
Optimization of Network Intrusion

Detection Processes

Von der Fakultät für MINT – Mathematik, Informatik, Physik,

Elektro- und Informationstechnik

der Brandenburgischen Technischen Universität Cottbus–Senftenberg

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

vorgelegt von

Master of Science (M.Sc.)

René Rietz

geboren am 15.07.1982 in Cottbus

Gutachter: Prof. Dr.-Ing. habil. Hartmut König

Gutachter: Prof. Dr.-Ing. habil. Falko Dressler

Gutachter: Prof. Dr.-Ing. Felix Freiling

Tag der mündlichen Prüfung: 17. November 2017

Abstract

Intrusion detection is a concept from the őeld of IT security. Network intrusion detec-
tion systems (NIDS) are used in addition to preventative measures, such as őrewalls,
to enable an automated detection of attacks. Network security threats often consist
of multiple attack phases directed against various components of the network. During
each attack phase, varying types of security-related events can be observed at various
points in the network. Security monitoring, however, is nowadays essentially limited
to the uplink to the internet. Sometimes it is also used to a limited extent at key
points within a network, but the analysis methods do not have the same depth as at
the uplink. Other areas, such as virtual networks in virtual machines (VMs), are not
covered at all, yet.

The aim of this thesis has been to improve the detection capability of attacks in local
area networks. With a glance at the area of safety engineering, it appears efficient
to secure these networks thoroughly and to develop additional monitoring solutions
only for the remaining problem cases. This entails several challenges for the analysis
of different parts of the TCP/IP stack. The lowermost part of the network stack has
to be analyzed for attacks on network components, such as switches and VM bridges.
For this, there is still no technology. Although attacks on the layers 2 and 3, such
as ARP spooőng and rogue DHCP servers in physical networks, can be controlled
to some extent by appropriate switches, equivalent methods are not used in virtual
networks. Therefore, a software-deőned networking based approach is proposed to
counteract the respective attacks, which works for physical and virtual networks. The
upper layers are already largely covered by traditional NIDS methods, but the rapidly
increasing data rates of local area networks often lead to an uncontrolled discarding
of traffic due to overload situations in the monitoring stations. Therefore, the draw-
backs of current optimization approaches are outlined based on a detailed performance
proőling of typical intrusion detection systems. A new approach for parallelizing the
intrusion detection analysis that copes with the increasing network dynamics is in-
troduced and evaluated. Since further special issues for NIDS particularly go back
to the massive use of web technologies in today’s networks, a őrewall architecture is
presented which applies novel NIDS methods based on machine learning to identify
web applications and to ward off malicious inputs. The architecture addresses the
entire process chain starting from the data transfer with HTTP via the analysis of
manipulated web documents to the extraction and analysis of active contents.

i

Contents

List of Figures v

List of Tables vii

List of Abbreviations ix

1 Mitigation and Detection of Network Security Threats 1

1.1 Safety Engineering, Security Engineering and the Concept of Intrusion
Detection . 1

1.2 Attack Phases and Their Impact . 3
1.3 Detection Methods and Mitigation Strategies 5
1.4 Attack Severity Rankings . 13
1.5 Open Research Challenges . 14
1.6 Structure of This Thesis . 18

2 Restriction of Internal and Targeted Attacks 21

2.1 Classical Threats for Local Area Networks 21
2.2 IPv6-based Attacks . 26
2.3 Approaches to Ward Off LAN Attacks 29
2.4 An Approach to Protect Switched LANs and Virtual Machine Networks 31
2.5 SDN-based Security Services . 35
2.6 Evaluation . 43
2.7 Conclusions . 44

3 Local High-Speed Monitoring with Parallel NIDS 49

3.1 The Parallelization Approach of Suricata 51
3.2 Further NIDS Optimization/Parallelization Approaches 58
3.3 Multi-threaded NIDS under Attack Conditions ś Discussion of Related

Work . 59
3.4 Design Options for Fully Functional Parallel NIDS Architectures 61
3.5 A Novel Dynamic Parallelization Approach for NIDS 66
3.6 Evaluation of the Approach . 71
3.7 Comparison with Related Parallel Approaches 78
3.8 Conclusions . 80

4 Firewalls and NIDS for Web Applications 83

4.1 Cross-Site-Scripting Attacks . 84

iii

Contents

4.2 Current Approaches to Improve Web Security 85
4.3 Non-Applicability of Classical NIDS Methods 87
4.4 Web Analysis for Application Firewalls 92
4.5 Implementation Details . 100
4.6 Experimental Evaluation . 101
4.7 Conclusions . 109

5 Summary and Outlook 111

Bibliography 115

iv

List of Figures

1.1 FMEA workŕow (based on [1]) . 2
1.2 Potential Security Engineering Workŕow 3
1.3 APT lifecycle (based on [2]) . 4
1.4 Memory paging and segmentation (based on [3]) 7
1.5 Stack segment of a x86 CPU (based on [3]) 7
1.6 Memory layout on a protected Linux (x64) host 8
1.7 Protocol stack . 10
1.8 Network security setup . 11
1.9 Architecture of Snort . 12
1.10 Example scenario of an internal/targeted attack 15
1.11 Structure of this thesis in relation to different parts of the network

protocol stack . 19

2.1 ARP Scan . 22
2.2 ARP-Spooőng . 23
2.3 Port-Stealing . 24
2.4 DHCPv4 Spooőng . 25
2.5 IPv6 Multicast Alive Scan . 27
2.6 Router Advertisement, DHCPv6, and DNS Spooőng 28
2.7 IPv6: fragmentation as extension header 29
2.8 OpenFlow overview . 32
2.9 Approach for SDN-based security services 33
2.10 SDN-based virtual machine switch . 34
2.11 EAP/RADIUS authentication using SDN/OpenFlow 36
2.12 Protocol switching . 38
2.13 IP switch conőguration with virtual gateway addresses 40
2.14 IP switching (a.k.a. routing) with virtual MAC addresses 41

3.1 Peak rates for the most active day of the week in the university data
center . 49

3.2 File and VM services peak rates for the most active day of the week in
the university data center . 50

3.3 Pipeline architecture of Snort . 51
3.4 Suricata’s parallelization architecture 52
3.5 Suricata’s speedup versus the prediction using Amdahl’s formula for

Snort . 55

v

List of Figures

3.6 Relation between the CPU caches, the global memory pool, and the
packet queues in Suricata . 57

3.7 Typically removed pipeline stages in current parallel NIDS approaches . 60
3.8 Reconnaissance, takover, and DOS behavior 61
3.9 Example of two general parallel NIDS architectures 63
3.10 Parallel multi pattern search . 64
3.11 Push-based dynamic parallel NIDS approach 67
3.12 Memory management of the architecture 69
3.13 Setup of the push-based approach as an external load balancer to Snort 71
3.14 Amdahl’s prediction in comparison with the push-based implementation

with/without ŕow conőguration and Suricata 72
3.15 Scalability for different numbers of Snort instances on a 6-core machine 73
3.16 Scalability for different number of threads on a 20-core machine 75
3.17 Performance for different buffer sizes 76
3.18 Performance increase with disabled ŕow analysis 79

4.1 Structural changes of stored XSS . 84
4.2 Structural changes of reŕected XSS . 85
4.3 Analysis evasion using XHTML . 89
4.4 Analysis evasion using malformed HTML 90
4.5 Snort IDS signature for an attack on the Windows Help Center 91
4.6 JavaScript program łeval(alert(1))ž encoded exclusively with symbols . 91
4.7 Firewall architecture for web applications 92
4.8 Deployment scenarios for the analysis units 93
4.9 HTTP client-side state machine (based on https://www.w3.org/People/

Frystyk/thesis/HTTP.gif) . 95
4.10 Feature extraction from the document object model 97
4.11 Feature extraction from the JavaScript AST 98
4.12 n-grams from Google and Facebook document structures 99
4.13 DOM annotations with identiőed structural problems 100
4.14 Analysis Library for Web Applications (excerpt) 101
4.15 Relationship between parsers and analysis plugins 101

vi

https://www.w3.org/People/Frystyk/thesis/HTTP.gif
https://www.w3.org/People/Frystyk/thesis/HTTP.gif

List of Tables

2.1 IPv4 address resolution service rules . 38
2.2 IPv6 address conőguration rule . 39
2.3 IPv6 address resolution rules . 39
2.4 Routing rules for Figure 2.14 . 42
2.5 Static rules against őrewall bypass . 43

3.1 Characteristics of the used datasets . 53
3.2 Runtime of Snort and Suricata . 54
3.3 Percentage of analysis time for each stage of the Snort pipeline 55
3.4 Context switches and cache misses for Snort and Suricata 58
3.5 Performance versus accuracy of Snort with/without ŕow analysis . . . 60
3.6 Merge/append structure of the combined data set 74
3.7 Context switches and cache misses of the prototype [% of Suricata] . 77
3.8 Load balancing and ŕow reconőguration (total alerts [unique alerts]) . . 78
3.9 Missed alerts ś stateless compared to stateful load balancing 79

4.1 Detection capability of HTML models 104
4.2 Detection capability of JavaScript models 104
4.3 Combined detection capability . 104
4.4 Detection stability of HTML models 105
4.5 Detection stability of JavaScript models 106
4.6 Detection stability of the combined models 106
4.7 Malware detection capability (Malware = TNR) 106
4.8 Combined results compared to related approaches 107

vii

List of Abbreviations

AJAX Asynchronous JavaScript and XML

ALG Application-level gateway

API Application programming interface

APT Advanced persistent thread

ARP Address resolution protocol

ASCII American standard code for information interchange

ASIC Application-speciőc integrated circuit

ASLR Address space layout randomization

AST Abstract syntax tree

CFI Control ŕow integrity

CFS Completely fair scheduler

CPI Code pointer integrity

CPU Central processing unit

CSP Content security policy

CSRF Cross-site request forgery

CSS Cascading style sheets

DARPA Defense advanced research projects agency

DHCP Dynamic host conőguration protocol

DIDS Distributed intrusion detection system

DDOS Distributed denial-of-service

DMZ Demilitarized zone

DOM Document object model

DOS Denial-of-service

DNS Domain name system

ix

List of Tables

DS Directory services

DSSSL Document style semantics and speciőcation language

DPI Deep packet inspection

DTD Document type description

E Error rate

EAP Extensible authentication protocol

EAPoL Extensible authentication protocol over local area networks

EBP Extended base pointer

EPMAP End-point mapper

ESP Extended stack pointer

F1 F-measure

FMEA Failure modes and effects analysis

FMECA Failure modes, effects, and criticality analysis

FN False-negative

FNR False-negative rate

FP False-positive

FPR False-positive rate

FTP File transfer protocol

GPU Graphic processing unit

HTML Hypertext markup language

HTTP Hypertext transfer protocol

IANA Internet assigned numbers authority

ICAP Internet content adaptation protocol

ICMP Internet control message protocol

ID Identiőcation

IDES Intrusion detection expert system

IDS Intrusion detection system

IIS Internet information services

IMAP Internet message access protocol

x

List of Tables

IMP Inspection and modiőcation protocol

IO Input/output

IP Internet protocol

IPS Intrusion prevention system

ISP Internet service provider

IT Information technology

JS JavaScript

L1/L2/L3 Layer 1/2/3

LAN Local area network

LB Load balancer

LDAP Lightweight directory access protocol

MAC Media access control

MIME Multipurpose internet mail extensions

MS Microsoft

MTU Maximum transfer unit

NAT Network address translation

NFS Network őle system

NIDS Network intrusion detection system

ND Neighbor discovery

NIC Network interface card

NOS Network operating system

NS Neighbor solicitation

NSA National security agency

NSM Network security monitor

OFP OpenFlow protocol

OS Operating system

P Precision

P2P Peer-to-peer

PC Personal computer

xi

List of Tables

PCAP Packet capture

PEAP Protected extensible authentication protocol

PIC Position independent code

PIE Position independent executable

PNP Plug and play

POP3 Post office protocol 3

RA Router advertisement

RADIUS Remote authentication dial-in user service

RAM Random-access memory

ROP Return-oriented programming

RPC Remote procedure call

SDN Software-deőned networking

SGML Standard generalized markup language

SLLA Source link layer address

SMB Server message block protocol

SNMP Simple network management protocol

SOAP Simple object access protocol

SPMD Single-program/multiple-data

SQL Structured query language

SSH Secure shell

STP Spanning tree protocol

SVM Support vector machine

SYN Transmission control protocol synchronize message

TCAM Ternary content addressable memory

TCP Transmission control protocol

TFTP Trivial őle transfer protocol

TLB Translation lookaside buffer

TLS Transport layer security

TN True-negative

xii

List of Tables

TNR True-negative rate

TS Terminal services

TP True-positive

TPR True-positive rate

UDP User datagram protocol

ULA Unique local address

URI Uniform resource identiőer

URL Uniform resource locator

USB Universal serial bus

VNC Virtual network computing

VLAN Virtual local area network

VM Virtual machine

VOIP Voice over internet protocol

W3C World wide web consortium

WEBDAV Web distributed authoring and versioning

WEP Wired equivalent privacy

WPA Wi-Fi protected access

WPS Wi-Fi protected setup

WLAN Wireless local area network

XHTML Extensible hypertext markup language

XML Extensible markup language

XSL Extensible stylesheet language

XSLT Extensible stylesheet language translation

XSS Cross-site-scripting

xiii

1 Mitigation and Detection of Network

Security Threats

Network security threats often consist of multiple attack phases against various com-
ponents in the network. During each attack phase, varying types of security-related
events and different traffic patterns can be observed at various points in the network,
e.g., at the uplink to the internet, on switches in a local area network, or between hosts
on a local network segment. The security monitoring, however, is nowadays essentially
limited to the uplink to the internet. Sometimes it is also used to a limited extent at
key points within a network, but the analysis methods do not have the same depth as
at the uplink and some areas, such as virtual networks in virtual machines are even
not yet covered. A holistic network security monitoring would have to cover the entire
area from the internet uplink via all internal networks up to the virtualization hosts.
In principle, a specialized intrusion detection system could be written for this pur-
pose for each single subsystem. In the long term, however, it is not useful constantly
chasing after the attack techniques for each network technology. With a glance at the
area of safety engineering, it appears more efficient to secure networks thoroughly and
to develop additional monitoring solutions only for the remaining problem cases. For
this purpose, a security engineering process is required which is discussed in the next
sections of this chapter.

1.1 Safety Engineering, Security Engineering and

the Concept of Intrusion Detection

Intrusion detection is a concept from the őeld of IT security. Security is very closely
linked to the őeld of safety. In some languages ś for example German ś no difference
is made between the concepts of safety and security in the vocabulary. It is therefore
obvious to adopt approaches from the better deőned safety engineering for solving IT
security problems. Safety engineering is a relatively well understood discipline which
ensures by means of failure modes, effects, and criticality analysis (FMECA [4, 1]), as
well as fault-tree analysis [5] that a system poses no risk to itself, the environment, or
other systems. FMECA is a process that documents and evaluates all failure modes of
a system. This includes an analysis of the failure impact on higher-level systems and
the identification/detection of these errors during design, operation, or maintenance
of the system, as well as response/mitigation strategies.

1

1 Mitigation and Detection of Network Security Threats

Define the System/
Indenture Levels

Define Ground Rules/
Assumptions

Construct Block
Diagrams

Identify Failure
Modes

Perform Failure Cause/
Effects Analysis

Assign Detection Methods
and Compensating Provisions

Assign Failure Effect
Severity Rankings

Figure 1.1: FMEA workŕow (based on [1])

Figure 1.1 represents the FMEA process without criticality analysis. The őrst step
of the FMEA process (define the system/indenture levels) deőnes the system with its
individual functions and their interdependencies at several levels ś typically the hard-
ware broken into several parts and the software running on it. Potentially occurring
errors are determined for each individual (hardware/software) part as well as their
impact on interfaces to other parts. The next step is the deőnition of ground rules and
basic assumptions. This is essentially a compilation of the function of the analyzed
system/part, the expected operating time and life expectancy, the working phase in
which a problem may occur, the severity of an error, the derivation of probability
distributions for the error (manufacturer’s data, statistical analysis, expert opinion),
and error detection methods. The third step ś the construction of block diagrams ś is
actually part of the previous step to (graphically) explain the individual components
of the system and to ensure a tracing of observed errors through all levels of a system
to their origin. The fourth step ś the identification of failure modes ś describes the
manner how an error can occur within a component. There are many ways why a
(physical) system can fail, e.g., overheating in a turbine or a pressure drop in the
supply line to the lubricant may indicate the same error ś loss of lubricant. The őrst
part of the following őfth step ś failure cause and effects analysis (failure causes) ś
is therefore to reduce the many failure modes to individual causes. The second part
(failure effects) deals with the reproduction of the failures through all levels of the sys-
tem. The sixth FMEA step ś the assignment of detection methods and compensating
provisions ś deals with methods to detect the identiőed errors, e.g., sensors, and the
error signaling to the operator of the system, e.g., audible or visual warning systems
based on limits of measured sensor values. Compensatory provisions are typically re-
dundant system parts that can take over functions in case of an error. The last step
ś the assignment of failure effect severity rankings ś assigns the identiőed errors in a
ranking according to their impact on the overall functionality of the system.

Currently there is no similar concept as FMEA in the area of IT security. However,
some of the individual phases of such a process are applied in a similar manner. IT
security primarily engages in attacks on the availability, integrity, and conődentiality
of data. Therefore, the best correspondence to failures in the safety area is the loss
of availability, integrity, and conődentiality of data. Figure 1.2 represents a possible

2

1.2 Attack Phases and Their Impact

Define the System
Indenture Levels

Define Basic
Assumptions

Construct Block
Diagrams

Perform Attack Phases
and Impact Analysis

Assign Detection Methods
and Mitigation Strategies

Assign Attack
Severity Rankings

Figure 1.2: Potential Security Engineering Workŕow

security engineering workŕow based on the ideas from the safety engineering. The
őrst three steps ś the deőnition of the system indenture levels, collection of basic as-
sumptions, and construction of block diagrams ś can also be applied in IT security
engineering, with the constraint that information processing systems are considered.
This means that during the dissection of a system in its parts in particular inter-
faces for information processing are considered. The loss of availability, integrity, or
conődentiality does not occur by itself but is the result of an attack. An analysis of
potential attacks and their impact must be carried out in the next two steps instead
of analyzing the failure cause, failure mode, and failure effects. The last two steps ś
the assignment of detection methods and mitigation strategies and the attack (effect)
severity ranking ś correspond to the actual core of an intrusion detection process.
According to Edward G. Amoroso, intrusion detection is deőned as follows:

Intrusion detection is the process of identifying and responding to malicious
activity targeted at computing and networking resources. [6]

Since the intrusion detection process itself is part of a larger security engineering
process, this chapter őrst describes the surrounding process to enable a better un-
derstanding of how intrusion detection systems work. The following sections provide
an overview based on the last three parts of the hypothetical engineering process of
Fig. 1.2 starting with attack vectors and their impact via existing detection and miti-
gation strategies toward the attack severity rankings.

1.2 Attack Phases and Their Impact

An attack on an IT system usually consists of more than one attack phase. Attacks and
their phases can be distinguished in long-term targeted attacks launched by organiza-
tions in combination with Advanced Persistent Threats (APT), attacks by individuals,
and automated attacks. To select countermeasures that can mitigate the effects of
the individual phases, each of them must be examined more closely. In this section

3

1 Mitigation and Detection of Network Security Threats

initial recon-
naissance

initial com-
promise

establish
foothold

escalate
privileges

internal recon-
naissance

lateral
movement

maintain
presence

exfiltrate
data

Figure 1.3: APT lifecycle (based on [2])

mainly targeted attack phases are discussed because they represent a superset of the
automated and individual attacks.

For long-term targeted attacks, attackers proceed typically as follows [2] (cf. Figure
1.3). First in an exploration phase (initial reconnaissance), an attempt is made to
őnd entry points into the destination network. This phase usually involves observable
network scans which can be detected by network intrusion detection systems (see next
section). The subsequent phase of initial compromise attempts to provide access to
the target network. This can be achieved through direct attacks to individual services
via the network, through personalized emails with malicious attachments/documents
to individuals inside of the network, or using USB sticks as in the case of Stuxnet
[7]. Malicious attachments include typical document formats, such as DOC, EXE, JS,
PDF, and compressed őles (ZIP). The malicious executables in attachments often have
interesting properties that distinguish them from normal őles. Some have encrypted
areas, which often indicate a malware packer. Others import debugger symbols to
undermine code analysis. In some cases, writable and executable sections are included,
suggesting self-modifying malicious code. Attacks via removable media can contain
complex startup routines (cf. [8]). Since the size of the exploit code is often very
limited, other code is loaded via the network in a subsequent phase, which often
installs a permanent backdoor to establish foothold, e.g., by installing remote access
routines. The installation of remote access routines usually leaves only little traces
(cf. [9]) and the use of exőltrated access data is hard to distinguish from normal use.
However, both acts usually involve an escalation of privileges by the attack code which
could be detected by host-based intrusion detection systems (see next section). After
that, the internal network is being analyzed (internal reconnaissance). Usually, it
starts with the local analysis of the initially compromised host and its active network
connections. In a subsequent lateral movement phase more hosts become infected. The
detection of hosts in a local area network during the internal reconnaissance typically
involves ARP scans, which do not differ from normal ARP requests. An ARP-Scan
iterates over all internet protocol addresses of any potentially existing host in a network
based on the netmask of the őrst infected host using ARP requests. Thereafter, in
some cases, individual connections between hosts are kidnapped by means of ARP
or DHCP spooőng [10]. So far, there are few reliable methods to detect these attack
phases. Therefore, the internal reconnaissance and lateral movement phase must be

4

1.3 Detection Methods and Mitigation Strategies

limited by preventive security measures. In order to ensure a permanent network
access (maintain presence), different or polymorphic malware families are installed
on different hosts. Eventually, the exőltration of all data interesting for the attacker
takes place. The exőltration of data typically leads to abnormalities in the information
ŕow distribution of network traffic which could be detected by statistical or machine-
learning approaches that can differentiate between normal and abnormal behavior.

1.3 Detection Methods and Mitigation Strategies

In order to protect an IT system against attacks preventive and reactive measures are
applied. In this context, in particular intrusion detection systems (reactive measures)
are gaining in importance. Network-based IT systems consist of hosts (physical or
virtual machines) and intermediate systems (routers, switches). On these grounds it
is necessary to distinguish between host-based and network-based security measures
which are discussed in this section.

Host-based Security Measures

A top-down view of preventive host-based security measures starts at the software
level because all systems deploy a form of software (őrmware, operating system ker-
nel, user space software, applications) for providing their services. To launch an attack
on a piece of software, the attacker must know the entry point of a vulnerability to
inject malicious code, őnd out where the code is located in the memory after exploiting
the vulnerability, and divert the control ŕow to the malicious code. Typical injection
points are data structures and buffers which can be exploited with format string vul-
nerabilities, integer overflows, and uninitialized variables (including use-after-free1).
From an attacker’s perspective on the central processing unit (CPU) of a system, con-
trol ŕows can be changed by manipulating data structures with reference to procedure
calls (e.g., x86 CALL, ENTER, SYSENTER, SYSCALL), software interrupts (e.g.,
INT), return of control (e.g., RET, LEAVE, SYSEXIT, SYSRET, IRET), jumps (e.g.,
x86 JMP, Jcc), and by using virtual machine operations on newer processors (e.g.,
VMLAUNCH, VMRESUME, VMXOFF, VMXON, VMCALL, VMFUNC) [3].

Preventive Host Security

The usability of vulnerabilities and the corresponding control ŕow manipulation mech-
anisms for an attack depends on the memory management and the applied (basic)
security mechanisms. Figure 1.4 shows the x86 processor memory management, that

1Use-after-free: continued use of memory for data structures that have already been released

5

1 Mitigation and Detection of Network Security Threats

applies paging and memory segmentation to protect memory accesses against mali-
cious use. The segmentation protects different memory areas (text/code, heap/data,
and stack) against accidental overwriting, such as stack overwriting during write ac-
cesses to the heap/data segment and write accesses to the text/code segment which
contains the current program. Paging is responsible for the mapping of virtual (log-
ical) memory pages to physical memory pages (system random access memory) and
adds additional security mechanisms, such as őne-grained read and write permissions
on 4KB memory pages (separately for the operating system kernel and user space pro-
grams) and the No-eXecute bit in modern processors which prohibits the instruction
fetching from the corresponding memory page.

Regarding the memory, one has to distinguish between attacks on the stack segment
(typically stack overflow) and the heap segment (typically heap overflow or use-after-
free). A stack overŕow is a buffer overŕow which overwrites the return addresses on the
stack ś referenced by the extended base pointer (EBP) CPU register ś to reroute the
control ŕow to an attacker’s exploit. Figure 1.5 depicts such a stack segment for the
x86 CPU (32 Bit mode). The stack grows from high to low memory addresses. Write
accesses to the local variables of a function, however, range from low to high addresses.
If a buffer is located below the return pointer in Figure 1.5 (e.g., in the last variable on
the stack, referenced by the extended stack pointer (ESP) CPU register), and its size is
ignored during data transfer, an attacker can overwrite the return pointer and redirect
the program control ŕow to a destination of his/her choice. Targets for control ŕow
rerouting are the buffer itself, fragments from the executed program (return-oriented
programming (ROP [11])), and program libraries (e.g., return to libc [12]). On modern
systems the stack integrity is typically protected with stack canaries [13]. Canaries
are random numbers that are placed in the stack directly below the return pointer
and above the local variables of a function (cf. Figure 1.5). They are checked when
returning to the calling function by compiler instrumented code to detect overŕow
conditions.

The heap integrity can be protected by means of őne-grained guard pages (cf. page
frames in Figure 1.4), but no appropriate implementations are known currently. How-
ever, the C library on Linux systems contains heap protections for memory man-
agement (cf. [14]) which protect the heap chunks using a checksum over the memory
address, the chunk size, and a program global random number (canary). There are also
protection mechanisms to detect malicious code or code fragments after a successful
injection. The main protective mechanism is the address space layout randomization
(ASLR [15]). Here, the stack and the heap segment are shifted by a random amount
in the virtual address space during program start. ASLR was later reőned by position
independent code (PIC/PIE [16]) which shifts the code/text segment by a random
value. Figure 1.6 represents the interaction of paging, page-based access rights, coarse
granular guard pages, and ASLR on a Linux (x64) host. In a fully protected program
the code (code segment) is moved by a random amount from the address 0 (left side
of the őgure) at program start to obfuscate usable addresses of machine instructions

6

1.3 Detection Methods and Mitigation Strategies

Seg. Desc.

Seg. Desc.

Seg. Desc.

PD Entry

PD Entry

PD Entry

Page

Directory

Page

Tables

Local

Descriptor

Table

Page

Frames Segments

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

[Stack]

[Heap]

Data

[Text]

Code

Figure 1.4: Memory paging and segmentation (based on [3])

Higher

Adresses

Lower

Adresses

Stack segment

Local variables

of the calling

function

Parameters

passed to

the called

function

Return pointer

Local variables

of the called

function

Top of stack

EBP-Register

ESP-Register

Pop

operations

Push

operations

Data

writes

[Stack Canary]

Figure 1.5: Stack segment of a x86 CPU (based on [3])

7

1 Mitigation and Detection of Network Security Threats

for an attack. The globally writable variables of the program in the text segment are
separated from the heap segment by a non-accessible guard page (marked by dashed
lines in the őgure). The beginning of the heap segment is moved by a random amount
in memory, and shared library code is integrated below the stack segment. Each li-
brary is separated through guard pages from the subsequent library. The guard page
of the last library separates the shared library section from the stack. Since the stack
starts from the highest address, it is also moved down by a random amount in the
address space to make it difficult for the attacker to apply stack-based attacks.

[Stack]

read

+write

[Text]

Code

read

+exec

[Guard]

(read

+write)

random

space

random

space
random

space
[Library]

read

+exec

[Library]

constant

read

[Library]

globals

read

+write

[Text]

constant

read

[Text]

globals

read

+write

lower

addresses

higher

addresses

[Heap]

Data

read

+write

[Guard]

(read

+write)

Figure 1.6: Memory layout on a protected Linux (x64) host

More advanced defenses against control ŕow changes, such as the diversion of return
addresses to malicious code, use compiler instrumentation mechanisms to ensure the
integrity of the control ŕow. An example of such a mechanism for stacks is control
flow integrity checking (CFI [17]). Moreover, all types of code pointers (e.g., function
pointers) can also be protected using a mechanism called code pointer integrity checking
(CPI [18]).

Reactive Host Security

After őrst attacks were published in the late 1960s [19] and 1970s [20], őrst reactive
systems were developed to detect the malicious use of computing resources. The őrst
approaches addressed only host-based measures. The involved components were main-
frames, terminals, and tape drives. Conceptually, attack detection comprises sensors
that gather security-critical events and an expert system evaluating these events sub-
sequently. Accordingly, an initial distinction was made in the őrst attack detection
design [21] between customer audit trails and security audit trails. The former served
exclusively for accounting purposes, while the latter covered security-critical events.
The őrst observed security-critical events were repeated logins, duration and number
of login sessions, job start time, job run-time, the number of jobs, the frequency of
data access, the frequency of program access, the number of characters transmitted
to a terminal, and the number of records written as program (e.g., compilation) or
data to determine: (1) the use of systems outside of normal daytime, (2) abnormal
frequency of use, (3) abnormal data access (mostly volume), and (4) abnormal patterns
of program or data access [21]. Network analysis in the sense of an audit of all network
components had been also considered, but it was too much effort for the audit data
analysis at that time. The analysis time was decoupled from the occurrence of the

8

1.3 Detection Methods and Mitigation Strategies

events (job running the expert system, once a day). It was intended to log audit trails
on tape for later analysis, what in fact represents a precursor of computer forensics.

Based on the őrst IDS concept, a őrst host-IDS model was published in the late 1980s
by Dorothy Denning [22] followed by real-time implementations of this model, e.g.,
Ides [23] and Haystack [24]. The name of the őrst implementation ś Intrusion De-
tection Expert System (IDES) ś has introduced the term of the Intrusion Detection
System (IDS). Real-time capability was achieved by decoupling the audit data gener-
ation and the analysis which was performed on a separate system. The analysis model
consisted of the following components. Subjects (normally users) are the initiators
of activities on the target system. Objects are resources which are managed by the
system, e.g., őles (read and write access), commands (execute activity), or devices
(e.g., access to printers). Audit trails capture the activities of subjects on objects.
Activity profiles cover audit trails by means of statistical metrics that are matched
against a statistical model. In this case, the metrics are event counters that count
the number of speciőc events in an audit trail or interval timers, which capture the
time interval between two events. Operational models, mean and standard deviation
models, multivariate models, Markov-process models, and time series models have been
discussed as statistical models. Operational models assume that abnormalities can be
detected by comparing the metrics with a őxed threshold, e.g., the number of failed
password attempts. Mean and standard deviation models assume that a new obser-
vation can be deőned to be abnormal if it falls outside of a conődence interval, i.e.,
a certain standard deviation from the mean of previously observed events. A multi-
variate model attempts to uncover whether combinations of multiple events correlate
with intrusions, e.g., IO load with CPU load. Markov process models assume that a
new observation can be deőned to be abnormal if its probability as determined by its
previous state (previously observed event) and a transition matrix, which character-
izes transition frequencies between observed events, is too low. Time series models use
interval timers together with event counters to measure inter-arrival times between
observed events. A new observation is abnormal if its probability of occurring inside
of the observed interval is too low. These models had been representing the basis for
host-based IDS for many years.

Network-based Attacks and Security Measures

Attacks from the network require a further glance on the communication layers in-
volved. Networks are essentially described through the communication protocols ap-
plied among the networked systems. A distributed application (application layer)
needs auxiliary protocols for a stable end-to-end data transport (transport layer), the
reachability of all intermediate nodes on the path to the target system (routers on
the network layer) and the access to local links to reach the őrst intermediate devices
(switches on the link layer). Web applications often implement additional protocols

9

1 Mitigation and Detection of Network Security Threats

using the application layer only for data transport (e.g., XML-RPC [25], SOAP [26]).
These protocols can be regarded as an overlay layer in terms of the protocol stack.
Figure 1.7 shows such a protocol stack. The exploitability of the individual layers and
protocols for attacks depends on the location of the attacker.

Figure 1.7: Protocol stack

If the attacker is located in a local area network (LAN),
he/she can hijack connections by manipulating the aux-
iliary protocols of the data link and network layers. In
particular, the auxiliary protocols of the Internet Proto-
col version 4 (IPv4 [27]), namely the Address Resolution
Protocol (ARP [28]), the Dynamic Host Configuration
Protocol (DHCP [29]), and the Internet Control Message
Protocol (ICMP [30]), and IPv6 [31] in conjunction with
ICMPv6 [32] and DHCPv6 [33] are vulnerable to attacks
of this nature (see Section 2.1). If the attacker is located
outside of the local area network he/she has to rely on at-
tacks on the routing protocols (e.g., Border Gateway Pro-
tocol [34]), on the transport layer (e.g., sequence number

prediction for the Transmission Control Protocol [35]), and on the application layer
(e.g., attacks against the domain name system such as Dan Kaminsky’s DNS attack2).
Attacks on the application layer target more frequently on the incorrect use of the
transmitted data structures in combination with a specific memory model, as already
discussed above (cf. Fig. 1.4 and Fig. 1.5), rather than a specific protocol.

Preventive Network Security

In the area of network-based security technologies, significantly less research has been
performed compared to the host-based area. Figure 1.8 represents a typical network
security setup as it is installed for private users and small to medium-sized compa-
nies. The basic components of such a security setup are a firewall with a supplemen-
tary application-level gateway (ALG) and an intrusion prevention/detection system
(IPS/IDS). Typically, the two components are combined in an intermediate system
(router). The firewall functionality can range from a simple packet filtering, which
processes the layers 1 to 3 (see Figure 1.7), to an application-level gateway which
additionally analyzes the application layer. Historically, ALGs were responsible for
transparent application-specific address/port translation between private and public
IP addresses of the network [36]. To realize this functionality they had to rewrite the
application payload. The ability to rewrite network protocols and application payload
made them interesting for security applications. The interfaces between the ALG and
the firewall are used today on the one hand to check whether a transmitted applica-
tion protocol adheres to its specification, and on the other hand to rewrite application

2https://dankaminsky.com/2008/07/24/details/

10

https://dankaminsky.com/2008/07/24/details/

1.3 Detection Methods and Mitigation Strategies

data with the purpose to normalize potentially malicious content by transferring it
into a harmless representation. A closer look at the details of the őgure reveals an
implicit assumption about attacks at the network level. The positioning of the őrewall
in relation to the IDS implies that the network to be protected is attacked only from
outside because the őrewall/ALG usually must prevent analysis circumvention/eva-
sion attempts. Analysis circumvention methods range from the fragmentation of the
Internet Protocol (IP) [37] to fragmented or otherwise malformed TCP and higher
layer packets [38]. Network devices with full ALG/IDS capabilities prevent such at-
tempts, e.g., by dropping fragmented IP packets, and by observing the connection
state of TCP or by normalizing the TCP packets [39, 40].

Internet
LANWAN

Uplink
LAN

Uplink

Firewall/
ALG

IPS/
IDS

Flow of attack data

Figure 1.8: Network security setup

Reactive Network Security

Parallel to the development of host-IDSs, the őrst attacks on networks were published,
e.g., [41, 42]. These publications led to the design of the őrst network security monitor
(Nsm) [43, 44]. The Nsm analyzes the network traffic by means of a four-dimensional
matrix (similar to an access control matrix) which has the following axes: source
(sending host), destination (receiving host), service (mail, rlogin, whois, NFS, ...), and
a unique connection identifier for each connection. In addition to this matrix, there
were three other matrices, each with a reduced dimensionality. The source-destination-
service matrix aggregated all traffic of a source to a destination with a speciőc service,
the source-destination matrix aggregated all traffic across all services between a source
and a destination, and the source matrix aggregated all traffic of a source. As a
őrst preliminary attack detection measure, rule-based analyzes were implemented to
provide an insight into the network traffic. The source matrix was used to determine
hosts that connect to more than 15 other hosts or non-existent hosts. The source-
destination-service matrix was used to őnd services that are requested (according
to the implementation description within 5 minutes) more than 15 times from the
same host. With these rules, a real attack from the outside, an internally stimulated
attack for analysis purposes, and unknown communication protocols were detected. In
addition, it was planned to use the IDES model (cf. Reactive Host Security) to detect
anomalies in the network traffic, which, however, was not implemented. Instead, the
network security monitor was combined in subsequent work with the Haystack host-
IDS to form the őrst distributed IDS (DIDS [45]) which correlated events from the Nsm

11

1 Mitigation and Detection of Network Security Threats

and Haystack to assign a network (user) identity to each connection and to track
objects moving around the network. These őrst prototypes performed all analyses only
on the network and transport protocol layer. An analysis of the application protocol
layer was ruled out as impractical.

