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Abstract

The goal of this work is to investigate pattern formation proces-

ses on the solid-liquid interface during the crystal growth of GeSi.

GeSi crystals with cellular structure have great potential for appli-

cations in γ-ray and neutron optics. The interface patterns induce

small quasi-periodic distortions of the microstructure called mosa-

icity. Existence and properties of this mosaicity are important for

the application of the crystals. The properties depend on many fac-

tors; this dependence, is currently not known even not qualitative-

ly. A better understanding of the physics near the crystal surface

is therefore required, in order to optimise the growth process.

There are three main physical processes in this system: phase-

transition, diffusion and melt flow. Every process is described by its

own set of equations. Finite difference methods and lattice kinetic

methods are taken for solving these governing equations. We have

developed a modification of the kinetic methods for the advection-

diffusion and extended this method for simulations of non-linear

reaction diffusion equations.

The phase-field method was chosen as a tool for describing the

phase-transition. There are numerous works applied for different

metallic alloys. An attempt to apply the method directly to simu-

lation GeSi crystal growth showed that this method is unstable.

This instability has not been observed in previous works due to

the much smaller scale of simulations. We introduced a modified

phase-field scheme, which enables to simulate pattern formation

with the scale observed in experiment. A flow in the melt was ta-

ken in to account in the numerical model.

The developed numerical model allows us to investigate pattern
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formation in GeSi crystals. Modelling shows that the flow near the

crystal surface has impact on the patterns. The obtained patterns

reproduce qualitatively and in some cases quantitatively the expe-

rimental results.
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Zusammenfassung:

Das Ziel dieser Arbeit besteht darin, Mikrostrukturen, die während

des Wachstumsprozesses von GeSi-Einkristallen entstehen zu er-

forschen. GeSi-Kristalle mit zellularer Struktur haben ein hohes

Potential für die Anwendung in der Gamma- und in der Neutronen-

Optik. Die sich an der Phasengrenze ausbildene zellulare Struktur

verursacht entsprechende quasi-periodische Abweichungen in der

Kristallstruktur, die Mosaizität genannt werden. Die Existenz und

die Eigenschaften dieser Mosaizität sind entscheidend für die An-

wendung der Kristalle. Die Eigenschaften hängen von vielen Fak-

toren ab. Gegenwärtig sind diese Abhängigkeiten sogar qualita-

tiv noch nicht bekannt. Deswegen ist es notwendig, ein besseres

Verständnis für die Vorgänge an der Phasengrenze zu erhalten.

Dabei sind im wesentlichen drei physikalische Prozesse wich-

tig: Phasenübergang, Diffusion und Schmelzkonvektion. Jeder Pro-

zess wird durch entsprechende Gleichungen beschrieben. Für die

Lösung der Gleichungen wurden Finite-Differenzen-Methoden und

die kinetische Methoden angewandt. Wir haben eine Erweiterung

der kinetischen Methode für die Advektions-Diffusionsgleichungen

und die nichtlinearen Reaktions-Diffusions Gleichungen ent-

wickelt.

Die Phasenfeld-Methode wurde als ein Werkzeug für die Be-

schreibung des Phasenübergangs gewählt. Es gibt eine Vielzahl

von Arbeiten, die diese Methode auf die Erstarrung unterschiedli-

cher metallischer Legierungen anwenden. Bei der Anwendung der

Ansätze dieser Arbeiten auf die Kristallisation der GeSi-Kristalle

traten modellbedingte Instabilitäten auf. Diese Stabilitätsprobleme

wurden bei anderen Arbeiten nicht beobachtet, da die zu berech-
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nenden Strukturen wesentlich kleiner waren. Zur Lösung des Pro-

blems entwickelten wir eine modifizierte Phasenfeldgleichung, an-

hand welcher es möglich ist, die Simulation von entsprechend

großen Zellularstrukturen durchzuführen, wie sie im Experiment

beobachtet worden sind.

Der Algorithmus zur Lösung der Phasenfeldgleichung wurde mit

dem kinetischen Schema zur Lösung der Diffusions-Advektions-

Gleichung und dem Algorithmus zur Strömungsberechnung ge-

koppelt. Das entwickelte Numerische Modell erlaubt uns, die

strukturbildenden Prozesse in GeSi-Kristallen zu untersuchen. Die

Modellierung zeigte, dass Strömungen in der Nähe der Phasengren-

ze einen Einfluss auf die Zellularstrukturen ausüben. Die simulier-

te Struktur reproduziert qualitativ und in manchen Fällen sogar

quantitativ die experimentellen Ergebnisse.
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Chapter 1

Introduction

1.1 Modelling of solidification micro-

structures

Modeling of solidification micro-structures has become an area of

intense study in recent years. The properties of large-scale cast

products, ranging from automobile engine blocks to aircraft com-

ponents and other industrial applications, are strongly dependent

upon the physics that occurs at the mesoscopic and microscopic

length scales during solidification. The main types of solidifica-

tion micro-structure are dendrites and cells. The dendrite is a

snowflake-like pattern of a solid phase, see Fig.(1.1). Cells are reg-

ular perturbations of the solid liquid interface, see Fig.(1.2). The

microscopic properties of such cast products are determined by the

length scales of these patterns. For this reason, understanding of

the mechanisms for pattern selection during growth has attracted

a great deal of interest from experimental and theoretical commu-

nities.
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2 1.1. Modelling of solidification micro-structures

The solidification patterns are usually considered in conjunc-

tion with applications of metals. Many articles, therefore, study

metals and metallic alloys [37, 34, 42, 32] or deal with model ma-

terials such as: SCN, Xe and others [40]. (These materials have

properties similar to metals, such as anisotropy). Another appli-

cation field is “snow research”[27, 72]. Pattern formation during

crystal growth of semiconductors is not the usual subject of nu-

merical study1, although numerous experimental and theoretical

works have been written on the subject [23].

Works in the field of solidification pattern formation can be di-

vided into two groups. The first contains those works which are

oriented on model development [19, 20]. This group makes qualita-

tive comparisons of the simulation results with the experimentally

observed effects. The second group, in contrast to the first, con-

tains those works which make quantitative comparisons between

theory and experiment [26, 17, 46]. The question of comparison

with experiments is highly problematic. For instance, in experi-

mental works dealing with Xe crystals, [6] the crucial parameter in

comparisons between simulations and experiments is undercool-

ing, St. The experiment operates with St ∼ 0.01, but this under-

cooling is hard to achieve in simulations [45]. Similar problems

arose during the work on this thesis.

Formation of patterns during growth of semiconductor crystals

has been discussed by many authors. Numerous experimental in-

vestigations have been collected by Hurle [23]. The microstructure

which appears is considered an undesirable phenomena leading to

crystal defects or even destruction of the crystal. In publications,

1As far as we know currently there are no such works from other groups in

this field.
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Figure 1.1: Photo of a snow

crystal. A dendrite with side

branches is seen on the photo.

Figure 1.2: Cellular interface in a transparent

organic 72 × Mag (Succinonitrile-5.5 wt% ace-

tone -courtesy of Triverdi [5]).

more attention is generally paid to the study of conditions which

lead to such effects, and to the discussion of how to avoid them,

than to the study of the crystals properties. Peculiarities of the pat-

terns are not the usual focus of investigation for this community.

The GeSi alloy is a semiconductor material where a cellular

structure is desirable in some applications. The patterns, which

appear on its interface, induce a mosaic structure of the crystal.

Such crystals are used in γ-ray and neutron optics.

In this work, in particular, a great deal of research has been

undertaken to understand such issues as morphology, size and

cell-stability in Ge-rich GeSi crystals. The simulation of the phase

transition process was accomplished by a melt flow. The developed

model was verified by simulations of directional solidification in the

NiCu alloy.



4 1.1. Modelling of solidification micro-structures

1.1.1 GeSi crystals

Bulk crystals of Ge1−xSix solid solutions constitute a promising ma-

terial for γ-ray and neutron optics. Crystals, grown in IKZ, for

example, were used for the development of the first γ-ray lens tele-

scope CLAIRE [65]. One of the main parts of the CLAIRE telescope

was the γ-ray lens, consisting of 556 elements. Each element has

the form of a quadratic plate with a size of 10 × 10 × 1 mm. These

elements were cut from Ge1−xSix crystals grown using the modified

Czochralski technique [2]. The used GeSi crystals are ”ideally im-

perfect crystals”. Every crystal has a mosaic structure (mosaicity);

i.e. the crystal structure has a small periodic distortion and the

local lattice orientation has a spatial dependence. For the crys-

tal lens telescope, the optimal mosaicity (distortion of the grid) of

diffracting elements was calculated using Darwin’s model for mo-

saic crystals. The obtained mosaicity is about 30′′ [65, 51]. In the

Darwin model, the defective structure of the crystal, which maybe

due to dislocations, inhomogeneous strain, etc., is described by an

agglomerate of perfect crystal blocks that are slightly angle-shifted

against each other. The size of the blocks, taking part in the scat-

tering process, should be mesoscopic or microscopic to reach a

higher diffraction efficiency.

The mosaicity of the GeSi crystals was achieved by intention-

ally disturbing the solid-liquid interface. The relation between the

cellular morphology of the interface and the mosaicity is currently

not clear. The distortion of the interface directly causes two effects:

inhomogeneity of the Si fraction in the crystal and an increase in

the dislocation density. It is not known which of these two factors

corresponds to the mosaic structure.
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Figure 1.3: Cross-section of the GeSi

crystal along the rotation axis.

0 20 40 60 80 100 120
0

1

2

3

4

mm        cm-1        %Si
0 5213 1,01
10 5271 1,59
20 5268 1,56
30 5258 1,46
40 5260 1,48
50 5310 1,98
60 5446 3,34
70 5400 2,88
80 5354 2,42
90 5324 2,12
100 5340 2,28
110 5275 1,63

GeSi-168

GESI168.OPJ (Roßberg)

26.3.2001                GeSi-168
Gesamtlänge:          180 mm
Duchmesser:        36 bis 45 mm
Parameter:        TCM_R.XPM
Referenz:    Ge bei 5112 cm -1

  :                  100 cm -1 /% Si       

Si
 [%

]

Abstand von 0 [mm]

Figure 1.4: Concentration profile for

the GeSi crystal (Fig. 1.3)

Cellular patterns on the interface appear because of constitu-

tional supercooling near the solid-liquid interface, see D.T.J Hurle

[23]; the theoretical background of this instability is summarized

by Langer [36].

Initial experiments showed that the GeSi crystals without cel-

lular structure provide a mosaicity of less than 12′′ (low range de-

tection limit of the hard X-ray diffractometer). Only growth of GeSi

crystals with a cellular structure makes possible the achievement

of mosaicity in the range from 30′′ to 60′′, which is required for this

application. The density of the grown-in dislocations in such crys-

tals was in the range 104 − 105 cm−2.

Figs.1.3 and 1.4 show a cross-section of the GeSi crystal and the

corresponding plot of Si distribution along the axis. Regions with a

pronounced cellular structure are seen in the photo. Some corre-

lation exists between the value of concentration and the character

of perturbations. Nevertheless, the character of this correlation re-

mains ambiguous. The photo exhibits different growth morpholo-

gies for equal values of concentrations. This effect takes place be-

cause of the complex behavior of temperature, concentration and



6 1.1. Modelling of solidification micro-structures

A B

Figure 1.5: Cross section of the GeSi crystals with cellular structure.

flow fields near the growth surface.

Fig.1.5 is a good example of different growth regimes. This photo

shows evolution of the interface. Shapes of the crystal surface at

different moments are represented by striation lines. One can ob-

serve a transition from a region with cellular growth to a cell-free

one and again to one with cellular growth (from top to bottom). The

top region contains some traces of cellular structure, then they dis-

appear. Two lines, A and B, correspond to unrecoverable changes

in the crystal, whose nature is currently not clear. The crystal

structure seems to be distorted significantly in those places. In

the bottom region cells appear again. It is clearly seen that the

cell-orientation is not perpendicular to the crystal boundary, indi-

cated by the striation lines. The traces “A” and “B” have different

orientations in the three regions. This effect is probably related to

tangential flow near the crystal surface. The local maxima (tips of

the pyramids) migrate in opposition to the flow direction.

Almost all grown crystals have a mosaic structure. Morphology

manifold of the structure leads to a yield of only 60%; the other

40% of the crystals have a mosaicity that is too large.
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The following cell properties were observed in experiments:

• Morphology of the cellular structure depends on crystal

anisotropy.

• Growth direction defines the stability of the crystal interface.

• Cellular structure shows dependence on the flow.

• Fluctuations in the system cause instability of the cellular

structure.

1.2 Modeled system

The investigated GeSi crystals are grown by the Czochralski

method [70, 2]. Our goal is to better understand the pattern forma-

tion phenomena. We therefore focus our attention on the processes

in the vicinity of the melt-crystal surface. The computational do-

main is a small region near the interface. Movement of the interface

and behavior of concentration and flow fields are computed in this

domain. The boundary conditions for the concentration and flow

fields are estimated or taken from a macroscopic simulation of the

processes in the furnace [56].

The processes on the crystal surface are the focus of the mod-

eling. Movement of the phase-boundary and concentration bal-

ance in the solid and liquid phases denotes the phase transition.

A phase-field method [53, 30] is chosen for describing these pro-

cesses. This method has already been applied for binary alloys by

W.J. Boettinger and J.A. Warren, see [7]. This model allows us to

compute growth kinetics and surface-tension effects.



8 1.4. Thesis structure

1.3 Numerical methods

The phase-field equations accomplished by the Navier-Stoks equa-

tion need to be solved. For this purpose, we used a mix of ex-

plicit finite difference methods and latice-kinetic methods. The re-

cent work of I. Rasin, S. Succi and W. Miller [47] demonstrates

the efficiency of such mixed algorithms. In the numerical model,

the phase-field equation is solved by an explicit finite-difference

(EFD) scheme and a lattice kinetic scheme is used for solving the

advection-diffusion equation. Melt flow is simulated with the Lat-

tice Bhatnagar-Gross-Krook (LBGK) method [71, 59].

Originally, the passive scalar (temperature or concentration)

transport was calculated by an EFD scheme. This method al-

lowed us to get results for the NiCu alloys, but in the case of the

GeSi crystal it was inefficient because of stability restrictions on

the time step. The best alternatives to the EFD scheme are LK

schemes[55, 58, 48]. Series of tests were made in order to study

the different properties of the new scheme, and to compare it with

other methods. The question of an adaptive time step is also dis-

cussed.

1.4 Thesis structure

The PhD thesis consists of four main chapters: “LK methods”,

“Phase-field models”, “Solidification in binary alloys” and “Cellu-

lar growth in GeSi crystals”. Each of the four chapters contains

original results, as obtained during this work. In the first three

chapters, tools and methods used in the GeSi numeric model are

introduced and discussed.
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In the first chapter, we discuss different types of LK methods.

The chapter consists of two sections: the first, which contains

an introduction to the classic Lattice-Boltzmann method [71, 59],

used for the flow computation in the melt, and the second which

describes the lattice kinetic methods for passive-scalar transport.

We present the newly developed multi-relaxation lattice-kinetic

method for solving the advection-diffusion equation.

In the chapter “Phase-field models”, different aspects related

to the phase-field model are considered. The chapter begins with

the description of the basic ideas and classic equations related to

the model. The second section introduces the modified phase-field

(MPF) model. The necessity of the MPF model was recognized after

meso-scale simulations of GeSi alloys. These simulations showed

that the classic model becomes unstable at this scale. We devel-

oped modified phase-field equations as an answer to the perceived

instability. The MPF model was verified by the dendritic growth

and computations of the equilibrium form of the crystal in the 2D

and the 3D cases. In addition, the simulations of the dendritic

growth allowed us to test coupling of the MRLK method with phase-

field equations. The heat transport was implemented through the

multi-relaxation lattice kinetic (MRLK) scheme with an adaptive

time step.

The third chapter is dedicated to solidification in binary alloys.

Different phase-field models for binary alloys are discussed. There

are two main models: one from A.A. Wheeler, W.J. Boettinger and

G.B. McFadden (WBM model)[69] and another from S.G. Kim, W.T.

Kim and T. Suzuki (KKS model)[30]. The difference between these

two models is discussed in the work. The KKS model with MPF

equations was taken as the basis of this work. The obtained model
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was applied for simulation of the NiCu alloy and after that for sim-

ulation of the GeSi alloy.

Numerical simulations of the GeSi crystals are considered in the

fourth chapter. It begins with descriptions of experimental basics of

the Czochralski growth and estimations of the crucible processes.

These estimations are used later in our mesoscopic simulations.

The chapter continues on to give descriptions of the numerical re-

sults. The simulations of pattern formation were first done without

flow. The resulting patterns have the size predicted from the theory

of cellular growth, but they are much larger than the experimen-

tally observed patterns. Modeling with the presence of flow allowed

us to explain the experimentally observed effects. The size of the

obtained patterns is similar to the cell size in the experiment. Ad-

ditionally, in this section, we discuss problems related to material

data. Specifically, we have undertaken several simulations for two

different values of the diffusion coefficients of Si in Ge melt; one of

these two values was taken from experimental measurements [15],

and the other from the molecular dynamic simulation [74].



Chapter 2

Lattice kinetic methods

Macroscopic simulations of crystallization processes are always re-

lated to modeling of mass-transport. The mass-transport processes

are described by corresponding equations, which need to be solved.

In our case, they are the Navier-Stokes equation and the advection-

diffusion equation. In this chapter, we present the methods used

later on in this thesis for solving the transport equations.

In our work, we use the Lattice Bhatnagar-Gross-Krook (LBGK)

model for computation of liquid flow. The advection-diffusion equa-

tion is solved by the Lax-Wendroff [60] or by the multi-relaxation

lattice kinetic method [48]. The main advantage of these methods

is simplicity, meaning that it is possible to obtain an efficient and

flexible numerical method and to integrate it in an external code

without much programming effort. Another advantage is its high

efficiency in the case of parallel computing, which is very important

in the 3D case.

This chapter begins with a short description of the classic LK

methods for flow simulations. The LK methods for simulation of

the diffusion and advection-diffusion equations are discussed in

11
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the second section.

2.1 The lattice-Boltzmann and the LBGK

methods

Flow of an incompressible liquid is described by the Navier-Stokes

equation:

∂tuα + uβ∇βuα = − 1

n
∇αP + ν∆u, (2.1)

where ~u is the flow velocity, n, P and ν are density, pressure and

kinematic viscosity. Numerical solutions of this equation can be

obtained by the lattice-Boltzmann method (LBM) [71, 59]. Unlike

traditional numerical methods solving this equation directly, the

LBM simulates a dynamic of a lattice gas.

The LBM is based on the solving of the Boltzmann equation in

the discrete phase space (in lattice units δt = δx = 1):

fi(~r + ~ai, t + 1)− fi(~r, t) = (St f)i, (2.2)

where fi(r) is the number of quasi-particles with the velocity ~ai at ~r.

The (St f)i is a collision term, which will be specified below. Thus,

the problem of solving the non-linear Navier-Stokes equation is re-

placed by the solving of the system of coupled linear hyperbolic

equations. These hyperbolic equations describe motion and inter-

action of quasi-particles on the regular lattice. In other words, the

model simulates the kinetics of a lattice gas.

