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Abstract

The main part of the research outlined in this thesis is to develop deep learning models
for the linguistic interpretation of the visual contents. This part is split into two research
problems: interactive region segmentation and captioning, and selective texture labeling.
In the first attempt, we proposed a novel hybrid deep learning architecture whereby the
user is able to specify an arbitrary region of the image that should be highlighted and de-
scribed. The proposed model alternates the bounding box indications of the standard object
localization process with the output of a deep interactive segmentation module to achieve
a better understanding of the dense image captioning and improve the object localization
accuracy. The idea of the next part is to establish a bidirectional correlation between deep
texture representation and its linguistic description via a hybrid CNN-RNN model that en-
ables end-to-end learning of the selective texture labeling. This novel architecture provides
new opportunities to describe, search, and also retrieve texture images from their linguistic
descriptions. To be able to train such a model, we generated a multi-label texture dataset
that covers color, material, and pattern labeling simultaneously. Our contribution to the
automatic generation of texture descriptions provides an excellent opportunity to enrich
the existing vocabulary of the image captioning. Such a conceptual extension can be used
for fine-grained captioning applicable in geology, meteorology and other natural sciences
where fine-grained image structures are of importance to understand complicated patterns.
Apart from deep learning technologies, in the final section of the thesis, we proposed a
novel approach to define mathematical morphology on color images. To this end, we con-
verted common RGB-values of the color images into a new biconal color space and then
combined two approaches of mathematical morphology to give meaning to the maximum
and the minimum of the matrix field data and formulate our novel strategy.
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Deutsche Zusammenfassung

Der wesentliche Teil dieser Arbeit besteht darin, Deep Learning (DL) Modelle für die
sprachliche Interpretation von visuellen Inhalten in Bildern zu entwickeln. Hierzu wer-
den zwei grundlegende Aufgabenstellungen verfolgt: Zum einen die interaktive Segmen-
tation und das sogenannte Captioning, bei dem Objekte sprachlich beschrieben werden,
zum anderen das selektive Labeling von Texturen. Zur Lösung der ersten dieser Aufgaben-
stellungen wird eine neue, hybride DL-Architektur vorgestellt, bei der der Benutzer eine
beliebige Region eines Eingabebildes anklicken kann, die automatisch segmentiert und
sprachlich beschrieben werden soll. Das neue Modell alterniert den Indikator der Bound-
ing Box eines üblichen Verfahrens zur Objektlokalisierung mit der Ausgabe eines interak-
tiven, DL-basierten Segmentationsmodules. Auf diese Weise wird ein besseres Resultat für
das Captioning erzielt, und auch die Objektsegmentierung wird verbessert. In Bezug auf
den zweiten Teil der neuen Entwicklungen wird eine wechselseitige Korrelation zwischen
einer DL-basierten Texturrepräsentationen einerseits und deren sprachlicher Beschreibung
andererseits mittels einer neuen, speziellen Konstruktion neuraler Netze hergestellt. Dieses
neuartige, hybride CNN-RNN-Modell ermöglicht ein sogenanntes end-to-end Learning
von Texturbeschreibungen. Wie aufgezeigt wird, entstehen durch die spezielle Architek-
tur dieses neuralen Netzes neue Möglichkeiten zur Charakterisierung, gezielten Suche und
zum Retrieval von texturierten Bildern mittels sprachlicher Beschreibungen als Eingabe.
Um ein solches Modell zu trainieren wurde ein Texturdatensatz erstellt, das gleichzeitig
Informationen über Farbe, Material und eine Musterbeschreibung enthält. Der Beitrag
dieser Arbeit zur automatischen Generierung von Texturbeschreibungen in Eingabebildern
ermöglicht durch die Flexibilität des Ansatzes neue Möglichkeiten der Texturbeschreibung
für viele potenzielle Anwendungen. So erscheint es beispielsweise gut möglich, detail-
lierte Beschreibungen von Texturen für Bilder aus Bereichen wie Geologie, Bodenkunde
und anderen Naturwissenschaften, in denen eine feine Bildtextur eine erhebliche Rolle
spielen, mittles dieses Ansatzes zu ermöglichen. In einem weiteren Teil der Arbeit wird
ein neuartiger Ansatz für die Realisierung von morphologischen Prozessen auf Farbbildern
vorgestellt. Hierzu wird der RGB-Farbraum in einen Farbdoppelkegel transformiert, in dem
man mathematische Operationen wie die Berechnung eines Maximums oder Minimums
gegebener Farben für die Berechnung solcher Prozesse theoretisch untermauert umsetzen
kann.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

Our current age has been given many names, as early as 70’s Bell [24] talked about the

post-industrial society. Afterwards, terms such as information society, digital age, and net-

work society were utilized to explain our rapidly changing global village. The basic idea is

that previously separated technologies converge together on what we call information tech-

nology that is used to extract, store, manipulate and distribute information from structured

and unstructured sources of data. In this situation, the world storage capacity has grown

at about 25% per year over the recent decades while our telecommunication capacity wit-

nessed an even more annual growth of 30%. Most impressively, the world’s computation

capacity is amplified twice as fast and general purpose computers grew at about 60% per-

cent per year [82]. These changes are extremely fast in comparison with the changing rates

that we are used to such as the average annual growth rate of the global economy.

Increasing presentation of a wide variety of contents in digital form results in easier and

cheaper duplication and distribution of information. Every day hundreds of millions of

people take photos, make videos and send texts. Across the globe, businesses collect data

on consumer preferences, purchases, and trends. Governments regularly collect all sorts of

data from census data to incident reports in police departments. According to latest Cisco

visual networking index [160], by 2021 annual global IP traffic will reach 3.3 ZB, global IP

traffic will increase nearly threefold, smartphone traffic will exceed PC traffic, traffic from

23



wireless and mobile devices will account for more than 63% of total IP traffic, the number

of devices connected to IP networks will be three times as high as the global population

and broadband speeds will nearly double.

All these statistics are telling a common story: the amount of the available data grows fan-

tastically. The majority of this information consists of human-produced unstructured data

such as images and videos. Visual contents drive an engagement that has an enormous

impact on the audience and influences human emotion. So, it is of crucial importance to

develop techniques for multimedia information indexing and retrieval to establish a lingual

interaction between people and the visual contents.

1.2 Natural Vision

Light is the most valuable source of energy and knowledge presented in the nature. Plants

and other self-feeding creatures produce their own food by converting carbon dioxide, wa-

ter, and light energy into carbohydrates during a process known as photosynthesis. More-

over, most of the animals understand their surrounding environment using light in the visi-

ble spectrum reflected by the objects. For this purpose, their visual system including eyes,

optic nerves, and brain translates varying directions and energies of the photons into differ-

ent kinds of information such as shapes, colors and brightness.

Eyes are sensory organs that detect light and convert it into electrochemical impulses in

neurons. In microorganisms, eyes do nothing but detect whether the surroundings are light

or dark, while in higher organisms, eye is a complex optical system that collects light

from the surrounding environment, regulates its intensity through a diaphragm, focuses it

through an adjustable assembly of lenses to form an image, converts this image into a set of

electrical signals, and transmits these signals to the brain through complex neural pathways

that connect the eye via the optic nerve to the visual cortex and other areas of the brain.

Generally speaking, eyes can be categorized into two main sub-branches: simple and com-

pound eyes. Simple eyes normally consist of a seamless photoreceptive surface. Although

the name suggests simplicity, simple eyes are not simple in photosensitivity and accuracy

but only in the structure. Simple eyes are found in many species among vertebrates and
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invertebrates. There are few types of simple eyes known as pit eyes, spherical lens eyes,

multiple lenses, refractive cornea, and reflector eyes. Pit eyes are the most primitive of all

types of eyes, and there is a small depression with a collection of photoreception cells. It

is important to notice that pit vipers have pit eyes to sense the infrared radiation of their

prey animals. The spherical lens eyes have a lens in the structure, but the focal point is

usually behind the retina, causing a blurred image to detect the intensity of light. Mul-

tiple lenses simple eyes are an interesting type with more than one lens in a shape of a

telescope, which enables the observer to enlarge the picture and get a sharp and focused

image. Certain predators such as spiders and eagles are good examples of this type of lens

arrangement. The eyes with a refractive cornea have an outer layer of a light penetrating

substance, and the lens is not usually spherical, but its shape could be changed according

to the focal lengths. Reflector eyes are a wonderful phenomenon that provides a common

communication platform for other organisms, as well. The image formed in one’s eye is

reflected onto another place so that the other organisms could see it. All these types of sim-

ple eyes function in taking the information with regard to light to sustain the body. Despite

all these being simple eyes, all the higher vertebrates including humans have simple eyes.

Compound eyes are formed by repeating the same basic units of photoreceptors called om-

matidia. An ommatidium has a lens and photoreceptive cells mainly, and the pigment cells

separate each ommatidium apart from the neighbors. However, compound eyes are capable

of detecting motions as well as the polarization of sunlight, in addition to receiving light.

The insects, especially honeybees have the ability to understand the time of the day using

the polarization of the sunlight from their compound eyes. There are few types of com-

pound eyes known as apposition, superposition, parabolic suspension, and some few more

kinds. Within these species, visual information is formed through ommatidiais taken into

the brain, and the whole image is combined there in order to understand the object in the

apposition eyes. The superposition eyes form the image by reflecting or refracting the light

received via mirrors or lenses, and then the image data are transferred into the brain, to

understand the object. The parabolic suspension eyes use the principles of both apposition

and superposition eyes. Most of the annelids, arthropods, and molluscs have compound

eyes, while they can see colors, as well.
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During the long process of the evolution, various visual systems are adjusted to different

requirements, environments, and behaviors. For instance, dragonflies have been around

for more than 300 million years. In this time, they fine-tuned their eyes to see the world

in the slow-motion. Their vision is so quick that it can track a flying object in less than

five-hundredths of a second. It is partly due to the speed that they process information.

Dragonfly’s brain is able to process 200 individual frames per second three times faster

than a human brain. Moreover, they have about 30,000 ommatidia per eye that can see the

ultraviolet and polarized light, as well as three smaller eyes capable of detecting movement,

allowing them to react within a fraction of a second.

As another consequence of the long-term evolution, eyes may be mounted on stalks to

provide a better all-around vision that also allows the animal to track prey and predators

without moving the head.

Despite their fantastic functionality, all types of natural visions are limited to a small

range of electromagnetic spectrum that leads to different levels of color perception. Small

changes to the genes coding for the most sensitive pigment known as rhodopsin is able to

change the color perception drastically.

While eyes’ operation is truly complicated, they are just the beginning of an even more

complex series of processing stages conducted in the brain. At the beginning of this multi-

step process, the retina converts the 3D objects view into 2D images. The retina is actually

a part of the brain that is isolated to serve as a transducer for the conversion of light into

neuronal signals. Afterwards, the brain rebuilds a 3D model of the world based on the

information in the 2D image. Almost forty percent of the human brain is involved with

visual data processing [19]. The most dedicated part of the brain that is located in the back

of the two hemispheres is the primary visual cortex that is usually referred as V1. This

neural region is the biggest area between around 30 identified active visual brain sections.

The connections between retina cells and cortical neurons are topographic in that nearby

areas on the retina surface correspond to nearby visual cortex regions. The correspondence

between the retina and cortical regions can be formulated as a log-polar transformation,

in which standard axes in the retina are mapped into polar axes in the cortex. Neurons in

the visual cortex fire action when visual stimuli appear within their receptive field. The
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logarithmic component of the transformation accounts for the magnification of central rep-

resentations in the cortex. Thus, this transformation from the retina to cortex preserves

the qualitative spatial relations but distorts quantitative ones. Hubel and Wiesel [89] cate-

gorized visual cortex neurons in their pioneering investigations into simple, complex and

hypercomplex cells. Images need to have a particular orientation in order to excite a simple

cell, while a correctly oriented bar of light might need to move in a particular direction to

stimulate a complex cell and in hyper-complex cases, the bar might also need to be of a

particular length.

In addition, there are several neural pathways that are used to process different visual prop-

erties such as color, shape, motion, and depth. Motion processing includes different kinds

of information such as the derivation of the speed and direction of a moving target, the

motion boundaries associated with an object, or judgment of motion direction from optic

flow signals. Some regions of the visual cortex are activated more strongly when the visual

perception contain moving elements. Another interesting aspect of the human motion pro-

cessing ability is the perception of the biological motion in which humans can differentiate

states such as running and jumping and even gender of the actor from poor visual scenes

in which only a few light-points are included. Similar to motion processing, depth feeling

entail both low-level visual features such as disparity and high-level inferred attributes such

as the surfaces corresponding to retinal points with different disparities.

Nevertheless, the main secret of the human visual perception is the objects recognition

ability with high accuracy and speed in presence of drastic changes in the appearance of

objects caused by changes in the viewing angle and illumination conditions. Visual cor-

tex object-selective regions are activated when subjects view objects defined by luminance,

texture, motion or stereo cues but not when subjects view textures, stationary dot patterns,

coherently moving dots, or gratings defined by either motion or stereo while activation is

independent of object format or scale. In general, object-selective regions represent shapes

rather than contours or object features when subjects perceived simple shapes created via

illusory contours. These properties form an object-recognition system with a wide range of

invariances to the object appearance and transformations but not its identity.

Two main principles of the visual cortex functionality are the hierarchical processing and
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the functional specialization. During hierarchical processing, the visual perception is achieved

by a gradual stage-wise process in which information is first represented in a localized and

simple form that will be transformed into more abstract representations after a sequence of

processes. The functional specialization proposes that specialized neural pathways process

information about different aspects of the visual scene. It is almost approved that the hu-

man visual system is consist of parallel hierarchical processing streams that each of them

is specialized for a particular task.

1.3 Machine Vision

Photos and videos are becoming an integral part of the global life. They are being gener-

ated at a pace that is far beyond what any human or teams of humans could hope to view.

But unfortunately, our most advanced software is still struggling with understanding and

managing this enormous content. We have made fabulous megapixel cameras that are able

to take pictures by converting lights into a 2D array of numbers known as pixels but these

are just lifeless numbers. They do not carry meaning in themselves. Prototype cars can de-

rive by themselves, but without smart vision, they cannot really tell the difference between

a crumble paper bag on the road, which can be run over, and a rock in the same size which

should be avoided. Drones can fly over massive land, but do not have enough vision tech-

nology to help us to track the changes of the rain-forests. Security cameras are everywhere

but they do not alert us when a child is drowning in a swimming pool. So, collectively as a

society, we are very much blind because our smartest machines are still blind.

Just like to hear is not the same as to listen, to take pictures is not the same as to see and

by seeing we really mean understanding. In fact, it took the mother of nature 540 million

years of hard work to do this task, and much of that effort went into developing the visual

processing apparatus of our brain, not the eyes themselves. So, vision begins with the eyes

but it truly takes place in the brain.

Visual intelligence is a cornerstone of the Artificial Intelligence (AI), as the computer must

understand what it sees, and then perform appropriate reasoning and actions accordingly.
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So, the ultimate goal of the computer vision is to enable machines to see, interpret and pro-

cess visual data in the same way that human vision does. In other words, it can be defined

as the transmission of the human intelligence and instincts to a computer. Naming objects,

identifying people, inferring 3D geometry of things, understanding relations, emotions, ac-

tions, and intentions. But it is quite a challenging task to enable computers to differentiate

between several kinds of visual information such as shape, object, and texture as well as

certain 3D vision interpretations such as depth, illumination, and motion.

It used to be that if we wanted to get a computer to do something new, we would have

to program it. Programming is a process that requires pondering about every single step

in order to achieve the final goal. But no one tells children how to see especially in the

early years. They learn this through real-world experiences and examples. If you consider

a child’s eyes as a pair of biological cameras, they take one picture about every 200 mil-

liseconds which is the average time an eye movement is made. So, by the age three, a child

would have seen hundreds of millions of pictures of the real world which is a lot of training

examples.

Therefore, maybe the better solution for computer vision problems is to construct algo-

rithms that are able to learn from and make a prediction on data. This smart programming

approach that is called machine learning is a cumulative knowledge acquiring technique

that uses iterative algorithms and statistical analysis to recognize trends from data with the

aim of finding hidden insights without being explicitly programmed.

Most of the techniques in machine learning such as neural networks, support vector ma-

chines, decision trees, Bayesian belief networks, k-nearest neighbors, self-organizing maps,

case-based reasoning, instance-based learning and hidden Markov models are not new but

today the abundance of the data and the affordable processing power beside inexpensive

data storage facilities make it possible to deliver faster and more accurate outcomes based

on larger scale and more complex data which means better decisions for financial services,

health-care, transportation, marketing and much more in real-time without human inter-

vention.

A fundamental step towards the progress of the computer vision is to teach computers to

watch objects that form main building blocks of the visual world. Object recognition in
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turn is a very challenging task. Even something as simple as a household pet can present

an infinite number of variations to the object model. Therefore, instead of focusing solely

on better and better algorithms, the solution might be to give the algorithms the kind of

training data that a child is given through real-life experiences in both quantity and quality.

The prerequisite of such a task is the access to the abundant environmental information

consist of meaningful properties and relations. Consequently, we need to collect different

data sets that have far more images than we have ever had before, perhaps thousands of

time more. Internet as the biggest treasure of images that humans have ever created can be

used to form those required training sets.

When we have the data to nourish the computer brain, then it is time to come back to the

algorithms themselves. The wealth of information provided by large-scale data sets is a

perfect match to a particular class of machine learning algorithms called Convolution Neu-

ral Networks (CNNs). Just like the brain, a CNN consists of billions of highly connected

neurons. A neuron is a basic operating unit in a neural network that takes input from other

nodes and sends output to others. In addition, these hundreds of thousands or even millions

of nodes are organized in hierarchical layers also similar to the brain. A typical neural

network has about 20 million nodes, 140 million parameters and 15 billion connections

that form an enormous model. Powered by the massive data of the newly provided visual

data sets and the modern Graphics Processing Units (GPUs), the CNN became a winning

architecture that generates exciting new results in various machine vision tasks.

After understanding the surrounding world, a small child learns the natural language to ex-

change the knowledge, interact with environment and exploit the collective consciousness.

As the primary step to teach a computer to see a picture and generate sentences, the combi-

nation of the big data technology and machine learning algorithms has to take another step

in such a way that the computer can learn from both pictures and their natural language de-

scriptions generated by humans. Just like the brain that integrates vision and language, the

main contribution of this thesis is to develop models that connect image regions as visual

snippets with their linguistic interpretations in the form of words, phrases and sentences.

When we meet our dreams, doctors and nurses will have extra pairs of tireless eyes to help

them to diagnose and take care of patients, cars will run smarter and safer on the road and
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robots will help us to brave the disaster zones to save the trapped and wounded. We will

discover new species, better materials and explore unseen frontiers with the help of the

machines. First, we teach computers to see and then they help us to see better. For the first

time, human eyes will not be the only ones pondering and exploring our world.

1.4 Outline of the Dissertation

In this dissertation, we develop models to bridge the gap between the visual data and its

linguistic description. In particular, we develop deep architectures that process and align

these two concepts and train their parameters end-to-end using data sets that are including

image regions and their corresponding lingual explanations.

The literature review of the deep learning technology is presented in Chapter 2 where we

provide an introduction to different learning approaches, artificial neural networks, back-

propagation mechanism, optimization approaches, overfitting, and regularization, and de-

scribe commonly used deep neural architectures for processing images and texts, especially

convolutional and recurrent neural networks.

In Chapter 3, we develop a hybrid interactive model that is able to not only generate a wide

range of linguistic descriptions for different regions of the input image but also detect user

attention, highlight the intended region and provide the most appropriate linguistic descrip-

tion for its visual content.

In Chapter 4, we specifically address the problem of selective texture labeling as a bidi-

rectional correlation between texture visual attributes and their lingual descriptions. The

proposed model is able to receive visual textures as inputs and generate informative lin-

guistic descriptions. The bi-directional nature of the proposed architecture which is formed

by the combination of convolutional and recurrent neural networks also provides this op-

portunity to retrieve texture images based on linguistic descriptions of the intended texture

attributes. As a prerequisite, we generate a multi-label data set of texture images by com-

bining two well-known texture data sets, each of which provides a set of texture visual

attributes in a unique context.

In the both previously proposed deep architectures, morphological operations are exten-
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sively used to speed up the pre-processing steps of our colored training samples. Motivated

by such an application, in Chapter 5, we provides a novel approach to define mathematical

morphology on matrix field data. To this end, we converted common RGB-values of the

images into a new biconal color space and then combined two approaches of mathematical

morphology to give meaning to the maximum and minimum of the matrix field data and

formulate our novel strategy.
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Chapter 2

Deep Learning Background

In the early days of artificial intelligence, smart solutions were limited to problems that

their description was a symbolic representation of the domain and the manipulation of

symbols based on the given rules. In that context, an intelligent agent was defined as an

efficient search engine that was able to traverse a limited solution space better, faster and

more greedy than a human being. One famous example of such a task, is the chess game

and the ability of the artificial agents to examine the movement possibilities and predict

their consequences. The scope of such a solution was relatively confined to problems that

could be easily formulated. This was much lower than the area of the human intelligence

where the agent is able to leverage a large amount of knowledge about the problem gath-

ering from linguistic communications, visual interpretations and other kinds of knowledge

resources. Humans unconsciously evaluate and discard many options that are not related to

the subject and make a choice from millions of options whenever they act.

To be able to reach that level of intelligence, knowledge-based systems were presented

wherein the knowledge was prepared by specialists and expressed in a way which allowed

the agent to reason about different situations. Machines are not able to understand the

actual meaning of the knowledge since they are not able to understand the concept that

put knowledge together. So, the main limitation at that time was the need of the external

knowledge interpretation. In that sense, one had to define every possible value that might

be needed for the task known as features. Humans are good at recognition and construction

of these features. We are familiar with this process as learning.

33



Those days, the digital learning process was defined as the development of algorithms that

were able to obtain relevant knowledge of the problem by proper mapping of the data pro-

vided by human experts. So, presentation of the most accurate mathematical function that

describes internal relations of the data was the masterpiece of the field of machine learn-

ing. Thanks to the diversity of machine learning techniques, a large class of problems were

solvable by providing enough data, engineered features, and computational power. But one

has to notice that machine learning algorithms are able to produce an appropriate answer to

the question only when some relevant features are provided. Unfortunately, machines were

not able to judge what a suitable attribute is, so the main obstacle of these approaches is the

need of the breathtaking feature engineering especially in the domains of new problems.

Based on that, the meaning of the intelligence was the identification of a feature combina-

tion that yields highest precision.

Human learning goes from raw data to a conclusion without the explicit step where features

are identified and provided to the learner. In other words, we learn the suitable representa-

tion of the data from the data itself. In addition, our brain is able to construct a hierarchy

of features in which complex concepts are presented by primitive elements known as au-

tomated feature engineering. The hierarchical structure of the artificial neural networks

is designed to partially simulate this natural property. In general, they consist of sim-

ple, highly interconnected processing elements or neurons with weighted interconnections

among them. Neurons (a.k.a. nodes) are arranged in multiple layers, including an input

layer where the data is fed into the system, an output layer where the answer is given, and

one or more hidden layers, where the learning takes place by updating the weights of the

interconnections.

Deep learning, in turn, refers to neural networks that include a large system of neurons

arranged in several layers. In such networks, each layer of nodes trains on a distinct set of

features based on the previous layer’s output. With further advancement through the net-

work, neurons aggregate and recombine features from the previous layers, so they are able

to recognize a hierarchy of increasing complexity and abstraction. This important property

makes deep networks capable of handling very large, high-dimensional data sets with bil-

lions of parameters that pass through nonlinear functions.
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One of the problems deep learning solves best is the processing of the raw (unlabeled)

data and discerning similarities and anomalies that no human has organized in a relational

database or ever put a name to. This covers sound, text, images, videos and time-series-

shaped information such as web activities. Deep learning can be seen as a system that

learns a set of intermediate representations for specific tasks. Developing optimal interme-

diate feature representation for images or videos is the crucial step for the computer vision

and multimedia applications. The more data a network can train on, the more accurate it is

likely to be in the prediction of the outcome related to unseen but similar situations. This

is a new information processing method which has led to ground-breaking achievements in

visual recognition, natural language processing and robotics.

Deep learning platform provides an amazing opportunity to think of some really fascinat-

ing applications including but not limited to automatic image colorization, adding sounds

to silent movies, image style transformation, machine translation, voice recognition, fraud

detection, object detection, text and handwriting generation, sentiment analysis, game play-

ing and automatic scene description.

2.1 Learning Approaches

Learning in its broad interpretation is the process of earning the ability to perform a task.

There is a wide variety of the tasks that can be done by a learning approach. Machine

learning in turn, can be divided into three broad groups of algorithms: supervised learning,

reinforcement learning, and unsupervised learning.

2.1.1 Supervised Learning

While the aim of the traditional algorithms is to provide a closed-form solution for the

given problem, supervised learning approaches try to find the hidden relation between in-

put and the output of the samples representing the problem space. Supervised learning

itself has two different branches. In regression, the desired output is a real number or a

vector of real numbers and the aim is to get as close as we can to the correct output value.

In classification, the requested output is a class label (categorical value) which can be in
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the simplest case a choice between one and zero or positive and negative. Obviously, it can

include more complicated situations such as having multiple alternative labels in the task

of visual recognition. As a visual classification, an image can be fed to the algorithm and

the output is a set of the probabilities that determine the presence of the predefined objects

in the image.

The first step of the supervised learning is the selection of the model class from the whole

set of models that were prepared to consider as candidates. The model class can be con-

sidered as a function that takes an input vector 𝑋 and some numerical parameters 𝜃 and

gives you an output 𝑌 . The typical input vector includes several quantitative measures

or attributes. The aim is to adjust the set of parameters to make the mapping fit with the

supervised training data. Here the word ”fit” can be described as minimizing the discrep-

ancy between the target output at each training case and the actual output generated by the

model.

A common measure of that discrepancy is the mean squared difference between the vector

of the system output 𝑌 and the ground truth vector 𝑌 . Normally we put in that half so it

cancels the two when we differentiate:

𝐿 =
1

2𝑁

𝑁∑︁
𝑖=1

||𝑌𝑖 − 𝑌𝑖||2 (2.1)

Here 𝑁 is the number of data samples. This measure is more sensible when we tackle a

regression problem.

2.1.2 Unsupervised Learning

For many years machine learning scientists had neglected the power of unsupervised learn-

ing and had confined its application to some sorts of clustering approaches. Consequently,

they were used to define machine learning algorithms as some mapping functions from in-

put into output. The possible reason for this situation was the dilemma to explain the aim

of unsupervised learning which is to create an internal representation of the input data that

is useful for subsequent supervised or reinforcement learning. Another goal of the unsu-

pervised learning is to transform a high dimensional input into a compact low dimensional
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representation and it comes from this fact that high dimensional data typically lives on or

near a low dimensional manifold [108]. An almost simple method for dimensionality re-

duction is the Principal Component Analysis (PCA) that acts linearly. This means PCA

assumes that there is only one manifold which is a (𝑘 − 1)-dimensional hyperplane in the

original 𝑘-dimensional space of the problem. The other aim of unsupervised learning is to

supply an economical representation of the input in term of learned features. For example,

if we can represent the input in terms of binary features, that representation is economical

while it only takes one bit to express the state of a binary feature. Another shape of the

economic representation of an input is to use a large number of real-valued features that are

mostly zero which is known as sparse representation. In this case, for each input, we only

need to represent a few real numbers. As the most common application of unsupervised

learning, clustering can be defined as a very sparse code in which we have one feature per

cluster and we force all the features except one to be zero while that specific feature has the

value of one. Hence, the clustering is an extreme case of finding sparse features.

2.1.3 Reinforcement Learning

Reinforcement learning is another type of machine learning algorithms where an agent

learn how to behave in a environment by performing actions and seeing the results. The

agent receives rewards by performing correctly and penalties for performing incorrectly.

So, the agent aims to select actions or sequences of actions to maximize the expected sum

of future rewards while rewards may occur occasionally. Normally a discount factor is

used to limit the search domain in the upcoming possibilities. In a simple definition, the

discount factor decreases the reward for the actions as far as we dive deeper into the future.

