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Abstract

For many countries, gasturbine technology is one of the key technologies for the reduction
of climate-damaging pollutant emissions. The profitability of such facilities, however,
is highly dependent on the price for the utilized fossil fuel, which is why there is a
constant need for increased efficiency. The potential of increasing the efficiency of the
individual components is basically limited by factors which will reduce operating life.
The goal of this thesis is to develop methods for improved automated structural design
optimization, which shall be developed on the basis of compressor airfoils. Special
attention is payed to avoid the excitation of failure critical eigenmodes by detecting them
automatically. This is achieved by introducing a method based on self-organizing neural
networks which enables the projection of eigenmodes of arbitrary airfoil geometries onto
standard surfaces, thereby making them comparable. Another neural network is applied to
identify eigenmodes which have been defined as critical for operating life. The failure rate
of such classifiers is significantly reduced by introducing a newly developed initialization
method based on principle components. A structural optimization is set up which shifts
the eigenfrequency bands of critical modes in such a way that the risk of resonance with
engine orders is minimized. In order to ensure practical relevance of optimization results,
the structural optimization is coupled with an aerodynamic optimization in a combined
process. Conformity between the loaded hot-geometry utilized by the aerodynamic design
assessment and the unloaded cold-geometry utilized by the structural design assessment is
ensured by using loaded-to-unloaded geometry transformation. Therefor an innovative
method is introduced which, other than the established time-consuming iterative approach,
uses negative density for a direct transformation taking only a few seconds, hence, making
it applicable to optimization. Additionally, in order for the optimal designs to be robust
against manufacturing variations, a method is developed which allows to assess the
maximum production tolerance of a design from which onwards possible design variations
are likely to violate design constraints. In contrast to the usually applied failure rate, the
production tolerance is a valid requirement for suppliers w.r.t. expensive parts produced
in low-quantity, and therefore is a more suitable optimization objective.





Kurzfassung

Für viele Länder ist die Gasturbine eine der Schlüsseltechnologien, um ihren klimaschae-
dlichen Schadstoffausstoß zu reduzieren. Die Profitabilität solcher Anlagen hängt jedoch
wesentlich von den Preisen des jeweiligen fossilen Brennstoffs ab, weshalb ein stetiger
Entwicklungsdruck zu immer effizienteren Anlagen zu verzeichnen ist. Die mögliche
Effizienzsteigerung der einzelnen Komponenten wird jedoch im Wesentlichen durch le-
bensdauerreduzierende Faktoren beschränkt. Daher ist das Ziel dieser Arbeit, Methoden
zur besseren automatisierten strukturdynamischen Bauteiloptimierung am praktischen
Beispiel von Verdichterschaufeln zu entwickeln. Insbesondere liegt der Fokus darauf, die
Erregung kritischer Eigenschwingungen zu vermeiden. Zu diesem Zweck müssen vorher als
kritisch definierte Eigenformen automatisiert erkannt werden. Dies geschieht mit Hilfe
einer auf Basis von selbstorganisierenden neuronalen Netzen entwickelten Projektionsme-
thode, welche es ermöglicht, Schwingungseigenformen beliebiger Schaufelgeometrien auf
eine Standardfläche zu projizieren, um eine Vergleichsgrundlage zu erhalten. Mit Hilfe
eines weiteren neuronalen Netzwerks wird geprüft, ob eine projizierte Eigenform einer der
zuvor als kritisch definierten Eigenformen entspricht. Dieser Klassifizierer wurde durch
eine neu entwickelte Initialisierungsmethode basierend auf Priniciple-Component-Analysis
in seiner Fehlerrate entscheidend verbessert. In einen strukturellen Optimierungsprozess
eingebettet führen diese Methoden zu einer Minimierung des Risikos von Bauteilresonanz
zwischen Eigenschwingungen und Anregungen. Um den praktischen Nutzen der Opti-
mierungsergebnisse sicherzustellen, wird der strukturelle Optimierungsprozess mit einem
aerodynamischen gekoppelt. Dabei wird die Konsistenz zwischen den auf der belasteten
heißen Geometrie beruhenden aerodynamischen und den ausgehend von der kalten unbe-
lasteten Geometrie berechneten strukturmechanischen Ergebnissen durch eine innovative
Methode erreicht, welche eine negative Bauteildichte zur direkten Transformation in nur
wenigen Sekunden nutzt und somit im Gegensatz zur bisherigen iterativen Methode für
Optimierungsprozesse praktisch anwendbar ist. Damit die optimalen Entwürfe aus dem
Optimierungsprozess zusätzlich robust gegen stochastische Produktionsvariationen sind,
wurde eine Methode zur Bestimmung der Produktionstoleranz eines Entwurfs entwickelt,
ab der mögliche Entwürfe Versagenskriterien verletzen würden. Die Produktionstoleranz ist
eine valide Anforderung an Zulieferer für teure und in geringer Stückzahl produzierte Bau-
teile und somit, als Optimierungskriterium formuliert, aussagekräftiger als die üblicherweise
verwendete Ausfallrate.
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Nomenclature

Roman Letters

b offset between hyperplane and origin
c section-wise chord length of airfoil, eigenmode class
C constraint penalty
d weight-function, reduced dimensionality
dst distance metric
D unreduced dimensionality
E Young’s modulus
f function
fA engine order frequency [Hz]
fE eigenfrequency [Hz]
F dimensionality of feature space
FC centrifugal force
FR failure rate
h neighborhood function
hF fillet height
H blade height
i, j, k, m, n indices
I, J number of nodes in a rectangular mesh
k spring rate
L Lagrange function
LFL1, LFL2 first and second flutter limit
LFR limit of dynamic stress ratio
LS limit of distance between sample point and sampling bound
LD dual Lagrange function
LR learning rate
L+

R, L−
R increase and reduction factor of learning rate

m point mass

III



IV Nomenclature

n shaft speed
nF counter of failed tries
N number of elements in a general data set
Naero number of aerodynamic constraints
NA number of samples failing design constraints
NB maximum number of training epochs
NC number of clusters (classes)
NE number of finite elements
NF maximum number of failed tries
N I number of circumferential installation of a specific source
NM number of eigenmodes in reference set
NN number of nodes
NR number of compressor rows
Nstruct number of structural constraints
NS, NT sample size
N r number of misclassifications on row r

p design parameter
pSS, pP S static pressure field on the suction and pressure side
P 95 95% percentile
P 95

Δpt
95% percentile of Δpt

P 95
ωOD

95% percentile of ωOD

r radial compressor coordinate, compressor-row number
rHub, rT ip radius of the compressor hub and casing
R radius
RF fillet radius at the blade
Rp02 yield strength
s silhouette value
Δs⊥ symmetric production tolerance
S surface of airfoil or body
St Strouhal-number
t section-wise local airfoil thickness, time
vrel relative flow velocity
V , VB volume, volume of body
w weight or penalty factor
wA, wE penalty factor for engine orders and eigenmode shapes
x, y, z Cartesian coordinates
xS axial shift



Nomenclature V

Greek Letters

α free parameter, Lagrange or KKT multiplier
β chamber-line angle
βL, βT leading- and trailing-edge-metal angle
γ Lagrange or KKT multiplier
ε error, deviation
ζ margin
η percentage of correct classification
θ circumferential angle, phase shift
θS shift in circumferential direction
λ eigenvalue
ν Poisson’s ratio
ξ slack variable
ρ density
σ variance
σv, σm, σa von Mises stress, its mean and dynamic part
φ phase shift
ω oscillation frequency, eigenfrequency, angular velocity
Ω tolerance hull around airfoil surface
Vectors and Matrices

b vector of inequality constraints
B matrix of eigenvectors βββi

BL, BNL linear and nonlinear strain-displacement-transformation matrices
C stress-strain tensor
D diagonal matrix resulting from singular value decomposition
ei ith unit vector
f , g, h vector functions
fC , fS, fV concentrated, surface, and volume force vector
F matrix of high dimensionally transformed samples
FC , FS, FV sum of concentrated, surface, and volume force vectors
H displacement-interpolation matrix
I identity matrix
K kernel matrix
KL, KNL linear and nonlinear stiffness matrices
L lower triangular matrix
m, mc estimated mean vector



VI Nomenclature

M mass matrix
n normal vector
p vector of design variables
pΔ sampled design vector
sc within-cluster scatter
tHL, tOL net activation vector of hidden and output layer
u⊥, u→, u↑ projected displacement-field vectors
U combined vector of displacements of all FE-nodes
v eigenvector
V matrix of eigenvectors vi

wHL, wOL hidden- and output-layer-weight vector
WHL hidden-layer-weight matrix
x general coordinate vector
βββ eigenvector of subspace eigenproblem
Λ diagonal matrix of eigenvalues
Λ+ diagonal matrix of inverse eigenvalues different from zero
μμμ true mean vector
σσσ real stress tensor
Σ covariance matrix
ΣB, ΣC , ΣW between-class, class, and within-class scatter matrix
τττ Cauchy-stress tensor
φφφ structural eigenvector or vector based on structural eigenvector data
Subscripts

0 reference or initial configuration
L leading edge
R matrix or vector of reduced size
T trailing edge
Superscripts

∗ , ◦ case-dependent markers
C, H cold and hot configuration
L lower stiffness bound
max maximum value
nom nominal value
T transposed
U upper stiffness bound



Nomenclature VII

Symbols and Operators

•̇, •̈ first and second time derivative
•̄ average, mean value or complex conjugate of a complex number
•̂ transformation of matrix or vector into higher dimension
δij Kronecker delta (= 1 for i = j, = 0 else)
•̃ normalized value
Δ difference
•′ projection of a vector
π permutation
•̆, “• lower and upper limits
conv filters a set of elements for those that form the convex hull
diag diagonal of matrix
dist distance between a vector and the closest member in set of vectors
dist average distance
exp exponential function
E expected value (mean value operator)
ES cross entropy
MDA, kMDA MDA and kMDA operator applied to a dataset
PCA, kPCA PCA and kPCA operator applied to a dataset
Re real part of a complex number
Sets

D set of parameters vectors (designs)
H set of points on hyperplane
P admissible design space
T set of design variations within a specific production tolerance
V set of vectors
VT , VV training and validation set
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2D 2-Dimensional
3D 3-Dimensional
blisk Bladed Integrated Disk
BPNN Back-Propagating-Neural Network
CAD Computer-Aided Design
CFD Computational Fluid Dynamics
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CPV Characteristic Pixel Vector
DoE Design of Experiments
DoF Degree(s) of Freedom
FDA Fisher-Discriminant Analysis
FE, FEA, FEM Finite Elements, Finite-Element Analysis and Method
FFNN Feed-Forward-Neural Network
HCF High-Cycle Fatigue
HL Hidden Layer
IGV Inlet Guide Vane
IL Input Layer
KKT Karush-Kuhn-Tucker
kMDA Kernel-based Multiple Discriminant Analysis
kPCA Kernel-based Principle-Component Analysis
kPDA kMDA applied to kPCA pojection of data
LMCA Linear Modal-Assurance Criterion
MCA Modal-Assurance Criterion
MDA Multiple Discriminant Analysis
MRF Mode-Resonance Factor
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PCA Principle Component Analysis
Q3D Quasi 3-Dimensional
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1 Introduction

For electric energy supply in modern societies, the gas turbine is one of the key technologies
to meet the increasingly restrictive limitations on exhaust emissions. Due to its ability to
operate with a large variety of combustibles, it is a technology which enables the continuous
usage of fossil fuels and is able to fill the gap between repelling nuclear energy and the
favored renewable energies. In particular, coal as the cheapest and most available fossil
fuel will continue to be the main energy source for many third world countries which often
cover over 60% of their energy demand with coal (World Energy Council (2016)). Since
the introduction of pressurized fluidized bed combustion (PFBC; Mudd (1995)) and its
permanent enhancement, coal can be utilized in a much cleaner way with gas turbines
than in conventional plants with boilers and steam turbines, which makes the gas turbine
to be an important future technology. But also countries deploying renewable energies are
dependent on gas turbine technology, because small but flexible power plants are required
to compensate the erratic availability of sun, water, and wind in order to ensure stable
power networks.

Designing gas turbines is a complex task, since objectives and constraints of multiple
disciplines must be considered. For large scale stationary gas turbines installed to cover
the main network demand, this task is becoming increasingly challenging due to the
need to exceedingly reduce fuel consumption, maintenance effort (reduction of running
costs and downtime due to maintenance), and environmental pollution. Traditionally, the
development of gas turbines is subdivided into the development of task specific components
such as compressor, combustor, and turbine, see Fig.1.1. Clearly, the compressor takes most
of the length and parts of the gas-turbine, owing to the circumstance that the pressure rise
counteracts the airflow which is therefore exposed to boundary-layer separation, i.e., the
risk of surge which limits the possible diffusion (pressure rise) per row (de Haller (1953) and
Lieblein et al. (1953)). The overall pressure rise of the compressor is a requirement which
is defined based on the power demand and the thermodynamic Brayton cycle (Russel D’A
(1973)). The limited diffusion per row and the demand for aerodynamically most efficient
designs has lead to slender airfoil structures which are conflicting with the need for
structurally more durable designs requiring less maintenance. The multidisciplinary design
requirements the compressor design has to account for enforce time-consuming iterations
between different design tools and also within the discipline-specific design tools. Therefore,
engineers are more and more troubled to explore better designs, where automation will
become a mandatory necessity.

1
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compressor

turbine
combustor

Figure 1.1: Compressor, combustor, and turbine of ALSTOM gas turbine GT13E2 (printed
by courtesy of General Electric Switzerland)

The subject of process automation becomes additionally pressing when design metho-
dology changes from a deterministic to a probabilistic approach where uncertainties in
running, environmental, and installation conditions as well as in production deviations
require statistically relevant numbers of design variations in order to capture the stochastic
behavior of design properties in service. As described by Flassig (2011), the goal of the
probabilistic methodology is to find robust designs, i.e., designs which have little variance
in their performance and little risk of failing design constraints w.r.t. design-parameter
uncertainties and varying operating conditions.

The clear need for optimization processes which incorporate multidisciplinary automa-
ted design processes is more and more accounted for by industry and science. However,
still industry struggles with the broad application of such processes since their complexity
and high expectations in the results (design requirements for automated design processes
are often defined more challenging, because they don’t soften as a result of renegotiation
between different departments), make computations expensive and time-consuming. The
problem is that acquiring engineering knowledge and combining existing design tools in
order to create automated design processes does not necessarily lead to the exploitation
of the whole potential of optimization processes, because either the applied automated
design processes are too slow, the architecture of the optimization process is poor, or
optimization objectives and constraints do not sufficiently consider the specific need of the
optimization algorithms being applied. In fact, further research and development has to
consider new methods, architectures, and criteria which accommodate the potential of
process automation.

As one of the key components in an airfoil-design process, structural design assessment
is of special importance, since no part will be produced if it does not fulfill the mandatory
criteria. Additionally, structural design assessment is especially challenging because
ensuring a design’s reliability throughout its lifetime often requires complex modifications
of the geometry in order to achieve the desired structural dynamic characteristic. The
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goal of this thesis is to introduce methods which allow to automatically improve the
structural characteristics of airfoils in a most efficient manner and to ensure structural
integrity throughout the lifetime w.r.t. uncertainties which may harm design robustness.
As those methods have to prove their value within an optimization process, which can
only provide reasonable results by accounting for the conflict between aerodynamic and
structural design goals, this thesis will validate the methods using a very effective coupled
aerodynamic and structural design-optimization process. Since the aerodynamic part of
the design process is a result of another work package within the underlying joint project
between ALSTOM and Brandenburg University of Technology Cottbus-Senftenberg, this
part will only be explained to such an extent as it concerns the understanding of the
structural methods and optimization results.

In order to introduce subject and structure of the thesis, firstly, the compressor-design
process of the industrial partner ALSTOM will be explained. Thereafter a literature survey
will lead through former contributions to automation of design processes and structural
assessments where key drawbacks will be highlighted to motivate the key contributions of
this thesis.

1.1 Compressor Design Process

Compressor design has to account for various criteria from different disciplines, which
is why the final design will result from an iterative interaction between different design
tools. However, as the design goal is to most efficiently compress air at a given ratio
defined by the performance requirement for the whole gas-turbine (Cumpsty (2004)), the
preliminary design phase is purely driven by aerodynamic considerations and constraints
only, whereas structural integrity is typically not considered. Based on the requirements
for the pressure ratio, efficiency, mass-flow, and surge-margin, heuristic calculations and
data from familiar, previously designed compressors are used to calculate the annulus
contour of the compressor and average performance along its meanline (central meridian
surface). The definition of the meanline aerodynamics involves the calculation of geometric
parameters such as stage segmentation, number of blades or vanes per row, and solidity,
but also aerodynamic conditions like meridional temperature distribution, loading of
the stages (stage-pressure ratios), and velocity triangles. The latter are the boundary
conditions or average target conditions for the subsequent definition of the radial flow
distribution. Therefor, the annulus contour between casing and hub is radially subdivided
into 21 equidistant meridional streamtube surfaces also called S1 surfaces, Wu (1952).
Taking into consideration the flow displacement by the airfoils and radially different
loading distributions for blades and vanes, the throughflow is calculated for each of those
S1 surfaces using 2D solution methods, Lakshminarayana (1996). As the streamtubes are
unknown at first, the calculations have to be carried out iteratively until convergence of flow
conditions is reached and the streamtubes are found, Rühle and Bestle (2010). The radial
distribution of the flow conditions and the streamtubes, as the result of this throughflow
process, are then used to calculate suitable airfoil profiles along those streamtubes, i.e., S1
surfaces, which meet the flow requirements at minimal losses and wide working ranges.
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This quasi-3D (Q3D) blading process uses an optimization process and 2D computational
fluid dynamics (CFD) on the S1 surfaces and the perpendicular S2 surfaces along the
axial direction of the compressor. The resulting airfoil profiles on the S1 streamtubes
are then radially stacked to three-dimensional airfoil geometries which, however, do not
account for the actual three-dimensional flow field. In order to reduce secondary flow losses,
additional design principles such as lean and sweep are applied (Bräunling (2015)) and
assessed stage-wise using 3D-CFD with mixing planes between each rotor and stator. The
results of the stage-wise three-dimensional flow field are compared with the requirements
(pressure ratio, efficiency, constraints). Finally, the whole compressor with all stages is
calculated with 3D-CFD, completing the aerodynamic design process. However, if at any
of the 3D-CFD assessments constraints or requirements are not met, changes have to be
applied to the geometry and the design has to be re-assessed, see Fig. 1.2. In the case of
failing design criteria repetitively, they may have been chosen to challenging and must be
redefined. Then the design process is set back to the appropriate design stage, i.e., either
meanline, throughflow, or blading.

As soon as the aerodynamic design process delivers a three-dimensional airfoil geometry,
structural design evaluation can be conducted. In a first step, a socket (root) including a
mounting device is designed for the airfoil where proper positioning and dimensioning of

throughflow:

compressor design

CAD design (assembly)

hot-to-cold transformation

FEA

aerodynamic process structural process

performance requirement

meanline:

Q3D: +   3D features:

stage-wise 3D-CFD

complete compressor 3D-CFD

Figure 1.2: Compressor design process
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the socket is initially calculated using low-fidelity tools as suggested by Schörner and Bestle
(2012). After blade assembly, which represents the loaded geometry at the design-operating
conditions of the gas-turbine, has to be transformed to the unloaded geometry which is how
the part will be delivered. Only then the loads and temperature conditions will deform the
geometry correctly into the loaded state defined by the aerodynamic process, so that the
structural assessment will be consistent with the aerodynamic one. Finally, the structural
properties are calculated using finite-element analysis (FEA) providing static and dynamic
stresses as well as eigenfrequencies and characteristic vibration modes. If at any of the last
three aerodynamic design stages structural integrity is not ensured (structural criteria are
violated), the design has to be modified and re-assessed (aerodynamic- and structural-wise),
see Fig. 1.2. However, if it is repetitively not possible to pass both aerodynamic and
structural constraints, or meet performance targets, returning to one of the prior stages of
the design process becomes necessary and it may also be necessary to weaken some of the
design constraints. In case this is not acceptable, better materials or lower performance
requirements have to be considered. Further structural assessments of other compressor
parts such as shaft and casing are not required, as those are massive parts in case of
stationary gas-turbines from ALSTOM and, therefore, are hardly critical to failure.

1.2 Current State of Robust and Structural Design
Optimization

The primary goal of structural design optimization of compressor airfoils is to ensure
structural integrity of the airfoils and maximize their lifetime (durability). While the short-
term integrity can be assured by limiting the maximal stresses, the improvement of lifetime
requires reduction or prevention of high-cycle fatigue (HCF), i.e., failure after at least 104

load cycles within the elastic strain rate of the material. Root causes for such dynamic
loads are excitations of structural eigenmodes which may be caused by self-induced cyclic
pressure fluctuations (flutter) or by periodic pressure wakes of installations (resonance
through engine orders) such as upstream and downstream located rotor and stator airfoils,
probes et cetera, see Campbell (1924). Whether or not an excitation actually leads to
resonance with an airfoil eigenfrequency depends on the aerodynamic damping in case of
flutter, see Grieb (2009), and the agreement between the shape of the excitation source and
shape of the eigenmode of the compressor-row assembly in case of engine orders, see Singh
et al. (1988). While accurate prediction of damping requires computationally expensive,
coupled unsteady flow-structure analysis, the assessment of the source-eigenmode-shape
agreement can either be easy or impossible depending on the design of the assembly. In
order to keep design optimization computationally cheap, many authors demand that
no excitation frequency meets a relevant eigenfrequency of the specific part within the
working speed range of the considered machine. The definition of a relevant eigenfrequency
and the method of avoiding its excitation, however, greatly vary between different authors
and often seem to be rather arbitrary. For example, Seppälä and Hupfer (2014) apply
automatic design optimization to a turbine guide vane, in order to prevent any of the first
five eigenfrequencies from decreasing w.r.t. a reference design, because they consider the
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first five eigenmodes to be most critical in regards to failure due to their higher kinetic
energy. However, they focus on resonance only and their criterion does not really prevent
eigenfrequency excitation, and certainly it does not assess the risk level of a source to
excite a specific eigenmode. In contrast to this, Pugachev et al. (2014) simply avoid
definition of an optimization criterion or detection strategy for resonance by forcing the
user to define goals for the shifting of eigenfrequencies. Clearly, such a method, which
was applied to a compressor blade, is not suited to be used in a general automated design
process due to the need for user guidance.

An earlier approach, more suitable to automation was developed by Astrua et al. (2012),
where design optimization is used to avoid resonance of the first eight eigenmodes by
shifting them away from intersections with engine orders. Further, production limitations
on the thickness of leading and trailing edges are considered, and fixed safety margins are
applied to the eigenfrequencies to account for prediction uncertainties due to production
tolerances and changes in running as well as installation conditions. This was already
suggested earlier by Otto and Bestle (2007) demanding that resonance should be avoided for
all eigenfrequencies of compressor airfoils within the working speed range of an aero-engine.
In contrast to other authors, they also account for the possibility of flutter caused by eddy
shading in the Kármán-vortex street and evaluate the fatigue resistance w.r.t. the Haigh
diagram. The fixed eigenfrequency uncertainty margins w.r.t. the uncertain environmental
and installation conditions used in both papers may be substituted with the prediction
of upper and lower eigenfrequency limits by considering possible extrema in temperature
and fixation conditions as suggested by Fedorov et al. (2010) for mounted airfoils, or
in case of bladed integrated disks (blisks) by calculating the eigenfrequencies of lowest
and highest possible nodal diameter, see Strehlau and Kühhorn (2010). Based on these
eigenfrequency extrema, Hecker et al. (2011) introduced a penalty strategy which assigns
specific penalties to each eigenmode shape and engine-order. The reasoning is that, based
on experimental studies and in-service experience, different eigenmode shapes result in
different risk of failure due to the mode-shape-specific stress field and due to different
sensitivity of eigenmode shapes on flow excitation. The specific penalties for different
excitation sources (engine orders) are related to their different strengths. With this penalty
strategy, the authors shift the first ten eigenfrequency bands of a compressor blade away
from intersections with engine orders and succeed in changing the invalid design into one
free of resonance. Besides the amplitude-frequency ratio as described by Otto and Bestle
(2007), which however requires the experimental determination of a geometry specific
correction factor, the penalty strategy is the only approach so far which accounts for
different risk of failure and excitation of eigenmodes without the need of conducting time-
consuming coupled aero-elastic calculations. For application it requires the assignment of
eigenfrequency bands to specific eigenmode shapes being considered as relevant. Hecker
et al. (2011) assign these by hand prior to the optimization, without taking into account
that the order of eigenmodes may change w.r.t. the eigenfrequency order when the design
is modified during optimization, which may be seen as a drawback.

Alternatively, Blocher and Fernández (2014) accelerate coupled unsteady aero-elastic
computations by developing a time-linearized-forced-response-analysis method (TLFRA
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method) which is incorporated into a coupled aerodynamic and structural optimization
process of a counter rotating fan by Aulich et al. (2013) as well as Fernández and Blocher
(2014). Blocher and Aulich (2013) found that similar eigenmode shapes have similar
aerodynamic damping characteristics, i.e., a similar risk of flutter or large vibration
amplitudes due to forced response, which supports the reasoning for the penalty strategy
by Hecker et al. (2011). The advantage of the penalty strategy over TLFRA is its speed and
that uncertainties can easily be considered. Further, TLFRA has to be applied to specific
operating conditions, hence, in case of uncertainties at least two TLFR analyses, one at
the lower and one at the upper limit of each eigenfrequency band, have to be performed
for each intersection with engine orders (maybe even more to resolve the prediction within
the eigenfrequency bands). In case of rather low uncertainties, as for the counter rotating
fan with bolted clevises fixing the blades onto the disk, this may be feasible, but not for
mounted blades with higher uncertainties in the tightness of the fixation, since the type of
mounting significantly influences eigenfrequencies. At the downside of the mode-shape-
specific penalty strategy one would require a separate flutter criterion and, in order to be
applicable to automated optimization without any user interaction, a method which is
able to assign correct eigenfrequency bands to relevant mode shapes for different airfoil
designs.

As described in the previous section, a structural design process has to be coupled
with an aerodynamic process in order to deliver feasible designs. The coupled processes
suggested by Astrua et al. (2012) as well as Diener et al. (2016) and Pierret et al. (2007)
execute aerodynamic and structural design evaluations subsequently for each design which
slows down the optimization, because one discipline has to wait for the other before it can
start. This causes idle time and does not take advantage of process parallelization. Astrua
et al. (2012) accelerate the optimization by using a response-surface model (RSM) from
an initial set of data to find the new designs faster while the calculated performance of
each design is used to update the RSM. Other authors such as Buske et al. (2016), Aulich
et al. (2013), and Siller and Marcel (2010) apply the concept of a single master process
running the optimizer and multiple slave processes, each performing a serial aerodynamic
and structural evaluations of a design. Hence, the possibility of parallelization has been
used, but still considerable idle time is accumulated because the evaluation tools for each
discipline have to wait for one another. Due to this, not only optimization time is used
inefficiently but also licenses. In case of several slave processes the number of licenses for
involved tools depends on the number of slaves and cannot be picked individually according
to the actual need. Another problem of serial slave processes is that including additional
evaluation tools from further disciplines may further degrade the performance. Therefore,
Lockan et al. (2017) introduced a new strategy which takes advantage of individual RSMs
for each evaluation discipline. This enables the usage of an arbitrary number of slave
processes for each discipline, since the necessity of consistent design evaluation by different
processes is abolished. This method, therefore, takes most advantage of computational
resources and the available licenses, e.g., three structural evaluation processes may be
combined with seven aerodynamic processes et cetera.

Being able to arbitrarily combine processes for aerodynamic and structural design
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evaluation creates a problem of geometric inconsistency, because aerodynamic evaluations
have to be performed on the loaded geometries under running conditions, whereas structural
evaluations must be performed on the associated unloaded geometry which will match the
loaded geometry, after all load and temperature conditions have been applied. The need
for loaded-to-unloaded transformation between aerodynamic and structural processes has
so far only been recognized by Buske et al. (2016), Aulich et al. (2013), and Siller and
Marcel (2010) using an iterative method described by Goerke et al. (2012) which is actually
standard in industry but considerably time-consuming and complex to implement. Other
authors such as Astrua et al. (2012) and Joly et al. (2014) simply claim that the differences
between structural results received by evaluating the unloaded or loaded geometry are
insignificant.

Another hardly recognized issue is that each design optimization process should include
at least one objective considering design robustness. The reason is simple: generally
design optima will be located at the borders of the constrained design regions where
design variations due to production tolerances or operating uncertainties will then violate
constraints, and a significant fraction of the produced parts will fail in service. Thus, harshly
said, optimization results without consideration of design robustness are useless for the final
product. Additionally, uncertainties may deteriorate the performance of an "optimal" design
to such an extend that other designs which perform poorer w.r.t. the design objectives, but
are less sensitive, may be more suitable. Flassig (2011) introduces the difference between
deterministic uncertainties, resulting from e.g. uncertain operating conditions, and such
resulting from stochastic production variations. Typically authors evaluate probabilistic
design robustness either through mean value and variance of objectives such as Vinogradov
et al. (2016), or through failure rate w.r.t. constraints which, however, is misleading at
it will be shown later. Others like Dow and Wang (2015) assess production tolerances,
but only w.r.t. robust design objectives and not constraints. Furthermore, the authors
do not evaluate the possible production tolerance directly, but apply standard deviations
to every point on the blade surface. This provides a qualitative, but not quantitative
measure which, nevertheless, allows to be used as an optimization objective to reduce
production costs by maximizing tolerances. A weak point is, that for the final product
neither standard deviation nor failure rate are requirements which can be communicated
to the producing suppliers, but geometrical tolerances could.

1.3 Motivation and Outline of Thesis
The literature survey in the previous section reveals several shortfalls of the current state
of structural design optimization processes. It is the intention of this thesis to develop a
structural design optimization process which is a major improvement to the current state
in research in order to succeed in the goals of making such processes faster and improving
their results w.r.t. real-world application in gas-turbines.

The major goal of structural airfoil design is to ensure structural integrity of designs.
The lifetime of a design is limited by HCF mainly caused by flutter and forced response.
Those phenomena are related to aero-elasticity and are computationally time-consuming to
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assess even with the approach of Blocher and Fernández (2014). It is therefore decided to
apply the flutter criteria used by Otto and Bestle (2007) and the shape-specific eigenmode
penalty strategy proposed by Hecker et al. (2011). For the latter to be applicable within
an automated design process, a procedure will be developed which is able to identify
relevant eigenmodes and assign proper eigenfrequency bands. The identification of relevant
eigenmode shapes requires making data of different designs comparable. Therefore, a
method is introduced which is able to project node displacements of arbitrary surface
geometries and meshes onto standard rectangular surfaces. These standard surfaces are
then used for dimension reduction and classification of eigenmode data. In order to
examine what proper eigenfrequency bands are, the behavior of eigenfrequencies and the
corresponding mode shapes at varying boundary conditions are analyzed with special
consideration of frequency veering. Additionally, a smooth intersection measure between
eigenfrequency bands and engine orders is introduced to improve the performance of
optimization algorithms regarding mode tuning. The consistency between structural and
aerodynamic design evaluation is achieved by an innovative direct loaded-to-unloaded
transformation which is faster and easier to implement than the conventional iterative
approach described by Goerke et al. (2012).

The quality of the structural design-evaluation process is tested within a coupled
aerodynamic and structural optimization process which applies the method introduced
by Lockan et al. (2017) with multiple slave processes for different disciplines evaluating
non-matching sets of designs, where discipline specific RSMs are utilized by the optimizer
to find the global optimum. Thanks to the work of Hartwig and Bestle (2016) and
Hartwig and Bestle (2017), the quality of the RSMs and performance of the optimizer
were significantly improved. The application of RSMs also allows for computationally
justifiable robust-design analysis. In the scope of this thesis, a method is suggested which
directly calculates the possible production tolerance within which designs won’t violate
any constraints. Based on the production tolerance, an optimization objective is defined to
facilitate the search for designs with higher production tolerances, hence, lower production
costs.

This thesis covers the topic in eight chapters, where the first is the present introduction.
The second chapter contains details about the proposed multidisciplinary optimization
process, including the parameterization model, a definition of the constraints and objectives,
a new mode-shape-specific resonance criterion, and the invented method for analyzing the
possible production tolerance. Based on this problem formulation, the third chapter will
explain the structural design assessment based on FEA and introduce a new method of
loaded-to-unloaded transformation. Additionally, the influence of fixation uncertainties
onto eigenfrequencies and mode shapes will be studied. Since the new resonance criterion
requires automated identification of relevant mode shapes, the fourth chapter will introduce
a method for projecting information of arbitrary airfoil surfaces onto standard rectangular
surfaces. Subsequently, the fifth chapter will compare methods of data normalization and
dimension reduction in order to filter the relevant information of the projected eigenmode-
displacement fields which characterize the different mode shapes of interest. The subject
of the sixth chapter is to find a classification algorithm with a low misclassification
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rate for mode shapes and to develop an assignment procedure for mode-shape-specific
eigenfrequency bands based on the fixation study from the third chapter. The feasibility
of the structural design-evaluation process and robust-design assessment is validated in
the seventh chapter where the multidisciplinary design optimization process is applied to
an example of an industrial test compressor row. In the final chapter, conclusions will be
drawn and an outlook on further possible improvements will be given.



2 Multidisciplinary
Design-Optimization Process for
Axial Compressors

The goal of the thesis is to contribute to the enhancement of structural design evaluation
of compressor airfoils within multidisciplinary optimization processes and to assess design
robustness, i.e., design sensitivity with respect to uncertainties in production, operation,
and installation conditions. In order to validate the design evaluation process as well as
the feasibility of newly developed objectives and constraints a, corresponding optimization
process is needed. As the airfoils have to be aerodynamically most efficient while ensuring
structural integrity, this optimization process has to combine both aerodynamic and
structural design evaluation. In the following, details about the optimization process will
be described, where the focus is on structural design aspects, whereas the aerodynamic
process is part of another work-package within the superordinate research project. Also
the developed optimization strategies, including the underlying response-surface models,
are not part of this thesis and will only be mentioned or referenced, but not explained in
detail.