The macroscopic quantities, such as density and velocity, are

obtained by moment integrations of the distribution function:

ρ(~r) =
∑

i

fi(~r), ~u(~r) =
1

ρ(~r)

∑
i

~aifi(~r). (2.3)
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Please note that ρ is the density of the lattice gas. The physical

pressure is related to this density through the equation of state,

[73]: P = ρa2
s, where as is sound speed in the lattice gas. Its collision

term can be tuned in such a way that the appropriate macroscopic

equations will be obtained. The macroscopic equations are derived

from the LBM equation by means of a multiscale Chapman-Enskog

expansion [57]. The kinetic nature of the LBM introduces a number

of advantages, such as linearity of the convection operator and re-

covery of the Navier-Stokes equations at the nearly incompressible

limit, thus avoiding the need for solving difficult Poisson equations

for the pressure.

2.1.1 Collision term for incompressible flow

The collision term in a general case is represented in the following

matrix form:

(St f)i =
∑
j

Ωij(fj(~r, t)− f eq
j (~r, t)), (2.4)

where Ωij is, the so called, relaxation matrix. The matrix repre-

sentation contains both the physical and numerical parameters

[4]. These parameters are explicitly seen in the spectra repre-

sentation of the matrix. Each eigenvector corresponds to a phys-

ical or “ghost”, field and eigenvalues define the relaxation prop-

erties of corresponding fields. By adjustment of the eigenvalues,

the necessary behavior of the physical parameters can be achieved

[21, 71, 59].

The LBGK1 method is the simplest realization of the previously

considered scheme with the relaxation matrix, Ωij = ωδij. The cor-

1LBGK - Lattice Bhatnagar-Gross-Krook
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responding equation for the distribution function takes the form:

fi(~r + ~ai, t + 1)− fi(~r, t) = ω(fi(~r, t)− f eq
i (~r, t)). (2.5)

This scheme has only one governing parameter, ω, which is related

with viscosity ν by the following expression:

ω =
Nd

2ν∗a−2
s + 1

.

The equilibrium distribution function is a third order expansion of

the Maxwell distribution:

f eq
i = wiρ

(
1 +

1

a2
s

u∗αaiα +
Qiαβu∗αu∗β

2a4
s

)
, (2.6)

where wi is a weight parameter and a2
s =

∑
i wia

2
ix =

∑
i wia

2
iy = 3/5 is

the lattice sound speed. Qiαβ ≡ aiαaiβ − a2
sδαβ. The rescaled value of

flow velocity is u∗α ≡ uα
δt

δx
.

2.2 LK methods for passive scalar trans-

port

The first appearance of diffusion simulation with a kinetic method

was in the article of E.G. Flekkøy [16]. This method was modified by

X. Shan and G. Doolen [55]. They took a classic LBGK method and

put the flow velocity to zero. The obtained scheme reproduces pure

diffusion. Later, H. W. Stockman et al. [58] studied the possibility

of reducing the number of the velocity vectors, e.g. four directions

were used instead of nine in the 2D case. As a result, there was a

small increase in the numerical anisotropy. R.G.M. van der Sman

and M.H. Ernst considered a matrix approach [64], in contrast to

both other schemes which are based on the LBGK approach (single
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relaxation). The matrix approach provides more freedom in ma-

nipulations with ghost fields as compared to the single relaxation

method. They applied it for pure diffusion problem without ad-

vection. By tuning the matrix components, they obtained better

numeric properties than the single-relaxation method as proposed

by H. W. Stockman, et al. We propose an extension of the ma-

trix method to the advection diffusion case. Our method requires

less memory than the methods of E.G. Flekkøy [16] and X. Shan,

G. Doolen [55], and R.G.M. van der Sman, M.H. Ernst [64], and

has smaller numerical anisotropy than the technique proposed by

H. W. Stockman et al. [58].

The advection-diffusion equation is:

∂tρ +∇ · (ρ~u) = ∇ ·D∇ρ, (2.7)

where ρ is the passive scalar, e.g.: temperature or concentration of

a component, ~u is the flow velocity and D is the diffusion coefficient,

generally a function of coordinates D = D(~r).

The governing kinetic Boltzmann equation for fi takes the fol-

lowing relaxation form:

fi(~r + ~ai, t + 1)− fi(~r, t) =
∑
j

Ωij(f
eq(~r, t)j − fj(~r, t)), (2.8)

where fi represents the probability of finding a particle with speed

~ai at position ~r and time t.

The concentration ρ and flux J values are related to fi in the

following way:

ρ =
∑

i

fi, Jα =
∑

i

aiαfi, (2.9)

α = 1, ..., Nd is spatial index. It should be noted that the flux of quasi

particles, ~J, is not the physical flux, ~Jphys ≡ uρ − D∇ρ, but both

fluxes are related and this relation depends on the used model.
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2.2.1 Single-relaxation LK (SRLK) model

Let us show an analysis of the method proposed in the articles

[16, 55]. The classic LBGK method for the Navier-Stokes equa-

tion, introduced in Section 2.1.1, has been applied to the diffusion

problem. Let us call this model a single-relaxation LK model. The

relaxation matrix is taken in diagonal form:

Ωij = δijω.

The equilibrium distribution is taken in the same way as for the

flow case (2.6):

f eq
i = wiρ

(
1 +

1

a2
s

u∗αaiα +
Qiαβu∗αu∗β

2a4
s

)
,

where ~u is a velocity of an external flow.

The Taylor expansion of the equation (2.8) yields the system of

two hyperbolic equations for ρ and ~J:

ρ̇ +∇αJα +
1

2
ρ̈i +∇αJ̇α +

1

2
∇α∇βPαβ = ω(ρeq − ρ), (2.10)

J̇α +∇βPαβ +
1

2
J̈α +∇βṖαβ +

1

2
∇β∇γMαβγ = ω(Jeq

α − Jα), (2.11)

where Pαβ ≡
∑

i aiαaiβfi, Mαβγ ≡
∑

i aiαaiβaiγfi are higher order mo-

ments.

Let us further suppose that P and M are near their equilibrium

values:

Pαβ ≈ Peq
αβ = ρ

∑
i

wiaiαaiβ

(
1 +

Qiγδu
∗
γu

∗
δ

2a4
s

)
(2.12)

= ρ

(
a2

sδαβ +
u∗2δαβ

2a2
s

(
1

3
− a2

s

)
+

1

3

u∗αu∗β
a2

s

)
, (2.13)

Mαβγ ≈ Meq
αβγ = ρa2

su
∗
δδαβγδ.
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The previous expressions were obtained only with the assumption

that the expression
∑

i wiaiαaiβaiγaiδ does not contain the anisotropic

term, see Eqs. (D.2) and (D.4). This assumption fixes w×:

2D : w+ = 4w×, 3D : w+ = 2w×.

Let us note that for the case with a2
s = 1

3
(it corresponds to the case

with rest particles) Peq
αβ = ρ (a2

sδαβ + uαuβ). Such a value of the as can

be achieved by taking the weight parameter in the following form:

2D : w0 =
4

9
, w+ =

1

9
, w× =

1

36
,

3D : w0 =
1

3
, w+ =

1

18
, w× =

1

36
.

Since mass is conserved, and momentum is not,we make the

following assumption:

ρeq = ρ, Jα 6= Jeq
α = ρuα.

Now, equations (2.10) and (2.11) can be transformed by assuming

that J̇α ≈ J̇eq
α ≈ −uαuβ∇βρ and ρ̈ ≈ uαuβ∇α∇βρ:

ρ̇ +∇αuαρ +∇αJ
ne
α − 1

2
uαuβ∇α∇βρ +

1

2

(
a2

sδαβ + uαuβ

)
∇α∇βρ = 0,

−uαuβ∇βρ +
(
a2

sδαβ + uαuβ

)
∇βρ = −ωJne

α .

Thus, it is seen, that the effect of the additional diffusion has dis-

appeared from these equations:

ρ̇ +∇αuαρ +∇αJ
ne
α +

1

2
a2

s∆ρ = 0, (2.14)

a2
s∇αρ = −ωJne

α . (2.15)

The relation between D and w is extracted from the comparison

between (2.1) and the previous equations:

D∗ = a2
s

(
1

w
− 1

2

)
.
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The considered method has no stability restrictions on D∗, in other

words the time step can be of an arbitrary length. The drawback is

that 9 fields in the 2D case and 19 fields in the 3D case are needed

in order to simulate the diffusion equation.

2.2.2 Multi-relaxation LK (MRLK) model

The main goal in constructing this model was to achieve the same

features as in the classic single-relaxation LK model, but with

smaller memory requirements. This can be realized by decreasing

the number of components of the distribution function. Only the

fields corresponding to orthogonal velocities are taken: four fields

in the 2D case (i = 1..4) and six fields in the 3D case (i = 1..6), D2Q4

and D3Q6 spaces respectively. The number of floating-point op-

erations per lattice node is also decreased by such modification

leading to increased performance. H. W. Stockman et al. [58]

tested the single relaxation model D2Q4 space. This model has

increased numerical anisotropy in comparison with the previously

discussed model. We introduce here a multi-relaxation LK. An ad-

ditional advantage of the MRLK is its easy expansion in a case with

anisotropic diffusion [48, 47].

The Taylor expansion of the equation (2.8) yields the system of

two hyperbolic equations for ρ and ~J:

ρ̇ +∇αJα +
1

2
ρ̈i +∇αJ̇α +

1

2
∇α∇βPαβ =

∑
ij

Ωij(f
eq
j − fj), (2.16)

J̇α +∇βPαβ +
1

2
J̈α +∇βṖαβ +

1

2
∇β∇γMαβγ =

∑
ij

aiαΩij(f
eq
j − fj). (2.17)

Furthermore, it is posited that density is conserved, and the cur-

rent density on a tensorial inverse time scale is Λαβ. In other
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Table 2.1: Weight coefficients and sound speeds in the 2D and 3D cases.

2D 3D

wi 1/4, i = 1..4 1/6, i = 1..6

a2
s 1/2 1/3

words, collisions realize the following relaxation dynamics δρ
δt

= 0

and δJα

δt
= −Λαβ(Jβ − Jeq

β ). This implies the following algebraic con-

straints: ∑
i

Ωij = 0,
∑

i

aiαΩij =
∑
β

Λαβajβ,

where Λαβ are free parameters to be fine-tuned to obtain the desired

macroscopic equations.

Using these properties, we obtain:

ρ̇ +∇αJα +
1

2
ρ̈i +∇αJ̇α +

1

2
∇α∇βPαβ = 0, (2.18)

J̇α +∇βPαβ +
1

2
J̈α +∇βṖαβ +

1

2
∇β∇γMαβγ = Λαβ(Jeq

β − Jβ). (2.19)

Since mass is conserved, and momentum is not, we make the fol-

lowing assumption:

ρeq = ρ, Jα 6= Jeq
α = ρuα.

This choice delivers the following expression for f eq
i :

f eq
i = wiρ

(
1 +

1

a2
s

u∗αaiα

)
,

where wi are written in Table.2.1.

Next, we assume that P and M are near their equilibrium val-

ues:

Pαβ ≈ Peq
αβ = ρa2

sδαβ, Mαβγ ≈ Meq
αβγ = ρa2

suδδαβγδ. (2.20)
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Thus, in the continuum limit and within the near-equilibrium

approximation, the discrete equation (2.8) goes towards the non-

isotropic advection-diffusion equation in the conservative form:

ρ̇ +∇ · (ρ~u) = ∇α(Dαβ∇βρ), (2.21)

with the tensor diffusivity defined by the following expression:

Dαβ ≡
(

1

2
δαγ − uαuγ

)(
(Λ−1)γβ −

1

2
δγβ

)
. (2.22)

Note that due to the conservative form of the equation (2.21) this

tensor diffusivity may exhibit an explicit spatial dependence. The

relation (2.22) fixes the relaxation matrix Λαβ in terms of the pre-

scribed diffusion tensor Dαβ. It is important to remark that the

flow-dependent correction uαuγ in the above equation stems from

the diabatic term ∂ttρ, which is implicitly contained in the equa-

tions (2.19). This flow-dependent (non-isotropic) effect can be re-

absorbed into an isotropic diffusivity by appropriate tuning of the

scattering matrix Λ. From equation (2.22), it is clear that un-

less one moves to higher-order connectivity lattices (see Appendix),

such a recovery can only be obtained within a matrix LK formula-

tion. For the case of isotropic diffusion, Dαβ = Dδαβ, the matrix Λ

is:

Λαβ =
2

λ1

δαβ +
2b

λ1λ2

uαuβ

a2
s

, b ≡ −2D∗

a2
s

, (2.23)

where λ1 ≡ 1 + b, λ2 ≡ 1 + b − u∗2

a2
s
. It is worth emphasizing that

even for the case of isotropic diffusion, this matrix cannot be di-

agonal unless the fluid is locally one-dimensional, that is uxuy = 0.

The collision matrix can then be built according to a (generalised)

spectral decomposition [64, 8]:

2D : Ωij =
2∑

k=1

V
(k)
i

2∑
l=1

ΛklV
(l)
j + λ3V

(3)
i V

(3)
j ,
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3D : Ωij =
3∑

k=1

V
(k)
i

2∑
l=1

ΛklV
(l)
j + λ3V

(3)
i V

(3)
j + λ4V

(4)
i V

(4)
j ,

where V
(k)
i are orthonormal eigenvectors:

2D : V (0) =
1

4
(1, 1, 1, 1) ,

V (1) =
axi

2
, V (2) =

ayi

2
,

V (3) =
1

2
a2

xi − 2V (0),

3D : V (0) =
1

6
(1, 1, 1, 1, 1, 1) ,

V (1) =
axi

2
, V (2) =

ayi

2
, V (3) =

azi

2
,

V (4) =
1√
12

(
3a2

xi − 6V (0)
)
, V (5) =

1

2
a2

xi + a2
yi − 3V (0).

The vectors V (4) and V (5) are chosen to be orthogonal to other vec-

tors but they have no explicit physical sense and can certainly be

replaced by their arbitrary linear combination. Note that the colli-

sion matrix projects zero on the first eigenvector λ0 = 0 because of

mass conservation.

The explicit form of the collision matrix in the 2D case is:

Ω =
1

2

 Λ −Λ

−Λ Λ

+ λ3

 P3 P3

P3 P3

 , (2.24)

where Λ denotes the 2 × 2 block Λαβ and P3 = 1
4

 1 −1

−1 1

 is the

projector associated with the third eigenvector. The corresponding

form in the 3D case is:

Ω =
1

2

 Λ −Λ

−Λ Λ

+ λ4

 P4 P4

P4 P4

+ λ5

 P5 P5

P5 P5

 , (2.25)
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where Λ denotes the 3× 3 block Λαβ and

P4 =
1

12


4 −2 −2

−2 1 1

−2 1 1

 , P5 =
1

4


0 0 0

0 1 −1

0 −1 1

 ,

are the projectors associated with the forth and fifth eigenvectors.

The eigenvalues of the matrix Ω are:

λ0 = 0, λ1 =
2

1 + 4D∗ , λ2 =
2(1− 2u∗2)

1 + 4D∗ − 2u∗2
, λ3,

which corresponds to the following kinetic eigenvectors:

V
(0)
i = 1, W

(1)
i = (aix cos θ − aiy sin θ),

W
(2)
i = (aix sin θ + aiy cos θ), V

(3)
i = a2

ix − a2
iy.

The eigenvectors W (1) and W (2) are obtained by rotating aix and

aiy by the angle θ defined by the local flow velocity, ux = u cos θ,

uy = u sin θ. When the flow is at rest (u = 0), this transformation

degenerates and goes back to the standard eigenvectors V
(k)
i .

The numerical scheme is stable for all values of D∗ and u∗ so

that the eigenvalues of Ωij lie within the interval 0 < λk < 2 that is:

0 <
2(1− 2u∗2)

1 + 4D∗ − 2u∗2
< 2, 0 < λ3 < 2.

These limitations imply u∗2 < 1/2, namely Mach number Ma2 =

u∗2/a2
s < 1, regardless of the value of D∗ > 0. On the other hand,

due to the near-equilibrium approximation, it is clear that for very

small values of D∗, such as λ1 and λ2 approaching the upper bound

2, the scheme exhibits long-lasting oscillations, which may hamper

the numerical efficiency of the method.
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The Eqs. (2.18) and (2.19) are accomplished with the third equa-

tion for Pαβ, which is written for different components separately:

Ṗxx = λ3

(
Peq

xx −Pxx −
1

2
(ρeq − ρ)

)
,

Ṗyy = λ3

(
1

2
(ρeq − ρ)− (Peq

yy −Pyy)
)

.

The condition (2.20) follows from this equation by assuming that

the left-hand side is small in comparison with the right-hand side.

In other words, λ3 should be as large as possible, normally λ3 = 2.

It should be mentioned that λ3 = 0 causes strong grid anisotropy.

We do not provide here the same analysis for the 3D case be-

cause of its similarity to that of the 2D case. The eigenvalues λ4

and λ5 have similar influences on the scheme to λ4 in the 2D case

and they are taken, therefore, as λ4 = λ5 = 2. The Eq. (2.25) can be

rewritten for the case λ4 = λ5 = λI

Ω =
1

2

 Λ −Λ

−Λ Λ

+ λi

 PI PI

PI PI

 , PI ≡
1

6


2 −1 −1

−1 2 −1

−1 −1 2

 . (2.26)

2.2.3 Adaptive time step

Since it was indicated that the LK methods have no stability restric-

tion on the time step, an adaptive time stepping procedure can be

introduced. The time step is defined by an error estimator, which

is introduced in this section.

An adiabatic approximation was made through the analysis of

numerical methods discussed in the previous section. This approx-

imation contains two assumptions: the first, that the second and

third order moments are near their equilibrium values, the second,
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that ∂
∂t

Jne � wJne. By using this criteria, the so called, diabatic

parameter ε is introduced:

ε ≡ (∂Jeq/∂t)

λJJeq
, ε � 1. (2.27)

The maximal value of ε characterizes the numerical error of the

method. This statement will be tested in Section 2.2.4. If max ε <

εmin, the time step can be increased and, vice versa, if max ε > εmin,

the time step should be decreased.

The changing of the time step requires renormalization in the

distribution function. It follows from the changing of the velocities

~ai:

~a+
i = αdt~ai, αdt ≡ δ+

t /δt, (2.28)

where ~ai and ~a+
i are grid velocity vectors before and after the chang-

ing of the time step, respectively. This transformation is equivalent

to the cooling of the lattice gas, in the sense that sonic speed as,

plays the role of the temperature, and the distribution function of

quasi-particles is renormalized according to this cooling. The re-

quirements for concentration and flux are:

ρ+ = ρ, ~J+ = αdt
~J. (2.29)

Here ~J is the physical flux, ~J = −D~∇ρ, not to be confused with
~J, the flux of the lattice gas. In other words, these physical pa-

rameters should be invariant under the “cooling” transformation.