During the late 1990s many commercial IDSs were offered to the market. Commercial
network intrusion detection functionality starts with simple őlters for denial-of-service
(DOS) attacks on the packet level of layers 2 and 3, e.g., Ping of Death [46], LAND [47],
SMURF [48], or UDP Port Loopback attacks [49, 50], or stealth network scans, such
as the TCP Null Scan [51]. This type of IDS is typically applied to private consumer
routers and its integration goes back to the early days of private internet access, when
implementation weaknesses in the stacks of the ISP customers were often crashed by
malicious internet users. More powerful IDS solutions include full network-based IDS
(NIDS), such as Snort [52], which is used on routers in larger companies. The main
difference from the IDS on small devices is the application of complex attack analyses
which require an examination of the application layer and the full packet payload
(Deep Packet Inspection (DPI)). Snort is currently the most prominent full-featured
NIDS because its source as well as the signatures of known attacks were published
from the outset and constantly updated by its designer.

Network traffic

Data acquisition +
Packet decoder

Preprocessing,
Connection

tracking

Packets

Packets

Attack
detection engine

Alerting and
logging

Events

Application
detection engine

Packets, Flows

Figure 1.9: Architecture of Snort

Snort consists of four subsystems (cf. Fig.
1.9): the packet decoder, the connection track-
ing, the detection engine, and the alerting and
logging subsystem. The packet decoder maps
the data structures and protocol őelds of raw
network packets according to the TCP/IP
network stack into an internal representation.
It has a lower layer, which ensures that the
different packet types of the link layer, net-
work layer, and transport layer are built ac-
cording to their speciőcation and have no
wrong size information or unusual entries in
the protocol őelds. Thus, it can also iden-
tify the aforementioned packet-based DOS at-
tacks. The connection tracking preprocesses
decoded data depending on the identiőed pro-
tocol. Its analysis capabilities are beyond
the capability of simple packet őlters. Frag-
mented IP packets are defragmented prior to
further processing and TCP streams are as-
sembled from several individual IP packets.

Depending on the packet type, it may also be necessary to normalize packets. In
the application layer, it is, for instance, necessary to provide a unique representa-
tion of uniform resource identifiers (URIs) for HTTP packets. For this purpose,

12

1.4 Attack Severity Rankings

hexadecimal or unicode characters are translated to a common notation and other
obfuscation attempts of attackers in the URI addressing are corrected, e.g., relative
URI path traversals. The normalized data of the application layer are evaluated by
a complex signature analysis in the detection engine which applies IDS rules to pack-
ets or streams. A Snort signature for an attack comprises a header and optional
conditions. The header speciőes the basic parameters of the signature, such as the
inspected protocol (IP, UDP, TCP, or ICMP), the observed communication directions
(uni- or bi-directional), the source and destination IP addresses, and the port num-
bers. Optionally, actions may be speciőed that are executed when the rule matches,
e.g., generating alarms or dropping datagrams. The option part speciőes constraints
for matching header and payload őelds of datagrams. Protocol header constraints are
used to match datagram header őelds. The considered őelds depend on the protocol
selected in the rule header, e.g., sequence number őelds can only be matched for TCP
segments. Payload constraints can be used to match values or patterns, e.g., strings, in
a datagram or transport stream. If Snort identiőes a datagram or transport stream
that matches all constraints of a rule header and all of the protocol header and payload
constraints, the action deőned in the rule header will be executed. A more detailed
analysis of the signature language of Snort has been published in [53].

1.4 Attack Severity Rankings

Impacts of attacks are ranked generally in accordance with the attack phases (cf.
Section 1.2). The IDS Snort, for example, divides the severity of attacks into four
priority classes. The fourth and least signiőcant priority class contains only one event:
"A TCP connection was detected" which corresponds to no attack. The third prior-
ity class summarizes events of the initial reconnaissance phase. Events of this class
range from the detection of network scans, via ICMP activities, and connections to
potentially vulnerable services, such as desktop sharing and network management sys-
tems, to the detection of suspicious strings, such as the identiőcation of exploit kit
banners. The second priority class summarizes the phases of internal reconnaissance,
establishment of foothold, lateral movement, and exőltration of data. The events of
this class range from the detection of information leaks of services, suspicious logins,
remote procedure calls, unusual client port connections, use of manipulated protocol
data units, use of vulnerable web applications, and transfer of suspicious őlenames to
the use of suspicious services. The őrst and most critical priority class summarizes all
the events of the initial compromise and escalation of privileges. Events of this class
are the detection of transmitted shell code, attacks on web applications, activity of
known trojans, expansion of user privileges, and the use of administration privileges.

13

1 Mitigation and Detection of Network Security Threats

1.5 Open Research Challenges

Capturing traffic to detect attacks on larger administrative network domains, e.g., an
enterprise network composed of multiple subnets, is nowadays typically centralized by
picking up and analyzing traffic on the uplink to the internet. This approach allows
to identify attacks from the internet, but it has though a number of important dis-
advantages. Insider attacks are not detected regardless of whether they are initiated
deliberately or triggered by compromised devices. External attacks are equally dif-
őcult to detect because the initial compromise often takes place via mail by means
of unknown vulnerabilities in őle attachments or by simple social engineering, which
tricks the recipient to run executable code from mail attachments. In addition, threats,
such as references to external web-based content as they are used for phishing and at-
tacks using web-based content, are not recognized by existing preventive and reactive
security measures.

Figure 1.10 illustrates an example of the issues with current monitoring technologies.
(1) The initial compromise is carried out by means of a contaminated USB stick on a
PC in a local area network (LAN). As these activities take place only locally on the
PC, they are outside the viewing range of network-based monitoring systems. (2) In
order to attack the servers in another LAN assumed to contain data of interest for
the attacker an escalation of privileges is performed to bridge the router between the
two network segments. This can be done, for instance, using a domain-controller-
based login on a PC in the respective LAN with locally captured login information
from the őrst PC ś a step which is difficult to detect because the login may be legal.
(3) Thereafter the attack/access program needs information about the upper LAN
segment. For this purpose, scans of the link layer are used in some cases to determine
other systems (internal reconnaissance). Existing monitoring methods, e.g., the ŕow
analysis, are based primarily on accounting information of the network and transport
layer [54, 55] and are thus unable to detect actions on the data link layer. Therefore,
an attacker can use any link layer attack to propagate in the upper LAN segment
(lateral movement) to collect more data from all servers and to move the data within
the network segment. Moreover, the attacks do not have to be limited to the data link
layer. Due to the slow implementation of the next internet protocol standard (network
layer), IPv6-based attacks are often also overlooked by current monitoring systems.
Chapter 2 discusses a number of link layer attacks for IPv4 and IPv6 that can be
typically observed in such a scenario. (3’) The problem is getting worse if an attacker
encounters a virtual machine (VM) host. The attacker can spread freely inside the
virtual machines, since this area is not covered by current monitoring technologies.
(4) Finally, the collected data must be moved out of the network (exfiltration of data).
According to analyses of targeted attacks, such as the Regin framework [56, 57], this
step can also be performed quite stealthy, e.g., by means of the server message block
(SMB) [58] protocol for intermediate stations (data link layer variant) and a Transport
Layer Security (TLS) socket [59] for the őnal move out of the network.

14

1.5 Open Research Challenges

fi

Figure 1.10: Example scenario of an internal/targeted attack

For solving some of the issues with insider and targeted attacks the security measures
have to be moved into the corporate or private network and also recursively into the
VM networks. This brings some challenges. (1) A preventive security concept for
the internet uplink, which consists of packet filtering, proxies, and an application-level
gateway (ALG), is easy to implement, as there is only one data path, but what about a
concept that ensures an equivalent security for a local area network or subnet consisting
of network switches with multiple ports and multiple data paths? (2) Subsequently, if
the reactive mechanisms (e.g, IDSs) are moved into the local area network, a further
problem arises in connection with the massive data throughput of local area networks
compared to the limited throughput on the uplink. The throughput of local subnets
cannot be handled by existing IDSs.

Challenge 1 – Preventive Measures for Local Area and Virtual Machine Net-

works. The solution of the first challenge requires a centralization of the network
management that goes beyond existing concepts for remote maintenance, such as the
Simple Network Management Protocol (SNMP [60, 61]). One possible approach is to
centralize previously decentralized network services, e.g., routing and auxiliary pro-
tocols for address resolution which are managed directly by the network devices at
present, into software-based controllers with a general overview of the domain.

In the 1980s, first network services were centralized in stored program controlled (SPC)
telephone networks [62]. For this purpose, switch software was installed in the net-
work on SPC-enabled hardware which could configure the forwarding devices (virtual-
circuit telephone switches) to use service primitives, e.g., call routing, the creation of
billing records, automatic announcements, and the collection of information (numer-
als) through prompts [63, 64]. In the 1990s, the idea was further developed within
the active networks [65] that combined different concepts. In their simplest form var-

15

1 Mitigation and Detection of Network Security Threats

ious network primitives, e.g., the forwarding of a packet within a switch to an output
port, were remotely controlled by an out-of-band communication channel. However,
there were also radical ideas that aimed at programmable network devices via in-band
communication, e.g., using active network packets containing bytecode for a network
program and payload data. In 2004, the former idea was taken up again for data-based
wide area networks. The SoftRouter model of the Bell Labs [66] envisaged to limit
routers to their basic functionality as forwarding elements (switching of packets based
on the longest preőx match of the IP addresses), whereas the routing protocols them-
selves should be implemented in general-purpose computers (control elements) that
communicate with the forwarding elements using standardized protocols. A possible
standardized protocol between the control and forwarding elements should emerge
from the development of a parallel ongoing effort called forwarding and control ele-
ment separation (ForCES) framework [67]. The two approaches mentioned security
measures as a potential advantage of software-based network management ś an idea
that has never been implemented for wide-area networks.

The Ethane software switch [68] for local area networks followed a similar concept
as the SoftRouter, but with a strong focus on improving security this time. Ethane
couples ŕow-based Ethernet switches with a centralized controller that knows the
global network topology and grants access by explicitly enabling permitted ŕows within
the network switches along a centrally computed route. The controller enforces a
strong binding between a packet and its source by restricting the port access to a
switch on the IP addresses assigned via DHCP. One of the biggest problems that were
reported in this implementation is the handling of broadcast traffic. Most broadcast
traffic is caused by address resolution protocols, e.g., ARP, which generate a huge load
on the controller. Other address resolutions, such as the IPv6 neighbor discovery, had
apparently not been implemented resulting in further shortcomings with regard to
the spooőng of Ethernet/internet addresses. Accordingly, there is a need for research
on a method that simultaneously limits broadcast traffic and implements the address
assignment and address resolution in a secure manner for all major protocols (IPv4
+ IPv6 including auxiliary protocols). The need for a standard protocol between
the controller and the switch was noted also by this approach. The corresponding
protocol was published by the authors of Ethane under the name OpenFlow [69].
Unfortunately, it was never tried to reproduce the Ethane approach based on the
OpenFlow protocol and to solve the mentioned problems. Subsequent publications
were limited to the analysis of the control channel and the application security at the
controller level [70, 71]. They have less considered the possibilities for an increased
network security using OpenFlow or ported only classical őrewall mechanisms and
monitoring procedures [72].

Challenge 2 – High-speed Deep Packet Inspection for Local Area Networks.

A major challenge for the monitoring of local area networks are the rapidly increas-

16

1.5 Open Research Challenges

ing data rates which often lead to an uncontrolled discarding of traffic in overload
situations in the monitoring stations. For DPI-based intrusion detection systems, nu-
merous approaches to improve the throughput have been proposed. They range from
hardware-based solutions [73, 74] via the parallelization of analyzes [74, 75] to the use
of more efficient analysis algorithms [76, 77]. Unfortunately, most hardware and par-
allelization approaches switch off essential intrusion detection functions for evaluation,
such as preprocessing (e.g., reassembly of TCP streams), rule evaluation, and logging.
Thus, the analysis is de facto deactivated, i.e., these conőgurations are not able to
detect any real intrusions.

To avoid the bottlenecks of a centralized analysis, distributed approaches have been
examined for a long time. The approaches range from systems that perform a cen-
tral data analysis and event correlation [45, 78] via hierarchical structures, which
distribute the analyses and event correlations across different processing levels, up
to fully distributed multi-agent paradigms [79, 80] and fully decentralized peer-to-
peer (P2P) paradigms [81, 82]. A closer look on the proposed approaches shows that
many of them are limited to the collection, distribution, and aggregation of informa-
tion about observed suspicious activities [82], to adapt the defenses to the acquired
knowledge [79, 80]. Another important aspect of distributed approaches is to estab-
lish a cooperative security to improve the analysis accuracy [83]. However, there are
rarely approaches that leverage the distribution to reduce the burden of the analysis
[81], e.g., by transferring the analysis in overload situations to another system or by
discarding non-relevant traffic. In summary, research approaches that parallelize in-
trusion detection systems with all of their components under real-life conditions are
still missing.

Special Issues. Further special issues in the analysis of external attacks particularly
go back to the massive use of web technologies in today’s networks. The develop-
ment of solutions for web-based attacks requires new preventive and reactive security
measures. As already discussed in Section 1.3, the transmitted application data (po-
tentially malicious interpreted scripts) are typically deeply buried from a network
perspective in the application layer. The current research on the protection of web
applications includes server-side, client-side, and hybrid approaches. Server-side web
security approaches usually require modiőcations of the web applications [84, 85, 86]
to distinguish between trusted application data and untrusted external data. They
require sometimes mandatory support from the client-side browsers [87, 88] to en-
force a server-speciőed policy at the client. Client-side approaches comprise systems
to detect information extraction (cookies) and aggressive scripts (e.g., prevention of
window closing) [89]. Sometimes dynamic data tainting is added to track the indirect
usage of sensitive data sources, e.g., the aforementioned cookies [90, 91]. Furthermore,
anomaly-based detection systems create a proőle of the application usage of JavaScript
and enforce it later [92]. In addition, there are signature-based systems which remove

17

1 Mitigation and Detection of Network Security Threats

authentication information from requests [93] and systems based on machine-learning
which can detect JavaScript-based malware [94].

A main issue for the analysis of web documents is that increasingly so-called overlay
structures are used, i.e., multiple protocols are nested within each other at the appli-
cation layer [95]. Web 2.0 technologies are an example for this. Current commercial
application layer proxies and intrusion detection systems inspect the traffic at least
up to the HTTP layer and thus provide the possibility of classifying and őltering the
traffic based on Uniform Resource Locators (URLs). Some of them also scan traffic for
viruses or other (binary) malware but most of them are not capable of inspecting the
traffic for script-based attacks, to normalize HTML to a certain save representation
level, or to remove malicious scripts and other potentially malicious object embed-
dings. New őrewall/NIDS concepts are urgently required for a semantic analysis of
multiple nested application protocols.

1.6 Structure of This Thesis

The structure of this thesis follows the attacks against different layers of the network
protocol stack and the resulting challenges discussed previously. This is illustrated in
Figure 1.11 through a network stack that extends the classical TCP/IP stack upwards
and downwards. The lowermost part of the network stack expands the TCP/IP stack
to metadata regarding switch-internal data related to port-to-MAC mappings and
other data, which are necessary to detect attacks on network components, such as
switches and VM bridges. The next four layers (upper part of link layer ś lower part of
application layer) are already largely covered by traditional network IDS methods. The
expansion of the network stack above the application layer (gray area) relates among
others to modern Web 2.0 communication paradigms that use the application layer
(e.g., HTTP, web sockets) only as an additional transport layer for nested protocols
(e.g., SOAP). This part requires specialized application-speciőc IDSs to still be able
to detect attacks, since traditional network IDS methods assume a comparatively ŕat
IP stack.

The őrst part of this work covers the white area of the stack. It begins with Chap-
ter 2 which examines various security measures to prevent internal attacks on local
and VM networks that are directed against the network-connecting elements and the
synchronization of the layer 2 and layer 3. The chapter addresses challenge 1 with
a software-deőned networking (SDN) approach to prevent the investigated attacks.
Chapter 3 proposes measures to the acceleration of the traditional NIDS analysis in
order to establish a high-speed monitoring for local area networks. This addresses
challenge 2 with a parallelization concept.

18

1.6 Structure of This Thesis

fi

fi

Figure 1.11: Structure of this thesis in relation to different parts of the network pro-
tocol stack

The second part in Chapter 4 of this work covers the gray area of the stack. It dis-
cusses specialized NIDS methodologies for a network-based analysis of web protocols
and applications. The first part of the chapter describes typical cross-site-scripting
(XSS) attacks and discusses the problems of parsing web languages in perimeter fire-
walls and other security solutions. The second part of the chapter presents a firewall
architecture which applies novel NIDS methods based on machine learning to identify
web applications and to ward off malicious inputs.

19

2 Restriction of Internal and Targeted

Attacks

The detection of attacks on network domains is nowadays usually accomplished cen-
trally by analyzing the data traffic on the uplink to the Internet. The őrst phase of an
infection of an advanced targeted attack (phase of initial compromise) is usually diffi-
cult to control. Often the attackers use external media, such as USB sticks, hardware
with preinstalled malware, or contaminated mobile devices to infect target systems. In
such scenarios, the initial infection cannot be blocked at the network level. The lateral
movement of attack programs (exploits) through internal networks and the exőltration
of data, however, which are the real purpose of targeted attacks, run always over the
network. Security measures against internal network attacks require a comprehensive
sensor system that spans the entire network to the network perimeter. Especially for
preventive measures, this means providing a security concept for local area networks.
This chapter discusses, based on an analysis of past LAN-based attacks, a possible so-
lution for this problem. As part of the solution, Software-Deőned Networking (SDN)
[96] is applied as a vehicle for centralizing information on all network activities in a
central authority ś the SDN controller ś that manages all network connections and
hence the associated data ŕows. As a side effect of using SDN, networks of virtual
machines on a single host, which represent a blind spot for network monitoring so far,
can also be integrated into the defensive measures.

2.1 Classical Threats for Local Area Networks

In Ethernet networks there are plenty of vulnerabilities that allow a traffic redirection
with the possibility of reading and overwriting of content. They attack the layers 2
and 3 of the TCP/IP stack. These vulnerabilities exist for both physical and virtu-
alized networks. For physical systems due to their continuous development, there are
meanwhile solutions that protect against some of these attacks to a certain extent. In
virtual machine hosts, however, man-in-the-middle attacks are still possible between
guest systems without much effort. The Linux bridge used by default does not provide
protection against these threats. Next an analysis of these attacks that are applied in
the code of freely-available tools ś such as Ettercap1 ś is presented.

1https://ettercap.github.io/ettercap/

21

2 Restriction of Internal and Targeted Attacks

Internal Reconnaissance – Network Scan

In a first step an internal attacker or attack program has to explore the local area
network. First information can already be obtained on the internal/compromised
hosts. The current IP address, the subnet mask and/or the default gateway address
may reveal the maximum size of the network because gateway addresses are usually
reserved to the upper end of the network range. Then the attacker can scan the
network range based on the previously acquired information. The main scan variant
used is the Address Resolution Protocol (ARP [28]) scan.

ARP-Scan. The purpose of the ARP scan is to look for active devices in the subnet
(see Figure 2.1). (1–4) For this, the attacker (e.g., station A in Figure 2.1) usu-
ally generates a list of all possible host addresses and checks them using ARP requests
(ares_op$REQUEST). The addresses are shuffled to request them (ar$tpa) in random
order. (5) If there is a host that matches one of the addresses it responds with an ARP
reply (ares_op$REPLY), containing its hardware address (ar$sha = MAC(<Host>)).
To perform this scan the attacker requires a significant large number of requests (#Re-
quests >> #Hosts).

Figure 2.1: ARP Scan

22

2.1 Classical Threats for Local Area Networks

Internal Reconnaissance – Man-in-the-Middle Attacks

After determining potential targets of interest, e.g., routers or servers, in the previous
step, the attacker is capable of kidnapping individual or even all links in the network
in a further step. In this respect, one has to distinguish between attacks with half-
and full-duplex capabilities. Half-duplex attacks kidnap only one-way communication
(e.g., to the internet), e.g., by spoofing the hardware address of the gateway. Data
that are routed from the client through the gateway to the internet may be intercepted
and manipulated by the attacker. The responses in the reverse direction, however, are
sent directly to the client. Full-duplex attacks can manipulate communications in
both directions. The three most effective ones are (with ascending complexity) ARP
spoofing, port stealing, and DHCPv4 spoofing combined with DNS spoofing.

ARP Spoofing. ARP spoofing aims at associating the attacker’s MAC address with
the IP address of another host to redirect traffic for this IP address to the attacker’s
host. There are two variants of this attack: request spoofing (see Figure 2.2) and
response spoofing. (1–2) The attacker sends an ARP request with its own MAC
address (ar$sha) and the IP address to be hijacked (ar$spa) via broadcast to the
LAN. All hosts update their ARP caches. The subsequent communication to the
hijacked IP address goes directly to the attacker. If the attacker wants to hijack the
communication between two systems (e.g., C1 and C2), he/she must send each an
ARP packet for each IP address to control their communication. The alternative
response spoofing variant uses ARP reply (ares_op$REPLY) which is sent directly
to the two hosts (ar$tha = MAC(C1)||MAC(C2), ar$tpa = IP(C1)||IP(C2)) with the
same information for ar$sha and ar$spa.

Figure 2.2: ARP-Spoofing

23

2 Restriction of Internal and Targeted Attacks

Port Stealing. The purpose of port stealing is to "steal" traffic that is directed to
another port of an Ethernet switch (see Figure 2.3). If an attacker A wants to directly
take over packets addressed to another host C1 from the switch he/she first must delete
the port registration of C1. (1–3) This can be achieved by repeatedly sending ARP
packets to the switch in which the the source hardware address is the one of C1 and
the destination address is the hardware address of A. The switch assigns the hardware
address of C1 to the port of A, but it does not forward the ARP packets because A
has addressed itself, i.e., the attack is stealthy. (4) If the attacker receives a packet to
C1 (in the example from C2), (5) he/she sends an ARP request via broadcast to C1
and asks for its address. (6) After receiving the ARP reply, the attacker knows that
the switch has registered the address of C1 again to the original port and can forward
the intercepted (and possibly manipulated) packet to C1.

→

→

→

→

Figure 2.3: Port-Stealing

24

2.1 Classical Threats for Local Area Networks

DHCPv4 with DNS Spoofing. Dynamic Host Configuration Protocol [29] spoofing
aims at allocating wrong configuration parameters to the requesting host, e.g., a com-
promised DNS server, to selectively redirect its data traffic to hosts controlled by the
attacker. If an attacker wants to bi-directionally intercept packets using this attack
he/she must perform a combined DHCP and DNS spoofing. All necessary informa-
tion can be transmitted by means of DHCP options [97]. Figure 2.4 illustrates the
procedure of the DHCP spoofing. (1) If the attacker receives a DHCP DISCOVER
broadcast, (2) he/she sends a DHCP OFFER with an IP address under attacker con-
trol as DNS option. The client receives competing offers – the attacker’s offer and (3)
the offers from regular DHCP servers. Usually the choice falls on the first received of-
fer. The real DHCP server has no chance to win this race because it has to check in its
database according to the RFC standard (a) whether the requested address is already
in use (possibly with an additional ICMP Echo Request) and (b) it must reserve the
address temporarily before sending the offer. (4) After selecting an offer the client offi-
cially requests the configuration parameters via broadcast (DHCP REQUEST) which
implicitly declines the other offers (C2 in Figure 2.4). (Not shown) The attacker con-
firms the selection (DHCP ACK). When the client contacts the attacker’s IP address
for DNS queries, the attacker can selectively redirect traffic for certain domains to its
computer using fake DNS answers.

fi

fi

→

fi

Figure 2.4: DHCPv4 Spoofing

25

2 Restriction of Internal and Targeted Attacks

2.2 IPv6-based Attacks

The attacks in the previous section exclusively aim at IPv4. Due to the slow spreading
of IPv6, however, a situation has arisen in which each installed network device (router,
host) is IPv6-capable, while the protocol is not used actively. Due to the intended
transition from IPv4 to IPv6, the IPv6 protocol has automatically priority in the case
of a simultaneous conőguration of IPv4 and IPv6 parameters. Attackers can use this
fact to examine the network using IPv6 methods and to hijack individual connections
with its auxiliary protocols. Existing monitoring methods are often not able to analyze
the IPv6 protocol ś a situation that makes IPv6 attacks particularly attractive. This
section presents an IPv6 network scan and two methods to hijack connections which
are based on an analysis of the hacker’s choice IPv6 attack toolkit (THC-IPv6)2.

IPv6 Multicast Alive Scan. IPv6 does not support ARP to determine the allocation
of an IP address to a MAC address. In IPv6, active addresses can be determined
through a network discovery using multicast alive scans (see Figure 2.5). (1) The
attacker sends only a single ICMPv6 EchoRequest packet [98] with an invalid IPv6
destination option [31] to the all-nodes multicast address (FF02::1). If the attacker
is only interested in local routers he/she can choose the all-routers multicast address
(FF02::2). (2ś3) All nodes in the network reply with an error message (ICMPv6
parameter problem) due to the incorrect option which contains their address in the
IPv6 header. A similar network scanning is possible using multicast listener general
queries [99] to the address FF02::1. In this case, the hosts respond with multicast
listener reports for each network interface. An advantage of the second approach
is that the packet rate of the responding hosts to the multicast queries is lowered
by random delays in the response, which enables an evasion of anomaly detection
systems.

ICMPv6 Neighbor Discovery Spoofing. IPv6 neighbor discovery spooőng follows
the same procedure as ARP spooőng, but it uses the ICMPv6 neighbor discovery
protocol [100] for this purpose. Unlike ARP, the ICMPv6 packet (ICMPv6 type =
136) contains a special override ŕag which enforces the overwriting of the cache entry
even if it already contains another information for the respective host.

ICMPv6 Router Advertisement, DHCPv6, and DNS Spoofing. The basic idea
behind ICMPv6 router advertisement spooőng [101] is the same as with DHCPv4
and DNS spooőng: to assign a DNS server to all local hosts that is under attacker’s
control. Figure 2.6 depicts the procedure for the IPv6 variant of DHCP and DNS
spooőng. (1ś3) In the őrst step, the attacker sends a fake router advertisment with

2https://github.com/vanhauser-thc/thc-ipv6

26

2.2 IPv6-based Attacks

Figure 2.5: IPv6 Multicast Alive Scan

its own (source link layer) address (slla) and a randomly selected local network prefix
(unique local address – ULA) which prompts the client to start auto-configuration
(A=1) with the option to obtain other parameters (O=1) via DHCP. (4) The receiving
client selects an address that contains the ULA prefix and its own MAC address or
a random 64-bit postfix. The client validates the uniqueness of the selected address
via IPv6 neighbor solicitation and (5) sends a DHCPv6 solicit request to obtain other
parameters (in particular DNS servers) [33]. (6) In response, the attacker provides
its own IPv6 address via DHCPv6 as the DNS server. The DHCPv6 part is similar
to the DHCPv4 attack, but in the following step, the variants differ in detail. (7–8)
Because the attacker is typically the only IPv6 router on the network, he/she can
respond to DNS queries with any IPv6 address. The subsequent IPv6 traffic is then
routed through the attacking computer. A variant of this attack3 uses, for example,
network address translation (NAT) and protocol translation [102, 103] to translate
IPv6 into IPv4 packets which are routed to their regular target with the possibility to
manipulate the intercepted request/response.

Firewall Circumvention with IPv6 Fragment Headers. The original purpose of
fragmentation has been to forward packets whose total length is larger than the maxi-
mum transfer unit (MTU) of a network. The main problem with defragmentation lies

3https://wirewatcher.wordpress.com/2011/04/04/the-slaac-attack-using-ipv6-as-a-weapon-against-
ipv4/

27

2 Restriction of Internal and Targeted Attacks

fi

→ffi

Figure 2.6: Router Advertisement, DHCPv6, and DNS Spoofing

in the fact that fragmentation offsets are only loosely checked for overlaps with the
absolute limits (beginning and end) of the receiving buffer in the end systems. Over-
laps within the buffer are not checked. Thus, overlapping offsets within a sequence
of several fragments allow one to overwrite previous fragments. It is unpredictable
whether the first or the second packet will be processed after receiving a duplicate at
the receiver side if the two packets refer to the same (overlapping) offset. This opens
up different vulnerabilities that are explained with the help of an example.

A potential attack that exploits the possibilities of IPv6 fragmentation is the hiding of
the transmitted communication protocol. Figure 2.7 shows the IPv6 header extension
principle used in this attack. Unlike IPv4, fragmentation is implemented in IPv6 as an
optional extension header. This extension is reached via a list of references starting in
the protocol header. In Figure 2.7 Next Header 1 refers to the fragmentation header.
The fragment offset in this header refers to the position of the fragment in the data
packet. An offset of zero in the first fragment refers to the first extension header after
the fragmentation header. Thus, protocol spoofing is possible. If the Next Header 2
refers to a harmless extension (e.g., Destination Options (60)), then other headers,
e.g. the transport protocol shift into the Next Header 3. An attacker can construct
two fragments with the following assignments: the first fragment with the Fragment
Offset = 0, Identification = 0, and Next Header 3 = 58 (ICMPv6) and the second
fragment containing the Fragment Offset = 0, Identification = 0 and Next Header 3

28

2.3 Approaches to Ward Off LAN Attacks

+-+
|Version| Traffic Class | Flow Label |
+-+
| Payload Length | Next Header 1| Hop Limit |
+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+

+-+
| Next Header 2| Reserved | Fragment Offset |Res|M|
+-+
| Identification |
+-+

+-+
| Next Header 3| ... |
+-+

Figure 2.7: IPv6: fragmentation as extension header

= 6 (TCP). For pure packet-based processing, the őrewall can only access the Next
Header 1 and 2 őelds and at best check the Next Header 3 őeld of the őrst fragment.
If the őrewall policy permits ICMPv6 Echo requests, then the second fragment, which
overrides the őrst fragment, could pass unnoticed.

2.3 Approaches to Ward Off LAN Attacks

There are various approaches to protect physical and virtual networks, at least par-
tially, from these attacks. The following subsection presents some of these approaches
for physical networks and also has a look on solutions for virtual systems.

Approaches for Physical Networks

In order to secure classical physical systems, the networks are often divided into smaller
segments. This can be done on a logical level by conőguring IP subnets, but this is
only a very weak division, or physically by an appropriate Ethernet wiring of the sys-
tems. At the transition points, e.g., routers or switches, data can then be analyzed

29

2 Restriction of Internal and Targeted Attacks

by packet őlters. Packet őlters [104] are the fundament of traditional network- and
host-based security measures, but they are cumbersome to manage in large networks
ś a weakness that distributed őrewalls [105] do not have (centralized policy design,
distributed enforcement of policy). Distributed őrewalls demand, however, implemen-
tations for each operating system and are themselves an attractive attack target due
to their presence on the host.

Virtual LANs (VLANs) represent another possible security measure. They can be
used for separating clients, so that only the systems that are associated with the same
VLAN can communicate with each other. However, there are also attacks that aim
at the so-called VLAN hopping [106]. Moreover, the use of VLANs is quite inŕexible,
since a client is either assigned to a particular VLAN or to none at all.

Another security measure is the use of intelligent switches that provide some protection
against rogue DHCP servers and ARP attacks. Smarter L3 switches use, for example,
DHCP snooping against DHCP attacks to enforce a őxed mapping between IP, MAC,
and switch addresses/ports [106]. ARP Spooőng is prevented in this context by the
discarding of non-approved source addresses. On some switches, this security measure
can be circumvented by another attack which uses the spanning tree protocol (STP)
to redirect traffic to an attacker. Such attacks can be avoided by limiting STP to
ports which are explicitly used for switch coupling. Currently no security measures
are known that reliably protect against similar IPv6-based attacks. In addition, there
are problems with port-stealing attacks that override the internal cache of the switches
with fake MAC/port pairs.

With the progressive development of software-deőned networking (SDN) that central-
izes the network control logic, projects like SANE [107] and Ethane [96] emerged. All
of the complex functions ś routing, naming, őrewall policy speciőcation, and checking
ś are managed and performed by a central controller. The main focus of these projects
has been on access control and enforcement of communication relations rather than
preventing L2/L3 attacks. In addition to these approaches for attack prevention, there
is also some work for anomaly detection using SDN capabilities. Mehedi et.al. suggest
several anomaly detection algorithms [108] that have been implemented on the basis
of the NOX controller4, and Ying Zhang published in [109] adaptive ŕow counting
methods to detect additional anomalies in SDN-based networks. FRESCO [110] and
OrchSec [111] provide beyond anomaly detection additional signature-based analysis
methods, that can detect ARP cache poisoning, DDoS attacks, and DNS ampliőca-
tion attacks. Due to the central management by the controller, port-stealing attacks
cannot be run within a software-deőned network. IPv6-based attacks, however, are
neither recognized nor prevented by the existing methods.

4https://github.com/noxrepo/nox

30

2.4 An Approach to Protect Switched LANs and Virtual Machine Networks

Approaches for Virtual Systems

Many of the above approaches cannot be readily transferred to virtual systems (VM
hosts) because virtual machines cannot physically be separated from each other. The
use of intelligent hardware switches is also not possible. Therefore, special, mostly pro-
prietary software solutions are offered by the manufacturers of virtualization solutions.
In [105] the concept of distributed őrewalls was presented. It consists of modules of
virtual őrewalls that are located on the protected systems and which can be centrally
administered. VMwall [112] is another application-level őrewall for the Xen hypervisor
that correlates VM traffic with process information using virtual machine introspec-
tion. Thus, it is able to block traffic based on the process that is sending or receiving
the given packet. The simpliőed administration of both approaches is paid with an
increased effort for the initial set up because the őrewall modules must be installed
on each system. Moreover, only those systems can be protected, for which there is an
appropriate őrewall module.

2.4 An Approach to Protect Switched LANs and

Virtual Machine Networks

In order to prevent attacks on switched LANs this section proposes an approach to
separate the host systems from each other. The őrewall functionality for the hosts
should be implemented within the network itself, i.e., on the intermediate system ś
the switch ś and inside of a őrewall module to which security-critical packets are
redirected. The proposed approach applies the software-deőned networking (SDN)
paradigm. SDN provides the ability to separate the control and the data plane in
a switch. As a result, the switch logic can be outsourced to a separate controller.
Decisions regarding packet forwarding will no longer be made autonomously in the
switch, but are passed to the central controller. The approach requires no changes
to the host systems, and effectively prevents attacks on the layers 2 and 3. It can
be easily and efficiently implemented using the OpenFlow protocol5 [69] that will be
introduced in the next subsection.

Introduction to OpenFlow

OpenFlow is a capture protocol that is widely used between the control and data
plane of SDN-enabled switches. Figure 2.8 illustrates the structure of an OpenFlow
switch and the operation of the OpenFlow protocol. The minimum conőguration
of a switch includes a ŕow table that deőnes the actions to be executed on data

5for current specification, see: https://www.opennetworking.org

31

2 Restriction of Internal and Targeted Attacks

ε

→
→

→

→

→

Figure 2.8: OpenFlow overview

flows and a secure channel to an OpenFlow controller that is responsible for making
decisions about individual data flows in the network, i.e., to manage the flow table. The
OpenFlow protocol is typically handled through a TLS encrypted channel. The flow
table internally contains several fields that reflect the different frame and packet fields,
such as source and destination hardware (MAC) address, layer-3-protocol, source and
destination IP, and source and destination ports of UDP/TCP. Initially, this table is
empty. At the beginning the switch establishes a connection to the controller that is
typically not covered by the OpenFlow protocol procedure.

A typical OpenFlow protocol sequence is as follows. (1) When a packet arrives at
the switch, it checks whether the fields in the packet matches a flow table row. (2) If
there is a mismatch or the table is empty, as shown in Figure 2.8, a default action is
executed. Typically, a PacketIn message is sent to the controller. The message includes
the switch port, on which the packet is queued, a queue/buffer ID (not shown in the
figure), and a copy of the packet (or a part thereof). (3) The controller determines
what to do with the packet. In case of a simple MAC-learning switch, the port for the
appropriate target system connected to the switch is found. Then, a rule is installed
by means of an OFPFlowMod message in the switch that forwards all further packets
of the same data flow within the switch from the source to the target system. The
message consists among others of an OFPMatch data structure which contains all the
fields that need to be matched in subsequent packets and a set of instructions that
specify what to do with the matched packets. For the illustrated (MAC-learning)
example, OFPActionOutput instructs the switch to output the packet to the port of

32

2.4 An Approach to Protect Switched LANs and Virtual Machine Networks

the target system. (4–5) Finally the controller has to decide what to do with the packet
in the queue that has triggered the original PacketIn message. The OFPPacketOut
message instructs the switch to forward it to the target system.

OpenFlow-based Secure Switching and Firewalling

To provide security functionality in switched LANs the data streams (or a part thereof)
have to be forwarded to a security module. This approach can easily and efficiently
be implemented using software-defined networking. The above-mentioned widely used
OpenFlow protocol can be used as a capture protocol. First considerations for this
area were presented in [113].

fi

fi

Figure 2.9: Approach for SDN-based
security services

Figure 2.9 shows the principle of the ap-
proach. It uses an OpenFlow-enabled switch
as the data forwarding component. The data
plane switch is connected via the OpenFlow
protocol with the control plane, in which vari-
ous security-critical services are implemented.
By shifting the switch logic into this sepa-
rate controller, packet forwarding decisions
are made in a policy-based software switch in-
side this controller and not in the data plane
switch. Thus, the software switch gains com-
plete control over the network and the data
routing. This concept also allows that certain
security functions, which are usually applied
in firewalls, application-level gateways, and
complex security configurations, can now di-
rectly be taken over by the software switch.
Thus, hosts can optionally be authenticated
using a port authentication service. In addi-
tion, the proposed approach installs rules in
the OpenFlow switches ensuring that all ad-
dress configuration and resolution packets are redirected to the controller and not
distributed further. In order to still be able to fulfill the purpose of the respective
protocols a corresponding address configuration and address resolution service has to
be integrated into the controller that checks the meaningfulness of ARP requests and
sends the corresponding ARP replies. As a result, ARP poisoning attacks can be
prevented. In contrast to previous work, this concept considers also the IPv6 address
configuration and address resolution protocols to prevent similar spoofing attempts
using the next generation of IP. An even higher degree of security can be achieved
by the separation of network segments by means of physical cabling, configuration

33

2 Restriction of Internal and Targeted Attacks

of subnets, and routing. At least the subnet-based network separation and a secure
routing can be implemented also using the SDN paradigm. The policy-based switch
enforces a separate subnet for each client. The resulting network is based on switched
routing which uses auxiliary information from the address configuration services to
enforce a strong binding between a packet and its origin as well as its target. The cor-
responding concept is referred to as IP switching. Section 2.5 describes these security
functions/services in more detail.

