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Abstract
Guided waves hold great potential for applications in the field of ultrasonic nondestructive
testing. Examples of possible applications are the ultrasonic testing and structural health
monitoring of wheelset-axles as used in trains. Depending on the particular type, these
axles can be described as either thick cylindrical rods or thick walled hollow cylinders
with varying thickness.
Wheelset-axles are safety relevant components that have to be inspected on a regular
basis. The use of guided waves would allow a full inspection while accessing only the
front faces of the axle, thus potentially speeding up the inspection procedure. In order to
develop such an inspection technique, however, detailed knowledge of wave propagation
through the axle is required.
Established mesh-based procedures, like the finite element method, could be used to
simulate guided wave propagation in such structures. However, due to the size of the
axle itself and the comparatively fine mesh that is dictated by the wavelengths usually
applied in ultrasonic testing, these mesh-based procedures would be very expensive in
terms of computation times. The multimodal approach seems to be a very promising
alternative that can be expected to provide results significantly faster.
The multimodal method uses the guided wave modes of a corresponding waveguide with
a constant cross-section as basis in which the local sound field at any given position in
a waveguide with varying thickness can be expressed. Thereby the numerical effort is
reduced to solving the one dimensional differential equations that govern the evolution
of the coefficients in the mode spectrum along the waveguide. Once the sound field has
been calculated, a time dependence can easily be included, which allows the simulation
of pulse propagation through the waveguide.
In this thesis, the multimodal approach, as described for the calculation of Lamb-waves
in plates with non-constant thickness, is extended to other types of elastic waveguides
such as cylindrical rods and thick walled hollow cylinders. For the sake of simplicity,
investigations are restricted to axially symmetric wave modes. The results obtained with
the multimodal approach are validated against FEM-simulations. It is shown that the
multimodal method potentially holds a great advantage in terms of computation time
over commercially available software based on the finite element method. Finally, the
multimodal method is evaluated with respect to possible future applications on wheelset-
axles.
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Zusammenfassung
Geführte Wellen besitzen ein großes Potential für Anwendungen im Bereich der zer-
störungsfreien Ultraschallprüfung. Beispiele möglicher Anwendungen sind die Ultra-
schallprüfung oder Zustandsüberwachung von Radsatzwellen, wie sie in Zügen verwendet
werden. Abhängig vom jeweiligen Typ können diese Radsatzwellen als Vollzylinder oder
dickwandige Hohlzylinder beschrieben werden.
Radsatzwellen sind sicherheitsrelevante Bauteile, die regelmäßig geprüft werden müssen.
Die Verwendung geführter Wellen würde ausgehend von den Stirnflächen eine Prüfung
des gesamten Bauteilvolumens ermöglichen. Dieser Umstand kann potentiell verwendet
werden um den Prüfprozess zu beschleunigen. Zur Entwicklung eines entsprechenden
Prüfverfahrens sind jedoch Kenntnisse über die Details der Ausbreitung geführter Wellen
innerhalb der Radsatzwellen notwendig.
Etablierte Verfahren, wie die Finite-Elemente-Methode, können für die Simulation der
Ausbreitung geführter Wellen in derartigen Strukturen verwendet werden. Aufgrund der
Abmessungen der Radsatzwelle, der in der Ultraschallprüfung gebräuchlichen Wellen-
längen und der sich daraus ergebenden notwendigen Größe und Anzahl der Elemente,
wäre dabei allerdings mit einem großen Zeitaufwand zu rechnen. Der Multimodalansatz
scheint eine vielversprechende Alternative darzustellen, welche im Stande ist Simulatio-
nen wesentlich schneller durchzuführen.
Die Multimodalmethode basiert darauf, das lokale Schallfeld in einem Wellenleiter vari-
ierender Dicke in einer Basis von geführten Wellenmoden eines korrespondierenden Wel-
lenleiters konstanter Dicke darzustellen. Der numerische Aufwand reduziert sich dadurch
auf die Lösung der eindimensionalen Differenzialgleichungen, welche die Entwicklung
der Koeffizienten im Modenspektrum entlang des Wellenleiters beschreiben. Nachdem
das Schallfeld bestimmt wurde, kann der Lösung mit geringem Aufwand eine Zeitab-
hängigkeit hinzugefügt werden, was die Simulation der Ausbreitung von Ultraschallpulsen
durch den Wellenleiter ermöglicht.
In der vorliegenden Dissertation wird ein Multimodalansatz zur Bestimmung von Lamb-
Moden in Platten nicht-konstanter Dicke auf andere Arten elastischer Wellenleiter, wie
Vollzylinder und dickwandige Hohlzylinder, erweitert. Zur Vereinfachung der notwendi-
gen Herleitungen wird dabei eine Einschränkung auf axialsymmetrische Moden getrof-
fen. Die Ergebnisse werden durch Vergleich mit FEM-Simulationen validiert. Es wird
gezeigt, dass der Multimodalansatz in Bezug auf die benötigte Rechenzeit potentiell große
Vorteile gegenüber, auf der Finiten-Elemente Methode basierender, kommerziell verfüg-
barer Software bietet. Abschließend wird der Multimodalansatz in Hinblick auf mögliche
zukünftige Anwendungen in Bezug auf Radsatzwellen bewertet.
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Chapter 1

Introduction

1.1 Motivation

Wheelset-axles as used in trains are safety relevant components that have to be inspected
on a regular basis. Ultrasonic inspection of wheelset axles carried out by manual scan-
ning on a non dismantled set of axles usually takes up to two hours [1]. Over the last
ten years, automated inspection systems have been fielded which make extensive use of
phased array probes, thereby improving the inspection quality without further increas-
ing inspection time (see e.g. [2]). However, all of those techniques require to temporarily
decommission the entire train in order to access the axles for a full inspection.

The use of guided waves allows the inspection of large volumes of a structure from a
single sensor position which holds great potential for applications in ultrasonic testing
and structural health monitoring [3–7]. With an inspection technique based on the uti-
lization of guided waves, the entire wheelset-axle could be evaluated accessing only the
front faces. This would eliminate the necessity to access the axle over its full length
and thus holds great potential for significantly improving the efficiency of the inspection
procedure.

In recent years some research on the ultrasonic inspection of wheelset-axles by use of
guided waves has been conducted at the Federal Institute for Materials Research and
Testing in Berlin, Germany [8–10]. While ultrasonic inspection with guided waves is
sensitive to changes within the axle itself, a classification of these changes or defect local-
ization is complicated by the complexity of the measured signals [9,10]. This complexity
arises from the fact that at the frequencies usually used in ultrasonic testing several
guided wave modes will be excited as well as from the generally dispersive nature of
guided waves. While this can partially be compensated by use of mode selective exci-
tation any advanced inspection technique based on guided waves will require a detailed
knowledge of guided wave propagation within the waveguide which has to be obtained by
numerical simulations [7]. These simulations would provide the foundation for a modal
decomposition of measured signals thus improving the reliability of structural health
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monitoring by allowing more advanced algorithms for feature extraction [10].

1.2 Problem

Figure 1.1: General layout of a wheelset-axle as used in trains.

Wheelset-axles can be described as thick walled hollow cylinders with non-constant thick-
ness. The general layout is illustrated in Figure 1.1. As we can see, the axle is in fact
a hollow cylinder with constant inner and piecewise constant outer radius with tran-
sitions between different outer radii being continuous. At these changes in thickness,
a single incident wavemode will couple to other propagating modes [11]. Furthermore,
total reflections of modes will occur at cut-off cross-sections i.e. a thickness at which the
nature of a particular mode switches from propagating (real wave number) to evanescent
(complex wave number) [12]. Because of these properties we can state that guided wave
propagation through a wheelset-axle is not trivial and the measured signal that has to
be evaluated will have a certain complexity even if perfect mode selective excitation was
applied in its initial generation.

Preliminary works on the simulation of guided waves in hollow cylinders showed that
the use of commercially available simulation tools based on the Finite Element Method
(FEM) for these simulations would be extremely expensive in terms of computation
time [8]. This arises from the overall dimension of the axle which is about 2 m in length
and several cm thick in combination with comparatively small wavelengths of a few mm
which dictate a corresponding mesh size. Since FEM can not be considered to be a
suitable method to systematically carry out a large number of numerical simulations of
guided wave propagation in wheelset-axles, an alternative approach had to be found.

A significant improvement in terms of efficiency of numerical simulations was achieved
with the Scaled Boundary Finite Element Method (SBFEM) which was derived by Song
et al. [13–15] and further developed e.g. in the work of Gravenkamp [16]. However, as
of now the SBFEM can not be used to simulate waveguides with varying thickness and
since the outer radius varies continuously in a wheelset-axle, a simple coupling of sev-
eral waveguides of different but constant thickness would be insufficient. A promising
alternative was presented by Pagneux and Maurel in 2006 [17] with the utilization of a
multimodal method to calculate the propagation of Lamb-modes in a plate with sym-
metrically varying thickness. Since this method reduces the numerical effort to solving a
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set of ordinary differential equations along the direction of mode propagation, it can be
expected to be significantly faster than any mesh-based approach like FEM. While the
multimodal method has been expanded and improved (e.g. [18–25]), the focus of this work
was on its use in aeroacoustic applications instead of simulations of wave propagation in
elastic waveguides.

1.3 Contribution of this thesis

The main focus of this thesis will be on adapting the multimodal method as described
in [17] to cylindrical rods and thick walled hollow cylinders with varying thickness in
order to make it applicable to the simulation of ultrasonic guided waves in wheelset-axles.
This includes the extension of the multimodal method itself as well as the calculation of
complex dispersion curves in these structures.

The remainder of this thesis is structured as follows. Chapter 2 contains a brief summary
of the mathematical description of guided waves in plates and cylinders as well as a
discussion of the effect of varying cross-sections, the basic ideas of the multimodal method
and the procedure used to calculate complex dispersion curves.

In Chapter 3 the implementation for plates with varying thickness will be recapitulated
in more detail, highlighting points that require particular attention. Descriptions of
the methods used for solving the differential equations, improving the calculated wave
numbers to the required accuracy and the treatment of cutoffs will be provided. The
implementation is tested by reproducing the simulation results that were published by
Pagneux and Maurel in [17].

The adaptation of the multimodal approach and the calculation of complex wave numbers
to cylindrical rods and thick walled hollow cylinders will be described in Chapter 4, while
simulation results obtained with the multimodal method and their comparison with FEM
simulations will be shown in Chapter 5.

Finally an evaluation of the multimodal method, a discussion of remaining open problems
and an outlook on possible future development will be given in Chapter 6.
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Chapter 2

Theory and Fundamentals

2.1 Guided waves in plates and cylinders

Solving the elastic wave equation for an infinite solid medium (i.e. without applying any
boundary conditions) yields solutions for longitudinal and shear waves (see e.g. [26]).
If the solid medium is restricted to a finite structure, the geometrical constraints that
are imposed on the wave propagation enforce a superposition of vertical and horizontal
movements. As a result, depending on frequency, material parameters and boundary
conditions, complicated displacement fields are formed which propagate along the struc-
ture and are referred to as guided waves [27]. Although the term guided waves is often
associated with thin structures (i.e. the thickness being of the same order of magnitude
as the wavelength) it should be noted that in principle any set of boundary conditions
that does not allow to regard the solid medium as infinite or semi-infinite will impose
guided wave solutions on the elastic wave equation.

While early works on wave propagation in cylindrical bars were conducted by Pochham-
mer [28] and Chree [29], a mathematical description of guided waves in plates, including
their dispersion relation, was provided by Horace Lamb in 1917 [30]. Similar descriptions
of guided waves have been provided for cylindrical rods (e.g. by Zemanek [31]) and for
thick walled hollow cylinders in the works of Gazis [32–34] and Greenspon [35–37]. In
this section, we will briefly recapitulate the most important steps in the description of
guided waves in these structures.

2.1.1 Displacement and stress in plates

For the mathematical description of Lamb-waves, we will essentially follow the path laid
out in [30]. The elastic properties of a linear elastic medium are described by the 4-
dimensional (3 ˆ 3 ˆ 3 ˆ 3) elastic tensor C which links the 3 ˆ 3 stress (σ) and strain
(ε) tensor by the generalized Hooke’s Law [38]

σ “ Cε. (2.1)

7



Using symmetries, C can be written in a simplified 2-dimensional 6 ˆ 6 representation.
For isotropic materials this representation contains only two independent entries and can
be written in terms of the Lamé constants λ and μ as

C “

¨̊
˚̊̊̊
˚̋

λ ` 2μ λ λ 0 0 0
λ λ ` 2μ λ 0 0 0
λ λ λ ` 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

‹̨‹‹‹‹‹‚. (2.2)

The elements of the stress tensor are defined as

σij “ force in i´direction

area with surface normal in j´direction
. (2.3)

For a 3-dimensional Cartesian coordinate system this reads

σ “
¨̋

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

‚̨. (2.4)

The strain tensor is defined as

ε “ 1

2

`
gradp�uq ` pgradp�uqqT˘

(2.5)

where �u “ pux, uy, uzqT denotes the displacement vector. In 3-dimensional Cartesian
coordinates (2.5) yields

ε “
¨̋

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

‚̨“ 1

2

¨̋
2Bxux Byux ` Bxuy Bzux ` Bxuz

Bxuy ` Byux 2Byuy Bzuy ` Byuz
Bxuz ` Bzux Byuz ` Bzuy 2Bzuz

‚̨. (2.6)

Using (2.2) we can derive the following wave equation for the displacement vector

ρB2
t �u “ μ�∇2�u ` pλ ` μq�∇p�∇ ¨ �uq. (2.7)

With the Helmholtz decomposition

�u “ �∇Φ ` �∇ ˆ �H (2.8)

equation (2.7) translates into

B2
tΦ “ λ ` 2μ

ρ
�∇2Φ (2.9)

and
B2
tHj “ μ

ρ

´
�∇2 �H

¯
j

(2.10)

8



with j “ x, y, z.

In order to describe the plate we use a plane strain approximation in z-direction thus
restricting all further calculations to the xy-plane. Furthermore, we assume x as the
direction of wave propagation and position the upper and lower plate surface at y “ h{2 “
h̄ and y “ ´h{2 “ ´h̄ respectively. The remaining components of the displacement
vector follow directly from (2.8)

ux “ BxΦ ` ByHz (2.11)

and
uy “ ByΦ ´ BxHz. (2.12)

As we can see, solving the wave equations for the scalar potential Φ and the z-component
of the vector potential �H will be sufficient. If we assume that the wave is only restricted by
the geometric boundaries in y-direction and can otherwise freely propagate in space and
time, we can set the time- and x-dependence of Φ and Hz to eiωt and eikx respectively1.
The wave equation (2.9) is then simplified to

B2
yΦ “

ˆ
k2 ´ ω2ρ

λ ` 2μ

˙
Φ “ pk2 ´ k2LqΦ “ ᾱ2Φ (2.13)

where kL denotes the wave number corresponding to the longitudinal wave of an infinite
linear elastic medium (see e.g. [26]). The full solution to (2.9) is then described by

Φ “ eikx
`
A1e

ᾱy ` B1e
´ᾱy

˘
eiωt. (2.14)

A similar calculation yields

Hz “ eikx
´
A2e

β̄y ` B2e
´β̄y

¯
eiωt. (2.15)

with
β̄2 “ k2 ´ k2T “ k2 ´ ω2ρ{μ (2.16)

where kT denotes the wave number corresponding to the transverse wave of an infinite
linear elastic medium (see e.g. [26]). Using (2.14) and (2.15) in (2.11) and (2.12), we
obtain

ux “ eikx
´
ik

`
A1e

ᾱy ` B1e
´ᾱy

˘ ` β̄
´
A2e

β̄y ´ B2e
´β̄y

¯¯
eiωt (2.17)

and
uy “ eikx

´
ᾱ

`
A1e

ᾱy ´ B1e
´ᾱy

˘ ` ik
´
A2e

β̄y ` B2e
´β̄y

¯¯
eiωt. (2.18)

We now follow the procedure given in [30] and divide the solutions into two distinct
cases. The first case are solutions where the displacement ux is symmetric with respect
to y “ 0. These solutions will be referred to as symmetric Lamb-modes or S-modes.
The second case are solutions where the displacement ux is antisymmetric with respect
to y “ 0. These solutions will be referred to as antisymmetric Lamb-modes or A-modes.

9



Figure 2.1: Illustration of displacements in a) symmetric Lamb-modes (S-modes) and b)
antisymmetric Lamb-modes (A-modes).

Both cases are illustrated in Figure 2.1 with the solid black lines marking the plate
surfaces, the doted red lines illustrating their deformation, the vertical green arrows
indicating displacement in y-direction and the horizontal green arrows indicating dis-
placement in x-direction.

For a symmetric displacement field ux we find A1 “ B1 “ A and A2 “ ´B2 “ B and
thus for S-modes

ux “ `
ikA coshpᾱyq ` β̄B coshpβ̄yq˘

eipkx`ωtq (2.19)

and
uy “ `

ᾱA sinhpᾱyq ´ ikB sinhpβ̄yq˘
eipkx`ωtq. (2.20)

Using Hooke’s Law (2.1) and (2.6), we find the following expressions for those elements
of the stress tensor (2.4) which remain under a plane strain approximation

σxx “ μ
`´pk2 ` 2ᾱ2 ´ β̄2qA coshpᾱyq ` 2ikβ̄B coshpβ̄yq˘

eipkx`ωtq (2.21)

σxy “ μ
`
2ikᾱA sinhpᾱyq ` pk2 ` β̄2qB sinhpβ̄yq˘

eipkx`ωtq (2.22)

σyy “ μ
`pk2 ` β̄2qA coshpᾱyq ´ 2ikβ̄B coshpβ̄yq˘

eipkx`ωtq (2.23)

where σxy and σyy are stresses on surfaces with surface normal in y-direction. In order
to determine the yet unknown coefficients A and B we will use the boundary condition
of traction free surfaces meaning that (2.22) and (2.23) have to vanish at y “ h̄ and
y “ ´h̄. The resulting system of equations for A and B can be written in the vectorized
form ˆ

2ikᾱ sinhpᾱh̄q pk2 ` β̄2q sinhpβ̄h̄q
pk2 ` β̄2q coshpᾱh̄q 2ikβ̄ coshpβ̄h̄q

˙ ˆ
A
B

˙
“ 0 (2.24)

which has non-trivial solutions if the determinant of the matrix is zero. As condition for
a vanishing determinant of the matrix in (2.24) we find

tanhpβ̄h̄q
tanhpᾱh̄q “ 4k2ᾱβ̄

pk2 ` β̄2q2 (2.25)

1It should be noted that the combination of eiωt and eikx actually constitutes left going modes while
right going modes would be described either by e´iωt and eikx or eiωt and e´ikx.
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which is of course the dispersion relation given in [30] for symmetric Lamb-modes. If we
remember the definitions of ᾱ and β̄ that were given in (2.13) and (2.16), it is clear to see
that (2.25) can indeed be seen as a function kpωq. Except for a normalization factor, the
expressions (2.19)-(2.20) and (2.21)-(2.23) are fully determined for each pair of frequency
ω and wave number k that satisfies the dispersion relation (2.25).

For an antisymmetric displacement field ux we find A1 “ ´B1 “ A and A2 “ B2 “ B.
The remaining steps are identical to those for S-modes. The expressions for displacement
and stress components of A-modes are

ux “ `
ikA sinhpᾱyq ` β̄B sinhpβ̄yq˘

eipkx`ωtq (2.26)

uy “ `
ᾱA coshpᾱyq ´ ikB coshpβ̄yq˘

eipkx`ωtq. (2.27)

σxx “ μ
`´pk2 ` 2ᾱ2 ´ β̄2qA sinhpᾱyq ` 2ikβ̄B sinhpβ̄yq˘

eipkx`ωtq (2.28)

σxy “ μ
`
2ikᾱA coshpᾱyq ` pk2 ` β̄2qB coshpβ̄yq˘

eipkx`ωtq (2.29)

and
σyy “ μ

`pk2 ` β̄2qA sinhpᾱyq ´ 2ikβ̄B sinhpβ̄yq˘
eipkx`ωtq (2.30)

with the dispersion relation

tanhpβ̄h̄q
tanhpᾱh̄q “ pk2 ` β̄2q2

4k2ᾱβ̄
. (2.31)

2.1.2 Displacement and stress in cylindrical rods

The mathematical description of guided wave modes essentially follows the outline of
those for Lamb-waves. A detailed derivation can be found e.g. in [31] and shall not be
repeated in full length here. Since the aim of this work is only to apply the multimodal
approach to axially symmetric modes in cylindrical structures, we will restrict the discus-
sion of displacement and stress in cylindrical rods to those thus limiting the description
to the rz-plane.

For cylindrical geometry, the displacement vector is �u “ pur, uϕ, uzqT. The elastic tensor
for isotropic materials (2.2) and the definitions of stress (2.3) and strain tensor (2.5) as
well as the Helmholtz decomposition of �u (2.8) and the wave equations (2.7), (2.9) and
(2.10) remain valid but the nabla operator �∇ and gradient of a vector field have to be
expressed in cylindrical coordinates. Stress and strain tensor now take the form (compare
e.g. [32, 33]2)

σ “
¨̋

σrr σrϕ σrz
σrϕ σϕϕ σϕz
σrz σϕz σzz

‚̨ (2.32)

2Note that in [32] εϕϕ is in fact given as pBruϕ ` urq{r instead of pBϕuϕ ` urq{r. The derivation of
gradp�uq in cylindrical coordinates performed during the course of this research project leads to the latter
expression which is used in this thesis. Expressions for other elements of the strain tensor given in [32]
and [33] are in accordance with the results presented here.
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and

ε “
¨̊
˝ Brur Bϕur

2r ` r
2Br

`uϕ

r

˘ Bzur`Bruz
2Bϕur

2r ` r
2Br

`uϕ

r

˘ Bϕuϕ`ur

r
Bzuϕ

2 ` Bϕuz

2rBzur`Bruz
2

Bzuϕ

2 ` Bϕuz

2r Bzuz
‹̨‚. (2.33)

In circumferential direction the solutions of (2.9) and (2.10) will in general resemble
standing waves cospnϕq and sinpnϕq where n denotes the circumferential order of the
respective mode. Assuming axially symmetric solutions (n=0) and free propagation in
time and in z-direction, the wave equation for the Helmholtz potentials (2.9) and (2.10)
take the form

1

r
BrprBrΦq “ α2Φ (2.34)

1

r
BrprBrHrq ´ Hr

r2
“ β2Hr (2.35)

1

r
BrprBrHϕq ´ Hϕ

r2
“ β2Hϕ (2.36)

1

r
BrprBrHzq “ β2Hz (2.37)

with

α2 “ ´ᾱ2 “ k2L ´ k2 “ ω2ρ

λ ` 2μ
´ k2 (2.38)

β2 “ ´β̄2 “ k2T ´ k2 “ ω2ρ

μ
´ k2. (2.39)

As we can see, (2.34) and (2.37) can be rewritten as Bessel differential equations of 0th
order while (2.36) and (2.37) correspond to Bessel differential equations of 1st order.
In general, the solution to a Bessel differential equation of nth order contains Bessel
functions of first and second kind of nth order, however, in order to avoid singularities at
r “ 0, the contributions of Bessel functions of second kind have to be discarded3 which
leaves

Φ “ A1J0pαrqeipkz`ωtq (2.40)

Hr “ A2J1pβrqeipkz`ωtq (2.41)

Hϕ “ A3J1pβrqeipkz`ωtq (2.42)

Hz “ A4J0pβrqeipkz`ωtq (2.43)

as solutions to (2.34)-(2.37). Using (2.8), we find that for the case of axially symmetric
waves in a cylindrical geometry the displacement fields are

ur “ BrΦ ´ BzHϕ (2.44)

uϕ “ BzHr ´ BrHz (2.45)
3or eliminated in a mathematically clean way by choosing appropriate boundary conditions at r “ 0
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uz “ BzΦ ` BrHϕ ` Hϕ

r
. (2.46)

As we can see, the displacement vector can be split into two independent components.
The first one contains only the displacement in circumferential direction and represents
the torsional guided waves (T -modes). The second one contains displacement fields in r-
and z-direction and represents the axially symmetric longitudinal waves (L-modes) which
correspond to the plane strain assumption we used in the derivation of Lamb-modes. For
modes of higher order in circumferential direction, longitudinal and torsional movement
would no longer be decoupled. The resulting modes are usually referred to as flexural
modes (F -modes). Since the adaptation of the multimodal method will be restricted
to L-modes, only (2.40) and (2.42) have to be taken into consideration from this point
onward. If we set A1 “ A and A3 “ B, the relevant elements of the displacement vector
�u and stress tensor σ are

ur “ ´ pαAJ1pαrq ` ikBJ1pβrqq eipkz`ωtq (2.47)

uz “ pikAJ0pαrq ` βBJ0pβrqq eipkz`ωtq (2.48)

σrr “ μ

ˆ
A

„
pk2 ´ β2qJ0pαrq ` 2α

r
J1pαrq

j
´ 2ikB

„
βJ0pβrq ´ 1

r
J1pβrq

j˙
eipkz`ωtq

(2.49)
σrz “ μ

`´2ikαAJ1pαrq ` pk2 ´ β2qBJ1pβrq˘
eipkz`ωtq (2.50)

σzz “ μ
`´pk2 ´ 2α2 ` β2qAJ0pαrq ` 2ikβBJ0pβrq˘

eipkz`ωtq (2.51)

σϕϕ “ μ

ˆ
A

„
pk2 ` 2α2 ´ β2qJ0pαrq ´ 2α

r
J1pαrq

j
´ 2ik

r
BJ1pβrq

˙
eipkz`ωtq. (2.52)

The dispersion relation which determines (2.47)-(2.51) up to a normalization factor is
derived from the boundary condition of a traction free lateral surface (i.e. setting (2.49)
and (2.50) to zero at the outer radius r “ R) and reads (compare e.g. [31])

pk2´β2q2J0pαRqJ1pβRq`4k2αβJ1pαRqJ0pβRq´2α

R
pk2`β2qJ1pαRqJ1pβRq “ 0. (2.53)

2.1.3 Displacement and stress in hollow cylinders

A detailed mathematical derivation of guided waves in thick walled hollow cylinders has
been covered e.g. in [32,33,36]. As in the previous section we will restrict the discussion
to the solutions of the wave equation that are relevant for this thesis (i.e. displacement
and stress fields of L-modes).

