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ABSTRACT 
 

 

Safety evaluation of truss structures depends upon the determination of the axial  
forces and corresponding stresses in axially loaded members. Due to presence of 
damages, change in intended use, increase in service loads or accidental actions, 
structural assessment of existing truss structures is necessary. This applies particularly 
to iron and steel trusses that are still in use, including historic and heritage monuments. 
Precise identification of the stresses plays a crucial role for the preservation of historic 
trusses. The assessment measures require non–destructiveness, minimum intervention 
and practical applicability. 

The axial forces in truss structures can be estimated by static calculations using the 
method of joints, method of sections or finite element method, if accurate information 
about parameters such as external loads, geometrical characteristics, mechanical 
properties, boundary conditions and joint connections are known. However, precise 
information about these parameters is difficult to be obtained in practice. Especially in 
the cases of historic constructions, reasonable assumptions about the uncertain 
parameters may not be acquired.  

Motivated by the preservation of existing truss−type constructions composed of axially 
loaded slender members, the present work aims to develop a non–destructive 
methodology to identify the axial forces or corresponding stress states in iron and steel 
truss structures. The approach is based on vibration measurements and the finite 
element method combined with optimization techniques. 

After a state of the art review, numerical and experimental studies were carried out on 
three partial systems of truss–type structures. The investigated systems included single 
bars, a two–bar truss−like system and a five–bar truss. They were developed step–by–
step as built–up truss−type constructions that are constituted of individual members 
connecting at joints. The examined aspects included the effects of structural loading on 
the dynamic performance of truss structures, modelling of joint connections, mode 
pairing criteria, selection of updating parameters and definition of an objective function, 
as well as the use of different optimization techniques.  

Concerning the axial force effects on the structural dynamic responses, the effects of  
the stress stiffening become more complicated for multiple–member truss systems with 
increasing complexity. The coexistence of both compressive and tensile forces in trusses 
has counteracting effects on the modal parameters. These effects cause variation of 
natural frequencies and interchange of modes when the loads or corresponding member 
forces are changed. To examine the axial force effects on the structures at different stress 
states, in the numerical study and laboratory experiments, loads were applied 
progressively to the investigated truss−like systems.  

Regarding the modelling of joints for truss–type structures, the joint flexibility affects 
the structural dynamic responses. Therefore, the numerical models of truss−type 
structures include joint models with variable rotational springs to represent semi–rigid 
connections. 
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Considering the mode pairing criterion, the mode pairing is performed by adapting an 
enhanced modal assurance criterion with the calculation of the modal strain energy. 
The criterion allows the selection of desired clusters of degrees of freedom related to 
specific modes. With respect to the model updating strategies, the selection of updating 
parameters and the choice of an appropriate objective function are identified to be 
significantly important. In addition, three different optimization techniques were 
applied to compare their suitability for the inverse axial force identification and 
estimation of joint flexibility of truss structures. The results of the numerical study and 
laboratory tests show that nature–inspired optimization methods are considered as 
promising techniques.  

A methodology consisted of a two–stage model updating procedure using optimization 
techniques was proposed for the determination of multiple member axial forces and 
estimation of the joint flexibility of truss–type structures. In the first stage optimization, 
the validation criterion is based on the experimentally identified global natural 
frequencies and mode shapes of the truss. Additionally, the axial forces in selected 
individual members of the truss are used. They are estimated from the natural 
frequencies and five amplitudes of the corresponding local mode shapes of the members 
using an analytically−based algorithm. Based on the results of the identified axial forces 
in the first stage, a second optimization procedure for the joint stiffnesses is performed. 
In this stage, the modal parameters of the global natural frequencies and mode shapes 
are used as validation criterion. 

From the results of the laboratory experiments, the identified axial forces by the 
proposed methodology agree well with the experimentally measured axial forces of the 
investigated systems at different stress states. Moreover, based on the numerical 
verification, the identified joint stiffnesses indicate reasonably the joint flexibility in 
relation to the pinned or rigid conditions. 

To assess the relevance of the proposed methodology on existing structures in real−life 
conditions, an in–situ experiment was carried out on a historic Wiegmann–Polonceau 
truss in the city of Potsdam. The in–situ experiment shows that uncertainties relating 
the mechanical and geometrical properties of historic trusses as well as the experimental 
sensor setup can influence the accuracy of the axial force identification. In the present 
work, recommendations are given for the development of a guideline of measuring 
concepts and assessment strategies applied to existing truss structures. The intention is 
to integrate the proposed methodology as part of the Structural Health Monitoring for 
historic truss–type constructions. 
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KURZFASSUNG 
 

 

Die Bewertung der Tragfähigkeit von Fachwerkkonstruktionen ist wesentlich von den 
vorhandenen Stabnormalkräften und den daraus resultierenden Spannungen  
abhängig. Eine Zustands– und Tragfähigkeitsbewertung der bestehenden Konstruktion 
ist besonders dann erforderlich, wenn aufgrund von Nutzungsänderungen bzw. 
Umbaumaßnahmen höhere Lasten auf das Tragwerk aufgebracht werden sollen,  
oder sich Schäden an der Konstruktion bzw. dem Material zeigen. Dies gilt vor allem  
für eiserne und stählerne Fachwerkkonstruktionen, welche beispielsweise in 
historischen Gebäuden zu finden sind.  Für die Identifizierung des Normalkraft– bzw. 
Spannungszustands und die darauf aufbauende Tragfähigkeitsbewertung der 
Konstruktion ist ein zerstörungsfreies und praktikables Verfahren erforderlich, welches 
zudem nur minimal in die bestehende Struktur eingreift.   

Liegen ausreichend Informationen hinsichtlich der äußeren Beanspruchung, der 
Geometrie, der Materialeigenschaften, der Auflagersituation sowie der Freiheitsgrade in 
den Knotenverbindungen vor, können die Stabnormalkräfte in der Fachwerk− 
konstruktion in Form einer statischen Berechnung ermittelt werden. Allerdings ist es in 
der Praxis oftmals schwierig für bestehende Tragwerke, insbesondere historische 
Fachwerkkonstruktionen, präzise Informationen für die genannten Parameter zu 
erhalten oder adäquate Annahmen zu treffen. 

Die vorliegende Arbeit zielt darauf ab ein zerstörungsfreies Verfahren zu entwickeln, 
welches in der Lage ist die Spannungszustände in fachwerkartigen Eisen– und 
Stahltragwerken mit filigranen Stäben zu identifizieren. Das Verfahren basiert auf 
Schwingungsmessungen und der Finite–Elemente–Methode in Verbindung mit 
Optimierungsstrategien. 

Nach einer ausführlichen Recherche zum Stand der Technik wurden im Rahmen der 
Arbeit numerische und experimentelle Untersuchungen an Teilsystemen von 
fachwerkartigen Tragstrukturen durchgeführt. Bei den untersuchten Konstruktionen 
handelt es sich um ein Einzelstabsystem, ein Zweistabsystem sowie ein aus fünf Stäben 
bestehendes Fachwerksystem. Die Entwicklung vom Einzelstabsystem zum komplexen 
Fachwerksystem erfolgt durch schrittweises Hinzufügen von Einzelstäben sowie  
deren Verbindungen in den Knoten. In den Untersuchungen wurden mehrere  
Aspekte betrachtet. Neben dem Einfluss der äußeren Belastung auf das dynamische 
Verhalten der Konstruktion werden in dem Analyseverfahren die Modellierung der  
Knotenverbindungen, die Zuordnung der Eigenschwingformen, die Auswahl und 
Festlegung von Kalibrierungsparametern, die Definition von Zielfunktionen, sowie die 
verschiedenen Optimierungsmethoden untersucht. 

Mit zunehmender Komplexität des Tragwerkes wird der Einfluss der Stabnormalkräfte 
auf das dynamische Verhalten komplizierter. Das heißt, das gleichzeitige Vorliegen von 
Druck– und Zugkräften, welche jeweils eine entgegengesetzte Wirkung auf die modalen 
Parameter besitzen, führt bei einer Variation der Belastung zu einer Veränderung der 
Eigenfrequenzen und einer vergleichsweise schwierigeren Zuordnung der jeweiligen 
Eigenschwingformen. Um ein geeignetes Evaluierungsverfahren zu entwickeln, wurden 
in den Laborversuchen verschiedene Belastungszustände an den Tragwerkssystemen
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berücksichtigt. Die auf die Konstruktion wirkende äußere Belastung wurde hierfür 
schrittweise gesteigert. Außerdem wurde sowohl das dynamische Verhalten des globalen 
Systems als auch das der Einzelstäbe durch die Modellierung der Knotenverbindungen 
und die dafür angesetzte Rotationssteifigkeit beeinflusst. Im numerischen Modell wurden 
die Knotenverbindungen als streuende Größen behandelt und daher als teilweise 
eingespannte (semi−rigid) Rotationsfedern modelliert. 

Bezüglich der Zuordnung der Eigenschwingformen wurde ein alternatives Kriterium zur 
Berechnung der modalen Formänderungsarbeiten angewendet. Dieses Kriterium 
ermöglicht es, den gewünschten Bereich (Cluster) von Freiheitsgraden in Bezug  
auf bestimmte Eigenformen auszuwählen. Im Hinblick auf die Kalibrierungsstrategien 
sind besonders die Auswahl der Kalibrierungsparameter und die Verwendung 
passender Zielfunktionen von großer Bedeutung. Unter Berücksichtigung der 
unbekannten Stabnormalkräfte und unsicheren Rotationsfedersteifigkeiten in den 
Knotenverbindungen wurden verschiedene Optimierungsstrategien untersucht und 
miteinander verglichen. Anhand des Vergleichs wurde ein entsprechendes Verfahren zur 
Bestimmung der Stabnormalkräfte entwickelt. Die Verwendung von naturinspirierten 
Optimierungsverfahren hat sich dabei als geeignet herausgestellt.  

Für die Bestimmung der Stabnormalkräfte in fachwerkartigen Tragwerken und zur 
Abschätzung der Rotationsfedersteifigkeit in den Knotenverbindungen wird ein 
zweistufiges Modelloptimierungsverfahren vorgeschlagen. Im ersten Schritt werden als 
Validierungskriterium die experimentell ermittelten globalen Eigenfrequenzen und 
Eigenformen der Fachwerkstruktur verwendet. Ergänzend können die Stabnormal–
kräfte in ausgewählten Zuggliedern aus Einzelstabuntersuchungen als zusätzliche 
Informationen heranzugezogen werden. Die Stabkräfte der Zugglieder lassen sich mit 
Hilfe eines analytisch basierten Algorithmus anhand der lokalen Eigenfrequenzen eines 
Stabes und fünf Amplituden der dazugehörigen Eigenformen berechnen. Basierend auf 
den Ergebnissen der identifizierten Stabnormalkräfte kann ein zweiter Optimierungs− 
prozess zur Bestimmung der Rotationsfedersteifigkeit in den Knotenverbindungen 
durchgeführt werden. Hierzu werden ausschließlich die modalen Parameter der globalen 
Eigenfrequenzen und –formen der gesamten Fachwerkkonstruktion herangezogen.  

Die Ergebnisse der im Labor getesteten Tragsysteme weisen für verschieden hohe 
Beanspruchungen eine sehr gute Übereinstimmung zwischen den im Versuch 
aufgebrachten und den mit Hilfe des entwickelten Verfahrens identifizierten 
Stabnormalkräften auf. Hinsichtlich der Rotationsfedersteifigkeit in den Knoten− 
verbindungen konnte ebenfalls eine gute Übereinstimmung zwischen den identifizierten 
Werten und den angenommenen Randbedingungen des numerisch modellierten 
Tragwerkes in Bezug auf die gelenkige oder biegesteife Bedingung erzielt werden.   

Um das entwickelte und durch Laborversuche validierte Verfahren auch auf bestehende 
Tragwerke übertragen zu können, wurde eine in–situ Untersuchung an einem historischen 
Wiegmann–Polonceau–Fachwerk in Potsdam durchgeführt. Die in–situ Untersuchung hat 
gezeigt, dass die Genauigkeit bei der Bestimmung der Stabnormalkräfte von den 
vorhandenen Unsicherheiten hinsichtlich der mechanischen und geometrischen 
Eigenschaften des historischen Fachwerkes sowie der experimentellen Sensoranordnung 
beeinflusst wird. Für die in–situ Untersuchung von historischen Fachwerkkonstruktionen 
wurden in der Arbeit Empfehlungen zur Erarbeitung einer Leitlinie für die Erstellung von 
Messkonzepten sowie Hilfestellungen bei der Entwicklung von Bemessungsstrategien 
entwickelt. Darüber hinaus ist beabsichtigt das Verfahren für das Structural Health 
Monitoring von historischen fachwerkartigen Tragwerken einzusetzen.   
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1  
INTRODUCTION 

 

 

 

 

An overview of historic iron and steel truss structures is given in this chapter as study 
context for the research work; followed by a statement of motivation. After that, the 
general state of research will be discussed. Finally, the objectives, scope of the research 
and the outline of the thesis will be presented. 

 

 

State Hermitage Museum  
[Archive BTU CS (2011)]   



1   Introduction 

 

2      
  

1.1 Axial Force Identification for Civil Engineering Structures 

Axial force identification is of importance in the field of structural restoration and safety 
assessment. It is also useful for the verification of models and design assumptions for 
civil engineering structures composed of axially loaded members, such as roof trusses, 
truss girders and space trusses. 

Due to accumulation of inherent degradation and damages, service loads and accidental 
actions, existing structures require maintenance over time. For historic constructions  
in cases of the presence of damages or change in the intended use, their safety evaluation 
is even more essential. During the past decades, preservation of monuments and cultural 
heritage structures has gained increasing appreciation in modern societies. The 
conservation of historic constructions is not only a cultural requirement but also to 
satisfy economic and sustainable development demands. 

In the context of existing structures, iron and steel trusses supporting the roof of 
buildings are of interest. Many of those structures are still in use today in historic and 
heritage monuments, for example the iron roof trusses of the State Hermitage Museum 
in Saint Petersburg, which are of enormous significance thanks to a variety of constructive 
prototypes and richness of details from the early days of the European iron construction 
[LORENZ (2005, 2010)]. The assessment methods require respect of the original structure. 

The study in this section aims to draw a general picture of the historical emergence, 
material and structural characteristics of iron and steel truss structures to understand 
their design in the past and condition in present time, as well as to emphasize the 
importance of the structural evaluation for historic trusses. 

1.2 Historic Truss Structures as Study Context 

Since the end of the 18th century, first cast iron, then wrought iron and finally steel has 
been increasingly used as a structural material. In the 19th century, engineering design 
rules became more scientific1. Developments in materials science and the theory of 
statics2 allowed major improvements in structural design. Truss systems were developed 

                                                 
1 Work and energy principles that govern the behavior of structures were already defined in the 18th century 
[KURRER (2008)]. John Bernoulli in 1717 defined the principle of virtual work. By 1744, Leonard Euler 
developed mathematical techniques to derive equilibrium equations. Bélidor published L'architecture 
hydraulique from 1737–1753, in which integral calculus was used for the first time in solving technical 
problems. The advanced state of mechanics was exemplified by Joseph Lagrange’s work Mécanique 
Analytique published in 1787. Yet the principles of mechanics were not proved to be applied to the rational 
design of trusses before the 19th century.  
2 According to HOLZER (2012) and KURRER (2008), the early attempts at computational modeling of real−life 
building structures are due to Johann Albert Eytelwein (Handbuch der Statik, 1808) and Claude Louis Marie 
Henri Navier (Résumé des Leçons, 1826). Based on the theory of bending of elastic rods, they suggested – 
independently of each other – an approach of “decomposing” a structure into simple parts such as continuous 
beams and simple struts. In Germany, increasing indications of a departure from the “decomposition” 
approach was from the early 1840s onwards. Karl Culmann and Johann Wilhelm Schwedler realized the 
striking effects of “making everything isostatic” by the assumption that all the joints of a trussed structure 
are “pinned–jointed”, i.e. the statically determinate truss, in their journal publications of 1851. Furthermore, 
the remarkable publications of John Macquorn Rankine’s Manual of Applied Mechanics and August Ritter’s 
Elementare Theorie und Berechnung eiserner Dach– und Brücken–Constructionen (1863) lead to the triumph 
of truss theory in Germany, Great Britain, and Italy in the second half of the 19th century. 
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in the progress of practicing new types of structures and being driven towards analytical 
understanding. Trusses have been built as structural systems of bridges; truss roofs 
appeared as a prominent form in various constructions such as railway stations, market 
halls, and industrial buildings. Nowadays, historic trusses can still be found in use in 
many existing constructions, and a number of them play an important load–supporting 
role. Truss–type structural systems remain in present–day in wide application for civil 
engineering structures, for example roof trusses of buildings, truss girders of suspension 
bridges, space trusses of steel offshore or aerospace structures. 

1.2.1 Historical Emergence 

The truss construction principles as known today are rooted back to the early timber roof 
structures. Because of the limitations of timber to meet the requirements for larger roof 
spans, demand for reduction in dimensions of structural elements as well as 
simplification of connections, iron was gradually used to replace traditional timber 
material. For iron, the length available was not as limited as for timber, the jointing was 
much simpler, and a greater variety of forms could be created. In addition, the high 
stiffness and strength of iron allowed the design of filigree structures that were preferred 
in construction for visual appearance reasons, for example slender iron columns offered 
a less obstructed view. Furthermore, iron was thought of as having much better resistance 
to fire compared to timber. As more and more theatres were built throughout Europe in 
the 18th century during the Age of Enlightenment, the number of terrible fires was 
growing. Iron was used as structural elements with the assumption of being fire–proof3. 

Only until the 19th century, the potential of the truss has been explored and 
experimented systematically by the bridge builders to meet the demands of rapidly 
expanding transportation systems of the time [LORENZ (1990), RINKE and KOTNIK (2010)]. 
The development of railroads in the 1820s created an urgent need for bridges to be able 
to carry heavy moving loads as well as for new large buildings for terminals and 
maintenance facilities [GASPARINI and PROVOST (1989)]. The rush to satisfy those needs 
accelerated the application of the scientific principles of mechanics in structural design 
process and fostered advances in the production and fabrication of the material iron. 

1.2.2 Iron as Structural Material 

Iron was referred to as material of modern engineering. The new building materials cast 
iron as well as early forms of what is nowadays called steel, stand in close connection 
with the fundamental change of human culture and life in the 18th and 19th century 
[LORENZ (2012)], which is nowadays referred to as industrial revolution4. 

Cast iron was produced in blast furnaces by using three basic raw materials – ore, a fuel, 
and chalk5 to tie up the molten slag. Up to the beginning of the 18th century, generally, 

                                                 
3 For example, wrought–iron columns and brackets were used for the Théâtre Français by the architect 
Victor Louis (1731–1807) [ADDIS (2012)]. The new building of the Théâtre Français was opened in 1790 after 
a terrible fire in 1781. Here a wrought iron roof truss was built with a clear span of about 28 m. 
4 The new designs developed from iron were classified as characteristic for the industrial age. According to 
Society for Industrial Archeology (1984): “There is nothing more fundamental to the man–made physical 
world than the materials of which its elements are composed; likewise, nothing more basic to the smaller 
industrial world than the ferrous metals.” 
5 or something comparable.  
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charcoal was used as the fuel. In 1709, Abraham Darby at Coalbrookdale started using 
coal and then coke as the fuel. Coke made the furnaces much more efficient so that they 
could melt much larger quantities of iron ore to produce pig iron used for casting. This 
allowed for the first time in history the mass production of an iron building material − 
characterized by high carbon content that has good compression strength but is brittle. 

In 1784, the British Henry Cort got a patent to re–smelt Darby’s pig iron to be able to 
produce a material rather different and especially far less brittle than cast iron. It was 
made in a puddling process where the carbon was burned out of the iron by heating with 
an oxygen–rich flame. The additional oxygen burned away the carbon while the iron was 
worked on by workmen. Wrought iron, or puddle iron, or weld–iron became the main 
iron material in the 19th century, which was already quite similar to nowadays steel.   

In the second half of the 19th century, first Henry Bessemer, i.e. Bessemer converter, acid 
lining in 1855, then the Martin brothers together with the Siemens brothers, i.e. 
Siemens–Martin process in 1864–65, and Sidney G. Thomas with Percy C. Gilchrist, i.e. 
Thomas converter, basic lining in 1878, opened the way to the second generation of steel 
as a building material, characterized by a new dimension of quality and mass production, 
i.e. the so–called Ingot Iron, or mild/soft steel, or low carbon steel.  

The properties of different alloys of iron are shown in Table 1.1, which are given with 
further details in ADDIS (2012). The main characteristics are that cast iron is highly 
strong in compression and relatively weak in tension, but brittle. Wrought iron is ductile 
and equally strong in compression and tension, but can only be shaped by rolling or 
forging, thus limiting its structural and decorative forms. Mild steel has similar 
properties to those of wrought iron, but it is generally stronger, and can be cast as well 
as rolled. However, mild steel has a lower resistance to corrosion than wrought iron. 

Since the development of industrial production of iron, loadbearing members using iron 
were used for a variety of structures6, such as mills, railway stations, market halls, and 
so on. Concerning iron roof trusses, there was no sudden replacement of the timber with 
iron trusses, but rather a mixture of different types of roofs that were combinations of 
timber and iron, and of entirely iron with different mixes of cast and wrought iron. 

Table 1.1 – Key properties of the alloys of iron [adapted from ADDIS (2012)]. 
  Wrought iron Cast iron Mild steel 
Proportion of carbon % 0.02 – 0.05 2.5 – 4.0 0.2 – 1.0 
Temperature to manufacture °C 1000 1130 – 1200 1500 
Fracture behaviour  Ductile Brittle Ductile 
Tensile strength N/mm2 280 – 370 120 350 – 450 
Compressive strength N/mm2 240 – 310 600 – 800 350 – 450 
Modulus of elasticity N/mm2 155 000 – 220 0007 85 000 – 90 0008 210 000 
Corrosion resistance  Good Very good Poor 

                                                 
6 The evolution of the manufacture and use of iron loadbearing members in the building industry can be 
found for instance in SUTHERLAND (1963–64), SUTHERLAND (1997). 
7 The modulus of elasticity of approximately 165 000 N/mm2 for wrought iron was given as an example in 
BATES (1984); DE BOUW (2010) mentioned a range from 163 000 – 215 000 N/mm2 by historic books as well as  
171 000 – 190 000 N/mm2 by tensile tests; a value of 160 000 N/mm2 was derived for the structural survey 
in the New Hermitage in Saint Petersburg by HERES (2006); a value of 169 000 N/mm2 was used for the 
structural analysis of the elliptical beams in the Winter Palace of the State Hermitage Museum by HÄßLER 
(2011); O'SULLIVAN and SWAILES (2008) concluded a mean value of 197 000 N/mm2  based on a histogram of 
values that was compiled from tensile tests on various American, British and Norwegian wrought irons. 
8 A value of approximately 83 000 N/mm2 was given as an example in BATES (1984).  
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Some examples of iron roof trusses that still exist today are shown in Figure 1.1. The 
tented roof over the Hall of Liberation in Kelheim [LORENZ (2001)] witnessed for instance 
the early development of compound construction in cast and wrought iron. 

With the search for adequate construction methods and forms, the 19th century was a 
time of experimentation and discovery. New structural forms triggered the development 
of structural engineering, when engineers were orienting themselves increasingly towards 
the natural sciences, i.e. a comprehensive degree of control and a redefinition of the load–
bearing structure. The increasing efforts to make the understanding of the load–bearing 
structure more scientific, together with new building materials had a radical influence 
on construction [RINKE and SCHWARTZ (2010)]. New load–bearing systems came about, 
including Wiegmann–Polonceau trusses, lattice trusses, diverse trussed girders, also 
barrel roofs and domes. The Wiegman–Polonceau truss, proposed by the German engineer, 
Rudolf Wiegmann (1804–1865), and the Frenchman, Jean–Barthélémy Camille 
Polonceau (1813–1859)9, has become familiar in railway stations throughout the world. 

1.2.3 Wiegmann–Polonceau Truss 

The evolution and history of the Wiegmann–Polonceau trusses have been described for 
instance in KURRER (2008) and HOLZER (2006). They are popular support system of the 
iron building constructions since the second half of the 19th century, particularly in the 
form of in–plane girders. The emergence of the Wiegmann–Polonceau truss in the first 
half of the 19th century was from the idea of a non–displaceable three–pin–jointed 
system for the construction of beam and frame structures [LORENZ (1990)]. Figure 1.2 
illustrates the principle of the Wiegmann–Polonceau truss based on the theory of trussed 
beam. Originally, the principal rafters were made of timber and the tension ties of 
wrought iron to use optimally each material. Once iron was more established as 
structural components and its production was improved, the components had evolved 
from timber to iron. 

Regarding the static calculations, for simplification, mainly compressive and tensile 
forces were assumed in the individual members of the statically indeterminate 
Wiegmann–Polonceau trusses. The construction system was easier than those that were 
known until then. These trusses were also easy to assemble and accounted for the 
resulting side thrust in arched and vaulted constructions. The concise and efficient forms 
of the Wiegmann–Polonceau truss were widely used to shelter large halls, for example 
the train station Gare d’Austerlitz in Paris (see Figure 1.3). The station is about 280 m 
long; the truss has a span length of about 51 m and height of approximately 28 m from 
the ground by the engineer Leonce Reynaud (1803–1880)  [SCHULTZ et al. (2001)]. 

Concerning the fabrication, the forming of truss structure as an addition of structural 
members with similar elements allowed reduction of fabrication and simplification of 
design [YEOMANS (1992)]. Trusses were not built in one piece, because those would have 
been heavy, having little resistance to out of plane bending, and vulnerable to problems 
in the handling process between casting and erection. As a result, a truss was most often 

                                                 
9 The Wiegmann–Polonceau truss was almost simultaneously published by independent work in 1839 by the 
architect and professor at the Royal Academy of Arts in Dusseldorf, Rudolf Wiegmann, in the brochure 
Construction von Kettenbrücken nach dem Dreieckssysteme (1839) and Jean–Barthélémy Camille Polonceau 
in Revue générale de l'Architecture et des Travaux Publics (1840) [HOLZER (2006)]. 
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 (a) Nevyansk, Russia 
[LORENZ and HERES (2015)] 

  
  

(a) Sachsenhausen, Germany 
[SCHMITT and LANDSBERG (1897)]  

(b) Ulm, Germany  
[WOUTERS and COOMANS (2015)] 

   
  

(c) Kelheim, Germany  
[Archive BTU CS (2001)] 

(d) Brugge, Belgium  
[WOUTERS and COOMANS (2015)] 

(e) Cologne, Germany 
[BORGER (1980)] 

   

Figure 1.1 – Examples of historic iron roof trusses that exist in present–time.  

 

Computer image ©GIELEN [BTU CS, 2015]  ©HERES, 2012 

 ©LORENZ, 2012 
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constructed in a number of pieces to be joined together. It was therefore necessary to 
provide some means of fitting them together and allowing compensate for manufacture. 
For instance, turnbuckles were used, such that member dimensions could be adjusted 
during erection as well as preloading could be provided to achieve a desired deformation 
or prestresse state of the truss. An example of trusses with turnbuckle elements at a 
historic building called Reithalle in Potsdam is given in Figure 1.4. 

In addition, as seen by the strut members of the truss at Reithalle (see Figure 1.5), the 
shape of the strut member10 in compression is referred to as bulged crucifix [DE BOUW 
(2010)]. The thickening of the members in the middle was to avoid buckling. Crucifix 
cast iron strut was assumed to be the most optimal and economical form for small cast 
iron compression members such as those of the Wiegmann–Polonceau trusses. 

The aspects related to optimally shaped beams in combination with single spans to 
permit substantial savings in material seemed to have been particularly relevant for 
example in Germany around the middle of the 19th century [HOLZER (2012)]. The 
experimentation on shape included fish–belly beams and under–spanned beams in the 
first half of the 19th century as well as parabolic girders, Schwedler girders, half–
parabolic girders, and other systems in the second half of the century. 

Some remarks about the Wiegmann–Polonceau trusses can be briefly summarized as 
follows. The trusses were invented in about 1839 to meet the demand of larger spans 
and a desire of optimal use of the material and components. The simplified design of the 
trusses assumed all hinged joints. The individual elements of the truss are assumed to 
have mainly compressive and tensile forces. 

The advantages of these types of trusses are the structural efficiency, which had been 
proven over the years. The Wiegmann–Polonceau trusses are characterized as light–
weight structures with impressive weight–to–span ratio and slender tension members. 
The drawback of the hinged trusses at that time was possibly the high cost to produce 
members with special shapes such as the compression struts and the connection parts to 
assemble all components together. The development of iron and steel production and 
selected examples of Wiegmann–Polonceau roof trusses are highlighted in Appendix A. 

About the material properties of historic structures, the need for a better understanding 
of the properties of iron became increasingly important as engineers and architects 
designed structures of greater span and complexity at the time of the development of 
trusses [O'SULLIVAN and SWAILES (2008)]. Historic iron exists in various forms, each of 
which might be manufactured in its own way and having its own properties. DE BOUW 
and WOUTERS (2011) stressed that to determine exactly which material was used in a 
certain case, one should take some samples and bring together the results of different 
material tests such as chemical analyses, metallographies, tensile tests, hardness 
measurements11, and so on. However, it is often not the cases that samples of historic 
structures can be available for material tests. In any cases, an in–depth research of the 
construction history of the structures is recommended to make reasonable assumptions 
of the material properties.  

                                                 
10 An extensive study in Netherlands by NIEUWMEIJER (2001) showed evolution of the Wiegmann–Polonceau 
trusses’ components. The use of the crucifix cast iron for the compression struts were around 1856–1904.  
11 Metallography and Vickers hardness tester can be used to determine the type of metal in historic metal 
structures, e.g. wrought iron or Ingot iron, and to predict the ultimate tensile strength [WOUTERS et al. (2011)].  
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Figure 1.2 – Historico–logical development of Wiegmann–Polonceau truss [adapted from KURRER (2008)]. 

(a) Gare d’Austerlitz, Paris (1869)  
[from HARTUNG (1983)] 

(b) Gare d’Austerlitz in present time  
(photo taken in 2015) 

 
  

(c) Similar form of the Wiegmann–Polonceau truss to the one at Gare d’Austerlitz, Paris. 
 

 

Figure 1.3 – Example of historic iron Wiegmann–Polonceau trusses: Gare d’Austerlitz, Paris (1869), 
span length of approximately 51 m and height of about 28 m from the ground. 
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1.2.4 Iron Roof Trusses of the State Hermitage Museum, Saint Petersburg 

In the particular case, the State Hermitage Museum in Saint Petersburg is known as 
one of the world's most important museums. The impressive buildings around the former 
Winter Palace of the Russian Tsar are protected as a World Heritage Site. They are home 
to not only the famous art collection but also have an enormous historical significance in 
the construction history, since the roofs and ceilings are crisscrossed by a dense network 
of iron structures. Starting in 1838 after a devastating fire12, iron structures were 
supplied for almost all roofs and floors of the buildings. These structures were put up by 
four different manufacturers within a period of thirteen years. In terms of volume, 
variety of application and richness of details, they are “outstanding evidence of early 
European structural steelwork and a greatly revealing ensemble from the early days of 
the European iron construction” [HERES (2006)]. An example of the iron roof trusses in 
the Old Hermitage is given in Figure 1.6. 

The roof and ceiling structures are in large areas still preserved in the original state. 
They were surveyed, systematically documented and structurally evaluated within the 
framework of a research project13 carried out by the Chair of Construction History and 
Structural Preservation, Brandenburg University of Technology (BTU) Cottbus–
Senftenberg [LORENZ and HERES (2006), HERES (2006)]. The analysis aims at 
understanding the mindsets and strategies of designers in dealing with the new building 
material iron at the time, reconstructing the design processes and stages of construction, 
as well as analysing the load bearing behaviour and quality of the engineering design. 

To determine the mechanical properties of the iron, material tests were carried out for 
samples from the New Hermitage. All elements of the load–bearing structures were 
determined to be made of wrought iron. The material samples subjected to tensile tests 
showed the characteristic layered breaking structure of puddel iron. The material used 
in construction was ductile, with a failure strain of about 15 %. The characteristics derived 
for the structural assessment by HERES (2006) were as follows: an yield strength of 170 
N/mm2, a tensile strength of 300 N/mm2 and the modulus of elasticity of 160 000 N/mm2. 

Considering the connections and bearings of iron trusses, mostly a cast iron shoe was 
used for bearings, which is confirmed by a literature study [DE BOUW (2010)] (see 
Figure 1.7). The connection between the tension ties, central tension tie and compression 
strut was often formed by one or two parallel gusset plates creating a hinged connection. 
In the case of one gusset plate, the tension ties, central tension tie and compression strut 
end with a fork to connect to the gusset plate. When two parallel plates were used, the 
members end with an eye–bar that was connected in–between the plates. The 
components were built in the way that allowed hinged connections to assure optimal use 
of materials, as well as for calculation purposes. 

  

                                                 
12 Highly extensive use of iron was due to the devastating fire which destroyed a large part of the Winter 
Palace in the winter of 1837. In the process of the immediate reconstruction of the Imperial Palace that 
followed, iron load–bearing structures were used which were thought to be fire–proof. From 1840, iron 
structures were built with great variety and different constructive prototypes.  
13 The research project Die Eisenkonstruktionen in den Gebäuden der Staatlichen Eremitage St. Petersburg 
– Erfassung, Analyse und Bewertung im Kontext des frühen europäischen Stahlbaus was funded by the 
Deutsche Forschungsgemeinschaft (DFG) (2008 − 2015) [LORENZ and HERES (2006)].  
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(a) Reithalle Potsdam in present–day (b) Connection of compression strut to tension ties 

  
  

(c) Similar form of the Wiegmann–Polonceau truss to the one at Reithalle Potsdam 
 

 
 
Figure 1.4 – Historic iron Wiegmann–Polonceau trusses at Reithalle Potsdam (1885−1891) with span 

length of approximately 18 m, height of approximately 6 m and several members with 
turnbuckles to adjust lengths and apply preload. 

  
(a) Turnbuckle element (b) Compression strut in optimal shape 

 

 

   
Figure 1.5 – Turnbuckle elements and optimally–shaped compressive struts of the historic iron 

Wiegmann–Polonceau trusses at Reithalle Potsdam (1885−1891). 
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1.2.5 Safety Assessment of Existing Iron and Steel Structures 

Assessment, maintenance and restoration of existing buildings have become one of the 
most important tasks of civil engineering in research, teaching and practice [LORENZ 
(2011)]. The preservation of monuments is regarded as an important theme for iron and 
steel structures since the 1970s. Its relevance has grown steadily ever since. It took time, 
however, to understand monument protection as an engineering task. A milestone in 
this direction was the Deutsche Forschungsgemeinschaft (DFG)’s special research area 
315: Preserving historically significant buildings, which explored for the first time 
systematically historic iron materials and steel structures between 1985 and 1999. At 
the international level, the International Scientific Committee on the Analysis and 
Restoration of Structures of Architectural Heritage (ISCARSAH) and the International 
Council of Monuments and Sites (ICOMOS) are to be emphasized. In 2003, the guideline 
Principles for the Analysis, Conservation and Structural Restoration of Architectural 
Heritage was adopted as an official ICOMOS Charter for engineers.  
The conservation of historic structures and monuments as required by the ICOMOS 
Charter is seen in three phases: (i) diagnosis; (ii) safety evaluation; and (iii) design of 
intervention. Without the first and second phases, the necessity and type of an 
intervention cannot be assessed. The intervention itself is to act in the best care for the 
monuments, i.e. best intervention is no intervention. Lessons learnt from the unnecessary 
demolition of great structures or the deficient performance of strengthening measures of 
some old constructions bring engineers closer to achieving a better understanding of the 
behaviour of existing structures as well as better assessment methods. 
Concerning the case study of the iron roof trusses in the State Hermitage Museum, the 
static analyses were performed based on the modelling assumptions resulting from 
different interpretations of the effects of joints and elements, e.g. turnbuckles, threads 
and nuts at the connections [HERES (2006), KEIL (2009)14]. Model calculations in–plane 
and three–dimensional were carried out, according to the present–day standards. While 
the condition of the trusses remained below the material’s set limit, several rectangular 
rafters in compression demonstrated buckling. It is, however, relevant to note that flat 
rectangular top–chord rafters commonly experience stability issues resulting in 
deformations. While the rafters lay above the limit in the stress verification, they lay 
significantly below the tensile strength. The static calculations were unable, or with 
great difficulty, to take into account the relevance of the planned load–bearing ability as 
well as the stabilizing effects of the neighbouring construction components such as the 
roof lathing. In the end, the condition of the existing trusses was decisive. No signs of 
failure such as noticeable deformation in the areas of critical rafters were found. 
Another example is the present–day structural analysis of the Brussels model schools 
that were built between 1875 and 1920 [DE BOUW and WOUTERS (2011)]. At the time of the 
model schools, no compulsory calculation methods and design rules existed; as a result, 
the design was mostly made by the experience of the designer himself. Based on the 
findings of the building techniques and the material properties, finite element models 
were set up to evaluate and compare the structural behaviour of the Wiegmann–
Polonceau and Ardant trusses using the Eurocodes of today’s practice [DE BOUW (2010)]. 

                                                 
14 A complete list of the related theses, publications and presentations to the research project of the 
Hermitage Museum is available on the webpage of the Chair of Construction History and Structural 
Preservation: www.b–tu.de/fg–bautechnikgeschichte/forschung/laufende–projekte/eremitage–st–petersburg.  
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(a) Historic iron roof trusses in in the Old Hermitage, State Hermitage Museum 

  
  

(b) Truss form in the Old Hermitage, State Hermitage Museum 

 
 

Figure 1.6 – Iron trusses in the State Hermitage Museum, Saint Petersburg [BTU CS (2011)]. 

(a) Detail of bearings and connections 

   
   

 (b) Detail of connections  

   

Figure 1.7 – Details of bearings and connections for the case−study of iron roof trusses in the State 
Hermitage Museum in Saint Petersburg [BTU CS (2011)]. 

IV  

 
 

  

  

 

II 

VIII 

 

I 

V 

VI 

VII 
Member number 

       Joint number 
(dimensions not–to–scale) 
I 

III 

 

approx. 3.3 m 

approx. 9.8 m 



1.3   Motivation of structural assessment for existing truss structures 

 

13 
           13 

The results of the local stability checks showed that all the Wiegmann–Polonceau 
trusses meet the requirements of the Eurocode’s stability checks. However, the 
calculation models of the Ardant trusses predict several local stability problems. Still, 
the trusses stand for over 90 years, and recent visual inspections did not reveal stability 
problems. DE BOUW (2010) recommended the search for historic calculation notes and 
broadening of the typologies. Another important factor to be investigated further is the 
behaviour of the historic (rivet) connections and the modelling of these connections. 

The case studies illustrate that for historic iron truss structures, static calculations of an 
assumed model cannot give accurate estimation of the axial forces and stress states, due 
to difficulty to acquire precise information about the parameters such as loading 
condition and joint connections, as well as uncertainties related to corrosion damages or 
presence of prestress in turnbuckles, etc. A non–destructive reliable method is needed to 
allow accurate identification and verification of the stress states of existing trusses. 

1.3 Motivation of Structural Assessment for Existing Truss Structures 

From the brief study of historic truss structures, the potential problems and challenges 
for the static estimation of the existing axial forces in iron and steel trusses are 
summarized as follows. 

 The axial forces in truss members can be estimated by forward methods such as 
method of joints, method of sections or the finite element method [KRENK and 
HØGSBERG (2013)], provided information about parameters such as external loads, 
prestress of turnbuckles, support conditions and joint connections are known. 
However, an accurate estimation of the axial forces can only be achieved when the 
parameter inputs are given precisely, which is difficult to obtain in practice. 

 The idealization of trusses with basic assumptions such as pinned joints makes 
these types of structures seem to be simple to analyse using static calculations.  
In practice, trusses are not ideally pin–jointed but are constructed by bolting or 
riveting the ends of the members to gusset plates, in which friction is present. For 
historic trusses, uncertainties due to damage risks such as corrosion make an 
appropriate assumption for joint conditions even more difficult.  

 Beside joint and boundary conditions, there exist challenges relating to 
uncertainties in material properties of historic structures. The mechanical 
characteristics of iron and steel obtained through non–industrial processes in the 
past are difficult to determine through non–destructive tests.  

 In addition, although the sectional properties of a truss might appear as known 
parameters, geometrical and mechanical properties of the cross–section may be 
altered due to corrosion. 

 Moreover, another important uncertainty in the static estimation of the existing 
forces in truss structures is related to the initial tensions caused by pre–stressing 
turnbuckles, as well as the fitting–temperature of those iron structures. 

 Furthermore, environmental factors such as temperature, humidity, etc., may 
cause seasonal variation of the load state and damages such as corrosion.  

 Local damages can cause re–distribution of the axial forces in truss members, thus 
analysis assuming the truss at design state may be no longer valid. 

 Loads and safety factors according to present–day standards cannot be directly 
applicable to historic structures. Thus, conservative results about the efficiency of 
existing trusses as defined today might require strengthening for the structures. 
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 Direct force measurement using strain gauges inconveniently requires that the 
forces be known at the instant of gauge application. This is not possible unless the 
structure is known to be in a zero–load state. Destructive or partially–destructive 
methods to identify the axial forces are not desired for historic structures. 

Motivated by the importance of the preservation of historic truss structures and 
considering the challenges when working with historic constructions, a practical non–
destructive method is required to verify the axial forces and stress states in existing 
truss structures. 

1.4 General State of Research 

As mentioned, forward methods15 can be used to calculate the axial forces in truss 
structures. However, due to difficulty or limitation to obtain precise information of the 
input parameters for manual calculations or numerical models in the forward methods, 
inverse methods have therefore been applied. In inverse methods, the unknown input 
parameters, particularly the loads, are determined based on the output parameters such 
as static deformations or modal parameters of natural frequencies and mode shapes. 

The non–destructive inverse identification of the axial forces in axially loaded structural 
members has been studied by many researchers. The identification techniques can be 
classified according to static, static–dynamic or purely dynamic, as well as depending on 
the types of applications on different civil engineering structures, for instance columns, 
cables, tie–rods or space frames. A timeline overview of the existing axial force 
identification methods is given in Table 1.2.  

Early works have been associated with the determination of critical buckling load in 
axially loaded columns. Tension force identification for cables has been intensively 
studied. Considering axially loaded single beam such as tie–rods supporting arches and 
vaults, a number of methods have been proposed. Dynamic methods have been taking 
advantages over static methods thanks to advances in testing equipment, convenient 
testing procedure and reliable measurements. 

Relating axially loaded members as part of a structure, two approaches for the axial force 
identification can be considered as: (i) methods making use of the finite element 
formulations coupled with model updating techniques, which concerns the multiple axial 
force estimation for all members of a truss or framework structure [GREENING and LIEVEN 
(2003), BAHRA and GREENING (2006), BAHRA and GREENING (2009), BAHRA and GREENING 
(2011)]; and (ii) analytically–based methods for beams with unknown boundary 
conditions [LI et al. (2012), REBECCHI et al. (2013), MAES et al. (2013)] that have the 
generality to be applied to a single beam or beams as part of a structure.  

Despite the variety of methods, the following shortcomings are present: 

 The methods for cables are not immediately applicable to tie–bars or beam 
members since they cannot be modelled as cables. Moreover, the identification of 

                                                 
15 In forward methods, the modal parameters can be calculated when the input structural parameters, e.g. 
axial force and boundary conditions, are given. The work of BAYCAN et al. (1991), which set forth the theory of 
prestressing to control the frequencies of frameworks can be thought of as forward problem in the sense of 
prescribing force for dynamic–based requirements. Inverse problem in the present work is referred to the 
identification of the axial loading and joint conditions from the experimentally identified modal parameters. 
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tension forces in cables often concerns with high tension values. Certain methods 
are therefore only relevant for the cases of such high–tension forces. 

 Regarding experimental–based static methods for single bars, they require the 
measurements of displacements and/or strains at several cross–sections of the bar 
due to applied static loads. However, these methods are particularly sensitive to 
the experimental errors due to small values of strains or displacements.  Moreover, 
it may be difficult in practice to apply loads as well as measure vertical deflections 
for structures that are positioned at considerable heights, such as tie–bars in 
arched and vaulted structures or roof trusses. 

 Mixed static–dynamic approaches require more than one experimental technique. 
In addition, they are still affected by the drawbacks related to the strain and 
deflection measurements. 

 In many dynamic–based methods, only the information of the natural frequencies 
is used, in some cases only the frequency of a single mode is adopted. Other useful 
information, such as the natural frequencies of higher modes or the mode shapes, 
are discarded. For trusses and space frames compared to single bars, because the 
vibration behaviour is more complex, closely spaced modes with similar modes of 
vibration occur. Therefore, the adaptation of only the natural frequencies without 
the information of the mode shapes for the identification and validation process is 
insufficient to assure correct and accurate results.  

 The majority of the existing methods investigated single structural elements, i.e., 
beams, those are not as part of a built–up structure. These methods are not directly 
applicable to truss structures. 

