
Verification of Software for Contiki-based
Low-Power Embedded Systems Using

Software Model Checking

Von der Fakultät für MINT - Mathematik, Informatik, Physik,

Elektro- und Informationstechnik

der Brandenburgischen Technischen Universität Cottbus-Senftenberg

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation
vorgelegt von

Diplomingenieur

Thilo Vörtler

geboren am 28. April 1984 in Zwenkau

Gutachter: Prof. Dr. rer. nat. habil. Petra Hofstedt

Gutachter: Prof. Dr. Christoph Grimm

Gutachter: Prof. Dr.-Ing. Heinrich Theodor Vierhaus

Tag der mündlichen Prüfung: 24. November 2017

Danksagung

Viele Kollegen und Freunde haben mich in den letzten Jahren bei der Erstellung dieser

Dissertation unterstützt. Hiermit möchte ich mich insbesondere bei meiner Betreuerin

Petra Hofstedt, sowie den Mitarbeitern am Lehrstuhl für Programmiersprachen und

Compilerbau an der BTU Cottbus bedanken. Ohne eure Unterstützung wäre diese

Arbeit nicht zustande gekommen. Jeder Besuch bei euch in Cottbus hat mir Freude

bereitet, sowohl die thematischen Diskussionen als auch die immer sehr menschliche

Atmosphäre am Lehrstuhl.

Ein ganz herzlicher Dank auch an meine Schwester und Eltern sowie an meine Freunde.

Anne, vielen Dank für die moralische Unterstützung beim Schreiben und die konstruk-

tiven gemeinsamen Besuche in der SLUB. Chenzi für die regelmäßigen Mittagessen-

runden und den Austausch über das Promotionsstudentenleben und Armin für die

vielen unterhaltsamen Gespräche.

Weiterhin möchte ich all meinen Kollegen am Fraunhofer IIS/EAS danken. Hierbei

insbesondere Thomas Klotz, Eva Fordran, Stephan Radke und Paul Ehrlich für die

vielen Diskussionsrunden und die Ermutigungen weiterzumachen. Außerdem meinen,

neuen, alten, Kollegen von COSEDA, welche mich gerade in der Endphase dieser

Arbeit unterstützt haben.

Zusammenfassung

Vernetzte eingebettete Systeme bilden die Grundlage für das Internet of Things (IoT).

Sie arbeiten häufig autark und in sicherheitskritischen Bereichen. Deshalb ist es wich-

tig sicherzustellen, dass die Systeme sich korrekt, also gemäß ihrer Spezifikation, ver-

halten. Zur Erstellung von Software für solche Systeme werden Betriebssysteme wie

Contiki verwendet, welche die Programmierung von Anwendungen vereinfachen und

die Portabilität zwischen verschiedenen Hardware-Plattformen ermöglichen.

In dieser Dissertation wird eine Methodik zur Verifikation von Software-Anwendungen,

unter Berücksichtigung der Hardwareumgebung, für eingebettete Systeme anhand des

Betriebssystems Contiki vorgestellt. Es wird die Technik des Software Model Checking

[CGP00] – und dabei insbesondere Bounded Model Checking [BCC+03] - verwendet,

welche es ermöglicht die Software eines eingebetteten Systems formal zu verifizieren.

Um die Verifikation durchzuführen, muss auch die Hardware des Systems modelliert

werden. Die Herausforderung hierbei ist es, die Interaktionen der Software mit der

Hardware hinreichend genau abzubilden und gleichzeitig den Aufwand für die Verifi-

kation hinsichtlich des benötigten Rechenaufwands beherrschbar zu halten. In dieser

Arbeit wird deshalb ein Ansatz verwendet, der die Treiber, die auf die Hardware zu-

greifen durch Softwaremodelle für die Verifikation ersetzt. Dies ermöglicht es Anwen-

dungen für Contiki mit Hilfe einer abstrakten Verifikationsumgebung zu überprüfen.

Ein besonderer Aspekt bei eingebetteten Systemen ist die Verwendung von Interrupts,

welche es ermöglichen Energie, einzusparen und auf externe Ereignisse zu reagieren.

In bisherigen Ansätzen zur Verifikation werden Interrupts mit dem Interleaving Mo-

dell modelliert und das Verifikationsproblem mit Hilfe von Partial Order Reduction

[CGP00, BK08] reduziert. Diese Arbeit zeigt, dass dieser Ansatz für die Verifikati-

on von Anwendungen, welche periodische Interrupts verwenden, nicht ausreichend ist.

Deshalb wird mit Periodic Interrupt Modelling ein neuer Ansatz zur Modellierung von

Interrupts vorgestellt. Dieser Ansatz kann automatisiert angewendet werden und ver-

ringert die Anzahl von falschen Verifikationsergebnissen aufgrund ungenauer Model-

lierung. Zusätzlich ist es möglich Eigenschaften zu überprüfen, die von der Häufigkeit

von Interrupt-Aufrufen abhängen.

Anhand des in der Arbeit entwickelten Verifikationsablaufs werden Beispielprogramme

für Contiki untersucht und die Ansätze zur Interruptmodellierung verglichen.

Abstract

The main building blocks for the internet of things are connected embedded systems.

Often these systems are also used in safety critical applications. Therefore, it is par-

ticularly important that these devices work according to their specification i.e. they

behave as intended. Nowadays, even for simple devices embedded operating systems

as Contiki are used to simplify application development and to increase portability

between different hardware platforms.

The main objective of this thesis is to present a methodology for the verification of

software applications written for the operation system Contiki , taking the system

hardware into account. Therefore, software model checking [CGP00] and especially

bounded model checking [BCC+03] is used as a technique, which allows to formally

verify software for embedded systems.

For verifying the software against its specification, it is also necessary to build a model

of the system hardware. Thereby, the difficulty is to create a model which is detailed

enough to capture the hardware behavior so that the software performs correctly,

while keeping the computation effort for the verification process manageable. In this

work, the drivers which communicate with the hardware are therefore replaced with

abstract models during the verification process. This enables the verification based on

an abstract hardware platform independent of specific hardware.

A special role within embedded systems play interrupts. Interrupts are used to save

power and can also be used to react on external events. Current methods for verifica-

tion of interrupt driven software are based on the interleaving model and partial order

reduction to reduce the size of the verification problem. This thesis argues that this

method is not sufficient for software, whose behavior relies on periodically occurring

interrupts. Therefore, in this thesis, a new approach called periodic interrupt model-

ing [CGP00, BK08] is introduced. This approach can be applied automatically and

reduces the number of incorrect verification results due to inaccurate modeling. In

addition, properties can be proven that depend on the number of occurring interrupts.

Using applications for the Contiki operating system, and based on a verification flow,

the approaches toward interrupt modeling are compared.

Contents

1 Introduction and Scope 1

1.1 Introduction . 1

1.2 Summary of Contributions . 3

1.3 Organization of the Thesis . 4

1.4 Remarks on Notation, Commonly Used Definitions, and Terms 5

2 Related Work and Fundamentals 9

2.1 Related Work . 9

2.1.1 Simulation-Based Verification Techniques 9

2.1.2 Formal and Model Checking Based Verification Techniques . . . 13

2.1.3 Tools for Automatic Software Verification 16

2.2 Verification Using Model Checking . 19

2.2.1 Model Checking Process . 19

2.2.2 Model Checking Basics . 20

2.2.3 Bounded Model Checking . 23

2.2.4 Software Model Checking Using Bounded Model Checking and

the CBMC Tool . 27

2.2.5 Model Checking and Partial Order Reduction 32

3 The Operating System Contiki 39

3.1 Introduction into Contiki . 39

3.2 Example Application LED Blink . 40

3.3 Contiki Kernel Scheduling Mechanism 42

3.3.1 Description of the Scheduling Algorithm 46

3.3.2 Scheduling of the LED Blink Example 48

3.4 Programming Contiki Applications . 49

3.5 Hardware Access in Contiki . 51

4 Modeling an Embedded System Running Contiki for Verification 55

4.1 Overview of the Approach . 55

4.2 Annotating Assertions for Verification 56

4.3 Modeling the System Environment Using Drivers 59

x Contents

4.4 Interrupt Modeling . 66

4.4.1 Existing Approaches . 69

4.4.2 Applying Existing Approaches to the Verification of Contiki Ap-

plications . 71

4.5 Periodic Interrupt Modeling - Taking System Runtime into Account . . 75

5 Model Checking and Verification Flow 79

5.1 Bounded Model Checking and Setting Loop Bounds 79

5.1.1 Unbounded Loops in Contiki 80

5.1.2 Setting Bounds . 83

5.1.3 Loop Unwinding and Interrupt Modeling 85

5.2 Verification Flow and Implemented Tools 86

5.2.1 Modeling and Specification Phase 86

5.2.2 Compilation and Interrupt Instrumentation 88

5.2.3 Verification Execution . 89

5.3 Test Case Generation Using Bounded Model Checking 89

6 Verification of Contiki Applications 91

6.1 Experimental Setup . 92

6.2 Hello World Application . 93

6.3 LED Blink Application . 94

6.4 LED Fader Application . 102

6.5 Bubble sort with LCD Application . 104

6.6 3-axis Acceleration Sensor with Rotation Detection Application 108

6.7 Summary and Result Discussion . 111

7 Conclusions 115

A Appendix 119

A.1 Example Applications Used for Evaluation 119

A.1.1 Transformed Source Code of Hello World Application for POR . 119

A.1.2 Transformed Source Code of Hello World Application for PIM . 119

A.1.3 Source Code of LED Blink Application Possibly Triggering an

Event Queue Overflow . 120

A.1.4 Source Code of LED Fader Application 121

A.1.5 Source Code of Bubble Sort with LCD Application 123

A.1.6 Source Code of 3-axis Acceleration Sensor with Rotation Detec-

tion Application . 126

A.1.7 Source Code 3-axis Acceleration Sensor Declaration for Contiki 128

A.2 Contiki Kernel Implementation Details 131

A.2.1 Contiki Defined Kernel Events 131

Contents xi

A.2.2 Contiki Defined Process States 132

A.2.3 Process macros of Contiki . 132

A.2.4 Protothread Macros of Contiki 133

A.2.5 Contiki Process API . 133

Used Abbreviations 135

List of Figures 137

List of Tables 139

List of Algorithms 141

Bibliography 143

xii Contents

1
Chapter 1

Introduction and Scope

In this chapter, an introduction to the topics of this thesis is given in Section 1.1 and

the main contributions are summarized in Section 1.2. Afterwards, in Section 1.3, the

further organization of this thesis is presented. Finally, in Section 1.4 general remarks

about the used terms and notations are given.

1.1 Introduction

The use of connected embedded systems has increased rapidly in the last years, mainly

due to the use of Wireless Sensor Networks (WSNs) [ASSC02] and the connection of

more and more consumer goods in the Internet of Things (IoT) [AIM10].

Embedded systems are computing systems, which are designed to fulfill specific tasks

independently, without direct interaction from a user. They are often embedded into

other larger systems and can be applied in various application domains e.g. in med-

ical devices, automotive systems or avionics. Due to their focus on a specific task,

embedded systems are highly optimized and are characterized by a tight combination

of hardware and software.

For programming of embedded systems often specialized operating systems like Contiki

[Con17a, Wir14] are used. Contiki enables the development of low power applications

that can be easily ported to different hardware platforms. In contrast to more well-

known operating systems, including Linux or Windows, Contiki applications can run

on microcontrollers that only consist of several kilobytes of RAM. Due to the require-

ments for low power consumption, the Contiki operating system is event-driven, i.e.

events are used to trigger computations. These events can also be caused by interrupts,

which allow it to save power and enable fast reaction times. For example, interrupts

can wake up the system from low power processor modes or trigger special computa-

2 1 Introduction and Scope

Verification process

System specification

Properties

Product or prototype

Design process

Bug(s) found

No bugs found

Figure 1.1: General system development and verification process applicable for embed-
ded systems [BK08].

tions that are needed to react on external events, for instance, the arrival of new sensor

values. Interrupt sources can also be hardware timers of the used microcontroller that

enable periodic interrupts.

As embedded systems are also often used in safety critical environments the verifica-

tion of the system behavior is very important. Verification in this context describes

the process of checking that a system behaves as intended. In Figure 1.1 a general

approach for designing and verifying systems is shown. Starting from a system specifi-

cation, which describes the intended behavior of a to be developed system, a product is

developed in a design process. On the other hand, in the verification process, it is made

sure that the build system behaves as intended with regard to the original system spec-

ification. For verification two main concepts exist. Using runtime or simulation-based

methods, the developed system (or a model of the system) is executed and observed to

detect bugs or misbehavior. In contrast, formal verification methods rely on an anal-

ysis of the system structure and can be used to verify a system exhaustively, i.e. all

possible system behaviors can be examined. One formal verification method is model

checking that allows it to prove the correctness of a system automatically against a

formal specification. Therefore, the system specification is translated into properties,

which can be checked against a model of the system. A special kind of model checking

is software model checking, which aims at the verification of software.

In this thesis, an approach to verify software applications for the operating system

Contiki using software model checking is presented. The objective is the verification

of unmodified software applications running on the system that are written in C and

1.2 Summary of Contributions 3

are using the protothread programming model (part of the Contiki system). Problems

which can be detected include common programming errors, e.g. arithmetic overflows,

misuses of pointers, application-specific properties, and Contiki specific properties.

Due to the tight interaction between hardware and software in embedded systems, also

the hardware environment of the embedded system has to be considered and modeled

to verify the software correctly. A correct modeling of the hardware is thereby essential

and the main challenge. As noted by Baier and Katoen:

“Any verification using model-based techniques is only as good as the model

of the system [BK08].”

In contrast to other approaches, the application programming interfaces (APIs) of

Contiki are used to model peripheral devices, e.g. sensors. By performing the verifica-

tion at the level of the operating system it is possible to verify applications, which can

be run on different hardware platforms. In addition to modeling the hardware, also

interrupts have to be modeled as they influence software execution. The thesis shows,

how different approaches for modeling interrupts affect the properties, which can be

proven on a system. It is shown that current approaches for the modeling of interrupts

are not sufficient to verify timing related properties for the operating system. Espe-

cially periodically occurring interrupts, which are typically caused by timers, have to

be handled differently. Therefore, a modeling style called periodic interrupt modeling

is introduced, to handle these kinds of interrupts.

To show the feasibility of the approach a verification platform for a Contiki based

embedded system has been implemented, which allows it to compare the different

modeling techniques. Several applications using this platform have been verified and

results show the effect of different interrupt modeling techniques on verification time

and the properties that can be proven. The results also demonstrate the limitations

of the approaches, as well as of software model checking in general.

1.2 Summary of Contributions

The following list shows the main contributions of this thesis:

• A formalization of the event-driven Contiki kernel scheduling is given together

with a description of the protothreads programming model.

• A modeling approach, which allows it to build an abstract verification platform

for Contiki applications is introduced. This hardware modeling at the level

of drivers allows it to verify Contiki applications independently of a specific

hardware platform.

• For the modeling of interrupts existing techniques like partial order reduction

4 1 Introduction and Scope

are introduced. It is discussed how well these are suited for the verification of

Contiki applications especially for verifying timing related system behavior.

• A new technique for the verification of interrupts called periodic interrupt mod-

eling is presented, which allows it to verify properties, that cannot be checked

with existing modeling techniques due to over-abstractions of the actual system

behavior.

• Based on the modeling techniques an automatic verification flow for Contiki

applications has been implemented, based on the bounded model checking tool

CBMC.

• Extensive verification results show the applicability of the modeling approach for

the verification of Contiki example applications. Furthermore, the effect of the

different modeling styles for interrupts regarding the overall verification effort is

examined.

1.3 Organization of the Thesis

This thesis is structured as follows. In the following section of this chapter terms

and notations used in this thesis are introduced. In Chapter 2 related work on the

field of embedded system verification is presented. Therefore, simulation and formal-

based verification approaches, as well as verification tools for software, are discussed.

Afterwards, an introduction into model checking and the software model checking tool

CBMC [CKL04, CBM17] is given.

Chapter 3 introduces the operating system Contiki using an example application. A

formalization of the operating system kernel is given and the protothread programming

model is introduced. Furthermore, it is shown how Contiki can be adapted to different

hardware platforms.

The modeling approach used for verification is presented in Chapter 4. It is shown,

which kind of properties shall be proven on the system and how they can be structured.

Afterwards the modeling of the embedded system hardware is introduced. Thereby,

a special focus is put on the modeling interrupts and the periodic interrupt modeling

style is presented.

To perform verification using the CBMC tool, practical issues such as setting the

number of loop unwindings have to be considered. Based on this an overall verification

flow is developed, which is discussed in Chapter 5. In Chapter 6 verification results,

obtained using the flow, for practical Contiki applications are shown.

Finally, in Chapter 7 conclusions are given.

1.4 Remarks on Notation, Commonly Used Definitions, and Terms 5

1.4 Remarks on Notation, Commonly Used

Definitions, and Terms

In this section, general notations and common definitions that will be used throughout

this work are defined. The operator ← is used to describe assignments to objects of

any kind. For comparisons the operator = is used. When not declared otherwise, the

operators ∧ (and), ∨ (or), =⇒ (implication), ⊕ (exclusive or) and, ¬ (negation) are

used as in Boolean algebra.

Definition 1.1. Let T be an arbitrary tuple T = ⟨t1, t2, ..., tn⟩ with n ∈ N and n > 0

then T.t1 denotes access to the first element of the tuple, T.t2 to the second, T.tn to

the n-th element.

Example 1.1. Let P = ⟨name, started⟩ be a tuple describing the state of a process,

with name being a string and started ∈ {true, false}. For a tuple ⟨calculate, false⟩
the tuple access operator can be used as follows: ⟨calculate, false⟩.name = calculate

and ⟨calculate, false⟩.started = false.

Definition 1.2. Given a length ∈ N, length > 0, Qlength is a queue of arbitrary

objects of the same type. length defines the maximal number of objects that can

be stored in the queue. A queue Qlength may contain n elements, written Qlength =

[q0, ..., qn−1], where n ∈ N, n ≤ length, i.e. they always reside in the first n positions

of the queue. The following operations and notations are used when working with a

queue:

• A queue is called empty when there are no elements in the queue.

• A queue is called full when there are length elements in the queue.

• The current number of elements in a queue can be accessed using Qlength.size1.

• An element q can be added to the end of a queue using Qlength.enqueue(q) when

a queue is not full.

• An element can be removed from the beginning of a queue using Qlength.dequeue.

• The first element of a queue (q0) can be accessed using Qlength.f irst without

removing it.

• The last element of a queue ((Qlength.size)−1) can be accessed using Qlengh.last

without removing it.

1The . operator is, in this case, a function application rather than a tuple access

6 1 Introduction and Scope

Example 1.2. Let P be a tuple describing processes as described in Example 1.1, and

let Q4 be a queue of tuples P , which can store 4 elements at maximum. Let the queue

contain two elements Q4 = [⟨calculate, false⟩, ⟨startup, true⟩]. The name of the first

element can be accessed as follows (Q4.f irst).name = calculate.

Another element can be added to the queue using the operation:

Q4.enqueue(⟨shutdown, false⟩)

The resulting queue is:

[⟨calculate, false⟩, ⟨startup, true⟩, ⟨shutdown, false⟩]

Definition 1.3. Let S be al list of arbitrary objects of the same type S = [s0, s1, ..., sn]

with n ≥ 0. The following operations and notations are used when working with a

list:

• A list is called empty when there are no elements in the list.

• An element in the list can be accessed by its position in the list (index) and

angle brackets, e.g. S⟨0⟩ returns s0.

• An element s can be added to the beginning of the list by S.prepend(s) incre-

menting the index of all the elements already in the list when it is not already

in the list.

• An element s can be removed from the list by S.remove(s) decrementing the

index of the subsequent elements in the list.

Example 1.3. Let P be a tuple describing processes as described in Example 1.1, and

Let S be an list of tuples P . The list contains the elements S = [⟨calculate, false⟩,
⟨startup, true⟩]. Another element can be added to the list using the operation

S.prepend(⟨shutdown, false⟩). The resulting list is:

[⟨shutdown, false⟩, ⟨calculate, false⟩, ⟨startup, true⟩]

An element can be removed from the list using the operation S.remove(⟨calculate, false⟩).
The resulting list is:

[⟨shutdown, false⟩, ⟨startup, true⟩]

Definition 1.4. Let M be a set of objects in memory. The address p of an object

1.4 Remarks on Notation, Commonly Used Definitions, and Terms 7

m ∈M can be stored in a pointer . The following operations and notations are used

when working with pointers:

• The operation ∗p returns the object m ∈ M to which p points to (dereference

operator).

• The operation p →→ b accesses b as part of the object m ∈ M to which p points

to. It is a short form of (∗p).b.

• In case a pointer p does not point to any object it has the value null .

Example 1.4. Let p be an pointer to the queue of elements described in Exam-

ple 1.2. The elements can then be accesses as ((∗p).f irst).name = calculate or

(p →→ first).name = calculate.

An interrupt is used to modify the control flow of a program running on a processor

of a system. Interrupts are caused by certain events in the system. Whereby, an

interrupt which is caused by the software running on a processor is called software

interrupt and an interrupt caused by the hardware is called hardware interrupt .

When an interrupt occurs, the current state of the system execution is stored and a

designated function, which is associated with the type of the interrupt, is executed.

Such a function is called interrupt handler or interrupt service routine (ISR)

When this function returns, execution of the code at the stored location resumes.

A software interrupt allows it to react to certain conditions that occur in a program

by calling a special instruction, which invokes the ISR. The advantage of using a

software interrupt is that its faster than a normal function call, as it is supported by

the processor. As software interrupts are deterministic and caused by software, no

special modeling for this kind of interrupts is needed. Furthermore, Contiki doesn’t

use this kind of interrupts. Therefore, software interrupts are not further examined in

this thesis.

A hardware interrupt is caused by an asynchronous event and pauses the execution

of arbitrary code running on a processor when a defined hardware event occurs, e.g.

the overflow of a timer register or the change of a designated pin.

Depending on its type, interrupts can be enabled and disabled by software running

on the system (interrupt masking). Furthermore, interrupts can have priorities, where

interrupts with higher priority can pause the execution of interrupts with lower priority.

Further details on classes of interrupts and their use in microcontrollers can be found

in [Bäh10].

Definition 1.5. A process or thread is an entity of code belonging to an application,

which is to be executed sequentially on an operating system.

8 1 Introduction and Scope

Depending on the kind of computing system, threads can be run in parallel or pseudo

parallel. An operating system kernel has the purpose to start and select processes.

In this thesis, the terms property and assertion are used to denote a formalized

part of a system specification using temporal and Boolean algebra. Properties can

be classified into different types, whereas with assertions such safety properties (see

Section 2.2.2) are denoted, which are supported by the CBMC tool and can be written

using a C assert statement.

2
Chapter 2

Related Work and

Fundamentals

This chapter summarizes related work and presents fundamentals that are used in this

thesis. Different modeling and verification techniques can be applied to low power sys-

tems targeted in this work and especially to the software running on them. Therefore,

related work on simulation-based (Section 2.1.1) and model checking based formal ver-

ification techniques (Section 2.1.2) is discussed. Furthermore, in Section 2.1.3 other

formal verification techniques and tools are introduced.

In this thesis, model checking is applied for verification. Therefore, the general model

checking process (Section 2.2.1) and basic terms (Section 2.2.2) are introduced. A

special model checking technique, which can also be applied to software, is bounded

model checking. A summary is given in Section 2.2.3 and the tool CBMC for the

verification of C programs using this technique, is presented in Section 2.2.4. To

reduce the size of the model checking problem when targeting systems with parallel

executions, partial order reduction can be used. An introduction to this technique is

given in Section 2.2.5.

2.1 Related Work

2.1.1 Simulation-Based Verification Techniques

Simulation-based approaches for embedded system software verification are based on

executing the actual software. This can be either done on the real hardware of the

embedded system, or on a virtual simulation platform of the hardware. During sim-

ulation, the software is executed for pre-defined system inputs (a test case), and the

10 2 Related Work and Fundamentals

system behavior is monitored to check that the software behaves as expected. The

biggest advantage of a simulation is that very large systems can be handled. The

general limitation of all simulation based approaches is that only a certain execution

trace of the software is examined. The correctness of the software execution is often

determined by evaluating the results, or by comparing them with expected values de-

rived from the system specification. The validity of the simulation based approach is

largely dependent on:

• the quality of the test cases executed,

• the abstraction level of the underlying hardware model, when running on a sim-

ulation platform,

• the ability to detect and debug the software on real hardware.

The straightforward approach for testing embedded system software is running it on

the target system. This approach has the advantage that no additional bugs are

introduced due to the inaccurate modeling of the system hardware. However, this

approach is also problematic, as occurring bugs can often not be reproduced and

debugging can become cumbersome as not all internal states of the system (especially

external hardware such as sensors) can be accessed.

As an alternative, when developing software for an operating system for embedded

systems like Contiki or TinyOS [LMP+05], dedicated simulators can be used for the

operating system. The COOJA simulator [ODE+06] was originally developed for the

simulation of Contiki based sensor networks, whereas TOSSIM [LLWC03] can be used

for TinyOS-based systems. These simulators are discrete event simulators, which focus

on the simulation of several sensor nodes. They allow it to optimize communication

and network algorithms for e.g. low power consumption or cases when sensor nodes or

network connections fail. However, the actual hardware platform of a sensor node is

often not considered. The TOSSIM simulator, for example, doesn’t capture a specific

CPU instruction set architecture. The COOJA simulator, however, can be coupled

with the instruction set simulator MSPSim [EDF+07], which supports the TI MSP430

class of processors. MSPSim is written in Java and allows it to describe peripheral

devices of a sensor node, such as sensors LEDs or radio communication. Using MSPSim

and COOJA together a complete WSN can be simulated at the level of the instruction

set of an MSP430 processor. By using this approach it is also possible to simulate

sensor nodes running different operating systems together, such as Contiki and TinyOS

[EÖF+09].

In [JZD09] a survey comparing different network simulators for complete WSNs can

be found. The strong point of the described simulators for WSNs is the simulation

of the interplay of different sensor nodes and of their network behavior. However, for

performance reasons the behavior of the sensor node hardware is abstracted.

2.1 Related Work 11

N1 N2

BinaryFile

Datamemory

BinaryFile

Data memory

ATMEGA128
RF Transceiver

Sensor

RF Transceiver
ATMEGA128

bits microcontroller8 8 bits microcontroller

Sensor A/D Conversion

ApplicationApplication

A/D Conversion

Figure 2.1: Wireless sensor network modeled using SystemC AMS [VPB+08].

The hardware of embedded systems can be modeled more accurately using system de-

scription languages like SystemC [IEE12, MRR03], which provide different abstraction

levels and modeling styles. As SystemC is an extension library for C++, software can

be easily integrated into the system. Especially by using transaction level modeling

fast virtual prototypes can be built, which allow to run the software of the system

during simulation of the hardware. Using the SystemC AMS extensions [IEE16], it

is also possible to model analog mixed-signal (AMS) behavior, e.g. needed for the

accurate description of sensor behavior. In [VPB+08] a SystemC AMS model of a

WSN containing two nodes is presented. Each node contains an RF-Transceiver, an

ATMEGA 128 Bit microcontroller and a sensor including analog/digital conversion

(shown in Figure 2.1). For modeling the microcontroller a cycle-accurate instruction

set simulator is used, allowing it run arbitrary applications. However, as the focus of

the work is modeling of the RF-transmission, only a simple application is considered,

especially no operating system is considered.

Another example of the use of SystemC for WSNs is shown in [HDG+09]. The objective

of this work is to model the overall power consumption of a sensor network. In this

work also an instruction set simulator and state machines are used to model the

behavior of the hardware of a single sensor node. To model the communication between

nodes a TLM based communication scheme is used, inspired by the network simulator

OMNeT++ [Var01].

The so far described approaches mainly focus on the simulation of embedded systems,

but not on methodical verification, i.e. making sure that the system behaves as in-

tended with regards to the specification or for the detection of bugs. When simulating

a design often certain scenarios are tested and repeated to make sure that the sys-

tem doesn’t contain any faults. The correct behavior can be specified by the addition

of run-time assertions to the code. In [NWE+07] a validation tool for TinyOS is de-

scribed, which automates the adding of assertions. This approach is also called runtime

validation, as errors are detected when running the system to prevent catastrophic be-

havior. Using a special compiler the system software is annotated with checks for e.g.

12 2 Related Work and Fundamentals

virtual
sequencer

virtual

sequence

Subscr 2ref
modelSubscr 1

scoreboard

SystemC-AMS
DUT

env. (VIP1)

agent

AMS driver AMS monitor

ifif

analysis
sequencer

item

item

sequence

env. (VIP2)

agent

AMS driver AMS monitor

ifif

analysis
sequencer

item

item

sequence

environment
UVM test

config

config

config config

config

virtual
sequencer

virtualvirtual

sequencesequence

Subscr 2ref
modelSubscr 1

scoreboard

SystemC-AMS
DUT

env. (VIP1)

agent

AMS driver AMS monitor

ifif

analysis
sequencer

item

item

sequencesequencesequence

env. (VIP2)

agent

AMS driver AMS monitor

ifif

analysis
sequencer

item

item

sequencesequencesequence

environment
UVM test

config

config

config config

analysisanalysisanalysisanalysis analysisanalysisanalysisanalysis

config

SystemC main

if if configconfig

Figure 2.2: A UVM testbench for the structured verification of a SystemC design
[VKE+14].

arithmetic overflows during software execution. If such a situation occurs, an error

handler is called. As this approach modifies the original code, a runtime overhead

exists. A similar approach for Contiki is shown in [PK09]. In these two works the

approach is considered to be used on real hardware deployed in the field. The main

advantage is that errors can be detected, which are introduced by failing hardware.

However, it can also be useful for running software using a hardware simulation model

to detect programming errors (e.g. by assuming a wrong range of sensor values).

In the field of hardware verification (mostly for digital circuits) so-called verification

methodologies have been established, due to the required higher quality standards with

regards to bugs, as the hardware cannot be modified after production. Furthermore,

due to the high verification effort, there is a necessity to re-use code of already exist-

ing verification environments (also called test benches). The in the industry applied

universal verification methodology (UVM) [Acc14] is such a verification methodology.

UVM is based on the coverage-driven verification principle introduced in the e verifi-

cation language [IEE11] and has been originally developed to verify digital circuits.

In the UVM methodology, the creation of test benches is standardized. Figure 2.2

shows the structure of a complete UVM test environment. The main principle of UVM

is to apply randomly generated stimulus as input to the design under test (DUT),

2.1 Related Work 13

which is the system that is verified. Using so-called functional coverage points it is

checked, how many parts of the original specification are covered by the test scenarios,

i.e. it is checked whether all parts of the system are triggered by the test scenario.

UVM is based on similar abstractions principles as used for the modeling of complex

systems using transactions to abstract specific timing behavior. The overall test sce-

nario is described by sequences. Sequences are composed of sequence items2, which

contain data that is sent to the DUT. A sequence item can be e.g. the values received

from an external sensor. The contents of sequences and sequence items are generated

randomly and shaped using constraints to valid values within the specification. A

driver translates the sequence items into the protocol that the DUT supports and

sends them to the DUT.

A similar principle is used to extract data from the DUT. A monitor component

examines signals of the DUT and extracts data that is then stored in a sequence item.

The overall check, whether a test scenario was executed successfully is done in a so-

called scoreboard. Therefore, the data that has been sent to the DUT via drivers and

the data received from monitors is sent to the scoreboard and there compared using a

reference model.

To structure the verification environment, reusable verification components (also called

verification intellectual property (VIP)) are introduced that encapsulate behavior,

which can be reused. A verification component constains a driver, monitor, and se-

quences, which are protocol specific. To control several VIPs virtual sequences are

used that start other sequence. By layering sequences, the abstraction level of the test

case description can be raised.

In recent years UVM has been made also available in SystemC to support system-level

verification of combined hardware-software systems [BPV14]. Additional effort has

been made to support also constraints and coverage in SystemC [HLGD12, VKE+14].

Application examples for automotive embedded systems using UVM in SystemC can

be found in [BDE+15]. UVM-SystemC is currently an active research topic. However,

due to its roots in digital hardware verification, further effort is still needed to fully

support the verification of software.