The expressions for σ and ε given in (2.32) and (2.33) remain valid for hollow cylinders
as do the radial equations for the Helmholtz potentials (2.34)-(2.37) if we assume axial
symmetry and free propagation in time and in z-direction. Furthermore, the Helmholtz
decomposition (2.8) still leads to (2.44)-(2.46) meaning that the decoupling of axially
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symmetric solutions into L- and T -modes is still in effect4. Since the scope of this work
is restricted to L-modes, only (2.34) and (2.36) have to be evaluated which yields

Φ “ pAJ0pαrq ` CY0pαrqq eipkz`ωtq (2.54)

and
Hϕ “ pBJ1pβrq ` DY1pβrqq eipkz`ωtq (2.55)

with Jn and Yn being Bessel functions of first and second kind. This leads to the dis-
placement fields

ur “ ´ pαpAJ1pαrq ` CY1pαrqq ` ikpBJ1pβrq ` DY1pβrqqq eipkz`ωtq (2.56)

uz “ pikpAJ0pαrq ` CY0pαrqq ` βpBJ0pβrq ` DY0pβrqqq eipkz`ωtq (2.57)

and subsequently to the stress components

σrr “ μ

„
pk2 ´ β2qpAJ0pαrq ` CY0pαrqq ` 2α

r
pAJ1pαrq ` CY1pαrqq

´2ikβpBJ0pβrq ` DY0pβrqq ` 2ik

r
pBJ1pβrq ` DY1pβrqq

j
eipkz`ωtq

(2.58)

σrz “ μ
“´2ikαpAJ1pαrq ` CY1pαrqq ` pk2 ´ β2qpBJ1pβrq ` DY1pβrqq‰

eipkz`ωtq
(2.59)

σzz “ μ
“´pk2 ´ 2α2 ` β2qpAJ0pαrq ` CY0pαrqq ` 2ikβpBJ0pβrq ` DY0pβrqq‰

eipkz`ωtq
(2.60)

σϕϕ “ μ

„
pk2 ` 2α2 ´ β2qpAJ0pαrq ` CY0pαrqq ´ 2α

r
pAJ1pαrq ` CY1pαrqq

´2ik

r
pBJ1pβrq ` DY1pβrqq

j
eipkz`ωtq

(2.61)

In order to determine the expressions (2.56)-(2.60) up to a normalization factor, we use
the boundary condition of traction free surfaces (i.e. equating (2.58) and (2.59) to zero
at the inner and outer radius r “ RI and r “ RO). The dispersion relation follows from

det

¨̊
˚̋ D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

‹̨‹‚“ 0 (2.62)

4Which is not surprising given that a cylindrical rod can be viewed as the special case of a hollow
cylinder with inner radius RI “ 0.
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where the matrix elements are

D11 “ pk2 ´ β2qJ0pαROq ` 2α

RO
J1pαROq (2.63)

D12 “ ´2ik

ˆ
βJ0pβROq ´ J1pβROq

RO

˙
(2.64)

D13 “ pk2 ´ β2qY0pαROq ` 2α

RO
Y1pαROq (2.65)

D14 “ ´2ik

ˆ
βY0pβROq ´ Y1pβROq

RO

˙
(2.66)

D21 “ pk2 ´ β2qJ0pαRIq ` 2α

RI
J1pαRIq (2.67)

D22 “ ´2ik

ˆ
βJ0pβRIq ´ J1pβRIq

RI

˙
(2.68)

D23 “ pk2 ´ β2qY0pαRIq ` 2α

RI
Y1pαRIq (2.69)

D24 “ ´2ik

ˆ
βY0pβRIq ´ Y1pβRIq

RI

˙
(2.70)

D31 “ ´2ikαJ0pαROq (2.71)

D32 “ pk2 ´ β2qJ1pβROq (2.72)
D33 “ ´2ikαY0pαROq (2.73)

D34 “ pk2 ´ β2qY1pβROq (2.74)
D41 “ ´2ikαJ0pαRIq (2.75)

D42 “ pk2 ´ β2qJ1pβRIq (2.76)
D43 “ ´2ikαY0pαRIq (2.77)

D44 “ pk2 ´ β2qY1pβRIq (2.78)

A closed expression of this dispersion relation would be long and complicated, however,
since such an expression can be useful for an efficient implementation5, it will be provided
in Appendix A.

2.2 The effect of a varying cross-section

Since the dispersive behaviour of guided waves depends on the frequency as well as
the thickness of the waveguide, changes of the cross-section will result in corresponding
changes of wave numbers for excited modes and might lead to changes in the number of

5Calculating the determinant of a matrix that depends on a vector of different frequencies in MAT-
LAB requires to switch through the individual frequencies in a for-loop which is expensive in terms of
computation time. While using the pre-implemented det-function is more efficient for single frequencies,
a vectorized implementation of a closed expression for the dispersion relation is superior if a large number
of different frequencies has to be considered.

15



potentially propagating wave modes. At a point where the cross-section of the waveguide
changes, mode coupling will occur that allows energy transfer between different guided
wave modes thus resulting in possible attenuation of individual propagating modes as
well as the appearance of modes within the mode spectrum that had not been excited
initially [11]. In addition there will be coupling effects between forward and backward
propagating versions of guided wave modes which results in some of the incident energy
being reflected [11, 12]. If for a particular cross-section the combination of frequency
and thickness coincides with a cut-off in the dispersion curves (i.e. a point at which the
wave number of a mode switches from complex to real values), an incident wave that
loses its ability to propagate behind that cross-section (due to the fact that it would
become evanescent) will be subject to total reflection. A mathematical description of
this phenomena can be found in [12] while [39] confirms this behaviour in experimental
results for the case of a plate with linearly varying thickness. The results presented
in [39] also show that at cut-offs where the wave numbers of two different modes coincide
(referred to a irregular cut-offs in [12], strong mode conversion might occur as well.

2.3 Concept of the multimodal method

In order to solve the problem of waveguides with varying cross-section, modal meth-
ods have already been suggested several decades ago (see e.g. [40] or [41]). A detailed
theoretical description of a modal decomposition approach and its application to sev-
eral aeroacoustic problems have been provided during the 90s by Pagneux et al. in [42]
and [43]. An extended and modified version of this method was adapted to the descrip-
tion of Lamb-waves in plates with varying thickness in 2006 as multimodal method [17].
While there is no pressing need to repeat a detailed derivation of the entire method here,
a descriptive outline of the general idea will be provided.

The basic concept behind the multimodal method is illustrated in Figure 2.2 on the ex-
ample of a plate where thickness increases in a single step.
We assume that only the first antisymmetric mode is propagating before the step. Be-
hind the step we can expect most of the energy to keep propagating within the initial
mode albeit with a different frequency. However, due to the asymmetric nature of the
change in thickness, some energy might be coupled into the first symmetric mode. In
addition, the number of modes that can propagate might increase so that higher order
modes may be excited as well. To avoid discontinuities within the displacement field at
the position of the step, local contributions of evanescent (i.e. non-propagating) modes
have to be taken into account6. If we extend the situation illustrated in Figure 2.2 to
a plate with continuously varying thickness, it is straightforward to conclude that the
mode spectrum also has to change continuously in terms of which modes are excited as
well as regarding their respective relative weight within the spectrum.

6The relevance of evanescent modes in mode expansions for contributions to the near field was also
noted in the investigation of wave transfer through cylindrical bars of constant thickness in [44].
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Figure 2.2: Multimodal approach at a transition between different cross-sections.

In a nutshell, the idea of the multimodal approach as described in [17] is to express
the local displacement field within the waveguide in a basis of guided wave modes of
the corresponding waveguide with constant thickness at any given point along the direc-
tion of wave propagation. While similar mode expansions have been successfully applied
in the investigation of wave propagation through waveguides of constant cross-section
(e.g. [44, 45]), the application to waveguides with varying cross-section is more compli-
cated due to the fact that options for mode coupling and reflection have to be included
into the model. With the continuous variation of cross-section being translated into a
continuous variation of the coefficients describing relative weights within the expansion
into the modal basis, the numerical effort of calculating the displacement field along the
waveguide is now reduced to solving the differential equations which govern the evolution
of these coefficients in wave propagation direction. A more detailed mathematical de-
scription of this method will be provided on the example of plates with varying thickness
in Chapter 3.

2.4 Determination of complex wave numbers

As mentioned before, contributions of evanescent waves have to be considered in the
multimodal approach in order to obtain accurate results. This means that at a given
frequency real and complex wave numbers will have to be extracted from the dispersion
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relations (2.25), (2.31), (2.53) and (2.62). The following three paragraphs contain a brief
overview and discussion of various existing methods for the computation of wave numbers
which can be found in similar form in [46].

Calculations of dispersion curves by use of root finding algorithms have been carried out
e.g. by Zemanek for cylindrical rods [31] and by Gazis for hollow cylinders [34]. The
approach of using a root finding algorithm on a closed analytical expression of the dis-
persion relation is still in use today, for example in the commercially available software
Disperse [47] or the free MATLAB script PCDisp [48], both of which use the global ma-
trix method as described e.g. in [49] to extend their applicability to layered structures.
However, this method can be very expensive in terms of computation time, especially for
the calculation of complex wave numbers.

Over the last two decades prior to this thesis, several numerical methods for the calcu-
lation of wave numbers have been suggested as alternatives to a direct root search. The
older ones of these methods are based on the finite element method (FEM) (see e.g. [50])
and rely on discretizing only a representative part of the waveguide [51,52]. A more ad-
vanced approach is the the so called semi-analytical finite element method (SAFE) which
is based on the idea of descretizing the cross-section with finite elements while describing
the solution in the direction of wave propagation analytically. This method has been
implemented for various problems e.g. the investigation of wave propagation in rods and
rails [53], pre-stressed pipes [54], damped cylinders [55], damped waveguides of arbitrary
cross-section [56] or leaky waves in embedded waveguides of arbitrary cross-section [57].
The scaled boundary finite element method (SBFEM) shows some similarities with the
SAFE approach in the case of three dimensional waveguides with arbitrary cross-section
but utilizes different solution procedures in order to enhance efficiency. In contrast to
FEM and SAFE, the SBFEM makes use of higher order spectral elements to discretize
the cross-section [58] and yields a significant advantage in terms of computational effi-
ciency for plate structures [59] and axisymmetric waveguides [60,61]. Other methods that
have been suggested for the calculation of wave numbers in a plate at a given frequency
but, to the best of the author’s knowledge, haven’t seen wide use in applications so far
include a spectral decomposition into a basis of orthogonal functions that transforms
the wave equations for components of the displacement vector into a regular eigenvalue
problem [62], a spectral method that represents differential operators in the equation of
motion by Chebyshev differentiation matrices to transform the equations of motion into
a generalized eigenvalue problem [63] or a finite product approximation [64].

This work adopts the spectral decomposition method that has been suggested in [62] for
numerical calculations of dispersion curves of symmetric and antisymmetric Lamb-modes
in isotropic homogeneous plates. The general idea of this method is to express the com-
ponents of the displacement vector ~u in an orthogonal basis formed by eigenfunctions of
the Laplace operator on the waveguide’s cross-section. If the equations of motion for the
different displacement components are projected onto that basis, the problem of finding
the wave numbers of guided wave modes (i.e. the roots of the dispersion relation) at a
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given frequency can be transformed into an eigenvalue problem that can be solved effi-
ciently. Although the spectral decomposition method is less accurate and more limited
in its applicability than advanced semi-analytical approaches like SAFE or SBFEM, it
can be used to obtain complex dispersion curves relatively fast and is easy to implement.
Furthermore, the fact that wave numbers are calculated and sorted at a single given
frequency eliminates the necessity to start at a sufficiently low frequency and use mode
tracking while advancing to the frequency range of interest. In contrast to a direct root
search there is no risk of missing a mode and no errors can occur at frequencies where
the wave numbers of two different modes are very similar. For these features, the spec-
tral decomposition method was considered to be an attractive alternative to established
methods for the problems that had to be covered in this thesis.

The method has been successfully extended to the use on L-modes in isotropic homo-
geneous cylindrical rods and hollow cylinders in a previous publication [46]. While the
most important steps of these adaptations will be repeated in Chapter 4, this section
will cover the basic procedure illustrated on the example of plates (compare to [62] for a
more detailed description).

Starting point for the spectral decomposition method is the wave equation for the dis-
placement vector �u as given in (2.7). Under the assumption of plane strain and free
propagation in x-direction (2.7) leads to

pk2 ´ k2Lqux ´ ik
γ ´ 1

γ
Byuy ´ B2

yux

γ
“ 0 (2.79)

and
pk2 ´ k2T quy ´ ikpγ ´ 1qByux ´ γByuy “ 0 (2.80)

as equations of motion for the displacement fields in x- and y-direction where kL and
kT are the longitudinal and transversal wave number respectively and γ “ pλ ` 2μq{μ is
a function of the Lamé constants. The boundary conditions of traction free surfaces at
y “ h{2 “ h̄ and y “ ´h{2 “ ´h̄ take the form

Byuxp˘h̄q “ ´ikuyp˘h̄q (2.81)

and
Byuyp˘h̄q “ ´ik

γ ´ 2

γ
uxp˘h̄q. (2.82)

Solving the Helmholtz equation on the cross-section (i.e. in y-direction) under bound-
ary conditions that force symmetric or antisymmetric solutions yields two different sets
of functions both of which form a complete orthogonal basis to describe even or odd
functions respectively. The normalized functions are

ψ1 “
c

1

h̄
cospφnyq and ψną1 “

c
2

h̄
cospφnyq (2.83)
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χn “
c

2

h̄
sinpθnyq (2.84)

with φn “ pn ´ 1qπ{h̄ and θn “ pn ´ 1{2qπ{h̄. The normalization was chosen to fulfill
xψn |ψmy “ δnm and xχn |χmy “ δnm where the scalar product, presented in bra-ket
notation, is defined as xfpyq |gpyqy “ şh̄

0 fpyqgpyqdy and δnm denotes Kronecker’s delta.
Since A- and S-modes are independent solutions of the wave equation for a plate under
plane strain approximation, they have to be treated as two distinct cases for the spectral
decomposition.

2.4.1 Spectral decomposition for symmetric Lamb-waves

After reviewing (2.19) and (2.20), the displacement fields for S-modes are expressed in
the bases (2.83) and (2.84) as

ux “
ÿ
n

V S
n ψnpyq (2.85)

and
uy “

ÿ
n

US
n χnpyq. (2.86)

Now we project (2.79) onto ψn and (2.80) onto χn. If the boundary conditions expressed
in (2.81) and (2.82) are taken into account, these projections yield the system of equations

k2�V S ` kAS �US ` BS �V S “ 0 (2.87)

and
k2�US ` kCS �V S ` DS �US “ 0 (2.88)

where �V S and �US are the vectors of coefficients in the expansion (2.85) and (2.86)
respectively and AS , BS , CS and DS are matrices which can be expressed by

AS
nm “ 2ip´1qn`m

γh̄

ˆ
φ2
n ` pγ ´ 2qθ2m
θ2m ´ φ2

n

˙
(2.89)

BS
nm “

ˆ
φ2
n

γ
´ k2L

˙
δnm (2.90)

CS
nm “ ´γAS

mn (2.91)

DS
nm “ `

γθ2n ´ k2T
˘
δnm. (2.92)
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2.4.2 Spectral decomposition for antisymmetric Lamb-waves

For A-modes, the displacement fields ux and uy are expressed as

ux “
ÿ
n

V A
n χnpyq (2.93)

and
uy “

ÿ
n

UA
n ψnpyq (2.94)

and we project (2.79) onto χn and (2.80) onto ψn. Once more we obtain systems of
equations for the coefficients UA

n and V A
n which read

k2�V A ` kAA�UA ` BA�V A “ 0 (2.95)

and
k2�UA ` kCA�V A ` DA�UA “ 0. (2.96)

The matrices AA, BA, CA and DA can be expressed by

AA
nm “ 2ip´1qn`m

γh̄

ˆpγ ´ 2qφ2
m ` θ2n

φ2
m ´ θ2n

˙
(2.97)

BA
nm “

ˆ
θ2n
γ

´ k2L

˙
δnm (2.98)

CA
nm “ ´γAA

mn (2.99)

DA
nm “ `

γφ2
n ´ k2T

˘
δnm. (2.100)

2.4.3 Computing the dispersion curves

If we omit the superscripts that distinguish between A- and S-modes, the systems of
equations for the coefficients of the spectral decomposition are

k2�V ` kA�U ` B�V “ 0 (2.101)

and
k2�U ` kC�V ` D�U “ 0. (2.102)

If (2.101) is rearranged to isolate �V and subsequently inserted into (2.102), we obtain

K2 �X ` KpB ´ AC ` C´1DCq �X ` BC´1DC �X “ 0 (2.103)

with K “ k2 and �X “ C´1�UC. If we define

K �X “ �Y (2.104)

we can rewrite (2.103) into an expression that is linear in K

K �Y ` O �Y ` P �X “ 0 (2.105)
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with O “ B ´ AC ` C´1DC and P “ BC´1DC. Finally we combine (2.104) and
(2.105) into ˆ

0 �

´P ´O

˙ ˜
�X
�Y

¸
“ K

˜
�X
�Y

¸
. (2.106)

The real and complex wave numbers at a given frequency can now be calculated by tak-
ing the square roots of the eigenvalues of the 2N ˆ 2N matrix given in (2.106). Real
positive square roots and complex square roots with positive imaginary part are the ones
that carry physical meaning. Wave numbers of A- and S-modes are calculated sepa-
rately and can directly be assigned to their corresponding modes if real results are sorted
in descending order and placed before complex results ordered by ascending absolute
value with positive real parts placed before negative real parts in case of identical abso-
lute values. If the spectral decomposition is truncated after N elements, we obtain 2N
eigenvalues. While Pagneux and Maurel stated that “...the k spectrum found with the
spectral method coincides with the exact one (ke) for the N or so first values...” [62], the
results observed in the course of this work suggest the use of the first N ´ 1 eigenvalues
(see [46]). Repeating the calculation of wave numbers for a sufficiently large number
of different frequencies will map out the complex dispersion curves which are shown in
Figure 2.3.

Figure 2.3: Complex dispersion curves of a) symmetric and b) antisymmetric Lamb-
modes in an isotropic homogeneous plate.

In Figure 2.4, only the real wave numbers are plotted over the frequency thickness prod-
uct fh for an isotropic homogeneous plate.
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Figure 2.4: Real dispersion curves of symmetric and antisymmetric Lamb-modes in an
isotropic homogeneous plate as plot of phase velocities over frequency thickness product.
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Chapter 3

Implementation for plates

3.1 Plates with symmetrically and asymmetrically varying
thickness

In this section we will largely follow the description of the multimodal method as given
in [17] for Lamb-waves in plates with symmetrically varying thickness while making
the necessary generalizations to cover plates with asymmetrically varying thickness as
well. While not strictly required for the subsequent adaptation to cylindrical geometries,
this extension to plates with asymmetrically varying thickness provides valuable insight
into the handling of different families of guided wave modes. The starting point for
the multimodal method is the general equation of motion for linear elastodynamics in
frequency domain written in the form

´ ρω2�u “ divpσq. (3.1)

For Cartesian coordinates the divergence of the stress tensor σ takes the form

divpσq “
¨̋ Bxσxx ` Byσxy ` Bzσxz

Bxσxy ` Byσyy ` Bzσyz
Bxσxz ` Byσyz ` Bzσzz

‚̨. (3.2)

Under plane strain approximation, (3.1) is reduced to a two dimensional problem. Using
(2.1), (2.2) and (2.6), the remaining components of the stress tensor are expressed in
terms of the relevant displacement fields ux and uy and the Lamé constants by

σxx “ λByuy ` pλ ` 2μqBxux (3.3)

σxy “ μpByux ` Bxuyq (3.4)

σyy “ pλ ` 2μqByuy ` λBxux (3.5)

which can be rewritten as
Bxux “ f1

λ
´ f1Byuy, (3.6)
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Bxuy “ 1

μ
σxy ´ Byux (3.7)

and
σyy “ f1σxx ` f2Byuy (3.8)

with f1 “ λ{pλ ` 2μq and f2 “ 4μpλ ` μq{pλ ` 2μq. Furthermore, (3.1) and (3.2) lead to

Bxσxx “ ´ρω2ux ´ Byσxy (3.9)

and
Bxσxy “ ´ρω2uy ´ f1Bσxx ´ f2B2

yuy. (3.10)

Since σyy can be expressed in terms of σxx and uy, only four independent stress and
displacement fields remain. In accordance with [17] and [65] these stress and displace-
ment fields are expressed in a 4-dimensional vector which can be split into the two
2-dimensional vectors �X “ pux, σxyqT and �Y “ p´σxx, uyqT. Now (3.6),(3.7),(3.9) and
(3.10) can be written in the form of a vector equation

Bx
˜

�X
�Y

¸
“

ˆ
0 F
G 0

˙ ˜
�X
�Y

¸
(3.11)

where the matrix operators F and G are given as

F “
ˆ ´ f1

λ ´f1By
f1By ´ρω2 ´ f2B2

y

˙
(3.12)

and

G “
ˆ

ρω2 By
´By 1

μ

˙
. (3.13)

The eigenvectors of the eigenvalue problem corresponding to (3.11)

ikn

˜
�Xn

�Yn

¸
“

ˆ
0 F
G 0

˙ ˜
�Xn

�Yn

¸
(3.14)

represent Lamb-modes as described in Chapter 2 with kn being the wave numbers cor-
responding to the A- or S-mode of order n. However, compared to (2.19)-(2.22) and
(2.26)-(2.29), the expressions given for stress and displacement fields of symmetric and
antisymmetric Lamb-modes given in [17] slightly differ in the distribution of factors ᾱ
and β̄. While no explanation for this deviation is provided in [17] itself, the reason is that
working with the description of Lamb-modes that follows directly from the calculations
done in [30] would give rise to artifacts whenever ᾱ or β̄ approaches zero. To avoid this,
the Helmholtz potentials Φ and Hz (compare (2.14) and (2.15)) are renormalized in a
way to ensure that they do not vanish for ᾱ “ 0 or β̄ “ 0 which leads to

Φ “ A coshpᾱyqeikx (3.15)
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and

Hz “ B
sinhpβ̄yq

β̄
eikx (3.16)

for symmetric Lamb-modes and to

Φ “ A
sinhpᾱyq

ᾱ
eikx (3.17)

and
Hz “ B coshpβ̄yqeikx (3.18)

for antisymmetric Lamb-modes. The time dependence eiωt has been omitted and will be
neglected for the remainder of this section.