Considering the approaches for axially loaded members as part of a structure, the 
following shortcomings are present: 

 The available identification methods using finite element modelling coupled with 
model updating techniques [GREENING and LIEVEN (2003), BAHRA and GREENING 
(2006), BAHRA and GREENING (2009), BAHRA and GREENING (2011)] are based on 
sensitivity or gradient–based searching algorithms, whose success is significantly 
dependent on the assumptions of the initial values of the target parameters. In 
addition, the joint connections of the investigated truss structures are all ideally 
assumed as hinged or rigid, which in reality do not exist. Boundary conditions and 
joint connections have effects on the dynamic behaviour of a structure. As a result, 
the accuracy of identified axial forces is affected if the effect of the joint flexibility 
is not considered. 

 The analytical−based methods can be sensitive to small errors on the input 
parameters [MAES et al. (2013)], the locations of the instrumented sensors and the 
quality of the mode shape coordinate measurements [REBECCHI et al. (2013)]. 
Moreover, the analytical−based approaches provide more than one result of the 
identified force of a member, i.e. one for each mode of vibration, and therefore are 
subjective to the mode selection [LI et al. (2012), REBECCHI et al. (2013), MAES et al. 
(2013)]. In the work of MAES et al. (2013), using the frequency domain approach, a 
single identified force was averaged from a selected range of the identified forces. 
Nevertheless, the selection of this range is not generalized. Furthermore, as only 
individual members are considered, a global model of the structure is not available. 
The axial forces can be only identified for tested members. Although the methods 
for single beams offer the advantage of simplified analysis procedure, they do  
not apply in an obvious way to assemblies of members in trusses and frameworks.  
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Table 1.2 – Overview of axial force identification methods (from 1936 onwards). 
Year Author Classifi– 

cation 
Method Application Modal 

Info. 
Identified 

 Info. 
    Column Cable* Beam Truss ω ϕ N kr 
1936 STEPHENS Dyn. AB ● ●   ●  ●  
1951 LURIE Dyn. AB ●    ●  ● ● 
1953 GOLDHAMMER and JOHNSON Dyn. AB ●    ●  ●  
1957 KLEIN  Dyn. AB ●    ●  ●  
1967 HORTON et al.  Dyn. AB ●    ●  ●  
1968 JACOBSON and WENNER  Dyn. AB ●    ●  ●  
1970 HORTON and STRUBLE  Stat. AB ●      ●  
1971 BARUCH  Stat. AB ●      ● ● 
1980 SEGALL and BARUCH  Dyn. AB ●    ● ● ●  
1980 SHINKE et al.   Dyn. AB  ●   ●  ●  
1988 OHLSSON  Dyn. AB ●    ●  ●  
1988 CROCI  Stat. AB  ●     ●  
1991 PLAUT  Dyn. AB ●    ●  ● ● 
1991 KYSKA  Dyn. AB  ●   ●  ●  
1992 BATI et al.  Stat. AB   ●    ●  
1994 BLASI and SORACE  Stat.–Dyn. AB   ●  ●  ● ● 
1994 CASAS  Stat.–Dyn. MU  ●   ●  ●  
1995 LIVINGSTON et al.  Dyn. MU   ●  ● ○ ●  
1996 SORACE  Stat.–Dyn. AB   ●  ●  ● ● 
1996 HIROSHI et al.  Dyn. EF  ●   ●  ●  
1996 ZUI et al.  Dyn. EF  ●   ●  ●  
1998 RUSSELL and LARDNER  Dyn. AB  ●   ●  ●  
1998 SCHEIBE and DEMELT  Dyn. MU  ●   ●  ●  
2001 BATI and TONIETTI  Stat. AB   ●    ●  
2003 AHN et al.  Dyn. AB  ●   ●  ●  
2003 GREENING and LIEVEN  Dyn. MU ○  ○ ● ●  ●  
2004 GO and LIOU  Dyn. AB ●    ●  ●  
2005 LAGOMARSINO and CALDERINI Dyn. MU   ●  ●  ●  
2005 REN et al.  Dyn. EF  ●   ●  ●  
2005 HIGGINS et al.  Dyn. MU  ●   ●  ●  
2005 SIEGERT et al.  Dyn. MU  ●   ●  ●  
2006 PARK et al.  Dyn. MU  ● ○  ●  ● ● 
2006 HOLST et al.  Stat. AB  ●     ●  
2006 GEIER et al.  Dyn. AB  ●   ●  ●  
2006 MEHRABI  Dyn. AB  ●   ●  ●  
2006 RIAD  Dyn. MU  ●   ●  ●  
2006 PARK et al. Dyn. MU  ● ○  ●  ● ● 
2006 BAHRA and GREENING  Dyn. MU ○  ○ ● ●  ●  
2007 KIM and PARK  Dyn. MU  ● ○  ●  ●  
2008 TULLINI and LAUDIERO  Stat.–Dyn. AB   ●  ●  ●  
2009 BAHRA and GREENING  Dyn. MU ○  ○ ● ●  ●  
2009 BUDELMANN et al.  Stat. AB  ●     ●  
2010 AMABILI et al.  Dyn. MU   ●  ●  ● ● 
2011 LUONG et al.  Dyn. MU   ●  ●  ●  
2011 BAHRA and GREENING  Dyn. MU ○  ○ ● ●  ●  
2012 LI et al.  Dyn. AB ●  ● ○ ● ● ● ● 
2013 WICHMANN et al.  Stat. AB  ●     ●  
2013 TULLINI  Stat. AB ●  ●    ● ● 
2013 GENTILINI et al.  Dyn. MU   ●  ● ● ● ● 
2013 REBECCHI et al.  Dyn. AB ●  ● ○ ● ● ●  
2013 MAES et al.  Dyn. AB ●  ● ○ ● ● ●  
 ○ – Indirect application / Optional; ● – Direct application / Required; 
ω – Eigenfrequency; ϕ – Mode shapes; N – Axial force / Column buckling force; kr – Rotational spring stiffness
AB – Analytical–based solution; EF – Empirical formula; MU – Model updating; 
Stat. – Static; Stat.–Dyn. – Mixed static–dynamic; Dyn. – Dynamic; 
*For cables, due to large amount of research publications, only selected references are listed; a more 
extended review can be found for instance in MEHRABI (2006), CHEN et al. (2016). 
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To predict the structural responses under different load scenarios or to design structural 
health monitoring schemes, a global model of the structure is required. 

So far, the studies carried out to identify the static axial forces in iron and steel bars as 
part of a multiple–member truss structure still impose limitations. A methodology that 
considers a global truss structure and provides accurate identification of the axial loads 
as well as estimation of the joint stiffnesses still does not exist. Thus, the development 
of a practical and reliable methodology to be applied to existing multiple–member 
trusses is necessary. The advantageous aspects of the approaches for single members 
can be used for the axial force identification of a global multiple–member truss structure. 

1.5 Objectives and Focus of the Research 

Based on the state of research relating to the identification of the axial forces of iron and 
steel truss structures and advances in dynamic testing methods in the past decades,  
a research project was started at Brandenburg University of Technology (BTU) Cottbus–
Senftenberg, in cooperation with Bundesanstalt für Materialforschung und –prüfung 
(BAM) and Bauhaus–Universität Weimar. The aim is to assess the structural safety of 
existing iron and steel truss structures in the context of the structural health monitoring 
(SHM) using a non–destructive vibration–based experimental approach. 

Particularly, the two main objectives of the research work are: (i) to identify the multiple 
axial forces and corresponding stresses of truss structures; (ii) to assess the joint 
flexibility by examining assumptions for the modelling and analysis of joints of truss–
type constructions. From the identified axial forces and joint stiffnesses of trusses, an 
accurate global model is acquired to approximate the actual behaviour of the structure.  

The approach of the work is experimental–based, i.e. to use information that is gained 
directly on the structures by vibration measurements. Even though there may be errors 
associated with experimental measurements, the identified axial forces and 
corresponding stresses are expected to be a better representation of the actual state of 
stress of the structures than the predictions that are based solely on assumptions and 
static calculations of an analyzed model. 

The characteristics of the systems of interest are light–weight iron and steel truss–type 
structures composed of slender members. In addition, the structures are primarily 
subjected to axial forces. Moreover, planar truss structures are of focus, with the 
possibility to extend to space truss structures. Furthermore, the present work examines 
the relationship between the axial load in slender truss members assuming that no 
significant (transverse) deflections exist, because deflections arising as a side effect of 
the axial loading or initial imperfections of the structure are known to affect the 
structural dynamic behaviour [GREENING and LIEVEN (2003)]. 

The research work was carried out in several phases. First, the scientific development 
in the field and the theoretical background were examined. After that, numerical 
simulation was carried out for the development of a proposed methodology. In the second 
phase, an exemplary in–situ experiment was performed on an existing Wiegmann–
Polonceau truss structure to examine the possibility of identifying the modal parameters 
of historic iron truss structures, in cooperation with Bundesanstalt für 
Materialforschung und –prüfung (BAM). In the third phase, laboratory tests were 
carried out in cooperation with Bauhaus–Universität Weimar, which allowed the 
application and validation of the proposed methodology of the present work. 
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1.6 Outline of the Thesis 

The thesis is organized in six chapters; a schematic representation of the outline of the 
thesis is presented in Figure 1.8. 

Chapter 1 gives the introduction to the work, starting with a brief overview of historic 
iron and steel truss structures as study context, followed by the motivation and general 
state of the research. After that, the objectives and scope of the work as well as the 
outline of the thesis are provided; 

Chapter 2 addresses the state of the art methodologies and the theoretical background 
of the analytical−based methods to identify the axial forces in axially loaded structural 
members. In addition, discussion about semi–rigid connection modelling and analysis is 
given. The vibration−based model updating using different optimization techniques are 
reviewed. Furthermore, the proposed methodology in the present work is described; 

Chapter 3 presents the numerical study for the application of the proposed methodology 
to identify multiple axial forces and estimate the joint flexibility of truss structures. 
Sensitivity analysis and optimization strategies were performed for three partial truss–
type systems of single bars, a two−bar truss–like structure and a five−bar truss; 

Chapter 4 describes the laboratory experiments for the truss–type systems. Issues such 
as the distribution of sensors in different setups, the performance of the dynamic tests 
with increasing load steps and the modal parameter identification at each load step are 
addressed. The results of the inverse identification of the axial forces and joint stiffnesses 
of the systems by the proposed methodology are presented; 

Chapter 5 presents a case study of an in–situ dynamic test on a representative historic 
Wiegmann–Polonceau truss structure. Possible challenges of in–situ tests on existing 
truss structures are discussed. Moreover, a recommended scheme for the experimental–
based safety assessment applicable to existing trusses is given; 

Chapter 6 summarizes the conclusions of the research work and includes the 
recommendations for future research.  
 

   Chapter 1    Chapter 2    

   
Introduction 

(Study of historic trusses; 
general state of research) 

   
State of Research  

and 
Proposed Methodology 

   

           
Chapter 3   Chapter 4   Chapter 5 

Verification of 
Methodology by 

Numerical Study 
  

Validation of 
Methodology by 

Laboratory Experiments 
  

Recommendations  
for In–situ 

Experiments 

          
    Chapter 6     

    Conclusions and  
Future Research     

Figure 1.8 – Outline of the thesis.
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2  

STATE OF RESEARCH AND 
PROPOSED METHODOLOGY 

 

  

 

 

The theoretical background of selected analytical–based methods is reviewed for a better 
understanding of the development of the proposed methodology in the present work.  
In addition, the background of semi–rigid connections in structural analysis and design 
is provided. Moreover, an overview of the finite element model updating methods and 
optimization techniques is given. The application of the vibration−based model updating 
using global search optimization techniques for the inverse identification of axial forces 
and estimation of joint flexibility of truss structures is discussed. 
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2.1 Theoretical Background 

Analytical– and numerical–based methods have been proposed to identify the axial 
forces in structural members. Each approach has its advantages and disadvantages. For 
completeness, the theory relating to the dynamic response of structure members 
subjected to axial force effects is presented briefly. 

2.1.1 Stress Stiffening 

Axial forces acting in a flexural element causes change in its stiffness and thus influence 
the vibration behavior of a member. This phenomenon is referred to as stress stiffening16. 
For slender structural elements, the axial loads result in a lack of stiffness in the 
transverse direction, for example buckling of columns, plates or shells. Stress stiffening 
affects potentially all load–carrying structural elements, although only for slender 
elements such as strings, beams, thin shells, etc., significant variations to lateral 
stability and vibration characteristics are noted. 

From the partial differential equation of motion of a prismatic member having uniform 
physical properties with the assumptions of small deflection, based on Euler–Bernoulli 
beam theory, the free–vibration equation of motion is known as 

4 2

4 2 . 0.
. .

v vEI ρA
x t

 (2.1)

where EI is the flexural stiffness of the beam, v the transverse displacement response,  
x the position along the span, ρ mass density, A the cross–sectional area and t is time. 

Applying appropriate boundary conditions, a series of the solution for the frequencies of 
a beam without the axial−force effects can be expressed as 

2
4. .n n

EIω λ
ρAL

 (2.2)

where ωn is the circular natural frequency of nth mode [rad/s], λn represents different 
boundary conditions [LUONG (2010)], and L is length of the bar. For a pinned–pinned 
beam independent from the axial–force effects, the frequency solution is 

2
4 ,. . .n

EIω n π
ρAL    

1, 2. . . ., 3,...n  (2.3)

where n is the mode number. For a rigid–rigid beam excluding the axial force effects, the 
following frequency expression applies   

                                                 
16 Stress stiffening phenomenon is understood as an alteration of stiffness leading to a dependence of the 
modal parameters upon structural loading [GREENING and LIEVEN (2003)].  
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2

4

2 1
,

2
. .

.n
n π EIω

ρAL    
1, 2. . . ., 3,...n  (2.4)

Upon axial loading on strings or cables, because the low bending stiffness of the string 
is negligible, the transversal strength of a string is therefore only dependent on the axial 
force. The differential equation of motion from the dynamic equilibrium in the 
transversal direction is given by 

2 2

2 2 . .
. .

0v vN ρA
x t

 (2.5)

where a positive value of N implies a tension state of the string, whereas a negative N 
indicates a compression state. A simply–supported string including the axial force effects 
has the following frequency expression,   

2. . . .,n
Nω n π

ρAL    
1, 2. . . ., 3,...n   (2.6)

Many vibration methods used for the cable tension estimation are mainly based on the 
theory of vibrating string, which is considered as simplest method.   

When considering free vibrations of a Euler–Bernoulli beam subjected to a time–
invariant uniform axial force throughout its length, a term related to the force N is added 
to the equation of motion of the bar. Eq. (2.1) can be rewritten as 

4 2 2

4 2 2. . .
. . .

0v v vEI N ρA
x x t

 (2.7)

For a simply–supported beam, the frequency expression including the axial force effects 
is given by 

2 2

4 2 ,. . . .n
n π EI Nω n π
ρAL ρAL    

1, 2. . . ., 3,...n  (2.8)

If bending stiffness is negligible in the cases of strings or cables, the frequency expression 
reverts to the natural frequency of a string in Eq. (2.6) respectively. Eq. (2.8) can be 
rewritten with the same meaning as 

2 2
4 2 2 2. ,. .1

n
EI Nω n π
ρAL n π ρAL    

1, 2. . . ., 3,...n  (2.9)

In the above expression, it can be realized that for higher modes, the axial force effects 
reduce and eventually diminish. Eq. (2.8)  can be also expressed in term of the critical 
buckling load, which is relevant for members under compression 
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2 2

4 1. . . .,
.n

Euler

n π EI Nω n π
NρAL    

1, 2. . . ., 3,...n  (2.10)

where the critical buckling load EulerN  is given by 

2 2

2. .Euler
n π EIN

L
  (2.11)

 

It should be noted that the vibration is assumed at low levels where the amplitude is 
sufficiently small, so that the assumption of a constant axial load in the bar can hold 
true. For other boundary conditions of the bar, such as semi−rigid or rigid−rigid, and 
including the axial−force effects, closed−form solutions do not exist [LUONG (2012)]. 
Approximate solutions were studied, for example PETERSEN (2000) for the boundary 
conditions of one end rigid and one end hinged, or both ends rigid. 

When rotational inertia and shear deformation are taken into account based on 
Timoshenko beam theory, the differential equation excluding the axial force effects is 

4 2 4 4 2 4

4 2 2 2 2 2 4
. .. . . . . . . . . .

. .
0

. .y y

v v v EIρ v ρ I vEI ρA ρI
k G k Gx t t x t x t

  (2.12)

where G is the shear modulus and ky is the shear deformation coefficient. If a small 
impact of the combined effect of the rotational inertia and shear deformation is neglected 
but their individual effects are considered, an approximate expression for the natural 
frequency for a simply supported beam is obtained as 

4
2 2

2 2 2 2

2 2

. . ,.

1
n

y

EI
ρAL

ω n π
n π I n π EI
AL k GAL    

1, 2. . . ., 3,...n  (2.13)

The influence of the rotational inertia and shear deformation increases for higher modes; 
but for lower modes the impact can be considered negligible as exemplified by 
TIMOSHENKO et al. (1974) and ABRAMOVICH and ELISHAKOFF (1990). For Timoshenko beam, 
the influence of the rotational inertia and shear deformation lead to a lowering of the 
frequency values in comparison to Euler–Bernoulli beam. The most complete description 
of a Timoshenko beam element including the axial force effects is governed by 

4 2 2 2 4

4 4 2 2 2 2

4 4 2 4

2 2 2 2 4

.. . . . . . . .
. . .

.... . . . . . . .
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0
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y y y

v EIN v v v vEI N ρA ρI
k GAx x x t t x

EIρ v NρI v ρ I v
k G k GA k Gt x t x t

 (2.14)

A closed form frequency expression for a Timoshenko beam does not exist, even for a 
simply supported beam. 
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When no analytical solutions for single beams exist and for complex structures, the finite 
element method provides a means for the analysis of a structure under stress stiffening. 
Consider a Euler–Bernoulli beam segment with uniform cross–section, the mass matrix 
and the stiffness matrix in general form [CLOUGH and PENZIEN (1995)] are as follows 

2 2

2 2

156 22 54 13

22 4 13 3
54 13 156 22420

13 3 22 4

L L

L L L LρALM
L L

L L L L

 (2.15)

2 2
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3 2 32( )
6 3 6 3

3 3 2
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L l L LEAK
L LL

L L L L

 (2.16)

where M and K represent mass and stiffness matrices. To account for the presence of 
axial–force effects in the finite element method, a new element called geometric stiffness 
[CLOUGH and PENZIEN (1995)] is introduced to the stiffness of the whole structure 

2 2

2 2

36 3 36 3

3 4 3
36 3 36 330

3 3 4

G

L L

L L L LNK
L LL

L L L L

 (2.17)

where KG represents geometric–stiffness matrix. The geometric stiffness property 
depends on the configuration of the structure as well as its loading condition. 

2.1.2 Stress Stiffening in Isolated Bar and Truss Structures 

From the theoretical study of single members subjected to axial loading, some remarks 
are as follows. All natural frequencies of a member will experience a modification to their 
magnitudes when being subjected to axial loading. The magnitude of the modification 
varies depending on the modes and decreases as the mode increases. The static tensile 
force increases the natural frequencies of a structural member; whereas static 
compressive force decreases the member’s natural frequencies. Compressive loading 
leads eventually to static buckling, at which the fundamental dynamic mode and Euler 
mode merges and the fundamental frequency vanishes. For a simply supported beam, 
the fundamental vibration and buckling modes are identical. The relationship between 
load and frequency is nonlinear. The eigenvalues exhibit significant variations with 
respect to load, whereas the eigenvectors or mode shapes for an isolated member are 
stationary or quasi–stationary [BAHRA and GREENING (2006)]. 

While the effects of the axial load on an isolated bar or beam are well understood, the 
dynamic behaviour of collective members of a built–up truss structure subjected to the 
axial force effects have been less investigated. BAHRA and GREENING (2006) discussed the 
frame fundamental frequencies as global coupled systems of analogous single members. 
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The higher number of members a system has, the more complicated the effects of the 
axial forces are. The tensile and compressive forces coexist in a framework and cause 
contrarious variations of natural frequencies as well as interchanges of modes. 
Furthermore, a phenomenon that is referred to as mode veering17 occurs, which makes 
the pairing of modes for a structure at different stress states difficult. This affects for 
instance the mode pairing between the experimentally identified and numerically 
computed modes during a model updating process. 

2.1.3 State of the Art Axial Force Identification Methods 

Over the past decades, many procedures have been proposed for the non–destructive 
inverse identification of the axial forces in axially loaded structural members. A timeline 
overview of the methods has been given in Chapter 1. The methods can be categorized 
according to different types of civil engineering structures, e.g. columns, cables, tie–rods, 
trusses and frameworks, or depending on whether static, mixed static–dynamic or purely 
dynamic approaches are applied. Selected methods are discussed next. 

OHLSSON (1988) investigated the instability of slender members, whose dynamic 
characteristics are dependent on the compressive force. The present axial load in  
a column can be estimated by analytical solution as a fraction of the Euler buckling  
load based on measurements of two successive eigenfrequencies, or by repeated 
measurements of one eigenfrequency at the existing unknown axial force and a well–
known additional applied force by means of an added mass on top of the column.  
The estimated compressive force by the analytical equation for a simply supported 
column was close to the measured experimental force with a difference of approximately 
4 %. In JACOBSON and WENNER (1968), after the stiffness of the end constraints of a 
prismatic column subjected to null axial load were determined, the critical load was 
analytically derived. 

Intensive research has been conducted for the identification of the tension force in cables. 
With main consideration of prestressed tendons in bridges, several monitoring 
techniques for steel tensile cables were reported in HOLST et al. (2006). A magnetoelastic 
measurement technique was described to measure the prestressing force. 
Magnetoelastic–based techniques were also used by SCHEIBE and DEMELT (1998). The 
disadvantage of these measurement techniques is that a portion of the cable material 
has to be kept for calibration. Acoustic–based methods were examined by HIGGINS et al. 
(2005). The change in the dynamic (acoustic) behavior is recorded when energy is 
released by failure of a wire or a strand of the tension members. Nevertheless, the high 
cost and requirement of the testing procedure limit the use of those methods. 

SHINKE et al. (1980) proposed dynamical identification of cable tension force using natural 
frequencies. Although the method is simple and speedy, it is not suitable for members 
that are not slender or not sufficiently tensioned. RIAD (2006) stressed that generally for 
short cables, the actual vibration length and the bending stiffness of the cables have a 
considerable influence on their dynamic properties. AHN et al. (2003) analytically 

                                                 
17 “A pair of modes exhibit the veering characteristics in a way that they move towards each other in the 
frequency spectrum as loading varies and then move apart again without meeting”. When plotting frequency 
variations with respect to load, around the veer, frequency loci are almost nonlinear; mode shapes of the 
respective modes continuously exchange and become ambiguous. When the veer is passed, the mode shapes 
have completely switched positions in the spectrum [BAHRA and GREENING (2006)].  
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investigated the parameters affecting the cable forces to introduce an error correction 
algorithm that accounted for the errors in the mass, length, bending stiffness, sag 
extensibility and natural frequency identification. However, compared with measured 
force values, deviations were up to 10 % for short cables.  

The disadvantage of the techniques for the axial force identification in cables is that the 
simplified theory or closed form solution of vibrating strings is not sufficiently accurate 
for beam–like members. In addition, the tension forces in cables are considerably higher 
than that in beams or truss structures. 

To distinguish the methods for cables or beam–type structural members, LI et al. (2012) 
discussed four categories of methods depending on whether sag extensibility and 
bending stiffness are taken into account: (i) methods using classic taut string theory that 
neglects both effects, (ii) approaches based on modern cable theory that account for sag–
extensibility without bending stiffness, (iii) techniques that consider bending stiffness 
but neglects sag–extensibility, and (iv) approaches that take into account both effects. 
The approaches in the last two categories which involve bending stiffness have attracted 
attention in recent years due to their correspondence to many practical applications. 

To help differentiate between the approaches in the four above−mentioned categories, a 
non–dimensional bending stiffness parameter was introduced to evaluate the effect of 
bending stiffness on free vibration of beam–like members. A simple relationship was 
proposed in MEHRABI and TABATABAI (1998) between the natural frequencies, axial force 
and the bending stiffness parameter of a fixed−fixed cable. Based on the bending 
stiffness parameter, certain methods, which can be applied to identify high tension forces 
in cables, are not accurate on short thick cables, tie–bars or members of trusses and space 
frame structures. 

Regarding the axial force determination for axially loaded single beams such as tie–rods 
supporting arched and vaulted constructions, proposed methods [LUONG (2012)]  include 
(i) static methods making use of static displacement and/or strain; (ii) mixed techniques 
combing static and dynamic identification; and (iii) purely dynamic methods.  

BATI and TONIETTI (2001) described a single static test to identify the force in tie–bars, 
which requires the measurement of three vertical displacements under a concentrated 
static load, as well as the strains variations at three sections of the bar. TULLINI (2013) 
proposed static method to determine the axial force in slender beams by measuring the 
flexural displacements or curvatures at five cross–sections of the beam subjected to an 
additional concentrated lateral load. Nevertheless, the measures of displacement and/or 
strain are relatively sensitive to experimental errors, and impractical for structures that 
are positioned at considerable heights. Moreover, the procedure by TULLINI (2013) 
assumes infinite translational stiffness at the beam ends. This restrictive assumption 
unfortunately cannot be ascertained in practice.  

Concerning dynamic approaches, LAGOMARSINO and CALDERINI (2005) developed an 
algorithm to identify the axial tensile force in tie–bars by using the first three natural 
frequencies of a Euler–Bernoulli beam model. The Line Search method, a gradient− 
based searching algorithm, was adopted. AMABILI et al. (2010) proposed a technique to 
identify the tensile force in tie–bars using the first four to six natural frequencies of tie–
bars based on Timoshenko beam theory. The unknowns of the tensile force, the stiffness 
of the foundation and in some cases, the length of the bar inside the wall, were identified 
by minimizing a weighted difference between the calculated and identified natural 
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frequencies using a Nelder–Mead minimization procedure, also known as downhill 
search method. GENTILINI et al. (2013) studied the identification of the axial force in tie–
bars based on dynamic testing, added masses and genetic algorithms. The discrepancy 
between the experimentally determined and numerically computed frequencies of a 
modified tie–bar system with a concentrated mass was minimized to determine the axial 
force and two different joint stiffnesses of the end constraints. All the above dynamic–
based methods, however, make use of only the information of the natural frequencies, 
while the useful information obtained for the mode shapes is discarded. Moreover, the 
methods only investigated single structural members. 

Concerning axially loaded members as part of a structure, GREENING and LIEVEN (2003) 
studied the axial load identification of a single redundant frame using a 
sensitivity−based finite element model updating approach, i.e. the Newton method. The 
loads in all members were updated based on the experimentally identified natural 
frequencies. Similarly, BAHRA and GREENING (2011) examined the axial force identification 
for space frames using the Newton method. They showed an improvement to the 
approach by GREENING and LIEVEN (2003) such that the number of updating parameters 
was reduced by updating a scalar factor on each axial load pattern. The factors on the 
axial load patterns were updated based on the state of equilibrium of all member axial 
forces. Nevertheless, difficulties in modelling joints were found. In addition, as 
sensitivity−based approaches were used, their success depends strongly on the initial 
assumptions of the design parameters. A challenge was noted to find a start point 
leading to convergence. The loads in the examined frameworks were identified to an 
encouraging degree of accuracy, but correct solutions have been obscure and 
considerably demanding to be found. 

Based on the theoretical formulation for beams with unknown boundary conditions, 
analytical–based algorithms were proposed for the inverse estimation of the axial force 
in single beams or beams as part of a structure [LI et al. (2012), REBECCHI et al. (2013), 
MAES et al. (2013)]. However, the methods for single beams do not apply straight–
forwardly to truss structures. 

Even with the cumulative efforts by many researchers, the existing methods continue to 
exhibit shortcomings with respect to the axial force identification of multi–member truss 
structures. Besides, investigations considering the joint flexibility estimation in 
combination with the axial force determination has not been well investigated.  

2.1.4 Analytical–based Algorithms for Axial Force Identification 

The analytical–based methods by LI et al. (2012), REBECCHI et al. (2013) and MAES et al. 
(2013) offers convenience in the testing and analysis procedure for a member as part of 
a structure. Because the analytical–based method by MAES et al. (2013) is used in the 
present work, the theoretical formulation of the analytical–based algorithms is described. 

2.1.4.1 LI et al. (2012) 

The method by LI et al. (2012) examined structural elements including tie−bars, diagonal 
braces and short thick cables. Using Euler–Bernoulli beam theory, considering the 
bending stiffness, by separating of variables for displacement of free−vibration motion 
of specific shape ϕ(x) and having time−dependent amplitude Y(t), from Eq. (2.7) one has 
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where the single constant 4 is designated for mathematical convenience. Eq. (2.19) 
yields two ordinary differential equations 

2( ) +. . ( 0.). .( ) +.+Y t ω Y t  (2.20)
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Setting a complex number g2 to be associated with N, i.e. g2 is purely imaginary when  
N < 0 and purely real when N ≥ 0, and expressing 4 in terms of the natural frequency, 
the following expressions are obtained 

2
2 4 .. . ...... . .,N ρAωg α

EI EI
 (2.22a,b)

From Eq. (2.22a,b), the parameters q1 and q2 can be defined in Eq.  (2.23a,b) as 
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Based on the relationship of g2, 4 and q1 and q2, the solution of the axial force can be 
obtained by solving the determinant of the characteristic matrix [S]4x4, whose 
components in measurement of acceleration, velocity or displacement are 
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where x1 to x5 are the positions of the sensors along the beam and assuming that x5 is the 
location of the reference sensor, λij is the ratio of the modal displacements ϕ(x) in any two 
points among the five measurement points corresponding to a certain order mode.  
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Solving the determinant of [S] gives the values of q1 and q2, and the axial force value can 
be calculated as 

2 2
1 2. .N EI q q  (2.25)

The method was tested on a rectangular beam in laboratory, providing reasonably good 
results. For the method to work, it requires at least five sensors because of the five 
unknowns of axial force N and four springs at boundary conditions. Theoretically, the 
use of any single mode is sufficient; however spurious solutions may occur. Therefore, 
the results obtained for several modes should be compared to find the correct solution.  

In the work of LI et al. (2012), the identification of boundary conditions were also 
investigated. The translational and rotational springs at the beam ends were identified 
However, the sensors are required to be placed at the beam ends. In practice, 
measurements of the mode shape displacements at the ends of a beam or a structural 
member are sensitive to the experimental errors due to the generally small movements 
of the member ends. 

2.1.4.2 REBECCHI et al. (2013) 

Similar to the method of LI et al. (2012), REBECCHI et al. (2013) proposed an analytically–
based algorithm for the axial load identification of slender prismatic beams using one 
vibration frequency and five amplitudes of the corresponding mode shapes, based on 
Euler–Bernoulli beam theory. The method can be also applied to a beam with uncertain 
vibration length making use of the total length distance between the five sensors.  

Making use of the non−dimensional coordinate z = x/L (0 < z < 1), Eq. (2.7) can be 
expressed as 

4. . . . . . . .( ) ( ) ( ) 0ivv z ηv z v z  (2.26)

where the parameters η and are defined as 
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The solution of the axial force N can be obtained by solving the Eq. (2.28), provided that 
the control points are assumed at sections having non−dimensional coordinates z0 = 0,  
z1 = 1/4, z2 = 1/2, z3 = 3/4 and z4 = 1.  
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where v0, v 1, v 2, v 3 and v4 are the mode shape amplitudes at one frequency; p1 and p2 are 

2 2 4
1

1. ( 4
2

. )p η η  

2 2 4
2

1. ( 4
2

. )p η η  
(2.29a,b)

 



2.1   Theoretical background 

   

29 
 

2.1.4.3 MAES et al. (2013) 

Based on Timoshenko beam theory, MAES et al. (2013) developed an analytical method to 
estimate the axial force for a beam as a member of a truss structure by local 
measurements. Two different approaches were considered, i.e. the modal characteristics 
approach and the frequency domain approach. The identified force resulting from the 
two approaches depends on the selected mode or is a combination of many modes. 

From the transversal force and moment equilibrium for a free beam section adopting the 
Timoshenko beam theory, by performing separation of variables and assuming the 
transverse displacement to be harmonic at frequency ω, one has 

4 2

1 2 34 2. .
ˆ ˆd ( ) d ( ) ˆ( ) 0

d d
. . . .v x v xa a a v x

x x
 (2.30)

where the parameters a1, a2 and a3 are defined as 
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For a fixed value of N, Eq. (2.30) has the solution 
4

1
. .ˆ( ) exp( )k k

k
v x C β x  (2.33)

 

where Ck are real constants depending on the boundary conditions, i.e. the connections 
of the bar to the rest of the structure, which are assumed as unknown because no 
assumptions are made with respect to these connections; the total unknowns therefore 
equal five including the axial force and the four unknown boundary conditions (two 
translational and two rotational springs); β1 to β4 are defined as 
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The value of the axial force can be achieved by minimizing the function ∆n 

2
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where m  contains the value of the modal displacement at each of the sensor positions 
at a value of a frequency, and ║.║2 denotes the Euclidean vector norm. The matrix [B] 
and vector C are as follows 
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where [B]† is the pseudo matrix of the coefficient matrix B. 

Numerical simulations were used first to illustrate the method. The influence of both 
modeling errors and measurement errors was investigated, which concludes that the 
characteristics of the bar must be accurately known. After that, laboratory experiments 
were performed. A bar with rectangular cross section was first tested as a single beam. 
Next, the bar was mounted in a laboratory space truss. The modal characteristics 
approach and frequency domain approach both yield close results for the single beam, 
but varying results for the bar as part of a space truss. In the present work, only the 
modal characteristics approach is applied, because the frequency domain approach 
requires assumption of a frequency range for averaging the axial force values, which is 
subjected to individual judgment. 

2.1.4.4 Axial Force Identification by Analytical–based Algorithms 

To evaluate the similarities of the analytical−based methods, due to the differences in 
the laboratory setups and specimens of the individual work, the three methods are 
compared using a common set of data, which is the data set of natural frequencies and 
mode shapes from the laboratory experiments given in LI et al. (2012). The reference 
forces are the experimentally measured forces by LI et al. (2012). The characteristics of 
the rectangular beam in laboratory tests of LI et al. (2012) can be seen in Figure 2.1.  

Furthermore, numerical simulation of the rectangular beam with the same 
characteristics is performed with ANSYS®. The purpose is to investigate the accuracy of 
the methods by numerical inputs, which are exempted from experimental errors. 
Experimental errors can result, for example, from inappropriate experimental setup, 
incorrect experimental performance or inaccurate identification of the experimental 
parameters. Without the influence of the experimental errors, it was examined if the 

 
Figure 2.1 – Rectangular beam in the laboratory tests by LI et al. (2012). 
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analytical–based methods give precise results according to the theory for the beam with 
the characteristics as described in LI et al. (2012).  

In Table 2.1, the results of the identified forces by the three analytical–based methods 
are compared, using two data sets of the frequencies and mode shapes, i.e. from 
experiments of LI et al. (2012) and numerical calculations. Note that only the frequencies 
and mode shapes at the positions of the five sensors of the first mode of a single beam 
were used. The results are also plotted in Figure 2.2. 

For the experimental data set, the method of MAES et al. (2013) gives better results than 
that of the other two methods. When using the data set from numerical calculations, 
improvement of the identified forces by all three methods can be seen, implying that 
experimental errors affect the accuracy of the results. If the errors induced from 
experiments can be minimized, all three analytical–based methods give accurate results 
according to the theoretical formulation. 

Only in the work of MAES et al. (2013), laboratory tests were also carried out for bars as 
part of a structure, i.e. as member of a space frame. The results of the identified forces 
in tabular form in the work of MAES et al. (2013) are represented in graphical form in 
Figure 2.3. For a single beam, the results of the identified forces based on the second to 
third modes match reasonably well to the experimental measured forces. The results 
based on the first mode were likely affected by the mass of the sensors, which become 
significant when the mass of the sensors is relatively high. When the beam is installed 
as a member of a space truss, however, the results of different modes vary significantly. 
The identified forces from the first six modes, except for the fourth and fifth modes, 
deviate from the experimentally measured forces with an averaged difference of 
approximately 5 kN to the true applied force that is increased from 0.14 to 14.13 kN. 

Some remarks about the analytical–based algorithms are summarized as follows. The 
methods of LI et al. (2012) and REBECCHI et al. (2013) use Euler–Bernoulli beam theory, 
while the method of MAES et al. (2013) uses Timoshenko beam theory. All the methods 
require the instalment of at least five sensors on a bar. If translational or rotational 
degrees of freedom of the boundary conditions are known, the number of required sensors 
can be less than five. More than five sensors will provide additional data and may 
improve the results. The sensors must be equally installed [REBECCHI et al. (2013)] or can 
be randomly distributed [LI et al. (2012), MAES et al. (2013)]. Equal distances between 
sensors were usually implemented. In the work of REBECCHI et al. (2013), the influence of 
the location of the instrumented sections was examined. It was found that the results of 
the identified forces depend on the location of the installed sensors. Based on the 
laboratory setup in REBECCHI et al. (2013), better results were obtained when the greatest 
possible distance between the measurement points of a beam was adopted. For all 
methods, the knowledge of the length of the beam is not mandatory, but only the length 
between the outmost installed sensors on the member and the distances between the 
sensors are required. 

All three methods provide more than one results of the identified force of a member for 
each of the mode considered. The result of a set of the identified forces based on different 
modes is used as a quality check, such that the result of the true force should appear 
most frequently and with small fluctuations between different values. In the method  
of MAES et al. (2013), two approaches were used, modal characteristics and frequency 
domain approach. In the second approach, the result of the identified force was averaged 
from a certain range of identified forces, although the selection of this range is not 
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Table 2.1 – Comparison of identified forces between different analytical–based methods using data 
sets from laboratory tests of LI et al. (2012) and numerical calculations. 

LI et al. 
(2012) 

 Experimental fn and ϕn [LI et al. (2012)]  Numerical fn and ϕn (FEM) 
 LI  REBECCHI  MAES  LI & REBECCHI MAES 

Nexp 
[kN] 

 Na 
[kN] 

∆  
[kN]  Na 

[kN] 
∆  

[kN]  Na 
[kN] 

∆  
[kN]  Na 

[kN] 
∆  

[kN]  Na 
[kN] 

∆  
[kN] 

0.00  2.78 −  2.79 −  1.40 −  0.00 −  0.01 − 
5.00  7.25 2.25  7.25 2.25  6.17 1.17  4.95 −0.05  5.00 0.00 
10.00  11.23 1.23  11.23 1.23  10.73 0.73  10.01 0.01  9.99 −0.01 
15.00  15.82 0.82  15.82 0.82  15.45 0.45  14.92 −0.08  15.00 0.00 
20.00  20.56 0.56  20.56 0.56  20.39 0.39  20.06 0.06  20.00 0.00 
25.00  25.45 0.45  25.45 0.45  25.37 0.37  25.05 0.05  25.00 0.00 
30.00  30.32 0.32  30.32 0.32  30.14 0.14  29.94 −0.06  30.00 0.00 

 
Figure 2.2 – Identified forces by different analytical–based methods using  data sets from laboratory 

tests of LI et al. (2012) and numerical calculations. 

(a) Single beam (b) Bar in space truss 

 

 
Figure 2.3 – Graphical representation of the results of the identified and measured forces from the 

laboratory tests given in the work of MAES et al. (2013).
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generalized and depends on a problem as well as individual judgment. Some 
recommendations were given in the work of REBECCHI et al. (2013) about the selection of 
a proper flexural mode shape to increase the accuracy of the identified force.  Flexural 
mode shapes to be selected should have maximum amplitudes in the frequency response 
functions (FRF) of control points in the proximity of midspan of the member. 
Furthermore, the amplitudes of the five mode shapes at five instrumented sensor 
locations should have the same sign. Mode shapes with small amplitudes that are close 
to a straight line should be systematically eliminated in the identification process, 
because the quality of the acquisition and identification of these mode shapes may be not 
high. It was also stated that the problem of selecting a proper mode shape may be more 
challenging for a beam as member of a structure, because global modes may interfere 
with local modes. 

In the work of LI et al. (2012), laboratory tests were carried out for a single rectangular 
beam. In REBECCHI et al. (2013)’s work, laboratory tests were conducted for a three–span–
continuous beam; the corresponding reference model to be used in the identification 
process was a single beam with unknown boundary conditions. In the most recent work 
of MAES et al. (2013), two types of laboratory experiments were performed, i.e. (i) for a 
single axially loaded rectangular steel bar; after that (ii), the same rectangular bar was 
mounted in a laboratory–scaled space truss. Therefore, only in MAES et al. (2013)’s work, 
the analytical–based method was examined by laboratory tests for a member belonging 
to a built–up structure. 

Besides, the laboratory tests and identification process were only performed for tension 
members. Theoretically, the analytical–based methods can be applied to identify the 
compressive forces. However, the feasibility and accuracy of the methods for compression 
members, as well as for members of asymmetric profiles, require investigation. 

The advantages of the analytical–based methods are the simplicity or practicability of 
the application and analysis procedure for a single beam, such as tie–rods in historic 
arches and vaults, or for a specific member in a truss structure, whose axial force is of 
interest. Several limitations are (i) the results of the identified force are influenced by 
the location of the instrumented sections; (ii) a possible range of the identified force is 
acquired because of possibly diverse results from different modes; and (iii) only the axial 
force on specific members of a structure is to be identified, i.e. members where 
measurement sensors are installed. The forces on other members without measurements 
are not known. The issue regarding the further analysis to obtain the forces in all 
members of a structure is not yet covered. For a complex structure, such analysis may 
not be straightforward. In other words, a global model of a structure is not available to 
predict the structural responses under alternative loading arrangements. Moreover, a 
practical investigation of the methods for bars as part of a structure is still limited.  

2.2 Modelling and Analysis of Semi–Rigid Connections 

For truss structures composed of axially loaded members connecting at joints, the 
common assumption of all pinned joints allows the individual members to act as bars 
supporting primarily an axial force. This simplifies greatly hand calculations to analyse 
the forces in the structure and contributed significantly to the popular use of trusses. 
However, joints in practice do not really permit free rotation. The analysis of a pinned–
jointed truss is thus an approximation.  
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Beside assumption of pinned joints, rigid or semi−rigid joints are also used for layout of 
the structural members in the form of a truss structure, e.g. truss girders, offshore 
structures or space trusses. For rigid joints, bending effects are introduced in the 
structural members. Nevertheless, the bending effects are in many cases neglected in 
the analysis of trusses. 

Considering the historical development from pin−jointed trussed framework to 
rigid−jointed frame, early in 1851 Karl Culmann (1821–1881) introduced the term 
trussed framework18 and developed a trussed framework theory, implicitly assuming 
frictionless pins at the joints [CULMANN (1851)]. In the same year, Johann Wilhelm 
Schwedler (1823–1894) described the pinned−jointed trussed framework model that, 
whereas the frames are thought of as rigid construction, the small resistances caused by 
the small elastic bending at joints are negligible when compared with the resistance of 
the strut, or the individual framework components can be assumed to be capable of 
rotation at joints [SCHWEDLER (1851)]. 

During the last decades of the 19th century, the contradiction of the pin−jointed trussed 
framework model to the as−built reality of the iron trussed framework with riveted joints 
led to the development of the theory of secondary stresses in truss structures [KURRER 
(2008)]. The truss members converging at the riveted joints are not only subjected to 
axial tension or compression forces, but to bending moments, too; the latter generate 
bending stresses. Friedrich Engesser (1848–1931) and Emil Winkler (1835–1888) 
grouped bending stresses together under the term secondary stresses [KURRER (2008)]. 
The quantification of secondary stresses requires rather cumbersome calculations 
compared to the pin−jointed trussed framework model because the structural system of 
the trussed framework with rigid joints is highly statically indeterminate. 

In 1878, Heinrich Manderla (1853–1889) submitted a complete solution to enable the 
calculation of the secondary stresses in simple trussed frameworks with rigid joints on 
the basis of second–order theory, which appeared in the journal Allgemeine Bauzeitung 
in Vienna in 1880 [MANDERLA (1880)]. Manderla also introduced unknown displacement 
parameters into the mathematical elastic theory for the calculation of truss systems.  
In 1879, Friedrich Engesser (1848–1931) published an approximation method for 
determining the secondary stresses [ENGESSER (1879)], which neglected the bending 
stiffness of the web members and analysed the top and bottom chords as continuous 
beams with imaginary supports at the joints.  

Winkler made his name through comprehensive contributions to the theory of secondary 
stresses. He introduced the difference between end tangents and member chord angles 
of rotation at the joint, and also considered eccentric truss joints [WINKLER (1881)]. As 
reported in one of the trussed frameworks analysed by Winkler, the increase in stresses 
compared with those calculated from the pin–jointed trussed framework model is, on 
average, 14 % for concentric joints and 20 % for eccentric joints (eccentricity of 50 mm).  

