
 A New Approach to Event-

Driven Programming

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des Akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr. -Ing.)

genehmigte Dissertation

vorgelegt von

Master of Science

Mosbah Mohamed ELssaedi

geboren am 24. Dezember 1968 in Nofalia (Libya)

Gutachter: Prof. Dr. rer. nat. Habil. Peter Bachmann

Gutachter: Prof. Dr.-Ing Monika Heiner

Gutachter: Prof. Dr. rer. nat. habil. Karl Hantzschmann

Tag der mündlichen Prüufung: Donerstag den 17.07.2008

I dedicate this work to my parents, my wife, my

brothers, and my sisters

__

Abstract
__

In many applications, like embedded systems or systems with a strong user interaction,

the program is mainly controlled by events. An event handler waits for any event to

occur, and then processes that event by ignoring it or calling a corresponding action, a

procedure declared in the program. In this way, events are coupled with actions and can

influence the global state of the whole program.

In order to design a well structured program, event handling and corresponding actions

should be clearly separated. However, this aim is not always ensured.

In this thesis, an approach is introduced, which enforces to design event-driven systems

into two main parts:

• An event-handling part, also called specification part, and

• An action part, also called hand-built program part (hbp).

The specification part is defined as a declarative specification of the event-handling in a

special language. It is separated from the hand-built program part. Every event can only

influence the state of this part, which contains the implementation of control functions,

which calls the several actions defined in the hand-built program part and so connects

both parts together.

The prototype of a framework was implemented which allows to specify the event-

handling part by means of a special editor and generates from it some classes and

templates. In order to complete the implementation, the programmer has to fill into the

templates program code by hand (therefore called hand-built program part), which

describe the actions.

__

Zusammenfassung
__

In vielen Anwendungen, wie z.B. eingebetteten Systemen oder Systemen mit starker

Nutzerinteraktion, wird das Programm hauptsächlich von Ereignissen gesteuert. Eine

Ereignisbehandlungsroutine wartet auf das Auftreten eines beliebigen Ereignisses und

verarbeitet dann dieses Ereignis, indem sie es ignoriert oder eine entsprechende Aktion

aufruft, eine Prozedur, die im Programm deklariert ist. In dieser Weise sind Ereignisse

mit Aktionen gekoppelt und können den globalen Zustand des gesammten Programms

beeinflussen.

Um ein wohlstrukturiertes Programm zu entwerfen, sollten die Ereignisbehandlung und

die entsprechenden Aktionen klar getrennt werden. Allerdings wird dieses Ziel nicht

Immer erreicht.

In dieser Arbeit wird ein Ansatz eingeführt, welcher die Beschreibung ereignisgesteuerter

Systeme in Form von zwei Teilen erzwingt:

• einem Ereignisbehandlungsteil, welcher auch Spezifikationsteil genannt wird.

• einem Aktionsteil, welcher auch als handgeschriebener Programmteil

bezeichnet wird.

Der Spezifikationsteil ist als eine deklarative Spezifikation der Ereignisbehandlung in

einer Spezialsprache definiert. Er ist vom handgeschriebenen Programmteil getrennt.

Jedes Ereignis kann nur den Zustand dieses Teils beeinflussen, welcher die

Implementierung von Steuerfunktionen enthält und die verschiedenen Aktionen aufruft,

die im handgeschriebenen Programmteil definiert sind, und dadurch beide Teile

miteinander verbindet.

Es wurde der Prototyp eines Frameworks implementiert, welches es erlaubt, den

Ereignisbehandlungsteil mittels eines speziellen Editors zu spezifizieren und daraus

verschiedene Klassen und Templates zu generieren. Um die Implementierung zu

vervollständigen, muss der Programmierer Programmcode von Hand in die Templates

einfügen (daher die Bezeichnung "handgeschriebener Programmteil"), welcher die

Aktionen beschreibt.

__

Acknowledgement
__

First of all and the greatest important, all praises and thanks are due to my ALMIGHTY

GOD for all his blessings without which nothing of my work could have been done.

I would like to thank my supervisor Prof. Dr. Peter Bachmann, for his inspiration and

encouraging way to guide me to a deeper understanding of my work, and his invaluable

comments during the whole work of this dissertation. Without his encouragement and

constant guidance, I could not have finished this dissertation. He was always there to

meet and discuss about my ideas related to my work and to proofread and make important

comments throughout my papers and chapters, and also to ask me important questions

that helped me think through my problems. His efforts are very much appreciated.

Also, I’d like to thank Prof. Dr. Monika Heiner, Prof. Dr. Karl Hantzschmann and Prof.

Dr. Ingo Schmitt as members of my examination committee.

I would like to thank all my colleagues in the chair of Programming Languages and

Compilers at BTU Cottbus, Wolfgang Jeltsch, Mario Schölzel, Angelika Claus, Katrin

Ebert, and Gudrun Pehle with whom I have had and still have a wonderful time. They

provided me with a very friendly atmosphere and ensured that working at the department

was always fun.

Furthermore, I would like to thank many other friends for their time and support, for

sharing their ideas, and for giving advice: Alhasan Tijani, .Mohamed Almansary, and

Kirill Osenkov.

Last, but not the least, I would like to thank my beloved wife for her firm support in the

most important period of my life, and thank my family: my parents, my brothers, and my

sisters in Libya for their continual encouragement and concern.

__

Contents
__

Chapter 1 Introduction...1

 1.1 Problem Statement..1

 1.2 Solution Overview...3

 1.3 Outline of this Dissertation ..4

Chapter 2 Programming Paradigms..6

 2.1 Imperative Programming Paradigm...8

 2.1.1 Structured Programming..10

 2.2 Functional Programming ...10

 2.2.1 Functional programming Languages...11

 2.2.2 The Haskell programming language..12

 2.2.2.1 Definitions and evaluation...13

 2.2.3 Applications of Functional languages ..14

 2.2.4 A Comparison of Functional and Imperative Languages15

 2.3 Logic Programming ..16

 2.3.1 The Origins of Prolog ..17

 2.3.2 Language Overview ...18

 2.3.3 Application of Logic Programming..20

 2.4 Object Oriented Programming..23

 2.4.1 The Basic Principles of Object Orientation.....................................23

 2.4.1.1 Encapsulation ...23

 2.4.1.2 Inheritance..25

 2.4.1.3 Abstraction ...28

 2.4.1.4 Polymorphism ..29

Contents XI

 2.5 Aspect Oriented Programming..32

 2.5.1 Separation of Concerns ...33

 2.5.2 Aspect-Oriented Software Development..36

 2.5.3 AspectJ ..38

 2.5.3.1 Join Point Model ..38

 2.5.3.2 Pointcut ...39

 2.5.3.3 Advice..39

 2.5.3.4 Aspects ..40

 2.6 Event Driven Programming...41

 2.6.1 Event Handling in General ...43

 2.6.2 Advantages and disadvantages of Event-driven programming45

 2.7 Integration of Programming Techniques ...46

Chapter 3 Event-Handling in Different Programming System..............49

 3.1 Events ...49

 3.2 Delegates ..50

 3.2.1 Declaration..51

 3.2.2 Instantiation ...51

 3.2.3 Invocation ...51

 3.3 Events and Delegates ..52

 3.4 Types of Delegates...53

 3.5 Delegates and Their Roles ..54

 3.6 Events and Delegates in Visual Basic vs. C#...55

 3.6.1 Declaring Events in Visual Basic and C#...55

 3.6.2 Raising Events in Visual Basic and C# ..56

 3.6.3 Implementing Event Handlers (VB vs. C#)56

 3.7 Events in Visual C++ ..59

 3.7.1 Declaring Events ..59

 3.7.2 Defining Event Handlers ...59

 3.7.3 Firing Events ..60

Contents XII

 3.8 Delegates and Events in J# ...60

 3.9 Events in Java..61

 3.10 Event Handler in JBuilder ...65

 3.10.1 Connecting controls and events ..66

 3.10.2 Standard event adapters..66

 3.10.3 Anonymous inner class adapters ..67

Chapter 4 The Abstract Model ..68

 4.1 Structure and Semantics ..68

 4.2 Refinements ...69

 4.3 Optimization..71

 4.3.1 Simplifications ..71

 4.3.2 Check of Contradictions..72

 4.4 Reordering ...73

Chapter 5 The Event-Programming-Framework epro75

 5.1 An Overview..75

 5.2 Specification...80

 5.2.1 State Space Specification...81

 5.2.2 Event Handling Specification..83

 5.2.3 Control Functions Specification ...86

 5.3 Transformation into C#..87

 5.3.1 Transforming State Space...87

 5.3.2 Transforming Event Handling ...92

 5.3.3 Transforming Control Functions ...97

 5.4 Example (Alarm-Clock Application) ..100

 5.4.1 Application Description...100

 5.4.2 Alarm-Clock Specification ..106

 5.4.3 Generated Parts Of The Alarm-Clock Example...........................112

Contents XIII

Chapter 6 Conclusion and Future Work...121

 6.1 Overview ..121

 6.2 Advantages and Disadvantages ...123

 6.3 Proposed Future research work ..123

Appendix A Generated Classes ..125

 A.1 State Class..125

 A.2 Events_Handling Class ...128

 A.3 Control Class:...133

 A.4 AppFunctions Class: ...136

Appendix B XML File..139

Bibliography..150

__

List of Figures
__

Figure 2.1: Object structure and interaction ..25

Figure 2.2: An example of inheritance ..27

Figure 2.3: An example of polymorphism...30

Figure 2.4: General form of advice..40

Figure 2.5: Event handling concepts..44

Figure 5.1: Event handling system...76

Figure 5.2: Specification part...80

Figure 5.3: An example of the state space form ..81

Figure 5.4: The event handling form ...83

Figure 5.5: The example of condition form...84

Figure 5.6: An example of control functions specification..86

Figure 5.7: An example of empty templates of bodies of methods100

Figure 5.8: Start of the Alarm-clock Application ..101

Figure 5.9 a: First alarm time (hours) ..101

Figure 5.9 b: Second alarm time (minutes)..101

List of Figures XV

Figure 5.10: Timer alarm mode ..102

Figure 5.11: Alarm-clock ringing ...102

Figure 5.12: The main form of the Alarm-Clock application...103

Figure 5.13: List of state-variables in Alarm-Clock example...107

Figure 5.14: List of events in Alarm-Clock example ...109

Figure 5.15: List of control functions in Alarm-Clock example111

__

List of Acronyms
__

ADT Abstract data type

AOP Aspect Oriented Programming

AOSD Aspect Oriented Software Development

COM Component Object Model

CPU Central Processing Unit

C# C Sharp Language

EDS Event Driven System

EDP Event Driven Programming

EPRO Event Programming Framework

GUI Graphical User Interface

HBP Hand-built Programming

IN Natural Numbers

OO Object Orientation

OOP Object Oriented Programming

OS Operating System

RDBMS Relational Database management System

UI User Interface

VB Visual Basic language

VS Visual Studio

XML Extensible Markup Language

1

__

Introduction
__

1.1 Problem Statement

 Most graphical user interface (GUI) systems and embedded control systems (such

as Microwave, camera etc) are event driven. That is, the operating system sends events to

the program and the program responds to these events as they arrive. Events can include

actions performed by user such as clicking the mouse, pressing a key, or actions that the

system itself does like updating the clock or refreshing the screen [10].

In conventional programming, the sequence of operations for an application is determined

by a central controlling program (e.g., a main procedure). In event-driven programming,

the sequence of operations for an application is determined by the user’s interaction with

the application’s interface (forms, menus, buttons, etc.) [46]. For example, instead of

having a main procedure that executes an order entry module followed by a data

verification module followed by an inventory update module, an event-driven application

remains in the background until certain events happen: when a value in a field is

modified, a small data verification program is executed; when the user indicates that the

order entry is complete, the inventory update module is executed, and so on. Event-driven

programming, graphical user interfaces (GUIs), and object-orientation are all related since

forms and the graphical interface objects on the forms serve as the skeleton for the entire

application. To create an event-driven application, the programmer creates small

programs and attaches them to events associated with objects. In this way, the behavior of

the application is determined by the interaction of a number of small manageable

programs rather than one large program.

Chapter 1 Introduction 2

The programming model of today’s GUI requires event-driven programming. A GUI

program waits for the user to take an action, such as choosing among menu selection,

pushing buttons, update text fields, and clicking icons. Each action causes an event to be

raised. Other events can be raised without direct user action, such as events that

correspond to timer ticks of the internal clock, email being received, and file-copy

operations completing [28].

An event is the encapsulation of the idea that “something happened” to which the

program must respond. Events and delegates are tightly coupled concepts because flexible

event handling requires that the response to the event be dispatched to the appropriate

event handler [28].

Event handling is associated with dealing with a situation in which something has

happened and the software developer needs to be notified of that situation. Sometimes the

code written to deal with these situations are referred to as a callback and sometimes as an

event handler, in either case, the same basic principle is applied. That is, the developer

must implement a method that matches some specification that allows it to be called when

the “event” occurs. This event could be some threshold being reached in some sensor, it

could be a message being received from some broadcast mechanism or it could be some

user interaction with a GUI. In general, this event handling method will be called when

the event occurs and will be passed some data to allow it to determine the sender of the

event and any event specific data. The event handler can then determine what action the

application should take [1].

Depending on the system used and the type of technology applied, the relationship

between events and executed actions are explained in different ways. Most often, events

and their respective actions are directly coupled. In C# (.NET), an event is delegated to a

sequence of actions by means of delegates. This has been described in the parts of the

program (classes) where the event is expected to occur. However, not all the events have

really influence on the flow of the program. For instance, mostly, changing the pointer of

the mouse is the only effect of moving the mouse over a window. Either the occurrence of

Chapter 1 Introduction 3

such an event is disabled or it is not delegated to an action. In the former case, this has

been expressed by a property of an object, for example a windows button.

That is, the event handling is distributed over the whole text of the program. Thus, there

is no distinct overview as to where and under which condition events may occur and what

kind of effects they cause. Mostly, it depends on the existing general situation of a

program, which is mainly characterized by the existence and values of program objects,

i.e. the current memory assignment. In this way the maintenance of the software becomes

very complicated [50].

1.2 Solution Overview

 The fundamental idea to solve this problem is to distinctly separate event handling

from the actions of the program. So, the whole program is divided into two main parts:

• A specification part, which is responsible for event-handling and

• A hand-built program part, which contains the program actions.

The specification part is defined as a declarative specification in a special language. It has

an own state, called event-state. Every event may cause the event-state to change [50].

Therefore, the program flow has a cycle, which is determined by raising events and

changing the event-state. The event-state is also used to control the relationship between

events and actions of the program. A control functions is used for selecting program

actions, which are executed with respect to the current event-state. The advantages of this

approach can be summarized as follows:

• It allows two different programmers to develop the system separately. Depending

on the different states, one of the programmers is responsible for developing the

part for handling the events, the specification part, while the other is responsible

for coding the effects, the hand built part.

Chapter 1 Introduction 4

• The description of the separation between the event-handling cycle and the control

of program actions can be specified in a relative abstract level, which does not

require any previous knowledge of programming languages. Rather, this

specification is transformed automatically into source code. In this way, one can

consider the event handling cycle as a special transaction system. Moreover, some

optimizations and verification on this transformation can be achieved.

The prototype of a framework was implemented which allows to specify the specification

part by means of a special editor and generates from the specification some classes and

templates for the hand-built program part. By the editor, the correctness of the

specification with respect to some aspects is proved. In order to complete the

implementation, the programmer has to fill into the templates program code, which

describes the actions.

1.3 Outline of this Dissertation

 The remainder of the thesis is divided into 5 chapters:

In Chapter 2, an overview of some important programming paradigms such as

imperative programming paradigm, functional programming, logic programming, object

oriented programming (OOP), aspect oriented programming (AOP) and event driven

programming are presented. Most programming paradigms are discussed and illustrated

with some examples. Also the integration of the programming paradigms and in which

applications they are applied is described.

Chapter 3 focuses on the event handling methods of different programming systems. In

this chapter, a description of how the event handling work within the Visual Studio.NET

languages such as Visual Basic, C#, Visual C++, and Visual J# is presented. Some

examples are given in order to make a comparison of how these languages are used to

implement the event handling. It also presents how the event handling works within other

systems such as Java and JBuilder.

Chapter 1 Introduction 5

An abstract model approach is presented in Chapter 4. Definitions of the model,

demanded and derived properties are also introduced.

Chapter 5 describes the implementation of the abstract model as well as developing the

framework on the basis of the .NET. C# language was used in the implementation of the

framework system. It presents the special program and its features that are used to

implement the event handling system. It gives a detail description of the two main parts of

the system, namely specification part and hand-built program (hbp) part. It also declares

the parts of the specification system such as state space, event handling and control

functions specification and also how these specification parts are transformed into C#

language. It gives an illustrative application example of how the system works.

Chapter 6 summaries the contribution of the work, and it describes the advantages and

disadvantages of the system as well as outline of future areas of research.

2

__

Programming Paradigms
__

 A Programming Paradigm is defined as a style of programming for a class of

programming languages that share a set of common characteristics [37].

A programming language is a systematic way of using signs to communicate a

task/algorithm to a computer, which influence the task to be performed. The task to be

performed is known as a computation, which follows absolutely precise and unambiguous

rules [37].

The fundamental question framed as follows: What does it mean to understand a

programming language? What do we need to know to be able to program in a language?

There are three fundamental aspects to any language.

The method of specifying what is legal in the phrase structure of the language is known as

the syntax of the language; any knowledge of the syntax is analogous to knowing how to

spell and construct sentences in a natural language such as English. However, this does

not give us any information about the meaning of the sentence. Meaning is given by

semantics. Ultimately, without semantics, a programming language is just a collection of

meaningless phrases; hence, the semantics forms an integral part of a language.

Finally, pragmatics is the aspect of using the language in a special way, how to meet a

special programming paradigm. There are numerous numbers of programming languages

which were used for special purposes such as, academic and industrial needs.

Chapter 2 Programming Paradigms 7

In order to demonstrate how certain programming languages reflect on programming

paradigms, some of them will be discussed in this section. Some of the major

programming language paradigms are as follows:

• Imperative (Procedural) Paradigm

• Functional Paradigm

• Logic Paradigm

• Object-Oriented Paradigm

• Aspect-Oriented programming Paradigm

• Event driven programming

The relationships between programming paradigms and programming languages can be

complex because programming language has the ability to support multiple paradigms.

For example, C++ is designed to support elements of procedural programming, object-

based programming, object-oriented programming, and generic programming. However,

designers and programmers decide how to build a program using those paradigm

elements. A purely procedural program can be written in C++ where as a purely object-

oriented program can be written in C++, or one can also write a program that contains

elements of both paradigms [38].

The rest of this chapter is organized as follows: an introduction about imperative

programming is presented in section 2.1. A general overview about functional

programming is introduced in section 2.2 and the Haskell language is taken as an example

of the functional programming language. In Section 2.3, the concept of logic

programming system is discussed, in this section, the Prolog language is used as an

illustrative example of the logic programming language. The object-oriented system is

described in Section 2.4. In Section 2.5, a brief introduction about aspect-oriented system

is presented and the AspectJ is taking as one of the different application of aspect oriented

system. The event-driven programming is described in section 2.6. In the last section 2.7

the integration of the programming paradigms and the importance of learning these

approaches are discussed.

Chapter 2 Programming Paradigms 8

2.1 Imperative Programming Paradigm

 The oldest programming style is the imperative programming paradigm which is

closely related to the computer and its machine language. The computer is controlled by

instructions that are executed in one of the units of the CPU [39].

Imperative programming is a programming style that describes computation in terms of a

program state and statements that change the program state. In as much as the imperative

mood in natural languages expresses commands to take action, imperative programs are a

sequence of commands issued for the computer to perform [23]. The hardware

implementation of almost all computers is imperative; nearly all computer hardware is

designed to execute machine code, which is native to the computer, written in the

imperative style. From this low-level perspective, the program state is defined by the

contents of memory, and the statements are instructions in the native machine language of

the computer [41]. Even though Higher-level imperative languages use variables and

more complex statements, they still follow the same paradigm. Recipes and process

checklists, while not computer programs, are also familiar concepts that are similar in

style to imperative programming; each step is an instruction, and the physical world holds

the state. Most computer languages are in the imperative style because the basic ideas of

imperative programming are both conceptually familiar and directly embodied in the

hardware.

The four basic types of statements supported by most high-level languages are:

assignment, looping, conditional branching, and unconditional branching. Generally, the

function of the assignment statements is to perform an operation on information located

in the memory and store the results in memory for later use. Also High-level imperative

languages permit the evaluation of complex expressions, which may consist of a

combination of arithmetic operations and function evaluations, and the assignment of the

resulting value to memory. Looping statements permits a sequence of statements to be

executed multiple times. Loops can either execute the statements they contain a

predefined number of times, or they can execute them repeatedly until some condition

Chapter 2 Programming Paradigms 9

changes. Conditional branching statements allow a block of statements to be executed

only if some condition is met. Otherwise, the statements are skipped and the execution

sequence continues from the statement following the block. Unconditional branching

statements allow the execution sequence to be transferred to some other part of the

program. These include the jump, called "GOTO" in many languages, and the

subprogram, or procedure call [23].

The earliest imperative languages were the machine languages of the original computers.

In these languages, instructions were very simple, which made hardware implementation

easier, but hindered the creation of complex programs. BASIC, FORTRAN, COBOL and

PASCAL are some examples of the imperative programming languages.

FORTRAN, developed by John Backus at IBM starting in 1954, was the first major

programming language to remove the obstacles presented by machine code in the creation

of complex programs. FORTRAN was a compiled language that allowed named

variables, complex expressions, subprograms, and many other features now common in

imperative languages. The next two decades saw the development of a number of other

major high-level imperative programming languages. In the late 1950s and 1960s,

ALGOL was developed in order to allow mathematical algorithms to be more easily

expressed. COBOL (1960) and BASIC (1964) were both attempts to make programming

syntax look more like English. In the 1970s, Niklaus Wirth developed Pascal, and Dennis

Ritchie created C while he was working at Bell Laboratories. Wirth went on to design

Modula-2, Modula-3, and Oberon. The United States Department of Defense began

designing Ada in 1974, but did not complete the specification until 1983 [23].

The 1980s saw a rapid growth in interest in object-oriented programming. These

languages were imperative in style, but added features to support objects. The last two

decades of the twentieth century saw the development of a considerable number of such

programming languages. SmallTalk-80, originally conceived by Alan Kay in 1969, was

released in 1980 by the Xerox Palo Alto Research Center. Drawing from SmallTalk's

concepts, Bjarne Stroustrup designed an object-oriented extension of the C language

Chapter 2 Programming Paradigms 10

called C++, which was first implemented in 1985. In the late 1980s and 1990s, the

notable imperative languages drawing on object-oriented concepts were Perl, released by

Larry Wall in 1987; Python, released by Guido van Rossum in 1990; and Java, first

released by Sun Microsystems in 1996.

2.1.1 Structured Programming

 Structured Programming was designed to avoid “GOTO” statements [39]. It is still

followed the imperative style. At a low level, structured programs are often composed of

simple, hierarchical program flow structures [41]. These are regarded as single

statements, which may be one of these structures, or primitive statements such as

assignment or procedure calls. The three types of structure identified by Dijkstra were

concatenation, selection, and repetition. Some of the better known structured

programming languages are Pascal, Modula, and Ada.

The Advantages of imperative programming are its relative simplicity, and the ease of

implementation of compilers and interpreters.

The disadvantages of imperative programming are the difficulties of reasoning about

programs and to some extent the difficulty of parallelisation. It tends to be relatively low

level compared to some other paradigms, and this makes them less productive [40].

2.2 Functional Programming

 Functional programming is a style of programming that gives special attention to

the evaluation of expressions, instead of execution of commands. The expressions in

these languages are generated by using functions to combine basic values. That means,

evaluation of an expression is nothing else but the application of functions.

Functional languages support and improve programming in a functional style [42]. A

program therefore consists entirely of functions which are generally defined in terms of

Chapter 2 Programming Paradigms 11

other functions, which in turn are defined in terms of still more other functions, until at

the bottom level the functions are language primitives [7].

The special characteristics and advantages of functional programming are stated as

follows. Purely functional programs do not contain assignment statements, therefore any

variable that takes on a value, never change. More generally, they separate side effects

from expression evaluation. A function call produces no other effect except to compute its

result. This removes many major sources of bugs, and also makes the order of execution

irrelevant since no side-effect can alter the value of an expression; it can be evaluated at

any time. This removes the trouble of prescribing the flow of control by the programmer.

Because expressions can be calculated at any given time, one can easily substitute

variables by their values and vice versa - this means, programs are “referentially

transparent”. This degree of freedom assist in making functional programs more easily

controlled mathematically than their conventional counterparts [7].

2.2.1 Functional programming Languages

 LISP started as a purely functional language but afterwards it gains some

important imperative features that increased its performance efficiency. Scheme is a

small, static-scope dialect of LISP. COMMON LISP is a combination of many dialects of

LISP in the early 1980s. ML is a strongly typed functional language with more

conventional syntax than LISP and Scheme. Haskell is the modern functional language

and is a purely functional language.

