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Abstract 
 

This thesis focuses on computer modelling issues such as i) uncertainty, including uncertainty in 

parameters, data input and model structure, ii) model complexity and how it affects uncertainty, iii) 

scale, as it pertains to scaling calibrated and validated models up or down to different spatial and 

temporal resolutions, and iv) transferability of a model to a site of the same scale. The discussion of 

these issues is well established in the fields of hydrology and hydrogeology but has found less 

application in river water quality modelling. This thesis contributes to transferring these ideas to river 

modelling and to discuss their utilization when simulating river water quality. 

 

In order to provide a theoretical framework for the discussion of these topics several hypotheses have 

been adapted and extended. The basic principle is that model error decreases and sensitivity increases 

as a model becomes more complex. This behaviour is modified depending if the model is being 

upscaled or downscaled or is being transferred to a different application site. 

 

A modelling exercise of the middle and lower Saale River in Germany provides a case study to test 

these hypotheses. The Saale is ideal since it has gained much attention as a test case for river basin 

management. It is heavily modified and regulated, has been overly polluted in the past and contains 

many contaminated sites. High demands are also placed on its water resources. To provide discussion 

of some important water management issues pertaining to the Saale River, modelling scenarios using 

the Saale models have been included to investigate the impact of a reduction in non-point nutrient 

loading and the removal and implementation of lock-and-weir systems on the river. 

 

 

 

 

 

Keywords: complexity, eutrophication, heavily modified river, high level architecture (HLA), 

hydrodynamics, inorganic micro-pollutants, model coupling, morphology, Saale River, 

scale, sensitivity, substance transport, uncertainty, water quality, water resources 

management 

 

 2Karl-Erich Lindenschmidt River water quality modelling...



Zusammenfassung 
 

Diese Arbeit konzentriert sich auf Themen, die in der Computermodellierung vorkommen, wie z.B. i) 

Unsicherheiten, einschließlich Unsicherheiten in den Prozesskonstanten, Dateneingaben und 

Modellstrukturen, ii) Modellkomplexität und ihre Auswirkungen auf die Unsicherheiten, iii) Skalen, 

bezogen auf das Übertragen von kalibrierten und validierten Modellen auf kleinere oder größere 

Skalen mit unterschiedlichen räumlichen und zeitlichen Auflösungen, und iv) Übertragbarkeit eines 

Modells auf einem Gebiet der gleichen Skala. Diese Themen, die in der Hydrologie und 

Hydrogeologie häufig diskutiert werden, haben wenig Anwendung in der 

Fließgewässergütemodellierung gefunden. Diese Arbeit soll ein Beitrag leisten, diese Konzepte in die 

Flussmodellierung zu übertragen. 

 

Um einen theoretischen Rahmen für die Diskussion dieser Themen zu stellen sind einige Hypothesen 

übernommen, verändert und ergänzt worden. Das Grundprinzip dieser Hypothesen ist dass bei 

ansteigender Komplexität des Modells, der Fehler zwischen Modellergebnissen und Messdaten 

verringert und die Gesamtsensitivität des Modells erhöht wird. Dieses Verhalten verändert und 

verschiebt sich entsprechend, wenn das Modell auf andere Skalen oder auf ein anderes 

Anwendungsgebiet der gleichen Skala übertragen wird. 

 

Diese Hypothesen wurden mit einer Modellierung der mittleren und unteren Verläufe des Saale-

Flusses geprüft. Die Saale ist als Fallstudie gut geeignet, da es viel Aufmerksamkeit als Testfall für 

Flussbassinmanagement gewonnen hat. Der Fluss ist mit vielen technischen Baumaßnahmen stark 

verändert worden, ist in der jüngeren Vergangenheit übermäßig beschmutzt worden, und enthält viele 

Altlasten. Von ihrer Wassserressourcen wird ein hoher Nutzungsgrad in Anspruch genommen. Um die 

Diskussion über einige wichtige Wassermanagement-Themen zu ergänzen sind Simulationsergebnisse 

von Szenarienberechnungen bereiht gestellt. Dazu gehören die Auswirkung einer Verringerung 

diffuser Nährstoffeinträge und den Bau von neuen Stauhaltungen und Rückbau existierende 

Staustufen.  
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1  Introduction 

1.1 River water quality modelling and the EU-WFD 

In September 2000 the European Union (EU) passed a new water framework directive (WFD) with the 

goal of increasing and establishing a good ecological status on a long-term basis. Groundwater, 

surface waters and coastal waters are affected by this regulation making extensive management of 

rivers and their catchment areas indispensable. River basin management consists of co-ordinating all 

activities which can affect the water resources with the goal of maintaining good quality. Included in 

the management scheme are not only the water systems themselves but also the land surfaces in the 

river's catchment that affect these waters (Mostert, 1999, 2003). 

 

The new EU-WFD requires that the management of water resources be politically organized and 

managed on the river catchment scale in hopes of retaining the present state of the water quality of our 

rivers or better, to attain an improvement in the quality of our water resources. River basin 

management is an interdisciplinary task and includes both components from both the natural sciences 

(hydrology, erosion and sediment transport, landscape assessment, hydrogeology, etc.) and social 

sciences (socio-economics, ecological economics, behavioural theory, etc.) (Rode, et al., 2002). This 

has given impetus to develop computer systems to support the management process (see Möltgen and 

Petry (2004) for an overview of integrated projects in Germany). An important component in the 

management of a river basin is the river itself since all the water resource activities that are carried out 

in the basin will have, in most cases, a direct impact on the ecological status of the river. Hence, we 

need to know the river’s present ecological functioning and how the anthropogenic activities impact 

the quality of the water. 

 

Water quality models are very useful in describing the ecological state of a river system and to predict 

the change in this state when certain boundary or initial conditions are altered. Such changes may be 

due to morphological modifications to the water body, such as straightening, and discharge regulations 

using control structures (weirs, dams, etc.), changes in the type (point or non-point), amount and 

location of pollutant loading into the system, and changes in meteorological inputs due to changing 

trends in climate. The degree of complexity in describing the ecological state varies from model to 

model. The complexity of deterministic models, the type investigated in this study, varies by the 

number and type of variables describing the state of the ecological system (e.g. concentration of 

chlorophyll-a and nutrients) and the parameters underlying the processes governing the kinetics of the 

system (e.g. rates of algal growth and nutrient uptake). 

 

The new EU water framework directive has given a pulse of renewed interest in water quality 

modelling due to the directive’s implementation of cost-covering and ecological-sound water resource 
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management on the river basin scale. Management options on the basin scale require a holistic 

approach of the basin’s water resources, which include all components of the water cycle (roughly: 

precipitation - surface runoff - soil infiltration - percolation to groundwater - river channel discharge). 

In order to investigate the impact of management measures on the waters of the system several models 

must be implemented which cover all aspects of the source, transport and retention of water and 

substances important to the investigated river basin and coupled to a modelling system. Several 

projects are currently underway in Germany in which several methodologies are being developed and 

investigated in integrating these models into systems adapted to the characteristics of the river basins 

studied (e.g. Weiße Elster, Havel, Werra, Ems, etc.). In all these studies, the river model plays an 

important and integral role in these systems. The models must therefore be capable of simulating all 

effects in the river basin on the water quality of the river. This can be done using various levels of 

model complexity, depending on the stressors on the water resources and the scale of the application. 

 

It is also important that hydrodynamic modelling compliment the water quality simulations. To carry 

out effective river basin management it is very important to receive accurate data on the discharges 

and flow velocities so that assertions on the substance concentrations and loadings and flooding effects 

can be made. This also applies to regulated rivers where weirs and dams have a major influence on the 

hydrodynamic regime and transport of pollutants. These include retentive properties through 

sedimentation during low flow conditions, which can be rapidly released during flooding and 

deposited onto floodplains. The current velocity is also a major component regulating the resuspension 

and deposition of sediment along the river bed. Determining velocity data for large rivers is very 

expensive and most measuring programs only include a sparse network of water level gages from 

which discharges and velocities can be determined. Also, the complexity of the currents through a 

regulated river does not allow analytical approaches to be applied with the accuracy required. Hence, 

hydrodynamic computer models, which can numerically simulate the currents along the entire course 

of the river, have become essential tools to simulate the velocities. 

 

Although the treatment of waste water has significantly improved in Germany, it appears a limit has 

been reached in the degree of improvement that can be attained in river water quality. This is due to 

the high loads of nutrients still being emitted into the waters from non-point sources. Reduction of this 

source is slow and cumbersome and the pool of nutrients on land surfaces is still quite high. In 

particular to nitrogen, even if the supply of this nutrient pool is reduced, long lag times in its transport 

to the river cause minimal improvements in the water quality and only after significant time has 

passed. Another important factor that has limited the improvement of water quality is the heavy extent 

of discharge control by the construction of levies, dykes, weirs and locks and modifications by 

straightening river meanders. An additional objective of this contribution is to investigate the impact 

of these morphological river changes on water quality, especially on nitrate concentration. 
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Methodologically, the effect uncertainty of river hydrodynamic parameters have on the water quality 

output variables is explored. 

 

This study includes excerpts from many articles published by the author in journals and book 

contributions. Key internationally reviewed articles include Lindenschmidt (2006), Lindenschmidt, 

Wodrich and Hesse (2006), Lindenschmidt, Hesser and Rode (2005), Lindenschmidt, Ollesch and 

Rode (2004), Lindenschmidt, Poser, and Rode (2005), Lindenschmidt, Rauberg, and Hesser (2005), 

Lindenschmidt, Schlehf, et al. (2005) and Lindenschmidt, Suhr, et al. (1998). An exhaustive list of all 

the author’s articles pertaining to this research is given in the appendix. Additional information was 

drawn from eight Diploma theses all supervised by the author: Eckhardt (2004), Hesse (2004), 

Rauberg (2005), Refus (1997), Schlehf (2004), Sonnenschmidt (2002), von Saleski (2003) and 

Wodrich (2004). Groundwork for many of the concepts developed in this research stem from two 

projects that were acquired and managed by the author to successful completion: 

- Loading of solute and suspended solids from rural catchment areas flowing into Lake Victoria in 

Uganda 

  financed by the Canadian International Development Agency 

- Control and optimization of mobile and stationary aeration systems for Berlin surface waters 

  funded by the Berlin Senate. 

 

This work makes a contribution in determining the ecological status of the Saale River and to 

investigate the transport and behaviour of pollutants in this river system. A computer modelling 

approach was pursued to fulfil this goal for a number of reasons: 

- to provide a means of gathering and organizing data from several sources and sampling campaigns 

carried out on the Saale. 

- to provide a more in-depth study of the functional interactions of processes within the ecosystem; 

there is a knowledge deficiency on the ecological functioning of the Saale, 

- to give insight on the most crucial processes and functions in the ecosystem (sensitivity analysis, 

parameter identification).. 

- to pinpoint deficiencies in data sampling and understanding of processes; future sampling programs 

can be steered to alleviate these deficiencies, 

- to determine interrelationships between, for example, water pollution load and agricultural 

development (Braun et al., 2001, p. 22). 

 

1.2 Modelling in water resources management 

The amount of literature on computer modelling in water resources management is enormous. This 

study will give a survey of reviews and overviews that have been written on various aspects of the 
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subject. Such a survey may have different structures which focus on different facets of the field. 

Examples are: 

- types of models (conceptual, deterministic, empirical, …) 

- type of water body or hydrological component (coastal zone, estuaries, floodplains, 

groundwater, lakes, oceans, rivers, runoff, soil water, …) 

- branches (agriculture, fisheries, forestry, water and wastewater treatment…) 

- applications (e.g. climate change, soil erosion by water, irrigation, floods, reservoir operation, 

river water quality)  

I have chosen to focus on the latter. The selection of applications is not exhaustive but gives a broad 

view of the many challenges faced by the water resources manager. 

 

Climate change 

An early review on modeling the effects of climate change on water resources is given by Leavesley 

(1994). In his review he identified many problem areas common to a variety of models applied, 

including parameter estimation, scale, model validation, climate scenario generation and data. He 

suggested at that time that research needs to address these problems included development of a more 

physically-based understanding of hydrological processes and their interactions, parameter 

measurement and estimation techniques for application over a range of spatial and temporal scales, 

quantitative measures of uncertainty in model parameters and model results, improved methodologies 

of climate scenario generation, detailed data sets in a variety of climatic and physiographic regions, 

and modular modeling tools to provide a framework to facilitate interdisciplinary research. Ten years 

later Varis, et al. (2004) published a review addressing the same subject. They state that improvements 

have been made in process descriptions and that uncertainty analyses have evolved to include risk 

assessment. Advances have also been made in statistical applications for climate scenario generation 

and in the description of regional weather patterns, such as ENSO (El Niño – Southern Oscillation) 

and NAO (North Atlantic Oscillation). Although climate models such as GCMs (Global Circulation 

Models) continue to evolve their outputs remain crude and are often inappropriate for basin scale 

hydrological analyses. The bridging techniques are evolving and are most prevalent in large-scale 

studies such as for the Rhine basin (Middelkoop, et al., 2001), the Nile basin (Conway, 1996) and 

Sweden (Rummukainen, et al., 2004). Other regional water resources studies based on climate change 

scenarios have been carried out such as on the Elbe basin (Krysanova, et al., 1999), south-western 

Bulgaria (Chang, et al., 2002), Britain (Arnell, 1998) and central Sweden (Xu, 2000). 

 

Soil erosion by water 

The management of water runoff has a significant effect on soil erosion. Models have become 

indispensable tools for the study of soil erosion processes and the quantification of sediment transport 

from hill slopes and river and stream basins. In his review on monitoring and modelling approaches in 
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quantifying soil erosion by water, Brazier (2004) indicates a shift in the research towards erosion 

modelling away from erosion monitoring. He suggests that data collection should concentrate on 

describing spatial heterogeneity of soil loss. Merritt, et al. (2003) review the different models used to 

study soil erosion and erosive processes focusing on those models which include sediment and 

sediment-associated nutrient transport. Lindenschmidt, Ollesch and Rode (2004) and Sharpley, et al. 

(2002) provide overviews of erosion models implemented to simulate phosphorus export. Other 

surveys of erosion models can be found in Deliman, et al. (1999) and ECOMatters (2002). 

 

In their review on expected climate change impacts on soil erosion, Nearing, et al. (2004) predict that 

soil erosion rates will increase in many regions of the world due to the increase in the total rainfall and 

the frequency of high intensity rainfall events. This is also the case in areas where annual rainfall is 

expected to decrease since system feedbacks related to decreased biomass production can lead to 

greater susceptibility of the soil to erode. Reviews and research trends in tillage erosion and the 

impacts of erosion on land productivity are given by Lindstrom, et al. (2001) and Blaschke, et al. 

(2000), respectively. Borak and Bera (2003) provide an excellent overview of computer models used 

to quantify nonpoint pollution at the watershed scale. 

 

Irrigation 

The demand for irrigation water is steadily rising coinciding with accelerated competition for water 

and degradation of the environment. English, et al. (2002) speak of a paradigm shift in irrigatin 

management from irrigation management based on a biological objective (maximizing crop yields) to 

management based on economic objectives (e.g. maximization of net benefits). The former is 

relatively simple with a clear defined problem and a single objective. Maximizing benefits is a multi-

objective problem and is far more complex requiring more detailed models and the relationships 

between water application, crop production, irrigation efficiency and economic factors. A review of 

models to simulate irrigation water values under different policies is provided by Conradie and Hoag 

(2004). Campos and Studart (2000) focus their review on charging for water and reallocation of water 

use through the water market. Mujumdar (2002) in his overview of mathematical tools for irrigation 

water management stresses the importance of addressing the interests of stakeholders when modelling 

irrigation system operation, crop water allocations and performance evaluation. 

 

Increased water demand is not the only problem facing irrigation practice. The negative effects on soil 

and environment also need to be addressed. These include water logging, soil salinization and water 

quality degradation. Reviews on alleviating detrimental effects on the soils and irrigation water 

include subjects such as improving drainage designs (Guitjens, et al., 1997), using subsurface drip 

irrigation (Camp, 1998), managing soil physical properties such as increasing infiltrations rates and 

stabilizing macropores (Jayawardane and Chan, 1994), ameliorating saline soils (Qadir, et al., 2000) 
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and remediating irrigation water with a high salt content (Oster, 1997). The implications of new 

technologies such as GIS applications (Know and Weatherfield, 1997) and remote sensing (Ambast, et 

al., 2002; Van Niel, et al., 2004) are increasingly being advanced to aid crop identification, regional 

yield forecasting and on-farm productivity monitoring and management. 

 

This area of water resources management is not untouched by the effects of climate change. In their 

review on drainage developments around the world, De Wrachien and Feddes (2004) call for a re-

examination of planning principles, design driteria and operating rules than can adapt to rapid shifts in 

climate. A United States perspective disagrees finding no threat to North American agriculture due to 

climate change and little inducement for diverting agricultural adaptation resources to efforts in 

slowing or halting the climate change process (Easterling, 1996). Water scarcity will, however, 

continue to be a growing concern and is addressed with reviews regarding progress in irrigation 

management (Pereira, et al., 2002) and plant genetic improvement and general management response 

to climate (Inman-Bamber and Smith, 2005). 

 

Floods 

Currently, many countries have engaged in research activities to develop catchment-wide flood 

management programs. Flood management plans in a modelling and decision support framework are 

now being prepared for all 80 catchments in England and Wales (Evans, et al. 2002). In 2005, the 

German Federal Ministry of Education and Research followed suite and began funding over 30 large 

projects for flood management and mitigation in large river basins in Germany (http://www.rimax-

hochwasser.de). The EU project “FloodSite” involves many countries in Europe covering physical, 

environmental, ecological and socio-economic aspects of floods from rivers, estuaries and the sea. 

Transnational cooperations have also commenced to strengthen relations between countries sharing 

common river basins. One such project is the transnational INTERREG III B Project to develop joint 

strategies on spatial planning in the Elbe catchment area (http://www.ella-interreg.org). The CRUE 

network has been set up to consolidate existing European flood research programmes, promote best 

practice and identify gaps and opportunities for collaboration on future programme content. 

(http://www.crue-eranet.net). 

 

Extensive reports have also been provided giving synopses of large floods in i) recent times: for 

example, the Elbe river (DKKV, 2004), Oder river (Erlich, et al., 2004), Red River, Canada 

(Simonovic and Carson, 2003) and Mississippi River (Changnon, 1998); and ii) the past: for example, 

central Europe (Mudelsee, et al., 2004) and USA (Burian, et al., 1999). 

 

Much progress has been achieved in implementing new technologies in flood management. This 

includes the field of remote sensing along with geographic information systems (Sanyal and Lu, 
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2004), radar estimates of rainfall (Collier, 2002) and satellite monitoring (Grigorev and Kondratev, 

1997; Smith, 1997). Advances in the hydrological and meteorological aspects of floods are reviewed 

by Bacchi and Ranzi (2003). The intensification of flooding due to climate, land-use and 

environmental change has been reviewed by Bronstert (2003), Bronstert, et al. (2002), Fleming (2002) 

and Poesen and Hooke (1997). 

 

A paradigm shift has occurred in recent years in flood sciences from flood management to flood risk 

management. Merz (2005) provides an extensive work on the subject. The concept of risk contains the 

assessment of damage due to floods – reviews are provided by Blong (2003), Smith (1994) and 

Viljoen, et al. (2001). 

 

Reservoir operation 

Many of the reviews in reservoir management focus on the optimisation of reservoir operation. This is 

due to the complexity of the many demands on the stored water, such as drinking water supply, 

hydroelectric power generation, water quality, recreation and irrigation, which require high water 

stages in the reservoir. These demands conflict with flood control measures for which lower stage 

levels are necessary to buffer peak discharges from the upstream catchment areas. Labadie (2004) 

gives an excellent review of the state-of-the-art in optimal operation of multireservoir systems. 

Applications of heuristic programming methods using evolutionary and genetic algorithms are 

described, along with applications of neutral networks and fuzzy rule-based systems for inferring 

reservoir system operating rules. Overviews are also found in the literature on optimising techniques 

using specific computational methods such as stochastic modelling (Srinivasan and Simonovic, 1999), 

genetic algorithms (Sharif and Wardlaw, 2000) and fuzzy logic (Tilmant, et al., 2002). 

 

The incorporation of hydrologic models into the optimising techniques is reviewed by Yang, et al. 

(1995). Decision models may also be included into the optimisation to integrate simultaneously all 

relevant aspects in reservoir operation, such as physical, hydrological, technological, financial and 

socioeconomic characteristics (Cunha, 2003). In their review, Lund and Guzman (1999) summarise a 

variety of derived operating policies for reservoirs in series and in parallel. Overviews on reservoir 

release policies and real-time reservoir operations specific for irrigation are given by Mujumdar and 

Ramesh (1997) and Sahoo, et al. (2001). Reservoir operation optimisation has followed suite with 

many other water management fields in incorporating risk analyses (Ouarda and Labadie, 2001), to 

include concepts such as reliability, resilience and vulnerability in characterising operation practices. 

 

River water quality 

River water quality modelling has gained impetus in recent years due to increased political awareness 

of river quality issues. New environmental policies such as the EU Water Framework Directive and 
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the US Total Maximum Daily Load concept require these modelling tools to evaluate river water 

quality and to assess management practices for the improvement of aquatic health and functioning. 

(Horn, et al., 2004). River qater quality models are also a critical link to other processes in the river 

basin in many river basin management systems (Saleth, 2004). Interest in water quality modelling is 

also evident among social scientists and socio-economists, who draw additional information from the 

model results important for decision makers (Korfmacher, 1998). Trepel and Kluge (2002) give an 

excellent review of models they find applicable for the implementation of the EU Water Framework 

Directive. 

 

Traditionally, river water quality models have focused on predicting dissolved oxygen concentrations 

in the river and, later, on plankton-nutrient dynamics in river eutrophication problems. Cox (2003a, 

2003b) gives exhaustive overviews of river water quality models and their applications in simulating 

dissolved oxygen in lowland rivers. This tradition still forms an important foundation for ecological 

assessments and Smith (2003) reviews recent advances in algae-related eutrophication research. He 

points to gaps in our understanding of river and stream eutrophication such as the hysteresis effect of 

nutrient loading on suspended algae growth, inhibitory effects of high concentrations of inorganic 

suspended solids on algal growth and cyanobacterial dominance of phytoplankton worldwide. 

Phosphorus is most often the limiting nutrient in eutrophication models and a review of phosphorus 

retention studies in streams is given by Reddy, et al. (1999). McIntyre and Wheater (2004) point to the 

need for more research required in uncertainty estimation of these types of models. 

 

Many river water quality models are complimented with the description of macrophyte-nutrient 

dynamics, particularly for smaller streams. Barendregt and Bio (2003) review modelling studies 

simulating the effect of water quantity and quality on macrophytes on the regional, local and site 

scales. In light of the new and growing field of ecohydrology (Zalewski, 2002, 2004), the importance 

of the effect macrophytes have on hydrodynamics (flow resistance) has gained recognition (Tabacchi, 

et al., 2000; Green, 2005). Aquatic invertebrate fauna are increasingly being incorporated in river 

quality modelling (Clarke, et al., 2003). The biology of zebra mussels as it relates to water quality 

problems in rivers is reviewed by Effler, et al. (1996). Ward, et al. (1998) give an overview of 

metazoans associated within the interstices of the stream bed and their effect on lotic ecosystems.  