In Chapter 2 the plate surfaces were set at y “ h{2 and y “ ´h{2. If the thickness of
the plate varies in x-direction (i.e. direction of wave propagation), the upper and lower
surface have to be described as functions hU pxq and hLpxq. If hU pxq ‰ ´hLpxq a local
shift in y-direction has to be applied in order to preserve symmetric and antisymmetric
properties in the description of Lamb-waves. The shift is given as y Ñ py ´ h̃q with
h̃ “ phU ` hLq{2 which translates the upper and lower bonds of y into hU Ñ h̄ and
hL Ñ ´h̄ with h̄ “ phU ´ hLq{2.
The eigenvectors from (3.14) form a basis in which the local stress and displacement
fields within the plate can be expressed with �Xn and �Ym fulfilling the biorthogonality
relation [17] A

�Xn

ˇ̌̌
�Ym

E
“ Jnδnm (3.19)

where the scalar product corresponds to an integration in y-direction from hL to hU
1 and

Jnpxq is a function that will later be used in the normalization of the coupling matrices.
In the final step the normalization has to be chosen to fully determine the basis p �Xn, �YnqT.
Pagneux and Maurel suggested to construct the normalization in a way that neither �Xn

nor �Yn vanishes for kn “ 0 (i.e. that �Xn and �Yn remain a valid orthogonal basis if
kn “ 0) [17]. As a result a renormalization factor Zc,n is introduced which corresponds
to the diagonal elements of the characteristic impedance matrix Zc [17]. The eigenvalue
problem (3.14) is modified to

ikn

˜
�Xn

Zc,n
�Yn

¸
“

ˆ
0 F
G 0

˙ ˜
�Xn

Zc,n
�Yn

¸
. (3.20)

The Lamb-mode eigenvectors take the form

�Xn “ pk2n ` β̄2
nqiknZc,n

ˆ
coshpᾱnpy ´ h̃qq

2ᾱnμ sinhpᾱnpy ´ h̃qq
˙

`
˜

coshpβ̄npy ´ h̃qq
pk2n ` β̄2

nq μ
β̄n

sinhpβ̄npy ´ h̃qq
¸

(3.21)
1similar to the description provided in Chapter 2

27



�Yn “ pk2n ` β̄2
nq

ˆ pk2n ` 2ᾱ2
n ´ β̄2

nqμ coshpᾱnpy ´ h̃qq
ᾱn sinhpᾱnpy ´ h̃qq

˙
´ ikn

Zc,n

˜
2μ coshpβ̄npy ´ h̃qq
1
β̄n

sinhpβ̄npy ´ h̃qq
¸

(3.22)
with

Zc,n “ i sinhpβ̄nh̄q
2knᾱnβ̄n sinhpᾱnh̄q “ 2ikn coshpβ̄nh̄q

pk2n ` β̄2
nq2 coshpᾱnh̄q (3.23)

for S-modes and

�Xn “ pk2n ` β̄2
nqiknZc,n

˜
1
ᾱn

sinhpᾱnpy ´ h̃qq
2μ coshpᾱnpy ´ h̃qq

¸
`

ˆ
β̄n sinhpβ̄npy ´ h̃qq

pk2n ` β̄2
nqμ coshpβ̄npy ´ h̃qq

˙
(3.24)

�Yn “ pk2n`β̄2
nq

˜
pk2n ` 2α2

n ´ β2
nq μ

ᾱn
sinhpᾱnpy ´ h̃qq

coshpᾱnpy ´ h̃qq

¸
´ ikn
Zc,n

ˆ
2μβ̄n sinhpβ̄npy ´ h̃qq

coshpβ̄npy ´ h̃qq
˙

(3.25)
with

Zc,n “ i coshpβ̄nh̄q
2kn coshpᾱnh̄q “ 2iknᾱnβ̄n sinhpβ̄nh̄q

pk2n ` β̄2
nq2 sinhpᾱnh̄q (3.26)

for A-modes. The expansion of general stress and displacement fields in Lamb-modes is

�X “
ÿ
nPN

anpxq �Xn (3.27)

�Y “
ÿ
nPN

bnpxq�Yn (3.28)

with
an “ cǹ ` cń (3.29)

and
bn “ Zc,npcǹ ´ cń q (3.30)

incorporating the coefficients cǹ for waves propagating in positive direction and cń for
waves propagating in negative direction. These modal coefficients can be expressed as
vectors �apxq and �bpxq.
In order to derive the differential equations that describe the evolution of �a and �b in
x-direction, the system (3.11) is projected onto the bases �Xn and Zc,n

�Yn byA
Bx �X

ˇ̌̌
Zc,n

�Yn

E
“

A
F�Y

ˇ̌̌
Zc,n

�Yn

E
(3.31)

and A
Bx�Y

ˇ̌̌
�Xn

E
“

A
G �X

ˇ̌̌
�Xn

E
(3.32)

which leads to a system of coupled differential equations (see [17] for details)

Bx�a “ N1�a ` N2
�b (3.33)
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Bx�b “ N3�a ` N4
�b. (3.34)

The matrices N1, N2, N3 and N4 are given by

N1,nm “ ´ 1

Jn

A
Bx �Xm

ˇ̌̌
�Yn

E
(3.35)

N2,nm “ ikn
Zc,n

δnm (3.36)

N3,nm “ iknZc,nδnm (3.37)

N4,nm “ 1

Jn

!
´

A
Bx�Ym

ˇ̌̌
�Xn

E
` pBxhU qσxx,mph̄qux,nph̄q ´ pBxhLqσxx,mp´h̄qux,np´h̄q

)
(3.38)

where N2 and N3 describe propagation while the coupling of modes is governed by N1

and N4.

The expressions given in (3.36) and (3.37) can be implemented right away. Finding closed
analytical expressions for (3.35) and (3.38) by directly evaluating the scalar products is
possible but very time consuming and cumbersome. A faster alternative is to evaluate
(3.35) and (3.38) by using the properties of the operators F and G. This has been done
in [17] for plates with symmetrically varying thickness where only coupling of S-modes to
S-modes and A-modes to A-modes had to be considered. If N coefficients for symmetric
and N coefficients for antisymmetric Lamb-modes are combined into 2N -dimensional
vectors �a and �b for the mode expansion, the matrices N1 and N4 can be arranged in
N ˆ N blocks

N1,4 “
ˆ

NSS
1,4 NSA

1,4

NAS
1,4 NAA

1,4

˙
. (3.39)

Considering the symmetric properties of the stress and displacement fields given in (3.21)
and (3.22) or (3.24) and (3.25) and using the notations ux,nph̄q “ Un, uy,nph̄q “ Vn,
σxx,nph̄q “ Sn and Bxf “ f1, the elements in the diagonal blocks are

NSS,AA
1,nn “ ´1

2Jn

"
J 1

n ` Jn

Z 1
c,n

Zc,n
` h̄1

„
UnSn ` iρω2

ˆ
U 2

n

knZc,n
` Zc,nV 2

n

kn

˙j*
(3.40)

NSS,AA
4,nn “ 1

2Jn

"
´J 1

n ` Jn

Z 1
c,n

Zc,n
` h̄1

„
UnSn ` iρω2

ˆ
U 2

n

knZc,n
` Zc,nV 2

n

kn

˙j*
(3.41)

for n “ m and

NSS,AA
1,nm “ 2h̄1

pk2m ´ k2nqJn

"
´k2mUmSn ` iρω2

ˆ
knUmUn

Zc,n
´ kmZc,mVmVn

˙*
(3.42)

NSS,AA
4,nm “ 2h̄1

pk2m ´ k2nqJn

"
´k2nUnSm ` iρω2

ˆ
kmUmUn

Zc,m
´ knZc,nVmVn

˙*
(3.43)

29



for n ‰ m. In (3.40)-(3.43) both indices n and m refer either to S-modes for the diagonal
blocks NSS

1 and NSS
4 or to A-modes for the diagonal blocks NAA

1 and NAA
4 . Using the

same notation, the elements of the off-diagonal blocks are

NAS,SA
1,nm “ 2h̃1

pk2m ´ k2nqJn

"
´k2mUmSn ` iρω2

ˆ
knUmUn

Zc,n
´ kmZc,mVmVn

˙*
(3.44)

NAS,SA
4,nm “ 2h̃1

pk2m ´ k2nqJn

"
´k2nUnSm ` iρω2

ˆ
kmUmUn

Zc,m
´ knZc,nVmVn

˙*
(3.45)

where index n refers to S- and m to A-modes for the off-diagonal blocks NAS
1 and NAS

4

and vice versa for the off-diagonal blocks NSA
1 and NSA

4 . The function Jn which follows
from the biorthogonality relation (3.19) is

Jn “ μ
ikn
Zc,n

"
sinhp2β̄nh̄qP pknq ` pk2n ´ β̄2

nqh̄
ˆ
1 ´ β̄n sinhp2β̄nh̄q

ᾱn sinhp2ᾱnh̄q
˙*

1

β̄2
n

(3.46)

for S-modes and

Jn “ μ
ikn
Zc,n

"
sinhp2β̄nh̄qP pknq ´ pk2n ´ β̄2

nqh̄
ˆ
1 ´ β̄n sinhp2β̄nh̄q

ᾱn sinhp2ᾱnh̄q
˙*

(3.47)

for A-modes2 with

P pknq “ ´ β̄npk2n ´ β̄2
nq

2ᾱ2
n

` β̄3
n

k2n
´ k2n

2β̄n
` 7β̄n

2
´ 8β̄3

n

k2n ` β̄2
n

(3.48)

for both S- and A-modes3.

It is easy to see that for plates with symmetrically varying thickness, h̃ “ 0 and thus
(3.44) and (3.45) vanish as expected. The expressions (3.40)-(3.43) have been stated by
Pagneux and Maurel in [17] without providing a detailed derivation. Since this step is
important for the adaptation to other types of waveguides, the derivation of expressions
for the elements of N1 and N4 by using the properties of the operators F and G can be
found in Appendix B.

3.2 Solving the differential equations

3.2.1 Transforming the coupled differential equations

In [17], Pagneux and Maurel state that solving the coupled differential equations for
�a and �b (3.33) and (3.34) directly would be numerically unstable due to the presence

2The factor h̄ is missing in the expression for Jn that was provided in [17] which is likely an error
in typesetting. Furthermore, there is no additional factor 1{β̄2

n in [17] for symmetric Lamb-modes which
is correct if the stress and displacement fields that are derived from the Helmholtz potentials given in
(2.14) and (2.15) are used in the calculation. Using the renormalized Helmholtz potentials (3.15)-(3.18)
leads to the expressions given in this thesis.

3In [17] the 4th term in (3.48) is given as 7{p2β̄nq rather than p7β̄nq{2 as obtained from calculations
performed in the course of this work. Since the latter version ensures that all terms in (3.48) are of the
same unit (1/m) this deviation is most likely caused by a typesetting error in [17]
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of evanescent modes and refer to [42] for a more detailed discussion of the inherent
problems involved in their numerical treatment. A useful approach to avoid this problem
is to introduce an impedance matrix Z as a linear operator to link the vectors �a and
�b [17, 42]

�bpxq “ Zpxq�apxq. (3.49)

If (3.49) is inserted into (3.33) and (3.34) this leads to a linear differential equation for �a

Bx�a “ pN1 ` N2Zq�a (3.50)

and a Riccati matrix differential equation for Z

BxZ “ N3 ` N4Z ´ ZN1 ´ ZN2Z. (3.51)

Equation (3.51) has to be solved first with a condition imposed on the end of the wave-
guide. A simple condition is Zpxendq “ ˘Zc with Zc being the characteristic impedance
matrix which diagonal elements are defined by (3.23) for S-modes and by (3.26) for
A-modes. Using `Zc allows only the existence of right going modes at the end of the
waveguide which corresponds to a continued waveguide while ´Zc allows only the ex-
istence of left going modes and corresponds to a perfectly reflecting wall at the end of
the waveguide. Once Zpxq has been calculated by solving (3.51), (3.50) can be solved
with a starting value that is determined by the desired excitation at the beginning of the
waveguide. If solutions for Zpxq and �apxq are known, �bpxq can be obtained from (3.49).

3.2.2 Solving the Riccati matrix differential equation

Computational methods to solve a Riccati matrix differential equation have been around
for some time e.g. the one proposed by Razzaghi [66], however, in this case the elements
of matrices N1-N4 are not constant in case of a waveguide with varying thickness. Fur-
thermore, comparing (3.40) and (3.41) shows that N1 ‰ NT

4 which means that (3.51) is a
non-symmetric Riccati matrix differential equation. A survey of properties and conditions
on the solvability of symmetric and non-symmetric Riccati matrix differential equations
can be found in [67] while [68] lists several methods for the integration of Riccati matrix
differential equations with non-constant matrices and investigates their stability in the
presence of singularities within the solution. The discussion provided in [68] confirms
that the utilization of a Möbius scheme as proposed by Schiff and Shnider [69] is appli-
cable to the problem of solving (3.51). A detailed description of the Möbius method,
including an application to several test cases, can be found in [69]. The essential steps
in constructing the solver used in this work will be repeated here.

First the problem is discretized in x-direction by xj`1 “ xj ` Δx. The Möbius method
utilizes the link between a Riccati matrix differential equation and a system of coupled
differential equations that has been illustrated in the previous subsection. The system
(3.33) and (3.34) can be written as

Bx
ˆ

�apxq
�bpxq

˙
“

ˆ
N1 N2

N3 N4

˙ ˆ
�apxq
�bpxq

˙
. (3.52)

31



An implicit or explicit numerical integration method can then be written in the formˆ
�aj`1

�bj`1

˙
“

ˆ
Ñ1 Ñ2

Ñ3 Ñ4

˙
j

ˆ
�aj
�bj

˙
(3.53)

where Ñ1-Ñ4 will be constructed in a later step. A scheme for the numerical integration
of Z can be constructed from (3.53)

Zj`1 “ �bj`1�a
´1
j`1

“
´
Ñ3,j�aj ` Ñ4,j

�bj

¯ ´
Ñ1,j�aj ` Ñ2,j

�bj

¯´1

“
´
Ñ3,j�aj ` Ñ4,j

�bj

¯
�a´1
j

´
Ñ1,j ` Ñ2,jZj

¯´1

“
´
Ñ3,j ` Ñ4,jZj

¯ ´
Ñ1,j ` Ñ2,jZj

¯´1
.

(3.54)

Since the integration of Z has to be performed from back to front, (3.54) has to be
inverted to

Zj “
´
Ñ4,j ´ Zj`1Ñ2,j

¯´1 ´
Zj`1Ñ1,j ´ Ñ3,j

¯
. (3.55)

In order to implement a solver for the Riccati matrix differential equation based on (3.55),
Ñ1,j-Ñ4,j have to be constructed. In this work a second order method was used with

Ñ1,j “ �` Δx

2
pN1,j ` N1,j`1q ` Δx2

2

`
N2

1,j ` N2,jN3,j

˘
(3.56)

Ñ2,j “ Δx

2
pN2,j ` N2,j`1q ` Δx2

2
pN1,jN2,j ` N2,jN4,jq (3.57)

Ñ3,j “ Δx

2
pN3,j ` N3,j`1q ` Δx2

2
pN3,jN1,j ` N4,jN3,jq (3.58)

Ñ4,j “ �` Δx

2
pN4,j ` N4,j`1q ` Δx2

2

`
N3,jN2,j ` N2

4,j

˘
. (3.59)

where � denotes the identity matrix. Another possible construction of Ñ1,j-Ñ4,j was
suggested in [17] by combining the Möbius scheme with a Magnus method as described
e.g. in [70]. In this Magnus-Möbius method Ñ1-Ñ4 would be determined byˆ

Ñ1 Ñ2

Ñ3 Ñ4

˙
“ exp

ˆˆ
N1 N2

N3 N4

˙
Δx

˙
. (3.60)

While (3.60) can be expected to be more accurate, the necessity to compute a matrix
exponential introduces an additional possible source of numerical errors. A good overview
on different methods to compute the matrix exponential and their respective properties is
provided in [71]. While in the course of this work some test simulations have been carried
out with the 2nd order Möbius as well as the Magnus-Möbius method using the pre-
implemented MATLAB function to calculate matrix exponentials, no notable difference
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could be observed in the results. For sufficiently complicated problems the use of the
Magnus-Möbius method might in fact be necessary and in this case further investigations
should be conducted in order to determine the most suited method to calculate a matrix
exponential for use in the solver for Riccati matrix differential equations.

3.2.3 Solving the linear differential equation

In an early stage of this work, a solver for the linear differential equation was constructed
by discretizing (3.50) into

�aj`1 ´ �aj
Δx

“ Mj` 1
2
�aj` 1

2
(3.61)

with M “ N1 ` N2Z. Using the interpolations

Mj` 1
2

“ Mj ` Mj`1

2
(3.62)

and
�aj` 1

2
“ �aj ` �aj`1

2
(3.63)

we find
�aj`1 “ p4�´ ΔxpMj`1 ` Mjqq´1 p4�` ΔxpMj`1 ` Mjqq�aj (3.64)

as a simple solver that can be implemented right away4. In cases where higher accuracy
is required a suitable alternative is

�aj`1 “
´
Ñ1,j` 1

2
` Ñ2,j` 1

2
Zj

¯
�aj (3.65)

with Ñ1 and Ñ2 being constructed in accordance with the Magnus-Möbius method (3.60)
[17]. While both solvers (3.64) and (3.65) produced satisfactory results for simple test
cases, (3.65) was used in the final implementation for simulations with more than one
propagating mode.

3.3 On the accuracy of wave numbers

3.3.1 Estimate of relative error

Since the spectral decomposition method is based on a series expansion of the displace-
ment fields in eigenfunctions of the Laplace operator, its accuracy will depend on the
number of elements N after which this expansion is truncated5. By comparing the relative

4This construction bears some similarities to the Crank-Nicolson method. However, even though the
solver described by (3.64) was successfully applied for a good part of this work, it is important to note that
a proper application of the Crank-Nicolson scheme would yield p�aj`1´�ajq{Δx “ pMj`1�aj`1`Mj�ajq{2
and lead to �aj`1 “ p2�´ΔxMj`1q´1p2�`ΔxMjq�aj which might provide more accurate results than
(3.64). This discrepancy went unnoticed until after (3.64) was replaced by (3.65) in the implementation
used for the simulations documented in this thesis.

5Which also determines the dimension of the eigenvalue problem and thus the number of modes that
can be calculated.
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errors in symmetric Lamb-modes for a range up to N “ 100 it was shown by Pagneux
and Maurel that the spectral decomposition method converges in fact with 1{N [62].
In [46] the relative errors have been investigated over a range of frequencies for different
values of N which lead to ˇ̌̌̌

Δk

k

ˇ̌̌̌
“ 1

5N

ˆ
f

2
` 1

˙
(3.66)

as an estimate for the relative error. While (3.66) confirms the 1{N dependence, it also
shows that the relative error will increase for large frequencies f .

3.3.2 Anomaly in the modes of lowest order

When the wave numbers are calculated as described in Chapter 2, some care has to be
taken with the S0 and A0 mode of a plate as well as with the Lp0, 0q and Lp0, 1q mode
of a cylindrical rod or hollow cylinder. While these modes are supposed to approach the
phase velocity of a Rayleigh wave for high frequencies, calculations using the spectral
decomposition method will provide a local minimum at the Rayleigh wave velocity in the
dispersions curves of these modes before they asymptotically approach the phase velocity
of transverse waves. This anomaly was discussed in [46] and can be dealt with in two
ways. The first way is to increase the number of modes N that are calculated and thus
the overall accuracy of the spectral decomposition method. This will in in fact cause the
calculated dispersion curves to stay close to the correct results over an extended range
of frequency and to raise up more slowly to the wrong asymptotic value if the frequency
is increased too far. The second method to mitigate the effect of that anomaly can be
applied if the dispersion curves are to be calculated over a range of frequencies starting
with a sufficiently low one6. The procedure requires to switch to the phase velocity
frequency space and ensure that the phase velocity of the S0 mode (or the Lp0, 1q mode)
is monotonically decreasing with increasing frequency and that the phase velocity of the
A0 mode (or Lp0, 0q mode) is smaller than that of the corrected S0 mode (or Lp0, 1q
mode) before switching back to the wave number frequency space.

3.3.3 Achieving the required accuracy

The validity of some expressions that have been derived in the multimodal method (e.g.
for the off-diagonal elements of N1 and N4) depends on the identities (3.23) and (3.26).
As can be seen, these identities correspond to the dispersion relations for S- and A-modes
(2.25) and (2.31) which means they hold true for wave numbers kn that are roots of those
dispersion relations. As a consequence, the entire numerical evaluation of the multimodal
method will break down if the value of the dispersion relation is not sufficiently close to
zero for a given wave number kn which is supposed to be on the dispersion curve of a
Lamb-mode. In other words, if the numerical determination of wave numbers is done
with insufficient accuracy, the application of the multimodal method as a whole will fail.

6Meaning a frequency at which the calculated dispersion curve for the modes in question is still close
to the correct result.
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If the frequency is increased, an increasing number of roots of the dispersion relation
is closely packed near the wave number of shear waves kT (see Figure 2.4 for an illus-
tration). Furthermore, the dispersion relation becomes increasingly steep between two
neighbouring roots. This means that, especially for Lamb-modes of lower order, at high
frequencies even a small numerical deviation from the actual root might result in a rather
large value of the dispersion relation. Beyond a critical frequency, even calculations up
to the machine epsilon will not be sufficient anymore which puts a hard limit on the
applicability of the multimodal method as far as the range of frequencies is concerned.
It has already been mentioned in Chapter 2 that the numerical computation of wave
numbers based on the spectral decomposition method is not overly impressive in terms
of accuracy. As can be seen from (3.66) the accuracy can be improved by increasing
the number of calculated modes N , however, a more expedient approach is to follow
the suggestion given in [62] to treat the spectral decomposition method as a provider of
relatively accurate initial guess values.

The approach to improve calculated wave numbers to the required accuracy is twofold.
First a minimum initial accuracy is imposed by ensuring that even if only a small number
of modes have to be evaluated, the calculation is done with at least N “ 20. Secondly the
values obtained with the spectral decomposition method are used as a starting point for
iterative root finding procedures such as a bracketing method for real wave numbers and
the method of steepest descent7 for complex wave numbers. Since the required accuracy
depends on frequency as well as the order of the evaluated mode, no fixed threshold for
the accuracy is set in the implementation used in this work. Instead at each iterative
step, the dispersion relation is tested with the current kn. If the value of the dispersion
relation drops below 10´5, the iteration is stopped. If the iterative procedure runs into a
dead end without achieving the required accuracy, a warning is issued together with the
last value of the dispersion relation.