The first part of this chapter explains the general structure of the optimization process
and its components. Then, details about the implemented geometry and parameter model
of compressor airfoils will be given, followed by a definition of the deterministic optimization
problem and relevant design objectives and constraints. Finally, the optimization problem
will be redefined in the context of robust design by introducing proper objectives and
developing a method for estimating maximal possible production tolerances.

2.1 Optimization Process
The principle structure of the process is outlined in Fig. 2.1 and consists of two subprocesses,
the pre-blading and the blading process. Using heuristic design and low-fidelity evaluation
tools, the pre-blading process optimizes the annuls contour of the compressor and submits
an initial guess of the blade shape to the blading process utilizing high-fidelity as well
as low-fidelity evaluation tools to explore optimal airfoil designs. In a first step, the
pre-blading process combines a heuristic meanline definition process (Keskin (2007)) with
a partly heuristic throughflow definition process (Rühle and Bestle (2010)) to a coupled

11
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Figure 2.1: Multidisciplinary compressor-design-optimization process with an initial design
guess of airfoils calculated by the pre-blading process and optimized by the
blading process

optimization process (Pöhlmann and Bestle (2012)), which determines an optimal geometry
of the annulus, proper segmentation of the stages, and the number of blades/vanes per stage.
Subsequently, the confidential auto-blading process calculates a first guess for the airfoil
geometries based on correlations and iterative optimization by performing calculations on
2D meridional and radial planes (Wu (1952), Cumpsty (2004)), in order to meet pressure
and temperature requirements defined by the meanline-throughflow optimization. The
parameter model used by the blading process (Section 2.2) is then fitted to each airfoil as
initial geometry. The fitting allows to use any arbitrary start geometry which must not
necessarily be received from the meanline-throughflow and auto-blading processes.

For the subsequent high-fidelity optimization of the airfoil geometries by the blading
process, the bounds of the optimization parameters are set based on the fitted airfoil
parameter model. In contrast to this, the annulus design is not assessed by any high-fidelity
tool because, within the narrow speed-range of stationary gas turbines, the aerodynamic
characteristic of the large scale annulus structure is well captured by less costly heuristic
and 2D tools. For the same reason, it is assumed that the aerodynamic efficiency of the
annulus is not prone to production tolerances and changing operation conditions. Thus,
no robust-design assessment is applied to the annulus geometry as well. Due to the large
scale and massive rotor design of ALSTOM gas turbines, further structural assessments
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w.r.t. shaft and casing are also not needed.

The bounds of the airfoil geometry parameters, i.e., the specified design range, is
communicated to the blading process and a design of experiments (DoE) is executed
using Latin-hypercube sampling (McKay et al. (1979)). This is the initial foundation for
the further optimization, where each sample is written as a separate file into a working
directory from where the slave processes may pick designs to be evaluated. These are
independently and simultaneously running processes related to low-fidelity quasi-3D CFD
analysis, high-fidelity 3D-CFD, or FEA. The results are written into databases, one for each
discipline. The possibility of running multiple instances of arbitrary evaluation processes
(slaves) simultaneously is superior to the execution of, e.g., performing FEA on multiple
CPU’s, because in this way also pre- and post-processing profit from parallelization. In
the present application three FEM-processes, each using only a single CPU, are able to
process more samples from the working directory per hour with fewer licenses required
than a single FEM process using 20 CPU’s: 1 instance with 1 CPU runs 4 evaluations/h
and requires 6 licenses → 3 instances with 1 CPU per instance run 12 evaluations/h and
require 18 licenses, whereas 1 instance with 20 CPU’s needs 25 licenses and performs 6
evaluations/h only. After all samples (designs) in the working directory have been analyzed,
the slaves idle in standby until new designs are written into the working directory.

Due to the different speed of different design evaluation processes (here FEM and
3D-CFD take more time than Q3D) and since different disciplines may run different
numbers of instances, the databases do not necessarily contain the same set of evaluated
designs. Therefore, the master process has to built individual response-surface models
(RSMs) for the optimizer, where the multi-objective genetic algorithm NSGA-II by Deb
et al. (2002) is applied. The RSMs will introduce inaccuracies in prediction of the design
behavior, which is no issue since the optimizer proposals are written again to the working
directory and subsequently evaluated by the slave processes, which in turn will update the
RSMs properly, making them more accurate in the relevant search regions. This approach,
developed by Hartwig and Bestle (2016), is able to find better optimal solutions faster
than requiring all slave processes to evaluate exactly the same designs from the working
directory at a time, because it enables low-fidelity processes to explore the design space a
lot faster than the high-fidelity processes in order to guide search to the most promising
design regions. In order to avoid conflicting predictions between the high-fidelity CFD and
the low-fidelity Q3D process, they do not share any design objective. However, among the
aerodynamic constraints the exit flow angle is shared by both processes and a possible
conflict is eased by setting wider bounds for the Q3D than for the CFD. As the violation
of the Q3D and CFD predicted exit flow angle is punished by associated penalties, the
minimization of their sum in the constraint function (to be introduced later) will cause
the optimizer to seek for regions within the design space with least conflict between both
predictions.

The RSMs are generated by using the Kriging method (Krige (1951); Forrester et al.
(2008)) in combination with partial-least squares (Wold (1985); Rosipal and Krämer
(2006); Bouhlel et al. (2016); Hartwig and Bestle (2017)). Additionally, each discipline in
Fig. 2.1 may actually include several RSMs, one for each design objective and constraint
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as suggested by Hartwig and Bestle (2016). Based on these RSMs, the robust-design
evaluation calculates the final optimization objectives (see Section 2.4), writes them to the
databases, and calculates new RSMs w.r.t. the final objectives.

2.2 Geometry and Parameter Model

In accordance to Dutta (2011), an airfoil geometry is defined on 21 equidistantly distributed
sections between the hub-annulus contour rHub(x) and tip-annulus contour rT ip(x) which
are received from the meanline-throughflow process. Thus, w.r.t. the axial coordinate x of
the compressor, the radial coordinate of each section is described by

r (x, i) := rHub + i − 1
21 − 1

(
rT ip − rHub

)
where i ∈ [1, 21] ⊂ N . (2.1)

Alternatively to the index i, the sections may be identified by an associated average radius

r̄(i) := rL(i) + rT (i)
2 (2.2)

where rL and rT are the radii of a section at leading and trailing edge of an airfoil. For
generality of the following geometry parameterization, the average radius of the sections
(2.2) is rescaled between zero and one as

r̃ (i) := r̄(i) − r̄(1)
r̄(21) − r̄(1) ∈ [0, 1] . (2.3)

The airfoil geometry may then be defined in the x̃-r̃θ-plane, where θ is the circumferential
angle in Fig. 2.2a. Within each section, the airfoil geometry is build-up by perpendicularly

a) b) c)

Figure 2.2: Geometry model with a) plane of constant average radius, b) geometry para-
meters, and c) fillet parameters
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superposing the thickness distribution t (r̃, c̃) described by its dimensionless distribution

t̃ (r̃, c̃) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t (r̃, c̃) − RL (r̃)
tmax(r̃) − RL (r̃) for 0 ≤ c̃ ≥ c∗

t (r̃, c̃) − RT (r̃)
tmax(r̃) − RT (r̃) for c∗ ≤ c̃ ≥ 1

(2.4)

with the camber-line defined by angle distribution β (r̃, c̃) or

β̃ (r̃, c̃) := β (r̃, c̃) − βL (r̃)
βT (r̃) − βL (r̃) (2.5)

where c̃ := c/cmax (r̃) is the dimensionless cord position associated with the actual chord
position 0 ≤ c ≤ cmax of a section. The position of maximal thickness tmax (r̃) is c∗, and
RL (r̃) and RT (r̃) are the leading- and trailing-edge radius distributions; βL (r̃) and βT (r̃)
are the inlet and outlet blade-angle distributions, see Fig. 2.2b.

Additionally, lean and sweep may be applied via theta shift θS (r̃) and axial shift
x̃S (r̃). The fillet of the airfoil is constructed by a superposition of a circle with radius RF

tangentially attached to the airfoil surface and a second circle with diameter hF ≤ RF

tangentially attached to the root and the first circle, see Fig. 2.2c. With respect to the
blade height H := r̄(21) − r̄(1), those parameters may be substituted by the dimensionless
parameters

R̃F := RF /H and h̃F := hF /RF , (2.6)

which may be reasonably bounded between zero and one. Finally, the complete airfoil
geometry is generated by piecewise cubic-spline interpolation (Piegl and Tiller (1997))
between the sections.

The clearance between airfoil tip and compressor casing is preselected according to
engineering experience for the hot and loaded airfoil geometry, which is the basis for
the CFD evaluation. Therefore, the blade is extrapolated beyond the 21st section and
afterwards trimmed down to r(x, 21) minus the required tip clearance. The airfoil root is
not part of the optimization, but it is sized using heuristic methods before optimization.
However, it may also be calculated within an automated optimization as described by
Schörner and Bestle (2012). Although, implementation into the present process is no issue,
it would, however, increase optimization time significantly.

Considering all 21 sections with the corresponding geometry parameters would lead
to an impractically high number of design parameters for design optimization. Instead,
the distributions of the geometry parameters tmax (r̃), θS (r̃) and xS (r̃) are represented
by cubic Bezier-splines (Fig. 2.3a), RL (r̃), RT (r̃), βL (r̃) and βT (r̃) by quadratic Bezier-
splines, β̃ (r̃, c̃) by a Bezier-spline surface of quadratic order in r̃-direction and cubic order
in c̃-direction (Fig. 2.3b), and t̃ (r̃, c̃) by a piecewise quadratic B-spline surface (Fig. 2.3c).
Hence, the optimization parameters are now the control points of these spline curves
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a) b) c)

Figure 2.3: B-Spline representation of a) geometry parameters with only radial dependency,
b) camber-line angle, and c) thickness distribution

and surfaces (Piegl and Tiller (1997)). However, not all control points are free design
parameters; e.g., in order to ensure that the root of the airfoil is not shifted in case the
theta and axial shift are being modified, the first control point of θS (r̃) and xS (r̃) is
held fixed at position [0, 0], respectively. Furthermore, control points of t̃ (r̃, c̃) and β̃ (r̃, c̃)
with the same grid position in r̃-direction have the same r̃-coordinate. This improves
optimization results noticeably due to fewer design parameters and has only little influence
on the design freedom of the spline surfaces. According to the degrees of freedom (DoF)
of the control points in Fig. 2.3 (black line ≡ one DoF, gray square ≡ two DoF, and gray
cube ≡ three DoF), the total number of design parameters is 57.

For optimization the design space has to be limited to a reasonable range. The
limitation acts on the control points of the splines as visualized in Fig. 2.3 by lines, squares,
and cubes about the control points according to the DoF of the corresponding control
point. Due to normalization of design variables, each optimization parameter pi is bounded
between zero and one or

0 ≤ p̆i ≤ pi ≤ “pi ≤ 1 (2.7)

where p̆i and “pi are user-defined bounds. Unless set to zero and one, a meaningful definition
of bounds for each pi requires firstly a fitting of the spline curves and surfaces in Fig. 2.3 to
reference distributions of geometry parameters given either by auto-blading (for compressor
designs developed from scratch, see Fig. 2.1) or an existing reference design. As the shape
of splines is nonlinearly dependent on the control-point coordinates, fitting is accomplished
by an optimization process minimizing the least-square error between a reference data set
and the desired spline representation, see Dierckx (1993).

2.3 Deterministic Optimization Problem and
Constraints

The design of an airfoil has to account for multiple objectives fi, which may be contradictory,
and inequality constraints bi ≤ 0. Equality constraints are avoided here in order to enable
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the optimizer to explore the design space efficiently. Considering that every objective fi

can be formulated in such a way that its reduction will improve the design (Bestle (1994)),
the general deterministic optimization problem may be stated as

min
p∈P

f (p) s.t. P :=
{
p ∈ R

57|b (p) ≤ 0, p̆ ≤ p ≤ “p
}

, (2.8)

where p := [p1, ..., p57] is the design vector with a permitted parameter range [p̆, “p] about
the fitted design, see Section 2.2. The vector f (p) summarizes objectives to be minimized
simultaneously, and b (p) is a vector of inequality constraints. For the optimizer to be
able to solve the problem (2.8), the Nstruct structural and Naero aerodynamic constraints
are combined by the optimizer to a penalty factor

C :=
Nstruct+Naero∑

i=1

(
wi max (0, bi)2

)
(2.9)

which is added to each objective fi in Eq. (2.8). The distinction between different
importances and scaling among the constraints bi can be controlled through weights
wi ≥ 0. Thus, when defining the aerodynamic objectives as the total pressure loss Δpt at
design operation conditions of the gas turbine and off-design losses ωOD, the deterministic
optimization task to be solved by the optimizer states as

min
p∈P

⎡
⎣ Δpt + C

ωOD + C

⎤
⎦ s.t. P :=

{
p ∈ R

57|p̆ ≤ p ≤ “p
}

. (2.10)

Hence, the optimizer seeks to minimize each objective and the violation of constraints
simultaneously.

There are several constraints ensuring structural integrity of designs and their produci-
bility. As most of the criteria except for the mode-resonance factor (MRF) are commonly
applied
the applied constraints without greater details. The MRF, however, will be explained in
detail because of its central meaning for many methods developed in this thesis.

Mode-Resonance Factor

In order to prevent high-cycle fatigue (failure after a minimum of 104 load cycles with low
stresses within the elastic strain rate of the material) within the required lifetime of an
airfoil, excitation of the airfoil’s eigenmodes should be avoided. One reason for excitations
may be forced response to flow disturbances (pressure wakes) caused by installations
around the circumference, e.g., stators in case of a rotor blade and visa versa. Let N I

j be
the number of installations on the circumference of the jth source and let the engine shaft
speed be n, then the so called engine-order excitation frequency is

fA
j := N I

j n . (2.11)
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In the case that the excitation frequency fA
j coincides with an eigenfrequency fE

i of an
airfoil, large forced-response vibration (resonance) is likely to occur. The focus here is on
such forced responses rather than self-induced vibration of the airfoil (flutter), which is
covered by other criteria within the subsequent section. Values being considered for N I

j

are the number of vanes (blades) on the next two stators (rotors) upstream and next one
downstream of the rotor (stator) of interest as well as the difference between the number
of vanes (blades) of the stators (rotors) adjacent to it. Additionally, some lower engine
orders are included due to various other installations.

Because the engine orders (2.11) linearly increase with n while, in comparison, the
eigenfrequencies change only little, there are multiple intersections between fA

j and fE
i ,

and thus possible occasions of resonance, see Fig. 2.4a (Campbell (1924)). Note, that some
eigenfrequencies increase with shaft speed n whereas others decrease, because eigenfrequen-
cies are differently effected by increased temperatures (softening) and centrifugal loads
(stiffening). From Fig. 2.4a it becomes clear that a complete resonance-free design may
not be achievable and one has to focus attention onto the relevant operation speed-ranges
representing the major part of the gas turbine’s life time, Fig. 2.4b. For stationary gas
turbines, the typical speed range [n̆, “n] is about 95%-105% of the electrical net frequency.

Even within this operation speed range, complete avoidance of possible resonances may
still be a challenging task. Therefore, it is usually considered that in a complete assembly of
airfoils on a disk or blisk (Cumpsty (2004)) not every intersection in the Campbell-diagram
actually causes resonance to an airfoil, but only if the shape of the excitation source is the
same as the nodal shape around the circumference (nodal diameters) of the eigenmode
associated with the eigenfrequency of the assembly (Singh et al. (1988), Strehlau and
Kühhorn (2010)). However, in case of uncertainties, e.g. w.r.t. temperature conditions or
fixation of the airfoils on the disk, discrete eigenfrequencies turn into frequency bands,

E
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E
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ijnijniiijnijnii
nn nnn

a) b)

1
Ef

2
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Figure 2.4: Campbell diagram with a) multiple intersections (◦) between eigenfrequencies
fE

i and engine orders fA
j and b) an intersection of a single engine-order with

an eigenfrequency band due to uncertainties
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see Fig. 2.4b, where the prediction of nodal diameters may not be unambiguous. This
is especially the case for the compressor evaluated here, where airfoils have hammer-
foot roots (see Fig. 2.5a) on most compressor rows and are stringed together in grooves
turned into a massive rotor for low production costs. The airfoil assembly of such a
blade row contains high uncertainties w.r.t. contact conditions with neighboring airfoil
roots which makes unambiguous prediction of nodal diameters impossible. The limits of
eigenfrequencies, however, may be calculated by assuming either no contact to neighboring
roots at surface B (equivalent to zero nodal diameters on a disk or blisk) and full inelastic
contact (equivalent to number of diameters being equal to 
(number of blades)/2�). Dove-
tail roots as shown in Fig. 2.5b have negligible installation uncertainties at surface C,
whereas other uncertainties resulting from varying operation conditions (e.g. temperature)
or production accuracies are also present. While the latter will be considered in the final
section of this chapter, the first may be considered by calculating the corresponding lower
and upper eigenfrequency limits (e.g. calculations with hot-day and cold-day boundary
conditions within a finite-element model). The exact combination of temperature, load,
and installation conditions used to calculate the eigenfrequency limits are given in Chapter
3, where the FE model is explained.

As discrete eigenfrequencies fE
i turn into eigenfrequency bands

[
f̆E

i , “fE
i

]
due to opera-

tion uncertainties, intersections with engine orders fA
j result in intersection speed-ranges

[n̆ij, “nij] of possible resonances, see Fig. 2.4b. An intersection measure between the jth

engine order fA
j and ith eigenfrequency band

[
f̆E

i , “fE
i

]
may then be calculated by first

introducing a weight function d (n), which is zero outside of the operation speed-range
[n̆, “n]. Integration of d (n) over the intersection speed-range [n̆ij, “nij] and scaling of the

C

A

a) b)

B

Figure 2.5: Rotor compressor airfoils with a) hammer-foot root (radially fixed at A and
circumferentially at B by neighboring airfoils) and b) dovetail root (radially
and circumferentially fixed at C)
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result between zero and one gives

Intij :=
∫ “nij

n̆ij
d (n) dn∫ “n

n̆ d (n) dn
∈ [0, 1] . (2.12)

This intersection measure is zero in case there is no intersection within [n̆, “n] and one in
case of full intersection. The weight function d (n) may be used to account for runtime
probability within [n̆, “n] or simply as a parameter that controls how the optimizer changes
the eigenmode bands. For example, a cut-off Gaussian distribution

d (n) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√√√√ 2
π (“n − n̆)2 exp

⎛
⎜⎝−2

(
n − “n+n̆

2

)2

(“n − n̆)2

⎞
⎟⎠ for n̆ ≤ n ≤ “n

0 else

(2.13)

may put the optimizer’s focus more on mode shifting, while a constant distribution

d (n) :=

⎧⎨
⎩

1 for n̆ ≤ n ≤ “n

0 else
(2.14)

may shift the focus to tightening the eigenfrequency bands, i.e., reducing sensitivity to
uncertainties.

Because different eigenfrequencies of an airfoil are related to different eigenmode shapes
(characteristic displacement fields of airfoil surface), the stress patterns and thus the risk
of failure is different for each eigenmode shape. For example, eigenmodes with stress
concentrations at the leading or trailing edge are likely to cause crack initiation and failure.
Additionally, the various engine orders differ in their excitation strength, and therefore
in their contribution to the risk of failure. Hecker et al. (2011) consider both factors by
assigning risk specific penalty values wE

i and wA
j to each eigenmode shape and engine order,

respectively, which they successfully utilize in an automated design-optimization process.
They also consider the existence of eigenmode bands due to uncertainties (Fedorov et al.
(2010)), but do not apply a smooth intersection measure as e.g. Eq. (2.12). Instead they
activate the penalties whenever engine-orders intersect with eigenmode bands. In contrast
to this, combining Eq. (2.12) with this penalty strategy to the mode-resonance factor

MRFi :=
∑

j

Intij

(
wA

j + wE
i

)
(2.15)

introduced by Martin and Bestle (2016) defines a smooth penalty measure which should
give better performance in conjunction with most optimization algorithms.

During optimization it is the goal that eigenfrequency bands of relevant eigenmode
shapes are shifted away from possible intersections with the engine orders by applying
proper design modifications. In the present case, the first eleven essential eigenmode
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1B 1T 2B 2T

1C 1H 1S 3T

3B 2H 2C 3H 4B

Figure 2.6: Major eigenmodes to be identified, where the naming convention is as follows:
a mode counter is followed by mode specifier B for bending, T for torsion,
C for chord-wise bending, H for higher-order, S for stiff-wise-bending mode
(Note: shown eigenmodes originate not from same geometry).

shapes shown in Fig. 2.6 are of interest, but two more are to be detected in order to reduce
misclassification rate as it will be explained in Chapter 6. Each eigenmode in Fig. 2.6 is
associated with a specific risk of failure and thus penalty value wE

i as shown in Table 2.1.
Thus, eleven inequality constraint b1,...,11 := MRF1,...,11 ≤ 0 have to be considered by the
optimizer, but only a fraction is actually going to be active during optimization, because
not every eigenmode intersects with engine orders within [n̆, “n]. The strength of engine
orders is weighted via wA

j as shown in Table 2.2.

The mode-penalty factor wE
i requires identification of corresponding eigenmode shapes
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and a pairing of eigenfrequency prediction limits f̆E
i and “fE

i according to their mode
shapes rather than their order. For this purpose a classification method and assignment
strategy is required which will be developed in Chapter 6. The cornerstone is the ability to
compare displacements fields of different airfoil geometries, which is developed in Chapter
4. Details about the calculation of the eigenfrequency limits “fE

i and lower limit f̆E
i are

given in Chapter 3.

Flutter

Besides forced response, also self-induced excitation (flutter) has to be considered as
critical. One source of flutter is the finite thickness of the trailing edge of airfoils which
causes alternating flow-separation with specific frequency and thus pressure fluctuations on
the suction and pressure side. The frequency of this eddy shedding in the Kármán-vortex
street is described by the Strouhal-number St (Strouhal (1878)). Defining lower flutter
limits L̆FL1,FL2 on St results in two constraints

b12,13 := L̆FL1,FL2 −
2πcmax (r̃=̂0.75) f̆E

1,2 (n=̂100%)
vrel

L (r̃=̂0.75)︸ ︷︷ ︸
:=St

≤ 0 (2.16)

where f̆E
1,2 (n=̂100%) are the lower limits of the first and second eigenfrequency at 100%

engine speed, cmax (r̃ = 0.75) is the chord length, and vrel
L (r̃ = 0.75) is the relative speed

of attack at 75% blade height. Two additional flutter criteria b14 and b15 are utilized which,
however, are confidential.

Table 2.1: Penalty factors assigned to eigenmode types shown in Fig. 2.6
i 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

mode type 1B 1T 2B 2T 1C 1H 1S 3T 3B 2H 2C 3H 4B unkn.
wE

i 150 140 130 120 110 100 100 100 100 100 50 0 0 0

Table 2.2: Engine-order penalty factors
j excitation source wA

j

1 no. of vanes (blades) on next row downstream 50
2 no. of vanes (blades) on next row upstream 100
3 no. of vanes (blades) on third row upstream 100
4 difference of no. of vanes (blades) between next row up- and downstream 25
... lower EO’s 100
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Static Stresses

Static stresses σij, i, j ∈ {1, 2, 3}, where i = j represents normal stresses and i �= j

shear stresses, are calculated using FEM, see Chapter 3. Since the stresses σij depend
on the choice of the coordinate system, an invariant measure is needed to make the
three-dimensional stress states of different FE models comparable to the yield strength
Rp02 of the material (maximum strength before permanent deformation will occur). The
von Mises stress (Mises (1913))

σv := 1√
2

√
(σ11 − σ22)2 + (σ11 − σ33)2 + (σ22 − σ33)2 + 6 (σ2

12 + σ2
23 + σ2

13) (2.17)

is such an invariant measure, where it is assumed that failure is caused by the maximum
distortion of the material and not by volumetric changes. These assumptions hold for
ductile materials such as metals, which is well suited here for assessing stresses of airfoils.

In order to prevent crack initiation, the maximum von Mises stresses at the leading
edge σmax

vL and trailing edge σmax
vT are not allowed to exceed a certain limit “σv. Further,

the overall maximal von Mises stress σmax
v should not exceed a certain percentage αp02 < 1

of the yield strength Rp02 (T max) at maximum possible operation temperature T max and
full speed (n=̂105%) in order to guarantee structural integrity. In total, this gives three
inequality constraints

b16 := σmax
vL − “σv ≤ 0 , b17 := σmax

vT − “σv ≤ 0 , b18 := σmax
v − αp02Rp02 (T max) ≤ 0 . (2.18)

Fatigue Resistance

Fatigue resistance is considered by ensuring that the combination of alternating stress
σa and mean stress σm (both are von Mises-stresses), i.e., σv = σm + σa remains within
the endurance limit of the Haigh-diagram, red line in Fig. 2.7 which is an approximation
known from experimental studies. As explained by Nicholas (2006), the Haigh-diagram
with mean stress as abscissa and alternating stress as ordinate is constructed from the
materials yield strength Rp02 (T max) and tensile strength Rm (T max) drawn on both axes.
Together with the maximum tolerable alternating stress “σa (T max) (107 load cycles before
failure) at zero mean stress, this yields the red endurance limit in Fig. 2.7. The value
of “σa is an average result of numerous uniaxial tensile tests, where probes may differ
significantly from the actual material condition w.r.t. corrosion, erosion, surface roughness,
and notching effects. Thus, the alternating stress σa,i of the ith eigenmode calculated using
FEM is required to stay below the possible σ∗

a (σm,i), where σm,i is the mean stress of the
ith eigenmode received from FEA. The associated inequality constraints then read as

b18+i := σa,i

σ∗
a (σm,i)

− “LFR ≤ 0, (2.19)

where “LFR ≤ 1 is a safety limit on the dynamic stress ratio and i ∈ {1, ..., 15} refers to
the first 15 eigenmodes of an airfoil.



24 2 Multidisciplinary Design-Optimization Process for Axial Compressors

02pR

02pR

mR

mR

a

m

aa

m

*
a

Figure 2.7: Haigh diagram with endurance limit marked by red line

Geometric Constraints

There are also geometric constraints in order to ensure leading- and trailing-edge radii
which can be manufactured, i.e., RL/T ≥ R̆, where R̆ is the minimum producible radius,
and are less prone to crack initialization due to erosion by demanding e.g. RL/T ≥ αtmax

with 0 < α < 1. Such constraints are not incorporated directly into the optimization
algorithm due to the indirect dependency on tmax and spline-control points. Instead, the
spline distributions of RL/T (r̃) and tmax (r̃) are evaluated for each design and checked
whether they violate the geometric constraints or not ("feasibility check" in Fig. 2.1). In
case one of the edges is not feasible, the design will not be evaluated by the slave processes
and all objectives and constraints are set to high penalty values.

2.4 Robust Design Optimization

The constraints bi ≤ 0 in Section 2.3 limit the feasible design space P ⊂ R
57, and without

consideration of robustness criteria, optimal designs will most probably be located on the
borders of constrained regions where at least one bi = 0, see Flassig (2011). Therefore,
variations w.r.t. such nominal design parameters, e.g. due to production tolerances, will
cause many produced parts to violate these constraints, but also may fail to perform
as predicted due to degradation of design objectives. Thus, design robustness must be
ensured by requiring that variances of the design objectives w.r.t. production inaccuracies
are as small as possible and that constraints are not violated by any produced part within
specified production tolerances.

Measuring the design robustness of a nominal design pnom w.r.t. constraints is usually
done by calculating the failure rate which is the percentage of designs failing at least one
constraint bi ≤ 0 in a sample D :=

{
pΔ

1 , ..., pΔ
NS

}
of NS random points in the neighborhood

pnom ± Δp of pnom. However, the examples of infeasible design regions A and B (where at
least one bi > 0) in Fig. 2.8a show that the failure rate may be a problematic robustness
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measure, because in both cases the sample has the same failure rate, but parameter
tolerances ΔpA

2 and ΔpB
2 , within which variations do not fail at all, are different. Therefore,

a proper approach for robust design assessment should not analyze failure rate in the
design-parameter space in the first place, but analyze if variations to the geometry within
a specific production tolerance ±s⊥ violate any constraints, see Fig. 2.8b. In case none
of these geometry variations violate any constraints, pnom may considered to be robust
within the specific tolerance ±s⊥.

It may be difficult to sample and assess geometry variations within a defined production
tolerance ±s⊥ only, due to the nonlinearity of that region in the parameter space T which
only encloses all possible geometry variations of the nominal design S (pnom) within the
tolerance band Ω (pnom, s⊥), see gray region in Fig. 2.8b&c. In order to identify a subset
T ⊆ D of designs pΔ

j , the corresponding shapes S
(
pΔ

j

)
(e.g. white curve in Fig. 2.8b)

are build up as CAD-models and checked whether they are located within the tolerance
band Ω (pnom, s⊥) (gray band in Fig. 2.8b) of the nominal shape S (pnom) (black curve in
Fig. 2.8b). Consequently, constraint violation is checked for these sample points pΔ

j ∈ T
only.

In order to find the maximal possible production tolerance ±smax
⊥ , where design

variations pΔ
j ∈ T do not violate any other constraints than the nominal design pnom,

Martin et al. (2019) introduced following iterative procedure:

1. Specify s⊥ := Δs⊥, where Δs⊥ may be the minimal feasible tolerance step that can
be manufactured, e.g. Δs⊥ = 0.01mm.

2. Create a random sample D of design variations within an adequately large parameter
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Figure 2.8: Robustness assessment with a) failure rate and b) production tolerance ±s⊥
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range pnom ± Δp.

3. Identify all those designs from pΔ
j ∈ D where the corresponding airfoil shapes are

located within the tolerance hull, i.e., S
(
pΔ

j

)
∈ Ω (pnom, s⊥), in order to receive a

design subset T .

4. Calculate the number of design variations pΔ
j ∈ T which violate any additional

constraints compared to pnom, i.e.

ΔNV (pnom, s⊥) :=
∣∣∣{pΔ

j ∈ T
∣∣∣∃i : bi (pnom) ≤ 0 ∧ bi

(
pΔ

j

)
> 0

}∣∣∣ . (2.20)

5. If ΔNV (pnom, s⊥) = 0, increase tolerance s⊥ := s⊥ + Δs⊥ and continue from step 2;
else maximum tolerance associated with pnom is obtained as smax

⊥ = s⊥ − Δs⊥.

In order to ensure an adequately large parameter range, hence, minimize risk of incomplete
sampling in step 2, it should be verified that the minimum distance of any pΔ

j ∈ T from
the border of the sampling neighborhood is at least above an user-defined gap value L̆S,
see Fig. 2.8c; else ±Δp has to be adapted. Simultaneously, the sampling range in step
2 should not be set too large in order to prevent insufficient sampling density. Thus, it
should be ensured that at each sampling border the closest pΔ

j ∈ T has a distance below
an user-defined maximum gap value “LS. Both these limiters are another advantage of this
assessment of production tolerance over the commonly used failure rate, since that way
sampling bounds ±Δp are no arbitrarily chosen values anymore.