 

Apart from dissolved oxygen and nutrient modelling, other pollution-causing substances have been 

given increasing attention. Yapa and Shen (1994) review studies on major oil spills that have occurred 

in rivers and show the state-of-the-art in river oil spill modelling. Petit, et al. (1995) provide a review 

of strategies for modelling the environmental fate of pesticides discharged into riverine systems. Cao 

and Carling (2002) give an overview of the current status of research in modelling the transport of 

suspended sediments in rivers and conclude that the models are still far from being mature in giving 
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reliable predictions. In their paper, Monte, et al. (2005) summarise the development of models used 

for predicting the migration of radionuclides through rivers. Håkanson (2004) points to the value and 

new insights radionuclide simulations give in understanding river ecology. 

 

The effect of a river’s morphology on its aquatic ecology has also gained awareness. Wagenschein, 

Lindenschmidt and Rode (2005) show differences in nitrogen retention in naturally-meandering and 

channelized sections of the same stream. Doyle, et al. (2003) review hydrogeomorphic controls on 

phosphorus retention in streams. Mosselman (1995) gives an overview of mathematical models used 

to predict planform changes in rivers. 

 

The biogeochemical processes within the upper few centimetres of river sediments (hyporheic zone) 

has a profound effect on aquatic chemistry and much current research has been focused in this field 

(Sophocleous, 2002). In their book, Jones and Mulholland (2000) give an excellent overview on the 

subject. Further reviews of incorporating the hyporheic zone in water quality modelling are given by 

Runkel, et al. (2003) and Supriyasilp, et al. (2003). 

 

Like many other components of the water system, river aquatic ecosystems are affected by climate 

change in regards to their ecosystem functioning and health. Meyer, et al. (1999) review models that 

could be used to explore potential effects of climate change on freshwater ecosystems. These include 

models of instream flow, bioenergetics, nutrient spiralling and riverine food webs. 

 

1.3 Modelling issues in hydrology applied to river water quality modelling 

Important issues in modelling for water resources management are model uncertainty, complexity, 

scale and transferability. These issues are more established in the field of hydrology but still need to be 

applied and investigated in river water quality modelling. The next subsections give an introduction to 

each of these issues. 

 

Uncertainty analysis 

An important consideration when modelling is the uncertainty in the model results due to errors in 

sampled data and model structure. Sources of error include: i) errors in the data used as initial and 

boundary conditions in the model, ii) errors in the data used to calibrate and validate the model results, 

and iii) errors due to the structure of the model which includes the equations, solutions and parameters 

used for the simulations. A literature search indicates that uncertainty analyses have been carried out 

on a number of water quality modelling studies, such as the transport of organic (Giri et al., 2001) and 

inorganic (Carroll and Warwick, 2001) pollutants, simple Streeter-Phelps oxygen dynamics (Warwick 

et al., 1997; Maihot and Villeneuve, 2003), phytoplankton - nutrient dynamics using QUAL2E 

(McIntyre et al., 2003) and the Biebrza river model (van der Perk and Bierkens, 1997) and solute 
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transport (Whelan et al., 1999). However, all these modelling exercises were run assuming steady state 

flow and concentrated on the uncertainty in the water quality parameters, not on hydrodynamic 

parameters. Sincock et al. (2003) conducted an uncertainty analysis with hydrodynamic parameters in 

a river water quality model under unsteady flow conditions but they used a simplified routing 

approach based on the kinematic wave with a lag-cascade model extension. The parameters that they 

incorporated in their analysis were the storage coefficient and a corresponding flow exponent. The 

model used in this study, DYNHYD, a module in the WASP5 simulation package (Ambrose, et al., 

1993), uses the full dynamic wave equation and Manning's equation to simulate river flow for which 

the roughness and weir overflow coefficients become important for parameter uncertainty. 

 

One aim of this research was to simulate the hydrodynamics and water quality of the regulated river 

Saale (Germany) and to conduct an uncertainty analysis of the parameters and input data on the output 

state variables. Highlighted in this study is not only to see the effect water quality parameters have on 

its state variables but also to see how hydrodynamic parameters affect the water quality variables. 

Hence, the influence of the morphological status of the river, which is described by the hydrodynamic 

parameters, on the water quality can be derived. 

 

Another important source of uncertainty in river water quality modelling is that found in model 

structure (Radwan et al., 2004). In this study, the structure of the model is understood to be the 

algorithms and equations used to describe and calculate the processes. Structural uncertainty is very 

difficult to quantify and only a few attempts are found in the literature. For example, Engeland et al. 

(2005) calculated both total and parameter uncertainty in a hydrological model and found that “the 

uncertainties in the simulated stream flow due to parameter uncertainty are less important than 

uncertainties originating from other sources”. Reference is made to model structure as one of the 

sources of uncertainty but it was not explicitly calculated. Todd et al. (2001) investigated the effect 

different demographic equations have on calculating the population dynamics of the eastern barred 

bandicoot, a small marsupial endemic to south-eastern Australia. However, each equation has a 

different set of parameters which needs to be calibrated; hence a strict division of parameter and 

structural uncertainty cannot be quantified.  This, too, is the case in Håkanson’s (2000) uncertainty 

analysis of lake eutrophication models. van der Peck (1997) implemented eight different equations of 

increasing complexity to simulate orthophosphate concentrations as a function of distance along a 

river. Here, too, attention is given to the uncertainty of the parameter sets used in the equations and 

less on the uncertainty due to the equations themselves. Hence, another important goal for this work is 

to differentiate more distinctly between uncertainty stemming from parameters, boundary conditions 

and model structure. 
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Another important issue to the development of modeling systems is the propagation of errors as 

simulation output from models are transferred to other models as input. The author is unaware of 

research specifically focused on “cross-model” uncertainty analysis. This is a necessary step for the 

advancement of the development of integrated modeling systems for river basin management to 

determine how the uncertainties of parameter values and boundary and initial condition values affect 

variables globally in the system environment. Also from the perspective of the decision maker, who is 

to use the system for decision support, an assessment of the largest uncertainty in the system to be 

managed is required in order to judge the risks involved in the various management schemes. It can be 

argued that if many models are incorporated into one large model the propagated errors through the 

model chain are the same as in the large conglomerated model. This is not necessarily so since 

interdependencies may exist between variables and parameters in the conglomeration that may not 

exist if the variables and parameters are found in separate models. In other words, the sum of the 

uncertainties of each coupled model is not necessarily equal to the total uncertainty of the modeling 

system. 

 

Model complexity 

A key question in choosing or developing a water quality model is how complex the model structure 

should be to suit the needs in evaluating the management measures to be implemented. Increased 

complexity means that more processes will be represented in the system potentially reducing the error 

in the simulation results. The downside is that increasing the model complexity increases the number 

of degrees of freedom within the model (more parameters and variables) which can be expressed as 

the total increase in model sensitivity on output results. This makes calibration more difficult and 

reduces the predictive power of the model. 

 

A hypothesis has been proposed by Snowling and Kramer (2001) which relates the uncertainty of a 

simulation model with respect to model complexity, sensitivity and error. The hypothesis is illustrated 

in Figure 1. “Model sensitivity increases with model complexity due to the larger number of degrees 

of freedom and the structure of the interactions between parameters and state variables. Modelling 

error decreases with increasing model complexity as the more complex models are able to better 

simulate reality with more processes included and fewer simplifying assumptions” (Snowling and 

Kramer, 2001, p. 21). Also, with increasing model complexity identification of the model parameters 

becomes poorer meaning that the parameters become increasingly correlated (van der Perk, 1997). 
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Figure 1: Uncertainty (error and sensitivity) and model utility as a function of complexity. 

 

Snowling and Kramer (2001) tested their hypothesis on two models: i) a sorption model for 

radioactive zinc onto sediments in solution (LeBeuf, 1992 cited in Snowling and Kramer, 2001) and ii) 

the transport of a groundwater tracer plume. In the first model the complexity was changed by varying 

the sorption process (equilibrium or kinetic) and the number of solute and sorbed phases. For this 

model their hypothesis was verified in which increased complexity caused an increase in parameter 

sensitivity and a decrease in model error. The complexity of the second model was changed by 

varying the sorption process (equilibrium or kinetic), degradation processes (zero or first order) and 

isotherms (linear, non-linear and Monod – in order of increasing complexity). In this case, the 

hypothesis could only be verified in part. Sensitivity does increase with increasing complexity but no 

relation was evident between error and complexity. Ideally, the best model is one in which both 

sensitivity and error are minimised. Here, a utility function was implemented to evaluate which 

complexity is best suited for the characteristics of the study site. 

 

In this study the hypothesis is tested on a water quality model developed for the Saale River (see also 

Lindenschmidt, 2006). The model EUTRO, a module in the WASP5 simulation package (Ambrose, et 

al., 1993) which describes the phytoplankton-nutrient-oxygen dynamics in a water body, was 

implemented. The complexity of the model can be easily increased by enabling more state variables, 

parameters and functions used for the simulation. Increasing the number of variables also increases the 

number of processes interacting between the variables for which additional parameters are required to 

control these processes. TOXI, another module in WASP5 for simulating sediment and micro-

pollutant transport, is also applied in the framework of this hypothesis using increasing degrees of 

complexity in describing the sorption kinetics between suspended solids and heavy metals (see also 

Lindenschmidt, Wodrich and Hesse, 2006). 

 

Scale issues considering complexity and uncertainty  

Most studies on scale issues in the water sciences, in which model results across different scales are 

compared, are found in the field of hydrology (see for example Kalma (1995), Sposito (1998) and 

Sivapalan, et al. (2004)). These mostly consider processes occurring on or in the land surfaces of 
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catchment areas. The focus is mainly on water fluxes although some studies do include substance 

transport, for example erosion (Kandel, 2004), nitrate leaching (Hosang, 1998) and dissolved organic 

carbon (Aitkenhead, et al., 1999). Few studies consider scaling issues of processes of substance 

transport in the stream or river. Examples of such cross-scale studies include the influence of the 

riparian zone on stream water chemistry (Smart et al., 2001), the effect hydrological conditions have 

on stream water acidity (Wade, et al., 1999) and the relationship between soil organic carbon pools on 

dissolved organic carbon in stream water (Aitkenhead, et al., 1999). These studies have a focus on the 

stream but with the perspective from processes occurring on or in the land surfaces connected to the 

stream or river network. The authors are not aware of investigation focusing on instream processes on 

the transport of substances in stream water at different scales. Hence, this study should give new 

insight on scale comparisons, shifting the focus from river catchments and their land surfaces (“area” 

scale) to transport mechanisms within the stream itself (“line” scale). 

 

Many studies are also found in the literature which explore the effect model complexity has on model 

uncertainty. Elert, et al. (1999) compiled the results of 13 different modelling exercises from seven 

research teams investigating the transport of surface contamination of a pasture soil using three 

different radionuclides. No simple relationship was found between model uncertainty and complexity.  

 

Lindenschmidt, Wodrich and Hesse (2006) propose a hypothesis stating that there will be a shift in the 

complexity versus uncertainty relationship when implementing the same model for studies of different 

scale (see Figure 2). For example, when reducing both the temporal and spatial scales, processes 

become more dynamic and quick-lived (Blöschl and Sivapalan, 1995) and increased model complexity 

is required to obtain the same reduction in model error. Additional processes which may be dampened 

or deemed less significant at the large scale need now to be included in the small-scale model 

description to achieve better accuracy in model output. This increase in complexity also increases the 

overall model sensitivity since the inclusion of additional processes bring with it additional parameters 

and data input. 
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Figure 2: Model uncertainty versus complexity at different scales.  

 

A goal of this study is to test this hypothesis using a water quality model on two sections of the river 

Saale, Germany, representing two different scales. The transport of suspended solids and inorganic 

pollutants were simulated once on the large-scale model of a 90 km reach with a discretization of 500 

m segments and a simulation time step of one day, and again on the small scale of a lock-and-weir 

system on the same river using a segmentation of 100 m and a time step of one hour. Care was taken 

that both temporal and spatial resolutions were made finer when downscaling (see Blöschl and 

Sivapalan (1995)). The effect of locks and weirs on the transport of substances at different scales is 

also highlighted. 

 

Model transferability 

Transferability can be defined as a model’s ability to capture the hydrological regimes in different 

climatic and physiographic regions at the relevant spatial and temporal scales without requiring 

changes in model structure or physical parameterizations (Devonec and Barros, 2002). Many studies 

show that model performance drops when models and model parameters are transferred both spatially 

and temporally. Even when transferred within the same region with similar climatic and basin 

characteristics a re-calibration of parameters is often unavoidable to retain accuracy and predictability. 

Devonec and Barros (2002) found that model transferability in hydrology is very sensitive on the 

hydroclimatic variability between different regions and time periods. This dependency may not be as 

strong for river water quality modelling. Heuvelmans, et al. (2004) evaluate the transferability of the 

main controlling parameters of a semi-distributed hydrology model (SWAT). The results indicate that 

there is a decline in model performance when parameters are transferred in time and space and care 

should be taken when exchanging parameter values between regions with a different topography, soil 

and land use. 

 

For sediment and nutrient transport Lindenschmidt, Ollesch, et al. (2003) showed that generalities can 

be made between two adjacent-lying catchments in Uganda, since they have identical climates and 

have similar soils but only to a limited extend. A slight change or addition in land-use type (e.g. 
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presence of wetlands) can have a marked effect on the outcome of a substance regime as is clearly 

shown in their study by the difference in phosphorus behaviour between the two basins (each 

catchment area ≈ 25 km2). The sensitivity to certain parameters and basin characteristics require the 

description of different processes dominating in different basins which must be defined quite precisely 

in order to increase accuracy when transferring or aggregating data across catchments. León, et al. 

(2001) also state that the transferability of model parameters to other watersheds, especially those in 

remote areas without enough data for calibration, is a major problem in diffuse modelling. Drawing on 

additional GIS data improved model portability. 

 

Transferability becomes increasingly difficult in ecological models (e.g. Leftwich, et al. (1997) and 

Guay, et al. (2003) for fish habitat models). More success is shown in models of larger scale (e.g. 

Lettenmaier (2001)). The author is unaware of specific transferability studies for river water quality 

models. Hence, an interesting goal that will additionally be pursued is to investigate to what extent 

parameter sets calibrated on data from a particular stretch of a river (e.g. most downstream lowland 

course) can be adopted to other stretches of the river (e.g. middle reaches). He proposes an extension 

of the hypothesis of Snowling and Kramer (2001) to test the transferability of a model on a different 

river or river section of the same scale. Figure 3 shows the behaviour of the error and sensitivity 

curves of a model being transferred to a different study area. If the error remains relatively the same or 

decreases with model complexity (error curve shifts to the left or downward) the model is said to be 

transferable. For sensitivity, the shape of the curve is important. If sensitivity continuously increases 

with complexity, transferability is assured. However, if a plateau arises in which sensitivity remains 

constant then the model is less reactive to the parameter setting and the transfer has deprived the 

model of its predictive strength. This hypothesis extension is to be tested by comparing complexity 

versus uncertainty behaviour between modelling exercises of the lower and middle courses of the 

Saale River, which are of the same scale. 
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Figure 3: Possible behaviour of error (left) and sensitivity (right) when the model is transferred to 

another river or river section. 
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2  Method of solution approach: simulation modeling 

2.1 Why WASP5 (Water quality Analysis Simulation Program)? 

An own model development was considered but the time required for such a development is extensive 

and would exceed the time duration planned for the Saale project. The project required an up-and-

running model of the Saale within two years. Also, the processes used in deterministic models do not 

vary greatly and it is not justified to develop a new model with perhaps a slightly different 

configuration of process descriptions. The source code of the model was available to make adaptations 

specific to the Saale River. Furthermore, a large portion of this research was to concentrate on other 

aspects and problems specific to modeling exercises such as uncertainty analysis, scaling problems 

and model coupling. These topics would all have come too short had an own model development been 

pursued. 

 

A comparison of general characteristics of several models is given in Table 1. Additional information 

can be found in Trepel and Kluge (2002). An important criterion for choosing a water quality model 

was the accessibility of the program source code. This is required for the integration of the models into 

a modelling system for river basin management. Hence, only the first three models listed in the table 

are suitable: QUAL2E, WASP5 and CE-QUAL-RIV1. QUAL2E was disregarded because it is a 

steady state model with no hydrodynamic component. CE-QUAL-RIV1 was also not considered 

because it does not simulate branched river systems and embayments appendaged to rivers. WASP5 

was the best choice for implementation into the modelling system. The program executables, source 

codes and user manuals for WASP5 are freely accessible via the Internet. The existence of good 

documentation is also an important criterion that should not be underestimated.  

 

The model is also an appropriate tool for the implementation of the WFD. The goal of the WFD is to 

attain a good ecological and chemical status of a water body. Nutrients are not included in evaluating 

the chemical status but are a physical-chemical component in the assessment of the ecological 

condition. The WFD also gives equal weighting to point and non-point pollution loading in which 

nutrients play an important role for both. Exemplary for nitrogen, the LAWA, a consortium 

responsible for the implementation of the WFD in Germany, has set the standard for surface water 

bodies to be: total nitrogen <= 3 mg N/L; nitrate <= 2.5 mg N/L; ammonium <= 0.3 mg N/L. The 

mean concentrations of the lower Saale River are still above these values. 

 

2.2 Past studies with WASP5 

WASP5 has been implemented for many water quality studies and many open water bodies. An 

overview for rivers and estuaries is given in Table 2: 
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Table 1: Comparison of selected water quality models 
 

 
- Hajda and Novotny (1996) conducted a study to evaluate the impact of the absence and presence of 

a dam on the Milwaukee River in Wisconsin, USA. They found that removing the dam alleviated 

the effects of eutrophication. Phytoplankton growth increased due to improved light conditions and 

benthic decomposition reduced. These factors improved the oxygen balance in the water. 

 

- Rehfus, Lindenschmidt and Hegemann (1997) and Lindenschmidt and Wagenschein (2004) used 

WASP5 to optimize the operation of an aeration ship on the flowing waters within the city of 

Berlin, Germany. The ship is used to supplement the water with liquid oxygen during periods of 

high oxygen demand, particularly after heavy storm events. The emitted pollution loading from 

storm runoff rapidly consumes the dissolved oxygen which can lead to large fish kills. They found 

that injecting oxygen at a stationary point upstream from the affected area was more effective than 

distributing the oxygen in the water by driving the ship up and down the waterway. 
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Table 2: Summary of WASP5 modelling exercises applied to rivers and estuaries. 
 

 

 23Karl-Erich Lindenschmidt River water quality modelling...



- WASP5 has also been used for Total Maximum Daily Load (TMDL) studies such as for the Black 

River in Washington State, USA (Pickett (1997). The middle stretch of the river is burdened with 

low oxygen conditions, especially during low flow. To prevent eutrophic conditions to persist, the 

total phosphorus TP load to the river should not exceed 0.05 mg/L. 

 

- Warwick et al. (1999) made the first modifications to DYNHYD by incorporating weirs into the 

model. Water was diverted by the weirs for irrigation and returned to the river as surface point and 

ground water non-point return-flow. They showed the strong impact of nitrate leaching on the 

water quality of the river. von Saleski, et al. (2004) adapted the extended model for large lock-and-

weir systems on the Saale River. 

 

- Many modelling studies have been carried out on the Carson River in Nevada, USA (Carroll, et al. 

(2004); Carroll, et al. (2000); Carrol and Warwick (2001); Heim and Warwick (1997); Warwick, et 

al. (1997)). Aside from eutrophication studies the transport of mercury has also been investigated. 

Large deposits of mine tailings are found along the river’s banks emitting large amounts of 

mercury into the water, especially from bank erosion during flood events. This was simulated using 

an extended version of TOXI. 

 

- The Scheldt Estuary has also received modelling attention using WASP5 (De Smedt, et al. (1998); 

Vuksanovic, et al (1996)). DYNHYD incorporates tidal flows in its hydrodynamic simulations and, 

hence, the transport of sediments and selected inorganic and organic micro-pollutants in the estuary 

could be investigated. They found that the pollutants accumulate in the zone of the turbidity 

maximum and only a small amount actually reaches the sea. Another application on an estuary is 

by Umgiesser and Zampato (2001), in which DYNHYD simulated the flow through the channel 

network of Venice and was coupled to a 2-D model of the Venice Lagoon. 

 

Due to their three-dimensional configuration, the WASP5 modules, EUTRO and TOXI, can also be 

implemented for large basin water bodies. Studies include applications on coastal areas (Wang, et al., 

1999), lakes (James, et al., 1997; Jin, et al., 1998; Kellershohn and Tsanis, 1999; Rygwelski, et al., 

1999) and reservoirs (Kao, et al., 1998; Tufford and McKellar, 1999; Wu, et al., 1996). 

 

2.3 Model comparison: WASP5 vs. QSIM 

Although QSIM does not qualify as a water quality model for our purposes, a comparative study was 

carried out using the model to test the performance of WASP5. A detailed comparison of the two 

models with results is given in Lindenschmidt and Wagenschein (2004) and Lindenschmidt, Schlehf, 

Suhr, et al. (2005). Table 1 gives a comparative overview of the two models’ capabilities. 
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For a discharge of up to approximately twice the mean flow both WASP5 and QSIM are capable of 

depicting the hydrodynamics comparatively well. The Kalinin-Miljukov technique, an approach based 

on storage coefficients, is used for the hydraulic simulations in QSIM, which is not suited for higher 

flows and floods. If flood management is an issue for the studied river basin, the St. Venant approach, 

which solves the momentum and continuity equations of a dynamic wave, is a better alternative, which 

is the method implemented in WASP5. A new version of QSIM in which the St. Venant equations are 

implemented is currently being tested (V. Kirchesch, pers. comm., Dec. 2003). 

 

There are marked differences in the functionality of the two models in regards to water quality 

simulations. Temperature and pH are not simulated in WASP5, they are input as time-varying 

functions. QSIM is able to simulated two algal groups, green algae and diatoms, whereas the original 

version of WASP5 sums the two together into one class. Due to the differentiation of the algal groups, 

QSIM includes silicon to its simulated nutrient spectrum. James et al. (1997) extended the WASP5 

code to include the differentiation of three algae groups (greens, diatoms and blue-greens) and the 

silicon cycle and applied it successfully to simulate the water quality of Lake Okeechobee in Florida, 

USA. Zooplankton is a state variable in QSIM, it is an input time-varying function in WASP5. Both 

models simulate sediment transport and periphyton, the WASP5 extension developed by Shanahan 

(2001). An important advantage of WASP5 is its capability to model the transport and fate of organic 

and inorganic micro-pollutants. WASP5 also has more flexibility in the discretization of the river 

network compared to QSIM. Embayments and floodplains may be discretized separately from the 

main channel and branched and braided rivers can also be represented. The processes depicted in 

WASP5 are also not restricted to the water column but also apply to the sediment layers. An additional 

file representing the emissions of non-point pollution may also be coupled to the model. 