In order to satisfy the invariance of ρ, the following invariance of

equilibrium distribution functions is necessary:

f eq+
i = f eq

i . (2.30)

The invariance of the flux is rewritten as:

~∇ρ = ~∇ρ+ =⇒ ~Jne+ = αJJne, αJ ≡ λJ/λ+
J . (2.31)
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Table 2.2: Comparison of the LB and MLW methods for the case of pure diffu-

sion. D = 1, λ3 = 1

δt MRLK L2 MLW L2 MRLK L∞ MLW L∞

2.5 2.78× 10−2 - 1.56× 10−2 -

1 3.26× 10−3 - 1.83× 10−3 -

0.5 7.02× 10−4 - 4.12× 10−4 -

0.25 2.27× 10−5 2.27× 10−5 2.94× 10−4 2.94× 10−4

0.1 3.10× 10−5 6.8× 10−6 3.47× 10−4 5.76× 10−5

0.01 3.84× 10−5 2.18× 10−5 4.28× 10−4 2.80× 10−4

The set of equations (2.30) and (2.31) permits many solutions. We

renormalise the distribution functions by the following :

f+
i = f eq

i + αJfne
i . (2.32)

2.2.4 Numerical tests

In the following section we present some test simulations to val-

idate the kinetic scheme. The finite-difference Modified Lax-

Wendroff (MLW) scheme is chosen as a reference method.

Isotropic diffusion

We consider the time evolution of a Gaussian density profile under

the effect of constant diffusion and without flow, i.e. zero cell-Peclet

number
(
Pec = Uδx

D

)
.

The initial distribution is given by Eq. (B.2): The results of the

simulation for the case σ0 = 14.1, ρ0 = 103 on a 250 × 250 grid, are

summarized in Table 2.2. This table reports deviations from the ex-

act solution for both LB and MLW schemes at time t = 100 (physical
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Table 2.3: Numerical error for MRLK method in the 3D case, λ3 = 1, 200× 200×
200, σ0 = 14.1, D = 1, t = 100. Computations have been made no the a Pentim 4

Xeon 2.4GHz processor.

δt L2 L∞ Computation time, s

2.5 2.36× 10−4 5.01× 10−3 47

1 1.84× 10−5 6.31× 10−4 111

0.25 8.57× 10−7 2.72× 10−5 430

units) in the L2 and L∞ norm. They are defined as:

||δρ||2 =

(
1

N

∑
x,y

|ρ(x, y)− ρexact(x, y)|2
)1/2

and

||δρ||∞ = max
(x,y)

{|ρ(x, y)− ρexact(x, y)|},

where N is the number of grid points.

In order to stress the stability limit of the kinetic scheme, the

lattice diffusivity can be chosen at a value ten times higher than

the one used in the modified Lax-Wendroff scheme that is D∗
LB = 2.5

and is D∗
MLW = 0.25(first row of Table 2.2), so that a corresponding

ten-fold larger time step can be used in the kinetic scheme, at a

given value of the physical diffusion coefficient (D = 1). It should

be noted that D∗ = 2.5 is beyond the critical value for the MLW

method, as indicated by the empty entries in the MLW columns.

The numerical results show satisfactory agreement with the ana-

lytical solution, with a fast decay in the numerical error with the

time step, followed by a saturation when the amplitude falls be-

low approximately 10−5. Timing data indicate that the kinetic LB

scheme can compute significantly faster than MLW.

It is also important to assess the non-isotropy error associated
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Table 2.4: Isotropy error for the MLW, LB and LBGK method, λ3 = 1

D∗ - measured value

~u D∗
theor Pe MLW MRLK SRLK − 4 SRLK − 9

(0.2, 0.2) 0.20 1.41 0.200 0.200 0.186 0.200

(0.2, 0.2) 2.00 0.141 - 2.00 1.82 2.000

(0.1, 0.1) 0.20 1.41 0.200 0.200 0.198 0.200

(0.2, 0.2) 2.00 0.141 - 2.00 1.97 2.000

with the single-time relaxation scheme, as opposed to the present

matrix formulation. These are shown in Table 2.4.

Table 2.4 shows that according to the expression (2.22), the

isotropy error of the 4-speed single-relaxation model scheme is of

the order Ma2. It is worth noting that by adding four popula-

tions moving along the next-nearest neighbor (diagonal) connec-

tions, plus one population of rest particles, the LBGK scheme (see

column LBGK-9, which stands for LBGK with nine populations)

does in fact recover isotropy. However, this recovery comes at the

expense of a factor 9/4 in the number of variables. In addition,

since the diffusivity is fixed by the single relaxation parameter, ω,

it is clear that the 9-speed LBGK scheme cannot deal with gen-

uinely anisotropic problems.

Advection-Diffusion

Next we test the kinetic LB scheme for the case of diffusion and

advection in a prescribed flow configuration.

We have simulated the standard Taylor-Aris dispersion problem

at various global Peclet numbers, Pe = UcL/D, Uc being the cen-

terline speed of the parabolic flow profile, and checked against the
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Table 2.5: Taylor-Aris dispersion. The width of the channel is 48.

Pec D∗ U∗
c DL/D − 1 Pe2

470
Error, %

0.1 0.25 0.025 0.0486 0.0490 0.8

0.5 0.125 0.0625 1.221 1.226 0.3

1.0 0.25 0.25 4.89 4.90 0.2

5 0.05 0.25 121.5 122.6 0.9

10 0.05 0.5 487.5 490.2 0.6

analytical expression for the longitudinal dispersion coefficient:

DL = D

(
1 +

Pe2

470

)
.

The initial conditions are Gaussian, with width σx = 5 and σy = 50.

The time-span of the simulations ranges from 2000 to 10000 time

steps depending on the Peclet number. The results, for channels

of width 48 lattice units and lengths ranging from 500 to 2000, are

reported in Table 2.5.

Again, satisfactory agreement with analytical results is observed

up to Pec ∼ 10, which is fairly adequate for most practical applica-

tions. In order to test isotropy issues, we consider the case of a

genuinely 2D flow, u∗x = 0.2 and u∗y = 0.1, in a free (periodic) do-

main of size 350 × 250. The other parameters of the simulation

are, σ0 = 7.05, D∗
LB = D∗

MLW = 0.02, corresponding to a cell-Peclet

Pec = 11.2,

In Fig. 2.1 plots of the density are shown at time t = 0 and

t = 1100 for both LB and MLW methods. As expected, numerical

data (see white arrows) follow the exact expression < ~r(t) >= ~r0 +~ut,

where the brackets stand for integration of the density distribution

over the flow domain.
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Figure 2.1: Plots of the density distribution at t = 0 and t = 1100 (arrow tail and

head respectively) for the present LB (left) and MLW (right).

From Fig. 2.1 it is apparent that while the MLW results show vis-

ible deviations from isotropy, the present matrix LB method proves

nearly free of spurious directional effects.

Quantitative analysis of contour lines in the form r = r(θ) at

ρ = 1
e
ρmax, delivers a non-isotropy factor ρmax

ρmin
= 1.74 for MLW and

ρmax

ρmin
= 1.02 for LB (clearly, for the isotropic case ρmax/ρmin = 1).

Adaptive time stepping (ATS)

Some simulations of pure diffusion and advection-diffusion are

provided in order to test the adaptive time stepping. In these tests,

diffusion from initial distribution is considered again.

The evolution of the time step and the diabatic parameter εmin

with time is shown in Fig. 2.2. The change of the time step happens

when the value of ε approaches that of εmin. It is seen that every

jump in the time step is followed by a jump in ε. Comparison

between simulations with different αdt indicates that the heights of

both jumps correlate. Thus, small values of αdt allow one to control

the numerical error better, and to keep ε in the range between εmax

and εmin values. This case will be demonstrated in the next chapter.
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Table 2.6: Diffusion tests with adaptive time stepping. D = 1.

tmax Size δt εmin αdt L2 L∞

100 250× 250 0.25− 1.0 0.05 2 4.452 · 10−4 5.627 · 10−3

1000 500× 500 0.25− 2.0 0.01 2 2.524 · 10−5 2.416 · 10−4

1000 500× 500 0.25− 4.0 0.05 2 2.154 · 10−4 2.139 · 10−3

1000 500× 500 0.25− 4.0 0.1 2 3.229 · 10−4 3.159 · 10−3

1000 500× 500 0.25− 2.71 0.05 1.1 8.452 · 10−5 8.365 · 10−4

1000 500× 500 0.25− 2.85 0.05 1.5 1.222 · 10−4 1.211 · 10−3

Since in the example the flux decreases during the evolution, ε

decreases, as well. In other words, the time step increases with

time. There are no limitations for the time step in the case without

advection, see Table 2.6. Again, in the case with advection, the

time step is limited by the Mach number.

A series of simulations is provided in order to test the relation

between the diabatic parameter and numerical error. The relation

between εmin and numerical error is shown in Table 2.6 and also

can be seen in Fig. 2.3.

The same simulation is made for the three-dimensional case. In

Table 2.7 some results are shown. The behavior of the adapting

procedure is similar to the 2D case.

Further applications of ATS technique are discussed in Sec-

tion 3.3.1.
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Figure 2.2: Evolution of time step and ε. Points correspond to ε and two line-

plots represent the time step. D = 1, tmax = 1000, λ3 = 1, εmin = 0.05, 500× 500.
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Figure 2.3: Dependence of the numerical error on εmin. D = 1, tmax = 1000,

λ3 = 1, 500× 500.
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Table 2.7: Diffusion tests with adaptive time stepping in the 3D case. D = 1,

200× 200× 200, t=100

tmax δt εmin αdt L2 L∞

t = 100 0.25− 0.589487 0.05 1.1 3.415 · 10−6 1.221 · 10−4

t = 100 0.25− 0.84375 0.05 1.5 4.608 · 10−6 1.601 · 10−4

t = 100 0.25− 2.0 0.05 2.0 9.852 · 10−6 3.818 · 10−4

t = 300 0.25− 1.52898 0.1 1.1 6.285 · 10−6 1.162 · 10−4



Chapter 3

Phase-field models

Phase-field models have emerged nowadays as a widely used

method to calculate the liquid-solid phase transitions on scales

where Gibbs-Thompson and kinetic effects are important. Phase-

field models have been successfully used for calculating the den-

dritic growth in the 2D and 3D cases, in the absence of liquid con-

vection (e.g. [45, 26]). More recently, the influence of forced flow

has been investigated [35, 62]. Beyond solidification in pure ma-

terials, the phase-field method has been applied to solidification in

alloys, namely: the crystallization in binary[13, 69], eutectic[25],

peritectic[41] and ternary alloys[32].

Phase-field models have been derived from a free energy

(isothermal formulation, see e.g. [10, 38]) or an entropy functional

(see e.g. [44, 52]) for the liquid-solid system. All of the listed mod-

els treat the Gibbs-Thompson and kinetic effects in similar ways.

The surface tension part of the model leads to a numerical instabil-

ity under certain conditions; computations with zero surface ten-

sion are impossible to realize in the frame of this model. The pro-

posed modified phase-field model solves this problem. Its behavior

33
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is tested in the case of solidification in pure materials.

3.1 The classic phase-field model

The crystallization in pure materials is described by the movement

of the interface and by the temperature field. This system is mod-

eled by the so-called Stefan problem. A system consists of two

phases, solid and liquid. They are separated by a sharp interface, Υ,

which moves according to the local conditions. These two phases

are described using different material parameters, e.g. heat capac-

ities cps, cpl and heat conductivities Ks, Kl, where indices s and l

stand for solid and liquid, respectively. The phase-transition is de-

fined through the melting-point temperature Tm and latent heat L.

The classic sharp-interface model of solidification in a pure mate-

rial may be written as:

cps
∂Ts

∂t
= ∇[Ks∇Ts], (3.1)

cpl
∂Tl

∂t
= ∇[Kl∇Tl], (3.2)

LV = Ks
∂Ts

∂n
|x∈Υ −Kl

∂Tl

∂n
|x∈Υ, (3.3)

Ts|x∈Υ = Tl|x∈Υ = Tm − V/µ− Γκ, (3.4)

where Ts, Tl are temperature fields in solid and liquid phases, re-

spectively, and V is a local growth velocity. µ and Γ are kinetic and

Gibbs-Thomson coefficients, respectively. κ is the curvature of the

interface Υ. ~n is a unit vector normal to Υ oriented from the solid to

the liquid phase. The first two equations describe heat transport in

solids and liquids. Eq. 3.3 defines heat transport through the in-

terface and the release of the latent heat during solidification. The



3.1. The classic phase-field model 35

last equation governs the movement of the interface, taking into

account the kinetic and Gibbs-Thomson effect.

In the phase-field model, no sharp interface exists between the

solid and liquid phases, but the state of matter is characterized by

a continuous order parameter, φ. φ is defined as 0 in the liquid

phase (melt) and 1 in the solid phase (crystal). The standard form

of phase-field equations couples a thermal field, T , to the order

parameter field:

τ
∂φ

∂t
= ξ2∆φ− gφ + λpφ(T − Tm), (3.5)

cp
∂T

∂t
= K0∆T + Lhφ

∂φ

∂t
, (3.6)

where τ , λ and ξ are phase-field parameters.

gφ ≡
∂g(φ)

∂φ
, pφ ≡

∂p(φ)

∂φ
, hφ ≡

∂h(φ)

∂φ
,

where g(φ), p(φ) and h(φ) are standard functions for the phase-

field model. Please note that in Eqs. (3.5) and (3.6), heat prop-

erties of both phases are supposed to be identical, cps = cpl = cp,

Ks = Kl = K0. It is generally sufficient to require that g(φ) has the

shape of a double-well potential. It has two minima in 0 and 1,

which correspond to the stable phases. This property prescribes a

metastable-phase for all other values of φ. The simplest choice for

g(φ) that has been traditionally used is

g(φ) ≡ φ2(1− φ)2. (3.7)

The term p(φ) is a monotone increasing function in the interval [0, 1]

and takes values 0 and 1 on the left and right boundary, respec-

tively. It is responsible for coupling between undercooling and φ.

Usually it has a polynomial form:

p(φ) = 30

(
φ3

3
− φ4

2
+

φ5

5

)
. (3.8)
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This form is chosen for stability reasons. The next phase-field func-

tion h(φ) has the same properties as p(φ). There is some freedom

in the choosing of this function. The comparison between different

forms has been made by A. Karma and W. Rappel in [26] and by Y.

Kim et al. in [31]. The conclusions of these works are that different

models yield equal numerical results. This statement allows us to

choose the h(φ) = φ.

In the phase-field model the interface between solid and liquid is

defined as isoline φ = 0.5. The phase-field equations (3.5) and (3.6)

should reproduce the sharp interface equations (3.1)-(3.4). The

last statement defines phase-field parameters τ , ξ and λ through

the physical properties. Traditionally, these parameters are related

through the sharp interface limit[11]. Recently, Karma and Rappel

[26] presented a different asymptotic analysis performed in powers

of the ratio of the interface width to the diffusion length. It requires

domination of the two first terms in Eq.(3.5) over the undercooling

term. The resulting expression is:

µ−1 = a1
τ

λξ
− a2

ξL

cpDT

, d0 = a1
ξcp

Lλ
, (3.9)

where a1 and a2 depend on the functions p(φ) and h(φ) in Eqs.(3.6),

(3.5). They are defined through the so called solvability integrals

[26]:

a1 = II/JI , a2 =
KI + JIFI

2II

,

where

II ≡
∫ ∞

−∞
(∂φ0)

2dη,

JI ≡ −
∫ ∞

−∞
∂φ0p

0
φdη,

KI ≡
∫ ∞

−∞
∂φ0p

0
φ (η)

∫ η

0
h0dη′.
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In this case, the constants a1 and a2 take the following values:

a1 =
1

3
√

2
, a2 = 0.3519.

The term with undercooling in Eq. (3.5) should be small in com-

parison with the two other terms, in other words, the system is

in a quasi-stationary state. The one dimension phase-field profile

can then be extracted as a zero order solution of the perturbation

theory:

φ =
1

2

(
1 + tanh

x√
2ξ

)
. (3.10)

The width of transition region, wφ, is introduced as the distance

between points, which corresponds to φ = 0.05 and φ = 0.95. The

obtained solution gives wφ ≈ 6√
2
ξ.

The phase field equations (3.5) and (3.6) can be obtained in a

thermodynamically consistent way, see Appendix A. Historically,

the phase-field equation (3.5) was obtained from the free-energy

function [10, 11]. The model was applicable to isothermal phase-

transitions. The Eq.(3.6) was artificially added (not in the frame of

thermodynamics). The thermodynamically consistent derivative of

the non-isothermal phase-field model was proposed later on, see

[44]. The thermodynamical consistency requires h(φ) = p(φ). As it

was mentioned the simulation results are equal for the cases with

h(φ) = p(φ) and h(φ) = φ, see [26, 31].

Additionally, we would like to rewrite the phase-field equations

using slightly different notations. These notations will be called

“thermodynamically-consistent”:

τT
∂φ

∂t
= ξ2

S∆φ−Wgφ +
L

T 2
m

pφ(T − Tm),

∂T

∂t
= DT ∆T +

L

cp

hφ
∂φ

∂t
.
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The coefficients in this equation are related to the physical param-

eters as follows:

µ−1 = a1
τT

√
WT 2

m

LξS

− a2
ξSL

cpDT

√
W

, d0 = a1
T 2

mξScp

√
W

L2
. (3.11)

The expression for the width of the transition region takes the form

wφ ≈ 6ξS√
2W

.

3.2 The modified phase-field model

The previous analysis has been made under the so called quasi-

stationary assumption. The term with undercooling, see Eq.(3.5),

is assumed to be small in comparison with the other two terms.

This supposition plays a central role in the asymptotic analysis

for a thin interface limit, however, this assumption is not always

fulfilled. Fig. 3.1 shows the result of a 1D simulation where this

assumption is shown to be incorrect. The plot clearly shows a

deviation from the stationary solution. This deviation can be seen

in the increase in the width of the transition region as compared

to that which was expected. We propose here a method to remove

this effect. The price for this solution, is some deviation from the

thermodynamic roots of the phase-field method.

The following analysis is made for the 3D case and can be easily

applied to the 2D case. The equation (3.5) contains the Laplacian,

which is split into two parts:

τ
∂φ

∂t
= ξ2 (nαnβ∇α∇βφ + (∆φ− nαnβ∇α∇βφ))−gφ +λpφ(T −Tm). (3.12)

The term nαnβ∇α∇βφ corresponds to the second derivative of the

phase-field along the normal to an isosurface. The term (∆φ −
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Figure 3.1: 1D profile of the phase-field. St = 0.25, DT = 20 l.u., t = 2000 l.u.,

ξ = 1 l.u, τ = 1 l.u, L/cp = 1 l.u, λ = 29.9 l.u.

nαnβ∇α∇βφ) corresponds to the curvature of an isosurface which

contains a current point, see Appendix C. There are two properties

of the phase-field, which allow us to turn to a 1D equation, where

the phase-field changes in a thin region and isolines are assumed

to be parallel.1 Eq.(3.12) turns to the following 1D equation:

τ
∂φ

∂t
= ξ2φ′′ + ξ2κφ′ − gφ + λpφ(T − Tm), (3.13)

where κ is local curvature. Clearly, ξ2 has two functions. It is

simultaneously responsible for the transition region and for the

Gibbs-Thomson effect. The first role is actually the numerical pa-

rameter of the current model. As was mentioned in the previous

section, the first two terms in Eq.(3.5) should be larger than the

third. In this situation, when the Gibbs-Thomson effect is small in

comparison with the kinetic effects, the ξ also has a small value,

which sometimes leads to an instability of the transition region.
1This assumption is true if curvature radius is large in comparison with the

width of the transition region.
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Our idea is to divide the two functions of ξ between the two vari-

ables ξ‖ and ξ⊥:

τ
∂φ

∂t
= ξ2

⊥φ′′ + ξ2
‖κφ′ − gφ + λpφ(T − Tm). (3.14)

This separation permits the maintenance of high stability of the dif-

fusive interface, despite surface tension being small, or even zero.