While these iterative procedures, which have to be performed for every point of the dis-
persion curve of every individual mode, do partially negate the spectral decomposition
method’s main advantage of short computation times, it is still more efficient and reliable
than a blind root search would be8.

3.4 Concerning Cutoffs

Cutoffs are points in the dispersion curves at which a wave mode switches its behaviour
from evanescent to propagating or vice versa (i.e. the wave number kn is real before
or after the cutoff). Two cases of Cutoffs can be distinguished. The first case are
Cutoffs at which a single mode switches its behaviour at kn “ 0. These Cutoffs will be

7The method of steepest descent is used to find local minima in the absolute values of the dispersion
relation which can be treated as 2-dimensional function if complex wave numbers are considered. In
each iteration a search for the minimum in direction of the negative local gradient at the starting point
is performed. This minimum is then used as starting point for the next iterative step.

8For reasons that have been mentioned in Chapter 2
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referred to as regular Cutoffs in accordance with [12]. The second case are Cutoffs at
which two neighbouring modes coincide at a non-zero wave number kn while turning into
propagating modes. These cases will be called irregular Cutoffs in accordance with [12].
Both cases are illustrated in Figure 3.19.

Figure 3.1: Section of the real parts of dispersion curves in a plate with a) regular and
b) irregular Cutoffs.

The wave number kn of a guided wave mode depends on the waveguide’s thickness at
any given frequency, if this thickness is a function of x then so is kn. If (3.40)-(3.45)
are implemented, a numerical differentiation of kn in x-direction has to be performed
which was done using finite differences of higher order10 in this work. While knpxq will
be continuous when crossing a Cutoff cross-section, it will usually not be differentiable
at the Cutoff itself. Therefore, some care has to be taken in order to avoid numerical
artifacts at Cutoffs. As a first step, Cutoffs have to be detected within the numerically
determined knpxq which is done by searching for positions at which the imaginary part
vanishes. The function knpxq is then split at these points in order to ensure that numerical
differentiation is only applied piecewise on continuous, differentiable segments.

3.4.1 Regular Cutoffs

Although the renormalization of Lamb-modes that has been suggested in [17] prevents
numerical instabilities at regular Cutoffs, the solver that is used on the differential equa-
tions might still produce inaccurate results near a Cutoff cross-section which result in
discontinuities (i.e. a slight jump in modal coefficients Zpxq). Since the positions of
Cutoff cross-sections had to be identified in the numerical differentiation of knpxq, this

9The gap between the S1- and S2-mode at the irregular Cutoff marked as b) arises from the resolution
of different frequencies and would become smaller for a finer frequency step size Δf .

10Usually a central difference of 6th order is applied at the inner points of knpxq while 6th order
backward difference and forward difference are used at beginning and end respectively.
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problem can easily be solved by using a Taylor or Padé approximation to extrapolate
over regular Cutoffs instead of integrating over these critical points via solver.

3.4.2 Irregular Cutoffs

At an irregular Cutoff, two different guided wave modes coincide. The close proximity
of two neighbouring modes near an irregular Cutoff can lead to problems in the iterative
improvement of wave number accuracy. In order to prevent the iterative procedure from
converging towards the wrong root of the dispersion relation, some care has to be taken in
choosing the interval on which the iterative root search is performed. A useful property
of the spectral decomposition method is the observation that with increasing N , wave
numbers in monotonically increasing branches of dispersion curves converge from below
while wave numbers on monotonically decreasing branches of dispersion curves converge
from above. In this work, satisfactory results have been obtained by running the iterative
improvement from high to low frequencies and at each frequency (except the highest one)
using the aforementioned property of the spectral decomposition method as well as the
results of the iterative improvement at the previous frequency to select proper boundaries
for the root search.

A more significant problem is that at irregular Cutoffs the guided wave modes of the
corresponding waveguide with constant thickness do not form a complete orthogonal basis
anymore which means that the multimodal method will break down at these points. Since
the solver that is used on the differential equations runs into a singularity at irregular
Cutoffs11, a simple extrapolation over these points, as used for regular Cutoffs, will not
be sufficient. While there are several possible approaches to address it, the treatment of
irregular Cutoffs in the multimodal method remains somewhat an open problem and will
be discussed in more detail in Chapter 6.

3.5 Pulse Propagation

The multimodal method as described so far would calculate the steady state displacement
fields. Since the goal of this work is to establish a tool for the simulation of pulse
propagation through a waveguide with varying thickness, some modifications have to
be applied. First the previously omitted time-dependence has to be reintroduced by
adding an oscillating term eiωt to the stationary solution for the displacement fields.
This corresponds to a continuous wave solution which would result from an excitation
with a single frequency. A pulse propagation can now be simulated by simply overlapping
a sufficient number of continuous wave solutions. The general scheme of that procedure
is illustrated in Figure 3.2.

11A solver using the Möbius method as described in (3.54) is in principle capable to integrate over
singularities in the solution [69], however, the breakdown of the orthogonal basis causes singularities
within the matrices N1-N4 as well so that no meaningful results can be obtained close to an irregular
Cutoff.
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Figure 3.2: Implementation of pulse propagation including a) modelling of an excitation
pulse, b) reducing the spectrum to a finite number of frequencies and c) reconstructing
the pulse excitation as superposition of continuous wave solutions.

After the desired excitation pulse has been modelled (e.g. a sine burst pulse as shown
in Figure 3.2 a)), a Fast Fourier Transform (FFT) is applied to transform it to the
frequency domain. The spectrum is then reduced to a finite number of frequencies by
discarding all contributions below 10% of the center frequency as illustrated in Figure 3.2
b). In a last step continuous wave solutions are calculated for the remaining frequencies
and overlapped according to their relative weights within the frequency spectrum. The
modelled excitation pulse is reconstructed where the continuous wave solutions overlap
constructively and dispersive behaviour of the wave package is automatically modelled
in accordance with the calculated dispersion curves. Since overlapping a finite number
of periodic functions will always result in another periodic function, the reconstructed
excitation is in fact a pulse series rather than a single pulse (see Figure 3.2 c)). Therefore
some care has to be taken in adjusting the resolution and threshold in the reduced
spectrum to ensure that at any given time only one pulse is propagating within the
modelled geometry of the waveguide.

3.6 Reproduction of previously published results

In order to verify that the multimodal method was correctly implemented for plates, some
of the results published by Pagneux and Maurel in [17] for displacement fields in plates
with symmetrically varying thickness have been reproduced. The material properties
used in this simulation were defined by the density ρ “ 1 mg{mm3, the phase velocity
for longitudinal waves cL “ 2{πa

2p1 ´ νq{p1 ´ 2νq mm/μs, the phase velocity for shear
waves cT “ 2{π mm/μs and the Poisson ratio ν “ 0.31. The geometry of the waveguide
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is defined by

hU pxq “ ´hLpxq “ h0 ` ph1 ´ h0qe´ x2

L2 (3.67)

with h0 “ 0.7 mm, h1 “ 1.5 mm and L “ 1.5 mm. Only contributions of antisymmetric
Lamb-modes have been taken into account and only the A0-mode is excited at the front
face of the waveguide but a total of eleven modes is used in the subsequent calculations.

Figure 3.3 shows the displacement field in x-direction for the excitation frequency ω “
0.5 MHz. The A0 is the only propagating mode in this test case which corresponds to
the one documented in [17]: Figure 4a.

Figure 3.3: Displacement field in x-direction for ω “ 0.5 MHz with red for positive and
blue for negative displacement.

The displacement field in x-direction for the excitation frequency ω “ 1.37 MHz is plotted
in Figure 3.4. In this case, the A0-mode is propagating throughout the entire waveguide
while the A1-mode hits two Cutoff cross-sections within the waveguide which are located
symmetrically around x “ 0 thus becoming what Pagneux and Maurel referred to as a
trapped mode [17]. This test case corresponds to the one shown in [17]: Figure 4b.

Figure 3.4: Displacement field in x-direction for ω “ 1.37 MHz with red for positive and
blue for negative displacement.

For the third test case, the displacement field in x-direction was simulated for the excita-
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tion frequency ω “ 1.5 MHz. The results are shown in Figure 3.5. The A0- and A1-mode
are both propagating modes throughout the entire waveguide with no other mode hit-
ting a Cutoff. Although only the A0-mode is excited initially, the A0 and A1 are coupled
throughout the waveguide due to its continuously varying thickness and therefore both
contribute to the displacement field. This corresponds to [17]: Figure 4c.

Figure 3.5: Displacement field in x-direction for ω “ 1.5 MHz with red for positive and
blue for negative displacement.

In general the results obtained in this work for the test cases documented in Figures
3.3-3.5 are in good agreement with the results published in [17]: Figure 4a-4c. Thus it
can be concluded that the implementation of the multimodal method used in this work
is equivalent to the one used by Pagneux and Maurel for the case of plates with symmet-
rically varying thickness. Further validation, especially for waveguides other than plates
with symmetrically varying thickness, will be provided in Chapter 5.
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Chapter 4

Adaptation to cylindrical structures

4.1 Dispersion relations of axially symmetric guided waves

The adaptation of the spectral decomposition method to the calculation of complex
dispersion curves has been covered in detail in [46], however, since the calculation of
wave numbers is vital to the application of the multimodal approach, the most important
points will be repeated in this section. Since the scope of this work is limited to axially
symmetric longitudinal modes (L-modes), only two displacement fields (ur and uz) have
to be considered. The general outline of the spectral decomposition method is the same
as described in Chapter 2. In cylindrical coordinates and under the assumption of free
propagation in z-direction the wave equation for the displacement vector �u (2.7) leads to

pk2 ´ k2T qur ´ ikpγ ´ 1qBruz ´ γBr
ˆ
1

r
Brprurq

˙
“ 0 (4.1)

and
pk2 ´ k2Lquz ´ ik

γ ´ 1

γr
Brprurq ´ 1

γr
BrprBruzq “ 0 (4.2)

where kL and kT are the longitudinal and transversal wave number respectively and γ is
a function of the Lamé constants as defined in Chapter 2. With σ and ε taking the form
given in (2.32) and (2.33), the identities

BrurpRq “ ´γ ´ 2

γ

ˆ
ikuzpRq ` urpRq

R

˙
(4.3)

and
BruzpRq “ ´ikurpRq (4.4)

are obtained from the boundary condition of a traction free lateral surface at a given
radius r “ R. The remaining steps to determine the complex wave numbers for cylindrical
structures are to find suitable orthogonal bases for the spectral decomposition

ur “
ÿ
n

Unχnpyq (4.5)
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uz “
ÿ
n

Vnψnpyq (4.6)

for cylindrical rods and hollow cylinders and to project (4.1) and (4.2) onto these bases
in order to determine the entries of the matrices A, B, C and D.

4.1.1 Cylindrical rods

As in Chapter 2 the orthogonal bases are obtained as eigenfunctions of the Laplace
operator on the cross-section which essentially means solving the Helmholtz equation

1

r
BrprBrψnq “ ´φ2

nψn (4.7)

which can be written as the Bessel differential equation and yields the general solution

ψn “ AJ0pφnrq ` BY0pφnrq (4.8)

where A and B have to be determined by boundary conditions at r “ 0 and the outer
radius of the cylindrical rod r “ R. To avoid singularities at the central axis of the rod,
the boundary condition at r “ 0 has to be fixed as

Brψnp0q “ 0. (4.9)

Applying a von Neumann like boundary condition

BrψnpRq “ 0 (4.10)

at the outer radius r “ R leads to a set of normalized orthogonal functions of the form

ψn “ J0pφnrq?
πRJ0pφnRq (4.11)

where the eigenvalues φn are roots of J1pφnRq. Since these functions are eigenfunctions
of a classical Sturm-Liouville problem, they form a complete basis (see e.g. [72]).Using a
Dirichlet like boundary condition

ψnpRq “ 0 (4.12)

leads to a different set of eigenvalues which are determined as roots of J0pθnRq but
otherwise to a basis similar to (4.11). However, it is possible to find a second set of
orthogonal functions belonging to these eigenvalues which reads

χn “ J1pθnrq?
πRJ1pθnRq (4.13)

and satisfies the boundary conditions

χnp0q “ 0 (4.14)
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at r “ 0 and ˆ
1

r
Brprχnq

˙
pRq “ 0 (4.15)

at r “ R thereby still meeting the requirements of a Sturm-Liouville problem and thus
providing the second basis needed to apply the spectral decomposition method to cylin-
drical rods. Projecting (4.2) onto ψn and (4.1) onto χn yields the following expressions
for the entries of the matrices A, B, C and D

Anm “ 2i

γR

ˆ
φ2
n ` pγ ´ 2qθ2m
φ2
n ´ θ2m

˙
(4.16)

Bnm “
ˆ
φ2
n

γ
´ k2L

˙
δnm (4.17)

Cnm “ ´γAmn (4.18)

Dnm “ `
γθ2n ´ k2T

˘
δnm ´ 4

R2
. (4.19)

4.1.2 Hollow cylinders

The Helmholtz equation (4.7) and its general solution (4.8) remain valid for hollow cylin-
ders, however, the boundary conditions which are used to determine the coefficients in
(4.8) have to be adjusted. For RO “ RI ` d and RI Ñ 8 the L-modes of a hollow
cylinder will become identical to the guided wave modes of a plate under plane strain
approximation1 with RO and RI taking the role of upper and lower plate surface respec-
tively. On the other hand a cylindrical rod can be seen as a special case of a hollow
cylinder with RI “ 0. If a plate under plane strain assumption and a cylindrical rod
are viewed as the extremal cases, the description of the hollow cylinder must reflect the
transition between these two structures. On the plate, von Neumann boundary condi-
tions are applied on upper and lower surface for the first basis and Dirichlet boundary
conditions for the second basis. For cylindrical rods, a von Neumann boundary condition
was used at r “ R for the first and a Dirichlet boundary condition for the second basis
while the boundary condition at r “ 0 had to be fixed as a von Neumann type boundary
condition. As a consequence the first basis for the spectral decomposition of a hollow
cylinder can be obtained by simply using von Neumann type boundary conditions at
r “ RI and r “ RO. The resulting normalized orthogonal basis is given by

ψ1 “ 1?
π

1b
R2

O ´ R2
I

(4.20)

and

ψną1 “
?
π

2
φn

Y1pφnRIqY1pφnROqa
Y 2
1 pφnRIq ´ Y 2

1 pφnROq
ˆ
J0pφnrq ´ J1pφnRIq

Y1pφnRIqY0pφnrq
˙
. (4.21)

1It can be shown that in the formulation of the spectral decomposition method, the expressions for
L-modes in a hollow cylinder will indeed decouple into A- and S-modes of a plate [46].
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For n ą 1 the eigenvalues φn are obtained by evaluating

J1pφnROqY1pφnRIq ´ J1pφnRIqY1pφnROq “ 0 (4.22)

while the first eigenvalue is φ1 “ 0 (see also [46]).

If Dirichlet type boundary conditions are applied for ψn on both the inner and the outer
lateral surface, we find an implied second basis χn which fulfills the boundary conditionsˆ

1

r
Brprχnq

˙
pRI,Oq “ 0. (4.23)

By comparing (4.23) to (4.14) and (4.15), we find that the boundary condition at the
inner radius r “ RI has to contain a transition between a Dirichlet and a von Neumann
like boundary condition. A general formulation for a mixed boundary condition that is
still in accordance with a Sturm-Liouville problem is [72]b

1 ´ S2
ϑχnpRIq ` SϑRIBrχnpRIq “ 0 (4.24)

where Sϑ denotes the sine of the mixing angle ϑ. In order to transform (4.24) into the
appropriate boundary conditions for plates and cylindrical rods, Sϑ “ 0 for RI “ 0 and
Sϑ “ 1{?

2 for RI Ñ 8 have to be fulfilled. The results of investigations conducted over
the course of this work suggest that

Sϑ “ 1?
2

ˆ
1 ´ RO ´ RI

RO ` RI

˙
(4.25)

is a reasonably good choice to model the desired transition with sufficient accuracy [46].
The set of orthogonal functions that form the second basis is

χn “
?
π

2
θn

Y0pθnROqa
TnpRO, RIq

´
ΓnJ1pθnrq ´ Γ̃nY1pθnrq

¯
(4.26)

with
Γn “ SϑθnRIY0pθnRIq ´

ˆb
1 ´ S2

ϑ ´ Sϑ

˙
Y1pθnRIq (4.27)

Γ̃n “ SϑθnRIJ0pθnRIq ´
ˆb

1 ´ S2
ϑ ´ Sϑ

˙
J1pθnRIq (4.28)

and

TnpRO, RIq “S2
ϑθ

2
nR

2
IpY 2

0 pθnRIq ´ Y 2
0 pθnROqq

´ 2Sϑ

ˆb
1 ´ S2

ϑ ´ Sϑ

˙
pθnRIY0pθnRIqY1pθnRIq ´ Y 2

0 pθnROqq

`
ˆb

1 ´ S2
ϑ ´ Sϑ

˙2

pY 2
1 pθnRIq ´ Y 2

0 pθnROqq.
(4.29)
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The eigenvalues θn are determined byˆb
1 ´ S2

ϑ ´ Sϑ

˙
pJ0pθnROqY1pθnRIq ´ J1pθnRIqY0pθnROqq

´SϑθnRIpJ0pθnROqY0pθnRIq ´ J0pθnRIqY0pθnROqq “ 0.

(4.30)

The following expressions for the entries of the matrices A, B, C and D are obtained by
projecting (4.2) onto ψn and (4.1) onto χn

A1m “ 2i

γ

Γm ´ SϑθmRIY0pθmROqb
TmpRO, RIqpR2

O ´ R2
Iq

p2 ´ γq (4.31)

Anm “ Y1pφnRIqΓm ´ SϑθmROY1pφnROqY0pθmROqa
TmpRO, R, IqpY 2

1 pφnRIq ´ Y 2
1 pφnROqq

2i

γRO

ˆ
φ2
n ` pγ ´ 2qθ2m
θ2m ´ φ2

n

˙
(4.32)

Bnm “
ˆ
φ2
n

γ
´ k2L

˙
δnm (4.33)

Cnm “ ´γAmn (4.34)

Dnm “ `
γθ2m ´ k2T

˘
δnm ´ 4

R2
O

ΓmΓna
TmpRO, RIqTnpRO, RIq

´ 2Sϑθmθn
Y0pθmROqY0pθnROqa
TmpRO, RIqTnpRO, RIq

ˆ
γ

b
1 ´ S2

ϑ ´ pγ ` 2qSϑ

˙
.

(4.35)

4.2 Multimodal method

The general outline for the multimodal method remains the same as described in [17] for
plates. The matrix operators have to be adapted to cylindrical coordinates and the basis
used in the modal expansion has to be chosen to fit cylindrical rods or hollow cylinders
respectively. The starting point of the multimodal method is still the general equation
of motion as described in (3.1). For cylindrical coordinates the divergence of the stress
tensor σ takes the form

divpσq “
¨̋

1
rBrprσrrq ` 1

r pBϕσrϕ ´ σϕϕq ` Bzσrz
1
rBrprσrϕq ` 1

r pBϕσϕϕ ` σrϕq ` Bzσϕz
1
rBrprσrzq ` 1

rBϕσϕz ` Bzσzz
‚̨. (4.36)

Using (2.1), (2.2) and the strain tensor as given in (2.33), the components of the stress
tensor can be expressed in terms of displacement fields and Lamé constants. For axially
symmetric longitudinal waves (L-modes) this yields

σrr “ pλ ` 2μqBrur ` λ
´ur
r

` Bzuz
¯

(4.37)

σϕϕ “ pλ ` 2μqur
r

` λpBrur ` Bzuzq (4.38)
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σzz “ pλ ` 2μqBzuz ` λ
´ur
r

` Brur
¯

(4.39)

σrz “ μpBzur ` Bruzq (4.40)

and
σrϕ “ σϕz “ 0. (4.41)

As we can see, the only relevant displacement fields for our problem are ur and uz. From
(4.37)-(4.40) as well as (3.1) and (4.36), the expressions

σrr “ f1σzz ` f2

ˆ
1

r
Brprurq

˙
´ 2μ

ur
r

(4.42)

σϕϕ “ f1σzz ` f2

ˆ
1

r
Brprurq

˙
´ 2μBrur (4.43)

Bzur “ ´Bruz ` 1

μ
σrz (4.44)

Bzuz “ ´f1
1

r
Brprurq ` f1

λ
σzz (4.45)

Bzσrz “ ´ρω2ur ´ f2Br
ˆ
1

r
Brprurq

˙
´ f1Brσzz (4.46)

and
Bzσzz “ ´ρω2uz ´ 1

r
Brprσrzq (4.47)

are obtained with f1 “ λ{pλ`2μq and f2 “ 4μpλ`μq{pλ`2μq as in the implementation for
plates that was described in Chapter 3. If we define �X “ puz, σrzqT and �Y “ p´σzz, urqT,
(4.44)-(4.47) can be written as

Bz
˜

�X
�Y

¸
“

ˆ
0 F
G 0

˙ ˜
�X
�Y

¸
(4.48)

where the matrix operators F and G take the form

F “
ˆ ´ f1

λ ´f1
1
rBrpr ¨q

f1Br ´ρω2 ´ f2Br
`
1
rBrpr ¨q˘ ˙

(4.49)

G “
ˆ

ρω2 1
rBrpr ¨q

´Br 1
μ

˙
. (4.50)

The vector equation (4.48) and the expressions (4.49) and (4.50) hold true for cylindrical
geometries in general. The eigenvalue problem corresponding to (4.48) takes the same
form as in (3.14).

For the remaining steps in the adaptation of the multimodal method to axially symmetric
longitudinal modes in cylindrical waveguides, it is necessary to view cylindrical rods and
hollow cylinders as two distinct cases.
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4.2.1 Cylindrical rods

The geometry of a cylindrical rod with varying thickness is illustrated in Figure 4.1.
The central axis is marked by a dash-dotted line with z denoting the direction of wave
propagation.

Figure 4.1: Cylindrical rod with varying thickness.

The guided wave modes of cylindrical rods with constant thickness that have been de-
scribed in Chapter 2 are used as basis for the modal expansion in cylindrical rods with
varying thickness. Similar to the case of plates with varying thickness as described in
Chapter 3, the actual basis functions have to be derived from modified versions of the
Helmholtz potentials given in (2.40)-(2.43) which do not vanish at β “ 0. The relevant
Helmholtz potentials are

Φ “ AJ0pαrqeikz (4.51)

and
Hϕ “ B

J1pβrq
β

eikz. (4.52)

Once again the time dependence eiωt has been omitted.

For cylindrical rods the eigenvectors �Xn and �Yn still fulfill a biorthogonality relation of
the form given in (3.19), where the scalar product now corresponds to an integration
2πş
0

Rş
0

rdrdϕ, and have to be normalized in a way to ensure that they remain a valid or-

thogonal basis for kn “ 0. As in Chapter 3, the diagonal entries Zc,n of the characteristic
impedance matrix Zc are introduced as renormalization factors and the eigenvalue prob-
lem (3.14) is modified into (3.20).

The eigenvectors �Xn and �Yn which form the orthogonal basis for axially symmetric lon-
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gitudinal guided waves in cylindrical rods take the form

�Xn “ pk2n ´ β2
nqZc,nikn

ˆ
J0pαnrq

´2μαnJ1pαnrq
˙

`
ˆ

J0pβnrq
pk2n ´ β2

nq μ
βn

J1pβnrq
˙

(4.53)

�Yn “ pk2n ´ β2
nq

ˆ
μpk2n ´ 2α2

n ` β2
nqJ0pαnrq

´αnJ1pαnrq
˙

´ ikn
Zc,n

ˆ
2μJ0pβnrq
1
βn

J1pβnrq
˙

(4.54)

with

Zc,n “ J1pβnRq
2iknαnβnJ1pαnRq “ 2ikn pβnRJ0pβnRq ´ J1pβnRqq

pk2n ´ β2
nq2βnRJ0pαnRq ` 2αnβnpk2n ´ β2

nqJ1pαnRq (4.55)

where R denotes the outer radius of the cylindrical rod.