Although functional languages are often executed with interpreters, they can also be

compiled [4].

In a functional language, each expression of the language specifies an object. Objects are

pure values, always functions in principle. So, constants can be considered as nullary

functions (without any arguments).

Chapter 2 Programming Paradigms 12

The functional programming languages can be classified into two classes:

• Languages with eager evaluation

• Languages with lazy evaluation.

Roughly spoken means eager evaluation that a function is evaluated only if all the

arguments are completely evaluated. That means, for instance, that a function application

is not defined if one of the arguments is not defined. By lazy evaluation, the arguments

are only as far evaluated as it is absolutely necessary in order to get the result of the

whole function. As a consequence, partially defined as well as infinite values can be dealt

with.

The type concept of functional languages changed from a very simple one in LISP to a

powerful tool in EPIGRAM [11]. In LISP all the data structures are built by pairs. So, for

instance, a list is considered as a pair where the left component is the head of the list and

the second one the tail.

Modern functional languages such as ML, MIRANDA, and HASKELL use algebraic data

type concepts which allow the user to build his own structures by user defined

constructors. In EPIGRAM which is based on Martin-Löf´s type theory [11], the type

concept allows to verify the correctness of the defined functions. Moreover, using

principles of primitive recursion, by the powerful type system the programming system

assists the user to construct correct functions. In addition EPIGRAM allows only

structurally recursive definitions which ensure that programs always terminate.

2.2.2 The Haskell programming language

 Haskell (Peyton Jones and Hughes 1998) is one of the famous functional

programming languages being applied today. Haskell is named after Haskell B. Curry

who was one of the pioneers of the λ calculus (lambda calculus), which is a mathematical

theory of computable functions. There are many ways of implementations of Haskell

available; one of them is the Hugs (1998) system. We have the impression that Hugs

Chapter 2 Programming Paradigms 13

delivered the best condition for the programmer, since it is freely available for PC, UNIX

and Macintosh systems, it is efficient, compact and has flexible user interface.

Hugs is used for evaluating expressions step-by-step as might manually be done by

writing on a paper, for this reason, it is less efficient compared with a compiler which

translates Haskell programs directly into the machine language of a computer [6].

Compiling a language such as Haskell permits its programs to run with a speed

comparable to those written in more conventional languages such as C and C++. Details

of all the implementations of Haskell can be found at the Haskell home page, http://

www.haskell.org.

We will speak only about the main concepts that used in the Haskell and reflected the

meaning of the functional programming paradigm.

2.2.2.1 Definitions and evaluation

 A functional program in Haskell consists of:

• Type definitions

• Constant definitions

• Function definitions

Types are primitive such as boolean or algebraic types which are built by means of

constructors and corresponding arguments. For some algebraic types, like tuples, lists and

functions, special writing conventions are introduced which make programs better

readable.

A constant definition consists of a pattern and an application. The pattern is built like

expressions with constructors as operators and variables, constant identifiers and pattern

as operands. In order to get the value of the constant, at first the corresponding

application (an expression) is evaluated and then the pattern is matched with the value of

the application.

Chapter 2 Programming Paradigms 14

Functions in Haskell have only one argument. If functions with more than one argument

are needed, then either the different arguments must be combined to a tuple or currying is

used in order to define a higher order function which has functions as result. Similar to

constant definitions, pattern matching is a main method to define functions. For different

pattern of the argument different definitions are given.

If a function must be applied to an actual argument, a definition is searched for which the

pattern matched with the actual argument. Because Haskell uses lazy evaluation, the

actual argument is only evaluated as deep as a match is found or it becomes true that no

match is possible. This means that nothing is evaluated until it has to be evaluated [43].

This can be illustrated with the case of defining an infinite list of primes without ending

up in infinite recursion. Only the elements of this list that are actually used will be

computed. This enables for some very elegant solutions to many problems. A typical

pattern of finding a solution to a problem is to define a list of all possible solutions and

then sorting out the incorrect ones. The remaining list will then only contain the correct

solutions. Lazy evaluation makes this operation very clean. If we only need one solution

we can simply extract the first element of the resulting list - lazy evaluation will make

sure that nothing is needlessly computed.

2.2.3 Applications of Functional languages

 In the history of high-level languages only a few functional languages have gained

widespread recognition of their application. Most common among these is LISP. Because

of its higher use of the assignment statement, APL also is often considered as a functional

language, purely because of its functional forms. APL has been used for different variety

of applications, ranging from description of hardware to management information

systems. Because of the complexity in reading a typical APL program, its most natural

place in contemporary computing is in the category of throwaway programming. With its

powerful collection of array operations, it is an excellent tool for quick but dirty solutions

to problems involving many array manipulations [4].

Chapter 2 Programming Paradigms 15

LISP is flexible and powerful language. It was developed for computing symbols and list-

processing applications, which is found in the AI area of computing. In AI applications,

LISP and its derivative languages are still considered as standard languages.

A number of areas have been developed in the field of AI, primarily through the use of

LISP. Although other kinds of languages can be used primarily logic programming

languages, most existing expert systems, for example, were developed in LISP. LISP also

dominates in the areas of knowledge representation, machine learning, natural language

processing, intelligent training systems, and the modeling of speech and vision.

Outside AI, LISP has also been successfully applied. For example, the EMACS text

editor is partially written in LISP and can be executed in LISP, as is the symbolic

mathematics system, MACSYMA, which does symbolic calculus, among other things.

The LISP machine is a personal computer whose entire systems software is written in

LISP. LISP has also been successfully used to construct experimental setups in different

fields of application [4].

Scheme is widely used to teach functional programming. It is also used in some

universities to teach introductory programming courses. Use of ML and Haskell has been,

for the most part, restricted to research laboratories and universities.

2.2.4 A Comparison of Functional and Imperative Languages

 It is a natural to compare functional programming with programming in imperative

languages. Because imperative languages directly related to the von Neumann

architecture, programmers using them must deal with the management of variables and

assignment of values to them. The results of this are increased in efficiency of execution

but difficulty in construction of programs. In a functional language, the programmer does

not need to be concerned with variables, because memory cells do not need to be

abstracted into the language. One result of this is decreased in efficiency of execution.

Another result, however, is a higher level of programming, which should require less

Chapter 2 Programming Paradigms 16

labor than programming in an imperative language. Many believe that this is the case and

that it is a definite advantage of functional programming.

Functional languages can have a very simple syntactic structure. The list structure of

LISP is an example. The syntax of the imperative languages is much more complex. The

semantics of functional languages can also be simple compared to that of the imperative

languages.

Concurrent execution in the imperative languages is difficult to use and design. For

example, consider the tasking model of Ada, in which cooperation among concurrent

tasks is the responsibility of the programmer. Functional programs can be executed by

first transforming them into graphs. These graphs can then be executed through a graph

reduction process, which can be done with a great deal of concurrency that was not

specified by the programmer. The representation of the graph naturally exposes many

opportunities for concurrent execution. Cooperation synchronization in this process is not

the concern of the programmer [4].

In an imperative language, the programmer must make a static division of the program

into its different concurrent parts, which are then written as tasks. This can be a

complicated process. Programs in functional languages can be divided into concurrent

parts dynamically by the execution system, making the process highly adaptable to the

hardware on which it is running. Understanding concurrent programs in imperative

languages is much more difficult.

2.3 Logic Programming

 Logic programming paradigm is a way of expressing programs in a form similarly

to symbolic logic and use a logical inference process to generate results.

Logic programs are declarative the sense that only the specifications of the desired results

are stated rather than detailed procedures for producing them.

Chapter 2 Programming Paradigms 17

The essential characteristic feature of logic programming languages is their semantics.

The basic concept of this semantics is to describe some knowledge of the objects [4].

In a logic language, constants and variables are defined. However, computation is done

by defining data objects that satisfy a set of constraints [5]. The programmer defines facts

or relationships regarding data objects as well as inference rules by which conclusions

may be drawn about those objects. A query may then be written a question whose

truth/answer or false the programmer does not know. The language interpreter attempts to

prove that question from the facts and rules previously provided.

During the proof process, variables are instantiated with terms which describe constraints.

By unification it is checked whether or not different constraints can be satisfied in a most

general way. If all constraints can be satisfied then a solution is computed.

The mathematical basis for logic programming is the technique of refutation proofs in a

subset of predicate calculus of first order. The formulas are restricted to so called Horn

clauses, which have the form of an implication. The proof method developed first by

Robinson provides the inference technique [4]. The resolution rule, a generalization of

the cut rule, uses unification.

Logic programs face serious of machine efficiency. Furthermore, the best form of a logic

language has not yet been determined, and good methods of creating programs in logic

programming languages for large problems have not yet been developed.

Prolog is used to describe the logic programming paradigm because it is the only widely

used logic language,

2.3.1 The Origins of Prolog

 During the very early 1970s, Alain Colmerauer and Philippe Roussel of the

Artificial Intelligence Group at the University of Aix-Marseille, together with Robert

Kowalski of the Department of Artificial Intelligence at the University of Edinburgh,

Chapter 2 Programming Paradigms 18

developed the fundamental design of Prolog, which amounts to a syntax for predicate

calculus propositions and an implementation of a restricted form of resolution. The first

Prolog interpreter was developed at Marseille in 1972. The version of the language that

was implemented is described in Roussel (1975). The name Prolog is from programming

by logic.

To this day Prolog has grown in use throughout North America and Europe. Prolog was

used heavily in the European Esprit programme and in Japan where it was used in

building the ICOT Fifth Generation Computer Systems Initiative. The Japanese

Government developed this project in an attempt to create intelligent computers. Prolog

was a main player in these historical computing endeavors. Prolog became even more

pervasive when Borland's Turbo Prolog was released in the 1980's. The language has

continued to develop and be used by many scientists and industry experts. Now there is

even and ISO Prolog standardization (1995) where all of its individual parts have been

defined to ensure that the core of the language remains fixed.

2.3.2 Language Overview

 A Prolog program is made of collections of clauses. Even though Prolog has only a

few kinds of clauses, they can become complicated. Prolog is commonly used as an

intelligent database [3]. This application provides the necessary simple framework for

discussing the Prolog language. The database of a Prolog program is made of two kinds

of clauses, namely, facts and rules. An example of a fact is

mother(mary,john).

This intends to the description of the fact that mary is the mother of john. An example of

a rule is

grandparent (X, Z) :- parent (X,Y), parent (Y,Z).

Chapter 2 Programming Paradigms 19

The above statement can be explain as follows: X is the grandparent of Z if it is true that

X is the parent of Y and Y is the parent of Z, for some specific values for the variables X,

Y, and Z.

The Prolog database can be interactively queried with goal statements, an example of

which is

father (bill, john).

which can be asked, if bill is the father of john. When such a query, or a goal, is presented

to the Prolog system, it uses the “resolution process”, which uses unification, to attempt

to determine the truth of the statement. If it can be conclude that the goal is true, it

displays “true”. If it cannot be proved, then it displays “false”.

Resolution is designed to work with formula in clausal form. Given two clauses that are

related in an appropriate way, a new clause can be generated as a consequence of them.

The basic idea is that if the same atomic formula appears both on the left hand side of one

clause and the right hand side of another the two clauses, missing out the duplicated

formula, follows from them. For example:

 from:

 angry(chris) :- workingday(today) , raining(today).

 and:

 unpleasant(chris) :- angry(chris),tired(chris).

 follows:

 unpleasant(chris) :-

 workingday(today) , raining(today),tired(chris).

Resolution is actually more complicated compared to the above illustrative example.

Particularly, the presence of variables in propositions requires resolution to find values

for those variables that enable the matching process to be succeeded.

Chapter 2 Programming Paradigms 20

A critical important property of a resolution is its ability to detect any inconsistency in a

given set of propositions. This property allows resolution to be applied to prove theorems,

which can be illustrated as follows: we can imagine the proof of a theorem in terms of

predicate calculus as a given set of pertinent propositions; a new proposition can be

generated with the negation of the theorem itself. The theorem is negated so that

resolution can be used to prove the theorem by finding an inconsistency. This is proof by

contradiction. Typically, the original propositions are called the hypotheses and the

negation of the theorem is called the goal [3].

2.3.3 Application of Logic Programming

 Logic programming has been applied in a number of different areas. Here are some

of them:

• Relational Database Management Systems: data in the form of tables is stored

in Relational Database Management Systems (RDBMSs). Queries on such

databases are often stated in relational calculus, which is a form of symbolic logic.

The query languages of these systems are nonprocedural in the same sense that

logic programming is nonprocedural. How to retrieval the answer is not describe

by the user; instead, he or she only describes the characteristics of the answer. The

connection between logic programming and RDBMSs should be obvious. Prolog

structures can describe simple tables of information, and also relationships

between tables can be conveniently and easily described by Prolog rules. The

retrieval process is inherent in the resolution operation. The goal clauses of Prolog

provide the queries for the RDBMSs [4].

One of the advantages of using logic programming to implement an RDBMS is

that only a single language is required. In a typical RDBMS, a database language

includes statements for data definitions, data manipulation, and queries, all of

which are embedded in a general-purpose programming language, such as

COBOL. The general-purpose language is used for processing the data and input

Chapter 2 Programming Paradigms 21

and output functions. All of these functions can be done in a logic programming

language.

Another advantage of using logic programming to implement an RDBMS is it’s

built in deductive capability. Conventional RDBMSs can not deduce anything

from the database other than what is explicitly stored in them. They contain only

facts and inference rules. The primary disadvantage of logic programming

compared with conventional RDBMSs is its lower level of efficiency. Logical

inferences are simply much slower than ordinary table look-up methods using

imperative programming techniques.

• Expert Systems: Expert systems are computer systems that are designed to

emulate human expertise in some particular domain. They are made of some

database of facts, an inferencing process, some heuristics about the domain, and

some friendly human interface that makes the system appear much like an expert

human consultant. In addition to their initial knowledge base, which is provided

by a human expert, expert systems learn from the process of being used, so their

databases must be capable of growing dynamically. Also, the property of an

expert system is that, it should have the ability of interrogating with the user in

order to get additional information when it detects that such information is

needed.

One of the central problems for the designer of an expert system can be associated

to the dealing with the inevitable inconsistencies and incompleteness of the

database [4]. Logic programming seems to be suitable approach to deal with these

problems. For example, default inference rules can be of help when dealing with

the problem of incompleteness. Prolog can and has been used to construct expert

systems. It can easily fulfill the basic need of expert systems, using resolution as

the basis for query processing, using its ability to add facts and rules to provide

the learning capability, and using its trace facility to inform the user of the

“reasoning” behind a given result. Missing from Prolog is the automatic ability of

Chapter 2 Programming Paradigms 22

the system to query the user for additional information when it is needed. One of

the most widely known uses of logic programming in expert systems is the expert

system construction system known as APES, which is described in Sergot (1983)

and Hammond (1983).

• Natural Language Processing: some kinds of natural language processing can be

done with logic programming. Particularly, natural language interfaces to

computer software systems, such as intelligent databases, and other intelligent

knowledgebase systems can be conveniently produced with logic programming.

For describing language syntax, different forms of logic programming have been

found to be equal to context-free grammars. Proof procedures in logic

programming systems have been found to be equivalent to certain parsing

strategies. In fact, backward chaining resolution can be used directly to parse

sentences whose structures are described by context-free grammars. It has also

been discovered that some kinds of semantics of natural languages can be made

clear by modeling the languages with logic programming. In particular, research

in logic-based semantics networks has shown that sets of sentences in natural

languages can be expressed in clausal form (Deliyanni and Kowalski, 1979).

Logic-based semantic networks are also discussed by Kowalski (1979).

• Education: In the area of education, extensive experiments have been carried out

in teaching children as young as seven years old on how to use the logic

programming micro-Prolog (Ennals, 1980). Researchers claim a number of

advantages in teaching Prolog to young people. Firstly, it is possible to introduce

computing with the application of this approach. It also has the side effect of

teaching logic, which can result in clearer thinking and expression. This helps

students in learning different kinds of subjects, such as solving equations in

mathematics, dealing with grammars for natural languages, and understanding the

rules and order of the physical world. The experiment in introducing logic

programming to the very young have yielded a very interesting result that is easier

Chapter 2 Programming Paradigms 23

to teach logic programming to a beginner than to a programmer with a significant

amount of experience in an imperative language.

2.4 Object-Oriented Programming

 The concept of object-oriented programming originates from SIMULA 67, but this

was not completely developed in the evolution of the SmallTalk language [4]. Computer

programming based on objects, in which each object has its own program code and data,

and can interact with other objects. Data items are closely related to the procedures that

operate on them. For example, a circle on the screen might be an object: it´s data, can be

defined as it´s centre point and the radius, as well as procedures for moving it, erasing it,

changing its size, and so on. The technique originated with the Simula and SmallTalk

languages in the 1960s and early 1970s, but it has now been incorporated into many

general-purpose programming languages, including Java, C++, C# and Eiffel.

2.4.1 The Basic Principles of Object-Orientation

2.4.1.1 Encapsulation

 Encapsulation or data hiding has been a major characteristic feature of a number of

programming languages, Both Modula-2 and Ada provides extensive encapsulation

features. But what exactly is encapsulation? Essentially, it is the method of hiding the

data behind software “wall”. Those outside the wall cannot get direct access to the data.

Instead, they must ask usually the owner of the data to provide them with the data.

The advantage of the encapsulation is that the user of the data does not need to know

how, where, or in what form the owner of the data stores that data. This means that if the

owner modifies the way in which the data was stored, this will not affect the user of the

data. The user will still need to ask the owner for the data; it is the owner of the data who

changes how the request is fulfilled [1].

Chapter 2 Programming Paradigms 24

Different programming languages apply the concept of encapsulation in diverse ways. For

example, Ada enables encapsulation using packages which posses both data and

procedures. A set of interfaces are also specified by publish those operations the package

wishes to make available to users of the package. These interfaces may apply some

operations or provide access to data held within the package.

Object-oriented languages give encapsulation facilities which provides the user of an

object with a set of external interfaces. These interfaces specify the requests to which the

object will respond (or, in the terminology of object orientation, the requests which the

object will understand). These interfaces not only avoid the need for the caller to

understand the internal details of the implementation, they actually prevent the user from

having access to that information. Users of an object cannot directly access the data held

by an object because ít is not visible to them. In other words, a program that calls this

facility can treat it as a black box, the program knows what the facility’s external

interfaces guarantee to do, and that is all it needs to know.

It is necessary to point out the difference between the object-oriented approach and the

package approach used in Ada. In general, a package is a large unit of code providing a

wide range of facilities with a large number of data structures (for example, the textIO

package). In an object-oriented language, the encapsulation is presented at the object

level. While objects may well be as large and as complex as the typical Ada package, they

are usually much smaller. In languages such as C# and Java, where (virtually) everything

is in the form of an object, the smallest data and code units also naturally benefit from

encapsulation. The same level of encapsulation can be introduced in Ada, eventhough it is

not natural to the language.

Figure 2.1 is an illustrative example in which encapsulation works within an object-

oriented language [1]. It shows that anything outside the object can only have access to

the data that the object holds through specific interfaces (the black squares). In turn these

interfaces invoke procedures which are internal to the object. These procedures may then

Chapter 2 Programming Paradigms 25

access the data directly, use a second procedure as an intermediary or call an interface to

another object.

Figure 2.1: Object structure and interaction

2.4.1.2 Inheritance

 A class is an example of a particular type of thing (for example, manimal is a class

of animal). In the case of object oriented world, a class is defined as the charactristics of

that thing. Therefore, in the case of manimals, we might define that the animals have fur,

are warm-blooded and produce live young. Animals such as dogs and cats are then

instances of the classes manimals. These are all quite obvious and should not give a

conceptual problem for anyone. However, in most object oriented languages, the concept

of the class is closely related to the concept of inheritance [1].

Inheritance enables us to state that one class is similar to another class, but with a

specified set of differences. Another way of stating this is that we can define all the things

Chapter 2 Programming Paradigms 26

which are common to a class of things, and then define what is special about each sub-

grouping within a subclass. For example if we have a class defining all the common traits

of manimals, we can define how a particular groups of manimals differ. The duck-billed

platypus is a quite extraordinary manimals that differs from other manimals in a number

of important ways. However, we do not want to define all the things that it has in

common with other manimals. Not only is this extra work, but we then have two places in

which we have to maintain this information. We can therefore state that duck-billed

platypus is a class of manimals that does not produce live young. Classes allow us to do

this.

An example which is rather common to most computer scientists is illustrated in Figure

2.2, for this example, assuming that a job of designing and implementing an

adminstration system for a small software house that produces payroll, pensions and other

financial systems has been given. This system needs to record both permanent and

temporary employees of the company. For temporary employees, their department, the

length of their contract when they started and an additional information which differs

depending on whether they are contractors or students on an industrial placement need to

be recorded. For permanent employees, their department, their salary, the languages and

operating systems with which they are familiar and whether they are a manger need to be

record. In the case of managers, we might also want to record the projects that they run.

A class hierarchy diagram for this application is illustrated in Figure 2.2. It shows the

classes we have defined and from where they inherit their information.

• inheritance versus instantiation Stating that one class is a specialized version of

a more generic class, this is different from saying that something is an example of

a class of things. For the first case, it can be said that a developer is one category

of employee and manager is another. None of these categories can be used to

identify an individual. They are, in effect, templates for examples of those

catogries. In the second case, we say that “John” is an example of a developer

(just as “Chris”,”Myra” and “Denise” may also be examples of developers).

Chapter 2 Programming Paradigms 27

“John” is therefore an instance of a particular class (or catogery) of things known

as developers. It is important to get the concept of specializing a class having a

subclass in mind. It is very easy to confuse an instance of a class with a subclass.

Figure 2.2: An example of inheritance

• Inheritance of common information: common concepts can be placed together in

a single class. For example, every individual has a name and all employees have

their respective department alocated to them (whether permanent or temporary

employee). All temporary employees have a commencement date, whether being

contractors or students. In turn, all classes below Employee inherit the concept of

Chapter 2 Programming Paradigms 28

a department. This means that not only do all Managers and Developers have a

department, but “John” has a department, which in this case is “Payroll”.

• Abstract classes: Figure 2.2 [1] defines a number of classes which has not been

intended for giving an example: Employee, Permanent Employee and Temporary

Employee. These are termed abstract classes and are intended as a placeholders

for common features rather than as templates for a particular catogry of things.

This is quite acceptable and is common practice in most object oriented programs.

• Inheritance of default: Having stated that Permanent Employees earn a default

salary of 14.000 a year does not imply that all types of employee have that default.

In the diagram, Managers have a default of 30.000, illustrating that a class can

overwrite the defaults defined in one of its parents.

• Single and Multiple Inheritance: Only a single inheritance has been illustrated in

Figure 2.2. That is, a class inharits from only one other class. This is the case in

many object oriented programming languages, such as Java and SmallTalk.

However, other languages, such as C++ and Eiffel, accept multiple inheritance. In

multiple Inheritance, the characteristics of two classes can be brought together to

define a third class. For example, we may have two classes, Toy and Car, which

can be used to create a third class Toy-Car.

2.4.1.3 Abstraction

 Abstraction is much more than just the ability to define categories of things which

have in common the features of other things (for example, Temporary Employee is an

abstract class of Contractor and Student Employee). It is a way of making a specification

regarding what is particular about a group of classes of things. Most this means defining

the interface for an object, the data that such an object have and part of the functionality

of that object. For example, a class DataBuffer may be defined as the abstract class for

things that hold data and return them on request. It may define how the data is held and

Chapter 2 Programming Paradigms 29

that operators such as put() and get() are provided to add data to and remove it from the

DataBuffer. The application of these operators may be left to those implementing a

subclass of DataBuffer. The class DataBuffer can be used to implement a stack or a

queue. Stack could implement get() as return the most recent data item added, while

queue could implement it as return the oldest data item held. In either case, a user of the

class knows that put() and get() are available and work in the appropriate manner.

Abstraction is related to protection in some languages. For example, in C++ and C#, it

can be stated whether a subclass can overwrite data or procedures (and indeed whether it

has to overwrite them). The developer can not state in SmallTalk that a procedure can not

be overwritten, but can state that a procedure (or method) is a subclass responsibility (that

is, a subclass which implements the procedure in order to provide a functioning class).

Abstraction can also be refered to as the ability to define abstract data types (ADTs). In

terms of object oriented these are classes (or groups of classes) which provide behaviour

that acts as the infrastructure for a particular class of data type (for example, DataBuffer

provides a stack or a queue). However, it is worth pointing out that ADTs are most

commonly associated with procedural languages such as Ada. This is because the

concepts in object orientation essentially supersede ADTs. That is, not only do they

encompass all the elements of ADTs, they extend them by introducing inheritance.

2.4.1.4 Polymorphism

 Essentially, Polymorphism is the ability to request that the same operation be

performed by a wide range of different types of things [1]. The processing of the request

depends on the thing that receives the request. How to handle the request should not be a

problem for the programmer. This is illustrated in Figure 2.3.

In this example, the variable MotorVehicle can represent an instance of a MotorVehicle

and any subclass of the class MotorVehicle (such as car, MotorBike or SportCar etc.).