In contrast to Dow and Wang (2015) who suggested a method for qualitative production-
tolerance assessment to be applied to optimization, the method presented here allows
for a more practical quantitative assessment. However, although the calculated possible
tolerance smax

⊥ presents a valuable criterion for design robustness, it will not be incorporated
directly because of its discrete nature (smax

⊥ = kΔs⊥, k ∈ N) which may harm optimization
performance. A smooth measure, however, may be received by using the failure rate as
follows. Due to the production tolerance assessment it is known that the failure rate
of designs within ±smax

⊥ is zero. Thus, the failure rate within the set of samples T for
the next but in-robust tolerance step smax

⊥ + Δs⊥ is an estimator of how much of this
non-robust tolerance step might be possible. Thus, by calculating the failure rate

FR := ΔNV (pnom, smax
⊥ + Δs⊥)

|T | , (2.21)

a continuous minimization objective for the production tolerance may be defined as

s̃max
⊥ := − (smax

⊥ + (1 − FR) Δs⊥) . (2.22)

Obviously the suggested approach for evaluating smax
⊥ may be computationally ex-

pensive, because it requires evaluation of the constraints bi

(
pΔ

j

)
for each pΔ

j ∈ T by
building up CAD models to receive S

(
pΔ

j

)
for each pΔ

j ∈ D about each nominal design
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pnom. Thus, for a practical application of this method to the example in Chapter 7
reduction of computational effort is required. Therefore, calculation of the constraints bi

is accelerated by utilizing the RSMs of the optimization process (Fig. 2.1), cutting the
required time for a robust-design evaluation (including buildup of CAD-models) of one
nominal design pnom down to a few hours, which makes it applicable to the evaluation
of a few selected nominal designs. However, in order to make assessment of production
tolerances applicable to design optimization in this thesis, limited computational resources
(number of CPUs) require to avoid generation of CAD model S

(
pΔ

j

)
for each sample pΔ

j

to identify subset T ⊂ D. This is achieved by rather evaluating the spline distributions
of pΔ

j for intersections with pnom ± s⊥ with the drawback that only parameters can be
sampled which are directly related to s⊥ and are decoupled from others, namely RL, RT ,
and tmax. Since splines can be calculated simultaneously for all pΔ

j ∈ D and much faster
than CAD models can be build up, the assessment of smax

⊥ becomes applicable to the
optimization process (evaluation of smax

⊥ for 1000 nominal design takes about 2-3 hours)

Despite considering design robustness w.r.t. constraints, robustness w.r.t. the design
objectives Δpt and ωOD in Eq. (2.10) has to be considered in a probabilistic manner as
well. This is typically done by minimizing mean and variance of each objective, because
smaller variance is associated with lower sensitivity to design variations, Flassig (2011).
However, splitting each objective into its mean and variance doubles the number of design
objectives and thus harms optimization performance. Instead, as suggested by Du et al.
(2004), the mean and variance are substituted with 95%-percentiles P 95

Δpt
and P 95

ωOD
, which

represent the corresponding value where 95% of the observations result in lower values.
Finally, the deterministic optimization problem (2.10) is transfered into a probabilistic
optimization problem:

min
pnom∈P

⎡
⎢⎢⎢⎣

P 95
Δpt

+ C

P 95
ωOD

+ C

s̃max
⊥ + C

⎤
⎥⎥⎥⎦ s.t. P :=

{
pnom ∈ R

57 |p̆ ≤ pnom ≤ “p
}

. (2.23)

As percentile are a statistical measure, suitable sampling size and range Δp have to be
defined. However, first the number of parameters shall be reduced in order to increase
sampling density. Therefor, only design parameters related to production tolerances are
sampled. This means that the ordinate-parameter values of βL, βT , β̃, and t̃ in Fig. 2.3 are
not considered, because their variations result from production tolerances in the first place.
For the remaining parameters, sampling ranges are set to Δpi := 0.05mm, which is five
times the minimum step size Δs⊥ utilized during the assessment of the robust production
tolerance smax

⊥ . This sampling range is used for all nominal designs pnom in order to
ensure comparability. The samples for both objectives and constraints are generated using
Latin-hypercube sampling (McKay et al. (1979)) with a size of NS := 1000, because the
deviation of the calculated objectives compared to these based on 5000 samples is less
than 3%, as shown in Fig. 2.9 for the objectives.
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Figure 2.9: Average objective errors (calculated from all nominal designs of a DoE with
3000 samples) for different sample sizes NS w.r.t. sampling with NS := 5000



3 Structural Assessment of
Compressor Airfoils Using the
Finite-Element Method

Finite-element models are used throughout the thesis to provide the necessary information
on stresses and eigenmodes. Therefore, firstly the fundamental formalism of finite-element
methods (FEM) will be introduced to provide a basic understanding and explanation
on the need for nonlinear analysis for the calculation of eigenfrequencies, although no
nonlinearities might be present. Afterwards, the mesh types and mesh topology for the
present compressor airfoils will be explained, followed by details about load and boundary
conditions. Finally, the necessity for loaded-to-unloaded transformation will be verified
and an innovative method will be introduced which can be directly incorporated into FE
analysis in contrast to the current state of technology.

3.1 Fundamental Equations
Within the scope of this thesis, finite-element analyses shall be used to evaluate the
stress and strain fields of airfoils by calculating their three-dimensional displacement field
ui (x, y, z), i = 1, 2, 3. The airfoils are exposed to temperature changes T − Tref and
external volume fV =

[
fV

1 , fV
2 , fV

3

]T
, surface fS =

[
fS

1 , fS
2 , fS

3

]T
, and concentrated loads

fC
j =

[
fC

j1, fC
j2, fC

j3

]T
. Since complex displacement fields cannot be described by single

analytic function, the continuum with volume VB and surface SB is discretized by NE

elements with volumes V
(k)

B and surfaces S
(k)
B where k ∈ {1, ..., NE}. The displacements

of all NN element nodes are combined in a single node-displacement vector U ∈ R
3×NN ,

and an element-displacement-interpolation matrix H
(k)
is (x, y, z) is used to calculate the

continuous displacement field of each element (k) based on the node displacements Us,
hence

u
(k)
i (x, y, z) = H

(k)
is (x, y, z) Us , (3.1)

considering summation over identical indices (Einstein summation convention) and that
H

(k)
is equals one at the location of the sth node and zero at all other nodes. Generally,

H
(k)
is depends on the type of element (number of nodes and geometry) and is calculated in

29
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the natural coordinate system of each element before being transformed into the global
coordinate system. Here it is assumed that H

(k)
is has already been transformed into the

global coordinate system. Now the goal is to calculate the node-displacement vector U.
For an analysis considering nonlinearities, displacements depend on the history of load
and boundary conditions. Therefore, nonlinear analysis requires to split the application of
loads into incremental calculation steps Δt that can be linearized, which also applies to
nonlinear steady-state analyses as performed in this thesis. For this purpose, the following
formulations will use superscripts t and t + Δt to refer to the last known and current
unknown configuration, respectively, and subscript t to refer to an increment between
configurations at t and t + Δt. With this, and assuming that for metal, density can be
considered to be constant and damping may be neglected, the equilibrium equations to be
solved as described by Bathe (1996) are

NE∑
k=1

∫
t+ΔtV

(k)
B

ρ(k)H
(k)
is H

(k)
ir dV

︸ ︷︷ ︸
t+ΔtMsr

t+Δt
Ü s+

NE∑
k=1

∫
tV
(k)
B

tC
(k)
jimn

tBL(k)
mns

tB
L(k)
jir dV

︸ ︷︷ ︸
tKL

sr

tU s +
NE∑
k=1

∫
tV
(k)
B

tτ
(k)
ji

tB
NL(k)
jisr dV

︸ ︷︷ ︸
tKNL

sr

tU s =

NE∑
k=1

∫
t+ΔtV

(k)
B

t+Δtf
V (k)
i H

(k)
ik dV

︸ ︷︷ ︸
t+ΔtF V

r

+
NE∑
k=1

∫
t+ΔtS

(k)
B

t+Δtf
S(k)
i H

(k)
ik dS

︸ ︷︷ ︸
t+ΔtF S

r

+

NE∑
k=1

∑
j

t+Δtf
C(k)
ji H

(k)
ik︸ ︷︷ ︸

t+ΔtF C
r

−
NE∑
k=1

∫
tV
(k)
B

tτ
(k)
ji

tB
L(k)
jir dV

︸ ︷︷ ︸
tF I

r

,

(3.2)

where

tBL(k)
mns := 1

2

(
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are the linear and nonlinear strain-displacement-interpolation matrices, and tCjimn is the
incremental stress-strain tensor. This tensor tCjimn is constant for linear elastic materials
such as metals, and can be calculated using the Kronecker-delta δij (δij = 1 ∀ i = j and
δij = 0 ∀ i �= j), elastic modulus E, and Poisson’s-ratio ν as

tC
(k)
jimn = Eν

(1 + ν) (1 − 2ν)δijδmn + E

2 (1 + ν) (δjnδim + δjmδin) . (3.4)
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Equation (3.2) may be written in vector format as

t+ΔtM t+ΔtÜ +
(

tKL + tKNL
)

tU =
(

t+ΔtFV + t+ΔtFS + t+ΔtFC
)

− tFI , (3.5)

where the mass matrix can be calculated based on the initial state because displacement-
based isoparametric elements are being used, i.e., t+ΔtM = 0M = M, and tFI accounts for
initial element stresses, e.g. due to temperature changes where tτ

(k)
ji has to be calculated

based on the thermal-strain matrix and tC
(k)
jimn. Equation (3.5) may be solved implicitly

for each time step using, e.g., Newton-Raphson Scheme (Kreyszig et al. (2011)), while
the integrals in Eq. (3.2) may be calculated using Gauss integration (Golub and Welsch
(1969)), and t+ΔtÜ may be approximated, e.g., using central differences, i.e.

t+ΔtÜ =
(

t−ΔtU − 2 tU + t+ΔtU
)

/Δt2 . (3.6)

As mentioned before, Eq. (3.5) is used for both unsteady and steady analyses. In case of
the latter, inertia effects are neglected by removing the first term from Eq. (3.5)), and
the time steps refer to successive increase of the loads until the final static conditions
are established. With the displacement field obtained as the solution to Eq. (3.5), the
incremental strain field can be calculated, see Bathe (1996). The incremental stress
field tτ

(k)
ji is then calculated based on the incremental strain field and a suitable chosen

stress-strain relation, e.g., Hooke’s law.

The focal point of this thesis is to improve the structural dynamic behavior of compressor
airfoils. Thus, calculation of eigenfrequencies and eigenmode shapes is required. Therefor,
the natural response of a system is calculated by using (3.5) and neglecting external forces
and initial displacements, i.e.

MÜ +
(

t1KL + t1KNL
)

U = 0 , (3.7)

where t1 refers to the final state of an antecedent static calculation. The consideration of
nonlinear effects via tKNL in an antecedent static calculation allows to account for stiffening
effects onto eigenfrequencies through loads (see Eq. (3.2)). This is the main reason for
performing a nonlinear structural analysis on airfoils, since other nonlinear effects are
generally negligibly small. This fact will be useful for developing a fast loaded-to-unloaded
transformation method later on.

The general solution of the linear differential equation (3.7) is of the form

U = φφφ sin (ω (t − t0)) (3.8)

where φφφ is a displacement-amplitude vector of same dimension as U, ω is the oscillation
frequency of the sinus function, t is the time variable, and t0 is a time shift. Substituted
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into Eq. (3.7) yield the generalized eigenvalue problem
(

t1KL + t1KNL
)
φφφ = ω2Mφφφ (3.9)

with eigenvalues ω2
i and eigenvectors φφφi, which may be solved using e.g. the Lanczos-

algorithm (Lanczos (1950)).

3.2 Finite-Element Model
The structural analysis of compressor airfoils requires a FE model which is sufficiently
accurate and accounts for all relevant effects. Most of the airfoils of the test compressor
are assembled to the shaft and casing via hammer-foot roots (see Fig. 2.5a) that are held
in radial direction by circumferential grooves (Schörner and Bestle (2012)). Depending
on the structural dynamic behavior, the first rotor stages are equipped with dovetail
roots (see Fig. 2.5b) being more expensive to manufacture, which is why the hammer-foot
design is preferred wherever possible. The hammer-foot design, however, suffers higher
fixation uncertainties and, therefore, also structural uncertainties. Nevertheless, the mesh
topologies are only slightly different and the main difference lies in the boundary conditions
to be applied. The airfoils are assembled to a massive shaft and due to its high stiffness
it does not need to be included into the analysis. Accordingly, circumferential and axial
vibration modes of the shaft do not need to be considered within the airfoil design process,
because frequencies of relevant eigenmodes of such shafts are well above any natural airfoil
frequency of interest.

3.2.1 Topology and Mesh
The mesh of the airfoils with dovetail as well as hammer-foot root contain two different
element types: fully integrated triangular prisms of quadratic order (15 nodes) for the airfoil
and fully integrated tetrahedrals of quadratic order (10 nodes) for the root, see Fig. 3.1.
Preferring second-order (quadratic) over first-order (linear) elements has the advantage
that through the quadratic element-displacement-interpolation functions in Eq. (3.1) more
complex geometric features and deformations can be captured. Therefore, the stress,
strain, and displacement field can be calculated more accurately, which makes quadratic
elements less prone to shear locking (MacNeal and Faulkner (1994)) under bending loads
(main state of deformation for airfoils). Shear locking describes the artificial occurrence
of shear stresses due to insufficient representation of the actual state of deformation by
the finite elements. The ability to fit geometric features, e.g. curvatures, better than
linear elements allows to use less elements, but for a higher computational effort per
element. A possibility to reduce the computational effort is to use reduced-integrated
elements instead of fully-integrated ones (Zienkiewicz and Hinton (1976)). Quadratic
elements using reduced integration do not suffer from shear locking, but have hourglass
modes (zero energy deformation modes) which, however, can hardly propagate through
the mesh. Since, the focus of this thesis is structural dynamic design optimization, no
mesh and element validation studies were performed, and the decision was made to use
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b)a)

Figure 3.1: Finite-element mesh of a) dovetail root and b) hammer-foot root

fully integrated elements. The mesh density was set according to validations and design
experiences of the industrial partner.

3.2.2 Loads and Boundary Conditions

The loads experienced by compressor airfoils are mainly centrifugal and pressure loads.
Because the latter has only minor influence on stresses and eigenfrequencies (frequency
deviation less than 1Hz for first 10 eigenfrequencies of all airfoils of test compressor),
pressure loads may be neglected. However, depending on the pressure, the temperature
raises downstream of the compressor and becomes a major factor of influence on stresses and
eigenfrequencies through decreasing elastic modulus of the material. According to design
experience of the industrial partner, the temperature distribution within a compressor row
as well as changes due to design modifications are negligible as long as the temperature
level is accounted for. Those values can be received with sufficient accuracy from meanline-
throughflow analysis, which allows to run decoupled aerodynamic and structural design
evaluation (else RSMs would have to be employed for the coupling parameters in order
to prevent idling of coupled processes). Nevertheless, different operation conditions have
significant influence on temperature levels, and results such as stresses and eigenfrequencies
become uncertain. This effect has to be captured by evaluating limits of design values
(constraints) based on the extrema of the operation conditions, namely, running on a hot
day (T max) at electric-network frequency with full power output by the turbine (nominal
condition), and running on a cold day at electric network frequency, but without power
output by the turbine (idle condition).

A similar problem arises from the fixation of airfoils. Airfoils with dovetail roots
(separate groove for each root) have well determined contact with the groove (no transverse
displacements) at surface C in Fig. 2.5b and, therefore, are mechanically decoupled from
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each other due to the massive shaft. In contrast to this, the ones with hammer-foot roots
(single circumferential groove for all roots of one compressor row) are able to perform
coupled circumferential and axial vibrations and the stiffness of an assembly determines
the number of nodal diameters (Strehlau and Kühhorn (2010)). Due to the uncertain
installation condition of hammer-foot roots, i.e., whether one root is in full contact with
its neighbors at surface B in Fig. 2.5a, completely free, or something in between with
friction damping effects taking place, no discrete nodal diameters can be calculated and
possible forced responses cannot be identified using the SAFE-diagram (Singh et al. (1988)).
Therefore, the possible range (uncertainty margin) of each eigenfrequency due to uncertain
fixation and temperature condition needs to be estimated, see explanation in Section 2.3.
The upper limit is set by the stiffest configuration possible, i.e., fully transversally fixed
nodes at surface B in Fig. 2.5a at idle conditions (called tight-idle) and completely free
nodes at surface B in Fig. 2.5a at nominal conditions (called loose-nominal). In both cases
the hammer-foot roots are fully transversally fixed in all directions at the nodes of surface
A in Fig. 2.5a. Table 3.1 summarizes the different calculations required to account for
uncertain operation and fixation conditions.

Table 3.1: Description of analyses performed for structural design evaluation of airfoils
with hammer-foot root

analysis name description comment

loose-nominal

adjacent roots have no contact at
hot day condition and
full turbine power output at
electric network frequency

lower limit of
eigenfrequency uncertainty range

loose-idle

adjacent roots have no contact at
cold day condition and
no turbine power output at
electric network frequency

used for flutter criterion

tight-idle

adjacent roots have full contact at
cold day condition and
no turbine power output at
electric network frequency

upper limit of
eigenfrequency uncertainty range

static
results are included in the
loose-nominal analysis;
basis for stress results

Because the load and fixation conditions effect the stiffness of the airfoil-root assembly,
those effects have to be captured by the analysis. According to Eq. (3.9) such stiffening
effects can be considered by performing nonlinear static analysis (gives the nonlinear
stiffness matrix in addition to the linear stiffness and mass matrix) prior to modal analysis
(solving the eigenproblem (3.9)). Figure 3.2 shows the error between linear and nonlinear
analysis for the first 10 eigenfrequencies of a front (dovetail root), a middle, and a rear stage
of the test compressor at loose fixation condition. One may conclude that even at loose
fixation, where centrifugal loads are the only driver for airfoil stiffening (no contribution
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Figure 3.2: Error between linear and nonlinear analysis of first 10 eigenfrequencies for
three different stages of the test compressor at loose fixation condition

from fixation stiffness), stiffening effects onto eigenfrequencies cannot be neglected.

3.3 Loaded-to-Unloaded Transformation

The aerodynamic optimization of an airfoil is typically based on its loaded hot geometry,
i.e., the airfoil geometry during operation conditions. However, structural design evaluation
should be applied to the corresponding unloaded cold geometry in order to deform to the
intended hot geometry when actual centrifugal and pressure loads as well as temperature
conditions are applied. Only when the unloaded cold geometry deforms to the loaded hot
geometry, structural and aerodynamic evaluation results will be consistent.

The general method of calculating the corresponding unloaded geometry to a given
loaded geometry, as described by Goerke et al. (2012) and shown in Fig. 3.3a, is performed
iteratively as follows:

1. Based on the known loaded geometry SL
0 , assume that the unloaded geometry is

identical, i.e. SU
1 ≡ SL

0 ; set i := 1.

2. Apply the associated temperature and load conditions to SU
i resulting in a corre-

sponding loaded geometry SL
i .

3. Subtract the difference Δi := SL
i − SU

i from the given loaded geometry SL
0 which

gives a better estimate SU
i+1 of the unloaded geometry.

4. Set i := i + 1 and continue with steps 2 and 3 until the absolute error
∣∣∣SL

i − SL
0

∣∣∣ ≤ ε

is below an user-defined limit ε; finally SU
i+1 is the desired estimate of the unloaded

geometry corresponding to SL
0 .
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This procedure accounts for nonlinearities as the iterative FE-analyses are nonlinear.
However, it is rather time-consuming, because for each step displacements have to be
extracted from FE-results and subtracted from the CAD-geometry SH

0 in order to create
the new CAD-geometry (unloaded geometry) and import it into the FE-tool followed
by preprocessing (setting boundary and load conditions as well as creating mesh) and
FE-analysis.

Design optimization requires a faster, non-iterative method which can preferably be
directly integrated into the FE-solver. The most forward approach may be to reverse the
load and temperature conditions shown in Fig. 3.3b (pressure pSS and pP S on suction and
pressure side, centrifugal load FC , and temperature change ΔT ). This is rather simple
for pressure loads (−pP S) and (−pSS) and temperature conditions −ΔT , see Fig. 3.3c,
especially in the case where pressure influence is negligible as has been shown by Janke et al.
(2016). Reversing centrifugal loads for a finite volume dV , however, is not that obvious
and, as suggested by Martin et al. (2019), can only be achieved by assigning a negative
density (−ρ) which is applicable in Abaqus. Changing the sign of quantities r and dV

instead, would change the model geometry, be not applicable, or distort other distributed
loads. It should be emphasized that reversing centrifugal loading may cause nonlinear
buckling instabilities to slender structures such as airfoils which, however, can be suppressed
by performing linear deformation analysis only. The discrepancies in loaded-geometry
eigenfrequencies calculated using linear unloaded-geometry estimates are sufficiently small
(< 3Hz) for the first 10 eigenfrequencies of the first, middle, and last rotor of an industrial
compressor as shown in Fig. 3.4 using black markers.

Without loaded-to-unloaded transformation, i.e., if loads and temperature conditions
are directly applied to the loaded geometry, the errors are highly significant (white

a) b) c)
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Figure 3.3: Iterative loaded-to-unloaded transformation (a), sketch of airfoil loads (b), and
reversed loads (c)
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Figure 3.4: Error of first 10 eigenfrequencies computed with linear loaded-to-unloaded
transformation (L2U) and without (L2L+) for a) the first, b) middle, and c)
last rotor of an industrial gas-turbine

markers for loaded-to-additionally loaded =̂L2L+). The error regarding maximal stresses
reduces from about 80MPa to less than 2MPa when using linear loaded-to-unloaded
transformation. Because the suggested linear loaded-to-unloaded transformation can be
directly implemented into FE-analysis (as first calculation step where displacement field
has to be set as stress free before continuing with further FE-calculations) and only
causes additional computational effort of less than 5 seconds in the present application,
loaded-to-unloaded transformation becomes applicable to design optimization.

3.4 Influence of Fixation Uncertainties onto
Eigenfrequency Bands

As reasoned in Section 2.3, the goal is to assign an eigenfrequency band to each eigenmode
shape of interest in Fig. 2.6, which requires to develop a classification method. But, as
will be shown, in some cases the classification fails to deliver unambiguous results due to
misclassification or extremely deteriorated mode shapes. In these cases, proper decision
rules have to be found. Therefore it is necessary to firstly investigate and understand how
eigenmode shapes and their eigenfrequency bands change between the limits of prediction,
i.e., loose-nominal and tight-idle in Table 3.1. For the dovetail roots of the test compressor,
no changes in the order of eigenmode shapes are observed, but significant changes arise for
stator and rotor airfoils with hammer-foot roots. In Fig. 3.5 the changes of the first ten
eigenmodes shapes and eigenfrequencies of a middle compressor blade (rotor) are shown,
where changes of the eigenmode shapes are high for varying fixation conditions (Fig. 3.5a
vs. Fig. 3.5b), but small for varying temperature conditions (Fig. 3.5b vs. Fig. 3.5c).
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Therefore, and for the sake of simplicity, the following investigation will only consider
changing fixation conditions for a rotor airfoil with hammer-foot-root design.

The uncertain installation condition of hammer-foot-root assemblies originates from
the uncertain contact condition which results in an uncertain friction condition. A direct
analysis of this effect would be computationally too expensive and unlikely to give useful
insight into the phenomena. Instead, it is assumed that fixation uncertainty is caused by
uncertain stiffness of contact layers (clamping material), which are added to the FE-model
according to Fig. 3.6a. The stiffness of the clamping material is changed by varying
Young’s modulus E between 6 · 10−6 · E0 and the real modulus E0 of the blade material.
Consistent behavior of the different materials under centrifugal loads can be accomplished
by adapting the density ratio to the modulus (speed of sound equivalence), i.e., ρ = ρ0E/E0.
Transversal displacements of all nodes of the outer surfaces of the clamping material,
equivalent with surface B in Fig. 2.5a, are set to zero.

The change of eigenfrequencies w.r.t. Young’s modulus for the last blade in the test
compressor is shown in Fig. 3.6b. Corresponding analyses have also been performed for
the blade of stage 5 (Fig. A.1; first stage equipped with hammer-foot roots) and stage 8
(Fig. A.2), but have been moved to Appendix A, since the basic conclusions can already

378Hz 816Hz 1551Hz 2024Hz 2405Hz 3138Hz 3215Hz 3839Hz 4022Hz 4709Hz

358Hz 787Hz 1380Hz 1821Hz 1959Hz 2351Hz 2370Hz 3274Hz 3767Hz 3899Hz

372Hz 798Hz 1521Hz 1979Hz 2353Hz 3071Hz 3146Hz 3758Hz 3937Hz 4607Hz

tight-idle

tight-nominal

loose-nominala)

b)

c)

Figure 3.5: First ten eigenmode shapes and eigenfrequencies of a compressor blade (middle
stage; dark regions show high absolute displacements) at a) loose fixation and
nominal temperature, b) tight fixation and nominal temperature, and c) tight
fixation and idle temperature
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Figure 3.6: Material for fixation study (a) and corresponding eigenfrequencies sorted by
b) frequency values and c) eigenmode shapes of a rear rotor blade (stage 15)

be drawn from Fig. 3.6b&c. The focus lies on the region between the fourth and the 13th

eigenfrequency, because there is hardly any change of the first three eigenfrequencies and
corresponding eigenmode shapes. It can be noticed that frequency veering occurs at several
regions, meaning that adjacent eigenfrequencies come close before veering away without
crossing. The phenomenon is caused by coupling of eigenmodes through the geometry
(see Appendix B with an academic example for explanation) which causes fundamental
changes in the eigenmode shapes of both veering partners, or as Leissa (1974) stated:
"a dragonfly one instant, a butterfly the next, and something indescribable in between".
The fact that a complex geometry causes different levels of coupling between eigenmodes,
explains the different levels of frequency veering between the eigenmodes in Fig. 3.6b. It
can be proven that the physical eigenfrequencies do not cross (see Appendix B), but for
eigenfrequencies assigned to specific eigenmode shapes, frequency veering may become
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frequency crossing as can be seen in Fig. 3.6c, where the naming convention and relevant
mode shapes are given in Fig. 2.6 (additional mode M refers to mixed mode which cannot
be categorized). The actual change of the mode shapes during veering is shown in Fig. 3.7.
Clearly, classifying the eigenmodes according to their shape is not always unambiguous and
it has to be considered that eigenmodes can change their order, vanish, or appear. Thus, a
robust classification method complemented by a heuristic eigenfrequency-band assignment
strategy has to be developed in order to identify proper mode-shape-specific eigenfrequency
bands. Both, classification method and assignment strategy will be explained in Chapter
6. However, the latter relies on conclusions drawn from following observations.

In Fig. 3.6c frequency bands (marked by brackets) have been assigned to specific mode
shapes in Fig. 3.7 by hand. It can be seen that 1S reacts most dynamically to an increase
of the root stiffness and, therefore, has a higher uncertainty margin than e.g. modes 1H
and 3H. Additionally, an increase of uncertainty margin (frequency change) w.r.t. to the
estimated limits at loose and tight fixation can be observed within all veering regions. To
some extend this discrepancy between frequency change within the veering region and
predicted limits at loose and tight fixation correlates with the coupling strength between
eigenmodes (see Appendix B). This is particularly true for the 1H mode which couples
with several other modes such as torsion, bending, and chord-wise bending modes. Since
attempts failed to predict the height of the frequency change based on the frequency limits
at loose and tight fixation, due to high prediction errors on the coupling strength, the
addition to uncertainty by frequency change will be neglected further on, considering
that the stiffness range of occurrence is very narrow and detailed analyses such as this
one are impractical during design optimization. For the same reason of impracticality,
one cannot track eigenmode shapes that disappear between the upper and lower limit of
fixation, e.g. mode 4T in Fig. 3.6c. In case there are eigenmode shapes such as 3T that can
only be identified at one bound but vanish at the other, a definition of the corresponding
eigenfrequency band depends on the eigenmode shape where, based on Fig. 3.6 (or also
Fig. A.2 and A.1 as well), one may reason that:

a. If 1H mode is identified at the lower bound (here loose fixation) but not at the upper
one (here tight fixation), and 1S mode is existent at the upper bound, frequencies of
1H and 1S may be paired to give frequency band of 1H mode. Else, if no 1S mode
is identified at upper bound, assume upper limit of 1H-frequency to be 1Hz higher
than the one of the lower limit, because usually 1H-bands are very tight, but zero
bandwidth would cause no detection by the MRF-value.

b. In case no 3B and/or 1S mode can be identified at the upper bound, but only at
the lower one, the closest higher 1H-frequency (loose or tight) may be picked as the
corresponding bound, because both veer with 1H for all investigated blade geometries
of the considered reference compressor.

c. If no corresponding match can be found for 1S/2T at the lower bound, the reasonable
choice for the corresponding frequency limit at the lower bound is the 2T/1S mode.

d. Any other mode, that could not be assigned with a counterpart at the opposite
frequency bound, should be paired with the nearest frequency of the opposite limit.
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Finally it should be mentioned that inserts of relatively soft material (E/E0 ≥ 10−2)
between neighboring airfoils would prevent changes in the order of the eigenmode shapes
and reduce uncertainties significantly. This would also avoid the need for the heuristic
assignment strategy while mode-shape classification would still be required for the calcula-
tion of the MRF-value. Such an insert device, however, is not part of the test compressor
design.
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Figure 3.7: Change of the absolute displacement field of the 4th till 13th eigenmode of a
rear compressor blade due to varying fixation stiffness (the markers and data
point numbers refer to Fig. 3.6)c



4 Projection of Arbitrary Airfoil
Geometries onto a Rectangular
Map

The optimization process is supposed to perform design optimization of airfoils w.r.t. the
failure risk of specific eigenmodes which are characterized by the displacement field of
the airfoil surface. Therefore, the process must be able to compare displacement fields
(eigenmodes) of surfaces from different geometries (airfoil designs), which may be achieved
by projecting displacement fields onto a standard rectangular surface. For structured
meshes such a projection may be received by using the mesh indices as natural coordinates.
For unstructured meshes, however, this is not possible and the current approach of tracking
eigenmodes, used by commercial software such as Abaqus, is to use meshes that do not
change the indexing of the FE-nodes during design optimization. However, this turns out
to be too limiting. Therefore, the goal of this chapter is to introduce a method being
able to project any kind of surface mesh, whether structured, unstructured, or mixed,
with different resolution and indexing onto a standard rectangular surface, see Fig. 4.1.
By this, displacement fields become consistent and can be compared in order to track
eigenmodes. The method is independent from a specific FE-software and only requires the
node coordinates of the mesh with corresponding displacements or any other variable that
is supposed to be mapped.

The method will use a self-organizing network (SOM) to be introduced first. Thereafter,

,n nx u

u

Figure 4.1: Blade surface extraction and projection onto standard square

43
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the methodology of training the network will be explained.

4.1 Mapping of Airfoil Data onto Rectangular Map
As mentioned above, the goal is to develop a method which allows for mesh independent
comparison of airfoil displacement fields of arbitrary airfoil geometries. The idea is to
find a regular mesh approximating an airfoils surface, purely based on the NN surface
nodes xn ∈ R

3, n = 1, ..., NN , of the FE-mesh (Fig. 4.2) in absences of any knowledge
about the spline representation of the underlying design model (CAD model). The indices
(i, j) of such a regular mesh may then be interpreted as natural coordinates of the surface
and may be used to project the associated surface coordinates xij ∈ R

3 onto an invariant
standard two-dimensional rectangle or square, see Fig. 4.2. Since the displacements un of
the FE analysis and the corresponding uij ∈ R

3 on the regular mesh are subject to the
same projection xn → xij → (i, j), an uniform basis for eigenmode identification is given
by the squared standard surface.

The problem of finding a regular mesh on a surface from surface points as the only
representatives may be accomplished by using a self-organizing map (SOM). SOMs were
first invented by Kohonen (1981) as a neural network which maintains the topographic
order of its input space and are also referred to as Kohonen-maps. These networks,
trained through self-supervised leaning, are commonly used for reducing and mining
high-dimensional nonlinear data. In order to receive a regular mesh as a representation of
an airfoil surface, a rectangular network is formed by neurons (i, j), i = 1, ..., I, j = 1, ..., J ,
where each neuron carries a coordinate information xij as a weight vector, see Fig. 4.3.
The network is able to learn the representation of an airfoil surface by being iteratively
fed with training vectors xn ∈ VT from a training set VT = {x1, ..., xNN

}. In the present
application, these training vectors are the FE-node positions xn on the suction side of an
airfoil as shown in Fig. 4.2a. For the network to converge, the members of the training set
VT have to be presented to the network multiple times, which requires to reference the

…
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… …
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ijx ,i j
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Figure 4.2: Unstructured FE-mesh (a) transfered to structured mesh (b) and projected
onto square (c)
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Figure 4.3: Neural network with best matching neuron x(k)
(i,j)∗ and neighborhood radius

R(k)

training vectors within VT via an index set I = {i1, i2, ...} where |I| � NN .

After initialization of the neuron weights (detailed information will be provided later),
where each neuron (i, j) is associated with an weight vector x(k)

ij , the network learns to
represent the data in VT by being presented a selected training vector xik

∈ VT at each
iteration step k (learning step) of overall |I| training iterations. During each step k, the
neuron (i, j)∗ with the weight vector x(k)

(i,j)∗ closest to the training vector xik
is identified:

(i, j)∗ = arg min
(i,j)

∥∥∥xik
− x(k)

ij

∥∥∥ . (4.1)

After having found the best matching neuron (i, j)∗, all neurons within a certain distance
or neighborhood R(k) are identified (see Fig. 4.3) and their weight vectors x(k)

ij are adapted
to become more similar to the presented training vector xik

by updating them according
to

x(k+1)
ij =

⎧⎨
⎩ x(k)

ij − L
(k)
R h

(k)
ij

(
xik

− x(k)
ij

)
if ‖(i, j) − (i, j)∗‖ ≤ R(k)

x(k)
ij else

(4.2)

where L
(k)
R h

(k)
ij is the adaption rate of the network controlled by the learning rate L

(k)
R and

neighborhood function h
(k)
ij .
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The neighborhood radius

R(k) := R(0) exp
(

− ln
(
R(0)

) k

|I|

)
(4.3)

decreases exponentially with the number of iterations k starting from an initial radius R(0),
which changes the adaption of the network (4.2) from a flexible global (maxk

(
R(k)

)
= R(0))

to a stiff local behavior (mink

(
R(k)

)
= R(|I|) = 1) which effects only direct neighbors.

Accordingly, the learning rate

L
(k)
R := L

(0)
R

R(k)

R(0) (4.4)

decreases from L
(0)
R to L

(|I|)
R = L

(0)
R /R(0), and therefore is the driver for the convergence of

the network.

The exact definition (shape) of the neighborhood radius (4.3) and learning rate (4.4)
is not crucial to the quality of the mapping as long those functions are monotonically
decreasing, never zero, and rather constant during the first few thousand iterations, such
that the correct topographic order can be established before the adaption becomes too
locally focused (Kohonen (2014)). In contrast to this, the setting of the initial learning rate
L

(0)
R and neighborhood radius R(0) has major influence on the performance of the network.

For example, if the value for R(0) is too small, the correct topographic order might not be
established, since the coverage of the neurons being modified is too small. If the values are
to high on the other hand, a reasonably chosen initial order of the neuron weights (other
than random) might get lost. In the present application, values between 0.2 max {I, J} and
0.7 max {I, J} performed well, and it was decided to set R(0) = 0.5 max {I, J}, because in
this case the desired final learning rate L

(|I|)
R ≈ 0.005 is met (see details below).

The initial learning rate should always be L
(0)
R < 1 in order to prevent x(k)

(i,j)∗ from just
snapping onto the input vector xik

which causes kinks and distortions of the network by
prohibiting the correct topographic ordering of the network. In the present application,
using definitions (4.3) and (4.4), it was found that for L

(0)
R ≈ 0.1 and L

(|I|)
R ≈ 0.005 the

mapping quality in regards to mesh orthogonality and equidistant covering of the training
data in VT is best.