2A UVM sequence item is similar to a SystemC transaction. A transaction describes data content
that is transmitted between system components, without specifying details of the transmission
protocol.

14 2 Related Work and Fundamentals

2.1.2 Formal and Model Checking Based Verification

Techniques

Formal verification techniques are in general not based on the execution of the ac-

tual system. They are based on analyzing the structure of the system checking the

validity of the specification. Especially, model checking (see Section 2.2) has seen a

widespread industrial use for the verification of synchronous digital circuits, due to its

fully automatic nature and high-quality standards required for those circuits. There-

fore, many commercial tools are available, which allow it to verify implementation

level (register-transfer-level RTL) code, written in languages such as VHDL [IEE09]

or SystemVerilog [IEE13]. The formalization of the system specification is mainly done

using domain specific property specification languages such as Property Specification

Language (PSL) [IEE10] and SystemVerilog Assertions (SVA) [IEE13]. These specifi-

cation languages simplify the writing of complex properties by introducing additional

constructs not available in LTL or CTL (see Section 2.2), e.g. referring to the sta-

bility of a signal. However, due to model checking inherent limitations regarding the

maximum state space of the examined system, it is often restricted to the verification

of critical submodules of an overall design.

Formal verification for SystemC designs, which can be used to model embedded sys-

tems has been an ongoing research topic since the first releases of SystemC. An

overview of the challenges that arise when verifying SystemC compared to traditional

formal hardware verification approaches is given in [Var07]. In general, approaches can

be separated into more HW specific approaches (SystemC is used more like a digital

hardware description language) and more towards higher systems abstraction levels,

including software. For example in [DG05] a first approach is described to transform a

subset of SystemC into a finite state machine representation, on which bounded model

checking is performed. However, due to the transformation process it is restricted to

a subset of C++ and not suited for the verification of software. For example, pointers

are not supported in the transformation process.

Approaches to verify SystemC by transforming it into other representations are nu-

merous and can be found in e.g.:

• In [Her10] the transformation of SystemC designs into Timed Automata is pre-

sented, which can be checked using the UPPAAL [LPY97] model checker.

• Another representation to capture the behavior of SystemC is to use Abstract

State Machines as shown in [OHT04]. Using these Abstract State Machines a

PCI bus is modeled, whereas properties are formulated using PSL. The state

machines are then verified using the standard SMV model checker [SMV17]. Af-

terwards, the state machines are translated into SystemC. The backward trans-

2.1 Related Work 15

lation of SystemC into abstract state machines is shown in [HT05].

• In [KS05] an approach is described, where it is tried to automatically detect

which parts of the SystemC description relate to hardware and which parts

describe software. Based on these parts different abstraction and optimization

techniques are applied to verify the system. The model checking tools SATABS

[CKSY05] together with SMV [SMV17] are used to verify the system. In contrast

to the other approaches, a larger subset of the C++ language is supported by

the approach.

• The verification of high-level untimed SystemC transaction-level models based on

the model checking tool CBMC is presented in [GLD10]. Property specification

is done using a version of PSL, which is extended with language constructs

needed for high-level SystemC verification. To tackle the problem of bounded

model checking being not complete when dealing with unrestricted loops (see

Section 2.2.4), an induction based approach is introduced, which allows to prove

completeness for safety properties.

• A comprehensive analysis of several transformations approaches for SystemC,

which allow it to compare different model checking tools is described in [CNR13].

Three general approaches are presented. Firstly, the transformation into a finite-

state-machine representation, which is checked using the SPIN model checker

[Hol04]. Secondly, the transformation into a sequential program. Thirdly, the

transformation into a multi-threaded program.

Especially it is shown how the non-deterministic SystemC scheduler can be

mapped, so that also possible interleavings of the thread execution of SystemC

threads can be checked. Using their approach ESST (explicit-scheduler/symbolic

threads) significant improvements over a sequential mapping of threads is shown.

This approach is implemented in the KRATOS model checker.

The general challenge when verifying practical SystemC designs is that SystemC is

based on C++ and imposes no restrictions on the use of external libraries. Therefore,

often the SystemC design needs to be transformed to work together with a specific

model checking tool. Furthermore, all parts of the system have to be available in a

format, which can be analyzed by the model checker (e.g. as source code).

Another approach to formal software verification for embedded systems is to verify the

source code of the program without using an explicit hardware model. Therefore, the

hardware part of the system is described in an abstract way so that the software can

still be verified. When verifying the software, the exact timing of external hardware

such as sensors is, for example, neglected.

In [LFCJ09] a verification approach is presented that combines formal and non-formal

16 2 Related Work and Fundamentals

verification techniques. As starting point, test cases are written to check whether the

overall software works as intended. For formal verification, the software is split up

into hardware-dependent and hardware-independent parts. This is necessary as no

embedded operating system is considered, which provides an abstraction layer to the

hardware. Abstract models of the system hardware are considered to verify also timing

behavior. For this purpose, the SMV language is used. To perform the verification

several model checking tools (CBMC used in this work, SATABS, NuSMV) are com-

pared. As an example, a medical embedded system based on an Atmel AT89S8252

(microcontroller with an 8051-like architecture) system is used, which contains typical

components such as sensors, serial interfaces, and timers. In their work, however, no

operating systems are considered.

In [MVÖ+10] the model checking tool Anquiro is presented. Anquiro supports the

formal verification of Contiki applications at different abstraction levels starting from

a hardware specific model of a sensor node to a system-wide model, which includes

a network of sensor nodes. The C code is translated into an FSM representation,

which is handled by the Bogor model checker, properties are specified using LTL.

Anquiro’s main focus is the verification of network applications running on several

nodes and includes constructs for network communication. No details are given how

more hardware related properties can be checked. The authors suggest to couple their

approach with a hardware model, but no verification results are given.

An approach to the verification of Linux device drivers together with hardware models

is given in [HTV+13]. Their approach is based on a CBMC extension which supports

multiple threads. The goal is to find bugs in device drivers by checking them against

models of hardware devices. These models are written in C and are manually extracted

from the QEMU hardware emulator, which provides a library of models. These drivers

are annotated with properties, which the check for correct usage of the hardware by

the driver. To model the hardware and driver software, different threads are used,

which can preempt each other, allowing the hardware model to cause interrupts in the

driver. The work describes in detail how a real timer clock, temperature sensor using

the I2C protocol, and an Ethernet MAC are modeled and gives corresponding results.

2.1.3 Tools for Automatic Software Verification

For the verification of software, many tools exist, especially in academia. In [DKW08]

a survey of different software verification techniques is presented. In Table 2.1 a list

of formal verification tools is presented, based on the techniques model checking, ab-

stract interpretation, and symbolic execution. Most tools for software verification,

especially for embedded systems work on the C language, however, the supported lan-

guage constructs differ, especially with regard to the support of pointers and bit-level

2.1 Related Work 17

T
o
o
l

D
e
v
e
lo
p
e
r

T
e
ch

n
iq
u
e

In
p
u
t

la
n
-

g
u
a
g
e

P
ro

p
e
rt
y

S
p
e
ci
fi
ca

-
ti
o
n

C
B
M
C

C
M
U
/O

x
fo
rd

U
n
iv
er
si
ty

B
ou

n
d
ed

m
o
d
el

ch
ec
k
in
g

C
1

a
s
s
e
r
t
st
at
em

en
ts

S
A
T
A
B
S

O
x
fo
rd

U
n
iv
er
si
ty

A
b
st
ra
ct
io
n

b
as
ed

m
o
d
el

ch
ec
k
in
g

C
1

a
s
s
e
r
t
st
at
em

en
ts

C
P
A

C
h
ec
ke
r

S
os
y
-L
ab

/U
n
iv
er
si
ty

P
as
sa
u

A
b
st
ra
ct
io
n

b
as
ed

m
o
d
el

ch
ec
k
in
g
/
C
on

fi
gu

ra
b
le
so
lv
er
s

C
2

a
s
s
e
r
t
st
at
em

en
ts

S
L
A
M
/S

ta
ti
c

D
ri
ve
r
V
er
i-

fi
er

M
ic
ro
so
ft

A
b
st
ra
ct
io
n

b
as
ed

m
o
d
el

ch
ec
k
in
g

C
P
re
d
efi
n
ed

ru
le
s

K
ra
to
s

F
on

d
az
io
n
e
B
ru
n
o
K
es
sl
er

A
b
st
ra
ct
io
n

b
as
ed

m
o
d
el

ch
ec
k
in
g

S
y
st
em

C
/C

3
a
s
s
e
r
t
st
at
em

en
ts

B
og
or

K
an

sa
s
S
ta
te

U
n
iv
er
si
ty

M
o
d
el

ch
ec
k
in
g
/
C
on

fi
gu

ra
b
le

st
at
e
sp
ac
e
se
ar
ch

B
og
or

m
o
d
el
-

in
g
la
n
gu

ag
e

a
s
s
e
r
t
st
at
em

en
ts

J
av
a

P
at
h

F
in
d
er

N
A
S
A

E
x
p
li
ci
t
st
at
e
m
o
d
el

ch
ec
ke
r

J
av
a

B
y
te

C
o
d
e

a
s
s
e
r
t

st
at
em

en
ts

+
co
n
fi
gu

ra
b
le

ru
le
s

A
st
ré
e

L
IE

N
S
/C

N
R
S
/I
N
R
IA

A
b
st
ra
ct

in
te
rp
re
ta
ti
on

C
a
s
s
e
r
t
st
at
em

en
ts

K
le
e

S
ta
n
fo
rd

U
n
iv
er
si
ty

S
y
m
b
ol
ic

E
x
ec
u
ti
on

C
+
+
,
L
L
V
M

b
it
co
d
e

a
s
s
e
r
t
st
at
em

en
ts

1
C
om

p
le
te

A
N
S
I
C

st
an

d
ar
d
,
C
+
+

su
b
se
t
su
p
p
or
te
d
,
fl
oa
ti
n
g
p
oi
n
t
su
p
p
or
t

2
S
u
b
se
t
of

G
N
U
-C

,
n
o
d
et
ai
ls
sp
ec
ifi
ed

[C
P
A
17
]

3
N
o
su
p
p
or
t
fo
r
p
oi
n
te
rs
,
p
oi
n
te
r
ar
it
h
m
et
ic
,
d
y
n
am

ic
ob

je
ct

cr
ea
ti
on

,
en
u
m
er
at
io
n
s,
b
it
p
re
ci
se

op
er
at
io
n
s
[C
A
A

+
11
]

T
ab

le
2.
1:

O
ve
rv
ie
w

on
ve
ri
fi
ca
ti
on

to
ol
s
fo
r
so
ft
w
ar
e
ve
ri
fi
ca
ti
on

.

18 2 Related Work and Fundamentals

Figure 2.3: Principle approach for counterexample guided abstraction refinement
[DKW08].

arithmetic. The properties that shall be verified are mostly expressed as safety proper-

ties using assert statements (cf. Section 2.2.4). The following paragraph summarizes

the techniques.

Verification based on model checking Model Checking and bounded model

checking is presented in more detail in the following Section 2.2. A short summary

of the model checking based tools follows: Satabs [CKSY05], CPAChecker [BK11a],

SLAM [BLR11], and KRATOS [CAA+11] are all based on the CEGAR (counterex-

ample guided abstraction refinement) principle, where an abstraction of the actual

program is calculated. The basic principle is shown in Figure 2.3. As the state space

of a program is often too large to be searched, it is tried to prove properties on an

abstraction of the program. In a first step, this abstraction is calculated. In a second

step, it is tried to prove the property on the abstracted description. The abstraction

is chosen to be sound, that means when the property is valid on the abstracted de-

scription, it is valid also on the original system. Therefore, when a property is valid

it holds also for the original program and verification is successful. When the verifi-

cation fails (step three) it is checked, whether the generated counterexample also is

valid on the original program (it is checked whether the counterexample is feasible cf.

Figure 2.3). If this is the case, a valid counterexample was found on the program.

However, when the counterexample does not lead to an error, the abstraction has to

be refined (step four), as it leads to a counterexample not existing on the real sys-

tem. This refinement step takes the failed property into account to calculate a new

abstraction. This abstraction loop is implemented automatically. However, finding a

suitable abstraction for a program is not a trivial task. Therefore, the mentioned tools

implement different abstraction strategies, according to the problem. Further model

2.1 Related Work 19

checking tools for software, which do not use C as input language are e.g. the Bogor

model checker [RDH03], which uses an own modeling language (BIR), allowing it to

model at a suitable abstraction level e.g. by defining custom data types. Bogor is de-

signed as a framework, allowing it to implement different model checking algorithms.

Another model checking tool is the Java Path Finder [VHB+03] tool, developed at

NASA, which can be used to verify Java programs. It checks Java bytecode using its

own Java virtual machine. Originally based on the Spin model checker [Hol04], it has

been steadily developed into a separate tool. In contrast to most other software veri-

fication tools, it is an explicit state space model checking tool, similar to the original

Spin model checker.

Verification based on abstract interpretation Compared to model checking,

abstract interpretation [CC77] trades in accuracy i.e. false alarms can occur, where

no actual bugs exist within the program to reach higher verification performance.

For abstract interpretation an abstract program semantic is used to check whether a

program can reach a forbidden state.

A tool which implements abstract interpretation for C programs is Astrée [CCF+09].

It was developed to verify software for Airbus. The tool is sound with respect to the

defined properties, meaning when it finds no bugs, the software can be considered bug

free. However, false positives can occur. A false positive is a problem or bug found

by a verification tool, which is caused by modeling inaccuracies and does not exist on

the real system.

Verification based on symbolic execution Another technique that has been

successfully applied to verify programs is symbolic execution [Kin76]. In contrast

to model checking and abstract interpretation, the goal is not to verify a program

completely but to rather automatically generate test cases, which cover a large part

of the system and led to a high code coverage. To speed up performance, not all

possible program executions are considered, which can lead to incomplete results, i.e.

bugs are not found. A tool which implements symbolic execution for C programs

is Klee [CDE08], which has been able to find deep bugs in the GNU COREUTILS.

Klee supports the Low Level Virtual Machine (LLVM) [LA04] assembly language and

therefore supports the complete C++ language standard using the clang compiler,

part of the LLVM infrastructure. Bounded Model Checking tools like CBMC can also

be used to automatically generate test cases as shown in [VK12].

20 2 Related Work and Fundamentals

2.2 Verification Using Model Checking

2.2.1 Model Checking Process

Model checking is a variant of formal verification, which allows it to verify systems

automatically and completely, with respect to the given specification of the system,

using a so-called model checking tool. To apply model checking [BK08] separates the

model checking process into three phases:

• In the modeling phase, the system under consideration is modeled using the input

language of the used model checking tool. This step can be done automatically,

by the translating description of the system e.g. from a hardware description

language as VHDL or a programming language such as C. However, manual

interaction is still in many cases necessary. When systems are too large to be

handled by the model checking tool often manual abstractions are necessary

to reduce the system size. Furthermore, the system description is often not

complete with respect to the environment needed for correct operation, making

refinements necessary to avoid false positives.

The second part of the modeling phase consists of formalizing the natural lan-

guage specification of the expected system behavior into a specification language,

supported by the model checking tool. Thereby, the specification is translated

into several properties (also called assertions), which shall be verified on the

system.

• In the running phase, the model checking tool is executed and the actual model

checking algorithm is performed. The model checking algorithm will return,

whether the formal specification is valid (holds) on the system or a counterex-

ample exists. Furthermore, it can happen that running the model checking does

not terminate, as the state space of the system, which is examined, is too large

to be handled and the tool runs out of memory.

• In the analysis phase, the results returned from the model checker are analyzed.

When the checked properties pass as valid, it has to be analyzed whether further

properties exist that need to be proven. When a property fails, the returned

counterexample has to be analyzed to identify the cause of the failing property,

which can either be a failure in the system model or the checked property.

In case the system is too large to be handled, the size of the state space has to

be reduced by e.g. abstracting or removing parts of the system not relevant for

proving a property or using compositional verification techniques.

2.2 Verification Using Model Checking 21

2.2.2 Model Checking Basics

In general model checking has been defined on so-called Kripke structures as described

in [CGP00]:

Definition 2.1. Let AP be a set of atomic propositions. A Kripke structure M

over AP is a four-tuple M = ⟨S, I, T, L⟩ where

• S is a finite set of states,

• I ⊆ S is the set of initial states,

• T ⊆ S×S is a transition relation that must be left-total, that is, for every state

s ∈ S there is a state s′ ∈ S such that T (s, s′),

• L : S → 2AP is a function that labels each state with the set of atomic proposi-

tions true in that state.

Definition 2.2. A path in the structure M from a state s is an infinite sequence of

states π = s0s1s2... such that s0 = s and T (si, si+1) for all i ≥ 0. Furthermore, we

denote π(i) = si and with πi = (si, si+1, ...) the suffix of π beginning in si.

To formulate properties (specification of the system), which shall be proven on a

Kripke structure temporal logics like LTL (linear temporal logics), CTL (computation

tree logic) or CTL* can be used. These logics differ in their expressiveness, whereas

CTL* is the most expressive, but the most difficult to use and harder to implement.

LTL and CTL are the subsets of CTL* which are commonly used. Which logic is the

best fit for a problem lead to great debates in the model checking community and is

greatly dependent on the problem [Hol04]. For the upcoming explanations, LTL is

used.

The syntax of LTL is defined on Boolean variables and uses the standard operators of

Boolean algebra (∧ , ∨, ¬) . In addition, temporal operators have been added such as

X (”next time”), F (”eventually”), G (”globally”), U (”until”) and R (”release”). The

semantics of LTL are defined over paths of a Kripke structure. In Figure 2.4 simple

examples for the use of temporal operators of LTL are given.

The formal definition of the LTL semantics is as follows [BCC+03].

Definition 2.3. Let M be a Kripke structure, π a path in M and f be an LTL

formula. Then π ⊨ f (f is valid along π) is defined as follows.

• π ⊨ p iff p ∈ L(π(0))

• π ⊨ ¬f iff π ⊭ f

• π ⊨ p ∧ f iff π ⊨ p and π ⊨ f

22 2 Related Work and Fundamentals

arbitrary

p

q

Xp

Fp

Gp

pUq

Figure 2.4: Visualization of the LTL operators and their semantics.

• π ⊨ p ∨ f iff π ⊨ p or π ⊨ f

• π ⊨ Xf iff π1 ⊨ f

• π ⊨ Gf iff πi ⊨ f for all i ≥ 0

• π ⊨ Ff iff πi ⊨ f for some i ≥ 0

• π ⊨ fUg iff πi ⊨ g for some i ≥ 0 and πj ⊨ f for all 0 ≤ j < i

• π ⊨ fRg iff πi ⊨ g if for all j < i, πj ⊭ f

The properties which are used for system specification can be differentiated by the

kind of specification that they convey. They are often differentiated into:

• reachability properties - a certain state of the system can be reached,

• safety properties - something bad never occurs,

• liveness properties - something good will occur,

• fairness properties - something good will occur infinitely often.

In this work, the software model checking tool CBMC is used, which supports the

verification of safety properties of the kind Gf , where f does not contain further

temporal operators. Further details on LTL and examples for the different types of

properties can be found in [BMB+01].

The Model Checking problem for LTL formulas can then be defined as:

Definition 2.4. A temporal formula f holds on a Kripke structure M , M ⊨ f , iff for

all paths π starting in I of M holds π ⊨ f .

Example 2.1. As an example for the basic formalization used in model checking,

Figure 2.5 shows the Kripke structure for a modulo 4 counter. Starting from an

initial value of 0, the system counts repeatedly from 0 to 3. The Boolean variables x

and y represent the binary value of the counter in the system. The Kripke structure

MMod4Counter using the atomic propositions AP = {x, y} corresponding to this system

2.2 Verification Using Model Checking 23

¬x¬y xy

¬xy x¬y

s0

s1 s2

s3

Figure 2.5: Kripke structure for a modulo 4 counter.

can be formulated as:

MMod4Counter = ⟨S, I, T, L⟩ with:
S = {s0, s1, s2, s3}
I = {s0}
T = {(s0, s1), (s1, s2), (s2, s3), (s3, s0)}
L(s0) = {∅}, L(s1) = {y}, L(s2) = {x}, L(s3) = {xy}

A safety property for this system would be G(¬x∨¬y), which checks that either x or

y are always false. A model checking algorithm tries to find, in an efficient manner,

whether a path exists for which the property is violated. In this case, it is checked,

whether a path through the system exists where x and y can become true.

The classical approach to solving the LTL model checking problem [VW86], is based on

the observation that both a Kripke structure M and formula f can be represented by a

corresponding Büchi automaton A (denoted as AM and Af). The set of infinite words

accepted by a Büchi automaton is denoted as L(A). Model checking then corresponds

to computing that L(AM)

L(Af) is empty i.e. that all words accepted by AM are

also accepted by Af .

One of the biggest problems when applying model checking in practice is the so-called

state space explosion problem, as in model checking the state space of a system is

examined. In Example 2.1 the number of states was 4, however the state space of a

32-bit variable is 232 states, which need to be checked.

Therefore, different algorithms have been implemented for tackling the state explo-

sion problem. One of the most important achievements was the introduction of sym-

bolic model checking [BCM+90] implemented in the Symbolic Model Verifier (SMV)

[SMV17] tool. Symbolic model checking does not store the explicit state graph. Rather

24 2 Related Work and Fundamentals

binary decision diagrams (BDDs) are used as underlying data structure allowing sig-

nificantly larger systems to be checked.

A further improvement based on symbolic model checking is bounded model checking

(BMC), which represents states symbolically but does not use BDDs. The model

checker CBMC [CKL04, CBM17], which is used in this thesis, is based on the BMC

principle.

2.2.3 Bounded Model Checking

BMC [BCCZ99, BCC+03] tackles the state space explosion problem by transforming

the model checking problem into a Boolean satisfiability (SAT) problem. SAT solvers

[BHvM09] are used in different domains and although being an NP-complete problem,

very large instances can be practically solved. A further change is that BMC only

searches the state space up to a certain bound k from the initial states of a system.

When applying BMC this bound k is increased either till

• the property is violated (leading to a shortest path violating the property),

• the problem has become so large that it cannot be handled,

• a completeness threshold has been reached, meaning that the whole state space

of the system has been searched.

The calculation of a completeness threshold is a hard problem and often practically

not feasible. Further details can be found in [BCC+03]. As a completeness threshold

can often not be reached, BMC is mostly used for bug hunting i.e. the absence of

errors for a certain bound can only be shown. However, as the bound k is increased

step by step the size of the verification problem is also increased gradually, and as a

consequence generated counterexample traces are minimal. Furthermore, the bound k

gives a good intuition how deep the system is searched. In digital circuits, the bound

can be seen as the number of clock cycles that a system runs from a reset state. When

verifying software it can be seen as the number of program statements the program

runs or how many loops are executed (see Section 2.2.4).

In the following, a sketch of the BMC algorithm and its encoding into a SAT problem

is shown. An LTL formula is said to be valid, if it holds on all paths of a Kripke

structure. Therefore, for showing that a formula is not valid, it needs to be proven

that there exists at least one path from an initial state which violates it. Although

LTL formulas are defined over infinite paths, a bounded path can be used to represent

infinite behavior, when a back loop exists. Therefore the notion of a so-called (k, l)-

loop is introduced, which is also shown in Figure 2.13. Figure 2.6(a) shows a path

without a loop, whereas in Figure 2.6(b) a path is shown that contains such a loop.

2.2 Verification Using Model Checking 25

si sk

(a) without loop

sl si sk

(b) (k, l)-loop

Figure 2.6: Bounded paths without and with loop [BCC+03].

Definition 2.5. For l < k we call a path π a (k, l)-loop if T (π(k), π(l)) and π =

u · vω (vw denotes an infinite repetition of v) with u = (π(0), ..., π(l − 1)) and v =

(π(l), ..., π(k)). We call π a k-loop if there exists k ≥ l ≥ 0 for which π is a (k, l)-loop.

Whether an LTL formula holds on a bounded path depends whether this path π

contains a k-loop. When π is a k-loop (k ≥ 0) an LTL formula f is valid along a

bounded path iff π ⊨ f , i.e. the semantics corresponds to those defined in Definition

2.5. However, when the path does not contain a k-loop a special bounded semantics

is needed. In this semantics for a bounded path without a loop, a formula Gf is

always false, as it is not possible to make a prediction for the infinite behavior. The

detailed bounded semantics for paths with a loop and without a loop can be found in

[BCCZ99, BCC+03].

Based on the bounded semantics of LTL and the unwinding of a Kripke Structure,

BMC can be formulated as a SAT problem by the following equations. [M]k is used

to unwind the Kripke structure to a certain depth k:

[M]k = s0 ∧
k−1
i=0

T (si, si+1) with s0 ∈ I (2.1)

To translate an LTL formula it has to be checked whether a back loop exists on a

path, therefore, Lk is used;

Lk = ∨k
l=0 lLk with lLk = T (sk, sl) (2.2)

Using this loop condition an LTL formula f can be mapped into a propositional

formula. The translation [f]ik thereby represents the translation of f for paths without

a loop and l [f]
i
k for those with a loop. The detailed recursive definition is given in

[BCCZ99, BCC+03]. Using these translations the overall BMC SAT problem is defined

as follows:

SAT? [M, f]k = [M]k ∧

¬Lk ∧ [f]0k

∨

k
l=0

lLk ∧ l [f]

0
k

(2.3)

26 2 Related Work and Fundamentals

f f f f f ¬f

s0 s1 s2 si sk-1 sk... ...
Figure 2.7: BMC principle for formulas of safety properties of the kind Gf .

When a satisfying assignment for this formula is found, this assignment represents a

witness for a path and is, therefore, a counterexample.

When verifying safety properties of the kind Gf as described in Section 2.2.2, BMC

can be seen a searching a path to a state, which does not satisfy f (a path F¬f is

searched), as shown in Figure 2.7. In this case Formula 2.3 can be simplified to:

SAT? s0 ∧
k−1
i=0

T (si, si+1) ∧
k

i=0

¬f(si) with s0 ∈ I (2.4)

As just the existence of a bad state reachable from the initial state is searched, no

special condition is needed to check for the existence of loops within the system.

Example 2.2. Based on the modulo 4 counter introduced in Example 2.1 it can

now be demonstrated, how a SAT formula is built. The property G¬(x ∧ y) shall

be checked on the modulo counter (meaning that counter can never reach the value

3, binary ”11”). The following equations describe the initial state and the transition

relation symbolically:

s0 ∈ I : (¬x0 ∧ ¬y0)
T (si, si+1) : ((xi+1 = (xi ⊕ yi)) ∧ (yi+1 = ¬yi))

As a safety property is checked, it needs to be checked that a state can be reached

that violates the property:

f : ¬(x ∧ y)

and ¬f encoded as:

¬f(si) : (xi ∧ yi)

Using Formula 2.4 the SAT problem can be built. The bound k is incremented till

2.2 Verification Using Model Checking 27

a counterexample is found or the search depth is assumed big enough. For k = 3 a

satisfying assignment can be found for this example, which correspond to the following

SAT formula:

s0 ∈ I : (¬x0 ∧ ¬y0)∧
T (s0, s1) : ((x1 = (x0 ⊕ y0)) ∧ (y1 = ¬y0))∧
T (s1, s2) : ((x2 = (x1 ⊕ y1)) ∧ (y2 = ¬y1))∧
T (s2, s3) : ((x3 = (x2 ⊕ y2)) ∧ (y3 = ¬y2))∧
¬f(s0) : (x0 ∧ y0)∨
¬f(s1) : (x1 ∧ y1)∨
¬f(s2) : (x2 ∧ y2)∨
¬f(s3) : (x3 ∧ y3)

When passing this formula to a SAT solver, the following satisfying assignment is

calculated for the variables xi, yi:

x0 = False, y0 = False

x1 = False, y1 = True

x2 = True, y2 = False

x3 = True, y3 = True

This assignment corresponds to a path from the initial state s0 via s1 and s2 to the

property violating state s3.

2.2.4 Software Model Checking Using Bounded Model

Checking and the CBMC Tool

Bounded Model Checking is most successfully applied for model checking for digi-

tal synchronous circuits, however, it has also shown to be useful for the verification

of software. One of the first applications was to check the equivalence of hardware

descriptions in the hardware description language Verilog compared with a software

specification written in C [CK03]. Out of this approach for translating C programs

into a SAT formula, the model checker CBMC [CKL04, CBM17] was developed, com-

paring Verilog designs with C implementations is still possible using the extension

HW-CBMC.

28 2 Related Work and Fundamentals

Modeling and Specification Using CBMC

The CBMC model checker has since its first release been steadily been developed. The

tool is available as open source and available for Linux, Windows, MacOS platforms

It can be used as a command line replacement for typical compilers such as GCC

[GCC17]. CBMC supports thereby the complete ISO/IEC 9899:1999 C language

standard, including bit-vector arithmetic and support for floating point computations.

As CBMC is a software model checking tool, the input to the tool is the source

code of an application, written in C. The application that shall be checked has to

be completely available as source code, with no pre-compiled libraries being allowed.

However, CBMC supports parts of the C standard library, for which an implementation

is provided. An important part of software model checking is to model the environment

of the application such as user inputs or feedback from the hardware the application is

running on. Therefore, CBMC supports the construct of non-deterministic variables:

int x = nondet_int();

The variable x is assigned an arbitrary value from the range of integer variables. To

restrict the input to a subset of values an assume statement can be used:

__CPROVER_assume(x>=0 && x<=10);

In this case, the variable x is restricted to the interval 0..10.

To describe the specification of a program assert statements are used, which are a

kind of safety properties, stating that the described Boolean condition must hold for

all possible executions of the program. For example

assert(x != 0);

checks that x never takes the value 0, at the point the assert statement is executed.

In the following, the safety properties supported by CBMC shall be called assertions.

In addition to user-defined assertions, CBMC is able to add assertions automatically by

static analysis of the code. These assertions include checks for common programming

errors in C such as violation of array bounds, dereferencing of invalid pointers, division

by zero, and checks for arithmetic overflows. These automatically generated assertions

can be activated as an option for verification when running CBMC.

Translation into a SAT Formula

This section sketches how the BMC principle is applied for software, based on the

steps performed by the model checker CBMC for C programs. An overview about

2.2 Verification Using Model Checking 29

while(cond)

BODY;

if(cond) {

BODY;

while(cond)

BODY;

}

if(cond) {

BODY;

if(cond) {

BODY;

assert(!cond);

}

Figure 2.8: Loop unwinding as done for BMC and adding of unwinding assertions.

the application of BMC and SAT for software verification can be found in [BHvM09].

The translation and encodings performed by CBMC are described in more detail in

[KCY03]. CBMC applies the following steps to convert a C program into a BMC

problem:

• The control flow of the program is simplified and side effects are removed.

• Loops within the program are unwound to a certain depth similar to BMC.

• Conversion of the resulting program into a SAT formula.

• SAT solving and converting the solution into a counterexample.

Control flow simplification Before the program is encoded into a sat formula,

some simplifications on the control flow are performed. First, the program is brought

into a standard format, whereby side effects are removed by semantically equivalent

constructs. For example k=j++; is transformed into k=j; j=j+1;. Control flow state-

ments such as continue, break, return, as well as switch statements, are transformed

into a form that only uses if and goto statements. Loop statements such as for and

do while are replaced by while loops.

Loop unwinding To perform BMC, loops inside a program are unwound to a certain

depth. The principle applied, is shown in Figure 2.8. The while loop is replaced by

copying the body of the loop and guarding it with an if statement. This process is

performed a user definable number of times (called unwinding depth) for each loop

in the program. This depth is similar the setting of the bound k used in BMC. In

general, it is not possible to automatically set an unwinding depth and therefore has

to be done by the user. However, by adding so-called unwinding assertions (assert

statement shown on the right-hand side of Figure 2.8), it is possible to check whether

enough unwinding of the program has been done. These assertions are automatically

added by CBMC for each unwound loop in the program. When a program passes

verification and no unwinding assertion is violated it can be assumed fully verified.

Otherwise, the unwinding depth for the violating assertion is incremented till it passes

30 2 Related Work and Fundamentals

x1=x0+y0;

if (x1!=1)

x2=2;

else

x3=x1+1;

x4=(x1!=1)?x2:x3;

assert(x4<=3);

x=x+y;

if (x!=1)

x=2;

else

x++;

assert(x<=3);

(a) (b) (c)

Figure 2.9: Example of translating a simplified program into a SAT formula [CKL04].

verification. The so determined unwinding depth can also be seen as possible worst

case execution time of the program to be run.

