)| ≤ C(1 + ∥x∥2) for all
x ∈ Rd. The objective is to maximize the reward function over all control processes
u ∈ A(t,x). We introduce the associated value function V (·, ·) : [0, T ] × Rd for all
(t,x) ∈ [0, T ]× Rd by

V (t,x) = sup
u∈A(t,x)

J (t,x,u).

A control process u∗ with V (t,x) = J (t,x,u∗) is called optimal. To obtain an opti-
mal control on the whole time interval [t, T ] the basic idea is to split the optimization
problem into two parts. First search for an optimal control from time θ ∈ [t, T ] given
the state value Xθ, i.e., compute V (θ,Xθ). Second, maximize the quantity

Et,x

[ ∫ θ

t

f(s,Xs,us)ds+ V (θ,Xθ)
]

over controls on [t, θ]. This principle is called the dynamic programming principle
(DPP) and is formulated as follows:
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Theorem 2.5.4 (Dynamic Programming Principle). Let (t,x) ∈ [0, T ]×Rd and Tt,T

the set of stopping times valued in [t, T ]. Then it holds

V (t,x) = sup
u∈A(t,x)

sup
θ∈Tt,T

Et,x

[∫ θ

t

f(s,Xs,us)ds+ V (θ,Xθ)

]
= sup

u∈A(t,x)

inf
θ∈Tt,T

Et,x

[∫ θ

t

f(s,Xs,us)ds+ V (θ,Xθ)

]
.

For a proof see Pham [67, Chapter 3, Theorem 3.3.1].

A stronger version of the DPP is written as

V (t,x) = sup
u∈A(t,x)

Et,x

[∫ θ

t

f(s,Xs,us)ds+ V (θ,Xθ)

]
, (2.24)

for any stopping time θ valued in [t, T ]. From the DPP we formally derive the
dynamic programming equation, which is also called the Hamilton-Jacobi-Bellman
(HJB) equation, by sending the stopping time θ in (2.24) to t. Hence, the HJB
equation is the infinitesimal version of the DPP describing the local behavior of the
value function.
Let θ = t + h and ū a constant control, for some arbitrary ū in K. From the DPP
(2.24) we obtain

V (t,x) ≥ Et,x

[∫ t+h

t

f(s,Xs, ū)ds+ V (t+ h,X t+h)

]
. (2.25)

Under the assumption that V is smooth enough, applying Itô’s formula on
V (t+ h,X t+h) and substituting into (2.25) yields the inequality

0 ≥ Et,x

[∫ t+h

t

f(s,Xs, ū)ds+
∫ t+h

t

(
∂V

∂t
+HūV

)
(s,Xs)ds

]
,

where Hū is the operator associated to the diffusion process (2.21) for the constant
control ū and given by

HūV = a(x, ū)DxV +
1

2
tr(b(x, ū)b′(x, ū)D2

xV ).

By dividing by h and sending h to 0, we then obtain from the mean-value theorem

0 ≥ f(t,x, ū) +
∂V

∂t
(t,x) +HūV (t,x).

Since ū ∈ K was chosen arbitrarily it follows

0 ≥ ∂V

∂t
(t,x) + sup

ū∈K
[f(t,x, ū) +HūV (t,x)] . (2.26)
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On the other hand, assume an optimal control u⋆ exists and X⋆ is the associated
solution to (2.21). Then, the DPP (2.24) yields

V (t,x) = Et,x

[∫ t+h

t

f(s,X⋆
s,u

⋆
s)ds+ V (t+ h,X⋆

t+h)

]
.

Using similar arguments as above, we obtain the equality

0 =
∂V

∂t
(t,x) + f(t,x,u⋆) +Hu⋆

V (t,x). (2.27)

By combining (2.26) and (2.27) it follows

0 =
∂V

∂t
(t,x) + sup

ū∈K
[f(t,x, ū) +HūV (t,x)] , ∀(t,x) ∈ [0, T )× Rd, (2.28)

if the above supremum in ū is finite. The equation (2.28) is called the dynamic
programming equation or Hamilton-Jacobi-Bellman (HJB) equation. We immediately
obtain the terminal condition associated to this PDE from the definition (2.23) of the
reward function considered at the horizon date T , i.e.,

V (T,x) = g(x), ∀x ∈ Rd.

To prove that, given a smooth solution to the HJB equation, this candidate coin-
cides with the value function we formulate the verification theorem, which is based
essentially on Itô’s formula.

Theorem 2.5.5 (Verification Theorem). Let w be a function in C1,2([0, T ) × Rd) ∩
C0([0, T ]× Rd), satisfying the quadratic growth condition

|w(t,x)| ≤ C(1 + ∥x∥2), ∀(t,x) ∈ [0, T ]× Rd,

for some constant C. Suppose that w is a solution to the HJB equation

∂w

∂t
(t,x) + sup

ū∈K
[f(t,x, ū) +Hūw(t,x)] = 0, ∀(t,x) ∈ [0, T )× Rd,

w(T,x) = g(x), ∀x ∈ Rd.

(2.29)

Suppose further that there exists a measurable function û(t,x) : [0, T )×Rd → K such
that

• the SDE

dXs = a(Xs, û(s,Xs))ds+ b(Xs, û(s,Xs))dW s, s ∈ (t, T ]

X t = x,

admits a unique solution X̂,
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• the process {û(s, X̂s) : t ≤ s ≤ T} lies in A(t, x) and

• the following holds

û(t,x) ∈ argmax
ū∈K

[f(t,x, ū) +Hūw(t,x)] .

Then w coincides with the value function, i.e., w(t,x) = V (t,x) on [0, T ]× Rd, and
û is an optimal control.

Proof. Let u ∈ A(t, x) an arbitrary control and τ a stopping time valued in [t,∞).
Since w ∈ C1,2([0, T )× Rd) we can apply Itô’s formula yielding

w(s ∧ τ,Xs∧τ ) =w(t,x) +

s∧τ∫
t

∂w

∂t
(z,Xz) +Huz(z,Xz)dz

+

s∧τ∫
t

Dxw(z,Xz)
′b(Xz,uz)dW z,

(2.30)

for all s ∈ [t, T ). We choose the stopping time

τ = τn = inf

{
s ≥ t :

s∫
t

|Dxw(z,Xz)
′b(Xz,uz)dW z|2 ≥ n

}
,

and obtain τn ↗ ∞ when n→ ∞. Hence, the stopped process
s∧τn∫
t

Dxw(z,Xz)
′b(Xz,uz)dW z

is a martingale and it holds

Et,x

⎡⎣ s∧τn∫
t

Dxw(z,Xz)
′b(Xz,uz)dW z

⎤⎦ = 0.

By taking the expectation in (2.30) it follows

Et,x [w(s ∧ τn,Xs∧τn)] =w(t,x) + Et,x

⎡⎣ s∧τn∫
t

∂w

∂t
(z,Xz) +Huz(z,Xz)dz

⎤⎦ .
Since w is a solution to the HJB equation (2.29) we obtain

∂w

∂t
(z,Xz) +Huz(z,Xz) + f(z,Xz,uz) ≤ 0.
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Thus,

Et,x [w(s ∧ τn,Xs∧τn)] ≤ w(t,x)− Et,x

⎡⎣ s∧τn∫
t

f(z,Xz,uz)dz

⎤⎦ . (2.31)

Furthermore, it holds⏐⏐⏐⏐⏐⏐
s∧τn∫
t

f(z,Xz,uz)dz

⏐⏐⏐⏐⏐⏐ ≤
s∧τn∫
t

|f(z,Xz,uz)| dz ≤
T∫
t

|f(z,Xz,uz)| dz,

where the right-hand-side term is integrable by the integrability condition on A(t,x).
Since w satisfies a quadratic growth condition, it follows

w(s ∧ τn,Xs∧τn) ≤ C
(
1 + ∥Xs∧τn∥2

)
≤ C

(
1 + sup

s∈[t,T ]

∥Xs∥2
)
,

where the right-hand-side term is integrable from (2.22). We can then send n to
infinity in (2.31) and the dominated convergence theorem yields

Et,x [w(s,Xs)] ≤ w(t,x)− Et,x

⎡⎣ s∫
t

f(z,Xz,uz)dz

⎤⎦ . (2.32)

Since w is continuous and by (2.29), we have

lim
s→T

w(s,Xs) = w(T,XT ) = g(XT ).

Thus, sending s to T into (2.32) yields by the dominated convergence theorem

w(t,x) ≥ Et,x

⎡⎣ T∫
t

f(z,Xz,uz)dz + g(XT )

⎤⎦ = J (t,x,u).

From the arbitrariness of u ∈ A(t,x), it follows

w(t,x) ≥ sup
u∈A(t,x)

J (t,x,u) = V (t,x), ∀(t,x) ∈ [0, T ]× Rd. (2.33)

On the other hand, by definition of the control process {û(s,Xs) : t ≤ s ≤ T}, we
have

∂w

∂t
(t,x) +Hû(t,x)(t,x) + f(t,x, û(t,x)) = 0, ∀(t,x) ∈ [0, T ]× Rd.

Using similar arguments as above, we obtain

w(t,x) = J (t,x, û) ≤ V (t,x). (2.34)

Combining (2.33) and (2.34) finally shows that w = V with û as an optimal control.
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Remark 2.5.6. As a byproduct, we obtain by the verification theorem that the
optimal control process u⋆ is in the form u⋆

s = u(s,X⋆
s) for some measurable function

u : [0, T ]× Rd → K. Such controls are called Markovian controls.

Remark 2.5.7. The existence of a smooth solution to the HJB equation can be shown
using the existence results provided in Fleming & Rishel [32, Chapter VI, Theorem
6.1] and Fleming & Soner [33, Chapter IV, Theorem 4.2]. In the particular case
where the required conditions of sufficiently smooth and bounded functions a, b, f ,
and g are not fulfilled the problem can be tackled by considering a sequence of control
problems, where the discontinuous functions are approximated by mollified functions
as proposed in Fleming & Soner [33, Appendix C]. Furthermore, the unbounded
functions are suitably truncated to bounded functions using the technique described
in Harrison & Zeevi[40, Appendix B].

2.5.2 Discrete time

In this subsection we consider a Markov Decision Process with a finite time hori-
zon. For the sake of a short exposition of the theory of Markov Decision Problems we
restrict ourselves to the case of finite state and action spaces. We show that the as-
sociated optimization problem can be solved by a backward induction algorithm. For
the theory of Markov Decision Problems with general state and action spaces we refer
to Bäuerle & Rieder [7]. The authors impose a so-called structure assumption
on the problem which is often easily verified in applications and is used to prove the
validity of the backward induction algorithm and the existence of optimal strategies.

Definition 2.5.8. A Markov Decision Process with planning horizon N ∈ N+ consists
of a set of data (X,A, p, r, g) with the following meaning for all n = 0, 1, . . . , N − 1:

• X is the finite state space.

• A is the finite action space.

• pn(y|x, a) describes the transition probability, i.e., for any x, y ∈ X, a ∈ A

pn(y|x, a) = P(Xn+1 = y|Xn = x,An = a)

is the probability that the state at time n + 1 is y given the current state is x
and action a is taken.

• rn(x, a, y) is the reward obtained when taking action a at time n and a transition
from a state x at time n to a state y at time n+ 1 is observed.

• gN(x) gives the terminal reward at time N if the state is x.
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Remark 2.5.9. In what follows we will often use rn(x, a), which can be considered
as the expected value of rn(x, a,Xn+1), i.e.,

rn(x, a) = E[rn(x, a,Xn+1)|Xn = x].

Definition 2.5.10. For n = 0, 1, . . . , N−1 a decision rule at time n is denoted by un
and defined as a mapping from the state space to the action space, i.e., un : X → A
and un(x) denotes the action chosen in x at time n. A sequence of decision rules
u = (u0, u1, . . . , uN−1) is called a strategy.