Originally SOMs were developed to simulate biological networks, where the lateral
biological interaction causes weight vectors x(k)

ij of neurons closer to the best matching
unit (i, j)∗ to be effected stronger by x(k)

(i,j)∗ than those further away. Therefore, Kohonen
(1990) introduced a bell-curve like neighborhood function

h
(k)
ij := exp

⎛
⎝− 1

2σ2

(
‖(i, j) − (i, j)∗‖

R(k)

)2
⎞
⎠ , (4.5)

which decreases from one at the center (i, j)∗ to exp (−1/ (2σ2)) at the edge of R(k) (actually
Kohonen did not use R(k), but a general spacing and time/iteration dependent function
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σ (t); but he claims that the shape of σ (t) does not matter and only requires monotonic
decrease). The variance σ2 is a shape parameter controlling the width of the neighborhood
function (4.5). For higher values this parameter causes a less progressive decrease of h

(k)
ij ,

and thus of the adaption rate L
(k)
R h

(k)
ij within the region of R(k). In the present application

of surface fitting, it was found that a higher value σ2 ≥ 1, which gives the bell-curve a
more parabolic shape within R(k), has hardly any effect on the final mapping error εM

defined as maximum absolute value of the perpendicular distance between reference surface
and mapped surface, see Fig 4.4. Although lower mapping errors require 0 < σ2 < 1, such
values are found to harm establishing an orthogonal topographic mesh order, and thus
the equidistant covering of the training data in VT . In the present application, where the
SOM is used for mapping only, the neighborhood function may be set as constant, e.g.
h

(k)
ij := 1, with negligible effect on the mapping error.

The size of the network is set to be 40 × 40 (note, all following graphics contain
maps of size 20 × 20 for better visualization) which is about half of the resolution of the
FE-mesh, but sufficient to resolve the eigenmode characteristics. Increasing the resolution
would also increase the required time for training. Kohonen (1990) suggests that the
number of training iterations |I| should be about 500 times the network size, i.e., here
|I| = 40 ∗ 40 ∗ 500 = 800000. However, in the present case |I| = 100000 has proven to be
sufficient. The final maximum fitting error εM is then about 0.12mm and is located in a
small region at the transition between fillet and airfoil.

Before training the network, each coordinate of the training vectors xn ∈ VT should be
scaled w.r.t. the corresponding minimum and maximum values of the whole set VT . This
prevents the training from being dominated by the dimension with the biggest range due
to the Euclidean distance used in Eq. (4.1). Then, the weight vectors representing node

10-1 100 101 102
0.06
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0.1

0.12

0.14

0.16

Figure 4.4: Surface error of the mapping depending on shape parameter σ of the neighbor-
hood function
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coordinates x(0)
ij of the network have to be initialized. Due to the geometric symmetry of

network and airfoil surface (both have four corners), the SOM is able to find the correct
topographic order independently from the initial state, and it performs well even for
random initialization, see Fig. 4.5. However, it might happen that the orientation of the
mapping (Fig. 4.2c) is rotated by multiples of 90◦ according to the geometric symmetry,
if random initialization is being used. However, if the network is initialized close to its
final state, the rotation can be avoided and additionally convergence speed improved. In
the present case, a plane square with the normal vector n = [1, −1, 0]T is a good initial
fit of the airfoil surface due to the normalization of the coordinates as mentioned above,
see Fig. 4.6. With the initial weight vectors x(0)

ij set to a regular mesh on this plane, the
mapping will not be rotated as long as the initial neighborhood radius R(0) is not set too
large.

After the training, the final weight vectors of the neurons x(|I|)
ij represent the airfoil

geometry by a regular mesh (Fig. 4.2). The airfoil displacements uij corresponding to the
regular mesh can then be interpolated, e.g., with natural-neighbor interpolation (Sibson
(1981)) from the original node coordinates xn and the corresponding displacements un

of the FE-mesh. Alternatively, the displacement information may be included into the
weight vectors of the SOM, i.e.,

[
x(k) T

ij , u(k) T
ij

]T
, and modified together by the adaption

scheme (4.2), which yields almost the same results as interpolation and does not harm
convergence speed of the network. However, for the sake of simplicity the interpolation
was preferred for the explanations here.

4.2 Training of Neural Network

As mentioned before, training of the network requires a set VT of training vectors (samples).
In the present case, the training vectors are the nodal coordinates xn of the FE-mesh.
Because the network learns iteratively and is supposed to converge to a static state, each
sample xn ∈ VT has to be trained repetitively. Therefore, an index set I = {i1, i2, ..., iNT

}

0k 200k 2,000k 100,000k

Figure 4.5: Adaption of mesh to airfoil surface during the training of the SOM starting
from random initialization of the neurons
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xy
z

n

airfoil surface

initialization by plane with 1, 1,0 Tn

Figure 4.6: Final airfoil surface mesh compared to the initial mesh before training (both
normalized)

(NT = |I|) is introduced which contains the order of the samples xik
drawn from VT during

the training. It will be shown that the definition of I, i.e., the order of training, strongly
effects the quality of agreement between SOM results and original airfoil surface.

According to Eq. (4.3), the neighborhood radius R(k) continuously decreases with each
training iteration k, which is why the global order of the node coordinates xij has to be
established before R(k) becomes so small that training has only local effects. Furthermore,
the training is a stochastic process where final node coordinates x(NT )

ij are a weighted sum
of adaptations w.r.t. training vectors xik

∈ VT affecting their neighborhood. The weights
are associated with the adaption rate L

(k)
R h

(k)
ij in Eq. (4.2) depending on the iteration

step and distance to the best matching unit (i, j)∗. Thus, both the decreasing R(k) and
stochastic nature of the training process make it necessary that training vectors should be
drawn randomly and equally often from the set VT . However, later it will be shown that
selective cumulation of specific samples may improve the fitting of the neural network to
the airfoil surface. Both can be accomplished by using the permutation operator

π : {1, ..., NN} → {1, ..., NN} (4.6)

to create a random permutation sequence of the numbers 1, ..., NN , which yields a first
index set

I1 := {π (j) , j = 1, ..., NN} . (4.7)

In order to ensure convergence of the network, each training vector in VT has to be picked
multiple times. This is achieved through concatenation of the index set I1 with itself
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until the cardinality of the resulting set I either equals or exceeds the desired number of
iterations NT :

I := I1 ∪ I1 ∪ ... =
⋃

|I|≥NT

I1 . (4.8)

The mesh after training with set (4.8) is shown in Fig. 4.7a. It can be seen that the
agreement between the SOM result and the airfoil surface indicated by black dots repre-
senting the FE-nodes agree well except at the edges. The reason for this deviation is
that after the training the coordinate vector xij of each neuron is the weighted sum of
adaptations due training vectors xn in its neighborhood. Neurons close to the edges of the
airfoil, however, have more neighboring training nodes towards the center of the airfoil
than in the outer direction (neurons on the edges even have no nodes in outer direction).
Those neurons are pulled towards the center of the map away from the edges.

This phenomenon was also investigated by Kohonen (2014) in regards to demodulation
of quantized signals, and he suggested that this issue may be solved by combining k-means
clustering with SOMs. A different strategy is to force the map focus on the edges by
training it with nodes at the edges more often. These nodes may be selected by sorting
the node vectors in VT w.r.t. their coordinates and find the indices of a specified fraction
α < 1 of members from both ends of each coordinate range. For instance, FE-nodes closest
to the leading edge can be identified by ordering nodes in x-direction:

Ĭx
α :=

{
ip ∈ {1, ..., NN} |xip ≤ xip+1 ∧ 1 ≤ ip ≤ 
αNN�

}
. (4.9)

a) b) c)

Figure 4.7: FE-mesh nodes (•) and the fitted regular mesh (−) after NT = 100, 000
iterations with index sets a) (4.8), b) (4.14), and c) (4.19)
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FE-nodes close to the trailing edge are given by

“Ix
α :=

{
ip ∈ {1, ..., NN} |xip ≥ xip+1 ∧ 1 ≤ ip ≤ 
αN�

}
. (4.10)

Analogues ordering in y-direction identifies FE-nodes closest to leading and trailing edge
as well, while nodes closest to tip and root are received by ordering in z-direction. It seems
redundant to order twice for the leading and trailing edge, but in case of twisted airfoils
this is strongly recommended. Combining the sorted sets as

Iα := Ĭx
α ∪ “Ix

α ∪ Ĭy
α ∪ “Iy

α ∪ Ĭz
α ∪ “Iz

α (4.11)

and applying random permutation to randomize this set yields the border set

I2 := {π (j) , j ∈ Iα} . (4.12)

This set I2 is then repeatedly concatenated with I1 until the cardinality of the final index
set I either equals or exceeds the desired number of iterations NT :

1. Set I = ∅ as empty set.

2. Generate I1 according to Eq. (4.7).

3. Set the boundary factor to

α = “α − |I|
NT

(“α − ᾰ) , (4.13)

where the limit parameters are chosen as “α = 0.3 and ᾰ = 0.05.

4. Generate I2 according to Eq. (4.12).

5. Append the actual index set I by I1 and I2, i.e.,

I := I ∪ I1 ∪ I2 . (4.14)

6. If |I| ≤ NT proceed with step 3, else stop.

Instead of Eq. (4.13), more refined formulas could be used to estimate α such that (4.14)
finally yields |I| ≈ NT , but the proposed linear decay has proven to be sufficient, and at
the end there is no strong need to ensure |I| ≈ NT . Fitting based on set (4.14) improves
the approximation at the edges as can be seen in Fig. 4.7b. It is worth to mention that
training the edges separately using distinct sets for the edges (as utilized in Eq. (4.14))
gives better results than training with a random permutation of set (4.14), because in this
way I2 can better counteract the contraction phenomenon.

Further improvement of the fitting at the edges can be achieved by including a third
subset into Eq. (4.14) which contains those nodes xn = [xn, yn, zn]T belonging to the
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convex hull in the x-z-plane of Fig. 4.6, i.e.,

Ix
3 =

{
ip ∈ {1, ..., N} |

[
xip , zip

]
∈ conv ({(xn, zn) , n ∈ {1, ..., NN}})

}
, (4.15)

where e.g.

conv (VT ) :=

⎧⎨
⎩

|VT |∑
n=1

wnxn

∣∣∣∣∣∣wn ≥ 0 ∧
|VT |∑
n=1

wn = 1

⎫⎬
⎭ . (4.16)

Accordingly the convex hull in the y-z-plane is given by

Iy
3 =

{
ip ∈ {1, ..., NN} |

[
yip , zip

]
∈ conv ({(yn, zn) , n ∈ {1, ..., NN}})

}
. (4.17)

These sets are then combined and permuted randomly as

I3 := {π (j) : j ∈ Ix
3 ∪ Iy

3 } , (4.18)

in order to generate the final index set I in accordance with the procedure above, but
with Eq. (4.14) substituted by

I := I ∪ I1 ∪ I2 ∪ I3 . (4.19)

As a result, Fig. 4.7c show an improved approximation of the airfoil edges.

Apparently, as a trade-off to the better fitting on the edges, the sets (4.14) and (4.19)
cause the map to become a bit more distorted (orthogonality decreases). This is considered
as an incidental defect, because the classification procedure in Chapter 6 has to be robust
against distortions in the mapped displacement fields anyway. For example, it has to
operate on eigenmodes from rather different airfoil geometries where displacement fields
won’t coincide, but only share some characteristics. The fitting of edges, however, is crucial
due to the fact that characteristic local extrema in the displacement field are most likely
occurring at the edges. Thus, their detection strongly effects the quality of classification.



5 Normalization and Dimension
Reduction of Eigenmode Data

As one goal of this thesis is the correct automated assignment of eigenfrequency bands
w.r.t. fundamental eigenmode shapes, the correct assignment will greatly depend on the
correct classification of the eigenmode shapes at the lower and upper stiffness bounds
(see Section 3.2). Classification aims to establish borders between members belonging
to different categories, where all classification algorithms benefit from proper data pre-
processing using data normalization and dimension reduction which improves separation
between clusters of members belonging to different categories and makes data less sparse.
Within this thesis the members are structural eigenmode shapes represented by vectors of
nodal displacements as a result of FE modal analysis.

In the following, first the effect of different methods of data alignment and normalization
onto the data structure will be analyzed. For assessment, not just the well established
silhouette value will be evaluated, but also two newly defined methods which compensate
shortfalls of the silhouette value. Then, a detailed review on different methods of dimension
reduction is given, followed by an analysis of their effect on the data structure.

5.1 Alignment and Normalization of Eigenmode Data
Eigenmodes of airfoils are characteristic shapes of the displacement field which the structure
experiences from harmonic excitation. In the present case, the nodal displacement field
refers to FE-nodal information on the suction-side surface of airfoils. The eigenmodes are
projected onto standard rectangular surfaces with nodes (ij) , i = 1...I, j = 1...J , according
to Chapter 4 and Fig. 5.1, in order to make them comparable across different airfoil
geometries. Hence, the surface-displacement field is described in the natural coordinate
system of the airfoil surface by vectors uij =

[
u⊥

ij, u→
ij , u↑

ij

]T
with roughly perpendicular

(u⊥
ij), tangentially axial (u→

ij ), and tangentially radial (u↑
ij) displacement components. A

representative eigenvector is assembled from the whole projected displacement field as

u :=
[
u⊥T , u→T , u↑T

]T
=

[
u⊥

11, u⊥
12, .., u⊥

IJ , u→
11, u→

12, .., u→
IJ , u↑

11, u↑
12, ..., u↑

IJ

]T
∈ R

D , (5.1)

where the dimension D = 3 × I × J may become rather large, e.g., D = 4800 for
I = J = 40. This can harm the classification performance, which is the motivation for

53
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u
u

u

1 I

J

1

u
u

u

…

…

Figure 5.1: Extracted projection of the characteristic displacement fields of a compressor
blade

investigating different dimension reduction procedures in Section 5.2. But first, aligning
and normalization may help to improve data structure as an initial step.

As shown by Eq. (B.8) in Appendix B, eigenvectors are not unique. Hence, orienting
them equally may enhance comparability. Therefore, eigenvectors are redirected such
that the perpendicular displacement u⊥

1J of the upper left corner, as one of the most
distinguishing points in airfoil vibration, is equally oriented, i.e., vector (5.1) may be
redefined as

u :=

⎧⎨
⎩ −u if u⊥

1J < 0
u else .

(5.2)

The assessment in Appendix B additionally suggests that eigenvectors may shift the sign of
their amplitude ratio during frequency veering, whereas they maintain their characteristics.
For example, a stiff-wise bending mode with the main deflection in axial direction (u→)
may be identified independently from deflections u⊥ and u↑. Thus, as an alternative to
Eq. (5.2) redirection of eigenvectors u might be performed direction-wise as

∗u :=

⎡
⎢⎢⎢⎣sgn

(
u⊥

1J

)
u⊥T︸ ︷︷ ︸

∗u⊥T

, sgn (u→
1J) u→T︸ ︷︷ ︸

∗u→T

, sgn
(
u↑

1J

)
u↑T︸ ︷︷ ︸

∗u↑T

⎤
⎥⎥⎥⎦

T

(5.3)

where

sgn (x) :=

⎧⎨
⎩ −1 if x < 0

1 else .
(5.4)

As eigenvectors are not unique, normalization with the Euclidean norm ‖u‖ resulting
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in

ũ =
[
ũ⊥T , ũ→T , ũ↑T

]T
:=

[
u⊥T , u→T , u↑T

]T
/‖u‖ , (5.5)

∗ũ =
[∗ũ⊥T , ∗ũ→T , ∗ũ↑T

]T
:=

[∗u⊥T , ∗u→T , ∗u↑T
]T

/‖ ∗u‖ (5.6)

might be beneficial, because this projection onto an unit hypersphere makes differences
only apparent through the orientation of the eigenvectors but their amplitudes (αi in
Eq. (B.8)) do not affect the characteristic of eigenvector φφφi). Following this argument,
other norms such as Frobenius, Manhattan, or maximum norm seem little promising and
actually turned out to perform worse than the Euclidean norm.

In the following, formulas and procedures will be applied to the different formulations
(5.1)-(5.3), (5.5) and (5.6) of the characteristic vectors or their sub-vectors. In order to
keep the subsequent formulas universal, a general vector

φφφ ∈
{
u, ∗u, ũ, ∗ũ, ũ⊥, ∗ũ⊥, ...

}
(5.7)

is introduced instead. Additionally, in order to assess and compare the various strategies,
a reference set of samples with known classification is needed. Throughout this thesis,
the reference set is based on an industrial compressor of a stationary gas-turbine with
NR = 29 rows of airfoils (IGV plus 14 stages). For each row the first ten eigenmodes
have been computed at the lower as well as the upper stiffness limit, resulting in overall
29 ∗ 10 ∗ 2 = 580 eigenmodes which have been classified by a human expert. Some modes,
however, had to be omitted because they could not be assigned unambiguously to one of
the specific classes in Fig. 2.6. Finally, a set of NM = 548 classified vectors φφφk (Eq. (5.7))
with k = 1, ..., NM is received. This set is specified as V := {φφφk, k = 1, ..., NM} and each
vector φφφk is associated with a class ck ∈ {1, ..., NC} and a compressor row rk ∈ {1, ..., NR}.
Based on this, the set V may be split class- and row-wise into subsets Vr

c , which may be
again combined as

Vc =
NR⋃
r=1

Vr
c , Vr =

NC⋃
c=1

Vr
c , V =

NC⋃
c=1

Vc =
NR⋃
r=1

Vr (5.8)

where Vc represents all mode vectors of a specific class c and Vr summarizes all mode
vectors of a specific row r. Thus, a specific vector φφφk ∈ V is also element of the sets Vrk

ck
,

Vck
, Vrk .

Firstly the effects on cluster separation by redirecting and normalizing eigenmode
vectors are analyzed. This may be accomplished by computing the silhouette value
(Rousseeuw (1987)) for each vector φφφk. It indicates how distinct the membership of a
sample φφφk to cluster ck is compared to the closest neighboring cluster c∗ �= ck. Calculation
of the silhouette value requires computation of the average distance of φφφk to all points of
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a cluster Vc as

dist (φφφk, Vc) := 1
|Vc|

∑
φφφl∈Vc

‖φφφk − φφφl‖ . (5.9)

The class c∗ �= ck of the neighboring cluster Vc∗ with the smallest average distance to φφφk,
but not containing φφφk, i.e., φφφk /∈ Vc∗ , is given as

c∗ := arg min
c 
=ck

(
dist (φφφk, Vc)

)
. (5.10)

Thus, the silhouette value

s (φφφk) := dist (φφφk, Vc∗) − dist (φφφk, Vck
)

max
{
dist (φφφk, Vc∗) , dist (φφφk, Vck

)
} ∈ [−1, 1] (5.11)

compares the average distance of φφφk to its own cluster Vck
with its average distance to the

nearest neighboring cluster Vc∗ 
=ck
. The silhouette value is (+1) if the average distance to

its own cluster Vck
is zero, i.e., φφφk is the centroid of Vck

, and it is (−1) if φφφk is the centroid
of Vc∗ . The silhouette value is zero if φφφk is the combined centroid of both Vck

and Vc∗ .
If clusters are spheres of similar size, high silhouette values of all φφφk ∈ V indicate good
cluster separation and thus high chance of correct classification. Else, low silhouette values
may be a sign that clusters are poorly separated, differ much in size (volume) and/or their
shapes differ from that of spheres.

The silhouette values for all vectors φφφk = uk ∈ V , only aligned according to Eq. (5.2),
are shown in Fig. 5.2a in descending order within each class (1B, 1T, ..., 3H; see Fig. 2.6).
Except for 1B, 1T, and 3H, all other mode clusters show signs of possible intersections by
fractions of negative silhouette values. This is especially the case for 1S, 3T, and 3B mode
clusters, where modes are more prone to misclassification.

Normalization of the data according to Eq. (5.5), i.e., φφφk = ũk, obviously improves
the data structure especially for the first-stiff-wise eigenmodes (1S), see Fig. 5.2b. This
is certainly relevant, because 1S modes are characterized by high displacements in chord
direction, but tend to take over other mode characteristics (especially in the scenario of
frequency veering) of the perpendicular displacement field to such an extend that they are
easily misclassified. Other eigenmode shapes (clusters) which profit from normalization
are third torsion (3T) and bending (3B).

Besides φφφk = ũk, eigenmodes may also be described by the normalized perpendicular
displacement field φφφk = ũ⊥

k only, because except for 1S all other fundamental eigenmode
shapes within reference set V have been distinguished by human expert based on u⊥

k . As
a matter of fact, Fig. 5.2c shows that for φφφk = ũ⊥

k , data structure is nearly as good as for
φφφk = ũk in Fig. 5.2b. Restriction to φφφk = ũ⊥

k reduces dimensionality of the classification
problem and, therefore, is one of the possibilities going to be suggested in Section 5.2.

Without normalization, however, the silhouette values for φφφk = u⊥
k are nearly the
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Figure 5.2: Effect of normalization on cluster separation (silhouette values)

same as in Fig. 5.2a, except for the 1S cluster which has only negative silhouette values
then (not shown here). Consequently, normalization transfers information from the axial
displacement field u→

i onto the perpendicular field via the scaling (5.5). Note that also
other strategies such as scaling the reference set feature-wise between zero and one have
been investigated, but none performed better than strategy (5.5).

In comparison to φφφk = uk or ũk, redirecting the data according to Eq. (5.3) and using
φφφk = ∗uk or ∗ũk, gives a better data structure for the 1S-mode cluster. The beneficial
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effect vanishes, however, for φφφk = ∗ũ⊥
k . This is not surprising, since (5.2) and (5.3) only

affect the orientation of the 1S-mode vectors, but not their magnitude, which means that
the normalized perpendicular displacement field will hardly be effected.

As already mentioned the silhouette value only allows to judge on cluster separation, if
the corresponding clusters are almost shaped as spheres of similar size. However, if they
differ as shown in Fig. 5.3a, negative silhouette values occur in Fig. 5.3b, although the
clusters are clearly separated. Because of this, the distance ratio DR is introduced as a
measure which grasps the data structure in a less global, but more local sense. It is defined
as normalized difference between the distances of φφφk to the closest neighbor of its own
kind and the closest neighbor of different classification instead of average distance (5.11):

DR (φφφk) := dist (φφφk, Vc◦) − dist (φφφk, Vck
)

max {dist (φφφk, Vc◦) , dist (φφφk, Vck
)} ∈ [−1, 1] (5.12)

where

dist (φφφk, Vc) := min
φφφl∈Vc\{φφφk}

‖φφφk − φφφl‖ (5.13)

and

c◦ := arg min
c/∈ck

(dist (φφφk, Vc)) . (5.14)

Figure 5.3c shows that the distance ratio DR is able to identify that the negative silhouette
values in Fig. 5.3b are not caused by cluster intersection (no negative DR-values). Note:
Also the DR-criterion has its drawbacks, because if cluster data points are insufficiently
sparse, this may cause false negative DR-values!

The evaluation of DR-values is given in Fig. 5.4. In comparison between Fig. 5.2a for
silhouette values and Fig. 5.4a for DR-values, it can be seen that many of the negative

a) b) c)

Figure 5.3: Example of a) artificial cluster distribution (marked by x and o, respectively)
with corresponding b) silhouette values and c) distance ratios
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Figure 5.4: Effect of normalization on cluster separation (distance ratio)

silhouette values are actually caused by inhomogeneous clusters (differences in size, shape
and orientation) and there are only very few potential intersections with both negative
silhouette- and DR-values. However, there are some cases of ill sampled regions with
negative DR-values but positive silhouette values as well, e.g., 3H cluster for φφφk=̂uk

or ũk. Normalization increases homogeneity of the clusters, hence improves silhouette
values (Fig. 5.2b), but hardly effects intersections (Fig. 5.4b), whereas the perpendicular
displacement field itself causes less intersections (Fig. 5.4c). Alignment with Eq. (5.3) also
reduces intersections, see Fig. 5.4d–f.
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The silhouette value and distance ratio may give insight into the quality of the clusters
and/or their sampling, but no information is gained about the actual neighborhood
structure between the clusters. Therefore, in Fig. 5.5 the nearest neighboring mode φφφp∗ of
different classification cp∗ �= ck is identified for each mode φφφk by

p∗ = arg min
p:φφφp∈V\Vck

∥∥∥φφφk − φφφp

∥∥∥ , (5.15)

k kuu k kuuk kua) c)b)

k kuu k kuud) f)e)k ku

Figure 5.5: Effect of normalization onto the type of cluster neighbors and their distance
(indicated by marker size)
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and marked on the abscissa, while the size of the marker indicates the Euclidean distance
(being scaled w.r.t. minimum and maximum distances between all members of V). The
modes within each class are sorted by the distance to the neighboring clusters. For example,
Fig. 5.5a then shows that the 1B cluster is remotely located from any other cluster since
its only neighbor is the 1C cluster. All other clusters have more or less the same distance
to the closest neighboring clusters. The primary effect of normalization in Fig. 5.5b is
that distances between the clusters are more equalized, but it also causes changes in the
neighborhood structure. Most modes now have fewer direct neighbors such as 2B or 2H,
and only 1C has now more. In accordance to Fig. 5.2, Fig. 5.5 shows positive effects by
using redirection (5.3) if no normalization is applied, but negligible effects otherwise.

In conclusion, redirecting in accordance to Eq. (5.3) improves cluster separation
(Fig. 5.4) and using normalization improves the homogeneity of clusters w.r.t. shape,
size, and orientation. Thus, without any further data treatment and depending on the
sensitivity of the classifier to the dimensionality of the data, φφφk = ∗ũk or φφφk = ∗ũ⊥

k should
provide the lowest classification errors.

5.2 Procedures for Dimension Reduction of
Eigenmode Data

Dimension reduction aims at neglection of information which is not needed for classification.
The goal is to counteract the curse of dimensionality, a phenomenon of data becoming
sparse for a fixed sample size as the volume increases exponentially with the dimension
of data vectors. This phenomenon can harm the performance of classifiers because it
deteriorates the statistical significance of the training data and/or increases the classifiers
number of free parameters to such an extend that generalization w.r.t. new unknown
data suffers significantly. In the following, potential methods for dimension reduction of
eigenmode data shall be introduced in order to increase the data density by transforming
the eigenvector data (5.1) of dimension D to vectors of lower dimension d < D:

{u1, ..., uNM
} , uk ∈ R

D →
{
φφφ1, ...,φφφNM

}
, φφφk ∈ R

d<D . (5.16)

Note, that for matter of generality the transformation (5.16) may include any alignment
or normalization strategy introduced in the previous section. Furthermore, for the sake of
simplicity, it will only be referred to data alignment according to Eq. (5.2) in the following
without harming generality. The effect of the dimension-reduction methods that are going
to be introduced here, will be assessed within the subsequent section.

As mentioned in the last section, using the normalized perpendicular displacement
field φφφk = ũ⊥

k as a representation for uk might be a promising reduction of data size from
D = 4800 to d = 1600. Taking the underlying idea one step further, one may conclude
that, except for stiff-wise bending, the number of minima and maxima on the leading
and trailing edge, the tip, and the middle vertical line are sufficient to characterize the
underlying eigenmode shape, see Fig. 5.6. Thus, a characteristic pixel vector (CPV)
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φφφ = CPV (ũ⊥) :=
[
ũ⊥

11...ũ
⊥
1J ...ũ⊥

IJ ...ũ⊥
I1, ũ⊥

�I/2�J ...ũ⊥
�I/2�1

]T
(5.17)

may be used for classification, where the order of pixels is irrelevant. For a 40 × 40 pixel
image, this reduces dimensionality of the data set to d = 157.

Another possibility to extract essential distribution of minimum/maximum information
is to use Haar-detectors. They are also being used for face detection as suggested by
Viola and Jones (2004). Each Haar-detector in Fig. 5.7 provides one characteristic scalar
by summing up all gray-scale-pixel values in the black and white regions separately and
subtracting the two resulting scalars as

φφφ =
16∑

h=1

⎡
⎢⎣eh

⎛
⎜⎝ ∑

(i,j)∈Ablack
h

ũ⊥
ij −

∑
(i,j)∈Awhite

h

ũ⊥
ij

⎞
⎟⎠

⎤
⎥⎦ (5.18)

where eh ∈ R
16 is the hth unit vector and Ablack

h , Awhite
h refer to the black and white areas of

the hth Haar-detectors in Fig. 5.7. The Haar-detectors seem to be well suited for detection
of eigenmode shapes, because each detector in Fig. 5.7 is sensitive to a specific eigenmode
shape. For example, the detectors of the first column are sensitive to bending modes of
first till fourth order, the detectors of the second column are sensitive to torsion modes of
first till fourth order, and the detectors of the last two columns are sensitive to different
orders of higher-order and chord-wise-bending modes. The use of these Haar-detectors
reduces the dimensionality of the data set to d = R

16.

In face recognition, the principle-component analysis (PCA; Jolliffe (2002)) is often used
to receive the content of underlying principle eigenfaces of a set of image data (Heseltine
et al. (2003)), which also reduces dimension of data significantly. The idea of PCA is
sketched in Fig. 5.8a for a two dimensional problem, showing that for a set V of vectors the
coordinates [x1, x2]T are expressed by a shift m and rotation of the principle coordinate
system {e′

1, e′
2} aligned along the main variances of V in order to provide the new local

vector coordinates [x′
1, x′

2]
T . Since directions (coordinates) with little variance provide

only little gain in information, they may be omitted to reduce the data dimension without
much loss of information. A detailed description of PCA is given in Appendix C.1. By
accounting for 99.8% of the combined data variance (see (C.10) and (C.11)), the method

I1

J

1

uu

Figure 5.6: Trace of characteristic pixels of the perpendicular displacement field
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Figure 5.7: Haar-filters used for dimension reduction

reduces the dimension of the airfoil-data set from R
4800 to R

43. By accounting for 99.99%
of the combined data variance, the dimensionality would be R

186 with a slight benefit
in classification performance for the methods to be introduced later. The perpendicular
displacement fields of the first 50 principle directions are shown in Fig. 5.9, where the first
ten principle directions together already account for 93.59% of the combined data variance.
These first ten principle directions show more familiarity with some of the fundamental
eigenmode shapes than the rest of the principle components. For example, the second
direction looks like a 2T mode (see Fig. 2.6), the fourth direction looks like a 2B mode of
the strongly twisted blades from the first rows of the compressor, and the sixth and tenth
direction look like 1C and 2C modes, respectively. Besides the dimension reduction, PCA
is also often used to whiten data (Bishop (2006)), i.e., to scale the data such that the
variance becomes equal in all directions, which in many cases is considered to be beneficial
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2x 1x2x x
2x2

m
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Figure 5.8: PCA projection (a) and MDA projection (b)
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min max
uu

Figure 5.9: Perpendicular displacement fields of the first 50 principle directions with the
according percentages of total variance

because of removing linear correlations between features of the data set (Appendix C.1,
Eq. (C.12)).

PCA can only detect variances in linear directions, whereas data information with
nonlinear correlations will get lost or the dimension of the data might not be reduced to
the full possible extend. To overcome these issues, a nonlinear version of PCA using kernel
functions (kPCA; see Appendix C.1) was suggested by Schölkopf et al. (1997).

The goal here is to classify data, which is why finding directions of best cluster
separation instead of directions with highest variances might be more beneficial. To
illustrate this, Fig. 5.8b shows two clusters V1 and V2 of data with mean vectors m1
and m2 which are best separated by projecting the data onto direction e′1 instead of the
direction of main variance which is approximately directed along the cluster means. Based
on linear Fisher-discriminant analysis (FDA) suggested by Fisher (1936) and explained in
Appendix C.2, the multiple discriminant analysis (MDA; e.g. Duda et al. (2000)) finds
directions where the distances between cluster means are highest w.r.t. the variances of the
clusters in those directions. As suggested by Mika et al. (1999) and Roth and Steinhage



5.3 Assessment of Dimension Reduction Procedures 65

(1999), and in accordance to PCA, MDA can account for nonlinearities by also using kernel
functions (kMDA). Using MDA/kMDA, the dimensionality reduces to one less than the
number of clusters, i.e., NC − 1. Clearly, discriminant analysis is not just reducing data,
but is a classifier as well. However, due to its close relation to PCA it is assessed already
in the following section instead of the next chapter.

The perpendicular displacement fields of the first ten linear discriminants are shown
in Fig. 5.10. In comparison to the principle components in Fig. 5.9, the discriminants
look confusing and it can be suspected that they are sensitive to changes in the data
set. Possible reasons for that will be discussed within the next section after the actual
performance has been assessed. Another issue to be faced is that the dimension of the
dataset is higher than the size of each cluster |Vc|. Thus, the within-cluster-scatter matrix
becomes non-positive definite and little values of 10−13 have to be added to the main
diagonal in order to receive results (see Appendix C.2).

min max
uu

Figure 5.10: Perpendicular displacement fields of the first 10 discriminants

5.3 Assessment of Dimension Reduction Procedures
The effect of the different dimension-reduction methods on the data structure will again
be evaluated by comparing silhouette values (5.11), distance ratios (5.12), and neighbor
modes (5.15). All reduction methods will be applied to ũ and ∗ũ in order to examine if
the benefits of using redirection (5.3) are preserved after dimension reduction. Evaluation
of the different reduction methods except for MDA will be performed using the reference
set V defined in Section 5.1. Because MDA requires knowledge of the classification of the
samples of the data set used for calculation of the discriminates, the performance cannot
be assessed by using V, since classification is unknown in case of new data (new airfoil
geometry i.e. compressor row design). Instead, the performance is assessed by using the
individual set V \ Vrk for each φφφk ∈ Vrk where all eigenmodes of the same compressor row
rk as φφφk are dropped from the set of training data (discriminants are calculated based on
known data pretending φφφk ∈ Vrk is new and of unknown class).