The described approach, however, is only possible for applications, that shall termi-

nate. Embedded system software is usually written in such a way that it shall not

terminate i.e. it contains a while (1) loop as part of the program. In this case, BMC

can be used for bug hunting only.

Conversion to a SAT formula The simplified and loop free program code can

then be encoded straight forward into a SAT formula. This process is shown exem-

plary in Figure 2.9 The original program code (a) is first transformed into a static

single assignment form (b). In this form for each assignment towards a variable a

new variable of the same type is created (denoted by an index for each assignment),

which is from now on used for reading. Special care has to be taken when the code

branches at an if statement. A case select has to be added which chooses the valid

variables depending on the condition of the original statement (x4 in the example).

The static single assignment form is transformed by conjugating each statement ((c)

in Figure 2.9), whereby assert statements are negated as in BMC. The encodings

used for other statements, especially pointers, arrays, memory allocation and jumps

can be found in the literature.

Before the resulting formula can be passed to the SAT solver all mathematical oper-

ators part of the formula have to be resolved. This is done by so-called bit-blasting.

Therefore operators are replaced by Boolean bit-level arithmetic as used in digital

circuits and synthesis tools, where the operations are mapped to basic gates [Jor04].

These mappings depend on the hardware architecture used, especially regarding the

width of variables, floating point operations, and pointers. These widths can be ad-

justed in the CBMC tool and tuned so that they represent the target hardware the

application runs on. In addition to SAT solvers, satisfiability modulo theory (SMT)

solvers can be used, which allow direct reasoning over bit-vector arithmetics [BHvM09].

2.2 Verification Using Model Checking 31

SAT solving and counterexample generation The resulting formula is passed

to a SAT engine, whereby the default SAT solver of CBMC is the MiniSAT solver

[Nik17], which is also used for this work. Other solvers, (e.g. SMT solvers) are also

supported by CBMC, a comparison of these solvers is however out of scope for this

work.

The SAT solver generates a satisfying assignment when a counterexample exists, which

assigns a value for each variable of the program in static single assignment form. This

assignment is converted into a counterexample trace (see Example 2.3). For each

statement in the program, it is shown, which value gets assigned to each variable

during each statement in the program.

Example 2.3. This example, shows how the modulo 4 counterexample (Example

2.2) can be modeled using CBMC. Figure 2.10(a) shows the corresponding source

code. The counter is realized using the integer variable count, which is incremented

in a while loop. The property to be checked in the example is shown in line 5 and is

similar to the property used in Example 2.2. It is checked that the counter variable

never takes the value 3 (binary value ”11”). When verifying this property the unwind

bound parameter for CBMC has to be set to at least the value 3 for the while loop,

as otherwise the automatically generated unwinding assertions are triggered. For this

unwinding parameter a counterexample exists, which is shown in Figure 2.10(b). The

counterexample starts in the initial state3 of the program (line 3, counter = 0) and

shows all the assignments in the program till the property is violated (line 15). Using

the counterexample it is possible to see all states the program runs through, leading

to the violation of the property.

2.2.5 Model Checking and Partial Order Reduction

The biggest problem when verifying systems using model checking is the size of the

state space. Especially, the size grows when examining parallel programs which share

variables for communication. One technique to reduce the state space in such systems

is the partial order reduction (POR), also known as model checking using represen-

tatives. This section gives a short introduction to the POR principles following the

description as given by Clarke et al. in [CGP00], as well as by Baier and Katoen in

[BK08].

“A common model for representing concurrent software is the interleaving

model, in which all of the events in a single execution are arranged in a

linear order called an interleaving sequence. Concurrently executed events

3Some internal CBMC states, initializing the program thread, have been omitted from the trace.

32 2 Related Work and Fundamentals

1 int main(void) {
2 unsigned int count=0;
3 while (1) {
4 count = (count+1)%4;
5 assert(count != 3);
6 }
7 }

(a) C model count.c of the counter and specification

1 State 15 file count.c line 2 function main thread 0
2 −−
3 count=0u (00000000000000000000000000000000)
4
5 State 17 file count.c line 4 function main thread 0
6 −−
7 count=1u (00000000000000000000000000000001)
8
9 State 20 file count.c line 4 function main thread 0

10 −−
11 count=2u (00000000000000000000000000000010)
12
13 State 23 file count.c line 4 function main thread 0
14 −−
15 count=3u (00000000000000000000000000000011)
16
17 Violated property:
18 file count.c line 5 function main
19 assertion
20 count != (unsigned int)3
21
22 VERIFICATION FAILED

(b) Excerpt from counterexample trace

Figure 2.10: Modulo 4 counterexample modeled for CBMC.

2.2 Verification Using Model Checking 33

β α

β α

s

u

v

t

Figure 2.11: Interleaving diamond for α and β [BK08, CGP00].

appear arbitrarily ordered with respect to one another, (...) all possible

interleavings of such events are normally considered. This can result in an

extremely large state space.” [CGP00]

The basic idea of POR can be thus be given as:

“When a specification cannot distinguish between two interleaving sequences

that differ only by the order in which concurrently executed events are

taken, it is sufficient to analyze only one of them.” [CGP00]

A general example of the idea of reducing interleavings is given in [BK08] in the

following way:

Example 2.4. Let P1 and P2 be programs that are executed in parallel. P1 contains

the assignment x← x+ 1 and P2 contains the assignment y ← y − 3, whereby x and

y are local variables of the corresponding programs. Furthermore α and β denote the

assignment in P1 and P2. The reachable states of the system constructed using the

interleaving model are shown in Figure 2.11. It can be seen that state v can be reached

independently of the order in which α and β are executed. Thus, when only state v is

relevant to a property for model checking, only one ordering must be considered.

A more formal description of the general concepts of POR follows, based on the defi-

nitions in [CGP00].

Definition 2.6. A state transition system is a quadruple ⟨S, Ts, I, L⟩ where the

set of states S, the set of initial states I, and the labeling function L are as defined as

for a Kripke structure (see Definition 2.1) and Ts is a set of transitions such that for

each α ∈ Ts, α ⊆ S × S.

A Kripke structure M = ⟨S, I, T, L⟩ may be obtained by defining T so that T (s, s′)

holds when there exists a transition α ∈ Ts such that α(s, s′) .

34 2 Related Work and Fundamentals

Definition 2.7. For a transition α ∈ Ts we say that α is enabled in a state s if there

is a state s′ such that α(s, s′) holds. The set of transitions s is enabled(s).

In the example in Figure 2.11 enabled(s) = {α, β}. Furthermore, only deterministic

transitions will be considered. A transition is deterministic, when for a state s there

exists at most one state s′ such that α(s, s′).

The goal of POR is now to calculate a set ample(s) ⊆ enabled(s), which is used for

model checking instead of enabled(s), while preserving the correctness of the model

checking algorithm. Therefore, the following goals are formulated both in [CGP00]

and [BK08] to calculate ample(s):

• The set ample(s) must have sufficient behavior so that model checking is still

correct, with respect to the checked property.

• The set ample(s) should be considerably smaller than enabled(s).

• The overhead for calculating ample(s) should be small so that a calculation

makes sense, compared to checking enabled(s).

In other words, the goal of POR is to construct a reduced Kripke structure for in-

terleaved parallel executions, which fulfills the same properties as the original one.

Before it will be described how transitions for a set ample(s) can be selected, some

further definitions are given. An independence relation for transtitions can be defined

as:

Definition 2.8. An independence relation In ⊆ Ts×Ts is a symmetric, antireflexive

relation, satisfying the following two conditions for each state s ∈ S and for each

(α, β) ∈ In

• Enabledness : If α, β ∈ enabled(s) then α ∈ enabled(β(s)).

• Commutativity : α, β ∈ enabled(s) then α(β(s)) = β(α(s)).

Definition 2.9. The dependency relation D is the complement of In: D = (Ts ×
Ts) \ In.

Based on this definition it can be seen that the execution of the transitions in Fig-

ure 2.11 is independent.

Within Kripke structures each state is labeled with a set of atomic propositions AP

(see Definition 2.1).

Definition 2.10. A transition is invisible when its execution from any state does

not change the value of the propositional variables in AP . A transition is visible when

it is not invisible.

2.2 Verification Using Model Checking 35

p,q

p,q

p,q

p,¬q p,¬q p,¬q

p,¬q p,¬q

¬p,¬q

¬p,¬q

p,¬q

p,¬q

Figure 2.12: Two stuttering equivalent paths [CGP00].

Related to the visibility of transitions is the concept of stuttering equivalent paths.

Definition 2.11. Two paths σ and ρ are stuttering equivalent, denoted by σ ∼st ρ,

when each path can be partitioned into blocks such that states in the k-th block of σ

are labeled the same way as in the k-th block ρ.

An example of this is shown in the Figure 2.12. The two paths are stuttering equiva-

lent, as the paths can be partitioned into blocks (although of different length), so that

the order of the labels of the states in the blocks is the same. It can be easily seen

that next operator X of the temporal logic LTL (see Section 2.2.2) must be removed

from specifications so that two stuttering equivalent paths cannot be distinguished

anymore. A property of this kind is called invariant under stuttering. Because of this,

a subset of LTL is defined in the following way:

Definition 2.12. The subset of the logic LTL without the next operator X is denoted

by LTL¬X.

It has to be noted, that the safety properties mostly used in software model checking

(and as supported by the CBMC tool) are of the kind Gf , i.e. they are in LTL¬X

and thus invariant under stuttering.

Definition 2.13. Two structures M and M ′ are stuttering equivalent if and only

if:

• M and M ′ have the same set of initial states.

• For each path σ of M that starts from an initial state s of M there exists a path

σ′ of M ′ from the same initial state s so that σ ∼st σ
′.

• For each path σ′ of M ′ that starts from an initial state s of M ′ there exists a

path σ of M from the same initial state s so that σ′ ∼st σ.

The following sentence expresses that an LTL¬X property cannot distinguish two stut-

tering equivalent structures: Let M and M ′ be two stuttering equivalent structures.

Then for every LTL¬X property f and every initial state s ∈ I,M, s ⊨ f if and only

if M ′, s ⊨ f .

36 2 Related Work and Fundamentals

As an example for stuttering equivalence when in Figure 2.11 transition α is invisible,

then L(s) = L(u) and L(t) = L(v) and thus stv ∼st suv.

Under the assumption of a specification that is expressed as an LTL¬X property, a set

ample(s) can now be constructed, which preserves the correctness of the formula and

is then used for model checking. For constructing a set as noted in [BK08] there exist

static and dynamic approaches. The static approach is based on calculating ample(s)

statically based on the original structure and reducing it (This approach is applied in

this thesis as described in Section 4.4). In contrast, the dynamic approach reduces the

transitions on the fly during the execution of a model checking algorithm. Therefore,

instead of giving a concrete algorithm tailored to the specific model checking approach

for selecting amples(s) ⊆ enabled(s) when checking LTL¬X properties, the following

four conditions have to be fulfilled. Thereby, these conditions use the above given

definitions for dependence and visibility.

• C0: ample(s) = ∅ iff enabled(s) = ∅ (nonemptiness condition)

• C1: Along every path of the full-state graph starting in s, a transition dependent

on a transition α from ample(s) must be preceded by α (dependency condition).

• C2: If ample(s) ̸= enabled(s) then every α ∈ ample(s) is invisible (invisibility

condition).

• C3: A cycle is not allowed if it contains a state in which some transition α is

enabled, but is never included in ample(s) for any state s on the cycle (cycle

condition).

Condition C0 states that a state which has a successor in the original structure must

also have a successor in the reduced structure. The most important condition is C1,

which makes sure that all dependent transitions remain in ample(s) and are executed in

the correct order. The conditions C2 and C3 make sure that the generated structures

are stuttering equivalent. Especially C2 states that ample(s) only contains transitions,

which are invisible and therefore only lead to states with the same labeling.

To illustrate the conditions [CGP00] presents several examples. For C1 and C2 the

following examples are given:

Example 2.5. Consider again the interleaving diamond in Figure 2.11 and selecting

α as ample(s) and therefore removing state t from the system. Because of condition

C2, α must be invisible and therefore the path stv ∼st suv.

Example 2.6. Consider again the interleaving diamond in Figure 2.11 and assume

there is a transition γ enabled from t as shown in Figure 2.13(a). To select again

α as ample(s) the following has to hold so that it is possible to remove the state t

to construct the reduced structure. First, γ must be independent of α otherwise C1

2.2 Verification Using Model Checking 37

β α

β α

s

u

v

t

t
γ

(a)

β α

β α

s

u

v

t

t
γ

v
γ

(b)

Figure 2.13: Extended interleaving diamond with additional transition, illustrating
Example 2.6.

would be violated, which states that a transition dependent on a must be executed

before α. Second, because γ is independent of α, it must be enabled in v as shown

in Figure 2.13(b) and therefore leading to a state v′. Third, due to condition C2, α

must be invisible and therefore stt′ ∼st suvv
′. Therefore, an LTL¬X property cannot

distinguish the two state sequences.

Further explanations and justifications for the conditions and the consequences on

model checking performance can be both found in [CGP00] and [BK08].

38 2 Related Work and Fundamentals

3
Chapter 3

The Operating System

Contiki

The goal of this thesis is to verify applications written for the embedded operating sys-

tem Contiki . Therefore, in this chapter, the Contiki operating system for embedded

systems is introduced. A general introduction into Contiki is given in Section 3.1. Af-

terwards, Section 3.2 shows a typical example of a Contiki application, and Section 3.3

describes the Contiki operating system kernel semantics. Furthermore, Contiki intro-

duces its own programming model for applications, which is described in Section 3.4.

An important aspect of Contiki is its portability to different hardware platforms. The

access to hardware is summarized in Section 3.5.

3.1 Introduction into Contiki

Contiki [Con17a] is an open source operating system for embedded systems, e.g.,

nodes of wireless sensor networks. Contiki makes it possible to connect very low

power embedded devices as used for Internet of Things (IoT) applications.

The development of the operating system started in 2002 under the lead of Adam

Dunkels at the Swedish Institute of Computer Science (SICS) with the goal of devel-

oping an operating system for low power embedded devices. Since then it has been

steadily developed and has evolved. It was originally based on uIP, a full TCP/IP

stack, which can run on 8-bit microcontrollers and was also created by Dunkels. In

contrast to more widely known operating systems like Linux or Windows, it can run

on devices with only a few kilobytes of RAM. Due to this low power consumption,

Contiki was also ported to devices such as the Apple IIe and Commodore 64 [Wir14].

To reach the goal of low power consumption and a low memory footprint, Contiki

40 3 The Operating System Contiki

Figure 3.1: Tmote sky wireless sensor node as used for Contiki [TMo07].

has an event-driven kernel. Furthermore, Contiki has the goal to be easily portable

to different hardware platforms by introducing APIs for standard embedded system

devices. As Contiki is written completely in C it can be easily compiled for different

processor platforms. To ease the development of applications the protothread pro-

gramming model (see Section 3.2 and 3.4) was introduced in 2005, which allows it to

easily write portable applications consisting of several threads.

Hardware platforms for Contiki based embedded systems consist of microcontrollers

such as the TI MSP430 [MSP17] or Atmel AVR [AVR17] (further supported proces-

sors are listed at [Con17b]) and a number of application-specific sensors, which are

connected using protocols such as SPI [SPI16] or I2C [Sem14]. Furthermore, Contiki

supports standard sensor nodes such as the tmote sky platform depicted in Figure 3.1.

3.2 Example Application LED Blink

Contiki applications are written in C using the protothread programming model that

consists of a set of C macros that allow the programming of Contiki applications in

a thread (or process) like fashion, making it easier to write event-driven programs. A

detailed description of the underlying scheduling mechanisms and of the programming

model is given in Section 3.3 and Section 3.4.

An example of an application written for the Contiki operating system is shown in

Figure 3.2. After a certain period of time, this application turns on and off LEDs

connected to the embedded system. The shown application is part of the official

Contiki release as an example for different hardware platforms that support LEDs

3.2 Example Application LED Blink 41

1 PROCESS(blink process, ”Blink”);
2 AUTOSTART PROCESSES(&blink process);
3 PROCESS THREAD(blink process, ev, data)
4 {
5 PROCESS EXITHANDLER(goto exit;)
6 PROCESS BEGIN();
7 while(1) {
8 static struct etimer et;
9 etimer set(&et, CLOCK SECOND);

10 PROCESS WAIT EVENT UNTIL(etimer expired(&et));
11 leds on(LEDS ALL);
12 etimer set(&et, CLOCK SECOND);
13 PROCESS WAIT EVENT UNTIL(etimer expired(&et));
14 leds off(LEDS ALL);
15 }
16 exit:
17 leds off(LEDS ALL);
18 PROCESS END();
19 }

Figure 3.2: Contiki example LED Blink application using protothreads .

[Con17a]. It demonstrates how applications are programmed, the event timer system

of Contiki works, and how access to peripheral devices of the system platform is

possible via Contiki provided APIs.

A detailed description of the example follows4. In line 1 a name and a string (used when

printing information) are assigned to the application process (blink_process and

"Blink"). In line 2 the application is registered to be started automatically at system

startup of Contiki using the macro AUTOSTART_PROCESSES. The actual definition of

the thread containing the code of the application starts in line 3. The parameters are

the name of the process the thread belongs to (blink_process), as well as the event

(ev) and data item used (data) when a thread is invoked by the Contiki kernel using

an event (see Section 3.3).

As part of the process in line 5, an exit handler is defined, which is called when the

process is invoked using the PROCESS_EVENT_EXIT event, signaling that the process

should exit. This call could be initiated by the Contiki kernel or another application.

In this case, the program jumps to line 16 and turns off the LEDs of the system when

the LED Blink application ends.

One of the features of protothreads is that they allow suspending and resuming of

processes at the location where they have given up control to the Contiki kernel. The

macros PROCESS_BEGIN and PROCESS_END (lines 6 and 18) are used to show such areas.

4C macros are written in uppercase letters.

42 3 The Operating System Contiki

Code outside of these areas is executed every time a process is invoked, regardless where

it was suspended. This is also the reason why the exit handler is placed outside of the

macros defining beginning and end of a process.

The turning on and turning off of the LEDs is done in an unbounded while loop defined

in lines 7 to 15. Inside the loop in line 8, an event timer et is defined. It is defined

as static, as Contiki doesn’t save the stack during suspending a process. Therefore all

variables which shall be used after resuming a process must be declared using the C

static keyword.

After each second the LED shall be turned on and off. Therefore, the event timer et is

registered with the event timer system of Contiki (line 9). The macro CLOCK_SECOND

is platform specific and tells the event timer system when a second has passed, e.g. in

ticks of a hardware timer register. The macro PROCESS_WAIT_EVENT_UNTIL (line 10)

is used to suspend the process until a condition has been fulfilled. During that time

other processes in the system can run. When the application process gets invoked by

an event it is checked whether the condition, that the event time has expired - meaning

that one second has passed - has been fulfilled. In line 11 the LED gets turned on,

using the Contiki provided API leds_on and the macro LEDS_ALL, which has to be

implemented for each hardware platform. This process is repeated in lines 12-14 to

turn the LEDs off.

Although the application is running in an unbounded loop, it is not blocking the

system, as it always gives control to the Contiki kernel. Furthermore, the example

highlights the portability of Contiki applications as it only uses APIs provided by the

operating system, such as the event timer system. The application developer does not

need to take care how waiting of one second is realized on a specific hardware platform.

3.3 Contiki Kernel Scheduling Mechanism

The Contiki system is composed of events and processes, where events are used to

invoke processes of the system. An event in Contiki consists of an event type, a data

part, and a target process to which an event is sent. The events are stored in an

event queue. Processes in Contiki are applications or system tasks, whereby only one

process is actively running on the processor of the system at a time. Contiki uses

non-preemptive multitasking, meaning that processes have to give up control them

self (process yields) to allow other processes to run5. The main task of the Contiki

scheduler (or main loop) is to take an event from the event queue and invoke the

related process.

5An optional library which supports preemptive multitasking is available for Contiki. Systems and
application using this library are not discussed in this work.

3.3 Contiki Kernel Scheduling Mechanism 43

To describe the event-driven kernel and the scheduler in the following, a more formal

notation is introduced.

Definition 3.1. An event is a tuple E = ⟨etype, eprocess, edata⟩ where

• etype is a string defining the type of the event.

• eprocess is a pointer to the target process structure P to be called. When all

processes shall be called the value points to null (ProcessBroadcast).

• edata is a pointer to a memory location containing arbitrary data.

Contiki applications are allowed to create own event types by giving them a custom

name. A summary of all event types that are predefined in the kernel can be found in

Appendix A.2, examples are ProcessInit and ProcessEventPoll.

In Contiki events can be used in two different ways:

• Synchronous events suspend the current running process and call immediately

the target process. Afterwards the calling process resumes execution.

• Asynchronous events, however, do not suspend the execution of the running

process. When an event is posted asynchronously it gets stored in an event

queue for execution in the future.

Definition 3.2. Let EMaxEvents be a queue of events with EMaxEvents = [e0, .., en] with

n < MaxEvents and n ∈ N and e being an arbitrary event. Such a queue is called

event queue .

By controlling MaxEvents the memory allocation for the maximum number of events

can be controlled. This allows it to adapt the queue size for different application

configurations and hardware platforms.

To handle the execution of processes several control structures are used by the kernel

to store all information related to invoking a process and to store its state when it

yields.

Definition 3.3. A local continuation pcont is used to store the return point of a

process.

A local continuation is written in Contiki when a process yields and used to invoke a

process6.

Definition 3.4. A Contiki process is a non-preemtable entity of code.

6A description of the implementation of local continuations is shown Section 3.4.

44 3 The Operating System Contiki

Such a Contiki process is invoked using pcont, etype, and edata.

Definition 3.5. A process structure is a tuple P = ⟨pfunc, pcont, ppolled, pstate⟩ with:

• pfunc is a pointer to the function implementing the actual behavior of the Contiki

process.

• pcont is a local continuation storing the return value of a process,

• ppolled ∈ {true, false} is a flag indicating, whether this process needs to be polled,

• pstate ∈ {None,Running ,Called} indicates the state of the process.

Definition 3.6. Let P be an list of process structures currently running on the system.

Such a list is called process list .

From an implementation point of view, each process structure has a pointer to the next

process structure so that the process list is implemented as a linked list. Whenever a

process needs to be used, it is iterated over this list of process structures using a loop.

Variable declarations:
1 P ← ∅; /* List of processes */

2 EMaxEvents ← ∅; /* Queue of events */

3 E ← ∅ ; /* Variable for storing an arbitrary event */

4 PollRequested← false ; /* Flags a poll-request, can be set to true by interrupts */

5 System startup phase...;

6 while (true) do
7 DoPoll();
8 while EMaxEvents.size > 0 do
9 E ← EMaxEvents.dequeue; /* Removes first event from queue */

10 if E.eprocess = ProcessBroadcast then /* Event is sent to all processes */

11 foreach P in P do
12 DoPoll(); /* Do a poll between calling of processes */

13 CallProcess(E.etype,P ,E.edata);

14 else /* Event is sent to specific process */

15 if E.etype = ProcessInit then
16 E.eprocess →→ pstate ← Running ;

17 CallProcess(E.etype,E.eprocess, E.edata);

18 Optional system sleep phase;

Algorithm 3.1: Contiki kernel initialization and main loop.

3.3 Contiki Kernel Scheduling Mechanism 45

DoPoll()
Globals used: PollRequested, P

1 if PollRequested = true then
2 PollRequested← false;
3 foreach P in P do
4 if P.ppolled = true then /* check process for poll-request */

5 P.pstate ← Running ;
6 P.ppolled ← false;
7 CallProcess(ProcessEventPoll, P, null);

Algorithm 3.2: Function DoPoll: Handling of poll-requests.

CallProcess(etype, eprocess, edata)
Input: etype, eprocess, edata
Variable declarations:

1 ProcessReturn← ∅ ; /* Return value of process execution */

2 if eprocess →→ pstate = Running then
3 eprocess →→ pstate ← Called ;
4 ProcessReturn← eprocess →→ pfunc(eprocess →→ pcont, etype, edata);
5 if (etype=ProcessEventExit) ∨ (ProcessReturn = PtEnded) ∨

(ProcessReturn = PtExited) then
6 ExitProcess(eprocess)

7 else
8 eprocess →→ pstate ← Running ;

Algorithm 3.3: Function CallProcess: Invokes a process using an event.

ExitProcess(P)
Input: pointer P to a process structure
Globals used: P

1 P →→ pstate ← None;
2 foreach Q in P do
3 if (∗P) ̸= Q then /* Send exit event to other processes */

4 CallProcess(ProcessEventExited,Q, P);

5 P .remove(*P);

Algorithm 3.4: Function ExitProcess: Exits a process and removes it from
the process list.

46 3 The Operating System Contiki

3.3.1 Description of the Scheduling Algorithm

The detailed scheduling algorithm of Contiki is shown in the pseudo code in Algo-

rithm 3.1. The functions called in the main algorithm are shown in Algorithms 3.2

- 3.4. First an overview of the main scheduling loop is given, afterwards, the used

functions are explained.

A non-formal description of the basic scheduling principles of Contiki can be found

in [DGV04] and [DSVA06]. The presented algorithm in this thesis has been extracted

from the Contiki C source code. Further implementation details of the Contiki kernel

can be found in the Contiki documentation and source code available at [Con17a].

Contiki Kernel Initialization and Main Loop Algorithm 3.1 shows the main

loop of the scheduler and the initialization of the operating system. In lines 1 to 4 the

global variables that are used in the algorithm such as EMaxEvents and P are declared.

The variable E declared in line 3 is used to store the event which is currently being

processed. The variable PollRequested declared in line 4 is used globally to signal

that, for an arbitrary process, a poll has been requested.

Before the actual processing of events in the main loop of the scheduler starts the

system has to be initialized (line 5). In this phase, hardware dependent registers are

set and initialization functions are called. In addition, all processes which shall be

run when the system starts (AUTOSTART_PROCESSES in Figure 3.2) are initialized by

posting a synchronous event (ProcessInit) to these processes.

The main loop of the Contiki operating system is shown in lines 6-18. This loop is

an unbounded loop checking whether new (asynchronous) events or poll-requests are

waiting to be processed. In line 7 it is checked using the function DoPoll, whether a

pending poll-request needs to be handled. A poll is usually requested in an interrupt

handler function, to trigger the activation of a process. By just requesting a poll,

interrupts do not need to post events, avoiding race conditions in the kernel. Polls are

always handled before a new event is processed and therefore have a higher priority

than events.

After the poll has been processed it is checked, whether an event is in the event queue

waiting to be processed (line 8). If it is available, it gets removed and stored in the

temporary variable E (line 9). When the event is of type ProcessBroadcast, it has

to be sent to all processes (line 10). In between the calling of all the processes in the

process list, the DoPoll function is called (line 12). This ensures that processes, which

have been requested to be polled by an interrupt in between, get handled with higher

priority. The actual calling of a process is handled using the CallProcess (line 13)

function, which takes as argument the information provided by an event. In the case

3.3 Contiki Kernel Scheduling Mechanism 47

of a ProcessBroadcast, the target processes are all processes in P .

If the event is being sent to a specific process (else branch, line 14) it is first checked,

whether the event is of type ProcessInit7 (line 15). In this case, the state of the process

called by the event is changed in the process structure to Running . Afterwards the

process gets called using the CallProcess function (line 17).

After events have been processed, a hardware specific low power mode is often enabled

(line 18) when EMaxEvents is empty. This allows it to save power when no events need

to be processed. Such a low-power mode is usually exited, when an interrupt occurs.

Such an interrupt causes the system to continue and often leads to several events which

need to be processed.

Function DoPoll (Algorithm 2) This function handles the poll-requests, which

are usually triggered by interrupt routines. The function works on the global variables

PollRequested and the process list P , it is not called with any function parameters.

At the beginning it is checked whether any poll has been requested at all that needs

to be handled (line 1). When such a request exists, the variable PollRequested is set

to false to signal that polls have been handled (line 2). Afterwards, for each process

in P , it is checked whether this process has requested a poll (line 4). If this is true

then the state of the process is set to Running (line 5) and the flag indicating that a

process needs to be polled is reset (line 6). Then the process which needs to be polled

is called using the special event type ProcessEventPoll (line 7) and without any data

associated.

Function CallProcess (Algorithm 3) This function calls the actual process as-

sociated with a process structure using an event. This function takes as an argument

an event type etype, a pointer to a process structure eprocess, and data sent with an

event edata. A local variable ProcessReturn is declared to store the return value of

the process execution (line 1).

In the function, it is first made sure that only a process is invoked, which is actually

running (line 2). After the state of the process is changed to Called (line 3). The actual

function which contains the code of the process is executed using the arguments needed

to invoke a process. The return value of this process function is stored in the variable

(line 4). Depending on the state of this variable, it is checked in line 5 whether the

process has finished. When this is the case the function ExitProcess is called (line 6).

A process is also always exited when it receives the event ProcessEventExit. When

the process is yielding and has not finished, the state of the process is changed back

7A list of predefined Contiki events can be found in Appendix A.2.1.

48 3 The Operating System Contiki

Event queue E8blink process etimer process Kernel

E(timer, blink process,
data)

E(init, blink process,
data)

1 Starts process with
init event

2 Process waits until timer expires

6 Timer posts wakup event

7 Process yields

8 Starts process
with timer event

t

Interrupt

3 System sleeps 4 Interrupt occured

5 Request poll

Figure 3.3: Contiki process communication in the LED Blink example.

to running (line 8).

Function ExitProcess (Algorithm 4) This function describes how a process struc-

ture is removed from P . It works on P and takes as an argument the process structure

P which controls the process that shall be exited.

At the beginning, the state of the process is set to None (line 1). Afterwards, all

other running processes in the system are informed that process P is about to exit

(lines 2-4). As a parameter, the special event ProcessEventExit is used as well as the

pointer to the process structure P as data part (line 4). This call to other processes

allows them to deallocate memory associated with P . Finally, the process structure

P gets removed from the process list P (line 5).

3.3.2 Scheduling of the LED Blink Example

In Figure 3.3 the process communication for the LED Blink example introduced in

Section 3.2 is shown exemplarily when the application would run on a processor that

uses interrupts to control the event timer system such as the MSP430. It shows how

the involved processes of the example are executed sequentially. An event queue E8
with the size restriction of 8 is used, which is the default size for the hardware platform

the application is executed on. The figure corresponds to lines 1-10 of the LED Blink

application in Figure 3.2.

First, to launch the application process, an init event is used to start the application.

Therefore, the Contiki scheduler starts the blink process using the process initializa-

3.4 Programming Contiki Applications 49

tion event ProcessInit 1 . After initializing the event timer system the blink process

2 yields control to the kernel using the PROCESS_WAIT_EVENT_UNTIL macro. When

no other process is scheduled, the system goes to a sleep mode 3 until a timer in-

terrupt wakes the system up 4 . In the corresponding timer interrupt function the

system time is incremented, and it is checked whether an event timer has expired.

When this is the case, using the poll mechanism, the etimer process is scheduled for

immediate execution 5 . In the etimer process it is checked, which processes have

pending timer requests and wait to be resumed. For each waiting timer request, an

asynchronous event is posted to the event queue to wake it up 6 . Afterwards, the

etimer process yields control back to the kernel 7 , which then posts the timer event

to the blink process 8 . As the timer condition in line 10 of the LED Blink application

is now fulfilled, it will resume execution and turn on the LED in line 11.

3.4 Programming Contiki Applications

An event-driven kernel as used in Contiki or TinyOS has the advantage of a low mem-

ory overhead and fast reaction times, as no stack is saved when an application context

changes. Furthermore, as no preemption is used, processes have to give up control

themselves to not block the system [LMP+05]. Therefore, programming applications

for event-driven operating systems is challenging, as the programmer has to manually

store the state of the application and often use complex state machines. To make pro-

grams easier understandable, Contiki applications are written using the protothread

programming model introduced in [DSVA06]. This programming model allows it to

write event-driven applications in a process-like fashion, without the need to explicitly

store the state of a process when it yields control to the kernel. The introduction

of protothreads leads to a slight overhead compared to a pure event-driven kernel,

however, this overhead is still very low as shown in [DSVA06].