The modal expansion is done in accordance with (3.27) and (3.28). In order to derive
the differential equations that describe the evolution of �a and �b in z-direction, the system
(4.48) is projected onto the bases �Xn and Zc,n

�Yn byA
Bz �X

ˇ̌̌
Zc,n

�Yn

E
“

A
F�Y

ˇ̌̌
Zc,n

�Yn

E
(4.56)

and A
Bz �Y

ˇ̌̌
�Xn

E
“

A
G �X

ˇ̌̌
�Xn

E
(4.57)

which leads to the coupled differential equations

Bz�a “ N1�a ` N2
�b (4.58)

and
Bz�b “ N3�a ` N4

�b (4.59)

where the matrices N1, N2, N3 and N4 are given by

N1,nm “ ´ 1

Jn

A
Bz �Xm

ˇ̌̌
�Yn

E
(4.60)

N2,nm “ ikn
Zc,n

δnm (4.61)

N3,nm “ iknZc,nδnm (4.62)

N4,nm “ 1

Jn

!
´

A
Bz �Ym

ˇ̌̌
�Xn

E
` pBzRqRσzz,mpRquz,npRq

)
. (4.63)

The expressions (4.60) and (4.63) are evaluated by using the properties of the operators F
and G. The procedure is similar to the one used to derive the corresponding expressions
for plates and can be found in some detail in Appendix B. Using the notations uz,npRq “
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Un, ur,npRq “ Vn, σzz,npRq “ Sn and Bzf “ f1, the resulting expressions for elements of
N1 and N4 are

N1,nn “ ´1

2Jn

"
J 1

n ` Jn

Z 1
c,n

Zc,n
` πRR1

„
UnSn ` iρω2

ˆ
U 2

n

knZc,n
` Zc,nV 2

n

kn

˙j
´ iπ

kn
Zc,nR

1 1

2pλ ` μq
ˆ
λSnVn ` 2μ

R
p3λ ` 2μqV 2

n

˙* (4.64)

N4,nn “ 1

2Jn

"
´J 1

n ` Jn

Z 1
c,n

Zc,n
` πRR1

„
UnSn ` iρω2

ˆ
U 2

n

knZc,n
` Zc,nV 2

n

kn

˙j
´ iπ

kn
Zc,nR

1 1

2pλ ` μq
ˆ
λSnVn ` 2μ

R
p3λ ` 2μqV 2

n

˙* (4.65)

for n “ m and

N1,nm “ 2πRR1
Jnpk2m ´ k2nq

"
iρω2

ˆ
knUnUm

Zc,n
´ kmZc,mVnVm

˙
´ km

2Zc,n
pkmUmZc,nSn ` Zc,mSmknUnq

` ikmZc,m

4Rpλ ` μq
„
λpSmVn ` SnVmq ` 4μ

R
p3λ ` 2μqVmVn

j*
(4.66)

N4,nm “ 2πRR1
Jnpk2m ´ k2nq

"
iρω2

ˆ
kmUnUm

Zc,m
´ knZc,nVnVm

˙
´ kn

2Zc,m
pknUnZc,mSm ` Zc,nSnkmUmq

` iknZc,n

4Rpλ ` μq
„
λpSnVm ` SmVnq ` 4μ

R
p3λ ` 2μqVmVn

j*
(4.67)

for n ‰ m. An expression for Jn is found by directly evaluating the scalar product in
(3.19) using the expressions (4.53) and (4.54) for �Xn and �Ym. All ensuing integrals with
Bessel functions have closed analytical solutions [73] and ultimately lead to

Jn “2πμ
ikn

Zc,nβ2
n

pk2n ` β2
nq

"
´ pk2n ` β2

nq
2k2npk2n ´ β2

nq2 p5k2n ´ 3β2
nqJ2

1 pβnRq

´ R2

2

„ˆ
1 ` 4k2nβ

2
n

pk2n ´ β2
nq2

˙
J2
0 pβnRq `

ˆ
1 ` pk2n ´ β2

nq2
4k2nα

2
n

˙
J2
1 pβnRq

j
` pk2n ` β2

nq
k2nβ

2
npk2n ´ β2

nq2βnR
“
k2npk2n ` β2

nq ` β2
npk2n ´ β2

nq‰
J0pβnRqJ1pβnRq

*
.

(4.68)
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4.2.2 Hollow cylinders

The geometry of a hollow cylinder with varying thickness is illustrated in Figure 4.2. The
central axis is marked by a dash-dotted line with z denoting the direction of wave prop-
agation. In accordance with the geometry of a wheelset-axle, the variation in thickness
arises from the fact that the outer radius RO varies in z-direction while the inner radius
RI is constant.

Figure 4.2: Hollow cylinder with varying thickness.

The guided wave modes of hollow cylinders with constant thickness that have been de-
scribed in Chapter 2 serve as basis for the modal expansion in hollow cylinders with
varying thickness. In order to simplify the expressions used throughout further calcula-
tions and to keep them more in line with the expressions derived for the case of cylindrical
rods, we combine Bessel functions of first and second kind by introducing the functions

pH0pαrq “ J0pαrq ` Q1Y0pαrq (4.69)

pH1pαrq “ J1pαrq ` Q1Y1pαrq (4.70)rH0pβrq “ J0pβrq ` Q2Y0pβrq (4.71)rH1pβrq “ J1pβrq ` Q2Y1pβrq (4.72)

where Q1 “ C{A and Q2 “ D{B are formed from the coefficients used e.g. in (2.54) and
(2.55). The analytical expressions for Q1 and Q2 have to be derived from the boundary
conditions of traction free lateral surfaces at the inner radius r “ RI and the outer radius
r “ RO. While the detailed calculation will be omitted in this work valid expressions for
both terms are provided in Appendix C.

If the same modifications that have been used on (2.40)-(2.43) for the case of cylindrical
rods are applied to the Helmholtz potentials given in (2.54) and (2.55) and (4.69)-(4.72)
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are used, the modified versions of the relevant Helmholtz potentials for hollow cylinders
take the form

Φ “ A pH0pαrqeikz (4.73)

and

Hϕ “ B
rH1pβrq

β
eikz (4.74)

with the time dependence eiωt being omitted as before.

In case of a hollow cylinder, the biorthogonality relation given in (3.19) remains valid
for the eigenvectors �Xn and �Yn. The scalar product now corresponds to an integration
2πş
0

ROş
RI

rdrdϕ. Since plates and cylindrical rods can be considered as asymptotic cases

of hollow cylinders, the characteristic impedance matrix Zc for hollow cylinders is con-
structed in a similar manner as for those previously described cases. If its diagonal
elements Zc,n are used to renormalize the eigenvectors �Xn and �Yn and to modify the
eigenvalue problem (3.14) into the form (3.20), the orthogonal basis for axially symmet-
ric longitudinal guided waves in hollow cylinders takes the form

�Xn “ pk2n ´ β2
nqZc,nikn

˜ pH0pαnrq
´2μαn

pH1pαnrq

¸
`

˜ rH0pβnrq
pk2n ´ β2

nq μ
βn

rH1pβnrq

¸
(4.75)

�Yn “ pk2n ´ β2
nq

¨̊
˝ μpk2n ´ 2α2

n ` β2
nq pH0pαnrq

´αn
pH1pαnrq ´ ikn

Zc,n

˜
2μ rH0pβnrq
1
βn

rH1pβnrq

¸ ‹̨‚ (4.76)

with

Zc,n “ rH1pβnROq
2iknαnβn pH1pαnROq “ 2iknpβnRO

rH0pβnROq ´ rH1pβnROqq
pk2n ´ β2

nq2βnRO
pH0pαnROq ` 2αnβnpk2n ´ β2

nq pH1pαnROq
“ rH1pβnRIq

2iknαnβn pH1pαnRIq “ 2iknpβnRI
rH0pβnRIq ´ rH1pβnRIqq

pk2n ´ β2
nq2βnRI

pH0pαnRIq ` 2αnβnpk2n ´ β2
nq pH1pαnRIq .

(4.77)

As before in the adaptation to the case of cylindrical rods, the modal expansion is done in
accordance with (3.27) and (3.28) while the system (4.48) is projected onto the bases �Xn

and Zc,n
�Yn as described by (4.56) and (4.57). The resulting system of coupled differential

equations that describe the evolution of �a and �b in z-direction then takes the same form
as in (4.58) and (4.59) with N1, N2, N3 and N4 being described by

N1,nm “ ´ 1

Jn

A
Bz �Xm

ˇ̌̌
�Yn

E
(4.78)

N2,nm “ ikn
Zc,n

δnm (4.79)
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N3,nm “ iknZc,nδnm (4.80)

N4,nm “ 1

Jn

!
pBzROqROσzz,mpROquz,npROq ´ pBzRIqRIσzz,mpRIquz,npRIq

´
A

Bz �Ym
ˇ̌̌
�Xn

E ) (4.81)

for the case of hollow cylinders. In order to implement the multimodal method for hollow
cylinders, the expressions (4.78) and (4.81) have to be evaluated by using the properties
of the operators F and G. The procedure closely resembles the one used for cylindrical
rods. The most important steps are illustrated in Appendix B.

Given the desired future application on wheelset-axles, we can assume the inner radius
RI to be constant and thus BzRI “ 0 which simplifies the expressions for N1 and N4 to
some degree. With the notations uz,npROq “ Un, ur,npROq “ Vn, σzz,npROq “ Sn and
Bzf “ f 1, the elements of N1 and N4 (for the special case of constant inner radius RI)
can be expressed as

N1,nn “ ´1

2Jn
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J 1

n ` Jn

Z 1
c,n

Zc,n
` πROR

1
O

„
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˙* (4.82)

N4,nn “ 1
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(4.83)

for n “ m and

N1,nm “ 2πROR
1
O

Jnpk2m ´ k2nq
"
iρω2

ˆ
knUnUm

Zc,n
´ kmZc,mVnVm

˙
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2Zc,n
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N4,nm “ 2πROR
1
O

Jnpk2m ´ k2nq
"
iρω2

ˆ
kmUnUm

Zc,m
´ knZc,nVnVm

˙
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„
λpSnVm ` SmVnq ` 4μ
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(4.85)
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for n ‰ m. In order to find Jn, the scalar product in (3.19) has to be directly evaluated
for the expressions of �Xn and �Ym that are given in (4.75) and (4.76). Even though we
now have to consider Bessel functions of first and second kind, the ensuing integrals still
yield closed analytical solutions [73]. Ultimately we find that for hollow cylinders, Jn

takes the form

Jn “2πμ
ikn

Zc,nβ2
n

pk2n ` β2
nq

"
´ pk2n ` β2

nq
2k2npk2n ´ β2
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(4.86)

53





Chapter 5

Simulation results

5.1 Plates

In order to validate the implementation of the multimodal method for plates as described
in Chapter 3, a set of test cases for plates with varying thickness has been investigated.
For each test case, the displacement field in x-direction was simulated using the multi-
modal method as well as FEM for comparison. The simulations with the multimodal
method have been carried out using MATLAB R2007b (Ver. 7.5.0.342) with the initial
excitation limited to the A0-mode and N “ 17 as total number of simulated modes. For
the FEM simulations, COMSOL 4.0a (Ver. 4.0.0.982) was used for the first test case of
plates with symmetrically varying thickness and the test case of plates with asymmetri-
cally varying thickness and ANSYS 16.0 (Ver. 16.0.0.78) for all remaining test cases. A
mode selective excitation in favour of the A0-mode was used in all FEM simulations for
plates.

The waveguide was modelled as in the test cases used by Pagneux and Maurel, the ma-
terial parameters given in [17] have been repeated in Chapter 3 and translate into the
density ρ=1 mg/mm3 and the Lamé constants λ “ 2.48{p0.38π2q GPa and μ “ 4{π2

GPa which have been used in the implementation discussed in this thesis.

The smallest wavelengths contributing to the simulations can be expected to be approxi-
mately 1 mm. Therefore, the discretization step size in the direction of wave propagation
was set to Δx “ 0.1 mm for the multimodal method. In the FEM simulations carried out
with COMSOL, a mesh with triangular elements ranging from 0.01 mm to 0.5 mm in size
has been used while the simulations carried out in ANSYS used a mesh with rectangular
elements at a fixed size of 0.1 mm. The resolution in time dependence of the sound fields
in the FEM simulations was set to Δt “ 10´8 s.

5.1.1 Plates with symmetrically varying thickness

The examples used by Pagneux and Maurel in [17] are chosen as test cases for plates
with symmetrically varying thickness. While it has been shown in Chapter 3 that the
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implementation of the multimodal method used in this work reproduces the results pub-
lished in [17], these results have not been validated against a source independent from
the multimodal method. The geometry of the plate with symmetrically varying thickness
is described as in (3.67) by

hU pxq “ h0 ` ph1 ´ h0qe´ x2

L2 (5.1)

and
hLpxq “ ´h0 ´ ph1 ´ h0qe´ x2

L2 (5.2)

with h0 “ 0.7 mm, h1 “ 1.5 mm and L “ 1.5 mm.

Figure 5.2 a) shows the simulation result obtained via multimodal method for the dis-
placement field in x- direction for an excitation of the A0-mode at ω “ 0.5 MHz (f « 0.08
MHz) which corresponds to the test case documented in [17]: Figure 4a. For the FEM
simulations performed with COMSOL, the geometry of the waveguide was extended to
the left and to the right. For the mode selective excitation, a continuous wave excita-
tion has been applied in a way that the wavelength corresponding to the desired guided
wave mode at the given frequency was forced onto a limited region of the waveguide’s
surface. After running the simulation long enough for the front of the resulting guided
wave to propagate through the area of interest, an appropriate frame has been chosen
for comparison with the results obtained via multimodal method. The result of the FEM
simulation is shown in Figure 5.2 b). The corresponding dispersion curves for real valued
wave numbers are plotted in Figure 5.1. The results for this first test case in plates with
symmetrically varying thickness as shown in Figure 5.2 have already been published and
discussed in [74] but are included in this thesis as well to supplement the two more com-
plex examples.

Figure 5.1: Dispersion curves for real valued wave numbers corresponding to a plate with
symmetrically varying thickness for an excitation frequency of ω “ 0.5 MHz.

Figure 5.1 shows that the A0-mode is the only propagating A-mode throughout the entire
waveguide in the simulation results shown in Figure 5.2. The largest wave number in
Figure 5.1 is k “ 2.167 1{mm which corresponds to a minimum wavelength of approxi-
mately 2.90 mm.
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Figure 5.2: Displacement field in x-direction in a plate with symmetrically varying thick-
ness for an excitation frequency of ω “ 0.5 MHz simulated with a) multimodal method
and b) COMSOL with red for positive and blue for negative displacement.

As we can see, the results for the FEM simulations and the multimodal method are in
good agreement, however, on close examination some fine structures can be found in the
displacement field shown in Figure 5.2 a) which are in agreement with the plot shown
in [17]: Figure 4a but are missing in Figure 5.2 b). While these deviations have been
noted in [74], the explanation for their presence can be found in [24] and boils down
to a slow convergence with increasing number of evanescent modes. In fact it has been
confirmed in the course of this work that these fine structures diminish if simulations are
run with a higher total number of simulated modes N .

Figure 5.4 a) shows the simulation result obtained via multimodal method for the dis-
placement field in x-direction for an excitation of the A0-mode at ω “ 1.37 MHz (f « 0.22
MHz) which corresponds to the test case documented in [17]: Figure 4b. For comparison,
an FEM simulation has been performed with ANSYS in a similar way as described for
the previous test case, the result of which is shown in Figure 5.4 b). The dispersion
curves for real valued wave numbers are plotted in Figure 5.3.

Figure 5.3: Dispersion curves for real valued wave numbers corresponding to a plate with
symmetrically varying thickness for an excitation frequency of ω “ 1.37 MHz.

As can be seen in Figure 5.3, the displacement field shown in Figure 5.4 is composed
of the A0-mode which is propagating throughout the entire waveguide and the A1-mode
which is evanescent at the ends of the waveguide but can propagate near the center. The
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largest wave number to be found in Figure 5.3 is k “ 5.085 1{mm which corresponds to
a minimum wavelength of about 1.24 mm.

Figure 5.4: Displacement field in x-direction in a plate with symmetrically varying thick-
ness for an excitation frequency of ω “ 1.37 MHz simulated with a) multimodal method
and b) ANSYS with red for positive and blue for negative displacement.

The resulting trapped mode pattern1 is clearly visible in the plots obtained with the
multimodal method (Figure 5.4 a)) and the FEM simulation (Figure 5.4 b)). Thus the
results of both methods can be considered to be in good agreement.

Figure 5.6 a) shows the simulation result obtained via multimodal method for the dis-
placement field in x- direction for an excitation of the A0-mode at ω “ 1.5 MHz (f « 0.24
MHz) which corresponds to the test case documented in [17]: Figure 4c. The result of the
corresponding FEM simulation, which has been performed with ANSYS for comparison
is shown in Figure 5.6 b). The corresponding real valued wave numbers are shown in
Figure 5.5.

Figure 5.5: Dispersion curves for real valued wave numbers corresponding to a plate with
symmetrically varying thickness for an excitation frequency of ω “ 1.5 MHz.

In this test case, the A0 and the A1-mode are contributing to the displacement field as
illustrated in Figure 5.5 with the largest wave number being k “ 5.528 1{mm and thus
the minimum wavelength being approximately 1.14 mm.

1See [17] for a more extensive description.
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Figure 5.6: Displacement field in x-direction in a plate with symmetrically varying thick-
ness for an excitation frequency of ω “ 1.5 MHz simulated with a) multimodal method
and b) ANSYS with red for positive and blue for negative displacement.

Both modes are propagating throughout the entire waveguide and are coupled to each
other due to the variation of thickness. The patterns of the displacement field in x-
direction obtained with the multimodal method (Figure 5.6 a)) and the FEM simulation
(Figure 5.6 b)) are very similar. Small deviations might arise from an insufficient number
of evanescent modes in the multimodal approach. Another source of error might be the
fact that, while in the multimodal method the excitation is truly limited to the A0-mode,
the mode selective excitation in FEM simulations has to be accomplished by modelling
the excitation pattern to match the desired mode and might not yield perfect results.
By and large the displacement field obtained with the multimodal method matches the
one found by using the commercially available FEM software.

5.1.2 Plates with asymmetrically varying thickness

While the extension of the multimodal method to plates with asymmetrically varying
thickness in itself is not essential for the subsequent adaptation to cylindrical geometries,
it does provide some insight into the effect of breaches in the waveguide’s symmetry and
how to handle coupling between different families of modes. Therefore, it seems worth-
while to briefly validate the implementation for such plates as well. For this purpose, the
first test case for plates with symmetrically varying thickness has been modified. The
geometry of the plate with asymmetrically varying thickness is described by

hU pxq “ h0 ` ph1 ´ h0qe´ x2

L2 (5.3)

and
hLpxq “ ´h0 (5.4)

with h0 “ 0.7 mm, h1 “ 1.5 mm and L “ 1.5 mm.

The simulation result for the displacement field in x-direction for an excitation of the
A0-mode at a frequency of ω “ 0.5 MHz (f « 0.08 MHz), obtained with the multimodal
method, is plotted in Figure 5.8 a). The FEM simulation used for comparison has
been performed in the same manner as described for the first test case in a plate with
symmetrically varying thickness by using COMSOL. The result can be found in Figure
5.8 b). The plot of the corresponding real valued wave numbers is presented in Figure
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5.7. While the results shown in Figure 5.8 have been previously published in [74], we will
discuss them once more in this thesis.

Figure 5.7: Dispersion curves for real valued wave numbers corresponding to a plate with
asymmetrically varying thickness for an excitation frequency of ω “ 0.5 MHz.

In this test case, both the A0 and the S0-mode are propagating modes throughout the
entire waveguide (see Figure 5.7) and even though only the A0-mode is excited initially,
both modes will be coupled to each other due to the asymmetric properties of the plate.
Therefore, the displacement field contains contributions of both the A0 and the S0-
mode. The largest wave number in Figure 5.7 is k “ 1.721 1{mm which corresponds to
a minimum wavelength of about 3.65 mm.

Figure 5.8: Displacement field in x-direction in a plate with asymmetrically varying
thickness for an excitation frequency of ω “ 0.5 MHz simulated with a) multimodal
method and b) COMSOL with red for positive and blue for negative displacement.

As can be seen, the displacement field calculated with the multimodal method (Figure
5.8 a)) is in good agreement with the one obtained from the FEM simulation (Figure
5.8 b)) even though the plot in Figure 5.8 a) shows some fine structures similar to those
observed in the first test case for a plate with symmetrically varying thickness which are
not reproduced by the FEM simulation.

5.2 Cylindrical rods

To test the adaptation of the multimodal method to cylindrical rods as described in
Chapter 4, displacement fields in r-direction have been calculated in a cylindrical rod of
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varying thickness for different frequencies using the multimodal method and subsequently
compared to the results of corresponding FEM simulations. The simulations with the
multimodal method have been carried out using MATLAB R2007b (Ver. 7.5.0.342)
with the initial excitation limited to the axissymmetric Lp0, 0q-mode. Compared to the
simulations carried out in plates, the total number of simulated modes was increased to
N “ 25. The FEM simulations were carried out with ANSYS 16.0 (Ver. 16.0.0.78) with
a mode selective excitation in favour of the Lp0, 0q-mode.

The waveguide was modelled in a similar way as for the simulations in plates. The
material is still described by the density ρ “ 1 mg/mm3 and the Lamé constants λ “
2.48{p0.38π2q GPa and μ “ 4{π2 GPa while the geometry is defined by

R “ R0 ` pR1 ´ R0qe´ z2

L2 (5.5)

with R0 “ 1 mm, R1 “ 1.5 mm and L “ 1.5 mm.

With the smallest expected wavelengths contributing to the simulations being expected
around 1 mm, the discretization step size in the direction of wave propagation was set
to Δz “ 0.1 mm for the multimodal method while the FEM simulations carried out in
ANSYS used a mesh with rectangular elements at a fixed size of 0.1 mm. The resolution
in time dependence of the sound fields in the FEM simulations was set to Δt “ 10´8 s.

The displacement field in r-direction for an excitation of the Lp0, 0q-mode at ω “ 1.25
MHz (f « 0.20 MHz) as obtained with the multimodal method is shown in Figure 5.10
a). In a similar procedure as used for the FEM simulations in plates, the rod was ex-
tended to the left and to the right in order to apply a mode selective excitation and allow
the front of the resulting guided waves to propagate through the region of interest. The
result has been plotted in Figure 5.10 b). Figure 5.9 shows the corresponding dispersion
curves of real valued wave numbers. The results for this first test case can also be found
in [75] but are included in this thesis as part of a more extensive validation of the imple-
mentation for cylindrical rods.

Figure 5.9: Dispersion curves for real valued wave numbers corresponding to a cylindrical
rod with varying thickness for an excitation frequency of ω “ 1.25 MHz.

61



Figure 5.10: Displacement field in r-direction in a cylindrical rod with varying thickness
for an excitation frequency of ω “ 1.25 MHz simulated with a) multimodal method and
b) ANSYS with red for positive and blue for negative displacement.

As can be seen in Figure 5.9, the Lp0, 0q-mode is the only propagating mode throughout
the entire waveguide in simulation results shown in Figure 5.10 with the largest wave
number being k “ 2.254 1{mm and thus a resulting smallest wavelength of approxi-
mately 2.79 mm. The simulation using the multimodal method (Figure 5.10 a)) and
the commercially available FEM software ANSYS (Figure 5.10 b)) both lead to identical
results for the investigated displacement field.