Chapter 2 Programming Paradigms 30

Since a method motordrive() is defined in the class MotorVehicle each and every one of

them will do their own thing. For example, driving a family car can be different from

driving a motorbike or a sports car. However, these details should not be of much concern

to developers, they just need to know that they will all support the motordrive() method

(which they will, as they are Subclasses of MotorVehicle).

Figure 2.3: An example of polymorphism

Effectively, this means that many different things to perform similar action can be asked.

For example, a range of objects to provide a printable string describing them might be

asked. If you ask an instance of the Manager class, a compiler object or a database object

to return such a string, the same interface call (ToString in C#) can be used.

Unfortunately “Polymorphism” can be sometimes confusing. It makes the whole process

sound rather grander than it actually is. The two types of polymorphism used in

programming languages are as follows: overloading and overriding. Each type depends

on the mechanism that resolves what code to execute.

• Overloading Operators: Overloading is said to occur when procedures with

similar names are applied to different data types. The compiler has the ability to

Chapter 2 Programming Paradigms 31

determine which operator to use at compile-time and the correct version can be

used.

This type of overloading is used by Ada. For example, if a new version of the “+”

operator for a new data type is defined. When a programmer uses “+”, the

compiler uses the types associated with the operator to determine which version of

“+” to use.

In C, although the same function, printf, is used to print any type of value, it can

not be classified as a polymorphic function. The correct format option must be

specified by the user in order to ensure that a value is correctly printed.

• Overriding Operators: Overriding is said to occur when a procedure is defined

in a class (for example, Temporary Employee) as well as in one of its subclasses

(for example, Student Employee). This means that considering instance of

Temporary Employee and Student Employee, each one of them can respond to

requests for this procedure (assuming it has not been made private to the class).

For example, assuming that the procedure ToString is defined in these classes.

The pseudo code definition of this in Temporary Employee might be:

public String ToString()

{

return “I am a temporary employee”

}

In Student Employee, it might be defined as:

public String ToString()

{

 return “I am a student employee”

}

Chapter 2 Programming Paradigms 32

The procedure in Student Employee replaces the version in Temporary Employee

for all instances of Student Employee. If an instance of Student Employee is

asked for all the result of ToString, the string “I am a student employee” can be

gotten.

 In Java, the choice of which version of the procedure to execute is not determined

 at compile-time, because the compiler needs to be able to identify the type of

 object and then find the appropriate version of the procedure. Instead, the

 procedure is chosen at run-time. The technical term for this process of

 identifying the procedure at run-time rather than compile-time is called “late

 binding”.

2.5 Aspect Oriented Programming

 Aspect oriented programming (AOP) or to be more precise, Aspect-Oriented

Software development (AOSD) is a new software development paradigm that provides

advanced separation of concerns [55]. The concept of AOP is originated by Gregor

Kiczales and his team at Xerox PARC. The first and most popular AOP language,

AspectJ is also developed by the same group. AOP was invented in order to be able to

handle the issues arising by crosscutting concerns. The modularization of the code related

to these concerns is not sufficient and it suffers a phenomenon called code tangling and

scattering. AOSD made a promise to take care of this problem by means of providing the

capability to modularize crosscutting concerns even though this affects the system

implementation in a crosscutting way.

The distribution of crosscutting functionalities is achieved by the weaving mechanism at

compile or run-time. It enables the implementation of a crosscutting concern at a single

place. A system can therefore be constructed by describing each relative concern

separately. This provides the usual benefits of increased modularity, e.g.

comprehensibility, reusability, facilitated maintenance.

Chapter 2 Programming Paradigms 33

AOP is a new technology for separating crosscutting concerns into single units called

aspects. An aspect is a modular unit of crosscutting implementation. It encapsulates

behaviors that affect multiple classes into reusable modules [65].

2.5.1 Separation of Concerns

 Separation of Concerns is found at the core of software engineering. Since the

need of software systems are constantly increased, the software design has attained a level

of complexity that the software engineering is trying to tackle with the Separation of

Concerns principle. Generally, this principle refers to the capability to identify,

encapsulate and manipulate the parts of a system, which are related to a particular

concept, purpose or objective.

In the beginning of the seventies, Parnas [66] and Dijkstra [67] dealt with this principle in

their publications. Dijkstra describes the need to separate concerns for the design of good

software. The term “Separation of Concerns” was not mentioned by Parnas, but he

proposes information hiding and encapsulation of software modules as a means of less

coupling. Therefore modules become more isolated from change in other software

modules because they are hiding behind a narrow interface.

The aim of the Separation of Concerns principle [66, 67] is to divide a complex problem

that is difficult to understand into a set of smaller problems, which are less complex and

more understandable. This concept tries to accommodate towards the direction that the

human mind works, since the human mind has a limitation with respect to problems or

concerns that it can concentrate on at a time. At the end, in order to solve the overall

problem, each sub problem needs to be solved separately. Regarding the field of software

development it means that different areas of interest need to be decompose into separate,

independent system modules. The development of software through this way provides the

capability to concentrate on all efforts of a programmer on a certain system concern at a

time, whilst having in mind that he is dealing with just one part of an entire system. The

Chapter 2 Programming Paradigms 34

advantages of modularizing all different concerns into separated implementation units are

greater comprehensibility, maintainability, adaptability and reusability.

Hürsch and Lopes discern between Separation of Concerns at the conceptual level as well

as the implementation level [68]. At the conceptual level, Separation of Concerns pursues

the goal to give a clear definition and conceptual identification of each concern. The

resulting concerns should be correctly differentiated from each other. At the

implementation level, the objective of Separation of Concerns is to encapsulate the

various concerns into implementation units of the particular programming language and

to provide a less coupling between them. A mutual supportive relation is mostly kept by

the decomposition of software systems and the applied programming languages. The

design process decomposes systems into smaller sub systems. Programming languages

gives the mechanisms to generate abstractions out of these sub systems and to compose

these abstractions into an overall system.

However, problems occurs due to the current established programming techniques, e.g.

OO, procedural or functional programming, do not provide the mechanisms for clear

modularization, and above all for composition of all concerns defined at the conceptual

level [63]. The separation of concerns at the implementation level proves to be useful if

those concerns can be successfully composed to the overall system later.

In addition to the computation of the basic applications, recent applications have become

more and more complex due to the integration of nonfunctional requirements such as

concurrency, distribution, real-time constraints, persistence and synchronization which

contribute to solve the overall application problem domain.

Improving a basic application regarding nonfunctional requirements like real-time

capability and distribution leads to intertwined concerns within the modular

implementation units (e.g. classes, procedures, methods) of the system. In cases where

requirements are interdependent, they cannot be correctly separated with recent

Chapter 2 Programming Paradigms 35

established programming techniques. This results into several problems as described in

[68]:

• The application of different concerns leads to increased code complexity. The

developer has to focus on different types of views of one functionality at a time.

• OO or procedural languages have the ability to give an appropriate abstraction to

decompose the concerns at the implementation level. Therefore, the lack of

abstraction decreases the comprehensibility of the program considerably.

• Adoption of the implementation becomes more complex due to the strong-coupled

concerns and maintenance among themselves.

• Because of the strong coupling, it is impossible to redefine the intertwined

concerns in subtypes separately [69].

The current dominant programming paradigm is the Object-orientation. This concept

decomposes a given problem into a series of classes. Classes are the natural unit to

encapsulate data and characteristic behavior of a certain concern for OO languages. The

mechanism for composition given by OO languages is inheritance and aggregation for

structural and message passing for behavioral composition.

The Separation of Concerns problem is improvement on OO paradigm in comparison

with earlier technologies. However, the consequent realization of the principle at all

levels has not been completely reached. There are concerns that are associated to more

than one class in some way, and cannot be clearly encapsulated with the help of OO

mechanism. This problem occurs due to the fact that in the object-oriented world a system

becomes decomposed into modules along a single dominant concern [70]. The significant

functional or basic concerns become encapsulated into first-class abstractions. They can

therefore be composed and extended by means of inheritance, aggregation and message

passing.

Chapter 2 Programming Paradigms 36

Other non-dominant concerns need to be decomposed along with this dominant one and

they therefore get scattered over several modular units. Ossher and Tarr defined this

problem as “Tyranny of the dominant decomposition“ [70]. Concerns that could not

become encapsulated into a dominant module lead to code that is scattered over several

modules, and tangle with other concerns. Those concerns are designated as crosscutting

concerns.

2.5.2 Aspect-Oriented Software Development

 AOSD provides additional mechanisms that enable the fully modularization of

crosscutting concerns (or aspects) of a software system.

Crosscutting concerns originate from two main phenomena known as code scattering and

code tangling [71]. Scattering occurs when it cannot correctly modularized a code of a

certain concern into a system module and remains distributed throughout many modules.

This includes the adaptability of the implemented concerns, because it needs to search

and edit all scattered code related to a concern under consideration. Due to the scattering

phenomenon, the modules (classes and methods) could harbor code pertaining many other

concerns, which thereby result in an intertwined mixture of code fragments usually

denoted as code tangling. This causes modules that are difficult to comprehend, maintain

and reuse.

Many programming languages including object-oriented languages suffer from these

phenomena, because decomposition and composition mechanisms are not sufficiently

provided to clearly separate all identified system concerns. Their inherent mechanisms

enable the hierarchical decomposition of systems with respect to a single dominant

concern. That results in code of the non-dominant concerns scattering and tangling across

the code of the dominant concern.

Crosscutting refers to the inherent structure of the concerns and it is more than scattering

and tangling. The modularization of crosscutting concerns is addressed by AOSD through

Chapter 2 Programming Paradigms 37

the concerns and the composition of all software abstractions in a way that they do not

need to be hierarchical.

Crosscutting concerns are those, which cannot be cleanly, encapsulated in the natural

units of modularity (e.g. class or method in OO languages). In [63] crosscutting is defined

as:

“Whenever two properties being programmed must compose differently and yet be

coordinated, we say that they cross-cut each”.

Crosscutting concerns cannot be classified as implementations of functional system

requirements but instead properties have effect on the system in a non-functional way.

The most famous examples for such concerns are tracing, synchronization of concurrent

objects and transaction management. However, that is not to say that mean that

crosscutting concerns always have a non-functional nature.

Aspect-oriented programming techniques provide the means of encapsulating crosscutting

concerns and thereby it tries to tackle the problems facing traditional programming

techniques. Even though aspect-oriented programming is also applicable to object-

oriented programming, it is an independent concept whose application is found in other

programming styles.

Since AOP is an approach, it is not related to a specific programming language. In fact, it

can be useful with the shortcomings of all languages (not only OO languages) that use

single, hierarchical decomposition. AOP has been applied in different languages (for

example, C++, Smalltalk, C#, C, and Java).

The java language gained the interest of most research community. The following is a list

of tools that support AOP with Java:

• AspectJ

• AspectWerkz

Chapter 2 Programming Paradigms 38

• Hyper/J

• JAC

• JMangler

• MixJuice

• PROSE

• ArchJava

In the next section, an overview about the AspectJ will be introduced as an example of

the aspect-oriented programming.

2.5.3 AspectJ

 The general-purpose aspect language AspectJ has been developed by The AOP

research project. It is an aspect-oriented extension to the object-oriented base language

Java [62]. Some years ago, AspectJ became one of the most popular general-purpose

aspect languages. This is backed up by a large and growing number of user communities.

AspectJ is considered to be a practical AOP language that gives a dynamic join point

model and a set of new language constructs. This set of constructs is pointcut, advice and

introduction, which are mostly encapsulated in modular units of crosscutting

implementation so-called aspects. Also, aspects can consist of additional methods, fields

and initializers like an ordinary Java class.

2.5.3.1 Join Point Model

 The central concept in an aspect-oriented language is the join point model. The

capability of an AOP language to support crosscutting lies in its join point model. Join

points are defined as principled points in the execution of the program [62]. Crosscutting

behavior can be attached at those well-defined points. The meaning of principle is that,

behavior improvement cannot take place at arbitrary points in the execution of a program.

Chapter 2 Programming Paradigms 39

AspectJ can be used to create a dynamic join point model [61]. The dynamic property can

be thought of join points as nodes in a simple runtime object call graph [62].

Alternatively, join points can be imagine as events in the control flow of a program.

The following well-defined join points are introduced by AspectJ [61]: method call and

execution, constructor call and execution, read/write access to a field, exception handler

execution, object and class initialization execution. Constructor or method call join points

determine those places in the control flow of a call where the method’s arguments are

already evaluated but the code body is not yet executed. In comparison to the call join

point the execution join point is to occur when the control flow has reached the code

body. On the other hand, the fundamental difference between them is that, a call join

point occurs outside the object or class (for static elements) whiles an execution join point

takes place inside the object or class. Also, AspectJ provides join points that takes all

access to class attributes and an exception handler execution join point. Finally, the model

is made of join points that capture the static class as well as object initialization.

2.5.3.2 Pointcut

 A pointcut is a set of join points [61,62]. In AspectJ pointcut sometimes can be

named or anonymous. An autonomous declaration uses the keyword pointcut to define

named pointcuts. In comparison to anonymous pointcuts that are defined as part of advice

or named pointcut declarations. The term pointcut designator is applied by AspectJ team

in two-different ways, firstly, as an identifier of a named pointcut and secondly as a

language expression. The language expression is used for specifying where to pick out

join points from the run-time context.

2.5.3.3 Advice

 An advice is a method like construct is used to declare that some code should be

executed when a join point addressed by a pointcut is reached [61,62]. Syntactically it is

made of three important parts: the type of advice denoted by a keyword, a pointcut

Chapter 2 Programming Paradigms 40

designator and the advice body. AspectJ gives different variety kinds of advice, which are

denoted by the keywords: before, after, and around.

Figure 2.4: General form of advice

There are three different kinds of advice defined by AspectJ: one of them is executed

before its join points; the other one after and the last one runs instead (around) its join

points. The structure of each advice declaration is executed at a suitable time relative to

each join point.

Even though not all advice makes sense for every pointcut, the AspectJ syntax currently

allows all combinations; in some cases, around advice simply acts like before and/or after

advice, depending on when and if the original join point is invoked.

before(): get(int Foo.y) {...}: runs before reading the integer field Foo.y

after() returning(int x): pointcut {...} runs after the join point returns. The join point

must return an integer value. The value is bound to x in the body.

int around(): call(int Point.getX()) {...}: runs instead of calls to Point’s int getX()

method. The getX() may be invoked in the body using proceed(), which has the same

signature as the around advice. Around advice may also declare thrown exceptions; these

must not break Java’s static type safety rules.

2.5.3.4 Aspects

 AspectJ is used for providing a modular unit of crosscutting implementation, the

so-called aspect [61]. Aspects are the native encapsulation unit of the already discussed

new language constructs pointcut, advice and introduction. They are made of the

information how it’s crosscutting implementation cuts dynamically and statically over all

Chapter 2 Programming Paradigms 41

the base program. Classes and aspects have some similarity because both are types and

have an implementation that can be made of ordinary Java member with no crosscutting

effects like methods, fields and initializers. An aspect can change the way the base code

behaves (the non-aspect part of a program) by application of advice (additional behavior)

at various join points (points in a program) specified in quantification or query called a

pointcut (that identified whether a given join point matches). An aspect can also make

binary-compatible structural changes to other classes, like adding members or parents.

2.6 Event Driven Programming

 During the early days of computing, a program starts execution and then it

continues through its steps until it is completed. If the user of the computer is involved,

then the interaction is strictly controlled and limited to data entering into fields [24].

The program may be simple and prints a prompt, wait for the user to enter a name,

displays a message with this name in it, and then waits for him to strike a key to exit the

program. This style is easy to comprehend and program. The problem arises when the

programs need to become more sophisticated and the user must deal with more than just

inputting data with the keyboard [27].

Today’s embedded system, Graphical User Interface (GUI) programming model, and

many other programming needs a different paradigm, known as event-driven

programming [24].

Event-driven programming is an easy way to enable the programs to respond to many

different inputs or events.

Today’s programming presents a user interface and waits for an action to be taken by the

user. Many different actions may be taken by the user, such as making selections in menu,

pushing buttons, updating text fields, clicking icons, and many others. Each action makes

an event to be raised. Other events can be raised without the direct action of the user, such

as events corresponding to timer ticks of the internal clock, email being received, file-

Chapter 2 Programming Paradigms 42

copy operations completing, etc. In programming, a situation where a particular action

needs to be executed is often presented, but the method or even the object which is called

upon to be executed is not known in advanced. For example, a button might know that it

must notify some object when it is pressed but it might not know which object or objects

need to be notified [28].

In addition to the GUI, the computer operating systems are another classic example of

event-driven programs on at least two levels [44]. At the lowest level, interrupt handlers

behave like direct event handlers for hardware events, with the CPU hardware performing

the role of the dispatcher. Operating systems mostly function as dispatchers for software

processes, passing data and software interrupts to user processes that in many cases are

programmed as event handlers themselves.

A command line interface can be considered as a special case of the event-driven model

in which the system, which is inactive, waits for one very complex event – the entry of a

command by the user [44].

Event-driven programs upgrade on sequential programs by acquiring a central event

handler and dispatcher that waits for an event (any event) to occur, and then execute that

event by calling that event handler [27].

Separation of the event detection and the event handling is an important technique for

maintaining the simplicity and flexibility of the program [27].

Applications of Event-driven programs are not bound by the constraints of procedural

programs. Rather than the top-down approach of procedural languages, event-driven

programs contain logical sections of code placed within events. There is no predefined

order in which events occur, and usually the user has complete control over what code to

be executed in an event-driven program by interactively triggering specific events, such

as by clicking a button. The code which is contained in the event is called an event

procedure [29].

Chapter 2 Programming Paradigms 43

2.6.1 Event Handling in General

 Event handling is consisting of dealing with a situation whereby something has

occurred and the software developer has to be notified of that situation. Sometimes the

code written to take care of these situations is known as a callback and sometimes as an

event handler. In both cases, the same fundamental principle is applied. That is, the

developer has to implement (in C# for example) a method that matches some

specification that allows it to be called when the “event” occurs. This event can for

example be some threshold being reached in some sensor, it could be a message being

received from some broadcast mechanism or it could be some user interaction with a

GUI. Generally, this event handling method will be invoked when the event occurs and

will be passed some data to enable it identify the sender of the event and any event-

specific data. The action that the application must take is then determined by the event

handler [1]. Figure 2.5 gives an illustration of the interactions that take place when

handling GUI events in a little more detail. The three main steps with respect to a button

are illustrated as follows:

• The user clicks on the button.

• An EventArgs object is created by the button. This is an object that contains any

additional data that must be made available to the event handler. This step is

known as raising an event in C# terminology.

• The button then invokes a suitable handler method (on an object somewhere)

passing in a reference to itself (as the sender of the event) and the event args.

• The handler method can then apply any appropriate operation that it needs to

perform.

Chapter 2 Programming Paradigms 44

Figure 2.5: Event handling concepts

Delegates are used to implement events in C#. A delegate is a reference type that

encapsulates methods with a specified parameter list and return type [2]. As discussed in

chapter 3, a delegate is formed with the delegate keyword, followed by a return type and

the parameter list of the methods that can be delegated to it. As soon as the delegate is

defined, a member method can be encapsulated with that delegate by instantiating the

delegate and passing in as a parameter the name of a method that matches the return type

and parameter list.

In C#, any object can publish a set of events from which other classes can subscribe.

When an event is raised by the publishing class, notification is send to the subscribed

classes. The publishing class defines a delegate that must be applied by the subscribing

classes. When the event is raised, the subscribing class’s methods are invoked through the

delegate [28].

As previously discussed, any method that handles an event is called event handler. Event

handlers can be declared to any other delegate.

Chapter 2 Programming Paradigms 45

By convention, event handlers in the .NET Framework return void and take two

parameters. The first parameter is the “source” of the event, that is, the publishing object.

The second parameter is an object derived from EventArgs. The EventArgs class contains

information regarding the event that can be beneficial to the event handler method.

There are some programming languages that try to apply the style of event driven

programming paradigm such as Visual Basic, C#, Visual C++, J#, Java, JBuilder and

most modern language but in fact it can not be confirmed that these programming

languages are event driven programming. In these languages, the event handling is

distributed over the whole program text [50]. Because of that, there is no clear overview

where and under which condition events may occur and which effects they cause. It

always depends on the existing general situation of a program, which is mostly

characterized by the existence, and values of program objects, i.e. the current memory

assignment. This procedure complicates the maintenance of software.

In this thesis, as will be seen in chapter 5, an attempt is made to address this problem by

clearly separate event handling from the actions of the program. A special program is

introduced, which is responsible for event handling alone. Every event may alter the

event state. Therefore there exist one cycle in the program flow, which is found by raising

events and changing the event state.

In chapter 3, the implementation of the events handling and how it works in different

programming languages especially in the .NET Framework is discussed

2.6.2 Advantages and disadvantages of Event-driven programming

• The primary advantages of event-driven programming are as stated below:

o Flexibility: Because the flow of the application is monitored by events

instead of a sequential program, it is not necessary for the user to conform

to the programmer’s understanding of how tasks should be performed [46].

Chapter 2 Programming Paradigms 46

o Robustness: Event-driven applications happen to be more robust because

of their less sensitivity to the order in which users perform activities. In

conventional programming, the programmer has to expect every sequence

of activities virtually that the user might execute and define feedbacks to

these sequences [46].

• The prime disadvantage of event-driven programs is that it is often difficult to

find the source of errors when they can occur. This problem unfolds from the

object-oriented nature of event-driven applications— since events are associated

with a particular object, which the user may have to examine many objects before

discovering the inappropriate procedure. This is especially true when events

cascade (i.e., an event for one object triggers an event for a different object, and so

on) [46].

2.7 Integration of Programming Techniques

 In recent times, imperative object-oriented languages C++, Java, and Object Pascal

supported by many developing tools, are the most popularly selected to carry out large

programming projects., On the other hand these languages are not adequately suitable for

implementation of large software projects, where by one or many problems often belong

to the symbolic processing domain where non-traditional languages, such as Lisp or

Prolog, are more adequate [74].

AOP compliments OOP. It relies on cross-cutting concerns or aspects parts of code that

are associated with a large variety of objects, whereby logging is the canonical example.

Applying an AOP language (for ex. AspectJ) or libraries (for ex. Spring), programmers

have the capability of coding this functionality once and then define where to weave it

into existing objects. Many security-relevant cross-cutting concerns are found scattered

throughout the application logic such as Logging, access control, error handling,

transaction management, session management and input/output validation. With the

Chapter 2 Programming Paradigms 47

application of AOP, a large chunk of these concerns can be separated from the code base

and centralize them [75].

Therefore an integration of programming techniques from different languages and styles

is very much needed so as to facilitate implementation of programming projects.

Particularly, it is most attractive to improve the power of popular imperative object-

oriented languages with special data structures and control mechanisms from non-

traditional languages.

In addition to these paradigms, it should be noted that the event driven programming is an

alternative way of integration, i.e. direct integration of programming codes written in

different languages, now becomes perspective in connection with the development of

Microsoft.NET platform, which allows compiling and linking such different codes [74].

Over the past few years Event-driven programming has gained considerable recognition

in the field of software engineering. Many based on this approach have been developed,

especially in the application of Graphical User Interface (GUI) and embedded system.

Event driven methods facilitate the separation of concerns: the application layer (known

as business logic) provides the operations to be executed, whereas the GUI layer initiates

their execution in response to human users’ actions [76].

Learning Programming Paradigms

 The importance of integrating various programming techniques and languages

within the same software project is the objective of modern programming. Therefore, an

intensive education in the field of computer science should be focused on learning

programming techniques of different paradigms. These suggest the importance of

learning many different algorithmic languages, because there are no languages that can

consist of all possible techniques from various programming styles.

Therefore the idea is to learn modern programming languages and to compare base

programming techniques and to explicate distinguishing features of the paradigms and

Chapter 2 Programming Paradigms 48

also acquiring a very good knowledge of programming techniques and programming

languages.

The advantages of learning programming paradigms are also illustrated by the fact that

the future of popular modern languages is not known. According to the history of

programming, many languages became extinct, while the popularity of some other

languages have been lost, similar fate awaits some other modern languages. However, the

main programming paradigms will remain the same, as well as their base programming

techniques, and this makes their learning a permanent constituent of education in the field

of computer science [74].

3

__

Event-Handling in Different Programming System
__

 In this chapter, some principles about the events and delegates in the .NET

Framework, especially C# language, will be presented, since the implementation of my

framework was implemented in C# language. A few description about how the events and

event handler is working in different programming system in Microsoft Visual Studio

such as Visual basic, C#, Visual C++ and Visual J# are described. Some examples on

how the events was using in other programming languages such as Java and JBuilder are

also introduced.

3.1 Events

 Technically, the event in the event-driven programming can be defined as a

software message in order to specify that something had occurred, such as a keystroke or

mouse click [26]. In process control, the event can be defined as an occurrence that has

happened and has been registered. So, an event can be defined as an important alteration

in a state or any action or occurrence detected by a program. Events can be user actions,

such as clicking a mouse button or pressing a key, or system occurrences, such as running

out of memory. Events can also be created by state changes of objects. In most recent

applications, especially those that run in Macintosh and Windows environments are said

to be event-driven, since they are designed to respond to events.

