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Abstract 

Water quality degradation and water scarcity are two serious problems, and water resources 

management related to those problems usually involves conflicts. In the absence of market 

and exclusive property rights, those conflicts are unavoidable. Game theory is an 

appropriate approach to simulate and resolve such conflicts. The overall objective of this 

research is to develop a practical methodology and mechanism to promote the 

maximization of public welfare from a socio-economic and environmental perspective 

using game theory. There are three main goals: 1) to use game theory to illustrate and 

analyze phenomena of water resources management, 2) to set up non-cooperative and 

cooperative game theoretic simulation models of water conflicts in a river basin, and 3) to 

apply the game theoretic simulation approach into water conflicts involved in the Hanjiang 

River Basin (HRB) in China. In the case of HRB, the Municipalities of Beijing, Hanzhong, 

Ankang and Shangluo, Shiyan and the Cities of Xixia and Xichuan are defined as the main 

players. For each main player, industry, households and agriculture are defined as the sub-

players. Statistical and econometric regression modeling methods are used to formulate 

payoff functions of the players. The models are evaluated by forecasting and scenarios 

analyses. Cost-benefit Analysis (CBA) and demand-supply principle (DSP) are applied to 

compare the game outcomes. Economic valuation methods (EVMs) are applied to the 

value transformation. Scenario analysis is also employed to analyze the future risks and 

uncertainties. The main results prove that the non-cooperative game will cost all players an 

overall loss, though it yields benefits to some players. However, cooperative game results 

show that there is an overall benefit, though some players have loss. Comparing with the 

results of non-cooperative and cooperative games, it finds that cooperation makes all the 

players better off though some players are worse off. Scenario results illustrate that player 

one and his sub-players have serious water deficits even in the optimistic scenario. Thus, 

cooperation with other players is the dominant strategy for this player. The risks of non-

cooperation come from some other players and sub-players. The game theoretic simulation 

approach and results benefit not only different groups of water stakeholders, but also 

decision makers to make policies on water quantity allocation, water quality protection, 

water pricing as well as ecological loss compensation.  

Keywords: Water resources, conflicts, game theory, simulation, scenario analysis, the 

Hanjiang River Basin 
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L42U            Urban population of player 42 (Households of Xixia and Xichuan) 

L43R            Rural population of player 43 

La  Number of large animals 

R
ijM →            Load of nitrogen discharged into the reservoir 

N    A set of players, {1,  2,  ... }N n=  
t
trN             Trees in time t  

NC             Non-cycle part of annual inflow 

NPij           Amount of nitrogen production 

NPi2             Nitrogen produced by every player of i2 

NPi3             Nitrogen produced by every player of i3 

NPi3A                       Nitrogen produced by the animal husbandry 

NPi3F             Nitrogen produced by fertilizer consumptions 
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NPi3S             Nitrogen produced by soil erosion  

O   Outcomes of a game 

O1  Overlap calculation between surface water and ground water 

recharge 

Qf            Natural inflow of the reservoir 

P   Payoff (or Utility), or Pollutants discharged 

P(h)               The player(s) who will move to make decision after history h   

P(a⎥ h)              The probability of action a chosen as moving action after history h 

Pt            Precipitation 
t

ijP−    Pollutants reduced by every player ij in time t  

, 1
t

x yP −     Load of pollutant x from the upstream controlling section y-1  

,
t

x yP      Load of pollutant x in the controlling section y 

,
c

x yP    Controlling load of pollutant x in the controlling section y 

Pg  Number of pigs 

Po  Number of poultry  

i jP− , ijNP−   Nitrogen reduced by every player ij 

P−             Total reduction of nitrogen 
RP→             Total nitrogen reached into reservoir 

Ps             Controlling amount of nitrogen entering into the reservoir  

P1            Player 1 (Beijing Municipality) 

P2            Player 2 (Municipalities of Hanzhong, Ankang and Shangluo) 

P3             Player 3 (Shiyan Municipality) 

P4             Player 4 (Cities of Xixia and Xichuan)  

Pi2            Nitrogen productions from domestic life 

Q    Water consumption 

Qi    Water consumption of every player i 
t
iQ    Water consumption of different players in time t (a year)  

t
ijQ     Water that every player ij can get in time t 

t
ijQ+      Water obtained by every player ij in time t,  

t
ijQ− :    Water lost by every player ij in time t 

Qt
1jz, Qt

1jx, Qt
1jk,      Different water amounts that players can get in different  
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Qt
1jm, and Qt

1jn      combined strategies  
t
RiQ    Real water demand of each player  

t
eQ    Ecological water demand 

t
ikQ   Water consumption of every player in a cooperative game 

Q11    Water demand of player 11 (Industry of Beijing) 

Q12    Water demand of player 12 (Households of Beijing) 

Q13    Water demand of player 13 (Agriculture of Beijing) 

1
t
jkQ  Water quartos that different players should consume if they do not 

seize water 

1
t
eQ    Ecological based water consumption  

1
t
eRQ    Real minimum ecological water demand 

1
tQ  Water consumption of industry during the period of time t (a year) 

2
tQ         Water consumption of domestic life during the period of time t (a 

year) 

3
tQ   Water consumption of agriculture during the period of time t (a year) 

4
tQ  Water demand for soil conservation during the period of time t (a 

year) 

5
tQ     Ecological water demand during the period of time t (a year) 

0
tQ    Water demand in other sectors  

-1
t
yQ    Water inflow from the upstream section y-1  

( -1, )
t
y yQ    Water inflow in the section y;  

t
iQ     The minimum of water demand 

t
iQ     The maximum of water demand 

Q1e    Ecological water use 
t
sQ    Water demand of water surface 

t
gQ            Water demand of public green area 

t
trQ            Water demand of trees 

Q1j             Water consumed by every player 1j 

Qf            Natural inflow of the reservoir 
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Öi3                            Number of pig equivalences, i.e. all the livestock and poultry       

    weighted by pig unit  

Ö23                         Number of pig equivalences of player 23  

Ö23                        Number of pig equivalences of player 33  

Ö43                               Number of pig equivalences of player 43  

1R     Region 1 (Beijing) 

1
tR    Reclaimed water from urban waste water 

tR    Waste water discharged into the river or the reused waste water  

Rm    The regions  

RA                              Nitrogen loss rate of the manure of livestock and poultry  

RF                Loss rate of N fertilizer,  

RS                               Loss rate of N per unit of soil erosion  

S    Strategy set (called strategies space) of the players 

iS  Player i’s strategy space, the set of all the strategies which player 

i can choose 
tS     Surface water amount 

S1
t   Surface water resources of player 1   

SE             Areas of soil erosion  

Sw            Areas of water surface 
t
gS             Public green areas 

SR             Reduction of soil erosion areas 

S1             Scenario 1 

S2            Scenario 2 

S3            Scenario 3 

S4             Scenario 4 

is∗    Player i ’s best response to the strategies specified for the n-1 other  

                                   players 

{ }1 2, , .... ns s s s∗ ∗ ∗∗
=  A best strategy combination of the n players 

T, t            Time (year)  

U    Total benefit obtained from a cooperative game 

Ui   Payoff of each player i in a cooperative game  

UB    Total net benefit obtained from a cooperative game  
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Ui      Profile of players’ utility (payoff) functions on history H 

1U     Payoff of player 1 at current prices in a cooperative game 

2U    Payoff of player 2 at current prices in a cooperative game 

3U     Payoff of player 3 at current prices in a cooperative game 

11U     Payoff of player 11 at current prices in a cooperative game 

12U     Payoff of player 12 at current prices in a cooperative game 

13U     Payoff of player 13 at current prices in a cooperative game 

'
1U     Payoff of player 1 at comparable prices in a cooperative game 

'
2U     Payoff of player 2 at comparable prices in a cooperative game 

'
3U     Payoff of player 1 at comparable prices in a cooperative game 

'
11U     Payoff of player 11 at comparable prices in a cooperative game 

'
12U     Payoff of player 12 at comparable prices in cooperative game 

'
13U     Payoff of player 13 at comparable prices in a cooperative game 

( ), −i i iu s s              Player i ’s payoff function when he choose strategy si  

Vi     Payoff of every player i,  

V1    Payoff of player 1, i.e. added value produced by player 1  

V11    Payoff of player 11, i.e. added value produced by player 11 

V12    Payoff of player 12, i.e. added values produced by player 12  

V13    Payoff of player 13, i.e. added value produced by player 13 

V1j             Payoff of sub-player 1j, i.e. added values produced by sub-player 1j 

Vi3             Payoff of sub-players i3, i.e. added values produced by sub-player i3 
t

ijV    Payoff of every player ij in time t 

'
1V     Payoff of player 1 at comparable prices in a non-cooperative game 

'
2V     Payoff of player 2 at comparable prices in a non-cooperative game 

'
3V     Payoff of player 1 at comparable prices in a non-cooperative game 

'
11V     Payoff of player 11 at comparable prices in a non-cooperative game 

'
12V     Payoff of player 12 at comparable prices in a non-cooperative game 

'
13V     Payoffs of player 13 at comparable prices in a non-cooperative game 

K
RV     Comparable or real value of V at the price of year k  
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t
NV     Normal value of V at the price of year t  

1
tW    Total water resources 

Ẅi1            Waste water discharge of player i1 

Ẅ21           Waste water discharge of player 21 

Ẅ31            Waste water discharge of player 21 

Ẅ41            Waste water discharge of player 41 

Ẅ22            Urban domestic sewage discharge of player 22 

Ẅ32            Domestic waste water discharge of player 32 

Ẅ42             Domestic waste water discharge of player 42 

Greek symbols: 

α    Coefficient of agriculture water consumption  

β  Benefit coefficients, i.e. the values produced by consuming per unit 

of water  

β11                        Benefit coefficient of player 11 

β12             Benefit coefficient of player 11 

β13             Benefit coefficient of player 13 

xγ     Cost coefficient of pollutant x  

ij   Loss rate of nitrogen  

λij  Transport rate of nitrogen into the river 

μ   Coefficient of industrial and domestic waste water discharged into 

river 

( )2
1 0= =Σi i su     Two-person zero sum game 

ijϕ       Maintaining rate of nitrogen finally in the reservoir 

Ψ    Distribution factor of cooperative benefit 

1 jψ  Water distribution factor 

Γ   Extensive game  

Logical symbols: 

i∀    For every player i  

≡         Be defined as 

   Equal by definition 
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1. Introduction 

Water resources are essential for the existence of human and all other species. From an 

economic point of view, water resources are composite assets which provide a variety of 

services for consumptive and productive activities. However, water quality degradation 

and water scarcity are two serious problems in developing countries. Due to temporally 

and spatially uneven distributed precipitation (Wetzel, 1983; Al Radif, 1999), exponen-

tially increasing water consumption with increased population growth rate, degradation of 

water quality (UN-CSD, 1994), the loss of potential sources of freshwater resulting from 

unsustainable water resources management practices (Wang, 2005) as well as increasing 

temperature (Westmacott and Burn, 1997), water supply has been increasing scarcities in 

countries. It is estimated that in 2025, 5 billion out of the world’s 7.9 billion people will be 

difficult or even impossible to meet basic water demand for drinking, cooking and sanita-

tion (Leete et al., 2003; Wei and Gnauck, 2007c). Water resources management related to 

these problems usually involves multi-stakeholders with contradictory or conflicting inter-

ests (Wang et al., 2003; Fang et al., 1998, 2002; Hipel et al., 1997; van der Veeren and Tol, 

2003), goals and strategies (Wei and Gnauck, 2007b).  

Water property rights are difficult to define, and thus water market is not easy to establish 

in most countries. In the absence of exclusive property rights and market, conflicts be-

tween multi-stakeholders competing for water uses are unavoidable (Pethig, 1992). In this 

sense, the models of water resources management should resolve the conflicts involved. 

Game theory is a useful approach to model such conflicts, since it studies the strategies and 

equilibrium of multi-actors in interactive and interdependent situations.  

This introduction chapter starts with presenting the principles and objectives of water re-

sources management. It turns on interpreting some instruments used to solve water con-

flicts. The third part reviews literature on application of game theory in environmental and 

water resources management. The last part interprets the research objectives, methodology 

and structure of the thesis. 
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1.1  Objectives and principles of water resources management 

In general, the main task of water resources management is to promote the coordinated wa-

ter use in order to maximize economic, social and environmental welfares in equitable, ef-

ficient and sustainable manners. This task involves the objectives and principles of water 

resources management, which are summarized in table 1.1. 

Table 1.1: Objectives and principles of water resources management (adapted from UNESCAP,  

                     2000; Wang, 2005) 

Objective Principle Outcome 

Society Equity 

Provide for essential social needs:  

• Sufficient water for different users 

• Safe and affordable drinking water  

• Water for sanitation  

• Food security  

Economics  Efficiency 

Maximize economic value of water use:  

• Agricultural and industrial development  

• Power generation  

• Regional development  

• Local economies  

• Less pollutants discharge 

Environment  Sustainability 

Maintain environmental quality:  

• Maintain water quality  

• Support instream habitat and life  

• Aesthetic and natural values  

• Maintain hydrological cycle and environmental   

  flow 
 

Equity means fair distribution of water resources among different existing and potential 

water consumers within river basins, at the regional, national, and international levels. The 

water consumers include both human being and natural elements. Equity is not so easy to 

reach, because different people may have different perceptions. Notion of equity should be 

based on different cultures and norms. Equity usually includes interbasin water diversion, 

in which water policy makers usually transfer water from water-rich areas to water-scarce 
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areas. In this situation, the source areas of water transfers should be compensated for their 

water reduction or bad impacts resulting from water reduction. 

Efficiency refers to economic use of water resources. It usually means to use less amount 

of water to produce higher value with less pollutants discharge. In order to achieve effi-

cient water use, water might be diverted from the fields or areas with inefficient water use 

to efficient ones. For example, due to the low profit use of agriculture, policy makers usu-

ally decide to transfer water from agricultural irrigation to some industries in order to pro-

duce higher economic values. Due to the spatially uneven distribution of water resources, 

interbasin water transfer projects are usually undertaken in many countries in order to 

transfer water from water rich regions to the indigent regions, such as inter-basin water 

transfer projects in the United States, Canada, China and India. However, efficiency is not 

so easy to achieve, because water allocation to different users relates to the physical deliv-

ery or transport of water to the demanding points of use (Wang, 2005).  

At the United Nations Conference on Environment and Development (UNCED) in 1992, 

the ‘sustainable development’ concept was endorsed as the guiding principle for economic 

development and environmental management. For water resources management, the prin-

ciple of sustainability prompts the environmentally sound use of water resources. It usually 

interpreted that today’s utilization of water resources should not expand to such an extent 

that it may not be usable for all of the time or some of the time in the future (Savenije and 

Van der Zaag, 2000). It is also interpreted as a concept aimed at using water to achieve 

both social and economic development while maintaining water quality. 

During the last four decades an increasing interest for ecosystem theory has emerged as a 

consequence of our increasing concern for environment. Freshwater ecosystem is one of 

the important parts of environment. It provides places and energies for life, and it usually 

works as a receptor of waste produced by productive and consumptive activities of human 

being. However, freshwater ecosystem is a complex, in which abiotic and biotic organisms 

interact with their physical and chemical water environment and climatic conditions. The 

physical components are such as light, temperature, mixing, flow, habitat, etc., and chemi-

cal components organic and inorganic carbon, oxygen, and nutrients, etc. The physical and 

chemical components can indicate the lives and the structure of the food web (ANZECC 

and ARMCANZ, 2000) in the ecosystem. In the field of ecological economics, the concept 

of ecosystem goods and services has been developed. An ecosystem good or service is de-
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fined as any natural phenomenon that has a perceived societal function or value (Daily, 

1997). Ecosystem goods and services enhance human welfare and promote societal devel-

opment (Costanza and Folke, 1996), and provide the basis for human existence (Dasgupta 

et al., 1994). With degradation of earth’s ecosystem, the concept of healthy ecosystem and 

ecosystem medicine emerge in practice (Rapport et al., 1999). 

Water quality and quantity are two vital points in water resources management. Jønch-

Clausen (2004) stressed that water scarcity and deteriorating water quality had or would 

become critical factors limiting national economic development, expansion of food pro-

duction and/or provision of basic health and hygiene services to the population in an in-

creasing number of countries. In the past, water quality management was regarded as 

“chemical water quality management” (Hohls, 1996), and water resources management 

was primarily based on the need of human being. With the development of ecosystem the-

ory, the concept of ecosystem management has been widely adopted by water resource 

managers and policy makers. Water is a resource for all forms of life and their natural en-

vironment, but not only for human being. Hohls (1996) expressed that the uses and benefits 

that people obtain from water resources were dependent on ecosystem health. However, 

the ecosystem can be enhanced or weakened by human intervention. Without water of ade-

quate quantity and quality, it is impossible for a healthy ecosystem and healthy human be-

ing. According to UNEP (2000), approximately 20% of the world’s population lacks ac-

cess to safe drinking water and about 50% has inadequate sanitation. By the year 2025, as 

many as two-thirds of the world population may be subject to moderate to high water stress 

(WMO, 1997). The effect on ecosystem health mainly comes from human activities. Wet-

zel (1983) argued that man, his use and misuse of freshwater are influential factors in 

maintenance of (lake) ecosystems. Therefore, human activities of destroying freshwater 

ecosystem should be firstly considered in water resources management.  

1.2 Solving water conflicts 

The problems of water quality degradation and water scarcity usually involve multi-

stakeholders with contradictory interests, goals and strategies, which often result in water 

conflicts, such as the disputes between Arabs and Israelis, Indians and Bangladeshes, 

Americans and Mexicans, and among all 10 Nile basin coriparians (Wolf, 1999). In details, 

water conflicts are usually created by (1) multiple use of water quantity, such as different 

water demand and supply, (2) multi-stakeholders competing for scarce water, (3) different 
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degrees of upstream pollutions restricting the water use in downstream catchments, (4) In-

terbasin water transfer breaking the long-established balance of water quality and quantity 

in a basin. There are different instruments to solve these conflicts. General speaking, these 

instruments include the widely used economic instruments and direct regulation, and com-

parable newly developed game theoretic approach (Fig.1.1).  

Water resources
management 

Water conflicts 

Water quantity
(Scarcity)

Water quality
(Degradation)

Non-cooperative & cooperative
games

Economic instruments Direct regulations 

Game theoretic 
approach

Economic principles &
Social constraints Governmental policies 

 

Figure 1.1: Instruments to solve water conflicts 

Dinar et al. (1997) and Wang et al. (2003) analyzed four basic institutional mechanisms for 

water allocation, i.e. public allocation, user-based allocation, marginal cost pricing, and 

water market allocation. Bonnie and D’estree (2000) and Mostert (1998) presented four 

methods - litigation, market transactions, political deal-making and alternative dispute 

resolution techniques - to resolve water conflicts.  
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Public allocation refers to allocation by governments, which is the main approach used in 

most countries. This mechanism can allocate water fairly, but it has usually not addressed 

economic efficiency and often causes water waste and water mis-allocation. Marginal cost 

pricing means that a price is set on water to equal the marginal cost of using the last unit of 

that water. Dinar et al. (1997) pointed out that it was theoretically efficient, but it tends to 

neglect equity. In addition, it is difficult to define marginal cost itself (Saunders et al., 

1977). User-based allocation mainly refers to that water users organize collective institu-

tions with authority to make decisions. This method is very flexible and efficient to allo-

cate water to meet users’ requirement. However, Meinzen-Dick et al. (1997) argued that 

the institutions were not always powerful enough to allocate water efficiently. 

Water markets approach is one frequently cited in the literature (Burness and Quirk, 1979; 

Howe et al., 1986; Colby, 1990; Green and O’Connor, 2001; Bhaduri and Barbier, 2003). 

On the one hand, water market methods can provide water users incentives to use water 

efficiently and reduce the pollutant discharge into water. Water markets really exist in 

some countries, such as Australia (Pigram et al., 1992), California (Howe and Goodman, 

1995), Chile (Hearne and Easter, 1995), India (Saleth, 1996), and Spain (Reidinger, 1994), 

etc. However, on the other hand, it requires defining the original water rights, creating in-

stitutional and legal mechanisms, and establishing basic infrastructures for water trade 

(Holden and Thobani, 1996; Wang et al., 2003) before water market can operate well. 

Therefore, water market is a good theory, but it is hard to establish a real water market in 

most countries. Just as the argument of Dellapenna (2000) there were rare water markets in 

reality and they are not real free market. 

However, besides alternative dispute resolution techniques, all other methods can be cate-

gorized into two classes, direct regulations and economic instruments (OECD, 1989; Mar-

kanya et al., 1993; Wei and Gnauck 2007b). Direct regulation is also known as the “com-

mand and control” strategies, and economic instruments make use of market mechanism 

and price incentives. Economic tools include water rights, water pricing, subsidies, com-

pensation, tradable permits, and green taxations (Table 1.2). Carraro and Filar (1995) ar-

gued that environmental resource problems and its interrelationships with economic activi-

ties and the dynamic ecosystem were very complex and could not be solved with simple 

policy tools. Command and control strategies lack incentive, because it mainly in virtue of 

legislation, power or force. Wei and Gnauck (2007 b) stated that the existing economic and 

regulation instruments do not work so well in solving those conflicts. 
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Table 1.2: Policy instruments to solve water conflicts (adapted from OECD, 1989; Markanya et al.,    

                 1993; Wei and Gnauck 2007b) 

From a technical strategy point of view, multi-objective optimization models have been 

used early to maximize the overall benefit in order to solve transboundary water conflict in 

a river basin (Zeng et al., 2001; Yang and Zeng, 2004). However, on the one hand, simpli-

fied model is difficult to illustrate the complex relationships among different elements in a 

large system. On the other hand, the interests and benefits of different actors in the basin 

are neglected.  

With development of society, the concept of considering the different interests and benefits 

of all the stakeholders are widely accepted in the world. Kaufman et al. (1997) and Yang 

and Zeng (2004) argued that the conflicts of different stakeholders in a river basin should 

be solved by negotiation based on their interests and benefits. The essence of negotiation-

based resolution techniques for water conflicts is to look for a fair multi-beneficial solution 

in the existing situation.  

In the absence of market and exclusive property rights, conflicts between the multi-

stakeholders on competing uses over water are still unavoidable (Pethig, 1992; Wei and 

Gnauck, 2007c). Game theory can be an appropriate approach to simulate and resolve such 

conflicts. Comparing with those instruments, game theory is a newly developed approach. 

From negation point of view, game theoretic analyzing method is an efficient tool to sup-

port negotiation in the conflicts since it studies the interests and benefits of the stake-

Instrument System Terms 

Market 
mechanism 

Redefining property rights, tradable permits; 
liability insurance registration. 

Tax/charge 
systems 

Effluence charges, user charges, product 
charges and administrative charges. 

Subsidies Financial aid in installing new technology; sub-
sidies to environmental R & D expenditure 

 Economic instru-
ments 

Deposit-refund 
system 

Combining charges and subsidies so as to pro-
vide incentives to return waste water for recy-
cling 

Standards Effluent, ambient and technology standards. 

Direct regulations Resources use 
quotas 

Emission quotas, harvesting quotas; by allow-
ing quotas to be traded among market agents, 
the quota system would be transformed to a 
system of tradable permits. 
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holders. The disciplines involved in game theory mainly include mathematics, economics 

and the other social and behavioral sciences. In this sense, game theory works as a distinct 

and interdisciplinary approach and it needs support of other instruments. Furthermore, de-

composition-coordination approach has been developed, which can provide technical 

methods to construct and solve big non-linear water resource management models (Chaube, 

1990; Cai et al., 2001).  

1.3 Selected literature on game theory for water resources man-
agement 

The literature of game-theory application in environment and water resources management 

is comparatively less, and such literature mostly has focused on transboundary pollution 

(Folmer and Hanley, 1998). Mäler’s Acid Rain Game (1989) should be one of the earliest 

paper which attempts to apply game theory to analyse the acid rain and its spillover in 

Europe. Rules, Games, and Common-Pool resources (Ostrom et al., 1994) mainly deals 

with the dilemma of overexploitation of the common pool resources (CPR) - “the tragedy 

of the commons”, and the different outcomes resulted from rules changes by using the ana-

lytical tools of non-cooperative game theory, institutional analysis and an empirical foun-

dation. Besides, game theory has also been used to analyze the common resources man-

agement, such as Berkes (1989), Blaikie and Brookfield (1987), Blomquist (1992), Ostrom 

(1996). With the further research, some publications, specializing on game theoretical 

models of environmental and natural resource management, have come out. For examples, 

Control and Game-Theoretic Models of the Environment, by Carraro and Filar (1995), is a 

collection of  some recent works on the application of dynamic game and control theory to 

the analysis of environmental and natural resources problems. Conflicts and Cooperation in 

Managing Environmental Resources by Pethig (1992) presented some application of re-

cently developed game theoretical concepts to the international environmental conflicts 

and cooperation.  

As for water resources management, game theory was early realized to “be applicable to 

the description of relations between organisms in the phase of evolution” (Warburton, 

1967; Slobodkin and Rapoport, 1974). Lewandowski (1979) used a game-theoretic ap-

proach to model the behaviour of water users in a quality control problem, and he proposed 

a game-theoretic solution to different uses of a water system. At the beginning, practical 

solution of game-theoretical models are only for simple cases, i.e. two or three players 
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(Straškraba and Gnauck, 1985). Just as the argument of Straškraba and Gnauck (1985) that 

this theory will become applicable to the description of highly involved properties, game 

theory has experienced a great development in water management since 1980s. Game the-

ory was originally applied into the cost distribution in joint water resource projects. Thus 

the methods of equally cost allocation have been developed, such as Minimum Core, 

Shapley value, Nash Bargaining Solution, etc. (Heany  and Dickinson, 1982; Lejano and 

Davos, 1995). Later on many studies have been focused on application of game theory into 

water conflicts. The essence of the methods is to simulate behaviors of different actors by 

means of non-cooperative and cooperative games, and then the added values derived from 

cooperation are fairly allocated to different actors based on their interests (Tisdell and Har-

rison, 1992; Becker and Easter, 1995; Bielsa and Rosa., 2001). In general, so far game the-

ory has been mainly applied to solve the following problems:  
 

(1) The cost distribution of joint water resource projects, i.e. waste water treatment 

and disposal facilities (Giglio and Wrightington, 1972; Dinar and Howitt, 1997), 

and water supply projects (Heany and Dickinson, 1982; Young et al., 1982; Dries-

sen & Tijs, 1985; Dufournaud and Harrington, 1990, 1991; Dinar et al., 1992; Le-

jano & Davos, 1995; Lippai & Heaney, 2000);  

(2) Equitable allocation of waste loads to a common receiving medium (Kilgour et al., 

1988; Okada and Mikami, 1992; Wei and Gnauck, 2007d);  

(3) Allocation of water rights (Tisdell and Harrison, 1992);  

(4) Water allocation (Rogers, 1969, 1993a, b; Tisdell and Harrison, 1992; Okada and 

Sakakibara, 1997; Wang et al., 2003; Wei and Gnauck, 2007 a, b);  

(5) Pollution of transboundary river, including inter-country river (van der Veeren 

and Tol, 2003) and intra-country river (Zeng and Yang, 2004; Yang and Zeng, 

2004);   

(6) Analysis of water police making (Wang, 2005);  

(7) Water dispatch compensation to solve benefit conflict (Xiao et al., 2005). 