Given a strategy u = (u0, u1, . . . , uN−1) we define the reward functional J (n, x,u)
for all n = 0, 1, . . . , N and x ∈ X by

J (n, x,u) = E
[ N−1∑
m=n

rm(Xm, um(Xm)) + gN(XN)|Xn = x;u
]
.

The objective is to maximize the reward function over all strategies u. We introduce
the associated value function for all n = 0, 1, . . . , N and x ∈ X by

V (n, x) = sup
u∈U

J (n, x,u),

where U is some strategy set of interest. A strategy u∗ = (u∗0, u
∗
1, . . . , u

∗
N−1) ∈ U with

V (0, x) = J (0, x,u∗) is called optimal.
In the next theorem we show that for a fixed strategy u = (u0, u1, . . . , uN−1) we can
compute the reward functional recursively by a backward induction algorithm.

Theorem 2.5.11. Let u = (u0, u1, . . . , uN−1) be a fixed strategy. For a time n =
0, 1, . . . , N − 1 and a state x ∈ X the reward functional satisfies

J (N, x,u) = gN(x)

J (n, x,u) = rn(x, un(x)) +
∑
y∈X

pn(y|x, un(x))J (n+ 1, y,u).
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Proof. We have

J (n, x,u) = E
[ N−1∑
m=n

rm(Xm, um(Xm)) + gN(XN)|Xn = x;u
]

= E
[
rn(Xn, un(Xn))|Xn = x;u

]
+ E

[ N−1∑
m=n+1

rm(Xm, um(Xm)) + gN(XN)|Xn = x;u
]

= rn(x, un(x))

+ E
[
E
[ N−1∑
m=n+1

rm(Xm, um(Xm)) + gN(XN)
⏐⏐⏐Xn+1;Xn = x;u

]⏐⏐⏐Xn = x;u
]

= rn(x, un(x))

+
∑
y∈X

pn(y|x, un(x))E
[ N−1∑
m=n+1

rm(Xm, um(Xm)) + gN(XN)
⏐⏐⏐Xn+1 = y;u

]
= rn(x, un(x)) +

∑
y∈X

pn(y|x, un(x))J (n+ 1, y,u),

where we have used the tower rule in the third and fourth equation.

Next we show that the value function is a solution to the so-called Bellman equa-
tion.

Theorem 2.5.12 (Bellman Equation). The value function V satisfies the Bellman
equation

V (N, x) = gN(x), x ∈ X

V (n, x) = sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)V (n+ 1, y)

]
, x ∈ X;n = 0, 1, . . . , N − 1.

Proof. By definition it holds V (N, x) = gN(x) for all x ∈ X. We write a strategy
u = (un, un+1, . . . , uN−1) applied at state x from time n = 0, 1, . . . , N − 1 on as u =
(a, ū) with a ∈ A is the action chosen in x at time n and ū = (un+1, un+2, . . . , uN−1).
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It follows

V (n, x) = sup
u

[
E
[ N−1∑
m=n

rm(Xm, um(Xm)) + gN(XN)|Xn = x;u
]]

= sup
(a,ū)

[
rn(x, a) +

∑
y∈X

pn(y|x, a)J (n+ 1, y, ū)

]

= sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a) sup
ū

J (n+ 1, y, ū)

]

= sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)V (n+ 1, y)

]
,

where we have used Theorem 2.5.11 in the second equation.

In the following we show that a solution of the Bellman equation coincides with the
value function and that the associated sequence of maximizers is an optimal strategy.

Theorem 2.5.13 (Verification Theorem). For a time n = 0, 1, . . . , N −1 and a state
x ∈ X let w be a function satisfying the Bellman equation

w(N, x) = gN(x)

w(n, x) = sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)w(n+ 1, y)

]

and for a time n = 0, 1, . . . , N − 1 let ûn : X → A be a function such that

ûn(x) ∈ argmax
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)w(n+ 1, y)

]
.

Then it holds w(n, x) = V (n, x) for all n = 0, 1, . . . , N and x ∈ X and û =
(û0, û1, . . . , ûN−1) is an optimal strategy.

Proof. We show recursively that w(n, x) ≥ V (n, x). For n = N we have w(N, x) =
gN(x) = V (N, x) by definition. Suppose that w(n+1, x) ≥ V (n+1, x) for all x ∈ X.
Using Theorem 2.5.12 we obtain

w(n, x) = sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)w(n+ 1, y)

]

≥ sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)V (n+ 1, y)

]
= V (n, x).
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On the other hand, we can show recursively that w(n, x) ≤ J (n, x, û). For n = N
we have w(N, x) = gN(x) = V (N, x) = J (N, x, û). Suppose that w(n + 1, x) ≤
J (n+ 1, x, û) then

w(n, x) = sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)w(n+ 1, y)

]

≤ sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)J (n+ 1, y, û)

]

≤ sup
a∈A

[
rn(x, a) +

∑
y∈X

pn(y|x, a)V (n+ 1, y)

]
= V (n, x) ≤ J (n, x, û).

Hence we have V (n, x) ≤ w(n, x) ≤ J (n, x, û) ≤ V (n, x) yielding w = V and û is an
optimal strategy.



Chapter 3

Credit risk with asymmetric
information and a switching barrier

Credit risk, or default risk, is the risk that a financial loss will be incurred if a
counterparty does not fulfill its contractually agreed financial obligations in a timely
manner. Quantitative credit risk models for measuring, monitoring, and managing
credit risk have become central in today’s complex financial industry. In Section 3.1
we review the two classical types of modeling approaches and present a very recent
stream of hybrid models of the traditional approaches that tries to incorporate the
best features of both model types. Then we proceed by defining a new hybrid model
of credit risk in Section 3.2. This model is theoretically analyzed in Section 3.3 and
illustrated by numerical examples in Section 3.4. The chapter concludes, in Section
3.5, with proofs omitted from the main text.

3.1 Credit risk models

There are two classical types of modeling approaches: the structural one consid-
ered by Black & Scholes [15], Merton [61], and Black & Cox [14], among oth-
ers, and the reduced-form one considered by Jarrow & Turnbull [46], Artzner
& Delbaen [3], and Duffie & Singleton [28], among others. The key distinction
between these two model types can be characterized in terms of the information set
available to the modeler (see Jarrow & Protter [45]). Structural models deter-
mine the time of default by using the evolution of the value of a firm’s assets. Hence,
explicit assumptions about the dynamics of firm’s assets and the situation that will
trigger the default event are made. This implicitly assumes that the modeler has
complete knowledge of a firm’s assets and liabilities, i.e., the modeler is assumed to
have the same information as a firm’s management. Whereas structural models pro-
vide a relationship between default risk and capital structure, reduced-form models
treat the dynamics of default as an exogenous event. This implies knowledge of a

69
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less detailed information set, i.e., the modeler has incomplete knowledge of a firm’s
condition, akin to public (market) information. The usage of reduced-form models
is supported by the consensus in the credit risk literature that a firm’s asset value
process is unobservable by the market (see Duan [26], Ericsson & Reneby [31],
[30]). However, structural models can be transformed into reduced-form models by
changing the information set to a less refined one. Incomplete information models of
credit risk were proposed by Duffie & Lando [27], Goldberg & Giesecke [37],
and Çetin et al. [22], among others.

3.1.1 Basic definitions and notation

Let (Ω,A,P) be a given complete probability space endowed with the filtration
A = (At)t≥0 satisfying the usual conditions, i.e., A0 contains all the P-null sets of A
and At = ∩u>tAu for all 0 ≤ t <∞.
Recall, a random variable τ : Ω → [0,∞] is called a A-stopping time if

{ω : τ(ω) ≤ t} ∈ At

holds for every 0 ≤ t ≤ ∞. Important types of stopping times are predictable times
and totally inaccessible times (see Protter [70]).

Definition 3.1.1. A stopping time τ is called predictable, if there exists an increasing
sequence of stopping times (τn)n≥1 such that τn < τ on {τ > 0} for all n and
limn→∞ τn = τ a.s.

Remark 3.1.2. A predictable stopping time is announced by an increasing sequence
of stopping times and thus, known to occur just before it happens.

Definition 3.1.3. A stopping time is called accessible, if there exists a sequence of
predictable stopping times (τn)n≥1 such that

P(∪∞
n=1{ω : τn(ω) = τ(ω) <∞}) = P(τ <∞).

Definition 3.1.4. A stopping time τ is called totally inaccessible, if for every pre-
dictable stopping time S

P({ω : τ(ω) = S(ω) <∞}) = 0.

Remark 3.1.5. In contrast to a predictable stopping time is a totally inaccessible
stopping time never announced by an increasing sequence of stopping times and thus,
a “total surprise”.

On (Ω,A,P), we consider a generic firm whose asset value process is denoted by
X = (Xt)t≥0, i.e., Xt represents the firm’s asset value at time t. The credit risk
of the firm is evaluated from the perspective of the modeler. The σ-algebra A on Ω
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describes the total information of the market and the σ-algebra G = (Gt)t≥0 represents
the information available to the modeler.
In a classical structural model the firm’s asset value is assumed to follow a geometric
Brownian motion and the modeler is assumed to know at time t the firm’s asset value
Xt, i.e., the modeler is assumed to observe the information provided by the σ-algebra
G = (σ(Xs : 0 ≤ s ≤ t))t≥0. The firm defaults when its asset value crosses below
some threshold L representing the firm’s liabilities. Then the default time, denoted
by τ , is given by

τ = inf{t > 0 : Xt ≤ L}.

Here, the default time is a predictable stopping time for the filtration G, since the
sequence τn = inf{t > 0 : Xt ≤ L + 1

n
} is an announcing sequence of τ . Assuming

that the firm’s only liability consists of a zero-coupon bond promising to pay the face
value 1 at its maturity time T ∈ (0,∞), if no default occurs by T and zero otherwise.
The credit yield spread S(t, T ) on this zero-coupon bond issued by the firm is the
difference between the yield of the zero-coupon bond and that of a credit risk-free
zero-coupon bond maturing at time T . The short-term credit spread at time t is the
credit spread for maturity T approaching t, i.e.,

lim
T↓t

S(t, T ),

and represents the excess yield over the risk-free yield over an infinitesimal time pe-
riod. An immutable consequence of the predictability of the default is that short-term
credit spreads forecasts of the structural model are zero implying that over a short
term, a junk bond is not riskier than a bond not exposed to default risk (see Gold-
berg & Giesecke [37]). In reality, however, default often comes unexpectedly and
short-term credit spreads are positive.
The difficulty of fitting short-term credit spreads is addressed by the reduced-form
approach, where default occurs unexpectedly as a true surprise. The simplest reduced-
form model assumes that the default time is a stopping time generated by an exoge-
nously given Cox process (Nt)t≥0 given by Nt = 1{τ≤t} with an intensity process
(λt)t≥0 depending on a vector of state variables Yt that are in the information set of
the market. The modeler is assumed to observe the filtration generated by the default
time τ and the vector of state variables Yt, i.e., Gt = σ(τ, Ys : s ≤ t). The intensity
λt expresses the conditional default arrival rate at time t, i.e.,

λt = lim
h↓0

1

h
P(τ ≤ t+ h|Gt) a.s., t < τ.

Hence, default probabilities can be easily calculated from the intensity. Moreover,
short-term credit spreads are directly given by the intensity (see Lando [54]), i.e.,

lim
T↓t

S(t, T ) = λt a.s., t < τ.
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A successful transformation of a structural model into a reduced-form model to gain
both the economic appeal of the first and the empirical plausibility and the tractability
of the latter is based on incomplete information (see Goldberg & Giesecke [37]).
A variant of introducing noise to the classical structural model was first proposed
by Duffie & Lando [27], where it is assumed that the modeler observes the firm’s
asset value not continuously, and receives instead only imperfect information about
the firm’s value at discrete time intervals. This accounts for the fact that the modeler
may not have an accurate picture of a firm’s asset value. More precisely, the modeler
obtains at times T1 < T2 < . . . < TJ , J ∈ N, a noisy report of the firm’s asset value,
i.e.,

ZTj
= XTj

+ YTj
, j ∈ {1, . . . , J},

where YTj
is some independent random variable. The variance of YTj

represents a
measure of the degree of noise of the firm’s asset value at time Tj. Since the modeler
observes Z and not X the modeler’s information at time t is given by the filtration
G = (Gt)t≥0 defined by

Gt = σ(Zs : s ≤ t, s ∈ {T1, . . . TJ}).