Events are applied in graphical user interfaces (GUIs); specifically, the classes that are

represented by controls in the interface contain events that are notified when the user does

something to the control (for example, click a button). An event is the results of an action.

Chapter 3 Event-Handling in Different Programming System 50

The two important terms regarding events are event source and event

receiver. The object that raises the event is called event source and the object

that responds to the event is called event receiver. The communication channel

between an event source and an event receiver is the delegate.

In windows applications, especially in the visual studio programming languages such as

Visual Basic, C#, Visual C++, and J#, the implementation of the events is done by means

of delegates. Therefore, a discussion is first presented regarding delegates and the relation

between the events and delegates. The next step discusses how the events are

implemented in the visual studio languages and some comparison between them.

Furthermore illustrative examples are also presented. Finally the implementation of the

events handling in some other languages such as Java and JBuilder are described.

3.2 Delegates

 Delegates work as an intermediary between an event source and an event

destination. Technically, a delegate is a reference type used to encapsulate a method with

a specific signature and return type. It is possible to encapsulate any method in that

delegate. To be more specific, delegates have similarity with respect to function pointers.

They can be called as type safe function pointers. Unlike function pointers, delegates are

object-oriented and type safe. An event handler is a delegate class that is used as an

intermediary between an event source and event receiver [24].

There are three steps in defining and using delegates:

• Declaration

• Instantiation

• Invocation

Chapter 3 Event-Handling in Different Programming System 51

3.2.1 Declaration

 A delegate is generated using the delegate keyword, followed by a return type and

the signature of the methods that can be delegated to it, for example in C# the delegate

can be declared as follows:

public delegate int MyDelegate(object obj1, object obj2);

This statement declares a delegate called MyDelegate, which will encapsulate any

method that takes two objects as parameters and that returns an int. After the definition

of the delegate, a member method with that delegate is encapsulated by instantiating the

delegate, passing in a method that matches the return type and signature. The delegate can

then be used to call that encapsulated method.

3.2.2 Instantiation

 The delegate needs to be instantiated before it can be used to specify the method

that needs to be called.

public void MyMethod()

{

 MyDelegate a = new MyDelegate(MyDelegateMethod);

}

Here MyDelegateMethod is a method that has a signature similar to that of MyDelegate.

3.2.3 Invocation

 A delegate is used to invoke a method similar to how a method call is made. For

example:

 MyDelegateMethod(“This is a test invocation”);

Chapter 3 Event-Handling in Different Programming System 52

3.3 Events and Delegates

 Declaration of an event is directly coupled to a delegate. A method can be

encapsulated by a delegate object so that it can be called anonymously. An event is a

mechanism by which a client class can pass in delegates to methods that need to be called

whenever “something happens”. When this happens, the delegates given to it by its

clients are called [33].

 The syntax below is used to declare an event in C#:

 public delegate void testDelegate(int a);

 public event testDelegate MyEvent;

After the declaration of an event, it must have an association with one or more event

handlers before it can be raised. An event handler is just a method that is invoked using a

delegate. The += operator is used to associate an event with an instance of a delegate that

is already existing. For example:

 MyForm.MyEvent += new testEvent(MyMethod);

An event handler can be deleted or removed as follows:

 MyForm.MyEvent -= new testEvent(MyMethod);

In C#, events can be raised by just calling them by its name which has similarity to

method invocation, for example

 MyEvent(10).

How Event works?

 Once an event is defined for a class, the compiler generates three methods that are

used to manage the underlying delegate:

Chapter 3 Event-Handling in Different Programming System 53

• add_<EventName>:

This is a public method that calls the static Combine method of

 System.Delegate in order to add another method to its internal invocation

 list. The application of this method is however not explicit. The same result is

 produced by using the += operator as specified before.

• remove_<EventName>:

This is also a public method that calls the static Remove method of

System.Delegate in order to remove a receiver from the event’s invocation

list. This method is also not directly called. Its job is accomplished by means of

the “-=” operator.

• raise_<EventName>:

A protected method that calls the compiler produced an Invoke method of the

delegate, in order to call each method in the invocation list.

3.4 Types of Delegates

 Fundamentally there are two types of delegates. Single Cast delegate and Multi-

Cast delegate. A single cast delegate calls only a single function. Whiles a multi-cast

delegate is type that can be part of a linked list. The multi-cast delegate points to the head

of such a linked list. That means all the functions that form a part of the linked list are

called when the multi-cast delegate is invoked. Assuming that one has many clients who

would like to receive notification when a particular event happens. Joining all of them in

a multi-cast delegate can be helpful for calling all the clients when a particular event

occurs [31].

In order to support a single cast delegate the base class library contains a special class

type called System.Delegate. To support multi-cast delegates the base class library

includes a special class type called SystemMultiCastDelegate.

Chapter 3 Event-Handling in Different Programming System 54

3.5 Delegates and Their Roles

 Delegates are classes mostly applied within the .NET Framework to construct

event-handling mechanisms. Delegates have close similarity to function pointers,

commonly used in C++ as well as other object-oriented languages. Unlike function

pointers however, delegates are object-oriented, type-safe, and secure. Additionally,

where a function pointer have only a reference to a particular function, a delegate consists

of a reference to an object, and references to one or more methods within the object.

Delegates are used by the event model to bind events to the methods used to handle them.

The delegate enables other classes to register for event notification by specifying a

handler method. When the event occurs, the bound method is called by the delegate.

Delegates can be bound to a single method or to multiple methods, referred to as

multicasting. During the creation of a delegate for an event, a multicast event is typically

created by the user (or the Windows Forms Designer). An exceptional case can be an

event that is resulted in a specific procedure (such as displaying a dialog box) that would

not logically be repeated in multiple times per event.

A multicast delegate maintains an invocation list of the methods it is bound to. The

multicast delegate supports a Combine method to add a method to the invocation list and

a Remove method to remove it.

When an event is registered by the application, the control raises the event by calling the

delegate for that event. The delegate in turn calls the bound method. In most popular case

(a multicast delegate) each bound method in the invocation list is called by the delegate,

which provides a one-to-many notification. This strategy means that there is no need for

the control to maintain a list of target objects for event notification; the delegate handles

all registration and notification.

Delegates also permit multiple events to be bound to the same method, thereby allowing a

many-to-one notification. For instance, the delegate can be invoked by a button-click

Chapter 3 Event-Handling in Different Programming System 55

event and a menu-command–click event, which then calls a single method to handle these

separate events in the similar way.

The binding mechanism applied to delegates is dynamic — a delegate can be bound at

run time to any method whose signature matches that of the event handler. This feature

allows the user to set up or make changes to the bound method depending on a condition

and to dynamically attach an event handler to a control.

3.6 Events and Delegates in Visual Basic vs. C#

 Generally there are small differences between how events are declared, raised, and

handled in Visual Basic (VB.NET) versus C#. Events are a simple concept that is not

difficult to implement in VB 6.0. All of the message wiring is handled behind the scenes

[25].

The implementation of events in the .NET Framework is simple. A group of delegates are

kept internally and, whenever an event is occurs each delegate is invoked (i.e. delegated

to).

3.6.1 Declaring Events in Visual Basic and C#

 In Visual Basic .NET the use of delegates are virtually hidden from the user. The

syntax for their declaration is the same as done in VB 6.0:

Public Event TotalUpdatedEvent(ByVal Amount As Decimal)

It's not so transparent in C#. We first must define a delegate and then declare an event of

that delegate type:

public delegate void totalUpdatedEventhandler(decimal amount);

public event totalUpdatedEventHandler totalUpdatedEvent ;

Chapter 3 Event-Handling in Different Programming System 56

There is an additional very important difference. Take note of the void in the C# code

above. In this specific case, a value can not be returned by event handler; however, it is

possible for handlers in C# to return values. This is not permitted in VB.NET where all

handlers must be in the form of Subs. Instead, in VB.NET events can pass ByRef

parameters. A Cancel argument on a Closing event is a common example.

3.6.2 Raising Events in Visual Basic and C#

 The basic differences between VB.NET and C# for raising events are rather

uneventful as illustrated below:

RaiseEvent TotalUpdatedEvent (123.45)

Versus the following in C#:

 TotalUpdatedEvent (123.45);

3.6.3 Implementing Event Handlers (VB vs. C#)

 There are two different procedures for implementing event handlers in VB.NET.

The most popularly used method is to define a handler at design time with the Handles

keyword. The WithEvents keyword is used to declare the object instance that raise the

event, a carryover from VB 6.0 as shown below:

Module modmain

 Private WithEvents calculator As calculator = New calculator()

 Public Sub Main()

 Call calculator.DoSomethingEventful()

 End Sub

 Private Sub TotalUpdated(ByVal Amount As Decimal) Handles

 calculator.TotalUpdatedEvent

 Trace.Write("Total was updated to " + Amount.ToString())

 End Sub

End Module

Chapter 3 Event-Handling in Different Programming System 57

Public Class Calculator

 Public Event TotalUpdatedEvent(ByVal Amount As Decimal)

 Public Sub DoSomethingEventful()

 RaiseEvent TotalUpdatedEvent(123.45)

 End Sub

End Class

In the second method an event is associated with a handler function at run time by using

the AddHandler together with AddressOf as follows:

Module modmain

 Private WithEvents calculator As calculator = New calculator()

 Public Sub Main()

AddHandler calculator.TotalUpdatedEvent, AddressOf

 TotalUpdated

 Call calculator.DoSomethingEventful()

 End Sub

Private Sub TotalUpdated(ByVal Amount As Decimal) Handles

 calculator.TotalUpdatedEvent

 Trace.Write("Total was updated to " + Amount.ToString())

 End Sub

End Module

All handlers in C# must be associated at run time. This example illustrates the handling

of events in C#:

public class EventReceiver

{

 static void Main(string[] args)

 {

 EventReceiver demo = new EventReceiver();

 demo.doDemo();

 }

 public void doDemo()

 {

 Calculator calculator = new Calculator();

Calculator.totalUpdatedEventHandler handler = new

 Calculator.totalUpdatedEventHandler (OnTotalUpdated);

 calculator.totalUpdatedEvent += handler;

 calculator.doSomethingEventful();

Chapter 3 Event-Handling in Different Programming System 58

 }

 public void OnTotalUpdated(decimal amount)

 {

 Trace.Write("Total was updated to " + amount.ToString());

 }

}

internal class Calculator

{

 public delegate void totalUpdatedEventHandler(decimal amount);

 public event totalUpdatedEventHandler

 public void doSomethingEventful()

 {

 totalUpdatedEvent(123.45M);

 }

}

The following are important points about events:

• At run time, Handlers can be removed with RemoveHandler and the -=

operator.

• Handlers are executed in their order of association.

• In C#, when a single event is associated with multiple handlers and the handler

signature has a return type, then the value returned by the last handler executed

will be the one returned to the event raiser. Default delegate types are provided by

Visual Basic .NET to the use. But the endless generosity of Microsoft does not

stop at this point. Also Default delegates are provided for the events of the .NET

Framework's controls and classes. Therefore, the only problem lies with delegates

when events in C# are being defined [25].

Sometimes the following question can be asked: What is the difference between an

exception and an event? The fundamental difference is that exceptions represent

unexpected conditions that are not supposed to happen [34]. For example, the program

runs out of memory or encounters divide by zero. These situations are not expected to

happen however if they do, then the program has to cope with it. On the other hand,

Events are part of normal day to day operation and are fully expected to occur. The user

moves the mouse or presses a key. The browser just move to a new page. From the point

Chapter 3 Event-Handling in Different Programming System 59

of view of a control-flow, an event is a function call, whereas an exception is a long jump

across the stack, with unwinding semantics to destroy lost objects.

3.7 Events in Visual C++

 The unified event Model is used by event handling in Visual C++. This allows the

use of the same programming model for event handling in all types of classes in Visual

C++: Native C++ classes, COM classes and Managed classes [35].

An event source and event receiver need to be set up using the attributes

event_source and event_receiver in all types of classes in Visual C++

respectively, specifying type=native in native C++ classes, specifying type=com in COM

C++ classes, and specifying type=managed in managed C++ classes. These attributes

enable the classes to which they are applied to fire events and handle events in all types of

classes in Visual C++.

3.7.1 Declaring Events

 In an event source class, the __event keyword is used on a method declaration

to specify the method as an event. In the case of the native C++ and managed C++, the

method needs to be declared, but not to define it. A compiler error is generated if the

method is defined; this is because the compiler defines the method implicitly when it is

made into an event. In COM classes, the same __event keyword is applied on an

interface declaration in order to declare that interface's methods as events. The events of

that interface are called when they are call as interface methods. The events can be

methods with zero or more parameters. The return type can be void or any integral type.

3.7.2 Defining Event Handlers

 Event handlers are defined in an event receiver class, which are methods with

signatures (return types, calling conventions, and arguments) that match to the event that

Chapter 3 Event-Handling in Different Programming System 60

they will handle. For COM events, there is no matching for calling conventions. Also in

an event receiver class, the intrinsic function __hook is used to associate events with

event handlers and __unhook to dissociate events from event handlers. Many events can

be hook to an event handler and vice versa [30].

3.7.3 Firing Events

 To fire an event, simply call the method declared as an event in the event source

class. If handlers have been hooked to the event, the handlers will be called.

3.8 Delegates and Events in J#

 Due to the absence of built-in support for delegates and events in the Java

programming language, a set of extensions are provided by the J# implementation for

creating this capability. Delegates are tagged with a special comment /** @delgate */

before its definition and the same applies to events (using /** @event */). Also a

reference needs to be kept by the class implementing the events to all the listeners

assigned for the particular events by creating an ArrayList or a similar collection. After

the listeners have been assigned, they are invoked by the Invoke method.

Example:

import System.*;

import System.Collections.*;

/** @delegate */

public delegate void EventHandler();

public class Button

{

 ArrayList listeners = new ArrayList();

 public static void main()

 {

 Button button = new Button();

 button.add_OnClick(new EventHandler(Button_OnClick));

 button.Click();

 }

 /** @event */

 public void add_OnClick(EventHandler listener)

Chapter 3 Event-Handling in Different Programming System 61

 {

 listeners.Add(listener);

 }

 /** @event */

 public void remove_OnClick(EventHandler listener)

 {

 listeners.Remove(listener);

 }

 public void Click()

 {

 Object[] olisteners = listeners.ToArray();

 for (int i = 0; i < olisteners.length; i++)

 {

 ((EventHandler)(olisteners[i])).Invoke();

 }

 }

 public static void Button_OnClick()

 {

 Console.WriteLine("Button Clicked");

 }

}

3.9 Events in Java

 In Java, objects are used for the representation of events. When an event occurs,

the system takes all the important information related to the event and an object

constructed to contain that information. Different types of events are represented by

objects belonging to different classes. For example, when the user clicks a button on the

mouse, an object belonging to a class called MouseEvent is constructed. There

information in the object such as the GUI component on which the user clicked, the

(x,y) coordinates of the point in the component where the click occurred, and which

button on the mouse was clicked. A KeyEvent is created when the user presses a key on

the keyboard. After construction of the event object, it is passed as a parameter to a

designated subroutine. By writing that subroutine, the programmer says what should

happen when the event occurs [17].

There are so many processes that happen between the times that the user presses a key or

moves the mouse and the time that a subroutine in the program is called to respond to the

event. Fortunately there is no need to know much about that processing. But this needs to

Chapter 3 Event-Handling in Different Programming System 62

be understood. Even though our GUI program does not have a main() routine, there is a

sort of main routine running somewhere that executes a loop of the form

 while the program is still running:

 Wait for the next event to occur

 Call a subroutine to handle the event

This loop is called an event loop. Every GUI program contains an event loop. This loop

does not need to be written in Java, because it is part of the system. If a GUI program is

written in some other language, a main routine that runs an event loop might have to be

provided.

For the effectiveness of an event, the event must be detected by the program and react to

it. For an event to be detected, the program must listen for it. Listening for events is a

procedure that is performed by an object called an event listener. An event

listener object should have instance methods for handling the events for which it

listens. For example, if an object is to serve as a listener for events of type

MouseEvent, then it must has the following method (among several others):

public void mousePressed(MouseEvent evt) { . . . }

The structure of the method defines how the object responds when it is notified that a

mouse button has been clicked. Information about the event is found in the parameter

evt. The listener object uses this information to determine its response.

The methods that are needed in a mouse event listener are defined in an interface named

MouseListener. An object must implement this MouseListener interface in order

to use it as a listener for mouse events.

Every event in Java is contains a GUI component. For example, when the user clicks a

button on the mouse, the associated component is the one that is clicked by the user. The

listener object must be registered with the component before it can "hear" events

Chapter 3 Event-Handling in Different Programming System 63

associated with a given component. If a MouseListener object mListener needs to

hear mouse events associated with a component object comp, the listener must be

registered with the component by calling “comp.addMouseListener(mListener);”.

The addActionListener() method is an instance method in the class Component.

Particularly, because an applet is a component, all applet has an

addMouseListener(), and so it is possible to set up a listener to react to clicks on

the applet.

The event classes, such as MouseEvent, and the listener interfaces, such as

MouseListener, are specified in the package java.awt.event. This means that if

the program needs to work with the events, then the line "import

java.awt.event;” should be included at the beginning of the source code file.

In principle, there are a so many of details to tend to when events needs to be used. In

summary:

• Place the import specification "import java.awt.event;" at the start of

the source code.

• Specify that some class implements the appropriate listener interface, for example

MouseListener.

• Definitions in the class for the subroutines from that interface must be provided.

• Make registration of the listener object with the applet or other component.

The MouseListener interface specifies five different instance methods:

 public void mousePressed(MouseEvent evt);

 public void mouseReleased(MouseEvent evt);

 public void mouseClicked(MouseEvent evt);

Chapter 3 Event-Handling in Different Programming System 64

 public void mouseEntered(MouseEvent evt);

 public void mouseExited(MouseEvent evt);

Keyboard Events

 A GUI applies the idea of input focus to find the component associated with

keyboard events. At any specified time, precisely one interface element on the screen has

the input focus, and that is where all the events of the keyboard are directed. If the

interface element is a Java component, then the information about the keyboard event

changes to a Java object of type KeyEvent, and it is transferred to any listener objects

that are listening for KeyEvents associated with that component. The importance of

managing input focus adds an extra complexity to working with keyboard events in Java

[17].

In Java, keyboard event objects are related to a class called KeyEvent. The interface

KeyListener must be implemented by an object that needs to listen for KeyEvents.

The object must also be registered with a component by calling the component's

addKeyListener() method. When an applet is to listen for keyboard events on itself,

the registration is done with the command "addKeyListener(this);" in the

applet's init() method. All this is of course directly related to the mouse events as

previously discussed above. The KeyListener interface defines the following

methods, which must be added to any class that implements KeyListener:

 public void keyPressed(KeyEvent evt);

 public void keyReleased(KeyEvent evt);

 public void keyTyped(KeyEvent evt);

There are three types of KeyEvent found in Java. The types associated to pressing a

key, releasing a key, and typing a character. When the user presses a key, then the

keyPressed method is invoked, the keyReleased method is called when the user

releases a key, and the keyTyped method is called when the user types a character. Note

Chapter 3 Event-Handling in Different Programming System 65

that one user action such as pressing the “E” key can be responsible for two events, a

keyPressed event and a keyTyped event.

In the case of a keyTyped event, the character that was typed needs to be known. This

information can be gotten from the parameter evt in the keyTyped method by calling

the function evt.getKeyChar(). This function returns a value of type char

representing the character that was typed.

3.10 Event Handler in JBuilder

 When a user interacts with a user interface such as clicking a button or selecting a

menu item, an event-handling code is executed. The user can interact with any

component. When a user interaction with any component happens, a message is displayed

by the component. The program must listen for the component’s message and respond

appropriately before it can react to that interaction. The program requires a listener to

listen for the component message, and an event handler to respond.

In JBuilder, all supported events for the selected component are listed by the Inspector’s

Events page. Each event contains a default action, out of many possible actions. For

example when user double-click an event in the Inspector, JBuilder writes a listener and

a stub (empty) event-handling method for the event’s default action, and changes to the

Source view with the cursor in the stub event-handler. The code is manually filled in

thereby describing what the program should perform in response to that event.

Visual components like dialog boxes usually appear only when event-handling code is

executed. (These components appear in the Default designer). For example, a dialog box

is not part of the UI surface, but it’s a separate UI element, which appears transiently as a

result of a user operation such as a menu choice or a button press. Therefore, some of the

code associated with using the dialog, such as a call to its show() method, has to be

placed into the event-handling method.

Chapter 3 Event-Handling in Different Programming System 66

3.10.1 Connecting controls and events

 Event handlers are connected to their controllers by using event adapters. This can

be done by using either standard event adapters or anonymous inner class adapters.

A name class is created by standard adapters. The advantage of this is that the adapter can

be reused, and can be referred to later and from elsewhere in the code. On the other hand

anonymous adapters create inline code. The advantage of this also is that the code is

smaller and more elegant but this is single-use only [36].

When an anonymous adapter is used, the only code generated by JBuilder is the listener

and the event-handling stub. When a standard event adapter is used, JBuilder generates

three pieces of code:

• The event–handling stub.

• An EventAdapter.

• An EventListner.

JBuilder generates an EventAdapter class for each specific component/event connection

and a name, which is associated to that particular component and event is given to it. This

code is put in a new class declaration at the bottom of the file.

3.10.2 Standard event adapters

 JBuilder creates an event adapter class that implements the desire interface. The

class is then instantiated in the UI file and it is registered as a listener for the component

[36]. For example, for a jButton1 event, it calls

jButton1.addActionListener().

The advantage of standard adapter is the ability to be reused, because it is named. On the

other hand its disadvantage is the limit imposed on its usefulness because it has only

public and package access.

Chapter 3 Event-Handling in Different Programming System 67

3.10.3 Anonymous inner class adapters

 Inner class event adapters can be also created by JBuilder. The following are the

advantages of Inner classes:

• The code is created inline, which makes the appearance of the code much simpler.

• The inner class can get access to all variables in scope where it is defined,

compared with the standard event adapters that have only public and package

access.

The specific types of inner class event adapters that are created by JBuilder are known as

anonymous adapters. This style of adapter creates an adapter class with no name. The

advantage is that the resulting code is compact and elegant. Whereas the disadvantage is

that this adapter can only be applied for this one event, because it has not been given any

name and therefore cannot be invoked from elsewhere [36].

4

__

The Abstract Model
__

4.1 Structure and Semantics

 Here, a model, defined by Bachmann [50], is presented. This thesis focuses on this

model and the main idea is to implement it as a framework as will be discussed in chapter

5.

Definition: A (formal) event-driven-system is a 4-tuple EDS=(S,E,A,δ),

where

• S is a finite set (of event-states),

• E ⊂ S
S

is a set (of events), where each event e ∈ E is a total function e: S → S,

• A is a set (of program actions) and

• δ : S → A* is a control functions.

In this definition, it is not specified what the elements of A, are the actions. Therefore, the

meaning of the model must be restricted to event-handling (the specification part) and

cannot reflect the meaning of the whole event-driven system. Especially, it is ignored;

that actions can raise events too and in this way change the event-state.

In order to define semantics we consider the set of ordered pairs (S, E) as a transition

system where to each state s and each event e a transition s → e(s) is formed.

Chapter 4 The Abstract Model 69

For any sequence α ∈ Ε* of events we define the final state resulting from the execution

of all events in α in the corresponding order as follows:

 ε(s) := s, e.α (s) := α (e(s))

where ε denotes the empty sequence.

The effect of a sequence α ∈ E* of events is extended to generate all the intermediate

states by considering the function α* : S → S* defined as

 ε*(s) := s, e.α*(s) := s.α*(e(s))

Analogously, the control functions δ is extended to δ* : S* → A* , by

 δ*(ε) := ε, δ*(s.σ) := δ(s). δ*(σ).

Accordingly, the meaning of the event-driven system is defined as follows: for any

sequence α ∈ E* of events and any initial state s, a sequence δ*(α*(s)) of program

actions which are executed when ε occurs are produced [50].

4.2 Refinements

 The sets S and E and the function δ are precisely defined as follows:

Let X be a set of variables, then the set of states S should be S=ІN
X
, where IN denotes the

set of natural numbers. Therefore, each s∈S is a function s:X→IN, which assigns to every

variable x a number s(x), the value of variable x. Obviously, in practice, not only natural

numbers, but other elements, like integers or rational numbers are needed. This will be

considered in the implemented framework. However, by the formal model, it was also

investigated in what a way verifications can be done and therefore, the values were

restricted to natural numbers.

Chapter 4 The Abstract Model 70

An event e is defined by a sequence of statements of the form C ⇒ t where the condition

C can be expressed as, C =� i [n]∈ ci, i.e. a condition built by a conjunction of the ci where

[n] = {1,…, n}.

Each ci is a comparison that uses an operator from the set {<, <=, =, >=, >} to compare

operands that are either variables from the set X or any number belonging to the set of

natural numbers.

ci and C are used to define a set of states. A comparison ci defines all the states for which

the comparison is satisfied and the condition C defines the states for which all the

comparisons in C are satisfied. Therefore, the comparison ci and the condition C are

identified with their sets of states and the same symbols are used for the expressions as

well as for their sets of states.

