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Abstract (EN) 

This thesis aim to investigate the statistical size effect in the elasto-plastic material and the 

corresponding reliability of steel structures. The core idea is that the stochastic material prop-

erties are directly embedded in mechanical calculations to develop a more accurate and eco-

nomical design method for steel structure. Moreover, the results of the experimental investiga-

tion with different specimen sizes, whose diameter is limit up to 32 mm, show that the statistical 

size effect exists in steel structures. This thesis demonstrates finally that the structural reliability 

is affected by the statistical size effect and the structural safety can be optimized by considering 

this effect. 

Because of the uncertainty and non-uniformity of the microscopic imperfection distribution, 

the material strength in macroscale presents complex randomness. This study described the 

randomness of material properties through two different ways: developing a stochastic material 

model for elasto-plastic material and establishing a discrete random field with a general math-

ematical program. The proposed stochastic material model is extended to analyze the steel 

structure with multi-axial stress and is integrated into the commercial FEM software for analy-

sis of the complex structures with stress gradient. The stochastic Finite Element Method is im-

plemented to analyze the response of the 3D structures by a general-purpose FEM program 

when the random field file is imported into the finite element model. 

The uniaxial tensile tests with different specimen sizes and different material are carried out to 

demonstrate the statistical size effect in steel structures. The results show that the variations of 

the yield and tensile strength increase with the decreasing specimen volume. Moreover, accord-

ing to the bending tests, it is obvious that the structural component strength is not only related 

to the specimen volume, but also the stress distribution. These two proposed simulation meth-

ods, which are an extension and supplement to traditional simulation methods, can effectively 

simulate the statistical size effect for the tensile and flexural components in steel structures. 

Finally, it is found by studying the influence of statistical size effect on structural reliability that 

the strength, which is obtained by small specimens through statistical analysis in the laboratory, 

is no more accurately applicable to large construction. The reliability theory for the structural 

safety which exists over the decades can be compared and validated or improved through the 

embedding the stochastic material properties in the numerical simulation. 
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Kurzfassung (DE) 

Das Ziel dieser Arbeit ist es, den Einfluss des statistischen Maßstabseffekts auf die elasto-plas-

tischen Werkstoffeigenschaften und die entsprechende Zuverlässigkeit im Stahlbau zu quanti-

fizieren. Die stochastischen Materialeigenschaften werden direkt in die numerischen Berech-

nungen implementiert, um eine präzisere und wirtschaftlichere Methodik für die Bemessung 

von Stahlkonstruktionen zu entwickeln. 

Darüber hinaus zeigen die Ergebnisse experimenteller Untersuchungen mit verschiedenen Pro-

bengrößen (max. Durchmesser bis zu 32 mm), dass der statistische Maßstabseffekt in Stählen 

existiert. Mittels numerischer Simulationen wird gezeigt, dass die Zuverlässigkeit der Bauteile 

durch den statistischen Maßstabseffekt beeinflusst wird und dass die strukturelle Sicherheit un-

ter Berücksichtigung dieses Effekts optimiert werden kann. 

Aufgrund der vorhandenen mikroskopischen Imperfektionen und der Unsicherheiten über de-

ren Verteilung zeigen die mechanischen Eigenschaften des Werkstoffs Zufälligkeiten. Diese 

Arbeit beschreibt die Zufälligkeit des Werkstoffs auf zwei verschiedene Wege: die Erste ist die 

Entwicklung eines stochastischen Materialmodells mit elasto-plastischen Materialeigenschaf-

ten. Die zweite Möglichkeit ist der Aufbau eines diskreten Zufallsfeldes mit einem allgemeinen 

mathematischen Programm. Das vorgeschlagene stochastische Materialmodell wird erweitert, 

um die Stahlkonstruktion unter multiaxialer Beanspruchung zu analysieren. Es wird in die kom-

merzielle FEM-Software integriert, um komplexe Bauwerke mit Spannungsgradienten zu ana-

lysieren. Die stochastische Finite-Elemente-Methode wird implementiert, um die Antworten 

der 3D-Konstruktion durch ein allgemeines FEM-Programm zu analysieren, nachdem die Zu-

fallsfelddatei in das Finite-Elemente-Modell importiert wurde. 

Um den statistischen Maßstabseffekt im Stahlbau zu demonstrieren, werden uniaxialen Zug-

versuche mit unterschiedlichen Probengrößen und verschiedenen Werkstoffen durchgeführt. 

Die Ergebnisse zeigen, dass sich die Streuungen der Streckgrenze und die Zugfestigkeit mit 

zunehmenden Probenvolumen abnehmen. Darüber hinaus hängt die Festigkeit des Bauteils 

nicht nur vom Probenvolumen gemäß den Biegetests, sondern auch von der Spannungsvertei-

lung ab. Sowohl die analytische Methode als auch die vorgeschlagene Simulationsmethode, die 

eine Erweiterung und Ergänzung zu traditionellen Simulationsverfahren sind, können den sta-

tistischen Maßstabseffekt für die Zug- und Biegekomponenten in Stahlkonstruktionen erfassen. 

Die Untersuchungen des Einflusses des statistischen Maßstabseffektes auf die strukturelle Zu-

verlässigkeit ergaben, dass die Festigkeiten, die an kleinen Proben durch statistische Analysen 

im Labor ermittelt werden, für größere Bauteile nicht mehr exakt zutreffen sind. Daher kann 
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die Zuverlässigkeitstheorie für die strukturelle Sicherheit mit der Simulation verglichen und 

validiert oder verbessert werden, indem die stochastischen Materialeigenschaften in das Simu-

lationsmodell eingebettet werden. 
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1 Introduction 

1.1 Motivation 

Since the conditions of the occurrence of an event are not sufficiently known, there is no direct 

causal relationship between the condition and the result of an event, and thus the event exhib-

iting uncertainty. Practical experience of engineering shows that the uncertainty is not only in 

the load assessment, but also involves the engineering system of materials and geometric char-

acteristics. 

In general, the computational model and the numerical software usually are based on the deter-

ministic method, which means that all geometries, materials, and loads of the structure must be 

deterministic values. However, many parameters of the structural engineering exhibit complex 

randomness, which cannot be completely captured and characterized by a deterministic model. 

The traditional approach is used to rationalize these uncertainties through probabilistic and sta-

tistical methods, and then the required determined values for the calculation model are obtained 

based on the extreme, minimum, maximum or mean values of system parameters. This ap-

proach contains the assumption that the results obtained by the deterministic analysis represent 

all possible situations of load and resistance in the structural components. In some cases, this 

assumption may be correct. However, it is definitely that the deterministic method cannot get 

the best solutions or optimum design for the structure. 

In general, the safety factor has been used as an evaluation criterion of civil engineering. How-

ever, the safety factor is only a determined value obtained from known information, and it fails 

to account for any variability of parameters for structural design. In other words, the safety 

factor does not precisely characterize the safety of the structure, because the statistical param-

eters of the design variables are also variable with the change of external conditions. 

With the continuous development of computational science, the precision of the structural cal-

culation is continually increasing. Hence, the benefits obtained by the precise analysis of the 

structure are submerged by the traditional safety factor, if the variability of the statistical pa-

rameters of the random variables such as (material properties, geometries, etc.) is not consid-

ered. Thus, it has a great sign that the uncertain factors are introduced indirectly or directly into 

the mechanical calculation to analyze the structural mechanics and to evaluate the reliability of 

practical engineering. 
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As is well known, the elastic and plastic design in steel structure is widely used [1], since the 

steel has outstanding elasto-plastic material properties. It is certain that the yield strength of 

steel has variability because the uncertainties and spatial variability is inherently present in 

nature. The influence of this uncertainty of strength on the structure and corresponding safety 

is unclear. The statistical size effect phenomenon, which is originally used to describe the effect 

of the characteristic size on structural strength in the concrete structure, can explain the rela-

tionship between the volume of the similar structure and the material strength. The current elas-

tic and elasto-plastic theory don’t involve the statistical size effect and its influence. Whether 

the uncertainty of the steel strength can produce statistical size effect, is a problem that needs 

to be discussed, because the statistical size effect will change the strength of structural compo-

nents and the corresponding safety level. Moreover, a question needs also to be raised, whether 

the material strength for steel with the small size of specimen applies to the practical large-scale 

structures. 

In order to enable a more economical design method in future, this thesis mainly aims to inves-

tigate the influence of statistical size effect on the material strength and the corresponding reli-

ability in steel structures. The implementation of the research process can be summarized as 

follows: 

 Developing a stochastic material model with elasto-plastic material properties based on 

the known probability distribution model by mathematical methods. The proposed 

model will be embedded into the common structural analysis software to analyze com-

plex structures with stress gradient.  

 Establishing a discrete random field with a general mathematical program based on the 

randomness of the material properties. The structural response is obtained by stochastic 

finite element method (SFEM) after the random field file is imported into the finite 

element model. 

 Implementing the uniaxial tensile test as well as three- and four-point bending tests to 

compare the above-mentioned theoretical analysis and to determine the corresponding 

parameters. 

 Evaluating the influence of statistical size effect (SSE) on structural reliability by max-

imum Entropy fitting method based on the known information, which is the obtained 

structural response by the theoretical analysis. 
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1.2 State of research 

In this section, the review of past and recent developments for statistical size effects, uncertainty 

modeling, generation and discretization of the random fields, development and application of 

stochastic FEM as well as application status and the challenge of reliability analysis in civil 

engineering will be briefly explained. 

1.2.1 Statistical size effect  

Referring to the reliability theory came in the past years to the question whether the strength of 

the material can be affected by the absolute volume of the structure [2–5]. From previous re-

search, size effect can be described as two fundamentally different approaches, i.e., determin-

istic and statistical explanations. Most researchers focused on size effect on the energetic basis 

and this purely deterministic size effect is widely studied [6,7]. The SSE of steel structures was 

mentioned decades ago [3]. However, currently researches in this area are rare. This is due to 

the fact that the SSE in steel structures is not as prominent as in concrete since the strength 

variability of steel is relatively small. Moreover, most of the components in the steel structure 

are plate-type and not bulk-type, and some studies have focused on the relationship between 

strength and material thickness. For example, Figure 1.1 a) shows that the material yield 

strength decreases with increasing material thickness. Thus, the material strength is graded by 

thickness in Figure 1.1 b), but this method ignores the influence of the tensile specimen size. 

Hence, the graded material strength according to the thickness strength in the reference [8] and 

design code [1] covers the SSE phenomenon. 

 
Figure 1.1: a) Relation between yield stress and material thickness, b) the probability distribution of the 

strength of the steel graded according to the thickness, from [8] 

Theoretically, all materials are not perfect and have the defective structure on the microscopic 

scale. Currently, the prediction of failure of structural elements based on microstructural anal-

ysis, such as Gurson-Tvergaard-Needleman (GTN) material model [9], is widely mentioned 
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and studied. However, these researches did not deal with the link between the randomness of 

the underlying microstructure imperfections and the probability distribution of material prop-

erties at the macroscopic scale. The material properties are affected by the structural size since 

the size, quantity, and corresponding distribution of microstructure imperfections are changed 

as the structural volume increases. From a statistical point of view, increased defects can lead 

to a higher probability of failure under the same stress conditions; that is the strength decreases 

as the failure probability remains unchanged. Therefore, the distribution of the defects in mi-

croscale determines the material strength in macroscale. Because of the randomly distributed 

sliding surfaces and other mechanical defects in material, it is possible to study the size effect 

by statistical methods. The research method based on the strength of statistical theory avoids 

the difficulty to research microstructure of the material. According to some simplified assump-

tion of the strength in microscale, the macroscopic strength can be obtained using a stochastic 

material model with probability and statistical method. Recently, the statistical size effect in the 

steel structure was demonstrated by experiment [10] and stochastic finite element method with 

random field [11]. 

The statistical size effect has been traditionally explained by Weibull-type statistical weakest 

link model [12]. The material strength depends on its weakest member. The underlying hypoth-

esis is that the structure will fail as the stress exceeds the material strength at any point of the 

structure. Because of its simple form and relatively preciseness, Weibull distribution in brittle 

material has been widely applied [13,14]. However, Bažant found in the application of the clas-

sical Weibull-type approach with reinforced concrete structures that the structures with quasi-

brittle materials are not only the existing statistical size effect but also strong deterministic sta-

tistical effect [15,16]. Moreover, some researchers show that Weibull size effect theory for rock, 

concrete and other quasi-brittle material needs to be corrected [17]. These researchers also at-

tempt a new method to combine statistical and deterministic theories employing a nonlocal 

generalization of Weibull theory [18,19]. The other avenue of approach tries to amalgamate 

Weibull statistical weakest link model and Daniel's fiber bundle model to establish a new pure 

statistical analysis model [10,20,21]. Hence, it is necessary to propose a new model and formu-

las for approximation and prediction of the material strength under various conditions based on 

asymptotic mathematical matches. 

The mathematical analysis of the statistical size effect is essentially based on the stochastic 

material model. The mathematical model, which is used to analyze the randomness of the ma-

terial properties, can be roughly divided into three types: weakest link model, fiber bundle 
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model and the combination of both models. The weakest link model was proposed by mathe-

matically first formulated by Fisher and Tippett [22] and used earliest to analyze the material 

strength by Weibull [12]. In the past decades, many researchers have conducted very in-depth 

studies [2,23]. The fiber bundle model was used to treat load-sharing among fibers by Daniel 

[24]. This model has been thoroughly investigated by S. Leigh Phoenix and other [25–28]. The 

combination of both classical models contains two different type, i.e., chain of bundle and bun-

dle of chain models [17]. Morechovsky [21] shows the result in his doctoral thesis that the chain 

of bundles model provides a flexible selection of the generic probability distribution for differ-

ent specimen size, which can result in different statistical size effect curves. 

1.2.2 Uncertainty and modeling with random fields 

From a mathematical point of view, the uncertainties in the structural Engineering can be di-

vided into three categories: randomness, fuzzy and unascertainty. The unascertainty refers to 

the uncertainty resulting from incomplete information or data. The uncertainty involved in this 

thesis is specific to randomness because the stochastic problem in the engineering is to treat the 

distribution of random variables and the corresponding parameters. 

The randomness is further divided into random variables, random processes and random fields. 

Random variables are used to describe the randomness of a single variable that is independent 

of time and space. The stochastic process is usually employed to deal with random parameters 

with varying properties [29]. For random parameters with spatial distribution characteristics, it 

is necessary to be treated with random field [30]. For a situation with defined coordinate posi-

tion, the random field is degraded to random variables. It is obvious that the randomness of 

material properties is distributed in a three-dimensional (3D) space. Thus, it is necessary to 

describe the material properties by random fields. In some cases, the randomness may have the 

variability of time and spatial, for example, the random field with temperature in concrete. This 

situation can be seen as a four-dimensional random field, which is added a time dimension in 

the 3D random field. In this thesis, we mainly study the realization and dispersion of a 3D 

random field. 

In fact, all the phenomena of uncertainty in nature can be attributed to the external manifesta-

tions of distributed disorder systems, which can be described as random distributions in spa-

tially distributed or it depend on time. Vanmarcke studied the random field theory very early 

and systematically [31]. At the same time, he made an incisive exposition of the random field 

for the material properties of geotechnical engineering. A few decades ago, Shinozuka's re-

searches were involved the random field characteristics of concrete materials [32]. From the 
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reference in the past times [33–36], it can be seen that the realization and discretization of all 

random fields revolve around two main categories, which is based on their probability distribu-

tion, namely Gaussian and non-Gaussian. According to the central limit theorem, a Gaussian 

random field is suitable using in lots of different situations. Because of the simplicity of the 

Gaussian random field and the lack of relevant experiments with random variables, it is often 

necessary to make Gaussian assumptions regarding these probabilistic characteristics. 

Although the Gaussian random field is relatively simple and it has a wide range of applicability, 

several quantities arising in practical engineering exhibit non-Gaussian probabilistic character-

istics [3]. There are two different approaches to implement the non-Gaussian random field. The 

first method is generating a sample function that matches the specified power spectral density 

function or the statistical moments of the target random field [37]. It is possible that the different 

marginal probability distributions have similar statistical moments even if the tails are dissimi-

lar. The other approach is generating a sample function, which contains the probability infor-

mation of the target function [38]. 

From the numerical calculation point of view, the random field must be discretized using a 

finite number of random variables. Some different random field discretization methods have 

been published in many references, for example, midpoint method [39], interpolation method 

[40], Karhunen-Loève (K-L) expansion [41] and the spectral representation method [42,43], 

etc. Recently, a general approach comprising spectral representation and K-L expansion is pro-

posed for generating Gaussian random field simulations [44]. 

At present, most of random field theory and random field discrete method are limited to one-

dimensional or two-dimensional. By the discretization of a random field with 3D domains, the 

main difficulty is to treat the problem that the solution of the eigenvalue function is included in 

the high dimensional integral. For this reason, the calculation of the corresponding matrix is 

very expensive or difficult to achieve. To speed up the assembly of a matrix with high-order 

integral, a method which approximates matrixes as a hierarchical matrix proposed [45]. 

1.2.3 Development and application of stochastic FEM 

In recent decades, with the development of computer technology, the analysis and design of 

small- and large-scale engineering systems have been allowed to be performed in simulation 

software. Using the finite element method to analyze complex structure has become a numerical 

approach widely used in structural engineering practice. In addition, with the introduction of 

high-precision element, the deterministic finite element calculation is becoming more and more 

accurate. This approach applied in engineering practice can guarantee the structural reliability 
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with a reasonable safety factor, but is not an optimal design method [46]. However, with the 

increase of the structure complexity, there is a complex relationship between the response quan-

tity of structure and the input quantity, which is often difficult to display with a function. By 

the traditional deterministic method, the mechanical problems with these uncertainties cannot 

be solved accurately by probability theory and statistics. The uncertainty and randomness of 

materials, boundary conditions and structure have been considered in the numerical model in 

recent years [47–52]. It is mentioned in [10,20] that the probability distribution of material 

uncertainties varies with the volume and stress gradient of the specimen and this phenomenon 

is difficult to be considered in the deterministic analysis. Therefore, the uncertainty can be em-

bedded in the mechanical model with a random field (RF) to analyze the response of the me-

chanical properties and influence of reliability. This analysis will be gradually improved over 

the last few years. Because the strong capabilities and advantage of the stochastic finite element 

method (SFEM) are demonstrated in the probabilistic analysis of structures with uncertainties, 

the SFEM is considered as one of the best tools for these simulations. 

The first ideal is direct to combine the finite element method with Monte Carlo method by Astill 

[47] and Shinozuka [48]. Because the direct Monte Carlo method is based on a large number 

of deterministic calculations, the computation of large structure is unacceptable, accordingly, 

some improved methods have also been proposed. Cambou [53] first studied the linearity prob-

lem by using a second order moment method. Then Baecher and Ingra [54] used a similar ap-

proach to solve the problem of uncertainty in geotechnical engineering. Due the process is car-

ried out with the Taylor series expansion of the random variables, this method was called Taylor 

expansion stochastic finite element method (TSFEM). Hereafter, Hisada and Nakagiri [55] used 

the first-order and second-order perturbation techniques to consider the fluctuation of random 

variables and propose a more efficient perturbation stochastic finite element method (PSFEM). 

In the late of 1980s, Yamazaki and Shinozuka [49] creatively combine the Neumann expansion 

method with the Monte Carlo stochastic finite element method and propose a Neumann expan-

sion stochastic finite element method (NSFEM) with high accuracy and efficiency. In 1991, 

Ghanem and Spanos [56] published the first monograph on the area of stochastic finite element 

method. This book is mainly discussed that the random processes are represented by discrete, 

independent random variables, which can be discretized and numerically solved in Hilbert 

space. 

The SFEM can be considered as an extension of the classical deterministic finite element 

method and involves solving the problem of finite element with the randomness of material 
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properties and boundary conditions. From a mathematical point of view, the SFEM can be seen 

as a numerical solver for stochastic partial differential equations and calculates the statistics of 

the pre-defined randomness conditions for the system response. The SFEM makes possible to 

analyze the uncertainty with FEM, but the corresponding complexity of the numerical model 

and the computing resources are increased at the same time. Due to the iterative operations 

involved in the simulation of a nonlinear elasto-plastic material, the nonlinear constitutive re-

lations are particularly difficult to analyze with uncertainty. Therefore, only the randomness of 

linear material is investigated in the most literature [50,57,58]. The simplification of nonlinear 

material using two fictitious bounding bodies is also employed to approximately satisfy the 

constitutive relations in [59,60]. More recent, the nonlinear problem can be solved by using the 

transformation of the stochastic elasto-plastic constitutive rate equation in the real space into a 

linear deterministic partial differential equation in the probability density space [61,62] and the 

stochastic Galerkin Method [63]. However, MCS is the most straightforward approach to im-

plement SFEM in general simulation software, which is also easiest to program for the calcu-

lation of system response in the SFEM and probably the only general tool to solve the stochastic 

finite element problem with complex nonlinear elasto-plastic materials. 

With the continuous improvement of the SFEM, the SFEM software, which can be used in the 

large-scale engineering design, is urgently needed. The current mainstream approach is to use 

general programming software to generate the random fields (such as MATLAB), and then the 

random field file will be inputted to the common commercial finite element software for further 

analysis. Finally, the results are returned to the mathematical software for analysis of statistical 

system response [64]. This approach is used to analyze the plane problem with the stochastic 

elastic material in [58]. Therefore, a general method needs to be developed to analyze three-

dimensional bodies with a nonlinear elasto-plastic material. 

1.2.4 Reliability theory in civil engineering 

The basic theory and method of structural reliability were formed in the 1960s and 1970s, and 

its main application is structural safety design [65]. Nowadays, the reliability method has been 

widely applied to the design of new structures [66], the application of new material [67], the 

safety of infrastructure systems [68] and the assessment of existing structures [69], since the 

reliability-based design methods have dominated the development of current codes and stand-

ards. A recent reference [70] focuses on the review of the reliability-based performance criteria 

used to calibrate design and evaluation codes and standards for assessing the strength, service-

ability, and fatigue resistance of structural components. Although there is a large difference in 
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the level of target reliability used for the strength of various structural members and materials, 

structural standards for reliability calibration are producing a good balance between safety and 

cost. 

The structural reliability analysis is typically based on random variables of load and resistance. 

In principle, the reliability can be evaluated once the probability distribution of the load and 

resistance (or response) becomes available. However, the rationality of the reliability calcula-

tion is based on the fact that the random variables distribution model and the relevant statistical 

parameters are correct. For yield strength of the material, some studies [3,69,71] suggest that a 

lognormal distribution is appropriate. But the reference [72] shows that the goodness-of-fit tests 

suggest that the lognormal, Weibull and extreme value distribution are all equally valid choice 

for describing the yield strength of steel. Through a series of experiments, it was found that 

there was a correlation between the steel strength and the sizes of the specimen [10]. The sta-

tistical parameters of the strength vary with size. Hence, the key problem for steel structure 

safety is to obtain the suitable distribution under the consideration of the uncertainties of the 

material properties. 

In recent decades, a more efficient approach, which is called the maximum entropy fitting 

method (MEFM) suggested by Jaynes [73], is to use a distribution free technique for estimating 

the probability density function of the samples of load and resistance or response. This method 

is employed to estimate the probability density function (PDF) of a random variable under spe-

cific moment constraints in the case of very little available data. This approach provides a min-

imum deviation probability distribution among all possible distributions consistent with the 

available data. An optimal probability distribution is constructed under the known information 

using this method. When the constraints are given, the maximum entropy principle can be de-

rived from many well-known probability models. Therefore, the MEFM is widely used as an 

effective stochastic modeling tool for successful application in many problems [74–79] and the 

reliability analysis [69,80]. 

1.3 Thesis structure 

This thesis is aimed to embed the randomness of material properties directly into mechanical 

methods to simulate the complex behavior and calculate the reliability of the actual structures. 

The structure of this thesis is shortly presented as follows. 

Chapter 2 discusses the statistical size effect with stochastic material models in steel structures. 

The chain of bundle model is proposed based on two classical models, which is used to describe 
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the statistical size effect of steel, and the possibility to approximately determine the parameter 

of the model is given. Simultaneously, the proposed stochastic material model is extended to 

the multi-axial stress state with the von Mises yield criterion, and it will be applied to structural 

components with non-uniform stress distribution. Besides, the stochastic material model is in-

tegrated into the commercial FEM software ABAQUS by user subroutine UMAT. 

Chapter 3 is focused on the implementation and application of stochastic finite element method. 

The SFEM is applied to the simulation for three-dimensional structure with the uncertainty of 

elasto-plastic material. The corresponding implementation is using the developed combination 

of general finite element software and mathematical software. The proposed approach com-

bines K-L expansion and Galerkin techniques for computing the response variability of realistic 

structures. The uncertainty of Young’s modulus and yield strength is described by the random 

field with Monte Carlo simulation enhanced by Latin Hypercube Sampling. Meanwhile, the 

random field and stress field can be arbitrarily separated and coupled by using the mapping 

interpolation method. Thus, this analysis is extended to be applied in a variety of element types 

in commercial FEM software. 

Chapter 4 is assigned for the tensile and bending test to compare the results of the mathematical 

model and the simulation. The statistical size effect in steel structures is verified by uniaxial 

tensile tests, and the material parameters of the stochastic material model are determined by 

comparison of the experiment and simulation. Moreover, the bending tests are simulated with 

the stochastic material model. The results of bending tests show that the SSE also exists in the 

flexural member and the equivalent yield stress is closely related to the stress distribution and 

volume of structural component. The simulations with SFEM show that the statistical distribu-

tion of the entire structural response and the randomness of the input material properties are 

associated with the change of the effective volume and stress distribution of the structure.  

Chapter 5 presents an efficient method based on SFEM for response variability and reliability 

analysis. The maximum entropy fitting method is employed to fit the distribution function of 

structural response. Furthermore, the reliability of steel structures with stress gradient was an-

alyzed using this method. The results show that the material strength, which has been obtained 

from small specimens through statistical analysis in the laboratory, is no more accurately ap-

plicable to large construction considering the SSE in the reliability analysis. Simultaneously, 

the safety index is closely related to the effective volume and stress gradient of the structure. 

The main conclusions of this thesis based on the results obtained in the previous chapter sum-

marized in chapter 6. 
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Chapter 7 gives some recommendations for the future research activities and indicating future 

directions and addressing some open issues to be considered by the engineering. 
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2 Analytical model for the statistical size effect 

2.1 Overview 

According to the traditional approach, the imperfections of the microscopic structure and real 

stress distributions in the structural component cannot be considered since steel is regarded as 

an ideal body in the structural calculation. The classical material model does not treat the ran-

domness of the material properties in mechanical analysis. For this reason, a method needs to 

be developed that it is possible to estimate the influence of the stress gradient and the stressed 

volume on the strength with the statistical size effect. Firstly, this chapter presents two classical 

stochastic material models. Based on the existing material models and the probability theory, a 

new stochastic material model is proposed to describe the statistical size effect. The developed 

model focus on the variations of the distribution functions, the mean value, the variance of the 

basic variables and the information of the probability function convergence. Besides, a method 

is put forward, which can estimate the parameters of a random material model. Afterward, this 

material model is extended with von Mises yield criterion to analyze the bending strength of 

the structure. The expanded model is programmed using User Subroutines in ABAQUS to de-

scribe the statistical size effect in complex structures. 