The described idea allows one to formulate the modified phase-

field equation:

τ
∂φ

∂t
= Ξαβ∇α∇βφ− gφ + λpφQ(T ), (3.15)

where

Ξαβ ≡
(
(ξ2
⊥ − ξ2

||)nαnβ + ξ2
||δαβ

)
.

An analysis procedure such as that in [26], gives the following rela-

tionship between modified phase-field parameters and the physical

variables:

µ−1 = a1
τ

λξ⊥
− a2

ξ⊥L

cpDT

, d0 = a1
ξ⊥cp

Lλ
γ2

ξ , wφ ≈
6ξ⊥√
2W

(3.16)

where γξ ≡
ξ‖
ξ⊥

.

The discussed model plays a crucial role in our simulations of

binary alloys, see Chapter 5.

3.3 Numerical implementation

The peculiarities of the numerical implementation of the phase-

field model can be considered in the example of an isotropic case.

The focus is the modelling of the heat transport by the LK scheme.
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A simple explicit scheme for the phase-field and temperature

equation is:

dφ =
ξ2δt

τ
∆̄φ(t)− δtgφ(t)− δtλpφ(t)T̃ (t), (3.17)

dT = δtDT ∆̄T +
L

cp

hφ(t)dφ, (3.18)

where dφ ≡ φ(t+δt)−φ(t) and dT ≡ T (t+δt)−T (t). ∆̄ is the discretized

Laplacian. This scheme, due to the Laplacian, has stability restric-

tions. Namely the Courant conditions for both equations are:

ξ2

τ

δt

δ2
x

<
1

4
, DT

δt

δ2
x

<
1

4
. (3.19)

These conditions correspond to the 5-point stencil for the Lapla-

cian. The stability conditions make significant restrictions on the

value of the time step. It can be solved by applying the proposed

LK scheme for heat transport. Thus, the Eq.(2.8) is solved, instead

of Eq.(3.18). The latent heat production in the MRLK method can

be simulated by inserting the corresponding term in the equation

(2.8):

fi(~r+δx~ai, t+δt)−fi(~r, t) =
∑
j

Ωij(f
eq(~r, t)j−fj(~r, t))+wi

L

cp

hφ(t)dφ. (3.20)

The latent heat term often leads to instability in a case with

large time steps. This effect is a combination of serial solidi-

fication and melting processes in the transition region. These

serial processes are caused by excessive latent heat produc-

tion/consumption which is caused by the explicit time integration

of the phase-field equation. This instability can be removed by us-

ing a semi-implicit scheme instead of (3.17):

dφ =
ξ2δt

τ
∆̄φ(t)− δtgφ(t) + δtλpφ(t)

(
T̃ (t) +

L

cp

hφ(t)dφ

)
.
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This equation can be reformulated in the explicit form:

dφ =
ξ2δt

τ
∆̄φ(t)− δtgφ(t) + δtλpφ(t)T̃ (t)

1 + λ L
cp

hφ(t)pφ(t)
. (3.21)

The adaptive time stepping procedure, discussed in Sec-

tion 2.2.3, is implemented in the program. After implementation

of this procedure, the developed numerical method becomes a fine

tool for simulation of pattern formations processes in such sys-

tems.

Let us turn back to the phase-field equation. The MPF equation

contains the second order spatial derivatives. These derivatives are

discretized with the central finite-difference method. The special

scheme is applied in order to reduce grid anisotropy. This scheme

uses a 9-point template in the 2D case and a 19-point template

for the 3D case. The expressions for corresponding derivatives are

listed in Appendix D.2.

The locality of both numerical methods makes them very effi-

cient for parallelization. The 3D model is parallelized for Beowulf-

Clusters[3]. The data exchange is realized with MPI: Message Pass-

ing Interface[18]. The (rectangular) computational domain is di-

vided into subdomains for each processor. Every processor re-

quires the boundary values from the previous time step for com-

putation of the next one. These boundary values come from the

corresponding neighbor nodes. The nodes communicate through a

common network.

3.3.1 Numerical tests

It is necessary to verify the proposed MPF model as well as the

numerical procedure. The simulation of dendritic growth is a stan-
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dard verification tool in this field.

The evolution of a small nucleus placed in an undercooled melt

is simulated. The form of the nucleus changes from round to den-

dritic. This shape depends on conditions and anisotropy in surface

tension and the kinetic coefficient. After some time the growing

dendritic tip achieves its stationary state, which is determined by

the growth velocity and the tip radius. Here we deal with anisotropy

in surface tension, γ = γ0α(~n). The so called four-fold symmetry

form is taken:

α(~n) = 1− 3ε4 + 4ε4
(∇xφ)4 + (∇yφ)4

|~∇φ|4
, (3.22)

or it is rewritten in terms of the orientation angle:

α(θ) = 1 + ε4 cos 4θ. (3.23)

Here θ is the angle between the interface and x-axis. ε4 is the

anisotropy parameter. The surface tension in the 3D case takes

a similar form:

α(~n) = 1− 3ε4 + 4ε4
(∇xφ)4 + (∇yφ)4 + (∇zφ)4

|~∇φ|4
. (3.24)

The corresponding expressions for capillary length d0 in the 2D and

3D cases are:

d0(~n) = 1− 3ε4 − 12ε4
(∇xφ)4 + (∇yφ)4 − 8(∇xφ)2(∇yφ)2

|~∇φ|4
,

d0(~n) = 1− 3ε4 − 12ε4

(
(∇xφ)4 + (∇yφ)4 + (∇zφ)4

|~∇φ|4

− 4
(∇xφ)2(∇yφ)2 + (∇xφ)2(∇zφ)2 + (∇yφ)2(∇zφ)2

|~∇φ|4

)
.
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Figure 3.2: The 3D dendritic crystal.

St = 0.45, δx = 0.8, ε∗4 = 0.05, D = 4, size:

250× 250× 250

Figure 3.3: The 3D dendritic crystal.

St = 0.45, δx = 0.6, ε∗4 = 0.0081, D = 12,

size: 250× 250× 250

Table 3.1: Dendritic growth. δx = 0.4, τ = 1,

St ε λ D
√

Wd0
ξ

ṽ ṽ - theory

0.55 0.05 4.70 2 0.277 0.0167 0.0170

0.55 0.05 7.05 3 0.185 0.0178 0.0170

0.45 0.05 9.40 4 0.139 0.00564 0.00545

0.30 0.05 23.5 10 0.055 0.000685 0.00068

0.55 0.02 4.70 2 0.277 0.00694 0.00685

λ =
a2

a1

τDT

ξ2
⊥L

, Ca =
a2ξ

2
⊥γ2

ξ

τDT

. (3.25)

An example of a 3D dendritic crystal is shown in Fig. 3.2. The

color corresponds to the local temperature. The cold regions on the

tips indicate the influence of the Gibbs-Thomson effect. Only one

eighth part of the whole crystal was simulated.

The simulation results for 2D cases are collected in Table.3.1.

The results show good agreement with the theoretical predictions

[26].
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Figure 3.4: Value of the diabatic pa-

rameter and time step vs. time. St =

0.30 see Table 3.1. Dashed lines corre-

spond to the maximum and minimum

allowed values of the diabatic parame-

ter ε. The ratio of the new to the old

time step is fixed: αdt = 1.05.

Figure 3.5: Time step and diabatic

parameter for the 3D dendritic crys-

tal. The dashed line corresponds to the

maximal possible value of the time step

for the central-forward finite difference

method. St = 0.45, δx = 0.8, ε∗4 = 0.05,

D = 2, size: 250× 250× 250

The evolution of the time step and corresponding value of the

diabatic parameter ε are shown in Fig. 3.4. It is seen that in the

initial stage the time step grows, but at some point it decreases

and then stabilizes. During the period of decrease, the crystal

shape changes from round to dendritic. The birth of dendrites

is accompanied by an increase in the temperature gradient near

the dendritic tips, which causes an increase in the local diabatic

parameter.

The corresponding plot for the 3D case is shown in Fig. 3.5.

The dashed line indicates the maximal possible value of the time

step for the central-forward finite difference method. The two times

larger time step may not seem like a very significant achievement,

especially if we remember that it requires a six times larger mem-

ory and ∼ 3 time more floating point operations. However, the

computation of the heat transport takes only ≈ 15% of the total
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computation time, making an ≈ 80% increase in performance.

The dendritic crystal shown in Fig. 3.3 has a very small

anisotropy. The exhibited morphology corresponds to the dublon

type, according to the morphology diagram given by E. Brener et

al. [9]. This case was computed with and without symmetry as-

sumptions. The simulation results are equal.

3.3.2 Equilibrium shape

The next example is the calculation of the equilibrium shape of a

crystal. Knowledge of the character of anisotropy in surface tension

comes from analysis of the form of extremely slow growing crystals.

A similar procedure is reproduced in the phase-field simulation.

Solidification with small undercooling and slow growth kinetics is

considered. Latent heat is not taken into account.

The anisotropy of the surface energy is taken again in the form

of the four-fold symmetry, Eq.(3.22). The corresponding equilib-

rium shape can be described by the expression [54]:

x = α(θ) cos(θ)− α′(θ) sin(θ),

y = α(θ) sin(θ) + α′(θ) cos(θ). (3.26)

Simulations start from the round nucleus, r0 = 70 l.u. and they

are made with the following physical parameters:

Γ = 0.69 l.u., µ = 0.090 l.u.. (3.27)

The equilibrium form is achieved after some time, see Fig. 3.6. It

is seen that the initial nucleus melts in some regions and grows in

others.

A comparison of the phase-field simulation and the analytical

solution is shown in Fig. 3.7. This result allows us to conclude that



3.3. Numerical implementation 47

50

150

250

350

50 150 250 350

Figure 3.6: Evolution of a crystal with the anisotropy ε = 0.2. Isolines corre-

spond to the different time: t = 0, 2000, ..., 12000 l.u.

the proposed modification of the phase-field equation reproduces

the anisotropy effects with high accuracy, even in the case of strong

anisotropy.
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Figure 3.7: Equilibrium forms of crystals for different values of anisotropy:

ε = 0.05, 0.1, 0.2, 0.5. The analytical form is marked by a line and the phase-field

simulation is plotted with a filled area.



Chapter 4

Phase-field models for binary

alloys

The previous chapter demonstrates application of the phase-field

model for simulation of the dendritic growth in a pure, undercooled

melt. It has been extended to the model for solidification in binary

alloys by Wheeler, Boettinger and McFadden [69], the WBM model.

The WBM model that has been used widely [69, 12, 67, 34] is de-

rived in a thermodynamically-consistent manner. In this model,

any point within the interfacial region is assumed to be a mix-

ture of a solid and a liquid, both with the same composition. The

phase field parameters can be determined not only through the

sharp interface limit condition, but also through the finite inter-

face thickness condition [29]. It has been shown that the model

can correctly reproduce the solute trapping phenomena at a high

interface velocity [12, 29].

A careful study of the WBM model shows that there is limita-

tion on the width of the transition region [29, 30]. The existence

of this limitation pushed Kim, Kim and Suzuki to develop the so

48
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called KKS model for binary alloys [30]. This model is derived in a

thermodynamically-consistent manner, as well. The difference be-

tween the WBM and the KKS model is in the definition of the free

energy density for the interfacial region.

Differential equations of the KKS model were solved by the finite

difference method. The first attempts to simulate GeSi crystals

demonstrated that stability restrictions of the FD method on the

time step make simulation of the system impossible. Application

of the MRLK scheme to the concentration equation allows one to

increase the time step by 10-100 times, in comparison with the FD

scheme.

This chapter has the following structure. In the first two sec-

tions, a short overview on the theory of phase transition in binary

alloys is given. The two following sections contain overviews of the

WBM and the KKS models and the numerical procedure for the

solving of the phase-field equations is further considered. In the

last section, we present an application of the developed technique

to the NiCu alloy.

4.1 Thermodynamics and the sharp inter-

face model

4.1.1 Thermodynamics

The considered system consists of two components, A and B, and

two phases, liquid and solid, respectively. It is supposed that both

components and phases have equal density, meaning that the ther-

modynamic potentials are only functions of temperature. Similar
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to the procedure used in the phase-field model for pure material,

we introduced: energy E and free energy F functions. The corre-

sponding differentials are:

dE = TidS, dF = −SdT, (4.1)

where T and S are temperature and entropy, respectively. These

equations can be divided by volume V and rewritten in terms of

densities:

de = Tids, df = −sdT, (4.2)

where e, f and s are the densities of the corresponding thermo-

dynamic values E, F , S. The energy and the free energy density

functions are related through the Legendre transformation:

f(T ) = e− Ts(e). (4.3)

The corresponding Legendre transformation for bulk values looks

similar:

F =
∫

V
e− Ts(e) dV = E − TS

Eq. (4.3) gives the relation between e and f :

e =
∂(f/T )

∂(1/T )
=⇒ f = T

∫ T

Tm

e(T ) d
(

1

T

)
. (4.4)

The energy densities of each component for different phases are

defined as:

el = Tcpl, es = Tcps − L, (4.5)

where cp is the heat capacity of a substance and L is latent heat.

The indices l and s indicate the liquid and solid phases. This is the

simplest model, which takes into account latent heat production



4.1. Thermodynamics and the sharp interface model 51

f
T=T

Solid

c0 1

B

Liquid

f

Solid

10 c1 c2 c

T=T >T1 B

Liquid

f

10

T=T

Solid

c

A

Liquid

10 c1 c2 c

T
A

B

Solid
1

T

T

T

Liquid

Figure 4.1: Illustrations for the common tangent method. Free energies of two

phases are plotted vs. concentration for different values of temperature. The

last plot shows the corresponding phase-diagram.

by phase transition. An expression for f is obtained as a result of

substituting expressions (4.5) into Eq. (4.4):

fl = cplT ln
Tm

T
, fs = cpsT ln

Tm

T
− LTQ(T ), (4.6)

where Q(T ) ≡ 1
T
− 1

Tm
. Expressions for the densities of the thermo-

dynamic potentials can be constructed for the case of a mixture.

The WBM model defines the free energy of the mixture as follows:

f = cfA + c̃fB − Tsmix, (4.7)

where c̃ ≡ 1 − c, smix is entropy of the mixture. In the case of an

ideal mixture, smix takes the same form as for an ideal gas:

smix = RT (c ln c + c̃ ln c̃).

The obtained free energy function should correspond to the

phase diagram obtained in the experiment, see Fig. 5.2. The com-
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mon tangent method is a standard tool used for calculation of the

phase diagram from known free energy functions. This procedure

is sketched in Fig. 4.1. Free energy functions for solid and liquid

phases are:

fl = cpT ln
Tm

T
+

RT

Vm

(c ln c + c̃ ln c̃), (4.8)

fs = cpT ln
Tm

T
− TLQ(T ) +

RT

Vm

(c ln c + c̃ ln c̃), (4.9)

where (expression) ≡ c(expression)A + c̃(expression)B.

The conditions for the common tangent can be written in the

following form:

∂fs(T, c0
s)

∂c
=

∂fl(T, c0
l )

∂c
, (4.10)

fs(T, c0
s)−

∂fs(T, c0
s)

∂c
c0
s = fl(T, c0

l )−
∂fl(T, c0

l )

∂c
c0
l , (4.11)

where c0
s and c0

l are the concentrations, which correspond to the

solidus and liquidus curve, respectively. The first equation can be

interpreted as equality of the chemical potentials of both phases.

The second equation is equivalent to the requirement of zero un-

dercooling. By using the definition of the chemical potential, µ = ∂f
∂c

,

the condition can be rewritten in the different form:

µl(T, c0
l ) = µs(T, c0

s) =
fs(T, c0

s)− fl(T, c0
l )

c0
s − c0

l

. (4.12)

These equations are solved for the free energy functions given

in Eqs.(4.8), (4.9). The solution describing solidus and liquidus

curves has the form:

c0
l =

k̂B − 1

k̂B − k̂A

c0
s = k̂A

k̂B − 1

k̂B − k̂A

, (4.13)

where

k̂A ≡ e
LM

A
QA(T )Vm

R , k̂B ≡ e
LM

B
QB(T )Vm

R . (4.14)
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Figure 4.2: 1D concentration profile of a solution for a sharp interface model.

Here, it is plotted for a case with flow.

k̂A and k̂B are partition coefficients:

k̂A =
c0
s

c0
l

, k̂B =
1− c0

s

1− c0
l

.

This expression takes a simpler form in a dilute alloy approxi-

mation:

c0
l = me (T − TB), c0

s = k̂A(TB)me (T − TB),

where me is the liquidus slope:

me =
LM

B Q′(TB)Vm

(1− k̂A(TB))R

4.1.2 Sharp interface model

The classical sharp interface model for isothermal solidification of

an alloy is:
∂cs

∂t
= Ds∆cs, (4.15)

∂cl

∂t
= Dl∆cl, (4.16)
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µs = µl ≡ µ, (4.17)

v = β−1

(
(µe − µ)

T (ce
l − ce

s)

L
− Γκ

)
, (4.18)

(ci
l − ci

s)V = Ds
∂cs

∂n
−Dl

∂cl

∂n
, (4.19)

where Ds and Dl are the diffusivities of the solute in the solid and

liquid phases, respectively, ci
s and ci

l are the compositions of the

solid side and the liquid side at the interface, ce
s and ce

l are equi-

librium values of compositions of the solid side and the liquid, µe

is the chemical potential in the thermodynamic equilibrium state.

µe = fs(T,cs)−fl(T,cl)
cs−cl

is the equilibrium value of the chemical potential.

The Eq. (4.18) introduces supersaturation:

Θ ≡ (µe − µ)
T (ce

s − ce
s)

L
. (4.20)

In this definition Θ is measured in temperature units.

4.1.3 1D solutions

As mentioned earlier, there is a jump in the concentration value

on the solidification front. This jump is described with the solute

partition coefficient.

k̂ ≡ cs

cl

.

This coefficient becomes equal to the phase diagram partition co-

efficient, (4.14), in the case of infinite kinetics. Typically, a 1D

concentration profile has the form like that seen in Fig. 4.2. It is

also possible to introduce the effective distribution coefficient k∞,

k∞ =
cs

c∞
.

The value of the effective partition coefficient equals 1 in a system

with pure diffusion. In the presence of flow, the effective partition
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coefficient has a value different from 1. It is defined through the

diffusion layer thickness, δc (see pg. 15 in [61]):

k∞ =
k̂

k̂ + (1− k̂) exp(−vgrδc/D)
. (4.21)

4.2 Phase-field models for binary alloys

In this section thermodynamically consistent phase-field models

for a system of two components, A and B, will be introduced. The

model development procedure is similar to that used in the case of

pure materials, see Appendix A.

4.2.1 Basic ideas

The system consists of two phases: solid and liquid. An order pa-

rameter, φ, is introduced for the description of the phase transition.