The different PROCESS_* macros introduced exemplarily in Section 3.2 are part of the

protothread programming model and are based on the principle of local continuations

which are used to store the return point of a protothread. A LC_SET macro stores the

return point of a process whereas LC_RESUME is used to restore the point at which a

process was suspended.

The default8 protothread implementation available in Contiki is written completely in

C and is therefore hardware and compiler independent. The implementation is relying

on the preprocessor of the used C compiler to store the line number of the statement

where a process should return to, as a kind of label. A switch-statement is then used

8Different implementations for processors that support the GCC compiler [GCC17], as well as an
assembler version for the 6502 architecture [Mos15], are also available.

50 3 The Operating System Contiki

to return to this label. C allows it to place the case part of switch nearly everywhere

in the code even in separate loops. This programming style has been widely used

[Sim00].

In Figure 3.4 it is shown exemplarily how the protothread macros PROCESS_BEGIN

and PROCESS_WAIT_EVENT_UNTIL used in Figure 3.2 are expanded and implemented.

The PROCESS_* macros are mapped on a subset of protothread macros called PT_*.

On the left-hand side, it is shown that the PROCESS_BEGIN macro defines the switch-

statement that is used to jump to the return point of a process based on the LC_RESUME

macro. On the right-hand side, it can be seen how a return point is set. The LC_SET

macro is extended so that it stores the line number of the return point (55) in the

local continuation of the process. This line number is then used as a label for the case

part of the switch statement. The PROCESS_WAIT_EVENT_UNTIL macro always yields

and only continues when the associated expression (etimer_expired(&et)) is true.

This is checked in the if-statement part of the macro. A more complex example of

using protothreads showing the use of the PT_* macros is the Contiki fader example

in Section 6.4 with the source codes shown in Appendix A.1.4. An overview of the

available process macros in Contiki is given in A.2.

The default implementation of the protothread model leads to some restrictions:

• In [DSVA06] it is warned not to use switch-statements in protothreads , as nested

switch-statements can lead to unintended behavior.

• Only one PROCESS_* macro should be used per line as the label for the case is

based on the line number of the code.

• As the stack is not saved when yielding, static variables have to be used when

storing values that need to be restored after a protothread yields.

3.5 Hardware Access in Contiki

Contiki is designed as a portable operating system for different hardware platforms.

Therefore, access to the hardware for many basic tasks is provided using predefined

APIs, which allow it to write applications without exact knowledge of the target

platform. Two examples of the use of such hardware APIs can be seen in the simple

example application of Figure 3.2. The LED API functions led_on and led_off as

well as the macro LEDS_ALL used in the LED Blink example are provided by the

Contiki system and can be implemented by each hardware platform.

Furthermore, the event timer system used in the example demonstrates the hardware

abstraction enabled by Contiki. The system allows it to suspend a process for a specific

time period, which can be specified for example in seconds. During this waiting time,

3.5 Hardware Access in Contiki 51

PROCESS_BEGIN()
...

PT_BEGIN(process_pt)
...

{ char PT_YIELD_FLAG = 1;
LC_RESUME((process_pt)->lc)
...

{ char PT_YIELD_FLAG = 1;
switch((process_pt)->lc) {
case 0:
...

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et))

PT_YIELD_UNTIL(process_pt,etimer_expired(&et))

do { PT_YIELD_FLAG = 0;
 LC_SET((process_pt)->lc);
 if((PT_YIELD_FLAG == 0) || !(etimer_expired(&et))) {

 return PT_YIELDED; }
} while(0)

do { PT_YIELD_FLAG = 0;
 (process_pt)->lc = 55; case 55:;
 if((PT_YIELD_FLAG == 0) || !(etimer_expired(&et))) {

 return PT_YIELDED; }
} while(0)

Figure 3.4: Implementation of the protothread macros PROCESS_BEGIN and PROCESS_

WAIT_EVENT_UNTIL.

52 3 The Operating System Contiki

contiki_src // Contiki main directory

apps // applications bundled with Contiki

core // operating system core

...

dev // specifies APIs for commonly used devices

lib // library of predefined functions(e.g. CRC)

sys // system files including event and process definitions

...

cpu // CPU-specific code

...

arm

avr

msp430

x86

...

doc // Contiki doxygen documentation

examples // Collection of example programs

platform // platform-specific code

...

avr-raven

cooja

sky

texnode

win32

...

tools // additional software tools for using Contiki

Figure 3.5: Organization of the Contiki source code.

other processes can run. After the time is over the waiting process is reactivated

using an event. The realization of the timing system is completely encapsulated from

the application and doesn’t enforce a hardware implementation. Additionally, APIs

provide access to often used devices in embedded systems. These APIs include generic

devices such as LEDs or sensors and can be implemented for a specific embedded

system platform allowing applications to be portable. In case no appropriate API

exists, Contiki can be easily extended.

To increase the portability and ease the creation of new sensor node boards, the Contiki

source code implementation divides the hardware dependent parts of the operating

system code into CPU-specific and platform-specific code. A general overview of the

structure of the Contiki source code is given in Figure 3.5. The separation between

CPU and platform is made, as many embedded system platforms use the same kind

of CPU but use different kinds of peripheral hardware:

3.5 Hardware Access in Contiki 53

• The CPU-specific code contains all code which is necessary to run Contiki on

a processor. These are mostly interrupt handlers needed for timers running on

the CPU, access functions to hardware interfaces often used in microcontrollers

such as SPI, UART or I2C, as well as functions to enable the low-power mode

of a CPU.

• The platform-specific code encapsulates all code needed to access peripheral

hardware not part of the CPU including sensors, displays or external networking.

The function, which implements the LED API used in the LED Blink example

is implemented as part of the platform-specific code and maps the LED API

functions to the hardware. In addition, the platform-specific code also contains

the C main-function used to start the Contiki system and the configuration of

the embedded system. This configuration includes hardware parameters like the

clock frequency of the CPU and Contiki -specific options as the size of the Contiki

event queue and the processes to be started during system startup.

Therefore, when adapting Contiki to a newly built hardware platform that uses an

already supported processor, it is often only necessary to create a new platform-specific

code section, which configures the system and implements the used drivers. This allows

it to reuse applications between different embedded system platforms9.

9A recompilation with the CPU specific compilers is necessary.

54 3 The Operating System Contiki

4
Chapter 4

Modeling an Embedded

System Running Contiki for

Verification

In the modeling phase of the model checking process (cf. Section 2.2.1) the system

description and properties, both derived from the system specification, have to be

created. This chapter describes how the components of an embedded system are

modeled to allow the verification using a software model checking tool. Furthermore,

assertions, which describe the properties to be checked, are classified.

The chapter is structured as follows: In Section 4.1 an overview of the general verifi-

cation approach is given. The representation of the system specification by the use of

assertions is described in Section 4.2. The general approach for modeling drivers of a

Contiki system is given in Section 4.3. A special task when modeling a Contiki system

is the modeling of interrupts. Existing approaches for interrupt modeling are discussed

in Section 4.4. In Section 4.5 a new approach called periodic interrupt modeling suited

for the verification of software using periodic interrupts is presented.

4.1 Overview of the Approach

The aim of the presented verification approach is to allow the verification of Contiki

applications without modifications of the application source code10. As the behavior of

a Contiki application strongly depends on the surrounding hardware of an embedded

systems, also this environment must be modeled.

10The general restrictions for software model checking described in Section 2.2.4 however still apply.
Especially the complete source code must be available and only C libraries supported by CBMC
can be used.

56 4 Modeling an Embedded System Running Contiki for Verification

The general approach is depicted in Figure 4.1. Figure 4.1(a) shows how a Contiki

application normally interacts with the hardware of an embedded system. An appli-

cation can access the hardware through the Contiki predefined driver APIs. In the

same way, also the processes, which are part of the operating system, interact with

the hardware using these APIs, e.g. the timer subsystem. Moreover, applications can

interact with the hardware using platform-specific drivers, for which Contiki does not

provide an API. To perform the verification, the actual drivers, which interact with

the system hardware are replaced with verification models, which capture the hard-

ware behavior as shown in Figure 4.1(b). In addition, the drivers and the application

to be verified can be annotated with assertions, which must hold on the system. The

practical challenge when creating abstract drivers is to model the hardware behavior

at the right level of abstraction. When the driver is not modeled appropriately, either

bugs can be missed or unrealistic counterexamples will be generated, which cannot

occur on the real hardware.

As an example for the approach, consider the LED Blink example shown in Figure 3.2.

There, two drivers of an embedded system must be modeled: The LED API of Contiki ,

which allows the blinking of the LED and the event timer API, which realizes the

waiting for several seconds.

By replacing only hardware related code, it is guaranteed that no modeling errors

occur within the application software, as it stays unmodified. However, a restriction

of the presented approach is that the actual implementation of the driver is not verified,

when modeling the hardware access at the level of a driver API. Consequently, no bugs

can be detected, which are caused by the driver implementation e.g. an arithmetic

overflow in a driver.

In this thesis, for modeling the CBMC tool is used and therefore all modeling, also

of the embedded system hardware is done using the C language. To represent the

non-deterministic behavior and input ranges, constructs provided by CBMC are used

in the following examples. Although this thesis builds on CBMC, the concepts of the

modeling approach can be also applied with other model checking tools too, as they

provide similar modeling constructs.

4.2 Annotating Assertions for Verification

The input for the model checker shall be the Contiki source code including applica-

tions and hardware models as overall system model. In addition, assertions have to

be provided as system specification. Using these assertions it can be checked, whether

the software accesses the hardware correctly, uses the operating system correctly, and

4.2 Annotating Assertions for Verification 57

Contiki kernel + system
processes

Contiki libraries and APIs

Access to hardware via APIs

Platform specific drivers

Application processes

Embedded system hardware

Access to hardware via drivers

Embedded system platform

(a) Embedded system platform running Contiki applications.

Abstract verification platform

Contiki kernel + system
processes + assertions

Contiki libraries and APIs +
assertions

Access to hardware via APIs

Abstract driver models + assertions

Application processes +
assertions

Access to hardware via drivers

(b) Abstract verification platform used for verification.

Figure 4.1: Replacement of drivers and annotation of assertions for an abstract Contiki
verification platform.

58 4 Modeling an Embedded System Running Contiki for Verification

whether it is algorithmically correct. Therefore, the assertions11 can be grouped de-

pending on the location within the Contiki system:

• Application-dependent assertions

• Contiki -specific assertions

• Platform-dependent assertions

• Automatically generated assertions

A description of these assertions follows.

Application-dependent assertions check whether the application performs algo-

rithmically correct. They are added to the source code of an application running on

a Contiki system and are derived from the application specification. An example of

such an assertion is the program cutout shown in Figure 4.2(a). The function check-

SortedArray checks that the passed array a with size n is sorted correctly by looping

through the array and checking that each element is smaller or equal to its successor

using the assertion in line 5.

Contiki -specific assertions have to be valid for all Contiki applications, inde-

pendently of a specific embedded system platform. They check, for example, that a

Contiki API is accessed correctly from an application. As these assertions are hard-

ware independent, they have to be written only once and must hold for all Contiki

applications.

One typical assertion for Contiki is checking that the size of the event queue configured

for a system is sufficient. When this size is not sufficient, an application cannot

create new events anymore. Such a check can be added to the Contiki kernel in

the process_post function depicted in Figure 4.2(b). This function is used to post

asynchronous events (see Section 3.3) when invoking processes. These events are stored

in the event queue till they are processed. The function already prints warnings in

a Contiki debug mode, to identify problems in the case variable nevents - used to

count the current size of the event queue - reaches the maximum size defined for the

event queue (lines 3-9 of Figure 4.2(b)). Similarly, an assert(0) (line 12) statement

can be added, denoting a piece of code which must not be reached as the assertion

will always be violated, when the code is reachable. The assertion is guarded in this

case by a macro and can be activated when the code is compiled for verification (cf.

Section 5.2.2).

11CBMC supports only safety properties via the assert statement as described in Section 2.2.4.

4.3 Modeling the System Environment Using Drivers 59

Platform-dependent assertions are used to check, whether processes correctly

access the drivers of a hardware component. These assertions are defined once for

each embedded system platform hardware and must hold for all applications running

on that platform. They make sure that a hardware API is used correctly. Figure 4.2(c)

shows a cutout of a platform-dependent driver for an LC display, whereby the shown

function prints a symbol at the specified position of the display. The device can only

show a restricted number of symbols and has to be initialized before it can be used.

The three assertions check that the initialization has occurred before the function is

called (line 2), the display position of the symbol is valid (line 3), and only a valid

symbol is chosen to be printed (line 4).

Automatically generated assertions can be added by the CBMC tool as de-

scribed in Section 2.2.4. These assertions include checks for array bounds, arithmetic

overflows, division by zero, and the absence of null pointer dereferences in the code.

For example, the CBMC tool can add automatic checks for array bounds, whenever

an array is accessed, as in the function shown in Figure 4.2(a). As the size of arrays

in C cannot be deduced from the array itself, this size must be known and is therefore

passed as an additional parameter. If the array size is assumed wrong, an out-of-

bound array access can occur. Therefore, CBMC can automatically add assertions,

which check that, for example, the access to the array in line 5 via the used indexes i

and i+1 is never out of bounds.

The application-dependent assertions are optional and need to be defined by the author

of the application. When they are omitted, it is only checked whether the application

fulfills platform-dependent assertions, Contiki-specific assertions, and automatically

generated assertions (when activated). Using this approach it is possible to check

completely unmodified Contiki applications. Automatically generated assertions such

as for array bounds are very useful from a practical point of view, as these detect

common programming errors, which can lead to a runtime failure of the software,

crashing the complete system. Examples of all kinds of assertions will be shown in the

next sections and in the examples in Chapter 6.

4.3 Modeling the System Environment Using

Drivers

To represent the system environment of an embedded system, all possible behaviors

of the hardware must be resembled by a model, with which the software can interact

using APIs. This model must also be annotated with assertions to make sure that the

60 4 Modeling an Embedded System Running Contiki for Verification

1 void checkSortedArray(uint8 t a[], uint8 t n)
2 {
3 uint8 t i;
4 for (i=0; i<n−1;){
5 assert (a[i] <= a[i+1]);
6 i=i+1;
7 }
8 }

(a) Assertion checking that an array is sorted.

1 if(nevents == PROCESS CONF NUMEVENTS) {
2 #if DEBUG
3 if(p == PROCESS BROADCAST) {
4 printf(”soft panic: event queue is full when broadcast event %d was posted from %s\n”,
5 ev, PROCESS NAME STRING(process current));
6 } else {
7 printf(”soft panic: event queue is full when event %d was posted to %s from %s\n”,
8 ev, PROCESS NAME STRING(p), PROCESS NAME STRING(process current));
9 }

10 #endif
11 #ifdef ASSERTION CHECK EVENT QUEUE OVERFLOW
12 assert(0);
13 #endif
14 return PROCESS ERR FULL;
15 }

(b) Assertion checking that an event queue overflow must not occur; part of the pro-

cess_post function of the Contiki kernel.

1 void lcd disp char(uint8 t pos, uint8 t index) {
2 assert (init == 1);
3 assert(pos < LCD NUM DIGITS);
4 assert(index < LCD MAX CHARS);
5 }

(c) Assertions checking that an LCD driver is used correctly.

Figure 4.2: Example assertions for the verification of Contiki based systems

4.3 Modeling the System Environment Using Drivers 61

API is correctly used by the application. In this section, the modeling of drivers, which

are not based on interrupts is shown, whereas in Section 4.4 the use of interrupts is

described in detail.

To demonstrate the approach cutouts representing three typical kinds of drivers for

the Contiki system are shown.

• The first driver demonstrates a hardware device, which does not give any feed-

back to the system such as an LED. This kind of driver can therefore be easily

integrated.

• The second driver provides undetermined feedback, which is not under control of

the software and modeled using non-deterministic variables. The chosen example

is taken from a memory card driver.

• With the third driver, the use of platform-dependent assertions on a more com-

plex driver is demonstrated. This driver is based on a 3-axis acceleration sensor

used, e.g., in fall detection applications.

First, the Contiki LED API as used in the LED Blink example in Section 3.2 is

considered. The API provides functions such as leds_on or leds_off for turning

an LED on or off, as shown in Figure 4.3(a). For implementing the API a hardware

platform must provide the functions leds_arch_init (initialization of the LEDs),

leds_arch_get (returns the current LED status), and leds_arch_set (turns LEDs

on/off). Using this API up to 8 LEDs can be controlled using a char value, where

each bit passed to the leds_arch_set function represents one LED.

The driver implementation provided by Contiki for an MSP430 microcontroller is

shown in Figure 4.3(b). This driver implementation supports three LEDs (red, green,

yellow) and is configurable, depending on which hardware ports of the microcontroller

the LEDs are connected to, using the macro LEDS_PxOUT. This port, as well as the pin

to which the LED of the corresponding color is connected (macros LEDS_CONF_RED,

LEDS_CONF_YELLOW, LEDS_CONF_GREEN), must be set for the configuration of the driver

to work together with the hardware platform. The verification model of the driver is

shown in Figure 4.3(c) and stores the value of the set LEDs in a static variable, so that

it can be read back using the leds_arch_get function12. In addition, this driver shows

how assertions can be added. Similar to the LCD driver described in Section 4.2 (cf.

Figure 4.2(c)), a global variable led_init is used, which makes sure that the function

leds_arch_init is called before other functions of the LED API are called.

The second class of drivers is non-deterministic - based on the environment of the

system, which is not controlled by the software - and can provide random feedback. A

12The used printf function is built into CBMC and is evaluated during counterexample generation,
making it easier to debug the generated traces.

62 4 Modeling an Embedded System Running Contiki for Verification

1 /∗∗
2 ∗ Returns the current status of all leds (respects invert)
3 ∗/
4 unsigned char leds get(void);
5 void leds on(unsigned char leds);
6 void leds off(unsigned char leds);
7 void leds toggle(unsigned char leds);
8 void leds invert(unsigned char leds);
9

10 /∗∗
11 ∗ Leds implementation
12 ∗/
13 void leds arch init(void);
14 unsigned char leds arch get(void);
15 void leds arch set(unsigned char leds);
16

(a) LED API including platform-specific functions to be implemented.

1 void leds arch init(void)
2 {
3 LEDS PxDIR |= (LEDS CONF RED | LEDS CONF GREEN | LEDS CONF YELLOW);
4 LEDS PxOUT |= (LEDS CONF RED | LEDS CONF GREEN | LEDS CONF YELLOW);
5 }
6 unsigned char leds arch get(void)
7 {
8 return ((LEDS PxOUT & LEDS CONF RED) ? 0 : LEDS RED)
9 | ((LEDS PxOUT & LEDS CONF GREEN) ? 0 : LEDS GREEN)

10 | ((LEDS PxOUT & LEDS CONF YELLOW) ? 0 : LEDS YELLOW);
11 }
12 void leds arch set(unsigned char leds)
13 {
14 LEDS PxOUT = (LEDS PxOUT
15 & ˜(LEDS CONF RED|LEDS CONF GREEN|LEDS CONF YELLOW))
16 | ((leds & LEDS RED) ? 0 : LEDS CONF RED)
17 | ((leds & LEDS GREEN) ? 0 : LEDS CONF GREEN)
18 | ((leds & LEDS YELLOW) ? 0 : LEDS CONF YELLOW);
19 }

(b) Implementation of the LED API for an MSP430 microcontroller.

Figure 4.3: Contiki LED API and implementations for hardware access and verifica-
tion.

4.3 Modeling the System Environment Using Drivers 63

1 static unsigned char leds;
2 void leds arch init(void)
3 {
4 printf(”LED Driver: Initializing LED \n”);
5 led init = 1;
6 leds = 0;
7 }
8 unsigned char leds arch get(void)
9 {

10 assert (led init == 1);
11 return leds;
12 }
13 void leds arch set(unsigned char l)
14 {
15 assert (led init == 1);
16 printf(”LED Driver: Setting led to %d\n”, l);
17 leds = l;
18 }

(c) Implementation of the LED API for formal verification.

Figure 4.3: Contiki LED API and platform implementations for hardware access and
verification.

1 char mmc ping(void) {
2 if (!(MMC CD PxIN & MMC CD))
3 return (MMC SUCCESS);
4 else
5 return (MMC INIT ERROR);}

(a) Driver for hardware access.

1 char mmc ping(void) {
2 char rvalue = nondet char();
3 CPROVER assume(rvalue == MMC SUCCESS
4 || rvalue == MMC INIT ERROR);
5 return rvalue; }

(b) Model for formal verification.

Figure 4.4: Cutout from memory card driver as used in Contiki .

64 4 Modeling an Embedded System Running Contiki for Verification

function, belonging to a memory card driver is shown in Figure 4.4, which - depending

on whether a memory card is available or not - returns either the values MMC_SUCCESS

or MMC_INIT_ERROR. In Figure 4.4(a) the original hardware driver is shown, which

communicates with the hardware using the pins MMC_CD_PxIN and MMC_CD. The cor-

responding model for verification is shown in Figure 4.4(b). To represent that either

a memory card can be present or missing, non-deterministic return values are used,

which are restricted using the statement __CPROVER_assume. When using this driver

the state space of an application is searched for all possibilities, with the function

returning either the value MMC_SUCCESS or MMC_INIT_ERROR.

An even more complex model of a driver is the model of a 3-axis acceleration sensor.

A cutout from this driver is given in Figure 4.5. This sensor has first to be initialized

(function adxl345_init_dev) before it can be used, and measurement has to be en-

abled (function adxl345_enable_measurement) so that sensor values can be retrieved

(function adxl345_get_xyz). The original driver (shown in Figure 4.5(a)) uses an I2C

bus to communicate with the sensor, which can – in this example – transmit several

8-bits fields using the i2c_data_tx and i2c_data_rx functions. As the sensor pro-

vides 16-bit values for the acceleration for each axis, 6 values must be read from the

sensor. Therefore, to read out the sensor values a pointer to an array of bit values is

passed to the adxl345_get_xyz function (line 13).

For the abstract model of the driver, which is shown in Figure 4.5(b), the return val-

ues of the sensor must be provided. In addition, also assertions were added, which

check the correct usage of the driver by the software. Therefore, the variable init

stores the state of the sensor. When it has value 0 the sensor is not initialized.

Value 1 signals, that the driver is initialized, but no measurement has yet been

enabled and value 2 indicates that the measurement is enabled. In the functions

adxl345_enable_measurement and adxl345_get_xyz, it is checked whether the vari-

able has the correct state each time these functions are called. The return values of the

sensor are not restricted and, thus, modeled using non-deterministic variables (lines

14-16).

Discussion of the approach The shown modeling approach abstracts the hardware

at the level of the API provided by the driver or the operating system. Instead of

detailed hardware models as used in hardware description languages such as SystemC,

return values are described using non-deterministic values. The detail level of the

models could, of course, be increased using a finite state machine, which can store the

state and therefore the history of driver calls. Furthermore, it is possible to access

the global system time variable of Contiki to describe even more complex behavior.

However, it has to be taken into account that the detail level of the model directly

4.3 Modeling the System Environment Using Drivers 65

1 uint8 t xyz data[6] = {0,0,0,0,0,0};
2 void adxl345 init dev() {
3 i2c init dev();
4 char byte[1] = {0x09}; //set data rat to 50Hz
5 i2c data tx(ACC ADDR, 0x2c, ACC ADDR SIZE, byte, 1);
6 byte[0] = 0x08; //set data format register (full resolution, +/−2g range)
7 i2c data tx(ACC ADDR, 0x31, ACC ADDR SIZE, byte, 1);
8 }
9 void adxl345 enable measurement() {

10 char byte[1] = {0x08};
11 i2c data tx(ACC ADDR, 0x2d, ACC ADDR SIZE, byte, 1);
12 }
13 void adxl345 get xyz(int16 t ∗xyz) {
14 i2c data rx(ACC ADDR, 0x32, ACC ADDR SIZE, xyz data, 6);
15 ∗xyz = (xyz data[1]<<8 | xyz data[0]);
16 ∗(xyz+1) = (xyz data[3]<<8 | xyz data[2]);
17 ∗(xyz+2) = (xyz data[5]<<8 | xyz data[4]);
18 }

(a) Driver for hardware access.

1 static uint8 t init;
2 void adxl345 init dev() {
3 printf(”ADXL Driver: Initializing Acceleration Sensor \n”);
4 init = 1;
5 }
6 void adxl345 enable measurement() {
7 assert(init == 1);
8 printf(”ADXL Driver: Enabling measurement \n”);
9 init = 2;

10 }
11 void adxl345 get xyz(int16 t ∗xyz) {
12 printf(”ADXL Driver: Requesting xyz %d \n”, ∗xyz);
13 assert(init == 2);
14 ∗xyz = nondet int16 t();
15 ∗(xyz+1) = nondet int16 t();
16 ∗(xyz+2) = nondet int16 t();
17 }

(b) Model for formal verification.

Figure 4.5: Cutout from a 3-axis acceleration sensor driver as used in Contiki .

66 4 Modeling an Embedded System Running Contiki for Verification

impacts verification performance, as it influences the size of the state space.

Other approaches for verification of embedded systems such as [LFCJ09] or [BK11b]

do not take the operating system into account and model the hardware at the level of

the pins and registers of a microcontroller (particularly an MSP430 microcontroller),

making it basically impossible to model external components such as sensors. For

example, the 3-axis acceleration sensor mentioned above is accessed either via an SPI

or an I2C interface, and could only be modeled on the level of hardware registers for

the interface provided by the microcontroller. Consequently, assumptions can only be

specified on the state of these registers without taking a connected device into account.

In contrast, the approach presented in this thesis uses an abstract driver for verification

with Contiki , which is independent of the actual interface the driver is accessed by

and therefore, also independent of the microcontroller the application is running on.

However, a verification of drivers and low-level code as feasible by the above-described

approach is not possible by the presented method for Contiki .

4.4 Interrupt Modeling

Up till now, only drivers were described, in which the application initiates the hardware

access by requesting the driver to deliver data to the application. An important role in

the hardware of embedded systems play, however, interrupts. Interrupts are another

approach to let software communicate with hardware or to perform periodic tasks.

Especially in low power systems, interrupts are very important, as they enable it to

wake up the system when further processing needs to be done, e.g. from a sleep mode,

and avoid the usage of so called busy waiting.

An interrupt can either be triggered periodically from a special hardware unit in the

microcontroller of the embedded system, or from an external source, e.g. through

designated hardware pins. When an interrupt occurs, the system is woken up from a

sleep mode or - when the system is executing code - the current state of the running

program is stored by the hardware. Afterwards, an interrupt service routine (ISR) is

executed. An ISR is a piece of code associated with the interrupt, whose execution is

triggered by the hardware. This code is then used, e.g. to access external hardware

via a driver (see Section 4.3) or trigger the resumption of the system operation after

a sleep mode.

In Contiki -based embedded systems one application of interrupts is the event timer

system as described for the LED Blink example in Section 3.3.2. Interrupts allow the

system to save power when it is not used. In the example, the use of the protothread

macro PROCESS_WAIT_EVENT_UNTIL leads to a system sleep state, which is only left

4.4 Interrupt Modeling 67

when the interrupt signals that the waiting time is over. The implementation of the

ISR, which calls the Contiki timer system is shown in Figure 4.6. Figure 4.6(a) shows

the implementation available in Contiki for an MSP430 processor and Figure 4.6(b)

the hardware independent version, which is used for formal verification. The ISR

implementation for the MSP430 processor works with interrupt control registers and

flags (TACCR1, TACTL, MC1, TAR) to check the configured clock period, which is set

in clock cycles of the processor. Furthermore, the ISR has to control the power modes

of the processor (LPM4_EXIT). Additionally, the ISR uses the Contiki functionality for

estimating power consumption with the ENERGEST macros. The model for verification

(Figure 4.6(b)) is derived from the original ISR by abstracting these hardware accesses.

A short description of the main principle of this ISR for the Contiki event timer system

follows.

The variables count and seconds are used to represent the overall system time, count

is incremented whenever the interrupt is called (line 25 in Figure 4.6(a), line 2 in Fig-

ure 4.6(b)). The actual time passed between interrupt calls depends on the configu-

ration of the timer system, which can be different for each application scenario of the

embedded system. The CLOCK_CONF_SECOND macro configures the number of interrupt

function calls corresponding to an actual second in the system. The seconds variable

get increased correspondingly (lines 30-31 in Figure 4.6(a), lines 3-4 in Figure 4.6(b)).

When an application has registered a timer, the ISR checks whether the registered

time has been reached13 (lines 36-37 in Figure 4.6(a), lines 5-6 in Figure 4.6(b)). If

this is the case, the interrupt requests a poll for the event timer process (line 38 in

Figure 4.6(a), line 7 in Figure 4.6(b), see also Section 3.3), waking up the system if it

is in a low power mode.

The presented example only shows how an ISR can be abstracted for verification

from a specific processor. However, in the verified program the ISR must be also

called during system execution. There, the challenge is that interrupts can occur

at any time, influencing the program flow. Each of these program flows must be

considered when performing model checking. For example, when no interrupts are

executed within Contiki the overall system time is never increased, halting the overall

system progress. Modeling of interrupts is therefore especially important for capturing

the correct invocation of processes, as otherwise spurious counterexamples could be

introduced or properties cannot be proven.

In the following, current approaches to model interrupts are summarized in Sec-

tion 4.4.1. Using a general example with interrupts, it is discussed how well these

approaches are suited for the verification of Contiki applications (Section 4.4.2). Based

13This comparison is based on the fact, that -1 corresponds to the largest possible value in an unsigned
number representation and is therefore larger than the positive integer MAX_TICKS, which is defined
in line 2 in Figure 4.6(a).

68 4 Modeling an Embedded System Running Contiki for Verification

1 #define INTERVAL (RTIMER ARCH SECOND / CLOCK SECOND)
2 #define MAX TICKS (˜((clock time t)0) / 2)
3 static volatile unsigned long seconds;
4 static volatile clock time t count = 0;
5 /∗ last tar is used for calculating clock fine ∗/
6 static volatile uint16 t last tar = 0;
7 #ifdef IAR SYSTEMS ICC
8 #pragma vector=TIMERA1 VECTOR
9 interrupt void

10 #else
11 interrupt(TIMERA1 VECTOR)
12 #endif
13 timera1 (void) {
14 ENERGEST ON(ENERGEST TYPE IRQ);
15 watchdog start();
16 if(TAIV == 2) {
17 /∗ HW timer bug fix: Interrupt handler called before TR==CCR.
18 ∗ Occurrs when timer state is toggled between STOP and CONT. ∗/
19 while(TACTL & MC1 && TACCR1 − TAR == 1);
20 /∗ Make sure interrupt time is future ∗/
21 do {
22 /∗ TACTL &= ˜MC1;∗/
23 TACCR1 += INTERVAL;
24 /∗ TACTL |= MC1;∗/
25 ++count;
26 #if (CLOCK CONF SECOND & (CLOCK CONF SECOND − 1)) != 0
27 #error CLOCK CONF SECOND must be a power of two (i.e., 1, 2, 4, 8, 16, 32, 64, ...).
28 #error Change CLOCK CONF SECOND in contiki−conf.h.
29 #endif
30 if(count % CLOCK CONF SECOND == 0) {
31 ++seconds;
32 energest flush();
33 }
34 } while((TACCR1 − TAR) > INTERVAL);
35 last tar = TAR;
36 if(etimer pending() &&
37 (etimer next expiration time() − count − 1) > MAX TICKS) {
38 etimer request poll();
39 LPM4 EXIT;
40 }
41 }
42 watchdog stop();
43 ENERGEST OFF(ENERGEST TYPE IRQ);
44 }

(a) Timer interrupt implemented for the MSP430 processor.

Figure 4.6: Cutout from the timer interrupt implementation of the Contiki event timer
system.

4.4 Interrupt Modeling 69

1 void timer interrupt(void) {
2 count++;
3 if ((count % CLOCK CONF SECOND) == 0)
4 seconds++;
5 if(etimer pending() &&
6 (etimer next expiration time() − count − 1) > MAX TICKS) {
7 etimer request poll();
8 }
9 }

(b) Platform independent model for formal verification.