2.2 Stochastic material model 

2.2.1 Weakest link model 

Ideal brittle materials are distinguished by the fact that no plastic deformations occur. There are 

neither sliding surfaces nor other mechanisms with which mechanical energy is dissipated. As-

suming the homogeneous stress of the specimen, Weibull notes that the strength of an ideal 

brittle material depends on the specimen size and the concentration of the mechanical defects 

in the specimen [12]. The Weibull model is based on the weakest link to describe the ideal 

brittle materials. The statistical expected value of material fracture can be determined by the 

failure probability and depends directly on the specimen size. Usually, the smaller the specimen, 

the smaller the fracture probability under the same stress conditions [2,12]. 

It is assumed that the reference strengths ߪ଴ for the weakest link model are distributed by ܨ௜ሺߪሻ 

and the component volume ଴ܸ for all members is same and very small compare to the entire 

structural component volume ܸ. Furthermore, all elements are loaded under the same load ܨ as 

shown in Figure 2.1 a). Thus, the probability of the weakest link model is written as follows: 
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ܲሺܺ ൑ ሻߪ ൌ ሻߪ௣ሺܨ ൌ 1 െ ሺ1 െ  ሻ௠ (2.1)	ሻߪ௜ሺܨ

a) b) 
Figure 2.1: a) Weakest link model, b) Influence of the volume on the strength 

With the reference volume ଴ܸ and the reference strength distributed by ܨ௜ሺߪሻ the failure prob-

ability ܨ௣ሺߪሻ of the strength can be calculated using Eq. (2.1) for the ideal brittle material. 

ሻߪ௣ሺܨ ൌ 1 െ ݁∑ ୪୬൫ଵିி೔ሺఙሻ൯
ಿ
೔సభ ൎ 1 െ ݁

ି௏௏బ
ி೔ሺఙሻ (2.2) 

Based on experiments, Weibull had determined that the unique failure probability ܨ௜ሺߪሻ corre-

sponds to the power law [12]. Due to the long chain, the unique failure probability must be very 

small, namely ܨ௜ሺߪሻ ≪ 1, therefore, ln൫1 െ  .ሻߪ௜ሺܨሻ൯ can be approximated as െߪ௜ሺܨ

ሻߪ௣ሺܨ ൌ െ݁
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ቁ
೘
ௗ௏

 (2.3) 

where, ߪ଴ and ݉ are two material constants which are determined based on the experiments. 

According to Figure 2.1 b), the smaller the material constants ݉, the more obvious the statistical 

size effect of the material. 

The failure probability of this model is a monotonically increasing function based on the stress 

and the corresponding value range of this function is in the interval of [0,1]. According to the 

research from Karel [81], the following result for the mean value σഥ, which is same with the 

expected value ܧሺߪሻ, and the coefficient of variation ܥ௩	 of the distribution function is given 

for the Weibull model in Eq. (2.4) and (2.5). 
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It should be noted that the coefficient of variation of the statistical strength is independent of 

the total volume ܸ and the reference volume ଴ܸ. Thus, the material constant ݉ can be obtained 

by the material strength coefficient of variation based on experiments. For most real material, 

such as steel, the ܥ௩ of material strength is also changed as the specimen volume increase [10]. 

Therefore, the Weibull statistical theory may be limited to use on ideal brittle materials or ap-

proximatively on the brittle and quasi-brittle materials [13]. 

2.2.2 Fiber bundle model 

Another classical stochastic material model, i.e., fiber bundle model was proposed by Daniel 

[24], which is formed of ݊ parallel components, as shown in Figure 2.2. The stress-strain rela-

tionships are assumed to be identical for all ݊ components of the bundle. Each component of 

the fiber bundle model is loaded by ܨ/݊ and all components experience the same deformation. 

Compared to the weakest link model, the failure of a component no more definitely leads to the 

failure of the entire specimen. If ݆ components fail, the stress on the bundle is taken over by the 

remaining ݊ െ ݆ intact components. 

 
Figure 2.2: Fiber bundle model 

If the system consists of similar components, it will be assumed that the reference strengths ߪ଴ 

of every components distributed by ܨ௜ሺߪሻ are statistically independent. The exact recursive for-

mula of failure probability was developed by Daniels with the fiber bundles system as follows: 

ሻߪ௡ሺܨ ൌ ∑ ሺെ1ሻ௞ାଵ ቀ
݊
݇ቁܨ௜

௞ሺߪ଴ሻܨ௡ି௞ ቀ
௡ఙ

௡ି௞
ቁ௡

௞ୀଵ   (2.6) 

The probability function of the strength ܨ௡ሺߪሻ is numerically difficult to handle. Daniels has 

shown that the probability converges asymptotically to a Gaussian distribution for the case ݊ →

∞. Then, 

ሻߪ௡ሺܨ ൎ ߶ ቀఙିாሺఙሻ
஽ሺఙሻ

ቁ   (2.7) 

where the expected value ܧሺߪሻ and the variance ܸܽݎሺߪሻ can be expressed implicitly as follows: 

ሻߪሺܧ ൌ maxሺߪሾ1 െ  ሻሿሻ (2.8)ߪ௜ሺܨ
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Hohenbichler and Rackwitz [82] expanded the theory of the fiber bundle model to reveal the 

component with complex stress-strain relationship for elastically brittle material. For the ideal 

elasto-plastic material, the failure probability can be approximated as a normal distribution ac-

cording to the central limit theorem, if the stochastically strength is independent for each com-

ponent. 

2.2.3 Real material properties 

The materials in reality are usually not ideal for brittleness and plasticity. Generally, one of 

several different post-peak behaviors of material properties, which are shown in Figure 2.3, will 

occur after the stress on the material exceeds the elastic limit. For the weakest link model, if the 

material reaches the maximum stress is defined as the failure; the post-peak behavior of material 

properties does not affect the analysis of the chain model. If the chain is long enough, the weak-

est link model is throughout following Weibull distribution regardless of whether the material 

has plasticity, brittleness or more realistic post-peak softening behavior. However, for satisfy-

ing this condition, it exists only in infinite structure volume. 

The post-peak gradual softening behavior is difficult to analyze in the fiber bundle model be-

cause each fiber requires considering not only elasticity but also plasticity until it reaches the 

strength limit. Two other behaviors in fiber bundle model are relatively easy to study after 

reaching the strength limit, and it can be approximated by a normal distribution according to 

the central limit theorem for plastic material and recursive formula by Smith [26] for brittle 

material. Therefore, the two classical stochastic material models have some limitations, as well 

as it is not possible or difficult directly as a generic stochastic material model for elasto-plastic 

material. 

 
Figure 2.3: Post-peak behavior of material properties, a) ideal plastic, b) softening, c) brittle 

It is well known that the steel is not an ideal elasto-plastic material. When the steel specimen is 

subjected to tensile test, it will experience several various stages before fracture. If this ductile 

material is stretched beyond the elastic point, the steel starts to show plastic behavior. The upper 

yield point is the point after which the plastic deformation starts. Moreover, a point at which 

minimum load or stress required to maintain the plastic behavior of material such a point is 

 ߪ

a) 

 ߪ

b) 

 ߪ
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called as lower yield point. The upper yield point is unstable; this is due to the fact that the 

dislocations in the crystalline structure start moving after this point. Normally, we use the lower 

yield point to determine the yield strength of the material being tested, because the upper yield 

is momentary but lower yield point is stable. 

 
Figure 2.4: Upper and lower yield point of steel S235 

Figure 2.4 shows the stress-strain curve of the steel S235 with different specimen diameters. It 

is clear that this kind of steel appears obvious upper and lower yield point. A very little change 

is remained in the upper yield strength for the different specimen sizes. However, the yield 

stress of a smaller specimen with diameter 4 mm is greater than the yield stress of another one 

with 10 mm diameter. Hence, it can be deduced that the steel with a relative small characteristic 

volume is not the ideal material and it reflects the more realistic post-peak behavior, which is 

gradually softening in Figure 2.3 b). Theoretically, the perfect plasticity and brittleness are just 

two extreme idealized models and the post-peak softening behavior should be between these 

two extremes. As well as it can more accurately describe the characteristics of the real materials. 

Theoretically, the artificially manufactured materials such as steel are not completely isotropic 

and inhomogeneous, which contain various structural imperfections. The material properties 

are influenced by the size and quantity of microstructural imperfections and the corresponding 

distribution. The material parameters distributed to ܨ௑ሺݔള߆ሻ are given by the random variable 

ሺݔଵ, ⋯,ଶݔ ,  is the vector of statistical parameters. The specimen can be simplified to the ߆ .௜ሻݔ

fiber bundle model only if the specimen size in the direction of the applied force is far smaller 

than the size transverse to the force in Figure 2.5 a). However, most of the situations in reality 

is similar to Figure 2.5 b), which cannot be described by the fiber bundle model. The structure 

in practice is obviously needed to be analyzed with more complex probability models. 

Lower yield point 

Upper yield point 



Analytical model for the statistical size effect 

17 

 

 
Figure 2.5: Illustration of material under the stress 

From a probabilistic point of view, the relevant distribution of material properties is almost non-

quantifiable, because the probability model of the structure is completely disordered. Hence, it 

is necessary to make reasonable assumptions and simplification of the stochastic material model. 

Theoretically, the failure mechanism can be modeled with a hybrid of series and parallel cou-

pling. The chain of bundles model and the bundle of chain model can be used as a simplified 

form of complex models since the parallel model and the series model are the two basic proba-

bility models. The chain of bundle model is modeled as a chain of ܰ representative volume 

elements (RVE), each of which is statistically represented by a model consisting of ݊ bundles. 

On the other hand, the bundle of chain model is a series coupling of ܰ RVE, but the RVE means 

a model consisting of a chain of basic members. 

 

  

 

 a) b)  

Figure 2.6: a) Chain of bundle model, b) bundle of chain model 

Recently, a physical justification of the distribution of the structural strength was described 

based on the Maxwell-Boltzmann distribution of thermal energies of atoms in nanoscale by 

Bažant [83]. The number of the base element normally can be considered as infinite, and the 

number of RVE in a structure would be small. When the basic element is extremely small, it is 

assumed that the probability distribution function of element strength is a power law. Hence, 

the RVE, which is a chain composed of an infinite number of the fundamental element, obeys 
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the Weibull distribution. The mathematical significance of the bundle of chains model is calcu-

lating the probability of a parallel system with several Weibull distributions. However, the fail-

ure probability of this system could not be approximated accurately by simple analytical equa-

tions and be applied in the structural analysis, because the failure probability contains a com-

plicated recursive formula. In summary, the chain of bundle model may be the only available 

probability model to analyze the statistical size effect for real materials. The RVE of the chain 

of bundle model is structured by a fiber bundle model with softening behavior material. Alt-

hough there is no strict mathematical proof, it can be assumed that the real material with gradual 

softening behavior in the plastic stage is also close to normal distribution according to the cen-

tral limit theorem when the number of fibers tends to infinity. The chain of bundles model offers 

an approach to fill the gap of the size effect between larger scale and small scale in Figure 2.7. 

Therefore, the focus in this chapter is on the analysis and application of chain of bundles model. 

Figure 2.7: Probability distributions with various volumes 

2.2.4 Chain of bundle model 

As mentioned in section 2.2.3, the chain of bundle model is constituted by ܰ RVE of ݊ parallel 

reference element in a chain. The RVE is defined as the smallest volume of material, whose 

failure can cause the destruction of the whole structure. If the RVE can result in total failure, 

then the structure can be simplified as a chain of RVEs. In this case, the probability function of 

the respective parallel system can be analyzed and it obeys to a normal distribution, if the num-

ber of the parallel systems moves towards infinity. For a large coefficient of variation, the 

Gaussian distribution should be replaced with a logarithmic normal distribution to reduce the 

variance of heterogeneity of the material property and to prevent negative strengths. It is as-

sumed that the failure probability of the RVE is statistically uncorrelated. For the chain of bun-

dles model, the probability of failure is given as follows: 
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where ∅ሺ∗ሻ is the distribution function of the standard normal distribution. ߦ is the material 

constant.	ߪ௨ is the lower limit of ߪ and ߪ ൐  .଴ is a scale parameter of strengthߪ .௨ߪ

According to the definition ܨ௣ሺߪሻ ൌ ׬ ௣݂ሺߪሻ݀ߪ
ఙ
ିஶ , the probability density function ௣݂ሺߪሻ can 

be obtained by derivative of the cumulative distribution function ܨ௣ሺߪሻ of the continuous ran-

dom variable ߪ in Eq.(2.11). 
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Eq. (2.10) gives the continuous transition between Weibull weakest link model and Daniel’s 

parallel bundle models. It is purely phenomenological and not based on any physical models. 

The failure probability approximates to a lognormal distribution, if the whole volume of the 

specimen is extremely small, i.e., ܸ/ ோܸ௏ா → 1. On the other hand, according to [84], the failure 

probability of material strength converges to the Gumbel distribution rather than the Weibull 

distribution with the larger volume. But when the whole volume ܸ → ∞, the probability of 

strength converges to the Weibull distribution [83], i.e., the precise Weibull PDF would never 

be observed in practice. 

Figure 2.8: Probability density function of the chain of bundle model with various volumes 

Figure 2.8 presents the PDF of the chain of bundles model with different ߪ/ߪ଴-value and vari-

ous numbers of RVEs, where the material constant ߦ is assumed as 0.1. It is evident that the 

probability density distribution of ߪ/ߪ଴ is more concentrated with the increased the number of 

RVEs, i.e., the coefficient of variation of the distribution function decreases as the number of 
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RVEs increases. This phenomenon is consistent with the description of the statistical size effect 

in [21]. Furthermore, the mean value and skewness of the failure probability also vary with the 

number of RVEs. Therefore, the chain of bundle model provides a general probability distribu-

tion for the material strength and offers a flexibility choice through different ratios of structural 

component size and the RVE size. The Weibull, Gaussian and Lognormal distribution, which 

is suggested in the existing reference based on the tensile tests, can be obtained by proposed the 

probability distribution with different sizes of the structural component. Figure 2.9 shows the 

matching results of the recommended PDF and CDF and classical probability distribution of 

material strength. 

  

a) b) 

Figure 2.9: Relationship of the proposed distribution and classical distribution, a) PDF, b) CDF 

In order to verify the distribution of the chain of bundles model, the numerical simulations are 

performed based on the pseudo-random number as in Figure 2.10. Firstly, it is assumed that the 

strength of all RVEs is subjected to lognormal distribution and each component are independent 

of each other in probability. Then the pseudo-random numbers will be produced through the 

computer simulation for different ܸ/ ோܸ௏ா-value (log	ሺܸ/ ோܸ௏ா	ሻ ൌ 0, 1,2,3,4,5).  

In this simulation, the pseudo-random numbers represent the ration of the RVE strength ߪோ௏ா 

and the scale parameter of strength ߪ଴, i.e., ߪோ௏ா/ߪ଴. The corresponding mean value and coef-

ficient of variation are assumed as 1 and 10%. Because the entire system is structured by a chain 

of the RVEs, the strength of the whole structure is equal to the minimum strength of all RVEs. 

Therefore, by repeating this process with a finite number ݊ of times (10ସ in this simulation), 

discrete samples of the entire structural strength can be obtained. 
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Figure 2.10: Numerical simulation of analytical model 

Figure 2.11 shows the distribution of chain of bundles model with different volume of the struc-

tural component, i.e., different ܸ/ ோܸ௏ா-value. It is obvious that the distribution of strength is 

constantly changing with the increase of the ܸ/ ோܸ௏ா-value. It can be seen in Figure 2.11 a) that 

the strength distribution is consistent with the lognormal distribution as ݈݃݋	ሺܸ/ ோܸ௏ா	ሻ ൌ 0. The 

distribution of strength is very similar to Weibull distribution as ݈݃݋	ሺܸ/ ோܸ௏ா	ሻ ൌ 5. Further-

more, with increasing the ݈݃݋	ሺܸ/ ோܸ௏ா	ሻ-value, the sample strength get closer to the Weibull 

distribution. These results are consistent with the conclusion from the Eq. (2.10). In addition, 

Figure 2.11 shows that the mean and variance value of the ratio ߪ/ߪ଴ are also reduced as the 

ܸ/ ோܸ௏ா-value increases. It is worth noting that the skewness of strength is a slow and continu-

ous transition from positive to negative as the ܸ/ ோܸ௏ா-value increases. 
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c) d) 

  

e) f) 

Figure 2.11: Distribution of chain of bundle model with different volumes 

2.2.5 Parameter study of the stochastic material model 

The probability density function ௣݂ሺߪሻ in Eq. (2.11) is theoretically a distribution function with 

three parameters, i.e., ߪ௨, ߪ଴ and ߦ. It should be mentioned, however, with the increase of the 

number of unknown parameters, the probability distribution parameter estimation becomes 

more difficult. For simplicity, it is assumed that the lower limit of ߪ is defined as ߪ௨ ൌ 0. This 

means that this CDF has a zero threshold and only two parameters need to be considered in this 

thesis. Because the material parameters are used to describe the randomness of the material 

properties with different volumes, the parameters cannot be obtained directly by measurement. 

The influence of the specimen size cannot be considered by tensile tests with a single volume, 

since the ratio of the specimen volume and RVE is normally unknown. According to the theo-

retical model, the PDF ௣݂ሺߪሻ is related to the volume of the structural component and the 

CDF	ܨ௣ሺߪሻ is monotonically decreasing as the volume increases. Hence, the statistical param-

eters could be obtained through a series of experiments, as well as the material parameters can 
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be determined reversely using the corresponding statistical results. For this purpose, the method 

of moments is employed, which is the most straightforward and intuitive approach to estimate 

the parameters of distribution. 

For ߪ௨ ൌ 0, the mean values ߪത and the coefficient of variation ܥ௩ of the strength can be deter-

mined with: 
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By Eq. (2.12) and (2.13), the ratio of mean values ߪത and the scale parameter of strength ߪ଴ are 

written as the integral formula, and the coefficient of variation ܥ௩ of the material strength is the 

function consisting of ܸ/ ோܸ௏ா	 and material constant ߦ. This integral couldn’t be directly cal-

culated due to the error function erf	ሺ∗ሻ. Because some primitive functions of integral are usu-

ally difficult or impossible explicitly to specify, it can be expressed with discrete values in 

numerical mathematics. The numerical integration is the approximate calculation of certain in-

tegrals. Based on the function approximation by an interpolation polynomial, it is attempted to 

determine the approximate values, if the integral function satisfies the intermediate value theo-

rem. From this, the approximate solution of definite integrals could be calculated with numeri-

cal integration.  

It is easy to prove that the integral functions ߪ ∗ ଶߪ ሻ andߪ௣ሺܨ ∗  ሻ are integrable on anߪ௣ሺܨ

interval [0,∞]. Using the mathematical software MATLAB, the mean value and the coefficient 

of variation are determined, as well as it is described as a graph in Figure 2.12. It is clearly 

obvious that the reduction of the mean value is proportional to the increase of ܸ/ ோܸ௏ா. The 

/ܸ value if-ߦ ଴-value is reduced with increasingߪ/ሻߪሺܧ ோܸ௏ா is relatively large. The opposite 

occurs when ܸ/ ோܸ௏ா strives to one. In general, the strength of the specimens in relation to the 

volume is monotonously decreasing when the material constant ߦ is positive and ோܸ௏ா is con-

stant. 
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Figure 2.12: Numerical approximation of the mean values of strength distribution 

In Figure 2.13, the coefficient of variation is represented by two variables ܸ/ ோܸ௏ா and ߦ. The 

value decreases with increasing ܸ/ ோܸ௏ா. The coefficients of variation ܥ௩,ଵ and ܥ௩,ଶ can be de-

termined by the tensile tests with two different specimens ଵܸ and ଶܸ. The parameter ߦ is ob-

tained with the help of Figure 2.13, where the ratio of volume is calculated according to Eq. 

(2.14). According to the approximation method, the material constant ߦ will be determined with 

a certain proportion of volume, if the coefficient of variation locate on the interval ൣܥ௩,ଵ,  .௩,ଶ൧ܥ
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Figure 2.13: Relationship between coefficient of variation ω and variables V/VRVE under different ξ values 
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2.3 Generalization of the chain of bundles model 

2.3.1 Stress gradient and multi-axial stress state 

Since the chain of bundle model is a purely mathematical model, it can be used not only to 

accurately describe the relationship between strength and volume for the specimen with con-

stant stress distribution, but also the specimen with stress gradient. The volume and stress of 

the specimen in the Eq. (2.10) cannot be treated as independent constant due to the existence of 

stress gradient. Therefore, the stress needs to be integrated on the interval of the entire specimen 

volume and the Eq. (2.10) is replaced by Eq. (2.15) as follows: 

ሻߪ௣ሺܨ ൌ 1 െ ݁
ି భ
ೇೃೇಶ

׬∗ ∅ቌ
ౢ౤൬

഑ష഑ೠ
഑బ

൰

഍
ቍௗ௏

ೇ
బ

ൌ 1 െ ݁
ି భ
ೇೃೇಶ

׬∗ ׬ ׬
భశ౛౨౜ቈ

ౢ౤൫഑∗೑ሺೣ,೤,೥ሻ൯

√మ∗഍
቉

మ
ௗ௫ௗ௬ௗ௭

ಹ
బ

ಳ
బ

ಽ
బ   

(2.15) 

where ܤ ,ܮ and ܪ represent respectively the length, width and height of the structural compo-

nent, i.e., ܸ ൌ ܮ ∗ ܤ ∗ ,ݔThe ݂ሺ .ܪ ,ݕ -ሻ is the stress distribution function over the structure volݖ

ume. The mean value of the material strength can usually be used to define the strength of the 

structure for arbitrary stress gradient and different volumes. The true strength of the material 

with the volume ܸ can be expressed by Eq. (2.15). 
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where ߙଵ and ߙଶ are two reduction factors of effective volume and represented in Eq. (2.17) 

and (2.18). 
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For simplicity, the SSE coefficient ߛ is defined as the ratio of mean value with volume ܸ and 

଴ܸ of both the specimens under arbitrarily stress distribution. 

ߛ ൌ ఙഥೇ
ఙഥೇబ
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ఈమ,బ

ߪ݀
ஶ
଴   (2.19) 

It is assumed that the specimen strength ߪത௏଴ with volume ଴ܸ is obtained by uniaxial tensile test, 

which is carried out by a specimen with the circular cross-section. Therefore, the stress distri-

bution function ݂ሺݔ, ,ݕ  ሻ is a constant and equal one, this two factors can be simplified asݖ
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ଵ,଴ߙ ൌ ሺ1 ൅ erf ቂ୪୬
ሺఙሻ

√ଶ∗క
ቃሻ/2 and ߙଶ,଴ ൌ exp	ሺെ ୪୬మ	ሺఙሻ

ଶ∗కమ
ሻ. At the same time, the material constant ߦ 

and the volume of RVE ோܸ௏ா can be obtained by a series of tensile tests. Therefore, the strength 

of the structure with arbitrarily volume under arbitrarily form of load can be calculated with the 

SSE coefficient ߛ by the following equation. 

ത௏ߪ ൌ ߛ ∗ ത௏଴ߪ ൌ ത௏଴ߪ ∗ ׬ ݁
ି ೇ
ೇೃೇಶ

∗ሺఈభିఈభ,బሻ ∗ ఈమ
ఈమ,బ

ߪ݀
ஶ
଴   (2.20) 

Since the tensile tests are loaded into one axis, the yield stress and the first main stress are equal 

ߪ) ൌ  ூ). The above-described strength relationship is applicable when regarding the case of aߪ

uniaxial stress state. For the complex multi-axis stress situation, we need to make some assump-

tions. In order to consider the SSE in the multi-axial stress state, the following hypotheses are 

assumed: 

 Maximum distortion energy theory (von Mises yield criterion) [85] is still applied 

within statistical size effect. 

 The size effect coefficient in normal stress state and shear stress state are same ( ߛ ൌ

ఙߛ ൌ  .(ఛߛ

 Steel is an isotropic material, i.e., the SSE coefficient ߛ in each direction is same. 

With the help of these assumptions, the multi-axial stress state in a real structural component is 

replaced by fictional uniaxial stress, namely von Mises stress, as well as directly compared with 

the characteristic values from the tensile tests. The SSE with a non-constant stress state is con-

sidered by the SSE coefficient ߛ. 

The yield strength of the material under specified volume can theoretically be obtained by the 

uniaxial tensile test. Therefore, the yield strength can be applied to any structural component 

with any size and any stress distribution over the volume by the reduction and amendment with 

the help of SSE coefficient ߛ. It is clear that the analysis of statistical size effect can be trans-

formed into the calculation of the SSE coefficient. It is often difficult to determine the stress 

distribution function ݂ሺݔ, ,ݕ  ሻ, since the stress distribution function is not only affected by theݖ

component geometry and the load types, but also constantly changing with the loading history 

of the structure. This means that the traditional analytical method cannot solve such problems. 

Therefore, the SSE coefficient ߛ is derived by numerical method in the following section. 

2.3.2 Numerical methods to solve the statistical size effect coefficient 

It is clear that the analytical integration cannot be solved if the primitive function is not explicit 

in a database. An approximation of integral calculation, which is based on the discretization of 
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the continues problem with the numerical method, could be employed to calculate the integral 

for the coefficient ߛ in Eq. (2.19). In this thesis, the coefficient ߛ will be determined by Sub-

routine UMAT in commercial FEM software ABAQUS. The yield strength of each integral 

point will be previously defined, and then it is reduced by multiplying the corresponding SSE 

coefficient. The User Subroutine in ABAQUS needs to be written with the efficient basic pro-

gramming language FORTRAN [86]. The main effort of the calculation lies in the solution of 

the multiple integrals of ߙଵ in Eq. (2.17) and ߙଶ in Eq. (2.18) and solving the definite integral 

on the interval [0,	∞]. 

For determination of the integral with an infinite upper limit, it is necessary that the integrand 

converted to a finite limit on the interval. A non-linear transformation of the integration varia-

bles is recommended in this thesis. The aim is to map the integration area to a standardized area, 

so that it is possible to use the integral formula in a limited area. By a substitution ݐ ൌ 1/ሺ1 ൅

 ,1] in Eq. (2.21)	ሻ, the improper integral is replaced by an integrand with a bounded interval [0,ߪ

where ݐ݀′ݐ is the required substitution for ݀ߪ. 
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To simplify the multiple integral, it is assumed that the stress distribution function ݂݀ሺݔ, ,ݕ  ሻݖ

is constant, when ܸ݀ (݀ݖ݀ݕ݀ݔ) is small relative to the entire component. According to Eq. 