 

Figure 4 compiles the mean goodness-of-fit of selected variables between all the simulated and 

measured values for both WASP5 and QSIM using a likelihood function from Beven (2001, p. 249), 

which lies in the range between 1 (perfect fit) and 0 (no fit). Some of the nutrient variables do not 

correspond exactly between the two models. However for comparison sake similar variables were 

grouped together so that dissolved phosphorus DP , total phosphorus TP and total nitrogen TN from 

QSIM are grouped together respectively with total inorganic phosphorus TIP, total organic phosphorus 

TOP and total organic nitrogen TON from WASP5. Generally, both models measured similar 

likelihood values. WASP5 results are slightly better since the simulations underwent a more rigorous 

calibration process. Ammonium NH4-N has the worst fit between simulated results and measured 

values for both models due to the aforementioned uncertainty in the surge from the combined 

sewerage overflow at Halle. The error for nitrate NO3-N, dissolved or inorganic phosphorus and 

chlorophyll-a Chl-a increases along the river flow and is due to the higher variability in the 

chlorophyll-a values sampled in the lower reach of the studied river course. Both (dissolved) calcium 
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Ca2+ and (particulate) suspended solids SS were simulated in WASP5 using the TOXI submodule and 

included here for comparison sake. WASP5 performed better in simulating the transport of suspended 

solids perhaps due to its more accurate description of the hydrodynamics (St. Venant approach in 

WASP5, Kalinin-Miljukov approach in QSIM; see Lindenschmidt and Wagenschein (2004) for a 

comparison). Calcium was simulated with the least error to measurements for both models. Good 

agreement between the model and samples was achieved for oxygen O2. The agreement is slightly less 

for the total or organic fractions of the nutrients, reflecting the uncertainty in the phytoplankton 

dynamics. 
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Figure 4: Summary of the goodness-of-fit (likelihood) between measured values and simulated results 

for both QSIM and WASP5. 
 (from Lindenschmidt, Schlehf, et al., 2005) 

 

This comparative study allowed important conclusions to be made and gave a high degree of 

confidence in using WASP5. Both models, QSIM and WASP5, were able to simulate the state of the 

river system for the two week sampling program and the river stretch under investigation. The 

simulation results between the two models for the variables that corresponded directly between them 

were in good agreement with one another. The largest deviations resulted in the state variable 

ammonium and may have resulted in the difference in modelling approaches. QSIM uses the growth 

dynamics of nitrifier bacteria whereas WASP5 uses first-order kinetics to model nitrification. The 

higher complexity in QSIM does not lead to more accuracy. The variability found in the output, such 

as chlorophyll-a, was not captured even with higher model complexity.  

 

2.4 The WASP5 modeling system 

The modeling package used for the simulation of the river water quality is WASP5, developed by the 

US Environmental Protection Agency (Ambrose, et al. 1993). It is written in the FORTRAN 

programming language and consists of three models: i) DYNHYD - calculates the hydrodynamics of a 
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water body, ii) EUTRO - simulates phytoplankton and nutrient dynamics and iii) TOXI - computes 

sediment and micro-pollutant transport. Figure 5 illustrates the typical sequence of the dynamic 

(varying with time) simulations. In the original version of WASP5 a simulation of the hydrodynamics 

is first run for T days (t1, t2, … tn). The output from DYNHYD is stored in a file which is later 

retrieved from EUTRO and TOXI for their simulations of T days. In the original version there is no 

interaction between EUTRO and TOXI and no feedback from these models to DYNHYD. These 

capabilities have been added in this work as described in subsection 2.5: Model Coupling with HLA 

(High Level Architecture)
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(from Lindenschmidt, Hesser, et al., 2005) 

Figure 5: Simulation sequence of DYNHYD, EUTRO and TOXI in the original WASP5 package- 
 

A mass balance equation is used accounting for all material entering and leaving the system by point 

and non-point loading, advective and dispersive transport and physical, chemical and biological 

transformations: 
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where is the substance concentration with C C / t∂ ∂ representing its change with respect to time t, 

 ,  and are the longitudinal, lateral and vertical diffusion coefficients (only the first was 

implemented here), ,  and  are the rates for boundary loading, kinetic transformations and 

xE yE zE

BS KS LS
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loading from point and non-point sources, respectively, and  ,  and  are the longitudinal, 

lateral and vertical advective velocities (only the first is required for our one-dimensional case). The 

velocities are provided by the DYNHYD hydrodynamic simulations. 

xU yU zU

 

2.4.1 DYNHYD 

DYNHYD solves the St. Venant equations, which includes the momentum equation for the 

momentum balance: 

g f
U UU a
t dx

∂ ∂
= − + +

∂
a  

and the continuity equation for the mass balance: 

1 0Q H
x B t

∂ ∂
+ =

∂ ∂
 

where: fa  - frictional acceleration; ga  - gravitational acceleration = g H / x− ⋅∂ ∂ ; B  - river width; 

 - gravitational acceleration;  - water surface elevation or head;  - volume discharge; U  - 

velocity along the river longitudinal axis; 

g H Q

x  - distance along the river longitudinal axis and increasing 

upstream. Manning's equation is used for the frictional acceleration: 
2

4 3f /

g na U
R
⋅

= i iU  

where:  - Manning's roughness coefficient; n R  - hydraulic radius (cross-sectional area / wetted 

perimeter). U  ensures that friction always opposes the flow direction. The roughness coefficient 

depends on the characteristics of the river bottom and is used for calibration. 

 

These equations are integrated numerically on a discretized network of the river course. A “link-node” 

approach is used to solve the equations at the respective grid points. At each time step the momentum 

equation is solved using the links giving the required velocities and the continuity equation is solved 

via the nodes giving the water levels and volumes of each unit of discretization. 

 

Warwick (1999) extended the model to include weirs. The discharge Q over a weir is based on the 

Bernoulli equation, which assumes the streamlines of the flow are straight and there are no energy 

losses: 
3

1 32
2 22

3
Q g b⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
h  

where: - breadth of weir crest;  - gravitational acceleration; h  - height between weir crest and 

water level upstream of the weir. A modification to the equation is the Poleni equation which 

b g

 28Karl-Erich Lindenschmidt River water quality modelling...



integrates a weir discharge coefficient μ  in order to allow differentiation between various construction 

types of weirs: 
3
22 2

3
Q g= ⋅μ ⋅ ⋅ ⋅b h  

which can be simplified to: 
βα hbQ ⋅⋅=  

which serves as the basis for the weir discharge in DYNHYD. The coefficient α  was set originally to 

3.5 to represent small weirs in an irrigation network. α is expected to range between 1.6 and 2.0 for 

the weirs along the Saale. The exponent coefficient β is set to 1.5 and is not altered. 

 

2.4.2 EUTRO 

The water quality was simulated using the computer model EUTRO, which is a module of the WASP5 

package. Water quality pertains to the oxygen balance in a river and can be simulated using six 

varying degrees of complexity. Only the first five were implemented and are summarized in Table 3. 

Petersen matrices and input data descriptions are given in the appendix. The complexities vary from 

simple Streeter-Phelps dissolved oxygen – biological oxygen demand description to more complex 

nutrient limited phytoplankton growth dynamics and are described as follows: 

 

Table 3: The state variables and number of parameters for each model complexity in EUTRO. 
(from Lindenschmidt, 2006) 

 
 

Complexity 1: Streeter-Phelps with TBODmax and SOD 
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This is the simplest complexity and is based on the Streeter and Phelps (1925, cited in Chapra, 1997) 

approach in which the oxygen consumption is characterised in the water column using the total 

maximum biological oxygen demand (TBODmax). A portion of the TBODmax is allowed to settle from 

the water column, which is particularly pronounced immediately downstream from sewage treatment 

plant outfalls (see Chapra, 1997, p.355f). 

 

Oxygen is also consumed in the sediments, which is described in the model by the sediment oxygen 

demand (SOD). Sediment cores were taken at selected sites along the river and incubated at 20°C for 

41 days. Lindenschmidt (2006) shows several oxygen consumption curves which range between 0.9 

and 3.0 g/m²/day. A value of 1.0 g/m²/day for the entire stretch was determined in the calibration 

which conforms to values determined from other modelling studies of regulated rivers in Germany 

(Haag, 2003).   

 

An important source of oxygen into the water body is reaeration via the water surface from the 

atmosphere. Here, three different equations, according to O’Connor-Dobbins, Owen-Gibbs and 

Churchill, are used depending on the depth and mean flow velocity of the water. Parameters include 

the total deoxygenation rate and the settling velocity of organic matter. The former is temperature 

dependent; hence temperature is an input function in the model. 

 

Complexity 2: Modified Streeter-Phelps with NBODmax

An important modification in this complexity is the separation of the TBODmax into its carbonaceous 

and nitrogenous components, CBODmax and NBODmax, respectively. Both components have individual 

deoxygenation and settling rates. SOD remains the same but is supplemented with a temperature 

dependency. Karlsruhe bottle experiments with and without nitrification inhibitor allowed the 

differentiation of the two. Lindenschmidt (2006) gives an example of such an experiment in which 

TBODmax (without inhibitor) and CBODmax (with inhibitor) are determined. The difference between the 

two equals NBODmax. The initial rates of increase gives an indication of the deoxygenation rates of 

each component. The parameter k and the BODmax variables were fit using (Thomann and Mueller, 

1987, p. 271f): 

( ))exp(1max tkBODBOD ⋅−−=  

where BOD is the oxygen consumed at time t. 

 

Complexity 3: Linear DO balance with nitrification 

Complexity is increased at this level by separating the bulk variable NBODmax into its nitrogen 

components: total organic nitrogen (ON), ammonium (NH4
+-N) and nitrate (NO3

--N). The nitrogenous 

deoxygenation rate is also differentiated into the rates for mineralization (ON → NH4
+-N) and 

nitrification (NH4
+-N → NO3

--N). Settling of the nitrogenous matter is restricted to ON. Nitrite 
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concentrations are considered minute and are added to NO3
--N. An additional oxygen source and sink 

are phytoplankton photosynthesis and respiration, respectively. Phytoplankton is, however, not a 

simulated variable in this complexity level but an input function in the model. At low oxygen 

concentrations, the denitrification process can be included in the simulation and both carbonaceous 

deoxygenation and nitrification are oxygen limited. 

 

Complexity 4: Simple eutrophication 

At this complexity, phytoplankton is a simulated variable which can be nutrient limited. Inorganic 

nitrogen (NH4
+-N + NO3

--N) and inorganic phosphorus (IP) are the limiting nutrients described using 

Monod kinetics. A preference factor for NH4
+-N or NO3

--N is utilized. Organic phosphorus (OP) is 

also included in the dynamics and undergoes mineralization and settling. Phytoplankton growth is also 

light limited and is adjusted with a temperature coefficient. Phytoplankton loss rate is governed by 

respiration, death, settling and zooplankton grazing. 

 

Complexity 5: Intermediate eutrophication 

DO and BOD dynamics of Complexity 1, phytoplankton photosynthesis and respiration from 

Complexity 3 and nutrient and light limited phytoplankton growth from Complexity 4 are combined in 

Complexity 5. Additional processes with corresponding parameters are required to couple the DO-

BOD and phytoplankton-nutrient cycles. A Petersen matrix of the processes and their stoichiometric 

affects on the variables are given for each complexity in the appendix. A description of the variables, 

parameters and functions are included. 

 

2.4.3 TOXI 

The transport of salts, suspended solids and heavy metals was simulated using the computer model 

TOXI. The substances transported are any combination of three dissolved and three particulate 

substances. Most salts can be modeled as conservative substances hence, no reaction terms  are 

required. The transport of suspended solids SS requires additional sink and source terms to describe 

the movement of particles to and from the bottom sediments. Settling, deposition and resuspension 

rates are described by velocities and surface areas. The sedimentation rate v

KS

sed is set within the range of 

Stoke’s velocities corresponding to the suspended particle size distribution. This rate is multiplied by a 

probability of deposition to obtain the deposition rate. The probability of deposition depends upon the 

shear stress on the benthic surface and the suspended sediment size and cohesiveness. Likewise, the 

resuspension rate vres depends upon the shear stress, the bed sediment size and cohesiveness and the 

state of consolidation of surficial benthic deposits (Ambrose, et al. 1993). Diffusion of dissolved 

substances from the bottom sediments into the water column is driven by the gradient of the substance 
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concentration in the sediments csed and the overlying water. The rate is controlled by the diffusion 

coefficient Dy.  

 

Sorption processes must also be included in the reaction term when the transport of heavy metals is 

simulated. Sorption is the bonding of dissolved chemicals to the particulate solid material in 

suspension or in the sediments. The process is described using a partition coefficient KD which 

represents the fraction of dissolved and particulate fractions of the heavy metals in relation to the 

concentration of suspended solids. Sorption is the most sensitive parameter (details upcoming in 

Section 6: “Results”), hence its complexity was varied as follows and summarised in Table 4: 

 

Table 4: Sorption partitioning function of various complexity in TOXI. 
(from Lindenschmidt, Wodrich and Hesse, 2006) 

 
 

Complexity 1: Conservative transport (no sorption) 

In the simplest complexity all substances, both particulate and dissolved fractions, are transported 

conservatively without any sorption reactions between the phases or with different substances. 

 

Complexity 2: Dependency on organic carbon 

The complexity of heavy metal transport is increased by considering the organic carbon content in the 

sorption kinetics. Many metals have an affinity to sorb either to the fraction of organic carbon fOC of 

the particulate matter or to bind with the dissolved organic carbon DOC fraction to form colloids. 

DOC remained fairly constant in the flow direction whereas a large variability in fOC was observed. 

Hence, the dependence of the partition coefficient KD on fOC was explored: 

 = ⋅D OC OCK f K  

where KOC is a constant and represents the organic carbon partition coefficient and is calibrated for 

each heavy metal separately. 

 

Complexity 3: Equilibrium sorption 

In this complexity sorption reactions are fast relative to other reactive terms and are assumed to be in 

equilibrium in which the transfer rates of metals from the dissolved to the solid phase and vice versa 
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are equal. The partition coefficient KD is a constant and relates the concentrations of the metal phases 

and the suspended solids as: 

 =
⋅

part
D

dis

C
K

C SS
 

where Cdis and Cpart are the dissolved and particulate fractions of the heavy metal, respectively, and SS 

is the concentration of suspended solids. 

 

Complexity 4: Dynamic sorption 

In this complexity the partition coefficient KD is allowed to increase or decrease in the flow direction 

at a particular rate. This spatial (and temporal) dependency of the phase partitioning is important when 

sorption does not occur quicker than other reaction processes. This is particularly the case when large 

loads of dissolved heavy metals are emitted into a river causing a large increase in the metal 

concentrations in the river. This is the case for the tributary Schlenze which drains large amounts of 

copper, lead and zinc from a large abandoned underground mine (details in Section 5: Model set-up). 

 

2.5 Model Coupling with HLA (High Level Architecture)  

The models of the WASP5 package were imbedded in a coupling system in order to improve 

interactive transfer of information between the models. The aim is to investigate how uncertainty of 

parameters and input data propagate through a chain of models and models that interact with one 

another as they simulate in parallel. More control of information transfer between time steps also 

allows improved analysis of model system dynamics. Lindenschmidt, Ollesch and Rode (2004) also 

show that coupling models allow variables to be exchanged so that a more even sensitivity of all the 

parameters can be sought. 

 

I/O HLA OMSOMS

conventional
coupling platform

object oriented

 
Figure 6: Model coupling approaches for model system development. 
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There are three basic approaches to model coupling (Lindenschmidt, Hesser and Rode, 2005) which 

are summarized in Figure 6: 

 

conventional – models are loosely coupled, in that information is transferred from one model to 

another by file storage and retrieval. Additional programming in the model source codes is not 

necessary. Sequence control is managed by batch files or an external program. For an application 

example, see Lindenschmidt, Ollesch and Rode (2004). 

 

coupling platform – an example of such a platform is HLA (High Level Architecture) in which entire 

models are easily and rapidly integrated into the simulation environment, but efficiency may be 

compromised since the execution of service and support routines that are similar in several coupled 

models need to be repeated. Programming in the source code is required to include HLA functionality, 

which eliminates the need for buffer storage of data for model interaction. For an application example, 

see Lindenschmidt, Rauberg and Hesser (2005). 

 

object oriented – in the open source project OMS (Object Modeling System) (David, 1997; Hesser and 

Kralisch, 2003; http://oms.ars.usda.gov/) models are refracted to single processes and only called 

when required for simulating a particular modelling exercise. The processes act on single represented 

objects called entities. A central kernel controls iteration in time and space and the data exchange is 

realised by global variables without the aid of buffer storage files. The time required for integrating 

new components is low but is extensive for the development of the entire system. Flexibility in the 

configuration of the modelling exercise is high. 

 

Table 5 give a summary of the attributes of each coupling approach. OMS advances the decomposition 

approach to integrated modeling system development in which only those modeling components from 

a model are adapted and integrated into the OMS environment which are needed for the specific 

problem and study site. This has the advantage of having low-level program descriptions of single 

processes that can user-interactively be included or excluded into the simulation, depending on the 

management scenario, scale or issue under investigation. Hence, it is a simple matter to test new 

process approaches and hypotheses. Another advantage is that repeatability of computer code of 

universally required processes is avoided. Examples are algorithms for evaporation which are a 

requirement for numerous models. 
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Table 5: Attributes of the various coupling approaches for model system development. 

 
 

An important disadvantage to this approach is its (still) limited applicability to models requiring a 

“cascade” approach to its solution (see Figure 7(a)). This is distinctive in hydrological modeling and, 

to a large extent, substance transport modeling from land surfaces in which water and substances are 

transported downhill and the mass balance at any position is dependent on the transformations at that 

position and the flux uphill from that position (not the downhill flux). Each flux represents one 

equation with one unknown and the equations in the matrix can be solved successively in a feed 

forward manner. This situation is, however, different for river hydrodynamics and groundwater flow, 

in which the transport of water in a reach is dependent on the volume and velocity of water both 

upstream and downstream (in a global sense) from the reach. Here, a “control volume” approach is 

required (see Figure 7(b)) in which each discretized unit is dependent on both the upstream and 

downstream fluxes from all adjacent cells. Each corresponding equation has at least two unknowns, 

hence, the solution needs to be determined iteratively using a matrix solver. Decomposing such a 

model, which in principle would be required for the implementation in OMS, becomes difficult 

because the solver must consider the modeled system in its entirety. It should be noted that OMS will 

be equipped with the capability of “matrix” solvers but only in the long term. 
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Figure 7: Numerical solution approaches for (a) hydrological models using cascades in sequence and 

(b) hydrodynamic models using interactive control volumes. 
 

Decomposing models into single process components requires a high time expenditure in the 

development phase. The time saving comes later in the implementation phase when new processes can 

be added very simply to the overall system. The same is also true for the case when amalgamating 

many smaller models into one large model. However, for quick coupling and testing of existing 

models, decomposition or amalgamation is not very efficient, especially if models need to be added or 

exchanged rapidly in river basin management systems. Hence, a platform is also required which can 

quickly interconnect existing models into one conglomerate system. HLA is such a platform and was 

chosen for the coupling of the WASP5 modules. 

 

HLA (High Level Architecture) is computer architecture for constructing distributed simulations. It 

facilitates interoperability among different simulations and simulation types and promotes reuse of 

simulation software modules (Kuhl et al., 1999). HLA can support virtual, constructive, and live 

simulations from a variety of application domains. The core of the HLA is the RTI (Run-Time 

Infrastructure) which implements a set of services that precisely specifies the interoperability-related 

actions that a simulation may perform, or be asked to perform, during a simulation execution. The RTI 

starts and stops a simulation execution, transfers data between interoperating simulations, controls the 

amount and routing of data that is passed, and co-ordinates the passage of simulated time among the 
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simulations. Within the HLA, a set of collaborating simulations is called a federation, each of the 

collaborating simulations is a federate, and a simulation run is called a federation execution. Figure 8 

provides a conceptual view of a HLA federation. Federates that adhere to the rules can exchange data 

defined using an object model template; those services are provided at run-time by the RTI (Petty, 

2002). HLA has been implemented for a broad spectrum of applications. For example, developing 

multi-agent systems for applications in mobile robotics (Das and Reyes, 2002), providing online/real-

time location information of streetcars for the public transportation company in Magdeburg, Germany 

(Klein, 2000) and designing simulation environments for human training (esp. military personnel) 

(Maamar, 2003). The author is not aware of any HLA applications in the field of water resources 

management. 

Federate Federate Federate

RT I  
(adapted from Petty, 2002) 

Figure 8: The High Level Architecture (HLA) environment.  
 

Figure 9 and Figure 10 show the sequence reconfiguration of the WASP5 simulations in HLA. The 

hydrodynamic output data from DYNHYD is not stored in a file but is transferred immediately after 

each time step for consecutive simulations of the same time step in EUTRO and TOXI. The process is 

repeated for the next time step until tn is completed. Since the WASP5 modeling system is written in 

FORTRAN and the HLA is written in C++, a wrapper for each model DYNHYD, EUTRO and TOXI 

needed to be implemented in order for the RTI functions to be transmitted between the models and the 

RTI. The wrapper is a dynamic link library (DLL) written in the C++ programming language and 

contains the calls for the RTI functions. The WASP5 models, which are written in the FORTRAN 

programming language, can read the compiled versions of these calls found in the DLL. The models 

can now communicate with one another via the RTI. 

 

DYNHYD EUTRO TOXI

Wrapper

RTI - Run-Time Infrastructure
 

Figure 9: The models from the WASP5 package embedded in HLA. 
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Figure 10: DYNHYD simulation time-steps synchronised with those from EUTRO and TOXI. 
(adapted from Lindenschmidt, Hesser and Rode, 2005 and Lindenschmidt, Rauberg and Hesser, 2005) 

 

Figure 11 shows how the MOCA is implemented in WASP5 using the HLA environment. Shown 

exemplary is the variation in a parameters set a and error deviation set ε. N sets of these parameters are 

comprised by randomly selecting values from the distribution. The sequence is then repeated N times 

using the corresponding parameter sets. The repeated DYNHYD simulation induces a variability in the 

output values V, U and d which are transferred to EUTRO and TOXI. This variability is propagated 

through the EUTRO and TOXI simulations and their outputs (e.g. oxygen in EUTRO and suspended 

solids in TOXI) will also comply with a particular probability distribution. This MOCA analysis was 

repeated to include the variation in the hydrodynamic boundary conditions, which are the flow  

discharges of the tributaries and the inflow and outflow of a river. 

 

for i = 1 ... N

ai i 1, , tε

ai i 2, , tε

ai i n, , tε

t1

t2

tn

DYNHYD

N random 
parameter sets

N output

N output
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EUTRO/TOXIa

ε Head

O2

 
Figure 11:  Monte-Carlo Analysis of the WASP5 federation. 

(adapted from Lindenschmidt, Hesser and Rode, 2005) 
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3 Additional methods for uncertainty analysis 

 

In this study the Monte Carlo Analysis was used to investigate the uncertainties in the utilized models. 