In addition to the depicted security services, further security functionality, e.g., deep
packet inspection, can be integrated into the controller. Here, however, the following
problem occurs. The OpenFlow data plane works internally flow- and not packet-
oriented, i.e., each incoming packet for which there is no flow rule in the flow tables
is redirected to the controller (see slow path P3 in Figure 2.9) which causes a high
overhead. Only after the controller has stored a corresponding flow rule in the flow
tables of the affected OpenFlow-enabled switch, subsequent packets can be forwarded
to the respective ports (see fast paths P2 and P1 in Figure 2.9). For a packet filter, the
high overhead for the first packet of a flow is not critical. A deep packet inspection, in
contrast, must examine each packet or a sequence of consecutive packets of a flow. To
avoid the expensive sending of packets to the controller this approach stores a specific
rule in the flow table of the data plane switch that directs security-critical packets for
DPI to a separate external firewall.

Figure 2.10: SDN-based virtual ma-
chine switch

Secure Data Exchange between Virtual Ma-

chines. As a result of the increasing virtual-
ization of computer systems, areas arise in cor-
porate networks and cloud environments that
represent blind spots for the network monitor-
ing. Conventional firewall systems cannot pro-
tect virtual machines (VM) because the commu-
nication between the virtual machines runs only
within the virtualization server/host. Therefore,
virtualized systems, in contrast to physical sys-
tems, are particularly susceptible to the above
introduced attacks on layers 2 and 3. Firewalls
within a virtual machine do not adequately solve
this problem, since the compromise of the vir-
tual machine at the same time implies the com-
promise of the firewall contained therein. Thus,
the entire host along with all guest systems is at
risk. Furthermore, they significantly affect the
performance of the virtual environment and re-
quire additional manual configurations in each

34

2.5 SDN-based Security Services

virtual machine. The hypervisors of the virtualization servers, however, have often
similar characteristics and identical conőgurations, which would allow an integration
of őrewalls outside of the virtual machines. For this purpose, sensors are necessary,
which record the network traffic between the virtual machines and send it to an out-
side őrewall. This can also be achieved by means of the SDN paradigms by using
an OpenFlow-enabled switch ś the Open vSwitch [114, 115] ś as a redirector compo-
nent. The Open vSwitch provides a virtual data plane for virtual machine hosts and
supports all major versions of the OpenFlow protocol.

Figure 2.10 shows the approach for virtual machines. Open vSwitch comprises two
components ś a userspace daemon (ovs-vswitchd) and a datapath kernel module. The
userspace daemon is connected with the control plane. It implements the same security
services for the physical switch as above. The control ŕow path P3 is the same as for
the physical concept (cf. Fig. 2.9 and Fig. 2.10) and also uses the OpenFlow protocol.
The control ŕow and data path P2 resembles the OpenFlow approach insofar, as
the ovs-vswitchd manages the kernel module in a similar way like the control plane
manages the userspace daemon. The ŕow table in the userspace daemon can compare
all frames, packets, and segment őelds deőned in the OpenFlow standard ś a degree
of ŕexibility which goes hand in hand with a loss of speed. Therefore, there is a
further datapath P1 in the kernel module which compares the frame/packet header
bit exactly against a microŕow cache and directly forwards the packet in the case of
a hit to the cached target. In this way, the path P1 resembles the appropriate path
through the application-speciőc integrated circuit of a physical switch (port ASIC,
cf. Fig 2.9) that is also limited to a bitwise comparison of speciőc őelds from layers
1ś3. If a comparison is required that masks sub-őelds a detour of the packet on the
path P2 is needed that allows for wildcard comparisons across all őelds. This path is
thus similar to the corresponding path P2 of physical switches via a ternary content
addressable memory module (TCAM, cf. Fig. 2.9). A TCAM is an associative memory
that compares input data against its content and returns the corresponding address
of a hit within a guaranteed time interval. The word ternary means that within the
store in addition to the two states of 0 and 1, a third łDon’ t carež condition matches
with every input bit. This is used, for instance, in switched routers for comparing IP
addresses against network masks in which not all bits of the IP address are necessary
for determining the target port.

2.5 SDN-based Security Services

The attacks described in Section 2.1 result essentially from the decentralized man-
agement of critical network services. These attacks can be prevented by means of
centralized SDN-based services for security-critical operations.

35

2 Restriction of Internal and Targeted Attacks

Authentication at Switch Ports

An important problem for the implementation of the above introduced approach is the
authentication of the hosts and/or virtual machines for accessing the switch and thus
the network. A good selection criterion for an authentication service based on one of
the łclassicalž services, e.g., TACACS [116], TACACS+6, EAP [117], and RADIUS
[118]), is the ease of its integration into existing network environments. The use of
already existing and tested components, such as authentication servers or directory
services, increases the security and ŕexibility of a solution. Therefore, this approach
applies the extensible authentication protocol (EAP) [117], which is often applied in
wireless networks and point-to-point communications. The existing authentication
infrastructure of most corporate networks in the form of RADIUS servers and LDAP
[119] directory services can directly be used for a compatible SDN-based authentication
service based on EAP.

Host OpenFlow Switch

EAPOL

OpenFlow
Controller

Radius
ServerRADIUS

network

not authenticated

authenticated

Supplicant

Authenticator Authentication
Server

Figure 2.11: EAP/RADIUS authentication using
SDN/OpenFlow

The EAP standard is a port-
based access restriction for
switch ports that only unlocks
after a successful authentica-
tion. The switch acts as an
intermediary between the host
(supplicant) and the authenti-
cation server ś usually a RA-
DIUS server ś that optionally
queries a directory service (see
Figure 2.11). The problem to

be solved is the integration of two different authentication formats in a SDN-based
network. Although all parties, i.e., the hosts, the switch, and the RADIUS server, com-
municate with each other via EAP, the EAP packets are encapsulated differently, e.g.,
in Ethernet frames (EAP over LAN (EAPoL)) or UDP packets (RADIUS over UDP).
The solution is that only the EAPoL packets are allowed with a non-authenticated
switch port (ether type = 0x888E, address = 01:80:C2:00:00:03 multicast). These are
identiőed by the OpenFlow switch and redirected to the OpenFlow controller. The
OpenFlow controller sends the EAP messages as RADIUS packets to an authentica-
tion server. If authentication succeeds the controller transfers appropriate rules to the
OpenFlow Switch allowing the host to participate in the communication. Hostapd7 is
used as authentication server. It is a daemon running in user mode with software-Wi-
Fi access point functionality. In addition, it provides an EAP authenticator as well
as a RADIUS client and server. The EAP standard supports various authentication
protocols. For a prototype of this approach, the EAP-MD5 [117] protocol was selected.

6http://tools.ietf.org/html/draft-grant-tacacs-02
7http://w1.fi/hostapd/

36

2.5 SDN-based Security Services

In practical use, more secure alternatives, such as EAP-TLS, EAP-TTLS, or EAP-
PEAP, should be deployed. In the SDN-controlled network, however, the broadcast
traffic is blocked and the communication partners communicate in a circuit-switched
manner. Clients are unable to analyze or modify packets that are not addressed to
them (even in promiscuous mode). Thus, EAP vulnerabilities that primarily relate to
networks that use a shared medium, such as the IEEE 802.11 wireless networks or the
classic Ethernet, cannot be exploited.

Spoofing and Scan Resistance with Address Configuration and

Address Resolution Services

Many of the LAN security issues result from the fact that two different layers are
responsible for addressing a system: layer 2 and 3, which have to be reconciled. To ob-
tain the corresponding MAC address of a system with an IP(v4/v6) address, ARP and
ICMPv6 Neighbor Discovery (ND) are used. One of the major problems in local area
networks is that address conőguration and address resolution frames are broadcasted
within the network. These frames can be monitored from any network participant and
responded. This enables an attacker to bring the system into an inconsistent state,
to eavesdrop on running network connections, or to suppress further communication.
The following address conőguration and address resolution schemes implement the
necessary functionality to prevent various aspects of these attacks.

IPv4 address configuration service. Spooőng can mainly be avoided by means of
address conőguration services. The IPv4 address conőguration service of the proposed
approach is based on a controller-internal DHCPv4 service that redirects all DHCP
client packets according to a rule in the switches to the controller (see rule DHCPv4c in
Table 2.1). The contents of the rule table can be interpreted as shown in Figure 2.12.
The header of the table corresponds to the match and action data structures deőned in
the OpenFlow standard that are transferred initially to the controller (lower left part
of the őgure). The preőxes OFPXMT_OFB and OFP_ACTION have been omitted
from the table and the suffixes eth_type, ip_proto, udp_src, and udp_dst correspond
to the grey marked őelds of the protocol stack shown in the upper part of the őgure.
The switch-internal representation of the match data structures is not deőned in the
OpenFlow standard. In physical switches it is typically converted into a sort of bit
mask for a TCAM (lower middle part of the őgure). If a packet matches this mask it
is sent to the port deőned in the OUTPUT_ACTION (controller in the lower right
part of the őgure). The internal DHCPv4 service of the controller assigns IP addresses
or renews leases for the connected systems. Allocated address entries are kept in the
conőguration of the controller for the address resolution services which are discussed
below. This measure prevents attacks from rogue DHCPv4 servers because a spooőng
is not possible without knowledge of the 32 bit DHCP transaction ID and the exact

37

2 Restriction of Internal and Targeted Attacks

time of the client requests. An attacker does not even see the DHCP requests of the
other systems required to send the malignant answer in the right moment.

RULE eth_type ip_proto udp_src udp_dst output_port

DHCPv4c 0x0800 (IPv4) 17 (UDP) 68 (client) 67 (server) controller
ARP 0x0806 (ARP) controller

Table 2.1: IPv4 address resolution service rules

↓→
→

fi ff

fl
fi

→

Figure 2.12: Protocol switching

IPv4 address resolution service. Countermeasures against network scans and some
more anti-spoofing measures can be implemented in the address resolution services.
The IPv4 address resolution service is based on the knowledge of the DHCPv4 address
configuration service. The ARP service part installs rules in all switches that redirect
Ethernet packets with the ethertype 0x0806 (ARP) to the controller (see rule ARP in
table 2.1). In this way, no ARP packets are forwarded within the OpenFlow-enabled
switches. ARP responses are transmitted exclusively from the OpenFlow controller
based on the knowledge of the DHCPv4 service. Additionally, ARP requests that are
not related to the gateway address in the appropriate subnet of the requesting client
are ignored silently. These measures effectively prevent attacks, such as ARP scans,
ARP spoofing, and ARP flooding.

38

2.5 SDN-based Security Services

IPv6 address configuration services. IPv6 address conőguration is provided by an
internal ICMPv6 router advertisement (RA) service and a DHCPv6 service linked to
the DHCPv4 server. The ICMPv6 router advertisement service enforces conőgura-
tion of IPv6 addresses using DHCPv6. This is done through regular ŕooding on all
switch ports using router advertisements with the managed address conőguration ŕag
set. The DHCPv6 service works initially similar to the DHCPv4 service by redirect-
ing DHCPv6 messages to the controller (see rule DHCPv6c in Table 2.2). DHCPv6
requests are answered exclusively using the IPv4-mapped IPv6 address of the request-
ing client [120] based on the knowledge from the DHCPv4 service. The IPv4 address
192.168.120.63, for example, is mapped into the IPv6 address ::FFFF:192.168.120.63.
DHCPv6 spooőng is therefore even more limited than for DHCPv4 because in ad-
dition to the lack of knowledge about transaction IDs or the time of client requests
there is also no possibility to exhaust the address pool. Another advantage of this
mapping is that the communication can be processed by existing őrewall logic, which
is derived from the IPv4 őrewall rules. The disadvantage of non-routable IP addresses
associated with the mapping may be offset by a very simple form of NAT which ap-
plies a direct (IPv6-)address to (IPv6)-address translation (static one-to-one address
assignment [36] without protocol/port translation) at the edge of the network.

RULE eth_type ip_proto udp_src udp_dst output_port

DHCPv6c 0x8DD (IPv6) 17 (UDP) 546 (client) 547 (server) controller

Table 2.2: IPv6 address conőguration rule

IPv6 address resolution service. The ICMPv6 neighbor discovery service is based
on the same idea as ARP for IPv4. Two ŕow rules are installed on all switches which
redirect ICMPv6 neighbor discovery solicitations and neighbor discovery advertise-
ments to the controller (see rules ICMPv6nds and ICMPv6nda in Table 2.3). All
solicitation requests except those to the IPv4-mapped address of the gateway in the
subnet of the requesting client are ignored silently. This method prevents standard
IPv6 scans as discussed in Section 2.2. Additionally, there could be another hole
which allows scans in the form of multicast listener discovery [121, 99] messages. The
analysis of these messages, however, is still a subject of current research. The best
option seems to be to completely disable multicast listener discovery by installing
corresponding rules.

RULE eth_type ip_proto icmpv6_type output_port

ICMPv6nds 0x8DD (IPv6) 58 (ICMPv6) 135 (solicit) controller
ICMPv6nda 0x8DD (IPv6) 58 (ICMPv6) 136 (advertise) controller

Table 2.3: IPv6 address resolution rules

39

2 Restriction of Internal and Targeted Attacks

Figure 2.13: IP switch configuration with virtual gateway addresses

IP Switching with Topology Hiding and Routing Enforcement

The aforementioned security services provide a secure initialization of the network
configuration but no secure message routing. They prevent that data connections are
kidnapped by means of ARP spoofing or corresponding IPv6 attacks, but packets can
still be hijacked if a false identity (MAC address) is adopted by a host and only a
simple MAC-learning switch logic is applied in the OpenFlow controller. In addition,
broadcasts like in ARP are a major problem as already mentioned in the Ethane
approach [68] because they flood the controller too much. Moreover, broadcasts and
ARP services can be used to explore the network topology at the link. Therefore,
a service is necessary, which (1) binds the identity of a system to a switch port, (2)
limits the number of possible requests for other systems, and (3) realizes the route of
the data connection between two systems in a secure way.

Historically broadcasts have always been limited by separation of networks. The bind-
ing of a system to a switch port is also a special case of network separation in some
way. Therefore, the objectives (1) and (2) can be achieved by network separation by
means of address configuration. For this purpose, the address configuration service
assigns a private /30 subnet to each host using DHCPv4. This addressing scheme al-
lows one to hold four IP addresses for each subnet. The lowest address is the network
address. The next two addresses are assigned to the host and a virtual gateway that
references the OpenFlow controller. The upper address remains for further use, e.g.,
as the IPv4 broadcast address [122]. The hosts in the subnets are forced by this ad-
dressing scheme to use routes via the virtual gateway instead of direct communication
to reach the target systems. The only possible broadcast request – an ARP request
for the virtual gateway address – is intercepted by the OpenFlow controller and not
flooded.

40

2.5 SDN-based Security Services

→
→→→

Figure 2.14: IP switching (a.k.a. routing) with virtual MAC addresses

Figure 2.13 exemplifies this address configuration. The address resolution service in
the controller assigns the host C1 to the network X.Y.Z.0/30. The resulting address
configuration (IP(C1) = X.Y.Z.1, GW(C1) = X.Y.Z.2) are deposited together with
the MAC address of the host in a database of the controller. The next available subnet
(X.Y.Z.4/30) is assigned to host C2 and its configuration is also stored in the database.
The hosts know only their own IP address and the respective virtual gateway, thus
limiting their ability to scan for other hosts with layer-2 protocols. Only the IP
addresses of the other systems are known, and the actual network topology remains
hidden.

Based on the information of the (subnet) address configuration service, a secure rout-
ing service is established, which binds the identity of the participating systems for
the duration of a connection to their source and destination switch ports to prevent
kidnapping of data. The routing process is exemplified in Figure 2.14 (based on the
address configuration from Figure 2.13). The virtual gateway address is the only ad-
dress that is resolved via ARP or ICMPv6-ND (see MAC address A:B:C:D:E:FF in
the ARP caches ARP(C1) and ARP(C2) of the figure). (1) When sending IP packets,
the hosts use this address as the destination MAC address (DST-MAC) together with
the IP address (DST-IP) of the target computer. The OpenFlow-enabled switches for-
ward the first packet of a connection to the controller. (2) The controller determines
a suitable route based on the source and target IP addresses (switch 1, port 1 (S1:1)
via switch 1, port 3 (S1:3), via switch 3, port 2 (S3:2) to switch 3, port 1 (S3:1)).

41

2 Restriction of Internal and Targeted Attacks

(3) Appropriate match entries are created in the switches (see Table 2.4, nw_src =
SRC-IP, nw_dst = DST-IP). The rules are installed in the reverse transport direc-
tion for the packet (őrst mac_rewrite+forward_r2 on switch S3, then forward_r1 on
switch S1) to avoid multiple redirects of the same packet by the subsequent switches
to the controller. The last switch on the route is given the task to rewrite the MAC
addresses (set_field part of the mac_rewrite+forward_r2 rule) so that they are valid
for the target system. (4) The queued packet is released (by forwarding to switch 1,
port 3 ś S1:3) and reaches the target in accordance with the deőned rules. A glance
at the chain created in this way in Table 2.4 illustrates the binding of each packet to
its source and destination. In switch S1 the source IP address X.Y.Z.1 is bound by
the rule forward_r1 for the exemplary data ŕow to input port (in_port) 1. The rule
mac_rewrite+forward_r2 for switch S2 rewrites the virtual destination MAC address
to the MAC address of host C2 and binds the data ŕow and the destination IP address
to output port 1. Thus, a spooőng of IP addresses is prevented.

RULE in_port eth_type nw_src nw_dst set_őeld output

forward_r1 1 0x800 (IP) X.Y.Z.1 X.Y.Z.5 port 3
mac_rewrite 2 0x800 (IP) X.Y.Z.1 X.Y.Z.5 eth_dst = port 1
+forward_r2 A:B:C:D:E:2

Table 2.4: Routing rules for Figure 2.14

In-Network Firewalling, Robustness against Firewall Bypassing,

and Connection of External Firewalls

Physical switches often implement simple őrewall logic in the form of access control
lists ś a concept that is also possible with the SDN paradigm. Firewalls can be
implemented as a combination of SDN-based rules on the switches and controller-based
őrewall logic. Simple packet őltering can directly be implemented by corresponding
rules on OpenFlow-enabled switches. In addition, őrewalls with stateful connection
management can be implemented on the switches with some help of the controller
and the dynamic creation of rules. IP switching is basically a ŕow-based switching
with packet őltering functionality. For each new connection, a request is sent to the
controller which then decides whether this connection should be permitted or not.
After this a speciőc rule is stored in the switches ensuring that the other packets
of this connection no longer need to be treated by the controller. All these security
rules can individually be deposited in the controller for each client and are enforced
independently of the switch port to which the client is connected to. Each port on
each SDN switch thus becomes a őrewall.

Important security measures that should be contained in every őrewall approach are
static őrewall rules which are directed against the circumvention of the őrewall logic.
The concept described above, for example, allows a őltering on packet basis, but

42

2.6 Evaluation

RULE eth_type ipv6_exthdr ip_proto icmpv6_type output

fragment 0x8DD 44 controller
hop_by_hop 0x8DD 0 controller
routing 0x8DD 43 controller
destination 0x8DD 60 controller
mobility 0x8DD 135 controller
icmpv6_redirect 0x8DD 58 137 controller

Table 2.5: Static rules against őrewall bypass

fundamental problems that affect pure packet-based őrewall logic, e.g., the processing
of fragmented oversized packets, as supported by IPv4 and IPv6, cannot be solved.
Past experience has shown that it is not possible to implement packet fragmentation
in a secure (and at the same time efficient) manner. For this reason, the presented
approach installs rules on all switches, which discard IPv4 and IPv6 packets with
fragmentation options/headers (see rule fragment in Table 2.5). In addition, IPv6 at
this stage represents a good circumvention method of local security policies. Another
focus of defensive measures against controller bypass are, therefore, the problematic
IPv6 extension headers. The following headers should be redirected through rules on
the switches to the controller (to log attack attempts) or silently discarded: hop-by-hop
options, routing header, destination options, and mobility header 8 (see corresponding
rules in Table 2.5). Although these are almost all of the IPv6 extension headers, these
rules are in line with recent observations of transit networks9 which discard packets
with the same headers. They represent special use cases that are often not supported
or conőgured, but are, however, used within the IPv6 attack suites as an evasion
method for IPv6 security measures. Another packet type that should be blocked is
ICMPv6 redirects (see rule icmpv6_redirect in Table 2.5). This packet type allows
another attack in which a client can be redirected to a fake gateway address.

If external őrewalls are integrated in the software-deőned network, static or dynamic
rules in the switches allow one to route security-critical connections dynamically and
transparently to the respective őrewall, application-level gateway, or intrusion detec-
tion system. From there, only after successful őltering, the data packets are sent to
the target system.

2.6 Evaluation

As part of the research for the described concept, an OpenFlow controller that imple-
ments the described functionality was implemented with the help of the Ryu frame-

8The mobility header supports Mobile IPv6 [123].
9https://tools.ietf.org/html/draft-ietf-v6ops-ipv6-ehs-in-real-world-02

43

https://tools.ietf.org/html/draft-ietf-v6ops-ipv6-ehs-in-real-world-02

2 Restriction of Internal and Targeted Attacks

work10. During the development phase, the controller was tested extensively with
Mininet [124]. The proposed defensive measures against ARP scans, ARP spooőng,
port-stealing, and DHCPv4 spooőng with DNS spooőng worked as expected. There
were, however, mixed results for IPv6. Scans of the IPv6 test network, neighbor
discovery spooőng, router advertisement spooőng, and DHCPv6 with DNS spooőng
were successfully blocked. The defensive capabilities against malformed IPv6 packets,
however, depend on the used IPv6 stack, e.g., the Linux IPv6 stack discussed below.

Evaluation of Controller Bypass Resistance against IPv6 Manipulations. To
test the defenses against malformed IPv6 packets, two virtual clients in a test system
were evaluated with the penetration test suite from the THC IPv6 toolkit11. One of
the clients was acting as a test server to check which packets have passed through
the őrewall and the other client was used to send manipulated packets. The test
suite consisted of 56 test cases that were őrst executed without the SDN-enabled
switch to test the Linux-based IPv6 forwarding and after this with it including the
controller prototype with all services of the presented approach. The test purpose
was to prove whether the őrewall can be bypassed (pass) or whether the packets are
blocked (fail). 38 tests failed with the standard Linux stack and thus necessarily also
with the Linux-based SDN-enabled switch. Among the tests that failed were also
those with overlapping fragment headers. The structure of the test suite is interesting
in itself. Approximately half of the circumvention tests started with a single extension
header type and increased the number of types up to three. As expected, all standard
test cases with hop-by-hop, destination options, and source routing options passed the
linux stack (i.e., they were forwarded without complaints) and failed with the controller
prototype (i.e., they were successfully blocked). However, there were test cases with
multiple destination option headers in a packet. These passed the őrewall policy of
the controller prototype for unknown reasons. Three more test cases passed through
the őrewall because they were not covered by a policy and were also not efficient to
implement: ICMPv6 echo requests (ping6) with bad checksum, zero checksum, and
with hop count 0. All other test cases failed in the the controller prototype, in contrast
to some variants with a source route option that passed through the default stack. A
direct neighbor solicitation test was successful on the standard stack, but failed in the
prototype because of the defenses against network scans.

2.7 Conclusions

This chapter has analyzed attacks on switched LANs and VM networks that are an
integral part of internal and targeted attack phases. The IPv6 protocol that has always

10http://osrg.github.io/ryu/
11https://github.com/vanhauser-thc/thc-ipv6

44

2.7 Conclusions

been sidelined in previous research so far was also considered. A solution for SDN-
based defensive measures against these attacks was introduced. The proposed SDN
services include ARP and DHCP services which intercept the ARP and DHCP packets
in the network and thus solve the broadcast problem of SDN, in which broadcast
packets are redirected to the controller several times. The OpenFlow controller can
then answer these requests as a central authority. A further service of the controller is
the transparent secure routing of connections. Due to the ŕexibility of OpenFlow, the
proposed approach can be used not only in physical environments, but also in virtual
environments in which classical network security measures cannot be used so far. The
OpenFlow rules can be bound to speciőc physical or virtual hosts/host groups and
are applied independently of the switch port to which a host is connected. This is
especially interesting for virtual environments, when a virtual machine migrates to a
different host. Network scanning and spooőng attacks on layers 2 and 3 of physical
and virtual intermediate or end systems have been found to be controlled well and
prevented by the SDN switches and the developed security services. The proposed
solution requires no changes to the host systems, but requires a SDN-based network
infrastructure. This leads to some remaining research challenges explained next.

Cascading of in-band communication. There are two ways to connect a switch to a con-
troller, in-band or out-of-band. Out-of-band communication realizes the switch-
controller connection via a separate control network, which is not always de-
sirable because of the wiring involved. In-band communication, however, is
associated with the problem that the communication of cascaded switches to
the controller is passed through the OpenFlow-managed network, which is not
trivial to implement.

Mixed operation with classic switches. Since existing networks may be changed only
gradually to SDN-based networks, mixed mode scenarios may appear with un-
known security features. The question is which switches must be replaced őrst,
and what security restrictions result from the remaining non-SDN switches? A
problem in the mixed mode is, for example, the use of ARP to identify systems
that are connected to the non-SDN switches. All systems connected to SDN
switches can be identiőed by the address conőguration service. The MAC ad-
dresses of the systems connected to a non-SDN switch must be resolved through
ARP requests that may be forwarded under no circumstances to systems bound
to an SDN-switch. In this case, the controller could be brought by forged answers
into an inconsistent state which threatens the security of the overall system.

Rule interference. If more SDN applications are placed into the controller the rules of
these applications may overlap with the ones installed by the security services.
OpenFlow provides a priority system that can solve this problem, but unexpected
interactions should be investigated in future work. One possible example of
such an interference is a connection-based load-balancing algorithm which would
compete with the shortest path algorithm for secure routing in this approach (see

45

2 Restriction of Internal and Targeted Attacks

Fig. 2.14). The proposed approach enforces a őxed path for each connection on
all switches to prevent the kidnapping of data. A load balancing algorithm could,
however, come to the conclusion that a connection via a longer route on less busy
links is more optimal and install appropriate rules. Depending on the order of
the installed sub-rules, these connections are either not protected by a secure
routing against manipulation or the routing for a connection would not work at
all.

Weakly- vs. strongly-typed Network OS. A part of the SDN functionality is achieved
through so-called network operating systems (NOS), which provide frameworks
for the programming of SDN applications and hide some of the complexity of
the OpenFlow protocol and the network management. For this work, various
NOS written in C/C++, Java, and Python were investigated. Python proved
to be very efficient for a rapid prototyping. This efficiency was later paid with
an increased effort in troubleshooting packets that disappeared mysteriously. A
major problem with the troubleshooting was the weak type system of Python in
which it is often unclear which objects are channeled through a function. Secure
network operating systems should be based on strongly-typed languages like Java
ś which is used, e.g., in the Floodlight controller12 ś or if speed, readability and
security are to be combined, for example, be realized in Rust13.

On the other hand, software-deőned networks offer opportunities to further improve
the IT security. Some options for future work are discussed next.

Anomaly detection and reaction to attacks. The central overview of the network activi-
ties of different hosts in the SDN, as well as statistics that are collected directly
on the switches, makes it possible to search for anomalies in the network traf-
őc. For this purpose, obviously SDN-based anomaly detection techniques are
necessary. If the detected anomalies indicate attacks (e.g., the outŕow of large
amounts of data through unknown protocols), a dynamic őrewalling approach
can be used which restricts the use of various network services by the (attacking)
hosts. Visited web links by the attacking host could be diverted to an error page
that informs the user that the computer is blocked, while mail connections to
the administrator are still possible to discuss the issue. All other mail recipients
and connections are blocked, too.

Dynamic firewalling. The above-discussed dynamic őrewalling technique also allows the
ŕexible use of pre-deőned personal or role-speciőc policies in a SDN őrewall ap-
plication that dynamically allows/prohibits connections, while taking the client
site (mobility assistance for multi-user systems as well as laptop and smartphone
users) into account. In this case, the őrewall rules are not tied to a speciőc device,
but to the authentication of a speciőc user in the network.

12http://www.projectfloodlight.org/floodlight/
13https://www.rust-lang.org/

46

http://www.projectfloodlight.org/floodlight/
https://www.rust-lang.org/

2.7 Conclusions

Wireless SDN. The network interfaces to wireless local area networks (WLAN) repre-
sent an additional blind spot for network monitoring. Often the Wi-Fi access
points are not part of the monitoring and security infrastructure, but represent
only the last hop to the (mobile) devices. This approach inevitably loses sensi-
tive information of the communication between the wireless AP and the device.
This causes that attacks remain potentially undetected. In the past, the wireless
encryption was broken several times, e.g., for wired equivalent privacy (WEP)14,
Wi-Fi protected access (WPA)15 and indirectly for WPA2 using the Wi-Fi pro-
tected setup16 (WPS) protocol. Further attacks exploit the fact that management
frames are transmitted unencrypted to de-authenticate individual clients17 and
to reconnect them using, e.g., rogue access points as man-in-the-middle. Inte-
grating an intrusion detection concept directly into the WLAN APs is inŕexible
and technically difficult to implement. A software-deőned networking approach
which passes the Wi-Fi AP authentication and monitoring information to the
SDN-based security services, in which an analysis of incoming data streams will
be carried out anyway, seems more reasonable.

14http://www.dummies.com/WileyCDA/how-to/content/understanding-wep-weaknesses.html
15http://dl.aircrack-ng.org/breakingwepandwpa.pdf
16https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
17http://www.aircrack-ng.org/doku.php?id=deauthentication

47

http://www.dummies.com/WileyCDA/how-to/content/understanding-wep-weaknesses.html
http://dl.aircrack-ng.org/breakingwepandwpa.pdf
https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
http://www.aircrack-ng.org/doku.php?id=deauthentication

3 Local High-Speed Monitoring with

Parallel NIDS

The previous chapter was devoted to the prevention of attacks on local area networks
originating from internal attackers or targeted attacks. Some threats, e.g., external
attacks, cannot easily be prevented because the external communication infrastructure
is not under common control. Therefore Network Intrusion Detection Systems (NIDS)
are often used as a reactive measure to detect attacks. NIDS have been applied with
similar design and sensor placement principles in productive environments since the
1990s. Network technologies and domains, however, have been changed dramatically
since then. Highly variable communication relations and constantly increasing network
bandwidths more frequently force NIDS to handle high peak rates. This is illustrated in
Figures 3.1 and 3.2. Figure 3.1 measures the maximum peak rates that have occurred
within 5 minute intervals during a day within the data center backbone of our (small)
university. Figure 3.2 depicts the same type of measurement for the őle and VM
services of the computer science institute. In the őgure it can be seen that the peak
rates often reach 1 Gbit/s, 2 Gbit/s are also possible. Single-threaded NIDS, however,
were originally designed for a performance from 100 MBit/s to 500 MBit/s. Single-
thread performance improvements for this type of system can often be achieved only
by increasing the processor cache size.

●●●●●●●
●●●●●

●●

●
●

●●●
●●●●●●

●●●●●●●●●●●●
●●
●

●●

●

●
●●●●●

●

●●●●

●●●●
●●
●●●
●●●●
●
●
●
●●●●●

●

●
●
●
●
●●●
●●
●●●
●
●
●●●●
●●
●

●

●●●●●
●●●

●
●●●

●

●

●

●●●
●●●●
●●

●

●●●●●●●●

●

●
●

●●●●●
●
●
●●

●

●

●
●
●●

●●●
●
●●

●

●

●●

●

●

●●

●●●●●●

●

●
●

●

●●●
●●●●●

●

●●●●

●●●
●●●●

●●

●●●●●
●

●

●
●

●

●
●
●

●●

●
●

●

●●●●●●●●
●

●

●●●●●●●

●

●
●

●

●
●

●

●
●

●
●
●

●●●●●●●
●●

●●

●

●

●●●●●
●●●●●●

●●●●●

●

●
●●●

●●

●

●

●

●●

●

●

●

●

0 50 100 150 200 250

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

5min interval index

p
e
a
k
 r

a
te

 [
M

B
it
/s

]

Figure 3.1: Peak rates for the most active day of the week in the university data center

49

3 Local High-Speed Monitoring with Parallel NIDS

●●
●
●●●●●

●
●●●●●

●●●●●●
●●●●●

●●
●●●●●

●
●
●

●●●●
●

●●●
●
●

●●
●●
●●
●●●
●
●

●●●●●●
●
●●●●●

●
●●●●●

●●●●
●●
●
●●●●●

●
●●●●●

●
●●●●●

●

●●●

●

●
●
●
●●●●
●
●●●●●●

●●
●●●●
●
●
●
●●●

●

●
●
●

●

●

●

●●

●●●

●●●●
●

●

●
●●●●
●

●
●

●●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●●●

●
●●
●●●

●

●

●●
●●●●
●

●

●

●

●●
●
●●

●

●

●●●●●●●
●
●●●●●

●
●●●●
●●●●●

●

●

●●●●●
●
●●●●●

●●●●●
●
●
●●●●
●
●●●●●

●
●●●●●

●

●

●
●

●

●

●

●

●

●

●

0 50 100 150 200 250

0
2
0
0

4
0
0

6
0
0

8
0
0

1
2
0
0

5min interval index

p
e
a
k
 r

a
te

 [
M

B
it
/s

]

Figure 3.2: File and VM services peak rates for the most active day of the week in the
university data center

Various approaches tried to optimize intrusion detection analyses through specialized
hardware or optimized operating system kernels. Most of them favor parallelization
to speed up the performance [73, 125, 126, 74, 127, 75, 128]. However, many of these
approaches partially switch off essential parts of the IDS’s analysis and detection capa-
bilities when measuring the performance increase of their method. Thus, the evaluated
conőgurations are not able to detect real-life attacks. In addition, they do not com-
pare the performance gain through parallelization ś independently of their focus on
hardware or software solutions ś with the theoretically achievable one. Recent inves-
tigations have also shown that parallel approaches often do not beneőt from the cache
sharing capabilities of modern multi-core CPUs [129]. They do not scale well regarding
random access memory bandwidth shared among multi-threaded applications which
requires a very efficient cache usage.

In this chapter, different approaches that address the caching and parallelization prob-
lem to optimize the system performance of NIDS are investigated. Based on a detailed
performance proőling, it will be shown why other approaches fail to achieve the ex-
pected increase. As consequence, a novel NIDS analysis approach is being proposed
that is capable of meeting the monitoring requirements of modern computer networks.
The approach focusses on user-space solutions for non-distributed multi-core systems
in real-world scenarios and does not make assumptions about the underlying operating
system kernel. The performance gains are evaluated using a prototype which reacts
to changes of network traffic characteristics in a very short time. In contrast to other
approaches, the resulting performance gains are also compared with the theoretically
achievable maximum. First reŕections on the approach were published in [130].

50

3.1 The Parallelization Approach of Suricata

data acquisition/
packet decoder

pre-processor multi pattern
search

rule
evaluation

signatures

alerts/events

alerts/

events

network

logging

signature analysis
flows /

packetspackets

packets

Figure 3.3: Pipeline architecture of Snort

3.1 The Parallelization Approach of Suricata

The most popular parallelized NIDS is Suricata1 which is signature-compatible to the
single-threaded NIDS Snort2. This section introduces the two systems and discusses
the practical results of Suricata in parallelizing the NIDS analyses.

Snort & Suricata

The most widespread open-source NIDS is Snort, which applies a pipeline architec-
ture that completely analyzes each network packet in one step (see Fig. 3.3). Pipeline
architectures implement a zero-copy strategy. Network packets are captured by a data
acquisition module using a ring buffer. Packet processing is done in three stages: (1)
packet decoding to extract protocol headers from network frames, (2) preprocessing of
decoded data depending on the identiőed protocol (e.g., reassembly of TCP streams),
and (3) packet and ŕow analysis in the detection engine applying IDS rules (multi-
pattern search, rule evaluation). Detected attacks are logged and indicated. If the
detection engine is not capable to keep up with the incoming network data, not yet
analyzed packets in the ring buffer are overwritten by new ones.

The basic principle of Snort has been parallelized in the IDS Suricata (cf. Fig. 3.4),
which basically executes the Snort pipeline stages in separate threads. In addition,
it parallelizes the detection stage as follows. Suricata processes several packets in
one thread and transfers them to other threads via multi-writer/multi-reader packet
queues. All packets are allocated from a single global memory/packet pool. Network
data is considered as a compound of multiple network ŕows. In the preprocessing
stage network ŕows are statically balanced over the input queues of the various de-
tection engines (the calculation of the destination queue is a simple modulus of the
(UDP/TCP) source and destination ports which is used as an index for a queue table).