Figure 4.6: Cutout from the timer interrupt implementation of the Contiki event timer
system.

on this discussion a new approach to the modeling of interrupts called periodic inter-

rupt modeling is introduced in Section 4.5.

4.4.1 Existing Approaches

This section discusses existing approaches for the formal verification of software on

systems which use interrupts.

In [BK11b] Bucur and Kwiatkowska show a complete formal verification flow for the

TinyOS operating system using the model checker CBMC. As TinyOS applications

are written in nesC (a programming language for TinyOS), applications are first

translated into C to be used as input for the model checking tool. Their approach

is tailored towards an MSP430 processor. The description of the system hardware is

performed at the level of pins and registers of the processor, which are modeled using

non-deterministic statements. External devices such as sensors are not considered for

verification.

The main contribution of [BK11b] is the application of partial order reduction (POR)

(see Section 2.2.5) at the level of C statements to reduce the increased state space

size, introduced by interrupt modeling. When interrupts based systems are verified

all potential locations for an interrupt occurrence have to be considered. Therefore,

the interleaving model for parallel executions is used (cf. Section 2.2.5). As an in-

terrupt can occur at any time and can suspend the original application, calls to the

ISR are added at each statement of the original application. In contrast to normal

parallel program executions for which the interleaving model is normally used, an ISR

itself cannot be interrupted by the main application. The approach assumes that an

interrupt can occur after each C statement, whereby atomic statements are defined

70 4 Modeling an Embedded System Running Contiki for Verification

as colon-terminated C statements. Depending on the processor architecture this can

correspond to several assembler assignments. Therefore, the approach abstracts the

actual behavior of interrupts from the hardware of a specific processor to the level of

C statements. Furthermore, no assumptions are made how often interrupts can occur,

e.g. whether they occur periodically.

To reduce the number of calls to the interrupt service routine introduced by the in-

terleaving model, Bucur and Kwiatkowska apply POR. POR has been used before in

model checking tools, which support the verification of multi-threaded software such

as the SPIN model checker. To perform POR, C statements within the application are

assumed as transitions, which change the states of the program, whereby the call to an

ISR is seen as a parallel statement, which can be executed at any time. The general

idea behind POR is described in Section 2.2.5. Bucur and Kwiatkowska implemented

their version of POR for C applications for the model checking tool CBMC, also used

in this work. This is possible for all properties of CBMC as it only supports safety

properties of the kind Gf .

In practice, POR corresponds to reducing interrupt calls to locations, where the ISR

actually affects the behavior of the execution of the applications. These are locations,

where variables shared between the ISR and the application are read or written. An

example of POR for C applications is given in Section 4.4.2.

A similar approach to deal with interrupt modeling is presented by Schlich et al.

in [SNBB11]. They propose a technique called Interrupt Handler Execution Reduc-

tion, to reduce the number of interrupt call interleavings, which is implemented for

their [MC]SQUARE model checker. Their approach is also inspired by POR, how-

ever, the implementation is done at the level of assembler code, which is the input of

[MC]SQUARE. This model checker supports several microcontroller architectures for

which models of the hardware at the level of registers exist. Properties which shall be

checked are specified using the temporal logic CTL, whereby the next operator X is

not allowed to enable the reduction of interrupts14.

An enhancement of the PORmodeling of Bucur and Kwiatkowska is given in [KLM+15]

for systems, which use multiple interrupts with priorities. It is assumed that inter-

rupts occur between C statements as in [BK11b]. Based on partial-order encoding,

dependencies between interrupts based on their priorities are checked and impossible

executions are discarded. In contrast to Bucur and Kwiatkowska not only software for

an MSP430 microcontroller and TinyOS is regarded, however, no hardware modeling

is discussed. To perform evaluation with multiple interrupts a wrapper function is

used, as discussed in the next section.

14This restricts properties to such, which describe stuttering equivalent paths (Definition 2.11), sim-
ilar to the definition of LTL¬X (Definition 2.12).

4.4 Interrupt Modeling 71

1 unsigned int current time;
2 unsigned int min delay time, max delay time;
3 ...//Initialization
4 while (1) {
5 current time = clock time();
6 statement 1;
7 statement 2;
8 ...
9 statement n;

10 assert(((current time + min delay time) <= clock time()) &&
11 (clock time() < (current time + max delay time)));
12 }

Figure 4.7: Example application that can be interrupted.

4.4.2 Applying Existing Approaches to the Verification of

Contiki Applications

To discuss the existing approaches for modeling interrupts and how they are suited for

the verification of Contiki applications a general example, which is shown in Figure 4.7,

is used. The application shall demonstrate how applications depend on interrupts and

how they affect the program flow and therefore, which assertions can be verified. This

example uses the timer interrupt shown in Figure 4.6, which is called by the hardware

periodically after a certain number of microcontroller clock cycles have passed. As

already described, the interrupt uses the variables count and seconds to store the

current system time. A short description of the application follows:

At the beginning of the while loop (lines 4-12), the current system time is stored

in the variable current_time (line 5) using the Contiki pre-defined clock API func-

tion clock_time. The function returns the current system time (value of count).

Afterwards, n arbitrary program statements are executed (lines 6-9), which do not

access the variables used to store the system time in the interrupt. The assertion to

be checked on the system is given in lines 10-11 and checks whether the overall sys-

tem time has increased in the interval defined by the variables min_delay_time and

max_delay_time (with min_delay_time < max_delay_time), compared to the value

stored in current_time. This means that the assertion only can be proven valid, when

during the execution of the n arbitrary statements the number of interrupts defined by

the delay time interval occur. When too few or too many interrupts occur, verification

will fail.

One way of modeling of interrupts for formal verification (see Section 4.4.1), based on

the interleaving model, is to add a call to the interrupt statement at every point of

code, where the interrupt could occur in the real system. The transformed example

72 4 Modeling an Embedded System Running Contiki for Verification

1 unsigned int current time;
2 unsigned int min delay time, max delay time;
3 ...//Initialization
4 while (1) {
5 if (!nondet 0()) // non−deterministic call
6 timer interrupt();
7 current time = clock time();
8 if (!nondet 0())
9 timer interrupt();

10 statement 1;
11 if (!nondet 0())
12 timer interrupt();
13 statement 2;
14 ...
15 if (!nondet 0())
16 timer interrupt();
17 statement n;
18 if (!nondet 0())
19 timer interrupt();
20 assert(((current time + min delay time) <= clock time()) &&
21 (clock time() < (current time + max delay time)));
22 }

Figure 4.8: Example application instrumented with interrupt calls after each state-
ment.

4.4 Interrupt Modeling 73

1 unsigned int current time;
2 unsigned int min delay time, max delay time;
3 ...//Initialization
4 while (1) {
5 if (!nondet 0()) // non−deterministic call
6 interrupt wrapper();
7 current time = clock time();
8 statement 1;
9 statement 2;

10 ...
11 statement n;
12 if (!nondet 0())
13 interrupt wrapper();
14 assert(((current time + min delay time) <= clock time()) &&
15 (clock time() < (current time + max delay time)));
16 }

Figure 4.9: Example application after reduction of interrupt calls with POR.

application of Figure 4.7 is shown in Figure 4.8. Between each statement of the original

program, a call to the interrupt function timer_interrupt is added. This call is made

non-deterministic using the function call nondet_015, modeling that an interrupt can,

but does not need to occur.

It can be seen that the calls to the interrupt routine increase the program size signifi-

cantly. POR can now be used to reduce the size of the program. After applying POR

the interrupt handler functions are only called at points where an interrupt actually

effects the flow of the program, as described in Section 4.4.1. For the example appli-

cation, the results of this reduction are shown in Figure 4.9. The non-deterministic

calls to the interrupt handler function can be reduced to the statement, where the

system time is stored, before the calculation starts (lines 5-6) and when the assertion

on the system runtime is checked (lines 12-13). Only in these cases the variable count

- which is changed by the interrupt - is accessed by the clock_time() function.

When applying POR, the information how often the ISR can be called from the ap-

plication is lost (the possible number of ISR calls becomes independent of the actually

executed statements). In the case of the example application after reduction, the ISR

could be only called up to 2 times, whereas in the original application the number of

possible interrupt calls depends on the number of statements n. Therefore, an inter-

rupt wrapper function has to be used as shown in Figure 4.10. This wrapper function

allows it to call the actual interrupt function arbitrarily often, at every point of code

where the wrapper is being called. As noted in [KLM+15] the overall number of possi-

15nondet_0 is available as part of CBMC, other model checking tools offer similar constructs to
model non-deterministic variables.

74 4 Modeling an Embedded System Running Contiki for Verification

1 void interrupt wrapper(void) {
2 while (1) {
3 if (!nondet 0())
4 timer interrupt();
5 else
6 return;
7 }
8 }

Figure 4.10: Interrupt wrapper function used for POR.

ble interrupt occurrences in the system can be controlled by restricting the while(1)

loop in line 2 of Figure 4.10.

The described modeling approach for interrupts is based on the assumption that an ISR

can occur after each program statement. Looking at the assertion that shall be proven

in Figure 4.7 this assumption is not sufficient. The actual runtime of the program on

the system is not taken into account for determining the number of possible interrupt

occurrences. However, the assertion that is verified checks that the interrupt handler

is called during the calculation only a certain number of times.

When non-deterministically calling the interrupt handler at all possible program points

as shown in Figure 4.8, the property can only be proven if the specified interval for

the delay is between 0 to n+1, as this is the number of possible interrupt calls. When

applying POR as done in Figure 4.9 with the interrupt wrapper shown in Figure 4.10

verification will always fail, as the count variable can be increased arbitrarily often in

the interrupt function.

This leads to the following observations for the modeling of interrupts within the

Contiki system:

• The use of POR together with an infinite number of interrupts is a safe over-

abstraction of the interrupt behavior as zero to infinite interrupts are checked.

When an application passes verification for such a modeling style it can be

assumed safe. However, the modeling can introduce spurious counterexamples,

as the number of assumed interrupts and time of occurrence are not possible on

the real system. Furthermore, when using BMC it is not possible to check the

correctness of an infinite while(1) loop (see also Section 5.1.3).

• The interrupt modeling with POR doesn’t take into account any information,

how often an interrupt handler could be called from the program. This is related

to principle of stuttering described in Section 2.2.5. As noted in [CGP00]:

4.5 Periodic Interrupt Modeling - Taking System Runtime into Account 75

“Stuttering is a particular interesting concept for asynchronous sys-

tems because there is no correlation between the time separating two

events and the number of transitions occurring between them.“

• When using POR, it is not possible to statically set a bound how many interrupts

can occur as the number of program statements that appear between calls to an

interrupt function cannot be determined statically.

The consequence of these observations is that it is not possible to verify applications

with POR, whose correct behavior depends on the frequency of interrupt occurrences.

This includes programs which rely on the appearance of interrupts, as interrupts might

never occur when using POR16. Furthermore, properties that directly or indirectly

check how often an interrupt can occur cannot be verified. This, e.g. corresponds in

Contiki to checking how much time has passed in the system using the event timer

system. Another assertion which cannot be proven on the system is, e.g. that the

size of the Contiki event queue, described in Section 3.3, is sufficient, as events can

be created based on the number of interrupt calls. To verify programs whose correct

behavior depends on the frequency of interrupt occurrences a new modeling approach,

periodic interrupt modeling (PIM), is suggested.

4.5 Periodic Interrupt Modeling - Taking System

Runtime into Account

1 static unsigned int statement counter;
2 unsigned int interrupt period = 10;
3
4 void initialize interrupt(void) {
5 statement counter = nondet int();
6 CPROVER assume(statement counter < interrupt period);
7 }
8
9 void periodic interrupt(void) {

10 statement counter++;
11 if (statement counter == interrupt period) {
12 timer interrupt();
13 statement counter = 0;
14 }
15 }

Figure 4.11: Functions used for periodic interrupt modeling.

16An example of this problem in practice is shown in the example in Section 6.4.

76 4 Modeling an Embedded System Running Contiki for Verification

Periodic interrupt modeling (PIM) allows it to verify assertions that rely directly or

indirectly on the number and frequency of interrupt invocations, as the information

how often an interrupt occurs on the actual system is considered during modeling.

The implementation of the interrupt modeling style uses two functions initial-

ize_interrupt and an interrupt wrapper periodic_interrupt. These functions are

shown in Figure 4.11. In addition, it uses the global variables statement_counter

and interrupt_period, which are of type unsigned (always positive) integers. The

global variable statement_counter is used to count the number of statements since

calling the interrupt handler the last time. The variable interrupt_period is used to

define the period between the actual interrupt handler calls. This period is given as

the number of C statements between the calls to the interrupt handler, as expected

in the real system17.

The function initialize_interrupt shall be called as the first statement of the pro-

gram to be verified (inside the C main function). Its purpose is to initialize the state-

ment_counter to an arbitrary value 0 ≤ statement_counter < interrupt_period.

This simulates the behavior that at system startup it is not known how many cycles

it will take till the first interrupt appears. By using a non-deterministic variable it is

made sure that the state space is searched for all possible values in the interval.

The checking whether the interrupt handler needs to be called is implemented in

the interrupt wrapper function periodic_interrupt. This function is called after

each C statement of the original program and therefore at the beginning the variable

statement_counter is incremented (line 10 in Figure 4.11). When the statement

counter reaches the value of interrupt_period, the actual interrupt handler shown

in Figure 4.6(b) is called (line 12) and the counter is set back to zero (line 13).

The transformed example application (cf. Figure 4.7) for interrupts is shown in Fig-

ure 4.12. At the beginning of the program, the function initialize_interrupt is

called (line 3). Afterwards, a call to the interrupt handler for PIM periodic_interrupt

has been added between eachC statement of the application. Depending on the chosen

interrupt distance interrupt_period and the actual executed statements n between

storing current_time (line 7) and checking the assertion in line 16, verification will

either pass or fail.

Discussion The main practical challenge for interrupt modeling is choosing the cor-

rect modeling style. POR has the advantage that it is easily applicable, without

additional knowledge about the modeled interrupts. It is a safe over-abstraction of

the actual interrupt behavior, as all possible interrupt occurrences are considered.

17Using a variable instead of a constant allows it to modify the period of the interrupts during
runtime.

4.5 Periodic Interrupt Modeling - Taking System Runtime into Account 77

1 unsigned int current time;
2 unsigned int min delay time, max delay time;
3 initialize interrupt();
4 ...//Initialization
5 while (1) {
6 periodic interrupt();
7 current time = clock time();
8 periodic interrupt();
9 statement 1;

10 periodic interrupt();
11 statement 2;
12 ...
13 periodic interrupt();
14 statement n;
15 periodic interrupt();
16 assert(((current time + min delay time) <= clock time()) &&
17 (clock time() < (current time + max delay time)));
18 }

Figure 4.12: Example application transformed using PIM.

This means when an application passes verification with POR it can be assumed safe.

However, POR leads to executions, which are not existing on the real system and can

lead to assertions which cannot be verified, as discussed in Section 4.4.2.

Verification using PIM is more accurate as the interval of interrupt occurrences is

considered and can be applied to periodically occurring interrupts. Therefore it is

possible to verify applications, which rely on a specific number of interrupts. Assertions

can be proven, which check that a certain number of interrupts occurred. One practical

challenge when applying PIM is calculating the period in which interrupts occur and

translating them to the number of C statements. The occurrence of periodic interrupts

is usually defined by a sampling time e.g. for sensors or the period of a watchdog timer.

Based on the clock frequency of the processor running the application, it can be easily

calculated after how many processor clock cycles a periodic interrupt occurs. Mapping

these clock cycles onto C statements is however not easily possible, as each statement

can be mapped onto several assembler commands. Each assembler statement can then

take a varying number of clock cycles. The specified interrupt period can therefore

always only be an estimate.

Although PIM has been introduced in the context of Contiki , the method can be

applied to all kinds of embedded software relying on periodic interrupts. However,

a typical scenario that highlights the importance of correct interrupt modeling is the

event-driven kernel of Contiki , as the modeling of interrupts has a direct influence on

the order in which processes are executed.

78 4 Modeling an Embedded System Running Contiki for Verification

Furthermore, it has to be noted, that in this thesis only systems with one active inter-

rupt are considered. In principle, both PIM and POR can be extended to be used to-

gether with multiple interrupts. For PIM the interrupt wrapper periodic_interrupt

shown in Figure 4.11 can be extended to handle multiple interrupts, by introducing

different interrupt periods for each periodic interrupt. The POR based approach can

handle multiple interrupts independently by adding calls to program locations, where

the interrupts affect the program behavior. As shown in [KLM+15], further challenges

such as interrupt priorities have to be considered, when dealing with multiple inter-

rupts. Furthermore, verification times increase significantly when considering multiple

interrupts.

5
Chapter 5

Model Checking and

Verification Flow

This chapter describes, which steps are necessary to verify a Contiki application using

the model checking tool CBMC. The general idea of the model checking approach is

to treat the C-based hardware description of the system, the operating system source

code, and the source code of the applications as input to the model checker. Section 5.1

explains, which parameters are used for model checking and how loop unwinding is

performed for the Contiki system. The in this thesis developed verification framework

for Contiki applications is presented in Section 5.2. This framework can then be used

to compare the POR and PIM interrupt modeling approach (see Chapter 6). Finally,

in Section 5.3 it is discussed how the verification framework can be applied for test

case generation.

In the overall model checking process, described in Section 2.2.1, this corresponds to

the running phase, as it is described how the model checking tool CBMC is used and

which parameters are being set.

5.1 Bounded Model Checking and Setting Loop

Bounds

When applying BMC a bound for unwinding loops has to be set, as described in

Section 2.2.4. This bound determines how often a loop can be executed and therefore

limits the search within the state space. It has a direct influence on the size of the

resulting SAT formula.

When using the CBMC tool for trivial examples no bound must be set as CBMC can

determine - using static analysis - the number of needed loops unwindings. However,

80 5 Model Checking and Verification Flow

this is not possible in general, especially for cases where the bound depends on the

value of a non-deterministic input variable. Furthermore, in many applications and

especially embedded systems, unbounded loops exist as periodic tasks are performed,

which do not terminate. Determining a sufficient bound, which includes all possible

system behaviors, corresponds to finding a completeness threshold for bounded model

checking. This is a hard problem as already discussed in 2.2.3.

Other approaches to extend BMC to prove completeness with induction based tech-

niques are shown amongst others in [SSS00], [GLD10] and [DHKR11]. However, as

induction requires a certain depth for the loop unwinding of an infinite loop, which

shall be handled, these approaches suffer also from the state space explosion problem

and are probably not suited for the verification of realistic Contiki applications. A

further examination regarding their performance and applicability is out of scope for

this work.

5.1.1 Unbounded Loops in Contiki

In the Contiki operating system, the main loop of the kernel is unbounded, as the

system shall run endlessly. The execution of Contiki with all applications running

on the system can be seen as a sequential program, whose length can by restricted

by setting the number of unwindings of the main scheduler loop, which controls the

number of events processed in the system. In Contiki , only one application is run-

ning at a time, which is possible due to the use of cooperative multitasking, and the

protothread programming model, where applications are written in a cooperative way

using PROCESS macros.

In Contiki , all loops, except the main scheduler loop in the kernel, must terminate

after some time, as they would otherwise block the kernel from starting other pro-

cesses. Therefore, Contiki application processes must cooperatively return control to

the kernel, so that other processes can run18. As already discussed in Section 3.4 and

shown in Figure 3.4 it is possible to suspend applications using local continuations,

whereby the return point of the application is stored and later used to resume the

application.

As an example, consider the Contiki application in Figure 5.1. In this application, an

event timer is set and it waits for a time of one second till the timer expires using the

PROCESS_WAIT_EVENT_UNTIL macro. The original code written by the user is shown in

Figure 5.1(a) and the code after expansion of the protothread macros in Figure 5.1(b).

The while(1) loop in lines 8-11, Figure 5.1(a), always terminates after 1 iteration

18By inspecting the number of loop unwindings for an application as shown in Section 5.1.2 it can
be detected that an application does not return control to the kernel.

5.1 Bounded Model Checking and Setting Loop Bounds 81

1 #include ”contiki.h”
2 PROCESS(loop process, ”loop”);
3 AUTOSTART PROCESSES(&loop process);
4 PROCESS THREAD(loop process, ev, data)
5 {
6 PROCESS BEGIN();
7 static struct etimer et;
8 while(1) {
9 etimer set(&et, CLOCK SECOND);

10 PROCESS WAIT EVENT UNTIL(etimer expired(&et));
11 }
12 PROCESS END();
13 }

(a) Original application with a seemingly unbounded loop.

1 #include ”contiki.h”
2 PROCESS(loop process, ”loop”);
3 AUTOSTART PROCESSES(&loop process);
4 PROCESS THREAD(loop process, ev, data)
5 {
6 PROCESS BEGIN();
7 static struct etimer et;
8 while(1) {
9 etimer set(&et, CLOCK SECOND);

10 do {
11 PT YIELD FLAG = 0;
12 (process pt)−>lc = 10; case 10:;
13 if((PT YIELD FLAG == 0) || !(etimer expired(&et))) {
14 return 1;
15 }
16 } while(0)
17 }
18 PROCESS END();
19 }

(b) Application with PROCESS_WAIT_EVENT_UNTIL macro expanded.

Figure 5.1: Contiki LED API and implementations for hardware access and verifica-
tion.

82 5 Model Checking and Verification Flow

Process 1 Process 2 Kernel

t

Interrupt

Main loop
unwinding n

Main loop
unwinding n+1

Invoke process with event

Invoke process with event

Process returns

Process returns

Invoke process with event

Figure 5.2: Unwinding of loops and restriction of the overall main loop unwinding.

due to the return statement in line 14 of Figure 5.1(b). The program is resumed at

the point of the case-statement in line 12 when the application is invoked using an

event, by using the local continuation stored in this line. The label 10 used in the

case-statement is derived from the original line number of the protothread macro in

Figure 5.1(a). When the condition is not fulfilled the application returns (line 14).

Due to the addition of return-statements in the protothread macros, the seemingly

unbounded loops within Contiki processes are actually bound.

Under the assumption, that all Contiki processes are bounded due to the use of pro-

tothreads (i.e. they will always give control back to the kernel), it is possible to verify

the applications running on a Contiki system by bounding only the main loop of the

Contiki scheduler. This corresponds to restricting the while-loop in line 6 in Algo-

rithm 3.1 shown in Section 3.3. By bounding the unwindings of the main loop it is

possible to set the unwinding depth at a global point, without modification of the

applications, which are verified. In Figure 5.2 the general loop unwinding principle is

depicted. With each additional unwinding, another event can be executed from the

event queue and therefore the search depth for the verification is increased.

5.1 Bounded Model Checking and Setting Loop Bounds 83

5.1.2 Setting Bounds

To verify an application with BMC and to determine the bounds for unwinding loops

(unwinding depth cf. Section 2.2.4) Algorithm 5.1 is applied. This is possible as the

CBMC tool allows it to set individual loop unwindings for each loop in the system.

For the description of the algorithm the following definitions are used:

Definition 5.1. A loop unwinding is a tuple U = ⟨uname, udepth⟩ where

• uname gives the name of the loop. Each loop in the program has a unique name.

• udepth ∈ N determines the unwinding depth, i.e. the maximum number of times

the loop can be executed.

Definition 5.2. A list of all loop unwinding tuples U belonging to a Contiki system

is denoted by U .

1 U ←getLoops() ; /* Get a set of all loops in the system and assign it to the list of

loop unwinding tuples */

2 foreach U ∈ U do
3 U.udepth ← 1 ; /* Set initial unwinding limit */

4 while (true) do
5 BMCResult← RunBMC(U) ; /* Run model checking tool with current

unwinding */

6 if BMCResult = Unwinding assertion failed then
7 foreach U ∈ U do
8 if U.uname = Name of failed unwinding assertion then
9 U.udepth ← U.udepth + 1 ; /* Increment unwinding bound for

failed assertion */

10 if U.udepth > Loop unwinding limit then
11 return Verification failed

12 else if BMCResult = Program assertion fails then
13 return BMCResult ; /* Return counterexample */

14 else if BMCResult = Verification successful then
15 return Verification successful

Algorithm 5.1: Pseudocode algorithm for running CBMC and unwinding
loops.

In line 1 of Algorithm 5.1 the list U is declared and initialized with the list of all loops

in the program, which is requested from the model checking tool and determined using

a static code analysis. Afterwards an initial loop unwinding bound is set in line 2 for

84 5 Model Checking and Verification Flow

all loops. After this initialization the actual verification is performed in the while

loop from line 4 - 15 until verification fails or succeeds. Thereby, the model checking

tool is started repeatedly (line 5) using the current loop unwindings U . Three cases

are possible when running the model checker:

• Case 1: Verification ends with a failing unwinding assertion (line 6). In this

case, the unwinding depth for this loop is incremented (lines 7 - 9) and the model

checker is started again. However, when a global loop unwinding limit is reached

for unwinding, verification is canceled (lines 10-11).

• Case 2: Verification ends with an assertion failing, which is not an unwinding

assertion (line 12). In this case, a counterexample is returned, which leads to a

violation of a property. As loops are incremented only by one, the counterexam-

ple is also the shortest possible counterexample.

• Case 3: Verification succeeds with no assertion failing (line 14).

As the main loop of the Contiki kernel is restricted, the algorithm terminates with

either a failing assertion (case 2) or with no violated assertion (case 3), as long as

there is no process, which blocks the overall system, i.e. it does not return control to

the Contiki kernel (cf. Section 5.1.1). In case 1 the loop unwinding is increased till

a global loop unwinding limit is reached. This allows it to detect Contiki processes

that contain loops that require loop unwindings higher than the global loop unwinding

limit and are potentially blocking the system. When no such limit is set unwinding

would continue, in the case of an unlimited loop within a process, until the model

checking tool would run out of memory, i.e. the verification would not terminate. If

verification fails, because the unwinding limit is reached, then the loop that reaches

the limit has to be inspected, to check whether the unwinding limit is not sufficient or

the loop actually blocks the system.

From a practical point of view, an initialization of the loop tuples with an initial value

of 1 as shown in line 2 is often not needed. The initial number of loop unwindings

for bounded loops can be taken often from the application source code by manual

inspection. Furthermore, the result of the loop unwinding from one verification run

can be reused as a starting point for re-running the verification after fixing a bug in

the program.

However, the shown algorithm allows it to run the verification without any user inter-

action, except for setting the main loop bound and will determine the shortest possible

counterexample. Running the program with too many loop unwindings has no effect

on the verification result, but it increases the overall verification runtime.

5.1 Bounded Model Checking and Setting Loop Bounds 85

1 void interrupt wrapper(void)
2 {
3 int por count = 0;
4 while (por count < por limit) {
5 por count++
6 if (!nondet 0()){
7 timer interrupt();
8 }
9 else

10 return;
11 }
12 }

Figure 5.3: Restricting the number of possible interrupt calls for BMC when applying
POR.

5.1.3 Loop Unwinding and Interrupt Modeling

For the modeling of interrupts as discussed in Section 4.4 also loop unwinding has to

be considered. Similar to any other parts of the code, interrupts service routines can

contain loops. In contrast to normal code an ISR must exit as they would block the

complete system, leaving it in an unusable state. Typically, the code of ISRs have

a very short runtime, as they perform service tasks and should not suspend normal

system operations for a long time. When modeling interrupts, the calls to an ISR

are turned into a normal function call. Therefore, the loop unwinding algorithm as

described in Section 5.1.2 can be used and loops within interrupts will be unwound

normally.

A special case is the use of the POR interrupt modeling style. In this modeling style,

a safe over-abstraction of the system behavior is achieved by allowing an arbitrary

number of interrupt calls to occur (see Figure 4.10). Such a while(1) loop would,

however, make loop unwinding impossible: Unwinding assertions would always fail,

because always an execution path exists, in which the return statement cannot be

reached. Therefore, the while loop, must be restricted for BMC. In Figure 5.3 the

variable por_limit restricts the number of possible calls to the ISR which is modeled.

For POR however, it is still possible, that an interrupt might never occur as the call

to the actual ISR is guarded by a non-deterministic variable (lines 6-8 in Figure 5.3).

This leads to problems when the termination of a loop depends on the occurrence

of an interrupt. Such non-terminating loops can be detected by limiting the number

of possible loop unwindings, as presented in Algorithm 5.1. An example application

where this problem occurs is described in Section 6.4.

When using PIM no special measures for loop unwinding are necessary, as no additional

86 5 Model Checking and Verification Flow

�������������������

����������������
���������������������

����������������������

����������

����������������������

�������������������

�������������������

����������

����������������

���������������������

����������

������������

������������

�������������������

��������

��������������

���������

���������������

���������������

��������

��������������������������

���������������

�������������������������

�������������

���������

��������

�������

��������������

����

����
��������

�������

��������������

����

����
��������

�������

��������������

����

����
��������

�������

��������������

����

����

������������

�������������

Figure 5.4: Verification framework for Contiki applications.

loops are introduced in the interrupt wrapper functions (see Figure 4.11).

5.2 Verification Flow and Implemented Tools

Figure 5.4 shows an overview of the verification flow for Contiki applications, as imple-

mented in this work. The verification flow can be divided basically into three phases, a

Modeling and specification phase, a Compilation and interrupt instrumentation phase,

and a Verification execution phase. A description of the necessary steps and tools for

each phase and the level of automation is given in the following sections.

5.2.1 Modeling and Specification Phase

This phase requires the most manual effort that is spent to prepare the overall system

for verification. Starting from the specification and the use cases of the embedded

system assertions have to be derived, which shall be checked formally (cf. Section 4.2).

5.2 Verification Flow and Implemented Tools 87

Furthermore, the system model as input for the model checker must be built.

The system modeling and specification phase can therefore be split into three parts:

• Creation of an abstract hardware description of the verification platform and

the corresponding assertions. The hardware of the embedded system is modeled

by replacing drivers of hardware components with models suited for verification

written in C, which can include platform-dependent assertions. Additionally,

also models for system interrupt service routines must be written as shown in

Section 4.4. In this way a hardware platform is built, which can be reused

for several applications, making this process only necessary when new hardware

components are added to an embedded system (cf. Section 4.3 and Section 4.4).

The created models for such a platform can then be added to Contiki platforms

described in Section 3.5.

• Preparation of the user application: In this step, the Contiki applications written

using protothreads are adapted for verification. Application-dependent assertions

may be added, which are then verified together with automatically generated

assertions (cf. Section 4.2).

• Preparation of the Contiki kernel and system processes. In this step, the system

is configured so that only used drivers for an application are loaded19. Further-

more, Contiki-specific assertions can be added, which check the correct usage of

Contiki APIs. Depending on the application, additional checks e.g. for the size

of the event queue might be activated. Similar to the creation of the hardware

description the modeling process often needs only to be performed once for each

hardware platform (cf. Section 4.2).

From the verification point of view, the hardest part is to find the correct assertions

to be checked and to model the hardware at the level of abstraction needed to verify

the applications. When a verification platform was built, it can then be used to verify

different applications running on the same hardware.

From the application point of view the general restrictions for software model checking

described in Section 2.2.4 must be considered, especially regarding the supported C

standard libraries supported by CBMC. In all examples of Section 6 no modifications

were required. However, the complexity of the overall systems can make it necessary

to modify an application e.g. by reducing the number of loop iterations or the sizes of

buffers.

19When performing verification, a possible recursive call within the Contiki event timer was found,
which can not be restricted using the loop unwinding switches available by CBMC. This call
was manually unwound and guarded by an assertion, which, however, was not violated in any
experiment performed in Chapter 6. No other changes in the Contiki kernel and libraries have
been made.

88 5 Model Checking and Verification Flow

5.2.2 Compilation and Interrupt Instrumentation

After the source code has been prepared, it has to be compiled and instrumented

as shown in Figure 5.4. Therefore, CBMC provides a special compiler called goto-

cc, which can be used as a replacement for the GNU C Compiler (GCC) compiler,

that is often used to build Contiki executables. Therefore, in a first step using goto-

cc all sources needed for the verification of a Contiki system (verification platform

sources, application sources, and Contiki kernel system sources) are compiled into a

single executable for verification (a so-called goto-binary). This is comparable to the

normal flow for the creation of Contiki sensor node binaries, which are after compiling

transferred to the sensor node hardware.