Furthermore, Otto Mohr (1835–1918) contributed to the theory of secondary stresses by 
clear differentiation between the joint angles of rotation and the member angles of 
rotation for the ambiguous determination of the deformed state of a trussed framework 
with rigid joints [MOHR (1892/93)]. In 1910, Willy Gehler (1876–1953) summarized the 

                                                 
18 Trussed frameworks in the 1840s and early 1850s were still dominated by composite systems made of 
timber, cast iron and wrought iron [KURRER (2008)]. 
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development of the theory of secondary stresses in iron truss bridges and practical 
calculation procedure after Mohr [GEHLER (1910)]. Based on comprehensive 
measurements carried out on the railway bridge across the River Elster on the Dresden–
Elsterwerda line, Gehler concluded that Mohr’s procedure for determining the secondary 
stresses provided results that are in good compliance with the values observed in reality. 

In the analysis of a realistic structure, the accuracy of the analysis can be greatly 
improved if the effects of joint flexibility are considered [e.g. LUI and LOPES (1997), LUONG 
et al. (2016), LUONG et al. (2017)]. The dynamic behaviour of a flexibly connected frame 
differs significantly from a rigid or pinned−jointed frame [CHAN (1994)]. 

During the last decades, extensive research has been conducted on the analysis and 
design of steel frames with semi–rigid connections. To estimate the actual behaviour of 
joints, numerous studies were made on semi–rigid connections, for instance state of the 
art reports [e.g. ZOETEMEIJER (1983), JOHNES et al. (1983), ANDERSON et al. (1987), CHEN et 
al. (1995)], numerical studies [e.g. CHAN (1994), GALVÃO et al. (2010), RAMIRES et al. (2012), 
NGUYEN and KIM (2013)] and experiments [e.g. KAWASHIMA and FUJIMOTO (1984), NADER and 
ASTANEH (1991), LIEW et al. (1997), DA SILVA et al. (2008)]. 

Modern design codes recognize the concept that the actual joints exhibit an intermediate 
behavior between the two extreme cases of pinned and rigid. Provisions in several design 
codes of practice have also been made for the design of steel frames with semi–rigid joints 
[e.g. DIN EN 1993−1−8: EUROCODE 3 (2005)]. EUROCODE 3 (2005) includes procedures and 
formulations to define both the stiffness and resistance of the semi–rigid joints from their 

Table 2.2 – Brief overview of the work relating to semi–rigid connections of steel frames. 

Year Author Connection model Analysis type 
   Static Dynamic 
1942 JOHNSTON and MOUNT Linear ●  
1960 BAKER Linear ●  
1963 MONFORTON and WU Nonlinear ●  
1970 ROMSTAD and SUBRAMANIAN Bilinear ●  
1981 MONCARZ and GERSTLE Nonlinear ●  
1982 STUTZKI Linear ●  
1984 KAWASHIMA and FUJIMOTO Linear  ● 
1988 SIVAKUMARAN Bilinear ● ● 
1991 NADER and ASTANEH  Linear and nonlinear ●  
1992 FARIS and KITIPORNCHAI Nonlinear ●  
1994 CHAN Linear ● ● 
1995 BHATTI and HINGTGEN Nonlinear ●  
1995 ZHU et al.  Nonlinear ● ● 
1995 WONG et al.  Linear ● ● 
1997 LUI and LOPES Bilinear  ● 
1997 LIEW ET AL.  Linear and nonlinear ●  
2001 SEKULOVIC and SALATIC Nonlinear ●  
2002 SEKULOVIC et al.  Nonlinear  ● 
2003 HADIANFARD and RAZANI  Linear ●  
2008 DA SILVA et al. Nonlinear ●  
2009 TÜRKER et al.  Linear  ● 
2010 GALVÃO et al.  Nonlinear ● ● 
2012 RAMIRES et al.  Bilinear ●  
2013 NGUYEN and KIM Linear and nonlinear  ● 
2014 ATTARNEJAD and PIRMOZ Nonlinear  ● 
2014 RAZAVI and ABOLMAALI Nonlinear ● ● 
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geometrical and mechanical properties. An analytical procedure, called Component 
Method (CM), allows one to evaluate the stiffness and resistance characteristics of the 
joint by assembling those of all the constitutive components. 

In the analysis of the semi–rigid frame structures, the connections are assumed to be 
able to transfer the vertical shear and have the capacity to transfer some moment. When 
a moment is applied to a connection, the connected members rotate relative to each other. 
The rotational behavior of the joint can be described by means of the moment–rotation 
curve. The curve defines three main properties as rotational stiffness, moment resistance 
and rotation capacity. Many studies are aimed at obtaining these moment–rotation 
curves or the associated properties to incorporate them in the frame analysis. 

Considering the mathematic models for semi–rigid connections to represent moment–
rotation relationship curves, the models can be grouped into two categories, i.e. linear 
and nonlinear semi–rigid connection models (see Table 2.2). Linear models are convenient 
in formulation and implementation assuming that the stiffness of connections is 
constant. In the nonlinear semi–rigid connection models, the stiffness of connections is 
varied corresponding to different loading magnitudes [GALVÃO et al. (2010)].  

According to NGUYEN and KIM (2013), numerical results show that the use of different 
semi−rigid connection models does not substantially affect the behaviour of frames that 
are subjected to small connection moments and small deflection range. SEKULOVIC et al. 
(2002) discussed that the linear model has been widely used for its simplicity and is good 
in cases when the connection moment is small. In addition, a nonlinear model is 
necessary only when the connection rigidity may rapidly decrease compared with its 
initial value. ZHU et al. (1995) stated that the effect of the nonlinear behaviour of 
structural joints on the structural response is more apparent under cyclic and dynamic 
loading conditions. In the selection of a connection model, the accuracy as well as 
simplicity and versatility of the chosen model are among guiding parameters. 

To incorporate the flexibility of the nodal connections in the analysis of the structures, 
the stiffness of rotational springs may be indicated by using modulus of elasticity, 
moment of inertia and length of a related bar. A stiffness matrix in local coordinates of 
a bar having semi–rigid end constraints is given in TÜRKER et al. (2009). For practical 
purposes, constraint parameters in the form of stiffness indexes or percentages of semi–
rigid connection have been introduced to assess the degree of joint flexibility  
[e.g. KAWASHIMA and FUJIMOTO (1984), YU and SHANMUGAM (1986), SEKULOVIC and SALATIC 
(2001), TÜRKER et al. (2009)]. The stiffness index k ris  and fixity factor kriγ  representing 
the semi–rigid connection are expressed as 

ri
k ri

k Ls
EI

   (2.38) 
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ri

kri
ri

k Lγ
EI k L  

   (2.39) 

where kri is the rotational spring stiffness at i end of a member, EI is the flexural stiffness 
and L is the length of the member. The stiffness index takes the value of zero for pinned 
condition and tends to infinity for rigid connection, while the fixity factor takes values 
from zero to one corresponding to pinned to rigid condition.
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2.3 Finite Element Model Updating for Civil Engineering Structures 

Finite element model updating is proved to be a powerful tool to assist engineers in the 
structural assessment process. It helps to refine selected uncertain input parameters 
and validate the assumptions of the numerical model of various types of structures. Since 
the 1990s, finite element model updating emerged as important in the fields of 
mechanical and civil engineering. Contrast to the use of model updating for system 
identification in control engineering, model updating in civil engineering is performed 
off–line with the aim to generate improved numerical models to predict the responses 
under alternative loading arrangements or modified structural configurations. 
Therefore, as a demand upon model updating in civil engineering, the updated model 
must not simply reproduce the test results but also be physically meaningful. 

In structural dynamics, model updating methodologies can be categorized basically into 
the direct methods and the iterative approaches [BAKIR et al. (2008)]. The direct methods 
update directly the elements of the stiffness and mass matrices of the finite element 
model in a one–step procedure without regard to changes in physical parameters. The 
updated system matrices represent the measured parameters, but unfortunately have 
little physical meaning and cannot be related to physical changes of the original finite 
element model. Some direct methods can be found for instance in FRISWELL and 
MOTTERSHEAD (1995). Wavelet–based direct algorithms were proposed by ZABEL (2003). 

The iterative methods, on the other hand, update physical parameters of the finite 
element model until a sufficient degree of accuracy with respect to the measured data is 
achieved. Parametric changes are made to the model and the updated mass and stiffness 
matrices have physical meaning. In iterative methods, typically an objective function is 
improved by a step–by–step approach. A set of parameters are updated to minimize the 
objective function that quantifies the difference between measured and theoretical data. 
The experimentally derived and numerically calculated features in vibration–based 
model updating are typically natural frequencies and mode shapes. The uncertain 
parameters that need to be updated are such as material or geometrical properties, 
loading, boundary conditions, etc. 

There are different approaches that have been proposed in the literature for iterative 
model updating. The approaches can be distinguished between local and global 
optimization methods. While local methods converge to the minimum that is closest to 
the initial parameter set, global methods try to find the global minimum. 

Generally, three groups of standard optimization methods are (i) gradient–based 
methods, e.g. quasi–Newton, augmented Lagrangian, sequential quadratic programming, 
etc. [TEUGHELS (2003), CHEW et al. (2016)]; (ii) response surface methods [BATILL et al. 
(1999), GANGULI (2002), REN and CHEN (2010)]; and (iii) nature–inspired algorithms, e.g., 
genetic algorithms, evolutionary strategies, particle swarm optimization [GOLDBERG 
(1989), ZABEL and BREHM (2009), YU and GEN (2010), MARWALA (2010), YANG (2014)]. 

Conventional gradient–based methods have a satisfactory convergence rate, but they 
may get stuck into local minimum depending on the starting point. BAHRA and GREENING 
(2006) discussed the sensitivity–based updating of loading in frameworks using the 
Newton method. This method makes use of the local curvature of the original function, 
based on which an approximate quadratic model function is calculated in each point of 
the iterative process and minimized to obtain the consecutive point. The iterative process 
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ends when the minimum is reached. LINK and WEILAND (2009) stated that sensitivity–
based approaches are widely used techniques for parameter estimation. BROWNJOHN et 
al. (2001) described the sensitivity–based finite element model updating method for 
structural assessment of bridges. The shortcoming of the sensitivity–based approaches 
is that its success strictly depends on the assumptions of the starting values of the  
target parameters to be close to the optimum; that unfortunately cannot be ensured in 
real–life applications. 
The global search methods, such as genetic algorithms and particle swarm optimization, 
are used in model updating with highly flexible applicability [ZABEL and BREHM (2009)]. 
Examples of applications are model updating of railway bridges [CANTIENI et al. (2008), 
ZABEL and BREHM (2008), ZABEL and BREHM (2009), RIBEIRO et al. (2012)], or inverse 
identification of axial force in tie–rods [GENTILINI et al. (2013)]. The advantages of the 
global search methods are that they are in general robust, the choice of the starting 
position has little influence on the final results, as well as they present a better global 
behaviour. The general drawback of the global search methods is high computational 
costs since they are based on probabilistic searching without the use of gradient 
information. For a respective problem, it is essential to choose an appropriate objective 
function and optimization algorithm. 

2.3.1 Background of Selected Optimization Techniques 

According to NOCEDAL and WRIGHT (1999), a good algorithm should possess the following 
properties: (i) robustness – a good performance on a wide variety of problems in their 
class; (ii) efficiency – requirement of not too much computational costs or storage; and 
(iii) accuracy – ability to identify a solution with precision, without being overly sensitive 
to errors in the data or arithmetic rounding errors of computer systems. These goals may 
often conflict. In numerical optimization, tradeoffs between different objectives are 
considered central issues, for instance between convergence rate and storage 
requirements, or between robustness and speed, and so on.  

2.3.1.1 Gradient–based Methods 

The gradient–based optimization algorithms were introduced by SCHITTKOWSKI (1985). 
They mainly use quasi–Newton methods, such as nonlinear programming using a 
quadratic or linear least–square algorithm, e.g. Nonlinear Programming by Quadratic 
Lagrangian (NLPQL). Starting from a predefined initial parameter set, the 
gradient−based methods employ the local derivatives of the objective function to find 
next local optimum. A stepwise convergence to an optimum is performed by line search 
algorithms using gradients. Gradient–based optimization is known for fast convergence, 
but has the problem of getting stuck in local optima. Therefore, gradient–based methods 
are recommended to solve smooth nonlinear optimization problems with preferably 
small number of the design variables.  

2.3.1.2 Response Surface Methods 

Also known for low computational costs, the response surface methods replace the model 
responses by mathematical surrogate functions or approximation model instead of time 
consuming solver calls. The analyses are performed in two steps. First, a response 
surface is generated on a suitable set of discrete support points using appropriate 
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approximate functions. Then the optimization itself is carried out on the response 
surface, for which gradient–based and/or evolutionary algorithms are applied. To 
approximate the response surface, different methods can be used, such as least square 
or moving least square approximations. The accuracy of the methods depends on 
whether the resulting response surface is well qualified to represent global trends of the 
optimization problem. Adaptive response surface methods contain an improvement with 
regard to the certainty that the trends are sufficiently well represented, thus they are 
used to enhance approximation quality around the optimum. Although the response 
surface methods can offer extreme fast convergence, they have limitations to reasonable 
smooth problems, i.e. low dimensional single–objective optimization problems, and the 
continuous variables should not exceed ten variables [ZABEL and BREHM (2009)]. 

2.3.1.3 Nature–inspired Algorithms 

Nature–inspired algorithms are modern–type methods, also referred to as artificial or 
computational intelligence techniques. They have good universality and are less 
dependence on structural shape. Nature–inspired algorithms initiate natural processes 
like biological evolution, such as adaption, selection and variation, i.e. evolutionary 
algorithms, or swarm intelligence, i.e. particle swarm optimization. They are area of 
research that are of increasing interest and have multi–disciplinary applications.  

Genetic algorithms belong to evolutionary algorithms, a class of stochastic search 
methods. Based on Darwin’s principle survival of the fittest, a population of artificial 
individuals searches design space of possible solutions for better approximation. 
Evolutionary algorithms are population−based19, fitness–oriented20, and variation–
driven21 [YU and GEN (2010)]. Classical evolutionary algorithms include evolution 
strategies [RECHENBERG (1973)], evolutionary programming [FOGEL et al. (1966)] and 
genetic algorithms [HOLLAND (1975)]. Several recognized advantages of evolutionary 
algorithms are the capacity to handle large number of parameters and find near global 
minimum. In addition, they can be suitable for optimization problems with a high 
number of variables and/or constraints. 

Particle swarm optimization imitates social behavior of a swarm, moving into directions 
of previous optimal positions [KENNEDY and EBERHART (1995)]. Swarm intelligence 
influences by personal and global behavior. Three important parameters influence speed 
and spread of the swarm, i.e. separation, alignment, and cohesion22. In predefined global 
search strategy, swarm movement is intensive at beginning and damped throughout the 
optimization process. The method is less efficient if discrete design variables and many 
constraint conditions exist. With continuous variables, the particle swarm optimization 
converges generally close to global optimum. The efficiency of algorithm is improved by 
qualified start population. 

                                                 
19 Evolutionary algorithms process a whole group of candidate solutions, called a population, simultaneously. 
20 Every solution in a population is called an individual, which has its code – gene representation, and its 
fitness value – performance evaluation. Fitter individuals are preferred by evolutionary algorithms. 
21 Individuals undergo a number of variation operations to mimic genetic gene changes. Evolutionary 
algorithms use recombination to mix information of more candidate solutions into a new one. 
22 Separation refers the behaviour of avoiding the crowded local flockmates; alignment is the behaviour of 
moving towards the average direction of local flockmates; cohesion is the behaviour of moving towards the 
average position of local flockmates. 
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A review by CHAUHAN and SAINI (2014) concluded that artificial intelligence techniques 
are promising techniques. FADAEE and RADZI (2012) reviewed six different optimization 
techniques and identified genetic algorithms and particle swarm optimization as most 
useful and promising multi–objective optimization methods. Genetic algorithms excel in 
solving global, centrally managed optimization tasks. Swarm intelligence, on the other 
hand, is designed to solve problems in a decentralized, distributed way. 

Recent research also gives attentions to hybrid optimization methods, in which 
individual nature–inspired approaches are used as parts of hybrid intelligent systems to 
overcome the limitations of a single algorithm. Examples are combination of particle 
swarm optimization with simulated annealing [WANG et al. (2007)], or use of domain–
specific operators in genetic algorithms [GIL and HAN (2011)], and so on. 

2.3.1.4 Remarks about Selected Optimization Techniques 

Considering the application of the optimization techniques in the present work, the 
advantages and disadvantages of the aforementioned optimization algorithms are 
summarized as follows.  

Gradient–based optimization methods offer low computational costs. However, for target 
functions with multiple local minima, it is difficult to find the global optimum. The 
number of the design variables is preferably small. Besides, the success of the gradient–
based optimization is decisively influenced by the choice of the starting point.  

The response surface methods can also offer fast convergence. In addition, they have the 
capability of finding global optimum. However, with a large parameter number, for 
instance of approximately more than twenty, problems arise in the formation of the 
approximation function. With a higher number of parameters, the response surface 
methods work inefficiently.  

Genetic algorithms and particle swarm optimization are both capable of handling large 
numbers of parameters and find near global optimum. Furthermore, the success of these 
techniques does not depend on the initial starting point. The drawback is high 
computational costs. 

2.3.2 Background of Experimental Modal Identification 

Since the rapid development of digital computers in the 1960s, experimental modal 
analysis has become an extremely active research topic [MAIA and SILVA (1997), EWINS 
(2000)]. Historically, the four main groups of communities have been using vibration 
testing and analysis are mechanical engineering, oil industry, aerospace engineering and 
civil engineering. The different disciplines have benefited from each other from their 
individual progress. 

2.3.2.1 Historical Development of Vibration Analysis 

According to BRAUN et al. (2002), early studies related to vibrations already dated back to 
ancient times. Progress was made by Galileo in 1581, who observed the period of a simple 
pendulum to be nearly independent of the amplitude of vibration. A century  
later, Newton has put a firm basis for the basic principles of dynamics. Further 
development of the science of mechanics was accounted by Euler (1707–1783). By the 
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year 1788, Lagrange has developed most of the analytical tools used in vibration studies.  
Rayleigh has written a first book that is devoted entirely to the theory of vibration Theory 
of Sound (1887), which together with textbooks of Timoshenko (1928) and Den Hartog 
(1934) formulated the important principles of the classical vibration theory. 

Since the beginning of the industrial revolution, vibration problems have faced engineers 
to constant challenges, for instance interaction of steam–driven trains with relatively 
flexible metal bridges caused vibration problem and fatigue. At the beginning of the 20th 
century, vibration problem was found for example from rotor dynamics of turbine 
generator sets, when central electric power stations were installed for cities. Moreover, 
development of airplanes and helicopters has set new vibrational challenges. In 1940, 
the collapse of the Tacoma Narrows suspension bridge has intrigued engineers, 
physicists and mathematicians in the past decades to find the explanation for the 
vibration–related failure.  

In the latter half of the 20th century, technology advancement regarding improved 
sensors and actuators as well as development of digital computer has facilitated 
engineering applications and solution for large vibration problems. In 1965, the proposal 
of the Fast Fourier Transform (FFT) by COOLEY and TUCKEY (1965) led to a rapid advance 
of commercialized electronic hardware analyzers for more precise measurements. 
Together with powerful computer software to perform finite element analysis, it enabled 
dynamic analysis of complicated real–scale structures. Nowadays, the field related to 
vibration is incredibly broad with multi–disciplinary applications. 

2.3.2.2 Overview of Modal Identification Methods 

The available experimental modal analysis techniques can be classified according to the 
function of the excitation source as (i) input–output or experimental modal analysis 
(EMA); (ii) output–only or operational modal analysis (OMA); and (iii) combined 
experimental–operational modal analysis. An overview of the most techniques can be 
found for instance in CUNHA et al. (2006), and more recently in REYNDERS (2012). 

EMA are based on the estimation of a set of FRF relating to an applied force. In EMA, 
the structure can be excited by one or several dynamic forces. The excited dynamic forces 
as well as the response of the structure to those forces are recorded. The modal 
parameters are extracted in the frequency range of interest. EMA has been well 
established and has vast applications, especially in mechanical engineering. For civil 
engineering (CE), however, EMA techniques are not suitable for large structures, such 
as bridges, towers, etc., where applied excitation forces might not have enough impact 
so that the contribution of the measured excitation is insignificant to the total structural 
response. In addition, the condition of the in–situ test for large structures is rather 
operational than laboratory testing, in which the effect of ambient excitation or 
operational loading, such as wind or traffic, in many cases might not be neglected. 

OMA are developed to overcome the limitation of EMA, based on the premise that wind, 
traffic or human activities can adequately excite the structures. In OMA, modal 
parameters are extracted from the dynamic response to (partly) unmeasured operational 
forces. Nevertheless, OMA is also subjected to some shortcomings. The first shortcoming 
concerns an incomplete modal model from output–only measurement, because the mode 
shapes cannot be scaled in an absolute sense, e.g., to unit modal mass. A possible solution 
is to add or remove a significant amount of mass to or from the structure and perform  
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a second measurement; however, this is not always practical. Secondly, considering 
ambient excitation, the result may be confined to a narrow frequency band and thus the 
quality of the extracted modes might be limited to only a certain number of modes. 
Furthermore, most experimental and operational modal analysis algorithms only yield 
point estimates for the modal parameters, meaning the information on their uncertainty 
is not known when estimation is made from a single test. 

During the last years, there has been increasing interest to combine modal testing 
techniques, also called hybrid vibration testing or Operational Modal Analysis with 
eXogenous inputs (OMAX), where artificial force is used, and operational forces are 
included not as noise but as useful excitation in the identified system model. The 
amplitude of the artificial forces can be equal to, or lower than that of the operational 
forces. For modal testing of large structures, this aspect is crucial that allows the use of 
small and practical actuators which is easier to transport. More details are given in 
REYNDERS (2012).  

The mathematical methods for processing the modal analysis data can be classified 
according to the domain in which they are performed, i.e. the frequency or the time 
domain. Depending on the simplicity and the feasibility of the application in the  
field, the methods can be used in separate phases of the data processing. The pre–
processing phase concerns the verification of the acquired data by means of checking the 
frequency content. For this stage, the most used method in civil engineering is the Peak 
Picking method.  

The post–process phase is frequently carried out when more reliable results are required 
and more time can be devoted to the task. The most used methods in civil engineering 
are the Frequency Domain Decomposition, the Enhanced Frequency Domain 
Decomposition and the Stochastic Subspace Identification. Next, a brief description of 
several common techniques is given. 

2.3.2.3 Peak Picking 

The Peak Picking (PP) method, a frequency domain technique, is the simpler and more 
practical method for modal identification. In spite of some drawbacks, the PP method 
provides fast results and is useful as a pre–process tool when dynamic monitoring is 
performed. Systematized by FEBER (1993), this method determines the natural 
frequencies of the structures as the peaks of the Average Normalized Power Spectral 
Densities (ANPSD). The damping factors are determined using the Half Power 
Bandwidth Method (HPBM), and the components of the mode shapes are determined by 
the values of the transfer functions at the natural frequencies, see for example PEETERS 
and DE ROECK (1999). The main limitations of the PP method are that picking the peaks 
is often a subjective task as well as identifying close frequencies is difficult. In addition, 
operational deflection shapes are obtained instead of mode shapes and the damping 
estimates are unreliable. 

2.3.2.4 Frequency Domain Decomposition 

The Frequency Domain Decomposition (FDD), a frequency domain technique, performs 
an approximate decomposition of the system response into a set of independent single 
degree of freedom (SDOF) systems, one for each mode. Each of the estimated spectral 
density matrices is decomposed using the Singular Value Decomposition (SVD) 
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algorithm, in which the singular values are the estimates of the auto spectral density of 
the SDOF systems, and the singular vectors are the estimates of the mode shapes 
[BRINCKER et al. (2000)]. The technique is non–parametric and the estimated modes are 
purely the result of signal processing. BRINCKER et al. (2000) improved the FDD method 
by presenting the Enhanced Frequency Domain Decomposition method (EFDD). It is 
closely related with the FDD method but include additional procedures to evaluate the 
damping and to get enhanced estimates of the frequencies and mode shapes of a system. 

2.3.2.5 Stochastic Subspace Identification 

The Stochastic Subspace Identification (SSI), a time domain technique, has been proved 
to be powerful, robust and one of the most accurate techniques. It fits a parametric model 
directly to the raw–times series data from the sensors. The SSI method was originally 
proposed by VAN OVERSCHEE and DE MOOR (1991) and modified by PEETERS and DE ROECK 
(1999). Generally, it is investigated for a set of parameters to minimize the deviation 
between the system’s measured and predicted responses. For the parametric model 
estimation, a reasonable number of parameters should be chosen. The modal 
identification is performed by constructing stabilization diagrams and selecting the 
stable poles in a certain system order.  

The novel approach of the reference–based stochastic subspace identification (SSI/ref) 
introduced by PEETERS and DE ROECK (1999) reformulated the classical algorithm using 
the covariances between the outputs and only a limited set of reference outputs instead 
of the covariances between all outputs. Since the dimension of the problem is reduced, it 
has beneficial effects on the computational costs. The implementations of the SSI/ref as 
SSI–cov/ref, i.e. covariance–driven, and SSI–data/ref, i.e. data–driven, give similar and 
reliable accuracy. The SSI–data/ref presents some advantages over the SSI–cov/ref, but 
it is considered to be slower [PEETERS (2000)] and its application is more demanding than 
the SSI–cov/ref. 

2.3.3 Model Updating Framework 

A framework for model updating, as explained by BREHM (2011), consists of the following 
distinct but interconnected tasks: sensitivity analysis, pre–test analysis, execution of 
experiments, feature extraction, and model updating. In each step, there always exist 
several sources of uncertainties or errors. ZABEL and BREHM (2009) classified three 
distinguished groups of errors that affect the quality of the model updating process. They 
are errors associated with the numerical model, errors associated with the measured 
data, and errors associated with the applied model updating method.  

Considering the numerical model of a structure, it is often described by finite element 
methods, in which the chosen discretisation may be inadequate or often the regions of 
joint connections and boundary conditions may be poorly presented. Regarding the 
measured data, random and systematic errors may occur. Insufficient mounting of  
the sensors to the structure can also lead to unwanted effects. In this case, incomplete 
description of the system behaviour by the measured data may occur due to the 
difference between the limited number of measurement points and the usually larger 
number of degrees of freedom of the model. More details can be found in MOTTERSHEAD 
and FRISWELL (1993), FRISWELL and MOTTERSHEAD (1995), and NATKE (1998).  
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With respect to the model updating method, ZABEL and BREHM (2009) discussed that the 
performance and results of model updating depend on the chosen objective function, the 
choice of parameters to be modified, as well as the optimization technique and respective 
parameters controlling the optimization algorithm.  

To select the parameters to be updated, parameters that are uncertain should be 
updated. Moreover, the updating parameters should influence the output data or the 
objective function considerably. Updating parameters which have similar effect on the 
model output may make the parameter estimation problem ill–conditioned. Example is 
updating the two unknown boundary conditions of a single beam that are represented 
by rotational spring stiffness. Because the identification problem is symmetric, the 
output of the numerical frequencies of the beam are identical by exchanging the 
boundary conditions. In this case, different values of the design parameters can lead to 
the same output value. 

The issue of unique estimation of parameters was discussed in FRISWELL and 
MOTTERSHEAD (1995). This situation arises because the measured data in general is not 
sufficient in quantity to enable unique parameters to be estimated. Mode shape data 
should be used, although this data is generally less accurate than the natural 
frequencies. As an alternative way to increase the amount of data available, one can test 
the structure in slightly different configurations or with mass or springs added to the 
structure [NALITOLELA et al. (1990), NALITOLELA et al. (1992)]. This technique is sometimes 
called perturbed boundary condition testing [LAMMENS et al. (1993)]. The structure and 
the theoretical model are perturbed; the measured eigenvalues before and after each 
mass or stiffness addition are used to update the parameters. The method requires that 
the structural perturbation is modelled accurately. 

Using added mass, GENTILINI et al. (2013) has studied the vibration of a modified tie–rod 
for the inverse identification of the axial force and the rotational spring stiffnesses of 
both end constraints. The use of additional masses has been also successfully adopted to 
identify structural parameters of beams such as mass density and flexural rigidity 
[SKRINAR (2002), TURKER (2008)]. 

2.4 Proposed Methodology 

The proposed methodology aims to identify the axial forces and corresponding stresses 
of truss structures, as well as provide information about the joint flexibility of semi−rigid 
joints. The method should have practical testing procedure on in–situ trusses and be not 
particularly sensitive to assumptions about the initial values of the design parameters. 

The proposed approach combines the finite element model updating and analytical− 
based methods. In addition, the global analysis of a truss structure is combined with the 
local analysis of its members. The vibration−based finite element model updating using 
global search optimization techniques is adopted. As reviewed, global optimization–
based approaches do not rely significantly on the initial parameter set and have been 
employed for solving complex optimization problems [MUSILEK et al. (2015)].  

Particularly, the following optimization algorithms are examined in the present work: 
(i) an adaptive response surface method (ARSM), (ii) a genetic algorithm (GA) and  
(iii) a particle swarm optimization (PSO). The feasibility and suitability of the methods 
with respect to the inverse identification of the axial forces and estimation of joint 
stiffness of truss structures are investigated.
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Beside the choice of an optimization algorithm, to ensure a successful and physically 
meaning updated model, focus was placed on the aspects of selecting the updating 
parameters as well as developing a meaningful objective function. This is assisted by the 
performance of a sensitivity analysis prior to an optimization process. 

Regarding a modelling strategy to properly represent the semi−rigid joints, the following 
assumptions are considered: (i) the material is assumed to remain elastic throughout the 
analysis; (ii) small strains, displacements and rotations are considered, as the connection 
moments of truss structures are normally small; (iii) slip and friction effects are not 
included. A finite element model is developed using linear elastic rotational spring 
elements at the end constraints and joints. The numerical model considers the dynamical 
response of semi–rigid connections and also includes the geometrical nonlinearity due to 
stress stiffening effects. 

2.4.1 Sensitivity Analysis 

Using an initial model, a sensitivity analysis is performed to examine the influence of 
changes in preselected uncertain model input parameters on changes in the selected 
assortment of possible features. The selection of uncertain model input parameters is 
greatly important, as only sensitive model input parameters can be identified with 
sufficient accuracy. A global sensitivity analysis can be carried out, which is a correlation 
analysis using the Pearson correlation coefficient or Spearman correlation coefficient. In 
the present work, a global sensitivity analysis, based on a stochastic sampling strategy 
and Spearman correlation coefficient, is performed prior to the optimization process to 
investigate the effects of the input parameters and identify the important uncertain 
parameters, i.e. design parameters, that most influence the objective function to be used 
in the model updating process.  

2.4.2 Proposed Two−Stage Model Updating Procedure 

Based on the results of the sensitivity analysis, a two−stage optimization procedure is 
proposed to determine the axial forces and estimate the joint stiffness of truss structures. 
In the first stage of the optimization process, the axial forces are to be identified. The 
calibration of the finite element model of the truss with the unknowns of the load and 
the rotational stiffness of the joints, whose initial values can be chosen randomly based 
on engineering–judgement, is carried out based on experimentally identified global 
natural frequencies and mode shapes. Furthermore, the axial forces in selected 
individual members of the truss are used as additional information. The 
analytical−based algorithm developed by MAES et al. (2013) is applied, in which the axial 
forces in selected members are estimated from the natural frequencies and five 
amplitudes of the corresponding mode shapes of a local member. 

From the identified forces in the first stage, the joint stiffnesses are estimated to a higher 
degree of accuracy in the second stage of optimization procedure. The validation criterion 
is the modal parameters of the global natural frequencies and mode shapes. The 
updating parameters are the joint stiffnesses and optionally the forces, but the variation 
of the forces should be kept small so that the axial force effects do not get dominant over 
the influences of the joint flexibility. The results of the second stage optimization are the 
rotational spring stiffnesses of joints indicating the level of semi–rigid connections.   
A schematic representation of the proposed methodology is shown in Figure 2.4. 
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* The load P is referred to the unknown external load(s) and used as the updating parameter in 
the proposed methodology. The member axial force N is calculated by static analysis and static 
equilibrium of the numerical model of the truss with the applied load P. 

Figure 2.4 – Schematic diagram of the proposed methodology to identify the axial forces and estimate 
the joint stiffnesses of truss structures. 
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2.4.3 Definition of Objective Functions 

For the first stage of the optimization, an objective function which includes terms related 
to the residuals of the frequencies and mode shapes as well as additional information of 
the member axial forces in selected members is minimized. Thus, the objective function 

objIf  in the first stage to identify the axial forces is defined as 

1 1 1

| || | | MAC( , ) 1|
num anum expnmodesf nmodes nbars
j jexp numi i

objI i iexp ref
i i ji j

N Nf ff a b c
f N

 (2.40) 

where a, b and c are weighting factors for the terms of the objective function, assuming 
in general cases to be equal to one; exp

if , num
if  , exp

i and num
i  are the experimentally 

identified and numerically calculated natural frequencies and mode shapes of mode i; 
nmodesf and nmodes are the total number of modes and nbars is the total number of 
selected members. num

jN  is the numerically calculated axial force by static load 
equilibrium in selected member j; a

jN  is the analytically−based identified axial force 
based on MAES et al. (2013); ref

jN  is the axial force equal to ref
j jσA , where jA  is the 

cross−sectional area and ref
jσ is the reference stress in the individual member j, assuming 

at an intermediate level of 50 N/mm2 to avoid a too low or too high value. ref
jN is used as 

the divisor instead of a
jN , because a

jN  may be less accurate for low values of axial 
stresses, as well as it may differ itself significantly between a low and high value of the 
force. 

In the second stage of optimization, the objective function objIIf  to identify the joint 
stiffnesses is defined as 

1 1

| | | MAC( , ) 1|
num expnmodesf nmodes

exp numi i
objII i iexp

i ii

f ff a b
f

(2.41) 

which contains the residuals of the natural frequencies and modal assurance criterion 
(MAC) indices or mode shapes. 

2.4.4 Mode Pairing Criteria 

The mode pairing technique establishes the correspondence between the most likely 
numerical modes with the experimentally identified modes. To assure a correct 
sensitivity analysis and a well–shaped objective function in the optimization process, 
correct assignment of the modes plays a vital role.  

Based on the results of the numerical study, truss structures can possess closely−spaced 
modes as well as similar modes of vibration. Therefore, the energy–based modal 
assurance criterion (EMAC) proposed by BREHM et al. (2010) is applied for the mode 
pairing criteria, in addition to the traditional MAC. The EMAC allows classification of 
the mode shapes taking into account the relative Modal Strain Energy (MSE) of a defined 
cluster of degrees of freedom. Therefore, information extracted from the measurements 
related to specific modes can be utilized in a more beneficial way. The modal assurance 
criteria (MAC) is given by 
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where ˆ jΦ  is the numerically derived vector containing the coordinates from numerical 
mode jth corresponding to the experimental degrees of freedom and ˆ

iΦ  is the 
experimentally obtained vector containing the experimental information of mode ith. 

The MSE, the relative MSE for selected clusters of degrees of freedom and the EMAC 
[BREHM et al. (2010)] are calculated as 

2

1 1

. . .1 1 1ˆ ˆ ˆ ˆM .
2

.SE
2 2

T T
j jkljk jl j jk

n n

l
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1.
.

.

ˆ ˆMSE
MSE ˆ ˆ

T

kljk jk jl
jk T

j
j j

n
l Φ K Φ

Φ K Φ
 (2.44) 

EMAC MACijk jk ij  (2.45) 

where MSEj is the total MSE for mode j, is the relative MSE for mode j with respect 
to cluster k. Concerning the information to be extracted from the finite element model, 
they are the stiffness matrix of the whole structure and/or the stiffness matrix of  
selected degrees of freedom that belong to a defined cluster. A defined cluster should 
reflect the information extracted from the distribution of measurement points as well as 
their measurement directions related to a specific mode, for instance a cluster can be 
defined to include only the degrees of freedom of in−plane vibration, if the measurements 
only allow the in−plane degrees of freedom to be extracted. Moreover, the information of 
the numerically computed modal parameters of the structure, i.e. natural frequencies 
and mode shape coordinates, is required, which can be extracted from the finite element 
programme after the modal analysis of the numerical model is performed.  

The relative MSE is in the range between zero and one. The relative MSE is connected 
to the MAC by multiplication. Therefore, the range of the EMAC is bounded between 
zero and one. The value of zero represents no consistent correspondence, whereas a value 
of one indicates a highly consistent correspondence. The assignment of modes is given 
similarly to the MAC, where the numerical mode with the largest value is assigned to 
the respective experimental mode. 

2.4.5 Optimization Process 

A flow chart of the optimization process is shown in Figure 2.5. A numerical model based 
on the finite element method is developed. Static analysis is performed to obtain the 
stress distribution in the truss members. Dynamic analysis is performed for the structure 
in its prestress state, and numerical natural frequencies and mode shapes are calculated 
for each loading condition. The results of the modal parameters are extracted. In addition, 
the stiffness matrix of the truss structure is exported to calculate the relative MSE.  
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Based on the experimental modal information, the mode pairing is carried out with the 
calculation of the MAC and EMAC matrices. The objective function, as defined in  
Eq. (2.40) or Eq. (2.41) depending on whether the optimization is in the first or second 
stage, is calculated. Finally, the application of an optimization technique is performed. 
The estimation of a new set of the parameters is made, which are bounded between the 
lower and upper limits, for the minimization of the objective function residuals. The 
implementation and execution of the proposed methodology is carried out using three 
software packages, e.g. ANSYS® for the finite element method, Matlab© regarding the 
computation process and OptiSLang© concerning the iteration process using the 
optimization techniques. The iterative process is continued until the convergence 
criterion is satisfied or when the generations reach the maximum value. 

 
Experimental testing and analysis    MSE    modal strain energy 
Numerical modelling and analysis   MAC    modal assurance criterion 
Computation process      EMAC  energy−based modal assurance 
Iteration process      criterion 

Figure 2.5 – Flowchart of the optimization process of the proposed methodology. 
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2.5 Discussions 

In the literature, although many methods have been presented for the axial force 
identification based on vibration measurements, most of the methods considered only 
single structural members. Moreover, few of them concern the estimation of the rigidity 
of the structural joints and end constraints.  

The use of a dynamic−based approach is attractive for existing truss−type structures  
to determine their state of stress and assess the safety condition, due to the nature  
of minimum intervention of dynamic−based approaches and based on the sensitivity  
of the modal parameters to the effects of stress stiffening and joint rigidity of  
truss−type constructions. 

As reviewed, finite element model updating methods are proven to be powerful 
techniques. With the use of global search optimization strategies, they allow more 
flexibility in the applications. Nevertheless, engineering judgements and reasonable 
selection of the updating parameters are essential to avoid unrealistic solutions. 

To achieve the success of a vibration–based model updating approach, the key aspects 
include accurate identification of the experimental parameters, construction of an 
appropriate numerical model, definition of a meaningful objective function, as well as 
selection of an effective optimization algorithm.
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3
VERIFICATION OF METHODOLOGY 

BY NUMERICAL STUDY 
   

 

 

 

 

Numerical simulation allows subsequent experiments to be carried out effectively.  
This chapter focuses on the construction of finite element models for three types of 
systems from simple to more complex structures. Numerical sensitivity studies are 
presented to understand the influences of selected parameters on the static as well as 
dynamic responses of the systems. The feasibility and robustness of the proposed 
methodology to identify the axial forces and estimate the joint flexibility are discussed.

Single bar 2−bar 3−bar 

5−bar 13−bar 7−bar 
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3.1 Overview of Investigated Systems 

Three types of systems were chosen to be examined closely: (i) single bars, (ii) a two–bar 
truss−like system, and (iii) a five–bar truss. They were developed step by step from a 
simple single bar to a more complicated truss structure. The simple systems, whose 
structural properties with physical meaning and high reliability, were studied first to 
provide foundation to understand more complex systems. The investigated systems were 
designed to be lightweight truss–type structures and characterized mainly by axial 
forces. They were also constructively relevant for subsequent laboratory experiments. 

3.2 Single–Bar Systems 

The single bar was modelled by the finite element method based on Timoshenko beam 
theory. Semi−rigid connections were considered by introducing rotational springs to the 
two ends of the bar, as shown in Figure 3.1.  

First, to understand the fundamental influences of structural input parameters on the 
dynamic responses of the single–bar system, a preliminary parametric study was 
conducted, which is provided in Appendix B. The independent effect of several selected 
input parameter on the natural frequency of the first mode of the single−bar system was 
examined. The input parameters are tensile stress, rotational spring stiffness of 
constraints, cross−sectional area, length of the member, modulus of elasticity, and mass 
density. A single variation was investigated for each parameter.  

The tensile stress, rotational spring stiffness, cross–sectional area and modulus of 
elasticity have positive effects on the frequency values; whereas the length and mass 
density have negative effects. The positive effect means the frequency values increase 
when the input parameter increases. Vice versa, if the frequency values decrease when 
the input parameter increases, the input parameter has a negative effect. The degree of 
nonlinear effect varies for the parameters. For the case studies of the preliminary 
parametric study, the parameters tensile stress and rotational spring stiffness have the 
most significant effects on the first frequencies, followed by the geometrical properties of 
the single bar.  

 
 
 
 

 
Figure 3.1 – Single bar model. 

Table 3.1 – Geometrical and material properties of single bars in the numerical study. 

Bar   L   Ø   A   I   E   ρ   sλ  
  [mm]  [mm]  [mm2]  [mm4]  [N/mm2]  [kg/m3]  [−] 

B1  2700  20  314.16  7853.98  205 000  7850  540 
B2  1500  20  314.16  7853.98  205 000  7850  300 
B3  1000  20  314.16  7853.98  195 000  7850  200 
B4  1510  9.5  70.88  399.82  205 000  7850  636 

L – length; Ø – diameter (of solid circular cross−section); A – cross−sectional area; I – moment of inertia; 
E – modulus of elasticity; ρ – mass density; – slenderness ( /λ L A Is ). sλ

kr1 kr2 
P (= N) 

EIj, Lj, ρj 
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For the numerical study to implement and verify the proposed methodology, single bars 
of different geometrical and mechanical characteristics were chosen (see Table 3.1). 
Subsequently in the laboratory experiments, these bars were tested either as single bars 
or bars as part of a structure. For the numerical model, the programme ANSYS® was 
used. The bar was modelled with BEAM188 elements, which is based on Timoshenko 
beam theory including shear−deformation effects; one bar is divided into 40 elements. 

The different cases of the axial load were selected. They are given in Table 3.2. The 
non−dimensional parameter ξ  is to evaluate the effect of the bending stiffness on free 
vibration of a bar−like member. When ξ  is larger than 50, an accurate relationship was 
proposed between the natural frequencies, axial force and the bending stiffness 
parameter of a fixed−fixed cable [MEHRABI and TABATABAI (1998)]. Although this range 
covers wide applications for cables in cable−stayed bridges, other significant applications 
such as diagonal braces, tie−bars and short thick cables are not considered. It is 
noteworthy to mention that the present work aims to assess a range of ξ  less than 50 for 
beams and beam–like structural members. 

Regarding the connection rigidity, the different case studies are provided in Table 3.3. 
To assess the degree of joint flexibility, constraint parameters in the form of stiffness 
indexes or percentages of semi–rigid connection have been introduced for practical 
purposes [e.g. KAWASHIMA and FUJIMOTO (1984), TÜRKER et al. (2009)]. In the present work, 
the fixity factor was used to represent the degree of joint flexibility from zero (pinned 
condition) to one (rigid condition). 

As previously discussed, linear elastic rotational springs are used to account for the 
uncertain rotational joint stiffness, assuming the cases of small moments and deflections 
of truss connections, as well as slip and friction are not included. Concerning the 
numerical modelling of the rotational springs in ANSYS®, the connection elements were 
modelled with torsional spring–damper rotational elements (COMBIN14). They are 
created by the superposition of two or more nodes at the ends of connected members at 
joints. The elements were linked by coupling the coincident nodes. 

Table 3.2 – Load cases of single–bar systems in the numerical study. 

Load  
case 

   B1  B2  B3  B4 
 σ  

[N/mm2] 
 N 

[kN] 
ξ  

[−] 
 N  

[kN] 
ξ  

[−] 
 N  

[kN] 
ξ  

[−] 
 N  

[kN] 
ξ  

[−] 
S1  25  7.85 5.96  7.85 3.31  7.85 2.26  1.77 7.02 
S2  100  31.42 11.93  31.42 6.63  31.42 4.53  7.09 14.04 
S3  175  54.98 15.78  54.98 8.77  54.98 5.99  12.40 18.58 

ξ – bending stiffness parameter ( . . /ξ L N EI ). 

Table 3.3 – Case studies of connection rigidity of single–bar systems in the numerical study. 

Connection  
stiffness 

 rk [Nm/rad]  k rs [−]  k rγ [−] 
 B1  B2  B3  B4     

CS1 (Pinned)  0.00  0.00  0.00  0.00  0.00  0.00 
CS2  0.60  1.07  1.53  0.05  1.00  0.25 
CS3  1.79  3.22  4.60  0.16  3.00  0.50 
CS4  5.37  9.66  13.78  0.49  9.00  0.75 
CS5  33.99  61.18  87.30  3.04  95.00  0.95 
Almost Rigid  177.11  318.79  454.86  16.12  297.00  0.99 

rk – rotational spring stiffness; k rs – stiffness index ( . /kr rs k L EI ); k rγ – fixity factor ( / (3 )kr r rγ k L EI k L ). 
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Table 3.4 – Parameters of target systems for the numerical study of the single bars. 