This method is based on the implementation of many thousands of simulations with parameters and 

input data chosen randomly from a given probability distribution. Other methods were also explored 

such as Predictive Analysis by Doherty (2001) and Doherty and Johnston (2003) (implemented in 

Lindenschmidt, von Saleski, et al., 2005; von Saleski, et al., 2004) and GLUE (Generalized 

Likelihood Uncertainty Analysis) by Beven and Binley (2001) (implemented in Lindenschmidt, Poser 

and Rode, 2005; Rode, et al., 2004). Additional methods were required to compliment the analyses, 

which are described below. 

 

3.1 Local sensitivity 

The sensitivity  of the input parameter values  on model output values  was calculated using: s P O

∂
= ⋅
∂
O Ps
P O

 

First, a base run is simulated with the parameter setting  to give . A parameter is then 

increased or decreased by a certain fraction 

baseP baseO

x  designated as xP  which gives the resulting xO . The 

sensitivity then becomes: 

( )
( )

−Δ
≈ ⋅ = ⋅
Δ −

x base base

x base base

O O PO Ps
P O P P O

 

Since ( )1x baseP x P= + ⋅  the equation reduces to: 

1 ⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
x base

base

O Os
x O

 

x was typically set to 0.1 (= 10% difference). 

 

3.2 Global sensitivity 

The sensitivity analysis according to Reichert and Vanrolleghem (2001) was implemented. In this 

technique a sensitivity measure is given for each parameter used in the model but the measure 

indicates how sensitive each parameter is on the system globally, i.e. how small changes in the 

parameter affects all the state variables. First, a sensitivity function must be defined: 

j i
i, j

i j

ys
sc
Δθ ∂

= ⋅
∂θ
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where θ is the parameter value with its corresponding number j and Δθ is its range of uncertainty.  y is 

the value of an output variable with its corresponding number i and ∂y is the change in the output 

variable due to the change in the parameter setting ∂θ. sc is a characteristic scaling factor to make the 

order of magnitude between the different model outputs numerically comparable with one another. 

The sensitivity of each parameter δ is: 

 ∑
=

=
iN

i
ji

i
j s

N 1

2
,

1δ  

where Ni is the total number of output variable values. The total sensitivity of the model of a certain 

complexity δtotal was taken as the sum of the sensitivities of all parameters Nj normalised to the 

maximum value of all parameter values: 

 ( )∑==
jN

j
j

j
total

1max
1 δ
δ

δ  

 

3.3 Error 

The error  between model results and sampled data was calculated using: ε
( )1 −σε = −e  

which is an adaptation of a likelihood function from Beven (2001, p. 249). σ is a normalised error 

variance between the measurements mx  and simulated sx  values normalised to the average of the 

measured values mx : 

( )21
m s

m
x x

x
σ = −∑  

Taking the exponent of σ  allows the error to lie in the range between 1 (perfect fit) and 0 (no fit).  

 

3.4 Model utility 

Both the sensitivity and the error values can be used to evaluate the “best” model for a particular 

application, in terms of an index of utility Um for model m (Snowling and Kramer, 2001): 

2 2

1 ⋅ + ⋅ε
+

= − S total ,m E total ,m
m

S E

ˆˆw s w
w w

U  

where  and  are the sensitivity and error of each model normalized to 1. wtotal ,mŝ εtotal ,mˆ S and wE are 

weighting factors for sensitivity and error and both equal 1 for no preference. Increasing one factor 

emphasises that particular characteristic. The aim is to maximise Um by decreasing both sensitivity and 

error. 
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4 The Saale River 

4.1 Overview 

The Saale River is the second largest tributary, in regards to length and discharge, of the Elbe river 

(Reimann and Seiert, 2001). Its source lies in the Fichtelgebirge near the German-Czech border and it 

flows 413 km northward to its confluence into the Elbe. Its catchment area is approximately 23 770 

km2 with land use that is predominantly agriculturally based (68.3%) and 23% of the land is forested. 

The river was chosen as a test case because of its particular challenge for river basin management due 

to the numerous problems and conflicts regarding the basin's water resources (Rode, 2001). The river 

itself is still heavily loaded with nutrients of which the largest fraction is from non-point sources 

(Behrendt, et al., 2001). The river is also heavily modified with a series of five reservoirs (of which 

one is the largest in Germany by volume) in the upper course and numerous weirs along its entire 

extent. In the lower reach, locks have been constructed to make the river navigable. All these 

regulatory measures have a large impact on the water quality and hydrological regime of the river. The 

effects of these measures on the riverine biocenosis are numerous and can be divided into the areas of 

water quality, flow regime, structural diversity, sediment regime, water network and ground water 

regime (Rode, et al. 2002).  Although the river is heavily modified it still has numerous sections that 

are near-natural or semi-natural and have a large potential for natural recovery. The Saale basin has 

also been subject to rapid economic and social change since German reunification and therefore, 

makes special demands on the forecast of future usage claims and their effect on the waters in regards 

to quantity and quality. In this study only the lower and middle courses of the Saale are examined, 

between Saaleck and the confluence (see Figure 12).  

 

4.2 Hydrological characteristics 

There are eleven main tributaries flowing into this portion of the Saale - Unstrut, Wethau, Rippach, 

Luppe, Laucha, Weiße Elster,Salza, Schlenze, Wipper, Fuhne and Bode. The hydrological 

characteristics of each and selected points along the Saale are given in Table 6. There are 19 weir 

systems, one each at Saaleck, Bad Kösen, Öblitz, Bad Dürrenberg, Rischmühle, Meuschau, Planena, 

Wettin, Rothenburg, Alsleben, Bernburg and Calbe, three in Weißenfels (Beuditz, Brückenmühle and 

Herrenmühle) and four in Halle (Böllberg,  Halle-Stadt, Gimritz and Trotha). Figure 13 shows the 

water levels at mean discharge along the regulated course of the national waterway. The most 

downstream reach between Calbe and the confluence is still too steep to allow year-round passage of 

ships weighing 1000 tonnes or more. Hence, the construction of an additional lock-and-weir system 

(labelled “Schleuse”) or a diversion channel has been proposed. 
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Figure 12: The middle and lower courses of the Saale River. 

 
 

Due to its leeside position to the Harz Mountains (west of the study area), the lower Saale basin is 

relatively dry (average yearly precipitation ≈ 490 mm) causing relatively low flows in the summer 

months. This hinders ship navigation and water abstraction for industry and agriculture. Water 

regulation through weirs and reservoirs does not always cover the water deficit in summer and 

measures are planned and being taken to flood abandoned open-pit mines for use as a water supply 

supplement (Reimann and Seiert, 2001). There is a seasonality within the yearly course of the 

discharge cycle, shown in Figure 14 plotted using long-term monthly averages of the discharges. 
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Snowmelt in the Harz and Erz Mountains cause the high discharges in March and April. The 

discharges steadily decrease to its lowest values in August and September. 

 

Table 6: Discharge characteristics at discharge gages along the Saale and its tributaries (italic). 
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(source: www.wsa-magdeburg.de) 

Figure 13: The regulated national waterway along the Saale River 
 

The discharge regulation of the reservoirs in the upper course of the Saale has a marked impact on the 

discharge of the lower course. One application during the GDR regime was to dilute high salt 

concentrated water in the lower course of the Saale with less polluted water from the reservoirs. The 

Unstrut tributary is a heavy loader of salts into the Saale River which accentuated during low-flow 

conditions so that the water could not be used for industrial purposes. Flushing water from the 

reservoirs through the Saale diluted the salt concentrations to values acceptable for industrial 

abstraction. 
 

0

20

40

60

80

100

120

140

160

180

200

Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez

m
³/s

MQ Calbe-Griz. 1932/2001
MQ Trotha 1955/2001

Quelle: Deutsches Gewässerkund-
liches Jahrbuch 2001

Elbegebiet, Teil I

 
Figure 14: Long-term monthly means of discharge (MQ) at Halle-Trotha und Calbe-Grizehne. 

 

4.3 Nutrients, dissolved oxygen and chlorophyll-a 

The Saale was at the time of German reunification a very eutrophied water body. In the years 1989 

and 1990 the water quality of 10% of the water course was classified as III-IV (very heavily polluted); 

40% was classified as III (heavily polluted), 30% as II-III (critically polluted) and 20% as II 

(moderately polluted) (Theile, 2001). This was attributed to the emissions from industrial and 
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communal wastewater treatment plants which operated very poorly with outdated equipment and to 

the high input of fertilizers in agriculture. Due to the closure of industrial plants, upgrading of 

wastewater treatment facilities and reduction in fertilizer applications the Saale’s water quality has 

progressively improved so that currently, 50% of the Saale’s river course is classified as II-III 

(critically polluted) and 50% as II (moderately polluted) (Theile, 2001). 

 

Figure 15 shows the annual mean concentrations of total phosphorus and ammonium. Since German 

reunification the phosphorus concentrations have halved. The ammonium concentrations have also 

reduced markedly. Nitrate also follows this same pattern (data not shown). In the short-term there is 

still potential for considerable reductions in ammonium loadings; however in the long-term total 

nitrogen concentration are not expected to decrease significantly (Theile, 2001). There is still an 

increasing trend in the nutrient concentrations in the flow direction. This trend is attributed more to 

emissions in the middle Saale (between Bad Kösen and Halle) and less so within the lower course of 

the river (between Halle and Groß Rosenburg). 
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Figure 15: Development of total phosphorus and ammonium since German reunification at selected 

locations along the Saale River.  
 

 

Figure 16 shows the annual mean concentrations of dissolved oxygen and chlorophyll-a. Within the 

past ten years dissolved oxygen has been on an increasing trend at Bad Kösen whereas the values from 

Groß Rosenburg have remained fairly steady. There is a large variability of dissolved oxygen at the 

stations in between (Bad Dürrenberg and Halle/Trotha). Chlorophyll-a concentrations have been 
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variable at Bad Kösen during the last decade whereas all other stations report a decreasing trend of this 

pigment. These results confirm the improved water quality situation in the Saale. In addition, for the 

last reported years, 2001 and 2002, both the oxygen and chlorophyll-a contents in the water have 

remained relatively steady along the course of the river. This may indicate that the production and 

consumption processes of oxygen have come to a steady state condition. 
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Figure 16: Development of dissolved oxygen and chlorophyll-a since German reunification at selected 

locations along the Saale River. 
 

4.4 Sediments and micro-pollutants 

Of all its tributaries, the Saale has the largest impact on the sediment regime of the Elbe river (Vetter, 

2003). Figure 17 shows the correlation between discharge and suspended sediment concentrations, 

which is poor. Generally, high discharges lead to higher sediment loading but there are numerous 

exceptions. This is due to the many factors influencing sediment transport such as the seasonal cycle 

of phytoplankton growth, erosion in the catchment and sedimentation and flushing of sediment in the 

backwaters of the lock-and-weir systems.  

 

Figure 18 gives a comparison of the chloride concentrations at the confluences of selected large rivers 

of Germany, of which the Saale River has the highest concentrations. Although the geogenic source of 

the Saale’s salt loading is higher than in other river basins, the majority of the loading stems from 

anthropogenic sources. These include tailings from current and abandoned potash and salt mines, soda 

ash production, salt refineries and copper mining activities. Since German reunification salt emissions 
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have steadily reduced. The anthropogenic : geogenic ratio of chloride is currently 1:4 at Leuna but has 

been as high as 1:1 for the Unstrut during the GDR regime (Theile, 1996).  
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Figure 17: Correlation between discharge at Calbe-Grizehne (m3/sec) and suspended sediment 

concentrations (mg/L) at Groß Rosenburg using bi-weekly samples from 1999 to 2001. 
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Figure 18: Comparison of chloride concentrations of large rivers in Germany. 

 

The concentrations of heavy metals in both the water and suspended sediment phases are higher in the 

Saale compared to other large rivers in Germany (see Figure 19). Especially lead, mercury and zinc 
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concentrations are high and are seldom exceeded by those in the Elbe. The geogenic loading, too, is 

relatively high but anthropogenic sources outweigh natural occurrence (Zerling, et al., 2003). Human-

made sources include chemical industry, metal processing plants and mining. Communal wastewater 

treatment plants and storm runoff in urban areas are also potential sources of some metals (Winde and 

Frühauf, 2001). As indicated in Figure 20 reduction in heavy metal concentrations in the Saale 

occurred after German reunification due to the closing of many industries. Values are still higher than 

the recommended guidelines provided by the Federal States’ Consortium for Water (LAWA, 1998). 

Both lead and zinc increase significantly at the two most downstream sampling stations, Nienbug and 

Groß Rosenburg, due to loadings from abandoned mine shafts via the Schlenze and Wipper tributaries.   
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Figure 19: Heavy metal pollution in selected large rivers in Germany (annual means). 
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Mercury

Figure 20: Annual mean concentrations of lead, mercury and zinc in Saale River water at selected 
sampling stations. 

 
 

4.5 Limnological investigations between 1960 and 1991 

In the early 1960s Meissner (1965) examined the changing relations between oxygen, nitrogen und 

carbon compounds in the Saale River. Dissolved oxygen concentrations were not disclosed; however 

mention is made of the evidently high denitrification activity occurring in the river course between 

Merseburg and Wettin. von Tümpling (1967) and von Tümpling and Ventz (1967) carried out many 

statistical investigations about the influence of the oxygen content in water (given as oxygen saturation 

index) on the saprobity of three river systems. Only the Elbe is explicitly mentioned but I suspect that 
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the Saale is one of the rivers investigated. They found strong negative correlations between oxygen 

content and saprobity which could be expressed quantitatively using linear statistical equation. von 

Tümpling (1974) also saw the importance of classifying rivers in categories of trophic status and lists 

typical physical, chemical and biological characteristics of oligotrophic, eutrophic, polytrophic and 

hypertrophic rivers in eastern German. Modelling exercises of the oxygen budget and the biological 

structure of nutrient-laden water bodies were also carried out (see for example Uhlmann, et al., 1978). 

This includes research in modelling the oxygen and phytoplankton dynamics in rivers (Gnauck, et al., 

1987; Gnauck and Schramm, 1991) and reservoirs (Gnauck, 1975).  

 

Heavy metal pollution was also a focus of research conducted on the Saale. A survey of precious 

metals in the Saale River and its basin is provided by Fischer (1966). Georgotas and Udluft (1973) 

show that during high-flow conditions the heavy metal content in the headwaters of the Saale 

increases, except for lead and chromium. They state that the lead loading stems primarily from 

groundwater in this area since its concentrations decrease along the river during floods. Heide, et al. 

(1978) refer to the high concentrations of lead and mercury in the river. A synopsis of tin in the river is 

given by Heide and Reichardt (1975). Geiss and Einax (1991) characterised loads along selected 

stretches of the Saale using factor analysis to evaluate sources of contamination. They concluded that 

the copper, chromium and zinc stem primarily from industry sources and the high cadmium load was 

emitted by wastewater treatment plants. 

 

Sampling campaigns of the biological structure of the Saale were also carried out. Braune (1975) gives 

a detailed description of the dynamics of the algae populations in the Saale in the vicinity of the city of 

Jena between September 1963 and September 1965 and documented the change in microphyte 

community structure due to the waste loading of the city. For the Saale course between the 

multireservoir system and the Ilm confluence Ronneberger (1976) investigated the plankton, seston 

and phytoplankton oxygen production along the Saale in 1971 and 1972. He found that discharge 

conditions and loading of organic material were the main factors that controlled the oxygen production 

by phytoplankton. The influence from solar radiation played a secondary role in algae oxygen input. 

Parallel to this survey Schönborn (1976) measured biological oxygen demands after 5 days (BOD5 < 6 

mg O2/L) and oxygen consumption rates and concludes that the increased waste loading into the Saale 

inhibited the self-purification capacity of the river. Schönborn (1976) and Schönborn and Proft (1976) 

additionally studied the periphyton and concluded that the periphyton only contributed 7% to the 

BOD5. 

 

The increasing demand by society and industry for potable water could not be covered solely by 

groundwater and bank infiltrated water (Giessler, 1957). Surface water from the Saale River needed to 

be extracted to cover the demand. The water treatment plant in Halle-Beesen provided the facilities to 
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purify the water. Attention to the treatment processes are given in the literature due to the high 

pollution load in the Saale (Meissner, et al., 1967). 

 

4.6 Weirs (941 – present) 

The first weir was constructed on the Saale near Alsleben in A.D. 941 for the operation of a water mill 

(Schubert, 2001). Water mills were used extensively for the production of flour and lumber. Thereafter 

weirs were also installed to regulate water discharge to secure a sufficient water supply for lumber 

rafting during times of low flow and to provide local flood protection at times of high flow. 

 

Ship navigation also gained importance on the Saale. The first locks (earliest record from 1366 

(Schubert, 2001)) were simple sluiceways, which are channel constrictions formed in the river when a 

weir does not fully extend across the width of the river.  The stowing of the water by the weir and the 

channelling of the flow by the constriction provides a continuous and gradual water level change 

allowing a safe throughway for ships. 

 

The first channel lock was constructed in Halle in 1694 and by 1822 17 lock-and-weir systems were 

installed on the lower Saale reach between the Unstrut confluence and the Saale mouth, making this 

total length of 157 km passable for ships.  To ensure year-round navigation of shipping, one last lock-

and-weir system needs to be constructed on the 20 km stretch between Calbe and the confluence. 

Since this may upset the naturally fluctuating groundwater levels in the floodplains in this area and 

adjacent floodplains along the Elbe river, which is designated as a biosphere reserve, the construction 

of a diversion channel from Calbe extending on the left side of the Saale River to the Elbe river has 

been proposed. The upper Saale was equipped only with weirs for the operation of mills (until the 19th 

century) and the production of electricity (19th and 20th centuries), but not for shipping. 

 

Discharge regulation using locks and weirs have had detrimental effects on the aquatic ecosystem of 

the Saale: 

- the continuum of the river passage is interrupted making migration of fish difficult 

- the reduced current velocities have increased sedimentation on the river bed forming anoxic 

zones in the areas of stowed water 

- the deepening of the water depths above the stowed areas have led to increased temperatures 

downstream from the control structures 

4.7 Saale cascade: multireservoir system (1925 – present) 

In the upper course of the Saale River a multireservoir system was constructed between 1925 and 1945 

called the Saale cascade. The system consists of five reservoirs in series and extends over a 70km 

stretch between Blankenstein and Eichicht (see Figure 21). A longitudinal cross-section of the system 
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is given in Figure 22. The Bleiloch reservoir is the largest reservoir by volume in Germany with a 

storage capacity of 215 million m3. Hohenwarte reservoir ranks third in Germany with a storage 

capacity of 182 million m3. 

 

There are several reasons why the multireservoir system was constructed. One was to ensure better 

flood protection after a catastrophic flood in November, 1890, which caused excessive damages 

between the upper Saale and Halle. The generation of hydroelectric power and a source of cooling and 

processing water were also important incentives during an era of rapidly growing industrialisation. An 

ample water supply also needed to be secured for water provision during dry spells and to allow year 

round rafting of timber, which continued on the Saale until the mid 1930s. The buffered water can also 

be released to supplement discharge in the Elbe river during low-flow conditions and allow year-round 

ship navigation on the Elbe. Later, important functions of the reservoirs included dilution of salt 

pollution in the lower Saale course and tourism. Much of this discourse has been drawn from Schubert 

(2002) and the reader is referred to that source for further details. 

 
Figure 21: The multireservoir system in the upper Saale River called Saale cascade.  

(from Schräder, 1958, cited in Schuber, 2001) 
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Figure 22: Longitudinal cross-section of the Saale cascade.  

(adapted from Schuber, 2001) 
 

4.8 Salt-load control system (1963 – 1994) 

Potash mining has been carried out in the northern portion of the Unstrut subbasin (southern area of 

the Harz mountains) for almost a century. Only 20% of the raw material mined could be produced to 

fertilizer; the remaining 80% was waste material and heaped on large mounds (Schürer and Kulbe, 

1997). These mounds consist of up to 90% salts (NaCl, MgCl2 and MgSO4) which easily dissolve and 

enter via surface runoff into receiving water bodies. This leads to exorbitant high concentrations of 

chloride and high values of hardness in the rivers preventing a species-rich flora and fauna to develop 

(Ziemann, 1967). This reduced the ecological and economical value of the river water and caused a 

general threat to the water supply for human use and consumption (Aurada, 1997). 

 

A key user of the Saale water was the industrial complex between Leuna and Buna (see Figure 12). As 

its capacity and production increased, so did its demands on the river water to the point that at low 

flow conditions, this demand could not be fulfilled. In addition, the chloride concentrations and water 

hardness were so high, especially at low-flow conditions (concentrations are inversely proportional to 

discharge) that the water could not be utilised for production processes. Hence in 1963, a salt-load 

control system was developed in which salt loading from the mining areas and the discharge from the 

Saale reservoirs were regulated to ensure the chloride concentrations and water hardness at the Leuna 

gage never exceeded 470 mg/L and 40°dH, respectively. A schematic of the approach is given in 

Figure 23 (Theile, 1977). Water leached from the waste mounds are retained in storage basins and 

emitted into the Wipper und Unstrut during normal or higher discharge conditions. During low flows, 

the high salt content in the Saale was diluted by releasing water from the reservoirs. 
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Figure 23: Schematic of the salt-load control system of the Saale River  

(modified from Theile, 1977) 
 

Since the distance between the Leuna gage and the upstream reservoirs is approximately 150 km, a 

forecast of discharge and water quality at least three days in advance needed to be made (Becker, et 

al., 1977). A forecast modelling system was developed which incorporated the following submodels: 

- catchment model for precipitation-runoff simulations 

- hydraulic model for discharge predictions 

- substance transport model 

- regression model 

 

Between 1990 and 1994, all potash mines in this area were shut down which significantly reduced salt 

loadings into the river system and the salt-load control system was ceased. 

 

4.9 Why the Saale River as pilot study? 

There is a deficiency of knowledge pertaining to the Saale River.  This is especially true for studies 

involving the Saale on the large scale. This deficiency is amplified due to the drastic change in the 

ecosystem of the Saale River since German reunification. The abrupt closure of most industries and 

the steady improvement in the treatment of wastewater has caused major effects in the ecological 

status and functioning of the river. An in-depth understanding of these changes is still required. The 

emissions of point sources have been drastically reduced since German reunification. However, the 

nutrient content in the river water is still very high (Behrendt, et al., 2001), particularly due to non-

point inputs. Hence, an important question addressed in this study is: What impact would a reduction 

of non-point nutrient pollution (tributaries) have on the water quality? (see Section 6.13). 
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Presently, potash, salt, uranium, copper and lignite are the most important materials mined in the Saale 

River basin. There are also still many residual contaminated sites from past mining activities which act 

as perpetual sources of pollution for the river. These include tailings which are an important source of 

salts (e.g. near Bernburg) and heavy metals and abandoned mining shafts which still flush large 

amounts of the same substances into the surface waters (e.g. Schlüsselstollen in Mansfelderland 

(Schreck, 1998; Schreck, et al., 2005)). This study answers the question: What impact do these 

contaminants have on the water quality and how can their effect be reduced? (see Sections 6.1and 6.2). 