A measure of the firm’s credit quality is the conditional survival probability

P(τ > u|Gt), u ≥ t.

Duffie and Lando were able to show that τ is a totally inaccessible stopping time for
the filtration G admitting an intensity λ with

1{t≥τ} −
∫ t

0

λsds

being a local martingale. Here, the structural model is transformed into an intensity-
based or reduced-form model due to information reduction and obscuring such that
between observation times of the firm’s asset value, the modeler does not know how
the asset value has evolved and default could occur unexpectedly prior to the next
observation.

Another approach to introduce noise to the system is that proposed by Goldberg
& Giesecke [37], where it is assumed that the modeler continuously observes the
firm’s asset value process but not the default barrier. The default barrier is modeled
by a random variable. This model accounts for the fact that the modeler may not
have an accurate picture of a firm’s liabilities. Here, the default time τ is rendered
totally inaccessible since it depends on the constant default barrier L that cannot be
observed by the modeler. The short-term credit spread at time t is non-zero, if the
firm’s asset value Xt is at its historical low and zero, if the firm’s asset value Xt is
above its historical low.
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3.2 Model for the default event

In this section a structural model is introduced, where short-term default risk is
included by making the default barrier unobservable. The usual assumption in a struc-
tural model of a constant default barrier is relaxed to allow the firm’s management
to adjust the barrier. In Section 3.2.1 the dynamics of the firm’s assets are modeled
by a geometric Brownian motion and the default barrier and its adjustment time
points are specified. Section 3.2.2 deals with different information structures. After
the available information of the management is described, two information structures
for public bond investors are distinguished. The first type of investors has complete
information about the firm’s assets while the second type obtains information on the
firm’s assets only at discrete dates. The first information structure is a standard one
in classical structural models. However, the second information structure is realis-
tic since investors usually observe the value of the firm’s assets only at the times of
corporate news release and not continuously.

3.2.1 Default barrier

The default event is specified in terms of the firm’s asset value process (Xt)t≥0

and the default threshold L. Default occurs when the value of the firm decreases to
the level of the default barrier for the first time. The filtration generated by the asset
process X is denoted by F = (Ft)t≥0 and assumed to satisfy the usual conditions, i.e.,
Ft = σ(Xs : s ≤ t) ∨ N , where N denotes the P-null sets. We model the value X of
the firm’s assets by a geometric Brownian motion, i.e.,

dXt = Xt(µdt+ σdBt), X0 = x0, (3.1)

where (Bt)t≥0 is a F-Brownian motion, µ ∈ R and σ > 0. The solution to (3.1) is
known to be

Xt = x0e
mt+σBt , (3.2)

where m = µ− σ2/2. For the sake of easier notation we assume w.l.o.g. x0 = 1, i.e.,
we assume that the asset process starts at 1. We say that a firm defaults when it
stops fulfilling a contractual commitment to meet its obligations stated in a financial
contract. The firm’s management decides whether and when to default. Thus, the
management determines the default triggering barrier. The essential difference from
a classical structural model is that the management is not constrained to decide on
one fixed barrier but it can dynamically adjust the default barrier. This reflects
the management’s possibility to react to changes in the economic environment or
the election of a new firm management. The time points at which the management
adjusts the default barrier are deterministic and denoted by ti, i = 0, . . . , n− 1, with
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0 = t0 < t1 < . . . < tn−1 < T , where T ∈ (0,∞) s a finite time horizon. Further, we
denote T =: tn. The default barrier L can be written as

Lt =
n∑

i=1

Li1[ti−1,ti),

where Li, i = 1, . . . , n are A-measurable random variables representing the private
information of the management on the default barrier and 1A denotes the indicator
function of the set A. Public investors do not have any knowledge on the default
barrier except that they know the adjustment time points t0, . . . , tn−1 and they agree
on the joint probability distributions for L1, . . . , Li, i = 1, . . . , n, which are denoted
by FL1,...,Li . The associated probability density functions are denoted by fL1,...,Li for
i = 1, . . . , n. We make the assumption that L = (L1, . . . , Ln) is independent of
FT . The random default time is given by τ = inf{t > 0: Xt ≤ Lt}. The running
minimum asset process is denoted by M and given by Mt = inf{Xu : 0 ≤ u < t}.
Further, the running minimum started from a certain time point s is denoted by
M[s,t) = inf{Xu : s ≤ u < t}. For s = 0 we have M[0,t) = Mt. This model setup is
illustrated by Figure 3.1, which shows two trajectories of the firm value X, n = 3
default barriers L1, L2, and L3, and the three running minimum processes M[ti−1,ti),
for i = 1, 2, 3. We consider two scenarios. In the first scenario shown in the left
panel there occurs no default whereas in the second scenario shown in the right panel
default occurs between t2 and t3 = T .

(a) No default (b) Default

Figure 3.1: Plot of two trajectories of the firm’s asset process Xt, the associated
running minimum process M[ti−1,t) and the default thresholds Li.

3.2.2 Information structure

We distinguish the following three information structures.
Management’s information
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The management has complete information about the firm’s asset process X and
obtains information on the default threshold Li at time ti−1. Thus, the management’s
information structure GM = (GM

t )t∈[0,T ] is a progressive enlargement of the filtration
F by the default threshold process (Lt)t≥0, i.e.,

GM
t = Ft ∨ σ(Ls, s ≤ t).

This insider information is considered in Blanchet-Scalliet, Hillairet & Jiao
[16] and will not be considered in this thesis.
S-investor’s information
For public bond investors we distinguish two information structures. The first type of
investors observe the firm value and the default in the moment it occurs, but they do
not have knowledge on the default threshold L (because it is firm inside information
of the management). We call an investor endowed with this information structure
an S-investor. The S-investor’s information structure GS = (GS

t )t∈[0,T ] on the bond
market is described by a progressive enlargement of the filtration F by the random
default time τ , i.e.,

GS
t = Ft ∨ σ(Hs, s ≤ t),

where H is the default indicator process defined by Ht = 1{t≥τ}. S-investors are
uncertain about the firm’s true distance to default although they have complete in-
formation about the firm value. This uncertainty is due to lacking knowledge on the
threshold level. Thus, default arrives as a full surprise.
D-investor’s information
The second type of investors is called a D-investor. The information structure of a
D-investor is similar to the information structure of an S-investor in that both in-
vestors do not have any knowledge about the default barrier except that they observe
the occurrence and timing of default. The difference is that the asset process X is
not completely observable but only at discrete dates denoted by Tj, j = 0, . . . , J − 1,
where 0 = T0 < T1 < . . . < TJ−1 < TJ = T for J ∈ N. This is a realistic assump-
tion, since investors usually observe the asset value at the times of corporate news
release. The partial information on the asset process is described by a sub-filtration
FD = (FD

t )t∈[0,T ] of F, where

FD
t =

{
F0, if t < T1,

σ(XT1 , . . . , XTi
) if Ti ≤ t < Ti+1, i ∈ {1, . . . , J − 1}.

The D-investor’s information structure GD = (GD
t )t∈[0,T ] can be described by a pro-

gressive enlargement of the filtration FD by the random default time τ , i.e.,

GD
t = FD

t ∨ σ(Hs, s ≤ t).

Assumption 3.2.1. Every adjustment time ti, i = 0, . . . , n−1, of the default barrier
coincides with one of the information dates Tj, j = 0, . . . , J − 1, i.e., {t0, . . . , tn−1} ⊆
{T0, . . . , TJ−1}.
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3.3 Conditional survival probability
In this section we derive explicit formulas for the conditional survival probability

given complete information on the firm’s assets and incomplete information on the
firm’s assets, respectively. Based on these formulas a direct application is the valua-
tion of bond prices. We begin with reviewing classical results of the running minimum
of a geometric Brownian motion in Subsection 3.3.1. Then we proceed by deriving
explicit formulas for the conditional survival probability given the information of an
S-investor and of a D-investor in Subsection 3.3.2 and Subsection 3.3.3, respectively.

3.3.1 Preliminaries

For a geometric Brownian motion (Yu)u≥0 given by Yu = exp{mu + σB̂u}, where
(B̂u)u≥0 is a standard Brownian motion, and its running minimum process (M̂u)u≥0

the joint density function of Yt and M̂t is denoted by f M̂,Y
t (·, ·) and the probability

density function of M̂t is denoted by f M̂
t (·). For both density functions there exist

explicit expressions given in the following lemma.

Lemma 3.3.1.

1. Given t > 0 then the density function of M̂t is given by

f M̂
t (w) =

1

σw
√
t
φ
(mt− lnw

σ√
t

)
+
e2m

lnw
σ

σw
√
t
φ
(mt+ lnw

σ√
t

)
+

2m

wσ
e2m

lnw
σ Φ

(mt+ lnw
σ√

t

) (3.3)

for w ∈ (0, 1] and zero otherwise, where Φ and φ denote the cumulative dis-
tribution function and the probability density function of the standard normal
distribution, respectively.

2. Given t > 0 then the joint probability density function of Yt and its running
minimum M̂t is given by

f M̂,Y
t (u, v) =

2vm/σ2−1 ln(v/u2)

σ3
√
2πt3/2u

e−
m2t
2σ2 e−

ln2(v/u2)

2σ2t (3.4)

for u ∈ (0, 1], u ≤ v and zero otherwise.

Proof. The above formulas are a corollary to the results given in Harrison [39, Ch.
1].

We also introduce the complementary distribution function Ψ of the running min-
imum M̂t, i.e., Ψ(t, u) = P(M̂t > u).
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Lemma 3.3.2. The complementary distribution function Ψ is given by

Ψ(t, u) = Φ

(
− ln(u) +mt

σ
√
t

)
− exp

{
2m

σ2
ln(u)

}
Φ

(
ln(u) +mt

σ
√
t

)
, for t > 0, u ≤ 1,

(3.5)

Ψ(t, u) = 0 for t ≥ 0, u > 1 and Ψ(0, u) = 1 for u ≤ 1.

Proof. The proof is given in Section 3.5.1.

3.3.2 S-investor’s information case

The S-investor’s information structure is given by a progressive enlargement of
the filtration F by the random time τ , where F is the filtration generated by the asset
process. The next theorem shows that the conditional survival probability given the
information of an S-investor can be formulated in terms of F-conditional survival
probabilities for which we derive explicit formulas.

Theorem 3.3.3. For the conditional survival probability given the information of an
S-investor it holds

P(τ > T |GS
t ) = 1{τ>t}

P(τ > T |Ft)

P(τ > t|Ft)
, for t < T, (3.6)

where the F-conditional survival probabilities are given by the following formulas for
n ≥ 2:

1. For t ∈ [ti−1, ti), i = 1, . . . , n− 1, we have

P(τ > T |Ft) =

∫∫
[0,1]×[u,∞)

. . .

∫∫
[0,1]×[u,∞)

f M̂t,Y t

ti−t (ui, vi)
n−1∏

j=i+1

f M̂tj−1 ,Y tj−1

tj−tj−1
(uj, vj)

∫ 1

0

FL1,...,Ln(Mt1 ,M[t1,t2), . . . ,M[ti−2,ti−1),min(M[ti−1,t), uiXt),

ui+1viXt, . . . , un−1vn−2 . . . viXt, wvn−1 . . . viXt)

f
M̂tn−1

T−tn−1
(w)dwdvn−1dun−1 . . . dvidui,

(3.7)

For t ∈ [tn−1, T ) it holds

P(τ > T |Ft) =

∫ 1

0

FL1,...,Ln(Mt1 ,M[t1,t2), . . . ,M[tn−2,tn−1),min(M[tn−1,t), wXt))

f M̂t

T−t(w)dw.
(3.8)
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2. For t ∈ [ti−1, ti), i = 1, . . . , n, it holds

P(τ > t|Ft) = FL1,...,Li(Mt1 ,M[t1,t2), . . . ,M[ti−2,ti−1),M[ti−1,t)).