Target  
system 

Designation  Bar  sλ   EI  trueP = trueN  true   1 2
true true
r rk k  true

krγ  
 type  [−]  [Nm2]  [kN] [N/mm2]  [kNm/rad] [−] 

1 B1_S1_CS1  

B1 

 

540 

 

1610.07 

 7.85 25  0.00 0.00 
2 B1_S1_CS3     7.85 25  1.79 0.50 
3 B1_S2_CS2     31.42 100  0.60 0.25 
4 B1_S2_CS4     31.42 100  5.37 0.75 
5 B1_S3_CS3     54.98 175  1.79 0.50 
6 B1_S3_CS5     54.98 175  33.99 0.95 
7 B2_S1_CS2  

B2 
 

300 
 

1610.07 
 7.85 25  1.07 0.25 

8 B2_S2_CS3     31.42 100  3.22 0.50 
9 B2_S3_CS4     54.98 175  9.66 0.75 
10 B3_S2_CS2  B3  200  1531.53  31.42 100  1.53 0.25 
11 B3_S3_CS5     54.98 175  87.30 0.95 
12 B4_S1_CS3  B4  635.8  81.96  1.77 25  0.16 0.50 

P – axial load; N – member axial force; σ – member axial stress; true – values of parameters of target systems. 

Because experimental data are not yet available in the numerical study, target systems 
were used, based on which the simulated experimental data were calculated. Table 3.4 
presents the twelve target systems in the numerical study. The target systems were 
generated by different combinations of four bars (B1 → B4), three levels of axial stress 
(S1 → S3), and five sets of the connection stiffnesses (CS1 → CS5). Each target system 
is characterized by a specific value of free slenderness sλ , flexural rigidity EI, axial stress 
σ, and fixity factor k rγ . 

3.2.1 Effects of Stress Stiffening and Joint Flexibility 

To illustrate the effects of stress stiffening and joint flexibility on the static and dynamic 
responses, four single bars type B4 were considered, i.e. pinned vs. rigid and zero− vs. 
high−load systems. For the pinned system, the rotational spring stiffness were assumed 
to be infinitesimal; whereas for the rigid system, they tend to infinity. The spring 
stiffnesses at the two end constraints are assumed identical. The applied axial load takes 

Table 3.5 – Numerical natural frequencies of the first six modes of the single bar B4 without and 
with stress stiffening based on different static analyses for the stress stiffening. 

Mode fn [Hz] 
 Pinned system ( rk → 0)  Rigid system ( rk → ∞) 
 N = 0 kN  N = 17.14 kN  

( σ ≈ 242 N/mm2) 
 N = 0 kN  N = 17.14 kN  

( σ ≈ 242 N/mm2) 
 without stress 

stiffening 
 stress stiffening  without stress 

stiffening 
 stress stiffening 

  linear  nonlinear   linear  nonlinear 
 Ana. Num.  Ana. Num.  Num.  Ana. Num.  Num.  Num. 
1 8.36 8.36  58.71 58.73  58.69  18.81 18.93  64.63  64.58 
2 33.45 33.42  120.95 120.96  120.88  52.26 52.18  133.10  132.99 
3 75.62 75.17  189.89 189.88  189.74  102.43 102.25  208.79  208.60 
4 134.15 133.59  268.21 268.12  267.89  169.32 168.95  294.34  294.05 
5 209.40 208.64  357.95 357.71  357.36  252.93 252.25  391.67  391.24 
6 301.37 300.28  460.64 460.12  459.62  353.26 352.09  502.12  501.54 

Ana. − Analytical formulae based on Euler−Bernoulli beam theory, i.e. Eq (2.4) and Eq. (2.8);  
Num. – Numerical finite element method based on Timoshenko beam theory; 
stress stiffening linear – static linear analysis prior to dynamic analysis;  
stress stiffening nonlinear – static geometric nonlinear analysis prior to dynamic analysis.  
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 Figure 3.2 – Numerical natural frequencies of the first six modes of the pinned vs. rigid single bar 

system B4 without and with the effects of stress stiffening in the numerical study. 

two values of zero and 17.14 kN. The load of 17.14 kN for the high−load system is 
equivalent to a normal stress of about 242 N/mm2 in the bar. To take into account stress 
stiffening, static analysis of the numerical model was performed prior to the dynamic 
analysis to obtain the stress distribution in the member. The effect of the stress was 
accounted for in the subsequent dynamic analysis.  

Concerning the types of the static analysis, as the inclusion of stress stiffening or 
geometric stiffness is often linked with nonlinear geometrical analysis, two types of static 
analysis were performed. They are linear static analysis, i.e. stress stiffening only, and 
geometric nonlinear static analysis, i.e. stress stiffening and large deformations.  

In addition, as previously reviewed, closed–form solutions only exist in the cases of a 
rigid−rigid beam excluding axial force effects (i.e. Eq (2.4)), and a pinned−pinned beam 
including stress stiffening (i.e. Eq. (2.8)). Thus, numerical finite element method was 
employed for other cases of boundary conditions of a single bar and for complex 
structures. To compare the results of the modal parameters by the closed–form solutions 
and the finite element method, Table 3.5 provides the analytically and numerically 
calculated natural frequencies of the first six modes of the bar B4 comparing the effects 
of stress stiffening based on the different static analyses.  

Table 3.6 – Numerical natural frequencies of the first six modes of the six target systems compared to 
the pinned system at zero–load of the single bar B1 in the numerical study. 

   Target system 
 Pinned, 

zero– 
 1 2 3 4 5 6 

  B1_S1_CS1 B1_S1_CS3 B1_S2_CS2 B1_S2_CS4 B1_S3_CS3 B1_S3_CS5 
 load  25 N/mm2 25 N/mm2 100 N/mm2 100 N/mm2 175 N/mm2 175 N/mm2 

Mode fn  
[Hz]  fn 

[Hz] 
Δ  

[%] 
fn 

[Hz] 
Δ  

[%] 
fn 

[Hz] 
Δ  

[%] 
fn  

[Hz] 
Δ  

[%] 
fn 

[Hz] 
Δ  

[%] 
fn 

[Hz] 
Δ  

[%] 
1 5.5  11.8 114.7 13.0 136.4 21.9 297.7 23.2 322.1 28.8 422.6 31.3 468.1 
2 22.0  30.3 37.9 32.3 46.9 47.7 116.9 50.3 128.8 60.6 175.4 65.8 198.9 
3 49.5  58.6 18.4 61.0 23.3 80.5 62.7 84.2 70.2 98.1 98.2 106.1 114.4 
4 87.9  97.4 10.7 100.0 13.8 122.1 38.8 126.7 44.1 143.1 62.7 154.0 75.2 
5 137.3  146.9 7.0 149.7 9.0 173.3 26.2 178.6 30.1 196.8 43.3 210.6 53.4 
6 197.6  207.3 4.9 210.2 6.4 234.8 18.8 240.6 21.8 260.1 31.6 276.5 40.0 
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The results using the finite element model agree with that from the analytical formulae. 
Some differences of the frequencies of higher modes are found due to the assumptions of 
the Euler−Bernoulli or Timoshenko beam theories. 

In the cases of minor bending or deformations, the linear static analysis provides similar 
results to the geometric nonlinear static analysis. Nevertheless, the types of the static 
analysis prior to the dynamic analysis can affect the results of the modal parameters, 
such as in the case of a framework that experiences out−of−plane bending while 
subjected to stress stiffening [GREENING and LIEVEN (2003)]. Therefore, the geometric 
nonlinear static analysis was adopted for all subsequent analyses. It is assumed that 
more accurate results can be achieved by the static geometric nonlinear analysis than 
the linear static analysis in general cases. 

In Figure 3.2, the effect of stress stiffening on the frequencies of the bar B4 is significant 
due to a wide variation of the stress. Nevertheless, the effect of the joint flexibility  
cannot be neglected. From the static analysis, the assumption of pinned or rigid joints 
has only small effects on the stresses of the members, as the bending stress due to own 
weight of the considered member as well as the rotational stiffness of the joints  
is insignificant compared to the normal stress. However, assumptions of pinned or rigid 
joints affect the structural dynamic behaviour. Thus, the numerical model of  
a bar should consider the unknown joint flexibility to approximate accurately the  
dynamic responses. 

 
 Mode 
  

   1st 2nd 3rd  4th  5th 6th 

Target system 

1  (B1_S1_CS1) 
2  (B1_S1_CS3) 
3  (B1_S2_CS2) 
4  (B1_S2_CS4) 
5  (B1_S3_CS3) 
6  (B1_S3_CS5) 

 
(a) Natural frequency (b) Mode shapes 

  
Figure 3.3 – Numerical modal parameters of the first six modes of six target systems of single bar B1 

in the numerical study. 
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Another investigation was conducted considering the bar type B1. For this bar, six target 
systems were formed by combinations of the input parameters of the axial force and 
boundary conditions. The numerically calculated natural frequencies of the six target 
systems of the bar B1 are given in Table 3.6, in comparison to that of the pinned−pinned 
bar at zero−applied load. The differences in the natural frequencies of the systems can 
be recognised clearly. 

Figure 3.3 presents the numerical frequencies and mode shapes of the first six modes of 
the target systems of bar B1. The mode shapes are normalized to maximum modal 
displacements that are equal to one. They are drawn representatively at five points, 
assuming five sensors are used in the experiments. The five points are equally 
distributed along the bar length. The distance between the assumed installed sensors is 
472.5 mm, while the total length of the five points is 1890 m. 

Some changes in the mode shapes can be seen. Nevertheless, unlike natural frequencies, 
the magnitudes of the changes in the mode shapes usually cannot be measured 
accurately in the experiments. FRISWELL and MOTTERSHEAD (1995) have discussed that 
natural frequencies can be identified from experimental measurements in general to a 
much greater accuracy than mode shapes. 

To evaluate the mutual effects of stress stiffening and the joint rigidity on the natural 
frequencies, the frequencies of the first mode of the single beam B4 is plotted versus the 
rotational spring stiffness and axial force in Figure 3.4. The rotational spring stiffness 
at both end constraints are assumed identical; they are varied from pinned to nearly 
rigid. The tensile stress is varied from zero to approximately 250 N/mm2. 

The effect of the axial tensile stress is significant. The frequency–load relationship is 
parabolic for pinned–pinned beam and near–parabolic for other support conditions.   

 

 
Figure 3.4 – The numerical natural frequencies of the first mode of single bar B4 at varying 

constraint conditions and stress stiffening.  
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(a) Frequency vs. constraint stiffness (b) Frequency vs. tensile force 

  

  
Figure 3.5 – Numerical natural frequencies of the first two modes of single bar B4 at varying stress 

stiffening and constraint conditions. 

If the effect of slenderness of a bar is also considered together with the effects of stress 
stiffening and constraint flexibility, the stiffness of a structural member depends on 
three components: (i) mechanical stiffness i.e. elastic stiffness component; (ii) tensional 
stiffness i.e. geometric stiffness component; and (iii) constraint stiffness, e.g. rotational 
stiffness component. LAGOMARSINO and CALDERINI (2005) discussed that when each of 
these factors changes, the total stiffness matrix of the member will be affected. When 
increasing the tensile force, the tensional stiffness contribution tends to dominate over 
other mechanical and constraint contributions. Similarly, for increasing rotational 
stiffness, the system becomes less sensitive to the effect of tensile force. For increasing 
slenderness, the contribution provided by constraint stiffness becomes less significant 
compared to other contributions (see Appendix B). 

Considering different modes of vibration, Figure 3.5 presents the frequencies of the first 
two modes of the single bar B4 at various axial forces and constraint flexibility. Upon 
axial loading of the member, the natural frequencies of all modes experience a 
modification to their magnitudes. In terms of percentage, the relative changes of the 
natural frequencies of the first mode are larger than that of the second mode, although 
the changes in absolute values of the second mode are higher than that of the first mode.  
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3.2.2 Selection of Modes to use Analytical−based Algorithm 

As the analytical–based algorithm proposed by MAES et al. (2013) is used as part of the 
proposed methodology, a case study is carried out to examine the effects of the locations 
of the instrumented sensors on the identified axial force. Moreover, discussion about the 
selection of a mode for the use of the analytical−based algorithm is made. 

Numerically calculated mode shapes were extracted at five assumed sensor locations for 
the finite element model of the single bar B1. Two arrangements of the sensors on the 
single bar were assumed, as given in Figure 3.6. The first setup assumes that the 
sensors are equally distributed over the length of the bar B1; whereas the second setup 
considers an unequal distribution of the sensors. For comparison, the axial forces were 
calculated for the two setups using all three analytical–based methods of LI et al. (2012), 
REBECCHI et al. (2013) and MAES et al. (2013). The results are presented in Figure 3.7. 

As discussed, the analytical−based approaches from the literature is affected by the 
locations of the sensors. By the methods of LI et al. (2012)  and MAES et al. (2013), the 
sensors can be distributed randomly. By the method of REBECCHI et al. (2013), the five 
sensors must be equally distributed to achieve reasonable estimation of the axial force.  

For all methods, spurious solutions of the identified forces can occur for the modes where 
the sensor locates at a modal node. At this location, the modal displacement is very close 
or equal to zero. For instance, for the second, fourth and sixth mode, the sensor S3 is 
located at a modal node, giving rise to large errors on the identified axial forces by all 
methods. The true axial force value can be one of the possible solutions, but additional 
spurious values occur. The spurious zeros can be positive and negative identified forces.  

By using the first mode of vibration, the results of the forces by the methods of LI et al. 
(2012) and MAES et al. (2013) give correct values for both arrangements of sensors in all 
case studies of target systems. A relevant remark is that using the first mode that is in 
the form of the first vibration mode of a single beam reduces the possibility of spurious 
solutions. This agrees with the discussions given in the work of REBECCHI et al. (2013). 

3.2.3 Sensitivity Analysis 

The sensitivity analysis was performed to determine the parameters that have 
significant influences on the static and dynamic responses to be included into the 
optimization process. The characteristics of the parameters in the sensitivity analysis 

 
(a) First arrangement of sensors (setup 1) 

 
 

(b) Second arrangement of sensors (setup 2) 

 
Figure 3.6 – Different arrangements of sensors on single bar system B1 in the numerical study. 
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are defined in Table 3.7. The parameters of the load and rotational spring stiffness of the 
supports were assumed as the main unknowns. The rotational spring stiffness at the two 
end supports of the symmetric single−bar systems were assumed identical. The variations 
of the other parameters were chosen in limited ranges. The measurements of the geometry 
and sensor positions can be made using callipers with a reasonable level of accuracy. As 
for the mechanical properties of steel, they are normally reliable. In the case of historic 
iron, broader variation ranges for the material properties may need to be considered. 

Several sensitivity analyses were carried out to evaluate different choices of the updating 
parameters. The analyses include:  

 updating the spring parameter only, which involves 1 design input parameter (i.e. 
the rotational spring stiffness), and 9 output responses including 8 modal 
responses (4 natural frequencies and 4 MAC values) and 1 static force response;  

 updating load and spring parameters, which involves 2 design parameters and  
9 output responses;  

 updating all parameters including the load, rotational spring stiffness as well as 
the parameters related to the mechanical and geometrical properties of the system, 
which involves 11 design parameters and 9 output responses.  

The analysis in which only the spring parameter of the joints or end constraints is 
updated assumes that the load is known exactly. This is not the case in practice, but the 
analysis aims to investigate numerically the influence of solely the constraint stiffness 

   Method 
    

   LI et al. (2012) REBECCHI et al. (2013) MAES et al. (2013) 
      

   Setup 1 Setup 2   Setup 1 Setup 2 Setup 1 Setup 2 
 

 

(a) B1_S1_CS1 (a) B1_S1_CS3 (a) B1_S2_CS2  
 

    

(a) B1_S2_CS4 (a) B1_S3_CS3 (a) B1_S3_CS5  
 

Figure 3.7 – Identified axial forces using analytical–based methods in the numerical study of bar B1. 
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on the output responses and the accuracy of the optimization to estimate the end 
stiffness without the uncertainty regarding the load.  

In contrast to sensitivity analyses that considers a single variation of each parameter at 
one time, all input parameters were varied simultaneously. The advantage is to obtain 
global sensitivities for all pairs of parameters with a single sample set. The multivariate 
samples were generated by using the Latin Hypercube method, which is a stochastic 
sampling strategy. 

Figure 3.8 shows the results of a global sensitivity analysis through Spearman linear 
correlation matrix for a target system of the bar B1, i.e. the system B1_S1_CS1. The 
sensitivity analysis was based on 200 Latin hypercube samples, with the parameter 
intervals presented in Table 3.7. The colours indicate the different direction of 
association between the input parameters and the output responses. 

The correlation matrix shows that the flexibility of the end constraints has a 
considerable influence on the frequencies and MAC values; while the tensile force or 
tensile stress has a significant influence on the modal parameters as well as the 
numerically computed static force. The effects of other parameters are insignificant 
compared to the axial load and constraint flexibility effects, but it is worth noting the 
limited variation ranges of the other parameters. 

To compare the target systems and examine the effects of stress stiffening and constraint 
flexibility as well as slenderness, the sensitivity analyses were carried out for other 
single bars. The results for the target system B1_S3_CS5 (single bar B1) (see Figure 3.9) 
and target system B3_S2_CS2 (single bar B3) are discussed next. 

Concerning the target systems B1_S1_CS1 and B1_S3_CS5, the bar has the same 
geometrical and mechanical characteristics (type B1). Because the tensile stress is 
higher for the system B1_S3_CS5 than the system B1_S1_CS1, when updating both the 
load and the rotational spring stiffness, the effect of the constraint stiffness is reduced.  

To evaluate the effect of slenderness, as the bar B3 is not as slender as the bar B1,  
the sensitivity analysis of the target system B3_S2_CS2 reveals that the effect of the 

Table 3.7 – Characterization of the parameters of the numerical models for the sensitivity analysis. 

Parameter Designation Value Variation Unit 
P Applied load *   before buckling load to high tensile load 

(tensile stress approx. 200 N/mm2)**   
kN 

 k rγ  Fixity factor * pinned to almost rigid*** – 
E Modulus of elasticity 205 000 (B1, B2, B4) 

195 000 (B3) 
+/– 1 % N/mm2 

ρ Mass density 7850 +/– 0.2 % kg/m3 
A Cross−sectional area 314.16 (B1, B2, B3) 

70.88   (B4) 
+/– 1 % 
+/– 2 % 

mm2 

ms Mass per sensor 10 +/– 5 % g 
xs1 Position sensor 1**** 0.150L  +/– 1 mm mm 
xs2 Position sensor 2 0.375L +/– 1 mm mm 
xs3 Position sensor 3 0.500L +/– 1 mm mm 
xs4 Position sensor 4 0.625L +/– 1 mm mm 
xs5 Position sensor 5 0.850L +/– 1 mm mm 

*Different values for target systems (see Table 3.4). 
**–1.50 / 60.00 (B1); –5.00 / 60.00 (B2); –10.00 / 60.00 (B3); –1.50 / 15.00 (B4); 
***0.00 / 0.99; 
****Position of sensor to one end support (see Figure 3.6(b)); L – member length. 
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constraint flexibility is more significant. The results of the sensitivity analyses agree 
with the previous discussion about the stiffness components of a structural member. 

Overall, for slender truss structures, the axial force or stress stiffening has significant 
effect on the output parameters from the static as well as dynamic analyses of the 
numerical model. The constraint stiffness has influence on the dynamic response of the 
modal parameters. In general cases, the effect of the constraint stiffness becomes less 
significant in the presence of the effect of stress stiffening. 

Based on the results of the sensitivity analyses, two stages of the optimization process 
were suggested to identify the design parameters with better accuracy. First, the load 
and the resulted axial forces can be identified accurately such that the objective function 
comprises the output parameters of both the static and dynamic responses of the 
numerical model. After the load is identified, the constraint stiffness can be estimated 
more accurately if the objective function takes into account the modal parameters and 
the updating parameter is primarily the constraint stiffness. 

3.2.4 Identification of Axial Forces and Joint Stiffness  

The optimization phase allows the identification of the assumed unknown parameters of 
the axial forces and rotational spring stiffness. For clarity, the parameters of the target 
systems that are used to calculate the simulated experimental data in the numerical 
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Figure 3.8 – Spearman correlation matrix between the parameters and responses of the numerical 
model of the single bar target system B1_S1_CS1. 
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study are denoted as true, whereas the parameters identified from the proposed 
methodology are denoted as id. 

The first four simulated experimental modes of the target systems were used in the 
identification process. The axial load was varied simultaneously with the rotational 
spring stiffness. As the identification problem is symmetric, the rotational spring 
stiffnesses at the two end constraints were assumed to be identical. The optimization of 
the single−bar model involved 2 design parameters (P, kr (or krγ )), 8 modal responses  
(4 natural frequencies and 4 MAC values) and 1 static force. The variations of the design 
parameters are as indicated in Table 3.7. In the second optimization stage of the 
proposed methodology, the identified load or axial force from the first stage was assumed 
to be within a 2 % variation to account for possible errors on the axial force identification, 
while the main purpose is to determine the joint rigidity parameter. Latin hypercube 
method was used to generate randomly the initial population. Four independent 
optimization runs with random initial populations were performed and the mean values 
were adopted. 

As mentioned, different optimization techniques were applied, which belong to the 
response surface methods and population−based or nature−inspired methods. The 
implementation of the optimization techniques was made using the programme 
OptiSLang© [Dynardo GmbH]. The ARSM was based on linear order of approximation 
with a start range of 0.5, minimum iterations of 5, maximum iterations of 20 and 
minimum range of 10−6. The GA and PSO were based on an initial population consisting 
of 15 individuals and 50 generations, for a total of 750 individuals. The crossing rate was  
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Figure 3.9 – Spearman correlation matrix between the parameters and responses of the numerical 
model of the single bar target system B1_S3_CS5. 
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set equal to 50 % and the mutation rate was equal to 15% with a standard deviation 
along the optimization between 0.10 and 0.01. 

The results of the axial force and joint stiffness identification using the proposed 
methodology for the single−bar systems are given in Table 3.8. The identified axial forces 
match well to the true ones. The different optimization techniques provide in general 
similar results. The ARSM gives the largest difference of the identified force to the true 
one of −0.63 kN for a case of the first target system at the stress of 25 N/mm2. The largest 
difference by the GA is −0.36 kN and by the PSO is 0.32 kN. In most cases, the differences 
between the identified and true forces in absolute values are smaller than 0.10 kN. 

Table 3.8 – Results of the identified axial forces and corresponding stresses, as well as the identified 
rotational spring stiffness and fixity factors, in the numerical study of single−bar systems. 

Target Designation Technique *SPR  Proposed methodology 
system   ,SPRid

kr
true
kr

γ
γ

 
 idN  id  Δ  id

rk  id
krγ  id

kr
true
kr

γ
γ

           

   [−]  [kN] [N/mm2] [kN]  [kNm/rad] [−] [−] 
  ARSM −  7.22 23.00 –0.63  0.39 0.18 − 
1 B1_S1_CS1 GA −  7.60 24.20 –0.25  0.22 0.11 − 
  PSO −  7.73 24.62 –0.12  0.11 0.06 − 
  ARSM 1.00  7.79 24.78 –0.06  1.73 0.49 0.98 
2 B1_S1_CS3 GA 1.00  7.69 24.47 –0.16  1.96 0.52 1.04 
  PSO 1.00  7.76 24.71 –0.09  1.86 0.51 1.02 
  ARSM 1.00  31.37 99.87 –0.05  0.46 0.20 0.80 
3 B1_S2_CS2 GA 0.96  31.34 99.76 –0.08  0.64 0.26 1.04 
  PSO 1.00  31.44 100.09 0.02  0.50 0.22 0.88 
  ARSM 1.00  31.39 99.91 –0.03  5.01 0.74 0.99 
4 B1_S2_CS4 GA 1.01  31.06 98.86 –0.36  5.77 0.76 1.01 
  PSO 1.00  31.41 99.98 –0.01  5.35 0.75 1.00 
  ARSM 1.00  54.96 174.95 –0.02  1.34 0.43 0.86 
5 B1_S3_CS3 GA 1.00  55.00 175.07 0.02  1.65 0.47 0.94 
  PSO 1.00  54.95 174.91 –0.03  1.71 0.49 0.98 
  ARSM 1.00  54.96 174.95 –0.02  31.25 0.95 1.00 
6 B1_S3_CS5 GA 1.00  55.00 175.06 0.02  30.24 0.94 0.99 
  PSO 1.00  54.97 174.96 –0.01  34.12 0.95 1.00 
  ARSM 1.00  7.82 24.88 –0.03  1.08 0.24 0.96 
7 B2_S1_CS2 GA 0.97  7.76 24.71 –0.09  1.13 0.24 0.96 
  PSO 1.00  7.65 24.34 –0.20  1.05 0.26 1.04 
  ARSM 1.00  31.40 99.96 –0.02  3.08 0.49 0.98 
8 B2_S2_CS3 GA 1.00  31.39 99.90 –0.03  3.28 0.50 1.00 
  PSO 1.00  31.38 99.88 –0.04  3.20 0.50 1.00 
  ARSM 1.00  54.93 174.83 –0.05  9.65 0.74 0.99 
9 B2_S3_CS4 GA 1.00  54.92 174.81 –0.06  9.68 0.75 1.00 
  PSO 0.99  55.30 176.03 0.32  9.68 0.75 1.00 
  ARSM 1.00  31.35 99.77 –0.07  1.49 0.24 0.96 

10 B3_S2_CS2 GA 1.00  31.44 100.08 0.02  1.63 0.26 1.04 
  PSO 1.00  31.42 100.01 0.00  1.57 0.25 1.00 
  ARSM 1.00  54.93 174.83 –0.05  85.62 0.95 1.00 

11 B3_S3_CS5 GA 1.00  54.85 174.58 –0.13  86.87 0.95 1.00 
  PSO 1.00  54.80 174.45 –0.18  88.48 0.95 1.00 
  ARSM 1.00  1.78 25.12 0.01  0.13 0.43 0.86 

12 B4_S1_CS3 GA 1.00  1.74 24.61 –0.03  0.17 0.50 1.00 
  PSO 1.00  1.78 25.10 0.01  0.14 0.46 0.92 

Assumption: id
rk = 1

id
rk = 2

id
rk ; 

*SPR – updating the parameter(s) of the rotational spring stiffness only, assuming the force is known exactly. 
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The identified fixity factors by the proposed methodology indicate correctly joint rigidity 
with respect to a hinged or rigid condition in all cases. However, exact values of the fixity 
factors like the true ones were usually not achieved, especially for small values of the 
rotational spring stiffness or low values of the fixity factors. 

The ratios of the identified to the true fixity factors were calculated, while a ratio of 1.00 
indicates an excellent agreement of the identified results. The ARSM gives the ratios of 
the identified to the true fixity factors in the range from 0.80 to 1.00. The GA and PSO 
provide better results of the fixity factors or constraint stiffness than the ARSM. The GA 
gives the ratios from 0.94 to 1.04. The range of the ratios obtained by the PSO is from 
0.88 to 1.02. 

As mentioned, to investigate the accuracy of the optimization in estimating the joint 
stiffness if the load is known exactly, optimization runs were performed assuming the 
scenario that the rotational spring stiffness or the rigidity factor was the only unknown, 
which was included as the only updating parameter. The objective function contains the 
modal parameters of the natural frequencies and MAC indices.  

The results of the ratios of the identified rigidity factors ( ,SPRid
krγ ) to the true ones ( true

krγ ) 
are also provided in Table 3.8, which range from 0.96 to 1.00. The identified rigidity 
factors by the optimization with only the updating parameter of the spring stiffness are 
highly accurate. This proves the considerable influence of the joint stiffness on the 
dynamic responses. 

Table 3.9 – Assumptions of different initial starting values of the design parameters of the axial force 
and rigidity factor in numerical study of single–bar systems. 

Optimization Assumed initial start values of design parameters 
A Initial starting values 50 % smaller than true values 
B Initial starting values 20 % smaller than true values 
C Initial starting values 100 % higher than true values 
D Initial starting values 200 % higher than true values 

 

 
Figure 3.10 – Results of all identified axial forces of four optimization runs with different initial 

parameter sets using three different optimization techniques in the numerical study  
of the single–bar systems. 
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Regarding the different optimization stages of the proposed methodology, the identified 
axial forces from the first stage are sufficiently accurate. The identified forces in the 
second stage optimization show that they are not necessarily improved compared to that 
from the first stage. For the joint flexibility, the results of the joint rigidity factors were 
improved in the second stage optimization compared to that in the first stage. 

3.2.5 Computational Efficiency of Optimization Techniques 

To examine the dependency of the optimization techniques on the assumptions of the 
initial starting point, optimization runs based on different initial populations were 
carried out. Table 3.9 shows the initial starting values of the design parameters that 
were assumed to be 50 % smaller, 20 % smaller, 100 % higher and 200 % higher than 
the true values for four optimization runs A to D. For the single–bar systems, the design 
parameters are the axial force and rigidity factor of the end constraints. 

The results of the identified axial forces of all four optimization runs are presented in 
Figure 3.10. The identified forces are highly consistent in all runs.  Moreover, the 
optimization runs led to very similar values of the frequencies and MAC indices, which 
demonstrates the robustness of the optimization–based techniques. The PSO shows the 
most consistent results, followed by the GA and lastly, the ARSM. 

Concerning the computationally efficiency, Figure 3.11 shows an example of convergence 
diagrams of the ARSM, GA and PSO for an optimization of the target system 
B1_S1_CS3. Because the GA and PSO are stochastic methods, the scatters of the 
objective values are larger compared to the ARSM. The ARSM is more computationally 

(a) ARSM  (b) GA (c) PSO 
 Parameter* History  

   
   

 Objective History  

   
  * Updating parameter is only the rotational spring stiffness assumed identical at the two supports;  
  the objective function contains the modal parameters of the natural frequencies and MAC indices. 

Figure 3.11 – Convergence of optimization by different optimization techniques in the numerical 
study of the target system B1_S1_CS3. 
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Objective History 
 Optimization A Optimization B  Optimization C   Optimization D 

    
  * Red values indicate the optimization run that is selected as “Best design” with minimum value of  

the objective function as well as non−violence of the constraints of the updating parameters, if the 
constraints are defined. 

Figure 3.12 – Convergence of optimization with different initial parameter sets by the PSO in the 
numerical study of the target system B1_S1_CS3. 

efficient than the other two techniques, whereas the PSO requires in general the most 
computational efforts. 

The non−dependence of the initial starting point of the optimization−based methods has 
been illustrated in Figure 3.10. Although the starting values of the design parameters 
do not need to be close to the optimum, Figure 3.12 illustrates that the efficiency of the 
optimization can be increased when the initial populations are close to the optimum. The 
optimization B with the initial starting values closer to the true values than the 
optimizations A, C, D and thus, requires the least computational cost; whereas the 
optimization D with the initial population am furthest to the true values requires the 
most computational cost. 

3.2.6 Error Analysis 

In practice, it is expected that there are deviations due to uncertainties in measurement 
data and structural properties. Numerical errors are present because the model gives an 
imperfect representation of the true structure. Measurement errors are inherently 
present during the experiments due to measurement noise.  

PARK et al. (2006) considered two model uncertainty types for a single–bar model,  
i.e. uncertainty associated with the identified natural frequencies and uncertainty in the 
structural parameters of the bar. The first type of uncertainty may arise when a true 
natural frequency locates between two frequency responses; while the second type can 
include errors in the stiffness parameters, the mass parameters and the damping 
parameters. In the numerical error study by PARK et al. (2006), the first uncertainty was 
assumed by considering the frequency resolution to be the same frequency resolution in 
the experimental study, i.e. Δf  = 0.25 Hz. The frequencies were approximated to nearest 

Table 3.10 – Numerical error analysis of the single–bar systems. 

Error 
case 

Error associated with Designation True 
value 

Variation Unit 

ER1 material and  
geometrical  
properties 

Modulus of elasticity Etrue +/− 1 % N/mm2 

 Mass density ρtrue +/− 0.2 % kg/m3 

 Bar diameter dbar +/− 1 mm mm 
ER2 sensor properties and 

locations 
Mass per sensor mstrue +/− 5 % g 

 Sensor location xstrue +/− 1 mm mm 

true 
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frequency response values, which were multiples of Δf  in the first case study, then in the 
second case study the frequencies of the first case study were further added by +Δf. For 
the uncertainty in the structural parameters, PARK et al. (2006) investigated only the 
deviation in the stiffness parameter, i.e. the elastic modulus was increased by 1 % and 
10 %. It was discussed that the mass of the bar can be evaluated with much less 
uncertainty; the effect of the mass change to the vibration characteristics can be inferred 
from the effect of the stiffness change; as well as the effect of the damping change to the 
resonant frequencies is in general negligibly small. The additional mass and stiffness of 
the instrumented sensors were not examined. The results show that the maximum 
errors of the identified tensile force and spring constant of the bar are 0.8 % and 7.8 %, 
as a result of a variation in the natural frequencies or the elastic modulus in the case 
studies. The uncertainty in structural parameters has much smaller impact on the 
accuracy of the parameter identification than the uncertainty in the natural frequencies. 

MAES et al. (2013) performed an error analysis for a seven–member truss girder 
considering the parameters of the geometrical properties, material properties as well as 
sensor properties. It was assumed that the bar section A and the moment of inertia I are 
characterized by an error of 0.1 %; the Young’s modulus E and the material density ρ are 
also characterized by a small error of 0.1 %; the mass of each sensor ms and its mass 
moment of inertia are subjected to an error of 1 %. In addition, a maximum error in the 

Table 3.11 – Results of the identified axial forces and stresses as well as the identified fixity factors in 
the numerical error analysis of the single–bar systems.   

Target Designation Technique   ER1+ER2 
system    idN  id  Δ Δ  id

krγ   id
kr

true
kr

γ
γ

     
   

  
 

    [kN] [N/mm2] [kN] [%]  [−] [−] 
  ARSM  7.16 22.79 –0.69 –9.64  0.38 – 
1 B1_S1_CS1 GA  7.63 24.29 –0.22 –2.88  0.06 – 
 PSO  8.08 25.72 0.23 2.85  0.01 – 
  ARSM  7.74 24.64 –0.11 –1.42  0.51 0.98 
2 B1_S1_CS3 GA  8.02 25.53 0.17 2.12  0.49 1.02 
  PSO  7.99 25.43 0.14 1.75  0.46 1.09 
  ARSM  31.57 100.49 0.15 0.48  0.29 0.86 
3 B1_S2_CS2 GA  31.62 100.65 0.20 0.63  0.22 1.14 
  PSO  31.44 100.08 0.02 0.06  0.26 0.96 
  ARSM  31.29 99.60 –0.13 –0.42  0.77 0.97 
4 B1_S2_CS4 GA  31.52 100.33 0.10 0.32  0.75 1.00 
  PSO  31.32 99.69 –0.10 –0.32  0.74 1.01 
  ARSM  54.82 174.48 –0.16 –0.29  0.45 1.11 
5 B1_S3_CS3 GA  54.82 174.50 –0.16 –0.29  0.49 1.02 
  PSO  54.85 174.59 –0.13 –0.24  0.50 1.00 
  ARSM  54.79 174.40 –0.19 –0.35  0.94 1.01 
6 B1_S3_CS5 GA  54.80 174.43 –0.18 –0.33  0.95 1.00 
  PSO  55.00 175.07 0.02 0.04  0.95 1.00 
  ARSM  7.83 24.92 –0.02 –0.26  0.25 1.00 
7 B2_S1_CS2 GA  7.26 23.10 –0.60 –8.26  0.26 0.95 
  PSO  8.00 25.46 0.15 1.88  0.24 1.05 
  ARSM  30.44 96.89 –0.98 –3.22  0.51 0.99 
8 B2_S2_CS3 GA  31.43 100.03 0.01 0.03  0.49 1.02 
  PSO  31.22 99.39 –0.19 –0.61  0.51 0.98 
  ARSM  54.43 173.26 –0.55 –1.01  0.75 1.01 
9 B2_S3_CS4 GA  55.30 176.02 0.32 0.58  0.76 0.99 
  PSO  55.08 175.34 0.11 0.20  0.76 0.99 

Assumption: id
kr = 1

id
kr  = 2

id
kr . 
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sensor position was assumed as 0.5 mm. Sensor noise, assuming to be zero mean and 
white, was added in the time domain for each of the calculated response signals with a 
standard deviation of the assumed measurement noise of 10–5 ms–2. The sensitivity of 
the sensors23 has a maximum error in absolute value of 0.04 %. In the numerical study, 
MAES et al. (2013) assumed a single variation of each uncertain parameter, but chose the 
sign of the parameter variations such that a worst case scenario was obtained. The 
results show that the identified axial force was affected by small errors in the input 
parameters. Besides, the error sensitivity was dependent on the mode considered.  
The error of the axial force when considering the first mode of vibration is 5.32 %; for all 
other modes of the six modes considered, higher errors were obtained. 

In the present work, an error analysis study was carried out to examine the influence of 
the measurement and modelling errors on the axial force identification and joint 
flexibility estimation. The selected uncertainty types are shown in Table 3.10. They are 
uncertainties related to the structural parameters, including errors in the stiffness and 
mass parameters. The errors in the damping parameters for truss–type structures are 
excluded, as discussed by PARK et al. (2006) that the effect of the damping change to the 
resonant frequencies is negligibly small. 

In Table 3.11, the results of the error analyses for the single–bar systems are provided. 
The optimization by the proposed methodology involves 11 updating parameters of the 
axial force and joint rigidity factor as well as the uncertain parameters in the error cases 
ER1 and ER2, in which the parameters concerning the sensor location correspond to five 
sensor locations. The updating parameters were varied simultaneously. The unknown 
axial force and rigidity factor were varied in the ranges as indicated in Table 3.7,  
while the other uncertain parameters were varied in the assumed ranges as defined in 
Table 3.10. For the sake of simplicity, only nine target systems were included.  

The axial forces can still be identified reasonably accurately under the impact of the 
uncertainties in the structural parameters. The rigidity factor of the end constraints can 
be also identified fairly well due to the impact of the uncertainty in the structural 
parameters. Regarding the absolute deviations, the largest deviation to the true force is  
–0.98 kN by the ARSM, corresponding to a relative error of –3.22 % to the true force. 

3.2.7 Estimation of Joint Stiffness at Symmetric Locations of Structures 

As mentioned, the identification problem of the end constraint stiffnesses of a single bar 
is symmetric. It means the updating algorithm fails in assigning the rotational stiffness 
to the proper bar end, as a change of the boundary condition at one end would yield 
identical output response of the modal parameters to the same change of the boundary 

 
 

 
 

Figure 3.13 – Single bar model with an added mass. 

                                                 
23 A sensor characteristic used for the conversion of a sampled voltage signal to an acceleration signal [MAES 
et al. (2013)]. In practice, the sensitivity of a sensor is often determined for a single, fixed calibration frequency. 
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Table 3.12 – Parameters of target systems for the numerical study of the bar B4 with added mass. 

Target  Designation  trueN  true    1
true
rk  1

true
krγ   2

true
rk  2

true
krγ  

system   [kN] [N/mm2]   [kNm/rad] [−]  [kNm/rad] [−] 
1 B4m_S1_CS1_CS4  1.72 25   0.00 0.00  0.49 0.75 
2 B4m_S2_CS4_CS2  7.09 100   0.49 0.75  0.05 0.25 
3 B4m_S3_CS3_CS5  12.40 175   0.16 0.50  3.09 0.95 

Assumption: kr1 and kr2 – two different rotational spring stiffness at bar ends. 

condition at the other end. So far, the stiffnesses of the two end constraints of the single–
bar systems were assumed identical. 

FRISWELL and MOTTERSHEAD (1995) has discussed a technique called perturbed boundary 
condition testing. Using this technique, the structure can be tested in slightly different 
configurations or with added mass or springs to increase the amount of data available. 
GENTILINI et al. (2013) studied the vibration of modified beam system and made use of 
added mass for the structural parameter identification of tie–bars. 

The identification of the different boundary conditions of a bar is examined next, 
assuming the rotational spring stiffnesses of the two end constraints are not identical. 
The technique using an added mass is applied, in which a mass is added near one end of 
a bar to make the system unsymmetrical. The position and size of the added mass should 
be selected to influence considerably the dynamic behaviour of the system. Some 
discussions about the position and size of an added mass are given in the work of 
GENTILINI et al. (2013). 

In the case of the bar B4, an added mass of 0.407 kg is located at approximately 453 mm 
to one bar end (see Figure 3.13). The bar is 1510 mm long. In the numerical model, the 
mass was included using a point mass element. 

Three case studies of target systems of the single bar B4 with added mass were carried 
out. The characteristics of the case studies are provided in Table 3.12. The axial loads 
were chosen that allow low to relatively high states of stress, i.e. 25 N/mm2 to 175 N/mm2. 
The rotational spring stiffnesses of the two end constraints were chosen to represent 
random non–identical constraint flexibility.  

The results of the identified tensile forces are given in Table 3.13, while the results of 
the identified fixity factors are provided in Table 3.14. The axial forces were identified 
very well. The different rotational spring stiffnesses at the two ends were also identified 
correctly. For the second target system, the ratios of the identified to the true rigidity 

Table 3.13 – Results of the identified axial forces and corresponding stresses in the numerical study 
of the single bar B4 with added mass. 

Target  
system 

Designation Technique  idN  id  Δ 
   [kN] [N/mm2] [kN] 

1 B4m_S1_CS1_CS4 ARSM  1.69 23.87 −0.03  
GA  1.76 24.77 0.04 

 PSO  1.72 24.31 0.00 
2 B4m_S2_CS4_CS2 ARSM  7.01 98.87 −0.08  

GA  7.06 99.56 −0.03 
 PSO  7.02 99.08 −0.07 
3 B4m_S3_CS3_CS5 ARSM  12.31 173.64 −0.09 
 GA  12.28 173.26 −0.12 
 PSO  12.43 175.32 0.03 
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Table 3.14 – Results of the rotational spring stiffness and fixity factors in the numerical study of 
single bar B4 with added mass. 

Target 
system 

Designation Technique  1
id
rk  1

id
krγ  

1

1

id
kr
true
kr

γ
γ

 
 2

id
rk  2

id
krγ  

2

2

id
kr
true
kr

γ
γ

 

    [kNm/ 
rad] 

[−] [−]  [kNm/ 
rad] 

[−] [−] 

1 B4m_S1_CS1_CS4 ARSM  0.03 0.17 −  0.56 0.78 1.04 
  GA  0.01 0.04 −  0.50 0.76 1.01 
  PSO  0.02 0.11 −  0.54 0.77 1.03 
2 B4m_S2_CS4_CS2 ARSM  0.52 0.76 1.01  0.07 0.30 1.20 
  GA  0.53 0.76 1.01  0.06 0.26 1.04 
  PSO  0.51 0.76 1.01  0.07 0.29 1.16 
3 B4m_S3_CS3_CS5 ARSM  0.19 0.54 1.08  3.77 0.96 1.01 
  GA  0.19 0.53 1.06  4.22 0.95 1.01 
  PSO  0.16 0.49 0.98  2.94 0.95 1.00 

factors of the second boundary condition by the ARSM and PSO are not as close to  
1.00 as the other cases due to the small value of the end rotational spring stiffness.  
For other cases, the ratios of the identified rigidity factors to the true ones indicate a 
good agreement. 

The numerical case studies of the single bars reveal that the proposed methodology with 
the use of the added mass in a non–symmetric position allows to identify different values 
of the rotational stiffness of the bar ends. 

3.3 Two−Bar System 

Numerical study has been carried out for the fundamental single–bar systems, whose 
vibration modes are identical in–plane and out–of–plane. The issue related to closely–
spaced in–plane and out–of–plane modes of structural systems as well as similar modes 
of vibration due to coupled vibration of connected truss members is not addressed yet. 

Considering an example of a two–member structure as shown in Figure 3.14(a). The 
structure has non−identical modes of vibration in the three–dimensional space. At joints, 
rotational springs are introduced to account for the unknown joint stiffness of the 
connections. As previously mentioned, the connection elements were modelled with 
torsional spring–damper elements (COMBIN14) in ANSYS®. The torsional spring–
damper is purely rotational element with no mass and has three degrees of freedom at 
each node, i.e. rotations about the nodal x, y, and z axes. A spring constant was defined 
for each spring considered. When a single member of the structure is analysed, a beam 
model is assumed with translational and rotational springs (see Figure 3.14 (b)). 

To evaluate the effects of joint flexibility and stress stiffening effects of the two–bar 
structure, four case studies were considered, i.e. pinned vs. rigid systems and zero– vs. 
high–load systems. Similar to the case studies of single bars, the rotational spring 
stiffness of all connections were assumed to be infinitesimal for the pinned system and 
tend to infinity for the rigid system. Two values of the applied load were assumed to be 
zero and 30 kN. The load of 30 kN for the high–load system results in an axial force and 
normal stress of approximately 17.14 kN and 242 N/mm2 in each of the two members. 