Figure 5.12 a) shows the simulation result obtained via multimodal method for the dis-
placement field in r- direction for an excitation of the Lp0, 0q-mode at ω “ 2.5 MHz
(f « 0.40 MHz). For comparison, an FEM simulation has been performed with ANSYS
in a similar way as described for the previous test case, the result of which is shown in
Figure 5.12 b). The corresponding real valued wave numbers have been plotted in Figure
5.11.

Figure 5.11: Dispersion curves for real valued wave numbers corresponding to a cylindri-
cal rod with varying thickness for an excitation frequency of ω “ 2.5 MHz.

As shown in Figure 5.11, Lp0, 0q and Lp0, 1q are propagating modes throughout the entire
waveguide while Lp0, 2q switches from an evanescent mode to a propagating mode at a suf-
ficient thickness. The largest wave number to be found in Figure 5.11 is k “ 6.125 1{mm
which corresponds to a wavelength of about 1.03 mm.
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Figure 5.12: Displacement field in r-direction in a cylindrical rod with varying thickness
for an excitation frequency of ω “ 2.5 MHz simulated with a) multimodal method and
b) ANSYS with red for positive and blue for negative displacement.

The results obtained with the multimodal method (Figure 5.12 a)) and through the FEM
simulation (Figure 5.12 b)) generally are in good agreement. On close examination there
appears to be a slight mismatch regarding the wavelength displayed in the displacement
field which becomes most noticeable at the end of the waveguide.

The simulation result for the displacement field in r-direction for an excitation of the
Lp0, 0q-mode at a frequency of ω “ 2.75 MHz (f « 0.44 MHz), obtained with the mul-
timodal method, is plotted in Figure 5.14 a). The FEM simulation used for comparison
has been performed using ANSYS. The result can be found in Figure 5.14 b). Figure
5.13 shows the real valued wave numbers corresponding to this test case.

Figure 5.13: Dispersion curves for real valued wave numbers corresponding to a cylindri-
cal rod with varying thickness for an excitation frequency of ω “ 2.75 MHz.

The displacement field shown in Figure 5.14 is composed of the axially symmetric modes
Lp0, 0q, Lp0, 1q and Lp0, 2q which are propagating modes throughout the entire wave-
guide (see Figure 5.13). The largest wave number in Figure 5.13 is k “ 6.783 1{mm
which corresponds to a minimum wavelength of approximately 0.93 mm. Even though
there are small local deviations, the displacement field calculated with the multimodal
method (Figure 5.14 a)) is very similar to the displacement field obtained from the FEM
simulation (Figure 5.14 b)). As in the previous test case, there seems to be a slight
mismatch between the multimodal and the FEM simulation regarding the predominant
wavelength displayed within the displacement field.
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Figure 5.14: Displacement field in r-direction in a cylindrical rod with varying thickness
for an excitation frequency of ω “ 2.75 MHz simulated with a) multimodal method and
b) ANSYS with red for positive and blue for negative displacement.

Figure 5.16 a) shows the simulation result obtained via multimodal method for the dis-
placement field in r- direction for an excitation of the Lp0, 0q-mode at ω “ 3.75 MHz
(f « 0.60 MHz). The result of the corresponding FEM simulation, which has been per-
formed with ANSYS is shown in Figure 5.16 b). The corresponding dispersion curves of
the real valued wave numbers are plotted in Figure 5.15.

Figure 5.15: Dispersion curves for real valued wave numbers corresponding to a cylindri-
cal rod with varying thickness for an excitation frequency of ω “ 3.75 MHz.

As shown in Figure 5.15 the modes Lp0, 0q, Lp0, 1q and Lp0, 2q contribute to the displace-
ment field in Figure 5.16 as propagating modes throughout the entire waveguide while the
Lp0, 3q-mode hits two Cutoff cross-sections located around the waveguide’s center. The
largest wave number in Figure 5.15 is k “ 9.323 1{mm, the corresponding wavelength is
approximately 0.67 mm. The result obtained by use of the multimodal method (Figure
5.16 a)) contains some artifacts in form of slight discontinuities within the sound field
around the center of the waveguide which hints to the fact that the multimodal method as
implemented in this work runs into numerical instabilities at these points. Nevertheless,
with the exception of those artifacts and other minor local deviations, the displacement
field obtained from the multimodal method (Figure 5.16 a)) can be considered to be in
good agreement with the result obtained from the FEM simulation (Figure 5.16 b)).
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Figure 5.16: Displacement field in r-direction in a cylindrical rod with varying thickness
for an excitation frequency of ω “ 3.75 MHz simulated with a) multimodal method and
b) ANSYS with red for positive and blue for negative displacement.

The artifacts observed in Figure 5.16 a) can be explained by investigating the dispersion
curves for the fourth test case chosen to validate the implementation for cylindrical rods.
Real and imaginary parts of the wave numbers have been plotted over the product of
frequency f and radius R in Figure 5.17 a) and Figure 5.17 b), respectively.

Figure 5.17: Dispersion curves of the cylindrical rod with varying radius for an excitation
frequency of ω “ 3.75 MHz split into a) real part and b) imaginary part of the wave
numbers plotted over frequency-radius product.

As can be seen in Figure 5.17 a), the real parts of the dispersion curves for the Lp0, 3q
and the Lp0, 4q-mode as well as the ones for the Lp0, 5q and the Lp0, 6q-mode show a
symmetric behaviour similar to that of an irregular Cutoff as described in Chapter 3
for different values of the fR product while the corresponding imaginary parts show
bifurcations at the same points (5.17 b)). It has been pointed out in Chapter 3 that the
modal basis loses its orthogonality at such points thus leading to ill conditioned matri-
ces during the process of solving the differential equations. Even though the simulation
performed with the multimodal method did not completely break down for the test case
investigated in this work, the fact that the wave numbers of two neighbouring modes
coincide at these critical points suggests that avoiding instabilities in their presence is
not trivial and that a simple extrapolation as used for passing over regular Cutoffs will
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not suffice2. At an irregular Cutoff, two neighbouring wavemodes coincide at a nonzero
real wave number while at the critical points observed in Figure 5.17 two neighbouring
wavemodes coincide at a purely imaginary wave number. Given this similarity it can be
expected that instabilities at both types of critical points can be avoided by the same
methods which will be discussed in Chapter 6.

5.3 Hollow cylinders

In order to test the adaptation of the multimodal method to hollow cylinders as described
in Chapter 4, displacement fields in r-direction have been calculated in a hollow cylinder
of varying outer radius RO and constant inner radius RI for different frequencies. The
results obtained by use of the multimodal method have been compared to those of cor-
responding FEM simulations. The simulations with the multimodal method have been
carried out using MATLAB R2007b (Ver. 7.5.0.342) with the initial excitation limited to
the axissymmetric Lp0, 0q-mode. Since the iterative procedure to improve the accuracy
of wave numbers showed a tendency to fail to reach the preset threshold more often with
increasing order of modes3, the total number of calculated modes has been limited to
N “ 17 as for the simulations in plates. The FEM simulations were carried out with
ANSYS 16.0 (Ver. 16.0.0.78) with a mode selective excitation in favour of the Lp0, 0q-
mode.

The hollow cylinder was modelled as a modified version of the previously used cylindrical
rod with the material described by the density ρ “ 1 mg/mm3 and the Lamé constants
λ “ 2.48{p0.38π2q GPa and μ “ 4{π2 GPa and the geometry defined by

RO “ R1 ` p2R0 ´ R1qe´ z2

L2 (5.6)

and
RI “ 0.5R0 (5.7)

with R0 “ 1 mm, R1 “ 1.5 mm and L “ 1.5 mm.

As in the previous geometries, the smallest wavelengths contributing to the simulations
can be expected to be approximately 1 mm. The discretization step size in the direction
of wave propagation was set to Δz “ 0.1 mm for the multimodal method. The FEM
simulations carried out in ANSYS used a mesh with rectangular elements at a fixed size
of 0.1 mm. A resolution of Δt “ 10´7 s has been used in time dependence of the sound
fields in the FEM simulations.

The displacement fields in r-direction are plotted in Figure 5.19 for an excitation of the
2This simple option has been tested regardless but, as expected, failed to produce satisfactory results.
3The desired threshold was set to 10´5. For a large number of wave numbers the iterative procedure

hit an ending condition at a functional value of the dispersion relation between 10´3 and 10´2. For few
individual wave numbers, the iterative procedure was terminated at a functional value of the dispersion
relation of about 10´1.
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Lp0, 0q-mode at ω “ 0.95 MHz (f « 0.15 MHz). The result obtained with the mul-
timodal method is shown in Figure 5.19 a) while the displacement field obtained from
FEM simulations carried out with ANSYS is plotted in Figure 5.19 b). The correspond-
ing dispersion curves of the real valued wave numbers have been plotted in Figure 5.18.

Figure 5.18: Dispersion curves for real valued wave numbers corresponding to a hollow
cylinder with varying outer radius for an excitation frequency of ω “ 0.95 MHz.

Figure 5.19: Displacement field in r-direction in a hollow cylinder with varying outer
radius for an excitation frequency of ω “ 0.95 MHz simulated with a) multimodal method
and b) ANSYS with red for positive and blue for negative displacement.

As shown in Figure 5.18, the Lp0, 0q-mode is the only propagating mode throughout the
entire waveguide in displacement field shown in Figure 5.19 with a maximum wave num-
ber of k “ 1.339 1{mm and thus a minimum wavelength of about 4.69 mm. The use of
different color scales in both tools notwithstanding, the multimodal method (Figure 5.19
a)) and the FEM simulation (Figure 5.19 b)) yield identical results for the displacement
field in r-direction.

Figure 5.21 a) shows the displacement fields in r-direction for an excitation of the Lp0, 0q-
mode at ω “ 1.55 MHz (f « 0.25 MHz). The displacement field obtained from FEM
simulations for comparison is plotted in Figure 5.21 b). Figure 5.20 shows the real valued
wave numbers corresponding to this test case.

In the case plotted in Figure 5.21 Lp0, 0q and Lp0, 1q are propagating modes throughout
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the entire waveguide while Lp0, 2q switches from an evanescent mode to a propagating
mode (see Figure 5.20). The largest wave number in Figure 5.20 is k “ 2.649 1{mm
which corresponds to a wavelength of approximately 2.37 mm.

Figure 5.20: Dispersion curves for real valued wave numbers corresponding to a hollow
cylinder with varying outer radius for an excitation frequency of ω “ 1.55 MHz.

Figure 5.21: Displacement field in r-direction in a hollow cylinder with varying outer
radius for an excitation frequency of ω “ 1.55 MHz simulated with a) multimodal method
and b) ANSYS with red for positive and blue for negative displacement.

The displacement field in r-direction which was calculated using the multimodal method
(Figure 5.21 a)) is in good agreement with the corresponding result from the FEM sim-
ulation (Figure 5.21 b)).

The simulation result for the displacement field in r-direction for an excitation of the
Lp0, 0q-mode at a frequency of ω “ 2.2 MHz (f « 0.35 MHz), obtained with the multi-
modal method, is plotted in Figure 5.23 a). The result of the FEM simulations used for
comparison can be found in Figure 5.23 b) while the corresponding dispersion curves of
the real valued wave numbers are plotted in Figure 5.22.

As shown in Figure 5.22, the displacement field shown in Figure 5.23 is composed of
the axially symmetric modes Lp0, 0q, Lp0, 1q and Lp0, 2q which are propagating modes
throughout the entire waveguide. The largest wave number to be found in Figure 5.22
is k “ 3.837 1{mm with a corresponding wavelength of about 1.64 mm. Even though
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some local minor deviations can be found, the multimodal method (Figure 5.23 a)) and
the FEM simulation (Figure 5.23 b)) yield the same result for the displacement field in
r-direction.

Figure 5.22: Dispersion curves for real valued wave numbers corresponding to a hollow
cylinder with varying outer radius for an excitation frequency of ω “ 2.2 MHz.

Figure 5.23: Displacement field in r-direction in a hollow cylinder with varying outer
radius for an excitation frequency of ω “ 2.2 MHz simulated with a) multimodal method
and b) ANSYS with red for positive and blue for negative displacement.

5.4 Efficiency compared to FEM

In order to evaluate its potential advantages, computation times for simulations using
the multimodal method were compared with those needed for FEM-simulation for the
simple test case of a 2 μs sinusburst excitation pulse with a center frequency of 2 MHz
propagating through waveguides with constant thickness. The waveguides were plates
and cylindrical rods made of isotropic steel defined by the density ρ “ 7.866 mg/mm3

and the Lamé constants λ “ 112.4 GPa and μ “ 81.4 GPa. To document the influence
of different geometric parameters in FEM as well as multimodal method, two different
values for the waveguide’s thickness (1 mm and 3 mm) have been combined with two
different values for the waveguide’s length (150 mm and 300 mm). The parameters for
the simulations were set up to ensure a short computation time without sacrificing a
significant amount of accuracy.
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5.4.1 Simulations in plates

The Simulations for pulse propagation through plates were performed on a server ded-
icated to numerical simulations which was equipped with two Intel(R) Xeon(R) CPU
X5650 @2.67 GHz processors (12 cores in total) and 94.6 GB RAM. Simulations using
the multimodal approach have been carried out in MATLAB R2012a (Ver. 7.14.0.739).
The smallest wavelength to be expected for the S0-mode is approximately 1.15 mm. In
the multimodal method, the discretization in x-direction was set to a step size of 0.1
mm. The FEM based simulations have been done in COMSOL 4.0a (Ver. 4.0.0.982)
with the mesh size ranging from a minimum of 0.01 mm to a maximum of 0.5 mm using
triangular elements. The resulting average element size was about 0.25 mm for d “ 1
mm and approximately 0.30 mm for d “ 3 mm. The simulations in plates run from t “ 0
to t “ 53 μs, using time steps of 0.1 μs and mode selective excitation of the S0-mode has
been applied. These simulations have been discussed in more detail in [74], the obtained
results for the computation times are repeated in Table 5.1.

Table 5.1: Computation times for the simulation of S0 pulse propagation through plates.

d “ 1 mm
L “ 150 mm

d “ 1 mm
L “ 300 mm

d “ 3 mm
L “ 150 mm

d “ 3 mm
L “ 300 mm

Multimodal method 35 s 63 s 36 s 62 s
COMSOL 314 s 560 s 628 s 1073 s

As can be seen, computation times increase approximately linearly with the plate length
in both simulation methods. An increase in plate thickness has basically no effect on the
computation time needed with the multimodal method while the calculation time needed
with COMSOL increased significantly. Given that the multimodal method reduces the
numerical effort to the direction of wave propagation, i.e. along the length of the plate,
this observation was to be expected. The notable point in Table 5.1 is that even for
the smallest plate geometry the computation time needed with the multimodal method
differs from those needed with FEM approximately by a factor of nine. For larger waveg-
uides the difference is even more pronounced and in the examples documented in Table
5.1 goes up to a factor of approximately 17. While in general computation times heavily
depend on the specific problem and neither the multimodal nor the FEM simulations
have been fully optimized, the choices of sampling rate in time dependence and mesh
size or discretization step size compared to frequency and wavelength as used here can be
considered representative for practical applications. Thus the obtained results confirm
that, compared to FEM, the use of the multimodal method could potentially shorten
the computation times needed for numerical simulations of wave propagation through a
waveguide by about one order of magnitude.
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5.4.2 Simulations in cylindrical rods

The simulations for pulse propagation through cylindrical rods were performed on a
desktop PC equipped with an Intel(R) Core(TM) i7 CPU 860 @2.80 GHz processor
(4 cores) and 8 GB RAM. Similar to the plate geometry, the smallest wavelength to
be expected for the Lp0, 0q-mode is approximately 1.15 mm. Simulations using the
multimodal method have been carried out in MATLAB R2007b (Ver. 7.5.0.342) with the
step size for the discretization in z-direction set to 0.1 mm. The FEM simulations have
been carried out using ANSYS 16.0 (Ver. 16.0.0.78). The mesh was fixed to an element
size of 0.1 mm using rectangular elements. In order to reduce the computation times in
ANSYS, the axisymmetric problems have been approximated by 2D-calculations. The
simulations in cylindrical rods run from t “ 0 to t “ 55 μs, using time steps of 0.1 μs with
mode selective excitation applied in favour of the Lp0, 0q-mode. While a more detailed
discussion of these simulations can be found in [75], the obtained computation times are
given in Table 5.2.

Table 5.2: Computation times for the simulation of Lp0, 0q pulse propagation through
cylindrical rods.

R “ 0.5 mm
L “ 150 mm

R “ 0.5 mm
L “ 300 mm

R “ 1.5 mm
L “ 150 mm

R “ 1.5 mm
L “ 300 mm

Multimodal method 46 s 83 s 55 s 100 s
ANSYS 382 s 899 s 1317 s 2686 s

Similar to the simulations in plates, computation times increase more or less linearly with
the rod length in both simulation methods. The computation time needed with ANSYS
increased significantly with larger radius R while the influence on computation times of
the multimodal approach were much less pronounced. The reason why in contrast to the
implementation for plates an increase in thickness leads to an increase in computation
time for the multimodal method is that calling a Bessel function in MATLAB is more
time consuming than calling a sine or cosine function. If the radius R is increased while
the discretization in r-direction is kept fixed, Bessel functions have to be evaluated more
often.

For the smallest geometry, the multimodal approach is still about 8 times faster than
FEM while for the largest waveguide, this difference increases up to a factor of about
27. These results were obtained using a 2D axisymmetric approximation in ANSYS. If
modes of higher order in circumferential direction were to be taken into account a full 3D
FEM simulation would be required which would significantly increase the computation
time of the FEM simulations. However, at the same time a larger number of different
families of modes would have to be included in the multimodal method in order to model
a non-axissymmetric excitation with sufficient accuracy which makes predictions about
the difference in computation times between FEM and multimodal method for a full 3D
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case, without testing an actual implementation, somewhat unreliable.
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Chapter 6

Conclusions and future work

6.1 Evaluation of the multimodal approach

The use of the multimodal method in applications for the simulation of guided waves
in elastic waveguides has been investigated. The implementation of the multimodal ap-
proach as suggested by Pagneux and Maurel [17] for plates with symmetrically varying
thickness was successfully reproduced and slightly modified to account for plates with
asymmetrically varying thickness as well. Furthermore, the multimodal approach has
been extended to cylindrical geometries and validated for axially symmetric guided wave
modes in cylindrical rods and hollow cylinders. While there remain some open prob-
lems that limit the use of the multimodal method for practical applications, the results
obtained in the investigated test cases are promising. By using the case of a pulse prop-
agation through a waveguide with constant thickness, it could be confirmed that the
multimodal method yields the potential to be at least one order of magnitude faster than
simulations with commercially available software based on the Finite Element Method
and becomes increasingly advantageous for thick walled waveguides.

It has been shown in Chapter 5, that the multimodal method provides displacement
fields very similar to those obtained from simulations with commercially available FEM
based software for different types of waveguides with varying thickness. Even though the
results of multimodal method and the Finite Element Method generally were in good
agreement, small deviations can arise for a variety of reasons. First and foremost it is
important to note that the multimodal method using physical guided wave modes of cor-
responding waveguides with constant thickness as basis will converge somewhat slowly
towards the physical displacement field of the waveguide with varying thickness [24]. If
an insufficient number of evanescent modes is used in addition to the propagating wave
modes, non-physical fine structures may arise in the displacement field obtained from the
multimodal method. In the two test cases for cylindrical rods displayed in Figure 5.12
and Figure 5.14, some slight deviations between in the periodicity of the displacement
fields obtained by use of the multimodal method and those extracted from FEM simu-
lations have been observed. When using ANSYS, time dependant simulations can lead
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to erroneous results in terms of wavelengths if the set value for time steps is too large.
However, this problem has been observed in FEM simulations that were carried out with
ANSYS at an early stage of this work and some care has been taken to avoid it in the
test cases documented in this thesis1. Another possible explanation is a slight difference
in the relative weights of the modes contributing to the displacement field. In the mul-
timodal method, starting values are set for the coefficient vector �a and the impedance
matrix Z while in FEM simulations a time dependant displacement is set on defined parts
of the waveguide’s surface as excitation. Even if the excitation is set to favour the lowest
order guided wave mode, the fact that it is applied to a limited area will effectively lead
to a range of excited wave numbers which might result into some energy being trans-
ferred into higher order propagating modes which in turn will lead to slightly different
compositions of the displacement fields in FEM simulations and the multimodal method
if these initial small contributions of higher order modes are neglected in the latter. In
general, it could be observed that differences between results obtained via multimodal
methods and those obtained from FEM simulations are larger if more propagating modes
are involved. While the aforementioned imperfections in the mode selective excitation
in FEM simulations offers an explanation for this, another contributing factor might be
that the total number of calculated modes N was fixed for all test cases in one type
of waveguide which might lead to a decrease in accuracy as less additional evanescent
modes are considered for a higher number of propagating modes.

As discussed in Chapter 3, a key requirement for a successful application of the multi-
modal method is a sufficient accuracy of the wave numbers involved. More precisely, the
functional value of the dispersion relation has to be close to zero for the wave numbers
used in the multimodal method. As pointed out in Chapter 3, the tolerable deviation of
wave numbers from actual zeros of the dispersion relation decreases with increasing fre-
quency. Since the achievable accuracy of wave numbers is limited by the machine epsilon,
this implies the existance of a critical frequency for any given waveguide above which the
multimodal method will start to fail. In this work, no fixed accuracy was imposed on
the calculated wave numbers. Instead an iterative procedure has been used to gradually
improve the wave number’s accuracy until the functional value of the dispersion relation
drops below a preset threshold. Practical experience with this method have shown that
the iterative procedure can run into a state which requires to terminate it before reach-
ing the desired threshold. This has been observed for guided wave modes of high order
which suggests that there is also a limit on the total number of calculated modes N .
While the specific maximum value of N will depend on the type of waveguide as well as
other parameters, it can be stated that this issue is more prominent for hollow cylinders
where the density of dispersion curves is higher than for cylindrical rods or plates where
the equivalent of L-modes splits into two separate families namely A- and S-modes. In
addition, the iterative procedure can become expensive in terms of computation time if

1In fact the time steps of 10´8 to 10´7 s that have been chosen in the simulations documented in
Chapter 5 provide sampling rates for the resolution of time dependence that are significantly higher
than the frequencies involved in the simulations which should reliably eliminate this particular source of
errors.
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a large number of complex wave numbers have to be processed for different values for
thickness or frequency. For some of the test cases documented in Chapter 5, the time
needed for the iterative improvement of wave numbers made up about 90 percent of
the total computation time thus potentially negating the advantage of the multimodal
method over FEM. If a large number of simulations has to be conducted in the same
waveguide, this can be compensated by computing the wave numbers for a sufficiently
large range of frequencies and storing them in a look up table for later use thereby re-
ducing the computationally expensive iterative improvement of wave numbers to a one
time effort.

One interesting feature of the multimodal method is that information about individual
contributions of single guided wave modes are easily accessible. As shown in (3.27) and
(3.28), entries in the coefficient vectors �a and �b correspond to individual modes of a wave-
guide with constant thickness. Using (3.29) and (3.30), the coefficients cń and cǹ for left
going and right going n-th guided wave mode can be extracted from an and bn which
provides detailed information about reflection and energy transfer for every individual
mode. As has been pointed out by Pagneux and Maurel in [17], the results obtained
via multimodal method can also be used to calculate local reflection and transmission
coefficients at any point along the waveguide.

6.2 Possible application in structural health monitoring and
non-destructive testing of wheelset-axles

Figure 6.1: Inner radius and various values for the thickness of wheelset-axles.

After evaluating the extension of the multimodal method to cylindrical rods and hollow
cylinders in general, the specific application on wheelset-axles will be discussed in this
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section. The transition between different outer radii including realistic measures for the
inner radius and different values of the thickness in a wheelset-axle is illustrated in Figure
6.1 with the position of the central axis marked by a dash-dotted line.