Proof. We obtain Eq. (3.6) by using classical results of progressive enlargement (see
Jeanblanc, Yor & Chesney [48, Sec. 7.3.3]). For the convenience of the reader
the proof of (3.6) is reproduced in Section 3.5.2. For the sake of simpler notation
the proof of the F-conditional survival probabilities is only given for n = 2, i.e., the
threshold is L1 in the interval [t0, t1) and L2 in the interval [t1, T ). The proof for
n > 2 is along the same line and skipped.
Eq. (3.2) yields that for s > t the firm value Xs can be expressed by

Xs = Xt exp{m(s− t) + σ(Bs − Bt)} = Xt exp{m(s− t) + σ(Bs−t+t − Bt)}
= Xt exp{m(s− t) + σB̂t

s−t} = XtY
t
s−t,

where for any t ∈ [t0, T ) the process (B̂t
u)u≥0 given by B̂t

u = Bu+t −Bt is a Brownian
motion starting at zero and independent of Ft and the process (Y t

u)u≥0 given by
Y t
u = exp{mu+ σB̂t

u} is independent of Ft and it holds

Y t
u =

Xt+u

Xt

d
= Xu.

1. For the proof of (3.7) let t ∈ [t0, t1) be fixed, then we can describe the event
that no default occurs until the maturity time T by

{τ > T} = {L1 < Mt1} ∩ {L2 < M[t1,T )} = {L1 < inf
s<t1

Xs} ∩ {L2 < inf
t1≤s<T

Xs}

= {L1 < inf
s<t

Xs} ∩ {L1 < inf
t≤s<t1

Xs} ∩ {L2 < inf
t1≤s<T

Xs}

= {L1 < inf
s<t

Xs} ∩ {L1 < inf
t≤s<t1

XtY
t
s−t} ∩ {L2 < inf

t1≤s<T
Xt1Y

t1
s−t1},

For any v ∈ [t0, T ) we denote by (M̂ v
u)u≥0 the running minimum process of

(Y v
u )u≥0 given by

M̂ v
u = inf

s<u
Y v
s .

Explicit expressions for the joint density function f M̂v ,Y v

t of Y v
t and M̂ v

t and for
the probability density function f M̂v

t of M̂ v
t are provided in Lemma 3.3.1.

It holds

{τ > T} = {L1 < Mt} ∩ {L1 < M̂ t
t1−tXt} ∩ {L2 < M̂ t1

T−t1
Xt1}

= {L1 < Mt} ∩ {L1 < M̂ t
t1−tXt} ∩ {L2 < M̂ t1

T−t1
Y t
t1−tXt}.
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Based on this representation the conditional survival probability until the ma-
turity time T given the information Ft can be written as

P(τ > T |Ft) = P(L1 < Mt, L
1 < M̂ t

t1−tXt, L
2 < M̂ t1

T−t1
Y t
t1−tXt|Ft)

=

∫ 1

0

∫ ∞

u

P(L1 < Mt, L
1 < uXt, L

2 < M̂ t1
T−t1

vXt|Ft)f
M̂t,Y t

t1−t (u, v)dvdu

=

∫ 1

0

∫ ∞

u

∫ 1

0

P(L1 < min (Mt, uXt), L
2 < wvXt|Ft)f

M̂t1

T−t1
(w)

f M̂t,Y t

t1−t (u, v)dwdvdu

=

∫ 1

0

∫ ∞

u

∫ 1

0

FL1,L2(min (Mt, uXt), wvXt)f
M̂t1

T−t1
(w)

f M̂t,Y t

t1−t (u, v)dwdvdu

We have exploited in the last equation the independence of (L1, L2) from FT .
For the proof of (3.8) let t ∈ [t1, T ) be fixed, then we can describe the event
that no default occurs until the maturity time T by

{τ > T} = {L1 < Mt1} ∩ {L2 < M[t1,T )} = {L1 < Mt1} ∩ {L2 < inf
t1≤s<T

Xs}

= {L1 < Mt1} ∩ {L2 < inf
t1≤s<t

Xs} ∩ {L2 < inf
t≤s<T

Xs}

= {L1 < Mt1} ∩ {L2 < inf
t1≤s<t

Xs} ∩ {L2 < inf
t≤s<T

XtY
t
s−t}

= {L1 < Mt1} ∩ {L2 < M[t1,t)} ∩ {L2 < M̂ t
T−tXt}.

Based on this representation the conditional survival probability until the ma-
turity time T given the information Ft can be calculated by

P(τ > T |Ft) = P(L1 < Mt1 , L
2 < M[t1,t), L

2 < M̂ t
T−tXt|Ft)

=

∫ 1

0

P(L1 < Mt1 , L
2 < M[t1,t), L

2 < wXt|Ft)f
M̂t

T−t(w)dw

=

∫ 1

0

FL1,L2(Mt1 ,min(M[t1,t), wXt))f
M̂t

T−t(w)dw.

2. The conditional survival probability until time t ∈ [t0, t1) given the information
Ft is obtained by

P(τ > t|Ft) = P(L1 < Mt|Ft) = FL1(Mt).

Finally, for t ∈ [t1, T ) it holds

P(τ > t|Ft) = P(L1 < Mt1 , L
2 < M[t1,t)|Ft) = FL1,L2(Mt1 ,M[t1,t)).
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Remark 3.3.4. For n = 1 we obtain as a special case the model proposed by
Giesecke & Goldberg [36], where the default barrier is constant but random,
i.e., Lt = L1. The conditional survival probability is given by

P(τ > T |GS
t ) = 1{τ>t}

P(τ > T |Ft)

P(τ > t|Ft)
= 1{τ>t}

∫ 1

0
FL1(min(Mt, wXt))f

M̂t

T−t(w)dw
FL1(Mt)

(3.9)

for t ∈ [0, T ).

Remark 3.3.5. Let n = 2 and assume that L1 and L2 are independent with proba-
bility distribution functions FL1 and FL2 , respectively. Then the conditional survival
probability for t ∈ [t0, t1) is given by

P(τ > T |GS
t ) =

1

FL1(Mt)

∫ 1

0

∫ ∞

u

∫ 1

0

FL1(min (Mt, uXt))FL2(wvXt)f
M̂t1

T−t1
(w)

f M̂t,Y t

t1−t (u, v)dwdvdu

on the no default set {τ > t}. For t ∈ [t1, T ) calculating the conditional survival
probability reduces to the case of a constant but random barrier. We have

P(τ > T |Ft) =

∫ 1

0

FL1,L2(Mt1 ,min(M[t1,t), wXt))f
M̂t

T−t(w)dw

= FL1(Mt1)

∫ 1

0

FL2(min(M[t1,t), wXt))f
M̂t

T−t(w)dw

and

P(τ > t|Ft) = FL1,L2(Mt1 ,M[t1,t)) = FL1(Mt1)FL2(M[t1,t))

yielding the following simplified formula for the conditional survival probability

P(τ > T |GS
t ) = 1{τ>t}

P(τ > T |Ft)

P(τ > t|Ft)
= 1{τ>t}

∫ 1

0
FL2(min(M[t1,t), wXt))f

M̂t

T−t(w)dw
FL2(M[t1,t))

.

A direct application of the conditional survival probability is the pricing of credit
derivatives such as defaultable bonds. For example, let us consider a zero-coupon
bond that matures at T and has zero recovery, i.e., the defaultable bond pays 1 at T
if there was no default by T and zero otherwise. Assuming that the pricing probability
is P, then the price Ct of such a product is given by

Ct = e−r(T−t)E[1{τ>T} | GS
t ] = e−r(T−t)P(τ > T |GS

t ) = e−r(T−t)1{τ>t}
P(τ > T |Ft)

P(τ > t|Ft)
,
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where r ≥ 0 is a discount factor. An important quantity in the credit risk analysis is
the credit yield spread St on a zero-coupon bond issued by a firm. It is the difference
between the yield at time t on a credit risky and a credit risk-free zero-coupon bond,
both maturing at T . Thus, the credit spread St is given by

St = − 1

T − t
ln{P(τ > T |GS

t )}.

3.3.3 D-investor’s information case

The D-investor’s information structure is given by a progressive enlargement of
the filtration FD by the random time τ , where FD is a sub-filtration of F. The
next theorem shows that the conditional survival probability given the information
of a D-investor can be formulated in terms of FD-conditional survival probabilities
for which explicit formulas are derived. Note, the D-investor obtains information
about the asset value only at discrete times which include the adjustment times tk,
k ∈ {0, . . . , n − 1}, of the default barrier. We denote the information dates between
two adjustment times tk and tk+1 by T k

i , k = 0, . . . , n − 1, i = 0, . . . , Jk − 1, where
T k
0 := tk, T k

i−1 < T k
i , T k

Jk−1 < tk+1, T k
Jk

:= tk+1 and
∑n−1

k=0 Jk = J . Further, we
introduce

Kk
j (ℓ) = P(M[Tk

j−1,T
k
j ) > ℓ|XTk

j−1
, XTk

j
) and Kk,i(ℓ) =

i∏
j=1

Kk
j (ℓ)

for k = 0, . . . , n− 1, j = 1, . . . , Jk.

Lemma 3.3.6. The conditional probability Kk
j (ℓ), k = 0, . . . , n− 1, j = 1, . . . , Jk, is

given by

Kk
j (ℓ) = 1− exp

{
−2

σ2(T k
j − T k

j−1)
ln

(
ℓ

XTk
j−1

)
ln

(
ℓ

XTk
j

)}
,

for ℓ < min(XTk
j−1
, XTk

j
) and Kk

j (ℓ) = 0 otherwise.

Proof. The proof is given in Section 3.5.3.

Theorem 3.3.7. For the conditional survival probability given the information of a
D-investor it holds

P(τ > T |GD
t ) = 1{τ>t}

P(τ > T |FD
t )

P(τ > t|FD
t )

for t < T, (3.10)

where the FD-conditional survival probabilities are given by the following formulas for
n ≥ 2:
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1. For t ∈ [T k
i , T

k
i+1), k = 0, . . . , n− 2, i = 0, . . . , Jk − 1, it holds

P(τ > T |FD
t ) =

∫ 1

0

∫ ∞

0

. . .

∫ 1

0

∫ ∞

0

f M̂Tk
i ,Y Tk

i

Tk+1
0 −T k

i

(uk+1, vk+1)
n−1∏

j=k+2

f M̂T
j−1
0 ,Y T

j−1
0

T j
0−T j−1

0

(uj, vj)∫ 1

0

f M̂Tn−1
0

T−Tn−1
0

(w)

∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

∫ uk+1XTk
i

0

∫ uk+2vk+1XTk
i

0

. . .∫ un−1vn−2...vk+1XTk
i

0

∫ wvn−1...vk+1XTk
i

0

k−1∏
j=0

Kj,Jj(ℓj+1)Kk,i(ℓk+1)

fL1,...,Ln(ℓ1, . . . , ℓn)dℓn . . . dℓ1dwdvn−1dun−1 . . . dvk+1duk+1.

(3.A)

For t ∈ [T n−1
i , T n−1

i+1 ), i = 0, . . . , Jn−1 − 1, it holds

P(τ > T |FD
t ) =

∫ ∞

0

. . .

∫ ∞

0

Kn−1,i(ℓn)
n−2∏
j=0

Kj,Jj(ℓj+1)Ψ

(
T − T n−1

i ,
ℓn

XTn−1
i

)
fL1,...,Ln(ℓ1, . . . , ℓn)dℓn . . . dℓ1.

(3.B)

2. For t ∈ [T k
i , T

k
i+1), k = 0, . . . , n− 1, i = 0, . . . , Jk − 1, it holds

P(τ > t|FD
t ) =

∫ ∞

0

. . .