It defines the local state of the system. Zero value corresponds

to the liquid phase (melt) and the value φ = 1, to the solid phase

(crystal). The phase-field parameter changes continuously between

these two values, and in this way the interface is described. This

fact should be reflected in the free energy F :

F =
∫

V

(
f(φ, c, T ) +

ξ2
F

2
|∇φ|2

)
dV , (4.22)

where f(φ, c, T ) is the free energy density function with the phase

state φ, and ξF is the coefficient responsible for surface energy. The

free energy function is convenient for consideration of an isother-

mal model, while an entropy function is used for non-isothermal

consideration. The expression for entropy is:

S =
∫

V

(
s(φ, c, e)− ξ2

S

2
|∇φ|2

)
dV, (4.23)
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where ξ2
S ≡ ξ2

F /T . The expressions obtained for the thermodynamic

functions allow us to construct evolution equations for the fields.

The equations for φ, c and e are usually taken in the following form

[22]:

∂φ

∂t
= Mφ

δS
δφ

, (4.24)

∂e

∂t
= −~∇ ·

(
Me

~∇δS
δe

)
, (4.25)

∂c

∂t
= −~∇ ·

(
Mc

~∇δS
δc

)
. (4.26)

Mφ, Me,Mc are positive functions, which define evolution rate to-

wards the equilibrium state. These equations uphold the energy

and mass conservation laws as well as the second law of thermo-

dynamics. These relations are reformulated in terms of the free

energy density:

∂φ

∂t
= Mφ

(
− 1

T

∂f

∂φ
+ ξ2

S∆φ

)
, (4.27)

∂e

∂t
= −~∇ ·

(
Me

~∇ 1

T

)
, (4.28)

∂c

∂t
= ~∇ ·

(
Mc

~∇ 1

T

∂f

∂c

)
. (4.29)

4.2.2 The WBM phase-field model

Warren and Boettinger defined f as the free energy density for a

two component system as follows:

f = cfA + c̃fB + fAB, (4.30)

where c and c̃ = 1 − c are the concentrations of the components A

and B, respectively. fA and fB are the free energy functions of the
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pure components and fAB is an additional term, which corresponds

to a mixed state. In most cases the additional free energy can be

expressed as:

fAB = eAB +
RT

Vm

(c ln c + c̃ ln c̃), (4.31)

where R is the gas constant, and Vm is the molar volume1. For ideal

solutions, eAB = 0. Let us write down once more the expressions for

the free and internal energy density functions of a pure material A:

fA = cpAT ln
TA

T
− LAp(φ)TQA(T ) + TWg(φ), (4.32)

eA = TcpA − LAp(φ), (4.33)

where TA, LA are melting point temperature, latent heat of the com-

ponent A. It is assumed that W is equal in both materials. It

should be mentioned that the heat capacities of both components

are independent of the phase-field2. Function Q was defined in the

thermodynamically-consistent model for pure materials, Eq. (A.20).

Note that it is not allowed to use the approximation because T ≈ Tm

does not held.

By substituting the definition of f , Eq. (4.30), the evolution

equation for concentration can be obtained:

∂c

∂t
= ~∇ ·

(
Mc

~∇
f∆ + ∂fAB

∂c

T

)
, (4.34)

where f∆ ≡ fA − fB. The parameters ξA and ξB are assumed to be

equal.

1In this model, Vm is assumed not to depend on concentration, temperature

or phase-field.
2Thus, there is no jump of heat capacity during the phase transition in Si,

and it is ∼ 6% for Ge.
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4.2.3 Evolution equations

The free energy function can be now written in the explicit form:

f = cpT ln
Tm

T
− p(φ)TLQ(T ) + Tg(φ)W +

RT

Vm

(c ln c + c̃ ln c̃). (4.35)

The heat capacity is taken as equal for both components3. Substi-

tution of this expression into Eq. (4.27) gives:

τ
∂φ

∂t
= ξ2

S∆φ−Wgφ + pφLQ(T ). (4.36)

Here, Mφ is taken as a constant, Mφ = 1/τ . As can be seen, this

equation is linear with respect to c. The temperature and concen-

tration equations are obtained, as well:

cp
∂T

∂t
= ~∇ · (K(φ, c)~∇T ) +

∂φ

∂t
pφL + p(φ)L∆

∂c

∂t
, (4.37)

∂c

∂t
= ~∇ ·

(
Mc

~∇
(
C ln

TA

TB

− p(φ)[LQ(T )]∆ +
R

V
ln

c

c̃

))
, (4.38)

where [expression]∆ ≡ (expression)A − (expression)B. Comparison

of the equation for the concentration with Fick’s Law of diffusion

gives us the expression for Mc:

Mc = D
Vm

R
cc̃, (4.39)

where D is a diffusion coefficient. After substituting we have ob-

tained:
∂c

∂t
= ~∇ · (D~∇c)− Vm

R
D~∇

(
cc̃~∇p(φ)[LQ(T )]∆

)
. (4.40)

Equations (4.36) and (4.40) define the WBM phase-field model.

The parameters appearing in the equations are related to the ma-

3The difference between heat capacities of Si and Ge is ∼ 10% for the temper-

ature in the interval between the melting points of both materials.
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terial parameters. The expressions for phase-field parameters, ex-

tracted from the sharp-interface limit, are written here [67]:

w =
ξS

a1

√
W

, γ = a1TmξS

√
W, µ−1 = a1

τT T 2
m

√
W

LξS

, (4.41)

where a1 was defined in Section 3.1 and Tm is the temperature on

the crystal surface. The thin interface limit for this model is not

known.

4.2.4 Limitation of the WBM model

The WBM model has an artificial term, which can be interpreted

as the surface energy term. It comes from the chemical energy

in the transition region. The explicit form of this artificial part of

surface the energy can be obtained from the stationary solution of

the model.

The equations for the stationary case can be written in the form:

ξ2
S∆φ−Wgφ + pφLQ(T ) = 0, (4.42)

∇D∇c− [LQ(T )]∆
Vm

R
~∇
(
Dcc̃pφ

~∇φ
)

= 0. (4.43)

For an infinite 1D domain the boundary conditions are taken:

∇φ|x=±∞ = 0, φ|x=−∞ = 0, φ|x=+∞ = 1, ∇c|x=±∞ = 0. (4.44)

The corresponding stationary solution for c is:

c =
K

eBp(φ) + K
, B ≡ −Vm

R
[LQ(T )]∆, (4.45)

where K is an integration constant. The order of the equation for φ

can be reduced:

ξ2
S

2
(∇φ)2 −Wg(φ)− P (φ) = K1,
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Figure 4.3: Both terms with double-well potential. Parameters are taken for

NiCu alloy.

where

P (φ) ≡ −p(φ)LBQB − [LQ]∆

∫
c(φ)pφ dφ

= −p(φ)LBQB +
RK

Vm

ln(eBp(φ) + K).

It follows from the boundary conditions (4.44) that

K = eB cs

1− cs

and K1 = −P (1).

Substituting the material parameters for NiCu in the Eq.(4.41)

gives the plot for the term Wg(φ) with double-well potential and the

term P (φ). Both terms contain double-well potentials, see Fig.4.3.

This exhibits that the WBM model has a strong non-physical effect

related with wrong definition of the free energy in the transition

region. This effect becomes stronger with increasing of width of

the transition region. Therefore, it is impossible to apply it for

simulation of GeSi cellular structure.
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4.3 The KKS phase-field model

The isothermal variant of this model was first considered by Kim et

al. [30]. In this model, the transition region is defined as a mixture

of the solid and liquid phases with different concentrations but

with the same chemical potentials. In the previous model, there

were the same concentrations in mixed phases but different chem-

ical potentials. The free energy function is constructed differently

than in the WBM model, namely, as a mix of free energies of differ-

ent phases. It takes the form:

f(c, φ) = p(φ)fs(cs) + p̃(φ)fl(cl) + TWg(φ), (4.46)

where p̃(φ) ≡ 1 − p(φ), fs and fl are the free energy functions of the

solid and liquid phases, respectively. cs and cl are concentrations

in the solid and liquid phases. They are defined by the following

equations:

c = p(φ)cs + p̃(φ)cl, (4.47)

∂fs(cs)

∂cs

=
∂fl(cl)

∂cl

. (4.48)

The second equation is nothing more than the equality of the chem-

ical potentials of both phases.

The evolution equations are the same as in the WBM model,

(4.27) and (4.29). From the equations (4.47), (4.48) the expressions

for the derivatives of cs and cl on c and φ are obtained:

∂cl

∂c
=

f ′′s
p(φ)f ′′l + p̃(φ)f ′′s

,
∂cs

∂c
=

f ′′l
p(φ)f ′′l + p̃(φ)f ′′s

, (4.49)

∂cl

∂φ
=

pφ[cl − cs]f
′′
s

p(φ)f ′′l + p̃(φ)f ′′s
,

∂cs

∂φ
=

pφ[cl − cs]f
′′
l

p(φ)f ′′l + p̃(φ)f ′′s
, (4.50)
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where prime denotes the derivative with respect to c. These expres-

sions yield derivatives from the free energy (4.46):

∂f

∂φ
= TWgφ −

L

T
pφΘ, Θ ≡ T

L̄
(fl − fs − (cl − cs)f

′
l ). (4.51)

These expressions allow us to reformulate the governing equations

(4.27) and (4.29):

τ
∂φ

∂t
= ξ2

S∆φ−Wgφ +
L

T 2
pφΘ, τ ≡ 1/Mφ, (4.52)

∂c

∂t
= ∇

(
Mc

T
f ′′l

(
∂cl

∂c
~∇c +

∂cl

∂φ
~∇φ

))
. (4.53)

Here, Θ corresponds to a thermodynamic driving force for solidi-

fication (constitutional undercooling). By equating Θ to zero the

known equilibrium condition (4.12) is obtained. The last equation

for concentration is obtained within the isothermal model. The

non-isothermal model will be discussed later, see Section 4.3.1.

This equation should reproduce Fick’s Law. This requirement re-

lates Mc to the diffusion coefficient:

Mc = DT
p(φ)f ′′l + p̃(φ)f ′′s

f ′′s f ′′l
.

Substituting of expressions (4.49) and (4.50) in the last equation

gives:
∂c

∂t
= ∇(D∇c) +∇(D[cl − cs]∇p(φ)). (4.54)

The governing equations are accomplished with Eqs. (4.47) and

(4.48).

Similar to the previous model, the free energy functions for liq-

uid and solid phases are taken in the form:

fl = cpT (ln Tm − ln T ) +
RT

Vm

(c ln c + c̃ ln c̃), (4.55)

fs = cpT (ln Tm − ln T )− TLQ(T ) +
RT

Vm

(c ln c + c̃ ln c̃). (4.56)



4.3. The KKS phase-field model 63

These expressions give the solution of the Eqs. (4.47), (4.48), as a

relation between (cl, cs) and c, φ:

cl =
−α + c + p̃(φ) +

√
D

2p̃(φ)
, cs =

α + c− p̃(φ)−
√

D

2p(φ)
, (4.57)

D ≡ (α + c− p̃(φ))2 − 4cp(φ)α,

where α is related with the liquidus and solidus concentrations,

defined in (4.14):

α ≡ ka

ka − kb

=
c0
s(1− c0

l )

c0
s − c0

l

. (4.58)

Substituting of fl and fs in the expression for Θ Eq. (4.51) yields:

Θ =
T 2

L

(
LBQB +

R

V
ln

1− cl

1− cs

)
. (4.59)

The relations between the phase-field parameters and the mate-

rial parameters are the same as for the WBM model, see Eq. (4.41).

The thin interface limit will be discussed later.

4.3.1 Non-isothermal case

The basic ideas for the construction of a non-isothermal model, are

considered in Section 4.2.2. A similar procedure is applied for the

KKS model.

Up to now we considered temperature an a constant field. Here

we would like to write down the governing equations by taking into

account the temperature field as well.

The equation for the temperature field is derived from the energy

equation (4.28). The resulting equation is the same as for pure

materials, (3.6):
∂T

∂t
= DT ∆T +

L

cp

p(φ)

∂t
. (4.60)
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Normally, the dynamics of the concentration field are much slower

than the dynamics of the temperature field. In our simulation

Pr ≡ DT /DC ∼ 100. For this reason, we do not take the govern-

ing equation for the temperature field into account; temperature is

treated as a static field.

Another difference between isothermal and non-isothermal

models is seen in the concentration equation. Thus, in the

Eq. (4.53) a new term appears:

∂c

∂t
= ∇

(
Mc

T
f ′′l

(
∂cl

∂c
~∇c +

∂cl

∂φ
~∇φ

)
+

Mc

T
~∇T

(
f ′′l

∂cl

∂T
+ ∂T f ′l

))
, (4.61)

where the index T indicates a derivative on temperature.

From the Eqs. (4.47) and (4.48), the expressions for the deriva-

tives of cl and cs of T can be obtained:

∂cl

∂T
= p(φ)

∂T f ′s − ∂T f ′l
p(φ)f ′′l + p̃(φ)f ′′s

,
∂cs

∂T
= −p̃(φ)

∂T f ′s − ∂T f ′l
p(φ)f ′′l + p̃(φ)f ′′s

. (4.62)

These expressions give an additional term in Eq. (4.54):

∂c

∂t
= ∇(D∇c) +∇

(
(cl − cs)D∇p(φ) +

∂T f ′s − ∂T f ′l
f ′′s

p(φ)∇T

)
. (4.63)

Substituting the explicit expressions for fl and fs in the equation

yields:

∂c

∂t
= ∇(D∇c) +∇ (D[cl − cs]∇p(φ))

+∇
(

p(φ)csc̃sL∆

T 2R/Vm

∇T

)
.

Simulations show that the contribution from the additional term is

negligible for the modeled system. All simulations, therefore, were

made in the frame of the isothermal model.
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4.4 Numerical scheme

The governing equations of the PF model are solved numerically.

Various approaches are used for such simulations. The simplest

and most widely spread method is the finite difference method [69].

The finite volumes and finite elements methods were applied also

for this problem. Lan and Chang used an adaptive approach based

on the finite volume method [34]. Loginova and Amberg used a

finite-elements method [37]. These approaches allow different res-

olutions inside and outside of the transition region. The disad-

vantage in all of these methods is their poor scalability for parallel

simulations. Another drawback is the high complexity of program

code. It should be mentioned that both the finite volumes and fi-

nite elements techniques were used only for the WBM model, and

never for the KKS model.

The differential equation for the phase-field is solved by an ex-

plicit finite difference scheme. The operator with mixed spatial

derivatives is discretized by a scheme with a 9-point template [26],

see Appendix D.2.

Two different numerical models are used in this work. The first

one is the special finite difference scheme, which ensures the mass

conservation law. The second method is similar to the one applied

for the dendritic growth in the previous section. For the entire

system a mixed scheme is used: a finite difference scheme for the

phase-field equation, and the MRLK method for the concentration

equation. Both methods will be discussed in this section.
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4.4.1 Finite difference approach for the concentra-

tion equation

We have the advection-reaction-diffusion equation (4.54) for c, a

finite-difference numerical scheme was used for its solution. The

simulation domain has a rectangular form. It can be virtually di-

vided into three parts according to the value of φ. In the first part,

where φ = 0, only the Navier-Stocks equation and the advection-

diffusion equation for c need to be solved. In the second part, where

0 < φ < 1, the equations (4.52), (4.54) need to be solved in addition

to the Navier-Stocks equation, supplemented with the solid-liquid

collision term. Flow is simulated with the LBGK method, which

has been discussed in the previous sections. The third part is a

solidified crystal, therefore there are no processes to simulate.

In the first part, the classic Lax-Wendroff method [60] for simu-

lation of the advection diffusion process is applied:

c(~r, t + 1) = c0 +
∑

i

ci(D
∗α∆i − α∇iuii), (4.64)

where i takes the values 0, .., 4 for the 5-point template, respec-

tively. D∗ is a rescaled diffusion coefficient, which is related to the

physical one via D∗ = D δt

δ2
x
.

ci ≡ c(~r + ~ai), uij ≡ ~ai~u
∗(~r + ~aj), ~u∗ ≡ ~u

δt

δx

,

where ~ai are the lattice vectors:

~a0 = (0, 0),

~a1 = (0, 1), ~a2 = (1, 0), ~a3 = (0,−1), ~a4 = (−1, 0).

and α∆i and α∇i are weight coefficients:

α∆i =

 −4, i = 0

1, i = 1..4
, α∇i =

 0, i = 0
1
2
, i = 1..4

.
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This method allows coupling with the LBGK scheme. The Courant

stability conditions are:

D∗ <
1

2d
, u∗ < 1. (4.65)

Another limit is u∗/D∗ < 10. The Lax-Wendroff method has a nu-

merical diffusion of order u∗2, whose effect can be eliminated by

rescaling D, [60, 48]:

Dx = D∗ + u∗2x , Dy = D∗ + u∗2y .

The second part of the domain is the most problematic one from

the numerical point of view. The phase-field governing equation

(4.52) is similar to the one for pure materials (3.5). The only dif-

ference being in the definition of the undercooling term. The un-

dercooling is computed by the expression (4.59). The equation for

the concentration (4.54) is more complicated. It is very important

to secure the mass conservation in a numerical scheme. The equa-

tion contains differential constructions in the form ∇(A∇B). The

conservative representation is written here:

∇(A∇B) =
1

2δ2
x

∑
i

[A(~r + δx~ci) + A(~r)][B(~r + δx~ci)−B(~r)].

This expression allows us to discretize the equation (4.54).

Like any explicit difference scheme, the discretization implies a

severe Courant restriction on the time step, δt < αeδ
2
x, where αe is

the coefficient defined by the discrete equation. This is in contrast

to the purely advective Courant limit of the LB scheme, δt = δx/|~ai|.
Such differences in the Courant limits for both schemes lead us to

construct the MRLK discretization for the diffusion equation.



68 4.4. Numerical scheme

4.4.2 MRLK discretization of the concentration

equation

The MRLK discretization for this system is quite similar to that

used for pure materials. As in the case of the finite differ-

ence method, the domain can be divided into three parts. The

advection-diffusion equation is simulated with the corresponding

MRLK method discussed above. In this case, the Courant condi-

tions (4.65) are better than in the case of the FD scheme.

There are some differences between equations for solidification

in pure, materials and in binary alloys. The first effect is the depen-

dence of the diffusion coefficient on the phase, i.e. D = D(φ). This

dependence is naturally realized without any additional changes in

the numerical scheme. The relaxation matrix has the form (2.24)

with the only difference being that matrix Λ becomes specially de-

pendent because D = D(φ).

The second effect is related to the additional non-linear term

appearing in the second part of domain. The equation (4.54) is

rewritten in the following form:

∂c

∂t
= ∇(D∇c)−∇ · ~Jadd, Jadd ≡ D[cs − cl]∇p(φ). (4.66)

The idea is to represent the additional term in the diffusion equa-

tion as a term in flux. The MRLK discretization for binary alloys is

based on the known discrete kinetic equation (2.8):

fi(~r + ~ai, t + 1)− fi(~r, t) =
∑
j

Ωij(f
eq(~r, t)j − fj(~r, t)).

The lattice velocity vectors ~ai are defined in the same way as in

Chapter 2. The density functions code the concentration as follows:

c(~r, t) =
∑

i

fi.
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The continuum limit of this equation was considered in Chapter 2.