Given the limitations in the applicability of the multimodal method in terms of frequency
f and maximum number of calculated modes N which have been pointed out in the pre-
vious section and considering the geometric parameters and frequencies used in the test
cases in Chapter 5, a reliable application of the multimodal method in wheelset-axles can
be expected for frequencies up to f « 100 kHz.

For a practical application on real waveguides, a couple of points will have to be ad-
dressed. In the simulations documented in Chapter 5, some care has been taken to avoid
the presence of irregular Cutoffs within the waveguide and thus corresonding numerical
instabilities in the multimodal method. In a realistic scenario, the geometry of the wave-
guide is determined and the choice of frequencies limited by the available transducers.
Therefore, an effective treatment of irregular Cutoffs and equivalent points of instabil-
ity (e.g. a coincidence of neighbouring modes at a nonzero imaginary value) has to be
implemented in order to ensure a more general applicability. Another potential issue is
the variation of thickness itself. As can be seen in Figure 6.1, the function that describes
the change of the outer radius RO along the direction of wave propagation in a realis-
tic wheelset-axle contains some points where it is not differentiable. These points will
cause artifacts in the numerical differentiation if left unchecked. In Chapter 3, a similar
problem has been addressed with respect to Cutoffs as non-differentiable points in com-
plex dispersion curves. The suggested solutions for wave numbers was to identify critical
points in knpzq2 and split the function at these points in order to perform a piecewise
numerical differentiation. For applications on wheelset-axles, a similar procedure would
have to be applied on ROpzq. Finally, the calculated sound fields inside the waveguide
might deviate from the actual sound field if the initial excitation of modes is modelled in-
correctly, especially if a large number of modes can potentially propagate. This problem
could be avoided by either projecting the given excitation onto the modal basis in order
to determine the initial weights or by modelling the response to a given excitation with
a different method (e.g. FEM or SBFEM) and to extract information about the relative
weight of excited guided wave modes from the results before continuing to simulate the
signal propagation through the waveguide via multimodal method.

With the state of the adaptation to cylindrical waveguides documented in this thesis, the
multimodal method could be used in a limited manner for the structural health monitor-
ing of wheelset-axles. If an axially symmetric excitation is applied, the wave propagation
through a waveguide without any breeches of axial symmetry can be simulated. If sig-
nificant deviations between a measured signal and the simulated signal are observed,
they will arise from deviations of the real wave guide from perfect axial symmetry (e.g.
cracks). This would allow to detect the presence of flaws but not their classification. In
order to classify flaws in a testing scenario, a large number of simulations would have

2or knpxq in case of plates
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to be carried out to determine the influence of different positions and sizes of flaws on
an ultrasound pulse propagating through the axle. In particular this would require an
extension to guided wave modes of higher circumferential order to simulate the coupling
into non-axially symmetric wave modes and thus estimate which contributions of such
modes to a measured signal have to be expected for different flaws.

6.3 Outlook

For future works, a couple of goals should be addressed. Some of the most important key
points in the further development of a tool for simulations of guided wave propagation
in wheelset-axles based on the multimodal method will be discussed in this section to
conclude this thesis.

As pointed out before, covering more than just axially symmetric L-modes in simulations
would be desirable for a variety of reasons. In the current implementation, this would
require an extension of the multimodal method itself and an extension of the calculation
of wave numbers via spectral decomposition method. Judging by the experiences made
in the extension of the multimodal method to plates with asymmetrically varying thick-
ness, the matrix equations used in the multimodal method would have to be reorganized
in a block-representation with off-diagonal blocks describing coupling between different
families of modes. While this was restricted to A- and S-modes in plates, cylindrical
waveguides may contain an infinite number of different families of F -modes (i.e. modes
of higher circumferential order). As a result, non-axially symmetric contributions would
have to be approximated by truncating the calculated F -modes (described by F pm,nq)
not only at a maximum radial order n “ N but also at a maximum circumferential order
m “ M . Further investigations would be required in order to identify possible conver-
gence issues arising from this truncation.

For further development towards an unrestricted practical applicability of the multimodal
method, a stable treatment of irregular Cutoffs and their counterparts on the imaginary
axis is imperative. Pagneux et al. initially suggested the use of solvers for differential
equations using an adaptive step size to pass over points of instability [17] and in fact
it might be worth testing different implementations of such solvers to determine which
offers the best performance for the particular problem. However, in later works (e.g. [24]
and [25]) they apparently opted to use a non-physical orthogonal basis instead of phys-
ical modes of corresponding waveguides with constant thickness in a so called improved
multimodal method. This does offer the advantage that physical Cutoffs will no longer
be associated with instabilities in the multimodal method, however, the functions used in
the new basis could contain other (non-physical) Cutoffs that are associated with similar
problems. If the basis functions do not resemble physical guided wave modes, it is not
as straightforward to see which steps have to be taken in order to ensure that an overlap
of these functions converges towards a physical solution for the given waveguide. Given
that the published applications of the improved multimodal method seem to be limited to
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aeroacoustic applications, some additional work might be required to adapt the method
to elastic waveguides. Another minor disadvantage of using a non-physical basis is that
information about the behaviour of specific guided wave modes can not be accessed di-
rectly anymore. In order to achieve reliable stability of the multimodal method, the
best approach might be to transform equations between two different orthogonal bases
as needed to avoid points of instability entirely.

Another interesting point mentioned in the description of the improved multimodal
method [24] with respect to aeroacoustic applications, is the introduction of a boundary
mode which is constructed specifically to account for the physical boundary conditions
of a waveguide with varying cross-section. This would allow to greatly reduce the total
number of calculated modes N and thus the computational effort since, according to [24],
considering all propagating modes, one evanescent mode and the boundary mode would
be sufficient. For future work, it could be worthwhile to investigate how a boundary
mode would have to be constructed for an elastic waveguide in order to increase the
efficiency of the implementation.

Since the iterative improvement of the accuracy of wave numbers is the most time con-
suming step in the current implementation, it is the most promising area for investigating
options to further reduce the computation time. Possible approaches to accomplish this
goal could include either the optimization of the currently implemented method or an
evaluation of possible alternatives like calculations of wave numbers based on SBFEM3.

3see e.g. [58–61]
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Appendix A

Dispersion relation of hollow
cylinders

The dispersion relation of a hollow cylinder can be written in the form

1

RORI

´
D̃1 ` D̃2 ` D̃3 ` D̃4 ` D̃5 ` D̃6

¯
“ 0 (A.1)

with

D̃1 “pk2 ´ β2q2 rJ1pβROqY1pβRIq ´ J1pβRIqY1pβROqs
¨ “`pk2 ´ β2qROY0pαROq ` 2αY1pαROq˘ `pk2 ´ β2qRIJ0pαRIq ` 2αJ1pαRIq˘
´ `pk2 ´ β2qRIY0pαRIq ` 2αY1pαRIq˘ `pk2 ´ β2qROJ0pαROq ` 2αJ1pαROq˘‰

(A.2)

D̃2 “4k2pk2 ´ β2qα rY1pαROqY1pβRIq ´ Y1pαRIqY1pβROqs
¨ “pβROJ0pβROq ´ J1pβROqq `pk2 ´ β2qRIJ0pαRIq ` 2αJ1pαRIq˘
´ pβRIJ0pβRIq ´ J1pβRIqq `pk2 ´ β2qROJ0pαROq ` 2αJ1pαROq˘‰ (A.3)

D̃3 “4k2pk2 ´ β2qα rJ1pβROqY1pαRIq ´ J1pβRIqY1pαROqs
¨ “pβROY0pβROq ´ Y1pβROqq `pk2 ´ β2qRIJ0pαRIq ` 2αJ1pαRIq˘
´ pβRIY0pβRIq ´ Y1pβRIqq `pk2 ´ β2qROJ0pαROq ` 2αJ1pαROq˘‰ (A.4)

D̃4 “4k2pk2 ´ β2qα rJ1pαROqY1pβRIq ´ J1pαRIqY1pβROqs
¨ “`pk2 ´ β2qROY0pαROq ` 2αY1pαROq˘ pβRIJ0pβRIq ´ J1pβRIqq
´ `pk2 ´ β2qRIY0pαRIq ` 2αY1pαRIq˘ pβROJ0pβROq ´ J1pβROqq‰ (A.5)

D̃5 “4k2pk2 ´ β2qα rJ1pαROqJ1pβRIq ´ J1pαRIqJ1pβROqs
¨ “pβROY0pβROq ´ Y1pβROqq `pk2 ´ β2qRIY0pαRIq ` 2αY1pαRIq˘
´ pβRIY0pβRIq ´ Y1pβRIqq `pk2 ´ β2qROY0pαROq ` 2αY1pαROq˘‰ (A.6)
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D̃6 “16k4α2 rJ1pαROqY1pαRIq ´ J1pαRIqY1pαROqs
¨ rpβROY0pβROq ´ Y1pβROqq pβRIJ0pβRIq ´ J1pβRIqq
´ pβRIY0pβRIq ´ Y1pβRIqq pβROJ0pβROq ´ J1pβROqqs .

(A.7)

The factor 1{pRORIq could be omitted in (A.1), however, doing so would affect the results
of an iterative procedure to shift an approximate value of a wave number k towards a
dispersion curve until the absolute value of (A.1) sinks below a preset threshold as applied
in this work.
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Appendix B

Derivation of matrix elements in N1
and N4

B.1 Plates

The entries of matrix N1 and matrix N4 are given by (3.35) and (3.38) respectively.
In order to find a closed analytical expression for these entries, the scalar productsA

Bx �Xm

ˇ̌̌
�Yn

E
and

A
Bx�Ym

ˇ̌̌
�Xn

E
have to be evaluated.

The limits of the integration in y-direction that has to be performed to calculate the
scalar products are the upper and lower plate surface hU and hL. For a plate with
varying thickness hU and hL are functions of x which means that integration in y- and
differentiation in x-direction are no longer commutative. If the x dependent shift in y-
direction is applied as in Chapter 3 to account for asymmetrically varying thickness, the
commutator between the differential and integral operator is»—–Bxfpx, y ´ h̃q,

hUż
hL

fpx, y ´ h̃qdy
fiffifl “ pBxhU qfpx, h̄q ´ pBxhLqfpx,´h̄q. (B.1)

Using this commutator it is easy to show that the biorthogonality relation (3.19) leads
to

pBxJnqδnm “
A

Bx �Xn

ˇ̌̌
�Ym

E
`

A
�Xn

ˇ̌̌
Bx�Ym

E
`pBxhU q �Xnph̄q�Ymph̄q´pBxhLq �Xnp´h̄q�Ymp´h̄q.

(B.2)
The last term in (B.2) can be simplified by taking into account that σxy,np˘h̄q “ 0
for Lamb-modes under the boundary condition of traction free surfaces. The expression
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(3.35) for N1 can now be rewritten as

´JnN1,nm “
A

Bx �Xm

ˇ̌̌
�Yn

E
“ 1

2

´A
Bx �Xm

ˇ̌̌
�Yn

E
`

A
Bx �Xm

ˇ̌̌
�Yn

E¯
“ 1

2

´A
Bx �Xm

ˇ̌̌
�Yn

E
´

A
�Xm

ˇ̌̌
Bx�Yn

E
` BxJn

¯
` 1

2

`pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘
“ 1

2
pBxJnqδnm ` 1

2

ˆA
Bx �Xm

ˇ̌̌ iknZc,n

iknZc,n

�Yn

F
´

B
ikm
ikm

�Xm

ˇ̌̌̌
Bx

ˆ
Zc,n

Zc,n

�Yn

˙F˙
` 1

2

`pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘
“ 1

2
pBxJnqδnm ` 1

2

BxZc,n

Zc,n
Jnδnm

` 1

2Zc,n

ˆ
1

ikn

A
Bx �Xm

ˇ̌̌
iknZc,n

�Yn

E
´ 1

ikm

A
ikm �Xm

ˇ̌̌
BxpZc,n

�Ynq
E˙

` 1

2

`pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘
“ 1

2
pBxJnqδnm ` 1

2

BxZc,n

Zc,n
Jnδnm

` 1

2

`pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘
` 1

2Zc,n

¨̊
˚̋ 1

ikn

A
Bx �Xm

ˇ̌̌
G �Xn

E
´ 1

ikm

A
FZc,m

�Ym

ˇ̌̌
BxpZc,n

�Ynq
E

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
“B

‹̨‹‚
(B.3)

If �Z1 “ pz11, z12qT and �Z2 “ pz21, z22qT are two arbitrary vectors, the operators F and
G given in (3.12) and (3.13) have the following properties (the corresponding proof can
be found in [17])A

F �Z1

ˇ̌̌
�Z2

E
“

A
�Z1

ˇ̌̌
F �Z2

E
` f1 rz11z22 ´ z12z21shU

hL
` f2 rz12Byz22 ´ pByz12qz22shU

hL
(B.4)A

�Z1

ˇ̌̌
G �Z2

E
“

A
G �Z1

ˇ̌̌
�Z2

E
´ rz12z21 ´ z11z22shU

hL
. (B.5)

If the term B, which still has to be evaluated in (B.3), is written as

B “ 1

2ikn

´A
Bx �Xm

ˇ̌̌
G �Xn

E
`

A
Bx �Xm

ˇ̌̌
G �Xn

E¯
´ 1

2ikm

´A
FZc,m

�Ym

ˇ̌̌
BxpZc,n

�Ynq
E

`
A
FZc,m

�Ym

ˇ̌̌
BxpZc,n

�Ynq
E¯

,

(B.6)
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(B.4), (B.5) and the identity (3.8) can be used to obtain

B “ 1

2ikn

´A
Bx �Xm

ˇ̌̌
G �Xn

E
`

A
GBx �Xm

ˇ̌̌
�Xn

E¯
` 1

2ikn

`pBxhU qpByσxy,mqph̄qux,nph̄q ´ pBxhLqpByσxy,mqp´h̄qux,np´h̄q˘
´ 1

2ikm

´A
FZc,m

�Ym

ˇ̌̌
BxpZc,n

�Ynq
E

`
A
Zc,m

�Ym

ˇ̌̌
FBxpZc,n

�Ynq
E¯

` 1

2ikm
pBxhU qZc,muy,mph̄qZc,npByσyy,nqph̄q

´ 1

2ikm
pBxhLqZc,muy,mp´h̄qZc,npByσyy,nqp´h̄q

(B.7)

With G applied as given in (3.13), we obtainA
Bx �Xm

ˇ̌̌
G �Xn

E
`

A
GBx �Xm

ˇ̌̌
�Xn

E
“2ρω2 xBxux,m| ux,ny ` 2

μ
xBxσxy,m| σxy,ny

` xBxux,m| Byσxy,ny ` xByBxσxy,m| ux,ny
´ xBxσxy,m| Byux,ny ´ xByBxux,m| σxy,ny .

(B.8)

Limiting (B.8) to n “ m and using the commutator (B.1) finally leads toA
Bx �Xn

ˇ̌̌
G �Xn

E
`

A
GBx �Xn

ˇ̌̌
�Xn

E
“Bx

A
�Xn

ˇ̌̌
G �Xn

E
´ ρω2

`pBxhU qu2x,nph̄q ´ pBxhLqu2x,np´h̄q˘
´ pBxhU qux,nph̄qpByσxy,nqph̄q
` pBxhLqux,np´h̄qpByσxy,nqp´h̄q.

(B.9)

In a similar way we findA
FZc,n

�Yn

ˇ̌̌
BxpZc,n

�Ynq
E

`
A
Zc,n

�Yn

ˇ̌̌
FBxpZc,n

�Ynq
E

“Bx
A
Zc,n

�Yn

ˇ̌̌
FZc,n

�Yn

E
` ρω2Z2

c,npBxhU qu2y,nph̄q
´ ρω2Z2

c,npBxhLqu2y,np´h̄q
` iknZc,npBxhU qux,nph̄qσxx,nph̄q
´ iknZc,npBxhLqux,np´h̄qσxx,np´h̄q
` Z2

c,npBxhU quy,nph̄qpByσyy,nqph̄q
´ Z2

c,npBxhLquy,np´h̄qpByσyy,nqp´h̄q
(B.10)

and thus

B “ iρω2

2kn

“pBxhU q `
u2x,nph̄q ` Z2

c,nu
2
y,nph̄q˘ ´ pBxhLq `

u2x,np´h̄q ` Z2
c,nu

2
y,np´h̄q˘‰

´ Zc,n

2

“pBxhU qux,nph̄qσxx,nph̄q ´ pBxhLqux,np´h̄qσxx,np´h̄q‰ (B.11)
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If (B.11) is inserted into (B.3) we obtain the expression for diagonal elements of N1 given
in (3.40). The diagonal elements for N4 as given in (3.41) are obtained by following the
same steps as outlined for N1 while starting from (3.38) instead of (3.35).

In order to find closed analytical expressions for the off-diagonal elements of N1, it is
convenient to rewrite (B.3) as

2pk2m ´ k2nqJnN1,nm “ pk2n ´ k2mq `pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘
` pk2n ´ k2mq

¨̊
˚̋BxJn

2
δnmloooomoooon

“0 for n‰m

`
A

Bx �Xm

ˇ̌̌
�Yn

E
´

A
�Xm

ˇ̌̌
Bx�Yn

E‹̨‹‚
“ pk2n ´ k2mq `pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘

`
A

Bx �Xm

ˇ̌̌
k2n�Yn

E
´

A
k2mBx �Xm

ˇ̌̌
�Yn

E
´

A
�Xm

ˇ̌̌
k2nBx�Yn

E
`

A
k2m �Xm

ˇ̌̌
Bx�Yn

E
“ pk2n ´ k2mq `pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘

`
A

Bx �Xm

ˇ̌̌
k2n�Yn

E
´

A
Bxpk2m �Xmq

ˇ̌̌
�Yn

E
` 2kmpBxkmq

A
�Xm

ˇ̌̌
�Yn

E
looooomooooon
“0 for n‰m

´
A
�Xm

ˇ̌̌
Bxpk2n�Ynq

E
` 2knpBxknq

A
�Xm

ˇ̌̌
�Yn

E
looooomooooon
“0 for n‰m

`
A
k2m

�Xm

ˇ̌̌
Bx�Yn

E
“ pk2n ´ k2mq `pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘

´
A

Bx �Xm

ˇ̌̌
GF�Yn

E
`

A
BxpFG �Xmq

ˇ̌̌
�Yn

E
`

A
�Xm

ˇ̌̌
BxpGF�Ynq

E
´

A
FG �Xm

ˇ̌̌
Bx�Yn

E ,.- “ B

(B.12)

By using the properties (B.4) and (B.5) of F and G as well as the matrix forms (3.12)
and (3.13), (3.20) and the identity (3.8), it can be shown that

B “ ikn
Zc,n

rpBxσxy,mqux,n ` ux,mpBxσxy,nshU
hL

´ ikmZc,m rpBxσyy,mquy,n ` uy,mpBxσyy,nqshU
hL

.

(B.13)
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Considering the commutator (B.1) and the boundary conditions of traction free surfaces
(B.13) translates into

B “ ´ ikn
Zc,n

pBxhU q `pByσxy,mqph̄qux,nph̄q ` ux,mph̄qpByσxy,nqph̄q˘
` ikn

Zc,n
pBxhLq `pByσxy,mqp´h̄qux,np´h̄q ` ux,mp´h̄qpByσxy,nqp´h̄q˘

` ikmZc,mpBxhU q `pByσyy,mqph̄quy,nph̄q ` uy,mph̄qpByσyy,nqph̄q˘
´ ikmZc,mpBxhLq `pByσyy,mqp´h̄quy,np´h̄q ` uy,mp´h̄qpByσyy,nqp´h̄q˘

.

(B.14)

From (3.12), (3.13), (3.20) and the identity (3.8) we find

Byσyy,n “ ´ρω2uy,n ´ ikn
Zc,n

σxy,n (B.15)

and
Byσxy,n “ ´ρω2ux,n ´ ikmZc,mσxx,n (B.16)

which leads to

B “ ´ 2iρω2kmZc,m

`pBxhU quy,mph̄quy,nph̄q ´ pBxhLquy,mp´h̄quy,np´h̄q˘
` 2iρω2 kn

Zc,n

`pBxhU qux,mph̄qux,nph̄q ´ pBxhLqux,mp´h̄qux,np´h̄q˘
´ pk2n ` k2mq `pBxhU qux,mph̄qσxx,nph̄q ´ pBxhLqux,mp´h̄qσxx,np´h̄q˘

.

(B.17)

If (B.17) is inserted back into (B.12), the expressions (3.42) and (3.44) are obtained
to describe the off-diagonal elements in N1. The expressions (3.43) and (3.45) for the
off-diagonal elements in N4 are obtained by performing the same calculation steps while
starting from (3.38) instead of (3.35).

B.2 Cylindrical rods

For cylindrical rods the entries of matrix N1 and matrix N4 are given by (4.60) and
(4.63). In order to find a closed analytical expression for these entries, the scalar productsA

Bz �Xm

ˇ̌̌
�Yn

E
and

A
Bz �Ym

ˇ̌̌
�Xn

E
have to be evaluated which correspond to a double integral

over r and ϕ. Since the scope of this work is restricted to axially symmetric guided waves,
the integration over ϕ is trivial and simply leads to a factor 2π. The integration in r-
direction runs from the central axis of the rod r “ 0 to its outer radius r “ R.

The commutator between the differential and integral operator is»–Bzfpr, zq,
Rż
0

fpr, zqrdr
fifl “ pBzRqRfpR, zq. (B.18)
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Combining this commutator with the biorthogonality relation (3.19) expressed in cylin-
drical coordinates yields

pBzJnqδnm “
A

Bz �Xn

ˇ̌̌
�Ym

E
`

A
�Xn

ˇ̌̌
Bz �Ym

E
` 2πpBzRqR �XnpRq�YmpRq. (B.19)

If the boundary condition of traction free surfaces σrz,npRq “ 0 is taken into account and
steps similar to those outlined in (B.3) are performed, we obtain

´JnN1,nm “1

2
pBzJnqδnm ` 1

2

BzZc,n

Zc,n
Jnδnm ` πpBzRqRuz,mpRqσzz,npRq

` 1

2Zc,n

¨̊
˚̋ 1

ikn

A
Bz �Xm

ˇ̌̌
G �Xn

E
´ 1

ikm

A
FZc,m

�Ym

ˇ̌̌
BzpZc,n

�Ynq
E

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
“B

‹̨‹‚ (B.20)

Similar to (B.4) and (B.5) the matrix operators F and G for cylindrical rods have the
propertiesA
F �Z1

ˇ̌̌
�Z2

E
“

A
�Z1

ˇ̌̌
F �Z2

E
` 2π rf1rpz11z22 ´ z12z21q ` f2pz12Bzprz22q ´ pBzprz12qqz22qsR0

(B.21)A
�Z1

ˇ̌̌
G �Z2

E
“

A
G �Z1

ˇ̌̌
�Z2

E
´ 2π rrpz12z21 ´ z11z22qsR0 . (B.22)

If B is rewritten as in (B.6), the properties (B.21) and (B.22) and the identity (4.42)
can be used to obtain

B “ 1

2ikn

´A
Bz �Xm

ˇ̌̌
G �Xn

E
`

A
GBz �Xm

ˇ̌̌
�Xn

E¯
´ 1

2ikm

´A
FZc,m

�Ym

ˇ̌̌
BzpZc,n

�Ynq
E

`
A
Zc,m

�Ym

ˇ̌̌
FBzpZc,n

�Ynq
E¯

´ π

ikn
Ruz,npRqBzσrz,mpRq ´ π

ikm
RZc,mur,mpRqBzpZc,nσrr,npRqq.