The results of the static analysis show that the assumption of pinned or rigid joints have 
insignificant effects on the stresses of the members. Compared to the normal stress, the  
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(a) Global model of structure 
with numbering scheme 

(b) Local model of single bar as  
member of a structure  

            
*

 In−plane degrees of freedom assumed to be from experiments are at six locations of instrumented 
sensors (S01 to S06) on a member, in the longitudinal and vertical directions of the member in its local 
coordinate system, i.e. x− and y−directions. For the analytical−based algorithm, S02 to S06 are used. 

Figure 3.14 – Symmetric two−bar system for global and local analyses. 

bending stress due to own weight of the considered member as well as the rotational 
stiffness of the joints is nearly negligible (see Appendix C).  

Considering the dynamic analysis, the first sixteen modes of the pinned system are 
presented in Figure 3.15. As expected, the global modes of a structure are governed by 
the modal configurations of its members. Moreover, the constituted truss members 
vibrate interactively with each other in a coupling manner. As a result, similar vibration 
modes and closely–spaced in–plane and out–of–plane modes are found, for example the 
seventh mode to the tenth mode or the eleventh mode to the fourteenth mode.  

Table 3.15 –  Numerical natural frequencies of the first twelve modes the pinned and rigid symmetric 
two−bar structure without and with stress stiffening. 

Mode  Pinned system ( rk → 0)  Rigid system ( rk → ∞) 

 
 P = 0 kN  P = 30 kN 

N1 ≈ N2 = 17.14 kN  
(σ1 ≈ σ2 ≈ 242 N/mm2) 

 P = 0 kN  P = 30 kN 
N1 ≈ N2 = 17.14 kN  

(σ1 ≈ σ2 ≈ 242 N/mm2) 
  fn [Hz]  fn [Hz] Δ* [%]  fn [Hz] Δ [%]  fn [Hz] Δ [%] 
1  7.14  36.52 411.66  10.61 48.60  42.17 490.80 
2  7.40  42.43 473.50  16.65 125.08  51.70 598.87 
3  8.80  58.70 566.86  19.58 122.46  65.09 639.55 
4  9.71  59.42 511.93  19.71 102.95  64.98 569.24 
5  10.18  64.35 532.25  34.38 237.82  78.10 667.33 
6  13.71  61.21 346.50  25.92 89.04  71.23 419.56 
7  33.79  120.99 258.02  53.60 58.59  134.18 297.05 
8  34.11  120.25 252.58  56.93 66.91  134.69 294.92 
9  34.19  120.65 252.93  48.94 43.15  140.98 312.40 
10  34.26  122.82 258.55  59.46 73.57  137.50 301.40 
11  75.41  189.75 151.64  104.49 38.57  210.18 178.73 
12  75.85  191.40 152.35  107.64 41.92  215.13 183.64 

*Difference to the natural frequency of the pinned zero–load system. 
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It is noted that for the investigated two–member system, the different geometrical 
characteristics of the connection plate in the three–dimensional space result in changed 
stiffness of the connection elements in–plane and out–of–plane. In addition, the 
vibration of the structure is associated with the coupled vibration of all the structural 
components of the system. Therefore, the modal parameters of some in–plane and out–
of–plane vibration modes of the two–member system are highly similar but not identical.  

In Table 3.15, the frequency values of the pinned and rigid two−bar systems considering 
stress stiffening are given. Due to the effects of the joint rigidity as well as stress 
stiffening, several modes of the rigid system and high–load system are interchanged with 
those of the pinned zero–load system, for instance the fifth and sixth modes. The order 

  

  

  

 

 

  

 

 

  
1st mode   2nd mode    3rd mode    4th mode  
7.14 Hz   7.40 Hz   8.80 Hz   9.71 Hz 

  

  

 

 

 

  

 

 

  
 5th mode    6th mode    7th mode    8th mode  
10.18 Hz   13.71 Hz   33.79 Hz   34.11 Hz 

  

  

  

 

 

  

 

 

  
9th mode    10th mode    11th mode    12th mode  
34.19 Hz   34.26 Hz   75.41 Hz   75.85 Hz 

  

  

  

 

 

  

 

 

  
13th mode    14th mode    15th mode    16th mode  
76.24 Hz   76.33 Hz   133.10 Hz   133.18 Hz 

Figure 3.15 – Numerical natural frequencies and mode shapes of first sixteen modes of pinned 
system at zero–applied load in the numerical study of symmetric two–bar structure. 
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Figure 3.16 – Numerical natural frequencies of the first twelve modes of pinned vs. rigid system with 

and without stress stiffening in the numerical study of symmetric two–bar structure. 

of the modes in Table 3.15 are sorted according to the modes of the pinned zero–load 
symmetric two−bar system. 

In Figure 3.16, the natural frequencies of the pinned and rigid systems of the two–bar 
structure without and with the stress stiffening are presented. The effect of the stress 
stiffening is significant, as a wide variation of the stress was considered. The effect of the 
joint flexibility can be also seen on the natural frequencies of the systems. Similar 
conclusion for the two–bar structure to the single bar is that the numerical model should 
consider the unknown joint stiffness to correctly approximate the structural dynamics. 

3.3.1 Global and Local Analyses of Truss Structures 

Considering the different approaches in the literature and for clarity, global analysis is 
referred in this work as analysis of the whole structure, while local analysis is associated 
with analysis of single truss members. The aspects relating the global and local modal 
configurations as well as coupled vibration of truss members are discussed.  

For truss structures, the constituent truss members form a global coupled system. The 
coupled vibration of the member depends on the member connectivity at the joints, as 
well as the level of loading. In addition, when comparing the natural frequencies of a 
single member (i.e. Table 3.5) with that of the two–bar structure (i.e. Table 3.15), the 
slenderness of the truss members governs the magnitudes of the truss frequencies. For 
example, the first mode of vibration of the pinned zero–load single bar B4 at 8.36 Hz can 
be correlated to the third mode of the pinned zero–load two–bar structure at 8.80 Hz, 
where the vibration mode of the individual member of the two–bar structure is in the 
same form with that of the first mode of the single bar. The single bar type B4 has the 
same characteristics as the member of the two–bar structure. The difference in the 
values of the frequency is due to the modelling of the end portions of the members of the 
two–bar structure to the connections. Moreover, the second and third modes of the 
pinned zero–load single bar B4 at 33.42 Hz and 75.17 Hz can be correlated to the seventh 
and eleventh modes of the pinned zero–load two–bar structure at 33.79 Hz and 75.41 Hz. 
When the stress stiffening is considered, for instance the first three modes of the rigid 
high–load single bar B4 can be correlated to the third, seventh and eleventh modes of 
the rigid high–load two–bar structure, respectively. 
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3.3.2 Sensitivity Analysis 

For the application and verification of the proposed methodology, three target systems 
were considered for the two–bar structure to simulate the experimental data. The 
unknowns are the applied axial load P at the end of the link–rod and the stiffness of all 
the rotational springs (see Table 3.16).  

Three values of the axial stress were chosen as 25, 100 and 175 N/mm2 representing low, 
intermediate and high tensile stress in the two members. The values of the rotational 
springs were chosen randomly to represent different constraint flexibility. The rotational 
springs at the symmetric locations of the two–bar structure were assumed to have 
identical stiffness, resulting in three unknowns of the stiffness of the rotational springs. 
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*Load P varies only +/– 2 % of the true value; in other cases, load P varies full assumed range. 

Figure 3.17 – Spearman correlation matrix between the parameters and responses of the numerical 
model of the first target system in the numerical study of symmetric two–bar structure. 
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Table 3.16 – Parameters of the target systems in the numerical study of symmetric two–bar structure. 

Target  
system 

trueP  
[kN] 

trueN  
[kN] 

true  
[N/mm2] 

 I.1
true
rk  

[kNm/ 
rad] 

I.1
true
kr  
[–] 

 III.1
true
rk  

[kNm/ 
rad] 

III.1
true
kr  
[–] 

 III.link
true
rk  

[kNm/ 
rad] 

III.link
true
kr  

– 

1 3.04 1.77 25.00  0.00 0.00  0.05 0.25  0.49 0.75 
2 12.37 7.09 100.00  0.49 0.75  0.16 0.50  3.09 0.95 
3 21.70 12.40 175.00  0.05 0.25  3.09 0.95  0.16 0.50 

Assumptions: I.1
true
rk = II.2

true
rk ; III.1

true
rk = III.2

true
rk . 

As previously discussed, a sensitivity analysis is performed prior to the optimization 
process to examine the input parameters with significant influences on the structural 
output responses. The characteristics of the parameters in the sensitivity analysis can 
be referred to Table 3.7, except that the variation of the load is from zero to 30 kN. 

The results of a global sensitivity analysis through Spearman correlation coefficient for 
the first target system of the two–bar structure are presented in Figure 3.17, which are 
based on 200 Latin hypercube samples. Similar to the result of the sensitivity analysis 
for the single bar, the member axial stresses have significant effect on the output 
parameters from the static as well as dynamic analyses of the numerical model. The joint 
flexibility affects considerably the modal parameters of the natural frequencies and 
mode shapes. Taking into account that the truss–like structure is modelled as symmetric, 
the geometrical characteristics of the connection plate are different in the three–
dimensional space, which result in changed stiffness of the connection elements in–plane 
and out–of–plane. As a result, the influence of krIII.link is most significant when the mode 
of vibration involves out–of–plane rotation of the connection plate. The influence of the 
joint flexibility is reduced when the effect of the load or stress stiffening is present. 

3.3.3 Identification of Axial Force and Joint Stiffness 

The proposed methodology was implemented using the first five simulated experimental 
modes to identify the load and the rotational spring stiffness of joints. The simulated 
experimental modes were assumed to be in–plane modes of vibration. The load was 
varied simultaneously with the spring stiffness or the fixity factors in the range from 
zero to 30 kN. The fixity factors were varied from 0 (pinned) to 0.99 (almost rigid). The 
values of the initial populations were assumed random with no pre–knowledge of the 
design parameters.  

Table 3.17 – Results of the identified axial forces and stresses in the numerical study of symmetric 
two–bar structure. 

Target  
system 

Technique  idP  Δ 1
idN   1

id   Δ 2
idN   2

id   Δ 
 [kN] [kN] [kN] [N/mm2] [kN] [kN] [N/mm2] [kN] 

1 ARSM  3.05 0.01 1.78 25.08 0.01 1.78 25.08 0.01 
 GA  3.03 −0.01 1.77 24.91 −0.01 1.77 24.91 −0.01 
 PSO  2.99 −0.04 1.75 24.65 −0.02 1.75 24.65 −0.02 
2 ARSM  12.39 0.02 7.10 100.17 0.01 7.10 100.17 0.01 
 GA  12.42 0.05 7.12 100.43 0.03 7.12 100.43 0.03 
 PSO  12.41 0.04 7.11 100.32 0.02 7.11 100.32 0.02 
3 ARSM  21.70 0.01 12.41 175.06 0.00 12.41 175.06 0.00 
 GA  21.66 −0.04 12.38 174.71 −0.02 12.38 174.71 −0.02 
 PSO  21.70 0.00 12.41 175.02 0.00 12.41 175.02 0.00 
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Table 3.18 – Results of the identified rotational spring stiffness and fixity factors in the numerical 
study of the symmetric two–bar structure. 

Target 
system 

Technique I.1
id
rk  I.1

id
kr  I.1

id
kr

I.1
true
kr  

 III.1
id
rk  III.1

id
kr  III.1

id
kr

III.1
true
kr  

 III.link
id
rk  III.link

id
kr  III.link

id
kr

III.link
true
kr  

[kNm/rad] [−] [−]  [kNm/rad] [−] [−]  [kNm/rad] [−] [−] 
1 ARSM 0.01 0.06 −  0.06 0.27 1.10  6.57 0.75 1.00 
 GA 0.02 0.12 −  0.04 0.21 0.85  7.51 0.77 1.03 
 PSO 0.03 0.13 −  0.06 0.25 1.01  6.99 0.76 1.01 
2 ARSM 0.43 0.80 1.06  0.21 0.50 1.00  34.24 0.96 1.01 
 GA 0.35 0.68 0.91  0.45 0.45 0.90  30.67 0.92 0.96 
 PSO 0.39 0.71 0.95  0.16 0.50 1.00  38.01 0.94 0.99 
3 ARSM 0.04 0.18 0.72  3.64 0.96 1.01  2.54 0.53 1.06 
 GA 0.07 0.24 0.97  2.68 0.94 0.99  2.22 0.50 1.00 
 PSO 0.07 0.27 1.10  2.90 0.95 1.00  2.19 0.50 0.99 

Similar to the study of the single bar, the identified load from the first stage of 
optimization was applied in the second stage of optimization with an assumed variation 
of +/− 2 % to account for possible error in the identification of the load. The narrow 
variation of the load was chosen in the second stage of optimization to allow dominant 
influences of the joint flexibility on the output parameters of the modal parameters.  

The optimization of the two−bar model involved 4 design parameters (the load and 3 
joint rigidity factors), 10 modal responses (5 natural frequencies and 5 MAC values) and 
2 static forces in the two members. The results of the identified load and axial forces in 
the members of the symmetric two–bar structure are given in Table 3.17. An excellent 
agreement between the identified and true forces was obtained. The different 
optimization techniques provide similar results. The maximum difference between the 
identified forces and the true forces is 0.05 kN.  

Table 3.18 gives the results of the identified rotational spring stiffness and fixity factors 
of the symmetric two–bar structure. A good agreement between the identified and the 
true fixity factors was acquired. For most of the cases, the ratios between the identified 
and the true fixity factors are close to one. The PSO provides slightly better results. The 
GA also provides satisfactory results. The ARSM gives for a case of the third target 
system a relatively low ratio of 0.72. However, it is worth mentioning that for this case, 
the value of the rotational spring stiffness is small. Thus, a small change in the value of 
the rotational spring stiffness can result in a considerable change in the value of the 
fixity factor. In other words, it is more difficult to identify accurately the rotational spring 
stiffness or the fixity factor for the cases of small values of the rotational spring stiffness. 

The numerical results of the symmetric two–bar structure indicate that the proposed 
methodology is able to identify the axial forces as well as the joint stiffnesses of the two–
bar truss–like structure. The assumption is identical joint stiffnesses at symmetric 
locations of the structure due to symmetric identification problem. 

3.3.4 Error Analysis 

As previously discussed, some deviations would be expected due to uncertainties in 
measurement data and structural properties. The impact of the uncertainties to the 
structural parameter identification of the two–bar structure is assessed by assuming 
variations of structural parameters as defined in Table 3.10, in addition to the variations 
of the axial forces and joint rigidity factors.  
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Table 3.19 – Results of the identified axial forces and stresses in the numerical error analysis of the 
symmetric two–bar structure. 

Target  
system 

Technique  idP  Δ  
1
idN   1

id   Δ  
1
idN   2

id   Δ 
 [kN] [kN]  [kN] [N/mm2] [kN]  [kN] [N/mm2] [kN] 

1 ARSM  2.87 −0.16  1.68 23.67 −0.09  1.68 23.67 −0.09 
 GA  2.90 −0.14  1.69 23.88 −0.08  1.693 23.88 −0.08 
 PSO  3.05 0.01  1.78 25.04 0.01  1.78 25.04 0.01
2 ARSM  12.38 0.01  7.09 100.08 0.01  7.09 100.08 0.01
 GA  12.38 0.01  7.10 100.11 0.01  7.096 100.11 0.01
 PSO  12.47 0.10  7.15 100.80 0.06  7.145 100.80 0.06
3 ARSM  21.55 −0.15  12.32 173.84 −0.08  12.32 173.82 −0.08 
 GA  21.38 −0.31  12.23 172.48 −0.18  12.23 172.48 −0.18 
 PSO  21.75 0.06  12.44 175.47 0.03  12.44 175.47 0.03

An optimization was carried out, in which all uncertain parameters were included into 
the optimization process. For simplicity, the focus of the error analysis was the 
identification of the load and the axial forces or corresponding stresses of the two–bar 
structure. The results of the identified forces and stresses are provided in Table 3.19. 
The forces can still be determined with a high level of accuracy. The largest absolute 
deviation of the identified load to the true one is –0.31 kN and to the true member force 
is –0.18 kN by the GA, corresponding to a relative error of –1.45 % to the true load. 

3.3.5 Estimation of Joint Stiffness at Symmetric Locations of Structures 

As examined for a single bar, the identification of different joint stiffnesses of symmetric 
locations is feasible with added mass. To investigate the possibility to estimate different 
joint stiffnesses at symmetric locations of the two–bar structure, several modifications 
were considered on the two−bar system to make the system unsymmetrical.  

 
(a) Asymmetric two−bar system by  

added mass (UnsymM)
(b) Asymmetric two−bar system with  

members of different lengths (UnsymL)  

            

Figure 3.18 – Two types of asymmetric two−bar systems to examine the estimation of different joint 
stiffnesses at symmetric locations of the structure.   
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(a) Asymmetric system UnsymM   (b) Asymmetric system UnsymL 

  

  

  

 

 

  

 

 

  

4th mode    8th mode    4th mode    8th mode  
8.82 Hz   27.84 Hz   13.24 Hz   36.77 Hz 

Figure 3.19 – Examples of numerical natural frequencies and mode shapes of the asymmetric two–
bar systems assuming pinned connections at zero−applied load showing different 
vibration behaviour of the two members.

Two types of an asymmetric two–bar structure were investigated. The first asymmetric 
two−bar system is named UnsymM. For this system, a mass of 0.407 kg is added to one 
of the two members, i.e. the first member, at a distance of 440 mm to the higher end of 
the member (see Figure 3.18(a)). The position of the added mass was chosen based on 
the dynamic analyses examining different locations of the mass. At the selected location, 
the effect of the mass is sufficiently significant on the vibration behaviour of the 
structure compared to the system without mass. 

The second asymmetric two–bar system is referred to as UnsymL, which is formed by 
concerning different lengths of the two members (see Figure 3.18(b)). This system has 
one member of about 1510 mm long and the other member is approximately 1390 mm 
long. The system UnsymL was examined as it is interesting to investigate the 
identification of the joint stiffnesses that is not bounded by a symmetric identification 
problem. For existing structures in practice, the technique of added mass can be applied, 
but the modification of the member lengths is not applicable to existing structures. 

The vibration characteristics of the asymmetric two–bar systems are compared with that 
of the symmetric system. Figure 3.19 demonstrates two examples of the vibration modes 
of the systems UnsymM and UnsymL. Unlike the symmetric two–bar structure, the two 

Table 3.20 – Parameters of the axial forces and corresponding stresses of the target systems in the 
numerical study of the asymmetric two–bar structures. 

Target  
system 

Asymmetric  
system 

 trueP   
[kN] 

 1
trueN  

[kN] 
1
true   

[N/mm2] 
 2

trueN   
[kN] 

2
true   

[N/mm2] 
1 UnsymM  3.04  1.77 25.01  1.77 25.00 
2 UnsymM  21.70  12.40 175.00  12.41 175.00 
3 UnsymL  12.37  5.38 75.84  7.95 112.12 

Table 3.21 – Parameters of the rotational spring stiffness and fixity factors of the target systems in 
the numerical study of the asymmetric two–bar structures. 

Target  
system 

Asymmetric  
system 

 I.1
true
rk  

[kNm/ 
rad] 

I.1
true
kr  
[–] 

 III.1
true
rk  

[kNm/ 
rad] 

III.1
true
kr  
[–] 

 III.link
true
rk  

[kNm/ 
rad] 

III.link
true
kr  
[–] 

 II.2
true
rk  

[kNm/ 
rad] 

II.2
true
r  
[–] 

1 UnsymM  0.49 0.75  0.00 0.00  0.74 0.25  0.16 0.50 
2 UnsymM  0.05 0.25  3.09 0.95  2.23 0.50  0.49 0.75 
3 UnsymL  0.16 0.50  0.05 0.25  6.68 0.75  3.09 0.95 

Assumptions: III.2
true
rk = II.2

true
rk (for UnsymM); III.2

true
rk = III.1

true
rk (for UnsymL). 

 
d

 



3   Verification of methodology by numerical study 

             

80   
 

members of the asymmetric systems vibrate more distinctly. When both members 
vibrate, the modified member with the added mass of the UnsymM and the shorter 
member of the UnsymL vibrate not as strongly as the other member. 

The parameters of the target systems for the asymmetric two–bar structures are given 
in Table 3.20 for the load, axial forces and corresponding stresses, as well as in Table 
3.21 for the rotational spring stiffness and fixity factors. The three target systems have 
different states of stress from low, intermediate to relatively high, i.e. 25 N/mm2 to 175 
N/mm2. It is noted that for the system UnsymM, the added mass has small effect on the 
stresses of the members. As a result, the two members have nearly identical stresses. 
However, for the system UnsymL, reasonably, the two members experience highly 
different stresses. The applied load of about 12 kN results in an axial force of 
approximately 5.4 kN in the first member and nearly 8.0 kN in the second shorter 
member, as well as an equivalent normal stress of about 76 N/mm2 in the first member 
and 112 N/mm2 in the second member. 

For the implementation of the proposed methodology, the unknowns were assumed to be 
the load applied at the end of the link–rod and the rotational spring stiffness of four 
among the five joints. To focus on the identification of the rotational spring stiffness at 
the higher end of the second member, which was assumed to be identical to that of the 
first member for the symmetric two–bar structure, and to simplify the identification 
problem, four among the five unknowns of the rotational spring stiffness were 
considered, in comparison to three in the case of the symmetric system.  

Table 3.22 – Results of the identified axial forces and stresses in the numerical study of the 
asymmetric two–bar structures UnsymM and UnsymL. 

Target  
system 

Technique  idP   Δ  
1
idN   1

id   Δ  
2
idN   2

id  Δ 
 [kN] [kN]  [kN] [N/mm2] [kN]  [kN] [N/mm2] [kN] 

1 ARSM  3.05 0.01  1.78 25.14 0.01  1.78 25.14 0.01 
 GA  2.96 −0.08  1.73 24.36 −0.05  1.73 24.35 −0.05 
 PSO  3.12 0.09  1.82 25.69 0.05  1.82 25.69 0.05 
2 ARSM  21.71 0.01  12.41 175.02 0.01  12.41 175.05 0.01 
 GA  21.72 0.02  12.42 175.07 0.02  12.42 175.09 0.02 
 PSO  21.76 0.06  12.44 175.49 0.04  12.44 175.50 0.04 
3 ARSM  11.67 −0.70  5.07 71.53 −0.31  7.50 105.84 −0.45 
 GA  11.70 −0.66  5.09 71.75 −0.29  7.52 106.15 −0.42 
 PSO  11.76 −0.61  5.11 72.15 −0.26  7.56 106.64 −0.39 

Table 3.23 – Results of the identified rotational spring stiffness and fixity factors in the numerical 
study of the asymmetric two–bar structures UnsymM and UnsymL. 

Target 
system 

Technique .
id
rI 1k  .

id
krI 1  I.1

id
kr

.
true
krI 1  

.
id
rIII 1k  .

id
krIII 1  III.1

id
kr

III.1
true
kr  

.
id
rIII linkk  .

id
krIII link  III.link

id
kr

.
true
krIII link  

.
true
rII 2k  II.2

true
kr  II.2

id
kr

II.2
true
kr  

[kNm/ 
rad] 

[−] [−] [kNm/ 
rad] 

[−] [−] [kNm/ 
rad] 

[−] [−] [kNm/ 
rad] 

[−] [−] 

1 ARSM 0.45 0.73 0.98 0.00 0.00 − 0.71 0.24 0.97 0.15 0.48 0.95 
 GA 0.47 0.74 0.99 0.00 0.02 − 0.72 0.24 0.98 0.17 0.50 1.01 
 PSO 0.50 0.75 1.01 0.00 0.00 − 0.74 0.25 1.00 0.17 0.51 1.01 
2 ARSM 0.04 0.20 0.79 3.07 0.95 1.00 2.25 0.50 1.01 0.48 0.75 0.99 
 GA 0.07 0.31 1.25 4.29 0.96 1.01 2.96 0.57 1.14 0.63 0.80 1.06 
 PSO 0.14 0.35 1.39 0.49 0.75 0.79 2.57 0.54 1.07 1.32 0.89 1.19 
3 ARSM 0.36 0.69 1.38 0.09 0.35 1.39 7.86 0.78 1.04 8.01 0.98 1.03 
 GA 0.30 0.65 1.30 0.08 0.33 1.31 7.10 0.76 1.01 7.54 0.98 1.03 
 PSO 0.24 0.60 1.20 0.08 0.33 1.32 5.65 0.72 0.96 6.13 0.97 1.03 
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For the system UnsymM, the rotational spring stiffnesses of the two ends of the second 
members were assumed identical. For the system for the system UnsymL, the rotational 
spring stiffnesses at the lower ends of the first and second members were assumed 
identical. Five simulated experimental in–plane modes were used.  

The results of the identified forces are provided in Table 3.22. Very good results were 
obtained for the system UnsymM with a maximum difference of the identified to the true 
forces of 0.09 kN. Reasonable results were achieved for the system UnsymL, in which a 
maximum difference of the forces of –0.70 kN was obtained. The different optimization 
techniques give similar results. 

In Table 3.23, the results of the identified rotational spring stiffness and fixity factors 
are shown. It was noted that small values of the rotational spring stiffness were more 
difficult to be estimated accurately, for example the rotational spring stiffness of the first 
member of the second and third target systems. However, a correct relation to a pinned 
and rigid condition of the different joint stiffnesses could be identified in general. 

The numerical case studies of the asymmetric two–bar structures by added mass or 
modification of the length of the symmetric system reveal that the proposed methodology 
is able to provide reasonable estimation of different values of the rotational stiffnesses 
in a non–symmetric identification problem. 

3.4 Five−Bar Truss System 

Following the numerical study of the two–bar structure, a five–bar truss was developed 
and studied. The three−dimensional finite element model of the five−bar truss is 
presented in Figure 3.20. The programme ANSYS® was used. Two–node beam elements 
were used based on Timoshenko beam theory. The model for the five–bar truss has 225 
nodes and 302 beam elements. For modeling the connections, rotational springs with 
varying stiffness are introduced to ten connection points at the beginning and end of the 
members and at the joint to the link−rod. The mechanical properties for the system were 
assumed as the mass density of 7850 kg/m3, the modulus of elasticity of 205 000 N/mm2 
and the Poison’s ratio of 0.30. The geometrical and mechanical characteristics of the 
members of the five–bar truss is given in Table 3.24. 

To illustrate the complication in the dynamic behaviour of a multiple–member truss–
type structure when the number of members is increased,  Figure 3.21 presents the 
natural frequency values of the modes up to 120 Hz of the five–bar truss in comparison 
to the two−bar system. The structures were assumed to be nearly rigid. As a multiple–
member system gets more complex, the number of modes increases substantially. 
Besides, the five–bar truss consists of both tensile and compressive members. The 
frequency values of the compression members are reduced at higher applied forces,  

Table 3.24 – Geometrical and mechanical properties of the five−bar truss in the numerical study. 

Member   L   Cross–section   A   I   E   ρ   sλ  
  [mm]  [mm]  [mm2]  [mm4]  [N/mm2]  [kg/m3]  [−] 
1  1493  Ø 9.5  70.9  399.8  205 000  7850  628.6 
2  1484  Ø 9.5  70.9  399.8  205 000  7850  624.8 
3  1917  Ø 9.5  70.9  399.8  205 000  7850  807.2 
4  1066  L40x40x4  304.0  46081.0  205 000  7850  86.7 
5  1060  L40x40x4  304.0  46081.0  205 000  7850  86.1 

Link–rod  396  Ø 12  113.1  1017.9  205 000  7850  132 
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Figure 3.20 – Numerical global model of the five−bar truss system.  

 
(a) Two−bar system (b) Five–bar system 

    
Figure 3.21 – Numerical natural frequencies of the modes in the frequency range up to 120 Hz of the 

two–bar and five–bar systems assuming nearly rigid joints. 
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Table 3.25 – Numerically calculated axial forces and normal stresses of the five–bar truss at different 
applied loads. 

P 
[kN] 

N [kN] σ [N/mm²] 

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 
Link 
−rod Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 

Link 
−rod 

5.0 2.00 2.03 1.73 −1.43 −1.44 5.0 28.29 28.68 24.46 −4.71 −4.75 44.26 
15.0 5.92 6.00 5.20 −4.22 −4.26 15.0 83.57 84.65 73.41 −13.89 −14.01 132.75 
25.0 9.83 9.96 8.68 −7.01 −7.07 25.0 138.75 140.52 122.50 −23.06 −23.26 221.24 
35.0 13.74 13.92 12.14 −9.81 −9.88 35.0 194.04 196.52 171.43 −32.27 −32.51 309.73 

whereas the frequency values of the tension members are increased. These counteracting 
effects by the coexistence of compressive and tensile forces in a truss cause intricate 
variation of frequencies as well as interchange of modes. Thus, attention must be paid 
in sorting a correct order of the modes when the load of the system is varied. 

Numerical analyses were performed to understand the static and dynamic behaviour of 
the five–bar truss system. The static calculations of the axial forces and normal stresses 
of the five–bar truss due to different loads are provided in Table 3.25. A load from 5 kN 
to 35 kN results in a low to relatively high states of normal stress in the tension members, 
e.g. about 28 N/mm2 to 194 N/mm2 in the first member. Note that the five–bar truss is 
not absolutely symmetric. The axial forces and stresses in the first and second members 
are similar but not the same. 

Regarding the dynamic analysis, the numerical model allows all the modes to be 
estimated. The modal natural frequencies and the modes of vibration are determined via 
free vibration. Figure 3.22 shows the first sixteen modes of a semi–rigid five–bar truss 
at zero–applied load. For this example, the assumed values of all fixity factors are not 
pinned but semi–rigid of 0.75 because it is interesting to observe the modes of vibration 
of the compression top chords, which occur at lower modes of the semi–rigid system than 
the pinned system. The natural frequencies of the five–bar truss are associated with 
different types of modes of vibration. A relevant classification for each mode is according 
to the in–plane and out–of–plane characteristics. The out–of–plane modes include the 
modal vibrations in translational direction of a three–dimensional space. Some in–plane 

Table 3.26 – Parameters of the axial forces and stresses of the target systems in the numerical study 
of the five−bar structure. 

Target  
system 

 trueP   1
trueN  1

true   2
trueN  2

true   3
trueN  3

true  
 [kN]  [kN] [N/mm2]  [kN] [N/mm2]  [kN] [N/mm2] 

1  4.41  1.77 25.00  1.80 25.36  1.53 21.53 
2  18.00  7.09 100.01  7.18 101.34  6.24 88.01 
3  31.59  12.40 174.97  12.57 177.34  10.95 154.48 

Table 3.27 – Parameters of the rotational spring stiffness and fixity factors of the target systems in 
the numerical study of the five−bar structure. 

Target  
system 

I.1
true
rk  I.1

true
kr   II.1

true
rIk  II.1

true
krI   II.3

true
rIk  II.3

true
krI   II.link

true
rIk  II.link

true
krI   IV.4

true
rk  IV.4

true
kr  

[kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−] 

1 0.49 0.75  3.13 0.95  0.00 0.00  0.05 0.25  26.57 0.50 
2 3.13 0.95  0.05 0.25  0.13 0.50  0.16 0.50  79.72 0.75 
3 0.05 0.25  0.16 0.50  0.38 0.75  0.00 0.00  504.86 0.95 

Assumptions: I.1
true
rk = I.1

true
rIk ; II.1

true
rIk = II.2

true
rIk ; I.4

true
rk = II.5

true
rk = IV.4

true
rk = IV.5

true
rk . 
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Figure 3.22 – Numerical natural frequencies and mode shapes of first sixteen modes of a semi–rigid 
five–bar truss ( 0.75)kr at zero−applied force. 
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modes are coupled with out–of–plane modes. These particular modes are characterized 
by two sets of movements, in–plane and out–of–plane vibrations simultaneously or 
followed by one another (see mode 20th in Figure 3.22 for example). 

Three target systems were considered for the implementation of the proposed 
methodology. The characteristics of the target systems are presented in Table 3.26 and 
Table 3.27. The unknowns are the applied load P at the end of the link–rod and the 
stiffness of the rotational springs. The rotational spring stiffness at symmetric location 
of the truss were assumed to have identical stiffness. The load P were chosen to result 
in three states of axial stresses of approximately 25, 100, and 175 N/mm2 in the first 
member. The rotational spring stiffness were randomly chosen to represent different 
constraint flexibility, keeping into consideration the diversity of the case studies. 

3.4.1 Mode Pairing Criteria 

For the mode pairing, the technique making use of the modal strain energy (MSE) is 
discussed. GREENING and LIEVEN (2003) and BREHM et al. (2010) stated that the mode 
pairing task is complex because the order of the numerical modes change as a result of 
variations on the numerical parameters to be updated during the optimization process. 
In addition, the available numbers of degrees of freedom of experimental modes are  
often limited. 

 (a) MAC 

 
 (b) EMAC 

 
Figure 3.23 – Pairing of the simulated experimental and numerical frequencies by the MAC and 

EMAC in the numerical study for the second target system of the five−bar truss. 
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Based on the results of the modal analysis of the numerical model, the in–plane and out–
of–plane modes of the five−bar truss can be closely−spaced and have similar modes of 
vibration. It was assumed that only the in–plane degrees of freedom of the modes are 
acquired from the experiments. Based on this assumption, the EMAC was applied for 
the mode pairing in addition to the MAC. The clusters of in–plane and out–of–plane 
degrees of freedom of a mode were selected separately. The MSE and relative MSE are 
calculated for the in–plane degrees of freedom.  

To give an example of the mode pairing using the EMAC, the second target system at an 
intermediate state of stress was used. Twelve modes were chosen as simulated 
experimental modes for the second target system among thirty numerically calculated 
modes based on the values of the relative MSE of the in–plane degrees of freedom of at 
least 0.50 to allow a sufficient level of the vibration in–plane. 

The simulated experimental and numerical modal parameters were computed based on 
the characteristics of the stress state and joint flexibility of the second target system. 
When the experimental modal parameters are available, the numerical modal 
parameters are calculated based on a five–bar truss system, whose stress state and joint 
fixity factors are generated randomly during each run of the optimization process of the 
proposed methodology. 

For each mode, the MAC, MSE, relative MSE for the clusters of in–plane degrees of 
freedom and the EMAC were calculated. Figure 3.23 shows the MAC and EMAC values 
for the twelve simulated experimental modes and thirty numerical modes of the second 
target system of the five−bar truss. 

As similar modes of vibration appear, for instance the in−plane and out−of−plane 
numerical seventh and eighth modes or the twenty−second and twenty−third modes, the 
traditional MAC was unable to assign reliably the correct numerical modes to the 
simulated experimental modes. The EMAC allows the classification of the mode shapes 
taking into account the relative MSE of the in−plane degrees−of−freedom of the truss. 
The EMAC shows correct assignments of the modes, illustrating the beneficial use of the 
EMAC for the mode pairing for truss structural systems. 
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Figure 3.24 – Numerically calculated natural frequencies and mode shapes of twelve modes of the 
second target system as simulated experimental modes in the numerical study of the 
five−bar truss. 
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Table 3.28 – Relative modal strain energy (MSE) of members of the five–bar truss in the numerical 
study of the second target system. 

Bar  Relative MSE 
  Simulated experimental mode 
  1 2 3 4 5 6 7 8 9 10 11 12 
1  0.09 0.34 0.48 0.29 0.00 0.01 0.15 0.23 0.13 0.02 0.01 0.00 
2  0.10 0.31 0.50 0.30 0.01 0.01 0.13 0.27 0.25 0.03 0.02 0.05 
3  0.63 0.22 0.01 0.24 0.14 0.40 0.14 0.10 0.12 0.15 0.79 0.04 
4  0.06 0.01 0.00 0.00 0.19 0.13 0.17 0.12 0.15 0.21 0.06 0.15 
5  0.06 0.02 0.01 0.01 0.19 0.13 0.14 0.10 0.12 0.24 0.04 0.31 

Link−rod  0.05 0.11 0.00 0.15 0.00 0.01 0.04 0.04 0.01 0.04 0.00 0.02 
In−plane (total)  0.98 1.00 1.00 0.99 0.53 0.68 0.77 0.87 0.78 0.68 0.92 0.56 

Out−of−plane (total)  0.02 0.00 0.00 0.01 0.47 0.32 0.23 0.13 0.22 0.32 0.08 0.44 

3.4.2 Selection of Modes to use Analytical−based Algorithm 

The proposed methodology uses information of the axial forces in selected individual 
members of the truss that are identified by the analytical–based algorithm by MAES et al. 
(2013). As previously explained, the analytical–based algorithm gives more than one 
solutions of the identified force for members of a truss structure, because each mode 
provides a solution of the identified force. The selection of the modes of individual bars 
for the use of the analytical–based methods is evaluated. 

The relative MSE was calculated for individual members of a truss structure. The twelve 
simulated experimental modes of the second target system of the five−bar truss are 
presented in Figure 3.24. The results of the relative MSE of the twelve modes are shown 
in Table 3.28. For each mode, the vibration of each member in relation to other members 
and the dominant vibration of which members in certain modes can be recognized. For 
example, the third member, i.e. bar 3, the slenderest member of the five–bar truss 
structure, vibrates strongly in the first simulated experimental in–plane mode.  

Table 3.29 – Selection of identified axial member forces based on analytical–based method using the 
relative MSE in the numerical study of the second target system of the five−bar truss. 

Mode  Bar 1  Bar 2  Bar 3 
  1

trueN = 7.09 [kN]  2
trueN = 7.18 [kN]  3

trueN = 6.24 [kN] 
 

 1
aN * 

[kN] 
∆ 

[kN] 

1
IP ** 

[–] 
 2

aN  
[kN] 

∆  
[kN] 

2
IP  

[–] 
 3

aN  
[kN] 

∆  
[kN] 

3
IP  

[–] 
1  6.79 −0.30 0.09  6.91 −0.27 0.10  6.07 −0.17 0.63 
2  6.82 −0.27 0.34  6.91 −0.28 0.31  6.06 −0.18 0.22 
3  6.82 −0.27 0.48  6.91 −0.28 0.50  6.07 −0.17 0.01 
4  6.82 −0.27 0.29  6.90 −0.28 0.30  6.04 −0.20 0.24 
5  5.37 −1.72 0.00  7.50 0.32 0.01  6.05 −0.19 0.14 
6  6.80 −0.29 0.01  6.88 −0.30 0.01  5.87 −0.37 0.40 
7  6.69 −0.40 0.15  3.23 −3.95 0.13  5.87 −0.37 0.14 
8  6.55 −0.54 0.23  6.74 −0.44 0.27  5.98 −0.26 0.10 
9  6.57 −0.52 0.13  6.63 −0.56 0.25  6.04 −0.20 0.12 
10  2.61 −4.48 0.02  5.97 −1.22 0.03  6.05 −0.19 0.15 
11  7.12 0.03 0.01  6.94 −0.25 0.02  6.06 −0.18 0.79 
12  9.91 2.82 0.00  8.44 1.26 0.05  5.21 −1.03 0.04 

*Analytical–based method based on MAES et al. (2013); 
**IP – in−plane; 

Maximum value of relative MSE for modes in the form of the first vibration mode of a single bar. 
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To choose the modes for the use of the analytical−based method to be integrated into the 
proposed methodology, the mode with the highest relative MSE in the form of the first 
mode of a single beam was selected to avoid the issue regarding the zero−modal 
displacement at a node of a mode shape. The selection criterion agrees with the 
recommendations given by REBECCHI et al. (2013) about the selection of a proper flexural 
mode shape to increase the accuracy of the identified force. 

Table 3.29 shows the identified axial forces of the first to third members based on the 
analytical−based method by MAES et al. (2013) for the twelve modes. Because the 
results for bar 4 and bar 5 for the L–profile members show however no satisfactory 
results, only the identified forces of the solid circular first to third members of the five–
bar truss were used. Using the simulated experimental modal data, which are accurate 
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Figure 3.25 – Spearman correlation matrix between the parameters and responses using simulated 
experimental data of the third target system in the numerical study of the five–bar truss. 
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without the influence of experimental errors, the analytical−based method by MAES et 
al. (2013) provides in general a good match to the true axial forces. Variation of the 
identified forces occurs in some cases, due to mode shapes with small amplitudes that 
are in some cases close to a straight line or zero−modal displacement. Based on the 
maximum values of the indicator factor, the third mode was selected  
for the first and second bars, while the first mode was chosen for the third bar. The 
primary interest is the reliability of the selection of modes that can possibly give 
potentially correct results. The selected modes all give a highly reasonable estimation of 
the axial forces.  

3.4.3 Sensitivity Analysis 

The characteristics of the parameters of the numerical model, including their 
designation, the assumed lower and upper limits for the sensitivity analysis are based 
on Table 3.7, except that the variation of the load is from zero to 30 kN like for the 
two−bar system.  

The results of the sensitivity analysis for the third target system of the five–bar truss 
are presented in Figure 3.25, which are based on 200 Latin hypercube samples. Similar 
to the sensitivity analyses of the single−bar and two−bar systems, the effects of the 
rotational springs are significant on the modal parameters, if the axial force effects are 
not dominant. The influences of the other parameters on the output responses are less 
significant compared to the load. The information obtained from the sensitivity analysis 
for the analysed numerical parameters is useful to apply the two−stage optimization 
process of the proposed methodology to identify the axial forces and joint flexibility of the 
five−bar truss. 

3.4.4 Identification of Axial Forces and Joint Stiffness 

It has been known from the sensitivity analysis that the load or the axial forces have 
significant influence on the static response as well as modal parameters. To implement 
the proposed methodology, the first six simulated experimental modes were used. The 
load was varied from zero to 30 kN, and the fixity factors were varied from 0 (pinned) to 
0.99 (almost rigid). The initial values of the axial force and the rotational spring stiffness 
of the connections were assumed having no pre–knowledge of the true values, which are 
the values of the target systems.  

Table 3.30 – Results of the identified axial forces and stresses in the numerical study of five–bar truss. 

Target 
system 

Techni–
que 

idP   Δ 1
idN  1

id  Δ 2
idN  2

id  Δ 3
idN  3

id  Δ 
[kN] [kN] [kN] [N/mm2] [kN] [kN] [N/mm2] [kN] [kN] [N/mm2] [kN] 

1 ARSM 4.39 −0.02 1.77 24.90 −0.01 1.79 25.25 −0.01 1.52 21.44 −0.01 
 GA 4.48 0.07 1.80 25.41 0.03 1.83 25.76 0.03 1.55 21.90 0.02 
 PSO 4.42 0.01 1.78 25.01 0.01 1.81 25.37 0.01 1.54 21.54 0.01 
2 ARSM 18.24 0.24 7.18 101.35 0.10 7.28 102.69 0.10 6.32 89.20 0.08 
 GA 18.17 0.17 7.16 100.94 0.07 7.25 102.28 0.07 6.30 88.84 0.06 
 PSO 18.29 0.29 7.20 101.59 0.11 7.30 102.95 0.11 6.34 89.43 0.10 
3 ARSM 31.22 −0.37 12.25 172.78 −0.15 12.41 175.07 −0.16 10.84 152.96 −0.11 
 GA 31.25 −0.34 12.26 172.92 −0.15 12.42 175.19 −0.15 10.85 153.09 −0.10 
 PSO 31.36 −0.23 12.30 173.56 −0.10 12.46 175.84 −0.08 10.89 153.66 −0.06 
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Table 3.31 – Results of the identified rotational spring stiffness and fixity factors in the numerical 
study of the five–bar truss. 

Target  
system 

Techni− 
que 

I.1
id
rk  I.1

id
kr  I.1

id
kr

I.1
true
kr  

III.1
id
rk  III.1

id
kr  III.1

id
kr

true
krIII.1  

III.3
id
rk  III.3

id
kr  III.3

id
kr

III.3
true
kr  

III.link
id
rk III.link

id
kr III.link

id
kr

III.link
true
kr

IV.4
id
rk  IV.4

id
kr  IV.4

id
kr

IV.4
id
kr  

 [kNm/
rad] 

[−] [−] [kNm/
rad] 

[−] [−] [kNm/
rad] 

[−] [−] [kNm/ 
rad] 

[−] [−] [kNm/ 
rad] 

[−] [−] 

1 ARSM 0.41 0.71 0.95 4.74 0.97 1.02 0.00 0.03 − 0.74 0.25 1.00 86.60 0.77 1.53 
 GA 0.44 0.72 0.96 3.44 0.95 1.01 0.00 0.00 − 0.73 0.25 1.00 23.03 0.46 0.93 
 PSO 0.49 0.75 0.99 3.51 0.95 1.01 0.01 0.06 − 0.75 0.25 1.01 27.79 0.50 1.00 
2 ARSM 2.17 0.91 0.96 0.05 0.20 0.73 0.05 0.26 0.52 1.58 0.40 0.79 87.09 0.77 1.03 
 GA 2.43 0.94 0.98 0.06 0.26 0.96 0.08 0.37 0.75 1.93 0.46 0.91 81.56 0.75 1.01 
 PSO 2.81 0.94 0.99 0.05 0.24 0.89 0.14 0.50 1.00 2.11 0.49 0.95 80.08 0.75 1.01 
3 ARSM 0.04 0.19 0.77 0.14 0.44 1.13 0.45 0.76 1.01 0.55 0.19 − 464.94 0.95 0.99 
 GA 0.06 0.25 1.01 0.15 0.46 1.18 0.44 0.77 1.03 0.15 0.06 − 497.95 0.95 0.99 
 PSO 0.06 0.26 1.04 0.13 0.44 1.11 0.36 0.74 0.98 0.21 0.08 − 511.12 0.95 1.00 

Assumptions: I.1
id
rk = II.1

id
rk ; III.1

id
rk = III.2

id
rk ; I.4

id
rk = II.5

id
rk = IV.4

id
rk = IV.5

id
rk . 