So far most game theoretic models have not solved the water problems where there exist 

conflicts of both quality and quantity. In details, water quantity models have just consid-

ered how game theory is applicable to optimize water allocation in order to solve the con-

flicts of water insufficiency, but they have not considered the effect of water quality. Water 

quality models cannot been used to solve the optimal allocation water quantity, although 

some models have been applicable to the control of water pollutant amount based on the 
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assumptions of different hydrological frequency and runoff.  There are only a few papers 

have applied game theory to deal with both water quality and quantity. For example, Yang 

and Zeng (2004) developed a practical transboundary and coordination models to solve 

water conflicts of both water scarcity and water pollution between transboundary regions 

in north China using a decomposition approach and game theory. However, the cost to pol-

lution damage has been neglected in these models. Considering the facts that water quality 

and quality affect each other and water quality and quantity conflicts are coexisting in most 

cases, this thesis develops new simulation models which combine both water quality and 

quantity. In addition, China is seeking new methods to solve water conflicts involved in the 

Hanjiang River Basins (HRB), and game theoretical modelling approach has not been ap-

plied into HRB case so far.  

1.4 Research objectives, methodology, and structure of thesis 

Generally speaking, the overall objective of this research is to develop a practical method-

ology and mechanism to promote the maximization of the public welfare in river basins 

from socio-economic and environmental perspectives by means of game theory. In details, 

this overall research objective includes the following main sub-objectives: 

1) To analyze the conflicts and find solution to solve water conflicts both qualita-

tively and quantitatively; 

2) To construct cooperative and non-cooperative game theoretic models for water re-

sources management of any river basin; 

3) To analyze why the players do as they do in a given situation;  

4) To help players use the best way, i.e. strategy to play a ‘game’ better; 

5) To apply cooperative and non-cooperative game approaches to simulate and re-

solve conflicts or problems of water resources management of the Hanjiang River 

Basin in China; and  

6) To find out how the Middle Route of South to North Water Transfer (MRSNWT) 

projects influence the industry, domestic life and agriculture of the Hanjiang River 

Basin; 

7) To allocate water and protect water from pollution in efficient, fair and sustainable 

ways; 

8) To facilitate a stronger comparison of the different groups of water users (includ-

ing environment) in developed and undeveloped urban and rural areas; 
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9) To help water policy makers and water managers solve water conflicts and make 

decisions on important water management issues. 

Both qualitative and quantitative analyses methods are included in this research on the ap-

plication of game theory into water resources management. Figure 1.2 shows the general 

technical route of the research.  

Theory study Case study 

Literature 
study

Analyzing and 
modelling 
approaches

Data 
collection

Analyzing 
and 

modelling

Simulation

Results

Discussion 
Evaluation

Scenario 
analyses

Decision

 
Figure 1.2:  Sketch of technical route of the research 

This route can be divided into two parts: theory study and case study. Theory study mainly 

includes the study of game theory and water resources management. Case study refers to 
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the application of game theory in water conflicts involved in the Hanjiang River Basin in 

China. The tasks of the first part mainly include literature study on analyzing and modeling 

approaches. The tasks of the second part mainly include data collection, analyzing and 

modeling the case. Based on the theory and modeling approaches, water conflicts are mod-

eled and simulated as games. Different scenarios are designed to analyze the risks and un-

certainties in the game simulations.  

Water conflicts only include the conflicts concerning water quality and quantity in this the-

sis. Water conflicts are modelled and simulated as a game or a set of games so that the 

problem can be analyzed and solved in the framework of game theory. Non-cooperative 

and cooperative game methods are used separately to model and simulate the water con-

flict (real or potential). Non-cooperative modelling approach is used to find out what the 

real utility of different players, and cooperative game modelling is to get the best solution. 

The main aim of studying non-cooperative game is to find the best solutions for coopera-

tion. The game theoretical modelling and simulating process consist of defining the con-

flicts, formulating these conflicts as games, solving the games, interpreting the results as 

well as scenarios analyses.  

In order to formulate the payoff functions of the players, statistical and econometric regres-

sion methods are used. In detail, regression models (linear regression, semilog regression, 

double-log regression, polynomial regression and vector auto-regression) are used to estab-

lish population models, models of added values, water demands, and pollutants discharge 

of industry, household and agriculture. From each model set, the best model is selected 

based on statistical and econometric tests and practical test. In order to account for serial 

correlation, Autoregressive (AR) and/or Moving average (MA) terms are included in the 

some equations of the models. The models are evaluated by forecasting and scenarios 

analyses. Empirical survivor is used to model the different probabilities of water supply, 

and 20%, 50%, 75% and 95% hydrological years refer to wet years, normal years, moder-

ate dry years and high dry years, respectively. In order to model the agriculture added val-

ues and nitrogen fertilizer consumptions, balanced panel data and its related modelling ap-

proaches are used. For water annual flows of the Danjiangkou reservoir, the method of fre-

quency filter of full sample asymmetric is used to establish the model of the water annul 

flows. 
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Demand-supply principle (DSP), cost-benefit analysis (CBA) and economic valuation 

methods (EVMs) are applied to compare the outcomes and results of the game modeling. 

EVMs are also to estimate of benefit and loss in monetary term. Wei (2005) presented 

various different economic valuation methods, which are commonly used in environmental 

economics. EVMs included in this research are shadow engineering method (SEM), mar-

ket value method (MVM), opportunity cost or benefits method (OCM/OBM) and the re-

placement cost approach (RCA). For nitrogen pollutant reduction game, the forward and 

backward algorithms are used for calculating the discharge and reduction amount of nitro-

gen pollutants in the Danjiangkou Reservoir. Scenarios analyses are also applied to analy-

ses the risks and uncertainty in the future. Based on the developing characteristics of the 

input parameters and constrains, the baseline scenario is given at first. The baseline sce-

nario is the business as usually scenario, i.e. the trend analyses of input variables in the fu-

ture according to their past and current developing characteristics. Another three scenarios 

are designed based upon the baseline.  

Data in the studied area are collected mainly from the following sources:  

 Different monitoring stations and numerous controlling sections along the Hanji-

ang River and its tributaries,  

 Database of the Changjiang Water Resource Protection Institute (DB-CWRPI),  

 Online Database of National Bureau of Statistics of China (DB-NBSC),  

 Chinese statistic yearbooks in related fields at different administration levels,  

 Official reports and planning documents,  

 Previous studies, 

 Other local online information systems and data resources concerning the Hanji-

ang River Basin, MRWT projects, and their related administrative regions at dif-

ferent levels.  

The main types of data include climatological and hydrological data (1986-2005), water 

quality data (1995-2004) and socio-economic data (1978-2005). Climatological and hydro-

logical data include such as precipitation, amount of water resources (surface water and 

underground water), water flows, water levels and water velocity. Water quality data in-

clude pollutants concentrations, point pollution sources (industrial waste discharge and ur-

ban domestic waste water discharge) and non-point pollution sources (agricultural fertilizer 

consumptions, soil erosions, rural domestics and animal husbandry). Those socio-
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economic data mainly include urban and rural population, water supply and water demand, 

added values of industry and agriculture per capita net incomes.  

Based on these basic situations, theories, methodology, and objectives, this thesis was writ-

ten, which is composed of 5 chapters. It starts with an introduction chapter presenting 

background of water resources management. In this chapter, the first section interprets the 

principles and objectives of water resources management. The second section presents the 

methods to solve water conflicts. Then it turns on to review the selected literatures on 

game theory for water resources management in the third section. The last section inter-

prets the research objectives, methodology and structure of the thesis. Chapter 2 interprets 

game theory and water resources management, which mainly deals with the methods of 

game theory. In this chapter, it begins with presenting game theory and the general princi-

ples of the theory. Section 2 presents game theoretical models, which mainly interprets 

non-cooperative cooperative games, strategic (or normal) games and extensive games as 

well as some special game models widely used in literature. Section 3 illustrates game 

theoretic approach for water resources management, and it mainly includes the game types 

of water resources management and methods to construct game models to solve conflicts. 

Section 4 and 5 are the main sections of this chapter, in which non-cooperative and coop-

erative game models are constructed for water resources management at scale of a river 

basin, and the data are required for those models. The third chapter is the case study, and it 

demonstrates how the game theoretic models are applied to solve the water conflicts in-

volved in the Hanjiang River Basin in China. This chapter firstly presents the water quan-

tity and quality situations of the Hanjiang River, conflicts and games involved in the basin, 

game models for water conflicts in the basin, the game simulations process, simulation 

evaluation as well as the design of four scenarios. In the fourth chapter the simulation and 

scenario results are presented and discussed. The fifth chapter summarizes the thesis, dis-

cusses the limitation of the thesis and proposes the future research on game theory. 
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2. Game theory and water resources management   

A game exists in the situation where the actions of actors (individuals or groups) are inter-

acting and interdependent and the choices of all actors affect the outcome (Scharpf, 1997). 

A model is an abstraction of the real world system. It is not the real world but merely con-

structed to help us better analyze and understand the real world. Game theory is a set of 

analytical tools designed to model interactive or interdependent situations, in which the 

rational behavior of one player affects not only his or her own gains and losses, but also 

those of others. Water resources management involves conflicts between interacting multi-

stakeholders. Therefore, game theory is appropriate to model these water conflicts. How-

ever, the questions are how to translate these problems into game models, and how this 

models work to analyze and solve the problems. This chapter illustrate the theory of game, 

general principles of game theory, game theoretical models, methods to establish game 

models for water resources management, cooperative and non-cooperative game theoretic 

models for river basin management, as well as the data (or information) used for game 

models.   

2.1 Theory of games 

Game theory was launched by John von Neumann, a great mathematician, and Oskar 

Morgenstern in 1944. Game theoretical modelling concepts and reasoning have been 

widely applied in economic, commercial, social, political, biological, and many other sci-

ences to help people analyze and understand social and behavioural phenomena.  

A game is a metaphor of the rational behaviors of multi-actors in an interacting or interde-

pendent situation, such as cooperating or coalition, conflicting, competing, coexisting, etc. 

(Wei and Gnauck, 2007 b). An actor may be a country, a region, a group, an individual, 

organism, abiotic and biotic constituents or even nature proper. The essence of this theory 

is to analyze the interaction of one with others, to study the strategies and equilibrium of 

the actors as well as how they can do better.  
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A game is defined as follows: 

    , , , , , TG N A P I O E〈 〉                                                    (2.1)  

where:  

• GT – a game. It includes mainly two forms: Strategic (or Normal) games, denoted 

by G, and Extensive games by Γ;   

• N – set of players.  {1,  2,  ... }N n=  is a finite set. Every player is denoted by i ; 

the other 1n − players or i ’s opponents in some senses, denoted by i− ; i∀ , 

i− N∈ ; 

• A– the profile of action (or move) of the players. An action by player i  is a vari-

able of his decision, which is denoted by ai. The set of { }i iA a=  is player i ’s ac-

tion set, i.e. the entire set of actions available to him. The ordered 

set { } { }1, 2, ,...ii aa i n= ∈ , is an action combination for each of the n players in a 

game. In the action set, S  is the strategy set (called strategies space) of the players. 

Strategy is the rule to choose actions. Player i ’s strategy space, denoted by iS  is 

the set of all the strategies which player i can choose from; 

• P – payoff (or utility). A payoff is the value of the outcome to the players. It refers 

to both actual payoff and expected payoff. Payoffs are based on benefits and costs 

of actions and outcomes of each player. ( ),i i iu s s − means player i ’s payoff function, 

which is determined by the strategies chosen by himself and the other players;   

• I – information set. It is players’ knowledge about another player, such as the char-

acteristics, action profile, and payoff function in the game. If the payoff function of 

every player is a common knowledge among all the players, then it is complete in-

formation. Otherwise, it is called incomplete information. If the information is 

complete and perfect, it means that the players know well the former process of the 

game before he chooses his next move at each step. If the player who will choose 

his next move does not know the prior processing of the game at some steps, it is 

called complete but not perfect information;  

• O – outcomes of the game.  An outcome is a strategy profile rusting from the ac-

tion/moves combination chosen by all the players at the end of a game; 

• E – equilibrium or equilibria. In the equilibrium, each of the players can maximize 

his payoff. { }1 2, , ....∗ ∗ ∗∗ = ns s s s  is a best strategy combination of the n players. For 
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player i , is∗  is player i ’s best response to the strategies specified for the n-1 other 

players, i.e. { } { }, ,∗ ∗ ∗− −≥i i i ii iu s s u s s . 

Generally speaking, the elements of game theory includes N - Players, A - Action (Moves), 

P - Payoff (or Utility), I - Information, O - Outcome and E - Equilibrium i.e. NAPI-OE. 

NAPI are collectively known as the rules of a game and OE are the game results. The main 

task of constructing a game model is to define the rules (NAPI) in mathematic language 

and get the solution from OE. The detailed game theory can be referred to Friedman (1991), 

Gibbons (1992), Kreps (1993), Straffin (1993), Gardner (1995), Fundenberg and Tirole 

(1996), Stahl (1999), Osborne (2000), Gintis (2000), etc.  

Every player has different strategies. However, the optimal strategy for an individual 

player is to maximize his benefits by using the game rules; and the optimal strategy for the 

player of a society as whole is to maximize the common welfare of the society through the 

rules. Game theory models involve the following conditions and assumptions: 

1) Players in the game models are regarded as “intelligent and rational”. Rational 

payer means that each player will choose an action or strategy which can maxi-

mize his expected utility given he thinks what action other players will choose. In-

telligent player means that each player understands the situation, and he knows the 

fact that others are intelligent and rational; 

2) Each player considers not only his own knowledge and behaviour but also others’ 

during pursuing exogenous aims; 

3)  Each player has more than one choice or sequence ("plays"); 

4) All possible combinations of choices or plays result in a well-defined outcome: 

win or lose, or mutual gains and losses; 

5) The players know the rules of the game and the options of other players, but they 

do not know the real decisions of other players in advance. Therefore, every 

player has to choose options based on his assumption of what other player will 

choose; 

6) Each player knows that his actions can affect the others, and the actions of others 

affect him;  

7) Each player makes the best possible move, and he knows that his opponent is also 

making the best possible move. 
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2.2 Game theoretical models  

Game theoretical modelling is beginning to become an indispensable approach to analyze, 

understand, and solve many water problems in today’s world. Like other sciences, game 

theory itself is comprised of a collection of models. There are different methods to classify 

these models. In general, they are summarized as follows:  

 binding agreements: non-cooperative and cooperative games; 

 numbers of players: single player game (decision problem), two-persons game and 

multi-persons game; 

 order of actions (moves): static and dynamic games; 

 elements of actions (moves) set: finite and infinite games; 

 sum of payoffs: zero-sum and non-zero sum games; 

 information set: complete information and incomplete information games; 

 numbers of the same play in a game: one-shot game and repeated game.  

2.2.1 Cooperative and non-cooperative models 

Game theoretical models are usually divided broadly into two branches, either non-

cooperative game or cooperative game. It does not mean that these two branches are ap-

plied to analyze different kinds of games, but they are just two ways to view the same 

game (Chwe 1994, Hart and Mas-Colell 1997, Aumann 1997, Gibbon 1996, Zhang 1996).  

(I) Non-cooperative game 

Non-cooperative game can be defined from the following aspects: 

• modelling the situation of lacking binding agreements; 

• what actions (moves) that players can take; 

• how players interact with each other to maximize individual welfares; 

• solutions concepts: Nash equilibrium, sub-game perfect Nash Equilibrium, Bayes-

ian Nash Equilibrium and  perfect Bayesian (sequential) Equilibrium;  

• mainly stressing individual  rationality, individual optimal strategies and payoff; 

• the results may be efficient and may be not. 

(II) Cooperative game  

Cooperative game can be defined by: 

• modelling the situation of binding agreements; 
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• what coalitions forms that players can use to maximize the collective welfare of all 

the players; 

• how the available total value split in a satisfactory way; 

• most popular solution concepts:  the stable set, equity-based rule, the core Shapley 

value as well as Nash bargaining solution; 

• Stressing mainly collective rationality, efficiency and fairness;    

• the results are usually social optimum. 

In summary, the non-cooperative and cooperative game theories are like the positive and 

normative approaches that economists use. In economics, the positive approach describes 

what the real world is, and it usually deals with analyzing and prediction. However, norma-

tive approach deals with what the world should be, and it focuses on studies the methods to 

change the world. With reference to non-cooperative and cooperative game theories, non-

cooperative game theory is strategy oriented and it studies what players expect to do and 

how they do it. Cooperative game theory studies what the players can achieve and how 

they can achieve it. 

2.2.2 Strategic and extensive game theoretical models 

Generally speaking, non-cooperative game models can be divided into two kinds, namely 

strategic (or normal) games and extensive games.  

(1) Strategic games 

A strategic game (or normal game) is defined as follows:  

, ( ), ( )i iG N S u                                                         (2.2) 

where { }1, 2,...,=N n  is the set of players, { }1 2 2( ) , ,...,=iS S S S , Si is the strategies profile 

of player i, 1 2( ) ( , ,..., )=i nu u u u  is the payoff function of player i.  

Strategic (or normal) games are usually applied to model the static (or simultaneous-move) 

games in which every player chooses a strategy simultaneously. The strategy profile of all 

the players determines the payoff of every player. Static games can be either with complete 

information or with incomplete information. Simultaneous choice does not mean that one 

player chooses the strategy with other players at the same time, but it just means that a 

player does not know the choice of the others. The simple model of a strategic game is a 

two-person game, which can be constructed as a bi-matrix. 
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1 2

1
*

2

( , ) ( , )

( , ) ( , )

                           2
                      P       P

S
 1   

S
⎛ ⎞
⎜ ⎟
⎝ ⎠

a a b c

c b d d
G

 

This matrix describes that there are two players, player 1 and player 2. Player 1 has two 

strategies S1 and S2, and player 2 has two strategies P1 and P2. There are four cells which 

represent four outcomes, and in each cell there are pairs of letters. The first one in each cell 

of the matrics refers to the payoff or the vlaues that player 1 can get through the possible 

interacting actions at the end of game, and the second numbers are what player 2 should 

get. The letters in the cells can be estimated by monentary terms or other valued objests 

or/and terms. The outcome with * in the cells is the equlibrium outcome. If there is no any 

further explaination, the rows of the matrix usually represent strategies of player 1 (the row 

player), and the colums refers to player 2’s (the colum player). If there is no ambiguous, 

the game matrix is usually simply expressed as:  

*

( , ) ( , )

( , ) ( , )

⎛ ⎞
⎜ ⎟
⎝ ⎠

a a b c

c b d d
G  

A very wide range of situations on water resources management can be modeled as strate-

gic games.  

 (2) Extensive Games 

An extensive game is defined as follows: 

, , , , ( ), ( )i iN H P F I UΓ                                                      (2.3) 

where Γ: an extensive game; N: player set; H: sequence set of players’ decision in different 

period of time (called history); P: player functions, P(h)  the player(s) who will move to 

make decision after history h;  F: probability distribution; P(a⎥ h)  the probability of ac-

tion a chosen as moving action after history h; (Ii) = (I1, I2,…,In), Ii  the information set 

of player i on the player(s) in history; (Ui) = (u1,u2,…,un): the profile of players’ utility 

(payoff) functions on history H. This model can be summarized in to the following ques-

tions: 
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 Who plays in the game?  

 When do they play? 

 What can they do? 

 What do they know? 

 What are the payoffs?  

 What can the nature do?  

An extensive game is usually used to model dynamic (or sequential) games with complete 

information or incomplete information. The extensive form is a special method to illustrate 

a game of sequential moves (Fig. 2.1). In this game, there are three players and each player 

has two strategies. Player 1 moves first, and then player 2 moves after he sees the moves of 

player 1.  And then player 3 chooses his moves after he sees prior moves of player 1 and 2. 

The numbers in parentheses on the right side are the payoffs of the players, and the first 

one belongs to player 1 and the send and the third player 2 and player 3 respectively. A dy-

namic game with complete information probably includes more Nash equilibria, but some 

of them include the unbelievable actions and threatening. Sub-game perfect Nash equilib-

rium is a proved equilibrium which deletes such action and threatening.  

 
Figure 2.1: A game tree used to illustrate dynamic games with three players 
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2.2.3 Special game models  

Some games have been widely used to model, analyze and illustrate problems of environ-

mental and natural resources. Due to their importance, they are discussed separately in this 

sector.  

(1) Two-person zero sum game model 

In the 2-person zero sum game, another will lose if one win and the sum of their payoffs is 

always zero, i.e. ( )2
1 0μ= =Σ ii s . Such game can be expressed as matrix A = [aij]. Because 

the payoffs of player j are opposite to player i, it usually just lists the payoffs of player i. 

This game is also called “strictly competitive” game due to the diametrically opposed in-

terests of the players.  The two-person zero sum game can  be used to model a situation in 

which the multi-actors have contradictory interests or benefits, such as different water us-

ers in water scarcity areas.  

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

a b c
A a b c

c a b
 

(2) Prisoner’s dilemma game model 

The second well-known game is the game of Prisoner’s Dilemma. This game models a 

situation in which there are gains from cooperation but each player has an incentive to 

“free ride” whatever the other player does. A 2-person game of prisoner’s dilemma (Fig. 

2.2) is to model the collective decision-making situations where non-cooperation is always 

the dominant strategy of every player, regardless of the other player’s strategy (Scharpf 

1997).  

              
(4,4) (1,5)

 
(5,1) (3, 3)

              

∗

→

⎡ ⎤
↓ ↓⎢ ⎥

⎣ ⎦
→

 

Figure 2.2: Game of prisoners’ dilemma 

The model is a very useful tool to analyze the conflicts between individual rationality and 

collective rationality (Ostrom et al. 1994). The individual optimal strategy leads to a sub-
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optimal equilibrium outcome for all players, because there is at least another one outcome 

which can make players better off. For every player in such situation, cooperation involves 

risk and uncertainty. Every player will risk the lowest payoff if others defect. A number of 

other situations have been illustrated by the model of Prisoner’s Dilemma game, such as 

overusing public goods and common resources. The way of solving the dilemma is to de-

sign a mechanism to change the rules, which can drive the players to reach collective ra-

tionality.                                

(3) The chicken game model 

The chicken game is usually used to model the situation in which one player occupy one 

resource and others would like to take up other resource. In this game, there are usually 

multiple equilibria, players have no dominat strategy. (Fig. 2.3). 

               

(4, 4) (3, 5)
  

(5, 3) (2,2)
               

∗

∗

→

⎡ ⎤
↓ ↑⎢ ⎥

⎣ ⎦
←

 

Figure 2.3: Chicken game 

(4) Assurance game model 

The assurance game also has multiple equilibria. (Fig. 2.4) One player’s contribution is not 

sufficient to gain a collective benefit but two players’s contributions can preduce a jiont 

benefit.  

               

(4, 4) (5,1)
  

(1,5) (3, 3)
               

∗

∗

←

⎡ ⎤
↑ ↓⎢ ⎥

⎣ ⎦
→

 

Figure 2.4: Assurance game 

In this game, players have no dominat strategies, and the strategies depend on the 

expectations of others. There are usally an incentive for other players to cooperate if one 

player coperates. Reversely, if one player does not cooperate, the others have an incentive 

not to cooperate. In this game structure, the risk and uncertainty still exist. Maybe one 

would like to cooperate during period of time, but he will not cooperate during another 
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period of time. In a multi-person assurance problem, Runge (1992) shows that the highest 

benefits can be achieved when everyone cooperates, but beneficial outcomes for the group 

can also be achieved when a critical mass cooperates. 

 (5) Driving force game model 

Given that the risk and uncertainty in assurance game can be removed by externtal or 

internal driving forces, then a more optimal outcome will be formed. The driving forces 

usually refer to something like laws, regulations, contracts and other binding agreement. In 

contract with those legislation methods, economic methods such as tax, fine, compensation 

and so on, are also such kinds of driving forces. The players have the incentive to choose 

cooperation due to external or internal driving forces. In this sense, the game is called driv-

ing force game (Fig.2.5).   

              

(4, 4) (5,1)
 

(1,5) (3,3)
              

∗

←

⎡ ⎤
↑ ↑⎢ ⎥

⎣ ⎦
←

 

Figure 2.5: Driving force game 

(6) Transforms of games models 

The methods to solve the dilemma are to design a mechanism, which can change the rules 

and drive the players to reach collective rationality by cooperating with each other (Wei 

and Gnauck 2007d). Cooperation may be self-organized through negotiations or it may be 

formed due to driving forces. Players might design binding rules in an effort to discourage 

non-cooperative behaviors completely. They do so because they are aware that repeated 

cooperation is ultimately much better than the defection outcome in the prisoners’ dilemma 

game. Furthermore, the assurance will be transferred into driving force game if the driving 

forces provide more detailed information on players’ behaviors, high sanctions is imposed 

on non-cooperative behaviors, and/or high subsidize is awarded to the cooperative players. 

Fig. 2.6 show transforms of games of prisoners’ dilemma, chicken, assurance and driving 

forces. In the payoff matrix, the game is Prisoners’ Dilemma game if  it meets the 

condition of a > d, d > b and c > a. If the condition is a < c and b > d, then the game is a 

chicken game. If the condition is a > c and b > d,  the game becomes an assurance game. If 
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the condition is a > d, b > d and a > c, the game is changed into driving force game.  
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                           a) Prisoners’ Dilemma                                        b)  Chicken game 

                               (a > d, d > b, c > a)                                               ( a < c and b > d) 
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  c) Assurance game                                      d) Driving force game 

   (a > c, b > d)                                                (a > d, b > d, a > c) 

Figure 2.6: Transforms among the models of  prisoners’ dilemma game, chicken game, assurance  

                    game and driving force game 

2.3 Game theoretic approach for water resources management  

Game theory began as applied mathematics and microeconomic theory, but it serves here 

as a modelling approach to manage water resources. The questions arose in the game mod-

elling of water resources management are as follows:  

(1) What kind(s) of game (games) can water resources management be modelled as? In 

other words, what kind(s) of game (games) is (are) involved in water resources 

management? Can the rational choices of multi-stakeholders be translated into a 

mathematical or/and economic problems? Can the rational outcome be as the "solu-

tion" to the game? 

(2) How to translate a case of water resources management into a game in mathematic 

or/and economic language? In details, what is (are) the player(s)? What are the 

strategies available to each player? What is payoff that each player can obtain from 

the combination of strategies chosen by the players? what methods can be used to 

solve for the Nash Equilibria of strategies? 
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(3) What is the strategy space? In which condition does a player use pure strategies or 

mixed strategies? How to choose dominated strategy (strategies)?  

(4) What does it mean complete and incomplete information in the games of water re-

sources management? What uncertainties or risks are there in a game of water re-

sources management? How to predict them? 

(5) How to value the problems and benefits in payoff terms?  How to value the payoff 

and make right decisions? If the game is cooperative one, how to divide the joint 

payoff? 

2.3.1 Types of games 

From the game theoretical point of view, there are full of games in human society and na-

ture. Figure 2.7 shows the nature and human society from a game point of view, and each 

interacting and interdependent groups or/and individuals can be modelled as game(s). For 

examples, the game can be between human and rain, rivers, lakes and animals, and be-

tween animals and animals, plants and plants, animals, plants and their habitats, and so on.  

 

Figure 2.7: Nature and human society from a game theoretical perspective 
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Vrieze (1995) classified environmental games in two ways: society’s game and game of 

exhaustion, and Kelly (2003) classified into games of skill, games of chance and games of 

strategy. In this study, the games involved in water or other nature resources management 

is classified into the following three kinds: 

1) HH-G: Human and human games, the games played among human beings, includ-

ing different countries, world regions, or areas within regions; 

2) HN-G: Human and nature games, the games played between human beings and the 

nature; 

3) NN-G: Nature and nature games, the games in nature itself. 