∫ ∞

0

k−1∏
j=0

Kj,Jj(ℓj+1)Kk,i(ℓk+1)Ψ

(
t− T k

i ,
ℓk+1

XTk
i

)
fL1,...,Lk+1(ℓ1, . . . , ℓk+1)dℓk+1 . . . dℓ1.

Proof. The proof is presented in Section 3.5.4.

Remark 3.3.8. For the special case of a constant but random default barrier, i.e.,
n = 1 and Lt = L1, the FD-conditional survival probabilities are given by the following
formulas: Let Tj, j = 0, . . . , J − 1, where 0 = T0 < T1 < . . . < TJ−1 < TJ = T for
J ∈ N, denote the times where the D-investor obtains information about the firm’s
asset value. For t ∈ [Ti, Ti+1), i = 0, . . . , J − 1, it holds

P(τ > T |GD
t ) = 1{τ>t}

P(τ > T |FD
t )

P(τ > t|FD
t )

= 1{τ>t}

∫ 1

0

∫ XTi
w

0

∏i
j=1Kj(ℓ

1)fL1(ℓ1)f M̂Ti

T−Ti
(w)dℓ1dw

P(τ > t|FD
t ) =

∫ 1

0

∫ XTi
w

0

∏i
j=1Kj(ℓ1)fL1(ℓ1)f M̂Ti

t−Ti
(w)dℓ1dw

,

(3.11)

where

Kj(ℓ) = P(M[Tj−1,Tj) > ℓ|XTj−1
, XTj

).
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Remark 3.3.9. Let Ct be the price of a zero-coupon bond that matures at T and
has zero recovery. Assuming that the pricing probability is P, then Ct is given by

Ct = e−r(T−t)E[1{τ>T} | GD
t ] = e−r(T−t)P(τ > T |GD

t ) = e−r(T−t)1{τ>t}
P(τ > T |FD

t )

P(τ > t|FD
t )

,

where r ≥ 0 is a discount factor. The credit spread St is given by

St = − 1

T − t
ln{P(τ > T |GD

t )}.

3.4 Numerical examples
In this section we implement the formulas derived in the previous section to quan-

tify numerically the impact of asymmetric information on the estimations of the
default probabilities. We compare the conditional survival probability given the in-
formation of an S-investor, who has complete information about the firm’s assets and
incomplete information about the default threshold only, to the conditional survival
probability given the information of a D-investor, who has incomplete information
about both default threshold and firm’s assets. In Subsection 3.4.1 we begin with a
special but instructive case, where the default threshold L is taken to be constant as
proposed in Giesecke & Goldberg [36]. The level L itself is unknown to investors
and modeled by making it random. For this case we illustrate and compare the con-
ditional survival probabilities given the information of an S-investor and a D-investor,
respectively. Then, in Subsection 3.4.2, the case of a switching default threshold is
considered and the conditional survival probabilities given the information of an S-
investor and a D-investor are compared. Unless noted otherwise, the parameters for
the firm’s asset value process are taken from Blanchet-Scalliet, Hillairet &
Jiao [16], i.e.,

X0 = 1, µ = 0.05 and σ = 0.8.

3.4.1 Case of a constant default threshold

In this section we present a special case, where the default threshold L is taken
to be constant, i.e., the firm’s management decides on a default threshold and makes
no adjustment of that threshold. The level L itself is unknown to S-investors and D-
investors and modeled by making it random. The conditional survival probabilities
given the information of S-investors and D-investors can be numerically calculated by
using the formulas (3.9) and (3.11), respectively, where the integrals are evaluated by
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using the Gauss–Kronrod quadrature formula (see Monegato [62]).
We present three examples and give numerical comparisons of the conditional default
probabilities and credit yield spreads given the information of an S-investor and a
D-investor on a given trajectory of the firm’s asset process and a given realization of
the default threshold. In all examples S-investors and D-investors assume that the
default threshold L follows a standard uniform distribution.
The top panel of Figure 3.2 shows a realized trajectory of the firm value, the associ-

ated running minimum and a realization of the default threshold. We observe that the
time horizon is T = 2 years and the realization of the default threshold is L(ω) = 0.6.
No default occurs within the two years. The middle panel of Figure 3.2 illustrates the
associated conditional survival probabilities given the information of an S-investor
and D-investors. The D-investors obtain information about the firm value twice a
year, every quarter and every month, respectively. Since no default occurs within the
two years the conditional survival probabilities converge to one. The variation of the
conditional survival probability given the information of an S-investor is closely re-
lated to the variation of the firm value. This results from the fact that the S-investor
perfectly observes the firm value and thus learns about the default threshold, i.e.,
the S-investor learns that L must lie below the current running minimum of the firm
value if default has not yet occurred. Thus, the larger the distance of the firm value
to the running minimum the less likely is a default and the S-investor adjusts the
estimation of the default probability accordingly. Further, we observe that the more
frequently a D-investor obtains information about the firm value the closer are the
D-investor’s and S-investor’s estimates of the survival probability. The bottom panel
of Figure 3.2 presents the associated credit yield spreads. The credit yield spread
given the information of an S-investor is high, if the firm value is close to its running
minimum and low otherwise. Especially, the credit spread tends to zero as the time t
approaches maturity T . These properties result from the fact that S-investors learn
about the default threshold and whenever Xt > Mt the S-investor knows that the firm
is not subject to default in the next instance of time since the firm value is continuous
and cannot jump to the level Mt. Note that the firm value is far above its running
minimum just before maturity and S-investors know that there will be no default by
T . Thus, S-investors will not demand a default risk premium and the credit spread is
zero. Since D-investors cannot be certain about the firm value just before maturity
they demand a risk premium for default risk and credit spreads are non-zero at T .
Furthermore, the credit spread at T of a D-investor depends on their last observed
firm value. Note that the D-investors who obtain information about the firm value
twice a year, every quarter, and every month receive the last information before T at
t = 1.5, t = 1.75, and t = 1.9167, respectively. At these time points the firm value
is X1.5 = 0.97, X1.75 = 1.36, and X1.9167 = 0.94. Thus, the D-investor who obtains
information about the firm value every month demands the highest risk premium at
T , whereas the lowest risk premium at T is demanded by the D-investor who obtains
information about the firm value every quarter.
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The top panel of Figure 3.3 shows a realized trajectory of the firm value, the as-
sociated running minimum, and a realization of the default threshold. We observe
that the time horizon is T = 2 years and the realization of the default threshold is
L(ω) = 0.6, which is similar to the previous example. However, this time default
occurs in the second year. The middle and bottom panel of Figure 3.3 illustrate the
associated conditional survival probabilities and credit spreads given the information
of an S-investor and D-investors, respectively. Similar to the previous example, D-
investors obtain information about the firm value twice a year, every quarter, and
every month, respectively. We observe that the conditional survival probabilities
jump to zero at the time of default. Note that the D-investors who obtain informa-
tion about the firm value twice a year, every quarter and every month receive the last
information before the default τ at t = 1, t = 1.25, and t = 1.3333, respectively. At
these time points the firm value is X1 = 0.6117, X1.25 = 0.8655, and X1.3333 = 0.6046.
Thus, the D-investor who obtains information about the firm value every month de-
mands the highest risk premium just before the default occurs, whereas the lowest
risk premium is demanded by the D-investor who obtains information about the firm
value every quarter.
We note that the estimates of the conditional survival probabilities given the informa-
tion of an S-investor and a D-investor are very close at the D-investor’s information
dates in the two examples presented above. This is no longer the case if we extend
the time horizon. The top panel of Figure 3.4 shows a realized trajectory of the firm
value, the associated running minimum, and a realization of the default threshold,
where the time horizon is T = 5 years. The middle and bottom panel show the associ-
ated conditional survival probabilities and credit yield spreads given the information
of an S-investor and a D-investor, respectively. The D-investor obtains information
about the firm value once in 2.5 years. We observe that the S-investor’s estimate of
the conditional survival probability and the D-investor’s estimate of the conditional
survival probability are now visibly different at the information date of the D-investor.
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(a) Firm value, running minimum process, and default threshold.

(b) Conditional survival probabilities given the information of an S-investor and D-investors.

(c) Credit yield spreads given the information of an S-investor and D-investors.

Figure 3.2: Plot of a trajectory of the firm’s asset process and the associated condi-
tional survival probabilities and credit spreads given the information of
an S-investor and D-investors. The D-investors obtain information about
the firm value twice a year, every quarter, and every month, respectively.
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(a) Firm value, running minimum process, and default threshold.

(b) Conditional survival probabilities given the information of an S-investor and D-investors.

(c) Credit yield spreads given the information of an S-investor and D-investors.

Figure 3.3: Plot of a trajectory of the firm’s asset process and the associated condi-
tional survival probabilities and credit spreads given the information of
an S-investor and D-investors. The D-investors obtain information about
the firm value twice a year, every quarter, and every month, respectively.
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(a) Firm value, running minimum process, and default threshold.

(b) Conditional survival probability given the information of an S-investor and a D-investor.

(c) Credit yield spreads given the information of an S-investor and a D-investor.

Figure 3.4: Plot of a trajectory of the firm’s asset process and the associated condi-
tional survival probabilities and credit yield spreads given the information
of an S-investor and a D-investor. The D-investor obtains information
about the firm value once in 2.5 years.
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3.4.2 Case of a switching default threshold

In this section we compare the conditional survival probabilities given the informa-
tion of an S-investor and a D-investor for the case of a switching barrier by numerical
examples. We consider a time horizon of T = 2 years and we suppose that a firm’s
management decides at t0 = 0 on a default threshold L1. Further, we assume that the
management adjusts the default threshold at t1 = 1 from L1 to L2. S-investors and
D-investors only have knowledge on the (marginal and joint) laws of L = (L1, L2).
The law of L = (L1, L2) is modeled by a copula. The concept of copulas is briefly in-
troduced in this subsection, for a comprehensive introduction to copulas see Nelsen
[63].

Definition 3.4.1. Assume that the random vector (U1, U2, . . . , Un) has uniformly
distributed marginals, i.e.,

Uk ∼ U(0, 1), k = 1, . . . , n,

then the joint cumulative distribution function of (U1, U2, . . . , Un) is called a copula
and denoted by C, i.e.,

C(u1, u2, . . . , un) = P
(
U1 ≤ u1, U

2 ≤ u2, . . . , U
n ≤ un

)
.

The next theorem shows the importance of copulas.

Theorem 3.4.2 (Sklar’s Theorem). For any random vector (X1, X2, . . . , Xn) with
joint cumulative distribution function

FX1,X2,...,Xn(x1, x2, . . . , xn) = P(X1 ≤ x1, X
2 ≤ x2, . . . , X

n ≤ xn)

and marginal distribution functions

FXk(x) = P(Xk ≤ x), k = 1, . . . , n,

there exists a copula C such that

FX1,X2,...,Xn(x1, x2, . . . , xn) = C (FX1(x1), FX2(x2), . . . , FXn(xn)) .

If each of the marginal distribution function FXk(x), k = 1, 2, . . . , n, is continuous
then C is unique.

Proof. The proof in the case that all the marginal distribution functions are contin-
uous is provided here, for the complete proof see Sklar [77].
Assuming that FXk(·), k = 1, 2, . . . , n, is continuous and strictly increasing then there
exists an inverse function F−1

Xk (·) such that

FXk

(
F−1
Xk (u)

)
= u, for all 0 ≤ u ≤ 1.
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Let Uk = FXk(Xk), k = 1, 2, . . . , n, then it holds

P(Uk ≤ u) = P
(
FXk(Xk) ≤ u

)
= P(Xk ≤ F−1

Xk (u)) = FXk

(
F−1
Xk (u)

)
= u.

Thus, Uk, k = 1, 2, . . . , n, is uniformly distributed and we have

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , X
n ≤ xn)

= P
(
FX1(X1) ≤ FX1(x1), . . . , FXn(Xn) ≤ FXn(xn)

)
= P

(
U1 ≤ FX1(x1), . . . , U

n ≤ FXn(xn)
)

= C(FX1(x1), . . . , FXn(xn)),

where C denotes the copula of (U1, U2, . . . , Un).