In the second stage of optimization, the identified load from the first optimization stage 
was also varied within +/− 2 % to account for possible error in the identification of the 
load. The optimization of the five−bar model involved 6 design parameters (the load and 
5 joint rigidity factors) and 12 modal responses (6 natural frequencies and 6 MAC values) 
and 3 static forces in the first to third tension members of circular solid cross−sections.  

During the optimization, the modes with a MAC value equal or greater than 0.75 were 
to be selected. A minimum number of four paired modes was defined as a constraint, to 
aim for an optimized model with physical meaning. 

In Table 3.30, the identified axial forces agree well to the true values of the target 
systems. The different optimization techniques provide similar results. The maximum 
difference between the identified and true load by the ARSM is −0.37 kN. The maximum 
difference between the identified and true member axial forces is −0.16 kN.  

In Table 3.31, the identified fixity factors also represent in most cases correctly the 
degrees of joint stiffness of the five−bar truss with respect to a pinned or rigid condition. 
The PSO gives the most satisfactory results. The ratios between the identified and the 
true fixity factors are closer to one than the other two techniques. The ARSM provides 
the highest deviations of the results of the rigidity factors compared to the PSO and GA. 

The numerical results of the five–bar truss structure reveal that the proposed 
methodology is able to identify reasonably the axial forces as well as the joint stiffnesses 
of the truss−type structure. 

3.5 Discussions 

From the numerical study of three partial systems of truss−type structures, i.e. single 
bars, a two−bar system and a five−bar truss, the following remarks are drawn.  

 A truss structure subjected to an increasing axial force becomes less sensitive to 
the influence of the rotational stiffness of the end constraints and joint connections. 

 A truss structure of higher slenderness also becomes less sensitive to the influence 
of the rotational stiffness of the end constraints and joint connections. 

 Sensitivity analyses give useful information that can be extracted for subsequent 
optimization process. 
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 Sensitivity analyses reveal that the modal parameters are influenced by the axial 
forces or axial stresses as well as the joint flexibility.  

 Sensitivity analyses show that the numerical calculated static forces in the 
investigated truss−type structures is sensitive to the load but insensitive to the 
joint flexibility. 

 The numerical study of different systems reveals that the proposed methodology 
can identify tensile forces at various stress states with good accuracy. For all case 
studies, the identified axial forces match fairly well to that of the target systems. 

 The numerical simulation also reveals that the proposed methodology can estimate 
correctly the joint rigidity factors of truss−type systems in relation to the pinned 
or rigid conditions. For all case studies, reasonable estimation of the fixity factor 
in relation to a pinned to rigid condition was achieved. The rigidity factor provides 
useful assessment in terms of the percentage of rigidity of semi–rigid connections. 

 About the choice of the objective function, the objective function for the 
identification of the axial forces contains three terms; the first two terms are 
related to the natural frequencies and the MAC values, while the third term is 
associated with the axial forces of the individual truss members that are estimated 
by an analytical−based method. The objective function for the estimation of the 
rotational spring stiffness contains only the terms related to the modal parameters, 
i.e. natural frequencies and MAC values. 

 The numerical error analysis shows that the identified axial forces are not 
significantly vulnerable to the uncertainty associated with structural parameters.  

 The numerical error analysis reveals that the uncertainty in structural parameters 
of truss structures has less impact on the accuracy of the parameter identification 
than the uncertainty in natural frequencies. 

 The numerical study reveals that a modification of a symmetric truss−type 
structure such as by adding mass to the truss members can determine joint 
stiffness at symmetric locations of a structure.
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4  
VALIDATION OF METHODOLOGY BY 

LABORATORY EXPERIMENTS  
 

   

 

 

The proposed methodology discussed in the previous chapter is readily applied to 
bench−scale systems in the laboratory. This chapter describes the laboratory tests for 
the single bars, two−bar system and five−bar truss. The results of the identification of 
the axial forces and corresponding stresses as well as the estimation of the joint stiffness 
by the proposed methodology are presented. The conclusions that emerged from the 
experiments are given.

Bauhaus−Universität Weimar 
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4.1 Overview of Laboratory Experiments 

The assemble of the partial systems of truss−type structures and the laboratory 
experiments were carried out at Versuchstechnische Einrichtung (VTE), Institute of 
Structural Engineering, Department of Civil Engineering at Bauhaus–Universität 
Weimar. The laboratory tests consisted of static measurements of the applied loads and 
the strains in selected members of the systems to verify the results of the identified axial 
forces. In addition, dynamic measurements were performed to identify the modal 
parameters of the systems. Based on the experimentally identified modal parameters, 
the proposed methodology was applied to determine the axial forces and joint stiffnesses 
of truss−type structures. Three types of systems were tested in the laboratory, from 
simple to more complex structures, i.e. single−bars, a two−bar system and a five−bar 
truss. The laboratory systems have similar geometrical and mechanical properties like 
those in the numerical study. 

4.2 Single−Bar Systems 

The setup of the experiments for the single bars were made using the available 
specimens and material at the laboratory facility. The single bars are steel circular solid 
bars type DYWIDAG with a core diameter of 20 mm. The mechanical properties of the 
bars were provided by the manufacturer as follows: the steel grade of S900/1100, mass 
density of 7850 kg/m3 and modulus of elasticity of 205 000 N/mm2. Several tests were 
performed for bars of different slenderness by changing the length of the members (see 
Table 4.1). Note that the system B3 in the laboratory experiment is different from the 
system B3 in the numerical study in the value of the modulus of elasticity. The drawings 
of the performed tests are provided at the end of the Appendix. 

As shown Figure 4.1, the tie−bar was inserted in a test frame (bar type B1). At one end 
of the entire bar of about 4000 mm long, a hydraulic actuator was used to apply the load. 
To create a prestress state and define the end constraint of the designed single bar, after 
an axial load was applied, one end of the single−bar system was tightened by a nut. After 
the nut was fixed, the hydraulic actuator was released. The prestress was controlled by 
a load cell with an accuracy of 2 mV/V, as well as measured by a strain gauge installed 
on the bar. As one end constraint of the bar could be moved, the length of the bar was 
adjusted to examine three single−bar systems of different slenderness. Table 4.2 gives 
the values of axial forces that are calculated from the measured strains for different tests 
of the single bars. The increments of the forces were to allow relatively low to 
intermediate states of stress, for instance approximately 35 N/mm2 to around 154 N/mm2 

for the bar type B2 and similarly for other bar types. 
 
 

  
Figure 4.1 – Overview of the laboratory test for the bar B1.  

Actuator                    Load cell              Laser vibrometer              Accelerometer              Strain gauge 

A01 A02 A03 A04 SG01 

L 
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Table 4.1 – Summary of single–bar systems in the performed laboratory tests. 

Bar  L  
[mm] 

 Ø  
[mm] 

 A  
[mm2] 

 I  
[mm4] 

 E  
[N/mm2] 

 ρ  
[kg/m3] 

 λs  
[−] 

B1  2700  20  314.16  7853.98  205 000  7850  540 
B2  1500  20  314.16  7853.98  205 000  7850  300 
B3  1000  20  314.16  7853.98  205 000  7850  200 

 

 

 

 

 

 
     

 

 

 

 

 
Figure 4.2 – Equipment in the laboratory tests of the single bars.  

The equipment used in the laboratory tests for the single−bar systems are shown in 
Figure 4.2. For the dynamic tests, due to the limitation in the installed positions of the 
sensors on the bar, four instead of five piezoelectric accelerometers PCB/352C33, having 
sensitivity of 100 mV/g and weight of about 6 g, were mounted to a bar at an equal 
distance of 0.225L from each other, where the length L is indicated for different bars (see 
Figure 3.6(b)). The accelerometers were measuring in longitudinal direction along the 
length of the bars and vertical directions perpendicular to the cross–section of the bars. 
They are labelled A01 to A04. The outer accelerometers A01 and A04 were placed at a 
distance of 0.150L from the ends of the bar. In addition to the measurements by 
accelerometers, a laser vibrometer Polytec PDV 100 was used in some tests to compare 
the results with that of the accelerometers. The sensor light of the laser vibrometer was 
setup to coincide with the accelerometer A02 for comparison purpose. 

The vibration measurements were conducted with hammer excitation using an impact 
hammer PCB/086C03 with soft tip, which is able to measure a pulse up to 2.2 kN with 
sensitivity of 2.25 mV/N and has a weight of about 0.16 kg. The instruments were 
connected to a signal conditioner and a data acquisition system of the National 
Instruments. The sampling rate was set as 2048 Hz. 

Table 4.2 – Values of applied forces and corresponding stresses from the measured strains in the 
laboratory experiments of the single bars. 

Load step B1  B2  B3 
 expP  [kN] exp [N/mm2]  expP [kN] exp [N/mm2]  expP [kN] exp [N/mm2] 
1 13.27 42.23  11.10 35.33  9.94 31.64 
2 22.41 71.34  18.08 57.55  26.10 83.08 
3 32.65 103.94  30.11 95.84  34.06 108.42 
4 40.70 129.56  48.30 153.74  44.64 142.09 
5 46.63 148.42  − −  − − 

Polytec PDV 100 LUKAS 400 
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The procedure to carry out the tests was as follows. First, one end of the bar, where the 
load cell was installed, was tightened by a nut. Dynamic measurements were made at 
initial condition of zero−applied load. Hammer excitations were applied at two or three 
locations along the bar. After that, the nut at the left end of the bar was released. An 
axial force was applied to the bar by the hydraulic actuator. The left end of the bar was 
tightened again and a pretress condition was created in the bar. Two to three vibration 
measurements were performed with hammer excitations for each load step, with a 
duration of about sixty seconds on average for one measurement. 

4.2.1 Modal Parameter Identification 

The natural frequencies and amplitudes of the corresponding mode shapes of the 
single−bar systems were identified for each load step. The modal parameter estimation 
was carried out through the application of the stochastic subspace identification (SSI) 
method, i.e. the reference−based covariance−driven SSI–cov/ref, available in the 
MACEC software developed by the Structural Mechanics Division of the Civil 
Engineering Department of KU Leuven [PEETERS and DE ROECK (1999); REYNDERS and DE 
ROECK (2008); REYNDERS et al. (2011)]. An example of the stabilization diagram using the 
SSI at one load step for the single bar B1 is shown in Figure 4.3, which were estimated 
based on state models of order between 1 and 100. 

 
  

Figure 4.3 – Stabilization diagram in the laboratory experiment of the bar B1 at one load step. 

Table 4.3 – Experimentally identified natural frequencies in the laboratory experiments of single 
bars B1, B2 and B3. 

Load   B1   B2 
step  exp  

[N/mm2] 

exp
nf  

[Hz] 
 exp  

[N/mm2] 

exp
nf  

[Hz] 
   1st  

mode 
2nd  
mode 

3rd  
mode 

4th  
mode 

  1st  
mode 

2nd  
mode 

3rd  
mode 

4th  
mode 

1  42.23 19.76 46.58 78.99 124.06  35.33 40.68 104.91 206.50 363.91 
2  71.34 22.59 51.14 82.37 128.17  57.55 47.16 125.52 213.58 366.41 
3  103.94 25.86 57.48 91.87 138.25  95.84 54.27 129.71 225.68 379.53 
4  129.56 28.16 61.92 97.76 143.82  153.74 65.75 132.54 265.68 375.95 
5  148.42 29.57 64.61 100.33 150.25  − − − − − 
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Regarding the measurements using the laser vibrometer in comparison to the traditional 
wired accelerometers, the laser vibrometer has the advantage that it does not add weight 
to the structure, due to the non−contact nature. The FRFs obtained from the laser 
vibrometer are highly comparable to that from the accelerometers. Nevertheless, higher 
frequency ranges than 200 Hz were not acquired as well by the laser vibrometer as by 
the accelerometers. 

The identified natural frequencies for all load cases of the single bar B1 are compared 
with that of the bar B2 in Table 4.3. The effects of the tensile stress in increasing the 
values of the natural frequencies are clearly observed. Comparing between the bars of 
different slenderness, the identification of the natural frequencies and modal 
configurations could be obtained more consistently for bars with higher slenderness. In 
addition, more number of vibration modes were acquired for bars of higher slenderness.  

The results of the experimentally identified natural frequencies using the SSI and 
numerically computed frequencies for the first six modes of the bar B1 are shown in 
Figure 4.4. The numerical pinned and nearly rigid models were used for the calculation 
of the numerical frequencies. In addition, the analytical formulae for certain cases of the 
boundary conditions and stress stiffening (i.e. Eq (2.4) and (Eq. (2.8)) were used to 
compare with the experimental and numerical results.  The analytically and numerically 
calculated natural frequencies agree well. The experimentally identified frequencies are 
closer to the numerically computed natural frequencies of the assumed almost rigid  
bar system. 

 

Exp. – Experimental identification (SSI); Num. – Numerical calculation (FEM); Ana. – Analytical formulae. 
SSI – Stochastic subspace identification; EB – Euler–Bernoulli; TS – Timoshenko beam theory. 

  

Figure 4.4 – Experimentally identified and analytically/numerically calculated natural frequencies at 
different stress states in the laboratory experiment of single bar B1. 
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Table 4.4 – Results of the identified axial forces and corresponding stresses as well as the rotational 
spring stiffness and fixity factors in the laboratory experiment of single bar B1. 

Load  
step 

Technique  idN  id  Δ  1
id
rk = 2

id
rk  id

krγ  
  [kN] [N/mm2] [kN]  [kNm/rad] [−] 

 ARSM  13.85 44.09 0.58  177.11 0.99 
1 GA  13.78 43.87 0.51  172.87 0.99 
 PSO  13.82 44.00 0.55  177.11 0.99 
 ARSM  22.75 72.42 0.34  45.54 0.96 
2 GA  22.75 72.43 0.34  48.07 0.96 
 PSO  22.76 72.45 0.35  48.85 0.96 
 ARSM  32.81 104.43 0.16  59.84 0.97 
3 GA  32.96 104.92 0.31  53.04 0.97 
 PSO  32.83 104.49 0.18  78.79 0.98 
 ARSM  40.49 128.87 −0.21  51.82 0.97 
4 GA  40.72 129.61 0.02  57.41 0.97 
 PSO  40.50 128.91 −0.20  56.54 0.97 
 ARSM  46.34 147.51 −0.29  96.78 0.98 
5 GA  46.38 147.62 −0.25  118.03 0.99 
 PSO  46.28 147.33 −0.35  140.30 0.99 

When referring to the previous Figure 3.5 together with the results of Figure 4.4, the 
effect of the axial tensile stress is significant considering different sing−bar systems. In 
addition, axial loading causes a modification to the magnitudes of the natural 
frequencies of all modes. The relative changes of the natural frequency values of the first 
mode in percentage are higher than that of higher modes, although the absolute changes 
of the natural frequencies of higher modes are more than that of the first mode. 

4.2.2 Identification of Axial Force and Estimation of Joint Stiffness 

The identification procedure using the proposed methodology as described in the 
numerical study was used to identify the unknown parameters of the axial force and 
rotational spring stiffness of the end constraints of the laboratory single−bar systems. 

(a) Axial force (b) Natural frequency (bar B1) 

 

  
Figure 4.5 – Results of the identified axial forces and natural frequencies of the first four modes in 

the laboratory experiment of the single–bar systems. 
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The identification of the axial force for one single bar system was performed using the 
first four experimentally identified modes. Because one measurement point at midspan 
was not available, the five mode shape displacement points for the use of the analytical–
based method were from four measurement points and one assumed point at midspan of 
the bar based on polynomial interpolation of the measurement data. The mode shapes 
were normalized to a maximum modal displacement that is equal to one. The initial 
values of the updating load were assumed as 10 kN, while the initial values for all fixity 
factors were 0.5. 

Table 4.4 presents the results of the identified forces using the proposed methodology of 
single bar B1. The forces match reasonably well to the experimental values. Similarly, 
the results of the identified forces for the single bar systems B2 and B3 in Figure 4.5 
show a good agreement to the experimentally measured forces. In addition, as seen in 
Figure 4.5, the identified natural frequencies agree with the experimentally identified 
ones. The MAC values are from 0.97 to 1.00. 

4.3 Two–bar System 

The laboratory experiments for three two–bar systems with the geometric and material 
characteristics like the systems in the numerical study were carried out. The first system 
is a symmetric system. The second and third systems are asymmetric structures. For 
clarity and similar to the numerical study, the asymmetric systems are referred to as 
UnsymM (system with added mass) and UnsymL (system whose members are of 
different lengths).  

The symmetric two–bar system has each member of circular solid cross–section of  
9.5 mm and a length of approximately 1510 mm (see Figure 4.6). The link–rod is 
considered as a connecting member to the hydraulic actuator for applying the load.  

The asymmetric system UnsymM is based on the symmetric two–bar structure, but a 
mass of 0.407 kg is added to the first member at a distance of 440 mm to the higher end 
of the member. The added mass is shown in Figure 4.7. 

The asymmetric system UnsymL has two members of different lengths, i.e. the first 
member is approximately 1510 mm long and the second member is about 1390 mm long 
(see Figure 4.8). The joint connections at the lower end of the first and second tension  

Table 4.5 – Comparison of measured applied load of the hydraulic actuator by load cell and calculated 
member axial forces from the measured strains in the laboratory experiment of the 
symmetric two−bar system. 

Load 
step Measurements by strain gauges  Measurements 

by load cell 

 
local y  global Y   global Y 

1
exp  2

exp   1
expN  1

expN   1
expN  2

expN  exp
sumN  Δ    expP  

 [N/mm2] [N/mm2]  [kN] [kN]  [kN] [kN] [kN] [kN]  [kN] 
 Bar 1 Bar 2  Bar 1 Bar 2  Bar 1 Bar 2 Total Total   
1 59.52 58.03  4.22 4.11  3.65 3.56 7.21 0.16  7.05 
2 101.04 102.03  7.16 7.23  6.20 6.26 12.46 0.01  12.46 
3 133.09 136.61  9.43 9.68  8.17 8.39 16.56 −0.18  16.74 
4 172.04 177.76  12.19 12.60  10.58 10.92 21.50 −0.75  22.25 
5 208.42 220.49  14.77 15.63  12.79 13.53 26.33 −0.12  26.45 
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(a) Overview of the test setup (b) Front view (c) Side view 

 
 

Figure 4.6 – Overview of the laboratory experiment of the symmetric two−bar system. 
Ai indicates accelerometers, SGi strain gauge and EXi indicates excitation points. 

  (a) Steel mass (b) Added mass (system UnsymM) (c) Modified joint (system UnsymL) 

   
Figure 4.7 – Details of the laboratory test on the asymmetric systems UnsymM and UnsymL.  

(a) Overview of the test setup (b) Front view  (c) Side view 

   
Figure 4.8 – Overview of the laboratory experiment of the asymmetric two−bar system UnsymL. 
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bars were set up to be linked together by a connecting plate (see Figure 4.7(c)). Thus, 
these joints are assumed to have the same rotational stiffness. The purpose was to 
examine a modification of the joint to evaluate the advantage of testing the structure in 
a slightly different configuration to reduce the number of unknown joint stiffnesses and 
facilitate the structural parameter estimation process using the proposed methodology. 

Regarding the mechanical properties, the mass density of all two–bar systems is 
assumed as 7850 kg/m3. The modulus of elasticity of the steel members of the two–bar 
structures was determined by tensile tests performed at BAM as 205 000 N/mm2. The 
details of the tensile tests are described in the next section. 

The overview of the test setups for the symmetric two−bar system and the asymmetric 
system UnsymL are presented in Figure 4.6 and Figure 4.8. For all three systems, 
tension loads were applied by the hydraulic actuator at the end of the link–rod in vertical 
pulling downward direction. The forces by the hydraulic actuator were measured by a 
load cell. In addition, two strain gauges were used to measure the strain in the members; 
one was used for each member. The strain values were recorded every 0.2 second. 

Table 4.5 gives a comparison of the applied forces by the hydraulic actuator and the 
forces calculated from the measured strains in the two members for the symmetric 
system to double–check the accuracy of the measurements by static force equilibrium. 
Five load steps were performed in an increasing manner from approximately 7.1 kN to 
26.5 kN. The applied loads result in an axial stress from about 59 N/mm2 to 208 N/mm2  

Table 4.6 – Comparison of measured applied load of the hydraulic actuator by load cell and calculated 
member axial forces from the measured strains in the laboratory experiment of the 
asymmetric two−bar system UnsymM. 

Load 
step Measurements by strain gauges  Measurements 

by load cell 

 
local y  global Y   global Y 

1
exp  2

exp   1
expN  1

expN   1
expN  2

expN  exp
sumN  Δ    expP  

 [N/mm2] [N/mm2]  [kN] [kN]  [kN] [kN] [kN] [kN]  [kN] 
 Bar 1 Bar 2  Bar 1 Bar 2  Bar 1 Bar 2 Total Total   
1 60.78 59.05  4.31 4.19  3.73 3.62 7.36 0.34  7.02 
2 101.97 102.90  7.23 7.29  6.26 6.32 12.58 0.34  12.24 
3 142.36 147.77  10.09 10.47  8.74 9.07 17.81 0.20  17.61 
4 162.23 169.89  11.50 12.04  9.96 10.43 20.39 0.25  20.14 
5 211.28 225.51  14.98 15.98  12.97 13.84 26.81 0.27  26.54 

Table 4.7 – Comparison of measured applied load of the hydraulic actuator by load cell and calculated 
axial forces in the two members from the measured strains in the laboratory experiment 
for the asymmetric two−bar system UnsymL. 

Load 
step Measurements by strain gauges  Measurements 

by load cell 

 
local y  global Y   global Y 

1
exp  2

exp   1
expN  1

expN   1
expN  2

expN  exp
sumN  Δ    expP  

 [N/mm2] [N/mm2]  [kN] [kN]  [kN] [kN] [kN] [kN]  [kN] 
 Bar 1 Bar 2  Bar 1 Bar 2  Bar 1 Bar 2 Total Total   
1 35.66 51.79  2.53 3.67  2.19 3.30 5.48 −0.09  5.57 
2 50.41 71.32  3.57 5.06  3.09 4.60 7.69 0.03  7.66 
3 73.54 104.03  5.21 7.37  4.52 6.78 11.30 0.26  11.04 
4 95.43 134.16  6.76 9.51  5.86 8.79 14.65 0.44  14.21 
5 117.95 167.27  8.36 11.86  7.24 10.99 18.23 0.54  17.69 
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in the first member, as well as an axial stress from about 58 N/mm2 to 220 N/mm2 in the 
second member measured by the strain gauges. As the assembled laboratory system is 
not absolutely symmetric, the axial forces and corresponding stresses in the two 
members are not absolutely the same. Moreover, with the application of increasing loads, 
the geometry and joint stiffness of the two members were changed differently, resulting 
in bigger differences between the member forces of the members at higher applied loads. 

Similarly, for the systems UnsymM and UnsymL, the applied forces by the hydraulic 
actuator and the forces calculated from the measured strains in the two members are 
compared in Table 4.6 and Table 4.7. Five load steps were also performed for the system 
UnsymM from approximately 7.0 kN to 26.5 kN. The applied loads result in an axial 
stress from approximately 61 N/mm2 to 211 N/mm2 in the first member and 59 N/mm2 
to 226 N/mm2 in the second member by strain gauge measurements on each member. 
The diagrams of the forces versus time during the experiment performance of the 
symmetric system and asymmetric UnsymM system are shown in Figure 4.9. The 
applied loads were maintained relatively constant for each dynamic measurement. 

For the system UnsymL, the five load steps were increased from about 5.6 kN to  
17.7 kN. The two members of the UnsymM have highly different stresses due to their 
different characteristics. The axial stress calculated from the measured strains in the 
first member was varied from 36 N/mm2 to 118 N/mm2, while the stress in the second 
member was varied from 52 N/mm2 to 167 N/mm2. 

Concerning the dynamic tests, twelve accelerometers were installed for the symmetric 
and asymmetric UnsymM systems in total. Six piezoelectric accelerometers PCB/352C33 
were attached on each member by glue. Regarding the system UnsymL, sixteen 
accelerometers were used; eight on each member. Measurements were carried out with 
hammer excitations at several positions on the two members of the system. The sampling 
frequency was set as 2048 Hz. 

(a) Symmetric system (b) Asymmetric system UnsymM 

 

   
Figure 4.9 – Measured applied load of the hydraulic actuator by load cell and calculated axial forces 

in the two members from the measured strains during the measurements in the 
laboratory experiments of the two−bar systems. 

Hydraulic cylinder Bar 1 Bar 2 Total force (Bars 1 & 2)
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4.3.1 Material Tests to Determine Stress–Strain Characteristics  

Samples of the tension bars Ø 9.5 mm of the two−bar structure were available for the 
material tests to determine the stress−strain characteristics. The tests were performed 
at Bundesanstalt für Materialforschung und −prüfung (BAM). For the tensile tests, 
proportional bars with a diameter of 5 mm were manufactured in accordance with DIN 
EN 6892–1 (2009). The dimensions of the tensile specimens are given in Table 4.8. 

The implementation of the small–scale tests was made at room temperature. The 
universal testing machine has a maximum tensile force of the hydraulic actuator of  
100 kN. For the strain measurement, a strain gauge type HBM DD1 with a measuring 
length of 25 mm was used. 

Table 4.8 – Characteristics of the tensile specimens of the two−bar structure for material tests  
[DIN EN 6892–1 (2009)]. 

do  Lo  d1  r  h  Lc  Lt 
5  25  M8  4  7  30  51 

 

Table 4.9 – Results of the tensile tests for the specimens of the solid circular steel tension members
of the two–bar system in the laboratory experiments. 

   Stress, σ [N/mm2]  Strain, ε [%] 
Technical proportional limit fp0.01  400.7  0.206 

0.2% strain limit fp0.2  498.6  0.443 
Tensile strength fu  549.0  1.878 

    
Figure 4.10 – Stress–strain curve from the tensile tests for the specimens of the solid circular steel 

tension members of the two–bar system in the laboratory experiments.  
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The tensile specimens were secured on the testing machine with a small locking force. 
The extensometer was attached to the sample. The tensile test was carried out under 
displacement control with a velocity of 0.02 mm/s until rupture of the specimen was 
reached. An assumption of a uniform elongation over the length of the specimen  
(Lc = 30 mm) gives a strain rate of 0.0007 s–1, which corresponds to the requirements 
given in DIN EN 6892–1 (2009). 

The measured stress–strain curve is shown in Figure 4.10. The investigated steel has no 
pronounced yield point. This results from the manufacturing of the cold forming process. 
The important characteristics of the investigated steel can be obtained from the 
measured stress–strain curve, as shown in Table 4.9. The modulus of elasticity was 
determined as 205 000 N/mm² by a linear interpolation of the stress–strain curve for the 
stress range from 100 to 250 N/mm². 

4.3.2 Modal Parameter Identification 

Similar to the single bars, the reference–based covariance–driven SSI was used to 
extract the modal parameters from the measured responses of the two−bar structures. 
Table 4.10 shows the experimentally identified frequencies of the first six modes of all 
three two–bar system at different states of stress in the laboratory experiments. The 
experimental modal parameters could be identified relatively well. The identified 
natural frequency values from the experiments of the two–bar structures are highly 
affected by the stress stiffening. Regarding the identified mode shapes, no significant 
differences between the various load states were found.  

To demonstrate the effect of the added mass on the dynamic behaviour of the two–bar 
structure, the first six experimentally identified natural frequencies and mode shapes of 
the symmetric system and asymmetric system UnsymM at the first load step are 
presented in Figure 4.11. At the first load step, both systems have a similar stress state. 
The effect of the added mass on the natural frequencies of the asymmetric system UnsymM 

Table 4.10 – Experimentally identified natural frequencies of the first six modes in the laboratory 
experiments of the symmetric and asymmetric two−bar structures. 

Load 
step 

System 1
exp    2

exp    exp
nf [Hz] 

 [N/mm2] [N/mm2]  1st 
mode  2nd 

mode  3rd 
mode  4th 

mode  5th 
mode  6th 

mode 
1 Symmetric 59.52 58.03  26.40  33.28  42.28  70.86  74.38  114.57 
2  101.04 102.03  34.51  42.38  54.06  87.94  91.72  141.72 
3  133.09 136.61  38.77  48.43  60.67  99.23  102.68  154.87 
4  172.04 177.76  43.31  54.83  67.55  111.65  114.75  172.52 
5  208.42 220.49  47.52  59.92  73.28  121.12  124.26  186.05 
                

1 UnsymM 60.78 59.05  23.22  29.88  39.90  58.47  72.25  110.72 
2  101.97 102.90  29.56  37.99  51.22  73.72  88.79  130.53 
3  142.36 147.77  34.26  43.63  57.23  84.54  102.21  134.05 
4  162.23 169.89  36.33  46.47  61.00  88.55  106.86  111.88 
5  211.28 225.51  41.68  53.07  68.53  101.52  121.57  150.41 
                

1 UnsymL 35.66 51.79  21.37  30.43  38.56  61.84  76.14  101.23 
2  50.41 71.32  25.15  34.47  43.30  68.62  85.38  110.82 
3  73.54 104.03  29.08  40.00  50.31  79.41  98.88  125.07 
4  95.43 134.16  31.64  44.32  55.54  88.09  109.56  130.23 
5  117.95 167.27  34.59  48.81  61.16  96.45  119.64  147.86 
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(a) Symmetric system 
( 1

exp = 59.52 N/mm2, 2
exp = 58.03 N/mm2) 

      

 

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode  
26.40 Hz 33.28 Hz 42.28 Hz 70.86 Hz 74.38 Hz 114.57 Hz  

(b) Asymmetric system UnsymM  

( 1
exp = 60.78 N/mm2, 2

exp = 59.05 N/mm2)  

      

 

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode  
23.22 Hz 29.88 Hz 39.90 Hz 58.47 Hz 72.25 Hz 110.72 Hz  

Figure 4.11 – Experimentally identified modal parameters of the first six modes at the first load step 
in laboratory experiments of the symmetric and asymmetric two−bar system UnsymM. 

in comparison to the symmetric structure can be recognised clearly. In addition, the 
influence of the added mass can be also observed by investigating the shapes of the 
vibration modes. While the two members of the symmetric structure vibrates in similar 
forms, the members of the system UnsymM vibrates more distinctly from each other. 
Similar observations about more distinct vibrations of the members of the system 
UnsymL were also obtained. 

4.3.3 Identification of Axial Force and Joint Stiffness 

The identification procedure as described in the proposed methodology was implemented 
to identify the assumed unknowns of the axial forces and joint flexibility of the laboratory 
two−bar system.  The first five to six experimentally identified modes were used in the  

Table 4.11 – Results of the identified axial forces and stresses in the laboratory experiment of the 
symmetric two–bar system. 

Load  
step 

Technique  idP  Δ  1
idN  1

id  Δ  2
idN  2

id  Δ 
 [kN] [kN]  [kN] [N/mm2] [kN]  [kN] [N/mm2] [kN] 

1 ARSM  6.52 −0.53  3.76 53.02 −0.46  3.76 53.02 −0.35 
 GA  6.19 −0.86  3.57 50.32 −0.65  3.57 50.32 −0.55 
 PSO  6.12 −0.93  3.53 49.79 −0.69  3.53 49.79 −0.58 
2 ARSM  11.91 −0.56  6.83 96.33 −0.33  6.83 96.33 −0.40 
 GA  11.84 −0.62  6.79 95.81 −0.37  6.79 95.79 −0.44 
 PSO  11.94 −0.53  6.85 96.58 −0.32  6.85 96.58 −0.38 
3 ARSM  16.30 −0.44  9.33 131.67 −0.10  9.33 131.67 −0.35 
 GA  16.34 −0.40  9.35 131.97 −0.08  9.35 131.97 −0.33 
 PSO  16.18 −0.57  9.25 130.55 −0.18  9.25 130.55 −0.43 
4 ARSM  21.28 −0.97  12.17 171.65 −0.03  12.17 171.65 −0.43 
 GA  21.53 −0.72  12.31 173.65 0.11  12.31 173.65 −0.29 
 PSO  21.50 −0.75  12.29 173.43 0.10  12.29 173.41 −0.30 
5 ARSM  26.34 −0.12  15.05 212.32 0.28  15.05 212.31 −0.59 
 GA  26.26 −0.19  15.01 211.70 0.23  15.01 211.69 −0.63 
 PSO  26.33 −0.13  15.05 212.25 0.27  15.04 212.24 −0.59 

2

8
6
4
2

2

8
6
4
2
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(a) Force (b) Frequency (PSO) 

 

    
Figure 4.12 – Results of the identified axial forces and natural frequencies of the first five modes in 

the laboratory experiment of the symmetric two−bar structure. 

identification process. Like the numerical study, the updating parameters are the 
applied load to the system at the link−rod and the rotational spring stiffness of joints. 
For the symmetric system, it was assumed that the rotational spring stiffness at the 
symmetrical locations are identical. The load was varied from zero to 30 kN; the rigidity 
factors from zero to almost one. Similarly, the initial values of the updating load were 
assumed as 10 kN, while the initial values for all fixity factors were 0.5. The assumptions 
satisfy the condition that no prior−knowledge of the design parameters is necessary.  

Regarding the selection of mode for the member force identification using the 
analytical−based algorithm by MAES et al. (2013), as previously discussed in Section 3.4.2, 
the criterion using the relative modal strain energy (MSE) was applied. For the two−bar 
systems, the experimentally identified second mode with the highest value of the relative 

Table 4.12 – Results of the identified rotational spring stiffness and fixity factors in the laboratory 
experiment of the symmetric two–bar system. 

Load  
step 

Technique  I.1
id
rk  

[kNm/rad] 
I.1

id
kr  
[−] 

 III.1
id
rk  

[kNm/rad] 
III.1

id
kr  
[−] 

 III.link
id
rk  

[kNm/rad] 
III.link

id
kr  
[−] 

1 ARSM  1.25 0.88  1.55 0.90  3.30 0.60 
 GA  1.15 0.88  2.59 0.94  2.86 0.56 
 PSO  1.10 0.87  1.57 0.91  3.14 0.59 
2 ARSM  2.36 0.94  5.70 0.97  38.86 0.95 
 GA  1.17 0.88  3.40 0.95  15.14 0.87 
 PSO  1.11 0.87  4.10 0.96  30.38 0.93 
3 ARSM  1.10 0.87  4.19 0.96  12.86 0.85 
 GA  2.11 0.93  11.69 0.99  11.77 0.84 
 PSO  1.12 0.87  5.45 0.97  13.71 0.86 
4 ARSM  1.71 0.91  11.26 0.99  12.53 0.85 
 GA  1.99 0.92  16.12 0.99  12.55 0.85 
 PSO  1.37 0.89  9.64 0.98  12.03 0.84 
5 ARSM  2.23 0.93  8.85 0.98  220.45 0.99 
 GA  2.21 0.93  9.19 0.98  220.45 0.99 
 PSO  1.42 0.90  8.37 0.98  43.33 0.95 

Assumptions: I.1
id
rk =

II.2
id
rk ; III.1

id
rk = III.2

id
rk . 
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(a) SPR* (b) Proposed methodology 

  
* SPR – updating the parameter(s) of the rotational spring stiffness only, assuming the force is known. 

Figure 4.13 – Results of the identified fixity factor III.link
id
kr at different load steps in the laboratory 

experiment of the symmetric two−bar structure. 

MSE was chosen for the respective component of the objective function considering the 
identified member force using the analytical−based algorithm. 

Table 4.11 gives the identified applied loads as well as the member axial forces and 
corresponding stresses of the symmetric two–bar structure. The applied load and member 
axial force of the first member are plotted in Figure 4.12(a). A reasonable match between 
the experimentally measured and numerical identified forces was achieved for the 
different load states. The maximum deviation of the identified member forces for all 
cases is smaller than 0.70 kN. The performance of the three optimization techniques 
were comparable. 

Regarding the identified modes, the identified natural frequencies of the first five modes 
at various load states are shown in Figure 4.12(b). The results of the PSO are presented,  

Table 4.13 – Results of the identified axial forces and stresses in the laboratory experiment of the 
asymmetric two–bar system UnsymM. 

Load  
step 

Technique  idP  Δ  1
idN  1

id  Δ  2
idN  2

id  Δ 
 [kN] [kN]  [kN] [N/mm2] [kN]  [kN] [N/mm2] [kN] 

1 ARSM  6.80 −0.22  3.92 55.27 −0.39  3.92 55.26 −0.27 
 GA  6.36 −0.66  3.67 51.75 −0.64  3.67 51.73 −0.52 
 PSO  6.55 −0.47  3.78 53.26 −0.54  3.78 53.26 −0.42 
2 ARSM  11.52 −0.72  6.61 93.21 −0.62  6.61 93.23 −0.68 
 GA  11.39 −0.85  6.53 92.14 −0.70  6.53 92.14 −0.76 
 PSO  11.49 −0.75  6.59 93.00 −0.64  6.59 93.00 −0.70 
3 ARSM  17.20 0.59  9.84 138.82 −0.25  9.84 138.84 −0.63 
 GA  17.22 0.61  9.86 139.03 −0.23  9.86 139.03 −0.62 
 PSO  17.22 0.61  9.85 139.02 −0.24  9.85 139.02 −0.62 
4 ARSM  19.57 −0.57  11.19 157.91 −0.31  11.19 157.91 −0.85 
 GA  19.39 −0.75  11.09 156.46 −0.41  11.09 156.49 −0.95 
 PSO  19.61 −0.53  11.22 158.29 −0.28  11.22 158.26 −0.82 
5 ARSM  27.08 0.54  15.47 218.31 0.49  15.47 218.29 −0.51 
 GA  27.02 0.48  15.44 217.81 0.46  15.44 217.84 −0.54 
 PSO  27.09 0.55  15.48 218.42 0.50  15.48 218.35 −0.50 
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Table 4.14 – Results of the identified rotational spring stiffness and fixity factors in the laboratory 
experiment of the asymmetric two–bar system UnsymM. 

Target 
system 

Technique  I.1
id
rk  I.1

id
kr   III.1

id
rk  III.1

id
kr   III.link

id
rk  III.link

id
kr   II.2

true
rk  II.2

true
r  

 [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−] 

1 ARSM  0.05 0.24   0.64 0.80   3.90 0.64   0.95 0.85 
 GA  0.10 0.38   1.40 0.90   4.75 0.68   1.13 0.87 
 PSO  0.07 0.30   1.06 0.87   5.85 0.72   0.84 0.84 
2 ARSM  0.16 0.50   6.36 0.98   90.15 0.98   0.57 0.78 
 GA  0.33 0.67   16.12 0.99   98.09 0.98   1.80 0.92 
 PSO  0.30 0.65   9.23 0.98   71.63 0.97   1.74 0.91 
3 ARSM  0.17 0.51   4.01 0.96   161.26 0.99   1.30 0.89 
 GA  0.47 0.74   3.11 0.95   15.26 0.87   1.57 0.91 
 PSO  0.42 0.72   7.75 0.98   10.61 0.83   0.41 0.72 
4 ARSM  0.53 0.76   3.09 0.95   210.45 0.99   1.82 0.92 
 GA  0.51 0.76   16.12 0.99   220.45 0.99   1.23 0.88 
 PSO  0.46 0.74   0.52 0.76   220.45 0.99   2.20 0.93 
5 ARSM  0.32 0.66   2.64 0.94   126.94 0.98   3.36 0.95 
 GA  0.49 0.75   15.48 0.99   220.45 0.99   1.43 0.90 
 PSO  0.52 0.76   1.70 0.91   173.66 0.99   1.56 0.91 

Assumption: II.2
true
rk = III.2

true
rk . 

while the results of the ARSM and GA are similar. The identified frequencies by the 
proposed methodology agree well to the experimentally identified frequencies. Moreover, 
a high consistency of the paired mode shapes was achieved, with the obtained MAC 
values ranging from 0.93 to 0.99.  

The identified rotational spring stiffnesses of the symmetric two−bar structure are 
provided in Table 4.12. A general trend was found that the joint rigidity was increased 
with increasing applied load. This is reasonable in practice as the joint flexibility 
depends on the relative stiffness of the member, which is related to the level of loading. 

Furthermore, as discussed in the numerical study for the case studies of the single–bar 
systems, the optimization with only the updating parameters of the spring stiffness gives 
highly accurate results of the identified rigidity factors. This optimization assumes that 

Table 4.15 – Results of the identified axial forces and stresses in the laboratory experiment of the 
asymmetric two–bar system UnsymL. 

Load  
step 

Technique  idP  Δ  1
idN  1

id  Δ  2
idN  2

id  Δ 
 [kN] [kN]  [kN] [N/mm2] [kN]  [kN] [N/mm2] [kN] 

1 ARSM  5.40 −0.17  2.35 33.21 −0.18  3.48 49.10 −0.19 
 GA  5.36 −0.21  2.34 33.00 −0.19  3.47 49.01 −0.20 
 PSO  5.32 −0.25  2.32 32.76 −0.21  3.45 48.64 −0.22 
2 ARSM  7.52 −0.14  3.27 46.10 −0.30  4.86 68.61 −0.20 
 GA  7.41 −0.25  3.22 45.43 −0.35  4.79 67.56 −0.27 
 PSO  7.38 −0.28  3.21 45.22 −0.37  4.77 67.31 −0.29 
3 ARSM  11.10 0.06  4.82 68.03 −0.39  7.15 100.84 −0.22 
 GA  11.05 0.01  4.81 67.82 −0.40  7.11 100.32 −0.26 
 PSO  11.10 0.06  4.83 68.14 −0.38  7.14 100.66 −0.24 
4 ARSM  14.85 0.64  6.45 91.05 −0.31  9.53 134.45 0.02 
 GA  14.91 0.69  6.49 91.53 −0.27  9.56 134.84 0.05 
 PSO  14.86 0.65  6.47 91.21 −0.30  9.53 134.46 0.02 
5 ARSM  18.33 0.64  7.98 112.60 −0.38  11.73 165.51 −0.13 
 GA  18.27 0.58  7.96 112.27 −0.40  11.69 164.96 −0.17 
 PSO  18.33 0.64  7.98 112.51 −0.39  11.74 165.66 −0.12 
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Table 4.16 – Results of the identified rotational spring stiffness and fixity factors in the laboratory 
experiment of the asymmetric two–bar system UnsymL. 

Target 
system 

Technique  I.1
id
rk  I.1

id
kr   III.1

id
rk  III.1

id
kr   III.link

id
rk  III.link

id
kr   II.2

true
rk  II.2

true
r  

 [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−]  [kNm/ 
rad] 

[−] 

1 ARSM  0.11 0.40   0.70 0.81   8.97 0.80   0.58 0.78 
 GA  0.06 0.27   1.48 0.90   5.24 0.70   0.35 0.68 
 PSO  0.06 0.28   0.49 0.75   3.63 0.62   0.63 0.79 
2 ARSM  0.08 0.32   1.09 0.87   33.75 0.94   0.18 0.52 
 GA  0.23 0.58   2.03 0.93   39.71 0.95   0.28 0.63 
 PSO  0.08 0.32   1.54 0.90   93.71 0.98   0.31 0.65 
3 ARSM  0.32 0.66   3.50 0.96   93.55 0.98   0.29 0.64 
 GA  0.78 0.83   3.11 0.95   13.15 0.86   0.41 0.72 
 PSO  0.43 0.72   6.23 0.97   9.11 0.80   0.41 0.71 
4 ARSM  0.18 0.52   0.73 0.82   12.63 0.85   1.01 0.86 
 GA  3.00 0.95   1.09 0.87   6.56 0.75   0.44 0.73 
 PSO  0.34 0.68   1.70 0.91   8.59 0.79   0.35 0.68 
5 ARSM  7.59 0.98   3.12 0.95   7.84 0.78   0.56 0.78 
 GA  3.06 0.95   16.12 0.99   7.49 0.77   0.30 0.65 
 PSO  1.42 0.90   6.55 0.98   11.59 0.84   0.26 0.61 

Assumption: III.1
true
rk = III.2

true
rk . 

exact knowledge of the load is available; thus, the unknowns are only the joint stiffness 
or rigidity factors. As the values of the load were made available by load cell or strain 
gauges in the laboratory experiments for verification purpose, the optimization with  
only the joint rigidity factors as updating parameters were carried out. The results of the 
optimizations with only the spring stiffness were used to compare and evaluate the 
accuracy of the proposed methodology in identifying the joint rigidity of the laboratory 
two–bar structure. 

Figure 4.13 presents the identified rigidity factors of the joint connection to the link–rod 
by the optimization with only the spring stiffness as well as by the proposed 
methodology. The results of the joint to the link–rod are presented because this joint 
shows more distinct rigidity levels at the different load steps compared to other joints. 
At the first load step of low applied force, the joint experienced a middle level of  
semi–rigidity; after that, the rigidity level was increased at higher applied forces. 
Compared with the optimization with only the spring stiffness, the proposed 
methodology identifies correctly the rigidity factor at the first load step. At higher loads, 
the proposed methodology also estimates reasonably the rigidity factors. It is noted that 
the identification of the joint stiffness for a system at higher stress states becomes less 
precise because the influence of the end constraints is reduced while the effect of the 
stress stiffening is increased. The three optimization techniques give comparable results. 