In definition, HH games are similar with society’s game and games of strategy, and HN 

games are similar with game of exhaustion and the combination of games of chance and 

games of skill. HN game is a close relative of decision theory. Parson and Wooldridge 

(2002) stated that decision theory can be considered to be the study of games against nature, 

where nature acts randomly. In the literature of game theory, the nature usually is regarded 

as pseudo player entering the game (Zhang 1996, Rasmusen 2001). Some people maybe do 

not believe that the nature can be players because they cannot move. However, there are so 

many examples to show that the nature really moves and strict back when human use it 

improperly, such as pollution, greenhouse effect and so on. If so, the question is what their 

strategies and payoffs are since they are players. For the NN games, there are very few 

studies comparing with the former two kinds. Smith (1982) analyzed the NN games in his 

book Evolution and Theory of Games.     

2.3.2 A game theoretical approach to solve conflicts 

The question is how to construct a game model. Figure 2.8 shows the process of using 

game theoretical approach to solve conflicts. Generally speaking, the process of game theo-

retical modeling approach can be divided into four steps:  

Step 1: Defining the game 

 Defining the players 

 Defining their payoff functions  

 Defining their moves (strategies) 

 Defining information set 

Step 2: Setting up game models  
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Figure 2.8: General flow chart of game theoretic approach to solve conflicts 

 Non-cooperative game models 

 Cooperative game models 

Step 3: Analyzing the game models  

 Getting the possible game outcomes 
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 Comparing these outcomes 

Step 4: Solving the game 

 Getting the equilibrium of non-cooperative games 

 Getting the compromise point to share the benefit obtained from cooperative games. 

This flow can be shortly summarized into the following questions:  

1) Who involves in the conflict?  

2) What are their actions (strategies)? 

3) How to form the payoff function of each player? 

4) How does every player know the payoff function of others? 

5) Is the game one-time game, continuous game, finite game or infinite one? 

6) How to compute the equilibrium/equilibria of the game(s) in the case of a non-

cooperative game?  

7) Is every player better off if he cooperate with others? 

8) How to distribute the net benefit derived from cooperative games among the play-

ers? 

2.4 Game theoretic methods to solve water conflicts in a river 
basin 

Within a river basin, various factors, including hydrological, geochemical, biological or 

socio-economic (and even political and cultural) factors, constitute an integrated system or 

a web of interlinkage related with water quality and quantity. In this sense, the sources of 

water pollutants and the quantity of water allocation can be clearly defined only when an 

integrated river basin is considered. McKinney et al. (1999) expressed that a river basin is a 

rational and suitable water resources modeling and management unit. Jønch-Clausen (2004) 

also argued that a water basin is the basic planning and management unit. Analyses and 

discussions of water allocation between user and ecosystem need make sense only when 

addressed at the basin level. Almost half of the world’s land area is situated in transbound-

ary river basins (Jønch-Clausen, 2004). In a transboundary river basin, the conflicts, result-

ing from water quality and quantity, are common but even more complex. Chen (2003) ar-

gued that the nature of river system is an integrated system, but has been managed by many 

isolated units. The cross-sector and cross-boundary conflicts are the maim problems in 

river basin management due to this isolated management. 
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2.4.1 Cooperative and non-cooperative games in a river basin  

People in the areas of upriver, middle river and lower river usually have different interests, 

benefits and development planning and living standards. Developed regions try to maintain 

their welfares, and the developing and underdeveloped regions plan to accelerate the eco-

nomic development in order to raise their living standard. A particularly serious feature of 

water and other environmental problems is that the private incentive of individual agency 

prevents the collective and whole society from achieving outcomes which can make every 

one better-off (Barrett, 1992). Furthermore, different regions usually have different views 

about the environmental problem and their obligation of causing and reducing the prob-

lems, because of their benefits and interests. In a river basin, different stakeholders and wa-

ter constitutes forms very different games, non-cooperative, cooperative or partially coop-

erative. These games can be defined by the types of activities, or fields. In this ways, 

games involved in a river basin can be classified into: industry, agriculture, domestic life 

and nature (ecology). Another method to defined games is by the regions in which activi-

ties take place. Then the games are played between different administrative regions. Ac-

cording to the roles of different players in society, there are games between governments at 

different administrative levels, between governments and local people, between different 

economic bodies and governments, between these economic bodies and local people.  

2.4.2 A strategy for water resources management using game theory  

For water resources management using game theory on a river basin scale, it mainly in-

cludes the following three important steps (Fig. 2.10). The first important step is to decom-

pose the river system and define the conflicting areas and/or bodies. Some of the conflict-

ing bodies will be defined as players according to the game model flow presented in sec-

tion 2.3.1. After the players are defined, their moves (or action) and strategies, their infor-

mation set, their payoff function can be defined.  

The second step is to define how each player to optimize water quantity in order to maxi-

mize his payoff. Rather, this step includes the socio-macroeconomic predictions (such as 

population, GDP, output values of agriculture and industry and the net incomes of house-

hold), predictions of water supply and water demand of different players, predictions of 

waste water and pollutants discarded by different players, as well as the cost of each player 

invest to treat his sewage. Step 2 is the benefiting process in which each player usually 

maximizes the output values per unit water.  
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Figure 2.9: A strategy for water resources management using game theory 

Third step is to optimize water quality so that every player can maximize his payoff. This 

step consists of setting up models of pollutant capability in different river sections, predict-

ing each player’s ability to reduce waste water discharge and treat water pollution, and set-

ting a target for water quality or water quality standard. In this step each player decides if 

they impose cost to reduce waste. The rational players will make planning by calculating 

the benefits and costs. From an economic point of view, waste production or pollution is 

public good or bad. In the non-cooperative situation, each player usually cut the waste 

treatment cost, and he does so because he can free-ride on other players’ achievement of 

waste reduction. If all the players choose the strategies of free riding, equilibrium of pris-
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oner dilemma will be reached. In the cooperative situation, the players will maximize their 

welfare by efficient water use.  

2.4.3 Cooperative and non-cooperative game theoretical models  

Based on the strategy concepts of game theory developed for water resources management 

in the Part 2.4.2, the following non-cooperative game model and cooperative game model 

are constructed for water resources management in a river basin.   

2.4.3.1 A non-cooperative game model 

A non-cooperative game model for water resources management is that every player i 

maximizes the differences between benefits obtained from water demands and the costs 

charged to waste water reduction or treatment. The model is expressed by equation (2.4). 

-

, ,
( ) - ( )

n t
i i itp d t

MaxV B Q C P e dtδ⎡ ⎤⎣ ⎦= ∫                (2.4)  

where Vi – payoff of every player i, Q – water consumption, P – pollutants discharged, 
te δ− – discount factor, Bi(Q) – benefit function of water consumption of every player i, Ci(P) 

– cost of every player i to abate pollutants production.    

I: Water quantity optimization:  

According to the sectors of water consumptions, industry, domestic life and agriculture are 

defined as three players. Because benefits of ecology consuming water is difficult to de-

fined, ecology is not defined as a player and water demand of ecology is regarded as one of 

constrains. Water quantity optimization means that it consumes minimum units of water to 

produce per unit of economic value. In other word, it also means the consumption per unit 

of water will produce maximum economic values. Model of water quantity optimization is 

expressed by: 

1 1 2 2 3 3
0

( ) ( )
n

t t t t t t
i

t
MaxB Q B Q B Q B Q

=
= + +∑            (2.5)  

where 1 2 3,  ,  t t tB B B  – benefit coefficients of water consumption in industry, domestic life 

and agriculture, respectively during the period of time t (a year); 1 2 3,  ,  t t tQ Q Q  – water con-

sumption of industry, domestic life and agriculture, respectively during the period of time t. 
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II: Water quality optimization:  

Water quality optimization means that every player minimizes the costs to reduce pollut-

ants discharged into the water body by reducing pollutant discharge. It can be expressed as 

follows:  

, , ,, -1
1 1

( ) ( )(1- ) -
n m

t t c
i x x y x y x yx y

x y
MinC P P P k Pγ

= =

⎡ ⎤⎣ ⎦= +∑∑           (2.6)  

where xγ  – cost coefficient of pollutant x; , 1
t

x yP − – load of pollutant x from the upstream 

controlling section y-1; ,
t

x yP – load of pollutant x in the controlling section y; ,
c

x yP – the con-

trolling load of pollutant x in the controlling section y.  

III. Constraints of non-cooperative game model 

(1)  Constraints for water quantity optimization:  

51 2 3 4 0 - - -t t t t t t t t t tQ Q Q Q Q R S G E Q+ + + + ≤ +             (2.7) 

2 3
t t tQ Q S+ <                  (2.8) 

1 3
t t t tQ Q S G+ < +                (2.9) 

5-1 -1, 3 1 2 4 0- ( ) - - -t t t t t t t t t
y y yQ Q Q Q Q Q Q E Qα μ+ + + ≥                      (2.10) 

0 , 1,2,3t t
i iR Q i< < ∀ =               (2.11) 

, 1, 2,3, 4t t t
i i iQ Q Q i≤ ≤ =              (2.12) 

where 4
tQ  – Water for soil conservation; 5

tQ  – ecological water demand; 0
tQ  – water de-

mand of other sectors; tS  – surface water amount; tG  – ground water amount; tR  – waste 

water discharged into the river or the reused waste water; tE – evapotransporation; α  – 

coefficient of agriculture water consumption; μ  – coefficient of industrial and domestic 

waste water discharged into river; -1
t
yQ  – water inflow from previous section y-1; ( -1, )

t
y yQ  – 

the water inflow in the section y; t
iQ  and t

iQ  – the minimum and maximum of water de-

mand; and others are the same as above. 

(2) Constraints of water quality optimization: 

, -1 -1 , -1 =t t t
x y y x yP Q c              (2.13) 

, , =t t t
x y y x yP Q c                (2.14) 
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, , =c t c
x y y x yP Q c                (2.15) 

,-1 0, 0; 0, 0t
y x yy xQ Q c K≥ > ≥ ≥             (2.16) 

where , -1
t
x yc  – the concentration of pollutant x in inflow water from the upstream section y-

1; ,
t
x yc  – the concentration of pollutant x in the section y; ,

c
x yc  – the controlling concentra-

tion of pollutant x in the section y; others are same. 

2.4.3.2 A cooperative game model  

The cooperative game model means that all the players cooperate with each other to maxi-

mize the overall net benefits. It is expressed by equation 2.17. Every player in cooperative 

game is to maximize the net benefits which he can obtain from cooperation. It is expressed 

by equation 2.18. 

-
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n
MaxU V U Ψ⎡ ⎤

⎣ ⎦= + ∏              (2.18) 

Where U – the total benefit obtained from cooperative game; B(Q) – the benefit function of 

water use in cooperative game; C(P) – the cost to abate waste water discharged (or pollu-

tion) in cooperative game; Ui – the payoff of each player i in cooperative game; UB – the 

total net benefit obtained from cooperative game; Ψ  - distribution factor of cooperative 

benefit. 

Constraints of the cooperative game model:  

1

n

i B
i

U V U
=

= +∑               (2.19) 

UB ≥ 0                (2.20) 

where the variables and symbols keep the same. 

2.5 Information used for game theoretic models 
 
The main types of data include socio-economic data, climatological data, hydrological data, 

water quality data as well as natural resource data. Socio-economic data mainly include 

urban and rural population, water consumption, added values of industry and agriculture, 

net incomes, GDP, water prices, etc. Climatological data include precipitation, evapo-

transpiration, temperature of water and air. Hydrological data mainly include water flows, 
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water levels and water velocity. Water quality data consist of pollutants concentrations, 

point pollution sources and non-point pollution sources. Natural resources data comprise 

water resources volumes, land data and forest data. (Table 2.1)    

Table 2.1: The data (information) used for game theoretic models 

Data class Data 

Socio-economic data 

Population data  
• urban population 
• rural   population 

Water consumption data 
• water supply  
• water demands of agriculture, industry, domestic life and ecology
• water prices for agriculture, industry, domestic life 

Gross domestic product (GDP) or gross regional products   
• added values of industry (AVI)  
• added values of agriculture (AVA)  
• net incomes of residences and index 
• indices of Gross Domestic Product 
• consumer price Indices (CPI) 

Cost to reduce waste water 

Climatological data 
• precipitation 
• evapo-transpiration 
• temperature of water and air 

Hydrological data 
• water flows,  
• water levels   
• water velocity 

Water quality data  

Pollutants concentrations  
• different monitoring stations 

Point pollution sources  
• industrial waste discharge  
• domestic waste water discharge 

Non-point pollution source  
• agricultural fertilizer consumptions, 
• soil erosions,  
• rural domestics  
• animal husbandry 

Water standards for different water bodies 

Natural resources data 

Water resources data 
• total water resources volume 
• surface water volume 
• underground water volume 
• water area  in land 

Land data 
• cultivated area 
• soil erosion 
• public green area 

Forest resources data 
• forest area  
• forest-coverage rate  
• afforestation area  or number of planned trees                                 
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3.   Game-theoretic approaches to river water            
management in China 

River system is an integrated system in nature, but it has been managed by different iso-

lated units. Stakeholders in these isolated administrative regions or areas have different in-

terests and aims. Water scarcity and water quality degradation are two critical problems in 

water resources management, and they usually cause conflicts between these stakeholders. 

The cross-sector and cross-boundary conflicts are the maim problems in river basin man-

agement due to this isolated management. Chapter 2 have been illustrated that game theory, 

as a modelling approach, is an appropriate approach to solve the conflicts. This chapter 

demonstrates how game theoretic modeling and simulating approaches are applied to solve 

water conflicts involved in the Hanjiang River Basin in China. 

China possesses total water resources of 2812.4 billion m3, ranking the 6th in the world, and 

but the available water amount per capita only takes one fourth of the world’s average due 

to the heavy population (World Bank, 2002; Wei, 2007). On the one hand, water resources 

in China are much unevenly distributed in time and space, and water shortage has been a 

long-time and widespread problem in Northern regions of China. On the other hand, the 

rapid economic development produces increasing amounts of waste water. Most waste wa-

ter has been discharged into the water bodies without treatment, which degrades the water 

body. The situation of water resources in China can be referred to Wei (2007).  

In order to mitigate the existing crisis of water resources, the engineers in China proposed 

the South to North Water Transfer (SNWT) Projects after 50 years’ study. SNWT Projects 

comprise of Western Route Project (WRP), Middle Route Project (MRP) and Eastern 

Route Project (ERP). The WRP will transfer water from the upper stream of Yangtze River. 

The MPR will transfer water from the middle stream of Yangtze River. The ERP will 

transfer water from the lower stream of the Yangtz River. The three routes will connect the 

four big rivers and form a structure of four lateral and three longitudinal lines. Of the three 

route project, the MRP is the study focus of many water resources experts. This project 

will divert water from the Danjiangkou Reservoir in the Hanjiang River Basin for 20 big 

cities and 100 counties in Beijing and Tianjin Municipalities, Hebei and Henan Provinces. 
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It covers a total area of about 155,000 km2 and it crosses about 200 river channels or canals 

with the total cannel distance of 1,246 km. Figure 3.1 and 3.2 show a map and a sketch of 

South-to-North Water Transfer Projects, respectively. 

 

Figure 3.1:  Map of South-to-North Water Transfer Projects 

 

Figure 3.2:  Sketch of South-to-North Water Transfer Projects  

The Chinese government, the Changjiang Water Resources Commission (CWRC) and the 

Changjiang Water Resources Protection Institute (CWRPI) have been carried out several 

research projects on the water quality and quantity of the Hanjiang River and the Danji-

angkou Reservoir, and environmental impacts of water transfer on the River. Besides, 

many studies on water resources management have also taken by researchers from different 

Yellow River 

Yangtze  River 

Huaihe River 

Haihe River 

 WRP 

MRP 

ERP 
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aspects. One focus is the study and analyses of the impacts and effect of water diversion on 

the Middle-lower Hanjiang River Basin, and these impacts and influences mainly include: 

(1) water resource utilisation (Liu et al., 2003, 2005; Liang, 2001) and hydrologic situation 

(Guan et al., 2005; Gu et al., 2005), (2) economic development (Du et al., 1999; Zhang, 

2004; Zhang, 2005), (3) water environment, especially algae blooms (Xie et al., 2004; Dou 

et al., 2002; Liu et al., 2005; Zhang et al., 2004; Zhang and Ao, 2004), (4) ecological envi-

ronment (Zhang et al., 2000), etc..  

Interbasin water transfer is a multidisciplinary problem (Yevjevich, 2001), and such pro-

jects usually bring about more fundamental issues concerning the social, economical, ad-

ministrative and legislative aspects (Shao and Wang, 2003) as well as environmental and 

ecological sides. Interbasin water transfer projects to reduce water shortage are not new 

things at all in China. However, the Middle Route of South-to-North Water Transfer 

(MRSNW) Projects is different from other existing water transfer projects in China, be-

cause it includes two Municipalities and four provinces. Water transfer projects within a 

region can be effectively managed through the coordination of local government and re-

gional river administration, while it is more difficult to manage when water transfer involv-

ing different regions. The conflicts involved in the Hanjiang River are mainly resulted 

from MRP. MRP involves different provinces with different interests and benefits. The wa-

ter transfer project will change the runoff and water level of the rivers, and break the long-

established balances of benefits between different groups. Therefore, it must impact on the 

socio-economic development and ecology and environments of the Hanjiang River Basin. 

If they are not properly solved, and water diversion project will face tremendous difficul-

ties. Therefore, it is one of the first tasks to coordinate all the parties, balance their interests 

and reduce their conflicts. However, so far no studies on the methods to solve the potential 

conflicts resulting from the interbasin water transfer project in the Hanjiang River Basin.  

3.1 The Hanjiang River Basin 

The Hanjiang River Basin lies in 30°08´～40°11´N latitude, 106°12´～114°14´E longitude. 

The river originates in the southern part of Shaanxi Province, northwest China, flows 

through Shaanxi and Hubei provinces and joins the Yangtze River at Wuhan, capital city of 

Hubei province. It is about 1577 km long, the longest tributary of Yangtze River; and the 

basin covers a watershed area of 159,000 km2, the second largest river basin in Yangtze 

River Catchment. The stream above the Danjiangkou is the upriver, 925 km long. The 
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middle and lower reach of the Hanjiang River, is about 652 km in length, among which 

from Danjiangkou City to Zhongxiang City is the middle reach with length 270 km, from 

Zhongxiang City to the mouth is the lower reach with length 382 km (CWRPI, 2005; Zhang, 

et al., 2000). Figure 3.2 shows sketch of the Hanjiang River Basin, and the physical charac-

teristics of the three parts of the Hanjiang River simply summed up in Table 3.1. 

 

Figure 3.3: Sketch of the Hanjiang River Basin 

Table 3.1: Flow division and characteristics of the Hanjiang River (Data from CWRPI, 2005;  

                       Zhang, et al., 2000) 

River 
division Range Distance

(km) 
Area 

(×104 km2) Topographical characteristics 

Upper 
river 

Source to 
Danjiangkou 

City 
925 9.52 

Wider river bed, steep hillsides by 
banks, deep cutting river valleys, 
rapids and riffles. 

Middle 
river 

Danjiangkou 
City to 

Zhongxiang 
City 

270 4.68 

hilly and multiple basin valleys, 
Winding river course, excessive 
gravels and riffles, high silt con-
centration in water (multi- annual 
means 2. 39kg/m3). 

Lower 
River 

Zhongxiang 
City to the River 

Estuary 
382 1.7 

Plain region, curving river course, 
comparatively slow water flow, 
sand-natured river bed, the silt 
concentration is about 0.0034 ~ 
0.055 kg/m3. 

The u-shaped Danjiangkou Reservoir lies in 110°～112°E latitude, 32°～33°N longitude. 

It covers an area of 1050 km2 and has a total storage capacity of 17.45 billion m3 with a 
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normal pool level 157m. It services as flood prevention, electricity generation, water sup-

ply for production, irrigation, navigation and so on. On general, the fluctuation of the water 

level in front of the dam is 18 m; the biggest water depth in front of the dam is about 90 m. 

3.1.1 Water quantity 

The Hanjiang River Basin belongs to subtropics monsoon area. The climate is temperate 

and moist, and annual precipitation is 873 mm. The Hanjiang River Basin is rich in water 

resources. According to the data of hydrology series from 1956 ~ 1998, the river has total 

water resource of 58.2 billion m3 and average annual natural runoff is 56.6 billion m3. 

Based on the data of 1956 ~ 1998, the average annual precipitation above the Danjiangkou 

city is 890.5mm. The average annual inflow of the Reservoir is 38.78 billion m3 approxi-

mately occupying 70% of water volume of the entire basin. The maximum inflow volume 

is 79.5 billion m3 in 1964, and the minimum is 16.9 billion m3 in 1997. The upper basin of 

the Hanjiang River includes part of provinces of Shaanxi, He’nan and Hubei. The amount 

of surface water is 36.796 billion m3, the ground water is 10.647 billion m3, and the over-

lap amount is 10.387 billion m3 (Table 3.2).  

Table 3.2: Water resources in the upper basin of Hanjiang River (Data from CWRPI, 2005) 

Province Municipality City Counting area 
(km2) 

Surface 
water 

(×108m3) 

Ground 
water 

(×108m3) 
Hanzhong  19559 94.42 27.67 
Ankang  23391 104.16 26.30 Shaanxi 

Shangluo  16529 53.54 13.94 
Xixia 3131.6 7.37 3.723 Nanyang 

Xichuan 2821.5 6.99 3.355 He’nan 
Sanmen Lushi 1238.2 2.91 1.472 

Downtown 1181 3.16 1.404 
Danjiangkou 2935 7.48 3.490 

Yun 3860 11.19 4.590 
Hubei Shiyan 

Yunxi 3506 10.57 4.169 
 

The total water resources of middle and lower reaches in the Hanjiang River Basin is 19.5 

billion m3, occupies 32.2% of water resource of the entire basin. The surface water re-

sources is 18 billion m3, ground water resources 76.01 billion m3, redundant water volume 

61.01 billion m3, and the water-producing modulus 30.6×104m3/km2 (Table 3.3). 
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Table 3.3: Water resources of different zones in middle-low reaches of the Hanjiang River (Data  

                 from CWRPI, 2005; ) 

Zone Area 
(km2) 

Surface
water  

(×108m3)

Ground 
water      

(×108m3) 
Overlap 
(×108m3)

Total 
water 

(×108m3) 

Modulus of 
water pro-

duction 
(×104m3/km2)

Danjiangkou～
Xiangyang 8,385 30.7 12.2 12.2 30.7 36.6 

Baitang River 26,376 57.9 24.2 19.5 62.6 23.7 
Xiangyang～
Huangzhuang 12,898 34.5 11.4 10.9 35.0 27.1 

Huangzhuang ～
River Estuary 16,124 57.0 28.1 18.4 66.7 41.4 

Total 63,783 180.1 75.9 61.0 195.0 30.6 
Entire Basin 159,000 591.0 190.0 175.0 606.0 38.1 

3.1.2 Water quality 

Before 1990, the Hanjiang River had fine reputation of “East Rhine” due to pure water 

with rich oxygen and least pollutant concentrations in all rivers in China. However, with 

the socio-economic development, increasing population of the basin, great amount of waste 

has been discharged into the River without being treated. Therefore, the river has been de-

teriorated in recent years, and it mainly reflects the increase of concentration of nutrients 

like nitrogen and phosphorus. Table 3.4 shows the monitoring results of water quality in 

the Hanjiang River from 2000-2005 according to Chinese Environmental Quality Stan-

dards for Surface Water (CEQSSW) (GB 3838—2002) (AQSIQ and EPA, 2002). 

CEQSSW divides water quality into 5 classes, namely Classes I, II, III, IV and IV. The wa-

ter quality inferior to Class IV are usually included into Class V.  

Table 3.4: Monitoring results of water quality in the Hanjiang River from 2000-2005 (CESY,  

                   2000-2005; HEPB, 2004-2005) 

Main branch Tributaries Year 
I II III IV VI I~III IV V VI 

2000 0.00% 52.00% 0.00% 40% 8% 55.60% 0.00% 44.40% 
2001 7.70% 50.00% 42.30% 0.00% 0.00% 45.50% 18.20% 0.00% 36.40%
2002 0.00% 56.00% 44.00% 0.00% 0.00% 36.40% 27.20% 27.20% 36.40%
2003 0.00% 61.50% 38.50% 0.00% 0.00% 45.50% 18.20% 18.20% 18.20%
2004 0.00% 72.00% 28.00％ 0.00% 0.00% 58.3％ 8.30% 8.30% 58.3％
2005 0.00% 80.00% 20.00% 0.00% 0.00% 37.50% 6.30% 12.50% 43.70%

Average 1.28% 61.92% 28.96% 6.67% 1.33% 44.10% 13.03% 13.24% 33.68%
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During 2000 to 2005, water quality of the main branch conforms to water Class II ~ III of 

Chinese Environmental Quality Standards for Surface Water. In details, from 2000 to 2005 

average probabilities of water quality of the main branch are that water Class I takes 1.28%, 

Class II 61.9%, Class III 28.96%, Class IV 6.67% and Class VI 1.33%.  However, the wa-

ter quality in the tributaries has been polluted severely. Classes I-III takes 44.10%, Class 

IV 13.03%, Class V 13.24% and Class VI 46.9%. 

The Danjiangkou Reservoir is the water source of MRSNWT project, and thus the water 

quality is very critical to the success of this project. There are 16 important monitoring wa-

ter stations on water quality and water quantity of the Danjiangkou Reservoir (Fig. 3.4). 

Three monitoring stations - Dam, Tanzishan (TZS), Taocha (TCA) – are selected as data 

collection pots, and they are numbered by 1, 2 and 3, respectively in figure 3.4.  

 

Figure 3.4: The Danjiangkou Reservoir and the water monitoring stations  

Figure 3.5 illustrates the annual average concentration of BOD5, DO, CODMn, NH3-N, TP 

and TN in the three monitoring stations during 1995 to 1996. The annual average concen-

trations of BOD5 range from 0.68 mg/L to 2.2 mg/L, which are better than class II (3.0 

mg/L). The concentrations of DO vary between 7.5 mg/L and 9.4 mg/L, which meet the 

Class I (7.5 mg/L). The concentrations of CODMn are in the range of 1.4-2.3mg/L, which 

meet the Class II (4 mg/L). The concentrations of NH3-N are between 0.05-0.24 mg/L, 

conforming to Class II (0.5mg/L). The concentrations of TP reached 0.6mg/L and 
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0.06mg/L, which cannot conform to the standard of Class II (0.025mg/L) in 2001 and 2003 

in Taocha, but they meet the standard in other years. However, the concentration of TN 

cannot conform to the Class II, and it belongs to Class IV and V. Therefore, the deteriora-

tion of Reservoir is mainly reflected by the increase of concentration of total nitrogen.  
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Figure 3.5: Water quality of the Danjiangkou Reservoir  
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From the concentrations of total nitrogen and the total phosphorus in the reservoir, the res-

ervoir is at present in the mesotrophic condition. Therefore, the main task to increase water 

quality in the Reservoir is to reduce TN concentration. 

Figure 3.6 shows the 11 main tributaries of the Danjiangkou Reservoir. The tributaries like 

Shending River and Laoguan River have been polluted severely due to pollutants dis-

charged from Shiyan city, Xixia county and Xichuan county. The water quality in these 

tributaries usually passes water surface standard of Class V. In addition, other tributaries 

also suffer pollution and the water quality usually conforms to Classes III ~ IV. During the 

high flow period the water quality is obviously deteriorated because great amount pollut-

ants of non-point sources, such as agriculture and soil erosion are washed into the river by 

the runoff of rainfall.  