In comparison to Fig. 5.2c, Fig. 5.11a shows that despite the tremendous dimension
reduction (5.17), φφφk = CPV(ũ⊥

k ) allows nearly as good separation as φφφk = ũ⊥
k itself,

i.e., most of the relevant information in the perpendicular displacement field is located
at the trace (5.17). The Haar-detectors on the other hand (φφφk = Haar(ũ⊥

k )) cause
slightly decreasing silhouette values in most of the clusters (Figure 5.11b), i.e., some useful
information was lost. Improvement of data separation is given, if normalized eigenvectors
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Figure 5.11: Silhouette plots of the different dimension reduction methods

(5.5) are projected onto directions of highest variances (φφφk = PCA(ũk)), see Fig. 5.11c,
neglecting information (features) of little variance, i.e., little information value. However,
a significant improvement is achieved when nonlinear PCA (φφφk = kPCA(ũk)) is used with
a quadratic polynomial kernel function (polynomial kernel functions with higher order
than quadratic or Gaussian kernel function did not perform better), see Fig. 5.11d.

The benefit of kPCA is lost if the data are whitened, see Fig. 5.11e. To understand the
reason, a lower dimensional view on the data structure for a test case is given in Fig. 5.12.
It is known from Appendix B that the eigenmodes are distinguished by the amplitude
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Figure 5.12: Effect of b) normalization, c) PCA, and d) whitening on data structure (a)
with corresponding silhouette plots

ratio of the displacement field, but not by the absolute value of the amplitudes. Therefore,
the test case in Fig. 5.12a contains two clusters representing two different eigenmode
classes, one cluster with little variance in the amplitude ratios but larger variance in
amplitude level (unambiguous mode type), and one cluster of visa versa characteristic. The
silhouette values show that the test data are well separated and separation is improved by
normalization (Fig. 5.12b; data is located on a sphere of radius one) and PCA (Fig. 5.12c;
data are centered and rotated into direction of main variance). Thus, the reason for the
good performance of PCA and also kPCA in the low-dimensional example as well as in the
high-dimensional application (Fig. 5.11) is that after redirection and normalization (data
relocated on one half of a hypersphere) the main variance directions roughly coincide with
good discriminating directions. But in case of data whitening (Fig. 5.12d), the possible
set of discriminates reduces due to the increased variance in ordinate direction, i.e., the
separation of the data deteriorates. The reason is that the direction of highest variance is
also the direction of best separation and whitening adapts the variances of the data set to
become all equal to one. Hence, the distinguishing amplitude ratio becomes less and the
negligible amplitude level more dominant.

Interestingly, using MDA to filter for the information that best separate the clusters
(φφφk = MDA(ũk)), see Fig. 5.11f, has a poor effect on cluster separation, as well. Con-
trariwise, φφφk = kMDA(ũk) in Fig. 5.11g gives a significant improvement of the data
structure. The reason is that in the present case kMDA is much less prone to changes in
the data set used to calculate the discriminates. It shall be recapitulated that calculation
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of the discriminates requires knowledge of the classification of each sample within the
reference set used for the analysis. Therefore, the silhouette value for each φφφk ∈ Vrk of
a compressor row rk has to be calculated based on the MDA projection received from
V \ Vrk . Nonetheless, a calculation of the silhouette values based on the MDA projection
received from V was performed and the values are all close to one, which means that the
data set V is actually linearly separable, but the discriminates are too sensitive to changes
in the data set for the appropriately applied MDA to be performing well. In order to
analyze the sensitivity of MDA to changes in the data set, the modal-assurance criterion
(C.54) between the discriminants vi, based on the whole reference set V using (C.39) and
the discriminants vi

r calculated from V \ Vr is evaluated as follows:

MAC i
r := MAC

(
vi, vi

r

)
∈ [0, 1] . (5.19)

The MAC-value is bounded between zero and one, where a value of zero means that vi and
vi

r are perpendicular and a value of one means that they are fully aligned (Appendix C.2).
The results in Fig. 5.13 indicate that especially compressor rows 6, 8, 13, and 27 contain
eigenmodes which strongly affect the cluster means and variances and, therefore, the
discriminants. Unfortunately the same evaluation is not possible for kMDA because the
size of the scatter matrices in Eq. (C.51) is equal to the number of samples in V respectively
V \ Vr which is why the size of the eigenvectors is not consistent.

Due to the good performance of kPCA and kMDA the question arises if their com-
bination, i.e., φφφk = kMDA(kPCA(ũk))=̂kPDA(ũk) would give further improvement of
the data structure. As shown in Fig. 5.11h, this method causes higher positive but also

1 5 10 15 20 25 29
0

0.5

1

Figure 5.13: Mean value ( ) and the range between minimum and maximum MAC-value
for discriminants calculated based on reference set V and reduced reference
set V \ Vr
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negative silhouette values and judging whether this means an improvement or not has to
be made by evaluating the classification performance later on.

All the described effects of dimension reduction onto the data structure w.r.t. redirecting
the eigenvectors in accordance to (5.2) also hold for (5.3), see Fig. A.3. In direct comparison
to Fig. 5.11, the beneficial effects by using (5.3) almost vanish for all dimension-reduction
methods except for φφφk = PCA (∗ũk) and the 1S-mode cluster.

In Section 5.1, based on the distance ratio (5.12), it was shown that the majority of
the negative silhouette values is caused by cluster imbalance and not by cluster inter-
section. The effect of dimension-reduction onto the distance ratio may be observed in
Fig. 5.14. Comparing Fig. 5.14a–d with Fig. 5.4b–c shows that those dimension-reduction
methods have negligible effect onto cluster intersection, which seems to be surprising but
is reasonable, since all those methods preserve most of the relevant content of the data
(w.r.t. variances). For data whitening and MDA (Fig. 5.14e–f), however, there is noticeable
deterioration in cluster separation. Using nonlinear MDA instead (Fig. 5.14g–h) hardly
effects the number of cluster intersections (negative distance ratios), but slightly increases
those that are existent. Using redirection method (5.3) instead of (5.2) decreases those
intersections but has negligible influence on the distance ratio otherwise, see Fig. A.4.

A more detailed insight into the effects of dimension reduction onto the neighborhood
structure of the clusters is given in Fig. 5.15. No noteworthy influence can be seen by
using φφφk = CPV(ũk) and φφφk = Haar(ũk) (Fig. 5.15a-b) instead of φφφk = ũk (Fig. 5.5b),
but the dimensionality has decreased significantly from D = 4800 to d = 157 and d = 16,
respectively. A clear improvement onto the homogeneity of the distances between the
clusters is achieved by using φφφk = PCA(ũk) and especially φφφk = kPCA(ũk) (Fig. 5.15c&d).
Interestingly the neighborhood structure is nearly identical for both PCA and kPCA.
Whitening (Fig. 5.15e), however, seems to cause intersections of all clusters with the 1B
cluster. The poor silhouette results for φφφk = MDA(ũk) are caused by small distances
between the clusters (comparably small markers in Fig. 5.15f) and higher number of
neighbors for each cluster. Even the 1B and 1T clusters, which have good silhouette values,
have been shifted closer to other clusters, such that misclassification becomes more likely.
The improved silhouette results for φφφk = kMDA(ũk) and φφφk = kPDA(ũk) do not result
from a more homogeneous distance between the clusters but from fewer direct neighbors
(especially 2B). The combination of kPCA and kMDA reduction, see Fig. 5.15h, gives
fewer direct neighbors than just using kMDA, but those left are located closer and no
clear advantage can be determined.

The effects onto neighborhood structure by using (5.3) instead of (5.2) are negligible for
any method not related to MDA, see Fig. A.5. However, based on the conclusions drawn
from the investigations here, the best combination of cluster separation and homogeneity
is achieved with kPCA. Therefore, using either (5.2) or (5.3) makes no notable difference.
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Figure 5.14: Effect of different dimension reduction methods onto the distance ratio
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Figure 5.15: Effect of different dimension reduction methods onto the type of cluster
neighbors and distance (size of marker)
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6 Classification of Eigenmodes and
Assignment of Frequency Bands

In this chapter it shall be investigated which classification algorithm from a selection of
some common algorithms results in the highest probability to assign the correct class to
an unknown eigenmode shape. In order to increase the data density and improve data
structure for the classification algorithms, eigenmode data have been redirected, normalized,
and reduced in dimension by various methods described in previous Chapter 5. However,
according to the "no free lunch theorem" described by Wolpert (1996), classification
performance will depend on how well the data structure fits to the classification algorithm,
i.e., a dimension reduction method with poorer effect on cluster separation does not
necessarily perform poor in classification and visa versa. Thus, in order to identify
eigenmode shapes with lowest risk of misclassification, assessing the performance of
different classification algorithms has to be done in combination with the different dimension
reduction methods from Chapter 5.

Despite classification of eigenmode shapes with possibly low error rate, assigning
reasonable eigenfrequency bands may be challenging due to the possibility that specific
eigenmode shapes may not be existent at both lower and upper limit of predicted eigen-
frequencies. Based on the assessment in Section 3.4 a procedure for assigning proper
eigenfrequency bands to specific mode shapes will be introduced which incorporates the
best suited classification method identified. This procedure will be introduced within the
last section of this chapter, after different classification algorithms have been introduced
and their performance has been assessed.

6.1 Classification of Eigenmode Shapes

In order to be able to assign a specific mode-shape class c̃ to a new unclassified sample φ̃φφ, all
classifiers require a training set VT = {φφφk} of vectors with known classification {ck}. The
training intends to adjust a classifiers free parameters in such a way that classification error
becomes minimal. In case of iteratively trained classifiers, overfitting of the free parameters
to the training set is prevented by stopping the training after it performs with minimum
classification error on an independent validation set VV i.e. VV ∩VT = ∅ containing elements
of known classification. Because the choice of the training and validation set influences
the classification performance, their definition is explained before the performance of the

73
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classifiers is assessed.

6.1.1 Nearest-Neighbors Algorithm

The nearest-neighbor algorithm is one of the simplest classifiers. A new sample φ̃φφ with
unknown class c̃ is assigned with the class ck∗ of the closest neighboring training sample
φφφk∗ from the training set VT :

k∗ := arg min
k:φφφk∈VT

dst

(
φ̃φφ,φφφk

)
→ c̃ := ck∗ (6.1)

where dst

(
φ̃φφ,φφφk

)
is a distance metric calculating the distance between φ̃φφ and φφφk which

will be explained later. A graphical interpretation of the nearest-neighbor classifier may
be given by a Voronoi diagram where any new φ̃φφ within the Voronoi region

Rk :=
{
φ̃φφ

∣∣∣dst

(
φ̃φφ,φφφk ∈ VT

)
< dst

(
φ̃φφ,φφφj ∈ VT

)
∀ j �= k

)
(6.2)

of φφφk is assigned with the class ck (Lee (1982)). Figure 6.1a shows Voronoi cells for data
that have been randomly sampled inside and outside a quarter of a circle (dotted line)
giving two sets of samples defined as class one and two. It can be seen that the decision
boundary of the nearest neighbor classifier is formed by borders of the Voronoi cells (solid
black lines).

An extension of Eq. (6.1) to majority voting is the k-nearest-neighbors algorithm (kNN)
which assigns the most frequent class among the k nearest neighbors in VT to φ̃φφ. This
includes k = 1 as nearest-neighbor algorithm. Using k > 1 reduces the risk of overfitting
the data and may help to receive a model that generalizes better, see Fig 6.1b. If, however,
the number of neighbors k is chosen too high, the decision border will be pushed towards
the less dense cluster at first, see Fig 6.1c, but as k approaches the total number of samples

a) b) c)1k 11k 51k

Figure 6.1: Binary classification (different shades of gray; 50 samples per cluster) with
kNN algorithm for different numbers of neighbors k (k = 1 represents nearest-
neighbor algorithm)
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(combined of both classes) the decision will be in favor of the cluster with the most samples.
In order to suppress this undesired behavior, the votes may be weighted by the distance
of each neighbor to φ̃φφ (Hechenbichler and Schliep (2004)). However, this strategy is not
applied in the present investigation.

The performance of the kNN-algorithm dependents on the type of distance metric
and is sensitive to the local structure of VT . Considering the continuous nature of the
eigenmode data, two different distance metrics seem possible, the Euclidean distance

dst

(
φ̃φφ,φφφk

)
:=

√(
φ̃φφ − φφφk

)T (
φ̃φφ − φφφk

)
(6.3)

and the cosine distance

dst

(
φ̃φφ,φφφk

)
:= 1 − φ̃φφTφφφk

||φ̃φφ|| ||φφφk||
. (6.4)

The cosine distance measures the angle between two vectors and is, therefore, promising
w.r.t. to the raw data where no normalization and dimension reduction has been applied
to. From the study in Appendix B it is known that eigenmodes are distinguished by their
amplitude ratios not their amplitude level. For this reason the cosine distance is commonly
used in modal analysis, but scaled reversely, to be used as a correlation measure for mode
agreement, the so called modal-assurance criterion (C.54), see Appendix C.3. Applied to
mode classification by nearest-neighbor algorithm, the goal is to find the training vector
φφφk∗ with the highest MAC-value to φ̃φφ and then to assign the corresponding class ck∗ :

MACk := MAC
(
φ̃φφ,φφφk

)
∈ [0, 1] ∀ φφφk ∈ VT → k∗ = arg max

k
MACk → c̃ := ck∗ . (6.5)

Because using cosine distance (6.4) in Eq. (6.1) is equivalent to (6.5), the assessment in
the following section will refer to MACk only. Improvements of the performance of the
nearest-neighbor algorithm may be achieved by learning a metric, e.g., using neighborhood-
components analysis (Goldberger et al. (2004)), but such methods will not be investigated
here.

Instead of evaluating MAC between φ̃φφ and the samples in VT , one may also find the class
c̃ by evaluating the correlation between φ̃φφ and the cluster means mc = (1/ |Vc|)

∑
k:φφφk∈Vc

φφφk

where Vc is defined in Eq. (5.8). Then, the assignment analogously to Eq. (6.5) is as
follows:

MAC c := MAC
(
φ̃φφ, mc

)
∈ [0, 1] → c̃ = arg max

c
MACc . (6.6)

6.1.2 Support-Vector Machine

A support-vector machine (SVM) by Vapnik and Lerner (1963) is an algorithm which seeks
an optimal discriminating hyperplane nT φ̃φφ + b = 0 between data points of two different
classes, see Fig. 6.2a. The resulting hyperplane is optimal in the sense that it represents
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the border with widest margin between the cluster bounds. The algorithm filters for
those data points which actually influence the decision on the optimal hyperplane; these
data points are referred to as support vectors. The SVM algorithm can only find linear
hyperplanes (discriminants) and in case of non-separable data a trade-off parameter (slack)
has to be defined to balance between maximization of the margin 2/ |n| and minimization
of violations (Fig. 6.2b). However, indirectly the algorithm can account for nonlinear
directions of separation by implementing the kernel trick (Boser et al. (1992)), see Fig. 6.2c.
For more details, a description of the mathematics of the SVM algorithm is given in
Appendix C.4.

The goal of SVM is very similar to MDA/kMDA, but the advantage of SVM over
MDA/kMDA is that SVM finds the discriminate based on the local data structure and
the decision is influenced by the support vectors only. In contrast to this, MDA/kMDA
uses the statistical representation of the data via the scatter matrices which can cause
poor results in case the shape of the clusters deviates much from a sphere and the sample
distribution within the clusters is inhomogeneous. Additionally, the resulting discriminants
can be very sensitive to changes in the data set even if those changes do not affect the
boundary region between the clusters.

As SVM is a binary classifier, application to multiple class problems requires to calculate
multiple binary classifiers. Thereby, two approaches are commonly used, the one-vs-rest
(also known as one-vs-all) and the one-vs-one approach. The one-vs-rest approach requires
NC binary classifiers, one for each class, where the opponent class is formed by the
combined samples of all other classes. A new φ̃φφ is then assigned with the class that belongs
to the binary classifier with the highest score. On the contrary, the one-vs-one approach
requires NC (NC − 1) /2 binary classifiers (one for each possible pairing of the classes)
and the class with the highest score on votes from all binary classifiers is assigned to a
new data point. The performance of both methods on test data from the UCI machine
learning repository (Asuncion and Newman (2007)) has been investigated by Hsu and Lin

2 nb n

n

a) b) c)

Figure 6.2: Binary classification (different shades of gray; 50 samples per cluster) with
SVM algorithm: a) linear for linearly separable data, b) linear for nonlinearly
separable data (with slag), and c) nonlinear for nonlinearly separable data



6.1 Classification of Eigenmode Shapes 77

(2002) as well as Duan and Keerthi (2005) but the results are contradictorily w.r.t. which
method performs better. Along with different cross-validation strategies, the main reason
for the inconsistencies may be the usage of a different training set size which has major
influence on the results as shown by Duan and Keerthi (2005). Without further analyses
of the data structure of the UCI test-data sets and considering that in general the decision
boundaries will be much more complex with the one-vs-rest approach, the one-vs-one
method should be preferred. For example, imagine an arbitrary constellation of pairwise
linearly separable clusters, e.g., several clusters located on a sphere and one in the middle,
then the decision boundary between one arbitrary cluster and the rest will be nonlinear
but linear for any one-vs-one classifier. Therefore, the data set used throughout this
thesis, where the amplitude ratio of the eigenmodes is the distinguishing information,
contains a cluster structure that should benefit from the one-vs-one approach, and a direct
comparison actually showed a slightly better performance compared to the one-vs-rest
approach.

6.1.3 Feed-Forward Neural Network

Feed-forward-neural networks (FFNN) in combination with back-propagation training
(back-propagation-neural network (BPNN)) are one of the most powerful learning algo-
rithms and are widely used in autonomic driving, face recognition, and other pattern-
recognition tasks. A specially designed BPNN suggested by Ciregan et al. (2012) even
outperforms humans on the task of traffic sign recognition. Such networks belong to
supervised learning algorithms, i.e., data with known outcome are used to train the
weights of network synapses. A simple design of a fully connected three-layer FFNN
with input (IL), hidden (HL), and output (OL) layer, as described by Bishop (2006), is
shown in Fig. 6.3. Each layer contains neurons, each of which processes a signal according
to its transfer function (hl for input-layer neurons; fj for hidden-layer neurons; gc for
output-layer neurons) and is connected to all neurons of the previous and subsequent layer.

argmax c
c

c gargmax
c

. . .
. . .

. . .
. . .

. . .
. . .

1f

jf

HLNf

1g

cg

CNg

HL
jlw OL

cjw
IL HL OL

1h

lh

Dh

1 10
HL
jw 0

OL
cw

Figure 6.3: Fully connected feed-forward-neural network with three layers
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The connections, also called synapses, are associated with weights wHL
jl connecting the lth

input-layer neuron with the jth hidden-layer neuron and wOL
cj connecting the jth hidden-

layer neuron with the cth output-layer neuron. These weights account for the strength of
each connection. The hidden and output-layer neurons are additionally connected to bias
neurons, with constant output one, by connection weights wHL

j0 and wOL
c0 .

The network processes a signal by first splitting an input vector φ̃φφ ∈ R
D into its

components and each component φ̃l is the input to the transfer function hl of the lth

input-layer neuron. Commonly hl is set to be a linear function without offset or shift
(Duda et al. (2000)) such that the input φ̃l is simply transmitted to the output of the lth

input-layer neuron. The output of the lth input-layer neuron is then linked to all neurons of
the hidden layer where the strength of the output processing is controlled via the weights
wHL

jl . Thus, the input tHL
j to each neuron of the hidden layer (net activation) is a specific

weighted sum of the outputs of all input-layer neurons plus a bias wHL
j0 , i.e.,

tHL
j :=

D∑
l=1

(
hlw

HL
jl

)
+ wHL

j0 (6.7)

or

tHL = WHLh + wHL
0 =

[
WHL

��
�wHL

0

] ⎡
⎣h

1

⎤
⎦ (6.8)

where h = [h1, ..., hD]T is the output vector of the input layer, WHL =
[
wHL

jl

]
is a

connection matrix, wHL
0 is the bias vector of the hidden layer, and tHL =

[
tHL
1 , ..., tHL

NHL

]T

is the activation vector of the hidden layer. Accordingly, the net activations tOL
c of the

neurons of the output layer are weighted sums of the hidden-layer outputs fj := f
(
tHL
j

)
,

i.e.,

tOL
c := fT wOL

c + wOL
c0 =

[
wOL

c

T

��
�wOL

c0

] ⎡
⎣f
1

⎤
⎦ , (6.9)

where f = [f1, ..., fNHL
] is the output vector of the hidden layer and wOL

c =
[
wOL

c1 , ..., wOL
c NHL

]T

is the weight vector of the links from the hidden layer to the cth neuron of the output
layer. In classification tasks, the index c of the output layer neuron with the maximum
output determines the class c̃ assigned to the input signal φ̃φφ.

The outputs of the hidden- and output-layer neurons w.r.t. their net activations is
controlled by the transfer function fj and gc. Those transfer functions have to be bounded
in order to prevent the weights of the network links (synapses) from diverging during
training (see Appendix C.5 for more details). Additionally, it is desired that the hidden-
layer transfer functions are linear in some place in order to keep the model simple wherever
possible and nonlinear where more complexity is required (Duda et al. (2000)). This is
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achieved by choosing the hyperbolic-tangent function

fj := f
(
tHL
j

)
= 2

1 + e−2tHL
j

− 1 , f : R → [−1, 1] . (6.10)

In contrast to this, the output-layer transfer functions for classification task shall scale the
output w.r.t. the competing outputs which is commonly achieved via the softmax function

gc := g
(
tOL
1 , ..., tOL

NC

)
= etOL

c∑NC
s=1 etOL

s

, g : RNC → (0 , 1] . (6.11)

By considering Eqns. (6.8) and (6.9), it becomes clear that the biases wHL
j0 and wOL

c0 allow
to control the left-right shift of the transfer functions. Thus, wHL

j0 allows to tune the
outputs fj between linear for

∣∣∣tHL
j

∣∣∣ and nonlinear w.r.t. the inputs tHL
j , and wOL

c0 allows to
tune the average classification decision of a specific class c.

For the adaption of the network weights wHL
jl , wHL

j0 , wOL
cj , and wOL

c0 during the training
of such networks, commonly gradient-based optimization algorithms are applied where the
training-error gradient is back-propagated through the network as described in Appendix
C.5. Because of the large number of parameters/weights, these algorithms perform better
than most others. However, gradient-descent algorithms are likely to get stuck in a local
optimum. Therefore, the initial setting of the weights is usually generated randomly and
the procedure of initialization and training the network is repeated multiple times until
a setting is found with a sufficiently small value of the local optimum. Alternatively, it
is suggested in the following to initialize the weights close to a state that resembles the
desired operation of the network such that optimization is more effectively driven to a
minimum (may still be local) which gives satisfactory performance of the network.

Based on the previous chapter it is known that PCA has a positive effect on the
separation and structure of the clusters of the reference data. Furthermore, it was
suggested that the maximal MAC between the cluster means mc and a test vector φ̃φφ ∈ R

D

may be used to assign the class c̃, see Eq. (6.6). Considering that the net activations
of the neurons of the input layer (6.8) and output layer (6.9) are scalar products of the
previous layer outputs h = [h1, ..., hD]T and f = [f1, ..., fNHL

]T with the weight vectors
wHL

j =
[
wHL

j1 , ..., wHL
jD

]T
and wOL

c =
[
wOL

c1 , ..., wOL
cNHL

]T
, both PCA and a correlation

criterion similar to MAC c can be incorporated into the network structure in an elegant
manner described by Martin and Bestle (2018).

The PCA transformation according to Eq. (C.10) can be represented by the first two
layers and their connections. Therefore, the transfer functions hl of the input layer are
used to centralize the data by choosing

h
(
φ̃φφ

)
= [h1, ..., hD]T := φ̃φφ − m =: ¯̃

φφφ (6.12)

where the mean vector m ≈ μ is calculated from the training samples φφφk ∈ VT using
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Eq. (C.1).

The projection (C.10) of
(
φ̃φφ − m

)
onto the principle components in VR is represented by

the connections between the input- and hidden-layer through setting the initial connection
matrix WHL =

[
wHL

jl

]
:= VT

R. Hence, the calculation of the net activations (6.8) coincides
with the calculation of the PCA projection (C.10), i.e.,

tHL = WHL︸ ︷︷ ︸
=:VT

R

h (6.12)= VT
R

(
φ̃φφ − m

)
=: ¯̃

φφφ′
R (6.13)

where NHL := d and the hidden-layer bias weights are set to wHL
0 := 0. A motivation of

this initial setting may also be derived from the work of Baldi and Hornik (1989) who
have shown that for symmetric neural networks with linear transfer functions the weights
at the global optimum are the principle components.

Due to the normalization of the network inputs φ̃φφ according to Eq. (5.5), any input
vector is located on an unit sphere. Therefore, the subtraction of the training data mean
m within the input layer according to Eq. (6.12) will cause the net activations of the
hidden layer (6.8) to become tHL

j < 1 since wHL
j0 = 0. This is true regardless the projection

onto principle components via VT
R. In conclusion, net activations are within the linear

region of the transfer functions fj (see Eq. (6.10)) causing the hidden-layer outputs to
equal the inputs, i.e., f ≈ tHL = ¯̃

φφφ′
R. For this reason it is legitimate to utilize the

output-layer weights wOL
cj for measuring the correlation between the projected test vector

¯̃
φφφ′

R = tHL ≈ f = [f1, ..., fNHL
] and the projected cluster means

m′
c := 1

|Vc|
∑

k:φφφk∈Vc

φ̄φφ′
R,k where φ̄φφ′

R,k = VT
R (φφφk − m) , (6.14)

which have to be calculated from a training set VT = ⋃NC
c=1 Vc. The correlation may be

assessed by scalar products ¯̃
φφφ′T

R m′
c similar to the MAC in Eq. (6.6). By setting wOL

c := m′
c,

this assessment is performed by the connections between the hidden and output layer, and
net activations of the output layer (6.9) become

tOL
c = fT︸︷︷︸

≈ ¯̃
φφφ′T

R

wOL
c︸ ︷︷ ︸

=:m′
c

≈ ¯̃
φφφ′T

R m′
c , c = 1, ..., NC , (6.15)

where the biases of the OL are again set to wOL
c0 := 0. Consequently, the neuron of

the output layer with the highest net activation stands for the cluster with the highest
correlation to φ̃φφ and, thus, determines the class c̃ of φ̃φφ as

c̃ = arg max
c

(
¯̃
φφφ′T

R m′
c

)
≈ arg max

c

(
tOL
c

)
= arg max

c
(gc) (6.16)

where the transfer function gc of the output-layer neurons is a softmax function (6.11)
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which scales the net activation tOL
c such that 0 < gc ≤ 1 and ∑

gc = 1.

In accordance to Eq. (C.24), kPCA can be used for initialization in a similar manner
when using φ̃φφ := k̄φ̃ as inputs, setting transfer functions as h := φ̃φφ, and hidden-layer
weights as WHL := BRΛ+. The output-layer weights would then be defined as wOL

c :=
m̂′

c (f ′
k) similar to Eq. (6.14).

Up to now it was defined that wHL
j0 := 0 and wOL

c0 := 0, and initializing the bias
weights in such a way seems reasonable, since the approximate desired functionality of the
network has already been specified by the suggested weight initializations in Eq. (6.13)
and Eq. (6.15). However, tests have shown that the classification performance may be
significantly improved if the bias weights are initialized as

wHL
0 = −VT

R [1, ..., 1]T and wOL
c0 = −m′T

c [1, ..., 1]T . (6.17)

Starting from this initial setting, the network is able to fine tune the weights wHL
jl , wHL

j0 ,
wOL

cj , and wOL
c0 w.r.t. a training set VT . A detailed explanation of this training process is

provided in Appendix C.5.

Because the setting (6.17) lacks reasonable justification at this point, it shall be further
investigated. Before this investigation of the distributions of the biases and the correlation
between initial setting before and adapted setting after the training of the network, a
training and validation set have to be defined. The basis shall be reference set V received
from an industrial compressor as described in Section 5.1. This set is an union of NR

sets Vr where each contains eigenmode vectors of known classification from a specific
compressor row r, see Eq. (5.8). From reference set V row-specific training and validation
sets are received which allows to use cross-validation for assessing the average behavior
of the network to training and classification data. This is done in such a way that the
validation set Vr

V for a row r contains the eigenmodes of two neighboring, geometrically
similar rotors/stators (upstream and downstream), respectively, i.e.,

Vr
V :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

NR⋃
i=r−2

V i \ Vr if r ≥ NR − 1 ,
r+2⋃
i=1

V i \ Vr if r ≤ 2 ,
r+2⋃

i=r−2
V i \ Vr else .

(6.18)

The training set Vr
T for a specific row r is defined as

Vr
T := V \ (Vr

V ∪ Vr) . (6.19)

First the bias distribution resulting from Eq. (6.17) shall be understood as well as the
changes due to training of the network. For comparison, results with wHL

j0 = 0, wOL
c0 = 0

and randomly chosen bias weights (setting with best performance out of 20 random
settings) will be evaluated. The first represents the initial approach from Eq. (6.13) and
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Eq. (6.15), the latter common practice. Representative for results of all compressor rows,
only that case will be shown where the data of the last row NR are considered as unknown
by using VNR

T and VNR
V . For now the elements of these sets are defined as φφφk = ũk in

accordance to Eq. (5.5). In Fig. 6.4 the bias distributions before and after the training
are indicated by black solid and red dashed lines, respectively. Despite the three settings
mentioned already and shown in Fig. 6.4a–c, a fourth setting is introduced in Fig. 6.4d
and will be explained later. In general it can be seen that the bias adaptations due to the
training are quite small. Actually they have about the same magnitude in all four cases

a)

b)

c)

d)

Figure 6.4: Biases wHL
j0 and wOL

c0 before (black line) and after training (red dashed line)
for following initializations a) according to Eq. (6.17), b) all weights set to be
zero, c) random initialization (best performance out of 20 random settings),
and d) HL weights w.r.t. variances and OL according to Eq. (6.17)
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despite the different axis scaling. However, initialization (6.17) has a favorable effect on
classification performance which may be explained with the alternating characteristic and
variance dependency in case of wHL

0 = −VT
R [1, ..., 1]T in Fig. 6.4a. This dependency is

visible in the larger fluctuations of the first 50 values which have been identified to contain
≈ 99.8% of data variance, see Fig. 5.9. For this reason a fourth setting has been tested in
Fig. 6.4d which accounts for the variance associated with the principle components in an
alternating manner. With this setting the classification performance improves for all rows
in case of φφφk = ũ. However, for input data that have been dimensionally reduced by some
of the suggested methods in Section 5.2, initialization of the biases according to (6.17)
gave slightly better classification performance.

At this point it shall be evaluated if setting (6.17) reflects a local optimum compared
to random initialization for any of the introduced dimension reduction methods and if
it performs well for all stages of the compressor. In order to clarify this, the MAC-value
(C.54) between the initial bias weight vectors and the final ones is evaluated in Fig. 6.5.
The correlation of the bias weights is the highest in Fig. 6.5a, d, f, and h which indicates
that the network training gets directly trapped in a local optimum right from the start.
Additionally, it might seem odd that Fig. 6.5a&d are very much alike, but it is rather
logical because the HL weights wHL

jl have been initialized with the principle components
from PCA; so in case of Fig. 6.5d PCA is applied twice, first to the reference data and
after within the HL of the network. The only effect is that the 99.99% filter on the
principle components is applied twice in case that φφφk = PCA(ũk) resulting in viewer
principle components to be considered and slightly poorer classification performance which
will be shown in the next section. The next section will also show that a dimension
reduction method with high correlations w.r.t. Eq. (6.17) in Fig. 6.5 will have the largest
improvement in classification performance when choosing (6.17) over random initialization.
However, Fig. 6.5b, c, and g also make clear that initialization (6.17) is not an optimal
choice in every case.

So far the investigation has shown that good performance w.r.t. initialization (6.17) is
achieved in cases with high correlation between initial and final state of the bias weights.
In conclusion more significant changes to the initial hidden- and output layer weights
in Eq. (6.13) and Eq. (6.15) must be introduced by the training in order to explain
the learning effect of the network and better performance over MAC as will be shown
in the next section. That this is actually the case, can be seen in Fig. 6.6 where the
hidden- and ouput-layer weight matrices have been deflated to vectors

[
wHL

jl

]
and

[
wOL

cj

]
in order to measure the MAC-correlation between initial state before and final state after
training. However, the degree of correlation does not correlate with the classification
performances evaluated in the next section which is no issue since the intention of the
invented initialization is not to trap the network in this state, but to provide a good
starting point for exploring a proper optimum.
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Figure 6.5: MAC between the initial (0)• and the final (∗)• setting of the bias-weight vector
of the hidden layer wHL

0 (full line) and output layer wOL
0 (dashed line) for

training the BPNN with the set (6.19) for each compressor row r
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Figure 6.6: MAC between the initial (0)• and the final (∗)• setting of the hidden-layer wHL
jl

(full line) and output-layer weights wOL
cj (dashed line) for training the BPNN

with the set (6.19) for each compressor row r
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6.2 Assessment of Classification Performance

Although it is rather obvious that a dimension-reduction method (Section 5.2) with better
effect on the separation and structure of the clusters will also improve performance of a
specific classifier, this is not certain, because the performance of a classifier will greatly
depend on how well the data structure fits to the classification algorithm and involved
assumptions. Therefore, the classification performance of each classifier in Section 6.1 in
combination with most of the dimension-reduction methods1 in Section 5.2 will be assessed
through cross-validation on the reference set V of eigenmode vectors of known classification,
which is split row-wise in subsets Vr according to Eq. (5.8). These subsets Vr are the test
sets for evaluating the classification performance of each classifier. The training of each
classifier in Section 6.1, except for the BPNN, will be performed on row-specific training
sets Vr

T := V \ Vr. In case of the BPNN classifier the training set and necessary validation
set of a specific row r are defined according to Eqns. (6.18) and (6.19).