(2.22) and (2.23), the coefficients ߙ௧,ଵ and ߙ௧,ଶ can be determined by the discretization of the 

continuous problem with the sum of the product of infinitesimal volume [87] and the corre-

sponding stress, which can be solved very efficiently with the computer. 
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After the algebraic substitution, the coefficient ߙଵ and ߙଶ will be resulted in exponentially de-

caying integrand [87], which is efficiently applicable to the trapezoid rule. Because of the sim-

plification of the stress in the infinitesimal volume, the finite element mesh generation is de-

fined preferably finely. In contrast, the mesh in the modeling of FEM is as coarse as possible 

for the reason that the simulations with the iteration of non-linear material properties need to 

consume significant computational resources. Hence, using the stochastic material model for 
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the analysis of structures need to find the balance between computational accuracy and compu-

tational efficiency, especially for the structures with stress gradient. The more detailed discus-

sion will be presented in section 4.3.4. 

 
Figure 2.14: Flowchart of UMAT-Subroutine 

Because the stress distribution changes nonlinearly in the plastic phase, an iterative method in 

every substep is applied to solve the nonlinear elasto-plastic problem. Firstly, it is assumed that 

the deviation of the two adjacent iteration steps is negligible, when the increment of iteration 

step is small. Because the stress distribution of current iteration step is unknown, the stress 

distribution function ݂ሺݔ, ,ݕ  .ሻ will be replaced by the distribution of the previous iteration stepݖ

Therefore, the SSE coefficient ߛ can be calculated for each iteration steps. After determination 

of the yield criterion, the Jacobi matrix and updated stresses are determined. Simultaneously, 

the Jacobi matrix is transferred back to a whole stiffness to the main program. To illustrate the 

implementation of Subroutine, the flowchart for UMAT is shown in Figure 2.14. 
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2.4 Conclusions 

In this chapter, a new stochastic material model for the elasto-plastic material was proposed. 

This model can be used to analyze the statistical size effect. Firstly, the classical stochastic 

material model has been briefly described, as well as the modeling and application scope of the 

two most fundamental models are discussed in detail. By analyzing the real material properties, 

it is generally considered that the two classical random material models are not able to describe 

the material properties very accurately, namely a new material model needs to be developed. 

Subsequently, the chain of bundle model based on two classical models was proposed and em-

ployed to describe the statistical size effect for steel. According to the mathematical analysis, 

the probability distribution function of this chain of bundle model is not constant, i.e., this prob-

ability distribution was skewed to the left with a small volume of the structural component and 

to the right with big specimen size. Besides, a numerical simulation proves the correctness of 

this model. Finally, the proposed model was extended to analyze the steel structure with multi-

axial stress state using the von Mises yield criterion. This model was also applied to structural 

components with non-uniform stress distribution. 

Furthermore, the stochastic material model was integrated into the commercial FEM software 

ABAQUS by user subroutine. In the following chapters, the statistical size effect of steel will 

be verified by uniaxial tensile tests and bending tests, and the parameters of statistical size effect 

will be determined by experimental results and simulations. The simulation with the chain of 

bundle model will be carried out in section 4.3 and the results of simulation will be compared 

with results of the experiment and stochastic finite element method. 
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3 Uncertainty modeling and implementation of stochastic 

FEM 

3.1 Introduction 

Essentially, the uncertainties of the material properties are necessarily presented in the entire 

volume of the structural component, because the mechanical defects of the material are ran-

domly distributed in the whole structure. Nowadays, it is widely recognized that the material 

properties are characterized by intrinsic randomness and uncertainty, as well as these properties 

exhibit stochastic variation in space. The conventional method, where the structure is modeled 

by the reduced mean value of basic random variables, is not adequate since it is not able to 

reproduce the point-to-point variability. The random field is a useful mathematical model that 

can describe the properties of spatial variability accurately in the structural component. How-

ever, the numerical method used in structure analysis cannot directly deal with continuous mod-

els; thus the discretization of the random field is required. The purpose of discretization is to 

approximate the random field by the finite set of random variables. Nevertheless, if the discreti-

zation of the random fields used to describe the performance of the structure is not accurate 

enough, the investigation of reliability analysis could be misleading. Moreover, obtaining the 

approximate random field with the correct statistical parameters is a prerequisite for the study 

of SFEM. 

The statistical size effect based on the mathematical model can be obtained the results, which 

are the phenomenon by a variety of assumptions and simplifications. The SSE based on the 

uncertainty of the material properties can be theoretically described with the FEM simulation, 

when the material randomness can be defined with the mathematical model. A powerful ap-

proach to solve this kind of problem is the stochastic FEM. The SFEM is treated as an extension 

of the classical deterministic FE approach in numerous studies. Recently, Stefanou provided a 

state-of-the-art review of past and recent developments in the area of SFEM and given some 

open issues to be studied and solved [46]. One of the most urgent needs for applications of 

SFEM in engineering problems is to develop a robust and efficient framework that can interact 

with powerful third-party codes [58]. 

In this chapter, the Kahunen-Loève expansion is used to implement the random field, and the 

acceptable approximated random field is obtained by truncating the series expansion. After-

wards, the material properties in the random field are assigned to the integrations point by the 



Uncertainty modeling and implementation of stochastic FEM 

31 

 

3D interpolation function with the proposed mapping-interpolation method. The error of dis-

cretization and interpolation is formulated for each step with corresponding error estimator. The 

constitutive equation of elasto-plastic material is decomposed into deterministic and stochastic 

parts in the finite element software, as well as it will be solved by Monte Carlo simulation. 

Besides, this method will be developed to analyze three-dimensional bodies with nonlinear 

elasto-plastic material and to apply in a variety of element types in commercial FEM software. 

3.2 Uncertainty modeling 

3.2.1 Probability space and random variables 

The observation of random phenomena is traditionally called the experiment. A probability 

space is constructed with a specific kind of situation or experiment in mind. All the possible 

outcomes of an experiment form the sample space, usually represented by ࢹ. The probability 

theory aims at associating numbers to events, i.e., their probability of occurrence. Let ࡼ denote 

this so-called probability measure. The collection of possible events having well-defined prob-

abilities is called the ߪ-algebra associated with ࢹ, indicated here by ࡲ. Finally, the probability 

space constructed utilizing this notion is denoted by (ࡲ,ࢹ, -In probability theory, a probabil .(ࡼ

ity space consists of three parts: 

 ࢹ: Sample space, which is the set of all possible outcomes. 

 ࡲ: Set of events, which is a collection of some subset of ࢹ and where each event can be 

a set containing zero or more outcomes. 

 ࡼ: Probability measure, which can describe the possibility of all the events included in 

 .in a random experiment ࡲ

Intuitive understanding, the sample space ࢹ is the range of all possible outcomes before the 

experiment has been predictable. The set of events ࡲ specifies which subset of ࢹ can be called 

an Event, thus avoiding the paradox caused by unpredictable sets. The probability measure ࡼ 

is a function returning an event's probability. A probability is a real number between zero and 

one. The probability measure function must satisfy two simple requirements: the probability of 

a countable union of mutually exclusive events must be equal to the countable sum of the prob-

abilities of each of these events and the measure of entire sample space is equal to one. It is 

clear that the probability measure ࡼ can determine the probability of each event. 

Due to the accidental factors, some variables may take a variety of different values with uncer-

tainty and randomness under different conditions, but these values fall within a certain range of 

probability is certain. These variables are called random variables. A real random variable ܺ is 
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a mapping ܺ: ሺࢹ, ,ࡲ ሻࡼ → Թ. The probability of outcomes measurable is given by a set of all 

event, but a single random variable does not return the probability. For the continuous random 

variables, the PDF and CDF are represented respectively by ௑݂ሺݔሻ and ܨ௑ሺݔሻ. Some random 

phenomena need to be described by multiple random variables at the same time. A random 

vector ࢄ is a collection of random variables. The probability distribution of random variables 

is often characterized by a small number of parameters, which also have a practical interpreta-

tion. The mathematical concept of expected value of the continuous random variable denoted 

by ܧሺ∗ሻ. The mean value, variance and ݊-th moment of random variable ܺ are shown as fol-

lowing: 

ߤ ൌ ሾܺሿܧ ൌ ׬ ݔ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ   (3.1) 

ଶߪ ൌ ሾሺܺܧ െ ሻଶሿߤ ൌ ׬ ሺݔ െ ሻଶߤ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ   (3.2) 

ሺܺ௡ሻܧ ൌ ׬ ௡ݔ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ   (3.3) 

In probability theory and statistics, the covariance is used to measure the global error of two 

variables. The variance is a special case of covariance, i.e., when two variables are the same. 

The covariance	ݒ݋ܥሺܺ, ܻሻ between two real random variables ܺ and ܻ of ܧሾܺሿ and ܧሾܻሿ is 

defined as: 

,ሺܺݒ݋ܥ ܻሻ ൌ ሾሺܺܧ െ ሾܺሿሻሺܻܧ െ ሾܻሿሻሿܧ ൌ ሾܻܺሿܧ െ   ሾܻሿܧሾܺሿܧ

ൌ ∬ ሺݔ െ ݕ௑ሻሺߤ െ ௒ሻߤ ௑݂,௒ሺܺ, ܻሻ݀ݕ݀ݔ
ஶ
ିஶ   

(3.4) 

As a measure of correlation between ܺ and ܻ, The covariance is effective for the situation with 

the same physical dimension. However, the covariance of two variables shows great differences 

when the two variables are used in the different dimensions. Therefore, the following concepts, 

namely correlation coefficient ߩ௑,௒, are introduced to describe the correlation of random varia-

bles. 

௑,௒ߩ ൌ ,ሺܺݎݎ݋ܥ ܻሻ ൌ 	 ஼௢௩
ሺ௑,௒ሻ

ఙ೉ఙೊ
  (3.5) 

3.2.2 Random field in Hilbert spaces 

Many of physical phenomena in nature can be attributed to the external manifestations under 

the influence of distributed of disorder system. This system can be described as a random field 

in probability space or a random process based on time. Vanmarcke [30] illustrates the origin 

and establishment of the random field, as well as suppose that the establishment of the random 
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field is a passive process. This is because all aspects of the system cannot be known, and can 

only obtain the information of the parts by collecting part of the sample. Finally, the random 

field is established using the estimated approach. 

The random field is the generalization of the random process in the spatial domain. The basic 

parameters of the random field ܪሺࢄሻ are the position vector ࢄ ൌ ሺݔ, ,ݕ  ሻ. The random field isݖ

not a conventional engineering problem, because it involves a somewhat abstract and mathe-

matical concept. Therefore, it is necessary to keep the degree of abstraction at the minimum to 

avoid obscuring the engineering aspects of the problem. In this section, the mathematical de-

scription of the random field will be elaborated in the simplest way. 

A random field ܪሺࢄ,  with values on the real ࡰ ሻ is defined in the Hilbert space over a domainߠ

line Թ. The probability space of real random variables with the finite second moment (ܧሺܺଶሻ ൏

∞) is denoted by ࡸሺࢹ, ,ࡲ ,ࢄሺܪ .ሻࡼ -ሻ is a collection of random variables indexed by a continuߠ

ous parameter ࢄ ∈ ,଴ࢄሺܪ This means that the random field .ࢹ is an element of ߠ where ,ࡰ	  ሻߠ

is a random variable if the position vector ࢄ଴ is given. In other hands, ܪሺࢄ,  ଴ሻ is a realizationߠ

of the field function for a given outcome ߠ଴. 

It is assumed that each element of ܪሺࢄ,  .ࡰ ሻ in the Hilbert space is integrable functions overߠ

If the inner product of two elements in the Hilbert space and the probability space vanishes, the 

two elements of the Hilbert space is orthogonal [56]. Then, the random field can be defined as 

a curve in the Hilbert space. Hilbert spaces have beneficial properties to develop approximate 

solutions of boundary value problems, such as the Galerkin procedure. 

Although most of the uncertainties present in practice are essentially non-Gaussian, the Gauss-

ian assumption is often used, due to its simplicity and lack of relevant experimental data. In 

addition, from the central limit theorem and the maximum entropy principle with the infor-

mation on the second-order moments, the Gaussian stochastic random field assumption is rea-

sonable. If the all element ሼܪሺࢄଵ, ,ሻߠ ,ଶࢄሺܪ ,௡ࢄሺܪ⋯ሻߠ  ሻሽ is Gaussian, the correspondingߠ

random field ܪሺࢄ,  ሻ is Gaussian. A Gaussian random field is completely defined by the meanߠ

-ᇲ. The corresponding correlaࢄ,ࢄߩ ሻ and correlations coefficient functionࢄଶሺߪ ሻ, varianceࢄሺߤ

tions length is normally a characteristic parameter. 

The main difficulty is to describe the abstract measure space in a limited physical intuitive space 

when the random field is associated with the numerical finite element analysis. This is because, 

it involves the treatment of functions defined on these abstract spaces and the random variables 

defined on the ߪ-field of random events. The widely used method is the Monte Carlo simulation 

with the sampling and random selection of random variables. However, if a good approximation 
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wants to be achieved, this approach needs to sample a considerable number of points. Generally, 

it gives two most often used and more appealing methods developed for the simulation of 

Gaussian random processes and fields: the spectral representation method and the Karhunen–

Loève expansion. In this thesis, the K-L expansion will be mainly used. 

A random field is called one- or multi-dimensional RF depending on whether the dimension ݀ 

of ࢄ is ݀ ൌ 1 or ݀ ൐ 1. It is uni- or multi-variate according to the quantity ܪሺࢄሻ attached to 

position ࢄ, that is a random variable or a random vector. The multi-dimensional random field 

will be considered and this thesis will focus on the three-dimensional random field in the fol-

lowing. In a practical situation, the mechanical properties of the material are a random field 

with multi-variate, such as Poisson’s ration, Young’s modulus, yield stress and tensile strength. 

It is assumed that these parameters are statistically independent, and for the sake of simplicity, 

it can be described by numerous random field with uni-variate. Therefore, in chapter uni-variate 

multidimensional random field will be considered and simulated. 

3.2.3 Karhunen-Loève series expansion 

The Kahunen-Loève series expansion is a series expansion method for the representation of the 

random field. This approach is based on the spectral decomposition of the covariance function 

,ଵࢄுுሺܥ  ଶሻ of the field. In this thesis, K-L expansion is used for discretization of spatiallyࢄ

varying random field in the three-dimensional domain. The 3D random field ܪሺࢄ, -ሻ with nonߠ

zero means and Gaussian (or non-Gaussian) distributions are decomposed into a deterministic 

part and a stochastic part as follows: 

,ࢄሺܪ ሻߠ ൌ ሻࢄሺߤ ൅ ∑ ඥߣ௜ߦ௜ሺߠሻ
ஶ
௜ୀଵ ߮௜ሺࢄሻ  (3.6) 

where ܪሺࢄ,  represents the position vector defined ࢄ ;ሻ is a random field on a probability spaceߠ

over the space domain ܦ and ߠ is primitive randomness that belongs to the space of random 

event; ߤሺࢄሻ is the mean function of the field, however ߤሺࢄሻ is defined as a constant and does 

not vary over the domain ߦ ;ܦ௜ሺߠሻ is a statistically uncorrelated random variable with zero 

mean; ߣ௜ and ߮௜ሺࢄሻ are the eigenvalue and the eigenfunction of the covariance kernel, which 

are the solution to the homogeneous Fredholm integral equation of second kind [88]: 

׬ ,ଵࢄுுሺܥ ଶࢄଶሻ݀ࢄଶሻ߮௜ሺࢄ ൌ ௜஽ߣ ߮௜ሺࢄଵሻ  (3.7) 

In this chapter, the covariance function ܥுுሺࢄଵ,  ଶሻ is considered as the kernel function. Byࢄ

definition, the covariance function is a bounded, symmetric and positive semi-definite kernel. 

The eigenfunctions are continuous and orthogonal to each other in accordance with Mercer’s 
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theorem, when the corresponding eigenvalues are nonnegative [89]. Therefore, it can be written 

as the follows: 

,ଵࢄுுሺܥ ଶሻࢄ ൌ ∑ ௜ߣ
ஶ
௜ୀଵ ߮௜ሺࢄଵሻ߮௜ሺࢄଶሻ  (3.8) 

Because the symmetry and the positive definiteness of the covariance kernel, the eigenfunctions 

are orthogonal and form a complete set. It can be normalized according to the following crite-

rion. 

׬ ߮௜ሺࢄሻ߮௝ሺࢄሻ݀ࢄ ൌ ௜௝஽ࢾ   (3.9) 

where ࢾ௜௝  is the Kronecker delta. In most of the civil engineering applications, the random 

fields are assumed to be weakly homogeneous. Compared to other materials, the steel is more 

consistent with the isotropic properties. Therefore, the random field of steel strength is seen as 

purely homogeneous and they are determined by the marginal distribution, i.e. the correspond-

ing mean value and variance, and the covariance function. In the Gaussian random field, the 

covariance function depends on the distance ݀ ൌ ଶࢄ െ  ,ଵ between two points in the 3D spaceࢄ

as well as it can be expressed by the autocorrelation function ߩுுሺࢄଵ, ,ଵࢄுுሺܥ ,.ଶሻ, i.eࢄ ଶሻࢄ ൌ

ଵሻࢄሺߪ ∙ ଶሻࢄሺߪ ∙ ,ଵࢄுுሺߩ  is the standard deviation of random field. In research ߪ ଶሻ, whereࢄ

[30,90], isotropic exponential in Eq. (3.10), squared exponential in Eq. (3.11) and sine functions 

in Eq. (3.12) are defined as autocorrelation coefficient function for numerical analysis in most 

multidimensional homogenous and isotropic random fields in Figure 3.1. 

,ଵࢄுு,ଵሺߩ ଶሻࢄ ൌ exp ቀെ
|మࢄభିࢄ|

௅೎
ቁ ൌ exp ൬െ

|௫భି௫మ|

௟ೣ
െ

|௬భି௬మ|

௟೤
െ

|௭భି௭మ|

௟೥
൰  (3.10) 

,ଵࢄுு,ଶሺߩ ଶሻࢄ ൌ exp ൤ቀെ
|మࢄభିࢄ|

௅
ቁ
ଶ
൨ 	  (3.11) 

,ଵࢄுு,ଷሺߩ ଶሻࢄ ൌ
௦௜௡ቀమ.మ

|మࢄభషࢄ|
ಽ೎

ቁ

మ.మ|ࢄభషࢄమ|
ಽ೎

	  (3.12) 

where ܮ௖ is the correlation length of the random field; |ݔଵ െ ଵݕ| ,|ଶݔ െ ଵݖ| ଶ| andݕ െ  ଶ| areݖ

the distances of two points in different directions; ݈௫ , ݈௬  and ݈௭  are the physical correlation 

lengths in different directions. In this analysis, the most common forms will be selected and 

used, but the method can be applied to arbitrary types of autocorrelation coefficient function. 

The correlation length and distance of two points are considered separately in different direc-

tions. Therefore, the analysis can be applied without modification for the problem with different 

correlation lengths in different directions, namely anisotropic. 
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Figure 3.1: Comparison of different correlation functions ܮ௖ ൌ 20	݉݉ 

The small probability events in the random field, which are sensitive to the tail regions of prob-

ability distributions, are often very important for SFEM and structural reliability. Because of 

the central limit theorem, an arbitrary distribution would be nearly or approach to Gaussian in 

most cases. Hence, the non-Gaussian random field can be transformed using the preceding dis-

cretization method of random field so that the distribution information is accurately represented. 

Usually, the discretization of the Gaussian random field with K-L series expansion not only 

accurately represent the first two moments, but also the behavior of the field in the far tail of 

the underlying distribution [91]. This discretization is a linear expansion of the Gaussian distri-

bution and the Gaussian distribution remains closed in the linear transformation. If the random 

field ܪሺࢄ, -ሻ in Eq. (3.6) are uncorrelated random variaߠ௜ሺߦ ሻ is Gaussian distribution, thenߠ

bles of standard normal distribution. In other cases, the non-Gaussian distribution of ߦ௜ሺߠሻ is 

difficult to be employed. The K-L expansion is widely used to the discretization of the Gaussian 

random field. However, a direct application of these methods cannot provide accuracy for a 

non-Gaussian distribution. 

For non-Gaussian random field, it is not feasible directly to apply these methods even if the 

first two moments are accurately expressed since it is not able to provide the accuracy in the 

tail probability. A classical way is using a translations processes to extend the non-Gaussian 

[92], where the non-Gaussian random field will be transformed to a Gaussian field with a non-

linear function. If a non-Gaussian random field is classified as translation field, it can be defined 

as a nonlinear function of a Gaussian field through a mapping method in Eq. (3.13). 

,ࢄ௧௥௔௡ሺܪ ሻߠ ൌ ݃ሾܪሺࢄ,  ሻሿ  (3.13)ߠ
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where ܪ௧௥௔௡ሺࢄ, -ሻ is the non-Gaussian random field after the nonlinear translation; ݃ሾ∗ሿ repߠ

resents a nonlinear function. The lognormal distribution can be obtained with Gaussian distri-

bution through the Eq. (3.14) [58]. Simultaneously, the standard deviation ߪே and mean value 

௅ߪ ே in Gaussian distribution are used as in Eq. (3.15) and (3.16) for varianceߤ
ଶ and mean value 

 .௅ of the uncertainties of material properties with the lognormal distributionߤ

,ࢄ௧௥௔௡ሺܪ ሻߠ ൌ ሻࢄேሺߤൣ݌ݔ݁ ൅ ∑ ඥߣ௜ߦ௜ሺߠሻ
ஶ
௜ୀଵ ߮௜ሺࢄሻ൧  (3.14) 

ேߪ ൌ ට݈݊ ൤ቀఙಽ
ఓಽ
ቁ
ଶ
൅ 1൨  (3.15) 

ேߤ ൌ ௅ߤ݈݊ െ
ଵ

ଶ
ேߪ
ଶ  (3.16) 

Theoretically, the correlation coefficient function ߩுுሺࢄଵ, ଶሻࢄ  needs to be translated as 

ுுߩ
௧௥௔௡ሺࢄଵ,  .ଶሻ of the desired non-Gaussian random field through an integral equation in [91]ࢄ

In general, ߩுு
௧௥௔௡ሺࢄଵ, ଶሻࢄ ൑ ,ଵࢄுுሺߩ ଶሻࢄ  and for the most cases ߩுு

௧௥௔௡ሺࢄଵ, ଶሻࢄ ൎ

,ଵࢄுுሺߩ ுுߩ ଶሻ [93]. Therefore, the correlation coefficient functionࢄ
௧௥௔௡ሺࢄଵ, -ଶሻ of the nonࢄ

Gaussian random field is usually estimated directly with ߩுுሺࢄଵ, -ଶሻ. If the coefficient of varࢄ

iance ܥ௩	 is small, the distortion of the correlation structure caused by the nonlinear transfor-

mation will be small [94]. Consequently, the K-L expansion can be used for the non-Gaussian 

random field in the case of small ܥ௩. 

3.2.4 Numerical solution of the K-L expansion 

The sum of the infinite number of terms in Eq. (3.6) is impossible to achieve in the discretization 

with the numerical method. Hence, the K-L expansion can be approximated using truncated 

expansion after ܯ terms: 

,ࢄ෡ሺܪ ሻߠ ൌ ሻࢄሺߤ ൅ ∑ ටߣመ௜ߦመ௜ሺߠሻ
ெ
௜ୀଵ ො߮௜ሺࢄሻ  (3.17) 

The approximation ܪ෡ሺࢄ, -set of random vari ܯ ሻ of the continuous series expansion by finiteߠ

ables is called as discretization of the random field. Because the analytical solution of the 

Fredholm integral equation only exists for a limited set of covariance function, the Galerkin 

finite element approach is more suitable to solve the random field with K-L expansion problem. 

In Galerkin finite element approach, the eigenfunction is approximated by discretizing to a 

combination of basic functions ߶௝ሺࢄሻ. It can be expressed as follows, 

ො߮௜ሺࢄሻ ൌ ∑ ݀௜௝߶௝ሺࢄሻ
௡
௝ୀଵ    (3.18) 
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where ݀௜௝ is the ݆th nodal value of the ݅th eigenfunctions; ݊ is the number of nodes per random 

field element. 

The basic functions can be defined as any orthogonal polynomial in the Hilbert space. The 

choice of the basic functions is variable and uncertain, such as piecewise polynomials in [56], 

Legendre orthogonal polynomials in [95], Hierarchic Gegenbauer polynomials in [89] and La-

grange interpolation polynomials in [58], etc. In this thesis, the Lagrange interpolation polyno-

mials from shape function of eight nodes in 3D linear finite element have been selected as the 

basic functions, so that the random field of material properties and stress field can be better 

mapped with each other in commercial finite element software. The 3D element is obtained by 

the expansion of the 1D linear element with two points in the Cartesian coordinate system [96]. 

In order to ensure continuity between the elemental domains, one-dimensional local basis func-

tions are chosen as the following piecewise linear polynomials, 

݈ଵ
ଵ஽ ൌ ଵିఎ

ଶ
  (3.19) 

݈ଶ
ଵ஽ ൌ ଵାఎ

ଶ
   (3.20) 

where ߟ is the local coordinate that runs on the standard interval [-1,1]. 

In Galerkin method, by substituting Eq. (3.18) to the eigenfunctions of Eq. (3.7) and applying 

Galerkin procedure to the corresponding residual, a generalized algebraic eigenvalue problem 

is obtained, 

ࡰ࡭ ൌ  (3.21)  ࡰ࡮ࢫ

where the different matrices are defined as follows, 

௜௝࡭ ൌ ׬ ׬ ,ଵࢄுுሺܥ ࡰࡰ௘ଶ݀ࡶଶሻ்ࢄଵሻ߶௝ሺࢄଶሻ߶௜ሺࢄ  ଶ  (3.22)ࢄଵ݀ࢄ

௜௝࡮ ൌ ׬ ߶௜ሺࢄሻࡰ ߶௝ሺࢄሻ்ࡶ௘݀(3.23)  ࢄ 

௜௝ࡰ ൌ  ௜௝  (3.24)ࢊ

௜௝ࢫ ൌ  ௜௝  (3.25)ࣅ௜௝ࢾ

where ࡶ௘ is coefficient matrix mapping from local coordinates of RF element to global physical 

coordinates; ࢾ௜௝ is the Kronecker symbol, so that the eigenvalues ࣅ௜௝ are located on the diago-

nal of the matrix ࢫ. 