 

Figure 3.6: Main tributaries of the Danjiangkou Reservoir 

Figure 3.7a-d compares the concentrations of CODMn, NH3-N, TN and TP in 11 main tribu-

taries of the Danjiangkou Reservoir between 1995 and 2004. In 1995 the concentrations of 

CODMn, NH3-N, TN and TP were 0.8-20.5mg/L, 0.051-11.9mg/L, 0.275-12.4mg/L and 

0.025-1.84mg/L, respectively. However, in 2004 they reached 1.6-64.9mg/L, 0.078-

37.30mg/L, 1.26-37.9mg/L and 0.08-2.47mg/L, respectively. The comparisons clearly 

show that the water quality in the main tributaries of the Danjiangkou Reservoir has been 
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greatly deteriorated in recent years. The water quality deterioration of the tributaries is 

threatening to the water quality of the Danjiangkou Reservoir.  
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Figure 3.7: Comparison of pollutants concentrations (mg/L) of the main tributaries of the Danji-

angkou Reservoir between 1995 and 2004 (a) CODMn, (b) NH3-N, (c) TN and (d) TP 

Water quality of middle and lower reaches of the Hanjiang River has also been deteriorated 

in recent years. Eutrophication problems have been intensified mainly because of the in-

crease of concentration of nutrients like nitrogen and phosphorus. It has happened four se-

rious algae blooms in Downstream of the Hanjiang River since 1992. The concentration of 

total phosphorus and total nitrogen reached to 0.17 mg/L and 2.30 mg/L respectively in 

Hankou Monitoring Station during the algae bloom in February 2003. Algae bloom refers 

to the biological phenomenon that certain algae (commonly cyanobacteria) in water body 

grows very quickly and forms the thicker algae membrane in the water surface. When al-

gae blooms occur, water body transparency drops and stench, dissolved oxygen (DO) is 

reduced and the water environmental ecosystem is severely destructed. Algae bloom usu-

ally occurs in the lakes, reservoirs or stagnant water, but it is rare to occur in big flowing 

water. Different from the blue-green alga in most lakes and reservoir, algae blooms in the 
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Hanjiang River are diatomaceous (cyclotella caspia) blooms, and they usually occurs in dry 

flow period at the end of the winter and the beginning of spring. The total algae cells are 

gradually increased from the middle reaches to the downriver. From the river sections and 

algae cells, it shows that algae blooms have a deteriorating tendency (Table 3.5).  

Table 3.5: Comparison of the four algae blooms in middle and lower reaches of the Hanjiang River     

        (Data from Xie et al., 2004; Dou et al., 2002; Liu et al., 2005; Zhang and Ao, 2004) 

Duration Distance Algae cell Algae bloom Starting date (days) to river estuary (km) (×104/L) 
1st  1992-2-17 18 240 1,570 
2nd 1998-2-16 20 300 2,200 
3rd 2000-2-28 45 400 4,000 
4th 2003-2-8 42 400 3,100 

3.1.3 Sources of water pollution  

Generally speaking, the socio-economic development produces a large amount of waste in 

the Hanjiang River Basin. There are more than 40 waste water discharge mouths in down-

stream of the River. Water pollutant sources include point and non-point sources. Industry 

waste water and urban domestic sewage are regarded as point sources, which discharge di-

rectly into the regional surface waters. However, pollutants produced by the sector of agri-

culture are non-point, including consumption of fertilizer and chemical pesticides, manure 

of animals and poultry, and soil erosion. All these sources produced by human develop-

ment are the main source of pollutants.  

Figure 3.8a and b show respectively the scatter plots between industrial waste water (IWW) 

discharge and the growth of GDP and between domestic sewage discharge and the increase 

of population in the provinces of Hubei (HUB), He’nan (HN) and Shaanxi and (SX) from 

1981 to 2005. The relationships of GDP and industrial waste water discharge in the three 

provinces have a slight difference. In Hubei, with the growth of GDP the waste water in-

creased, and then degreased. From 1981 to 2005, GDP growth of Hubei increased from 

219.8×108 RMB to 6520.1×108 RMB, and industrial waste water discharge only decreased from 

13.2×108 tons to 9.2×108 tons. However, in other two provinces, with the growth of GDP 

the waste water decreased slight first, and then increased. With reference to relationships 

between domestic waste water (DWW) discharge and population growth, the situations of 

the three provinces are the same. With the growth of population, domestic waste water dis-

charge has been increased in these three provinces. From 1981 to 2005, the population in-
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creased about 1.3 times from 47.40 million persons to 60.31 million persons, from 73.97 

million persons to 97.68 million persons and from 28.65 million persons, respectively in 

Hubei, He’nan and Shaanxi.  
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Figure 3.8: Scatter plots of waste water discharge (×108 tons) vs. GDP (×108 RMB) and population 

                  (×104 persons) in Hubei (HUB), He’nan (HN) and Shaanxi (SX). (a) industrial waste  

                  water discharge on GDP, (b) domestic waste water discharge on population 

As for the fertilizer consumption, the growth of both total fertilizer consumptions and nitrogen 

fertilizer consumptions show rapid increasing trend based on the data from 1979 to 2003 (Fig. 

3.9).   
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Figure 3.9: Fertilizer consumptions  (tons) by 100% effective component in the provinces of Hubei 

(HUB), He’nan (HN) and Shaanxi (SX) (a) The total fertilizer consumptions (TF), (b) 

nitrogen fertilizer consumption  (NF). 
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In the upstream river basin, the total soil erosion area covers 48,407.23 km2 based on the 

third national remote sense investigation in 2000 (Table 3.6). According to the study (Song 

et al., 2006; Yang et al., 2006), 1 km2 of soil erosion lose about 0.21 tons of nitrogen this 

area. Based on the data of local statistical yearbooks, there are about 1.5 million of large 

animals, 6.7 million of hogs, 35.4 million of poultry as well as 3.4 million of sheep and 

goats in the upstream river basin (Table 3.7). Those domestic animals produced about 

194,126 tons of nitrogen in 2005, and about 15,609 tons enter the Danjiangkou Reservoir.  

Table 3.6: Soil erosion in different provinces in the upstream river basin (km2) (Data from Hu and 

Zhang, 2003; Zhang, 2003; Wang and Li, 2003) 

Soil erosion intensity Shaanxi Hubei He’nan Total 
mild 13323.2 4509.5 1130.0 18962.7

moderate 10687.4 2431.0 124.5 13242.9
intensive  6507.7 3583.7 1778.6 11869.9

extreme intensive  2514.3 397.6 197.7 3109.6
severe  1221.0 1.1  1222.1
Total 34253.6 10922.9 3230.7 48407.2

annual soil loss (104 tons) 12100.0 6425.0 1185.0 19710.0
average annual erosion modulus (t/km2.a) 3528.0 3220.0 2938.0 4071.7

 
Table 3.7: Number of domestic animals and poultry in the upstream river basin in 2005 (×104 units)  

(Data from SXSB, 2006; HBSB, 2006; HNSB, 2006) 

Region Large animal Hog Poultry Sheep and goat 
Shaanxi 83.39 474.72 1834.58 200.23 
Hubei 26.98 128.90 721.00 64.86 
He’nan 35.31 67.77 983.29 72.57 
Total 145.68 671.39 3538.87 337.67 

3.2 Conflicts and games involved in the Hanjiang River Basin 

Various different kinds of games can be defined in the Hanjiang River Basin. However, the 

games concerning water quantity and quality are studied in the research. In order to define 

the games involved in the Basin, it should decompose the river system and find the main 

conflicts and conflicting bodies.  

3.2.1  Conflicts involved  

In the case of the Hanjiang River, the conflicts are mainly resulted from the water transfer 

project. The regions in the Hanjiang River are economically undeveloped or developing, 
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but they have rich water resources. However, the regions in Northern China are economi-

cally developed, but water shortage will limit their further economic development. The Per 

capita GDP and Per capita water resource are good indicators to reflect respectively the 

welfare of a region and the wealth of water resource in a region. Figure 3.10a and b com-

pare respectively the Per capita GDP and Per capita water resource between the provinces 

in the Hanjiang River and the some provinces in Northern China. The conflicts are re-

flected in following aspects:  

 Firstly, water transfer sets a higher standard on water quality in the Danjiangkou 

Reservoir, which will raise cost to reduce pollutants discharged from the cities on 

the upper rivers and around the reservoir.  

 Secondly, a substantial amount of water diverted will cause a reduction of runoff 

and water level, and thus it will change the ecological condition in the down-

stream of the river. Furthermore, the reductions of runoff and water level will in 

turn break the balance of water demand and supply of the main river, which will 

aggravate the conflicts of water demand and supply, and exacerbate the existing 

pollution (eutrophication) problem.  

 The reductions of runoff and water level will in turn break the balance of water 

demand and supply of the main river, which can aggravate the increasing con-

flicts of water demand and supply and lead to the worsening of the existing pollu-

tion (eutrophication) problem there.  
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Figure 3.10: (a) Per Capita GDP (RMB) and (b) Per Capita water resource (m3) in Beijing (BJ), 

                        Tianjin (TJ), Hebei (HEB), He’nan (HN), Hubei (HUB) and Shaanxi (SX) 

The regions in the Hanjiang River Basin are generally called as the Water Source Area 

(WSA), which includes the provinces of Shaanxi (SX), He’nan (HN) and Hubei (HUB). 
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The regions transferring water from the Hanjiang River are termed as the Water Beneficial 

Area (WBA), which include the Municipalities of Beijing (BJ) and Tianjing (TJ), and the 

Provinces of Hebei and He’nan. He’nan Province belongs to both WSA and WBA because 

one part of it lies in the Hanjiang River Basin and another part will transfer water. Gener-

ally speaking, the conflicts involved in the Hanjiang River Basin are the conflicts between 

WSA and WBA. In the Hanjiang River Basin, the conflicts can further classified into: the 

regions in the Upper River Basin (URB), the Reservoir Area (RA) and the Middle-Low 

River Basin (MLRB) based on the interests and benefits of the regions (Fig. 3.11).  

 

 

 

 

 

 
 
 
 
 
 
 

 

 

Figure 3.11: Conflicts involved in the Hanjiang River Basin  

In each region, the conflicts can be between different water users or water polluters, such 

as industry, agriculture, household, and environment or ecology. In the WBA, water re-

source cannot meet the water demands of water users (Fig. 3.12). Take Beijing for an in-

stance, table 3.8 shows the water resource in different hydrological years, and the hydro-

logical years of 20%, 50%, 75% and 95% represent a wet year, normal year, moderate dry 

year and high dry year, respectively. In the 20% wet year, the water supply ability is only 

37.7×108 m3. However, water demand is more than 40×108 m3 in most years. Therefore, 

industry often overuses ground water and overtakes water from agriculture and urban ecol-

ogy. It estimates that the total overexploited groundwater is about 3.96 billion m³ during 

1961 to1995 in Beijing (Jiang, 2004; Ma, 2006). Figure 3.13 illustrates the changes of 
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groundwater table of Beijing from 1959 to 1990. The groundwater table of Beijing was 28 

-78m in 1959, while it had only 4-52m in 1990 (CWRPI, 2005). 
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Figure 3.12: Total amount of water resources (WS) and water demand (WD) (×108 m3) 

                               of Bejing (BJ), Tianjin (TJ) and Hebei (HEB) (1995-2005) 

Table 3.8: Water resources in different hydrological years in Beijing during 1986-2005 (×108 m3)    

                (Data from BJWB, 2005; CWA, 1998-2004; BJSB, 2001-2007; Wu and Zhang, 2005) 

 

Figure 3.13: Ground water table of Beijing 

Hydrological year Surface water Ground water Overlap Total water 
20% 17.83 29.21 8.70 37.70 
50% 10.94 15.18 3.68 22.44 
75% 7.780 15.70 4.28 19.2 
95% 5.16 12.81 3.75 14.22 

Annual mean 13.93 19.95 6.01 27.83 
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The contradiction between water supply and demand sharpens water conflicts between dif-

ferent water users, industry, agriculture, household, and ecology. It is not rare that fighting 

for water among users between downstream and upstream, between the right bank and left 

bank of the rivers (CWRPI, 2005; Wei and Guanck, 2007 a). For the treatment of water 

quality in the Danjiangkou Reservoir, there are conflicts between the industry, agriculture, 

household in URB and RA.  

3.2.2 Games involved 

One method to define games is by the types of activities, or fields. By this method, games 

involved in the Hanjiang River Basin can be classified into: industry, agriculture, domestic 

life and nature (ecology). Another method to defined games is by the regions in which ac-

tivities take place. Figure 3.14 illustrates how to decompose the area and define the games. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Games involved into the Hanjiang River Basin 
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According to these methods, the games involved in the River Basin can be defined by dif-

ferent levels. Based on different administrative regions and their interests, the study area 

can be divided into different-level games. At first level, the conflicts can be generally 

simulated into a 3-persons game, and players are water beneficial area, water source area 

and the nature. At the second level, WBA, URB and MLRB form a 3-persons game, and 

the games are played by the 5 regions in WBA and 3 regions in WRA at the third level. 

The fourth level is the game formed by 14 cities in WRA and 5 regions in WBA. With 

much deeper levels, the games will be more detailed and concrete, and the units of players 

will be much smaller. The last unit of players should be the individual person or species.  

The game results are usually not stable and full of risks because of free-rider problems. 

Therefore, it is necessary that central government and its agencies enter to stable the results 

at the end of the game at different levels.  

Only some games are modeled as an illustrative example in the next section.  6 cities of the 

3 provinces (Shaanxi, He’nan, Hubei) and 1 municipality (Beijing) are included in the 

game simulating example (Table 3.9). The players are those 6 cities, 3 provinces and 1 

municipality, and their strategies are to maximize the welfares of their industry, agriculture, 

household and ecology. Industry, agriculture and residential life here do not refer to a cer-

tain industry, agriculture and residential life, but they are general terms for all the indus-

tries, agricultures and residences in the study area. 

Table 3.9: The regions included in the game models 

Province City or  
Municipality Code ID 

Beijing Beijing BJ R1 
Hanzhong HZ C1 
Ankang AK C2 Shaanxi (SX) 

Shangluo SL C3 
Xixia XX C4 He’nan (HN) 

Xichuan XC C5 
Hubei (HUB) Shiyan SY C6 

3.3 Game theoretical models for the Hanjiang River Basin 

R1 will transfer water from the Danjiangkou Reservoir (R) in the Hanjiang River. Water 

transfer requires the cities (C1, C2, C3, C4, C5, C6) reducing their pollutants discharge in 

order to improve the water quality in the Reservoir. However, it will raise their cost to re-
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duce pollutants discharge (Fig. 3.15). In this connection, the conflict in this study area is 

unavoidable if the interests and benefits are not balanced well. 
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Figure 3.15: Sketch of the regions involved in the Hanjiang River Basin 

3.3.1 Formulating the game models  

The situations are modeled as a set of games with two levels, including one game and 4 

sub-games. This is expressed as follows:  

, ,i i i iG N S V=                           (3.1) 

, ,ij ij ij ijG N S V=                                     (3.2) 

ijG G⊆                                                  (3.3) 

i = 1, 2, 3, 4 and j = 1, 2, 3             (3.4) 

where Gi – the set of games, i – every player, N – the set of players, S – the strategy profile, 

Gij – the sub-games, j – every sub-player, V – the payoffs.  

Definition of the players: The set of players Ni can be expressed as follows: 

Ni = {1, 2,…, i}, i = 1, 2, 3, 4                   (3.5) 

Nij = {11, 12,…, ij}, j = 1, 2, 3             (3.6) 

Among them: 

1 = {R1} and N1j = {11, 12, 13}                        (3.7) 

2 = {C1, C2, C3} and N2j = {21, 22, 23}            (3.8) 
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3 = {C6} and N3j = {31, 32, 33}            (3.9) 

4 = {C4, C5} and N4j = {41, 42, 43}          (3.10) 

where i1 - industry, i2 - household, i3 – agriculture, Rm – the regions, Cn – the cities.  

Definition of the strategies: Generally speaking, every player has two strategies: coopera-

tion and non-cooperation. They can be expressed as follows: 

1

2

     = 1, 2, 3, 4,   = 0, 1, 2, 3
ij

ij C
ij

S C
S i j

S N
=⎧

= ⎨ =⎩
                    (3.11)                        

In the cooperative game, the player 1j will transfer water from the Danjiangkou Reservoir 

and they would like to compensate other players’ losses resulting from the water transfer. 

Player 2j, 3j and 4j agree with the water transfer and they are also willing to reduce their 

waste water discharge. In the non-cooperative situation, players have their different strate-

gies. The strategies of 1j are the measures or plans to obtain sufficient water (Q) for his 

development in different periods of time t (year), and they are expressed by:   

[0, ),  1,  0,1, 2,3t
ij ij ijs Q S i j= ∈ = ∞ = =                                 (3.12)                    

For player 2j, 3j, and 4j, their strategies are to reduce the waste water discharge in time t 

(year), and they are expressed by:  

[0, ),  2,3, 4,  0,1, 2,3t
ij ij ijs P S i j= ∈ = ∞ = =           (3.13)                          

Definition of the payoff functions: In the non-cooperative game models, the payoffs of 1j 

is the benefits obtained by using water, and therefore his payoff function is formulated by 

water demand models and the economic values. For player 2j, 3j, and 4j, their payoffs are 

the cost to reduce waste water discharge, and thus their payoff functions are formulated by 

the model of waste water discharge and the cost to reduce the waste water. Equation (3.14) 

expresses the payoff function of the players.  

( ),  1,  0,1,2,3
( ),  2,3,4,  0,1,2,3

t
ijt

ij t
ij

f Q i j
V

g P i j
⎧ ± = =⎪= ⎨ − = =⎪⎩

                       (3.14)  

where t
ijV  – payoff of every player ij in time t, t

ijQ+ – water obtained by every player ij in 

time t, t
ijQ−  – water lost by every player ij in time t, t

ijP−  – pollutants reduced by every 

player ij in time t. 

Assumptions 

 The games are finite with incomplete information; 
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 All the players are rational, and their aim is to  maximize their welfares; 

 If every player takes cooperative strategy, the game becomes cooperative game; 

 The observation of water consumption of player 1 and his sub-players in each year 

and the observations of nitrogen discharge of players 2, 3 and 4 and their sub-

players in each year are regarded as the game playing results in that year, respec-

tively;  

 There is no administrative intervention during game processing, but the game proc-

essing is influenced by the current policies; 

 The cities in the same administrative regions should cooperate with each other due 

to the similar interests, i.e. C1, C2, and C3 cooperation with each other; the same for 

C4 and C5;  

 There are no losses for players of 2, 3 and 4 and their sub-players, but there is loss 

for play 1 in non-cooperative games; 

 In cooperative situation, player of 1 and his sub-players will be better off since they 

have obtained the water that he need from the player 2, 3 and 4. However, players 

of 2, 3 and 4 and their sub-players will face losses due to pollutants reduction; 

 Cooperation or non-cooperation of other players excluded from this example will 

depend on whether players 1, 2, 3 and 4 cooperate or non-cooperate;  

 Water demand of each player keeps constant in different hydrological conditions; 

 Player 1 and his sub-players have gain but no loss in the cooperative game; 

 Players of 2, 3 and 4 and their sub-players have no loss in the non-cooperative 

game, but there are losses for them in the cooperative game;  

 All data are authentic. 

3.3.2 Game simulation processes 

The simulation process can be illustrated in figure 3.16, which includes 5 games. These 

five games can be divided in two levels. Game 1 is the first level and games 1, 2, 3 and 4 

are games at the second level. The games start simultaneously from the sub-games 1, 2, 3 

and 4. In game 1, players 11, 12 and 13 seize water; they play both non-cooperative and 

cooperative games once. If either of the non-cooperative and cooperative sub-games can 

make every player better off, the game ends. If both the cooperative and non-cooperative 

games cannot make the sub-players better off, and then sub-players 11, 12 and 13 group 

and form player 1 and enter the game 5. The games of 2, 3 and 4 are pollutant reduction 

games. In these games, every sub-player will play non-cooperative games first. If the water 
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quality of the Danjiangkou Reservoir can meet the water quality standard based on the pol-

lutants discharge in non-cooperative games, the games end. Otherwise, sub-players in each 

game will cooperate with each others and become player 2, 3 and 4 entering the game 5. In 

game 5, players 1, 2, 3 and 4 make non-cooperation and cooperation once. In order to sim-

plify the problems, it is assumed that the game will be non-cooperative if any of the players 

does not cooperative with others. If it is a non-cooperative game, player 2, 3 and 4 main-

tain their current situation and the game ends. If all the players cooperate with each other, 

cooperative games results are obtained. Then the games come back to sub-games 2, 3 and 4, 

the cost-benefit results of cooperation games are obtained for every sub-player in these 

sub-games.  

 

Figure 3.16: Game simulation process 
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Through all these games, non-cooperative and cooperative results are obtained. Non-

cooperative results show the payoff that every player want to get, and cooperative results 

shows how they can maximize the collective benefits.  

Game 1: Water seizing games  

Player 11, 12 and 13 are facing severe problems of water deficits, and each player wants to 

get enough water for consumptions. To simplify the model, some assumptions are made as 

following: 

 Each player has two strategies: to seize water (Y) and not to seize water (N);  

 The maximum of annual water consumed by the players is equal to their real 

demand of that year, because that 

 The game is influenced by current policy; that is to say, each player knows he 

cannot waste water. Government or departments concerned know or can calcu-

late the real water demand of different players.  

 The water consumed (Qi) of every player in a year is the game equilibrium re-

sult of that year. 

a) Non-cooperative game  

This game can be simulated by game tree in figure 3.17. Suppose player 11 moves first, he 

has two strategies, overusing ecological water (Y) and non-overusing ecological water (Nn). 

Player 12 moves secondly, he knows player 11 has two strategies but he does not know 

what player 11 has really chosen. And then player 3 moves, he knows player 11 and 12 

both have two strategies, but he does not know which one they have choose. In this game, 

every player knows that he will get more water if he does play strategy Y. Otherwise, he 

will have no much more water to use. Therefore, equilibrium is (Y,Y,Y), but this  equilib-

rium sacrifices ecological water and agriculture water. Finally, the water gradually be-

comes much scarcer, and this causes the problem of “The Tragedy of Commons” 

 

Figure 3.17: Game tree of water seizing game 
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In the reality, the games will be played one year by another. In this sense, the game is re-

peated and infinite dynamic game with incomplete information (Fig. 3.18). The parameters 

in the figure are defined follows:  

Qt
1jz ≥ Qt

1jx ≥ Qt
1jk and Qt

iz ≥ Qt
1jm ≥ Qt

1jk, Qt
1jz ≥ Qt

1jn ≥ Qt
1jk, 

Qt
1j > Qt

1jk,  

k, m, n, x, z ≥  0  

j = 1, 2, 3, t = [2010, 2015]            (3.15) 

where i – every player; t – time (years); Qt
i – water consumption of different players; Qt

1jz, 

Qt
1jx, Qt

1jk, Qt
1jm, and Qt

1jn – different water amounts that different players can get in differ-

ent combined strategies; Qt
Ri – real water demand of each players and Qe 

t – ecological water 

demand; Qt
ik – water amount that every player should consume if they do not seize water.  

 

Figure 3.18: Water seizing game model 

A model of Q11 (Fig. 3.19) is given by: 

LOG(Q11/V11) = -0.179*t + 363.302 + [AR(1), MA(1)]                                       (3.16)                 

where Q11/V11 – water demand per unit of added value of player 11, Q11 – water demand of 

player 11, V11 – added value of player 11 produced , AR(1) = 0.672, MA(1) = 0.411with 

R2=0.993 and adjusted R2 = 0.992. 
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Figure 3.19: Water demand per unit added value (Q11/V11) (×108m3/10,000 RMB) of player 11  

                         (a) Semilog model, (b) The forecast  

A model of V11 (fig. 3.20) is given by:  

LOG(V11) = -1900.353 + 250.906*LOG(t) + [AR(1), MA(1)]       (3.17)                     

where V1 – added value of player 11,  AR(1) = 0.541, MA(1) = 0.531 with R2 = 0.997 and 

adjusted R2 = 0.997. 
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Figure 3.20: Added value (V1) (×108 RMB) of player 1 (a) Double log model, (b) The forecast  
                              

A model of Q12 (fig. 3.21) is given by: 

Q12= 2.312*LOG(V12) - 4.173            (3.18) 

where Q12  – water demand of player 12, V12 – values produced by player 12, R2 = 0.857 

and adjusted R2 = 0.849. 
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Figure 3.21: Water demand (Q12) (m3/RMB) of player 12 (a) Semilog model, (b) The forecast 

A model of V12 (fig. 3.22) is given by:  

LOG(V12) = 0.169*t - 331.014 + [AR(1),MA(1)]        (3.19) 

where V12  – added value of player 12, AR(1) = 0.687, MA(1) = 0.997, with R2 = 0.999 and 

adjusted R2 = 0.998. 
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Figure 3.22: Added value (V12) (×108RMB) of player 12 (a) Semilog model, (b) The forecast 

A model of Q13 (fig. 3.23) is given by:  

LOG(Q13/V13) = 177.312 - 0.085*t + [AR(1)]                    (3.20) 

where Q13/V13 –  water demand per unit of added value of player 13, Q13  – water demand 

of player 13, V13  – added value of player 13, AR(1) = 0.487 with R² = 0.969 and adjusted 

R² = 0.965.  
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Figure 3.23:  Water demand per unit of added value (×103m3/104 RMB) of the player 13 

             (a) Semilog model, (b) The forecast 

A model of V13 (fig. 3.24) is given by:  

V13 = 3.855*t - 7630.626 + [AR(1),MA(1)]                                                      (3.21)            

where V13 – added value of player 13, AR(1) = 0.650, MA(1) = 0.296 with R2 = 0.991 and 

adjusted R2 = 0.989.         
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Figure 3.24: Added value (108 RMB) of player 13 (a) Linear model, (b) The forecast 

b)  Cooperative game  

In cooperative games, the players are willing to share their scare water resources. The pay-

offs of the players can be defined by: 

1 1 1*t t
jk jQ W ψ=               (3.22) 

1 1 1 1 1 1
t t t

eW S G O R Q= + − + −               (3.23) 
1

1 1 1 1*( )t t t t
j jR jR eRQ Q Qψ −= +∑                 (3.24) 
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1 *t t
wR K Q=                                  (3.25) 

1 1 ,  1, 2, 3t t
jR jQ Q j= =              (3.26)

                        

Where  1
t
jkQ  –  water quartos that different players should consume if they do not seize wa-

ter, 1
tW  – total water resources, 1

tS  – surface water resources,  G1
 – ground water recharge,  

O1 – overlap calculation between surface water resources and ground water recharge, 1
tR  – 

reclaimed water from urban waste water, 1
t
eQ – water consumption of the ecology, 1

t
eRQ  – 

real minimum ecological water demand, t
wD  – domestic waste water discharge,  K – re-

claiming rate of domestic waste water, 1 jψ  – water distribution factor. 