The created goto-binary can be used as unaltered input for verification with CBMC.

However, when the system uses interrupts a second step for interrupt instrumentation

is necessary depending on the modeling style:

• POR based modeling: In this case, the implementation provided by CBMC,

which implements the POR algorithm of Bucur and Kwiatkowska, discussed

in Section 4.4.1, is used. For the transformation of the compiled goto-binary,

CBMC provides the goto-instrument tool. The ISR function has to be provided

as an argument, whereby calls to this function are added automatically in the

code at places where the execution of the program is influenced. It must be

noted, that the by CBMC provided implementation does not support calling

functions from within an ISR. Therefore, the functions of the Contiki kernel,

which are called within ISRs must be inlined manually. Otherwise, a function

call from the ISR could lead to a recursive call of the ISR, as the function could

again call an interrupt.

• PIM based modeling: In this case, the pre-processed code of a goto-binary is

dumped as C code and used as input for a Python-based program, which per-

forms the transformation for PIM as described in Section 4.5. As the imple-

mentation works on the pre-processed code of the goto-cc compiler, the imple-

mentation of the transformation is simplified. The code only uses a subset of C

statements where e.g. switch statements have been removed. The resulting code

of the transformation is then translated back into a goto-binary and is used for

verification. Similar to the interrupt instrumentation with POR, function calls

within an ISR must be inlined, so that no recursive ISR calls occur.

All compilation steps have been implemented using make-files and scripts and can

be performed completely automatically so that no user interaction is necessary. The

parameters, which must be provided for transforming the program are the names of

the ISRs, as well as the number of interrupts in the case of POR and the interrupt

5.3 Test Case Generation Using Bounded Model Checking 89

period in case of PIM. The so build goto-binary is used as input for verification in the

next step.

5.2.3 Verification Execution

During the verification execution phase shown in Figure 5.4 the goto-binaries generated

in the compilation and interrupt instrumentation phase (cf. Section 5.2.2) are used

as input for CBMC. The model checker is started repeatedly to perform the actual

verification using the BMC algorithm. When running CBMC, verification parameters

must be set, such as the loop unwinding, the kind of system architecture20, as well

as backend options like the used SAT solver. Furthermore, the type of the assertions,

which are generated automatically by CBMC can be chosen (cf. Section 2.2.4 and

Section 4.2).

The algorithm to perform loop unwinding described in Section 5.1.2 has been imple-

mented in a Python program, which allows it to start CBMC automatically. Verifica-

tion stops when an assertion violation within the program is found or the main loop

is unwound to the specified limit and no bugs were found. In the case of a failing

assertion, a counterexample is generated. It has to be examined, to find out and un-

derstand, whether the error is a problem introduced due to inaccurate modeling or a

real problem within the system. After a modeling problem has been fixed, verification

can be repeated. Depending on the location of the problem the already used looped

unwinding set can be reused (cf. Algorithm 5.1).

The third possible outcome of verification is the hardest to tackle: Verification takes

“too long” or CBMC runs “out of memory”21. In this case, the application size must

be reduced e.g. by restricting the sizes of arrays or by simplifying the application.

5.3 Test Case Generation Using Bounded Model

Checking

SAT-based test case generation has been a standard technique for generating test pat-

terns to detect faults in digital circuits for a long time [SBSV96] and is comparable

to the use of BMC for safety properties. BMC is able to generate minimal counterex-

amples to properties, when the search space bound k gets incremented one by one

20CBMC supports, amongst others, different kinds of bit-widths for integers, modes for floating point
calculations and endianness settings.

21In all experiments performed in this work (see Chapter 6) no “out of memory”-error occurred, as
verification was stopped before, due to long runtimes.

90 5 Model Checking and Verification Flow

starting from an initial state (see Section 2.2.3). Such a counterexample can be also

seen as a test case, as it contains an execution trace, which brings the system into a

certain state. Therefore, BMC can be used to generate test cases by specifying the

system state, which shall be covered using an assertion.

Test cases for software can be useful for different purposes, e.g. for reaching coverage

criteria for certain safety certifications [RUPP12]. In the context of Contiki applica-

tions, test case generation can be useful for debugging and understanding a system,

as questions like: “How might a certain register achieve it’s value?” or “Which input

values lead to turning on the LED?” can be answered. This is especially useful in

combination with virtual prototypes of the system hardware (see Section 2.1.1). On

a virtual prototype, the generated test case trace can be further simulated to better

understand the system behavior.

To perform test case generation a certain code section, which shall be reached by

the test case must be marked in the code. When using CBMC, this can be done by

adding an assert(0) statement at the location. The model checker will then try to

find a counterexample to violate the assertion. If this assertion can be violated, the

counterexample states all inputs, which have to be applied to the system to reach the

marked code segment.

Performing the steps described in Section 5.2, test case generation can be performed

similarly to proofing that an assertion must not be violated. In contrast to verification,

the goal, however, is to generate a counterexample. As BMC is used, the generated

counterexample trace is minimal regarding the number of loop iterations, when the

loop unwinding begins from 0 for all loops.

Similarly to verification also test case generation has to consider how interrupts occur

within a system and the corresponding interrupt modeling style.

• POR is not suited for test case generation when applied for a system, which

used periodically occurring interrupts e.g. for modeling timers. The notion that

an interrupt can occur at any time (cf. Section 4.4.2), and with no specified

interval leads to test cases, which cannot be reproduced on real hardware or in

a simulation.

• In contrast PIM accurately models the occurrences of interrupts (cf. Section 4.5).

The generated test cases are realistic regarding the timing behavior and therefore

the behavior of the real system hardware.

An example of test case generation for Contiki applications is given in Section 6.6.

6
Chapter 6

Verification of Contiki

Applications

This chapter demonstrates how Contiki applications can be verified based on the

verification approach described in Chapter 4 and Chapter 5. At this, special attention

is paid on comparing the different interrupt modeling techniques. From the model

checking process, this chapter corresponds to the running phase and especially the

analysis phase, as the results of running the model checker are analyzed and presented.

All shown examples are based on real-world applications, which were run on a TI-

MSP430 based microcontroller, as supported by Contiki with additional drivers added

for LCD and acceleration sensors. In total five example applications were examined,

which are either part of the Contiki open source release or applications developed for

the embedded system platform:

• Hello World example (part of Contiki): The “Hello World” application demon-

strates the general way of verifying Contiki applications.

• LED Blink example (part of Contiki): This is the example application described

in Section 3.2, which uses the event timer system together with interrupts.

• LED Fader example (part of Contiki): This is a more complex application, where

the LED of an embedded system fades using interrupts. This example also uses

busy waiting.

• Bubble sort with LCD example: The application demonstrates how an algorithm

can be verified by model checking using non-deterministic inputs and custom

assertion. In addition, the use of platform-specific assertions and user-defined

assertions is shown.

• 3-axis acceleration sensor: Here, the Contiki sensor system works together with

interrupts to periodically collect data from a sensor. It is also shown how model

92 6 Verification of Contiki Applications

checking can be used for test-case generation.

As already noted the examples were originally executed on the Contiki target for the

MSP430 platform. To verify the examples using CBMC, a verification platform was

built as described in in Chapter 4 and shown in Figure 4.1. Therefore, the drivers

needed to run the applications in the original hardware platform were replaced with

abstract models for verification. The actual implementation of the verification plat-

form is based on the Contiki native hardware platform, which is included in the Contiki

release and allows it to run Contiki applications under Linux to test hardware inde-

pendent applications. Based on this platform the driver models, which are used within

the applications were added including a model of the timer interrupt.

This chapter is structured as follows. In Section 6.1 the setup for the verification and

the used parameters are explained. In Section 6.2-6.6 the verification results for each

application are shown. A summary and discussion of the verification results is given

in Section 6.7.

6.1 Experimental Setup

All verification runs were performed using CBMC tool version 4.9 on Red Hat Enter-

prise Linux 7 running on a DELL PowerEdge R630 server with 2 Intel Xeon E5-2637v3

processors (4 cores with 3.5 GHz and 15MB cache) and 512 Gb RAM. The shown ver-

ification times always refer to a run with all internal loops of an application already

unwound so that no unwinding assertions occur (see Section 5.1). Only the execution

of the main Contiki scheduler loop is limited to the given value. The number of times

this loop is unwound, therefore, limits the search space of the system and the depth

within which bugs can be found.

When using the partial order reduction based interrupt modeling style the maximum

number of possible interrupt occurrences is stated. For the experiments, the number

was set exemplarily to POR=2 and POR=10 to show the influence on the runtime.

Similarly, when using periodic interrupt modeling the distance between interrupt oc-

currences is stated in the number of C-statements as described in Section 4.5. For the

experiments, values of PIM=2 and PIM=200 were chosen exemplarily. To automat-

ically generate the PIM and POR version of the application and to run CBMC, the

verification flow described in Section 5.2 was used.

For automatically generated assertions the pointer check and division by zero checks

were activated (see Section 2.2.4). In addition, unwinding assertions were always

activated making sure that all loops were unwound sufficiently. Furthermore, the bit-

width for integer variables was set to 16-bit. Lines of code for applications refer to the

6.2 Hello World Application 93

1 PROCESS(hello world process, ”Hello world process”);
2 AUTOSTART PROCESSES(&hello world process);
3
4 PROCESS THREAD(hello world process, ev, data)
5 {
6 PROCESS BEGIN();
7 printf(”Hello, world\n”);
8 PROCESS END();
9 }

Figure 6.1: The Hello World application.

application before transformation with POR or PIM, as reported by the CBMC tool.

The shown verification times are split into unwinding/preprocessing time as well as

SAT solving time. SAT solving time is reported by the CBMC tool directly. The

sum of these two times is the overall verification time needed for the specific CBMC

invocation.

The size of the program expression is the size of the program after unwinding of

loops given in steps of the static single assignment form (see Section 2.2.4), before

simplification and generation of the SAT formula are performed. The size of the SAT

formula is given by clauses and variables when using the MiniSAT solver backend of

CBMC.

6.2 Hello World Application

The first example to be examined is a simple Hello World application, running on

the verification platform. The source code of this application is shown in Figure 6.1.

The application does not use any special hardware drivers and neither the event timer

system. Furthermore, it only consists of one Contiki process, which runs after the

invocation to completion. The application can therefore be seen as a simple test,

which checks the correctness of the Contiki kernel, to make sure that no programming

errors are present (at least for a system executing no other processes). Although no

interrupts are used by this application, the verification platform is still configured to

use interrupts. Therefore, interrupts are modeled using the PIM and the POR based

approaches. The process function of the transformed Hello World application for

POR and PIM is respectively shown in Appendix A.1.1 and A.1.2. It can be seen that

for POR no calls to an ISR are necessary, as the program doesn’t interact with any

program variables used by interrupts. In the case of PIM, the statement counter has

to be increased after each call, therefore making it necessary to call the corresponding

94 6 Verification of Contiki Applications

interrupt wrapper. It has to be noted, that only the transformed function of the

application process is shown. To verify the program also the Contiki kernel is used

together with the driver models for the verification platform.

Verification results The verification results are shown in Table 6.1 for checking

automatically generated assertions. The complete verified application including the

Contiki kernel has a size 424 of lines of code, 680 automatically generated assertions

were checked. No errors were found in the program, which is expected as the applica-

tion is very simple and the Contiki source code mature. Overall verification times are

short and it takes only some seconds to verify the program.

When comparing the verification times and SAT problem size for PIM it can be seen,

that the size of the SAT problem is basically identical for different chosen interrupt

periods of 2 and 200 statements. This behavior is expected as the program size after

unwinding is the same and the only difference in the programs are the check on the

number of statements when an interrupt occurs (see Section 4.5).

When using POR and comparing the results for a maximum of 2 and 10 possible inter-

rupt occurrences an increase in runtime number of program steps (and SAT problem

size) can be seen. The reason is that the state space increases significantly with the

number of possible interrupt executions, as the loop, which limits the possible number

of interrupt execution has to further be unwound (see Figure 5.3).

A special case happens when looking at verification times with increasing main loop

unwindings. In Table 6.1 it can be seen that with increasing the number of possible

main loop unwindings (1 vs. 5), verification time and SAT problem size is constant

for both interrupt modeling styles and corresponding parameters. When analyzing in

detail the output messages generated by the CBMC tool during a preprocessing process

for the program an increasing number of statements is removed from the program by

static analysis leading to an only slight increase in the size of the program expression

steps. This is possible, as the Hello World program is executed only once during

the first main loop unwinding, where it runs to completion and the Contiki process

ends. For further main loop unwindings, no process is running in the system as the

application has finished.

6.3 LED Blink Application

This example shows verification results for the LED Blink example introduced and

extensively discussed in Section 3.2. In contrast to the Hello World example in Sec-

tion 6.2, this application uses the event timer system and the Contiki LED API. It is

6.3 LED Blink Application 95

li
n
es

of
co
d
e

42
4

n
u
m
b
er

of
as
se
rt
io
n
s

68
0

m
ai
n
lo
o
p
u
n
w
in
d
in
gs

1
5

in
te
rr
u
p
t
m
o
d
el
in
g
st
y
le

P
O
R

P
O
R

P
IM

P
IM

P
O
R

P
O
R

P
IM

P
IM

m
ax

.
n
u
m
b
er

o
f
ti
m
er

in
te
rr
u
p
ts

2
10

-
-

2
10

-
-

ti
m
er

in
te
rr
u
p
t
p
er
io
d

-
-

2
20

0
-

-
2

20
0

p
ro
gr
a
m

ex
p
re
ss
io
n
st
ep
s

4,
56

8
11

,6
88

11
,3
62

11
,3
62

4,
61

6
11

,7
36

11
,9
50

11
,9
50

va
ri
ab

le
s

87
,1
25

31
3,
90

7
11

9,
35

7
11

9,
35

5
87

,1
25

31
3,
90

7
11

9,
35

7
11

9,
35

5
cl
au

se
s

20
1,
66

1
97

4,
12

4
32

8,
51

9
32

8,
51

3
20

1,
66

1
97

4,
12

4
32

8,
51

9
32

8,
51

3
u
n
w
in
d
in
g
an

d
p
re
p
ro
ce
ss
in
g
in

se
co
n
d
s

0.
57

2
3.
30

0
1.
03

7
0.
98

8
0.
61

3
3.
14

3
1.
10

9
1.
18

3
S
A
T

so
lv
in
g
in

se
co
n
d
s

0.
34

2
2.
17

0
0.
22

0
0.
20

5
0.
36

9
2.
10

7
0.
20

6
0.
21

7

T
ab

le
6.
1:

V
er
ifi
ca
ti
on

ti
m
es

an
d
p
ro
b
le
m

si
ze
s
fo
r
H
el
lo

W
or
ld

ex
am

p
le

ve
ri
fy
in
g
au

to
m
at
ic
al
ly

ge
n
er
at
ed

as
se
rt
io
n
s.

96 6 Verification of Contiki Applications

0

10000

20000

30000

40000

50000

60000

1 2 3 4

T
im

e
 in

 s

Main loop unwindings

Verification time total POR, max 2 interrupts

Verification time total POR, max 10 interrupts

Verification time total PIM, 2 interrupt period

Verification time total PIM, 200 interrupt period

Figure 6.2: Verification times for increasing main loop unwinding for the LED Blink
example, verifying automatically generated assertions for POR and PIM.

a typical Contiki application, which performs a task periodically.

Verification results Detailed verification results for the LED Blink example are

given in Table 6.2. Although the size of the program and the number of assertions

to be checked is quite similar to the Hello World example the verification results and

times differ. Verification times are mostly in the range of several minutes and can go

up to several hours for larger main loop unwindings.

In Figure 6.2 the overall verification times with increasing main loop unwindings are

shown for POR and PIM modeling style. In contrast to the Hello World example,

when increasing the main loop unwindings the overall verification time increases with

each unwinding of the main loop. With each main loop unwinding the LED Blink

application is called from the Contiki kernel, and a potentially different behavior

might occur. When doubling the main loop unwinding it can be seen that the program

expression steps also nearly double. For this example, CBMC is not able to detect

automatically, whether further loop unwindings are needed to check the correctness of

the program.

Similar to the verification results for the Hello World example the interval of inter-

rupts, when using a PIM based modeling has no effect on the verification time and

6.3 LED Blink Application 97

li
n
es

of
co
d
e

43
3

n
u
m
b
er

of
as
se
rt
io
n
s

69
2

m
ai
n
lo
o
p
u
n
w
in
d
in
g

2
4

in
te
rr
u
p
t
m
o
d
el
in
g
st
y
le

P
O
R

P
O
R

P
IM

P
IM

P
O
R

P
O
R

P
IM

P
IM

m
ax

.
n
u
m
b
er

of
ti
m
er

in
te
rr
u
p
ts

2
10

-
-

2
10

-
-

ti
m
er

in
te
rr
u
p
t
p
er
io
d

-
-

2
20

0
-

-
2

2
0
0

p
ro
gr
a
m

ex
p
re
ss
io
n
st
ep
s

11
6,
32

4
33

6,
00

5
99

0,
27

2
99

0,
27

2
22

8,
54

4
65

6,
96

9
1,
94

0,
4
4
6

1
,9
4
0
,4
4
6

va
ri
ab

le
s

9,
42

1,
67

5
16

,7
31

,0
45

12
,6
52

,2
30

12
,6
52

,2
28

22
,7
14

,6
69

37
,3
96

,5
27

26
,9
51

,1
4
8

2
6
,9
5
1
,1
4
6

cl
a
u
se
s

38
,4
22

,3
98

64
,1
95

,7
91

44
,9
88

,9
81

44
,9
88

,9
75

94
,9
16

,6
88

14
7,
21

6,
75

9
98

,4
33

,7
9
5

9
8
,4
3
3
,7
8
9

u
n
w
in
d
in
g
an

d
p
re
p
ro
ce
ss
in
g
in

se
co
n
d
s

50
3.
82

5,
34

0.
14

8,
82

3.
07

8,
57

0.
22

1,
90

0.
96

19
,0
11

.1
0

34
,5
01

.5
8

3
3
,8
3
1
.1
3

S
A
T

so
lv
in
g
in

se
co
n
d
s

20
1.
95

3,
02

0.
30

28
0.
19

27
7.
98

78
0.
37

33
,5
86

.8
0

91
5.
9
6

9
4
0
.9
7

T
ab

le
6.
2:

V
er
ifi
ca
ti
on

ti
m
es

an
d
p
ro
b
le
m

si
ze
s
fo
r
L
E
D

B
li
n
k
ex
am

p
le

ve
ri
fy
in
g
au

to
m
at
ic
al
ly

ge
n
er
at
ed

as
se
rt
io
n
s.

98 6 Verification of Contiki Applications

0

10000

20000

30000

40000

50000

60000

1 2 3 4

T
im

e
 in

 s

Main loop unwindings

Verification time total POR with assertions, max 10 interrupts

Verification time total POR without assertions, max 10 interrupts

Verification time total PIM with assertions, 200 interrupt period

Verification time total PIM without assertions, 200 interrupt period

Figure 6.3: Verification times for increasing main loop unwinding for the LED Blink
example, comparing automatically generated assertions with no assertions
for POR and PIM.

size of generated SAT problem. For the POR interrupt modeling style the number

of possible interrupts increases the verification time significantly, leading to longer

verification times than when using the PIM approach. This example shows that the

number of possible interrupts leads for POR to a significant increase in verification

times, and possibly making it slower than the PIM approach.

The influence on the verification time of adding automatically generated assertions,

compared to no assertions (only loop unwinding) is shown in Figure 6.3. For POR, a

significant increase of verification time for automatically generated assertions can be

seen, especially in the case of a larger number of main loop unwindings. For PIM the

influence of automatically generated assertions is only small.

In Figures 6.4-6.7 it is shown how much time is spent by CBMC in the SAT solving

phase and for unwinding the program and preprocessing the formula. For POR with

a maximum of 2 interrupts it can be seen that most of the verification time is spent

in the loop unwinding phase. However, for 10 interrupts and increasing main loop

unwindings SAT solving takes more and more time. With 3 main loop unwindings

about half the verification time is spent in unwinding and half in SAT solving. With

the main loop unwinding of 4 about two third of the verification time is spent for SAT

6.3 LED Blink Application 99

0

500

1000

1500

2000

2500

3000

1 2 3 4

T
im

e
 in

 s

Main loop unwindings

Total time

Loop unwinding time

Sat solving time

Figure 6.4: Verification times split into SAT solving and loop unwinding for increasing
main loop unwinding for the LED Blink example, with POR = 2.

0

10000

20000

30000

40000

50000

60000

1 2 3 4

T
im

e
 in

 s

Main loop unwindings

Total time

Loop unwinding time

Sat solving time

Figure 6.5: Verification times split into SAT solving and loop unwinding for increasing
main loop unwinding for the LED Blink example, with POR = 10.

100 6 Verification of Contiki Applications

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4

T
im

e
 in

 s

Main loop unwindings

Total time

Loop unwinding time

Sat solving time

Figure 6.6: Verification times split into SAT solving and loop unwinding for increasing
main loop unwinding for the LED Blink example, with PIM = 2.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4

T
im

e
 in

 s

Main loop unwindings

Total time

Loop unwinding time

Sat solving time

Figure 6.7: Verification times split into SAT solving and loop unwinding for increasing
main loop unwinding for the LED Blink example, with PIM = 200.

6.3 LED Blink Application 101

solving. The formula is becoming so large that efficient solving is not anymore possible

and SAT solving gets the bottleneck in verification.

For PIM, however, most of the time is spent in preprocessing and only a small amount

of time in SAT solving. This result is interesting, as overall verification times between

PIM and POR seem similar. For POR most time is spent in SAT solving as when

using PIM the main time is spent in loop unwinding. The reason is, that for PIM the

initially unrolled program is much larger as there are more statements in the program

after interrupt instrumentation compared to POR (a possible interrupt call is added

after each statement). Processing this program into a SAT formula therefore takes

more time than in the case of POR. This process is however very efficient, although

the program expression in the case of PIM is about 3 times larger than for POR with

10 interrupts, the resulting formula is actually smaller and therefore SAT solving faster

than for POR.

The comparison shows that the size of the unwound program is not a measure to

judge the actual runtime. Even the much larger program generated for PIM can be

efficiently reduced. It shows when a larger number of interrupt occurrences has to be

considered that the PIM approach can be faster than the POR approach.

Overflow of the event queue So far only automatically generated assertions were

verified. To demonstrate that the verification of a timing related property is not

possible using POR (assertions which rely on the number of interrupts called as de-

scribed in Section 4.4) the LED Blink application was slightly modified (see Sec-

tion A.1.3). Instead of creating 1 event timer in the original LED Blink application

4 event timers are used, which trigger the blinking of the LED. The property which

shall be proven is that the size of the Contiki event queue is sufficient, meaning that

when |EMaxEvents| = MaxEvents no new event is generated. Therefore an event queue

full assertion was added to the Contiki kernel, which verifies that no event is posted

when the queue is full. When the queue is full posting new events is not anymore

possible, having severe consequences on the overall system. The implementation of

the assertion is shown in Figure 4.2(b) and discussed in Section 4.2.

The system was configured to a MaxEvents of 1, i.e. only one event timer can be

waiting in the system to be processed. When checking this property with POR it

was configured, so that at least 4 interrupts can occur, so that all event timers can

be triggered. However, in this case, the event queue can be full, as it is possible that

all interrupts trigger at the same time, which is not possible on the real system (see

Section 4.5). Therefore, when trying to verify this application with POR verification

fails, as the event queue full assertion can be violated with a counterexample. The

cause is that POR over-abstracts the interrupt behavior, so that interrupts can occur

102 6 Verification of Contiki Applications

main loop unwinding 2
interrupt modeling style PIM POR

max. number of timer interrupts - 10
timer interrupt period 200 -

program expression steps 1,540,627 394,515
variables 28,898,788 15,598,988
clauses 108,029,589 61,145,896

unwinding and preprocessing in seconds 23,825 8,418 1

SAT solving in seconds 1,121 4,423 1

1 Time for generating a counterexample

Table 6.3: Verification time and problem size for the LED Blink example with event
queue full assertion.

consecutively. The generated counterexample, however, can never occur on a real

system leading to a false positive - a counterexample, which is not possible on the real

hardware and is caused by imprecise modeling. These counterexamples are hard to

recognize and lead to an additional debugging effort.

In contrast, when using PIM with an interrupt period of 200 statements, verification

passes, as enough time exists for events of the event timer system to be processed

before another timer event occurs. However, when choosing a too small period of

interrupts in the case of PIM it is also possible, that the event queue full assertion

fails. This example demonstrates the usefulness of the PIM approach, and that it can

be applied to real-world systems.

In Table 6.3 the results are summarized. These results show that for this application

it is possible in reasonable time to find a counterexample in the POR case, whereas for

PIM no counterexample exists, as the property does not get violated. Furthermore,

this application demonstrates, that it is very hard to predict the SAT solving perfor-

mance. In the PIM case the formula for SAT solving is larger with regard to variables

and clauses, still solving is faster than for POR, where a counterexample exists.

6.4 LED Fader Application

The LED Fader application is also part of the base Contiki examples and periodically

fades-in and fades-out an LED of an embedded system. It demonstrates the use of the

protothreads programming model to spawn and resume processes. The source code of

the application is shown in Appendix A.1.4. In this application protothreads with the

PT_* macros are used (cf. Section 3.4 and Appendix A.2) and both the timer system

(where no event is created when a timer expires), as well as the event timer system

are used.

6.4 LED Fader Application 103

Furthermore, in this application, interrupts play an important role, as busy waiting

is performed to wait for an event. Therefore, when not modeling interrupts correctly

the application may not terminate.

The application uses two protothreads called fade_in (lines 19-35) and fade_out

(lines 37-53). The brightness of the LED is adjusted by switching a LED on and

off, where the time the LED is switched on either increases (fade_in) or decreases

(fade_out). A for loop is used to call the Contiki function clock_delay, which

delays the system a certain number of clock cycles. The two protothreads fade_in

and fade_out are controlled by a protothread fade (lines 55-70), which first calls the

fade_in protothread and afterwards the fade_out protothread . The protothread call

using PT_SPAWN is blocking and only returns when the spawned protothread exits (in

contrast to PT_SCHEDULE, which calls a protothread and returns when the spawned

process yields). Therefore, first, the fade_in protothread increases the brightness of

the LED and afterwards, fade_out decreases the brightness of the LED. Afterwards,

the fade thread is suspended for a time period using the event timer system (lines

65-66) and afterwards returns to call fade_in and fade_out using a while loop.

The main process of the application (fader_process) is shown in lines 81-116. To

allow reuse of the protothreads fade_in, fade_out for different LED colors, the pro-

tothread fade is parametrized using the control structure of type fader. This control

structure (lines 10-15) stores information for the three fade protothreads . An instance

of the structure is created as a static variable (as no stack is saved for protothreads)

to fade an LED (a red LED is used for this application). Afterwards, the protothread

is initialized (line 89). Now the LED is faded in and out by scheduling the fade pro-

tothread . When the protothread returns within 1 second it is started again to continue

fading. As no event is created when using the function timer_set, busy waiting is

performed to wait for the timer to expire (lines 93-96).

The main loop of the fader example is shown in lines 101 to 116. Here fading is

repeated when the static variable onoroff is enabled (lines 110-113). By calling the

process_poll function the application process is automatically invoked again when

the fader is enabled. Furthermore, the process is scheduled to run periodically using

the event timer system (lines 105-108).

As described, the fader process can be switched on and off by modifying the static

variable onoroff. This variable can be modified using the functions fader_on and

fader_off.

Verification results Without modifications, this application can only be verified

using periodic interrupt modeling, due to the busy waiting used in lines 93-96. This

loop only ends when a certain number of interrupt calls have occurred, leading the

104 6 Verification of Contiki Applications

lines of code 487
number of assertions 837
main loop unwinding 2

interrupt modeling style PIM
timer interrupt period 2

program expression steps 3,490,119
variables 41,304,656
clauses 149,227,006

unwinding and preprocessing in seconds 99,296
SAT solving in seconds 5,369

Table 6.4: Verification time and problem size for the LED Fader example verifying
automatically generated assertions using PIM.

timer to expire, making it mandatory to model interrupts. Without interrupts, the

application never terminates and blocks the system.

When using POR the application cannot be verified, as there is always an execution

possible, where this loop never ends, as all possible calls to the interrupt function are

guarded with !nondet_0() and may never be executed, as shown in Figure 4.9 and

discussed in Section 4.4.2. Therefore, in the case of POR loop unwinding for this loop

never terminates i.e. a loop unwinding assertion for this loop is always violated.

In contrast, when using PIM the interrupt function gets always called after a certain

number of statements, therefore making it possible to verify the application. In Ta-

ble 6.4 verification results for the application are shown, with the main loop unwinding

of 2 and PIM enabled. As the size of the application is quite big it shows the limits

of model checking for software, with over a day of verification time. When comparing

verification times with the largest verified PIM program of the LED Blink applica-

tion (see Table 6.2, main loop unwinding = 4), it shows that number of variables and

clauses of the generated SAT formula is about 50 % larger. This increase in SAT

formula size leads to about three times of the overall verification time (104665 seconds

compared to 34772 seconds). As expected no violations were found for the checked

automatically generated assertions.

6.5 Bubble sort with LCD Application

To verify the correct usage of an LC-Display driver and to demonstrate how application-

dependent assertions can be added, a Contiki application was written, which sorts an

array of numbers in ascending order using the bubble sort algorithm and checks us-

ing an assertion that the sorting was performed correctly. The sorted numbers are

afterwards written out on an LC-Display. The size of the verification problem can

6.5 Bubble sort with LCD Application 105

for this application be increased with the size of the array, which shall be sorted. In

Appendix A.1.5 the source code of the application is shown. To add the assertions

a C pre-processor macro VERIFY was added which is only set, when the application

is compiled for formal verification22. In addition to the automatically generated as-

sertions also application-dependent assertions and platform-dependent assertions are

checked. The application-dependent assertions check the correctness of the sorting

algorithm and the platform-dependent assertions check whether the LC-Display is

correctly driven by the application. These assertions include checks, that the LCD is

correctly initialized, only valid symbols are displayed, and no symbols are displayed

at an index position outside of the display. A description of the application follows.

The application uses the following functions which are called from the main Contiki

application process (lines 78-120):

• The function printInteger (lines 6-25) prints an integer number on the LC-

display. As the driver supports only displaying single digits the number has to

be decomposed, before it is displayed using the function lcd_disp_char (line

17). Assertions are used to make sure that the decomposition is performed

correctly.

• The function getIntArray (lines 26-40) creates an array of values to be sorted,

whereby the parameter nmax determines the size of the array. In the case of the

variant used for verification non-deterministic values are used (line 35), which

makes sure that the verification is performed for all possible integer values.

• The function bubbleSort (lines 43-63) sorts the passed array using the bubble

sort algorithm, whereby the parameter n determines the size of the array.

• The function checkResultArray (lines 65-76) makes sure that the resulting array

is sorted correctly by looping over the passed array.

The main process thread (lines 81-120), which uses the described functions then just

initializes the LC-Display (lines 93-95), gets the numbers to be sorted (line 98), prints

the unsorted numbers (lines 100-103), sorts the numbers, checks whether sorting was

performed correctly (lines 109-112), and finally prints the sorted numbers (lines 115-

118).

Verification results The Bubble Sort example application is used to demonstrate,

how the size of the array, which is sorted influences the overall verification time.

Therefore, the array to be sorted using the Bubble Sort application was increased

using the macro BUBBLE_SORT_NMAX and compared for both POR and PIM. As the

22When the macro is not set, the code will not be compiled. This makes it possible to reuse the same
code for compilation for the target platform and for verification.

106 6 Verification of Contiki Applications

lines of code 473
number of assertions 680

problem size n 5 10
interrupt modeling style POR PIM POR PIM

max. number of timer interrupts 2 - 2 -
timer interrupt period - 2 - 2

program expression steps 13,998 111,840 30,888 261,180
variables 397,063 1,247,110 770,627 2,885,124
clauses 1,254,395 3,901,360 2,566,812 9,232,972

unwinding and preprocessing in seconds 3.94 80.09 22.20 499.78
SAT solving in seconds 5.47 13.42 52.33 79.34

Table 6.5: Verification time and problem size for the Bubble Sort example verifying
automatically generated assertions and application- and platform-dependent
assertions.