Since rewards are mostly delayed, it is hard to know which action is the wrong one in a long

sequence of actions. One more difficulty of the reinforcement learning comes from this fact

that scalar rewards especially those occur occasionally do not provide much information

on which to base the changes in parameters. Therefore, in contrast with supervised and

unsupervised learning, it is not possible to use reinforcement learning to learn more than

thousands of parameters.
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2.2 Artificial Neural Networks

Humans are easily able to accomplish sophisticated visual recognition exploiting different

cortices of the brain. This admirable ability is obtained during a long-term natural evolu-

tion in a world where the electromagnetic waves are the only source of the knowledge. The

human brain is an extremely complex combination of neurons in which each individual

neuron can form thousands of links with other neurons. Converting such a capability to the

digital world is a tough mission.

The primary phase of this process is done in 1950s with the definition of the Artificial

Neural Networks [167]. Inspired by the brain structure, the fundamental building blocks of

the neural networks are independent computing elements known as neurons or nodes. As

illustrated in Fig. 2-1, a biological neuron consists of several axon terminals connected via

synapses to dendrites on other neurons. When the brain learns a new task or forms memo-

ries, it encodes each piece of the new knowledge by tuning connections between neurons.

However, the contribution of a single neuron to computation in the brain should not be

underestimated. Neuronal dendrites of each neuron exhibit a range of linear and nonlinear

mechanisms that allow them to implement elementary computations [130].

Figure 2-1: The general structure of a biological neuron [3]. The figure is redrawn based
on [4]

If the aggregation of the incoming signals reaches a specific threshold, the neuron fires the

response along the axon. Digital version of a neuron (a.k.a. perceptron) takes several in-

puts, determines each input impact by its coefficient (weight), computes their summation
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and sets the output in the case of the threshold satisfaction. As the basic mathematical as-

pect of the neural networks is the function estimation, applying a naive thresholding (e.g.

an step function) on the linear combination of inputs preserves the linearity while lots of

interesting functions have nonlinear properties. As the result, in current network architec-

tures, a nonlinear function such as sigmoid or hyperbolic tangent is used as an activation

function to squash the output range of the neuron into a certain interval and equip networks

with nonlinear functionality. In addition, there can be an extra variable (bias) in each neu-

ron that affects the initial level of squashing which results in the desired non-linearity. The

basic structure of an artificial neuron is shown in Fig. 2-2.

Figure 2-2: The general structure of an artificial neuron [3].

Synaptic coefficients (weights) can be changed to affect the influence of each neuron on

another. This mechanism is known as the learning process in neural structures which de-

termines the dynamic of the model performance.

2.2.1 Feed-Forward Networks

Neural Networks are basically organized into distinct sets of nodes called layers. This

structure makes it very convenient to analyze their operation using matrix multiplication.

Early attempts that tried to simulate a naive version of the neural system have relied on

feed-forward models. This structure consists of neurons that are connected in an acyclic

manner to arrange the output of each layer as the input of the neurons in the next layer. The

most common layer type is the Fully-Connected (FC) layer in which neurons between two

39



neighboring layers are fully connected, but neurons within a single layer are not directly

connected to each other. Nodes of the input layer have no parameters and do not modify

the data. In contrast, nodes of intermediate (hidden) and output layers carry parameters,

perform the learning approach and are counted in the naming convention. Output layer

mostly represents class scores and real-valued numbers in classification and regression.

Consequently, output neurons are not necessarily equipped with activation functions. It

turns out that networks with even one hidden layer are universal approximators [89]. With

the rise of the size and the number of layers, neurons can collaborate to express more

complex functions which grow the space of representable functions and increases network

capacity. The potential risk of this situation is the overfitting that occurs when the network

employs its high capacity to fit all the observations in the data that may also include noises

and outliers. Therefore, the higher model capacity must be appropriately addressed with

stronger regularization.

2.2.2 Output Layers and Loss Functions

Softmax Output layer

Softmax function is a kind of soft continuous version of the maximum function that is used

to force the output of the neural network to sum to one so that it can represent a probability

distribution across discrete mutually exclusive alternatives. In a softmax output layer, each

node receives some total input that they have accumulated from the previous layer. Then,

the 𝑖th neuron generates an output 𝑦𝑖 that does not only depend on its own input 𝑧𝑖 but also

on the inputs of other neurons 𝑧𝑗 of the softmax group as well. So, the output of the 𝑖th

neuron is:

𝑦𝑖 =
𝑒𝑍𝑖∑︀

𝑗∈𝑔𝑟𝑜𝑢𝑝 𝑒
𝑧𝑗

(2.2)

Since the denominator of the equation is the sum of the numerator over all possibilities,

the sum of outputs for all the neurons in the softmax output layer will be summed in one

and each output 𝑦𝑖 lies between zero and one. Consequently, network outputs represent a

probability distribution over mutually exclusive alternatives. The other suitable property of
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the softmax equation is its simple derivative:

∂𝑦𝑖
∂𝑧𝑖

= 𝑦𝑖(1− 𝑦𝑖) (2.3)

Where the derivative of the output with respect to the input for each neuron of the softmax

layer depends only on the output itself. In the case that we decide to use the softmax output

layer in a network, we should think of the right loss function and that is the negative log

probability of the right answer known as the cross-entropy loss function:

𝐶 = −
∑︁
𝑗

𝑡𝑗 𝑙𝑜𝑔 𝑦𝑗 (2.4)

Which means we aim to maximize the log probability of the right answer. Here 𝑗 iterates

over all the neurons of the softmax group, while 𝑦𝑗 and 𝑡𝑗 are the actual and the target

outputs of the neuron. One should notice that it is necessary to add up across all the neurons

of the layer because when one neuron changes, outputs of the other neurons change as well.

This loss function has a very steep derivative when the answer is very wrong which balances

the flatness of the derivative of the error with respect to the changes in each layer input:

∂𝐶

∂𝑧𝑖
=

∑︁
𝑗

∂𝐶

∂𝑦𝑗

∂𝑦𝑗
∂𝑧𝑖

= 𝑦𝑖 − 𝑡𝑖 (2.5)

So, when the actual and the target output of a neuron are very different, the aforementioned

derivative has the value of 1 or −1 which indicates the maximum possible slope.

2.2.3 Training Terminology

Forward-pass and backward-pass are the essential units of the network computations. The

forward-pass computes the output given the input for inference. The backward-pass com-

putes the gradient given the loss of learning. In addition, an epoch is a complete pass

through the training data. At the time of one epoch, the network meets every training sam-

ple once. Normally, the whole set of training samples it too large to be fed entirely to

the network during one forward-pass. So, the solution is to divide training samples into

41



smaller groups or mini-batches, feed the network with one mini-batch and update network

parameters afterward. This hybrid training step is called an iteration.

2.2.4 Depth Influence

While the universal approximation property holds both for deep and shallow networks, by

adding more layers and more units within a layer, a deep network can represent functions

of increasing complexity. In addition, some of the basic visual elements that are necessary

to perform a successful recognition task including corners, junctions, contours, and figures

can be defined as a spatial correlation between some points. So, an image can be considered

as a hierarchical structure and several layers of processing make intuitive sense for this data

domain. During the training process of a shallow network, weights are properly allocated

from the learning data and the network can recognize and classify patterns well. However,

once the numbers of the network layers increased, the linkage becomes too dense and it is

difficult to make a difference in the weights. The network adoption with the data is made by

a mechanism that feeds back errors that occurred during training to the whole network. For

a network with several layers, the error disappears before it is reflected the whole network

which is know as the vanishing gradients problem. In 2006, Hinton and Salakhutdinov

[83] introduced a learning approach that effectively trains deep architectures one layer at a

time in which the data that is learned in the lower layer is treated as input data for the next

layer. As each layer learns in stages, the feedback for an error of learning can also be done

properly in each layer. This leads to an improvement in precision.

2.3 Backpropagation

In this section, we overview the concept of learning hidden nodes of a neural network

known as backpropagation algorithm. Generally, if we do not exploit hidden neurons in

neural networks, they mapping power between input and output decrease dramatically. In

that situation, adding perceptrons containing hand-coded features in between is able to

improve network capacity while the design of the features remains an obstacle. What we

prefer is a way to find good features without requiring insights to the task or repeating trial
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and error to guess some features and see how well they work.

Our aim is to automate the loop of the feature construction and its evaluation. The naive

way of doing so is to randomly perturb weights, check the system performance and save

those weights in the case of improvements which is the typical action in reinforcement

learning. The main problem with this approach is its inefficiency. To change only one

weight, we need to perform several forward passes on a representative set of training cases

and check the results. Furthermore, as towards the end of the learning process, wights have

to have relative values to work properly, any large change in a weight will nearly always

make things worse. There are slightly better ways of using perturbations in the learning

process. One suggestion is to perturb all the weights in parallel and then correlate the

performance gain with the change of the weights. Actually, this technique does not help

so much while we need to do a huge number of trials with different random perturbations

of all the weights in order to observe the effect of changing one weight through all the

noise that is created by changing all the other weights. In comparison with this technique,

backpropagation is a much more efficient by a factor of the number of weights that could

be millions.

Another way to improve learning process is to randomly perturb the activities (outputs) of

the hidden units instead of perturbing the weights. Once we know how we want a hidden

activity to change on a given training case, we can compute how to change the weight.

As there are many fewer activities than weights, there are fewer possibilities for random

exploration which makes the algorithm more efficient. In comparison with this modified

strategy, backpropagation is still more efficient by the factor of the number of nodes.

The fundamental logic of the backpropagation is that although we are able to compute how

fast the error changes as we modify the hidden activity, we are not aware of the correct state

of the hidden units. So, instead of using activities of the units as the desired states, we are

able to use error derivatives with respect to activities for the learning. Since each hidden

neuron affects several output units, it has many different effects on the total error that should

be combined. This computation allows us to efficiently compute error derivatives for all

the hidden units at the same time. The result of having those derivatives is we are able

to find out how fast the error changes as we change the hidden activity on each particular
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training case. It is easy to use the chain rule to compute error derivatives of the weights

coming into a hidden unit from the error derivatives of the activities. As the first step of the

backpropagation, we have to define the error which is in a simple case the squared error

between the target value of the output unit 𝑦𝑗 and the actual value that the network produces

for the output unit 𝑦𝑗:

𝐸 =
1

2

∑︁
𝑗∈𝑜𝑢𝑡𝑝𝑢𝑡

(𝑦𝑗 − 𝑦𝑗)
2 (2.6)

The next step is to differentiate the error with respect to the activity (output) of an output

unit:
∂𝐸

∂𝑦𝑗
= −(𝑦𝑗 − 𝑦𝑗) (2.7)

Once we have got the error derivative with respect to one of the output units, we then want

to use all those derivatives in the output layer to compute the same quantity in the hidden

layer that comes before the output layer. So, the core idea of the backpropagation algorithm

is to take error derivatives in one layer and compute the error derivatives of the previous

layer based on that. Obviously, when we change the output of a unit in a specific layer, it

will change outputs of its subsequent units in the next layer and this is the situation that we

should sum up all these effects. The plan is to have an algorithm that takes error derivatives

that we have computed for the top layer and combines them in the same manner as we used

in the forward pass to calculate error derivatives in the layer below. Fig. 2-3. Shows a

multi-layer architecture in which the output unit is called 𝑗 and the hidden unit is called 𝑖.

The output of each unit is denoted by 𝑦 including unit index. The total or weighted input

received by 𝑗 which is denoted by 𝑧𝑗 is simply the multiplication of the output of the hidden

layer 𝑦𝑖 and the weight between two units 𝑤𝑖𝑗:

𝑦𝑗 = 𝛿(𝑧𝑗) = 𝛿(𝑤𝑖𝑗 · 𝑦𝑖) (2.8)

The first thing we need to do is to convert the error derivative with respect to 𝑦𝑗 into an
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Figure 2-3: Error derivatives calculation by backpropagation [28]

error derivative with respect to 𝑧𝑗 . To do so, we can use the chain rule as follow:

∂𝐸

∂𝑧𝑗
=

∂𝑦𝑗
∂𝑧𝑗

× ∂𝐸

∂𝑦𝑗
= 𝑦𝑗(1− 𝑦𝑗)

∂𝐸

∂𝑦𝑗
(2.9)

So, now we obtained the error derivative with respect to weighted input of the output unit.

Now, it is time to compute the error derivative with respect to the output of the hidden unit:

∂𝐸

∂𝑦𝑖
=

∑︁
𝑗

∂𝑧𝑗
∂𝑦𝑖

× ∂𝐸

∂𝑧𝑗
=

∑︁
𝑗

𝑤𝑖𝑗
∂𝐸

∂𝑧𝑗
(2.10)

Which is computed by the sum over all outgoing connections of the hidden unit. In the first

term of the chain in this expression, we explain how weighted input of the output unit 𝑧𝑗

changes as we change the output of hidden unit 𝑦𝑖 which obviously equals to the weight on

the connection 𝑤𝑖𝑗 . Once we have got the error derivative with respect to the output of the

hidden unit, it is very easy to compute the error derivatives for all the outgoing weights of

the hidden unit:
∂𝐸

∂𝑤𝑖𝑗

=
∂𝑧𝑗
∂𝑤𝑖𝑗

× ∂𝐸

∂𝑧𝑗
= 𝑦𝑖

∂𝐸

∂𝑧𝑗
(2.11)

We can clearly do that for as many layers as we like and after we have done that for all

existing layers, we can compute how the error changes as we change the weights of the

network. In spite of its useful properties, backpropagation is not a learning algorithm by
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itself. For a proper learning procedure, we need to have a specific strategy to tune all the

effective parameters. The main point is the approach that we employ to optimize the error

function or the way that we use error derivatives to discover a good set of weights.

Another concern is the generalization strength of the weights that we have learned. In other

words, we have to be sure that our weights are able to handle input samples that are not

seen during training.

2.4 Optimization

The error surface is the surface that lies in the problem space where the horizontal axis cor-

responds to the weights of the network and the vertical axis corresponds to network error

rate. For a linear neuron that has a squared error, the error surface is a quadratic bowl where

the vertical cross-sections are parabolas and horizontal cross-sections are ellipses. In con-

trast, for a multi-layer, non-linear neural network, the error surface has a very complicated

geometry. Fortunately, these complex error surfaces are also locally quadratic.

2.4.1 Gradient Descend

The major target of the optimization process is to determine how to use weight derivatives.

To clarify the answer to this question we need to know how often should we update the

weights. One possible strategy is the online learning in which we make small changes in

weights after meeting each training sample and computing of error derivatives with respect

to that sample. This strategy leads to severe fluctuations in the amount of the error function

due to different derivatives that we obtain along each observation. Nevertheless, in such a

case, the whole optimization procedure is able to converge towards minimum if we apply

tiny changes in each step. The other feasible approach is to use full batch or offline train-

ing. To that end, we perform a full sweep through all the training samples, sum up all the

error derivatives that we earn during whole observations and take a small step in that direc-

tion. Note that this learning strategy keeps the weights constant during the computation of

the error associated with each sample while the online version is constantly updating the

weights, so the two algorithms visit different sets of points during adaptation. However,
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they both converge to the same minimum. The offline learning is slightly more efficient in

terms of the number of computations. The problem with the offline learning is that if we

start with a set of weights that includes a few inappropriate values, it is not necessary to

look at the whole bunch of the training set to get the idea of which direction we need to

move. In such a case, a few training samples are sufficient to lead us in the right direction.

The third practical method of training is mini-batch learning where, in each iteration, we

select a small random group of training samples to feed the network, perform backpropaga-

tion and compute error derivatives. Then the network weights will be slightly changed with

respect to error derivatives. Consequently, we face less variation in the network output in

comparison with online learning, while benefiting from the efficiency of the batch learning

as well. While the gradient leads us towards the direction in which the function has the

steepest rate of increase/decrease, the next issue, is the amount of the change that we want

to make in the weight updates. This amount is determined by a coefficient (𝜂) that we use

before the amount of the error derivative:

𝑤𝑡 = 𝑤𝑡−1 − 𝜂
∂𝐸

∂𝑤
(2.12)

This coefficient is a learning hyperparameter that we call step size or the learning rate.

The simplest strategy is to use a fixed value for the learning rate during the training. But it

seems more sensible to adopt the learning rate based on the overall trend of the network ac-

curacy improvement. In that sense, we should decrease the learning rate when the network

fluctuates or stops learning any more. In contrast, the learning rate can be increased when

the learning progress is steady. It is also plausible to have a diverse set of learning rates for

different parts of the network so that some parts learn rapidly and other parts learn slowly.

Moreover, in some cases, the best learning strategy is not to traverse the problem space

exactly in the direction of the steepest descent. For example, as illustrated in Fig. 2-4, in

some situations where the problem space is highly elongated, the direction of the steepest

descent may not conform the direction of the minimum point that we aim to go through. In

other words, the gradient is high in the direction that we prefer small steps and the gradient

is very low in the direction that we wish to take long steps. But the main challenge is still
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to find a way to choose such an efficient movement strategy.

Figure 2-4: A demonstration of an elongated problem space. The figure is redrawn based
on Figure 2.1 in [104]

2.4.2 Some Optimization Catalysts

In this section, we will describe some tricks that are able to accelerate optimization process

across a multi-layer neural network. As we use a numerical optimization routine, if the

weights of the network have exactly the same initial parameters, they will generate exactly

the same gradient. The outcome of such a situation does not lead to automatic generation

of different features. So, the best way to break network symmetry is to initialize network

parameters with small random values.

Another strategy which can improve learning quality is to transform each component of

the input data so that it has zero mean and unit variance over the whole training set. The

geometrical interpretation of such a technique is to centralize the data point cloud symmet-

rically around the origin for every dimension. One possible way for zero centering is to

use hyperbolic tangent activation for all neurons. This transformation can also be done by
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mean subtraction technique during data preprocessing step.

The other approach that grantees the circular shape of the error surface is the decorrelation

of the input vector components. PCA approach is able to perform such a decorrelation by

removing components that have small eigenvalues. Afterwards, dividing remaining com-

ponents by the square roots of their eigenvalues modifies the elliptical shape of the error

surface to a circular shape in which gradients straight towards the minimum.

There is another trick to speed up the learning process. Normally, we start the procedure

by guessing the initial learning rate. Then, we monitor the learning progress and reduce

the learning rate if the error rate gets worth or oscillates wildly. It also sounds reasonable

to increase the learning rate if the error is falling too slowly. In the special case of learning

with mini batches, towards the end of the learning process, we get strong fluctuations in

gradients that cause the severe changes in the network parameters. So, it always helps if

we turn down the learning rate at that moment to smooth fluctuations and get the final set

of weights which forms a good compromise. A good approach for network monitoring is

to check the network accuracy dynamic on a separate validation set. Since turning down

the learning rate also reduces the rate of the learning, we have to pay careful attention to

the time of the decrease.

2.5 Overfitting and Regularization

As the main source of the overfitting problem, training data can be easily ruined by the

different type of noises. The minor type of the noise comes from erroneous data labels.

But the most important sort of the noise is the sampling error which can be seen in the

shape of random regularities that are caused by some particular samples that were chosen

by mistake. As a rule of thumb, no matter how accurate the training data is, for any finite

set of examples, there is always some accidental regularities. The main challenge is that

there is no way to distinguish actual regularities from those that are caused by sampling

error. Unfortunately, all the models tend to fit both kinds of regularities. Obviously, more

powerful models fit the data better and can be easily trapped by fitting the sampling error.

So, overfitting occurs when the network predicts the training set very well but makes poor
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predictions on unseen data.

Although overfitting is the main obstacle of the network generalization, it can be cured by

several regularization techniques. One way of improving network generalization is to pre-

vent network weights to be too large also known as weight decay technique. This can be

done by adding a regularization term to the loss function. The most common regularization

terms are 𝐿1 and 𝐿2 norms of the weights.

Another technique for the network generalization improvement is the weight sharing ap-

proach where we try to give same values to many weights. This value should be learned

during the training phase.

Early-stopping strategy combats overfitting by monitoring network performance on a vali-

dation set that is a set of examples we never use for gradient descent, but which is also not a

part of the test set. If the network accuracy ceases to improve sufficiently on the validation

set, or even degrades with further optimization, then the heuristic implemented here gives

up on much further optimization.

By model averaging or ensembling technique, one can use several neural networks for the

specific task and exploit the average output of those systems as the final output to diminish

overfitting. These types of techniques are commonly applied on decision trees and Random

forests.

There are other techniques to combine the output of multiple models to get better result. In

mixture technique, this can be done by averaging models output probabilities. Another way

of combining models is to use the product of the probabilities which is equivalent to their

geometric mean. This geometric mean will generally add up to less than one, so we have

divide by the sum of the geometric means to normalize the distribution. As a consequence,

the small probability output by one model has veto power over the other models.

2.5.1 Dropout

Dropout technique is an efficient way to combine a large number of neural network models

without having to separately train each individual model. To do so, we omit some of the

hidden units for each training case to end up with a different architecture. In other words,
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we use a different model for every training case by randomly turn off a fraction of nodes

during each step of the training to stop too much cooperation between the hidden units

and force the network learns multiple independent representations of the same data and

improve generalization power of the network. Based on the dropout technique, a random

connection layout is selected from possible 2ℎ layouts where ℎ is the number of the hidden

units. Obviously, all of this layouts share weights that is whenever we use a hidden unit, it

gets the same weight as it has in other layout. The sharing of the weights between all the

models means that each model is very strongly regularized by the others that leads to much

better regularization than 𝐿1 and 𝐿2 penalties. Those penalties pull the weights towards

zero, but by sharing weights between many models, each model gets regularized by some-

thing that pulls the weights towards the correct value.

In the test time, we can use all of the hidden units and halve their outgoing weights. In this

way, we have the same expected effect as they did when we were sampling. This method

computes the exact value of the geometric mean of the predictions of all the previously

used 2ℎ models. When we have multiple hidden layers, this is not exactly the same as av-

eraging all the separate dropped out models, but it is a fast and good approximation. The

alternative solution is to run stochastic models several times on the same input and average

across those stochastic models. This approach gives us an idea of the uncertainty in the

answer which is an advantage over the mean net.

In general, if we have a deep neural network the overfits the data, dropout technique can

reduce the number of the errors drastically. As a rule of thumb, any network that requires

early stopping in order to prevent overfitting, would do better by using dropout with the

cost of a longer training time and possibly more hidden units. In the case that our deep

model does not overfit the data, that would be a good idea to use a bigger model that takes

the advantage of the dropout regularization.

The other merit of the dropout regularization is that it prevents the specialization of the

hidden units. This occurs when a hidden unit knows which other hidden units are present,

so it can co-adapt to the other hidden units on the training data to compensate their possible

mistakes. This may lead to complex co-adaptations [189] that does not generalize to un-

seen data and cause overfitting. The dropout technique is able to prevent co-adaptation by
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making the presence of other hidden units unreliable. Hence, the hidden unit’s functionality

cannot depend on the performance of the other units.

2.5.2 Batch Normalization

Due to the modification of the weights during the training phase of a multi-layer neural

network, the output distribution of each layer changes gradually that is mentioned in the

literature as covariate shift. Therefore, top layers are forced to modify themselves with the

shifts in incoming data distribution which yields to the reduction of the learning speed. As

mentioned before, normalization as shifting inputs to zero mean and unit variance is often

used as a preprocessing step to make the data comparable across features. Since normaliza-

tion is a simple differentiable operation, it is possible to perform it all around the network

rather than just performing it once in the beginning.

Batch Normalization (BN) technique [90] can be interpreted as doing normalization pro-

cess at every layer of the network, but integrated into the network itself in a differentiable

manner. Batch normalization performs the activation’s normalization on each dimension

of the input data independently, generally right before the non-linearity (activation func-

tion). During backpropagation, it uses dedicated learning parameters to adjust normalizing

approach to the network learning progress. Furthermore, batch normalization simplifies

the hyper-parameter tuning by widening the range of hyperparameters that the network can

properly work with. In practice, networks that use batch normalization are significantly

more robust to bad initialization.

2.6 Convolutional Architectures

In vanilla feed-forward networks, each node of a hidden layer is fully connected to all the

neurons of the previous layer while neurons of an individual layer have no connections in

between. Obviously, this fully-connected structure does not scale to larger images espe-

cially when dealing with three channel color images. For example, when we convert an

ordinary color image with the common size of 256 × 256 into a one-dimensional input

vector, this leads to 256 × 256 × 3 = 196, 608 input neurons. In deep architectures, we
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would almost certainly want to have lots of neurons over multiple layers, so the number of

the network connections would add up quite quickly.

A Convolutional Neural Network (CNN) has many fewer parameters than a fully connected

network with the same number of hidden units. Such a network consists of several con-

volutional, pooing and non-linearity layers optionally followed by a few fully connected

layers. The network input is normally a 3D matrix with 𝐻 ×𝑊 ×𝐷 dimensionality where

𝐻 stands for Height, 𝑊 stands for width and 𝐷 stands for the depth of the input matrix.

As depicted in Fig. 2-5, in a conv/pooling building block, each neuron has selective con-

nections to a small, local region of the preceding layer and weights of these connections

form a filter (kernel) that will be evolved during the training phase of the network. At the

time of the convolution process, each filter traverses the entire scope of the input matrix to

generate its own feature map. In practice, filters often have the square shape of size 1× 1,

3× 3 or 5× 5. Three hyperparameters control the size of the output volume: depth, stride,

and zero-padding.

Figure 2-5: The general architecture of a conv/pooling building block in a CNN [28]

Depth corresponds to the number of filters in a convolutional layer, where each filter learns

to look for something different in the input. For example, if the first convolutional layer

takes as input the raw image, then different neurons along the depth dimension may activate

in presence of various oriented edges, or blobs of color. It is common to refer to a set of

neurons that are all looking at the same region of the input as a depth column. The distance
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between consecutive applications of a filter over the input scope is called stride. When the

stride is 𝑛, we move the filters 𝑛 pixel at a time. The bigger the stride, the smaller the

output size. Sometimes it will be convenient to pad the input volume with zeros around the

border. The size of this zero-padding operation enables us to control the spatial size of the

output volumes. It also makes it possible to preserve the spatial size of the input volume,

so, the input and output height and width remain unchanged. An important property of

a convolution layer is that all spatial locations share the same convolution kernel, which

greatly reduces the number of parameters of the layer. Because of sharing parameters, a

kernel that is specialized to detect a pattern will detect it anywhere in the image.

As mentioned before, it is a convention to apply a non-linear function to grant non-linearity

to a system that basically performs linear operations. In comparison with sigmoid and

hyperbolic tangent activation functions, Rectified Linear Unit (ReLU) is able to greatly

accelerate the convergence of stochastic gradient descent due to its linear, non-saturating

form. Moreover, it can be implemented by simply thresholding the matrix of activations at

zero. It also helps to alleviate the vanishing gradient problem, which is the issue where the

lower layers of the network train very slowly because the gradient decreases exponentially

through the layers. The ReLU layer applies the function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) to all of the

values in the input volume. In basic terms, this layer blocks all the negative activations.

Finally, to constantly reduce the dimension of feature maps, sharpen the located features,

and control the amount of the computation in the network, it is common to perform a pool-

ing operation after a convolutional layer. Typically, a pooling layer uses the maximum or

the average operation to resize the dimension of the input and does not include any param-

eter. In max pooling, the pooling operator maps a sub-region to its maximum value, while

the average pooling maps a sub-region to its average value. Furthermore, pooling helps to

make the representation approximately invariant to small translation, rotation and shifting

[71].

In this way, CNNs are able to encode a wide variety of visual features via their specific

structure during the learning process. This kind of neural networks is usually used for

visual classification, similarity detection (clustering), and object recognition.
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2.6.1 LeNet

In 1986, a group of computer scientists showed that neural nets with many hidden layers

could be effectively trained by a relatively simple procedure [171]. This would allow neural

nets to get around the weakness of the perceptrons (incapability of learning the exclusive-

or function c.f. [143]) because the additional layers endowed the network with the ability

to learn nonlinear functions. Around the same time, the universal approximation theorem

[86] showed that such networks have the ability to learn any function. Based on the univer-

sal approximation theorem, given any continuous function, no matter how complicated it

might be, it is always possible to find a single layer feed-forward artificial neural network

with a finite number of nodes which is able to approximate that function. In other words, by

adjusting weights and biases, a neural network can take any input 𝑥 and approximate it to

fit the expected output 𝑓(𝑥). In addition, deep networks have a hierarchical structure which

makes them particularly well adapted to learn the hierarchies of knowledge that seem to

be useful in solving real-world problems. For example, in visual recognition tasks, deep

networks provide a system that understands not just individual pixels, but also increasingly

more complex concepts from edges to simple geometric shapes.