By using the Kronecker-delta δij (δij = 1 for i = j and δij = 0 for i �= j) and comparing
the assigned classes c̃k with the true classes ck assigned by a human expert, the number of
misclassifications on each compressor row r can be calculated as

N r = |Vr| −
∑

k:φφφk∈Vr

δc̃kck
. (6.20)

The general classification performance can then be assessed by summing up the number
of misclassifications of all rows r = 1, ..., NR, i.e., ∑NR

r=1 N r. Additionally, the following
characteristics may be defined for assessing the percentage of correct classifications:

ηavg = 1
NR

NR∑
r=1

(
1 − N r

|Vr|

)
, ηmax = max

r

(
1 − N r

|Vr|

)
, ηmin = min

r

(
1 − N r

|Vr|

)
. (6.21)

The performances of the nearest-neighbor (1NN) and 3-nearest-neighbors classifiers are
given in Table 6.1. In alignment with the improved cluster separation evaluated in Sections
5.1 and 5.2, it can be seen that normalization (5.5) and kPCA improve classification
performance of 1NN significantly (1 & 2 compared to 3 & 4 and 3–5 compared to 11–13,
respectively). Interestingly, the performance of the 1NN-classifier using redirection (5.2) is
significantly better than using (5.3) (1, 3, 8, 11 vs. 2 , 4, 9, 12, respectively) although, the
silhouette values in Fig. 5.2 are only slightly better. Especially applied to kPCA on the
whole normalized displacement field (φφφ = kPCA (∗ũ)) gives the best performance for 1NN.
If only the perpendicular displacement field is utilized, i.e., φφφ = ũ⊥, ∗ũ⊥, the performance
is the same for both redirection methods which is also the case for any application of
additional dimension-reduction methods. Note, this is not self-evident, since the vector

1Data whitening and MDA will not be considered because they performed exceptionally poor on cluster
separation compared to other methods. Furthermore, most of the dimension-reduction methods can
be combined for further reduction. Such possibilities are also not documented here due to little or no
improvement and the vast number of possibilities which would have made documentation less clear.
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Table 6.1: Classification performance of 1NN and 3NN classifiers

Combination Data φφφ Method Dim. ∑
r N r ηmin

[%]
ηavg

[%]
ηmax

[%]
1 u 1NN 4800 40 55.6 92.4 100
2 ∗u 1NN 4800 28 66.7 94.6 100
3 ũ 1NN 4800 32 62.5 93.9 100
4 ∗ũ 1NN 4800 23 77.8 95.6 100
5 ũ⊥, ∗ũ⊥ 1NN 1600 28 75.0 94.7 100
6 CPV

(
ũ⊥

)
1NN 157 30 75.0 94.4 100

7 Haar
(
ũ⊥

)
1NN 16 40 55.6 92.4 100

8 PCA (ũ) 1NN 186 32 62.5 93.9 100
9 PCA (∗ũ) 1NN 184 24 77.8 95.5 100

10 PCA
(
ũ⊥

)
1NN 76 28 75.0 94.7 100

11 kPCA (ũ) 1NN 370 30 62.5 94.3 100
12 kPCA (∗ũ) 1NN 368 22 77.8 95.8 100
13 kPCA

(
ũ⊥

)
1NN 242 23 77.8 95.7 100

14 kMDA (ũ) 1NN 11 53 44.4 90.0 100
15 kMDA (∗ũ) 1NN 11 49 55.6 90.8 100
16 kMDA

(
ũ⊥

)
1NN 11 96 44.4 82.2 100

17 u 3NN 4800 35 62.5 93.3 100
18 ∗u 3NN 4800 34 62.5 93.5 100
19 ũ 3NN 4800 33 62.5 93.7 100
20 ∗ũ 3NN 4800 28 75.0 94.7 100
21 ũ⊥, ∗ũ⊥ 3NN 1600 28 75.0 94.7 100
22 CPV

(
ũ⊥

)
3NN 157 30 75.0 94.4 100

23 Haar
(
ũ⊥

)
3NN 16 46 55.6 91.3 100

24 PCA (ũ) 3NN 186 33 62.5 93.7 100
25 PCA (∗ũ) 3NN 184 28 75.0 94.7 100
26 PCA

(
ũ⊥

)
3NN 76 28 75.0 94.7 100

27 kPCA (ũ) 3NN 370 30 62.5 94.3 100
28 kPCA (∗ũ) 3NN 368 24 75.0 95.5 100
29 kPCA

(
ũ⊥

)
3NN 242 23 77.8 95.7 100

30 kMDA (ũ) 3NN 11 53 44.4 90.0 100
31 kMDA (∗ũ) 3NN 11 49 55.6 90.8 100
32 kMDA

(
ũ⊥

)
3NN 11 96 44.4 82.2 100
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norm differs and, therefore, normalization affects the perpendicular displacement field
differently. However, here those differences seem to be negligible which was also concluded
from the investigations in Chapter 5. Also in agreement with the results from Chapter 5,
the performance of kMDA (comb. 14–16) is poor compared to other methods.

Majority voting using kNN with k > 1 decreases the classification performance for
any number of nearest neighbors except three. In fact, using 3NN does not improve
the performance for any of the dimension-reduction methods, but for some methods
performance is just the same. In such cases 3NN should be preferred over 1NN, because
it will make the decision boundary more smooth and may give better generalization for
some data.

In Section 6.1 it was explained that the MACk classifier is an 1NN classifier with cosine-
distance measure which should be, according to the investigation in Appendix B, the natural
distance measure for eigenmodes that have not been dimensionally reduced (eigenmodes are
distinguished by their amplitude ratios, not the level of the amplitudes). This is confirmed
by the performance data in Table 6.2 which states a better performance for φφφ=̂u, ∗u, ũ, ∗ũ
(comb. 1–4) with cosine distance than with Euclidean in Table. 6.1. Interestingly the
performance also improves if PCA and kPCA are applied to ∗ũ (comb. 9&12). This is not
surprising in the way that it is known from Fig. 5.12 that, if applied to normalized vector
data, PCA and kPCA maintain a data structure that favors the cosine distance. However,
the fact that the performance improves for ∗ũ, but not for ũ, indicates that (5.3) causes
better alignment of vectors on the unit hypersphere so that directions of main variances
are also better discriminants, which is comprehensible.

The performance of the SVM classifier strongly depends on how the chosen kernel
function suits the data as described in Appendix C.4. The choice of the kernel function
is in agreement with kPCA; hence, also with SVM the polynomial kernel (C.18) with
q = 2 performs best on the given reference set of data (compared to other values for q or
types of kernels, e.g., Gaussian kernel), if data have not been dimensionally reduced with
kPCA or kMDA. For these exceptions the linear kernel with q = 1 performs best. The
box constraint C in Eq. (C.80) gives best results when set to 200000 for the polynomial
(quadratic) kernel and 1 for the linear kernel. These settings have been deployed in order to
calculate the performance of SVM in regards to the different dimension reduction methods
in Table 6.3. In comparison to Table 6.1 and 6.2, it shows that SVM, although being the
more sophisticated classifier, does not outperform the kNN and MAC in general. The
performance is significantly poorer when the data have not been normalized (comb. 1&2)
or have been dimensionally reduced using CPV and Haar features (comb. 6&7). However,
SVM gives the best performance so far when applied to normalized data redirected by
Eq. (5.2) and dimensionally reduced with kPCA (comb. 11).

Finally, the performance of the BPNN classifier is assessed in Table 6.4. As shown
before in Table 6.2, using the cluster-correlation measure MAC c (comb. 17–32) does not
give a competitive classifier. However, the results are sufficient enough to justify the
implementation of cluster-correlation into the initial output-layer weights wOL

cj of the
BPNN as suggested in Section 6.1. By training the network, this initialization together
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Table 6.2: Classification performance of MACk and MAC c classifier

Combination Data φφφ Method Dim. ∑
r N r ηmin

[%]
ηavg

[%]
ηmax

[%]
1 u MACk 4800 29 62.5 94.5 100
2 ∗u MACk 4800 22 77.8 95.8 100
3 ũ MACk 4800 29 62.5 94.5 100
4 ∗ũ MACk 4800 22 77.8 95.8 100
5 ũ⊥, ∗ũ⊥ MACk 1600 32 75.0 94.0 100
6 CPV

(
ũ⊥

)
MACk 157 36 75.0 93.3 100

7 Haar
(
ũ⊥

)
MACk 16 41 55.6 92.3 100

8 PCA (ũ) MACk 186 34 62.5 93.5 100
9 PCA (∗ũ) MACk 184 25 75.0 95.2 100

10 PCA
(
ũ⊥

)
MACk 76 34 66.7 93.6 100

11 kPCA (ũ) MACk 370 31 62.5 94.1 100
12 kPCA (∗ũ) MACk 368 21 77.8 96.1 100
13 kPCA

(
ũ⊥

)
MACk 242 29 66.7 94.5 100

14 kMDA (ũ) MACk 11 59 44.4 88.9 100
15 kMDA (∗ũ) MACk 11 47 66.7 91.2 100
16 kMDA

(
ũ⊥

)
MACk 11 130 25.0 75.8 100

17 u MAC c 4800 33 77.8 93.9 100
18 ∗u MAC c 4800 34 77.8 93.8 100
19 ũ MAC c 4800 36 77.8 93.4 100
20 ∗ũ MAC c 4800 34 77.8 93.7 100
21 ũ⊥, ∗ũ⊥ MAC c 1600 82 55.6 84.8 94.7
22 CPV

(
ũ⊥

)
MAC c 157 77 62.5 85.8 95.0

23 Haar
(
ũ⊥

)
MAC c 16 84 62.5 84.5 100

24 PCA (ũ) MAC c 186 37 77.8 93.2 100
25 PCA (∗ũ) MAC c 184 44 75.0 91.9 100
26 PCA

(
ũ⊥

)
MAC c 76 70 75.0 87.2 100

27 kPCA (ũ) MAC c 370 35 66.7 93.5 100
28 kPCA (∗ũ) MAC c 368 37 66.7 93.0 100
29 kPCA

(
ũ⊥

)
MAC c 242 44 75.0 91.8 100

30 kMDA (ũ) MAC c 11 59 44.4 88.9 100
31 kMDA (∗ũ) MAC c 11 47 66.7 91.2 100
32 kMDA

(
ũ⊥

)
MAC c 11 132 25.0 75.5 100
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Table 6.3: Classification performance of SVM classifier

Combination Data φφφ Method Dim. ∑
r N r ηmin

[%]
ηavg

[%]
ηmax

[%]
1 u SVM 4800 49 50.0 90.8 100
2 ∗u SVM 4800 37 50.0 93.0 100
3 ũ SVM 4800 27 75.0 94.9 100
4 ∗ũ SVM 4800 22 77.8 95.9 100
5 ũ⊥, ∗ũ⊥ SVM 1600 28 66.7 94.8 100
6 CPV

(
ũ⊥

)
SVM 157 38 55.6 92.9 100

7 Haar
(
ũ⊥

)
SVM 16 109 12.5 79.6 100

8 PCA (ũ) SVM 186 30 66.7 94.4 100
9 PCA (∗ũ) SVM 184 27 66.7 95.5 100

10 PCA
(
ũ⊥

)
SVM 76 28 66.7 94.8 100

11 kPCA (ũ) SVM 370 20 75.0 96.2 100
12 kPCA (∗ũ) SVM 368 22 72.2 95.9 100
12 kPCA

(
ũ⊥

)
SVM 242 31 66.7 94.2 100

14 kMDA (ũ) SVM 11 61 55.6 88.7 100
15 kMDA (∗ũ) SVM 11 53 55.6 90.0 100
16 kMDA

(
ũ⊥

)
SVM 11 179 33.3 67.0 94.1

with PCA-initialization (6.13) should enable the network to surpass the performance of
MAC c. This, however, is barely the case as can be seen in Table 6.4. This is an issue
of the network training getting stuck in a local minimum and of the correlation (6.15)
being unscaled unlike (6.6). However, in most cases the suggested initialization enables
the neural network to find better local optima than with random initialization for an equal
number of hidden-layer neurons NHL and the best setting out of 10 random initializations
per row. For the comparison, the number of hidden-layer neurons NHL was determined by
the PCA-initialization for 99.99% of data variance. Except for φφφ = kPCA (ũ) (comb. 22)
the overall performance of the suggested BPNN is less competitive compared to the other
classifiers. In this case, Fig. 6.6 and Fig. 6.5 show good agreement between initial and finial
state of the network, but with notable modification such that training leads to successful
exploration of a proper optimum. This is in contrast to most of the other input-data
configurations in Table 6.4, where the network gets stuck in a local minimum and no
noticeable changes are made to the weights resulting in a poor optimum of the network
weights. The alternative initialization with kPCA instead of PCA generally improves the
performance except for φφφ = kPCA (ũ). Because the best performing kPCA-initialized
BPNN does not perform better than combination 22 in Table 6.4, results are not shown
explicitly. Also not shown are the results of using MDA projection as input for the neural
network, because results were extremely poor. The reason might be that input-layer size
of D = NC − 1, hidden-layer size of NHL ≤ NC − 1, and output-layer size of NOL = NC is
a bad setting for the network with too few free parameters (synapses).
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Table 6.4: Classification performance of BPNN classifier

Comb. Data φφφ Method Dim. ∑
r N r ηmin

[%]
ηavg

[%]
ηmax

[%]
1 u NHL = 186, rand. init. 4800 49 50.0 90.7 100
2 u NHL = 186, init. with PCA 4800 48 55.6 90.9 100
3 ∗u NHL = 184, rand. init. 4800 53 44.4 90.0 100
4 ∗u NHL = 184, init. with PCA 4800 84 44.4 84.4 100
5 ũ NHL = 186, rand. init. 4800 53 44.4 90.0 100
6 ũ NHL = 186, init. with PCA 4800 45 66.7 91.6 100
7 ∗ũ NHL = 184, rand. init. 4800 55 44.4 89.6 100
8 ∗ũ NHL = 184, init. with PCA 4800 35 66.7 93.4 100
9 ũ⊥, ∗ũ⊥ NHL = 76, rand. init. 1600 46 55.6 91.3 100

10 ũ⊥, ∗ũ⊥ NHL = 76, init. with PCA 1600 35 62.5 93.4 100
11 CPV

(
ũ⊥

)
NHL = 35, rand. init. 157 31 75.0 94.2 100

12 CPV
(
ũ⊥

)
NHL = 35, init. with PCA 157 29 66.7 94.6 100

13 Haar
(
ũ⊥

)
NHL = 14, rand. init. 16 53 44.4 90.0 100

14 Haar
(
ũ⊥

)
NHL = 14, init. with PCA 16 69 44.4 87.0 100

15 PCA (ũ) NHL = 145, rand. init. 186 101 55.6 81.5 100
16 PCA (ũ) NHL = 145, init. with PCA 186 67 62.5 87.5 95.0
17 PCA (∗ũ) NHL = 144, rand. init. 184 89 33.3 83.5 95.0
18 PCA (∗ũ) NHL = 144, init. with PCA 184 62 44.4 88.3 100
19 PCA

(
ũ⊥

)
NHL = 50, rand. init. 76 90 44.4 83.4 100

20 PCA
(
ũ⊥

)
NHL = 50, init. with PCA 76 65 55.6 87.9 100

21 kPCA (ũ) NHL = 36, rand. init. 370 30 50.0 92.4 100
22 kPCA (ũ) NHL = 36, init. with PCA 370 23 77.8 95.8 100
23 kPCA (∗ũ) NHL = 36, rand. init. 368 29 66.7 94.5 100
24 kPCA (∗ũ) NHL = 36, init. with PCA 368 25 75.0 95.3 100
25 kPCA

(
ũ⊥

)
NHL = 21, rand. init. 242 31 62.5 94.1 100

26 kPCA
(
ũ⊥

)
NHL = 21, init. with PCA 242 35 62.5 93.4 100

In conclusion, the suggested BPNN rarely outperforms the other classifiers, and
w.r.t. the best result of each of the investigated classifiers, BPNN only outperforms MAC c.
However, the suggested initialization enables to find promising local optima faster than
random initialization and further potential may be exploited if a more complex network
design is set up.

After the comparison of the classifier performances, the SVM based on φφφ = kPCA (ũ)
seems to be the best choice in regards to the overall performance. However, w.r.t. the
airfoil design problem described in Section 2.3, misclassification of eigenmode shapes that
are more likely to cause failure is more critical than misclassifying less critical modes. In
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regards to the fixation study in Section 3.4 it should also be considered that eigenmode
shapes with a wider frequency range due to higher fixation uncertainties (frequency veering)
should be given more concern w.r.t. misclassification. Therefore, an additional detailed
study on the confusion, defined by type and number of misclassifications between a human
expert and the best strategies of each of the assessed classifiers is given in Fig. 6.7. First,
it is apparent that SVM and BPNN show some confusion between second-bending (2B)
and first-torsion modes (1T) w.r.t. human expert judgment. This issue is not critical,
since these misclassifications occur at front rotor rows equipped with dovetail roots,
which as explained in Section 3.2 suffer only little installation uncertainties due to minor
effects by changing temperature and centrifugal loading. Therefore, assigning the correct
eigenfrequency bands (correlating eigenmode shapes) is no problem. In this case it is also
not problematic that an incorrect penalty might be assigned, because both mode shapes
usually share similar penalty factors wE

i in Eq. (2.15). The matter is quite different w.r.t
the first stiff-wise mode (1S), which is considered to be critical in regards to failure and
is also prone to frequency veering, where misclassification may result in underestimation
of the width of the eigenfrequency. From this point of view it might be worthwhile to
prefer the BPNN classifier over the others due to its perfect detection rate of 1S modes

SVM-kPCA uu

-kMAC kPCA uuu1NN-kPCA uuu

BPNN-kPCA uu

Figure 6.7: Confusion of best performing 1NN, MACk, SVM, and BPNN classifier w.r.t. the
judgment of a human expert
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and negligible performance drawback compared to SVM. Hence, the BPNN classifier will
be used further on.

6.3 Procedure for Assigning Eigenmode Bands

After having elaborated the most suitable classification method within the previous section,
assigning the shape specific eigenfrequency bands required for the calculation of the MRF
value (see Section 2.3) seems straight forward. However, pairing the correct eigenfrequencies
between their fixation and operation extrema becomes challenging when dealing with
misclassification, missing pairing options, and unknown eigenmode shapes. Therefore, the
elaborated classification method from Section 6.2 is embedded into a heuristic decision
procedure which is developed based on the knowledge gained from the fixation-variation
studies in Section 3.4.

The first step is the calculation of eigenmodes for a new airfoil design at both the lower
and upper prediction limit of the eigenfrequencies. As described in Section 3.2.2, the upper
limit for a hammer-foot root is obtained with tight root fixation at idle engine temperature,
whereas the lower limit is obtained with loose root fixation at nominal engine temperature.
These eigenmodes are projected onto standard rectangular squares as described in Section
4, formed to eigenvectors (5.1), redirected by Eq. (5.2), normalized by Eq. (5.5), reduced
according to Eq. (C.16), and then split into one set VL of eigenvectors at loose-nominal
and one set VU at tight-idle fixation conditions. In order to ensure that each of these
two sets contains all eigenmode shapes of interest, the number of modes per set has to
be larger than the number of actually relevant modes. Based on service-experience and
research on industrial gas-turbines, 11 eigenmode shapes have been identified as being
relevant, which are the first 11 modes in Fig. 2.6. For the test compressor used to built the
eigenmode-reference set V, 15 eigenmodes per fixation type were calculated. The result
is two sets of mode vectors VL =

{
φφφL

1 , ...,φφφL
15

}
and VU =

{
φφφU

1 , ...,φφφU
15

}
which have to be

classified by the BPNN (Section 6.1) to assign classes cL
1 , ..., cL

15 and cU
1 , ..., cU

15, respectively.

Since a classifier will assign only classes it has been trained for, it is clear that
eigenmodes not contained in the training set VT will be falsely assigned to any class
contained in VT . This issue becomes critical due to the circumstance that VL and VU

contain more eigenmodes than there are different eigenmode classes within VT . To relax
this problem, two more modes 3H and 4B (see Fig. 2.6) are added to the set of modes
to be detected, because they were found in the reference set among the first 15 modes
at numerous rows. Additionally, eigenvectors of a new airfoil design φ̃φφ ∈ VL ∪ VU =: VC

which do not correlate sufficiently with any of the eigenvectors in VT are excluded from
classification. Sufficient correlation is tested by evaluating MACk in Eq. (6.5) between
each φ̃φφ ∈ VC and φφφk ∈ VT . In case of MACk < 0.4 ∀ k = 1, ..., |VT |, the eigenvector φ̃φφ is
assumed to be insufficiently represented by any element in VT and, therefore, is deleted
from VC , i.e., VC := VC \

{
φ̃φφ

}
. Accordingly new reduced sets of eigenmodes at the upper

and lower frequency limit are defined as V ′
L := VL ∩ VC and V ′

U := VU ∩ VC .

So far only the issue of eigenmodes associated with an unknown class w.r.t. the
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reference set V has been addressed. A possible solution to the other two issues, namely
misclassification and missing pairing options, is embedded in the following procedure of
assigning eigenmode shapes:

1. After the sets V ′
L and V ′

U have been calculated as described above and the eigenmodes
φφφL

i and φφφU
j have been sorted in the order of the corresponding eigenfrequencies,

respectively, the initial step of allocating eigenfrequency bands is to pair most
unambiguous modes first. This reduces the risk of confusion caused by multiple
detections of the same mode shape due to frequency veering or misclassification.
Based on the MAC-values (C.54)

MACL−U
ij := MAC

(
φφφL

i ,φφφU
j

)
where φφφL

i ∈ V ′
L, φφφU

j ∈ V ′
U , (6.22)

correlations between the elements of the sets V ′
L and V ′

U are used to pair each φφφL
i ∈ V ′

L

with that φφφU
j ∈ V ′

U which has the same class and sufficiently high MAC-value,
resulting in a set {φφφU

j ∈ V ′
U | cU

j = cL
i ∧MACL−U

ij ≥ 0.6 }. If several possibilities exist,
the one with the lowest eigenfrequency is chosen. After a pair has been identified,
the paired eigenmodes are deleted from V ′

L and V ′
U :

V ′
L := V ′

L \
{
φφφL

i

}
and V ′

U := V ′
U \

{
φφφU

j

}
, (6.23)

before the next pair is going to be identified.

2. After, each remaining φφφL
i ∈ V ′

L is paired with that φφφU
j ∈ {φφφU

j ∈ V ′
U | cU

j = cL
i }

which has the lowest eigenfrequency. However, the pairing shall start from the
lowest eigenfrequency and the paired modes are deleted according to Eq. (6.23)
before the next pairing is established. Note, the difference between this step and the
previous one is that here only classification is used without the combination with
the MAC-value. Hence, first the most ambiguous modes are paired and afterwards
the less ambiguous ones with lower MAC-values.

3. Next, each φφφL
i ∈ V ′

L is paired with that φφφU
j ∈ {φφφU

j ∈ V ′
U |MACL−U

ij ≥ 0.6} which has
the lowest eigenfrequency, because these modes are rather similar, w.r.t. MAC, thus,
have most likely been misclassified by the classifier. Each resulting mode band is
assigned with that class of the two partners which corresponds to the higher risk of
failure. Both partners are also deleted according to (6.23) before the next pairing is
identified.

4. If there are φφφL
i ∈ V ′

L (φφφU
j ∈ V ′

U) left that share the same class cL
i = cL

i±1 (cU
j = cU

j±1)
as a neighbor φφφL

i±1 (φφφU
j±1) which has been paired already, i.e., φφφL

i±1 /∈ V ′
L (φφφU

j±1 /∈ V ′
U ),

then this mode is assigned to the same mode band of this neighbor, because that
phenomenon may occur due to frequency veering as described in Section 3.4. These
modes are then also deleted using Eq. (6.23).

5. For all remaining φφφL
i ∈ V ′

L remaining φφφU
j ∈ V ′

U (no partner was found within the
previous steps) the decision is made according to the conclusions a-d in Section 3.4.



6.3 Procedure for Assigning Eigenmode Bands 95

It should be noted that step 1 to 3 are different in the way that first both correlation
and classification are used to make a decision, then only classification, and finally only
correlation. As each step possibly reduces the number of elements in V ′

L and V ′
U , the

assignment of eigenmode bands starts with the most ambiguous pairs and moves on to the
less ambiguous ones step by step.

The pairing decisions made by the procedure for three exemplary rotors are shown in
Fig. 6.8, where the number at links denotes the decision step within the procedure above.
Geometrically these three examples coincide with the ones in Section 3.4, but here the
temperature influence is taken into account as it is done during an actual design evaluation.
It can be seen that wherever no pairing can be established based on classification, the
decision strategy evaluated based on Section 3.4 is able to assign reasonable frequency
bands. In Fig. 6.8a, mode 3B at tight fixation (nominal temperature conditions) is
misclassified as 1H which causes assignment of wider and intersecting frequency bands.
However, this is assumed to be acceptable, because in case of resonance with such bands
the optimization process should drive design changes to tighter frequency bands reducing
uncertainties.

In the three examples not all the decision steps of the proposed procedure are required.
However, evaluation of all assignments for all compressor rows results in the statistics
shown in Table 6.5 with the percentage of each decision rule being applied, where most
assignments (81.12%) are made by the classifier in step 1 and 2.

Table 6.5: Execution statistics for the steps of the assignment procedure
step 1 2 3 4 5a 5b 5c 5d
exec. [%] 46,55 34,57 3,55 3,39 0,39 7,28 1,48 2,78
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loose fixation at nominal temperature

tight fixation at idle temperature

a)

b)

c)

Figure 6.8: Assignment of eigenmode shapes for a) front rotor blade of stage 5, b) middle
rotor blade of stage 8, and c) rear rotor blade of stage 15; numbers show the
corresponding decision step; human-expert classification (left of |) is compared
to the procedure result (right of |)



7 Structural Optimization Results
for a Rotor Blade

The primary scope of this thesis is to improve automated airfoil optimization. The
introduced methods for mode shape specific tuning of eigenfrequency bands, direct hot-to-
cold geometry transformation, and assessment of production tolerances in the context of
design robustness shall now be tested to prove their capability within an automated design-
optimization process described in Chapter 2. Due to limited computational resources, the
pre-blading process in Fig. 2.1 will be skipped and the blading process is applied to only a
single compressor row. However, this compressor row, which is taken from an industrial
test-compressor, is chosen to be rather challenging by changing the material to a cheaper
one with lower elastic modulus. This causes the reference design to violate all structural
constraints in Section 2.3 except for the maximal overall stress σmax in Eq. (2.18). As the
optimization process pushes design changes towards a reduction of constraint violation
(2.9), it simultaneously seeks to improve the aerodynamic efficiency (see Eq. (2.10)).

In the following, first it will be validated that the parameter model in Section 2.2 is
able to sufficiently describe the reference geometry. Then the process will be applied to the
deterministic optimization problem (2.10), and it will be investigated how the two different
weight functions (2.13) and (2.14) for calculating the mode-resonance-factor criterion (2.15)
affect the optimal design solution. Finally, the process will be applied to the probabilistic
optimization problem (2.23) which includes assessment of production tolerances.

7.1 Parameter Fitting of an Actual Design
For two reasons it is desirable that the parameter model in Section 2.2 is able to represent a
given reference design sufficiently accurately. First, the reference design for the optimization
test case in this section originates from an actual commercial compressor design which
underwent a manual version of the design process presented in Chapter 2. For the matter
of comparability it is therefore important to ensure that the reference design is located in
the design space of the parameter model. Second, the setting of the parameter bounds
dependents on the fitting of the optimization parameters and adverse accuracy would
cause a search for optimal designs within an unindented design region. Therefore, it must
be tested whether the setting of the parameter model and especially the degree of the
splines is suited to allow the parameter model to find a sufficient representation of the

97
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reference design.

The agreement between the one-dimensional optimization parameters and their cor-
responding reference distribution, i.e., Δ(•) := (•) − (•)ref , is enforced by optimization
and results are shown in Fig. 7.1a. While parameters such as the leading-edge radius RL,
trailing-edge radius RT , and theta shift θS (lean) have been fitted almost perfectly, other
parameters, namely leading-edge metal angle βL, trailing-edge metal angle βT , maximal
thickness tmax, and axial shift x̃S (sweep) show visible but acceptable deviations from the
reference distributions. The two-dimensional distribution of the dimensionless chamber-line
angle β̃ in Fig. 7.1b and thickness t̃ in Fig. 7.1c deviate to larger degrees in areas with steep
gradients. The global effect onto the deviation of the actual airfoil surface, however, is
small, see Fig. 7.2a–b. While the stress distribution (not shown) is not noticeably affected,
the eigenfrequency bands show differences which, however, are insignificant. Therefore,
the parameter model may be considered as sufficient to describe the reference geometry.

a)

b) c)

[°] [°] [mm] [mm] [mm] [mm] [°]

Figure 7.1: Difference fitted parameter distributions and the reference design for a) one
dimensional distributions, b) normalized chamber-line-angle distribution, c)
and normalized thickness distribution
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1H
3T

2H

a)

b)

reference

fitted geometry

reference

2C 2H
3T
1H

2C

Figure 7.2: Geometry and Campbell diagram with engine orders and eigenmode-shape
bands of a) the reference design and b) the design resulting from the fitting of
the parameter model

7.2 Results of Deterministic Optimization

Besides showing that the introduced methods and criteria are capable of improving the
airfoil design when implemented in an automatic design optimization process, it shall
also be investigated how the type of weight function d(n) used for calculating the mode-
resonance factor (2.15) influences the optimization results. Therefore, a DoE (design of
experiments) of 3000 samples is created within a specified design range about the fitted
parameter setting of the industrial compressor blade in Fig. 7.2. Based on this DoE, an
optimization is performed which utilizes the normally distributed weight function (2.13).
This optimization takes about 1500 iterations until no noteworthy improvements are
achieved by the optimizer anymore. Then, the DoE and the additional designs from this
first optimization are reassessed using the constant weight function (2.14) and a second
optimization is started based on the combined set of samples (about 4500) which continues
for about 500 iterations until again no noteworthy improvements are achieved by the
optimizer.
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As described by Bestle (1994) for multi-objective optimization problems such as
Eq. (2.10), there will be no single optimal solution, but a front of Pareto-optimal designs.
On this Pareto-front it is not possible to improve one objective without deteriorating at least
one other. For further evaluation of the quality of the optimization process, one distinctive
design is chosen from the Pareto-front. This design has the lowest constraint penalty
factor (2.9) (no design with C = 0 was found), because ensuring aerodynamic feasibility
and structural integrity has priority. The selected results from both optimizations with the
different weight functions have reduced aerodynamic losses (see Eq. (2.10)) compared to
the reference design and significantly better structural integrity than that of the reference
design made from the cheaper material.

The Campbell diagram of the mode shape specific eigenfrequency bands are shown in
Fig. 7.3 along with an overlay of the reference and optimal geometry. Clearly, the different
weight functions cause rather different optimal geometries compared to each other and
the reference design. In comparison to the reference design, the usage of constant weight

3T

2H
3H

2C

a)

b)

2H **

reference

optimum

Figure 7.3: Geometry and Campbell diagram with eigenmode-shape bands of optimum
obtained with a) constant weight function (2.14) and b) normal distribution
(2.13) where ∗ marks unknown eigenmode shapes not contained by the set of
relevant mode shapes in Fig. 2.6
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function (2.14) in Fig. 7.3a leads to a better structural-dynamical design. Unlike the
reference design which has intersections of the 2H and 2C eigenmode bands with the last
two engine orders, see Fig. 7.2, the optimal design only has one intersection of relevance,
namely the last engine order (lower penalty, i.e. risk of failure, according to Table 2.2) with
2H mode. The intersections with unknown eigenmodes (marked with ∗) are not considered
to be HCF critical. Because the process was also able to tighten the 2H mode band to
a thickness of only a few Hertz, the speed range of intersection, hence, the probability
of excitation has been reduced significantly. Throughout the optimization, the process
explored several designs with resonance between lower EO’s and eigenmode bands, but
successfully avoided those during the later convergence due to the higher penalties which
cause high MRF values according to Eq. (2.15).

The usage of normally distributed weight function (2.13) leads the optimization process
to a structural-dynamical better design w.r.t. the reference design, but not w.r.t. the
constant weight function. Although the intersections with 1H and 3T modes in Fig. 7.2
have been removed, see Fig. 7.3b, the last two engine orders still intersect with 2H and
3H eigenmode bands. The ranges of these intersections, however, have reduced which
is beneficial as described above. Considering that the optimization with the constant
weight function was carried out on all the designs generated during optimization with the
normally distributed weight function (after it was converged), and that the optimum found
is different although the design in Fig. 7.3a should be favored by the normally distributed
weight function as well, it may be concluded that the constant weight function leads to a
less complex response surface of the MRF criterion and thus to better designs.

It has to be acknowledged that, equivalently to the optimization using the constant
weight function, all other structural and aerodynamic constraints that are violated by
the reference design are passed by the optimal design which has been received using
the normally distributed weight function. For example, the arrows in Fig. 7.4a point at
regions where the maximum allowed leading and trailing edge stresses are exceeded by the
reference design, but not by the optimal designs in Fig. 7.4b–c. The surface stresses of
the optimal design on the suction side (SS) in Fig. 7.4b (constant weight function) are
the highest as a result of the strong lean of the design causing increased but permissible
bending stresses, see Fig. 7.3b.