1http://www.openinfosecfoundation.org
2http://www.snort.org

51

3 Local High-Speed Monitoring with Parallel NIDS

network traffic

packet decoding

packets

preprocessing,
connection

tracking

data acquisition

packets
packets (memory allocation)

global
memory pool

queue

packets
queue

packets, flows

queue queue queue

detection
engine 1

detection
engine 2

detection
engine n

...

allocated packets/flows are returned to memory pool

logging

events

events

e
v
e

n
ts

Figure 3.4: Suricata’s parallelization architecture

As soon as the analysis of one detection engine has been őnished, the packet buffer
has to be returned to the global memory/packet pool. Since various threads have to
synchronize their access to this memory pool, this is a serious disadvantage for the
system performance.

Practical Results versus Potential Performance Gains

This subsection compares the theoretically achievable performance gain through par-
allelization with the results achieved in practice by Suricata.

Used datasets. For this purpose recent versions of Snort (2.9.4.5) and Suricata

(1.4.1) were examined on an Intel Xeon machine (E5645, 6 cores) applying four

52

3.1 The Parallelization Approach of Suricata

nsa_p1 nsa_p2 nsa_p3 west_pt defcon acsac06 indust.

őle size[MB] 4,768 4,768 4,294 726 5,723 6,452 2,389
packets[kpkts] 7,081 4,777 7,322 5,230 20,769 12,451 14,113
TCP[\%] 88.39 91.77 93.98 85.04 99.42 98.24 0.96
UDP[\%] 3.0 0.76 4.02 1.84 0.28 1.2 0.02
IPv4[\%] 92.0 92.64 98.53 98.87 0.02 99.52 0.1
IPv6[\%] 0.1 0.05 0.12 4e-04 99.86 0.0 0.0
Other[\%] 7.9 7.31 1.35 1.13 0.12 0.48 0.12
Proőnet[\%] 0.0 0.0 0.0 0.0 0.0 0.0 98.9

Table 3.1: Characteristics of the used datasets

datasets from different sources. The őrst dataset (nsa, west_pt) comprises packet
captures of the Cyber Defense Exercise 2009 (CDX3) with real attacks of the National
Security Agency (NSA) for a test network of the West Point Military Academy. It
contains a lot of reconaissance (mostly based on nessus4/OpenVAS5), e.g., scans for
SSH, IMAP, VNC, SNMP, RPC, and Microsoft’s internet information services (IIS)
and terminal services. There are also attacks on various services, e.g., on DNS, IIS,
and HP OpenView with buffer overŕow and őle access attempts. In addition, there are
at least two denial-of-service (DOS) attacks included (UDP ŕood and DNS ampliőca-
tion test). The second data set (defcon) contains attacks that have been captured at
the conference DEFCON 2012. It is based on crafted services on top of IPv6/TCPv6.
This data set is a good candidate for generic detection methods, e.g., shell code detec-
tion signatures and machine-learning. The third dataset (acsac06) involves a set of
attacks for different target platforms which have been published in [131]. It covers 124
vulnerabilities with different attack variants (420 attack instances) and obfuscations
(3549 attack instances). Attacks that are detected by Snort are reconnaissance (RPC,
IIS scans), őle access, bind of cmd.exe to the network, some worm propagation, and a
lot of generic shellcode (various no-op-slides). Furthermore, a fourth dataset (indust.)
was captured by our research group in a large industrial site. It does not contain any
attacks and it is just an example for Ethernet-speciőc traffic. The deployed intrusion
detection signature sets for the two IDS are the official rule set6 for Snort (2013-02)
and the emerging threats rule set7 (2013-03). For a fair evaluation, (1) several con-
secutive captures were combined to sufficiently large datasets (roughly 5 GB for each
set), (2) all sets were preloaded into the RAM to prevent wrong measurements caused
by input/output waitings, and (3) the (potentially biased) official rule set for Snort

was combined with the the emerging rule set (which is potentially biased with respect

3http://www.westpoint.edu/crc/SitePages/DataSets.aspx
4http://www.tenable.com/products/nessus-vulnerability-scanner
5http://www.openvas.org/
6http://www.snort.org
7http://www.emergingthreats.net

53

3 Local High-Speed Monitoring with Parallel NIDS

to Suricata’s internals) to a single rule set which is applicable for the two NIDS. The
traffic characteristics of the analyzed datasets are listed in Table 3.1. For the sake of
brevity, the table lists only the ratio of the major protocols.

Performance achieved in practice through parallelization. Table 3.2 lists the
mean runtime of őve runs of each IDS applied to each dataset and the resulting par-
allelization gain (speedup) of Suricata compared to Snort. Two of the datasets
are not analyzable by Suricata because of synchronization problems (livelock, seg-
mentation fault). Obviously, Suricata outperforms Snort only for the analysis of
the defcon dataset, while it is slower in analyzing the other captures. This will be
explained in detail after comparing Suricata’s results with potential parallelization
results for Snort.

Snort Suricata
Snort [s] Snort [Mbit/s] Snort [kpkt/s] Suricata [s] Speedup

nsa_p1 54.8 729.9 129.2 218.2 0.25
nsa_p2 49.4 809.6 96.7 228.2 0.22
nsa_p3 63.4 568.1 115.5 152.6 0.42

west_pt 20.4 298.5 256.4 livelock livelock
defcon 89.6 535.8 231.8 42.4 2.11

acsac06 209.6 258.2 59.4 segfault segfault
indust. 6.2 3,232.3 2,276.3 21.8 0.28

Table 3.2: Runtime of Snort and Suricata

Theoretically Possible Speedup. For an independent consideration of paralleliza-
tion gains among existing approaches and the later proposed approach, it is necessary
to determine the theoretical acceleration of the NIDS analysis speed when parallelizing
certain analysis steps. For this purpose, the runtime of the individual pipeline stages of
Snort were measured with its internal microbenchmark mechanism as fraction of the
total runtime from Table 3.2. Table 3.3 contains the results. According to Amdahl’s
law [132] the achievable speedup s by parallelizing a program into n units is:

s =
1

rs +
rp

n

with rp = 1− rs, rs ∈ R, 0 ≤ rs ≤ 1 (3.1)

where rs represents the serial part of the program and rp the parallelizable parts.
Both, rs and rp are expected to be normalized to the interval [0.0, 1.0] in this formula.
Suricata decouples the packet decoding and preprocessing stages from the detection
stage (component-based parallelism). The detection stage is further parallelized by
concurrently analyzing several network packets/streams (data-based parallelism). The
data acquisition stage is the only phase that directly depends on the incoming packet
stream and is therefore serial.

54

3.1 The Parallelization Approach of Suricata

other + data packet de- prepro-
acquisition [%] coding [%] cessing [%] detection [%] logging [%]

nsa_p1 10.78 6.02 10.33 72.24 0.63
nsa_p2 10.17 5.49 8.86 75.04 0.44
nsa_p3 10.64 5.55 10.52 72.74 0.55
west_pt 10.86 7.18 46.06 34.18 1.72
defcon 7.42 8.45 39.01 43.88 1.24
acsac06 19.82 2.67 13.80 63.25 0.46
indust. 70.07 15.30 3.86 3.25 7.52

Table 3.3: Percentage of analysis time for each stage of the Snort pipeline

amdahl amdahl_dp comp_par suricata

S
p
e
e
d
u
p

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0 nsa_p1

nsa_p2

nsa_p3

west_point

defcon

acsac06

industrial

Figure 3.5: Suricata’s speedup versus the prediction
using Amdahl’s formula for Snort

Based on the conőguration
of Suricata, it is possible
to calculate the maximum
acceleration for three the-
oretically parallel variants
of Snort. The őrst vari-
ant is component- and data-
parallel (amdahl). The ac-
celeration can be calculated
by assigning the data acqui-
sition stage to rs and all
other stages to rp in Am-
dahl’s formula. The nsa_p1
dataset, for example, has
an analysis effort of roughly
10% (rs = 0.1078) for the
serial program part and 90%
(rp = 1 − rs = 0.8922) for
the parallelizable part. In
this case, the expected per-
formance gain (amdahl) on
a 6-core CPU is 3.9. However, some components/stages in the Snort pipeline might
not scale as expected in the parallel case. The preprocessing stage, for example,
sometimes has to aggregate input data (e.g., for TCP reassembly and port scan de-
tection) and is therefore serial in some cases. Thus, it is useful to calculate a second
data-parallel only (amdahl_dp) variant of Snort by assigning the detection stage to rp
and all other stages to rs. In the most extreme case, the input data do not provide any
data parallelism at all for the analysis. Therefore, it is necessary to calculate a third
prediction for a component-parallel-only (comp_par) variant of Snort based on the
serial data acquisition stage and the most time-consuming component for each dataset

55

3 Local High-Speed Monitoring with Parallel NIDS

(e.g., 1
rs+detection

for the NSA datasets and 1
rs+preprocessing

for the west_point dataset
ś assuming that there are enough processor cores available for the other pipeline
stages). Figure 3.5 compares the results of these calculations for 6 cores (n = 6) with
the achieved speedup of Suricata (cf. column speedup in Table 3.2). Note that this
comparison is legal because the pattern search code of Suricata (Aho-Corasick algo-
rithm), which constitutes most of the analysis effort of the parallelizable program part
(detection stage), is a copy of Snort’s code. As it can be seen from Figure 3.5, there
is a noticeable gap between the theoretically possible parallelization and the results
achieved by Suricata.

Limits of Suricata’s Parallelization Strategy. The basic problem of Suricata and
other IDS approaches (e.g., [75, 74]) which apply parallelization is that the proposed
architectures often ignore the CPU cache, memory access patterns, context-switching
problems, and busy-waiting. In Suricata, the problems are most likely caused by
implicit synchronization, excessive locking, and bad CPU cache usage. First, the data
acquisition and the detection engines are implicitly synchronized with each other via
the global memory pool because packet buffers have to be returned after őnishing
the analysis. This may lead to massive contention when accessing the memory pool
depending on the number of detection engines, which directly relates to the number of
processor cores. According to recent investigations [133] this has a much higher impact
than intuitively thought, because the access to critical sections must be modeled as
another serial part of the program in enhancements to Amdahl’s formula. Furthermore,
Suricata statically balances network ŕows over several analysis units in the detection
stage which may lead to some idle detection engines, while others are still processing
incoming ŕows due to differences in packet processing times.

Additionally, it is necessary to understand the impact of single packets for the IDS
analysis. If we divide the runtime of the single-threaded IDS Snort for each dataset
in Table 3.2 by the number of packets of each dataset (cf. Table 3.1) the results for
most datasets are roughly between 5 and 15 µs. A microsecond execution time is
lower by an order of magnitude compared to the usual operating system time-slice for
kernel-level threads (e.g., around 20 ms for the CFS scheduler of linux). It makes little
sense with respect to the operating system overhead (context-switching) to construct
an IDS architecture which reacts to every single packet. Suricata processes each
packet individually on a per-function basis despite of the queues between its modules.
This can cause side effects regarding the CPU caches that are depicted in Figure 3.6.
First, the data acquisition stage of Suricata stores the network packets in the order
of their arrival into the global memory pool and then it stores pointers to the packet
buffers into the queue of the packet decoding stage. Further stages access the queued
packet pointers in the arrival order until they reach the preprocessing and connection
tracking stage. Next, the packet pointers are statically balanced into the queues of
the different detection engines based on the underlying network ŕows. At this point,

56

3.1 The Parallelization Approach of Suricata

global memory pool
(main memory)

queue queue queue

detection
engine 1

detection
engine 2

detection
engine n

...

cache line 1

cache line 2

...

CPU Cache
virt addr 1

virt addr 2

...

phys addr 1

phys addr 2

TLB (4 KB page size)

...

1 1 1 2 2 22 N N N

Figure 3.6: Relation between the CPU caches, the global memory pool, and the packet
queues in Suricata

the memory access becomes random because the packet pointers in the queues of the
different detection engines point to interleaved network ŕows. The lock-based access
to the synchronization variables of the detection engines queues can cause additional
randomizations by context-switches between the connection tracking stage and other
detection threads at any time. The CPU has to manage two types of caches which are
affected by this behavior. The őrst one is the L1/L2/L3 cache hierarchy which can
store parts of the packet data from the main memory and other IDS data structures,
if used correctly. This cache hierarchy refers to the physical memory addresses of the
buffered data. Suricata tries to mitigate impacts on the cache hierarchy by allocating
the memory pool with a sufficiently small number of packet buffers that őt into the
L2 cache of most systems. However, the CPU also manages a second cache which
is called translation lookaside buffer (TLB). This second cache maps virtual memory
addresses, e.g., the pointers to the packet pool, to physical memory addresses. The
set of the buffered memory translations is usually very small and a cache miss in the
TLB is nearly as expensive as a miss in the other CPU caches. Furthermore, the TLB
can become invalid in the case of a context switch8 between different processes. The
combination of single-packet processing with an execution time below the OS time-slice
for threads and the random access of different detection engines to interleaved memory
regions can cause cache misses at the line rate of the incoming packet stream.

To verify the assumption regarding the context switches and cache misses, Snort and
Suricata were proőled with the Linux perf toolkit9. As can be seen from Table 3.4,
the context switches (co sw) and TLB misses of Suricata exceed indeed that of
Snort by several orders of magnitude.

8context switch: stores/restores the state of a process (which involves a change of the address space)
9https://perf.wiki.kernel.org/index.php/Tutorial

57

3 Local High-Speed Monitoring with Parallel NIDS

Snort Suricata

co sw cache miss TLB miss co sw cache miss TLB miss
nsa_p1 617 41,834,414 83,059,435 3,623,893 551,600,482 670,692,478
nsa_p2 617 32,438,877 63,476,800 3,729,426 349,591,663 638,931,821
nsa_p3 628 56,720,450 90,978,462 2,719,206 515,808,743 724,476,278
defcon 760 134,356,466 132,972,654 1,903,271 344,009,157 602,544,996

Table 3.4: Context switches and cache misses for Snort and Suricata

3.2 Further NIDS Optimization/Parallelization

Approaches

Various approaches have been published to speed up intrusion detection systems and
to improve their analysis capabilities. The majority of published papers deals with
Snort because of its large signature base and its far-reaching acceptance. For the
sake of brevity, only the major results are outlined here.

Input reduction and optimization aims at buffering, őltering, and/or reordering of
network packets before they enter the intrusion detection system. The optimization
approaches follow the course of a packet through the network card, via the operating
system kernel, to the userspace (applications/NIDS). Xinidis et al. [125] try to op-
timize the IDS input on the network card by applying early packet őltering (leading
to a performance improvement by 8%) and by ordering of packets according to their
destination ports to improve the cache locality of the IDS. This results in a recurring
application of equal IDS rules on the packet streams inducing a good cache-hit rate
with a performance improvement of 10ś18%. In addition, a static load-balancer has
been proposed which distributes the data ŕows within the network card to various sen-
sors (input buffers). However, static load-balancing may cause imbalances. Therefore,
load-balancing should run on the general-purpose CPUs because this enables dynamic
distribution concepts (see Sections 3.4 and 3.5). The next stop of a packet on the route
to the NIDS is the operating system kernel, which encapsulates the access to the net-
work card. In [134], Fusco and Deri analyze bottlenecks of the Linux network interface
card (NIC) drivers that aggregate all packet queues of modern network interface cards
to a single queue for interfacing with the user space. They provide a special driver
and a user-space API offering the possibility to directly attach user-space programs to
the queues of the network interface card to circumvent the (to a certain degree even
redundant) OS-side processing.

Content analysis optimization additionally considers the packet payload processing.
In [73], the content of network packets is split into overlapping fragments which are an-
alyzed by multiple independent processing units on a network card. Another approach
[74] moves the network packets to a graphics processor (GPU) to evaluate packets or

58

3.3 Multi-threaded NIDS under Attack Conditions – Discussion of Related Work

packet fragments in parallel and in a later work [135], the same authors combine this
method with a load-balancing network card on the input side. These approaches are
discussed in more detail in the next two sections. In [136] Yang et al. try to boost
the evaluation of regular expressions used in many IDS during content analysis by
replacing deterministic őnite state automata through parallel nondeterministic ones.
Another approach of Smith et al. [76] suggests an automaton for regular expressions
which reduces the state space by augmenting traditional őnite state automata with a
scratch memory for small, but highly efficient computations (e.g., counting). However,
Snort rules, for instance, are usually accompanied by static search patterns which
are evaluated őrst. The evaluation of regular expressions is therefore skipped in most
cases, i.e., only marginal performance gains are possible with these approaches. Dur-
ing the experiments for this work the regular expression evaluation in Snort never
achieved a share of more than 0.2% of the total analysis time.

3.3 Multi-threaded NIDS under Attack Conditions –

Discussion of Related Work

Many of the existing parallel approaches try to reduce the input into the NIDS through
pre-őltering of packets and to avoid synchronization problems between various IDS
threads by turning off pipeline stages which has far-reaching consequences for the
detection capabilities of the systems. This section discusses these consequences for
three existing parallelization approaches. The Gnort approach of Vasiliadis et al.
[74] switches off the preprocessing, the rule evaluation, and the logging (see Fig. 3.7).
This essentially leads to a kind of network grep10, but not to a functional NIDS. Later
the same authors have developed a system, called MIDeA [135], that enables at least
the preprocessing stage, but continued to disable the rule processing and the logging.
This expands the capabilities of the system from a pure packet-based analysis to a ŕow-
based analysis. The load-balancing approach presented in the publication, however,
has the problem that it cannot distribute bidirectional ŕows (bi-ŕows). Thus, the
analysis of attacks in which both communication directions are related to each other
(e.g., the client request has to be correlated with the server response to detect the
attack) is not possible. Another approach by Jamshed et al. ś Kargus [128] ś
disables the pre-processing stage and applies data parallelism on a packet level. Since
this approach does not allow analyzing ŕows, it essentially disables the rule evaluation
with respect to the ŕow state. This means, for example, that search patterns which
span multiple packets cannot be detected in the multi-pattern search. In addition,
attacks that require a correlation of multiple data ŕows among themselves, e.g., port
scans during the reconnaissance, are not recognized in the rule evaluation.

10Unix command that searches input files for lines containing a match to the given pattern

59

3 Local High-Speed Monitoring with Parallel NIDS

data acquisition/
packet decoder

pre-processor multi pattern
search

rule
evaluation

signatures

alerts/events

alerts/

events

network

logging

signature analysis
flows /

packetspackets

packets

Figure 3.7: Typically removed pipeline stages in current parallel NIDS approaches

Moreover, the way in which parallel NIDS systems are evaluated is questionable. Turn-
ing off pipeline stages, for example, shifts the baseline of the experiments, which is not
discussed in any of these papers. This is illustrated in Table 3.5. As can be seen in
this table, turning off the preprocessor for the ŕow analysis speeds up the performance
between 50% and 300%. Therefore, it is unclear whether the performance of previous
parallelization approaches (which are unfortunately often not speciőed as performance
increases over a clear baseline) result from the parallelization or from the shut-down of
pipeline stages. The table also shows how extremely the shut-down of the őrst pipeline
stage inŕuences the detection rate of Snort. It detected only between 19 and 24% of
the attacks.

ŕows enabled ŕows disabled detected
MBit/s kpkt/s MBit/s kpkt/s speedup attacks

west_pt 298.5 256.4 428.9 368.3 1.44 24.1%
acsac06 258.2 59.4 771.0 177.4 2.99 19.4%

Table 3.5: Performance versus accuracy of Snort with/without ŕow analysis

Further questionable assumptions of former approaches are the distribution of normal
and attack data in traffic: (1) Typically it is assumed that more than 99% of the net-
work traffic are normal data which do not contain any attacks. NIDS are optimized
for this case and are signiőcantly less efficient if this distribution changes. (2) In the
understanding of these approaches, an attack is often based on one attacker, one vul-
nerability, and one target. Sometimes multiple targets are attacked, but the limitation
to one attacker and one vulnerability often persists. Real attack behavior is, however,
different. Figure 3.8 represents different traffic situations that may occur during an
attack. The NSA data sets used in the Section 3.1 have already shown that an attacker
usually does not exclusively attack a single system, but also executes DOS attacks for
distraction purposes (left side of the őgure). Traffic patterns that are found during a
DOS attack possess an 1:n relationship, e.g., one attacker, one host, n connections for
SYN ŕooding, or one attacker and many hosts during DOS attacks on multiple hosts.
Other DOS attack options are reŕection attacks with an n:1 relationship, e.g., during
a SYN ŕooding attack with a forged sender address, in which the answers are sent to

60

3.4 Design Options for Fully Functional Parallel NIDS Architectures

Figure 3.8: Reconnaissance, takover, and DOS behavior

the destination of the faked address (upper left part of the figure). Some reflection
attacks have a 1:1 relationship, i.e., the attacker sends small packets to a server by
means of a faked source address. The typically larger response of the server compared
to the input is then sent to the faked address (lower left part of the figure). At the
same time, the attacker performs his/her targeted attacks (right side of the figure).
In the first phase (reconnaissance) this involves massive scans of the target network
with similar traffic characteristics as in DOS attacks. After that there are usually tar-
geted infections (takeover) of individual hosts, which are sometimes lost in the noise
of the DOS attacks. If the transmitted malicious software has its own distribution
routines, another harmful traffic emanates from each infected host, e.g., as observed
during worm propagation. All of these traffic patterns typically produce a massively
larger traffic volume, as assumed in former analyses of parallel NIDSs. Unfortunately,
NIDSs are not optimized for this kind of traffic and respond with a huge decrease in
analysis efficiency.

3.4 Design Options for Fully Functional Parallel

NIDS Architectures

For each parallelization approach, it is important to determine in advance the compo-
nents, functions, and algorithms that are crucial for the computing time. The micro-
benchmark mechanism of Snort used in Section 3.1 has provided first indications for
this (cf. Table 3.3). It identified the detection engine as the most compute-intensive
component. In addition, this component can be parallelized in a safe manner without
any major impact on the other pipeline stages which is necessary for a fully func-

61

3 Local High-Speed Monitoring with Parallel NIDS

tional parallel NIDS variant. There are essentially two different approaches for the
parallelization of individual components ś the component parallelism and the already
mentioned data parallelism.

Component or Function Parallelism.11 Many programs have independent program
parts that can be executed in parallel on the same data. Program parts are individual
source blocks or function calls ś that’s why this type of parallelism is also known as
function parallelism. The component parallelization assigns these blocks or functions
to individual lightweight processes (threads) or heavyweight processes (process/pro-
gram). Examples of this type of parallelism are the statistical analysis of a packet in
the context of port scans with a simultaneous comparison of its contents using NIDS
rules or the reassembly of multiple TCP segments with a simultaneous signature anal-
ysis of the reassembled data stream. Such parallelization would involve the separation
of the individual pipeline stages of the NIDS into several parallel sections, whose si-
multaneous execution, however, leads either to a myriad of parallel activities or whose
mapping to a few parallel control ŕows has a high synchronization overhead. Another
variant would be to aggregate smaller TCP segments to reasonable sizes (e.g., 64 KB)
and to run the subsequent pipeline steps in parallel on already aggregated segments ś
which leads to a function parallel analysis on the same data stream.

Data Parallelism. In this parallelization variant the same function is applied in
parallel on different data sets. The single-instruction/multiple-data (SIMD) princi-
ple performs the same instruction sequence on different parts of the data in paral-
lel on different processor cores. It is a hardware architecture principle for parallel
computers that is not really suitable for parallelization in the context of NIDS. Single-
program/multiple-data (SPMD) extends this principle on identical programs/program
parts that are executed asynchronously on different data. Relevant program parts for
this principle are in particular loops that iterate over data őelds to perform calcula-
tions on it. In the NIDS area, such calculations occur, for instance, in the application
of string-search automata on different data ŕows inside of the detection engine.

Application of Function and Data Parallelism in NIDS

Function and data parallelism can take place on a variety of levels in NIDSs. Therefore,
a general model of a parallel NIDS is introduced, based on which various őne-grained
parallelization variants can be discussed. In general, the function of a signature-based
NIDS is to match a set of intrusion detection rules with the incoming set of packet/flow

11The terms component and function parallelism are used interchangeably in the literature. The for-
mer seems to refer to architectural separable components, while the latter often refers to dividing
of algorithms. Subsequently, the term function parallelism is used for both terms.

62

3.4 Design Options for Fully Functional Parallel NIDS Architectures

Packet duplicator

P

IDS node 1

Rule set R/3

a) Function parallelism

IDS node 2

Rule set R/3

IDS node 3

Rule set R/3

Logging/Alarms

Load balancer

P

IDS node 1

Rule set R

b) Data parallelism

IDS node 2

Rule set R

IDS node 3

Rule set R

Logging/Alarms

P P P P/3 P/3 P/3

P ... Packet set
R ... Rule set

Figure 3.9: Example of two general parallel NIDS architectures

data, and to trigger an alarm, or to log the incident if there is a positive match of a
rule with a packet/ŕow. Figure 3.9 depicts two possible parallel NIDS architectures
that result from this general consideration. Function parallelism can be achieved by
duplicating packets at the entrance to the rule processing functions and by breaking
down the rule-based logic of the IDS into several disjoint calculations or subsets (cf.
Fig. 3.9a). Data parallelism can be achieved by distributing packets/ŕows with a load
balancer to different IDS nodes with identical rule processing logic (cf. Fig. 3.9b).

Application of Function Parallelism

The splitting of the control logic for the rule-processing can be done in two ways: (1)
either the entire IDS is considered as a black box and various instances are conőgured
with different parts of the rule set or (2) the IDS rule logic is split internally into
several parts. Subsequently, the results of some experiments are presented which are
based on the most coarse-grained and most őne-grained function parallel approach for
Snort.

Coarse-grained Function Parallelism. A coarse-grained function parallel variant
can be implemented relatively simply. In an experiment, the 52 rule groups of the
official Snort signature base were aggregated into eight groups with approximately
the same computing time. These eight groups were further distributed according to
the function-parallel architecture in Figure 3.9a on three IDS nodes, which yields 966
possible distributions according to the formula for the Stirling numbers of second
kind12. For 75% of these distributions, a performance improvement just over 20%
could be achieved.

12http://oeis.org/A008277

63

3 Local High-Speed Monitoring with Parallel NIDS

Figure 3.10: Parallel multi pattern search

Fine-grained Function Parallelism. The most őne-grained function parallelism is
the distribution of the static search patterns (character and binary strings) of a single
IDS rule group across multiple processor cores. The approach of Snort to the si-
multaneous search for multiple search patterns is based on an algorithm by Alfred V.
Aho and Margaret J. Corasick [137]. The Aho-Corasick algorithm constructs a search
automaton out of multiple search patterns whose search costs are linearly dependent
on the length of the text to be searched (O(n), n ... length of input text). The con-
struction of the automata is carried out in two phases. In a őrst pre-processing step,
the search patterns are stored in a search pattern tree (Trie). The second phase trans-
fers the Trie into a deterministic search automaton. Figure 3.10 represents a possible
parallelization approach for the search of character strings based on an example Trie of
a Snort rule group. The parallelization is performed by breaking down several search
patterns in various data structures, e.g., by splitting the Trie into two halves. Based
on the divided data structures, several search automata are constructed with the Aho-
Corasick algorithm that can be executed in parallel at runtime. An experiment with a
parallel prototype of an old version of Snort (2.8.6) achieved a performance increase
between 12.6% (nsa_p3) and 25.7% (nsa_p1) for the data sets from Table 3.1. In
a later version of Snort (2.9), however, the search automatons were split into a fast
automaton for the most-distinguishing search patterns of all rules in a group and a
slow automaton for the other search patterns, which led to a 97% reduction in their
size, so that the new serial version of Snort outperforms the prototypical parallel
variant.

Application of Data Parallelism

Just as in the case of function parallelism, data parallelism can be implemented as a
coarse-grained or őne-grained variant: (1) In the őrst case, the IDS is again consid-
ered as a black box and a load balancer distributes various data streams on different
instances of the IDS, or (2) the packet processing logic is split internally.

64

3.4 Design Options for Fully Functional Parallel NIDS Architectures

Coarse-grained Data Parallelism. For the coarse-granular approach, a prototypical
load balancer was implemented similar to the őrst pipeline stages of Snort. The load
balancer reads, analogously to the data acquisition stage of Snort, the data packets
from a network interface or from a őle and identiőes, as in the connection tracking
stage, the contained TCP ŕows and UDP ŕows based on the 5-tuple (protocol number,
source address, destination address, source port, destination port). The packets are
written by the actual load distribution őlter into several őrst-in-őrst-out (őfo) queues
which are connected to Snort instances. Packets are distributed as bidirectional
flows (bi-flows), i.e., the packets of the two communication directions of a connection
are assigned to the same IDS instance. In an experiment with the data sets of Ta-
ble 3.1, this load-balancer achieved a performance increase between 0.05% (nsa_p2)
and 83.3% (west_pt). The unchanged runtime in the tests with the load balancer and
the nsa_p2 data set goes back to an unfavorable distribution of connections on the
Snort instances. Most of the parallel instances were idle during the measurements ś
a disadvantage which could be countered, e.g., by őne-grained data parallelism.

Fine-grained Data Parallelism. The most őne-grained data-parallel NIDS is the
Snort variant of Yu et al. [73]. It disassembles individual packets into packet frag-
ments which are then analyzed in parallel on a network card. For an experiment, a
prototype was implemented that mimics the approach of Yu, but which aims at paral-
lelizing the IDS analysis using general-purpose hardware instead of assigning packets
or packet fragments to special processing units (e.g., network cards or graphic cards).
The performance results of this prototype ranged from performance losses of 8.4%
(west_pt) to performance increases of 8.75% (nsa_p2). The performance degrada-
tion of the west_pt data set goes back to the fact that the average packet size for this
data set compared to the overhead of parallelization is too low.

Conclusions From These Experiments

The performance improvement of just over 20% for the coarse-grained function parallel
prototype was quite consistent for most of the signature distributions. These results
are encouraging, but their consistency over a broad range of signature distributions
indicates at the same time that further performance increases are no longer possible.
The őne-grained function parallel approach is less performant than newer serially
executable variants of Snort. Therefore, it is recommended to follow the data-parallel
approach.

The comparison of the coarse-granular and őne-granular data-parallel variants shows
that each of these approaches has its own difficulties depending on the input data.
The problems associated with the coarse-granular distribution of the load comes from
the fact that large data ŕows (so-called elephant flows) disproportionately occupy
individual IDS instances, while the other ones are idle. In contrast, the őne-granular

65

3 Local High-Speed Monitoring with Parallel NIDS

parallelization approach has problems with data ŕows of too small packet sizes (so-
called mice flows). Therefore, a variant is required that combines the two methods and
which always works optimally when it is faced with changing traffic characteristics.

3.5 A Novel Dynamic Parallelization Approach for

NIDS

Based on the preceding discussions of the Sections 3.1 and 3.4 this section presents
an approach that is capable to cope with the increasing network dynamics (see Fig-
ure 3.11). The principle idea is that batches of packets are passed through the IDS
from module to module in a quasi-synchronous manner from the data acquisition to
the analysis. The approach consists of three stages. In the őrst stage, the data ac-
quisition, packets are captured at the local area network interfaces and stored in the
respective packet pools. In contrast to Suricata, the packet pools are local to the
respective network interface, and allocated packet buffers are never explicitly be re-
turned to the pool. The data acquisition modules form the batches, which may consist
of packets or arbitrary events. Furthermore, they ensure that the amount of memory
used for storing all batches is below the size of the CPU cache. Then the batches
are pushed forward to intermediate preprocessing modules, e.g., packet őlters, which
belong to the second stage. Since there are no queues between the modules, a batch
is only forwarded between two modules when the processing of the previous one has
been completed, i.e., the processing in the őrst module is blocked if the second module
still processes a batch. The packet őlters perform some preprocessing and preliminary
analyses to reduce the incoming packet stream. Thereafter, the batches are forwarded
to the load balancer and in some cases, the batch is forwarded in parallel to a ŕow
exporter during this stage. The load balancer assigns the batches to the detection
engines, the third stage. Here, all detection engines formally get the same batch, but
the load balancer assigns different ranges of packets to be analyzed depending on the
number of CPU cores or IDS instances. The same thing happens with the detection
engine behind the ŕow-exporter, but this engine receives only a part of the data, e.g.,
the protocol headers with just a small amount of payload. After őnishing the analysis
the packets are discarded. There is no need to return the buffers to the packet pool.
The modules are implemented by threads. By pushing batches with enough analy-
sis effort for a full thread-execution time-slice instead of pushing single packets from
module to module, i.e., from thread to thread, the thread-activation scheme of the
operating system is forced to essentially follow the packet ŕow through the IDS (in
contrast to the random activation of the pull-based scheme of Suricata). Therefore,
this concept represents a push-based approach.

The concept differs from other approaches by the following characteristics, which,
where necessary, will be explained in more detail afterwards: (1) packet batching in-

66

3.5 A Novel Dynamic Parallelization Approach for NIDS

local network
Interface 1

load balancing

detection
mod. 1

detection
mod. 2

detection
mod. n

...

flow export

local network
Interface 2

data acquisition modules detection modulespreprocessing modules

detection
mod. 3

packet filter

data flow

CPU-Cache-
based batched
packet allocators

C
s
/4

C
s
/16 C

s
/16

C
s
/16C

s
/16

C
s
/4

C
s
/16

Data acquisition
modules publish
packet batches to
other modules

...

Detection modules
subscribe packet
batches from data acquisition
or preprocessing modules

Preprocessing modules
subscribe packet batches
and publish filtered or altered
packet batches to other
preprocessing or detection modules

Figure 3.11: Push-based dynamic parallel NIDS approach

stead of single-packet processing increases the amount of processing inside a module
and decreases the number of locking events and thread context switches, (2) the ap-
plication of a CPU-cache-aware packet allocator for forming the batches never exceeds
a conőgurable proportion of the CPU cache size, (3) the release of packet buffers at
the sources (e.g, by the data acquisition or preprocessing modules) avoids the implicit
synchronization of threads for memory allocation, (4) the thread activation scheme
essentially follows the packet ŕows and, thus, increases the probability of cache hits,
and (5) the possibility to precisely measure bottlenecks on the output path of each
module by measuring blockages in the quasi-synchronous execution chain can be used
for dynamic load balancing capabilities and adaptations of the packet batches.

Determination of Needed Parallelism and Memory Management

The parallelism of this approach is constrained by the following three assumptions.
(1) Usually the packet sources are the only modules which allocate or release packet
buffers. A module that allocates new packet buffers (e.g., a data acquisition module
or a preprocessing module for packet reassembly) has to release them, too. (2) All
modules process the packet batches one by one. (3) When a module has to forward
a packet batch to directly attached modules, it waits until all of them are ready for
processing (similar to a dynamic barrier). Based on these conditions, the packet
sources (usually data acquisition modules) can calculate the maximum number of
packet batches that can be analyzed in parallel. If we consider the model of Figure 3.11
as a directed acyclic graph, this maximum is equal to the longest chain of nodes

67

3 Local High-Speed Monitoring with Parallel NIDS

from a packet source to a packet sink in the sub-graph/tree to the right of the node
representing the packet source. Each packet source pre-allocates p packet buffers for
all packet batches based on the following formula:

p =
sc

c ∗ sp
(3.2)

in which sc represents the size of the cache, c the number of cache partitions, and sp
the size of one packet. The concept of cache partitions is used to set aside memory,
i.e., cache lines for further memory blocks which can be used for other utilizations of
the CPU cache, e.g., for multiple packet sources and to ensure a good cache-hit rate
for the pattern-search automata of the IDS analysis.

The big advantage of these calculations is that the exact knowledge of the maximum
of parallel processed batches allows an automatic memory management with little syn-
chronization points. This is illustrated for an exemplary setup of the architecture in
Figure 3.12. In the right part of the őgure, a single data acquisition/packet decoding
stage is connected with a load balancing őlter and three packet/ŕow export threads
which drive various detection engines based on Snort. Based on the constraints dis-
cussed above, there are two synchronization levels (dashed sync lines), and a memory
pool with three packet batches (left part of the őgure) would be reserved for this setup
within the data acquisition/packet decoding stage. The packet decoder allocates pack-
ets until a batch is completely őlled. After that, the reference to the corresponding
batch slot is passed to the subsequent packet processing level. The other packet pro-
cessing levels do the same, and after three passes, the őrst slot reaches the last packet
processing level (lower left part of the őgure). Due to the synchronization scheme, the
packet decoder in the őrst processing level can be sure that after the processing of the
third slot and its transfer to the next packet processing level the őrst slot is no longer
in use, i.e., it can overwrite the őrst slot again without the need for synchronization
with the many processes/threads of the last level. The threads of the last processing
level do not have to synchronize with each other, as they have only read access to the
packets.