LeNet [115] is an excellent simple example for the application of the CNN architecture in

the field of machine vision designed for handwritten and machine-printed character recog-

nition. In this paper, authors proposed a gradient-based learning algorithm to synthesize

the complex decision surface of the real-life document recognition systems. In their exper-

iments, the goal was to classify the handwritten digits 0-9 and the model was trained on

the MNIST [114] data set which is arguably the most well-studied data set in the computer

vision literature.

As illustrated in Fig. 2-6, a sequence of conv/pooling blocks forms the lower part of the

LeNet family of models. However, the upper part of the model consists of a fully-connected

layer and the final classifier. In this way, the input to the fully-connected layer is the set of

all the features maps of the layer below:
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Figure 2-6: LeNet architecture [115], [3]

2.6.2 AlexNet

The neural network developed by Alex Krizhevsky and his colleagues known as AlexNet

[107] was used to win the 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

[172]. This was the first time a model performed so well on a historically difficult ImageNet

data set which contained over 15 million annotated images from a total of over 22,000 cat-

egories. The proposed network achieves the top 5 test error rate of 15.4%, while the next

best entry achieved an error of 26.2%. This improvement was a breakthrough that totally

amazed the computer vision society.

As it can be seen in Fig. 2-7, the network can be considered as the extended version of

the LeNet architecture that was made of 5 convolutional and conv/pooling blocks, dropout

layers, and 3 fully connected layers that perform classification task on 1000 possible cat-

egories. Beside the advantage of their new architecture that stacked hierarchical convolu-

tional features on top of each other, further strengths of the AlexNet came from their wisely

designed data augmentation procedure, application of the dropout layers for dealing with

overfitting problem and ReLU activation functions that are less prone to be saturated, and

their efficient CUDA [147] implementation to train the model on two separate GPUs.

2.6.3 ZFNet

The winner of the ILSVRC 2013 exploited an ensemble of architecture proposed by Matthew

Zeiler and Rob Fergus [209]. In general, the new platform was an improvement on AlexNet

by tweaking the architecture hyperparameters and achieved the error rate of 11.2%. To

gain a better performance, they expanded the size of the middle convolutional layers and
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Figure 2-7: AlexNet architecture [107], [28]

decreased stride and filter size of the first layer. The reason behind such a modification is

that a smaller filter size in the early convolutional layers preserves much more pixel infor-

mation than the big filter size of 11×11 that is used in AlexNet. More importantly, authors

introduced an interesting visualization technique named deconvolution operation, which is

the transposed version of the convolution operation that helps to examine different features

and their relation to the input space. To do so, a deconvolution layer will be attached to

each layer of the trained CNN to provide an extra backward path to the input values. As in

the normal forward-pass, activations will be computed at each level by feeding the input to

the network. Then, for the examination of a certain node’s feature map, the activation of

the intended node will be frozen, while the outputs of all the other nodes in the layer are

set to zero. During a specific backward-pass, the intended node provides the input for the

deconvnet that has the same parameters as the original CNN. This input then goes through

the series of deconvolution operations until the input space is reached. As the result, it is

possible to determine what type of visual structures excite each node. The output of such

a visualization for an early layer of the ZFNet is illustrated in Fig. 2-8. This visualization

approach makes it possible to explain the inner functionality of CNNs as well as earning

insights to design more robust network architectures.

2.6.4 VGGNet

The success of the VGGNet [184] proposed by the visual geometry group of the Oxford

University in ILSVRC 2014, showed that the depth of the network is a crucial criterion for
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Figure 2-8: Visualization of a low-level convolutional layer as proposed in [209]. The
figure is redrawn based on the figure 6 (c) of [209]

a better performance. In other words, a very deep model makes it possible to extract more

complex and representative features at a lower cost and generalizes well to other domains.

The proposed architecture is a homogeneous network including 16 or 19 layers that only

leverages kernels of size 3 × 3 and 2 × 2 for convolution and pooling, respectively. The

combination of two or three 3×3 convolutional layers has an effective receptive field of 5×5

and 7. This, in turn, simulates a larger filter that was used in previous architectures, while

keeping the benefits of smaller filters. Moreover, as the spatial size of the input volumes at

each layer decrease, the depth of the volumes increase from 64 channels up to 512 channels

in high-level convolutional layers that reinforce the idea of shrinking spatial dimensions,

but growing depth. One drawback of the VGGNet is that it is more expensive to evaluate

and uses a lot more memory and parameters than previous architectures. One should note

that the most of the network parameters belong to up-level fully connected layers. Further

investigations showed that these FC layers can be replaced with 1× 1 convolutional layers
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without any performance downgrade. This modification is able to significantly reduce the

number of the network parameters and its memory usage. Such a network was able to

achieve the error rate of 7.3%. The global view of the VGGNet is illustrated in Fig 2-9.

Figure 2-9: A repaint [28] of VGGNet [184] with 16 layers including five conv/pooling
blocks and three FC layers

2.6.5 GoogLeNet

Although VGGNet gained a phenomenal accuracy on different kinds of visual recognition

tasks, its deployment remains as a problem because of its huge computational requirements,

both in terms of memory and time. The main contribution of the GoogLeNet [190] is the

introduction of the Inception Module (Fig. 2-10) that dramatically reduced the number of

parameters in the network. This concept is based on the idea that most of the activations

(outputs) in previous deep architectures are either unnecessary or redundant because of cor-

relations between them. There are some techniques to prune out such connections which

would result in a sparse topology but kernels for sparse matrix multiplication are not opti-

mized in common GPU-related packages that make their implementation even slower than

their dense counterparts.

To resolve such a challenge, GoogLeNet utilizes inception modules to approximate a sparse

CNN with a normal dense construction. This architecture starts with a sequential chain of

convolution, pooling, and local response normalization operations, in a similar fashion to
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previous models, such as AlexNet. Basically, at each layer of a traditional CNN, we need to

make a choice of whether to have a pooling operation or a convolution operation. What an

inception module provides is to perform all of these operations in parallel. Therefore, each

inception module uses convolutions of different sizes 5× 5, 3× 3, and 1× 1 to capture de-

tails at varied scales. The model contains nine of these modules, sequentially stacked, with

two max-pooling layers along the way to reduce the spatial dimensions. But this strategy

would end up with an extremely large depth channel for the output volume. The solution

of the authors to address this issue is to embed 1 × 1 convolutional kernels known as the

bottlneck units within the inception module to reduce the dimension of the input data, be-

fore feeding into bigger convolutional kernels.

Due to the depth of the architecture, the authors added two auxiliary classifiers branching

from the main network structure. The purpose of these classifiers is to amplify the gradient

signal back through the network, attempting to improve the earlier representations of the

data. However, with the introduction of batch normalization, these classifiers have been

ignored in updated versions. In addition, at the top of the inception modules, there is an

average pooling mechanism instead of several FC layers to diminish the number of param-

eters. In this way, GoogLeNet has a factor of 12 times fewer parameters than AlexNet and

was able to achieve the error rate of 6.67% on the 2014 ImageNet classification challenge.

2.6.6 ResNet and Residual Learning

As mentioned before, network depth is of crucial importance in neural network architec-

tures. Unfortunately, deeper networks are more difficult to train. The issue arises from the

way in which neural networks are trained through backpropagation. When a network is

being trained, a gradient signal must be propagated backward through the network from

the top layer all the way down to the bottom-most layer in order to ensure that the network

updates itself appropriately. With a traditional network, this gradient becomes slightly di-

minished as it passes through each layer of the network. For a network with just a few

layers, this is not an issue. In the case of a network with more than a couple dozen layers,

however, the signal essentially disappears by the time it reaches the beginning of the net-
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Figure 2-10: Internal structure of an inception module applied in GoogLeNet [190]. The
figure is redrawn based on the figure 2 (a) of [190]

work again. So the problem is to design a network in which the gradient can more easily

reach all the layers of a network which might be dozens or even hundreds of layers deep.

The deep residual learning framework is proposed to facilitate the learning process and

make it feasible to design substantially deeper networks. The reasoning behind a residual

block (Fig. 2-11) is that, while it is feasible to use a few stacked nonlinear layers to fit the

desired underlying mapping 𝐻(𝑥), it is a good idea to let them approximate the counter-

part residual mapping 𝐹 (𝑥) = 𝐻(𝑥) − 𝑥. Consequently, it is possible to reformulate the

underlying map as: 𝐻(𝑥) = 𝐹 (𝑥) + 𝑥, which is easier to optimize.

Here, the term “+𝑥” can be implemented by a shortcut between the input and the output of

the block that is called skip connection or identity mapping. This connection allows the gra-

dient to pass backward directly. By stacking these layers, the gradient could theoretically

skip over all the intermediate layers and reach the bottom without being diminished. Con-

cerning the optimization process, if an identity mapping were optimal, it would be easier

to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.

Residual Network (ResNet) [81] is a really deep network with 152 layers that set new

records in classification, detection, and localization through its wisely designed architec-
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ture. Aside from the new record in terms of the number of layers, ResNet won ILSVRC

2015 with the amazing error rate of 3.6% which was for the first time beyond the human

accuracy.

At the first layer, ResNet employs a 7 × 7 convolution with the stride of 2 to downsample

the input by the factor of 2 similar to an ordinary pooling layer. Then the architecture is

continued by three residual blocks before another downsampling step. The downsampling

layer is also a convolution layer without the identity connection. This pattern is repeated

several times to form the body of the ResNet. In the case of the ImageNet classification,

the last layer is the average pooling which creates 1000 feature maps. The result would be

1000 dimensional vector which then fed directly into a Softmax classifier.

Figure 2-11: The structure of a residual block as applied in ResNet [81]. The figure is
redrawn based on the figure 2 of [81]

2.6.7 DenseNet

As deep learning community understood connecting a skip connection from the previous

layer improves the performance, DenseNet [88] architecture takes this insight to the ex-

treme and proposed to connect the output of each layer to all the subsequent layers. In

this way, there is always a direct route for the information backward through the network.

This architecture makes intuitive sense in both the forward and backward settings. In the
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forward-pass, a task may benefit from being able to get low-level feature maps in addition

to high-level feature maps. In classifying objects, for example, a lower layer of the network

may determine edges in an image, whereas a higher layer would determine larger-scale fea-

tures such as the presence of faces. There may be cases where being able to use information

about edges can help in determining the correct object in a complex scene. In the backward

case, having all the layers connected allows us to quickly send gradients to their respective

places in the network properly.

When implementing DenseNets, we cannot just connect everything though. Only layers

with the same height and width can be stacked. So we instead densely stack a set of convo-

lutional layers known as Dense Block, then apply a striding or pooling layer, and repeat this

structure to form the whole network with a few dense block and a downsampling mecha-

nism in between that is shown in Fig. 2-12. The network can perform well with dozens of

layers where a traditional neural network fails.

Figure 2-12: DenseNet [88] structure. The figure is redrawn based on the figure 2 of [88]

2.6.8 Fully Convolutional Networks (FCNs)

Fully convolutional networks (FCNs) [131] do not have any fully-connected layers, which

are typically used at the end of CNNs for classification. FC layers require a fixed-size data

representation provided by the previous layers to accomplish the intended task. Therefore,

a network containing even one FC layer is restricted to the predetermined input dimensions.

Instead, all the layers of an FCN are convolutional which let them accept any input size.

So, their only restriction for the input size is the memory constraint.

The fundamental purpose of the FCN design is to perform semantic segmentation. In se-

mantic segmentation or pixel classification, the output is in the same size as the input image,

where each pixel is associated to one of the pre-defined class labels. At the end of an FCN,
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there is often a softmax probability function that determines the most likely class of each

pixel.

As can be seen in Fig, 2-13, after each block of convolutional layers, the height and width

dimensions of the data get smaller and smaller, while the number of channels grows gradu-

ally. The main innovation in the FCN architecture is the application of the deconvolution or

backward convolution mechanism to upsample each intermediate prediction of the network

and make it prepared to be combined with the previous intermediate prediction. This com-

bination pushes the finer spatial information of the lower intermediate predictions towards

the end of the network so that the final network prediction exploits multi-scale spatial in-

formation to produce more accurate results and match the width and height of the original

input image. Since deconvolution layers are just performing reversed convolutions, the

more efficient upsampling process will be learned during backpropagation by parameter

adjustment within those layers.

Figure 2-13: A repaint [28] of a Fully Convolutional Network (FCN) architecture [131]
including a learnable upsampling mechanism

2.7 Representation Learning

Machine learning algorithms learn the solution of the problem from sample data. Hence,

data representation has a great influence on their efficiency and has become a field in itself
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in the machine learning community.

In general, a good representation is one in which the features within the representation

correspond to the underlying causes of the observed data in a way that separate features

or directions in feature space correspond to different causes. Under these circumstances,

representation is able to disentangle the causes from one another, as in the case of training

samples scarcity, an appropriate data representation is able to facilitate similarities identi-

fication among the data.

The other reason for the representation learning attractiveness is because of its ability to

reveal the general priors of the data such as smoothness, sparsity, coherence, and depen-

dencies [26]. For example, we are interested in representations whose entries are sparse

or independent from each other since such a representation is easy to model. It worth to

mention that although a representation that flawlessly separates the underlying causal fac-

tors of the observed data, may not possess the sparsity, in most of the AI tasks, these two

characteristics occur simultaneously.

Many efforts of the computer vision community are concentrated on the design of the pre-

processing pipelines and data transformations that lead to a proper data representation.

This process that is also known as manual feature engineering can be considered as the

construction of the local image descriptors [63] such as Scale-Invariant Feature Transform

(SIFT) [132], Speeded Up Robust Features (SURF) [22], Local Binary Pattern (LBP) [8]

and Histogram of Oriented Gradients (HOG) [52].

Image descriptors are widely used to detect the local image properties while maintaining

robustness to various kinds of transformations including scale changes, viewpoint changes,

image blur, in-plane rotation, noise, and illumination. In this context, visual descriptors are

normally used in three different modes. A sparse descriptor detects salient interest points

in a given image and then samples a local patch and describes its invariant features. SIFT

is the most commonly used sparse descriptor. The second approach is based on computing

on a dense grid of uniformly spaced cells. HOG and SIFT are widely used for this task.

Finally, texture descriptors are obtained by regular sampling of the input image or region.

In recent years, LBP is widely used as the dense texture descriptor, but can also be used as

a sparse local descriptor similar to SIFT or computed on a grid-like HOG.
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In spite of its difficulty, manual feature engineering played a key role in data preparation

by taking advantage of human ingenuity and prior knowledge. This procedure involves a

delicate blend of domain knowledge, intuition, and mathematical abilities. So, most of the

time it is highly expensive, time-consuming, and error-prone.

In the case of a feed-forward network, the main responsibility of the layers is to provide

a suitable representation of the data to the final layer which is normally a classifier. The

outcome of a successful learning process is the gradual formation of this representation

inside of the network’s structure. Consequently, in a complex classification task, where

classes are not linearly separable in the input space may become linearly separable in the

last hidden layer.

In some learning strategies such as supervised learning of the neural networks, learning

process does not involve any explicit condition on the intermediate features. In contrast,

some kinds of learning approaches are intentionally designed to form a specific data repre-

sentation. In all the cases, it is important to consider a trade-off between preserving as much

information about the input as possible and providing intended representation properties.

2.8 Feature Encoding

While feature extraction is the process of representing input data in a reduced form with

minimum possible redundancy to facilitate the solution of the pattern detection, classifica-

tion and recognition problems, Feature encoding is the compression process of the resulting

feature vectors in order to reduce the computational complexity and, more importantly, to

avoid overfitting risk. This compression mechanism is an important strategy to achieve

high performance in image processing operations.

In CNN architecture, raw image pixels are first sent through convolution layers that oper-

ate as different local feature extractors. So far, the output feature maps preserve a relative

spatial arrangement of the input information. The resulting globally ordered features are

then concatenated and fed into the final decision maker such as a classifier. At this point,

the representation still preserves a great deal of global spatial information. Though max-

pooling within each feature map helps to improve invariance to small-scale deformations,

66



invariance to larger-scale, more global deformations might be undermined by the preserved

spatial information and the final CNN representation is still fairly sensitive to global trans-

lation, rotation, and scaling. Even if one does not care about this lack of invariance for its

own sake, it directly translates into a loss of accuracy for classification tasks. Neverthe-

less, this framework has achieved great success in image classification, object recognition,

scene understanding and many other applications, but is typically not ideal for recognizing

dynamic patterns such as textures and materials. This is basically due to the need for a spa-

tially invariant representation describing the feature distributions instead of concatenation.

Therefore, an orderless feature encoding layer is desirable for such operations.

In the generic visual categorization, a Bag-of-Words (BoWs) [51] corresponds to a his-

togram of the number of occurrences of particular image patterns in a given image. This

method is motivated by an analogy to learning methods using the BoWs representation

for text categorization [49] and benefits from clustering to obtain quite high-dimensional

feature vectors for a classifier. Ideally, these feature vectors are designed to maximize clas-

sification accuracy while minimizing computational effort.

Intuitively, BoWs and CNNs lie towards opposite ends of the orderless to globally ordered

spectrum of visual representations. With the recent improvements of the deep learning

framework, hand-engineered features and filter banks are replaced by pre-trained CNNs,

and BoWs are replaced by the robust residual encoders such as Vector of Locally Aggre-

gated Descriptors (VLAD) [92]. VLAD is a representation that encodes by the residual

vectors with respect to a dictionary, and Fisher Vector [158] can be formulated as a proba-

bilistic version of VLAD. Both of them are powerful feature encoding methods for image

retrieval and classification.

2.9 Transfer Learning and Fine-tuning

The training process of a deep neural architecture may take too much time due to the huge

number of parameters. In addition, a supervised learning task requires a sufficient number

of training samples which is not available in every domain. So, it is common to train a

big architecture on a huge existing data set of the source domain and transmit the gained

67



knowledge to a target domain in which the generalization improvement is the main concern.

In the normal transfer learning, the input is the same but the targets are different. In this

situation, one possible solution is to remove the last domain-specific layers and then treat

the rest of the network as a fixed hierarchical feature extractor for the target data. The

second strategy is to not only cut off the classifier on top of the network but also fine-tune

the weights of the pre-trained network by further training. It is feasible to fine-tune all the

layers of the network or to keep some of the earlier layers fixed and proceed to learn the

higher-level section of the network. Sometimes, however, what is shared among the various

domains is not input but output semantic. In such a case, it is more reasonable to share the

parameters of the upper layers and perform a domain-specific preprocessing on the target

task.

As mentioned before, initialization of a big network is a challenging task that may influence

the subsequent training accuracy. Here, a pre-trained model can also be used for a proper

network initialization in a similar learning problem space.

2.10 Region Based CNNs

The main weakness of the visual classification is that it is designed to detect only one

class per image. In contrast, object detection aims to find all the existing samples of se-

mantic objects in the scene. One easy way to perform object detection is the application

of the regression techniques to determine the location of each instance with four numbers,

(ℎ,𝑤, 𝑥, 𝑦), representing height, width and the coordinates of the reference point (normally

upper-left corner) of its bounding box. Unfortunately, the unknown number of the existing

objects varies the output size of the regression solution and makes it difficult to use regres-

sion for the detection task.

The more plausible solution is to select random areas in the scene and feed them separately

into a classifier to check if each region contains one of the pre-defined object classes or not.

Before deep learning solutions, the most successful approaches utilized the popular sliding

window model [66], in which a computationally efficient classifier examines object pres-

ence in every determined image window. Sliding window classifiers scale linearly with the
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number of windows examined, and while single-scale detection requires classifying around

104 − 105 windows per image, the number of windows grows by an order of magnitude for

multi-scale detection.

The proposed solution to make a trade-off between computational expense and the recogni-

tion accuracy is the application of region proposal approaches. Intuitively, object instances

share common visual properties that distinguish them from the background. So, it makes

sense to design or train a model which produces a set of proposal regions that are likely to

contain objects. If high accuracy can be reached with a much lower number of windows

than used by sliding window mechanism, that will speed-up the recognition process and

makes it possible to use more sophisticated classifiers.

Two well-known group of techniques that lead to efficient generation of region proposals

are window scoring proposal methods [12] and grouping proposal approaches [17]. In the

fist step of the window scoring mechanism, a huge number of bounding boxes are gener-

ated. Then, some low-level object features will be used to calculate objectness score in

those boxes. In the next step, all the bounding boxes will be sorted based on their scores to

select the most likely locations of the object instances.

In contrast, grouping proposal methods decompose the input image into many fragments,

and then utilize low-level similarity features to merge these fragments. For instance, Selec-

tive Search (SS) [195] determines the original regions through graph-based image segmen-

tation [67], and combines them using hierarchical grouping algorithm. In the last step, the

selective search is used to estimate the possible position of the object. This approach has

been widely used in several object detectors, including R-CNN [70] and Fast R-CNN [69]

approaches.

2.10.1 R-CNN

Region-based Convolutional Neural Network (R-CNN) [70] is a highly successful and

widely used method that couples object proposals with CNNs. This architecture splits

recognition process into separated components, the region proposal stage and the classifi-

cation phase.
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As illustrated in Fig. 2-14, in the region proposal step, the selective search method is used

to generate around 2000 different regions that have the highest probability of containing an

object. In the next stage, each proposal is warped into a fixed-size frame that can be fed

into a dedicated CNN to extract a feature vector for the corresponding region. This vector

which is normally the output of the last FC layer in the CNN is then used as the input to

a set of linear SVMs that are trained for each class to produce final classification results.

Since the original bounding box proposals may need further refinement, the vector also

gets fed into a bounding box regressor to obtain the most accurate coordinates.

Figure 2-14: A repaint [28] of R-CNN mechanism [70] for object recognition

Unfortunately, R-CNN has a multi-stage training pipeline that is computationally expensive

and time-consuming. During the training process, we need to fine-tune the CNN on each of

the object proposals, fit the SVM classifiers to feature vectors and learn the bounding-box

regressors. Hence, training phase requires several days and hundreds of gigabytes, while

the CNN architecture used here (AlexNet) is not even as big as recent models.

Moreover, at the test-time, features should be extracted from each object proposal in each
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test image. This setting is slow because it performs a separate forward-pass for each object

proposal, without sharing computation.

2.10.2 Fast R-CNN

Fast R-CNN [69] proposed a new training algorithm that fixes the drawbacks of R-CNN

and improves the training speed and accuracy. In this architecture, instead of feeding each

region proposal into a separate CNN, one network receives the whole input image once and

generates one global feature map at its last convolutional layer. Afterwards, for each region

proposed by selective search, a region of interest (RoI) pooling layer extracts a fixed-length

feature vector from the global feature map. The RoI pooling layer employs max pooling to

convert the features in a region of interest into a small feature map of size 𝐻 ×𝑊 where

both 𝐻 and 𝑊 are tunable hyper-parameters.

In the last step, each feature vector is fed into a sequence of FC layers that finally branch

into two sibling output layers. The first branch is a softmax probability estimator on all ob-

ject classes and the background, while the second branch generates 4 real-valued numbers

for each of the object classes. Each set of 4 values encodes refined bounding-box positions

for each possible class.

As can be seen in Fig. 2-15, an important superiority of the Fast R-CNN pipeline over

R-CNN structure is that all the network parameters can be trained together using the log

loss function of the classification and 𝐿1 loss function of the regression.

2.10.3 Faster R-CNN

Both R-CNN and Fast R-CNN require an external region proposal method that is found to

be the bottleneck of the overall recognition process. In contrast, Faster R-CNN [163] pro-

posed a Region Proposal Network (RPN) that takes the output feature maps of the detection

networks and feed them into some extra convolutional layers to generates region proposals.

In this architecture, the input image goes through a CNN which leads to a set of feature

maps on the last convolutional layer. Then, through some extra convolutional layers, a slid-

ing window is run spatially on these feature maps. The size of sliding window is 𝑛×𝑛. For
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Figure 2-15: A repaint [28] of Fast R-CNN framework [69]

each sliding window, a set of 9 anchors will be generated which all have the same center

(𝑥, 𝑦) but different aspect ratios (AR1, AR2, AR3) and scales (S1, S2, S3) as shown in Fig.

2-16. The multi-scale anchors’ technique is the key component for sharing features without

the extra cost of addressing scales. The output of the RPN is a bunch of boxes that will be

examined by a classifier and regressor to eventually check the occurrence of the objects.

Since the RPN shares the most computation with the object detection network, the time of

generating region proposals in RPN is much smaller than selective search. These proposals

are then fed into the RoI pooling of Fast R-CNN mechanism for further processing. The

RPN network is initialized with an ImageNet pre-trained model and will be fine-tuned via a

joint training process that alternates between region proposal task and the object detection.

Since this architecture is one of the basic components of our hybrid solution for interactive
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Figure 2-16: A repaint [28] of the anchor generation on CNN feature maps in Faster R-
CNN approach [163]

region segmentation and captioning, we discuss its internal dynamics in more depth later

in context with our method.

2.11 Sequence Modeling

In a traditional neural network, we assume that all inputs and outputs are independent of

each other. But the vast majority of interactions in our daily lives can be found in the

form of sequential data. In other words, we often want to turn an input sequence into

an output sequence that lives in a different domain. For example, we might want to take

a sequence of sound pressures and turn it into a sequence of word identities as we do in

speech recognition. In some cases, there is no target sequence. Instead, the output sequence

is simply the input sequence with an advance of one time step to predict the next term in

the input signal. One should note that in temporal sequences, there is a natural order to do

such predictions while in static data such as images, it is not clear how can we predict pixel

intensities based on the rest of the image. This approach is somewhere between supervised

and unsupervised learning. In that sense, we used supervised learning methods to predict

the next element of the sequence, while we do not need labeled data to do so. In other
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words, the label is not in the data itself, but in the context of the data. So, for a proper

transformation, one should not only convert inputs into outputs but also retain relations and

dependencies. In the feed-forward architectures, the model is able to understand sequential

relations only when the sequence is smaller than or equal to the capacity of the input layer.

That is, feed-forward networks cannot memorize correlations beyond a time step. But, there

are some useful strategies to process sequences using memory-less methods and hidden

state models.

2.11.1 Autoregressive Models

Memory-less autoregressive models [10, 56] are proposed to predict next element of the

sequence (𝑦𝑡) as the weighted average of a fixed number of previous elements without

using neural network architecture. For example :

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + 𝜖𝑡 (2.13)

These previous elements can be organized in the shape of some individual values or a

vector. In this regression model, the response variables in the previous time steps have

become the predictor and the errors have our usual assumptions about errors in a simple

linear regression model. The order of an autoregressive model is the number of immediately

preceding elements in the sequence that are used to predict the element of the present time.

Feed-forward networks are able to generalize autoregressive models using one or more

layers of non-linear hidden units and perform more complicated predictions [99].

2.11.2 Hidden State Models

Memory-less models are not the only models that can be used to predict sequences. Another

approach for sequence prediction is to develop models that are able to generate sequences.

Normally, this kind of models exploits some hidden state that evolves according to its

internal dynamics to produce a proper sequence of elements. The hidden state is a place to

memorize the information for a long time, so there is no bound to keep track of long-term
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dependencies.

Since the internal dynamic of the system has some noises, it is almost impossible to infer

the hidden state of the system based on output observations. So the solution is to infer a

probability distribution over the space of all possible hidden state vectors. This leads to very

difficult computations. There are only two types of the hidden state models for which these

computations are tractable, Linear Dynamical Systems [98] and Hidden Markov Models

[161]. In those models, we assume that the data is generated by the model. So, we infer

what the hidden state of the model must be, in order to generate that data.

Linear Dynamical Systems

A Linear Dynamical System (LDS) [98] is a generative model that has a real-valued state

vector with internal linear dynamic (a.k.a. Evaluation function) including Gaussian noise

and generates its outcome based on that while the hidden state evolves probabilistically.