After the effect of the different weight functions onto structural properties has been
analyzed, a more detailed view on the changes of optimization parameters and resulting
geometry parameter distributions shall be given. For the matter of simplicity, the optimal
solution using constant weight function (2.14) will be referred to as design A, and the other
one using normally distributed weight function (2.13) as design B. The comparison of the
one dimensional geometry-parameter distributions in Fig. 7.5a for design A and Fig. 7.6a
for design B shows that for both designs the thickness tmax is increased towards the hub
compared to the reference design. This raises eigenfrequencies of lower eigenmodes while
eigenfrequencies of some higher-order modes are even decreased. Since the cord length was
not modified in order to maintain the stage splitting defined by the Meanline-Throughflow
process, the thicker blades will experience flow separation further upstream. However,
flow turning is one of the aerodynamic constraints, hence, the metal angles βL is increased
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a) b) c)

SS

PS

max

min

Figure 7.4: Von Mises-stress distribution of a) reference design, b) optimum with constant
weight function (2.14), and c) with normal distribution (2.13)

in order to maintain the required turning defined by the Meanline-Throughflow process.
The fact that βT is increased as well, which reduces airfoil curvature as per Fig. 2.2,
indicates that this is a countermeasure for flow separation in order to reduce pressure
wake losses. The reason that ΔβT of design B is larger than that of design A, may be the
different direction of sweep x̃s (axial shift). Interestingly the changes of the leading- and
trailing-edge radii RL and RT are negligible despite the need to fulfill the leading- and
trailing-edge-stress constraints. The reason is that increased airfoil thickness has a larger
influence on the leading- and trailing-edge stresses than the corresponding radii.

Both designs are able to slightly improve aerodynamic efficiency of the reference design
which may be founded by the application of lean and sweep as well as by changes to the
two-dimensional distributions of the dimensionless chamber-line angle β̃ and thickness t̃.
For both designs A and B, β̃ is reduced between front and middle as well as middle and
rear of the airfoil, whereas it is about similar to the reference design at the middle, see
Fig. 7.5b and Fig. 7.6b. Furthermore, t̃ is mainly reduced in the front region of the airfoil
designs and increased towards the trailing edge for design A while being nearly unchanged
w.r.t. the reference for design B, see Fig. 7.5c and Fig. 7.6c. The position of the maximum
t̃ is hardly shifted for both designs which means that the position of the shock front hardly
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a)

b) c)
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Figure 7.5: Difference between the parameter distributions of design A and reference
design for a) one dimensional distributions, b) normalized chamber-line-angle
distribution, and c) normalized thickness distribution

changes as well.

So far it was shown that for the given example tuning and tightening eigenmode bands
such as 2H and 2C is possible, but it has not been clarified how much design freedom
there exists to separately tune and tighten all eigenmode bands of the given example
independently. Therefore, based on the DoE data it will be analyzed which parameters
influence the position of the ith eigenmode band, i.e., f̄E

i := ( “fE
i + f̆E

i )/2, and which
ones influence the bandwidth ΔfE

i := “fE
i − f̆E

i . This analysis is performed using the
regression-tree based nonlinear sensitivity-analysis method suggested by Lockan et al.
(2014) which uses the leave-one-out method to successively identify the parameter which,
if neglected, causes the smallest error between associated regression-tree models, and
thus orders the parameter set according to importance. Figure 7.7a shows the results for
frequency mean f̄E

i where the set of the ten most important parameters is plotted for each
of the first 11 eigenmodes. It can be seen that none of the eigenmodes share the same order
in parameter influence which means that parameter changes will affect the eigenfrequency
bands differently. The same observation can be made for bandwidth ΔfE

i in Fig. 7.7b. The
difference between the parameter IDs in Fig. 7.7c shows that the position and width of the
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a)

b) c)
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Figure 7.6: Difference between the parameter distributions of design B and reference
design for a) one dimensional distributions, b) normalized chamber-line-angle
distribution, and c) normalized thickness distribution

eigenfrequency bands are differently affected by parameter changes as well. In conclusion,
to a certain degree there is design freedom to tune and tighten individual eigenfrequency
bands differently.

7.3 Robust Design Results

Based on the previous deterministic optimization, the same DoE (≈ 3000 samples) and
≈ 2000 designs from the deterministic optimization with constant weight function (2.14) are
utilized for solving the probabilistic optimization problem (2.23) by reassessing production-
tolerance criterion (2.22) for all designs. These results are used to create the initial RSMs
for the probabilistic assessment as shown in Fig. 2.1. The optimization was stopped after
about 1500 design evaluations when no noteworthy improvements were observable. The
results, however, do not contain any design where Δsmax

⊥ �= 0 or C = 0 meaning that, due
to the cheaper material, the design task is too challenging for finding a completely valid
design which is producible within a tolerance of least ±0.01mm. However, reassessing all
designs with a reduced tolerance step Δs⊥ = 0.001mm and choosing the design with the
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a)

b)

c)

Figure 7.7: First ten most influential optimization parameters for the first 11 eigenmodes
regarding a) frequency mean f̄E

i , b) frequency delta ΔfE
i , and the difference

in parameter ID between those two

lowest weighted sum of constraints (2.9) gives a design that is producible within ±0.004mm.
It violates only one less relevant eigenmode band and fulfills all other structural constraints.
However, it suffers from a slightly less efficient aerodynamics than the reference design,
but fulfills the required aerodynamic turning and all other aerodynamic constraints. In
conclusion, the human expert has to decide now whether the challenging production
tolerance negates the economy of the cheaper material or not, and in case it doesn’t, if the
savings justify the reduced aerodynamic efficiency, provided that the forced response of a
less critical eigenmode doesn’t harm service life.

A more detailed insight into the structural dynamic characteristic of the robust design
and its deviation from the reference geometry is given in Fig. 7.8. Although the change
of the geometry w.r.t. the reference design is smaller compared to results obtained from
the deterministic optimizations in Fig. 7.3, the improvement of the structural dynamic
behavior is still significant compared to Fig. 7.2. Two eigenmode bands intersect with
one engine order within the operating speed range where one of the associated eigenmode
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Figure 7.8: Geometry and Campbell diagram for the robust optimal design

shapes is unknown and therefore considered to be non-critical. The other 3H eigenmode
shape suffers a low risk of HCF which, however, should be further assessed w.r.t. the
service-life time using a high-fidelity tool.

Besides the dynamic behavior, also the maximum von Mises stresses are reduced to
tolerable levels, see Fig. 7.9, compared to the reference design in Fig. 7.4a. The main reason
for this is again the increased maximum thickness and not the leading and trailing edge
radii which are increased insignificantly compared to the reference geometry, see Fig. 7.10a.
In agreement with the deterministic optimization results, also the probabilistic optimization
problem leads to an increased metal angle at the leading edge (ΔβL) and reduced one
at the trailing edge (ΔβT ). Accordingly, the values of the camber-line distribution in
Fig. 7.10b and thickness distribution in Fig. 7.10c are reduced around the leading edge
and nearly unchanged around the trailing edge. Additionally, axial shift Δx̃S and theta
shift ΔΘS (bow) are slightly increased.

max

min

PS SS

Figure 7.9: Von Mises-stress distribution of the robust optimum
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Figure 7.10: Difference between the optimal parameter distributions of the robust design
and the distributions of the reference design for a) one-dimensional distri-
butions, b) normalized chamber-line-angle distribution, and c) normalized
thickness distribution
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8 Conclusions and Outlook

In the introduction, several shortfalls of current multidisciplinary airfoil-design-optimization
processes were identified and the goal was formulated to develop methods which allow
to tackle those shortfalls in order to speed up the process and improve the quality of
results. The focus of this thesis is the improvement of structural design evaluation, where
special attention is payed to high-cycle fatigue which impairs the lifetime of airfoils. It
was decided to utilize a penalty strategy suggested by Hecker et al. (2011) which assigns
individual penalties to eigenmode shapes and engine orders w.r.t. their specific risk of
failure in the scenario of forced response. Since this risk depends on the mode shape,
procedures for eigenmode classification and eigenfrequency band assignment were developed
for incorporation into an automated design-evaluation process. As the performance of each
classification algorithm depends on the data structure, several studies were conducted to
identify methods of data normalization and dimension reduction which are most beneficial
to cluster separation. Based on a newly introduced distance ratio, which gives a better
insight into data separation than the commonly used silhouette value, the nonlinear
principle-component analysis (kPCA) is favored over various alternative methods including
multiple-discriminate analysis (MDA). It was shown that the weakness of MDA are
underlying statistical assumptions and it may be suggested to use discriminant directions
calculated by support-vector machines (SVM) instead. In contrast to MDA, the SVM
discriminates consider the local structure of cluster boundaries.

For the final classification of eigenmodes w.r.t. their shape, a feed-forward-neural
network (FFNN) with error back-propagation and a newly developed analytic initialization
of synapses weights based on principle component analysis is found to perform best.
Eigenfrequency bands accounting for uncertain operating conditions are assigned based
on the identified eigenmode shapes and a heuristic approach, which was developed on
the basis of a study on the behavior of eigenfrequencies and eigenmode shapes under
varying operating conditions. This study was conducted for some test airfoils equipped
with hammer foot roots and revealed that frequency veering may appear as frequency
crossing in regards to the eigenmode shapes.

As classification of eigenmode data for changing airfoil designs during optimization
requires a standard of comparison, a projection method based on a self-organizing map
(SOM) was developed which projects surface-mesh data of arbitrary geometries and types
of finite-element meshes onto rectangular standard surfaces. It is shown that structuring
FE-mesh data in an appropriate manner improves the quality of projection at edges of
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surfaces significantly, and thus also the detection rate of relevant eigenmode shapes. The
reason is that the most characteristic surface displacements of eigenmodes are located at
the airfoil edges.

In order to receive proper optimal designs from a design optimization, structural design
evaluation has to be coupled with an aerodynamic one. However, since the aerodynamic
design is a loaded hot geometry resulting from its unloaded cold geometry after exposure
to loads and temperatures at operating conditions, it is recognized that a fast loaded-
to-unloaded transformation of airfoil geometries is needed. Otherwise, the structural
properties of a produced airfoil will significantly deviate from the prediction during
optimization as shown in a study. This led to the development of a new transformation
method which employs negative density to reverse the centrifugal loads. Due to slender
airfoil structures, this method has to perform linear rather than nonlinear deformation
analysis in order to prevent buckling. The frequency and stress error due to the assumption
of linear deformations is found to be negligible even for large airfoils of front stages. The
advantage of the method over the conventional iterative approach described by Goerke
et al. (2012) is its simplicity of implementation within the FEA of an airfoil and its superior
computational speed.

Because optimal designs of a deterministic design-optimization process will most likely
be located at the borders of design regions, even minor manufacturing deviations may
violate constraints. Therefore it is essential to change from a deterministic to a probabilistic
optimization problem where uncertainties in production tolerances are accounted for. In
this thesis it is shown that the usually minimized failure rate is an insufficient objective
for robust design because of its erroneous relation to reliability and uselessness as a
manufacturing requirement. Therefore, a new approach was developed which assesses
the possible production tolerance of a design. This approach relies on response surface
models (RSMs) for design evaluation causing minimal additional computational effort,
since the multidisciplinary design-optimization process already employs individual RSMs
for different disciplines. This approach of individual RSMs increases process efficiency
through excessive parallelization of subprocesses.

The methods and processes developed in this thesis have been validated on the basis
of a rotor blade of an industrial compressor. Since the reference design is valid w.r.t. the
defined constraints, a cheaper material with lower strength was chosen in order to challenge
the optimization process. This makes the reference design violate nearly all structural
constraints. The probabilistic optimization process, however, was able to find designs
of only slightly decreased aerodynamic efficiency but validity w.r.t. all structural and
aerodynamic constraints. The process was also able to shift and tighten eigenfrequency
bands to such a degree that the optimal designs show minor risk of forced response
resonance and flutter. Due to the probabilistic approach, designs were found which
perform robust against production tolerances within the predicted range. For the mode
shifting a new criterion was defined beforehand which involves a smooth intersection
measure weighted with a function that may account for runtime probability within the
gas turbines speed range. The effect of two different functions, one constant and one
normal distribution, onto resulting optimal designs was investigated with the result that
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the constant function performs better in mode shifting.

Due to limited project time and computational resources, the introduced methods still
have some potential for improvement. For example, the simple three-layer FFNN used for
mode-shape classification may be extended by additional hidden layers (deep learning) in
order to be able to learn more complex features from the data. Furthermore, parallel layers
with fixed synapses weights set to account for other type of filters, such as Haar, would
most likely improve the classification error below the 4% achieved so far. One might also
argue that a larger set of training data may reduce the classification error, which could be
accomplished without human support by artificial data expansion. Also the data projection
method using SOMs may be improved further if combined with k-means clustering as
suggested by Kohonen (2014). Better computational resources regarding the number of
CPUs would help to improve predictions of the production-tolerance-assessment method
by allowing to include the whole parameter model (not just the reduced set of parameters
considered here) and testing the actual CAD models for intersections. Additionally,
improvement can be gained by including the chord length as an optimization parameter.
Furthermore, the structure of the optimization process with a master and arbitrary slave
processes allows to incorporate other high-fidelity tools than the ones considered here,
e.g. aeroelasticity calculations for more accurate flutter assessment.
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A Additional Figures

a)

b)

Figure A.1: Blade-fixation study of a front rotor (stage 5) with corresponding eigenfre-
quencies sorted by a) frequency values and b) eigenmode shapes
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a)

b)

Figure A.2: Blade-fixation study of a middle rotor (stage 8) with corresponding eigenfre-
quencies sorted by a) frequency values and b) eigenmode shapes
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Figure A.3: Silhouette plots of the different dimension reduction methods
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Figure A.4: Effect of different dimension reduction methods onto the distance ratio
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Figure A.5: Effect of different dimension reduction methods onto the type of cluster
neighbors and distance (size of marker)
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a) b) c) d)

Figure A.6: Effect of BPNN data processing onto the type of cluster neighbors and distance
(size of marker): a) before HL without biases, b) before HL with biases, c)
after HL, and d) before OL with biases



B Frequency Veering

An explanation of the frequency-veering phenomenon may be given by analyzing an
oscillator consisting of two spring-coupled masses (Novotny (2010)) as shown in Fig. C.1.
The equations of motion for each mass read as

m1ẍ1 = − (k1 + kc) x1 + kcx2

m2ẍ2 = kcx1 − (k2 + kc) x2
(B.1)

or in matrix form with x = [x1, x2]T

⎡
⎣m1 0

0 m2

⎤
⎦

︸ ︷︷ ︸
M

ẍ +
⎡
⎣(k1 + kc) −kc

−kc (k2 + kc)

⎤
⎦

︸ ︷︷ ︸
KL

x = 0 (B.2)

where M and KL are the mass and linear stiffness matrix, respectively. Substitution of x

with

x = φφφ exp (λt) (B.3)

yields a generalized eigenproblem
(
λ2M + KL

)
φφφ = 0 (B.4)

1m 2m

1k 2kck

1x 2x

Figure C.1: Two spring-coupled masses
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with four eigenvalues λ2
1,...4 and nontrivial eigenvectors φφφ1,...4 �= 0 if

(
λ2M + KL

)
is singular,

i.e.,

det
(
λ2M + KL

)
= m1m2λ

4 + λ2 (m1 (k2 + kc) + m2 (k1 + kc)) + k1k2 + kc (k1 + k2) = 0 .
(B.5)

The solutions are

λ2
± = −1

2

⎛
⎜⎜⎜⎝ω2

1 + ω2
2︸ ︷︷ ︸

I

∓
√

(ω2
1 − ω2

2)2 + 4 k2
c

m1m2︸ ︷︷ ︸
II

⎞
⎟⎟⎟⎠ (B.6)

where ω1,2 =
√

(k1,2 + kc) /m1,2. Because term I > II for k1k2 + kc (k1 + k2) > 0, it follows
that λ2

± < 0 which means there are four imaginary eigenvalues

λ1,2 =
√

λ2± = i
√

−λ2± and λ3,4 = −
√

λ2± = −i
√

−λ2± . (B.7)

The corresponding eigenvectors are received by substituting the eigenvalues into
Eq. (B.4). Due to Eq. (B.5), both equations are linearly dependent and the solution is
ambiguous with a free remaining parameter accounting for the so far undetermined initial
state of the system. Additionally, it may be noticed that due to (B.7) λ1,3 and λ2,4 will
pairwise share the same eigenvector. The eigenvectors may be calculated from the first
row of Eq. (B.4) e.g. as

φφφ1,3 =
⎡
⎣ 1

m1λ2++(k1+kc)
kc

⎤
⎦ =: φφφ+ , φφφ2,4 =

⎡
⎣ 1

m1λ2−+(k1+kc)
kc

⎤
⎦ =: φφφ− . (B.8)

The final solution of differential equations (B.1) is a linear superposition of the four,
linearly independent solutions (B.3), i.e.,

x (t) = α1φφφ1e
λ1t + α2φφφ2e

λ2t + α3φφφ3e
λ3t + α4φφφ4e

λ4t . (B.9)

The eigenvalues (B.7) may be written as λ1,2 = i |λ±| and λ3,4 = −i |λ±| where |λ±| =√
−λ2±. This allows to rewrite Eq. (B.9) as

x (t) = (α1 + α3)φφφ+ cos (|λ+| t) + i (α1 − α3)φφφ+ sin (|λ+| t)

+ (α2 + α4)φφφ− cos (|λ−| t) + i (α2 − α4)φφφ− sin (|λ−| t)
(B.10)

using Euler’s formula. Because for real initial conditions for x(t) ∈ R
2 the solution shall be

real as well, the coefficients of Eq. (B.10) have to be real, i.e, (α1 +α3) ∈ R, i(α1 −α3) ∈ R,
(α2 + α4) ∈ R, and i(α2 − α4) ∈ R. This means that a real solution requires conjugate
complex coefficients α1 = ᾱ3, α2 = ᾱ4 and using the trigonometric addition rule gives the
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final solution

x (t) = α+φφφ+ cos (|λ+| t + θ+) + α−φφφ− cos (|λ−| t + θ−) , (B.11)

where the constant amplitude factors α± and phase shifts θ± are defined through the initial
state of the system. Equation (B.11) states that the system will respond to disturbances
with an oscillation which is a superposition of the two eigenfrequencies |λ±| and their
corresponding eigenvectors φφφ±.

Analyzing the frequency veering phenomenon can be done by evaluating Eq. (B.6)
and Eq. (B.8) for a varying stiffness of either k1 or k2 and a varying coupling stiffness
kc. Figure C.2 shows such an evaluation, where the stiffness k1 := 4πN/m is constant
and k2 := k1 + Δk is varied depending on −k1 ≤ Δk ≤ k1; the coupling stiffness is set
to be kc ∈ {0, 1, 2, 4} N/m, and the masses are chosen to be m1 = m2 := 1kg. For zero
coupling (kc = 0) the eigenfrequencies in Fig. C.2a cross because |λ−| = ω1 =

√
k1/m1

is not affected by the increase of k2 and only |λ+| = ω2 =
√

k2/m2 rises. With coupling
(kc �= 0), however, both eigenfrequencies are affected by the increasing stiffness k2, and
the two eigenfrequencies of the system veer away when k1 = k2 (Δk = 0). The distance
of closest approach (for m1/m2 = 1 at Δk/k1 = 0) increases with increasing coupling
stiffness kc, and it would decrease in case of increasing m1 or m2 (not shown in Fig. C.2a
where m1 = m2), which may be shown using Eq. (B.6) as follows:

λ2
− − λ2

+ =
√

(ω2
1 − ω2

2)2 + 4 k2
c

m1m2
(B.12)

ck

2 2 2/k m

11 1/k m ,1 ,2/

,1 ,2/

a) b)

,1
,2

/

Figure C.2: Eigenfrequencies (a) and amplitude ratios (b) of coupled masses as variations
over the difference in stiffness of the wall connected springs
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0 !=
∂

(
λ2

− − λ2
+

)
∂Δk

=
∂

(
λ2

− − λ2
+

)
∂ω2

∂ω2

∂k2

∂k2

∂Δk
= (ω2

2 − ω2
1)

m2
√

(ω2
1 − ω2

2)2 + 4 k2c
m1m2

(B.13)

which has one solution (ω2
2 − ω2

1) = 0 leading to

min
[
λ2

− − λ2
+

]
= 2kc/

√
m1m2 at Δk

k1
=

(
kc

k1
+ 1

) (
m2

m1
− 1

)
. (B.14)

Thus, the position of veering Δk/k1 depends on the mass ratio m2/m1 and stiffness ratio
kc/k1. The distance only becomes zero (=̂crossing) if kc = 0, else veering will occur, where
distance increases with kc.

The effect of frequency veering onto the eigenmode shapes, i.e., the amplitude ratios
φ±,1/φ±,2 with φφφ± = [φ±,1, φ±,2]T , is shown in Figure C.2b where the eigenmodes undergo
a significant change within the region of frequency veering. Interestingly, the character of
the first eigenmode φφφ+ with |φ+,2| � |φ−,1|, is taken over by the second eigenmode φφφ−
after frequency veering, which means that according to the eigenmode shape frequency
veering may be interpreted as frequency crossing as seen in Fig. 3.6b&c. The second
eigenmode, however, changes its character from the two masses oscillating in opposite
directions to oscillating in same direction, both at a comparable level.

Concluding, it can be said that due to frequency veering, eigenmodes may appear to
cross and change their order or they may transform into different new mode shapes. In
case an eigenmode changes its order due to frequency crossing, the level of eigenfrequency
change is proportional to the strength of mode coupling. The position of frequency veering
(in the example here Δk/k1 = 0) is affected by the mass- as well as stiffness distribution
of the system.



C Mathematics of Chosen Methods

C.1 Principal Component Analysis

This section describes the mathematics of principle component analysis (PCA). The main
purpose of PCA is to find main directions of variance, called principle components, in a set
of data points. While these directions are linear the application of the kernel trick allows
to find nonlinear directions. Both PCA and kernel-PCA will be described in the following.

C.1.1 Linear PCA

A set of data points φφφk ∈ R
D, k = 1, ..., N , may be interpreted as a sample of a random

vector φφφ with mean vector μμμ = E [φφφ] which can be approximated as

μμμ ≈ m = 1
N

N∑
k=1

φφφk . (C.1)

If the data set is centered, i.e., φφφ − μ, the variance of the data set in a specific direction
given by unit vector v, vT v = 1, can be calculated from the projection (φφφ − μ)T v as
follows:

σ2 = E
[(

(φφφ − μ)T v
)2

]
≡ E

[
vT (φφφ − μ) (φφφ − μ)T v

]
= vTΣv (C.2)

where Σ is the symmetric covariance matrix of φφφ which can be estimated as

Σ = E
[
(φφφ − μμμ) (φφφ − μμμ)T

]
≈ 1

N − 1

N∑
k=1

(φφφk − m) (φφφk − m)T . (C.3)

The direction v of highest variance maximizing Eq. (C.2) under the constraint vT v = 1
can be found by the necessary condition of a vanishing derivative of the Lagrange function
L:

∂L

∂v
=

∂
(
vTΣv − λ

(
vT v − 1

))
∂v

= 2 (Σv − λv) != 0 (C.4)
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where the Lagrange multiplier λ is the eigenvalue to the eigenvector v in the eigenvalue
problem

Σv = λv . (C.5)

Thus, the eigenvectors v and eigenvalues λ of the covariance matrix Σ are the local
maxima/minima of (C.2), and substituting (C.5) into Eq. (C.2) yields vT Σv ≡ λvT v ≡ λ.
Hence, the Lagrange multipliers λ are equal to the variances σ2 in the principle-component
directions v of Σ. Because of (C.3), Σ ∈ R

D×D is D-dimensional due to φφφ ∈ R
D, symmetric

and at least positive-semidefinite. Thus, there are D orthonormal principle components vi

with corresponding variances σ2
i ≥ 0, which may be ordered as σ2

1 ≥ σ2
2 ≥ ... ≥ σ2

D ≥ 0.

The symmetric positive-semidefinite covariance matrix Σ can be decomposed by using
singular value decomposition (Golub and Reinsch (1971)) such that

Σ = VDVT = VD1/2D1/2VT (C.6)

where V =
[
v1, ..., vD

]
, D = diag

(
σ2

j

)
, and VT V = I or viT vj = δij (Kronecker delta).

Because D is a straining and V a rotating matrix, the distribution of φφφ may be obtained
from standard normally distributed vectors x via

φφφ := μ + VD1/2x = μ +
D∑

i=1
σixivi where xi ∼ N {0, 1} . (C.7)

The proof can be given by substituting transformation (C.7) in (C.3) and comparing the
result to (C.6):

E
[
(φφφ − μμμ) (φφφ − μμμ)T

]
= E

[
VD1/2xxT D1/2VT

]
= VD1/2 E

[
xxT

]
︸ ︷︷ ︸

=I

D1/2VT ≡ Σ . (C.8)

Because the size of each term in Eq. (C.7) is mainly determined by the standard deviation
σi, since ‖vi‖ = 1 and xi ∼ N {0, 1}, terms with small σi may be neglected. The sorting
σ1 ≥ σ2 ≥ ... ≥ σD allows to write an approximation with d major terms as

φφφ ≈ μ +
d∑

i=1
σixivi = μ + VRD1/2

R xR (C.9)

where VR =
[
v1, ..., vd

]
, DR = diag {σ2

1...σ2
d}, and xRi ∼ N {0, 1}. Accordingly, the major

information can be maintained at reduced dimension d < D with a projection

φ̄φφ′
R := VT

R (φφφ − μ) = VT
RVR︸ ︷︷ ︸

I

D1/2
R xR = D1/2

R xR ∼ N {0, DR} (C.10)

onto the directions vi with highest variances. Therefore, the maximum amount of data
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variance the reduction shall account for, determines the number d of directions vi to be
considered, i.e., the dimensionality of the reduction. For example, in case of 99.99% one
may find d as

d = min
I∈N

I s.t.
I∑

i=1
σ2

i

/
D∑

i=1
σ2

i ≥ 99.99% . (C.11)

The PCA method is often used for whitening data which means that the projection
(C.10) is adapted in such a way that the coordinate variances of φ̄φφ′

R are all equal to one.
Therefor, either D1/2

R is set to be the identity matrix I or each eigenvector is scaled such
that

viT vi = 1
σ2

i

. (C.12)

C.1.2 Nonlinear PCA with Kernel-trick

Because linear PCA is limited to finding only straight directions of main variances, it
was suggested by Schölkopf et al. (1997) and inspired by Boser et al. (1992) to execute
the linear PCA in a nonlinear feature space R

F of such a high dimension (even infinite
if necessary, i.e., F → ∞) that nonlinearities in the data set disappear. The data are
transformed into the feature space therefor, using nonlinear functions

f : RD → R
F >D, φ̂φφ = f (φφφ) (C.13)

where, and just for now, it is assumed that the transformed data points are centered,
i.e., ∑N

k=1 f (φφφk) = 0. Consequently, the scatter matrix (C.3), i.e., the estimator of the
covariance matrix, becomes

Σ̂ ≈ 1
N − 1

N∑
k=1

f (φφφk) fT (φφφk) = 1
N − 1FFT where F := [f1, ..., fN ] , fk := f (φφφk) . (C.14)

In accordance to linear PCA, the principle components and main variances are received
by solving the eigenvalue problem (diagonalization of scatter matrix)

Σ̂v̂i = σ̂2
i v̂i,

∥∥∥v̂i
∥∥∥ = 1 (C.15)

similarly to Eq. (C.5) and ordering eigenvalues as σ̂2
1 ≥ σ̂2

2 ≥ ... ≥ σ̂2
F . Due to the unknown

transformation (C.13) and thus unknown Σ̂ ∈ R
F ×F , no practical solution can be obtained

directly from this eigenproblem. However, by realizing that the final goal is to project all
fk onto the directions v̂i of main variances σ̂2

i analogously to Eq. (C.10), the eigenproblem
(C.15) can be used to calculate this projection in a subspace of RF ×F by using the kernel
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trick which will be explained later. First, similar to (C.10) this projection is specified as

f ′T
k := fT

k V̂R =
[
FT V̂R

]
k

=: [BR]k where V̂R =
[
v̂1, ..., v̂d

]
, BR =

[
βββ1, ...,βββd

]
(C.16)

and according to (C.9) those v̂i>d with negligible variances, especially σ̂2
i = 0, may be

omitted and [BR]k is the kth row of BR. Its column βββi is the projection of all fk onto
a specific eigenvector v̂i, i.e., FT v̂i =: βββi, which can be calculated using Eq. (C.14) by
multiplying (C.15) with FT and solving the following eigenproblem:

FT Σ̂v̂i ≡ 1
N − 1 FT F︸ ︷︷ ︸

=:K

FT v̂i︸ ︷︷ ︸
βββi

= σ̂2
i FT v̂i︸ ︷︷ ︸

βββi

→ Kβββi = (N − 1) σ̂2
i βββ

i → KB = BΛ (C.17)

where Λ = diag ((N − 1) σ̂2
i ) and B =

[
βββ1, ...,βββN

]
. The matrix K ∈ R

N×N with elements
Kij = fT

i fj is called the kernel matrix. Due to the symmetry of K, the eigenvectors βββi are
orthogonal and may be normalized such that BT B = I.

It becomes apparent that by solving Eq. (C.17) instead of Eq. (C.15), the problem is
transferred into a subspace R

N×N of RF ×F and that the dimension of the projection (C.16)
can be d = N at maximum. The motivation for rewriting Eq. (C.15) as Eq. (C.17) is to
receive a formulation where the unknown transformation function f only occurs in a scalar
product fT

i fj with itself. This scalar product, as suggested by Aizerman et al. (1964), can
actually be calculated through a representative simpler function named kernel function.
The transformation fi itself, and hence dimension F and the subspace Eq. (C.17) is solved
in, is defined through the choice of the kernel function. This kernel trick requires that the
kernel function actually defines a scalar product of some transformation fi in a feature
space R

F , which is given if it fulfills Mercer’s condition (Mercer (1909)).

An example of a valid kernel function is the polynomial kernel

Kij = fT
i fj =

(
φφφT

i φφφj

)q
(C.18)

where q is a freely chosen exponent which determines the dimension F of the transformation
f (φφφ). For q = 1, kernel-PCA becomes linear PCA. By being able to solve the eigenproblem
(C.17) for βββi, the projection (C.16) of fk onto the eigenvectors V̂R =

[
v̂1, ..., v̂d

]
can be

evaluated. The decision on the number d of principle components to be considered can be
made analogously to (C.11) by substituting σ2

i with σ̂2
i .

However, before the projection (C.16) is actually calculated, it has to be ensured that
the previously made assumptions v̂iT v̂i = 1 and ∑N

k=1 f (φφφk) = 0 are met in order to
receive reasonable results. The normalization condition v̂iT v̂i = 1 can be met by a specific
normalization of βββi. Multiplication of the normalization condition with σ̂4

i and proper
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substitution gives the following results:

1 = v̂iT v̂i → σ̂4
i ≡σ̂2

i v̂iT σ̂2
i v̂i (C.15)

≡ v̂iT Σ̂T Σ̂v̂i (C.14)
≡ 1

(N − 1)2 v̂iT F︸ ︷︷ ︸
=βββiT

FT F︸ ︷︷ ︸
=K

FT v̂i︸ ︷︷ ︸
=βββi︸ ︷︷ ︸

(C.17)
= (N−1)σ̂2i βββ

i

→ βββiTβββi = N − 1
σ̂2

i

.

(C.19)

Let βββi be an arbitrary solution of (C.17), then the normalized vector

βββ(i) :=
√

N − 1
σ̂2

i

βββi∥∥∥βββi
∥∥∥ for σ̂2

i �= 0 (C.20)

will fulfill the required normalization condition (C.19). The restriction to non-zero eigen-
values σ̂2

i can be made, because directions v̂i with zero variances are of no interest for
the projection βββi = FT v̂i as discussed above in the context of Eq. (C.9). Anyway, due to
Eq. (C.18), the symmetric kernel matrix K = FT F will only be rank deficient if redundant
samples φφφi = φφφj for any i �= j are present, which can easily be avoided by deleting such
redundancies from the data set.

The validity of the second assumption ∑
k fk = 0 can be ensured by including the

required shift of the data points fk into the kernel matrix by defining a new kernel matrix
K̄ij := f̄T

i f̄j based on the centered data points f̄i := fi − (1/N) ∑N
k=1 fk or F̄ := F − FJ/N)

where elements of J ∈ R
N×N are all ones, i.e., Jij = 1 ∀i, j. Thus, a centered kernel matrix

K̄ = F̄T F̄ = K − JK
N

− KJ
N

+ JKJ
N2 (C.21)

is calculated as a substitute for K in Eq. (C.17) and the kPCA algorithm applied to a
training set VT = {φφφk} then works as follows:

1. according to Eq. (C.18) calculate the kernel-matrix K based on all φφφk ∈ VT

2. according to Eq. (C.21) center the kernel-matrix

3. according to Eq. (C.17) evaluate the eigenvectors βββi of K̄

4. according to Eq. (C.20) normalize the eigenvectors βββi

5. according to Eq. (C.16) extract the projections f ′
k

If the projection f̄ ′ = V̂T
Rf̄ (φφφ) of a new data point φφφ /∈ VT is explicitly required, a

modification of Eq. (C.16) has to be found which provides the necessary information. First,
from Eqns. (C.15) and (C.14) it is obtained that

σ̂2
i v̂i = Σ̂v̂i = 1

(N − 1)F FT v̂i︸ ︷︷ ︸
βββi

= 1
(N − 1)Fβββi (C.22)
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or

V̂R = FBRΛ+ (C.23)

where Λ+ := 1/ (N − 1) diag (1/σ̂2
1, ..., 1/σ̂2

d) and d ≤ r, where r is the rank of kernel
matrix K̄, i.e., σ̂2

i �= 0 for i = 1, ..., r. Remember that the βββi in BR have to be normalized
according to Eq. (C.20)). Now the projection f̄ ′ of a data point φφφ /∈ VT can be calculated
as

f̄ ′T = f̄ (φφφ)T V̂R = k̄T
φBRΛ+ (C.24)

with k̄T
φ = kT

φ − 1/N [1, ..., 1]K − 1/NkT
φJ + 1/N2[1, ..., 1]KJ where kT

φ = f (φφφ)T F.
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C.2 Multiple Discriminant Analysis

The multiple discriminant analysis (MDA) is the generalization of the Fisher-discriminant
analysis (FDA) applied to multiple classes. Therefore, FDA will be explained first for
matter of simplicity, and then the linear and nonlinear MDA will be described.