The ecological water use is influenced by planning in the area of scarcity water, and it is 

difficult to set up a model. Here it is assumed that future water ecological water use is the 

extrapolation of past and current trend. Figure 3.25(a) and (b) show the ecological water 

use during 2001 to 2005 and the fitting values in the future. The equation is expressed as 

follows:  

Q1e = -0.425*Dt*t + 850.917*Dt + 0.500*t - 1000.200                  (3.27) 

0     if   = [2000-2001]
 = 

1     otherwiset

t
D ⎧

⎨
⎩

 

where Q1e – ecological water use, R2 = 0.999 and adjusted R2 = 0.996.         
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Figure 3.25: Ecological water use (×108 RMB) (a) Linear model, (b) The forecast  

A model of Dw (Fig. 3.26) is given by:  
 

Dw = 0.120*t + 0.381*Dt*t - 761.577*Dt - 233.895        (3.28) 
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0     if  = [1986-1999]
 =         

1     otherwiset

t
D ⎧

⎨
⎩

 

where Dw – domestic waste water discharge, R2 = 0.978 and adjusted R2 = 0.974 
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Figure 3.26: Domestic sewage discharge (×108 tons) (a) Linear model, (b) The forecast 

The ecological water demand is the requirement of water amount to maintain and improve 

the balance of existing ecological system, which is composed of flora, fauna and non-

organisms (Chen and Wang 2001). Therefore, minimum ecological water demand should 

consist of three parts: water for green plant，animals and maintaining organic balance in 

inorganic environment. In this paper, the minimum urban ecological water is calculated on 

the base urban water surface, public green area and newly planned trees. Q1eR 
t is calculated 

by following equations:   

 
1
t t t t
eR s g trQ Q Q Q= + +                (3.29) 

 5( )* *10t t t
s wQ E P S −= −            (3.30)  

2* *10t t t
g g gQ S D −=             (3.31)    

4* *10t t t
tr tr trQ N D −=             (3.32)                            

where 1
t
eRQ  – ecological water demand; t

sQ  – water demand of water surface; t
gQ  – water 

demand of public green area; t
trQ  – water demand of trees, tE  – evaporation of water sur-

face; tP  – precipitation; Sw – area of water surface; t
gS  – public green area; t

gD  – water 

quota for one unit of public green area; t
trN  – the trees in a year; t

trD  – water quota for a 

tree.  
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In Beijing, the urban water surface is about 598 km2. The multi-annual average evaporation 

is 1100 mm and the multi-annual average precipitation is 587. According to the water 

quota to different fields, t
gD  is not more than 1m3/m2 and t

trD  is not more than 3m3/tree.  

A model of Q1eR (Fig. 3.27) is given by: 

LOG(Q1eR) = 0.050*t - 98.302 + [MA(1)]          (3.33) 

where Q1eR – ecological water demand, MA(1) = -0.997 with R2 = 0.976 and adjusted R2 = 

0.964. 
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Figure 3.27: Ecological based water demand (×108 m3) (a) Semilog model (b) The forecast 

Games of 2, 3 and 4: Pollutants reduction games 
 
In this section here, only non-cooperative games are illustrated because it is convenient to 

interpret if cooperative games are include into the game 5. Since the high concentration of 

total nitrogen (TN) is the main problem of water quality of Danjiangkou Reservoir, water 

quality management in this study refers to nitrogen reduction. Assume there are only two 

strategies for every sub-players ij, i = 2, 3, 4, j =1, 2, 3 which are reducing pollutants (1) 

and not reducing pollutant (2). These games are illustrated in matrix 3.1.  

Matrix 3.1: Games of pollutant reduction 

 i2 
i1 

i3 
1 2 

1 -C* 1iP− , -C* 3iP− , -C* 2iP−  -C*( 1iP− +b), -C*( 3iP− +y), Bi2 
1 

2 -C*( 1iP− +a), Bi3+Ci3, -C*( 2iP− +e) -C*( 1iP− +c), Bi3+Ci3, Bi2+Ci2 

1 Bi1+Ci1, -C*( 3iP− +x), -C*( 2iP− +f) Bi1+Ci1, -C*( 3iP− +z), Bi2+Ci2 
2 

2 Bi1+Ci1, Bi3+Ci3, -C*( 2iP− +g) Ci1*, Ci3*, Ci2* 
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In the matrix, the first column represents of the strategies of sub-players i1, i.e. sub-players 

21, 31 and 41; the second column the strategies of sub-players i3, i.e. sub-players 23, 33 

and 43; and the third Column the strategies of sub-players i2, i.e. sub-players 22, 32 and 42.  

In each cells, the first expression is the payoff function of sub-players i1, and the second 

one the payoff function of sub-players i3, and the third one the payoff function of sub-

players i2.  In the cells, c is the cost to reduce one unit of pollutant, 1iP−  is the reducing 

amounts, Bij is the benefit of every player get by free riding other players’ achievement to 

reduce pollutants, Cij is the cost of every player to reduce pollutant. It is defined that c ≥ b 

≥ 0 and c ≥ a ≥ 0, z ≥ y ≥ 0 and z ≥ x ≥ 0, and g ≥ f ≥ 0 and g ≥ e ≥ 0. Those three games are 

prisoners’ dilemma games, because every player has no incentive to reduce pollutants and 

he can benefit more by free-riding others’ achievement. At the end, the deterioration of wa-

ter body will increase.  

The transporting process of nitrogen into the reservoir can be classified as (1) producing, (2) 

entering the rivers, (3) reaching into the reservoir, (4) nitrification/denitrification process-

ing and forming the final concentration in reservoir. Part of the nitrogen will be decayed 

due to biochemical and ecological processes. This process is expressed as follows:  

    
ij

R
ij ij ij ij ijM P kλ ϕ→ =       (3.34)   

where ij – every player i and his every sub-player j, R
ijM →  – load of nitrogen discharged 

into the reservoir, Pij – amount of nitrogen production, ij , λij,  kij and  ijϕ  – generally 

called transport coefficients, i.e. respectively coefficient of nitrogen loss, coefficient of ni-

trogen into the river, coefficient of nitrogen into the reservoir as well as coefficient of ni-

trogen finally maintaining in the reservoir.  

According to the studies (Yang et al. 2006, Cheng et al. 2006, Song et al. 2006), the values 

of nitrogen transport coefficients during the transporting processes from production into 

the reservoir are defined in table 3.10. ij ,λij, kij and ijϕ represent respectively coefficient of 

nitrogen loss, coefficient of nitrogen into the river, coefficient of nitrogen into the reservoir 

as well as coefficient of nitrogen finally maintaining in the reservoir. Urban domestic sew-

age and industry waste water are transported by pipelines, and they are emitting directly 

into the local river surface. Therefore, nearly 100% of all nitrogen enters regional rivers, 

and thus rate of entering river is taken 1. This research does not consider nitrification and 

denitrification processes, that is to say the rate of nitrogen maintaining in the reservoir is 1.    
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Table 3.10: Different transportation coefficients of nitrogen 

Nitrogen source 2 , 3 , 4   λ 2, λ3, λ4 k2 k3, k4 φ 2, φ3, φ4 
Nitrogen fertilizer 0.10 0.96 0.80 0.90 1 

Soil erosion 0.21 0.81 0.80 0.90 1 
Urban domestic sewage - 1.00 0.80 0.90 1 

Industry waste water - 1.00 0.80 0.90 1 
Animal husbandry 0.10 0.96 0.80 0.90 1 
Rural domestic life 0.10 0.96 0.80 0.90 1 

 

The annual mean concentration of nitrogen reached in the reservoir is expressed as follows: 

      1*R
i j ij fC M Q→ −=         (3.35) 

where R
i jC →  –  annual average concentration of nitrogen reaching in the reservoir, Qf  –

natural inflow of the reservoir.  

Models of P21, P31, and P41  

     Pi1 = Ẅi1*Ci1n        (3.36) 

         i = 2, 3, 4 

where Ẅi1  – waste water discharge of player i1, Ci1 – nitrogen concentration of per unit of 

waste water. 

A model of Ẅ21 (Fig. 3.28) is given by:        

LOG(Ẅ21) = -0.053*t + 113.362 + [MA(1)]         (3.37) 

where Ẅ21 – waste water discharge of player 21, MA(1) = 0.889 with R² = 0.989 and ad-

justed R² = 0.988.  
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Figure 3.28: Waste water discharge (Ẅ21) (× 104 tons) of player 21  

                                               (a) Semilog model, (b) The forecast 
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A model of Ẅ31 (Fig. 3.29) is given by:        

       Ẅ31 = -4126683.459*Dt + 2062.973*Dt*t + 2.164*t + [MA(1)]        (3.38) 

      
0     if  = [1999-2000]

 =         
1     otherwiset

t
D ⎧

⎨
⎩

 

where Ẅ31 – waste water discharge of player 21, MA(1) = 3.233 with R² = 0.996 and ad-

justed R² = 0.994. 
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Figure 3.29: Waste water discharge (Ẅ31) (× 104 tons) of player 31  

                                               (a) Linear model, (b) The forecast  

 A model of Ẅ41 (Fig. 3.30) is given by:        

Ẅ41 = 84.888*t - 168530.538 + [AR(1)]          (3.39) 

where Ẅ41 – waste water discharge of player 41, AR(1) = 0.031 with R² = 0.993 and ad-

justed R² = 0.990. 
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Figure 3.30: Waste water discharge (Ẅ41) (× 104 tons) of player 41  

                                               (a) Linear model (b) The forecast 
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Models of Pi2 and Pi3 

      Pi2U = Li2U*(Ј1+J2)             (3.40)      

      Pi3L = Li3R*(Ј1+J2)     

      i = 2, 3, 4 

where Pi2 and Pi3 – the nitrogen productions from urban and rural domestic life respectively; 

Li2U, Li3R – the urban and the rural population respectively; Ј1 and Ј2 – mean nitrogen 

amount per unit of manure and liquid of a person in one year.  

According to the study on the spatial and temporal change of nitrogen and phosphorus pro-

duced by livestock and poultry and their effects on non-point pollution in China (Wu, 

2005), the average annual nitrogen amounts produced by a person and a pig was presented 

in table 3.11.  

Table 3.11: Average N amount produced by a person and a pig per year (kg.a-1) 

Type J1 J2 J3 J4 
Amount 1.32 3.07 7.58 3.93 

A model of L22U  (Fig. 3.31) is  given by:  

     L22U = 4.336*t - 8538.739 + [AR(1)]           (3.41)      

where L22U – the urban population of player 22, AR(1) = 0.508 with R² = 0.990 and ad-

justed R² = 0.988. 
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Figure 3.31: Urban population (U) (×104 persons) of player 22  

                                                  (a) Linear model, (b) The forecast  

A model of L23R (Fig. 3.32) is given by: 

          L23R = -1.946*t + 4656.120 + [AR(1)]           (3.42)      
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where L23R – the rural population of player 23, AR(1) = 0.505 with R² = 0.936 and adjusted 

R² = 0.926. 
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Figure 3.32: Rural population (R) (×104 persons) of player 23 (a) Linear model, (b) The forecast  

A model of L32U and L33U (Fig. 3.33) is given by:  

 L32U = 0.053*t - 101.583 + [MA(1)]           (3.43) 

where L32U – the urban population of player 32, MA(1) = 0.962 with R² = 0.993 and ad-

justed R² = 0.992.  
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Figure 3.33: Urban population (U) (×104 persons) of player 32  

                                                  (a) Linear model, (b) The forecast  

A model of L33R (Fig. 3.34) is given by:  

L33R =  2.409*t - 5.966*Dt*t + 11880.667*Dt - 4525.623 + [MA(1)]              (3.44)     

0     if  = [1949 1991]
1      otherwiset

t
D

−⎧
= ⎨
⎩
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where L33R  - the rural population of player 33, MA(1) = 0.672, with R² = 0.973 and ad-

justed R² = 0.969. 
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Figure 3.34: Rural population (R) (×104 persons) of player 33 (a) Linear model, (b) The forecast  

A model of L42U and L43U (Fig. 3.35) id given by:  
 
         L42U = 0.409*t + 9.755*Dt - 805.724                      (3.45)       

         
0     if  = [1993 2003]
1      otherwiset

t
D

−⎧
= ⎨
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where L42U – urban population of player 42, R² = 0.995 and adjusted R² = 0.993. 
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Figure 3.35: Urban population (U) (×104 persons) of player 42 

                                                  (a) Linear model, (b) The forecast  

A model of L43R (Fig. 3.36) is given by: 

L43R = -3.011*Dt*T + 6019.822*Dt + 0.050*t + [AR(1)]        (3.46)      
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where L42R – rural population of the player 43, AR(1)=0.300 with R² = 0.982 and adjusted 

R² = 0.975. 
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Figure 3.36: Rural population (R) (×104 persons) of the player 43 (a) Linear model, (b) The forecast  

Models of Ẅ22 (Fig.3.37) is given by:  

Ẅ22 = 0.787* Ẅ22 (-3) - 2.186* Ẅ22 (-2) + 2.405* Ẅ22 (-1)                             (3.47) 

where Ẅ22 – urban domestic sewage discharge of player 22, R² = 0.949 and adjusted R² = 

0.938. 
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Figure 3.37: Domestic sewage discharge (Ẅ22) (×104 tons) of player 22  

                                           (a) VAR model, (b) The forecast  
 

Models of Ẅ32 (Fig. 3.38) is given by:  

Ẅ32 = -320.491*Dt*t + 637561.476*Dt + 557.906*t - 1105147.205       (3.48) 

          + [MA(3)]  
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where Ẅ32 – domestic waste water discharge of player 32, MA(3) = -0.862 with R² = 0.953 

and adjusted R² = 0.940. 
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 Figure 3.38: Domestic sewage discharge (Ẅ32) (×104 tons) of player 32  

      (a) Linear model, (b) The forecast 

Models of Ẅ42 (Fig.3.39) is given by:  

Ẅ42 = 101.366*Dt*t - 202650.666342*Dt + 0.311*t + [AR(1)]       (3.49) 
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Where Ẅ42 – domestic waste water discharge of player 42, AR(1) = 0.684, MA(1) = 0.997, 

with R² = 0.988 and adjusted R² = 0.981 
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Figure 3.39: Domestic sewage discharge (Ẅ32) (×104 tons) of player 42.  

                                           (a) Linear model, (b) The forecast 

Models of P23, P33, and P33: 

A model of Pi3 

Pi3 = Pi3A + Pi3F + Pi3S               (3.50) 
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Pi3A = ∑[Öi3*(Ј3+J4)]*RA              (3.51)  

Öi3 ≈ Pg + 5*La + 2-1Gs + 30-1Po             (3.52) 

Pi3F = Fi3*RF                (3.53) 

Pi3S = Si3* RS                 (3.54) 

i = 2, 3, 4              (3.55) 

where Pi3  – nitrogen produced by every player of i3; Pi3A, Pi3F and Pi3S – nitrogen produced 

by animal husbandry, fertilizer consumptions per year and soil erosion respectively, Öi3 – 

number of pig equivalences, i.e. all the livestock and poultry are weighted by pig unit, Ј3, 

J4 – nitrogen amount per year in the manure of livestock and poultry, RA – nitrogen loss 

rate of the manure of livestock and poultry, FN – the amount of nitrogen fertilizer used per 

year, RF – the loss rate of N fertilizer, SE – the area of soil erosion (i.e. table 3.6 in section 

3.1.3), and RS – the loss rate of N per unit of soil erosion, Pg, La, Gs and Po – numbers of 

pigs, large animals, goats and sheep as well as poultry respectively.  

A model of number of pig equivalence of player 23 (Fig. 3.40):   

Ö23 = 33.229*Dt*t - 66512.422*Dt + 0.463*t + [MA(1)]       (3.56) 
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where Ö23 – number of pig equivalences of player 23, MA(1) = 0.997 with R² = 0.953 and 

adjusted R² = 0.941. 
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Figure 3.40: Pig equivalences (Ö) (×104 units) of player 23 (a) Linear model, (b) The forecast  

A model of number of pig equivalences of player 33 (Fig. 3.41): 

Ö33 = -0.800* Ö33 (-2) + 1.477* Ö33 (-1) + 0.050*t + [MA(1)]     (3.57) 
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where Ö33 – number of pig equivalence of player 33, MA(1) = -0.947 with R² = 0.940 and 

adjusted R² = 0.915. 

-15

-10

-5

0

5

10

280

300

320

340

360

380

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Residual Actual Fitted

260

280

300

320

340

360

380

1996 1998 2000 2002 2004 2006 2008 2010

Forecast 2 S.E.

(a) (b)

 
Figure 3.41: Pig equivalences (Ö) (×104 units) of player 33 (a) Linear model (b) The forecast  

A model of number of pig equivalences of player 43 (Fig. 3.42): 

LOG(Ö43) = 0.098*Dt*t - 196.505*Dt - 0.042*t + 89.764             (3.58) 
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where Ö43  – number of pig equivalences of player 43, with R² = 0.988 and adjusted R² = 

0.982. 
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Figure 3.42: Pig equivalences (Ö) (×104 units) of player 43 (a) Semilog model, (b) The forecast  

A model of nitrogen fertilizer consumptions of player 23 (Fig. 3.43) is given by: 

F23 = 9.673*LOG(F33 (-1)) - 1.496*LOG(t) + [MA(1)]       (3.59) 

where F23 – nitrogen fertilizer consumptions of player 23, MA(1) = -0.997, with R² = 0.949 

and adjusted R² = 0.940. 
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Figure 3.43: Nitrogen fertilizer consumptions (F) (×104 tons) of player 23  

        (a) Linear model, (b) The forecast  

A model of nitrogen fertilizer consumptions of player 33 (Fig. 3.43) is given by: 

F33 = 0.149*t - 293.154 + [MA(1)]          (3.60) 

where F33 – nitrogen fertilizer consumptions of player 33, MA(1) = -0.927 with R² = 0.840 

and adjusted R² = 0.810. 
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Figure 3.44: Nitrogen fertilizer consumptions (F) (×104 tons) of player 33  

                                         (a) Linear model, (b) The forecast  

A model of nitrogen fertilizer consumptions of player 43 (Fig. 3.44) is given by: 

LOG(F43) = 0.068*t - 135.858 + [AR(1),MA(2)]                    (3.61) 

where F33 – nitrogen fertilizer consumptions of player 43, AR(1) = 0.866, MA(2) = -1.228 

with R² = 0.983 and adjusted R² = 0.976. 



 
On the use of game theoretic models for water resources management   77     

1.2

1.6

2.0

2.4

2.8

3.2

1994 1996 1998 2000 2002 2004 2006 2008 2010

Forecast 2 S.E.

-.04

-.02

.00

.02

.04 .2

.3

.4

.5

.6

.7

.8

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Residual Actual Fitted

(a) (b)

 
Figure 3.45: Nitrogen fertilizer consumptions (F) (×104 tons) of player 43  

                                         (a) Semilog model, (b) The forecast  

Game 5: TN reduction game for the Danjiangkou Reservoir 

To simplify the issue, it is assumed every player in this game has just two strategies, non-

cooperation (1) and cooperation (2). Player 1 moves first, and then player 2, 3 and 4 (Fig. 

3.46). If player 1 does not cooperate with others, others will not cooperate with each other 

and the game becomes non-cooperative game. If player 1 cooperates, others will cooperate 

and the game becomes cooperative game. This game is a dynamic, repeated game with 

completed information.  

 
 

Figure 3.46: Game tree of TN reduction for the Danjiangkou Reservoir 

 



 
On the use of game theoretic models for water resources management   78     

a) Non-cooperative game 

If every player is not cooperative, player 1 cannot get the water to make up his water defi-

cit. Therefore, there is loss for him.  

C1j = ∑β1j*(-Q1j)        (3.62) 

β1j = V1j/Q1j           (3.63) 

-QIj = Q1j – Q1jk           (3.64) 

j =1, 2, 3            (3.65) 

where C – the loss resulting from water deficit; -QIj – the amount of water deficits; β – 

benefit coefficients, i.e. the values produced by per unit of water;  V1j – the added values or 

net income; Q1j – the water consumed. 

Models of β1j 

A model of β11 (Fig. 3.47) is given by: 

LOG(β11) = 0.184*t - 364.348 + [AR(1)]            (3.66) 

where β11 – Benefit coefficient of player 11, AR(1)=0.580 with R2 = 0.992 and adjusted R2 = 

0.991. 
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Figure 3.47: Benefit coefficient of player 11 (a) Semilog model, (b) The forecast  

A model of β12 (Fig. 3.48) is given by: 

LOG(β12) = 0.134*t - 262.913 + [MA(1)]          (3.67) 

where β12 – Benefit coefficient of player 12, MA(1)=0.515 with R2 = 0.973 and adjusted R2 = 

0.970 
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Figure 3.48: Benefit coefficient of player 12 (a) Semilog model, (b) The forecast  

A model of β13 (Fig. 3.49) is given by: 

LOG(β13) = 0.085*t - 168.102 + [AR(1)]         (3.68) 

where β13 – Benefit coefficient of player 13, AR(1) = 0.487 with R2 = 0.969 and adjusted R2 = 

0.965 

-.2

-.1

.0

.1

.2

0.0

0.5

1.0

1.5

2.0

2.5

1988 1990 1992 1994 1996 1998 2000 2002 2004

Residual Actual Fitted

0

5

10

15

20

25

30

35

40

1990 1995 2000 2005 2010 2015 2020

Forecate 2 S.E.

(a) (b)  
Figure 3.49: Benefit coefficient of player 13 (a) Semilog model, (b) The forecast 

b) Cooperative game: 

In the cooperative games, player 1 and his sub-players obtain water for development, and 

players 2, 3 and 4 and their sub-players are willing to impose cost to reduce nitrogen pol-

lutants. The benefits and costs can be expressed by the following equations: 

  B1j = -C1j,              (3.69) 

 Cij = γijẄij
1( )i j i jP P− − −∑∑ ,  j =1 and 2U         (3.70)  

 Cij = γijLR/4, j = 2R and 2A            (3.71) 

 Ci3s = γijSR,                   (3.72) 
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 Ci3F = f(Vi3, Fi3, t)                        (3.73)  
1( )i j i j f ij ij ij ijP C Q kλ ϕ− − −=            (3.74)  

1( )R R
i j i jP P P P− → → − −=             (3.75) 

4 3

2 1

( )R R
i j

i j

P P→ →

= =

= ∑∑
            

(3.76) 

R
sP P P− →= −              (3.77)  

s s fP C Q=              (3.78) 

i = 2, 3 and 4, j = 1, 2 and 3                      (3.79) 

0.2 ≤ Cs ≤ 0.5                        (3.80) 

where Bij – the benefits of players, Cij – the cost or lose imposed to player ij, γ – cost coef-

ficients, SR – the reduction areas of soil erosion, Vi3 – the added values, Fi3 – nitrogen fertil-

izer consumptions, t – time (year), i jP−  – the reducing amount of  pollutant of nitrogen, 

P− – the total reduction of nitrogen,  RP→ – the total nitrogen reached into reservoir, Qf  – 

natural inflow of the reservoir, Ps – the controlling amount of nitrogen entering into the 

reservoir, SC – the controlling concentration of pollutant i or the standard in the reservoir.  

As for the nitrogen fertilizer, its reduction of nitrogen will influence agricultural production, 

which will influence the agricultural added value. The scatter plots of added values of 

player i3 on time and nitrogen fertilizer consumption are illustrated in figure 3.50.  
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Figure 3.50: Scatter plots of added value (×108 RMB) vs. time (Year), nitrogen fertilizer  

                            consumption (×104 tons) and labours (×104 persons) 

A model of added values (Vi3) of player i3 (Fig. 3.51) is given by:    
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23 2

33 3

43 4

( )  -122.033  0.063*   0.018*
( )  -122.033  0.064*   0.008*
( )  -122.033  0.064*   0.008*

LOG V t F
LOG V t F
LOG V t F

= + +⎧
⎪ = + +⎨
⎪ = + +⎩

                       (3.81) 

where R² = 0.999 and adjusted R² = 0.999, F-statistic = 9517.884, Prob(F-statistic) = 0.00, 

S.E. of regression = 0.122 
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Figure 3.51: Exponential regression of added value (×108 RMB) vs. time (Year) and nitrogen      

                          fertilizer consumption (×104 tons) 

A model of Fi  (Fig. 3.52) is given by:   

   

2

3

4

  2.533*  -  4992.007
  4.632*  -  9126.805
  7.391*  -  14575.909

F t
F t
F t

=⎧
⎪ =⎨
⎪ =⎩

                                     (3.82)    

where R² = 0.993 and adjusted R² = 0.992, F-statistic = 2052.317, Prob(F-statistic) = 0.000, 

S.E. of regression = 8.644.  
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Figure 3.52: Linear regression of nitrogen fertilizer consumption (×104 tons) vs. time (Year) 
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Water quality of the Danjiangkou Reservoir is required to conform to the Chinese water 

quality standard of class II by 2010. That is to say, with reference to concentration of TN, 

it should range from 0.2 to 0.5mg/L by 2010. Suppose TN reduction follows a linear trend, 

and thus two controlling lines are designed to limit the TN concentration (Cs) in the Danji-

angkou Reservoir from 2005 to 2010 (Fig. 3.53). Maximum line (Cmax) and minimum line 

(Cmin) are the upper threshold and lower threshold of TN concentrations in different years 

(t), respectively. These two lines can be expressed as Equations (3.83) and (3.84). 

Cmax = -0.127*t + 255.1              (3.83)    

Cmin = -0.177*t + 355.3              (3.84)    
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Figure 3.53: Controlling lines of TN concentration in the Danjiangkou Reservoir 

A model of annual inflow of the Danjiangkou Reservoir (Qf): 

Based on the annual inflow (×108 m3) from 1931 to 1999 (Fig.3.54a), frequency filter type 

of full sample asymmetric (Fig. 3.54b) is used to establish the annual inflow model of the 

Danjiangkou Reservoir.  

 

 ( )
 (  )

fQ NC Cl

NC G NC
Cl W Cl

= +⎧
⎪ =⎨
⎪ =⎩

               (3.85) 

NC = 6.908*NC (-1) - 21.803*NC (-2) + 40.958*NC (-3)                                    (3.86) 

         -50.031*NC(-4) + 40.681*NC (-5) - 21.515*NC(-6)  

         + 6.777*NC (-7) - 0.976*NC (-8) - 0.001*t +1.859  

where NC – non-cycle part of annual inflow with R² = 1.00 and adjusted R² = 1.00. 
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Cl =  -4.886*Cl(-1) - 15.40*Cl(-2) - 38.369*Cl(-3)           (3.87) 

         -81.728*Cl(-4) - 155*Cl(-5) - 267.624*Cl(-6)  

         -426.791*Cl(-7) - 634.965*Cl(-8) - 887.470*Cl(-9)  

         -1171.190*Cl(-10) - 1464.685*Cl(-11) - 1740.254*Cl(-12)  

         -1967.870*Cl(-13) - 2120.304*Cl(-14) - 2177.983*Cl(-15)  

         -2132.8*Cl(-16) - 1989.876*Cl(-17) - 1766.703*Cl(-18)  

         -1489.920*Cl(-19) - 1190.3458*Cl(-20) - 897.625*Cl(-21)  

         -635.716*Cl(-22) - 419.96*Cl(-23) - 256.386*Cl(-24)  

         -142.767*Cl(-25) - 71.094*Cl(-26) - 30.685*Cl(-27)  

         -10.882*Cl(-28) - 2.865*Cl(-29) - 0.435*Cl(-30) 

where Cl – cycle part of annual inflow with R² = 0.998 and adjusted R² = 0.992.   
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Figure 3.54: Annual inflow (×108 m3) of Danjiangkou Reservoir 

(a) situation from 1931 to 1999, (b) the model  

In the simulation process, one problem is that the payoffs of the players are monetary val-

ues calculated in current (or nominal) prices. In details, the payoffs of player 1 and his sub-

players 11, 12 and 13 are their benefits or the losses from 2010 to 2015. However, for the 

playoffs of players 2, 3 and 4 and their sub-players 21, 22 and 23, 31, 32 and 33 as well as 

41, 42 and 43, they are their benefits or losses from 2005 to 2010. Therefore, the future 

values should be discounted so that they can be better compared with the present values. 

The future values are termed as “nominal values” and the present value as “comparable or 

real values”. In economics, Consumer Price Index (CPI) is one widely used deflator to kick 

out the inflation in prices and change the nominal values into comparable values. The dis-

count formula can be expressed as: 
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 k
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IV V
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= ×                               (3.88) 

Where K
RV – the comparable or real value of V in year k, t

NV  – the nominal value of V in 

year t, Id – the Consumer Price Index, k
dI – the Consumer Price Index in year k, t

dI – the 

Consumer Price Index in year t.  