Since the linear transformation of a Gaussian distribution leads to another Gaussian dis-

tribution and linear dynamic systems include only Gaussian noises, their distribution over

the hidden state is a full covariance Gaussian that is hard to compute. Fortunately, there

is an efficient recursive technique for the closed-form solution of this Gaussian covariance

called Kalman filtering [207].

Hidden Markov Models

A Hidden Markov Model (HMM) [161] has several states and the system is always in ex-

actly one of those states that form a one-of-N choice. The transition between possible states

is controlled by a transition matrix that includes a bunch of probabilities. Consequently, the

output of the model is completely stochastic meaning that the current state cannot exactly

determine what output it produces. So, hidden states are covered by the probabilistic nature

of the system. Fortunately, it is an easy task to represent the probability distribution across

𝑁 states with 𝑁 numbers.

For the prediction of the system output, there is an easy method based on dynamic pro-

gramming called forward algorithm that is able to use system observations to compute the

probability distribution across the hidden states. The main limitation of the HMMs is the
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limited number of their hidden states. At each time step, the model should select one of the

hidden states. So, with 𝑁 hidden states, the maximum amount of the system memory is

𝑙𝑜𝑔(𝑁) bits that confine its power to maintain enough information that is needed to detect

long-term dependencies.

2.11.3 Recurrent Neural Networks

The feed-forward title points to this convention that there is no cyclic data flow through

the network. Consequently, it is not possible in this kind of the networks to feedback the

model output into itself. Cyclic paths are essential for the task of sequence analysis that

is provided in Recurrent neural networks (RNNs) to help them memorize what has been

calculated so far and recognize long-term dependencies.

RNNs are called recurrent because they perform the same task for every element of a se-

quence, with the output being depended on the previous computations. As depicted in Fig.

2-17, a useful way to visualize an RNN is to consider the updated graph formed by un-

folding the network along the input sequence. By unrolling we simply mean that we write

out the network for the complete sequence. Here, 𝑥𝑡 is the input, 𝑦𝑡 is the output, 𝑠𝑡 is

the hidden state, and 𝑤𝑡 is the set of network parameters at time step 𝑡. Because the pa-

rameters are shared by all the time steps, the gradient at each output depends not only on

the calculations of the current time step but also the previous time steps. So, in order to

calculate the gradient for every time step, it is necessary to backpropagate through all the

previous time steps and sum up the gradients. This version of backpropagation is known as

Backpropagation Through Time (BPTT).

Bidirectional RNNs [178] come from this idea that the output at time 𝑡 may not only depend

on the previous elements in the sequence but also future elements. For instance, to predict

a missing word in a sequence we may need to look at both the left and the right context.

Comparing to previously mentioned hidden states models, RNNs have a much more ef-

ficient way of remembering information due to the combination of two properties. First,

they are easily able to memorize several topics at once by using distributed hidden states

in which lots of units can operate concurrently, whereas, in HMMs, we had just one active
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Figure 2-17: Unrolling of RNN [28]

unit. The second superiority of the RNNs is the nonlinear functionality that helps their hid-

den state to have much more complicated dynamic allows them to simulate all the possible

situations.

It is worthwhile noting that in previous stochastic generative models, both the dynamic of

the hidden state and the production of system observations involve intrinsic noise. In ad-

dition, despite their stochastic action, their posterior probability distribution over hidden

states is a deterministic function of the data that the system has seen so far. In other words,

the inference algorithm of these systems ends up with a probability distribution which is a

bunch of numbers that forms a deterministic function of the data. In RNNs, we also get a

bunch of numbers that are the deterministic function of the data and we can think of these

numbers as the hidden state of the RNN.

There are some specific behaviors that we can expect from RNNs. For example, RNNs are

able to oscillate [193]. That means, for a well-defined set of parameters, they can adapt

their internal parameters to learn and then replicate autonomously certain external periodic

signals. So, RNNs can be very useful tools for periodic tasks such as motor control in

robotics.

Dynamic behavior of continuous attractors is another interesting property of RNNs. Con-

tinuous attractors form a set of connected equilibrium points of a network. Continuous

stimuli, such as orientation, moving direction, and the spatial location of objects could be

encoded as continuous attractors in RNNs [211]. Moreover, RNNs have the potential of

behaving chaotically that can be exploited to generate randomness in adversarial environ-
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ments. More importantly, RNNs can learn to execute a great number of small programs by

exploiting different parts of their hidden state. Each of these mini-programs can be used to

capture a small piece of knowledge by parallel implementation and interaction.

The most common application of the sequence analysis is the field of Natural Language

Processing (NLP) in which every sentence can be modeled as a sequence of words.

2.11.4 LSTM

The dynamic state of a neural network is a short-term memory and we want to make it

lasts for a long time such as hundreds of time steps. Long-Short Term Memory (LSTM)

mechanism [84] contains special modules that are designed to allow information to be

gated in and out when needed while in the intermediate intervals the gate is closed so that

information that arrives does not interfere with the remembered state.

Each LSTM memory unit (Fig 2-18) is a gated environment that holds information outside

the normal flow of the recurrent network. These memory units have many variations, but

we will stick to a simple one that consists of three gates: input (𝑖𝑡), forget (𝑓𝑡), and output

(𝑜𝑡). It also includes an internal cell state (𝑐𝑡) which plays a similar role for the memory

cell that ℎ𝑡 plays for the network. Those gates act on the signals they receive and block

or pass on information based on its strength and import, which they filter with their own

sets of weights. Those weights, like the weights that modulate input and hidden states, are

adjusted via the recurrent networks learning the process. That is, memory units learn when

to allow data to enter, leave or be deleted through the iterative process of making guesses,

backpropagating error, and adjusting weights via gradient descent.

Information gets into the cell whenever the input gate is on. The rest of the recurrent

network including network parameters (𝑤𝑡), current input (𝑥𝑡) and the network previous

hidden state (ℎ𝑡−1) determine the state of the input gate. In other words, when the network

wants to store a piece of information, it turns on the input gate. The information stays in the

memory cell as long as the forget gate is off. Also here, the rest of the system determines

the state of the forget gate. The information can be retrieved from the memory cell when

its output gate is on which again is a logistic unit controlled by the rest of the recurrent
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Figure 2-18: A repaint [28] of LSTM gating mechanism [84]

network. Actually, the memory cell stores an analog value and keeps writing that value to

itself at each time step while the forget gate is off in the form of a coefficient with a value

near to one. When the system decides to clean the stored information, all it needs is to

change the value of that coefficient to zero. The internal dynamics of a memory cell can be

formulated by the following set of equations:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (2.14)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (2.15)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓 ) (2.16)

𝐶_𝑖𝑛𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐_𝑖𝑛) (2.17)

𝑐𝑡 = 𝑓𝑡 · 𝑐𝑡−1 + 𝑖𝑡 · 𝐶_𝑖𝑛𝑡 (2.18)

ℎ𝑡 = 𝑜𝑡 · 𝑡𝑎𝑛ℎ(𝑐𝑡) (2.19)

The multiplicative structure of the LSTM units especially in terms of the nature of the forget

gate, make them convenient to backpropagate through and help the information to travel

back through hundreds of time steps. As the result, the system will be able to learn the
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proper use of the LSTM units over many time step to memorize long-term dependencies.

2.12 Deep Learning Frameworks

The art and science of training neural networks from large data sets in order to make pre-

dictions or classifications have experienced a major transition over the past several years.

One interesting point related to deep learning frameworks is that the first generation was

mostly built in academia for research purposes, while the next generation is originated from

the IT industry and have more powerful properties. Some current widely used deep learn-

ing frameworks will be examined here and compared, across various features, such as the

native language of the framework, multi-GPU support, and aspects of usability.

2.12.1 Caffe

Built with expression, speed and modularity in mind, Caffe [94] is one of the first deep

learning libraries developed mainly by Berkeley Vision and Learning Center (BVLC). It is a

C++ library which also has a pretty useful Python interface and finds its primary application

in modeling CNNs and R-CNNs. Unfortunately, this framework is not intended for other

deep learning applications such as text, sound or time series data. Nevertheless, the major

benefit of this library is that the user can benefit from a large repository of pre-trained

neural network models suited for a variety of image classification tasks and available for

immediate use known as Caffe Model Zoo. Moreover, models and optimization are defined

by configuration without hard-coding.

Following the footsteps of Caffe, Facebook also recently open-sourced Caffe2 [1], a new

light-weight, modular deep learning framework which offers greater flexibility for building

high-performance deep learning models.

2.12.2 Theano

As a primary deep learning library, Theano [11] is a low-level Python-based framework

that is particularly good when it comes to numerical computation. Unlike all other deep
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learning frameworks, Theano computes the gradient when determining the backpropaga-

tion error by deriving an analytical expression. This eliminates the accumulation of error

during successive derivative calculations using the chain rule, which other frameworks ac-

crue due to their use of numerical methods. Although the framework supports the use of

multiple GPUs, configuring Theano to use more than one GPU requires a cumbersome

workload. There are several open-source deep libraries that have been built on top of

Theano, including Keras [42], and Lasagne [174]. These libraries attempt to provide an

easier to use API on top of Theano’s non-intuitive interface. Recently, it is announced that

development on Theano is ceased.

2.12.3 Tensor Flow

While new to the open source landscape, Google’s TensorFlow [6] deep learning frame-

work has been in development for years as proprietary software. It was developed orig-

inally by the Google Brain Team for conducting research in machine learning and deep

neural networks. Similar to the most deep-learning frameworks, TensorFlow is written

with a Python API over a C/C++ engine that makes it run faster. This framework offers

a good amount of documentation for installation, as well as learning materials which are

aimed at helping beginners understand some of the theoretical aspects of neural networks,

and getting TensorFlow set up and running relatively simple.

Unlike any other framework, TensorFlow has the ability to do partial sub-graph computa-

tion, which involves taking a sub-sample of the total neural network and then training it,

apart from the rest of the network. This is also called Model Parallelization and allows

for distributed training on a cluster. It is worth noting that Keras is also able to support

TensorFlow.

2.12.4 Torch

Torch [46] is originally developed at NYU, and is based upon the scripting language Lua,

which was designed to be portable, fast, extensible, and easy to use in development. Lua

was also designed to have an easy-to-use syntax, which is reflected by Torch’s syntactic
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simplicity. This framework features a large number of community-contributed packages,

giving it a versatile range of support and functionality. As an advantage, Torch is able to

import trained neural network models from Caffe’s Model Zoo. This package also provides

better debugging tools.

Torch is better for debugging than Theano and TensorFlow. This is because Torch is built

for automatic differentiation, while TensorFlow and Theano use symbolic computation.

The latter means that when you code an operation symbolically, it is not actually computed

when that line of code is interpreted. It first needs to be compiled, optimized, and translated

to C/CUDA as a computational flow graph and then it can be executed. This is what makes

debugging painful as an error in the graph is harder to associate to a line in the code. The

compilation process not only adds a layer of complexity to the code but also requires time,

which is itself a debugging bottleneck. Both Theano and TensorFlow make huge efforts to

keep this compile time as trivial as possible, while Torch has no compile time and is not a

compiler.

Recently, the Python interface of Torch, called PyTorch [157], has found popularity and is

gaining rapid adoption. PyTorch is a python package that provides two high-level features:

Tensor computation and Deep Neural Networks built on a tape-based autograd system. For

tensor computation, PyTorch provides a tensor structure that can live either on the CPU

or the GPU, and accelerate compute by a huge amount. This data structure provides a

wide variety of routines to accelerate and fit scientific computation needs such as slicing,

indexing, math operations, linear algebra, and reductions. PyTorch is not a Python binding

into a monolithic C++ framework. It is built to be deeply integrated into Python That means

the PyTorch user is able to write new neural network layers in Python itself using python

packages such as numpy, scipy, scikit-learn. The memory usage in PyTorch is much more

efficient compared to other frameworks. It utilizes custom memory allocators for the GPU

to make sure that deep learning models are maximally memory efficient. This enables the

user to train bigger deep learning models than before.
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2.12.5 DL4J

Deep Learning for Java (DL4J) [191] is a popular deep learning framework developed in

the widely used programming language, Java, and supports other JVM languages as well.

This framework is widely used as a commercial, industry-focused distributed deep learning

platform. DL4J can bring together the power of the whole Java ecosystem to perform

efficient deep learning, as it can be implemented on top of the popular Big Data tools

such as Apache Hadoop and Apache Spark. It also has a dedicated open-source numerical

computing library called N-Dimensional Arrays for Java (ND4J) that is claimed to be more

efficient than the prominent Python-based Numpy library. While both Torch and DL4J

employ parallelism, DL4J’s parallelism mechanism is able to automate the setting up of

worker nodes and connections, allowing users to bypass libraries while creating a massively

parallel network on Spark, or Hadoop. In the DL4J environment, shallow neural nets such

as restricted Boltzmann machines, convolutional nets, autoencoders, and RNNs can be

added to one another to create deep nets of varying types. It also has extensive visualization

tools and a computation graph. DL4J can import models from Tensorflow and other Python

frameworks if they have been created with Keras.
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Chapter 3

Deep Interactive Region Segmentation

and Captioning

In this chapter, we provide a deep hybrid interactive architecture that is able to not only

generate a wide range of linguistic descriptions for different regions of the input image, but

also detect user priority known as User Intended Region (UIR), segment it with the high

accuracy and provide the most accurate caption for its visual content. This work is appeared

in proceeding of the thirteenth international conference on Signal Image Technology and

Internet-based Systems (SITIS 2017) [30] in Jaipur, India. The final publication is also

indexed in IEEE Xplore.

3.1 Introduction

The human visual system including eyes, optic nerves and brain is able to easily detect,

separate and describe each object of a scene. Furthermore, the human observer is easily

able to provide detailed explanation about different parts of an image which is a hard task

in artificial intelligence. Inspired by these natural abilities, interactive region segmentation

and captioning is the task of parallel detection, localization and description of the user vi-

sual interests. This procedure can be exploited in several applications such as automatic

image annotation and retrieval [187] and providing a better understanding of the virtual

world for visually impaired people [206, 200].
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In this chapter, we propose our novel hybrid deep architecture for integrated detection, seg-

mentation and captioning of the user preferences where the amount of the user interactions

is limited to one or a few clicks. As depicted in Fig. 3-1, our hybrid approach of interactive

region segmentation and captioning introduces a new class of models where the user visual

concentration can be specified and described, simultaneously.

With the increasing popularity of deep learning architectures [107, 190, 81, 70, 69, 163,

131, 88, 93, 203], both automatic detection and captioning objectives have attracted a new

wave of considerations [95, 41, 200, 202]. Convolutional Neural Networks (CNNs) [115]

have presented the ability to construct numerous visual features in different levels of ab-

straction through supervised learning. Such a property introduces the CNN-based models

as the fast and scalable automatic feature generators that are able to reach near-human per-

formance in various computer vision tasks.

In contrast to CNNs, Fully Convolutional Networks (FCNs) [131, 93], are able to maintain

spatial information which is crucial to perform a pixel-level prediction such as semantic

segmentation [127, 120], object localization [179], depth estimation [59] and interactive

segmentation [203]. Furthermore, Recurrent Neural Networks (RNNs) [84] are excellent

tools to memorize long term dependencies which is essential for exploring the continuous

space of natural languages.

Recently, CNN-RNN models [100, 95] have been proposed to wrap detection and caption-

ing tasks in an end-to-end learnable platform. However, up to now the results appear to be

mostly an unorganized and overcrowded set of captions and bounding boxes that are not

easily understandable, especially in the presence of several overlapping region proposals

see e.g. Fig. 3-1 (b). In addition, they do not involve user intentions. In other words, the

user is not able to involve personal preferences to exclude areas that are out of interest. It

includes both segmentation and captioning operations.

3.2 Deep Region Detection

The first step in our hybrid solution for interactive region segmentation and captioning is

the full understanding of the visual contents of the scene. To do so, we need to detect and
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(a) (b)

(c) (d)

Figure 3-1: (a) Input image [3] including positive and negative user clicks, (b) output of the dense
captioning process [95], (c) probability map of our deep interactive segmentation framework con-
sidering user priorities, and (d) the final output of our hybrid model including highlighted user
intended region (UIR) and its proper description.
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locate all the important objects and regions in the input image.

Object instances share common visual properties that distinguish them from the back-

ground. So, it makes sense to design and train a model which produces a set of region

proposals that are likely to contain objects. A related point to consider is that the concen-

tration on the most salient objects in the input image reduces the computational complexity

of the subsequent task of recognition and makes it possible to use more sophisticated and

powerful machine learning algorithms.

3.2.1 Generic Input Representation

In almost all the machine learning algorithms, the representation method of the data has a

huge influence on the output quality. Consequently, many efforts of the machine learning

community are concentrated on various data transformation techniques that provide a data

representation for effective application of machine learning approaches.

As mentioned before, in deep learning framework, the fundamental structure to generate

such an input data representation is the Convolutional Neural Network. In our hybrid archi-

tecture, a VGGNet [184] consists of 13 convolutional layers encodes the visual contents of

the image in the form of many convolutional features that are extracted in different abstrac-

tion levels. In such a situation, the quality of the extracted convolutional features is heavily

depends on the richness of the training data. So, normally such a network is initialized by

the weights of a similar network that is trained on a big dataset such as ImageNet [172] for

the task of object classification. To clarify which kind of knowledge will be transformed by

the application of such a pretrained CNN, one should note that the data that is used to train

models for the ImageNet classification task is consist of 1.2 million photographs, collected

from flickr and other search engines, which is hand labeled with the presence or absence of

1000 object categories. In this dataset, each typical category, such as "cat" or "strawberry",

contains several hundred images.

Our logic behind the preference of the VGGNet architecture over more recent and power-

ful architectures such as GoogLeNet and ResNet is its suitability to represent texture pat-

terns which is of the crucial importance in our segmentation and captioning task in which
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we need to not only detect the objects but also important textured regions such as ”sky”,

”field”, ”floor” and ”wall”. This unique property of the VGGNet architecture lies in three

aspects. First, the convolutional filters of the VGGnet are so small that the edge patterns

can still be observed in the fourth convolutional layer, while the object level patterns appear

as late as the first component of the fifth convolutional layer. So, features that are captured

by the first four layers are similar with the properties of textures which are larger than pix-

els and smaller than objects. Here we may argue that the features of the fifth convolutional

layer are no longer suitable for representing texture, because layers in this stage contain

object level patterns, which are too complex to describe textures. As our second reason,

in contrast with the modern architectures, the number of the kernels in each layer of the

VGGNet architecture is so high that textures can be represented effectively. Finally, the vi-

sualization of the features of the VGGNet is more interpretable than the other architectures

that contain more sophisticated connection topology. This attribute is very useful when

tried to tune the hyperparameters of our model during the training phase of the model and

check its influence on the model discrimination strength.

It is worthwhile noting that the fully convolutional layers at the end of the pretrained VG-

GNet are responsible to calculate the final probabilities of the ImageNet classification labels

and normally contain domain-specific data. Hence, they will be dropped during aforemen-

tioned knowledge transformation process.

Here, the pre-trianed CNN (VGGNet) plays the role of a fixed feature generator that con-

tains visual features of all the samples in the training dataset. It is clear that the backprop-

agation process can be used to adjust the network parameters to the contents of the newly

observed data that is known as finetuning process. The output of such a feature extractor

form the input to the next stage, automatic object detection and localization.

3.2.2 Deep Region Proposals

Since linguistic descriptions of the scene make numerous references to objects and regions

of the input image, we need to transform generic input representation into sets of vectors

that describe objects and regions. To this aim, the recognition module is designed to iden-
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tify regions of interest in the scene and extract a fixed-size representation for each. Due to

the layer arrangement of the previous convolutional feature extractor, if the input image has

the size of 3×𝑊 ×𝐻 , the generic input representation has the size of 512× ⌊𝑊
16
⌋ × ⌊𝐻

16
⌋.

Based on the proposed architecture for the Region Proposal Network (RPN) in [163], to

generate region proposals, the RPN takes a 3 × 3 spatial window of the generic input rep-

resentation which has the effective receptive field of 228 pixels on the input image and

uses an extra 3 × 3 convolutional layer to convert the contents of the sliding window into

a lower-dimensional feature vector of size 512. Then, this compressed representation will

be fed into two sibling 1 × 1 convolutional layers where the first one plays the role of a

box-regression (reg) that predicts multiple region proposals among the visual contents of

the current sliding window. The number of proposed regions in each location is a hyperpa-

rameter of the RPN which is normally indicated as 𝑘.

The second 1 × 1 convolutional layer is a box-classifier (cls) that estimates the probabil-

ity of being object or not object for each proposed region which can be implemented as a

two-class softmax classifier. Since the RPN traverses the whole scope of the generic input

representation using a sliding-window operation, the parameters of reg and cls layers are

shared across all the locations of the generic input representation that in turn represents the

whole area of the input image.

The box-regressor determines the proposed location of each region by 4 parameters denot-

ing the dimensions of the bounding box and the coordinates of its center. So, it produces

4𝑘 outputs representing the proposed 𝑘 boxes in each location, while the output size of the

cls layer is 2𝑘 representing the probability of containing and not containing an object for

each region, respectively.

To predict region proposals in different scales and aspect ratios, there were two traditional

solutions. The first approach proposes the use of the input image in different scales during

the training process which is known as the pyramids of images technique [80], while the

second method is the application of multiple filters with different sizes on each location

of the input image known as pyramids of filters. However, in RPN mechanism, the scale-

invariance property of the region proposals is addressed by regressing normalized (having

zero mean and unit variance) offsets from a set of translation-invariant anchors (see sec-
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tion 2.10.3). Hereby, the model learns to predict 4 parameters of (𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ) to regress

from the set of anchor parameters (𝑥𝑎, 𝑦𝑎, 𝑤𝑎, ℎ𝑎) to the set of output region parameters

(𝑥, 𝑦, 𝑤, ℎ) via the following log-space scaling transforms:

𝑥 = 𝑥𝑎 + 𝑡𝑥𝑤𝑎 (3.1)

𝑦 = 𝑦𝑎 + 𝑡𝑦ℎ𝑎 (3.2)

𝑤 = 𝑤𝑎𝑒
𝑡𝑤 (3.3)

ℎ = ℎ𝑎𝑒
ℎ𝑤 (3.4)

During the regression process, each point of the generic input representation will be pro-

jected back into the original input image plane where each of 𝑘 anchor boxes is associated

with its own size and aspect ratio centered at the projected location. By default, 3 scales

and 3 aspect ratios form 9 different anchors at each sliding position. This procedure, avoids

the necessity of applying input images or filters in multiple scales and makes it possible to

train and test the model in single-scale setting that speeds up the whole process of learning.

The whole structure of the RPN is trained using the mini-batch gradient descent over a

multi-task loss function:

𝐿({𝑝𝑖}, {𝑡𝑖}) =
∑︁
𝑖

𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝
*
𝑖 ) + 𝜆

∑︁
𝑖

𝑝*𝑖𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡
*
𝑖 ) (3.5)

where, 𝑖 is the anchor index in the mini-batch, 𝑝𝑖 is the predicted objectness probability of

the anchor 𝑖, 𝑡𝑖 = (𝑥, 𝑦, 𝑤, ℎ) is the set of regression parameters for regressing the anchor

𝑖 to the predicted bounding box of the model, 𝑝*𝑖 is the anchor sign which is 1 for positive

anchors that have an IoU higher than 0.7 with a ground truth box and 0 for negative anchors

if their IoU ratio is lower than 0.3 for all ground-truth boxes. 𝑡*𝑖 is also the set of regression

parameters for regressing the anchor 𝑖 to the ground truth bounding box and 𝜆 is a balancing

parameters between reg and cls loss functions. The classification loss 𝐿𝑐𝑙𝑠 is the softmax

log-loss over two classes of the object and its background, while the regression loss 𝐿𝑟𝑒𝑔 is

the 𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1 distance function between predicted bounding box 𝑡𝑖 and its corresponding
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ground-truth 𝑡*𝑖 where the 𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1 function is defined as:

𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1(𝑑) =

⎧⎨⎩ 0.5𝑑2 𝑖𝑓 |𝑑| < 1

|𝑑| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.6)

where 𝑑 is the 𝐿1 distance between the predicted bounding box 𝑡 and its corresponding

ground-truth 𝑡*.

If an object is not detected during among the region proposals, there is no way to correctly

classify it in the next phase. So, it is extremely important for the region proposals to have

a high recall rate that is the fraction of relevant instances that have been retrieved over the

total amount of relevant instances. Such a sensitivity can be achieved by generating very

large numbers of proposals. Therefore, applying the proposed RPN mechanism over an

input image with ordinary dimensions (e.g. 512 × 512) leads to a great number of region

proposals with a high amount of redundancy. One possible solution for reduction of the

processing complexity in the subsequent operations is to use a subsampling approach. For

the training phase, the sampled mini-batch has the size of 256 where half of the samples are

positive regions and the rest are negative ones. In the test time, the greedy Non-Maximal

Suppression (NMS) [201] can be applied for subsampling.

The final step of the recognition process is done through an independent recognition net-

work that consists of two fully connected (FC) layers of the VGGNet architecture with the

size of 4096. The internal functionality of this network will elaborated later in this sec-

tion. Since FC layers require a fixed-size representation as their input, we need to convert

region proposals of varying sizes and aspect ratios into a fixed-size representation. One

possible conversion mechanism is the deployment of the Region of Interest (RoI) pooling

mechanism [69] over the corresponding area for each region proposal on the generic input

representation. If the corresponding area has the dimension of 𝑥× 𝑦, the RoI pooling layer

uses the max pooling operation to convert it into a small feature map of fixed size 𝑋 × 𝑌 .

This can be done by dividing the corresponding area into 𝑋 × 𝑌 grid of sub-windows of

approximate size of 𝑥/𝑋 × 𝑦/𝑌 . The RoI pooling is a function of primitive convolutional

features and region proposal parameters which is differentiable with respect to convolu-

tional features but non-differentiable with respect to the region proposals. This is because
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RoI operation uses region coordinates to crop the feature maps, but the crop operation is

not differentiable with respect to the region coordinates. So, the gradients can not be back-

propagated to the proposal coordinates.

A reliable alternative for RoI pooling mechanism is the fully-differentiable bilinear inter-

polation function [91, 95]. The input parameters of the bilinear interpolation are the generic

input feature map 𝑈 and a region proposal. During the interpolation process, the generic

input feature map 𝑈 will be interpolated to generate an output feature map 𝑉 . After projec-

tion of the region proposal onto 𝑈 , a sampling grid 𝐺 of size 𝐺𝑥 ×𝐺𝑦 will be computed to

associate each element of 𝑉 with real-valued coordinates into 𝑈 . This sampling grid forms

a linear function of the proposal coordinates. Hence, the gradients can be backpropagated

into region proposals as well.

So far, the whole structure of the RPN mechanism and the subsequent bilinear interpolation

produces three different set of outputs. The first set consists of the region proposals, while

the second one includes objectness scores of all the proposed regions. The third output is

a huge tensor of size 𝐵 × 𝐶 ×𝐺𝑥 ×𝐺𝑦 where 𝐵 is the number of sampled proposals and

𝐶 = 512 is the unchanged number of channels in the generic input representation. Inside

of the tensor, each matrix of size 𝐶×𝐺𝑥×𝐺𝑦 involves a compressed representation of the

visual properties of one specific region that is called a region feature.

At the final stage of the recognition process, the aforementioned recognition network re-

ceives the flattened versions of the region feature matrices of size 𝐶×𝐺𝑥×𝐺𝑦 and generates

their 4096-D counterparts named as region codes. The resulting region codes are also reg-

ularized by dropout [189] technique. The region codes corresponding to positive region

proposals are packed in a shape of a matrix to provide visual information for the following

RNN language model. As a side note, by embedding similar regression and classification

modules at the end of the recognition network just like the arrangement we had at the end

of the internal RPN, we obtain the second opportunity to refine region coordinates and

objectness scores.
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3.3 Automatic Image Description

As the two main branches of the artificial intelligence, Computer Vision (CV) and Natural

Language Processing (NLP) have exploited a variety of their traditional and also machine

learning techniques to develop new processing approaches. Based on the recently rising

interest in the combinatorial data analysis that requires simultaneous process of both vi-

sual and linguistic data, the newly-born lingo-visual community take the advantages of the

both scopes to tag web-based images, generate automatic video subtitles, instantly translate

multi-language conversations and much more in the multimodal space of the social media.