The identified axial forces and axial stresses of the asymmetric systems UnsymM and 
UnsymL are provided in Table 4.13 and Table 4.15. The results show a satisfactory 
agreement between the experimentally measured and identified forces using the 
proposed methodology for both the asymmetric two−bar structures. The maximum 
deviation of the identified to the true forces for the system UnsymM is –0.95 kN. Better 
results of the identified forces were obtained for the system UnsymL with a maximum 
deviation to the true forces of 0.69 kN; smaller deviations were found in most cases. 

The identified rotational spring stiffnesses and fixity factors of the asymmetric systems 
UnsymM and UnsymL are given in Table 4.14 and Table 4.16. For system UnsymM, the 
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joint rigidity level is also increased at higher applied loads. For system UnsymL, a less 
consistent trend was found in the cases of the joints at the connection to the link−rod 
and at higher end of the second member. Different joint stiffnesses could be identified. 

The technique of added mass offers the advantage to estimate different joint stiffnesses 
that are normally cannot be included into the identification process due to the issue of 
symmetric identification problems. Besides, a slight modification of the structural 
configuration such as connecting the members at a joint can facilitate the identification 
process by reducing the number of the updating parameters of the joint flexibility. 

4.4 Five–Bar Truss System 

A five–bar truss structure with the same geometrical and mechanical properties as the 
five–bar truss in the numerical study was tested in the laboratory. The system was 
assembled based on the two–bar system from the previous laboratory test. One support 
was built to be not movable in longitudinal and vertical directions, while the other 
support was constructed as horizontally movable roller support. All connections were 
built to allow rotations of the connected members at joints.  

The truss consists of three tension bars, two compression members and a link–rod that 
is connected to the hydraulic actuator to apply the load. The tension bars have solid 
circular cross–sections of Ø 9.5 mm. The two compression bars have L–profiles of 
40x40x4.0 mm. The tension bar in the middle is approximately 1920 mm long, while the 
other two tension bars are about 1490 mm long. The compression top chords have a 
length of approximately 1060 mm. Due to the assembling of the structure, the truss is 
not absolutely symmetric. The exact geometrical characteristics of the system can be 
found in Table 3.24. Regarding the mechanical properties, all members are made of steel 

 
(a) Experimentally measured applied loads by load 

cell and calculated forces from measured strains 
(b) Numerically calculated forces of a pinned model 

as an example for comparison at one load step 

          
Figure 4.14 – Comparison of measured applied loads of the hydraulic actuator and calculated axial 

forces from the measured strains in the laboratory experiment of the five–bar truss.
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 (a) Overview of five–bar truss (b) Experimental setup (first sensor setup) 

 
 

Figure 4.15 – Overview of the laboratory experiment of the five–bar truss structure.   
  Ai indicates accelerometers, SGi indicates strain gauge and EXi indicates excitation points. 

(a) Pinned boundary (b) Top joint connection (c) Horizontally movable boundary 

   
(d) End connection of circular bar (e) Link−rod  (f) Accelerometer on circular bar 

   

Figure 4.16 – Boundary conditions, joint connections and attached accelerometers on a tension truss 
member in the laboratory experiment of the five–bar system.  

1060

1917
1484

396

A01

A03

A04

A05

A02

A06

A08

A09

A10

A07

A11

A13

A15

A14

A12

A26

A30

A20
A19

A18

A16
A17

A28

A25
A24

A23

A21
A22

A27
A29

312

225
403

A31

EX01

SG01 SG02

SG03

750

420

SG05

SG06
300

580

SG04

EX11

EX07
EX08

EX02

EX03

EX04
EX05

EX09
EX10

EX06

  

 

  

P 
Member 

       number 
0Ai0 Reference 

sensor 



4   Validation of methodology by laboratory experiments 

             

112   
 

Table 4.17 – Measured applied forces of the hydraulic actuator and calculated member axial forces 
from the measured strains in the laboratory experiment of the five–bar truss. 

Load 
step  Measurement 

of load cell    
Measurement 

of strain gauges   
   Bar 1  Bar 2  Bar 3 

 
expP  

[kN] 
 1

expN  
[kN] 

 1
exp  

[N/mm2] 
 2

expN   
[kN] 

 2
exp  

[N/mm2] 
 3

expN  
[kN] 

 3
exp  

[N/mm2] 
1  3.86  1.70  23.93  2.02  28.44  0.56  7.84 
2  5.65  2.38  33.63  2.69  37.90  1.18  16.61 
3  7.66  3.15  44.47  3.42  48.31  1.91  26.88 
4  12.00  4.65  65.56  4.91  69.29  3.46  48.79 
5  15.76  6.06  85.42  6.30  88.90  4.95  69.84 
6  19.62  7.58  106.87  7.82  110 .28  6.54  92.27 
7  24.75  9.34  131.83  9.58  135 .08  8.42  118.84 
8  29.14  11.09  156.42  11.32  159.75  10.33  145.67 

with a mass density of 7850 kg/m3. The tension bars have the modulus of elasticity of  
205 000 N/mm2 according to the tensile tests performed at BAM. The modulus of 
elasticity of the compression top chords are also assumed to be 205 000 N/mm2.  

An overview of the five–bar truss laboratory system is shown in Figure 4.15(a). The load 
is applied to the system by hydraulic actuator at the end of the link−rod. The magnitude 
of the load is increased gradually, aiming to study the change in the modal parameters 
and the reliability of the proposed methodology according to different stress states. 

To double−check the static equilibrium of the forces by different measurements, the 
applied forces of the hydraulic actuator measured by the load cell and the sum of the 
forces that are calculated from the measured strains in the members are compared in 
Figure 4.14. In addition, a static calculation of the numerical model at one load step, 
assuming pinned–jointed model, is shown to compare with the experimental 
measurements. A reasonable agreement of the forces by different measurements and 
between the experimentally measured and numerically computed forces is found. 

Table 4.17 shows the values of the applied forces of the hydraulic actuator measured by 
the load cell as well as the resulted axial forces and corresponding stresses in the first to 
third tension bars that are calculated from the measured strains. The applied force was 
increased progressively from approximately 3.9 kN to 29 kN, corresponding to a low and 
intermediate stress of about 24 N/mm2 and 156 N/mm2 in the first tension member. 

Table 4.18 – Experimentally identified natural frequencies of the first six modes in the laboratory 
experiment of the five−bar system. 

Load step  exp
nf  (SSI) [Hz] 

  1st mode  2nd mode  3rd mode  4th mode  5th mode  6th mode* 
1  15.56  19.04  23.94  33.27  42.42  − 
2  17.92  24.58  27.24  37.54  45.58  57.09 
3  20.42  27.39  30.47  41.62  49.95  56.97 
4  24.67  32.20  35.91  48.60  58.00  56.06 
5  27.70  36.04  40.31  53.73  63.37  55.92 
6  30.59  39.80  44.55  57.62  69.70  55.56 
7  33.62  43.76  48.95  63.71  75.13  55.25 
8  36.53  47.44  53.30  69.61  80.00  54.52 

*The order of the 1st to 6th mode is sorted according to the first load step; the 6th mode corresponds to 
the vibration mode of the compressive top chord, as a result, the frequencies are reduced at higher 
applied loads and cause interchange of modes at different load steps. 
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1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode* 
36.53 Hz 47.44 Hz 53.30 Hz 69.61 Hz 80.00 Hz 54.52 Hz 

Figure 4.17 – Experimentally identified mode shapes of the first six modes at the eighth load step in 
the laboratory experiment of five−bar truss system. 

The applied loads were limited taking into consideration the buckling loads of the 
compression top chords. It is noted that as the system is not absolutely symmetric, the 
forces are different for the first and second truss members of similar characteristics. 

4.4.1 Modal Parameter Identification 

The setups of the sensors are presented in Figure 4.15 and at the end of the Appendix. 
The experiments were performed in three setups to obtain sufficient resolutions of the 
mode shapes. The tests were implemented considering fixed reference points and roving 
measuring points. In total, 30 piezoelectric accelerometers PCB/352C33 were used in one 
setup. Excluding the link–rod, a total of 13 measurement points of each tension or 
compression member of the truss were obtained in three setups, resulting in a total of 
65 measurement points for the five truss members in all three setups. The responses 
were evaluated in terms of accelerations in the vertical and longitudinal directions. 
Vibration measurements were carried out with hammer excitation on the members of 
the five–bar truss at a sampling frequency of 2048 Hz. The modal parameters were 
extracted from the measured responses using a reference−based covariance−driven SSI 
technique, similar to the single bars and two−bar structure. 

The identified natural frequencies of the first six modes of the five−bar truss are provided 
in Table 4.18. The natural frequencies associated with the vibration modes of the tension 
members are increased with higher applied loads. However, the frequencies associated 
with the vibration modes of the compression top chords are decreased at the same time. 
The coexistence of both tensile and compressive forces causes interchange of modes. 
Thus, it is necessary to sort out the order of the mode carefully at different load steps.  

Table 4.19 – Identified axial forces in the first tension member by applying the analytical–based 
algorithm for the first six modes in the laboratory experiment of the five−bar system. 

Load step  1
aN [kN] 

  1st mode  2nd mode  3rd mode  4th mode  5th mode  6th mode 
1  1.53  1.83  1.36  0.98  0.72  –0.78 
2  2.43  1.89  2.19  1.67  1.53  3.30 
3  4.11  2.67  2.72  2.50  2.34  2.68 
4  5.10  4.39  4.26  4.01  3.93  − 
5  9.45  5.54  5.29  5.58  5.48  5.29 
6  9.72  7.15  7.95  5.42  6.70  6.98 
7  12.21  8.73  9.13  2.47  8.98  8.71 
8  17.38  11.31  11.36  11.33  10.78  10.38 
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The configurations of the six experimentally identified modes of the five–bar structure 
are presented in Figure 4.17. Furthermore, to examine the selection of the modes to use 
the analytical–based algorithm, the analytical–based algorithm by MAES et al. (2013) was 
used to calculate the member forces based on the experimentally identified modes. The 
results of the estimated forces in the first tension member by the analytical−based 
method using the six experimental modes are provided in Table 4.19. The forces vary 
between the different modes. Theoretically, the forces can be determined accurately for 
different modes if the mode shape displacement does not coincide with a nodal point. 
However, the experimental data are subjected to measurement errors. Therefore, the 
measurements of the mode shape displacements can be sensitive to the experimental 
errors. In the case of the first member, the experimentally identified third mode with the 
highest value of the relative MSE was chosen. The choice of the mode in the form of the 
first vibration mode of a single beam gives a reasonable estimation of the forces. 

4.4.2 Identification of Axial Force and Joint Stiffness 

To implement the proposed methodology, the first four to six experimentally identified 
modes of the five–bar truss structure were used in the identification process. Similar to 
the numerical study, the updating parameters are the applied load and the rotational 
spring stiffness of the joints, assuming identical at symmetrical locations of the truss. 
Table 4.20 gives the results of the identified loads and member axial forces as well as 
corresponding stresses of the first two tension members of the five–bar structure. The 
forces in the other members including the compression members were also obtained by 
static force equilibrium but for simplicity, they are not presented.  

Table 4.20 – Results of the identified loads, axial forces and axial stresses of the first to second 
tension members in the laboratory experiment of the five–bar truss. 

Target 
system 

Techni–
que 

idP  Δ Δ 1
idN  1

id  Δ Δ 2
idN  2

id  Δ Δ 
[kN] [kN] [%] [kN] [N/mm2] [kN] [%] [kN] [N/mm2] [kN] [%] 

1 ARSM 3.78 –0.09 –2.07 1.53 21.53 –0.17 –10.00 1.55 21.84 –0.47 –23.27 
 GA 3.58 –0.28 –7.25 1.45 20.44 –0.25 –14.71 1.47 20.74 –0.55 –27.23 
 PSO 3.64 –0.23 –5.70 1.47 20.75 –0.23 –13.53 1.49 21.05 –0.52 –26.24 
2 ARSM 5.47 –0.18 –3.19 2.19 30.88 –0.20 –7.98 2.22 31.32 –0.47 –17.47 
 GA 5.50 –0.15 –2.65 2.20 31.04 –0.18 –7.56 2.23 31.47 –0.46 –17.10 
 PSO 5.45 –0.20 –3.54 2.18 30.77 –0.20 –8.40 2.21 31.19 –0.48 –17.84 
3 ARSM 8.01 0.35 4.57 3.18 44.91 0.03 0.95 3.23 45.51 –0.20 –5.56 
 GA 7.32 –0.34 –4.44 2.91 41.11 –0.24 –7.62 2.95 41.67 –0.47 –13.74 
 PSO 7.23 –0.44 –5.61 2.88 40.56 –0.28 –8.57 2.92 41.12 –0.51 –14.62 
4 ARSM 12.19 0.19 1.58 4.82 67.96 0.17 3.66 4.88 68.87 –0.03 –0.61 
 GA 11.28 –0.72 –6.00 4.46 62.92 –0.19 –4.09 4.52 63.77 –0.39 –7.94 
 PSO 11.57 –0.43 –3.58 4.55 64.25 –0.09 –2.15 4.62 65.12 –0.30 –5.91 
5 ARSM 15.59 –0.17 –1.08 6.15 86.74 0.09 1.49 6.23 87.89 –0.07 –1.11 
 GA 15.27 –0.50 –3.11 6.02 84.94 –0.03 –0.66 6.10 86.07 –0.20 –3.17 
 PSO 16.53 0.76 4.89 6.51 91.88 0.46 7.43 6.60 93.14 0.30 4.76 
6 ARSM 18.75 –0.87 –4.43 7.38 104.16 –0.19 –2.64 7.48 105.57 –0.33 –4.35 
 GA 20.21 0.60 3.01 7.96 112.24 0.38 5.01 8.06 113.74 0.24 3.07 
 PSO 20.23 0.61 3.11 7.96 112.30 0.39 5.01 8.07 113.79 0.25 3.20 
7 ARSM 24.12 –0.63 –2.55 9.48 133.79 0.14 1.50 9.61 135.55 0.03 0.31 
 GA 24.17 –0.58 –2.34 9.50 134.07 0.16 1.71 9.63 135.86 0.06 0.52 
 PSO 24.13 –0.63 –2.51 9.49 133.81 0.14 1.61 9.61 135.58 0.04 0.31 
8 ARSM 29.75 0.61 2.09 11.68 164.77 0.59 5.32 11.83 166.92 0.51 4.51 
 GA 29.68 0.54 1.85 11.65 164.40 0.57 5.05 11.81 166.57 0.48 4.33 
 PSO 29.72 0.58 1.99 11.67 164.63 0.58 5.23 11.82 166.81 0.50 4.42 
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(a) Axial force (b) Frequency (PSO) 

 

   
Figure 4.18 – Results of the identified axial forces and natural frequencies of the first four modes in 

the laboratory experiment of the five−bar truss.  

The identified axial forces by the proposed methodology match reasonably well to the 
experimentally measured forces for all load states. Note that the experimental loads are 
those measured by a load cell at the hydraulic actuator, while the experimental member 
forces are the calculated forces from the measured strains for each of the truss member. 

The differences between the identified forces and the experimentally measured ones fall 
below 0.9 kN in absolute value for all load steps and by all optimization techniques. The 
largest difference of the identified to the true force by the ARSM is –0.87 kN, which is 
equivalent to a relative difference of –4.43 %. The GA and PSO perform generally more 
consistent than the ARSM, with a maximum deviation of –0.72 kN (–6.00 %) and 0.76 
kN (4.89 %), respectively.  

The identified forces by the proposed methodology are also plotted with the 
experimentally measured forces in Figure 4.18(a). Moreover, the numerically 
estimated and experimentally identified natural frequencies of the first four modes by 
the PSO are shown in Figure 4.18(b). Similar results of the estimated modal parameters 
were acquired by the ARSM and GA. The estimated and experimental obtained natural 
frequencies agree well. The MAC values range from 0.81 to 0.98, indicating a relatively 
good consistency of the estimated and experimentally identified mode shapes. 

Table 4.21 provides the identified rotational spring stiffnesses and fixity factors. In 
general, the joints become more rigid at higher applied loads. For instance, the joint 
stiffness of the connection to the link–rod is close to a pinned connection at the lowest 
stage of the applied load but gets more rigid as the load is increased. It is again 
demonstrated that the assumption of pinned joints for the truss does not approximate 
accurately the dynamic responses of the structure’s modal parameters. If considering the 
consistency of the increase in the level of the joint rigidity at higher applied loads, the 
GA provides in general the most consistent results. The ARSM shows in more cases a 
less consistent result compared to the other two techniques. 

For the top chords that are less flexible members compared to the tension bars, the joint 
flexibility shows a reasonably consistent level of semi–rigidity. The changes in the joint 
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Table 4.21 – Results of the identified rotational spring stiffness and fixity factors in the laboratory 
experiments of five–bar system. 

Load 
step 

Techni– 
que 

I.1
id
rk  I.1

id
kr  III.1

id
rk  III.1

id
kr  III.3

id
rk  III.3

id
kr  III.link

id
rk  III.link

id
kr  IV.4

id
rk  IV.4

id
kr  

[kNm/ 
rad] 

[−] [kNm/ 
rad] 

[−] [kNm/ 
rad] 

[−] [kNm/ 
rad] 

[−] [kNm/ 
rad] 

[−] 

1 ARSM 0.51 0.75 1.50 0.90 0.48 0.79 0.10 0.04 76.24 0.68 
 GA 0.61 0.79 1.96 0.92 6.59 0.89 0.16 0.07 62.22 0.52 
 PSO 1.40 0.87 1.00 0.83 0.82 0.66 0.18 0.07 21.06 0.44 
2 ARSM 1.53 0.90 2.80 0.94 2.55 0.95 5.90 0.72 18.86 0.41 
 GA 0.92 0.83 3.69 0.95 2.22 0.95 132.75 0.97 22.20 0.46 
 PSO 1.54 0.89 3.59 0.95 2.27 0.95 3.51 0.50 19.16 0.42 
3 ARSM 0.82 0.71 9.09 0.95 1.95 0.94 7.60 0.74 21.78 0.45 
 GA 1.99 0.92 3.40 0.95 4.94 0.97 211.35 0.99 21.49 0.45 
 PSO 2.91 0.95 10.29 0.98 3.06 0.94 6.36 0.54 34.54 0.55 
4 ARSM 0.90 0.69 5.59 0.96 2.27 0.95 113.37 0.86 24.33 0.48 
 GA 2.14 0.93 4.63 0.96 8.26 0.99 110.22 0.99 28.94 0.52 
 PSO 1.99 0.92 4.36 0.96 3.47 0.96 12.32 0.85 26.71 0.50 
5 ARSM 0.99 0.55 7.74 0.97 3.22 0.59 3.42 0.53 17.95 0.40 
 GA 4.21 0.96 2.72 0.94 8.22 0.98 133.33 0.97 22.04 0.45 
 PSO 0.71 0.65 3.12 0.95 2.41 0.95 21.30 0.87 23.70 0.47 
6 ARSM 12.12 0.98 4.45 0.95 12.44 0.99 13.07 0.80 25.01 0.48 
 GA 3.41 0.95 1.38 0.89 7.18 0.98 220.45 0.99 25.42 0.49 
 PSO 2.86 0.94 1.82 0.91 7.51 0.97 18.21 0.89 26.53 0.50 
7 ARSM 2.14 0.66 1.21 0.88 6.52 0.86 4.21 0.65 27.29 0.51 
 GA 11.42 0.98 3.28 0.95 9.84 0.99 110.22 0.99 28.09 0.51 
 PSO 3.42 0.77 10.39 0.98 5.62 0.98 28.35 0.77 27.86 0.51 
8 ARSM 8.17 0.56 16.41 0.99 2.06 0.93 12.14 0.79 31.36 0.54 
 GA 16.31 0.99 12.49 0.99 1.51 0.92 151.82 0.98 33.47 0.56 
 PSO 16.25 0.99 6.46 0.94 1.07 0.87 3.95 0.64 29.92 0.53 

Assumptions: I.1
id
rk = II.1

id
rk ; III.1

id
rk = III.2

id
rk ; I.4

id
rk = II.5

id
rk = IV.4

id
rk = IV.5

id
rk . 

rigidity of the compression top chords are reasonably small compared to the other joints. 
The level of the rigidity of the top chords depend on the structural characteristics of the 
members; thus, a high level of rigidity for the compression top chords was not reached. 

4.5 Discussions 

The laboratory experiments of three types of systems that form part of a built−up truss 
structures were performed, i.e. single bars, two−bar systems and a five−bar truss. The 
following remarks are drawn. 

 Truss structures can be considered easily excited structures; the modal parameters 
of truss structures could be identified relatively well. 

 Better identification of the modal parameters was achieved for truss−type 
structures of higher slenderness and subjected to higher stress states. 

 Five or more measuring points are recommended for truss members to estimate 
accurately the mode shapes and to apply the proposed methodology. 

 The experimental study shows that the proposed methodology can identify the 
applied loads and the member axial forces with reasonably good accuracy. 

 The joint rotational stiffness indicates in general an increasing trend in the rigidity 
level when the system is loaded and stresses.  

 From the experimental studies, the proposed methodology is a feasible approach 
to identify the resulting tensile forces and the joint stiffnesses in axially loaded 
structural members as part of a truss−type structure.
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5  
RECOMMENDATIONS FOR 

IN–SITU EXPERIMENTS  
 

    

 

 

An in–situ test on a historic Wiegmann−Polonceau roof truss in the city of Potsdam is 
described in this chapter. The feasibility of identifying the modal parameters of existing 
trusses is evaluated. Based on the experimental modal parameters, the possibility to 
estimate the axial forces by the proposed methodology in real−life applications is 
discussed. The findings provide foundation and recommendations for future in–situ tests 
on existing truss structures. 
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5.1 Purpose and Scope of In−situ Experiment 

The in–situ experiment was performed to assess the possibility of identifying the modal 
parameters of an existing historic truss structure, based on the state of the work in 2012. 
The tests were carried out as a cooperation between Brandenburg University of 
Technology Cottbus−Senftenberg and Bundesanstalt für Materialforschung und  
–prüfung (BAM). The truss structure was chosen for the experiment as it sets a good 
example of an historic light–weight iron truss structure that is characterized primarily 
by axial forces. After the laboratory experiments were performed that allowed the 
development and validation of the proposed methodology, further analyses were made 
for the in–situ test to examine the axial force estimation of the existing truss.  

5.2 Description of Historic Truss Structure 

The investigated historic Wiegman–Polonceau truss is located at a formerly horse riding 
building called Reithalle, which was constructed between 1885 and 1891 in the city of 
Potsdam, Germany [SIGEL et al. (2006)]. The building is approximately 18 m wide and  
38 m long. The roof system consists of eight individual trusses at about 4.2 m from each 
other and connected with each other by horizontal tie bars. (see Figure 5.1). 

(a) Overview of a single truss system 

  
(b) Architectural illustration of the building in a 

renovated project for residential apartments. 
(c) Overview of a series of truss systems 

  
Figure 5.1 – In–situ experiments on a historic Wiegman–Polonceau truss. 

o
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From 2000 to 2013, renovation works were planned and carried out for the cultural 
heritage protected building within a residential apartment project, in which the 
building’s exterior walls and the iron roof trusses were preserved. 

Considering one single truss system, the truss is approximately 18 m wide and 6 m high 
and is positioned at about 5.8 m above the ground level. Several tension members of the  

(a) Joint VII (b) Joint IX (c) Joint X 

   
   

 
   

(d) Joint III (e) Joint V (f) Joint II 

   
(g) Boundary condition at joint (h) View of joint        from below (i) Boundary condition at joint  

   

Figure 5.2 – Detailed view of one single truss system at Reithalle in Potsdam and selected joints. 
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truss have turnbuckles to allow compensation for differences in manufacture, i.e. the 
member dimensions could be adjusted during erection and preloading could be applied 
to achieve a desired deformation or prestress state of the truss. The shape of the strut 
members in compression is thickened in the middle to avoid buckling. This shape was 
assumed to be optimal and economical form for small cast iron compression members of 
the Wiegmann–Polonceau trusses. The view of one single truss system with numbering 
scheme and the details of several selected joints are given in Figure 5.2. The 
characteristics of several selected members are shown in Figure 5.3. 

5.3 Finite Element Modelling 

Before the in–situ experiment was carried out, a structural survey was conducted to 
measure the geometry of the structure and assess the loading components. After the 
structural survey, preliminary static and dynamic analyses were carried out using finite 
element models to examine the structural behaviour of the truss. The program ANSYS® 
was used. The mechanical properties of the truss are unknown. However, based on a 
literature research of the historical materials (see Table 1.1 in Chapter 1), the 
mechanical properties of the truss were assumed as the modulus of elasticity of the 
wrought iron of 195 000 N/mm2 for all truss members, except the four compression struts. 

 
(a) Tension members having circular solid cross–section without turnbuckle element 

 

 

 
 

  
(b) Strut members having bulged crucifix shape 

 
  

(a) Tension members having circular solid cross–section with turnbuckle element 

 
Figure 5.3 – Characteristics of selected members of the historic truss in the in−situ experiment.  
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Figure 5.4 – Numerical model of the historic truss with numbering scheme. 

These compression struts with the optimal shape were assumed to have the modulus of 
elasticity of the cast iron of 90 000 N/mm2. The value of the mass density was chosen as 
7850 kg/m3 and the Poison ratio of 0.3. The numerical model takes into account the shear 
deformation and rotational inertia based on Timoshenko beam theory.  

The creation process of the finite element models shown in Figure 5.4 involved different 
assumptions and simplifications to evaluate appropriate assumptions as well as 
meaningful simplifications for the numerical models that can approximate the behaviour 
of the structure. In total, four finite element models were built, considering whether both 
the inertia and mass or only the mass of the gusset plates at the connections and the 
turnbuckles were included. In addition, different types of elements were examined.  

The first model is referred to as a simplified finite element model that includes the mass 
of the gusset plates and turnbuckles, being modelled as point mass elements (see Figure 
5.5a). The second model is also a simplified finite element model but more detailed than 
the first one, including the inertia and mass of the gusset plates as beam elements with  

 
(a) Simplified finite element model  (b) More detailed finite element model 

 

 

 
   

Figure 5.5 – Different finite element models of the truss to examine meaningful simplifications of the 
numerical models. 
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Figure 5.6 – The cross–section showing the components of the loads on the truss. 

 

 

 

 

 

 

 

 
 

Figure 5.7 – Plan of a unit roof containing three trusses for the calculation of point loads of the roof. 

 

  
 

Figure 5.8 – Global finite element model of the truss with assumed applied roof loads. 
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Figure 5.9 – Static axial force and axial stress distribution of global finite element model of the truss. 

rectangular cross–sections, and the mass of the turnbuckles. The third model is a more 
detailed finite element model taking into account the inertia as well as mass of both the 
gusset plates and turnbuckles; the gusset plates were modelled as beam elements with 
rectangular cross–sections, while the turnbuckles as beam elements with circular hollow 
cross–sections (see Figure 5.5b). The fourth model is similar to the third one, except that 
shell elements were chosen for the gusset plates. 

The truss model is restrained out−of−plane at nine points, i.e. two points at the boundary 
conditions, five points at all the joints of the top chord, as well as two points at the fourth, 
and fifth joints due to the tie−bars connecting the series of the truss systems in space. 

For simplification, compression struts were assumed to be modelled as circular solid 
sections, and turnbuckles were modelled as circular hollow sections. 

5.3.1 Static Analysis of Axial Force and Axial Stress Distribution 

All models were subjected to the loads of the roof, applying as point loads at five joints 
on the top chords. The roof loads are resulted from the timber roof above the truss, 
including the main timber beams, secondary timber beams, timber claddings and 
bitumen sealing sheets. Figure 5.6 illustrates the load components acting directly on the 
top chord of the truss. A manual estimation of the roof loads was made. The total point 
load applied to each joint of the four joints on the top chords was calculated as 5.60 kN, 
whereas a point load on the remaining joint was estimated at a lower value of 4.06 kN 
due to the missing timber claddings and bitumen sealing sheets on one section of  
the roof. 

At first, static analyses were performed for all models. An initial basic check of the 
generated models was done by checking the reaction forces, which are consistent for all 
models. The sum of the resistant forces applied at the supports was also checked to be 
equal the total applied dead and live loads. A further check of the model was done by 
analysing the vertical deflections. The maximum deflection of the truss was obtained 
similarly by all finite element models of approximately 8.9 mm. After that, dynamic 
analyses were conducted. The results of the natural frequencies and mode shapes show 
some differences between the models, demonstrating that modelling assumptions  
and simplifications affect the dynamic results of the truss. After the analysis process,  

compression 
tension 

34.32 kN 
21.58 N/mm2 

Values are shown at the midspan of a truss member 
excluding turnbuckle section; magnitudes of the 
forces and stresses are not scaled (see Appendix E).
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Figure 5.10 – Numerical natural frequencies and mode shapes of the first twenty−one modes of a 
semi−rigid system ( 0.15)kr at zero−applied force in the in−situ experiment of the 
historic truss.
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the more detailed models taking into account both the inertia and mass of the gusset 
plates and turnbuckles are recommended over the simplified models to increase the 
accuracy of the numerical analysis. The third numerical model will be presented in detail. 

Figure 5.8 shows the third model together with the assumed roof loads. In total, the 
model was divided into 725 elements. The left support was modelled as pinned, whereas 
the right one was modelled as roller that is movable in horizontal direction. The mass of 
the measurement sensors are included in the truss model.  

Figure 5.9 represents the static axial force and corresponding stress distribution of the 
finite element model. Because the truss geometry is not absolutely symmetric and due 
to the asymmetric applied roof loads, the resulted axial forces and stresses are not the 
same for the members of similar characteristics. The relatively low state of stress of the 
truss was because the building was under construction for the renovation project. Thus, 
some parts of the roof components were disassembled. In addition, at the time of the 
investigation of the truss, seasonal loads such as snow loads were not present. 

5.3.2 Dynamic Analysis and Stress Stiffening 

The first twenty−one modes of the historic truss assumed at zero−applied load are 
presented in Figure 5.10. A low value of the joint rigidity was chosen for all rotational 
springs to represent a semi−rigid system that is closer to a pinned truss. It is expected 
that the effects of stress stiffening will cause intricate variations of the frequencies as 
well as interchange of modes, since the structure exhibit closely−spaced modes and 
similar modes of vibration. 

In the next part, the results of the in−situ dynamic measurement and analysis of single 
truss members will be presented. The numerical modelling and analysis strategy applied 
to individual members as part of a structure will be discussed. When analysing a single 
member of the truss, a finite element model based on Timoshenko beam theory was built 
as shown in Figure 5.11. 

5.4 In–situ Experiment 

The in−situ experiment was conducted considering two types of measurements using 
geophones and accelerometers. For the measurements using geophones, ambient 
vibration and hammer excitation measurements were carried out. The geophones were 
placed at selected connection nodes and middle of the truss members.  

Regarding the local measurement, a single member of the truss was selected, which  
is the second member of the truss. This member offers several advantages for the 
numerical modelling, such as the geometrical property of the cross–sections can be  

 
 

           
Figure 5.11 – Local measurement and analysis of a single bar as member of a global truss structure.  

y 

x z 

III 

krII.2 krIII.2 

ktII.2 

N2 N2 
III

ktIII.2 
EI2, ρ2 

 

L2 
3 x 0.145L2 0.225L2 0.341L2 

   
 

Roving accelerometer  
(5 setups) 

Reference accelerometer 

II 
 Truss member number 

Rotational spring 
Translational spring 

kr 
kt 



5   Recommendations for in–situ experiments 

 

126   
 

   

Figure 5.12 – Setting up of the equipment and performance of the in–situ experiment. 

considered uniform symmetric with no presence of turnbuckle elements; therefore, a 
relative uniform axial stress distribution could be expected. In addition, the effect of  
the axial tensile force in the member can be studied without concerning the buckling 
behaviour. Two accelerometers were used, which measured in the transverse direction 
perpendicular to the local longitudinal direction of the member. One accelerometer was 
installed as reference, while the other one was moved along the member in five different 
setups (see Figure 5.11).  Because of the on–going renovation work on–site at the time of 
testing, there were several restrictions as follows. The allowable time to setup and carry 
out the tests was strictly limited. Furthermore, there were limitations with respect to 
the number of accessible members for measurements, the number as well as the 
positions of the sensors to be installed on the truss member. The vibration measurements 
for the member were conducted with hammer excitation (see Figure 5.12). 

5.4.1 Modal Parameter Identification 

The experimental modal analysis for the truss member was performed adopting the 
reference–based covariance–driven SSI. Figure 5.13(a) shows the stabilization diagram 
of one test setup representing stable poles corresponding to natural frequencies.  

In Figure 5.13(b), the identified frequencies and mode shapes of the first twelve modes 
of the second truss member can be seen, in which the mode shapes are normalized to a 
maximum modal displacement equal to one. It should be noted that the mode shapes 
plotted are based on not only the experimental measurements, but also an assumption 
of an additional location of mode shape displacements, whose values are assumed by 
polynomial interpolation of the measurement data or based on those from the fifth sensor 
in the experiment. The reason is the experimental data for this location was not 
available; while the additional location helps to create a better representation of the 
mode shapes. It can be noticed that the number of modes for a member of a truss system 
increases significantly compared to that of a single beam. Similar mode shapes occur at 
different frequencies, for example the mode of vibration in the form of the first mode 
shape of a single beam appears at 17.00 Hz as well as 20.19 Hz, which indicates a coupled 
vibration behaviour of the truss members. 

The dynamic test of the global truss allowed the identification of natural frequencies and 
modal configurations of a large number of vibration modes. The global vibration of the 
truss is complicated such that closely−spaced and similar vibration modes occur. Due to 
a lack of measurement points, the identified mode shapes of the truss were not reflected 
accurately. When comparing with the mode shapes of the finite element model, clearer 
ideas can be obtained. The natural frequencies of the truss are composed of the 
frequencies of individual truss members coupled with the connected members.   
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(a) Stabilization diagram of the SSI (b) Representation of the mode shapes 

  

 
actual experimental data from first to sixth sensors in the experiment of the second truss member; 
assumed values by polynomial interpolation of measurement data or based on the fifth sensor; 

x1    distance to the member end of the assumed mode shape displacement values (variable). 
Figure 5.13 – Experimentally identified modal parameters from local measurement of the second 

truss member. 

5.5 Analysis Strategies and Results 

The local analysis of a single truss member, i.e. the second truss member, is described 
[LUONG et al. (2017)]. The finite element model as shown in Figure 5.11 was used; the 
model has uncertain parameters. A parametric study of uncertain parameters was 
carried out. The first uncertain parameter is the member axial force, considering that 
the loads of the roof were only estimated manually. The second uncertain parameter is 
the rotational spring stiffness of the joint connections. For simplification, the two 
constraint stiffnesses were assumed to have identical rotational spring stiffness. Beside 
the axial force and joint flexibility, other uncertain parameters include the modulus of 
elasticity of the wrought iron, the cross–sectional area and member length. 

Table 5.1 – Assumed variations for the parameters of the finite element model of a truss member as 
single beam. 

Parameter Designation Initial value Variation Limits (lower/upper) Unit
 N Member axial force 56.60 +/– 17.9 %* 46.47 / 66.77 kN 
 σ Member axial stress 28.83  23.67 / 34.01 N/mm2 

i Joint fixity factor  0.50 Pinned to rigid  0.00 / 1.00 − 
E Modulus of elasticity 195 000 +/– 5 % 185 000 / 205 000 N/mm2 
A  Cross–sectional area 1963.50 –11.64 % / +12.36 % 1734.94 / 2206.18 mm2 
L Member length**  3500 +8.70 % 3500 / 3750*** mm 

   d – diameter of solid circular cross–sections; initial value of d = 50 mm, variations of d of +/– 3 mm; 
  *Variation is based on static analysis of the global truss model with +/–30% of the applied roof point loads. 
**Variation depends on whether the portions of the member ends embedded in the joints are included or 

not, maximum distance is from bolt–to–bolt connections.  
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Table 5.1 provides an overview of the assumed variations of the parameters. The aim is 
to examine the effects of the parameters on the frequency values and find out appropriate 
assumptions of the parameters to give the results of the numerical frequencies that 
match to those identified from the experiments. 

The results of the numerically calculated frequencies using the finite element model of 
the second truss member are shown in Table 5.2. For the case studies of the investigated 
single truss member, the parameters of the axial stress, the modulus of elasticity and 
cross–sectional area have less influences on the frequency values than the joint rigidity 
and member length, as the axial stress was assumed to be varied in a limited range. The 
joint rigidity has the most significant effect. A number of numerically calculated 
frequencies in the ranges that are most similar to the experimentally identified 
frequencies based on the mode of vibration that is in the form of the first mode of 
vibration of a single beam were identified. The possibility of the numerical frequencies 
that match to that from the experiment can be diverse, also when other combinations of 
the parameters are made. 

From the preliminary parametric study, for the parameter of joint rigidity, the results of 
the frequencies show a consistent trend that the joint flexibility are closer to the rigid 
condition than the common assumption of hinged joints. This can be explained by the 
presence of friction and possible corrosion damages of historic truss structures. 

5.5.1 Identification of Axial Force for Single Truss Member 

The parametric study was useful to have a preliminary judgement about the parameters. 
However, a more exact identification of the parameters is required. The analytical–based 
algorithm by MAES et al. (2013) was used to estimate the axial force in a single member 

Table 5.2 – Numerically calculated natural frequencies based on the finite element model of the 
second truss member. 

σ
[N/mm2]

N
[kN] 

 
[–] 

E
[N/mm2] 

A
[mm2] 

L
[mm] 

f1
[Hz] 

Δ1
[%] 

f2
[Hz] 

Δ2
[%] 

f3
[Hz] 

Δ3
[%] 

≈ 0.00 0.00* 0.00 185 000 1734.94 3750 6.70 – 26.79 – 60.22 – 

23.67 46.47 
0.00 

195 000 1963.50 

3750 10.10 50.75 31.41 17.25 66.20 9.93
3500 11.19 67.01 35.55 32.70 75.44 25.27 

0.99 3750 17.73 164.63 46.14 72.23 87.97 46.08 
3500 20.07 199.55 52.56 96.19 100.48 66.85 

28.83 56.60

0.00 

195 000 1734.94 3750 10.80 61.19 31.27 16.72 64.13 6.49 
185 000 1963.50 

3500 
11.64 73.73 35.57 32.77 74.48 23.68 

195 000 2206.18 11.76 75.52 37.55 40.16 79.81 32.53 
205 000 1963.50 11.91 77.76 37.00 38.11 77.94 29.43 

0.99 

195 000 

1963.50 

3750 18.11 170.30 46.70 74.32 88.51 46.98 
185 000 

3500 
20.07 199.55 51.93 93.84 98.70 63.90 

195 000 20.48 205.67 53.14 98.36 101.14 67.95 
205 000 20.89 211.79 54.33 102.80 103.51 71.89 

 

66.77 

0.000 
195 000 1963.50 

3750 11.20 67.16 32.87 22.70 67.77 12.54 
 3500 12.33 84.03 37.03 38.22 77.02 27.90 

34.01 
0.99 

3750 18.52 176.42 47.30 76.56 89.28 48.26 
 3500 20.88 211.64 53.73 100.56 101.80 69.05 
 205 000 2206.18 3500 21.98 228.06 57.35 114.07 109.42 81.70 

* Zero–load model, i.e. self−weight only; calculated differences reference to frequencies of zero–load model; 
Frequencies in most similar ranges with the experimentally identified frequencies based on the form of 
the mode shape similar to the first mode of vibration of a single beam. 
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of the truss, i.e. the second member. It requires the instalment of five or more sensors on 
a member. The identified axial force was obtained from each of the experimentally 
identified frequency and five amplitudes of the corresponding mode shapes of the 
member. In addition, the knowledge of the characteristics of the members, among which 
are the modulus of elasticity, bending stiffness and cross–sectional area, was required. 

Using the twelve experimentally identified modal parameters of the single second truss 
member, the estimated axial forces of the member based on the analytical−based 
algorithm are, however, in most cases unreasonable due to possible inaccuracy in the 
measurement data of the mode shape displacements. Negative results of the forces were 
obtained for most cases. Examples of the identified axial force of the first two modes of 
the second truss member are provided in Table 5.3. Only for one case of the analyses of 
the twelve modes using different sets of mode shape displacements, a reasonable value 
of the axial force was achieved, i.e. 55.48 kN. For this case, the mode used in the 
analytical–based algorithm was the frequency of 20.19 Hz and the four amplitudes of 
the corresponding mode shapes displacements from the second to fifth accelerometers, 
as well as an assumed additional mode shape displacement based on polynomial 
interpolation of the measurement data.  

From the preliminary analysis of the truss model and the parametric study, the initial 
values and variations of the parameters of the truss member were chosen (see Table 5.4). 
Because at least five sensors are required for the use of the analytical–based algorithm, 
whose positions should cover a sufficient length of the member and be not too near the 
end constraints, a first mode shape displacement was assumed at the position x1, whose 
value was based on polynomial interpolation of the measurement data or in some cases 
based on the data of the fifth sensor in the experiment.  

As the knowledge of the member length is not necessary but only the distance of the 
sensors to an assumed end point of the member is required, the end point of the member 
can be random. It was assumed at the point at the bolt connection.  

It can be noted that the mode shape displacements are sensitive to the measurement 
errors. If the values of the mode shape displacements are not accurately identified, it is 
challenging to identify correctly the axial forces based on the analytical−based algorithm 
to be used in the proposed methodology. 

Table 5.3 – Identified member axial forces and stresses based on analytical–based algorithm using 
experimentally identified natural frequencies and different sets of mode shape 
displacements for the first two modes. 

   Five mode shape displacements by 
measurement data* 

 Four mode shape displacements by 
measurement data and an assumed 
point of mode shape displacement** 

Mode exp
nf

[Hz] 
 aN  

[kN] 
a  

[N/mm2] 
 aN  

[kN] 
a  

[N/mm2] 
1 17.00     –***    –***     –***    –*** 
2 20.19     –***    –***  55.48 28.26 
exp

nf – Experimentally identified frequencies (SSI).  
aN  – Member axial force; a  – Member axial stress (identified based on MAES et al. (2013)). 

* Measurement data of six instrumented sensors along the member; five mode shape displacements were 
used excluding the first point at zero–length position. 
** Measurement data of four instrumented sensors from second to fifth sensors; a point at the first 
location was added by polynomial interpolation of the measurement data or based on the fifth sensor. 
*** Unreasonable values, i.e. negative and/or excessive values exceeding the maximum allowable stress. 
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Table 5.4 – Assumed values and variations of the parameters using an analytical–based algorithm. 

Parameter Designation Assumed 
value 

Variation Range  
(lower / upper) 

Unit 

E Modulus of elasticity 195 000 +/– 5 % 185 000 / 205 000 N/mm2 
A  Cross–sectional area 1963.50 –11.64 % / +12.36 % 1734.94 / 2206.18 mm2 
x1 Distance to bolted joint* 760 –3.95 % / +2.63 % 730 / 780 mm 

*of the assumed mode shape displacement; the other four distances, i.e. x2 to x5, are from the second to fifth 
sensors in the experiment of the second truss member. At 738 m, the five locations on the mode shapes are 
equally distributed. 

Table 5.5 – Identified member axial forces and stresses based on an analytical–based algorithm for 
the mode at 20.19 Hz using experimental mode shape displacements and an assumed 
additional mode shape displacement based on polynomial interpolation of the 
measurement data. 

E [N/mm2]  A [mm2]  x1 [m]  aN [kN]  aσ  [N/mm2] 
185 000  1963.50 (d = 50 mm)  760  61.75  31.45 
195 000  1963.50 (d = 50 mm)  760  55.48  28.26 
205 000  1963.50 (d = 50 mm)  760  49.22  25.07 
195 000  1734.94 (d = 47 mm)  760  61.59  35.50 
195 000  2206.18 (d = 53 mm)  760  45.37  20.57 
195 000  1963.50 (d = 50 mm)  730  34.40  17.52 
195 000  1963.50 (d = 50 mm)  780  72.15  36.75 

The parameters in Table 5.4 were varied in the assumed ranges. The result of the 
identified axial forces based on the analytical−based algorithm using the mode at  
20.19 Hz only are provided in Table 5.5. The identified force of 55.48 kN based on the 
corresponding input parameters are reasonable compared to the values in Table 5.2. 
Even though the variations of the input parameters cause varied identified forces, when 
considering the relevance of the input parameters and the corresponding axial forces 
compared to that in Table 5.2, the identified forces of 55.48 kN become most relevant. 

5.5.2 Preliminary Calibration of the Numerical Model 

Based on the analysis of the second member of the truss, a preliminary calibration of  
the parameters of the finite element model of the truss results in the following structural 
parameter characteristics: the loads P1 of 4.04 kN, P2 of 5.40 kN corresponding to  
a tensile force of about 55.52 kN and tensile stress of 28.28 N/mm2 in the second truss 
member; the fixity factor of approximately 0.99 that is close to a rigid condition, the 
modulus of elasticity of 195 000 N/mm2 and the cross–section of the second truss member 
of 1963.50 mm2. For the investigated truss structure, the applied loads could be 
estimated reasonably, as the condition of the renovation progress on–site allowed a 
relatively clear view of the load components as well as accessibility to the structure. 
However, this is usually not the case for historic constructions.  