Therefore C=∩ i∈[n] ci. C is satisfied by state s if and only if s ∈ C. If n = 0 we have

C = S.

Every t is a sequence of simple assignments that can be expressed as x := e, where x is a

variable and e is an expression consisting of operands and operators. The operands are

represented by variables and numbers while the operators are represented by addition and

subtraction. The execution of a sequence t implements an unconditional transformation of

states t: S → S.

During the occurrence of an event all of its accompanying statements are analyzed and

checked. If for any statement C ⇒ t the current state s satisfies the condition C, i.e. s ∈ C,

in that case the transformation t is executed. It is required that for any two statements

C ⇒ t and C’ ⇒ t’ located in the same event, the set of variables are changed in t and t’

must be disjoint if C∩C’≠∅. As a result, the order of these statements is not important.

The control functions can also be expressed as a sequence of statements of the form

C ⇒ α. In this case, C is a condition and its definition is similar to that of an event, α is a

Chapter 4 The Abstract Model 71

sequence of program actions. Given a current state s, the function δ(s) is defined as the

concatenation of all sequences α for which the corresponding condition C is satisfied.

This implies that the effect of the control functions may depend on the order of the

statements C ⇒ α. However, it is permitted to rearrange these statements. Therefore,

there is no assurance that the control function works according to the given order.

4.3 Optimization

4.3.1 Simplifications

 The simplification of each condition C = Λ i [n]∈ ci can be done in three different

ways:

• Elimination of tautologies:

 If for some j ∈ [n] : cj = S, then C = Λ []-{ }i n j∈
ci

 If n = 0, i.e. [n] =∅, then we get S ⇒ t.

• Elimination of contradictions:

 If C =∅, then a statement C ⇒ t can be removed from the event.

• Elimination of implications:

 If for some j, k ∈ [n] : j≠k and ck ⊆ cj then C = Λ i [n] { }j∈ −
ci

For any comparison c, it holds that c = S iff c has the form o<=o , o=o or o>=o for

some operand o. and, it holds that c = ∅ iff c has the form o<o or o>o for some

operand o.

Chapter 4 The Abstract Model 72

4.3.2 Check of Contradictions

 The tableau-method of propositional calculus is adopted as the method for

checking whether C = ∅:

In a step by step manner, condition C is transformed into a set C of simple conditions in

which all of them includes only comparisons of the form o < o’. This transformation is

carried out in such a manner that C is satisfyable iff one of the conditions from C can be

satisfied.

Step 1:

In C, every comparison of the form o > o’ is replaced by o’< o and every

comparison of the form o ≥ o’ by o’≤ o.

Step 2:

Begin with C := {C}.

While there is in C a C which contains a comparison of form o ≤ o’: divide C into two

sets C’ and C’’, where the comparison o ≤ o’ in C’ is replaced by o=o’ but in C’’ it

replaced by o < o’.

Step 3:

While in C there is a set C which contains a comparison of form o=o’ drop it from C and

perform the following:

• If o is a variable, for example x, then replace any occurrence of x in C by o’,

• Otherwise, if o’ is a variable, say x, then replace any occurrence of x in C by o,

• Otherwise, if both, o as well as o’, are different natural numbers then remove the

whole set of C from C.

Step 4:

While C is not empty do:

Chapter 4 The Abstract Model 73

Take any C ∈ C. Let O be the set of all operands of comparisons in C and IN the set of

natural numbers. Now, try to build a function s: O → IN in the following way:

• If o is a number then set s(o) := o

• Otherwise, if o is a variable then set

0 if there is no comparison o' o in C

() =
max{s(o') | o' o C}+1 otherwise

s o
<


< ∈

If such a function s does not exist or for the existing s there is a comparison o’< o in C

such that s(o) ≤ s(o’) remove C from C.

4.4 Reordering

 A specification as explained in section 4.2 regarding events as well as control

functions consists of a sequence

C1 ⇒ x1; . . . Cn ⇒ xn;

Where Ci is referred to as conditions (conjunctions of comparisons) and the xi are either

sequences of simple assignments (in the case of events) or sequences of actions (in the

case of control functions).

A text of a programming language, such as Java, C, C++ or C#, can be derived from such

a specification by simply transforming it into a sequence of if-statements

if (C1) x1; . . . if(Cn) xn;

In some instances it is advantageous to rearrange this sequence and to create nested if-

statements. This may prolong the length of the text but improve the efficiency of

execution [50]. This is done by means of the following steps:

Chapter 4 The Abstract Model 74

Step 1:

We reorder the sequence C1 ⇒ x1; . . . Cn ⇒ xn; such that if Ci ⊆ Cj then j ≤ i.

Step 2:

We build the following sequence of nested if-statements

if (C1) { x1; if(C2) x2; . . . if (Cn) xn; return; }

if (C2) {x2; if(C3) x2; . . . if (Cn) xn; return; }

. . .

 if (Cn-1) {xn-1; if(Cn) xn; return; }

 if (Cn) xn;

Step 3:

We remove each if-statement if (Ci) {. . .} if there exists a j where Ci ⊆ Cj.

Step 4:

In each remaining if-statement

 if (Ci) {xi; if(Ci+1) xi+1; . . . if (Cn) xn; return; }

We replace Ci+k by C’i+k if Ci+k have the form Ci ∧ C’i+k.

Step 5:

In each remaining if-statement

 if (Ci) {xi; if(Ci+1) xi+1; . . . if (Cn) xn; return; }

We remove the contained if-statement if (Ci+k) xk; if Ci ∩ Ci+k =∅.

5

__

The Event-Programming-Framework epro
__

 In this chapter, the implementation of the abstract model as discussed in chapter 4

is presented. Microsoft visual studio 5, C# .Net was used in the implementation of the

abstract model. A detailed description about the features of the special program and how

it was implemented using C# .NET is introduced. After that, an application program

(Alarm-Clock Application) is given as an example in order to illustrate how the system

works.

5.1 An Overview

 As described in the previous chapters, the event handling will be separated from

the actions of the program. Therefore, each application is divided into two parts. The first

part is the specification, which in turn contains three parts, namely, the state space, the

event handling, and the control functions. The event-programming-framework epro

contains a special editor to write and manage specifications. The second part is the hand-

built program (hbp), which contains the classes that are needed to carry out the actions.

This part must be written by the developer of the application in the classical way using

C#. By the event-programming-framework epro, the specification is transformed into C#

classes and then glued together automatically with the hand-built program. In this way a

C#-project is built from which an executable can be made.

The specification-editor stores all data inputs from the three parts of the specification in

an XML file. A few descriptions about the XML file will be introduced in the next

subsection.

Chapter 5 The Event-Programming-Framework epro 76

In the state space specification, the ability is provided to enter the state-variables that are

used in the system along with their types. The editor has some procedures of verification

and optimization for these variables in order to avoid redundancy and inconsistency. The

same procedures are applied in the event handling specification, for example, to handle

the events that are designed to be used in the system. Each event contains conditions and

state transformations. In the control functions specification, the editor enables one to add

calls of actions. Each action-call may depend on conditions.

Figure 5.1: Event handling system

The specification part is transformed to the C# language as classes with corresponding

fields, properties and methods. The three parts of the specification are transformed into

the following classes:

 state space specification into class State

 event handling into class Events_Handling

 control functions into class Control.

Moreover, in every application there must be a class of a certain name, say Form,

introduced by the developer of the system or by any designer (e.g. Microsoft Visual

Studio), where the GUI and the basic Components are defined. In this class the definition

Chapter 5 The Event-Programming-Framework epro 77

of a general event handler must be inserted by hand. In a special file, called

AppFunctions.cs, templates for all methods where corresponding actions are called

in the control functions specification are inserted automatically. Details are explained in

section 5.3.

XML File:

 As previously mentioned, all the specification data of the event handling system

are stored in a specified XML file. Microsoft.Net platform provides us a simple way to

create XML files and it is easy to processing these files, i.e. it is easy to save, load and

search the data through such files.

The XML file is a hierarchical data structure. XML tells us what kind of data we have,

not how to display it. Because the markup tags identify the information and break up the

data into parts [72]. So, a search program can look for state-variables, events and their

contents or control functions and their characteristics. In short, because the different parts

of the information have been identified, they can be used in different ways by different

applications. After the declaration, every XML file defines exactly one element, known as

the root element. Any other elements in the file are contained within that element, XML

element names are case-sensitive and the end-tag must exactly match the start-tag. So, our

XML file has a root element, which represents the specification and has the form

<specification> . . . </specification>.

Since XML allows hierarchically structured data, an element can contain other elements.

Therefore, the root element contains three main elements namely, statespace, events, and

controls which corresponds to the three main parts of the specification part. In addition,

each element contains all the related elements of its components in separate elements, for

example, the statespace contains the state-variables and their characteristics such as

“name”, “type”, “initial value”, etc. and they are stored in a statespace element. Each

state-variable is represented in a separate tag called <variable> and this tag

Chapter 5 The Event-Programming-Framework epro 78

contains some attributes with their values like name=”mode” and lower=”0” and so on for

example:

<variable no="1" typel="[0...3]" name="mode" initl="=0" type="3"

lower="0" upper="3" iinit="0" finit="0" binit="false" />

The element events contain the data related to the event specification where each single

event is described by an event element. The element event contains all the

corresponding data for this event such as “ident”, “actions”, “conditions”, and the

corresponding state transformation as elements. The elements condition and trans

contain their attributes, for example:

 <event ident="on_off">

 <action>

 <conditions>

 <condition text="mode == 1" lvar="1" oper="3" rvar="0" ival="1"

 fval="0" />

 </conditions>

 <transformations>

 <trans text="! alarm1on" lvar="4" oper="0" rvar="0" ival="1"

 fval="0" bval="False" />

 </transformations>

 </action>

 </event>

The last important element is a control which is represented by the tag <controls>.

This element contains all the information about the control functions specification. It

contains the element represented by the tag <action>. Each action contains the

elements conditions and calls. The element conditions are represented in a

separate tag <conditions> which also contain the element condition in which the

attributes of the conditions are located. The element calls are also represented in a

separate tag <calls> which contain the element call in which the attributes of the calls

can be found as illustrated follows:

 <controls>

 <action>

Chapter 5 The Event-Programming-Framework epro 79

 <conditions>

 <condition text="updown was changed &" lvar="8" oper="7" rvar="0"

 ival="0" fval="0" />

 <condition text="mode != 3" lvar="1" oper="6" rvar="0" ival="0"

 fval="0" />

 </conditions>

 <calls>

 <call text="updown_alarm(mode,fastslow,updown)" />

 </calls>

 </action>
 </controls>

Due to the bigger size of the “Output.xml” file of the Alarm-Clock application example,

only a part of this file will be shown. The complete file can be found in the Appendix B.

<? xml version="1.0" encoding="utf-8"?>

<specification>

 <statespace>

 <variable no="1" typel="[0 ... 3]" name="mode" initl="= 0"

 type="3" lower="0" upper="3" iinit="0"

 finit="0" binit="false" />

 <variable no="2" typel="[0 ... 120]" name="rem_minutes"

 initl="= 0" type="3" lower="0" upper="120"

 iinit="0" finit="0" binit="false" />

 <variable no="3" typel="[0 ... 60]" name="rem_seconds"

 initl="= 0" type="3" lower="0" upper="60"

 iinit="0" finit="0" binit="false" />

 </statespace>

 <events>

 <event ident="mode">

 <action>

 <conditions />

 <transformations>

 <trans text="mode += 1" lvar="1" oper="2" rvar="0"

 ival="1" fval="0" bval="False" />

 </transformations>

 </action>

 </event>

 <event ident="on_off">

 <action>

 <conditions>

 <condition text="mode == 1" lvar="1" oper="3" rvar="0"

 ival="1" fval="0" />

 </conditions>

 <transformations>

Chapter 5 The Event-Programming-Framework epro 80

 <trans text=" ! alarm1on" lvar="4" oper="0" rvar="0"

 ival="1" fval="0" bval="False" />

 </transformations>

 </action>

 </event>

 </events>

 <controls>

 <action>

 <conditions>

 <condition text="updown was changed &" lvar="8"

 oper="7" rvar="0" ival="0" fval="0" />

 <condition text="mode != 3" lvar="1" oper="6" rvar="0"

 ival="0" fval="0" />

 </conditions>

 <calls>

 <call text="updown_alarm(mode,fastslow,updown)" />

 </calls>

 </action>

 </controls>

</specification>

5.2 Specification

 Specification of the event handling system is described in a special way. Figure 5.2

shows the description of the specification part of the event handling system.

Figure 5.2: Specification part

Chapter 5 The Event-Programming-Framework epro 81

The specification-editor provides for each of the three specification parts a special

window.

5.2.1 State Space Specification

 The state space specification contains all the state-variables, their types and initial

values that are used in event handling and control functions specification parts. The

following types are allowed:

• integer,

• boolean,

• range of integers with lower and upper bounds and

• float.

The state space specification is represented and can be managed by the form called

State Space. Figure 5.3 shows an example of the form StateSpace.

Figure 5.3: An example of the state space form

Chapter 5 The Event-Programming-Framework epro 82

Here, the first three state-variables are of type range. The other state-variables are of

type boolean.

There are some available functions such as Add, Edit, Delete, and Move to manage the

state-variables. The Edit function is used to edit the state-variables and their

characteristics. Since the state-variables are used by the event handling specification and

the control functions specification, care must be taken when editing and updating the

state-variables in the state space specification. Editing and updating a state-variable in the

state space specification will automatically cause to edit and update this state-variable in

the event handling specification and the control functions specification.

For example, in an attempt to add a new or to edit an existing state-variable, the system

does not permit the generation of a duplicate state-variable name in the list of state-

variables in the state space specification. An error message appears in the application

indicating that there is a double state-variable name in the list of the state-variables. The

same applies to the state-variables of range type. When an attempt is made to change or

edit the value of a state-variable of range type with a single value, which is not in the

range between the lower and upper bound, an error message appears indicating that the

new value is out of the range.

The other situation where an error message also occurs is when an attempt is made to edit

or update the value of a state-variable of a boolean type with an incorrect value (i.e. the

value is not true or false). The error message that appears is “incorrect boolean”.

An error message will appear on the system whenever an attempt is made to try to add or

edit a value of a state-variable of integer or float data type, when, e.g., a character

or another symbol is entered by mistake. The error message that appears is “incorrect

integer number” for the case of integer type and “incorrect floating number” for

the case of float type.

Chapter 5 The Event-Programming-Framework epro 83

5.2.2 Event Handling Specification

 The event handling specification encapsulates all the characteristics of all the

events in the system. Each event includes one or more action panels. Each action panel

consists of a condition and state transformations. Each condition can be atomic, i.e. a

boolean variable or a comparison between variables or constants with the operators

from {<, <=, ==, !=, >=, >}, or a conjunction of atomic conditions. A special condition is

always, which is always true. Disjunctions are not allowed. They must be written as

several conditions with the same state-transformations. When an event is raised then all

its conditions are checked and, after that, all state-transformations belonging to fulfilled

conditions are carried out. Figure 5.4 shows an example of the event handling

specification.

Figure 5.4: The event handling form

Chapter 5 The Event-Programming-Framework epro 84

Each event accepts only the state-variables that are defined and introduced in the state

space specification. To introduce a new condition, the condition form is used (cf. Figure

5.5).

Figure 5.5: The example of condition form

Some optimization, simplification and verification steps are used and applied in order to

check the conditions on the event handling and control functions specification, namely:

• Elimination of tautologies: if a comparison is always fulfilled, like

A <= A

then it is removed from the condition. In case, a condition becomes empty then it

is replaced by always.

• Elimination of contradictions: A contradiction happens when a condition or a

group of conditions are contradicting each other. for example:

A < B & B < A or

A > 5 & A < 3 or

A != A

Chapter 5 The Event-Programming-Framework epro 85

In the above examples the editor will refuse the condition B < A, because it

contradicts with the previous condition A < B. Similarly, A < 3 and

A != A are indicated as errors.

• Elimination of implications: This is applied if the conditions can be simplified,

as in the following example:

A < B & B < C & A < C

The above example shows that A is less than B and B is less than C,

so, it is clear that A is less than C. Hence, in this case, the editor refuses the

condition A < C because it is an implication of the first both.

The main methods to deal with these optimizations and verifications are to build

transitive closures. However, in the case of integer variables or ranged variables

additional considerations are necessary in order to guarantee that valid values are

possible. For instance, if we have a ranged variable A of type [0..4] and an integer

variable B then the condition

A < B & B < 1

is a contradiction.

State transformations are defined as a sequence of simple assignments of the form

 x:=y, x:=n, x+=y, x+=n, x-=y, x-=n

where x and y are state-variables and n is a number. Additionally, for boolean

variables exists the negation. If a state transformation causes that a value of a variable is

out of the range of the variable then it is automatically set to the lower or upper bound.

However for variables of type range a value greater than the upper bound is set to the

lower bound and vice versa.

Chapter 5 The Event-Programming-Framework epro 86

As in the state space specification, by add, edit, delete and move the event

handling specification and also the subparts like action panels, conditions

and state transformations can be modified. The editor cares always that the

consistency of the specification is guaranteed.

5.2.3 Control Functions Specification

 The control functions specification is described by a set of conditional statements

of the form c ⇒ α, where c is a condition as in an event handling specification and α is

a sequence of program action calls [50].

The control functions specification is represented by a form called ControlFunctions.

Every conditional statement is managed in a so called action panel. Also here, the

functions add, edit, delete and move are available. An example for this is

shown in Figure 5.6.

Figure 5.6: An example of control functions specification

Chapter 5 The Event-Programming-Framework epro 87

5.3 Transformation into C#

 As previously mentioned, in this section, a detailed description of the

transformation process of the event handling system components is discussed. Section

5.3.1 presents how the state space specification is transformed into C# classes. It

describes how to transform the state-variables into the State class and introduces an

example concerning these state-variables and their methods and properties. Section 5.3.2

states how the event handling specification is transformed into Events_Handling

class and also given, is an example of some events being used in the system. Section 5.3.3

depicts how the control functions specification is transformed into C# classes. It also

describes two C# classes generated automatically by the system: the Control class

and the AppFunctions class.

5.3.1 Transforming State Space

 As mentioned before, the application program will automatically transform the

state space specification into a C# class called State. The application program defines

special types of state-variables in the state space specification. Therefore the application

will transform each state-variable in the state space specification into the corresponding

variable in the C# language. These transformations of the state-variables in the state

space specification are implemented by means of properties. Properties are like normal

variables but with more powerful and flexible characteristics. So each state-variable is

converted into a property with the same name. A get property accessor is used to return

the property value, and a set accessor is used to assign a new value. These accessors can

have different access levels. The value keyword is used to define the value being

assigned by the set indexer [30]. Moreover, each state-variable is transformed into two

component variables depending on its type. One has the same data type with suffix “_v”

and it also has an initial value. The other one has the suffix “_changed” which is of

boolean type. For example, for a state-variable, say “x”, there exists a corresponding

boolean variable “x_changed”, which is true if and only if the contents of the

Chapter 5 The Event-Programming-Framework epro 88

variable “x” has been changed by the last handled event. The access to all of the variables

is controlled by properties. The set-part of the property of variable “x“ always sets

the value of “x_changed” variable to true. For each available data type of state-

variables in the event driven system, an example of a property definition will be

introduced in the next subsection.

Each variable in the State class takes an initial value which is determined in the state

space specification and its corresponding boolean variable takes an initial value equal

to false.

It is known from the state space specification (section 5.2.1) that the special types of

state-variables, which are defined in the state space specification, are from the following

type:

• Integer type: In this data type, every state-variable will be transformed to the

equivalent C# data type which is int. In this case the variable takes the values of

type int and especially the natural numbers IN i.e. from 0 to some n.

 Example: integer mode = 0

This will be transformed to the following equivalent variables and properties as

illustrated below:

 private static uint mode_v =0 ;

 public static bool mode_changed = false ;

 public static uint mode

 {

 get { return mode_v ; }

 set

 {

 mode_v = value ;

 mode_changed = true;

Chapter 5 The Event-Programming-Framework epro 89

 }

}

• Float type: For this data type, the state-variable is transformed to the equivalent

C# float, and the variables take the value of floating type

Example: float radius = 2.4

This is will be transformed to the following equivalent variables and properties as

illustrated below:

 private static float radius_v =2.4;

 public static bool radius_changed = false ;

 public static float radius

 {

 get { return radius_v ; }

 set

 {

 radius_v = value ;

 radius_changed = true;

 }

}

• Boolean type: In this data type, every state-variable which has a special data

boolean type will be transformed to the equivalent C# boolean type which is

bool data type. In this case, the variables take the value of boolean type so the

value of variables will be true or false.

Example: boolean alarm1on = false

This is will be transformed to the following equivalent variables and properties as

illustrated below:

Chapter 5 The Event-Programming-Framework epro 90

 private static bool alarm1on_v =false ;

 public static bool alarm1on_changed = false ;

 public static bool alarm1on

 {

 get { return alarm1on_v ; }

 set

 {

 alarm1on_v = value ;

 alarm1on_changed = true;

 }

 }

• Range [lower .. upper] type: In this case, every state-variable of this data range

type must be transformed to the equivalent C# data type int and the variable will

take its value of type int in the range of its lower value to its upper value.

 Example: [0 ... 120] rem_minutes = 0

The above example is transformed into C# as follows:

 // the type of this variable is range[lower...upper]

 private static uint rem_minutes_v =0 ;

 public static bool rem_minutes_changed = false ;

 public static uint rem_minutes

 {

 get { return rem_minutes_v ; }

 set

 {

 rem_minutes_v = value > 120 ? 0 : value ;

 rem_minutes_changed = true;

 }

 }

At the end of a State class, there exist a function reset_change(). This function

is invoked in order to set the values of all the “x_changed“ variables to false.

Chapter 5 The Event-Programming-Framework epro 91

The following is an example of a small part of the C# State class of the Alarm-

clock application: this class is produced from the list of state-variables that are defined

in the state space specification (cf. Figure 5.3) with their types, and it declares a function

reset_change() at the end.

namespace EV_Edit

{

 static class State

 {

 // the type of this variable is range[lower...upper]

 private static uint mode_v =0 ;

 public static bool mode_changed = false ;

 public static uint mode

 {

 get { return mode_v ; }

 set

 {

 mode_v = value > 3 ? 0 : value ;

 mode_changed = true;

 }

 }

 private static bool alarm1on_v =false ;

 public static bool alarm1on_changed = false ;

 public static bool alarm1on

 {

 get { return alarm1on_v ; }

 set

 {

 alarm1on_v = value ;

 alarm1on_changed = true;

 }

 }

 public static void reset_change()

 {

 mode_changed = false ;

 rem_minutes_changed = false ;

 rem_seconds_changed = false ;

 alarm1on_changed = false ;

 alarm2on_changed = false ;

 timer_on_changed = false ;

Chapter 5 The Event-Programming-Framework epro 92

 fastslow_changed = false ;

 updown_changed = false ;

 check_alarm_changed = false ;

 alarm1_ringing_changed = false ;

 alarm2_ringing_changed = false ;

 timer_ringing_changed = false ;

 }

 }

}

5.3.2 Transforming Event Handling

 It is known from section 5.2.2 that from the event handling specification, the

application program automatically generates a C# class called Events_Handling.

This class implements all the events that are defined in the event handling specification.

Each event is implemented as a function, which includes all the contents of the event such

as a condition or several conditions with corresponding state transformations.

The generated program determines the number of events and defines a queue in order to

store the events in this queue. The queue has a first value and a last value. The generated

program adds the first event to the queue and checks whether the queue is full or not. The

generated program must be sure that the event which arises first must be handled first.

The generated program defines for each event an array for its conditions. This array is

necessary to be sure that the values of the state-variables did not change. Therefore, the

array contains the result of checking the conditions before executing the state

transformations to avoid changes of the values of state-variables. The following example

shows an array in the function minute_over(), which contains two indexes of

conditions cond[0] and cond[1] which are used by the if-statements.

 public static void minute_over()

 {

 cond[0] = State.alarm1on && !State.alarm1_ringing;

 cond[1] = State.alarm2on && !State.alarm2_ringing;

 // if (State.alarm1on && !State.alarm1_ringing)

Chapter 5 The Event-Programming-Framework epro 93

 if (cond[0])

 {

 State.check_alarm = true ;

 }

 // if (State.alarm2on && !State.alarm2_ringing)

 if (cond[1])

 {

 State.check_alarm = true ;

 }

 }

The state-conditions for each event are automatically transformed into C#-if statements.

The first part of an if-statement is an element of the above mentioned array which already

contains the result of the condition and the second part of the if-statement is the

corresponding state transformation.

The generated program defines a function fetch_event() in order to select (fetch) an

event from the event queue. It also defines a method event_cycle(). This method is

used to check whether the event in the queue have the possibility of occurring. Once the

event is invoked or fired, the control functions is called and the method

reset_change() that is defined in the State class is also invoked.