In this context, the automatic image description has emerged as the verbalization process

of the most important visual and conceptual contents shown in a scene including but not

limited to the objects and their characteristics, mood of the scene and the rational interac-

tions between scene components.

Such a complex operation entails the comprehensive understanding of the scene as well as

some complicated natural language processing steps that should be able to receive a visual

representation and turn it into a valid and grammatically correct description. This process

can be even more challenging when the description involves user-specific and specialized

interpretations. It is worthwhile noting that, such a complete set of requirements turns the

automatic image description also into an outstanding test bed for the assessment of the

computer vision techniques.

During early attempts, the image description process was being investigated as the image

annotation [185] which can be defined as the automatic assignment of some keywords to

the digital image. By replacing keywords with some sentences that are able to describe not

only the image objects but also their semantic relations and the scene background reality,

automatic image description received more attention [95, 202].

3.3.1 Generative Captioning Models

Three different groups of models have been proposed to tackle image captioning problem.

Models of the first group that are known as generative models exploit manually or auto-

matically extracted visual features to provide a representation that is suitable to classify
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the scene type, detect scene objects and their properties and discover presented relations

and actions. Then the extracted visual information is turned into words and phrases that

are used in a natural language generation (NLG) process to produce final descriptions. For

example, in the pioneering work of Elliott and Keller [60], an explicit mapping mecha-

nism called Visual Dependency Representation (VDR) is used to generate a dependency

graph that symbolizes the spatial relations of the scene. Extracted relations are then will be

matched with the syntactic dependency tree [139] of descriptions. VDR mechanisms have

shown their efficiency not only in description production but also in image retrieval [61].

An important distinction parameter among this group is the type of the language model that

they use to generate linguistic explanations. Within generative models, there are methods

that employ n-gram language models [166] to generate a comprehensive description, but

first they need to detect and form the attributes and dependencies between different com-

ponents in triple structures [109, 118]. There are also some other approaches that prefer to

use maximum entropy language model [64] due to its flexible word detectors.

The most recent architecture that is proposed to be used as a language model is the re-

current neural network. The ordinary work-flow in the RNN-based language models is to

generate the caption one word a time where each word is conditioned on the context of the

previously generated words and a set of image features [141, 100]. Due to the sequential

word generation strategy, the first descriptive word has a huge impact on the quality of the

descriptive caption. Therefore, it will we produced as the more likely caption for the whole

input image which is the word (or the phrase) that indicates the name of the object which

has obtained the highest objectness score during the preceding object recognition process.

In this setting, the RNN is not only a language model but also a hybrid model that relies

on both visual and linguistic attributes and generates linguistic descriptions of the image

content through a multimodal embedding of the visual stimuli and the word representation

in a joint vector space [140].

As a traditional approach for caption generation, a set of techniques are invented that use

pre-defined sentence templates in which open slots in templates can be filled with the words

that are explaining object properties and their rational relations. Such an information can

be obtained via a hidden Markov model [161] that operates on a gigaword external corpus
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[145] or a VDR [60].

There are also other schemes that employ sophisticated linguistic approaches to generate

scene descriptions. In this category, the model proposed by Mitchell et al. [144] generates

a huge amount of well-formed sub-sentences and rearrange them using a tree-substitution

technique. At the same time, Kuznetsova et al. [110] proposed a training approach to induct

tree-fragments from existing descriptions. Later, Ortiz et al. [152] proposed an automatic

translation mechanism over VDR-sentence pairs along with an integer linear program to

generate image descriptions.

The main drawback of generative models is their limitation on the variety of the output

due to the complexity of the natural language generation. Moreover, their visual detection

strength is an upper-bound to their description generation accuracy. In other words, if they

fail to recognize an important visual component, generation of an informative description

is not guaranteed.

3.3.2 Retrieval-based Captioning Approaches

Unfortunately, construction of the image descriptions within a natural language generation

framework, causes some linguistic dilemmas that distort the focus from the fundamental

image understanding problem and complicates the evaluation process of previously unseen

descriptions [85]. As an alternative solution for the automatic image captioning, retrieval-

based approaches formulated the captioning process as a retrieval problem in which the

input image will be associated with the descriptions of a ranking set of previously described

and visually similar images as candidate descriptions. These potentially useful descriptions

can be combined in several ways to shape a proper description for the inquired input. Both

the retrieval and ranking operations can be performed in a purely visual or a multimodal

lingo-visual space.

Visual Retrieval Captioning

This group of retrieval-based captioning techniques, utilize a three-step procedure to detect

visual similarities and transfer previous knowledge to unseen instances. In the first step,
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some visual features will be used to form a visual representation space in which a similarity

function can be defined . In the second stage, the similarity function is used to find training

samples that are most similar to the input image and provide candidate descriptions. Fi-

nally, more information will be used to sort candidate descriptions and make use of them

to generate the intended description.

For instance, Kuznetsova et al. [110] applied a bunch of detectors and classifiers on the

input image to provide its semantic content. The method is then proposed a separate im-

age retrieval step on each salient region of the input image to gather corresponding phrases

from the candidate descriptions. The collected phrases are then passed into integer linear

programming algorithm to generate final description.

In [75], authors employed color histograms, Gabor filters and Haar descriptors as well as

SIFT and GIST local features to form a feature space. Next, they utilized a joint probability

model to compare the textual data of the candidate descriptions with the visual content of

the input image and determine the best that forms the final description.

Furthermore, Mason and Charniak [137] proposed a new generation process and formed

the final description by considering only the textual information in the final alignment step

where the conditional probability of observing a word among the final description is cal-

culated by a non-parametric density estimator that utilizes previously extracted candidate

descriptions. The final description is then extracted via two different extractive summariza-

tion techniques [146, 97].

As some deep learning approaches in this category, Yagcioglu et al. [205] proposed an av-

erage query expansion technique in which required features are extracted from a VGGNet

[184]. Then the original query is expanded as the average of the distributed representa-

tions of candidate captions that are weighted based on their similarity to the input image.

Similarly, Devlin et al. [55] applied filters of a trained CNN as the global image descriptor

followed by the k-nearest-neighbors classifier to find similar training images to the input

image.
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Lingo-Visual Retrieval Captioning

In the training phase of the third group of the automatic image captioning models, both sets

of the visual and linguistic features will be transformed into a multimodal feature space.

At the test time, the generated feature space will be used to extract and (in more advanced

models) generate new captions for the test samples which is known as the cross-model re-

trieval. So, models of this group are able to retrieve the most accurate descriptions from

a large previously-formed pool of captions. In addition, such a multimodal feature space

provides this opportunity to handle the reverse problem of retrieving the best fit image for

the given textual explanation.

As mentioned in Girshick et al. [65], a joint meaning space is a proper basis to match

knowledge of different domains. Hence, authors in [85] took the advantage of a Kernelized

Canonical Correlation Analysis (KCCA) [87] to transfer images and their corresponding

descriptions into a higher-order space in order to discover hidden relations in between. Un-

fortunately, in KCCA mechanism, it is necessary to keep the kernel computations in the

system memory until the end of the training process that makes it impracticable for large

datasets.

In [186], neural architectures are used to provide vector representation for both visual and

textual information. In case of the linguistic information, a Dependency Tree RNN (DT-

RNN) is utilized to generate compositional sentence vectors over word order and syntactic

differences that leads to a 50-dimensional word embedding system. The obtained represen-

tations are first learned in their own feature space and then will be converted into the mul-

timodal feature space using a max-margin objective function that enforces matched pairs

of image and description to have a high inner product than misaligned pairs, by a margin.

Instead of directly mapping description and images, in [101] smaller units of words and

their visual counterparts are transferred into the common feature space to enhance model

accuracy.

One step further, Kiros et al. [103] proposed an encoder-decoder package to not only

rank but also generate descriptions where the encoder part of the model is composed of a

CNN-LSTM architecture that constructs a joint feature space and the decoder component
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is a Structure-Content Neural Language Model (SC-NLM) that applies the resulting mul-

timodal representation to produce the new set of explanations. Later, Donahue et al. [57]

proposed a model that encapsulates a copy of the static image and the previous word of the

description as the input package of an LSTM cascade to generate next part of the descrip-

tion.

As one of the most successful approaches in this context, Karpathy and Fei-Fei [100] as-

sumed that different parts of the description refer to specific but unknown regions of the

visual input. So, they proposed a model to infer the alignment between parts of sentence

and regions of the image. Their architecture consists of three main parts. The first module

is a convolutional architecture [70] that is responsible to generate region representations in

a h-dimensional space, similar to our hybrid feature extraction and localization unit that is

explained in section 3.1. The second component is a bi-directional RNN (BRNN) [140] that

is responsible to produce a representation for each word of the vocabulary and its context

from both sides in the same h-dimensional space. Due to overfitting concern, the proposed

BRNN exploits the word embedding of an unsupervised method such as Skip-gram model

[142] as the initial values. The last part of their model is a max-margin loss function that

aligns two modalities.

3.3.3 Recurrent Language Model

All the captioning approaches that deal with this problem as a retrieval query, try to find an

appropriate explanation for the input image by an iterative search over numerous human-

written candidate descriptions that is obviously inefficient. Despite the aforementioned

advances in this category, such a framework is still suffering from some limitations. First,

they require a huge amount of diverse training data in the from of image-description. In

addition, these methods are restricted to a fixed set of descriptions and the models are not

able to generalize well to new concepts. Moreover, the retrieval framework is not the way

that humans exploit to describe images.

In contrast to the retrieval techniques, here the ultimate goal is to design a model that is able

to generate a variable-sized description for the given input where each training sample of
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the model consists of an image and its description. Among the NLP community, a language

model is defined as a technique that aims to provide the probability distribution over word

sequences 𝑥1 . . . 𝑥𝑇 in the form of a joint probability distribution
∏︀𝑇

𝑡=1 𝑝(𝑥𝑡|𝑥1, . . . , 𝑥𝑡−1)

which is equivalent to compute the conditional probability of a word based on the previous

words in the sequence.

While the traditional models of n-grams [118, 166] employ the combination of a lookup

table and smoothing techniques to condition a word on the previous 𝑛 words, a recurrent

neural network language model [135, 41, 57, 200, 64] is a more flexible structure that is

able to capture longer dependencies between the words. In addition, such a model is poten-

tially suited to be also conditioned on the image information and form a multimodal RNN

language model as the core component of an automatic caption generation system.

During training, the given image is first processed by a CNN to extract the feature vector

𝐼 that summarizes the whole visual content. This feature vector is then passed to the lan-

guage model as the visual input of the RNN indicated by (𝑥−1). The next item of the input

sequence is the special START token that is symbolized by 𝑥0 followed by the sequence of

words in the training description (𝑥1 . . . 𝑥𝑇 ).

In the framework of a language model, each sentence is a sequence of words drawn from

a pre-determined vocabulary 𝑉 . So, the primary encoding mechanism is to represent each

word with a one-hot vector that is all zero except for a unique 1 at the index of that spe-

cific word in the vocabulary. Hence, I𝑡 ∈ 𝑅|𝑉 | is the one-hot encoding of the t-th word

in a vocabulary. In addition, the distributed representation of words in a vector space en-

codes many linguistic regularities and patterns that help the learning algorithms to achieve

better performance [142]. Thus, as the complementary encoding step, the input vectors

(𝑥1 . . . 𝑥𝑇 ) will be encoded by the linear projection of one-hot input vectors using a word

embedding matrix 𝑊𝑤 that can be learn via backpropagation:

𝑥𝑡 = 𝑊𝑤I𝑡 (3.7)

In the case of the data scarcity and/or overfitting concern, the word embedding matrix 𝑊𝑤

can be set by an unsupervised method such as Skip-gram model [142] that is fixed during
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the training process.

The Recurrent language model generates sequences of hidden states (ℎ1 . . . ℎ𝑇 ) and output

vectors (𝑦1 . . . 𝑦𝑇 ) as the results of the following recurrence formula:

𝐼 = 𝑊ℎ𝑖[𝐶𝑁𝑁𝜃(𝐼)] (3.8)

ℎ𝑡 =

⎧⎨⎩ 𝑅𝑒𝐿𝑈(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ + 𝐼) 𝑖𝑓 𝑡 = 1

𝑅𝑒𝐿𝑈(𝑊ℎ𝑥𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) 𝑖𝑓 𝑡 > 1
(3.9)

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜ℎℎ𝑡 + 𝑏𝑜) (3.10)

Here, 𝐼 is the image content that is provided to the language model, ℎ𝑡 is the hidden state

of the RNN at the time step 𝑡 and 𝑦𝑡 is the output vector of the network at the same time

step.

The output vector 𝑦𝑡 is of size |𝑉 + 1| and holds the unnormalized log probabilities of

the words in the dictionary and the additional special token END that is expected to be

produced at the end of each generated description. A related point to consider is that the

hidden state is initialize by a zero vector ℎ0. All the weight and bias matrices are the learn-

ing parameters of the network.

It is worthwhile noting that the visual information of each region is exposed to the language

model once at the first time step of the training process and the model exploits a little part

of its internal dynamics to form a local identity connection that spreads the visual content

to all the time steps. Moreover, it is empirically verified that feeding the image at each time

step as an extra input yields inferior results, as the network can explicitly exploit noise in

the image and overfits more [200]. Having this strategy, the language model is able to not

only remember the visual information in its hidden state, but also employ its internal dy-

namics to track context information and generate rich descriptions. The number of neurons

in the hidden state of the RNN language model is a hyper parameter that should keep a

balance between the computational complexity of the model and the model performance.

At the training stage of our hybrid architecture, 𝑥−1 is the region code that is provided by

the recognition network. 𝑥0 is the special START token and the expected outcome for 𝑦1

is the first word in the ground truth caption of that specific region that is provided by the
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training dataset. At the next time step, the network input 𝑥2 is the word vector of the first

word in the ground truth caption and expected output 𝑦2 is the second word of the given

description. We iterate this process until the time step in which the network generates the

special END token. The objective function can be any function that is able to maximize the

log probability of the targets such as softmax classifier or the cross-entropy loss.

At the test time, after feeding the network with the START token, the most likely next to-

ken with be sampled to form the input of the next time step. This process is also iterated

until the generation of the END token. The combination of the previously explained recog-

nition module including the pretraind CNN, RPN, bilinear interpolation mechanism and

the fully connected recognition network,and the aforementioned language model forms the

Recognition and Captioning (ReCap) module of our hybrid model which is shown in Fig

3-2

3.4 Deep Interactive Segmentation

With the growing popularity of interactive devices such as smart phones and tablets, in-

teractive image processing attracts more attention. Interactive segmentation offers a pixel-

wise classification based on user priorities. Among traditional approaches for interactive

segmentation, stroke-based techniques [119, 199] are often combined with graph cut meth-

ods. In these approaches, an energy function based on region/boundary division is opti-

mized to find the segmentation result. Alternative approaches include random walks [73]

and geodesics [48], mostly rely on low-level features such as color, texture and shape in-

formation. These types of attributes can be difficult to apply when the image appearance is

complicated due to complex lighting conditions or existence of intricate textures. Recently,

deep learning models have been used for interactive segmentation where the information

of the image will be considered in higher semantic levels. To this end, FCNs as the stan-

dard frameworks for the pixel-wise end-to-end learning tasks, have been applied. The

main difficulty in the training process of the deep architectures is the problem of vanishing

gradients [156]. The Deep residual learning network (ResNet) [81] seems to be a highly

promising attempt to solve this problem in a simple way by adding identity mapping con-
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nections to the network blocks in order to facilitate the gradient flow through the network.

So, fully convolutional versions of the ResNet lead to excellent results in segmentation

tasks [40, 58]. Recently, the Densely Connected Convolutional Networks (densenets) [88]

and their fully convolutional versions (fcdensenets) [93] made it possible to train very deep

structures with more than 1000 layers without any sign of vanishing gradients while using

a less number of parameters in comparison with previous deep architecture.

In most of the previous researches, detected objects are determined by locating bounding

boxes around them. Although this notation is able to simplify the detection process by con-

verting the segmentation task to a regression problem, such an output is less informative

when dealing with geometrical properties of the objects. As more illustrative visual recog-

nition techniques, semantic segmentation [127, 120] aims to assign a label to each pixel

of the image where the labels can be class-aware or instance-aware, while the interactive

image segmentation [20, 119, 199, 73, 48] tries to incorporate the segmentation task with

the user preferences. In reality, it sounds reasonable that human users may have a more

restricted area of interest than the entire scope of the scene. Thus, the interactive region

segmentation can be defined as a binary segmentation problem that separates the User In-

tended Region (UIR) as the foreground from the other parts of the scene as the background.

3.4.1 User Interaction Imitation

During the interactive segmentation process, the user will be asked to provide some general

information about the position of the intended region. The requested information consists

of some positive and negative seeds as depicted in Fig. 3-3 which are equivalent to internal

and external points of the UIR, respectively. Since the manual collection of such interac-

tions is very expensive and time consuming, a better strategy is to imitate these interactions

synthetically. After automatic generation of positive and negative clicks for each training

sample, each cluster of seeds (positive cluster and negative cluster) will be used to construct

a Voronoi diagram.

In each cluster, we denote every seed by 𝑠𝑘, 𝑘 = 1, . . . , 𝑛. The value of pixel 𝑣𝑖,𝑗 of the
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Figure 3-3: Input image including positive and negative clicks (up), and obtained positive (middle)
and negative (bottom) Voronoi diagrams [28].
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positive/negative Voronoi diagram will be calculated by

𝑣𝑖,𝑗 := min{𝐷𝑖,𝑗
1 , 𝐷𝑖,𝑗

2 , . . . , 𝐷𝑖,𝑗
𝑛 } (3.11)

where 𝐷𝑖,𝑗
𝑘 is the Euclidean distance of the pixel 𝑣𝑖,𝑗 to the seed 𝑠𝑘. To summarize, the

value of each pixel in the positive/negative Voronoi diagram is the Euclidean distance of

that pixel to the nearest positive/negative seed. To emulate the natural behavior of a human

user in choosing the locations of positive and negative clicks, inside and outside of the

intended region, the following conditions should be satisfied:

First, we should note that the human user does not usually select a same location for two

different clicks. So, every pair of seeds in each cluster should preserve a predefined distance

from each other:

∃ 𝑑1 ∈ R+ : ∀𝑠𝑖, 𝑠𝑗 ∈ 𝑆, ‖𝑠𝑖 − 𝑠𝑗‖2 > 𝑑1 (3.12)

In addition, the human user normally does not click over the locations that are too close

to the boundaries of the intended region. Therefore, all the seeds of each cluster should

preserve a minimum distance from boundary pixels of the UIR (∂(𝑈𝐼𝑅)):

∃ 𝑑2 ∈ R+ : ∀𝑠𝑖 ∈ 𝑆, 𝑢 ∈ ∂(𝑈𝐼𝑅), ‖𝑠𝑖 − 𝑢‖2 > 𝑑2 (3.13)

Here 𝑆 denotes all the seeds of a cluster. Recently, Xu et al. [203] proposed some strate-

gies for synthetic generation of user interactions. They considered random generation of

positive clicks inside the UIR while three distinct cluster of negative clicks are chosen as:

1) random background pixels with a certain distance to the UIR, 2) a point cloud inside

the negative (not intended) objects and 3) a uniform set of points surrounding the UIR. Al-

though the first two strategies do not obey the common patterns of the user clicks, they aim

to add some randomness to the training data, while the third strategy provides some geo-

metrical information about the UIR which can be learned by gradient descend approaches.
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3.4.2 Morphological Cortex Detection (MCD).

While the inside of the UIR may be quite small, the background region is often large enough

to provide useful geometric information about the UIR. Consequently, it seems beneficial

to generate negative seeds that surround the UIR uniformly. To provide an efficient imple-

mentation for such a selection, we introduce our Morphological Cortex Detection (MCD)

technique that is computationally efficient. To implement this idea, a 1-pixel-wide shape

of the geometric boundary of the UIR is extracted by performing the morphological dila-

tion operation on the binary mask of the UIR and subtracting the original mask from the

dilation result. In the next step, the obtained boundary shape of the UIR will be completely

traversed using a 3 × 3 window to transfer all the boundary points’ coordinates into a 1-D

array in which the requested negative seeds can be selected uniformly. As the result of the

MCD process, a uniform set of negative seeds will be obtained that represents the cortex

of the UIR perfectly. In addition, by the random selection of the number of the recursive

executions of the dilation operation, our MCD approach is able to generate UIR cortex at

different distances which is able to add more randomness to the generation of synthetic

clicks. The visual illustration of this technique is shown in Fig. 3-4. During our exper-

iments, positive clicks are determined randomly inside the UIR, while negative seeds are

generated in three different clusters using 1) our MCD technique, 2) a random selection

of the background pixels, and 3) a random selection inside a negative object (if any). The

combination of one positive and three negative clusters can be used to generate up to 6

training pairs for each intended region in the training data.

3.4.3 Fully Convolutional Interactive Segmentation Networks

Our hybrid model receives an input image as well as user interactions in the form of posi-

tive/negative clicks and provides a seamless framework to generate accurate segmentation

as well as expressive description of the UIR. In a dedicated preprocessing step, an effective

morphological technique is proposed to provide a huge amount of training samples in the

form of synthetic user interactions. Then, each cluster of positive/negative seeds will be

transformed into separate Voronoi diagrams as shown in Fig. 3-3. As the next step, one
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Figure 3-4: Our proposed Morphological Cortex Detection (MCD) technique [28].

of the FCN, LFCN or FCDenseNet architectures is applied as the deep interactive segmen-

tation module. The structural details of these architectures will be elaborated later in this

section. In parallel, the ReCap module is utilized to obtain region proposals along with

their captions. In the fusion step, a heuristic method will be provided to combine results of

the localization, segmentation and captioning procedures. In the following, we will inves-

tigate all the steps of our model in detail.

As the interactive segmentation module, we applied three different fully convolutional ar-

chitectures in three different version of our hybrid model:

(i) The traditional FCN proposed in [131].

(ii) Our special version of FCN where last two convolutional layers of the traditional FCN

are replaced by three convolutional layers with kernel sizes of 7, 5 and 3 named as

Lyncean Fully Convolutional Network (LFCN).

(iii) The state-of-the-art FCDenseNet [88, 93] that contains 103 convolutional layers.

The impact of the alternation in LFCN is the gradual growth of the receptive field. Our

experiments show that this property is able to improve network recognition accuracy. By
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a proper use of zero padding, all the extended convolutional layers have the same output

size. The FCDenseNet architecture is a newly proposed architecture in which each layer

receives not only the output feature maps of the previous layer but also the aggregated

feature maps of all the previous layers via direct connections. This property mitigates the

vanishing gradient problem, facilitates feature propagation and decreases the number of the

network parameters (see section 2.6.7).

3.4.4 Fusion Approach

In order to attach a proper linguistic commentary to the output of the interactive segmen-

tation module, the segmentation result should be enriched with a selective output of the

ReCap module. As a reminder, the ReCap module determines the approximate location of

each identified object of the input image by specifying a bounding box around it. These

bounding boxes are also known as region proposals. Each region proposal has a confidence

score as the probability of the existence of an object in it. After a descending sort of all the

confidence scores, locations of the most likely objects can be obtained from the top-ranked

region proposals. In all our experiments, we picked up top-10 region proposals with the

highest confidence scores as the best candidates for the fusion with the segmentation result.

The last unit of ReCap module is a RNN-based language model that provides a linguistic

explanation for the visual properties of each region proposal. In the final step of the fusion

process, we compare the location of the interactive segmentation result with the locations

of the top-10 bounding boxes using the well-known Intersection over Union (IoU) met-

ric to find the best match bounding box. Finally, the caption of the best match bounding

box will be used as the most appropriate choice to describe the output of the interactive

segmentation module. The general view of the proposed model including both interactive

segmentation and ReCap modules is illustrated in Fig. 3-5.
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3.5 Experimental Results

3.5.1 Datasets

All the components of our ReCap module including CNN, RPN, bilinear pooling mecha-

nism, recognition network and the RNN language model are trained jointly using the Vi-

sual Genome (VG) region captions dataset [106]. The dataset includes 108,077 images and

4,297,502 region descriptions with the average of 40 captions per image that are collected

on Amazon Mechanical Turk.

For the fine tuning of FCN, LFCN and FCDenseNet we used the PASCAL VOC 2012

segmentation dataset [62]. The dataset includes 1464 images for training and 1449 im-

ages for validation that are distributed in 20 different classes. We used the whole bunch of

these samples to generate our special training pairs in the preprocessing step. For the final

validation of the model as well as its comparison with state-of-the-art interactive segmenta-

tion, we utilized different well-known segmentation benchmarks including Alpha Matting

[165], Berkeley segmentation dataset (BSDS500) [136], Weizmann segmentation evalua-

tion database [13], image object segmentation visual quality evaluation database (MOS)

[183] and VOC validation subset.

3.5.2 Preprocessing

For a better use of the Visual Genome dataset as porposed in [95], we converted words

that appear less than 10 times into the special <UNK> token, resulting a vocabulary of

9,873 words. We also discarded all the proposed captions with more than 10 words and

the images that have less than 15 or more than 45 captions to decrease the variation in the

number of regions per image that yields into 84,742 images. Each of our test and validation

data contains 7371 images, while the training data includes 70,000 samples. During our

preprocessing step, we have also merged strongly overlapping boxes into single boxes with

several reference captions. To do so, for each image, we iteratively determined the box

with the highest number of overlapping boxes (specified by the IoU value of 0.7 or higher

between two bounding boxes) and merge these together by taking the mean. To prevent an
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excessive merging process, the resulting bounding box of each iteration will be excluded

in further merging iterations.

To generate the maximum possible number of training pairs for the interactive segmentation

module, we produced positive and negative Voronoi diagrams with respect to each object

that is labeled in the VOC dataset. The positive seeds are selected randomly inside each

object while the MCD approach is used to generate three distinct sets of negative seeds

with different distances from the intended object. In the last step, each combination of

positive/negative Voronoi diagrams along with the original input image, forms a unique

training pair. This leads to production of 97,055 interaction patterns. We preserved 7,055

instances for the test and used the rest as the training data.

3.5.3 Training Process of the ReCap and Interactive Segmentation

Modules

During the training phase of the ReCap module, the ground truth consists of positive boxes

and descriptions. The module predicts locations and the objectness scores of the sampled

regions twice: within the RPN and again in the recognition network. We use binary lo-

gistic losses for the confidences trained on sampled positive and negative regions, while

as mentioned before, a smooth L1 loss is used for the training of the box regressor. The

final term in the loss function is a cross-entropy term at every time-step of the language

model. All the loss functions are normalized by the batch size. We initialize all the weights

of the ReCap module randomly using a Gaussian distribution with standard deviation of

0.01 except the CNN that is pretrained on the ImageNet object classification task. During

the optimization, we used the stochastic gradient descent approach with the momentum of

0.9 to train the weights of the convolutional network, and Adam [102] to train the other

components of the model. We use a learning rate of 1e-6 and set 𝛽1 = 0.9 and 𝛽2 = 0.99.

We begin fine-tuning the layers of the CNN after 1 epoch, and for efficiency we do not

fine-tune the first four convolutional layers of the pretrained CNN.

To reach the best quality for the interactive segmentation, FCN and LFCN are trained in

three different levels of granularity as proposed in [131]: X32s, X16s and X8s. RGB chan-
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nels of the input image are concatenated with the corresponding Voronoi diagrams to form

a training instance. Consequently, the first (input) layer of the interactive segmentation

module contains five channels. During the network initialization, the RGB-related chan-

nels will be initialized by the parameters of the pretrained FCN [131] on ImageNet [172]

classification task. For two extra channels that are associated with Voronoi diagrams, the

zero initialization is the best choice as also reported in [203]. Learning parameters of the

finer networks should be initialized from the coarser one. The global learning rates of the

FCN and LFCN networks are 1e-8 for X32s, 1e-10 for X16s and 1e-12 for X8s granular-

ities. In LFCN architecture, the extended convolutional layers exploit one hundred times

bigger learning rates. The learning policy is fixed and we used the weight decay of 5e-3.

Both networks are trained for 18 epochs.