Remark 3.4.3. Sklar’s Theorem allows us to describe the joint cumulative distri-
bution function of a random vector (X1, X2, . . . , Xn) by its marginal distributions
FXk(x), k = 1, . . . , n and the copula C, which links the marginal distributions to-
gether to form the joint distribution.

In the following examples S-investors and D-investors assume that L1 is beta
distributed with parameters (α, β) = (2, 2) and L2 is exponentially distributed with
parameter λ = 2/3. Further, investors assume that the law of L is given by a Gumbel
copula C, i.e.,

C(x1, x2) = exp
{
−
[
(− ln(x1))

θ + (− ln(x2))
θ
] 1

θ

}
,

for some θ ≥ 1 (see Bluhm & Overbeck [17]). Thus, the correlation between
L1 and L2 is modeled by the parameter θ, where θ = 1 corresponds to the case of
independent default thresholds.
The top panel of Figure 3.5 presents a realized trajectory of the firm’s asset process,
the switching default threshold and the running minimum of the firm value which is
restarted after adjustment of the default threshold. We observe that no default occurs
before maturity and the realizations of the default thresholds are given by L1(ω) = 0.6
and L2(ω) = 1.2. The middle panel of Figure 3.5 shows the associated conditional
survival probability given the information of an S-investor for different values of θ
(θ = 1, 2, 100). We observe that the conditional survival probability converges to one,
since no default has occurred by maturity. If L1 and L2 are independent, i.e., θ = 1,
the estimate of the survival probability is smaller compared to the cases of dependent
L1 and L2. However, differences in the conditional survival probability between θ = 1,
θ = 2, and θ = 100 become smaller with increasing time. The bottom panel of Figure
3.5 illustrates the associated credit yield spread given the information of an S-investor
for different values of θ (θ = 1, 2, 100). The credit spread tends to zero as the time t
approaches maturity T , since the S-investor has learned about the default threshold
and knows that the firm is not subject to default just before T . However, there are
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strong fluctuations of the credit spread before it tends to zero resulting from the firm
value Xt being close to or attaining its running minimum M[1,t). At times where
the firm value is close to or attains its running minimum, the S-investor has to be
prepared that the firm might default in the next instance of time and thus, he demands
a credit risk premium. If L1 and L2 are independent, i.e., θ = 1, the credit yield
spread is higher compared to the cases of dependent L1 and L2. Figure 3.6 illustrates
the conditional survival probability and the credit spread given the information of
a D-investor for the case of independent default thresholds (θ = 1) and different
information time points (biannually, quarterly, monthly). We observe that the more
frequently a D-investor obtains information about the firm value, the closer are the
D-investor’s and S-investor’s estimates of the survival probability. Similar to the case
of a constant default threshold, the credit yield spread given the information of a
D-investor is non-zero at maturity, i.e., D-investors demand a risk premium for the
default risk. Recall that the D-investors who obtain information about the firm value
twice a year, every quarter, and every month receive the last information before T at
t = 1.5, t = 1.75, and t = 1.9167, respectively. At these time points the firm value
is X1.5 ≈ 2.16, X1.75 ≈ 2.16, and X1.9167 ≈ 1.55. Thus, the D-investor who obtains
information about the firm value every month demands the highest risk premium.
The case of dependent default thresholds, i.e., θ > 1, leads to qualitatively the same
estimates of the conditional survival probability as for θ = 1.

A second example is presented by Figure 3.7. The top panel shows a realized
trajectory of the firm’s asset process, the switching default threshold and the running
minimum of the firm value which is restarted after adjustment of the default threshold.
We observe that default occurs in the second year. The middle and bottom panel
illustrate the associated conditional survival probability and credit yield spread given
the information of an S-investor for different values of θ (θ = 1, 2, 100). We observe
that the conditional survival probability jumps to zero at the time of default. Figure
3.8 illustrates the conditional survival probability and credit yield spread given the
information of a D-investor for the case of independent default thresholds (θ = 1).
The D-investors obtain information about the firm value twice a year, every quarter
and every month, respectively. We observe that the conditional survival probabilities
jump to zero at the time of default. The case of dependent default thresholds, i.e.,
θ > 1, leads to qualitatively the same estimates of the conditional survival probability
as for θ = 1.
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(a) Firm value, running minimum process, and default threshold.

(b) Conditional survival probability given the information of an S-investor.

(c) Credit yield spread given the information of an S-investor.

Figure 3.5: Plot of a trajectory of the firm’s asset process and the associated condi-
tional survival probability and credit spread given the information of an
S-investor for different values of θ.
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(a) Firm value, running minimum process, and default threshold.

(b) Conditional survival probabilities given the information of an S-investor and D-investors.

(c) Credit yield spreads given the information of an S-investor and D-investors.

Figure 3.6: Plot of a trajectory of the firm’s asset process and the associated condi-
tional survival probabilities and credit spreads given the information of
an S-investor and D-investors.



94 Chapter 3: Credit risk with asymmetric information and a switching barrier

(a) Firm value, running minimum process, and default threshold.

(b) Conditional survival probability given the information of an S-investor.

(c) Credit yield spread given the information of an S-investor.

Figure 3.7: Plot of a trajectory of the firm’s asset process and the associated condi-
tional survival probability and credit spread given the information of an
S-investor for different values of θ.



Chapter 3: Credit risk with asymmetric information and a switching barrier 95

(a) Firm value, running minimum process, and default threshold.

(b) Conditional survival probabilities given the information of an S-investor and D-investors.

(c) Credit yield spreads given the information of an S-investor and D-investors.

Figure 3.8: Plot of a trajectory of the firm’s asset process and the associated condi-
tional survival probabilities and credit spreads given the information of
an S-investor and D-investors.
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3.5 Proofs

3.5.1 Proof of Lemma 3.3.2

The proof is along the same line as in Jeanblanc & Valchev [47, Lemma 2].
We have

P(M̂t > u) = P(M̂t > u, Yt > u) = P(Yt > u)− P(M̂t ≤ u, Yt > u)

= 1− P(Yt ≤ u)− P(M̂t ≤ u, Yt > u).

A classical result from the reflection principle is (see Harrison [39, Sec. 1.6])

P(M̂t ≤ u, Yt > v) = exp

{
2m

σ2
ln (u)

}
Φ

(
− ln(v) + 2 ln(u) +mt

σ
√
t

)
(3.12)

and from the log-normal distribution of Yt we obtain

P(Yt ≤ v) = Φ

(
ln(v)−mt

σ
√
t

)
(3.13)

yielding the desired result

P(M̂t > u) = 1− Φ

(
ln(u)−mt

σ
√
t

)
− exp

{
2m

σ2
ln (u)

}
Φ

(
ln(u) +mt

σ
√
t

)
= Φ

(
− ln(u) +mt

σ
√
t

)
− exp

{
2m

σ2
ln (u)

}
Φ

(
ln(u) +mt

σ
√
t

)
.

3.5.2 Proof of Equation (3.6)

The S-investor’s information structure GS = (GS
t )t∈[0,T ] is described by a progres-

sive enlargement of the filtration F by the random default time τ , i.e.,

GS
t = Ft ∨ σ(Hs, s ≤ t),

where F is the natural filtration generated by a geometric Brownian motion and H is
the default indicator process defined by Ht = 1{t≥τ}. First, we show that on the no
default set {τ > t} every element of GS

t can be represented by an element of Ft.

Proposition 3.5.1. Let Kt be a collection of sets defined by

Kt := {A ∈ A | ∃B ∈ Ft : A ∩ {τ > t} = B ∩ {τ > t}}.

Then GS
t ⊂ Kt for every t ∈ R+.
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Proof. We denote Ht = σ({τ ≤ u}, u ≤ t) and Et = Ht ∪ Ft := {E = H ∪ F |H ∈
Ht, F ∈ Ft}. Note that GS

t = σ(Et). We show below that Kt is a Dynkin system
and closed under finite intersections which yields that Kt is a σ-algebra (see Bauer
[6, Theorem 2.3]). Then it is sufficient to show that Et ⊂ Kt since we have from the
properties of σ-algebras that GS

t = σ(Et) ⊂ σ(Kt) = Kt. Thus, we show that for
E ∈ Et there exists an event B ∈ Ft such that E ∩ {τ > t} = B ∩ {τ > t}. The set
E can be written as E = H ∪ F for some H ∈ Ht and F ∈ Ft. Then

E ∩ {τ > t} = (H ∪ F ) ∩ {τ > t} = (H ∩ {τ > t}) ∪ (F ∩ {τ > t}).

It holds H ∩ {τ > t} = ∅ since H = {τ ≤ u} for some u ≤ t. Setting B = F ∈ Ft we
find

E ∩ {τ > t} = F ∩ {τ > t} = B ∩ {τ > t}.

Finally it is left to show that Kt is a Dynkin system closed under finite intersections:

1. Ω ∈ Kt, i.e., there exists an event B ∈ Ft such that Ω∩ {τ > t} = B ∩ {τ > t}.
This is obtained by setting B := Ω ∈ Ft.

2. For A1, A2 ∈ Kt and A1 ⊂ A2 it holds A2 \ A1 ∈ Kt. We have

(A2 \ A1) ∩ {τ > t} = (A2 ∩ {τ > t}) \ (A1 ∩ {τ > t})
= (B2 ∩ {τ > t}) \ (B1 ∩ {τ > t}) = (B2 \B1) ∩ {τ > t},

where B1, B2 ∈ Ft since A1, A2 ∈ Kt and B2 \B1 ∈ Ft since Ft is a σ-algebra.

3. For a sequence of pairwise disjoint subsets (An)n∈N ⊂ Kt we have
⋃

n∈NAn ∈ Kt

since ⋃
n∈N

An ∩ {τ > t} =
⋃
n∈N

(An ∩ {τ > t}) =
⋃
n∈N

(Bn ∩ {τ > t})

=

( ⋃
n∈N

Bn

)
∩ {τ > t},

where Bn ∈ Ft for all n ∈ N and
⋃

n∈NBn ∈ Ft since Ft is a σ-algebra.

From the above results we obtain that Kt is a Dynkin system. Let A1, A2 ∈ Kt then

(A1 ∩ A2) ∩ {τ > t} = A1 ∩ (A2 ∩ {τ > t}) = A1 ∩ (B2 ∩ {τ > t})
= (A1 ∩ {τ > t}) ∩ B2 = (B1 ∩ {τ > t}) ∩ B2

= (B1 ∩B2) ∩ {τ > t},

where B1, B2 ∈ Ft and thus B1 ∩ B2 ∈ Ft. It follows that Kt is closed under finite
intersections.
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Using the above representation of the set GS
t we can show the following Lemma.

Lemma 3.5.2. Let Y be an integrable random variable. Then

1{τ>t}E[Y |GS
t ] = 1{τ>t}

E[Y 1{τ>t}|Ft]

P(τ > t|Ft)
.

Proof. We denote C = {τ > t} and let A ∈ GS
t . From Proposition 3.5.1 we have that

A ∩ C = B ∩ C for some B ∈ Ft. For the proof of the lemma we have to verify that

1CE[Y |GS
t ]P(C|Ft) = 1CE[Y 1C |Ft].

We obtain for the left-hand side

1CE[Y |GS
t ]P(C|Ft) = E[1CY P(C|Ft)|GS

t ]

and for the right-hand side

1CE[Y 1C |Ft] = E[1CE[Y 1C |Ft]|GS
t ],

where we have used that Ft and Ht = σ({τ ≤ u}, u ≤ t) are sub-filtrations of GS
t .

Thus, we have to show that

E[1CY P(C|Ft)|GS
t ] = E[1CE[Y 1C |Ft]|GS

t ],

i.e., for any A ∈ GS
t we have to prove that∫

A

1CY P(C|Ft)dP =

∫
A

1CE[Y 1C |Ft]dP.