 

The Saale is a unique river since it is dam regulated, has a high salt concentration, has a high nutrient 

content and has many contaminated sites. There is still a lack of understanding of the key ecological 

processes of the Saale, which is imperative to know before a successful management of the river, and 

its basin can be carried out. The questions to be addressed are: What are the key ecological processes 

in the Saale River and which are most sensitive for management measures? (see Section 5.6). 

 

The Saale is also heavily modified. There are many lock-and-weir systems which can have an impact 

on the ecological functioning of the river:  

- Dam regulation causes reduction of current velocities due to the increase in water levels and 

regulation of discharge. This may affect the ecosystem in several ways such as increase residence 

times favouring phytoplankton activity and increase tendency for deposition of suspended matter. 

The river is also less aerated due to reduced stream velocities. All these factors will increase the 

sediment oxygen demand. Question: What impact does regulation have on the water and ecosystem 

quality of the river? (see Section 6.12). 

- Weirs also affect substance retention properties in the river. This issue is addressed in Section 6.2. 

- Many morphological changes through dam regulation and straightening of the water course. 

Question: To what degree do morphological changes impact ecological status? (see Sections 6.7 

and 6.11). 

- Large-scale projects are planned to extend the Saale’s capacity for shipping. Proposals include 

construction of an additional weir at Klein Rosenburg  and construction of a lock-canal to divert 

shipping from the lower Saale reach between Calbe and confluence. Question: What impact do 

these projects have on the water quality of the Saale River? (see Section 6.12). 
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5 Model set-up 

5.1 Sampling campaigns 

For the calibration and validation of the models three data sets were available which were sampled 

along the Saale and its tributaries by UFZ - Centre for Environmental Research, Magdeburg, Germany 

(Baborowski et al., in preparation). The sampling periods are: i) 5. – 18. June 2001, ii) 19. – 21. June 

2002 and iii) 8. – 10. September 2003 (see Table 7). The tributaries Luppe, Laucha, Weiße Elster, 

Salza, Schlenze, Wipper, Fuhne and Bode were sampled at their confluences. The sampling stations 

for the first sampling period include Halle-Trotha, Wettin, Bernburg, Calbe and Groß Rosenburg. 

Nienburg was included as a station in the second sampling campaign. The sampling resolution was 

increased to five additional stations for the third sampling campaign with the addition of Bad 

Dürrenberg, Meuschau, Planena, Halle (four additional stations), Brachwitz, Döblitz, Könnern, 

Alsleben, Gröna and the Saale confluence. An Eulerian sampling strategy was carried out for the first 

campaign in which each station was sampled once daily or every second day over the two week 

period. A Lagrangian approach was taken for the campaigns in 2002 and 2003 in which the sampled 

water parcel at the most upstream station was tracked and sampled along the course of the river. 

 

Table 7: Sampling campaigns used for the calibration and validation of the models. 

 
 

A 24-hour diel study at the Calbe lock-and-weir complemented the first two sampling campaigns on 

10. – 11. June 2001 and 23. – 24. June 2002. Only the most upstream and downstream stations were 

sampled. Trends of the data at the other stations, lock entrance, upper weir, ferry and diversion, were 

interpolated from a weekly sampling program of all stations during the first half of 2002 (Eckert, 

2002).  
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The substances sampled were: 

- carbon (particulate and dissolved organic fractions) 

- heavy metals (particulate and dissolved fractions of arsen, copper, chromium, iron, lead, 

manganese, nickel and zinc). 

- nitrogen (total and dissolved bound fractions; particulate and organic fractions; inorganic 

components – ammonium, nitrite and nitrate) 

- oxygen demand (total, carbonaceous and nitrogenous biological oxygen demand;  total and 

dissolved fractions of chemical oxygen demand) 

- phosphorus (total, particulate, dissolved and reactive fractions) 

- phytoplankton (chlorophyll-a) 

- salts (calcium, chloride, magnesium, potassium, sodium and sulfate) 

- silicon (total and dissolved fractions) 

- suspended solids, both organic and inorganic fractions (as dry weight and loss on ignition) 

 

Oxygen, water temperature, pH, conductance and Secchi depths were also measured on site. For a 

detailed description of the analytical methods used, see Eckert (2002). Additional long-term validation 

periods were simulated using data from LAU – Saxony-Anhalt Bureau for Environmental Protection 

(Approval # LAU/3.3/01/2004) and BfG – Federal Bureau of Hydrology, Koblenz, Germany 

(unpublished data kindly provided by A. Schoel and V. Kirchesch). 

 

5.2 Discretization 

The investigated course of the Saale was discretized using 360 segments, each approximately 500 m in 

length. Cross-sectional profiles every 100 m along the river were available from which initial 

hydraulic radii and segment water volumes (calculated from mean water levels) of each segment were 

determined. Simulation results are output on a daily time step. The Calbe lock-and-weir system was 

discretized using 63 segments each approximately 100 m in length (see Figure 24). A detailed 

description of the river morphology was derived from sonar graphs kindly provided by the WSA – 

Water and Shipping Authority, ABZ Bernburg, Germany. Each segment is divided into a water 

column and a sediment compartment.  
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Figure 24: Segment numbering of the model discretization of the Calbe lock-and-weir system. 

(adapted from Lindenschmidt, Eckhardt, et al., 2004) 
 

5.3 Flows and exchanges 

The mean discharge of this river course varies from 41.5 m3/s at Saaleck to 99 m3/s at Trotha and 115 

m3/s at Calbe and is regulated by lock-and-weir systems (see Figure 12) at Saaleck, Bad Kösen, Öblitz, 

three in Weißenfels (Beuditz, Brückenmühle and Herrenmühle), Bad Dürrenberg, Rischmühle, 

Meuschau, Planena, four in Halle (Böllberg,  Halle-Stadt, Gimritz, Trotha), Wettin, Rothenburg, 

Alsleben, Bernburg and Calbe. Eleven tributaries, Unstrut, Wethau, Rippach, Luppe, Laucha, Weiße 

Elster, Salza, Schlenze, Wipper, Fuhne and Bode, drain into the middle and lower Saale of which the 

Unstrut, Weiße Elster and Bode are the most significant in regards to water volume (see Table 6 and 

Figure 25 for discharges). No additional inflows into the Saale occur in Calbe. In a previous study 

flows were simulated dynamically for the Saale (von Saleski, et al., 2004) and the Calbe lock-and-weir 

system (Lindenschmidt, Eckhardt, et al., 2004; Wodrich, Lindenschmidt, et al., 2005) using  

DYNHYD.  

 

Dispersion of substances is modelled as an exchange between adjacent water column compartments. 

Diffusion of dissolved substances occurs between each water column compartment and their 

underlying sediment compartments. 
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Figure 25: Mean discharges at selected stations along the Saale and its tributaries. 

 

5.4 Loads 

Many wastes from industrial plants and WWTPs (wastewater treatment plants) are loaded into the 

Saale. Only the data from 1997 to 1999 were available (IKSE, 2000, 2001), which were extrapolated 

for the simulated time periods in 2001 and 2002. Loads for all state variables are included shown 

exemplary in Figure 26 for total phosphorus and ammonium. The WWTPs have all been extended 

with facilities for secondary and tertiary treatment, reflected in the decreasing trend in nitrogen 

loading. The high loads from Bernburg industry are primarily from a soda production plant. 

 

The most important industrial emitters of substances are at Leuna and Bernburg. The soda production 

plant at Bernburg in which soda ash (Na2CO3) is produced using salt (NaCl and CaCO3) causes a large 

emission of chloride, calcium and sodium into the Saale. Data on the emissions were not available but 

could be derived from general emission values published by the German Environmental Agency 

(UBA, 2004) and from data produced by the Staßfurt soda plant located upon the Bode river 

(Sodawerk, 2002).  

 

5.5 Boundary conditions 

Boundaries, which include the eleven tributaries and the most upstream segment, are input as 

concentrations to the simulated system for all state variables. The yearly mean total phosphorus and 

ammonium concentrations for the years 1994 to 2002 are shown in Figure 27 for the most important 

tributaries, Unstrut, Weiße Elster and Bode. Since 2000 the nutrient concentrations in the Weiße Elster 

have progressively dropped to value comparable to those of the other two main tributaries. The water 
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quality of this river is significantly improving which is also evident in the increase in the oxygen 

concentrations (O2 < 6.5 mg/L in 2000 to O2 > 9 mg/L in 2002). Lindenschmidt (2006) shows that the 

loadings from these tributaries are in the same order of magnitude as the industrial and communal 

point loadings. Substances may have higher concentrations in the other tributaries, as is the case for 

ammonium (see Figure 28) but because of their significantly lower discharges, their loadings are 

relatively small. 
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Figure 26: Point loadings along the middle and lower Saale courses for 1997, 1998 and 1999. 

 

The main tributaries that emit heavy metals are Weiße Elster (iron, manganese, nickel), Wipper 

(cadmium) and Schlenze (arsenic, copper, lead, zinc) (LAU, 1999). Although the Schlenze has a very 

low discharge, it drains a large abandoned underground mine (called “Schlüsselstollen”) which has an 

exorbitant high concentration of metals. 
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Figure 27: Total phosphorus and ammonium of main tributaries, Unstrut, Weiße Elster and Bode, as 

boundary conditions for the modelling of the middle and lower Saale course. 
 

5.6 Parameters 

The parameters values used for calibration in the most complex EUTRO model are given in Table 8 in 

the order of decreasing sensitivity for Complexity 5. In general, the values conform closely to those 

suggested in the WASP5 manual (Ambrose et al., 1993). Large discrepancies occur in the parameters 

governing the nitrogen dynamics of the system in particular the rates of mineralization, nitrification 

and denitrification (K71, K12 and KNO3) and the oxygen-limited half-saturation value for denitrification 

(K2D). 

 

Up to six parameters were used for TOXI:  

- longitudinal dispersion Dx: can be calibrated alone by simulating the transport of a conservative 

substance such as chloride. This parameter plays an important role for model setups in which mean 

velocities vary substantially between discretized units, which is the case for the lock-and-weir 

system. 
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Table 8: Parameter descriptions and values of the most complex configuration used for calibrating 
EUTRO in order of decreasing sensitivity. 

(adapted from Lindenschmidt, 2006) 

 
- vertical diffusion Dy: describes the movement of substances between the bottom sediments and the 

water column. This parameter is important for the transport of inorganic substances which for the 

case of heavy metals tend to have higher concentrations in the bottom sediments than in the 

overlying water. 

- sedimentation rate vsed: serves as a sink of suspended, particulate matter through vertical transport 

from the water column to the sediments. Its rate is assumed to increase immediately upstream from 

weirs. 

- resuspension rate vres: describes the transport of particulate matter from the bottom sediments into 

the water column. Its rate can increase locally immediately downstream from weirs. 

- substance concentration in the bottom sediment csed: is particularly important for substances with 

strong concentration gradients between bottom sediments and water, which is the case for heavy 

metal transport. 

- partition coefficient for sorption of dissolved substances onto suspended matter KD.: has different 

descriptions depend on the model complexity used (described above). 
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5.7 Initial conditions 

A longitudinal profile of all the state variables is required at the commencement of each model 

simulation. Initial concentrations for all the discretized segments were linearly interpolated between 

the sampling stations (see Figure 28 as an example for ammonium). 
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Figure 28: Example of initial conditions used for the simulation of ammonium along the lower Saale 

reach. 
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6 Results and Discussion 

6.1 Calibration 

Hydrodynamics 

Calibration was carried out separately for low, medium and high flow conditions of the Saale using 7, 

8 and 4 time frames of varying lengths of days, respectively, from a three year series (1997 - 1999). 

The parameters calibrated were Manning roughness coefficient n and the weir discharge coefficient α. 

n varied between 0.022 and 0.030 sec/m1/3 and falls within the expected range of values given by 

Lange and Lecher (1993). Conspicuous is the higher value of n  for the most downstream reach 

between Calbe and the confluence, although a lower value was initially expected. α was calibrated to a 

value of 1.8 which is much lower than the value given in the original version for small weirs in 

irrigation ditches (Warwick, 1999). This value complies with the range of values suggested by Lange 

and Lecher (1993). 

 

For Calbe, too, actual flow measurements were not available and calibration could only be carried out 

using stage measurements. Care was taken to ensure a constant discharge of 22 m3/sec through the 

diversion, which is required for the operation of an electrical generating turbine in the upper portion of 

the diversion reach. The discharge was regulated by incorporating a weir at the inlet to the diversion. 

Figure 29 shows the simulated water levels for compared with gage readings the river discharge of 

55.5 m3/sec (most frequent discharge = 60 m3/sec) during the sampling period. There is good 

agreement between the two showing the model’s capability to simulate the hydrodynamics within 

branched and dammed systems. 
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Figure 29: Calibrated water levels for the lock, weir and diverting reaches in the Calbe lock-and-weir 

system at a river discharge of 55.7 m3/sec. 
(adapted from Wodrich, 2004) 
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(b) Inorganic phosphorus (15./16.06.2001)
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Figure 30: Longitudinal profiles of dissolved oxygen and inorganic phosphorus simulations calibrated 

for the lower course of the Saale River. 
 
 
Lower Saale 

Comparisons between simulated and sampled values for DO and IP are given in Figure 30. DO 

simulations generally fitted well to measurements. Likewise nutrients, however IP tended to be 

overestimated downstream from the Bode tributary. Figure 31 shows time series for Chl-a and NH4
+-N 

at the sampling stations Bernburg, Calbe and Groß Rosenburg. There is reasonably good agreement 

between simulated and sampled values. Chl-a was difficult to fit to samples due to the high variability 

and uncertainty in the measurements. Notice, for example, the large differences in Chl-a 

measurements between Days 12 and 14 at both Calbe and Groß Rosenburg. These discrepancies are 

partially attributed to sampling error and also to insufficient knowledge of specific processes. 

Pertaining to NH4
+-N, an ammonium surge from the city of Halle at the upstream boundary due to a 

storm event just prior to the sampling and simulation time span was difficult to reproduce. Exact 

fitting of the surge concentration was compromised in order to insure a good fit of the simulation to 
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the data sampled during the second half of the calibration time period. A significant degree of 

uncertainty is present in the data as seen, for example, in the sampled ammonium value of Day 8 at 

Groß Rosenburg. 

 

0 4 8 12
Day

0
10
20
30
40

C
hl

-a
 (μ

g/
L)

Groß Rosenburg

0
10
20
30
40

C
hl

-a
 (μ

g/
L)

Calbe

0
10
20
30
40

C
hl

-a
 (μ

g/
L)

Bernburg

0 4 8 12
Day

0

0.2

0.4

N
H

4+ -
N

 (m
g/

L)

Groß Rosenburg

0

0.2

0.4

N
H

4+ -
N

 (m
g/

L)

Calbe

0

0.2

0.4

N
H

4+ -
N

 (m
g/

L) Bernburg

 
Figure 31: Time series of chlorophyll-a and ammonium simulations calibrated for the lower course of 

the Saale River. 
 

There is good agreement between the simulation and measured values of suspended solid 

concentrations, which remained fairly steady along the course of the lower Saale River (see Figure 

32(a)). There is higher uncertainty in the sampled values at Wettin due to unavoidable excessive 

resuspension of bottom sediments during sampling at the shore and at Nienburg due to mixing effects 

by the Bode inflow. Increased sedimentation at the lock-and-weir systems is not evident. A good fit of 

the simulation to the data was also obtained for the chloride concentrations (see Figure 32(b)). The 

industrial emission at Bernburg proved to be an important point load for the overall substance balance 

downstream from Bernburg. Emission values were not available but were derived roughly from 

production figures. Hence, the simulations downstream from Bernburg are sometimes over- or 

underestimated, as seen by the discrepancies between the simulations and the samples from Calbe and 

Groß Rosenburg. The Schlenze tributary is an important source of heavy metals to the Saale, evident 

in the drastic increase of total zinc concentrations immediately downstream from the Schlenze 

confluence. The simulations of the total zinc concentrations were initially overestimated and could 

only be corrected by assuming increased sedimentation of zinc at the lock-and-weirs (see Figure 

32(c)). 
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(b) Chloride (17./18.06.2001)
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(c) Total Zinc (11./12.06.2001)
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Figure 32: Longitudinal profiles of suspended solids, chloride and total zinc simulations calibrated for 

the lower course of the Saale River. 
(adapted from Lindenschmidt, Hesse, et al., 2005) 

 
Middle Saale 

A sampling campaign was carried out in September 2003 between Bad Dürrenberg and Trotha which 

served as a basis for calibration of the middle Saale. The water quality of the Saale in the flow 

direction along this stretch is or has been heavily impacted by the industrial areas of Leuna, 
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Lützkendorf and Buna (outfalls at Saale-km 121.7, 116.9 and 109.4, see Figure 12), the tributary 

Weiße Elster (inlet at Saale-km 102.7) and the city of Halle (between Saale-km 98 and 89). It was 

evident that the emissions from the industrial areas have drastically reduced since the 1990s to loads 

that remain unnoticed after mixing in the Saale River. High concentrations of some metals and salts 

were measured in the Laucha, which drains the Buna site but the discharges and hence the emitted 

loads are minute (see Figure 33 for chloride). The Luppe tributary drains an agricultural catchment and 

exhibits high concentrations of nutrients and sediments. However, its discharges and loadings, too, are 

very small compared to the mass of the substances present in the Saale at that vicinity. The Weiße 

Elster, whose mean discharge is approximately one-third of that of the Saale immediately upstream of 

the Weiße Elster inflow, has a large impact on the Saale’s water quality. The Weiße Elster i) 

concentrates the heavy metals such as chromium, copper and iron, which stem from the mining areas 

in the upper catchment area of the Weiße Elster and ii) dilutes chloride, suspended solids and 

chlorophyll-a. 
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Figure 33: Longitudinal profiles of chloride, ammonium and chlorophyll-a simulations calibrated for 

the Saale River between Bad Dürrenberg and Halle-Trotha 
(modified from Eckhardt, 2004) 
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The chlorophyll-a values are not as high as in the Saale since the travel distance is not long enough for 

the ecological state to have reached is maximum productive capacity. Large amounts of ammonium 

are emitted by the Weiße Elster (see Figure 33) which undergoes a rapid turnover immediately 

downstream from the tributary. This process is replicated in the modelling by locally increasing the 

nitrification rate. This rate is known to increase in areas of high ammonium concentration due to the 

abundance of nitrifying bacteria in such areas and is common in many rivers in Germany (A. Schöl, 

BfG, pers. comm.). Significant emissions of substances were not detected from the city of Halle. 

Evident is the high variability between the many sampling stations in Halle, especially Chl-a (see 

Figure 33) which may be partly due to the variability of the flow regime within the highly branched 

section of the river flowing through the city. 
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Figure 34: Dissolved oxygen at stations along the weir reach in sequence with flow direction.  

(from Lindenschmidt, Eckhardt,et al., 2004) 
 
 
Calbe 

Figure 34 and Figure 35 show DO and NH4
+-N for the 24-hour sampling campaign for selected 

sampling stations at the lock-and-weir system at Calbe. For better DO simulation fits to the data 

additional entry of oxygen was simulated at the weir according to the formula from Avery and Novak 

(1978) (cited in Haag (2003)). The gap between simulations with and without oxygen entry closes 

with further downstream distance from the weir (compare stations ferry and km 18.5), indicative of 

rapid consumption of the additional oxygen. The decrease in NH4
+-N between the most upstream and 
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downstream stations indicates the weir’s potential role for denitrification. Both processes, oxygen 

entry and denitrification at weirs, were observed only locally, not in the large scale modelling of the 

Saale River course.  
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Figure 35: Simulated and sampled ammonium concentrations at the most upstream (km 20.8) and 

downstream (18.5) stations of the lock-and-weir system. 
(from Lindenschmidt, Eckhardt,et al., 2004) 

 

Figure 36 gives a snapshot at 6:00 pm of the concentrations of suspended solids and the total and 

dissolved fractions of zinc in all areas of the lock-and-weir system. The concentrations in the lock 

reach are less due to the low flow through the lock and the longer residence times within this reach, 

allowing more solids to settle out. The sedimentation rate above the weir was increased (more settling) 

and the resuspension rate below the weir was increased (more erosion) in order to better fit the 

simulations to the sampled data. This trend occurred for all heavy metals; not arsenic. 
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Figure 36: Longitudinal profiles at 6:00 pm along the lock, weir and diverting reaches for suspended 

solids SS and zinc: total ZnT and dissolved ZnD fractions. 
(compiled from Wodrich, Lindenschmidt, et al., 2004 and Wodrich, 2004) 
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6.2 Validation 

Hydrodynamics 

Figure 37 shows validation results for the reach between the weirs Trotha and Wettin, corresponding 

to the downstream gage at Trotha and the upstream gage at Wettin. The simulation is three years in 

length, from 1 January 1997 to 31 December 1999. The model gives particularly good validated 

results for low flow situations; the validation becomes less accurate for extreme floods since flow 

becomes overbanked and different effective roughness coefficients are to be expected. At Trotha, there 

is good agreement between the gage readings and the model predictions. Some extreme deviations 

exist for single days with extreme flooding, such as 27. February 1997 but such large errors do not 

persist for more than one day. It is apparent that the simulation is slightly overestimated for most days 

of the simulation. Perhaps a simulation with a slightly lower value for  would give a better fit. The 

deviations between the model results and gage readings are somewhat larger for Wettin but still within 

an acceptable range. At this gage the water level simulations are overestimated for high flows and 

underestimated for low flows. This weir-upstream gage is more affected by the weir discharge. The 

simulation may have been more accurate if the data on the operation of the weir cap, which can 

slightly extend the crest height, had been available. The error in the input data (up to ± 10%) also 

contributes to the overall uncertainty in the results (Pelletier, 1988). 
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Figure 37: Hydrodynamic validation using water levels for a reach flowing from the (a) gage below 

the weir at Trotha to the (b) gage above the weir at Wettin. 
(adapted from von Saleski, et al., 2004 and von Saleski, 2003) 
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In Table 9, the average velocities simulated for MQ (mean discharge) and MNQ (mean lowest 

discharge) are compared with field measurements made from a government authority (STAU, Halle) 

for the flow reaches along the lower Saale. Overall good agreement was obtained between 

measurements and simulations when considering the high uncertainty in the field measurements (up to 

± 10%, see Pelletier, 1988). 

 

Table 9: Comparison of flow velocities measured in the field and simulated results. 

 
 

The validation of the hydrodynamics for the Calbe lock-and-weir system was successful and the errors 

between simulated and measured water levels were minimal, comparable to the calibration. 

 

Lower Saale 

There is good agreement between simulations and sampling points shown exemplary in Figure 38 for 

DO and NH4
+-N at Groß Rosenburg in for the long-term sampling period of 14. May – 30. July 2002. 

Large uncertainties in the sampling exist for ammonium as seen in the discrepancies between the 

sampled values from different institutions (e.g. Days 1 and 72 for LAU and BfG), which is due to 

different sampling strategies. The validation was successful for the chosen time frame due to the 

relatively high temporal resolution of the samples taken at the stations Trotha, Wettin, Nienburg and 

Groß Rosenburg (≤ 14 days) and due to the relatively higher than normal discharges in the river. 