As our third choice for the interactive segmentation module, we utilized the FCDenseNet

[93] containing 103 convolutional layers where the down-sampling path consists of 5 dense

blocks with 4, 5, 7, 10 and 12 bottleneck layers [88] respectively. The middle block (the

connector of the down-sampling and up-sampling paths) includes 15 bottleneck layers

while the up-sampling path has 5 dense blocks with 12, 10, 7, 5 and 4 bottleneck lay-

ers. The first convolutional layer of the network (before down-sampling path) has 48 filters

and the growth rate of the network is 16. The final convolutional layer (after up-sampling

path) has 2 filters, one for foreground and the other for the background area that is followed

by a Softmax classifier. We trained our FCDenseNet for 15 epochs with the learning rate

and the weight decay of 1e-4, while the batch size was 5. All the networks are trained on

random crops and horizontal flips of the training data with the size of 256× 256.

3.5.4 Segmentation Accuracy Metrics

There are several measures to evaluate the segmentation accuracy. As mentioned before,

the segmentation part of our hybrid process can be considered as a binary segmentation

where the classes are limited to foreground (UIR) and the rest of the image as background.

So, we employed the binary interpretation of the semantic segmentation metrics that are

proposed by Long et al. [131]:
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∙ Pixel Accuracy (Pixel Acc.):

This measure represents the proportion of the correctly classified foreground (𝐶𝑓 )

and background (𝐶𝑏) pixels (true positive rates) to the total number of ground truth

pixels in foreground (𝐹 ) and background (𝐵).

𝐶𝑓 + 𝐶𝑏

𝐹 +𝐵
(3.14)

Unfortunately, this metric can be easily influenced by the class imbalance. Hence,

high pixel accuracy does not necessarily mean that the accuracy is acceptable when

one of the classes is too small or too large.

∙ Mean Pixel Accuracy (Mean Acc.):

This measure is computed as the mean of the separate foreground and background

pixel accuracies:
𝐶𝑓

𝐹
+ 𝐶𝑏

𝐵

2
(3.15)

This metric alleviates the imbalance problem but can be still misleading. For ex-

ample, when the great majority of pixels belong to the background, a method that

predicts all the pixels as background can pretend a good performance.

∙ Mean Intersection over Union (Mean IoU):

Intersection over union is the matching ratio between the result of object localization

process and the corresponding ground truth label. This metric is the average of the

computed intersection over union for foreground and background areas:

𝐶𝑓

𝐶𝑓+𝐹𝑃 𝑓+𝐹𝑁𝑓
+ 𝐶𝑏

𝐶𝑏+𝐹𝑃 𝑏+𝐹𝑁𝑏

2
(3.16)

Here, 𝐹𝑃 and 𝐹𝑁 indicate false positive and false negative rates.

3.5.5 Test of Localization Accuracy

In our first experiment, we evaluated our model using a random subset of unseen test sam-

ples of our previously generated validation pairs. The response of the model to some in-
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Figure 3-6: Operating progress of our proposed hybrid model, from left to right: input
images obtained from PASCAL VOC 2012 dataset [62], UIR ground truths, dense caption-
ing bounding boxes, best match bounding boxes, the probability maps of our interactive
segmentation module and the final outputs of our model including highlighted UIR and its
description.

stances is shown in Fig. 3-6, while Fig. 3-11 to Fig. 3-15 provide more experimental

results at the end of the chapter. It can be noticed that the output of our approach achieves

a considerable rate of accuracy regarding the similarity of the model output with the corre-

sponding ground truth. Furthermore, the confusing output of the dense image captioning is

replaced with an illustrative outcome where the segmented UIR and its description are eas-

ily distinguishable. Fig. 3-7 (top diagram) presents a comparison between the localization

accuracy of the proposed method where the interactive segmentation module is LFCN8s

and the internal RPN of the ReCap module in terms of the obtained IoU for the samples

presented in Fig. 3-6. As illustrated, our model provides a significant improvement regard-

ing the localization accuracy by the replacement of the best match bounding box with the

segmented UIR.
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Figure 3-7: Localization accuracy comparison between our model (LFCN8s) and the internal re-
gion proposal network (RPN) of the ReCap module (up), and mean IoU accuracy of our proposed
model (LFCN8s) on several segmentation benchmarks against different number of clicks (bottom)
[28].
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Number of clicks IoU
One 0.8895
Two 0.9141

Three 0.9227
Four 0.9406
Five 0.9485

Figure 3-8: Model sensitivity analysis against number of clicks on a sample input image obtained
from PASCAL VOC 2012 dataset [62] (up), and its associated IoU rates (bottom). Here, the IoU
measure is computed between the segmentation result and the ground truth mask of the object.

3.5.6 Sensitivity Analysis

In this part, we analyzed the output quality of the interactive segmentation module against

the number of user interactions. As it is shown in Fig. 3-8, although IoU can be improved

by applying more user interactions that facilitate boundary detection, our model still pro-

vides very good results even by minimum number of clicks. We also measured mean IoU

accuracy of the proposed model for five different datasets as illustrated in Fig. 3-7 (right

diagram). The experiments confirm satisfying performance of our model in the case of a

low number of user clicks. We conjecture that this noticeable property of our approach

makes it convenient to be applied in real-world applications. During our experiments, the

proposed method clearly achieves a satisfying segmentation outcome with just one click cf.

Fig. 3-8.
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3.5.7 Quantitative Comparison of the Segmentation Quality

In this part we performed an extensive evaluation on segmentation capabilities of the pro-

posed method versus some prevalent segmentation techniques such as Geodesic Matting

(GM) [20], GrowCut [199], Grabcut [169], Boykov Jolly (BJ) interactive graph cuts [31],

Geodesic Star Convexity (GSC) and Geodesic Star Convexity with sequential constraints

(GSCSEQ) [74], Random Walker (RW) segmentation [73], Shortest Path-based interactive

segmentation (SP) [96] and Matching Attributed Relational Graphs (MARG) [148]. In all

the experiments we generated five positive and five negative clicks randomly. For some of

the approaches where the user interactions were defined as points or scribbles, we deter-

mined click positions with five-pixel-wide circles. Tables 3.1 to 3.5 present quantitative

results of these experiments that confirm the superiority of our approach over all the other

techniques on different segmentation benchmarks. Due to measure quality discussions in

section 3.5.4, less reliable accuracy rates are presented in gray.

As a qualitative comparison, Fig. 3-9 represents final segmentation results of the methods

in Table 3.1 on two different test samples. As it can be seen, our deep interactive segmen-

tation modules provide the most accurate segmentation results with respect to human-like

interpretation of the scene. A related point to consider is that in all the experiments the

number of the user interactions are limited to two positive and two negative clicks.

3.5.8 Dense Interactive Region Captioning

In the final part of our experiments, we verified the ability of the proposed model to caption

several regions of an image. In Fig. 3-10, we show the result of such an experiment where

multiple objects in different scales are detected via user interactions and described properly.
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FCDenseNet103 LFCN8s FCN8s GM

GrowCut GrabCut BJ GSC

GSCSEQ RW SP MARG

Figure 3-9: Segmentation quality comparison between our three proposed interactive segmentation
modules and other interactive segmentation techniques. Our method clearly provides more abstract
region and object understanding. Input images are obtained from PASCAL VOC 2012 dataset [62]
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Figure 3-10: Output probability map (left) and the final result (right) of our approach for different
regions of an image in response of different user interactions [28].
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Pixel Acc. Mean Acc. Mean IoU
GM [20] 0.8237 0.7645 0.6098
GrowCut [199] 0.6639 0.7603 0.4520
GrabCut [169] 0.6614 0.7582 0.4511
BJ [31] 0.8138 0.8292 0.6488
GSC [74] 0.8240 0.8465 0.6624
GSCSEQ 0.8275 0.8425 0.6654
RW [73] 0.8691 0.8046 0.6917
SP [96] 0.7838 0.8405 0.6121
MARG [148] 0.8067 0.6516 0.6180
FCN8s 0.9379 0.8766 0.8352
LFCN8s 0.9597 0.8989 0.8549
FCDenseNet103 0.9805 0.9473 0.9234

Table 3.1: Segmentation accuracy comparison between different types of interactive seg-
mentation techniques and our three proposed deep interactive segmentation modules on
Berkeley (BSDS500) dataset [136].

Pixel Acc. Mean Acc. Mean IoU
GM [20] 0.8328 0.7906 0.6615
GrowCut [199] 0.6847 0.7025 0.4795
GrabCut [169] 0.6896 0.7103 0.4818
BJ [31] 0.8196 0.8416 0.6993
GSC [74] 0.8253 0.8463 0.6977
GSCSEQ 0.8290 0.8482 0.7014
RW [73] 0.7953 0.7440 0.6207
SP [96] 0.7712 0.8092 0.6272
MARG [148] 0.7907 0.8110 0.6354
FCN8s 0.9227 0.8978 0.8573
LFCN8s 0.9549 0.9316 0.8837
FCDenseNet103 0.9648 0.9521 0.9077

Table 3.2: Segmentation accuracy comparison between different types of interactive seg-
mentation techniques and our three proposed deep interactive segmentation modules on
Weizmann dataset [13].

121



Pixel Acc. Mean Acc. Mean IoU
GM [20] 0.7958 0.7993 0.6602
GrowCut [199] 0.7924 0.7982 0.6465
GrabCut [169] 0.7908 0.7953 0.6513
BJ [31] 0.9117 0.9119 0.8569
GSC [74] 0.9076 0.9056 0.8476
GSCSEQ 0.9092 0.9066 0.8492
RW [73] 0.8568 0.8599 0.7561
SP [96] 0.8390 0.8466 0.7258
MARG [148] 0.9131 0.9152 0.8434
FCN8s 0.9193 0.9068 0.8438
LFCN8s 0.9320 0.9227 0.8656
FCDenseNet103 0.9486 0.9391 0.8847

Table 3.3: Segmentation accuracy comparison between different types of interactive seg-
mentation techniques and our three proposed deep interactive segmentation modules on
Alpha Matting dataset [165].

Pixel Acc. Mean Acc. Mean IoU
GM [20] 0.8313 0.7731 0.6226
GrowCut [199] 0.6600 0.6968 0.4425
GrabCut [169] 0.6571 0.6922 0.4391
BJ [31] 0.8108 0.8069 0.6406
GSC [74] 0.8170 0.8087 0.6458
GSCSEQ 0.8193 0.8092 0.6486
RW [73] 0.7787 0.7665 0.5810
SP [96] 0.7914 0.8030 0.6053
MARG [148] 0.7651 0.7871 0.5685
FCN8s 0.9526 0.9155 0.8710
LFCN8s 0.9689 0.9332 0.8927
FCDenseNet103 0.9751 0.9507 0.9147

Table 3.4: Segmentation accuracy comparison between different types of interactive seg-
mentation techniques and our three proposed deep interactive segmentation modules on
MOS dataset [183].
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Pixel Acc. Mean Acc. Mean IoU
GM [20] 0.8165 0.7283 0.5787
GrowCut [199] 0.6268 0.6366 0.3999
GrabCut [169] 0.6282 0.6412 0.4028
BJ [31] 0.7559 0.7824 0.5794
GSC [74] 0.7707 0.7879 0.5903
GSCSEQ 0.7724 0.7883 0.5912
RW [73] 0.7014 0.7102 0.5095
SP [96] 0.7602 0.7809 0.5618
MARG [148] 0.7118 0.7218 0.5050
FCN8s 0.9527 0.9201 0.8723
LFCN8s 0.9630 0.9260 0.8801
FCDenseNet103 0.9825 0.9433 0.9295

Table 3.5: Segmentation accuracy comparison between different types of interactive seg-
mentation techniques and our three proposed deep interactive segmentation modules on
VOC validation dataset [62].
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Figure 3-11: Operating progress of our proposed hybrid model, from left to right: input
images obtained from [165], [136], [13], [183] or [62], UIR ground truths, dense caption-
ing bounding boxes, best match bounding boxes, the probability maps of our interactive
segmentation module and the final outputs of our model including highlighted UIR and its
description. 124



Figure 3-12: Operating progress of our proposed hybrid model, from left to right: input
images obtained from [165], [136], [13], [183] or [62], UIR ground truths, dense caption-
ing bounding boxes, best match bounding boxes, the probability maps of our interactive
segmentation module and the final outputs of our model including highlighted UIR and its
description. 125



Figure 3-13: Operating progress of our proposed hybrid model, from left to right: input
images obtained from [165], [136], [13], [183] or [62], UIR ground truths, dense caption-
ing bounding boxes, best match bounding boxes, the probability maps of our interactive
segmentation module and the final outputs of our model including highlighted UIR and its
description.
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Figure 3-14: Operating progress of our proposed hybrid model, from left to right: input
images obtained from [165], [136], [13], [183] or [62], UIR ground truths, dense caption-
ing bounding boxes, best match bounding boxes, the probability maps of our interactive
segmentation module and the final outputs of our model including highlighted UIR and its
description.
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Figure 3-15: Operating progress of our proposed hybrid model, from left to right: input
images obtained from [165], [136], [13], [183] or [62], UIR ground truths, dense caption-
ing bounding boxes, best match bounding boxes, the probability maps of our interactive
segmentation module and the final outputs of our model including highlighted UIR and its
description.
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Chapter 4

Deep Selective Texture Labeling

The ultimate goal of this chapter is to establish a bidirectional correlation between visual

textures and their natural language descriptions. Such a novel technology is able to improve

computer vision by providing texture representations that are robust to realistic imaging

conditions of the natural scenes. It also boosts content retrieval by providing innovative

ways to search and retrieve textures by written explanations. Moreover, it promotes image

manipulation by providing new techniques to create and modify textures using descriptions.

The main technical contributions of this research is the introduction of:

∙ A systematic architecture that combines different aspects of texture modeling with

deep learning to enable end-to-end learning of texture representations.

∙ A new model for texture captioning that provides an unprecedented opportunity to

describe and also retrieve various texture attributes using natural language descrip-

tions.

The proposed model has various applications ranging from robotics where understand-

ing material properties of surfaces is an important clue for interaction, to analysis of differ-

ent forms of imagery.
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Figure 4-1: Each texture pattern can be located somewhere between regularity (left) and
randomness (right). Images are obtained from DTD [43] and ALOT [37] datasets.

4.1 Introduction

Shapes and materials are two main cognitive categories in the visual information. Among

several meanings of the word texture which are related to different human senses, tactile

texture can be defined as the set of surface properties that can be felt by touching the sur-

face. In the same way, visual texture refer to the visual impression that the surface material

produces to the human observer. As illustrated in Fig. 4-1, the pattern of each visual texture

can be located on an interval between the perfect regularity and the pure randomness. Since

the surface of any visible object is textured at a certain scale and the texture is the most in-

formative cue to identify different attributes of the homogeneous regions, visual texture is

of crucial importance to understand scenes and recognize different regions in digital image

processing.

Texture classification, segmentation, synthesis and shape from texture are the most inves-

tigated topics in texture analysis. Texture classification [150, 151] utilizes a supervised

approach to assign each uniform textured region to the texture class it belongs to. Texture

segmentation [173, 126] aims to identify the visual boundaries of multiple homogeneous

texture regions. Texture synthesis [116, 76] is the process of producing texture images from

detected texture primitives where its most popular application is the rendering of the realis-

tic object surfaces in computer graphics. And finally, shape from texture [125, 129] is a 3D

reconstruction approach that belongs to a broader class of vision problems known as shape

from X. In this technique, the ultimate objective is to extract the 3D surface information

from a 2D image by estimating the shape of the observed surface from the distortion of the

texture created by the imaging process.

130



4.1.1 Classic Texture Representation

Similar to many other image processing tasks, in texture analysis, the raw pixel values are

not informative enough to support an efficient operation. Hence, the extraction of textu-

ral features plays a significant role to provide a proper texture representation for further

processing. The traditional texture analysis approaches such as statistical, geometrical,

model-based and signal processing methods are widely used to produce useful dictionaries

of texture features.

In statistical methods [77, 188], each texture is characterized by the distribution of the gray

values over the specified region. In this way, first-order statistics measure the likelihood of

observing a gray value at a randomly-chosen location of the image. Unfortunately, features

that are generated by this approach are not able to provide considerable information about

the relative positions of the various gray levels within the image. Therefore, second-order

statistics are defined as the likelihood of observing a pair of gray values occurring at the

endpoints of a distance with a random length, location and orientation. In addition, to un-

derstand the repetitive nature of the texture elements, auto-correlation features are often

proposed to assess the regularities as well as the granularity level of the texture [121].

In geometrical methods [194, 9], each texture region is supposed to be composed of primi-

tive units called texture elements or textons. Here, statistical properties and placement rules

of these building blocks are used to represent different types of textures. Consequently,

such an approach consists of two main steps: texton recognition and texton arrangement

analysis. Texton recognition is normally performed by general image processing opera-

tions such as edge detection and mathematical morphology, while the placement rules can

be analyzed by previously mentioned statistical approaches to investigate the spatial rela-

tionships between detected elements.

Model-based approaches [159, 39] aim to find a parametric model to not only capture

the essential properties of the texture but also perform texture reproduction process that

is known as texture synthesis. Markov Random Fields [50] are the most popular tools to

model local contextual information. In such a model, the main assumption for the texture

analysis is that a pixel intensity can only affect its neighboring area and pixel values are not
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dependent at long distances.

Finally, in signal processing solutions of the texture analysis [112, 68], certain features

are computed from filtered images mostly in the frequency domain. Gabor filters [45] and

wavelets [128] as well as quadrature mirror filters [162] appear to be the most popular tools

for the frequency decomposition of texture. In these approaches, extracted features are

mainly based on statistics of filter responses. It is worthwhile noting that these techniques

are based on the manual design of desired features which can be technically complicated

and time-consuming. Thus, the performance of the traditional approaches highly depends

on the quality of these manually engineered features. Moreover, in most of the cases we

encounter multi-scale sophisticated patterns in textures, so typically feature-based dictio-

naries of these methods cannot properly interpret all observed complexities of the texture.

Texture features are expected to extract meaningful and non-redundant information from a

large number of pixels. Local descriptors provide a robust texture analysis by describing

the pixel intensity values within local neighborhoods. Therefore, many successful texture

analysis approaches apply Local Binary Patterns (LBP) [79, 150] that compute the occur-

rence histogram of local descriptors and extract local or global features. As a side note,

an occurrence histogram is an order-less pooling mechanism that summarizes the occur-

rence of the local descriptors at every pixel location, regardless of their spatial location and

neglects the global shape information.

4.1.2 Vocabulary Learning

Vocabulary learning is a set of data-driven approaches that are used to perform an automatic

feature extraction and can be considered as the natural extension of classic local descriptors

[43]. So, vocabulary learning is a proper framework to generate efficient texture represen-

tations. Such an approach is typically consists of a four-step processing pipeline:

∙ The first step is a sparse spatial sampling of local neighborhoods from which robust

and stable descriptors are extracted to describe an image. The basic idea of sparse

sampling is to find key points in the image that represent localized patterns. Some

robust and fast key point detection methods found in texture analysis are Laplacian
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of Gaussian (LoG) or Difference of Gaussian (DoG) filters [194] and Features from

Accelerated Segment Test (FAST) [168].

∙ The next step is the extraction of classic local descriptors such as Histogram of Gra-

dients (HOGs) [52], Scale-Invariant Feature Transforms (SIFTs) [133], Speeded Up

Robust Features (SURFs) [23], and LBPs for each key point.

∙ In the next stage known as dictionary learning, representative patterns are learned

from the training set by clustering the local descriptors into 𝐾 clusters in the fea-

ture space. Local descriptors are typically clustered in an unsupervised manner using

K-means or Gaussian Mixture Models (GMMs) [164]. Each cluster center is then

considered as a word in the resulting visual dictionary. Since K-means clustering is

not able to capture overlapping distributions in the feature space (as it considers only

distances to cluster centers), some other approaches such as Fisher kernel representa-

tion also known as Fisher Vector (FV) [158] employ soft clustering in which clusters

are computed by fitting a GMM to the distribution of descriptors.

∙ In the final step, a pooling mechanism is applied to generate final image represen-

tation. As mentioned before, the typical pooling method is the histogram of occur-

rences of visual words from the learned dictionary [117]. The occurrence is often

based on the nearest cluster center in the feature space of each local descriptor. Such

a pooling technique results in a feature vector which summarizes the occurrence of

visual patterns. In Vector of Locally Aggregated Descriptors (VLAD) encoding [92],

simple occurrences are replaced by distances of local descriptors to the representa-

tive visual words. In FV encoding, each Fisher vector is computed by assigning each

local descriptor in an image to a visual word in the learned dictionary, and by comput-

ing the gradients of the soft assignments with respect to the mixture weights, means,

and covariance matrices. After encoding process, the normalization of the obtained

vectors is suggested to improve the matching results. The aforementioned pooling

mechanism are order-less, in the sense that the spatial position of local descriptors is

discarded and they do not carry the global shape information. Hence, they are useful

for texture analysis.
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4.2 Deep Texture Representation

With the fast evolution of CNNs for automatic generation of comprehensive feature hier-

archies, these architectures are applied as the standard feature extractors. As mentioned

before, a proper road map for texture analysis is to design an order-less measure that is able

to capture spatial dependencies. For example, computation of features’ distribution over

image patches provides a proper order-less encoding for texture recognition. Although

CNNs did not include such a property in their preliminary design, some recent architec-

tural modifications have tried to embed the new context of deep texture representation in

CNNs. In spite of early discussion about incompatibility between the capacity of CNNs

and the complexity of texture datasets [21], novel adjustments of CNNs for texture analysis

have provided satisfactory improvements not only on texture related tasks but also on other

recognition platforms [124, 210].

In the primary attempt of applying CNNs for texture recognition [192], a naive architecture

including two hidden layers received the input as a 2D array and produces an output that

indicates the texture class of the center pixel. The proposed network applied a different

type of neurons called shunting inhibitory neurons [27] rather than Sigmoid ones for fea-

ture extraction.

In more recent cases of such an application, different mechanisms have been proposed to

discard the overall shape information by embedding an order-less pooling layer over ex-

tracted feature hierarchies. The main objective for such an order-less encoding approach

is to remodel the combination of the detected features in a way that is appropriate for the

texture analysis.

In FV-CNN architecture [44], authors transferred the object recognition knowledge of a

pre-trained CNN on the ImageNet dataset [172] to the texture feature space where texture

descriptors are generated by order-less FV pooling [158] on convolutional filter banks with

64 GMM components. Since the direct finetuning of the Fisher vectors is not trivial, the

CNN architecture is only used for feature extraction and its convolutional features are not

finetuned by texture samples. Instead of direct finetuning of the whole structure, it is pos-

sible to finetune the convolutional layers on the target domain and exploit their modified
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parameters to improve the encoding results. Fortunately, such a mechanism can be effi-

ciently used in a region-based approach as it requires computing the convolution output

once and pooling the desired regions by its order-less encoding.

In [15], a dedicated CNN architecture (T-CNN) is proposed in which an energy layer is

located between convolutional and FC layers to extract the response of the intermediate

filters and form a texture representation. The proposed modification facilitates the texture

classification, while reducing the number of network parameters by assigning smaller en-

coding to the final FC layers.

As proposed in [124], various order-less texture descriptors can be written as bilinear mod-

els. So, they introduced a representation approach that consists of two CNNs as feature

extractors whose final feature maps are multiplied using outer product at each location of

the image and pooled to obtain an image descriptor. This architecture is able to model the

pair-wise feature interactions in a transitionally invariant manner that generalizes order-less

texture descriptors. Unlike previous cases, such a model can be easily trained end-to-end

that provides a full package of deep learning solution for texture analysis. Since the model

is linear in the outputs of two CNNs, it is called bilinear CNNs.

As another approach, Deep Texture Encoding Network (Deep-TEN) [210] introduces a

novel encoding mechanism for integrating the entire dictionary learning and encoding

pipeline into a residual encoding layer. Through the encoding layer, residual vectors are

calculated on the pairwise difference between the input visual descriptors and the key points

of a learned internal dictionary. Then, the residual vectors are aggregated by the weights

that are calculated via soft assignment. The final output of the model is an order-less rep-

resentation that is particularly useful for material and texture recognition.

4.3 Our Approach for Selective Texture Labeling

Texture is an inherent property of entities, which is related to some surface characteristics

such as material, color, pattern, etc. In some cases, texture can be described as the repe-

tition of an element or the appearance of a specific template over a surface. Nevertheless,

even for a human, it is not an easy task to find a few illustrative words and describe a texture
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in a phrase. So, in spite of this reality that the surface of many objects is textured and vi-

sual texture is of key importance to recognize objects and their properties, training samples

of existing image captioning datasets that are produces by crowdsourcing e.g. [106, 122]

suffer from the lake of linguistic explanations of texture features.

This work is the first attempt to provide a model that makes it possible to automatically

generate semantic descriptions for a wide range of textures. Such a conceptual expansion

of the labeled visual information provides an unprecedented insight to image captioning

techniques and presents an excellent opportunity for their extension into fine-grained cap-

tioning applicable for the big data analysis in geology, meteorology, climatology, oceanog-

raphy, pedology, agrology. In addition, introduction of an intelligent agent that is able to

understand and describe texture features through natural language conversations can be

considered as a significant progress in the design of recommender systems that are able

to interact with the user to recommend productions that satisfy customer’s criteria for the

color, material and the intrinsic pattern of the desired product.

Based on our previous model proposed in the last chapter and [30], a FCN module is

capable of representing not only the visual content of the input image, but also the user

intention in a feature hierarchy. As illustrated in Fig. 4-2, the proposed model for the

Selective Texture Labeling (STL) exploits a symmetric combination of two FCN modules

called spectators to encode the visual contents of the input image and the positive and neg-

ative clicks of the user that are used to indicate the region that should be explained. Since

the occurrence position of the extracted features are encoded in the final feature map of the

spectators, their final output is an order sensitive feature hierarchy.

As stated in the previous section, a more useful texture representation is the one that relies

on the statistical information of the extracted features rather than their position. So, we

need to convert the order sensitive output of the spectators into an order-less representation

which can be efficiently used for the texture analysis. Recently, it is shown that order-less

representation of texture descriptors can be considered as a bilinear model [124, 123]. Ac-

cordingly, the bilinear combination of the spectators’ feature maps resembles a quadratic

kernel expansion [177] and is able to calculate all the pairwise interaction of the extracted

features in an order-less manner. After the merging phase, the resulting set of bilinear fea-
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tures are aggregated across the image positions to form a vector representation. Then a

normalization step enhances the discrimination strength of the vector representation which

is then used as the input of the semantic label generation process.

4.3.1 Connectivity Plan of the Spectator Modules

In traditional convolutional networks, there is only one connection between each layer and

its subsequent layer. Recent studies [81, 190] have shown that convolutional networks can

be substantially deeper, more accurate, and efficient to train if they contain shorter connec-

tions between layers close to the input and those close to the output.

As illustrated in Fig. 4-2, the fully convolutional structure of each spectator module con-

sists of a light-weight DenseBlock proposed in the DenseNet [88] architecture where, in

each layer, the feature maps of all the previous layers are used as input, and the layer fea-

ture map is the input of all the following layers. Hence, a DenseBlock of 𝑁 layers has

𝑁(𝑁 − 1)/2 direct connections. Note that, within the DenseBlock all the layers have the

same kernel size.

Such a dense connectivity alleviates the vanishing-gradient problem, amplifies feature prop-

agation, encourages feature reuse, and substantially reduces the number of parameters. For

each layer, it also provides a direct access to a wide range of features in different levels that

makes is possible to generate more compact representation of the data. Moreover, a densely

connected architecture requires fewer parameters than traditional convolutional networks,

as there is no need to relearn redundant feature maps. In addition, the direct access of layers

to gradients from the loss function and the original input signal gives a more smooth de-

cision boundaries and high generation performance to the final classifier that is especially

crucial when the amount of training data is insufficient.

Since the concatenation of the feature maps tends to increase the output size of the final

layers, there is an upper bound to the number of feature maps that each layer is allowed

to produce and append to the main data stream that is known as the growth rate. Having

𝑔 as the growth rate, the 𝑛𝑡ℎ layer of the proposed spectator module has 5 + 𝑔 × (𝑛 − 1)

input size, where 5 is the number RGB channels plus positive and negative user interaction
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maps.