Using that A ∩ C = B ∩ C for some B ∈ Ft we have∫
A

1CY P(C|Ft)dP
∫
A∩C

Y P(C|Ft)dP =

∫
B∩C

Y P(C|Ft)dP =

∫
B

1CY P(C|Ft)dP.

From the definition of the conditional expectation we have∫
B

1CY P(C|Ft)dP =

∫
B

E[1CY P(C|Ft)|Ft]dP =

∫
B

E[1CY |Ft]P(C|Ft)dP

=

∫
B

E[1CY |Ft]E[1C |Ft]dP =

∫
B

E[E[1CY |Ft]1C |Ft]dP.

In the second equation and in the last equation we have used that P(C|Ft) and
E[1CY |Ft] are Ft-measurable, respectively. Using again the definition of the condi-
tional expectation we obtain∫

B

E[E[1CY |Ft]1C |Ft]dP =

∫
B

E[1CY |Ft]1CdP =

∫
B∩C

E[1CY |Ft]dP

=

∫
A∩C

E[1CY |Ft]dP =

∫
A

1CE[1CY |Ft]dP,

leading to the desired result.
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Corollary 3.5.3. The conditional survival probability given the information of an
S-investor is obtained by Eq. (3.6), i.e.,

P(τ > T |GS
t ) = 1{τ>t}

P(τ > T |Ft)

P(τ > t|Ft)
, for t < T.

Proof. We have

P(τ > T |GS
t ) = E[1{τ>T}|GS

t ] = 1{τ>t}E[1{τ>T}|GS
t ] + 1{τ≤t}E[1{τ>T}|GS

t ].

The second term on the right-hand side vanishes because 1{τ≤t} is GS
t -measurable,

leading to

1{τ≤t}E[1{τ>T}|GS
t ] = E[1{τ≤t}1{τ>T}|GS

t ] = 0.

From Lemma 3.5.2 the result follows by setting Y = 1{τ>T}, namely

1{τ>t}E[1{τ>T}|GS
t ] = 1{τ>t}

E[1{τ>T}1{τ>t}|Ft]

P(τ > t|Ft)
= 1{τ>t}

E[1{τ>T}|Ft]

P(τ > t|Ft)
.

3.5.3 Proof of Lemma 3.3.6

The proof is along the same line as in Jeanblanc & Valchev [47, Lemma 2].
We have by the definition of the conditional probability

P(Mt ≤ u|Xt = v) =
P(Mt ≤ u , Xt ∈ dv)

P(Xt ∈ dv)
.

A classical result from the reflection principle is (see Harrison [39, Sec. 1.6])

P(Mt ≤ u,Xt > v) = exp

{
2m

σ2
ln

(
u

x0

)}
Φ

(
− ln(v/x0) + 2 ln(u/x0) +mt

σ
√
t

)
.

Taking the derivative with respect to v leads to

P(Mt ≤ u,Xt ∈ dv) = φ

(
− ln(v/x0) + 2 ln(u/x0) +mt

σ
√
t

)
dv
vσ

√
t
×

exp

{
2m

σ2
ln

(
u

x0

)}
.

For the distribution of Xt we have (see (3.13))

P(Xt ≤ v) = Φ

(
ln(v/x0)−mt

σ
√
t

)
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and taking the derivative with respect to v yields

P(Xt ∈ dv) = φ

(
ln(v/x0)−mt

σ
√
t

)
1

vσ
√
t
dv.

The result follows from

2m

σ2
ln

(
u

x0

)
− 1

2

⎛⎝− ln
(

v
x0

)
+ 2 ln

(
u
x0

)
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σ
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⎛⎝ ln
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x0
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−mt

σ
√
t

⎞⎠2

=
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u
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2σ2t
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(
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+mt
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.

3.5.4 Proof of Theorem 3.3.7

Observe that FD ⊂ F. Then the proof of Eq. (3.10) is along the same line as the
proof of Eq. (3.6) for the case of an S-investor. Indeed, from Proposition 3.5.1 we
immediately obtain GD

t ⊂ Gt ⊂ Kt. Using the same arguments applied in the proof
of Lemma 3.5.2 yields

1{τ>t}E[Y |GS
t ] = 1{τ>t}

E[Y 1{τ>t}|FD
t ]

P(τ > t|FD
t )

,

where Y is an integrable random variable. Setting Y = 1{τ>T} provides the result.
For the sake of a simple notation we prove the remaining formulas of the theorem for
the case n = 2, i.e., the threshold is L1 in the interval [t0, t1) and L2 in the interval
[t1, T ). The proof for n > 2 is along the same line and skipped. In order to keep
the notation simple we denote the times at which the D-investor observes the asset
process by Ti, i = 0, . . . , J − 1, where T0 := t0, TJ := T and Tj = t1 for some
j ∈ {1, . . . , J − 1}. The last term ensures that the D-investor obtains information
about the asset process at the adjustment time t1 of the default threshold. For any
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i ∈ {1, . . . , J − 1} the process (Y i
u)u≥0 denotes a geometric Brownian motion defined

by

Y i
u = exp{mu+ σB̂i

u},

where (B̂i
u)u≥0 is a Brownian motion independent of FTi

and given by B̂i
u = BTi+u −

BTi
. Note that Y i

u inherits the independence of FTi
and it has the same law as Xu.

Further we have the decomposition Xs = XTi
Y i
s−Ti

for s > Ti. We denote by (M̂ i
u)u≥0

the running minimum process of (Y i
u)u≥0 , i.e.,

M̂ i
u = inf

s<u
Y i
s .

Explicit expressions for the joint density function f M̂ i,Y i

t of Y i
t and M̂ i

t and for the
probability density function f M̂ i

t of M̂ i
t are provided in Lemma 3.3.1.

1. For the proof of (3.A) let t ∈ [t0, t1) and t ∈ [Ti, Ti+1) with i < j, i.e., Ti+1 ≤
Tj = t1. Then

{τ > T} = {L1 < Mt1} ∩ {L2 < M[t1,T )}
= {L1 < MTi

} ∩ {L1 < M[Ti,t1)} ∩ {L2 < M[t1,T )}
= {L1 < MTi

} ∩ {L1 < M[Ti,Tj)} ∩ {L2 < M[Tj ,T )}
= {L1 < MTi

} ∩ {L1 < M̂ i
Tj−Ti

XTi
} ∩ {L2 < M̂ j

T−Tj
Y i
Tj−Ti

XTi
}.

Then we have

P(τ > T |FD
t ) = P(τ > T |FD

Ti
)

= P(L1 < MTi
, L1 < M̂ i

Tj−Ti
XTi

, L2 < M̂ j
T−Tj

Y i
Tj−Ti

XTi
|FD

Ti
)

=

∫ 1

0

∫ ∞

0

P(L1 < MTi
, L1 < uXTi

, L2 < M̂ j
T−Tj

vXTi
|FD

Ti
)

f M̂ i,Y i

Tj−Ti
(u, v)dvdu

=

∫ 1

0

∫ ∞

0

∫ 1

0

P(L1 < MTi
, L1 < uXTi

, L2 < wvXTi
|FD

Ti
)

f M̂j

T−Tj
(w)f M̂ i,Y i

Tj−Ti
(u, v)dwdvdu

=

∫ 1

0

∫ ∞

0

∫ 1

0

∫ ∞

0

∫ ∞

0

P(ℓ1 < MTi
, ℓ1 < uXTi

, ℓ2 < wvXTi
|FD

Ti
)

fL1,L2(ℓ1, ℓ2)f M̂j

T−Tj
(w)f M̂ i,Y i

Tj−Ti
(u, v)dℓ2dℓ1dwdvdu

=

∫ 1

0

∫ ∞

0

∫ 1

0

∫ uXTi

0

∫ wvXTi

0

P(ℓ1 < MTi
|FD

Ti
)

fL1,L2(ℓ1, ℓ2)f M̂j

T−Tj
(w)f M̂ i,Y i

Tj−Ti
(u, v)dℓ2dℓ1dwdvdu,
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where we have used in the second to last equation that (L1, L2) is independent
of FT . Before we calculate the probability in the above integrand we introduce
the following notation

Pi(ℓ) = P(ℓ < MTi
|XT0 , . . . , XTi

).

It holds

{ℓ < MTi
} = {ℓ < inf

s<Ti

Xs} = {ℓ < inf
s<Ti−1

Xs} ∩ {ℓ < inf
Ti−1≤s<Ti

Xs}

= {ℓ < MTi−1
} ∩ {ℓ < M[Ti−1,Ti)}.

We have

Pi(ℓ
1) = P(ℓ1 < MTi

|XT0 , . . . , XTi
) = E[1{ℓ1<MTi

}|XT0 , . . . , XTi
]

= E[1{ℓ1<MTi−1
}1{ℓ1<M[Ti−1,Ti)

}|XT0 , . . . , XTi
]

= E[E[1{ℓ1<MTi−1
}1{ℓ1<M[Ti−1,Ti)

}|Xs : s ≤ Ti−1, XTi
]|XT0 , . . . , XTi

],

where the last equation follows from the tower property of the conditional ex-
pectation, since σ(XT0 , . . . , XTi

) ⊂ FTi−1
∨ σ(XTi

). We obtain

Pi(ℓ
1) =E[E[1{ℓ1<MTi−1

}1{ℓ1<M[Ti−1,Ti)
}|Xs : s ≤ Ti−1, XTi

]|XT0 , . . . , XTi
]

=E[1{ℓ1<MTi−1
}E[1{ℓ1<M[Ti−1,Ti)

}|Xs : s ≤ Ti−1, XTi
]|XT0 , . . . , XTi

]

=E[1{ℓ1<MTi−1
}P(ℓ1 < M[Ti−1,Ti)|Xs : s ≤ Ti−1, XTi

)|XT0 , . . . , XTi
],

where we have used that MTi−1
is FTi−1

-measurable. The probability in the
above equation is rewritten as

P(ℓ1 < M[Ti−1,Ti)|Xs : s ≤ Ti−1, XTi
)

=P(ℓ1 < inf
Ti−1≤s<Ti

Xs|Xs : s ≤ Ti−1, XTi
)

=P(ℓ1 < inf
Ti−1≤s<Ti

XTi−1
Y i−1
s−Ti−1

|Xs : s ≤ Ti−1, XTi
)

=P(ℓ1/XTi−1
< M̂ i−1

Ti−Ti−1
|Xs : s ≤ Ti−1, XTi

)

=P(ℓ1/XTi−1
< M̂ i−1

Ti−Ti−1
|XTi−1

, XTi
),

where the last equality holds since M̂ i−1
Ti−Ti−1

is independent of FTi−1
. Finally,

we obtain the following recursion formula

Pi(ℓ
1) = E[1{ℓ1<MTi−1

}P(ℓ1 < M[Ti−1,Ti)|Xs : s ≤ Ti−1, XTi
)|XT0 , . . . , XTi

]

= E[1{ℓ1<MTi−1
}P(ℓ1/XTi−1

< M̂ i−1
Ti−Ti−1

|XTi−1
, XTi

)|XT0 , . . . , XTi
]

= E[1{ℓ1<MTi−1
}|XT0 , . . . , XTi−1

]P(ℓ1/XTi−1
< M̂ i−1

Ti−Ti−1
|XTi−1

, XTi
)

= P(ℓ1 < MTi−1
|XT0 , . . . , XTi−1

)P(ℓ1/XTi−1
< M̂ i−1

Ti−Ti−1
|XTi−1

, XTi
)

= Pi−1(ℓ
1)P(ℓ1/XTi−1

< M̂ i−1
Ti−Ti−1

|XTi−1
, XTi

).
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Lemma 3.3.6 yields

P(ℓ1/XTi−1
< M̂ i−1

Ti−Ti−1
|XTi−1

, XTi
)

=1− exp

{
−2

σ2(Ti − Ti−1)
ln
( ℓ1

XTi−1

)
ln
( ℓ1

XTi

)}

for ℓ1 < min(XTi−1
, XTi

) and zero otherwise. Note that

Ki(ℓ) =

{
1− exp

{
−2

σ2(Ti−Ti−1)
ln
(

ℓ
XTi−1

)
ln
(

ℓ
XTi

)}
, for ℓ < min(XTi−1

, XTi
)

0, else.