This equation approximates the following continuum equation:

∂c

∂t
= −∇ · ~Jeq +∇(D∇ρ). (4.67)

Comparison between the equations (4.66) and (4.67) gives the ex-

pression for equilibrium distribution function:

f eq
i =

1

as

~ai · ~Jadd. (4.68)

Another positive feature of this method should be mentioned:

the computation procedure contains less floating point operations

than the FD approach. Thus, this method has a better performance

versus that of the FD approach, even in the case of equal time

steps.

4.5 Pattern formation for NiCu alloys

NiCu is a typical test material used by many authors [69, 37, 13].

Its phase diagram is shown in Fig. 4.4. The material parameters

are listed in Tables 4.1 and 4.2.

The described phase-field model is applied for simulation of

directional solidification of the NiCu alloy in a rectangular com-

putational domain. Periodic boundary conditions are taken in x-

direction. The initial crystal plane is orthogonal to the y-axis. The

temperature profile is set up by a constant temperature gradient,

GT , and is moved with a constant velocity vpull. Thus, the local

temperature can be defined by the expression:

T (x, y) = T0 + GT (vpullt− y), GT < 0.
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Figure 4.4: Phase-diagram for NiCu

alloy. Points indicate measurements

[43]. The lines correspond to the liq-

uidus and solidus curve obtained from

the free energy function.

Figure 4.5: Copper-nickel alloy,

Ni0.1Cu0.9. Scale Line Length 25 µm.

Table 4.1: Material parameters of the Ni an Cu.

Physical value Ni Cu

Melting-point temperature 1728 K 1358 K

Density 8.9 · 103 kg
m3 8.9 · 103 kg

m3

Molar volume 6.59 · 10−6 m3

mole
7.11 · 10−6 m3

mole

Heat capacity 440 J
kg K

380 J
kg K

Thermal conductivity 90.7 W
m K

401 W
m K

Latent heat 17.57 kJ
mole

13.01 kJ
mole

Table 4.2: Material parameters of the NiCu alloy, [67].

Name Value

Gibbs-Thomson coefficient 2.7 · 10−7 K m

Kinetic coefficient 2 m/s K

Diffusion coefficient of Ni in Cu 10−9 m2/s
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This is a typical approximation for directional solidification in bi-

nary alloys. We are able to apply this approximation because the

dynamic of the temperature field is much faster than the dynamics

of the concentration field.

The computational domain moves with the advancing solidifica-

tion front (in y-direction) in order to keep the interface within the

same region. More precisely, in every time step we measure the

shift ∆shifty of the interface (maximum point of the interface) ac-

cording to the previous time step. The last rows in the solid up to

a height of ∆shifty, are chopped and the same number of rows are

added to the liquid at the end of the domain. The concentration at

the liquid end of the computational domain is fixed.

The phase-field equation is computed only in the region defined

by the values of the phase-field, 10−4 < φ < 1 − 10−4. In this region

we have used a special mass-conserving scheme for the advection-

diffusion equation, where we take into account that the diffusion

coefficient D(φ) changes rapidly within the transition region:

D(φ) = D0(1− φ).

The thin interface limit for the KKS model exists only in the case

of dilute alloys. The simulated NiCu alloy can not be treated as a

dilute one. The expressions for the parameters are therefore taken

in the form of a sharp interface limit, Eq. (4.41).

4.5.1 1D simulations

Both numerical methods for the concentration field, discussed in

Section 4.4, have been tested on a 1D model of directional crys-

tallization. The 1D simulation corresponds to the motion of a flat
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interface. The simulation domain has a length ly, the interface be-

tween liquid and solid is placed in y0 < ly. The initial condition for

the phase field is:

φ(y, 0) =
1

2
− 1

2
tanh

( √
W

ξS

√
2
(y − y0)

)
.

This initial condition defines [0, y0] as a solid and [y0, ly] as a melt.

φ = 0.5 corresponds to the interface. The analytical solution, (4.21),

shows that in the diffusion controlled case, i.e. δc = ∞, the distri-

bution coefficient, k∞ is equal to 1. This gives us the concentration

boundary condition for the liquid end of the domain:

c(ly, t) = cs0.

Please note that cs0 is the expected concentration in a solid. The

initial condition for the concentration field are taken as:

c(y, 0) = cs0φ(y, 0) +

(
y

y0

(c0
l − cs0) + cs0

)
(1− φ(y, 0)),

Fig.4.6 shows a 1D simulation for a NiCu alloy. The phase-

field and constitutional undercooling, Θ, are plotted there. The

undercooled region seen ahead of the interface causes the Mulin-

Sekerka instability. Fig.4.6b shows the concentration profile and

the profiles of cs and cl. Two straight lines mark the liquidus and

solidus concentrations, (4.13). The undercooled (supersaturated)

region is easily recognizable in this plot.

The situation in the transition region needs to be discussed in

detail. There is little supersaturation inside of the transition re-

gion. This supersaturation cause an additional non-linear term in

the equation which decreases the height of doublewell potential. At

the moment, we can not find the source of this additional poten-

tial. The additional potential increases the width of the transition
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a)

b)

Figure 4.6: 1D simulation for NiCu. The vertical dashed line marks the inter-

face position. The transition region is marked by yellow color. δx = 8.86 · 10−8 m,

δt = 2.42 · 10−7 s, ly = 310δx, x0 = 200δx, vpull = 6.25 · 10−4 m/s, GT = 2.15 · 106 K
m .

a: Profile of phase-field φ and supersaturation Θ. b: Concentration profiles,

separation of concentration in different phases and equilibrium concentrations

(liquidus, solidus).
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region. In this particular case simulation gives an increase of less

than 10%.

4.5.2 2D simulation

A typical simulation picture looks like the one in Fig. 4.9(right). The

solidification interface, corresponding to φ = 0.5, is marked with a

black line. The fraction of Ni is color coded. The alloy solidifies

from bottom to top and the form of the solidification front affects

the local fraction of Ni in the solid phase. There are thick lamel-

las corresponding to the hills on the surface, as well as thin traces

of liquid grooves. The liquid grooves emit liquid solute-enriched

droplets. These droplets solidify later (deeper) in the crystal. The

Ni poor round regions, seen in the figure, correspond to such crys-

tallized droplets. A more detailed study of the question of stability

of liquid grooves has been made by M. Conti and U.M.B. Marconi

for cases with large anisotropy [14].

We compared our simulation results with those of Boettinger et

al. [7] and Lan et al. [34]. Dependencies of patterns on the pulling

rates and the temperature gradient have been therefore examined.

It is necessary to mention some words about this comparison. Both

works deal with the WBM phase-field model. This model has been

discussed in Section 4.2.2. Fig. 4.3 demonstrates that there is a

strong influence from the additional double-well potential. The in-

fluence of this effect is rather complex because the real value of W

determines both the width of phase transition region and the sur-

face tension. In order to compare our simulation with the results of

the WBM model, we took a six times larger value of surface tension

than given in Table 4.2, γ = 1.776 · 10−6 J/m2.
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Table 4.3: Dependence of the wavelength of the patterns on the puling velocity.

The results are compared with simulations of Lan et al. [34] and Boettinger et

al. [7]

pulling velocity (m/s) 1.25 · 10−3 2.5 · 10−3 5.0 · 10−3

λ, (m), this model 3.8 · 10−6 3.3 · 10−6 2.4 · 10−6

λ, (m), Boettinger et al. [7] 2.84 · 10−6 2.04 · 10−6 1.54 · 10−6

λ, (m), Lan et al. [34] 4.61 · 10−6 3.29 · 10−6 1.92 · 10−6

In Table 4.3 the computed wave lengths of the patterns are

listed for different pulling velocities. The temperature gradient is

fixed to the value GT = 2.15 · 106 K/m. Ni concentration at the liquid

end is cl = 0.56. Initial interface temperature and position are taken

as Ti0 = 1570 K, y0 = 200 × δx. The simulation results are compared

to those obtained by Lan et al. [34] and Boettinger et al. [7], and

are seen to be in reasonable agreement. Fig. 4.7 shows the depen-

dence of the wave length on the pulling velocity. A stable periodic

structure is obtained for small velocities. For instance, a periodic

structure is obtained for vpull = 6.25 · 10−4 m/s, see Fig. 4.9(left). The

same simulation is repeated with a coarser grid, δx = 1.77 · 10−7 m.

The difference in the measured value of λ is less than 10%.

Temperature gradient influences the wavelength as well, see

Fig. 4.8. Theory of directional solidification, [33], predicts that this

dependence has the form:

λ ∼ G−0.5
T .

The plot demonstrates strong agreement between the simulation

results and the theory.
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Figure 4.7: Dependence of the wave-

length of the patterns on the pulling ve-

locity. line 1: results obtained with the

KKS model; line 2: Lan et al. [34]; line

3: Boettinger et al. [7]

−6
5 6 7

−510

10
10 10 10

Figure 4.8: Dependence of the wave-

length of the patterns on the tempera-

ture gradient. The straight line marks

the theoretical slope of the dependence.

Figure 4.9: Concentration profile for the NiCu alloy with different pulling rates.

ε4 = 0.05, GT = 2.15 × 106 K/m, δx = 8.86 · 10−8 m, domain size 400 × 310 l.u.,

δt = 2.42 · 10−7 s, number of time steps is 500000, cl∞ = 0.56. Interface fixed at

110 l.u.. Colors code the local concentration of Ni. The thin black line corresponds

to φ = 0.5. left: vpull = 6.25 · 10−4 m/s; right: vpull = 2.5 · 10−3 m/s
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Figure 4.10: Cellular structures for

simulations with different values of the

anisotropy. vpull = 2.5 · 10−3 m/s, GT =

2.15 × 106 K/m,δx = 8.86 · 10−8 m, δt =

2.42 · 10−7 s, number of time steps is

500000, cl∞ = 0.56. Colors code the local

concentration of Ni. The thin black line

corresponds to φ = 0.5. left: ε4 = 0.06,

domain size 400×310 l.u., interface fixed

at 110 l.u.; right: ε4 = 0.01, domain size

400× 710 l.u., interface fixed at 510 l.u.;.

4.5.3 Role of anisotropy

Here we would like to study the influence of crystallographic

anisotropy on the properties of the cellular structure. Usually there

is only qualitative knowledge about the anisotropy, e.g. depen-

dence of the surface tension or kinetic coefficient on the orienta-

tion. The role of anisotropy in solidification has been investigated

by Kessler and Levine for the dendritic growth, see [28]. Anisotropy

stabilizes the dendritic tip, e.g. in the isotropic case the value and

direction of the dendritic tip velocity changes. Our investigation

gives a similar conclusion for alloys.

All simulations are made for four-fold anisotropy in surface ten-
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sion, see Eq. (3.22). Different behavior is observed for different

values of the anisotropy parameter. Figs. 4.9(right) and 4.10(right)

show simulations with ε4 = 0.05 and the with ε4 = 0.01, respectively.

The relation between cellular structure parameters and ε4 is rather

complex. The stable cellular structure becomes irregular and tran-

sient for small ε4, see Figs. 4.9(right) and 4.10(right). The Ni dis-

tribution in the crystal shows that some cells disappear and new

cells appear during the growth. This behavior is observed for sim-

ulations with ε4 from the interval [0, 0.015]. An irregular structure

is seen also for larger ε4, but this structure is stable. Fig. 4.10(left)

shows this phenomenon, the value of anisotropy is rather large in

this simulation, ε = 0.06. Different patterns seem to be stable under

these conditions. Once appearing this structure does not undergo

any changes during more than 20000 time steps.

The drop-like inclusions, see Fig. 4.9(right), in the solid phase

appears for ε4 > 0.03. The inclusions disappear with the decreasing

of anisotropy and appear again with an irregular structure.

4.5.4 Influence of shear flow

Flow is another factor with strong impact on the patterns. An in-

duced flow changes the concentration and temperature conditions

near the interface thereby influencing the growing structure. The

flow can be induced by macroscopic processes in the system, for in-

stance the temperature-gradient or the concentration-gradient in-

duced by solidification.

The flow effect is clearly seen from comparison between

Figs.4.9(right) and 4.11(left). The flow in the last simulation is di-

rected from left to right. The fingers are tilted towards the flow. The
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Figure 4.11: Cellular growth of NiCu in presence of flow. vpull = 2.5 · 10−3 m/s,

GT = 2.15 × 106 K/m. There is a flow in x-direction, ut = 0.05 m/s. left: with

anisotropy, ε4 = 0.05; right: without anisotropy, ε4 = 0.00
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Figure 4.12: Cells orientation angle vs. flow velocity for two different values of

anisotropy. vpull = 2.5·10−3 m/s, GT = 2.15×106 K/m. There is a flow in y-direction

Top line: ε = 0.02, Bottom line: ε = 0.04.
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orientation angle depends on flow velocity and on the partition co-

efficient. E.g., the fingers are oriented against the flow for k < 1 and

towards the flow in a case with k > 1. The dependence of the angle

on the flow velocity is plotted in Fig. 4.12. Two lines correspond to

the different values of anisotropy.

Fig. 4.11(right) shows an example of the influence of the flow

on the crystal without anisotropy in surface tension. There is no

regular structure contrary to the growth with anisotropy. Some

“heads” move along the interface in opposition to flow direction. A

similar effect is observed with anisotropy and with strong flow. It

means that the flow is able to destroy the cellular structure of the

interface.



Chapter 5

Cellular growth in GeSi

crystals

The goal of the thesis is to study pattern formation in GeSi crystals.

The crystals are grown using the Czochralski method. A sketch of

the Czochralski furnace is shown in Fig. 5.1. Furnace sizes are

very large in comparison to the size of the studied microstructure,

e.g. the crucible radius is 60 mm and the wavelength of the surface

patterns is ∼ 0.1 mm.

Material data is a problem which frequently arises in the mod-

elling of crystal growth. Some parameters required in the simula-

tion are not known or have different values in different sources. In

the case of GeSi crystals, the problematic material parameter is the

diffusion coefficient of Si in a Ge melt. The diffusion coefficient was

measured in the sixties of the previous century [49], with a value

of 2 ·10−8 m2/s. More recent records containing measurements have

not been found. Recent results for the molecular dynamics simu-

lation [74] for diffusion processes show a value of D for Si in Ge

of 2.3 · 10−9 m2/s. Independently, D. Stock made molecular dynamic

81
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simulations for the diffusion coefficient, and obtained the value,

6 · 10−9 m2/s. The possible source of the difference between exper-

iment and simulation is convection effects, which are hard to ac-

count for in the analysis of the results, see [24]. As one can see, it

is hard to judge the real value of the diffusion coefficient. We there-

fore made simulations for both values of D: DMD = 6 · 10−9 m2/s and

Dex = 3 · 10−8 m2/s.

To summarize, in spite of the existing uncertainty in the simu-

lation and material parameters, we will try to obtain results, which

are useful for further GeSi investigations.

Investigations of pattern formation in crystal growth raise ques-

tions about crystallographic anisotropy particularly regarding its

influence on the stability and morphology of the patterns. Differ-

ent anisotropy models for simulations in crystal growth appear in

the literature [63, 50, 68]. The anisotropy can be incorporated into

the model in the term of surface tension and/or in kinetics. Cur-

rently, knowledge regarding this dependence for various materials

is rather poor, and usually only qualitative. We therefore decide not

to focus on the investigation of anisotropy influence on the GeSi

growth. We have already discussed the influence of anisotropy in

surface tension on the pattern formation for the case of NiCu, Sec-

tion 4.5.3. For the GeSi simulation, we took the same anisotropy

model as used for NiCu. The value of the anisotropy factor is taken

to be equal to 3%.

Now, let us say some words about the numerical realization of

this model. It is important to note that the GeSi modelling is based

on the KKS phase-field model with the modified surface-tension

term. The KKS phase-field model has already been applied for so-

lidification in the NiCu alloy, see Section 4.5. The properties and
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Figure 5.1: Schematic representation of the Czochralski furnace

processing of NiCu and GeSi are very different: NiCu is a metal,

casting conditions correspond to a high solidification velocity and

a pronounced cellular structure. Contrarily, GeSi is a semicon-

ducting material which is grown with a small solidification velocity

and as a mono-crystal, and its cellular structure has a small am-

plitude in comparison to the wavelength. As a result, the length

scales of micro-structures in both materials are different, see Figs.

1.5 and 4.5.

5.1 The Czochralski growth

Fig. 5.1 shows a sketch of the Czochralski furnace. The crucible

contains melted material solidifying on the crystal surface. The

crystal is pulled out of the melt with a constant velocity. Some

growth parameters are listed in Table 5.1.
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Table 5.1: Growth parameters.

Rcrucible Rcrystal Ωcrucible Ωcrystal c∞l cs vpull

60 mm 15 mm 10 rpm −15 rpm 1% 2% 6 mm
h

Heaters keep the crucible hot to make the temperature of the

liquid higher than the solidification temperature of the material.

The grown crystal is cooled down, and heat is thus removed from

the front of the solidification throughout the crystal. The tempera-

ture difference in the melt causes melt convection. Another source

of flow is the rotation of the crucible and the crystal. The GeSi

crystals were grown with counter rotation for better mixing in the

system [70]. The resulting flow has a rather complex character and

is usually non-axisymmetric and unstationary [39].

The level of the melt decreases during crystal growth, causing

changes in melt the flow, temperature and concentration fields.

These changes have a time scale of ∼ 1 h because of the low pulling

velocity. These processes cause changes in the crystal diameter

and the concentration of Si. The constant diameter is maintained

by the changing of external parameters as needed, e.g. power of

the heaters.

The segregation coefficient of Si is greater than 1, i.e. the Si

concentration in the melt is about 1% and in the crystal about 2%.

Therefore, the Si-enrichment of the crystal during growth causes

Si-depletion in the melt. The classic Czochralski method has been

modified by N.V. Abrosimov et al. [2, 1] in order to keep a constant

concentration of Si in the melt. Three silicon rods, responsible for

maintance of the constant concentration, are immersed slowly into

the melt. Their dissolution assures the release of the necessary
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amount of Si into the solute. The rods destroy the axial symmetry

of the system and produce additional complexity.

Traces of these processes are seen in the obtained crystals. An

analysis of the crystal allows one to determine the time scales of

the different processes. There are high frequency fluctuations in

temperature and concentration fields. These fluctuations induce

striations in the crystal, see Fig. 1.5. Unfortunately, the analysis

of the crystal does not permit one to make any separate conclu-

sions regarding fluctuations of temperature or concentration. The

distance between striations indicates the time scale of the fluctua-

tions, ∼ 5 s. The frequency of these fluctuations is equal to the ro-

tation frequency of the crystal. Thus, we are able to conclude that

the oscillation originates from the disturbances in axial symmetry.

Other processes in the system have a larger time scale. The crys-

tal cross-section seen in Fig. 1.3, has regions with different types

of microstructure. The changes in microstructure are caused by

changes in conditions near the growing surface. The time scale of

these changes is ∼ 1 h.

Using a numerical simulation it is possible to obtain some in-

formation about the conditions near the crystal surface. O.V.

Smirnova et al. [56] made a macroscopic axial symmetric mod-

elling of the furnace. The value of the temperature gradient near

the interface, GT , has been obtained through this simulation. The

temperature gradient changes along the crystal surface from the

value 0.9 K
mm

in the center to 1.2 K
mm

on the crystal boundary.