On three-dimensional domains, the position vector can be decomposed into three orthogonal 

components. This means that Eq. (3.22) and (3.23) constitute respectively a three-fold and a 
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six-fold integral. This will require unacceptable computational resources in 3D random field 

problem. Following Ghanem and Spanos in [56], the solution of the multi-dimensional eigen-

value and eigenfunction problem is obtained by products of one-dimensional solutions in the 

orthogonal coordinate system. For three dimensional element, the eigenfunction can be written 

in a product of components of different dimensions as follows, 

ො߮௜ሺࢄሻ ൌ ො߮௜ሺݔ, ,ݕ ሻݖ ൌ ො߮௜ሺݔሻ ∙ ො߮௜ሺݕሻ ∙ ො߮௜ሺݖሻ  (3.26) 

In Eq. (3.26), the shape function for an arbitrary Lagrangian hexahedral element can be obtained 

by multiplying the one-dimensional Lagrangian polynomials in each direction. The isotropic 

exponential covariance function in Eq. (3.10) can be determined by the product of autocorrela-

tion functions in different orthogonal axes. It can be written as follows: 

߶௜ሺࢄሻ ൌ ߶௜ሺݔ, ,ݕ ሻݖ ൌ ߶௜ሺݔሻ߶௜ሺݕሻ߶௜ሺݖሻ  (3.27) 

,ଵࢄுுሺܥ ଶሻൌࢄ ଶexpߪ ቀെ
|మࢄభିࢄ|

௅೎
ቁ  

																								ൌ ଶߪ exp ቀെ
|௫భି௫మ|

௟ೣ
ቁ exp ൬െ

|௬భି௬మ|

௟೤
൰ exp ቀെ

|௭భି௭మ|

௟೥
ቁ  

(3.28) 

Hence, the Matrix ࡭௜௝ containing the sixth-order integral will be aggregated by three matrices 

which are derived from a one-dimensional element and have low-order integration. This com-

position of the matrix is determined by the position or coordinate of the three-dimensional ele-

ment in each direction. The operation of Matrix ࡭௜௝ is expressed as in Eq. (3.29). 

௜௝࡭ ൌ ଶߪ ൥
ଵଵ࡭ ⋯ ଵ௡࡭
⋮ ⋱ ⋮

௡ଵ࡭ ⋯ ௡௡࡭
൩ ൌ ଶߪ ቎

ଵଵ࡭
௫ ଵଵ࡭

௬ ଵଵ࡭
௭ ⋯ ଵ௡௫࡭

௫ ଵ௡௬࡭
௬ ଵ௡௭࡭

௭

⋮ ⋱ ⋮
௡௫ଵ࡭
௫ ௡௬ଵ࡭

௬ ௡௭ଵ࡭
௭ ⋯ ௡௫௡௫௫࡭ ௡௬௡௬࡭

௬ ௡௭௡௭௭࡭
቏  (3.29) 

௜௝࡭
௫ ൌ ׬ ׬ exp ቀെ

|௫భି௫మ|

௟ೣ
ቁ߶௜ሺݔଵሻ߶௝ሺݔଶሻ்ࡶ௫ଶ݀࢞௫  ଶ  (3.30)ݔଵ݀ݔ

௜௝࡭
௬ ൌ ׬ ׬ exp ൬െ

|௬భି௬మ|

௟೤
൰߶௜ሺݕଵሻ߶௝ሺݕଶሻ்ࡶ௬ଶ݀௬௬  ଶ  (3.31)ݕଵ݀ݕ

௜௝࡭
௭ ൌ ׬ ׬ exp ቀെ

|௭భି௭మ|

௟೥
ቁ߶௜ሺݖଵሻ߶௝ሺݖଶሻ்ࡶ௭ଶ݀௭௭  ଶ  (3.32)ݖଵ݀ݖ

where ࡭௜௝
௫ ௜௝࡭ ,

௬  and ࡭௜௝
௭  are the components of matrix ࡭௜௝ from the one-dimensional element in 

 are the number of ݖ݊ and ݕ݊ ,ݔ݊ direction; ݊ represent the ݊th element in 3D and ݖ and ݕ ,ݔ

element in each dimension, i.e., ݊ ൌ ݔ݊ ∙ ݕ݊ ∙  ௜௝ will also be ussing the࡮ Thus, the matrix .ݖ݊

decomposition and composition of the matrix in the various directions. By this method, the 

matrix ࡮௜௝ will be transformed from a three-order integral to a first-order integral. Therefore, it 
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is possible to discretize the 3D random field by using this method and the computational re-

sources consumption is acceptable. 

 

Figure 3.2: Illustration of 2D random field aggregated by 1D random field 

The multidimensional expansion of 2D random field is illustrated in the Figure 3.2. It is obvious 

that the approach can accelerate the generation of multidimensional random field and use in in 

higher-dimensional RF. Figure 3.3 shows the different dimensional Random fields realized by 

the proposed approach based on the 1D random field. A virtual structure with length in every 

direction 10 mm was simulated. The corresponding length was divided into 20 discretization 

points associated with finite elements. This means that the random field has total 20ௗ discreti-

zation points, where ݀ is a number of dimensions. These illustrations are the univariate Gauss-

ian random field with mean ߤே ൌ 1, variance ߪே
ଶ ൌ 0.01. The correlation properties of the 

structure were used the exponential function in Eq. (3.10) and the corresponding correlation 

length is 5 mm, i.e., ܮ௖ ൌ 5݉݉. 

  

a) b) 

Figure 3.3: Random field, a) Two-dimensional, b) Three-dimensional 
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3.2.5 Simulation of pseudo random variables with Latin Hypercube sampling 

Monte Carlo simulation is a widely used purely mathematical computer algorithm. In SFEM, 

this approach is employed to simulate the structural response with uncertain by using a very 

large number of similar random samples. To consider the uncertainties of material, a zero-mean 

and unit-variance independent Gaussian random variables ߦ௜ሺߠሻ in the K-L series expansion 

need to be generated. A set of random variables can be described as realizations, observations 

or samples in MCS, so that a stochastic problem is transformed to a larger number of determin-

istic problems. However, the random variables ߦ௜ሺߠሻ requires a sufficient number to describe 

the random field accurately. To reduce the computational time in the MCS, an efficient sam-

pling method need to be used. 

Due to the small number of iterations, Latin Hypercube Sampling, as a more efficient sampling 

method, has enormous advantages in terms of sampling efficiency and computational runtime 

[97]. In particular, LHS is also useful for the analysis of the situation where the probability 

distribution contains low probability events [98]. LHS ensures that off-center events are accu-

rately represented during simulation through mandatory simulations. When the low probability 

results are very important, the LHS technique can efficiently simulate the effect of low proba-

bility events on the output distribution. This method can isolate low probability results and 

directly analyze the results response. With the help of the LHS method, the statistical properties 

of random field and low probability events of each simulated variable will be precisely pre-

sented with a small number of samples. 

  

a) b) 

Figure 3.4: Gaussian random field samples generated by different methods, a) directly MCS, b) MCS with LHS 

The LHS can provide an accurate representation of the random field only with a few random 

variables, as well as a quite small number of simulations is necessary for the simulations with 

SEFM. Figure 3.4 shows the stochastic samples of a 3D Gaussian random field with different 
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methods. Obviously, the samples obtained using the LHS technique are more in line with the 

target distribution density function than the directly MSC, where it is calculated with the same 

number of sampling for the uncorrelated random variables. Usually, the basic information of 

the random field is captured by the first second moment, i.e., mean value and variance, and the 

covariance function. However, the moment, correlation and spectral characteristics of the ran-

dom variables cannot absolute accuracy be generated. Therefore, the statistical characteristics 

of the required field should be as close as possible to the target statistical parameters. 

3.2.6 Discretization error estimator and optimization 

The variance and the covariance functions of the truncated K-L expansion in Eq. (3.17) can be 

written as follows [99]: 

,ࢄ෡ሺܪൣݎܸܽ ሻ൧ߠ ൌ ,ࢄመுுሺܥ ሻࢄ ൌ ∑ ௜ߣ
୑
௜ୀଵ ߮௜ଶሺࢄሻ  (3.33) 

,ଵࢄ෡ሺܪൣݒ݋ܥ ,ሻߠ ,ଶࢄ෡ሺܪ ሻ൧ߠ ൌ ,ଵࢄመுுሺܥ ଶሻࢄ ൌ ∑ ௜ߣ
୑
௜ୀଵ ߮௜ሺࢄଵሻ߮௜ሺࢄଶሻ  (3.34) 

Because the truncated K-L expansion is approximated by a sum of infinitesimal terms as the 

sum of ܯ terms. This means that this approximate calculation ignores the high order terms in 

the tail. Hence, it can be seen that the truncated K-L expansion underestimates the pointwise 

variance of the random field. In mathematical form can be written as in Eq. (3.35). 

,ࢄ෡ሺܪൣݎܸܽ ሻ൧ߠ ൏ ,ࢄሺܪሾݎܸܽ  ሻሿ  (3.35)ߠ

where ܸܽݎሾܪሺࢄ,  ሻሿ represents the target variance of the random field. The truncation of theߠ

K-L expansion means that the discretization of the random field is inevitable to produce errors. 

Therefore, the accuracy of the discretization can be expressed by reference to the variance and 

covariance function of the random field. The error measure for the discretization can be stated 

using the variance of the approximation and continuous random field. It is can be defined as 

follows [91], 

߳ఙమሺࢄሻ ൌ
௏௔௥ሾுሺࢄ,ఏሻିு෡ሺࢄ,ఏሻሿ

௏௔௥ሾுሺࢄ,ఏሻሿ
  (3.36) 

߳஼௢௩ሺࢄଵ, ଶሻࢄ ൌ
|஼௢௩ሾுሺࢄభ,ఏሻ,ுሺࢄమ,ఏሻሿି஼௢௩ሾு෡ሺࢄభ,ఏሻ,ு෡ሺࢄమ,ఏሻሿ|

௏௔௥ሾுሺࢄ,ఏሻሿ
  (3.37) 

In the Eq. (3.36) and (3.37), the fraction is always positive since the truncated K-L expansion 

underestimates the variance and the covariance of the random field. A spatial 3D domain is 

presented in the following example, and the representation shows the numerically reproduced 

error of variance with 2D in Figure 3.5 a) and 3D in b). The covariance function presented in 

Eq. (3.28) is used. The physical sizes are ܮ௫ ൌ ௬ܮ ൌ ௭ܮ ൌ 10	݉݉, and the correlation length 
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is defined to be equal in all directions ܮ஼,௫ ൌ ஼,௬ܮ ൌ ஼,௭ܮ ൌ 2	݉݉. The ratio of random field 

mesh and correlation length is ܮோி/ܮ௖ ൌ 0.25. The truncated K-L expansion will be discretized 

with ܯ ൌ 1000 terms. It is clearly in Figure 3.5 that the error of variance in the mostly posi-

tions are relatively small, i.e., ߳ఙమሺࢄሻ ൏ 0.1, but the error at the edge position is generally large, 

especially at the vertex. 

a) b) 

Figure 3.5: Point-wise estimator for variance error represented for different RF, a) 2D random field, b) 3D ran-

dom field 

Usually, the global error measures are applied to compare random field discretization methods 

and to quantify the overall quality of a random field approximation. The corresponding global 

error measures are defined as the weighted integral in reference [90]. It is reasonable to consider 

that the global error estimator is obtained as the integrals of the error variance ߳ఙሺࢄሻ and the 

error covariance ߳஼̅௢௩ሺࢄଵ,  ,as following ܦ ଶሻ over the space domainࢄ

߳ఙ̅మሺࢄሻ ൌ
ଵ

|஽|
׬ ߳ఙሺࢄሻ݀ࢄ஽ ൌ ଵ

|஽|
׬ ߳ఙሺݔ, ,ݕ ஽ݖ݀ݕ݀ݔሻ݀ݖ   (3.38) 

߳஼̅௢௩ሺࢄଵ, ଶሻࢄ ൌ
ଵ

஽మ
׬ ׬ ߳஼௢௩ሺࢄଵ, ଶ஽஽ࢄଵ݀ࢄଶሻ݀ࢄ   (3.39) 

where |ܦ| ൌ ׬ ஽ݖ݀ݕ݀ݔ݀ . The following Table 3.1 shows the error variance ߳ఙ̅మሺࢄሻ and the 

error covariance ߳஼̅௢௩ሺࢄଵ, -terms. The param ܯ ଶሻ by the truncated expansion after differentࢄ

eters of the random field are same with the random field in Figure 3.5 b). For the error of 

covariance ߳஼̅௢௩ሺࢄଵ,  ଶ isࢄ ଵ represent the all point in the random field and theࢄ ଶሻ, the pointࢄ

defined as a specified point, i.e., ࢄଶ ൌ ሺݔଶ ൌ 0, ଶݕ ൌ 0, ଶݖ ൌ 0ሻ. The global error of variance 

is several orders of magnitude larger than the global error of variance covariance. Furthermore, 

the global error is reduced with the increased truncated expansion terms ܯ. 
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Table 3.1: Global error of discretization with various truncation order of K-L expansion 

 terms 40 200 400 600 800 1000 1200 ܯ

߳ఙ̅మሺࢄሻ 0.610 0.323 0.188 0.110 0.060 0.039 0.017 

߳஼̅௢௩ሺࢄଵ,  ଶሻ 1.04E-05 9.43E-06 8.76E-06 8.61E-06 7.18E-06 7.68E-06 6.08E-06ࢄ

 

The global error of variance is not the only accuracy criterion of the discretization. Some other 

error measure has been proposed for the discretization of the random field in [91], for example 

the supremum norm of the error variance and the error in the covariance function. Because the 

global error of variance is larger than the others [95], it will be considered to evaluate and 

optimize the random field approximation in this thesis. 

The size of the RF ܮோி mesh should be chosen to adequately capture the essential features of 

the stochastic spatial variability of the material properties. On the other hand, the RF mesh size 

needs to be as coarse as possible to reduce the discrete calculations of the random field. The 

size of RF mesh strongly affect the efficiency of calculation since the matrix size of the eigen-

value vector depends only on the discrete points of RF. Figure 3.6 shows the changes of the 

global error of variance with the truncated ܯ items and the size of RF mesh. In general, the 

global error is reduced with the truncated ܯ increases. It is worth mentioning that the global 

error and truncated items is not a strict monotonous relationship and the error will fluctuate, 

when the size of the mesh is very small, namely, ܮோி/ܮ௖ ൑ 0.2. With the refinement of the 

mesh, the global error is noticeably decreasing, when the truncated ܯ items are relatively small 

ܯ) ൏ 500). Therefore, it is necessary to determine the appropriate the size of RF mesh. 

 

Figure 3.6: Influence of RF mesh size and truncation order on global error of variance 
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The strategy used to select the number or the size of the element by the discretization of RF is 

comprehensively studied in some reference. A genetic algorithm is employed in the optimiza-

tion of the 2D random field in [99]. The results show that a suitable RF mesh and the smallest 

truncation order ܯ can be obtained with the genetic algorithm using smaller computing re-

sources. For the 3D random field, this optimization may not be very useful, because a single 

discrete calculation of random field is already very computationally expensive. Thus, it is pro-

posed in this thesis that the size of RF mesh needs to be previously selected and defined. 

ଵ

ସ
൑ ௅ೃಷ

௅೎
൑ ଵ

ଶ
  (3.40) 

The Inequation (3.40) was used in the case of a one-dimensional random field with the EOLE 

method in [90]. According to the Figure 3.6, the global error can be satisfied by increasing the 

truncation order ܯ to meet the accuracy requirements when the ܮோி/ܮ௖-value is between 0.25 

and 0.5. Thus, this condition will be extended to a 3D random field with K-L series expansion 

in the following analysis. The boundary conditions in Inequation (3.40) is not a necessary con-

straint for discretization of the random field. It only represents a recommended choice to 

achieve a satisfactory discretization. Theoretically, the discrete size of the random field can be 

infinitely small, but it has an upper limit. The correlation properties of the random field will be 

partially missing if the size of RF mesh is larger than the correlation length ܮ௖. Hence, for the 

K-L expansion method, the selection of the number of elements must be satisfied the following 

condition. 

ோிܮ ൑  ௖  (3.41)ܮ

The efficiency of the discretization method is expressed as the ability to accurately represent 

the random variables of the random field as few as possible. Therefore, it is clear that the com-

putational efficiency is strictly dependent on the choice of the statistical characteristics and the 

requirements for proper accuracy or the discretization error. The different discrete methods also 

have a significant effect on discrete efficiency. Usually, the K-L series expansion is the most 

efficient method in the case of the exponential correlation function, where the eigenvalues and 

the eigenfunctions of the covariance function are available in closed form [91,99]. In this work, 

it is decided to discretize the random field with the K-L series expansion. This means that it 

needs the least amount of computational resources to obtain the required discrete accuracy. 

Therefore, the discretization of a random field can be formulated as an optimization problem 

and a simple, accurate and versatile numerical approach is necessary for the formulation of the 

optimization problem. 
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Figure 3.7: Relationship of the discretization error and the truncated terms 

In the numerical approximation, smaller truncation order ܯ can reduce the computational re-

sources, but for mathematical precision, it is desirable to use larger value. Hence, the optimiza-

tion of a random field discretization is to find the smallest truncation terms ܯ, so that the dis-

cretization error ߳ఙ̅ሺࢄሻ is less than the target accuracy ߳௧̅௔௥ሺࢄሻ. The relationship between the 

global error of discretization and the truncation order is shown in Figure 3.7. Mathematically, 

the truncation order ܯ exists, and it is unique, due to the monotonic decreasing behavior of 

discretization error. Consequently, binary search algorithm [100] is applied to the optimization 

for the random field. 

3.3 Connection between random field and finite element 

From the above description, it is known that the size of RF mesh usually depends on the ran-

domness of material properties, such as correlation length ܮ௖. However, the division of FE mesh 

is based on the stress gradient distribution and the complexity of the geometry. Thus, it is pos-

sible to make the two meshes with the application of different criteria to achieve reasonable 

accuracy by separating the RF mesh from the FE mesh. In the reference [58], a general map-

ping-interpolation method between random field and finite element meshes was proposed for 

implementation of the stochastic finite element in a general simulation program in two dimen-

sions. This reasonable interpolation method will be extended to the three-dimensional problem 

in this thesis. Essentially, the discrete value of the random field must be eventually mapped to 

the integration points of the finite element, because the elemental stiffness matrix is obtained 

from the Gaussian integration by using the material properties defined at the integration point. 

According to the relationship between the coordinates of the discrete value of the RF and the 

coordinates of the corresponding Gaussian integration points, the material properties of the 

Gaussian integration points are carried out using the eight-node shape function of RF mesh in 

three dimensions. Because the material properties at the integration point depend on the position 
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of the integration point and the position of the RF element, there is no necessary correlation 

between RF mesh and FE mesh. Form the point of view of discrete precision it is preferable 

that the FE mesh is smaller than the RF mesh since the large FE mesh will cause the lack of 

uncertainties information of random field. 

The Illustration of mapping-interpolation method in Figure 3.8 shows the relationship between 

one random field element and eight finite elements. The green point is the integration point of 

the finite element. The (ߞ ,ߟ ,ߦ) is a local Cartesian coordinate system with the RF element 

center as the origin of the coordinates. The length of the RF element in each direction is assumed 

as two, and the coordinate of the corresponding point in RF element is presented in Figure 3.8. 

 

Figure 3.8: Coordinate mapping representation of 3D 8-point FE mesh and 3D RF mesh 

Firstly, the coordinates of the integration point ݌ need to be exported from the element of FE 

mesh, and the RF element will be determined, which the point ݌ is located. By using a nonlinear 

equation (9.1) in [96], the coordinate (ݔ௣, ݕ௣, ݖ௣) of point ݌ in the global coordinate system is 

mapped as (ߦ௣, ߟ௣, ߞ௣) to the local coordinate system of RF element. After solving the nonlinear 

mapping problem, the random values ܪ෡௣ of material properties in the integration point ݌ is ob-

tained from the random values ܪ෡௜ of the RF using the Eq. (3.42) with the eight-node shape 

function of RF mesh in Eq. (3.43). 

෡௣ܪ ൌ ∑ ௜ܰ
଼
௜ୀଵ  ෡௜  (3.42)ܪ

௜ܰ ൌ
ଵ

଼
ሺ1 ൅ ሻሺ1ߦ௜ߦ ൅ ሻሺ1ߟ௜ߟ ൅  ሻ  (3.43)ߞ௜ߞ

where ௜ܰ are the shape functions of ݅th point of RF element (݅ ൌ  are equal to ߞ and ߟ ,ߦ ;(8~1

1 or -1 and represents the quadrant of the ݅th point of RF element.  
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Figure 3.9 shows the flowchart of the mapping-interpolation method for the 3D solid element, 

where the ௘ܰ௟௘ and ூܰ௉ are respectively the numbers of the total finite element and the integra-

tion point per element. This algorithm is easy to implement in the general finite element pro-

gram, for example, with ABAQUS User Subroutine UMAT or USDFLD. 

 

Figure 3.9: Flowchart of the mapping-interpolation method 

The proposed method is to map the discrete random field to the FE mesh, and then the material 

properties will be interpolated to the integration points of the finite element by the coordinate 

relationship of the two meshes. The mapping-interpolation error can be divided into the map-

ping error and the interpolation error. Theoretically, the mapping process don’t produce errors 

since the total size of the two meshes is the same. However, for the modeling convenience, it 

can be chosen that the domain of RF and FE are not exactly coinciding. Figure 3.10 shows the 

original random field with the size 10 ൈ 10 ൈ 10 mm in a) and the random variables at integra-

tion points of an I-section specimen in the same space in b). According to the probability dis-

tribution function of corresponding random variables in Figure 3.10 c) and d), mapping the 

larger random field to the smaller finite element will make the information of the original RF 

missing, but the mapping distortion of random field is in an acceptable range. When the differ-

ence between the RF and the FE size is large, it is necessary to reduce the mapping error by 

increasing the sample size in the random field. 
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a) b) 

  

c) d) 

Figure 3.10: a) 3D Gaussian RF, b) Random variables at integration points of I-section specimen, c) PDF of 

original RF, d) PDF of random variables at integration points 

Usually, the error caused by 3D interpolation process can distort the original random field, 

because the finite element type and the number of element and integration point are variable. 

To demonstrate the interpolation error evaluation, the random field which is the same physical 

domain used in section 3.2.6 will be mapped and interpolated into the finite element in 

ABAQUS with difference FE mesh size. The 8-node brick element C3D8 is employed in 

ABAQUS for this example. The random variables, which are obtained by mapping and inter-

polation on the finite element from RF, can be referred to Figure 3.11 a) and b), where the mesh 

of FE in a) is finer that in b), namely ܮோி,௕/ܮிா,௕ ൌ 0.5 and ܮோி,௖/ܮிா,௖ ൌ 4. The correspond-

ing PDFs of random variables at the integration points are shown in Figure 3.11 c) and d). The 

information of original random field is not fully expressed in the model with big FE size, due 

to the small number of the integration points. It can be seen from the corresponding PDFs of 
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the random variables that the coarse mesh of FE in Figure 3.11 b) will lead to the lack of RF 

details and the distribution of random numbers has a significant error with the original random 

field. The PDF of random variables with fine FE mesh in Figure 3.11 c) is consistent with the 

distribution of the random variables of the target distribution, which is generated in MATLAB 

to represent the discrete random field. 

  

a) b) 

  

c) d) 

Figure 3.11: Different FE mesh and corresponding PDF of random variables at integration points, ܮோி,௕/ܮிா,௕ ൌ

0.5in a) and c), ܮோி,௖/ܮிா,௖ ൌ 4 in b) and d) 

Table 3.2 shows the first 4th moments of the original random field and the material properties 

in the integration point, which is obtained by the mapping-interpolation method. The size of the 

FE mesh (or the ratio of RF size and FE size ܮோி/ܮிா) has a few influences on the 4th moment 

of material properties at the integration point in spite of the relatively significant impact of FE 

size on PDF. It is worth noting that the variance on the finite element is always less than the 
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original variance. According to the description in section 3.2.6, this error is caused by the dis-

cretization of the random field. 

Table 3.2: Influence of FE size on the first fourth statistical moments 

 

From the perspective of computational efficiency and computational accuracy, it is recom-

mended to choose the size of finite elements satisfying the following condition. 

ிாܮ ൑  ோி  (3.44)ܮ

Therefore, it is possible to avoid the error caused by the lack of the random field information 

and to reduce the computational complexity of the SFEM in this way. It is obvious that the 

recommended FE size offers a good balance between accuracy and computational efficiency of 

SFEM. 

3.4 The stochastic finite element method with Monte Carlo simulation 

In the analysis of the uncertain system, it is a very important step to study the uncertainty of the 

system and its stochastic response. In the framework of the stochastic finite element method, 

the problem with randomness, which is difficult to solve using the classical deterministic 

method, studied very well. The SFEM comprises three basic steps: 

 Discretization of the random field representing the uncertain system properties; 

 Formulation of the stochastic stiffness matrix; 

 Calculation of the structural response. 

The first step is the discretization of random field and the connection with the stress or strain 

field and this step have been studied and described in detail in section 3.2 and 3.3. The discre-

tized random fields are used for the stochastic stiffness matrix of each integration point in every 

finite element. The construction of random stiffness matrix and the calculation of the structural 

response will be described in the following sections. 