A model of Consumer Price Index (CPI) of player 1 and his sub-players (Fig. 3.55) is ex-

pressed by: 

Id = 3.297*t - 0.790*Id(-2) + 1.664*Id(-1) - 6521.667          (3.89) 

Where Id – Consumer Price Index (CPI), t – time (year) with R² = 0.997 and adjusted R² = 

0.996.   
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Figure 3.55: Consumer price index of player 1 and his sub-players  

                                               (a) VAR model, (b) the forecast 

3.4 Design of scenarios   
The future is uncertainty and it is even full of risks, and the uncertainty and risks comes 

from not only the uncertainty of some factors excluded in the models but also the uncer-

tainty of some parameters or constrains in the models. Therefore, it is very necessary to 

make scenario analysis (or sensitive analysis) to assess the influences of driving forces on 

the future water resources, water consumption and water quality, which in turn influence 

game theory modeling framework and results (Fig. 3.56).  

The previous modeling and simulating are made based on the past and current situations, 

and they are regarded as baseline scenario. The baseline scenario is regarded as the first 
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scenario (S1). The other three main scenarios are designed according to the possible 

changes of constrains and input variables in the future. The second scenario (S2) is very 

optimistic, in which socio-economy is high developed and environment is highly protected. 

The third one (S3) is a scenario of coordinated development, in which economic, social, 

environmental resource are co-ordinately developing through the industrial structure ad-

justment and the efficiency enhancement. The fourth one (S4) is a more pessimistic sce-

nario, which will consider more about future potential risks. The descriptions of these main 

scenarios are showed in table 3.12.  

 

Figure 3.56: Sketch of influences of socio-economic and hydro-climatological factors  

                                to game modeling structure  
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Table 3.12: Descriptions of the main scenarios for all the games 

Scenario Description 

S1 
Baseline scenario, i.e. demographic changes, economic growth, scientific 
and technological advances, policies, environmental protection and re-
sources development as well as hydro-climatology are just as usual. 

S2 
Population increasing rate is much lower than that in S1 due to the policy, 
economic growth rate is very high,  scientific and technological advances 
much more fast, environmental protection are greatly attached, it meets wet 
years 

S3 
Population increasing rate and economic growth rate are slightly deceasing 
comparing with S1 due to coordinating economic development and envi-
ronment and resource protections, scientific and technology is advancing, it 
is in moderate dry years 

S4 
Population increasing rate is increasing and economic growth rate is de-
creasing, scientific and technological advances  is lower, environment 
problems are increasing more than S1, and it is in high dry years 

Based on those descriptions of the main scenarios, the assumptions of scenarios are quanti-

fied in the table 3.13. Scenarios 2, 3 and 4 are designed according to scenario 1 (baseline).  

Table 3.13: Assumption of the main scenarios for all players and sub-players 

Main force (average annual change rate %  
on base of  baseline) S2 S3 S4 

Demographic changes           -1.0 -0.3 +0.3 
Industry added value  +3.0 -3.0 -6.0 
Net income  +3.0 -3.0 -6.0 
Agriculture added value +6.0 +3.0 -3.0 
Livestock and poultry   +6.0 +3.0        -3.0 
Fertilizer consumptions -6.0 -3.0        +3.0 
Soil erosion  -6.0 -3.0        +3.0 
Industry waste water discharge -6.0 -3.0        +3.0 
Urban domestic sewage discharge -6.0 -3.0        +3.0 
Reclaim water  +3.0 +2.0 +1.0 
Industry waste water treatment +2.0 +1.0 +0.5 
Urban and rural sewage treatment +12 +8.0 +5.0 
Ecological water demand   +5.0  +2.0 -1.0 
Ecological water use  × 4.0  × 3.0  × 0.5 
Water resource (hydrological year %) 20 75 95 
 Water flow (hydrological year %) 10   75 95 
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4.    Results and discussion 

Water conflicts involved in Hanjiang River Basin have been modeled and simulated as five 

games in last chapter. Four scenarios have been designed in order to analyze the risks and 

uncertainties in the game simulation. This chapter presents and discusses the simulation 

and scenario results. The first part of this chapter interprets the modelling and simulation 

results, and the second part illustrates the scenario results. The last part discusses the simu-

lation and scenario results. 

4.1 Results of the simulation  

Results of game 1:  

Table 4.1 shows the equilibria results of water demand of sub-players 11, 12 and 13 in the 

non-cooperative game from 2010 to 2015. This non-cooperative simulation results confirm 

that player 11 will get water of 5.38-4.10×108 m3, the player 12 get 15.92- 17.88×108 m3 

and player 13 obtains 10.46-7.99×108 m3 from 2010 to 2015. The total water demand of 

these three players is 31.75-29.97 ×108 m3 from 2010 to 2015. Therefore, the total water 

displays a decreasing trend during this period of time. 

Table 4.1: The water demand equilibrium of players 11, 12 and 13 in the non-cooperative game     

                 during 2010 to 2015 (×108 m3) 

t Q11 Q12 Q13 Total 
2010 5.38 15.92 10.46 31.76 
2011 5.10 16.31 9.94 31.35 
2012 4.83 16.71 9.43 30.97 
2013 4.58 17.10 8.93 30.61 
2014 4.33 17.49 8.45 30.27 
2015 4.10 17.88 7.99 29.97 

 

Table 4.2 presents the simulation results of water shares, which sub-players 11, 12 and 13 

can get in a cooperative game from 2010 to 2015. The cooperative results explain that 

players 11, 12 and 13 can only get water of 4.02-3.06×108 m3, 11.89-13.33×108 m3 and 

7.81-5.96×108 m3, respectively from 2010 to 2015. The total water share of those three 

players is decreasing from 31.76×108 m3 in 2010 to 29.97×108 m3 in 2015.    
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Table 4.2: Water Shares (Q1jk) of players 11, 12 and 13 in the cooperative game (×108 m3) 

t Q11k Q12k Q13k Total 
2010 4.02 11.89 7.81 23.73 
2011 3.82 12.21 7.44 23.46 
2012 3.62 12.52 7.06 23.20 
2013 3.43 12.80 6.69 22.92 
2014 3.24 13.08 6.32 22.63 
2015 3.06 13.33 5.96 22.34 

Comparing the cooperative results with the non-cooperative ones, water deficits of players 

11, 12 and 13 can be obtained. Players 11, 12 and 13 have water deficits of 1.36-1.04 ×108 

m3, 4.03-4.55×108 m3, 2.65-2.03×108 m3, respectively in cooperative game from 2010 to 

2015. The total water shortage of them has a slight decrease from 8.03×108 m3 in 2010 to 

7.63×108 m3 in 2015 (Table 4.3).  

Table 4.3: Water deficit of players 11, 12 and 13 in the cooperative game (×108 m3) 

t Q11 Q12 Q13 Total 
2010 -1.36 -4.03 -2.65 -8.03 
2011 -1.28 -4.10 -2.50 -7.89 
2012 -1.21 -4.19 -2.37 -7.77 
2013 -1.15 -4.30 -2.24 -7.69 
2014 -1.09 -4.41 -2.13 -7.64 
2015 -1.04 -4.55 -2.03 -7.63 

 

The results of game 2:  

Table 4.4 reveals the non-cooperative game simulation results from 2005 to 2010, where 

players 21, 22 and 23 produce nitrogen of 684.0-514 tons, 40131.7- 40466.3 tons, and 

273586.4-290772.4 tons, respectively. Therefore, those three players will produce total ni-

trogen of 3.14-3.32×105 m3 tons from 2005 to 2010. The nitrogen production is increasing 

during this period of time.    

Table 4.4: Nitrogen produced by players 21, 22 and 23 in the non-cooperative game (tons/a) 

t NP21 NP22 NP23 Total  
2005 694.0 40131.7 273586.4 314412.1 
2006 634.2 40139.5 275665.6 316439.3 
2007 601.7 40195.2 279338.8 320135.8 
2008 570.9 40275.3 283116.7 323962.9 
2009 541.7 40367.7 286994.6 327904.0 
2010 514.0 40466.3 290772.4 331752.7 
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Table 4.5 presents that in order to meet the TN standard II, players 21, 22 and 23 should 

reduce nitrogen 163.2-356.2 tons, 9439.4-28040.0 tons and 64350.3-201482.3 tons, respec-

tively from 2005 to 2010. The total nitrogen reduction is 7.4-23.0×104 m3 tons, and it in-

crease more than three time during this period of time.  

Table 4.5: Nitrogen reduced by players 21, 22 and 23 in the cooperative game (tons/a) 

t 21NP−  22NP−  23NP−  Total  
2005 163.2 9439.4 64350.3 73953.0 
2006 182. 3 11535.7 79223.8 90941.8 
2007 286.5 19139.5 133010.7 152436.7 
2008 269.4 19003.5 133585.7 152858.5 
2009 271.5 20231.8 143838.1 164341.4 
2010 356.2 28040.0 201482.3 229878.4 

The results of game 3: 

The simulation results of non-cooperative and cooperative games from 2005 to 2015 are 

presented in table 4.6 and 4.7. The results in table 4.6 explains the simulation results of ni-

trogen production of players 31, 32 and 33 in non-cooperative game from 2005 to 2010. 

These results prove that players 31, 32 and 33 will produce nitrogen of 379.2-730.6 tons, 

15709.5-16714.4 tons and 66632.0-74001.1 tons, respectively, and the total nitrogen pro-

duction of them are  8.2-9.1×104 m3 tons during this period of time. The nitrogen produc-

tion in this game also shows an increasing trend. 

Table 4.6: Nitrogen produced by players 31, 32 and 33 in the non-cooperative game (tons/a) 

t NP31 NP32 NP33 Total 
2005 379.2 15709.5 66632.0 82720.7 
2006 467.7 15873.6 68232.0 84573.3 
2007 543.8 16055.1 69751.5 86350.4 
2008 606.1 16255.1 71198.2 88059.4 
2009 668.3 16474.5 72602.2 89744.9 
2010 730.6 16714.4 74001.1 91446.0 

Table 4.7 proves the simulation results of nitrogen reduction of players 31, 32 and 33 in a 

cooperative game from 2005 to 2010. These results confirm that players 31, 32 and 33 

should reduce nitrogen of 89.2-506.2 tons, 3695.0-11581.8 tons and 15672.5-51276.9 tons, 

respectively, in order to meet the TN standard II from 2005 to 2010. The total nitrogen re-

duction responsible for those three players is 1.9-6.3×104 m3 tons during this period of time.   
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Table 4.7: Nitrogen reduced by players 31, 32 and 33 in the cooperative game (tons/a) 

t 31NP−  32NP−  33NP−  Total  
2005 89.2 3695.0 15672.5 19456.8 
2006 134.4 4561.9 19609.3 24305.6 
2007 259.0 7644.8 33213.1 41116.9 
2008 286.0 7669.8 33594.1 41549.9 
2009 334.9 8256.8 36387.3 44979.0 
2010 506.2 11581.8 51276.9 63364.9 

The results of game 4: 

Table 4.8 and table 4.9 present the non-cooperative and cooperative game simulation re-

sults, respectively in game 4 from 2005 to 2010. The results explain that players 41, 42 and 

43 will produce nitrogen of 193.7-243.2 tons, 4764.5-4686.5 tons and 57621.9-76135.0 

tons, respectively during this period of time. The total nitrogen production is creasing from 

6.3×104 m3 tons to 8.1×104 m3 tons during 2005 to 2010.  

Table 4.8: Nitrogen produced by players 41, 42 and 43 in the non-cooperative game (tons/a) 

t NP41 NP42 NP43 Total 
2005 193.7 4764.5 57621.9 62580.1 
2006 203.8 4750.4 60562.8 65517.0 
2007 213.7 4734 64212.5 69160.2 
2008 223.5 4718.3 67959.0 72900.8 
2009 233.4 4702.3 71948.2 76883.9 
2010 243.2 4686.5 76135.0 81064.8 

The cooperative results tell that players 41, 42 and 43 should reduce nitrogen of 45.6-165.8 

tons, 1120.7-3247.4 tons and 13553.3-52755.2 tons, respectively to meet the standard from 

2005 to 2010. Hence the total reduction should be 1.5-5.6×104 m3 tons during this period 

(Table 4.9).  

Table 4.9: Nitrogen reduced by players 41, 42 and 43 in the cooperative game (tons/a) 

t 41NP−  42NP−  43NP−  Total  
2005 45.6 1120.7 13553.3 14719.5 
2006 58.6 1365.2 17405.2 18829.0 
2007 101.7 2254.2 30575.6 32931.5 
2008 105.5 2226.3 32065.7 34397.5 
2009 117.0 2356.7 36059.5 38533.2 
2010 168.5 3247.4 52755.5 56171.5 
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The results of game 5: 

a)  Payoffs at current prices: 

The game results of payoffs at current prices are presented in the matrix 4.1. In the matrix, 

the first column and the second column refer to the payoffs resulting from the simulations 

of non-cooperative and the cooperative games, respectively. In each column, the first, sec-

ond, third and fourth numbers refer to the payoffs of players 1, 2, 3 and 4 respectively. The 

zeros are used (1) to keep the matrix symmetric, (2) to state no game played there, and (3) 

to display what the value look like if there were games. 

Matrix 4.1:  Payoff matrix of players 1, 2, 3 and 4 in the non-cooperative and  

                                      cooperative games (×108 RMB at current prices) 

1 2 3 4 1 2 3 4                                                                            
2005 (  0000.0 78.12 19.02 41.76)
2006 (  0000.0 86.63 21.41 43.03)
2007 (  0000
2008
2009
2010
2011
2012
2013
2014
2015

t V V V V U U U U

.0 109.8 32.18 47.08)
(  0000.0 112.5 33.39 48.25)
(  0000.0 118.9 36.32 50.35)
( 1981.2 139.0 46.38 56.53)
( 2263.8 000.0 00.00 00.00)
( 2594.0 000.0 00.00 00.00)
( 2979.2 000.0 00.00 00.00)
( 3437.0 000.0 

−
−
−
−
−

(0000.0 78.12 19.02 41.76)
(0000.0 86.63 21.41 43.03)
(0000.0 109.8 32.18 47.08)
(0000.0 112.5 33.39 48.25)
(0000.0 118.9 36.32 50.35)

    (1981.2 139

00.00 00.00)
( 3997.0 000.0 00.00 00.00)

− − −
− − −
− − −
− − −
− − −
−

−

.0 46.38 56.53)
(2263.8     000.0    00.00    00.00)
(2594.0    000.0    00.00    00.00)
(2979.2    000.0    00.00    00.00)
(3437.0    000.0    00.00    00.00)
(3997.0    000.0    00.00    00.00)

⎡
⎢
⎢
⎢
⎢
⎢

− −

⎣

⎤
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 

These results prove that the non-cooperative game will cost player 1 a total loss of 

17.3×1011 RMB from year 2010 to 2015, but it yields players 2, 3 and 4 a benefit of 

1.1×1011 RMB. However, comparing the overall costs and benefits, there is an overall loss 

of 16.2×1011 RMB when each player does not cooperate with the others. The cooperative 

game result proves that there is an overall benefit of 16.2×1011 RMB, though players 2, 3 

and 4 lose 1.1×1011 RMB. Therefore, all the players will be better off if a side payment is 

made between them at the end of the cooperative game. Form these results, it is clearly 

seen that the players should cooperate with each other so as to maximize the overall bene-

fits.  

Tables 4.10-4.13 present the results losses of all the sub-players when players 1, 2, 3 and 4 

are cooperative and non-cooperative. Table 4.10 shows that non-cooperation among play-
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ers 1, 2 ,3 and 4 will cost sub-players 11, 12 and 13 losses of 801.98-1535.38×108 RMB, 

1489.08-3284.86×108 RMB and 29.66-34.85×108 RMB, respectively due to water deficits 

during 2010 to 2015.  

Table 4.10: Losses of sub-players of 11, 12, and 13 in the non-cooperative game  (×108 RMB  
                        at current prices) 

t V11 V12 V13 
2010 -801.98 -1489.08 -29.66 
2011 -905.86 -1733.75 -30.50 
2012 -1028.56 -2026.17 -31.43 
2013 -1174.76 -2372.21 -32.44 
2014 -1338.47 -2786.20 -33.56 
2015 -1535.38 -3284.86 -34.85 

On the contrary, the sub-players of 11, 12 and 13 will have no such losses if players 1, 2, 3 

and 4 are cooperative, but cooperation imposes cost to sub-players of 21, 22, 23, 31, 32, 33, 

41, 42 and 43. Table 4.11 gives an idea about those losses, in which the players 21, 22 and 

23 will lose 0.15-0.32×108 RMB, 39.07-40.18×108 RMB and 38.89-98.50×108 RMB, 

respectively from 2005 to 2010.   

Table 4.11: Losses of sub-players 21, 22 and 23 in the cooperative game (×108 RMB) 

t C21 C22 C23 
2005 -0.15 -39.07 -38.89 
2006 -0.17 -39.06 -47.40 
2007 -0.26 -39.76 -69.75 
2008 -0.25 -39.54 -72.68 
2009 -0.25 -39.52 -79.14 
2010 -0.32 -40.18 -98.50 

Table 4.12 reveals the simulation results of the losses of sub-players 31, 32 and 33 in this 

cooperative game. Players 31, 32 and 33 will lose 0.59-3.36×108 RMB, 11.46-16.98×108 

RMB and 6.96-26.04×108 RMB, respectively from 2005 to 2010. 

Table 4.12: Losses of sub-players 31, 32 and 33 in the cooperative game (×108 RMB) 

t C31 C32 C33 
2005 -0.59 -11.46 -6.96 
2006 -0.89 -11.37 -9.15 
2007 -1.72 -15.23 -15.22 
2008 -1.90 -14.99 -16.50 
2009 -2.22 -15.20 -18.90 
2010 -3.36 -16.98 -26.04 
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Table 4.13 explains the simulation results of the losses of sub-players 41, 42 and 43 in this 

cooperative game. From this table, it is seen that players 41, 42 and 43 will lose 0.08-

0.29×108 RMB, 38.21-38.41×108 RMB and 3.47-17.83×108 RMB, respectively from 2005 

to 2010. 

Table 4.13: Losses of sub-players 41, 42 and 43 in the cooperative game (×108 RMB) 

t C41 C42 C43 
2005 -0.08 -38.21 -3.47 
2006 -0.10 -38.09 -4.84 
2007 -0.18 -38.23 -8.67 
2008 -0.18 -38.15 -9.92 
2009 -0.20 -38.14 -12.01 
2010 -0.29 -38.41 -17.83 

b) The payoffs at comparable prices 

Table 4.14 gives the Consumer Price Index (CPI), i.e. discount factor of future values. The 

numbers of the index in 2005 and 2006 are really values, while the numbers in the rest 

years in the table are the forecasting values. Based on those results, the payoffs of players 1 

and his sub-players in the years of 2010, 2011, 2012, 2013, 2014 to 2015 have been trans-

ferred into the values in years of 2005, 2006, 2007, 2008, 2009 and 2010, respectively.   

Table 4.14: Consumer Price Index (Id) of player 1 and his sub-players from 2005 to 2016 

t Id t Id 

2005 647.8 2011 829.0 
2006 653.6 2012 873.4 
2007 672.3 2013 914.8 
2008 702.2 2014 952.1 
2009 740.4 2015 984.6 
2010 783.8 2016 1012.6 

Matrix 4.2 presents the payoffs of players 1, 2, 3 and 4 at comparable prices. In the matrix, 

the first column and the second column refer to the payoffs resulting from the simulations 

of non-cooperative game and the cooperative game, respectively. In each column, the first, 

second, third and fourth numbers refer to payoffs of the players 1, 2, 3 and 4, respectively.  

These results prove that the non-cooperative game will cost player 1 a total loss of 

13.6×1011 RMB at comparable prices during 2010 to 2015, but it yields players 2, 3 and 4 a 

benefit of 1.1×1011 RMB. However, comparing the overall costs and benefits, there is an 

overall loss of 12.5×1011 RMB when each player does not cooperate with the others. The 
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cooperative game result shows that there is an overall benefit of 12.5×1011 RMB, though 

players 2, 3 and 4 lose 1.1×1011 RMB.  

Matrix 4.2:  Payoff matrix of players 1, 2, 3 and 4 in the non-cooperative and 

                                      cooperative game (×108 RMB at comparable prices) 

' ' ' ' ' ' ' '
1 2 3 4 1 2 3 4                                                                          

2005 ( 1637.4 78.12 19.02 41.76) (1637.4 78.12 19.02 41.76)
2006 ( 1784.8 86.63 21.41 
2007
2008
2009
2010

t V V V V U U U U
− − − −
− 43.03) (1784.8 86.63 21.41 43.03)

( 1996.7 109.8 32.18 47.08) (1996.7 109.8 32.18 47.08)
( 2286.8 112.5 33.39 48.25) (2286.8 112.5 33.39 48.25)
( 2665.0 118.9 36.32 50.35) (2665.0 118.9 36.32 50.

− − −
− − − −
− − − −
− − − − 35)

( 3181.8 139.0 46.38 56.53) (3181.8 139.0 46.38 56.53)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− − − −⎝ ⎠

 

Table 4.15 explains the losses of all sub-players 11, 12 and 13 at comparable prices when 

players 1, 2, 3 and 4 are non-cooperative. The results explain that non-cooperation among 

players 1, 2, 3 and 4 will cost sub-players 11, 12 and 13 losses of 662.83-1222.25×108 

RMB, 1230.70-2614.94×108 RMB and 24.51-27.74×108 RMB, at prices of years of 2005-

2010, respectively due to water deficits during 2010 to 2015.  

Table 4.15: Losses of sub-players of 11, 12, and 13 in the non-cooperative game (×108 RMB 

                         at comparable prices) 

t Price in year '
11V  '

12V  '
13V  

2010 2005 -662.83 -1230.70 -24.51 
2011 2006 -714.20 -1366.92 -24.05 
2012 2007 -791.73 -1559.65 -24.19 
2013 2008 -901.75 -1820.91 -24.90 
2014 2009 -1040.86 -2166.69 -26.10 
2015 2010 -1222.25 -2614.94 -27.74 

However, sub-players of 11, 12 and 13 can avoid those losses if players 1, 2, 3 and 4 are 

cooperative, but cooperation imposes cost to sub-players of 21, 22, 23, 31, 32, 33, 41, 42 

and 43. The losses of sub-players of 21, 22, 23, 31, 32, 33, 41, 42 and 43 are 0.15-0.32×108 

RMB, 39.07-40.18×108 RMB, 38.89-98.50×108 RMB, 0.59-3.36×108 RMB, 11.46-

16.98×108 RMB, 6.96-26.04×108 RMB, 0.08-0.29×108 RMB, 38.21-38.41×108 RMB and 

3.47-17.83×108 RMB, respectively from 2005 to 2010 (Tables 4.11-4.13). 
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4.2 Results of the scenarios 

Scenarios results of the five games involved in the Hanjiang River Basin are illustrated in 

the following 5 sections.  

4.2.1 Scenario results of game 1  

Figures 4.1- 4.7 illustrate the comparison results of the four scenarios of game 1. Among 

them, figures 4.1 to 4.4 show water demand of sub-players of 11, 12 and 13 in the four dif-

ferent scenarios.  

Figure 4.1a demonstrates that the added values of player 11 are 3016.4-5620.3×108 RMB, 

3091.8-5760.8 ×108 RMB, 2925.9-5451.7×108 RMB and 2838.1-5288.2×108 RMB, re-

spectively in the four scenarios from 2010 to 2015. In these four scenarios of added values, 

the water demands of the player 11 are 5.38-4.10×108 m3, 5.52-4.20×108 m3, 5.22-

3.98×108 m3  and 5.06-3.86×108 m3, respectively from 2010 to 2015 (Fig. 4.1b). 
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Figure 4.1: Scenarios of (a) added value (V11) (×108 RMB) and  

          (b) water demand (Q11) (×108 m3) of player 11 

From the results of four scenarios in figure 4.2a, it is clearly seen that the added values of 

player 12 are 5941.3-13905.7×108 RMB, 6119.6-14322.9×108 RMB, 5763.1-13488.6×108 

RMB and 5590.2-13083.9×108 RMB, respectively from 2010 to 2015. Water demands of 

player 12 are 15.9-17.9×108 m3, 16.0-18.0×108 m3, 15.8-17.8×108 m3 and 15.8-17.7×108 

m3, respectively in the four scenarios of added values (Fig. 4.2b).  
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Figure 4.2: Scenarios of (a) added value (V12) (×108 RMB) and 

          (b) water demand (Q12) (×108 m3) of player 12 

Figure 4.3a and b prove the results of four population scenarios of player 12 and the water 

demands in these four scenarios from 2010 to 2015. The population is 1647.2-1823.9×104 

persons, 1664.3-1805.6×104 persons, 1671.0-1812.9×104 persons and 1686.2-1829.4×104 

persons, respectively in the four scenarios. Water demands are 15.3-16.3×108 m3, 15.2-

16.3×108 m3, 15.3-16.3×108 m3 and 15.3-16.4×108 m3, respectively in these four popula-

tion scenarios.  
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Figure 4.3: Scenarios of (a) population (L12) (×104 persons) and 

     (b) water demand (Q12) (×108 m3) of player 12 

Figure 4.4a and b illustrate the results of four added value scenarios of player 13 and the 

water demands in these four scenarios from 2010-2015. The added values of player 13 are 

117.3-137.0×108 RMB, 124.4-145.3×108 RMB, 120.8-141.1×108 RMB and 113.8-

132.9×108 RMB in these four scenarios. Water demands of player 13 are 10.5-8.0×108 m3, 

11.1-8.5×108 m3, 10.8-8.2×108 m3 and 10.1-7.8×108 m3 in the four scenarios. 
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Figure 4.4: Scenarios of (a) added value (V13) (×108 RMB) and  

     (b) water demand (Q13) (×108 m3) of player 13 

Figures 4.5-4.7 reveal the scenario results of water supply in the four scenarios from 2010 

to 2015. From the four scenarios of urban sewage discharge, it can see that player 1 dis-

charges urban sewage of 11.3-13.6×108 m3, 10.6-12.8×108 m3, 10.9-13.2×108 m3 and 11.6-

14.0×108 m3 (Fig. 4.5a). Reclaim water are 2.8-3.5×108 m3, 5.3-6.6×108 m3, 4.6-5.7×108 

m3 and 3.9-4.8×108 m3, respectively in four water-reclaimed scenarios (Fig. 4.5b). 
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Figure 4.5: Scenarios of (a) urban sewage discharge (Dw) (×108 m3) and (b) 

      reclaim water (R1) (×108 m3) of player 1 

Figure 4.6a and b demonstrate the scenario results of ecological based water use and water 

demand, respectively from 2010 to 2015. These results illustrate that ecological based wa-

ter uses are 1.5-1.8×108 m3, 5.9-7.4×108 m3, 4.4-5.5×108 m3 and 0.7-0.9×108 m3, respec-

tively in the four scenarios (Fig. 4.6a). Figure 4.6b shows the scenarios results of ecologi-

cal based water demands from 2010 to 2015.  The results confirm that ecological based 
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water demand is of 8.2-10.5×108 m3, 8.6-11.0×108 m3, 8.3-10.7×108 m3 and 8.1-10.3×108 

m3, respectively in the four scenarios.  
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Figure 4.6: Scenarios of ecological based (a) water use (Q1e) and (b)  

                                              water demand (Q1eR) (×108 m3) of player 1 

Figure 4.7a and b explain the scenario results of total water demand and water supply of 

player 1 from 2010 to 2015. From the four scenarios, it sees that player 1 will demand wa-

ter 39.9-40.5×108 m3, 41.2-41.7×108 m3, 40.2-40.7×108 m3 and  39.1-39.7×108 m3 (Fig. 