Thread Activation

Existing parallelization approaches, e.g., the approach in [75] and Suricata, apply
threads which pull packets/events from the input queues. This thread management
scheme has a major drawback regarding the interaction with the operating system
kernel. Due to the differences in the individual processing times of threads, there is a
high probability that packets in the CPU cache are pushed out during a context switch.
This is because threads that are directly connected to each other and are candidates
for cache-hits are activated in random order. The modules in this approach use quasi-
synchronous function calls, i.e., the semantics of the function call is synchronous if

68

3.5 A Novel Dynamic Parallelization Approach for NIDS

1 2 1 2 1 5 6 13 4 2 3 3 4 1 8 9 54 7 6 7 8 9 5 76

memory pool (½ of cache size)

1 2 13 2 1 54

slot 1 slot 2 slot 3

6 1 2 3

data acquisition/

packet decoder

(network)

load balancing

pcap-flow-

pipe-writer

Snort

process #1

pcap-pipe-

writer #1

pcap-pipe-

writer #2

Snort

process #2

Snort

process #3

pipe pipe pipe

&slot 2

&slot 1

&slot 3

1 Thread

1 Thread

3 Threads

sync

sync

network

&slot 1

&slot 3

&slot 2

&slot 3

&slot 2

&slot 1

Figure 3.12: Memory management of the architecture

the called module already executes some functionality, and it is asynchronous if there
are free processing capacities. The resulting call chain (thread activation) essentially
follows the packet ŕow through the parallelized modules (cf. Figure 3.11). Thus, the
probability increases to keep the packets inside of the CPU cache.

Dynamic Load Balancing

The load balancer of this concept applies a dynamic approach. For each incoming
network ŕow (e.g., TCP/UDP ŕow), the balancer calculates a key k′′ for the complete
5-tuple (source and destination IP, protocol number, source and destination port, if
applicable) of the ŕow based on the following hash sequence (which applies a freely
selectable hash function):

k = hash(seed, transport_protocol_number)
k′ = hash(k, source_port⊕ destination port)
k′′ = hash(k′, ip_source⊕ ip_destination)

(3.3)

This hash sequence allows to mark each packet in a batch with the same key for the
two communication directions of the corresponding ŕow and to map the packets to
any free module (e.g., detection engine) in the output path of the load balancer. The

69

3 Local High-Speed Monitoring with Parallel NIDS

latter can apply different strategies to measure the load of its output path, such as
counting the number of assigned bytes, ŕows, the time difference to the previously
assigned packet, and blockages of the output path.

Traffic-based Optimization of Flows

There are two types of ŕows that may have a signiőcant impact on the IDS perfor-
mance and its detection capability. (1) Network ŕows with very small transfer units
(heavy-hitters, mice ŕows). For example, a small maximum transfer unit for frames/-
packets which is under the control of an attacker, may considerably slow down all IDS
threads/instances. (2) Large ŕows that occur in bursts (elephant ŕows). They may
overload a single IDS thread or instance, while other threads/instances are in an idle
state. Usually, there are only few large ŕows.

The approach can detect the two ŕow types inside of the load-balancing module by
measuring the number of packets and the capacity of each ŕow. For this purpose,
statistics have to be collected for each module in the output path of the balancer,
e.g., the longest ŕow or the ŕow with the highest number of packets in a time frame.
The advantage of this approach is the possibility to measure the impact of these
ŕows on the subsequent analyses (e.g., the detection engines after the load balancer in
Figure 3.11). Due to the previously explained parallelism constraints, each module can
detect performance bottlenecks by measuring the activities of modules in its output
path. If some modules in the output path are still processing a packet batch when
a new packet batch has to be processed, then this is a clear signal that the current
analysis performance is below the capacity of the input stream.

Reaction to Short-term Bottlenecks

The load-balancing algorithm contains a special condition for reaction on short-term
bottlenecks. It measures the activity of modules connected to the output path and
rebalances the network traffic if a connected detection engine becomes overloaded.
This rebalancing usually requires an analysis of the IDS rules of the related detec-
tion module/component to prevent any side effects (e.g., losing state information for
application layer analysis). However, according to an analysis of the full Snort sig-
nature set by our research group [53], these reconőgurations do not introduce many
side effects in practice because the probability of attacks requiring information about
the ŕow state usually decreases with increasing ŕow size. Attacks that are located
further in the ŕows are usually bound to single packets with no relation to the ŕow
state. Therefore, it is feasible for the IDS analysis to treat the last part of a large
ŕow as stateless. The prototypical implementation of this approach uses Snort as
the detection engine. Thus, the load balancer rebalances the network traffic according

70

3.6 Evaluation of the Approach

to the semantics of the Snort’s TCP engine, which aggregates smaller TCP segments
to 64 KB segments. If a module/IDS instance is overloaded and its largest allocated
ŕow exceeds 64 KB, this ŕow is marked as stateless and is balanced over all output
modules/detection engine instances (flow reconfiguration).

3.6 Evaluation of the Approach

For estimating the capability of the approach to react to short-term changes of network
characteristics, as discussed in Section 3.5, a prototype implementation, as depicted
in Figure 3.13, was evaluated on an Intel Xeon machine (E5645@2.4GHz, 6 cores, 12
MB CPU cache, 12 GB RAM). Five coupled Snort processes are used as detection
engines that are attached to pipes transferring PCAP data (pcap-pipes). Note that
it is not possible to use all CPU cores for the detection engines because the other
modules cause some analysis effort (e.g., packet decoding) which should be allocated
to a separate CPU core.

local network
Interface 1

load balancing

pcap-pipe-
writer 1

pcap-pipe-
writer 2

packet sources packet sinksprp. modules

pcap-pipe-
writer 3

data flow

CPU-Cache-
aware batched

packet allocator

C
s
/2

C
s
/6

C
s
/6

C
s
/6

pcap-pipe-
writer 4

pcap-pipe-
writer 5

Snort/Suricata
process 1

1 Thread 1 Thread

5 Threads 5 Processes1 Process

 pipe

Snort/Suricata
process 2

 pipe

Snort/Suricata
process 3

 pipe

Snort/Suricata
process 4

 pipe

Snort/Suricata
process 5

 pipe

Figure 3.13: Setup of the push-based approach as an external load balancer to Snort

Performance and Scalability for Small Multi-Core Systems

The parallelization concept was implemented and evaluated in three variants. The
őrst variant (reconf_lb) implements all the measures described in this chapter. The
second variant (dynamic_lb) ignores overloads of analysis units and the third variant
(drop_lb) discards the largest ŕow to an overloaded unit. Figure 3.14 shows the pre-
diction of Amdahl for the test system and the average speedup for the three variants
of the prototype in a performance comparison to Suricata. The results show that

71

3 Local High-Speed Monitoring with Parallel NIDS

the performance of the proposed approach with activated ŕow reconőguration (re-
conf_lb) is close to the prediction for the parallelization of Snort based on Amdahl’s
formula (amdahl). The conőguration of the approach without ŕow reconőguration
(dynamic_lb) performs worse because the analyzed datasets represent network ŕows
with bad interleaving, e.g., large ŕows which occur in bursts and are analyzed by only
few detection engines, while the other ones are almost idle. These network ŕows can-
not be balanced evenly over the available IDS instances and the resulting speedup is
closer to the prediction for the component-parallel (comp_par, cf. Fig. 3.5) variant
of Snort in most cases (e.g., for the analysis of the nsa_p1, nsa_p2 and defcon
datasets). The third parallelization variant (drop_lb) has no advantage compared to
the dynamic load balancer. However, the concept signiőcantly outperforms Suricata

for all datasets with the exception of the defcon dataset. Suricata performs slightly
better for the defcon dataset because it does not analyze the IPv6/TCPv6 packets.

amdahl reconf_lb amdahl_dp comp_par dynamic_lb drop_lb suricata

S
p
e
e
d
u
p

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0 nsa_p1

nsa_p2

nsa_p3

west_point

defcon

acsac06

industrial

Figure 3.14: Amdahl’s prediction in comparison with the push-based implementation
with/without ŕow conőguration and Suricata

Figure 3.15 compares the scalability of the applied measures (load balancing and ŕow
reconőguration) for a different number of detection engines to the predictions based
on Amdahl’s formula, with (1) less analysis effort for the serial program part (rs =
0.028, rp = 0.972), based on the smallest ever measured fraction of the serial program
part, (2) more effort for the serial part (rs = 0.3, rp = 0.7), based on the most often
observed distribution for non-attack traffic in literature, and (3) signiőcantly more
effort for the serial part (rs = 0.7, rp = 0.3, cf. dataset industrial). As it can be seen
from the őgure, the prototype scales well and the performance is close to the predictions
of Amdahl. The performance gains for the acsac06 and nsa_p2 dataset are above the

72

3.6 Evaluation of the Approach

expected values, whereas the gain for the west_point dataset is slightly below, but all
curves fall within the expected range of the hitherto recognized distributions between
the serial and parallel program part (dashed lines). The anomalies of the industrial
data set are discussed in the subsection łPacket Batching and Scheduling Behaviorž.

●

●

●

●

●

●
●

● ● ●

Number of Snort instances (6 CPU cores)

S
p
e
e
d
u
p

●

●

amdahl(r_s=0.028,r_p=0.972)

flow_reconf_lb(acsac06)

flow_reconf_lb (nsa_p2)

flow_reconf_lb (defcon)

flow_reconf_lb (nsa_p1)

flow_reconf_lb (nsa_p3)

flow_reconf_lb(west_point)

amdahl(r_s=0.3,r_p=0.7)

flow_reconf_lb(industrial)

amdahl(r_s=0.7,r_p=0.3)

2 3 4 5 6

1
.1

1
.4

1
.7

2
.0

2
.3

2
.6

2
.9

3
.2

3
.5

3
.8

4
.1

4
.4

4
.7

5
.0

5
.3

Figure 3.15: Scalability for different numbers of Snort instances on a 6-core machine

Performance and Scalability for Medium- to Large-Scale

Multi-Core Systems

The positive results of parallelization measures for small systems are often not con-
clusive about the scalability for medium- to large-scale parallel systems. Therefore,
the previous experiment was repeated with a much larger data set on a multi-socket
system with 20 cores and 40 hyperthreads (2x Xeon E5-2680v2@2.80GHz, 25 MB CPU
cache, 128 GB RAM). The data set is 47 GB in size and consists of multiple individ-
ual data sets (defcon10, hack.lu, west_point, m57, wireshark, wireshark101, acsac06,

73

3 Local High-Speed Monitoring with Parallel NIDS

defcon10 hack.lu west_point m57 wireshark wireshark101 acsac06
<ÐÐÐÐ-darpa_internalÐÐÐÐ-> <ÐÐÐÐdarpa_externalÐÐÐś>
<ÐÐÐÐÐÐÐÐÐÐÐÐÐśmaccdc2012ÐÐÐÐÐÐÐÐÐ-ÐÐÐÐ>

Table 3.6: Merge/append structure of the combined data set

darpa_internal + darpa_external, and maccdc2012) that have been merged/appended
according to the structure of Table 3.6. The defcon10 13 data set is 366 MB in size and
contains a lot of reconnaissance, e.g., DNS, SSH, and VNC scans, information retrieval
via portmap/RPC services, various scans with nessus, SNMP access, brute-force login
attempts for FTP and POP3, and many attacks on FTP, as well as attacks on web
services, e.g., SQL injection, authentication bypass, and shell access, and furthermore
TFTP activity related to malware spreading, and some buffer overŕow attempts in
various services. This data set is thus densely populated with attacks. The hack.lu14

data set from a visualization contest is 708 MB in size and contains mostly normal
data with the exception of some scans, and a SQL slammer worm propagation. The
m57 15 record is 4.6 GB in size and is based on a forensic scenario which contains
mainly normal data from a test network. The wireshark 16 and wireshark101 17 data
sets are 1.9 GB and 375 MB in size and consist of a mix of normal data and attacks,
for example, scan activity, various buffer overŕow attempts, spyware code download,
and a spread of the SQL slammer worm. Darpa_internal and darpa_external are
data sets that contain normal data and attacks from the well-known (1999) DARPA
IDS evaluation data sets18. They are 11 GB and 6.4 GB in size and contain IMAP,
POP3, SSH and VNC scans, as well as attacks on various FTP, SQL, Telnet and Web
services, and various buffer overŕow attempts. The maccdc201219 data set from the
Mid-Atlantic Collegiate Cyber Defense Competition is 16 GB in size and contains a
mix of normal business activity and attacks. The attacks comprise scans for vari-
ous services, e.g., IMAP, POP3, SMB, MS-SQL, Terminal Services, VNC, and VOIP
scans, reconnaissance of portmap/RPC services, some FTP attacks, many attacks on
web services, some buffer overŕow attempts, and some trojan activity.

Figure 3.16 shows the scalability of the analysis for the combined data set on the
20-core machine. The number of threads on the x-axis is as follows according to the
test setup of Figure 3.13: The load distribution starts with the smallest variant of
6 threads, which includes a thread for input processing, a thread for load balancing,
two PCAP-writer threads and two Snort threads. A PCAP-writer thread and the

13http://cctf.shmoo.com/
14http://2009.hack.lu/index.php/InfoVisContest
15http://digitalcorpora.org/corpora/network-packet-dumps/2009-m57-patents/
16http://wiresharkbook.com/studyguide_supplements/9781893939943_traces.zip
17http://wiresharkbook.com/101_supplements/wireshark101files.zip
18http://www.ll.mit.edu/ideval/data/1999data.html
19http://www.netresec.com/?page=MACCDC

74

3.6 Evaluation of the Approach

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

Number of Threads (machine with 20 CPU cores, 40 hyperthreads)

S
p

e
e

d
u

p

● amdahl(r_s=0.025, r_p=0.975)

flow_reconf_lb

amdahl(r_s=0.7, r_p=0.3)

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

2
.4

4
.4

6
.4

8
.4

1
0

.4
1

3
.4

1
6

.4
1

9
.4

Figure 3.16: Scalability for different number of threads on a 20-core machine

corresponding Snort instance typically jointly run on the same hyper-threaded core.
In each step of the őgure, this setup is extended by a further PCAP writer thread
and another Snort instance. The last step with 40 hyperthreads is equivalent to the
maximum setup and includes one input processing thread, one load balancing thread,
19 PCAP-writer threads, and 19 instances of Snort. As in the small-scale experiment,
the results are compared with the predictions of Amdahl for the data set’s distribution
between serial and parallel processing (upper dashed line) and an average distribution
for normal data from the literature, which contains no attacks (lower dashed line). As
can be seen in the őgure, the results follow the curve of the prediction. For a small
number of threads, the result is closer to the distribution for data sets without attacks,
suggesting that the low degree of freedom for the distribution of the data (e.g., only
two Snort instances in the smallest setup) leads to a less optimal load balancing and
redistribution of data among all threads. With a larger number of threads that better
utilize the system, the shape of the curve is followed more closely.

Packet Batching and Scheduling Behavior

A series of additional measurements evaluated the assumptions regarding the caching
and scheduling behavior. For this purpose, the pre-allocated packet buffer was limited
to a őxed size and increased by 100 packets in each step. Figure 3.17 depicts the results
based on the size of the allocated packet buffers. The results require some additional
information about the experiment setup. The test machine (for the small-scale system)

75

3 Local High-Speed Monitoring with Parallel NIDS

has 12 MB CPU cache and executes a Linux kernel with a CFS (completely fair
scheduler). The default thread execution time slice for the applied scheduler is around
20 ms. As it can be seen, the performance initially improves with increasing buffer
sizes. This is directly related to the aforementioned time slice of the scheduler. The
average packet processing times for most datasets are between 4 and 16µs. If the
threads run for at least 20ms, roughly between 1.8 and 7.8 MB have to be buffered
(about 1560 bytes for each packet are needed in the implementation). This is where
the analysis of the datasets reaches its performance peak/plateau. Based on the same
calculation, the performance peak/plateau for the industrial dataset can be expected
at 71.6 MB, but the latter is larger than the processor cache. Thus, it is not possible
to buffer enough packets for this dataset and anomalies in the scaling behavior can be
expected (cf. transition from four to six threads for the industrial set in Fig. 3.15).
The upper bound for a reasonable packet buffer size is hard to determine. Depending
on the payload of the analyzed datasets, portions of different pattern search automata
for Snort have to őt into the CPU cache to achieve a good performance.

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●●●●●●●●●●●●

●

●●

●

●●●
●
●
●●●●

●●●●●●●●
●●●●●

●
●●●●●●●●●

●●
●●

●●
●●●●●●●●●

●●●
●
●●

●
●
●●

●
●●●●●●●●

●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

Buffer size [MB]

S
p
e
e
d
u
p

● acsac06

nsa_p2

defcon

nsa_p1

nsa_p3

west_point

industrial

0.1 1 1.7 2.6 3.5 4.4 5.3 6 6.8 7.7 8.6 9.5 10.5 11.6 12.6 13.6 14.7 15.7 16.8 17.8 18.8

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

1
.7

1
.9

2
.1

2
.3

2
.5

2
.7

2
.9

3
.1

3
.3

3
.5

3
.7

3
.9

Figure 3.17: Performance for different buffer sizes

76

3.6 Evaluation of the Approach

Table 3.7 compares the aggregate number of context switches, cache misses, and TLB
misses of all Snort instances and the architecture prototype with the numbers of
Suricata. With the exception of the defcon data set, which Suricata does not
analyse at all, the proposed concept causes signiőcantly less context switches (about
6% compared to Suricata) and less cache misses (about 60% data cache misses and
about 40% of the TLB misses).

cont. sw. [%] cache misses [%] dTLB misses [%]

nsa_p1 206,595 [5.7] 335,948,759 [60.9] 261,215,353 [38.9]
nsa_p2 190,664 [5.1] 223,855,945 [64.0] 228,972,563 [35.8]
nsa_p3 183,148 [6.7] 269,267,613 [52.2] 291,503,953 [40.2]
defcon 331,909 [17.4] 599,010,342 [174.1] 352,910,079 [58.6]

Table 3.7: Context switches and cache misses of the prototype [% of Suricata]

Correctness of the Analysis

For evaluating the correctness of the analyses for the load-balancing approach with
ŕow reconőguration, the numbers and contents of the detected events (alerts) for all
datasets which contain attacks were analyzed. Table 3.8 lists the number of total
and unique alerts for each dataset and conőguration. The number of total alerts
also counts the repeated occurrence of the same intrusion detection signatures, while
unique alerts count just one occurrence of each signature. In comparison to the single-
threaded Snort instance, the proposed approach misses some unique alerts (nsa_p3,
west_point, acsac06) because the respective signatures have to aggregate different
network ŕows up to a certain threshold, which are now balanced over different de-
tection engine instances. It therefore misses some port scans for SSH, IMAP, and
Microsoft’s Remote Procedure Call services. However, this behavior is expected from
load-balancing approaches and can be remediated by moving the port scan detector
in front of the load balancer (cf. ŕow export őlter module in Fig. 3.11). Furthermore,
the prototype triggers additional alerts in some cases (total count for nsa_p1, nsa_p2,
nsa_p3) because of the conőguration of the coupled detection engines. Snort inter-
nally drops ŕows if the conőgured memory limit for the ŕow evaluation is reached
(default: 32 MB buffer for ŕow data). Therefore, the single-threaded variant which
has to analyze all parts of the data sets misses attacks that are located later within
a dropped ŕow. The balancing of the ŕows across multiple Snort instances just
changes the selection of candidates for ŕow dropping inside of the individual instances
and therefore leads to a very small difference in the emitted alerts. It can be concluded
from these results, however, that the parallel NIDS correctly analyzes the incoming
data despite of ŕow reconőguration in overload situations.

77

3 Local High-Speed Monitoring with Parallel NIDS

Snort dynamic_lb ŕow_rec_lb missed_unique_alerts

nsa_p1 8,664 [10] 8,668 [10] 8,668 [10] none
nsa_p2 2,867 [7] 2,871 [7] 2,869 [7] none
nsa_p3 9,212 [13] 9,214 [10] 9,214 [10] SSH/VNC scans
west_pt 603,110 [39] 602,965 [36] 602,976 [36] TS/IMAP scans
defcon 256,609 [20] 256,580 [20] 256,579 [20] none
ascsac06 241,420 [41] 240,851 [39] 240,845 [39] epmap/ms-ds scans

Table 3.8: Load balancing and ŕow reconőguration (total alerts [unique alerts])

3.7 Comparison with Related Parallel Approaches

The distinguishing feature of most parallelization approaches is the applied load-
balancing scheme and the assumption regarding the synchronization of ŕow states.
There are two classes of attacks which can be distinguished related to their operation
sequence and the expense required for their detection. Multi-step attacks require a
correlation among several ŕows and thus synchronization of ŕow states between IDS
instances. Single-step attacks, in contrast, can be detected with less synchronization
efforts. Therefore, the load-balancing strategies can be classiőed according the follow-
ing hierarchy: inter-flow synchronization, full intra-flow synchronization, and partial
intra-flow synchronization. Inter-ŕow synchronization, as it is applied in Bro20, has
the highest detection accuracy, but also results in a lower speedup regarding the paral-
lelization. Suricata can be classiőed into the full intra-flow synchronization category
due to its static balancing approach that forwards packets of the same ŕow to a sequen-
tial detection engine which analyses them in correct order. The proposed approach
with ŕow-reconőguration is located between full intra-ŕow synchronization and partial
intra-ŕow synchronization because it rebalances packets of the same ŕow in overload
situations without synchronization. In the literature, related parallelization efforts
usually apply an unidirectional ŕow concept for stream analysis [126, 128] which is
some kind of partial intra-ŕow synchronization as the two communication directions
of a ŕow are not correlated with each other. Further approaches do not apply any
synchronization at all and analyze the packets in a stateless manner [127, 74, 73].

In order to compare the proposed approach with the other solutions a series of ad-
ditional measurements were performed by replacing the load balancer with (1) two
variants of an uniŕow balancer (with dynamic and static load balancing), and (2) a
stateless balancer. The results of the performance analysis (for the small-scale sys-
tem) are depicted in Figure 3.18. The prediction by Amdahl and the performance
improvement of the proposed approach (flow_reconf_lb) are depicted on the left side
of the Figure. At the őrst glance, the stateless (stateless_lb) and the dynamic uni-
ŕow (dyn_uni_flow_lb) balancer signiőcantly outperform the proposed approach.

20https://www.bro.org/sphinx/cluster/index.html

78

3.7 Comparison with Related Parallel Approaches

Comparing this though with the reported unique alerts in Table 3.9, the stateless
approaches miss many attacks, among them buffer overŕows, trojan spreading, web-
based shell access, and remote procedure calls. Therefore, we can expect that stateless
solutions are less able to detect real intrusions. A repetition of the same experiment
with the stateless load balancer on the larger system with 20 cores (with the larger
data set of table 3.6) detected only 218 of the 748 attack variants (29.8%). The detec-
tion accuracy of related work therefore decreases to the same extent as the degree of
parallelism increases. Surprisingly, the frequently used static uniŕow balancer has no
beneőts. Presumably, this is because the the subsequent detection engines fall back to
the less efficient single packet processing, if the data streams cannot be reconstructed
into larger (TCP-)segments. If the TCP stream has been reconstructed, only the com-
munication direction which is relevant for the respective attack is considered (e.g., the
much smaller client-request, while the server response often does not contain attack
relevant data which is therefore omitted during the analysis in the detection engine).

amdahl flow_reconf_lb stateless_lb dyn_uni_flow_lb uni_flow_lb

S
p
e
e
d
u
p

nsa_p1

nsa_p2

nsa_p3

west_point

defcon

acsac06

0
3

6
9

1
2

1
6

2
0

Figure 3.18: Performance increase with disabled ŕow analysis

total alerts [unique]
stateful lb stateless lb missed unique alerts

nsa_p1 8,668 [10] 8,668 [10] none
nsa_p2 2,869 [7] 2,871 [7] none
nsa_p3 9,214 [10] 9,215 [9] none/1 (non-deterministic between runs)
west_pt 602,976 [36] 602,871 [30] buffer overŕows, network bind of cmd.exe,

access őle download, script őle upload,
Terminal services/IMAP/WEBDAV scans

defcon 256,579 [20] 257,086 [20] none
acsac06 240,845 [39] 157,372 [27] scans of various MS network services,

overŕows of various MS network services
sasser/korgo/ms-blast/lovegate trojans

Table 3.9: Missed alerts ś stateless compared to stateful load balancing

79

3 Local High-Speed Monitoring with Parallel NIDS

3.8 Conclusions

This chapter has investigated different approaches to speedup NIDS analysis capabil-
ities. Parallelization is one of the most important approaches to improve the analysis
performance, but existing solutions do not provide the expected performance gains.
There are various reasons for this, such as time-consuming memory access patterns,
excessive interaction with the operating system kernel, implicit synchronisation of
threads by means of the memory allocation strategy, and bad cache-sharing behavior
among multiple threads. It was suggested to reconsider the architecture of current net-
work intrusion detection systems and a novel concept has been proposed that allows
one to react to performance bottlenecks in a very short time interval in which current
intrusion detection systems fail. The proposed approach applies a CPU-cache-aware
packet allocation strategy with a thread activation scheme based on quasi-synchronous
function calls that essentially follow the packet ŕow. Furthermore, packets are pro-
cessed in batches instead of invoking one thread for every packet to optimize interac-
tions with the operating system kernel and the cache locality of the applied methods.
The application of the dynamic load balancing concept to several Snort detection
engines combined with a ŕow reconőguration in case of performance bottlenecks has
shown signiőcant performance gains which are close to the theoretical maximum as
predicted by Amdahl’s formula without loss of detection accuracy.

As predictions based on Amdahl’s formula already have indicated, further performance
improvements on a single computer system cannot be expected. The only way to
further improve the performance is a distributed system with additional capabilities
to discard network data on individual components. For doing so, a couple of new
research challenges arise discussed next.

Packet dropping. The signature database of Snort contains indications on the expected
location of attack data in a data stream. This information can be used to discard
parts of the data streams before they are forwarded to the analysis. The attack
data are, for example, often located at the beginning of client requests. Limmer
et al. have used this characteristic in the Dialog-based Payload Aggregation
(DPA) [138] to forward only the őrst n bytes whenever a TCP connection starts
or the direction of the data transfer changes. This approach seeks to discard as
much data as possible and to maintain a deőned detection accuracy. The number
of packets to be dropped could, however, also continuously be calculated via a
function based on a history of congested analysis units. The function would
have ś similar to the TCP ŕow control ś to determine how many packets can be
forwarded from each batch.

Protocol/Service dropping. The NIDS signature base includes well-known attacks for
a deőned set of communication protocols, applications, and operating systems.
So far, only fragments of the communication protocols and a few application-
identifying attributes have been described by attack signatures. The result is

80

3.8 Conclusions

that the NIDSs sometimes analyze data for which there are no signatures. If
it would be possible to identify individual connections after an initial protocol
analysis with regard to the communicating applications/operating systems, in-
dividual connections could be dropped if no signature exists for them. This
can reduce the amount of traffic to be analyzed and increase the accuracy of the
analysis (reduction of false alarms due to incorrectly parsed protocol fragments).

Fast hardware-based flow dropping. Amdahl’s formula predicts that the sequential part
of the analysis is the ultimately limiting factor for parallelization. On a general-
purpose CPU, nothing can be changed regarding the speed of this part in relation
to the parallel parts. It is, however, possible to outsource the (sequential) de-
coding of network packets to special hardware which can perform the necessary
calculations/analyses faster.

Analysis of global data flows. The analysis of global data ŕows which cross several net-
work switches/routers can be distributed across multiple monitoring points in
the local area network, i.e., the analysis of individual and logically related data
ŕows can be assigned to less busy analysis units which observe the same data
ŕows. For this purpose, strategies must be developed to determine the optimal
initial location of analysis for each ŕow and a distributed algorithm is needed
which divides the load among the monitoring instances. In addition to the analy-
sis acceleration, the global analysis can be used to uncover complex relationships
in the analysis results. Attacks often consist of multiple attack phases that may
trigger varying alarms on different analysis units in the network. It would be
interesting to see whether clustering algorithms can relate the attack activities
in different data ŕows to each other to uncover their relationship with respect
to a common goal.

Parts of the above described functionality as well as other innovative functions can also
be realized through a combination of NIDS and SDN technologies. The SDN controller
from Chapter 2 could be extended with another security service which controls the
monitoring of packets/ŕows to a NIDS. First ideas on this subject were evaluated by
Amann et al. [139] using the Bro Network Security Monitor.

NIDS load reduction. The basic idea is that the NIDS determines which packets are
forwarded to the NIDS sensor. The NIDS signatures typically do not cover
all data streams that can occur within a network. In a őrst step, the above-
mentioned protocol/service analysis could determine, for example, which data
streams are not covered by the signature set. If a prolonged data stream occurs
(e.g., a őle download), the SDN controller could be instructed by the NIDS not
to mirror the corresponding packets anymore. Amann et al. have determined
that using this technique up to 53% of TCP data could be kept away from the
NIDS in the surveyed network [139].

81

3 Local High-Speed Monitoring with Parallel NIDS

Dynamic NIDS-based firewalling. The NIDS analysis results can also be used to mitigate
the impact of attacks. Recognized attack sources could be isolated from the
network, for example, by means of the SDN controller. If this reaction is too
strong a SDN-based rate limiting could gain time for a more detailed analysis
of potential attack sources, e.g., hosts that perform port scans. In addition,
recognized attack sources could be diverted to a special honeypot to analyze the
next steps of the attackers.

82

4 Firewalls and NIDS for Web Applications

Modern web applications and online services intensively use Web 2.0 technologies
which require running active content in the browser of the users. Unfortunately, these
technologies are often misused for attacks. Switching off web applications to better
protect the systems is not an acceptable way out because it is usually not desired by
the users. Current perimeter őrewalls allow it only to a limited extent to őlter out
unwanted traffic. If a blocking of web technologies is not desired, őrewalls should be
able to detect active contents in data streams, to extract them, and to examine them for
malicious code. This chapter proposes a novel architecture for a client-side/server-side
web őrewall with an accompanying analysis library that extends the őrewall analysis
by capabilities to normalize web traffic at the application layer, to detect őrewall
evasions, and to classify web applications using machine learning methods with the
objective to identify the web applications and to selectively pass them according to
the given őrewall policy. The approach aims at mainly supporting small and medium-
sized enterprises which usually use and run a restricted number of web applications.
The őrewall is supposed to be located in the perimeter of the network to protect the
clients (browsers) or in a demilitarizied zone (DMZ) to protect smaller web application
installations and the accompanying analysis library can also be used independently on
the server side in a web application, or on the client side in the browser. The full
őrewall allows only access to a deőned set of web applications for clients within the
network and removes active code from web pages otherwise. In principle, some of these
methods can be implemented using URL őltering. Experience though has shown that
such őltering modes are very unreliable because it is often possible to write any domain
into the HTTP host őeld, while the web server delivery of the page is not denied.

Since there are well-established and easy-to-implement solutions to mitigate cross-site
request forgery (CSRF) attacks, such as CSRF tokens, the focus is more on cross-
site scripting (XSS) attacks. Although browsers have built-in security mechanisms
to detect reŕected XSS attacks, in which a part of the client input to the server is
contained in the response, they are helpless against stored XSS attacks, which deliver
malicious code from the server not included in the request. The concepts presented
here differ from previous research in the following points:

• The analysis is performed in the perimeter firewall when accessing a web page.
Modiőcations or extensions of the browser, server or both sides are not required.

83

4 Firewalls and NIDS for Web Applications

• Communication fragments are analyzed independent of the context in the browser
and thus independently from a specific browser implementation to protect all
browsers.

• In contrast to other works that require accurate knowledge of the structure of an
attack (e.g., [140, 89, 90, 94, 141, 142]) and thus probably only recognize specific
attacks, the presented approach separates benign code from a corpus of other
benign code to detect anomalies and therefore possibly unknown attacks.

4.1 Cross-Site-Scripting Attacks

Figure 4.1: Structural changes of stored XSS

Cross-site scripting (XSS)
allows attackers to inject
client-side code into web
applications executed by
other users. There are
several types of cross-site
scripting attacks. The
most common ones are
stored and reflected XSS.
Stored XSS assumes that
the attacker can directly

modify the web application, e.g., by including code in a forum entry. This enables
changes, as they are shown in Figure 4.1 (bold italic changes come from the attacker).
Depending on server-side defenses, an attacker typically can inject new tags with active
code (left side) or enhance attributes of tags to incorporate new code (right side).

Reflected XSS assumes that the attacker has no direct access to the web application.
Instead, code is sent piggybacked through user input to the web application’s server
and returned after server-side processing as client-side code to the unsuspecting user.
Typical variants of reflected XSS attacks are node splitting, attribute splitting, and tag
splitting (cf. Fig. 4.2). They are used to split the document structure of the server-side
output in unprotected areas and to inject own code instead of the originally planned
user input into the respective sections.

A third type of cross-site scripting that has emerged with the Web 2.0 is DOM-based
XSS. Here, the injection is in an URL fragment that is processed at the browser
side and never sent to the server. Since the focus is, however, on perimeter firewalls
and NIDS, this attack type is out of scope of this work. Section 4.2 discusses other
client-side measures to prevent such kind of vulnerabilities.

84

4.2 Current Approaches to Improve Web Security

Figure 4.2: Structural changes of reflected XSS

4.2 Current Approaches to Improve Web Security

The research on the protection of web applications includes client-side, server-side,
and hybrid approaches. In [89], for instance, Hallaraker et al. propose a client-side
audit framework for JavaScript in Mozilla which can be used to construct signature-
based or anomaly-based intrusion detection systems (IDSs). They also propose first
basic signatures to detect information extraction (cookies) and aggressive scripts (e.g.,
prevention of window closing). This work is continued in [90] by Vogt et al. who add
dynamic data tainting to the client side to track the usage of sensitive data sources
(e.g., the aforementioned cookies) in control statements to reveal malicious indirect
data leakage. The first real anomaly-based detection approach is the browser extension
JaSPIn [92] that creates a profile of the application usage of JavaScript and enforces
it later. Unfortunately, these profiles are bonded to both the behavior of the website,
and to the browse behavior of the user. If the web page changes or the user changes
his/her behavior, the profile must be adjusted again. The "Lightweight Self-protecting
JavaScript" approach by Phung et al. [143] allows the web developer to write server-
side policies, that are enforced by embedding a client-side JavaScript library which
overrides the native browser functions. This dynamic approach, however, is associated
with an average slow-down of the code execution by a factor of 6. Document structure
integrity [144] is an approach in which the web application developer or a server-side

85

4 Firewalls and NIDS for Web Applications

taint tracker (indirectly) marks all document areas which are affected by user input.
These areas are represented as text nodes when parsing on the browser side, thus
preventing the execution of active code. A particular problem with this approach
is the identiőcation of user inputs. In DOM-based XSS, these inputs are made on
the client side and do not reach the server, resulting in that they are not covered
by the server-side taint tracker. Alhambra [145] supports both document structure
enforcement (limited to elements with a src attribute) and JavaScript analysis based
on client-side taint tracking to prevent DOM-based XSS. The idea of client-side taint
tracking was later reőned and elaborated in detail by Stock et al. [91]. The results
indicate that this is a promising approach to eliminate DOM-based XSS. The CsFire

[93] browser extension by Ryck et al. removes authentication information from most
cross-site requests to prevent CSRF. It only permits cross-site requests when they
are used together with payment or single-sign-on solutions based on an algorithm
that detects the respective traffic delegation patterns. The browser-based approach
Zozzle [94] analyzes the JavaScript abstract syntax tree with a Bayesian classiőer to
detect malware. The feature selection bases on the χ2 algorithm that examines the
correlation of several features with the underlying malware samples. However, it can
detect only one type of attack (heap spraying) and if the malware does not contain
the stochastically reduced feature set the tool cannot detect attacks any more. The
IceShield approach of Heiderich et al. [141] uses a linear decision function that
differentiates malicious code from normal code based on heuristics for several attack
types that apply code obfuscation. The necessary detection technology is embedded
directly as JavaScript into the web page and the detection functions are protected
by means of special JavaScript attributes against manipulation by the attack code.
The reported false-positive rate for this approach of 2.17% for 61,504 pages seems to
be quite high. Another approach by Rui Wang et al. [142] also detects XSS based
on code obfuscation. In this case, the obfuscation measures are sorted into groups
(for example, string operations) and a decision tree based algorithm determines based
on the aggregated (grouped) features, whether a HTML or JavaScript document is
malicious. Both approaches are likely to fail if the attacker does not use obfuscation
measures.

Server-side web security approaches usually require modiőcations of the web appli-
cations, sometimes with mandatory support from the client-side. Approaches, such
as BEEP [87], Blueprint [88], ConScript [146], and the Content Security Pol-
icy let the developer specify a security policy that has to be enforced at the client.
These policies allow one to distinguish between application-speciőc and external data,
and may even restrict executions inside the JavaScript interpreter. Other approaches,
e.g., NonceSpaces [84] and S2XS2 [86] provide a framework in which the developer
has to explicitly distinguish between trusted application data and untrusted external
data. He/she has further to specify how untrusted data can propagate into a dy-
namically generated page. Based on these information, the server then can restrict
the propagation of unexpected external data. Another approach, SWAP [85], relies

86

4.3 Non-Applicability of Classical NIDS Methods

on a server-side proxy, server-side (modiőed) browser, and an initial web application
proőling at installation time to distinguish between legitimate and malicious scripts.