Statistical moments Mean value Variance Skewness Kurtosis 

Random Field 1.0000 0.0100 0.0844 2.8416 

  

0.50 1.0002 0.0081 0.0642 2.7715 

0.75 1.0002 0.0080 0.0740 2.7899 

1.00 1.0002 0.0081 0.0583 2.7714 

1.25 1.0008 0.0081 0.0642 2.7484 

1.50 0.9981 0.0080 0.0690 2.6767 

2.00 1.0000 0.0081 0.0309 2.7745 

4.00 1.0020 0.0081 0.0684 2.7710 

ܴ
ܨ
ܯ	
ݏ݁
݄ 

ܨ
ܧ
ܯ	
ݏ݁
݄ 
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3.4.1 Formulation of the stochastic finite element matrix 

Due to the inherent randomness of the material properties, the stress ߪ, stain ߝ and stiffness 

matrix ܥ of element are also become stochastic. The stochastic quantities can be described by 

the corresponding probability distributions. The relationship between the pre-defined probabil-

ity distribution of material properties and the unknown distribution of these variables will be 

defined by the constitutive equation of deterministic analysis as follows [96], 

,ࢄሶ௜௝ሺߪ ሻߠ ൌ ௜௝௞௟ܥ
௘௣ ሺࢄ, ,ࢄሶ௞௟ሺߝሻߠ  ሻ  (3.45)ߠ

In order to clarify the formula, the stochastic element stiffness matrix for a homogeneous elasto-

plastic material will be presented. It is assumed that the distributions of yield strength and the 

tensile strength are the same, then the tangent modulus ܧ௧ is a determine quantity. Therefore, 

the field variable ܥ௜௝௞௟
௘௣ ሺࢄ, -ሻ contains the other two random field variables, i.e. Young's moduߠ

lus ܧሺࢄ, ,ࢄሻ and yield strength ௬݂ሺߠ  ሻ. The specific form of stiffness matrix at the integrationߠ

points is obtained as follows, 

௜௝௞௟ܥ
௘௣ ሺࢄ, ሻߠ ൌ ௜௝௞௟ܥ

௘ െ
ଽఓమ௦೔ೕ௦ೖ೗
ሺଷఓାா೟ሻఙ೑

మ  

																					ൌ ௞௟ߜ௜௝ߜߣ ൅ ௝௟ߜ௜௞ߜ൫ߤ ൅ ௝௞൯ߜ௜௟ߜ െ
ଽఓమ௦೔ೕ௦ೖ೗
ሺଷఓାா೟ሻ௙೤

మ  

																					ൌ ,ࢄሺܧ ሻߠ ቆ ఔ

ሺଵାఔሻሺଵିଶఔሻ
௞௟ߜ௜௝ߜ ൅

ఔ

ଶሺଵାఔሻ
൫ߜ௜௞ߜ௝௟ ൅ ௝௞൯ቇߜ௜௟ߜ െ

ாሺࢄ,ఏሻ

௙೤ሺࢄ,ఏሻమ
∗

																										 ଵ

ாሺࢄ,ఏሻଷఔାଶሺଵାఔሻா೟
∗ ଽఔమ

ଶሺଵାఔሻ
  ௞௟ݏ௜௝ݏ

																					ൌ ,ࢄሺܧ ሻߠ ∗ ௘ࡷ െ
ாሺࢄ,ఏሻ

௙೤ሺࢄ,ఏሻమ
∗ ଵ

ாሺࢄ,ఏሻ∗ଷఔାଶሺଵାఔሻா೟
∗   ௣ࡷ

(3.46) 

where ߣ and ߤ are Lamé parameters; ݏ௜௝ and ݏ௞௟ are deviatoric stresses; ߥ is Poisson's ratio; ࡷ௘ 

and ࡷ௣ represents two tensors or matrices with determine quantities. 

The stiffness matrix of an element can be obtained by integrating the constitutive matrix of the 

integration points in the element. The stochastic stiffness matrix for an 8-points hexahedral 

element will be calculated by the following equations, 

௘௣൧௘ܭൣ ൌ ∭ ௘௣൧࡮ൣ
்
ߞdߟdߦ݀|ࡶ|௘௣൧࡮௘௣൧ൣࡰൣ

ଵ
ିଵ   

ൌ ∑ ∑ ∑ ߱௜ ௝߱߱௞ൣ࡮௘௣൧
்
|ࡶ|௘௣൧࡮௘௣൧ൣࡰൣ

ଶ
௞ୀଵ

ଶ
௝ୀଵ

ଶ
௜ୀଵ   

(3.47) 



Uncertainty modeling and implementation of stochastic FEM 

53 

 

௘௣൧ࡰൣ ൌ ,௜ߦ൫ܧ ,௝ߟ ,௞ߞ ௘ሿࡷ൯ሾߠ െ
ா൫క೔,ఎೕ,఍ೖ,ఏ൯

௙೤൫క೔,ఎೕ,఍ೖ,ఏ൯
మ ∗

ଵ

ா൫క೔,ఎೕ,఍ೖ,ఏ൯∗ଷఔାଶሺଵାఔሻா೟
 ௣൧  (3.48)ࡷൣ

,௜ߦ൫ܧ ,௝ߟ ,௞ߞ ൯ߠ ൌ ∑ ௡ܰ൫ߦ௜, ,௝ߟ ,ࢄሺܧ௞൯ߞ ሻߠ
଼
௡ୀଵ   (3.49) 

௬݂൫ߦ௜, ,௝ߟ ,௞ߞ ൯ߠ ൌ ∑ ௡ܰ൫ߦ௜, ,௝ߟ ௞൯ߞ ௬݂ሺࢄ, ሻߠ
଼
௡ୀଵ   (3.50) 

where ߱௜ , ߱௜  and ߱௞  are defined as weights of Gauss-Legendre integration; ൣ࡮௘௣൧ is elasto-

plastic strain matrix and ൣࡰ௘௣൧ is the elasto-plastic material constitutive matrix. ܧሺߦ௜, ,௝ߟ ,௞ߞ  ሻߠ

and ௬݂ሺߦ௜, ,௝ߟ ,௞ߞ  ሻ are respectively randomly distributed Young's modulus and yield strengthߠ

at integral points, which are calculated by using the Mapping-interpolation method from the 

pre-defined random field ܧሺࢄ, ,ࢄሻ and ௬݂ሺߠ  .ሻߠ

The iteration of the elasto-plastic constitutive matrix at each integration point of each element 

can be performed using the ABAQUS subroutine UMAT, and the random fields ܧሺࢄ,  ሻ andߠ

௬݂ሺࢄ, -ሻ generated by MATLAB will be obtained in the subroutine UMAT. Then the elastoߠ

plastic element stiffness matrix will be assembled into a global stiffness matrix and this matrix 

will be delivered to a numerical solver with pre-defined boundary conditions.  

Since the stochastic finite element method with elasto-plastic materials involves nonlinear iter-

ative calculation at integration points, some stochastic finite element methods (such as Neu-

mann SFEM and spectral SFEM) cannot be applied to solve such problems. From a mathemat-

ical point of view, the solution of the stochastic stiffness matrix is essentially to solve non-linear 

stochastic partial differential equations. The mostly application of SFEM is practically limited 

to linear problems. Currently, some researches have tried to solve the problem of elasticity by 

introducing some simplified assumptions. For example, a stochastic response surface approach 

has been proposed for solving nonlinear mechanical problems [101,102]. 

More recently, a new method relies upon a stochastic Galerkin formulation based on a nonlocal 

Fokker-Planck-Kolmogorov equation at the constitutive level has been presented [62], where 

the stiffness random field is decomposed using a multidimensional polynomial chaos expansion. 

However, there is no universal and efficient method has been proposed. Considering the current 

situation, direct Monte Carlo simulation is the only universal tool for treating such complex 

SFEM problems at the expense of a prohibitive computational cost. Furthermore, the direct 

MCS is the simplest method to simulate the response of structures with uncertain material prop-

erties by using a very large number of similar random samples. Therefore, this thesis focus on 

the calculation of the structural response with direct MCS. 
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3.4.2 Direct Monte Carlo simulation for stochastic FEM 

In the past decades, direct MCS is not widely used in SFEM, because the direct MCS requires 

a lot of computational resource and time, especially for the nonlinear problem in 3D space. 

Especially for the efficient solution of reliability problems, where the calculation of small fail-

ure probabilities requires a very large number of samples, the direct MCS is hard or not possible 

for large-scale practical problems in a few years ago due to its excessive computational cost. 

However, the direct Monte Carlo Simulation is the simplest approach to calculate the structural 

response with random properties under the SFEM framework; especially it is one or only one 

general method for treating the elasto-plastic problems. 

The main idea in this method is that the samples of random properties are generated and dis-

cretized using K-L expansion, and then the samples of the response vector are obtained by 

repeating the deterministic finite element calculations. Based on the obtained samples of the 

response, the response variability of the structure is determined using the statistical relation-

ships. In general, the evaluation of structural response and the analysis of the reliability of the 

structure are carried out with the first ݊-th moments of the statistics. It is obvious that the struc-

tural analysis accuracy increases with the increased the order of the statistical moments. In this 

work, we will analyze the first fourth moments of the structural response, i.e., mean value ߤሺܴሻ, 

variance	ߪଶሺܴሻ, skewness ߛሺܴሻ and kurtosis ݇ሺܴሻ. The first fourth moments of the discrete 

samples can be determined by the following equations. 

ሺܴሻߤ ൌ ଵ

ேೞ೔೘
∑ ܴ௜
ேೞ೔೘
௜ୀଵ   (3.51) 

ଶሺܴሻߪ ൌ ଵ

ேೞ೔೘
ൣ∑ ܴ௜

ଶ െ ௦ܰ௜௠ ∗ ଶሺܴሻேೞ೔೘ߤ
௜ୀଵ ൧  (3.52) 
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൬ భ
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య/మ  (3.53) 

݇ሺܴሻ ൌ
భ

ಿೞ೔೘
∑ ሺோ೔ିఓሺோሻሻర
ಿೞ೔೘
೔సభ

൬ భ
ಿೞ೔೘

∑ ሺோ೔ିఓሺோሻሻమ
ಿೞ೔೘
೔సభ ൰

మ െ 3  (3.54) 

It is worth noting that the estimated accuracy and the number of samples are closely related. 

The results of the following section 3.4.3 are shown that the accuracy of the statistics can be 

achieved when the sample size is sufficient. Therefore, the distribution function of the structural 

response can be obtained based on the stable first 4-th order statistical moments by using the 
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maximum entropy distribution principle. In chapter 5, the reliability analysis combined with 

the maximum entropy principle distribution will be described in detail. 

With the development of computer technology and the applicability of direct MCS method to 

parallel processing with excellent efficiency, the direct MCS makes it possible to consider the 

material uncertainness and randomness in the 3D space, by combining the common finite ele-

ment software ABAQUS and the general-purpose mathematical software MATLAB. Hence, 

the direct MCS can be seen as the only available universal tool to solve the problem of SFEM 

relatively exactly with elasto-plastic non-Gaussian random material properties [46]. In addition, 

the flowchart showing the process of the SFEM analyze with MCS is depicted in Figure 3.12. 

 

Figure 3.12: Schematic of Monte Carlo simulation for SFEM with ABAQUS framework interfaced with 

MATLAB codes 

3.4.3 Sample size for Monte Carlo simulation 

In the direct MCS method, the number of nonlinear analysis is consistent with the number of 

samples generated by discretization of the random field. As the number of samples increases, 

the consumed computational resources are proportionally increased. Obviously, the accuracy 

of the estimation depends on the number of samples. Furthermore, the estimate of statistical 

moments of the response, namely, the mean value and standard deviation is inversely propor-

tional to the number of samples. Therefore, this analysis requires using the minimal computa-

tional resource to obtain results, which satisfy reasonable accuracy. It is possible to estimate 
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the PDF or CDF of the response with at least 500 samples of the random field for elastic material 

[46]. For the estimation of the mean value and standard deviation, the required minimum sam-

ples are less than the number of samples for the approximation of the PDF and [103] shows that 

the sample size with 30-100 already has reliable accuracy. 

 

Figure 3.13: Variation of stress response statistics with the number of samples 

Figure 3.13 shows that a numerical example of tensile test simulation with the spatially varying 

yield strength in chapter 4 has to be implemented for different number of samples. If the number 

of samples reaches or exceeds 200, the mean in Figure 2.13 a) and variance in b) of the response 

of stress for entire specimen will tend to be stable. However, the third- and fourth central mo-

ments namely skewness and kurtosis of the stress response have still a large fluctuation at this 

situation, and more than 1000 samples may be required to reduce this instability to infinitesimal. 

The number of the required sample for MCS is difficult to be accepted by the analysis of struc-

tural reliability in practice when the structural reliability coefficient is relatively large. As an 

alternative, the probabilistic description of response will be obtained by the fitting techniques 

of the probability distribution function and then used in the reliability assessment [80]. 

3.5 Element types for stochastic FEM 

From the computational perspective, all the discrete values of material properties will be finally 

calculated at the integration points. Theoretically, the different element types do not change the 

results of calculation of SFEM with the random field for the uncertainness of material properties. 

Therefore, this mapping-interpolation method can also be employed for the beam and shell 

element in Figure 3.14. However, the accuracy of response results with the mapping-interpola-

tion approach in SFEM will be significantly affected by element types, because the different 

elements have an unequal number of the integration points. It is clear that the randomness of 

the material cannot be accurately represented in the entire model if fewer integration points are 
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defined. Specifically, it is difficult to add integration points in the thickness direction of web 

and flanges for the beam element with open section such as I-section. This means that the beam 

element may not be used for I-section with thicker web or flanges for FEM with the random 

field. 

 

Figure 3.14: Illustration of mapping coordinates for beam a) and shell element b) 

In order to combine random field with a variety of element types and verify their applicability, 

a three-point bending simulation of an I-section beam with the random field of yield strength 

will be performed using the beam, shell and solid element in Figure 3.15 and the corresponding 

plastic bearing capacity of the beam are compared with each other. The I-section beam is a 

HEA100 regardless of the radius with a length of 1000 mm. Three models with different ele-

ment type were simulated based on MSC respectively with 500 RF samples, i.e., a) the beam 

with 50 B31OS beam element, b) the beam with 480 S4 shell element, c) the beam with 3700 

C3D8 solid element. The discrete random field will be defined as a 3D rectangular space of 

100 ൈ 100 ൈ 1000 mm. The length of RF mesh and the correlation length of the random field 

are respectively assumed as 10 and 40 mm. The target accuracy of discretization of random 

field is set equal to 1%. The lognormal distribution with constant mean value 300 MPa and 

standard deviation 30 MPa will be treated as a distribution of random field for the three-point 

bending simulation. 

 

Figure 3.15: Random distributed yield strength for I-section beam 
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After 500 times of MCS, the statistical response results of the plastic bearing capacity of 3P 

bending simulation are shown in Figure 3.16. The error of mean value for each element types 

is less than 1%. The variance and coefficient of variation ܥ௩	 in the beam element are 10% 

larger than in other elements since the beam element has relatively fewer integration points. 

Therefore, the beam element is limited to analyze the response of structure which is needed to 

consider the I-section beam with a thick web and flange by using SFEM considering the ran-

domness of material properties in ABAQUS. 

 

Figure 3.16: Response of plastic bearing capacity with different element types 

3.6 Conclusions 

In this chapter, the stochastic FEM was implemented to analyze the response of the 3D struc-

tures by interactively applying FEM program ABAQUS and mathematical program MATLAB 

with uncertainty and randomness of nonlinear elasto-plastic materials. Firstly, the uncertainty 

modeling and the random field in Hilbert space were briefly introduced. Then, the discretization 

of the 3D random field was realized by the truncated Karhunen-Loève expansion. For the matter, 

the Galerkin finite element techniques was used to solve the Eigenvalue analysis, which is the 

main task of calculating Karhunen-Loève expansion. After that, the modeling of the 3D random 

field was achieved by the proposed approach with an acceptable amount of computation. The 

cost to solve the homogeneous Fredholm integral equation was be reduced by decomposing the 

3D eigenfunction problem in orthogonal coordinate axes as well as composing the matrixes 

again with the coordinates of elements. Besides, the discretization errors were discussed in de-

tail. Since the calculation of the small probability events needs a larger number of samples and 

the Latin Hypercube sampling is efficient for the generation of a random field by a small num-

ber of basic random variables, the Latin Hypercube sampling was employed to treat the sam-

pling for the stochastic variables of the random field. Besides this, the non-Gaussian random 
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field, which has a relatively small coefficient of variance with non-zero mean, was expressed 

in terms of a Gaussian random field through a nonlinear mapping transformation. Simultane-

ously, the binary search algorithm was employed to optimize the computational accuracy and 

efficiency of the truncated Karhunen-Loève expansion. 

In the second part of this chapter, a general mapping-interpolation method was proposed to 

connect the 3D random field and the finite element mesh. The mentioned mapping-interpolation 

approach will be not only applied in different criteria for two different meshes, but also be 

employed for different element types. For the stochastic nonlinear material, the constitutive 

matrix at each integration points of the elements was computed using the user Subroutine in 

ABAQUS. The interpolation error shows that the mapping-interpolation method does not en-

gender an unacceptable deviation with a coarse mesh of random field and smaller finite ele-

ments. Thus, the distortion of a random field from mapping and interpolation can be avoided, 

if it meets the requirements the recommended mesh size of a finite element. 

The formulation of the stochastic finite element matrix, which is the key point of this method, 

is then presented. Essentially, the primary task of stochastic FEM is to solve a stochastic dif-

ferential equations contains elasto-plastic material. The most general and straightforward 

Monte Carlo simulation was employed to obtain the structural response. The probability distri-

bution function of structural response and the reliability analysis will be studied with fitting 

techniques in chapter 5. 

  



Experimental and simulated investigation of tensile and flexural members 

60 

 

4 Experimental and simulated investigation of tensile and 

flexural members 

4.1 Introduction 

In spite of the existence of statistical size effect in all materials, the use of these material prop-

erties in the structural engineering needs to be validated, as well as the randomness of material 

properties also needs to be determined according to the experiments. To assess the effects of 

statistical size effect, the tests with tensile and flexural members need to be performed under 

different load types. By demonstrating that the uncertainty of material properties can affect the 

bearing capacity of the structure, the structure design can be able to consider the SSE in the 

practical engineering. 

The statistical size effect is subjected to the spatial correlation of materials such as the correla-

tion length and correlation coefficient. The assessment of the SSE is not simple when consid-

ering all conditions together. Therefore, the sample tests and the specimens with clear stress 

distribution are preferred to analyze the relationship between the material strengths and speci-

men sizes. By a series of tensile test (max. specimen diameter 32 mm) with various sizes of the 

specimen, the statistical results of each kind of specimen needs to be analyzed. 

The relevant parameters which are required in numerical simulations with the stochastic mate-

rial model and SFEM, can be obtained in the inverse analysis that is capable of identifying and 

characterizing the uncertainty in material properties on the basis of experimental tests. In this 

chapter, the parameters for the stochastic material model and the random field of material prop-

erties will be investigated, and these will be applied to consider the effects of SSE on the bearing 

capacity in the flexural members. 

4.2 Experimental investigation 

4.2.1 Tensile testing with constant stress distribution 

The tensile tests were carried out with the specimens from HEB400 rolled profile and a 40 mm 

thick plate in Figure 4.1. All specimens are accordance with the request of DIN 50125 [104], 

the speed of the tensile tests is taken from DIN EN ISO 6892-1 [105]. To compare the results 

of all specimens with each other, the geometric sizes of all specimens are maintained in a con-

stant ratio. Because the stress distribution in the circular cross-section is constant, this section 
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is used for all tested specimens. In tensile tests, the testing machine is position-controlled with 

a very small test speed, so that the influences of the test speed become negligible. 

 

Figure 4.1: Illustration of tensile specimens a) HEB 400; b) 40 mm thick plate 

Although the specimen sizes can refer to the corresponding norm, the definition of DIN 50125 

limits the specimen size to a diameter 25 mm. Therefore, it is necessary to extend the norm to 

provide the large size specimens. Figure 4.2 a) shows the linear relationship between the diam-

eter of the specimen and the other sizes. This means that the specimen sizes can be obtained by 

linear relationship for the larger specimens after determining the specimen diameter. The com-

parison of the small and big size specimen is shown in Figure 4.2 b). 

  

a) b) 

Figure 4.2: Extended geometry for big specimen a) the relationship between different specimen sizes, b) Speci-

men from 40 mm plate 

d=4mm 

d=8mm 

d=16mm 

d=32mm 
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Nine specimens were produced from every five-upper flange, which were cut from the same 

HEB section made of S235. The specimen diameters of each segment were respectively 4, 6, 

10, 16 or 20 mm. Moreover, the lengths of the beam segment are adapted as shown in Figure 

4.1 a). The mean values and coefficients of variation of strength per tensile testing specimens 

are summarized in Table 4.1 and shown in Figure 4.3 a). 

Table 4.1: Statistical results of tensile test from HEB 400 

 

The results of the strength with HEB 400 have presented only the upper flange, because the 

lower flange has equivalent results. It is not the same with the results from Urban [106], there 

is no definite mathematical distribution for the yield strength of the I-shaped profile since the 

distribution depends on the specimen size. It is clear that the fluctuation of the yield and tensile 

strength increases with decreasing diameter. Figure 4.3 b) shows that the corresponding coeffi-

cient of variation ω decreases with increasing volume. Obviously, this trend is comparable to 

the theoretical approach. 

  

a) b) 

Figure 4.3: a) Distribution of yield strength through flange with different specimen size, b) relationship between 

the coefficient of variation and specimen volume 

Spezimens 
 mm 20=ߔ mm 16=ߔ mm 10=ߔ mm 6=ߔ mm 4=ߔ

 ௠ߪ ୐ୣߪ ୌୣߪ ௠ߪ ୐ୣߪ ୌୣߪ ௠ߪ ୐ୣߪ ୌୣߪ ௠ߪ ୐ୣߪ ୌୣߪ ௠ߪ ୐ୣߪ ୌୣߪ

E(σ) [MPa] 302.2 296.0 470.0 301.4 289.3 448.2 292.0 279.7 437.2 281.8 276.3 441.8 280.5 275.0 437.8 

Var(σ)[MPa] 22.4 23.3 26.3 16.3 14.6 6.6 14.4 12.5 4.4 13.7 13.1 4.8 13.3 13.0 5.9 

 ୴ [-] 7.4% 7.9% 5.6% 5.4% 5.0% 1.5% 4.9% 4.5% 1.0% 4.9% 4.8% 1.1% 4.7% 4.7% 1.3%ܥ

 .௠: tensile strengthߪ ,୐: lower yield stressୣߪ ,ୌ: upper yield stressୣߪ ,Diameter :ߔ
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It should be noted that the standard deviations and coefficient of variance, which is determined 

by the test results, may depend on the specimen position in the steel profile. The distribution of 

yield strength in the flange is generally not detectable, but the distributions are symmetrical 

according to the experimental results in Figure 4.3 a). Urban has found that the distribution of 

yield stress is periodically recorded. The variance will be reduced when the periodic portion is 

removed, i.e., the calculated coefficient of variance is greater than the real value. 

According to the proposed approach in section 2.2.5, the material constant ߦ is 0.09 for HEB 

400 with the help of Figure 2.13, and the ratio between different volumes and the corresponding 

coefficient of variation are available in Table 4.1. It is evident that the Weibull model deviates 

from the experimental values about 18% in Figure 4.4. Due to the influence of the rolling pro-

cess and the periodicity of the coefficient of variation, the real material constant ξ for HEB 400 

is theoretically smaller than 0.09. It is generally acceptable that the deviation between the chain 

of bundles model and the tensile tests is negligible. 

 

Figure 4.4: Influence of the volume on the strength of specimens from HEB 400 

As a supplement to the tensile tests, all five tensile specimens were taken from a 40 mm thick 

plate made of S355 at 4 different positions Figure 4.1 b). The tensile specimens were taken in 

an axis along the rolling direction, so that the mechanical properties of steel are symmetric in 

the thickness direction on the plate.  

Table 4.2 shows the results of tensile specimen strength with different diameters. It is easy to 

find that the average values of the upper and lower yield strength are greater than the theoretical 

value at relatively large diameter, since the material properties of a thick plate in the thickness 

direction are different from each other. 
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Table 4.2: Statistical results of tensile test from 40 mm thick plate 

Specimens 

 mm 32=ߔ mm 16=ߔ mm 8=ߔ mm 4=ߔ

 ௠ߪ ୐ୣߪ ୌୣߪ ௠ߪ ୐ୣߪ ୌୣߪ ௠ߪ ୐ୣߪ ୌୣߪ ௠ߪ ୐ୣߪ ୌୣߪ

E(σ) [MPa] 410.8 400.5 610.8 388.5 379.1 562.8 394.2 386.5 569.5 401.6 391.1 555.4 

Var(σ) [MPa] 10.04 10.38 7.32 6.49 5.88 5.39 4.93 4.00 3.07 4.01 3.55 0.40 

 ୴[%] 2.44 2.59 1.20 1.67 1.55 0.96 1.25 1.03 0.54 0.97 0.91 0.07ܥ

 .௠: tensile strengthߪ ,୐: lower yield stressୣߪ ,ୌ: upper yield stressୣߪ ,Diameter :ߔ

 

Figure 4.5 a) shows that the yield strengths on the surface are about 5 to 10% greater than in 

the middle, which is opposite to the tensile strength. This phenomenon means that the mechan-

ical properties of the larger tensile specimens in the transverse direction are uneven. The cross-

sections of the specimen after fracturing with different sizes of the specimen are presented in 

Figure 4.5 b). Due to the non-uniformity of the material in the rolling direction, the cross-sec-

tion is not circular but elliptical. 

  

a) b) 

Figure 4.5: a) The distribution of the strengths in the thickness direction, b) shape of the fracture surface 

In order to reduce the influence of the yield strength distribution in the thickness direction on 

the statistical results, the yield strengths of larger specimens are reduced according to the ratio 

of sectional area and the measured yield strength in the thickness direction. The material con-

stant ξ ൌ 0,01 would be determined for the 40 mm plate using Figure 2.13. The coefficient of 

variance, which is determined by the experiments, corresponds to the theoretically analyze re-

sults in Figure 4.6 a). It is obvious in Figure 4.6 b) that the result of tests matches up with the 

chain of bundle model. 
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a) b) 

Figure 4.6: Relationship between the statistical results and the volume of the specimen, a) coefficient of vari-

ance, b) mean value 

4.2.2 Bending tests with stress gradient 

Usually, it is considered that the volume under yield stress in the case of four-point (4P) bending 

test is bigger than the one under three-point (3P). The peak stresses are produced in the 4P 

bending along an extended region of the specimen. Hence, a larger volume of the specimen is 

possible with more potential to show the mechanical defects of the specimen. Since the 4P 

bending test can get more relevant information from the statistical point of view, the difference 

of statistical strength can be reflected by these two different experiments. Therefore, the 3P 

bending tests and 4P bending tests are carried out with different specimen size to verify the 

statistical size effect in the structure with stress gradient. 

 

Figure 4.7: Illustration of flexural members for Waterjet cutting 

Due to the relatively simple distribution of the strength in rectangular cross-section, the speci-

mens are cut from the flange of the HEB400. In order to reduce the residual stress produced by 

B 

Cutting line 

HEB400 
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thermal cutting, all specimens are made by using Waterjet cutting as shown in Figure 4.7. The-

oretically, the slenderness of the specimen should be as small as possible, so that there would 

be no instabilities. The measurements of the specimen sizes are shown in Table 3.1. 

Table 4.3: Sketch and essential sizes for bending tests 

Bending Test Sketch B [mm] H [mm] L [mm] L1 [mm] L2 [mm] 

3-point 
 

20 30 280 140 140 

24 75 1000 500 500 

4-point 
 

20 30 280 87.5 105 

24 75 1000 350 300 

 

To get the strain from the tests, a strain gauge (SG) was placed in the center of the specimen as 

in Figure 4.8. The moment of the 3-point bending test is ܨ ∗ ܯ ,ଵ/4, and in other casesܮ ൌ ܨ ∗

ሺܮଵ െ  ଶ/2ሻ/4 is assumed. The 4-point bending test leads to an elongated flow zone and largerܮ

effective volume under stress. 

 
a) 

 
b) 

Figure 4.8: a) 3-point bending tests, b) 4-point bending tests 

In the classical research project, the maximum elastic bending moment is defined by technical 

menchanics as ܹ ∗ ௬݂ , where ܹ  is the section modulus. The theory, which is based on 

analytical mechanics, is an approximate method and the stress distribution in the actual 

specimen is not ideal. The experimental measurement and the maximum elastic moment 

obtained based on the specimen section may be different. In this thesis, it is assumed that the 

 ଵܮ ଵܮ

 ଵܮ ଶܮ ଵܮ
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transition of the linear and nonlinear relationship between moment and maximum strain is the 

maximum elastic moment ܯ௘௟ in experiments. 