(B.23)

Using the commutator »–Bzfpr, zq,
Rż
0

fpr, zqdr
fifl “ pBzRqfpR, zq (B.24)

it can be shown that

rruz,nBzσrz,msR0 “ ´pBzRqRuz,npRqpBrσrz,mqpRq (B.25)

and

rrZc,mur,nBzpZc,nσrr,nqsR0 “ ´pBzRqRZc,mur,mpRqZc,npBrσrr,nqpRq (B.26)
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and thus

B “ 1

2ikn

´A
Bz �Xm

ˇ̌̌
G �Xn

E
`

A
GBz �Xm

ˇ̌̌
�Xn

E¯
´ 1

2ikm

´A
FZc,m

�Ym

ˇ̌̌
BzpZc,n

�Ynq
E

`
A
Zc,m

�Ym

ˇ̌̌
FBzpZc,n

�Ynq
E¯

` π

ikn
pBzRqRuz,npRqpBrσrz,mqpRq ` π

ikm
pBzRqRZc,mur,mpRqZc,npBrσrr,nqpRq.

(B.27)

With G applied as given in (4.50), we obtainA
Bz �Xm

ˇ̌̌
G �Xn

E
`

A
GBz �Xm

ˇ̌̌
�Xn

E
“2ρω2 xBzuz,m| uz,ny ` 2

μ
xBzσrz,m| σrz,ny

`
B

Bzuz,m
ˇ̌̌̌
1

r
Brpσrz,nq

F
`

B
1

r
BrprBzσrz,mq

ˇ̌̌̌
uz,n

F
´ xBzσrz,m| Bruz,ny ´ xBrBzuz,m| σrz,ny .

(B.28)

Limiting (B.28) to n “ m and using the commutators (B.18) and (B.24) subsequently
leads toA

Bz �Xn

ˇ̌̌
G �Xn

E
`

A
GBz �Xn

ˇ̌̌
�Xn

E
“Bz

A
�Xn

ˇ̌̌
G �Xn

E
´ 2πρω2pBzRqRu2z,npRq
´ 2πpBzRqRuz,npRqpBzσrz,nqpRq.

(B.29)

A similar calculation yieldsA
FZc,n

�Yn

ˇ̌̌
BzpZc,n

�Ynq
E

`
A
Zc,n

�Yn

ˇ̌̌
FBzpZc,n

�Ynq
E

“Bz
A
Zc,n

�Yn

ˇ̌̌
FZc,n

�Yn

E
` 2πρω2Z2

c,npBzRqRu2r,npRq
` 2πiknpBzRqRuz,npRqσzz,npRq
` 2πZ2

c,npBzRqRur,npRqpBrσrr,nqpRq
` 4πμZ2

c,npBzRqur,npRqpBrur,nqpRq
´ 4πμZ2

c,n

BzR
R

u2r,npRq.
(B.30)

If (B.29) and (B.30) are inserted into (B.27), B can be written as

B “ iπ

kn
pBzRqRρω2

`
u2z,npRq ` Z2

c,nu
2
r,npRq˘ ´ πpBzRqRZc,nuz,npRqσzz,npRq

` 2μ
iπ

kn
pBzRqRZ2

c,nur,npRq
´

Br ur,n
r

¯
pRq.

(B.31)
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With the identity (4.42) and σrr,npRq “ 0 as well as f1 “ λ{pλ ` 2μq and f2 “ 4μpλ `
μq{pλ ` 2μq, we can rewrite

ur,npRq
´

Br ur,n
r

¯
pRq “ ur,npRq

ˆ
´ur,npRq

R2
` 1

R
pBrur,nqpRq

˙
“ ´ur,npRq

R

ˆ
f1

f2
σzz,npRq `

ˆ
2 ´ 2μ

f2

˙
ur,npRq

R

˙
“ ´1

4μpλ ` μq
1

R

ˆ
λur,npRqσrr,npRq ` 2μ

R
p3λ ` 2μqu2r,npRq

˙
.

(B.32)

From (B.32), (B.31) and (B.20) the expression for diagonal elements of N1 given in (4.64)
is obtained. The diagonal elements for N4 as given in (4.65) are obtained by following
the same steps as outlined for N1 while starting from (4.63) instead of (4.60).

In order to find closed analytical expressions for the off-diagonal elements of N1, (B.20)
is rewritten as

2pk2m ´ k2nqJnN1,nm “ pBzJnqδnmlooooomooooon
“0

`2pk2n ´ k2mqπpBzRqRuz,mpRqσzz,npRq

` pk2n ´ k2mq
´A

Bz �Xm

ˇ̌̌
�Yn

E
´

A
�Xm

ˇ̌̌
Bz �Yn

E¯
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“B

.
(B.33)

Taking the same steps as outlined in (B.12), it can be shown that

B “
A
�Xm

ˇ̌̌
BzpGF�Ynq

E
´

A
FG �Xm

ˇ̌̌
Bz �Yn

E
´

A
Bz �Xm

ˇ̌̌
GF�Yn

E
`

A
BzpFG �Xmq

ˇ̌̌
�Yn

E
(B.34)

By using the properties (B.21) and (B.22) of F and G as well as the matrix forms (4.49)
and (4.50), (3.20) and the identity (4.42), the expression (B.34) can be transformed into

B “2π
ikn
Zc,n

rrpuz,npBzσrz,mq ` pBzσrz,nquz,mqsR0
´ 2πikmZc,m rrpur,npBzσrr,mq ` pBzσrr,nqur,mqsR0 .

(B.35)

Considering the commutators (B.18) and (B.24) as well as the boundary conditions of
traction free surfaces this translates into

B “2πikmZc,mpBzRqR
´
ur,npRqpBrσrr,mqpRq ` pBrσrr,nqpRqur,mpRq

¯
´ 2π

ikn
Zc,n

pBzRqR
´
uz,npRqpBrσrz,mqpRq ` pBrσrz,nqpRquz,mpRq

¯
.

(B.36)
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From (4.49), (4.50), (3.20) and the identity (4.42) we find

B “2πpBzRqR
"
2iρω2

ˆ
knuz,npRquz,mpRq

Zc,n
´ kmZc,mur,npRqur,mpRq

˙
´ k2nσzz,npRquz,mpRq ´ knkm

Zc,m

Zc,n
uz,npRqσzz,mpRq

´ikmZc,m2μ
´
ur,npRq

´
Br ur,m

r

¯
pRq

´
Br ur,n

r

¯
pRqur,mpRq

¯)
.

(B.37)

If the procedure shown in (B.32) is used to eliminate differentiation in r-direction and
(B.37) is subsequently inserted back into (B.33), this results in the expression for the
off-diagonal elements in N1 given in (4.66). The expression (4.67) for the off-diagonal
elements in N4 is obtained by performing the same calculation steps while starting from
(4.63) instead of (4.60).

B.3 Hollow Cylinders

For hollow cylinders the entries of matrix N1 and matrix N4 are given by (4.78) and
(4.81). The closed analytical expression for these entries are found by evaluating the
double integral over r and ϕ in the scalar products

A
Bz �Xm

ˇ̌̌
�Yn

E
and

A
Bz �Ym

ˇ̌̌
�Xn

E
. Due

to the restriction to axially symmetric guided waves, the integration over ϕ only accounts
for a factor of 2π. The integration in r-direction runs from the inner radius r “ RI to
its outer radius r “ RO.

The commutator between the differential and integral operator is»—–Bzfpr, zq,
ROż
RI

fpr, zqrdr
fiffifl “ pBzROqROfpRO, zq ´ pBzRIqRIfpRI , zq. (B.38)

Viewing the case of cylindrical rods, we have already established that a second commu-
tator (B.24) will be required at a later stage in the calculations. For hollow cylinders
this second commutator takes the form»—–Bzfpr, zq,

ROż
RI

fpr, zqdr
fiffifl “ pBzROqfpRO, zq ´ pBzRIqfpRI , zq (B.39)

Combining the first commutator (B.38) with the biorthogonality relation (3.19) expressed
in cylindrical coordinates yields

pBzJnqδnm “
A

Bz �Xn

ˇ̌̌
�Ym

E
`

A
�Xn

ˇ̌̌
Bz �Ym

E
` 2π

´
pBzROqRO

�XnpROq�YmpROq ´ pBzRIqRI
�XnpRIq�YmpRIq

¯
.

(B.40)
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If the boundary conditions of traction free surfaces σrz,npROq “ 0 and σrz,npRIq “ 0 are
taken into account, we obtain

´JnN1,nm “1

2
pBzJnqδnm ` 1

2

BzZc,n

Zc,n
Jnδnm

` π
´

pBzROqROuz,mpROqσzz,npROq ´ pBzRIqRIuz,mpRIqσzz,npRIq
¯

` 1

2Zc,n

¨̊
˚̋ 1

ikn

A
Bz �Xm

ˇ̌̌
G �Xn

E
´ 1

ikm

A
FZc,m

�Ym

ˇ̌̌
BzpZc,n

�Ynq
E

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
“B

‹̨‹‚
(B.41)

by repeating steps similar to those outlined in (B.3) as we did for the case of cylindrical
rods. For hollow cylinders, the properties of the matrix operators F and G for cylindrical
rods (B.21) and (B.22) are modified intoA

F �Z1

ˇ̌̌
�Z2

E
“

A
�Z1

ˇ̌̌
F �Z2

E
` 2πf1 rrpz11z22 ´ z12z21qsRO

RI

` 2πf2 rz12Bzprz22q ´ pBzprz12qqz22sRO
RI

(B.42)

and A
�Z1

ˇ̌̌
G �Z2

E
“

A
G �Z1

ˇ̌̌
�Z2

E
´ 2π rrpz12z21 ´ z11z22qsRO

RI
. (B.43)

We can now use the properties (B.42) and (B.43) and the identity (4.42) to rewrite B
as has been done in (B.6) and obtain

B “ 1

2ikn

´A
Bz �Xm

ˇ̌̌
G �Xn

E
`

A
GBz �Xm

ˇ̌̌
�Xn

E¯
´ 1

2ikm

´A
FZc,m

�Ym

ˇ̌̌
BzpZc,n

�Ynq
E

`
A
Zc,m

�Ym

ˇ̌̌
FBzpZc,n

�Ynq
E¯

´ π

ikm

´
ROZc,mur,mpROqBzpZc,nσrr,npROqq ´ RIZc,mur,mpRIqBzpZc,nσrr,npRIqq

¯
´ π

ikn

´
ROuz,npROqBzσrz,mpROq ´ RIuz,npRIqBzσrz,mpRIq

¯
.

(B.44)

Using the commutators (B.38) and (B.39), we find

rruz,nBzσrz,msRO
RI

“ ´ pBzROqROuz,npROqpBrσrz,mqpROq
` pBzRIqRIuz,npRIqpBrσrz,mqpRIq (B.45)

and

rrZc,mur,nBzpZc,nσrr,nqsRO
RI

“ ´ pBzROqROZc,mur,mpROqZc,npBrσrr,nqpROq
` pBzRIqRIZc,mur,mpRIqZc,npBrσrr,nqpRIq (B.46)
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and subsequently

B “ 1

2ikn

´A
Bz �Xm

ˇ̌̌
G �Xn

E
`

A
GBz �Xm

ˇ̌̌
�Xn

E¯
´ 1

2ikm

´A
FZc,m

�Ym

ˇ̌̌
BzpZc,n

�Ynq
E

`
A
Zc,m

�Ym

ˇ̌̌
FBzpZc,n

�Ynq
E¯

` π

ikn

´
pBzROqROuz,npROqpBrσrz,mqpROq ´ pBzRIqRIuz,npRIqpBrσrz,mqpRIq

¯
` π

ikm
pBzROqROZc,mur,mpROqZc,npBrσrr,nqpROq

´ π

ikm
pBzRIqRIZc,mur,mpRIqZc,npBrσrr,nqpRIq.

(B.47)

The expression (B.28) remains valid for the case of hollow cylinders. If (B.28) is limited
to n “ m and the commutators (B.38) and (B.39) are used, we findA

Bz �Xn

ˇ̌̌
G �Xn

E
`

A
GBz �Xn

ˇ̌̌
�Xn

E
“Bz

A
�Xn

ˇ̌̌
G �Xn

E
´ 2πρω2

´
pBzROqROu

2
z,npROq ´ pBzRIqRIu

2
z,npRIq

¯
´ 2πpBzROqROuz,npROqpBzσrz,nqpROq
` 2πpBzRIqRIuz,npRIqpBzσrz,nqpRIq.

(B.48)

and with a similar calculationA
FZc,n

�Yn

ˇ̌̌
BzpZc,n

�Ynq
E

`
A
Zc,n

�Yn

ˇ̌̌
FBzpZc,n

�Ynq
E

“ Bz
A
Zc,n

�Yn

ˇ̌̌
FZc,n

�Yn

E
`2πρω2Z2

c,n

´
pBzROqROu

2
r,npROq ´ pBzRIqRIu

2
r,npRIq

¯
`2πikn

´
pBzROqROuz,npROqσzz,npROq ´ pBzRIqRIuz,npRIqσzz,npRIq

¯
`2πZ2

c,n

´
pBzROqROur,npROqpBrσrr,nqpROq ´ pBzRIqRIur,npRIqpBrσrr,nqpRIq

¯
`4πμZ2

c,n

´
pBzROqur,npROqpBrur,nqpROq ´ pBzRIqur,npRIqpBrur,nqpRIq

¯
´4πμZ2

c,n

ˆBzRO

RO
u2r,npROq ´ BzRI

RI
u2r,npRIq

˙
.

(B.49)
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If (B.48) and (B.49) are inserted into (B.47), B can be written as

B “ ´ π
´

pBzROqROZc,nuz,npROqσzz,npROq ´ pBzRIqRZc,nuz,npRIqσzz,npRIq
¯

` 2μ
iπ

kn
pBzROqROZ

2
c,nur,npROq

´
Br ur,n

r

¯
pROq

´ 2μ
iπ

kn
pBzRIqRIZ

2
c,nur,npRIq

´
Br ur,n

r

¯
pRIq

` iπ

kn
pBzROqROρω

2
`
u2z,npROq ` Z2

c,nu
2
r,npROq˘

´ iπ

kn
pBzRIqRIρω

2
`
u2z,npRIq ` Z2

c,nu
2
r,npRIq˘

.

(B.50)

With the identity (4.42) and the boundary conditions σrr,npROq “ 0 and σrr,npRIq “ 0
as well as f1 “ λ{pλ ` 2μq and f2 “ 4μpλ ` μq{pλ ` 2μq, we can rewrite

ur,npROq
´

Br ur,n
r

¯
pROq “ ´1

4μpλ ` μq

˜
λ
ur,npROqσrr,npROq

RO
` 2μp3λ ` 2μqu

2
r,npROq
R2

O

¸
(B.51)

and

ur,npRIq
´

Br ur,n
r

¯
pRIq “ ´1

4μpλ ` μq

˜
λ
ur,npRIqσrr,npRIq

RI
` 2μp3λ ` 2μqu

2
r,npRIq
R2

I

¸
(B.52)

using a similar procedure as in (B.32).

If only the special case of constant inner radius RI and thus BzRI “ 0 is viewed, the
expression for diagonal elements of N1 given in (4.82) can be obtained from (B.51), (B.50)
and (B.41). The diagonal elements for N4 as given in (4.83) are obtained by following
the same steps as outlined for N1 while starting from (4.81) instead of (4.78).

In order to find closed analytical expressions for the off-diagonal elements of N1, (B.41)
is rewritten as

2pk2m ´ k2nqJnN1,nm “ pBzJnqδnmlooooomooooon
“0

` pk2n ´ k2mq
´A

Bz �Xm

ˇ̌̌
�Yn

E
´

A
�Xm

ˇ̌̌
Bz �Yn

E¯
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“B

` 2pk2n ´ k2mqπpBzROqROuz,mpROqσzz,npROq
´ 2pk2n ´ k2mqπpBzRIqRIuz,mpRIqσzz,npRIq.

(B.53)

The expression given in (B.34) for B still holds for the case of hollow cylinders. By
using the properties (B.42) and (B.43) of F and G as well as the matrix forms (4.49)
and (4.50), (3.20) and the identity (4.42), this expression can be transformed into

B “2π
ikn
Zc,n

rrpuz,npBzσrz,mq ` pBzσrz,nquz,mqsRO
RI

´ 2πikmZc,m rrpur,npBzσrr,mq ` pBzσrr,nqur,mqsRO
RI

.

(B.54)
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Considering the commutators (B.38) and (B.39) as well as the boundary conditions of
traction free surfaces (B.54) translates into

B “2πikmZc,mpBzROqRO

´
ur,npROqpBrσrr,mqpROq ` pBrσrr,nqpROqur,mpROq

¯
´ 2πikmZc,mpBzRIqRI

´
ur,npRIqpBrσrr,mqpRIq ` pBrσrr,nqpRIqur,mpRIq

¯
´ 2π

ikn
Zc,n

pBzROqRO

´
uz,npROqpBrσrz,mqpROq ` pBrσrz,nqpROquz,mpROq

¯
` 2π

ikn
Zc,n

pBzRIqRI

´
uz,npRIqpBrσrz,mqpRIq ` pBrσrz,nqpRIquz,mpRIq

¯
.

(B.55)

Using (4.49), (4.50), (3.20) and the identity (4.42), B can finally be expressed as

B “2πpBzROqRO

"
2iρω2

ˆ
knuz,npROquz,mpROq

Zc,n
´ kmZc,mur,npROqur,mpROq

˙
´ k2nσzz,npROquz,mpROq ´ knkm

Zc,m

Zc,n
uz,npROqσzz,mpROq

´ikmZc,m2μ
´
ur,npROq

´
Br ur,m

r

¯
pROq

´
Br ur,n

r

¯
pROqur,mpROq

¯)
´ 2πpBzRIqRI

"
2iρω2

ˆ
knuz,npRIquz,mpRIq

Zc,n
´ kmZc,mur,npRIqur,mpRIq

˙
´ k2nσzz,npRIquz,mpRIq ´ knkm

Zc,m

Zc,n
uz,npRIqσzz,mpRIq

´ikmZc,m2μ
´
ur,npRIq

´
Br ur,m

r

¯
pRIq

´
Br ur,n

r

¯
pRIqur,mpRIq

¯)
.

(B.56)

If the differentiation in r-direction is eliminated as shown in (B.51) and (B.52) and
(B.56) is subsequently inserted back into (B.53), the special case of constant inner radius
RI results in the expression for the off-diagonal elements in N1 given in (4.84). The
expression (4.85) for the off-diagonal elements in N4 is obtained by performing the same
calculation while starting from (4.81) instead of (4.78).
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Appendix C

Analytical expressions for Q1 and
Q2

Using the shortened notation rA1 “ k2 ´ β2 (C.1)rA2 “ ´4k2α (C.2)

BJα “ A1ROJ0pαROq ` 2αJ1pαROq (C.3)

BY α “ A1ROY0pαROq ` 2αY1pαROq (C.4)

BJβ “ βROJ0pβROq ´ J1pβROq (C.5)

BY β “ βROY0pβROq ´ Y1pβROq (C.6)

CJβY β “ J1pβROqY1pβRIq ´ Y1pβROqJ1pβRIq (C.7)

CY βJα “ Y1pβROqJ1pαRIq ´ J1pαROqY1pβRIq (C.8)

CJαJβ “ J1pαROqJ1pβRIq ´ J1pβROqJ1pαRIq (C.9)

CY βY α “ Y1pβROqY1pαRIq ´ Y1pαROqY1pβRIq (C.10)

CY αJβ “ Y1pαROqJ1pβRIq ´ J1pβROqY1pαRIq (C.11)

CJαY α “ J1pαROqY1pαRIq ´ Y1pαROqJ1pαRIq, (C.12)

the terms Q1 and Q2 used in (4.69)-(4.72) can be expressed as

Q1 “ ´
rA1BJαCJβY β ` rA2BJβCY βJα ` rA2BY βCJαJβrA1BY αCJβY β ` rA2BJβCY βY α ` rA2BY βCY αJβ

(C.13)

and

Q2 “
rA1BJαCY αJβ ´ rA1BY αCJαJβ ` rA2BJβCJαY αrA1BJαCY βY α ´ rA1BY αCY βJα ´ rA2BY βCJαY α

. (C.14)
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Nomenclature

π Ratio of a circle’s circumference to its diameter

e Euler’s number

i Imaginary unit

� Identity matrix

δnm Kronecker’s deltaş
Integral

div Divergence operator

grad Gradient operator

Bj Derivative with respect to a spatial coordinate

Bt Derivative with respect to timeř
Sum

�∇ Nabla operator

r, ϕ, z Cylindrical coordinates

x, y, z Cartesian coordinates

t Time

Δf Discretization step size for frequencies

Δt Discretization step in time dependent simulations

Δx Discretization step size in x-direction

Δz Discretization step size in z-direction

λ, μ Lamé constants

C Elastic tensor
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ν Poisson ratio

ρ Material density

ε Strain tensor

εij Elements of the strain tensor

σ Stress tensor

σij Elements of the stress tensor

cosh Hyperbolic cosine

sinh Hyperbolic sine

tanh Hyperbolic tangentpHn, rHn Functions mixing first and second kind Bessel functions of nth order

Q1, Q2 Weight between Bessel functions of first and second kind in the imple-
mentation for hollow cylinders determined from boundary conditions

Jn Bessel functions of first kind and nth order

Yn Bessel functions of second kind and nth order

f, g Arbitrary functions

f1, f2, γ Functions of the Lamé constants

h Thickness of a plate

hL Lower surface of a plate

hU Upper surface of a plate

R Radius of a cylindrical rod

RI Inner radius of a hollow cylinder

RO Outer radius of a hollow cylinder

ᾱ, β̄, α, β Modified wavenumbers

cL Phase velocity of longitudinal waves in an isotropic infinite medium

cT Phase velocity of shear waves in an isotropic infinite medium

k Wave number

kL Wave number of the longitudinal wave in an infinite linear elastic medium

98



kT Wave number of the transverse wave in an infinite linear elastic medium

�u Displacement vector

uj Elements of the displacement vector

ω Radial frequency

f Frequency

Φ, �H Scalar and vector potential in a Helmholtz decomposition

Hj Elements of the vector potential in a Helmholtz decomposition

An-mode Antisymmetric Lamb-mode of nth order

Sn-mode Symmetric Lamb-mode of nth order

Lp0, nq-mode Axially symmetric longitudinal mode of nth order

T p0, nq-mode Axially symmetric torsional mode of nth order

F pm,nq-mode Flexural mode of mth circumferential and nth radial order

Δk{k Relative error in wave numbers

O,P Matrix operators in the linearized spectral decomposition

ψn, χn Orthogonal bases in the spectral decomposition method

�X , �Y Subvectors in the linearized spectral decomposition

�U, �V Vectors of expansion coefficients in the spectral decomposition

K Eigenvalues in the linearized spectral decomposition

N Number of calculated modes

Un, Vn Expansion coefficients in the spectral decomposition

ϑ Mixing angle of a mixed boundary condition

Sϑ Sine of the mixing angle of a mixed boundary condition

A,B,C,D Spectral decomposition matrices

Anm, Bnm, Cnm, Dnm Elements of spectral decomposition matrices

F,G Matrix operators in the multimodal method

Jn Normalization function used in the multimodal method

S Stress field at the waveguide’s surface
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U ,V Displacement fields at the waveguide’s surface

�a,�b Vectors of expansion coefficients in the multimodal method

�X, �Y Subvectors in the multimodal method containing one stress and one
displacement component

an, bn Expansion coefficients in the multimodal method

cǹ , cń Coefficients of right and left going waves in the multimodal method

N1,N2,N3,N4 Matrices describing coupling and propagation of modes in the multi-
modal method

N1,nm, N2,nm, N3,nm, N4,nm Elements of coupling and propagation matrices in the mul-
timodal method

Z Impedance matrix

Zc Characteristic impedance matrix

Zc,n Diagonal elements of the characteristic impedance matrix
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