In order to explain the relationship between these functions, this is illustrated with an

example of how the event called start is implemented.

When the button such as “Mode“ in the main form of the Alarm-Clock application is

clicked, the event is delegated to the event handler as shown bellow:

on_event += new

 eventhandler(Events_Handling.event_handling);

In this case, the function event_handling() which is located in the

Events_Handling class will be invoked with the name of the event , in our case that

referring to start event. In this function the event start will be added by invoking the

Chapter 5 The Event-Programming-Framework epro 94

function add_event(e). In the add_event(e) function, the event start will be

added to the queue evs_queue and we will check if the index last of the queue

evs_queue has reach its last position i.e 10 for example. After adding the event to the

queue evs_queue, we will again return to the event_handling() function

where the boolean variable event_cycle_is_working is found. If the value of

this variable is false then we will invoke the event_cycle() function. In the

event_cycle() function we will change the value of the boolean variable

event_cycle_is_working to true and check if the value of the first and last

index of the queue is not equal. If this is the case, then we will invoke the

fetch_event() function. In the fetch_event() function we will add 1 to the first

index of the queue and select its corresponding event. If the last index is reached, this

implies that the first index equal to zero. We now return the selected event back to the

event_cycle() function. We will use switch and case keywords to check for the

selected event and its corresponding function. We know that each event in the event

handling specification is transformed to a function with the same name , its condition and

corresponding state transformation as previously mentioned. So, in our case, we will

select the start() function which corresponds to the event start. Therefore, when we

find the start() function and called it, this causes it to check all the conditions which

exist in the start() function and stored in an array as we described before. After that

the elements of the conditions are checked and if it is satisfied, then the corresponding

state transformations are executed. As we introduced before, for every cycle of the

event_cycle()function the control function is invoked. Since, we already have an

instance of the Control class, each condition in the Control class is checked and if

it is satisfied then the corresponding calls will be invoked and executed in the

AppFunction class. After that, the method reset_changed() which exist in the

State class will be called in order to set all the boolean variables with suffix

“_changed” to false. Finally the boolean variable

event_cycle_is_working also sets to false.

Chapter 5 The Event-Programming-Framework epro 95

The following example is a part of the Events_Handling class of the Alarm-

clock application. It contains information about the declaration of all events that are

defined in the event handling specification. It also contains information about the

transformation of the conditions and its corresponding state transformations into C#

declarations. It also contains other information about the methods that handle the events

for example add_event(), fetch_event(), event_cycle() and so on.

namespace EV_Edit

{

 enum EVS { mode , on_off , up , down , fastslow ,

 second_over , minute_over , alarm1 , alarm2 };

 static class Events_Handling

 {

 private static bool[] cond = new bool[100];

 private static EVS[] evs_queue = new EVS[100];

 private static bool event_cycle_is_working = false;

 private static uint first =0, last = 0;

 private static void add_event(EVS e)

 {

 evs_queue[last++] = e;

 if (last == 10)

 last = 0;

 }

 private static EVS fetch_event()

 {

 EVS e = evs_queue[first++];

 if (first == 10)

 first=0;

 return e ;

 }

 public static void event_handling(EVS e)

 {

 add_event(e);

 if (!event_cycle_is_working)

 event_cycle();

 }

 private static void event_cycle()

Chapter 5 The Event-Programming-Framework epro 96

 {

 EVS e ;

 event_cycle_is_working = true ;

 while (first != last)

 {

 e= fetch_event();

 switch (e)

 {

 case EVS.mode : mode();

 break;

 case EVS.on_off : on_off();

 break;

 case EVS.up : up();

 break;

 case EVS.down : down();

 break;

 }

 ControlActions.control();

 State.reset_change();

 }

 event_cycle_is_working = false;

 }

 public static void mode()

 {

 State.mode += 1 ;

 }

 public static void on_off()

 {

 cond[0] = State.mode == 1;

 cond[1] = State.mode == 1 && State.alarm1on &&

 State.alarm1_ringing;

 cond[2] = State.mode == 2;

 if (cond[0])

 {

 State.alarm1on = !State.alarm1on ;

 }

 if (cond[1])

 {

 State.alarm1_ringing = false ;

 }

 if (cond[2])

 {

 State.alarm2on = !State.alarm2on ;

Chapter 5 The Event-Programming-Framework epro 97

 }

 }

5.3.3 Transforming Control Functions

 As the other two previous parts of the specification, the control functions

specification is also transformed into the C# language. This part is implemented by the

Control class. This class includes the implementation of conditions and corresponding

methods. The implementation of methods is automatically generated in another class

called AppFunctions.

The conditions in the control functions specification are automatically generated and

transformed into C# if-statements. The first part of an if-statement consists of the

conditions to be checked and the second part of the if-statement contains the invocation of

its corresponding methods to be invoked and executed when the conditions are checked

and satisfied.

In the transformation of the control functions specification, we do not need to store the

conditions in a boolean array before checking such as we previously described in the

transformation of the event handling specification because we do not have any state

transformation which may change values. The conditions have only corresponding

methods which do not have any values to change.

The following example is a part of the Control class of the Alarm-clock

application. It contains the conditions and their corresponding methods invocations in the

control functions specification. It also contains an instance of the AppFunctions

class, which defines the method declarations (i.e. the bodies of the methods).

namespace EV_Edit

{

 static class ControlActions

 {

 public static Form2 af;

Chapter 5 The Event-Programming-Framework epro 98

 public static void control()

 {

 if (State.updown_changed && State.mode != 3)

 {

af.updown_alarm(State.mode,State.fastslow,

 State.updown) ;

 }

 if (State.mode == 1)

 {

 af.set_on_off_button(State.alarm1on) ;

 af.show_alarm_time(1) ;

 }

 if (State.mode == 2)

 {

 af.set_on_off_button(State.alarm2on) ;

 af.show_alarm_time(2) ;

 }

 }

 }

}

The generated program automatically generates an AppFunctions class, which

contains the bodies of methods (only the templates of the methods) without contents of its

bodies. It produces empty bodies of methods that contain only the parameters. Figure 5.7

shows an example of the empty template of bodies of methods.

The user or programmer should write the contents of methods. The user should not have

the ability to change the parameters of the methods. After the control functions has called,

the reset_change() function within the State class must be called.

The following example is a part of the AppFunctions class, which contains the

methods declaration.

namespace EV_Edit

{

 public partial class Form2

 {

Chapter 5 The Event-Programming-Framework epro 99

 // Application specific functions, called by

 // class Control

// the templates (without contents of bodies) are

// automatically generated

 private static uint[] alarm_time = { 0, 0 };

 // manages and shows the current time

 // does not use the specification

 public void updown_alarm(uint mode, bool fs,

 bool ud)

 {

 int i = (int)alarm_time[mode - 1];

 int h = i / 60;

 int m = i % 60;

 if (fs)

 {

 h = h + (ud ? 1 : -1);

 h = (h == 24) ? 0 : (h < 0) ? 23 : h;

 }

 else

 {

 m = m + (ud ? 1 : -1);

 m = (m == 60) ? 0 : (m < 0) ? 59 : m;

 }

 alarm_time[mode - 1] = (uint)(h * 60 + m);

 }

 public void set_on_off_button(bool b)

 {

 on_off_button.Text = b ? "on" : "off";

 }

 public void show_alarm_time(uint mode)

 {

uint h = alarm_time[--mode] / 60,

 min = alarm_time[mode] % 60;

 output.Text = h.ToString() + " : " +

 min.ToString();

 output.Visible = true;

 }

 }

 }

Chapter 5 The Event-Programming-Framework epro 100

Figure 5.7: An example of empty templates of bodies of methods

5.4 Example (Alarm-Clock Application)

5.4.1 Application Description

 The Alarm-Clock example is a small application. With this example, it is

demonstrated how our approach works.

Usually, alarm clocks are separated devices where a small processor is included. The

functions of an alarm clock are controlled by different switches and buttons. The effects

of the switches and buttons can change dependent on the current situation, the alarm

clock is in. Here, we simulate this by a Windows form. In Figure 5.8 a snapshot of the

start of the application is given. The current time is always presented. The button Mode

allows to set different modes.

Chapter 5 The Event-Programming-Framework epro 101

Figure 5.8: Start of the Alarm-clock Application

Pressing it, the mode changes to Alarm1 where a first alarm time can be set (Figures 5.9).

Figure 5.9 a: First alarm time (hours) Figure 5.9 b: Second alarm time (minutes)

By the buttons “up” and “down” the hours (a) or minutes (b) of the alarm time are set.

The kind of steps are choosen by pressing the button “hours” or “minutes”. The same

holds for the second alarm time. There is also a Timer (Figure 5.10), which can be set in

steps of 1 minute or 10 minutes.

Chapter 5 The Event-Programming-Framework epro 102

Figure 5.10: Timer alarm mode

When one of the Alarm times is reached or the timer is finished (supposed it is on) then

the alarm clock rings. In our application this is simulated by showing the text “it is

ringing” (Figure 5.11).

Figure 5.11: Alarm-clock ringing

In the application of Alarm-Clock example, there are some classes which are

automatically generated by the application program which are releated to the specification

such as State, Events_handling, Controls and AppFunctions classes.

Chapter 5 The Event-Programming-Framework epro 103

But the other classes such as Form2 class, is generated by the developer of the system

or by any designer (e.g. Microsoft Visual Studio), where the GUI and the basic

components are defined. In this class, the definition of a general event handler must be

inserted by hand. Figure 5.12 shows the main form of the Alarm-Clock application called

Form2.

Figure 5.12: The main form of the Alarm-Clock application

This form contains some graphical user interface components such as buttons and labels.

They are generated by the designer of Microsoft Visual studio 5, C#.NET. In the

following paragraph, the structure of this window will be explained and the functions of

its GUI components such as the labels and buttons are introduced.

The main form consists of four labels and five buttons. The label is a form of a string,

which is used for the visual representation of the text. The first label is called label1

and the function of this label is to display the message “Current time”. The second label is

ctime and the function of this label is to display the real current time of the system.

The third label is output and it works as a counter for minutes and hours for the timer

and the two buttons up and down are used to control this label. So with the two buttons

Chapter 5 The Event-Programming-Framework epro 104

up and down, we can increase and decrease the value which appears on the output

label.

The last label is called ringlabel. This ringlabel disappears when its visible state

is false. The label appears on the screen (Window) when the visible state is true.

The mode_button takes the default text value “Mode” and when the button is clicked ,

it takes one of the three text values “Alarm 1” , “Alarm 2”, and “Timer”. It is clear that

this button controls the mode state, because with regards to the text values, there are three

states of the actions “Alarm 1” , “Alarm 2”, and “Timer”.

The on_off_button takes the text values “on” as a default value and “off” when the

button is clicked. The function of this button, when the state is “on”, is to set the state of

the mode inactive with respect to its mode “Alarm 1” , “Alarm 2”, and “Timer”. The

state “on” allows the user to use the buttons “up” and “down” in order to increase and

decrease the time and set the counter to a fixed time say 5 minutes. The time counter will

start counting from the current time of the system, and as soon as the 5 minutes are

reached, the alarm starts ringing. However if the “off” button is clicked during this

counting, the time counter stops.

The up_button is used to increase the time and it takes the text value “up”. The

down_button is used to decrease the time and also it takes the text value “down”.

The mhbutton takes the two text values “minutes” and “hours”. So in the case of the

minutes state, the time can be incremented and decremented in minutes and in the case

of hours state, the time can be incremented and decremented in hours.

The .Net Framework is used for generating and implementing the form as shown in

Figure 5.12 which are represented by two files with the same name. One of them is

completely generated by the designer and takes the name form2.designer.cs. This

file contains all the definitions of the controls and their contents. The other file is called

Chapter 5 The Event-Programming-Framework epro 105

form2.cs and it contains the constructor to initilize all the components of the form and

their respective definitions and functions can be added by hand to it.

Furthermore we define a delegate eventhandler and an event on_event in form2

class. It delegates to the specification of the Alarm-Clock example. The following

example shows the declaration of the delegate and event :

 private delegate void eventhandler(EVS e);

 private event eventhandler on_event;

public Form2()

 {

 InitializeComponent();

// on_event is Delegated to the specification ,,

// added by hand

 on_event += new

 eventhandler(Events_Handling.event_handling);

 init_timer();

 // Control class must add by hand

 ControlActions.af = this;

 }

The functions of the buttons which are appear in the main form of the Alarm-Clock

application (cf. Figure 5.12) are generated by the designer to generate the event

on_event. For example: the following example shows the function of the

mode_button button.

private void mode_button_Click(object sender, EventArgs

 e)

{ // to add by hand to generate on_event

 on_event(EVS.mode);

 }

Chapter 5 The Event-Programming-Framework epro 106

In order to separate the event handling from the actions of the program, the event is

implemented by way of calling functions such as the above example and like the

following illustrations:

 case EVS.mode : mode();
 break;

So in this case when the mode_button is clicked, the event EVS.mode occurs and the

function mode is invoked and executed.

5.4.2 Alarm-Clock Specification

 The specification of the Alarm-Clock application is an example of the specification

of an event handling system. It consists of state-variables space, event handling space and

control functions space.

State-Variables Space

 The Alarm-clock example has a list of state-variables. Figure 5.13 shows the list

of state-variables in the state space specification of the Alarm-Clock application.

All the available functions such as adding, editing, deleting and moving

can be applied to the list of state-space variables. Each state-variable has an initial value

depending on its type for example [0…3]mode = 0, this means that the state-variable

called mode is of range type from 0 to 3 and has an initial value 0.

Each state-variable also has a corresponding variable with the suffix “_changed” and is

of the boolean type. The access to variables are implemented by properties. Any time, a

state-variable is changed, the corresponding variable with suffix “_changed” is set to

true. There exists a function reset_change() which sets all the variables with

suffix “_changed” to false. For example there is a variable mode_changed of the

boolean type which corresponds to the state-variable mode and is defined in the list of

Chapter 5 The Event-Programming-Framework epro 107

state-variables of Alarm-Clock application. All these state-variables will be

automatically transformed to the C# class called State. In the next paragraph the

representation of the state-variables will be briefly introduced.

Figure 5.13: List of state-variables in Alarm-Clock example

State-variables roles

 The state-variable mode which is of the range type represents the state of the

mode, i.e. if the value of the mode is 0, the mode_button text will be “Mode”, if the

mode is 1 then the mode_button will take the text “Alarm1”, if the mode is 2 then the

mode_button text will be “Alarm2” and if the mode is 3 then the mode_button will

take the text “Timer”.

Chapter 5 The Event-Programming-Framework epro 108

The state-variable rem_minutes is used for counting minutes while the

rem_seconds state-variable is used for counting seconds and all of them are of the

range type.

The state-variable alarm1on is of the boolean type and is true when we are in the

mode state of “Alarm1”. The state-variable alarm2on is also of the boolean type

and is true when we are in the mode state of “Alarm2” . The state-variable timer_on

is of the boolean type and is true when we are in the mode state of the “Timer”. All the

other remaining state-variables are of the boolean type.

The state-variable fastslow represents the case by which the time can be counted. In

the case of mode state of “Alarm1” and “Alarm2”, the time can be increase and decrease

in minutes if the fastslow have the text value “minutes” using the “up” and

“down” buttons and if it has the text value “hours” then the time can be increased and

decreased in hours. But in the case of the mode state of “Timer”, the fastslow takes the

value “1min” or “10min” and it appears on the mhbutton button. The minute values

can be however increased and decreased using the “up” and “down” buttons depending

on the values of fastslow variable.

The state-variable updown represents the increasing and decreasing of the time. So in the

case of increasing the time the value of the variable updown will be true and in the

case of the decreasing the value of the variable will be false.

The state-variable check_alarm contains the mode in which we are, i.e “Alarm 1” ,

“Alarm 2”, or “Timer”.

The state-variables alarm1_ringing, alarm2_ringing, and timer_ringing

represent the case when the event is fired i.e. when the conditions are satisfied and the

methods are executed. Each state-variable rings with respect to its mode state i.e. for

example alarm1_ringing function with respect to the mode state “Alarm 1” and so

on.

Chapter 5 The Event-Programming-Framework epro 109

Event Handling Space

 In this part, the application declares all the events, which will be used in the

Alarm-Clock application. Figure 5.14 shows the list of all these events.

Figure 5.14: List of events in Alarm-Clock example

Of course, the event declarations include the header of the events and the properties of

events i.e. the name of each event, the conditions used with this event, and the

corresponding state transformations of these conditions. As will be seen later, all these

events, conditions and state transformations will be transformed into the C# language.

They will automatically be transformed to the Events_Handling class.

The form contains the following events which are transformed into methods bearing the

same name. A brief descriptions of these events are introduced in the following

paragraphs.

The first event is the mode event which is transformed into a method called mode().

This event is responsible for changing the state of the mode of the application, i.e.

Chapter 5 The Event-Programming-Framework epro 110

whether the mode is in “Alarm1”, “Alarm2”, or “Timer” state. However, when the

mode_button is clicked, the variable mode increases by 1, thereby putting the

application in one of the state modes “Alarm1”, “Alarm2”, or “Timer” .

The on_off event is responsible for starting the count of the time of the chosen mode

state. The on_off event has two cases, i.e “on” and “off”. In the case of “on”, the

timer starts counting with respect to the current time of the system until it reaches the

given time. On the other hand, in the case of “off”, the timer stops counting.

The up event is used to increase the time in minutes or hours depending on the state

mode. This occurs when the user clicks on the up_button button. The down event also

works in a similar manner, but decreases the time.

The fastslow event changes the mode of counter of the time, when the mhbutton

button is clicked and depending on the mode whether it is “Alarm1” or “Alarm2”.

The time will increase in minutes if mhbutton has the minute text indicated on it and

similarly, if the hour text appears on it, then the time will increase or decrease in hours. If

the state of the mode is “Timer”, then the mhbutton has two text values i.e. 1min and

10min. In the case of 1min, the time increases by 1, whiles in the case of 10min, the

time increases by a factor of 10mins.

The second_over event works with state of the “Timer” mode and it is used to know

the remaing seconds. However, during counting, when the seconds time reachs up to 59

seconds, then the counting starts from zero. This process occurs when the time increases.

For the case of the decreasing aspect, the seconds time decreases until it reaches zero and

then it continues decreasing again from 59.

The event minute_over is used to know the remaining minutes and it is used with the

mode Alarm1 and Alarm2 for example when the counter reached to 60 it will be

returned to 0 in both operation increasing and decreasing.

Chapter 5 The Event-Programming-Framework epro 111

The event alarm1 is used in the case of mode “Alarm1” and is used when the counter

of the time reaches the expected time, then in this case the conditions are satisfied and the

message “it is ringing” will appear on the Window. The same thing for the event

alarm2 which is of course used with mode “Alarm2”.

Control Functions Space

 The control functions of the Alarm-Clock application declare all the conditions

that are defined in the application and their corresponding methods. Figure 5.15 shows

these conditions and their corresponding methods.

Figure 5.15: List of control functions in Alarm-Clock example

All these conditions and their corresponding program actions will be transformed into C#

declarations. They will be automatically transformed into two C# classes. The first class

is called Control which contains the transformation and implementation of conditions

and program actions. The second class is called Appfunctions which contains the

declarations of the contents of the program actions.

Chapter 5 The Event-Programming-Framework epro 112

5.4.3 Generated Parts Of The Alarm-Clock Example

 The generated program automatically generates the specification space definitions

of the Alarm-Clock example into C# language classes. The state space specification is

transformed to the State class, the event handling specification is transformed to the

Events_handling class, and the control functions specification is transformed to

these two classes Control and AppFunctions. A small part of each generated

class will be introduced. The complete descriptions of all generated classes will be

presented in Appendix A.

As known from previous secition as in the specification of the whole system, each state-

variable in the state space specification of the Alarm-Clock example will be transformed

into two corresponding components variables. One has the same data type with suffix

“_v” and it also has an initial value. The other one has the suffix “_changed” which is

of boolean type and the access to the variables are given by the properties. So set and

get functions are defined for each variable. Every time, a variable is changed, the

corresponding boolean variable with suffix “_changed” is set to true. There is also

a function reset_change() which sets all the boolean variables with suffix

“_changed” to false.

The following example shows a brief description of the State class of the Alarm-Clock

application. The details of the State class are described in Appendix A.1.

Example : State Class

namespace EV_Edit

{

 static class State

 {

 // the type of this variable is range[lower...upper]

 private static uint mode_v =0 ;

 public static bool mode_changed = false ;

 public static uint mode

 {

 get { return mode_v ; }

 set

Chapter 5 The Event-Programming-Framework epro 113

 {

 mode_v = value > 3 ? 0 : value ;

 mode_changed = true;

 }

 }

 private static bool alarm1on_v =false ;

 public static bool alarm1on_changed = false ;

 public static bool alarm1on

 {

 get { return alarm1on_v ; }

 set

 {

 alarm1on_v = value ;

 alarm1on_changed = true;

 }

 }

 public static void reset_change()

 {

 mode_changed = false ;

 rem_minutes_changed = false ;

 rem_seconds_changed = false ;

 alarm1on_changed = false ;

 alarm2on_changed = false ;

 timer_on_changed = false ;

 fastslow_changed = false ;

 updown_changed = false ;

 check_alarm_changed = false ;

 alarm1_ringing_changed = false ;

 alarm2_ringing_changed = false ;

 timer_ringing_changed = false ;

 }

 }

}

Event handling specification of the Alarm-Clock example will be transformed to the

Events_Handling class. For each event, the header will be transformed to a function

with the same name of the event and the contents of the event will be transform into C#-

if-statements. The first part of an if-statement will be the conditions of the event that will

be checked and the second part of the if-statement will be the state transformations that

will be executed when the conditions are satisfied.

Chapter 5 The Event-Programming-Framework epro 114

In the Events_Handling class, the declaration of the events are as members of enum

type named EVS. It contains all the events that are declared in the event handling

specification of the Alarm-clock application.

enum EVS { mode , on_off , up , down , fastslow ,

 second_over, minute_over, alarm1, alarm2 };

In order to avoid changing the values of state-variables which may effect on the

comparison and checking of the condition values, all the conditions for each event are

stored in a defined array named cond as illustrated below:

 cond[0] = State.mode == 1;

 cond[1] = State.mode == 2;

 cond[2] = State.mode == 3 && !State.fastslow;

 cond[3] = State.mode == 3 && State.fastslow;

After that, the conditions which are stored in the array cond for each event are checked

by if-statements with the corresponding state transformations of these conditions as

follows:

 if (cond[0])

 {

 State.updown = true ;

 }

 if (cond[1])

 {

 State.updown = true ;

 }

 if (cond[2])

 {

 State.rem_minutes += 1 ;

 }

Chapter 5 The Event-Programming-Framework epro 115

 if (cond[3])

 {

 State.rem_seconds = 10 ;

 }

A queue named evs_queue is defined in order to insert the events into the queue.

There is a boolean variable event_cycle_is_working in order to manage the

function event_cycle(). There are also two integer variables first and last for

indexing the events. First variable represent the index of the first event in the queue

evs_queue and last variable represent the index of the last event in the queue

evs_queue.

There exists a function called “event_handling(EVS e)”. It only adds a raised

event into the queue evs_queue, and in case the event_cycle_is_working has

value false, the event_cycle() function is invoked. The functions

add_event(EVS e) and fetch_event() organize a correct management of the

queue evs_queue.

The function event_cycle() checks wheather some events wait in the queue

evs_queue. If this is the case, then these events are executed by calling the

corresponding functions. In every cycle, the control functions is called, and after that, the

state-variables with suffix “_changed” are set to false by calling the function

reset_change() from the State class.

The following example shows a part of the transformation of the defined events and their

contents in the event handling specification to the Events_Handling class of the

Alarm-Clock example. The complete detail description of the Events_Handling class

can be found in Appendix A.2.

Example : Events_Handling Class

namespace EV_Edit

Chapter 5 The Event-Programming-Framework epro 116

{

enum EVS { mode , on_off , up , down , fastslow , second_over ,

minute_over , alarm1 , alarm2 };

 static class Events_Handling

 {

 private static bool[] cond = new bool[100];

 private static EVS[] evs_queue = new EVS[100];

 private static bool event_cycle_is_working = false;

 private static uint first =0, last = 0;

 private static void add_event(EVS e)

 {

 evs_queue[last++] = e;

 if (last == 10)

 last = 0;

 }

 private static EVS fetch_event()

 {

 EVS e = evs_queue[first++];

 if (first == 10)

 first=0;

 return e ;

 }

 public static void event_handling(EVS e)

 {

 add_event(e);

 if (!event_cycle_is_working)

 event_cycle();

 }

 private static void event_cycle()

 {

 EVS e ;

 event_cycle_is_working = true ;

 while (first != last)

 {

 e= fetch_event();

 switch (e)

 {

 case EVS.mode : mode();

 break;

 case EVS.on_off : on_off();

 break;

 case EVS.up : up();

 break;

 }

 ControlActions.control();

 State.reset_change();

 }

 event_cycle_is_working = false;

 }

 public static void mode()

 {

Chapter 5 The Event-Programming-Framework epro 117

 State.mode += 1 ;

 }

 public static void on_off()

 {

 cond[0] = State.mode == 1;

 cond[1] = State.mode == 1 && State.alarm1on &&

 State.alarm1_ringing;

 cond[2] = State.mode == 2;

 // if (State.mode == 1)

 if (cond[0])

 {

 State.alarm1on = !State.alarm1on ;

 }

 // if (State.mode == 1 && State.alarm1on && State.alarm1_ringing)

 if (cond[1])

 {

 State.alarm1_ringing = false ;

 }

 // if (State.mode == 2)

 if (cond[2])

 {

 State.alarm2on = !State.alarm2on ;

 }

 }

 public static void up()

 {

 cond[0] = State.mode == 1;

 cond[1] = State.mode == 2;

 // if (State.mode == 1)

 if (cond[0])

 {

 State.updown = true ;

 }

 // if (State.mode == 2)

 if (cond[1])

 {

 State.updown = true ;

 }

 }

 }

}

The last part of the specification of the Alarm-Clock example is the control functions

specification. As previously mentioned, this part will automatically be transformed into

Chapter 5 The Event-Programming-Framework epro 118

two C# classes. The first one is the Control class and the second one is the

AppFunctions class.