Ammonium is a very sensitive variable with peaks and valleys coinciding inversely with those of 

global radiation and phytoplankton growth (not shown). 
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Figure 38: Dissolved oxygen and ammonium at Groß Rosenburg for the validation period 14. May – 

30. June 2002. 
(modified from Lindenschmidt, Schlehf, et al., 2005) 

 

There is good agreement between the simulation and measured values of suspended solid 

concentrations, which remained fairly steady along the lower course of the Saale River (see Figure 

39). There is higher uncertainty in some sampled values: at Döblitz and Wettin due to unavoidable 

excessive resuspension of bottom sediments during sampling at the shore and at Nienburg due to 

mixing effects by the Bode inflow. Increased sedimentation at the lock-and-weir systems is not 

evident. 
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Figure 39: Longitudinal profiles of suspended solids along the lower course of the Saale River for the 

short-term validation time frame. 
(from Lindenschmidt, Wodrich and Hesse, 2006) 
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A good fit of the simulation to the data was also obtained for the chloride concentrations (see Figure 

40). The industrial emission at Bernburg proved to be an important point load for the overall substance 

balance downstream from Bernburg. 
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Figure 40: Longitudinal profiles of chloride along the lower course of the Saale River for the short-

term validation time frame. 
(from Lindenschmidt, Wodrich and Hesse, 2006) 

 

The Schlenze tributary is an important source of heavy metals to the Saale, evident in the drastic 

increase of total zinc concentrations immediately downstream from the Schlenze confluence (see 

Figure 41). The simulations of the total zinc concentrations were initially overestimated and could 

only be corrected by assuming increased sedimentation of zinc at the lock-and-weir systems. Zinc in 

the Schlenze is predominately present in dissolved form and requires approximately 30 hours for the 

dissolved and particulate fractions to reach an equilibrium sorption state (in this simulation the time 

corresponds to a flow distance between the Schlenze confluence and Bernburg). By implementing a 

more complex sorption process in the modelling to allow KD to increase linearly from 10000 L/kg at 

the Schlenze confluence to 40000 L/kg at Bernburg, this dynamic sorption process was accurately 

simulated. 
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Figure 41: Longitudinal profiles of total zinc and its particulate and dissolved fractions along the 

lower course of the Saale River for the short-term validation time frame. 
(compiled from Lindenschmidt, Wodrich and Hesse, 2006 and Lindenschmidt, Hesse, et al., 2005) 
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Figure 42: Simulations of chloride concentrations for the middle course of the Saale River. 

(compiled from Lindenschmidt, Eckhart, et al., 2005 and Eckhardt, 2004) 
 
Middle Saale 

Despite the low frequency data available for the model validation of the middle Saale (7. June – 15. 

August 1999), the simulations fit reasonably well to the measured data. The substances present and 

transformed in the river water are in balance with the substances entering (tributaries and pollution 

outfalls) and exiting (most downstream segment) the system, shown exemplary for chloride in Figure 

42. A high nitrification rate downstream from the Weiße Elster tributary (km 102.7) is also required in 

order to match simulated values to measurements at Trotha (see Figure 43). 
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Figure 43: Ammonium concentrations simulated along the middle Saale; a higher nitrification rate is 

required between the Weiße Elster tributary (km 102.7) and Trotha. 
(compiled from Lindenschmidt, Eckhart, et al., 2005 and Eckhardt, 2004) 
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Figure 44: Chlorophyll-a concentrations at Halle-Trotha (km 89.2). 

(from Lindenschmidt, Eckhart, et al., 2005) 
 
Chl-a was also well modelled but it was sampled only every four weeks making its validation 

assessment more uncertain (see Figure 44). The suspended solid concentrations were underestimated 

for Day 23 for the lower stretch of the middle Saale between Meuschau and Trotha (see Figure 45 for 

Trotha). This high concentration is not a result of rains or a discharge surge, as evident from the 

graphs in Figure 45. Unfortunately, chlorophyll-a was not sampled on this day (see Figure 44), 

however, the organic fractions of the nutrient, ON and OP were also underestimated and the nutrients 

NH4+-N and IP were overestimated so that exuberant phytoplankton growth just prior to this sampling 

date is suspected to have caused the high suspended sediment load. In order to test this hypothesis, the 

phytoplankton growth rate was doubled. Figure 46 and Figure 47 show simulations for growth rates of 

2 d-1 (solid line) and 4 d-1 (dashed line) for the time frame Day 19 – 25 for the stations Bad 

Dürrenberg, Meuschau, Planena and Trotha. Increasing the growth rate improved the fit of all 

simulated state variables to the sample from Day 23. A better fit is attained for ammonium at Trotha 

when the nitrification rate is increased. 
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Figure 45: Suspended solids SS, precipitation P and discharge Q; the SS sample on Day 23, which is 

attributed to exuberant phytoplankton growth, is missed by the simulations. 
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Figure 46: Simulations of dissolved oxygen O2, ammonium NH4
+-N and organic nitrogen ON using  

phytoplankton growth rates of 2 d-1 (solid line) and 4 d-1 (dashed line). 
 
 

Calbe 

Large differences in the systems behaviour did not occur between the calibration and validation of the 

eutrophication variables, which is indicative of the model’s predictive power at this scale. 

Discrepancies did occur, however, for the heavy metals (Figure 48), as indicated by the likelihoods of 

the simulated variables for both calibration and validation. This is due to the high sensitivity of the 

metal concentration in the sediments on the model results. For the validation the concentrations are not 

known a priori and only the calibrated values were used. However, this is a source of high uncertainty 

due to the high temporal and spatial variability of substance concentrations in the sediments. It is very 

probable that more heavy metals were present in the sediments during the 2001 sampling campaign 

compared to the campaign one year later, since the discharges prior to the first campaign were lower 

for a much more extended period of time.  
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Figure 47: Simulations of inorganic and organic phosphorus (IP and OP, respectively) using 
phytoplankton growth rates of 2 d-1 (solid line) and 4 d-1 (dashed line). 
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Figure 48: Agreement between measured and simulated values for the calibration and validation given 
as likelihood values (1 = perfect fit; 0 = no fit) for total and dissolved fractions of arsenic As, lead Pb, 

iron Fe, copper Cu, manganese Mn and zinc Zn. 
(adapted from Wodrich, 2004) 
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6.3 Uncertainty vs. Complexity 

The steps taken to superimpose model uncertainty variables, sensitivity and error, with model 

complexity will be given in greater detail here for the eutrophication model. A high degree of detail 

for the micro-pollutant transport modelling will be given in the next subsection with a focus on the 

effect scaling has on the uncertainty-complexity relationship. 

 

Table 10: Global sensitivities of calibrated EUTRO parameters for each model complexity listed in 
descending order for Complexity 5. 

(from Lindenschmidt, 2006) 

 
 

Sensitivity 

The global sensitivities of each EUTRO parameter for all calibrated complexities are given in Table 

10. The names of the parameters are found in the Appendix. The parameters are ranked in decreasing 

order of sensitivities for the most complex model. In general, the parameters that have the largest 
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impact on the state variables are the half-saturation constants for phytoplankton nutrient uptake (KmP 

and KmN), the phytoplankton loss rates, death and respiration (K1D and K1R) and the rates governing the 

reduction of nitrogen components, mineralization and nitrification (K71 and K12). 

 

Stoichiometric nutrient ratios in phytoplankton (aNC and aPC) have a greater impact in Complexity 4, 

when the oxygen dynamics are not included in the phytoplankton-nutrient dynamics. This is also 

portrayed in the minor impact the parameters, which control the deoxygenation of organic matter (K1C 

and KBOD), have on the simulations in the most complex model. The DO-BOD cycle is only loosely 

coupled to the phytoplankton-nutrient cycle which is substantiated by i) the high POC:DOC ratio 

(ratio between the particulate and dissolved fractions of organic carbon, ii) the increasing shift from 

primary to secondary loading due to the improvements in wastewater treatment, iii) the correlation of 

chlorophyll-a concentrations with POC, iv) the very eutrophic nature of the Saale with a high nutrient 

availability and v) the light-limited conditions in the lower Saale (Karrasch et al., 2001).  

 

Table 11: Error between simulated and sampled data for each state variable and complexity. 
(complied from Lindenschmidt, Schlehf, et al., 2005 and Lindenschmidt, 2006) 

 
 

Error 

The error for each variable and for each model complexity is given in Table 11. A large error is 

present between the simulations and samples for NBOD in Complexity 2. Modelling nitrogen as a bulk 

parameter leads to many shortcomings such as the inaccuracy in lag times, the impossibility of 

modelling inhibition of nitrification at low DO concentrations and the possibility of unrealistically 

simulating negative values for DO (Chapra, 1997). There are also shortcomings due to the model’s 

internal conversion of NBOD to Kjeldahl nitrogen which is considered to be the component of the total 
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nitrogen that can be oxidised. Modelling the nitrogen cycle using NH4
+-N, NO3

--N and ON in the 

higher complexities gives less erroneous results. 

 

The error for DO in Complexity 3 was relatively large due to an overestimate of the simulation results. 

Phytoplankton is not a dynamic state variable in this model but is input as a function with time in 

which chlorophyll-a concentrations are averaged over the spatial domain for each time step. Hence, 

nutrient uptake is also not required. These restrictions on the phytoplankton-nutrient dynamics results 

in an imbalance in the DO concentrations. 

 

Modelling phytoplankton dynamically with its associated nutrient turnover processes in Complexity 4 

reduces model error, even through the DO-CBOD interactions are not considered. Large errors 

resulted in PHYT due in part to the high uncertainty in the sampled data. There is a high variability in 

chlorophyll-a concentrations both temporally (diel variations) and spatially (near-shore or mid-river). 

Unfortunately, limited resources did not allow higher resolution phytoplankton data to be sampled 

with which an averaging and a better representation of the chlorophyll-a concentrations at the 

corresponding sampling stations could be attained. These problems carry through to the most complex 

model in which PHYT, too, is the variable with the largest error. 

 

Utility 

The normalized total errors and sensitivities for each model complexity are plotted in superposition in 

Figure 49. It is distinct that error decreases and sensitivity increases as the model becomes 

increasingly complex. The P- and N-limitation models of Complexity 4 are plotted on the same 

abscissa value since both have the same variables and the same number of parameters (equal 

complexity). Both the sensitivity and the error values are higher for the N-limitation model. 
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Figure 49: Total model error and sensitivity versus model complexity. 

(from Lindenschmidt, 2006) 
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The index of utility for each model is shown in Figure 50, for which error was given a higher 

weighting than sensitivity. The least complex model in which only DO-BOD dynamics are represented 

has the lowest utility. Increasing model complexity by differentiating BOD into its carbonaceous and 

nitrogenous components (Complexity 2) substantially benefits the model simulations. The next higher 

complexity has a lower utility due to the non-dynamic structure of phytoplankton, whose state is not 

simulated but input as a function. The model of Complexity 4 in which only the phytoplankton-

nutrient dynamics are considered has a high utility if phosphorus serves as the limiting nutrient. Since 

nitrogen is less limiting to the phytoplankton in this river, modelling its dynamics reduces model 

usefulness. Increasing the complexity of the model to include both the DO-BOD and phytoplankton-

nutrient cycles (Complexity 5) increases the model’s usefulness, but not very substantially when 

compared to the model complexity in which only the phytoplankton-nutrient dynamics are considered 

(P-limited Complexity 4). 
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Figure 50: Utility of each model complexity by minimising both sensitivity and error. 

(from Lindenschmidt, 2006) 
 

6.4 Scale 

The uncertainty analysis with sensitivity and error calculations can be found in Lindenschmidt, 

Wodrich and Hesse (2006). The complexities versus error and sensitivity curves are shown in Figure 

51 for total zinc ZnT and its particulate ZnP and dissolved ZnD fractions. The curves are shown for 

both scales. In general, the trends for error decrease and for sensitivity increase with increasing 

complexity. An exception is the error for ZnD at the small scale where no particular trend is 

noticeable. 

 

The errors are generally higher for the model complexities of Calbe than for the Saale River. It appears 

as if complexity must be increased more for an extrapolated error curve to reach values comparable to 

values attained by the large scale. The sensitivities are also larger for the model applied on the small 

scale compared to that of the large scale. However, there is a levelling off of the sensitivities at higher 

complexities suggesting that there is an upper bound of model sensitivity. Both error and sensitivity 
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are generally lower for ZnT than for the particulate and dissolved fractions. This difference is more 

pronounced at the larger scale. The modelling exercises confirm the hypothesis by Snowling and 

Kramer (2001) for both scales. The error and sensitivities tend to shift in relation to complexity at 

different scales. 

 

ZnT Error (large scale) ZnT Error (small scale)
ZnT Sensitivity (large scale) ZnT Sensitivity (small scale)

0

0.1

0.2

0.3

1 2 3 4

Complexity

Er
ro

r

0

0.2

0.4

0.6

Se
ns

itiv
ity

ZnD Error (large scale) ZnD Error (small scale)
ZnD Sensitivity (large scale) ZnD Sensitivity (small scale)

0

0.1

0.2

0.3

0.4

1 2 3 4

Complexity

Er
ro

r

0
0.2
0.4
0.6
0.8
1

Se
ns

itiv
ity

ZnP Error (large scale) ZnP Error (small scale)
ZnP Sensitivity (large scale) ZnP Sensitivity (small scale)

0

0.2

0.4

0.6

1 2 3 4

Complexity

Er
ro

r

0
0.2
0.4
0.6
0.8
1

Se
ns

itiv
ity

 
Figure 51: Scale differences: complexity versus error and sensitivity for zinc derived from the Saale 

(large scale) and Calbe lock-and-weir system (small scale) modelling exercises. 
(from Lindenschmidt, Wodrich and Hesse, 2006) 

 

The utility of each complexity is shown in Figure 52 exemplary for the simulation of the total 

concentration of zinc. The trend of the error with complexity curve was taken for the utility calculation 

and both error and sensitivity have equal weighting. For both scales, Complexity 2 is the “best” model, 

for which sorption is a function of the fraction of particulate matter consisting of organic carbon. 
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Although the more complex models have a larger reduction in simulation errors, predictive ability is 

diminished. The utility of Complexities 3 and 4 decrease more for the small-scale model and overall, 

the utility for the large-scale model is higher than for the small scale. Hence, TOXI is best 

implemented for modelling exercises of large river reaches. 
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Figure 52: Utility of each model complexity at the two different scales. 

(from Lindenschmidt, Wodrich and Hesse, 2006) 
 

6.5 Uncertainty, complexity and scale 

The modelling exercises confirm the hypothesis by Snowling and Kramer (2001) for various scales. 

Greater complexity increased model sensitivity and decreased the error in the output simulations. In a 

more theoretical framework Cox (1999) also shows that for models used in risk assessment, greater 

complexity leads to more certainty in risk estimates. He does state, though, that the additional 

complexity included in the model must allow additional relevant observations to be incorporated. This 

is the case in our models in which added process complexity is accompanied by substance 

concentrations that also act as state variables in the model (e.g. the addition of suspended solids and 

metals concentration for a more complex sorption process).  

 

The error and sensitivities tend to shift in relation to complexity at different scales. Models of smaller 

scale require a more detailed description of the processes to accurately simulate the state of the 

modelled area for a given time frame. Sivapalan (2003) mentions that increased complexity is required 

to capture the hydrological response at the hill slope scale compared to the catchment scale. For 

example, Butts et al. (2004) and Perrin et al. (2001) found that hydrological variables modelled for 

large river basins were more accurately simulated using simpler process descriptions. van der Linden 

and Woo (2003), who applied models with increasing complexity to simulate hydrological conditions 
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in subarctic catchments, also found that with decreasing temporal and spatial scale, process 

representation needs to be more complex. 

 

For the utility calculations, TOXI is more suitable for applications at larger scales (long river reaches) 

such as developing computer-aided decision support systems for river basin management. On the 

smaller scale, more processes need to be implemented to acquire the accuracy attained on the larger 

scale. Moreover, on the small scale, the bottom sediments play a crucial role in the transport of 

inorganic substances. Hence, more dynamics in substance turnover should be included in the sediment 

layers differentiating between aerobic and anaerobic zones. For future work on small-scale 

applications it may be worthwhile to incorporate a geochemical model such as PHREEQC 

(http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/) into TOXI, which would enable a more 

differentiated and detailed simulation of the bottom sediment. TOXI could still provide the advective 

transport of the substances in the overlying water. 

 

6.6 Transferability 

The parameter sets for the eutrophication model were almost identical for the lower and middle Saale 

reaches. There is a high degree of transferability between the two models. A significant exception 

occurred in modelling a phytoplankton bloom in the middle Saale, which had become dampened once 

it reached the lower portion of the river. In order to capture the bloom in the simulation very high 

growth rates needed to be implemented, which are unrealistically high compared to laboratory growth 

studies but is not uncommon practice by many modellers (Veronique Vandenberghe, pers. comm.). I 

suspect that the model structure has to be extended to include both the main channel flow and storage 

zones alongside the main channel. There are many river appendages along the middle Saale in which 

the water current is very slow compared to the advective current of the main channel. Examples of 

such areas are shown in Figure 53 for the areas of Planena and Meuschau. These storage zones can be 

havens for accelerated phytoplankton growth (Reynolds, 1996). A change in the flow conditions, for 

example a storm event after a period of prolonged low flow, can flush the phytoplankton from these 

zones and “inoculate” the main channel with a surge of algae biomass (Reynolds, 1995). Nijboer and 

Verdonschot (2004) also suggest including parameters describing stream geomorphological 

characteristics into water quality models to capture certain phytoplankton-nutrient dynamics. 
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Figure 53: Areas of low and higher (main) flow at the locks at Planena and Merseburg; low flow areas 

can be havens for exuberant phytoplankton growth. 
 
Table 12 on Page 89 shows the TOXI parameters sets used for simulating suspended solid, arsenic and 

selected heavy metals, copper, iron and manganese, for the middle and lower Saale reaches. Due to the 

more advective nature of the middle Saale, its dispersion coefficient Dx is higher than in the lower 

Saale for suspended solids. The sedimentation rate vsed is higher for the middle Saale due to the higher 

inorganic to organic ratio in the upstream river sections (Lindenschmidt, Wodrich and Hesse, 2006). 

The density of inorganic material is larger than organic matter and, hence, sinks more rapidly (Chapra, 

1997). The ratio decreases in the flow direction as phytoplankton biomass (organic matter) increases. 

Substantially more arsenic and less iron is simulated in the bottom sediments of the lower Saale in 

order to model these substances accurately. The partition coefficient is also more for arsenic and less 

for manganese in this river section complying with the respective decrease and increase in the 

dissolved fractions of these metals with flow direction. Copper remained relatively unchanged. 

 

The extension of the Snowling and Kramer (2001) hypothesis (see Figure 3) to test model 

transferability was applied for copper. Figure 54 shows the error and sensitivity versus model 

complexity curves for simulations of both the middle and lower courses of the Saale River. The curves 

for total copper CuT and its dissolved CuD and particulate CuP fractions overlap relatively well. The 
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accuracy of the middle Saale simulations for CuD are improved somewhat, for CuP slightly lessened, 

compared to the lower Saale simulations. However, the curves superpose enough to conclude that 

TOXI is transferable between the two river courses. 

 

Error (lower Saale) Error (middle Saale)

Sensitivity (lower Saale)

0

0.1

0.2

1 2 3 4

E
rro

r

0

0.1

0.2

S
en

si
tiv

ity

Sensitivity (middle Saale)

Coppertotal

0

0.1

0.2

0.3

1 2 3 4

E
rro

r

0

0.2

0.4

0.6

0.8

S
en

si
tiv

ity

Copperdissolved

0

0.1

0.2

0.3

1 2 3 4

Complexity

E
rro

r

0

0.2

0.4

0.6

0.8

1

1.2

S
en

si
tiv

ity

Copperparticulate

 
Figure 54: Transferability: complexity versus error and sensitivity for copper derived from the middle 

and lower Saale modelling exercises. 
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Table 12: Calibrated TOXI parameters for the middle and lower courses of the Saale River.  

 
 

6.7 Morphological parameter effects on hydrodynamic and water quality variables 

The DYNHYD → EUTRO/TOXI coupling using HLA was required for this investigation. Figure 55 

shows the variations in the mean daily water stages at the lower gages of the weirs in Halle and Calbe 

for the 14 day calibration time span. The 5% and 95% percentiles stem from a Monte Carlo analysis 

(MOCA) of 2000 simulations extracting α (weir discharge coefficient) and n (roughness coefficient) 

randomly from a normal probability distribution for each 14-day simulation. The largest variation is 

obtained at the lower gages of each weir, which is primarily due to the variation in n (von Saleski, et 

al., 2004). The upper gage water stages are most sensitive to the parameter α but the range of possible 

α values used in the Monte Carlo analysis was too narrow to have caused a large uncertainty in these 

water levels. 

 

 
Figure 55: Water levels of gages downstream from the weirs at Halle-Trotha and Calbe. 

(from Lindenschmidt, Poser and Rode, 2005) 
 

Figure 56 shows the results of the MOCA analysis for three eutrophication variables, Chl-a, DO and 

NH4
+-N based on the uncertainty of the hydrodynamic parameters α and n. The variation in the output 
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distributions increased with distance along the flow direction of the river course. An exception was the 

backwater immediately upstream from weirs where little variation occurred. Uncertainty in the 

observed data is larger than the hydrodynamic data. This is due to the larger analytic error and to the 

error in sampling. The latter is particularly sensitive to the time of day when the sample was taken and 

the location in the river where sampling occurred. 

 

 
Figure 56: Selected water quality constituents at Groß Rosenburg. 

(from Lindenschmidt, Poser and Rode, 2005) 
 

The best fit between simulations and observations was obtained for DO. Oxygen reaeration is 

calculated from the hydrodynamic variables (flow velocity and water depth) and the oxygen 

deficiency from its saturated concentration in water. Since the water was well saturated with oxygen 

during the time of sampling, little effect will be observed in the DO concentrations due to varying α 

and n. The variation observed here is due to the variation in chlorophyll-a concentrations, evident in 

the high oxygen values (> 10.5 mg O2/L) within the 90% probability bounds. The effect of 

hydrodynamic parameters on DO becomes more pronounced as the oxygen deficit in the water 

becomes larger and the phytoplankton growth diminishes. 

 

MOCA enabled a marked improvement in the calibration for NH4
+-N to be made. The first peak at 

Day 3 is due to a surge load at Day 1 into the most upstream portion of the reach at Halle. Sampling 

was carried out at most every two days and, unfortunately, an observation of the surge at Groß 

Rosenburg was missed. The surge is, however, verified at other upstream sampling points along the 

river. The second peak on Day 8 is due to the mineralization of particulate organic nitrogen ON 

produced by the strong algal growth prior to this day. The growth of phytoplankton is also reduced so 
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that fewer nutrients are being taken up by the algae. Ammonium analyses are also prone to large 

uncertainties (max. ± 3%), hence the numerous observations that lie outside of the 90% bounds of the 

simulation distributions. This peak could only be captured after the MOCA analysis was carried out.  