In our modelling we would like to simulate the processes taking

place in the vicinity of the interface. The size of the simulation

domain is of the order of 1 mm.
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Table 5.2: Dimensionless parameters characterizing processes in crucible for

GeSi growth.

Recrucible Recrystal Gr Ra Sc

4 · 103 2 · 102 6 · 106 7 · 104 17

5.2 Analytical estimations

A great amount of work regarding the Czochralski growth method

was done during the last century [70]. The experience collected in

this field has allowed us to make an estimation of certain values

that are of particular interest for mesoscopic simulations. In our

simulation, we try to reproduce the processes near the crystal sur-

face. Information about the flow and the concentration field near

the interface is therefore important. There are two sources of such

information: a global simulation [56] and analysis of the furnace

and the obtained crystal. Regarding the estimations made from the

analysis, a crucial physical value for our modelling is the thickness

of the boundary layers for flow, δm, and for concentration δc. Both

boundary layers are related via the following equation, (see pg. 25

in [61]):

δc = δmSc−1/3,

where Sc is the Schmidt number, Sc ≡ ν/D. For the GeSi alloy Sc

is about 17.

The estimation of δc requires the analysis of the grown crystal.

The grown GeSi crystals contain 2% Si. Experiments have shown

that the concentration in liquid is approximately 1% [1, 2]. This

allows us to conclude that k∞ ≈ 2. The boundary layer thickness δc
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Figure 5.2: Phase-diagram for GiSe. Green points show measured values

[43, 15] and the black line corresponds to the phase-field approximation. The

concentration region in which the analyzed crystals have been grown is marked

by the red color. The free energy function was modified in order to fit the exper-

imental data: L = L0(1 + αT ), αSi = 2 · 10−4K−1, αGe = 9 · 10−5 K−1.

can now be computed using Eq. (4.21):

δc =
D

vpull

ln
k∞(1− k̂)

k̂(1− k∞)
.

The value of k̂ is known from the phase diagram (see Fig. 5.2) and it

equals 5.33. For D = 3 ·10−8 m2/s, the obtained width of the diffusion

boundary layer is δc = 8 mm.

5.3 1D simulations

Different phase-field models have been discussed in the previous

chapters. Most articles deal with metallic alloys [13, 34, 37, 67];

usually the WBM model is used for simulations, and publications

with the KKS model are rather rare. We made some 1D simulations
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in order to test the behavior of the model in the case of GeSi growth

parameters.

The simulation domain is defined similarly to that of the sim-

ulations of NiCu. It has the length ly, and the crystal surface is

placed in y0 < ly. The initial condition for the phase field is:

φ(y, 0) =
1

2
− 1

2
tanh

( √
W

ξS

√
2
(y − y0)

)
.

The initial condition for the concentration field is expressed with

the following formula:

c(y, 0) = cs0φ(y, 0) +

(
y

y0

(c0
l − cl0) + cl0

)
(1− φ(y, 0)),

where cl0 is the initial concentration on the right boundary. Note,

in contrast to the NiCu case, concentration on the liquid boundary

is not equal to cs0.

The temperature is taken as an external field, as well:

T (y, t) = T0 + GT (y + vpullt).

The interface is kept near the position y0. The domain-moving pro-

cedure is similar to that for NiCu.

Let us turn now to the question of the boundary conditions.

The concentration boundary conditions used for the NiCu solidifi-

cation are not applicable in the simulated system. It is based on

the assumption that the domain with the length l can be consid-

ered as an infinite domain, in other words, cl0 is assumed to be

equal to c∞. This statement requires, domain length of ∼ 10 mm

in the GeSi case. This size exceeds the estimated value of the dif-

fusion boundary layer, see Section 5.2. We formulated, therefore,

special boundary conditions. The basic idea is that the Si flux in
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the melt towards the growing crystal is equal to the absorption flux

on the crystal surface. Two facts should be taken into account:

• a difference between the solid and liquid concentrations de-

stroys the balance in the liquid,

• the domain is constantly moving with the interface, which

causes constant flux in the system.

These two facts allow the formula for flux on the liquid side of the

domain to be written:

J(ly, t) = (c(ly, t)− cs0)vpull, (5.1)

where cs0 is the expected concentration in the solid. Indeed, this

expression defines the flux value, which covers adsorption (des-

orption) on the interface with regard to the moving domain. These

boundary conditions are simplified to condition c(ly, t) = cs0 for a

large domain.

Figs.5.3 shows 1D simulation results. The differences between

the NiCu simulation, Fig. 4.6, and this one are evident. First of all,

the values of cl0 and cs0 are different. The concentration boundary

conditions used, therefore, are very important for the GeSi case.

Fig. 5.3b shows explicitly that the used boundary conditions result

in the right fraction of Si in the solid. Another detail, which attracts

attention, is the large oscillation in Θ in the transition region. There

are corresponding oscillations on the cl and cs lines. This effect

appeared in the NiCu results in the form of superheating in the

transition region, Figs.4.6. This small effect becomes significant in

the case of GeSi.

Let us discuss the influence of this effect on the model. The anti-

double well potential, induced by this effect, exceeds the double-

well potential. The result is the destruction of the transition region.
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The only possible antidote is an increase in the amplitude of the

double well potential. The Eq. (4.41) requires that we both increase

the value of ξS, and leave δ unchanged. Such an increase results

an increase in the surface tension. Thus, there is a stability re-

striction on the surface tension in the classic phase-field model. In

this simulation, the surface energy γ = 210 J/m2 is 1000 times larger

than that in, Table 5.3. The increase in surface energy has no

influence in the 1D simulation, since there is no Gibbs-Thomson

effect in the 1D case. But in a 2D simulation, such an increase be-

comes problematic. The dual role of surface tension in the classic

phase-field model has been discussed in Section 3.2. The modified

phase-field model makes possible stable simulations with a realis-

tic value for the surface tension. In the modified phase-field model,

the stability restriction is only on the values of W and ξ⊥, and there

is no restriction on the value of ξ||, which is responsible for surface

tension, see Eq. (3.16).

5.4 Simulation without flow

Some vagueness concerning values of material parameters has al-

ready been discussed in the beginning of this chapter. One such

parameter is the diffusion coefficient of Si in Ge melt. As was men-

tioned earlier, two sources give different values for this parameter;

we decided to make computations with the two different values.

Again, as was discussed earlier, the knowledge of the process pa-

rameters in the vicinity of the interface is limited as well. Namely,

there are no measurements for the temperature gradient. In our

simulation, we took the value obtained in the simulation made by

Smirnova et al. [56], Gt = 900 K/m. We should say in advance
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a)

b)

Figure 5.3: 1D simulation for GeSi. The vertical dashed line marks the interface

position. The transition region is marked in yellow. δx = 5 · 10−6 m, δt = 2 ·
10−2 s, ly = 300δx, x0 = 100δx. a: Profile of phase-field φ and supersaturation Θ.

b: Concentration profile c, separation of concentration in different phases and

equilibrium concentrations (liquidus, solidus).
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Table 5.3: Material parameters for Si and Ge [15]

.
Physical value Si Ge

Melting-point temperature 1693.15 K 1210.35 K

Latent heat 50.190 kJ
mol

34.02± 0.84 kJ
mol

Molar volume 1.2 · 10−5 m3

mol
1.35 · 10−5 m3

mol

Heat capacity
1300 K: 27.5 J

mol K
,

1693K:28.5 J
mol K

25.0 J
mol K

Latent heat per unit volume 4.18 · 109 J
m3 (2.5± 0.06) · 109 J

m3

Heat capacity per unit volume
1300K:2.29 ·106 J

m3 K
,

1693 K:2.38 · 106 J
m3 K

1.85 · 106 J
m3 K

Kinetic coefficient ≈ 0.63 m
s K

≈ 0.32 m
s K

Gibbs-Thomson coefficient 6.72 · 10−8 m K 6.0 · 10−8 m K

Diffusion coefficient 3 · 10−8 m2

s
6 · 10−9 m2

s

Kinematic viscosity 2.8 · 10−6 5 · 10−7 m2/s
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Figure 5.4: Time dependencies of growth velocity for 1D and 2D simulations of

GeSi solidification.

that simulations with this value for the temperature gradient and

with D = 3 · 10−8 m2/s reproduce better experimental results than

those with D = 6 · 10−9 m2/s. The strong agreement of results, how-

ever does not permit the drawing of solid conclusions, due to the

vagueness of other parameters. Further consideration shows com-

putations with experimental value of D but some computations for

DMD are demonstrated, as well.

The simulated system is the same as that in the case of the

NiCu solidification. Model parameters of GeSi require the use of

the MRLK method. Contrary to the NiCu case, this method allows

us to significantly speedup the GeSi simulations. For the flow-free

case, the limiting factors for the numerics are D∗ and ξS

τ
δt

δ2
x
. Their

typical values for both systems are:

NiCu : D∗ = 0.03,
ξS

τ

δt

δ2
x

= 0.19 and

GeSi : D∗ = 24.0,
ξS

τ

δt

δ2
x

= 0.19.



94 5.4. Simulation without flow

It is seen that D∗ in the GeSi is far beyond the stability limit of the

finite difference scheme. The simulation with the finite difference

method therefore, requires time step, δt, which is smaller than the

one used with the MRLK method.

2D simulations with the parameters obtained from the global

simulation, demonstrate that the shape of crystal is unstable. In

Fig. 5.4 a comparison is made between the growth velocity of a

flat interface (a 1D simulation) and that of a cellular interface (the

velocity of a fixed point on the interface). Both velocity curves co-

incide at the initial stage since the 2D simulation starts from a flat

interface. After some evolution, the growth velocity in the 2D simu-

lation begins to deviate from the stationary behaviour. This occurs

due to the progressive destruction of the flat interface. Appearing

of a cellular structure causes an increase in growth velocity. In ad-

dition, the shape of the interface achieves a stationary state, where

the growth velocity is eventually equal to the pulling one, vpull. This

figure demonstrates only the initial stage of the simulation.

Let us now discuss theoretical predictions for the size of pat-

terns. The depth of the cells is related with the temperature gradi-

ent:

acell =
T∆

GT

,

where T∆ is the temperature difference between the top and bot-

tom parts of a cell. This temperature difference is assumed to be

equal to T∆0(c
0
l ) and, is defined through the phase-diagram as the

difference between the temperatures of solidus and liquidus, see

Fig. 5.2. In the GeSi simulation, T∆0 = 4 K and GT = 0.9 K/mm. The

obtained value for the depth of the patterns is ≈ 4.4 mm. Fig. 5.5

shows a computed interface profile. The depth of the calculated

structure is 4.2 mm, which has a good agreement with the theoret-
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Figure 5.5: Modelling results of cellular structure in a GeSi crystal. Domain size

10 × 20 mm, δx = 0.02 mm, δt = 0.32 s, γ2
ξ = 10−3. left: Concentration field. Black

line indicates a phase-boundary. The crystal solidifies from bottom to top. Color

codes the Si concentration, the concentration in the crystal changes between

1.5% and 2.5%. right: Time evolution of the first six coefficients in the Fourier

representation of the interface shape.

ical value. The distance between the nearest minima on the inter-

face is defined by the shape of the patterns and tip radius. The

relation between tip radius, Rtip and the wavelength, λ, is written

for elliptic and parabolic shapes, respectively:

λ = 2
√

αshacell ∗Rtip, (5.2)

where αsh is the shape coefficient. It takes a value of 1 for the

elliptic and 2 for the parabolic shape. The resulting expression for

the tip radius is, (pg. 79 in [33]):

Rtip = 2π

√
ΓD

kvpullT∆0

. (5.3)

The resulting expression for the wave length is:

λ = 2
√

2παsh
4

√
T∆0ΓD

kvpullG2
T

, (5.4)
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In the case of a parabolic shape, λ ≈ 6.3 mm. Our simulation,

Fig. 5.5, gives a value of 6.7 mm. Both, simulation and theory,

result in similar sizes of the microstructure. This size is approxi-

mately 15 times larger than the experimental one. This effect can

be explained by the presence of flow in the experiment (see the next

section). Fig. 5.5(right) shows the spectrum of the patterns. It is

seen that λ increases during the simulation. After a period of time,

a shallow cellular structure appears. Observation of evolution pro-

cesses allows one to make qualitative estimations of a time scale.

It is easy to recognize the transition from high-frequency patterns

at the beginning to lower ones.

In the simulation, it is seen that the cells grow parallel to the

pulling velocity, however in the experiment there is some devia-

tion from this direction. This deviation appears to be due to the

existence of a tangential flow.

5.5 Influence of flow

The flow influence has already been described for the NiCu alloy,

see Section 4.5.4. The impact of strong flow on cell orientations

and on stability of patterns has been considered in Section 4.5.4.

The goal is to study flow influence on the cell orientation. This

effect has practical importance. It was mentioned earlier that in the

experiment, the cell orientation deviates from the normal direction

to the interface. This deviation indicates an existence of a flow near

the interface.
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Figure 5.6: Time evolution of first four coefficients in the Fourier representation

of the interface form. The solidification is influenced by tangential flow, ut =

0.2 mm/s, l = 5 mm is width of the domain. Domain size of 3×5 mm, δx = 1·10−5 m,

δt = 4 · 10−3 s, γ2
ξ = 10−3.

5.5.1 Stability of cellular structure

An interesting flow effect was observed during this investigation. In

the case without flow, an increase in the value of dominant wave-

lengths is seen in Fig. 5.5. This situation changes in the presence

of flow. Fig. 5.6 shows the Fourier representation of the growing

surface. This plot is a result of modelling with tangential flow. The

flow is too weak to have an impact on the cell orientation, but it

makes an influence on the wavelength pattern. The plot shows

that the cell size of 1.7 mm became quasi-stable in the presence of

flow. This effect is a good explanation of the experimentally ob-

served small size of the cells, see Fig. 1.5.

Other simulations were carried out with a stronger flow.

Figs. 5.7 show the evolution of the interface for different values

of flow velocity. It is seen that for slower flow the wave length con-

tinuously increases (on this scale), but with faster flow it becomes
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Figure 5.7: Concentration and phase-boundary for GeSi crystal. Crystal grows

from right to left. Domain size of 1 mm × 1.5 mm, x0 = 1 mm, δx = 5 · 10−6 m,

δt = 2 · 10−3 s, γ2
ξ = 10−3, D = 3 · 10−8 m2/s. Screenshots correspond to 4000 s,

80000 s and 10000 s. left: ut = 1 mm/s; right: ut = 1.5 mm/s.

constant after some evolution. The simulation corresponding to

Fig. 5.7(right) shows that the stationary structure is achieved after

approximately 2 h. During this time the crystal grows up to 12 mm.

We can not give a clear answer as to whether the structure, shown

in Fig. 5.7(left), is stable or quasi-stable, nevertheless, such a ques-

tion is irrelevant from the experimental point of view. The crystal

analysis shows fluctuations with a period of ∼ 1 h. This means

that processes with a time scale larger than 1 h, can be considered

stationary.

5.5.2 Growth orientation of cells

Let us turn back to the investigation of the influence of flow on

the cell orientation. A series of interface profiles, corresponding

to Fig. 5.7 right, is plotted in Fig. 5.8. The cellular structure is

clearly observed, it does not change with time and may thus be

considered to be in a stationary state. This state is achieved after

2.5 h. Tip traces are marked with black lines. The lines are tilted to

the growth direction with an angle of 1.7o. The dependence of this

angle on the flow velocity is plotted in Fig. 5.12. This dependence



5.5. Influence of flow 99

Figure 5.8: Evolution dynamic of the interface. The thin black lines indicate

traces of the cell tips and the thick line marks the growth direction. Domain

size of 1 mm × 1.5 mm, x0 = 1 mm δx = 5 · 10−6 m, δt = 2 · 10−3 s, γ2
ξ = 10−3,

D = 3 · 10−8 m2/s, ut = 1.5 mm/s.

is linear, similar to that obtained in the NiCu results.

Simulations show that the orientation angle depends on the cell

amplitude. This effect appears because of the slow transition from

one wave-length to another. Fig. 5.9 shows the simulation with

D = 6 · 10−9 m2/s. A series of the crystal surfaces is plotted here.

Evolution of the cellular structure is clearly seen in this figure.

During the growth, the orientation angle increases. The tip trace

here is not a straight line, but rather a curve, contrary to the tip

trace in Fig. 5.8. The time scale of the transition from one wave-

length to the next is about of 5 min. This time scale is large in

comparison with flow and diffusion time scales. The evolution is

slow enough therefore, and we are able to observe the influence of
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the flow on the different cellular structures which appear during

the evolution. Differences in the influence can be explained with

the help of the sketch in Fig. 5.10. It is seen that the periodic

structure with a small period and amplitude interacts weaker with

a flow the the structure with large period.

Figure 5.9: Evolution of the interface. The thick line marks the trace of a

cell tip. The crystal grows from right to left. Melt flows from bottom to top.

D = 6 · 10−9 m2/s, ut = 1.1 mm/s.

The flow and amplitude effects are measured for the decreased

D, and the results are plotted in Fig. 5.11. Measurements have

been done for two different amplitudes. The orientation angle is

averaged between all the cells on the plot. The bottom line cor-

responds to the measurements for the patterns whose height is

less than 0.1 mm. The other line corresponds to the later period of

time with a value of amplitude between 0.1 mm and 0.2 mm. The

dependence of cell orientation on the flow velocity seems to be lin-

ear, similarly to the NiCu case. Please note that there were no

stationary patterns achieved, contrary to the simulations with the

experimental value of the diffusion coefficient.

The results for D = 3 · 10−8 m2/s are plotted in Fig. 5.12. It is
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Figure 5.10: Schematic representation of cellular interface with flow field for

different periods of the structure.

seen that the influence of the flow is significantly smaller than in

the previous case. Another observation is that the appearing and

development of the cellular structure are sufficiently slower in the

presence of flow. For different amplitudes of cells, we measured

dependence of cell orientation on the flow. The maximal amplitude

is 0.083 mm, this amplitude corresponds to stationary state(all plot-

ted simulations). The bottom line corresponds to an intermediate

state with the cells amplitude of less than 0.04 mm.

Fig 5.13 shows modelling results vs. real crystal. The vertical

cut from a grown crystal is shown. Striations which show advanc-

ing of the interface, exhibit cellular structure. The simulation is

made for a velocity value of 2 mm/s. Interfaces in both the sim-

ulation and the experiment evaluate from the initially flat shape.

The appearing cellular structures reduce their frequency during
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Figure 5.11: Dependence of cell ori-

entation on the melt flow. The di-

rection is measured for different am-

plitudes “A” of the patterns. D =

6 · 10−9 m2/s

A=
0.083 mm

A<0.04 mm

 0

 1

 2

 3

 0  0.002  0.004
flow velocity, m/s

C
ell’s orientation, deg

Figure 5.12: Dependence of cell ori-

entation on the melt flow. The di-

rection is measured for different am-

plitudes “A” of the patterns. D =

3 · 10−8 m2/s

the evolution. The observed wavelengths and evolution rates are

in good qualitative agreement. Nevertheless the orientation of the

cells is different in the experiment from that in the simulation. We

assume this difference to be caused by a difference in the crystal-

lographic anisotropy. Namely, the growth direction in the simula-

tion is <100> and that in the experiment is <112>. In this work,

growth in different crystallographic directions were not studied.