4.7a), while water supply for player 1 is only  29.3-29.6×108 m3, 37.1-37.0×108 m3, 19.3-

19.4×108 m3  and 17.4-18.1×108 m3, respectively in the four scenarios (Fig. 4.7b). 
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 Figure 4.7: Scenarios of (a) total water demand (Q1) and  

              (b) water supply (W1) (×108m3) of player 1  

Figures 4.8-4.10 illustrate the scenario results of water shares and water deficit of each 

sub-player from 2010 to 2015. In details, figure 4.8a explain that cooperation will give sub-

player 11 water shares of 3.9-3.0×108 m3, 5.0-3.7×108 m3, 2.5-1.9×108 m3 and 2.2-1.8×108 
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m3, respectively in the four scenarios from 2010-2015. Scenarios results prove that sub-

player 11 will face water deficits of 1.4-1.1×108 m3, 0.5-0.4×108 m3, 2.7-2.1×108 m3 and  

2.8-2.1×108 m3, respectively in the four scenarios from 2010-2015 (Fig. 4.8 b).  
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Figure 4.8: Scenarios of (a) water shares (Q11) and (b) water deficit (W11) (×108m3)  

  of player 11 in the cooperative game   

Figure 4.9a and b point up the scenario results of water shares and water deficits of player 

12 in cooperative game from 2010 to 2015. Player 12 obtains 11.7-13.1×108 m3, 14.4-

15.9×108 m3, 7.6-8.5×108 m3 and 7.0-8.1×108 m3, respectively in these four scenarios from 

2010 to 2015 (Fig. 4.9a). However, player 12 has water deficits of 4.3-4.8×108 m3, 1.6-

2.0×108 m3, 8.2-9.3×108 m3 and 8.8-9.6×108 m3, respectively in these four scenarios (Fig. 

4.9b).   
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Figure 4.9: Scenarios of (a) water shares (Q12) and (b) water deficit (W12) (×108m3)  

         of player 12 in the cooperative game 

Figure 4.10a confirm that sub-player 13 obtain water shares of 7.7-5.8×108 m3, 10.0-

7.5×108 m3, 5.2-3.9×108 m3 and 4.5-3.5×108 m3 in the cooperative game, respectively in 
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the four scenarios from 2010 to 2015. The scenario results prove that sub-player 13 will 

face water deficits of 2.8-2.1×108 m3, 1.1-1.0×108 m3, 5.5-4.3×108 m3 and 5.6-4.2×108 m3, 

respectively in the four scenarios from 2010-2015 (Fig. 4.10b). 
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Figure 4.10: Scenarios of (a) water shares (Q13) and (b) water deficit (W13) (×108m3) of  

                               player 13 in the cooperative game 

4.2.2 Scenario results of game 2  

The scenario results of game 2 are illustrated in figures 4.11-4.17. Figure 4.11a presents 

that player 23 has rural population of  751.0-744.4×104 persons, 743.5-737.0×104 persons, 

748.7-742.2×104 persons and 753.2-746.6×104 persons, respectively in four rural popula-

tion scenarios from 2005 to 2010. Figure 4.11b demonstrates that player 23 discharge 

2557.5-2509.8 tons, 2532.0-2484.7 tons, 2549.9-2502.3 tons and 2565.2-2517.3 tons of 

nitrogen into the Danjiangkou Reservoir, respectively in these four rural population scenar-

ios from 2005 to 2010. 
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Figure 4.11: Scenarios of (a) rural population (×104 persons) and (b) nitrogen (tons)  

                                 discharged into the reservoir by player 23 
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Figure 4.12a shows that player 22 has urban population of 155.6-177.4×104 persons, 154.0-

175.6×104 persons, 155.1-176.8×104 persons and 156.1-177.9×104 persons, respectively in 

the four scenarios from 2005 to 2010. Figure 4.12b illustrates that player 22 discharges 

6464.4-6229.2 tons, 5409.8-6166.9 tons, 5448.0-6210.5 tons and 5480.8-6247.9 tons of 

nitrogen into the Danjiangkou Reservoir, respectively in these four urban population sce-

narios from 2005 to 2010. 
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Figure 4.12: Scenarios of (a) urban population (×104 persons) and (b) nitrogen  

                                     discharged into reservoir (tons) by player 22 

The scenario results of soil erosion of player 23 are displayed in figure 4.13a. The sub-

player 23 face soil erosion of 34253.6 km2, 32198.4-23630.5 km2, 33226.0-28532.3 km2 

and 35281.2-40900.6 km2, respectively in the four scenarios from 2005 to 2010. Figure 

4.13b reveals that sub-player 23 discharge 5029.4 tons, 4727.6-3469.6 tons, 4585.8-3938.0 

tons and 4723.4-5475.7 tons of nitrogen into the Danjiangkou Reservoir, respectively in 

these four urban population scenarios from 2005 to 2010.  
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                                 Figure 4.13: Scenarios of (a) soil erosion (km2) and (b) nitrogen  

                                                     discharged into the reservoir (tons) by player 23  
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Figure 4.14a and b illustrate the four scenarios of nitrogen fertilizer consumptions of player 

23 and nitrogen discharged into the Danjiangkou Reservoir by sub-player 23 in these four 

scenarios from 2005 to 2010. The four scenarios present that sub-player 23 consumes ni-

trogen fertilizer of 14.4-14.5×104 tons, 13.5-13.6×104 tons, 13.9-14.1×104 tons and 14.9-

15.0×104 tons from 2005 to 2010 (Fig. 4.14). Nitrogen discharged into the Danjiangkou 

reservoir due to nitrogen fertilizer is 5320.7-5965.6 tons, 5001.4-5607.7 tons, 5161.1-

5786.6 tons and 5480.3-6144.6 tons, respectively in the four scenarios. 
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Figure 4.14: Scenarios of (a) nitrogen fertilizer consumption (×104 tons) and 

  (b) nitrogen discharged into reservoir (tons) by player 23  

Figure 4.15a and b prove the four scenarios of pig equivalences and nitrogen discharged 

into the Danjiangkou Reservoir in these animals scenarios from 2005 to 2010. 
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Figure 4.15: Scenarios of (a) pig equivalences (×104 units) and (b) nitrogen 

                                        discharged into reservoir (tons) by player 23 

Those four scenarios present that sub-player 23 has pig equivalences of 1052.9-1207.5×104 

units, 989.8-1135.0×104 units, 1021.4-1171.2×104 units and 1084.5-1243.7×104 units. Ni-
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trogen discharged into the Danjiangkou Reservoir by sub-player 23 is 9307.6-10673.6 tons, 

8749.2-10033.2 tons, 9028.4-10353.4 tons and 9586.9-10993.8 tons, respectively in these 

four animal scenarios. 

Figures 4.16a and b demonstrate the nitrogen discharged into the Danjiangkou Reservoir 

by rural domestic life and animal husbandry in four treatment scenarios from 2005 to 2010. 

Four scenarios of nitrogen produced by rural domestic life discharged into the Reservoir 

are 2557.5-2509.8 tons, 2228.1-2186.5 tons, 2345.9-2302.1 tons and 2436.9-2391.5 tons, 

respectively. Four scenarios of nitrogen production from animal husbandry into the Reser-

voir are 9307.6-10673.6 tons, 8190.7-9392.7 tons, 8563.0-9819.7 tons and 8842.2-10139.9 

tons, respectively. 

2,150

2,200

2,250

2,300

2,350

2,400

2,450

2,500

2,550

2,600

2005 2006 2007 2008 2009 2010

S1 S2 S3 S4

8,000

8,500

9,000

9,500

10,000

10,500

11,000

2005 2006 2007 2008 2009 2010

S1 S2 S3 S4

(a) (b)

 
  Figure 4.16: Scenarios of nitrogen (tons) discharged into reservoir from (a) rural domestic life,  

and (b) animal husbandry by player 23 in four treatment scenarios  

Figure 4.17 illustrates the nitrogen discharge of player 22 and player 21 into the reservoir 

from urban domestic life and industrial waste water, respectively in four treatment scenarios. 
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Figure 4.17: Scenarios of nitrogen (tons) discharged into reservoir from (a) urban domestic life by 

player 22 and (b) industrial waste water by player 21 in four treatment scenarios 
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Those scenario results show that sub-player 22 discharge from urban domestic life 5464.2-

6229.2 tons, 4760.0-5426.9 tons, 5012.2-5713.6 tons and 5206.8-5935.5 tons of nitrogen 

into the Reservoir. Nitrogen from industry waste water discharged by 21 into the Reservoir 

by sub-player 23 are 555.2-411.2 tons, 511.5-378.8 tons, 533.2.0-394.9 tons and 569.0-

421.4 tons, respectively in four treatment scenarios. 

Figure 4.18 demonstrates the scenarios results of the nitrogen discharged into the Dangji-

angkou Reservoir by sub-players 21, 22 and 23 from 2005 to 2010. The results prove that 

sub-players 21 discharges into the Dangjiangkou Reservoir nitrogen of 555.2-411.2 tons, 

544.1-403.0 tons, 549.7-407.1 tons, and 522.4-409.1 tons, respectively. Sub-play 22 dis-

charges into the Dangjiangkou Reservoir nitrogen of 8022.0-8739.0 tons, 7059.3-7690.3 

tons, 7380.2-8039.9 tons and 7620.9-8302.0 tons respectively. Sub-player 23 discharges 

into the Dangjiangkou Reservoir nitrogen of 19657.7-21668.6 tons, 17428.4-17906.5 tons, 

18345.7-19501.1 tons and 19768.1-22594.1 tons, respectively.  
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Figure 4.18: Nitrogen (tons) discharged into the reservoir by players 21, 22 and 23 (P21, 

  P22 and P23) in scenarios 1, 2, 3 and 4 (S1, S2, S3 and S4)  

4.2.3 Scenario results of game 3  

Figures 4.19-4.26 illustrate the scenario results of game 3. The situation of game 3 is simi-

lar with game 2. Figure 4.19a shows that sub-player 33 has rural population of 224.1-
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206.3×104 persons, 221.9-204.3×104 persons, 223.5-205.7×104 persons and 224.8-

206.9×104 persons, respectively in the four scenarios from 2005 to 2010. Figure 4.19b ex-

plains that the nitrogen discharged into the Danjiangkou Reservoir by sub-player 33 is 

850.0-782.6 tons, 841.5-774.8 tons, 847.5-780.2 tons and 852.6-784.9 tons, respectively in 

these four rural population scenarios from 2005 to 2010.     
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                          Figure 4.19: Scenarios of (a) rural population (×104 persons) and (b) nitrogen  

                                                discharged into reservoir (tons) by player 33 

Figure 4.20a confirms that sub- player 32 owns urban population of 133.7-174.4×104 per-

sons, 132.4-172.7×104 persons, 133.3-173.9×104 persons and 134.1-174.9×104 persons, re-

spectively in the four scenarios from 2005 to 2010. Figure 4.20b is evidence for that nitro-

gen discharged into the Danjiangkou Reservoir by sub-player 32 is 5284.1-6891.1 tons, 

5231.2-6822.2 tons, 5268.2-6870.4 tons and 5299.9-6911.8 tons, respectively in these four 

urban population scenarios from 2005 to 2010. 
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Figure 4.20: Scenarios of (a) urban population (×104 persons) and (b) nitrogen 

 discharged into the reservoir (tons) by player 32 
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The scenario results of soil erosion of sub-player 33 are illustrated in figure 4.21a. The sub-

player 33 has soil erosion of 10922.4 km2, 10267.1-7535.0 km2, 10594.7-9098.0 km2 and 

11250.1-13041.9 km2, respectively in the four scenarios from 2005 to 2010. Figure 4.21b 

explains that nitrogen discharged into the Danjiangkou Reservoir by sub-player 33 is 

1790.1 tons, 1682.8-1235.0 tons, 1736.5-1491.2 tons and 1843.9-2137.6 tons, respectively 

in these four urban population scenarios from 2005 to 2010.  
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                          Figure 4.21: Scenarios of (a) soil erosion (km2) and (b) nitrogen 

          discharged into the reservoir (tons) by player 33 

Figure 4.22a and b demonstrate the four nitrogen fertilizer consumptions of player 33 and 

nitrogen discharge into the Danjiangkou reservoir by sub-player 33 in the four scenarios 

from 2005 to 2010. In those scenarios, sub-player 33 consumes nitrogen fertilizer of 6.5-

6.9×104 tons, 6.1-6.5×104 tons, 6.3-6.7×104 tons and 6.7-7.1×104 tons. Sub-player 33 dis-

charges into the Reservoir nitrogen: 11150.4-11107.7 tons, 10481.4-10441.3 tons, 

10815.9-10774.5 tons and 11485.0-11441.0 tons, respectively. 
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Figure 4.22: Scenarios of (a) nitrogen fertilizer (×104 tons) and (b) nitrogen 

                                        discharged into the reservoir (tons) by player 33 
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Figure 4.23a and b confirm the results of pig equivalences and the related nitrogen dis-

charged into the Danjiangkou Reservoir by sub-player 33 in these scenarios from 2005 to 

2010. In the four scenarios, sub-player 33 has pig equivalences of 310.3-333.7×104 units, 

292.1-313.7×104 units, 301.4-323.7×104 units and 320.2-343.7×104 units, respectively. Ni-

trogen discharged into the Danjiangkou Reservoir by this sub-player is 3089.8-3318.7 tons, 

2904.4-3119.6 tons, 2997.1-3219.1 tons and 3182.5-3418.2 tons, respectively. 
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Figure 4.23: Scenarios of (a) pig equivalences (×104 units) and (b) nitrogen 

                                        discharged into the reservoir (tons) by player 33  

Figure 4.24a and b prove nitrogen from rural domestic life and animal husbandry dis-

charged into the Danjiangkou Reservoir by sub-player 33 in four treatment scenarios from 

2005 to 2010. Nitrogen from rural domestic life discharged into the Reservoir by this sub-

player is 850.0-782.6 tons, 740.5-681.8 tons, 779.7-717.8 tons and 810.0-745.7 tons, re-

spectively. Nitrogen from animal husbandry discharged into the Reservoir are 3318.7-

3089.8 tons, 2920.4-2719.0 tons, 3053.2-2842.6 tons and 3152.7-2935.3 tons, respectively. 
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       Figure 4.24: Scenarios of nitrogen (tons) discharged into reservoir from (a) rural domestic life 

and (b) animal husbandry by player 33 in four treatment scenarios  
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Figure 4.25a and b illustrate the nitrogen discharged by sub-player 32 and sub-player 31 

into the reservoir in the four treatment scenarios from 2005 to 2010. Nitrogen discharged 

by sub-player 32 into the Danjiangkou Reservoir is 5284.1-6891.1 tons, 4603.5-6003.5 

tons, 4846.8-6320.8 tons and 5034.9-6566.2 tons, respectively. Nitrogen discharged sub-

player 31 into the Danjiangkou Reservoir is 341.3-657.5 tons, 314.4-605.7 tons, 327.7-

631.4 tons and 349.7-673.8 tons, respectively. 
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Figure 4.25: Scenarios of nitrogen (tons) discharged into reservoir from (a) urban domestic life by     

                    player 32, (b) industry waste water by player 31 in the four waste treatment scenarios 

In order to compare the scenario results from 2005 to 2010, nitrogen discharged by sub-

players 31, 32 and 33 into the Dangjiangkou Reservoir are illustrated in Figure 4.26.  
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Figure 4.26: Nitrogen (tons) discharged into the reservoir by player 31, 32 and 33 (P31, P32 and 

P33) in scenarios 1, 2, 3 and 4 (S1, S2, S3 and S4)  



 
On the use of game theoretic models for water resources management   109     

The results verify that sub-players 31 discharges into the Dangjiangkou Reservoir nitrogen 

of 341.3-657.5 tons, 334.4-644.3 tons, 337.8-650.9 tons and 339.5-654.2 tons in scenario 1 

(S1), scenario 2 (S2), scenario 3 (S3) and scenario 4 (S4), respectively from 2005 to 2010. 

Sub-player 32 discharges into the Reservoir nitrogen of 6134.1-7673.7 tons, 5398.0-6752.8 

tons, 5643.4-7059.8 tons and 5827.4-7290.0 tons, respectively in the four scenarios from 

2005 to 2010. For sub-player 33, he discharges into the Reservoir nitrogen of 16125.5-

15987.7 tons, 14798.7-14232.2 tons, 15394.6-15023.0 tons and 16667.0-16602.0 tons, re-

spectively in the four scenarios in the same time interval.  

4.2.4 Scenario results of game 4  

Figures 4.27-4.32 give an idea about scenario results of game 4. The situation of game 4 is 

very similar with game 2 and 3. Figure 4.27a presents the four rural population scenarios of 

the sub-player 43 from 2005 to 2010. Sub-player 43 has rural population of 82.7-68.0×104 

persons, 81.9-67.3×104 persons, 82.5-67.7×104 persons and 83.0-68.2×104 persons, respec-

tively in the four scenarios from 2005 to 2010. Figure 4.27b illustrates that nitrogen dis-

charged into the Danjiangkou Reservoir by sub-player 43 is 313.8-257.7 tons, 310.6-255.1 

tons, 312.8-256.9 tons and 314.7-258.5 tons, respectively in these four rural population 

scenarios from 2005 to 2010.     
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                          Figure 4.27: Scenarios of (a) rural population (×104 persons) and (b) nitrogen 

                                               discharged into reservoir (tons) by player 43  

Figure 4.28a explains the four urban population scenarios of sub-player 42 from 2005 to 

2010. The four scenarios show that this sub-player owns urban population of 25.8-

38.1×104 persons, 25.6-38.4×104 persons, 25.7-38.7×104 persons and 25.9-38.9×104 per-

sons, respectively from 2005 to 2010. Figure 4.28b illustrates that nitrogen discharged into 
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the Danjiangkou Reservoir by this sub-player is 1019.8-1533.3 tons, 1009.6-1517.9 tons, 

1016.7-1528.7 tons and 1022.8-1537.9 tons, respectively in these four urban population 

scenarios from 2005 to 2010. 
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Figure 4.28: Scenarios of (a) urban population (×104 persons) and (b) nitrogen 

                                     discharged into the reservoir (tons) by player 42 

The scenario results of soil erosion of sub-player 43 are displayed in figure 4.29a. Sub-

player 43 has soil erosion of 3230.7 km2, 3036.8-2228.8 km2, 3133.8-2691.1 km2 and 

3327.6-3857.6 km2, respectively in the four scenarios from 2005 to 2010. Figure 4.29b ex-

plains that nitrogen discharged by this sub-player into the Danjiangkou Reservoir is 529.5 

tons, 497.7-365.3 tons, 513.6-441.1 tons and 545.4-632.3 tons, respectively in these four 

soil erosion scenarios from 2005 to 2010.  
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Figure 4.29: Scenarios of (a) soil erosion (km2) and (b) nitrogen 

               discharged into the reservoir (tons) by player 43 

Figure 4.30a and b illustrate the four scenarios of nitrogen fertilizer consumptions of sub-

player 43 and nitrogen discharge into the Danjiangkou Reservoir from 2005 to 2010. The 
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scenario results prove that this sub-player consume nitrogen fertilizer of 2.1-2.8×104 tons, 

1.9-2.6×104 tons, 2.0-2.7×104 tons and 2.2-2.9×104 tons, respectively from 2005 to 2010. 

Nitrogen discharged into the Reservoir by this sub-player is 1811.8-2470.1 tons, 1703.1-

2321.9 tons, 1757.4-2396.0 tons and 1866.2-2544.2 tons, respectively in the four scenarios 

of nitrogen fertilizer consumptions from 2005 to 2010.   
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Figure 4.30: Scenarios of (a) nitrogen fertilizer (×104 tons) and (b) nitrogen 

                                        discharged into the reservoir (tons) by player 43 

Figure 4.31a and b show the four scenarios of pig equivalences and nitrogen produced 

from these animals by player 43 into Danjiangkou Reservoir in these scenarios from 2005 

to 2010. The four scenarios of pig equivalences are 313.4-408.3×104 units, 294.6-

383.8×104 units, 304.0-396.0×104 units and 322.8-420.5×104 units. Nitrogen into Danji-

angkou Reservoir is 3116.5-4060.3 tons, 2929.5-3816.7 tons, 3023.0-3938.5 tons and 

3210.0-4182.1 tons, respectively in those scenarios. 
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                          Figure 4.31: Scenarios of (a) pig equivalences (×104 units) and (b) nitrogen 

                                              discharged into the reservoir (tons) by player 43 
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Figure 4.32a and b shows the scenario results of nitrogen from rural domestic life and ani-

mal husbandry discharged into the Reservoir by sub-player 43 in four treatment scenarios 

from 2005 to 2010. Nitrogen from rural domestic life discharged into the Reservoir is 

313.8-257.7 tons, 273.3-224.5 tons, 287.8-236.4 tons and 300.0-245.6 tons, respectively. 

Nitrogen from animal husbandry discharged into the Reservoir is 3116.5-4060.3 tons, 

2742.5-3573.1 tons, 2867.2-3735.5 tons and 2960.7-3857.3 tons, respectively. 
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       Figure 4.32: Scenarios of nitrogen (tons) discharged into reservoir by (a) rural domestic  

                           life and (b) animal husbandry by player 43 in four treatment scenarios  

Figure 4.33a and b illustrate the nitrogen discharge from urban domestic sewage of player 

42 and industry waste water of player 41 into the Reservoir in four treatment scenarios 

from 2005 to 2010. Nitrogen discharged from urban domestic life into the Reservoir is 

1019.8-1533.3 tons, 888.4-1335.8 tons, 935.4-1406.4 tons and 971.7-1461.0 tons, respec-

tively. Nitrogen discharged from industry waste water into the Reservoir is 174.3-218.9 

tons, 160.6-201.7 tons, 167.4-210.2 tons and 178.7-224.3 tons, respectively. 
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     Figure 4.33: Scenarios of nitrogen (tons) discharged into reservoir from (a) urban domestic life      

                          by player 42, and (b) industry waste water by player 41 in four treatment scenarios  
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Figure 4.34 proves the scenario results of the nitrogen discharged into the Dangjiangkou 

Reservoir by sub-players 41, 42 and 43 of from 2005 to 2010. The results explain that sub-

player 41 discharges into Dangjiangkou Reservoir nitrogen of 174.3-218.9 tons, 170.8-

214.5 tons, 172.6-216.7 tons and 173.5-217.8 tons, respectively in scenario 1 (S1), scenario 

2 (S2), scenario 3 (S3) and scenario 4 (S4), respectively from 2005 to 2010. Sub-player 42 

discharges into the Reservoir nitrogen of 1333.5-1791.0 tons, 1173.5-1576.1 tons, 1226.8-

1647.7 tons and 1266.8-1701.4 tons, respectively in the four scenarios from 2005 to 2010.  

For sub-player 43, he discharges into the Reservoir nitrogen of 5457.8-7059.9 tons, 

4778.8-6045.9 tons, 5052.2-6460.5 tons and 5461.0-7149.5 tons, respectively in the four 

scenarios during the same period of time.  
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Figure 4.34: Nitrogen (tons) discharged into the reservoir by players 41, 42 and 43 (P41,  

P42 and P43) in scenarios 1, 2, 3 and 4 (S1, S2, S3 and S4)  

4.2.5  Scenario results of game 5  

Figure 4.35 illustrates the scenario results of player 1. Player 1 faces water deficits of 10.6-

10.9×108 m3, 3.1-3.8×108 m3, 20.8-21.4×108 m3 and 21.7-21.6×108 m3, in scenario 1 (S1), 

scenario 2(S2), Scenario 3(S3) and scenario 4 (S4),  respectively from 2010 to 2015. The 

results reveal that player 1 will face extreme water shortage in scenarios 3 and 4.   
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Figure 4.35: Water deficit (×108 m3) of player 1 in four scenarios 

Figure 4.36 reveals the scenario results of nitrogen discharged into reservoir by players 2, 3, 

and 4 (P1, P2, P3 and P4) in scenarios 1, 2, 3 and 4 (S1, S2, S3 and S4) from 2005 to 2010.  
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Figure 4.36: Scenarios of nitrogen (tons) discharged into the Reservoir by the players 2, 3 and 4 
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The results explain that player 2 discharges into the Dangjiangkou Reservoir nitrogen of 

28234.9-30818.8 tons, 25031.8-26000.0 tons, 26275.6-27948.1 tons, and 27941.4-31305.2 

tons in scenario 1 (S1), scenario 2 (S2), scenario 2 (S3) and scenario 4 (S4), respectively 

from 2005 to 2010. Player 3 discharges into the Reservoir nitrogen of 22600.9-24318.9 

tons, 20531.2-21629.3 tons, 21375.8-22733.7 tons and 22612.2-24546.1 tons, respectively 

in the different scenarios from 2005 to 2010. Player 4 discharges into the Reservoir nitro-

gen of 6965.6-9069.8 tons, 6123.1-7836.5 tons, 6451.6-8324.9 tons and 6901.3-9068.7 

tons, respectively in the different scenarios from 2005 to 2010.  

Different nitrogen reduction amount of players 2, 3, 4 in the four scenarios are illustrated in 

figure 4.37. In scenario 1 (S1), players 2, 3 and 4 will reduce nitrogen of 6633.0-21355.8 

tons, 5309.4-16581.8 tons, 1636.4-6284.9 tons, respectively from 2005 to 2010. In scenario 

2 (S2), players 2, 3 and 4 will reduce nitrogen of 2938.8-13500.4 tons, 2447.5-11231.1 

tons, 783.9-4069.1 tons, respectively from 2006 to 2010. In scenario 3 (S3), players 2, 3 

and 4 will reduce nitrogen of 11799.7-21719.7 tons, 9599.4-17667.4 tons, and 2897.3-

6469.7 tons, respectively from 2005 to 2010. In scenario 4 (S4), players 2, 3 and 4 will re-

duce nitrogen of 18742.5-27281.1 tons, 15167.8-21390.9 tons, 4629.3-7903.0 tons, respec-

tively from 2005 to 2010.  
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Figure 4.37: Scenarios of nitrogen (tons) reduction of players 2, 3 and 4 
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4.3 Discussion 

Generally speaking, the simulation results prove that cooperative games bring the players a 

collective benefit, although some sub-players will be worse-off. However, each player will 

be better off if a side payment is made from the beneficial players to the worse-off players.  

The scenario results illustrate that the structure of the game simulation are not so stable, 

and there are uncertainties and risks in the simulation models due to changes of driving 

forces in the future.  

4.3.1 Discussion of the simulation results  

(1) Discussion of the results of game 1 

The non-cooperation game simulation results interpret that water demand of sub-player 11 

and 13 will be decreased from 5.38×108 m3 to 4.10×108 m3 and from 10.46 ×108 m3 to 

7.99×108 m3 due to efficient use of water from 2010 to 2015. However, sub-player 12 will 

demand much more water from 15.98 ×108 m3 in 2010 to 17.88 in 2015 (Table 4.1). The 

growth of water demand of sub-player 12 is mainly because of the growth population and 

increase of Per capita net income. In the cooperative game, sub-players of 11, 12 and 13 

group together to consider the water quota for urban ecology and share the scarce water 

among them. In this case, each of them certainly obtains less water than that in non-

cooperative game. For example, sub-player can get 5.38 ×108 m3 of water for consumption 

in 2010 in non-cooperative game, but he can only get 4.02×108 m3 of water in the same 

year in the cooperative game (Table 4.2). Therefore, cooperation between sub-players 11, 

12 and 13 makes them worse off. Sub-player 12 will the biggest loser of the three players, 

and sub-player 13 is the second (Table 4.3). This is the reason why each player does not 

want to cooperate with others, and why they overtake ground water and ecological based 

water and compete for water.  