Then the probability Pi(ℓ
1) can be calculated recursively by

Pi(ℓ
1) = P(ℓ1 < MTi

|XT0 , . . . , XTi
)

= Pi−1(ℓ
1)P(ℓ1/XTi−1

< M̂ i−1
Ti−Ti−1

|XTi−1
, XTi

)

= Pi−1(ℓ
1)Ki(ℓ

1) = Pi−2(ℓ
1)Ki−1(ℓ

1)Ki(ℓ
1) =

i∏
j=1

Kj(ℓ
1),

since P0(ℓ
1) = P(ℓ1 < MT0 |XT0) = P(ℓ1 < XT0 |XT0) = 1{ℓ1<XT0

}.
Eventually we obtain for t ∈ [t0, t1) and t ∈ [Ti, Ti+1) that

P(τ > T |FD
t ) =

∫ 1

0

∫ ∞

0

∫ 1

0

∫ uXTi

0

∫ wvXTi

0

Pi(ℓ
1)fL1,L2(ℓ1, ℓ2)f M̂j

T−Tj
(w)

f M̂ i,Y i

Tj−Ti
(u, v)dℓ2dℓ1dwdvdu.

For the proof of (3.B) let t ∈ [t1, T ) and t ∈ [Ti, Ti+1) with i ≥ j, i.e., t1 = Tj ≤
Ti. Then

{τ > T} = {L1 < Mt1} ∩ {L2 < M[t1,T )} = {L1 < MTj
} ∩ {L2 < M[Tj ,T )}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < M[Ti,T )}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < inf

Ti≤s<T
Xs}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < inf

Ti≤s<T
XTi

Y i
s−Ti

}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < XTi

M̂ i
T−Ti

}
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and we obtain

P(τ > T |FD
t ) = P(τ > T |FD

Ti
) = P(τ > T |XT0 , . . . , XTi

)

= P(L1 < MTj
, L2 < M[Tj ,Ti), L

2 < M̂ i
T−Ti

XTi
|XT0 , . . . , XTi

)

=

∞∫
0

∞∫
0

P(ℓ1 < MTj
, ℓ2 < M[Tj ,Ti), ℓ

2 < M̂ i
T−Ti

XTi
|XT0 , . . . , XTi

)

fL1,L2(ℓ1, ℓ2)dℓ2dℓ1

=

∞∫
0

∞∫
0

P(ℓ1 < MTj
, ℓ2 < M[Tj ,Ti)|XT0 , . . . , XTi

)

P(ℓ2/XTi
< M̂ i

T−Ti
)fL1,L2(ℓ1, ℓ2)dℓ2dℓ1

=

∞∫
0

∞∫
0

P(ℓ1 < MTj
, ℓ2 < M[Tj ,Ti)|XT0 , . . . , XTi

)Ψ

(
T − Ti,

ℓ2

XTi

)
fL1,L2(ℓ1, ℓ2)dℓ2dℓ1

=

∞∫
0

∞∫
0

j∏
k=1

Kk(ℓ
1)

i∏
k=j+1

Kk(ℓ
2)Ψ

(
T − Ti,

ℓ2

XTi

)
fL1,L2(ℓ1, ℓ2)dℓ2dℓ1

=

∞∫
0

∞∫
0

Pj(ℓ
1)

i∏
k=j+1

Kk(ℓ
2)Ψ

(
T − Ti,

ℓ2

XTi

)
fL1,L2(ℓ1, ℓ2)dℓ2dℓ1,

where Ψ(t, ·) is the complementary distribution function of Mt given in Lemma
3.3.2.

2. In the next step we calculate the survival probability until time t given FD
t .

For t ∈ [t0, t1) and t ∈ [Ti, Ti+1) we have

P(τ > t|FD
t ) = P(L1 < Mt|FD

t ) = P(L1 < Mt|FD
Ti
) = P(L1 < Mt|XT0 , . . . , XTi

)

= P(L1 < MTi
, L1 < M[Ti,t)|XT0 , . . . , XTi

)

= P(L1 < MTi
, L1 < M̂ i

t−Ti
XTi

|XT0 , . . . , XTi
)

=

∫ ∞

0

P(ℓ1 < MTi
, ℓ1 < M̂ i

t−Ti
XTi

|XT0 , . . . , XTi
)fL1(ℓ1)dℓ1

=

∫ ∞

0

P(ℓ1 < MTi
|XT0 , . . . , XTi

)P(ℓ1/XTi
< M̂ i

t−Ti
)fL1(ℓ1)dℓ1

=

∫ ∞

0

Pi(ℓ
1)Ψ

(
t− Ti,

ℓ1

XTi

)
fL1(ℓ1)dℓ1.
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The second to last equality follows by the independence of M̂ i
t−Ti

from Ti and
the last equality holds since M̂ i

t−Ti

d
=Mt−Ti

.
For t ∈ [t1, T ) and t ∈ [Ti, Ti+1) with i ≥ j, i.e., t1 = Tj ≤ Ti, it holds

{τ > T} = {L1 < Mt1} ∩ {L2 < M[t1,t)} = {L1 < MTj
} ∩ {L2 < M[Tj ,t)}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < M[Ti,t)}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < inf

Ti≤s<t
Xs}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < inf

Ti≤s<t
XTi

Y i
s−Ti

}

= {L1 < MTj
} ∩ {L2 < M[Tj ,Ti)} ∩ {L2 < XTi

M̂ i
t−Ti

}.

Using the same arguments as above yields

P(τ > t|FD
t ) = P(τ > t|FD

Ti
) = P(τ > t|XT0 , . . . , XTi

)

= P(L1 < MTj
, L2 < M[Tj ,Ti), L

2 < M̂ i
t−Ti

XTi
|XT0 , . . . , XTi

)

=

∞∫
0

∞∫
0

P(ℓ1 < MTj
, ℓ2 < M[Tj ,Ti), ℓ

2 < M̂ i
t−Ti

XTi
|XT0 , . . . , XTi

)

fL1,L2(ℓ1, ℓ2)dℓ2dℓ1

=

∞∫
0

∞∫
0

P(ℓ1 < MTj
, ℓ2 < M[Tj ,Ti)|XT0 , . . . , XTi

)P(ℓ2/XTi
< M̂ i

t−Ti
)

fL1,L2(ℓ1, ℓ2)dℓ2dℓ1

=

∞∫
0

∞∫
0

Pj(ℓ
1)

i∏
k=j+1

Kk(ℓ
2)Ψ

(
t− Ti,

ℓ2

XTi

)
fL1,L2(ℓ1, ℓ2)dℓ2dℓ1.



Chapter 4

Conclusions

This thesis proposes two approaches to improve financial risk management. Chap-
ter 2 deals with market risk, i.e., the risk of a loss due to price movements in financial
securities. In this chapter the classical portfolio problem of an investor, which consists
of finding a strategy which optimally allocates the investor’s wealth between differ-
ent financial securities and consumption, is extended by incorporating dynamic risk
measures to control of market risk. The resulting portfolio optimization problems un-
der dynamic risk constraints are investigated in a continuous-time and discrete-time
setting by using dynamic programming techniques. The corresponding dynamic pro-
gramming equations are numerically solved by using a policy improvement algorithm
in the continuous-time setting and a backward induction algorithm in the discrete-
time setting. The loss in expected utility of intermediate consumption and terminal
wealth caused by imposing a dynamic risk constraint is examined by numerical ex-
amples showing that the loss of portfolio performance is not too large while the risk
is notably reduced. Further, time discretization effects are investigated by numerical
illustrations indicating that the loss of portfolio performance resulting from imposing
a risk constraint is typically bigger than the loss resulting from infrequent trading.
Chapter 3 is concerned with credit risk, i.e., the risk of a loss arising from a counter-
party failing to fulfill its contractually agreed financial obligations. In this chapter,
the traditional structural model where default is triggered when the value of the firm’s
asset passes below a constant threshold is generalized by relaxing the assumption of a
constant default threshold and modeling it as a random variable whose value is chosen
by the management of the firm and dynamically adjusted to account for changes in
the economy or the appointment of a new firm management. Investors on the market
have no access to the value of the threshold and only anticipate the distribution of the
threshold. Different information levels on the firm value are distinguished and explicit
formulas for the conditional default probability given these information levels are de-
rived. The conditional survival probabilities with respect to the accessible information
and the associated credit yield spreads are compared by numerical illustrations which
show that the information level has a considerable impact on the estimation of the
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default probability and the associated credit yield spread. Investors who have perfect
information on the value process of the firm learn about the default threshold, i.e.,
they learn that the default threshold must lie below the current running minimum of
the firm value if default has not yet occurred. Thus, the larger the distance of the
firm value to the running minimum the less likely is a default and the investors adjust
their estimation of the default probability accordingly. The associated credit yield
spreads are high, if the firm value is close to its running minimum and low otherwise.
Especially, if the firm value is far above its running minimum just before maturity,
the investors know that there will be no default in the next instance of time. Thus,
investors do not demand a default risk premium and the credit spread is zero. This
is different for investors who do not have full access to the value process of the firm.
Investors who only obtain information about the firm value at certain dates cannot
be certain about the firm value just before maturity and thus they demand a nonzero
default risk premium. Furthermore, the credit spreads at maturity depend on their
last observed firm value.

This thesis proposes two models to measure and manage market risk and credit
risk. An important step for future research is to integrate market risk and credit risk
management within a single model to facilitate financial risk management.
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Notation

I. General notation

For any real numbers x and y: x ∧ y = min(x, y), x+ = max(x, 0).

II. Sets

N is the set of nonnegative integers, N+ = N\{0}. Rd denotes the d-dimensional
Euclidian space. Rd

⋆ = {(x1, ..., xd)|xk ≥ 0, k = 1, . . . , d}, Rd
+ = {(x1, ..., xd)|xk >

0, k = 1, . . . , d}. R = R1. For all x = (x1, . . . , xd) in Rd, we denote by ∥·∥ the

Euclidian norm: ∥x∥ =

√
d∑

i=1

(xi)2. Rn×d is the set of real-valued n × d matrices

(Rn×1 = Rn). For all σ = (σij)j=1,...,n
i=1,...,d ∈ Rd×n, we denote by σ′ = (σji)i=1,...,d

j=1,...,n ∈ Rn×d

the transpose matrix. The trace of a n × n matrix a = (aij)i=1,...,n
j=1,...,n is denoted by

tr(a) =
n∑

i=1

aii.

III. Functions and function spaces

The indicator function of a set A is denoted by

1A(x) =

{
1, if x ∈ A,

0, if x /∈ A.

For any open set O of Rn we denote Ck(O) the space of all real-valued continuous
functions f on O with continuous derivatives up to order k. C0([0, T ] × O) is the
space of all real-valued continuous functions f on [0, T ] × O, with 0 < T < ∞.
C1,2([0, T ) × O) is the space of real-valued functions f on [0, T ) × O whose partial
derivatives ∂f

∂t
, ∂f

∂xi
, ∂2f

∂xi∂xj
, 1 ≤ i, j ≤ n, exist and are continuous on [0, T ). The

gradient vector and the Hessian matrix of a function x → f(t,x) ∈ C2(O) are denoted
by Dxf and D2

xf , respectively.
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IV. Integration and probability

(Ω,F ,P) is a probability space. P a.s. denotes “almost surely for the probability
measure P” (the reference to P is omitted when there is no ambiguity). σ(G) is the
smallest σ-field containing G. For two sets A and B we denote by G = A ∨ B the
smallest σ-field containing A and B. E[X] is the expectation of the random variable
X with respect to a probability P initially fixed. E[X|G] is the conditional expectation
of X given G.

V. Abbreviations

DPP: dynamic programming principle
HJB: Hamilton-Jacobi-Bellman
ODE: ordinary differential equation
PDE: partial differential equation
SDE: stochastic differential equation
w.l.o.g.: without loss of generality
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