In the Control class all the action panels of the control functions specification will be

automatically transformed into C# if-statements. The first part of an if-statement is

includes the conditions that needed to be checked and the second part of the if-statement

is the corresponding program actions with their paramenters. Once the conditions are

satisfied the corresponding methods are invoked. The Control class has an instance of

the AppFunctions class in order to call the functions from it.

The automatically generated class AppFunctions specifies the program actions of the

Control class. This class is invoked by the Control class. An empty template will

appear without the contents of the function body, only the header of the function with its

parameters. The user must write the contenets of the body of the function and the user

should not have the ability to change the header of the function.

There are other variables for managing and showing the current time also, but these

variables are not uses in the specification. There are also two functions for controling the

time like:

System.Timers.Timer aTimer;

DateTime current_time, last_time;

private void init_timer()

{

 aTimer = new System.Timers.Timer();

 aTimer.Elapsed += new

 ElapsedEventHandler(aTimer_Elapsed);

 aTimer.Interval = 1000;

 aTimer.Start();

 last_time = DateTime.Now;

}

Chapter 5 The Event-Programming-Framework epro 119

private void aTimer_Elapsed(object sender,

 ElapsedEventArgs e)

{

current_time = DateTime.Now;

 ctime.Text = current_time.ToLongTimeString();

 on_event(EVS.second_over);

 if (current_time.Minute != last_time.Minute)

 {

 last_time = current_time;

 on_event(EVS.minute_over);

 }

}

Below is a brief description of the two classes namely, Control class and

AppFunctions class. The complete detail description of the Control class and

AppFunctions class are described respectively in Appendix A.3 and A.4.

Example: Control Class:

namespace EV_Edit

{

 static class ControlActions

 {

 public static Form2 af;

 public static void control()

 {

 if (State.updown_changed && State.mode != 3)

 {

 af.updown_alarm(State.mode,State.fastslow,State.updown) ;

 }

 if (State.mode == 1)

 {

 af.set_on_off_button(State.alarm1on) ;

 af.show_alarm_time(1) ;

 }

 if (State.mode == 2)

 {

 af.set_on_off_button(State.alarm2on) ;

Chapter 5 The Event-Programming-Framework epro 120

 af.show_alarm_time(2) ;

 }

 }

 }

}

Example: AppFunctions Class:

namespace EV_Edit

{

 public partial class Form2

 {

 // Application specific functions, called by class Control

// the templates (without contents of bodies) are

automatically generated

 private static uint[] alarm_time = { 0, 0 };

 // manages and shows the current time

 // does not use the specification

 public void updown_alarm(uint mode, bool fs, bool ud)

 {

 int i = (int)alarm_time[mode - 1];

 int h = i / 60;

 int m = i % 60;

 if (fs)

 {

 h = h + (ud ? 1 : -1);

 h = (h == 24) ? 0 : (h < 0) ? 23 : h;

 }

 else

 {

 m = m + (ud ? 1 : -1);

 m = (m == 60) ? 0 : (m < 0) ? 59 : m;

 }

 alarm_time[mode - 1] = (uint)(h * 60 + m);

 }

 public void set_on_off_button(bool b)

 {

 on_off_button.Text = b ? "on" : "off";

 }

 public void show_alarm_time(uint mode)

 {

uint h = alarm_time[--mode] / 60, min =

alarm_time[mode] % 60;

 output.Text = h.ToString() + " : " + min.ToString();

 output.Visible = true;

 }

 }}

6

__

Conclusion and Future Work
__

6.1 Overview

 In this thesis, the problem of distributing the event handling over the program text

has been discussed. The main idea that was used to solve this problem was to clearly

separate the event handling from the actions of the program. A special program

responsible for the event handling alone was introduced and developed [50].

This program was divided into two important parts. The first part was the specification

part, which in itself contains three parts namely, state space specification, event handling

specification, and control functions specification. The second part was the hand-built

program (hbp), which contains the classes that are needed to build the event system. This

part was programmed by the developer of the application using C#.NET.

The event-programming-framework (epro) contains a special editor to write and manage

specifications. The specification-editor stores all data inputs from the three parts of the

specification in an XML file.

The state-variables are defined in the state space specification with their types and initial

values. These state-variables are used in event handling and control functions

specification parts. There are some available functions such as Add, Edit, Delete, and

Move to manage the state-variables. The editor has some procedures of verification and

optimization for these variables in order to avoid redundancy and inconsistency. The

Chapter 6 Conclusion 122

same procedures are applied in event handling specification and control functions

specification parts.

The events are defined in the event handling specification part. In this part, each event

contains a condition or a group of conjunction of conditions and state transformations.

Only the variables, which are defined in the state space part, are used in the conditions.

The statements in the event consist of a conjunction of conditions. During the occurring

of the event, all the conditions associated with it are checked. Once the state-variables

satisfied the conditions, the corresponding state transformations are executed.

A set of conditional statements and corresponding actions are described in the control

functions specification as in an event handling specification.

Some optimization, simplification and verification steps are used and applied in order to

check the conditions on the event handling and control functions specifications such as

the elimination of tautologies, elimination of contradictions, and elimination of

implications. A transitive closure was built in order to deal with these optimizations and

verifications and some additional considerations are applied in order to guarantee that

valid conditions and values are possible.

The specification part is transformed into C# language as classes with corresponding

fields, properties and methods. The state space specification is transformed into State

class, the event handling specification is transformed into Events_Handling class,

and the control functions specification is transformed into Control class. Moreover,

in every application there must be a class of a certain name, say Form, introduced by the

developer of the system or by any designer (e.g. Microsoft Visual Studio), where the GUI

and the basic Components are defined. In this class the definition of a general event

handler must be inserted manually. In a special file, called AppFunctions.cs,

templates for all methods where corresponding actions are called in the control functions

specification are inserted automatically. An application example was introduced in order

to illustrate and show how the system implements the events.

Chapter 6 Conclusion 123

6.2 Advantages and Disadvantages

 The advantages of this new approach of event handling systems can be summarized

as follows: the ability to separate the event handling from the control of actions gives the

opportunity for the whole system to be designed by two different persons: one of whom is

responsible only for managing events and the other is responsible for the effects that these

events produce depending on their different states. The other advantage is that, the

description of event-handling cycle as well as control of program actions can be done

separately in a relatively abstract specification like manner. For this specification, no

knowledge of any programming language is necessary. Nevertheless, an automatic

transformation of the specification into the source code of the used programming

language is possible. Moreover, the event-handling cycle can also be considered as a

special transaction system. Some optimization of the transformation into programming

language code and verifications of temporal assertions can be carried out.

On the other hand, the disadvantage arises when there is the need to generate and add

some programming by manual means and also loading the automatically generated

classes to the application. These procedures may sometimes cause mistakes to arise. The

applications of some algorithms for calculating the transitive closure also may affect the

rate at which the results of the program is produced i.e. it takes time for the results to be

produced.

6.3 Proposed Future research work

 Considering the various aspects discussed in this thesis, there are several other

opportunities that need to be further exploited in order to improve the performance and

the efficiency of the event handling system, the following section gives a summary of

areas that need to be considered in future work :

• Due to lack of time, the parameters where not added to the part of the event

handling specification, however it is possible to add these data to the event

Chapter 6 Conclusion 124

handling specification (i.e. the event declaration such as header of the event

which includes formal parameters in case there are some).

• It was planed to improve the algorithm which was used to calculate the transitive

closure in order to improve some optimization, simplification and verification

steps that are applied in the event handling system.

• It is proposed to develop a specified methodology that works in such a way that

the user will not have to be manually adding some codes to the methods when the

system is generating the classes of the event handling system

• A proposal was also suggested to consider the application of the principle of

predicate transformer. The predicate transformer is an investigated method that

plays a significant role for the verification of the programs. The concept refers to

Sifakis [73] who applied this theory to general transition system. In this study, an

event system can be considered as a transition system. Therefore, with respect to

event system, the meaning of predicate transformer is the set of all states which

can be transformed by some events into states which fulfill the postcondition.

Predicate transformer will be useful to verify some interesting properties of event

systems.

__

Appendix A Generated Classes
__

 This appendix is organized as follows: section A.1 describes the State class which

is containing the declaration of the state-variables, their types and properties. Section A.2

presents the Events-Handling class which contains the declarations of the events and

corresponding conditions and state transformation. The Control class which is contains

the declarations of the function controls, their conditions and calls are described in section

A.3. The AppFunctions class is presented in section A.4.

A.1 State Class

using System ;

using System.Collections.Generic ;

using System.ComponentModel ;

using System.Data ;

using System.Drawing ;

using System.Text ;

using System.Windows.Forms ;

using System.IO ;

using System.Xml ;

using System.Timers ;

namespace EV_Edit

{

 static class State

 {

 // the type of this variable is range[lower...upper]

 private static uint mode_v =0 ;

 public static bool mode_changed = false ;

 public static uint mode

 {

 get { return mode_v ; }

 set

 {

 mode_v = value > 3 ? 0 : value ;

 mode_changed = true;

Appendix A Generated Classes 126

 }

 }

 // the type of this variable is range[lower...upper]

 private static uint rem_minutes_v =0 ;

 public static bool rem_minutes_changed = false ;

 public static uint rem_minutes

 {

 get { return rem_minutes_v ; }

 set

 {

 rem_minutes_v = value > 120 ? 0 : value ;

 rem_minutes_changed = true;

 }

 }

 // the type of this variable is range[lower...upper]

 private static uint rem_seconds_v =0 ;

 public static bool rem_seconds_changed = false ;

 public static uint rem_seconds

 {

 get { return rem_seconds_v ; }

 set

 {

 rem_seconds_v = value > 60 ? 0 : value ;

 rem_seconds_changed = true;

 }

 }

 private static bool alarm1on_v =false ;

 public static bool alarm1on_changed = false ;

 public static bool alarm1on

 {

 get { return alarm1on_v ; }

 set

 {

 alarm1on_v = value ;

 alarm1on_changed = true;

 }

 }

 private static bool alarm2on_v =false ;

 public static bool alarm2on_changed = false ;

 public static bool alarm2on

 {

 get { return alarm2on_v ; }

 set

 {

 alarm2on_v = value ;

 alarm2on_changed = true;

 }

 }

 private static bool timer_on_v =false ;

 public static bool timer_on_changed = false ;

Appendix A Generated Classes 127

 public static bool timer_on

 {

 get { return timer_on_v ; }

 set

 {

 timer_on_v = value ;

 timer_on_changed = true;

 }

 }

 private static bool fastslow_v =false ;

 public static bool fastslow_changed = false ;

 public static bool fastslow

 {

 get { return fastslow_v ; }

 set

 {

 fastslow_v = value ;

 fastslow_changed = true;

 }

 }

 private static bool updown_v =false ;

 public static bool updown_changed = false ;

 public static bool updown

 {

 get { return updown_v ; }

 set

 {

 updown_v = value ;

 updown_changed = true;

 }

 }

 private static bool check_alarm_v =false ;

 public static bool check_alarm_changed = false ;

 public static bool check_alarm

 {

 get { return check_alarm_v ; }

 set

 {

 check_alarm_v = value ;

 check_alarm_changed = true;

 }

 }

 private static bool alarm1_ringing_v =false ;

 public static bool alarm1_ringing_changed = false ;

 public static bool alarm1_ringing

 {

 get { return alarm1_ringing_v ; }

 set

 {

 alarm1_ringing_v = value ;

 alarm1_ringing_changed = true;

Appendix A Generated Classes 128

 }

 }

 private static bool alarm2_ringing_v =false ;

 public static bool alarm2_ringing_changed = false ;

 public static bool alarm2_ringing

 {

 get { return alarm2_ringing_v ; }

 set

 {

 alarm2_ringing_v = value ;

 alarm2_ringing_changed = true;

 }

 }

 private static bool timer_ringing_v =false ;

 public static bool timer_ringing_changed = false ;

 public static bool timer_ringing

 {

 get { return timer_ringing_v ; }

 set

 {

 timer_ringing_v = value ;

 timer_ringing_changed = true;

 }

 }

 public static void reset_change()

 {

 mode_changed = false ;

 rem_minutes_changed = false ;

 rem_seconds_changed = false ;

 alarm1on_changed = false ;

 alarm2on_changed = false ;

 timer_on_changed = false ;

 fastslow_changed = false ;

 updown_changed = false ;

 check_alarm_changed = false ;

 alarm1_ringing_changed = false ;

 alarm2_ringing_changed = false ;

 timer_ringing_changed = false ;

 }

 }

}

A.2 Events_Handling Class

using System ;

using System.Collections.Generic ;

using System.ComponentModel ;

Appendix A Generated Classes 129

using System.Data ;

using System.Drawing ;

using System.Text ;

using System.Windows.Forms ;

using System.IO ;

using System.Xml ;

using System.Timers ;

namespace EV_Edit

{

enum EVS { mode , on_off , up , down , fastslow , second_over ,

minute_over , alarm1 , alarm2 };

 static class Events_Handling

 {

 private static bool[] cond = new bool[100];

 private static EVS[] evs_queue = new EVS[100];

 private static bool event_cycle_is_working = false;

 private static uint first =0, last = 0;

 private static void add_event(EVS e)

 {

 evs_queue[last++] = e;

 if (last == 10)

 last = 0;

 }

 private static EVS fetch_event()

 {

 EVS e = evs_queue[first++];

 if (first == 10)

 first=0;

 return e ;

 }

 public static void event_handling(EVS e)

 {

 add_event(e);

 if (!event_cycle_is_working)

 event_cycle();

 }

 private static void event_cycle()

 {

 EVS e ;

 event_cycle_is_working = true ;

 while (first != last)

 {

 e= fetch_event();

 switch (e)

 {

 case EVS.mode : mode();

 break;

 case EVS.on_off : on_off();

 break;

Appendix A Generated Classes 130

 case EVS.up : up();

 break;

 case EVS.down : down();

 break;

 case EVS.fastslow : fastslow();

 break;

 case EVS.second_over : second_over();

 break;

 case EVS.minute_over : minute_over();

 break;

 case EVS.alarm1 : alarm1();

 break;

 case EVS.alarm2 : alarm2();

 break;

 }

 ControlActions.control();

 State.reset_change();

 }

 event_cycle_is_working = false;

 }

 public static void mode()

 {

 State.mode += 1 ;

 }

 public static void on_off()

 {

 cond[0] = State.mode == 1;

 cond[1] = State.mode == 1 && State.alarm1on &&

 State.alarm1_ringing;

 cond[2] = State.mode == 2;

 cond[3] = State.mode == 2 && State.alarm2on &&

 State.alarm2_ringing;

cond[4] = State.mode == 3 && State.timer_on &&

 State.timer_ringing;

 cond[5] = State.mode == 3 && State.timer_on;

 cond[6] = State.mode == 3;

 // if (State.mode == 1)

 if (cond[0])

 {

 State.alarm1on = !State.alarm1on ;

 }

 // if (State.mode == 1 && State.alarm1on && State.alarm1_ringing)

 if (cond[1])

 {

 State.alarm1_ringing = false ;

 }

 // if (State.mode == 2)

 if (cond[2])

 {

 State.alarm2on = !State.alarm2on ;

Appendix A Generated Classes 131

 }

 // if (State.mode == 2 && State.alarm2on && State.alarm2_ringing)

 if (cond[3])

 {

 State.alarm2_ringing = false ;

 }

 // if (State.mode == 3 && State.timer_on && State.timer_ringing)

 if (cond[4])

 {

 State.timer_ringing = false ;

 }

 // if (State.mode == 3 && State.timer_on)

 if (cond[5])

 {

 State.rem_seconds = 60 ;

 }

 // if (State.mode == 3)

 if (cond[6])

 {

 State.timer_on = !State.timer_on ;

 }

 }

 public static void up()

 {

 cond[0] = State.mode == 1;

 cond[1] = State.mode == 2;

 cond[2] = State.mode == 3 && !State.fastslow;

 cond[3] = State.mode == 3 && State.fastslow;

 // if (State.mode == 1)

 if (cond[0])

 {

 State.updown = true ;

 }

 // if (State.mode == 2)

 if (cond[1])

 {

 State.updown = true ;

 }

 // if (State.mode == 3 && !State.fastslow)

 if (cond[2])

 {

 State.rem_minutes += 1 ;

 }

 // if (State.mode == 3 && State.fastslow)

 if (cond[3])

 {

 State.rem_seconds = 10 ;

Appendix A Generated Classes 132

 }

 }

 public static void down()

 {

 cond[0] = State.mode == 1;

 cond[1] = State.mode == 2;

 cond[2] = State.mode == 3 && !State.fastslow;

 cond[3] = State.mode == 3 && State.fastslow;

 // if (State.mode == 1)

 if (cond[0])

 {

 State.updown = false ;

 }

 // if (State.mode == 2)

 if (cond[1])

 {

 State.updown = false ;

 }

 // if (State.mode == 3 && !State.fastslow)

 if (cond[2])

 {

 State.rem_seconds = 1 ;

 }

 // if (State.mode == 3 && State.fastslow)

 if (cond[3])

 {

 State.rem_minutes = 10 ;

 }

 }

 public static void fastslow()

 {

 State.fastslow = !State.fastslow ;

 }

 public static void second_over()

 {

 cond[0] = State.timer_on && State.rem_seconds > 1;

 cond[1] = State.timer_on && State.rem_seconds == 1 &&

 State.rem_minutes > 1;

cond[2] = State.timer_on && State.rem_seconds == 1 &&

 State.rem_minutes == 1;

 // if (State.timer_on && State.rem_seconds > 1)

 if (cond[0])

 {

 State.rem_seconds -= 1 ;

 }

// if (State.timer_on && State.rem_seconds == 1 &&

State.rem_minutes > 1)

Appendix A Generated Classes 133

 if (cond[1])

 {

 State.rem_seconds = 60 ;

 State.rem_minutes -= 1 ;

 }

// if (State.timer_on && State.rem_seconds == 1 &&

State.rem_minutes == 1)

 if (cond[2])

 {

 State.timer_ringing = true ;

 State.rem_minutes = 0 ;

 }

 }

 public static void minute_over()

 {

 cond[0] = State.alarm1on && !State.alarm1_ringing;

 cond[1] = State.alarm2on && !State.alarm2_ringing;

 // if (State.alarm1on && !State.alarm1_ringing)

 if (cond[0])

 {

 State.check_alarm = true ;

 }

 // if (State.alarm2on && !State.alarm2_ringing)

 if (cond[1])

 {

 State.check_alarm = true ;

 }

 }

 public static void alarm1()

 {

 State.alarm1_ringing = true ;

 }

 public static void alarm2()

 {

 State.alarm2_ringing = true ;

 }

 }

}

A.3 Control Class:

using System ;

using System.Collections.Generic ;

using System.ComponentModel ;

using System.Data ;

Appendix A Generated Classes 134

using System.Drawing ;

using System.Text ;

using System.Windows.Forms ;

using System.IO ;

using System.Xml ;

using System.Timers ;

namespace EV_Edit

{

 static class ControlActions

 {

 public static Form2 af;

 public static void control()

 {

 if (State.updown_changed && State.mode != 3)

 {

 af.updown_alarm(State.mode,State.fastslow,State.updown) ;

 }

 if (State.mode == 1)

 {

 af.set_on_off_button(State.alarm1on) ;

 af.show_alarm_time(1) ;

 }

 if (State.mode == 2)

 {

 af.set_on_off_button(State.alarm2on) ;

 af.show_alarm_time(2) ;

 }

 if (State.mode == 3)

 {

 af.set_on_off_button(State.timer_on) ;

 af.show_timer(State.rem_minutes) ;

 }

 if (State.mode != 0)

 {

 af.show_fastslow(State.mode,State.fastslow) ;

 }

 if (State.mode_changed)

 {

 af.set_mode(State.mode) ;

 }

 if (State.mode_changed && State.mode == 0)

 {

 af.hide_up_down_buttons () ;

 af.hide_on_off_button() ;

 af.hide_alarm_time() ;

 }

 if (State.mode_changed && State.mode != 0)

Appendix A Generated Classes 135

 {

 af.show_up_down_buttons() ;

 af.show_on_off_button() ;

 }

 if (State.timer_ringing_changed && State.timer_ringing)

 {

 af.start_ringing() ;

 }

 if (State.alarm1_ringing_changed && State.alarm1_ringing)

 {

 af.start_ringing() ;

 }

 if (State.alarm2_ringing_changed && State.alarm2_ringing)

 {

 af.start_ringing() ;

 }

if (State.timer_ringing_changed && !State.timer_ringing &&

 !State.alarm1_ringing && !State.alarm2_ringing)

 {

 af.stop_ringing() ;

 }

if (State.alarm1_ringing_changed && !State.timer_ringing &&

 !State.alarm1_ringing && !State.alarm2_ringing)

 {

 af.stop_ringing() ;

 }

if (State.alarm2_ringing_changed && !State.timer_ringing &&

 !State.alarm1_ringing && !State.alarm2_ringing)

 {

 af.stop_ringing() ;

 }

 if (State.alarm1on && State.check_alarm_changed)

 {

 af.check_alarm1() ;

 }

 if (State.alarm2on && State.check_alarm_changed)

 {

 af.check_alarm2() ;

 }

 }

 }

}

Appendix A Generated Classes 136

A.4 AppFunctions Class:

using System ;

using System.Collections.Generic ;

using System.ComponentModel ;

using System.Data ;

using System.Drawing ;

using System.Text ;

using System.Windows.Forms ;

using System.IO ;

using System.Xml ;

using System.Timers ;

namespace EV_Edit

{

 public partial class Form2

 {

 // Application specific functions, called by class Control

// the templates (without contents of bodies) are

automatically generated

 private static uint[] alarm_time = { 0, 0 };

 // manages and shows the current time

 // does not use the specification

 System.Timers.Timer aTimer;

 DateTime current_time, last_time;

 private void init_timer()

 {

 aTimer = new System.Timers.Timer();

aTimer.Elapsed += new

ElapsedEventHandler(aTimer_Elapsed);

 aTimer.Interval = 1000;

 aTimer.Start();

 last_time = DateTime.Now;

 }

private void aTimer_Elapsed(object sender, ElapsedEventArgs

e)

 {

 current_time = DateTime.Now;

 ctime.Text = current_time.ToLongTimeString();

 on_event(EVS.second_over);

 if (current_time.Minute != last_time.Minute)

 {

 last_time = current_time;

 on_event(EVS.minute_over);

 }

 }

 public void updown_alarm(uint mode, bool fs, bool ud)

 {

 int i = (int)alarm_time[mode - 1];

 int h = i / 60;

 int m = i % 60;

 if (fs)

 {

Appendix A Generated Classes 137

 h = h + (ud ? 1 : -1);

 h = (h == 24) ? 0 : (h < 0) ? 23 : h;

 }

 else

 {

 m = m + (ud ? 1 : -1);

 m = (m == 60) ? 0 : (m < 0) ? 59 : m;

 }

 alarm_time[mode - 1] = (uint)(h * 60 + m);

 }

 public void set_on_off_button(bool b)

 {

 on_off_button.Text = b ? "on" : "off";

 }

 public void show_alarm_time(uint mode)

 {

uint h = alarm_time[--mode] / 60, min =

alarm_time[mode] % 60;

 output.Text = h.ToString() + " : " + min.ToString();

 output.Visible = true;

 }

 public void show_timer(uint t)

 {

 output.Text = t.ToString();

 output.Visible = true;

 }

 public void show_fastslow(uint mode, bool fs)

 {

mhbutton.Text = fs ? (mode == 3 ? "10 min" : "hours")

: (mode == 3 ? "1 min" : "minutes");

 }

 public void set_mode(uint mode)

 {

 switch (mode)

 {

 case 0: mode_button.Text = "Mode";

 return;

 case 1: mode_button.Text = "Alarm 1";

 return;

 case 2: mode_button.Text = "Alarm 2";

 return;

 case 3: mode_button.Text = "Timer";

 return;

 }

 }

 public void hide_up_down_buttons()

 {

 up_button.Visible = false;

 down_button.Visible = false;