Proposals for intermediate systems, e.g., őrewalls, are rare, but there are some solu-
tions which could be used with some modiőcations on intermediate devices. A őrst
approach of Ismail et al. [140] applies signature recognition by augmenting typical XSS
fragments in a page request (e.g., < &lt;) with random numbers and searching
for them in the result page. Noxes [147] works as a client-side proxy that tries to pro-
tect against data leakage through detecting and white-listing valid cross-site requests
by analyzing the requested web page. It has, however, a high false-positive rate and
often requires user interactions. The server-side proxy XSSDS [148] tries to learn the
application-speciőc JavaScript of the original application to accept later only known
JavaScript. Additionally, it facilitates to deőne őlters against Reflected XSS attacks
similar to the currently used inside web browsers. The method can detect Stored XSS
to a limited extent by comparing stored tokenized code fragments with the actual
code, but it is not resilient against changes of code blocks. A similar approach of com-
paring the received page with the expected one inside a server-side proxy is applied
in XSS-GUARD [149]. Instead of completely learning the application-speciőc script,
a shadow page based on benign input is generated using an adapted application. The
shadow page is then compared with actual pages. The problem with this approach
is that the comparisons are based on a modiőed (Firefox) browser engine Gecko.
Therefore, it is not clear whether it can detect attacks which are speciőcally destined
for other browsers.

4.3 Non-Applicability of Classical NIDS Methods

Today’s web security is essentially based on server-side checks of inputs to web docu-
ments. However, many server-side checks fail because of subtle differences in the input
format, in the intermediate document representation (syntax), or the őnal presenta-
tion in a browser. The languages and data structures used in the Web 2.0 are based
on a number of historical standards and proprietary extensions that have, however,
left large room for interpretation regarding the presentation, functionality, and error
handling during the development stage. The original Standard Generalized Markup
Language (SGML1) includes a method to mark up the description of the document
structure (Document Type Description - DTD) and to output the document on dif-
ferent media (Document Style Semantics and Speciőcation Language - DSSSL), e.g.,
screens with different resolutions or printers. The markup language deőnes a method
for structuring documents and provides rich formattings of text őelds. Elements are,
for instance:

1http://www.w3.org/MarkUp/SGML/

87

http://www.w3.org/MarkUp/SGML/

4 Firewalls and NIDS for Web Applications

• opening tags:
<ELEMENT NAME>

→ e.g., (HTML) <HEAD>

• closing tags:
</ELEMENT NAME>

→ e.g., (HTML) </HEAD>

• item attributes:
<ELEMENT NAME attr1 = "value1" attr2 = value2 attr3>

→ e.g., (HTML) <INPUT type = "password" class = pw autofocus>

• a proposed structure for nesting areas:
<ITEM1><ITEM2></ITEM2></ITEM1>

→ e.g., (HTML) <BODY><SCRIPT></SCRIPT></BODY>

Both the Hyptertext Markup Language (HTML) and the Extensible Markup Language
(XML) were derived from the text markup language SGML. The Document Type
Description Language was adopted for these languages as well. A relationship between
SGML and HTML was deőned for early variants of HTML, but not for XML. HTML
and XML have their own formatting and output languages (Cascading Style Sheets
ś CSS or Extensible Stylesheet Language ś XSL, and XSL Transformation). In this
case, the Cascading Style Sheets may be used within XML. From XML, XHTML
was derived later. As a result, attackers can use four language generations for the
text markup (SGML → HTML → XML → XHTML), including the extension of
the document structure (DTD) and the output formatting (CSS, XSL, XSLT). The
dependencies among these languages are unclear to some extent and give room for
different interpretations. Thus, an attacker can create mixed documents which are
based on different language generations and bypass analysis systems which can usually
analyze only one language (generation) at a time.

This is exempliőed in Figure 4.3 with the help of two modiőed examples taken from
the HTML5 Security Cheat Sheet2. The document declares itself in the őrst example
as an extension of the XHTML standard and deőnes an implicit attribute for the
img tag whose value is based on the JavaScript language (onerror is invoked in case
of errors, e.g., for the speciőed incorrect image src attribute). The calling browser
then executes the JavaScript code for each custom image tag. The second example
contains an extension of the XML standard (x:script → XML namespace) that in turn
can be used for the evasion of protection measures. Analysis systems that detect active
code using simple regular expressions (e.g., <script.*</script) would fail to detect the
example.

2http://html5sec.org/

88

http://html5sec.org/

4.3 Non-Applicability of Classical NIDS Methods

<!−− Example 1 −−>
<!DOCTYPE x
[
<!ATTLIST img

xmlns CDATA "http ://www.w3 . org /1999/ xhtml"
s r c CDATA "xx : x"
oner ro r CDATA " a l e r t (1)">

]>

<!−− Example 2 −−>
<x : s c r i p t xmlns : x="http ://www.w3 . org /1999/ xhtml">

a l e r t (2) ;
</x : s c r i p t >

Figure 4.3: Analysis evasion using XHTML

The examples in Figure 4.3 require a correct XML formatting. However, attackers
often evade server-side checks using incorrect HTML formats. This is exempliőed in
Figure 4.4, which is also partly based on the HTML5 Security Cheat Sheet. In the őrst
example, self-closing script tags open sections with active code that are closed with a
broken tag in the second case. The second example uses a text node and a JavaScript
comment to hide the surrounding script tags from simple document parsers. The third
example circumvents regular expressions which try to rule out parameter values with
evenly balanced quotation marks. The last example skips the closing angle bracket
to circumvent naive regular expressions and simple document parsers at the same
time. In addition, attackers can circumvent protection measures using manipulated or
infrequently used character encodings for text-based web documents, such as:

• 7-bit encodings, e.g., in HTML with the construct 1/4script3/4alert(1);1/4/script3/4,
in which the eighth bit in the encoding x-mac-farsi is deleted. The result is in-
terpreted as a <script>alert(1);</script>.

• Half-width Unicode, e.g., in HTML and CSS with the construct <style> *
{x: U+FF45 U+FF58 U+FF50 U+FF52 U+FF45 U+FF53 U+FF53 U+FF49
U+FF4F U+FF4E (write (1))} </style>, in which some letters represent a
multi-byte encoding (decimal > 255) forming the term expression, but which are
mapped to the ASCII set (0-127 decimal) by some parsers.

• Invalid/non-printable characters, e.g., in HTML, with the construct <a href =
java	script:alert(1)>XX, in which the lack of error handling of many
browsers is exploited, which just swallows non-printable or invalid encoded Uni-
code characters, even if the encoded area is security-critical.

89

4 Firewalls and NIDS for Web Applications

<!−− Example 1 −−>
<s c r i p t />a l e r t (3); </ s c r i p t >
<s c r i p t />a l e r t (4); </ s c r i p t />

<!−− Example 2 −−>
<<SCRIPT>a l e r t (5);//<</SCRIPT>

<!−− Example 3 −−>
<SCRIPT>a l e r t (6)</SCRIPT>">

<!−− Example 4 −−>
<IMG SRC=x oner ro r=" j a v a s c r i p t : a l e r t (7)"

Figure 4.4: Analysis evasion using malformed HTML

Considering these evasion possibilities, it seems to be obvious to create rule sets for
existing NIDSs or content-based őrewalls that detect these attempts. However, a
pure signature-based analysis based on classical NIDS methods often does not work
as expected. Consider, for instance, the following example from the NIDS Snort in
Fig. 4.5. The depicted signature detects an explicitly via the Help Center (hcp://)
loaded document with an embedded struct < script... that has both an ASCII (\x3c)
and an Unicode-based (\x253c) encoding of the opening angle bracket, various ASCII
space characters (\s), and an Unicode (\x2520) space. Under real attack conditions,
this signature can only identify two variants of the attack, while many parser im-
plementations additionally accept all non-printable ASCII characters like \x0, \x9,
\xA, \xB, \xC, \xD (NUL, horizontal tab, new line, vertical tab, form feed, carriage
ret), the mentioned slash (/) from Fig. 4.4, non-printable Unicode characters \x00A0,
\x2000ś\x200A, \x2028, \x2029, \x202F, \x205F, \x3000 (spaces of different widths,
line separator, paragraph seperator, narrow no-break-space, medium mathematical
space, ideographic space), and invalid Unicode characters, such as \x5760 and \x6158
as a separator or whitespace. To add these additional variants would not be effec-
tive because this explosively increases the signature base within a very short time.
The encoding problem is getting worse when it comes to the detection of problematic
JavaScript fragments, e.g., when searching for constructs, such as eval. Figure 4.6 il-
lustrates an encoding for the code eval(alert(1)) with a JavaScript program that does
not use any alphanumeric characters3.

The second problem with traditional NIDSs is that they are designed to prove that code
instead of normal application data is transferred over the network. The problem with
web applications is that they are designed to transmit code via the network and now
we have to prove whether this code is benign or malicious. An example of malicious

3encoded using jjencode: http://utf-8.jp/public/jjencode.html

90

http://utf-8.jp/public/jjencode.html

4.3 Non-Applicability of Classical NIDS Methods

a l e r t tcp $EXTERNAL_NET $HTTP_PORTS −> $HOME_NET any
(f low : to_c l i ent , e s t a b l i s h e d ; f i l e_data ;
content : " hcp | 3A 2F 2F | " ; nocase ;
content : " s c r i p t " ; d i s t anc e : 0 ; nocase ;
content : " d e f e r " ; d i s t anc e : 0 ; nocase ;
pcre : "/ hcp\x3a\ x2f \ x2f [^\n]∗ (\ x3c | \ x253c) s c r i p t

(\ s | \ x2520 | \ x2f)+de f e r /iO " ;
s i d : 1 6 6 6 5 ;)

Figure 4.5: Snort IDS signature for an attack on the Windows Help Center

$ = ~ [] ;
$ = {___:++$, $$$$: (! [] + "") [$] , __$:++$, $_$_ : (! [] + "") [$] ,
$:++$, $_$$: ({ } + "") [$] , $$_$: ($ [$] + "") [$] , _$$:++$,
$$$_ : (! " " + "") [$] , $__:++$, $_$:++$, $$__: ({ } + "") [$] ,
$$_:++$, $$$:++$, $___:++$, $__$:++$ } ;
$. $_ = ($. $_=$ + "") [$. $_$] + ($._$=$.$_ [$.__$])
+ ($. $$=($. $ + "") [$.__$]) + ((! $) + "") [$._$$]
+ ($.__=$.$_[$. $$_]) + ($. $=(!"" + "") [$.__$])
+ ($._=(!"" + "") [$._$_]) + $.$_ [$. $_$] + $.__ + $._$ + $. $;
$. $$ = $. $ + (! " " + "") [$._$$] + $.__ + $._ + $. $ + $. $$;
$. $ = ($.___) [$. $_] [$. $_] ;
$. $ ($. $ ($. $$ + "\"" + $. $$$_ + "\\" + $.__$ + $. $$_ + $. $$_
+ $.$_$_ + (! [] + "") [$._$_] + "(" + $.$_$_ + (! []
+ "") [$._$_] + $. $$$_ + "\\" + $.__$ + $. $$_ + $._$_
+ $.__ + "(" + $.__$ + "))" + " \ " ") ()) () ;

Figure 4.6: JavaScript program łeval(alert(1))ž encoded exclusively with symbols

code is a code-based denial of service attack on a browser. In order to detect such
an attack one would have to be prove that the transmitted code fragment őnishes its
execution. This is the classical halting problem for which Turing already proved [150]
that it is not solvable. Another approach ś to write context-sensitive signatures based
on the context-sensitive parsers to identify malicious embeddings of code ś was also
tried during the research for this work, but almost every web page contains one or
two harmless syntax errors that trigger the corresponding rules. Due to the discussed
problems, an approach is sought which can prove the integrity of the transmitted code
instead of its benignity or maliciousness. Only a domain-speciőc model that uncovers
subtle differences between the transmitted code and the known coding style of the
web application by means of machine learning methods will be capable to solve this
problem.

91

4 Firewalls and NIDS for Web Applications

≠

Figure 4.7: Firewall architecture for web applications

4.4 Web Analysis for Application Firewalls

The broad range of analysis evasion possibilities requires novel approaches to protect
web applications. The basic idea behind the approach proposed in this section is to
combine preemptive security methods, e.g., firewalls, with reactive ones, e.g., intrusion
detection analysis methods. For this purpose, an intrusion detection analysis unit
should be linked to the firewall that is able to parse the application protocols and the
highly hierarchical Web 2.0 document structures and languages, so-called (application
protocol) overlays, to detect and block malicious or unknown active contents (see
Figure 4.7). For the synchronization between the the firewall and the analysis unit, a
specific inspection and modification protocol (IMP) is used.

The proposed analysis system includes three operating modes – a training mode,
a validation mode, and the active/effective operation mode. In training mode, the
structure of the web documents (HTML, JS) for each domain is transferred by means
of parsers into feature vectors for a machine learning system that are stored in a
database. If enough feature vectors are available, e.g., after a day of operation, multiple
application models for each domain are generated offline by means of machine learning
with different parameters. Thereafter, the system proceeds in the validation mode
that tests the different models for each domain online and fixes the parameters for the
best models. Finally the system goes into the active/effective operation mode which
validates new or unknown active content of a domain against the best domain model.
The domain model has to prove whether the new code or a new document corresponds
to the "style" of the respective web application, e.g., Facebook.

The response to deviations from the style of a web application depends on the intended
deployment scenario. The main scenario of this approach is a perimeter firewall that

92

4.4 Web Analysis for Application Firewalls

 →

→

Figure 4.8: Deployment scenarios for the analysis units

covers all components from the analysis of the application layer (HTTP) to the analy-
sis of documents. However, the increasing use of encryption could thwart this scenario
in the future. Therefore in the second scenario, only the web document analysis library
is used to support client- or server-side integrity checks for web pages which are ex-
posed to user input. Figure 4.8 represents two server-side and two client-side use cases
based on these scenarios. In the first server-side scenario (a) a high-traffic page is as-
sumed to which only the web document inspection (without application layer protocol
inspection) is applied to check user-generated content. If the page that is generated
from the user input matches the style of the overall domain, it is released for publica-
tion. Otherwise, it is blocked. The second server-side scenario (b) assumes a protected
small web application (e.g., an intranet application), which is checked for integrity by
a web application firewall that implements the whole architecture (application layer
and web document inspection). Typical web application firewalls check inputs to the
application, add and verify CSRF tokens, harden session cookies, and detect common
attack patterns. Usually they require to be tightly integrated with the web application
(e.g., they require knowledge of the input types to forms of a specific web application)

93

4 Firewalls and NIDS for Web Applications

and can thus provide only an insufficient generic protection. When combined with
the proposed learning-based approach the transmission of the application protocol or
document can be stopped if deviations from the style of the web application are de-
tected. The őrst client-side scenario (c) applies the document inspection analogously
to the őrst server-side scenario to test individual web applications for integrity. In
this case, the models are exclusively generated for the most relevant web applications,
e.g., applications containing pages with password őelds. The models, the tree hashes
of the web page structures, and the analysis results of known pages of the protected
web applications should be kept in the local HTML5 storage. The last client-side
scenario (d) assumes a high-security network in which active code is generally blocked
or removed. Only a small amount of web applications is enabled to pass through the
őrewall. The application layer gateway constructs a model of each application and
removes active code from all documents that do not match the style of the respective
application. This scenario is identical to the architecture depicted in Figure 4.7. More
in detail, the following steps are performed in the full őrewall architecture.

Signature Analysis and Normalization for HTTP

In the őrst step, transport layer data are passed to the HTTP analysis and normal-
ization unit that is mainly dedicated to rewrite or remove headers to prevent attacks
on the application (HTTP) layer. A proprietary protocol called IMP (inspection and
modiőcation protocol) was developed for this transfer. IMP transmits individual data
blocks to the analysis component as soon as they have been recorded by the őrewall,
i.e., it does not wait on the completion of the entire data stream (in contrast to ICAP
[151]). In this way, abnormalities can be detected early and the web data stream can
be blocked. The synchronization takes place via the position of the data in the original
data stream.

Normalization means that the protocol requests and responses are rewritten to match
the correct protocol behavior. The analysis unit roughly follows the internal HTTP
client state machine, as depicted in Fig. 4.9. In protocol states in which no data is
expected (e.g., transition to NODATA for HTTP response codes 204, 304), headers,
such as content-length and transfer-encoding are removed. For other states, e.g., the
transition from SENT REQUEST to GOTDATA via NEED BODY, the information
of these headers is replaced by the observed length and encoding. Duplicate headers
are replaced through only one instance and their content is normalized according to
the observed protocol behavior, e.g., additional data after the transition to NODATA
is removed from the stream.

In order to block malicious cross-site requests (CSRF) two additional modules are
connected to the őrewall. The őrst module4 removes session credentials (cookie,

4https://github.com/noxxi/p5-app-http_proxy_imp/

94

https://github.com/noxxi/p5-app-http_proxy_imp/

4.4 Web Analysis for Application Firewalls

NEED

CONNECTION

NEED

REQUEST

SENT

REQUEST

NEED

AUTH

NEED

BODY
GOTDATA

NODATA

REDIRECT

FAILURE

OK

OK

OK

Error

Error

Error

Error

401

200, 203,

HTTP 0.9

OK

204, 304

301, 302

Error

Figure 4.9: HTTP client-side state machine (based on https://www.w3.org/People/

Frystyk/thesis/HTTP.gif)

cookie2, and authorization header) from the request if the origin of the request is
not known/trusted. The origin is determined by the Origin or Referer HTTP-request
header. The module uses the algorithm of De Ryck et al. [93]. An origin O is consid-
ered as trusted to issue a cross-site request to target T, if (1) O is the same as T, or
(2) O and T share the same root domain, or (3) there was an earlier delegation from
T to O. Delegation from T to O means that (a) there was an earlier POST request to
target O with origin T or (b) a redirect to O within the HTTP response from T.

The second CSRF module is based on the Content Security Policy (CSP) and Referer
policy of modern browsers, such as Firefox and Chrome. These browsers implement a
security policy mechanism that allows a server to restrict the behavior of web clients
regarding the inline execution of JavaScript, the loading of JavaScript from external
resources, and others. The restrictions are enforced using a special HTTP header
which can contain a URL for reporting violations. This CSP header can be set to
report-only, e.g., the browser only reports violations to the speciőed URL, but it does
not enforce the rules. The module starts with a restrictive policy and the report-only
attribute which is used to reőne the policy based on the observed client behavior.
Later the report-only mode is switched off and the policy is enforced.

Signature Analysis for Web Content

The purpose of the second step is feature extraction for the derivation/reőnement of
machine learning models from the domain content. Currently applied technologies
for the analysis of the data content and thus the overlay structures are often based

95

https://www.w3.org/People/Frystyk/thesis/HTTP.gif
https://www.w3.org/People/Frystyk/thesis/HTTP.gif

4 Firewalls and NIDS for Web Applications

on simple signature comparisons which are formulated by means of regular expres-
sions that describe questionable language constructs. The use of regular expressions
is problematic because the data structures of web applications cannot be described
by them. If attackers manipulate the structure of web documents, as described in the
Sections 4.3 and 4.4, they can bypass the analysis units, e.g., machine learning mod-
ules, that rely on input which is extracted from the document structure. Therefore,
the analysis of web data structures requires context-sensitive parsers that can analyze
different generations of the dominant languages. The parsers have to detect whether
a document is largely correct according to the terms of the speciőcation. In addi-
tion, they have to distinguish between format errors and analysis evasion attempts.
Based on these requirements, the overlay analysis library for web documents includes
parsers for a signature-based detection of evasion attempts for different languages,
such as HTML/XML, CSS, and JS, independent mechanisms for checking dangerous
character set encodings, and character set converters with an error analysis. The
signature recognition ensures the analysis and the detection of evasion attempts, as
described in section 4.3 and to some extent also evasions from section 4.4. Encoding
analysis is limited to the Internet Assigned Numbers Authority (IANA) database of
registered encodings5. It can address various problems, such as erroneous proprietary
text encodings or invalid and non-printable characters.

Reactions to deviations detected in the signature unit depend on the type of the
error. Deviations in the encoding, e.g., a mismatch with encoding labels of the IANA
database, are blocked directly. Other potential evasions are only recorded as additional
document features and later tested against the web application model.

Construction of Machine Learning Models for Web Applications

The last step of the overlay analysis is to assess the "style" of the web application to
decide whether the active content matches it. The idea behind this is to only allow
a web application to pass the őrewall if its structure corresponds to the known style
of the application. This is decided based on a model of the related HTML and/or
JavaScript structure. In contrast to existing approaches that use models of known
malicious code for the identiőcation of unknown malicious code, we separate each
allowed web application from a corpus of other web applications, e.g., the Alexa.com
Top 500 URLs.

Feature extraction and mapping. The feature extraction approach is based on the
following assumption. Almost all text-based web documents use a tree-like data struc-
ture, such as the document object model (DOM) of HTML or the abstract syntax tree
(AST) of JavaScript. It is possible to enumerate known elements of a language, such

5https://www.iana.org/assignments/character-sets/character-sets.xhtml

96

https://www.iana.org/assignments/character-sets/character-sets.xhtml

4.4 Web Analysis for Application Firewalls

Figure 4.10: Feature extraction from the document object model

as HTML elements and attributes or JavaScript AST nodes, by means of the under-
lying standards, e.g., all reserved words of HTML/XML and JavaScript/EcmaScript.
A depth-first search of the resulting trees with a sliding window moving over the enu-
merated nodes can be used to generate a set of n-grams to describe the document
structure. This is exemplarily presented in Figure 4.10 for HTML. The depth-first
search starts at the html tag. The tags and their attributes are hashed using a Mur-
mur Hash6. For text nodes, such as headings, attribute values, and paragraphs, the
text length is determined and the obtained numbers are normalized to a logarithmic
scale. This first step yields a sequence of hash numbers in the order of the depth-first
visit of DOM nodes. To generate models over the document structure several of the
hash values have to be linked together. This is achieved by generating n-grams over
the sequence of hashes, which are hashed again with the same function. The example
of Figure 4.10 depicts this for the case of n = 3 which results in a sparsely populated
feature vector with a maximum dimension of 2#hashbits. For attack-resistant models,
a larger context (larger n) is used. The hashes over the n-grams are used as indexes
for the feature vector. The value of a vector dimension is the number of occurrences
of the respective n-gram normalized to the l2-norm.

For JavaScript, the same methodology is applied to the abstract syntax tree, as de-
picted in Fig. 4.11. The depth-first search walks through the enumerated nodes of the
compiled script. Structural nodes, such as statement lists, function calls, argument
lists, and argument names are extracted, but their values are ignored. The extracted

6https://github.com/aappleby/smhasher

97

https://github.com/aappleby/smhasher

4 Firewalls and NIDS for Web Applications

example: "alert(1)"

stmt_list

call

list

semicolon

name

val: "alert"

number

val: 23

D
epth-First-Search

enum_stmt_list -> 16
enum_semicolon -> 2
enum_call -> 19
enum_name -> 20
enum_list -> 14
enum_number -> 21

hash(2,19,20)

->dim:2..326,val:1
hash(20,14,21
->dim:3..028,val:1

hash(16,2,19)
->dim:4..019,val:1

hash(19,29,14)
->dim:7..918,val:1 n=3

Figure 4.11: Feature extraction from the JavaScript AST

nodes are not hashed as in HTML because it is usually possible to directly extract
the enumerated types from the underlying library, e.g., Mozilla SpiderMonkey7. How-
ever, the resulting n-grams are hashed with the same hash as for HTML. In contrast
to HTML, the resulting feature vector does not track the number of occurrences of
n-grams. Instead, the vector dimension is set to 1 if the corresponding n-gram is
present in the data set and (implicitly) to zero otherwise (the applied libsvm8 library
can handle the index and does not require null values in sparsely populated feature
vectors).

General model construction process. The web application model is based on two-
class support vector machines (SVMs) [152] constructed from a larger set of the pre-
viously generated feature vectors. One class describes the document structure of the
web application itself and the other one represents a set of other web applications
which are used as counterexamples. Feature vectors from the counterexamples are
randomly selected based on a őxed proportion compared to the number of vectors in
the domain. Then the feature vectors of the domain are combined with the selected
counterexamples to construct a linear SVM. Structurally identical fragments/pages
are assigned to the domain, i.e., the intersection of the domain vector set and counter
example vector set is assigned to the domain vector set when constructing the SVM.

7https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
8https://www.csie.ntu.edu.tw/~cjlin/libsvm/

98

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

4.4 Web Analysis for Application Firewalls

The process constructs several models, for example, with different ν-parameters. In
the validation phase, the quality of each model is measured based on the following
parameters (order = priority) to select the best model: (1) the detection accuracy for
the test vectors from the domain, (2) the detection accuracy for the test vectors from
the counterexamples, and (3) the number of support vectors in the model as a quality
measure for its generalization. The model with the fewest remaining support vectors
is used in this case. Additionally, (4) the ν-parameter of the SVM is used as a second
(partially redundant) quality measure for the generalization of the model. The mini-
mum value of ν is used in this case, because it is the target for the maximum number
of misclassiőed training data and the maximum number of used support vectors.

Google
(’ body ’ , ’ onload ’ , 3)
(’ div ’ , ’ onload ’ , 1)
(’ center ’ , ’ div ’ , ’ s c r i p t ’)
(’ body ’ , ’ center ’ , ’ s c r i p t ’)

Facebook
(’ a ’ , ’ onc l i ck ’ , 2)
(’ form ’ , ’ onsubmit ’ , 2)
(’ html ’ , ’ head ’ , ’ s c r i p t ’)
(’ html ’ , ’ body ’ , ’ s c r i p t ’)

Figure 4.12: n-grams from Google
and Facebook document
structures

Refinement of HTML models. The pre-
viously described extraction and model con-
struction process makes it possible to distin-
guish web applications, such as Google and
Facebook (see Figure 4.12). As it can be
seen from the őgure, the two web applica-
tions differ in their code size (logarithm of
the code length for onload, onsubmit and
onclick handlers), in their positioning of ac-
tive code (randomly deeply nested locations
for Google, such as inside div tags, and head
of document for Facebook), as well as in
further differences regarding the nesting of
script tags. The process allows to identify
changes of web applications that are com-
mon for stored XSS attacks, such as new
child tags, that do not correspond to the or-
der of the existing tag structure (cf. Fig. 4.1) or new attributes which were not there
before.

In real-world scenarios, however, such changes would often remain undetected, since
the examples in Figure 4.1 assume that the attack results in a well-formed HTML
document which can be analyzed by any parser. Attacks, such as the splitting of nodes,
attributes, or tags, as depicted in Figure 4.2, usually leave some fragments inside the
modiőed document which destroy its structure. These fragments are common for
reŕected XSS attacks and they are interpreted ambiguously between different HTML
parser implementations.

Frequent results of ambiguous interpretations of markup code inside of analysis pro-
cedures are: (1) tags that are simply ignored due to their wrong structure, (2) tags
that are interpreted as attributes or attribute values, (3) tags that are interpreted as
plain text, and (4) attributes that are interpreted as plain text. Therefore, the most

99

4 Firewalls and NIDS for Web Applications

Figure 4.13: DOM annotations with identified structural problems

interesting changes do not reach the machine learning module in many cases. In order
to prevent this the extracted features are augmented with additional details from the
signature detection unit, such as parser warnings, identified typical attack fragments
like >, %<charcode>, and uncommon structures, e.g., empty attribute values, as
depicted in Figure 4.13. The annotated DOM nodes become a part of the extracted
features and allow one to build better models which can ward off additional malicious
inputs.

4.5 Implementation Details

The proposed measures have been implemented in an analysis library that comprises
parsers, signature analysis modules, and machine learning methods (see Fig. 4.14). The
parsers extract the basic characteristics of the web documents, as described above, and
the signature units enrich the extracted features with detected inconsistencies. The
overall structure is passed to the modules for machine learning. The analysis library is
internally divided into parser and analysis plugins which are connected to each other,
as depicted in Fig. 4.15. All parsers share a common interface, called stream_parser,
which implements the logic of the Inspection and Modification Protocol. Analyzers
are implemented using an interface, called web_doc_analyzer. This interface allows to
enforce restrictions on the parser hierarchy, such as the connection between CSS parsers
and CSS analyzers. It further enables to re-export parts of a document to other stream

100

4.6 Experimental Evaluation

HTML parser XML parser JS parser

common mark-

up evasion sig.

base signature

(functions)

markup tree-

to-ngram

JS AST tree-

to-ngram

SVM model
machine

learning

models

signature

detection

parsers

Figure 4.14: Analysis Library for Web Applications (excerpt)

stream_parser

xml_parser css_parser js_parser

html_analyzer xml_analyzer css_analyzer js_ast_analyzer

web_doc_analyzer

html_parser

js_ast_tree_builder

markup_common

Figure 4.15: Relationship between parsers and analysis plugins

parsers, e.g., the export of HTML script-sections to a JavaScript parser and style-
sections to a CSS parser. Two other special analyzers, the js_ast_tree_builder and
a common_markup_tree_builder, which is encapsulated inside of a markup common
module, export the data in a manner which is suitable for machine learning. The
embeddings for the experiments in the subsequent section were accomplished with
sally9.

4.6 Experimental Evaluation

In order to evaluate the applicability of the approach for the identiőcation and selective
passing of web applications a part of the Alexa.com Top 500 Germany URLs was
repeatedly mirrored and analyzed for a period of 15 days. Note that the Alexa Top 500

9http://www.mlsec.org/sally/download.html

101

http://www.mlsec.org/sally/download.html

4 Firewalls and NIDS for Web Applications

global list cannot be used for such an experiment because it has not the same diversity
as the country-speciőc top lists, since the global top list includes repeated country-
speciőc versions of Google and other major sites. Out of the Alexa URLs, 253 were
directly reachable, while most of the other ones represented interfaces of advertisement
networks which blocked the access due to missing referer headers and about another
130 were not covered by the web crawler because they diverted the HTTP requests
to another domain. The őrst two experiments are based on an (unauthenticated)
extraction of the web documents from the respective sites with a link depth of 6
limited to 60 seconds extraction time, resulting in 27,456 to 30,829 HTML documents
and 1,878 to 1,975 JavaScript documents per day.

The őrst experiment evaluated the URLs from the őrst two days against each other
to analyze the capability of the generated models to identify individual web appli-
cations and to őx the model parameters (e.g., n-gram size). The second experiment
tested the stability of the generated models over the full period. A third experi-
ment evaluated the applicability of the approach to ward off (potentially) malicious
input. For this, 4386 HTML documents and 400 JavaScript documents were eval-
uated, which were extracted from the following security frameworks: WebScarab10,
Vega11, arachni12, beef13, grabber14, grendel15, metasploit16, nikto17, sqlmap18, w3af19,
wapiti20, and zap21. The őnal experiment evaluated the performance of the overall
system.

Evaluation Criteria

To evaluate the approach various criteria were measured based on training sets (T) ex-
tracted during the őrst day for each domain which consisted of the feature vectors from
the HTML pages and JavaScript fragments of a domain as well as randomly selected
feature vectors from the other domains as counterexamples. The combined domain
and counterexample feature vectors were used to train the support vector machines
for each domain which are based on a linear kernel. The models are evaluated against
several validation and test sets (V/T) which consisted of the feature vectors and coun-
terexamples for each domain that were extracted and generated during the subsequent

10https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
11https://subgraph.com/vega/
12http://www.arachni-scanner.com/
13http://beefproject.com/
14https://github.com/neuroo/grabber
15https://sourceforge.net/projects/grendel/
16https://www.metasploit.com/
17https://cirt.net/Nikto2
18http://sqlmap.org/
19http://w3af.org/
20http://wapiti.sourceforge.net/
21https://github.com/zaproxy/zaproxy

102

https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://subgraph.com/vega/
http://www.arachni-scanner.com/
http://beefproject.com/
https://github.com/neuroo/grabber
https://sourceforge.net/projects/grendel/
https://www.metasploit.com/
https://cirt.net/Nikto2
http://sqlmap.org/
http://w3af.org/
http://wapiti.sourceforge.net/
https://github.com/zaproxy/zaproxy

4.6 Experimental Evaluation

days. True-positives (TPs) indicate the domain vectors that are classiőed as domain
vectors. True-negatives (TNs) characterize vectors from the counterexamples in each
validation/test set that are classiőed as other domain vectors. False-positives (FPs)
identify vectors from the counterexamples in each validation/test set that are classiőed
as domain vectors. False-negatives (FNs) measure domain vectors that are classiőed
as other domain vectors.

Based on these four basic measures, other metrics are deőned to identify the best
models or model parameters. The true-positive rate (TPR) indicates the propor-
tion of the domain examples that the model predicts correctly: TP/(TP+FN). The
true-negative rate (TNR) speciőes the proportion of the counter examples of the val-
idation/test set that the model predicts correctly: TN/(TN+FP). The false-positive
rate (FPR) deőnes the proportion of the counter examples of the validation/test set
that the model predicts falsely as domain code: FP/(FP+TN). The false-negative
rate (FNR) is the proportion of the domain examples that the model misinterprets as
other domain code: FN/(FN+TP). The accuracy (A) speciőes the proportion of the
validation/test set that the model predicts correctly: (TP+TN)/(TP+TN+FP+FN).
The error-rate (E) deőnes the proportion of the validation/test set that the model
predicts incorrectly: (FP+FN)/(TP+TN+FP+FN). The precision (P) indicates the
proportion of the positive domain examples that were really positive: TP/(TP+FP).
The F-measure (F1) is the harmonic mean of the precision and the true-positive rate:
2*P*TPR/(P+TPR).

Applicability for Generating Web Application Models

Experiment 1 evaluated the capability of the generated models to identify individual
web applications. For this, the vectors of the validation set of each domain were evalu-
ated against randomly selected vectors from all other domains. The feature extraction
process for the vectors uses different n-gram values to identify how much context is
needed for a model with a good detection accuracy. The outcome of this experiment is
summarized in Tables 4.1 (for HTML) and 4.2 (for JavaScript). For HTML, the value
n = 7 yields the best accuracy (A), precision (P), and F-measure (F1) as well as the
lowest error-rate (E) for the resulting models. To increase the capability of the őre-
wall to reliably identify web applications, the JavaScript fragments were considered as
well. For this, the capability of the generated models to identify JavaScript fragments
as part of the corresponding web applications were evaluated. The outcome of this
evaluation is summarized in Table 4.2. The best model for JavaScript is achieved for
n = 8. Compared to the HTML models the JavaScript models have less predictive
capabilities. However, the models for the JavaScript fragments are not meant to be
used alone because the proof of domain membership is not obtained from a JavaScript
fragment alone. Instead the result is combined with the result of the surrounding
HTML document. Table 4.3 represents the combined detection capability of the best

103

4 Firewalls and NIDS for Web Applications

n TPR [%] TNR [%] FPR [%] FNR [%] A [%] E [%] P [%] F1 [%]

3 98.29 99.18 0.82 1.71 99.08 0.92 93.77 95.98
4 98.77 99.57 0.43 1.23 99.48 0.52 96.65 97.69
5 99.16 99.7 0.3 0.83 99.6 0.4 97.33 98.24
6 99.4 99.72 0.28 0.6 99.68 0.32 97.79 98.56
7 99.4 100 0 0.6 99.93 0.07 100 99.7

8 99.22 99.75 0.25 0.78 99.69 0.31 98.01 98.61
9 99.2 99.79 0.21 0.80 99.72 0.28 98.3 98.74

Table 4.1: Detection capability of HTML models

n TPR [%] TNR [%] FPR [%] FNR [%] A [%] E [%] P [%] F1 [%]

3 98.84 75.9 24.1 1.16 78.44 21.56 33.89 50.47
4 99.0 78.6 21.40 1.0 80.86 19.14 36.64 53.48
5 99.2 83.23 16.77 0.81 85.0 15.0 42.51 59.51
6 99.06 86.14 13.86 0.94 87.58 12.42 47.19 63.92
7 99.01 87.29 12.71 0.99 88.59 11.41 49.33 65.85
8 98.82 90.79 9.21 1.18 91.68 8.32 57.28 72.52

9 98.8 90.49 9.51 1.2 91.42 8.58 56.5 71.89

Table 4.2: Detection capability of JavaScript models

HTML and best JavaScript models. A őrewall that removes JavaScript fragments if
the HTML model and the JavaScript model determines the code as third-party code
would detect 94.67% of the foreign code (TNR) and mistakenly remove about one out
of hundred fragments (FNR).

Experiment 2 evaluated the stability of the models over a period of 13 days. The
period resulted from the previous experiment. The complete data set encompasses
15 days. The data sets of the őrst day were already used in the őrst experiment to
generate the domain models. From the resulting model set, the parameters for the
best models were őxed with the help of the data sets of the second day. Accordingly,
the data sets of the remaining 13 days were evaluated against the models from the
őrst day to test the stability of these models. The results of this experiment are shown
in Tables 4.4 (HTML), 4.5 (for JavaScript) and 4.6 (combined models). The relevant
value is the development of the error rate (E). If there is an increase then the model

TPR [%] TNR [%] FPR [%] FNR [%] A [%] E [%] P [%] F1 [%]

99.06 94.67 5.33 0.94 95.16 4.84 69.9 81.96

Table 4.3: Combined detection capability

104

4.6 Experimental Evaluation

day TPR [%] TNR [%] FPR [%] FNR [%] A [%] E [%] P [%] F1 [%]

1 99.14 99.64 0.36 0.86 99.58 0.42 97.14 98.13
2 99.08 99.64 0.36 0.92 99.58 0.42 97.19 98.12
3 98.96 99.67 0.33 1.04 99.59 0.41 97.39 98.17
4 98.7 99.66 0.34 1.3 99.56 0.44 97.35 98.02
5 98.88 99.63 0.37 1.12 99.54 0.45 97.08 97.97
6 99.04 99.64 0.36 0.96 99.58 0.42 97.2 98.11
7 98.68 99.66 0.34 1.32 99.55 0.44 97.35 98.01
8 98.7 99.63 0.37 1.3 99.53 0.47 97.12 97.9
9 98.52 99.65 0.35 1.48 99.52 0.48 97.22 97.86
10 98.53 99.67 0.33 1.46 99.54 0.46 97.36 97.94
11 98.51 99.64 0.36 1.49 99.52 0.48 97.19 97.84
12 98.08 99.58 0.42 1.92 99.41 0.59 96.67 97.37
13 98.09 99.63 0.37 1.91 99.46 0.54 97.04 97.56

Table 4.4: Detection stability of HTML models

may need to be re-trained regularly. For the analysis of HTML, there seems to be
a slight increase (0.12%), while the JavaScript model seems to be stable within its
accuracy. The main reason for the increasing error rate of HTML appears to be the
drop in the true-positive rate of around 1%. This could be a result of too little data
in the initial page extraction. The model possibly stabilizes when the time window
for the initial mirroring of the domains is extended.