The results of the local analysis were based on an assumption of an additional mode 
shape displacement due to the limitation of the positions of the instrumented sensors on 
the investigated truss member and insufficient measurement points. Thus, the results 
can vary depending on the assumptions of the location as well magnitude of the 
additional mode shape displacement. It is highly recommended for in–situ tests on 
existing truss structures to install at least five sensors on a member to cover a sufficient 
member length, when the testing condition allows such designs of experiments.



5.6   Recommended scheme for future in–situ experiments 

                

131 
 

   
  17.00 Hz (exp.)    
17.69 Hz (num.) 

MAC*   
1.00 

 20.19 Hz (exp.) 
20.05 Hz (num.) 

MAC   
0.99 

 32.31 Hz (exp.) 
33.57 Hz (num.) 

MAC   
0.82 

      

   
 53.55 Hz (exp.) 
53.33 Hz (num.) 

MAC   
0.98 

 65.38 Hz (exp.) 
66.84 Hz (num.) 

MAC  
0.83 

  81.86 Hz (exp.) 
80.85 Hz (num.) 

MAC  
0.83 

      

   
  100.86 Hz (exp.) 

99.43 Hz (num.) 
MAC   
0.85 

 109.60 Hz (exp.) 
109.12 Hz (num.) 

MAC   
0.76 

 123.70 Hz (exp.) 
121.92 Hz (num.) 

MAC  
0.88 

* MAC values using the experimental data of the second to sixth sensors of the second truss member. 
Figure 5.14 – Numerical mode shapes of the truss model based on the pairing of the experimentally 

identified and numerically computed modes of the second truss member. 

The natural frequencies and mode shapes of the nine in−plane modes of vibration of the 
finite element model of the truss in comparison with the experimentally identified modal 
parameters of the second truss member are shown in Figure 5.14. Only the results with 
a MAC value of at least 0.75 are presented. A reasonable degree of agreement between 
the experimentally identified and numerically calculated modal parameters was found. 

5.6 Recommended Scheme for Future In−situ Experiments 

A reliable application of the proposed methodology to identify the stress states and 
estimate the joint flexibility of truss structures require additional measurement data, 
considering the coupled vibration behaviour of multiple−member structures and the 
effects of the experimental uncertainties. 

The findings from the in−situ test provide suggestions for future experiments on existing 
truss structures. A recommended scheme is given in Figure 5.15. The recommendations 
aim to give a stepwise procedure for the safety assessment of the stress state of existing 
real−scale truss−type structures. 

The recommended scheme can be divided into five phases. The first and second phases 
concern the collection of all the possible data of the structure, including the historical 
information, geometrical survey, the mechanical materials characterization, a dynamic 
modal test and a numerical model analysis for static and dynamic calibration. The test 
planning can be designed at the end of the second phase. In the third phase, in−situ 
vibration measurements are performed. The modal parameter identification is 
conducted in the fourth phase. The proposed methodology is applied to determine the 
stress states and evaluate the joint flexibility of truss structures. In the last phase, 
conclusions are drawn to assess the safety of the truss structures. As with every 
engineering task, the decisive factor for the quality of the assessment solution is based 
on sound engineering–based judgements.  
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Figure 5.15 – Recommended scheme for in–situ testing on existing truss structures.  
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Phase I – Preliminary Study before Site Visit 
 
TASK 1 – Preliminary Study 
(a) Study possible reasons to perform the structural assessment of the existing truss, e.g. 

 Change in conditions of use; 
 Designed service life reached; 
 Observation of deterioration; 
 Detection of damages, etc. 

(b) Study the construction history of the structure to have an idea about the possible 
material properties and structural characteristics. 

(c) Search and study existing structural documents, e.g. design notes, drawings, etc. 
 

→ If existing design documents exist, proceed to Task 2; if not, proceed to Task 3. 
 
TASK 2 – Preliminary Analytical / Numerical Analysis 
(a) Classify the types and sizes of members to take note of the member characteristics. 
(b) Assume the material properties based on the information in the existing documents 

or a research about the structure’s construction history. 
(c) Calculate the loads, if information is available in existing design notes, or make 

assumptions of the loads. 
(d) Make simple calculations of the forces based on the structural self–weights and loads, 

or create a simple numerical model based on existing drawings, and perform the 
static analysis. 

(e) Understand the distribution of the static forces to identify the members in tension 
and compression, members with high stresses. 

(f) Perform the dynamic analysis to have ideas about the vibration behaviour of the 
structures and the range of the natural frequencies. 

(g) Calculate the member forces using the analytical–based algorithm [MAES et al. (2013)] 
based on the modal parameters. 

(h) Compare the results of the forces based on numerical static analyses and analytical–
based solution to evaluate the assumptions of the member lengths, cross–sections, 
and material properties of individual members of the structure. 

 
Phase II – Structural Survey and Preparation for Experiments 
 
TASK 3 – Structural Survey – Site Visit 
(a) Measure the structural geometry, including 

 Dimensions of building; span and height of the truss structure, distance between 
trusses if there is more than one truss system; 

 Truss member lengths, cross–sections; gusset plates, connecting elements, etc. 
(b) Compare the measurements with existing drawings (if existing drawings are 

available), pay attention to assumed member lengths for preliminary calculations. 
(c) Take note of the member characteristics, if there is any additional mass, and/or 

turnbuckle elements. 
(d) Study the boundary conditions as well as connection joints and gusset plates. 
(e) Study the constraint conditions in–plane as well as out–of–plane. 
(f) Estimate the applied loads, take notes about the uncertainties and reasons that affect 

the load estimation. 
(g) Carry out visual and/or simple checks if any damage is present; take note of the 

locations, types and extent of damages. 
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(h) Identify critical members including members with high stresses based on the 
preliminary calculations or numerical analysis and/or members being damaged. 

(i) Choose the most critical truss as the representative to be experimentally investigated 
if there is a series of trusses. The representative truss should characterize the 
common geometrical and connection characteristics of the truss series as well as is 
subjected to the highest or at least similar load level compared to other trusses. 

(j) Evaluate the interaction effects between the investigated truss and its neighbour 
trusses to better predict possible coupled vibration effects of the trusses in the 
three−dimensional space and the behaviour of the whole construction. 

(k) Consider the possibility of installing the testing equipment regarding the available 
conditions and accessibility. 

 

→ If samples of the truss for the material tests can be taken, proceed to Task 4; if not, 
proceed to Task 5.  
 
TASK 4 – Material Tests 
(a) Perform material tests to determine the mechanical properties of the structure, e.g. 

modulus of elasticity, etc. (refer for instance to DIN EN 6892–1 (2009) for types, 
requirements and instructions of the tests). 

(b) Compare and combine the results of the mechanical tests with the information of the 
construction history of the structure, to determine the assumptions for the material 
properties of the structure. 

 
TASK 5 – Detailed Analytical / Numerical Investigation 
(a) Update the structural drawings based on the site measurements if necessary. 
(b) Create a detailed finite element model of the structure; make assumptions of the 

material properties based on the mechanical tests if they are available, and/or 
information in existing design documents, and/or research of the structure’s 
construction history. 

(c) Pay attention to modelling assumptions of joints, i.e. joints are not assumed as pinned 
or rigid but can be modelled with rotational springs. For truss structures with small 
connection moments and without the effects of friction and slip, linear elastic spring 
models can be used. The assumptions of joints for slender trusses do not affect 
significantly the static analysis results of static forces, but affect the dynamic results. 

(d) Modell the structure considering the inertia as well as weight of gusset plates and 
turnbuckles if they are present, as well as other additional mass such as sensors, etc. 

(e) Modell a two– or three–dimensional structure depending on the constraint conditions 
and influences of elements in the three−dimensional space.  

(f) Perform the static analysis based on assumed loads to obtain the force distribution; 
the static geometric nonlinear analysis is recommended due to stress stiffening effects. 

(g) Perform the dynamic analysis to obtain the natural frequencies and mode shapes and 
analyse the modes of vibration, i.e. in–plane and out–of–plane, globally and locally. 

(h) Identify the members in tension and compression, members of slender cross–sections, 
members with uniform and symmetrical cross–sections, and those with no additional 
mass or turnbuckle elements, etc. 

(i) Calculate the forces using the analytical–based algorithm for selected members, 
preferably for slender tension members with uniform and symmetrical cross–
sections. Natural frequencies and amplitudes of five mode shape displacements of 
one mode of the selected members are required. The five sensors should be equally 
distributed to facilitate the experimental setup. The use of modes in the form of the 
first vibration mode of a single beam is recommended as for other modes, spurious 
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solutions may occur due to points near a node of the structural mode shapes, i.e. 
points with zero modal displacement. 

(j) Compare the results of the forces based on the static analysis of the global numerical 
model and analytical–based solution of single members. If the results differ 
significantly, consider modifying the numerical model regarding the geometrical 
and/or mechanical properties as well as varying the locations of the five mode shape 
points. This also assists the design of the sensor location for the setup of experiments. 

 

→ If additional information is needed, go back to Task 3; if not, proceed to Task 6. 
 
TASK 6 – Design of Experiments 
(a) Define the number of measurement points according to the demand of the dynamic 

identification and based on the dynamic analysis of the numerical model. 
(b) Design the distribution of the sensors for the test setups depending on the analysed 

vibration behaviour of the structure; a recommendation is provided in Figure 5.16. 
(c) Design the number of test setups depending on the available number of sensors and 

available time for the tests; an example is shown in Figure 5.17. 
(d) Design the location of the reference sensors in case of several test setups, such that 

the reference points should not coincide with a node of the structural mode shapes.   
(e) Choose members for the use of the analytical–based algorithm to identify the forces 

in individual members. The measurement points for these members must be at least 
five points. General rules to select the members, as mentioned, are slender members 
in tension. It is also recommended to use members with uniform and symmetrical 
cross–sections. In addition, it is beneficial to choose a group of members connecting 
at a joint to check the joint static equilibrium, or more than two members to check 
the structural equilibrium of the global truss. A suggestion for a possible setup of 
sensors for the truss at Reithalle is shown in Figure 5.18. In case more sensors are 
available and/or more time can be given for the tests, other setups using more sensors 
will be more advantageous. 

(f) Consider the types of excitation; for lightweight truss structure, hammer excitation 
is recommended, whose execution is also practical. 

(g) Consider the types of sensors depending on the available equipment and accessibility 
to the structure. The types of sensors can be, for example, geophone, wired 
accelerometer, wireless accelerometer or laser vibrometer. For geophones and wired 
accelerometers, additional weights on the members should be included into the 
analysis of the numerical model, especially if many sensors are used on slender cross–
sections. Sensors with light mass or non–contact sensors are advantageous. 

(h) Consider the application of additional mass on selected members, depending on the 
type of the structure and whether more precise identification of the joint stiffness is 
desired. This is because for a symmetrical truss, the identification problem for certain 
joint stiffness is symmetric. However, depending on the structural type and condition 
on–site, the application of additional mass may be impractical, as a significant mass 
may be required to create an effect on the dynamic response of the structure.  

(i) In cases where additional mass is to be applied for selected members, design the 
number and location of strain gauges for these members to check the change in the 
stress state before and after applying the mass, as a means of verification of the 
results. A general recommendation is that the strain gauges should be placed at the 
same vertical level of the centroid line of the member cross–section in its local 
direction. Depending on the sizes and types of cross−sections, strain gauges should 
be placed at both sides of the cross−sections. The location of the strain gauges can be 
designed based on the static analysis to avoid the positions of high bending stresses. 
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Figure 5.16 – Recommended positions of instrumented sensors on selected truss members.  

 
Figure 5.17 – Example of different setups in case of limited sensors on selected truss members.  

 
Figure 5.18 – Suggestion of a possible sensor setup for in−situ tests on a truss system. 

 
Phase III – Performance of Experiments on Site 
 
TASK 7 – Setup of Equipment 
(a) As preparatory work, before installing the sensors, perform a light cleaning of the 

truss to remove dust. If paint coatings are applied to the members, a more thorough 
cleaning is recommended. Depending on the thickness of the paint coatings, thick 
coatings should be removed if possible to ensure intimate contact with the sensors. 

(b) Proceed with some localized signal measurements before the overall measurements 
of each setup to monitor the level of the signals, characterize the signal–to–noise ratio 
and check the resonant frequencies involved. A simple FFT of the response 
measurements in a few key points, for example the reference points, can be made. 

(c) Apply additional excitation to increase the signal–to–noise level or re–define the 
sampling frequency and the measurement duration to obtain more accurate results; 
change the types or positions of sensors if necessary.  

(d) Make additional random excitation to avoid significant influences of noise on the 
results in case the signal–to–noise ratio is low. 
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TASK 8 – Performance of Experiments 
(a) Decide on the measuring duration to record a sufficiently large number of points to 

have resolution in frequency, considering the number of available sensors, the 
number of measurement points as well as the available time for the complete test.  

(b) Perform a preliminary check to quality of the data obtained; check the measured 
signals of every sensor in the setup recording phase and between each setup to avoid 
data losses or bad signal quality. 

(c) Carry out a preliminary modal analysis before finishing the tests, in order to be sure 
that the experimental results have sufficient quality for the success of the modal 
identification. 

 
Phase IV – Processing of Measurements and Evaluation of Results 
 
TASK 9 – Experimental Data Processing 
(a) Combine different setups; study the dynamic behaviour using two or more 

identification methods to gain confidence in the results and possibility to proceed 
with more objective test procedures if necessary. 

(b) Choose a modal identification method or decide on different methods for comparison. 
Among the identification techniques, the SSI is considered as one of most accurate 
methods. Depending on the available software, the use of one method can be more 
computationally efficient over other ones. 

 
TASK 10 – Calibration by Proposed Methodology 
(a) Build an initial numerical model that must be a relative representative of the actual 

physical structure, before performing the model updating and optimization process. 
(b) Use trial–and–error analysis to determine the initial assumptions for the unknowns, 

e.g. the loads and joint stiffnesses. To evaluate the assumptions for the joint stiffness, 
perform the analyses assuming first a pinned model, then a rigid model to check if 
the experimentally identified modal parameters are close or in between the results 
of those models. In addition, vary the other unknowns, in particular the loads, to 
evaluate reasonable assumptions.  

(c) Perform the static analysis to obtain the stress state, followed by the dynamic 
analysis to examine the calculated results in comparison with the identified results 
from the experiments. 

(d) Select the updating parameters, define the ranges of the updating parameters and 
perform the sensitivity analysis. Based on the results of the sensitivity analysis, 
reduce the number of updating parameters and decide the parameters that have 
significant influences on the objective function to be updated. 

(e) Perform the optimization process following the proposed methodology to identify the 
unknowns. The nature–inspired optimization techniques are recommended. Three or 
four optimization runs can be performed to check the consistency of the results. 
Depending on the identification problem and the sensitivity of certain parameters to 
certain output parameters, different objective functions should be used in different 
optimization stages.    

 
→ If seasonal factors such as temperature and humidity or additional service loads play 
a role, consider performing the experiments in several campaigns → go back to Task 6; 
if not, proceed to Task 11. 
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Phase V – Decisions and Recommendations 
 
TASK 11 – Conclusions of Stress State and Structural Safety 
(a) Conclude the loads and corresponding stress states of the truss structure based on 

the results of the numerical model calibration using the proposed methodology. 
(b) Identify critical members based on the stress states and/or local damages, if damages 

are present. 
(c) Evaluate the safety of the structure, for instance whether a substitution of critical 

members is necessary, reduction of loads is essential, and/or any repair or 
strengthening is required. 

(d) Decide on next future safety assessment checks. 

5.7 Discussions 

A representative in–situ dynamic test was performed on a historic truss in Potsdam to 
assess the identification of the modal parameters of existing multiple–member truss 
structures, based on the state of the research in 2012. The following remarks are drawn. 

 The in−situ experiment shows that the natural frequencies of truss can be 
identified reasonably well. If sufficient sensors are used, the mode shapes can be 
also identified. The modal parameters of a truss indicate the characteristics of a 
coupled global system, in which the connected truss members vibrate interactively 
with each other. 

 The numerical finite element models of different assumptions and simplifications 
recommend accurate modelling of the details of truss structures. The inertia as 
well as the mass of the gusset plates and turnbuckles should be considered to 
increase the accuracy of the numerical analyses. 

 Local measurement and analysis strategy concerning individual members of a 
truss provides useful results to evaluate the behaviour of the truss. 

 Uncertainties related to the geometrical characteristics of existing trusses as well 
as the experimental setup such as the positions of instrumented sensors influence 
the precision of the axial force identification. 

The topics to be further addressed by future investigation are as follows: 

 Sufficient measurement data concerning at least five measurement points of 
selected truss members; 

 Precise measurements of the structural geometry and dimensions of the 
experimental setup to reduce the errors on the estimated axial forces due to 
possible errors on the input variables; 

 Accurate data acquisition and identification of the modal parameters from the 
measurements, in particular mode shape displacements; 

 Selection of the joint rigidity parameters to be included as updating parameters in 
the optimization and assumptions of identical joint flexibility to reduce the 
updating parameters, as well as the identification of joint flexibility at symmetric 
locations of the truss by methods such as added mass. 

Recommendations for a stepwise testing and analysis procedure were given, which are 
intended for future experimental–based investigations to assess the safety of existing 
truss structures.  
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The results of the work are concluded, in which several main themes are discussed  
in details, i.e. dynamic behaviour of truss–like structures composed of axially loaded 
slender members; dynamic testing and identification of the modal parameters of  
truss–type structures; modelling of joints; finite element model updating strategies 
applied to truss structures; as well as different updating methods and nature–inspired 
optimization techniques. After that, the proposed methodology is summarized. 
Moreover, some thoughts about future work are given. 
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6.1 Conclusions 

This thesis addresses the problem of the identification of multiple axial forces and 
corresponding stresses in axially loaded slender members of iron and steel truss 
structures by means of vibration measurements. The work was divided into four phases.  
The first phase consists of a review of the state of the art methods for the axial force 
identification in axially loaded single structural members and members of truss–type 
systems. In addition, a review of the assessment of semi–rigid joints of truss and frame 
structures was included. Furthermore, main scientific developments in vibration–based 
finite element model updating and optimization strategies were reviewed.  
The second phase focuses on the numerical study of selected systems from single bars to 
truss structures. Particularly, the second phase examines the influences of the model 
input parameters on the modal parameters. The numerical modelling and analysis of 
semi–rigid connections were also investigated. Moreover, the strategies for the model 
updating process were studied, which include mode pairing, development of an objective 
function, performance of sensitivity analyses, selection of updating parameters, and 
comparison of different optimization techniques. Based on the numerical simulation,  
a methodology was proposed to determine the multiple axial forces and estimate the joint 
rigidity of truss and truss–like structures.  
The third phase concerns the laboratory experiments of three types of systems, i.e. single 
bars, a two−bar truss−like system and a five−bar truss. The experiments were carried 
out at different load steps to examine the dynamic responses of the systems at 
progressive states of stress. The application of the proposed methodology for the 
laboratory systems were investigated.  
The fourth phase deals with the transfer of the methodology that was validated in the 
laboratory to real−life applications. Based on an in–situ experiment on a historic truss, 
the possible challenges when working with historic structures were addressed, as well 
as recommendations for future in–situ tests were drawn.  

The conclusions from the work are presented next. For clarity, they are divided into 
several themes, in which the main observations are enumerated. 

Dynamic behaviour of truss and truss–like structures composed of axially 
loaded slender members: 

 For truss structures as a constitution of individual members connecting at joints, 
the constituent members form a global coupled system. The vibration behaviour of 
the structure is governed as a whole. The members vibrate interactively with each 
other in a manner that is indicated as coupling, the extent of which depends on the 
member connectivity at the joints and the relative stiffness of the members, 
including the loading level. Due to this coupling effect, similar modes of vibration 
of an individual member or a group of members occur. Thus, for a correct 
interpretation of the vibration behaviour of a member as part of a truss structure, 
the global behaviour of the system should be assessed. 
 

 The magnitudes of the natural frequencies of a truss are governed by the 
slenderness of its members.  
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 Upon axial loading, all frequencies of truss members experience a modification  
to their magnitudes. The effect of the axial load on the natural frequencies can be 
clearly seen, whereas the stress stiffening effect on the mode shapes was not 
significantly found. 
 

 As multiple load patterns can be existent for truss structures, the effect of 
structural loading on the dynamic performance of trusses gets more complicated 
for complex truss systems. Both compressive and tensile forces coexist with 
counteracting effects on the modal parameters. Tensile forces increase the natural 
frequencies of the tension members; whereas at the same time, compressive forces 
reduce the natural frequencies of the compression members. These counteracting 
effects in truss structures cause intricate variation of the frequencies and 
interchange of modes. As a consequence, when correlating the modes of a truss 
system at different stress states, attention must be paid in sorting the right order 
of the modes. 
 

 Truss and truss−like systems are often nearly symmetric in geometry; thus, closely 
spaced modes are present due to truss members of similar characteristics. 

 

 For truss structures unlike single bars, the vibration modes in–plane and out–of–
plane are generally non–identical. However, they may be highly similar and  
closely spaced.  

 

Numerical calculations show that the vibration modes of a truss system can be 
purely in–plane, purely out–of–plane or a combination of both. In reality however, 
a truss structure can often vibrate in a mixed manner in–plane as well as out–of–
plane. To identify a vibration mode accurately, it is essential to analyse information 
of both natural frequencies and mode shapes. 

Dynamic testing and identification of the modal parameters of truss–type 
structures: 

 Modal analysis and testing is attractive for existing truss structures due to the 
advantages of non–destructiveness, practical testing procedure and reliable 
results. Besides, slender truss–type structures can be considered as easily excited 
structures; thus, the modal parameters should be identified without much 
difficulty. 
 

 Studies carried out prior to testing, including detailed analyses of the numerical 
model, discussion of sensor types, sensor positions and different sensor setups, 
significantly contribute to the richness of the obtained measurement data and 
better understanding of the dynamic responses of the structures as well as better 
result interpretation. 
 

 As it is important to estimate accurately the mode shapes, a sufficient number of 
measuring points is necessary for having enough resolution of the modes. For 
selected members of a truss, five or more measuring points are recommended. 
 

 Natural frequencies can be measured to a greater accuracy than mode shapes  
in general. Based on the different laboratory experiments, the frequencies of 
slender truss–type structures at different stress states could be identified well. The 
mode shapes of the investigated systems could be also identified relatively well. 
Better identification of the modal parameters was obtained for truss systems 
whose members having higher slenderness and at higher stress states. 
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Modelling of joints: 

 Joint rigidity affects the behavior of truss structures, in particular the dynamic 
behavior. Therefore, for the numerical modelling, joints should not be assumed as 
the extreme cases of pinned or rigid, but can be modelled with rotational springs 
to represent semi–rigid connections. Assuming the connection moments and 
deflections are small as well as the effects of friction and slip are not included, 
linear elastic spring elements can be applied to model the connections of truss–
type structures. 
 

 For practical estimation of the joint rigidity level, it is beneficial to introduce a 
stiffness parameter such as fixity factor. The fixity factor takes values from zero  
to one. Therefore, it is convenient for the understanding of different joint 
stiffnesses. Assuming a large value to represent a rigid condition for all springs is 
not recommended; whereas defining values corresponding to the rigidity condition 
for each spring, depending on the member’s characteristic, is generally cumbersome. 
 

 It was observed in the laboratory experiments that the rigidity of the joints tends 
to be increased at higher applied load, as the system is loaded and stressed. 

Finite element model updating strategies applied to truss structures: 

 Only well identified modes from the measurements are to be included into the 
model updating process. 
 

 It is important to build an initial numerical model that must be of certain 
agreement to the investigated structure before an optimization process is  
carried out. 

 

 In the process of building an initial numerical model, it is necessary to assume 
initial values for the unknowns. For this purpose, trial–and–error analysis should 
be carried out to bound the problem, based on the experimentally identified modal 
parameters. For example, regarding the unknown rotational spring stiffness, it is 
useful to analyse first the pinned and rigid models. 
 
 

 Even though the starting values of the input parameters do not need to be close to 
the optimum, it is advantageous in increasing the efficiency of the optimization.  
In practice, a random value can be assumed as initial value for the updating 
parameter of the load, provided that the assumed value of the load allows 
reasonable ranges of the stresses of the structures, i.e. not exceeding the maximum 
allowable stress of the truss members. 
 
 

 By means of the sensitivity analysis, the effects of the updating parameters on the 
output data can be understood. For slender truss structures, generally the axial 
force or corresponding axial stress have significant effect on the output parameters 
from the static as well as dynamic analyses of the numerical model. Therefore, 
when the force is included as an updating parameter, the effects of other 
parameters become less significant. Nevertheless, when considering the output 
parameters of only the modal parameters, the effects of the joint stiffness should 
not be neglected. 
 
 

 For the updating process, the number of updating parameters should be limited; 
the parameters should be sensitive to the objective function. 
 

 



6.2   Conclusions 

  

143 
 

 The choice of the objective function plays a crucial role.  For instance, when the 
objective function comprises the output parameters calculated from both the static 
and dynamic analyses of the numerical model, the load and the resulted axial 
forces have a dominant effect on the objective function. But when the objective 
function takes into account only the modal parameters from the dynamic analysis, 
the joint stiffness can have pronounced effects on the objective function. Depending 
on the choice of the objective function, together with the choice of the updating 
parameters, the sensitivity of the updating parameters is varied. 
 

 Several strategies were developed to increase the effectiveness of the optimization 
process and identify the design parameters accurately based on their sensitivity on 
the objective function. The strategies depend on the choices of 

(i)  which design parameters to be updated;  
(ii)  how many parameters to be updated; and 
(iii) which output parameters to be included into the objective function. 
 

To identify the load, the objective function should include the output parameters 
from both the static and dynamic analyses of the numerical model, i.e. member 
axial forces and modal parameters. The updating parameters can be the load and 
the rotational spring stiffness of the joints or only the load; in the latter case 
however, it is necessary to make assumptions for the joint stiffness. To identify the 
rotational joint stiffness, the objective function should include only the modal 
parameters, i.e. natural frequencies and mode shapes, as well as the updating 
parameter should be mainly the spring stiffness.  
 

Therefore, a two–stage updating process can be carried out to identify first the load. 
After that, based on the result of the identified load, a second optimization 
procedure for the joint stiffness can be performed. 
 

 From the numerical study, optimization with only the rotational springs as 
updating parameters have given results of the spring stiffness that match fairly 
well to the true spring stiffness, those were defined in the numerical study. 
  

To verify the identified spring stiffness in cases no experimental validation is 
available, the results obtained from the optimization with only the springs as 
updating parameters provide a means for comparison and check. This is only 
relevant to cases when the load is known, such as by measurements in laboratory 
experiments.  
 

 An identification problem can be symmetric, such as the identification of the joint 
stiffness at symmetrical locations of a truss structure. In such cases, updating 
parameters of joint stiffnesses, those have similar effects on the model output, can 
hinder the success of the parameter estimation problem.  Several suggestions to 
overcome this issue are to test the structure in slightly different configurations 
and/or add mass or springs to the structure, etc. 

Different updating methods and nature–inspired optimization techniques: 

 Compared to gradient– or sensitivity–based methods, global search optimization 
methods have the advantages of flexibility, independence of the initial parameter 
set and the capability to find global minimum; their disadvantage is associated 
mostly with high computational costs. 
 

 Adaptive response surface method is more computationally efficient in comparison 
to nature–inspired optimization techniques. It can give relatively accurate results 
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especially in cases of smooth optimization problems and limited number of 
updating parameters. However, its performance appears less stable in case of more 
complex optimization problems and with a high number of updating parameters. 
 

 Genetic algorithm, as a global optimizer based on evolutionary computing, allows 
and requires the use of information about the entire network or sequence being 
optimized. Therefore, it is endowed with the possibility to find (near) global 
optimum. For the application in the present work, genetic algorithm proves to be 
suitable. Possible limitation is its scalability due to the use of global information. 
In other words, genetic algorithm is suitable for global optimization, but may be 
less effective for local decisions. 
 

 Particle swarm optimization, based on swarm intelligence, depends on the local 
information and interaction, which minimizes communication overhead associated 
with information across a network. As a result, its implementation is usually 
highly scalable, adaptable, and reasonably robust, which has been proved to be 
suitable in the present work. Nonetheless, depending on the problems, particle 
swam optimization may get trapped in stagnation or premature convergence to a 
local optimum, and is not suitable for time–critical applications. Among the 
investigated optimization–based methods, particle swarm optimization requires in 
general the most computational costs. 
 

 Based on the present study on truss structures, nature–inspired optimization 
techniques are identified to be promising, given that the updating problem is  
well–defined. As there is room for further exploration and improvements, it is 
expected that further advancement in many areas will likely benefit from novel, 
as–yet–unknown approaches, and from hybrid approaches combining multiple 
types of algorithms. 

The proposed methodology is summarized as follows. The method is based on the finite 
element model updating using global search optimization techniques. The numerical 
model of truss structures is calibrated using experimental data of natural frequencies 
and mode shapes from vibration measurements. The results of the identification are the 
multiple axial forces or corresponding stresses in truss structures, as well as information 
about the joint rigidity in relation to pinned and rigid condition.  

A two–stage model updating process is recommended. In the first stage, the primary aim 
is to determine the load and the resulted axial forces or stresses. Dynamic tests allow 
the identification of the natural frequencies and mode shapes, globally of the truss 
structure as well as locally of the individual bars. The validation criterion is based on 
the identified frequencies and global mode shapes of the truss. Moreover, additional 
information of the axial forces in selected individual bars of the truss is used, which  
is estimated from the natural frequencies and five amplitudes of the corresponding  
local mode shapes using an analytical−based algorithm. The tensile forces in selected 
tension members with uniform symmetrical cross–sections of the truss are identified.  
By static equilibrium of the global model, multiple axial forces in all truss members  
are obtained. 

Based upon the results of the identified load, a second optimization procedure for the 
joint stiffness is subsequently performed. In this stage, only modal parameters of the 
global frequencies and mode shapes are used as validation criteria. The rotational spring 
stiffnesses of joints are identified as an indication of the level of semi–rigid connections. 
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Regarding the pairing of modes, an enhanced modal assurance criterion that allows the 
selection of desired clusters of degrees of freedom is adapted to use more beneficially the 
information extracted from the measurements relating to specific modes. Moreover, the 
modal strain energies are also used to select the relevant local mode shapes of selected 
individual bars of the truss. 

The effectiveness of the methodology was verified by numerical study and validated  
by laboratory experiments. The results of the different experimental campaigns show 
that the identified axial forces match reasonably well with that from the experiments at 
different stress levels. Furthermore, the axial force identification is also reliable between 
different optimization runs.  

For the joint stiffnesses, based on the numerical verification, the obtained results are also 
close to the true values. Nevertheless, unique results may not be achieved for 
optimization problems with a high number of updating joint stiffness parameters.  
With respect to the issue of symmetric identification of joint stiffness, the numerical study 
and laboratory experiments show that by modifying a symmetric truss−type structure 
such as by adding mass to the truss members, the identification problem becomes  
non–symmetric and the different rotational stiffnesses at symmetric locations of the 
structure can be estimated.  

The advantages of the proposed methodology are that, by considering the global system, 
the method gives practically the results of the multiple axial forces and allows the global 
modelling of the structure, such as to predict the structural responses under alternative 
loading scenarios. Also, the methodology is relatively robust in the presence of uncertain 
parameters. The requirement of the proposed methodology is concerned with the 
reasonable accuracy of the initial numerical model.  

About the vibration tests, a minimum number of five sensors per selected member are 
required. The outmost sensors should be installed to cover a sufficient length of the 
member and at certain distances to the end constraints. The present works suggests the 
total length of the outmost sensors to be between 2L/3 and 5L/6, and the distance of the 
sensor to the end constraint to be from L/12 to L/6 (see Figure 5.16). 

Based on the investigated truss and truss–like systems, the application of the proposed 
methodology is for lightweight iron and steel truss structures composed of slender 
members that are primarily characterized by axial forces. Investigated member profiles 
of the laboratory systems were solid symmetrical profiles, e.g. solid circular cross–
sections. Further investigation is recommended regarding the application of the 
methodology on in–situ (historic) trusses and under real–life conditions. 

6.2 Future Research 

For vibration–based structural parameter estimation of truss structures, finite element 
model updating using global search optimization strategies are attractive techniques, 
which involve multi–disciplinary and interactive development. To produce smooth 
applications in practice, several aspects can be considered for future research, as follows. 

Further development for an in–situ examination methodology on real–life existing truss 
structures can be conducted. A guideline of measuring concepts and assessment 
strategies for practical application can be developed. One should take into account the  
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uncertainties related to the material and geometrical properties of historic structures, 
precision of the measurements and experimental setup as well as environmental factors, 
such as temperature, and so on.  

In addition, an investigation of truss members of different types of profiles and different 
slenderness can be carried out, for example bulky asymmetrical profiles that are 
frequently used in truss bridges and truss frame structures. The identification of the 
axial forces in compression members of a truss can be also examined. In practice, certain 
compression members may have local damages such that redistribution of the axial 
forces in the truss occurs. Thus, analysis assuming the global truss model at a state of 
static equilibrium may be no longer valid. In such cases, a direct assessment of the forces 
in the compression members is required. 

Besides, studies of space truss structures can be conducted. For space trusses, the effects 
of multiple load patterns are even more complicated. Moreover, there may be influences 
of structural elements in the third dimensional space. Another issue that can be also 
addressed is the effect of (excessive) static deflections on vibration. 

Furthermore, the feasibility of the proposed methodology in cases of limited available 
information may be investigated, for instance when only certain members of a truss can 
be accessed for testing. Quantification of uncertainties in individual analysis process can 
be studied. 

In the context of in–situ testing on real–life truss structures, an available integrated tool 
for direct on–site application shall certainly be interesting. It offers the advantage of 
cost–effective and fast quality checks in the construction phase, as well as safety checks 
and structural maintenance over the structure lifespan. 

Another aspect that may be also studied further is the numerical modelling and 
experimental assessment of semi–rigid joints systematically to produce a catalogue of 
joint designs. In addition, the effects of friction and slip of joints may be considered.  
Over the past decades, a number of experimental programs involving the understanding 
of structural connections was performed, which encourages further development to the 
work related to semi–rigid connections. 

Regarding model updating and selection of updating parameters, future research can 
look into the problem of parameterization of joints. Moreover, it is worth considering the 
aspects of attaching weights to the parameters. In addition, with respect to the issue of 
unique or symmetric identification problem for parameters such as joint stiffness, 
further investigation can be carried out to increase the amount of data available, for 
example to test the structure with added masses or in slightly different configurations.  

With respect to the nature–inspired optimization methods, as typical for many modern 
approaches, their application evolves and unveils new research challenges. Several open 
issues include, for instance, concurrent handling of multiple constraints; investigation of 
parameter sensitivity, interactions, and tradeoffs; detailed evaluation of algorithm 
performance under real–world conditions, as well as from an application–centric 
perspective. For these purposes and considering the performance efficiency, further work 
can be concentrated on the reduction of the computational effort of the optimization–
based methods. 
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APPENDIX 
 

 

A Study Context of Historic Truss Structures 

Table A.1 – Highlights of development of iron and steel production, theory formation and selected 
examples of iron roof truss constructions from approximately 1709 until 1893. 

Year Development Reference 
1709 First production of pig iron in a coke blast furnace by 

Abraham Darby at Coalbrookdale  
LORENZ (2012) 

1722 Begin construction of Leaning Tower of Nevyansk and its 
porch including a roof truss built entirely of wrought iron flat 
bars with a span of about 9 m and height of about 7.5 m 

LORENZ and HERES 
(2015) 

1784 
 

Patenting of the puddling process by Henry Cort for the 
production of puddle iron or weld iron 

LORENZ (2012) 

1786–1790 Wrought iron roof truss at Théâtre Français by Victor Louis 
with a span of approximately 28 m 

ADDIS (2012) 

1789 Wrought iron roof truss at the Salon Carré du Louvre, Paris LORENZ and HERES (2015) 
1790 First calibre mill for further processing of puddle iron by Cort 

and Panel in England (flat rectangle cross sections) 
HELMERICH (2005) 

1807 Introduction of modulus of elasticity by Thomas Young YOUNG (1845) 
1808 Theory of elastic line of bending of beams Handbuch der 

Statik fester Körper by Johann Albert Eytelwein (1764−1848) 
HOLZER (2012) 

1823−1825 Iron roof at the Court and National Theatre, Munich with a 
span of more than 10 m 

LORENZ (2001) 

1824 First puddle plant in Rasselstein near Neuwied, Germany  
by owner family Rémy, friends of John Cockerill (1790−1840) 

ERLER and SCHMIEDEL 
(1988) 

1826 Theory of the bending of beams and analysis of simple 
structures by Claude Louis Marie Henri Navier (1785−1836) 

HOLZER (2012) 

1828−1832 Wrought and cast iron roof and ceiling structures at the 
Alksandrinskij Theatre, Saint Petersburg by engineer 
Matthew Clark (1776−1846) and classicist Carlo Rossi 

LORENZ (2001) 

1830 First railway rails, T–profile, Z–iron in England 
manufactured by Stephenson, i.e. mold or façon iron 

WERNER and SEIDEL 
(1992) 

1836 Iron roof truss of the Chartres Cathedral, Paris with a span of 
about 14 m and height of 10 m 

LORENZ (2012) 

1836 Realisation of three interconnected pin−jointed plates of bars 
also forming a plate by Rudolf Wiegmann  

KURRER (2008) 

1838 Reconstruction of the building complex of the State Hermitage 
Museum, Saint Petersburg with iron structures with great 
variety of prototypes for roofs and floors (see Chapter 1) 

LORENZ (2005, 2010); 
LORENZ and HERES 
(2006), HERES (2006) 

1839–1840 Theory of three pin–jointed truss by Rudolf Wiegmann  
and Camille Polonceau; invention of Wiegmann–Polonceau 
truss structures 

KURRER (2008);  
HOLZER (2006); 
SCHÄDLICH (2015) 

1840 Iron roof trusses with a span of about 11.7 m and height of  
2.5 m over the main hall of Valhalla, Donaustauf 

LORENZ (2001) 

1843–1850 Wrought iron roof trusses of the Bibliotheque Sainte 
Geneviève, Paris 

LORENZ (2012) 

1851 Statically determinate truss theories by Karl Culmann 
(1821−1881) and Johann Wilhelm Schwedler (1823−1894) 

KURRER (2008) 
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Table A.1 – Highlights of development of iron and steel production, theory formation and selected 
examples of iron roof truss constructions from approximately 1709 until 1893 (continued). 

Year Development Reference 
1851 Crystal Palace with iron framework of cast iron columns and 

cast and wrought iron trusses by engineers William Barlow 
and Charles Fox 

ADDIS (2006) 

1851–1853 Wiegmann–Polonceau iron roof trusses at Schrannenhalle, 
Munich; the hall is approximately 430 m long 

HOLZER (2006) 

1852 Iron riveted roof trusses at Gare Saint−Lazare, Paris by 
Alfred Armand and Eugène Flachat spanning about 40 m 

HOLZER (2012) 

1853 Riveted wrought iron roof trusses of the Gare de l’Ouest, 
Paris, France by Eugène Flachat (1802−1873) 

KURRER (2008) 

1854 Assessment of the continuity effect of the rafters in 
Wiegmann–Polonceau truss by Gustav Adolf Breymann 

KURRER (2008) 

1855 Bessemer converter, acid lining, production of low–carbon iron 
by Bessemer (1813–1898) 

LORENZ (2012) 

1858 Truss theory Manual of applied mechanics by William John 
Macquorn Rankine (1820−1872) 

HOLZER (2012) 

1861 Description of the three−hinged frame theoretically by  
Claus Köpcke 

LORENZ (1990) 

1863 Static calculation of shells as circular roofs by Schwedler KURRER (2008) 
1864 Theory of general hyperstatic systems on the calculation of the 

equilibrium and stiffness of frames by James Maxwell 
HOLZER (2012) 

1864–1865 Siemens–Martin process, stove freshener process by Wilhelm 
Siemens, Pierre and Emilé Martin 

LORENZ (2012) 

1864−1866 Graphical statics by Karl Culmann KURRER (2008) 
1864 Theory of general hyperstatic systems on the calculation of the 

equilibrium and stiffness of frames by James Maxwell 
HOLZER (2012) 

1865 The first three−hinged frame for the Bochumer 
Dampfhammer by Schwedler 

LORENZ (1990) 

1868 Statics of two– and three–hinged arches by Winkler WINKLER (1880) 
1869 Iron roof truss at Gare d’Austerlitz, Paris with a span length 

of approximately 52 m 
SCHULTZ et al. (2001) 

1869 Iron roof over the council chamber in new City Hall Berlin  
by Schwedler; rafters of the Wiegmann–Polonceau truss are 
parabolic simply supported beams with pinned joints  

KURRER (2008) 

1878 Thomas converter, basic lining by Sidney G. Thomas with 
Percy C. Gilchrist 

LORENZ (2012) 

1878 Wiegmann–Polonceau iron roof trusses at Military Riding 
Hall, Dresden composed of timber rafters, optimal shaped cast 
iron struts and wrought iron ties with turnbuckles 

HOLZER (2012) 

1879 Approximation method for determining the secondary stresses 
in trussed frameworks by Engesser 

ENGESSER (1879) 

1880 Theory of secondary stresses in trussed frameworks with rigid 
joints by Manderla 

MANDERLA (1880) 

1881 Theory of secondary stresses with the difference between end 
tangents and member chord angles of rotation at the joint as 
well as eccentric truss joints by Winkler 

WINKLER (1881) 

1885−1891 Wiegmann–Polonceau iron roof trusses at Reithalle, Potsdam  
(see Chapter 5) 

SIGEL et al. (2006) 

1892−1893 Theory of secondary stresses with clear differentiation 
between the joint angles of rotation and member angles  
of rotation for the determination of the deformed state of  
trussed frameworks with rigid joints 

MOHR (1892/93) 
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B Numerical Parametric Study 

Table B.1 – Characteristics of the parameters in the numerical parametric study of single–bar systems. 

Parameter   Designation   Range (lower/upper)  Base value  Unit 
σ    Axial tensile stress   0 / 200  0  N/mm2 
kr1 = kr2   Rotational spring stiffness at supports   0 / 200  0  kNm/rad 
Ø   Diameter of solid circular cross–section     20 / 30  20  mm 
E   Modulus of elasticity   150 000 / 220 000  210 000  N/mm2 
ρ    Mass density   7065 / 8635  7850  kg/m3 
L   Length   1500 / 3000  1750  mm 

 

   

     
 Figure B.1 – Individual effects of selected parameters on the first natural frequency of single bar. 

(a) Slenderness, λs = 250 
 

(b) Slenderness, λs = 314 
 

      
Figure B.2 – Combined effects of selected parameters on the first natural frequency of single bar.  
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C Numerical Static Analysis of Systems in Numerical Study and 
Laboratory Experiments 

  
 

  
 

             
 

              
 

 
*Geometric nonlinear static analyses were performed by the finite element programme ANSYS. 

Figure C.1 – Static analyses of the normal stress and bending stress distribution of the finite element 
models with stress stiffening assuming rigid joint conditions of the investigated systems 
in the numerical study and laboratory experiments.
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D In−Situ Experiment − Location and Measurement Equipment 

The historic roof truss systems are located in a building called Reithalle at Pappelalle 
22–24 in the city of Potsdam. It is recognized as a heritage protected building. In 2012, 
the building was under renovation for residential apartments. 

About the measurement equipment, the data acquisition system SCADAS II was 
integrated in a mobile measuring vehicle of BAM. The equipment included 72 amplifiers 
having measurement range of 1 mV to 10 V; 72 analogue filters measuring 20 Hz to  
20 kHz; AD–converter of 16–bit resolution; variable scan rate (2000 Hz in the in–situ 
experiment), variable block size and automatic filter adjustment of 1/3 of scan frequency. 
Considering vibration velocity sensor, geophones HS1 by Geospace were used having a 
weight of approximately 0.3 kg each and natural frequency of 4.5 Hz. For excitation force, 
an impact hammer PCB/086D20 was used that has a weight of about 1.1 kg and is able 
to measure a pulse up to 22.2 kN with sensitivity of 0.23 mV/N. 

(a) Location of the Reithalle building  
(©Google Map, 2012) 

(b) Building view from outside and on 
architectural plan for renovation project 

 

 

 
  Figure D.1 – Location of the historic truss in Potsdam for the exemplary in–situ experiment. 

  
  Figure D.2 – Architectural illustration of the building Reithalle after renovation for residential 

apartments [Berner Group GmbH (2010)].  
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E Numerical Static Analysis of the Truss System in In−Situ Experiment 
 

  

 

   
 

 
*Geometric nonlinear static analyses were performed by the finite element programme ANSYS. 

Figure E.1 – Static analysis of the axial force, normal stress and bending stress distribution of the 
finite element model assuming the manually calculated roof loads and rigid joint 
conditions of the historic truss in the in−situ experiment. 
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