 

Figure 4.9: Representation of the definition of the maximum elastic moment 

The strain axis of the moment-strain curve in Figure 4.9 a) is changed by logarithmic 

transformation. By this method, the mission of finding linear and non-linear transition points is 

transformed into the determination of the inflection point in Figure 4.9 b). The slope of the 

curve in b) must be increased steadily within the linear range. Figure 4.9 c) shows the derivative 

of the curve in b) which is determined values by experiment. The experimental evaluation is 

based on the discrete data, which is reflected in the fluctuations of the curve. To adjust the 

measured data, the derivatives of the moment are replaced by Fourier curve fitting method. The 

maximum value of the derivatives in Figure 4.9 c) corresponds to the position of the determined 

 .௘௟ from the experimentsܯ

4.3 Simulation with stochastic material model 

4.3.1 Models building 

The geometry, mechanical properties and boundary conditions have to be obtained with great 

attention by modeling using the finite element method, so that it is possible to get the results, 

which are identical to those obtained from the tests. In the present work, the FEM using 
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ABAQUS software is employed with the corresponding user Subroutine. The modeling process 

and the selected analysis type are as much as possible to save the time required to complete the 

analysis since the element type and the mesh size has great importance to represent the models 

accurately. The steel structural components in this work were modeled with use of the 8-node 

linear hexahedral solid element, namely C3D8. For the simulation of uniaxial tensile tests with 

the stochastic material model, the size of each element was defined general coarse and as one-

tenth of the diameter ܮ௘௟௘௠ ൌ ݀/10, because the specimen stress is evenly distributed in each 

specimen. The grip section of the tensile test specimen was modeled with a rigid body in 

ABAQUS, and it shown in Figure 4.10. Finally, the gage section of the specimen meshed into 

4800 elements. Because the stochastic material model need integrate the stress over the whole 

volume, the modeling process cannot performed only a half or quarter specimen like the tradi-

tional tensile test simulation, but rather simulate the entire specimen. The simulation of the 

tensile test was carried out by a series of tests, where the specimens with different volumes have 

the same ratio of geometry. 

 

Figure 4.10: Real and simulated tensile test specimen 

As the reduction coefficient ߛ of strength is determined by the stress distribution of the structure 

and the volume of the structure in the stochastic material model, a new parameter effective 

volume Vୣ୤୤ is introduced for the straightforward description of the statistical size effect in the 

flexural members. Let the ratio of the equivalent stress of finite element and von Mises stress 

denoted as a weight function. The weighted sum of all element volume is defined as effective 

volume, 

Vୣ୤୤ ൌ න fሺσሻdV/ ௬݂ ൌ෍
σ௠௜௦௘௦

௬݂

ே

௜ୀଵ

ாܸ௟ாெ,௜ (4.1) 

where ܰ represents the total number of the element, and ாܸ௟ாெ,௜ is the volume of ݅th element. 

It is clear that the yield stress of the material decreases with increasing Vୣ୤୤ in the bending sim-

ulation. 

4.3.2 Material description of stochastic material model 

The experiments are limited to the material steel S235 from HEB400 and S355 from plate with 

40 mm thickness. Defining the material properties of the steel members in the models was done 
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by the use of the true stress-strain curves in Figure 4.11. Theoretically, the determination of the 

mechanical properties can be done by the tensile test with arbitrary volume. In this research, 

the stress-strain curve obtained by the smallest volume of the specimen, namely diameter is 4 

mm, is defined as the reference strength. 

Five samples were tested for the diameter 4 mm of tensile specimens. The reference engineering 

stress of the material was obtained by averaging the five stress-strain curves, and then the en-

gineering stress-strain curve was fitted and simplified, so that a smooth and simple curve could 

be obtained to describe the plastic properties of the material. Finally, the real yield stress ௬݂ of 

S235 and S355 steel were respectively defined as 300 MPa and 400 MPa for the tensile speci-

men according to the test results. The plastic properties of the steel were  referred to the table 

in Figure 4.11. By comparing the experiment, Young's modulus and Poisson's ratio of the ma-

terials are more stable, as well as these are respectively 210 GPa and 0.3. 

  

a) b) 

Figure 4.11: Stress-strain curve, a) S235 from HEB400, b) S355 from 40 mm plate 

The material constant of the stochastic material model was measured by experiment as approx-

imately 0.09 for HEB400 and 0.01 for steel plate with 40 mm thickness. However, it is very 

difficult or very expensive to measure this material constant accurately by experiments, because 

the material constant is obtained by the statistical theory, which is based on a plenty test results. 

On the other hand, this material constant is also very sensitive to the measurement conditions. 

Especially, it is not easy to exclude the correlation of the strength for each specimen. It is pos-

sible to increase the accuracy of the material constant of the stochastic material model by more 

tests; however, this is a very uneconomical method. The more efficient method is proposed. 

The approximate value of the material constant is obtained with a few numbers of experiments 

and the simulation with the stochastic material model would be implemented with different 
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material constant. Finally, the exact material constants are deduced by comparing the simula-

tion results with the experimental results.  

4.3.3 Investigation of material parameters 

It is known from the Eq. (2.19) in section 2.3.1 that, solving the statistical size effect coefficient 

 and the volume ߦ is necessary to determine the two unknown quantities, the material constant ߛ

of RVE ோܸ௏ா. As mentioned above, the approximate range of material constants is obtained by 

experiment, but the ோܸ௏ா-value is difficult to measure directly. According to the definition of 

the SSE coefficient, the ߛ is the ratio of true yield stress at two different volumes. Therefore, 

the parameters of the stochastic material model can be obtained based on the relationship be-

tween the strength and specimen size. 

Figure 4.12 shows the influence of these two parameters on the yield strength, which is obtained 

by the FEM simulation using the stochastic material model with different specimen volumes. 

The most significant results is that the yield strength decreases as the specimen volume in-

creases. With the increase of the material constant ߦ, the reduction rate of yield strength on 

specimen size is accelerating. However, the increase of other parameters 1/ ோܸ௏ா-value results 

in a decrease of the reduction rate of the yield strength with the relatively big specimen. 

 

Figure 4.12: Influence of two parameters on the yield strength 

It is worth noting that the yield stress is monotonically decreasing as the both parameters ߦ and 

ோܸ௏ா-value increase. In this thesis, the determination of material parameters is based on the 

same ratio of yield strength reduction with different specimen volumes between the tests and 

the numerical calculations. If the relationship between the yield strength and volume is known, 

only one parameter can be obtained, and another parameter requires a pre-assumed value, due 

to the monotonicity between yield strength and parameters. 
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As the physical meaning of the ߦ-value in the stochastic material model is a constant that de-

scribes the randomness of material properties, at the same time, the volume of RVE does not 

have physical meaning, the ோܸ௏ா-value is assumed as 1 mm³. Figure 4.13 shows the relationship 

of the yield strength of specimen with diameter 20 mm and the ோܸ௏ா-value. It is obvious that 

the yield stress increases with the decreased ோܸ௏ா-value. However, the rate of change is reduced 

when the volume of RVE decreases, because the abscissa is represented by a logarithmically 

form. Although the ோܸ௏ா-value has an effect on yield stress, this difference can be corrected by 

the parameter ߦ-value. 

 

Figure 4.13: Monotonous relationship between yield stress and ோܸ௏ா-value 

The strength change of the experiment results and simulations regarding the specimen volume 

are presented in Figure 4.14 a) for the steel from HEB400 and in Figure 4.14 b) for the specimen 

from steel plate with 40 mm thickness. It is clear that the overall trend of result curves from the 

tests and simulations are consistent. Meanwhile, adjusting the material constant ߦ can make the 

experiment and simulation results with more consensus. It was found that the simulation can 

completely describe the experimental results for the material from HEB400 as the material con-

stant is equal to 0.06. The same conclusion can drown to the material from 40 mm plate as 

 In consequence, the material constant of the stochastic material model for steel S235 .0.035=ߦ

and S355 can be considered to be between 0.03 and 0.06. 

Y
ie

ld
 s

tr
es

s 
[M

P
a]



Experimental and simulated investigation of tensile and flexural members 

72 

 

  

a) b) 

Figure 4.14: Experimental and numerical results of yield strength with various specimen volume, a) S235, b) 

S355 

4.3.4 Simulation of flexural members 

To study the stochastic material model used in the simulation of structural component with the 

stress gradient, a three and four points bending simulation were performed with two different 

specimen volume, which is carried out in the bending tests. The geometry of all specimens is 

consistent with the experiments. To avoid a huge stress concentration at the support and loading 

point, the semicircular rigid body in Figure 4.15 was modeled at these positions as well as the 

connection between the rigid body and the specimen is simplified as the frictionless contact 

surface. 

a) 

b) 
Figure 4.15: Illustration of the simulated 3-point a) and 4-point bending test b) 

Due to the presence of the stress gradient in the bending direction of the flexural member, the 

size of the simulation with the stochastic material model is limited. The average stress on each 
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finite element has a relatively larger error when the element mesh is not fine enough. Figure 

4.16 shows the load capacities of FEM simulation for 3- and 4-point bending flexural experi-

ments with different FE mesh. Evidently, the relatively exact load is achieved at the ratio 

଴݈/ܪ ൌ 10 between the height of beam ܪ and the mesh length ݈଴ of the entire structural com-

ponent. The ultimate load capacities are reduced with increasing FE mesh and is almost constant 

if the FE mesh would be greater than 10/ܪ. 

  

a) b) 

Figure 4.16: Influence of FE mesh on loads, a) 3-points bending simulation, b) 4-points bending simulation 

The relationship of the stress-strain for the element, which is located at the center of the bottom 

surface of the 3P and 4P bending beam, is shown in the Figure 4.17. The full red line represents 

the predefined material constitutive relation. The yield strength in the simulation is small than 

the pre-defined value when this element reaches the plastic stage and the reduction of yield 

stress in 3P bending is lesser than in 4P bending. The reason can be explained by the change of 

effective volume ௘ܸ௙௙ with the different bending types and strain states. The black dotted lines 

are the effective volumes. Obviously, the ௘ܸ௙௙ in 4P bending specimen is greater than the 3P 

specimen, as well as the effective volume is significantly increased regardless of the type of 

bending in the plastic phase. It was noticed that the yield stress decreases with increasing ef-

fective volume ௘ܸ௙௙. This phenomenon is consistent with the statistical size effect. The ultimate 

bending bearing capacity of the 3- and 4-point bending simulation will be described in detail in 

section 4.5. 
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Figure 4.17: Defined and true stress-strain curve in simulation and corresponding effective volume 

4.4 Simulation by stochastic FEM 

4.4.1 Random field of elasto-plastic material 

The randomness of material properties at the macroscale is determined by the mechanical un-

certainty of the material at the microscale. Due to the huge change of scale from microscopic 

to macroscopic structure, the macroscopic material properties are difficult to be determined by 

the simulation of the microstructure of the steel structures. To simplify the randomness at the 

macroscale, it is assumed that the uncertainty of material properties is homogeneous and can 

be quantified by using random variables or fields with a specific probability distribution and 

correlation structure in this research. This assumption allows modeling of the uncertainty based 

on the macroscopic material properties. These statistical parameters should be arbitrarily as-

sumed in the most situations. The parametric studies can be performed by determining the in-

fluence of each hypothesis on the stochastic response. The randomness of the elastic-plastic 

material strength is achieved by simplifying and assuming that the stress-strain curve of the 

material is random and can be described with the combination of some random field. 

Figure 4.18 shows the schematic sketch for the stochastic elasto-plastic material. The random-

ness of the elasto-plastic property of homogeneous material is defined using different probabil-

ities distributions of Young's modulus ܲሺܧሻ, yield strength ܲ൫ ௬݂൯ and ultimate tensile strength 

	ܲሺ ௨݂ሻ in Figure 4.18. The Poisson’s ratio is also a stochastic variable, but it is not considered 

in this work, because the change in Poisson's ratio has hardly influence on the material strength. 

The uncertainties of material properties are often assumed to be Gaussian (Young's modulus) 
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due to its simplicity, but the most material uncertainties in engineering systems are non-Gauss-

ian (yield strength and ultimate tensile strength) in nature.  

 

Figure 4.18: Estimated assumptions of stochastic fluctuations of elasto-plastic material properties on stress-strain 

curve of steel 

It is generally accepted that the yield strength and tensile stress of a material vary proportion-

ately, but the correlation between ௬݂ and ௨݂, ܿݎݎ݋ሺ ௬݂, ௨݂ሻ, is equal to 0.75 from the experimental 

research in [107]. Accurate consideration of this correlation requires higher dimensional ran-

dom fields for describing the material properties. Thus, this will increase the difficulty of es-

tablishing the random field and discrete calculations. In this study, it is assumed that 

൫ݎݎ݋ܿ ௬݂, ௨݂൯ ൌ 1 because the value of the maximum plastic stress in the steel structure is 

slightly larger than ௬݂	and much smaller than ௨݂. Moreover, the maximum bearing capacity of 

the specimen is dependent on the randomness of the yield strength. Therefore, herein, the cal-

culations of the maximum bearing capacity or plastic moment capacity are focused on the ran-

dom field of the yield strength. 

 

Figure 4.19: Random distributed Young's modulus, a) slices of RF, b) tensile specimen in RF 
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In this thesis, the random field is modeled with a 3D rectangular space for the specimen with 

any shape. Because we are interested only the stretched portion of the tensile specimen, the 

length of random fields of Young's modulus in Figure 4.19 and yield strength Figure 4.20 for 

the tensile test is confined in the length of stretchable part considering the computational effi-

ciency. 

 

Figure 4.20: Random distributed yield strength, a) slices of RF, b) tensile specimen in RF 

Usually, Young's modulus is used to characterize the elasticity of the material. The bearing 

capacity of the structure is determined by the yield strength of the material. If the problem 

involves only an isotropic linear elastic regime, obtaining a random response of the structure 

degenerates into a stochastic linear problem [58]. For the randomness of material, two groups 

of simulation with different random fields are performed to compare with each other. 

a) A random field containing only the yield strength of steel: It is assumed that the yield 

strength of the random field follows the lognormal distribution with constant mean 

value ߤ௅ ൌ 300 MPa and standard deviation ߪ௅ ൌ 30 MPa. 

b) A random field containing two independent variables (Young's modulus and yield 

strength of steel): Mean value (ߤே ൌ 210 GPa) and standard deviation (ߪ௅ ൌ 10.5 GPa) 

of Young's modulus that follows the Gaussian distribution is assumed for the first vari-

able. The distribution and parameters from the first group are directly applied for the 

spatially varying yield strength of this random field. 

Figure 4.21 shows results of the relationship between displacement and force for simulation of 

tensile test with spatially varying variables. The Young’s modulus which is inputted with a 

random field only changes the force of specimen in the elastic region. The maximum bearing 
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capacity of the specimen is dependent on the randomness of the yield strength. Therefore, the 

calculations of the maximum bearing capacity or the plastic moment capacity only need to focus 

on the random field of yield strength. On the other hand, the random field of Young’s modulus 

should be considered calculating with the elastic material. 

 

Figure 4.21: Response of stress-strain curve, a) with RF of Young's modulus and yield strength, b) with RF of 

yield strength 

4.4.2 Numerical simulation of tensile members 

The simulation of uniaxial tensile test for the steel S235 is carried out with SFEM, and the solid 

element C3D8 is employed for the tensile specimen. The average stress-strain curve in Figure 

4.11 from tensile tests is used as the basic material properties. The basic parameters of the 

random field, namely coefficient of variation and correlation length, are treated as unknown 

quantities of study in this section. For the simulation, the correlation length ܮ௖ is assumed to be 

proportional to the length ܮோி of RF mesh. 1% is defined as the target accuracy ߳௧̅௔௥ሺࢄሻ. 

In order to demonstrate the capability of SFEM for simulating the stochastic material response, 

direct MCS is performed. 200 samples of RF are generated by using LHS and assuming lognor-

mal distribution. The simulations with different specimen sizes are carried out to show the effect 

of the randomness of material properties on the yield strength. 

Figure 4.22 a) and c) present the PDF and CDF of yield strength on all nodes at random field. 

The PDF and CDF of statistically simulated responses based on the tensile specimen with di-

ameter 10mm are presented in Figure 4.22 b) and d). It is clear that distribution of the yield 

stress at the integration point mapped from the random field is consistent with the target distri-

bution function. However, the distribution of the stress response of the entire specimen will not 

be conformed to the lognormal distribution. 
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Figure 4.22: PDF and CDF of the pre-defined random field and stochastic response of the yield stress 

 

Figure 4.23: Relationships between the response of stress and volume of specimens 

Figure 4.23 shows that the distribution of stress response of entire specimen is gradually 

changed with increasing volume of specimens. i.e., the mean value of the yield stress response 

decreases from 297.3 MPa, which is the mean value of yield strength in the random field, to 

277.5 MPa. The statistic variance of yield strength with larger volume is relatively small in the 
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uniaxial tensile test, and the left tail of this distribution is longer. Because the abscissa is ex-

pressed in a logarithmic form, the rate of the mean variation of the stress response decreases 

with the enlarged volume. This phenomenon is consistent with the statistical size effect in the 

literature [10]. 

The establishment of yield strength random field is based on the reasonable approximation of 

the strength statistical characteristics and the corresponding spatial correlation. For steel struc-

ture, a lognormal distribution is recommended for the yield and tensile strength in [3,107]. The 

mean value of yield strength in the random field can be obtained by the uniaxial tensile tests. 

The coefficient of variance (C௩) of the RF variables is not exactly the same as the strength C௩ 

of the entire structural component due to the existence of the correlation in RF and the influence 

of the correlation length. The C௩ relationship between the target RF and simulated tensile spec-

imens with different specimen sizes and correlation length is shown in Figure 4.24. Overall, the 

strength C௩ with different specimen sizes monotonically increase with the increasing C௩ of RF, 

and the specimen strength C௩ is always less than the C௩ in target RF. The difference of two C௩ 

increases with the increasing specimen size and (or) the decreasing RF correlation length. The 

yield strength C௩ for structural steel is usually defined as 0.07 in [107], as well as this value for 

steel S235 is between 0.05 and 0.08, according to the tensile tests with different specimen sizes 

in Table 4.1. To summarize, the yield strength C௩ of RF in steel structures is assumed as 10%. 

 

Figure 4.24: Coefficient of variation of random field and yield strength of specimen 

The other epistemic uncertainty is in determining the correlation length. The correlation length 

of yield strength is actually a parameter used to describe the material randomness, and correla-

tion and it can be theoretically measured through the experiments. However, the directly and 

accurately measurement of the correlation length of yield strength is difficult and very resource-
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intensive, according to current measurement techniques. To display the influence of the corre-

lation length on the specimen yield strength, the ultimate bearing capacity of different speci-

mens was simulated with a series of RF correlation length. Figure 4.25 presents the relationship 

between the correlation length and the yield stress reduction with varying sizes of the specimen. 

The vertical axis in Figure 4.25 represents the ratio of the average yield stress from 200 simu-

lations to the target yield strength of RF. When the correlation length is greater than 0 mm, the 

yield stress is reduced with the increased specimen size, which is consistent with the so-called 

SSE phenomenon. The reduction ratio of the yield stress for all specimens decreases continu-

ously as the correlation length increases. If the correlation length approaches infinity, the SSE 

phenomenon will completely disappear. Due to the monotonic relationship between the corre-

lation length and specimen yield stress, the more efficient approach to get the correlation length 

is that the ܮ௖ of yield strength could be obtained with plenty of numerical simulations based on 

the structural response inverse analysis. 

 

Figure 4.25: Relationship between correlation length and reduction of yield stress with different specimen 

sizes 

To clearly describe the SSE in steel with SFEM, the simulation results of each different size 

specimen with various correlation length ܮ௖ ∈ ሼ5, 10, 20,40,80,160ሽ	݉݉ is presented in Fig-

ure 4.26. The vertical axis represents the ratio of yield stress ߪ for each specimen size to the 

specimen yield stress ߪ଴ with minimum volume (4 mm diameter). Furthermore, the experiment 

results are incorporated into Figure 4.26 as contrast values. In general, the simulated yield stress 

always decreases as the specimen volume increases regardless of the correlation length. Ac-

cording to the simulation results, it is clear that the SSE is becoming more obvious as the cor-

relation length increases until it equals 40 mm. When the ܮ௖ is equal to 40 mm, the numerical 

results with SFEM are consistent with the experimental results. The reduction of yield stress in 
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the relatively larger specimen will gradually decrease if the correlation length continues to in-

crease. Consequently, the correlation length of steel S235 is assumed as 40 mm. 

 

Figure 4.26: Comparison of experimental and simulated results with different correlation length 

4.4.3 Numerical simulation of flexural members 

In order to analyze the statistical size effect with SFEM in flexural members, 3 and 4-point 

bending simulations of rectangular cross-section beam with different beam size were imple-

mented by using the random field of yield strength. The average stress-strain curve of the ma-

terial properties is also determined by tensile tests with 4 mm specimen. The corresponding 

results are compared with the bending tests and other simulations. It is assumed that the yield 

strength is distributed follows a lognormal distribution in the RF and the corresponding mean 

value is 300 MPa. The isotropic exponential function is defined as autocorrelation function of 

random field, and the value 1% will be defined as the target accuracy ߳௧̅௔௥ሺࢄሻ. According to 

the results of the above section, the correlation length ܮ௖ is defined as 40 mm, as well as 0.1 is 

employed as the coefficient of variation of the random field for this simulation. 

The geometries of different specimens are defined according to the Table 4.3. To save compu-

ting resources, the sizes of two RFs are determined with reference to the sizes of the different 

specimen, and it is shown in Figure 2.1. Although the size of the random field is different, the 

parameters of the RF are exactly same. Because the RF sizes are theoretically not affecting the 

properties, the results of the different specimen can be compared with each other. By 200 rep-

etitions of SFEM, the moments of the structural component are obtained for the different spec-

imen with various load types. 



Experimental and simulated investigation of tensile and flexural members 

82 

 

 

a) 

 

b) 

Figure 4.27: Random distributed yield strength in different specimens 

Table 4.4 shows the statistical results for the plastic moment when the maximum strain of the 

specimen is equal to 1%. One important observation in both specimens is the effect of the load 

type on the mean value, variance, skewness and kurtosis of the plastic moment. The variation 

of the first four order statistical moments of the structural response is in accordance with the 

description of statistical size effect. Since the 4P bending specimens have a greater effective 

volume, the 3P bending members have relatively big bearing capacity. However, the variance 

of the bearing capacity in 4P bending members is smaller than 3P bending tests. This means 

that the SFEM with the random field can be used to study the SSE in flexural members in steel 

structures. 

Table 4.4: First four order statistical moments of structural response 

Statistical 

moment 

mean value ߤሺܴሻ 

[kNmm] 

variance	ߪଶሺܴሻ 

[kNmm²] 

skewness ߛሺܴሻ 

[kNmm³] 

kurtosis ݇ሺܴሻ 

[kNmm4] 

Small 

specimen 

3P 1411.7 20358 291.1 31609 

4P 1308.9 7692 -358.5 30976 

Big 

specimen 

3P 10003.0 263704 -235.9 27764 

4P 9649.1 118118 -352.5 32655 
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The descriptions of the results will be presented in detail and the comparison with tests and 

another approach will also be implemented in section 4.5. Since the change in the first four 

moments means that the distribution function of the bearing capacity is constantly changing, 

the statistical size effect has a great impact on the reliability of the structure. Therefore, the 

evaluation and evolution of the PDF of the plastic moment and the influence of the SSE on the 

reliability will be analyzed in chapter 5. 

4.5 Comparison of experiments and simulations results 

In this thesis, the linear relationship of the moment and strain is defined as the maximum elastic 

moment ܯ௘௟. According to the approach in the section 4.2.2, the maximum moment in the elas-

tic stage of the tests and the numerical simulation with the stochastic material model is deter-

mined and shown in Table 4.5. It is obvious that the ܯ௘௟ of the 4P bending test is relatively 

smaller than the elastic moment in the 3P bending tests despite the same geometry. The same 

results also appear in the simulations, but the difference of the moment ܯ௘௟ between 3P and 4P 

bending simulations with the stochastic material model is more evident with the classical 

material model. Because the elastic moment is obtained by the formula in statics based on the 

assumptions, the mechanical method is not able to distinguish the difference between various 

bending types. 

Table 4.5: Comparison of maximum elastic moments from experiment and simulation 

Bending flexural test 
Test 1 
[kNmm] 

Test 2 
[kNmm] 

FEM with 
size effect 

[kNmm] 

FEM without 
size effect 

[kNmm] 

Technical me-
chanics 
[kNmm] 

H: 30 mm 

L: 280 mm 

small specimen 

3-point 962.1 964.2 956.1 956.1 915.0 

4-point 914.3 918.2 914.1 936.7 915.0 

H: 75 mm 

L: 1000 mm 

big specimen 

3-point 6848.7 6943.5 6828.4 7188.9 6862.5 

4-point 6611.9 6560.2 6580.3 7073.3 6862.5 

 

To compare the influences of the specimens with different sizes on yield stress with each other, 

the equivalent yield stress is defined by engineering mechanics, i.e., ௬݂,௘௤ ൌ ܹ/௘௟ܯ . The 

equivalent yield stresses of the 3- and 4-point bending tests with different specimen geometry 

are shown in Figure 4.28. It is clear that the equivalent yield stresses for the elastic ultimate 

bearing capacity have a more significant difference with stress distribution and the structural 
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component volume. The equivalent yield stress of the structure decreases with the increase of 

the effective volume under stress. The statistical size effect in steel structures is present in the 

bending member and affects the maximum elastic bearing capacity of the structure, where these 

results cannot be received by the conventional analysis and numerical simulations. 

 

Figure 4.28: Graphical representation of the equivalent yield stress 

Figure 4.29 shows moment-strain diagrams based on experiments and simulations using differ-

ent plastic theories for 3P and 4P bending tests with different specimen sizes. The results of 

FEM simulation with the stochastic material model, in which the statistical size effect is con-

sidered, are compared with the results using the conventional method. Furthermore, to compare 

the results with tests and other simulation method, the mean values of the moment, which is 

obtained by 200 simulations with SFEM for the 3P and 4P bending beam, are calculated and 

shown in Figure 4.29. In addition, the plastic moment ܯ௣௟ by plastic hinge theory (PHT) is also 

added to Figure 4.29 as a reference value. 