4.3.2 Bilinear Texture Representation

The proposed model employs the bilinear pooling mechanism [124, 123] to aggregate the

location-wise outer-product of two spectator modules by global averaging. As we applied

the symmetric arrangement of the spectator modules (our two spectator modules are iden-

tical) to extract a set of features 𝑥𝑖 across locations 𝑖 = 1, 2, · · · , 𝑛, the outcome of this

operation is a symmetric positive semi-definite covariance matrix that includes the pair-

wise interactions between the extracted features. Thus, the bilinear pooling mechanism is

able to extract the second-order statistics:

𝐴 =
1

𝑛

(︀ 𝑛∑︁
𝑖=1

𝑥𝑖𝑥
𝑇
𝑖

)︀
(4.1)

where, each feature 𝑥𝑖 is a d-dimension vector and the matrix 𝐴 is of size 𝑑× 𝑑.

Since the spectator modules have the FCN architecture, they are able to accept input image

at any size and produce its corresponding feature map. So, after bilinear combination, we

are left with bilinear representation of varying sizes. In order to feed the RNN language

model (see section 4.3.3), we must provide a fixed-size representation for each texture.

To tackle this challenge, after each spectator module, we put a 1 × 1 convolutional layer

with 64 kernels to fix the number of channel in the final feature map. So, the 𝑑 parameter

(dimension of feature vectors) is always fixed to 64 and consequently, the bilinear combi-

nation outcome is a fixed-size matrix of size 64× 64 = 4096, no matter what the input size

is.

For the sake of performance improvement, the resulting matrix 𝐴 can be normalized by

element-wise signed square root and 𝐿2 normalization [124]:

𝐴 = 𝑠𝑖𝑔𝑛(𝐴)

√︃
𝐴

||𝐴||2
(4.2)

After normalization, the resulting matrix will be flattened to form the fixed-size input vector

of the next stage.
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4.3.3 Semantic Label Generation

Primary techniques that address the problem of generating image descriptions relied on

sentence templates, which confined their variety. The main reason for such a restriction

was to reduce the complex visual scenes into a single sentence.

With the development of the large image captioning datasets [106, 122], image captioning

approaches [30, 100, 95, 200, 202, 134, 206] relaxed this restriction and relied on direct

learning from the data where the model induced the latent relation between parts of the

sentences and regions of the image that they describe. The most common architecture for

such a model is the RNN-based language model [141, 55] that takes an input image and

generates its linguistic description in text. RNNs are very useful to capture long-term de-

pendencies and therefore seem ideal to describe semantic relations in the form of sentences

and even paragraphs [105].

The visual content of a texture region does not include semantic relations between its in-

ternal elements and therefore can be described by a fixed-size sentence wherein each word

represents one of its general attributes such as surface entity, pattern, material, and color.

The central element of the semantic label generation process is a multi-modal RNN lan-

guage model which is conditioned on bilinear texture representation. During the training

phase of the proposed model, the language model receives the normalized bilinear repre-

sentation of the input texture followed by a sequence of tokens (𝑥0, 𝑥1, · · · , 𝑥𝑛) where 𝑥0

is the special START token and (𝑥1, · · · , 𝑥𝑛) represent the texture attributes of the training

sample. Here, each description is a sequence of attributes drawn from a pre-determined

vocabulary 𝑉 that includes one-hot vectors [142] of all the existing texture attributes in the

training data (see section 3.3.3).

The recurrent language model generates sequences of hidden states (ℎ1 . . . ℎ𝑇 ) and output

vectors (𝑦1 . . . 𝑦𝑇 ). The output vector 𝑦𝑡 is of size |𝑉 + 1| and holds the unnormalized

log probabilities of the attributes in the texture vocabulary and the additional special token

END that is expected to be produced at the end of each generated description. The hidden

states are initialize by a zero and the bilinear representation of the input texture is presented

to the model once at the beginning.
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At the first time step of each training iteration, the expected outcome for 𝑦1 is the first at-

tribute in the ground truth texture description. At the next time step, the network input 𝑥2 is

the one-hot vector of the first attribute in the ground truth description and expected output

𝑦2 is the second attribute of the given description. We iterate this process until the time step

in which the network generates the special END token.

4.4 Experiments

During training, the input to our model is a set of texture images that are equipped with

various texture attributes as descriptions. These training samples are the result of a pre-

processing step that combines two texture datasets to form a multi-label texture dataset. In

these texture datasets, categorical labels contain useful explanations of the texture features.

4.4.1 Multi-Label Texture Dataset

In contrast with image captioning datasets that include dense annotations about objects,

their attributes, and the observable relationships between visual components, texture datasets

[25, 182, 113, 111, 78, 53, 204, 149] contain no description and their annotations are lim-

ited to their labels.

To generate a multi-label dataset of texture images, we combined two well-known texture

datasets, each of which has a unique set of labels. The first collection is the Describable

Textures Dataset (DTD) [43] that consists of 5640 images where each sample has a size

between 300 × 300 and 640 × 640 pixels. Inspired by human perception, DTD instances

are organized according to 47 terms such as “blotchy”, “cracked”, “dotted” and “honey-

combed” that describe visual patterns. There are 120 images in each category and each

image contains at least 90% of the surface representing the category attribute. For each

image a key attribute and a list of joint attributes are provided.

The second dataset is the Amsterdam Library of Textures (ALOT) [37] that includes 250

texture classes with 100 samples of size 384 × 256 per class. A wide variety of materi-

als such as “tobacco”, “bread”, “sand”, “sugar”, “cotton”, “beans” and much more are
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Figure 4-3: Some samples of ALOT dataset [37] (back) including material labels such as
sunflower seeds, sheep wool and spaghetti, and DTD dataset [43] (front) providing pattern
labels such as banded, crystalline, and marbled that are used with color information to
shape our multi-label texture dataset.
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presented in this dataset where the samples are captured with eight different illuminations

from three orientations and four viewpoints. Some samples of both datasets are shown in

Fig. 4-3.

While samples of the DTD dataset represent different human-defined patterns and the

ALOT dataset covers a wide range of materials, the color property of the textures is not

appeared in their labels. As illustrated in Fig. 4-4, we utilized the grid sampling and the

average pooling strategy to extract the dominant color of each training samples and equip

its linguistic description with such an important visual attribute. In each image, we sampled

1000 pixels from each channel to compute RGB values of the dominant color. Finally, the

resulting values will be converted into the nearest color name based on CSSW3C standard

[38].

Figure 4-4: Extraction of the dominant color’s name via grid sampling and average pooling
based on CSSW3C standard [28].
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In pictures containing natural landscapes, there are several textured regions with different

scales that can be determined by user clicks to be described. Unfortunately, there are sev-

eral obstacles to develop a combination of a dataset and a deep architecture that performs

such a task properly. First, small textured regions do not contain enough information for a

robust extraction of the tiny texture attributes. In addition, uncontrolled illumination con-

ditions of the outdoor scenes have a destructive influence on the grasp of the texture prop-

erties. Furthermore, as mentioned before, even humans are not able to provide illustrative

explanations for texture attributes which is the main barrier to provide a texture captioning

dataset. Last but not least, texture captioning has specific applications on the pictures that

are captured under specific conditions such as quality control, advertisement and satellite

imagery. So, the generation of a dataset that is able to simulate these conditions seems to

be satisfying.

Normally, before the training process of the deep architectures, rotation, scaling and trans-

lation are used in a so called data augmentation preprocessing step to increase the number

of training samples. Since the appearance of the texture is invariant to these transforma-

tions, embedding different textures in each training sample is one of a few tricks that pro-

vides an opportunity to generate more training samples. In addition, having combinatorial

samples lets us exploit the interactive property of the spectator modules that are pretrained

among the model of the previous chapter to add an interactive functionality to our texture

labeling module.

To this aim, we construct each training sample by a combination of two distinct textures of

size 256×256 in vertical, horizontal, diagonal, square segment and circle segment arrange-

ments as shown in Fig. 4-5. For each training sample, all arrangements are generated by

random selection of offset values. In each arrangement, the black area of the binary mask

indicates the positive texture that is described by the sample description and the white area

is considered as the negative texture which is not explained. During the generation process

of each combination, positive and negative textures are switched by the probability of 50%.

The model receives five random clicks inside each region to determine positive and nega-

tive textures. Two sets of positive and negative clicks are then used separately to generate

two Voronoi diagrams that are feed into spectator modules as the user interactions (see Fig.
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Figure 4-5: Each training sample includes a positive and a negative texture that are com-
bined based on one of different arrangements determined by randomly generated binary
masks (black is positive) [28].

3-3 and section 3.4.1).

We randomly chose ten instances per class to combine two datasets which leads to 1, 175, 000

combinations that in half of them ALOT textures are considered positive. At the next step

of the data preparation, we dropped combinations in which the positive texture description

has appeared less than 100 times in the whole dataset (mostly rare colors). Doing so, we are

left with 874, 320 combinations. Finally, we selected 500, 000 combinations that possess

longer descriptions. We used 75% of the data (400, 000 samples) for training and preserved

the rest for the model evaluation.
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4.4.2 Training and Optimization

We trained the full model end-to-end in a single step of optimization. We initialized the

spectator modules with weights pre-trained on the task of previous chapter (first Dense-

Block of the FCDenseNet103 interactive segmentation module) and all other weights with

a Gaussian with standard deviation of 0.01. We use stochastic gradient descent with mo-

mentum 0.9 to train the weights of the spectator modules. We also used the AdaDelta [208]

to train the RNN language model with the following updating formula:

(𝑣𝑡)𝑖 =
𝑅𝑀𝑆((𝑣𝑡−1)𝑖)

𝑅𝑀𝑆(∇𝐿(𝑊𝑡))𝑖
(∇𝐿(𝑊𝑡′ ))𝑖 (4.3)

where

𝑅𝑀𝑆(∇𝐿(𝑊𝑡))𝑖 =
√︀
𝐸[𝑔2] + 𝜖, (4.4)

𝐸[𝑔2]𝑡 = 𝛿𝐸[𝑔2]𝑡−1 + (1− 𝛿)𝑔2𝑡 (4.5)

and

(𝑊𝑡+1)𝑖 = (𝑊𝑡)𝑖 − 𝛼(𝑣𝑡)𝑖. (4.6)

Here for each network parameter 𝑖, 𝑅𝑀𝑆 is the root mean square function and 𝑣𝑡 is the

weight update value. Moreover, ∇𝐿(𝑊𝑡) is the weights’ gradient, 𝐸[𝑔2]𝑡 is the decaying

average of the squared gradients, 𝑊𝑡 is the current weights matrix and 𝑊𝑡+1 is the updated

weights matrix. Finally, the learning rate 𝛼 is 0.1 and the weight decay 𝛿 is 5𝑒 − 4. Our

training batches consist of 16 training samples. Since the initial value of the parameters acts

as a regularizer of the optimization process, we begin fine-tuning the layers of the spectator

modules after one epoch.

4.4.3 Qualitative Results

In this section, we show example predictions of the deep selective texture labeling model.

Fig. 4-6 illustrates the output of the proposed model for a number of randomly selected

test samples in our multi-label texture dataset. It is shown that, despite the lack of mate-

rial information in some ground truth descriptions, surface materials such as stone, wood,
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cotton, and salt are recognized correctly. In addition, the model has an outstanding general-

ization strength in the context of color information. Note that, ground truth descriptions of

some training samples such as the third one in Fig. 4-6 are not so informative. However, the

model succeeded in using its generalization capability to provide more informative descrip-

tions for those instances. In addition, the pattern identification competency of our model

is remarkable as it is able to provide such an information for all the test samples which we

think is due to extensive inter-class variations of DTD dataset.

Some cases of false label generation are also shown in Fig. 4-7. As it can be seen, in these

experiments the model is not able to recognize texture material. These samples are rarely

appeared in the training data due to our random selection from DTD and ALOT datasets.

4.4.4 Model Performance Evaluation

During a set of experiments, we evaluated the performance of the proposed model on UIUC

[113], Kylberg [111], and KTH-tips-2b [78] datasets. As there is no convention for texture

description, different texture datasets utilize various vocabularies that are not necessarily

compatible. Moreover, none of these datasets provides more than one label for its instances.

To resolve these problems, we replaced the class names of the aforementioned datasets

with the most relevant multi-lable descriptions that explain the corresponding classes in

our multi-label space. Label conversion protocols are demonstrated in Tables 4.1, 4.2, and

4.3. UIUC and Kylberg datasets are comprised of gray-scaled images, so we used the color

extraction process of section 4.4.1 to generate names of gray shades for those instances

and replaced the [COLOR] tag with those names. For KTH-tips-2b samples, color name

extraction process is exactly the same as our proposed approach explained in section 4.4.1.

Since Wall and Brick classes of the UIUC dataset are not appeared in the training data, we

excluded them from our evaluation process.

At the next step, we investigated the ability of our proposed model to describe texture at-

tributes. We first trained our model on full image textures (not combinations) with the aim

of verifying that the model is rich enough to support the mapping from visual textures to

sequence of color, material and pattern attributes without user interactions. We named this
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Figure 4-6: Some qualitative results of the proposed model. From left to right: test samples
obtained from [113], [111], or [78], corresponding binary masks (black is positive), positive
textures in test samples, ground truth descriptions (in black), and predicted descriptions by
the proposed model (in blue).
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Figure 4-7: False samples of the proposed model. From left to right: test samples obtained
from [113], [111], or [78], corresponding binary masks (black is positive), positive textures
in test samples, ground truth descriptions (in black), and predicted descriptions by the
proposed model (in red).
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setting as the "full-image non-selective texture labeling". Then the model performance is

measured during its full functionality in presence of user interactions called "selective tex-

ture labeling on dual texture combinations". Tables 4.4 and 4.5 report the average of the

normalized BilinguaL Evaluation Understudy (BLEU) [155], Consensus-based Image De-

scription Evaluation (CIDEr) [198], and Metric for Evaluation of Translation with Explicit

ORdering (METEOR) [54] scores for both experiments on UIUC, Kylberg, and KTH-tips-

2b datasets. All three metrics define the similarity over words or n-grams of the predicted

and the ground truth descriptions by considering different formulas. BLEU is one of the

first metrics that have been used for measuring similarity between two sentences. It has

been initially proposed for machine translation, and defined as the geometric mean of n-

gram precision scores multiplied by a brevity penalty for short sentences. In other words,

the BLEU measure looks at the presence or absence of particular words. Since in our

case, grammar and the word order of the generated description are not important, we used

uni-grams (word-by-word comparison) and the results are reported as BLEU1:

BLEU1(𝑝, 𝑔) =

∑︀
𝑊∈𝑝

𝑚𝑖𝑛

(︂
𝐶𝑝(𝜔), 𝐶𝑔(𝜔)

)︂
∑︀
𝜔∈𝑝

𝐶𝑝(𝜔)
(4.7)

Here, 𝑝 and 𝑔 are the predicted and the ground truth descriptions. 𝜔 represents uni-grams

(words) of the predicted description, while 𝐶𝑝(𝜔) and 𝐶𝑔(𝜔) stand for the Count of the

word 𝜔 in 𝑝 and 𝑔, respectively.

CIDEr is a more recent metric proposed for evaluating the quality of image descriptions.

In our experiment, it measures the consensus between the predicted and the ground truth

descriptions. To this aim, all words of the both descriptions are first mapped to their stem.

Then, each description is represented by the set of words present in it. Next, the measure

of consensus encodes how often the words in the predicted description are present in the

ground truth description. Similarly, words that are not presented in the ground truth de-

scription should not be in the predicted description. As a side note, words that commonly

occurred in the descriptions of texture samples should be given lower weights, since they

are likely to be less informative. To encode this intuition, the Term Frequency Inverse Doc-
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ument Frequency (TF-IDF) weighting is performed for each word 𝜔𝑘 that computes two

weights: TF that measures the frequency of the word 𝜔𝑘 in description 𝑥 , and IDF that

computes 𝜔𝑘 rarity:

𝐺𝑘(𝑥) =
ℎ𝑘(𝑥)∑︀
𝜔𝑙∈Ω ℎ𝑙(𝑥)⏟  ⏞  

𝑇𝐹

log

(︂
|𝐼|∑︀

𝐼𝑝∈𝐼 min(1, ℎ𝑘(𝑥𝑝))

)︂
⏟  ⏞  

𝐼𝐷𝐹

(4.8)

where ℎ𝑘(𝑥) is the number of times 𝜔𝑘 is appeared in the description 𝑥, ℎ𝑘(𝑥𝑝) is the

number of times 𝜔𝑘 is appeared in the description of the image 𝑝, Ω is our vocabulary and

𝐼 is the set of all images in the data set.

Then the CIDEr score for each pair of predicted and ground truth descriptions (𝑝, 𝑔) is

computed using the average cosine similarity between the predicted description 𝑝 and the

ground truth description 𝑔:

CIDEr(𝑝, 𝑔) =
𝐺(𝑝) ·𝐺(𝑔)

||𝐺(𝑝)|| ||𝐺(𝑔)||
(4.9)

where 𝐺(·) is a vector formed by 𝐺𝑘(·) corresponding to all words in the description (·)

and ||𝐺(·)|| is the magnitude of the vector 𝐺(·).

METEOR is another machine translation metric. It is defined as the harmonic mean of

precision and recall of matched words between the predicted and the ground truth descrip-

tions. Additionally, it makes use of synonyms and paraphrase matching. The algorithm

first creates an alignment between predicted and ground truth descriptions as a mapping

between words. A mapping can be thought of as a line between a word in one description,

and a word in the other one. As a constraint, every word in the predicted description must

map to zero or one word in the ground truth description. If there are two alignments with

the same number of mappings, the alignment is chosen with the fewest crosses, that is, with

fewer intersections of two mappings. Stages are run consecutively and each stage only adds

to the alignment those words which have not been matched in previous stages. Once the

final alignment is computed, words’ precision 𝑃 is calculated as:

𝑃 =
𝑚

𝑤𝑝

(4.10)
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where 𝑚 is the number of words in the predicted description that are also found in the

ground truth description, and 𝑤𝑝 is the number of words in the predicted description.

In addition, words’ recall 𝑅 is computed as:

𝑅 =
𝑚

𝑤𝑔

(4.11)

where 𝑚 is as above, and 𝑤𝑔 is the number of words in the ground truth description. Preci-

sion and recall are combined using harmonic mean with recall weighted 9 times more than

precision:

METEOR(𝑝, 𝑔) =
10𝑃𝑅

𝑅 + 9𝑃
(4.12)

This measure accounts for congruity with respect to single words that appear in both the

predicted and the ground truth description. Since in our case, we only performed word-by-

word comparison, we reported this measure as the final METEOR value.

Our proposed model is quite successful to generate meaningful descriptions similar to

ground truth texture attributes. This can be understood by the high values of BLEU-1

and CIDEr metrics in both experiments as the sign of significant overlap between gener-

ated and ground truth texture descriptions. Normally, METEOR looks for synonyms to

capture overall semantic similarity and provides lower scores.

Moreover, the model performs slightly better when exploiting its entire capacity to repre-

sent texture attributes that the situation in which a part of capacity is dedicated to recognize

user interactions.

Finally, we guess that the reason of higher scores on UIUC and Kylberg datasets is their low

color variation (just shades of gray) which is easier to learn than the wider color diversity

of KTH-tips-2b instances.
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UIUC
Original Class Name Our Alternative Description
bark1 [color] grooved tree bark
bark2 [color] blotchy tree bark
bark3 [color] stripped tree bark
wood1 [color] swirly wood
wood2 [color] stratified wood
wood3 [color] stripped wood
water [color] wrinkled water
granite [color] flecked marble
marble [color] blotchy marble
floor1 [color] flecked carpet
floor2 [color] flecked carpet
pebbles [color] bumpy gravels
wall [NOT USED]
brick1 [NOT USED]
brick2 [NOT USED]
glass1 [color] lace-like plastic
glass2 [color] bumpy flecked carpet
carpet1 [color] blotchy flecked carpet
carpet2 [color] bumpy interlaced carpet
upholstery [color] dotted carpet
wallpaper [color] bumpy wallpaper
fur [color] matted fur
knit [color] woven knit
corduroy [color] grooved striped cloth
plaid [color] grid cloth

Table 4.1: Label conversion protocol between our multi-label dataset and UIUC [113]
dataset.
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Kylberg
Original Class Name Our Alternative Description
blanket1 [color] blotchy flecked wool carpet
blanket2 [color] zigzagged blanket
canvas1 [color] bumpy flecked cloth
ceiling1 [color] bumpy flecked carpet
ceiling2 [color] perforated plastic
cushion1 [color] bumpy banded carpet
floor1 [color] lace-like wood
floor2 [color] bumpy interlaced carpet
grass1 [color] fibrous fabric
lentils1 [color] bumpy beans
linseeds1 [color] bumpy linseeds
oatmeal1 [color] rolled oats
pearlsuger1 [color] bumpy pear sugar
rice1 [color] bumpy rice
rice2 [color] bumpy wheat grains
rug1 [color] bumpy interlaced carpet
sand1 [color] flecked sands
scarf1 [color] lace-like cloth
scarf2 [color] banded cloth
screen1 [color] banded crosshatched carpet
seat1 [color] crosshatched cloth
seat2 [color] blotchy flecked cotton carpet
sesameseeds1 [color] bumpy sesame seeds
stone1 [color] flecked marble
stone2 [color] flecked blotchy marble
stone3 [color] flecked marble
stoneslab1 [color] flecked gravels
wall1 [color] flecked bumpy gravels

Table 4.2: Label conversion protocol between our multi-label dataset and Kylberg [111]
dataset.
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KTH-tips-2b
Original Class Name Our Alternative Description
crumpled aluminum foil [color] wrinkled silver foil
cork [color] flecked cork
wool [color] matted [woven] wool
lettuce leaf [color] veined leaf
corduroy [color] grooved striped cloth
linen [color] knitted wool cloth
cotton [color] knitted cotton cloth
brown bread [color] porous bread
white bread [color] porous bread
wood [color] swirly wood
cracker [color] bumpy porous cracker

Table 4.3: Label conversion protocol between our multi-label dataset and KTH-tips-2b [78]
dataset.

Full-Image Non-Selective Texture Labeling
Metric BLUE-1 CIDEr METEOR
UIUC 0.737 0.778 0.342

Kylberg 0.763 0.819 0.323
KTH-tips-2b 0.667 0.711 0.291

Table 4.4: Diverse captioning scores of our proposed model on three different external
datasets for full-image non-selective texture labeling experiments.

Selective Texture Labeling on Dual Texture Combinations
Metric BLUE-1 CIDEr METEOR
UIUC 0.682 0.714 0.315

Kylberg 0.663 0.744 0.280
KTH-tips-2b 0.618 0.691 0.261

Table 4.5: Diverse captioning scores of our proposed model on three different external
datasets for selective texture labeling experiments on dual texture combinations.
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4.5 Conclusion

In this chapter, for the first time ever, we presented a hybrid CNN-RNN model that com-

bines different aspects of the deep texture representation with the concept of the automatic

image captioning and enables end-to-end learning of the selective texture labeling. Our

novel architecture provides new opportunities to describe, search, and also retrieve texture

images from their linguistic descriptions. To be able to train such a model, we generated a

multi-label texture dataset that covers color, material, and pattern labeling simultaneously.

This dataset is the result of the first attempt to provide such an information and should

be extended to further texture descriptive aspects. Through several experiments, we in-

vestigated the performance of our proposed model in selective and non-selective modes

to automatically generate semantic descriptions for a wide range of textured surfaces and

measured its accuracy on several unseen texture datasets by different captioning evaluation

metrics. Our contribution to the automatic generation of texture descriptions provides an

excellent opportunity to enrich the existing vocabulary of the image captioning. Such a

conceptual extension can be used for fine-grained captioning applicable in geology, mete-

orology, climatology, oceanography, pedology, agrology, and recommender systems.
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Chapter 5

PDE-based Color Morphology using

Matrix Fields

The previous chapters of this thesis were focused on deep learning architectures and their

application in computer vision. This chapter relates to the work done during my Ph.D.

that is not directly related to deep learning. In this chapter, we propose a new approach to

perform morphological operations on color images. This work is appeared in proceeding

of the fifth international conference on Scale Space and Variational Methods in computer

vision (SSVM 2015) [29], in Bordeaux, France. The final publication is also available at

link.springer.com. During the proposed approach, we convert rgb-values of the pixels into

symmetric 2 × 2 matrices, where the new color space can be interpreted geometrically

based on the HCL biconal color space structure.

Motivated by the formulation of the fundamental morphological operations dilation and

erosion in terms of partial differential equations (PDEs), we show how to define finite dif-

ference schemes making use of the matrix field formulation. The computation of a pseudo

supremum and a pseudo infimum of three color matrices is a crucial step for setting up ad-

vanced PDE-based methods. We show that this can be achievedby an algebraic technique.

We investigate our approach by dedicated experiments and confirm useful properties of the

new PDE-based color morphology operations.
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5.1 Introduction

With abundant sources of visual color information such as smartphone, tablets and digital

cameras, it becomes increasingly important to consider this information in the construction

of image processing tools. Following the seminal work of Serra and Matheron [138, 180],

morphological operations form a fundamental class of image processing techniques. Mor-

phological processing is a set of nonlinear operations that are applied on pixels arranged

in structuring elements. The building blocks of mathematical morphology for gray-scale

images are the processes of dilation and erosion. Almost all the other morphological op-

erations such as opening, closing, hit and miss transform, thinning, thickening and skele-

tonization can be derived from these two fundamental operations.

Considering the important underlying mathematical structure of these operations, it is re-

quired to define a total order of the values that are contributing in the structuring elements.

Although for gray-scale images the corresponding lattice theory framework seems to be

satisfactory and adequate, the extension of this concept to color spaces is not trivial. In

such a situation, the main obstacle is the lack of a total order for vector-valued data such as

rgb values. Hence, performing even the simplest morphological operation on color images

is a great computational challenge.

There have been numerous attempts to establish a proper morphological framework for

color images. A vast majority of these attempts are concentrated on the definition of a rank-

ing schemes and appropriate extremal operators as the substitutes for maxima and minima

[16, 47, 72, 181]. For a conceptually different development, It is worthwhile to mention

that the approach by Van de Gronde et al. [196] that relies on a partial order rather than

a total order. However, one may conclude that the optimal way to define morphological

operations on color images is still an open issue and that a proper solution might depend

on the purpose of the filtering.

In this chapter, we tackle the issue by combining two groups of existing approaches to for-

mulate our novel strategy for color image morphology. The first concept we consider is

the formulation of dilation and erosion in terms of Partial Differential Equations (PDEs)

[14, 18, 33, 176]. Mimicking a special wave propagation process, the arising PDEs are
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hyperbolic Hamilton-Jacobi equations. Then, important numerical methods for discretiz-

ing the PDEs for dilation and erosion in the gray-value setting are the schemes of Rouy

and Tourin [170], Osher and Sethian [154] and the flux-corrected transport (FCT) scheme

of Breuß and Weickert [32]. Motivated by these developments and driven by an interest

to filter data arising in diffusion tensor magnetic resonance imaging (DT-MRI), the PDE-

based approach as well as the above mentioned schemes have been generalized to deal with

specific matrix fields, see e.g. [34, 35] and the references therein. The matrices defining

the data for these PDE-based morphological methods are symmetric, positive semi-definite

and of dimension three times three.

Secondly, we consider the developments in the recent work [36]. There, color images are

embedded into matrix fields consisting of symmetric 2 × 2 matrices. For these, matrix-

based operations are described that mimic dilation/erosion in the spirit of the classical,

set-theoretic approach.

As indicated we combine in this work the above mentioned developments in defining PDE-

based methods for mathematical morphology of color images. We employ the framework

presented in [36] to transform rgb data into a bicone-shaped color space that corresponds

to symmetric 2 × 2 matrices. For such matrices we define finite difference schemes that

describe in the discrete sense the PDEs of morphological dilation/erosion.