0

100

200

300

400

500

600

2 3 4 5 6 7 8 9 10

Ti
m

e
in

 s

Numbers to be sorted

Verification time total POR, max 2 interrupts

Verification time total PIM, 2 interrupt period

Figure 6.8: Verification times with increasing array sizes for the Bubble Sort example,
verifying assertions for POR and PIM.

6.5 Bubble sort with LCD Application 107

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 10

Ti
m

e
in

 s

Numbers to be sorted

Total time

Loop unwinding time

Sat solving time

Figure 6.9: Verification times split into SAT solving and loop unwinding, increasing
the array of to be sorted numbers n for Bubble Sort, with POR = 2.

0

100

200

300

400

500

600

2 3 4 5 6 7 8 9 10

Ti
m

e
in

 s

Numbers to be sorted

Total time

Loop unwinding time

Sat solving time

Figure 6.10: Verification times split into SAT solving and loop unwinding, increasing
the array of to be sorted numbers n for Bubble Sort, with PIM = 2.

108 6 Verification of Contiki Applications

application does not rely on the event timer system and is not dependent on interrupts

only POR with a maximum of 2 interrupts and PIM with an interrupt distance of 2

statements was used.

In Table 6.5 the verification results are summarized. In total 680 assertions were

checked, of these assertions, 19 assertions are part of the LCD driver and 3 are part of

the actual application, which makes sure that the application algorithm is correct. The

rest of the assertions are the automatically generated assertions for pointer check and

division by zero. The result table shows results for sorting 5 and 10 numbers and the

corresponding verification problem sizes. A graphical comparison of the verification

times for increasing numbers to be sorted is shown in Figure 6.8. The verification times

and problem sizes show that an exponential growth in verification time and problem

size occurs and that POR is faster than PIM. In Figure 6.9 and Figure 6.10 the run

times are shown split into preprocessing and SAT solving times. For PIM most of the

time is spent in the preprocessing phase. Furthermore, preprocessing time does not

increase linear for PIM but rather exponentially similar to the expected overall SAT

solving behavior.

Comparing the pure SAT solving times and formula sizes it seems that the formula

generated when using PIM is easier to solve than for POR. In the case of n = 5 and

PIM = 2 the formula is larger than for n = 10 and POR = 2, however, SAT solving

is much faster.

6.6 3-axis Acceleration Sensor with Rotation

Detection Application

This example is the most complex of the evaluated applications, taken from a real-

world embedded system, which can be used for fall detection. It uses a 3-axis acceler-

ation sensor to sample acceleration values. The purpose of this application is to signal

that a certain rotation on the x-axis of the system has been detected. When this

happens an LED of the system is enabled. The source code used for this application

is shown in Appendix A.1.6 and A.1.7.

For this application, the Contiki sensor subsystem was used, which collects information

from registered sensors and sends events to application processes, when new sensor

data is available. This centralized data collection allows it for several applications to

use the sensor data, which only needs to be collected once. To use a sensor with the

subsystem it has to be registered and the data collection has to be implemented. For

the used acceleration sensor the registration within the Contiki sensor system is shown

exemplarily in Appendix A.1.7. Three functions must be provided to implement the

6.6 3-axis Acceleration Sensor with Rotation Detection Application 109

registration:

• A configuration function (configure_acc lines 36-60). This function is called

automatically when the sensor is configured to be used. The pre-defined types

SENSORS_HW_INIT and SENSORS_ACTIVE are passed as a parameter for initializa-

tion and activation of the sensor. When the sensor is activated and not yet run-

ning (lines 45-49), a process is started (acc_update_process lines 17-34), which

periodically pulls data from the sensor using the event timer system. When new

data is available an event is sent as a ProcessBroadcast to all processes in the

system using the function sensors_changed (line 30).

• A value access function (value_acc lines 68-83). This function is used to retrieve

sensor values captured from the sensor. In the case of the acceleration sensor,

these are values for each axis, which are stored in the array value. The modeling

of this sensor has been described exemplarily in Figure 4.5(b) of Section 4.3.

• A status function (status_acc lines 88-96). This function returns the current

status of the sensor (active or inactive)

These functions are registered within the system using the macro SENSORS_SENSOR

(line 99).

The source code of the main application process, which uses the sensor is shown in

Appendix A.1.6. The basic idea of the application is to detect a rotation of the

embedded system which includes the sensor. Therefore, the last two retrieved sensor

values are stored in the variables xyz1 and xyz2 (lines 33-34). As a history of two

sensor values is not sufficient to detect a rotation, the array buffer (line 37) is used

as history that stores, whether before retrieved acceleration values were over a certain

threshold.

During processing, the application first stores the last received acceleration value in

the variable xyz2 using the C memcpy function23 (line 53). If an event from the

acceleration sensor is received (lines 55-59), new acceleration values are retrieved from

the sensor using the function get_xyz. Using these values the rotation detection

algorithm then performs its calculation (lines 71-106). The principal idea is that each

time the difference between current and last acceleration value exceeds the value 20 in

the x-direction, in the buffer array the variable 1 is set. When the sum of the first 5

buffer values equals 5 the LED is turned on, when it is 0 the LED is turned off. Using

this filtering the rotation detection gets more robust.

Verification results Results for the verification of automatically generated asser-

tions are shown in in Table 6.6. The results show verification times for one main loop

23The memcpy function is available in the built-in CBMC C library.

110 6 Verification of Contiki Applications

lines of code 596
number of assertions 836
main loop unwinding 1

interrupt modeling style POR PIM
max. number of timer interrupts 10 -

timer interrupt period - 200
program expression steps 337,093 1,168,477

variables 7,677,005 13,781,360
clauses 27,683,272 46,443,662

unwinding and preprocessing in seconds 48,425.82 57,995.04
SAT solving in seconds 2,424.74 526.11

Table 6.6: Verification time and problem size for the 3-axis acceleration example ver-
ifying automatically generated assertions.

counterexample size in statements 4,271
interrupt modeling style PIM
timer interrupt period 200

program expression steps 4,737,759
variables 73,468,255
clauses 278,320,484

unwinding and preprocessing in seconds 274,471.96
SAT solving in seconds 13,012.50

Table 6.7: Verification time for generating a minimal test case for the 3-axis accelera-
tion example to turn off the LED of the embedded system.

unwinding. For POR with 10 interrupts verification takes about 14 hours and for PIM

over 16 hours. With each further unwinding also of internal loops the verification

times further increase significantly, therefore making a complete main loop unwinding

of 2 unfeasible for this example, verification did not terminate after several days of

running. A main loop unwinding of 1 means, that 1 event from the kernel event queue

is executed24.

Test case generation Using this example, the application of BMC for minimal test

case generation can be demonstrated. Test cases generation is performed as described

in Section 5.3, the resulting verification times for PIM are shown in Table 6.7. The

test case that was generated turns the LED of the embedded system off (line 99 in

Appendix A.1.6). To generate this test case, an assertion was added at this code

line, which must not be reached (assert(0)). CBMC was able to generate a coun-

terexample trace with a size of 4271 steps within the C program, which can violate

this assertion. As loops are incremented individually, the resulting counterexample is

24All processes of the system are however run at least once using the AUTOSTART_PROCESSES macro.
Furthermore, processes for the event timer system and the sensor subsystem are started automat-
ically and also run at least once.

6.7 Summary and Result Discussion 111

minimal. However, the runtimes for generating this counterexample are very high, the

program needs to be further unwound then for checking the automatically generated

assertions, leading to a larger size of the SAT formula and consequently to higher

verification times.

6.7 Summary and Result Discussion

The presented verification results demonstrate that it is possible to verify realistic Con-

tiki applications using the described verification approach. It could was demonstrated

that it is possible to use driver models of actual hardware to verify unmodified Contiki

applications on the implemented verification platform. Furthermore, it was shown

that it is possible to find violated assertions and to generate test cases. Moreover,

using the verification platform the differences between the PIM and POR interrupt

modeling styles were demonstrated regarding their capability for finding bugs. The

verification of application-dependent assertions, which can be placed in the application

and platform-dependent assertions, which are part of the drivers used for verification

(and are application independent), was successfully shown using the Bubble sort ap-

plication.

The results show that no unexpected bugs were found in the verified applications or

in the Contiki kernel. This is expected as the Contiki kernel is very stable and used in

many devices. Comparing the verification times for the checked applications, although

similar in size regarding lines of code, differ in verification complexity depending on

the used number of timers and events created. For example, the Hello World and LED

Blink application are similar in lines of code, but verification times differ significantly.

Overall, the verification times vary from several seconds for the Hello World example

and can go up to days for the more complex applications, especially for larger main loop

unwindings. The main determining factor for verification time is the number of main

loop unwindings, which limits the search depth by restricting the number of events

checked for the system. Furthermore, the chosen approach to unroll all application

loops and to only limit the main loop unwindings in the kernel could successfully be

applied.

The comparison of the two approaches for interrupt modeling, the in this work devel-

oped PIM approach with the existing POR approach, highlighted several key differ-

ences. PIM allows it to prove assertions, which depend on the number of interrupt

occurrences, which is important for Contiki and its event-driven approach. For ex-

ample, when verifying the Blink application with an event queue overflow, POR leads

due to the over-abstraction of the interrupt behavior to false positive counterexamples,

which do not exist on real hardware. When using PIM this application can be proven.

112 6 Verification of Contiki Applications

F
igu

re
6.11:

O
verall

com
p
arison

of
P
O
R

an
d
P
IM

verifi
cation

resu
lts

of
ex
am

p
les

in
S
ection

6.2
-
6.6.

6.7 Summary and Result Discussion 113

Another application which could only be verified using PIM is the LED Fader appli-

cation, which uses busy waiting. When using POR there is always a program path

where no interrupt is triggered, leading to an endless loop when unwinding, so that

an unwinding assertion is always violated.

Furthermore, for the generation of test cases, PIM is better suited as it leads to more

realistic test cases as when using POR as shown by the acceleration sensor application.

The more accurate modeling of interrupt behavior of PIM leads however to longer

verification times compared with POR. In Figure 6.11 a summary is shown, which

compares the runtimes for PIM with POR for the run applications25. In all appli-

cations, it can be seen that verification times for POR increases with the number of

considered interrupt occurrences, whereas the time and also verification problem size

(variables and clauses) is constant for PIM independent of the chosen event timer inter-

rupt period. POR is faster for a small number of interrupts, however, when increasing

the number of interrupts, unwinding and preprocessing and SAT solving times increase

significantly and POR can become slower than PIM. It shows that POR is best suited

when the system is checked for only a few possible interrupt occurrences. However,

the number of sufficient interrupt occurrences has to be manually determined.

Another significant difference is, that for PIM more time is spent in unwinding the

program and creating the SAT formula. However, the larger programs after transfor-

mation and unwinding (about 3-4 times larger) do not lead to an increase in runtime

in this order of magnitude. In Figure 6.12 the verification time is plotted over the

program size. It shows that the programs are getting much bigger for PIM, however,

runtimes are in the same range as for POR.

Overall it could be demonstrated that verification is possible for the chosen programs,

with the limiting factor being the unwindings of the main loop. The PIM approach

has the advantage of being more accurate and therefore can find more bugs, while

reducing the number of false positives. Differences in verification time depend on the

number of interrupts for POR.

25Only the runtimes are listed for applications which could be verified both with PIM and POR.

114 6 Verification of Contiki Applications

10-1

100

101

102

103

104

105

106

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

Ti
m

e
in

 s

Program steps after unwinding

POR total verification time

PIM total verification time

Figure 6.12: Influence of program steps on verification times for POR and PIM, based
on examples in Section 6.2 - 6.6.

7
Chapter 7

Conclusions

Formal verification is a challenge considering computation resources, but also modeling

and specification requires high effort. Nowadays, advancements in verification tools

and computer processing speed allow it to verify software with techniques like model

checking, originally developed for the verification of digital hardware.

In this thesis, it was shown exemplarily using software for the operating system Con-

tiki that it is possible to apply bounded model checking to verify software of embedded

systems. Thereby, one challenge was to find the correct level of abstraction for mod-

eling the embedded system hardware on which the applications runs. A too detailed

model cannot be handled by the verification tools, due to a too large state space. A

too coarse model leads to unrealistic software behavior and to counterexamples during

verification that cannot occur on the real system. Therefore, hardware modeling was

performed at the level of the Contiki drivers, compared to other approaches. These

approaches performed modeling at the level of hardware registers of the processor, on

which the software is executed. By modeling the hardware using non-deterministic

variables, the software is verified for all possible input combinations, compared to

simulation-based approaches.

It could be shown that it is possible to automatically verify unmodified Contiki ap-

plications by this method. As bounded model checking was used, loops in the source

code must be limited. In the chosen approach, the Contiki main scheduler loop was

limited, making it possible to control the size of the verification problem and to find

a trade-off between verification depth and verification runtime.

An important aspect of software for embedded systems is the correct representation

of interrupt behavior, which has a direct effect on the program flow of an application.

It was shown that current interrupt modeling methods are not suited for systems that

rely on the use of periodically occurring interrupts. Therefore, in this thesis, a new

technique called periodic interrupt modeling (PIM) was introduced. In comparison

116 7 Conclusions

with existing approaches based on the interleaving model and partial order reduction,

it is now possible to verify timing related properties of embedded system software.

PIM can be used independently of the verification of Contiki applications for all ap-

plications that rely on periodic interrupts. When applying PIM the runtime of an

application is taken into account and thereby the number of unrealistic counterexam-

ples is reduced during verification. This also allows it to use the verification approach

for the generation of test cases. Furthermore, a higher level of verification automation

is possible, as applications that rely on busy waiting can be verified without modifi-

cations.

The higher level of modeling accuracy introduced by periodic interrupt modeling in-

creases the size of the program and therefore leads to a higher verification effort.

However, through experiments based on Contiki applications, it could be shown that

the increase in program size doesn’t increase verification time in the same manner.

Periodic interrupt modeling is, therefore, a viable method for the verification of em-

bedded system software, which allows it to verify a new class of applications, based

on periodic occurring interrupts.

In this thesis, verification was limited to applications with only one interrupt. Future

research should examine the influence of multiple interrupts in a system, combining

periodic and non-periodic interrupts as well as the modeling of interrupt priorities.

First research results in this direction are presented in [KLM+15]. However, in their

paper the problems when verifying timing related properties, as discussed in this thesis

are not examined.

Another important topic for the verification of embedded system software is searching

the complete state space when applying model checking. Therefore, new interpolation

based model checking algorithms like IC3 [Bra11] have been developed, which extend

SAT-based bounded model checking (BMC). In contrast to BMC, the complete state

space is examined without giving a loop unwinding bound. An overview and a discus-

sion of these techniques is given in [GOY14]. Applying these algorithms for unbounded

software as Contiki systems is also a research area for further examinations.

Although model checking algorithms and SAT solving techniques have improved, the

size of the state space is often too large to handle for formal tools. In the domain

of verification of digital circuits, verification methodologies like the universal verifica-

tion methodology (UVM) [Acc14] combine simulation with randomly generated input

values. Furthermore, functional coverage is used to measure the verification progress.

Extending this approach to also verify the correctness of software running on an em-

bedded system hardware, when model checking is not anymore feasible, is also an

interesting topic for future research.

117

118 7 Conclusions

A
Appendix A

Appendix

A.1 Example Applications Used for Evaluation

A.1.1 Transformed Source Code of Hello World Application

for POR

1 static char process thread hello world process(struct pt ∗process pt,

2 unsigned char ev, void ∗data)
3 {
4 char PT YIELD FLAG = (char)1;

5 if((signed int)process pt−>lc == 0)

6 printf(”Hello, world\n”);
7

8 PT YIELD FLAG = (char)0;

9 process pt−>lc = (unsigned short int)0;

10 return (char)3;

11 }

A.1.2 Transformed Source Code of Hello World Application

for PIM

1 static char process thread hello world process(struct pt ∗process pt,

2 unsigned char ev, void ∗data)
3 {
4 char PT YIELD FLAG = (char) 1;

5 periodic interrupt();

6 if (((signed int) process pt−>lc) == 0)

7 {
8 periodic interrupt();

120 A Appendix

9 printf(”Hello, world\n”);
10 }
11

12 periodic interrupt();

13 PT YIELD FLAG = (char) 0;

14 periodic interrupt();

15 process pt−>lc = (unsigned short int) 0;

16 periodic interrupt();

17 return (char) 3;

18 }

A.1.3 Source Code of LED Blink Application Possibly

Triggering an Event Queue Overflow

1 PROCESS(blink process, ”Blink”);

2 AUTOSTART PROCESSES(&blink process);

3 PROCESS THREAD(blink process, ev, data)

4 {
5 PROCESS EXITHANDLER(goto exit;)

6 PROCESS BEGIN();

7 static struct etimer et1;

8 static struct etimer et2;

9 static struct etimer et3;

10 static struct etimer et4;

11 while(1) {
12 etimer set(&et1, CLOCK SECOND);

13 etimer set(&et2, 2∗CLOCK SECOND);

14 etimer set(&et3, 3∗CLOCK SECOND);

15 etimer set(&et4, 4∗CLOCK SECOND);

16 PROCESS WAIT EVENT UNTIL(etimer expired(&et1));

17 leds on(LEDS ALL);

18 PROCESS WAIT EVENT UNTIL(etimer expired(&et2));

19 leds off(LEDS ALL);

20 PROCESS WAIT EVENT UNTIL(etimer expired(&et3));

21 leds on(LEDS ALL);

22 PROCESS WAIT EVENT UNTIL(etimer expired(&et4));

23 leds off(LEDS ALL);

24 }
25 exit:

26 leds off(LEDS ALL);

27 PROCESS END();

28 }

A.1 Example Applications Used for Evaluation 121

A.1.4 Source Code of LED Fader Application

1 #include ”contiki.h”

2 #include ”dev/leds.h”

3

4 PROCESS(fader process, ”LED fader”);

5 AUTOSTART PROCESSES(&fader process);

6

7 #define ON 1

8 #define OFF 0

9

10 struct fader {
11 struct pt fade pt, fade in pt, fade out pt;

12 struct etimer etimer;

13 int led;

14 int delay;

15 };
16

17 static unsigned char onoroff;

18

19 static

20 PT THREAD(fade in(struct fader ∗f))
21 {
22 PT BEGIN(&f−>fade in pt);

23

24 for(f−>delay = 9; f−>delay > 1; f−>delay −= 1) {
25

26 printf(”Fading In \n”);
27 leds on(f−>led);

28 clock delay(10 − f−>delay);

29 leds off(f−>led);

30 clock delay(f−>delay);

31 PT YIELD(&f−>fade in pt);

32 }
33

34 PT END(&f−>fade in pt);

35 }
36

37 static

38 PT THREAD(fade out(struct fader ∗f))
39 {
40 PT BEGIN(&f−>fade out pt);

41

42 for(f−>delay = 1; f−>delay < 9; f−>delay += 1) {
43

44 printf(”Fading Out \n”);
45 leds on(f−>led);

46 clock delay(10 − f−>delay);

122 A Appendix

47 leds off(f−>led);

48 clock delay(f−>delay);

49 PT YIELD(&f−>fade out pt);

50 }
51

52 PT END(&f−>fade out pt);

53 }
54

55 static

56 PT THREAD(fade(struct fader ∗f))
57 {
58 PT BEGIN(&f−>fade pt);

59

60 while(1) {
61 printf(”Fading \n”);
62 PT SPAWN(&f−>fade pt, &f−>fade in pt, fade in(f));

63 PT SPAWN(&f−>fade pt, &f−>fade out pt, fade out(f));

64

65 etimer set(&f−>etimer, CLOCK SECOND ∗ 4);
66 PT WAIT UNTIL(&f−>fade pt, etimer expired(&f−>etimer));

67 }
68

69 PT END(&f−>fade pt);

70 }
71

72 static void

73 init fader(struct fader ∗f, int led)

74 {
75 PT INIT(&f−>fade pt);

76 PT INIT(&f−>fade in pt);

77 PT INIT(&f−>fade out pt);

78 f−>led = led;

79 }
80

81 PROCESS THREAD(fader process, ev, data)

82 {
83 static struct fader red;

84 static struct timer timer;

85 static struct etimer etimer;

86

87 PROCESS BEGIN();

88

89 init fader(&red, LEDS RED);

90

91 printf(”Scheduling red\n”);
92 timer set(&timer, CLOCK SECOND);

93 while(!timer expired(&timer)) {
94 printf(”Scheduling red, waiting for timer\n”);

A.1 Example Applications Used for Evaluation 123

95 PT SCHEDULE(fade(&red));

96 }
97

98 etimer set(&etimer, CLOCK SECOND ∗ 4);
99 fader on();

100

101 while(1) {
102 printf(”Main Loop\n”);
103 PROCESS WAIT EVENT();

104

105 if(ev == PROCESS EVENT TIMER) {
106 etimer set(&etimer, CLOCK SECOND ∗ 4);
107 process poll(&fader process);

108 }
109

110 if(onoroff == ON &&

111 PT SCHEDULE(fade(&red))) {
112 process poll(&fader process);

113 }
114 }
115 PROCESS END();

116 }
117

118 void fader on(void)

119 {
120 onoroff = ON;

121 process poll(&fader process);

122 }
123

124 void fader off(void)

125 {
126 onoroff = OFF;

127 }

A.1.5 Source Code of Bubble Sort with LCD Application

1 #include ”contiki.h”

2 #include ”dev/lcd.h”

3 #define BUBBLE SORT NMAX 5

4

5 // Takes a number and displays it on the display

6 void printInteger(uint8 t n)

7 {
8 uint8 t temp;

9 uint8 t idx = 0;

10 lcd clr();

124 A Appendix

11 while(n >= 10) {
12 temp = n%10;

13 #ifdef VERIFY

14 assert(temp < 10);

15 #endif

16 n = (n−temp)/10;

17 lcd disp char(idx, temp);

18 idx++;

19 }
20 #ifdef VERIFY

21 assert(n < 10);

22 #endif

23 lcd disp char(idx, n);

24 idx++;

25 }
26 uint8 t getIntArray(uint8 t a[], const uint8 t values[], uint8 t nmax)

27 {
28 uint8 t n = 0;

29

30 while (n < nmax) {
31 #ifdef SIMULATION

32 a[n] = values[n];

33 #endif

34 #ifdef VERIFY

35 a[n] = nondet char();

36 #endif

37 n++;

38 }
39 return n;

40 }
41

42

43 void bubbleSort(uint8 t a[], uint8 t n)

44 /∗ It sorts in non−decreasing order the first N positions of A. It uses

45 ∗ the bubble sort method.

46 ∗/
47 {
48 uint8 t lcv;

49 uint8 t limit = n−1;
50 uint8 t temp;

51 uint8 t lastChange;

52 while (limit) {
53 lastChange = 0;

54 for (lcv=0;lcv<limit;lcv++)

55 if (a[lcv]>a[lcv+1]) {
56 temp = a[lcv];

57 a[lcv] = a[lcv+1];

58 a[lcv+1] = temp;

A.1 Example Applications Used for Evaluation 125

59 lastChange = lcv;

60 }
61 limit = lastChange;

62 }
63 }
64

65 #ifdef VERIFY

66 void checkResultArray(uint8 t a[], uint8 t n)

67 /∗ n is the number of elements in the array a.

68 ∗ Check whether array a is sorted∗/
69 {
70 uint8 t i;

71 for (i=0; i<n−1;){
72 assert (a[i] <= a[i+1]);

73 i=i+1;

74 }
75 }
76 #endif

77

78 PROCESS(lcd sort process, ”LCD sort process”);

79 AUTOSTART PROCESSES(&lcd sort process);

80

81 PROCESS THREAD(lcd sort process, ev, data)

82 {
83 #ifdef SIMULATION

84 const uint8 t v[BUBBLE SORT NMAX] = {41,0,1,42,15};
85 #else

86 const uint8 t v[BUBBLE SORT NMAX];

87 #endif

88 static uint8 t x[BUBBLE SORT NMAX];

89 static uint8 t hmny;

90 static uint8 t i;

91 PROCESS BEGIN();

92

93 lcd init();

94 lcd disp all segs();

95 lcd clr();

96

97 // get integer values to be sorted

98 hmny = getIntArray(x,v, BUBBLE SORT NMAX);

99 // Print not sorted array

100 for (i=0; i<BUBBLE SORT NMAX;){
101 printInteger(x[i]);

102 i++;

103 }
104 //Clear Display

105 lcd disp all segs();

106 lcd clr();

126 A Appendix

107

108 /∗ Sort the array ∗/
109 bubbleSort(x,hmny);

110 #ifdef VERIFY

111 checkResultArray(x,hmny);

112 #endif

113

114 /∗ Print sorted array ∗/
115 for (i=0; i<BUBBLE SORT NMAX;){
116 printInteger(x[i]);

117 i++;

118 }
119 PROCESS END();

120 }

A.1.6 Source Code of 3-axis Acceleration Sensor with

Rotation Detection Application

1 #include ”contiki.h”

2 #include ”dev/leds.h”

3 #include ”dev/acc sensor.h”

4 #include ”lib/sensors.h”

5

6 #include ”sys/clock.h”

7

8 #include ”dev/watchdog.h”

9

10 #include ”contiki−conf.h”
11 #include <stdio.h> /∗ For printf() ∗/
12 #include <string.h> /∗ For memcpy() ∗/
13

14 PROCESS(acc test process, ”Accelerometer test process”);

15 AUTOSTART PROCESSES(&acc test process);

16

17 /∗
18 ∗ Helper function to get a xyz−triple with matching values

19 ∗ (in order to avoid additional statements or breaks between two single

20 ∗ value−function calls, i.e. acc−>value(XAXIS))

21 ∗/
22 static void get xyz(struct sensors sensor ∗acc, int16 t ∗xyz)
23 {
24 xyz[0] = (int16 t) acc−>value(XAXIS);

25 xyz[1] = (int16 t) acc−>value(YAXIS);

26 xyz[2] = (int16 t) acc−>value(ZAXIS);

27 }

A.1 Example Applications Used for Evaluation 127

28

29 PROCESS THREAD(acc test process, ev, data)

30 {
31 struct sensors sensor ∗acc;
32 int i;

33 static int16 t xyz1[3] = {0,0,0};
34 static int16 t xyz2[3] = {0,0,0};
35

36 static int buf counter;

37 static int buffer[10];

38 static long int state;

39

40

41 PROCESS BEGIN();

42

43 /∗ Variable init. ∗/
44 state = 0;

45 buf counter = 0;

46 for(i = 0;i<10; i++) {
47 buffer[i] = 0;

48 }
49

50 while(1)

51 {
52

53 memcpy(xyz2, xyz1, 6); //copy 6 bytes

54

55 PROCESS WAIT EVENT UNTIL(ev == sensors event);

56 if(data == &acc sensor) {
57 acc = (struct sensors sensor ∗)data;
58 get xyz(acc, xyz1);

59 }
60

61 printf(”x1=%4d y1=%4d z1=%4d\r\n”, xyz1[0] , xyz1[1], xyz1[2]);
62 printf(”x2=%4d y2=%4d z2=%4d \r\n”, xyz2[0] , xyz2[1], xyz2[2]);
63 printf(”x=%4d y=%4d z=%4d\r\n”, xyz2[0]−xyz1[0] , xyz2[1]−xyz1[1], xyz2[2]−xyz1[2]);
64 printf(”state: %d\r\n”, state);
65

66 /∗
67 ∗ Here starts a simple rotation detection sensitive to the x−axis
68 ∗ Turning right −−> red LED on

69 ∗ Turning left −−> red LED off

70 ∗/
71 if(xyz2[0]−xyz1[0] < −20 || xyz2[0]−xyz1[0] > 20)

72 {
73 if (state > 13)

74 {
75 state = 0;

128 A Appendix

76 buf counter = 0;

77 }
78

79 if (buf counter < 10) {
80 if ((xyz2[0]−xyz1[0]) > 0)

81 {
82 buffer[buf counter++] = 1;

83 }
84 else

85 {
86 buffer[buf counter++] = 0;

87 }
88 }
89 if (buf counter <= 5)

90 {
91 printf(”%d: %d%d%d%d%d\r\n”,buf counter, buffer[0], buffer[1],
92 buffer[2], buffer[3], buffer[4]);

93

94 if ((buffer[0] + buffer[1] + buffer[2] + buffer[3] + buffer[4]) == 5) {
95 leds on(LEDS RED);

96 }
97

98 if ((buffer[0] + buffer[1] + buffer[2] + buffer[3] + buffer[4]) == 0) {
99 leds off(LEDS RED);

100 }
101 }
102 }
103 else

104 {
105 state++;

106 }
107 }
108

109 PROCESS END();

110 }

A.1.7 Source Code 3-axis Acceleration Sensor Declaration for

Contiki

1 #include ”adxl345.h”

2 #include ”acc sensor.h”

3 #include ”lib/sensors.h”

4 #include ”contiki−conf.h”
5

6

A.1 Example Applications Used for Evaluation 129

7 const struct sensors sensor acc sensor;

8 static int active; /∗ 1−sensor on, 0−sensor off ∗/
9 static int16 t xyz[3];

10

11 /∗
12 ∗ Process for updating the sensor’s value in a defined interval

13 ∗ (see ”contiki conf.h” for definition of ACC UPDATE TIME)

14 ∗/
15 PROCESS(acc update process, ”Acceleration Sensor Update Process”);

16

17 PROCESS THREAD(acc update process, ev, data)

18 {
19 static struct etimer update timer;

20

21 PROCESS BEGIN();

22

23 adxl345 get xyz(xyz);

24 etimer set(&update timer,0.08∗CLOCK SECOND);

25

26 while(1) {
27 PROCESS WAIT EVENT UNTIL(etimer expired(&update timer));

28 /∗ update new sensor values ∗/
29 adxl345 get xyz(xyz);

30 sensors changed(&acc sensor);

31 etimer set(&update timer, 0.08∗CLOCK SECOND);

32 }
33 PROCESS END();

34 }
35

36 static int configure acc(int type, int value)

37 {
38 switch(type) {
39 case SENSORS HW INIT:

40 active = 0;

41 adxl345 init dev();

42 return 1;

43 case SENSORS ACTIVE:

44 if(value) {
45 if(!active) {
46 active = 1;

47 process start(&acc update process,NULL);

48 adxl345 enable measurement();

49 }
50 } else {
51 if(active) {
52 active = 0;

53 process exit(&acc update process);

54 adxl345 disable measurement();

130 A Appendix

55 }
56 }
57 return 1;

58 }
59 return 0;

60 }
61

62 /∗
63 ∗ returns sensor value depending on type

64 ∗ type: 0 − x−axis
65 ∗ 1 − y−axis
66 ∗ 2 − z−axis
67 ∗/
68 static int value acc(int type)

69 {
70 int16 t value;

71 switch(type) {
72 case XAXIS:

73 value = xyz[0];

74 break;

75 case YAXIS:

76 value = xyz[1];

77 break;

78 case ZAXIS:

79 value = xyz[2];

80 break;

81 }
82 return (int)value;

83 }
84

85 /∗
86 ∗ returns status of sensor (activated, deactivated)

87 ∗/
88 static int status acc(int type)

89 {
90 switch(type) {
91 case SENSORS ACTIVE:

92 case SENSORS READY:

93 return active;

94 }
95 return 0;

96 }
97

98 /∗ Macro for declaration of sensor struct ∗/
99 SENSORS SENSOR(acc sensor, ACC SENSOR NAME, value acc, configure acc, status acc);

A.2 Contiki Kernel Implementation Details 131

A.2 Contiki Kernel Implementation Details

This appendix describes further details of the Contiki kernel, which have either derived

from the source code or the documentation of the Contiki project.

A.2.1 Contiki Defined Kernel Events

The official Contiki wiki page [Con17c] defines the following Kernel events and gives

the following descriptions. Further events can be added by the user as described in

Section 3.3.

Event name Description

PROCESS EVENT NONE This event identifier is not used.

PROCESS EVENT INIT This event is sent to new processes when they

are initiated.

PROCESS EVENT POLL This event is sent to a process that is being

polled.

PROCESS EVENT EXIT This event is sent to a process that is be-

ing killed by the kernel. The process may

choose to clean up any allocated resources,

as the process will not be invoked again after

receiving this event.

PROCESS EVENT CONTINUE This event is sent by the kernel to a pro-

cess that is waiting in a PROCESS YIELD()

statement.