Fig. 5.14 shows part of the crystal cross section. There are three

marked cell traces. The analysis of these traces provides informa-

tion about flow near the interface. Cells in the central part of the

crystal grow without flow (the value of the flow velocity averaged

in time equals 0). The orientation of these cells is a result of the

influence of crystallographic anisotropy. Flow influence is there-

fore characterized by local cell orientation as compared to that of

the central cells. The measured dependence of the orientation an-
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Figure 5.13: Comparison of the crystal shapes predicted in the simulation and

those obtained in the experiment

Figure 5.14: Cut from the cross section of a GeSi crystal. The crystal rotation

axis is marked. Three cell traces are marked with white lines. Angles between

the rotation axis and these traces are noted.

gle on melt flow, see Fig. 5.12, gives the value of flow velocity of

≈ 6.3 mm/s on the distance from the interface of 1 mm. Similar

value was obtained in the macroscopic simulation of the growth

furnace, see [56].



Chapter 6

Conclusion

The pattern formation during the Czochralski growth of GeSi crys-

tals was studied in this work. Simulations for GeSi raised nu-

merous problems. The model contains a large number of physical

effects which should be coupled together: melt flow, diffusion in a

melt, phase-transition in a binary alloy. Each physical effect has

its own space and time-scale. Therefore, it is important to develop

a numerical technique which is able to treat such a multi-scale

model. During the work on the numerical model we made signif-

icant updates in both the phase-field method and the numerical

methods. The calculations with the model where performed for

simulations of solidification in NiCu and GeSi alloys. The expected

instability of the growing interface was obtained in simulations.

Modelling results were compared with theoretical predictions and

experimental measurements. The effect of flow influence on the

solidification patterns has been investigated.

For the modelling of the advection-diffusion processes we have

chosen a method of the Lattice-Boltzmann type. In order to ap-

ply this type of methods to our model we have developed a matrix
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kinetic scheme. The matrix kinetic scheme has numerous advan-

tages. The time step for this method is free of diffusive Courant

constraints. It can handle anisotropic diffusion, which is, by def-

inition, out of reach for single-time relaxation kinetic schemes. It

achieves all of the above without introducing any memory over-

head, as compared to existing kinetic schemes. We developed the

time-stepping technique for the Lattice-Boltzmann type of meth-

ods. This update increase significantly the performance of this

type of methods. The new schemes were tested and verified with a

pure diffusion problem.

Afterwards, the matrix kinetic scheme has been coupled with

phase-field equations for the solidification of pure materials. The

phase-field model for binary alloys contains a non-linear reaction-

diffusion equation. In order to apply this method for the case of bi-

nary alloys we have introduced an extension of the kinetic scheme

for this type of equations. The coupled schemes have been val-

idated for a variety of growth phenomena: 2D and 3D dendritic

growth from melt, and directional solidification in binary alloys.

A modified phase-field equation has been developed. The devel-

opment was a result of the GeSi problem; the classic phase-field

equation for binary alloys becomes unstable for large scales and

this instability appeared in the GeSi case. The modification al-

lows to treat separately the surface tension effect and the phase-

transition region. This modification increases the stability of the

phase-field model for cases with the small surface-tension.

Binary alloy simulations were based on the KKS phase-field

model. The combination of this model with the mentioned mod-

ified phase-field equation was tested on the NiCu alloy. Our re-

sults were compared with those of other papers based on the WBM
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phase-field model.

The phase-field model has been coupled with the LBGK model in

order to perform simulations with flow. The influence of convection

has been investigated and a flow impact on the cell orientation

was observed. A linear dependence of the slope angle on the flow

velocity was obtained.

The developed numerical model was applied for simulations of

the GeSi case.

The influence of different physical values on the evolution of the

cellular structure such as temperature gradient, growth velocity

and surface tension anisotropy was studied.

The modified phase-field equation that we used allowed us to

apply a coarser grid, and the use of the kinetic method removed

the limitations on the time step. Therefore, simulations with real-

istic parameters taken from measurements or from a global simula-

tion of the Czochralski furnace have been possible with reasonable

computational efforts.

Simulations without flow were compared with the theory. The

simulation with typical parameters gives the value of wavelength

of 6.7 mm which is in good agreement with the theoretical value of

6.3 mm. These values are ≈ 15 times larger than the experimen-

tally observed one. A strong impact of flow on the wavelength was

observed in GeSi modelling. In the presence of flow, the cell size de-

creases. For example, the same simulation but with a flow velocity

of 1.5 mm
s

gives a value of the wavelength which is equal to 0.37 mm.

As in the case of NiCu a linear dependence of cell on the flow ve-

locity was observed. This fact can be used as an indirect method

of measurement of the flow velocity near the crystal interface. This

method is based on the analysis of striations in the grown crys-
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tal which provides information about flow velocity and direction of

flow near the interface.



Appendix A

Thermodynamically

consistent PF model

A.1 Common equations

In the phase-field model the state of matter is characterized by a

continuous order parameter, φ. φ is defined as 0 in the liquid phase

(melt) and 1 in the solid phase (crystal). A free energy function F
can be introduced for a system with two phases:

F =
∫

V

(
f(φ, T ) +

ξ2
F

2
|~∇φ|2

)
dV , (A.1)

where f(φ, T ) is the free energy density function of a homogeneous

system and ξF is the model parameter. The second term corre-

sponds to the interface energy. It is also necessary to introduce an

internal energy:

E =
∫

V
e(φ, T ) dV, (A.2)
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where e(φ, T ) is the internal energy density function. The internal

energy is a conserved value in the case of a closed system:

∂E
∂t

= 0. (A.3)

The considered system corresponds to “Model C” of Halperin [22].

The thermodynamically consistent phase-field model of the non-

isothermal case was constructed by O. Penrose and P.C. Fife [44]

and separately by Wang et al. [66]. The free energy density is

obtained from the energy density e and the entropy density via the

Legendre transformation:

f(φ, T ) = e− Ts(φ, e). (A.4)

By substituting this expression in (A.1) we get:

F =
∫

V

(
e− Ts(φ, e) +

ξ2
F

2
|~∇φ|2

)
dV = E − TS, (A.5)

S =
∫

V

(
s(φ, e)− ξ2

S

2
|~∇φ|2

)
dV, (A.6)

where ξ2
S ≡ ξ2

F /T .

The evolution equations for φ and e can be taken in the following

form [22]:
∂φ

∂t
= Mφ

δS
δφ

, (A.7)

∂e

∂t
= −~∇ ·

(
Me

~∇δS
δe

)
. (A.8)

These equations uphold the law of energy conservation and the

second law of thermodynamics. Substitution of the entropy ex-

pression (A.6) in these equations gives:

∂φ

∂t
= Mφ

(
∂s

∂φ
+ ξ2

S∆φ

)
, (A.9)

∂e

∂t
= −~∇ ·

(
Me

~∇∂s

∂e

)
. (A.10)
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A.2 Governing equations

The following equations for the derivatives of the entropy density

hold:
∂s(φ, e)

∂e
=

1

T
, (A.11)

∂s(φ, e)

∂φ
= − 1

T

∂f(φ, T )

∂φ
. (A.12)

With these relations, the kinetic equations (A.9) and (A.10) can be

transformed:
∂φ

∂t
= Mφ

(
− 1

T

∂f

∂φ
+ ξ2

S∆φ

)
, (A.13)

∂e

∂t
= −~∇ ·

(
Me

~∇ 1

T

)
. (A.14)

The standard temperature conductivity equation is derived by

choosing Me = K(φ)T 2 in (A.14):

∂e

∂t
= ~∇ · (K(T )~∇T ). (A.15)

The internal energy density function e can be represented by the

expression:

e = Tcp(φ, T )− L(T )p(φ), (A.16)

where cp(φ, T ) is the heat capacity, L(T ) is the latent heat and p(φ)

describes the character of the latent heat production during the

phase transition. It is a monotone increasing function with values

0 and 1 on the ends of the interval. The expression (A.16) for e is

common. Thus, the resulting expression for e is:

e = Tcp − Lp(φ). (A.17)

The relation between e and f can be obtained from the Legendre

transformation for f (A.4):

e =
∂f(φ, T )/T

∂(1/T )
. (A.18)
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The expression for the free energy density function f is obtained

now from the relation (A.18):

f = T
∫ T

Tm

(Tcp − Lp(φ)) d(T−1)−Ts0(φ) = cpT ln
Tm

T
−Lp(φ)TQ(T )−Ts0(φ),

(A.19)

where

Q(T ) =
1

T
− 1

Tm

≈ 1

T 2
m

(Tm − T ). (A.20)

By using the equations (A.13), (A.15), (A.17) and (A.19) we fac-

torize the corresponding kinetic equations for temperature and

phase-field.
∂φ

∂t
= Mφ

(
ξ2
S∆φ + s0φ + LpφQ(T )

)
, (A.21)

cp
∂T

∂t
= ~∇ · (K(T )~∇T ) + Lpφ

∂φ

∂t
, (A.22)

where

pφ ≡
∂p(φ)

∂φ
, s0φ ≡

∂s0(φ)

∂φ
.

Here, s0(φ) is an arbitrary function. Usually, s0 is taken in the form

of double-well potential, with two minima in pure phases:

s0 = −Wg(φ), g(φ) ≡ φ2(1− φ)2. (A.23)

p(φ) is chosen in a polynomial form:

p(φ) = 30

(
φ3

3
− φ4

2
+

φ5

5

)
. (A.24)

This form of p(φ) assures the minima of free energy in points 0 and

1 for all values of the undercooling. Although it is possible to take

polynoms of lower order, these forms do not possess this property

and it can be a cause of instability. Mφ is taken as a constant

Mφ = 1
τ
. The resulting equations are:

τ
∂φ

∂t
= ξ2

S∆φ−Wgφ + LpφQ(T ), (A.25)

cp
∂T

∂t
= ~∇ · (K(T )~∇T ) + Lpφ

∂φ

∂t
. (A.26)
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The Eq.(A.25) can be rewritten for the case with small undercooling,

Q(T ) ≈ T−Tm

T 2
m

, and the constant temperature conductivity is K(T ) =

K0:

τ
∂φ

∂t
= ξ2

S∆φ−Wgφ +
L

T 2
m

pφ(T − Tm), (A.27)

cp
∂T

∂t
= K0∆T + Lpφ

∂φ

∂t
. (A.28)



Appendix B

Solution of the diffusion

equation for special problem

In order to verify the proposed numerical method, we tested it on a

pure-diffusion problem. The diffusion equation looks like:

∂c

∂t
= D∆c. (B.1)

The simplest test is to start with a Gauss distribution:

c = ρ0

(
Nd

2πσ2
0

)Nd/2

e
− |~r|2Nd

2σ2
0 , (B.2)

where ρ0 is initial mass and σ0 is initial dispersion. This problem

has an analytical solution:

c = ρ0

(
Nd

2πσ2

)Nd/2

e
|~r|2Nd

2σ2 , σ =
√

σ0 + 2NdDt.

113



Appendix C

Local curvature

In this Appendix, a question about curvature of surface is dis-

cussed. The surface is defined by this equation:

F (x, y, z) = Const.

The curvature of a surface is defined by its first and second fun-

damental forms. The expressions for the first fundamental forms

are:

E = (∂ux)2 + (∂uy)2 + (∂uz)2, (C.1)

F = (∂ux)(∂vx) + (∂uy)(∂vy) + (∂uz)(∂vz), (C.2)

G = (∂vx)2 + (∂vy)2 + (∂vz)2, (C.3)

where u and v are surface parameters. The expressions of the sec-

ond fundamental forms are:

L =
1√

EG− F 2

∣∣∣∣∣∣∣∣∣
∂uux ∂uuy ∂uuz

∂ux ∂uy ∂uz

∂vx ∂vy ∂vz

∣∣∣∣∣∣∣∣∣ , (C.4)
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M =
1√

EG− F 2

∣∣∣∣∣∣∣∣∣
∂uvx ∂uvy ∂uvz

∂ux ∂uy ∂uz

∂vx ∂vy ∂vz

∣∣∣∣∣∣∣∣∣ , (C.5)

N =
1√

EG− F 2

∣∣∣∣∣∣∣∣∣
∂vvx ∂vvy ∂vvz

∂ux ∂uy ∂uz

∂vx ∂vy ∂vz

∣∣∣∣∣∣∣∣∣ . (C.6)

The curvature κ is related to the differential forms through the

following formula:

κ =
EN − 2FM + GL

EG− F 2
. (C.7)

In order to simplify the calculations, x and y are taken to

parametrise a surface, u = x, v = y. This choice gives the following

expressions for the coordinate derivatives:

∂ux = 1, ∂uy = 0, ∂uz = −∂xF

∂zF
, (C.8)

∂vx = 0, ∂vy = 1, ∂vz = −∂yF

∂zF
. (C.9)

the second derivatives of z with respect to x and y are:

∂uuz = −∂xxF (∂zF )2 − 2∂xzF∂xF∂zF + ∂zzF (∂xF )2

(∂zF )3
,

∂uvz = −∂xyF (∂zF )2 − ∂xzF∂yF∂zF − ∂yzF∂xF∂zF + ∂zzF∂xF∂yF

(∂zF )3
,

∂vvz = −∂yyF (∂zF )2 − 2∂yzF∂yF∂zF + ∂zzF (∂yF )2

(∂zF )3
.

Now we are able to write expressions for the fundamental forms in

terms of the new variables:

E = 1 +
(∂xF )2

(∂zF )2
,

F =
∂xF∂yF

(∂zF )2
,
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G = 1 +
(∂yF )2

(∂zF )2
,

L = −∂xxF (∂zF )2 − 2∂xzF∂xF∂zF + ∂zzF (∂xF )2

(∂zF )2|~∇F |
,

M = −∂xyF (∂zF )2 − ∂xzF∂yF∂zF − ∂yzF∂xF∂zF + ∂zzF∂xF∂yF

(∂zF )2|~∇F |
,

N = −∂yyF (∂zF )2 − 2∂yzF∂zF∂yF + ∂zzF (∂yF )2

(∂zF )2|~∇F |
.

These expressions and the Eq.(C.7) lead to the following formula

for the curvature of an isosurface:

κ =
∆F − nαnβ∇α∇βF

|~∇F |
, (C.10)

where nα ≡ ∇αF

|~∇F | .



Appendix D

Finite difference schemes

D.1 Properties of the lattice vectors

D.1.1 The 2D case

All computations are made on a rectangular grid. The lattice vec-

tors for the 2D case are:

~a0 = (0, 0),

~a1 = (1, 0), ~a2 = (0, 1), ~a3 = (−1, 0), ~a4 = (0,−1),

~a5 = (1, 1), ~a6 = (−1, 1), ~a7 = (−1,−1), ~a8 = (1,−1).

(D.1)

For further consideration of differential operators it is useful to list

some properties of these vectors:

∑8
i=0 wiaiα = 0,∑8

i=0 wiaiαaiβ = 2(w+ + 2w×)δαβ,∑8
i=0 wiaiαaiβaiγ = 0,∑8

i=0 wiaiαaiβaiγaiδ = 4w×(δαβδγδ + δαγδδβ + δαδδγβ)

+2(w+ − 4w×)δαβγδ,

(D.2)
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Figure D.1: Lattice vectors for the 3D case.

where wi are the weight coefficients. The coefficients taken for or-

thogonal and diagonal directions are different:

wi =

 w+, i = 1..4

w×, i = 5..8

D.1.2 The 3D case

Lattice vectors for the 3D case are plotted in Fig.D.1. Their coordi-

nates are:

~a0 = (0, 0, 0),

~a1 = (0, 0, 1), ~a2 = (0, 1, 0), ~a3 = (1, 0, 0),

~a4 = (0, 0,−1), ~a5 = (0,−1, 0), ~a6 = (−1, 0, 0),

~a7 = (0, 1, 1), ~a8 = (0, 1,−1), ~a9 = (0,−1, 1),

~a10 = (0,−1,−1), ~a11 = (1, 0, 1), ~a12 = (1, 0,−1),

~a13 = (−1, 0, 1), ~a14 = (−1, 0,−1), ~a15 = (1, 1, 0),

~a16 = (1,−1, 0), ~a17 = (−1, 1, 0), ~a18 = (−1,−1, 0),

(D.3)
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The list of vector properties is similar to that of the 2D lattice:

∑18
i=0 wiaiα = 0,∑18

i=0 wiaiαaiβ = 2(w+ + 4w×)δαβ,∑18
i=0 wiaiαaiβaiγ = 0,∑18

i=0 wiaiαaiβaiγaiδ = 4w×(δαβδγδ + δαγδδβ + δαδδγβ)+

2(w+ − 2w×)δαβγδ.

(D.4)

D.2 Differential operators

Some expressions of discretized differential operators are listed in

this section.

D.2.1 The 2D case

The five- and nine-point templates are taken for the 2D case. Re-

duction of an additional numerical anisotropy was mainly consid-

ered in the case of a nine-point template, [26]. Discretization of the

Laplace operator is:

∆φ =
∑

i

α∆iφi. (D.5)

The Taylor expansion of the right side of the previous expression

with the second order accuracy is:

∑
i

α∆iφi = φ
∑

i

α∆i +
1

2
∇α∇βφ

∑
i

α∆iaαiaβi

+
1

4!
∇α∇β∇γ∇δφ

∑
i

α∆iaαiaβiaγiaδi + ... .

The properties of the lattice vectors provide both the expression of

the coefficients and the ratio of the coefficients for orthogonal and

diagonal directions.
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Table D.1: Weight coefficients for different templates, the 2D case

5-point 9-point

α∆i −4, i = 0; 1, i = 1..4 −10
3
, i = 0; 2

3
, i = 1..4; 1

6
, i = 5..8

α∇i 0, i = 0; 1
2
, i = 1..4 0, i = 0; 1

3
, i = 1..4; 1

12
, i = 5..8

αMi - 0, i = 0; 1, i = 1..4; 1
8
, i = 5..8

The expression for the operator ∇α, is obtained by the same

procedure.

∇αφ =
∑

i

α∇iaiαφi, (D.6)

There is a nine-point difference scheme for the operator

∇α∇β. The coefficients were taken in order to reduce numerical

anisotropy:

∇α∇βφ =


∑

i αMiaiαaiβφi − 5
2
φ− 1

4
∆φ, α = β

2
∑

i αMiaiαaiβφi, α 6= β
(D.7)

The following operator takes place in the diffusion equation with

an inhomogeneous diffusion coefficient.

∇(A∇B) =
∑

i

α∇i(Ai + A)(Bi −B), (D.8)

where α∆i and α∇i are weight coefficients, see Table D.1.

D.2.2 The 3D case

The expressions of the differential operators for the 3D case are

listed here.

Discretisation of the Laplace operator, gradient and ∇(A∇B) are

the same as in the 2D case, with the only difference being in the

coefficients, which are listed in Table D.2.
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Table D.2: Weight coefficients for different templates, the 3D case

7-point 19-point

α∆i −4, i = 0; 1, i = 1..6 −4, i = 0; 1
3
, i = 1..6; 1

6
, i = 7..18

α∇i 0, i = 0; 1
2
, i = 1..6 0, i = 0; 1

6
, i = 1..6; 1

12
, i = 7..18

αMi - 0, i = 0; 2
3
, i = 1..6; 1

6
, i = 7..18
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