C.2.1 Fisher-Discriminant Analysis

For a set of data points φφφk ∈ R
D , k = 1, ..., N , with known classification ck ∈ {1, 2} into

two classes, FDA seeks to find the direction v ∈ R
D where a projection

φ′
k = vTφφφk (C.25)

causes maximum separation between the two clusters Vc = {φφφk|ck = c}, c = 1, 2, with
mean vectors

mc = 1
|Vc|

∑
φφφk∈Vc

φφφk . (C.26)

The level of separation may be defined by the distance between the projected cluster
means m′

c with respect to the sum of class scatters s′2
c of the projected data samples, i.e.,

(m′
1 − m′

2)
2

(s′2
1 + s′2

2 ) , (C.27)

where

m′
c = vT mc (C.28)

and

s′2
c =

∑
φφφk∈Vc

(
vTφφφk − vT mc

)2
=

∑
φφφk∈Vc

(
vT (φφφk − mc) vT (φφφk − mc)

)

=
∑

φφφk∈Vc

(
vT (φφφk − mc) (φφφk − mc)T v

)

= vT
∑

φφφk∈Vc

(
(φφφk − mc) (φφφk − mc)T

)
︸ ︷︷ ︸

=:Σc

v .

(C.29)
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Using Eq. (C.28) and Eq. (C.29), Eq. (C.27) may be written as

(m′
1 − m′

2)
2

(s′2
1 + s′2

2 ) =

(
vT m1 − vT m2

)2

vT
(∑2

c=1 Σc

)
v

= vT

=:ΣB︷ ︸︸ ︷
(m1 − m2) (m1 − m2)T v

vT

( 2∑
c=1

Σc

)
︸ ︷︷ ︸

=:ΣW

v
= vT ΣBv

vT ΣW v
(C.30)

where Σc, ΣB, and ΣW are the symmetric class-scatter, between-class-scatter, and within-
class-scatter matrices of V1 and V2. Since the scaling of v does not affect the separation
measure (C.30), one may as well scale the solution to fulfill vT ΣW v = 1. The vector v
which maximizes (C.30) w.r.t. this constraint can be received from a vanishing derivative
of the Lagrange function L:

0 != ∂L

∂v
=

∂
(
vT ΣBv − λ

(
vT ΣW v − 1

))
∂v

= 2 (ΣBv − λΣW v) . (C.31)

The solutions are the eigenvectors v and eigenvalues λ of the general eigenvalue problem

ΣBv = λΣW v . (C.32)

Substituting Eq. (C.32) into Eq. (C.30) shows that the ratio of between-class scatter to
within-class scatter in direction of v is equal to the eigenvalue λ. From definition (C.30) it
can be seen that the dyadic product ΣB has only rank one, which is why there is only one
eigenvalue λ �= 0. This is reasonable, because two clusters are maximally separated by one
discriminant only.

C.2.2 Linear MDA

According to Fukunaga (1990), the generalization of FDA to multiple classes NC > 2
may be accomplished by defining appropriate scatter matrices ΣB and ΣW for usage in
Eq. (C.32). This is straight forward for the within-class scatter matrix in Eq. (C.30) which
can be defined as

ΣW :=
NC∑
c=1

∑
φφφk∈Vc

(
(φφφk − mc) (φφφk − mc)T

)
. (C.33)

The formulation of the between-class scatter matrix ΣB, however, first requires to realize
that the overall mean vector m can be expressed by the cluster means as follows:

m := 1
|V|

∑
φφφk∈V

φφφk = 1
|V|

NC∑
c=1

∑
φφφk∈Vc

φφφk = 1
|V|

NC∑
c=1

(|Vc| mc) . (C.34)
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Assuming only two clusters where |V| := |V1| + |V2|, ΣB may be rewritten using definition
(C.34) such that

ΣB := (m1 − m2) (m1 − m2)T

=1
2 (m1 − m2) (m1 − m2)T + 1

2 (m1 − m2) (m1 − m2)T

≡1
2 (m1 − m2) (m1 − m2)T + 1

2 (m2 − m1) (m2 − m1)T

= |V|2

2 |V2|2
(m1 − m) (m1 − m)T + |V|2

2 |V1|2
(m2 − m) (m2 − m)T

=
2∑

c=1

|V|2

2 (|V| − |Vc|)2

(
(mc − m) (mc − m)T

)
.

(C.35)

In case of three clusters, calculating the overall between-class scatter matrix as the sum of
the between-class scatter matrices (C.35) between the first and second, second and third,

and third and first cluster, and defining V :=
NC⋃
c=1

Vc, makes it apparent that Eq. (C.35)
can be generalized to multiple clusters as

ΣB :=
NC∑
c=1

(
|V|2

2 (|V| − |Vc|)2 (mc − m) (mc − m)T

)
. (C.36)

In accordance to Eqns. (C.30)–(C.32) maximal ratios of between-class scatter to
within-class scatter can be obtained by solving the general eigenvalue problem

ΣBV = ΣW VΛ or ΣBvi = λiΣW vi (C.37)

where Λ = diag (λ1, ..., λD) with λ1 ≥ λ2 ≥ ... ≥ λD and V =
[
v1, ..., vD

]
.

In a reasonable application, ΣB is a combination of NC linearly independent cluster
means mc, while m is a linear combination of all mc (Eq. (C.34). Therefore, the between-
class-scatter matrix ΣB has the rank r = NC − 1 with only the first NC − 1 eigenvalues
being nonzero. Substituting Eq. (C.37) into Eq. (C.30) gives Λ, hence, the ratio (C.30) in
direction of vi is equal to λi. This means that only for the largest first NC − 1 eigenvalues
λi �= 0, the corresponding eigenvectors VR =

[
v1, ..., vNC−1

]
will maximize Eq. (C.30).

Thus, only those eigenvectors need to be considered for dimension reduction of data. The
projection of a data point φφφ can be received as

φφφ′
R = VT

Rφφφ . (C.38)

If ΣW is calculated from a reference set V with dimensionality D of the samples φφφk ∈ V
larger than the number of samples |V| (this is the case for the reference eigenmode set used
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within this thesis), the problem (C.37) becomes ill-posed (ΣW has not full rank and Σ−1
W

may not exist). It is, therefore, common practice to make ΣW invertible by adding a small
value ε to the main diagonal (Friedman (1989)) such that ΣW + εI becomes non-singular
and a sufficiently accurate estimation Vε of the solution to (C.37) is received by solving
the new eigenproblem

(ΣW + εI)−1 ΣBVε = VεΛε . (C.39)

Throughout this thesis ε = 10−13 has proven to be sufficient. Alternatively, Howland et al.
(2003) developed a method to solve Eq. (C.37) without inverting ΣW by using generalized
singular-value decomposition.

C.2.3 Nonlinear MDA

Searching for linear discriminating directions is not sufficient in many applications, which
is why Mika et al. (1999) introduced a method of finding nonlinear directions by implemen-
tation of the kernel trick. First, a nonlinear transformation function f (φφφ) is defined which
transforms φφφ ∈ R

D into a feature space of dimension F > D analogues to Eq. (C.13). In
accordance to Eqns. (C.36) and (C.33) one can then calculate

Σ̂B :=
NC∑
c=1

(
|V|2

2 (|V| − |Vc|)2 (m̂c − m̂) (m̂c − m̂)T

)
, (C.40)

Σ̂W :=
NC∑
c=1

∑
k:φφφk∈Vc

(
(fk − m̂c) (fk − m̂c)T

)
(C.41)

where fk := f (φφφk) and

m̂ := 1
|V|

∑
k:φφφk∈|V|

fk , m̂c := 1
|Vc|

∑
k:φφφk∈|Vc|

fk . (C.42)

Now, best linear discriminants may be found by calculating the extrema of

v̂iT Σ̂Bv̂i

v̂iT Σ̂W v̂i
(C.43)

in accordance to Eq. (C.30). Similar to Eq. (C.37), the solution is obtained by solving the
eigenvalue problem

Σ̂BV̂ = Σ̂W V̂Λ̂ , V̂ :=
[
v̂1, ..., v̂F

]
, (C.44)

which may be impossible for large or even infinite F . As a work-around the kernel trick
(as introduced in Section C.1.2) is implemented. From Aronszajn (1950) it is known that
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the solution must lie in the span of {fk}. Thus, there are coefficients αi
k such that

v̂i =
N∑

k=1

(
αi

kfk

)
= Fαααi → V̂ = FA (C.45)

where F := [f1, ..., fN ] and A :=
[
ααα1, ...,αααN

]
. Substituting Eq. (C.45) into Eq. (C.43) gives

αααiT

=:Σ̂∗
B︷ ︸︸ ︷

FT Σ̂BFαααi

αααiT FT Σ̂W F︸ ︷︷ ︸
=:Σ̂∗

W

αααi
. (C.46)

Hence,

Σ̂∗
B

(C.40)= FT

⎛
⎝NC∑

c=1

(
|V|2

2 (|V| − |Vc|)2 (m̂c − m̂) (m̂c − m̂)T

)⎞
⎠ F

=
NC∑
c=1

(
|V|2

2 (|V| − |Vc|)2

(
FT m̂c − FT m̂

) (
FT m̂c − FT m̂

)T
)

.

(C.47)

By using definition (C.18) of the kernel matrix and defining its kth column as [K]k, one
can write

FT m̂c
(C.42)= 1

|Vc|
∑

k:φφφk∈Vc

FT fk︸ ︷︷ ︸
[K]k

and FT m̂ (C.42)= 1
|V|

∑
k:φφφk∈V

FT fk = 1
|V|

∑
k:φφφk∈V

[K]k . (C.48)

Using this allows rewriting the between-cluster-scatter matrix Eq. C.47 as

Σ̂∗
B =

NC∑
c=1

⎛
⎝

⎛
⎝ |V|2

2 |Vc| (|V| − |Vc|)2
∑

k:φφφk∈Vc

[K]k − |V|
2 (|V| − |Vc|)2

∑
k:φφφk∈V

[K]k
⎞
⎠

⎛
⎝ |V|2

2 |Vc| (|V| − |Vc|)2
∑

k:φφφk∈Vc

[K]k − |V|
2 (|V| − |Vc|)2

∑
k:φφφk∈V

[K]k
⎞
⎠T ⎞

⎠
. (C.49)

Accordingly, the within-class-scatter matrix can be written as

Σ̂∗
W

(C.41)= FT
NC∑
c=1

∑
φφφk∈Vc

(
(fk − m̂c) (fk − m̂c)T

)
F

=
NC∑
c=1

∑
φφφk∈Vc

⎛
⎜⎝

⎛
⎝[K]k − 1

|Vc|
∑

φφφk∈Vc

[K]k
⎞
⎠

⎛
⎝[K]k − 1

|Vc|
∑

φφφk∈Vc

[K]k
⎞
⎠T

⎞
⎟⎠ .

(C.50)
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Now, as explained in Section C.1.2, knowing f is not required, instead, it is implicitly
defined using a kernel function (C.18) for the scalar product fT f . Therefore, the quality of
the discriminates V̂ will depend on the suitability of the kernel function w.r.t. to the data
structure.

Due to Eq. (C.46), the eigenproblem to be solved changes from (C.44) to

Σ̂∗
BA = Σ̂∗

W AΛ̂ . (C.51)

The approach of Howland et al. (2003) to solve Eq. (C.37) without having to invert Σ∗
W

by using generalized singular-value decomposition can also be applied to solve Eq. (C.51)
as suggested by Park and Park (2005). Else, as for MDA, Σ̂∗

W would have to be made
non-singular by adding a small value ε to its main diagonal resulting in

(
Σ̂∗

W + εI
)−1

Σ̂∗
BAε = AεΛ̂ε . (C.52)

The desired projection of a data point φφφ is calculated as

φφφ′
R = V̂T f (φφφ)︸ ︷︷ ︸

fφ

(C.45)= (FA)T fφ = AT FT fφ︸ ︷︷ ︸
kφ

= AT kφ (C.53)

where [kφ]i =
(
φφφT

i φφφ
)q

refers to the ith element of kφ in accordance to Eq. (C.18).
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C.3 Modal-Assurance Criterion

At various points in this thesis the modal-assurance criterion (MAC) is used to measure the
correlation between two vectors. Introduced by Allemang and Brown (1982), it was intended
as a quality measure for experimental eigenvectors originating from frequency-response
functions, but became popular for validating dynamic FE-models through experimentally
measured eigenmodes (Allemang (2002)). Today, commercial-software tools such as Abaqus
use MAC for eigenmode tracking during automated design optimization. In order to assess
the necessity for re-performing flutter analysis based on the similarity between two designs
w.r.t. their eigenmode shapes, Blocher and Aulich (2013) used MAC during an automatized
design process.

Let φφφi and φφφj be two non-zero vectors; then the MAC-value

MAC
(
φφφi,φφφj

)
:=

(
φφφT

i φφφj

)2

||φφφi||2||φφφj||2
=

[
||φφφi|| ||φφφj|| cos

(
�φφφiφφφj

)]2

||φφφi||2||φφφj||2
= cos2

(
�φφφiφφφj

)
∈ [0, 1]

(C.54)
is a bounded measure of the linear correlation between these two vectors. As shown by
Morales (2005) and Eq. (C.54), MAC is simply the squared cosine of the angle between the
two vectors. Thus, the coefficient is equal to one, if the two vectors only differ in length but
have the same or opposite orientation, and is equal to zero if they are orthogonal. Hence,
higher values indicate better agreement between the two eigenvectors being compared. In
Appendix B it was shown that the direction of eigenvectors is the distinguishing feature, not
the length, which is why MAC is a suitable measure of mode agreement. However, MAC
has been criticized for mainly three reasons which gave motivation to the development of
numerous other correlation criteria (Heylen and Avitabile (1998), Morales (2005), Allemang
(2002)).

One issue is that under strict consideration MAC is no orthogonality measure in the
context of structure analysis, because eigenmodes of structures are typically orthogonal
w.r.t. the mass matrix M (or stiffness matrix KL/NL), i.e., φφφT

i Mφφφj = 0 for i �= j. To prove
this, the symmetric and positive definite mass matrix may be decomposed by Cholesky
decomposition as

M = LLT (C.55)

where L is a nonsingular lower triangular matrix. Then the problem (3.9), i.e.,

KL/NLφφφi = ω2
i Mφφφi (C.56)

can be rewritten as

L−1KL/NLL−T vi = ω2
i vi , (C.57)

where the eigenvectors vi := LTφφφi are orthogonal due to symmetry of L−1KL/NLL−T , i.e.,
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vT
i vj = 0 = φφφT

i LLTφφφj = φφφT
i Mφφφj for i �= j . (C.58)

This might be an issue when calibrating numeric models with experimental results, but
not for the purpose of measuring mode agreement within this thesis. Anyway, calculation
of correlations between eigenmodes taking into account the mass matrix is not possible if
eigenmodes of different structures with different mass matrices shall be compared.

MAC is also often criticized for its nonlinearity of representing the squared cosine
between two vectors. Therefore, Morales (2005) defined a linear MAC (LMAC) as

LMAC
(
φφφi,φφφj

)
:= 1 − 2

π
arccos

∣∣∣φφφT
i φφφj

∣∣∣
||φφφi|| ||φφφj||

∈ [0, 1] . (C.59)

However, the usage of LMAC over MAC has only little influence on the relative scaling
of some plots within this thesis and none onto classification performance. Therefore, for
matter of simplicity, eigenvector correlations are measured with MAC throughout this
thesis.
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C.4 Support-Vector Machines

In general, a support-vector machine (SVM), first contemplated by Vapnik and Lerner
(1963) and refined by Boser et al. (1992) and Cortes and Vapnik (1995), is a binary classifier
which maximizes the margin ε of a linear discriminate H (hyperplane) between two data
sets Vc, c = {1, 2}, of vectors φφφk with classification ck where φφφk ∈ Vck

. The hyperplane
can be defined as

H : nT
(
φ̃φφ − φφφ∗)

= 0 (C.60)

where φ̃φφ is an arbitrary data vector, φφφ∗ is a point on the hyperplane (φφφ∗ ∈ H), and n is a
nonzero vector perpendicular to H. Rewriting Eq. (C.60) as

H : nT φ̃φφ−nTφφφ∗︸ ︷︷ ︸
=:b

= 0 (C.61)

and choosing n and b in such a way that

nTφφφk + b =

⎧⎨
⎩ > 0 for φφφk ∈ V1 ,

< 0 for φφφk ∈ V2 ,
(C.62)

gives a discriminate that allows to assign a class c̃ to any unknown data point φ̃φφ by the
sign of Eq. (C.62) when substituting φ̃φφ for φφφk. However, since the choice of n and b is not
unique, i.e., there exist multiple possible hyperplanes H separating the data, an optimal
setting is defined as the one which maximizes the margin

ζ := min
φφφk∈V1

∣∣∣nTφφφk + b
∣∣∣

|n| + min
φφφk∈V2

∣∣∣nTφφφk + b
∣∣∣

|n| . (C.63)

Here, Eq. (C.62) is normalized by |n| in order to provide the true distance of φφφk from
H. The margin is defined by the two points closest to H on both sides of H, respectively.
Additionally both points shall have the same distance to H which, by proper scaling of n,
results in the condition

min
k:φφφk∈V1

∣∣∣nTφφφk + b
∣∣∣ = min

k:φφφk∈V2

∣∣∣nTφφφk + b
∣∣∣ != 1 . (C.64)

The margin (C.63) then becomes

ζ := 2
|n| (C.65)

as shown in Fig. 6.2. Hence, maximizing the margin ζ requires minimizing |n| subject
to the constraint (C.62). By defining a class identifier yk ∈ {−1, 1} for the training data
φφφk ∈ V1 ∪V2 (e.g. −1 for φφφk ∈ V1 and 1 for φφφk ∈ V2) and due to Eq. (C.64), the constraint
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(C.62) for linearly separable data may be rewritten as

yk

(
nTφφφk + b

)
≥ 1 . (C.66)

Thus, the problem of finding optimal n and b for linearly separable data may be stated as

min
n,b

‖n‖ =̂ min
n,b

(1
2 ‖n‖2

)
= min

n,b

(1
2nT n

)
s.t. yk

(
nTφφφk + b

)
≥ 1 ∀ k . (C.67)

However, in case two clusters of data with different classification overlap or if they are
not linearly separable, problem (C.67) has no solution. Consequently, violation of the
constraint (C.66) has to be allowed and minimizing the degree of violation has to be
included into the problem definition (C.67). This is usually achieved by relaxing the
constraint by introducing a slack variable ξk ≥ 0, i.e.,

yk

(
nTφφφk + b

)
≥ 1 − ξk , (C.68)

and redefining the problem (C.67) as

min
n,b,ξk

⎛
⎝1

2nT n + C
|V1 ∪ V2|∑

k=1
ξk

⎞
⎠ s.t. (1 − ξk) − yk

(
nTφφφk + b

)
≤ 0, ξk ≥ 0 , (C.69)

where C is a weight parameter controlling the trade-off between increasing the size of the
margin (C.65) and reducing the degree of violating Eq. (C.66). Note, that if the data are
linearly separable, problem (C.69) becomes (C.67) by ξk = 0. However, if data are not
linearly separable, the optimal slack ξk for any φφφk violating constraint (C.66) will be just
as large to fulfill constraint (C.68) in order to increase the objective in (C.69) as little as
possible. Thus, the optimal slacks would be

ξ∗
k := max

{
0, 1 − yk

(
nTφφφk + b

})
≥ 0 (C.70)

The solution of problem (C.69) can be improved by allowing for nonlinear hyperplanes
H. This is achieved by using the kernel trick (similar to Appendix C.1). Therefore,
formulation (C.69) has to be modified in a way that only scalar products of φφφk occur.
First, the Lagrangian of the problem (C.69) is written as

L (n, b, ξk, αk, γk) :=1
2nT n + C

|V1 ∪ V2|∑
k=1

ξk+

|V1 ∪ V2|∑
k=1

(
αk

(
(1 − ξk) − yk

(
nTφφφk + b

)))
+

|V1 ∪ V2|∑
k=1

(γk (−ξk)) ,

(C.71)

where αk, γk ≥ 0 are Karush-Kuhn-Tucker multipliers (KKT multipliers; Lagrange multi-
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pliers apply to equality constraints only). As shown by (Kuhn and Tucker (1951)), the
optimal solution to the convex problem (C.69) is at the minimum of the Lagrangian (C.71)
w.r.t. to the primal variables n, b, ξk, and at the maximum w.r.t. the KKT multipliers.
Thus, for the primal variables the solution has to fulfill following conditions:

∂L

∂n
= 0 = n −

|V1 ∪ V2|∑
k=1

(αkykφφφk) (C.72)

∂L

∂b
= 0 = −

|V1 ∪ V2|∑
k=1

(αkyk) (C.73)

∂L

∂ξk

= 0 = C − αk − γk . (C.74)

These stationary conditions are used to modify parts of Eq. (C.71) as follows:

1
2nT n (C.72)= 1

2

|V1 ∪ V2|∑
k=1

(
αkykφφφ

T
k

) |V1 ∪ V2|∑
l=1

(αlylφφφl) = 1
2

|V1 ∪ V2|∑
k,l=1

(
αkαlykylφφφ

T
k φφφl

)
, (C.75)

|V1 ∪ V2|∑
k=1

(
αkyknTφφφk

)
≡

|V1 ∪ V2|∑
k=1

(
αkykφφφ

T
k

)
n (C.72)=

|V1 ∪ V2|∑
k,l=1

(
αkαlykylφφφ

T
k φφφl

)
, (C.76)

|V1 ∪ V2|∑
k=1

(αkykb) = b
|V1 ∪ V2|∑

k=1
(αkyk) (C.73)= 0 , (C.77)

C
|V1 ∪ V2|∑

k=1
ξk −

|V1 ∪ V2|∑
k=1

(αkξk) −
|V1 ∪ V2|∑

k=1
(γkξk) =

|V1 ∪ V2|∑
k=1

((C − αk − γk) ξk) (C.74)= 0. (C.78)

Thus, applying the stationary conditions (C.72)–(C.74) to Eq. (C.71) gives the dual
formulation

LD (αk) :=
|V1 ∪ V2|∑

k=1
αk − 1

2

|V1 ∪ V2|∑
k,l=1

(
αkαlykylφφφ

T
k φφφl

)
. (C.79)

Since this function is negative quadratic in αk, the optimal solution α∗
k can be received

by maximizing (C.79) w.r.t. the constraints (C.73) and 0 ≤ αk ≤ C, where the latter is
received from αk, γk ≥ 0 and (C.74). Thus, the final problem to be solved is the dual

max
αk

LD (αk) s.t. 0 ≤ αk ≤ C,
|V1 ∪ V2|∑

k=1
(αkyk) = 0 . (C.80)
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This may be done by using e.g. gradient-based optimization algorithms, since the problem
is convex, i.e., a local maximum must be the global one. This is the reason why SVM
often outperforms other classifiers such as artificial-neural networks which easily get stuck
in local minima.

The optimal solution to problem (C.80) will fulfill complementary condition (Kuhn
and Tucker (1951))

αk

(
(1 − ξk) − yk

(
nTφφφk + b

))
= 0 . (C.81)

Therefore, and due to Eq. (C.70), all points φφφk which violate Eq. (C.68) or are located on
the margin bounds (

∣∣∣nTφφφk + b
∣∣∣ = 1) will cause the parenthesis to become zero and αk �= 0,

and visa versa. Thus, only those φφφk for which α∗
k �= 0 will influence the solution to (C.80),

hence, the orientation n of the discriminate H, see Eq. (C.72). These vectors are therefore
referred to as support vectors.

In order to calculate H from the solution to (C.80), Eq. (C.72) is used to receive n∗.
The offset b is evaluated by identifying two vectors φφφi◦,j◦ from the set of support vectors
{φφφk|α∗

k �= 0} for which

{i◦, j◦} := arg max
(i,j):αi 
=0,αj 
=0

n∗T
(
φφφi − φφφj

)
. (C.82)

This simply means that the two identified vectors belong to different classes and fulfill
yi◦

(
n∗Tφφφi◦ + b∗

)
= yj◦

(
n∗Tφφφj◦ + b∗

)
= 1 (see Eq. (C.66)) which can be used to calculate

the optimal shift b∗ (Boser et al. (1992)) as follows:

b∗ = −1
2

(
n∗T

(
φφφi◦ + φφφj◦

))
(C.83)

(C.72)= −1
2

|V1 ∪ V2|∑
k=1

(
α∗

kyk

(
φφφT

k φφφi◦ + φφφT
k φφφj◦

))
. (C.84)

Putting it all together, and in accordance to Eq. (C.62), the decision on the classification
of an unassigned data point φ̃φφ can made on

n∗T φ̃φφ + b∗ =

⎧⎨
⎩ > 0 ⇒ c̃ = 1 ,

< 0 ⇒ c̃ = 2 .
(C.85)

The relevant equation (C.79) contains only scalar products of the data. As described
in the context of nonlinear PCA (Appendix C.1), also SVM can account for nonlinear
directions (hyperplanes) by transforming the data into a higher dimensional space R

F

(infinite dimensional possibly), see Eq. (C.13), where the data might be linearly separable
(Boser et al. (1992)). In order to avoid the costly calculation of high-dimensional scalar
products, the kernel trick is implemented (Schölkopf and Smola (2002)), where it is
assumed that high-dimensional scalar products can be calculated as a functional of the
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scalar products in the original space. The functional has to fulfill the Mercer’s condition
(Mercer (1909)) therefor and is commonly called a kernel. An example of such a kernel
is the polynomial kernel (C.18) where the exponent q can be chosen freely, deciding on
the dimension and shape of the transformation (C.13). In conclusion, by substituting
each scalar product in Eqns. (C.79) and (C.86) with a kernel, e.g., Eq. (C.18), the linear
SVM-classification algorithm is able to account for nonlinear hyperplanes H, see Fig. 6.2c.
In order to assign a class to a new data point φ̃φφ, Eq. (C.85) has to be rewritten in a form
using scalar products of data only, by substituting Eq. (C.72) and Eq. (C.84) such that
the class to be assigned is determined by the sign of

|V1 ∪ V2|∑
k=1

(
α∗

kyk

(
φφφT

k φ̃φφ − 1
2

(
φφφT

k φφφi◦ + φφφT
k φφφj◦

)))
. (C.86)

C.5 Training of a Three-Layer Feed-Forward Neural
Network

In the following, training of a three-layer FFNN as shown in Fig. 6.3 and described in
Section 6.1.3 will be explained. for adapting the weights of a FFNN via supervised learning,
a reference set V of samples φφφk with known classification ck is required. However, in order
to prevent overfitting, the network weights are adapted based on a smaller training set
VT ⊂ V and training stops, i.a., when the performance of the network does not improve on a
validation set VV ⊆ V \ VT any further. The training may be performed either sample-wise
or batch-wise where the latter usually gives better performance. For batch-wise training
the samples in VT are all presented to the network before the performance of this batch
is calculated and network weights are adapted accordingly. The performance of a neural
network in the field of classification is commonly measured using the cross-entropy

ES (VT ) := − 1
|VT |

∑
k|φφφk∈VT

NC∑
c=1

(δcck
ln (gc)) = − 1

|VT |
∑

k|φφφk∈VT

ln (gck
) , (C.87)

which may be seen as a measure for the confidence in the correct classification of reference
set (Hagan et al. (1996)). Unless the mean-squared-error-performance function1 it does
not assess the distance between the target vector [δ1ck

, ..., δNCck
]T and the output vector

[g1, ..., gNC
]T , because why would, figuratively said, mistaking e.g. a car as a giraffe be

less/more accurate than mistaking it as a tree.

During training of the network, weights are adapted such that ES (VT ) is reduced
with each epoch of the training. One epoch means one evaluation of Eq. (C.87) for
the batches/sets VT and VV . Any optimization scheme can be used for the training,
but the large number of parameters due to the generally large number of synapses
(connections between neurons) causes that only a few actually show good performance.

1 1
|VT |

∑
k|φφφk∈VT

∑NC

c=1 (δcck
− gck

)2
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Most commonly applied are methods which use the gradient of a function describing the
network performance w.r.t the network weights. Different types of gradient-based methods
have been developed, some using the Jacobian matrix, others using conjugated gradients,
but in the present application gradient-descent with adaptive learning rate has given the
best performance. In the following the method will be explained in detail.

The goal of training a FFNN is to iteratively adapt the weights as

(k+1)wHL
jl := (k)wHL

jl + ΔwHL
jl , (k+1)wHL

j0 := (k)wHL
j0 + ΔwHL

j0 , (C.88)
(k+1)wOL

cj := (k)wOL
cj + ΔwOL

cj , (k+1)wOL
c0 := (k)wOL

c0 + ΔwOL
c0 , (C.89)

such that with each epoch (k) the performance function (C.87) is reduced. Calculation of
the required adaptations ΔwHL

jl and ΔwOL
cj may be done by calculating the gradient of

the performance function w.r.t. the network weights as

ΔwHL
jl := −LR

∂ES (VT )
∂wHL

jl

, ΔwHL
j0 := −LR

∂ES (VT )
∂wHL

j0
, (C.90)

ΔwOL
cj := −LR

∂ES (VT )
∂wOL

cj

, ΔwOL
c0 := −LR

∂ES (VT )
∂wOL

c0
, (C.91)

where LR is a user-defined learning rate (wherever the epoch is not specified, values refer to
epoch (k)). Applying the chain rule to Eq. (C.91) and calculating the required derivatives
of Eqns. (C.87), (6.11), and (6.9) gives

ΔwOL
cj = −LR

∂ES (VT )
∂gc

∂gc

∂tOL
c

∂tOL
c

∂wOL
cj

= LR
1

|VT |
∑

k|φφφk∈VT

δcck

gc︸ ︷︷ ︸
=− ∂ES(VT )

∂gc

g2
c

∑NC
s 
=c etOL

s

etOL
c︸ ︷︷ ︸

= ∂gc

∂tOL
c

fj︸︷︷︸
= ∂tOL

c
∂wOL

cj

= LR

|VT |
∑

k|φφφk∈VT

⎛
⎝δcck

gc
∑NC

s 
=c etOL
s

etOL
c

fj

⎞
⎠ , (C.92)

ΔwOL
c0 = LR

|VT |
∑

k|φφφk∈VT

⎛
⎝δcck

gc
∑NC

s 
=c etOL
s

etOL
c

⎞
⎠ . (C.93)

Hence, the batch-wise adaptation is just the sum of sample-wise adaptations. In an
equivalent manner, Eq. (C.90) can be rewritten using Eqns. (C.87), (6.11), (6.10), and
(6.7):

ΔwHL
jl := − LR

∂ES (VT )
∂gc

∂gc

∂tOL
c

∂tOL
c

∂fj

∂fj

∂tHL
j

∂tHL
j

∂wHL
jl
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= LR
1

|VT |
∑

k|φφφk∈VT

δcck

gc︸ ︷︷ ︸
=− ∂ES(VT )

∂gc

g2
c

∑NC
s 
=c etOL

s

etOL
c︸ ︷︷ ︸

= ∂gc

∂tOL
c

wOL
cj︸ ︷︷ ︸

= ∂tOL
c

∂fj

4e−2tHL
j(

1 + e−2tHL
j

)2

︸ ︷︷ ︸
=

∂fj

∂tHL
j

hl︸︷︷︸
=

∂tHL
j

∂wHL
jl

= 4LR

|VT |
∑

k|φφφk∈VT

⎛
⎜⎝δcck

wOL
cj

e−2tHL
j hlgc

∑NC
s 
=c etOL

s

etOL
c

(
1 + e−2tHL

j

)2

⎞
⎟⎠ , (C.94)

ΔwHL
j0 :=4LR

|VT |
∑

k|φφφk∈VT

⎛
⎜⎝δcck

wOL
cj

e−2tHL
j gc

∑NC
s 
=c etOL

s

etOL
c

(
1 + e−2tHL

j

)2

⎞
⎟⎠ . (C.95)

Back-propagation training of the network using the adaptive gradient-decent algorithm is
then performed as follows:

1. Initialization: Define training set VT and validation set VV , set epoch k := 1 and
counter of poor adaptations nF := 0. Initialize network weights (k)wHL

jl , (k)wHL
j0 ,

(k)wOL
cj , (k)wOL

c0 which is usually done randomly. Choose maximal number of epochs
NB, maximum number of poor adaptations NF , maximum performance increase
Δ+

maxES > 1, minimum performance increase 1 ≤ Δ+
minES ≤ Δ+

maxES, initial
learning rate LR, and increase/decrease L

+/−
R of the learning rate.

2. Feed every sample φφφk ∈ VT and φφφk ∈ VV to the network and calculate the initial
performances (k)ES (VT ) and (k)ES (VV ) using Eq. (C.87).

3. Evaluate Eqns. (C.88)–(C.95) based on (k)ES (VT ) in order to calculate the new
weights (k+1)wHL

jl , (k+1)wHL
j0 , (k+1)wOL

cj , (k+1)wOL
c0 .

4. Feed every sample φφφk ∈ VT and φφφk ∈ VV to the network and calculate the new
performances (k+1)ES (VT ) and (k+1)ES (VV ) using Eq. (C.87).

5. If (k+1)ES (VT ) / (k)ES (VT ) < Δ+
maxES set LR := LRL+

R.
If (k+1)ES (VT ) / (k)ES (VT ) ≥ Δ+

maxES set LR := LRL−
R, undo weight changes,

i.e. (k+1)wHL
jl := (k)wHL

jl , (k+1)wOL
cj := (k)wOL

cj , and go to step 3.
If (k+1)ES (VV ) / (k)ES (VV ) ≤ Δ+

minES, set nF := nF + 1, else nF := 0.

6. Stop training if

I. k = NB or

II. nF = NF ,

else set k := k + 1 and go to step 3.
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