Experiment 3 evaluated the capability of the models to ward off malicious input.
For this purpose, the counterexamples to the domains in the data sets of the third
day were replaced by extracted feature vectors of HTML and JavaScript fragments
of various web security frameworks. Most of the superseded vectors were based on
benign auxiliary code of the web security scanners which is necessary to set up the
attacks, but some of these vectors contained real attacks against the web browsers.
Regardless of this fact, all these vectors do not belong to the respective domain and
accordingly the response of the model to the changed input is tested. The results of
the experiment are summarized in Table 4.7. The HTML models recognize 99. 97%
(TNR) of the HTML documents as someone else’s code, while the JavaScript (JS)
models reject 93.43% of the JavaScript fragments as foreign code. If the results of the
two models are combined (COMB) 99.6% of the foreign code would be rejected.

Combined results and comparison with other approaches. This section summa-
rizes the results of the previous experiments, and compares them with other approaches
to detect web applications and malicious code. The upper part of table 4.8 summarizes
the results of the own experiments. The őrst line (HTML) summarizes the results of

105

4 Firewalls and NIDS for Web Applications

day TPR [%] TNR [%] FPR [%] FNR [%] A [%] E [%] P [%] F1 [%]

1 98.21 90.74 9.26 1.79 91.57 8.43 56.99 72.13
2 97.45 90.84 9.16 2.55 91.58 8.42 57.09 72.0
3 97.48 90.82 9.17 2.52 91.56 8.43 57.05 71.98
4 96.94 90.74 9.26 3.05 91.43 8.57 56.69 71.54
5 97.5 90.77 9.23 2.5 91.52 8.48 56.9 71.86
6 97.76 90.77 9.23 2.24 91.55 8.45 56.97 71.99
7 97.72 90.82 9.18 2.28 91.59 8.41 57.1 72.08
8 97.43 90.88 9.12 2.57 91.61 8.39 57.19 72.08
9 96.98 90.9 9.1 3.02 91.58 8.42 57.12 71.89
10 97.1 90.92 9.08 2.9 91.61 8.39 57.2 72.0
11 97.03 90.83 9.16 2.97 91.52 8.48 56.96 71.78
12 97.08 90.96 9.04 2.9 91.64 8.36 57.3 72.06
13 96.55 90.96 9.04 3.45 91.58 8.42 57.17 71.82

Table 4.5: Detection stability of JavaScript models

day TPR [%] TNR [%] FPR [%] FNR [%] A [%] E [%] P [%] F1 [%]

1 98.6 94.54 5.45 1.4 95.0 5.0 69.32 81.41
2 98.16 94.69 5.3 1.84 95.08 4.92 69.81 81.59
3 98.14 94.73 5.27 1.86 95.11 4.89 69.96 81.68
4 97.71 94.66 5.34 2.29 95.0 5.0 69.56 81.27
5 98.1 94.66 5.33 1.89 95.05 4.95 69.69 81.49
6 98.33 94.68 5.3 1.67 95.09 4.91 69.81 81.65
7 98.14 94.72 5.28 1.86 95.1 4.9 69.9 81.65
8 97.98 94.71 5.29 2.02 95.07 4.93 69.82 81.54
9 97.65 94.72 5.28 2.35 95.05 4.95 69.82 81.42
10 97.74 94.8 5.2 2.26 95.12 4.88 70.12 81.66
11 97.68 94.73 5.27 2.32 95.06 4.94 69.84 81.45
12 97.51 94.69 5.31 2.49 95.0 5.0 69.65 81.26
13 97.23 94.77 5.23 2.77 95.04 4.95 69.92 81.34

Table 4.6: Detection stability of the combined models

TPR[%] TNR[%] FPR[%] FNR[%] A[%] E[%] P[%] F1[%]

HTML 99.13 99.97 0.03 0.87 99.96 0.04 98.27 98.7
JS 98.21 93.43 6.57 1.79 94.71 5.28 84.62 90.91
COMB 98.6 99.6 0.4 1.4 99.57 0.43 89.96 94.08

Table 4.7: Malware detection capability (Malware = TNR)

106

4.6 Experimental Evaluation

TPR[%] TNR[%] FPR[%] FNR[%] A[%] E[%] P[%] F1[%]

HTML 98.76 99.77 0.23 1.24 99.69 0.31 97.41 98.08

JS 97.48 90.9 9.1 2.52 91.66 8.34 58.33 72.99
COMB 98.04 95.65 4.35 1.96 95.88 4.12 70.83 82.24
Zozzle1 98.74 98.48 1.52 1.26 98.51 1.49 88.23 93.19
Zozzle2 90.8 100.0 0.0 9.2 99.2 0.8 100.0 95.18
Zozzle2* 99.06 0.94

Table 4.8: Combined results compared to related approaches

the best model (n = 7) for HTML from table 4.1, as well as all HTML results of
table 4.4 and the őrst row (HTML malware results) of table 4.7. The second line (JS)
summarizes the results of the best model (n = 8) for JavaScript from table 4.2, as well
as all JavaScript results in table 4.5 and the second row (JavaScript malware results)
of table 4.7. The third line (COMB) summarizes all results of tables 4.3 and 4.6, as
well as the third row (combined malware results) from table 4.7.

There are very few other approaches for the detection of web applications that expose
all relevant results in an evaluation. The authors of SWAP [85], for example, test an
unknown number of attacks against three web applications (claiming 100% detection
accuracy) without making a false-positive analysis. Rui Wang et al. [142] indicate for
one experiment the resulting precision, recall, and F-measure and for another one the
true-positive and false-negative rates, but they do not report any false-positive-related
measure at all. The same applies to the approach of Ismail et al. [140]. Johns et al.
can detect 100% of the reŕected XSS attacks in their experiments [148], but their false
positive analysis is incomprehensible because they are merely referring to two distribu-
tion tables without any summary. The author of JaSPIn [92] performs two different
experiments. In one experiment, he tested 59 exploits against a web application in
which he achieved a 100 percent detection rate, but he reveals no false positives for
this experiment. In another experiment, he tested 60 web application models for false-
negatives (although he referred to these as false-positives). The appropriate models
can assign around 80% of the JavaScript calls to the respective web applications and
fail at the rest. Only for Asynchronous JavaScript and XML (AJAX)-based applica-
tions, a recognition accuracy of 91% is achieved, which is probably connected to the
regularly repeating function call patterns of AJAX.

Zozzle is the only approach, for which all evaluation values can be calculated (at
least for one experiment). Zozzle recognizes exactly one XSS-based attack (Heap
Spraying) based on a set of 919 exploits. For the őrst false-positive analysis, apparently
all exploits are used as training data and the resulting model is tested against a set
of 7976 (benign) JavaScript contexts from the Alexa Top 50. The results of this
experiment are shown in the last three rows of Table 4.8. Zozzle1 evaluated the whole
set (malware + Alexa Top 50) based on hand-selected features. Zozzle2 repeated the

107

4 Firewalls and NIDS for Web Applications

experiment with a χ2-based feature selection. The missing evaluation values of the
Zozzle paper were determined in the following way: TPR = 100 − FNR;TNR =
100− FPR;E = 100−A. For P and the F -measure (F1) the absolute values for TP
and FP were calculated based on the given numbers (malware = 919; benign = 7976).
Using this calculation, the results for the accuracy A and error rate E for the model
based on hand-selected features (Zozzle1) could be conőrmed. In reviewing the results
of the model Zozzle2, a small discrepancy was found. The penultimate line (Zozzle2)
of Table 4.8 reŕects the published values, while the last line (Zozzle2*) was calculated
based on the absolute values.

The approach proposed in this chapter is based on whitelisting domain code (using a
SVM model). Compared with the only other similar approach with published results
(JaSPIn) the proposed SVM model should be preferred for such a use case. Zozzle,

on the other hand, is based on the blacklisting of known malicious code. For the case
of heap-spraying attacks it should preferred against an SVM-based option.

Performance of the firewall architecture. The models for the web applications are
generated offline. During the crawl, within 60 seconds, a sufficiently large quantity of
documents (on average 109 HTML pages and 7 JavaScript documents per domain) was
extracted. In the prototype of the proposed approach, up to 38 models with varying
ν-parameters were generated for each domain. On the Core 2 Quad Q9550@2.83GHz
test system, it took on average 6 seconds to generate these models and to identify the
őnal domain model.

In relation to the online part of the analysis, it is important to distinguish between
two cases: there is (1) a new document with a different structure, which should be
assessed in relation to the previous model, and (2) an existing document with changed
content but the same structure, which should be detected again. In both cases the
document has to be parsed. With the current prototype, parsing a HTML document
takes ś depending on the complexity ś between 1.3 and 314 milliseconds. Parsing a
JavaScript document depends on the document size and takes between 0.4 milliseconds
(a few bytes) and 1.5 seconds (1 MByte). For each document, a structural hash is
made when parsing. On the base of these hashes, it can be checked in the second
case whether there is already a document rating which is then used instead of a check
against the model. The őrst case requires a feature extraction and a test against
the model. The extraction time of the features is also dependent on the document
size. For HTML, the feature extraction requires between 10 (8 KByte document)
and 390 milliseconds (12 MByte document). For JavaScript, the feature extraction
requires between 10 (4 KByte document) and 440 milliseconds (8 MByte document).
The validation time against the model is relatively constant and requires for HTML
between 60 and 70 milliseconds and for JavaScript between 20 and 30 milliseconds.
Note that the parser of the prototype is extremely inefficient because it contains a

108

4.7 Conclusions

lot of number-to-text conversions for the implementation of the experiments, and
improvements are relatively easy to implement.

4.7 Conclusions

This chapter investigated the problems of perimeter őrewalls when analyzing web
traffic. A őrewall architecture has been proposed that addresses the entire process
chain starting from the data transfer with the HTTP protocol, which is prone to
evasion attacks, via the analysis of manipulated web documents to the extraction and
analysis of active content. The last step of the őrewall analysis assesses the style of
the web application using machine-learning methods. The basic idea is to allow a
restricted set of web applications to pass the őrewall based on a model of their HTML
and JavaScript structure and to remove active content from the other web sites which
are not part of this set. Promising results were achieved when evaluating the capability
of the resulting models to identify the underlying web applications and their ability
to enforce their structure when confronted with additional malicious input.

Based on the results of the evaluations, still 1 out of 116 HTML pages and 1 out of 56
JavaScript fragments may be classiőed as non-domain code by a domain model. This
is an issue for a őrewall approach, since it removes the respective active code from
the page with a possible loss of functionality. It was discussed to combine HTML and
JavaScript models for further evidence of domain membership to solve a part of this
problem. The proposed method has, however, more degrees of freedom for determining
the meaningfulness of a statement about the similarity of a feature vector to a class,
which can be used in future work to improve the detection accuracy.

Distance-based measurement. Since the applied SVMs are based on linear kernels, there
may be other means to gain further knowledge from the individual models. The
idea is to measure the distance of test vectors to the hyperplane of the model
to obtain some insights about the reliability of the prediction. The further the
test vector is away from the hyperplane the more it should be attributed to the
corresponding class. In uncertain cases in which the test vector is too close, the
őrewall should let the document/fragment simply pass.

Direct use of extracted features. Known benign HTML/JavaScript is checked in this
case, not as an n-gram against the model, but kept directly as an n-gram łsigna-
turež. For minor changes (e.g., only one modiőed n-gram in a chain of n-grams),
a simpler metric, such as the edit distance, may be more meaningful as a measure
for class similarity.

Separation of benign and malicious counterexamples. Currently the SVM models of the
web applications include only two classes that either assign the tested code sam-
ples to the corresponding web page or determine it as foreign code. Optionally,

109

4 Firewalls and NIDS for Web Applications

another SVM that tests code fragments against known malicious code could
further increase the detection accuracy.

Client-side analysis. In the IceShield approach [141], the malware analysis library was
sent directly as JavaScript (included/embedded in the web page) to the client
side and the necessary analyzes were performed in the browser. This approach
initially raised questions with regard to the self-protection of the analysis li-
brary against attack code that runs in the same context within the transferred
web page. This problem was solved by the IceShield developers by utilizing
a JavaScript feature, called Object.defineProperty(), to freeze the configurable
object properties of overwritten methods used in the context of the library. If
the linear decision function of the IceShield approach would be replaced by
the linear SVM used in this approach, both approaches could be integrated into
each other. The SVM library libsvm22 may be translated with emscripten23 into
the asm.js24 format which allows a direct use of (translated) C/C++ code in
JavaScript programs. HTML 5 web storage25 can serve as storage for the models
described here.

22https://www.csie.ntu.edu.tw/~cjlin/libsvm/
23https://kripken.github.io/emscripten-site/
24http://asmjs.org/spec/latest/
25https://www.w3.org/TR/webstorage/

110

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://kripken.github.io/emscripten-site/
http://asmjs.org/spec/latest/
https://www.w3.org/TR/webstorage/

5 Summary and Outlook

In order to be able to further address the increasing threats to the IT security of
complex networks, a mix of preventive and reactive security mechanisms is required.
A glance at the area of the better deőned safety engineering in Chapter 1 shows that
the solution of complex IT security problems requires a systematic security engineering
process that encompasses all potentially vulnerable components. Therefore, network
security problems require a security engineering process that encompasses the entire
network, in particular also the local area networks as indicated in the introduction
of this thesis. The focus should initially be laid on preventive measures that prevent
known attacks rather than recognize them later. However, since there will still be
attacks which cannot be prevented with reasonable effort, reactive technologies, such
as intrusion detection systems, are also of importance.

The őrst part of this thesis already proposed initial steps of the security engineering
process, e.g., the description of IT systems and networks from the attacker perspective.
The next steps should always include the analysis of known attacks and preventive de-
fense measures (mitigation strategies) against these attacks. A signiőcant similarity of
known attacks is, for example, the spreading of malicious code into internal networks
and the extraction of data from compromised subnets and hosts. Chapter 2 started
accordingly with an analysis of well-known and lesser-known attacks on local area
networks. As part of a potential mitigation strategy against these attacks, software-
deőned networking (SDN) was applied as a vehicle for centralizing information about
all network activities in a central authority ś the SDN controller ś that manages all
network connections and hence the associated data ŕows. The SDN technology allows
to provide networks with security services that perform basic tasks, such as address
conőguration, address resolution, and őrewalling within the network, much more effi-
cient than on scattered individual systems. The resulting secure networks are based
on switched routing which uses auxiliary information from the address conőguration
services to enforce a strong binding between a packet and its origin as well as its target
that makes attacks very difficult.

The second part of the security engineering process includes the provision of technolo-
gies that can detect known attacks. This functionality is already covered by existing
network intrusion detection systems (NIDS), such as Snort. Single-threaded NIDS
were originally designed for a performance of a few ten to one hundred megabits per
second. Highly variable communication relations and constantly increasing network
bandwidths, however, more frequently force NIDS to handle high peak rates which

111

5 Summary and Outlook

often reach multiple gigabits per second. Accordingly, parallelization strategies are
necessary to be able to apply intrusion detection technologies within a network, e.g.,
on the backbone. Based on an analysis of known parallel NIDS, such as Suricata, as
well as own prototypes of various design options, Chapter 3 developed and evaluated
a parallel NIDS architecture that can withstand these changing traffic conditions. It
maintains a high throughput and a thorough analysis of all security-relevant data.

The őrst route of infection through malicious email attachments and compromised
web applications will remain a special issue of intrusion detection processes for the
near future. As a possible mitigation strategy Chapter 4 proposes a novel concept for
a client-side/server-side web őrewall architecture with an additional analysis library
that extends the őrewall analysis by capabilities to normalize web traffic at the appli-
cation layer, to detect őrewall evasions, and to classify web applications using machine
learning methods with the objective to identify the web applications and to selectively
pass them according to the given őrewall policy. If this technology can be transferred
to the end systems, i.e., into the browsers or into an analysis library for generated web
pages on the server side, the cost of web attacks would increase enormously.

Of course, not all IT security issues can be solved within the framework of a single
thesis. For the foreseeable future, the following issues need to be addressed.

Dealing with malicious mail attachments. A popular entry point for the initial infection
of computers is the delivery of malicious code via email attachments. When
writing this thesis, the proportion of malicious code in the form of ransomware
increased enormously. The currently popular business model is to encrypt őles
on the compromised computer and then extort money for their decryption. This
goes back to the fact that Bitcoin money can be transferred anonymously to
blackmailers in a barely traceable manner. The early versions of blackmail
trojans used clearly recognizable executable őles, such as .exe. Later attack-
ers partially resorted to lesser-known program extensions, such as .com and
.scr, in order to conceal the active nature of the code. Now the concealment
measures go so far that even JavaScript1 can contain executable code (for the
Windows Script Host) and also the macro viruses have returned2. The lat-
ter even work if the (.docm, .dotm) őles were renamed into apparently innocu-
ous őles (e.g., .rtf ś rich text őles). The detection of such malicious code re-
quires, therefore, a deep inspection of the document containers. Office-Makros
can still be detected using rule-based processing by determining whether the
[Content_types].xml document refers to the MIME type application/vnd.ms-
word.document.macroEnabled.main+xml (+ macro templates). In other cases,
machine learning methods are needed to distinguish malicious code from benign
code. A variation of the process developed in Chapter 4 can be used under
certain circumstances to distinguish malicious JavaScript and other document

1https://isc.sans.edu/diary/Locky%3A+JavaScript+Deobfuscation/20749
2http://blog.talosintel.com/2016/08/macro-intruders-sneaking-past-office.html

112

http://blog.talosintel.com/2016/08/macro-intruders-sneaking-past-office.html

structures from benign structures of the same type. Executable code in .exe őles,
however, requires new detection methods. Interesting features in the analysis of
(malicious) executable őles are, for example, the presence or absence of digi-
tal certiőcates, encrypted sections, the use of packers, the number of imported
symbols (functions), and the presence of known anti-debugging routines.

Monitoring of encrypted traffic. The increasing use of traffic encryption prevents the
application of traditional intrusion detection analyses. Neither the deep packet
inspection of NIDS nor classical ŕow aggregation can be applied to encrypted
traffic. Novel statistical methods are needed to at least roughly classify and
analyze this traffic. A cryptographic analysis could, for example, use statistical
methods to develop models based on empirical data that allow a classiőcation
of encrypted traffic, e.g., with respect to the underlying applications and cryp-
tographic libraries, and extract other additional features, such as the applied
ciphersuites from the cryptographic handshakes, to detect anomalies. In recent
years, the focus in the security analyses, for instance, increasingly shifted to
implementations of cryptographic standards. Many problems were discovered,
such as the revealing of client-3 and server-side4 private keys or the derivation
of session keys5. In one case, even a downgrade of encrypted channels to plain-
text transfers was possible6. Since the cryptographic handshake is in plain text,
features like the applied crypto protocol version, negotiated ciphersuites, server
and client identities, prime parameters, and the traversed states until the com-
pletion of the handshake could be extracted and provided to machine learning
techniques to detect the related anomalies.

Cyber-physical systems security. Cyber-physical systems are characterized by a highly
heterogeneous IT composed of standardized components and proprietary solu-
tions which interact with the physical world in a potentially safety-hazardous
manner. Examples of cyber-physical systems are critical infrastructures, such as
power plants and energy distribution networks. The detection of vulnerabilities
and attacks in such an environments involves a number of challenges that can-
not be solved with classical IT security concepts. The smooth transition to the
physical world, for example, involves a process-related IT with sensors and actu-
ators that is driven by a growing number of rare and unknown communication
protocols, which are not nearly as robust and secure as standardized protocols.
In order to cope with these issues specialized systems are required that can mon-
itor the traffic of the respective networks in a phase of self-adjustment to deduce
rules and models for normal operation, and to observe and to reproduce the state

3https://www.qualys.com/2016/01/14/cve-2016-0777-cve-2016-0778/

openssh-cve-2016-0777-cve-2016-0778.txt
4http://heartbleed.com/
5http://seclists.org/oss-sec/2016/q1/261 + https://drownattack.com/
6https://mitls.org/pages/attacks/SMACK

113

https://www.qualys.com/2016/01/14/cve-2016-0777-cve-2016-0778/openssh-cve-2016-0777-cve-2016-0778.txt
https://www.qualys.com/2016/01/14/cve-2016-0777-cve-2016-0778/openssh-cve-2016-0777-cve-2016-0778.txt
http://heartbleed.com/
http://seclists.org/oss-sec/2016/q1/261
https://drownattack.com/
https://mitls.org/pages/attacks/SMACK

5 Summary and Outlook

transitions of unknown protocols. The derived transport and protocol rules can
then be used to detect abnormalities.

114

Bibliography

[1] TM-5-698-4, łFailure Modes, Effects and Criticality Analyses (FMECA) for
Command, Control, Communications, Compute, Intelligence, Surveillance, and
Reconnaissance (C4ISR) Facilities,ž Department of the Army, Tech. Rep., 9
2006.

[2] Mandiant, łAPT1: Exposing One of China’s Cyber Espionage Units,ž http:
//intelreport.mandiant.com/Mandiant_APT1_Report.pdf, 2013.

[3] Intel Corporation, Intel R⃝64 and IA-32 Architectures Software Developer’s Man-
ual, Intel Corporation, P.O. Box 5937, Denver, Colorado 80217-9808, September
2015.

[4] MIL-STD-1629A, łProcedures for Performing a Failure Mode, Effects and Crit-
icality Analysis,ž Department of Defense, Tech. Rep., 11 1980.

[5] A. L. Martensen and R. W. Butler, łTM-89098 ś The Fault-Tree Compiler,ž
http://www.ntrs.nasa.gov/search.jsp?R=19870011332, NASA Langley Research
Center, Tech. Rep., 1 1987.

[6] E. G. Amoroso, Intrusion Detection: An Introduction to Internet Surveillance,
Correlation, Trace Back, Traps, and Response. Intrusion.Net Books, Feb.
1999. [Online]. Available: http://www.worldcat.org/isbn/0966670078

[7] N. Falliere, L. O. Murchu, and E. Chien, łW32.Stuxnet Dossier,ž
https://www.symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/w32_stuxnet_dossier.pdf, 2011.

[8] MITRE, łCVE-2010-2568,ž https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2010-2568, 2010.

[9] M. Graeber, łAbusing Windows Management Instrumentation
(WMI) to Build a Persistent, Asyncronous, and Fileless Backdoor,ž
https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-
Windows-Management-Instrumentation-WMI-To-Build-A-Persistent2015.

[10] J. King and K. Lauerman, łLayer 2 Attacks and Mitigation Techniques for
the Cisco Catalyst 6500 Series,ž http://www.cisco.com/c/en/us/products/
collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.
pdf, 2010.

115

http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://www.ntrs.nasa.gov/search.jsp?R=19870011332
http://www.worldcat.org/isbn/0966670078
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11_603839.pdf

Bibliography

[11] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, łWhen Good
Instructions Go Bad: Generalizing Return-Oriented Programming to RISC,ž in
ACM Conference on Computer and Communications Security, CCS Alexandria,
Virginia, USA, P. Ning, P. F. Syverson, and S. Jha, Eds. ACM, 2008, pp.
27ś38. [Online]. Available: http://doi.acm.org/10.1145/1455770.1455776

[12] H. Shacham, łThe Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86),ž in ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp. 552ś561.
[Online]. Available: http://doi.acm.org/10.1145/1315245.1315313

[13] C. Cowan, łStackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overŕow Attacks,ž in 7th USENIX Security Symposium, San
Antonio, TX, USA, A. D. Rubin, Ed. USENIX Association, 1998. [Online].
Available: https://www.usenix.org/conference/7th-usenix-security-symposium/
stackguard-automatic-adaptive-detection-and-prevention

[14] W. K. Robertson, C. Krügel, D. Mutz, and F. Valeur, łRun-time Detection of
Heap-based Overŕows,ž in 17th Conference on Systems Administration (LISA
2003), San Diego, California, USA, á. Frisch, Ed. USENIX, 2003, pp. 51ś60.
[Online]. Available: http://www.usenix.org/publications/library/proceedings/
lisa03/tech/robertson.html

[15] łAddress Space Layout Randomization,ž https://pax.grsecurity.net/docs/aslr.
txt, PaX Team, 2003.

[16] N. Ludd and A. Gabert, łIntroduction to Position Independent Code,ž
https://wiki.gentoo.org/wiki/Hardened/Introduction_to_Position_
Independent_Code, Gentoo, 2015.

[17] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, łControl-ŕow
integrity principles, implementations, and applications,ž ACM Transactions on
Information and System Security (TISSEC), vol. 13, no. 1, 2009. [Online].
Available: http://doi.acm.org/10.1145/1609956.1609960

[18] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, łCode-
Pointer Integrity,ž in 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA, J. Flinn and H. Levy,
Eds. USENIX Association, 2014, pp. 147ś163. [Online]. Available: https://
www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov

[19] H. E. Petersen and R. Turn, łSystem implications of information privacy,ž in
American Federation of Information Processing Societies: Proceedings of the
AFIPS ’67 Spring Joint Computer Conference, Atlantic City, New Jersey, USA,
1967, pp. 291ś300. [Online]. Available: http://doi.acm.org/10.1145/1465482.
1465526

116

http://doi.acm.org/10.1145/1455770.1455776
http://doi.acm.org/10.1145/1315245.1315313
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
https://www.usenix.org/conference/7th-usenix-security-symposium/stackguard-automatic-adaptive-detection-and-prevention
http://www.usenix.org/publications/library/proceedings/lisa03/tech/robertson.html
http://www.usenix.org/publications/library/proceedings/lisa03/tech/robertson.html
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://wiki.gentoo.org/wiki/Hardened/Introduction_to_Position_Independent_Code
https://wiki.gentoo.org/wiki/Hardened/Introduction_to_Position_Independent_Code
http://doi.acm.org/10.1145/1609956.1609960
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
http://doi.acm.org/10.1145/1465482.1465526
http://doi.acm.org/10.1145/1465482.1465526

Bibliography

[20] R. R. Linde, łOperating system penetration,ž in American Federation
of Information Processing Societies: 1975 National Computer Conference,
Anaheim, CA, USA, ser. AFIPS Conference Proceedings, vol. 44. AFIPS
Press, 1975, pp. 361ś368. [Online]. Available: http://doi.acm.org/10.1145/
1499949.1500018

[21] J. P. Anderson, łComputer Security Threat Monitoring and Surveillance,ž James
P. Anderson Co, Fort Washington, PA, Tech. Rep., 1980.

[22] D. E. Denning, łAn Intrusion-Detection Model,ž IEEE Transactions on
Software Engineering, vol. 13, no. 2, pp. 222ś232, 1987. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TSE.1987.232894

[23] T. F. Lunt and R. Jagannathan, łA prototype real-time intrusion-detection
expert system,ž in 1988 IEEE Symposium on Security and Privacy, Oakland,
California, USA. IEEE Computer Society, 1988, pp. 59ś66. [Online]. Available:
http://dx.doi.org/10.1109/SECPRI.1988.8098

[24] S. Smaha, łHaystack: an intrusion detection system,ž in Aerospace Computer
Security Applications Conference, 1988., Fourth, Dec 1988, pp. 37ś44.

[25] D. Winer, łXML-RPC Speciőcation,ž http://www.xmlrpc.com/spec, 1999.

[26] łSimple Object Access Protocol (SOAP) 1.2,ž http://www.w3c.org/TR/soap/,
World Wide Web Consortium, 2003.

[27] J. Postel, łInternet Protocol,ž RFC 791 (INTERNET STANDARD), Internet
Engineering Task Force, Sep. 1981, updated by RFCs 1349, 2474, 6864.
[Online]. Available: http://www.ietf.org/rfc/rfc791.txt

[28] D. Plummer, łEthernet Address Resolution Protocol: Or Converting Network
Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet
Hardware,ž RFC 826 (INTERNET STANDARD), Internet Engineering Task
Force, Nov. 1982, updated by RFCs 5227, 5494. [Online]. Available:
http://www.ietf.org/rfc/rfc826.txt

[29] R. Droms, łDynamic Host Conőguration Protocol,ž RFC 2131 (Draft Standard),
Internet Engineering Task Force, Mar. 1997, updated by RFCs 3396, 4361,
5494, 6842. [Online]. Available: http://www.ietf.org/rfc/rfc2131.txt

[30] J. Postel, łInternet Control Message Protocol,ž RFC 792 (INTERNET
STANDARD), Internet Engineering Task Force, Sep. 1981, updated by RFCs
950, 4884, 6633, 6918. [Online]. Available: http://www.ietf.org/rfc/rfc792.txt

[31] S. Deering and R. Hinden, łInternet Protocol, Version 6 (IPv6) Speciőcation,ž
RFC 2460 (Draft Standard), Internet Engineering Task Force, Dec. 1998,
updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112.
[Online]. Available: http://www.ietf.org/rfc/rfc2460.txt

117

http://doi.acm.org/10.1145/1499949.1500018
http://doi.acm.org/10.1145/1499949.1500018
http://doi.ieeecomputersociety.org/10.1109/TSE.1987.232894
http://dx.doi.org/10.1109/SECPRI.1988.8098
http://www.xmlrpc.com/spec
http://www.w3c.org/TR/soap/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc2460.txt

Bibliography

[32] A. Conta and S. Deering, łInternet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Speciőcation,ž RFC 2463 (Draft Standard),
Internet Engineering Task Force, Dec. 1998, obsoleted by RFC 4443. [Online].
Available: http://www.ietf.org/rfc/rfc2463.txt

[33] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney, łDynamic
Host Conőguration Protocol for IPv6 (DHCPv6),ž RFC 3315 (Proposed
Standard), Internet Engineering Task Force, Jul. 2003, updated by RFCs
4361, 5494, 6221, 6422, 6644, 7083, 7227, 7283, 7550. [Online]. Available:
http://www.ietf.org/rfc/rfc3315.txt

[34] Y. Rekhter, T. Li, and S. Hares, łA Border Gateway Protocol 4 (BGP-
4),ž RFC 4271 (Draft Standard), Internet Engineering Task Force, Jan.
2006, updated by RFCs 6286, 6608, 6793, 7606, 7607. [Online]. Available:
http://www.ietf.org/rfc/rfc4271.txt

[35] J. Postel, łTransmission Control Protocol,ž RFC 793 (INTERNET STAN-
DARD), Internet Engineering Task Force, Sep. 1981, updated by RFCs 1122,
3168, 6093, 6528. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[36] P. Srisuresh and M. Holdrege, łIP Network Address Translator (NAT)
Terminology and Considerations,ž RFC 2663 (Informational), Internet
Engineering Task Force, Aug. 1999. [Online]. Available: http://www.ietf.org/
rfc/rfc2663.txt

[37] T. H. Ptacek and T. N. Newsham, łInsertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection,ž Secure Networks, Inc, Tech. Rep., 1 1998.

[38] A. S. Gorton and T. G. Champion, łCombining Evasion Techniques to Avoid
Network Intrusion Detection Systems,ž Skaion Corporation, Tech. Rep., 2004.

[39] CISCO, łConőguring TCP Normalization,ž http://www.cisco.com/c/en/us/td/
docs/security/asa/asa82/conőguration/guide/conőg/conns_tcpnorm.pdf, 2009.

[40] ÐÐ, łREADME.normalize: When operating Snort in inline mode, it is helpful
to normalize packets to help minimize the chances of evasion.ž https://snort.
org/faq/readme-normalize, 2015.

[41] C. Stoll, łStalking the Wily Hacker,ž Communications of the ACM
(CACM), vol. 31, no. 5, pp. 484ś497, 1988. [Online]. Available: http:
//doi.acm.org/10.1145/42411.42412

[42] M. W. Eichin and J. A. Rochlis, łWith Microscope and Tweezers: An
Analysis of the Internet Virus of November 1988,ž in Proceedings of the 1989
IEEE Symposium on Security and Privacy, Oakland, California, USA, May
1-3, 1989. IEEE Computer Society, 1989, pp. 326ś343. [Online]. Available:
https://doi.org/10.1109/SECPRI.1989.36307

118

http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc2663.txt
http://www.ietf.org/rfc/rfc2663.txt
http://www.cisco.com/c/en/us/td/docs/security/asa/asa82/configuration/guide/config/conns_tcpnorm.pdf
http://www.cisco.com/c/en/us/td/docs/security/asa/asa82/configuration/guide/config/conns_tcpnorm.pdf
https://snort.org/faq/readme-normalize
https://snort.org/faq/readme-normalize
http://doi.acm.org/10.1145/42411.42412
http://doi.acm.org/10.1145/42411.42412
https://doi.org/10.1109/SECPRI.1989.36307

Bibliography

[43] L. T. Herberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, and J. Wood, łNet-
work attacks and an Ethernet-based network security monitor,ž in DOE Security
Group Conf, 1990.

[44] L. T. Herberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and
D. Wolber, łA Network Security Monitor,ž in IEEE Symposium on Security
and Privacy, Oakland, California, USA. IEEE Computer Society, 1990, pp.
296ś305. [Online]. Available: http://dx.doi.org/10.1109/RISP.1990.63859

[45] S. R. Snapp, S. E. Smaha, D. M. Teal, and T. Grance, łThe DIDS
(distributed intrusion detection system) prototype,ž in USENIX, San
Antonio, TX, USA. USENIX Association, 1992. [Online]. Available:
https://www.usenix.org/conference/usenix-summer-1992-technical-conference/
dids-distributed-intrusion-detection-system

[46] M. Kenney, łPing of Death,ž http://insecure.org/sploits/ping-o-death.html,
1996.

[47] m3lt, łThe LAND attack (IP DOS),ž http://insecure.org/sploits/land.ip.DOS.
html, 1997.

[48] E. Henigin, łRouted broadcast ping DOS attack,ž http://insecure.org/sploits/
routed.broadcast.ping.DOS.html, 1997.

[49] IBM, łUDP_Port_Loopback,ž https://exchange.xforce.ibmcloud.com/
signature/2000202, 2003.

[50] ÐÐ, łSnork_Attack,ž https://exchange.xforce.ibmcloud.com/signature/
2000203, 2003.

[51] CAPEC, łCAPEC-304: TCP Null Scan,ž http://capec.mitre.org/data/
deőnitions/304.html, 2014.

[52] M. Roesch, łSnort: Lightweight Intrusion Detection for Networks,ž in
13th Conference on Systems Administration (LISA-99), Seattle, WA,
D. W. Parter, Ed. USENIX, 1999, pp. 229ś238. [Online]. Available:
http://www.usenix.org/publications/library/proceedings/lisa99/roesch.html

[53] S. Schmerl, H. König, U. Flegel, M. Meier, and R. Rietz, łSystematic Signature
Engineering by Re-use of Snort Signatures,ž in Twenty-Fourth Annual Computer
Security Applications Conference, ACSAC 2008, Anaheim, California, USA,
2008, pp. 23ś32. [Online]. Available: http://dx.doi.org/10.1109/ACSAC.2008.20

[54] B. Claise, B. Trammell, and P. Aitken, łSpeciőcation of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Information,ž
RFC 7011 (INTERNET STANDARD), Internet Engineering Task Force, Sep.
2013. [Online]. Available: http://www.ietf.org/rfc/rfc7011.txt

119

http://dx.doi.org/10.1109/RISP.1990.63859
https://www.usenix.org/conference/usenix-summer-1992-technical-conference/dids-distributed-intrusion-detection-system
https://www.usenix.org/conference/usenix-summer-1992-technical-conference/dids-distributed-intrusion-detection-system
http://insecure.org/sploits/ping-o-death.html
http://insecure.org/sploits/land.ip.DOS.html
http://insecure.org/sploits/land.ip.DOS.html
http://insecure.org/sploits/routed.broadcast.ping.DOS.html
http://insecure.org/sploits/routed.broadcast.ping.DOS.html
https://exchange.xforce.ibmcloud.com/signature/2000202
https://exchange.xforce.ibmcloud.com/signature/2000202
https://exchange.xforce.ibmcloud.com/signature/2000203
https://exchange.xforce.ibmcloud.com/signature/2000203
http://capec.mitre.org/data/definitions/304.html
http://capec.mitre.org/data/definitions/304.html
http://www.usenix.org/publications/library/proceedings/lisa99/roesch.html
http://dx.doi.org/10.1109/ACSAC.2008.20
http://www.ietf.org/rfc/rfc7011.txt

Bibliography

[55] B. Claise and B. Trammell, łInformation Model for IP Flow Information
Export (IPFIX),ž RFC 7012 (Proposed Standard), Internet Engineering Task
Force, Sep. 2013. [Online]. Available: http://www.ietf.org/rfc/rfc7012.txt

[56] Kaspersky, łThe Regin Platform: Nation-State Ownage of GSM
Networks,ž Kaspersky, Tech. Rep., November 2014. [Online]. Avail-
able: https://cdn.securelist.com/őles/2014/11/Kaspersky_Lab_whitepaper_
Regin_platform_eng.pdf

[57] Symantec, łRegin: Top-tier espionage tool enables stealthy surveil-
lance,ž Symantec, Tech. Rep., August 2015. [Online]. Avail-
able: http://securityresponse.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/regin-analysis.pdf

[58] OGSYS, Protocols for X/Open PC Interworking: SMB, Version 2. The Open
Group, 1992. [Online]. Available: https://www2.opengroup.org/ogsys/catalog/
c209

[59] T. Dierks and E. Rescorla, łThe Transport Layer Security (TLS) Protocol
Version 1.2,ž RFC 5246 (Proposed Standard), Internet Engineering Task Force,
Aug. 2008, updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627. [Online].
Available: http://www.ietf.org/rfc/rfc5246.txt

[60] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, łIntroduction to version
2 of the Internet-standard Network Management Framework,ž RFC 1441
(Historic), Internet Engineering Task Force, Apr. 1993. [Online]. Available:
http://www.ietf.org/rfc/rfc1441.txt

[61] J. Case, R. Mundy, D. Partain, and B. Stewart, łIntroduction and
Applicability Statements for Internet-Standard Management Framework,ž RFC
3410 (Informational), Internet Engineering Task Force, Dec. 2002. [Online].
Available: http://www.ietf.org/rfc/rfc3410.txt

[62] F. T. Andrews and K. E. Martersteck, łStored Program Controlled Network:
Prologue,ž The Bell System Technical Journal, vol. 61, no. 7, pp. 1575ś1577,
Sept 1982.