 

The hydrodynamic parameters had little effect on the TOXI variables, as shown exemplary for 

dissolved zinc ZnD in Figure 56. This is primarily due to the fairly steady discharge conditions 

between mean flow and mean low flow. It is suspected that the variations will increase during floods, 

which is a focus of future work. 

 

6.8 Boundary discharge effects on hydrodynamic and water quality variables 

The MOCA with the normal distributed parameter settings was repeated and extended with a normal 

distribution setting of the variation in the flow discharges at the boundaries. Flows are calculated from 

current velocity profiles along the cross-section of the river and the main sources of error in the 

calculations are (Herschy 1995, p. 453ff): 

i) current meter reading (up to ±4%; personal communication of the Waterways and 

Navigation Bureau, Magdeburg, Germany), 

ii) mean flow calculations using a velocity-area method (up to ±4%) and 

iii) stage-discharge relationship (up to ±2%). 

 

Assuming the co-variance between the errors is negligible, a maximum error range of up to ±10% can 

occur in the discharge input data. This error range is justified when comparing the flows calculated 

from the Calbe gage which those calculated from the gage at Calbe-Grizehne, which is three 

kilometers downstream from Calbe (see Lindenschmidt, Rauberg, et al., 2005). There are no 

significant water withdrawals or emissions between the two locations, but deviations between the two 

gages fluctuate between −10% and +10%. For each MOCA run, every discharge value was 

incremented or decremented with a deviation selected from a normal distribution (mean = 0.0; range 

from −0.1 to +0.1; standard deviation = 0.05, which corresponds to the distribution have 

approximately 90% of the values lying within the range). An example of the variations around the 

input data is shown for the flow boundary at the confluence in Figure 57. Each box-whisker bar 

represents the 1500 data values used for the Monte Carlo runs. 
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Figure 57: Up to ±10% variation in the boundary discharges (exemplary for the confluence). 

(from Lindenschmidt, Rauberg, et al., 2005) 
 

The means of the distributions of the hydrodynamic output variables discharge Q, velocity U and 

depth d remained approximately the same, when compared to the parameter-only MOCA (see Figure 

58). The standard deviations, and hence the coefficient of variations, approximately doubled for all 

these variables of the upper gage at Calbe, which is to be expected since more factors are now being 

varied in the model to cause a large range in the output variables. For the lower gage, only the CV for 

Q doubled with the CVs of U and d remaining unchanged. This indicates the buffering potential the 

weirs have on the flow variation of the boundaries on current velocity and water stages as water flows 

through the system.  
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Figure 58: Coefficient of variation CV of hydrodynamic variables (discharge Q, velocity U, depth d) 
for parameter-only (α & n) MOCA and MOCA with parameter and boundary discharge variation q. 

 

The means of the distributions for all the EUTRO variables also remain approximately the same for 

both gages at Calbe. An exception is the reaeration coefficient k2 with a slight decrease of 7% for the 

upper gage. Surprisingly, all CVs decrease at both gages by as much as a factor of two for all the 

variables with the exception of NH4
+-N, whose CV increased by a factor of ten (see Figure 59). This is 

primarily due to the input of the Bode river, the largest and most immediate upstream tributary from 

the Calbe weir, has a diluting effect of the river water, since its concentrations of most of the sampled 
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substances are lower than in the Saale River. The exception is ammonium, which has concentrations 

up to five times of those found in the Saale. Hence, dilution of substances will decrease the deviation 

of the simulated output distributions; concentrating will increase the deviation. 
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Figure 59: Coefficient of variation CV of water quality variables for parameter-only (α & n) MOCA 
and MOCA with parameter and boundary discharge variation q. 

 

 

6.9 Interactive model coupling and uncertainty 

 

 
Figure 60: Interactive coupling between EUTRO and TOXI in the HLA environment; hydrodynamic 

data is still received by the two models from DYNHYD after each time step. 
(from Lindenschmidt, Hesser, et al., 2005) 

 

Coupling EUTRO and TOXI together in the HLA environment allows ease of interactive 

communication between the two models (Figure 60). Chlorophyll-a concentrations Chl-a correlate 

well with particulate organic carbon POC content in the water (Figure 61) and brings forth the 

structure for the EUTRO → TOXI coupling using the equation: 
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0.04 1.4= ⋅ +POC Chla  

 

By dividing POC with the concentration of suspended sediment SS simulated in TOXI, the weight 

fraction of organic carbon in suspended matter (foc) is obtained [Ambrose et al., 1993, Chapra, 1997]: 

SS
POCfoc =  
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Figure 61: Correlation between chlorophyll-a Chla and particulate organic carbon POC. 

 

The partitioning of heavy metals M in the water can now occur between the dissolved phase MDIS and 

the organic carbon of the particulate phase MOC using the partition coefficient KOC

foc
KK D

OC =   

This is an extension of the simplified partitioning of heavy metals between the dissolved and total 

particulate fractions of heavy metals (MDIS and MPART) using the partition coefficient KD: 

SSK
M

D
DIS ⋅+

=
1

1
     

SSK
SSKM

D

D
PART ⋅+

⋅
=

1
  

 

Information is also transferred from TOXI to EUTRO. In the original WASP5 version, the extinction 

coefficient KE of light passing through the water column is a constant parameter implemented for each 

discretized unit of the modelled river. With the communication between TOXI and EUTRO, KE can 

now vary depending on Chl-a (µg/l) and phytoplankton biomass Phyto (mg/l) computed in EUTRO 

and SS (mg/l) calculated in TOXI [equation modified from Schöl, et al., 2002]: 

 

06.1013.0)(052.0 +⋅+−⋅= ChlaPhytoSSKE  

 

The coupling was tested using EUTRO Complexity 5 and TOXI Complexity 2 with zinc as the micro-

pollutant. The simulations were supported by the data from the 5. – 18. June 2001 sampling campaign 
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of the lower Saale River. Through the coupling an improvement in model results was gained, 

especially for dissolved fractions of zinc at Calbe (see Figure 62). The decrease in dissolved zinc 

concentrations corresponds to an increase in the particulate concentrations. Overall the coupling 

allowed a more accurate balance between dissolved and particulate fractions in the sorption process.  

The effect of the coupling becomes more significant with increasing downstream distance, hence the 

deviations in the metal fraction concentrations between uncoupled and coupled simulations are more 

pronounced at Calbe than at Bernburg. 
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Figure 62: Comparison for dissolved and particulate zinc concentrations between uncoupled (grey 
lines) and coupled (black lines) simulations at sampling stations Bernburg and Calbe. Points are 

sampled values (unfilled – dissolved zinc; filled – particulate zinc fraction). 
 

A Monte Carlo Analysis (MOCA) was also carried out for both the uncoupled and coupled model 

system configurations by varying the hydrodynamic coefficients α (weir discharge ) and n (river 

bottom roughness)Each MOCA consisted of 500 runs in with α and n were randomly selected from 

uniform distributions each varying ±18% from their respective mean values. The ranges for the 

simulated variable values increased through the coupling by as much as 7% for dissolved oxygen and 

13% for chlorophyll-a (see Figure 63). The range also increased also for dissolved zinc concentrations 

(+10%) but decreased for the particulate concentrations (-13%) (see (a) in Figure 64). Uncertainties 

propagating through a system of coupled models are affected by the uncertainties in the process 

reactions, in this case sorption of dissolved substances along the river coarse and increased 

sedimentation of particulate substances at the locks and weirs. 

 

The equation which couples EUTRO to TOXI gives opportunity to investigate structural uncertainty in 

modelling systems. Figure 61 shows the uncertainty in the POC versus Chl-a correlation and can be 

implemented in regression equation as: 

 

 

 

0.04 1.4 (1 )= ⋅ + ⋅ ± σPOC Chla
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where σ is the standard deviation. Signorino (2003) labels the additional term the uncertainty due to 

regressor error. 
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Figure 63: Distributions of dissolved oxygen and chlorophyll-a from MOCA considering only 

parameter uncertainty for both uncoupled and coupled model system configurations. 
 

A MOCA was carried out for zinc using three configurations of the source of uncertainty: i) 

parameters only, ii) parameters and boundaries and iii) parameters, boundaries and model structure. As 

previously in Section 6.8, the boundary discharge varies within the range ±10%. For the POC vs. Chl-

a regression curve ±σ corresponds to a range variation of ±18%. TOXI results are summarized in 

Figure 64 for the Calbe station which shows that the most significant uncertainties for the dissolved 

and particulate zinc fractions are found in the model system structure, followed by parametric 

uncertainty and for a minimal extent, uncertainty stemming from boundary conditions. The uncertainty 

for total zinc stems solely from the parameter sources and is not influenced by boundary or structural 

uncertainty. 
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Figure 64: Ranges from MOCA normalized to the mean for selected TOXI variables; uncertainties 
stem from (a) parameters only, (b) parameters and boundaries and (c) parameters, boundaries and 

model structure. 
 

Structural uncertainty was also introduced in the equation for the TOXI → EUTRO coupling by 

introducing a regression error term in the coupling equation: 

 

0.052 ( ) 0.013 1.06 (1 )= ⋅ − + ⋅ + ⋅ ±EK SS Phyto Chla σ  

 

however with little effect, due to the equation’s low sensitivity on EUTRO variables. ?? shows the 

uncertainty range for dissolved oxygen, chlorophyll-a and ammonium using the same MOCA 

configuration as for zinc and shows that the source of uncertainty is in the following order of 

decreasing significance: parameter, boundary and structure. Comparison of the uncertainty ranges in 

Figures ?? and ?? indicates that parameters and boundary conditions are a more important source of 

uncertainty for EUTRO variables whereas model system structure is the most significant source of 

uncertainty for TOXI variables. 
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Figure 65: Ranges from MOCA normalized to the mean for selected EUTRO variables; uncertainties 

stem from (a) parameters only, (b) parameters and boundaries and (c) parameters, boundaries and 
model structure. 

 

Models may act as filters and reduce uncertainty, which has been confirmed by Refsgaard, et al. 

(1998). They found that the uncertainties of their integrated model are less than those of the individual 

models due to two reasons: “i) in the integrated model the internal boundaries are simulated by 

neighbouring model components and not just assessed through qualified but subjective estimates by 

the modeller and ii) the integrated model makes it possible to explicitly include more sources of data 

in validation tests that can not all be utilised in the individual models” (Refsgaard, et al., 1998, p. 462). 

I found that uncertainty propagated through a chain of coupled models can either accentuate or 

diminish depending if the substances are respectively being concentrated or diluted and their process 

description. 

 

6.10 Influence of locks and weirs 

Lindenschmidt, Eckhardt, et al. (2004) found that locally on the small scale locks and weirs influence 

the transport of both suspended solids and the total concentrations of most heavy metals substantially. 

This is particularly due to the large differences in the mean velocities between the various areas in the 

lock-and-weir system. Increased sedimentations immediately upstream from the weir and higher 

resuspension rates downstream from the weir were modelled. Also, for this particular lock the low 

flow conditions led to more sedimentation of solids than elsewhere in the system.  On the larger scale 

for the lower Saale River and for similar low-flow conditions the lock-and-weir systems have little 

effect on the suspended solid concentration. The simulations agree well with the measurements 

without having to include higher sedimentation rates in the upstream areas of the weirs. This is 

contrary to the total zinc concentration for which higher sedimentation rates need to be included for 
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the simulations to coincide with sampled values. Hence, two processes exist which counteract each 

other: 

i) large particulate zinc fraction (mostly inorganic) that is formed immediately downstream from 

the large emission of dissolved zinc from the Schlenze tributary settles out and causes a lose of 

suspended solids and  

ii) inorganic solids that are settled out reducing the water’s turbidity allowing an increase in  

phytoplankton growth which replaces the settled inorganic fraction of the  suspended solids. 

The chlorophyll-a and particulate organic carbon (POC) both increase in the flow direction in the 

Saale. The increase of the ratio of organic to inorganic material along the river’s course is also 

confirmed in Lindenschmidt, Wodrich and Hesse (2006), in which both the weight fraction of the total 

carbon in the solid material (fOC) and the loss-on-ignition increase in the flow direction along the Saale 

from Wettin to the Saale confluence. 

 

6.11 Influence of morphology 

A comparison is made in Figure 66 between the effects: 

i) the two hydrodynamic parameters have on water quality variables, 

ii) the four most identifiable water quality parameters have on these variables (see Schlehf and 

Lindenschmidt, 2005) (the most identifiable parameters are the parameter combination which is 

most sensitive to the system as a whole and has the least dependency and co-linearity between 

them (Reichert and Vanrolleghem 2001)); and 

iii) all 21 water quality calibration parameters have on these variables (see Schlehf and 

Lindenschmidt, 2005). 
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Figure 66: Coefficient of variation CV of the water quality variables for three Monte Carlo analyses by 

varying only the: i) two hydrodanamic parameters, ii) four of the most identifiable water quality 
parameters and iii) all 21 water quality parameters used for calibration 

(modified from Lindenschmidt, Rauberg, et al., 2005) 
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For most variables, there is an increasing trend in the coefficient of variation (CV) when more 

parameters are implemented in the Monte Carlo analysis (MOCA). This is due to the increase in the 

number of varying parameters in the model which leads to an increased spread in the distributions of 

the simulated results. An exception is nitrate due to the very high NO3
-N concentrations (> 4 mg/l) 

found in the water. Hence, this substance reacts more to the water transport than to biological factors. 

Little reaction was found in the C-BOD and ON variables when using only the four most identifiable 

parameters for the MOCA. The parameters influence C-BOD and ON are only sensitive to these 

variables and are not very identifiable to the system in its entirety. 

 

The variability in O2 and Chla is approximately the same for the MOCA using the four identifiable 

water quality parameters and the MOCA using the two hydrodynamic parameters. Hence, uncertainty 

in the hydrodynamic parameters can contribute a significant amount of uncertainty in the water quality 

modelling. This implies that the parameters characterising the morphology of the river can contribute 

almost as much variability in the water quality constituents as the biological factors. This shows the 

significant impact morphological effects may have on the water quality of a river this size. 

 

Figure 67 shows a comparison between the Saale (5th Strahler stream order) and Weiße Elster (4th 

Strahler stream order) of the ranges in the variable distributions resulting from MOCAs in which only 

the roughness coefficient n was varied (Saale: 0.022 < n < 0.030 s/m1/3; Weiße Elster: 0.025 < n < 

0.035 s/m1/3). The ranges have been normalised to the mean value. The variation of chlorophyll-a Chla 

is larger for the Weiße Elster than for the Saale. Hence, morphological effects pertaining to bed 

roughness has a larger impact on the smaller river (lower order) than on the larger. This is largely due 

to the larger variation in flow velocity although the discharges remained fairly steady in both cases 

(Saale: 56.5 < Q < 58.5 m3/s; Weiße Elster: 5.0 < Q < 5.1 m3/s). Phytoplankton gives preference to 

ammonium for their nitrogen source causing the largest effect on this substance in comparison to other 

nutrients. 
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Figure 67: Normalised ranges of the simulated hydrodynamic and water quality variables for the two 

rivers Saale and its tributary Weiße Elster. 
(modified from Wagenschein, Lindenschmidt, et al., 2005) 

 

6.12 Effects of weirs in the Saale on water quality (two scenarios) 

Locks and weirs are often required in rivers to make them navigable for shipping. Backwater increases 

the volume of water in the river and decreases the longitudinal slope of the river bed, two important 

aspects to enhance ship travel. There are, however, many implications on the ecological status of the 

river and its riparian areas. Water velocity is reduced which reduces aeration at the water surface. 

Sedimentation is augmented due to the slower currents. The clearer water allows deeper impingement 

of solar radiation through the water column and an increase in water temperature, which in turn 

accelerates biological activity. Hence, backwaters can become havens for phytoplankton. The 

sediment load also finer grainer causing backwater areas to silt up. The corresponding bottom 

sediments become more susceptible to anoxia promoting nutrient redissolution. This accelerates 

phytoplankton growth, which can become exuberant. The flow regulation also has detrimental effects 

for flood plains but this was not investigated in this study. 

 

Two scenarios are presented to investigate the effects locks and weirs have on the water quality of the 

Saale River (for details see Sonnenschmidt et al., 2003): 

i) insertion of a lock-and-weir system at Klein Rosenburg (Saale-km 5). The slope of the reach 

between the most downstream lock-and-weir system at Calbe and the confluence is still too steep to 

guarantee year-round navigation for 1000 tonne ships. This hindrance would be alleviated with this 

additional regulating structure but the damming may deteriorate the river’s water quality 
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ii) removal of the three weirs in Weißenfels (between Saale-km 142 and 148). This has been proposed 

in order to improve flood defence in this region (DDC, 1996). The simulations are to check if the 

negative effects of weirs on the river’s water quality are amended. 
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Figure 68: Differences in dissolved oxygen concentrations (with weir – current state) through 

additional flow regulation at Klein Rosenburg. 
 

The simulations for the first scenario were carried out using the Lower Saale model for the time frame 

14. May – 30. July 2002.  Figure 68 shows the differences in the dissolved oxygen results between 

simulations with and without the lock-and-weir system at Klein Rosenburg. Positive(negative) values 

correspond to an increase(decrease) in oxygen concentrations due to the additional flow regulation. 

The largest differences occurred for oxygen (maximum ±1.5%) and chlorophyll.a (maximum ±4%) 

which may be due to the very advective nature of this simulated year. Sonnenschmidt et al. (2002) 

also show that for very low flow conditions the oxygen content decreased by 7%  (see Figure 69). 
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Figure 69: Reduction in dissolved oxygen at low flow conditions due to addition insertion of a lock-

and-weir system at Klein Rosenburg (Saale-km = 5) using the model QSIM. 
(modified from Sonnenschmidt et al., 2002) 

 

The second scenario indicates that removal of the three weirs at Weißenfels has only a minute effect 

on the dissolved oxygen, phytoplankton and nutrient content in the river. Figure 70 shows for the 1999 

simulation time frame (refer to Table 7) a total decrease of 2 % in inorganic phosphorus 

concentrations when the weirs are removed. A decrease in oxygen content no more than 1% was found 

by Sonnenschmidt et al. (2002) for a simulation with high discharge. 
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Figure 70: Reduction in inorganic phosphorus at Bad Dürrenberg due to the removal of the three weirs 

at Weißenfels. 
 

6.13 Reduction of nutrient loading (scenario) 

Much effort has been carried out in the past ten years to reduce the point loading along the Saale 

River. As shown in Figure 26 most wastewater from communal wastewater treatment plants undergoes 

secondary and tertiary treatment (reduction in nitrogen and phosphorus). However, the nutrient 

concentrations in the Saale are still high, stemming primarily from non-point sources (Behrendt et al., 

2001) and to a lesser degree some persistent point loading from industries (e.g. phosphorus from 

Bernburg in Figure 26), and not limiting to phytoplankton growth. Hence, a scenario is simulated in 

which the nutrient concentrations at the boundaries (non-point source) are reduced by half which is 

perceived as a best-case scenario. Such a reduction is reasonable and coincides with scenario 

calculations found in the literature. Vache et al. (2002) could potentially reduce nutrient loads by 54 to 

75% through substantial changes in agricultural practices (e.g. conversion to conservation tillage, strip 

intercropping, rotational grazing and setting aside conservation areas) and use of best management 

practices (e.g. implementing riparian buffers, engineered wetlands, filter strips and field borders). By 
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improving sewage treatment, setting aside 20% of arable land and rehabilitating certain river reaches 

Kronvang et al. (1999) deemed a 53% reduction in nitrogen and 46% reduction in phosphorus as 

reasonable for scenario simulations. Additional options include increasing organic farming, 

extensivation of grassland production and re-wetting riverside areas are considerations made by 

Kersebaum et al. (2003) for the Elbe river catchment. 
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Figure 71: Scenario 2001: the effect of a 50% reduction in non-point nutrient loading on nitrate NO3

--
N, chlorophyll-a Chl-a and dissolved oxygen DO at Groß Rosenburg. 

 

The scenario was carried out using both the 2001 and 2002 validation simulations of the Lower Saale 

River (see Table 7). In both cases the nitrate, ammonium and inorganic phosphorus concentrations at 

the boundaries were halved. The results for nitrate, chlorophyll-a and dissolved oxygen for the 2001 

simulation are shown in Figure 71.  A significant decrease in the latter two is attained only between 

the 30th and 34th simulation days and the last five days of the time period. In general, the aquatic 

environment of the Saale is light limited but on these days, the nutrient concentrations are low enough 

to induce nutrient limitation of phytoplankton growth (see Figure 72).  
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Figure 72: Nutrient and light limitation at Groß Rosenburg during the 2001 simulation time period for 

the original state and for a 50% reduction in non-point nutrient loading.  
 

Nutrient limitation also occurs between the 18th and 25th simulation days of the 2002 scenario, results 

of which are shown for inorganic phosphorus IP, chlorophyll-a Chl-a and dissolved oxygen DO in 

Figure 73. The value IP concentrations reduce the Chl-a and DO concentrations by a maximum of 

approximately 25% on these days. After the 25th simulation day IP remains low by even more than 

half of the original simulation due to the stronger limitation of this nutrient than by the inorganic 

nitrogen components. However, the system falls back into an overall light-limited state and no large 

reduction in algae growth occurs between the 25th and 80th simulation days. 
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Figure 73: Scenario 2002: the effect of a 50% reduction in non-point nutrient loading on inorganic 

phosphorus IP, chlorophyll-a Chl-a and dissolved oxygen DO at Groß Rosenburg. 
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The non-point nutrient loading was also reduced further by 60, 70, 80 and 90% and a summary of the 

results is depicted in Figure 74. The graph shows the percentage of the total simulated time the aquatic 

environment is nutrient limited versus the percentage reduction in non-point loading. The two years 

may be viewed as extremes in which 2001 has an overall lower discharge and 2002 is a very advective 

year. Nutrient limitation may occur up to 60% more often than light limitation if a nutrient input of 

90% is attained. 
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Figure 74: Percentage time phytoplankton is nutrient limited versus the percentage reduction in non-

point nutrient loading. 
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7 Conclusions 

 

Complexity vs. Uncertainty 

- The hypothesis proposed by Snowling and Kramer (2001) could be confirmed for river water 

quality modelling exercises at both large and small scales. 

- The hypothesis proposed by the authors that the relation of model error and sensitivity with 

complexity, as suggested by Snowling and Kramer (2001), shifts for different scales was 

confirmed. 

 

Scale and transferability 

- An extension of the Snowling and Kramer hypothesis allows easy testing of model transferability 

to other sites. The model calibrated and validated for the lower Saale could be transferred to the 

middle course of the river. Some modification in the model structure is required in order to capture 

phytoplankton blooms in the simulations. 

- There are processes on the local scale (lock-and-weir system) that become dampened on the global 

scale (Saale River): oxygen input by weir discharge, denitrification and increased 

settling/resuspension immediately upstream/downstream from the weir. 