While on the technical side this translation of the schemes as described e.g. in [34] to

the color matrix framework seems at a first glance to be relatively straightforward, it is

beneficial to state some issues. First, the matrices we deal with here are not positive semi-

definite. Thus, taking over technical parts from methods developed in the aforementioned

DT-MRI context may not lead to useful results. Secondly, and as a technical difference to

the proceeding in [36], we do not employ here the procedures of addition and subtraction

motivated by Einstein addition in Hilbert spaces. Furthermore, and again in the light of the

many attempts in previous literature [16, 47, 72, 181], it is not self-evident that one obtains

reasonable numerical results when constructing a method for the purpose of color morphol-

ogy. However, for our approach we confirm experimentally that it does not give so-called

false colors, cf. [181]. This means, that our PDE-based dilation and erosion processes may

only lead to color modifications in the sense that they appear in higher and lower saturated
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versions of contributing colors, and not as a completely different color.

5.2 PDE-based Morphology

In this section, we first give a brief account of the two operations that are at the basis of our

developments, namely morphological dilation and erosion. As we seek to emphasize the

underlying ideas here, we stick to a simple presentation. A structuring element 𝐸 is a mask

that allows us to specify neighborhood structures in an image. Then one may use 𝑆𝐸s to

define morphological operators acting on them. For a given, initial image 𝑓 we write the

dilation and the erosion with such a structuring element 𝐸 as:

𝑓 ⊕ 𝐸 := sup{𝑓(𝑥− 𝑥′, 𝑦 − 𝑦′) | (𝑥′, 𝑦′) ∈ 𝐸} and (5.1)

𝑓 ⊖ 𝐸 := inf{𝑓(𝑥− 𝑥′, 𝑦 − 𝑦′) | (𝑥′, 𝑦′) ∈ 𝐸} (5.2)

respectively. Making use of these building blocks, one can define e.g. morphological

derivative operators. One which is useful in the context of this work is the so-called mor-

phological Laplacian [197] which reads as:

∆𝐸𝑓 := (𝑓 ⊕ 𝐸)− 2𝑓 + (𝑓 ⊖ 𝐸) (5.3)

As it is evident, the morphological Laplacian is a morphological counterpart of the second

derivative of a function. It allows to distinguish regions influenced by brightness minima

and maxima in an image. As mentioned in [153], this is useful for defining so-called shock

filters. In the gray-value setting, one step of shock filtering applied pixel-wise at an image

𝑓 may be described as:

𝑆𝐸𝑓 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓 ⊕ 𝐸 , ∆𝐸𝑓 < 0

𝑓 , ∆𝐸𝑓 = 0

𝑓 ⊖ 𝐸 , ∆𝐸𝑓 > 0

(5.4)
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As can be seen by considering (5.4), shock filtering amounts to applying dilation and ero-

sion in order to enlarge brightness maxima and minima, respectively, while the transition

line between these regions is managed by the morphological Laplacian. In a PDE-based

setting as already described in [153], the dilation and erosion PDEs are solved iteratively

in accordance to the process (5.4).

Thinking of a gray-valued image as a discrete representation of a continuous-scale func-

tion, some of the geometric characteristics of continuous morphology are omitted in its

discrete version. As an example, the definition of a disk-shaped structuring element is

easy in the continuous plane but especially on a small scale this is difficult or even im-

possible to realize conveniently on a discrete grid. To this end, it is necessary to specify

continuous mathematical morphology from the angle of curve evolution. By this method,

discrete mathematical morphology can be interpreted as the numerical implementation of

a continuous-scale evolution.

According to [175], dilation can be performed at infinitesimal steps. This motion generates

a set of velocity vectors, one for each point on the boundary of the disk-shaped (or more

generally, convex) structuring element. For this purpose, it is possible to parameterize these

vectors by the angle 𝜃 running over all possible angles about a central point in the plane, so

that 𝜃 ∈ [0, 2𝜋]. For a given initial image 𝑓 := 𝑓(𝑥, 𝑦), where (𝑥, 𝑦) denotes a point in the

image domain Ω, let 𝑢 := 𝑢(𝑥, 𝑦, 𝑡) be the image evolving under the process of interest in

time 𝑡. Then we have:

∂𝑡𝑢 = sup
𝜃

{𝑅(𝜃) · ∇𝑢} , (5.5)

where 𝑅(𝜃) is a function representing the boundary of the convex structuring element. In

this way, the following velocities are obtained for popular structuring elements 𝑆:

sup
𝜃

{𝑅(𝜃) · ∇𝑢} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖∇𝑢‖1 , 𝑆 = diamond

‖∇𝑢‖2 , 𝑆 = disk

‖∇𝑢‖∞ , 𝑆 = square

(5.6)
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Focusing again on the use of a disk-shaped structuring element and generalizing the process

to include erosion, we obtain the PDEs for gray-value dilation (+) and erosion (−) as

∂𝑡𝑢 = ±‖∇𝑢‖2 = ±
√︁

(∂𝑥𝑢)2 + (∂𝑦𝑢)2 on Ω× (0,∞) (5.7)

which we supplement by Neumann boundary conditions:

∂𝑛𝑢 = 0 on ∂Ω× (0,∞) (5.8)

and the initial condition defined by an input image 𝑓

𝑢(𝑥, 𝑦, 0) := 𝑓(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ Ω (5.9)

While it is possible to describe already at this point a matrix-valued counterpart of the PDEs

as in (5.7) as can be seen in [34, 35], we refrain from this here for shortness of presentation.

5.3 Numerical Methods for the PDEs of Dilation/Erosion

In this part, we briefly survey the schemes mentioned in the introduction that we will also

consider here for realizing our PDE-based approach. These are the first-order accurate

Rouy-Tourin (RT) scheme which is proposed in [170], the second-order method of Osher

and Sethian (OS) [154], and as a state-of-the-art approach we consider the flux corrected

transport (FCT) algorithm [32].

As a side note, we apply the symbol of 𝑢𝑛
𝑖,𝑗 as the gray-value of the evolving image 𝑢 at

the pixel located in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the image at the 𝑛𝑡ℎ time step during the

morphological progress. We recall standard notations for backward and forward differences

in 𝑥- and 𝑦-directions as follows:

𝐷𝑥
−𝑢

𝑛
𝑖,𝑗 = 𝑢𝑛

𝑖,𝑗 − 𝑢𝑛
𝑖−1,𝑗 , 𝐷𝑥

+𝑢
𝑛
𝑖,𝑗 = 𝑢𝑛

𝑖+1,𝑗 − 𝑢𝑛
𝑖,𝑗 ,

𝐷𝑦
−𝑢

𝑛
𝑖,𝑗 = 𝑢𝑛

𝑖,𝑗 − 𝑢𝑛
𝑖,𝑗−1 , 𝐷𝑦

+𝑢
𝑛
𝑖,𝑗 = 𝑢𝑛

𝑖,𝑗+1 − 𝑢𝑛
𝑖,𝑗

(5.10)
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Now we consider a uniform pixel width ℎ in both spatial grid directions in an image and

a numerical time step size 𝜏 for the evolution. Our aim is now to discretize the PDE

(5.7), sticking thereby for the presentation here to the case of dilation with a disk-shaped

structuring element. Then, in the RT scheme, the dilation operation is expressed by:

𝑢𝑛+1
𝑖,𝑗 = 𝑢𝑛

𝑖,𝑗 +
𝜏

ℎ

√︁
(max(0, 𝐷𝑥

+𝑢
𝑛
𝑖,𝑗,−𝐷𝑥

−𝑢
𝑛
𝑖,𝑗))

2 + (max(0, 𝐷𝑦
+𝑢

𝑛
𝑖,𝑗,−𝐷𝑦

−𝑢
𝑛
𝑖,𝑗))

2 (5.11)

while the second-order OS method is given by

𝑢𝑛+1
𝑖,𝑗 =

𝑢𝑛
𝑖,𝑗

2
+

𝑢−𝑛+1
𝑖,𝑗

2
+

𝜏

2ℎ
𝐿
(︀
𝑢−𝑛+1, 𝑖, 𝑗

)︀
) (5.12)

where

𝑢−𝑛+1
𝑖,𝑗 = 𝑢𝑛

𝑖,𝑗 +
𝜏

ℎ
𝐿 (𝑢𝑛, 𝑖, 𝑗)) (5.13)

and

𝐿(𝑢𝑛, 𝑖, 𝑗) =

[︃(︂
min

{︂
𝐷𝑥

−𝑢
𝑛
𝑖,𝑗 +

1

2
mm(𝐷𝑥

−𝐷
𝑥
+𝑢

𝑛
𝑖,𝑗, 𝐷

𝑥
−𝐷

𝑥
−𝑢

𝑛
𝑖,𝑗), 0

}︂)︂2

+
(︀
max

{︀
𝐷𝑥

+𝑢
𝑛
𝑖,𝑗 − 1

2
mm(𝐷𝑥

+𝐷
𝑥
+𝑢

𝑛
𝑖,𝑗, 𝐷

𝑥
−𝐷

𝑥
+𝑢

𝑛
𝑖,𝑗), 0

}︀)︀2
+

(︀
min

{︀
𝐷𝑦

−𝑢
𝑛
𝑖,𝑗 +

1
2
mm(𝐷𝑦

−𝐷
𝑦
+𝑢

𝑛
𝑖,𝑗, 𝐷

𝑦
−𝐷

𝑦
−𝑢

𝑛
𝑖,𝑗), 0

}︀)︀2
+

(︀
max

{︀
𝐷𝑦

+𝑢
𝑛
𝑖,𝑗 − 1

2
mm(𝐷𝑦

+𝐷
𝑦
+𝑢

𝑛
𝑖,𝑗, 𝐷

𝑦
−𝐷

𝑦
+𝑢

𝑛
𝑖,𝑗), 0

}︀)︀2]︁ 1
2

(5.14)

The function mm(· , · ) indicates the minmod function which is given as

mm(𝛼, 𝛽) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(𝛼, 𝛽) , 𝛼 < 0, 𝛽 < 0

min(𝛼, 𝛽) , 𝛼 > 0, 𝛽 > 0

0 , otherwise

(5.15)

In this part we provide a brief introduction of the FCT scheme. The main concept in

the FCT scheme is to use the RT scheme in a predictor step in a first phase. Then the

unwanted blurring effects generated by the first-order upwind derivatives in the RT scheme

are measured to reverse the associated quantity in a corrector step that performs stabilized
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inverse diffusion. As the next step, we write the values obtained after the predictor step

performed by the RT scheme in the format 𝑢𝑝
𝑖,𝑗 at pixel (𝑖, 𝑗). With the definitions :

𝑔𝑖+1/2,𝑗 := mm
(︁
𝐷𝑥

−𝑢
𝑝
𝑖,𝑗,

𝜏

2ℎ
𝐷𝑥

+𝑢
𝑝
𝑖,𝑗, 𝐷

𝑥
+𝑢

𝑝
𝑖+1,𝑗

)︁
, (5.16)

𝑔𝑖,𝑗+1/2 := mm
(︁
𝐷𝑦

−𝑢
𝑝
𝑖,𝑗,

𝜏

2ℎ
𝐷𝑦

+𝑢
𝑝
𝑖,𝑗, 𝐷

𝑦
+𝑢

𝑝
𝑖,𝑗+1

)︁
, (5.17)

where mm(· , · , · ) is a straightforward extension of (5.15) and

𝑄ℎ :=

√︂(︁ 𝜏

2ℎ

⃒⃒
𝑢𝑝
𝑖+1,𝑗 − 𝑢𝑝

𝑖−1,𝑗

⃒⃒)︁2

+
(︁ 𝜏

2ℎ

⃒⃒
𝑢𝑝
𝑖,𝑗+1 − 𝑢𝑝

𝑖,𝑗−1

⃒⃒)︁2

, (5.18)

𝑄𝑙 :=

√︁
(𝛿𝑢𝑝

𝑖 )
2 +

(︀
𝛿𝑢𝑝

𝑗

)︀2
, (5.19)

where the stabilized inverse diffusive fluxes are given by

𝑢𝑝
𝑖 :=

𝜏

2ℎ

⃒⃒
𝑢𝑝
𝑖+1,𝑗 − 𝑢𝑝

𝑖−1,𝑗

⃒⃒
+ 𝑔𝑖+1/2,𝑗 − 𝑔𝑖−1/2,𝑗 , (5.20)

𝑢𝑝
𝑗 :=

𝜏

2ℎ

⃒⃒
𝑢𝑝
𝑖,𝑗+1 − 𝑢𝑝

𝑖,𝑗−1

⃒⃒
+ 𝑔𝑖,𝑗+1/2 − 𝑔𝑖,𝑗−1/2 , (5.21)

we can write the subsequent corrector step of the FCT scheme as

𝑢𝑛+1
𝑖,𝑗 = 𝑢𝑝

𝑖,𝑗 +𝑄ℎ −𝑄𝑙 (5.22)

To summarize, a subsequent application of scheme (5.11) for obtaining predicted data 𝑢𝑝
𝑖,𝑗 –

instead of 𝑢𝑛+1
𝑖,𝑗 in (5.11) – and the corrector step (5.22) making use of the predicted values

is equivalent to the FCT scheme.

Finally, our aim is to work with fields of symmetric 2 × 2 matrices which represent color

data instead of gray-values. For the definition of corresponding numerical schemes, we

proceed in a straightforward fashion building upon (5.10)–(5.22). Instead of the evolving

gray-values 𝑢𝑛
𝑖,𝑗 we will plug in the 2×2 matrices 𝑈𝑛

𝑖,𝑗 , with 𝑈0
𝑖,𝑗 := 𝑓𝑖,𝑗 where 𝑓 corresponds

to a given color image. This implicitly defines underlying color-valued PDEs. Obviously,

in order to give a meaning to the formulae (5.10)–(5.22) in the latter setting, we must

define suitable notions for maximum and minimum of up to three matrices, and we must
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give useful expressions for the square root and the absolute value of occurring matrices.

This will be done in Section 5.5.

5.4 Color Images and Matrix Fields

In this section, we shortly recall the conversion of rgb values to matrices as in [36]. Given

an rgb image we transform it in two steps into a matrix field of equal dimensions, i.e. we

assign each pixel of the image a symmetric 2 × 2 matrix. In the first step, we transform

the rgb color values to the hcl color space, assuming that red, green and blue intensities are

normalized to [0, 1]. For a pixel with such intensities 𝑟, 𝑔, 𝑏, we obtain its hue ℎ, chroma 𝑐

and luminance 𝑙 via 𝑀 = max{𝑟, 𝑔, 𝑏}, 𝑚 = min{𝑟, 𝑔, 𝑏}, 𝑐 = 𝑀−𝑚, 𝑙 = 1
2
(𝑀+𝑚), and

ℎ = 1
6
(𝑔− 𝑏)/𝑀 modulo 1 if 𝑀 = 𝑟, ℎ = 1

6
(𝑏− 𝑟)/𝑀 + 1

3
if 𝑀 = 𝑔, ℎ = 1

6
(𝑟− 𝑔)/𝑀 + 2

3

if 𝑀 = 𝑏, cf. [7].

Figure 5-1: Color bi-cone, figure adapted from [36]

Replacing then luminance 𝑙 with �̃� := 2𝑙−1, and interpreting 𝑐, 2𝜋ℎ, and �̃� as radial, angular

and axial coordinates of a cylindrical coordinate system, we have a bijection from the unit

cube of triples (𝑟, 𝑔, 𝑏) onto a solid bi-cone, see Figure 5-1.
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The bi-cone is then transformed to the Cartesian coordinates via 𝑥 = 𝑐 cos(2𝜋ℎ), 𝑦 =

𝑐 sin(2𝜋ℎ), 𝑧 = �̃�. The second step takes the coordinates (𝑥, 𝑦, 𝑧) and maps them to sym-

metric matrices 𝐴 ∈ Sym(2) via

𝐴 :=

√
2

2

⎛⎝𝑧 − 𝑦 𝑥

𝑥 𝑧 + 𝑦

⎞⎠ (5.23)

It is worthwhile noting that the mapping 𝛹 : R3 → Sym(2) in (5.23) is bijective. Denoting

by ℳ ⊂ Sym(2) the set of all matrices 𝐴 that correspond to points of the bi-cone, we have

in fact by (5.23) a bijection between the rgb color space and the bi-cone ℳ. The inverse

transform is obtained in a straightforward way, cf. [36].

5.5 Pseudo Supremum/Infimum and Functions of Matri-

ces

As indicated at the end of Section 5.3, we need to give meaning to the maximum and

minimum of up to three matrices of Sym(2), as well as to the square root and the absolute

value of such matrices. Thereby we rely on corresponding notions as discussed e.g. in

[34].

A related point to consider is that any matrix 𝐴 ∈ Sym(2) can be decomposed into the

format 𝐴 = 𝑉 diag(𝜆1, 𝜆2)𝑉
⊤ where 𝑉 := (𝑣1, 𝑣2) accumulates the eigenvectors 𝑣1, 𝑣2 of

𝐴 as column vectors and 𝜆1,2 denote the corresponding eigenvalues. Then one may define

a function 𝜙 of a matrix 𝐴 via

𝜙(𝐴) := 𝑉 diag(𝜙(𝜆1), 𝜙(𝜆2))𝑉
⊤ (5.24)

in terms of its standard scalar representation. With 𝜙(·) =
√
· and 𝜙(·) = |·| we thus obtain

square root and absolute value of a symmetric matrix, respectively.

Regarding the formula of numerical schemes in Section 5.3, we need to calculate the max-

imum and minimum of up to three symmetric matrices. It will turn out that instead of
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maximum and minimum we will seek a supremum and infimum, respectively, and it will

suffice to elaborate in detail on the supremum.

Concerning matrices 𝐴,𝐵,𝐶 ∈ Sym(2), determining the supremum of two such matrices

can be done making use of (5.24) by

sup(𝐴,𝐵) :=
𝐴+𝐵

2
+

|𝐴− 𝐵|
2

(5.25)

adopting a corresponding scalar relation. Obviously, we can proceed by

sup1 := sup(𝐴, sup(𝐵,𝐶)) ,

sup2 := sup(𝐵, sup(𝐴,𝐶)) ,

sup3 := sup(𝐶, sup(𝐴,𝐵))

(5.26)

But generally, for 𝐴,𝐵,𝐶 ∈ Sym(2) we have

sup1 ̸= sup2 ̸= sup3 ̸= sup1 (5.27)

Consequently, we approximate the supremum of {𝐴,𝐵,𝐶} by calculating the average of

sup1, sup2 and sup3, as the sup𝑎𝑣𝑔 which is an upper bound of each initial matrix.

To improve this often very generous upper bound, we find the optimal value of 𝜂 ≥ 0 in

such a way that

sup𝑎𝑣𝑔 − 𝜂𝐼 ≥ 𝑊 , 𝑊 ∈ {𝐴,𝐵,𝐶} , (5.28)

where 𝐼 is the 2×2 identity matrix. The optimal amount 𝜂𝑜𝑝𝑡 of 𝜂 in (5.28) is the minimum

eigenvalue of (sup𝑎𝑣𝑔 −𝐴), (sup𝑎𝑣𝑔 −𝐵), and (sup𝑎𝑣𝑔 −𝐶). At the end of this process, we

obtain a proper supremum of {𝐴,𝐵,𝐶} as

sup𝑜𝑝𝑡(𝐴,𝐵,𝐶) := sup𝑎𝑣𝑔 − 𝜂𝑜𝑝𝑡𝐼 (5.29)

To obtain an infimum of three matrices, one may simply set

inf𝑜𝑝𝑡(𝐴,𝐵,𝐶) := sup𝑜𝑝𝑡(−𝐴,−𝐵,−𝐶) (5.30)
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5.6 Experimental Results

As the first experiment we test if our color morphology operations retrieve gray-scale mor-

phology, since this may be considered a necessary condition to obtain a reasonable exten-

sion of the latter. To this end, we employ rgb values for black and white and use the new

color-valued FCT scheme as described in Section 5.3. In Fig. 5-2 we exhibit the result of

dilation/erosion on the yin-yang image of size 256 × 256. Operations are performed ten

times with time step size 𝜏 = 1/2 and the disk-shaped stucturing element. As illustrated,

outcomes are equivalent to gray-scale morphology.

Figure 5-2: (Center) Input image yin-yang [5] defined using rgb values for black/white.
(Left) Ten times dilation with color-valued FCT. (Right) Ten times erosion with color-
valued FCT.

In our second test we aim to observe dilation and erosion in color space with the RT

scheme. The reasoning is here, that independently from its usefulness by its own the RT

scheme serves as the basis of the FCT method and it is very similar to the first-order method

that the OS scheme builds upon. Therefore, it is of fundamental importance for our PDE-

based approach that the RT scheme yields reasonable results, as otherwise the more ad-

vanced OS and FCT schemes cannot be expected to do something valuable.

As observed in Fig. 5-3, we can confirm that the RT scheme performs as expected.

Taking the classic Lena test image of resolution 128× 128 as input image, we see that after

six iterations of dilation and erosion with time step size 𝜏 = 1/2 that bright and dark colors

are enhanced, respectively. The blurring we observe here is the standard numerical artifacts

resulting from the first-order upwind discretization. In an extension of these experiments,
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Figure 5-3: (Top row) Original Lenna image [2], and results of dilation and erosion com-
puted with the RT scheme. (Bottom row) Morphological Laplacian and results of five and
ten iterations of shock filtering with the RT scheme.

we compute the morphological Laplacian and show results of shock filtering based on our

framework using also the RT scheme with 𝜏 = 1/2. As observed, we obtain visually

very plausible results for this process. Is is important to note that for the purpose of shock

filtering the RT scheme is the optimal PDE-based method since the shock-filtering process

is designed to give sharp edges.

Our next experiment serves two purposes. On the one hand we compare the quality of the

numerical schemes RT, OS, and FCT in our new framework in order to see if the non-linear

operations performed in the algorithms still give reasonable, interpretable results. On the

other hand, we compare here with the method of Burgeth and Kleefeld (BK) [36] that is

technically more similar to classic, lattice-based morphology than our PDE-based schemes.

The BK method employs the same color space yet with a different means of addition and

subtraction of color matrices. As a side note, we employ in BK a cross-shaped structuring

element here as the approximation of a disk on a 3× 3 grid.
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Figure 5-4: Input image for comparison of numerical methods [29]

To this end, we employ a test image based on a micro biological scene, based on an oil

painting of Carolyn K. Snyder. It is of resolution 128 × 128 and features diverse colors as

well as round structures, see Fig. 5-4.

The results of our comparison are displayed in Fig. 5-5 where we show the images after

several dilation steps. They show that all of the PDE-based methods give results of expected

quality. The RT scheme yields a blurry dilated image and the FCT scheme very sharp edges

while the OS method is somewhere in between those schemes. We also see no obvious

color distortions, and round shapes evolve in a round way as by the underlying disk-shaped

structuring element used for the PDE-based methods. In the result of the BK method for

discrete morphology, we recognize the influence of the cross-shaped structuring element

while we do not observe other color effects as in the results of the PDE-based schemes,

although these employ different addition and subtraction rules. Note that the PDE-based

FCT method gives visually as sharp edges as the BK method.

Our next and final experiment is dealing with the influence of the color space. Obvi-

ously, the value of the pseudo supremum resp. infimum of two colors in the dilation resp.

erosion process is dependent on the location of those colors in the bi-conal color structure.

Generally, the pseudo supremum of any color faced with white is white and the pseudo

infimum of any color faced with black is black. Thus we will not see any new appearing

color at the edge to a black or white region.
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RT OS

FCT BK

Figure 5-5: Results of eight time steps dilation with 𝜏 = 1/2 for indicated PDE-based
schemes and in accordance four times erosion of BK method [29].

Also in other cases, if one of the primary colors equals the pseudo supremum or infimum

of them, then we do not have any color changes in the border of those colors during basic

morphological operations. Some examples of this situation are indicated in Fig. 5-6 by

yellow frames. But, if the pseudo supremum or infimum of the two colors equals another

color, it appears as a modified color. Some situations like these are marked with black

frames in Fig. 5-6. Note that the new colors are not false colors [181] but appear as more

resp. less saturated versions of bordering colors.

It is worthwhile to investigate this phenomenon at hand of an example dealing with the

colors light magenta (lm), dark magenta (dm) and cyan (cy). Light magenta has the rgb
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Figure 5-6: Original image of size 256×256 (left) and result after five iterations of dilation
using FCT with 𝜏 = 1/2 and a disk-shaped structuring element (right). Black frames
indicate new colors that appear by use of the supremum rule and the yellow ones mark
color interaction without new colors [29].

values (252, 58, 157), the numbers are (217, 57, 153) for dark magenta, and (62, 186, 212)

for cyan. The equivalent matrices of these colors are as follows (entries rounded):

lm =

⎡⎣ 0.427 0.463

0.463 −0.122

⎤⎦ , dm =

⎡⎣ 0.314 0.359

0.359 −0.208

⎤⎦ cy =

⎡⎣ 0.128 −0.409

−0.409 −0.022

⎤⎦
(5.31)

By computing corresponding pseudo suprema of two matrices, we obtain (rounded):

sup (lm,dm) =

⎡⎣ 0.429 0.461

0.461 −0.119

⎤⎦ , sup (dm,cy) =

⎡⎣ 0.616 −0.025

−0.025 0.280

⎤⎦ (5.32)

The rgb amounts of the first pseudo supremum are (252, 59, 157), while in the second one

we gain (200, 178, 239).

Figure 5-7: Colors in the example [29]
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These observations show that during a dilation process, for the left inner edge as seen in

Fig. 5-7, we have a color almost like light magenta which appears at the border as the

extension of the light magenta color, while in the right inner border, a new color emerges

as the supremum of the dark magenta and the cyan areas. However, observe also here that

this is not a false color.
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Chapter 6

General Conclusion

6.1 Summary of Contributions

In this thesis, we investigated two different areas of the deep learning research.

In chapter 3, we introduced a novel hybrid deep learning architecture for interactive re-

gion segmentation and captioning whereby the user is able to specify an arbitrary region

of the image that should be highlighted and described. To this end, we trained three differ-

ent types of the Fully Convolutional Network (FCN) as various versions of our interactive

segmentation module to identify the User Intented Region (UIR). In parallel, a Recogni-

tion and Captioning (ReCap) module is used to understand the visual contents of the scene

by drawing bounding boxes around detected objects, estimating their objectness scores

and producing their linguistic descriptions. During our fusion approach, the detected UIR

will be explained with the caption of the best match bounding box. To the best of our

knowledge, this is the first work that provides such a comprehensive output. In addition,

replacement of the bounding boxes with the result of the interactive segmentation leads to

a better understanding of the image captioning output as well as an enhancement in object

localization accuracy.

The proposed model can be used for mapping natural language to images and vice versa,

better control of visual contents in social media, medical image understanding and provid-

ing a better understanding of the virtual world for visually impaired people.

In chapter 4, we proposed a bidirectional relation between deep texture representation and
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its linguistic description via a hybrid CNN-RNN model that enables end-to-end learning

of the selective texture labeling. This novel architecture provides new opportunities to de-

scribe, search, and also retrieve texture images by their linguistic descriptions. To be able

to train such a model, we generated a multi-label texture data set that covers color, mate-

rial, and pattern attributes of the textured images simultaneously. Our contribution to the

automatic generation of texture descriptions provides an opportunity to enrich the existing

vocabulary of the image captioning task. Such a conceptual extension can be used in the

fine-grained image captioning as well as the design of more intelligent recommender sys-

tems.

In the final chapter, we proposed a novel approach to define mathematical morphology on

color images. To this end, we converted common RGB-values of the color images into a

new biconal color space and then combined two approaches of mathematical morphology

to give meaning to the maximum and the minimum of the matrix field data and formulate

our novel strategy.

6.2 Future Directions

Combination of the interactive segmentation module with the pretained CNN of the

recognition and captioning module: In chapter 3, two modules of the proposed architec-

ture should be trained separately on different types of the training data. As the structure

of the interactive segmentation module and the pretained CNN of the recognition and cap-

tioning module are identical, it would be interesting to develop a new strategy for their

combination. This could be useful to have a seamless architecture that can be trained once.

To this aim, the training data should involve user interactions that are able to influence seg-

mentation, recognition and captioning tasks simultaneously.

Design of a recommender system based on the provided deep texture representation:

Our new understanding about texture representations and their linguistic explanations via

deep learning makes it possible to design a new generation of AI-based recommender sys-

tems that are able to interact with users of the commercial websites to introduce produc-
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tions that satisfy customer’s criteria about the color, material and the intrinsic pattern of the

products such as clothes, building stones, leather products, variety of fabrics, artworks and

wooden products.
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