[63] S. Horing, J. Z. Menard, R. E. Staehler, and B. J. Yokelson, łStored Program
Controlled Network: Overview,ž The Bell System Technical Journal, vol. 61,
no. 7, pp. 1579ś1588, Sept 1982.

[64] J. J. Lawser, R. E. LeCronier, and R. L. Simms, łStored Program Controlled
Network: Generic network plan,ž The Bell System Technical Journal, vol. 61,
no. 7, pp. 1589ś1598, Sept 1982.

[65] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.
Minden, łA survey of active network research,ž IEEE Communications Maga-
zine, vol. 35, no. 1, pp. 80ś86, Jan 1997.

120

http://www.ietf.org/rfc/rfc7012.txt
https://cdn.securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf
https://cdn.securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf
http://securityresponse.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/regin-analysis.pdf
http://securityresponse.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/regin-analysis.pdf
https://www2.opengroup.org/ogsys/catalog/c209
https://www2.opengroup.org/ogsys/catalog/c209
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc1441.txt
http://www.ietf.org/rfc/rfc3410.txt

Bibliography

[66] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, łThe
softrouter architecture,ž in ACM HOTNETS, 2004.

[67] L. Yang, R. Dantu, T. Anderson, and R. Gopal, łForwarding and
Control Element Separation (ForCES) Framework,ž RFC 3746 (Informational),
Internet Engineering Task Force, Apr. 2004. [Online]. Available: http:
//www.ietf.org/rfc/rfc3746.txt

[68] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
łEthane: taking control of the enterprise,ž in ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications, Kyoto, Japan, J. Murai and K. Cho, Eds. ACM, 2007, pp.
1ś12. [Online]. Available: http://doi.acm.org/10.1145/1282380.1282382

[69] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L. Peterson,
J. Rexford, S. Shenker, and J. S. Turner, łOpenŕow: enabling innovation in
campus networks,ž Computer Communication Review, vol. 38, no. 2, pp. 69ś74,
2008. [Online]. Available: http://doi.acm.org/10.1145/1355734.1355746

[70] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, łSecurity in
software deőned networks: A survey,ž IEEE Communications Surveys
and Tutorials, vol. 17, no. 4, pp. 2317ś2346, 2015. [Online]. Available:
http://dx.doi.org/10.1109/COMST.2015.2474118

[71] S. Scott-Hayward, S. Natarajan, and S. Sezer, łA Survey of Security in
Software Deőned Networks,ž IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 623ś654, 2016. [Online]. Available: http://dx.doi.org/10.
1109/COMST.2015.2453114

[72] J. François, L. Dolberg, O. Festor, and T. Engel, łNetwork security
through software deőned networking: a survey,ž in Conference on Principles,
Systems and Applications of IP Telecommunications, IPTComm 2014,
Chicago, Illinois, USA. ACM, 2014, pp. 6:1ś6:8. [Online]. Available:
http://doi.acm.org/10.1145/2670386.2670390

[73] J. Yu and J. Li, łA Parallel NIDS Pattern Matching Engine and Its Imple-
mentation on Network Processor,ž in International Conference on Security and
Management, SAM 2005, Las Vegas, Nevada, USA, H. R. Arabnia, Ed. CSREA
Press, 2005, pp. 375ś384.

[74] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis,
łGnort: High Performance Network Intrusion Detection Using Graphics
Processors,ž in Recent Advances in Intrusion Detection, 11th International
Symposium, RAID 2008, Cambridge, MA, USA, 2008, pp. 116ś134. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-87403-4_7

121

http://www.ietf.org/rfc/rfc3746.txt
http://www.ietf.org/rfc/rfc3746.txt
http://doi.acm.org/10.1145/1282380.1282382
http://doi.acm.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/COMST.2015.2474118
http://dx.doi.org/10.1109/COMST.2015.2453114
http://dx.doi.org/10.1109/COMST.2015.2453114
http://doi.acm.org/10.1145/2670386.2670390
http://dx.doi.org/10.1007/978-3-540-87403-4_7

Bibliography

[75] R. Sommer, V. Paxson, and N. Weaver, łAn architecture for exploiting
multi-core processors to parallelize network intrusion prevention,ž Concurrency
and Computation: Practice and Experience, vol. 21, no. 10, pp. 1255ś1279,
2009. [Online]. Available: http://dx.doi.org/10.1002/cpe.1422

[76] R. Smith, C. Estan, and S. Jha, łXFA: Faster Signature Matching with
Extended Automata,ž in 2008 IEEE Symposium on Security and Privacy (S&P
2008), Oakland, California, USA. IEEE Computer Society, 2008, pp. 187ś201.
[Online]. Available: http://dx.doi.org/10.1109/SP.2008.14

[77] S. Wu and U. Manber, łA fast algorithm for multi-pattern searching,ž Tech.
Rep., 1994.

[78] G. Vigna and R. A. Kemmerer, łNetSTAT: A Network-Based Intrusion
Detection Approach,ž in 14th Annual Computer Security Applications
Conference (ACSAC 1998), Scottsdale, AZ, USA. IEEE Computer Society,
1998, pp. 25ś34. [Online]. Available: http://dx.doi.org/10.1109/CSAC.1998.
738566

[79] C. Krügel, T. Toth, and E. Kirda, łSPARTA, a Mobile Agent Based Instrusion
Detection System,ž in Advances in Network and Distributed Systems Security,
IFIP TC11 WG11.4 First Annual Working Conference on Network Security,
Leuven, Belgium, ser. IFIP Conference Proceedings, B. D. Decker, F. Piessens,
J. Smits, and E. V. Herreweghen, Eds., vol. 206. Kluwer, 2001, pp. 187ś198.
[Online]. Available: http://dx.doi.org/10.1007/0-306-46958-8_13

[80] G. Ramachandran and D. Hart, łA P2P intrusion detection system based
on mobile agents,ž in 42nd Annual Southeast Regional Conference, 2004,
Huntsville, Alabama, USA, S. Yoo and L. H. Etzkorn, Eds. ACM, 2004, pp.
185ś190. [Online]. Available: http://doi.acm.org/10.1145/986537.986581

[81] R. Janakiraman, M. Waldvogel, and Q. Zhang, łIndra: A peer-to-peer approach
to network intrusion detection and prevention,ž in 12th IEEE International
Workshops on Enabling Technologies (WETICE 2003), Infrastructure for
Collaborative Enterprises, Linz, Austria. IEEE Computer Society, 2003, pp.
226ś231. [Online]. Available: http://dx.doi.org/10.1109/ENABL.2003.1231412

[82] D. Ye, Q. Bai, M. Zhang, and Z. Ye, łP2P distributed intrusion detections by
using mobile agents,ž in 7th IEEE/ACIS International Conference on Computer
and Information Science, IEEE/ACIS ICIS 2008, Portland, Oregon, USA,
R. Y. Lee, Ed. IEEE Computer Society, 2008, pp. 259ś265. [Online]. Available:
http://dx.doi.org/10.1109/ICIS.2008.21

[83] S. T. Zargar, H. Takabi, and J. B. D. Joshi, łDCDIDP: A distributed,
collaborative, and data-driven intrusion detection and prevention framework for
cloud computing environments,ž in 7th International Conference on Collaborative
Computing: Networking, Applications and Worksharing, CollaborateCom

122

http://dx.doi.org/10.1002/cpe.1422
http://dx.doi.org/10.1109/SP.2008.14
http://dx.doi.org/10.1109/CSAC.1998.738566
http://dx.doi.org/10.1109/CSAC.1998.738566
http://dx.doi.org/10.1007/0-306-46958-8_13
http://doi.acm.org/10.1145/986537.986581
http://dx.doi.org/10.1109/ENABL.2003.1231412
http://dx.doi.org/10.1109/ICIS.2008.21

Bibliography

2011, Orlando, FL, USA, D. Georgakopoulos and J. B. D. Joshi,
Eds. ICST / IEEE, 2011, pp. 332ś341. [Online]. Available: http:
//dx.doi.org/10.4108/icst.collaboratecom.2011.247158

[84] M. V. Gundy and H. Chen, łNoncespaces: Using Randomization to Enforce
Information Flow Tracking and Thwart Cross-Site Scripting Attacks,ž in
Network and Distributed System Security Symposium, NDSS 2009, San
Diego, California, USA, 2009. [Online]. Available: http://www.isoc.org/isoc/
conferences/ndss/09/pdf/03.pdf

[85] P. Würzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, łSWAP:
mitigating XSS attacks using a reverse proxy,ž in ICSE Workshop on
Software Engineering for Secure Systems, SESS 2009, Vancouver, BC,
Canada. IEEE Computer Society, 2009, pp. 33ś39. [Online]. Available:
http://dx.doi.org/10.1109/IWSESS.2009.5068456

[86] H. Shahriar and M. Zulkernine, łS2XS2: A Server Side Approach to
Automatically Detect XSS Attacks,ž in IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing, DASC 2011, Sydney,
Australia. IEEE Computer Society, 2011, pp. 7ś14. [Online]. Available:
http://dx.doi.org/10.1109/DASC.2011.26

[87] T. Jim, N. Swamy, and M. Hicks, łDefeating script injection attacks with
browser-enforced embedded policies,ž in 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, C. L. Williamson,
M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, Eds. ACM, 2007, pp.
601ś610. [Online]. Available: http://doi.acm.org/10.1145/1242572.1242654

[88] M. T. Louw and V. N. Venkatakrishnan, łBlueprint: Robust Prevention
of Cross-site Scripting Attacks for Existing Browsers,ž in 30th IEEE
Symposium on Security and Privacy (S&P 2009), Oakland, California,
USA. IEEE Computer Society, 2009, pp. 331ś346. [Online]. Available:
http://dx.doi.org/10.1109/SP.2009.33

[89] O. Hallaraker and G. Vigna, łDetecting Malicious JavaScript Code in Mozilla,ž
in 10th International Conference on Engineering of Complex Computer Systems
(ICECCS 2005), Shanghai, China. IEEE Computer Society, 2005, pp. 85ś94.
[Online]. Available: http://dx.doi.org/10.1109/ICECCS.2005.35

[90] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna, łCross
Site Scripting Prevention with Dynamic Data Tainting and Static Analysis,ž in
Network and Distributed System Security Symposium, NDSS 2007, San Diego,
California, USA. The Internet Society, 2007. [Online]. Available: http://www.
isoc.org/isoc/conferences/ndss/07/papers/cross-site-scripting_prevention.pdf

123

http://dx.doi.org/10.4108/icst.collaboratecom.2011.247158
http://dx.doi.org/10.4108/icst.collaboratecom.2011.247158
http://www.isoc.org/isoc/conferences/ndss/09/pdf/03.pdf
http://www.isoc.org/isoc/conferences/ndss/09/pdf/03.pdf
http://dx.doi.org/10.1109/IWSESS.2009.5068456
http://dx.doi.org/10.1109/DASC.2011.26
http://doi.acm.org/10.1145/1242572.1242654
http://dx.doi.org/10.1109/SP.2009.33
http://dx.doi.org/10.1109/ICECCS.2005.35
http://www.isoc.org/isoc/conferences/ndss/07/papers/cross-site-scripting_prevention.pdf
http://www.isoc.org/isoc/conferences/ndss/07/papers/cross-site-scripting_prevention.pdf

Bibliography

[91] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, łPrecise Client-side
Protection against DOM-based Cross-Site Scripting,ž in 23rd USENIX Security
Symposium, San Diego, CA, USA, K. Fu and J. Jung, Eds. USENIX
Association, 2014, pp. 655ś670. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/stock

[92] P. Raman, JaSPIn: JavaScript Based Anomaly Detection of Cross-site Scripting
Attacks, ser. Master thesis. Carleton University (Canada), 2008.

[93] P. D. Ryck, L. Desmet, W. Joosen, and F. Piessens, łAutomatic and
Precise Client-Side Protection against CSRF Attacks,ž in Computer Security -
ESORICS 2011 - 16th European Symposium on Research in Computer Security,
Leuven, Belgium, ser. Lecture Notes in Computer Science, V. Atluri and
C. Díaz, Eds., vol. 6879. Springer, 2011, pp. 100ś116. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-23822-2_6

[94] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert, łZOZZLE: Fast and
Precise In-Browser JavaScript Malware Detection,ž in 20th USENIX Security
Symposium, San Francisco, CA, USA. USENIX Association, 2011. [Online].
Available: http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.
pdf

[95] B. Stritter, F. C. Freiling, H. König, R. Rietz, S. Ullrich, A. von Gernler,
F. Erlacher, and F. Dressler, łCleaning up Web 2.0’s Security Mess-at Least
Partly,ž IEEE Security & Privacy, vol. 14, no. 2, pp. 48ś57, 2016. [Online].
Available: http://dx.doi.org/10.1109/MSP.2016.31

[96] M. Casado, łArchitectural support for security management in enterprise net-
works,ž Ph.D. dissertation, Stanford, CA, USA, 2007.

[97] S. Alexander and R. Droms, łDHCP Options and BOOTP Vendor Extensions,ž
RFC 1533 (Proposed Standard), Internet Engineering Task Force, Oct. 1993,
obsoleted by RFC 2132. [Online]. Available: http://www.ietf.org/rfc/rfc1533.txt

[98] A. Conta, S. Deering, and M. Gupta, łInternet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Speciőcation,ž RFC 4443
(Draft Standard), Internet Engineering Task Force, Mar. 2006, updated by
RFC 4884. [Online]. Available: http://www.ietf.org/rfc/rfc4443.txt

[99] R. Vida and L. Costa, łMulticast Listener Discovery Version 2 (MLDv2)
for IPv6,ž RFC 3810 (Proposed Standard), Internet Engineering Task
Force, Jun. 2004, updated by RFC 4604. [Online]. Available: http:
//www.ietf.org/rfc/rfc3810.txt

[100] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, łNeighbor Discovery
for IP version 6 (IPv6),ž RFC 4861 (Draft Standard), Internet Engineering

124

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
http://dx.doi.org/10.1007/978-3-642-23822-2_6
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf
http://dx.doi.org/10.1109/MSP.2016.31
http://www.ietf.org/rfc/rfc1533.txt
http://www.ietf.org/rfc/rfc4443.txt
http://www.ietf.org/rfc/rfc3810.txt
http://www.ietf.org/rfc/rfc3810.txt

Bibliography

Task Force, Sep. 2007, updated by RFCs 5942, 6980, 7048, 7527, 7559. [Online].
Available: http://www.ietf.org/rfc/rfc4861.txt

[101] T. Chown and S. Venaas, łRogue IPv6 Router Advertisement Problem
Statement,ž RFC 6104 (Informational), Internet Engineering Task Force, Feb.
2011. [Online]. Available: http://www.ietf.org/rfc/rfc6104.txt

[102] E. Nordmark, łStateless IP/ICMP Translation Algorithm (SIIT),ž RFC 2765
(Proposed Standard), Internet Engineering Task Force, Feb. 2000, obsoleted by
RFC 6145. [Online]. Available: http://www.ietf.org/rfc/rfc2765.txt

[103] G. Tsirtsis and P. Srisuresh, łNetwork Address Translation - Protocol
Translation (NAT-PT),ž RFC 2766 (Historic), Internet Engineering Task Force,
Feb. 2000, obsoleted by RFC 4966, updated by RFC 3152. [Online]. Available:
http://www.ietf.org/rfc/rfc2766.txt

[104] J. C. Mogul, R. F. Rashid, and M. J. Accetta, łThe Packet Filter:
An Efficient Mechanism for User-level Network Code,ž in Eleventh ACM
Symposium on Operating System Principles, SOSP 1987, Austin, Texas,
USA, L. Belady, Ed. ACM, 1987, pp. 39ś51. [Online]. Available:
http://doi.acm.org/10.1145/41457.37505

[105] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith, łImplementing
a distributed őrewall,ž in CCS 2000, Proceedings of the 7th ACM Conference
on Computer and Communications Security, Athens, Greece, D. Gritzalis,
S. Jajodia, and P. Samarati, Eds. ACM, 2000, pp. 190ś199. [Online]. Available:
http://doi.acm.org/10.1145/352600.353052

[106] CISCO, łVLAN Security White Paper,ž http://web.archive.org/web/
20141123062129/http://www.cisco.com/en/US/products/hw/switches/ps708/
products_white_paper09186a008013159f.shtml, 2014.

[107] M. Casado, T. Garőnkel, A. Akella, M. J. Freedman, D. Boneh, and
N. McKeown, łSANE: A Protection Architecture for Enterprise Net-
works,ž in 15th USENIX Security Symposium, Vancouver, BC, Canada,
A. D. Keromytis, Ed. USENIX Association, 2006. [Online]. Avail-
able: https://www.usenix.org/conference/15th-usenix-security-symposium/
sane-protection-architecture-enterprise-networks

[108] S. A. Mehdi, J. Khalid, and S. A. Khayam, łRevisiting Traffic Anomaly
Detection Using Software Deőned Networking,ž in Recent Advances in Intrusion
Detection - 14th International Symposium, RAID 2011, Menlo Park, CA,
USA, 2011, pp. 161ś180. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-23644-0_9

125

http://www.ietf.org/rfc/rfc4861.txt
http://www.ietf.org/rfc/rfc6104.txt
http://www.ietf.org/rfc/rfc2765.txt
http://www.ietf.org/rfc/rfc2766.txt
http://doi.acm.org/10.1145/41457.37505
http://doi.acm.org/10.1145/352600.353052
http://web.archive.org/web/20141123062129/http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml
http://web.archive.org/web/20141123062129/http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml
http://web.archive.org/web/20141123062129/http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml
https://www.usenix.org/conference/15th-usenix-security-symposium/sane-protection-architecture-enterprise-networks
https://www.usenix.org/conference/15th-usenix-security-symposium/sane-protection-architecture-enterprise-networks
http://dx.doi.org/10.1007/978-3-642-23644-0_9
http://dx.doi.org/10.1007/978-3-642-23644-0_9

Bibliography

[109] Y. Zhang, łAn adaptive ŕow counting method for anomaly detection in
SDN,ž in Conference on emerging Networking Experiments and Technologies,
CoNEXT ’13, Santa Barbara, CA, USA, K. C. Almeroth, L. Mathy,
K. Papagiannaki, and V. Misra, Eds. ACM, 2013, pp. 25ś30. [Online].
Available: http://doi.acm.org/10.1145/2535372.2535411

[110] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson,
łFRESCO: Modular Composable Security Services for Software-Deőned
Networks,ž in 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA. The Internet Society, 2013. [Online].
Available: http://www.internetsociety.org/events/ndss-symposium-2013

[111] A. Zaalouk, R. Khondoker, R. Marx, and K. M. Bayarou, łOrchSec: An
orchestrator-based architecture for enhancing network-security using Network
Monitoring and SDN Control functions,ž in 2014 IEEE Network Operations and
Management Symposium, NOMS 2014, Krakow, Poland. IEEE, 2014, pp. 1ś9.
[Online]. Available: http://dx.doi.org/10.1109/NOMS.2014.6838409

[112] A. Srivastava and J. T. Giffin, łTamper-Resistant, Application-Aware Blocking
of Malicious Network Connections,ž in Recent Advances in Intrusion Detection,
11th International Symposium, RAID 2008, Cambridge, MA, USA, 2008, pp.
39ś58. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-87403-4_3

[113] A. Brinner and R. Rietz, łVerbesserung der Netzsicherheit in virtualisierten
Umgebungen mit Hilfe von OpenFlow,ž in Sicherheit 2014: Sicherheit,
Schutz und Zuverlässigkeit, Beiträge der 7. Jahrestagung des Fachbereichs
Sicherheit der Gesellschaft für Informatik e.V. (GI), Wien, Österreich, ser.
LNI, S. Katzenbeisser, V. Lotz, and E. R. Weippl, Eds., vol. 228. GI,
2014, pp. 79ś89. [Online]. Available: http://subs.emis.de/LNI/Proceedings/
Proceedings228/article27.html

[114] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
łExtending Networking into the Virtualization Layer,ž in Eight ACM
Workshop on Hot Topics in Networks (HotNets-VIII), HOTNETS ’09,
New York City, NY, USA, L. Subramanian, W. E. Leland, and
R. Mahajan, Eds. ACM SIGCOMM, 2009. [Online]. Available: http:
//conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-őnal143.pdf

[115] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, łThe
Design and Implementation of Open vSwitch,ž in 12th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 15, Oakland, CA,
USA. USENIX Association, 2015, pp. 117ś130. [Online]. Available: https:
//www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

126

http://doi.acm.org/10.1145/2535372.2535411
http://www.internetsociety.org/events/ndss-symposium-2013
http://dx.doi.org/10.1109/NOMS.2014.6838409
http://dx.doi.org/10.1007/978-3-540-87403-4_3
http://subs.emis.de/LNI/Proceedings/Proceedings228/article27.html
http://subs.emis.de/LNI/Proceedings/Proceedings228/article27.html
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

Bibliography

[116] C. Finseth, łAn Access Control Protocol, Sometimes Called TACACS,ž RFC
1492 (Informational), Internet Engineering Task Force, Jul. 1993. [Online].
Available: http://www.ietf.org/rfc/rfc1492.txt

[117] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, łExtensible
Authentication Protocol (EAP),ž RFC 3748 (Proposed Standard), Internet
Engineering Task Force, Jun. 2004, updated by RFCs 5247, 7057. [Online].
Available: http://www.ietf.org/rfc/rfc3748.txt

[118] C. Rigney, S. Willens, A. Rubens, and W. Simpson, łRemote Authentication
Dial In User Service (RADIUS),ž RFC 2865 (Draft Standard), Internet
Engineering Task Force, Jun. 2000, updated by RFCs 2868, 3575, 5080, 6929.
[Online]. Available: http://www.ietf.org/rfc/rfc2865.txt

[119] K. Zeilenga, łLightweight Directory Access Protocol (LDAP): Technical
Speciőcation Road Map,ž RFC 4510 (Proposed Standard), Internet Engineering
Task Force, Jun. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4510.txt

[120] R. Hinden and S. Deering, łIP Version 6 Addressing Architecture,ž
RFC 4291 (Draft Standard), Internet Engineering Task Force, Feb. 2006,
updated by RFCs 5952, 6052, 7136, 7346, 7371. [Online]. Available:
http://www.ietf.org/rfc/rfc4291.txt

[121] S. Deering, W. Fenner, and B. Haberman, łMulticast Listener Discovery
(MLD) for IPv6,ž RFC 2710 (Proposed Standard), Internet Engineering
Task Force, Oct. 1999, updated by RFCs 3590, 3810. [Online]. Available:
http://www.ietf.org/rfc/rfc2710.txt

[122] J. Mogul, łBroadcasting Internet datagrams in the presence of subnets,ž RFC
922 (INTERNET STANDARD), Internet Engineering Task Force, Oct. 1984.
[Online]. Available: http://www.ietf.org/rfc/rfc922.txt

[123] D. Johnson, C. Perkins, and J. Arkko, łMobility Support in IPv6,ž RFC 3775
(Proposed Standard), Internet Engineering Task Force, Jun. 2004, obsoleted by
RFC 6275. [Online]. Available: http://www.ietf.org/rfc/rfc3775.txt

[124] B. Lantz, B. Heller, and N. McKeown, łA network in a laptop: rapid
prototyping for software-deőned networks,ž in 9th ACM Workshop on Hot
Topics in Networks. HotNets 2010, Monterey, CA, USA, G. G. Xie, R. Beverly,
R. Morris, and B. Davie, Eds. ACM, 2010, p. 19. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[125] K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnostakis, and E. P. Markatos,
łAn Active Splitter Architecture for Intrusion Detection and Prevention,ž IEEE
Transaction on Dependable and Secure Computing, vol. 3, no. 1, pp. 31ś44, 2006.

127

http://www.ietf.org/rfc/rfc1492.txt
http://www.ietf.org/rfc/rfc3748.txt
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc4510.txt
http://www.ietf.org/rfc/rfc4291.txt
http://www.ietf.org/rfc/rfc2710.txt
http://www.ietf.org/rfc/rfc922.txt
http://www.ietf.org/rfc/rfc3775.txt
http://doi.acm.org/10.1145/1868447.1868466

Bibliography

[126] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney, łThe
NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commod-
ity Hardware,ž in RAID, ser. Lecture Notes in Computer Science, C. Krügel,
R. Lippmann, and A. Clark, Eds., vol. 4637. Springer, 2007, pp. 107ś126.

[127] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan, łEvaluating
GPUs for network packet signature matching,ž in ISPASS. IEEE, 2009, pp.
175ś184.

[128] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park,
łKargus: a highly-scalable software-based intrusion detection system,ž in ACM
Conference on Computer and Communications Security, T. Yu, G. Danezis, and
V. D. Gligor, Eds. ACM, 2012, pp. 317ś328.

[129] B. M. Rogers, A. Krishna, G. B. Bell, K. V. Vu, X. Jiang, and Y. Solihin, łScaling
the bandwidth wall: challenges in and avenues for cmp scaling,ž in ISCA, S. W.
Keckler and L. A. Barroso, Eds. ACM, 2009, pp. 371ś382.

[130] R. Rietz, M. Vogel, F. Schuster, and H. König, łParallelization of
network intrusion detection systems under attack conditions,ž in Detection of
Intrusions and Malware, and Vulnerability Assessment - 11th International
Conference, DIMVA, Egham, UK, ser. Lecture Notes in Computer Science,
S. Dietrich, Ed., vol. 8550. Springer, 2014, pp. 172ś191. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08509-8_10

[131] F. Massicotte, F. Gagnon, Y. Labiche, L. C. Briand, and M. Couture, łAutomatic
evaluation of intrusion detection systems,ž in ACSAC. IEEE Computer Society,
2006, pp. 361ś370.

[132] G. M. Amdahl, łValidity of the single processor approach to achieving large
scale computing capabilities,ž ser. AFIPS ’67 (Spring). New York, NY, USA:
ACM, 1967, pp. 483ś485. [Online]. Available: http://doi.acm.org/10.1145/
1465482.1465560

[133] S. Eyerman and L. Eeckhout, łModeling critical sections in Amdahl’s law and
its implications for multicore design,ž in ISCA, A. Seznec, U. C. Weiser, and
R. Ronen, Eds. ACM, 2010, pp. 362ś370.

[134] F. Fusco and L. Deri, łHigh speed network traffic analysis with commodity multi-
core systems,ž in Internet Measurement Conference, M. Allman, Ed. ACM,
2010, pp. 218ś224.

[135] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, łMIDeA: a multi-parallel in-
trusion detection architecture,ž in ACM Conference on Computer and Commu-
nications Security, Y. Chen, G. Danezis, and V. Shmatikov, Eds. ACM, 2011,
pp. 297ś308.

128

http://dx.doi.org/10.1007/978-3-319-08509-8_10
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560

Bibliography

[136] L. Yang, R. Karim, V. Ganapathy, and R. Smith, łImproving NFA-Based Signa-
ture Matching Using Ordered Binary Decision Diagrams,ž in RAID, ser. LNCS,
S. Jha, R. Sommer, and C. Kreibich, Eds., vol. 6307. Springer, 2010, pp. 58ś78.

[137] A. V. Aho and M. J. Corasick, łEfficient String Matching: An Aid to
Bibliographic Search,ž Communications of the ACM (CACM), vol. 18, no. 6, pp.
333ś340, 1975. [Online]. Available: http://doi.acm.org/10.1145/360825.360855

[138] T. Limmer and F. Dressler, łDialog-based payload aggregation for intrusion
detection,ž in 17th ACM Conference on Computer and Communications
Security, CCS 2010, Chicago, Illinois, USA, E. Al-Shaer, A. D. Keromytis,
and V. Shmatikov, Eds. ACM, 2010, pp. 708ś710. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866405

[139] J. Amann and R. Sommer, łProviding Dynamic Control to Passive
Network Security Monitoring,ž in Research in Attacks, Intrusions, and
Defenses - 18th International Symposium, RAID 2015, Kyoto, Japan,
ser. Lecture Notes in Computer Science, H. Bos, F. Monrose, and
G. Blanc, Eds., vol. 9404. Springer, 2015, pp. 133ś152. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26362-5_7

[140] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi, łA Proposal
and Implementation of Automatic Detection/Collection System for Cross-
Site Scripting Vulnerability,ž in 18th International Conference on Advanced
Information Networking and Applications (AINA 2004), Fukuoka, Japan.
IEEE Computer Society, 2004, pp. 145ś151. [Online]. Available: http:
//dx.doi.org/10.1109/AINA.2004.1283902

[141] M. Heiderich, T. Frosch, and T. Holz, łIceShield: Detection and
Mitigation of Malicious Websites with a Frozen DOM,ž in Recent Advances
in Intrusion Detection - 14th International Symposium, RAID 2011,
Menlo Park, CA, USA, 2011, pp. 281ś300. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-23644-0_15

[142] R. Wang, X. Jia, Q. Li, and S. Zhang, łMachine Learning Based
Cross-Site Scripting Detection in Online Social Network,ž in 2014 IEEE
International Conference on High Performance Computing and Communications,
6th IEEE International Symposium on Cyberspace Safety and Security,
11th IEEE International Conference on Embedded Software and Systems,
HPCC/CSS/ICESS 2014, Paris, France. IEEE, 2014, pp. 823ś826. [Online].
Available: http://dx.doi.org/10.1109/HPCC.2014.137

[143] P. H. Phung, D. Sands, and A. Chudnov, łLightweight self-protecting
JavaScript,ž in Proceedings of the 2009 ACM Symposium on Information,
Computer and Communications Security, ASIACCS 2009, Sydney, Australia,
W. Li, W. Susilo, U. K. Tupakula, R. Safavi-Naini, and V. Varadharajan,

129

http://doi.acm.org/10.1145/360825.360855
http://doi.acm.org/10.1145/1866307.1866405
http://dx.doi.org/10.1007/978-3-319-26362-5_7
http://dx.doi.org/10.1109/AINA.2004.1283902
http://dx.doi.org/10.1109/AINA.2004.1283902
http://dx.doi.org/10.1007/978-3-642-23644-0_15
http://dx.doi.org/10.1007/978-3-642-23644-0_15
http://dx.doi.org/10.1109/HPCC.2014.137

Bibliography

Eds. ACM, 2009, pp. 47ś60. [Online]. Available: http://doi.acm.org/10.1145/
1533057.1533067

[144] Y. Nadji, P. Saxena, and D. Song, łDocument Structure Integrity: A Robust
Basis for Cross-site Scripting Defense,ž in Network and Distributed System
Security Symposium, NDSS 2009, San Diego, California, USA, 2009. [Online].
Available: http://www.isoc.org/isoc/conferences/ndss/09/pdf/01.pdf

[145] S. Tang, C. Grier, O. Aciiçmez, and S. T. King, łAlhambra: a
system for creating, enforcing, and testing browser security policies,ž in
Proceedings of the 19th International Conference on World Wide Web,
WWW 2010, Raleigh, North Carolina, USA, M. Rappa, P. Jones, J. Freire,
and S. Chakrabarti, Eds. ACM, 2010, pp. 941ś950. [Online]. Available:
http://doi.acm.org/10.1145/1772690.1772786

[146] L. A. Meyerovich and V. B. Livshits, łConScript: Specifying and Enforcing
Fine-Grained Security Policies for JavaScript in the Browser,ž in 31st IEEE
Symposium on Security and Privacy, S&P 2010, Berkeley/Oakland, California,
USA. IEEE Computer Society, 2010, pp. 481ś496. [Online]. Available:
http://dx.doi.org/10.1109/SP.2010.36

[147] E. Kirda, C. Krügel, G. Vigna, and N. Jovanovic, łNoxes: a client-side solution
for mitigating cross-site scripting attacks,ž in 2006 ACM Symposium on Applied
Computing (SAC), Dijon, France, H. Haddad, Ed. ACM, 2006, pp. 330ś337.
[Online]. Available: http://doi.acm.org/10.1145/1141277.1141357

[148] M. Johns, B. Engelmann, and J. Posegga, łXSSDS: Server-Side Detection
of Cross-Site Scripting Attacks,ž in Twenty-Fourth Annual Computer Security
Applications Conference, ACSAC 2008, Anaheim, California, USA, 2008, pp.
335ś344. [Online]. Available: http://dx.doi.org/10.1109/ACSAC.2008.36

[149] P. Bisht and V. N. Venkatakrishnan, łXSS-GUARD: Precise Dynamic
Prevention of Cross-Site Scripting Attacks,ž in Detection of Intrusions
and Malware, and Vulnerability Assessment, 5th International Conference,
DIMVA Paris, France, ser. Lecture Notes in Computer Science, D. Zamboni,
Ed., vol. 5137. Springer, 2008, pp. 23ś43. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-70542-0_2

[150] A. M. Turing, łOn Computable Numbers, with an Application to the
Entscheidungsproblem,ž Proceedings of the London Mathematical Society, vol.
s2-42, no. 1, pp. 230ś265, 1937. [Online]. Available: http://plms.oxfordjournals.
org/content/s2-42/1/230.short

[151] J. Elson and A. Cerpa, łInternet Content Adaptation Protocol (ICAP),ž RFC
3507 (Informational), Internet Engineering Task Force, Apr. 2003. [Online].
Available: http://www.ietf.org/rfc/rfc3507.txt

130

http://doi.acm.org/10.1145/1533057.1533067
http://doi.acm.org/10.1145/1533057.1533067
http://www.isoc.org/isoc/conferences/ndss/09/pdf/01.pdf
http://doi.acm.org/10.1145/1772690.1772786
http://dx.doi.org/10.1109/SP.2010.36
http://doi.acm.org/10.1145/1141277.1141357
http://dx.doi.org/10.1109/ACSAC.2008.36
http://dx.doi.org/10.1007/978-3-540-70542-0_2
http://dx.doi.org/10.1007/978-3-540-70542-0_2
http://plms.oxfordjournals.org/content/s2-42/1/230.short
http://plms.oxfordjournals.org/content/s2-42/1/230.short
http://www.ietf.org/rfc/rfc3507.txt

Bibliography

[152] C. Cortes and V. Vapnik, łSupport-vector networks,ž Machine Learning,
vol. 20, no. 3, pp. 273ś297, 1995. [Online]. Available: http://dx.doi.org/10.
1007/BF00994018

131

http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018

	List of Figures
	List of Tables
	List of Abbreviations
	Mitigation and Detection of Network Security Threats
	Safety Engineering, Security Engineering and the Concept of Intrusion Detection
	Attack Phases and Their Impact
	Detection Methods and Mitigation Strategies
	Attack Severity Rankings
	Open Research Challenges
	Structure of This Thesis

	Restriction of Internal and Targeted Attacks
	Classical Threats for Local Area Networks
	IPv6-based Attacks
	Approaches to Ward Off LAN Attacks
	An Approach to Protect Switched LANs and Virtual Machine Networks
	SDN-based Security Services
	Evaluation
	Conclusions

	Local High-Speed Monitoring with Parallel NIDS
	The Parallelization Approach of Suricata
	Further NIDS Optimization/Parallelization Approaches
	Multi-threaded NIDS under Attack Conditions – Discussion of Related Work
	Design Options for Fully Functional Parallel NIDS Architectures
	A Novel Dynamic Parallelization Approach for NIDS
	Evaluation of the Approach
	Comparison with Related Parallel Approaches
	Conclusions

	Firewalls and NIDS for Web Applications
	Cross-Site-Scripting Attacks
	Current Approaches to Improve Web Security
	Non-Applicability of Classical NIDS Methods
	Web Analysis for Application Firewalls
	Implementation Details
	Experimental Evaluation
	Conclusions

	Summary and Outlook
	Bibliography