Appendix A Generated Classes 138

 }

 public void hide_on_off_button()

 {

 mhbutton.Visible = false;

 on_off_button.Visible = false;

 }

 public void hide_alarm_time()

 {

 output.Visible = false;

 }

 public void show_up_down_buttons()

 {

 up_button.Visible = true;

 down_button.Visible = true;

 }

 public void show_on_off_button()

 {

 on_off_button.Visible = mhbutton.Visible = true;

 }

 public void start_ringing()

 {

 ringlabel.Visible = true;

 ringlabel.Refresh();

 }

 public void stop_ringing()

 {

 ringlabel.Visible = false;

 }

 public void check_alarm1()

 {

if (alarm_time[0] == (current_time.Minute +

current_time.Hour * 60))

 on_event(EVS.alarm1);

 }

 public void check_alarm2()

 {

if (alarm_time[1] == (current_time.Minute +

current_time.Hour * 60))

 on_event(EVS.alarm2);

 }

 }

}

__

Appendix B XML File
__

 The XML file below describes a small example of all the specification data of the

event handling system of the Alarm-Clock application that described in section 5.4:

<? xml version="1.0" encoding="utf-8" ?>

- <specification>

- <statespace>

 <variable no="1" typel="[0 ... 3]" name="mode" initl="= 0" type="3"

 lower="0" upper="3" iinit="0" finit="0" binit="false" />

 <variable no="2" typel="[0 ... 120]" name="rem_minutes" initl="= 0"

 type="3" lower="0" upper="120" iinit="0" finit="0" binit="false" />

 <variable no="3" typel="[0 ... 60]" name="rem_seconds" initl="= 0"

 type="3" lower="0" upper="60" iinit="0" finit="0" binit="false" />

 <variable no="4" typel="boolean" name="alarm1on" initl="= False"

 type="2" lower="0" upper="60" iinit="0" finit="0" binit="false" />

 <variable no="5" typel="boolean" name="alarm2on" initl="= False"

 type="2" lower="0" upper="60" iinit="0" finit="0" binit="false"

 />

 <variable no="6" typel="boolean" name="timer_on" initl="= False"

 type="2" lower="0" upper="60" iinit="0" finit="0" binit="false"

 />

 <variable no="7" typel="boolean" name="fastslow" initl="= False"

 type="2" lower="0" upper="60" iinit="0" finit="0" binit="false"

 />

 <variable no="8" typel="boolean" name="updown" initl="= False"

 type="2" lower="0" upper="60" iinit="0" finit="0" binit="false"

 />

 <variable no="9" typel="boolean" name="check_alarm" initl="= False"

 type="2" lower="0" upper="60" iinit="0" finit="0" binit="false" />

 <variable no="10" typel="boolean" name="alarm1_ringing" initl="=

 False" type="2" lower="0" upper="0" iinit="0" finit="0" binit="false"

 />

 <variable no="11" typel="boolean" name="alarm2_ringing" initl="=

 False" type="2" lower="0" upper="0" iinit="0" finit="0" binit="false"

 />

 <variable no="12" typel="boolean" name="timer_ringing" initl="=

 False" type="2" lower="0" upper="0" iinit="0" finit="0" binit="false"

 />

 </statespace>

Appendix B XML File 140

 - <events>

 - <event ident="mode">

 - <action>

 <conditions />

 - <transformations>

 <trans text="mode += 1" lvar="1" oper="2" rvar="0" ival="1"

 fval="0" bval="False" />

 </transformations>

 </action>

 </event>

 - <event ident="on_off">

 - <action>

 - <conditions>

 <condition text="mode == 1" lvar="1" oper="3" rvar="0" ival="1"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="! alarm1on" lvar="4" oper="0" rvar="0"

 ival="1" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 1 &" lvar="1" oper="3" rvar="0"

 ival="1" fval="0" />

 <condition text="alarm1on &" lvar="4" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="alarm1_ringing" lvar="10" oper="-1" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="alarm1_ringing := False" lvar="10" oper="1"

 rvar="0" ival="0" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 2" lvar="1" oper="3" rvar="0" ival="2"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="! alarm2on" lvar="5" oper="0" rvar="0" ival="0"

 fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

Appendix B XML File 141

 <condition text="mode == 2 &" lvar="1" oper="3" rvar="0"

 ival="2" fval="0" />

 <condition text="alarm2on &" lvar="5" oper="-1" rvar="0"

 ival="0" fval="0" />

 <condition text="alarm2_ringing" lvar="11" oper="-1" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="alarm2_ringing := False" lvar="11" oper="1"

 rvar="0" ival="0" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3 &" lvar="1" oper="3" rvar="0"

 ival="3" fval="0" />

 <condition text="timer_on &" lvar="6" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="timer_ringing" lvar="12" oper="-1" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="timer_ringing := False" lvar="12" oper="1" rvar="0"

 ival="0" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3 &" lvar="1" oper="3" rvar="0"

 ival="3" fval="0" />

 <condition text="timer_on" lvar="6" oper="-1" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="rem_seconds := 60" lvar="3" oper="1" rvar="0"

 ival="60" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3" lvar="1" oper="3" rvar="0" ival="3"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="! timer_on" lvar="6" oper="0" rvar="0" ival="60"

 fval="0" bval="False" />

 </transformations>

 </action>

 </event>

Appendix B XML File 142

 - <event ident="up">

 - <action>

 - <conditions>

 <condition text="mode == 1" lvar="1" oper="3" rvar="0" ival="1"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="updown := True" lvar="8" oper="1" rvar="0"

 ival="60" fval="0" bval="True" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 2" lvar="1" oper="3" rvar="0" ival="2"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="updown := True" lvar="8" oper="1" rvar="0"

 ival="60" fval="0" bval="True" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3 &" lvar="1" oper="3" rvar="0"

 ival="3" fval="0" />

 <condition text="! fastslow" lvar="7" oper="0" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="rem_minutes += 1" lvar="2" oper="2" rvar="0"

 ival="1" fval="0" bval="True" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3 &" lvar="1" oper="3" rvar="0"

 ival="3" fval="0" />

 <condition text="fastslow" lvar="7" oper="-1" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="rem_seconds := 10" lvar="3" oper="1" rvar="0"

 ival="10" fval="0" bval="True" />

 </transformations>

 </action>

 </event>

 - <event ident="down">

 - <action>

Appendix B XML File 143

 - <conditions>

 <condition text="mode == 1" lvar="1" oper="3" rvar="0" ival="1"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="updown := False" lvar="8" oper="1" rvar="0"

 ival="0" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 2" lvar="1" oper="3" rvar="0" ival="2"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="updown := False" lvar="8" oper="1" rvar="0" ival="0"

 fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3 &" lvar="1" oper="3" rvar="0"

 ival="3" fval="0" />

 <condition text="! fastslow" lvar="7" oper="0" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="rem_seconds := 1" lvar="3" oper="1" rvar="0"

 ival="1" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3 &" lvar="1" oper="3" rvar="0"

 ival="3" fval="0" />

 <condition text="fastslow" lvar="7" oper="-1" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <transformations>

 <trans text="rem_minutes := 10" lvar="2" oper="1" rvar="0"

 ival="10" fval="0" bval="False" />

 </transformations>

 </action>

 </event>

 - <event ident="fastslow">

 - <action>

 <conditions />

 - <transformations>

Appendix B XML File 144

 <trans text="! fastslow" lvar="7" oper="0" rvar="0" ival="10"

 fval="0" bval="False" />

 </transformations>

 </action>

 </event>

 - <event ident="second_over">

 - <action>

 - <conditions>

 <condition text="timer_on &" lvar="6" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="rem_seconds > 1" lvar="3" oper="5" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="rem_seconds -= 1" lvar="3" oper="3" rvar="0"

 ival="1" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="timer_on &" lvar="6" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="rem_seconds == 1 &" lvar="3" oper="3"

 rvar="0" ival="0" fval="0" />

 <condition text="rem_minutes > 1" lvar="2" oper="5" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="rem_seconds := 60 &" lvar="3" oper="1" rvar="0"

 ival="60" fval="0" bval="False" />

 <trans text="rem_minutes -= 1" lvar="2" oper="3" rvar="0"

 ival="1" fval="0" bval="False" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="timer_on &" lvar="6" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="rem_seconds == 1 &" lvar="3" oper="3"

 rvar="0" ival="0" fval="0" />

 <condition text="rem_minutes == 1" lvar="2" oper="3" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="timer_ringing := True &" lvar="12" oper="1"

 rvar="0" ival="1" fval="0" bval="True" />

 <trans text="rem_minutes := 0" lvar="2" oper="1" rvar="0"

 ival="0" fval="0" bval="True" />

 </transformations>

Appendix B XML File 145

 </action>

 </event>

 - <event ident="minute_over">

 - <action>

 - <conditions>

 <condition text="alarm1on &" lvar="4" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="! alarm1_ringing" lvar="10" oper="0" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="check_alarm := True" lvar="9" oper="1" rvar="0"

 ival="0" fval="0" bval="True" />

 </transformations>

 </action>

 - <action>

 - <conditions>

 <condition text="alarm2on &" lvar="5" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="! alarm2_ringing" lvar="11" oper="0" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <transformations>

 <trans text="check_alarm := True" lvar="9" oper="1" rvar="0"

 ival="0" fval="0" bval="True" />

 </transformations>

 </action>

 </event>

 - <event ident="alarm1">

 - <action>

 <conditions />

 - <transformations>

 <trans text="alarm1_ringing := True" lvar="10" oper="1"

 rvar="0" ival="0" fval="0" bval="True" />

 </transformations>

 </action>

 </event>

 - <event ident="alarm2">

 - <action>

 <conditions />

 - <transformations>

 <trans text="alarm2_ringing := True" lvar="11" oper="1"

 rvar="0" ival="0" fval="0" bval="True" />

 </transformations>

 </action>

 </event>

 </events>

 - <controls>

Appendix B XML File 146

 - <action>

 - <conditions>

 <condition text="updown was changed &" lvar="8" oper="7"

 rvar="0" ival="0" fval="0" />

 <condition text="mode != 3" lvar="1" oper="6" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <calls>

 <call text="updown_alarm(mode,fastslow,updown)" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 1" lvar="1" oper="3" rvar="0" ival="1"

 fval="0" />

 </conditions>

 - <calls>

 <call text="set_on_off_button(alarm1on) &" />

 <call text="show_alarm_time(1)" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 2" lvar="1" oper="3" rvar="0" ival="2"

 fval="0" />

 </conditions>

 - <calls>

 <call text="set_on_off_button(alarm2on) &" />

 <call text="show_alarm_time(2)" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="mode == 3" lvar="1" oper="3" rvar="0" ival="3"

 fval="0" />

 </conditions>

 - <calls>

 <call text="set_on_off_button(timer_on) &" />

 <call text="show_timer(rem_minutes)" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="mode != 0" lvar="1" oper="6" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <calls>

 <call text="show_fastslow(mode,fastslow)" />

Appendix B XML File 147

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="mode was changed" lvar="1" oper="7" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="set_mode(mode)" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="mode was changed &" lvar="1" oper="7"

 rvar="0" ival="0" fval="0" />

 <condition text="mode == 0" lvar="1" oper="3" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="hide_up_down_buttons () &" />

 <call text="hide_on_off_button() &" />

 <call text="hide_alarm_time()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="mode was changed &" lvar="1" oper="7"

 rvar="0" ival="0" fval="0" />

 <condition text="mode != 0" lvar="1" oper="6" rvar="0" ival="0"

 fval="0" />

 </conditions>

 - <calls>

 <call text="show_up_down_buttons() &" />

 <call text="show_on_off_button()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="timer_ringing was changed &" lvar="12"

 oper="7" rvar="0" ival="0" fval="0" />

 <condition text="timer_ringing" lvar="12" oper="-1" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="start_ringing()" />

 </calls>

 </action>

 - <action>

Appendix B XML File 148

 - <conditions>

 <condition text="alarm1_ringing was changed &" lvar="10"

 oper="7" rvar="0" ival="0" fval="0" />

 <condition text="alarm1_ringing" lvar="10" oper="-1" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="start_ringing()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="alarm2_ringing was changed &" lvar="11"

 oper="7" rvar="0" ival="0" fval="0" />

 <condition text="alarm2_ringing" lvar="11" oper="-1" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="start_ringing()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="timer_ringing was changed &" lvar="12"

 oper="7" rvar="0" ival="0" fval="0" />

 <condition text="! timer_ringing &" lvar="12" oper="0" rvar="0"

 ival="0" fval="0" />

 <condition text="! alarm1_ringing &" lvar="10" oper="0" rvar="0"

 ival="0" fval="0" />

 <condition text="! alarm2_ringing" lvar="11" oper="0" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="stop_ringing()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="alarm1_ringing was changed &" lvar="10"

 oper="7" rvar="0" ival="0" fval="0" />

 <condition text="! timer_ringing &" lvar="12" oper="0" rvar="0"

 ival="0" fval="0" />

 <condition text="! alarm1_ringing &" lvar="10" oper="0" rvar="0"

 ival="0" fval="0" />

 <condition text="! alarm2_ringing" lvar="11" oper="0" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

Appendix B XML File 149

 <call text="stop_ringing()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="alarm2_ringing was changed &" lvar="11"

 oper="7" rvar="0" ival="0" fval="0" />

 <condition text="! timer_ringing &" lvar="12" oper="0" rvar="0"

 ival="0" fval="0" />

 <condition text="! alarm1_ringing &" lvar="10" oper="0" rvar="0"

 ival="0" fval="0" />

 <condition text="! alarm2_ringing" lvar="11" oper="0" rvar="0"

 ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="stop_ringing()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="alarm1on &" lvar="4" oper="-1" rvar="0" ival="0"

 fval="0" />

 <condition text="check_alarm was changed" lvar="9" oper="7"

 rvar="0" ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="check_alarm1()" />

 </calls>

 </action>

 - <action>

 - <conditions>

 <condition text="alarm2on &" lvar="5" oper="-1" rvar="0"

 ival="0" fval="0" />

 <condition text="check_alarm was changed" lvar="9" oper="7"

 rvar="0" ival="0" fval="0" />

 </conditions>

 - <calls>

 <call text="check_alarm2()" />

 </calls>

 </action>

 </controls>

 </specification>

Bibliography

1. Hunt, John: Guide to C# and object orientation, Springer-Verlag London Limited

2002, First published 2002.

2. Liberty, Jesse: Learning C#, O'Reilly Media, Inc. September 2002.

3. Clocksin, William F.: Programming in Prolog 5th edition Using the ISO Standar,

Springer, September 2003.

4. Robert W. Sebesta, Concepts of Programming Languages. Addison Wesley

Publishing Company; 5th edition (July 31, 2001).

5. Alice E. Fischer, Frances S. Grodzinsky, The Anatomy of Programming

Languages, by Prentice-Hall International Edition, 1993.

6. Simon Thompson, Haskell, The Craft of Functional Programming. Second

Edition, Addison Wesley Longman Limited, First published 1999.

7. John Hughes, Why Functional Programming Matters, a tutorial paper on

functional programming, Computing Science Department at Chalmers University

of Technology , http://www.math.chalmers.se/~rjmh/Papers/whyfp.pdf

8. Haskell homepage, http://www.haskell.org.

9. Lawrence C. Paulson and Andrew W. Smith, Logic Programming, Functional

Programming, and Inductive Definitions

Bibliography 151

10. Learning to Program by Alan Gauld ,

http://www.freenetpages.co.uk/hp/alan.gauld/tutwhat.htm

11. Programming in Martin-Löf’s Type Theory. An Introduction, Bengt Nordström,

Kent Petersson, Jan M. Smith, Oxford University Press 1990.

12. Programming in Prolog. Using the ISO Standard, Fifth Edition, William F.

Clocksin and Christopher S. Mellish.

13. Visual Prolog v.6 Language Reference Glossary

14. www.mta.ca/~rrosebru/oldcourse/ 371199/prolog/history.html

15. Visual C++ Language Reference

16. Designing Applications with JBuilder. Borland Software Corporation. JBuilder

help documentation.

17. Introduction to Programming Using Java Version 4.1, June 2004 Author: David J.

Eck, http://www.javacommerce.com/displaypage.jsp?name=index.sql&id=18216

18. Microsoft .NET Kick Start, By Hitesh Seth. Published by Sams. Series Kick

Start.

19. Logic for information technology , Antony Galton ,1990

20. http://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html

21. Event-Driven Programming: Introduction, Tutorial, History,

http://Tutorial_EventDrivenProgramming.sourceforge.net, Stephen Ferg

(steve@ferg.org), Version 0.2 – 2006-02-08

22. LOGIC, PROGRAMMING AND PROLOG (2ED), Ulf Nilsson and Jan

Maluszy_nski, Copyright c2000, http://www.ida.liu.se/~ulfni/lpp

Bibliography 152

23. Imperative Programming - Brief version by Stan Seibert , Oct 20 2002 ,

http://everything2.com/index.pl?node=imperative%20programming

24. Events Programming in C# , By Shalilesh Kumar Saha, November 24, 2003 ,

http://www.c-

sharpcorner.com/UploadFile/sksaha/EventsinNet11152005043514AM/EventsinN

et.aspx

25. Terry smith, Doing Objects in VB.NET and C# - Events and Delegates ,

http://www.terrysmith.net/software/dotnet_ebook/chapter4.html

26. http://en.wikipedia.org/wiki/Event

27. Event Driven programming, Andrew Gregory,

http://www.scss.com.au/family/andrew/pdas/psion/toolbox/tutorial/eventdp/

28. Programming C#, 4th edition (February 22, 2005) , by Jesse Liberty. Copyright

© 2005 O'Reilly Media, Inc , ISBN 0596006993

29. Sams, Teach Yourself Microsoft Visual C# in 24 Hours , Understanding Event

driven programming, By James Foxall and Wendy Haro-Chun

30. C# Programmer's Reference , Events Tutorial , http://msdn2.microsoft.com/en-

us/library/aa645739(VS.71).aspx

31. Delegates and Events - The Uncensored Story - Part 1, By A. Abdul Azeez.

http://www.codeproject.com/csharp/delegates-part1.asp

32. Learning C# 2005 , by Jesse Liberty; Brian MacDonald

33. Delegates and Events, By Kaushik Srenevasan. 17 Aug 2003 ,

http://www.codeproject.com/csharp/delegatesandevents.asp

Bibliography 153

34. MSDN Magazine, C++ at Work: Event Programming , Paul DiLascia, February

2006, http://msdn.microsoft.com/msdnmag/issues/06/02/CAtWork/

35. Visual C++ Concepts: Event Handling in Visual C++,

http://msdn2.microsoft.com/en-us/library/aa984459(VS.71).aspx

36. Designing Applications with JBuilder , JBuilder 2005 , Borland Software

Corporation , www.borland.com

37. Software Paradigms (Lesson 1) , Introduction & Procedural Programming

Paradigm,

http://www.cs.nott.ac.uk/~cah/G51ISS/ExternalDocuments/lesson01.doc

38. Programming paradigm , http://en.wikipedia.org/wiki/Programming_paradigm

39. Programming Paradigms Derived From ARS , http://www.lambda-

bound.com/paradigms.html

40. Programming Paradigms

http://www.comp.glam.ac.uk/pages/staff/efurse/Teaching/PP/Introduction.html

41. Imperative programming, http://en.wikipedia.org/wiki/Imperative_programming

42. Frequently Asked Questions for comp.lang.functional, Edited by Graham Hutton,

University of Nottingham , November 2002 ,

http://www.cs.nott.ac.uk/~gmh/faq.html#functional-languages

43. Why Haskell matters , http://www.haskell.org/haskellwiki/Why_Haskell_matters

44. Answers.com Technology, http://www.answers.com/topic/event-

driven?cat=technology

45. Event-Driven Programming ,

http://www.scss.com.au/family/andrew/pdas/psion/toolbox/tutorial/eventdp/

Bibliography 154

46. Access Tutorial 13: Event-Driven Programming Using Macros ,

http://www.cob.ohio-state.edu/~muhanna_1/837/MSAccess/tutorials/macro.pdf

47. Programming Visual Basic .NET, 2nd Edition by Jesse Liberty , O'Reilly, April

2003, ISBN: 0-596-00438-9 ,

http://safari.oreilly.com/0596004389/progvbdotnet2-CHP-12-SECT-4

48. Event-Driven Architecture Overview, By Brenda M. Michelson, Sr. VP and Sr.

Consultant, Patricia Seybold Group February 2, 2006

49. galsC: A Language for Event-Driven Embedded Systems , Elaine Cheong , Jie Liu

, March 7-11 2005 , Munish , Germany

50. Peter Bachmann. Formal Verification of Event Driven Systems , Computer

Report, Cottbus University of Technology, Department of Computer Science,

October, 2006

51. State-Based Model Checking of Event-Driven System Requirements, Joanne M.

Atlee & John Gannon

52. Event-Based Programming Taking Events to the Limit , Ted Faison , 2006

53. Scalable Diagnosability Checking of Event-Driven Systems , Anika Schumann

and Yannick Pencol´e

54. A Practical Method for Verifying Event-Driven Software , Gerard J. Holzmann ,

Margaret H. Smith

55. Christian Oberschulte. Refactoring of Object-Oriented and Aspect-Oriented

Software: A Refactoring Browser for AspectJ in Eclipse , Diploma Thesis

Department of Business Arts, Economics, and Management Information Systems

at University of Duisburg-Essen, Germany , 2003 .

Bibliography 155

56. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,

University of Illinois at Urbana-Champaign, 1992.

57. C# Concisely, Judith Bishop & Nigel Horspool, 2004

58. Shimon Rura., Refactoring Aspect-Oriented Software. Bachelor Thesis, Computer

Science, Williams College, Williamstown, Massachusetts, 2003

59. Introduction to Graphical User Interface (GUI). MATLAB 6.5, by Refaat Yousef

Al Ashi & Ahmed Al Ameri, UAE University, College of Engineering, Electrical

Engineering Department, IEEE UAE Student Branch

60. The J2EE Tutorial for the Sun ONE Platform, Data Identification,

http://java.sun.com/j2ee/1.3/docs/tutorial/doc/IntroXML2.html

61. AspectJ Team: The AspectJ Programming Guide, Available at

http://www.eclipse.org/aspectj/ , release 1.0.6, September 2001.

62. Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W.G.: An

Overview of AspectJ, In Proceedings of the 15th European Conference on Object-

Oriented Programming (ECOOP), Budapest, Hungary, LNCS 2072, Springer,

June 2001, pp. 327-253.

63. Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.V.; Loingtier, J.

M.; Irwin, J.: Aspect-Oriented Programming, In Proceedings of the 11th European

Conference on Object-Oriented Programming (ECOOP), Jyvskyl, Finland, LNCS

1241, Springer, June 1997, pp. 220-242.

64. Aspect-Oriented Software Development Web Site, Available at

http://www.aosd.net, 2003.

65. Aspect Oriented Programming By Yasser EL-Manzalawy,

http://www.developer.com/design/article.php/3308941

Bibliography 156

66. Parnas, D. L.: On the criteria to be used in decomposing systems into modules,

Communications of the ACM, 15(12), December 1972, pp. 1053-1058.

67. Dijkstra, E.: A Discipline of Programming, Englewood Cliffs, New Jersey, USA,

Prentice Hall, 1976.

68. Hürsch, W.; Lopes, C. V.: Separation of Concerns, College of Computer Science,

Northeastern University, Boston, MA, Technical Report, no. NU-CCS-95-03,

February 1995.

69. Aksit, M.; Bosch, J.; van der Sterren, W.; Bergmans, L.: Real-Time Specification

Inheritance Anomalies and Real-Time Filters. In Proceedings of the 8th European

Conference on Object-Oriented Programming (ECOOP), Bologna, Italy, LNCS

821, Springer, July 1994, pp. 386-407.

70. Ossher, H.; Tarr, P.: Multi-Dimensional Separation of Concerns and The

Hyperspace Approach, In Proceedings of the Symposium on Software

Architectures and Component Technology: The State of the Art in Software

Development, ed. M. Aksit, Kluwer Academic Publishers, 2000, pp. 293-323.

71. Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K.; Ossher, H.: Discussing Aspects

of AOP, Communications of the ACM, 44(10), October 2001, pp. 33-38.

72. Working With Java And Xml , http://www.ebooklobby.com/226/Java/Working-

With-Java-And-Xml

73. J. Sifakis: A UNIFIED APPROACH FOR STUDYING THE PROPERTIES OF

TRANSITION SYSTEMS, Theoretical Computer Science 18 (1982) 227-258,

North-Holland Publishing Company

74. Elena Bolshakova, PROGRAMMING PARADIGMS IN COMPUTER SCIENCE

EDUCATION, , International Journal "Information Theories & Applications"

Vol.12, 285-290

Bibliography 157

75. Aspect-Oriented Programming and Security, Rohit Sethi 2007-10-16,

http://www.securityfocus.com/infocus/1895

76. Event Library: an object-oriented library for event-driven design , Volkan Arslan,

Piotr Nienaltowski, Karine Arnout, Swiss Federal Institute of Technology (ETH),

Chair of Software Engineering, 8092 Zurich, Switzerland, http://se.inf.ethz.ch.