It is found that the plastic moment according to plastic hinge theory is smaller than the moment 

based on yield zone theory in Figure 4.29 a) and c), because plastic hinge theory considers only 

a uniaxial stress state and neglects the interaction of shear and normal stresses. This phenome-

non is already described by Petersen and Scheer in [108,109]. Therefore, the plastic hinge the-

ory, which is used in the design norm, may be no more suitable to analyze accurately the plas-

ticity in steel structures. Although the classical yield zone theory can consider the interaction 

of shear and normal stresses, its application is limited to the ideal material, as well as it can not 

deal with the influence of material randomness. 

It is obvious that the plastic moments of the classical yield zone theory in FEM simulation are 

greater than the moments determined by the experiment in the plastic stage in Figure 4.29. The 

deviations of the plastic moments increase with the rise of strain. The computational results of 
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the FEM simulation with consideration of the statistical size effect show that the plastic mo-

ments in the partially plastic area are relatively small when compared with the moments of the 

experiment. However, the deviation of the full-plastic moments according to both methods is 

negligible. Additionally, the differences of the full-plastic moment with the statistical size effect 

in simulation increase due to the larger volume. 

  

a) b) 

  

c) d) 

Figure 4.29: Moment-strain curves, a) 3-point test with small specimen, b) 4-point test with small specimen, c) 

3-point tests with big specimen d) 4-point test with big specimen 

Because of the variation of stress gradient in different specimens, the ܯ௣௟ of 4P bending tests 

in Figure 4.29 b) and d) are smaller than the plastic moments of the 3P bending tests in a) and 

c). Moreover, the average plastic moment of the SFEM simulation with the random field of 
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yield strength is consistent with the tests and the simulation results with the stochastic material 

model in Figure 4.29. This means that the SFEM can consider the statistical size effect in steel 

structure with different stress gradients. 

To analyze the influence of randomness of material properties on the structure strength, the two 

different numerical simulation methods, which are based on the classical FEM with the sto-

chastic material model and SFEM with the random field, can be employed as a complement 

and extension of traditional simulation. Despite the difference of basic theory of these two sim-

ulation methods, the similar results of the flexural member can be obtained. The stochastic 

material model based on the distribution of RVE material and statistical theory provide a sig-

nificant efficient method to calculate the SSE, because it does not require a lot of repetitive 

calculations. The SFEM with direct MCS is the approach at the expense of a prohibitive com-

putational cost. However, this method is easy to understand, and its physical meaning is also 

very clear. In addition, the SFEM can not only deal with the influence of the randomness of the 

material properties on structure, but also can be used to analyze the randomness of other pa-

rameters in the structure, such as the randomness of the boundary conditions and geometry 

model of the structure. Moreover, the SFEM can directly combine the reliability theory for 

analyzing the structural safety. 

4.6 Conclusions 

In this chapter, the uniaxial tensile tests with different specimen sizes and different material, 

namely S235 from HEB400 and S355 form 40 mm thick plate, were carried out to demonstrate 

the statistical size effect in steel structures. Besides, the 3- and 4-point bending tests with two 

different specimens from HEB400 were performed with a rectangular cross-section. The results 

of tensile tests show that the variations of the yield and tensile strength increase with the de-

clined specimen sizes, despite the material types are different. According to the bending tests, 

it was found that the structural component strength did not only depend on the specimen sizes, 

but also related to the stress distribution of the entire specimen volume. 

The material constant ߦ of the stochastic material model for steel was determined based on the 

comparison of the tensile tests and corresponding numerical simulations. The results show that 

the material constant for steel S235 and S355 is between 0.03 and 0.06. According to the sim-

ulations with stochastic FEM using different random fields, the plastic bearing capacity of the 

specimens is only affected by the random field of yield strength. By comparing the tensile tests, 

the correlation length ܮ௖ and coefficient of variation ܥ௩ of the corresponding random field were 

obtained using the with numerical calculations. The random field with lognormal distribution 
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and the isotropic exponential correlation function were employed to describe the randomness 

of steel yield strength. The results of 3- and 4-point bending simulations, where the correspond-

ing correlation length and coefficient of variation of the random field are respectively ܮ௖=40 

mm and ܥ௩ ൌ 10%, were consistent with the experimental results and the simulations by using 

the stochastic material model. Besides, the following conclusions can be summarized: 

 In steel structures, it appears the statistical size effect, which is similar in brittle or quasi-

brittle material. The smaller the specimen size is, the greater the material strength is. 

The statistical size effect exists not only in the structural components under uniaxial 

loads, but also in the flexural members with stress gradients. The equivalent yield stress 

is closely related to the stress distribution and volume of the structural component. 

 The two proposed simulation methods, which are an extension and supplement to tradi-

tional simulation methods, can effectively simulate the statistical size effect for the ten-

sile and flexural members in steel structures. Simultaneously, since these two methods 

can provide the randomness of the structural response, they also have the potential to 

analyze the influence of statistical on structural safety with the help of reliability theory. 

 From the results, it can be seen that the material strengths obtained by relative small 

specimen by statistical analysis in the laboratory are no longer valid or not optimal for 

large structures in practice. Especially, the maximum elastic moment and plastic mo-

ment of the steel profile need to be corrected with consideration of the statistical size 

effect. 
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5 Reliability assessment under considering material uncer-

tainty 

5.1 Introduction 

In recent decades, the design of structures has focused on the probabilistic limit state design in 

civil engineering. The key problem in the structural design is to properly account for the uncer-

tainties on the boundary conditions and the material properties. The finite element approaches 

in connection with stochastic and probabilistic methods, which can analyze the structure with 

the inputted uncertainly, has developed very fast in the last decades. The stochastic FEM can 

estimate the statistical description of response quantities. A more accurate and efficient calcu-

lation approach of the structural reliability based on the structural response from stochastic 

FEM has always been the focus in this research area. 

Usually, the statistical response characterization method uses an explicit limit state function in 

which the response of the structure is obtained by the SFEM. Then, the reliability analysis is 

performed using the FORM or SORM. Ghanem and Spanos [56] attempt to extend this ap-

proach to SSFEM for probabilistic representation of response quantities and reliability assess-

ment. However, this approach can be applied to analyze reliability problems involving linear 

problems. Because the SFEM with direct MCS for the elasto-plastic material requires many 

iterative calculations, the sample size of the structural response is limited, and the accuracy of 

the reliability evaluation is often difficult to be satisfied. 

As an alternative, the probability density function of the structural response can be obtained 

using traditional fitting techniques, and the corresponding parameters of the theoretical proba-

bility distribution can be estimated. However, the accuracy of the results depends on the se-

lected probability model and the sufficiency of the sample. It is worth noting that the guarantee 

of accuracy is a prerequisite for FORM or more accurate SORM: the distribution of random 

variables is correct, as well as the corresponding statistical parameters are accurate. In the case 

of a small number of samples, some different distributions may be accepted at the same time, 

and the statistical parameters of the random variable may differ from the true values. Especially, 

the resistance distribution of structural response obeys the combination of two distributions 

considering the statistical size effect. The maximum Entropy fitting method provides a possi-

bility to obtain relatively accurate probability distribution with small available data. Therefore, 

the ME fitting function was used to construct the optimal probability distribution for the distri-

bution of ܯ௥௘ under the known information in this thesis. 
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In this context, a framework for the reliability assessment with statistical size effect is proposed 

that combines the use of the maximum entropy fitting method for probabilistic modelling of the 

response with the MSC for reliability calculation. This method will be programmed in the gen-

eral mathematical software MATLAB with FEM software ABAQUS to analyze the reliability 

of 3P and 4P flexural members with the various profile under considering statistical size effect. 

5.2 Maximum Entropy fitting method 

5.2.1 Information and Entropy 

The information is an extremely wide used concept that has different interpretations from dif-

ferent perspectives. In general, the information is a signal that is given by the source and is 

received or understood by the user. The information is not the event itself, but it is used to 

characterize the properties of the event and contains all the information. In the past research 

and exploration, it was found that the uncertainty or randomness of the event is closely related 

to the information. For example, a recurring event occurs once, will not bring more information, 

because the similar information is no longer important for an event. On the contrary, an event 

which rarely happens occur once, but can give us more information. The occurrence of rare 

events is very useful for understanding the properties and characteristics of events, as well as it 

contains more information. 

In order to measure information, the measures of uncertainty were proposed by C.E. Shannon 

[110] in the year 1948, and a measuring method of the information is presented. It is assumed 

that an event has 〈ܣଵ, ⋯,ଶܣ ,  ݊ possible outcomes and the probability of each	 ௡〉 a total ofܣ

result is respectively 〈݌ଵ, ⋯,ଶ݌ ,  of the event is given by ܪ ௡〉. The quantities of uncertainty݌

the following formula, 

ࡴ ൌ െܥ෍ ௜ሻ݌ሺ	௜ln݌
௡

௜ୀଵ
 (5.1) 

where ܥ is a constant. The above formula is applied to the discrete random event. If the proba-

bility density function ݂ሺݔሻ for an event is a continuous distribution function, the ࡴ of the event 

is as follows, 

ࡴ ൌ െܥන ݂ሺݔሻ݈݂݊ሺݔሻ݀ݔ
ାஶ

ିஶ
 (5.2) 

In the information theory, ࡴ is called entropy. In fact, if the occurrence probability of an event 

is equal to one ݌௜ ൌ 1 , the remaining 〈݌ଵ,⋯ , ,௜ିଵ݌ ⋯,௜ାଵ݌ , 〈௡݌  are equal to zero. This 

means the entropy ࡴ ൌ 0, because the results of the test don’t have any uncertainty. On the 
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contrary, if nothing is known about the results in advance, then all ݌௜ are same (݌௜ ൌ 1/n). In 

this case, the Entropy reaches the maximum value ࡴ௠௔௫ ൌ C݈݊ሺ݊ሻ, and the results of the event 

have the greatest uncertainty. 

5.2.2 Maximum Entropy principle and maximum Entropy fitting method 

The maximum Entropy principle was proposed by Jaynes in 1957 [73], and he indicated that 

the distribution with the least biased has the greatest Entropy based on additional constraints 

under known information. The distribution with the greatest uncertainty can be used as the 

distribution function of the random variable under the given constraint condition when the en-

tropy is considered to be the appropriate quantity of measurement uncertainty. To select the 

probability distribution with the maximum entropy means that the distribution contains the 

greatest amount of information. The maximum Entropy principle provides an approach to con-

struct an optimal probability distribution under known information. According to the given 

constraints, the maximum Entropy principle can be derived from many well-known probability 

models. For example, if the interval of the random variable is known, the distribution with 

maximum entropy is uniformly distributed; if the mean and variance of the random variables 

are known, the maximum entropy distribution is the Gaussian distribution. 

The maximum Entropy fitting method is based on the maximum Entropy principle under the 

constraints supplied by the available information. In this thesis, the MEFM was used to con-

struct the optimal probability distribution for the structural response, which was obtained by 

the stochastic FEM with the randomness of material properties. The purpose of the MEFM is 

to find a probability density function ݌ሺݔሻ with the ME ࡴ under the constraints [111]. This is 

formulated as a constrained optimization problem, 

൞
ࡴ													݁ݖ݅݉݅ݔܽܯ ൌ െܥන݂ሺݔሻ݈݂݊ሺݔሻ݀ݔ

ሻሽݔሼ߶௜ሺܧ			݋ݐ	ݐ݆ܾܿ݁ݑݏ ൌ න߶௜ሺݔሻ݂ሺݔሻ݀ݔ
 (5.3) 

where	߶଴ሺݔሻ ൌ 1 and ߶௜ሺݔሻ ൌ ௡ݔ . By the MEFM, the optimal distribution function of the 

structural response can be determined by the moments of the basic random variables. The 

 has no influence on the ܥ ሻሽ is the ݅th moment of the random variable. Due the constantݔሼ߶௜ሺܧ

maximum value of entropy ࡴ, let ܥ ൌ 1 for ease of calculation. The conventional method to 

solve the optimization problem is to introduce the Lagrange multiplier ߣ௜ in Eq. (5.3). 

ఒࡴ ൌ െන ݂ሺݔሻ݈݊ሾ݂ሺݔሻሿ݀ݔ
ାஶ

ିஶ
െ෍ ௜ߣ ቈන ݔሻ݀ݔ௜݂ሺݔ

ାஶ

ିஶ
െ ቉	ሻሽݔሼ߶௜ሺܧ

௡

௜ୀ଴
 (5.4) 
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 :ሻ, The condition for the existence of stationary point isݔఒ is a function of ݂ሺࡴ

ఒࡴࣔ

݂ࣔሺݔሻ
ൌ 0 (5.5) 

Thus, 

න ൤െ݈݊ሾ݂ሺݔሻሿ െ෍ ௜ݔ௜ߣ
௡

௜ୀ଴
൨ ݔ݀

ାஶ

ିஶ
ൌ 0 (5.6) 

so, ݂ሺݔሻ is wittier with the Lagrange multiplier ࣅ as following, 

݂ሺݔሻ ൌ ൤െ෍	݌ݔ݁ ௜ݔ௜ߣ
ே

௡ୀ଴
൨ (5.7) 

The ࣅ ൌ ሾߣ଴ ݊ ௡ሿ is obtained by solving the set ofߣ⋯ ൅ 1 nonlinear equations. 

ሻࣅሺܨ ൌ නݔ௜ ݌ݔ݁ ൤െ෍ ௜ݔ௜ߣ
ே

௡ୀ଴
൨ ݔ݀ ൌ  ௡ሽ (5.8)ݔሼܧ

Theoretically, Eq. (5.8) can be solved by any method for nonlinear equations. However, the 

actual calculation shows that the iterative calculation of this kind of equations is very strict to 

the initial value. In the vast majority case, the iteration cannot converge because the appropriate 

iteration initial value cannot be found. However, some optimization methods were developed 

to solve these problems in last decades, such as generalized or improved iterative, classic or 

improved Newton method [112,113]. 

Usually, these equations are efficiently solved by the Newton method, which consists of ex-

panding ܨሺࣅሻ in Taylor's series around trial values of the ࣅ, drop the quadratic and higher order 

terms, and solve the resulting linear system iteratively as in Eq. (5.9). 

ሻࣅሺܨ ≅ ૙ሻࣅሺܨ ൅ ሻࣅᇱሺܨ ∗ ሺࣅ െ  ૙ሻ (5.9)ࣅ

Noting the vectors ࢾ and ࣆ by 

ࢾ ൌ ࣅ െ  ૙ (5.10)ࣅ

ࣆ ൌ ሾܧሼݔ଴ሽ െ ,૙ሻࣅ଴ሺܨ ଵሽݔሼܧ െ ⋯,૙ሻࣅଵሺܨ , ௡ሽݔሼܧ െ  ሿ (5.11)	௡ሻࣅ଴ሺܨ

This method is solved for ࢾ from which we drive ൌ ૙ࣅ ൅  which becomes our new initial , ࢾ

vector ࣅ૙ and the iterations continue until ࢾ becomes appropriately small. The flowchart of this 

method is shown in the following figure. 
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Figure 5.1: Algorithm flowchart with Newton method for nonlinear equations 

To verify the MEFM, the four most frequently used distribution of random variables for the 

structural reliability analysis were simulated, i.e., Gaussian distribution in Figure 5.2 a), loga-

rithmic normal distribution in b), Weibull distribution in c) and Extreme value distribution type 

I (Gumbel distribution) in d). 

  

a) b) 

  

c) d) 

Figure 5.2: Theoretic distribution of the random variables and the maximum Entropy distribution under the first 

four moments constraints 
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Moreover, the comparison of the probability density distribution function (PDF) of the maxi-

mum Entropy distribution under the first four moments constraint and the original theoretical 

distribution is shown in Figure 5.2. All the maximum entropy distributions are based on 1000 

samples of simulation. The comparison between MEFM and the analytic function was indicates 

that the MEFM could be used efficiently to fit accurate PDF based on small samples. Therefore, 

it is feasible and important to use the maximum entropy principle for structural reliability anal-

ysis. 

 

Figure 5.3: Fitting lognormal distribution by MEFM with different statistical parameters 

Figure 5.3 shows the comparison between the MEFM and the analytic function with different 

parameters of Lognormal distribution ܰܮሺߤ,  ߛ ሻ. In the Lognormal distribution, the skewnessߪ

is increasing with the increased parameter ߪ by the Eq. (5.12). 

ߛ ൌ ൫݁ఙ
మ
൅ 2൯ඥ݁ఙమ െ 1 (5.12) 

With the increase of the skewness, the error of the PDF obtained by MEFM and analytic func-

tions is increasing. This means that the MEFM with the constraint of first four moments is able 

to obtain a relatively accurate probability density function with small skewness. In the case of 

big skewness, to get a reasonable PDF may need to increase the number of constraint equations 

and higher order statistical moments. Therefore, the obtained PDF need to be tested whether 

the distribution function is accepted. 

For the proposed MEFM, the K-S test is employed to decide if a sample derives from a popu-

lation with a specific distribution [84]. The basic idea of this test is: 

 Generate a sample from PDF, which is obtained using MEFM form the sample of SFEM. 

P
D

F
 f(

x)
 [-

]



Reliability assessment under considering material uncertainty 

94 

 

 Compare the two samples using K-S test and decide, if there were significant differences 

and determine whether the two samples from the same distribution. 

If the result of the K-S test is not rejected, it means that the obtained PDF can be used as a 

distribution function of the structural response sample. An attractive feature of this test is that 

the distribution of the K–S test statistic itself does not depend on the underlying cumulative 

distribution function being tested. Moreover, the K-S test is a completely nonparametric test 

for comparing two samples rather than relying on the approximate distribution. This test can 

work for any types of the samples, even if the distribution is unknown. 

5.3 Structural reliability analysis 

In structural engineering, to ensure the safety or reliability of the structure, it is necessary to 

study the various stochastic uncertainties, which may exist from the materials of the structure, 

the conditions of use and environment, construction and other aspects. Afterward, the uncer-

tainties need to be considered by appropriate mathematical methods to analyze the safety or 

reliability of the structure. The system is subdivided into components and the system failure, 

which is the source of the joint failure of components. Because the failure of components is the 

basic element of the system failure, the determination of the probability of failure of each com-

ponent is of paramount importance. This chapter will focus on the procedures for evaluating 

this component reliability. 

The design of the structure need to consider the relevant reliability parameters, and these pa-

rameters are mainly divided into two categories: The first type is the direct effect imposed on 

the structure or the indirect effect causing structural deformation. The internal stress and defor-

mations of structures or structures caused by these effects are called action effect ࡿ. The other 

is the ability of the material of the structures or components to bear the effect, known as re-

sistance ࡾ. The resistance depends on the strength of the material, cross-section, component 

size, connection conditions, etc. 

5.3.1 Limit state of structure 

In order to correctly describe the working state of the structure for the structural reliability 

analysis and design, it is necessary to specify the safety and failure limit states of the structure. 

The limit state of the structure is essentially a threshold for the working state of the structure. 

If the threshold is exceeded, the structure is in an unsafe, unsustainable and unsuitable state; if 

it does not exceed this threshold, the structure is in a safe, durable and applicable state. For 

example, for a steel structure, the component will fail when the bending moment of the load 
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exceeds the resistance moment of the structural component. If the applied moment is equal to 

the resistance moment, the component reaches the limit state of the carrying capacity. 

Let ࢄ ൌ ሺ ଵܺ, ܺଶ,⋯ , ܺ௡ሻ denote the set of all basic random variables pertaining to the structure 

under consideration. If random fields are involved, the discretization schemes mentioned in 

chapter 3 can be used to represent them in terms of a finite set of random variables ࢄ௡, i.e., 

ࢄ ൌ ሺࢄଵ, ⋯,ଶࢄ , -௡ሻ. The ݃ሺ∗ሻ represent a function that describes the working state of a strucࢄ

ture, called a structural limit state function. The state of the structure can be expressed as fol-

lows. 

ࢆ ൌ ݃ሺࢄሻ ൝
൏ 0 ݁ݐܽݐݏ	݁ݎݑ݈݂݅ܽ
ൌ 0 ݁ݐܽݐݏ	ݐ݈݅݉݅
൐ 0 ݁ݐܽݐݏ	݂݁ܽݏ

 (5.13) 

5.3.2 Structural reliability and reliability index 

In structural design, the traditional principle of structural reliability is to compare the mean 

value of resistance ࡾഥ  with the mean value of action effect ࡿഥ. When ࡾഥ  is greater than ࡿഥ, the 

safety factor is greater than one, which means that the structure is reliable. However, since the 

resistance and the action effect have random properties and can use some random variables of 

the random field, it is a possibility that the resistance ࡾ is less than the action effect ࡿ, although 

they satisfy the conditions from the mean value. Therefore, this possibility can be expressed as 

the probability of structural safety. 

The structural safety is measured by reliability. The reliability is defined as the probability that 

the structure will perform a predetermined function within the specified time and within the 

specified conditions, which expressed as ௦ܲ [29]. On the contrary, if the structure cannot com-

plete the designed function, then the probability of the corresponding structure is called the 

probability of failure and expressed as ௙ܲ. The safety and failure of the structure are two mutu-

ally incompatible events, so the structural reliability probability of ௦ܲ is complementary to the 

failure probability ௙ܲ and can be expressed as follows. 

௦ܲ ൅ ௙ܲ ൌ 1 (5.14) 

The failure probability ௙ܲ is commonly used to measure the failure of the structure in the relia-

bility analysis. The primary task of structural stochastic reliability analysis is processing sto-

chastic information and failure probability calculation. 

According to the definition of structural reliability and the basic principle of probability theory 

[84], the failure probability of the structure is given by: 
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௙ܲ ൌ ሺܼ݌ ൏ 0ሻ ൌ න ݂ሺݔሻ݀ݔ
௚ሺࢄሻஸ଴

 (5.15) 

If the structure has two independent random quantities ࡾ and ࡿ and the corresponding PDF are 

ோ݂ሺݎሻ and ௌ݂ሺݏሻ, the failure function of the structure is as follows: 

௙ܲ ൌ න ௌ݂ሺݏሻ ቈන ோ݂ሺݎሻ
ାஶ

ି௦
቉ݎ݀ ݏ݀ ൌ න ோ݂ሺݎሻ ቈන ௌ݂ሺݏሻ

௥

ିஶ
቉ݏ݀ ݎ݀

ାஶ

ିஶ

ାஶ

ିஶ
 (5.16) 

The Eq. (5.16) contains two major difficulties. The joint PDF ݂ሺݔሻ of the resistance and action 

effect is usually unknown even if the basic random variables or random fields ࢄ are known 

information. Another problem is that the multi-fold integral over the failure domain is not easy 

to compute. Thus approximate methods have been developed in the last years and can be found 

in the reference [43,114]. 

The reliability index ߚ is a quantitative indicator used to measure structural reliability by Cor-

nell [115]. It is a value of the inverse function of the standard normal distribution at a reliable 

probability and has a precise correspondence with the probability of failure. In the standard 

normal space, the limit state surface is replaced by the tangent plane at the point with minimum 

distance from the origin. The probability of failure can be written as follows: 

௙ܲ ൌ  ሻ (5.17)ߚሺെࢶ

where ࢶሺ∗ሻ denote the standard normal cumulative distribution. The reliability index ߚ can 

also be written as a ration between mean value ߤ௓ and standard deviation ߪ௓, i.e., ߚ ൌ  ,௓ߪ/௓ߤ

when the limit state function is subject to normal distribution. In the practical engineering prob-

lem, the structure of the ࢆ function generally does not obey the normal distribution function. 

Thence, the reliability index ߚ is only a form of conversion of failure probability in this thesis. 

5.3.3 Calculation of structural reliability 

In structural reliability, there are two main methods: the analytical method based on probability 

and mathematical analysis and the Monte Carlo method based on statistical principle. The fail-

ure probability ௙ܲ in Eq. (5.16) can be solved by numerical integration, but the computation is 

too large for most practical problems. The basic idea of the analytical method for structural 

reliability is that the limit state function ࢆ is expanded by Taylor series to linearize. Then the 

mean value ߤ௓ and standard deviation ߪ௓ of ࢆ are obtained by using the first and second mo-

ments of the random variables or random field ࢄ to determine the reliability index of the struc-

ture. This linear expansion method is often referred to as a First Order Reliability Method 
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(FORM). However, since the limit state function uses a first-order Taylor expansion, the accu-

racy of the calculation result is difficult to guarantee when the limit state function is strongly 

nonlinear. Some research [116,117] have used the Laplace method in mathematical approxima-

tion to study the reliability of structure and have achieved good results. Because the method 

uses the second order partial derivative term of the nonlinear limit state function, it should be-

long to the Second Order Reliability Method (SORM). It is clear that the result of SORM is 

based on the result of the FORM with a correction factor, which can consider the limit state 

function quadratic nonlinearity. Therefore, the SORM can be seen as a correction of the results 

of the FORM. 

Whether for FORM or more accurate SORM, the reliability of the structure is essentially esti-

mated by the first two moments of the limit state function. The information contained in higher-

order statistical moments can not be efficiently used. In the traditional analytical method, the 

distribution function of the random variables is mostly the ideal mathematical model. There 

may be some unknown distribution in real situation issues that are not considered by FORM 

and SORM. In particular, in dealing with the reliability of the structure considering the statisti-

cal size effect, the application of these analytical methods may result in relatively greater errors, 

because the higher order moments of the structural response in the statistical size effect are 

significant and can be summarized. The Monte Carlo approach provides an alternative approach 

for solving such problems. 

The Monte Carlo method avoids the mathematical difficulties in structural reliability analysis. 

It does not need to consider the complexity and the nonlinear of limit state function. Its short-

comings are computationally intensive and inefficient. However, with the improvement of sam-

pling technology and the improvement of computer technology, the application of this method 

will be more and more extensive, because the MC method is intuitive, precise and has a strong 

versatility. 

It is given that ࢄ ൌ ሺ ଵܺ, ܺଶ,⋯ , ܺ௡ሻ are the random variables or random field of the structure. 

If the PDF of every random variable ܺ௡ is known, the random vector 	ࢄ is randomly sampled 

using the mathematical method and the extracted random sample vector ࢞ are substituted into 

the limit state function ࢆ ൌ ݃ሺࢄሻ. When ࢆ ൏ 0, the structure will fail once in the simulation. 

Let ܰ denote the total number of the simulation, and the ݊௙ means the number of ࢆ ൏ 0, the 

estimated value of structural failure probability ෠ܲ௙ is as follows: 

෠ܲ௙ ൌ
݊௙	
ܰ

 (5.18) 
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Eq. (5.18) is derived from the relationship between the frequency and probability in probability 

theory and statistics. The failure probability ௙ܲ of the structure has another form if the integral 

is extended to the real space. 