PROCESS EVENT MSG This event is sent to a process that has re-

ceived a communication message. It is typi-

cally used by the IP stack to inform a process

that a message has arrived, but can also be

used between processes as a generic event in-

dicating that a message has arrived.

PROCESS EVENT EXITED This event is sent to all processes when an-

other process is about to exit. A pointer to

the process control block of the process that

is existing is sent along the event. When

receiving this event, the receiving processes

may clean up state that was allocated by the

process that is about to exit.

PROCESS EVENT TIMER This event is sent to a process when an event

timer (etimer) has expired.

132 A Appendix

A.2.2 Contiki Defined Process States

A Contiki process can take the following states:

Process state Description

PROCESS STATE NONE This process is not running on the system.

PROCESS STATE RUNNING This process is currently being executed on

the system.

PROCESS STATE CALLED This process has been called, but is not cur-

rently executed.

A.2.3 Process macros of Contiki

Contiki implements the following process macros which form a convenience layer

around the original protothreads API described in [DSVA06], by adding the possi-

bility to wait for events. These macros are described in [Con17c] as:

Process macro Description

PROCESS BEGIN Declares the beginning of a process pro-

tothread .

PROCESS END Declares the end of a process protothread .

PROCESS EXIT Exit the process.

PROCESS WAIT EVENT Wait for any event.

PROCESS WAIT EVENT UNTIL Wait for an event, but with a condition.

PROCESS YIELD Wait for any event, equivalent to PRO-

CESS WAIT EVENT().

PROCESS WAIT UNTIL Wait for a given condition, may not yield the

process.

PROCESS PAUSE Temporarily yield the process.

A.2 Contiki Kernel Implementation Details 133

A.2.4 Protothread Macros of Contiki

Furthermore, Contiki applications can use the original protothreads as described in

[DSVA06]. A summary is as follows:

Process macro Description

PT BEGIN Declare the start of a protothread inside the C function im-

plementing the protothread .

PT END Declare the end of a protothread .

PT EXIT Exit the protothread . If the protothread was spawned by

another protothread , the parent protothread will become un-

blocked and can continue to run.

PT INIT Initialize a protothread . Initialization must be done prior to

starting to execute the protothread .

PT THREAD Declaration of a protothread .

PT WAIT UNTIL Block and wait until condition is true.

PT YIELD Yield from the current protothread .

PT SPAWN Spawn a child protothread and wait until it exits.

A.2.5 Contiki Process API

Contiki processes are controlled using the following API, as described in the Contiki

source code. These functions can be used in applications to control the behavior of

processes.

function Description

process start This function starts a process.

process exit This function can be used to exit a process.

process post This function posts an asynchronous event to a process.

process post synch This function posts a synchronous event to a process.

process is running This function checks whether a specified process is either in a

running or called state in the system.

134 A Appendix

Used Abbreviations

API Application Programming Interface

BMC Bounded Model Checking

CTL Computation Tree Logic

GCC GNU Compiler Collection

HDL Hardware Description Language

HW Hardware

IoT Internet of Things

ISR Interrupt Service Routine

LTL Linear Temporal Logic

POR Partial Order Reduction

PIM Periodic Interrupt Modeling

SW Software

UVM Universal Verification Methodology

WSN Wireless Sensor Network

136 Used Abbreviations

List of Figures

1.1 General system development and verification process applicable for em-

bedded systems [BK08]. 2

2.1 Wireless sensor network modeled using SystemC AMS [VPB+08]. . . . 11

2.2 A UVM testbench for the structured verification of a SystemC design

[VKE+14]. 12

2.3 Principle approach for counterexample guided abstraction refinement

[DKW08]. 18

2.4 Visualization of the LTL operators and their semantics. 21

2.5 Kripke structure for a modulo 4 counter. 22

2.6 Bounded paths without and with loop [BCC+03]. 24

2.7 BMC principle for formulas of safety properties of the kind Gf 25

2.8 Loop unwinding as done for BMC and adding of unwinding assertions. 29

2.9 Example of translating a simplified program into a SAT formula [CKL04]. 29

2.10 Modulo 4 counterexample modeled for CBMC. 31

2.11 Interleaving diamond for α and β [BK08, CGP00]. 33

2.12 Two stuttering equivalent paths [CGP00]. 34

2.13 Extended interleaving diamond with additional transition, illustrating

Example 2.6. 36

3.1 Tmote sky wireless sensor node as used for Contiki [TMo07]. 40

3.2 Contiki example LED Blink application using protothreads 41

3.3 Contiki process communication in the LED Blink example. 48

3.4 Implementation of the protothread macros PROCESS_BEGIN and PROCESS_

WAIT_EVENT_UNTIL. 50

3.5 Organization of the Contiki source code. 52

4.1 Replacement of drivers and annotation of assertions for an abstract

Contiki verification platform. 57

4.2 Example assertions for the verification of Contiki based systems 60

4.3 Contiki LED API and implementations for hardware access and verifi-

cation. 62

138 List of Figures

4.3 Contiki LED API and platform implementations for hardware access

and verification. 63

4.4 Cutout from memory card driver as used in Contiki 63

4.5 Cutout from a 3-axis acceleration sensor driver as used in Contiki . . . 65

4.6 Cutout from the timer interrupt implementation of the Contiki event

timer system. 68

4.6 Cutout from the timer interrupt implementation of the Contiki event

timer system. 69

4.7 Example application that can be interrupted. 71

4.8 Example application instrumented with interrupt calls after each state-

ment. 72

4.9 Example application after reduction of interrupt calls with POR. 73

4.10 Interrupt wrapper function used for POR. 74

4.11 Functions used for periodic interrupt modeling. 75

4.12 Example application transformed using PIM. 77

5.1 Contiki LED API and implementations for hardware access and verifi-

cation. 81

5.2 Unwinding of loops and restriction of the overall main loop unwinding. 82

5.3 Restricting the number of possible interrupt calls for BMC when apply-

ing POR. 85

5.4 Verification framework for Contiki applications. 86

6.1 The Hello World application. 93

6.2 Verification times for increasing main loop unwinding for the LED Blink

example, verifying automatically generated assertions for POR and PIM. 96

6.3 Verification times for increasing main loop unwinding for the LED Blink

example, comparing automatically generated assertions with no asser-

tions for POR and PIM. 98

6.4 Verification times split into SAT solving and loop unwinding for in-

creasing main loop unwinding for the LED Blink example, with POR

= 2. 99

6.5 Verification times split into SAT solving and loop unwinding for in-

creasing main loop unwinding for the LED Blink example, with POR

= 10. 99

6.6 Verification times split into SAT solving and loop unwinding for in-

creasing main loop unwinding for the LED Blink example, with PIM =

2. 100

List of Figures 139

6.7 Verification times split into SAT solving and loop unwinding for in-

creasing main loop unwinding for the LED Blink example, with PIM =

200. 100

6.8 Verification times with increasing array sizes for the Bubble Sort exam-

ple, verifying assertions for POR and PIM. 106

6.9 Verification times split into SAT solving and loop unwinding, increasing

the array of to be sorted numbers n for Bubble Sort, with POR = 2. . . 107

6.10 Verification times split into SAT solving and loop unwinding, increasing

the array of to be sorted numbers n for Bubble Sort, with PIM = 2. . . 107

6.11 Overall comparison of POR and PIM verification results of examples in

Section 6.2 - 6.6. 112

6.12 Influence of program steps on verification times for POR and PIM,

based on examples in Section 6.2 - 6.6. 114

140 List of Figures

List of Tables

2.1 Overview on verification tools for software verification. 17

6.1 Verification times and problem sizes for Hello World example verifying

automatically generated assertions. 95

6.2 Verification times and problem sizes for LED Blink example verifying

automatically generated assertions. 97

6.3 Verification time and problem size for the LED Blink example with

event queue full assertion. 102

6.4 Verification time and problem size for the LED Fader example verifying

automatically generated assertions using PIM. 104

6.5 Verification time and problem size for the Bubble Sort example verify-

ing automatically generated assertions and application- and platform-

dependent assertions. 106

6.6 Verification time and problem size for the 3-axis acceleration example

verifying automatically generated assertions. 110

6.7 Verification time for generating a minimal test case for the 3-axis ac-

celeration example to turn off the LED of the embedded system. 110

142 List of Tables

List of Algorithms

3.1 Contiki kernel initialization and main loop. 44

3.2 Function DoPoll: Handling of poll-requests. 45

3.3 Function CallProcess: Invokes a process using an event. 45

3.4 Function ExitProcess: Exits a process and removes it from the process

list. 45

5.1 Pseudocode algorithm for running CBMC and unwinding loops. 83

144 LIST OF ALGORITHMS

Bibliography

[Acc14] Accellera Systems Initiative. Universal Verification Methodology (UVM)

1.2 Class Reference, 2014. URL: http://accellera.org/images/

downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf

[last visited 2017-06-10].

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:

A survey. Computer networks, 54(15):2787–2805, 2010.

[ASSC02] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.

[AVR17] Atmel AVR Microcontrollers, 2017. URL: http://www.atmel.com/

products/avr/ [last visited 2017-06-10].

[Bäh10] Helmut Bähring. Anwendungsorientierte Mikroprozessoren: Mikrocon-

troller und Digitale Signalprozessoren. Anwendungsorientierte Mikro-

prozessoren, 2010.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,

and Yunshan Zhu. Bounded model checking. Advances in computers,

58:117–148, 2003.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.

Symbolic Model Checking without BDDs. Tools and Algorithms for the

Construction and Analysis of Systems, pages 193–207, 1999.

[BCM+90] J. R. Burch, Edmund Clarke, K. L. McMillan, David L. Dill, and L. J.

Hwang. Symbolic model checking: 10ˆ20 states and beyond. In Logic

in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE

Symposium on e, pages 428–439, 1990.

[BDE+15] M. Barnasconi, M. Dietrich, K. Einwich, T. Vortler, R. Lucas, J. P. Cha-

put, F. Pecheux, Z. Wang, P. Cuenot, I. Neumann, and T. Nguyen. UVM-

SystemC-AMS Framework for System-Level Verification and Validation of

Automotive Use Cases. Design & Test, IEEE, PP(99):1, 2015.

[BHvM09] Armin. Biere, Marin. Heule, and Hans. van Maaren. Handbook of Satisfi-

ability, volume 185 of Frontiers in Artificial Intelligence and Applications.

http://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
http://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
http://www.atmel.com/products/avr/
http://www.atmel.com/products/avr/

146 Bibliography

IOS Press, 2009.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT

Press, Cambridge, Mass, 2008.

[BK11a] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Config-

urable Software Verification. In David Hutchison, Takeo Kanade, Josef Kit-

tler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,

Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,

Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum,

Ganesh Gopalakrishnan, and Shaz Qadeer, editors, Computer Aided Ver-

ification, volume 6806 of Lecture Notes in Computer Science, pages 184–

190. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[BK11b] Doina Bucur and Marta Kwiatkowska. On software verification for sensor

nodes. Journal of Systems and Software, 84(10):1693–1707, 2011.

[BLR11] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of soft-

ware model checking with SLAM. Communications of the ACM, 54(7):68–

76, 2011.

[BMB+01] B. Berard, P. McKenzie, M. Bidoit, A. Finkel, F. Laroussinie, A. Pe-

tit, L. Petrucci, and P. Schnoebelen. Systems and Software Verification:

Model-Checking Techniques and Tools. Springer Berlin Heidelberg, 2001.

[BPV14] Martin Barnasconi, Francois Pecheux, and Thilo Vörtler. Advancing

system-level verification using UVM in SystemC. In Design and Verifi-

cation Conference (DVCon), 2014, 2014. URL: http://events.dvcon.

org/2014/proceedings/papers/01_1.pdf [last visited 2017-06-10].

[Bra11] Aaron R. Bradley. SAT-based model checking without unrolling. In Lecture

Notes in Computer Science, pages 70–87. Springer Berlin Heidelberg, 2011.

doi:10.1007/978-3-642-18275-4_7.

[CAA+11] Alessandro Cimatti, Alberto Griggio, Andrea Micheli, I. Narasamdya,

and Marco Roveri. Kratos - A Software Model Checker for SystemC,

2011. URL: https://es-static.fbk.eu/tools/kratos/kratosdoc/

manual.pdf [last visited 2017-06-10].

[CBM17] CBMC Website, 2017. URL: http://www.cprover.org/cbmc [last visited

2017-06-10].

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or approxi-

mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, pages 238–252, 1977.

http://events.dvcon.org/2014/proceedings/papers/01_1.pdf
http://events.dvcon.org/2014/proceedings/papers/01_1.pdf
http://dx.doi.org/10.1007/978-3-642-18275-4_7
https://es-static.fbk.eu/tools/kratos/kratosdoc/manual.pdf
https://es-static.fbk.eu/tools/kratos/kratosdoc/manual.pdf
http://www.cprover.org/cbmc

Bibliography 147

[CCF+09] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-

toine Miné, and Xavier Rival. Why does Astrée scale up? Formal Methods

in System Design, 35(3):229–264, 2009.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted

and Automatic Generation of High-Coverage Tests for Complex Systems

Programs. In OSDI, volume 8, pages 209–224, 2008.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.

MIT, Cambridge and Mass., 2. print. edition, 2000.

[CK03] E. Clarke and D. Kroening. Hardware verification using ANSI-C programs

as a reference. In Design Automation Conference, 2003. Proceedings of the

ASP-DAC 2003. Asia and South Pacific, pages 308–311, 2003.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking

ANSI-C Programs. In Kurt Jensen and Andreas Podelski, editors, Tools

and Algorithms for the Construction and Analysis of Systems (TACAS

2004), volume 2988 of Lecture Notes in Computer Science, pages 168–176.

Springer, 2004.

[CKSY05] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.

SATABS: SAT-based Predicate Abstraction for ANSI-C. In Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS 2005),

volume 3440 of Lecture Notes in Computer Science, pages 570–574.

Springer Verlag, 2005.

[CNR13] Alessandro Cimatti, I. Narasamdya, and Manuel Roveri. Software Model

Checking SystemC. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 32(5):774–787, 2013.

[Con17a] Contiki OS, July 2017. URL: http://www.contiki-os.org/ [last visited

2017-06-10].

[Con17b] Contiki supported hardware platforms, 2017. URL: http://www.

contiki-os.org/hardware.html [last visited 2017-06-10].

[Con17c] Contiki wiki, 2017. URL: https://github.com/contiki-os/contiki/

wiki/ [last visited 2017-06-10].

[CPA17] Getting Started with CPAchecker, 2017. URL: https://github.com/

sosy-lab/cpachecker/blob/trunk/README.md [last visited 2017-06-10].

[DG05] Rolf Drechsler and Daniel Große. System level validation using formal tech-

niques. Computers and Digital Techniques, IEE Proceedings -, 152(3):393–

406, 2005.

[DGV04] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible

http://www.contiki-os.org/
http://www.contiki-os.org/hardware.html
http://www.contiki-os.org/hardware.html
https://github.com/contiki-os/contiki/wiki/
https://github.com/contiki-os/contiki/wiki/
https://github.com/sosy-lab/cpachecker/blob/trunk/README.md
https://github.com/sosy-lab/cpachecker/blob/trunk/README.md

148 Bibliography

operating system for tiny networked sensors. 2004. 29th Annual IEEE

International Conference on Local Computer Networks, pages 455–462,

2004.

[DHKR11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rüm-

mer. Software Verification Using k-Induction. In Eran Yahav, editor,

Static Analysis: 18th International Symposium, SAS 2011, Venice, Italy,

September 14-16, 2011. Proceedings, pages 351–368. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2011.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Automated

Techniques for Formal Software Verification. IEEE Transactions on Com-

puter Aided Design of Integrated Circuits and Systems, 27(7):1165–1178,

2008.

[DSVA06] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali.

Protothreads: Simplifying Event-Driven Programming of Memory-

Constrained Embedded Systems. In Proceedings of the Fourth ACM Con-

ference on Embedded Networked Sensor Systems (SenSys 2006), Boulder,

Colorado and USA, 2006.

[EDF+07] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, and

Thiemo Voigt. Mspsim–an extensible simulator for msp430-equipped sen-

sor boards. In Proceedings of the European Conference on Wireless Sensor

Networks (EWSN), Poster/Demo session, page 27, 2007.

[EÖF+09] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam

Dunkels, Thiemo Voigt, Robert Sauter, and Pedro José Marrón. COO-

JA/MSPSim: interoperability testing for wireless sensor networks. ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering), 2009.

[GCC17] GCC, the GNU Compiler Collection, 2017. URL: https://gcc.gnu.org/

[last visited 2017-06-10].

[GLD10] Daniel Große, Hoang M. Le, and Rolf Drechsler. Proving Transaction and

System-level Properties of Untimed SystemC TLM Designs. ACM & IEEE

International Conference on Formal Methods and Models for Codesign,

2010.

[GOY14] Shoham Sharon Grumberg Orna and Vizel Yakir. Sat-based model check-

ing: Interpolation, ic3, and beyond. NATO Science for Peace and Security

Series, D: Information and Communication Security, 36(Software Systems

Safety):17–41, 2014. doi:10.3233/978-1-61499-385-8-17.

[HDG+09] Jan Haase, Markus Damm, Johann Glaser, Javier Moreno, and Christoph

https://gcc.gnu.org/
http://dx.doi.org/10.3233/978-1-61499-385-8-17

Bibliography 149

Grimm. SystemC-based power simulation of wireless sensor networks.

IEEE, 2009.

[Her10] Paula Herber. A framework for automated HW-SW Co-verification of

systemC designs using timed automata. Dissertation, Technische Univer-

sität Berlin, Berlin, 2010. URL: http://nbn-resolving.de/urn:nbn:

de:kobv:83-opus-26364 [last visited 2017-06-10].

[HLGD12] Finn Haedicke, Hoang M. Le, Daniel Grosse, and Rolf Drechsler. CRAVE:

An advanced constrained random verification environment for SystemC.

IEEE, 2012.

[Hol04] Gerard J. Holzmann. The spin model checker: Primer and reference man-

ual. Addison-Wesley, Boston, c⃝2004.

[HT05] Ali Habibi and Sofiene Tahar. On the Transformation of SystemC to

AsmL Using Abstract Interpretation: Proceedings of the First Interna-

tional Workshop on Abstract Interpretation of Object-oriented Languages

(AIOOL 2005). Electronic Notes in Theoretical Computer Science, 131:39–

49, 2005.

[HTV+13] Alex Horn, Michael Tautschnig, Celina Val, Lihao Liang, Tom Melham,

Jim Grundy, and Daniel Kroening. Formal Co-Validation of Low-Level

Hardware/Software Interfaces. In Formal Methods in Computer-Aided De-

sign (FMCAD), pages 121–128. IEEE, 2013.

[IEE09] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008

(Revision of IEEE Std 1076-2002), pages c1–626, Jan 2009. doi:10.1109/

IEEESTD.2009.4772740.

[IEE10] IEEE Standard for Property Specification Language (PSL). IEEE Std

1850-2010 (Revision of IEEE Std 1850-2005), pages 1–182, April 2010.

doi:10.1109/IEEESTD.2010.5446004.

[IEE11] IEEE Standard for the Functional Verification Language e. IEEE Std

1647-2011 (Revision of IEEE Std 1647-2008), pages 1–495, Aug 2011.

doi:10.1109/IEEESTD.2011.6006495.

[IEE12] IEEE Standard for Standard SystemC Language Reference Manual. IEEE

Std 1666-2011 (Revision of IEEE Std 1666-2005), pages 1–638, Jan 2012.

doi:10.1109/IEEESTD.2012.6134619.

[IEE13] IEEE Standard for SystemVerilog–Unified Hardware Design, Specifica-

tion, and Verification Language. IEEE Std 1800-2012 (Revision of IEEE

Std 1800-2009), pages 1–1315, Feb 2013. doi:10.1109/IEEESTD.2013.

6469140.

http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-26364
http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-26364
http://dx.doi.org/10.1109/IEEESTD.2009.4772740
http://dx.doi.org/10.1109/IEEESTD.2009.4772740
http://dx.doi.org/10.1109/IEEESTD.2010.5446004
http://dx.doi.org/10.1109/IEEESTD.2011.6006495
http://dx.doi.org/10.1109/IEEESTD.2012.6134619
http://dx.doi.org/10.1109/IEEESTD.2013.6469140
http://dx.doi.org/10.1109/IEEESTD.2013.6469140

150 Bibliography

[IEE16] IEEE Standard for Standard SystemC(R) Analog/Mixed-Signal Exten-

sions Language Reference Manual. IEEE Std 1666.1-2016, pages 1–236,

April 2016. doi:10.1109/IEEESTD.2016.7448795.

[Jor04] Günter Jorke. Rechnergestützter Entwurf digitaler Schaltungen: Schal-

tungssynthese mit VHDL. Fachbuchverl. Leipzig im Carl-Hanser-Verl.,

München and Wien, 2004.

[JZD09] Miloš Jevtić, Nikola Zogović, and Goran Dimić. Evaluation of wireless

sensor network simulators. In Proceedings of the 17th Telecommunications

Forum (TELFOR 2009), Belgrade, Serbia, pages 1303–1306, 2009.

[KCY03] D. Kroening, E. Clarke, and K. Yorav. Behavioral consistency of C and

Verilog programs using bounded model checking. In Technical Report

CMU-CS-03-126. 2003.

[Kin76] James C. King. Symbolic execution and program testing. Communications

of the ACM, 19(7):385–394, 1976.

[KLM+15] Daniel Kroening, Lihao Liang, Tom Melham, Peter Schrammel, and

Michael Tautschnig. Effective verification of low-level software with nested

interrupts. In Design, Automation and Test in Europe Conference and Ex-

hibition (DATE), 2015, pages 229–234, 2015.

[KS05] D. Kroening and N. Sharygina. Formal verification of SystemC by auto-

matic hardware/software partitioning. IEEE Computer Society, 2005.

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework for

lifelong program analysis & transformation. In Code Generation and Op-

timization, 2004. CGO 2004. International Symposium on, pages 75–86,

2004.

[LFCJ09] Lucas Cordeiro, Bernd Fischer, Huan Chen, and Joao Marques-Silva. Semi-

formal Verification of Embedded Software in Medical Devices Considering

Stringent Hardware Constraints. Embedded Software and Systems, Second

International Conference on, pages 396–403, 2009.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: accu-

rate and scalable simulation of entire TinyOS applications. ACM, 2003.

[LMP+05] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Oper-

ating System for Sensor Networks. In Werner Weber, JanM. Rabaey, and

Emile Aarts, editors, Ambient Intelligence, pages 115–148. Springer Berlin

Heidelberg, 2005.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Inter-

http://dx.doi.org/10.1109/IEEESTD.2016.7448795

Bibliography 151

national Journal on Software Tools for Technology Transfer, 1(1-2):134–

152, 1997.

[Mos15] MOS Technology 6502 - Wikipedia, the free encyclopedia, November 2015.

URL: https://en.wikipedia.org/w/index.php?oldid=689307762 [last

visited 2017-06-10].

[MRR03] Wolfgang Müller, Wolfgang Rosenstiel, and Jürgen Ruf. SystemC: Method-

ologies and applications. Kluwer Academic, Boston, 2003.

[MSP17] MSP430 Microcontroller, 2017. URL: http://www.ti.com/430brochure

[last visited 2017-06-10].

[MVÖ+10] Luca Mottola, Thiemo Voigt, Fredrik Österlind, Joakim Eriksson, Luciano

Baresi, and Carlo Ghezzi. Anquiro: enabling efficient static verification of

sensor network software. In Proceedings of the 2010 ICSE Workshop on

Software Engineering for Sensor Network Applications, pages 32–37. ACM,

Cape Town and South Africa, 2010.

[Nik17] Niklas Sörensson Niklas Eén. MiniSat Page, 2017. URL: http://minisat.

se/Main.html [last visited 2017-06-10].

[NWE+07] Nathan Cooprider, Will Archer, Eric Eide, David Gay, and John Regehr.

Efficient memory safety for TinyOS. In Proceedings of the 5th international

conference on Embedded networked sensor systems, pages 205–218. ACM,

Sydney and Australia, 2007.

[ODE+06] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-Level

Sensor Network Simulation with COOJA. In Local Computer Networks,

Proceedings 2006 31st IEEE Conference on, pages 641–648, 2006.

[OHT04] Karim Oumalou, Ali Habibi, and Sofiène Tahar. Design for verification of

a PCI bus in SystemC. IEEE, 2004.

[PK09] T. Paul and G. S. Kumar. Safe Contiki OS: Type and Memory Safety for

Contiki OS. 2009. ARTCom ’09. International Conference on Advances

in Recent Technologies in Communication and Computing, pages 169–171,

2009.

[RDH03] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and

highly-modular software model checking framework: Bogor: an extensible

and highly-modular software model checking framework. ACM SIGSOFT

Software Engineering Notes, 28(5):267–276, 2003.

[RUPP12] Venkatesh R., Shrotri Ulka, Darke Priyanka, and Bokil Prasad. Test gener-

ation for large automotive models. In Industrial Technology (ICIT), 2012

IEEE International Conference on, pages 662–667, 2012.

https://en.wikipedia.org/w/index.php?oldid=689307762
http://www.ti.com/430brochure
http://minisat.se/Main.html
http://minisat.se/Main.html

152 Bibliography

[SBSV96] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combina-

tional test generation using satisfiability. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 15(9):1167–1176, 1996.

[Sem14] N.X.P. Semiconductors. I2C-bus specification and user manual: Rev. 6

— 4 April 2014. 2014. URL: http://www.nxp.com/documents/user_

manual/UM10204.pdf [last visited 2017-06-10].

[Sim00] Simon Tatham. Coroutines in C, 2000. URL: http://www.chiark.

greenend.org.uk/~sgtatham/coroutines.html [last visited 2017-06-10].

[SMV17] The SMV System, 2017. URL: http://www.cs.cmu.edu/~modelcheck/

smv.html [last visited 2017-06-10].

[SNBB11] Bastian Schlich, Thomas Noll, Jörg Brauer, and Lucas Brutschy. Reduc-

tion of Interrupt Handler Executions for Model Checking Embedded Soft-

ware. In Kedar Namjoshi, Andreas Zeller, and Avi Ziv, editors, Hardware

and Software: Verification and Testing, volume 6405 of Lecture Notes in

Computer Science, pages 5–20. Springer Berlin / Heidelberg, 2011.

[SPI16] Serial Peripheral Interface Bus, October 2016. URL: https://en.

wikipedia.org/w/index.php?oldid=744586839 [last visited 2017-06-10].

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Staalmarck. Checking Safety

Properties Using Induction and a SAT-Solver. In Proceedings of the Third

International Conference on Formal Methods in Computer-Aided Design,

FMCAD ’00, pages 108–125, London, UK, 2000. Springer-Verlag.

[TMo07] Data Sheet: tmote sky - Ultra low power IEEE 802.15.4 compliantwire-

less sensor module, 2007. URL: http://www.snm.ethz.ch/snmwiki/pub/

uploads/Projects/tmote_sky_datasheet.pdf [last visited 2017-06-10].

[Var01] András Varga. The OMNeT++ discrete event simulation system. In

Proceedings of the European simulation multiconference (ESM’2001), vol-

ume 9, page 65, 2001.

[Var07] M. Y. Vardi. Formal Techniques for SystemC Verification; Position Pa-

per. In Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE,

pages 188–192, 2007.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and

Flavio Lerda. Model checking programs. Automated Software Engineering,

10(2):203–232, 2003.

[VK12] Kostyantyn Vorobyov and Padmanabhan Krishnan. Combining Static

Analysis and Constraint Solving for Automatic Test Case Generation. In

2012 IEEE Fifth International Conference on Software Testing, Verifica-

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.cs.cmu.edu/~modelcheck/smv.html
https://en.wikipedia.org/w/index.php?oldid=744586839
https://en.wikipedia.org/w/index.php?oldid=744586839
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf

Bibliography 153

tion and Validation (ICST), pages 915–920, 2012.

[VKE+14] Thilo Vörtler, Thomas Klotz, Karsten Einwich, Yao Li, ZHi Wang, Marie-

Minerve Louërat, Jean-Paul Chaput, François Pêcheux, Ramy Iskander,

and Martin Barnasconi. Enriching UVM in SystemC with AMS extensions

for randomization and functional coverage. In Design and Verification

Conference Europe (DVCon Europe), 2014, 2014.

[VPB+08] Michel Vasilevski, Francois Pecheux, Nicolas Beilleau, Hassan Aboushady,

and Karsten Einwich. Modeling refining heterogeneous systems with

systemc-ams: application to wsn. In Proceedings of the conference on

Design, Automation and Test in Europe (DATE), 2008, pages 134–139.

2008.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to

automatic program verification. In 1st Symposium in Logic in Computer

Science (LICS), pages 322–331, 1986.

[Wir14] Out in the Open: The Little-Known Open Source OS That Rules the

Internet of Things, June 2014. URL: http://www.wired.com/2014/06/

contiki/ [last visited 2017-06-10].

http://www.wired.com/2014/06/contiki/
http://www.wired.com/2014/06/contiki/

	1 Introduction and Scope
	1.1 Introduction
	1.2 Summary of Contributions
	1.3 Organization of the Thesis
	1.4 Remarks on Notation, Commonly Used Definitions, and Terms

	2 Related Work and Fundamentals
	2.1 Related Work
	2.1.1 Simulation-Based Verification Techniques
	2.1.2 Formal and Model Checking Based Verification Techniques
	2.1.3 Tools for Automatic Software Verification

	2.2 Verification Using Model Checking
	2.2.1 Model Checking Process
	2.2.2 Model Checking Basics
	2.2.3 Bounded Model Checking
	2.2.4 Software Model Checking Using Bounded Model Checking and the CBMC Tool
	2.2.5 Model Checking and Partial Order Reduction

	3 The Operating System Contiki
	3.1 Introduction into Contiki
	3.2 Example Application LED Blink
	3.3 Contiki Kernel Scheduling Mechanism
	3.3.1 Description of the Scheduling Algorithm
	3.3.2 Scheduling of the LED Blink Example

	3.4 Programming Contiki Applications
	3.5 Hardware Access in Contiki

	4 Modeling an Embedded System Running Contiki for Verification
	4.1 Overview of the Approach
	4.2 Annotating Assertions for Verification
	4.3 Modeling the System Environment Using Drivers
	4.4 Interrupt Modeling
	4.4.1 Existing Approaches
	4.4.2 Applying Existing Approaches to the Verification of Contiki Applications

	4.5 Periodic Interrupt Modeling - Taking System Runtime into Account

	5 Model Checking and Verification Flow
	5.1 Bounded Model Checking and Setting Loop Bounds
	5.1.1 Unbounded Loops in Contiki
	5.1.2 Setting Bounds
	5.1.3 Loop Unwinding and Interrupt Modeling

	5.2 Verification Flow and Implemented Tools
	5.2.1 Modeling and Specification Phase
	5.2.2 Compilation and Interrupt Instrumentation
	5.2.3 Verification Execution

	5.3 Test Case Generation Using Bounded Model Checking

	6 Verification of Contiki Applications
	6.1 Experimental Setup
	6.2 Hello World Application
	6.3 LED Blink Application
	6.4 LED Fader Application
	6.5 Bubble sort with LCD Application
	6.6 3-axis Acceleration Sensor with Rotation Detection Application
	6.7 Summary and Result Discussion

	7 Conclusions
	A Appendix
	A.1 Example Applications Used for Evaluation
	A.1.1 Transformed Source Code of Hello World Application for POR
	A.1.2 Transformed Source Code of Hello World Application for PIM
	A.1.3 Source Code of LED Blink Application Possibly Triggering an Event Queue Overflow
	A.1.4 Source Code of LED Fader Application
	A.1.5 Source Code of Bubble Sort with LCD Application
	A.1.6 Source Code of 3-axis Acceleration Sensor with Rotation Detection Application
	A.1.7 Source Code 3-axis Acceleration Sensor Declaration for Contiki

	A.2 Contiki Kernel Implementation Details
	A.2.1 Contiki Defined Kernel Events
	A.2.2 Contiki Defined Process States
	A.2.3 Process macros of Contiki
	A.2.4 Protothread Macros of Contiki
	A.2.5 Contiki Process API

	Used Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