- The retention of heavy metals in the lock-and-weir systems is significant globally due to suspended 

solids becoming more organic in the flow direction to which dissolved metals have a greater 

affinity. These particles coagulate and settle out more rapidly. 

 

Eutrophication 

- The DO-BOD and the phytoplankton-nutrient dynamics are only loosely coupled to one another. 

The latter plays or more significant role in the oxygen balance of the Saale than the degradation of 

organic material 

- Secondary pollution more of a problem than primary pollution. Phytoplankton-nutrient dynamics is 

more important than oxygen-BOD dynamics 

- Increased sedimentation rates occurred on the small scale in the lock reach and immediately 

upstream from the weir. Resuspension was enhanced immediately downstream from the weir. For 

suspended solids these effects occurred only locally and were averaged out in the large scale 

modelling exercise. 

- Denitrification plays a minor role for the lower Saale during this time frame, as evident in the low 

sensitivities of its parameters describing the process, K2D and KNO3. 

- Nutrient content in the river can be reduced by throttling non-point nutrient inputs from the 

catchment area. However, a substantial reduction is required (up to 90%) for the phytoplankton 

growth to be nutrient limited for half of the vegetative period. 
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Micro-pollutant transport 

- Physical processes are more dominant on the large scale whereas chemical processes become more 

important on the smaller scale. 

- TOXI is a model suited for the transport of inorganic substances on the large scale. For small-scale 

applications additional processes must be incorporated which describe the complexity of the 

transport and transformation dynamic of these substances in the bottom sediments.  

 

Morphological effects on water quality 

- Weirs have little effect on the water quality of the Saale, due to the river’s advective nature. Both 

weir removal and the addition of a lock-and-weir system have minute effects on the oxygen, 

phytoplankton and nutrient contents. 

- The roughness coefficient has an effect on the water quality of the Saale. This signifies the 

potential re-naturalization measures (e.g. reconnection of oxbow lakes and dyke shifting) have on 

the natural recovery of the river. 

- The smaller the river order the more influence morphology has on river water quality.  
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8 Outlook and future research perspectives 

 

Continued modelling research of the Saale River 

 

Sampling and modeling a flood event in the river is imperative for a complete understanding of the 

ecological and retentive functioning of the river. The substances retain by weirs can be released as 

surge pulses during floods and affect the ecology in the water after the flood. This will also increase 

our understanding of how dyke shifting and re-connection of oxbow lake can improve the ecological 

and water quality of the river. The river’s retentive capacity of water and substances will also change 

through such measures. Rode (2001) also states that although the Saale is heavily modified, there are 

still many close-to-nature reaches along the river’s course providing much potential for natural 

recovery. 

 

Habitat modeling is suggested. River channelling has ecological effects: ecotones are removed, 

habitats are homogenised and biodiversity decreases. Also retentive capacity of pollutants by the 

ecosystem is decreased. Channel straightening also removes important refugees for many species since 

pools of lower current are le numerous. Dam regulation also interrupts ecological continuum 

simplifying ecosystem structure and reducing ecological diversity. 

 

More impetus should be given to the sediment dynamics, especially in lock-and-weir systems. 

Modeling of these dynamics needs to be supported by an extensive sampling program and additional 

laboratory experiments to determine parameter rates. 

 

It is imperative to take sediment core samples for heavy metal modelling. 

 

An extension of the WASP5 model by Shanahan (2001) includes the variable macrophytes. This 

allows interacting feedback constructs from EUTRO and TOXI to DYNHYD, shown in Figure 75, 

allowing investigations with an ecohydrology perspective to be carried out. Water bodies laden with 

many submerged plants may alter the hydrodynamics of the water course. High concentrations of 

particular micro-pollutants may inhibit the growth of phytoplankton and macrophytes. Alternatively, 

areas of greater or less sediment deposition may also influence the water flows and velocities, 

especially for shallow water bodies. 
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Figure 75: For an ecohydrology approach feedback from EUTRO and TOXI to DYNHYD is required. 

(from Lindenschmidt, Hesser, et al., 2005) 
 

 

Computer modelling and the Water Framework Directive 

 

One of the first steps in the implementation of the EU water framework directive (WFD) was to make 

an initial registry of the condition of European water bodies. For the majority of the surface waters it is 

still uncertain if the environmental goals specified by the WFD can be attained (Vogt and Guhl, 2005). 

This statement is based to a large extent on existing data and knowledge by experts familiar with the 

particular water bodies. However, the data and knowledge base is limited and much of the uncertainty 

in making a complete assessment is due to the lack of existing relevant environmental data. In 

addition, the data that do exist are very heterogeneous due to the wide spectrum in sampling and 

analysis methods used in making the measurements.   

 

According to Article 8 of the WFD the European member states are required to have monitoring 

programs set up by 22. December 2006 for the monitoring of the water conditions. The monitoring 

programs must provide adequate and transparent descriptions of the local and regional conditions of 

the waters. Thus, the existing monitoring programs need to be revamped to meet the established 

monitoring goals. In order to evaluate the spatial and temporal relationships of the water conditions 

holistically with the limited resources available additional methods need to be drawn upon to fulfil the 

requirements of the monitoring programs. In this context computer modelling can serve an important 

role. Suggestions are made by Lindenschmidt, Schöl and Christoffels (2005) how to improve and 

extend data sampling programs to compliment water quality computer modelling used for surveillance 

and prognoses of river water quality. Case studies show the applicability of models to describe water 

quality and how existing monitoring programs can be extended to fill data gaps that are crucial for 

model calibration and validation. The studies include the: 

 110Karl-Erich Lindenschmidt River water quality modelling...



i) importance of data of high temporal resolution in describing phytoplankton dynamics in 

the Saale River,  

ii) effect of water drainage from mines on the water quality of the Erft river, and 

iii) significance of the zoobenthos in describing the quality status of the Model river. 

The importance of quantifying uncertainties in the measurements and modelling approaches is 

addressed and it is recommended that the analyses be extended to incorporate risk assessments. 
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Appendix: Petersen matrices of processes and variables for each EUTRO complexity 
 
Complexity 1: 
 

Variable number & name 
1 2 3 4 5 6 7 8Process 
    TBOD DO   

Process rate 

Reaeration      1   ( )20
2 2

T
satK DO DO−θ −  

Total 
Oxidation 

    -1 -1   20T
D DK TBOD−θ i  

Settling     -1    ( )3 51s Dv f
TBOD

D
−

 

Sediment 
O2-demand 

     -1   SOD
D

 

 
Variables:    

DO = Dissolved oxygen mg O2/L 
TBOD = Ultimate total biological oxygen demand mg O2/L 

    
Parameters:    

D
5

 = Depth m 
Df  = Fraction dissolved TBOD - 

SOD  = Sediment oxygen demand g O2/(m2⋅d) 
    

Constants:    
 = Reaeration rate at 20°C 1/d 2K
 = Deoxygenation rate at 20°C 1/d DK

3sv

2

 = Settling velocity of organic matter m/d 
θ  = Reaeration temperature coefficient - 

Dθ  = Deoxygenation temperature coefficient - 
    
Functions:    

 = Saturated dissolved oxygen mg O2/L 
 = Water temperature  °C 

satDO
T
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Complexity 2: 
 

Variable number & name 
1 2 3 4 5 6 7 8Process 

NBOD    CBOD DO   
Process rate 

Reaeration      1   ( )20
2 2

T
satK DO DO−θ −  

C-Oxidation     -1 -1   20T
D DK CBOD−θ i  

N-Oxidation -1     64
14

−   20T
N NK NBOD−θ i  

C-Settling     -1    ( )3 51s Dv f
CBOD

D
−

 

N-Settling -1        ( )3 11s Dv f
NBOD

D
−

 

Sediment 
O2-demand 

     -1   20T
S

SOD
D

−θ  

 
Variables:    

CBOD = Ultimate carbonaceous biological oxygen demand mg O2/L 
DO = Dissolved oxygen mg O2/L 

NBOD = Ultimate nitrogenous biological oxygen demand mg O2/L 
    

Parameters:    
D

1

 = Depth m 
 = Fraction dissolved NBOD - Df

5Df  = Fraction dissolved CBOD - 
SOD  = Sediment oxygen demand g O2/(m2⋅d)

    
Constants:    

 = Reaeration rate at 20°C 1/d 2K

DK  = Carbonaceous deoxygenation rate at 20°C 1/d 

NK

3

 = Nitrogenous deoxygenation rate at 20°C 1/d 
 = Settling velocity of organic matter m/d 
 = Reaeration temperature coefficient - 

sv

2θ

Dθ

Nθ

Sθ

 = Carbonaceous deoxygenation temperature coefficient - 
 = Nitrogenous deoxygenation temperature coefficient - 
 = SOD temperature coefficient - 
    

Functions:    
 = Saturated dissolved oxygen mg O2/L 
 = Water temperature °C  

satDO
T
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Complexity 3: 
 

Variable number & name 
1 2 3 4 5 6 7 8Process 

NH4
+ NO3

-   CBOD DO ON  
Process rate 

Reaeration      1   ( )20
2 2

T
satK DO DO−θ −  

C-Oxidation     -1 -1   20T
D DK CBOD−θ i  

ON-Mineralisation 1      -1  20
71 71

TK ON−θ i  
Nitrification -1 1    64

14
−   20

12 12 4
TK NH− +θ i  

C-Settling     -1    ( )3 51s Dv f
CBOD

D
−

i  

ON-Settling       -1  ( )3 71s Dv f
ON

D
−

 

Sediment O2-demand      -1   20T
S

SOD
D

−θ  

Phytoplankton growth      32
12

   20
1 1

T
C CK PHYT−θ i  

Phytoplankton respiration      32
12

−   20
1 1

T
R RK PHYT−θ i  
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Variables:    

CBOD = Ultimate carbonaceous biological oxygen demand mg O2/L 
DO = Dissolved oxygen mg O2/L 

NH4
+ = Ammonium nitrogen mg N/L 

NO3
- = Nitrate nitrogen mg N/L 

ON = Organic nitrogen mg N/L 
    

Parameters:    
D  = Depth m 

5Df  = Fraction dissolved CBOD - 

7Df  = Fraction dissolved ON - 
SOD  = Sediment oxygen demand g O2/(m2⋅d) 

    
Constants:    

12K  = Nitrification rate at 20°C 1/d 

1CK  = Phytoplankton growth rate 1/d 

1RK  = Phytoplankton respiration rate 1/d 

2K  = Reaeration rate at 20°C 1/d 

71K  = N-mineralisation rate at 20°C 1/d 

DK  = Carbonaceous deoxygenation rate at 20°C 1/d 

3sv  = Settling velocity of organic matter m/d 

12θ  = Nitrification temperature coefficient - 

1Cθ  = Phytoplankton growth temperature coefficient - 

1Rθ  = Phytoplankton respiration temperature coefficient - 

2θ  = Reaeration temperature coefficient - 

2Dθ  = Denitrification temperature coefficient - 

71θ  = N-mieralisation temperature coefficient - 

Dθ  = Carbonaceous deoxygenation temperature coefficient - 

Nθ  = Nitrogenous deoxygenation temperature coefficient - 

Sθ  = SOD temperature coefficient - 
    

Functions:    
PHYT  = Phytoplankton concentration mg C/L 

 = Saturated dissolved oxygen mg O2/L 
 = Water temperature °C  

satDO
T
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Complexity 4: 
 

Variable number & name 
1 2 3 4 5 6 7 8 Process 

NH4
+ NO3

- IP  PHYT   ON OP 
Process rate 

 
Phosphorus limitation 

Phyt. growth   PCa− 1     1PG PHYTi  
Phyt. death    -1    PCa  

1PD PHYTi  
Phyt. settling    -1     4Sv PHYT

D
 

OP-Mineralisation   1     -1 20
83 83

TK O−θ i P  
OP-Settling        -1 ( )3 81S Dv f

OP
D
−

 

IP-Settling   -1      ( )5 31S Dv f
IP

D
−

 

 
 

Nitrogen limitation 
Phytoplankton  
growth 

4

NC

NH

a
P
− i  

( )41
NC

NH

a
P

−

−

i   1     1PG PHYTi  

Phytoplankton  
death 

   -1   NCa   1PD PHYTi  

Phytoplankton  
settling 

   -1     4Sv PHYT
D

 

ON-Mineralisation 1      -1  20
71 71

TK O−θ i N  
ON-Settling       -1  ( )3 71S Dv f

ON
D
−

 

Nitrification -1 1       20
12 12 4

TK N− +θ i H  
 

Additional equations 
Phytoplankton growth rate : 

1 1P C RT RI RG K X X X= ⋅ ⋅ ⋅ N  
where: 

Phytoplankton temperature adjustment: 
20

1
T

RT CX −= θ  
Phytoplankton light limitation (Di Toro): 

( )A A
RI E

E S

e IX f exp exp K D exp
K D I I

⎡ ⎤

S

I⎧ ⎫ ⎛
= − − ⋅ −⎨ ⎬⎢ ⎥⎜ ⎟⋅ ⎩ ⎭⎣ ⎦

⎞
−
⎝ ⎠

 

Phytoplankton nutrient limitation: 

RN
mP P limitation

DIPX
K DIP

−

=
+

 or      RN
mN N limitation

DINX
K DIN

−

=
+
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Phytoplankton death rate : 
20

1 1 1 1 1
T

R R D GD K K K Z−= θ + + ( t )  
Ammonium preference factor: 

( )( ) ( )( )
3

4 4 4
4 3 4 3

mN
NH

mN mN mN

NO KP NH NH
K NH K NO NH NO K NO

−
+ +

+ − + −

⎛ ⎞ ⎛
⎜ ⎟ ⎜= +
⎜ ⎟ ⎜+ + + +⎝ ⎠ ⎝ 3

−

⎞
⎟
⎟
⎠
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Variables:    
IP = Inorganic phosphorus mg P/L 

NH4
+ = Ammonium nitrogen mg N/L 

NO3
- = Nitrate nitrogen mg N/L 

ON = Organic nitrogen mg N/L 
OP = Organic phosphorus mg P/L 

PHYT = Phytoplankton carbon CCHLCHLA a= i   mg C/L 
    

Parameters:    
D  = Depth m 

3Df  = Fraction dissolved IP - 

7Df  = Fraction dissolved ON - 

8Df  = Fraction dissolved OP - 
    

Constants:    
CCHLa  = Carbon to chlorophyll ratio mg C/mg Chla 

NCa  = Nitrogen to carbon ratio mg N/mg C 
PCa  = Phosphorus to carbon ratio mg P/mg C 

SI  = Saturated light intensity langleys/day 

12K  = Nitrification rate at 20°C 1/d 

1CK  = Phytoplankton growth rate 1/d 

1DK  = Phytoplankton death rate 1/d 

1GK  = Phytoplankton grazing rate L/(mg C·d) 

1RK  = Phytoplankton respiration rate 1/d 

71K  = ON-mineralisation rate at 20°C 1/d 

83K  = OP-mineralisation rate at 20°C 1/d 

mNK  = ½-saturation for N-limitation on phyto. uptake mg N/L 

mPK  = ½-saturation for P-limitation on phyto. uptake mg P/L 

3Sv  = Settling velocity of organic matter m/d 

4Sv  = Settling velocity of phytoplankton m/d 

5Sv  = Settling velocity of inorganic sediment m/d 

12θ  = Nitrification temperature coefficient - 

1Cθ  = Phytoplankton growth temperature coefficient - 

1Rθ  = Phytoplankton respiration temperature coefficient - 

71θ  = ON-mineralisation temperature coefficient - 

83θ  = OP-mineralisation temperature coefficient - 
    

Functions:    
f  = Fraction of day that is daylight - 

 = Average daily surface solar radiation langleys/day AI

EK  = Extinction coefficient 1/m 
T  = Water temperature °C 
Z  = Zooplankton population mg C/L  
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Complexity 5: 
 

Variable number & name 
1 2 3 4 5 6 7 8 Process 

NH4
+ NO3

- IP  PHYT CBOD DO ON OP 
Process rate 

 
CBOD & Oxygen 

Reaeration      1   

( )

20
2 2

T

sat

K
DO DO

−θ

−

i
 

C-Oxidation 
(low O2 – limitation) 

    -1 -1   20T
D D

BOD

K CBO

DO
K DO

− Dθ ⋅ ⋅

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

C-Settling     -1    ( )3 51s Dv f
CBOD

D
−

i

Sediment O2-demand      -1   20T
S

SOD
D

−θ  

 
Nutrients 

OP-Mineralisation   1     -1 20
83 83

T

PHY

K OP

PHYT
K PHYT

−θ

⎛ ⎞
⎜ ⎟+⎝ ⎠

i i
 

OP-Settling        -1 ( )3 81S Dv f
OP

D
−

 

ON-Mineralisation 1      -1  20
71 71

T

PHY

K ON

PHYT
K PHYT

−θ

⎛ ⎞
⎜ ⎟+⎝ ⎠

i i
 

ON-Settling       -1  ( )3 71S Dv f
ON

D
−

 

Nitrification 
(low O2 – limitation) 

-1 1    64
14

−
  20

12 12 4
T

NIT

K NH

DO
K DO

− +θ ⋅ ⋅

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

Denitrification 
(high O2 – limitation) 

 -1   5 32
4 14

− i    20
2 2 3

3

3

T
D D

NO

NO

K NO

K
K DO

− −θ ⋅ ⋅

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

 
Phytoplankton (phosphorus limitation) 

Phyt. growth 
 

  PCa−  1  *b    
1PG PHYT⋅  

Phyt. resp.    -1  32
12

  PCa  20
1 1

T
R RK PH−θ ⋅ YT  

Phyt. death   
( )1 OP

PC

f

a
−

i -1 OCa    PC

OP

a
f
i  1DK PHYT⋅  
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Phyt. grazing    -1    PCa  
1GK Z PHYT⋅ ⋅  

Phyt. settling    -1     4Sv PHYT
D

 

 
Phytoplankton (nitrogen limitation) 

Phyt. growth 

4

NC

NH

a
P
− i  

( )41 NH

NC

P

a
−

− i  1 OCa  *b    
1PG PHYTi  

Phyt. resp.    -1  32
12

 NCa   20
1 1

T
R RK PH−θ ⋅ YT  

Phyt. death 
( )1 ON

NC

f

a
−

i    -1   NC

ON

a
f
i   

1DK PHYT⋅  

Phyt. grazing    -1   NCa   
1GK Z PHYT⋅ ⋅  

Phyt. settling    -1     4Sv PHYT
D

 

( )4
32 48 14 1
12 14 12

*
NHb P= + −  

 
Additional equations 

Phytoplankton growth rate : 
1 1P C RT RI RG K X X X= ⋅ ⋅ ⋅ N  

where: 
Phytoplankton temperature adjustment: 

20
1
T

RT CX −= θ  
Phytoplankton light limitation: 

( )A A
RI E

E S

e IX f exp exp K D exp
K D I I

⎡ ⎤

S

I⎧ ⎫ ⎛
= − − ⋅ −⎨ ⎬⎢ ⎥⎜ ⎟⋅ ⎩ ⎭⎣ ⎦

⎞
−
⎝ ⎠

(Di Toro) 

or 

( )0 0
RI E

E S

I IeX exp exp K D exp
K D I I

⎡ ⎤⎧ ⎫
= − − ⋅ − −⎨ ⎬⎢ ⎥⎜ ⎟⋅ ⎩ ⎭⎣ ⎦S

⎛ ⎞

⎝ ⎠
(Smith) 

Phytoplankton nutrient limitation: 

RN
mN mP

DIN DIPX min ,
K DIN K DIP

⎛ ⎞
= ⎜ ⎟+ +⎝ ⎠

 or  RN
mN mP

DIN DIPX
K DIN K DIP

= ⋅
+ +

 

Ammonium preference factor: 

( )( ) ( )( )
3

4 4 4
4 3 4 3

mN
NH

mN mN mN

NO KP NH NH
K NH K NO NH NO K NO

−
+ +

+ − + −

⎛ ⎞ ⎛
⎜ ⎟ ⎜= +
⎜ ⎟ ⎜+ + + +⎝ ⎠ ⎝ 3

−

⎞
⎟
⎟
⎠
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Variables: 

   

CBOD = Ultimate carbonaceous biological oxygen demand mg O2/L 
DO = Dissolved oxygen mg O2/L 
IP = Inorganic phosphorus mg P/L 

NH4
+ = Ammonium nitrogen mg N/L 

NO3
- = Nitrate nitrogen mg N/L 

ON = Organic nitrogen mg N/L 
OP = Organic phosphorus mg P/L 

PHYT = Phytoplankton carbon CCHLCHLA a= i  mg C/L 
    

Parameters:    
D  = Depth m 

3Df  = Fraction dissolved IP - 

5Df  = Fraction dissolved CBOD - 

7Df  = Fraction dissolved ON - 

8Df  = Fraction dissolved OP - 
    

Functions:    
f  = Fraction of day that is daylight - 
AI  = Average daily surface solar radiation langleys/day 

0I  = Incident light intensity just below water surface langleys/day 

EK  = Extinction coefficient 1/m 
SOD  = Sediment oxygen demand g/m2/day 

T  = Water temperature °C 
Z  = Zooplankton population mg C/L 
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Constants:    
CCHLa  = Carbon to chlorophyll ratio mg C/mg Chla 

NCa  = Nitrogen to carbon ratio mg N/mg C 
OCa  = Oxygen to carbon ratio mg O2/mg C 
PCa  = Phosphorus to carbon ratio mg P/mg C 
ONf  = Fraction of dead phytoplankton recycled to ON - 
OPf  = Fraction of dead phytoplankton recycled to OP - 

SI  = Saturated light intensity langleys/day 

12K  = Nitrification rate at 20°C 1/d 

1CK  = Phytoplankton growth rate 1/d 

1DK  = Phytoplankton death rate 1/d 

1GK  = Phytoplankton grazing rate L/(mg C·d) 

1RK  = Phytoplankton respiration rate 1/d 

2K  = Reaeration rate at 20°C 1/d 

2DK  = Denitrification rate at 20°C 1/d 

71K  = ON-mineralisation rate at 20°C 1/d 

83K  = OP-mineralisation rate at 20°C 1/d 

BODK  = ½-saturation for O2-limitation on deoxygenation mg O2/L 

DK  = Carbonaceous deoxygenation rate at 20°C 1/d 

mNK  = ½-saturation for N-limitation on phyto. uptake mg N/L 

mPK  = ½-saturation for P-limitation on phyto. uptake mg P/L 

NITK  = ½-saturation for O2-limitation on nitrification mg N/L 

3NOK
K

1Cθ

1Rθ

71θ

83θ

 = ½-saturation for O2-limitation on denitrification mg N/L 

PHY  = ½-saturation for PHYT-limit. on mineralisation mg C/L 

3Sv  = Settling velocity of organic matter m/d 

4Sv  = Settling velocity of phytoplankton m/d 

5Sv  = Settling velocity of inorganic sediment m/d 

12θ  = Nitrification temperature coefficient - 
 = Phytoplankton growth temperature coefficient - 
 = Phytoplankton respiration temperature coefficient - 
 = ON-mineralisation temperature coefficient - 
 = OP-mineralisation temperature coefficient - 
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