Although they can get much more water for consumption in non-cooperation than that in 

cooperation, the non-cooperation will severely destroy the environment. In a long run, wa-

ter will gradually become much more scarcity, and this causes the problem of “The Trag-

edy of Commons”. From the society point of view, this game forms a prisoners’ dilemma 

game. However, this prisoners’ dilemma game is quite different from the one widely cited 

in the literature. The prisoners’ dilemma game can be solved by designing a mechanism, 

which can drive the players to reach collective rationality by changing the game rules (Wei 
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and Gnauck, 2007d). However, this prisoners’ dilemma game cannot be solved by just 

changing the rules due to sever resources shortage. In order to stress the specialty of this 

kind of game, it would rather name it as “Resource deficit dilemma game” or “Prisoners’ 

dilemma game in case of resource deficit” than “Prisoners’ dilemma game”. 

(2) Discussion of the results of games 2, 3 and 4 

Those three games are TN reduction games.  From the results of non-cooperative game 

simulation, it sees that the nitrogen productions of sub-player 21 is decreased and this is 

mainly because of the increase of industry waste treatment rate due to government policy 

of limiting industrial waste discharge (Wei, 2007). However, the nitrogen production of 

sub-players 22, 23, 32, 33, 42 and 43 are still increasing mainly due to their low rate of 

waste treatment and relatively undeveloped economy if the current policy holds constant 

(Tables 4.4, 4.6, 4.8). The cooperative game simulation results of games 2, 3 and 4 confirm 

that sub-players 23, 33 and 43 are the largest polluters in each game, respectively. The sec-

ond largest polluters are sub-players 22, 32 and 42 in each game, respectively. Considering 

all those games, the largest polluter is sub-player 23, the second one sub-player 22, and the 

last one sub-player 41 (Tables 4.4-4.9). 

Those three games also belong to prisoners’ dilemma games. Every player has no incentive 

to reduce pollutants, because he can save cost by free-riding others’ achievement. At the 

end, the deterioration of water body will increase, which in turn harm the players. However, 

cooperation will make the players full of risks and uncertainties.   

(3) Discussion of the results of game 5 

In game 5, payoffs of player 1 and his sub-players 11, 12 and 13 are calculated at current 

prices (Matrix 4.1 and Table 4.10) and at comparable prices (Matrix 4.2 and Table 4.15), 

respectively. The payoffs at current prices include inflation, and the comparison results of 

payoffs at current prices usually lack reliability and stringency. The Consumer Price Index 

(CPI) is used to discount the payoffs of player 1 and his sub-players from 2010 to 2015 

into the values from 2005 to 2010, respectively (Table 4.14). CPI is a good indicator of in-

flation, which is widely used to transfer the values at current prices into values at constant 

or comparable price(s). Those simulation results prove that non-cooperation will cost 

losses to player 1 and his sub-players, while cooperation will bring losses to players 2, 3 

and 4 as well their sub-players. However, cooperation will produce much larger benefits to 

the society than non-cooperation. Therefore, at the end of game, if players 1 and his sub-
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players transfer part of their benefits to cover the losses of other players, every player and 

sub-player better off in cooperative game.   

4.3.2 Discussion of the scenario results  

Games of 1, 2, 3 and 4 are games of prisoners’ dilemma, and game 5 is an assurance game. 

From an aspect of the game models structure itself, there will be risk and uncertainty if the 

coalition between all the players is not stable in the cooperative game. Full cooperation 

will make all players collective better off, but individual players will face risk if some 

players take free-riding strategies or cooperate one time and do not cooperate another times. 

In the game of prisoners’ dilemma, every individual player will face highest risk because 

he will get the lowest payoffs if he cooperates. In the assurance game, the collective payoff 

is still not the social optimum because the cooperative results are still not assured. In this 

connection, the coalitions in the game simulation are not stable.  In addition, the results of 

future are usually various due to the uncertain changes of external driving forces in the fu-

ture. Four scenarios were designed in order to analyze the risks and uncertainties in the 

game simulation and try to find out which drive force is the main factor influences the 

game structure.    

(1) Discussion of the scenario results of game 1 

Scenario results of added value and water demand prove that players 11 (industry), 12 

(domestic life) and 13 (agriculture) demand much more water in the economic developed 

scenario than that in undeveloped scenarios. This confirms that faster economic develop-

ment will increase water demand of those three players (Fig. 4.1, Fig. 4.2 and Fig.4.4). 

However, in each of the four scenarios, water demand of players 11 and 13 are decreasing 

with economic development (Fig. 4.1b and Fig. 4.4b), and this is mainly because industrial 

and agricultural water consumption usually becomes more efficient with economic growth 

and also because governmental polices reduce industry water consumption in this sever 

water scarce area. For player 12 (household), the growth of net income will push water 

demand to increase if others hold constant in each of the four scenarios (Fig. 4.2b). The 

four population scenarios reveal that population growth is not sensitive to domestic water 

demands of player 12 (Fig. 4.3). Comparing the scenario results of those three players, it 

illustrates that water demand of player 13 is very sensitive to the economic development, 

while the sensitivity of domestic water demand is lower to the economic development.  
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With the technological development, more urban water sewage will be reclaimed into fresh 

water (Fig. 4.5b). With the enhancement of environmental and ecological protection 

awareness of people, the ecological based water demand and water use will be increased. 

However, the scenario results display that ecological based water demand is much less than 

ecological based water consumptions (Fig. 4.6). Therefore, it is clearly seen that ecology 

has a sever water deficits. In the scenario of high water supply, water demand is also very 

high (Fig. 4.7).  The scenario results of water demand and water supply confirm that player 

12 will face the most severe problem of water deficits, and players 13 and 11 are the sec-

ond and third  in the cooperative game (Fig. 4.8-4.10). In summary, with the technological 

development of reclaim water, water supply increases. However, due to the increases of 

ecological water use and demand, water supply to players of 11, 12 and 13 still cannot 

meet their water demand even in optimistic scenario 2. 

(2) Discussion of the scenario results of games 2, 3 and 4 

The games 2, 3 and 4 are nitrogen reduction games, and the scenario results are discussed 

together due to their similarities. The rural population decreases in the four scenarios, due 

to urbanization and much more people move to cities (Fig. 4.11a, Fig.4.19a and Fig. 4.27a). 

In the highest rural population growth rate scenario, the nitrogen discharged into the Danji-

angkou Reservoir by players 23, 33 and 43 is also the biggest, and vice-versa (Fig. 4.11b, 

Fig. 4.19b and Fig. 4.27a). Just opposite to rural population, the urban population keeps 

increasing (Fig. 4.12a, Fig. 4.20a and Fig. 4.28a). In each scenario, the urban population 

growth results in the increase of nitrogen discharge into the Reservoir. In the scenario of 

higher rate urban population growth, much larger the nitrogen discharge is (Fig. 4.12b, Fig. 

4.20b and Fig. 4.28b). The nitrogen discharge is decreased with the reduction of soil ero-

sion area (Fig. 4.13, Fig. 4.21 and Fig. 4.29). In the four scenarios of nitrogen fertilizer 

consumption, more nitrogen fertilizer consumption causes more nitrogen discharged into 

the reservoir. In each of those scenarios, nitrogen fertilizer consumption of player 23 be-

comes very stable. However, nitrogen discharge from consumption of nitrogen fertilizer of 

player 23 is still keeping increasing for a certain period of time (Fig. 4.14). The nitrogen 

fertilizer consumption of player 33 still maintains increasing, but nitrogen from consump-

tion of nitrogen fertilizer of player 33 has a trend of slow decrease (Fig. 4.23b) in each sce-

nario. For player 43, the consumption of nitrogen fertilizer and its related nitrogen dis-

charged into the reservoir are both increasing (Fig 4.30). The number of domestic animals 

and poultry of player 23 and 43 keep on increasing, and thus the nitrogen is also maintain-
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ing to grow. The scenario of highest growth of animal husbandry causes the highest nitro-

gen discharge if others keep constant (Fig. 4.15 and Fig. 4.30). As for player 33, the sce-

nario results confirm that the numbers of animals and poultry and their related nitrogen 

discharge into the Reservoir increase during 2005 to 2007, and then they decrease.  In the 

four waste treatment scenarios, the highest rate of waste water treatment will bring the 

lowest nitrogen discharged into the reservoir (Fig. 4.16, Fig. 4.17 and Fig. 4.32). In each 

scenario, nitrogen from rural domestic life of players 23, 33 and 43 into the reservoir is de-

creased (Fig. 4.16a, 4.24a and 4.32a) due to increasing rate of waste treatment in this field. 

With reference to the industrial nitrogen discharge, the discharge of player 21 is decreasing 

(Fig. 4.17b), but the discharge of player 31 and 41 is still maintaining increase (Fig. 4.25b 

and Fig. 4.33b). However, nitrogen discharge from urban domestic life still keep increasing 

in each scenario, and this is mainly because the waste treatment rates of urban sewage are 

still very low (Fig. 4.16a, Fig. 4.25a and 4.33a). Player 23, (agriculture) is the main nitro-

gen pollutant source of the Reservoir, and the second is player 22 (domestic life) (Fig. 

4.18).    

The scenarios of games 2, 3 and 4 confirm that animal husbandry growth, nitrogen fertil-

izer consumption, soil erosion and rural population growth are the first, second, third and 

fourth main nitrogen populates sources, respectively in those three games. In the four sce-

narios of each game, animal husbandry is the most sensitive driving force to nitrogen dis-

charge into the reservoir.  

(3) Discussion of the scenario results of game 5 

With reference to the water polluters in the four scenarios, player 2 is the main polluters 

(Fig. 4.36), and he has responsibility to reduce much more nitrogen discharge than the 

players 3 and 4 (Fig.4.37). However, it will impose much more cost on player 2 to reduce 

more nitrogen discharge. Therefore, player 2 maybe free rides others’ achievements of ni-

trogen reduction most time, and thus the risk of non-cooperation will probably come from 

this player. As for the scenarios, scenario 4 is the highest risk scenario, in which deteriora-

tions of water quality will be increased due to more nitrogen emitting in the reservoir.  

4.3.3 Evaluation of the results 

The models are selected based on the statistical and econometric standards and test, such as 

goodness of fit (R2 and adjust- R2), F test, t test, test of 4 Gauss-Markov conditions and 
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disturbance term assumption, etc. However, in practice, whether the results are believable 

also depends on the quality and forecasting abilities of the models. The common approach 

to evaluate the simulation results is to split T observations in the data set into T1 observa-

tions to be used for estimation, and the rest T2 for testing and evaluations. T2 is the last 

observation taken from every data set in this study, so the horizon of prediction of errors is 

one year. Based on this method, the evaluation results of the game models are demon-

strated in tables 4.16-4.18. In those tables, the observation is the real value of each variable 

in each different year, and the forecast is the value that each model predicted. The residual 

is the difference between the forecast and observation. The error is the ratio of residual to 

the observation.  

The evaluation results of simulation of the game 1 and its sub-games are given in the table 

4.16. From these results, it is seen that the minimum simulation error is 0.14% and the 

maximum is 5.11%. Table 4.17 proves the evaluation results of simulation of games 2, 3 

and 4 and its sub-games. The minimum error of simulation results is 0.22% and the maxi-

mum error is 16.51%.  In summary, the results of simulation errors are classification in ta-

ble 4.18. The table reveals that the maximum error is 16.5% and minimum is 0.14%. These 

results demonstrate the models used in game simulation have good predicting abilities and 

the simulation results have high practical values.  

Table 4.16: Comparisons of the observations and forecasts in game 1 and its sub-games 

T2 Variable Observation Forecast Residual Error (%) 
2005 Dw 8.82 9.03 0.21 2.41 
2005 Q1eR 6.27 6.25 -0.02 0.32 
2006 Q11  6.39 6.71 0.32 5.01 
2006 Q12 14.30 14.20 -0.10 0.70 
2006 Q13 12.90 12.48 -0.42 3.26 
2006 V11 1848.50 1851.07 2.57 0.14 
2006 V12 2876.60 2956.21 79.61 2.77 
2006 V13 98.00 99.68 1.68 1.72 
2006 β11 289.28 292.76 3.48 1.20 
2006 β12 201.16 208.03 6.87 3.42 
2006 β13 7.60 7.99 0.39 5.11 
2006 Id 653.6 666.9 13.3 2.03 
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Table 4.17: The comparisons of observations and forecasts in games 2, 3 and 4 and their sub-games 

T2 Variable Observation Forecast Residual Error (%)
2000 Qf 232.76 249.40 -16.64 7.15
2005 Ẅ21 3272.00 3164.18 -107.82 3.30
2005 Ẅ31 12582.00 14658.96 2076.96 16.51
2005 Ẅ41 1668.33 1672.03 3.70 0.22
2005 L22U 155.59 156.42 0.83 0.53
2005 L22R 758.57 748.54 -10.03 1.32
2005 L32U 136.76 133.74 -3.02 2.21
2005 L32R 218.04 224.11 6.07 2.78
2005 L42U 25.81 23.53 -2.28 8.84
2005 L42R 82.72 85.73 3.01 3.64
2005 Ẅ22U 2281.78 2519.75 237.96 10.43
2005 Ẅ32U 7978.56 8622.63 644.07 8.07
2005 Ẅ42U 1199.02 1102.13 -96.88 8.08
2005 Ẅ22U 2281.78 2519.75 237.96 10.43
2005 Ẅ32U 7978.56 8622.63 644.07 8.07
2005 Ẅ42U 1199.02 1102.13 -96.88 8.08
2005 Ö23 1052.90 1062.76 9.86 0.94
2005 Ö33 309.78 320.26 10.48 3.38
2005 Ö34 313.38 308.43 -4.95 1.58
2005 F23 14.41 14.52 0.11 0.76
2005 F33 6.48 6.16 -0.32 4.94
2005 F43 2.10 2.14 0.04 1.85
2005 V23 435.77 423.40 -12.37 2.84
2005 V33 1082.13 1109.69 27.56 2.55
2005 V43 1892.01 1846.62 -45.39 2.40

Table 4.18: Errors classification and analysis 

Errors (%) Max. Min. Obs. 
[0, 5.0) 4.94 0.14 26 
[5.0, 10) 8.84 5.01 7 
[10, 15) 10.43 10.43 2 
[15, 20) 16.64 16.51 2 

All 16.51 0.14 37 

As for water supply, water demand and water shortage, the general results are consistence 

with the study of Li and Xiu (2004) and CWRPI (2005), although there are differences in 

the specific forecasting values between this research and their researches. All those results 

turn out that the player 1 and his sub-players have water deficit even in high technology 

developed scenarios. Comparing with their specific forecasting results, the results of this 

research are more reliable, because their results were deduced based on socio-economic 

data prior to 1997. As for the TN pollution reduction results, so far no study has made such 

detailed analysis and forecast. In this connection, the scenario results also have very high 

practical values for decision makers to make policies and planning on water quantity dis-
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tribution, water quality protection, water pricing as well as ecological loss compensation 

for the South to North Water Transfer projects.  

However, due to lacking of long time series date of the evaporation and water price, the 

scenarios have not included the effects of climate change on water supply, water deficits 

and TN concentration and the price elasticity of water demand. It is also very necessary to 

make a future study on those aspects in the future.     
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5. Conclusions  

Water is essential for the existence of human and all other species. However, degradation 

of water quality and scarcity of water quantity are two severe problems in developing 

countries. Water resource management is vital and complex because it usually involves 

water conflicts of multi-stakeholders with contradictory interests, goals and strategies. The 

overall objective and principles of water management are to promote the coordinated de-

velopment of water in order to maximize economic, social and environmental welfare in 

equitable, efficient and sustainable manners. There are different policy instruments which 

can be used to solve water conflicts. Dinar et al. (1997) and Wang et al. (2003) analyze 

four basic institutional mechanisms for water allocation, i.e. public allocation, user-based 

allocation, marginal cost pricing, and water market allocation. Bonnie and D’estree (2000) 

and Mostert (1998) present four methods - litigation, market transactions, political deal-

making and alternative dispute resolution techniques - to resolve water conflicts. Water 

markets approach is one frequently cited in the literature, but water market is hard to estab-

lish a real water market in most countries. In the absence of market and exclusive property 

rights, conflicts between the multi-actors on competing uses over water are still unavoid-

able.  

The overall objective of this research is to develop a practical game theoretical modeling 

and simulating approaches to solve the water conflicts and promote the maximization of 

the collective welfares from a socio-economic and environmental perspective. In order to 

realize the objective, conflicts are regarded as the main course of the research. It includes 

defining the conflicts and conflicts bodies, translating the conflicts in games, analyzing the 

conflicts, and finding solution to solve the conflicts. Non-cooperative and cooperative 

game methods are used separately to model and simulate water conflicts. Non-cooperative 

modeling approach is used to analyze why players do what they are doing. Cooperative 

approach is used to analyze how they can do better. The aim to analyze non-cooperative 

game is to find better solution for cooperation.  



 
On the use of game theoretic models for water resources management   125     

Game is a metaphor of the rational behaviors of multi-actors in an interacting or interde-

pendent situation, such as cooperating or coalition, conflicting, competing, coexisting, etc. 

Game theory is the study of the strategies and equilibrium of the actors, and to analyze how 

the players can do better. Game theory was originally applied into the cost distribution in 

joint water resource projects. It has been applied to solve the cost distribution of water re-

source projects, allocation of waste, water rights and water amount, transboundary pollu-

tion, analysis of water police and so on. However, so far most game theoretic models have 

not solved the water problems where there exist conflicts of both quality and quantity. 

Like other sciences, game theory itself is comprised of a collection of models. It is usually 

divided broadly two approaches, either non-cooperative approach or cooperative approach. 

The non-cooperative game models can be divided into two kinds, namely strategic games 

and extensive games. Strategic (or normal) games are usually applied to model the static 

(or simultaneous-move) games, and an extensive game is usually used to model dynamic 

games, such as dynamic games. Some game models are widely used in the literature, and 

these games include zero-sum game, prisoners’ dilemma game, chicken game, assurance 

game as well as driving force game. Generally speaking, all the environmental (or water) 

resource games are classified into the three kinds, namely HH game (the games in the soci-

ety of human beings), HN game (games between homo sapience and the nature) and NN 

games (the games in nature).  

Those modeling approaches consists of defining the conflicts and formulating these con-

flicts as a game, setting up game model, analyzing the game model, solving the game as 

well as interpreting the results. The games can be defined either by the types of activities or 

fields (industry, agriculture, domestic life and nature, etc,) or the regions in which activities 

take place. The non-cooperative and cooperative game theoretic models are developed for 

water resource management in a river basin scale. With reference to the establishment of 

these models, the main steps are to decompose the river system, define the game and how 

each player to optimize water quantity and water quality respectively in order to maximize 

his or her payoff. The essence of non-cooperative game theoretic model is that every player 

maximizes net benefits, i.e. the values produced by using per unit water minus the cost to 

reduce the waste. Similarly the cooperative game theoretic model is that all the players 

maximize the collective net benefits, and find method to share the benefits or cost fairly. 

The main types of data used for the game the game theoretic models include socio-

economic data, climatological, hydrological data water quality data as natural resource data.  
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Water resource in China is much unevenly distributed in time and space, and water short-

age has been a long-time and widespread problem in Northern regions of China. In order to 

mitigate the existing crisis of water resources, the engineers in the country proposed the 

South to North Water Transfer (SNWT) Projects. Middle Route Project (MRP) will divert 

water from the Danjiangkou Reservoir in the Hanjiang River Basin. The conflicts involved 

in the Hanjiang River Basin are defined mainly by water transfer activities. Firstly water 

transfer sets a higher standard on water quality in the Danjiangkou Reservoir, which will 

raise local cost to reduce pollutants. Secondly, a substantial amount of water diverted will 

cause a reduction of runoff and water level, and thus it will change the ecological condition 

in the downstream of the river. The conflicts on water quality and quantity involved in the 

Hanjiang River Basin are modeled as a game or a set of games. As an illustrative example, 

the cities of Hanzhong, Ankang, and Shangluo of Shaanxi province, Shiyan city of Hubei 

province and counties of Xixia and Xichuan of He’nan province and Beijing municipality 

are modeled as four players’ game. This game is composed of four sub-games including 

water seizing game and three pollutants reducing games. In each sub-game, industry, do-

mestic life and agriculture are regarded as three sub-players. In the game simulating proc-

ess, players in each game and sub-game make both non-cooperation and cooperation. 

Comparing the results of non-cooperative and cooperative games, the main results are ob-

tained.  

Water seizing game causes a prisoners’ dilemma. The results of the simulation of water 

seizing game turn out that non-cooperation will bring each player the water they need. 

However, this will greatly damaged the ecology and environment by seizing water from 

ecology, which in turn will influence the economic development and the life of local peo-

ple. Cooperative game will share more water to ecology, but industry, domestic life and 

agriculture will face serious water deficits. The results of cooperative game in game 1 

show that player 11 (industry), player 12 (domestic life) and player 13 (agriculture) will 

respectively suffer water deficits of 104-136 million m3, 403-455 million m3, and 263-265 

million m3 during 2010 to 2015.  

The games of reducing nitrogen pollutants are also games of prisoners’ dilemma, in which 

reducing pollutants are beneficial to players but players have no incentive to do that. The 

simulating results of games 2, 3 and 4 demonstrate that non-cooperation cannot improve 

the water quality in the Danjiangkou Reservoir to the standard level due to the free riding 

problems; cooperation will improve the water quality to the standard while extra costs will 
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impose to the players. The results of cooperative game in game 2 explain that players 21, 

22, 23 should reduce nitrogen 163.2-356.2 tons, 9439.4-28040.0 tons and 64350.3-

201482.3 tons, respectively from 2005 to 2010.  The results of cooperative game in game 3 

reveal that players 31, 32 and 33 should reduce nitrogen of 89.2-506.2 tons, 3695.0-

11581.8 tons and 15672.5-51276.9 tons, respectively from 2005 to 2010. The results of 

cooperative game in game 4 prove that players 41, 42 and 43 reduce nitrogen of 45.6-165.8 

tons, 1120.7-3247.4 tons and 13553.3-52755.2 tons, respectively from 2005 to 2010 

The game 5 is the first level game, and this game is a chicken game. These results demon-

strate that the non-cooperative game will cost player 1 losses of 13.6×1011 RMB at compa-

rable prices from year 2010 to 2015, but it yields players 2, 3 and 4 a total benefits of 

1.1×1011 RMB. For sub-players 11, 12 and 13, non-cooperation will bring them losses of 

66.28-122.23 billion RMB, 123.07-261.494 billion RMB and 2.45-2.77 billion RMB at 

comparable prices, respectively due to water deficits during 2010 to 2015. However, in co-

operation game, players 21, 22 and 23 will lose 15.0-32.0 million RMB, 3.91-4.02 billion 

RMB and 3.89-9.85 billion RMB, respectively from 2005 to 2010.  Players 31, 32 and 33 

will lose 0.059-0.34 billion RMB, 1.15-1.7 billion RMB and 0.70-2.60 billion RMB, re-

spectively, and the players 41, 42 and 43 will lose 0.008-0.029 billion RMB, 3.82-3.84 bil-

lion RMB and 0.35-1.78 billion RMB, respectively. Comparing the overall costs and bene-

fits, there is an overall loss of 12.6×1011 RMB when each player does not cooperate with 

the others. The cooperative game results confirm that there is an overall benefit of 

12.6×1011 RMB, though players 2, 3 and 4 lose 1.1×1011 RMB. Therefore, all the players 

will be better off if a side payment is made between them at the end of the cooperative 

game.  

The simulation estimation explains that the maximum error is 16.5% and minimum is 

0.14%. Therefore, the models used in game simulation have good predicting abilities and 

the games results have high practical values. The scenario results of game 1 reveal that 

technological development and the increase of water reclaiming rate in the future, water 

supply will increase. However, due to the increases of ecological based water use and de-

mand in the future, water supply to players 11, 12 and 13 still cannot meet their water de-

mand even in the optimistic scenario. In the four scenarios, sub-player 12 will face the 

most severe water deficits, and player 13 and player 11 are the second and third respec-

tively.  The scenario results of games 2, 3 and 4 prove that animal husbandry growth, ni-

trogen fertilizer consumption, soil erosion and rural population growth are the first, second, 
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third and fourth big nitrogen populates sources, respectively. In each scenario, animal hus-

bandry growth is the most sensitive driving forces and sub-players 23, 33 and 43 are the 

main nitrogen polluters, and the seconds are sub-players 22, 32 and 42 in games 2, 3 and 4, 

respectively. The scenario results of game 5 demonstrate that player 1 and his sub-players 

will face the highest risk in scenario 4 (S4), and they will cost greatest losses if they do not 

cooperative with other players in scenario 4. The results also confirm that player 2 is the 

largest polluters, and the risk of non-cooperation most probably comes from him, and this 

risk will be very high in scenario 4.  

In conclusion, the game theoretic simulation results illustrate that cooperation brings some 

players or sub-players losses, but it will produce much more collective benefits and each 

players or sub-players will be better off if a side payment is made from the beneficial play-

ers to the losers. This game theoretical modeling and simulating approach not only facili-

tates a clear comparison of the different water users, but is also beneficial to water decision 

makers. These game results will benefit for the water users, administration and water sup-

ply companies. 

In this research there are still some limitations and numbers of assumptions:   

 Some players have not been included in the simulation process, which are Tianjin 

municipality, Hebei province, the water receiving part of Henan province and the 

middle and low reaches of the Hanjiang River of Hubei province;  

 The stabilities of coalition has been analyzed, but the risks and uncertainties result-

ing from the instabilities has not been estimated; 

 Some pollutant sources of nitrogen in the Danjiangkou Reservoir are not included 

in this research, such as the trash, finishing industry, air pollution, pesticide, ship-

ping and the internal sources of reservoir; 

 It analyzes and forecasts the minimum water demand of urban ecology, and the 

minimum water demand of river has not been considered; 

 The ecological based economic losses resulting from water shortage has not been 

estimated. Therefore, the losses of industry, domestic life and agriculture have not 

been compared with the ecological based economic losses; 

 The benefits of reducing pollutants and losses of not reducing to local people have 

not considered in this research;  
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 In the scenarios analysis, whether climate change, such as precipitation change, 

global warming will affect the water supply and demand and water quality in the 

future has not been included in this paper; 

 The price elasticity of water demand to all the players has not been included into 

the scenario analysis;  

 Only the 20% wet, 75% and 95% hydrological years has been studies, and other 

situations are not included.  

In order to improve applicability of the methodology and the simulation and models, it 

is very necessary to make the following researches in the future:  

 Including all other players into the simulation process; 

 Estimating the risks and uncertainties resulting from the instabilities of coalition; 

 Considering other pollutants sources of the River Basin in order to provide a 

much more appropriate methods for all players to share the quota to reduce pol-

lutant sources; 

 Developing a model of real ecological based water demand as the constrains of 

water supply; 

 Estimating the economic losses of ecology resulting from water shortage in or-

der to compare the economic losses of industry, domestic life, agriculture with 

the economic losses of ecology; 

 Studying and estimating the benefits of  reducing pollutants and the losses of 

not reducing pollutants to local people;  

 Studying the overall interrelationships between climate change and water and 

air temperature, water supply and water demand as well as water quality, and 

how they in turn influence the game structure;  

 Studying the price elasticity of water demand to different players; 

 Defining more scenarios and analyzing the cross scenarios in order to avoid the 

future risks and uncertainties and plan a more ideal future;  

 Applying game theoretic simulation to other lines of South-to- North Water 

Transfer Projects and other river basins.  
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