௙ܲ ൎ ෠ܲ௙ ൌ න ݔሻ݀ݔሻሿ݂ሺࢄሾ݃ሺܫ
ାஶ

ିஶ
ൌ
1	
ܰ
෍ܫሾ݃ሺࢄ௜ሻሿ
ே

௜ୀଵ

 (5.19) 

where ܫሾ݃ሺࢄሻሿ ൌ ൜
1 ݃ሺࢄሻ ൏ 0
0 ݃ሺࢄሻ ൒ 0

. 

lim
ே→ஶ

ܲ ቀቚ
݊௙	
ܰ
െ ௙ܲቚ ൏ ቁߝ ൌ 1 (5.20) 

According to the law of large numbers theory in Eq. (5.20), it is clear that the ෠ܲ௙ converges to 

௙ܲ with a probability of one. This also means that the convergence of MC simulation is inde-

pendent of the dimension of the basic random vector and the complexity of the limit state func-

tion. However, for the structural failure of small probability events, it is not easy to realize ࢆ ൏

0 for direct MC simulation and it is more difficult to obtain the failure probability ෠ܲ௙. 

For structural reliability calculations, the way to improve the efficiency of the MC method is to 

increase the chances of ࢆ ൏ 0, i.e., let sample points have more opportunities to fall into the 

failure field. The basic principle of the importance sampling method is changing the sampling 

center of the random variable, in the case of keeping the original sample expectations un-

changed. By changing the probability distribution of the existing sample space, the variance is 

reduced. By this approach, the probability of structural failure sampling increases and the ex-

tracted sample points have more opportunities to fall in the interest area, so that the sampling 

point is more efficient to achieve the purpose of reducing the computing time. 

Let ݂∗ሺࢄሻ denote an arbitrary distribution of the probability density function as follows: 

෠ܲ௙ ൌ
1	
ܰ
෍൤ܫሾ݃ሺࢄ௜

∗ሻሿ
݂ሺࢄ௜

∗ሻ	
݂∗ሺࢄ௜ሻ	

൨

ே

௜ୀଵ

 (5.21) 

where the observed random vector ࢄ௜
∗ is obtained from the new PDF ݂∗ሺࢄ௜ሻ. For simplicity, 

݂∗ሺࢄ௜ሻ	is the PDF of a uniform distribution in a multidimensional rectangular domain, i.e., 

݂∗ሺࢄ௜ሻ ൌ ቄ1/ܣ ௜ࢄ ∈ ܣ
0 ݎ݄݁ݐ݋

						ሺܣ	ݏ݅	݁ܿܽ݌ݏ	݂݋	݊݅ܽ݉݋݀ሻ		 (5.22) 

The failure probability ௙ܲ of a structure is obtained by introducing Eq. (5.22) into Eq. (5.21) 

and is shown in Eq. (5.23). 
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௙ܲ ൎ ෠ܲ௙ ൌ
	ܣ
ܰ
෍ሾܫሾ݃ሺࢄ௜

∗ሻሿ݂ሺࢄ௜
∗ሻሿ

ே

௜ୀଵ

 (5.23) 

The number of simulations with importance sampling (IP) methods is not affected by the prob-

ability of failure, so the probability can be calculated for cases where the probability of failure 

is small. The importance sampling method does not need to consider the shape of the limit state 

surface when constructing the sampling function. In addition, the calculation is simple and don’t 

require much preparation. The MCS with IP technique will be employed to analyze the failure 

probability of structure consider the statistical size effect. 

5.4 Structural reliability with statistical size effect 

In this thesis, the flexural members with stress gradient will be analyzed by SFEM considering 

the uncertainty of elasto-plastic material, which is the reason for the statistical size effect in 

macroscopic areas. The statistic samples of the ultimate capacity of the flexural member were 

obtained by the repeated calculation with SFEM, as well as its distribution was determined 

using the MEFM. Finally, the structural response of the whole structure is applied to the struc-

tural reliability analysis with MC simulation with importance sampling. 

The reliability approach is intended to evaluate the probability of failure of a structure consid-

ering randomness. The failure criteria in mechanics are usually defined by load effect (stress, 

strain, load or deformation). The limit state function of the structure is defined regarding max-

imum plastic bending moment for the flexural members. 

݃௕௘௡ሺࡿሻ ൌ ௥௘ܯ െ  ௟ (5.24)ܯ

where ݃௕௘௡ሺࡿሻ represents the limit state function for bending members. The ܯ௥௘ and ܯ௟ mean 

the maximum plastic moment of resistance and applied moment, which are random variables 

due to the randomness of material properties. 

The probability density distribution of ܯ௥௘ is obtained by MEFM based on the response of 

structure. Figure 5.4 shows the flow chart of the proposed method for reliability assessment of 

the structure with random field considering elasto-plastic material properties, and it consists of 

the following steps: 

(1) Firstly, get the sample of the structural response, which is obtained by the SFEM with 

the random field of yield strength. The first four moments of the sample are calculated 

by statistical theory, and the corresponding PDF of the sample is obtained using MEFM. 
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(2) Use Kolmogorov–Smirnov (K–S) test to check if the sample size is sufficient. If it is 

not enough, return to the initial step and generate more sample points from the SFEM. 

(3) Input of the statistical distribution and parameters of the predefined load. The PDF ob-

tained by MEFM form SFEM is used as the distribution function of the resistance of the 

structure. Then, the limit state function of the structure ࢆ ൌ ݃ሺࢄሻ is defined. 

(4) Get the failure probability of the structure using ܰ times MC simulation with the im-

portance sampling. The difference of the failure probability between	ܰ and ܰ െ 1 times 

MC simulation ห ෠ܲ௙,ே െ ෠ܲ௙,ேିଵห is calculated. If the difference is greater than the toler-

ance	ߝ, let ܰ ൌ ܰ ൅ 1 and recalculate the probability of failure ෠ܲ௙,ே. 

(5) If the difference is acceptable, the reliability index ߚ is calculated. 

 

Figure 5.4: Flowchart of the proposed method for reliability assessment with structural response from SFEM 

The approach based on MEFM and Monte Carlo simulation with important sampling intro-

duced in this work can be applied in the structural reliability analysis using SFEM with random 

material properties whenever the PDF of the response obtained is accurate enough. One addi-

tional benefit of this method is that it can consider the influence of higher-order moments on 
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structural reliability and the statistical size effect. Moreover, it provides in all steps of the anal-

ysis process measures of accuracy of the approximations that can be improved if it is necessary. 

5.5 Probabilistic modeling of the ultimate bearing capacity of flexural mem-

bers 

In order to analyze the reliability and the ultimate bearing capacity of the bending members 

under considering the statistical size effect, the bending simulations of IPE beam with random 

fields of yield strength were implemented by SFEM. The simulations are performed with dif-

ferent sizes of IPE profile in Table 5.1 to study the effect of the component volume on structure 

safety. The length and height of all specimens are proportional, i.e., ܮ/݄ ൌ 10. To demonstrate 

the relationship of the stress distribution and the structural reliability, the 3P and 4P bending 

simulations are compared with each other for all specimens. Because the solid element type 

C3D8 has relatively more integral points and outstanding computational efficiency, it is used 

to analyze the structural response for each simulation. It is assumed that the load applied on the 

structure is distributed by the Gaussian distribution, and the corresponding coefficient of vari-

ation is 10% as numerical example. 

Table 5.1: Geometric parameters of the beams 

IPE h [mm] b [mm] tw [mm] tf [mm] r [mm] L [m] 

 

100 55 4.1 5.7 7 1 

200 100 5.6 8.5 12 2 

300 150 7.1 10.7 15 3 

400 180 8.6 13.5 21 4 

500 200 10.2 16 21 5 

600 220 12 19 24 6 

 

The random field with lognormal distribution is employed for the yield strength, as well as the 

isotropic exponential function is defined as autocorrelation function of RF. According to the 

study in section 4.4, the correlation length and coefficient of variance of the random field are 

assumed respectively as 40 mm and 10%. The length of the discrete random field is defined as 

half the correlation length. 

The discretization of the random field needs to consume a lot of computing resource and the 

eigenfunction generated by the discrete process requires huge storage space. For example, the 

discrete eigenfunction for IPE600 with 6m length has 99000ൈ99000 points with the proposed 
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parameters of RF. Therefore, an approximate method is employed, where the random field of 

IPE profile is divided into three parts, namely RF of upper flange, web (inclusive radius) and 

lower flange in Figure 5.5. By this approach, the discretization of the random field is to be more 

efficient. However, this method will cause the correlation of the junction between the flange 

and web to disappear as in Figure 5.5 a). 

 
 

a) b) 

Figure 5.5: Distribution of yield stress in IPE-section beam, a) with 1 RF, b) with 3 divided RFs 

Table 5.2 shows the total time of the different discretization approaches and the corresponding 

errors for various profile types. It is obvious that the times of RF calculation increase as the 

volume of the structure increases. The required times of a single RF for the 3D lager structure 

is unacceptable. 

Table 5.2: Computing time for discretization of different RFs and corresponding global error 

Profile type IPE100 IPE200 IPE300 IPE400 IPE500 IPE600 

Time for 1 RF [s] 6.8*10^2 1.8*10^3 3.7*10^4 ∞ ∞ ∞ 

Time for divided RFs [s] 7.2*10^1 8.3*10^2 1.2*10^3 3.8*10^3 1.0*10^4 2.8*10^4 

Error [-] 2.14% 2.52% 2.98% - - - 

 

To combine three RFs into the target random field is the efficient and achievable method for 

treating such large-scale structure problems at the expense of acceptable computational accu-

racy. Because the spatial correlation of the yield stress is partially distorted, the maximum plas-

tic moments of each specimen with the divided RFs are always greater than the actual value. 

According to the results of 200 repetitions of the simulation, the discretization error is smaller 

than 5% for the specimens. 
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To demonstrate the effect of the sample size of structural response on the PDF, Figure 5.6 a) 

shows the PDFs obtained by the MEFM with increasing sample sizes. It can be seen that the 

ME PDF provides an acceptable approximation for the PDF of resistance moment when the 

sample size is larger enough. The verified results of K-S test are presented in Figure 5.6 b). The 

results show that the ratio between the test statistic of different sample sizes and the approxi-

mate critical value calculated for a significance level as of 0.05 is always smaller than 1.0. This 

means that small size samples can be used to derive an ME PDF to represent the uncertainty on 

the maximum plastic moment of flexural members, which is a very attractive feature for relia-

bility assessment involving the statistical size effect in steel structures. 

 

 

a) b) 

Figure 5.6: a) ME PDFs with different sample sizes, b) K–S test results for different sample sizes 

5.5.1 Evolution of strength probability density function 

Due to the presence of statistical size effects in steel, the material strength is not the same in 

structures with different volume mainly dependent on the stress distribution and the size of the 

structural component. According to the PDF of material strength in Eq. (2.11) for the stochastic 

material model, it is easy to calculate the mean, variance and skewness of the material strength. 

Figure 2.8 more intuitively shows the relationship between the material strength and the volume 

of the structure. It is clear that the mean value and the variance of strength are decreasing as the 

volume increases and the corresponding reduction rate is slowly decreasing. In addition, the 

skewness of material strength is changing from positive to negative. These change of the sta-

tistical moments for stochastic material strength means that the PDF of the strength is not con-

stant. 

In this thesis, the relationship between the effective volume of a structural component and the 

statistical moments of the strength distribution is called the evolution of strength probability 
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density function for statistical size effect. Although the evolution of the PDF is based on the 

stochastic material model, every material must be defective and this evolution is the essential 

characteristic of the material. 

To demonstrate the evolution of the PDF, the probability density functions of the 3P and 4P 

bending simulation with different I-profile obtained by MEFM are shown in Figure 5.7. For 

comparing the PDF of the structural response for different specimen, the maximum bearing 

moment is converted to the equivalent yield stress ௬݂_௘௤ ൌ /௣௟ܯ ௣ܹ௟. The 3P bending simulation 

can obtain greater equivalent yield stress in each specimen with the different volume since the 

effective volume in 3P bending simulation is always larger than in 4P simulation. 

The mean and variance of the equivalent yield stress in the 3P simulation or the 4P simulation 

are both reduced when the volume of the specimen becomes larger. For example, the mean 

value and variance of equivalent yield stresses in 3P bending IPE100 are 289 MPa and 277 

MPa, but corresponding values are reduced to 263 MPa and 31 MPa in the 3P bending IPE600. 

However, the fluctuations of skewness of the equivalent yield stress are not particularly notice-

able and the values vary almost around zero. This phenomenon should be due to the sample 

size for the MEFM being too small. For the reliability assessment, the impact of high-order 

statistics will be greatly reduced. The PDF obtained by MEFM based on the structural responses, 

which are calculated by the SFEM with the material uncertainty, can characterize the evolution 

of distribution function. 
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c) d) 

  

e) f) 

Figure 5.7: Evolution of strength probability density function for 3P and 4P flexural members, a) IPE100, b) 

IPE200, c) IPE300, d) IPE400, e) IPE500, f) IPE600 

5.6 Influence of statistical size effect on the structural safety 

For assessing the influence of statistical size effects on structural reliability, the reliability index 

 was calculated by 10଻ time MCS with IP according to the flowchart in Figure 5.4. Figure 5.8 ߚ

shows the reliability indices obtained using the proposed method in which the limit state func-

tion is defined explicitly using the various probabilistic models of the ultimate strength of the 

flexural members with increasing sample sizes. The results represent that the influence of sam-

ple size on the reliability of the structure is negligible if the number of samples is equal to or 

greater than 150. Essentially, the sample size changes only the distribution function of the struc-

tural response obtained by the maximum entropy fitting method. In the present case, the sample 

size considered in the MEM has small effect on the calculated reliability index. This trend ap-

plies to different types and distribution function of load. 
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Figure 5.8: Reliability indices with increased sample sizes 

Figure 5.9 shows the reliability indices ߚ obtained by MCS with IP for 3P and 4P bending 

simulation with different specimen volume. The reliability indices of 3P and 4P bending beam 

have a relatively significant difference even if the structure is applied by the same bending 

moment. This is due to the statistical size effect caused by different yield volume under the 

ultimate bearing capacity. The ܯ௟ ⁄ ௣ܹ௟ in abscissa represents equivalent stress of the structure, 

where ܯ௟ is the mean value of the applied moment. For different sizes of beams, the reliability 

index of the 3P bending beam is always greater than the 4P bending beam with the same ܯ௟ ⁄

௣ܹ௟ value. The relationship of the reliability index and the volume of structure cannot be simply 

summarized. For example, in the case of three-point bending the structural reliability index 

increases with the enlarged volume of the structure, while in the case of four-point bending it 

decreases. Therefore, the reliability analysis for flexural members considering the statistical 

size effect needs to be calculated separately for each structure, because the reliability index is 

significantly influenced by the structural volume and stress gradient of the structure. 

 
Figure 5.9: Fluctuation of reliability indices considering statistical size effect 

 [-
]
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In general, there is a pre-defined target reliability index in the design code. Eurocode [118] has 

defined the target reliability index ߚ for limit state of ultimate in 50 years as 3.8 for Class RC2  

of structural members. According to Figure 5.9, the mean value of the allowable stress for 3P 

bending IPE100 specimen is 195 MPa, but for 4P bending IPE600 beam, it is less or equal to 

190 MPa, when target ߚ ൑3.8. This means that the yield stress, which is obtained by the exper-

iment with the small specimen in laboratory based on the traditional statistical theory, is no 

more suitable for large structures. The reliability of structures with relatively large effective 

volume is smaller than the small structures with the conventional design method, even if the 

material of the different structure is same. 

The reliability of the structure depends not only on the distribution of the resistance but also the 

statistical distribution of applied load. To demonstrate the effect of the load distribution in the 

reliability analysis considering the statistical size effect, the reliability assessment was imple-

mented for different distributions of applied load with the various coefficient of variation ܥ௩ 

and distribution types. 

The results in Figure 5.10 a) show that the reliability index ߚ of the structure decreases as the 

coefficient of variation of the applied moment increases. For the same load, the structure with 

the load obeyed by Weibull distribution always has a lower reliability in Figure 5.10 b). How-

ever, the effect of the load distribution on the reliability is not equivalent to the 3P and 4P 

bending beam with different effective volumes. Therefore, for each structure, the particular 

applied load are required to be analyzed separately in the study of structural reliability consid-

ering the statistical size effect. 

 

a) 
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b) 

Figure 5.10: Influence of applied load distribution on the reliability analysis considering the statistical size effect, 

a) coefficient of variation of load distribution, b) distribution types of load 

5.7 Conclusions 

In this chapter, an approach for structural reliability analysis was proposed considering statisti-

cal size effect. This method combined the maximum entropy fitting method for resistance mo-

ment of responses and the reliability evaluation. The reliability index was obtained with a small 

sample by this approach, thereby effectively avoiding the unacceptable computational cost 

problem caused by the direct Monte Carlo simulation. 

Firstly, the maximum entropy fitting method, which is based on information entropy under the 

constraints supplied by the available information, was briefly introduced. Besides, the fitting of 

the existing distribution proved that the maximum Entropy fitting method could be employed 

to obtain the optimal distribution under known information. It can be demonstrated that the 

maximum Entropy fitting method obtained accurate probabilistic descriptions of the response 

due to the flexibility of fitting function. Then, the Monte Carlo simulation with the important 

sampling technique was applied to obtain the structural reliability, since this approach can be 

achieved the most accurate results through a large number of repeated calculations. Finally, the 

K-S test was used in all steps of the analysis process that can be improved if necessary by 

increasing the sample size from the results of stochastic FEM.  

The 3- and 4-point bending simulations for the I-section beam considering the statistical size 

effect are performed in ABAQUS with stochastic FEM and the probability density function of 

the structural response and corresponding reliability indices	ߚ are calculated with the proposed 
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method. The evolution of strength probability density function was consistent with the descrip-

tion of the stochastic material model. Furthermore, the results of the 3- and 4-point bending 

simulations show that the reliability index ߚ was changing with the applied load types and the 

specimen sizes. The maximum allowable stress was different for the various specimens with 

same target reliability index. This means that the yield strength obtained by the small specimens 

can lead to a smaller reliability index for a large steel structures. 

The proposed approach provides a probabilistic description of the structural responses under 

considering statistical size effect in an efficient way. Although the proposed approach requires 

lots of nonlinear numerical analysis, the response modeling employing the maximum entropy 

fitting method has advantages in versatility as well as universality for probabilistic analysis of 

complex structures. 
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6 Overall conclusions 

This thesis presents a contribution to investigating the statistical size effect and confirms the 

existence of this effect in steel made of S235JR and S355J2+N. The main research is studying 

the influence of material uncertainty on the strength of a structural component under consider-

ing different structural volume and stress gradient in steel structures. The stochastic material 

properties were directly embedded in numerical calculations to account for statistical size effect 

with two different approaches. The first is to develop the stochastic material model for elasto-

plastic material properties by mathematical analysis. The second way is to implement the sto-

chastic FEM with direct Monte Carlo simulation for the steel structures by interactively apply-

ing FEM program ABAQUS and mathematical program MATLAB with the random field of 

nonlinear materials. Besides, the uniaxial tensile tests with different specimen sizes, namely 

max. specimen diameter up to 32 mm, and different materials confirmed the existence of sta-

tistical size effect in steel structures. The results of the 3- and 4-point bending tests demonstrate 

once again the statistical size effect in flexural members, and it shows that the relationship 

between the sizes and the specimen strength can be analyzed through the probability and relia-

bility theory. Finally, the investigation clarifies the influence of statistical size effect on struc-

tural reliability by the efficient method based on the stochastic FEM for response variability 

and reliability analysis. 

In chapter 2, a treatment of connections between fiber bundle model and Weibull weakest link 

model was presented. According to the classical material models, the mechanism of statistical 

size effect of steel structures has been clarified and analytical formulas for the equivalent mean 

strength and the probability density function of strength have been derived and proposed. This 

model has two separate scaling structures governing two different statistical distributions of the 

strength. The proposed stochastic material model provides a potential to study the evolution 

process of the probability density function of equivalent yield strength over the volume domain. 

Therefore, this model can theoretically be used in all imperfect materials. By employing the 

developed model, it requires only one time FEM analysis utilizing the statistical size effect 

coefficient to obtain the equivalent mean yield strength, so the necessity of time-consuming 

statistical simulation is avoided. The other achievement is mainly that the proposed model is 

extended to the multi-axial stress state with the combination of the von Mises yield criterion. 

Besides, the developed model is integrated into the commercial FEM software ABAQUS by 

user subroutine and applied to structural components with non-uniform stress distribution. 
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In chapter 3, the stochastic FEM was implemented and the important achievement is the devel-

opment of specialized stochastic FEM to analyze the response of the 3D structures in a general 

purpose simulation software. The discretization of the random field was realized by the 

Karhunen-Loève expansion with Galerkin finite element techniques. To reduce the computing 

costs of solving the homogeneous Fredholm integral equation, a 3D eigenfunction problem was 

decomposed in orthogonal coordinate axes. Afterward, the eigenvalue matrixes of the 3D ran-

dom field were composed again with the coordinates of elements. In particular, issues on the 

separation of random field mesh from finite element mesh have been addressed by suggesting 

a general mapping-interpolation method for stochastic finite element simulation with the 3D 

random field. Because this method completely separates the two different meshes, different 

criteria for these two different meshes can flexibly be applied. The proposed approach is not 

only applied in different criteria for two different meshes, but also could be employed for dif-

ferent element types. According to the error estimation studies, the errors are strongly depended 

on the Karhunen-Loève expansion. The global error can be reduced as the truncated terms are 

added. It was found by the interpolation error studies that an unacceptable deviation was not 

generated by the mapping interpolation method with a coarse mesh of random field and the 

smaller finite elements. The distortion of the random field from mapping and interpolation can 

be theoretically avoided. Simultaneously, with the development of computer technology, the 

stochastic FEM could be applied to treat the complicated problems, in which nonlinear materi-

als are involved in the 3D random field, with the Monte Carlo simulation at the expense of 

computing resources. 

In chapter 4, the experimental investigation was carried out to verify the statistical size effect 

in steel structures. Besides, the stochastic material model was embedded in the FEM software 

for comparative analysis of the bending tests. The results shown that the statistical size effect 

also exists in the flexural members and the equivalent yield stress is closely related to the stress 

distribution and volume of the structural components. According to the experimental results 

and simulations with the stochastic material model and stochastic FEM, it is evident that the 

two proposed simulation methods can efficiently simulate the statistical size effect for the ten-

sile and flexural components in steel structures. For this reason, it is essential to consider the 

statistical size effect in the structural design, since the distribution and variance of the strength 

vary with the effective volume of the specimens. 

In chapter 5, the influence of statistical size effect on structural reliability was studied. The 

focus was on the techniques that provide the probabilistic description of response quantities 
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obtained by the stochastic FEM. After that, it was used in the reliability assessment. This ap-

proach was implemented by the combination of the maximum Entropy fitting method for re-

sistance moment of responses and the reliability evaluation. The statistical moments of the re-

sponse and the reliability index were obtained with small sample size. Besides, this proposed 

method was applied to obtain the structural response of the 3- and 4-point bending simulations 

with I-section profile for different specimen sizes. The corresponding results show that the 

strength, which has been obtained from small specimens through statistical analysis in the la-

boratory, is no more accurately applicable to large structural components, because the statistical 

size effect changed the structural safety in the reliability analysis. Simultaneously, the reliability 

index was closely related to the effective volume and stress gradient of the structures. 

The stochastic modeling framework has been used for derivation of the statistical size effect for 

the considered randomness of material properties in this thesis. The results show that the chang-

ing rates and variation coefficients of the strengths decrease with increasing structural compo-

nent sizes. The statistical distribution of the material strength will be varied due to the change 

of the coefficient of variation. Therefore, the influence of the statistical size effect on structural 

safety must be noted by structural engineers. The structural safety and reliability theory which 

exists over the decades can be compared and validated (or improved) with the simulation by 

the stochastic FEM with the random fields of material properties and boundary conditions. 

Moreover, the approach for solving the structural optimization problem, which considers the 

randomness of material and boundary conditions with finite element analysis, is expected to 

become a popular research topic for future investigations. 
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7 Recommendations for future works 

This thesis shows that the statistical size effect presents in steel structures due to the uncertain 

microscopic structure of the material properties. The numerical studies exhibit the great poten-

tial of the embedding uncertainty directly into the structural analysis. Furthermore, the influ-

ence of statistical size effect on the reliability of the structure is not negligible. Therefore, it is 

necessary to perform the following studies in the future: 

 The statistical size effect in steel structural components requires further verification 

through experiments with thicker and larger specimens. For example, the tensile tests 

using a specimen with a diameter up to 100 mm need to be performed and the effect of 

delamination of a thick steel plate should be excluded. 

 The elastic and plastic moments of resistance of steel structures are redefined based on 

the reliability theory with the stochastic FEM considering the statistical size effect. Such 

as, the bearing capacity of the existing rolled steel sections could be modified with a 

reduction factor so that the structural safety factor is guaranteed and consistent. 

 The statistical size effects need to be applied to other constructions such as beams, col-

umns and plates of steel structures. 

 The influence of the statistical size effect on the structural reliability also needs to be 

discussed for the different cross-section types and various load types. 

Based on the obtained results, the other possible directions of future work are summarized in 

the following text. According to the studies in this thesis, the statistical size effect caused by 

the randomness of the yield strength in steel structures can be essentially seen as the evolution 

of the probability density function of the material strength with different effective volumes. It 

has been shown that the evolution of probability density function of the material strength influ-

ences the maximum bearing capacity and the stress response. The stochastic material model has 

a great advantage regarding computational efficiency and it also has the potential to consider 

the evolution of the strength probability density function directly. The future works for the 

stochastic material model are recommended as following direction. Firstly, the proposed sto-

chastic material model needs to be developed combined with the evolution process of the 

strength probability density function so that it can be more efficiently used to analyze the sta-

tistical size effect in the structural design. Then, the material constants of the stochastic material 

model need to be accurately measured through more experimental investigation for different 

materials. 
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Although the simulation of the random field in 3D was solved and applied to the analysis in 

steel structures, this discretization is still limited to the research area since the number of the 

discrete element can only reach 10ହ levels. As the direct stochastic FEM to nonlinear problems 

with the elasto-plastic material is at the expense of a prohibitive computational cost, the effi-

cient application remains a challenge. The following future works are recommended and indi-

cated. Firstly, the discrete efficiency of the 3D random field needs to be improved with the 

orthogonal decomposition technique based on the Cartesian coordinate system. Secondly, the 

stochastic finite element method for the treatment of elasto-plastic materials can be improved 

by some alternative formulations for stochastic FEM analysis or the more efficient sampling 

techniques. Then, a user-friendly specialized software has to be developed, and it needs to be 

able to provide strong interaction with powerful general commercial FEM software, thereby 

reducing the use threshold of the stochastic FEM for structural engineers. Finally, the parame-

ters of the uncertainty of material properties, such as the correlation length and the statistical 

distribution parameters, need to be obtained with plenty of numerical simulations based on the 

structural response inverse analysis or through experiments in the laboratory for different ma-

terials. 
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